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Preface

v

The fifth edition includes additional material in all chapters, with the
greatest number of additions in Chapters 5 and 10. For instance, new
examples relating to analyzing greedy algorithms, minimizing highway
encounters, collecting coupons, and tracking the AIDS virus, as well as
additional material on compound Poisson processes appear in Chapter 5.
Chapter 10 includes new material on the theory of options pricing. The
arbitrage theorem is presented and its relationship to the duality theorem of
linear program is indicated. We show how the arbitrage theorem leads to
the Black-Scholes option pricing formula.

This edition also contains over 120 new exercises. There are two solutions
manuals for the text. One manual, which contains the solutions of all the
exercises of the text, is available only to instructors. In addition, over 100
exercises in the text are starred, and their solutions are available to students
in a separate solutions manual.

xi
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Chapter 1

Introduction to
Probability Theory

v

1.1. Introduction

Any realistic model of a real-world phenomenon must take into account
the possibility of randomness. That is, more often than not, the quantities
we are interested in will not be predictable in advance but, rather, will
exhibit an inherent variation that should be taken into account by the
model. This is usually accomplished by allowing the model to be prob-
abilistic in nature. Such a model is, naturally enough, referred to as a
probability model.

The majority of the chapters of this book will be concerned with different
probability models of natural phenomena. Clearly, in order to master both
the ‘“‘model building’’ and the subsequent analysis of these models, we must
have a certain knowledge of basic probability theory. The remainder of this
chapter, as well as the next two chapters, will be concerned with a study of
this subject.

1.2. Sample Space and Events

Suppose that we are about to perform an experiment whose outcome is not
predictable in advance. However, while the outcome of the experiment will
not be known in advance, let us suppose that the set of all possible outcomes
is known. This set of all possible outcomes of an experiment is known as the
sample space of the experiment and is denoted by S.

1



2 1 Introduction to Probability Theory

Some examples are the following.
1. If the experiment consists of the flipping of a coin, then

S=[(HT)]

where H means that the outcome of the toss is a head and T that it is a tail.
2. If the experiment consists of tossing a die, then the sample space is

§$=11,2,3,4,5, 6}

where the outcome / means that i appeared on the die, i = 1, 2, 3,4, 5, 6.
3. If the experiment consists of flipping two coins then the sample space
consists of the following four points

S ={H,H),H, T),(T,H),(T,T)}

The outcome will be (H, H) if both coins come up heads; it will be (H, T)
if the first coin comes up heads and the second comes up tails; it will be
(T, H) if the first comes up tails and the second heads; and it will be (T, T')
if both coins come up tails.

4. If the experiment consists of tossing two dice, then the sample space
consists of the 36 points

(1,1),(1,2),(1,3), (1,4, (1,5), (1,6)
2,1),2,2),(2,3), 2,4, 2,9, (2,6)
s=,6G1,6,2),3,3), (3,4, (3,5), 3,6)
“41),4,2),4,3), 4,49, 45), 4,6)
5,1),5,2),5,3), 5,9, 5,5), (5,6)
6, 1), (6,2), (6, 3), (6,4),(6,5), (6,6)

where the outcome (i, j) is said to occur if i appears on the first die and j
on the second die.

5. If the experiment consists of measuring the lifetime of a car, then the
sample space consists of all nonnegative real numbers. That is,

§S=[0,0)* &

Any subset E of the sample space S is known as an event. Some examples
of events are the following.

1’. In Example (1), if E = {H}, then E is the event that a head appears
on the flip of the coin. Similarly, if £ = {T}, then E would be the
event that a tail appears.

* The set (a, b) is defined to consist of all points x such that a < x < b. The set [a, b] is
defined to consist of all points x such that ¢ < x < b. The sets (g, b} and [a, b) are defined,
respectively, to consist of all points x such that @ < x < b and all points x such thata < x < b.
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2'. In Example (2), if E = {1}, then E is the event that one appears on the
toss of the die. If £ = {2, 4, 6}, then E would be the event that an
even number appears on the toss.

3’. In Example (3), if £ = {(H, H), (H, T)}, then E is the event that a
head appears on the first coin.

4'. In Example (4), if E = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}, then
E is the event that the sum of the dice equals seven.

5. In Example (5), if E = (2, 6), then E is the event that the car lasts
between two and six years. €

For any two events E and F of a sample space S we define the new event
E U F to consist of all points which are either in E or in F or in both E and
F. That is, the event E U F will occur if either E or F occurs. For example,
in (1) if E = {H} and F = {T}, then

FUF={H,T}

That is, E U F would be the whole sample space S. In 2)if E = {1, 3, S} and
F ={1,2, 3}, then

EUF=1{1,2,3,5}

and thus £ U F would occur if the outcome of the die is either a 1 or 2 or
3 or 5. The event E U F is often referred to as the union of the event E and
the event F.

For any two events E and F, we may also define the new event EF,
referred to as the intersection of E and F, as follows. EF consists of all
points which are both in E and in F. That is, the event EF will occur only
if E and F occur. For example, in 2) if E = {1, 3, S} and F = {1, 2, 3}, then

EF = {1, 3}

and thus EF would occur if the outcome of the die is either 1 or 3. In
example (1) if E = {H} and F = {T}, then the event EF would not consist
of any points and hence could not occur. To give such an event a name
we shall refer to it as the null event and denote it by . (That is, & refers
to the event consisting of no points.) If EF = J, then E and F are said to
be mutually exclusive.

We also define unions and intersections of more than two events in a
similar manner. If E,, E,, ... are events, then the union of these events,
denoted by U5 _, E,, is defined to be that event which consists of all
points that are in E, for at least one value of n = 1,2, .... Similarly,
the intersection of the events E,, denoted by [I;., E,, is defined to be
the event consisting of those points that are in all of the events E,,
n=12,....
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Finally, for any event E we define the new event E°, referred to as the
complement of E, to consist of all points in the sample space S which are
not in E. That is E€ will occur if and only if E does not occur. In Example
@ if E = ({1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}, then E€ will occur if the
sum of the dice does not equal seven. Also note that since the experiment
must result in some outcome, it follows that S = .

1.3. Probabilities Defined on Events

Consider an experiment whose sample space is S. For each event E of the
sample space S, we assume that a number P(E) is defined and satisfies the
following three conditions:

(i) 0= P(E) = 1.
(i) P(S) = 1.
(iii) For any sequence of events E,, E,, ... which are mutually exclusive,
that is, events for which E, E,, = (Z when n # m, then

P< U E> ~ T PED

n=1 n=1
We refer to P(E) as the probability of the event E.
Example 1.1 In the coin tossing example, if we assume that a head is
equally likely to appear as a tail, then we would have
P({H}) = P(T})) = 3

On the other hand, if we had a biased coin and felt that a head was twice
as likely to appear as a tail, then we would have

P(H) =%, PITH=3 &
Example 1.2 In the die tossing example, if we supposed that all six
numbers were equally likely to appear, then we would have
P({1}) = P({2)) = P({3}) = P({4})) = P({5)) = P({6}) = ¢.

From (iii) it would follow that the probability of getting an even number
would equal

P({2, 4,6)) = P({2})) + P({4)) + P({6))
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Remark We have chosen to give a rather formal definition of prob-
abilities as being functions defined on the events of a sample space.
However, it turns out that these probabilities have a nice intuitive property.
Namely, if our experiment is repeated over and over again then (with
probability 1) the proportion of time that event £ occurs will just be P(E).

Since the events E and E€ are always mutually exclusive and since
EUE® =S we have by (ii) and (iii) that
1 =P(S) = P(EUE") = P(E) + P(EY)
or
PE) + P(ES) =1 (1.1)

In words, Equation (1.1) states that the probability that an event does not
occur is one minus the probability that it does occur.

We shall now derive a formula for P(E U F), the probability of all points
either in E or in F. To do so, consider P(E) + P(F), which is the probability
of all points in £ plus the probability of all points in F. Since any point that
is in both E and F will be counted twice in P(E) + P(F) and only once in
P(E U F), we must have

P(E) + P(F) = P(EUF) + P(EF)
or equivalently
P(EUF) = P(E) + P(F) — P(EF) (1.2)

Note that in the case that £ and F are mutually exclusive (that is, when
EF = (), then Equation (1.2) states that

P(EUF) = P(E) + P(F) — P()
= P(E) + P(F)

a result which also follows from condition (iii). (Why is P({) = 07?)
Example 1.3 Suppose that we toss two coins, and suppose that we
assume that each of the four points in the sample space

S={HH),H,T),(T,H),(T,T)
are equally likely and hence have probability 3. Let

E = {(H, H),(H, T)} and F = {(H, H), (T, H)}

That is, E is the event that the first coin falls heads, and F is the event that
the second coin falls heads.
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By Equation (1.2) we have that P(E U F), the probability that either the
first or the second coin falls heads is given by

P(EUF) =P(E) + P(F) — P(EF)
3+ 1 — P(H,H})

I
—
B

=

This probability could, of course, have been computed directly since

P(EUF) = P({H,H), H, T),(T,H)}) =1 &

We may also calculate the probability that any one of the three events E
or F or G occurs. This is done as follows

PEUFUG)=P(EUF)UQG)
which by Equation (1.2) equals
P(EUF) + P(G) — P((EU F)G)

Now we leave it for the reader to show that the events (F U F)G and
EG U FG are equivalent, and hence the above equals

P(EUFU G)
= P(E) + P(F) — P(EF) + P(G) — P(EG U FG)
= P(E) + P(F) — P(EF) + P(G) — P(EG) — P(FG) + P(EGFG)
= P(E) + P(F) + P(G) — P(EF) — P(EG) — P(FG) + P(EFG) (1.3)

In fact, it can be shown by induction that, for any » events F,, E,,
E,,...,E,,

P(E,UE,U-.-UE,)
= E PE) - ) P(EE)) + ) P(E,E;Ey)

i<j i<j<k

- Y PEEEE)+ -+ (-)"*"'P(E\E, ---E,) (1.4)
i<j<k<l

In words, Equation (1.4) states that the probability of the union of »

events equals the sum of the probabilities of these events taken one at a

time minus the sum of the probabilities of these events taken two at a

time plus the sum of the probabilities of these events taken three at a time,

and so on.
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1.4. Conditional Probabilities

Suppose that we toss two dice and suppose that each of the 36 possible out-
comes are equally likely to occur and hence have probability 5. Suppose
that we observe that the first die is a four. Then, given this information,
what is the probability that the sum of the two dice equals six? To calculate
this probability we reason as follows: Given that the initial die is a four, it
follows that there can be at most six possible outcomes of our experiment,
namely, @, 1), 4, 2), 4, 3), 4,4), (4,5), and (4, 6). Since each of these
outcomes originally had the same probability of occurring, they should still
have equal probabilities. That is, given that the first die is a four, then the
(conditional) probability of each of the outcomes (4, 1), (4, 2), 4, 3), (4, 4),
(4, 5), (4, 6) is + while the (conditional) probability of the other 30 points in
the sample space is 0. Hence, the desired probability will be £.

If we let £ and F denote respectively the event that the sum of the dice
is six and the event that the first die is a four, then the probability just
obtained is called the conditional probability that E occurs given that F has
occurred and is denoted by

P(E|F)

A general formula for P(E|F) which is valid for all events E and F is
derived in the same manner as above. Namely, if the event F occurs, then
in order for E to occur it is necessary that the actual occurrence be a point
in both E and in F, that is, it must be in EF. Now, as we know that F has
occurred, it follows that F becomes our new sample space and hence the
probability that the event EF occurs will equal the probability of EF relative
to the probability of F. That is
P(EF)
PE|F) = PE)

Note that Equation (1.5) is only well defined when P(F) > 0 and hence
P(E | F) is only defined when P(F) > 0.

(1.5)

Example 1.4 Suppose cards numbered one through ten are placed in a
hat, mixed up, and then one of the cards is drawn. If we are told that the
number on the drawn card is at least five, then what is the conditional
probability that it is ten?

Solution: Let E denote the event that the number of the drawn card is
ten, and let F be the event that it is at least five. The desired probability
is P(E | F). Now, from Equation (1.5)

P(EF)

P(E|F) = PF)
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However, EF = E since the number of the card will be both ten and at
least five if and only if it is number ten. Hence,

/3

PEIN=2=" o
i 6

=]

Example 1.5 A family has two children. What is the conditional
probability that both are boys given that at least one of them is a boy?
Assume that the sample space S is given by S = {(b, b), (b, g), (g, D), (g, &)},
and all outcomes are equally likely. ((b, g) means for instance that the older
child is a boy and the younger child a girl.)

Solution: Letting E denote the event that both children are boys, and F
the event that at least one of them is a boy, then the desired probability
is given by

P(E.
PEIR) = 7
P({(b, b))

= P((b, b), (b, 8), (&, D))

EN RN
I
!

Example 1.6 Bev can either take a course in computers or in chemistry.
If Bev takes the computer course, then she will receive an A grade with
probability 1, while if she takes the chemistry course then she will receive an
A grade with probability 4. Bev decides to base her decision on the flip of
a fair coin. What is the probability that Bev will get an A in chemistry?

Solution: If we let F be the event that Bev takes chemistry and E
denote the event that she receives an A in whatever course she takes, then
the desired probability is P(EF). This is calculated by using Equation (1.5)
as follows:

P(EF) = P(F)P(E|F)

_11_1
— 23 T 6 ’

Example 1.7 Suppose an urn contains seven black balls and five white
balls. We draw two balls from the urn without replacement. Assuming that
each ball in the urn is equally likely to be drawn, what is the probability that
both drawn balls are black?

Solution: Let F and E denote respectively the events that the first and
second ball drawn is black. Now, given that the first ball selected is black,
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there are six remaining black balls and five white balls, and so
P(E|F) = §. As P(F) is clearly 75, our desired probability is

P(EF) = P(F)P(E|F)

Example 1.8 Suppose that each of three men at a party throws his hat
into the center of the room. The hats are first mixed up and then each man
randomly selects a hat. What is the probability that none of the three men
winds up with his own hat?

Solution: We shall solve the above by first calculating the comple-
mentary probability that at least one man winds up with his own hat.
Let us denote by E;, i = 1, 2, 3, the event that the /th man winds up with
his own hat. In order to calculate the probability P(E, U E, U E;), we
first note that

P(Ei)=%, i=1,2,3
P(EiEj) = %, i#]j (1.6)
P(E,\E,E;) = ¢

To see why Equation (1.6) is correct, consider first
P(E,E;) = P(E)P(E;|E)).

Now P(E,), the probability that the /th man selects his own hat, is clearly
1 since he is equally likely to select any of the three hats. On the other
hand, given that the ith man has selected his own hat, then there remain
two hats that the jth man may select from, and as one of these two is
his own hat, it follows that with probability 1 he will select it. That is,
P(Elel) = % and SO

P(EiEj) = P(Ei)P(Ej|Ei) = %% = %
To calculate P(E, E, E;) we write

P(EIEZES) = P(EIEZ)P(ESIEIEZ)

= lP(E3|ElE2)

However, given that the first two men get their own hats it follows that
the third man must also get his own hat (since there are no other hats
left). That is, P(E;|E,E,) = 1 and so

P(E\E,Es) = %
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Now, from Equation (1.4) we have that
P(E, VUE, UE;) = P(E)) + P(E;) + P(E;) — P(E\E>)

— P(E\E;) — P(EyE;) + P(E|\E, Es)

1-3+¢

Wt

Hence, the probability that none of the men winds up with his own hat
s1-3=4. @

1.5. Independent Events

Two events E and F are said to be independent if
P(EF) = P(E)P(F)
By Equation (1.5) this implies that £ and F are independent if
P(E|F) = P(E)

(which also implies that P(F|E) = P(F)). That, is, E and F are inde-
pendent if knowledge that F has occurred does not affect the probability
that £ occurs. That is, the occurrence of E is independent of whether or not
F occurs.

Two events £ and F which are not independent are said to be dependent.

Example 1.9 Suppose we toss two fair dice. Let E; denote the event that
the sum of the dice is six and F denote the event that the first die equals
four. Then

P(E,F) = P(4,2)) = 35
while
PE)P(F) = 5% = 715

and hence E, and F are not independent. Intuitively, the reason for this is
clear for if we are interested in the possibility of throwing a six (with two
dice), then we will be quite happy if the first die lands four (or any of the
numbers 1, 2, 3, 4, 5) for then we still have a possibility of getting a total
of six. On the other hand, if the first die landed six, then we would be
unhappy as we would no longer have a chance of getting a total of six. In
other words, our chance of getting a total of six depends upon the outcome
of the first die and hence E, and F cannot be independent.



1.5. Independent Events 11

Let E, be the event that the sum of the dice equals seven. Is E,
independent of F? The answer is yes since
P(E,F) = P({(4,3))) = 3%
while
P(E)P(F) = ¢4 = %
We leave it for the reader to present the intuitive argument why the event

that the sum of the dice equals seven is independent of the outcome on the
first die. @

The definition of independence can be extended to more than two events.
The events E,, E,, ..., E, are said to be independent if for every subset
E,,E,,....,E,., r=<n, of these events

P(E,.E, -+ E,) = P(E,)P(E;) --- P(E,)

Intuitively, the events E, E;, ..., E, are independent if knowledge of the
occurrence of any of these events has no effect on the probabiiity of any
other event.

Example 1.10 (Pairwise Independent Events That Are Not Indepen-
dent): Let a ball be drawn from an urn containing four balls, numbered
1, 2,3, 4. Let E={1,2}, F={1,3}, G = {1,4]}. If all four outcomes are
assumed equally likely, then

P(EF) = P(E)P(F)
P(EG) = P(E)P(G)
P(FG) = P(F)P(G)

]

1
P
1
4
1
4
However,

1 = P(EFG) # P(E)P(F)P(G)

Hence, even though the events E, F, G are pairwise independent, they are
not jointly independent. €

Suppose that a sequence of experiments, each of which results in either a
‘““success’’ or a ‘‘failure,”” are to be performed. Let E;, i = 1, denote the
event that the ith experiment results in a success. If, for all i, i,, ..., i,,

n
P(Ei,Ei2 Ei,,) = H P(Eij)
Jj=1

we say that the sequence of experiments consists of independent trials.
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Example 1.11 The successive flips of a coin consist of independent
trials if we assume (as is usually done) that the outcome on any flip is not
influenced by the outcomes on earlier flips. A ‘‘success’’ might consist of
the outcome heads and a ‘‘failure’’ tails, or possibly the reverse. 4

1.6. Bayes’ Formula

Let E and F be events. We may express E as
E = EFU EF*

for in order for a point to be in E, it must either be in both E and F, or it
must be in £ and not in F. Since EF and EF° are obviously mutually
exclusive, we have that

P(E) = P(EF) + P(EF°)
= P(E|F)P(F) + P(E|F)P(F°)
= P(E|F)P(F) + P(E|F°)(1 — P(F)) 1.7

Equation (1.7) states that the probability of the event E is a weighted
average of the conditional probability of E given that F has occurred
and the conditional probability of E given that F has not occurred, each
conditional probability being given as much weight as the event it is
conditioned on has of occurring.

Example 1.12 Consider two urns. The first containing two white and
seven black balls, and the second containing five white and six black balls.
We flip a fair coin and then draw a ball from the first urn or the second
urn depending upon whether the outcome was heads or tails. What is the
conditional probability that the outcome of the toss was heads given that a
white ball was selected?

Solution: Let W be the event that a white ball is drawn, and let H be
the event that the coin comes up heads. The desired probability P(H | W)
may be calculated as follows:

PHW) P(W | H)P(H)

PHIW) = 5w =~ pon)
) POV | HYP(H)
N P(W|H)P(H) + P(Wch)P(HC)
aom
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Example 1.13 In answering a question on a multiple choice test a
student either knows the answer or he guesses. Let p be the probability that
he knows the answer and 1 — p the probability that he guesses. Assume
that a student who guesses at the answer will be correct with probability
1/m, where m is the number of multiple-choice alternatives. What is the
conditional probability that a student knew the answer to a question given
that he answered it correctly?

Solution: Let C and K denote respectively the event that the student
answers the question correctly and the event that he actually knows the
answer. Now

P(KC) P(C| K)P(K)

P(C) P(C|K)P(K) + P(C|K)P(K®)
B p

~p+ (1/m)(1 - p)

_ mp

T 14+ (m-1)p

PK|C) =

Thus, for example, if m = 5, p = 1, then the probability that a student
knew the answer to a question he correctly answered is . @

Example 1.14 A laboratory blood test is 95 percent effective in
detecting a certain disease when it is, in fact, present. However, the test also
yields a *‘false positive’’ result for 1 percent of the healthy persons tested.
(That is, if a healthy person is tested, then, with probability 0.01, the test
result will imply he has the disease.) If 0.5 percent of the population actually
has the disease, what is the probability a person has the disease given that
his test result is positive?

Solution: Let D be the event that the tested person has the disease, and
E the event that his test result is positive. The desired probability P(D|E)
is obtained by
P(DE) P(E | D)P(D)

P(E) B P(E|D)P(D) + P(E|D)YP(D*)
B (0.95)(0.005)
~ (0.95)(0.005) + (0.01)(0.995)

95

= ﬁ = 0323

Thus, only 32 percent of those persons whose test results are positive
actually have the disease. @

P(D|E) =
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Equation (1.7) may be generalized in the following manner. Suppose that
F,,F,, ..., F, are mutually exclusive events such that U7_, F; = S. In other
words, exactly one of the events F;, F,, ..., F, will occur. By writing

n
E = |J EF,
i=1
and using the fact that the events EF;, i = 1, ..., n, are mutually exclusive,
we obtain that

i P(EF;)

i=1

P(E)

L PE|F)P(F) (1.8)

i=1

Thus, Equation (1.8) shows how, for given events F;, F,, ..., F, of which
one and only one must occur, we can compute P(E) by first ‘‘conditioning”’
upon which one of the F; occurs. That is, it states that P(F) is equal to a
weighted average of P(E | F;), each term being weighted by the probability
of the event on which it is conditioned.

Suppose now that E has occurred and we are interested in determining
which one of the F; also occurred. By Equation (1.8) we have that

P(EF))

P(E)

__ P(E|F)P(F)
L1 PETF)PEF)

Equation (1.9) is known as Bayes’ formula.

P(F|E) =

(1.9)

Example 1.15 You know that a certain letter is equally likely to be in
any one of three different folders. Let «; be the probability that you will
find your letter upon making a quick examination of folder i if the letter is,
in fact, in folder i, i = 1, 2, 3. (We may have «; < 1.) Suppose you look in
folder 1 and do not find the letter. What is the probability that the letter is
in folder 1?7

Solution: Let F;, i = 1, 2, 3, be the event that the letter is in folder i;

and let F be the event that a search of folder 1 does not come up with the

letter. We desire P(F, | E). From Bayes’ formula we obtain
P(E|F)P(F,)

Yi. 1 P(E|F)P(F)

B (A - a)i -

e +itt 3o«

P(RIE) =

*
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Exercises

1. A box contains three marbles: one red, one green, and one blue.
Consider an experiment that consists of taking one marble from the box
then replacing it in the box and drawing a second marble from the box. What
is the sample space? If, at all times, each marble in the box is equally likely
to be selected, what is the probability of each point in the sample space?

*2. Repeat 1 when the second marble is drawn without replacing the first
marble.

3. A coin is to be tossed until a head appears twice in a row. What is the
sample space for this experiment? If the coin is fair, then what is the
probability that it will be tossed exactly four times?

4. Let E, F, G be three events. Find expressions for the events that of
E F, G

(a) only F occurs,

(b) both E and F but not G occurs,
(c) at least one event occurs,

(d) at least two events occur,

(e) all three events occur,

(f) none occurs,

(g) at most one occurs,

(h) at most two occur.

*5. An individual uses the following gambling system at Las Vegas. He
bets $1 that the roulette wheel will come up red. If he wins, he quits. If he
loses then he makes the same bet a second time only that this time he bets
$2; and then regardless of the outcome, quits. Assuming that he has a
probability of 1 of winning each bet, what is the probability that he goes
home a winner? Why is this system not used by everyone?

6. Show that E(F U G) = EFU EG.
7. Show that (EU F)° = EF°,

8. If P(E) =0.9 and P(F) = 0.8, show that P(EF) = 0.7. In general,
show that

P(EF) = P(E) + P(F) — 1
This is known as Bonferroni’s inequality.

*9, Wesaythat £ C Fisevery point in E is also in F. Show that if E C F,
then

P(F) = P(E) + P(FE) = P(E)
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10. Show that
P(U E) < ¥ PE)
i=1 i=1

This is known as Boole’s inequality.

Hint: Either use Equation (1.2) and mathematical induction, or else
show that UJ_ | E; = U} | F;, where F, = E,, F; = E; [];Z] E;, and use
property (iii) of a probability.

11. If two fair dice are tossed, what is the probability that the sum is i,
i=2,3,...,12?

12. Let E and F be mutually exclusive events in the sample space of an
experiment. Suppose that the experiment is repeated until either event E or
event F occurs. What does the sample space of this new super experiment
look like? Show that the probability that event E occurs before event F is
P(E)/[P(E) + P(F))].

Hint: Argue that the probability that the original experiment is
performed n times and E appears on the nth time is P(E) x (1 — p)"~ %,
n=1,2,...,where p = P(E) + P(F). Add these probabilities to get the
desired answer.

13. The dice game craps is played as follows. The player throws two dice,
and if the sum is seven or eleven, then he wins. If the sum is two, three, or
twelve, then he loses. If the sum is anything else, then he continues throwing
until he either throws that number again (in which case he wins) or he
throws a seven (in which case he loses). Calculate the probability that the
player wins.

14. The probability of winning on a single toss of the dice is p. A starts,
and if he fails, he passes the dice to B, who then attempts to win on his toss.
They continue tossing the dice back and forth until one of them wins. What
are their respective probabilities of winning?

15. Argue that F= EFUEF‘, EUF = EU FE*.
16. Use Exercise 15 to show that P(E U F) = P(E) + P(F) — P(EF).

*17. Suppose each of three persons tosses a coin. If the outcome of one
of the tosses differs from the other outcomes, then the game ends. If not,
then the persons start over and retoss their coins. Assuming fair coins, what
is the probability that the game will end with the first round of tosses? If all
three coins are biased and have a probability + of landing heads, then what
is the probability that the game will end at the first round?
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18. Assume that each child that is born is equally likely to be a boy or a
girl. If a family has two children, what is the probability that they both be
girls given that (a) the eldest is a girl, (b) at least one is a girl?

*19. Two dice are rolled. What is the probability that at least one is a six?
If the two faces are different, what is the probability that at least one is a six?

20. Three dice are thrown. What is the probability the same number
appears on exactly two of the three dice?

21. Suppose that 5 percent of men and 0.25 percent of women are color-
blind. A color-blind person is chosen at random. What is the probability of
this person being male? Assume that there are an equal number of males
and females.

22. A and B play until one has 2 more points than the other. Assuming
that each point is independently won by A with probability p, what is the
probability they will play a total of 2n points? What is the probability that
A wins?

23. Forevents E,, E,, ..., E, show that
P(E\E, ---E,) = P(E\)P(E;| E)P(E;|E,\E)) - P(E,|E, -+ E,_,)

24. In an election, candidate A receives n votes and candidate B receives
m votes, where n > m. Assume that in the count of the votes all possible
orderings of the n + m votes are equally likely. Let P, , denote the
probability that from the first vote on A is always in the lead. Find

(@ P, (b) Py, © P, (.d) P, (e Py,

() Pn,Z €4) P4,3 (h) P5,3 (6] P5,4

(i) Make a conjecture as to the value of P, ,,.
*25. Two cards are randomly selected from a deck of 52 playing cards.

(a) What is the probability they constitute a pair (that is, that they are of
the same denomination)?

(b) What is the conditional probability they constitute a pair given that
they are of different suits?

26. A deck of 52 playing cards, containing all 4 aces, is randomly divided
into 4 piles of 13 cards each. Define events E,, E,, E,, and E, as follows:
E, = {the first pile has exactly 1 ace},
E, = {the second pile has exactly 1 ace},
E, = {the third pile has exactly 1 ace},
E, = {the fourth pile has exactly 1 ace}

Use Exercise 23 to find P(E,E,EE,), the probability that each pile has
an ace.
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*27. Suppose in Exercise 26 we had defined the events E;, i = 1,2, 3,4,
by
E, = [one of the piles contains the ace of spades},

E, = {the ace of spaces and the ace of hearts are in
different piles},

E, = {the ace of spades, the ace of hearts, and the
ace of diamonds are in different piles},

E, = {all 4 aces are in different piles}

Now use Exercise 23 to find P(E, E, E; E,), the probability that each pile has
an ace. Compare your answer with the one you obtained in Exercise 26.

28. If the occurrence of B makes A more likely, does the occurrence of A
make B more likely?

29. Suppose that P(E) = 0.6. What can you say about P(E | F) when

(a) E and F are mutually exclusive?
(b) EC F?
(c) FCE?

*30. Bill and George go target shooting together. Both shoot at a target
at the same time. Suppose Bill hits the target with probability 0.7, whereas
George, independently, hits the target with probability 0.4.

(a) Given that exactly one shot hit the target, what is the probability it
was George’s shot?

(b) Given that the target is hit, what is the probability that George
hit it?

31. What is the conditional probability that the first die is six given that
the sum of the dice is seven?

*32. Suppose all » men at a party throw their hats in the center of the
room. Each man then randomly selects a hat. Show that the probability that
none of the n men winds up with his own hat is

1 1 1 (-n"

2 nta T T T

Note that as n = oo this converges to e~!. Is this surprising? (Would you
have incorrectly thought that this probability would go to 1 as n = «?)

33. In a class there are four freshman boys, six freshman girls, and six
sophomore boys. How many sophomore girls must be present if sex and
class are to be independent when a student is selected at random?
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34. Mr. Jones has devised a gambling system for winning at roulette.
When he bets, he bets on red, and places a bet only when the ten previous
spins of the roulette have landed on a black number. He reasons that his
chance of winning is quite large since the probability of eleven consecutive
spins resulting in black is quite small. What do you think of this system?

35. Consider two boxes, one containing one black and one white marble,
the other, two black and one white marble. A box is selected at random and
a marble is drawn at random from the selected box. What is the probability
that the marble is black?

36. In Exercise 35, what is the probability that the first box was the one
selected given that the marble is white?

37. Urn 1 contains two white balls and one black ball, while urn 2
contains one white ball and five black balls. One ball is drawn at random
from urn 1 and placed in urn 2. A ball is then drawn from urn 2. It happens
to be white. What is the probability that the transferred ball was white?

38. Stores A, B, and C have 50, 75, 100 employees, and respectively 50,
60, and 70 percent of these are women. Resignations are equally likely
among all employees, regardless of sex. One employee resigns and this is a
woman. What is the probability that she works in store C?

*39. (a) A gambler has in his pocket a fair coin and a two-headed coin.
He selects one of the coins at random, and when he flips it, it shows heads.
What is the probability that it is the fair coin? (b) Suppose that he flips the
same coin a second time and again it shows heads. What is now the prob-
ability that it is the fair coin? (c) Suppose that he flips the same coin a third
time and it shows tails. What is now the probability that it is the fair coin?

40. There are three coins in a box. One is a two-headed coin, another is
a fair coin, and the third is a biased coin which comes up heads 75 percent
of the time. When one of the three coins is selected at random and flipped,
it shows heads. What is the probability that it was the two-headed coin?

41. Suppose we have ten coins which are such that if the ith one is flipped
then heads will appear with probability i/10,i = 1, 2, ..., 10. When one of
the coins is randomly selected and flipped, it shows heads. What is the
conditional probability that it was the fifth coin?

42. Urn 1 has five white and seven black balls. Urn 2 has three white and
twelve black balls. We flip a fair coin. If the outcome is heads, then a ball
from urn 1 is selected, while if the outcome is tails, then a ball from urn 2
is selected. Suppose that a white ball is selected. What is the probability that
the coin landed tails?
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*43. An urn contains b black balls and r red balls. One of the balls is
drawn at random, but when it is put back in the urn ¢ additional balls of the
same color are put in with it. Now suppose that we draw another ball. Show
that the probability that the first ball drawn was black given that the second
ball drawn was red is b/(b + r + ¢).

44. Three prisoners are informed by their jailer that one of them has been
chosen at random to be executed, and the other two are to be freed.
Prisoner A asks the jailer to tell him privately which of his fellow prisoners
will be set free, claiming that there would be no harm in divulging this
information, since he already knows that at least one will go free. The jailer
refuses to answer this question, pointing out that if 4 knew which of his
fellows were to be set free, then his own probability of being executed would
rise from § to 4, since he would then be one of two prisoners. What do you
think of the jailer’s reasoning?
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Chapter 2
Random Variables

v

2.1. Random Variables

It frequently occurs that in performing an experiment we are mainly
interested in some function of the outcome as opposed to the actual
outcome itself. For instance, in tossing dice we are often interested in the
sum of the two dice and are not really concerned about the actual outcome.
That is, we may be interested in knowing that the sum is seven and not be
concerned over whether the actual outcome was (1, 6) or (2, 5) or (3, 4) or
(4, 3) or (5, 2) or (6, 1). These quantities of interest, or more formally, these
real-valued functions defined on the sample space, are known as random
variables.

Since the value of a random variable is determined by the outcome of
the experiment, we may assign probabilities to the possible values of the
random variable.

Example 2.1 Letting X denote the random variable that is defined as
the sum of two fair dice; then

P{X = 2} = P{(1,1)} = 3,

PiX = 3}=P((1,2,2, )} =%,

PIX = 4} =P((1,3),2,2),3, 1)} = &,

P{X = 5} = P{(1,4),2,3),(3,2),4, 1)} = 5,

PX = 6) = P{(1,5),2,4),3,3),4,2),5 1) =<,

P{X = 7} = P((1,6),(2,5),(3,4),4,3),(5,2), (6, 1} = 5%,
21
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P{X = 8] = P((2,6),(,5),(4,49,(5,3),(6,2)} = %,

P{X = 9= P(3,6),(4,5),(54%,(6, 3)} = %,

P{X = 10} = P((4,6), (5, 5), (6,4)) = 3,

P{X = 11} = P((5,6), (6, 5)} = %,

P{X = 12} = P{(6,6)} = + 2.1

In other words, the random variable X can take on any integral value
between two and twelve, and the probability that it takes on each value is
given by Equation (2.1). Since X must take on one of the values two
through twelve, we must have that

12 12
1=P{U[X=n}} = Y Px=n
i=2 n=2

which may be checked from Equation (2.1). ¢

Example 2.2 For a second example, suppose that our experiment
consists of tossing two fair coins. Letting Y denote the number of heads
appearing, then Y is a random variable taking on one of the values 0, 1, 2
with respective probabilities

PlY =0} = P(T,T)} = %,

P{Y = 1} = P(T,H),(H, T)} = %,

P{Y =2} = P{(H,H)} = },

Of course, P{lY =0} + P{lY =1} + P{Y =2} =1. &

Example 2.3 Suppose that we toss a coin having a probability p of
coming up heads, until the first head appears. Letting N denote the number
of flips required, then, assuming that the outcome of successive flips are
independent, N is a random variable taking on one of the values 1, 2, 3, ...,
with respective probabilities

P(N = 1) = P{H} = p,
PIN = 2 = PUT, H)} = (1 - p)p,
PIN = 3) = PUT, T, H)}) = (1 - py'p,

PIN=n} = PUT,T,....TH)}=(0 -p)'p, n=1

n—1
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As a check, note that

P{C){N=n}} = i P{N = n}
n=1 n=1
=p Y Q-p!
n=1
-__ P
1-(1-p
=1 &

Example 2.4 Suppose that our experiment consists in seeing how long
a battery can operate before wearing down. Suppose also that we are not
primarily interested in the actual lifetime of the battery but are only
concerned about whether or not the battery lasts at least two years. In this
case, we may define the random variable I by

I 1, if the lifetime of the battery is two or more years
{0,  otherwise.

If E denotes the event that the battery lasts two or more years, then the
random variable 7 is known as the indicator random variable for the event
E. (Note that I equals 1 or 0 depending upon whether or not E occurs.) €4

Example 2.5 Suppose that independent trials, each of which results
in any of m possible outcomes with respective probabilities p,, ..., o,
YL, p; = 1, are continually performed. Let X denote the number of trials
needed until each outcome has occurred at least once.

Rather than directly considering P{X = n} we will first determine
P{X > n}, the probability that at least one of the outcomes has not yet
occurred after »n trials. Letting A; denote the event that outcome i has not
yet occurred after the first » trials, i = 1, ..., m, then

P{X >n)= P<LMJA,->
j=1

= E P(Ai) - E Z P(AiAj)

i=1 i<j
+ Y Y Y PAAA) -+ (- 1D)"PA, - Ay)
i<j<k
Now, P(A;) is the probability that each of the first n trials all result in a
non-i outcome, and so by independence

PA) =01 - p)”
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Similarly, P(A4;A)) is the probability that the first n trials all result in a
non-i and non-j outcome, and so

P(A;A) =1 - p;i — p))

As all of the other probabilities are similar, we see that

m

PiX>n=Y 0-p)-% Z(I—Pi—Pj)n
i=1 i<j
+ Y XYY A -—pi—p—p) —

i<j<k
Since P{X =n}=P{X>n-—1} — P{X > n}, we see upon using the
algebraic identity (1 — @)"' — (1 — @)" = a(l — a)""!, that

PX=n=Yp(l-p)'-Y Y+ p)1 —p; — Pj)"_l

i=1 i<j

+ LYY @i+p )l —pi—p—p) - @

i<j<k

In all of the above examples, the random variables of interest took on
either a finite or a countable number of possible values. Such random
variables are called discrete. However, there also exist random variables
that take on a continuum of possible values. These are known as continuous
random variables. One example is the random variable denoting the lifetime
of a car, when the car’s lifetime is assumed to take on any value in some
interval (a, b).

The cumulative distribution function (cdf) (or more simply the distribu-
tion function) F(-) of the random variable X is defined for any real number
b, —0 < b < o, by

F(b) = P{X < b}

In words, F(b) denotes the probability that the random variable X takes on
a value which will be less than or equal to b. Some properties of the cdf F are

(i) F(b) is a nondecreasing function of b,
(ii) lim, ., F(b) = F(e) = 1,
(iii) lim, , _, F(b) = F(—o) = 0.

Property (i) follows since for a < b the event {X =< a} is contained in the
event {X < b}, and so it must have a smaller probability. Properties (ii) and
(iii) follow since X must take on some finite value.

All probability questions about X can be answered in terms of the cdf
F(-). For example,

Pla < X < b} = F(b) - Fa) foralla < b
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This follows since we may calculate P{a < X < b} by first computing the
probability that X =< b (that is, F(b)) and then subtracting from this the
probability that X < a (that is, F(a)).

If we desire the probability that X is strictly smaller than b, we may
calculate this probability by

P{X<b}= lim P{IX=<b - h)

h—0*

lim F(b ~ h)
h=0

where lim, _, o+ means that we are taking the limit as /4 decreases to 0. Note
that P{X < b} does not necessarily equal F(b) since F(b) also includes the
probability that X includes b.

2.2. Discrete Random Variables

As was previously mentioned, a random variable that can take on at
most a countable number of possible values is said to be discrete. For
a discrete random variable X, we define the probability mass function p(a)
of X by

p(a) = P{X = a}
The probability mass function p(a) is positive for at most a countable

number of values of 4. That is, if X must assume one of the values
X1sX5, ..., then

p(xl)>09 i=1,2,...
p(x) =0, all other values of x

Since X must take on one of the values x;, we have
Y pix) =1
i=1
The cumulative distribution function F can be expressed in terms of
pla) by
Fa= Y px)

allx;sa

For instance, suppose X has a probability mass function given by

=% pQ=4%  pB =%
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Figure 2.1. Graph of F(x).

then, the cumulative distribution function F of X is given by

0, a<l
@) 1, l<a<?2
a) =
2, 2=a<3
1 3<a

-

This is graphically presented in Figure 2.1.
Discrete random variables are often classified according to their prob-
ability mass function. We now consider some of these random variables.

2.2.1. The Bernoulli Random Variable

Suppose that a trial, or an experiment, whose outcome can be classified as
either a ‘‘success’’ or as a “‘failure’’ is performed. If we let X equal 1 if the
outcome is a success and 0 if it is a failure, then the probability mass
function of X is given by

pO)=PX=0=1-p,
pl)=PX=1=p

where p, 0 < p < 1, is the probability that the trial is a “‘success.”’
A random variable X is said to be a Bernoulli random variable if its
probability mass function is given by Equation (2.2) for some p € (0, 1).

(2.2)

2.2.2. The Binomial Random Variable

Suppose that 7 independent trials, each of which results in a ‘‘success’’ with
probability p and in a ‘‘failure’’ with probability 1 — p, are to be per-
formed. If X represents the number of successes that occur in the # trials,
then X is said to be a binomial random variable with parameters (n, p).



2.2. Discrete Random Variables 27

The probability mass function of a binomial random variable having
parameters (n, p) is given by

p(i) = ('lf)p"(l —py i=0,1,...,n (2.3)

n> 3 n!
i) (n—= D

equals the number of different groups of i objects that can be chosen from
a set of n objects. The validity of Equation (2.3) may be verified by first
noting that the probability of any particular sequence of the n outcomes
containing / successes and n — i failures is, by the assumed independence

where

) ) n
of trials, p‘(1 — p)"~'. Equation (2.3) then follows since there are <1>
different sequences of the n outcomes leading to i successes and n — i

3
failures. For instance, if n = 3, i = 2, then there are < 2> = 3 ways in

which the three trials can result in two successes. Namely, any one of the
three outcomes (s, s, f), (s, £, 5), (f, s, 5), where the outcome (s, s, f) means
that the first two trials are successes and the third a failure. Since each of the
three outcomes (s, s, f), (5,1, 5), (f,s,s) has a probability p*(1 — p) of
3\,

5 )P a1 - p).

Note that, by the binomial theorem, the probabilities sum to one, that is,

occurring the desired probability is thus

n

Lo =Y <’;>p"(1 —PT =+ -p) =1

i=0
Example 2.6 Four fair coins are flipped. If the outcomes are assumed

independent, what is the probability that two heads and two tails are
obtained?

Solution: Letting X equal the number of heads (‘‘successes’’) that
appear, then X is a binomial random variable with parameters (n = 4,
p = 1). Hence, by Equation (2.3),

- ()G - o

Example 2.7 Itisknown that all items produced by a certain machine will
be defective with probability 0.1, independently of each other. What is the
probability that in a sample of three items, at most one will be defective?
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Solution: If X is the number of defective items in the sample, then X
is a binomial random variable with parameters (3,0.1). Hence, the
desired probability is given by

PiX=0}+P{X=1]= (3)(0.1)"(0.9)3 + <?>(0.1)1(0.9)2 =0972 &

Example 2.8 Suppose that an airplane engine will fail, when in flight,
with probability 1 — p independently from engine to engine; suppose that
the airplane will make a successful flight if at least 50 percent of its engines
remain operative. For what values of p is a four-engine plane preferable to
a two-engine plane?

Solution: As each engine is assumed to fail or function independently
of what happens with the other engines, it follows that the number of
engines remaining operative is a binomial random variable. Hence, the
probability that a four-engine plane makes a successful flight is

4\ 2 4 301 _ 4\ 4 0
<2>p(1 p)+<3>p(l p)+<4>p(1 D)

=6p°(1 - p)* + 4’0 — p) + p*

whereas the corresponding probability for a two-engine plane is

2 2
<1>p(1 -p)+ <2>p2 =2p(1 - p) + p*

Hence the four-engine plane is safer if
6p°(1 — py* + 4p*(1 - p) + p* = 2p(1 — p) + P’
or equivalently if
6p(1 - p)’ +4p°(1 —p)+p’=2—p
which simplifies to
3pP -8 +Tp—-220 or (p—-1P*@pr-2=0
which is equivalent to
3p-2=20 or p=3%

Hence, the four-engine plane is safer when the engine success prob-
ability is at least as large as 4, whereas the two-engine plane is safer when
this probability falls below . @
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Example 2.9 Suppose that a particular trait of a person (such as eye
color or left handedness) is classified on the basis of one pair of genes and
suppose that d represents a dominant gene and r a recessive gene. Thus a
person with dd genes is pure dominance, one with rr is pure recessive, and
one with rd is hybrid. The pure dominance and the hybrid are alike in
appearance. Children receive one gene from each parent. If, with respect to
a particular trait, two hybrid parents have a total of four children, what is
the probability that exactly three of the four children have the outward
appearance of the dominant gene?

Solution: If we assume that each child is equally likely to inherit either
of two genes from each parent, the probabilities that the child of two
hybrid parents will have dd, rr, or rd pairs of genes are, respectively, ,
1, 3. Hence, as an offspring will have the outward appearance of the
dominant gene if its gene pair is either dd or rd, it follows that the
number of such children is binomially distributed with parameters (4, 3).

Thus the desired probability is
4\/3IV/1\ 27
2 (2) =28 @
3/\4 4 64
Remark on Terminology If X is a binomial random variable with

parameters (n, p), then we say that X has a binomial distribution with
parameters (n, p).

2.2.3. The Geometric Random Variable

Suppose that independent trials, each having a probability p of being a
success, are performed until a success occurs. If we let X be the number of
trials required until the first success, then X is said to be a geometric random
variable with parameter p. Its probability mass function is given by

pm) =P X=n=0-p"'p, n=12.. (2.9)

Equation (2.4) follows since in order for X to equal n it is necessary and
sufficient that the first n — 1 trials are failures and the nth trial is a success.
Equation (2.4) follows since the outcome of the successive trials are assumed
to be independent.

To check that p(n) is a probability mass function, we note that

o0 oo

Ypmy=pYa-pl=1

n=1 1
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2.2.4. The Poisson Random Variable

A random variable X, taking on one of the values 0, 1, 2, ..., is said to be
a Poisson random variable with parameter A, if for some A > 0,

p(i)=P{X=i}=e"‘?T, i=0,1,... 2.5

Equation (2.5) defines a probability mass function since

The Poisson random variable has a wide range of applications in a diverse
number of areas, as will be seen in Chapter 5.

An important property of the Poisson random variable is that it may
be used to approximate a binomial random variable when the binomial
parameter n is large and p is small. To see this, suppose that X is a
binomial random variable with parameters (n, p), and let A = np. Then

PiX=i}=

n! i n—i
mp(l -~ p)

__n £>"<1 _ £>
T (n - Dt \n n

_nn—1)---(n—i+ 1)/1_"(1 — A/n)"
a n' it (1 — A/ny

Now, for n large and p small

<1_£>"ze">‘, n(n—l)...i(n—i+1)z1, <1—.{)iz1
n n n

Hence, for n large and p small,

i

A
P{X=i;ze—*i—'

Example 2.10 Suppose that the number of typographical errors on a
single page of this book has a Poisson distribution with parameter A = 1.
Calculate the probability that there is at least one error on this page.

Solution:
PiIX=z1}=1-PX=0=1-¢1=0633 &
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Example 2.11 If the number of accidents occurring on a highway
each day is a Poisson random variable with parameter A = 3, what is the
probability that no accidents occur today?

Solution:
PiX=0=e3=0.05 &

Example 2.12 Consider an experiment that consists of counting the
number of a-particles given off in a one-second interval by one gram of
radioactive material. If we know from past experience that, on the average,
3.2 such a-particles are given off, what is a good approximation to the
probability that no more than 2 «-particles will appear?

Solution: If we think of the gram of radioactive material as consisting
of a large number n of atoms each of which has probability 3.2/n of
disintegrating and sending off an «-particle during the second considered,
then we see that, to a very close approximation, the number of a-particles
given off will be a Poisson random variable with parameter 4 = 3.2,
Hence the desired probability is

(3.2)?
2

PiX<2=e3? 43232+ e3?2=0382 ¢

2.3. Continuous Random Variables

In this section, we shall concern ourselves with random variables whose set
of possible values is uncountable. Let X be such a random variable. We
say that X is a continuous random variable if there exists a nonnegative
function f(x), defined for all real x € (— o0, ), having the property that for
any set B of real numbers

P{X e B} = S () dx (2.6)
B

The function f(x) is called the probability density function of the random
variable X.

In words, Equation (2.6) states that the probability that X will be in B
may be obtained by integrating the probability density function over the set
B. Since X must assume some value, f(x) must satisfy

1 = P{X € (-, ©)} = r Jx)dx
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All probability statements about X can be answered in terms of f(x).
For instance, letting B = [a, b], we obtain from Equation (2.6) that

b
Pla<X<b}= S F) dx 2.7)

If we let @ = b in the preceding, then
PiX =a} = j f)dx =0

In words, this equation states that the probability that a continuous random
variable will assume any particular value is zero.

The relationship between the cumulative distribution F(-) and the
probability density f(-) is expressed by

a

Fla) = P{X € (-, a)} = S Sfx) dx

—o0

Differentiating both sides of the preceding yields

d
%F(a) = fla)

That is, the density is the derivative of the cumulative distribution function.
A somewhat more intuitive interpretation of the density function may be
obtained from Equation (2.7) as follows:

P £ a+e/2
P{a——sXsa+—}=S Sx) dx = gf(a)

2 2 a-¢e/2
when ¢ is small. In other words, the probability that X will be contained in
an interval of length ¢ around the point a is approximately gf(a). From this,
we see that f(a) is a measure of how likely it is that the random variable will
be near a.

There are several important continuous random variables that appear

frequently in probability theory. The remainder of this section is devoted to
a study of certain of these random variables.

2.3.1. The Uniform Random Variable

A random variable is said to be uniformly distributed over the interval (0, 1)
if its probability density function is given by

1, 0<x<l

0, otherwise

Jx) = {
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Note that the preceding is a density function since f(x) = 0 and

© 1
S fx)dx = S dx = 1.
—o00 0

Since f(x) > 0 only when x € (0, 1), it follows that X must assume a value
in (0, 1). Also, since f(x) is constant for x € (0, 1), X is just as likely to be
‘“‘near’’ any value in (0, 1) as any other value. To check this, note that, for
any0<a<b<l,

b
P{a.<_X.<_b}=S fdx=b-a

In other words, the probability that X is in any particular subinterval of
(0, 1) equals the length of that subinterval.

In general, we say that X is a uniform random variable on the interval
(a, B) if its probability density function is given by

1 .
S ={p-a’ fa<x<p (2.8)

0, otherwise

Example 2.13 Calculate the cumulative distribution function of a
random variable uniformly distributed over («, £).

Solution: Since F(a) = {2, f(x) dx, we obtain from Equation (2.8) that

0, a<a«
a—

Fa)=|g—0  @<a<p
1, a=f @

Example 2.14 If X is uniformly distributed over (0, 10), calculate the
probability that (i) X < 3, (ii) X > 7, (iii)) ] < X < 6.

Solution:
fadx 3
PiX =907 _ 7
X<3="0 "1
Vax 3
7 _ 7
P{X>T7 = 10 0’
fedx 1
Pll<X<6]= == &

10 2
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2.3.2. Exponential Random Variables

A continuous random variable whose probability density function is given,
for some A > 0, by
le ™™, ifx=0

f“’={o, if x <0

is said to be an exponential random variable with parameter A. These
random variables will be extensively studied in Chapter 5, and so we will
content ourselves here with just calculating the cumulative distribution
function F:

a
H@=Sl€“=l—€“, a=0
0

Note that F(«) = [§ le ™Mdx = 1, as, of course, it must.

2.3.3. Gamma Random Variables

A continuous random variable whose density is given by
e M(Ax)* !
foo) = M)
0, ifx<0
for some A >0, a >0 is said to be a gamma random variable with

parameters «, A. The quantity I'(«) is called the gamma function and is
defined by

ifx=0

o«

Ia) = S e x> Vdx
0

It is easy to show by induction that for integral «, say o = n,
I'(n) =(n - 1)

2.3.4. Normal Random Variables

We say that X is a normal random variable (or simply that X is normally
distributed) with parameters x and ¢? if the density of X is given by

—fy—)2
e ¢ y.)/20'2’

Sx) =

1
—_ —00 < X <
v2no
This density function is a bell-shaped curve that is symmetric around u
(see Figure 2.2).



2.3. Continuous Random Variables 35

I
e = (D) n + QD —=—

Figure 2.2. Normal density function.

An important fact about normal random variables is that if X is normally
distributed with parameters y4 and ¢ then Y = aX + f is normally
distributed with parameters au + f and o*6*. To prove this, suppose first
that o > 0 and note that Fy(-)* the cumulative distribution function of the
random variable Y is given by

Fy(a) = P{Y < a}

= P{aX + B < a}
=P{Xsa_'3}

[0

()

(@-B)/a 1 ,
= § e~ &-m /202 dx

o 2no

a 1 _ _ 2
e e o

where the last equality is obtained by the change in variables v = ax + f.
However, since Fy(a) = {°,, fy(v) dv, it follows from Equation (2.9) that
the probability density function fy(+) is given by

1 —(v — (au + B)’
O = e exp{ 2(«0)’

}, —o < U< ®

* When there is more than one random variable under consideration, we shall denote the
cumulative distribution function of a random variable Z by F,(+). Similarly, we shall denote the
density of Z by £,(-).
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Hence, Y is normally distributed with parameters oy + £ and (ao)>.
A similar result is also true when o < 0.

One implication of the above result is that if X is normally distributed
with parameters ¢ and 6° then Y = (X — u)/o is normally distributed with
parameters 0 and 1. Such a random variable Y is said to have the standard
or unit normal distribution.

2.4. Expectation of a Random Variable
2.4.1. The Discrete Case

If X is a discrete random variable having a probability mass function p(x),
then the expected value of X is defined by

ElX]= Y xp(
x:p(x)>0

In other words, the expected value of X is a weighted average of the
possible values that X can take on, each value being weighted by the
probability that X assumes that value. For example, if the probability mass
function of X is given by

p() = 3 = pQ2)

then

ElX] = 1) +20) = }
is just an ordinary average of the two possible values 1 and 2 that X can
assume. On the other hand, if

p) =%,  pR)=3%
then

EX] =13 +23) = §

is a weighted average of the two possible values 1 and 2 where the value 2
is given twice as much weight as the value 1 since p(2) = 2p(1).

Example 2.15 Find E[X] where X is the outcome when we roll a
fair die.

Solution: Since p(1) = p(2) = p(3) = p(4) = p(5) = p(6) = ¢, we obtain
that

E[X] = 1) +20) + 33) + 4@ + 5 + 6) =7 &
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Example 2.16 (Expectation of a Bernoulli Random Variable): Calculate
E[X] when X is a Bernoulli random variable with parameter p.
Solution: Since p(0) = 1 — p, p(1) = p, we have
ElX]=00-p+1p)=p
Thus, the expected number of successes in a single trial is just the

probability that the trial will be a success. @

Example 2.17 (Expectation of a Binomial Random Variable): Calculate
E[X] when X is binomially distributed with parameters n and p.

Solution:
E[X] = Y ip()
i=0
-y i<:’>p"(1 —py
i=0
“ in! i n—i
R A
- n! i n—i
AT TS AL
n - D! . .
—ap Y —LZ DL i gy

io1 (n =D - 1!
" n_l k n—1-k
=np Y e JPa-p
k=0

=nplp+ (1 - pI*!
=np

where the second from the last equality follows by letting £ =i — 1.
Thus, the expected number of successes in n independent trials is »
multiplied by the probability that a trial results in a success. €

Example 2.18 (Expectation of a Geometric Random Variable): Calcu-
late the expectation of a geometric random variable having parameter p.
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Solution: By Equation (2.4), we have

E[X}= Y np(l — py*!

n=1

whereg =1 — p,
> d
E[X] = —(q"
[ pngldqq)

In words, the expected number of independent trials we need perform
until we attain our first success equals the reciprocal of the probability
that any one trial results in a success. €

Example 2.19 (Expectation of a Poisson Random Variable): Calculate
E[X] if X is a Poisson random variable with parameter A.

Solution: From Equation (2.5), we have
ie M
!
e M4
iz1 (-1
©  gi-1

Y
e L Ty

Mg I~18

E[X]

i

1

where we have used the identity Yx_o,A*/k! = e*. &



2.4. Expectation of a Random Variable 39

2.4.2. The Continuous Case

We may also define the expected value of a continuous random variable.
This is done as follows. If X is a continuous random variable having a
probability density function f(x), then the expected value of X is defined by

o

E[X] = j xf(x) dx

— 00

Example 2.20 (Expectation of a Uniform Random Variable): Calculate
the expectation of a random variable uniformly distributed over (o, £).

Solution: From Equation (2.8) we have

[¢]
E[X]=§ —— dx
BZ_aZ
2B -
B+
)

In other words, the expected value of a random variable uniformly
distributed over the interval («, £) is just the midpoint of the interval. €

Example 2.21 (Expectation of an Exponential Random Variable): Let
X be exponentially distributed with parameter A. Calculate E[X].

Solution:

=)

E[X] = j xle ™ dx
0

Integrating by parts yields

E[X] = —xe ™| + S e Mdx
o Jo
“Ax |
—o0-%_
A o
1
-5 ®

Example 2.22 (Expectation of a Normal Random Variable): Calculate
E[X] when X is normally distributed with parameters u and o2.
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Solution:

1 0
E[X] = T S xe~&W2 gy

Writing x as (x — u) + u yields

—00

E[X] =

—o0

zlna Sw (x — ”)e—(x—#)z/Zaz dx + u 217“7 Sw e—(x—u)z/zol dx

Letting y = x — u leads to

1

where f(x) is the normal density. By symmetry, the first integral must be
0, and so

ye 27 dy + u g f(x) dx

-}

E[X] =uS SfWdy=p &

2.4.3. Expectation of a Function of a Random Variable

Suppose now that we are given a random variable X and its probability
distribution (that is, its probability mass function in the discrete case or its
probability density function in the continuous case). Suppose also that we
are interested in calculating, not the expected value of X, but the expected
value of some function of X, say g(X). How do we go about doing this?
One way is as follows. Since g(X) is itself a random variable, it must have
a probability distribution, which should be computable from a knowledge
of the distribution of X. Once we have obtained the distribution of g(X), we
can then compute E[g(X)] by the definition of the expectation.

Example 2.23 Suppose X has the following probability mass function
p(0) =02, pl)=0.5 p@2)=0.3
Calculate E[X?).

Solution: Letting Y = X2, we have that Y is a random variable that
can take on one of the values 02, 12, 2% with respective probabilities

* When there is more than one random variable involved in a discussion, we shall use
the notation, py(-) to stand for the probability mass function of Y, Fy(-) to stand for the
distribution function of X, etc.
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py(0) = P{Y = 0%} = 0.2,
py() = P{Y = 13} = 0.5,
py(@) = P{Y =24 =03
Hence,
E[X?] = E[Y] = 0(0.2) + 1(0.5) + 4(0.3) = 1.7
Note that
1.7 = E[X?] # (E[X])* =121 &

Example 2.24 Let X be uniformly distributed over (0, 1). Calculate
E[X?).

Solution: Letting ¥ = X3, we calculate the distribution of Y as follows.
ForO0<a<1,

Fy(@) = P{Y < a}
= P{X? < g}
= P{X < a3
= a3

where the last equality follows since X is uniformly distributed over
(0, 1). By differentiating Fy(a), we obtain the density of Y, namely

fr(@) = a7, 0<acx<l

Hence,

E[X3] = E[Y] = ) afy(s)da
1
a

S 1a~3 dg
0

1
%S a'? da
0

4/3|(l)

2a

2

ENTR

While the foregoing procedure will, in theory, always enable us to compute
the expectation of any function of X from a knowledge of the distribution
of X, there is, fortunately, an easier way of doing this. The following
proposition shows how we can calculate the expectation of g(X) without
first determining its distribution.
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Proposition 2.1 (a) If X is a discrete random variable with probability
mass function p(x), then for any real-valued function g,

ElgX) = Y g®px)

x:p(x)>0

(b) If X is a continuous random variable with probability density function
f(x), then for any real-valued function g,

o

Elg(Xx)] =S gx)fx)dx &

Example 2.25 Applying the proposition to Example 2.23 yields
E[X3 = 0%0.2) + (13)(0.5) + (25)(0.3) = 1.7

which, of course, checks with the result derived in Example 2.23. 4

Example 2.26 Applying the proposition to Example 2.24 yields

1
E[X3]=S x¥dx  (sincef(x) =1,0<x< 1)
0

A simple corollary of Proposition 2.1 is the following.
Corollary 2.2 If a and b are constants, then
El[aX + b] = aE[X] + b

Proof In the discrete case,
ElaX + bl = Y (ax+ b)pX

x:p(x) >0
=a Y x@p0+b ¥ pw
x:px)>0 x:p(x)>0
=aE[X] + b

In the continuous case,

ElaX + bl

Sw (ax + b)f(x) dx

oo

a Xw xf(x)dx + b S Sfx)dx

—0 —a0

aE[X1+b @

The expected value of a random variable X, E[X], is also referred to as the
mean or the first moment of X. The quantity E[X"], n = 1, is called the nth
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moment of X, By the Proposition 2.1, we note that
Y x"p(x), if X is discrete

x:p(x)>0
E[X" ={ pw
S x"f(x) dx, if X is continuous

-0

Another quantity of interest is the variance of a random variable X,
denoted by Var(X), which is defined by

Var(X) = E[(X — E[X])’]
Thus, the variance of X measures the expected square of the deviation of X
from its expected value.

Example 2.27 (Variance of the Normal Random Variable): Let X be
normally distributed with parameters u and ¢°. Find Var(X).
Solution: Recalling (see Example 2.22) that E[X] = u, we have that
Var(X) = E[(X — )]

= ; N x - ﬂ)Ze—(x—#)z/Zoz dx
2no

Substituting y = (x — y)/o yields
Var(X) = |7 ey
= w}’ 34

We now employ an identity that can be found in many integration tables,
namely {°, y*¢™"*dy = \2n. Hence,

Var(X) = ¢?
Another derivation of Var(X) will be given in Example 2.41. @

Suppose that X is continuous with density f, and let E[X] = u. Then,
Var(X) = E[(X - p)’]
= E[X? - 2uX + ]

= r (* = 2ux + ) f(x) dx

—o0
-+

= Sw x3f(x)dx — Zug

— oo

xf(x)dx + u? r, S dx

—o0

= E[X?] — 2up + i
— Elx?) - 2



44 2 Random Variables

A similar proof holds in the discrete case, and so we obtain the useful
identity
Var(X) = E[X?] — (E[X])

Example 2.28 Calculate Var(X) when X represents the outcome when
a fair die is rolled.
Solution: As previously noted in Example 2.15, E[X] = . Also,
E[X’] = 13) + 2°}) + 3@} + @) + 5°(}) + 6°() = $)9))

Hence,

2.5. Jointly Distributed Random Variables
2.5.1. Joint Distribution Functions

Thus far, we have concerned ourselves with the probability distribution of
a single random variable. However, we are often interested in probability
statements concerning two or more random variables. In order to deal with
such probabilities we define, for any two random variables X and Y, the
joint cumulative probability distribution function of X and Y by

F(a,b) = P{IX <a,Y < bj, —o<a, b<»

The distribution of X can be obtained from the joint distribution of X and
Y as follows:

Fx(a) = PiX < a}
=P{X<aY =< o}
= Fla, )
Similarly, the cumulative distribution function of Y is given by
Fy(b) = P{Y < b} = F(, b)

In the case where X and Y are both discrete random variables, it is
convenient to define the joint probability mass function of X and Y by

p(x,y) = PIX=x,Y =y
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The probability mass function of X may be obtained from p(x, y) by

@)= ¥ pxy)
y:p(x,)>0
Similarly,
pyO) = Y pxy
x:p{x,y)>0

We say that X and Y are jointly continuous if there exists a function

f(x, y), defined for all real x and y, having the property that for all sets 4
and B of real numbers

P{XeA,YeB}=S Sf(x,y)dxdy
B

A

The function f(x, y) is called the joint probability density function of X and
Y. The probability density of X can be obtained from a knowledge of
f(x, y) by the following reasoning:

PiXeA}=PlXeA,Ye(-o,x)

=§ S S, y)dx dy
A

—o0

= S Jx(x)dx
A

where

o

Jx(x) = g SO, y)dy

is thus the probability density function of X. Similarly, the probability
density function of Y is given by

o0

Sr(y) = S Sx, y)dx

—o0

A variation of Proposition 2.1 states that if X and Y are random
variables and g is a function of two variables, then

ElgX, ] =Y Y gx, »)p(x,») in the discrete case
y x

X S glx, V) f(x, y)dxdy in the continuous case

-0
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For example, if g(X,Y) = X + Y, then, in the continuous case,

E[X+7Y]= r r  + ) f(x, y)dxdy

—0o0 J—00

—wo J—o0 —o0
© A
—w .

= S xfy(x) dx + g yy(»)dy

=§ S Xf(x,y)dxdy+s S yf(x, y)dxdy

S0, ) dy) dx + X y<S S, dx) dy

= E[X] + E[Y]

The same result holds in the discrete case and, combined with the corollary
in Section 2.4.3, yields that for any constants a, b

ElaX + bY] = aE[X] + DE[Y] (2.10)

Joint probability distributions may also be defined for n random
variables. The details are exactly the same as when n = 2 and are left
as an exercise. The corresponding result to Equation (2.10) states that
if X,,X5,...,X, are n random variables, then for any » constants
a,a,...,4a,,

E[ale + azXz + .-+ a"X"]
=a,EX|] + a;E[X5] + -+ + a,E[X,] (2.11)

Example 2.29 Calculate the expected sum obtained when three fair dice
are rolled.

Solution: Let X denote the sum obtained. Then X = X, + X, + X;
where X, represents the value of the ith die. Thus,

E[X] = E[X\) + E[X,] + EIX;] =3(}) =% &

Example 2.30 As another example of the usefulness of Equation
(2.11), let us use it to obtain the expectation of a binomial random variable
having parameters n and p. Recalling that such a random variable X
represents the number of successes in 7 trials when each trial has probability
p of being a success, we have that

X=X1+X2+"'+X"
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where

X = 1, if the ith trial is a success
"7 0, if the ith trial is a failure

Hence, X; is a Bernoulli random variable having expectation E[X;] =
1(p) + 0(1 — p) = p. Thus,

E[X] = E[X|] + E[X,] + --- + E[X,] = np
This derivation should be compared with the one presented in Example
2.17. &

Example 2.31 At a party N men throw their hats into the center of a
room. The hats are mixed up and each man randomly selects one. Find the
expected number of men that select their own hats.

Solution: Letting X denote the number of men that select their own
hats, we can best compute E[X] by noting that

X=X1+X2+"'+XN
where

1, if the ith man selects his own hat
Xi - .
0, otherwise

Now, as the ith man is equally likely to select any of the N hats, it follows
that
1
P{X; = 1) = P{ith man selects his own hat} = N
and so

E[X;] =1P{X; =1} + 0P{X; = 0} = %

Hence, from Equation (2.11) we obtain that
1
E[X] = E[X|] + --- + E[XN] = <N>N= 1

Hence, no matter how many people are at the party, on the average
exactly one of the men will select his own hat. @

Example 2.32 Suppose there are 25 different types of coupons and
suppose that each time one obtains a coupon, it is equally likely to be any
one of the 25 types. Compute the expected number of different types that
are contained in a set of 10 coupons.
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Solution: Let X denote the number of different types in the set of 10
coupons. We compute E[X] by using the representation

X=X1 + o +X25
where

X = 1, if at least one type / coupon is in the set of 10
o, otherwise

E[X;] = P{X; = 1}
= P{at least one type i coupon is in the set of 10}

= 1 — P{no type i coupons are in the set of 10}

1-@3H"°

when the last equality follows since each of the 10 coupons will
(independently) not be a type i with probability 4%. Hence,

E[X] = E[X|] + --- + E[X35] = 25[1 - 3D"] &

2.5.2. Independent Random Variables

The random variable X and Y are said to be independent if, for all a, b,
P{X <a,Y < b} = P{X < a}P{Y < b} (2.12)

In other words, X and Y are independent if, for all @ and b, the events
E, = {X < a} and F, = {Y < b} are independent.

In terms of the joint distribution function F of X and Y, we have that X
and Y are independent if

Fa, b) = Fy(a)Fy(D) foralla, b
When X and Y are discrete, the condition of independence reduces to

pPx,¥) = px()py(y) (2.13)

while if X and Y are jointly continuous, independence reduces to

S0, y) = fx () fyr (D) (2.14)

To prove this statement, consider first the discrete version, and suppose
that the joint probability mass function p(x, y) satisfies Equation (2.13).
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Then
PX=<aY=b=YY Y pxv

y<bx=a

=Y X px(®py(y)

ysbxsa

=Y py(») ¥ px®

y=sb x=<a
= P{Y < b}P(X < a

and so X and Y are independent. That Equation (2.14) implies indepen-
dence in the continuous case is proven in the same manner, and is left as
an exercise.

An important result concerning independence is the following.

Proposition 2.3 If X and Y are independent, then for any functions 4
and g

E[g(X)n(Y)] = E[g(X)IE[A(Y)]
Proof Suppose that X and Y are jointly continuous. Then

Efg(X)h(Y)] = S S g fx, y) dx dy

=§ S g fx X)fy () dx dy

-0

o

=§ h(»)fr(¥) dyS &(x)fx (x) dx

—o0

= E[A(Y)IE[g(X)]
The proof in the discrete case is similar. €
The covariance of any two random variables X and Y, denoted by
Cov(X, Y), is defined by
Cov(X,Y) = E[(X - E[X])(Y - E[Y])]
= F[XY - YE[X] — XE{Y] + E[X]E[Y]]
= F[XY] - E[Y]E[X] — EIX]E[Y] + E[X]E[Y]
= F[XY] — E[X]E[Y]

Note that if X and Y are independent, then by Proposition 2.3 it follows
that Cov(X,Y) = 0.
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Let us consider now the special case where X and Y are indicator
variables for whether or not the events A and B occur. That is, for events
A and B, define

X = 1, if A occurs i if B occurs
~ {0, otherwise ’ |0, otherwise

Then,
Cov(X,Y) = E[XY] — E[X]E[Y]

and, as XY will equal 1 or 0 depending upon whether or not both X and Y
equal 1, we see that

Cov(X,Y)=PX=1,Y=1} - P{IX =1}P{Y =1}
From this we see that
Cov(iX,Y)>0e PIX=1,Y=1}> P X =1}P{Y = 1}

PiX=17Y=1)
PiX = 1)

> P{Y = 1

e PiY=1|X=1}>P{Y = 1]

That is, the covariance of X and Y is positive if the outcome X = 1 makes
it more likely that Y = 1 (which, as is easily seen by symmetry, also implies
the reverse).

In general it can be shown that a positive value of Cov(X, Y) is an
indication that Y tends to increase as X does, whereas a negative value
indicates that Y tends to decrease as X increases.

A useful expression for the variance of the random variable X + Y may
be obtained in terms of the covariance as follows:

Var(X + Y) = E[(X + Y - E[X + Y])?]
=E[(X+Y-EX-EY)]
= E[(X — EX) + (Y - EY))’]
=E[(X-EX)+ X -EY)? +2(X - EX)Y - EY)]
= E[(X - EX)’] + E[(Y - EY)’] + 2E[(X — EX)(Y — EY)]
= Var(X) + Var(Y) + 2 Cov(X, Y) (2.15)
If X and Y are independent, then Equation (2.15) reduces to
Var(X + Y) = Var(X) + Var(Y) (2.16)
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Example 2.33 (Variance of a Binomial Random Variable): Compute
the variance of a binomial random variable X with parameters n and p.

Solution: Since such a random variable represents the number of
successes in n independent trials when each trial has a common prob-
ability p of being a success, we may write

X=X+ +X,
where the X; are independent Bernoulli random variables such that

X = 1, if the /th trial is a success
! 0, otherwise

Hence, from the obvious generalization of (2.16) we obtain
Var(X) = Var(X,) + :-- + Var(X,)

But
Var(X;) = E[X}] - (E[X;])?
= E[X}] - (E[X))? since X? = X;
=p-r
and thus

Var(X) = np(1 — p) @

The generalization of (2.15) to the case of more than two random
variables is

Var<Z X,~> = Y Var(X)) + 2 }, ¥ Cov(X;, X))

1 1 i<j

(See Exercise 68 for a proof.) This is often a useful formula for computing
variances.

Example 2.34 (Sampling from a Finite Population: The Hypergeo-
metric): Consider a population of N individuals, some of whom are in favor
of a certain proposition. In particular suppose that Np of them are in favor
and N — Np are opposed, where p is assumed to be unknown, We are
interested in estimating p, the fraction of the population that is for the
proposition, by randomly choosing and then determining the positions of n
members of the population.

In such situations as described in the preceding, it is common to use the
fraction of the sampled population that are in favor of the proposition as an
estimator of p. Hence, if we let

X - 1, if the ith person chosen is in favor
"7 l0, otherwise
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then the usual estimator of pis ¥ }_, X;/n. Let us now compute its mean

and variance. Now

i=1

L E[X]
1

where the final equality follows since the ith person chosen is equally likely
to be any of the N individuals in the population and so has probability
Np/N of being in favor.

Var<z X,-> = ¥ Var(X)) + 2} ¥ Cov(X;, X))
1 1 i<j
Now, since X; is a Bernoulli random variable with mean p, it follows that

Var(X;) = p(1 - p)
Also, for i # j,

Cov(X;, X)) = E[X;X;] — E[X]E[X]]
=P{X;=1,X;=1] - p?
= PX; = IPLX; = 1| X, = 1} - p?

_New -
N N-1

where the last equality follows since if the ith person to be chosen is in
favor, then the jth person chosen is equally likely to be any of the other
N — 1 of which Np — 1 are in favor. Thus, we see that

d n\[ p(Np — 1) 2]
\ X; - 2 LA L
ofx) == - 2(3) 2R

n(n — DNp(1 — p)
and so the mean and variance of our estimator are given by

N -1
IIX.
E| Y | =p,
25

1

np(l — p) -

o« Xi| _pl—p) (n-Dpd - p)
var[z 7] T AN — 1)

1

Some remarks are in order: As the mean of the estimator is the unknown
value p, we would like its variance to be as small as possible (why is this?),
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and we see by the above that, as a function of the population size N, the
variance increases as NN increases. The limiting value, as N — o, of the
variance is p(1 — p)/n, which is not surprising since for N large each of the
X; will be (approximately) independent random variables, and thus Y7 X;
will have an (approximately) binomial distribution with parameters n
and p.

The random variable YT X; can be thought of as representing the number
of white balls obtained when n balls are randomly selected from a
population consisting of Np white and N — Np black balls. (Identify a
person who favors the proposition with a white ball and one against with a
black ball.) Such a random variable is called hypergeometric and has a
probability mass function given by

i LR
B

It is often important to be able to calculate the distribution of X + Y from
thedistributions of X and Y when X and Y areindependent. Suppose first that
X and Y are continuous, X having probability density f and Y having
probability density g. Then, letting Fy, y(a) be the cumulative distribution
function of X + Y, we have

FX+y(a)=P{X+ YS a}

= S S J)g(y) dx dy
xty<a

0o a-y
=S S J)g(y) dx dy

—oo J—o00

o a-y
=S <S f(X)dX>g(y)dy

= S Fx(a — y)e(y) dy 2.17)

—o0

The cumulative distribution function Fy,y is called the convolution of the
distributions Fy and Fy (the cumulative distribution functions of X and Y,
respectively).
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By differentiating Equation (2.17), we obtain that the probability density
function fy,y(a) of X + Y is given by

o

d
Jxsy(@ = T X Fx(a — y)g(y)dy

-0

—©

* d
= S d—(FX(a - eg(y)dy
a

= S Sla — y)g(y) dy (2.18)

Example 2.35 (Sum of Two Independent Uniform Random Variables):
If X and Y are independent random variables both uniformly distributed
on (0, 1), then calculate the probability density of X + Y.

Solution: From Equation (2.18), since

1, O<ax<l
0, otherwise

Sfla) = gla) = {

we obtain
1

Sxiv(@ = S Sla—-y)dy

0
For 0 < g < 1, this yields

a

Jxsy(@) = SO dy=a

For 1 < a < 2, we get

1
Jx+y(@) = j dy=2-a
a-1
Hence,
a, 0<a=x<l
Sxsy(@ = {2 —a, l<a<?2
0, otherwise ¢

Rather than deriving a general expression for the distribution of X + Y
in the discrete case, we shall consider an example.

Example 2.36 (Sums of Independent Poisson Random Variables): Let
X and Y be independent Poisson random variables with respective means
A, and 4,. Calculate the distribution of X + Y.
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Solution: Since the event {X + Y = n} may be written as the union of
the disjoint events {X = k, Y = n — k}, 0 < k < n, we have

P{X +Y = nj

Y PiX =k Y=n-—kl
k=0

f) P{X = kiP{Y = n — k}

k=0
S Y e AT o, A
6K -y
-()\1+)\2) i )'k'ln_k
K=o kl(n — K)!
—(\FAY) 7 '
- it
n! o kKl (n — k)!
e —(\+N\)
= (A + A"

In words, X, + X, has a Poisson distribution with mean A, + 1,. @

The concept of independence may, of course, be defined for more than
two random variables. In general, the n random variables X, X,, ..., X,
are said to be independent if, for all values a,, a5, ..., a,,

PiX,=a,X;=a,...,.X, <a,}
= P{X, = aJP{X; =@y} -+ P|X, < a,}

2.5.3. Joint Probability Distribution of Functions of
Random Variables

Let X, and X, be jointly continuous random variables with joint probability
density function f(x,, x,). It is sometimes necessary to obtain the joint
distribution of the random variables ¥; and Y, which arise as functions of
X, and X,. Specifically, suppose that ¥; = g,(X;, X,)and Y, = g,(X,, X3)
for some functions g, and g,.

Assume that the functions g, and g, satisfy the following conditions.

1. The equations y, = g,(x;, x,) and y, = g,(x,, X;) can be uniquely
solved for x, and x, in terms of y, and y, with solutions given by, say,
X1 = m(1,22), X2 = by, 3).
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2. The functions g, and g, have continuous partial derivatives at all
points (x,, x,) and are such that the following 2 X 2 determinant

58, 9,
JOx;, x,) = 0x; 9% =%%_%%¢0
DY og, dgy | dxidx,  ax, dx
ax, 0x,

at all points (x,, x,).

Under these two conditions it can be shown that the random variables Y]
and Y, are jointly continuous with joint density function given by

Sy, v, (V1592 = fx, x,(%15 x)|Jx, ,xz)l_l (2.19)

where x; = h(y1, 32), X2 = hy(¥y, ¥2)-
A proof of Equation (2.19) would proceed along the following lines:

PlYy =y, Y, =y} = S g Sx,,x,X1 5 X%2) dxy dx, (2.20)
(x1,x2):
g1{x,x2) sy,
g2(x1,x2) Sy

The joint density function can now be obtained by differentiating Equation
(2.20) with respect to y, and y,. That the result of this differentiation will
be equal to the right-hand side of Equation (2.19) is an exercise in advanced
calculus whose proof will not be presented in the present text.

Example 2.37 If X and Y are independent gamma random variables
with parameters («, A) and (8, 1), respectively, compute the joint density of
U=X+Yand V=X/(X+Y)

Solution: The joint density of X and Y is given by

Ae ™M) eV (Ay)P!
I'(c) 1X0))
Aa+3

" T@T(B)
Now, if g,(x,») = x + y, g:(x,¥) = x/(x + y), then

fX,Y(xv y) =

—)\(x+y)xa—1y6—l

dg, _d& _,  %& __ ¥ %8, _ X
ax  dy ’ x  (x+ y?*’ dy (x + »)*
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and so
1 1 :
Jx, y) = y _ -X _ = —m
x+y)” x+y)

Finally, as the equations ¥ = x + y, v = x/(x + y) have as their solutions
x = uv, y = u(l — v), we see that

Juy(u, v) = fy yluv, u(l - v)lu
_ Ae™MQuP i1 - 0PI T (e + B)
- T@+p T(T(h)

Hence X + Y and X/(X + Y) are independent, with X + Y having a
gamma distribution with parameters (o + £, A1) and X/(X + Y) having
density function

Jy(v) =

I'a + B)
L()I'(B)

This is called the beta density with parameters («, ).

The above result is quite interesting. For suppose there are n + m jobs
to be performed, with each (independently) taking an exponential
amount of time with rate A for performance, and suppose that we have
two workers to perform these jobs. Worker I will do jobs 1, 2, ..., n, and
worker II will do the remaining m jobs. If we let X and Y denote the total
working times of workers I and II, respectively, then upon using the
above result it follows that X and Y will be independent gamma random
variables having parameters (n, A) and (mm, A), respectively. Then the
above result yields that independently of the working time needed to com-
plete all n + m jobs (that is, of X + Y), the proportion of this work that
will be performed by worker I has a beta distribution with parameters

(n,m. @

vl -, 0<wu<d

When the joint density function of the n random variables X,, X,,
..., X, is given and we want to compute the joint density function of
Y, Y,,...,Y,, where

}/l:gl(Xl’--ﬂXn)r )/2=g2(X1""’Xn)’ tecy
)/n = gn(Xh ---9Xn)

the approach is the same. Namely, we assume that the functions g,
have continuous partial derivatives and that the Jacobian determinant
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Jxy, ..., x,) # 0 at all points (xy, ..., x,), where

x; 0x;, ax,
9g, 98, g,
JOrs o5 Xn) = ax, ax, ox,,
98, 98, 9,
ax; 9x, 9x,

Furthermore, we suppose that the equations y, = g,(x;, ..., X,), ¥V, =
&(Xys iy Xp)s ooy Yy = 8ulxy, ..., Xx,) have a unique solution, say, x, =
Bi(VisoeesVu)s eees Xg = (Y15 ..., ¥,). Under these assumptions the joint
density function of the random variables Y; is given by

le ..... Y,,(yls""yn)zfX, ..... X,,(xlv-u,xn)l‘](xla---axn)l_l
where x; = h;(yy, ..., Va), i =1,2,...,n.

2.6. Moment Generating Functions

The moment generating function ¢(¢) of the random variable X is defined
for all values by
o(1) = E[e"]
Y e“p(x), if X is discrete
X
g e f(x) dx, if X is continuous
We call ¢(¢) the moment generating function because all of the moments of

X can be obtained by successively differentiating ¢(¢). For example,

d
o'(t) = EE[e’X]

_ |l 4
g

= E[Xe™]
Hence,
¢'(0) = E[X]
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Similarly,
" _ ii_ ’
o"(t) = dt¢ )
_4d X
—th[Xe ]
_ | 4
_E[a’t(Xe )]
— E[XZetX]
and so
¢"(0) = E[X?]

In general, the nth derivative of ¢(t) evaluated at ¢t = 0 equals E[X"],
that is,

¢"(0) = E[X"], n=l

We now compute ¢(¢) for some common distributions.

Example 2.38 (The Binomial Distribution with Parameters # and p):
o(t) = E[e”]

kf e’k(z>pk(1 -yt
=0

Il

= 3 <Z><pe‘)k(1 - py*
k=0
= (pe' +1 - p)'
Hence,
¢'(t) = n(pe' + 1 — p)"~'pe’
and so

E[X] =¢'(0)=np

which checks with the result obtained in Example 2.17. Differentiating a
second time yields

¢"(1) = n(n — D(pe’ + 1 — p)'(pe'y’ + n(pe’ + 1 - p)"~'pe’

and so
E[X*] = ¢"(0) = n(n — )p* + np
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Thus, the variance of X is given
Var(X) = E[X?] - (E[X])
=n(n — Dp* + np — n*p?
=np(l -p) &

Example 2.39 (The Poisson Distribution with Mean 1):
o(1) = E[e™]

Il
I ™

exp{A(e’ — 1)}
Differentiation yields

¢'(1) = Ae' expf{A(e’ — 1)},

¢"(t) = (Ae')? exp{A(e’ — 1)} + Ae' exp{A(e' — 1)}
and so
E[X] = ¢'(0) = 4,
E[X?] = ¢"(0) = 2% + A,
Var(X) = E[X’] — (E[X])’
=41

Thus, both the mean and the variance of the Poisson equal A. 4

Example 2.40 (The Exponential Distribution with Parameter 1):
o(1) = E[e]

= X e*le ™™ dx
=1 S e A% gx

=— fort< A
t
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We note by the preceding derivation that, for the exponential distribution,
¢(?) is only defined for values of ¢ less than A. Differentiation of ¢(¢) yields

22

¢'(t) = A=

(T——t)z’ ") =

Hence,
2

1
’ A,Z

ElX]1=9¢'0) =+ E[X?] = ¢"(0) =

The variance of X is thus given by

Var(X) = E[X?] — (E[X)? = % *

Example 2.41 (The Normal Distribution with Parameters u and ¢°):
#(1) = E[e"]

1 ® tx_—(x—p)2/20%
= — e’e s dx
210

—00

1 © —(x2 = 2ux + 1 — 20%tx)
= exp 3 dx
2no 20

—00

Now writing
x¥ = 2ux + p* - 20%x = x* — 2u + d*t)x + 4
= — (u+ 0 - (u+dty + i
= (x — (4 + a*0)* — a*1* — 2uc’t

we have
1 a*t? + 2uc*t) ™ —(x = (4 + a*))?
o(t) = Toro exp{ 752 B exp = dx
a*t? J I —(x — (1 + ))?
= exp {T + ﬂt} \/ﬁ i €Xp 202 } dx
However,

1 (= -(x - (u + )
2ro | P 20

where X is a normally distributed random variable having parameters
i = u + o*t and &% = ¢*. Thus, we have shown that

}dX=P{—°°<1\_’<Oo}=1

—o0

a’t?
o(t) = exp {T + ut}
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By differentiating we obtain

2,2
$'(t) = (i + 16%) exp {% + ut}

2,2 2,2
t t
o"(t) = (u + t®)? exp{% + ,ut} + d* exp{aT + ut}

and so
E[X] = ¢'(0) = 4,
E[X’] = ¢"(0) = 4* + ¢°
implying that
Var(X)

E[X*] - E(IX])
=a> &

Tables 2.1 and 2.2 give the moment generating function for some
common distributions.

An important property of moment generating functions is that the
moment generating function of the sum of independent random variables is
Just the product of the individual moment generating functions. To see this,
suppose that X and Y are independent and have moment generating
functions ¢y () and ¢y (), respectively. Then ¢y,y(f), the moment
generating function of X + Y, is given by

bx+y(t) = E[e 1)

— E[etXeIY]
= E[e*]E[e']
= ¢,()¢y(?)
Table 2.1
Discrete probability Probability mass Moment generating
distribution function, p(x) function, ¢(¢) Mean  Variance
Binomial with LA nex I . |
parameters 7, p L )P =P (pe' + (1 - p)) np np(l - p)
0=sp=l x=0,1,...,n
Poisson with AT ,
parameter pry exp{d(e’ — 1)} A y
A>0 x=0,1,2,...
Geometric with p(l — py !, pe' 1 1-p
parameter 0 < p < 1 x=1,2,... 1- (1 - p)e p P
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Table 2.2
Continuous Moment
probability Probability density generating
distribution function, f(x) function, ¢(f) Mean Variance
Uniform over 1 <x<b e’ — e a+b (b-a)?
, X
(@, b) fg=ib-a Wb - a) 2 12
0, otherwise
Exponential with _ Ae™, x>0 A 1 1
parameter 4 > 0 fo) = 0, x<0 1—¢ 1 2
Gamma with Ae ™ M(x)"! 50 Ay n n
parameters (n, 4) £ = - Xz T 3 e
A>0
0, x<0
Normal with 1 -k g2 o’ 2
parameters Jx) = \/ﬁoe o exput + B H g
(u, 0% o < x< o

where the next to the last equality follows from Proposition 2.3 since X and
Y are independent.

Another important result is that the moment generating function
uniquely determines the distribution. That is, there exists a one-to-one
correspondence between the moment generating function and the distribu-
tion function of a random variable.

Example 2.42 Suppose the moment generating function of a random
variable X is given by ¢(f) = €*© V. What is P{X = 0}?

Solution: We see from Table 2.1 that ¢(f) = €*®~? is the moment
generating function of a Poisson random variable with mean 3. Hence,
by the one-to-one correspondence between moment generating functions
and distribution functions, it follows that X must be a Poisson random
variable with mean 3. Thus, P X =0} =e™>. @

Example 2.43 (Sums of Independent Binomial Random Variables):
If X and Y are independent binomial random variables with parameters
(n, p) and (m, p), respectively, then what is the distribution of X + Y?
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Solution: The moment generating function of X + Y is given by
bxry() = dx(DPy(t) = (pe' + 1 - p)'(pe’ + 1 — p)™
=(pe' +1 - py™"

But (pe’ + (1 — p))™*" is just the moment generating function of a
binomial random variable having parameters m + n and p. Thus, this
must be the distribution of X + Y. @

Example 2.44 (Sums of Independent Poisson Random Variables):
Calculate the distribution of X + Y when X and Y are independent Poisson
random variables with means A; and A,, respectively.

Solution:
dx (Do y(r)

— e)\l(e'— l)e)\z(e’— 1)

¢X+Y(t)

= eMitME~D)

Hence, X + Y is Poisson distributed with mean A, + 4,, verifying the
result given in Example 2.36. @

Example 2.45 (Sums of Independent Normal Random Variables):
Show that if X and Y are independent normal random variables with
parameters (u,, g2) and (u,, 02), respectively, then X + Y is normal with
mean u, + u, and variance a> + 3.

Solution:

bxry () = ox(DDy (1)

ai ast?
exp - + Uty exp - + u,t

{(af + o)’
exp —

+ (uy + .Uz)t}

which is the moment generating function of a normal random variable with
mean u, + u, and variance o7 + a3. Hence, the result follows since the
moment generating function uniquely determines the distribution. 4

It is also possible to define the joint moment generating function of two
or more random variables. This is done as follows. For any n random
variables X/, ..., X,,, the joint moment generating function, ¢(¢,, ..., t,),
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is defined for all real values of ¢, ..., t, by
Bty ..., 1,) = E[e@Xit  +inXn)

It can be shown that ¢(z,, ..., £,) uniquely determines the joint distribution
of Xy,..., X,.

Example 2.46 (The Multivariate Normal Distribution): Let Z,, ..., Z,

be a set of n independent unit normal random variables. If, for some

constants @;;, l <i=m,1<j<sn,andy;, 1 <i<m,
Xy=ayZ, + - + a2, + uy,

Xy =anuZ + -+ a3, 2, + ,
Xi=ayZ, + - + a2, + U,

Xm = amlzl + e+ angn + U

then the random variables X, ..., X,, are said to have a multivariate
normal distribution.

It follows from the fact that the sum of independent normal random
variables is itself a normal random variable that each X;is a normal random
variable with mean and variance given by

ELXi] = wi,

n
Var(X)) = ¥, aj
Jj=1
Let us now determine

¢(t19 sy tm) = E[CXp{thl + o+ thm}]

the joint moment generating function of X, ..., X,,. The first thing to note
is that since Y7o, X; is itself a linear combination of the independent
normal random variables Z,, ..., Z,, it is also normally distributed. Its

mean and variance are respectively

E[ gﬁ tiX,} = i": til;

i=1 i=1

and

m m m
Var< y t,-X,-) = Cov< Y uxi, ¥ thj>
fg i=1 i=1

Y Y 4t CoviX,, X))

i=1j=1
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Now, if Y is a normal random variable with mean  and variance &2, then
Ele"] = ¢y(D)],-, = e**"7

Thus, we see that

Btys oeesby) = exp{ Y tiui+3 Y ¥ t.-t,-Cov(X,-,X,-)}

i=1 i=1j=1

which shows that the joint distribution of X,,..., X, is completely
determined from a knowledge of the values of E[X;] and Cov(X;, X)),
Lj=1,....m. @&

2.7. Limit Theorems

We start this section by proving a result known as Markov’s inequality.

Proposition 2.4 (Markov’s Inequality). If X is a random variable that
takes only nonnegative values, then for any value a > 0

Pix = q <2
a

Proof We give a proof for the case where X is continuous with density f:

E[X] = waf(x) dx

xf(x) dx + X xf(x) dx

>

af(x) dx

-|
- [
X

a S S(x)dx

aP{X = aj}

and the result is proven.

As a corollary, we obtain the following.
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Proposition 2.5 (Chebyshev’s Inequality). If X is a random variable
with mean ¢ and variance ¢2, then, for any value k > 0,

2

mm—mst%

Proof Since (X — u)? is a nonnegative random variable, we can apply
Markov’s inequality (with @ = k%) to obtain
E[(X - w]

kZ

But since (X — u)? = k* if and only if |X — u| = k, the preceding is
equivalent to

PUX — uf = k) <

ElX-w’ o
P{|X~u|2k}ST=p
and the proof is complete. @

The importance of Markov’s and Chebyshev’s inequalities is that they
enable us to derive bounds on probabilities when only the mean, or both the
mean and the variance, of the probability distribution are known. Of
course, if the actual distribution were known, then the desired probabilities
could be exactly computed, and we would not need to resort to bounds.

Example 2.47 Suppose that it is known that the number of items
produced in a factory during a week is a random variable with mean 500.

(a) What can be said about the probability that this week’s production
will be at least 1000?

(b) If the variance of a week’s production is known to equal 100, then
what can be said about the probability that this week’s production will be
between 400 and 600?

Solution: Let X be the number of items that will be produced in
a week.

(a) By Markov’s inequality,

E[X] 500 1
1000 1000 2

P{X = 1000} <
(b) By Chebyshev’s inequality,
2
ag 1

- > 1 < =
P{|Xx - 500| = 00}<(100)2 T30
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Hence,

1 99
P{|lX - =2l -—=—
{| 500] < 100} = 1 100 = 100
and so the probability that this week’s production will be between 400
and 600, is at least 0.99. @

The following theorem, known as the strong law of large numbers is
probably the most well-known result in probability theory. It states that
the average of a sequence of independent random variables having the
same distribution will, with probability 1, converge to the mean of that
distribution.

Theorem 2.1 (Strong Law of Large Numbers). Let X,, X,,... be a
sequence of independent random variables having a common distribution,
and let E[X;] = u. Then, with probability 1,
Xi+ X+ - + X,
n

- u asn —

As an example of the preceding, suppose that a sequence of independent
trials are performed. Let E be a fixed event and denote by P{E} the
probability that E occurs on any particular trial. Letting

X = 1, if E occurs on the ith trial
e 0, if E does not occur on the ith trial

we have by the strong law of large numbers that, with probability 1,

Xl + .- +Xn

. -~ E[X] = P{E} (2.21)

Since X, + --- + X, represents the number of times that the event E occurs
in the first n trials, we may interpret Equation (2.21) as stating that, with
probability 1, the limiting proportion of time that the event E occurs is
just P{E}.

Running neck and neck with the strong law of large numbers for the
honor of being probability theory’s number one result is the central limit
theorem. Besides its theoretical interest and importance, this theorem
provides a simple method for computing approximate probabilities for
sums of independent random variables. It also explains the remarkable facts
that the empirical frequencies of so many natural ‘‘populations’’ exhibits a
bell-shaped (that is, normal) curve.
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Theorem 2.2 (Central Limit Theorem). Let X, X;, ... be a sequence
of independent, identically distributed random variables each with mean u
and variance ¢2. Then the distribution of

X, +X, + -+ X,— nu
a~n
tends to the standard normal as n — . That is,

X+ X+ -+ X,— nu
P =<a
{ a~n

\2n

1 a 2
- e—x /2 dx
—0

as n — oo,

Note that like the other results of this section, this theorem holds for any
distribution of the X;’s; herein lies its power.

If X is binomially distributed with parameters # and p then, as shown in
Example 2.43, X has the same distribution as the sum of »n independent
Bernoulli random variables each with parameter p. (Recall that the
Bernoulli random variable is just a binomial random variable whose
parameter n equals 1.) Hence, the distribution of

X-EX] X-np
vVar(X)  +np(l1 — p)
approaches the standard normal distribution as » approaches oo. The

normal approximation will, in general, be quite good for values of n
satisfying np(1 — p) = 10.

Example 2.48 (Normal Approximation to the Binomial): Let X be the
number of times that a fair coin, flipped 40 times, lands heads. Find the
probability that X = 20. Use the normal approximation and then compare
it to the exact solution.

Solution: Since the binomial is a discrete random variable, and the
normal a continuous random variable, it leads to a better approximation
to write the desired probability as

P{X = 20} = P{19.5 < X < 20.5}

_p 19.5—20<X—20<20.5—20
B J10 J10 J10

X_ 0
= Pli-0.1 = .
{ 6 < J10 <016}

~ ©(0.16) — ®(—0.16)
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where ®(x), the probability that the standard normal is less than x is
given by

NpX

By the symmetry of the standard normal distribution
®(—0.16) = P{N(@©, 1) > 0.16] = 1 — ®(0.16)

1 X
O(x) = — S e™”2 dy

—00

where N(0, 1) is a standard normal random variable. Hence, the desired
probability is approximated by

P{X = 20} = 20(0.16) — 1
Using Table 2.3, we obtain that
P{X = 20} = 0.1272

40\ /1\*°
rx-20-(5)(3)

which, after some calculation, can be shown to equal 0.1268. @

The exact result is

Example 2.49 Let X;,i=1,2,...,10be independent random variables,
each being uniformly distributed over (0, 1). Calculate P{¥ 1% X; > 7).

Solution: Since E[X;] = 1, Var(X;) = {5 we have by the central limit
theorem that

10 10
- 7 —
P{ZX,~>7}=P{ ‘X‘l > 15
N V10(5) V10(%)
=1 - ®2.2)
=0.0139 &

2.8. Stochastic Processes

A stochastic process {X(t), t € T} is a collection of random variables. That
is, for each r € T, X(¢) is a random variable. The index ¢ is often interpreted
as time and, as a result, we refer to X(¢) as the state of the process at time
t. For example, X(¢) might equal the total number of customers that have
entered a supermarket by time f; or the number of customers in the
supermarket at time ¢; or the total amount of sales that have been recorded
in the market by time ¢, etc.
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Table 2.3 Area ®(x) under the Standard Normal Curve to the Left of x
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x 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 | 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5597 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 | 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8557 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.88388 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 | 09192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 | 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 | 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 | 09772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 | 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 | 09918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 | 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 | 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 | 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 | 09993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
33 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 | 09997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998

The set T is called the index set of the process. When T is a countable set
the stochastic process is said to be discrete-time process. If T is an interval
of the real line, the stochastic process is said to be a continuous-time
process. For instance, {X,, n =0, 1, ...} is a discrete-time stochastic process
indexed by the nonnegative integers; while {X(¢), ¢ = 0} is a continuous-time
stochastic process indexed by the nonnegative real numbers.

The state space of a stochastic process is defined as the set of all possible
values that the random variables X(¢) can assume.
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Thus, a stochastic process is a family of random variables that describes
the evolution through time of some (physical) process. We shall see much of
stochastic processes in the following chapters of this text.

Exercises

1. An urn contains five red, three orange, and two blue balls. Two balls
are randomly selected. What is the sample space of this experiment? Let X
represent the number of orange balls selected. What are the possible values
of X? Calculate P{X = 0}.

2. Let X represent the difference between the number of heads and the
number of tails obtained when a coin is tossed n times. What are the
possible values of X?

3. In Exercise 2, if the coin is assumed fair, then, for n = 2, what are
the probabilities associated with the values that X can take on?

*4. Suppose a die is rolled twice. What are the possible values that the
following random variables can take on?

(i) The maximum value to appear in the two rolls.
(ii) The minimum value to appear in the two rolls.
(iii) The sum of the two rolls.
(iv) The value of the first roll minus the value of the second roll.

5. 1If the die in Exercise 4 is assumed fair, calculate the probabilities
associated with the random variables in (i)-(iv).

6. Suppose five fair coins are tossed. Let E be the event that all coins land
heads. Define the random variable I

I - 1, if E occurs
E7 o, if E€ occurs

For what outcomes in the original sample space does I equal 1? What is
P{I = 1}?

7. Suppose a coin having probability 0.7 of coming up heads is tossed
three times. Let X denote the number of heads that appear in the three
tosses. Determine the probability mass function of X.

8. Suppose the distribution function of X is given by

0, b<0
Fb)=1{%+, O0=b<l
1, l<sb<

What is the probability mass function of X?
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9. If the distribution function of F is given by

(o, b<0

1, 0<b<l1
Fib) = 3, l=b<2

4, 2<b<3

£, 3=b<35

\ 1, b=35

calculate the probability mass function of X.

10. Suppose three fair dice are rolled. What is the probability that at most
one six appears?

*11. A ball is drawn from an urn containing three white and three black
balls. After the ball is drawn, it is then replaced and another ball is drawn.
This goes on indefinitely. What is the probability that of the first four balls
drawn, exactly two are white?

12. On a multiple choice exam with three possible answers for each of the
five questions, what is the probability that a student would get four or more
correct answers just by guessing?

13. Anindividual claims to have extrasensory perception (ESP). As a test,
a fair coin is flipped ten times, and he is asked to predict in advance the
outcome. Our individual gets seven out of ten correct. What is the prob-
ability he would have done at least this well if he had no ESP? (Explain why
the relevant probability is P{X = 7} and not P{X = 7}.)

14. Suppose X has a binomial distribution with parameters 6 and 1.
Show that X = 3 is the most likely outcome.

15. Let X be binomially distributed with parameters n and p. Show that
as k goes from 0 to n, P(X = k) increases monotonically, then decreases
monotonically reaching its largest value.

(a) in the case that (n + 1)p is an integer, when k equals either
n+1p-1lorn+ p,

(b) in the case that (n + 1)p is not an integer, when k satisfies
n+Dp—-1<k<((n+ 1)p.

Hint: Consider P{X = k}/P{X = k — 1} and see for what values of k it
is greater or less than 1.
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*16. An airline knows that five percent of the people making reservations
on a certain flight will not show up. Consequently, their policy is to sell 52
tickets for a flight that can only hold 50 passengers. What is the probability
that there will be a seat available for every passenger that shows up?

17. Suppose that an experiment can result in one of r possible outcomes,
the ith outcome having probability p;, i =1,...,r, Yi_, p;= 1. If n of
these experiments are performed, and if the outcome of any one of the n
does not affect the outcome of the other n — 1 experiments, then show that
the probability that the first outcome appears x, times, the second x, times,
and the rth x, times is

!
n: X . X; X,

pips ... p? whenx; + x, + -+ + X, = n

X160 x, !
This is known as the multinomial distribution.
18. Show that when r = 2 the multinomial reduces to the binomial.

19. In Exercise 17, let X; denote the number of times the ith outcome
appears, i=1,...,r. What is the probability mass function of
X] + XZ + b + Xk?

20. A television store owner figures that 50 percent of the customers
entering his store will purchase an ordinary television set, 20 percent will
purchase a color television set, and 30 percent will just be browsing. If five
customers enter his store on a certain day, what is the probability that two
customers purchase color sets, one customer purchases an ordinary set, and
two customers purchase nothing?

21. In Exercise 20, what is the probability that our store owner sells three
or more televisions on that day?

22. If a fair coin is successively flipped, find the probability that a head
first appears on the fifth trial.

*23. A coin having a probability p of coming up heads is successively
flipped until the rth head appears. Argue that X, the number of flips
required, will be n, n = r, with probability

P{X =n} = <’; : 11>p’(1 -, n=r

This is known as the negative binomial distribution.

Hint: How many successes must there be in the first n — 1 trials?
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24. The probability mass function of X is given by

r+k—-1
p(k)=< .1 )p’(l—p)", k=0,1,....

Give a possible intepretation of the random variable X.
Hint: See Exercise 23.

In Exercises 25 and 26, suppose that two teams are playing a series of
games, each of which is independently won by team A with probability p
and by team B with probability 1 — p. The winner of the series is the first
team to win i games.

25. If i = 4, find the probability that a total of 7 games are played. Also
show that this probability is maximized when p = 1/2.

26. Find the expected number of games that are played when

In both cases, show that this number is maximized when p = 1/2.

*27. A fair coin is independently flipped n times, k times by A and n — k
times by B. Show that the probability that A and B flip the same number
of heads is equal to the probability that there are a total of & heads.

28. Consider n independent flips of a coin having probability p of landing
heads. Say a changeover occurs whenever an outcome differs from the one
preceding it. For instance, if the result of the flipsare HHTHTHHT,
then there are a total of 5 changeovers. If p = 1/2, what is the probability
there are k changeovers?

29. Let X be a Poisson random variable with parameter A. Show that
P{X = i} increases monotonically and then decreases monotonically as
i increases, reaching its maximum when / is the largest integer not
exceeding A.

Hint: Consider P{X = i}/P{X =i — 1}.

30. Compare the Poisson approximation with the correct binomial
probability for the following cases:

(i) P{X =2} whenn =28, p =0.1.

(ii) P{X = 9} when n = 10, p = 0.95.
(iii) P{X = 0} when n = 10, p = 0.1.
(iv) P{X =4} whenn =9, p =0.2.
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31. Ifyou buy a lottery ticket in 50 lotteries, in each of which your chance
of winning a prize is 145, what is the (approximate) probability that you will
win a prize (a) at least once, (b) exactly once, (c) at least twice?

32. Let X be a random variable with probability density

Jx) = {

(a) What is the value of ¢?
(b) What is the cumulative distribution function of X?

ol — x?), -1<x<1
0, otherwise

33. Let the probability density of X be given by
c(dx — 2x?), 0O0<x<2
Jx) = .
0, otherwise
(a) What is the value of ¢?
b) PE<X<$}=2?
34. The density of X is given by

10/x2, for x > 10
Je) = {O, forx = 10

What is the distribution of X? Find P{X > 20J.

35. Let X, X,,..., X, be independent random variables, each having a
uniform distribution over (0, 1). Let M = maximum (X, X,, ..., X,,).
Show that the distribution function of M, Fy(+), is given by

Fy(x) = x", 0<x=<1
What is the probability density function of M?
*36. If the density function of X equals

ce ¥, 0<x< o
S _io, x<0

find ¢. What is P{X > 2}?

37. The random variable X has the following probability mass function

p) =%, p@ =% p2Y=%
Calculate E[X].

38. Suppose that two teams are playing a series of games, each of which
is independently won by team A with probability p and by team B with
probability 1 — p. The winner of the series is the first team to win 4 games.
Find the expected number of games that are played, and evaluate this
quantity when p = 1/2.
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39. Consider the case of arbitrary p in Exercise 28. Compute the expected
number of changeovers.

40. Suppose that each coupon obtained is, independent of what has been
previously obtained, equally likely to be any of m different types. Find the
expected number of coupons one needs to obtain in order to have at least
one of each type.

Hint: Let X be the number needed. It is useful to represent X by

m
X=ZX,

i=1
where each X; is a geometric random variable.

41. Anurncontains n + m balls, of which »n are red and m are black. They
are withdrawn from the urn, one at a time and without replacement. Let X be
the number of red balls removed before the first black ball is chosen. We are
interested in determining E[X]. To obtain this quantity, number the red balls
from 1 to n. Now define the random variables X;,i = 1, ..., n, by

X = 1, if red ball / is taken before any black ball is chosen
‘710, otherwise

(a) Express X in terms of the X;.
(b) Find E[X].

42, 1In Exercise 41, let Y denote the number of red balls chosen after the
first but before the second black ball has been chosen.

(a) Express Y as the sum of n random variables, each of which is equal
to either 0 or 1.

(b) Find E[Y].

(¢) Compare E[Y] to E[X] obtained in Exercise 41.

(d) Can you explain the result obtained in part (¢)?

*43. Consider 3 trials, each of which is either a success or not. Let X
denote the number of successes. Suppose that E[X] = 1.8.

(a) What is the largest possible value of P{X = 3}?
(b) What is the smallest possible value of P{X = 3}?

In both cases, construct a probability scenario that results in P{X = 3}
having the desired value.

44. If X is uniformly distributed over (0, 1), calculate E[X?].
*45. Prove that E[X?] = (E[X])®>. When do we have equality?
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46. Let ¢ be a constant. Show that

(i) Var(cX) = c? Var(X).
(ii) Var(c + X) = Var(X).

47. A coin, having probability p of landing heads, is flipped until the head
appears for the rth time. Let N denote the number of flips required.
Calculate E[N].

Hint: There is an easy way of doing this. It involves writing N as the
sum of r geometric random variables.

48. Calculate the variance of the Bernoulli random variable.

49. (a) Calculate E[X] for the maximum random variable of Exercise 35.
(b) Calculate E(X) for X as in Exercise 32.
(c) Calculate E[X] for X as in Exercise 33.

50. If X is uniform over (0, 1), calculate E[X"] and Var(X").
51. Let X and Y each take on either the value 1 or —1. Let
p,)=P{X=1,Y =1},
p(l,-1D=PX=1,Y=-1},
p(—1,1)=P{X=-1,Y =1},
p(—-1,-1)=P{X=-1,Y = -1}
Suppose that E[X] = E[Y] = 0. Show that

(@ p(1,1) = p(-1,-1)

b p(1, -1) = p(-1,1)
Let p = 2p(1, 1). Find

(¢) Var(X)

(d) Var(Y)

(e) Cov(X,Y)
52. Let X be a positive random variable having density function f(x). If
f(x) = ¢ for all x, show that, for a > 0,

P X>a}l=1-ac

*53. Calculate, without using moment generating functions, the variance
of a binomial random variable with parameters n and p.

54. Suppose that X and Y are independent binomial random variables
with parameters (n, p) and (m, p). Argue probabilistically (no computations
necessary) that X + Y is binomial with parameters (n + m, p).
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55. Suppose that X and Y are independent continuous random variables.
Show that

-

PIX=Y}= S FNfy(y)dy

— o0

56. Calculate the moment generating function of the uniform distribution
on (0, 1). Obtain E[X] and Var[X] by differentiating.

57. Suppose that X takes on each of the values 1, 2, 3 with probability 4.
What is the moment generating function? Derive E[{X], E[X?], and E[X?]
by differentiating the moment generating function and then compare the
obtained result with a direct derivation of these moments.

58. Suppose the density of X is given by

Ixe™?, x>0

0, otherwise

Sx) = {

Calculate the moment generating function, F[X], and Var(X).

59. Calculate the moment generating function of a geometric random
variable.

*60. Show that the sum of independent identically distributed exponential
random variables has a gamma distribution.

61. Consider Example 2.46. Find Cov(X;, X;) in terms of the a,.

62. Use Chebyshev’s inequality to prove the weak law of large numbers.
Namely, if X,, X,,... are independent and identically distributed with
mean g and variance ¢? then, for any £ > 0,

g

63. Suppose that X is a random variable with mean 10 and variance 15.
What can we say about P{5 < X < 15}?

X+ Xy + - + X,
n

—u >£}—+0 asn — o

64. Let X, X,, ..., X|, be independent Poisson random variable with
mean 1.

(i) Use the Markov inequality to get a bound on P{X, + --- + X, = 15}.
(ii) Use the central limit theorem to approximate P{X; + --- + X, = 15}.

65. If X is normally distributed with mean 1 and variance 4, use the tables
to find P2 < X < 3i.
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*66. Show that
n k 1

lime™” ¥ — =2
pmw 2okl 2

Hint: Let X, be Poisson with mean n. Use the central limit theorem to
show that P{X, < n} = 1.

67. Let X denote the number of white balls selected when k balls are
chosen at random from an urn containing n white and m black balls.

(i) Compute P{X = i}.
(i) Let, fori=1,2,...,k;j=1,2,...,n,
1, if the ith ball selected is white
Xi - .
0, otherwise

Y:

J

1, if the jth white ball is selected
0, otherwise

Compute E[X] in two ways be expressing X first as a function of the X;’s
and then of the ¥}’s.

*68. Show that

Var|: Z": Xi] = i Var(X;)) + 2 ¥ Y Cov(X;, X))
1

i=1 i<j
and then use this to show that
Var(X) = 1
when X is the number of men that select their own hats in Example 2.31.

69. For the multinomial distribution (Exercise 17), let N; denote the
number of times outcome i occurs. Find

(i) E[N]
(ii) Var(V;)
(iii) Cov(NV;, N))
(iv) Compute the expected number of outcomes which do not occur.

70. Let X, X,,... be a sequence of independent identically distributed
continuous random variables. We say that a record occurs at time n if
X, > max(X,, ..., X,_;). That is, X, is a record if it is larger than each of
Xiy...5 X,_1- Show
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(i) P{a record occurs at time n} = 1/n
(ii) E[number of records by time n] = ¥7_, 1/i
(iii) Var(number of records by time n) = L7_ (i — 1)/i*
(iv) Let N = min{n: n > 1 and arecord occurs at time n}. Show E[N] = .

Hint: For (ii) and (iii) represent the number of records as the sum of
indicator (that is, Bernoulli) random variables.

71. Leta, < a, < :-- < a, denote a set of n numbers, and consider any
permutation of these numbers. We say that there is an inversion of g;
and g; in the permutation if i <j and a; precedes ;. For instance the
permutation 4, 2, 1, 5, 3 has 5 inversions—(4, 2), (4, 1), (4, 3), (2, 1), (5, 3).
Consider now a random permutation of a,, a,, ..., a,—in the sense that
each of the n! permutations is equally likely to be chosen—and let N denote
the number of inversions in this permutation. Also, let

N; = number of k: k < i, a; precedes g, in the permutation
and note that N = Y7_| N,

(i) Show that Ny, ..., N, are independent random variables.
(ii) What is the distribution of N;?
(iii) Compute E[N] and Var(N).

72. Let X and Y be independent random variables with means u, and u,
and variances g; and g7. Show that

Var(XY) = aﬁaf, + uyzaf + ufa§

73. Let X and Y be independent normal random variables each having
parameters u and ¢®. Show that X + Y is independent of X — Y.

74. Let ¢(t,...,t,) denote the joint moment generating function of
X] g eesy Xn .

(a) Explain how the moment generating function of X;, ¢y (#), can be
obtained from (¢4, ..., t,).
(b) Show that X, ..., X, are independent if and only if

¢(tl’ cees tn) = ¢Xl(tl) et ¢X,,(tn)

75. If Z,,...,Z, are independent unit normal random variables, then
X = Y7_, Z? is said to be a chi-square random variable with n degrees of
freedom. Compute its moment generating function.
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Chapter 3

Conditional Probability and
Conditional Expectation

v

3.1. Introduction

One of the most useful concepts in probability theory is that of conditional
probability and conditional expectation. The reason is twofold. First, in
practice, we are often interested in calculating probabilities and expectations
when some partial information is available; hence, the desired probabilities
and expectations are conditional ones. Secondly, in calculating a desired
probability or expectation it is often extremely useful to first ‘‘condition’’
on some appropriate random variable.

3.2. The Discrete Case

Recall that for any two events E and F, the conditional probability of E
given F is defined, as long as P(F) > 0, by
P(EF)
P(F)
Hence, if X and Y are discrete random variables, then it is natural to define
the conditional probability mass function of X given that Y = y, by
pxiy(x|y) = PIX = x|Y = y)

_PX=x,Y =y}

- Py =y

_ px, )

-~ py()

83

PE|F) =
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for all values of y such that P{Y = y} > 0. Similarly, the conditional
probability distribution function of X given that Y = y is defined, for all y
such that P{Y = y} > 0, by

Fxy(x|y) = P{X <= x|Y = y}
= Z pXIY(a‘y)

a=<x
Finally, the conditional expectation of X given that ¥ = y is defined by
EIX|Y =)yl = ¥ xP{X = x|Y = y]
X

= Y xpxy(x|y)

In other words, the definitions are exactly as before with the exception
that everything is now conditional on the event that Y =y. If X is
independent of Y, then the conditional mass function, distribution, and
expectation are the same as the unconditional ones. This follows, since if X
is independent of Y, then

Pxiy(x|y) = P{X = x|Y =y}
_ P X=xY=y]
P{Y =y}
_ PlX = x]PlY =y}
P{Y =y}
= P{X = x}

Example 3.1 Suppose that p(x, y), the joint probability mass function
of X and Y, is given by

p(,1)=0.5, p,2) =0.1, p2,1) = 0.1, p2,2) =03
Calculate the probability mass function of X given that ¥ = 1.
Solution: We first note that
py() = X p(x, 1) = p(1,1) + p2,1) = 0.6
Hence,
Pxiy(1[)=PX =1|Y = 1)

_PiX=1,Y=1
T P{Y =1}
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Similarly,
p2,1)

2|1 = ==
Pxiy( | ) y(1) c ¢

Example 3.2 If X and Y are independent Poisson random variables
with respective means A, and A,, then calculate the conditional expected
value of X given that X + Y = n.

Solution: Let us first calculate the conditional probability mass
function of X given that X + Y = n. We obtain

PIX=kX+Y=
PIX=k|X+Y=n =2t n

PIX +Y =n)
_PIX=kY=n-k
T P X+Y=nl

_PIX=KP{Y=n-k
- PIX+Y=n}

where the last equality follows from the assumed independence of X and
Y. Recalling (see Example 2.36) that X + Y has a Poisson distribution
with mean A; + A,, the preceding equation equals

e MAf ek [e‘“'“z’(/ll + /12)"]—‘

PIX=k|X+Y=n}= K = ol a1

B n! Akagk
C(n - WK (A + A"

B n /11 k /12 n—k
IRV 7AVE W AV N

In other words, the conditional distribution of X given that X + Y = n,
is the binomial distribution with parameters # and A,/(1, + A,).
Hence,

Ay

E(X|X+Y=n}=
(x| "=

Example 3.3 If X and Y are independent binomial random variables
with identical parameters n and p, calculate the conditional probability
mass function of X given that X + Y = m.
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Solution: For k < min(n, m),
PIX=k,X+Y=m)
P X=k|X+Y=m}= PIX 1Y = m]
_PIX=kY=m-k
PIX +Y =m)
_ P{X = kIPlY =m — Kk}
P{X +Y =mj

n ke _ n—k n m—key _ o n—m+k
_<k>p 1-p <m_k>p (1-p

- 2
< ”>p'"(1 - pp
m

where we have used the fact (see Example 2.43) that X + Y is binomially
distributed with parameters (2n, p). Hence, the conditional probability
mass function of X given that X + Y = m is given by

<n>< : >

k/\m -k

- k=20,1,..., min(m, n)
2n
<m> 3.1

The distribution given in Equation (3.1) is known as the hypergeometric
distribution. It arises as the distribution of the number of black balls that

are chosen when a sample of m balls is randomly selected from an urn
containing n white and n black balls. ¢

PIX=k|X+Y=m)=

Example 3.4 Consider an experiment which results in one of three
possible outcomes. Outcome i occurring with probability p;, i =1, 2,3,
Y:_., p; = 1. Suppose that n independent replications of this experiment
are performed and let X;, i = 1, 2, 3, denote the number of times outcome
i appears. Determine the conditional distribution of X, given that X, = m.

Solution: Fork<n - m,
PX, = k| X, = m} = P{X;,;Yf’:(jn}: )
Now if X, = kand X, = m, then it follows that X; = n — k — m. However,
PiX,=k,X,=mX;=n—-—k—mj
n!
T kK'min — k — m)!

pipypy k™ (3.2)


file:///kl/m
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This follows since any particular sequence of the n experiments having

outcome 1 appearing k times, outcome 2 m times, and outcome 3

(n — k — m) times has probability p¥ p7'p{"~*~™ of occurring. Since there

are n!/[k!m!(n — k — m)!] such sequences, Equation (3.2) follows.
Therefore, we have

n!

k. _m_(n—-k-m)
YAV 4
k'm!(n — k — m)!
PIX, = k| X, = m) = —
: my _ n—m
_——m!(n — m)! p3( P2)

where we have used the fact that X, has a binomial distribution with
parameters n and p,. Hence,

(n — m)! p N ps 7
”&zﬂ&zmbkm—m—MXMQJQ—E>

or equivalently, writing p; = 1 — p; — p,,

_ k n-m-k
P{X, = k| X, =m} = <” k’"><——l 1_"p2> <1 - '_"p2>

In other words, the conditional distribution of X, given that X, = m, is
binomial with parameters n — m and p,/(1 — p,). ®

Remarks (i) The desired conditional probability in Example 3.4 could
also have been computed in the following manner. Consider the n — m
experiments which did not result in outcome 2. For each of these
experiments, the probability that outcome 1 was obtained is given by

Pf{outcome 1, not outcome 2}
P{not outcome 2}

_ D
1 -p,

P{outcome 1|not outcome 2} =

It therefore follows that, given X, = m, the number of times outcome 1
occurs is binomially distributed with parameters n — mand p,/(1 — p,).

(i) Conditional expectations possess all of the properties of ordinary
expectations. For instance, such identities as

E[ ) X.-|Y=y} = Y E[X,|Y =]

i=1 i=1

remain valid.
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Example 3.5 Consider n + m independent trials, each of which results
in a success with probability p. Compute the expected number of successes
in the first » trials given that there are k successes in all.

Solution: Letting Y denote the total number of successes, and

1, if the ith trial is a success
Xi = .
0, otherwise

the desired expectation is E[Y}_, X;|Y = k] which is obtained as

E[i)XIIY:k}

T ELX|Y = 4]
1

k
n
n+m

where the last equality follows since if there are a total of k successes,
then any individual trial will be a success with probability k/(n + m).
That is,

E[X;|Y = k] = P{X; = 1|Y = k}

k
n+m

3.3. The Continuous Case

If X and Y have a joint probability density function f(x, y), then the
conditional probability density function of X, given that Y = y, is defined
for all values of y such that fy,(y) > 0, by

S, )
Sr(»)

To motivate this definition, multiply the left side by dx and the right side by
(dx dy)/dy to get

fx|y(x|)’) =

Sx, y)dx dy

Sy(»)dy
~P{xssz+dx,stsy+dy}
- P{ly<Y =<y + dy}

Sxiyx|y)dx =

=Pix<X<x+dx|ly<Y=<y+ dy
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In other words, for small values dx and dy, fX|Y(x| y) dx represents the
conditional probability that X is between x and x + dx given that Y is
between y and y + dy.

The conditional expectation of X, given that Y = y, is defined for all
values of y such that fy(y) > 0, by

E[X|Y=y]=§

O

xfxy(x| y) dx

Example 3.6 Suppose the joint density of X and Y is given by

6xy(2 — x — ), 0<x<1,0<y<1
0, otherwise

S, y) = {

Compute the conditional expectation of X given that Y = y, where
O0<y<l.

Solution: We first compute the conditional density
Sfx, y)
Jr(y)

6xy(2 —x —y)
B [86xy(2 — x — y)dx
_6xy(2 —x - y)
(4 -3y)
_6x(2—x—y)

4 — 3y

fxly(x|}’) =

Hence,
V6x2(2 — x — y)dx
0 4 — 3y
_Q-y-4
4 — 3y
5 -4y
" 8- 6y

E[X]Y = y] =S

Example 3.7 Suppose the joint density of X and Y is given by

4y(x — y)e ¥, 0<x<ow,0=<y=<x
0, otherwise

S, ») = {

Compute E[X|Y = y].
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Solution: The conditional density of X, given that Y = y, is given by

Jx, )

Sr(»)

_ Ay(x — y)e

h 2 dy(x — y)e " dx’

fx|y(x|J’) =

x>y

(x — y)e
h 2 (x — y)e " ax

X

_ =y
§;° (x — y)e ¥ dx

Integrating by parts shows that the above gives

fle(X|)’) = (L_e_—yy)e_

==y, x>y
Therefore,

oo

xfx 1y (x| ) dx

E[X|Y=y]=S

= S x(x — y)e “ P dx
y
Integration by parts yields

I

EIX|Y =y = —x(x — p)e & + S 2x — y)e “Pax

y

g 2x — y)e P dx
y

—2x — e | + ZS e dx
Yy Y

=y+2 @
Example 3.8 The joint density of X and Y is given by

1ye ™, 0<x<ow0<y<2
0, otherwise

Sx, y) = {

What is E[e*?|Y = 1]?
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Solution: The conditional density of X, given that Y = 1, is given by

S(x, 1)
Jr(D)

fx|y(x| )=

-x

2e
]0 e dx
Hence, by Proposition 2.1,

E[**|Yy =1] = re"/zfx,y(xn)dx
0

0
= S e*e* dx

0

=2 &

3.4. Computing Expectations by Conditioning

Let us denote by E[X|Y] that function of the random variable Y whose
value at Y =y is E[X|Y = y]. Note that E[X|Y] is itself a random
variable. An extremely important property of conditional expectation is
that for all random variables X and Y

E[X] = E[E[X|Y]] (3.3)
If Y is a discrete random variable, then Equation (3.3) states that

E[X] = Y EIX|Y = y)PIY = y) (3.3a)
¥y

while if Y is continuous with density fy(»), then Equation (3.3) says that

oo

E[X] = S E[X|Y = )1fv(y)dy (3.3b)

We now give a proof of Equation (3.3) in the case where X and Y are both
discrete random variables.

Proof of Equation (3.3) When X and Y Are Discrete We must
show that

E[X] = ¥ EIX|Y = yIPlY = y) 3.4
y
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Now, the right side of the preceding can be written
LEX|Y=yIPlY=y] =Y ¥ xP(X = x|Y = ylP{Y = y}
y y X

P{X =x,Y =y}

= P{Y =
LLxpy=yy Pr=

=L LxPIX=xY =y
y x

=TLxIPX=xY=)
x ¥

= ¥ xP{X = x}

= E[X]

and the result is obtained. @

One way to understand Equation (3.4) is to interpret it as follows.
It states that to calculate E[X] we may take a weighted average of the
conditional expected value of X given that Y = y, each of the terms
E[X|Y = y] being weighted by the probability of the event on which it
is conditioned.

The following examples will indicate the usefulness of Equation (3.3).

Example 3.9 (The Mean of a Geometric Distribution): A coin, having
probability p of coming up heads, is to be successively flipped until the first
head appears. What is the expected number of flips required?

Solution: Let N be the number of flips required, and let

Yy < 1, if the first flip results in a head
“ o, if the first flip results in a tail

Now
E[N] = E[N|Y = 1]P{Y = 1} + E[N|Y = 0]P{Y = 0}
=pE[N|Y = 1]+ (1 — p)E[N|Y = 0] 3.5
However,
EINlY=1] =1, E[N|Y =0] = 1 + E[N] 3.6)

To see why Equation (3.6) is true consider E[N|Y = 1]. Since Y = 1, we
know that the first flip resulted in heads and so, clearly, the expected
number of flips required is 1. On the other hand if Y = 0, then the first
flip resulted in tails. However, since the successive flips are assumed
independent, it follows that, after the first tail, the expected additional
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number of flips until the first head is just E[N]. Hence E[N|Y = 0] =
1 + E[N]. Substituting Equation (3.6) into Equation (3.5) yields

E[N] =p + (1 - p)1 + E[N])
or
ENl=1/p &

As the random variable N is a geometric random variable with prob-
ability mass function p(n) = p(1 — p)"~!, its expectation could easily have
been computed from E[N] = YT np(n) without recourse to conditional
expectation. However, if the reader attempts to obtain the solution to our
second example without using conditional expectation, he will quickly learn
what a useful technique ‘‘conditioning’’ can be.

Example 3.10 A miner is trapped in a mine containing three doors. the
first door leads to a tunnel which takes him to safety after two-hour’s
travel. The second door leads to a tunnel which returns him to the mine
after three-hour’s travel. The third door leads to a tunnel which returns him
to his mine after five hours. Assuming that the miner is at all times equally
likely to choose any one of the doors, what is the expected length of time
until the miner reaches safety?

Solution: Let X denote the time until the miner reaches safety, and let
Y denote the door he initially chooses. Now
E[X] = E{X|Y = 1]P{Y = 1} + E[X|Y = 2)P{Y = 2}
+ E[X|Y = 31P{Y = 3}
=HE[X|Y=1]+ E[X|Y =2] + E[X|Y = 3))
However,
EX|ly=1=2
E[X|Y =2] =3 + E[X]
E[X|Y = 3] =5 + E[X] 3.7
To understand why the above is correct consider, for instance,
E[X|Y = 2], and reason as follows. If the miner chooses the second
door, then he spends three hours in the tunnel and then returns to
his cell. But once he returns to his cell the problem is as before, and
hence his expected additional time until safety is just E[X]. Hence

E[X|Y = 2] = 3 + E[Y]. The argument behind the other equalities in
Equation (3.7) is similar. Hence

E[X]1 =32 +3 + E[X] + 5 + E[X)]) or EiX]=1 &
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Example 3.11 Sam will read either one chapter of his probability book
or one chapter of his history book. If the number of misprints in a chapter
of his probability book is Poisson distributed with mean 2 and if the
number of misprints in his history chapter is Poisson distributed with mean
5, then assuming Sam is equally likely to choose either book, what is the
expected number of misprints that Sam will come across?

Solution: Letting X denote the number of misprints and letting

Y= 1, if Sam chooses his history book
2, if Sam chooses his probability book

then
E[X] = E[X|Y = 11P{Y = 1} + E[X]|Y = 2]P{Y = 2}
= 5(3) + 2(3)
=1 &

Example 3.12 (The Expectation of a Random Number of Random
Variables): Suppose that the expected number of accidents per week at an
industrial plant is four. Suppose also that the numbers of workers injured
in each accident are independent random variables with a common mean of
2. Assume also that the number of workers injured in each accident is
independent of the number of accidents that occur. What is the expected
number of injuries during a week?

Solution: Letting N denote the number of accidents and X; the number
injured in the /th accident, i = 1, 2, ..., then the total number of injuries
can be expressed as ¥, X;. Now

SESE
E[}ZT:X,-INz n] _ E[i::X,.INz n]

=F [ Y X ,} by the independence of X; and N
1

= nE[X]
which yields that

E[ f; X,-IN] = NE[X]

i=1
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and thus

N

E[ Y X,-] = E[NE[X]] = E[N]E[X]
i=1

Therefore, in our example, the expected number of injuries during a

week equals 4 x2 =8, @

Example 3.13 Independent trials, each of which is a success with
probability p, are performed until there are k£ consecutive successes. What
is the mean number of necessary trials?

Solution: Let N, denote the number of necessary trials to obtain k
consecutive successes, and let M, denote its mean. We will obtain a
recursive equation for M, by conditioning on N, _,, the number of trials
needed for & — 1 consecutive successes. This yields

M, = E[N,] = E[E[N;|Ni_ill
Now,
E[Ng|N¢_i] = Ne_y + 1+ (1 = p)E[N,]
where the above follows since if it takes N,_, trials to obtain k — 1
consecutive successes, then either the next trial is a success and we

have our k in a row or it is a failure and we must begin anew. Taking
expectations of both sides of the above yields

Mksz—l + 1 +(1 _p)Mk

or
1 M,_
M, = = + —*=1
p p
Since N,, the time of the first success, is geometric with parameter p,

we see that

1
M, =-
p
and, recursively
ool
> p p¥
1 1 1
My=—+—S+ =
3 p pZ p3
and, in general,
1 1 1
My=—+ =S+ - +— @&
““p ' p? PF
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Example 3.14 (Analyzing the Quick-Sort Algorithm): Suppose we are
given a set of n distinct values—x,, ..., x,—and we desire to put these
values in increasing order, or as it is commonly called, to sort them.
An efficient procedure for accomplishing this is the quick-sort algorithm
which is defined recursively as follows: When n = 2 the algorithm compares
the 2 values and puts them in the appropriate order. When n > 2 it starts
by choosing at random one of the n values—say x,—and then compares
each of the other n — 1 values with x;, noting which are smaller and which
are larger than x;. Letting S; denote the set of elements smaller than x;,
and S; the set of elements greater than x;, the algorithm now sorts the
set S; and the set S;. The final ordering, therefore, consists of the ordered
set of the elements in S;, then x;, and then the ordered set of the elements
in ;. For instance, suppose that the set of elements is 10, 5, 8, 2, 1, 4, 7.
We start by choosing one of these values at random (that is, each of the
7 values has probability of 4 of being chosen). Suppose, for instance, that
the value 4 is chosen. We then compare 4 with each of the other 6 values
to obtain

{2, 13, 4, {10, 5, 8, 7}
We now sort the set {2, 1} to obtain
1’ 2! 4! {10! 5! 8! 7}

Next we choose a value at random from {10, 5, 8, 7}—say 7 is chosen—and
compare each of the other 3 values with 7 to obtain

1,2,4,5,7,{10, 8}
Finally, we sort {10, 8} to end up with
1,2,4,5,7,8,10

One measure of the effectiveness of this algorithm is the expected number
of comparisons that it makes. Let us denote by M,, the expected number of
comparisons needed by the quick-sort algorithm to sort a set of n distinct
values. To obtain a recursion for M, we condition on the rank of the initial
value selected to obtain:

1
M, = E[number of comparisons | value selected is jth smallest] p

"N s

j=1

Now if the initial value selected is the jth smallest, then the set of values
smaller than it is of size j — 1, and the set of values greater than it is of size
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n — j. Hence, as n — 1 comparisons with the initial value chosen must be

made, we see that

M, =

e~ =

1

(n-1+ A/Ij_l + M,,_j)—

j=1 n
n-1

2
n—-1+=Y M, (since My = 0)
ny-q

or, equivalently,
n-1

nM,=nn-1)+2Y M,
k=1
To solve the preceding, note that upon replacing #n by n + 1 we obtain
n
M+ DM, =(n+Dn+2 Y M,
k=1
Hence, upon subtraction,
n+ )M, ., — nM, =2n + 2M,
or
n+ 1M, =+ 2)M, + 2n
Therefore,
Mn+1 2n Mn

n+2—(n+1)(n+2)+n+1

Iterating this gives

Mn+1 _ 2n 2(" -1 + M,_,
n+2 m+Dn+2) nn+l n

n-1 n—k

2y

koom+ 1 —Kk@n+2-k)

since M, =0

Hence,

n—1 n—k
M,,, = 2
mer = 2n )kz::(,(n+1—k)(n+2—k)

‘" i
=2(n+2)i§1m, n=1
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Using the identity i/(i + 1) + 2) = 2/(i + 2) — 1/(i + 1), we can approxi-
mate M, , for large n as follows:

[ 2 L
M, =2n+2) Zi+2— Zi+1]
| i=1 i=1

[ n+22 n+11
~2n+2) S )—cdx—j )—Cdx}

3 2

=2(n + 2)[2log(n + 2) — log(n + 1) + log2 — 2log 3]

= 2(n + 2)| log(n + 2) + log

~2(n+2logn +2) &

n+2
n+1

+ log2 — 210g3}

The conditional expectation is often useful in computing the variance of
a random variable. In particular, we have that

Var(X) = E[X’] - (E[X])
= E[E[X?*|Y]] - (E[E[X|Y])Y
Example 3.15 (The Variance of a Random Number of Random
Variables): In Example 3.12 we showed that if X, X,, ... are independent

and identically distributed, and if N is a nonnegative integer valued random
variable independent of the X’s, then

N
E[ ) X,} = E[N]E[X]
i=1

What can we say about Var(XY.; X,)?

(i) (3] ({5]) s

To compute each of the individual terms, we condition on N:

[ (52)] - £l (£0) ]

Now, given that N = n, (L., X;)? is distributed as the square of the

sum of n independent and identically distributed random variables.

Solution:
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Hence, using the identity E[Z%] = Var(Z) + (E[Z])?, we have that

e[ (5 o) [ =] vl £ ) + (e £4])

nVar(X) + (nE[X])*
Therefore,

f(£x)

Taking expectations of both sides of the above equation yields that

N} = N Var(X) + N¥(E[X])?

N 2
E[< Yy X,-> ] = E[N] Var(X) + E[N*E[X))*

i=1
Hence, from Equation (3.8) we obtain
N N 2
Var< Y X,.> =E[N] Var(X) + E[N*|(E[X])* - <E[ Yy X,])
i=1 i=1
= E[N] Var(X) + E[N’E[X])* — (EINIE[X]
= E[N] Var(X) + (E[XDXE[N?] - (EIN])?
= E[N] Var(X) + (E[X])* Var(N) &

Example 3.16 (Variance of the Geometric Distribution): Independent
trials, each resulting in a success with probability p, are successively
performed. Let N be the time of the first success. Find Var(N).

Solution: Let Y = 1 if the first trial results in a success, and Y = 0
otherwise.

Var(N) = E(N?) — (E[N])?

To calculate E[N?] and E[N] we condition on Y. For instance,
E[N’] = EIEIN?|Y]]

However,

EN?|lY=1] =1

E[N?|Y = 0] = E[(1 + N)’]
These two equations are true since if the first trial results in a success,
then clearly N = 1 and so N2 = 1. On the other hand, if the first trial

results in a failure, then the total number of trials necessary for the first
success will equal one (the first trial that results in failure) plus the
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necessary number of additional trials. Since this latter quantity has the
same distribution as N, we get that E[N?|Y = 0] = E[(1 + N)?]. Hence,
we see that

E[N? = E[N?|Y = 1]P{Y = 1} + E[N?|Y = 0]P{Y = 0}
=p+ E[(1 + N1 - p)
=1+ (1 - pE2N + N?]
Since, as was shown in Example 3.9, E[N] = 1/p, this yields

E[N] =1+ @ + (1 - pE[NA
or
ENY = 2 _P

Therefore,
Var(N) = E[N?] — (E[N])?

3.5. Computing Probabilities by Conditioning

Not only can we obtain expectations by first conditioning upon an
appropriate random variable, but we may also use this approach to
compute probabilities. To see this, let £ denote an arbitrary event and
define the indicator random variable X by

X = 1, if E occurs
o, if £ does not occur

It follows from the definition of X that
E[X] = KE),
E[X|Y =y] = PE|Y = y), for any random variable Y
Therefore, from Equations (3.3a) and (3.3b) we obtain that
P(E) =Y P(E|Y = p)P(Y = ), if Y is discrete
y

S PE|Y = »fy(») dy, if Y is continuous
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Example 3.17 Suppose that X and Y are independent continuous
random variables having densities fy, and fy, respectively. Compute
P{X<Y].

Solution: Conditioning on the value of Y yields

P{X <Y} g PIX <Y|Y = yify(») dy

S PiX < y|Y = y}fy(») dy

|

S k) fr(») dy

P{X < yify(»)dy

—o0
o
-0
o
—oo
«©
-0

where

¥
Fx(.}’)=§ Sx(dx @&

Example 3.18 Suppose that X and Y are independent continuous
random variables. Find the distribution of X + Y.

Solution: By conditioning on the value of Y we obtain

o0

PiIX+Y<al= S PX + Y<alY =ylfy(ydy

—00

= g PIX +y<alY =yfy(»dy

—00

S PiX <a-ylfy(»)dy

-0

j Fx(a - ) fy(y)dy &

—o0

Example 3.19 Each customer who enters Rebecca’s clothing store will
purchase a suit with probability p. If the number of customers entering the
store is Poisson distributed with mean A, what is the probability that
Rebecca does not sell any suits?
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Solution: Let X be the number of suits that Rebecca sells, and let N
denote the number of customers who enter the store. By conditioning on
N we see that

PiX =0} =

n

P{X = 0|N = n}P{N = n)
0

N aok:]

P{X = O|N = nje *A"/n!
0

1
[N aok:]

n

Now, given that n customers enter the store, the probability that Rebecca
does not sell any suits is just (1 — p)". That is, P{X = 0|N = n} =
(1 — p)". Therefore,

© _)\/1"
PX =0} = E _p)e__
(/1(1 - p))
= E
- e"‘e“' -p)
=e™ ¢
Example 3.19 (continued) What is the probability that Rebecca sells
k suits?
Solution:

PIX=ki= Y PX =k|N=nle*"/n!

n=0

Now, given that N = n, X has a binomial distribution with parameters n
and p. Hence,

RN kiq o \n—k
P(X = kIN=n} = <k>p(1 ZE

0, n<k
so that
_ B oo n pk(l —p)"_ke_)‘l"
x-n- § (1) 222
B i n! AP — pyy e
2= k! n!
e MAp)* & (- pyk

=T L =R
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A@p* 2 aa - py
e L=

e (A-p)k MNP
k!

p (AD)
T

In other words, X has a Poisson distribution with mean ip. @

Example 3.20 At a party n men take off their hats. The hats are then
mixed up and each man randomly selects one. We say that a match occurs
if a man selects his own hat. What is the probability of no matches? What
is the probability of exactly X matches?

Solution: Let E denote the event that no matches occur, and to make
explicit the dependence on n, write P, = P(E). We start by conditioning
on whether or not the first man selects his own hat—call these events M
and M€. Then

P, = P(E) = P(E|M)P(M) + P(E|M)P(M°).
Clearly, P(E|M) = 0, and so

-1
P, = PE|M).

3.9

Now, P(E|M°¢) is the probability of no matches when n — 1 men select
from a set of # — 1 hats that does not contain the hat of one of these
men. This can happen in either of two mutually exclusive ways. Either
there are no matches and the extra man does not select the extra hat
(this being the hat of the man that chose first), or there are no matches
and the extra man does select the extra hat. The probability of the first of
these events is just P,_,, which is seen by regarding the extra hat as
‘“‘belonging’’ to the extra man. As the second event has probability
[1/(n — D]P,_,, we have

1
P(EIMC) = Pn—l + —_—-Pn-2
n-—1
and thus, from Equation (3.9)

n—1 1
P, = P,y +—P,_
n n n-1 n 2
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or, equivalently,

1
P, - P, =_;(Pn—l _Pn—Z) (3.10)

However, as P, is the probability of no matches when n men select among
their own hats, we have

and so, from Equation (3.10),

P, ~P) 1 11

By h=-m 3!

P-P) 1 111

P4—P3=— 4 4'

and, in general, we see that

P_1 1 1 (="
O TR T T T

To obtain the probability of exactly £ matches, we consider any fixed
group of £ men. The probability that they, and only they, select their own
hats is

1 1 1 (n — k)!
— cen P = ——
nn-1 n—-(k-1)""*

n! n-k

where P,_, is the conditional probability that the other n» — k men,
. . n

selecting among their own hats, have no matches. As there are < k>

choices of a set of k men, the desired probability of exactly & matches is

LS SO o )
P, 20 3 (n — k)
k! k!

which, for n large, is approximately equal to e"!/k!. @

Example 3.21 (The Ballot Problem): In an election, candidate 4
receives n votes, and candidate B receives m votes where n > m. Assuming
that all orderings are equally likely, show that the probability that 4 is
always ahead in the count of votes is (n — m)/(n + m).
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Solution: Let P, ,, denote the desired probability. By conditioning on
which candidate receives the last vote counted we have

P, ., = P{A always ahead | A receives last vote}
’ n+m

+ P{A always ahead | B receives last vote}
n+m
Now given that A receives the last vote, one can see that the probability
that A is always ahead is the same as if A had received a total of n — 1
and B a total of m votes. As a similar result is true when we are given that
B receives the last vote, we see from the above that

n

m
Pn,m = n+ mPn—l,m + mpn,m—l (311)

We can now prove that P, , = (n — m)/(n + m) by inductionon n + m.
As it is true when n+ m =1, i.e.,, P o= 1, assume it whenever
n+ m= k. Thenwhenn + m = k + 1, we have by Equation (3.11) and
the induction hypothesis that

n n—l—m+ m n—-—m+1

P =
" m+mn—-14+4m m+nn+m-1

n—m
n+m

and the result is proven. €

The ballot problem has some interesting applications. For example,
consider successive flips of a coin which always land on ‘‘heads’’ with prob-
ability p, and let us determine the probability distribution of the first time,
after beginning, that the total number of heads is equal to the total number
of tails. The probability that the first time this occurs is at time 2n can be
obtained by first conditioning on the total number of heads in the first 2n
trials. This yields

Pifirst time equal = 2n}
N 2
= P{first time equal = 2n|n heads in first 2n}< :>p"(l -p)
Now given a total of n heads in the first 2x flips, one can see that all possible
orderings of the n heads and n tails are equally likely, and thus the

preceding conditional probability is equivalent to the probability that in an
election, in which each candidate receives n votes, one of the candidates
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is always ahead in the counting until the last vote (which ties them). But by
conditioning on whomever receives the last vote, we see that this is just the
probability in the ballot problem when m = n — 1. Hence

2
Pifirst time equal = 2n} = P,,,,,_1< :>p"(1 - p)

2
< ">p"(l -p
_ n
- 2n — 1

Suppose now that we wanted to determine the probability that the first
time there are / more heads than tails occurs after the (2n + i)th flip. Now,
in order for this to be the case, the following two events must occur:

(a) The first 2n + i tosses result in # + i heads and n» tails; and

(b) the order in which the n + i heads and # tails occur is such that the
number of heads is never i more than the number of tails until after the
final flip.

Now, it is easy to see that the event (b) will occur if and only if the order of
appearance of the n + i heads and # tails is such that starting from the final
flip and working backwards heads is always in the lead. For instance, if
there are 4 heads and 2 tails (n = 2,/ = 2), then the outcome T H
would not suffice because there would have been 2 more heads than tails
sometime before the sixth flip (since the first 4 flips resulted in 2 more heads
than tails).

Now, the probability of the event specified in (a) is just the binomial
probability of getting n + i heads and n tails in 2n + i flips of the coin.

We must now determine the conditional probability of the event specified
in (b) given that there are n + i heads and n tails in the first 2n + i flips. To
do so, note first that given that there are a total of n + i heads and » tails
in the first 2n + i flips, all possible orderings of these flips are equally
likely. As a result, the conditional probability of (b) given (a) is just the
probability that a random ordering of #» + i heads and # tails will, when
counted in reverse order, always have more heads than tails. Since all
reverse orderings are also equally likely, it follows from the ballot problem
that this conditional probability is i/(2n + i).

That is, we have shown that

2 j .
Pla} = < ”: '>p"+'(1 .
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and so
Pfifirst time heads leads by i is after flip 2n + i}

2n + i\ 4 i
= 1—p)
< n )p (4 -p 2n + i

3.6. Some Applications

3.6.1. A List Model

Consider n elements—e,, e,, ..., e,—which are initially arranged in some
ordered list. At each unit of time a request is made for one of these
elements—e; being requested, independently of the past, with probability
P,. After being requested the element is then moved to the front of the list.
That is, for instance, if the present ordering is e, e,, e;, e, and if e; is
requested, then the next ordering is e;, e, e,, €;.

We are interested in determining the expected position of the element
requested after this process has been in operation for a long time. However,
before computing this expectation, let us note two possible applications of
this model. In the first we have a stack of reference books. At each unit of
time a book is randomly selected and is then returned to the top of the
stack. In the second application we have a computer receiving requests for
elements stored in its memory. The request probabilities for the elements
may not be known and so to reduce the average time it takes the computer
to locate the element requested (which is proportional to the position of the
requested element if the computer locates the element by starting at the
beginning and then going down the list), the computer is programmed to
replace the requested element at the beginning of the list.

To compute the expected position of the element requested, we start by
conditioning on which element is selected. This yields

E[Position of element requested]

n
Y E[Position|e; is selected]P,

i=1

Y E[Position of ¢;|e; is selected]P; (3.12)

i=1

Y E[Position of ¢;]P,

i=1
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Now
Position of ¢, = 1 + Y, I,
j#i
where
- {1, if e; precedes ¢;
4 0, otherwise
and so,
E[Position of ¢;] = 1 + ¥, E[I}]
j=i
=1+ Y Pfe; precedes e} (3.13)
i

To compute Pfe; precedes e;}, note that e; will precede e; if the most recent
request for either of them was for e;. But given that a request is for either
e; or ¢;, the probability that it is for e; is

P.
Ple;|e; or e;} = J
{_1| i J} P, + Pj
and, thus,
Pfle; precedes ;] = —21—
le;p V=53

Hence from Equations (3.12) and (3.13) we see that

n
P.
E[Position of element requested] = 1 + Y P Y —
i-=1 j=ibPit+ P

This list model will be further analyzed in Section 4.7, where we will assume
a different reordering rule—namely, that the element requested is moved
one closer to the front of the list as opposed to being moved to the front
of the list as assumed here. We will show there that the average position of
the requested element is less under the one-closer rule than it is under the
front-of-the-line rule.

3.6.2. A Random Graph

A graph consists of a set V' of elements called nodes and a set A of pairs of
elements of V called arcs. A graph can be represented graphically by
drawing circles for nodes and drawing lines between nodes i and j whenever
(i,j) is an arc. For instance if V = {1, 2, 3,4}and A = {(1, 2), (1, 4), (2, 3),
(1,2), (3,3)}, then we can represent this graph as shown in Figure 3.1.
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Figure 3.1. A graph.

Note that the arcs have no direction (a graph in which the arcs are ordered
pairs of nodes is called a directed graph); and that in the above there are
multiple arcs connecting nodes 1 and 2, and a self arc (called a self loop)
from node 3 to itself.

We say that there exists a path from node i to node j, i # j, if there exists
a sequence of nodes i, i,, ..., iy, j such that (i, i,), (iy, i), ..., (iy,J) are

all arcs. If there is a path between each of the ’21 distinct pair of nodes

we say that the graph is connected. The graph in Figure 3.1 is connected
but the graph in Figure 3.2 is not. Consider now the following graph
where V = {1,2,...,n} and A = {(i, X(i)),i = 1, ..., n} where the X(i) are
independent random variables such that

. . 1 .
PiXxX@i) =j} = L J= 1,2,...,n

In other words from each node i we select at random one of the n nodes
(including possibly the node i itself) and then join node i and the selected
node with an arc. Such a graph is commonly referred to as a random graph.

We are interested in determining the probability that the random graph
so obtained is connected. As a prelude, starting at some node—say node 1—
let us follow the sequence of nodes, 1, X(1), X2(1), ..., where X"(1) =
X(X"1(1)); and define N to equal the first k such that X*(1) is not a

©

O

Figure 3.2. A disconnected graph.
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o @ Y20 O m

Figure 3.3.

new node. In other words,
N = Ist k such that X*(1) € [1, X(1), ..., X*~'(1)]

We can represent this as shown in Figure 3.3 where the arc from XV~!(1)
goes back to a node previously visited.

To obtain the probability that the graph is connected we first condition
on N to obtain

n
P{Graph is connected] = Y. P{Connected|N = k}P{N = k} (3.14)
k=1

Now given that N = k, the k nodes 1, X(1), ..., X*7'(1) are connected to
each other, and there are no other arcs emanating out of these nodes.
In other words, if we regard these k nodes as being one supernode, the
situation is the same as if we had one supernode and » — k ordinary nodes
with arcs emanating from the ordinary nodes—each arc going into the
supernode with probability £/n. The solution in this situation is obtained
from Lemma 3.1 by taking r = n — k.

Lemma 3.1 Given a random graph consisting of nodes 0, 1, ..., rand r
arcs—namely (i, Y;), i = 1, ..., r, where

1
] ith probability ——, i=1,...,r
y J with p “yr+ k J
i=

0 with probability
r+

then

P{Graph is connected} = Tk

(In other words, for the preceding graph there are r + 1 nodes—r
ordinary nodes and one supernode. Out of each ordinary node an arc is
chosen. The arc goes to the supernode with probability k/(r + k) and to
each of the ordinary ones with probability 1/(r + k). There is no arc
emanating out of the supernode.)

Proof The proof is by induction on r. As it is true when r = 1 for any k,
assume it true for all values less than r. Now in the case under considera-
tion, let us first condition on the number of arcs (j, ¥;) for which ¥; = 0.
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This yields

P{Connected}

r r k i r r—i
= j Y. = .
igo P{Connected |/ of the ¥; O}<i><r " k> <r " k) (3.15)

Now given that exactly i of the arcs are into the supernode, the situation
for the remaining r — i arcs which do not go into the supernode is the
same as if we had r — i/ ordinary nodes and one supernode with an arc going
out of each of the ordinary nodes—into the supernode with probability
i/r and into each ordinary node with probability 1/r. But by the induction
hypothesis the probability that this would lead to a connected graph
is i/r.
Hence,

P{Connected|i of the Y; = 0} = I;

and from Equation (3.15)

riflr k i r -
P{Connected} = Eo - <,> <r + k> (r + k>
= lE [Binomial(r, ul >]
’ r+k

k
Tr+k

which completes the proof of the lemma. @

[0}

Figure 3.4. The situation given i of the r arcs are into the supernode.
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Hence as the situation given N = k is exactly as described by LLemma 3.1
when r = n — k, we see that, for the original graph,

P{Graph is connected |N = k} = —

and, from Equation (3.14),

E(N
P{Graph is connected} = % (3.16)

To compute E(N) we use the identity
EN) = i P{N = i}
i=1
which can be proved by defining indicator variables /;, i = 1, by
7 - {1, ifisN

0, ifi>N
Hence,
N=Y I
i=1
and so
EN) = E[ y I,]
i=1
= Z E[1]
i=1
= Y PN=i} 3.17

Now the event {N = i} occurs if the nodes 1, X(1), ..., X*"!(1) are all
distinct. Hence,
n-1DHDn-2) m-i+1

n n n

(n — 1)

T (n - itnt

P{N = i} =

and so, from Equations (3.16) and (3.17),

: I R
P{Graph is connected} = (n — 1)! iE1 (n “
(n - 1! "Z e (byj=n-1i) (3.18)

n"
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We can also use Equation (3.18) to obtain a simple approximate expres-
sion for the probability that the graph is connected when # is large. To do
so, we first note that if X is a Poisson random variable with mean », then

n—1

PiX<n=e"Y —
Jj=0 J!
Since a Poisson random variable with mean » can be regarded as being the
sum of n independent Poisson random variables each with mean 1, it
follows by the Central Limit Theorem that for » large such a random
variable has approximately a normal distribution and as such has
probability 1 of being less than its mean. That is, for n large

n’

PiX<n}=3
and so for n large,
nolpi o on
STl 2
Hence from Equation (3.18), for n large,
P{Graph is connected} = %

By employing an approximation due to Stirling which states that for »n large

n! = nn+l/2e—n / P

we see that, for n large,

—_ 1 n
P{Graph is connected} = f 3 (nn_ 1)e<n P >
_ 1 n 1 n
lim<n > = lim<1 — —> =e!
n—oo n n—-o n

We see that, for n large,

and as

n

P{Graph is connected} = z(n—_—l—)

Now a graph is said to consist of r connected components if its nodes can
be partitioned into r subsets so that each of the subsets are connected and
there are no arcs between nodes in different subsets. For instance, the graph
in Figure 3.5 consists of three connected components—namely {1, 2, 3},
{4, 5}, and {6}. Let C denote the number of connected components of our
random graph and let

P,(i) = PIC = i}
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© @ ®

G 5

Figure 3.5. A graph having three connected components.

where we use the notation P,(/) to make explicit the dependence on n, the
number of nodes. Since a connected graph is by definition a graph
consisting of exactly one component, from Equation (3.18) we have

P,(1) = P{C = 1}

(- rrtael

n

p 7 (3.19)
j=0J:

To obtain P,(2), the probability of exactly two components, let us first fix
attention on some particular node—say node 1. In order that a given set of
k — 1 other nodes—say nodes 2, ..., k—will along with node 1 constitute
one connected component and the remaining n — k a second connected
component, we must have

(i) X() efl,2,...,k},foralli=1,..., k;

) X(hetk+1,...,n},foralli=k +1,...,n;
(iii) The nodes 1, 2, ..., k form a connected subgraph;
(iv) The nodes k + 1, ..., n form a connected subgraph.

The probability of the preceding occurring is clearly

k k n—k n—k
(;) < . > P (DP,_ (1)

n
k-1
the nodes 2 through n, we have that

"Uin— I\ n— k\"k
P,Q2) = kgl <k_ 1)(;)( . > P ()P, _ (1)

and so P,(2) can be computed from Equation (3.19). In general, the
recursive formula for P,(i) is given by

) n—i+1 n—1 kkn_kn—k ]
P,() = kgl (k B 1)(;) < " > P (DP, (i — 1)

and as there are < ) ways of choosing a set of k¥ — 1 nodes from
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Figure 3.6. A cycle.

To compute E[C], the expected number of connected components, first
note that every connected component of our random graph must contain
exactly one cycle (a cycle is a set of arcs of the form (i, i), (¢4, %), ...,
(r_1y ix)s (g, i) for distinct nodes i, iy, ..., i;). For example, Figure 3.6
depicts a cycle.

The fact that every connected component of our random graph must
contain exactly one cycle is most easily proved by noting that if the
connected component consists of » nodes, then it must also have r arcs and,
hence, must contain exactly one cycle (why?). Thus, we see that

E[C] = E[Number of cycles}]
= E{ Y I(S)]
s
= ZS: E[I(S)]

where the sum is over all subsets S C {1, 2, ..., n} and

1, if the nodes in S are all the nodes of a cycle
0, otherwise

I(S) = {

Now, if S consists of k nodes, say 1, ..., k, then

E[I(S)] = P{1, X(1), ..., X*7'(1) are all distinct and
contained in 1, ..., k and X*(1) = 1}

k-1k-2 11 (k-1

n n nn nk

n .
Hence, as there are < k> subsets of size k we see that

" -1
E[C] = Z <n>(k—k)

K=1\k n
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3.6.3. Uniform Priors, Polya’s Urn Model, and
Bose-Einstein Statistics

Suppose that n independent trials, each of which is a success with
probability p are performed. If we let X denote the total number of
successes, then X is a binomial random variable such that

n

k)i’k(l -p)"* k=0,1,...,n

P{X = k|p} = <
However, let us now suppose that whereas the trials all have the same
success probability p, its value is not predetermined but is chosen according
to a uniform distribution on (0, 1). (For instance, a coin may be chosen at
random from a huge bin of coins representing a uniform spread over all
possible values of p, the coin’s probability of coming up heads. The chosen
coin is then flipped 7 times.) In this case, by conditioning on the actual

value of p, we have that
1

P{X =k} = S P{X = k|p}f(p)dp
0

_ : n k n—-k
= L <k>p (1-p""dp

Now, it can be shown that

! kl(n — k)!
k _ n—-k —
Sop (1-p) " dp NTFENE (3.20)
and thus
e [(n\ kU = k)
P{X‘k"<k> (n+ !
= L k=01 n (3.21)
=7 =0,1,..., .

In other words, each of the n + 1 possible values of X is equally likely.

As an alternate way of describing the above experiment, let us compute
the conditional probability that the (r + 1)st trial will result in a success
given a total of & successes (and r — k failures) in the first r trials.

P{(r + Dst trial is a success | k successes in first

_ P{(r + )st is a success, k successes in first r trials}
Pik successes in first r trials}
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_ fo Pi(r + D)st is a success, k in first r|p} dp

1/(r + 1)
1
=(r+ I)S <;>Pk“(1 —-pY*dp
0
_ r\ k+ Di(r -k .
=(r+ 1)< k> BT by Equation (3.20)
k+1
= , :_- 2 (3.22)

That is, if the first r trials result in k successes, then the next trial will be a
success with probability (kK + 1)/(r + 2).

It follows from Equation (3.22) that an alternative description of the
stochastic process of the successive outcomes of the trials can be described
as follows: There is an urn which initially contains 1 white and 1 black ball.
At each stage a ball is randomly drawn and is then replaced along with
another ball of the same color. Thus, for instance, if of the first r balls
drawn k were white, then the urn at the time of the (» + 1)th draw would
consist of k + 1 white and r — k + 1 black, and thus the next ball would
be white with probability (k + 1)/(r + 2). If we identify the drawing of a
white ball with a successful trial, then we see that this yields an alternate
description of the original model. This latter urn model is called Polya’s
Urn Model.

Remarks (i) In the special case when k& = r formula Equation (3.22)
is sometimes called Laplace’s rule of succession, after the French mathe-
matician Pierre de Laplace. In Laplace’s era, this ‘‘rule’’ provoked much
controversy, for people attempted to employ it in diverse situations where
its validity was questionable. For instance, it was used to justify such
propositions as ‘‘If you have dined twice at a restaurant and both meals
were good, then the next meal also will be good with probability 5,”’ and
““Since the sun has risen the past 1,826,213 days, so will it rise tomorrow
with probability 1,826,214/1,826,215.”” The trouble with such claims
resides in the fact that it is not at all clear the situation they are describing
can be modeled as consisting of independent trials having a common
probability of success which is itself uniformly chosen.

(ii) In the original description of the experiment, we referred to the
successive trials as being independent, and in fact they are independent
when the success probability is known. However, when p is regarded as a
random variable, the successive outcomes are no longer independent since
knowing whether an outcome is a success or not gives us some information
about p, which in turn yields information about the other outcomes.
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The preceding can be generalized to situations in which each trial has
more than two possible outcomes. Suppose that 7 independent trials, each
resulting in one of m possible outcomes 1,...,m with respective
probabilities p,, ..., p,, are performed. If we let X; denote the number of
type i outcomes that result in the »n trials, i = 1, ..., m, then the vector
X, ..., X, will have the multinomial distribution given by

n!
PiXx, = xl,XZ = X, ""Xm = xmlp} = ﬁpflpgz ;‘;lm
Xyt x,!
where x|, ..., X,, is any vector of nonnegative integers which sum to n. Now
let us suppose that the vector p = (p,, ..., p,,) is not specified, but instead
is chosen by a ‘‘uniform’ distribution. Such a distribution would be of
the form

m

c, Osp;=li=1,....m, ), p;=1
f(p19"-apm)= ; !

0, otherwise

The preceding multivariate distribution is a special case of what is known as
the Dirichlet distribution, and it is not difficult to show, using the fact that
the distribution must integrate to 1, that ¢ = (m — 1)!.

The unconditional distribution of the vector X is given by

P{Xl =x1,...,Xm = Xm}
= S S ---SP{X1 =Xyy s Xn = Xn| D1y oeos P}

Xf(pl’ ""pm)dpl dpm

(m — Din!
=W ces p{l...p;"nmdpl.“dpm
' " O0=p;=<1
Tpi=1

Now it can be shown that

N pindp, e dp,, = L ! (3.23)
pPi bw" 4Dy D = 7% +m— 1 .
0<p;=<1
tTpi=1
and thus, using the fact that Y1 x; = n, we see that
nl(im - 1)!
P[Xl = X, ...,X,,, = Xm} = m

-1
=<n+m—1) (3.24)

m-—1



3.6. Some Applications 119

n+m-—

1 +m-1
Hence, all of the < > possible outcomes (there are <n m’ﬁ : >

possible nonnegative integer valued solutions of x; + --- + x,, = n) of the
vector (X, ..., X,,) are equally likely. The probability distribution given
by Equation (3.24) is sometimes called the Bose-Einstein distribution.

To obtain an alternative description of the foregoing, let us compute the
conditional probability that the (n + 1)st outcome is of type j if the first n
trials have resulted in x; type i outcomes, i = 1,...,m, Y7 x; = n. This is
given by

Pi(n + 1)stis j|x; type i in first n, i = 1, ..., m}

_ P{(n + )stis j, x; type i in first n, i = 1, ..., m}
B Pix; type i in first n, i =1, ..., m}

nl(m— N! )
W S § gp';l ...p;J'H p;"nmdpl dpm
deeexy,!

where the numerator is obtained by conditioning on the p vector and the
denominator is obtained by using Equation (3.24). By Equation (3.23), we
have that

Pi(n + Dstis j|x; type i in first n, i = 1, ..., m}
(x; + Dnl(m — 1)!
(n + m)!
(m — Din!
n+m-1Nn!

_XJ+1

= (3.25)

Using Equation (3.25), we can now present an urn model description of
the stochastic process of successive outcomes. Namely, consider an urn
which initially contains one of each of m types of balls. Balls are then
randomly drawn and are replaced along with another of the same type.
Hence, if in the first n drawings there have been a total of x; type j balls
drawn, then the urn immediately before the (n + 1)st draw will contain
x; + 1 type j balls out of a total of m + n, and so the probability of a type
Jj on the (n + 1)st draw will be given by Equation (3.25).
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Remarks Consider a situation where n particles are to be distributed at
random among m possible regions; and suppose that each of the regions
appear, at least before the experiment, to have the same physical character-
istics. It would thus seem that the most likely distribution for the numbers
of particles that fall into each of the regions is the multinomial distribution
with p; = 1/m. (This, of course, would correspond to each particle,
independent of the others, being equally likely to fall in any of the m
regions.) Physicists studying how particles distribute themselves observed
the behavior of such particles as photons and atoms containing an even
number of elementary particles. However, when they studied the resulting
data, they were amazed to discover that the observed frequencies did not
follow the multinomial distribution but rather seemed to follow the
Bose-Einstein distribution. They were amazed because they could not
imagine a physical model for the distribution of particles which would result
in all possible outcomes being equally likely. (For instance, if 10 particles
are to distribute themselves between 2 regions, it hardly seems reasonable
that it is just as likely that both regions will contain 5 particles as it is that
all 10 will fall in region 1 or that all 10 will fall in region 2.)

However, from the results of this section we now have a better under-
standing of the cause of the physicists’ dilemma. In fact, two possible
hypotheses present themselves. First, it may be that the data gathered by the
physicists were actually obtained under a variety of different situations,
each having its own characteristic p vector which gave rise to a uniform
spread over all possible p vectors. A second possibility (suggested by the urn
model interpretation) is that the particles select their regions sequentially
and a given particle’s probability of falling in a region is roughly propor-
tional to the fraction of the landed particles that are in that region. (In other
words, the particles presently in a region provide an ‘‘attractive’’ force on
elements which have not yet landed.)

3.6.4. In Normal Sampling X and S2 are Independent

Let X, , ..., X, be independent normal random variables each having mean
u and variance ¢?. Their joint density is

1 n
Sxpox, X s X)) = WCXP{— Y (xi - /1)2/202} (3.26)

i=1

Let

>
il

>
s

(3.27)

9
~
|

[N N ] ?M:
5
|
>

—
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One of the most important results in normal sampling theory is that X, the
sample mean, and S2/(n — 1), the sample variance, are independent
random variables with $?/¢* having a chi-square distribution with n — 1
degrees of freedom.

Before proving the above, note the following algebraic identity: If for
number x,, ..., x, we define

n n
x= Y x/n, s*=Y (x;,— %)
=1 i=1

then
.é:] ;- ) = él O — X+ X -
= ﬁ)l (; — %) + n(x — p)’
or, since x;, = nX — x, — +++ — X,,
(% =X = = = Xy — )’ + )':': O — ) ="+ nx—p'  (3.28)

i=2

Proposition 3.2 If X,,...,X, are independent normal random
variables each having mean u and variance g2, then X and S2, as given by
(3.27), are independent random variables with X being normal with mean
u and variance ¢2/n and $?/¢” having a chi-square distribution with n — 1
degrees of freedom.

Proof The joint density function of X, ..., X, is given by (3.26). Make
the change of variables

X = ,
n

XZ—XZa

X, = X,

As the preceding transformation has Jacobian 1/7 and as

X,=nX-X,— - - X,

*
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it follows that

=”fx1 ..... X,,(n'f_XZ_ "'_X,,,XZ,...,X,,)

exp{—%[(nf — Xy = = Xy =)+ i O = u)ZB

T QRr)"e" 20 ima

1
= (zn)n/zo_n €Xp {‘2_0_2 [S2 + n(x — [1)2]} from (3.28)

where

2= Y -%?%  x =nk-—x,— - X, (3.29)
i=1

As X is normally distributed with mean y and variance g%/n, we thus obtain
that the conditional joint density function of X, ..., X, given X is as
follows:

sz,...,X,,l/\_’(XZ’ ""xnlf) = f/\_’,Xz,...,X,,(X_" X3, '-"xn)/f,\’(f)

- (\/ﬁ% exp{—s2/26%) (3.30)

As the preceding is a joint density function, it must integrate to 1. That is,
for all o and ¥

o o S n—1
S g S o527 dx, -+~ dx, = (\[Z—"Ta) (3.31)
~00 ) ~00 —0 n

where s? is given by (3.29). From (3.30) we obtain that the conditional
moment generating function of $2/¢? given that X = ¥ is

E[eISZ/(’le — x-]

=(—\/2_;/_%gs---ge‘sz/zazdxz-.-dx" with &2 =

_ <\/2—7ra >"_'L
C WV2re)y"\VT =2/ n

=1 -2V 1<} (3.32)

2

1 - 2¢

from (3.31)
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As the conditional moment generating function of S given that X = ¥ does
not depend on X, we can thus conclude that X and $? are independent. To
show that S2/¢? has a chi-square distribution, let Z denote a unit normal
random variable. Then

E[etZZ] — \/% j‘ elxze—xz/z dx

1 _
=5 S e F2 dx  where % = (1 — 2¢)!

— (l _ 2t)—l/2

Hence, as a chi-square random variable with k degrees of freedom is
defined as the sum of the squares of k independent unit normals, it follows
that such a random variable would have a moment generating function
equal to (1 — 2¢)~*/2. Hence, from Equation (3.32), and the uniqueness of
moment generating functions, we can conclude that S? has a chi-square
distribution with n — 1 degrees of freedom.* ¢

If Z is a unit normal random variable and y?, independent of Z, is a
chi-square random variable with n degrees of freedom, then the random
variable

zZ

Vx?/n
is said to have a ¢ distribution with n degrees of freedom. The distribution

function of T, has been tabulated and for each « € (0, 1) the number ¢, ,
such that

T,

P{T;l Z tn,cx} = o
has been determined.
As an immediate corollary of Proposition 3.2 we have

Corollary 3.3 Suppose Xi,..., X, are independent normal random
variables each having mean y and variance ¢* and let X and S? denote,
respectively, the sample mean and sample variance—that is,

Liz1Xi

- _ T - XY
n

n—1

X = , S2

v

* This proof is taken from Shuster, ‘A Simple Method of Teaching the Independence of X
and S%,”’ The American Statistician, Feb. 1973.
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Then

o/vn \&* S,

has a ¢ distribution with n — 1 degrees of freedom.

ST R LS

The preceding corollary is very important in statistical applications. For
instance, suppose X, ..., X, are independent normal variables having
unknown mean u and known variance o2, and suppose we want to use the
observed values of the X; to estimate u. Since vn[(X — u)/a] will have a
unit normal distribution, it follows that

P{—1.96 < \/H(X; A 1.96} ~ 0.95
or, equivalently,
_ g — ]
PIX-196—=<u<X+196—; =0.95
{ vn = H ﬁ}

That is, 95 percent of the time y will lie within 1.966/vn unitg of the sample
average. If we now observe the sample and it turns out that X = x, then we
say that ‘‘with 95 percent confidence’’

o ]

¥ —1.96—=<u<x+ 1.96—

X 7 n<x 7
That is, ‘‘with 95 percent confidence’’ we assert that the true mean lies
within 1.960/vn of the observed sample mean. The interval

(¥ — 1.966/Vn, x + 1.96a/Vn)

is called a 95 percent confidence interval for u.

Let us now suppose that the population variance ¢ is not known. By
letting S2 = ¥7_,(X; — X)*/(n — 1) denote the sample variance, then from
Corollary 3.3 vn (X — u)/S, has a ¢ distribution with n — 1 degrees of
freedom.

Hence, for any « € (0, 3)

X -
S

P{tn—l,l—a/z <+vn =< t,,_l,a/zz =1-«

v

or, using that #,_; y_q/2 = —ta_1,an2

- S, _ s,
P{X— tn—l,a/2ﬁ</‘ <X+ tn—l,u/Zﬁ} =1 -«
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Thus, if it is observed that X = ¥ and S, = s,, then we can say that “‘with
100(1 — «) percent confidence”

- Sy - Sy
HE|X — tn—l,a/Z\/_ﬁ’ X + tn—l,a/Z\/_ﬁ

Remark Theinterpretation of ‘‘a 100(1 — «) percent confidence interval’’
can be confusing. It should be noted that we are nof asserting (in the case
of ¢® known) that the probability that u € [¥ — 1.96a/vn, ¥ + 1.96a/Vn ]
is 0.95, for there are no random variables involved in this assertion and thus
nothing is random. What we are asserting is that the technique utilized to
obtain this interval is such that 95 percent of the time it is employed it will
result in an interval in which u lies. In other words, before the data are
observed, we can assert with probability 0.95 that the interval which will be
obtained will contain u; whereas after the data are obtained, we can only
assert that the resultant interval indeed contains ¢ ‘‘with confidence 0.95.”°

Exercises
1. If X and Y are both discrete, show that ¥, pxy(x|y) =1 for all y
such that py(y) > 0.

*2. Let X, and X, be independent geometric random variables having the
same parameter p. Guess the value of

PX,=ilX,+ X, =n)}

Hint: Suppose a coin having probability p of coming up heads is
continually flipped. If the second head occurs on flip number n, what is
the conditional probability that the first head was on flip number i,
i=1,...,n-17

Verify your guess analytically.

3. The joint probability mass function of X and Y, p(x, »), is given by
r,) =3, p2, D=4 p3, =%
p(1,2) =35, p2,2)=0, pG3,2) =15
p(1,3)=0, p2,3)=¢, pG33H=3%

Compute E[X|Y =i] fori=1,2,3.

4. In Exercise 3, are the random variables X and Y independent?
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5. An urn contains three white, six red, and five black balls. Six of these
balls are randomly selected from the urn. Let X and Y denote respectively
the number of white and black balls selected. Compute the conditional
probability mass function of X given that Y = 3. Also compute
E[X|Y = 1].

*6. Repeat Exercise 5 but under the assumption that when a ball is
selected its color is noted, and it is then replaced in the urn before the next
selection is made.

7. Suppose p(x, y, 7) the joint probability mass function of the random
variables X, Y, and Z, is given by

p(1,1,1) =4, r2,1,1) =%,
p(1,1,2) = ¢, r2,1,2) = 7,
p(1,2,1) =15, p2,2,1) =0,
r(1,2,2) =0, p2,2,2) =3
What is E[X]Y = 2]? Whatis E[X|Y =2,Z = 1]?

8. Anunbiased die is successively rolled. Let X and Y denote respectively
the number of rolls necessary to obtain a six and a five. Find (a) E[X],
BE[X|Y =1], (c) E[X|Y = 5].

9. Show in the discrete case that if X and Y are independent, then
E[X|Y =] = E[X] for all y

10. Suppose X and Y are independent continuous random variables.
Show that

E[X|Y = y] = E[X] for all y
11. The joint density of X and Y is

2 2
(y —x)e_,

3 R O0<y<ow, —-y=sx=<y

S, ) =

Show that E[X|Y = y] = 0.
12. The joint density of X and Y is given by

e e
Jx,») = 5 0<x<oo, 0<y<o

Show E[X|Y = y] = y.
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*13. Let X be exponential with mean 1/4; that is,
() =2, 0O0<x<ow

Find E[X|X > 1].

14. Let X be uniform over (0, 1). Find E[X | X < 1].

15. The joint density of X and Y is given by

-y
f(x,y)=87, 0<x<y, 0<y<ow

Compute E[X?|Y = y].

16. The random variables X and Y are said to have a bivariate normal
distribution if their joint density function is given by

1 1
2ng,0,N1 — p? { 200 ~ p?

y [ <x - ux>2 20— )y - ) <y - mﬂ}
g, 0,0y gy

for —o < x < w0, —0 < y < oo, where g,, a,, U,, i,, and p are constants
such that -1 <p<1,0,>0,0,>0, —0 <y, <o, ~0© < U, <o,

S, ) =

(a) Show that X is normally distributed with mean u, and variance a2,
and Y is normally distributed with mean u, and variance of

(b) Show that the conditional density of X given that Y = y is normal
with mean u, + (pa,/6,)(y — u,) and variance a2(1 — p?).

The quantity p is called the correlation between X and Y. It can be
shown that

_ EIX - n)(¥ — )]
p 0,0,

_ Cov(X, Y)

B 0,0,

*17. Prove that if X and Y are jointly continuous, then

o©

E[X]} = j E[X|Y = ylfy(y) dy
18. Consider Example 3.10 which refers to a miner trapped in a mine. Let
N denote the total number of doors selected before the miner reaches
safety. Also, let 7; denote the travel time corresponding to the ith choice,
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i = 1. Again let X denote the time when the miner reaches safety.

(a) Give an identity that relates X to N and the 7;.
(b) What is E[N]?
(c) What is E[T\]?
(d) What is E[Y™., T;|N = n]?
(¢) Using the preceding, what is E[X]?
19. Suppose that independent trials, each of which is equally likely to

have any of m possible outcomes, are performed until the same outcome
occurs k consecutive times. If N denotes the number of trials, show that

mk — 1
EINY =

Some people believe that the successive digits in the expansion of
= 3.14159 ... are ‘‘uniformly’’ distributed. That is, they believe that
these digits have all the appearance of being independent choices from a
distribution that is equally likely to be any of the digits from 0 through 9.
Possible evidence against this hypothesis is the fact that starting with the
24,658,601st digit there is a run of nine successive 7’s. Is this information
consistent with the hypothesis of a uniform distribution?

To answer this, we note from the preceding that if the uniform hypothesis
were correct, then the expected number of digits until a run of nine of the
same value occurs is

(10° — 1)/9 = 111,111,111

Thus, the actual value of approximately 25 million is roughly 22 percent of
the theoretical mean. However, it can be shown that under the uniformity
assumption the standard deviation of N will be approximately equal to the
mean. As a result, the observed value is approximately 0.78 standard
deviations less than its theoretical mean and is thus quite consistent with the
uniformity assumption.

*20. A coin having probability p of coming up heads is successively
flipped until 2 of the most recent 3 flips are heads. Let N denote the number
of flips. (Note that if the first 2 flips are heads, then N = 2.) Find E[N].

21. A prisoner is trapped in a cell containing three doors. The first door
leads to a tunnel which returns him to his cell after two-day’s travel. The
second leads to a tunnel which returns him to his cell after three day’s
travel. The third door leads immediately to freedom.

(a) Assuming that the prisoner will always select doors, 1, 2, and 3 with
probabilities 0.5, 0.3, 0.2, what is the expected number of days until he
reaches freedom?
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(b) Assuming that the prisoner is always equally likely to choose among
those doors that he has not used, what is the expected number of days
until he reaches freedom? (In this version, for instance, if the prisoner
initially tries door 1, then when he returns to the cell, he will now select
only from doors 2 and 3.)

(c) For parts (a) and (b) find the variance of the number of days until our
prisoner reaches freedom.

22. A rat is trapped in a maze. Initially he has to choose one of two
directions. If he goes to the right, then he will wander around in the maze
for three minutes and will then return to his initial position. If he goes to the
left, then with probability 3 he will depart the maze after two minutes of
traveling, and with probability 4 he will return to his initial position after
five minutes of traveling. Assuming that the rat is at all times equally likely
to go to the left or the right, what is the expected number of minutes that
he will be trapped in the maze?

23. Find the variance of the amount of time the rat spends in the maze in
Exercise 22.

24. The number of claims received at an insurance company during a
week is a random variable with mean u, and variance 2. The amount paid
in each claim is a random variable with mean u, and variance o3. Find the
mean and variance of the amount of money paid by the insurance company
each week. What independence assumptions are you making? Are these
assumptions reasonable?

25. The number of customers entering a store on a given day is Poisson
distributed with mean A = 10. The amount of money spent by a customer
is uniformly distributed over (0, 100). Find the mean and variance of the
amount of money that the store takes in on a given day.

26. The conditional variance of X, given the random variable Y, is
defined by
Var(X|Y) = E[[X — E(X|Y))*|Y]
Show that
Var(X) = E[Var(X|Y)] + Var(E[X]|Y])
*27. Use Exercise 26 to give another proof of the fact that

N
Var< y X,-> = E[N] Var(X) + (E[X])* Var(V)
i=1
28. An individual traveling on the real line is trying to reach the origin.
However, the larger the desired step, the greater is the variance in the result of
that step. Specifically, whenever the person is at location x, he next moves to
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a location having mean 0 and variance fx2. Let X,, denote the position of
the individual after having taken » steps. Supposing that X, = xg, find

(@) E[X,)
(b) Var(X,)

29. (a) Show that
Cov(X,Y) = Cov(X, E[Y|X])

(b) Suppose, that, for constants @ and b,

ElY|X]=a+ bX
Show that
b = Cov(X, Y)/Var(X)

*30. If E[Y|X] = 1, show that
Var(XY) = Var(X)

31. Give another proof of Exercise 27 by computing the moment
generating function of Y™, X; and then differentiating to obtain its

moments.
Hint: Let
N
o(t) = E[exp<t Y Xi>j|
i=1
N
-] ] es(: £ ) ]
i=1
Now,

el )] -l )] -

since N is independent of the X’s where ¢, (f) = E[e’] is the moment
generating function for the X’s. Therefore,

o(t) = El(ox (O]

Differentiation yields

¢'(t) = EIN@x ()" '¢x(1)],

¢"(t) = EININ — D)(@x ()" 205 ()" + Nox ()" '3 (1]
Evaluate at ¢ = 0 to get the desired result.

32. The number of fish that Elise catches in a day is a Poisson random
variable with mean 30. However, on the average, Elise tosses back two
out of every three fish she catches. What is the probability that, on a given
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day, Elise takes home n fish. What is the mean and variance of (a) the
number of fish she catches, (b) the number of fish she takes home?
(What independence assumptions have you made?)

33. There are three coins in a barrel. These coins, when flipped, will come
up heads with respective probabilities 0.3, 0.5, 0.7. A coin is randomly
selected from among these three and is then flipped ten times. Let N be the
number of heads obtained on the ten flips. Find

(a) P{N = 0}.

) PIN=n},n=0,1,...,10.

(¢) Does N have a binomial distribution?

(d) If you win $1 each time a head appears and you lose $1 each time a
tail appears, is this a fair game? Explain.

34. Do Exercise 33 under the assumption that each time a coin is flipped,
it is then put back in the barrel and another coin is randomly selected. Does
N have a binomial distribution now?

35. Explain the relationship between the general formula
PE) = ¥ PE|Y = y)P(Y = y)
y
and Bayes’ formula.

*36. Suppose X is a Poisson random variable with mean A. The param-
eter A is itself a random variable whose distribution is exponential with
mean 1. Show that P{X = n} = (3)"*".

37. A coin is randomly selected from a group of ten coins, the nth coin
having a probability #/10 of coming up heads. The coin is then repeatedly
flipped until a head appears. Let N denote the number of flips necessary.
What is the probability distribution of N? Is N a geometric random
variable? When would N be a geometric random variable; that is, what
would have to be done differently?

38. A collection of n coins are flipped. The outcomes are independent,
and the ith coin comes up heads with probability «;, i = 1, ..., n. Suppose
that for some value of j, 1 <j =< n, a; = 1. Find the probability that the
total number of heads to appear on the n coins is an even number.

39. Let A and B be mutually exclusive events of an experiment. If
independent replications of the experiment are continually performed, what
is the probability that A occurs before B?
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*40. Two players alternate flipping a coin that comes up heads with
probability p. The first one to obtain a head is declared the winner. We are
interested in the probability that the first player to flip is the winner. Before
determining this probability, which we will call f(p), answer the following
questions.

(a) Do you think that f(p) is a monotone function of p? If so, is it
increasing or decreasing?

(b) What do you think is the value of lim, ., f(p)?

(c) What do you think is the value of lim,_, f(p)?

(d) Find f(p).

*41. Suppose that we continually roll a die until the sum of all throws
exceeds 100. What is the most likely value of this total when you stop?

42. There are 5 components. The components act independently, with
component | working with probability p;, i=1,2,3,4,5. These
components form a system as shown in Figure 3.7.

Figure 3.7.

The system is said to work if a signal originating at the left end of the
diagram can reach the right end, where it can only pass through a com-
ponent if that component is working. (For instance, if components 1 and 4
both work, then the system also works.) What is the probability that the
system works?

43. This problem will present another proof of the Ballot Problem of
Example 3.21.

(a) Argue that
P, m =1 — P{A and B are tied at some point]

(b) Explain why
P{A receives first vote and they are eventually tied}

= P{B receives first vote and they are eventually tied}



Exercises 133

Hint: Any outcome in which they are eventually tied with A receiving
the first vote corresponds to an outcome in which they are eventually tied
with B receiving the first vote. Explain this correspondence.

(c) Argue that Pfeventually tied} = 2m/(n + m), and conclude that
P, =(n—m)y(n+ m).

44, Consider a gambler who on each bet either wins 1 with probability
18/38 or loses 1 with probability 20/38. (These are the probabilities if the
bet is that a roulette wheel will land on a specified color.) The gambler will
quit either when he is winning a total of 5 or after 100 plays. What is the
probability he or she plays exactly 15 times?

45. Show that

(@) E[XY|Y = y] = yE[X|Y = y]
(b) E[g(X, Y)|Y = y] = E[g(X, »)|Y = y]
(¢) E[XY] = E[YE[X|Y]]

46. In the ballot problem (Example 3.21), compute P{A is never behind].

47. An urn contains n white and m black balls which are removed one at
atime. If n > m, show that the probability that there are always more white
than black balls in the urn (until, of course, the urn is empty) equals
(n — m)/(n + m). Explain why this probability is equal to the probability
that the set of withdrawn balls always contains more white than black balls.
(This latter probability is (n — m)/(n + m) by the ballot problem.)

*48. Let U;, i = 1, denote independent uniform (0, 1) random variables.
For 0 < a < 1, define N by

N =min{n: U, + --- + U, > a}

(a) Show by induction that

PIN>n ==
n!
(b) Prove that E[N] = €%, and conclude that the expected number of
random numbers needed until their sum exceeds 1 is equal to e.

49. Let X;,i = 1, be independent uniform (0, 1) random variables, and
define N by

N = minfn: X, < X,_,}
where X, = x. Let f(x) = E[N].
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(a) Derive an integral equation for f(x) by conditioning on X .
(b) Differentiate both sides of the equation derived in (a).

(c) Solve the resulting equation obtained in (b).

(d) For a second approach to determining f(x) argue that

3 (l _ x)k—l
PIN = k} = W
(¢) Use (d) to obtain f(x).

50. In the list example of Section 3.6.1 suppose that the initial ordering
at time ¢t = 0 is determined completely at random; that is, initially all »!
permutations are equally likely. Following the front of the line rule,
compute the expected position of the element requested at time .

Hint: To compute Ple; precedes e; at time 7] condition on whether or
not either e; or e; have ever been requested prior to ¢£.

51. In the list problem, when the P, are known, show that the best
ordering (best in the sense of minimizing the expected position of the
element requested) is to place the elements in decreasing order of their
probabilities. That is, if P, > P, > --- > P,, show that 1,2, ..., n is the
best ordering.

52. Consider the random graph of Section 3.6.2 when n = 5. Compute
the probability distribution of the number of components and verify your
solution by using it to compute E[C] and then comparing your solution

with
S /5\ (k- 1)
E = D
] k; < X 3
53. (a) From the results of Section 3.6.3 we can conclude that there are
m— 1
Xy + --- + Xx,, = n. Prove this directly.

(b) How many positive integer valued solutions of x; + -+« + x,, = n
are there?

n+m-1 .. . .
nonnegative integer valued solutions of the equation

Hint: Lety, = x; — 1.

(c) For the Bose-Einstein distribution, compute the probability that
exactly k of the X; are equal to 0.
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54. In Section 3.6.3, we saw that if U is a random variable that is uniform
on (0, 1) and if, conditional on U = p, X is binomial with parameters n and
D, then

PiX =i} = i=0,1,...,n

n+1’
For another way of showing this result, let U, X;,X,,...,X, be
independent uniform (0, 1) random variables. Define X by
X=#:X;< U

That is, if the n + 1 variables are ordered from smallest to largest, then U
would be in position X + 1.

(a) What is P{X = i}?

(b) Explain how this proves the result stated in the preceding.
55. Let /,,...,I, be independent random variables, each of which is

equally likely to be either 0 or 1. A well-known nonparametric statistical test
(called the signed rank test) is concerned with determining P,(k) defined by

J

P,(k) = P{ y JI < k}
=1

Justify the following formula:
Py(k) = 3P,_1(k) + 3Pu_1(k — n)
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Chapter 4
Markov Chains

v

4.1. Introduction

In this chapter, we consider a stochastic process {X,,n =0, 1, 2, ...} that
takes on a finite or countable number of possible values. Unless otherwise
mentioned, this set of possible values of the process will be denoted by the
set of nonnegative integers {0, 1, 2, ...}. If X,, = i, then the process is said to
be in state / at time n. We suppose that whenever the process is in state /,
there is a fixed probability P; that it will next be in state j. That is, we
suppose that

P{X, ., =j|Xn =y Xp_y = dpoys s Xy =41, Xo = g} = Py (4.1)

for all states iy, i, ..., i,_1,4i,j and all n = 0. Such a stochastic process
is known as a Markov chain. Equation (4.1) may be interpreted as
stating that, for a Markov chain, the conditional distribution of any
future state X,,, given the past states X,, X;, ..., X,_, and the present
state X,, is independent of the past states and depends only on the
present state.

The value P; represents the probability that the process will, when in
state i/, next make a transition into state j. Since probabilities are non-
negative and since the process must make a transition into some state, we
have that

P; =0, i,j=0; Yy p,=1, i=0,1,....
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Let P denote the matrix of one-step transition probabilities P;;, so that

POO POI P02

PlO Pll P12
P=| :

Pio Py Py

Example 4.1 (Forecasting the Weather): Suppose that the chance of
rain tomorrow depends on previous weather conditions only through
whether or not it is raining today and not on past weather conditions.
Suppose also that if it rains today, then it will rain tomorrow with prob-
ability «; and if it does not rain today, then it will rain tomorrow with
probability 8.

If we say that the process is in state 0 when it rains and state 1 when it
does not rain, then the above is a two-state Markov chain whose transition
probabilities are given by

a |-«

B 1-8

Example 4.2 (A Communications System): Consider a communications
system which transmits the digits 0 and 1. Each digit transmitted must pass
through several stages, at each of which there is a probability p that the
digit entered will be unchanged when it leaves. Letting X,, denote the digit
entering the nth stage, then {X,,n = 0, 1, ...} is a two-state Markov chain
having a transition probability matrix

P 1-p
l-p p

P = *

Example 4.3 On any given day Gary is either cheerful (C), so-so (S), or
glum (G). If he is cheerful today, then he will be C, S, or G tomorrow with
respective probabilities 0.5, 0.4, 0.1. If he is feeling so-so today, then he will
be C, S, or G tomorrow with probabilities 0.3, 0.4, 0.3. If he is glum today,
then he will be C, S, or G tomorrow with probabilities 0.2, 0.3, 0.5.

Letting X,, denote Gary’s mood on the nth day, then {X,,n = 0} is a
three-state Markov chain (state 0 = C, state 1 = S, state 2 = G) with
transition probability matrix
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0.5 0.4 0.1
P=(03 04 03| @
0.2 03 0.5

Example 4.4 (Transforming a Process into a Markov Chain): Suppose
that whether or not it rains today depends on previous weather conditions
through the last two days. Specifically, suppose that if it has rained for the
past two days, then it will rain tomorrow with probability 0.7; if it rained
today but not yesterday, then it will rain tomorrow with probability 0.5;
if it rained yesterday but not today, then it will rain tomorrow with
probability 0.4; if it has not rained in the past two days, then it will rain
tomorrow with probability 0.2.

If we let the state at time n depend only on whether or not it is raining at
time n, then the above model is not a Markov chain (why not?). However,
we can transform the above model into a Markov chain by saying that the
state at any time is determined by the weather conditions during both that
day and the previous day. In other words, we can say that the process is in

state 0 if it rained both today and yesterday,
state 1 if it rained today but not yesterday,

state 2 if it rained yesterday but not today,

state 3 if it did not rain either yesterday or today.

The preceding would then represent a four-state Markov chain having a
transition probability matrix

07 0 03 0
05 0 05 0
0 04 0 0.6
0 02 0 08

The reader should carefully check the matrix P, and make sure he or she
understands how it was obtained. 4

Example 4.5 (A Random Walk Model): A Markov chain whose state
space is given by the integers i = 0, +1, £2, ... is said to be a random walk
if, for some number 0 < p < 1,

Pi,i+1=p=1—Pi,i_1, i=0,+1,....

The preceding Markov chain is called a random walk for we may think of
it as being a model for an individual walking on a straight line who at each
point of time either takes one step to the right with probability p or one step
to the left with probability 1 — p. @
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Example 4.6 (A Gambling Model): Consider a gambler who, at each
play of the game, either wins $§1 with probability p or loses $1 with prob-
ability 1 — p. If we suppose that our gambler quits playing either when he
goes broke or he attains a fortune of $V, then the gambler’s fortune is a
Markov chain having transition probabilities

Pi,i+l=p=1_Pi,i—1! l= 1,2,...,N—1
Py = Pyny =1

States 0 and N are called absorbing states since once entered they are
never left. Note that the above is a finite state random walk with absorbing
barriers (states 0 and N). ¢

4.2. Chapman-Kolmogorov Equations

We have already defined the one-step transition probabilities P;. We now
define the n-step transition probabilities Pj; to be the probability that a
process in state / will be in state j after n additional transitions. That is,

P =P Xy =Jl X =i}, n=0,i,j=0

Of course P,; = P;. The Chapman-Kolmogorov equations provide a method
for computing these n-step transition probabilities. These equations are

P = Y PLPy foralln,m =0, all i,j 4.2)
k=0

and are most easily understood by noting that Pj Py represents the prob-
ability that starting in / the process will go to state j in n + m transitions
through a path which takes it into state k at the nth transition. Hence,
summing over all intermediate states k yields the probability that the
process will be in state j after n + m transitions. Formally, we have

PI*™ = P{Xpem = jlXo = i}

= E P{Xn+m=j’Xn=k|X0=i}
k=0

= E P{X,,+,,,=j|X,,=k,X0=i}P{X,,=k|X0=i}
k=0

= Y PP,

k=0
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If we let P denote the matrix of n-step transition probabilities Pj, then
Equation (4.2) asserts that

Ptm — p@ . pim

where the dot represents matrix multiplication.* Hence, in particular,
P® =pi*V =p.P =P’
and by induction
P(n) — P(n—l+l) - Pn—l . P - Pn

That is, the n-step transition matrix may be obtained by multiplying the
matrix P by itself n times.

Example 4.7 Consider Example 4.1 in which the weather is considered
as a two-state Markov chain. If « = 0.7 and # = 0.4, then calculate the
probability that it will rain four days from today given that it is raining
today.

Solution: The one-step transition probability matrix is given by

0.7 0.3
" o4 o6 V
Hence,

., |07 03] Jo7 03
PO=P =104 0.6”"‘0.4 o.sN
0.61 0.39
" los2 048 H
PO — (B3 — 0.61 0.39‘.“0.61 0.39 "

0.52 048 [0.52 0.48
0.5749 0.4251
" | 0.5668 0.4332 ”

and the desired probability Py, equals 0.5749.

Example 4.8 Consider Example 4.4. Given that it rained on Monday
and Tuesday, what is the probability that it will rain on Thursday?

* If Ais an N X M matrix whose element in the ith row and jth column is @;; and B is a
M x K matrix whose element in the /ith row and jth column is b;, then A - B is defined to be
the N x K matrix whose element in the ith row and jth column is ¥, a;, by;.
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Solution: The two-step transition matrix is given by

07 0 03 0 07 0 03 0
05 0 05 0 05 0 0.5
0 04 0 06| |0 04 0 06
0 020 o8| {0 020 08

(=]

P? =Pp? =

0.49 0.12 0.21 0.18
0.35 0.20 0.15 0.30
0.20 0.12 0.20 0.48
0.10 0.16 0.10 0.64

Since rain on Thursday is equivalent to the process being in either state 0
or state 1 on Thursday, the desired probability is given by P2, + P =
0.49 + 0.12 =0.61. &

So far, all of the probabilities we have considered are conditional
probabilities. For instance, P} is the probability that the state at time » is j
given that the initial state at time 0 is /. If the unconditional distribution of
the state at time » is desired, it is necessary to specify the probability
distribution of the initial state. Let us denote this by

i=0

All unconditional probabilities may be computed by conditioning on the
initial state. That is,

L PiX, =jlXo = i}P{X, = i}

i=0

PiX, = Jj}

Il

oo
_ n
= E Pjja;
i=0

For instance, if oy = 0.4, a; = 0.6, in Example 4.7, then the (uncon-
ditional) probability that it will rain four days after we begin keeping
weather records is

P{X, = 0} = 0.4P;, + 0.6P},
= (0.4)(0.5749) + (0.6)(0.5668)
= 0.5700
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4.3. Classification of States

State j is said to be accessible from state i if P; > 0 for some n = 0. Note
that this implies that state j is accessible from state i if and only if, starting
in i, it is possible that the process will ever enter state j. This is true since if
J is not accessible from /, then

Pflever enter j|start in i}

P{U{Xn =Jj1 X = i}
n=0

= Y PIX,=jlX, =i}
n=

- Z PS
n=0

=0

Two states i and j that are accessible to each other are said to communicate,
and we write | © J,
Note that any state communicates with itself since, by definition,

P}=PX,=i|lX,=i}=1
The relation of communication satisfies the following three properties:

(i) State /i communicates with state i, all i = 0.
(i) If state /i communicates with state j, then state j communicates with
state i.
(iii) If state i communicates with state j, and state j communicates with
state k, then state / communicates with state k.

Properties (i) and (ii) follow immediately from the definition of com-
munication. To prove (iii) suppose that i communicates with j, and j
communicates with k. Thus, there exists integers n and m such that P; > 0,
% > 0. Now by the Chapman-Kolmogorov equations, we have that

(-]

n+m _ n pm n pm

wm =Y P} % = PPy >0
r=0

Hence, state & is accessible from state /. Similarly, we can show that state /
is accessible from state k. Hence, states i and kX communicate.

Two states that communicate are said to be in the same class. It is an easy
consequence of (i), (ii), and (iii) that any two classes of states are either
identical or disjoint. In other words, the concept of communication divides
the state space up into a number of separate classes. The Markov
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chain is said to be irreducible if there is only one class, that is, if all states
communicate with each other.

Example 4.9 Consider the Markov chain consisting of the three states
0, 1, 2 and having transition probability matrix

11
z 2 0
—flr 1 1
P_244
L2

0 3 3

It is easy to verify that this Markov chain is irreducible. For example, it is
possible to go from state 0 to state 2 since

0-1-2

That is, one way of getting from state 0 to state 2 is to go from state 0 to
state 1 (with probability 1) and then go from state 1 to state 2 (with
probability 1). @

Example 4.10 Consider a Markov chain consisting of the four states 0,
1, 2, 3 and have a transition probability matrix

btoo
1400
2 2

P=0, 11
4 4 4 4
0 0 0 1

The classes of this Markov chain are {0, 1}, {2}, and {3}. Note that while state
0 (or 1) is accessible from state 2, the reverse is not true. Since state 3 is an
absorbing state, that is, P;; = 1, no other state is accessible from it. €

For any state { we let f; denote the probability that, starting in state i, the
process will ever reenter state i. State / is said to be recurrent if f; = 1 and
transient if f; < 1.

Suppose that the process starts in state / and / is recurrent. Hence, with
probability 1, the process will eventually reenter state i. However, by the
definition of a Markov chain, it follows that the process will be starting over
again when it reenters state i/ and, therefore, state i will eventually be visited
again. Continual repetition of this argument leads to the conclusion that if
state i is recurrent then, starting in state i, the process will reenter state i
again and again and again—in fact, infinitely often.

On the other hand, suppose that state / is transient. Hence, each time
the process enters state i there will be a positive probability, namely 1 — f;,
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that it will never again enter that state. Therefore, starting in state i, the
probability that the process will be in state i for exactly n time periods
equals f"'(1 = f;), n = 1. In other words, if state i is transient then,
starting in state i, the number of time periods that the process will be in state
i has a geometric distribution with finite mean 1/(1 — f;).

From the preceding two paragraphs, it follows that state i is recurrent if
and only if, starting in state i, the expected number of time periods that the
process is in state i is infinite. But, letting

1, ifX, =i
n:

A . :
0, if X, #1i

we have that ¥, _, A, represents the number of periods that the process is
in state i. Also,

E[ E An|X0=i:| E[An|X0=I]
n=0

0

Il
1p18

n

I
118

P(X, = i|X, = i}
0

n

o
L P
n=90

We have thus proven the following.
Proposition 4.1 State i is

o
recurrent if Y. Pjj = oo,
n=1
o
transient if Y P <o
n=1
The argument leading to the preceding proposition is doubly important
for it also shows that a transient state will only be visited a finite number of
times (hence the name transient). This leads to the conclusion that in a
finite-state Markov chain not all states can be transient. To see this, suppose
the states are 0,1, ..., M and suppose that they are all transient. Then
after a finite amount of time (say after time 7j) state 0 will never be visited,
and after a time (say 7;) state 1 will never be visited, and after a time
(say T;) state 2 will never be visited, etc. Thus, after a finite time 7 =
max{T,, T;, ..., Ty} no states will be visited. But as the process must be in
some state after time 7" we arrive at a contradiction, which shows that at
least one of the states must be recurrent.
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Another use of Proposition 4.1 is that it enables us to show that
recurrence is a class property.

Corollary 4.2 If state i is recurrent, and state i communicates with state
J, then state j is recurrent.

Proof To prove this we first note that, since state i communicates with
state j, there exists integers & and m such that P;’} > 0, P} > 0. Now, for
any integer n
k k
P72 PRPLP;

This follows since the left side of the above is the probability of going from
Jtojinm + n + k steps, while the right side is the probability of going
fromj toj in m + n + Kk steps via a path that goes from j to i in m steps,
then from i to i in an additional n steps, then from i/ to j in an additional
k steps.

From the preceding we obtain, by summing over n, that
L Pyt = PPS T Pi=

n=1 n=1

since Pj{'P,’} > 0, and ¥ ., Pj]is infinite since state i is recurrent. Thus, by
Proposition 4.1 it follows that state j is also recurrent. 4

Remarks (i) Corollary 4.2 also implies that transience is a class property.
For if state / is transient and communicates with state j, then state j must
also be transient. For if j were recurrent then, by Corollary 4.2, i would
also be recurrent and hence could not be transient.

(ii) Corollary 4.2 along with our previous result that not all states in a
finite Markov chain can be transient leads to the conclusion that all states
of a finite irreducible Markov chain are recurrent.

Example 4.11 Let the Markov chain consisting of the states 0, 1, 2, 3
have the transition probability matrix

003 3
p_1 000
0100
0100

Determine which states are transient and which are recurrent.

Solution: It is a simple matter to check that all states communicate and
hence, since this is a finite chain, all states must be recurrent. 4
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Example 4.12 Consider the Markov chain having states 0, 1, 2, 3, 4 and

14000
1 +000
P=00 3% 0
00430
P+ 003

Determine the recurrent state.

Solution: This chain consists of the three classes {0, 1}, {2, 3}, and {4}.
The first two classes are recurrent and the third transient. €4

Example 4.13 (A Random Walk): Consider a Markov chain whose
state space consists of the integers i = 0, +1, +2, ..., and have transition
probabilities given by

Pi,i+l=p=1_Pi,i—l! i=0,i1,iz,...

where 0 < p < 1. In other words, on each transition the process either
moves one step to the right (with probability p) or one step to the left (with
probability 1 — p). One colorful interpretation of this process is that it
represents the wanderings of a drunken man as he walks along a straight
line. Another is that it represents the winnings of a gambler who on each
play of the game either wins or loses one dollar.

Since all states clearly communicate, it follows from Corollary 4.2 that
they are either all transient or all recurrent. So let us consider state 0 and
attempt to determine if ¥, _, P, is finite or infinte.

Since it is impossible to be even (using the gambling model interpretation)
after an odd number of plays we must, of course, have that

P! =0, n=1,2,...

On the other hand, we would be even after 27 trials if and only if we won
n of these and lost n of these. As each play of the game results in a win with
probability p and a loss with probability 1 — p, the desired probability is
thus the binomial probability

2 2n)!
Py = <n”>p"(1 o= a —py, n=123,..

n!n!
By using an approximation, due to Stirling, which asserts that

n! ~ n"*V2e~"\2n, 4.3)
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where we say that a, ~ b, when lim, . a,/b, = 1, we obtain

@pQ — p))"
Vrn

Now it is easy to verify that if a, ~ b,, then X£,a, < o if and only if
X, b, <. Hence, Y- Pg will converge if and only if

E (“4p(1 - p))"
n=1 \/ﬁ

does. However, 4p(1 — p) < 1 with equality holding if and only if p = 1.
Hence, Y5 ., P, =  if and only if p = 1. Thus, the chain is recurrent
when p = 1 and transient if p # .

When p = 1, the above process is called a symmetric random walk. We
could also look at symmetric random walks in more than one dimension.
For instance, in the two-dimensional symmetric random walk the process
would, at each transition, either take one step to the left, right, up, or
down, each having probability . That is, the state is the pair of integers
(i, j) and the transition probabilities are given by

2n
Poo -

1

Pijy, i1y = Pap,i-1.0 = Pap.aen = Pap,aj-n = 3
By using the same method as in the one-dimensional case, we now show that
this Markov chain is also recurrent.

Since the preceding chain is irreducible, it follows that all states will be
recurrent if state 0 = (0, 0) is recurrent. So consider P3'. Now after 2n
steps, the chain will be back in its original location if for some i, 0 < i < n,
the 2n steps consist of / steps to the left, / to the right, » — jup, and n — §
down. Since each step will be either of these four types with probability J,
it follows that the desired probability is a multinominal probability. That is,

- n (2”)! 12'!
Poo = EO ilit(n — i(n — i) <4>
B i @en)! n n! l)z"
T2 nint (n = DY (n — DY \4
N"/2n\ 2 (n n
G EOL)
N /2n\ (2
-5 ()

where the last equality uses the combinatorial identity

G- 206
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which follows upon noting that both sides represent the number of subgroups
of size n one can select from a set of #» white and # black objects. Now,

2n\ _ (2n)!

n) nn!

(2”)2"“/26_2"\/—2_71'
n2n+le—2n(2n)

by Stirling’s approximation

4"
- NTnn
Hence, from Equation (4.4) we see that
1
P2n —
00 n

which shows that £, P2 = oo, and thus all states are recurrent.

Interestingly enough, whereas the symmetric random walks in one and
two dimensions are both recurrent, all high dimensional symmetric random
walks turn out to be transient. (For instance, the three-dimensional sym-
metric random walk is at each transition equally likely to move in any of
6 ways—either to the left, right, up, down, in, or out.) @

Example 4.14 (On the Ultimate Instability of the Aloha Protocol):
Consider a communications facility in which the numbers of messages
arriving during each of the time periods n = 1, 2, ... are independent and
identically distributed random variables. Let a; = P{i arrivals}, and
suppose that g + a; < 1. Each arriving message will transmit at the end of
the period in which it arrives. If exactly one message is transmitted, then the
transmission is successful and the message leaves the system. However, if at
any time two or more messages simultaneously transmit, then a collision is
deemed to occur and these messages remain in the system. Once a message
is involved in a collision it will, independently of all else, transmit at the end
of each additional period with probability p—the so-called Aloha protocol
(because it was first instituted at the University of Hawaii). We will show
below that such a system is asymptotically unstable in the sense that the
number of successful transmissions will, with probability 1, be finite.

To begin let X, denote the number of messages in the facility at the
beginning of the nth period, and note that {X,, n = 0} is a Markov chain.
Now for k = 0 define the indicator variables I, by

1, if the first time that the chain departs state & it
I, = directly goes to state k — 1

0, otherwise
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and let it be O if the system is never in state k, £ = 0. (For instance, if the
successive states are 0, 1, 3, 3,4, ..., then /5 = 0 since when the chain first
departs state 3 it goes to state 4; whereas, if they are 0, 3,3, 2, ..., then
I; = 1 since this time it goes to state 2.) Now,

L El]
k=0

L PlU=1
k=0

IA

Y P{I, = 1]k is ever visited} @4.5)
k =

0
Now, P{I, = 1|k is ever visited} is the probability that when state k is
departed the next state is k — 1. That is, it is the conditional probability that
a transition from k& is to kK — 1 given that it is not back into &, and so

Pk,k—l

P, =1|ki isited} = .
{1, | k is ever visited) =P,

P ko1 = agkp(l — p)*~*
Py = agll — kp(1 = p)*7'1 + a,(1 — p)*

which is seen by noting that if there are kK messages present on the beginning
of a day, then (a) there will be & — 1 at the beginning of the next day if there
are no new messages that day and exactly one of the £ messages transmits;
and (b) there will be k£ at the beginning of the next day if either

(i) there are no new messages and it is not the case that exactly one of the
existing kK messages transmits, or

(ii) there is exactly one new message (which automatically transmits) and
none of the other £ messages transmits.

Substitution of the preceding into (4.5) yields that

< - agkp(l — p)*"
E I | <
[kgo "} kgo 1 - aoll — kp(1 = p)* '] — a,(1 — p)f

< o0

where the convergence follows by noting that when k is large the
denominator of the expression in the above sum converges to 1 — a, and so
the convergence or divergence of the sum is determined by whether or not
the sum of the terms in the numerator converge and Y5_, k(1 — p)*™! < .
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Hence, E[Y%-01i] <o, which implies that Y¥ . ; I, < o with probability
1 (for if there was a positive probability that Y ¥ I, could be o, then its
mean would be «). Hence, with probability 1, there will be only a finite
number of states that are initially departed via a successful transmission; or
equivalently, there will be some finite integer N such that whenever there
are N or more messages in the system, there will never again be a successful
transmission. From this (and the fact that such higher states will eventually
be reached—why?) it follows that, with probability 1, there will only be a
finite number of successful transmissions. €

Remark For a (slightly less than rigorous) probabilistic proof of
Stirling’s approximation, let X,, X,, ... be independent Poisson random
variables each having mean 1. Let S, = Y7., X;, and note that both the
mean and variance of S, are equal to n. Now,

P{S,=n=Pin-1<8S,<n}
= P{—1/Vn < (S, — n)/Vn < 0}

==

2m)~2%e~72 dx o
Y ﬁ( ) Central Limit Theorem

S 0 when n is large, by the
= 2n)"V*(1/Vn)

= (2nn)~'?

But S, is Poisson with mean 7, and so

e-ﬂ n
P(S, = n) = —
Hence, for n large
e—nnn
~ (2ﬂn)_1/2
n!

or, equivalently
ﬂ! ~ nn+l/2e—n /27.[

which is Stirling’s approximation.

4.4. Limiting Probabilities

In Example 4.7, we calculated P“ for a two-state Markov chain; it turned
out to be

P _ 0.5749 0.4251
~ [ 0.5668 0.4332
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From this it follows that P® = P® . P® js given (to three significant
places) by

p® _ H 0.572 0.428 H

0.570 0.430

Note that the matrix P® is almost identical to the matrix P, and secondly,
that each of the rows of P® have almost identical entries. In fact it seems
that P]} is converging to some value (as n — o) which is the same for all i.
In other words, there seems to exist a limiting probability that the process
will be in state j after a large number of transitions, and this value is
independent of the initial state.

To make the above heuristics more precise there are two additional
properties of the states of a Markov chain that we need consider. State i is
said to have period d if P/} = 0 whenever n is not divisible by d, and 4 is the
largest integer with this property. For instance, starting in i, it may be
possible for the process to enter state i/ only at the times 2,4,6,8, ..., in
which case state / has period 2. A state with period 1 is said to be aperiodic.
It can be shown that periodicity is a class property. That is, if state i has
period d, and states i and j communicate, then state j also has period d.

If state / is recurrent, then it is said to be positive recurrent if, starting in
i, the expected time until the process returns to state / is finite. It can be
shown that positive recurrence is a class property. While there exist recur-
rent states that are not positive recurrent,* it can be shown that in a finite-
state Markov chain all recurrent states are positive recurrent. Positive
recurrent, aperiodic states are called ergodic.

We are now ready for the following important theorem which we state
without proof.

Theorem 4.1 For an irreducible ergodic Markov chain lim,, _, ., P}j exists
and is independent of i. Furthermore, letting

n; = lim Py Jj=0

n—oo

then 7; is the unique nonnegative solution of

(4.6)

* Such states are called null recurrent.
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Remarks (i) Given that n; = lim, _ ., P]} exists and is independent of the
initial state i, it is not difficult to (heuristically) see that the n’s must satisfy
Equation (4.6). For let us derive an expression for P{X,,, = j} by con-
ditioning on the state at time n. That is,

PiX,yy = J)

E P[Xn+1 =j|Xn = I}P{Xn = I}
i=0

i=

Il
018

PyPIX, = i}

i=0

Letting n — oo, and assuming that we can bring the limit inside the
summation, leads to

(ii) It can be shown that n;, the limiting probability that the process will
be in state j at time n, also equals the long-run proportion of time that the
process will be in state ;.

(iii) In the irreducible, positive recurrent, periodic case we still have that
the n;, j = 0, are the unique nonnegative solution of

7Zj=z:7tiPij,
i
an=1

But now 7; must be interpreted as the long-run proportion of time that
the Markov chain is in state j.

Example 4.15 Consider Example 4.1, in which we assume that if it
rains today, then it will rain tomorrow with probability «; and if it does not
rain today, then it will rain tomorrow with probability §. If we say that the
state is 0 when it rains and 1 when it does not rain, then by Equation (4.6)
the limiting probabilities ny, and 7, are given by

Ty = ATy + Bnl’

T =0-or, + (1A - B)ry,
g+ =1
which yields that
7o = i) ’ 7, = l -«
1+ -« 1+ -«
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For example if « = 0.7 and # = 0.4, then the limiting probability of rain is
To=%=0571. &

Example 4.16 Consider Example 4.3 in which the mood of an
individual is considered as a three-state Markov chain having a transition
probability matrix

0.5 04 0.1
P=(03 04 03
0.2 0.3 0.5

In the long run, what proportion of time is the process in each of the three
states?

Solution: The limiting probabilities n;, i = 0, 1, 2, are obtained by
solving the set of equations in Equation (4.1). In this case these equations
are

7[0 = 0.57[0 + 0.37[1 + O.27I2,
n, = 0.4ny, + 0.4n, + 0.3m,,
n, = 0.17y + 0.3, + 0.57,,

1

My + 7Ty + 7y

Solving yields that

o~|~
Rfw

— 21 — — 18
o = 62> Ty = 62> =%

Example 4.17 (A Model of Class Mobility): A problem of interest to
sociologists is to determine the proportion of society that has an upper- or
lower-class occupation. One possible mathematical model would be to
assume that transitions between social classes of the successive generations
in a family can be regarded as transitions of a Markov chain. That is, we
assume that the occupation of a child depends only on his or her parent’s
occupation. Let us suppose that such a model is appropriate and that the
transition probability matrix is given by

0.45 0.48 0.07
P=(0.05 070 0.25 4.7
0.01 0.50 0.49
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That is, for instance, we suppose that the child of a middle-class worker
will attain an upper-, middle-, or lower-class occupation with respective
probabilities 0.05, 0.70, 0.25.

The limiting probabilities n;, thus satisfy

ny = 0.457y + 0.057; + 0.017,,

7t1 = 0.48710 + 0.70”1 + 0.507'[2,

I

n, = 0.07ny + 0.257, + 0.497,,

1

Mo+ T, + 7y
Hence,
n, = 0.07, n, = 0.62, n, = 0.31

In other words, a society in which social mobility between classes can be
described by a Markov chain with transition probability matrix given by
Equation (4.7) has, in the long run, 7 percent of its people in upper-class
jobs, 62 percent of its people in middle-class jobs, and 31 percent in lower-
class jobs. @

Example 4.18 (The Hardy-Weinberg Law and a Markov Chain in
Genetics): Consider a large population of individuals each of whom
possesses a particular pair of genes, of which each individual gene is
classified as being of type A or type a. Assume that the percentages of
individuals whose gene pairs are AA, aa, or Aa are respectively p,, ¢4, and
ro (Do + g9 + ro = 1). When two individuals mate, each contributes one of
his or her genes, chosen at random, to the resultant offspring. Assuming
that the mating occurs at random, in that each individual is equally likely to
mate with any other individual, we are interested in determining the
percentages of individuals in the next generation whose genes are AA4, aa,
or Aa. Calling these percentages p, g, and r, they are easily obtained by
focusing attention on an individual of the next generation and then deter-
mining the probabilities for the gene pair of that individual.

To begin, note that randomly choosing a parent and then randomly
choosing one of its genes is equivalent to just randomly choosing a gene
from the total gene population. By conditioning on the gene pair of the
parent, we see that a randomly chosen gene will be type 4 with probability

P{A} = P{A|AA}p, + P{A|aalq, + P{A|Aajr,

:po + r0/2
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Similarly, it will be type a with probability
Pla} = qy + ry/2

Thus, under random mating a randomly chosen member of the next
generation will be type AA with probability p, where

p = P{APLA} = (py + 1o/2)
Similarly, the randomly chosen member will be type aa with probability
q = P{a}Pla} = (g, + ro/2)°
and will be type Aa with probability
r = 2P{A}P{a) = 2(py + ro/2)(qo + ro/2)

Since each member of the next generation will independently be of each of
the three gene types with probabilities p, g, r, it follows that the percentages
of the members of the next generation that are of type AA, aa, or Aa are
respectively p, g, and r.

If we now consider the total gene pool of this next generation, then
p + r/2, the fraction of its genes that are A, will be unchanged from the
previous generation. This follows either by arguing that the total gene pool
has not changed from generation to generation or by the following simple
algebra:

P+ r/2=(pg+ re/2)* + (po + re/2)(qo + ro/2)
= (po + 1r/2)[py + ry/2 + g¢ + 1ry/2]
= Ppo + ry/2 since py + 1 + go = 1
= P{A)} 4.8)

Thus, the fractions of the gene pool that are A and a are the same as in the
initial generation. From this it follows that, under random mating, in all
successive generations after the initial one the percentages of the population
having gene pairs AA, aa, and Aa will remain fixed at the values p, q,
and r. This is known as the Hardy-Weinberg law. €

Suppose now that the gene pair population has stabilized in the percen-
tages p, g, r, and let us follow the genetic history of a single individual and
her descendants. (For simplicity, assume that each individual has exactly
one offspring.) So, for a given individual, let X, denote the genetic state of
her descendant in the nth generation. The transition probability matrix of
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this Markov chain, namely
AA aa Aa

AA p+§ 0 g+

NI~

~
~

0 + = + =
aa q 2 P 2

q r
+ 2+
2 2

4
2

r q r p
+- 2+- =
4

A —
a 273 2

is easily verfied by conditioning on the state of the randomly chosen mate.
It is quite intuitive (why?) that the limiting probabilities for this Markov
chain (which also equal the fractions of the individual’s descendants that
are in each of the three genetic states) should just be p, g, and r. To verify
this we must show that they satisfy Equation (4.6). As one of the equations
in Equation (4.6) is redundant, it suffices to show that

r p r\?
penlorg) e r§e3) (o 3):
2 2 4 2/’

ptg+r=1

But this follows from Equation (4.8), and thus the result is established.

Example 4.19 Suppose that a production process changes states in
accordance with a Markov chain having transition probabilities P;, i,/ =
1, ..., n, and suppose that certain of the states are considered acceptable
and the remaining unacceptable. Let A denote the acceptable states and A€
the unacceptable ones. If the production process is said to be ‘“‘up’’ when in

an acceptable state and ‘‘down’’ when in an unacceptable state, determine

1. the rate at which the production process goes from up to down (that
is, the rate of breakdowns);

2. the average length of time the process remains down when it goes
down; and

3. the average length of time the process remains up when it goes up.

Solution: Let 7, k = 1, ..., n, denote the limiting probabilities. Now
for i € A and j € A the rate at which the process enters state j from
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state i is
Rate enter j from i = 7, P;

and so the rate at which the production process enters state j from an
acceptable state is

Rate enter j from A = Y, m;P;
ieA
Hence, the rate at which it enters an unacceptable state from an acceptable
one (which is the rate at which breakdowns occur) is

Rate breakdowns occur = ), Y #,P; 4.9
jeAC ieA
Now let U and D denote the average time the process remains up when
it goes up and down when it goes down. As there is a single breakdown
every U + D time units on the average, if follows heuristically that

1

Rate at which breakdowns occur = — —
U+ D

and, so from Equation (4.9),

1
— - = 7t,'P," (4'10)
U+ D jeZAC ieZA Y

To obtain a second equation relating U and D, consider the percentage of
time the process is up, which, of course, is equal to } ;. 4 7;. However,
since the process is up on the average U out of every U + D time units,
it follows (again somewhat heuristically) that the

Proportion of up time =

U+ D
and so

U
— = = ; 4.11
U+ D ,';A ( )

Hence, from Equations (4.10) and (4.11) we obtain

0= YieaTl
- )
ZjeA‘EieA n; Py
b= 1~ Yieam
EjeA‘ Yiea Py
Yieac Wi

ZjeA‘ Yiea n; Py
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For example, suppose the transition probability matrix is

1 1 1
4420
1 1 1
P_0424
“fr 1 1 1
4 4 4 4
1 1 1
4402

where the acceptable (up) states are 1, 2 and the unacceptable (down)
ones are 3, 4. The limiting probabilities satisfy

=M%+ myE + g,
My = Mg + Mok + M3g + Mg,
My = M3 + My + M3y,

T+ m+nay+mn=1

These solve to yield
1

il

14

-3 — 1 —
) = 16> T, =% T3 = 48> T4

|

]
and thus

Rate of breakdowns = 7,(P; + Py;) + m(Py3 + Pyy)

9

=35,
U=4% and D=2

Hence, on the average, breakdowns occur about 55 (or 28 percent) of the

time. They last, on the average, 2 time units, and then there follows a
stretch of (on the average) 4+ time units when the system is up. 4

p— W

Remarks (i) The long run proportions n;, j = 0, are often called
stationary probabilities. The reason being that if the initial state is chosen
according to the probabilities n;, j = 0, then the probability of being in
state j at any time » is also equal to n;. That is, if

P{X, = j} = =y, Jjz0
then

PiX, =j}=m foralln,j=0
The preceding is easily proven by induction, for if we suppose it true for
n — 1, then writing
PiX,=j} = LPX, =Jj|X,, = }P(X,, =i}
]
=Y Pyn, by the induction hypothesis

i

by Equation (4.6)
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(i) For state j, define m; to be the expected number of transitions until
a Markov chain, starting in state j, returns to that state. Since, on the
average, the chain will spend 1 unit of time in state j for every m;; units of
time, it follows that

In words, the proportion of time in state j equals the inverse of the mean
time between visits to j. (The above is a special case of a general result,
sometimes called the strong law for renewal processes, which will be
presented in Chapter 7.)

Example 4.20 Consider independent tosses of a coin that, on each toss,
lands on heads (H) with probability p and on tails (T) with probability
g = 1 — p. What is the expected number of tosses needed for the pattern
HTHT to appear?

Solution: To answer the question, let us imagine that the coin tossing
does not stop when the pattern appears, but rather it goes on indefinitely.
If we define the state at time # to be the most recent 4 outcomes when
n = 4, and the most recent # outcomes when n < 4, then it is easy to see
that the successive states constitute a Markov chain. For instance, if the
first 5 outcomes are TTTHH, then the successive states of the Markov
chainare X, = T, X, = TT, X; = TTT, X, = TTTH, and X; = TTHH.
It therefore follows from remark (ii) that my1yt, the limiting probability
of state HTHT, is equal to the inverse of the mean time to go from state
HTHT to HTHT. However, for any n = 4, the probability that the state
at time #n is HTHT is just the probability that the toss at n is T, the one
atn — 1is H, theone at » — 2 is T, and the one at n — 3 is H. Since the
successive tosses are independent, it follows that

P{X,=HTHT} = p%¢*, n=4
and so
TTHTHT ='}1_{T:° P{X, = HTHT} = pzqz

Hence, 1/(p2g?) is the mean time to go from HTHT to HTHT. But this
means that starting with HT the expected number of additional trials to
obtain HTHT is 1/(p*q?). Therefore, since in order to obtain HTHT one
must first obtain HT, it follows that

1
E[time to pattern HTHT] = E[time to the pattern HT] + pz—qz
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To determine the expected time to the pattern HT, we can reason in the
same way and let the state be the most recent 2 tosses. By the same
argument as used before, it follows that the expected time between
appearances of HT is equal to 1/myt = 1/(pg). As this is the same as the
expected time until HT first appears, we finally obtain that

1 1
E[time until HTHT appears] = — + ——
pq p4q
The same approach can be used to obtain the mean time until any given
pattern appears. For instance, reasoning as before, we obtain that

1
E[time until HTHHTHTHH] = E[time until HTHH] + 1)6—(13

1 1
= E[time until H] + - + ——
q9 pP4q
_l+ 1 N 1
» " pq T o°F

Also, it is not necessary that the basic experiment has only 2 possible
outcomes (which we designated as H and T). For instance, if the succes-
sive values are independently and identically distributed with p; denoting
the probability that any given value is equal to j, j = 0, then

E[time until 0/1230!] = E[time until 0] + ————
PoP1P2P3

1 1
= t 53
PoPr  PoP1P2D3

4.5. Some Applications
4.5.1. The Gambler’s Ruin Problem

Consider a gambler who at each play of the game has probability p of
winning one unit and probability ¢ = 1 — p of losing one unit. Assuming
that successive plays of the game are independent, what is the probability
that, starting with / units, the gambler’s fortune will reach N before
reaching 0?
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If we let X, denote the players fortune at time n, then the process
{X,,n=20,1,2,...}is a Markov chain with transition probabilities
Pyo = Pyy = 1,
Pi,i+l=p=1_Pi,i—1’ i=l,2,...,N_1

This Markov chain has three classes, namely {0}, {1, 2, ..., N — 1}, and {N};
the first and third class being recurrent and the second transient. Since each
transient state is visited only finitely often, it follows that, after some finite
amount of time, the gambler will either attain his goal of N or go broke.

Let P, i =0,1,..., N, denote the probability that, starting with i, the
gambler’s fortune will eventually reach N. By conditioning on the outcome
of the initial play of the game we obtain

Piszi+l+qPi—1’ i=l,2,...,N_l
or equivalently, since p + g = 1,

pP; + qP; = pP;,, + qP;_,
or

Py = Pi= (P~ Py, =12, N1

Hence, since P, = 0, we obtain from the preceding line that

q
Pz— =—(P1_Po)
p

9p,

p
q

Ps“P2=;(P2 P1 =<

jn

q a\'
E—E-=—W_—EJ=<» P,
1 ) i—-1 2 D 1

: -1
- Py, = <g>(PN—1 - Py_,y) = (g) P,

Adding the first i — 1 of these equations yields

oenl(+ (- ]

'UI-Q



4.5. Some Applications 163

or
1 - (q9/p) o d
P p T 2
J1-@p p
iP,, itd =1
p

Now, using the fact that Py = 1, we obtain that

1 — (g/p) . 1
— f Z
—w@n" P72
Pl =
1 = 1
N’ P=3
and hence
1 — (g/p)’ . 1
- A f l
i—@p P73
P, = (4.12)
i ifp==
N, p -
Note that, as N — oo,
q\ . 1
1-{-1), f —
<p> P>
P, -
0, ifp<-<

Thus, if p > 1, there is a positive probability that the gambler’s fortune will
increase indefinitely; while if p < 1, the gambler will, with probability 1, go
broke against an infinitely rich adversary.

Example 4.21 Suppose Max and Patty decide to flip pennies, the one
coming closest to the wall wins. Patty, being the better player, has a
probability 0.6 of winning on each flip. If Patty starts with five pennies and
Max with ten, then what is the probability that Patty will wipe Max out?
What if Patty starts with ten and Max with 20?

Solution: (a) The desired probability is obtained from Equation (4.12)

by letting i = 5, N = 15, and p = 0.6. Hence, the desired probability is
1- @
——— = 0.87
1 _ (%)15



164 4 Markov Chains

(b) The desired probability is

10

(;
(;30 098 &

For an application of the gambler’s ruin problem to drug testing, suppose
that two new drugs have been developed for treating a certain disease. Drug
i has a cure rate P;, i = 1, 2, in the sense that each patient treated with drug
i will be cured with probability P;. These cure rates are, however, not
known, and suppose we are interested in a method for deciding whether
P, > P, or P, > P,. To decide upon one of these alternatives, consider the
following test: Pairs of patients are treated sequentially with one member of
the pair receiving drug 1 and the other drug 2. The results for each pair are
determined, and the testing stops when the cumulative number of cures
using one of the drugs exceeds the cumulative number of cures when using
the other by some fixed predetermined number. More formally let

X = 1, if the patient in the jth pair to receive drug number 1 is cured
77 o, otherwise

[a—

v b if the patient in the jth pair to receive drug number 2 is cured
7710,  otherwise

For a predetermined positive integer M the test stops after pair N where
N is the first value of n such that either

X+ +X, -+ +Y)=M
or
X i+ +X,-(h+--+Y)=—M

In the former case we then assert that P, > P,, and in the latter that
P, > P,.

In order to help ascertain whether the preceding is a good test, one thing
we would like to know is the probability of it leading to an incorrect
decision. That is, for given P, and P, where P, > P,, what is the probability
that the test will incorrectly assert that P, > P,? To determine this prob-
ability, note that after each pair is checked the cumulative difference of
cures using drug 1 versus drug 2 will either go up by 1 with probability
P,(1 — P,)—since this is the probability that drug 1 leads to a cure and
drug 2 does not—or go down by 1 with probability (1 — P,)P,, or remain the
same with probability P, P, + (1 — P;)(1 — P,). Hence, if we only consider
those pairs in which the cumulative difference changes, then the difference
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will go up 1 with probability
p = P{up 1|up 1 or down 1}

__ PU-P)
Pl -P)+ (1 — P)P,

and down 1 with probability

Py(1 — Py)
P(1-P)+ (- P)P,

q:]—p:

Hence, the probability that the test will assert that P, > P, is equal to the
probability that a gambler who wins each (one unit) bet with probability p
will go down M before going up M. But Equation (4.12) with i = M,
N = 2M, shows that this probability is given by

1 - (g/P™
Pftest asserts that P, > P} =1 — 1 — (a/F (;(I/P))zM
3 1
1+ (P/gM

Thus, for instance, if P, = 0.6 and P, = 0.4 then the probability of an
incorrect decision is 0.017 when M =5 and reduces to 0.0003 when
M = 10.

4.5.2. A Model for Algorithmic Efficiency

The following optimization problem is called a linear program:
minimize cx,
subject to Ax = b,
x=0

where A is an m X n matrix of fixed constants; ¢ = (¢, ...,c,) and
b = (b,,..., b,,) are vectors of fixed constants, and x = (x,, ..., x,,) is the
n-vector of nonnegative values that is to be chosen to minimize ¢x =
Yi_.cix;. Supposing that n > m, it can be shown that the optimal x can
always be chosen to have at least n — m components equal to O—that is, it
can always be taken to be one of the so-called extreme points of the
feasibility region.

The simplex algorithm solves this linear program by moving from an
extreme point of the feasibility region to a better (in terms of the objective
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function ¢x) extreme point (via the pivot operation) until the optimal is
n . .

reached. As there can be as many as N = < > such extreme points, it
m

would seem that this method might take many iterations, but, surprisingly
to some, this does not appear to be the case in practice.

In order to obtain a feel for whether or not the above is surprising, let
us consider a simple probabilistic (Markov chain) model as to how the
algorithm moves along the extreme points. Specifically, we will suppose
that if at any time the algorithm is at the jth best extreme point then after
the next pivot the resulting extreme point is equally likely to be any of the
J — 1 best. Under this assumption, we show that the time to get from the
Nth best to the best extreme point has approximately, for large N, a normal
distribution with mean and variance equal to the logarithm (base e) of N.

Consider a Markov chain for which P,; = 1 and

P. = R i=1,...,i—1,i>1
T :

and let 7; denote the number of transitions needed to go from state / to state
1. A recursive formula for E[7;} can be obtained by conditioning on the
initial transition:

Starting with E[T;] = 0, we successively see that
E[T] =1,
E[T] =1+ 3,
ElLl=1+30+1+H=1+4++1%

and it is not difficult to guess and then prove inductively that

i—1

E[T}= Y Vj
j=1

However, to obtain a more complete description of 7, we will use the
representation
N-1
Jj=1
where

1, if the process ever enters j
L= :
0, otherwise
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The importance of the preceding representation stems from the following:

Proposition 4.3 1,,...,1,_, are independent and
P{I; = 1} = 1/j, l=j=N-1

Proof Givenl,,,,...,Iy, let n = min{i:i > j, I; = 1} denote the lowest
numbered state, greater than j, that is entered. Thus we know that the
process enters state n and the next state entered is one of the states
1,2, ...,/. Hence, as the next state from state n is equally likely to be any
of the lower number states 1,2, ..., n — 1 we see that

}_l/(n 1)
M= e

Hence, P{I; = 1} = 1/j, and independence follows since the preceding
conditional probability does not depend on /;,,,...,Iy. @

PU; =11, .. =1/j

Corollary 4.4
@) E[Ty] = £ 1/).
(i) Var(Ty) = )57 (17)A = 1/)).
(iii) For N large, T, has approximately a normal distribution with mean
log N and variance log N.

Proof Parts (i) and (ii) follow from Proposition 4.3 and the representa-
tion Ty = £ e 1I Part (iii) follows from the central limit theorem since

N N-1 N-1
d d
j —X<El/j<1+§ ax
1 X 1 1 X
or

N-1

logN< ¥ 1/j <1+ log(N - 1)
1

and so
N-1
logN= Y 1/j &
Jj=1

Returning to the simplex algorithm, if we assume that n, m, and n — m
are all large, we have by Stirling’s approximation that

n nn+1/2
N = - n—m+1/2_, m+1/2
m (n — m) m N2n
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and so, letting ¢ = n/m,
log N ~ (mc + $)log(mc) — (m(c — 1) + 1) log(m(c — 1))

- (m+ YHlogm — 3 log(2m)
or
c

log N ~ m{clog + log(c — 1)]

c—1
Now, as lim, ., , xlog[x/(x — 1)] = 1, it follows that, when c is large,
log N ~ m[l + log(c — 1)}

Thus for instance, if n = 8000, m = 1000, then the number of necessary
transitions is approximately normally distributed with mean and variance
equal to 1000(1 + log 7) = 3000. Hence, the number of necessary transitions
would be roughly between

3000 + 2+3000 or, roughly 3000 + 110,

95 percent of the time.*

4.6. Branching Processes

In this section we consider a class of Markov chains, known as branching
processes, which have a wide variety of applications in the biological,
sociological, and engineering sciences.

Consider a population consisting of individuals able to produce offspring
of the same kind. Suppose that each individual will, by the end of its
lifetime, have produced j new offspring with probability P;, j = 0, inde-
pendently of the number produced by any other individual. We suppose
that P; <1 for all j = 0. The number of individuals initially present,
denoted by X, is called the size of the zeroth generation. All offspring of
the zeroth generation constitute the first generation and their number is
denoted by X, . In general, let X, denote the size of the nth generation. It
follows that {X,,n = 0, 1, ...} is a Markov chain having as its state space
the set of nonnegative integers.

Note that state 0 is a recurrent state, since clearly Py, = 1. Also, if
P, > 0, all other states are transient. This follows since P;, = P}, which
implies that starting with i individuals there is a positive probability of at
least P; that no later generation will ever consist of i individuals. Moreover,

* The material of this section is taken from S. M. Ross, ‘A Heuristic Approach to Simpler
Efficiency,”” European Jour. Of Operational Research 9, 344-348 (1982).
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since any finite set of transient states {1, 2, ..., n} will be visited only finitely
often, this leads to the important conclusion that, if Py, > 0, then the
population will either die out or its size will converge to infinity.

Let

denote the mean number of offspring of a single individual, and let
o’= ¥ (- wPp
ji=o

be the variance of the number of offspring produced by a single individual.
Let us suppose that X, = 1, that is, initially there is a single individual
present. We calculate E[X,] and Var(X,) by first noting that we may write

Xn—l
Xn = Z Zi
i=1

where Z; represents the number of offspring of the ith individual of the
(n — 1)st generation. By conditioning on X,_,, we obtain

E[X,] = E[E[X,|X,_,]]

o]

= E[X,_,u]
= UE[X,_,] (4.13)

where we have used the fact that E[Z;] = u. Since E[X,] = 1, Equation
(4.13) yields that

E[Xl] =ﬂ,
E[X;] = uELX|] = ,Uz,

E[X,] = uE[X, ] = u"

Similarly, Var(X,) may be obtained by using the conditional variance
formula
Var(X,) = E[Var(X,|X,_))] + Var(E[X,|X,_,])

Now, given X,,_,, X, is just the sum of X, _, independent random variables
each having the distribution {P;, j = 0}. Hence,

Var(X, |Xn-1) = Xn—laz
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Thus, the conditional variance formula yields
Var(X,) = E[X,_,6%] + Var(X,_,u)
=c’u"" + p? Var(X,_,)

Using the fact that Var(X,) = 0 we can show by mathematical induction
that the preceding implies that
-1
2 ""<“—>, if 5% 1
Var(X,) = u—1

no?, ifu=1

(4.14)

Let m, denote the probability that the population will eventually die out
(under the assumption that X, = 1). More formally,

7y = lim PLX, = 0]X, = 1

The problem of determining the value of m, was first raised in connection
with the extinction of family surnames by Galton in 1889.
We first note that n, = 1 if 4 < 1. This follows since

u" = E[X,] = ¥ jP{X, = j}
Jj=1

>

Mok

1-PiX, =Jj}
j=1

J

= P{X, = 1}

Since u" —» 0 when u < 1, it follows that P{X, =1} = 0, and hence
P{X, =0} — 1.

In fact, it can be shown that 7, = 1 even when z = 1. When 4 > 1, it
turns out that 7, < 1, and an equation determining 7, may be derived by
conditioning on the number of offspring of the initial individual, as follows:

1y, = P{population dies out}

P{population dies out | X, = j}P;
0

J

I
I~ 8

Now, given that X, = j, the population will eventually die out if and only
if each of the j families started by the members of the first generation
eventually die out. Since each family is assumed to act independently, and
since the probability that any particular family dies out is just 7,, this
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yields that
P{population dies out| X, = j} = m}

and thus 7, satisfies

P (4.15)
0

7t0=
J

[N ao k]

In fact when u > 1, it can be shown that n, is the smallest positive number
satisfying Equation (4.15).

Example 4.22 If P, =4, P, = 1, P, = %, then determine 7.
Solution: Since u = 3 < 1, it follows that 7, = 1. @

Example 4.23 If P, =}, P, = 1, P, = 1, then determine n,.

I
B

Solution: 7, satisfies

or
25 - 3my+1=0

The smallest positive solution of this quadratic equation is 7y = . @

Example 4.24 In Examples 4.22 and 4.23, what is the probability that
the population will die out if it initially consists of »n individuals?

Solution: Since the population will die out if and only if the families
of each of the members of the initial generation die out, the desired
probability is n;. For Example 4.22 this yields ng = 1, and for Example
423, 15 =3)". &

4.7. Time Reversible Markov Chains

Consider a stationary ergodic Markov chain (that is, an ergodic Markov
chain that has been in operation for a long time) having transition prob-
abilities P; and stationary probabilities 7;, and suppose that starting at
some time we trace the sequence of states going backwards in time. That is,
starting at time n, consider the sequence of states X,, X,_1, Xp_2, ... It
turns out that this sequence of states is itself a Markov chain with transition
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probabilities Q;; defined by
Qisz{Xm=j|Xm+l i}
_ P{Xm = J, Xm+1 = i}

P{X,,, =i}

_ P{X,, = jIP Xy = i1 X, = j}
- P{X,.1 = i}

_ b

o

To prove that the reversed process is indeed a Markov chain, we must
verify that

P{Xm =j|Xm+1 = I, Xm+2’Xm+3’ = P{Xm =lem+l =i}

To see that this is so, suppose that the present time is m + 1. Now,
since X, X;, X, ... is a Markov chain, it follows that the conditional
distribution of the future X,,,,, X,,,3, ... given the present state X,,,,, is
independent of the past state X,,. However, independence is a symmetric
relationship (that is, if A is independent of B, then B is independent of A),
and so this means that given X,,,,, X, is independent of X,,,, 5, X;ni3, ...
But this is exactly what we had to verify.
Thus, the reversed process is also a Markov chain with transition
probabilities given by
0, = %P
n;
If Q;; = P, foralli, j, then the Markov chain is said to be time reversible. The
condition for time reversibility, namely Q;; = P;;, can also be expressed as

Py = ;P for all 4, j (4.16)

JE g

The condition in Equation (4.16) can be stated that, for all states / and j, the
rate at which the process goes from i to j (namely n; P;;) is equal to the rate
at which it goes from j to i (namely n;P;;). It is worth noting that this is an
obvious necessary condition for time reversibility since a transition from J
to j going backward in time is equivalent to a transition from j to i going
forward in time; i.e., if X, = i and X,,_, = j, then a transition from / to
J is observed if we are looking backward, and one from j to i if we are
looking forward in time. Thus, the rate at which the forward process makes
a transition from j to i is always equal to the rate at which the reverse
process makes a transition from 7 to j; if time reversible, this must equal the
rate at which the forward process makes a transition from i to .

If we can find nonnegative numbers, summing to one, which satisfy
Equation (4.16), then it follows that the Markov chain is time reversible
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and the numbers represent the limiting probabilities. This is so since if

1 4.17)

1

x; Py = x;P; for all i, j, E X;

S

Then summing over i yields
inPijzijPjizxja in=1
13 i t

and, as the limiting probabilities 7; are the unique solution of the above, it
follows that x; = x; for all i.

Example 4.25 Consider a random walk with states 0,1, ..., M and
transition probabilities
P,-,,v“=a,~=1—P,~,,~_1, i=1,...,M_1,
PO,l

010=1_Po,o,

PM,M—aM=1—PM,M—1

Without the need of any computations, it is possible to argue that this
Markov chain, which can only make transitions from a state to one of its
two nearest neighbors, is time reversible. This follows by noting that the
number of transitions from i to / + 1 must at all times be within 1 of the
number from / + 1 to i. This is so since between any two transitions from
i toi + 1 there must be one from i + 1 to i (and conversely) since the only
way to reenter i from a higher state is via state /i + 1. Hence, it follows that
the rate of transitions from i to i + 1 equals the rate from i/ + 1to i, and so
the process is time reversible.

We can easily obtain the limiting probabilities by equating for each state
i=0,1,...,M — 1 the rate at which the process goes from i to i/ + 1 with
the rate at which it goes from i + 1 to i. This yields

Toag = (1 — ay),

(1 = ),

oy

niaizni+l(1 _ai+l)’ I=09 1""9M_ 1

Solving in terms of 7, yields

7‘[1 = 7!0,

o _ @) Oy n
(1 —a)(l —ap®
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and, in general,

_ Aj-1 "0 -
I—a)(l—a)

T; i=1,2,...,M

Since Y2 7, = 1, we obtain

M
no[l + Z %=1 %0 ] =1

(=) (1 = ay)

or

M -1
_ oy
Ty = [1 +j§ (1 -a)---(1- 0‘1)] (4.18)

and

_ Qi O n
(1-a)0-a)”

[1 +,:le (1 faﬂ_l

7 i=1,...M (4.19)

For instance, if @; = «, then

7T0=
1-p
=1_—ﬂM+1
and, in general,
B - B .
ni:l——ﬂMH’ I=O,1,...,M
where
f=—— @
l -«

Another special case of Example 4.25 is the following urn model, proposed
by the physicists P. and T. Ehrenfest to describe the movements of molecules.
Suppose that M molecules are distributed among two urns; and at each time
point one of the molecules is chosen at random and is then removed from
its urn and placed in the other one. The number of molecules in urn 7 is a
special case of the Markov chain of Example 4.25 having

M—i
M ’

i=0,1,....M

o; =

Hence, using Equations (4.18) and (4.19) the limiting probabilities in this
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casc arc

. _[1+ MM—-j+ 1) (M- 1)M]'1
R = JG - 11

N

Hence, from Equation (4.19)

M
(O oo
i 2

175

As the preceding are just the binomial probabilities, it follows that in the
long run, the positions of each of the M balls are independent and each one
is equally likely to be in either urn. This, however, is quite intuitive, for if
we focus on any one ball, it becomes quite clear that its position will be
independent of the positions of the other balls (since no matter where the
other M — 1 balls are, the ball under consideration at each stage will be
moved with probability 1/M) and by symmetry, it is equally likely to be in

either urn.

Example 4.26 Consider an arbitrary connected graph (see Section 3.6
for definitions) having a number w;; associated with arc (i, j) for each arc.

Figure 4.1. A connected graph with arc weights.
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One instance of such a graph is given by Figure 4.1. Now consider a particle
moving from node to node in this manner: If at any time the particle resides
at node /, then it will next move to node j with probability P; where

’-j =
Ej wij

and where wy; is 0 if (i, /) is not an arc. For instance, for the graph of Figure
4.1,P,=3/3+1+2)=1.
The time reversibility equations

niPy = ;P
reduce to
i
E_[ wij El wjl

or, equivalently, since w; = w;;

which is equivalent to

i
=c
Ej Wi
or
n; = CE Wi
J
or,since l = }¥;m;
o= 2 Wi
! XiXiwy

As the #;’s given by this equation satisfy the time reversibility equations, it
follows that the process is time reversible with these limiting probabilities.

For the graph of Figure 4.1 we have that
_ 6 — _ 6 _ 5 _ 1
Ty = 33 my = 35 Ty = 375 Ty = 37> =3 @

If we try to solve Equation (4.17) for an arbitrary Markov chain with
states 0,1, ..., M, it will usually turn out that no solution exists. For
example, from Equation (4.17),

xiPij = x:P;;

¢ Al 1

X Prj = X Py
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implying (if P;P; > 0) that

Xi _ BiPy

Xe PPy
which in general need not equal P,;/P, . Thus, we see that a necessary
condition for time reversibility is that

Py PP = PPy Py foralli,j, k (4.20)

which is equivalent to the statement that, starting in state i, the path
i = k — j — i has the same probability as the reversed pathi — j = k — i.
To understand the necessity of this note that time reversibility implies that
the rate at which a sequence of transitions from i to k toj to / occurs must
equal the rate of ones from i to j to k to i (why?), and so we must have

7Py Py Py = ;P Py Py;

Ji
implying Equation (4.20) when n; > 0.
In fact, we can show the following:

Theorem 4.2 An ergodic Markov chain for which P; = 0 whenever
P;; = 0 is time reversible if and only if starting in state /, any path back to
i has the same probability as the reversed path. That is, if

PP, Py =P Py Py 4.21)

for all states i, i;, ..., i.

Proof We have already proven necessity. To prove sufficiency, fix states
i and j and rewrite (4.21) as

PP, P, P;= PP, P

i’ i, J 5 Ji iy, i

Summing the above over all states i, ..., iy yields

P,:’,"+1Pji — PPk+l

gyt ji
Letting & — oo yields that
;P = 1),:1'7'[,'

JE g

which proves the theorem. ¢

Example 4.27 Suppose we are given a set of n elements, numbered 1
through n, which are to be arranged in some ordered list. At each unit of
time a request is made to retrieve one of these elements, element i/ being
requested (independently of the past) with probability P;. After being
requested, the element then is put back but not necessarily in the same
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position. In fact, let us suppose that the element requested is moved one
closer to the front of the list; for instance, if the present list ordering is
1,3,4,2,5 and element 2 is requested, then the new ordering becomes
1,3,2,4,5. We are interested in the long-run average position of the
element requested.

For any given probability vector P = (P, ..., P,), the preceding can be
modeled as a Markov chain with n! states, with the state at any time being
the list order at that time. We shall show that this Markov chain is time
reversible and then use this to show that the average position of the element
requested when this one-closer rule is in effect is less than when the rule of
always moving the requested element to the front of the line is used. The
time reversibility of the resulting Markov chain when the one-closer
reordering rule is in effect easily follows from Theorem 4.2. For instance,
suppose n = 3 and consider the following path from state (1, 2, 3) to itself

1,2, 2,1,3)—» 2,3, D~ 3,2, )~ (3,1,2) > (1,3,2) > (1,2,3)
The product of the transition probabilities in the forward direction is
P,P,P,P,P, P, = P}P;P}
whereas in the reverse direction, it is
P;P,P,P,P,P, = P}P}P}

As the general result follows in much the same manner, the Markov chain
is indeed time reversible. (For a formal argument note that if f; denotes the
number of times element i moves forward in the path, then as the path goes
from a fixed state back to itself, it follows that element i will also move
backwards f; times. Therefore, since the backwards moves of element / are
precisely the times that it moves forward in the reverse path, it follows that
the product of the transition probabilities for both the path and its reversal
will equal

H Pfi+ri
i
i

where r; is equal to the number of times that element i is in the first position
and the path (or the reverse path) does not change states.)

For any permutation i, i, ..., i,of 1,2, ..., n, let n(i, i5, ..., i,) denote
the limiting probability under the one-closer rule. By time reversibility we
have

Py iy, ooy iy ienseerin) = Py, coey fjars Gy oo i) (4.22)

for all permutations.



4.7. Time Reversible Markov Chains 179

Now the average position of the element requested can be expressed (as in
Section 3.6.1) as

Average position = Y, P,E[Position of element /]

t

Y P,-[l + Y Pfelement j precedes element i }]

J#i

1+ ) Y P,Ple; precedes e;}

i j#i
=1+ Y [P.Ple; precedes e;} + P;Pfe; precedes ¢;}]
i<j
=1+ Y, [PPle, precedes e;} + P;(1 — Pfe; precedes e;})]
i<j
=1+ Y Y (P — P)Ple; precedes ¢} + L Y. P,
i<j i<j

Hence, to minimize the average position of the element requested, we would
want to make Pfe; precedes e;} as large as possible when P; > P, and as
small as possible when P; > P;. Now under the front-of-the-line rule we
showed in Section 3.6.1 that

[5'
P +P,

Ple; precedes ¢;} =

(since under the front-of-the-line rule element j will precede element ; if and
only if the last request for either i or j was for j).

Therefore, to show that the one-closer rule is better than the front-of-the-
line rule, it suffices to show that under the one-closer rule

P.
Pfe; precedes ¢;} > - when P, > P,
fejp i} P+ P i > Py
Now consider any state where element i precedes element j, say
(..o by iy, -5 iy J, -..). By successive transpositions using Equation (4.22),
we have

P

k+1
n(...,i,il,...,ik,j,...)=<F’_> T(eeesdylpyeeesipydy...) (4.23)

J

For instance,

P, P
21723,1,2)

P
MLL%=§ML&%=PP
3 343

2
=—~——ﬂ&%0=G§ﬂ@LU
3
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Now when P; > P;, Equation (4.23) implies that

P

P,

J

Ry iy ey iy dy o) < =Ry ooy gy dy 22

Letting «(i,j) = Ple; precedes e;}, we see by summing over all states for
which i precedes j and by using the preceding that

i, ) < 7o )

J

which, since a(i,j) = 1 — a(/, i}, yields

P
i, i) > J
a(j, i) P+ P

Hence, the average position of the element requested is indeed smaller
under the one-closer rule than under the front-of-the-line rule. €

The concept of the reversed chain is useful even when the process is not
time reversible. To illustrate this, we start with the following proposition
whose proof is left as an exercise.

Proposition 4.5 Consider an irreducible Markov chain with transition
probabilities P;. If one can find positive numbers =;, i = 0, summing to
one, and a transition probability matrix Q = [Q;;] such that

7Z,~P,~j = anJl (4.24)

then the Q;; are the transition probabilities of the reversed chain and the 7,
are the stationary probabilities both for the original and reversed chain.

The importance of the preceding proposition is that, by thinking back-
wards, we can sometimes guess at the nature of the reversed chain and then
use the set of equations (4.24) to obtain both the stationary probabilities
and the Q;;.

Example 4.28 A single bulb is necessary to light a given room. When
the bulb in use fails, it is replaced by a new one at the beginning of the next
day. Let X, equal / if the bulb in use at the beginning of day » is in its ith
day of use (that is, if its present age is /). For instance, if a bulb fails on day
n — 1, then a new bulb will be put in use at the beginning of day » and so
X, = 1. If we suppose that each bulb, independently, fails on its ith day of
use with probability p;, i = 1, then it is easy to see that {X,, n = 1} is a
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Markov chain whose transition probabilities are as follows:
P; | = Pibulb, on its ith day of use, fails}
= Pf{life of bulb = i|life of bulb = i}

_ P{L =i}
" P{L = i}

where L, a random variable representing the lifetime of a bulb, is such that
P{L = i} = p;. Also,
Pi,i+l =1- Pi,l

Suppose now that this chain has been in operation for a long (in theory,
an infinite) time and consider the sequence of states going backwards in
time. Since, in the forward direction, the state is always increasing by 1 until
it reaches the age at which the item fails, it is easy to see that the reverse
chain will always decrease by 1 until it reaches 1 and then it will jump to a
random value representing the lifetime of the (in real time) previous bulb.
Thus, it seems that the reverse chain should have transition probabilities
given by

Qii-1=1, i>1
Q1,i = Di» iz1

To check this, and at the same time determine the stationary probabilities,
we must see if we can find, with the Q; ; as given above, positive numbers
{m;} such that

P =m0
To begin, let j = 1 and consider the resulting equations:
TPy = 1 Qi
This is equivalent to
P{L = i} .
ﬂim = TZIP{L = I}

or
n; = m P{L = i}

Summing over all i yields

1=§nﬁu@§Puzn=mEm

i=1 i=1

and so, for the Q;; above to represent the reverse transition probabilities,
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it is necessary that the stationary probabilities are

_PIL = i}

== i > 1
T TEw

To finish the proof that the reverse transition probabilities and stationary
probabilities are as given all that remains is to show that they satisfy

TP ivy = M1 Qivr,i
which is equivalent to

P(L = i} 1_P{L=i}>_P{L2i+1}
E[L] P{L =i} E[L]

and which is true since P{L = i} - P{L=i}=P{L=i+1]. @

4.8. Markov Decision Processes

Consider a process that is observed at discrete time points to be in any one
of M possible states, which we number by 1, 2, ..., M. After observing the
state of the process, an action must be chosen, and we let A, assumed finite,
denote the set of all possible actions.

If the process is in state / at time 7 and action ais chosen, then the next state
of the system is determined according to the transition probabilities P;;(a).
If we let X, denote the state of the process at time # and a,, the action chosen
at time n, then the above is equivalent to stating that

PiX,o = Jl Xo, a0, X1, 0y, ..., Xy = i, a, = a} = Py(a)

Thus, the transition probabilities are functions only of the present state and
the subsequent action.

By a policy, we mean a rule for choosing actions. We shall restrict
ourselves to policies which are of the form that the action they prescribe at
any time depends only on the state of the process at that time (and not on
any information concerning prior states and actions). However, we shall
allow the policy to be ‘‘randomized’’ in that its instructions may be to
choose actions according to a probability distribution. In other words, a
policy B is a set of numbers p = {§;(a),a € A, i = 1, ..., M} with the inter-
pretation that if the process is in state i, then action a is to be chosen with
probability f;(a). Of course, we need have that

0=<pia) =<1, for all i, a
Y Bia) =1, for all i
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Under any given policy B, the sequence of states {X,,n =20,1,...}
constitutes a Markov chain with transition probabilities P;;() given by

Pij(ﬁ) = Pp{XnH :len = iJ*
= Y P;(a)Bi(a)

where the last equality follows by conditioning on the action chosen when
in state i. Let us suppose that for every choice of a policy B, the resultant
Markov chain {X,,, n = 0, 1, ...} is ergodic.

For any policy B, let 7;, denote the limiting (or steady-state) probability
that the process will be in state / and action a will be chosen if policy B is
employed. That is,

m, = lim Pg{X, =i, a, = a}

n—o
The vector n = (m;,) must satisfy

(i) mi,=0foralli,a
(ll) Ei Ea Mg = 1
(i) Y, 7, = ¥; X, 7, Py(a) for all j (4.25)

Equations (i) and (ii) are obvious, and Equation (iii) which is an analogue
of Equation (4.6) follows as the left-hand side equals the steady-state
probability of being in state j and the right-hand side is the same probability
computed by conditioning on the state and action chosen one stage earlier.

Thus for any policy B, there is a vector & = (x,;,) which satisfies (i)-(iii)
and with the interpretation that m;, is equal to the steady-state probability
of being in state / and choosing action ¢ when policy B is employed.
Moreover, it turns out that the reverse is also true. Namely, for any vector
n = (m,,) which satisfies (i)-(iii), there exists a policy § such that if f is used,
then the steady-state probability of being in / and choosing action a equals
n,,. To verify this last statement, suppose that &= = (n;,) is a vector which
satisfies (i)-(iii). Then, let the policy B = (8;(a)) be

Bi(a) = P{P chooses a|state is i}

- Tla
Ea Tia

Now let P;, denote the limiting probability of being in i and choosing a
when policy B is employed. We need to show that P, = n;,. To do so, first

* We use the notation Py to signify that the probability is conditional on the fact that policy
B is used.
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note that {P,,, i =1, ..., M, a € A} are the limiting probabilities of the two-
dimensional Markov chain {(X,,, a,), n = 0}. Hence, by the fundamental
Theorem 4.1, they are the unique solution of

(') P, =0
') TiTaPi =1
(ii") Py, = ¥i Lo Pig Pj(a")Bi(a)
where (iii’) follows since
PiX, =), Gpey = aan =i, a,=4a'}l= Pij(a,)ﬁj(a)
Since
n’_,a
Za nja

we see that (P,,) is the unique solution of

ﬁj(a) =

P, =0,
ZE Pia = la
P, =YY P, Pa)—t
. ia ey Ea 7‘tja

Hence, to show that P;,, = m;,, we need show that

Tiq = O’
EZ Tig = 1’
i a
' njﬂ
nja E Z ”ia’Pij(a )
i a Za nja

The top two equations follow from (i) and (ii) of Equation (4.25), and the
third which is equivalent to

Z Tjg = EZ mip Py(a’)
a i a

il

follows from Condition (iii) of Equation (4.25).

Thus we have shown that a vector n = (rn;,) will satisfy (i), (ii), and (iii)
of Equation (4.25) if and only if there exists a policy B such that n;, is equal
to the steady-state probability of being in state i/ and choosing action ¢ when
B is used. In fact, the policy B is defined by B;(@) = 7;./ Yo Tig-

The preceding is quite important in the determination of ‘‘optimal’’
policies. For instance, suppose that a reward R(J, a) is earned whenever
action a is chosen in state i. Since R(X;, a;) would then represent the reward
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earned at time i, the expected average reward per unit time under policy 8
can be expressed as

Expected average reward under p = lim Ej

n—oo

[E?:lR(Xn ai):|

n

Now, if m;,, denotes the steady-state probability of being in state / and
choosing action a, it follows that the limiting expected reward at time n
equals

lim E[R(X,,a)] = ¥ ¥ 1,RG, a)
n—+wo i a
which implies (see Exercise 55) that
Expected average reward under p = Y ¥ 7,,R(i, a)
i a
Hence, the problem of determining the policy that maximizes the expected
average reward is

Maximize Y ¥ #;,R(i, a)

n = (i) i a
subject to n;, = 0, for all i, a,
E Z Mg = 1,
Y mi, = LY mi,Pya), for all j (4.26)

However, the above maximization problem is a special case of what is
known as a linear program* and can thus be solved by a standard linear
programming algorithm known as the simplex algorithm. If n* = (n})
maximizes the preceding, then the optimal policy will be given by p* where

*
Mg

Lo e

Bia) =

Remarks (i) It can be shown that the n* maximizing Equation (4.26)
has the property that for each i n}, is zero for all but one value of @, which
implies that the optimal policy is nonrandomized. That is, the action it
prescribes when in state / is a deterministic function of i.

(ii) The linear programming formulation also often works when there are
restrictions placed on the class of allowable policies. For instance, suppose
there is a restriction on the fraction of time the process spends in some

* It is called a linear program since the objective function ¥ ; ¥, R(i, a)n,, and the constraints
are all linear functions of the n;,.
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state, say state 1. Specifically, suppose that we are only allowed to consider
policies having the property that their use results in the process being in
state 1 less that 100o percent of time. To determine the optimal policy
subject to this requirement, we add to the linear programming problem the
additional constraint

Z M=«

a

since Y, m,, represents the proportion of time that the process is in
state 1.

Exercises

*1. Three white and three black balls are distributed in two urns in such
a way that each contains three balls. We say that the system is in state i,
i=0,1,2,3, if the first urn contains / white balls. At each step, we draw
one ball from each urn and place the ball drawn from the first urn into the
second, and conversely with the ball from the second urn. Let X, denote the
state of the system after the nth step. Explain why {X,,, n =0,1,2, ...} is
a Markov chain and calculate its transition probability matrix.

2. Suppose that whether or not it rains today depends on previous weather
conditions through the last three days. Show how this system may be
analyzed by using a Markov chain. How many states are needed?

3. In Exercise 2, suppose that if it has rained for the past three days, then
it will rain today with probability 0.8; if it did not rain for any of the past
three days, then it will rain today with probability 0.2; and in any other case
the weather today will, with probability 0.6, be the same as the weather
yesterday. Determine P for this Markov chain.

*4. Consider a process {X,, n = 0, 1, ...} which takes on the values 0, 1,
or 2. Suppose

PIX X, =i X . X, = i] Pj,  when niseven
= =1, n=1 = g1 --e» = = .
nrt =1 ! ! 0o P;',  when nis odd

where Y _o P = Y2 (P} =1,i=0,1,2.Is {X,, n = 0} aMarkov chain?
If not, then show how, by enlarging the state space, we may transform it
into a Markov chain.



Exercises 187

5. Let the transition probability matrix of a two-state Markov chain be
given, as in Example 4.2, by

1 -
|2

l-p p
Show by mathematical induction that

+32p - 1)
- 32p - D"

6. In Example 4.4 suppose that it has rained neither yesterday nor the day
before yesterday. What is the probability that it will rain tomorrow?

~ep -1y

1
P™ =2
“ 3 +32p - )

1
2
1
2

7. Suppose that coin 1 has probability 0.7 of coming up heads, and coin
2 has probability 0.6 of coming up heads. If the coin flipped today comes
up heads, then we select coin 1 to flip tomorrow, and if it comes up tails,
then we select coin 2 to flip tomorrow. If the coin initially flipped is equally
likely to be coin 1 or coin 2, then what is the probability that the coin
flipped on the third day after the initial flip is coin 1?

8. Specify the classes of the following Markov chains, and determine
whether they are transient or recurrent.

L 00 0 1

b ?gf o000
4o S
0010

104 00 13000

1 do0o0 b} b oo
P,=[+ 04+ 00| Pp,=f00 100
0 00 44 00420
000 44 1 0000

9. Prove that if the number of states in a Markov chain is M, and if state
J can be reached from state i, then it can be reached in M steps or less.

*10. Show that if state / is recurrent and state / does not communicate
with state j, then P; = 0. This implies that once a process enters a recurrent
class of states it can never leave that class. For this reason, a recurrent class
is often referred to as a closed class.
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11. For the random walk of Example 4.13 use the strong law of large
numbers to give another proof that the Markov chain is transient when

p#E3

Hint: Note that the state at time # can be written as Y7_, Y; where the
Y;s are independent and P{Y; = 1} = p = 1 — P{Y; = —1}. Argue that if
p > i, then, by the strong law of large numbers, Y7Y;, = o as n = o
and hence the initial state O can be visited only finitely often, and hence
must be transient. A similar argument holds when p < 1.

12. For Example 4.4, calculate the proportion of days that it rains.

13. A transition probability matrix P is said to be doubly stochastic if the
sum over each column equals one; that is,

Y P,=1, forallj

i
If such a chain is irreducible and aperiodic and consists of M + 1 states
0,1, ..., M, show that the limiting probabilities are given by

1

nj_M+l’ Jj=0,1.... M
*14. A particle moves on a circle through points which have been marked
0, 1, 2, 3, 4 (in a clockwise order). At each step it has a probability p of
moving to the right (clockwise) and 1 — p to the left (counterclockwise). Let
X, denote its location on the circle after the nth step. The process
{X,,n = 0} is a Markov chain.

(a) Find the transition probability matrix.

(b) Calculate the limiting probabilities.

15. Let Y, be the sum of n independent rolls of a fair die. Find

lim P{X, is a multiple of 13}

n—oc
Hint: Define an appropriate Markov chain and apply the results of
Exercise 13.

16. Each morning an individual leaves his house and goes for a run. He
is equally likely to leave either from his front or back door. Upon leaving
the house, he chooses a pair of running shoes (or goes running barefoot if
there are no shoes at the door from which he departed). On his return he is
equally likely to enter, and leave his running shoes, either by the front or
back door. If he owns a total of k pairs of running shoes, what proportion
of the time does he run barefooted?
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17. Consider the following approach to shuffling a deck of n cards.
Starting with any initial ordering of the cards, one of the numbers
1,2, ..., n is randomly chosen in such a manner that each one is equally
likely to be selected. If it is number / that is chosen, then we take the card
that is in position / and put it on top of the deck—that is, we put that card
in position 1. We then repeatedly perform the same operation. Show that,
in the limit, the deck is perfectly shuffled in the sense that the resultant
ordering is equally likely to be any of the n! possible orderings.

*18. Determine the limiting probabilities n; for the model presented in
Exercise 1. Give an intuitive explanation of your answer.

19. For a series of dependent trials the probability of success on any trial
is (k + 1)/(k + 2) where k is equal to the number of successes on the
previous two trials. Compute lim,, _,, P{success on the nth trial}.

20. An organization has N employees where N is a large number. Each
employee has one of three possible job classifications and changes
classifications (independently) according to a Markov chain with transition
probabilities

0.7 0.2 0.1
0.2 0.6 0.2
0.1 0.4 0.5

What percentage of employees are in each classification?

21. Three out of every four trucks on the road are followed by a car, while
only one out of every five cars is followed by a truck. What fraction of
vehicles on the road are trucks?

22. A certain town never has two sunny days in a row. Each day is
classified as being either sunny, cloudy (but dry), or rainy. If it is sunny one
day, then it is equally likely to be either cloudy or rainy the next day. If it
is rainy or cloudy one day, then there is one chance in two that it will be the
same the next day, and if it changes then it is equally likely to be either of
the other two possibilities. In the long run, what proportion of days are
sunny? What proportion are cloudy?

*23. Each of two switches is either on or off during a day. On day n, each
switch will independently be on with probability

[1 + number of on switches during day » — 1]/4

For instance, if both switches are on during day n — 1, then each will
independently be on during day n with probability 3/4. What fraction of
days are both switches on? What fraction are both off?
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24. A professor continually gives exams to her students. She can give
three possible types of exams, and her class is graded as either having done
well or badly. Let p; denote the probability that the class does well on a type
i exam, and suppose that p, = 0.3, p, = 0.6, and p; = 0.9. If the class does
well on an exam, then the next exam is equally likely to be any of the three
types. If the class does badly, then the next exam is always type 1. What
proportion of exams are type i, i = 1, 2, 3?

25. Consider a Markov chain with states 0, 1, 2, 3, 4. Suppose P, , = 1;
and suppose that when the chain is in state i, i > 0, the next state is equally
likely to be any of the states 0, 1, ..., i — 1. Find the limiting probabilities
of this Markov chain.

*26. Let n; denote the long run proportion of time a given Markov chain
is in state i.

(a) Explain why 7, is also the proportion of transitions that are into state
i as well as being the proportion of transitions that are from state /.
(b) m;P; represents the proportion of transitions that satisfy what
property?
(c) Y;m;P; represent the proportion of transitions that satisfy what
property?
(d) Using the preceding explain why
m= Z n; P
i

27. Let A be a set of states, and let A€ be the remaining states.

(a) What is the interpretation of
E Z n;P;?
ieA jeAS
(b) What is the interpretation of
E E nPy?
ieA® jeA
(c) Explain the identity
Y X n Py = E E n; Py
ieA je A€ icA® jeA
28. Each day, one of n possible elements is requested, the ith one with
probability P,, i = 1, Y7 P, = 1. These elements are at all times arranged in
an ordered list which is revised as follows: The element selected is moved to

the front of the list with the relative positions of all the other elements
remaining unchanged. Define the state at any time to be the list ordering



Exercises 191

at that time and note that there are n! possible states.

(a) Argue that the preceding is a Markov chain.
(b) For any state i,, ..., i, (which is a permutation of 1,2, ..., n), let
n(iy, ..., i,) denote the limiting probability. In order for the state to be
iy, ..., I, it is necessary that the last request was for i;, the last non-i,
request was for i,, the last non-i; or i, request was for i;, and so on.
Hence, it appears intuitive that

P, P B

(s nnyiy) = P
(1 n) 'll_I)ill_I)il_I)i l_I)il_"'_

ig—2
Verify when n = 3 that the above are indeed the limiting probabilities.

29. Suppose that a population consists of a fixed number, say m, of genes
in any generation. Each gene is one of two possible genetic types. If any
generation has exactly i (of its m) genes being type 1, then the next
generation will have j type 1 (and m — j type 2) genes with probability

D soni

Let X, denote the number of type 1 genes in the nth generation, and
assume that X, = i.

(a) Find E[X,].
(b) What is the probability that eventually all the genes will be type 1?

30. Consider an irreducible finite Markov chain with states 0, 1, ..., N.

(a) Starting in state i, what is the probability the process will ever visit
state j? Explain!

(b) Let x; = P{visit state N before state 0|start in i}. Compute a set of
linear equations which the x; satisfy, i = 0,1, ..., N.

(© If ¥,jpjj=ifori=1,...,N— 1, show that x; = i/N is a solution
to the equations in part (b).

31. An individual possesses r umbrellas which he employs in going from
his home to office, and vice versa. If he is at home (the office) at the
beginning (end) of a day and it is raining, then he will take an umbrella with
him to the office (home), provided there is one to be taken. If it is not
raining, then he never takes an umbrella. Assume that, independent of the
past, it rains at the beginning (end) of a day with probability p.

(i) Define a Markov chain with r + 1 states which will help us to
determine the proportion of time that our man gets wet. (Note: he
gets wet if it is raining, and all umbrellas are at his other location.)
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(i) Show that the limiting probabilities are given by

ifi=0
n; = whereg=1-p
if i

. I...,r
r+gq
(iil) What fraction of time does our man get wet?
(iv) When r = 3, what value of p maximizes the fraction of time he
gets wet?

*32. Let {X,, n =0} denote an ergodic Markov chain with limiting
probabilities 7. Define the process {Y,,n = 1} by Y, = (X,_,, X,,). That is,
Y, keeps track of the last two states of the original chain. Is {Y,, n = 1} a
Markov chain? If so, determine its transition probabilities and find

lim P{Y, = (i, /)
33. Verify the transition probability matrix given in Example 4.18.

34. Let PV and P® denote transition probability matrices for ergodic
Markov chains having the same state space. Let n' and n* denote the
stationary (limiting) probability vectors for the two chains. Consider a
process defined as follows:

(i) X, = 1. A coin is then flipped and if it comes up heads, then the
remaining states X,,... are obtained from the transition probability
matrix P and if tails from the matrix P?. Is {X,, n = 0} a Markov
chain? If p = P{coin comes up heads}, what is lim,_, , P(X,, = i}?

(ii) X, = 1. At each stage the coin is flipped and if it comes up heads,
then the next state is chosen according to P, and if tails comes up, then
it is chosen according to P, . In this case do the successive states constitute
a Markov chain? If so, determine the transition probabilities. Show by a
counterexample that the limiting probabilities are not the same as in
part (i).

35. A fair coin is continually flipped. Computer the expected number of
flips until the following patterns appear.

(a) HHTTHT
*(b) HHTTHH
(¢) HHTHHT

36. Consider the Ehrenfest urn model in which M molecules are
distributed among 2 urns, and at each time point one of the molecules is
chosen at random and is then removed from its urn and placed in the other
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one. Let X, denote the number of molecules in urn 1 after the nth switch
and let u, = E[X,]. Show that

() tper =1+ (10 - 2/Mu,
(ii) Use (i) to prove that

M M- 2V M
Hn=—>+ <—M—> <E[Xo]—7>

37. Consider a population of individuals each of whom possesses two
genes which can be either type A or type a. Suppose that in outward
appearance type A4 is dominant and type a is recessive. (That is, an
individual will only have the outward characteristics of the recessive gene
if its pair is aa.) Suppose that the population has stabilized, and the
percentages of individuals having respective gene pairs AA, aa, and Aa are
P, q, and r. Call an individual dominant or recessive depending on the
outward characteristics it exhibits. Let S;; denote the probability that an
offspring of two dominant parents will be recessive; and let S,, denote the
probability that the offspring of one dominant and one recessive parent will
be recessive. Compute S, and S,, to show that S;; = SZ. (The quantities
S,0 and S;; are known in the genetics literature as Snyder’s ratios.)

38. In the gambler’s ruin problem of Section 5, suppose the gambler’s
fortune is presently i, and suppose that we know that the gambler’s fortune
will eventually reach N (before it goes to 0). Given this information, show
that the probability he wins the next gamble is

pll — (@/p)*'] .
TTo@py 0 e
i+1 .

T ifp=73

Hint: The probability we want is
P{X,,, =i+ 1|X,=1i lim X,, = N}

n—o
_P{X,,, =i+ 1,lim,X,=N|X, =i}
B P({lim,, X,, = N| X, = i}

39. For the gambler’s ruin model of Section 5, let M; denote the mean
number of games that must be played until the gambler either goes broke or
reaches a fortune of N, given that he starts with i/, i = 0,1, ..., N. Show
that M, satisfies

My=My=0, M=1+pM,, +qM_,, i=1,...,.N—-1
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40. Solve the equations given in Exercise 39 to obtain
M; = iN - i), if p =
i N 1-(q/p) .
= — , if p #
g-p q-p1—(@/p"~
*41. In Exercise 14,

N

N—

(a) what is the expected number of steps the particle takes to return to the
starting position?

(b) what is the probability that all other positions are visited before the
particle returns to its starting state?

42. Consider a branching process having u < 1. Show that if X, = 1,
then the expected number of individuals that ever exist in this population is
given by 1/(1 — ). What if X, = n?

43. In a branching process having X, = 1 and u > 1, prove that n, is the
smallest positive number satisfying Equation (4.15).

Hint: Let 7 be any solution of 7 = },7_, anj. Show by mathematical
induction that n = P{X, = 0} for all n, and let n > o. In using the
induction argue that

PIX, =0} = T (PX,., = 0P,
=0

J

44. For a branching process, calculate m, when

(@) P0=%,Pz=%
(b)P0=%,P1=%,P2=%
(© POZ%’PI_%!PS_%

45. At all times, an urn contains N balls-—some white balls and some
black balls. At each stage, a coin having probability p, 0 < p < 1, of
landing heads is flipped. If heads appears, then a ball is chosen at random
from the urn and is replaced by a white ball; if tails appears, then a ball is
chosen from the urn and is replaced by a black ball. Let X, denote the
number of white balls in the urn after the nth stage.

(a) Is {X,, n = 0} a Markov chain? If so, explain why.

(b) What are its classes? What are their periods? Are they transient or
recurrent?

(c) Compute the transition probabilities P;.

(d) Let N = 2. Find the proportion of time in each state.

(e) Based on your answer in part (d) and your intuition, guess the answer
for the limiting probability in the general case.
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(f) Prove your guess in part (e) either by showing that Equation (4.6) is
satisfied or by using the results of Example 4.25.

(g) If p = 1, what is the expected time until there are only white balls in
the urn if initially there are i/ white and N — i black?

*46. (a) Show that the limiting probabilities of the reversed Markov
chain are the same as for the forward chain by showing that they satisfy the
equations

;= E 7Oy

(b) Give an intuitive explanation for the result of part (a).

47. M balls are initially distributed among m urns. At each stage one of
the balls is selected at random, taken from whichever urn it is in, and then
placed, at random, in one of the other M — 1 urns. Consider the Markov
chain whose state at any time is the vector (n,, ..., n,,) where n; denotes the
number of balls in urn i. Guess at the limiting probabilities for this Markov
chain and then verify your guess and show at the same time that the Markov
chain is time reversible.

48. It follows from Theorem 4.2 that for a time reversible Markov chain

PPy Py = Py Py P,

’ s for all i, j, k

It turns out that if the state space is finite and P; > 0 for all i, j, then the
preceding is also a sufficient condition for time reversibility. (That is, in this
case, we need only check Equation (4.21) for paths from i to i that have

only two intermediate states.) Prove this.
Hint: Fix / and show that the equations
;B = i Py

are satisfied by n; = cP;/P;

%, where c is chosen so that };7; = 1.

49. For a time reversible Markov chain, argue that the rate at which
transitions from i to j to k occur must equal the rate at which transitions
from k to j to i occur.

50. Show that the Markov chain of Exercise 22 is time reversible.

51. A group of n processors are arranged in an ordered list. When a job
arrives, the first processor in line attempts it; if it is unsuccessful, then the
next in line tries it; if it too is unsuccessul, then the next in line tries it, and
so on. When the job is successfully processed or after all processors have
been unsuccessful, the job leaves the system. At this point we are allowed to
reorder the processors, and a new job appears. Suppose that we use the



196 4 Markov Chains

one-closer reordering rule, which moves the processor that was successful
one closer to the front of the line by interchanging its position with the one
in front of it. If all processors were unsuccessful (or if the processor in the
first position was successful), then the ordering remains the same. Suppose
that each time processor i attempts a job then, independently of anything
else, it is successful with probability p;.

(a) Define an appropriate Markov chain to analyze this model.
(b) Show that this Markov chain is time reversible.
(c) Find the long run probabilities.

52. A Markov chain is said to be a tree process if

(i) P; > 0 whenever P; > 0.

(ii) for every pair of states i and j, i # j, there is a unique sequence of
distinct states i = iy, iy, ..., iy_1, iy = Jj such that

>0, k=0,1,....,n-1

iy ig s

In other words, a Markov chain is a tree process if for every pair of
distinct states i and j there is a unique way for the process to go from i to
J without reentering a state (and this path is the reverse of the unique path
from j to i). Argue that an ergodic tree process is time reversible.

53. On a chessboard compute the expected number of plays it takes a
knight, starting in one of the four corners of the chessboard, to return to its
initial position if we assume that at each play it is equally likely to choose
any of its legal moves. (No other pieces are on the board.)

Hint: Make use of Example 4.26.

54. In a Markov decision problem, another criterion often used, different
than the expected average return per unit time, is that of the expected
discounted return. In this criterion we choose a number o, 0 < o < 1, and
try to choose a policy so as to maximize E[Y7. o 'R(X;, a;)]. (That is,
rewards at time n are discounted at rate o".) Suppose that the initial state is
chosen according to the probabilities b;. That is,

PiXy=i}=b, i=1,..,n

For a given policy B let y;, denote the expected discounted time that the
process is in state j and action a is chosen. That is,

Yia = Es[ )X “"1{xn=j,an=a}]

n=0
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where for any event A the indicator variable I, is defined by

I 1, if A occurs
A4 0, otherwise

(a) Show that

Y Ve = E[ ) a"l{xn=j>]
a n

or, in other words, ¥,y is the expected discounted time in state j
under $.
(b) Show that

1

1 -«

Z L Vg =

) Ya=bj+a Z Y Yia Pj(@)
a ] a
Hint: For the second equation, use the identity

I{Xn+l=j} = Z E I{Xn=iran=a}1{xn+l=j}
13 a
Take expectations of the preceding to obtain
Elhy,, -pl = L ¥ Ellx,_,a, )IP;(@)-
1 a

(c) Let {y),]} be a set of numbers satisfying

1
Ezyja=l_
J a

a
Y Vve=0bj+« Z Y v Pj(a) (4.27)

Argue that y;, can be interpreted as the expected discounted time that the
process is in state j and action «a is chosen when the initial state is chosen
according to the probabilities b; and the policy B, given by

_ Yia
ﬂi(a) B Ea Yia

is employed.

Hint: Derive a set of equations for the expected discounted times
when policy B is used and show that they are equivalent to Equation
4.27).
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(d) Argue that an optimal policy with respect to the expected discounted
return criterion can be obtained by first solving the linear program

maximize Y, Y, ¥, R(J, a),
J a

1
l -«

]

such that ) Y y;, =
Jj a
Y Vie=b+a Z Y yiaPy(a),

yjaZO, al]j,a;
and then defining the policy §* by
Via
Lo Via

where the y}‘; are the solutions of the linear program.

B¥(a) =

55. Consider an N-state Markov chain that is ergodic and let =,
i =1, ..., N, denote the limiting probabilities. Suppose that a reward R(i)
is earned whenever the process is in state i. Then Y 7_, R(Xj) is the reward
earned during the first n + 1 time periods. (Of course, X; is the state of the
Markov chain at time j.) Show that
n n
W—) Zﬂ,R(l) as n — o

i=1
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Chapter 5

The Exponential Distribution
and the Poisson Process

v

5.1. Introduction

In making a mathematical model for a real-world phenomenon it is always
necessary to make certain simplifying assumptions so as to render the
mathematics tractable. On the other hand, however, we cannot make
too many simplifying assumptions, for then our conclusions, obtained from
the mathematical model, would not be applicable to the real-world
phenomenon. Thus, in short, we must make enough simplifying assump-
tions to enable us to handle the mathematics but not so many that the
mathematical model no longer resembles the real-world phenomenon. One
simplifying assumption that is often made is to assume that certain random
variables are exponentially distributed. The reason for this is that the
exponential distribution is both relatively easy to work with and is often a
good approximation to the actual distribution.

The property of the exponential distribution which makes it easy to
analyze is that it does not deteriorate with time. By this we mean that if the
lifetime of an item is exponentially distributed, then an item which has been
in use for ten (or any number of) hours is as good as a new item in regards
to the amount of time remaining until the item fails. This will be formally
defined in Section 5.2 where it will be shown that the exponential is the only
distribution which possesses this property.

In Section 5.3 we shall study counting processes with an emphasis on a
kind of counting process known as the Poisson process. Among other
things we shall discover about this process is its intimate connection with the
exponential distribution.

199
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5.2. The Exponential Distribution
5.2.1. Definition

A continuous random variable X is said to have an exponential distribution
with parameter A, A > 0, if its probability density function is given by

e ™™, x=0
Jo) = {o, x<0
or, equivalently, if its cdf is given by
x 1-e™, x=0
F = =
(x) Lof(y) dy {0, <0
The mean of the exponential distribution, E[X], is given by
E[X] = S xf(x) dx
= S Axe ™ dx
0

Integrating by parts (u = x, dv = Ae™™ dx) yields
« 1
E[X] = —xe™ + S e Mdx ==
0 A
The moment generating function ¢(¢) of the exponential distribution is
given by
®(1) = E[e”]

=S e*le ™ dx
0

B A
T At

All the moments of X can now be obtained by differentiating Equation
(5.1). For example,

fort < A 5.1

d2
ELX?] = 23600

=0

B 2A
@G-y

2
K

=0
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Also, from the preceding, we obtain
Var(X) = E[X?] - (E[X])

2 1
BVEL
1

5.2.2. Properties of the Exponential Distribution

A random variable X is said to be without memory, or memoryless, if
P X>s+t|X>t=PX>s) foralls,t=0 5.2)

If we think of X as being the lifetime of some instrument, then Equation
(5.2) states that the probability that the instrument lives for at least s + ¢
hours given that it has survived ¢ hours is the same as the initial probability
that it lives for at least s hours. In other words, if the instrument is alive at
time ¢, then the distribution of the remaining amount of time that it survives
is the same as the original lifetime distribution, that is, the instrument does
not remember that it has already been in use for a time ¢.
The condition in Equation (5.2) is equivalent to

PiIX>s+t X >t}
P{X > t}

= P{X > s}

or
PIX>s+t} = PIX > s}P{X > (} (5.3)

Since Equation (5.3) is satisfied when X is exponentially distributed
(for e %9 = ¢72¢7M) it follows that exponentially distributed random
variables are memoryless.

Example 5.1 Suppose that the amount of time one spends in a bank is
exponentially distributed with mean ten minutes, that is, A = {. What is
the probability that a customer will spend more than fifteen minutes in the
bank? What is the probability that a customer will spend more than fifteen
minutes in the bank given that he is still in the bank after ten minutes?

Solution: If X represents the amount of time that the customer spends
in the bank, then the first probability is just
P{X>15}=e " =¢3% = 0.220

The second question asks for the probability that a customer who has
spent ten minutes in the bank will have to spend at least five more minutes.
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However, since the exponential distribution does not ‘‘remember’’ that
the customer has already spent ten minutes in the bank, this must equal
the probability that an entering customer spends at least five minutes in
the bank. That is, the desired probability is just

PiIX>S5l=e?=e"220604 &

Example 5.2 Consider a post office which is manned by two clerks.
Suppose that when Mr. Smith enters the system he discovers that Mr. Jones
is being served by one of the clerks and Mr. Brown by the other. Suppose
also that Mr. Smith is told that his service will begin as soon as either Jones
or Brown leaves. If the amount of time that a clerk spends with a customer
is exponentially distributed with mean 1/4, what is the probability that, of
the three customers, Mr. Smith is the last to leave the post office?

Solution: The answer is obtained by this reasoning: Consider the time
at which Mr. Smith first finds a free clerk. At this point either Mr. Jones
or Mr. Brown would have just left and the other one would still be in
service. However, by the lack of memory of the exponential, it follows
that the amount of time that this other man (either Jones or Brown)
would still have to spend in the post office is exponentially distributed
with mean 1/A. That is, it is the same as if he was just starting his service
at this point. Hence, by symmetry, the probability that he finishes before
Smith must equal 3. @

It turns out that not only is the exponential distribution ‘‘memoryless,’’
but it is the unique distribution possessing this property. To see this,
suppose that X is memoryless and let F(x) = P{X > x}. Then by Equation
(5.3) it follows that

F(s + 1) = F&)F(@)
That is, F(x) satisfies the functional equation
g(s + 1) = g(s)g(®)

However, it turns out that the only right continuous solution of this
functional equation is

—hx
glx) =e ™

and since a distribution function is always right continuous we must have
F)=e™

or
Fx)=P{X<x}=1-e™

which shows that X is exponentially distributed.
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Example 5.3 Suppose that the amount of time that a lightbulb works
before burning itself out is exponentially distributed with mean ten hours.
Suppose that a person enters a room in which a lightbulb is burning.
If this person desires to work for five hours, then what is the probability
that he will be able to complete his work without the bulb burning out?
What can be said about this probability when the distribution is not
exponential?

Solution: Since the bulb is burning when the person enters the room
it follows, by the memoryless property of the exponential, that its
remaining lifetime is exponential with mean ten. Hence the desired
probability is

P{remaining lifetime > 5} = 1 — F(5) = ™ = ¢7'?
However, if the lifetime distribution F is not exponential, then the
relevant probability is

1 - F(it+5)

P{lifetime > ¢ + 5|lifetime > ¢} = T~ FO)

where ¢ is the amount of time that the bulb had been in use prior to the
person entering the room. That is, if the distribution is not exponential
then additional information is needed (namely ¢) before the desired
probability can be calculated. In fact, it is for this reason, namely that the
distribution of the remaining lifetime is independent of the amount of
time that the object has already survived, that the assumption of an
exponential distribution is so often made. ¢

The memoryless property is further illustrated by the failure rate function
(also called the hazard rate function) of the exponential distribution.

* This is proven as follows: If g(s + t) = g(s)g(¢), then
2 1 1 (1
gl-)=¢l-+t+-)1=8"\~-
n n n n
and repeating this yields g(m/n) = g™(1/n). Also

11 1 1 1
g(l) = g(— ot —) = g"<—> or g<—> = ()"
n n n n n

Hence g(m/n) = (g(1)y™", which implies, since g is right continuous, that g(x) = (g(1))*.
Since g(1) = (g(3))* = 0 we obtain g(x) = ™™, where 1 = —log(g(1)).
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Consider a continuous positive random variable X having distribution
function F and density f. The failure (or hazard) rate function r(t) is
defined by '

J(@)
t) = ——— 5.4
0= rp (5.9)
To interpret r(t), suppose that X has survived for ¢ hours, and we desire the
probability that X will not survive for an additional time d¢. That is,

consider P{X € (t,t + df)| X > t}. Now
PiXe(t,t +dt), X >t}
P{X >t}
_P{Xe(,t+dr)
B P{X > t}
S dt
= ———=r(t)dt
I—Fp - "W
That is, r(¢) represents the conditional probability density that a ¢-year-old
item will fail.
Suppose now that the lifetime distribution is exponential. Then, by the
memoryless property, it follows that the distribution of remaining life for a

t-year-old item is the same as for a new item. Hence r(¢) should be constant.
This checks out since

PiXe(t,t+d)|X >t} =

t

oy = O

1 — F()

).e_)\t

=—x =4
e

Thus, the failure rate function for the exponential distribution is constant.
The parameter A is often referred to as the rate of the distribution. (Note
that the rate is the reciprocal of the mean, and vice versa.)

It turns out that the failure rate function r(¢) uniquely determines the
distribution F. To prove this, we note by Equation (5.4) that

d/dt F(t)

M =T"r

Integrating both sides yields
t
log(l — F(t)) = —S riydt + k
1]
or

1 — F(t) = e exp {~S r(t) dt}
0
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Letting ¢ = 0 shows that k¥ = 0 and thus

F=1- exp{—g r(®) dt}
0

5.2.3. Further Properties of the Exponential Distribution

Let X,,..., X, be independent and identically distributed exponential
random variables having mean 1/4. It follows from the results of Example
2.37 that X + --- + X, has a gamma distribution with parameters » and A.
Let us now give a second verification of this result by using mathematical
induction. As there is nothing to prove when n = 1, let us start by assuming

that X; + --- + X,,_, has density given by
Y
Sx +-ax,_ (1) = Ae tm

Hence,
Sy ooax,_rx, () = S Sx, (& = ) Sfx,+..ux,_(8)ds
0

s (A9

Pk

= thle""("”le
0
= le ™ an

(n — !
which proves the result.

Another useful calculation is to determine the probability that one
exponential random variable is smaller than another. That is, suppose that
X, and X, are independent exponential random variables with respective
means 1/4, and 1/4,; then what is P{X, < X;}? This probability is
calculated by conditioning on X,:

P{Xl < Xz} S P[Xl < X2|X2 = x}lze_)\zxdx

P{Xl < xjA,e M dx

0

Ay
- 5.5
,1,+,12 TA+ A (5-3)

g A - e M)A,e M dx
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Example 5.4 Suppose one has a stereo system consisting of two main
parts, a radio and a speaker. If the lifetime of the radio is exponential
with mean 1000 hours and the lifetime of the speaker is exponential with
mean 500 hours independent of the radio’s lifetime, then what is the
probability that the system’s failure (when it occurs) will be caused by the
radio failing?

Solution: From Equation (5.5) (with A, = 1/1000, A, = 1/500) we see
that the answer is

1/1000 1 .
1/1000 + 1/500 3
Suppose that X;, X,,..., X, are independent exponential random
variables, with X, having rate u;, i = 1, ..., n. It turns out that the smallest
of the X is exponential with a rate equal to the sum of the y;. This is shown
as follows:

P{Minimum(X,, ..., X,,) > x}

P{X; > xforeachi=1,...,n}

Il PiX; > x} (by independence)

i=1

n
H e Hi*

i=1

erf-( £ ) 50

Example 5.5 (Analyzing Greedy Algorithms for the Assignment
Problem): A group of n people are to be assigned to a set of n jobs, with one
person assigned to each job. For a given set of n° values Cii,j=1,...,n,
a cost Cj; is incurred when person i/ is assigned to job j. The classical
assignment problem is to determine the set of assignments that minimizes
the sum of the n costs incurred.

Rather than trying to determine the optimal assignment, let us consider
two heuristic algorithms for solving this problem. The first heuristic is as
follows. Assign person 1 to the job that results in the least cost. That is,
person 1 is assigned to job j, where C(1,/,) = Minimum; C(1, j). Now
eliminate that job from consideration and assign person 2 to the job that
results in the least cost. That is, person 2 is assigned to job j, where
C(2, j,) = Minimum;.; C(2, /). This procedure is then continued until all
n persons are assigned. Since this procedure always selects the best job for
the person under consideration, we will call it Greedy Algorithm A.
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The second algorithm, which we call Greedy Algorithm B, is a more
““global’’ version of the first greedy algorithm. It considers all n* cost values
and chooses the pair i;, j, for which C(, j) is minimal. It then assigns
person ; to job j, . It then eliminates all cost values involving either person
i, or job j, (so that (n — 1)* values remain) and continues in the same
fashion. That is, at each stage it chooses the person and job that have the
smallest cost among all the unassigned people and jobs.

Under the assumption that the C;; constitute a set of n* independent
exponential random variables each having mean 1, which of the two
algorithms results in a smaller expected total cost?

Solution: Suppose first that Greedy Algorithm A is employed. Let C;
denote the cost associated with person i, i = 1,...,n. Now C, is the
minimum of # independent exponentials each having rate 1; so by
Equation (5.6) it will be exponential with rate n. Similarly, C, is the
minimum of n — 1 independent exponentials with rate 1, and so is
exponential with rate n — 1. Indeed, by the same reasoning C; will be
exponential with rate n — i + 1, i = 1, ..., n. Thus, the expected total
cost under Greedy Algorithm A is

E [Total cost] = E[C; + --- + C,]

=Y l/i
i=1

Let us now analyze Greedy Algorithm B. Let C; be the cost of the ith
person-job pair assigned by this algorithm. Since C, is the minimum of
all the n® values Cj;, it follows from Equation (5.6) that C, is exponential
with rate n*. Now, it follows from the lack of memory property of the
exponential that the amounts by which the other C;; exceed C; will be
independent exponentials with rates 1. As a result, C, is equal to C; plus
the minimum of (» — 1)? independent exponentials with rate 1. Similarly,
C; is equal to C, plus the minimum of (#n — 2)? independent exponentials
with rate 1, and so on. Therefore, we see that

E[C,)] = 1/n?,
E[G)] = E[C\] + 1/(n — 1),
E[C3] = E[C,] + 1/(n - 2)%,

E[C)] ;E[Cj_l] + 1(n—j+ 1)

E[C,] = E[Cy_,] + 1
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Therefore,
E[C|] = 1/1%,
E[C,) = 1/n? + 1/(n — 1),
E[C) = 1/n* + 1/(n — 1)* + 1/(n - 2)%,

E[C)=1/* +1/(n - 1> + 1/(n = 2)* + --- + 1
Adding up all the E[C;] yields that
Egl[Total cost] = n/n* + (n— )/(n— 1> + (n = 2)/(n = 2)* + - + 1
1
I

1l
II.M x

i=1

The expected cost is thus the same for both greedy algorithms. €

5.3. The Poisson Process
5.3.1. Counting Processes

A stochastic process {N(f), t = 0} is said to be a counting process if N(t)
represents the total number of ‘‘events’’ that have occurred up to time ¢.
Some examples of counting processes are the following:

(a) If we let N(¢) equal the number of persons who have entered a
particular store at or prior to time f, then {N(¢?), t = 0} is a counting
process in which an event corresponds to a person entering the store.
Note that if we had let N(¢) equal the number of persons in the store at
time ¢, then {N(r), ¢t = 0} would noft be a counting process (why not?).
(b) If we say that an event occurs whenever a child is born, then {N(7),
t = 0} is a counting process when N(¢) equals the total number of people
who were born by time ¢. (Does N(¢) include persons who have died by
time ¢? Explain why it must.)

(c) If N(t) equals the number of goals that a given soccer player has
scored by time ¢, then {N(¢), t = 0} is a counting process. An event of this
process will occur whenever the soccer player scores a goal.

From its definition we see that for a counting process N(¢) must satisfy:
i) N(r) = 0.
(ii) MN(¢) is integer valued.
(iii) If s < ¢, then N(s) < N(¥).
(iv) For s <t, N(t) — N(s) equals the number of events that have
occurred in the interval (s, ?).
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A counting process is said to possess independent increments if the
numbers of events which occur in disjoint time intervals are independent.
For example, this means that the number of events which have occurred
by time 10 (that is, N(10)) must be independent of the number of events
occurring between times 10 and 15 (that is, N(15) — N(10)).

The assumption of independent increments might be reasonable for
example (a), but it probably would be unreasonable for example (b). The
reason for this is that if in example (b) N(¢?) is very large, then it is probable
that there are many people alive at time ¢; this would lead us to believe that
the number of new births between time ¢ and time ¢ + s would also tend
to be large (that is, it does not seem reasonable that N(¢) is independent
of N(t +5) — N(t), and so {N(¢), t = 0} would not have independent
increments in example (b)). The assumption of independent increments in
example (c) would be justified if we believed that the soccer player’s chances
of scoring a goal today does not depend on ‘‘how he’s been going.”
It would not be justified if we believed in ‘‘hot streaks’’ or ‘‘slumps.”’

A counting process is said to possess stationary increments if the distribu-
tion of the number of events which occur in any interval of time depends
only on the length of the time interval. In other words, the process has
stationary increments if the number of events in the interval (¢, + s, t, + )
(that is, N(¢, + s) — N(f, + s)) has the same distribution as the number of
events in the interval (¢, , £,) (that is, N(#,) — N(¢))) for all ¢, < t,, and s > 0.

The assumption of stationary increments would only be reasonable in
example (a) if there were no times of day at which people were more likely
to enter the store. Thus, for instance, if there was a rush hour (say between
12 p.M. and 1 p.M.) each day, then the stationarity assumption would not be
justified. If we believed that the earth’s population is basically constant
(a belief not held at present by most scientists), then the assumption of
stationary increments might be reasonable in example (b). Stationary
increments do not seem to be a reasonable assumption in example (c) since,
for one thing, most people would agree that the soccer player would
probably score more goals while in the age bracket 25-30 than he would
while in the age bracket 35-40.

5.3.2. Definition of the Poisson Process

One of the most important counting processes is the Poisson process which
is defined as follows:

Definition 5.1 The counting process {N(¢), t = 0} is said to be a Poisson
process having rate A, A > 0, if
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(i) NO) = 0;
(ii) The process has independent increments; and
(iii) The number of events in any interval of length ¢ is Poisson
distributed with mean Ar. That is, for all s, = 0

@AD"
!

PINt+s)—Ns)=n}=e Pt n=0,1,...

Note that it follows from condition (iii) that a Poisson process has
stationary increments and also that

E[N(D)] = At

which explains why A is called the rate of the process.

In order to determine if an arbitrary counting process is actually a
Poisson process we must show that conditions (i), (ii), and (iii) are satisfied.
Condition (i), which simply states that the counting of events begins at time
t = 0, and condition (ii) can usually be directly verified from our knowledge
of the process. However, it is not at all clear how we would determine that
condition (iii) is satisfied, and for this reason an equivalent definition of a
Poisson process would be useful.

As a prelude to giving a second definition of a Poisson process we shall
define the concept of a function f(-) being o(h).

Definition 5.2 The function f(-) is said to be o(h) if

lim I _ 0
k-0 h
Example 5.6
(i) The function f(x) = x2 is o(h) since
2
limﬁ@= limh—= limh=0
-0 h k0 h ko

(i) The function f(x) = x is not o(h) since

limﬁzlimﬁ=liml=l¢0
k-0 h h-0h n-o

@iii) If f(-)is o(h) and g(-) is o(h), then so is f(+) + g(-). This follows since
S gy Sk g ()

M) _04+0=0
e S— s h A Th +
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@iv) If f(-) is o(h), then so is g(+) = ¢f(-). This follows since
oty _ . S

li 1
hl_r}}) clh 7

c-0=0

(v) From (iii) and (iv) it follows that any finite linear combination of func-
tions, each of which is o(h), is o(h). @

In order for the function f(-) to be o(h) it is necessary that f(h)/h go to
zero as h goes to zero. But if A goes to zero, the only way for f(#)/h to go
to zero is for f(h) to go to zero faster than 4 does. That is, for 4 small, f(h)
must be small compared with A.

We are now in a position to give an alternative definition of a Poisson
process.

Definition 5.3 The counting process {N(?), ¢ = 0} is said to be a Poisson
process having rate A, A > 0, if

(i) N(©) = 0;

(ii) The process has stationary and independent increments;
(iii) P{N(h) = 1} = Ah + o(h); and
(iv) P{N(h) = 2} = o(h).

Theorem 5.1 Definitions 5.1 and 5.3 are equivalent.

Proof We first show that Definition 5.3 implies Definition 5.1. To do
this, let
P, (1) = P{N(@) = n}

We derive a differential equation for Py(¢) in the following manner:
Py(t + h) = P{N(t + h) = 0}
= P{N(t) = 0, N(t + h) — N(@t) = 0}
= P{N(?) = O}JP{N(t + h) — N(t) = 0}
= Py(t)[1 — Ak + o(h)]

where the final two equations follow from assumption (ii) plus the fact that
assumptions (iii) and (iv) imply that P{N(h) = 0} = 1 — Ak + o(h). Hence,

Polt + h) = Po(t) o(h)
7 = —APy(¢) + A

Now, letting # — 0 we obtain
Py(t) = —APy(1)
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or, equivalently,
P _ _
Po(1)

which implies, by integration, that

log Py(t) = At + ¢

or
Py(t) = Ke™

Since Py(0) = P{N(0) = 0} = 1, we arrive at
Pyt) = e™™ (5.7

Similarly, for n > 0,
P,(t + h) = P{N(t + h) = n}
= P{N(t) = n, N(t + h) — N(t) = 0}
+ P"{N(t) =n—1,N({+ h) — N() =1}

+ PIN({t) = n — k,N(t + h) — N() = k}
k=2

However, by assumption (iv), the last term in the preceding is o(k); hence,
by using assumption (ii), we obtain

Pt + h) = P()Py(h) + P,_,()P,(h) + o(h)

= (1 — ARP(t) + AhP,_,(t) + o(h)
Thus,
Pt + h)— B,() o(h)

A = —AP,(t) + AP,_,(t) + o

and letting 2 — 0 yields

Po(t) = AP, (1) + AP,_,(1)
or equivalently,
eN[P(t) + AP, (] = AeMP,_ (1)
Hence,

dgt(e“P,,(t)) = 2eMP,_,(1) (5.8)
Now, by Equation (5.7), we have

d 28 .
Ft(e P(1) =4
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or
Pi(t) = (At + c)e™

which, since P,(0) = 0, yields
Py(t) = Ate™
To show that P,(f) = e ™(Af)"/n!, we use mathematical induction and
hence first assume it for n — 1. Then by Equation (5.8),
ntn—l

d At —
@R = o
or

()"

M _
e P(t) = o

+c

which implies the result (since P,(0) = 0). This proves that Definition 5.3
implies Definition 5.1.
We shall leave it to the reader to prove the reverse. @

Remarks (i) The result that N(t) has a Poisson distribution is a conse-
quence of the Poisson approximation to the binomial distribution (see
Section 2.2.4). To see this subdivide the interval [0, ¢] into k equal parts
where k is very large (Figure 5.1). Now it can be shown using axiom (iv)
of Definition 5.3 that as k increases to c the probability of having two
or more events in any of the k subintervals goes to 0. Hence, N(¢) will
(with a probability going to 1) just equal the number of subintervals in
which an event occurs. However, by stationary and independent increments
this number will have a binomial distribution with parameters & and
p = At/k + o(t/k). Hence, by the Poisson approximation to the binomial
we see by letting k approach c that N(¢) will have a Poisson distribution
with mean equal to

, t N\ . to(t/k)
i‘i'})k['lk M °<k>] = Ar+ lim —7p

= At
by using the definition of o(h#) and the fact that t/k = 0 as t = .

1 I Il } 1 4
T T T T T T T

t
2t kt
k

) o~ o

Figure 5.1.
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(ii) The explicit assumption that the process has stationary increments can
be eliminated from Definition 5.3 provided that we change assumptions (iii)
and (iv) to require that for any f the probability of one event in the interval
(t,t + h) is Ah + o(h) and the probability of two or more events in that
interval is o(#). That is, assumptions (ii), (iii), and (iv) of Definition 5.3 can
be replaced by

(ii) The process has independent increments.
(iii) P{IN(t + h) — N(t) = 1} = Ah + o(h).
(iv) P{N(t + h) — N(t) = 2} = o(h).

5.3.3. Interarrival and Waiting Time Distributions

Consider a Poisson process, and let us denote the time of the first event by
T, . Further, for n > 1, let T, denote the elapsed time between the (n — 1)st
and the nth event. The sequence {7, n = 1, 2, ...} is called the sequence of
interarrival times. For instance, if 7, = 5 and 7, = 10, then the first event
of the Poisson process would have occurred at time 5 and the second at time
15.

We shall now determine the distribution of the 7,,. To do so, we first note
that the event {7, > ¢} takes place if and only if no events of the Poisson
process occur in the interval [0, ¢] and thus,

P{T, >t} = PIN(t) = 0} = ™
Hence, 7; has an exponential distribution with mean 1/4. Now,

P{T, >t} = E[P{T, > t| T{}] (5.9
However,
P{T, > t|T, = s} = P{0eventsin (s,s + ]| T, = s}

= P{0 events in (s, s + ]}

— e—)\t
where the last two equations followed from independent and stationary
increments. Therefore, from Equation (5.9) we conclude that 7, is also an
exponential random variable with mean 1/4, and furthermore, that 7; is
independent of 7,. Repeating the same argument yields the following.

Proposition5.1 7,,n=1,2,..., areindependent identically distributed
exponential random variables having mean 1/4.
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Remarks The proposition should not surprise us. The assumption of
stationary and independent increments is basically equivalent to asserting
that, at any point in time, the process probabilistically restarts itself. That
is, the process from any point on is independent of all that has previously
occurred (by independent increments), and also has the same distribution as
the original process (by stationary increments). In other words, the process
has no memory, and hence exponential interarrival times are to be expected.

Another quantity of interest is S,, the arrival time of the nth event, also
called the waiting time until the nth event. It is easily seen that

i=1
and hence from Proposition 5.1 and the results of Section 2.2 it follows that
S, has a gamma distribution with parameters » and A. That is, the
probability density of S,, is given by
—\ (A't)n_l

(n—-n’
Equation (5.10) may also have been derived by noting that the nth event will
occur prior to or at time ¢ if and only if the number of events occurring by
time ¢ is at least n. That is,

Nit)y=z=ne S, <t

Sfs (1) = Ae t=0 (5.10)

and hence,

Fs () = P{S, < t} = P{N(t) = n} = i e (lt)

which, upon differentiation, yields

© ) j—1
1o =~ % 4 4 + LG
Aryr! > Ayt 2 Aty
Skl —) TR v R
j=n+ . j=n .
o "
= deM 2

(n — D!

Example 5.7 Suppose that people immigrate into a territory at a Poisson
rate A = 1 per day.

(a) What is the expected time until the tenth immigrant arrives?
(b) What is the probability that the elapsed time between the tenth and the
eleventh arrival exceeds two days?
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Solution:

@) E[S,o] = 10/4 = 10 days.
(b) P{T;; >2)=eP=e2=0.133. &

Proposition 5.1 also gives us another way of defining a Poisson process.
For suppose that we start out with a sequence {7,, n = 1} of independent
identically distributed exponential random variables each having mean 1/4.
Now let us define a counting process by saying that the nth event of this
process occurs at time

Se=Ti+ Tt +T,

The resultant counting process {N(¢), ¢ = 0}* will be Poisson with rate A.

5.3.4. Further Properties of Poisson Processes

Consider a Poisson process {N(¢), ¢t = 0} having rate A, and suppose that
each time an event occurs it is classified as either a type I or a type II event.
Suppose further that each event is classified as a type I event with
probability p and a type II event with probability 1 — p independently of
all other events. For example, suppose that customers arrive at a store
in accordance with a Poisson process having rate 4; and suppose that each
arrival is male with probability + and female with probability 1. Then a
type I event would correspond to a male arrival and a type II event to a
female arrival.

Let N,(f) and N,(f) denote respectively the number of type I and type 11
events occurring in [0, f]. Note that N(t) = N,(¢) + Ny(1).

Proposition 5.2 {N,(¢), ¢ = 0} and {N,(¢), ¢t = 0} are both Poisson
processes having respective rates Ap and A(1 — p). Furthermore, the two
processes are independent.

Proof Let us calculate the joint probability P{N,(t) = n, N,(t) = m}.
To do this, we first condition on N(f) to obtain
P{N(t) = n, N,(t) = mj}

= Y PIN((1) = n, Ny(t) = m|N(2) = KIPIN(t) = k)
k=0

* A formal definition of N(z) is given by

N(t) = maxin: S, < t}
(where S, = 0).
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Now, in order for there to have been n type I events and m type II events
there must have been a total of n + m events occurring in [0, ¢]. That is,
P{N,(t) = n,N,(t) = m|N(t) =k} =0 whenk#n+m

Hence,
P{N\(t) = n, Ny(t) = m}
= P{N(t) = n, Ny(t) = m|N(t) = n + m}P{N(t) = n + m}
= P{N\(t) = n,Ny(t) = m|N(t) = n + m}e‘“%

However, given that n + m events occurred, since each event has prob-
ability p of being a type I event and probability 1 — p of being a type II
event, it follows that the probability that n of them will be type I and m of
them type II events is just the binomial probability

<n " m>p"(1 -p".
n

<n . m)p"(l —pymen G

(n + m)!

Thus,

P{N\(t) = n, Ny(t) = m]

Atp)" Al — p)™
= e‘)"”————( 1')) e MI-P) @ = py” m'p)) (5.11)
Hence,
Pi{N,(t) = n} = P{N,(t) = n, Ny(t) = m)}
m=0
— e_)\tp ('Up)" s e_)\((]-p) (At(l — p))m

n! .2 m!

—ap (AID)
n!

That is, {N,/(¢), t = 0} is a Poisson process having rate Ap. (How do we
know that the other conditions of Definition 5.1 are satisfied? Argue it
out!)

Similarly,
—\(1-p) ('1[(1 - P))m

PIN,(t) =m}=¢e
m!

and so {N,(t), t = 0} is a Poisson process having rate A(1 — p). Finally,
it follows from Equation (5.11) that the two processes are independent
(since the joint distribution factors).
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Remark It is not surprising that {N,(f), ¢ = 0} and [N,(?), ¢t = 0} are
Poisson processes. What is somewhat surprising is the fact that they are
independent. For assume that customers arrive at a bank at a Poisson rate
of A = 1 per hour and suppose that each customer is a man with probability
1 and a woman with probability 1. Now suppose that 100 men arrived in the
first 10 hours. Then how many women would we expect to have arrived in
that time? One might argue that as the number of male arrivals is 100 and
as each arrival is male with probability 3, then the expected number of total
arrivals should be 200 and hence the expected number of female arrivals
should also be 100. But, as shown by the previous proposition, such
reasoning is spurious and the expected number of female arrivals in the first
10 hours is five, independent of the number of male arrivals in that period.

To obtain an intuition as to why Proposition 5.2 is true reason as follows:
If we divide the interval (0, ¢) into n subintervals of equal length ¢/n, where
n is very large, then (neglecting events having probability ‘‘little 0’’) each
subinterval will have a small probability A¢/n of containing a single event.
As each event has probability p of being of type I, it follows that each of the
n subintervals will have either no events, a type I event, a type 1I event with
respective probabilities

1 - ﬂ » g D, 'A_"" (1 - p)
n n n

Hence from the result which gives the Poisson as the limit of binomials, we
can immediately conclude that N,(¢) and N,(¢) are Poisson distributed with
respective means Afp and A#(1 — p). To see that they are independent,
suppose, for instance, that N,(¢) = k. Then of the n subintervals, k will
contain a type I event, and thus the other n — & will each contain a type II
event with probability

(A/nm)(1 — p)
1 - (At/n)p

= ﬂ(l - p)+ 0<£>
n n

Hence, as n — k will still be a very large number, we see again from the
Poisson limit theorem that, given N,(¢) = k, N,(f) will be Poisson with mean
lim,, . [(n — K)At(1 — p)/n] = A1 — p), and so independence is established.

Pitype I1{no type I} =

Example 5.8 If immigrants to area A arrive at a Poisson rate of ten per
week, and if each immigrant is of English descent with probability &, then
what is the probability that no people of English descent will emigrate to
area A during the month of February?
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Solution: By the previous proposition it follows that the number of
Englishmen emigrating to area 4 during the month of February is Poisson
distributed with mean 4-10- 3% = 1. Hence the desired probability
ise™ 13, &

It follows from Proposition 5.2 that if each of a Poisson number of
individuals is independently classified into one of two possible groups with
respective probabilities p and 1 — p, then the number of individuals in each
of the two groups will be independent Poisson random variables. As this
result easily generalizes to the case where the classification is into any one
of r possible groups, we have the following application to a model of
employees moving about in an organization.

Example 5.9 Consider a system in which individuals at any time are
classified as being in one of r possible states, and assume that an individual
changes states in accordance with a Markov chain having transition
probabilities P;, i,j = 1, ..., r. That is, if an individual is in state i during
a time period then, independently of its previous states, it will be in state j
during the next time period with probability P;. The individuals are
assumed to move through the system independently of each other. Suppose
that the numbers of people initially in states 1,2, ..., r are independent
Poisson random variables with respective means 4,, 4,,...,4,. We are
interested in determining the joint distribution of the numbers of
individuals in states 1, 2, ..., r at some time n.

Solution: For fixed i, let N;(i), j = 1, ..., r, denote the number of those
individuals, initially in state i, that are in state j at time n. Now each of
the (Poisson distributed) number of people initially in state i will,
independently of each other, be in state j at time »n with probability Pjj,
where P is the n-stage transition probability for the Markov chain
having transition probabilities P;. Hence, the N;(i), j = 1, ..., r, will be
independent Poisson random variables with respective means A,Pj,
Jj=1,...,r. Asthe sum of independent Poisson random variables is itself
a Poisson random variable, it follows that the number of individuals in
state j at time n—namely Yi_,N;(i)—will be independent Poisson
random variables with respective means ¥;4;Pj, forj=1,...,r. @

Example 5.10 (The Coupon Collecting Problem): There are m different
types of coupons. Each time a person collects a coupon it is, independently of
ones previously obtained, a type j coupon with probability p;, Y7, p; = 1.
Let N denote the number of coupons one needs to collect in order to have
a complete collection of at least one of each type. Find E[N].
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Solution: If we let N; denote the number one must collect to obtain a
type j coupon, then we can express N as
N = Max N;
1sj=m
However, even though each N; is geometric with parameter p;, the
foregoing representation of N is not that useful, because the random
variables N; are not independent.

We can, however, transform the problem into one of determining the
expected value of the maximum of independent random variables. To do
s0, suppose that coupons are collected at times chosen according to a
Poisson process with rate A = 1. Say that an event of this Poisson process
is of type j, 1 <j < m, if the coupon obtained at that time is a type j
coupon. If we now let N;(f) denote the number of type j coupons
collected by time ¢, then it follows from Proposition 5.2 that {N;(¢),
t=0},j=1,...,m, are independent Poisson processes with respective
rates Ap;(=p;). Let X; denote the time of the first event of the jth
process, and let

X = Max X;
1sj<m
denote the time at which a complete collection is amassed. Since the X;
are independent exponential random variables with respective rates p;, it
follows that

PiX < t} = P[Max X; < t}

PIX, <t forj=1,...,m

T a - e
j=1

Therefore,

0o

E[X] = S P{X > t}dt
0

«© m
= S [1 - IIa- e“’f’)} dt (5.12)
0 Jj=1

It remains to relate E[X], the expected time until one has a complete set,
to E[N], the expected number of coupons it takes. This can be done by
letting 7; denote the ith interarrival time of the Poisson process that
counts the number of coupons obtained. Then it is easy to see that

N
X=YT

i=1
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Since the 7; are independent exponentials with rate 1, and N is inde-
pendent of the T;, we see that

E[X|N] = NE[T}] = N
Therefore,
E[X] = E[N]

and so E[N] is as given in Equation (5.12). @

The next probability calculation related to Poisson processes that we shall
determine is the probability that n events occur in one Poisson process
before m events have occurred in a second and independent Poisson
process. More formally let {N,(¢), t = 0} and {N,(¢), ¢ = 0} be two indepen-
dent Poisson processes having respective rates A, and A,. Also, let S, denote
the time of the nth event of the first process, and S2 the time of the mth
event of the second process. We seek

P(S, < SZ}

Before attempting to calculate this for general n and m, let us consider
the special case n = m = 1. Since S/, the time of the first event of the
N,(t) process, and S, the time of the first event of the N,(¢) process, are
both exponentially distributed random variables (by Proposition 5.1) with
respective means 1/4; and 1/4,, it follows from Section 2.3 that

A
PiS! < S} = 7 +1/1 (5.13)
1 2

Let us now consider the probability that two events occur in the N,(¢)
process before a single event has occurred in the N,(f) process. That is,
P{S} < S§7}. To calculate this we reason as follows: In order for the N,(f)
process to have two events before a single event occurs in the N,(f) process
it is first necessary that the initial event that occurs must be an event of the
Ny(t) process (and this occurs, by Equation (5.13), with probability
Ay/(A; + A5)). Now given that the initial event is from the N,(¢) process, the
next thing that must occur for S; to be less than S7 is for the second event
also to be an event of the N,(f) process. However, when the first event
occurs both processes start all over again (by the memoryless property
of Poisson processes) and hence this conditional probability is also
Ay/(A; + 45,), and hence the desired probability is given by

1 2 A Y
P{S; < 8i} = T+
1 2
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In fact this reasoning shows that each event that occurs is going to be an
event of the N(t) process with probability A,/(A, + A,) and an event of the
N,(t) process with probability A,/(A, + 1,), independent of all that has
previously occurred. In other words, the probability that the N,(¢) process
reaches n before the N,(f) process reaches m is just the probability that n
heads will appear before m tails if one flips a coin having probability
p = A/(A; + 4,) of a head appearing. But by noting that this event will
occur if and only if the first n + m — 1 tosses result in #» or more heads we
see that our desired probability is given by

n+m—1 k n+m—-1-k
. 2, _ n+m-—1 Ay A,
P18y < Sad = kgn < k ><)*1 + '12> <'11 + 4,

5.3.5. Conditional Distribution of the Arrival Times

Suppose we are told that exactly one event of a Poisson process has taken
place by time ¢, and we are asked to determine the distribution of the time
at which the event occurred. Now, since a Poisson process possesses
stationary and independent increments it seems reasonable that each
interval in [0, ] of equal length should have the same probability of
containing the event. In other words, the time of the event should be
uniformly distributed over [0, #]. This is easily checked since, for s < ¢,

P{T, < s, N(t) = 1}

PIT, <s|N@) =1} = PING = 1)

_ P{l event in [0, 5), O events in [s, £)}
B P{N(t) = 1}

_ P{1 event in [0, 5)}P{0 events in [s, #)}
- P{N(@) = 1)

“Asg=M=$)

Ate™

Ase

s
t
This result may be generalized, but before doing so we need to introduce the
concept of order statistics.

Let Y, Y5, ..., ¥, be n random variables. We say that Yy, Y3, ..., ¥
are the order statistics corresponding to Y, Y,, ..., Y, if Y, is the kth
smallest value among Y;,...,Y,, Kk =1,2,...,n. For instance if n = 3
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andY, =4, Y, =5, Y3 =1then Y, =1, Y, =4, Y5 =5. If the ¥
i=1,...,n, are independent identically distributed continuous random
variables with probability density f, then the joint density of the order
statistics Yy, Y, ..., ¥y, is given by

n
f(-yl’yl"--ayn)=n! Hf(yl)’ y1<y2<'-'<yn

i=1

The preceding follows since

(i) Yy, Yoy ---5 Yiy) will equal (3y,¥,,...,¥,) if (Y}, 15,...,7,) is
equal to any of the n! permutations of (¥, ¥3, --., ¥n);

and
(i) the probability density that (Y, Y,,..., Y,) is equal to y,,...,»;

is Hj’~’=1f(y,~j) = [I;-. f(y;) when i,,...,i, is a permutation of
1,2,...,n.

If the Y;, i =1, ..., n, are uniformly distributed over (0, ¢), then we
obtain from the preceding that the joint density function of the order
statistics Y5y, Y2y, ..., Y S

!

n!
SO Yas s V) = el O<y <y, <<y, <t

We are now ready for the following useful theorem.

Theorem 5.2 Given that N(t) = n, the n arrival times S, ..., S, have
the same distribution as the order statistics corresponding to n independent
random variables uniformly distributed on the interval (0, ).

Proof To obtain the conditional density of S, ..., S, given that N(¢) = n
note that for 0 < s, < --- < ttheeventthat S, =s5,, 8, =5,,...,S, =5,
N(t) = n is equivalent to the event that the first » + 1 interarrival times
satisfy 7, =s;, L =85y — 8y, ..., I, =8, — Sy_y, T,s, >t —s,. Hence,
using Proposition 5.1, we have that the conditional joint density of
Si, ..., S, given that N(¢) = n is as follows:

f(sla ...,S,,, n)
P{N(t) = n}
A'e_)‘slie_)‘(SZ_sl) e Ae“)‘(sn—sn—l)e_)\(l_sn)
e MAn"/n!

f(sh"'ssnln) =

n!
=7 O0<s <o <5, <t

which proves the result. @
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Remark The preceding result is usually paraphrased as stating that, under
the condition that n events have occurred in (0, t), the times S,,..., S,
at which events occur, considered as unordered random variables, are
distributed independently and uniformly in the interval (0, ¢).

Application of Theorem 5.2 (Sampling a Poisson Process).
In Proposition 5.2 we showed that if each event of a Poisson process is
independently classified as a type I event with probability p and as a type 11
event with probability 1 — p then the counting processes of type I and type
II events are independent Poisson processes with respective rates Ap and
A(1 — p). Suppose now, however, that there are £ possible types of events
and that the probability that an event is classified as a type i event,
i=1,...,k, depends on the time the event occurs. Specifically, suppose
that if an event occurs at time y then it will be classified as a type i event,
independently of anything that has previously occurred, with probability
P(»),i=1,...,k where £*_, P,(y) = 1. Upon using Theorem 5.2 we can
prove the following useful proposition.

Proposition 5.3 If N;(¢), i = 1, ..., k, represents the number of type i
events occurring by time ¢ then N;(¢), i = 1, ..., k, are independent Poisson
random variables having means

E[N;(1)] = AS Pi(s)ds

0

Before proving this proposition, let us first illustrate its use.

Example 5.11 (An Infinite Server Queue): Suppose that customers
arrive at a service station in accordance with a Poisson process with rate A.
Upon arrival the customer is immediately served by one of an infinite
number of possible servers, and the service times are assumed to be
independent with a common distribution G. What is the distribution of
X(1), the number of customers that have completed service by time #?
What is the distribution of Y{(¢), the number of customers that are being
served at time ¢?

To answer the preceding questions let us agree to call an entering
customer a type I customer if he completes his service by time ¢ and a
type II customer if he does not complete his service by time ¢. Now, if the
customer enters at time s, s < f, then he will be a type I customer if his
service time is less than ¢ — s. Since the service time distribution is G, the
probability of this will be G(¢ — s). Similarly, a customer entering at time s,
s < t, will be a type II customer with probability G(f — s) = 1 — G(t — ).
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Hence, from Proposition 5.3 we obtain that the distribution of X(¢), the
number of customers that have completed service by time ¢, is Poisson
distributed with mean

t t
E[X(@)] = AS G(t — s)ds = AS G(y)dy (5.14)
0 0
Similarly, the distribution of Y(¢), the number of customers being served at
time ¢ is Poisson with mean

t t

G(t—s)ds=l§ G(y) dy (5.15)
0

E[Y(1)] = AS
0
Furthermore, X(¢) and Y(¢) are independent.
Suppose now that we are interested in computing the joint distribution of
Y(#) and Y(¢ + s)—that is the joint distribution of the number in the system
at time ¢ and at time ¢ + 5. To accomplish this, say that an arrival is

type 1: if he arrives before time ¢ and completes service between ¢ and
t+s,

type 2: if he arrives before ¢ and completes service after ¢ + s,

type 3: if he arrives between ¢ and ¢t + s and completes service after ¢ + s,
type 4: otherwise.

Hence an arrival at time y will be type i with probability P,(y) given by

P(y) = Gt +s~y) ~ Gt~ y), ify<t
)= 0, otherwise
G(t+s—y), ify<t
P =
2(Y) {0, otherwise
Gt + s — y), ifr<y<t+s
P =
) {0, otherwise

Py(y) =1 = P,(y) = Py(») = B())

Hence, if N; = Ni(s + 1), i = 1,2, 3, denotes the number of type i events
that occur, then from Proposition 5.3, N;, i = 1,2, 3, are independent
Poisson random variables with respective means
t+s
E[N,-]=,1S P.(y)dy, i=1,2,3
0
As

Y(t) = Ny + N,
Y(t+S)=N2+N3
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it is now an easy matter to compute the joint distribution of Y(¢) and
Y(t + s). For instance,

Cov{Y(t), Y(t + )]
= Cov(N, + N,, N, + Nj)
= Cov(N,, N,) by independence of N,, N,, N;
= Var(V,)
t _ t _
=A§ G(t+s—y)dy=/lS G(u + s)du
0 0

where the last equality follows since the variance of a Poisson random
variable equals its mean, and from the substitution ¥ = ¢ — y. Also, the
joint distribution of Y(¢) and Y{(r + s) is as follows:

PIY() =i, Y(t + 8) =j} = PIN; + N, = i, N, + Ny = j}

mindi, j)
Y PWN,=L, N =i-1,Ny=j~-1
=0

1=

min(i, j)
Y PIN,=lPIN,=i-l}PIN;=j—1] &
=0

Example 5.12 (Minimizing the Number of Encounters): Suppose that
cars enter a one-way highway in accordance with a Poisson process with
rate A. The cars enter at point @ and depart at point b (see Figure 5.2). Each
car travels at a constant speed that is randomly determined, independently
from car to car, from the distribution G. When a faster car encounters a
slower one, it passes it with no time being lost. If your car enters the
highway at time s and you are able to choose your speed, what speed
minimizes the expected number of encounters you will have with other cars,
where we say that an encounter occurs each time your car either passes or
is passed by another car?

Figure 5.2. Cars enter at point ¢ and depart at b.
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Solution: We will show that for large s the speed that minimizes the
expected number of encounters is the median of the speed distribution G.
To see this, suppose that the speed x is chosen. Let d = b — a denote the
length of the road. Upon choosing the speed x, it follows that your car
will enter the road at time s and will depart at time s + ¢,, where f, = d/x
is the travel time,

Now, the other cars enter the road according to a Poisson process with
rate A. Each of them chooses a speed X according to the distribution G,
and this results in a travel time 7 = d/X. Let F denote the distribution of
travel time 7. That is,

Ft)=P{T<t})=Pld/X <t} =P{X =d/t} = Gd/1)

Let us say that an event occurs at time ¢ if a car enters the highway at
time . Also, we say that the event is a type 1 event if it results in an
encounter with your car. Now, your car will enter the road at time s and
will exit at time s + ¢,. Hence, a car will encounter your car if it enters
before s and exits after s + £, (in which case your car will pass it on the
road) or if it enters after s but exits before s + £, (in which case it will pass
your car). As a result, a car that enters the road at time ¢ will encounter
your car if its travel time 7 is such that

t+T>s5+ 1, ift<s
L+ T<s+ 1, fs<t<s+ it

From the preceding, we see that an event at time ¢ will, independently
of other events, be a type 1 event with probability p(¢) given by
Pit + T>s+ tg) = F(s + t, — 1), ifr<s
py =3Pt + T<s+ t))=Fs+ty,— 1), ifs<t<s+t
0, ift>s+1¢
Since events (that is, cars entering the road) are occurring according to a

Poisson process it follows, upon applying Proposition 5.3, that the total
number of type 1 events that ever occurs is Poisson with mean

o s s+ig
AS p(t)dt=ASF(s+to—t)dt+AS F(s + t, — t)dt
0 0

s

fo

= AE 013()')0')' + AK F(y)dy

t 0
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To choose the value of ¢, that minimizes the preceding quantity, we
differentiate. This gives

a {A r p() dt} = AMF(s + ty) — F(ty) + F(tp))

Setting this equal to 0, and using that F(s + t,) = 0 when s is large, we see
that the optimal travel time ¢, is such that

F(tg) — F(tp) = 0
or
Fltg) —[1 - Fltp)l = 0
or
F(t)) = 3

That is, the optimal travel time is the median of the travel time distribu-
tion. Since the speed X is equal to the distance d divided by the travel
time 7, it follows that the optimal speed x, = d/¢, is such that

F(d/x0) = ¥
Since
F(d/xg) = G(xo)

we see that G(x,) = %, and so the optimal speed is the median of the
distribution of speeds.

Summing up, we have shown that for any speed x the number of
encounters with other cars will be a Poisson random variable, and the
mean of this Poisson will be smallest when the speed x is taken to be the
median of the distribution G. €

Example 5.13 (Tracking the Number of HIV Infections): There is a
relatively long incubation period from the time when an individual becomes
infected with the HIV virus, which causes AIDS, until the symptoms of the
disease appear. As a result, it is difficult for public health officials to be
certain of the number of members of the population that are infected at any
given time. We will now present a first approximation model for this
phenomenon, which can be used to obtain a rough estimate of the number
of infected individuals.

Let us suppose that individuals contract the HIV virus in accordance with
a Poisson process whose rate A is unknown. Suppose that the time from
when an individual becomes infected until symptoms of the disease appear
is a random variable having a known distribution G. Suppose also that the
incubation times of different infected individuals are independent.
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Let N,(r) denote the number of individuals that have shown symptoms of
the disease by time f. Also, let N,(f) denote the number that are HIV
positive but have not yet shown any symptoms by time . Now, since an
individual that contracts the virus at time s will have symptoms by time ¢
with probability G(f — s) and will not with probability G(t — s), it follows
from Proposition 5.3 that N,(¢f) and N,(¢) are independent Poisson random
variables with respective means

t t

G(t — s)ds = AS G(y) dy

0

EIN,(D] = 4 S

0

and

t t

G(t — 8)ds = AS G(y) dy

0

E[N,(1)] = /1§

0

Now, if we knew A, then we could use it to estimate N,(¢), the number of
individuals infected but without any outward symptoms at time ¢, by its
mean value E[N,(¢)]. However, since 4 is unknown, we must first estimate
it. Now, we will presumably know the value of N,(¢), and so we can use its
known value as an estimate of its mean E[N,(¢)]. That is, if the number of
individuals that have exhibited symptoms by time ¢ is n,, then we can

estimate that
t

n = E[N, ()] = 4 L G(y)dy

Therefore, we can estimate A by the quantity A given by

A= nl/&c(y)dy

Using this estimate of A, we can estimate the number of infected but
symptomless individuals at time ¢ by

t
estimate of N,(f) = 4 S G(y)dy
0

- ny §o G(y) dy
fo G dy

For example, suppose that G is exponential with mean u. Then
G(y) = e™’*, and a simple integration gives that

nu(l — e

t—u(l — e ¥

If we suppose that r = 16 years, u = 10 years, and n, = 220 thousand, then
the estimate of the number of infected but symptomless individuals at

estimate of N,(f) =
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time 16 is
2200(1 — e~ 1%

= 218.
16 — 100 — e~ 9 18.96

estimate =

That is, if we suppose that the foregoing model is approximately correct
(and we should be aware that the assumption of a constant infection rate A
that is unchanging over time is almost certainly a weak point of the model),
then if the incubation period is exponential with mean 10 years and if
the total number of individuals that have exhibited AIDS symptoms during
the first 16 years of the epidemic is 220 thousand, then we can expect
that approximately 219 thousand individuals are HIV positive though
symptomless at time 16. 4

Proof of Proposition 5.3 Let us compute the joint probability
P{N;(t) = n;, i = 1,..., k}. To do so note first that in order for there to
have been n; type i events for i = 1, ..., k there must have been a total of
y&_ | n; events. Hence, conditioning on N(¢) yields

P{N(t) = ny, ..., N () = ny )

k
= P{Nl(t) =1y, Ni(0) = m [N@W) = 1 ":}

i=1

k
X P{N(t) =Yy n,}
i=1
Now consider an arbitrary event that occurred in the interval [0, ¢]. If it had
occurred at time s, then the probability that it would be a type i event would
be P.(s). Hence, since by Theorem 5.2 this event will have occurred at some
time uniformly distributed on (0, ¢), it follows that the probability that this
event will be a type i event is

1 t
P = —X Py(s) ds
t 0

independently of the other events. Hence,

k
P{N,-(t) =n,i=1,..,kIN®)= ¥ n,}
i=1
will just equal the multinomial probability of n; type i outcomes for
i=1,...,k when each of ¥¥_,n; independent trials results in outcome i
with probability P, i = 1, ..., k. That is,
k k
 on)!
P{M(x) =Ny, Nel0) = m[IN(O = X n.} _ Liea P pry

i=1 n,: nk!
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Consequently,
PIN((1) = ny, .., Ni(8) = i}
_ _(Ein! Pri ... pire™ (AnEini
nyte-om! (Xin)!
k

I1 e ™FiAtP)"/n;!

i=1

and the proof is complete. @

We now present some additional examples of the usefulness of
Theorem 5.2.

Example 5.14 (An Electronic Counter): Suppose that electrical pulses
having random amplitude arrive at a counter in accordance with a Poisson
process with rate A. The amplitude of a pulse is assumed to decrease with
time at an exponential rate. That is, we suppose that if a pulse has an
amplitude of 4 units upon arrival, then its amplitude at a time ¢ units later
will be Ae~*. We further suppose that the initial amplitudes of the pulses
are independent and have a common distribution F.

Let S,, S,, ... be the arrival times of the pulses and let A,, 4,, ... be their
respective amplitudes. Then

N()
Aty = Y Ae oS

i=1
represents the total amplitude at time ¢f. We can determine the expected

value of A(f) by conditioning on N(¢), the number of pulses to arrive by
time ¢. This yields

E[A(1)) = EOE[A(t)|N(t) = nle

n=

e ADT
n!

Now, conditioned on N(¢) = n, the unordered arrival times (S,, ..., S,) are
distributed as independent uniform (0, ) random variables. Hence, given
N(t) = n, A(t) has the same distribution as Y7_, A;e7*¢""  where Y},
J =1,...,n, are independent and uniformly distributed on (0, £). Thus,

E|: E Aje_“(’_yf)}

Jj=1

E[A(1)|N() = n]

nE[AE[e ¢~
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where E[A] is the mean initial amplitude of a pulse, and Y is a uniform
(0, t) random variable. Hence,

t
Ele™¢""] = g e

_ e a!eay y=t
ot y=0
-
h ol
and thus,
E[A®|N@) = n] = nE[AJ(—l_af—_a)
or
(1 -e
E[A(D|N@®] = N(t)E[A]T

Taking expectations and using the fact that E[N(f)] = Af, we have

AE[A
E[A(N)] = ———05—1(1 -e ) &

Example 5.15 (An Optimization Example): Suppose that items arrive
at a processing plant in accordance with a Poisson process with rate 4. At
a fixed time 7, all items are dispatched from the system. The problem is to
choose an intermediate time, ¢ € (0, T), at which all items in the system are
dispatched, so as to minimize the total expected wait of all items.

If we dispatch at time ¢, 0 < £ < T, then the expected total wait of all
items will be

2 2
A_t . MT — 1ty
2 2
To see why the above is true, we reason as follows: The expected number of
arrivals in (0, ¢) is Az, and each arrival is uniformly distributed on (0, ¢), and
hence has expected wait ¢/2. Thus, the expected total wait of items arriving
in (0, ) is A#%/2. Similar reasoning holds for arrivals in (¢, T'), and the above
follows. To minimize this quantity, we differentiate with respect to ¢
to obtain
d[ ¢ (T-1)f
dt[12+)‘ > }—At MT -1

and equating to 0 shows that the dispatch time that minimizes the expected
total wait is t = 7/2. &
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We end this section with a result, quite similar in spirit to Theorem 5.2,
which states that given S,,, the time of the nth event, then the first n — 1
event times are distributed as the ordered values of a set of # — 1 random
variables uniformly distributed on (0, S,).

Proposition 5.4 Given that S, = ¢, the set S|, ..., S,_; has the distri-
bution of a set of n — 1 independent uniform (0, ) random variables.

Proof We can prove the above in the same manner as we did Theorem
5.2, or we can argue more loosely as follows:

Sl""’Sn—llsn =1~ Sl""’Sn—-l |S" = t,N(t_) =n — 1
~ 8, Sy INE)Y=n -1

where ~ means ‘‘has the same distribution as’’ and ¢~ is infinitesimally
smaller than ¢. The result now follows from Theorem 5.2. @

5.3.6. Estimating Software Reliability

When a new computer software package is developed, a testing procedure
is often put into effect to eliminate the faults, or bugs, in the package. One
common procedure is to try the package on a set of well-known problems
to see if any errors result. This goes on for some fixed time, with all
resulting errors being noted. Then the testing stops and the package is
carefully checked to determine the specific bugs that were responsible for
the observed errors. The package is then altered to remove these bugs.
As we cannot be certain that all the bugs in the package have been
eliminated, however, a problem of great importance is the estimation of the
error rate of the revised software package.

To model the preceding, let us suppose that initially the package
contains an unknown number, m, of bugs, which we will refer to as bug 1,
bug 2, ..., bug m. Suppose also that bug i will cause errors to occur in
accordance with a Poisson process having an unknownrate A;,i=1, ..., m.
Then, for instance, the number of errors due to bug i/ that occur in any s
units of operating time is Poisson distributed with mean A;s. Also suppose
that these Poisson processes caused by bugs i, i = 1, ..., m are independent.
In addition, suppose that the package is to be run for ¢ time units with all
resulting errors being noted. At the end of this time a careful check of the
package is made to determine the specific bugs that caused the errors (that
is, a debugging, takes place). These bugs are removed, and the problem is
then to determine the error rate for the revised package.
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If we let

wi() = {

1, if bug / has not caused an error by ¢
0, otherwise

then the quantity we wish to estimate is
At) = X Aiwi()
i
the error rate of the final package. To start, note that

E[AM] = ¥ LE[yi(D)]
=X AeNt (5.16)

Now each of the bugs that are discovered would have been responsible for
a certain number of errors. Let us denote by M;(¢) the number of bugs that
were responsible for j errors, j = 1. That is, M,(¢) is the number of bugs
that caused exactly 1 error, M,(¢) is the number that caused 2 errors, and so
on, with ¥ ; jM;(f) equalling the total number of errors that resulted. To
compute E[M,(?)], let us define the indicator variables, I;(¢), i = 1, by
L) = 1, bug i causes exactly 1 error
2710, otherwise
Then,

M) = Z (1)

and so
EM,@)] = ¥ EIL®)] = ¥ Aite™ (5.17)

Thus, from (5.16) and (5.17) we obtain the intriguing result that
Mt
f1=°

E[A(t) - (5.18)

This suggests the possible use of M (f)/t as an estimate of A(¢). To
determine whether or not M,(¢)/t constitutes a ‘‘good’’ estimate of A(¢)
we shall look at how far apart these two quantities tend to be. That is, we
will compute

2
E[ <A(t) — M——';—-(t)> ] = Var(A(t) - A@) from (5.18)

2 1
= Var(A() — ; Cov(A(), My(0)) + -5 Var(M,(1))
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Now,

Var(A() = ¥ A7 Var(y;(0) = L Afe™M(1 — e,

i

Var(M,(1)) = E Var(l;(t)) = Z Ate (1 — AteNY),

Cov(A(t), My(1)) = C0V<Z Aiyi), L Ij(t)>
i Jj
= E Z Cov(d; (1), I;(1))
i
T 4 Cov(wi (), (1)

= =Y LM te ™
i

where the last two equalities follow since w,(f) and I;(¢) are independent
when i # j as they refer to different Poisson processes and w,(¢);(t) = 0.
Hence we obtain that

M)\ 1
E[ <A(t) - %) } =Y Ale™M + p Y Ae™
_ EIMy()) + 2My(1))
= e
where the last equality follows from (5.17) and the identity (which we leave
as an exercise)

EMy0)] = 3 ¥ (;n)’e”™ (5.19)

Thus, we can estimate the average square of the difference between A(f)
and M,(t)/t by the observed value of M,(t) + 2M,(¢) divided by ¢°.

Example 5.16 Suppose that in 100 units of operating time 20 bugs are
discovered of which two resulted in exactly one, and three resulted in
exactly two, errors. Then we would estimate that A(100) is something akin
to the value of a random variable whose mean is equal to 1/50 and whose
variance is equal to 8/10,000. &

5.4. Generalizations of the Poisson Process
5.4.1. Nonhomogeneous Poisson Process

In this section we consider two generalizations of the Poisson process. The
first of these is the nonhomogeneous, also called the nonstationary, Poisson
process, which is obtained by allowing the arrival rate at time ¢ to be a
function of ¢.
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Definition 5.4 The counting process {N(¢), t = 0} is said to be a
nonhomogeneous Poisson process with intensity function A(f), t = 0, if
(i) MO) =0,
(ii) {N(¢), ¢t = 0} has independent increments,
(iii) P{N(t + h) — N@t) = 2} = o(h),
(iv) PIN(t + h) — N(t) = 1} = A(t)h + o(h).

If we let m(t) = {, A(s) ds, then it can be shown that
P{N(@t + s) — N(t) = nj}

= e~ lmu+s)-m()] [m(t + s) — m(0)]"

py ) n=0 (5.20)

Or, in other words, N(¢ + s) — N(¢) is Poisson distributed with mean
m(t + s) — m(t). Thus, for instance, N(¢) is Poisson distributed with mean
m(t), and for this reason m(t) is called the mean value function of the
process. Note that if A(f) = A (that is, if we have a Poisson process), then
m(t) = At and so Equation (5.20) reduces to the fact that for a Poisson
process N(t + s) — N(¢) is Poisson distributed with mean As.

The proof of Equation (5.20) follows along the lines of the proof of
Theorem 5.1 with a slight modification. That is, we fix ¢ and define

P,(s) = PIN(t + 5s) — N(t) = nj}
Now,

Py(s + h) = P{N(t + s + h) — N(@t) = 0}
= P{O eventsin (f,¢ + s), Oeventsin [t + s, t + 5 + K]}
= P{0eventsin (¢, + s)}P{Oeventsin [t + s, t + s + K]}
= Py$)[1 — A(t + s)h + o(h)]

where the last two equations follow from independent increments plus
the fact that (iii) and (iv) imply that P{N(t + s + h) — N(t + s) = 0} =
1 — A(t + s)h + o(h). Hence,

B+ ’2 — RO _ i+ 9Py + %

letting A — 0 yields
Py(s) = —A(t + S)Po(s)

or

s t+s

At + wdu = —S A(y) dy

t

log Py(s) = —g
0
or

PO(S) =e {m(t+s)—-m(1))



5.4. Generalizations of the Poisson Process 237

The remainder of the verification of equation (5.20) follows similarly and is
left as an exercise.

The importance of the nonhomogeneous Poisson process resides in the
fact that we no longer require the condition of stationary increments. Thus
we now allow for the possibility that events may be more likely to occur
during certain times during the day than during other times.

Example 5.17 Norbert runs a hot dog stand which opens at 8 A.M.
From 8 until 11 A.M. customers seem to arrive, on the average, at a steadily
increasing rate that starts with an initial rate of 5 customers per hour at
8 A.M. and reaches a maximum of 20 customers per hour at 11 A.M. From
11 A.M. until 1p.M. the (average) rate seems to remain constant at 20
customers per hour. However, the (average) arrival rate then drops steadily
from 1p.M. until closing time at 5 P.M. at which time it has the value of
12 customers per hour. If we assume that the number of customers arriving
at Norbert’s stand during disjoint time periods is independent, then what is
a good probability model for the above? What is the probability that no
customers arrive between 8:30 A.M. and 9:30 A.M. on Monday morning?
What is the expected number of arrivals in this period?

Solution: A good model for the above would be to assume that arrivals
constitute a nonhomogeneous Poisson process with intensity function
A(t) given by

5 + 5¢, 0=t=<3

A = § 20, 3<t=<S$

20 — 2(t — 5), S=t=<9

and
A=At -9 fort>9

Note that N(¢) represents the number of arrivals during the first ¢ hours
that the store is open. That is, we do not count the hours between 5 p.M.
and 8 A.M. If for some reason we wanted N(f) to represent the number of
arrivals during the first ¢ hours regardless of whether the store was open
or not, then, assuming that the process begins at midnight we would let

0, 0=<t<8
5+ 5(t -8, 8§=<r=1l
A(t) = § 20, 11=tr=<13

20 — 2(t — 13), B=r=<17
0, 17<t=<24
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and
AME) = At — 24)  fort> 24

As the number of arrivals between 8:30 A.M. and 9:30 A.M. will be
Poisson with mean m(3) — m(}) in the first representation (and
m() — m(&D in the second representation), we have that the probability
that this number is zero is

372
exp{—j (5 + 50 dt} =e 10

1/2

and the mean number of arrivals is

372
S 5+5)dt=10 &

172

When the intensity function A(f) is bounded, we can think of the
nonhomogeneous process as being a random sample from a homogeneous
Poisson process. Specifically, let A be such that

At) = A forallt=0

and consider a Poisson process with rate A. Now if we suppose that an
event of the Poisson process that occurs at time ¢ is counted with probability
A(t)/ A, then the process of counted events is a nonhomogeneous Poisson
process with intensity function A(f). This last statement easily follows from
definition 5.4. For instance (i), (ii), and (iii) follow since thay are also true
for the homogeneous Poisson process. Axiom (iv) follows since

At
P{one counted event in (¢, ¢t + h)} = P{one event in (¢, ¢ + h)} —%2 + o(h)

= Ahﬂ% + o(h)

= A(t)h + o(h)

Example 5.18 (The Output Process of an Infinite Server Poisson
Queue (M/G/)): It turns out that the output process of the M/G/
queue—that is, of the infinite server queue having Poisson arrivals and
general service distribution G—is a nonhomogeneous Poisson process
having intensity function A(f) = AG(¢). To prove this claim, note first that
the (joint) probability (density) that a customer arrives at time s and departs
at time ¢ is equal to A, the probability (intensity) of an arrival at time s,
multiplied by g(t — s), the probability (density) that its service time is # — s.
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Hence,
AR) = S Ag(t — s)ds = AG(¥)
0

is the probability intensity of a departure at time f. Now suppose we
are told that a departure occurs at time r—how does this affect the
probabilities of other departure times? Well, even if we knew the arrival
time of the customer who departed at time ¢, this would not affect the
arrival times of other customers (because of the independent increment
assumption of the Poisson arrival process). Hence, as there are always
servers available for arrivals this information cannot affect the probabilities
of other departure times. Thus, the departure process has independent
increments, and departures occur at ¢ with intensity A(¢#), which verifies
the claim. @

5.4.2. Compound Poisson Process

A stochastic process {X{(¢), t = 0} is said to be a compound Poisson process
is it can be represented as

N@©)

Xn=YY, t=20 (5.21)

i=1
where {N(¢), ¢t = 0} is a Poisson process, and {Y,, n = 0} is a family of
independent and identically distributed random variables which are also
independent of {N(¢), ¢ = 0}.

Examples of Compound Poisson Processes

(i) If Y; = 1, then X(¢) = N(¢), and so we have the usual Poisson process.
(ii) Suppose that buses arrive at a sporting event in accordance with a
Poisson process, and suppose that the numbers of customers in each bus are
assumed to be independent and identically distributed. Then {X(¢), ¢t = 0} is
a compound Poisson process where X(¢) denotes the number of customers
who have arrived by ¢. In Equation (5.21) Y; represents the number of
customers in the ith bus.

(iii) Suppose customers leave a supermarket in accordance with a Poisson
process. If Y;, the amount spent by the ith customer, i =1,2,..., are
independent and identically distributed, then {X(¢), f = 0} is a compound
Poisson process when X(¢) denotes the total amount of money spent by
time . @
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Let us calculate the mean and variance of X(r). To calculate E[X(¢)], we
first condition on N(¢) to obtain

E[X()] = EEIX®|NOD

Now
[ N(t)
EX(|IN@®) =nl =E| ¥ Y;IN(®) =n
| i=1
=El ¥ YINO = n}
[ i=1
-] £
Li=1
= nEfY|]
where we have used the assumed independence of the ¥;’s and N(¢). Hence,
E[X())|N(0)] = N()E[Y]] (5.22)
and therefore
E[X(1)] = ME[Y;] (5.23)

To calculate Var [X(¢)] we use the conditional variance formula (see
Exercise 26 of Chapter 3)

Var[X()] = E[Var(X(¢)| N(#))] + Var(E[X(?) | N@#)]) (5.24)

Now,
N@©)
Var[X(£) | N(t) = n] = Var[ Y Y INQ@) = n}
i=1
= Var[ f: Y,}
i=1
= n Var(Y))
and thus
Var[X(¢) | N()] = N(t) Var(Y;) (5.25)

Therefore, using Equations (5.22) and (5.25), we obtain by Equation (5.24)
that

Var[X(1)] = E[N(f) Var(Y,)] + Var[N()EY,]
= At Var(Y)) + (EY))*At
= A[Var(Yy) + (EY))]
= ME[Y?] (5.26)
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where we have used the fact that Var[N(¢)] = At since N(t) is Poisson
distributed with mean Ar.

Example 5.19 Suppose that families migrate to an area at a Poisson
rate A = 2 per week. If the number of people in each family is independent
and takes on the values 1, 2, 3, 4 with respective probabilities £, 4, §, ¢, then
what is the expected value and variance of the number of individuals
migrating to this area during a fixed five-week period?

Solution: Letting Y; denote the number of people in the ith family,
we have that

ElY]=1-3+2-3+3-3+4-4=3,
ElY]=1-t+22-4+3 L +4- L =4

Hence, letting X(5) denote the number of immigrants during a five-week
period, we obtain from Equations (5.23) and (5.26) that

E[X(5)]=2-5-3=25
and
Var[X(5)] =2-5-4 =45 @

There is a very nice representation of the compound Poisson process
when the set of possible values of the Y; is finite or countably infinite. So let
us suppose that there are numbers «;, j = 1, such that

PY,=a;)=p;, Lp=1
J

Now, a compound Poisson process arises when events occur according to a
Poisson process and each event results in a random amount Y being added
to the cumulative sum. Let us say that the event is a type j event whenever
it results in adding the amount «;, j = 1. That is, the ith event of the
Poisson process is a type j event if Y, = «;. If we let N;(¢) denote the
number of type j events by time ¢, then it follows from Proposition 5.2 that
the random variables N,(#), j = 1, are independent Poisson random
variables with respective means

E[N;(0)] = Ap;t

Since, for each j, the amount «; is added to the cumulative sum a total of
N;(¢) times by time ¢, it follows that the cumulative sum at time ¢ can be
expressed as

X =Y a;N;(1) (5.27)

J
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As a check of Equation (5.27), let us use it to compute the mean and
variance of X(¢). This yields

E[X(®)] = E[ ) aij(t)]
J
- T aEIN,0)]
J
= Z ajllpjt
J

= ME[Y]
Also,

Var[X(?)] = Var[ Y oszj(t)]
i

= ) of Var[N;(/)] by the independence of the
J N;(),Jj =1

J

= ME[Y{]

where the next to last equality follows since the variance of the Poisson
random variable NV;(7) is equal to its mean.

Thus, we see that the representation (5.27) results in the same expressions
for the mean and variance of X(r) as were previously derived.

One of the uses of the representation (5.27) is that it enables us to
conclude that as ¢ grows large, the distribution of X(¢) converges to the
normal distribution. To see why, note first that it follows by the Central
Limit Theorem that the distribution of a Poisson random variable
converges to a normal distribution as its mean increases. (Why is this?)
Therefore, each of the random variables N;(f) converges to a normal
random variable as ¢ increases. As they are independent, and as the sum of
independent normal random variables is also normal, it follows that X(¢)
also approaches a normal distribution as ¢ increases.

Example 5.20 In Example 5.19, find the approximate probability that
at least 240 people migrate to the area within the next 50 weeks.

Solution: Since A = 2, E[Y;] = 5/2, E[Y?] = 43/6, we see that
E[X(50)] = 250, Var[X(50)] = 4300/6



Exercises 243

Now, the desired probability is
P{X(50) = 240} = P{X(50) = 239.5}
{X(SO) — 250  239.5 - 250}
= P >

V4300/6 ~/4300/6
1 — ¢(—0.037)
$(0.037)
= 0.515

where Table 2.3 was used to determine ¢(0.037), the probability that a
standard normal is less than 0.037.

Exercises

1. The time T required to repair a machine is an exponentially distributed
random variable with mean % (hours).

(a) What is the probability that a repair time exceeds + hour?
(b) What is the probability that a repair takes at least 124 hours given
that its duration exceeds 12 hours?

2. Consider a post office with two clerks. Three people, A, B, and C,
enter simultaneously. A and B go directly to the clerks, and C waits until
either A or B leaves before he begins service. What is the probability that
A is still in the post office after the other two have left when

(a) the service time for each clerk is exactly (nonrandom) ten minutes?
(b) the service times are / with probability 4, i = 1,2, 3?
(c) the service times are exponential with mean 1/u?

3. The lifetime of a radio is exponentially distributed with a mean of ten

years. If Jones buys a ten-year-old radio, what is the probability that it will
be working after an additional ten years?

4. In Example 5.2 if server i serves at an exponential rate 4;, i = 1, 2,

show that
P{Smith is not last} = A Y + Y
T\ + A A+ Ay

*5. If X, and X, are independent nonnegative continuous random
variables, show that

r(?)

P{X, < X,|min(X,, X,) = t} = 0 + o)
1

where r;(¢) is the failure rate function of Xj.
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6. Show that the failure rate function of a gamma distribution with
parameters n and 4 is increasing when n = 1.

7. Norb and Nat enter a barbershop simultaneously—Norb to get a shave
and Nat a haircut. If the amount of time it takes to receive a haircut (shave)
is exponentially distributed with mean 20 (15) minutes, and if Norb and Nat
are immediately served, what is the probability that Nat finishes before
Norb?

*8. If X and Y are independent exponential random variables with
respective mean 1/4, and 1/4,, then

(a) use the lack of memory property of the exponential to intuitively
explain why Z = min(X, Y) is exponential.

(b) what is the conditional distribution of Z given that Z = X?

(c) give a heuristic argument that the conditional distribution of ¥ — Z,
given that Z = X, is exponential with mean 1/4,.

9. Let X be an exponential random variable with rate A.

(a) Use the definition of conditional expectation to determine
E[X|X < ¢].
(b) Now determine E[X | X < c] by using the following identity:

EX]=EX|X<c]P{X<c}+ E[X|X > c]P{X > ¢}

10. In Example 5.2, what is the expected time until all three customers
have left the post office?

11. Suppose in Example 5.2 that the time it takes server i to serve
customers is exponentially distributed with mean 1/4;,i = 1, 2. What is the
expected time until all three customers have left the post office?

12. A set of n cities are to be connected via communication links. The cost
to construct a link between cities i and j is C;;, i # j. Enough links should
be constructed so that for each pair of cities there is a path of links that
connects them. As a result, only n — 1 links need be constructed. A minimal

cost algorithm for solving this problem (known as the minimal spanning
n
tree problem) first constructs the cheapest of all the < 2> links. Then, at

each additional stage it chooses the cheapest link that connects a city
without any links to one with links. That is, if the first link is between cities
1 and 2, then the second link will either be between 1 and one of the links
3, ..., nor between 2 and one of the links 3, ..., n. Suppose that all of the

n . . . .
< 2> costs C;; are independent exponential random variables with mean 1.
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Find the expected cost of the preceding algorithm if

@ n=3
b)n=4

*13. Let X, and X, be independent exponential random variables, each
having rate u. Let

X1y = Minimum(X,,X;) and X = Maximum(X,, X;)
Find
(@ E [X(l)]
(b) Var[X,]
©) E [X(z)]
(d) Var [X(z)]

14. Repeat Exercise 13, but this time suppose that the X; are independent
exponentials with respective rates y;, i = 1, 2.

15. In a certain system, a customer must first be served by server 1 and
then by server 2. The service times at server / are exponential with rate y;,
i = 1, 2. An arrival finding server 1 busy waits in line for that server. Upon
completion of service at server 1, a customer either enters service with server
2 if that server is free or else remains with server 1 (blocking any other
customer from entering service) until server 2 is free. Customers depart the
system after being served by server 2. Suppose that when you arrive there is
one customer in the system and that customer is being served by server 1.
What is the expected total time you spend in the system?

16. Suppose in Exercise 15 you arrive to find two others in the system, one
being served by server 1 and one by server 2. What is the expected time you
spend in the system? Recall that if server 1 finishes before server 2, then
server 1’s customer will remain with him (thus blocking your entrance) until
server 2 becomes free.

*17. A flashlight needs two batteries to be operational. Consider such a
flashlight along with a set of # functional batteries—battery 1, battery 2, ...,
battery n. Initially, battery 1 and 2 are installed. Whenever a battery fails,
it is immediately replaced by the lowest numbered functional battery that
has not yet been put in use. Suppose that the lifetimes of the different
batteries are independent exponential random variables each having rate u.
At a random time, call it 7, a battery will fail and our stockpile will
be empty. At that moment exactly one of the batteries—which we call
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battery X—will not yet have failed.

(a) What is P{X = n}?

(b) What is P{X = 1}?

(¢) What is P{X = i}?

(d) Find E[T].

(e) What is the distribution of 7'?

18. Let X and Y be independent exponential random variables having
respective rates 4 and u. Let I, independent of X, Y, be such that

L, with probability K
I A+ u

A
0, ith probabilit
with probability Tt
and define Z by

X, ifl=1
Z= {—Y, ifI=0

(a) Show, by computing their moment generating functions, that X — Y
and Z have the same distribution.

(b) Using the lack of memory property of exponential random variables,
give a simple explanation of the result of part (a).

19. Two individuals, A and B, both require kidney transplants. If she
does not receive a new kidney, then 4 will die after an exponential time with
rate 44, and B after an exponential time with rate uz. New kidneys arrive
in accordance with a Poisson process having rate A. It has been decided that
the first kidney will go to A (or to B if B is alive and A is not at that time)
and the next one to B (if still living).

(a) What is the probability 4 obtains a new kidney?
(b) What is the probability B obtains a new kidney?

20. Show that Definition 5.1 of a Poisson process implies Definition 5.3.

*21. Show that assumption (iv) of Definition 5.3 follows from assump-
tions (ii) and (iii).
Hint: Derive a functional equation for g(¢) = P{N(t) = 0}.

22. Cars cross a certain point in the highway in accordance with a Poisson
process with rate A = 3 per minute. If Reb blindly runs across the highway,
then what is the probability that she will be uninjured if the amount of
time that it takes her to cross the road is s seconds? (Assume that if she
is on the highway when a car passes by, then she will be injured.) Do it for
s=2,5,10, 20.
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23. Suppose in Exercise 22 that Reb is agile enough to escape from a
single car, but if she encounters two or more cars while attempting to cross
the road, then she will be injured. What is the probability that she will be
unhurt if it takes her s seconds to cross. Do it for s = 5, 10, 20, 30.

*24. Show that if {N;(¢), ¢ = 0] are independent Poisson processes with
rate A;, i = 1, 2, then {N(?), t = 0} is a Poisson process with rate 4; + 4,
where N(t) = N,(t) + N, ().

25. In Exercise 24 what is the probability that the first event of the
combined process is from the N, process?

26. Let {N(¢), t = 0} be a Poisson process with rate 4. Let S, denote the
time of the nth event. Find

(a) EI[S,]
(b) E[S,|N1) = 2]
(©) E[N@) - N2)|N(1) = 3]

27. Suppose that you want to cross a road at a spot at which cars go by
in accordance with a Poisson process with rate A. You will begin to cross the
first time you see that there will not be any cars passing for the next ¢ time
units. Let N denote the number of cars that pass before you cross, and let
T denote the time at which you start to cross the road.

(a) What is E[N]?

(b) Write an equation that relates 7, N, and the interarrival times T;,
i=1.

(¢) Find E[T] by conditioning on N.

(d) What is E[Ty,,]?

28. The number of hours between successive train arrivals at the station is
uniformly distributed on (0, 1). Passengers arrive according to a Poisson
processs with rate 7 per hour. Suppose a train has just left the station.
Let X denote the number of people that get on the next train. Find

(a) E[X]
(b) Var(X)

29. For a Poisson process show, for s < ¢, that

k n—k
P{N(s) = k|N(t) = n} = <Z><j> <1 - j) . k=0,1,....n

30. Men and women enter a supermarket according to independent
Poisson processes having respective rates two and four per minute. Starting
at an arbitrary time, compute the probability that at least two men arrive
before three women arrive.
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*31. Events occur according to a Poisson process with rate A =2
per hour.

(a) What is the probability that no event occurs between 8 p.M. and
9p.M.?

(b) Starting at noon, what is the expected time at which the fourth event
occurs?

(c) What is the probability that two or more events occur between 6 p.M.
and 8p.M.?

32. Pulses arrive at a Geiger counter in accordance with a Poisson process
at a rate of three arrivals per minute. Each particle arriving at the counter
has a probability £ of being recorded. Let X(¢) denote the number of pulses
recorded by time ¢ minutes.

(@) PIX(t) =0} =?
(b) EX(1) =?

33. Cars pass a point on the highway at a Poisson rate of one per minute.
If five percent of the cars on the road are vans, then

(a) what is the probability that at least one van passes by during an hour?
(b) given that ten vans have passed by in an hour, what is the expected
number of cars to have passed by in that time?

(c) if 50 cars have passed by in an hour, what is the probability that five
of them were vans?

*34. Customers arrive at a bank at a Poisson rate A. Suppose two
customers arrived during the first hour. What is the probability that

(a) both arrived during the first 20 minutes?
(b) at least one arrived during the first 20 minutes?

35. A system has a random number of flaws that we will suppose is
Poisson distributed with mean c. Each of these flaws will, independently,
cause the system to fail at a random time having distribution G. When
a system failure occurs, suppose that the flaw causing the failure is
immediately located and fixed.

(a) What is the distribution of the number of failures by time ¢?

(b) What is the distribution of the number of flaws that remain in the
system at time ¢?

(c) Are the random variables in (a) and (b) dependent or independent?
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36. Suppose that the number of typographical errors in a new text is
Poisson distributed with mean A. Two proofreaders independently read the
text. Suppose that each error is independently found by proofreader i/ with
probability p;, i = 1, 2. Let X, denote the number of errors that are found
by proofreader 1 but not by proofreader 2. Let X, denote the number of
errors that are found by proofreader 2 but not by proofreader 1. Let X,
denote the number of errors that are found by both proofreaders. Finally,
let X, denote the number of errors found by neither proofreader.

(a) Describe the joint probability distribution of X, X,, X3, X,.
(b) Show that
EX,] 1-p, d E[X;] 1-p

E[X;] D2 E[X;] P
Suppose now that A, p,, and p, are all unknown.

(c) By using X; as an estimator of E[X;], i = 1, 2, 3, present estimators
of p,, p,, and 4.

(d) Give an estimator of X,, the number of errors not found by either
proofreader.

37. Consider an infinite server queueing system in which customers arrive
in accordance with a Poisson process and where the service distribution is
exponential with rate u. Let X(¢) denote the number of customers in the
system at time ¢. Find

(@) E[X(t + 5)| X(s) = n]
(b) Var[X(t + s) | X(s) = n]

Hint: Divide the customers in the system at time ¢ + s into two groups,
one consisting of ‘‘old’’ customers and the other of ‘‘new’’ customers.

*38. Suppose that people arrive at a bus stop in accordance with a
Poisson process with rate A. The bus departs at time ¢. Let X denote the
total amount of waiting time of all those that get on the bus at time ¢.
We want to determine Var (X). Let N(¢) denote the number of arrivals by
time .

(a) What is E[X | N()]?
(b) Argue that Var[X | N(5)] = N(#)*/12.
(c) What is Var(X)?

39. An average of 500 people pass the California bar exam each year. A
California lawyer practices law, on average, for 30 years. Assuming these
numbers remain steady, how many lawyers would you expect California to
have in 20507
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40. A cable car starts off with n riders. The times between successive stops
of the car are independent exponential random variables with rate A. At
each stop one rider gets off. This takes no time, and no additional riders get
on. After a rider gets off the car, he or she walks home. Independently of
all else, the walk takes an exponential time with rate 4.

(a) What is the distribution of the time at which the last rider departs
the car?

(b) Suppose the last rider departs the car at time ¢. What is the
probability that all the other riders are home at that time?

41. Suppose that the time between successive arrivals of customers at a
single-server station are independent random variables having a common
distribution F. Suppose that when a customer arrives, it either immediately
enters service if the server is free or else it joins the end of the waiting line
if the server is busy with another customer. When the server completes work
on a customer that customer leaves the system and the next waiting
customer, if there are any, enters service. Let X, denote the number of
customers in the system immediately before the nth arrival, and let Y,
denote the number of customers that remain in the system when the nth
customer departs. The successive service times of customers are inde-
pendent random variables (which are also independent of the interarrival
times) having a common distribution G.

(a) If F is the exponential distribution with rate A, which, if any, of the
processes {X,}, {Y,] is a Markov chain?
(b) If G is the exponential distribution with rate g, which, if any, of the
processes {X,}, {Y,} is a Markov chain?
(¢) Give the transition probabilities of any Markov chains in (a) and (b).

42. Verify equation (5.20).

43. Events occur according to a nonhomogeneous Poisson process whose
mean value function is given by

m(t) = £* + 2t, t=0

What is the probability that n events occur between times ¢ = 4 and
t=757

44. A store opens at 8 A.M. From 8 until 10 customers arrive at a Poisson
rate of four an hour. Between 10 and 12 they arrive at a Poisson rate of
eight an hour. From 12 to 2 the arrival rate increases steadily from eight per
hour at 12 to ten per hour at 2; and from 2 to 5 the arrival rate drops
steadily from ten per hour at 2 to four per hour at 5. Determine the
probability distribution of the number of customers that enter the store on
a given day.
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*45. Consider a nonhomogeneous Poisson process whose intensity
function A(¢) is bounded and continuous. Show that such a process is
equivalent to a process of counted events from a (homogeneous) Poisson
process having rate A, where an event at time ¢ is counted (independent of
the past) with probability A(¢)/4; and where A is chosen so that A(s) < A for
all s.

46. Let T,,T,,... denote the interarrival times of events of a non-
homogeneous Poisson process having intensity function A(¢).

(a) Are the 7; independent?
(b) Are the T; identically distributed?
(c) Find the distribution of 7;.

47. (a) Let {N(¢#), t = 0} be a nonhomogeneous Poisson process with
mean value function m(¢). Given N(¢) = n, show that the unordered set of
arrival times has the same distribution as n independent and identically
distributed random variables having distribution function

me
Fx) = { m(t)’ -
1, x>t

(b) Suppose that workmen incur accidents in accordance with a
nonhomogeneous Poisson process with mean value function m(¢). Suppose
further that each injured man is out of work for a random amount of time
having distribution F. Let X(¢) be the number of workers who are out of
work at time ¢. By using part (i), find E[X(#)].

48. Suppose that events occur according to a nonhomogeneous Poisson
process with intensity function A(z), ¢ = 0. Suppose that, independently of
anything that has previously occurred, an event at time s will be counted
with probability p(s), s = 0. Let N (¢) denote the number of counted events
by time ¢.

(a) What type of process if {N_(¢), t = 0}?
(b) Prove your answer to part (a).

49. Suppose that {Ny(¢), t = 0} is a Poisson process with rate A = 1.
Let A(r) denote a nonnegative function of ¢, and let

m(t) = j A(s) ds
0

Define N(¢) by
N(t) = No(m(1))
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Argue that {N(f), ¢t = 0} is a nonhomogeneous Poisson process with
intensity function A(¢), t = 0.

Hint: Make use of the identity
m(t + h) — m@) = m'() h + o(h)

*50. Let X,,X,,... be independent and identically distributed non-
negative continuous random variables having density function f(x). We say
that a record occurs at time #n if X, is larger than each of the previous values
Xy, ... X,_,. (A record automatically occurs at time 1.) If a record occurs
at time n, then X, is called a record value. In other words, a record occurs
whenever a new high is reached, and that new high is called the record
value. Let N(t) denote the number of record values that are less than or
equal to . Characterize the process {N(¢), ¢t = 0} when

(a) f is an arbitrary continuous density function
(b) f(x) = re™

Hint: Finish the following sentence: There will be a record whose value
is between r and ¢ + dt if the first X, that is greater than ¢ lies between ... .

51. Aninsurance company pays out claims on its life insurance policies in
accordance with a Poisson process having rate A = 5 per week. If the
amount of money paid on each policy is exponentially distributed with
mean $2000, what is the mean and variance of the amount of money paid
by the insurance company in a four-week span?

52. In good years, storms occur according to a Poisson process with rate
3 per unit time, while in other years they occur according to a Poisson
process with rate 5 per unit time. Suppose next year will be a good year with
probability 0.3. Let N(¢) denote the number of storms during the first 7 time
units of next year.

(a) Find P{N(t) = n}.

(b) Is {N(t)} a Poisson process?

(c) Does {N(#)} have stationary increments? Why or why not?

(d) Does it have independent increments? Why or why not?

(e) If next year starts off with 3 storms by time ¢ = 1, what is the
conditional probability it is a good year?

53. Determine
Cov[X(1), X(t + 5)]

when {X(#), t = 0} is a compound Poisson process.
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54. Customers arrive at the automatic teller machine in accordance with
a Poisson process with rate 12 per hour. The amount of money withdrawn
on each transaction is a random variable with mean $30 and standard
deviation $50. (A negative withdrawal means that money was deposited.)
The machine is in use for 15 hours daily. Approximate the probability that
the total daily withdrawal is less than $6000.

55. Some components of a two-component system fail after receiving a
shock. Shocks of three types arrive independently and in accordance with
Poisson processes. Shocks of the first type arrive at a Poisson rate 4, and
cause the first component to fail. Those of the second type arrive at a
Poisson rate 4, and cause the second component to fail. The third type of
shock arrives at a Poisson rate A; and causes both components to fail. Let
X, and X, denote the survival times for the two components. Show that the
joint distribution of X, and X, is given by

P{X,>s, X, >t} =expf—A;s — At — A3 max(s, 1)}
This distribution is known as the bivariate exponential distribution.

56. In Exercise 55 show that X; and X, both have exponential
distributions.

*57. Let X,,X,,...,X, be independent and identically distributed
exponential random variables. Show that the probability that the largest
of them is greater than the sum of the others is n/2"~!. That is if

M = max X;
J

then show

P{M> ix,.—M} =

2 2n—1
Hint: What is P{X, > Y]_, X;}?
58. Prove Equation (5.19).
59. Prove that
(a) max(X,, X,) = X, + X, — min(X;, X,) and, in general,
(b) max(X,, ..., X,) = i::X,-— ¥ Y min(X;, X))
i<j

+ ¥ ¥ ¥ min(X;, X;, Xi) + -

i<j<k

+ (=1)" 'min(X,, X;, ..., X,,)
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Show by defining appropriate random variables X;, i = 1, ..., n, and by
taking expectations in (b) how to obtain the well-known formula

P((4) = L Pad - £ 3 Ptas)

i<j
+ o+ (=1)"P(A, - Ay)

(c) Consider n independent Poisson processes—the ith having rate 4;.
Derive an expression for the expected time until an event has occurred in
all n processes.

60. A two-dimensional Poisson process is a process of randomly occurring
events in the plane such that

(i) for any region of area A the number of events in that region has a
Poisson distribution with mean A4 and
(ii) the number of events in nonoverlapping regions are independent.

For such a process consider an arbitrary point in the plane and let X denote
its distance from its nearest event (where distance is measured in the usual
Euclidean manner). Show that

(a) PiX >t} =e ™M

1
(b) ElX] =57

61. Show, in Example 5.5, that the distributions of the total cost are the
same for the two algorithms.
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Chapter 6

Continuous-Time
Markov Chains

v

6.1. Introduction

In this chapter we consider a class of probability models that have a wide
variety of applications in the real world. They are the continuous-time
analogue of the Markov chains of Chapter 4 and as such are character-
ized by the Markovian property that given the present state, the future is
independent of the past.

One example of a continuous-time Markov chain has already been met.
This is, of course, the Poisson process of Chapter 5. For if we let the total
number of arrivals by time ¢ [that is, N(¢)] be the state of the process at time
t, then the Poisson process is a continuous-time Markov chain having states
0, 1,2, ... and which always proceeds from state n to state n + 1, where
n = 0. Such a process is known as a pure birth process since the state of the
system is always increased by one. More generally, an exponential model
which can go (in one transition) only from state n to either state n — 1 or
state n + 1 is called a birth and death model. For such a model, transitions
from state n to state n + 1 are designated as births, and those from »n to
n — 1 as deaths. Birth and death models have wide applicability in the study
of biological systems and in the study of waiting line systems in which the
state represents the number of cusomers in the system. These models will be
studied extensively in this chapter.

In Section 6.2 we define continuous-time Markov chains and then relate
them to the discrete-time Markov chains of Chapter 4. In Section 6.3 we
consider birth and death processes and in Section 6.4 we derive two sets of

255
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differential equations—the forward and backward equations—which
describe the probability laws for the system. The material in Section 6.5
is concerned with determining the limiting (or long-run) probabilities
connected with a continuous-time Markov chain. In Section 6.6 we consider
the topic of time reversibility. We show that all birth and death processes
are time reversible, and then illustrate the importance of this observation to
queueing systems. In the final section we show how to ‘‘uniformize”
Markov chains, a technique useful for numerical computations.

6.2. Continuous-Time Markov Chains

Suppose we have a continuous-time stochastic process {X(t), ¢ = 0} taking
on values in the set of nonnegative integers. In analogy with the definition
of a discrete-time Markov chain, given in Chapter 4, we say that the process
{X(1), t = 0} is a continuous-time Markov chain if for all 5, t = 0 and
nonnegative integers f, j, x(u), 0 <= u <s

PXt+s)=j|X(6) =i Xu) =xu), 0 <u<s)
=PXt+s)=jlX@6) =1}

In other words, a continuous-time Markov chain is a stochastic process
having the Markovian property that the conditional distribution of the
future X(¢r + s) given the present X(s) and the past X(u), 0 = u < s,
depends only on the present and is independent of the past. If, in addition,

P{X(t + s) = j| X(s) = i}

is independent of s, then the continuous-time Markov chain is said to have
stationary or homogeneous transition probabilities.

All Markov chains considered in this text will be assumed to have
stationary transition probabilities.

Suppose that a continuous-time Markov chain enters state / at some
time, say time 0, and suppose that the process does not leave state / (that
is, a transition does not occur) during the next ten minutes. What is the
probability that the process will not leave state i during the following five
minutes? Now since the process is in state i at time 10 it follows, by the
Markovian property, that the probability that it remains in that state during
the interval [10, 15] is just the (unconditional) probability that it stays in
state / for at least five minutes. That is, if we let 7; denote the amount of
time that the process stays in state / before making a transition into a
different state, then

P(T, > 15|T; > 10} = P(T, > 5}
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or, in general, by the same reasoning,
P{T, > s + t|T; > s} = P{T; > t}

for all s, f = 0. Hence, the random variable T; is memoryless and must thus
(see Section 5.2.2) be exponentially distributed.

In fact, the above gives us another way of defining a continuous-time
Markov chain. Namely, it is a stochastic process having the properties that
each time it enters state /

(i) the amount of time it spends in that state before making a transition
into a different state is exponentially distributed with mean, say 1/v;,
and

(i) when the process leaves state i, it next enters state j with some
probability, say P;;. Of course, the P; must satisfy

Pi'=0, alll
YP,=1, alli
J

In other words, a continuous-time Markov chain is a stochastic process
that moves from state to state in accordance with a (discrete-time) Markov
chain, but is such that the amount of time it spends in each state, before
proceeding to the next state, is exponentially distributed. In addition, the
amount of time the process spends in state /, and the next state visited, must
be independent random variables. For if the next state visited were depen-
dent on T;, then information as to how long the process has already been in
state i would be relevant to the prediction of the next state—and this
contradicts the Markovian assumption.

Example 6.1 (A Shoeshine Shop): Consider a shoeshine establishment
consisting of two chairs—chair 1 and chair 2. A customer upon arrival goes
initially to chair 1 where his shoes are cleaned and polish is applied. After
this is done the customer moves on to chair 2 where the polish is buffed. The
service times at the two chairs are assumed to be independent random
variables which are exponentially distributed with respective rates u, and
U, . Suppose that potential customers arrive in accordance with a Poisson
process having rate A, and that a potential customer will only enter the
system if both chairs are empty.

The preceding model can be analyzed as a continuous-time Markov
chain, but first we must decide upon an appropriate state space. Since a
potential customer will enter the system only if there are no other customers
present, it follows that there will always either be 0 or 1 customers in the
system. However, if there is 1 customer in the system, then we would also
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need to know which chair he was presently in. Hence, an appropriate state
space might consist of the three states 0, 1, and 2 where the states have the
following interpretation:

State Interpretation
0 system is empty
1 a customer is in chair 1
2 a customer is in chair 2

We leave it as an exercise for the reader to verify that

vp = 4, U = Uy, Uy = Uy,
Pyy=P,=Py=1 &

6.3. Birth and Death Processes

Consider a system whose state at any time is represented by the number of
people in the system at that time. Suppose that whenever there are n people
in the system, then (i) new arrivals enter the system at an exponential rate
A, , and (ii) people leave the system at an exponential rate u,,. That is, when-
ever there are n persons in the system, then the time until the next arrival is
exponentially distributed with mean 1/4, and is independent of the time
until the next departure which is itself exponentially distributed with mean
1/u,. Such a system is called a birth and death process. The parameters
fAnn-0 and {u,};-, are called respectively the arrival (or birth) and
departure (or death) rates.

Thus, a birth and death process is a continuous-time Markov chain with
states {0, 1, ...} for which transitions from state » may go only to either
state n — 1 or state n + 1. The relation between the birth and death rates
and the state transition rates and probabilities are

UO = 10,

v,-=l,-+u,<, l>0

POI = 1,
A .
Pi iy =m, i>0
1 1
Hi .
P, = y i>0
ii-1 'li+:ui

The preceding follows, since when there are / in the system, then the next
state will be i + 1 if a birth occurs before a death; and the probability that
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an exponential random variable with rate A; will occur earlier than an
(independent) exponential with rate u; is 4,/(4; + ;) (and so, P; ;,, =
A/(A; + u;), and the time until either occurs is exponentially distributed
with rate A; + y; (and so, v; = A; + y;).

Example 6.2 (The Poisson Process): Consider a birth and death process
for which

u, =0, foralln =0
A, =4, foralln =0

This is a process in which departures never occur, and the time between
successive arrivals is exponental with mean 1/4. Hence, this is just the
Poisson process. 4

A birth and death process for which g, = 0 for all n is called a pure birth
process. Another pure birth process is given by the next example.

Example 6.3 (A Birth Process with Linear Birthrate): Consider a
population whose members can give birth to new members but cannot die.
If each member acts independently of the others and takes an exponentially
distributed amount of time, with mean 1/4, to give birth, then if X(¢) is the
population size at time £, then {X(¢), ¢ = 0} is a pure birth process with
A, = nA, n = 0. This follows since if the population consists of n persons
and each gives birth at an exponential rate A, then the total rate at which
births occur is nA. This pure birth process is known as a Yule process after
G. Yule who used it in his mathematical theory of evolution. 4

Example 6.4 (A Linear Growth Model with Immigration): A model in
which

v

Mn 1

An

nu, n

ni + 6, n=0

Il

v

is called a linear growth process with immigration. Such processes occur
naturally in the study of biological reproduction and population growth.
Each individual in the population is assumed to give birth at an exponential
rate A; in addition, there is an exponential rate of increase 8 of the popula-
tion due to an external source such as immigration. Hence, the total birth
rate where there are n persons in the system is nA + 6. Deaths are assumed
to occur at an exponential rate u for each member of the population, and
hence u, = nu.
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Let X(¢) denote the population size at time ¢. Suppose that X(0) = i and
let

M(1) = E[X(1)]

We will determine M(¢) by deriving and then solving a differential equation
that it satisfies.

We start by deriving an equation for M(r + h) by conditioning on X(¢).
This yields

M(t + h) = E[X(t + h)]
= E[E[X(t + b)| X(D)]]

Now, given the size of the population at time ¢ then, ignoring events whose
probability is o(#), the population at time ¢ + A will either increase in size
by 1 if a birth or an immigration occurs in (¢, ¢ + A), or decrease by 1 if a
death occurs in this interval, or remain the same if neither of these two
possibilities occurs. That is, given X(¢),

Xt + h)

X(@) + 1, with probability [@ + X(¢)A]h + o(h)

=X -1, with probability X(¢#)uh + o(h)

X(t), with probability 1 — [0 + X()A + X(H)ulh + o(h)

Therefore,
E[X(t + WlIX@®)] = X(2) + [0 + X()A — X(t)ulh + o(h)
Taking expectations yields
Mt + h) = M) + [A — ulM(t)h + 6h + o(h)

or, equivalently,

M(Hh})l_M(t): A — ulM(t) + 9+$

Taking the limit as 2 — 0 yields the differential equation
M@)=1[rA—ulM@)+ 6 6.1)
If we now define the function A(t) by
h(t) = [A — ulM@) + 6

then
h'(t) = [A — ulM'(t)



6.3. Birth and Death Processes 261

Therefore, the differential equation (6.1) can be rewritten as

h'(@) _
P
or
) _
() 4

Integration yields
log[h(t)] = (A — Wt + ¢
or
h(t) = Ke®™¥!
Putting this back in terms of M(¢) gives
6 + [A — uIM(t) = Ke® !

To determine the value of the constant K, we use the fact that M(0) = i/ and
evaluate the preceding at £ = 0. This gives

0+ @A —-wi=K

Substituting this back in the preceding equation for M(¢) yields the following
solution for M(¢):

M@) = [eo"“)' - 1]+ je® w1

A—u
It should be noted that we have implicitly assumed that A # u. If A = 4,
then the differential equation (6.1) reduces to

M@)=20 6.2)
Integrating (6.2) and using that M(0) = i gives the solution
M)=0+i &

Example 6.5 (The Queueing System M/M/1): Suppose that customers
arrive at a single-server service station in accordance with a Poisson process
having rate 4. That is, the times between successive arrivals are independent
exponential random variables having mean 1/4. Upon arrival, each customer
goes directly into service if the server is free, and if not, then the customer
joins the queue (that is, he waits in line). When the server finishes serving
a customer, the customer leaves the system and the next customer in line, if
there are any waiting, enters the service. The successive service times are
assumed to be independent exponential random variables having mean 1/u.
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The preceding is known as the M/M/1 queueing system. The first M
refers to the fact that the interarrival process is Markovian (since it is a
Poisson process) and the second to the fact that the service distribution is
exponential (and, hence, Markovian). The 1 refers to the fact that there is
a single server.

If we let X(¢) denote the number in the system at time ¢ then {X(¢), t = 0}
is a birth and death process with

v

Hp = U, n 1

An =4, n=0 &

Example 6.6 (A Multiserver Exponential Queueing System): Consider
an exponential queueing system in which there are s servers available. An
entering customer first waits in line and then goes to the first free server.
This is a birth and death process with parameters

_ { nu, l<n=<s
B = sy, n>s

A, = A, n=0

To see why this is true, reason as follows: If there are n customers in the
system, where n < s, then n servers will be busy. Since each of these servers
works at a rate u, the total departure rate will be nau. On the other hand, if
there are n customers in the system, where n > s, then all s of the servers
will be busy, and thus the total departure rate will be su. This is known as
an M/M/s queueing model (why?). @

Consider now a general birth and death process with birth rates {4,} and
death rates {u,}, where y, = 0, and let 7; denote the time, starting from
state 7, it takes for the process to enter state i + 1,7 = 0. We will recursively
compute E[T;], i = 0, by starting with i = 0. Since T; is exponential with
rate Ay, we have that

1
E[7z>]=l1—
0

For i > 0, we condition whether the first transition takes the process into
state i — 1 or i + 1. That is, let

I = 1, if the first transition from i/ isto i + 1
"7 {0, if the first transition from i is to i — 1
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and note that

1
E[T\I,=1] =
[ll 13 ] A,_{_”,’
) (6.3)
E[T;|I; = 0] = + E[T;_,] + E[T]
Ai + 1

This follows since, independent of whether the first transition is from a
birth or death, the time until it occurs is exponential with rate A; + u;; now
if this first transition is a birth, then the population size is at / + 1 and so
no additional time is needed, whereas if it is a death, then the population
size becomes i — 1 and the additional time needed to reach i + 1 is equal to
the time it takes to return to state / (and this has mean E[7;_,]) plus the
additional time it then takes to reach 7/ + 1 (and this has mean E[T}]).
Hence, since the probability that the first transition is a birth is A,/(4; + x;),
we see that

: b (BT + EIT})

E[T] = +
7} At A+

or, equivalently,

1 )
mm=z+%ﬂmm i=1
Starting with E[73] = 1/4,, the preceding yields an efficient method to
successively compute E[T;], E{T;], and so on.
Suppose now that we wanted to determine the expected time to go from
state / to state j where i < j. This can be accomplished using the preceding
by noting that this quantity will equal E[T;] + E[T;,] + --- + E[T;_,].

Example 6.7 For the birth and death process having parameters A; = A,
M = u,

1
E[T] = - + ZEIT_]

5

1
=7+ pE[T_\])

Starting with E[T;] = 1/4, we see that

1
EUU=IQ+%>

1 2
E[T2]=I[l+%+<§>]
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and, in general,

2 i
=il (0] - )

B 1 — (/I/A)H-l

R >0
A—u !

The expected time to reach state j, starting at state k, k < J, is
Jj-1
E(time to go from k to j] = Y. E[T}]
i=k

_J— kAT - e

A—u A—-wu 1 —u/A

The foregoing assumes that 4 # u. If A = u, then
i+1
A ’
JU+ 1) —kk+1)
24

E[T] =

E[time to go from k to j] = L J

We can also compute the variance of the time to go from 0 to i + 1 by
utilizing the conditional variance formula (see Exercise 26 of Chapter 3).
First note that Equation (6.3) can be written as

EIT|I) = + (1 - I)EIT,_|] + EIT)

1
Ai + 4
and so
Var(E[T;|1,)) = (E[T;_,] + E[T;])* Var(;)
Midi
(i + 1)
where Var(l;) is as shown since I; is a Bernoulli random variable with

parameter p = A;/(A; + ;). Also, note that if we let X; denote the time
until the transition from i occurs, then

Var(T;|1; = 1) = Var(X;|I; = 1)
= Var(X,)
1
- i + w)’
where the preceding uses the fact that the time until transition is independent

= (E[T;.1] + E[T) (6.4)

(6.5)
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of the next state visited. Also,

Var (T;|I; = 0)
= Var(X; + time to get back to i + time to then reach i + 1)
= Var(X;) + Var(7,_,) + Var(T;) (6.6)

where the foregoing uses the fact that the three random variables preceding
are independent. We can rewrite (6.5) and (6.6) as

Var(7;|1;) = Var(X;) + (1 — I)[Var(T;_,) + Var(T})]
and so,

E[Vai(T;|I)] = a -[Var(T,_y) + Va(T})]  (6.7)

+
(i + 4 i+ A

Hence, using the conditional variance formula, which states that Var(7;) is
the sum of (6.7) and (6.4), we obtain

Var(T}) = b [Var(f;_)) + Var(T))]

1
+
(.ui + li)z Ui + '11
i'li
+ oy ETid + ELT)Y
or, equivalently,

1 Ui Ui

Var(%i) A + i) * A; Var(Ti-) + Hi + A
Starting with Var(T,) = 1/A3 and using the former recursion to obtain the
expectations, we can recursively compute Var(7;). In addition, if we want
the variance of the time to reach state j, starting from state k, £ < j, then
this can be expressed as the time to go from & to £ + 1 plus the additional
time to go from kK + 1 to k + 2, and so on. Since, by the Markovian
property, these successive random variables are independent, it follows that

(EIT;_,] + EIT;))

J-1
Var(time to go from k to j) = Y. Var(7T})
i=k

i=

6.4. The Kolmogorov Differential Equations

For any pair of states i and j let
q; = ViP;
Since v; is the rate at which the process makes a transition when in state i

and Py is the probability that this transition is into state j, it follows that g;;
is the rate, when in i, that the process makes a transition into j.
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The quantities g;; are called the instantaneous transition rates. Since
v; = Evipij= quj
Jj Jj
and
q_ij — qij
v; Yiq;
it follows that specifying the instantaneous rates determines the parameters

of the process.
Let

Pi'=

P;(t) = PIX(t + 5) = j| X(s) = i}

represent the probability that a process presently in state i will be in state j
a time ¢ later. We shall attempt to derive a set of differential equations
for these transition probabilities P;;(f). However, first we will need the
following two lemmas.

Lemma 6.1
1 — P;(h
(a) lim 1= Pt _ v;
h—0 h
P.(h
(b) lim ﬁ = g when | # j
n-0 h

Proof We first note that since the amount of time until a transition
occurs is exponentially distributed it follows that the probability of two or
more transitions in a time 4 is o(h). Thus, 1 — P;(h), the probability that a
process in state i at time O will not be in state / at time A, equals the
probability that a transition occurs within time 4 plus something small
compared to A. Therefore,

1 - P“(h) = v,'h + O(h)

and part (a) is proven. To prove part (b), we note that P;;(h), the probability
that the process goes from state i to state j in a time A, equals the prob-
ability that a transition occurs in this time multiplied by the probability that
the transition is into state j, plus something small compared to 4. That is,

Plj(h) = hU,‘P,'j + O(h)
and part (b) is proven. @

Lemma 6.2 Foralls=0,¢=0,

Pt + ) = kZ Py ()P () (6.8)
=0
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Proof In order for the process to go from state i to state j in time ¢ + s,
it must be somewhere at time ¢ and thus

P;(t +5) = PIX(t + 5) = j| X(0) = i}

E P{X(t + s) = j, X(t) = k| X(0) = i}

k=0

E PIX(t +5) = j| X(@) = k, X(0) = i}

k=0

- PLX(t) = k| X(0) = i}

PIX(t + 5) = j| X(t) = k} - P{X(t) = k| X(0) = i}
0

It
118

k

I
[N ook

Pyj(S)Py(t)

k=0

and the proof is completed. @

The set of equations (6.8) is known as the Chapman-Kolmogorov
equations. From Lemma 6.2, we obtain

Pyth + t) — P;(t) = kE Py (WP (1) — Py(t)
=0

Ii

Y Pu(m)Py;(t) — [1 — Py(h)IPy(1)

k=i
and thus
. Pyt + h) — P(t) . Py (h) 1 — Py(h)
=1 o) - | —— | p.
pm P < [ B0 [

Now assuming that we can interchange the limit and the summation in the
preceding and applying Lemma 6.1, we obtain that
Pj(t) = ¥ quPi(t) — viPy(t)
ki

It turns out that this interchange can indeed be justified and, hence, we have
the following theorem.

Theorem 6.1 (Kolmogorov’s Backward Equations). For all states i, j,
and times ¢ = 0,
Pi(t) = ¥ quPi(t) — viPy(t)

k#i
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Example 6.8 The backward equations for the pure birth process
become

Pi'j(t) = AiPH-l,j(t) - )»,-P,»j(t) '3

Example 6.9 The backward equations for the birth and death process
become

Poj(t) = AgPyj(t) — A Py(2),

‘P,~+1,j(t) + Lpi-l,j(t):l — (A + w)Py(2)

A
P.(t) = (A; ) —
l_/(t) ('11 + ﬂl)[l, + u' )-,‘ + ,ui

or equivalently
Pg;(1) = AolPy;(1) — Py; (1)), 6.9)
Pi(t) = AiPiy j(0) + wiPiy (1) — (A + w)Py(t), i>0 &

Example 6.10 (A Continuous-Time Markov Chain Consisting of Two
States): Consider a machine that works for an exponential amount of time
having mean 1/4 before breaking down; and suppose that it takes an
exponential amount of time having mean 1/u to repair the machine. If the
machine is in working condition at time O, then what is the probability that
it will be working at time ¢ = 10?

To answer this question, we note that the process is a birth and death
process (with state 0 meaning that the machine is working and state 1 that
it is being repaired) having parameters

Ao =4 Hy = U
/1,'=0,i¢0, u,=0,1¢1

We shall derive the desired probability, namely Py,(10) by solving the set of
differential equations given in Example 6.9. From Equation (6.9), we
obtain

Poo(t) = A[Pyo(2) — Poo(D)], 6.10)
Pio(t) = uPoo(t) — uPyo(t) 6.11)

Multiplying Equation (6.10) by x4 and Equation (6.11) by A and then adding
the two equations yields

UPgo(t) + APj(t) = 0
By integrating, we obtain that

UP(t) + AP(t) = ¢



6.4. The Kolmogorov Differential Equations 269

However, since Py(0) = 1 and P;y(0) = 0, we obtain that ¢ = u and hence

UPy(1) + AP(t) = p (6.12)
or equivalently
AP(t) = ull — Poo(2)]

By substituting this result in Equation (6.10), we obtain
Poo(t) = ull — Poo(t)] — A Pyo(?)

= — (U + A)Py(t)

Letting
_ M
h(t) = Py(t) Ut
we have
, _ M
h'(@)=u—- (u+ l)[h(f) +ll " A]
= —(u + A)h(t)

or

@)

ron (u+2)

By integrating both sides, we obtain

logh(t) = —(u+ At +c
or
h(t) = Ke™ &M
and thus
_H

Pyo(t) = Ke™®*M 4
oo(?) e Z+ A

which finally yields, by setting # = 0 and using the fact that Pyy(0) = 1, that

e u

P°°(t)=u+,1 u+ A

From Equation (6.12), this also implies that

u M — NI
P(t) = —— — ———e
10(2) A+ n+i



270 6 Continuous-Time Markov Chains

Hence, our desired probability Pyy(10) equals

A u
Pyp(10) = —— 7100+  —
00(10) y+le u+ A ¢

Another set of differential equations, different from the backward equa-
tions, may also be derived. This set of equations, known as Kolmogorov’s
Jforward equations is derived as follows. From the Chapman-Kolmogorov
equations (Lemma 6.2), we have

Py(t + h) — P;(1)

kE Py (t)P;(h) — P;(1)
~o0

L Pu@Py(h) — [1 = Py(IPy(1)

k#j
and thus

fim 26+ 0 = By lim{ ¥ Py Za®) [1 — P"’(h)]P,-j(t)}

h-0 h h—0 k#j h h

and, assuming that we can interchange limit with summation, we obtain by
Lemma 6.1 that

Pi(t) = X qPu(t) — v;Py(1)
k#j

Unfortunately, we cannot always justify the interchange of limit and
summation and thus the above is not always valid. However, they do hold
in most models, including all birth and death processes and all finite state
models. We thus have the following.

Theorem 6.2 (Kolmogorov’s Forward Equations). Under suitable
regularity conditions,

Pyi(t) = ¥ qi;Pult) — v;Py() (6.13)

k#j

We shall now attempt to solve the forward equations for the pure birth
process. For this process, Equation (6.13) reduces to
Pj(t) + AP, j_4(t) — A;Py(1)

However, by noting that P;(#) = 0 whenever j < i (since no deaths can
occur), we can rewrite the preceding equation to obtain

Pji(t) = —A;Pu(1),
P!'= j—lPi,j—l(t) _AJPU(I)’ JZI+ 1

Y

(6.14)
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Proposition 6.3 For a pure birth process,

Py(t) = e, i=z0

t
ﬂﬂ)=k4(VSeMH¢“ﬂ$, jzi+1

J
[}

Proof The fact that P;(t) = e ™' follows from Equation (6.14) by
integrating and using the fact that P;(0) = 1. To prove the corresponding
result for P;(f), we note by Equation (6.14) that

exj'[P/j(t) + A;P;(0)] = e)\jt)-j—lpi,j—l(t)
or

d ,
ar [e¥'Py(D)] = A;_1€Y'P, j1(1)
Hence, since P;(0) = 0, we obtain the desired results. 4

Example 6.11 (The Yule Process): The pure birth process having
A=A, j=0

which was first encountered in Section 3 is known as a Yule process. We
shall use Proposition 6.3 to obtain P;(¢) for the Yule process.

Corollary 6.4 For a Yule process,

N -
P.-,-(r)=(Jj—i>e“"<1—e-“y-', jzizl  (615)

Proof Fix i. We show, by mathematical induction, that Equation (6.15)
holds for all j = i. It holds for j = i by Proposition 6.3. So suppose that
Equation (6.15) is true when j = n where n = i. Now, by Proposition 6.3,

t
Aneh! S eM+15P, (s) ds
0

I)i, n+l(t)

t

n—-1 . .

nle—(n+l))\t§ e(n+1))\s< .>e—1)\5(1 _ e—)\S)n—l ds
1] n-—1

t
n<n - 1'>€—("+1)M§ le"”l_i))‘s(l _ e—XS)n—idS
n-—1 0
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Now, it can be shown that

t (1 _ e—)\t)n+l—-i
Ae(n+lfi))\5(l _ e*)\S)n-idS — e(n+1vi))\t
0 n+1-—1i

and hence the preceding can be written
n n—1\ _i VNI
- 1 — n+1-i
n+1-i <n - i)e ( e
n+ =1y 5, “Myn+1-i
— 1 — n+l-i
<n +1- i>e (1=e™)
which shows that Equation (6.15) holds for j = n + 1 and thus completes

the induction.* @

Example 6.12 (Forward Equations for Birth and Death Process): The
forward equation (Equation 6.13) for the general birth and death process
becomes

Py(t) = kZ (Ae + U)Pro Puc(t) — Ao Pig(t)
=0
=ul+mhffmaw>—%ﬂw)
= uy Pyy(t) — A Pio(2), (6.16)
Pj(t) = kE (Ak + uRPy Py (t) — (A; + p;)Py;(1)
=i

A;
Ay )—ZL  po (¢
(j—l uj—l)lj_l +,uj_1 1,]—1()

u;
 Gjat + i) == Paj0) = @+ )Py (1)
J J

= A P (0) + i Py () — (A + pw)Py(t) @ 6.17)

6.5. Limiting Probabilities

In analogy with a basic result in discrete-time Markov chains, the prob-
ability that a continuous-time Markov chain will be in state j at time ¢ often
converges to a limiting value which is independent of the initial state. That

* For a probabilistic proof of this result see Exercise 11.
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is, if we call this value P;, then
P; = lim P;(¢)
=

where we are assuming that the limit exists and is independent of the initial
state /.

To derive a set of equations for the P;, consider first the set of forward
equations

Pj(t) = ¥ qiiPu(t) — v;Py(t)
k#j

Now, if we let ¢ approach oo, then assuming that we can interchange limit
and summation, we obtain

th*r?o Pj(t) lim[ Y Qi Puc(t) — UjPij(t)]

[=of gsj

E ‘ijPk - ;P

kj

However, as Py;(t) is a bounded function (being a probability it is always
between 0 and 1), it follows that if Pj(¢) converges, then it must converge
to 0 (why is this?). Hence, we must have that
0=1% qxiPr — v; P
k#j
or
VP =Y qi;Pr, all states j (6.18)

k#j

The preceding set of equations, along with this equation

YP =1 (6.19)
J
can be used to solve for the limiting probabilities.

Remarks (i) We have assumed that the limiting probabilities P; exist. A
sufficient condition for this is that

(a) all states of the Markov chain communicate in the sense that starting
in state / there is a positive probability of ever being in state j, for all i, j
and

(b) the Markov chain is positive recurrent in the sense that, starting in
any state, the mean time to return to that state is finite.

If conditions (a) and (b) hold, then the limiting probabilities will exist
and satisfy Equations (6.18) and (6.19). In addition, P; also will have the
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interpretation of being the long-run proportion of time that the process is in
state j.

(ii)) Equations (6.18) and (6.19) have a nice interpretation: In any interval
(0, ¢) the number of transitions into state j must equal to within 1 the number
of transitions out of state j (why?). Hence, in the long-run, the rate at which
transitions into state j occur must equal the rate at which transitions out of
state j occur. Now when the process is in state j, it leaves at rate v;, and, as
P; is the proportion of time it is in state j, it thus follows that

v;P; = rate at which the process leaves state j

Similarly, when the process is in state k, it enters j at a rate g,,. Hence, as
P, is the proportion of time in state k, we see that the rate at which
transitions from k to j occur in just g,; P ; and thus

Y. qx;jPy = rate at which the process enters state j

k#j
So, Equation (6.18) is just a statement of the equality of the rates at which the
process enters and leaves state j. Because it balances (that is, equates) these
rates, the equations (6.18) are sometimes referred to as ‘‘balance equations.”’

(iii) When the limiting probabilities P; exist, we say that the chain is

ergodic. The P; are sometimes called stationary probabilities since it can be
shown that (as in the discrete-time case) if the initial state is chosen accord-
ing to the distribution {P;}, then the probability of being in state j at time
tis P;, for all «.

Let us now determine the limiting probabilities for a birth and death
process. From Equation (6.18) or equivalently, by equating the rate at which
the process leaves a state with the rate at which it enters that state, we obtain

State Rate at which leave = rate at which enter
0 AoPo = u Py
1 (Ay + udPy = 1, Py + 40Py
2 (A2 + )Py = 3Py + A1 P
nnz=l (An + 1Py = tns1 Pryy + g1 Py
By adding to each equation the equation preceding it, we obtain
APy = u, Py,
APy = P,

APy = psy P,

AnPr = Pni1 Pyt nz0
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Solving in terms of P, yields

A
P, =P,
My
A AA
P, = _1P1 == OPo’
7] H
A Ay A A
P3 = _2P2 = 271 OP
H3 Mt iy
P,, - An—l = A’n—l'ln—Z A'IA'O Po
Hy Hulln_1 " Ha iy

And by using the fact that ¥, _, P, = 1, we obtain

® A e AA
1=P, + P, E fn-1 7170
n=1 Hp U2l
or
1
P(): o
1+21Mw%H
n=1 MMy " HUp
and so
Aghy ++e Ayl
P, = oL el nzl1 (6.20)

- loll"-ln-1>’
ol "< nz=:1 Bl e Uy

The foregoing equations also show us what condition is necessary for these
limiting probabilities to exist. Namely, it is necessary that

2 AoAy e Apoy

< (6.21)
n=1 Hi1H2 " Up

This condition also may be shown to be sufficient.
In the multiserver exponential queueing system (Example 6.6), Condition
(6.21) reduces to

00 n

)

_<w
n=s+1 (S/l)"

which is equivalent to A/su < 1.
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For the linear growth model with immigration (Example 6.4), Condition
(6.21) reduces to

E 0(0+l)---(0+(n—1)/1)<°°

n=1 n!;un
Using the ratio test, the preceding will converge when
60 + A)--- (0 + ni) nlu” . 0+ ni

I =
v+ DT 00+ A (@ + (1 - D) ane(n + D

Ao
u

That is, the condition is satisfied when A < u. When A = u it is easy to show
that Condition (6.21) is not satisfied.

Example 6.13 (A Machine Repair Model): Consider a job shop which
consists of M machines and one serviceman. Suppose that the amount of
time each machine runs before breaking down is exponentially distributed
with mean 1/A, and suppose that the amount of time that it takes for the
serviceman to fix a machine is exponentially distributed with mean 1/u. We
shall attempt to answer these questions: (a) What is the average number of
machines not in use? (b) What proportion of time is each machine in use?

Solution: If we say that the system is in state n# whenever n machines
are not in use, then the above is a birth and death process having
parameters

Unp = U nzl
1= M — n)A, n=M
= {o, n>M

This is so in the sense that a failing machine is regarded as an arrival and
a fixed machine as a departure. If any machines are broken down, then
since the serviceman’s rate in u, 4,, = u. On the other hand, if n» machines
are not in use, then since the M — n machines in use each fail at a rate A,
it follows that A, = (M — n)A. From Equation (6.20) we have that P,, the
probability that » machines will not be in use, is given by

1
1+ LM [MAM — DA -~ (M — n + DA/u"]

1
1+ XM (A/u)y"M! /(M — n)!

P0=
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_ A/u)"M/(M - n)!
"T T4 L MY~ )l

n=01,....M

Hence, the average number of machines not in use is given by

oo n(MV/(M — n))A/u)"
1+ M (A/uy'MY/ (M — n)!

M
Y nP, = (6.22)
0

n=
To obtain the long run proportion of time that a given machine is
working we will compute the equivalent limiting probability of its
working. To do so, we condition the number of machines that are not
working to obtain

M

P{Machine is working} = Y. P{Machine is working|n not working}P,
n=0

MM-n (since if n are not working,

aeo M " then M — n are working!)

1 gnP,,
OM

where Y¥ nP, is given by Equation (6.22). &

Example 6.14 (The M/M/1 Queue): In the M/M/1 queue 4, = A,
U, = ¢ and thus, from Equation (6.20),

A/w"
1+ Yoo (/)"

<£>n(1 — Au), n=0
u

provided that A/u < 1. It is intuitive that A must be less than u for limiting
probabilities to exist. For customers arrive at rate A and are served at rate
u, and thus if A > u, then they arrive at a faster rate than they can be served
and the queue size will go to infinity. The case A = u behaves much like the
symmetric random walk of Section 4.3, which is null recurrent and thus has
no limiting probabilities. ¢

P, =

Example 6.15 Let us reconsider the shoeshine shop of Example 6.1,
and determine the proportion of time the process is in each of the states
0, 1, 2. As this is not a birth and death process (since the process can go
directly from state 2 to state 0), we start with the balance equations for the
limiting probabilities.
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State Rate that the process leaves = rate that the process enters

0 APy = u, Py
1 w Py = AR,
2 Mo Py = p Py

Solving in terms of P, yields

A A
P, =—Fr, P =—F
23] 1231

which implies, since P, + P, + P, = 1, that

A A

I
or
_ V23
0 iy + Auy + u1y)
and

_ Aty
iy + Ay + )’

Py

p, = Auy
) =
Uity + Ay + 1)

Example 6.16 Consider a set of n components along with a single
repairman. Suppose that component / functions for an exponentially
distributed time with rate A; and then fails: The time it then takes to repair
component / is exponential with rate u;, i = 1, ..., n. Suppose that when
there is more than one failed component the repairman always works on
the most recent failure. For instance, if there are at present two failed
components—say components one and two of which one has failed most
recently—then the repairman will be working on component one. However,
if component three should fail before one’s repair is completed, then the
repairman would stop working on component one and switch to component
three (that is, a newly failed component preempts service).

To analyze the preceding as a continuous-time Markov chain, the state
must represent the set of failed components in the order of failure. That is,
the state will be /|, &5, ..., iy if i}, i5, ..., i; are the k failed components (all
the other n — k being functional) with i, having been the most recent failure
(and is thus presently being repaired), i, the second most recent, and so on.
As there are k! possible orderings for a fixed set of k failed components and
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<Z> choices of that set, it follows that there are

k! = =
k2=:0<k) E oln — k)' g
possible states.

The balance equations for the limiting probabilities are as follows:

) i#ij
=1,..., k

<.uil+ E Ai>P(ila---’ik)= Z P(i,ily--ﬂik)iui+P(i27'~-1ik)'1ila
J k J

n n

Y AP(¢) = El P(i)u; (6.23)
i=1 i=

where ¢ is the state when all components are working. The preceding

equations follow because state i, ..., i, can be left either by a failure of any

of the additional components or by a repair completion of component i, . Also

that state can be entered either by a repair completion of component i/ when

the state is i, i, ..., i or by a failure of component i; when the state is

12 g oo lk
However, if we take

A Ao een A
PGy, ..., 0) = ——2——% P(¢) (6.24)
iHiy * o Ry,
then it is easily seen that the equations (6.23) are satisfied. Hence, by
uniqueness these must be the limiting probabilities with P(¢) determined to
make their sum equal 1. That is,

Ai oA |70
P(¢) = |: + E _1—11]
F1yeens i Miy o My

As an illustration, suppose n = 2 and so there are 5 states ¢, 1, 2, 12, 21.
Then from the preceding we would have

Ay Ay 24,4,
P(¢)=[1+—‘+—2+#] ,
n U Hily

A

P(1) = = P(¢),
My
Ay

P(2) = 22 P(¢),
J25)

P(1,2)=P2,1) = MEP(d))

142
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It is interesting to note, using (6.24), that given the set of failed components,
each of the possible orderings of these components is equally likely. €4

6.6. Time Reversibility

Consider a continuous-time Markov chain that is ergodic and let us consider
the limiting probabilities P; from a different point of view than previously.
If we consider the sequence of states visited, ignoring the amount of time
spent in each state during a visit, then this sequence constitutes a discrete-
time Markov chain with transition probabilities P;. Let us assume that this
discrete-time Markov chain, called the embedded chain is ergodic and denote
by x; its limiting probabilities. That is, the 7; are the unique solution of

7Z,- = Z anji! all [
J

rmi=1
i
Now since 7«; represents the proportion of transitions that take the process
into state /, and as 1/v; is the mean time spent in state / during a visit, it
seems intuitive that P;, the proportion of time in state i, should be a
weighted average of the m; where n; is weighted proportionately to 1/v;.
That is, it is intuitive that
7[,'/0,'

p = 1Y (6.25)
L7/ v;

To check the preceding, recall that the limiting probabilities P, must satisfy
U,'P,'z E ijjl’ alll

J#zi

or equivalently, since P; = 0

v,'Pi = E PjUij,', all l
J

Hence, for the P;’s to be given by Equation (6.25), it would be necessary that
7(,' = E 7'[ij,', all I
J

But this, of course, follows since it is in fact the defining equation for
the n;’s.

Suppose now that the continuous-time Markov chain has been in
operation for a long time, and suppose that starting at some (large) time T
we trace the process going backward in time. To determine the probability
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structure of this reversed process, we first note that given we are in state /
at some time—say —the probability that we have been in this state for an
amount of time greater than s is just e””*, This is so, since

P{Process is in state i throughout [r — s, t]| X(?) = i}

_ P{Process is in state i throughout [z - s, 7]}
- PIX(1) = i}
_PX(t-s)=ile"”

B PiX(t) =1}

—u;s

=e

since for ¢ large P{X(t — s) =i} = P{X(t) =i} = P,.

In other words, going backward in time, the amount of time the process
spends in state i is also exponentially distributed with rate v;. In addition,
as was shown in Section 4.7, the sequence of states visited by the reversed
process constitutes a discrete-time Markov chain with transition probabilities
Q,; given by

_ Lk
0y =L
Hence, we see from the preceding that the reversed process is a continuous-
time Markov chain with the same transition rates as the forward-time
process and with one-stage transition probabilities Q,;. Therefore, the
continuous-time Markov chain will be time reversible, in the sense that the
process reversed in time has the same probabilistic structure as the original
process, if the embedded chain is time reversible. That is, if
n Py = m; Py for all i, j

J5 g

Now using the fact that P; = (n,/v;)/(¥; n;/v;), we see that the preceding
condition is equivalent to

P,q; = Piq;, foralli,j (6.26)

Since P; is the proportion of time in state i and g;; is the rate when in state
i that the process goes to /, the condition of time reversibility is that the rate
at which the process goes directly from state i to state j is equal to the rate
at which it goes directly from j to i. It should be noted that this is exactly
the same condition needed for an ergodic discrete-time Markov chain to be
time reversible (see Section 4.7).

An application of the preceding condition for time reversibility yields the
following proposition concerning birth and death processes.
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Proposition 6.5 An ergodic birth and death process is time reversible.

Proof We must show that the rate at which a birth and death process
goes from state / to state / + 1 is equal to the rate at which it goes from
i + 1toi. Now in any length of time ¢ the number of transitions from i to
i + 1 must equal to within 1 the number from i + 1 to J (since between each
transition from / to i + 1 the process must return to /, and this can only
occur through / + 1, and vice versa). Hence, as the number of such tran-
sitions goes to infinity as ¢ — oo, it follows that the rate of transitions from
i to i + 1 equals the rate fromi/ + 1toi. @

Proposition 6.5 can be used to prove the important result that the
output process of an M/M/s queue is a Poisson process. We state this as a
corollary.

Corollary 6.6 Consider an M/M/s queue in which customers arrive in
accordance with a Poisson process having rate A and are served by any
one of s servers—each having an exponentially distributed service time
with rate u. If A < su, then the output process of customers departing is,
after the process has been in operation for a long time, a Poisson process
with rate 4.

Proof Let X(¢) denote the number of customers in the system at time ¢.
Since the M/M/s process is a birth and death process, it follows from
Proposition 6.5 that {X(¢), ¢ = 0} is time reversible. Now going forward in
time, the time points at which X(¢) increases by 1 constitute a Poisson
process since these are just the arrival times of customers. Hence, by time
reversibility the time points at which the X(¢) increases by 1 when we go
backward in time also consistitute a Poisson process. But these latter points
are exactly the points of time when customers depart. (See Figure 6.1.)
Hence, the departure times constitute a Poisson process with rate . €

Xt

% * * /

x = times at which going backward in time, X(r) increases
= times at which going forward in time, X{r) decreases

Figure 6.1.
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We have shown that a process is time reversible if and only if

Analogous to the result for discrete-time Markov chains, if one can find
a probability vector P that satisfies the preceding then the Markov chain is
time reversible and the P;’s are the long run probabilities. That is, we have
the following proposition.

Proposition 6.7 If for some set {P,}
E Pi = 1, P,' = 0

and
Pq,=Pyq; forallizj (6.27)

then the continuous-time Markov chain is time reversible and P; represents
the limiting probability of being in state /.

Proof For fixed i/ we obtain upon summing (6.27) over all j:j # i

Z Pg; = Z.F}'jS

J#i =i
or, since Zj#iqij = U;,

v P = Z Pigj;
J#Ei
Hence, the P;’s satisfy the balance equations and thus represent the limiting
probabilities. As (6.27) holds, the chain is time reversible. 4

Example 6.17 Consider a set of # machines and a single repair facility
to service them. Suppose that when machine i, i = 1, ..., n, goes down it
requires an exponentially distributed amount of work with rate yu; to get it
back up. The repair facility divides its efforts equally among all down
components in the sense that whenever there are & down machines
1 < k < n each receives work at a rate of 1/k per unit time. Finally,
suppose that each time machine i goes back up it remains up for an
exponentially distributed time with rate 4,.

The preceding can be analyzed as a continuous-time Markov chain having
2" states where the state at any time corresponds to the set of machines that
are down at that time. Thus, for instance, the state will be (i, i,, ..., i) when
machines #;, ..., iy are down and all the others are up. The instantaneous
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transition rates are as follows:

Qs i)y G = A
Dair,...ri)s oo = MK

where i, ..., I, are all distinct. This follows since the failure rate of
machine iy is always 4; and the repair rate of machine i, when there are k
failed machines is u;, /k.

Hence the time reversible equations (6.27) are

Py, ..., idu /k = Py, ..., ik-l))»ik
or

: o KA, .
P(,, . ...iy) = —2P(;, ..., ik

3

kA; (kK — DA;
= Tk @ PGy, ..., 020 upon iterating
Ili,, :ul'k-l

k
kt TT (/0 )P(®)
j=1

where ¢ is the state in which all components are working. As

P(¢) + Zp(llyvlk) =1
we see that
k

-1
P(9) = [1 + ¥ KTl (Aij/u,.j)] (6.28)
L el

LIV ik  J=

where the above sum is over all the 2" — 1 nonempty subsets {i|, ..., i;} of
{1, 2, ..., n}. Hence as the time reversible equations are satisfied for this
choice of probability vector it follows from Proposition 6.7 that the chain
is time reversible and

k
Py, ...y i) = k! T] (4, /0, )P(9)
j=1

with P(¢) being given by (6.28).
For instance, suppose there are two machines. Then, from the preceding
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we would have

1
P = ,
O = T T + Ay 2 A s
Ay
P(l) = :
M 1+ A/py + Ap/py + 24,4/ y
Ay,
PQ) = ,
O = A My + Aaltty + 22y bty
24,4
P(1,2) = 172 *

[l + Ay/py + Ay + 22045/ 1 14)

Consider a continuous-time Markov chain whose state space is S. We say
that the Markov chain is truncated to the set A C S if g;; is changed to 0 for
alli € A,j ¢ A. That is, transitions out of the class A are no longer allowed,
whereas ones in A continue at the same rates as before. A useful result is
that if the chain is time reversible, then so is the truncated one.

Proposition 6.8 A time reversible chain with limiting probabilities P;,
J € S, that is truncated to the set 4 C S and remains irreducible is also time
reversible and has limiting probabilities Pf given by

P = 5
! Ei €A Pi
Proof By Proposition 6.7 we need to show that, with P} as given before,
Rﬂqij=1)flqj',' foried,jeA

JeA

or, equivalently,
IJiQij=1)jqj',’ forieA,jeA

But this follows since the original chain is, by assumption, time reversible. ¢

Example 6.18 Consider an M/M/1 queue in which arrivals finding N
in the system do not enter. This finite capacity system can be regarded as a
truncation of the M/M/1 queue to the set of states 4 = {0, 1, ..., N}. Since
the number in the system in the M/M/1 queue is time reversible and has
limiting probabilities P; = (A/p)’(1 — A/p) it follows from Proposition 6.8
that the finite capacity model is also time reversible and has limiting
probabilities given by

(A/wy’

.=——-————-—‘., =O,1,..-,N ’
/ ﬁ\r:o('l/ﬂ)
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6.7. Uniformization

Consider a continuous-time Markov chain in which the mean time spent in
a state is the same for all states. That is, suppose that v; = v, for all states i.
In this case since the amount of time spent in each state during a visit is
exponentially distributed with rate v, it follows that if we let N(¢) denote the
number of state transitions by time ¢, then {N(¢), ¢ = 0} will be a Poisson
process with rate v.

To compute the transition probabilities P;(¢z), we can condition on N(¢):

P,(t) = PIX(t) = j| X(0) = i}

0

Y PX(t) =jlX(0) = i, N¢t) = m}PIN(1) = n| X(0) = i}

n=0

_o (V1)
n!

Il

ZOP{X(I) =Jj|X(0) = i, N(t) = nje
n=

Now the fact that there have been # transitions by time ¢ tells us something
about the amounts of time spent in each of the first n states visited, but
since the distribution of time spent in each state is the same for all states, it
follows that knowing that N(¢) = n gives us no information about which
states were visited. Hence,

P(X(t) = j| X(0) = i, N(t) = n} = P}

where Pj; is just the n-stage transition probability associated with the
discrete-time Markov chain with transition probabilities P;; and so when
UV, EV

P'_I(t) = Z P,-;'-e_'”

p (6.29)
n=0 .

Equation (6.29) is quite useful from a computational point of view since
it enables us to approximate P;(f) by taking a partial sum and then com-
puting (by matrix multiplication of the transition probability matrix) the
relevant n stage probabilities Pj.

Whereas the applicability of Equation (6.29) would appear to be quite
limited since it supposes that v; = v, it turns out that most Markov chains
can be put in that form by the trick of allowing fictitious transitions from
a state to itself. To see how this works, consider any Markov chain for
which the v; are bounded, and let v be any number such that

v, <0, for all i (6.30)

Now when in state i/, the process actually leaves at rate v;; but this is
equivalent to supposing that transitions occur at rate v, but only the
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fraction v;/v of transitions are real ones (and thus real transitions occur at
rate v;) and the remaining fraction 1 — v;/v are fictitious transitions which
leave the process in state i. In other words, any Markov chain satisfying
Condition (6.30) can be thought of as being a process that spends an
exponential amount of time with rate v in state / and then makes a transi-
tion to j with probability P}, where

v:
1—-=, j=i
v
Pl = (6.31)
APy, i
v

Hence, from Equation (6.29) we have that the transition probabilities can
be computed by

o0 n
Pyt = T Pk
n=90 n:
where P} are the n-stage transition probabilities corresponding to Equation
(6.31). This technique of uniformizing the rate in which a transition occurs
from each state by introducing transitions from a state to itself is known as
uniformization.

Example 6.19 Let us reconsider Example 6.10, which models the
workings of a machine—either on or off—as a two-state continuous-time
Markov chain with

Py =Py =1,
Vo = 4, LL=U

Letting v = A + u, the uniformized version of the preceding is to consider
it a continuous-time Markov chain with

- M
A+ u

Py =1- Py,

Ui=A.+ﬂ, l=1,2

As Py, = Py, it follows that the probability of a transition into state 0 is
equal to u/(A + u) no matter what the present state. As a similar result is
true for state 1, it follows that the n-stage transition probabilities are
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given by

=S
v
=
I
=
—_

)
-
Il
X
v
—
I
=
—

Hence,

Pl e—0\+ﬂ>t[_(’1_+__”)t_]n
, o ol

_()\+u)t+ i <ﬁ>e_o\+#)t[(l—tﬁlﬂ

Poo(t) =

]
[ ao k]

|
o

n=1

— Ot —wey M
=e +[1—e —
[ ]/1 T

__H " A PRy
A+u A+u

Similarly,

RIS [(A + w)]”

Pt)= Y P}
() ngo 1 "

A
— e—()d—u)t + [1 _ e—()\+p.)t]

A+ u

_ 4 P (Y
A+u A+u

The remaining probabilities are

Py (1) = 1 — Pyyt) = [1 — e”+w1]

A+ u

Pol®) = 1= Pu) = 5711 = 0] @

Example 6.20 Consider the two-state chain of Example 6.19 and
suppose that the initial state is state 0. Let O(¢) denote the total amount of
time that the process is in state 0 during the interval (0, #). The random
variable O(¢) is often called the occupation time. We will now compute
its mean.
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If we let
1, if X(s) =0
I(s) = ! (5)
0, if X(s) =1
then we can represent the occupation time by

t

o@) = X 1(s) ds

0

Taking expectations and using the fact that we can take the expectation
inside the integral sign (since integral is basically a sum), we obtain

t

E[O(@)) = X E[I(s)] ds
0
= E PiX(s) = O} ds
0

= j Poo(s) dS
0

M A — )t
- ‘+ ] e
g Tt el

where the final equality follows by integrating

u A —(t)s
P =—+ —e K
00(S) A+u Atu

(For another derivation of E[O(¢)], see Exercise 38.) 4

6.8. Computing the Transition Probabilities

For any pair of states i and j, let
ry = ce s
-v;, ifi=j
Using this notation, we can rewrite the Kolmogorov backward equations

Pi(t) = ¥ quPij(t) — v;Py(1)

k#i

and the forward equations

Pj@) = ) Gy Pi(t) — v; Py(t)

k#j



290 6 Continuous-Time Markov Chains

as follows:
Pj(t) = Y ruPy(t)  (backward)
k

Pi(t) = ¥ rijPy(t)  (forward)
k

This representation is especially revealing when we introduce matrix
notation. Define the matrices R, P(¢), and P’(¢) by letting the element in
row i, column j of these matrices be, respectively, r;;, P;(t), and Pj(f).
Since the backward equations say that the element in row i, column j of the
matrix P’(¢) can be obtained by multiplying the ith row of the matrix R by
the jth column of the matrix P(¢), it is equivalent to the matrix equation

P'(r) = RP(¢) (6.32)
Similarly, the forward equations can be written as
P'(t) = P(t)R (6.33)
Now, just as the solution of the scalar differential equation
S =cf(0)
(or, equivalent, f'(f) = f(t)c) is
@) = f(0)e”

it can be shown that the solution of the matrix differential Equations (6.32)
and (6.33) is given by

P(¢) = P(0)e®
Since P(0) = I (the identity matrix), this yields that

P(t) = e® (6.34)
where the matrix e® is defined by
M- YR (6.35)
n=0 .

with R" being the (matrix) multiplication of R by itself n times.

The direct use of Equation (6.35) to compute P(¢) turns out to be very
inefficient for two reasons. First, since the matrix R contains both positive
and negative elements (remember the off-diagonal elements are the g; while
the ith diagonal element is —uv;), there is the problem of computer round-off
error when we compute the powers of R. Second, we often have to compute
many of the terms in the infinite sum (6.35) to arrive at a good approxi-
mation. However, there are certain indirect ways that we can utilize the
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relation (6.34) to efficiently approximate the matrix P(#). We now present
two of these methods.

Approximation Method 1 Rather than using (6.34) to compute e*’,
we can use the matrix equivalent of the identity

n
e = lim <1 + f>
n—o n

t n
e® = lim <1 + R—>
n—oo n

Thus, if we let n be a power of 2, say n = 2¥, then we can approximate
P(¢) by raising the matrix M = I + R¢/n to the nth power, which can be
accomplished by & matrix multiplications (by first multiplying M by itself
to obtain M? and then multiplying that by itself to obtain M* and so on).
In addition, since only the diagonal elements of R are negative (and the
diagonal elements of the identity matrix I are equal to 1) by choosing n large
enough, we can guarantee that the matrix I + R¢#/n has all nonnegative
elements.

which states that

Approximation Method 2 A second approach to approximating e®’

uses the identity
t n
e ® = lim <I - R—>
n—oo n

t n
<I - R;) for n large

P(t) = ¥ = <1 - R£>_"

i

and thus

n

[en)]

Hence, if we again choose n to be a large power of 2, say n = 2¥, we can
approximate P(¢) by first computing the inverse of the matrix I — R¢/n and
then raising that matrix to the nth power (by utilizing & matrix multiplica-
tions). It can be shown that the matrix I — R¢#/n will have only nonnegative
elements.

Remark Both of the above computational approaches for approximating
P(¢) have probabilistic interpretations (see Exercises 41 and 42).
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Exercises

1. A population of organisms consists of both male and female members.
In a small colony any particular male is likely to mate with any particular
female in any time interval of length A, with probability A2 + o(h). Each
mating immediately produces one offspring, equally likely to be male or
female. Let N,(¢) and N,(¢) denote the number of males and females in the
population at ¢. Derive the parameters of the continuous-time Markov
chain {N,(t), N,(¢)}, i.e., the v;, P;; of Section 6.2.

*2. Suppose that a one-celled organism can be in one of two states—either
A or B. An individual in state 4 will change to state B at an exponential
rate «; an individual in state B divides into two new individuals of type A
at an exponential rate 8. Define an appropriate continuous-time Markov
chain for a population of such organisms and determine the appropriate
parameters for this model.

3. Consider two machines that are maintained by a single repairman.
Machine i/ functions for an exponential time with rate u; before breaking
down, i = 1, 2. The repair times (for either machine) are exponential with
rate 4. Can we analyze this as a birth and death process? If so, what are the
parameters? If not, how can we analyze it?

*4. Potential customers arrive at a single-server station in accordance
with a Poisson process with rate A. However, if the arrival finds n customers
already in the station, then he will enter the system with probability «,.
Assuming an exponential service rate u, set this up as a birth and death
process and determine the birth and death rates.

5. There are N individuals in a population, some of whom have a certain
infection that spreads as follows. Contacts between two members of this
population occur in accordance with a Poisson process having rate . When

N .
a contact occurs, it is equally likely to involve any of the < 2> pairs of

individuals in the population. If a contact involves an infected and a
noninfected individual, then with probability p the noninfected individual
becomes infected. Once infected, an individual remains infected throughout.
Let X(¢) denote the number of infected members of the population at time ¢.

(a) Is {X(¢), t = 0} a continuous-time Markov chain?

(b) Specify the type of stochastic process it is.

(c) Starting with a single infected individual, what is the expected time
until all members are infected?
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6. Consider a birth and death process with birth rates A; = (i + 1)4,
i =2 0, and death rates u; = iu, i = 0.

(a) Determine the expected time to go from state O to state 4.

(b) Determine the expected time to go from state 2 to state 5.

(c) Determine the variances in parts (a) and (b).

*7. Individuals join a club in accordance with a Poisson process with
rate A. Each new member must pass through & consecutive stages to become
a full member of the club. The time it takes to pass through each stage
is exponentially distributed with rate u. Let N;(¢) denote the number of
club members at time ¢ that have passed through exactly i stages, i =
1,...,k — 1. Also, let N(¢) = (N,(¢), Nx(t), ..., Ne_1(0)).

(@) Is {N(¢), t = 0} a continuous-time Markov chain?

(b) If so, give the infinitesimal transition rates. That is, for any state
n = (n,, ..., n,_,) give the possible next states along with their infinitesi-
mal rates.

8. Consider two machines, both of which have an exponential lifetime
with mean 1/A. There is a single repairman that can service machines at an
exponential rate u. Set up the Kolmogorov backward equations; you need
not solve them.

9. The birth and death process with parameters A, = Oand u, = u,n > 0
is called a pure death process. Find Py (¢).

10. Consider two machines. Machine i operates for an exponential time
with rate A; and then fails; its repair time is exponential with rate y;, i = 1, 2.
The machines act independently of each other. Define a four-state
continuous-time Markov chain which jointly describes the condition of the
two machines. Use the assumed independence to compute the transition
probabilities for this chain and then verify that these transition probabilities
satisfy the forward and backward equations.

*11. Consider a Yule process starting with a single individual—that is,
suppose X(0) = 1. Let 7; denote the time it takes the process to go from a
population of size i to one of size i + 1.

(a) Argue that T;, i=1,...,j, are independent exponentials with
respective rates iA.

(b) Let X,,..., X, denote independent exponential random variables
each having rate A, and interpret X; as the lifetime of component i. Argue
that max (X, ..., X;) can be expressed as

maX(Xl,...,/\'j) = 81 + 82 + --- + 6_]
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where ¢,, &,, ..., ¢; are independent exponentials with respective rates jA,
= DA, ..., A

Hint: Interpret ¢; as the time between the i — 1 and the /th failure.
(c) Using (a) and (b) argue that
P+ - +T=<t}=(1~e™y
(d) Use (c¢) to obtain that
Pyt)y=(—-e™ =1 —e™y =e™M1 - eM)/!

and hence, given X(0) = 1, X(¢) has a geometric distribution with
parameter p = e M.
(e) Use (d) to obtain that

-1 . o
P,(t) = <fl ~ 1>e-“'(1 S

Hint: What is the distribution of the sum of / independent geometrics
each having parameter p?

12. Each individual in a biological population is assumed to give birth at
an exponential rate A, and to die at an exponential rate 4. In addition, there
is an exponential rate of increase # due to immigration. However, immi-
gration is not allowed when the population size is N or larger.

(a) Set this up as a birth and death model.
) fN=3,1=0= A, u=2, determine the proportion of time that
immigration is restricted.

13. A small barbershop, operated by a single barber, has room for at
most two customers. Potential customers arrive at a Poisson rate of three
per hour, and the successive service times are independent exponential
random variables with mean 4 hour. What is

(a) the average number of customers in the shop?

(b) the proportion of potential customers that enter the shop?

(c) If the barber could work work twice as fast, how much more business
would he do?

14. Potential customers arrive at a full-service, one-pump gas station at a
Poisson rate of 20 cars per hour. However, customers will only enter the
station for gas if there are no more than two cars (including the one
currently being attended to) at the pump. Suppose the amount of time
required to service a car is exponentially distributed with a mean of five
minutes.
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(a) What fraction of the attendant’s time will be spent servicing cars?
(b) What fraction of potential customers are lost?

15. A service center consists of two servers, each working at an exponential
rate of two services per hour. If customers arrive at a Poisson rate of three
per hour, then, assuming a system capacity of at most three customers,

(a) what fraction of potential customers enter the system?
(b) what would the value of (a) be if there was only a single server, and
his rate was twice as fast (that is, u = 4)?

*16. The following problem arises in molecular biology. The surface
of a bacterium is supposed to consist of several sites at which foreign
molecules—some acceptable and some not—become attached. We consider
a particular site and assume that molecules arrive at the site according to a
Poisson process with parameter A. Among these molecules a proportion «
is acceptable. Unacceptable molecules stay at the site for a length of time
which is exponentially distributed with parameter x4, , whereas an acceptable
molecule remains at the site for an exponential time with rate u,. An
arriving molecule will become attached only if the site is free of other
molecules. What percentage of time is the site occupied with an acceptable
(unacceptable) molecule?

17. Each time a machine is repaired it remains up for an exponentially
distributed time with rate A. It then fails, and its failure is either of two
types. If it is a type 1 failure, then the time to repair the machine is
exponential with rate u,; if it is a type 2 failure, then the repair time is
exponential with rate u,. Each failure is, independently of the time it took
the machine to fail, a type 1 failure with probability p and a type 2 failure
with probability 1 — p. What proportion of time is the machine down due
to a type 1 failure? What proportion of time is it down due to a type 2
failure? What proportion of time is it up?

18. After being repaired, a machine functions for an exponential time
with rate A and then fails. Upon failure, a repair process begins. The repair
process proceeds sequentially through k distinct phases. First a phase 1
repair must be performed, then a phase 2, and so on. The times to complete
these phases are independent, with phase / taking an exponential time with
rate y;, i =1, ..., k.

(a) What proportion of time is the machine undergoing a phase / repair?
(b) What proportion of time is the machine working?

19. A single repairperson looks after both machines 1 and 2. Each time
it is repaired, machine / stays up for an exponential time with rate 1;,
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i = 1,2. When machine i fails, it requires an exponentially distributed
amount of work with rate y; to complete its repair. The repairperson will
always service machine 1 when it is down. For instance, if machine 1 fails
while 2 is being repaired, then the repairperson will immediately stop work
on machine 2 and start on 1. What proportion of time is machine 2 down?

20. There are two machines, one of which is used as a spare. A working
machine will function for an exponential time with rate A and will then fail.
Upon failure, it is immediately replaced by the other machine if that one
is in working order, and it goes to the repair facility. The repair facility
consists of a single person who takes an exponential time with rate u to
repair a failed machine. At the repair facility, the newly failed machine
enters service if the repairperson is free. If the repairperson is busy, it waits
until the other machine is fixed. At that time, the newly repaired machine
is put in service and repair begins on the other one. Starting with both
machines in working condition, find

(a) the expected value and
(b) the variance

of the time until both are in the repair facility.
(c) In the long run, what proportion of time is there a working machine?

21. Suppose that when both machines are down in Exercise 20 a second
repairperson is called in to work on the newly failed one. Suppose all repair
times remain exponential with rate 4. Now find the proportion of time at
least one machine is working, and compare your answer with the one
obtained in Exercise 20.

22. Customers arrive at a single server queue in accordance with a Poisson
process having rate A. However, an arrival that finds # customers already in
the system will only join the system with probability 1/(n + 1). That is, with
probability n/(n + 1) such an arrival will not join the system. Show that the
limiting distribution of the number of customers in the system is Poisson
with mean A/u.

23. A job shop consists of three machines and two repairmen. The
amount of time a machine works before breaking down is exponentially
distributed with mean 10. If the amount of time it takes a single repairman
to fix a machine is exponentially distributed with mean 8, then

(a) what is the average number of machines not in use?
(b) what proportion of time are both repairmen busy?
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*24. Consider a taxi station where taxis and customers arrive in
accordance with Poisson processes with respective rates of one and two per
minute. A taxi will wait no matter how many other taxis are present.
However, if an arriving customer does not find a taxi waiting, he leaves.
Find

(a) the average number of taxis waiting, and
(b) the proportion of arriving customers that get taxis.

25. Customers arrive at a service station, manned by a single server who
serves at an exponential rate u,, at a Poisson rate A. After completion of
service the customer then joins a second system where the server serves at an
exponential rate u, . Such a system is called a tandem or sequential queueing
system. Assuming that A < u;, i = 1, 2, determine the limiting probabilities.

Hint: Try a solution of the form P, ,, = Ca"$™, and determine C, «, .

26. Consider an ergodic M/M/s queue in steady state (that is, after a long
time) and argue that the number presently in the system is independent of
the sequence of past departure times. That is, for instance, knowing that
there have been departures 2, 3, 5, and 10 time units ago does not affect the
distribution of the number presently in the system.

27. In the M/M/s queue if you allow the service rate to depend on the
number in the system (but in such a way so that it is ergodic), what can you
say about the output process? What can you say when the service rate u
remains unchanged but A > su?

*28. If{X(¢)}and{Y(¢)}are independent continuous-time Markov chains,
both of which are time reversible, show that the process {X(¢), Y (¢)} is also
a time reversible Markov chain.

29. Consider a set of n machines and a single repair facility to service
these machines. Suppose that when machine i, i = 1, ..., n, fails it requires
an exponentially distributed amount of work with rate y; to repair it. The
repair facility divides its efforts equally among all failed machines in the
sense that whenever there are k failed machines each one receives work at a
rate of 1/k per unit time. If there are a total of r working machines,
including machine /, then i fails at an instantaneous rate A;/r.

(a) Define an appropriate state space so as to be able to analyze the
above system as a continuous-time Markov chain.

(b) Give the instantaneous transition rates (that is, give the g;;).

(c) Write the time reversibility equations.

(d) Find the limiting probabilities and show that the process is time
reversible.
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30. Consider a graph with nodes 1,2,...,n and the <'21> arcs (i, 7),

i#j,i,j,=1,...,n. (See Section 3.6.2 for appropriate definitions.)
Suppose that a particle moves along this graph as follows: Events occur
along the arcs (i, j) according to independent Poisson processes with rates
A;. An event along arc (/,/) causes that arc to become excited. If the
particle is at node / at the moment that (i, /) becomes excited, it instan-
taneously moves to node j; i,j = 1, ..., n. Let P; denote the proportion of
time that the particle is at node j. Show that

Hint: Use time reversibility.

31. A total of N customers move about among r servers in the following
manner. When a customer is served by server i, he then goes over to server
J, J # i, with probability 1/(r — 1). If the server he goes to is free, then the
customer enters service; otherwise he joins the queue. The service times are
all independent, with the service times at server i being exponential with rate
u;, i =1, ..., r. Let the state at any time be the vector (n,, ..., n,), where n;
is the number of customers presently at server i, i =1,...,r, ¥;n; = N.

(a) Argue that if X(¢) is the state at time ¢, then {X(¢), 1 =0} is a
continuous-time Markov chain.

(b) Give the infinitesimal rates of this chain.

(c) Show that this chain is time reversible, and find the limiting
probabilities.

32. Customers arrive at a two-server station in accordance with a Poisson
process having rate A. Upon arriving, they join a single queue. Whenever a
server completes a service, the person first in line enters service. The service
times of server i/ are exponential with rate u;, i = 1, 2, where u; + u, > A.
An arrival finding both servers free is equally likely to go to either one.
Define an appropriate continuous-time Markov chain for this model, show
it is time reversible, and find the limiting probabilities.

*33. Consider two M/M/1 queues with respective parameters A;, u;,
i = 1,2. Suppose they share a common waiting room that can hold at
most 3 customers. That is, whenever an arrival finds his server busy and 3
customers in the waiting room, then he goes away. Find the limiting
probability that there will be n queue 1 customers and m queue 2 customers
in the system.

Hint: Use the results of Exercise 28 together with the concept of
truncation.
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34. Four workers share an office that contains four telephones. At any
time, each worker is either ‘‘working’’ or ‘‘on the phone.’’ Each ‘‘working”’
period of worker i lasts for an exponentially distributed time with rate 4;,
and each ‘‘on the phone’’ period lasts for an exponentially distributed time
with rate i;, i = 1, 2, 3, 4.

(a) What proportion of time are all workers ‘‘working’’?

Let X;(¢) equal 1 if worker / is working at time ¢, and let it be 0 otherwise.
Let X(#) = (X (1), X5(1), X5(2), X4(2)).

(b) Argue that {X(¢), t = 0} is a continuous-time Markov chain and give
its infinitesimal rates.

(c) Is {X(#)} time reversible? Why or why not?

Suppose now that one of the phones has broken down. Suppose that a
worker who is about to use a phone but finds them all being used begins a
new ‘‘working’’ period.

(d) What proportion of time are all workers ‘‘working’’?

35. Consider a time reversible continuous-time Markov chain having
infinitesimal transition rates g;; and limiting probabilities {P;}. Let A denote
a set of states for this chain, and consider a new continuous-time Markov
chain with transition rates g; given by

« _ Lcay, ified,jgA
Y Qi otherwise

where c is an arbitrary positive number. Show that this chain remains time
reversible, and find its limiting probabilities.

36. Consider a system of n components such that the working times of
component i/, i = 1, ..., n, are exponentially distributed with rate A;. When
failed, however, the repair rate of component / depends on how many other
components are down. Specifically, suppose that the instantaneous repair
rate of component i, i = 1,...,n, when there are a total of k failed
components, is a*y;.

(a) Explain how we can analyze the preceding as a continuous-time
Markov chain. Define the states and give the parameters of the chain.
(b) Show that, in steady state, the chain is time reversible and compute
the limiting probabilities.

37. For the continuous-time Markov chain of Exercise 3 present a
uniformized version.
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38. In Example 6.20, we computed m(t) = E[O(¢)], the expected occupa-
tion time in state O by time ¢ for the two-state continuous-time Markov
chain starting in state 0. Another way of obtaining this quantity is by
deriving a differential equation for it.

(a) Show that
m(t + h) = m(t) + Py(t)h + o(h)

(b) Show that

u A = (\+p)t
m'(t) = + ——e #
0 A+u A+u

(c) Solve for m(t).

39. Let O(¢) be the occupation time for state 0 in the two-state continuous-
time Markov chain. Find E{O(¢)| X(0) = 1].

40. Consider the two-state continuous-time Markov chain. Starting in
state 0, find Cov[X(s), X(¢)].

41. Let Y denote an exponential random variable with rate A that is
independent of the continuous-time Markov chain {X(¢)} and let

Pj = P{X(Y) = j| X(0) = i}
(a) Show that
_ 1

B, = WPy + ——
ey LS Ry

dyj

where J;;is 1 when / = j and 0 when i # j.
(b) Show that the solution of the preceding set of equations is given by

P=@O-R/)!

where P is the matrix of elements P;, I is the identity matrix, and R the
matrix specified in Section 6.8.

(c) Suppose now that Y}, ..., ¥, are independent exponentials with rate A
that are independent of {X(¢)}. Show that

PIX(Y, + -+ + Y,) = j1X(0) = i}

is equal to the element in row #, column j of the matrix P”.
(d) Explain the relationship of the preceding to Approximation 2 of
Section 6.8.
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*42. (a) Show that Approximation 1 of Section 6.8 is equivalent to
uniformizing the continuous-time Markov chain with a value v such that
vt = n and then approximating P;(f) by P}".

(b) Explain why the preceding should make a good approximation.

Hint: What is the standard deviation of a Poisson random variable with
mean n?
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Chapter 7

Renewal Theory and
Its Applications

v

7.1. Introduction

We have seen that a Poisson process is a counting process for which the
times between successive events are independent and identically distributed
exponential random variables. One possible generalization is to consider a
counting process for which the times between successive events are inde-
pendent and identically distributed with an arbitrary distribution. Such a
counting process is called a renewal process.

Let {N(¢), t > 0} be a counting process and let X, denote the time
between the (n — 1)st and the nth event of this process, n = 1.

Definition 7.1 If the sequence of nonnegative random variables
{X, X5, ...} is independent and identically distributed, then the counting
process {N(¢), t = 0} is said to be a renewal process.

Thus, a renewal process is a counting process such that the time until the
first event occurs has some distribution F, the time between the first and
second event has, independently of the time of the first event, the same
distribution F, and so on. When an event occurs, we say that a renewal has
taken place.

For an example of a renewal process, suppose that we have an infinite
supply of lightbulbs whose lifetimes are independent and identically dis-
tributed. Suppose also that we use a single lightbulb at a time, and when it
fails we immediately replace it with a new one. Under these conditions,

303
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X Xy~ X3
0 S S, Sy Time

Figure 7.1.

{N(t), t = 0} is a renewal process when N(¢) represents the number of
lightbulbs that have failed by time .
For a renewal process having interarrival times X, X, ..., let

n
Sp =0, S, = Y X, n=1
i=1

That is, S; = X, is the time of the first renewal; S, = X; + X, is the time
until the first renewal plus the time between the first and second renewal,
that is, S, is the time of the second renewal. In general, S, denotes the time
of the nth renewal (see Figure 7.1).

We shall let " denote the interarrival distribution and to avoid trivialities,
we assume that F(0) = P{X, = 0} < 1. Furthermore, we let

u=E[X,)], n=zl

be the mean time between successive renewals. It follows from the non-
negativity of X, and the fact that X, is not identically O that u > 0.

The first question we shall attempt to answer is whether an infinite
number of renewals can occur in a finite amount of time. That is, can N(¢t)
be infinite for some (finite) value of ¢? To show that this cannot occur, we
first note that, as S,, is the time of the nth renewal, N(¢) may be written as

N(t) = max{n:S, < } (7.1)

To understand why Equation (7.1) is valid, suppose, for instance, that
S, < t but S5 > t. Hence, the fourth renewal had occurred by time ¢ but the
fifth renewal occurred after time #; or in other words, N(¢), the number of
renewals that occurred by time ¢, must equal 4. Now by the strong law of
large numbers it follows that, with probability 1,

LN u as n — o

n
But since 4 > 0 this means that S,, must be going to infinity as n goes to
infinity. Thus, S, can be less than or equal to ¢ for at most a finite number
of values of n, and hence by Equation (7.1), N(¢#) must be finite.

However, though N(t) < o« for each ¢, it is true that, with probability 1,

N(o0) = lim N(f) =
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This follows since the only way in which N(e), the total number of
renewals that occur, can be finite is for one of the interarrival times to be
infinite. Therefore,

P{N() < 0} = P{X, = « for some nj

P{ O (X, = w}}

n=1

E P{X, = o]

n=1

0

IA

7.2. Distribution of N(t)

The distribution of N(¢) can be obtained, at least in theory, by first noting
the important relationship that the number of renewals by time t is greater
than or equal to n if and only if the nth renewal occurs before or at time t.
That is,

Nit)yzne S, <t (7.2)
From Equation (7.2) we obtain
P{N(t) = n} = PIN(t)=zn} - PIN(t) =z n + 1}
=P[S, <t} - P{S,,, =t} 7.3)

Now since the random variables X;, i = 1, are independent and have a
common distribution F, it follows that S, = Y 7., X; is distributed as F,,
the n-fold convolution of F with itself (Section 2.5). Therefore, from
Equation (7.3) we obtain

P{N(t) = n} = F)(t) = F,.\(1)

Example 7.1 Suppose that P{X, = i} = p(1 — p)""!, i = 1. That is,
suppose that the interarrival distribution is geometric. Now S; = X, may be
interpreted as the number of trials necessary to get a single success when
each trial is independent and has a probability p of being a success.
Similarly, S, may be interpreted as the number of trials necessary to attain
n successes, and hence has the negative binomial distribution

k-1
"1 — p)n, k=n
P{S, = k} = <n— l>p( p)

0, k<n
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Thus, from Equation (7.3) we have that

W k-1
PIN(t)=n} = ¥ < >p”(1 - p

k=n n—1
b k-1
_ E < >pn+l(1 = p)k—n—l
k=n+1 n

Equivalently, since an event independently occurs with probability p at each
of the times 1, 2, ...

P{N({t)=n = <[t]

n

>p"(1 -l &
By using Equation (7.2) we can calculate m(¢), the mean value of N(¢), as
m(t) = E[N(?)]

Ej PIN(t) = n)

n=1

E P{S, =t}

n=1

Y F.(t)

n=1

where we have used the fact that if X is nonnegative and integer valued, then

E[X]

© © k
Y kPIX=ki= Y Y P X=k
k=1 k=1 1

n=
Y YPX=k= Y PiXzn
n=1k=n n=1
The function m(¢) is known as the mean-value or the renewal function.
It can be shown that the mean-value function m(f) uniquely determines
the renewal process. Specifically, there is a one-to-one correspondence
between the interarrival distributions F and the mean-value functions m(t).

Example 7.2 Suppose we have a renewal process whose mean-value
function is given by
m(t) = 2t, t=0

What is the distribution of the number of renewals occurring by time 10?

Solution: Since m(¢) = 2t is the mean-value function of a Poisson
process with rate 2, it follows, by the one-to-one correspondence of
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interarrival distributions F and mean-value functions m(¢), that F must
be exponential with mean 1. Thus, the renewal process is a Poisson
process with rate 2 and hence

PIN(10) = n} = e

'20@, n=0 &

Another interesting result that we state without proof is that

m(t) < «© for all 1 <

Remarks (i) Since m(t) uniquely determines the interarrival distribu-
tion, it follows that the Poisson process is the only renewal process having
a linear mean-value function.

(ii) Some readers might think that the finiteness of m(¢) should follow
directly from the fact that, with probability 1, N(¢) is finite. However, such
reasoning is not valid, for consider the following: Let Y be a random
variable having the following probability distribution

Y = 2" with probability (3)", n=1
Now,

P(Y<wl= ¥ PY=21= Y 4y = 1
n=1 n=1

But

E[Y] = i 2"P{Y = 2"} = f; 27(4)" = oo

n=1 n=1

Hence, even when Y is finite, it can still be true that E[Y] = co.

An integral equation satisfied by the renewal function can be obtained by
conditioning on the time of the first renewal. Assuming that the interarrival
distribution F' is continuous with density function f this yields

m(t) = E[N(1)] = E EIN@)| X, = x1f(x) dx (7.4)
0

Now suppose that the first renewal occurs at a time x that is less than 7.
Then, using the fact that a renewal process probabilistically starts over
when a renewal occurs, it follows that the number of renewals by time ¢
would have the same distribution as 1 plus the number of renewals in the
first + — x time units. Therefore,

EINO|X,=x] =1+ E[N¢ - %] ifx<t
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Since, clearly
EIN@)| X, =x1=0  whenx> ¢

we obtain from (7.4) that

m(t) = j [1 + m(t ~ x)] f(x)dx

0

t

= F(t) + S m(t — x)f(x) dx 7.5)

0

Equation (7.5) is called the renewal equation and can sometimes be solved
to obtain the renewal function.

Example 7.3 One instance in which the renewal equation can be solved
is when the interarrival distribution is uniform—say uniform on (0, 1). We
will now present a solution in this case when ¢ < 1. For such values of ¢, the
renewal function becomes

m(t) =t+! m(t — x)dx
0

t
t+ S m(y)dy by the substitution y = ¢t — x
0

Differentiating the preceding equation yields
m'(t) =1+ m()

Letting A(t) = 1 + m(t), we obtain

h'(t) = h(1)
or
logh(t) =t + C
or
h(t) = Ke'
or
m(t) = Ke* — 1

Since m(0) = 0, we see that K = 1, and so we obtain

m(t) =e' - 1, O0<t<1 @
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7.3. Limit Theorems and Their Applications

We have shown previously that, with probability 1, N(¢) goes to infinity as
t goes to infinity. However, it would be nice to know the rate at which N(¢)
goes to infinity. That is, we would like to be able to say something about
lim, ., N(t)/t.

As a prelude to determining the rate at which N(¢) grows, let us first
consider the random variable Sy,. In words, just what does this random
variable represent? Proceeding inductively suppose, for instance, that
N(t) = 3. Then Sy = S; represents the time of the third event. Since there
are only three events that have occurred by time ¢, S; also represents the
time of the last event prior to (or at) time £. This is, in fact, what Sy,
represents—namely the time of the last renewal prior to or at time ¢. Similar
reasoning leads to the conclusion that Sy, represents the time of the
first renewal after time ¢ (see Figure 7.2). We now are ready to prove the
following.

Proposition 7.1 With probability 1,
N(t)

1
- ast—oo
t u

Proof Since Sy, is the time of the last renewal prior to or at time ¢, and
Sny+1 18 the time of the first renewal after time ¢, we have that

Sniy =t < Snay+r
or

Sney <! Sny+1
N@) ~ N@) N(?)

(7.6)

However, since Sy()/N(t) = T X;/N(t) is the average of N(¢) inde-
pendent and identically distributed random variables, it follows by the
strong law of large numbers that Sy, /N(t) = u as N(t) = «. But since
N(t) = c© when t = «, we obtain

Sne)

e d t S d
N(f) H as (o o]

2% 6 3 e

Swin ’ Swin ey Time

Figure 7.2.
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Furthermore, writing
Sny+1 _ Sniy+1 N@) + 1
N(r) N + 1 N()

we have that Sy, /(N(t) + 1) = u by the same reasoning as before and
N(@) + 1
-

1 t—
NGO as ©
Hence,
SN(t)+1 - u ast — oo
N(@)

The result now follows by Equation (7.6) since t/N(f) is between two
numbers, each of which convergestoyast > . @

Remarks (i) The preceding propositions are true even when u, the mean
time between renewals, is infinite. In this case, we interpret 1/u to be 0.
(i) The number 1/u is called the rafe of the renewal process.

Proposition 7.1 says that the average renewal rate up to time ¢ will, with
probability 1, converge to 1/u as ¢t — . What about the expected average
renewal rate? Is it true that m(¢)/¢t also converges to 1/u? This result,
known as the elementary renewal theorem, will be stated without proof.

Elementary Renewal Theorem

m(t 1
O L

As before, 1/u is interpreted as 0 when y = oo,

Remark At first glance it might seem that the elementary renewal
theorem should be a simple consequence of Proposition 7.1. That is, since
the average renewal rate will, with probability 1, converge to 1/u, should
this not imply that the expected average renewal rate also converges to 1/u?
We must, however, be careful; consider the next example.

Example 7.4 Let U be a random variable which is uniformly distributed
on (0, 1); and define the random variables Y,, n = 1, by

v - 0, ifU> 1/n
" An, ifU=<1/n
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Now, since, with probability 1, U will be greater than 0, it follows that ¥,
will equal O for all sufficiently large n. That is, Y, will equal O for all n large
enough so that 1/n < U. Hence, with probability 1,

Yy, -0 asn— oo
However,
1 1
ElY]=nP{U<s - =n—-=1
n n
Therefore, even though the sequence of random variables Y, converges to 0,
the expected values of the Y, are all identically 1. 4

Example 7.5 Beverly has a radio which works on a single battery. As
soon as the battery in use fails, Beverly immediately replaces it with a new
battery. If the lifetime of a battery (in hours) is distributed uniformly over
the interval (30, 60), then at what rate does Beverly have to change batteries?

Solution: If we let N(¢) denote the number of batteries that have failed
by time ¢, we have by Proposition 7.1 that the rate at which Beverly
replaces batteries is given by

i NO _1_ 1

o ¢t u 45
That is, in the long run, Beverly will have to replace one battery in a
45-hour period. @

Example 7.6 Suppose in Example 7.5 that Beverly does not keep any
surplus batteries on hand, and so each time a failure occurs she must go and
buy a new battery. If the amount of time it takes for her to get a new battery
is uniformly distributed over (0, 1), then what is the average rate that
Beverly changes batteries?

Solution: In this case the mean time between renewals is given by
u=EU, + EU,

where U, is uniform over (30, 60) and U, is uniform over (0, 1). Hence,
u=45+1 =454

and so in the long run, Beverly will be putting in a new battery at the rate
of & That is, she will put in two new batteries every 91 hours. 4
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Example 7.7 Suppose that potential customers arrive at a single-server
bank in accordance with a Poisson process having rate 4. However, suppose
that the potential customer will only enter the bank if the server is free when
he arrives. That is, if there is already a customer in the bank, then our
arrivee, rather than entering the bank, will go home. If we assume that the
amount of time spent in the bank by an entering customer is a random
variable having a distribution G, then

(a) what is the rate at which customers enter the bank? and
(b) what proportion of potential customers actually enter the bank?

Solution: In answering these questions, let us suppose that at time 0 a
customer has just entered the bank. (That is, we define the process to
start when the first customer enters the bank.) If we let u; denote the
mean service time, then, by the memoryless property of the Poisson
process, it follows that the mean time between entering customers is

1
=g + =
U=t + >

Hence, the rate at which customers enter the bank will be given by
1 A
v 1+ dug

On the other hand, since potential customers will be arriving at a rate A,
it follows that the proportion of them entering the bank will be given by

M+ Aug) 1
A 1+ Aug

In particular if A = 2 (in hours) and u; = 2, then only one customer out
of five will actually enter the system. €

A somewhat unusual application of Proposition 7.1 is provided by our
next example.

Example 7.8 A sequence of independent trials, each of which results in
outcome number i with probability P;, i = 1,...,n, ¥ P; = 1, is observed
until the same outcome occurs k times in a row; this outcome then is
declared to be the winner of the game. For instance, if k¥ = 2 and the
sequence of outcomes is 1,2,4,3,5,2,1, 3,3, then we stop after 9 trials
and declare outcome number 3 the winner. What is the probability that /
wins, i = 1, ..., n, and what is the expected number of trials?
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Solution: We begin by computing the expected number of coin tosses,
call it E[T], until a run of k successive heads occur when the tosses are
independent and each lands on heads with probability p. By conditioning
on the time of the first nonhead, we obtain

k
E[T]1= X (1 - pp’'( + E[T]) + kp*

Jj=1

Solving this for E[T] yields

1-p) k.
ET =k + 8Py o
V4 j=1

Upon simplifying, we obtain

o0 e k_l
E[T]=l+p+ . +p
p
(1 -p"
~ P fp) .1

Now, let us return to our example, and let us suppose that as soon as
the winner of a game has been determined we immediately begin playing
another game. For each i let us determine the rate at which outcome i
wins. Now, every time i wins, everything starts over again and thus wins
by i constitute renewals. Hence, from Proposition 7.1, the

1
Rate at which i/ wins = m

where N; denotes the number of trials played between successive wins of
outcome i. Hence, from Equation (7.7) we see that

PK1 - P)

Rate at which / wins = (1 - PF)

(7.8)
Hence, the long-run proportion of games which are won by number i/ is
given by
rate at which / wins
¥;-1 rate at which j wins

_ P - Py~ P
Lj-1(PF( — P)/(1 = Pf))

Proportion of games i wins =

However, it follows from the strong law of large numbers that the
long-run proportion of games that i/ wins will, with probability 1, be
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equal to the probability that i wins any given game. Hence,

Pf(1 - P)/(1 ~ PY)

PUIns] = S BF — By - PR

To compute the expected time of a game, we first note that the

Rate at which games end = } Rate at which i wins

i=1
L Pf(1 - P)

=X

A= I)ik) (from Equation (7.8))

Now, as everything starts over when a game ends, it follows by Proposition
7.1 that the rate at which games end is equal to the reciprocal of the mean
time of a game. Hence,

1
Rate at which games end

1
T Y (PE1 = P)/(1 - PH)

E[Time of a game] =

*

A key element in the proof of the elementary renewal theorem, which is
also of independent interest, is the establishment of a relationship between
m(t), the mean number of renewals by time ¢, and E[Sx,.1], the expected
time of the first renewal after ¢. Letting

g(t) = E[Sny+1]

we will derive an integral equation, similar to the renewal equation, for g(¢)
by conditioning on the time of the first renewal. This yields

g(t) = S E[Sney+1| X, = X1 f(x) dx
0

where we have supposed that the interarrival times are continuous with
density f. Now if the first renewal occurs at time x and x > ¢, then clearly
the time of the first renewal after ¢ is x. On the other hand, if the first
renewal occurs at a time x < ¢, then by regarding x as the new origin,
it follows that the expected time, from this origin, of the first renewal
occurring after a time ¢ — x from this origin is g(f — x). That is, we see that

g(t — X) + x, ifx<t

E X = =
[SN(t)+1| 1 =X] {x’ x>t
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Substituting this into the preceding equation gives

g(t) = S (gt - x) +x)f()dx + S xf(x) dx
0

t

0

= S gt — ) f(x) dx + waf(x) dx
0

or
t

gty =u+ L gt — x)f(x)dx

which is quite similar to the renewal equation

t

m(t) = F(t) + S m(t — x)f(x) dx
0

Indeed, if we let

g =52
u
we see that
g +1=1 +S [g:(t — x) + 1]f(x) dx
[
or

-]

&) = Ft) + § &1t — 0)f(x) dx
0

That is, g,(tf) = E[Sn¢y+1]/u — 1 satisfies the renewal equation and thus,
by uniqueness, must be equal to m(¢). We have thus proven the following.

Proposition 7.2
E[Sniy+1] = ulm(@) + 1]
A second derivation of Proposition 7.2 is given in Exercises 11 and 12.
To see how Proposition 7.2 can be used to establish the elementary renewal
theorem, let Y(¢) denote the time from ¢ until the next renewal. Y(¢) is

called the excess, or residual life, at ¢. As the first renewal after ¢ will occur
at time ¢ + Y(¢), we see that

Snay+1 =1+ Y()
Taking expectations and utilizing Proposition 7.2 yields

ulm(t) + 11 = t + E[Y(®)] (1.9)
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which implies that

m) _
0 _

, ELY®)

1
t tu

V=

The elementary renewal theorem can now be proven by showing that

i ELYQ@D _
im—=— =

t—w t

0

(see Exercise 12).
The relation (7.9) shows that if one can determine E[Y(¢)], the mean
excess at ¢, then one can compute m(¢) and vice versa.

Example 7.9 Consider the renewal process whose interarrival distribu-
tion is the convolution of two exponentials; that is,

F=Fx*FE, where Fi(t) =1 —e ™™, i=1,2

We will determine the renewal function by first determining E[Y (¢)]. To
obtain the mean excess at ¢, imagine that each renewal corresponds to a
new machine being put in use, and suppose that each machine has two
components—initially component 1 is employed and this lasts an expo-
nential time with rate 4, and then component 2, which functions for an
exponential time with rate u,, is employed. When component 2 fails, a new
machine is put in use (that is, a renewal occurs). Now consider the process
{X(1), t = 0} where X(¢) is i if a type i component is in use at time ¢. It is
easy to see that {X(¢), ¢ = 0} is a two-state continuous-time Markov chain,
and so, using the results of Example 6.10, its transition probabilities are

P,(t) = Le—%ﬂtz)t + K
Uy + U My + U

To compute the remaining life of the machine in use at time ¢, we condition
on whether it is using its first or second component: for if it is still using its
first component, then its remaining life is 1/4, + 1/u,, whereas if it is
already using its second component, then its remaining life is 1/u,. Hence,
letting p(¢) denote the probability that the machine in use at time ¢ is using
its first component, we have that

1 - p(t)
2

1 1
E[Y(®)] = <— + —>p(t) +

1 M

-1, 20

M Hy
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But, since at time O the first machine is utilizing its first component, it
follows that p(t) = P,,(¢), and so, upon using the preceding expression of
P,,(t), we obtain that

1
E[Yt)] =—+ ! e~Girmdl | B (7.10)
M2 Myt wpy + 1)
Now it follows from (7.9) that
t E[Y(t
m() + 1 =—+% (7.11)

where u, the mean interarrival time, is given in this case by

1 1 +
yo i, _mtm

= — (7.12)
o U Hila

Substituting (7.10) and (7.12) into (7.11) yields, after simplifying, that

mt) = Hild f— il S — e—(,,,1+,,,2)t] P
oty (U + )

Remark Using the relationship (7.11) and results from the two-state
continuous-time Markov chain, the renewal function can also be obtained
in the same manner as in Example 7.9 for the interarrival distributions

F(t) = pFi(t) + (1 — pFy(¥)
and
F@t) = pFi(t) + (1 — p)(F; * F,)(1)

when Fi(t) =1 — e, t>0,i=1,2.

An important limit theorem is the central limit theorem for renewal
processes. This states that, for large ¢, N(¢) is approximately normally
distributed with mean ¢/u and variance t¢%/u*, where u and o are, respec-
tively, the mean and variance of the interarrival distribution. That is, we
have the following theorem which we state without proof.

Central Limit Theorem for Renewal Processes

. N(t) — t/u } 1 j Y,
lim Pl—m——— < xt = — e ¥ “dx
t—oo { \/taz/y3 V21 )
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7.4. Renewal Reward Processes

A large number of probability models are special cases of the following
model. Consider a renewal process {N(¢), ¢t = 0} having interarrival times
X,, n =1, and suppose that each time a renewal occurs we receive a
reward. We denote by R,,, the reward earned at the time of the nth renewal.
We shall assume that the R,, n = 1, are independent and identically
distributed. However, we do allow for the possibility that R, may (and
usually will) depend on X,,, the length of the nth renewal interval. If we let

N()

R(t) = ¥ R,

n=1
then R(¢) represents the total reward earned by time ¢. Let

E[R] = E[R,], E[X] = E[X,]

Proposition 7.3 If E[R] < « and E[X] < o, then with probability 1

R() _ EIR]
t  E[X)

R@) _ YOR, “OR >N(t)>
t t "\ NO t

By the strong law of large numbers we obtain that

ast — o

Proof Write

EN(I)
’Jl\;(lt) - E[R] ast — o
and by Proposition 7.1 that
N(t) 1
—_— o — ast —>
t E[X]

The result thus follows. ¢

If we say that a cycle is completed every time a renewal occurs then
Proposition 7.3 states that in the long-run average reward is just the expected
reward earned during a cycle divided by the expected length of a cycle.

Example 7.10 In Example 7.7 if we suppose that the amounts that
the successive customers deposit in the bank are independent random
variables having a common distribution H, then the rate at which deposits
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accumulate—that is, lim,_, . (Total deposits by time ¢)/¢t—is given by

E[Deposits during a cycle]  uy
E[Time of cycle] T ug + 1/

where u; + 1/4 is the mean time of a cycle, and ug is the mean of the
distribution H. @

Example 7.11 (A Car Buying Model): The lifetime of a car is a con-
tinuous random variable having a distribution A and probability density A.
Mr. Brown has a policy that he buys a new car as soon as his old one either
breaks down or reaches the age of T years. Suppose that a new car costs C,
dollars and also that an additional cost of C, dollars is incurred whenever
Mr. Brown’s car breaks down. Under the assumption that a used car has no
resale value, what is Mr. Brown’s long-run average cost?

If we say that a cycle is complete every time Mr. Brown gets a new car,
then it follows from Proposition 7.3 (with costs replacing rewards) that his
long-run average cost equals

E[cost incurred during a cycle]
ETlength of a cycle]

Now letting X be the lifetime of Mr. Brown’s car during an arbitrary cycle,
then the cost incurred during that cycle will be given by

C, ifX>T
C,+ G, ifX=<T
so the expected cost incurred over a cycle is
CPIX>T)+(C, + CHPIX=<T}=C, + C,H(T)
Also, the length of the cycle is
X, ifX=T
T, ifX>T
and so the expected length of a cycle is
erh(x) dx + S: Thx)dx = erh(x) dx + T[1 -~ H(T)]
Therefore, Mr. Brown’s long-run average cost will be

C, + C,H(T)
fexh(x)dx + T[1 — H(T)]

(7.13)
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Now, suppose that the lifetime of a car (in years) is uniformly distributed
over (0, 10), and suppose that C; is 3 (thousand) dollars and C, is %
(thousand) dollars. What value of T minimizes Mr. Brown’s long-run
average cost?

If Mr. Brown uses the value 7, T < 10, then from (7.13) his long-run
average cost equals

3+ L(T1710) B 3+ T/20
[T(x/10)dx + T(1 — T/10)  T?/20 + (10T — T?)/10
_60+T
20T -T?

We can now minimize this by using the calculus. Toward this end, let

60+ T
&) = o1 — 717
then
20T — Tz) — (60 + TY20 — 2T7)

(20T — T%?

g'(T) =

Equating to O yields
20T — T? = (60 + T)(20 — 27)

or, equivalently,
T? + 1207 — 1200 = 0

which yields the solutions
T =9.25 and T = —129.25

Since T < 10, it follows that the optimal policy for Mr. Brown would be to
purchase a new car whenever his old car reaches the age of 9.25 years. 4

Example 7.12 (Dispatching a Train): Suppose that customers arrive at
a train depot in accordance with a renewal process having a mean inter-
arrival time u. Whenever there are N customers waiting in the depot, a train
leaves. If the depot incurs a cost at the rate of nc dollars per unit time
whenever there are n customers waiting, what is the average cost incurred by
the depot?

If we say that a cycle is completed whenever a train leaves, then the
preceding is a renewal reward process. The expected length of a cycle is the
expected time required for N customers to arrive and, since the mean
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interarrival time is u, this equals
Elength of cycle] = Nu

If we let 7, denote the time between the nth and (n + 1)st arrival in a cycle,
then the expected cost of a cycle may be expressed as

E[cost of a cycle] = E[cT; + 2c¢T, + -+« + (N — 1)cTy_4]
which, since E[T,] = u, equals

N
CHS(N— 1)

Hence, the average cost incurred by the depot is

uN(N - 1) (N -1)
2Nu 2

Suppose now that each time a train leaves the depot incurs a cost of six
units. What value of N minimizes the depot’s long-run average cost when
c=2,u=1?

In this case, we have that the average cost per unit time when the depot
uses N is

6 + cusN(N — 1) 6

=N-1+—
Nu N

By treating this as a continuous function of N and using the calculus, we
obtain that the minimal value of N is

N = V6 = 2.45

Hence, the optimal integral value of N is either 2 which yields a value 4, or
3 which also yields the value 4. Hence, either N = 2 or N = 3 minimizes the
depot’s average cost. @

Example 7.13 Consider a manufacturing process that sequentially
produces items, each of which is either defective or acceptable. The follow-
ing type of sampling scheme is often employed in an attempt to detect and
eliminate most of the defective items. Initially, each item is inspected and
this continues until there are £ consecutive items that are acceptable. At this
point 100% inspection ends and each successive item is independently
inspected with probability «. This partial inspection continues until a defec-
tive item is encountered, at which time 100% inspection is reinstituted, and
the process begins anew. If each item is, independently, defective with
probability g,
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(a) what proportion of items are inspected?
(b) if defective items are removed when detected, what proportion of the
remaining items are defective?

Remark Before starting our analysis, it should be noted that the above
inspection scheme was devised for situations in which the probability of
producing a defective item changed over time. It was hoped that 100%
inspection would correlate with times at which the defect probability was
large and partial inspection when it was small. However, it is still important
to see how such a scheme would work in the extreme case where the defect
probability remains constant throughout.

Solution: We begin our analysis by noting that we can treat the above
as a renewal reward process with a new cycle starting each time 100%
inspection is instituted. We then have

E[number inspected in a cycle]

roportion of items inspected = ;
prop P E[number produced in a cycle]

Let N, denote the number of items inspected until there are k consecutive
acceptable items. Once partial inspection begins—that is after N, items
have been produced—since each inspected item will be defective with
probability g, it follows that the expected number that will have to be
inspected to find a defective item is 1/q. Hence,

1
E[number inspected in a cycle] = E[N,] + a

In addition, since at partial inspection each item produced will,
independently, be inspected and found to be defective with probability
aq, it follows that the number of items produced until one is inspected
and found to be defective is 1/aq, and so

1
E[number produced in a cycle] = E[N,] + _q
04

Also, as E[N,] is the expected number of trials needed to obtain k
acceptable items in a row when each item is acceptable with probability
p =1 — g, it follows from Example 3.13 that

1 1 1/p)* — 1
AL 7 it

E[N,] =
(Nl p p q

+

& -

Hence we obtain

(/p)

P, = proportion of items that are inspected =
1= prop P /pff — 1+ lVa
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To answer (b), note first that since each item produced is defective with
probability g it follows that the proportion of items that are both
inspected and found to be defective is gP;. Hence, for N large, out of the
first N items produced there will be (approximately) NgP, that are
discovered to be defective and thus removed. As the first N items will
contain (approximately) Ng defective items, it follows that there will be
Ngq — NgP; defective items not discovered. Hence,

Ng(1 — P)

proportion of the non-removed items that are defective =
N1 - gPy)

As the approximation becomes exact as N — oo, we see that

q(1 — Py)

1 -gP) M

proportion of the non-removed items that are defective =

Example 7.14 (The Average Age of a Renewal Process): Consider a
renewal process having interarrival distribution F and define A(¢) to be the
time at ¢ since the last renewal. If renewals represent old items failing and
being replaced by new ones, then A(¢) represents the age of the item in use
at time f. Since Sy, represents the time of the last event prior to or at time
t, we have that

A(t) =t — Sy
We are interested in the average value of the age—that is, in
S A dt

§—2

To determine the above quantity, we use renewal reward theory in the
following way: Let us assume that any time we are being paid money at a
rate equal to the age of the renewal process at that time. That is, at time ¢,
we are being paid at rate 4(¢), and so {3 A(¢) dt represents our total earnings
by time s. As everything starts over again when a renewal occurs, it follows
that

o A(r) dt . E[Reward during a renewal cycle]
s E[Time of a renewal cycle]

Now since the age of the renewal process a time ¢ into a renewal cycle is just
t, we have

X

Reward during a renewal cycle = S tdt

0

X2

T2
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where X is the time of the renewal cycle. Hence, we have that

AW dt
Average value of age = lim 50_()_

s S

_ElX}
T 2E[X]

(7.14)

where X is an interarrival time having distribution function F. €

Example 7.15 (The Average Excess of a Renewal Process): Another
quantity associated with a renewal process is Y(¢), the excess or residual
time at time ¢. Y{(¢) is defined to equal the time from ¢ until the next renewal
and, as such, represents the remaining (or residual) life of the item in use at
time ¢. The average value of the excess, namely

5 Y

s~ 00 s

also can be easily obtained by renewal reward theory. To do so, suppose
that we are paid at time ¢ at a rate equal to Y(¢). Then our average reward
per unit time will, by renewal reward theory, be given by

.l Y(ryar
Average value of excess = lim w

s—eo S

_ E[Reward during a cycle]
" E[Length of a cycle]

Now, letting X denote the length of a renewal cycle, we have that

X
Reward during a cycle = S (X - t)ydt

0
X2
T2
and thus the average value of the excess is
E[X?Y

Average value of excess = 2E[X]

which was the same result obtained for the average value of the age of
renewal process. €
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7.5. Regenerative Processes

Consider a stochastic process {X(¢), t = 0} with state space 0,1, 2, ...,
having the property that there exist time points at which the process
(probabilistically) restarts itself. That is, suppose that with probability one,
there exists a time 7, such that the continuation of the process beyond T;
is a probabilistic replica of the whole process starting at 0. Note that this
property implies the existence of further times 75, T3, ..., having the same
property as 7; . Such a stochastic process is known as a regenerative process.

From the above, it follows that 7;, T7;, ..., constitute the arrival times of
a renewal process, and we shall say that a cycle is completed every time a
renewal occurs.

Examples (1) A renewal process is regenerative, and 7, represents the
time of the first renewal.

(2) A recurrent Markov chain is regenerative, and 7 represents the time
of the first transition into the initial state.

We are interested in determining the long-run proportion of time that a
regenerative process spends in state j. To obtain this quantity, let us imagine
that we earn a reward at a rate 1 per unit time when the process is in state
J and at rate 0 otherwise. That is, if I(s) represents the rate at which we earn

at time s, then
(1, ifX(s) =
1) = {o, if X(s) # j

and
t

Total reward earned by ¢ = g I(s) ds
0

As the preceding is clearly a renewal reward process which starts over again
at the cycle time 7;, we see from Proposition 7.3 that

E[Reward by time T7;]
E[T}]

Average reward per unit time =

However, the average reward per unit is just equal to the proportion of time
that the process is in state j. That is, we have the following.
Proposition 7.4 For a regenerative process, the long-run

E[Amount of time in j during a cycle]
E{Time of a cycle]

Proportion of time in state j =
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Remark If the cycle time 7; is a continuous random variable, then it can
be shown by using an advanced theorem called the ‘‘key renewal theorem’’
that the above is equal also to the limiting probability that the system is in
state j at time ¢. That is, if 7} is continuous, then

E[Amount of time in j during a cycle]
E[Time of a cycle]

lim P{X(t) = j} =

Example 7.16 (Markov Chains): Consider a positive recurrent Markov
chain which is initially in state /. By the Markovian property each time the
process reenters state i, it starts over again. Thus returns to state / are
renewals and constitute the beginnings of a new cycle. By Proposition 7.4,
it follows that the long-run

E[Amount of time in j during an i — i cycle]
Hii

Proportion of time in state j =

where y;; represents the mean time to return to state i. If we take j to equal
i, then we obtain

. .. .1
Proportion of time in state i = — @
Mi

Example 7.17 (A Queueing System with Renewal Arrivals): Consider a
waiting time system in which customers arrive in accordance with an
arbitrary renewal process and are served one at a time by a single server
having an arbitrary service distribution. If we suppose that at time O the
initial customer has just arrived, then {X(¢), t = 0} is a regenerative process,
where X(t) denotes the number of customers in the system at time f.
The process regenerates each time a customer arrives and finds the server
free. &

7.5.1. Alternating Renewal Processes

Another example of a regenerative process is provided by what is known as
an alternating renewal process, which considers that a system can be in one
of two states: on or off. Initially it is on, and it remains on for a time Z, ;
it then goes off and remains off for a time Y;. It then goes on for a time Z,;
then off for a time Y,; then on, and so on.

We suppose that the random vectors (Z,,, Y,), n = 1 are independent and
identically distributed. That is, both the sequence of random variables {Z,}
and the sequence {Y,} are independent and identically distributed; but we
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allow Z, and Y, to be dependent. In other words, each time the process goes
on, everything starts over again, but when it then goes off, we allow the
length of the off time to depend on the previous on time.

Let E[Z] = E[Z,] and E[Y] = E[Y,} denote respectively the mean
lengths of an on and off period.

We are concerned with P, , the long-run proportion of time that the
system is on. If we let

X, =Y, +2Z, n=1

then at time X, the process starts over again. That is, the process starts over
again after a complete cycle consisting of an on and an off interval. In other
words, a renewal occurs whenever a cycle is completed. Therefore, we
obtain from Proposition 7.4 that

_ E[Z]
" E[Y] + E[Z]

_ E[on]
"~ E[on] + E[off]

Pon

(7.15)

Also, if we let P, denote the long-run proportion of time that the system
is off, then

Poff= 1 _Pon

_ E[off]
" El[on] + E[off] (7.16)

Example 7.18 (A Production Process): One example of an alternating
renewal process is a production process (or a machine) which works for a
time Z,, then breaks down and has to be repaired (which takes a time Y;),
then works for a time Z,, then is down for a time Y,, and so on. If we
suppose that the process is as good as new after each repair, then this
constitutes an alternating renewal process. It is worthwhile to note that
in this example it makes sense to suppose that the repair time will depend
on the amount of time the process had been working before breaking
down. ¢

Example 7.19 (The Age of a Renewal Process): Suppose we are
interested in determining the proportion of time that the age of a renewal
process is less than some constant ¢. To do so, let a cycle correspond to a
renewal, and say that the system is ‘“‘on’’ at time ¢ if the age at ¢ is less than
or equal to ¢, and say it is ‘“‘off’’ if the age at ¢ is greater than c. In other
words, the system is ‘‘on’’ the first ¢ time units of a renewal interval,
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and “‘off”’ the remaining time. Hence, letting X denote a renewal inerval,
we have, from Equation (7.15),

E[min(X, ¢)]

Proportion of time age is less than ¢ =
p 4 E[X]

_ fo P{min(X, ¢) > x} dx
a E[X]

_ foPIX > x}dx
- E[X]

_fol - Ay dx

EIX] (7.17)

where F is the distribution function of X and where we have used the
identity that for a nonnegative random variable Y

o

E[Y]=§ P{Y > xjdx

0

Example 7.20 (The Excess of a Renewal Process): We leave it as an
exercise for the reader to show by an argument similar to the one used in the
previous example that

‘(1 — F(x))dx

Proportion of time the excess is less than ¢ = L W (7.18)

which is the same result obtained for the age. @

Example 7.21 (The Single-Server Poisson Arrival Queue): Consider a
single-server service station in which customers arrive according to a
Poisson process having rate A. An arriving customer is immediately served
if the server is free, and if not, then he waits in line (that is, he joins the
queue). The successive service times will be assumed to be independent and
identically distributed random variables having mean 1/u, where u > A.
What proportion of time is the server busy?

The above process will alternate between busy periods when the server
is working and idle periods when he is free. Hence, a cycle will consist
of a busy period followed by an idle period. Thus, letting Py denote the
proportion of time that the server is busy, we obtain that

B E[Length of a busy period]
"~ E[Length of a busy period] + E[Length of an idle period]

Py (7.19)
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Now an idle period begins when a customer completes his service and there
are no additional customers waiting for service, and it ends when the next
customer arrives. Hence, by the lack of memory of the Poisson process it
follows that an idle period will be exponentially distributed with mean 1/4;
that is,

E[Length of an idle period] = 1/4 (7.20)

Now a busy period begins when a customer enters and finds the server
free. To determine E[Lgz], the mean length of a busy period, we shall
condition on both the number of customers entering the system during the
service time of the customer initiating the busy period and the length of this
service time. Letting N denote the number of customers entering the system
during the initial customer’s service time, and S the length of this service,
we have

E[Lg] = E[E[Lg|N, S1I

Now if N = 0, then the busy period would end when the initial customer
completes his service. Therefore,

E[LgIN=0,S]1=S

On the other hand, suppose that N = 1. Then at time S there will be a single
customer in the system. Furthermore, since the arrival stream of customers
is a Poisson process it will be starting over again at time S. Hence, at time
S the expected additional time until the server becomes free will just be the
expected length of a busy period. That is,

E[Lg|N=1,81=5 + E[Lg]

Finally, suppose that n customers arrive during the service time of the
initial customer. To determine the conditional expected length of a busy
period in this situation, we first note that the length of the busy period will
not depend on the order in which we serve waiting customers. That is, it
will not make a difference if we serve waiting customers on a first-come,
first-served order or on any other order. Hence, let us suppose that our n
arrivals, C,, C,, ..., C,, during the initial service time are served as follows.
Customer 1 (that is, C,) is served first, but C, is not served until the only
customers in the system are C,, Cs, ..., C,. That is, C, is not served until
the system is free of all customers but C,, ..., C,. For instance, customers
arriving during C,’s service time will be served before C,, C;,...,C,.
Similarly, C; will not be served until the system is free of all customers but
Cs, ..., C,, and so on. A little thought will reveal that the expected length
of time between C; and C;,,’s service, i = 1,...,n — 1, will just be E[Lg].
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Therefore,
E[Lg|N =n,S] = S + nE[Lg]
or, equivalently,
E[Lg|N,S]1 =S + NE[Lg]
Hence, taking expectations of the preceding yields
E[Lg] = EI[S] + E[NE[Lg]]

= E[S] + E[N}E[Lg]
or
E[S]
1 - E[N]
1/u

E[Lg]

To determine E[N], the expected number of arrivals during the initial
service time of a busy period, we condition on S, the length of the service
time, to obtain

E[N] = E[EIN|S]]
However, since the arrival stream is a Poisson process with rate A it follows

that the expected number of arrivals during an interval of length S is just
AS. That is, E[N|S] = 1S, and hence

E[N] = E[AS] = AE[S] = A u
Substituting in equation (7.21) yields
1/u
1 - Au

1
=— 7.22
) (7.22)
Therefore, from Equation (7.19), (7.20), and (7.22), we have that Py, the
proportion of time that the server is busy, is given by

1/(u — 4) A

E[LB] =

BT Ui+ 1/ (u—-1) u

From this is follows that P;, the proportion of time that the server is idle, is
given by
PI = 1 - PB

1 - Au
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For instance, if A = 1 and 4 = 3, then the server is busy one-third of the
time and is idle two-thirds of the time. On the other hand, if we double 4
to obtain A = 2, then the proportion of time the server is busy doubles to
two-thirds of the time.

The above has been calculated under the assumption that A < u. When
A = pit can be shown that Py =1and P, =0. &

7.6. Semi-Markov Processes

Consider a process that can be in either state 1 or state 2 or state 3. It is
initially in state 1 where it remains for a random amount of time having
mean y4,, then it goes to state 2 where it remains for a random amount of
time having mean u,, then it goes to state 3 where it remains for a mean
time x4, then back to state 1, and so on. What proportion of time is the
process in state i, i = 1,2, 3?

If we say that a cycle is completed each time the process returns to
state /, and if we let the reward be the amount of time we spend in state i
during that cycle, then the above is a renewal reward process. Hence, from
Proposition 7.3 we obtain that P;, the proportion of time that the process
is in state /, is given by
_ i;

M+ pp + us’

Similarly, if we had a process which could be in any of N states
1,2,...,N and which moved from state 1 »2—>3—> ... 5 N-1—

N — 1, then the long-run proportion of time that the process spends in
state i is

i=1,2,3

i

 _ Ui
Yot Uy

where y; is the expected amount of time the process spends in state / during
each visit.

Let us now generalize the above to the following situation. Suppose that
a process can be in any one of N states 1,2,..., N, and that each time
it enters state / it remains there for a random amount of time having mean
u; and then makes a transition into state j with probability P,;. Such a
process is called a semi-Markov process. Note that if the amount of time
that the process spends in each state before making a transition is identically
1, then the semi-Markov process is just a Markov chain.

Let us calculate P; for a semi-Markov process. To do so, we first consider
n; the proportion of transitions that take the process into state i. Now if

i=1,2...,N
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we let X, denote the state of the process after the nth transition, then {X,,,
n =z 0} is a Markov chain with transition probabilities P, i,j = 1,2, ..., N.
Hence, #; will just be the limiting (or stationary) probabilities for this
Markov chain (Section 4.4). That is, m; will be the unique nonnegative

solution of

K
I
!
=)
v

%, i= 1,2, N¥ (7.23)

j=1

Now since the process spends an expected time y; in state i whenever it visits

that state, it seems intuitive that P, should be a weighted average of the =x;

where 7; is weighted proportionately to y;. That is,

_ Tili

= =,
=17k

where the n; are given as the solution to Equation (7.23).

P i=1,2,..,N (7.24)

Example 7.22 Consider a machine that can be in one of three states:
good condition, fair condition, or broken down. Suppose that a machine
in good condition will remain this way for a mean time u, and then will
go to either the fair condition or the broken condition with respective
probabilities 3 and . A machine in fair condition will remain that way
for a mean time u, and then will break down. A broken machine will
be repaired, which takes a mean time u,, and when repaired will be in
good condition with probability 4 and fair condition with probability %.
What proportion of time is the machine in each state?

Solution: Letting the states be 1, 2, 3, we have by Equation (7.23) that
the n; satisfy

o+ =1,
n, = %”3,
My = 37, + 375,
ny =31, + 7,

The solution is
— 4 -1 -2
Ty = 15 n, =173, 3 =%

* We shall assume that there exists a solution of Equation (7.23). That is, we assume that all
of the states in the Markov chain communicate.
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Hence, from Equation (7.24) we obtain that P,, the proportion of time the
machine is in state i, is given by

p, = 4u,
VU dpy + Sy + 6uy”
P, = Su,
4uy + S + 6y’
6
P, 3

duy + Sy + 6y

For instance, if u, = 5, 4, = 2, u; = 1, then the machine will be in good
condition five-ninths of the time, in fair condition five-eighteenths of the
time, in broken condition one-sixth of the time. ¢

Remark When the distributions of the amount of time spent in each
state during a visit are continuous, then P, also represents the limiting
(as t = ) probability that the process will be in state i at time ¢.

Example 7.23 Consider a renewal process in which the interarrival
distribution is discrete and is such that

P{X=i]=pi1 i=z1

where X represents an interarrival random variable. Let L{f) denote the
length of the renewal interval that contains the point ¢ (that is, if N(¢) is the
number of renewals by time ¢ and X, the nth interarrival time, then
L(t) = Xn¢y+1)- If we think of each renewal as corresponding to the failure
of a lightbulb (which is then replaced at the beginning of the next period by
a new bulb), then L(¢) will equal / is the bulb in use at time ¢ fails in its ith
period of use.

It is easy to see that L(r) is a semi-Markov process. To determine the
proportion of time that L(¢) = j, note that each time a transition occurs—
that is, each time a renewal occurs—the next state will be j with probability
p;. That is, the transition probabilities of the embedded Markov chain
are P; = p;. Hence, the limiting probabilities of this embedded chain are
given by

mj = Dj
and, since the mean time the semi-Markov process spends in state j before
a transition occurs is j, it follows that the long-run proportion of time the
state is j is
_ Jpj
7 Yiip;
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7.7. The Inspection Paradox

Suppose that a piece of equipment, say a battery, is installed and serves
until it breaks down. Upon failure it is instantly replaced by a like battery,
and this process continues without interruption. Letting N(f) denote the
number of batteries that have failed by time ¢, we have that {N(¢), ¢ = 0} is
a renewal process.

Suppose further that the distribution F of the lifetime of a battery is not
known and is to be estimated by the following sampling inspection scheme.
We fix some time ¢ and observe the total lifetime of the battery that is in use
at time ¢. Since F is the distribution of the lifetime for all batteries, it seems
reasonable that it should be the distribution for this battery. However, this
is the inspection paradox for it turns out that the battery in use at time t
tends to have a larger lifetime than an ordinary battery.

To understand the preceding so-called paradox, we reason as follows. In
renewal theoretic terms what we are interested in is the length of the renewal
interval containing the point ¢. That is, we are interested in Xy =
Snw+1 — Sy (see Figure 7.2). To calculate the distribution of Xy, we
condition on the time of the last renewal prior to (or at) time ¢. That is,

P{Xnw+1 > X} = E[P{ XNy > x|SN(1) =1t - sj]

where we recall (Figure 7.2) that Sy, is the time of the last renewal prior to
(or at) t. Since there are no renewals between ¢ — s and ¢, it follows that
Xn@+1 must be larger than x if s > x. That is,

On the other hand, suppose that s < x. As before, we know that a renewal
occurred at time ¢ — s and no additional renewals occurred between ¢ — s
and ¢, and we ask for the probability that no renewals occur for an
additional time x — s. That is, we are asking for the probability that an
interarrival time will be greater than x given that it is greater than s. There-
fore, for s < x,

P{Xnwy+1 > X|SN(I) =1t- s

Pfinterarrival time > x|interarrival time > s}

Pfinterarrival time > x}/Pf{interarrival time > s}

1 - Fx)
T 1 = F(s)
=1 - F(x) (7.26)
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Hence, from Equations (7.25) and (7.26) we see that, for all s,
P{Xnwps1 > X|Sn =t — s} =1 - F(x)
Taking expectations on both sides yields that
P{Xnw+1 > X} 2 1 — F(x) (7.27)

However, 1 — F(x) is the probability that an ordinary renewal interval is
larger than x, that is, 1 — F(x) = P{X,, > x}, and thus Equation (7.27) is a
statement of the inspection paradox that the length of the renewal interval
containing the point ¢ tends to be larger than an ordinary renewal interval.

Remark To obtain an intuitive feel for the so-called inspection paradox,
reason as follows. We think of the whole line being covered by renewal
intervals, one of which covers the point ¢. Is it not more likely that a larger
interval, as opposed to a shorter interval, covers the point ¢?

We can actually calculate the distribution of Xy, ., when the renewal
process is a Poisson process. (Note that, in the general case, we did not need
to calculate explicitly P{X .., > x} to show that it was at least as large as
1 — F(x).) To do so we write

Xnw+1 = AW + Y()

where A(¢) denotes the time from ¢ since the last renewal, and Y(¢) denotes
the time from ¢ until the next renewal (see Figure 7.3). A(¢) is known as the
age of the process at time ¢ (in our example it would be the age at time 7 of
the battery in use at time t), and Y(¢) is known as the excess life of the
process at time ¢ (it is the additional time from ¢ until the battery fails). Of
course, it is true that A(f) = ¢ — Sn), and Y(£) = Sygp+r — L.

To calculate the distribution of Xy,,; we first note the important fact
that, for a Poisson process, A(f) and Y{(¢) are independent. This follows
since by the memoryless property of the Poisson process, the time from ¢
until the next renewal will be exponentially distributed and will be indepen-
dent of all that has previously occurred (including, in particular, A(¢)). In
fact, this shows that if {N(¢), t = 0} is a Poisson process with rate A, then

PiY)<sx}=1-¢e™ (7.28)
A(r) ‘.~ Y{7) -
; - Time

Figure 7.3.
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The distribution of A(¢) may be obtained as follows

P{0 renewals in [t — x, t]}, ifx=<t
P{A(’)>X}={o{ [ ! it x> ¢
B e™, ifx=<t
o, if x> ¢

or, equivalently,

l—e"‘x, X<t

7.29
1, x>t ( )

PlA@) = x} = {
Hence, by the independence of Y(f) and A(¢) the distribution of Xy, is
just the convolution of the exponential distribution Equation (7.28) and the
distribution Equation (7.29). It is interesting to note that for ¢ large, A(¢)
approximately has an exponential distribution. Thus, for f large, Xy .y
has the distribution of the convolution of two identically distributed
exponential random variables, which by Section 5.2.3, is the gamma
distribution with parameters (2, ). In particular, for ¢ large, the expected
length of the renewal interval containing the point ¢ is approximately twice
the expected length of an ordinary renewal interval.

7.8. Computing the Renewal Function

The difficulty with attempting to use the identity

m(t) = Y F()
n=1

to compute the renewal function is that the determination of F,(¢) =
P{X, + --- + X,, < t} requires the computation of an n-dimensional
integral. We present below an effective algorithm which requires as inputs
only one-dimensional integrals.

Let Y be an exponential random variable having rate A, and suppose that
Y is independent of the renewal process {N(f), ¢t = 0}. We start by deter-
mining E{N(Y)], the expected number of renewals by the random time Y.
To do so, we first condition on X, the time of the first renewal. This yields

o

E[NY)] = S EINY)| X, = x1f(x) dx (7.30)
0

where f is the interarrival density. To determine E[N(Y)|X, = x], we now

condition on whether or not Y exceeds x. Now, if Y < x, then as the first

renewal occurs at time x, it follows that the number of renewals by time Y
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is equal to 0. On the other hand, if we are given that x < Y, then the number
of renewals by time Y will equal 1 (the one at x) plus the number of
additional renewals between x and Y. But, by the memoryless property of
exponential random variables, it follows that, given that Y > x, the amount
by which it exceeds x is also exponential with rate A, and so given that ¥ > x
the number of renewals between x and Y will have the same distribution as
N(Y). Hence,

EINY)| X, =x,Y<x] =0,

EINY)|X,=x,Y>x] =1+ E[NY)]
and so,
EINY)| X, =x] = EINY)| X, = x, Y < x]P{Y < x| X, = x}
+ EINY)| X, = x, Y > x]P{Y > x| X, = x}
= E[NY)|X; = x, Y > x]P{Y > x]
since Y and X, are independent
= (1 + E[N(Y)De™
Substituting this into (7.30) gives

-]

EIMY)] = (1 + E[N(Y)])S e™™f(x) dx
[

or

E _“
EINW)] = 1= g @.31)

where X has the renewal interarrival distribution.

If we let A = 1/¢, then (7.31) presents an expression for the expected
number of renewals (not by time ¢, but) by a random exponentially
distributed time with mean ¢. However, as such a random variable need not
be close to its mean (its variance is t?) Equation (7.31) need not be
particularly close to m(¢). To obtain an accurate approximation suppose
that Y;, Y,, ..., Y, are independent exponentials with rate A and suppose
they are also independent of the renewal process. Let, forr=1,...,n,

m, = E[N(Y; + -+ + Y)]
To compute an expression for m,, we again start by conditioning on X, the

time of the first renewal.

m, = rE[N(YI + o+ )X = X)) dx (7.32)
0
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To determine the foregoing conditional expectation, we now condition on
the number of partial sums Y4_,Y;, j=1,...,r, that are less than x.
Now, if all r partial sums are less than x—that is, if Y., Y; < x—then
clearly the number of renewals by time Y!_, Y; is 0. On the other hand,
given that k, k < r, of these partial sums are less than x, it follows from the
lack of memory property of the exponential that the number of renewals by
time Y;_;Y; will have the same distribution as 1 plus N(Y;,, + --- + Y,).
Hence,

E [N(Y1 = x, k of the sums E 7 are less than x]
i=1
0, ifk=r
= 7.33
{1+m,_k, itk <r (7.33)

To determine the distribution of the number of the partial sums that are less

than x, note that the successive values of these partial sums Y4_,Y;,

Jj=1,...,r, have the same distribution as the first  event times of a

Poisson process with rate A (since each successive partial sum is the previous

sum plus an independent exponential with rate 1). Hence, it follows that,
e MUAx)*

fork<r,
Xl—x}
k!

Upon substitution of (7.33) and (7.34) into Equation (7.32), we obtain that

{k of the partial sums Z 7 are less than x
i=1

(7.34)

=l ""‘( x)*
erS Z(1+mrk) f()d
0
or, equivalently,
i (I + m_ELX* e ™™1(A*/k!) + E[e ]
i 1 — E[e ™)

If we set A = n/t, then starting with m,; given by Equation (7.31), we
can use Equation (7.35) to recursively compute m,, .. m,,. The approxi-
mation of m(t) = E[N(f)] is given by m, = E[N(Y; + --- + Y,)]. Since
Y+ --- +7%,is the sum of n 1ndependent exponential random variables
each with mean ¢/n, it follows that it is (gamma) distributed with mean ¢
and variance nt*/n* = t*/n. Hence, by choosing n large, ¥7_, Y; will be a
random variable having most of its probability concentrated about ¢, and
so E[N(X7_, Y))] should be quite close to E[N(¢)]. (Indeed, if m(t) is
continuous at ¢, it can be shown that these approximations converge to m(#)
as n goes to infinity.)

(7.35)
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Table 7.1

Exact Approximation
F, t m(t) n=1 n=3 n=10 n=25 n=>50
1 1 0.2838 0.3333 0.3040 0.2903 0.2865 0.2852
1 2 0.7546 0.8000 0.7697 0.7586 0.7561 0.7553
1 5 2.250 2.273 2.253 2.250 2.250 2.250
1 10 4.75 4.762 4.751 4.750 4.750 4.750
2 0.1 0.1733 0.1681 0.1687 0.1689 0.1690 —_
2 0.3 0.5111 0.4964 0.4997 0.5010 0.5014 —
2 0.5 0.8404 0.8182 0.8245 0.8273 0.8281 0.8283
2 1 1.6400 1.6087 1.6205 1.6261 1.6277 1.6283
2 3 4.7389 4.7143 4.7294 4.7350 4.7363 4.7367
2 10 15.5089 15.5000 15.5081 15.5089 15.5089 15.5089
3 0.1 0.2819 0.2692 0.2772 0.2804 0.2813 —
3 0.3 0.7638 0.7105 0.7421 0.7567 0.7609 —
3 1 2.0890 2.0000 2.0556 2.0789 2.0850 2.0870
3 3 5.4444 5.4000 5.4375 5.4437 5.4442 5.4443

Example 7.24 Table 7.1 compares the approximation with the exact
value for the distributions F; with densities f;, i = 1, 2, 3, which are given by

Silx) = xe™*,
1 — Fy(x) = 0.3¢™ + 0.7¢™ %,
1 — F(x) = 0.5¢™ + 0.5¢™> @

Remark The material of this section is taken from S. M. Ross,
‘“‘Approximations in Renewal Theory,’’ Probability in the Engineering and
Informational Sciences, 1(2), 163-175 (1987).

Exercises

1. Is it true that
(@) N(t) < nif and only if S, > ?
(b) N(t) < nif and only if S, = ¢?
(¢) N(t) > nif and only if S, < ¢?

2. Suppose that the interarrival distribution for a renewal process is
Poisson distributed with mean . That is, suppose

u
P[X,,=k}=e"‘F, k=0,1,...

(a) Find the distribution of S,,.
(b) Calculate P{N(¢) = nj.
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*3. If the mean-value function of the renewal process {N(¢), t = 0) is
given by m(t) = t/2, t = 0, then what is P{N(5) = 0}?

4. Let {N(¢), t = 0} and {N,(¢), t = 0} be independent renewal processes.
Let N(z) = N;(t) + Ny (1).

(a) Are the interarrival times of {N(¢), t = 0} independent?
(b) Are they identically distributed?
(c) Is {N(?), t = 0} a renewal process?

5. Let U,, U,,... be independent uniform (0, 1) random variables, and
define N by

N=Minfn:U; + Uy + .-+ + U, > 1}
What is E[N]?

*6. Consider a renewal process {N(f), ¢ = 0} having a gamma (r, 1)
interarrival distribution. That is, the interarrival density is

e M(Axy !

J&x) = TR x>0

(a) Show that

o —\t i
PNO =y = % )

i=nr

(b) Show that

o)

m(t) = ¥ [i/rle™(At)//i}

i=r
where [i/r] is the largest integer less than or equal to i/r.

Hint: Use the relationship between the gamma (r, A) distribution and
the sum of r independent exponentials with rate A, to define N(¢) in terms
of a Poisson process with rate A.

7. Mr. Smith works on a temporary basis. The mean length of each job he
gets is three months. If the amount of time he spends between jobs is
exponentially distributed with mean 2, then at what rate does Mr. Smith
get new jobs?

*8. A machine in use is replaced by a new machine either when it fails or
when it reaches the age of T years. If the lifetimes of successive machines
are independent with a common distribution F having density f, show that

(a) the long-run rate at which machines are replaced equals

T -1
[S xf(x)dx + T(1 — F(T))]

0
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(b) the long-run rate at which machines in use fail equals

FT)
fexfeddx + T[1 — F(T)]

9. A worker sequentially works on jobs. Each time a job is completed, a
new one is begun. Each job, independently, takes a random amount of time
having distribution F to complete. However, independently of this, shocks
occur according to a Poisson process with rate A. Whenever a shock occurs,
the worker discontinues working on the present job and starts a new one. In
the long run, at what rate are jobs completed?

10. A renewal process for which the time until the initial renewal has a
different distribution than the remaining interarrival times is called a
delayed (or a general) renewal process. Prove that Proposition 7.1 remains
valid for a delayed renewal process. (In general, it can be shown that all of
the limit theorems for a renewal process remain valid for a delayed renewal
process provided that the time until the first renewal has a finite mean.)

11. Let X, X,, ... be a sequence of independent random variables. The
nonnegative integer valued random variable N is said to be a stopping time
for the sequence if the event {N = n} is independent of X, ,, X,,2, ...,
the idea being that the X; are observed one at a time—first X, then X, and
so on—and N represents the number observed when we stop. Hence, the
event {N = n} corresponds to stopping after having observed X,, ..., X,
and thus must be independent of the values of random variables yet to
come, namely, X, 1, Xpi2s e -

(a) Let X,, X,, ... be independent with

PX;,=1]=p=1- PlX, =0}, i=1

Define
N, = minfn: X; + --- + X, = 5}
N3 ifX=0
27 s ifx =1
3, ifX,=0
N. =
} {2, if X, =1

Which of the N, are stopping times for the sequence X,,...?
An important result, known as Wald’s equation states that if X, X, ...
are independent and identically distributed and have a finite mean E(X),
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and if NV is a stopping time for this sequence having a finite mean, then

N
E[ ) X.} = E[N]E(X]

i=1

To prove Wald’s equation, let us define the indicator variables 7;, i = 1
by

I 1, ifi<N

T lo, ifi>N
(b) Show that

From part (b) we see that

£ x]

i=1

E[ fj X,-I,»]

i=1

i E[X;I}]

i=1

where the last equality assumes that the expectation can be brought inside
the summation (as indeed can be rigorously proven in this case).
(¢) Argue that X; and /I, are independent.

Hint: ; equals 0 or 1 depending upon whether or not we have yet
stopped after observing which random variables?

(d) From part (c) we have
N ©
E[ 5 X,»] - ¥ EIXIEN]
i=1 i=1

Complete the proof of Wald’s equation.
() What does Wald’s equation tell us about the stopping times in
part (a)?

12. Wald’s equation can be used as the basis of a proof of the elementary
renewal theorem. Let X, X, ... denote the interarrival times of a renewal
process and let N(¢) be the number of renewals by time ¢.

(a) Show that whereas N(¢) is not a stopping time, N(¢) + 1 is.
Hint: Note that

Nty=ne X, + -+ X,st and Xi+ -+ Xy >t
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(b) Argue that

N(@+1
E[ > Xi] = ulm(t) + 1]
i=1

(¢) Suppose that the X; are bounded random variables. That is, suppose
there is a constant M such that P{X; < M} = 1. Argue that

N +1

t< Y X;<t+M
i=1

(d) Use the previous parts to prove the elementary renewal theorem when
the interarrival times are bounded.

13. Consider a miner trapped in a room which contains three doors. Door
1 leads him to freedom after two-days’ travel; door 2 returns him to his
room after four-days’ journey; and door 3 returns him to his room after six-
days’ journey. Suppose at all times he is equally likely to choose any of the
three doors, and let T denote the time it takes the miner to become free.

(a) Define a sequence of independent and identically distributed random
variables X, X,, ... and a stopping time N such that

N
T= E Xi
i=1
Note: You may have to imagine that the miner continues to
randomly choose doors even after he reaches safety.

(b) Use Wald’s equation to find E[T].

(c) Compute E[Y™ ,X;|N =n] and note that it is not equal to
E[YI_ X))

(d) Use part (c) for a second derivation of E[T].

14. In Example 7.7, suppose that potential customers arrive in accordance
with a renewal process having interarrival distribution F. Would the
number of events by time ¢ constitute a (possible delayed) renewal process
if an event corresponds to a customer

(a) entering the bank?
(b) leaving the bank?

What if F were exponential?

*15. Compute the renewal function when the interarrival distribution F
is such that

1 — F(t) = pe ™™’ + (1 — p)e '
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16. For the renewal process whose interarrival times are uniformly
distributed over (0, 1), determine the expected time from ¢ = 1 until the
next renewal.

17. For a renewal reward process consider

R+ R+ - +R,
"TX 4 X+ 4 X,

W, represents the average reward earned during the first # cycles. Show
that W, » E[R]/E[X] as n — oo,

18. Consider a single-server bank for which customers arrive in accord-
ance with a Poisson process with rate A. If a customer will only enter the
bank if the server is free when he arrives, and if the service time of a
customer has the distribution G, then what proportion of time is the
server busy?

*19. The lifetime of a car has a distribution H and probability density 4.
Ms. Jones buys a new car as soon as her old car either breaks down or
reaches the age of T years. A new car costs C, dollars and an additional cost
of C, dollars is incurred whenever a car breaks down. Assuming that a
T-year-old car in working order has an expected resale value R(T'), what is
Ms. Jones’ long-run average cost?

20. If H is the uniform distribution over (2, 8) and if C; = 4, C, = 1, and
R(T) = 4 — (T/2), then what value of T minimizes Ms. Jones’ long-run
average cost in Exercise 19?

21. In Exercise 19 suppose that H is exponentially distributed with mean
5, C, =3, C, =%, R(T) = 0. What value of T minimizes Ms. Jones’
long-run average cost?

22. Consider a train station to which customers arrive in accordance with
a Poisson process having rate A. A train is summoned whenever there are N
customers waiting in the station, but it takes K units of time for the train to
arrive at the station. When it arrives, it picks up all waiting customers.
Assuming that the train station incurs a cost at a rate of nc per unit time
whenever there are n customers present, find the long-run average cost.

23. In Example 7.13, what proportion of the defective items that are
produced are discovered?

24. Consider a single-server queueing system in which customers arrive in
accordance with a renewal process. Each customer brings in a random
amount of work, chosen independently according to the distribution G. The
server serves one customer at a time. However, the server processes
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work at rate / per unit time whenever there are i customers in the system.
For instance, if a customer with workload 8 enters service when there are 3
other customers waiting in line, then if no one else arrives that customer will
spend 2 units of time in service. If another customer arrives after 1 unit of
time, then our customer will spend a total of 1.8 units of time in service
provided no one else arrives.

Let W, denote the amount of time customer / spends in the system. Also,
define E[W] by

EW]=IlimW, + --- + W)/n
and so E[W] is the average amount of time a customer spends in the system.
Let N denote the number of customers that arrive in a busy period.
(a) Argue that
E[W]=E[W, + --- + WY]/E[N]

Let L; denote the amount of work customer J brings into the system; and
so the L;, i = 1, are independent random variables having distribution G.

(b) Argue that at any time ¢, the sum of the times spent in the system by
all arrivals prior to ¢ is equal to the total amount of work processed by
time ¢.

Hint: Consider the rate at which the server processes work.

(c) Argue that

(d) Use Wald’s equation (see Exercise 11) to conclude that
EW]=u

where u is the mean of the distribution G. That is, the average time that
customers spend in the system is equal to the average work they bring to
the system.

*25. For a renewal process, let A(f) be the age at time ¢. Prove that if
u < oo, then with probability 1

At

¥ -0 as f — o
26. If A(r) and Y(¢) are respectively the age and the excess at time ¢ of a
renewal process having an interarrival distribution F, calculate

PLY() > x| A@®) = s)



346 7 Renewal Theory and Its Applications

27. Verify Equation (7.18).

*28. Satellites are launched according to a Poisson process with rate A.
Each satellite will, independently, orbit the earth for a random time having
distribution F. Let X(¢) denote the number of satellites orbiting at time ¢.

(i) Determine P{X(¢) = k}.
Hint: Relate this to the M/G/® queue.

(ii) If at least one satellite is orbiting, then messages can be transmitted
and we say that the system is functional. If the first satellite is orbited
at time ¢ = 0, determine the expected time that the system remains
functional.

Hint: Make use of part (i) when k = 0.

29. A group of n skiers continually, and independently, climb up and then
ski down a particular slope. The time it takes skier i to climb up has
distribution F;, and it is independent of her time to ski down, which has
distribution H;, i = 1, ..., n. Let N(¢) denote the total number of times
members of this group have skied down the slope by time ¢. Also, let U(¢)
denote the number of skiers climbing up the hill at time ¢.

(a) What is lim,_, , N(t)/t?

(b) Find lim,., P{U(t) = k}.

(c) If all F; are exponential with rate A and all G; are exponential with
rate u, what is P{U(t) = k}?

30. Three marksmen take turns shooting at a target. Marksman 1 shoots
until he misses, then Marksman 2 begins shooting until he misses, then
Marksman 3 until he misses, and then back to Marksman 1, and so on.
Each time Marksman 1 fires he hits the target, independently of the past,
with probability P, i = 1, 2, 3. Determine the proportion of time, in the
long run, that each Marksman shoots.

31. Each time a certain machine breaks down it is replaced by a new one
of the same type. In the long run, what percentage of time is the machine
in use less than one year old if the life distribution of a machine is

(a) uniformly distributed over (0, 2)?
(b) exponentially distributed with mean 1?

*32. For an interarrival distribution F having mean u, we define the
equilibrium distribution of F, denoted F,, by

1 X
F(x) =~ S (1 - F(yldy
a1 Jo
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(a) Show that if F is an exponential distribution, then F = F,.
(b) If for some constant c,

0, x<c
1, xX=c

Fx) = {

show that F, is the uniform distribution on (0, ¢). That is, if interarrival
times are identically equal to ¢, then the equilibrium distribution is the
uniform distribution on the interval (0, ¢).

(c) The city of Berkeley, California allows for two hours parking at all
non-metered locations within one mile of the University of California.
Parking officials regularly tour around, passing the same point every two
hours. When an official encounters a car he or she marks it with chalk.
If the same car is there on the official’s return two hours later, then a
parking ticket is written. If you park your car in Berkeley and return after
3 hours, what is the probability you will have received a ticket?

33. Consider a system which can be in either state 1 or 2 or 3. Each time
the system enters state / it remains there for a random amount of time
having mean y; and then makes a transition into state j with probability P,;.
Suppose

P, =1, P21=P23=%, P31=1

(a) What proportion of transitions take the system into state 1?
(b) If u, =1, uy, = 2, uy = 3, then what proportion of time does the
system spend in each state?

34. Consider a semi-Markov process in which the amount of time that the
process spends in each state before making a transition into a different state
is exponentially distributed. What kind of a process is this?

35. Inasemi-Markov process, let ¢;; denote the conditional expected time
that the process spends in state i given that the next state is j,

(a) Present an equation relating y; to the #;.
(b) Show that the proportion of time the process is in / and will next
enter j is equal to PP;t;/u;.

Hint: Say that a cycle begins each time state / is entered. Imagine that
you receive a reward at a rate of 1 per unit time whenever the process
is in / and heading for j. What is the average reward per unit time?

36. A taxi alternates between three different locations. Whenever it
reaches location i, it stops and spends a random time having mean ¢; before
obtaining another passenger, i = 1, 2, 3. A passenger entering the cab at
location / will want to go to location j with probability P;. The time to
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travel from / toj is a random variable with mean m;;. Suppose that ¢, = 1,
tb=2,t=4,P,=1,Py3=1,P,, =%=1- Py, m, = 10, my; = 20,
mjy = 15, my, = 25. Define an appropriate semi-Markov process and
determine

(a) the proportion of time the taxi is waiting at location /, and
(b) the proportion of time the taxi is on the road from i to j, i,
Jj=1,2,3.

*37. Consider a renewal process having the gamma (7, 1) interarrival
distribution, and let Y(¢) denote the time from ¢ until the next renewal. Use
the theory of semi-Markov processes to show that

Z G \(x)

tll_{l; PiY(t) < x} = % R
where G; \(x) is the gamma (i, A) distribution function.

38. To prove Equation (7.24), define the following notation:

X/

N;(m)

In terms of this notation, write expressions for

time spent in state i/ on the jth visit to this state;

number of visits to state i/ in the first m transitions

(a) the amount of time during the first m transitions that the process is in
state i;

(b) the proportion of time during the first m transitions that the process
is in state /.

Argue that, with probability 1,

Niim) X/
(c) = U; asm — o
j=1 Ni(m) !

(d) N;(m)/m — m; as m — oo,
Combine parts (a), (b), (c), and (d) to prove Equation (7.24).

39. Let X;,i=1,2,..., be the interarrival times of the renewal process
{N(#)}, and let Y, independent of the X;, be exponential with rate 4.
(a) Use the lack of memory property of the exponential to argue that
PX,+ -+ X, <Y}=(PIX<Y})
(b) Use (a) to show that
E[e™]
1 — E[e™™]

where X has the interarrival distribution.

E[N(Y)} =
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40. Write a program to approximate m(f) for the interarrival distribution
F*G, where F is exponential with mean 1 and G is exponential with
mean 3.
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Chapter 8
Queueing Theory

v

8.1. Introduction

In this chapter we will study a class of models in which customers arrive in
some random manner at a service facility. Upon arrival they are made to
wait in queue until it is their turn to be served. Once served they are
generally assumed to leave the system. For such models we will be interested
in determining, among other things, such quantities as the average number
of customers in the system (or in the queue) and the average time a customer
spends in the system (or spends waiting in the queue).

In Section 8.2 we derive a series of basic queueing identities which are of
great use in analyzing queueing models. We also introduce three different
sets of limiting probabilities which correspond to what an arrival sees, what
a departure sees, and what an outside observer would see.

In Section 8.3 we deal with queueing systems in which all of the defining
probability distributions are assumed to be exponential. For instance,
the simplest such model is to assume that customers arrive in accordance
with a Poisson process (and thus the interarrival times are exponentially
distributed) and are served one at a time by a single server who takes an
exponentially distributed length of time for each service. These exponential
queueing models are special examples of continuous-time Markov chains
and so can be analyzed as in Chapter 6. However, at the cost of a (very)
slight amount of repetition we shall not assume the reader to be familiar
with the material of Chapter 6, but rather we shall redevelop any needed
material. Specifically we shall derive anew (by a heuristic argument) the
formula for the limiting probabilities.

351
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In Section 8.4 we consider models in which customers move randomly
among a network of servers. The model of Section 8.4.1 is an open system
in which customers are allowed to enter and depart the system, whereas the
one studied in Section 8.4.2 is closed in the sense that the set of customers
in the system is constant over time.

In Section 8.5 we study the model M/G/1, which while assuming Poisson
arrivals, allows the service distribution to be arbitrary. To analyze this
model we first introduce in Section 8.5.1 the concept of work, and then use
this concept in Section 8.5.2 to help analyze this system. In Section 8.5.3 we
derive the average amount of time that a server remains busy between idle
periods.

In Section 8.6 we consider some variations of the model M/G/1. In
particular in Section 8.6.1 we suppose that bus loads of customers arrive
according to a Poisson process and that each bus contains a random
number of customers. In Section 8.6.2 we suppose that there are two
different classes of customers—with type 1 customers receiving service
priority over type 2.

In Section 8.7 we consider a model with exponential service times but
where the interarrival times between customers is allowed to have an
arbitrary distribution. We analyze this model by use of an appropriately
defined Markov chain. We also derive the mean length of a busy period and
of an idle period for this model.

In the final section of the chapter we talk about multiserver systems. We
start with loss systems, in which arrivals, finding all servers busy, are
assumed to depart and as such are lost to the system. This leads to the
famous result known as Erlang’s loss formula, which presents a simple
formula for the number of busy servers in such a model when the arrival
process is Poisson and the service distribution is general. We then discuss
multiserver systems in which queues are allowed. However, except in the
case where exponential service times are assumed, there are very few explicit
formulas for these models. We end by presenting an approximation for the
average time a customer waits in queue in a k-server model which assumes
Poisson arrivals but allows for a general service distribution.

8.2. Preliminaries

In this section we will derive certain identities which are valid in the great
majority of queueing models.

8.2.1. Cost Equations

Some fundamental quantities of interest for queueing models are
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L, the average number of customers in the system;

L, the average number of customers waiting in queue;

W, the average amount of time that a customer spends in the system;
W, the average amount of time that a customer spends waiting in queue.

A large number of interesting and useful relationships between the
preceding and other quantities of interest can be obtained by making use of
the following idea: Imagine that entering customers are forced to pay
money (according to some rule) to the system. We would then have the
following basic cost identity

Average rate at which the system earns

= A, X average amount an entering customer pays, 8.1)

where A, is defined to be average arrival rate of entering customers. That is,
if N(t) denotes the number of customer arrivals by time ¢, then

N
1, = tim Y

t— o

We now present an heuristic proof of Equation (8.1).

Heuristic Proof of Equation (8.1) Let 7 be a fixed large number. In
two different ways, we will compute the average amount of money the
system has earned by time 7. On one hand, this quantity approximately
can be obtained by multiplying the average rate at which the system earns
by the length of time 7. On the other hand, we can approximately compute
it by multiplying the average amount paid by an entering customer by the
average number of customers entering by time 7 (and this latter factor is
approximately A, 7). Hence, both sides of Equation (8.1) when multiplied
by T are approximately equal to the average amount earned by 7. The
result then follows by letting 7 — o *

By choosing appropriate cost rules, many useful formulas can be
obtained as special cases of Equation (8.1). For instance, by supposing that
each customer pays $1 per unit time while in the system, Equation (8.1)
yields the so-called Little’s formula,

L=AW (8.2)
* This can be made into a rigorous proof provided we assume that the queueing process is

regenerative in the sense of Section 7.5. Most models, including all the ones in this chapter,
satisfy this condition.
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This follows since, under this cost rule, the rate at which the system earns
is just the number in the system, and the amount a customer pays is just
equal to its time in the system.

Similarly if we suppose that each customer pays $1 per unit time while in
queue, then Equation (8.1) yields

By supposing the cost rule that each customer pays $1 per unit time while in
service we obtain from Equation (8.1) that the

Average number of customers in service = A, E[S] (8.4)

where E[S] is defined as the average amount of time a customer spends in
service.

It should be emphasized that Equations (8.1)-(8.4) are valid for almost all
queueing models regardless of the arrival process, the number of servers, or
queue discipline.

8.2.2. Steady-State Probabilities

Let X(¢) denote the number of customers in the system at time ¢ and define
P,,n=0, by
P, = lim P{X(¢t) = n}
t—

where we assume the above limit exists. In other words, P, is the limiting
or long-run probability that there will be exactly » customers in the system.
It is sometimes referred to as the steady-state probability of exactly n
customers in the system. It also usually turns out that P, equals the (long-
run) proportion of time that the system contains exactly n customers. For
example, if P, = 0.3, then in the long-run, the system will be empty of
customers for 30 percent of the time. Similarly, P, = 0.2 would imply that
for 20 percent of the time the system would contain exactly one customer.*

Two other sets of limiting probabilities are {a,, » = 0} and {d,, n = 0},
where

a, = proportion of customers that find »

in the system when they arrive, and
d, = proportion of customers leaving behind n

in the system when they depart

* A sufficient condition for the validity of the dual interpretation of P, is that the queueing
process be regenerative.
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That is, P, is the proportion of time during which there are n in the system;
a, is the proportion of arrivals that find »; and d, is the proportion of
departures that leave behind n. That these quantities need not always be
equal is illustrated by the following example.

Example 8.1 Consider a queueing model in which all customers have
service times equal to 1, and where the times between successive customers
are always greater than 1 (for instance, the interarrival times could be
uniformly distributed over (1, 2)). Hence, as every arrival finds the system
empty and every departure leaves it empty, we have

(10 = do = 1
However,
Py#=1

as the system is not always empty of customers. €

It was, however, no accident that g, equaled d, in the previous example.
That arrivals and departures always see the same number of customers is
always true as is shown in the next proposition.

Proposition 8.1 In any system in which customers arrive one at a time
and are served one at a time

a,=4d,, nz=z0

Proof An arrival will see n in the system whenever the number in the
system goes from n to n + 1; similarly, a departure will leave behind »
whenever the number in the system goes from n + 1 to n. Now in any
interval of time 7T the number of transitions from # to » + 1 must equal to
within 1 the number from n + 1 to n. (For instance, if transitions from 2 to
3 occur 10 times, then 10 times there must have been a transition back to 2
from a higher state (namely 3).) Hence, the rate of transitions from »n to
n + 1 equals the rate from n + 1 to n; or, equivalently, the rate at which
arrivals find »n equals the rate at which departures leave n. The result now
follows since the overall arrival rate must equal the overall departure rate
(what goes in eventually goes out.) ¢

Hence, on the average, arrivals and departures always see the same
number of customers. However, as Example 8.1 illustrates, they do not, in
general, see the time averages. One important exception where they do is in
the case of Poisson arrivals.
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Proposition 8.2 Poisson arrivals always see time averages. In
particular, for Poisson arrivals,

P, =a,

To understand why Poisson arrivals always see time averages, consider an
arbitrary Poisson arrival. If we knew that it arrived at time ¢, then the
conditional distribution of what it sees upon arrival is the same as the
unconditional distribution of the system state at time ¢. For knowing that an
arrival occurs at time ¢ gives us no information about what occurred prior
to £. (Since the Poisson process has independent increments, knowing that
an event occurred at time ¢ does not affect the distribution of what occurred
prior to ¢.) Hence, an arrival would just see the system according to the
limiting probabilities.

Contrast the foregoing with the situation of Example 8.1 where knowing
that an arrival occurred at time ¢ tells us a great deal about the past; in
particular it tells us that there have been no arrivals in (¢ — 1, ¢). Thus, in
this case, we cannot conclude that the distribution of what an arrival at time
t observes is the same as the distribution of the system state at time ¢.

For a second argument as to why Poisson arrivals see time averages, note
that the total time the system is in state n by time 7 is (roughly) P, 7. Hence,
as Poisson arrivals always arrive at rate A no matter what the system state,
it follows that the number of arrivals in [0, T’} that find the system in state
n is (roughly) AP, T. In the long run, therefore, the rate at which arrivals
find the system in state n is AP, and, as A is the overall arrival rate, it follows
that AP,/A = P, is the proportion of arrivals that find the system in state n.

8.3. Exponential Models
8.3.1. A Single-Server Exponential Queueing System

Suppose that customers arrive at a single-server service station in accor-
dance with a Poisson process having rate A. That is, the times between
successive arrivals are independent exponential random variables having
mean 1/A. Each customer, upon arrival, goes directly into service if the
server is free and, if not, the customer joins the queue. When the server
finishes serving a customer, the customer leaves the system, and the next
customer in line, if there is any, enters service. The successive service
times are assumed to be independent exponential random variables having
mean 1/u.

The above is called the M/M/1 queue. The two M’s refer to the fact that
both the interarrival and service distributions are exponential (and thus
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memoryless, or Markovian), and the 1 to the fact that there is a single
server. To analyze it, we shall begin by determining the limiting prob-
abilities P,, for n = 0, 1, ... . In order to do so, think along the following
lines. Suppose that we have an infinite number of rooms numbered
0,1,2,..., and suppose that we instruct an individual to enter room n
whenever there are n customers in the system. That is, he would be in room
2 whenever there are two customers in the system; and if another were to
arrive, then he would leave room 2 and enter room 3. Similarly, if a service
would take place he would leave room 2 and enter room 1 (as there would
now be only one customer in the system).

Now suppose that in the long-run our individual is seen to have entered
room 1 at the rate of ten times an hour. Then at what rate must he have left
room 1?7 Clearly, at this same rate of ten times an hour. For the total
number of times that he enters room 1 must be equal to (or one greater
than) the total number of times he leaves room 1. This sort of argument
thus yields the general principle which will enable us to determine the state
probabilities. Namely, for each n = 0, the rate at which the process enters
state n equals the rate at which it leaves state n. Let us now determine these
rates. Consider first state 0. When in state O the process can leave only by
an arrival as clearly there cannot be a departure when the system is empty.
Since the arrival rate is A and the proportion of time that the process is in
state 0 is P,, it follows that the rate at which the process leaves state O is
AP,. On the other hand, state 0 can only be reached from state 1 via a
departure. That is, if there is a single customer in the system and he
completes service, then the system becomes empty. Since the service rate is
u and the proportion of time that the system has exactly one customer is P, ,
it follows that the rate at which the process enters state 0 is uP,.

Hence, from our rate-equality principle we get our first equation,

A.P():ﬂPI

Now consider state 1. The process can leave this state either by an arrival
(which occurs at rate A) or a departure (which occurs at rate u). Hence,
when in state 1, the process will leave this state at a rate of A + u.* Since the
proportion of time the process is in state 1 is P;, the rate at which the
process leaves state 1 is (A + u)P,. On the other hand, state 1 can be entered
either from state 0 via an arrival from state 2 via a departure. Hence, the
rate at which the process enters state 1 is AP, + uP,. As the reasoning for

* If one event occurs at rate A and another occurs at rate g, then the total rate at which either
event occurs is A + u. For suppose one man earns $2.00 per hour and another earns $3.00 per
hour, then together they clearly earn $5.00 per hour.
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the other states is similar, we obtain the following set of equations:

State Rate at which the process leaves = rate at which it enters
O A.PO = /IPI
nonz1 A+ WP, =AP,_, + ub,,, (8.5)

The set of Equations (8.5) which balances the rate at which the process
enters each state with the rate at which it leaves that state is known as
balance equations.

In order to solve Equations (8.5), we rewrite them to obtain

A
PIZIEPO!

A A
Pn+1=/_an+<Pn_;an—l>’ n=>1

Solving in terms of P, yields

P0=P0,
A
Pl_—‘;P(),
A y A A\?
_P1+<P1 - >=_Pl=<—>Po,
M H M H
A A A 2\
=P+ (P,-2P)=2P=(2) P,
ut (2 u > u? </l> °
A A A AN
P=2pP+(P,-2P)=2P =(2)P,
u 3 <3 U > u 3 <ﬂ> V]
/1 A n+1
n+l=£Pn+<Pn - >=_Pn=</_l> PO
M H M

In order to determine P, we use the fact that the P, must sum to 1, and thus

- o A\ P,
"Z=:0 " nz=:0 <”> 0 1 - '1/”

or

&
1
1
|

(8.6)

)
]
N
®I>
\/a
TN
o
|
=
~—
=
\
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Notice that for the preceding equations to make sense, it is necessary for
A/u to be less than 1. For otherwise ¥, - o (A/u)" would be infinite and all
the P, would be 0. Hence, we shall assume that /x4 < 1. Note that it is quite
intuitive that there would be no limiting probabilities if A > u. For suppose
that A > u. Since customers arrive at a Poisson rate A, it follows that the
expected total number of arrivals by time ¢ is A¢. On the other hand, what
is the expected number of customers served by time ¢? If there were always
customers present, then the number of customers served would be a Poisson
process having rate u since the time between successive services would be
independent exponentials having mean 1/u. Hence, the expected number of
customers served by time ¢ is no greater than uf; and, therefore, the
expected number in the system at time ¢ is at least

At —ut = (A — Wt

Now if A > u, then the above number goes to infinity as ¢ becomes large.
That is, A/u > 1, the queue size increases without limit and there will be no
limiting probabilities. It also should be noted that the condition A/u < 1 is
equivalent to the condition that the mean service time be less than the
mean time between successive arrivals. This is the general condition that
must be satisfied for limited probabilities to exist in most single-server
queueing systems.

Now let us attempt to express the quantities L, Ly, W, and W in terms
of the limiting probabilities P,. Since P, is the long-run probability that the
system contains exactly » customers, the average number of customers in
the system clearly is given by

L= Y nP,

=— 8.7)
where the last equation followed upon application of the algebraic identity

ot X
n'"=———
n2=:0 (1 -x7

The quantities W, Wg, and Ly now can be obtained with the help of
Equations (8.2) and (8.3). That is, since A, = A, we have from Equation (8.7)
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that
L
w==
A
1
-
Wo = W — E[S]
u
A
wu — Ay’
,12
= 8.8
u(u — ) -5

Example 8.2 Suppose that customers arrive at a Poisson rate of one per
every 12 minutes, and that the service time is exponential at a rate of one

service per 8 minutes. What are L and W?

Solution: Since A = 5, u =%
L=2  W=24

Hence, the average number of customers in the system is two, and the
average time a customer spends in the system is 24 minutes.

Now suppose that the arrival rate increases 20 percent to A = 5. What
is the corresponding change in L and W? Again using Equations (8.7),
we get

L =4, W =40
Hence, an increase of 20 percent in the arrival rate doubled the average

number of customers in the system.
To understand this better, write Equations (8.7) as

Alu
L=—""—
1 - A/u’

1/u
W=—"-
1 - Au

From these equations we can see that when A/u is near 1, a slight increase
in A/u will lead to a large increase in L and W. @
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A Technical Remark We have used the fact that if one event occurs at
an exponential rate A, and another independent event at an exponential rate
U, then together they occur at an exponential rate A + u. To check this
formally, let 7; be the time at which the first event occurs, and 7, the time
at which the second event occurs. Then

P{T,<t}=1-¢™,
P(ly<t}=1—-¢*

Now if we are interested in the time until either 7; or 7; occurs, then we are
interested in 7 = min(7;, 75). Now

Pi{T<t}=1- P{T >t}
=1 - Pmin(7,, T;) > ¢t}

However, min(7;, 7;) > ¢ if and only if both 7; and 7, are greater than ¢;
hence,

P{T < 1}

1-P{T, >t T, >t}
1 — P{T, > 1}P{T, > t}

=1 - e Me ™

=1 — e Ot

Thus, 7 has an exponential distribution with rate A + u, and we are
justified in adding the rates. €

Let W* denote the amount of time an arbitrary customer spends in the
system. To obtain the distribution of W*, we condition on the number in
the system when the customer arrives. This yields

o0

PW* <a} = Y P{W* < a|nin the system when he arrives}
i=0

X P{n in the system when he arrives} 8.9)

Now consider the amount of time that our customer must spend in the
system if there are already n customers present when he arrives. If n = 0,
then his time in the system will just be his service time. When n = 1, there
will be one customer in service and n — 1 waiting in line ahead of our
arrival. The customer in service might have been in service for some time,
but due to the lack of memory of the exponential distribution (see Section
5.2), it follows that our arrival would have to wait an exponential amount
of time with rate u for this customer to complete service. As he also would
have to wait an exponential amount of time for each of the other n — 1



362 8 Queueing Theory

customers in line, it follows, upon adding his own service time, that the
amount of time that a customer must spend in the system if there are
already n customers present when he arrives is the sum of 7 + 1 independent
and identically distributed exponential random variables with rate u. But it
is known (see Section 5.2.3) that such a random variable has a gamma
distribution with parameters (n + 1, u). That is,

P{W#* < a|n in the system when he arrives)

S )"
pe ™t ——

] -t

As
P{n in the system when he arrives} = P, (since Poisson arrivals)

Y-

we have from Equation (8.9) and the preceding that

P{W* <a} = E Sa,ue_‘” (ut)" dt< >"< _ i)
u u

= X (u— e E (M) ——dt (by interchanging)
g (u — De HeMdt

= S ) A

=1 g ¥

In other words, W*, the amount of time a customer spends in the system,
is an exponential random variable with rate u — A. (As a check, we note
that E[W*] = 1/(u — A) which checks with Equation (8.8) since
W = E[W*].)

Remark Another argument as to why W* is exponential with rate u — A
is as follows. If we let N denote the number of customers in the system as
seen by an arrival, then this arrival will spend N + 1 service times in the
system before departing. Now,

PIN+1=j}=PIN=j-1)=@Q/w 0 -tw, jz1
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In words, the number of services that have to be completed before our
arrival departs is a geometric random variable with parameter 1 — 1/u.
Therefore, after each service completion our customer will be the one
departing with probability 1 — A/u. Thus, no matter how long the customer
has already spent in the system, the probability he will depart in the next
h time units is uh + o(h), the probability that a service ends in that time,
multiplied by 1 — A/u. That is, the customer will depart in the next A4 time
units with probability (u — A)A + o(h); which says that the hazard rate
function of W* is the constant 4 — A. But only the exponential has a
constant hazard rate, and so we can conclude that W* is exponential with
rate 4 — A.

8.3.2. A Single-Server Exponential Queueing System
Having Finite Capacity

In the previous model, we assumed that there was no limit on the number
of customers that could be in the system at the same time. However, in
reality there is always a finite system capacity N, in the sense that there can
be no more than N customers in the system at any time. By this, we mean
that if an arriving customer finds that there are already N customers
present, then it does not enter the system.

As before, we let P,, 0 < n < N, denote the limiting probability that
there are n customers in the system. The rate equality principle yields the
following set of balance equations:

State Rate at which the process leaves = rate at which it enters
0 AP, = uP,
l<sn=N-1 A+ WP, = AP,_, + uP,,,
N uPy = APy_,

The argument for state O is exactly as before. Namely, when in state 0,
the process will leave only via an arrival (which occurs at rate A) and hence
the rate at which the process leaves state 0 is AP,. On the other hand, the
process can enter state 0 only from state 1 via a departure; hence, the rate
at which the process enters state 0 is 4P, . The equation for states n, where
1 <= n < N, is the same as before. The equation for state N is different
because now state N can only be left via a departure since an arriving
customer will not enter the system when it is in state N; also, state N can
now only be entered from state N — 1 (as there is no longer a state N + 1)
via an arrival.
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To solve, we again rewrite the preceding system of equations:

A
Pl = <;>P0,

A A
Pn+1=_Pn+<Pn__Pn—l>’ l=sn=N-1
u H

A
Py = <;>PN—1

which, solving in terms of P,, yields

A
Pl=_P0,
u

A A A AN
P,==P +(P-ZP)=2P =(%)pP,
2 ﬂl <1 'u0> 'ul <ﬂ> 0
_ A

- 5 G

1 _ N+1
_p, (A/1)
1 - A/u
or

1=
[ 1 — (A.//l)N+1
and hence from Equation (8.10) we obtain

(A = Aw)

A e

(8.10)

(8.11)

Note that in this case, there is no need to impose the condition that A/u < 1.
The queue size is, by definition, bounded so there is no possibility of its

increasing indefinitely.
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As before, L may be expressed in terms of P, to yield

L

N
L np,
n=0

Y I ZAY

which after some algebra yields

- Al + NA/wN* — (N + DA™
(u — (A — @/

In deriving W, the expected amount of time a customer spends in the
system, we must be a little careful about what we mean by a customer.
Specifically, are we including those ‘‘customers’’ who arrive to find the
system full and thus do not spend any time in the system? Or, do we just
want the expected time spent in the system by a customer that actually
entered the system? The two questions lead, of course, to different answers.
In the first case, we have A, = A; whereas in the second case, since the
fraction of arrivals that actually enter the system is 1 — Py, it follows that
A, = A(1 — Py). Once it is clear what we mean by a customer, W can be
obtained from

(8.12)

W:

Sl

Example 8.3 Suppose that it costs cu dollars per hour to provide service
at a rate u. Suppose also that we incur a gross profit of A dollars for each
customer served. If the system has a capacity N, what service rate u
maximizes our total profit?

Solution: To solve this, suppose that we use rate u. Let us determine
the amount of money coming in per hour and subtract from this the
amount going out each hour. This will give us our profit per hour, and we
can choose u so as to maximize this.

Now, potential customers arrive at a rate A. However, a certain
proportion of them do not join the system; namely, those who arrive
when there are N customers already in the system. Hence, since Py, is the
proportion of time that the system is full, it follows that entering
customers arrive at a rate of A(1 — Py). Since each customer pays $4, it
follows that money comes in at an hourly rate of A(1 — Py)A and since
it goes out at an hourly rate of cu, it follows that our total profit per
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hour is given by

Profit per hour = A(1 — Py)A — cu

_ A/~ A/p)
_ ML - WM
- 1 — (A./,II)N+1

For instance if N=2,1=1,4 =10, ¢ = 1, then
10[1 — (1/w)A)

Profit per hour = _T——W —u
o0t -
w-1

in order to maximize profit we differentiate to obtain
@ - 317 + 1)
(- 1)

The value of u that maximizes our profit now can be obtained by
equating to zero and solving numerically. 4

d
— [Profit per hour] = 10 1
du

In the previous two models, it has been quite easy to define the state of
the system. Namely, it was defined as the number of people in the system.
Now we shall consider some examples where a more detailed state space is
necessary.

8.3.3. A Shoeshine Shop

Consider a shoeshine shop consisting of two chairs. Suppose that an
entering customer first will go to chair 1. When his work is completed in
chair 1, he will go either to chair 2 if that chair is empty or else wait in
chair 1 until chair 2 becomes empty. Suppose that a potential customer will
enter this shop as long as chair 1 is empty. (Thus, for instance, a potential
customer might enter even if there is a customer in chair 2).

If we suppose that potential customers arrive in accordance with a
Poisson process at rate A, and that the service times for the two chairs are
independent and have respective exponential rates of 4, and u,, then

(a) what proportion of potential customers enter the system?
(b) what is the mean number of customers in the system?
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(c) what is the average amount of time that an entering customer spends
in the system?

To begin we must first decide upon an appropriate state space. It is clear
that the state of the system must include more information than merely the
number of customers in the system. For instance, it would not be enough to
specify that there is one customer in the system as we would also have to
know which chair he was in. Further, if we only know that there are two
customers in the system, then we would not know if the man in chair 1 is
still being served or if he is just waiting for the person in chair 2 to finish.
To account for these points, the following state space, consisting of the five
states, (0, 0), (1, 0), (0, 1), (1, 1), and (b, 1), will be used. The states have the
following interpretation:

State Interpretation

(0,0) There are no customers in the system.

(1,0) There is one customer in the system, and he is in chair 1.

(0, 1)  There is one customer in the system, and he is in chair 2.

(1,1) There are two customers in the system, and both are
presently being served.

(b, 1) There are two customers in the system, but the customer in
the first chair has completed his work in that chair and
is waiting for the second chair to become free.

It should be noted that when the system is in state (b, 1), the person in
chair 1, though not being served, is nevertheless ‘‘blocking’’ potential
arrivals from entering the system.

As a prelude to writing down the balance equations, it is usually worth-
while to make a transition diagram. This is done by first drawing a circle for
each state and then drawing an arrow labeled by the rate at which the
process goes from one state to another. The transition diagram for this
model is shown in Figure 8.1. The explanation for the diagram is as follows:

The arrow from state (0, 0) to state (1, 0) which is labeled A means that
when the process is in state (0, 0), that is when the system is empty, then it
goes to state (1, 0) at a rate A, that is via an arrival. The arrow from (0, 1)
to (1, 1) is similarly explained.

When the process is in state (1, 0), it will go to state (0, 1) when the
customer in chair 1 is finished and this occurs at a rate u, ; hence the arrow
from (1, 0) to (0, 1) labeled y,. The arrow from (1, 1) to (b, 1) is similarly
explained.

When in state (b, 1) the process will go to state (0, 1) when the customer
in chair 2 completes his service (which occurs at rate u,); hence the arrow
from (b, 1) to (0, 1) labeled u,. Also when in state (1, 1) the process will
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Ha
(1,1)

Ha H
(&, 1)

Figure 8.1. A transition diagram.

go to state (1, 0) when the man in chair 2 finishes and hence the arrow from
(1,1) to (1, 0) labeled u, . Finally, if the process is in state (0, 1), then it will
go to state (0, 0) when the man in chair 2 completes his service, hence the
arrow from (0, 1) to (0, 0) labeled u,.

As there are no other possible transitions, this completes the transition
diagram.

To write the balance equations we equate the sum of the arrows
(multiplied by the probability of the states where they originate) coming
into a state with the sum of the arrows (multiplied by the probability of the
state) going out of that state. This gives

State Rate that the process leaves = rate that it enters

0,0 APy = pa Py

(1,0 U1 P = APy + 1 Py
o, 1 (A + )Py = 1 Py + 2 Py
1D (U, + w)Pyy = APy,

b, 1) U Pyy =y Py

These along with the equation
P00+P10+P01+P11+Pb1=1

may be solved to determine the limiting probabilities. Though it is easy to
solve the preceding equations, the resulting solutions are quite involved and
hence will not be explicitly presented. However, it is easy to answer our
questions in terms of these limiting probabilities. First, since a potential
customer will enter the system when the state is either (0, 0) or (0, 1), it
follows that the proportion of customers entering the system is Py, + Py, .
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Secondly, since there is one customer in the system whenever the state is
(0, 1) or (1, 0) and two customers in the system whenever the state is (1, 1)
or (b, 1), it follows that L, the average number in the system, is given by

L =Py + Py + 2P + Byy)

To derive the average amount of time that an entering customer spends in
the system, we use the relationship W = L/A,. Since a potential customer
will enter the system when in state (0,0) or (0, 1), it follows that
Ay = A(Pyy + Py;) and hence

=P01+P10+2(P11+Pb1)

w
APy + Poy)

Example 8.4 (a)If A = 1, 4, = 1, u, = 2, then calculate the preceding
quantities of interest.
(b)If A =1, u; = 2, u, = 1, then calculate the preceding.

Solution: (a) Solving the balance equations, yields that

— 12 — 16 — 2 — 6 = L
POO" T PIO"37’ P11_379 P01_37’ Pbl_37
Hence,
— 28 — 28
L =33, W=1s
(b) Solving the balance equations yields
— 3 — .2 N 2 3
POO_ll’ PIO_ll! Pll_ll’ Pbl_ll’ POl_ll

Hence,

b~
I
X

8.3.4. A Queueing System with Bulk Service

In this model, we consider a single-server exponential queueing system in
which the server is able to serve two customers at the same time. Whenever
the server completes a service, he then serves the next two customers at
the same time. However, if there is only one customer in line, then he
serves that customer by himself. We shall assume that his service time is
exponential at rate 4 whether he is serving one or two customers. As usual,
we suppose that customers arrive at an exponential rate A. One example of
such a system might be an elevator or a cable car which can take at most two
passengers at any time.

It would seem that the state of the system would have to tell us not only
how many customers there are in the system, but also whether one or two



370 8 Queueing Theory

Figure 8.2.

are presently being served. However, it turns out that we can solve the
problem easier not by concentrating on the number of customers in the
system, but rather on the number in queue. So let us define the state as
the number of customers waiting in queue, with two states when there is no

one in queue. That is, let us have as a state space ¢/, 0, 1, 2, ..., with the
interpretation
State Interpretation
o No one in service
0 Server busy; no one waiting
n,n>0 n customers waiting

The transition diagram is shown in Figure 8.2 and the balance equations are

State Rate at which the process leaves = rate at which it enters
o APy = uP,
0 (A + WPy = APy + uPy + uP,
n,nz=l1 A+ P, = AP,_, + uP,,

Now the set of equations
A+ WP, = AP,_, + uP,,, n=12,... (8.13)

have a solution of the form
Pll = a"PO
To see this, substitute the preceding in equation (8.13) to obtain
(A + wa"P, = Aa""'Py + pa"*?P,
or
A+ wa = A + uo®

Solving this for « yields the three roots:

-1 —~1+ 4A/u
a=1, o= > y and a

-1 + V1 + 4A/u
B 2
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As the first two are clearly not possible, it follows that

V1 +4d/u -1
2

Hence,
PI! = a"PO,

[ad

P0'=A

Py

where the bottom equation follows from the first balance equation. (We can
ignore the second balance equation as one of these equations is always
redundant.) To obtain P,, we use

P0+P0r+ZP"=1

n=1

or
%P+£+Ea1=l
A W2
or
0[1 1 o * %] =1
or
Ml -
T+ u(l -
and thus
a"2(1 — a)
" Trui-a 20
(8.14)
(1l -
YT+ u( - @
where
VT + 4A/u — 1

“= 2
It should be noted that for the preceding to be valid we need o < 1, or
equivalently 1/u < 2, which is intuitive since the maximum service rate is
2u, which must be larger than the arrival rate A to avoid overloading the
system.
All the relevant quantities of interest now can be determined. For
instance, to determine the proportion of customers that are served alone,
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we first note that the rate at which customers are served alone is
AP, + uP,, since when the system is empty a customer will be served alone
upon the next arrival and when there is one customer in queue he will be
served alone upon a departure. As the rate at which customers are served is
A, it follows that

AP,
Proportion of customers that are served alone = o_:ll_fi
= POI + %P]
Also,
Lo= Y nP,
n=1
A —a) & i )
= noa from Equation (8.14)
'1 + /1(1 - CK) n=1
Ao by algebraic identity i no” i
= (64 = ————
(1 -o)A + pud - a) 1 (1 — oy
and
L
_ =Q
WQ - 7,
W= W, + !
et
L =AW

8.4. Network of Queues
8.4.1. Open Systems

Consider a two-server system in which customers arrive at a Poisson rate A
at server 1. After being served by server 1 they then join the queue in front
of server 2. We suppose there is infinite waiting space at both servers. Each
server serves one customer at a time with server i taking an exponential
time with rate y; for a service, i = 1, 2. Such a system is called a tandem or
sequential system (see Figure 8.3).

To analyze this system we need keep track of the number of customers at
server 1 and the number at server 2. So let us define the state by the pair
(n, m)—meaning that there are n customers at server 1 and m at server 2.
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Server Server
1 2 L—\

leaves

system
Figure 8.3. A tandem queue.
The balance equations are
State Rate that the process leaves = rate that it enters
0,0 APy o = 1y Py,
n,0,n>0 A+ )P, =P, + AP, ,
0,m;m>0 A+ w)Pom = Py iy + 11 Py 1y
n, m;nm >0 A+t + )Py = Mo P iy + 1Pt m
+ AP, (8.15)

Rather than directly attempting to solve these (along with the equation
Yn.mPum = 1) we shall guess at a solution and then verify that it indeed
satisfies the preceding. We first note that the situation at server 1 is just as
in an M/M/1 model. Similarly, as it was shown in Section 6.6 that the
departure process of an M/M/1 queue is a Poisson process with rate A, it
follows that what server 2 faces is also an M/M/1 queue. Hence, the
probability that there are n customers at server 1 is

Pin at server 1} = <i> <l ~ i)
My My
" A

P{m at server 2} = <—/1—> <1 - —>
U J25)

Now if the numbers of customers at servers 1 and 2 were independent
random variables, then it would follow that

e (D)
My M1/ \M2 %)

To verify that P, , is indeed equal to the preceding (and thus that the
number of customers at server 1 is independent of the number at server 2),
all we need do is verify that the preceding satisfies the set of Equations
(8.15)—this suffices since we know that the P, ,, are the unique solution of
Equations (8.15). Now, for instance, if we consider the first equation of
(8.15), we need to show that

(1 -3)0-2) -0 -2)G0-5)

and, similarly,
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which is easily verified. We leave it as an exercise to show that the P, ,,, as
given by Equation (8.16), satisfy all of the Equations (8.15), and are thus
the limiting probabilities.

From the preceding we see that L, the average number of customers in the
system, is given by

L

Y (n+ mP,,

n,m

2o (-5) - (0 )
A N A
My — A pp— A

and from this we see that the average time a customer spends in the system is

L 1 1
W:—: +
A=A pp—A

Remarks (i) The result (Equation 8.15) could have been obtained as a
direct consequence of the time reversibility of an M/M/1 (see Section 6.6).
For not only does time reversibility imply that the output from server 1is a
Poisson process, but it also implies (Exercise 24 of Chapter 6) that the
number of customers at server 1 is independent of the past departure times
from server 1. As these past departure times constitute the arrival process to
server 2, the independence of the numbers of customers in the two systems
follows.

(ii) Since a Poisson arrival sees time averages, it follows that in a tandem
queue the numbers of customers an arrival (to server 1) sees at the two servers
are independent random variables. However, it should be noted that this does
not imply that the waiting times of a given customer at the two servers are
independent. For a counter example suppose that A is very small with respect
to u; = Ky; and thus almost all customers have zero wait in queue at both
servers. However, given that the wait in queue of a customer at server 1 is
positive, his wait in queue at server 2 also will be positive with probability
at least as large as 3 (why?). Hence, the waiting times in queue are not
independent. Remarkably enough, however, it turns out that the total times
(that is, service time plus wait in queue) that an arrival spends at the two
servers are indeed independent random variables.

The preceding result can be substantially generalized. To do so, consider a
system of k servers. Customers arrive from outside the system to server i,
i=1,...,k,inaccordance with independent Poisson processes at rate r; ; they
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join the queue at i until their turn at service comes. Once a customer is
served by server I, he then joins the queue in front of serverj,j =1, ..., k,
with probability P;. Hence, £¥_,P; <1, and 1 — L¥_, P; represents
the probability that a customer departs the system after being served by
server i.

If we let A; denote the total arrival rate of customers to server j, then the

A; can be obtained as the solution of

J=rj+ E A'II)U’ i=1,...,k (8.17)

i=1
Equation (8.17) follows since r; is the arrival rate of customers to j coming
from outside the system and, as A; is the rate at which customers depart
server i (rate in must equal rate out), 4,P; is the arrival rate to j of those
coming from server i.

It turns out that the number of customers at each of the servers is
independent and of the form
=) 0-2)
P{n customers at server j} = |2 ) (1 — <}, n=1
H; K

where y; is the exponential service rate at server j and the 4; are the solution
of Equation (8.17). Of course, it is necessary that A;/u; < 1 for all j.
In order to prove this, we first note that it is equivalent to asserting that the
limiting probabilities P(n,, n,, ..., n,) = P{n; at server j, j=1,...,k}

are given by
k y n; A
P(ny,ny,...,m) = ]I <;’> <1 - —’) (8.18)

i=1\H&; H;

which can be verified by showing that it satisfies the balance equations for
this model.
The average number of customers in the system is

k

Y. average number at server j
j=1

k2

j
JS M= A

L

The average time a customer spends in the system can be obtained from
L =AW with A= Y5 ,r,. (Why not A = £¥_, 4;7) This yields
_ LA/ - A

E}‘: 17

W
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Remarks The result embodied in Equation (8.18) is rather remarkable
in that it says that the distribution of the number of customers at server i
is the same as in an M/M/1 system with rates 4; and y;. What is
remarkable is that in the network model the arrival process at node i/ need
not be a Poisson process. For if there is a possibility that a customer
may visit a server more than once (a situation called feedback), then the
arrival process will not be Poisson. An easy example illustrating this is to
suppose that there is a single server whose service rate is very large with
respect to the arrival rate from outside. Suppose also that with probability
p = 0.9 a customer upon completion of service is fed back into the system.
Hence, at an arrival time epoch there is a large probability of another
arrival in a short time (namely, the feedback arrival); whereas at an
arbitrary time point there will be only a very slight chance of an arrival
occurring shortly (since A is so very small). Hence, the arrival process does
not possess independent increments and so cannot be Poisson. In fact even
though it is straightforward to verify Equation (8.18) there does
not appear to be, at present, any simple explanation as to why it is, in
fact, true.

Thus, we see that when feedback is allowed the steady-state probabilities
of the number of customers at any given station has the same distribution
as in an M/M/1 model even though the model is not M/M/1. (Presumably
such quantities as the joint distribution of the number at the station at two
different time points will not be the same as for an M/M/1.)

Example 8.5 Consider a system of two servers where customers from
outside the system arrive at server 1 at a Poisson rate 4 and at server 2
at a Poisson rate 5. The service rates of 1 and 2 are respectively 8 and 10.
A customer upon completion of service at server 1 is equally likely to go to
server 2 or to leave the system (i.e., P;; = 0, P;, = 1); whereas a departure
from server 2 will go 25 percent of the time to server 1 and will depart
the system otherwise (i.e., P,; = i, P,, = 0). Determine the limiting
probabilities, L, and W,

Solution: The total arrival rates to servers 1 and 2—call them 4, and
A,—can be obtained from Equation (8.17). That is, we have
Al = 4 + %Az,

Ay =5+ 44,
implying that
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Hence,
P{n at server 1, m at server 2} = (3)"3(}H)™:
= 210 %)n(%)m
and
6 8
L=s—%*0-s5""
L 7
W=—=—=-
9 9 *

8.4.2. Closed Systems

The queueing systems described in Section 8.4.1. are called open systems
since customers are able to enter and depart the system. A system in which
new customers never enter and existing ones never depart is called a closed
system.

Let us suppose that we have m customers moving among a system of £
servers. When a customer completes service at server i, she then joins the
queue in front of server j, j = 1, ..., k, with probability P;, where we now
suppose that E}; 1P;=1foralli=1,..., k. Thatis, P = [P,] is Markov
transition probability matrix, which we shall assume is irreducible. Let
n = (n,, ..., ;) denote the stationary probabilities for this Markov chain;
that is, = is the unique positive solution of

k
n= Y mPy,
. =t (8.19)
Z 7Tj =1
Jj=1

If we denote the average arrival rate (or equivalently the average service
completion rate) at server j by 4,,(Jj), j = 1,..., k then, analogous to
Equation (8.17), the 4,,(j) satisfy

k
Am(J) = X Am(D)Py
i=1
Hence, from (8.19) we can conclude that
Am(J) = Ay, Jj=12,..,k (8.20)

where

k
Im= T dn() (8.21)
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From Equation (8.21), we see that A,, is the average service completion rate
of the entire system, that is, it is the system throughput rate.*
If we let P,(n,, n,, ..., n;) denote the limiting probabilities

PB,(ny, n,y, ..., ne) = Pln; customers at server j, j = 1, ..., k}

then, by verifying that they satisfy the balance equation, it can be shown
that

k k
Ky Il QuG)Yu)™, if ) nj=m
P (n,ny,....,n)= jr=Il " / jgl !
0, otherwise

But from (8.20) we thus obtain that

k k
Cp I1 (mj7upm, if Y nj=m
=

P,(n,ny,....,n) = j=1 (8.22)
0, otherwise
where
k -1
Cn = > Il (m;/m)" (8.23)
"Enj="r'rlx( Jj=1

The above formula (8.22) is not as useful as one might suppose, for in order
to utilize it we must determine the normalizing constant C,, given by (8.23)
which requires summing the products H}; 1(7;/u;)" over all the feasible

m
vectors this is only computationally feasible for relatively small values
of m and k.

We will now present an approach that will enable us to recursively
determine many of the quantities of interest in this model without first
computing the normalizing constants. To begin, consider a customer who
has just left server i and is headed to server j, and let us determine the
probability of the system as seen by this customer. In particular, let us
determine the probability that this customer observes, at that moment,
n, customers at server /, /=1,...,k, ¥ ,n =m — 1. This is done

) m+ k-1
vectors (n;, ..., y): Z,’;lnj = m. Hence, since there are < >

* We are using the notation of 1,(/) and 4,, to indicate the dependence on the number
of customers in the closed system. This will be used in recursive relations we will develop.
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as follows:
Pfcustomer observes n; at server /,
! =1,..., k|customer goes from i to j)

_ Pistateis (ny,...,n; + 1, n;, ..., n), customer goes from i to j}

P{customer goes from / to j}

_ P,(ny,...,m+ 1, .., ., n)u Py
En:En!:m—le(nla---ani + 1"*"nk)ﬂipij

_ (7;/u;) H,"‘:l (ﬂj/ﬂj)nj
K

k
I_] (70 /u;)"

from (8.22)

where C does not depend on n,, ..., n,. But as the above is a probability
density on the set of vectors (n,, ..., ng), EJ'-‘= 1n; = m — 1, it follows from
(8.22) that it must equal P,,_,(n,, ..., n;). Hence,

Pf{customer observes n,; at server /,

[ =1, ..., k| customer goes from i to j}

k
=P, _(n,...,n), Yn=m-1 (8.24)
i=1
As (8.24) is true for all /, we thus have proven the following proposition,
known as the Arrival Theorem.

Proposition 8.3 (The Arrival Theorem). In the closed network system
with m customers, the system as seen by arrivals to server j, is distributed as
the stationary distribution in the same network system when there are only
m — 1 customers.

Denote by L,,(j) and W,,(j) the average number of customers and the
average time a customer spends at server j when there are m customers in
the network. Upon conditioning on the number of customers found at
server j by an arrival to that server, it follows that

1 + E,,[number at server j as seen by an arrival]
H;

Wal(J)

1+ Lna() (8.25)

4
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where the last equality follows from the Arrival Theorem. Now when there
are m — 1 customers in the system, then, from (8.20), 4,,_,(/j), the average
arrival rate to server j, satisfies

lm—l(j) = Am—l ys

Now, applying the basic cost identity Equation (8.1) with the cost rule being
that each customer in the network system of m — 1 customers pays one unit
time while at server j, we obtain

Ly 1(J) = Aoy Wi (J) (8.26)
Using (8.25), this yields

o U+ Ay W ()
Wn(Jj) = Loy et

Hj

(8.27)

Also using the fact that ZI'-‘= 1Lym_1(j) = m — 1 (why?) we obtain, from
(8.26), that

k
m-—1-= Am—l Z anm—l(j)
Jji=1

or
m-—1
Apo| = ———— (8.28)
o f:l W1 (D)
Hence, from (8.27), we obtain the recursion
1 - Dn; W, j
W) = ~ + - Dt Wn-il) (8.29)

Hi Y Ef:l W1 ()

Starting with the stationary probabilities n;, j = 1, ..., k, and W (j) = 1/u;
we can now use (8.29) to recursively determine W5(j), Wi(J), ..., W,(J).
We can then determine the throughput rate 1,, by using (8.28), and this will
determine L,,(j) by (8.26). This recursive approach is called mean value
analysis.

Example 8.6 Consider a k server network in which the customers move
in a cyclic permutation. That is,
Pioah=1 i=12,...,k-1, P.,=1

Let us determine the average number of customers at server j when there
are two customers in the system. Now, for this network

mo=1/k, i=1,...k
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and as

. 1
W) = —
M

we obtain from (8.29) that

! (1/k)(1/)
Wy(j) = — +
)=t LT ()

1 1

= + =
M /112' Zf:l 1/u;
Hence, from (8.28),

2
A k

T Y (R

+
=1 =1 \HM #%Zf:ll/ﬂi
and finally, using (8.26),

1
Ly() = Ao W2())

2<1 + ! >
KU #,2' f:ll/lli

3 2
£ (et
=1 \H; ﬂlz Ef:l 1/u;

8.5. The System M/G/1

8.5.1. Preliminaries: Work and Another Cost Identity

381

For an arbitrary queueing system, let us define the work in the system at any
time 7 to be the sum of the remaining service times of all customers in the
system at time ¢. For instance, suppose there are three customers in the
system—the one in service having been there for three of his required five
units of service time, and both people in queue having service times of six
units. Then the work at that time is 2 + 6 + 6 = 14. Let V denote the

(time) average work in the system.

Now recall the fundamental cost Equation (8.1), which states that the

Average rate at which the system earns

= A, X average amount a customer pays
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and consider the following cost rule: Each customer pays at a rate of
y/unit time when his remaining service time is y, whether he is in queue or
in service. Thus, the rate at which the system earns is just the work in the
system; so the basic identity yields that

V = A, E[amount paid by a customer]

Now, let S and W§ denote respectively the service time and the time a given
customer spends waiting in queue. Then, since the customer pays at a con-
stant rate of S per unit time while he waits in queue and at a rate of § — x
after spending an amount of time x in service, we have

S
E[amount paid by a customer] = £ [ SwWg + S S — x) dx]
0

and thus
A E[S’]

V= AEISWE] + =

(8.30)

It should be noted that the preceding is a basic queueing identity (like
Equations (8.2)-(8.4)) and as such valid in almost all models. In addition,
if a customer’s service time is independent of his wait in queue (as is usually,
but not always the case),’ then we have from Equation (8.30) that

1.E[8%

V= LESIWg + ==

(8.31)

8.5.2. Application of Work to M/G/1

The M/G/1 model assumes (i) Poisson arrivals at rate A; (ii) a general
service distribution; and (iii) a single server. In addition, we will suppose
that customers are served in the order of their arrival.

Now, for an arbitrary customer in an M/G/1 system,

customer’s wait in queue = work in the system when he arrives  (8.32)

This follows since there is only a single server (think about it!). Taking
expectations of both sides of Equation (8.32) yields

W, = average work as seen by an arrival

But, due to Poisson arrivals, the average work as seen by an arrival will
equal V, the time average work in the system. Hence, for the model M/G/1,

! For an example where it is not true, see Section 8.6.2.



8.5. The System M/G/1 383

The preceding in conjunction with the identity

AE[S?
V = AE[S]W, + ; ]
yields the so-called Pollaczek-Khintchine formula,
AE[S?]

Q= 30— AE[SD (8.33)

where E[S] and E[S?] are the first two moments of the service distribution.
The quantities L, Ly, and W can be obtained from Equation (8.33) as

B _ XE[S?]

Lo =4Wo = 2(1 - AE[S])’
_ _ AE[SH)

W = WQ+E[S] —m'f‘E[S], (8.34)
I A

L = AW—m‘F AE[S]

Remarks (i) For the preceding quantities to be finite, we need
AE[S] < 1. This condition is intutitive since we know from renewal theory
that if the server was always busy, then the departure rate would be 1/E[S]
(see Section 7.3), which must be larger than the arrival rate A to keep things
finite.

(ii) Since E[S?] = Var(S) + (E[S])?, we see from Equations (8.33) and
(8.34) that, for fixed mean service time, L, Ly, W, and W, all increase as
the variance of the service distribution increases.

(iii) Another approach to obtain W, is presented in Exercise 29.

8.5.3. Busy Periods

The system alternates between idle periods (when there are no customers in
the system, and so the server is idle) and busy periods (when there is at least
one customer in the system, and so the server is busy).

Let us denote by 7, and B,,, respectively, the lengths of the nth idle and
the nth busy period, n = 1. Hence, in the first ¥7_, (I; + B;) time units the
server will be idle for a time Y¥}_, /;, and so the proportion of time that the
server will be idle, which of course is just P,, can be expressed as

P, = proportion of idle time

) L+ .-+ 1,
= lim
nowoli + - +1,+B + -+ B,
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Now it is easy to see that the I, I,, ... are independent and identically
distributed as the B, B,, ... are. Hence, by dividing the numerator and the
denominator of the right side of the above by n, and then applying the
strong law of large numbers, we obtain

) a, +---+1)n
P, = lim
nso{l; + -+ LYn+ (B, + -+ B,)/n
_ Ell]
" E[ll + E[B]
where I and B represent idle and busy time random variables.
Now [ represents the time from when a customer departs and leaves the

system empty until the next arrival. Hence, from Poisson arrivals, it follows
that 7 is exponential with rate 4, and so

(8.35)

Elll = % (8.36)

To compute P,, we note from Equation (8.4) (obtained from the funda-
mental cost equation by supposing that a customer pays at a rate of one per
unit time while in service) that

Average number of busy servers = AE[S]
However, as the left-hand side of the above equals 1 — P, (why?), we have
Py, =1 - AE[S] (8.37)
and, from Equations (8.35)-(8.37),

1/4
L - AEIS] = 172~ E[B]
or
_EIS]
ElB] = 1 - AE[S]

Another quantity of interest is C, the number of customers served in a
busy period. The mean of C can be computed by noting that, on the
average, for every E[C] arrivals exactly one will find the system empty
(namely, the first customer in the busy period). Hence,

1
ay = —
* T E[C]
and, as a, = P, = 1 — AE[S] because of Poisson arrivals, we see that

1

ElCl = 1— AE[S]
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8.6. Variations on the M/G/1
8.6.1. The M/G/1 with Random-Sized Batch Arrivals

Suppose that, as in the M/G/1, arrivals occur in accordance with a Poisson
process having rate A. But now suppose that each arrival consists not of a
single customer but of a random number of customers. As before there is a
single server whose service times have distribution G.

Let us denote by «;, j = 1, the probability that an arbitrary batch consists
of j customers; and let N denote a random variable representing the size of
a batch and so P{N = j} = «;. Since 1, = AE(N), the basic formula for
work (Equation 8.31) becomes

(8.38)

2
V= AE[N][E(S)WQ + ES )]

2

To obtain a second equation relating V' to W,, consider an average
customer. We have that

his wait in queue = work in system when he arrives
+ his waiting time due to those in his batch

Taking expectations and using the fact that Poisson arrivals see time
averages yields

Wo = V + E[waiting time due to those in his batch]
=V + E[Ws] (8.39)

Now, E(Wp) can be computed by conditioning on the number in the batch,
but we must be careful. For the probability that our average customer
comes from a batch of size j is not «;. For o; is the proportion of batches
which are of size j, and if we pick a customer at random, it is more likely
that he comes from a larger rather than a smaller batch. (For instance,
suppose o, = a9 = 3, then half the batches are of size 1 but 100/101 of
the customers will come from a batch of size 100!)

To determine the probability that our average customer came from a
batch of size j we reason as follows: Let M be a large number. Then of the
first M batches approximately Mo; will be of size j, j = 1, and thus there
would have been approximately jM«; customers that arrived in a batch of
size j. Hence, the proportion of arrivals in the first M batches that were
from batches of size j is approximately jMcw;/Y, ; jMa;. This proportion
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becomes exact as M — oo, and so we see that
jaj
Z J jaj

Proportion of customers from batches of size j =

E[N]

We are now ready to compute E(W3), the expected wait in queue due to
others in the batch:

E[Ws] =

E[N] (8.40)

Now if there are j customers in his batch, then our customer would have to
wait for i — 1 of them to be served if he was ith in line among his batch
members. As he is equally likely to be either 1st, 2nd, ..., or jth in line
we see that

E[Wg | batch is of size j] = Z (i — l)E(S)—

i=1

j—1
=——2F
> [S]
Substituting this in Equation (8.40) yields
E[S]
W, -
E[Ws] = 2E[V] 2 L (- Dig;

_ E[SIEIN?] — E[N))
h 2E[N]

and from Equations (8.38) and (8.39) we obtain

E[SI(EIN?] — E[N])/2E[N] + AE[N]E[S*/2
1 — AE[N]E[S]

WQ =

Remarks (i) Note that the condition for W, to be finite is that

1

which again says that the arrival rate must be less than the service rate
(when the server is busy).
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(i) For fixed value of E[N], Wy, is increasing in Var[N], again indicating
that ‘‘single-server queues do not like variation.”’
(iii) The other quantities L, Lg, and W can be obtained by using

W = W, + E[S),
L = A,W = AE[N]W,
Lo = AE[N]W,

8.6.2. Priority Queues

Priority queuing systems are ones in which customers are classified into
types and then given service priority according to their type. Consider the
situation where there are two types of customers, which arrive according to
independent Poisson processes with respective rates 4; and 4,, and have
service distributions G, and G,. We suppose that type 1 customers are given
service priority, in that service will never begin on a type 2 customer if a type
1 is waiting. However, if a type 2 is being served and a type 1 arrives, we
assume that the service of the type 2 is continued until completion. That is,
there is no preemption once service has begun.

Let Wé denote the average wait in queue of a type i customer, i = 1,2.
Our objective is to compute the Wy,

First, note that the total work in the system at any time would be exactly
the same no matter what priority rule was employed (as long as the server
is always busy whenever there are customers in the system). This is so since
the work will always decrease at a rate of one per unit time when the
server is busy (no matter who is in service) and will always jump by the
service time of an arrival. Hence, the work in the system is exactly as
it would be if there was no priority rule but rather a first-come, first-served
(called FIFO) ordering. However, under FIFO the above model is just
M/G/1 with

A=A + Ay
A A
G(x) = TlGl(x) + Tsz(x) (8.41)

which follows since the combination of two independent Poisson processes
is itself a Poisson process whose rate is the sum of the rates of the
component processes. The service distribution G can be obtained by
conditioning on which priority class the arrival is from—as is done in
Equation (8.41).



388 8 Queueing Theory

Hence, from the results of Section 8.3, it follows that V, the average work
in the priority queueing system, is given by
_ AE[S?]
©2(1 — AE[S))
_ MM/AEIST] + (A /DEIS3)
2[1 = M(A/DELS,] + (A/NE[S:D]
_ ME[S]] + L,E[S7]
2(1 - LE[S] — 4LE[S)

(8.42)

where S; has distribution G;, i = 1, 2.

Continuing in our quest for Wé, let us note that § and W§, the service
and wait in queue of an arbitrary customer, are not independent in the
priority model since knowledge about S gives us information as to the type
of customer which in turn gives us information about W§. To get around
this we will compute separately the average amount of type 1 and type 2
work in the system. Denoting V' as the average amount of type i work we
have, exactly as in Section 8.5.1,

AE[S]]

Vi= LE[SIW, + OB i=1,2 (8.43)

If we define
Ve = LEISIWS,
ME[S?]

V= >

then we may interpret Vé as the average amount of type i work in queue,
and Vg as the average amount of type i work in service (why?).

Now we are ready to compute Wé. To do so, consider an arbitrary type
1 arrival. Then

his delay = amount of type 1 work in the system when he arrives
+ amount of type 2 work in service when he arrives

Taking expectations and using the fact that Poisson arrivals see time
averages yields

wy=Vv'+V¢

MEIS]] + A, E[S3]
2 2

= LE[S)W, + (8.44)
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or
1 '11E[512] + AzElszzl
wg =

2(1 — L,E[S,)

(8.45)
To obtain W} we first note that since ¥ = V' + V%, we have from
Equations (8.42) and (8.43) that

ME[S]] + A, E[S]
2(1 - L, E[S1] — L, E[S,)

= LE[S|IW + M E[SIWE

ME[ST]  A,E[S]
T YT

= W3+ LEIS;]WE  (from Equation (8.44))
Now, using Equation (8.45), we obtain

1 E[SH + A,E[SH] 1 _ 1
2 1 - A E[S] - 4,E[S] 1-A4E[S)]

LE[S|W§ =

or
_ AIE[SIZ] + /12E[522]
T 2(1 — LE[S)] — LE[S(I - A E[Sy])

W (8.46)

Remarks (i) Note that from Equation (8.45), the condition for W to
be finite is that A, £[S,] < 1, which is independent of the type 2 parameters.
(Is this intuitive?) For Wé to be finite, we need, from Equation (8.46), that

ME[S,] + A,E[S,] < 1

Since the arrival rate of all customers is A = A; + A1,, and the average
service time of a customer is (4,/A)E[S,] + (A,/A)E[S,], the preceding
condition is just that the average arrival rate be less than the average
service rate.

(ii) If there are n types of customers, we can solve for V7, j =1, ..., n;
in a similar fashion. First, note that the total amount of work in the system
of customers of types 1, ...,/ is independent of the internal priority rule
concerning types 1, ...,/ and only depends on the fact that each of them is
given priority over any customers of types j + 1, ..., n. (Why is this?
Reason it out!) Hence, V! + --- + V7 is the same as it would be if types
1,...,j were considered as a single type I priority class and types
J + 1,...,n as a single type II priority class. Now, from Equations (8.43)
and (8.45),

_ ME[SE] + MALEISIEISA]
2(1 = LE[SID

Vl
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where
A,] = A’l + o0 + Aj,

'111 = Aj#—l + -+ '1"’

J A’i
E(Sl=% A_E[Si],
i=1"1

2 4 '1!' 2
E[S{1= X T EISi1,
i=1"1

n
ElSil= ¥ SEIS]
i=j+1 411
Hence, as V! = V! + ... + ¥/, we have an expression for V' + .- + V7,
for each j=1,...,n, which then can be solved for the individual
V',V ..., V". Wenow can obtain Wé from Equation (8.43). The result of
all this (which we leave for an exercise) is that

_ ME[SH + -+ + A,E[S]]
210 (1 = LEIS] = - — LEISD'

W i=1,...,n (8.47)

8.7. The Model G/M/1

The model G/M/1 assumes that the times between successive arrivals have
an arbitrary distribution G. The service times are exponentially distributed
with rate u and there is a single server.

The immediate difficulty in analyzing this model stems from the fact that
the number of customers in the system is not informative enough to serve as
a state space. For in summarizing what has occurred up to the present we
would need to know not only the number in the system, but also the amount
of time that has elapsed since the last arrival (since G is not memoryless).
(Why need we not be concerned with the amount of time the person being
served has already spent in service?) To get around this problem we shall
only look at the system when a customer arrives; and so let us define X,
n=1, by

X,, = the number in the system as seen by the nth arrival

It is easy to see that the process {X,, n = 1} is a Markov chain. To
compute the transition probabilities P; for this Markov chain let us first
note that, as long as there are customers to be served, the number of services
in any length of time 7 is a Poisson random variable with mean u¢. This is
true since the time between successive services is exponential and, as we
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know, this implies that the number of services thus constitutes a Poisson
process. Hence, .
® t . ,
Pi,i+l—j= § e_“t('ll._)ldG(t)9 j=0$ 1,--"’
0 J!
which follows since if an arrival finds / in the system, then the next arrival
will find i + 1 minus the number served, and the probability that j will be
served is easily seen to equal the right side of the above (by conditioning on
the time between the successive arrivals).
The formula for P, is a little different (it is the probability that at least
i + 1 Poisson events occur in a random length of time having distribution
G) and can be obtained from _
Po=1- Z Pi,i+l-j
Jj=0
The limiting probabilities n,, k = 0, 1, ..., can be obtained as the unique
solution of
=Y 0Py, k20

an=l

k

which, in this case, reduce to

«© © t i+1-k
Ty = E ; e_,”,(u)—dG(t), k=1
NP IR 7o oY

(8.48)

(We have not included the equation 7, = ¥ 7; P, since one of the equations
is always redundant.)

To solve the above, let us try a solution of the form m, = cf*. Substi-
tution into Equation (8.48) leads to

oo o i+1-k
Cﬂk = C. E lﬂi So e“"(l_(fti—_k)!dG(t)

© . © (ﬂﬂt)i+l_k
CL e"p R —(i T k)!dG(t) (8.49)

However,
© (ﬁ,llt)'+1_k _ E (ﬁ,llt)j
i—k-1 G+ 1=K 2 J!
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and thus Equation (8.49) reduces to

)

g = p*! S e 1B 4G(r)

0

or
B= S e P dG(r) (8.50)
0
The constant ¢ can be obtained from Y, m, = 1, which implies that
cYy gF=1
0
or
c=1-p

As the m, is the unique solution to Equation (8.48), and m, = (1 — B)B*
satisfies, it follows that

n=0-/p% k=0,1,...

where £ is the solution of Equation (8.50). (It can be shown that if the mean
of G is greater than the mean service time 1/u, then there is a unique value
of B satisfying Equation (8.50) which is between O and 1.) The exact value
of 8 usually can only be obtained by numerical methods.

As m, is the limiting probability that an arrival sees k customers, it is just
the a; as defined in Section 8.2. Hence,

a=0-pp k=0 (8.51)
We can obtain W by conditioning on the number in the system when a
customer arrives. This yields

W = Y E[time in system | arrival sees k](1 — B)B*
K

. k+1 a - Bt (Since if an arrival sees k, then he spends
- k + 1 service periods in the system.)
1 ot X
=— by usin kxk = —>
ul - B) ( 2 -
and
1 B
W = - = —,
? pooul - p
A
L=AW=——+—, (8.52)
ud - B)
AB

T ud - p)
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where A is the reciprocal of the mean interarrival time. That is,

0

1 o0
n = S xdG(x)

In fact, in exactly the same manner as shown for the M/M/1 in Section
8.3.1 and Exercise 4 we can show that

W * is exponential with rate u(1 — f),

{0 with probability 1 — 8
WQ =

exponential with rate u(1 — 8) with probability g

where W* and W§ are the amounts of time that a customer spends in
system and queue, respectively (their means are W and W,).

Whereas a, = (1 — B)B* is the probability that an arrival sees k in the
system, it is not equal to the proportion of time during which there are k in
the system (since the arrival process is not Poisson). To obtain the P, we
first note that the rate at which the number in the system changes from
k — 1 to k must equal the rate at which it changes from