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Preface

The third edition of this book continues to demonstrate how to apply probability theory
to gain insight into real, everyday statistical problems and situations. As in the previous
editions, carefully developed coverage of probability motivates probabilistic models of real
phenomena and the statistical procedures that follow. This approach ultimately results
in an intuitive understanding of statistical procedures and strategies most often used by
practicing engineers and scientists.

This book has been written for an introductory course in statistics, or in probability
and statistics, for students in engineering, computer science, mathematics, statistics, and
the natural sciences. As such it assumes knowledge of elementary calculus.

ORGANIZATION AND COVERAGE
Chapter 1 presents a brief introduction to statistics, presenting its two branches of descrip-
tive and inferential statistics, and a short history of the subject and some of the people
whose early work provided a foundation for work done today.

The subject matter of descriptive statistics is then considered in Chapter 2. Graphs and
tables that describe a data set are presented in this chapter, as are quantities that are used
to summarize certain of the key properties of the data set.

To be able to draw conclusions from data, it is necessary to have an understanding
of the data’s origination. For instance, it is often assumed that the data constitute a
“random sample” from some population. To understand exactly what this means and
what its consequences are for relating properties of the sample data to properties of the
entire population, it is necessary to have some understanding of probability, and that
is the subject of Chapter 3. This chapter introduces the idea of a probability experi-
ment, explains the concept of the probability of an event, and presents the axioms of
probability.

Our study of probability is continued in Chapter 4, which deals with the important
concepts of random variables and expectation, and in Chapter 5, which considers some
special types of random variables that often occur in applications. Such random variables
as the binomial, Poisson, hypergeometric, normal, uniform, gamma, chi-square, t , and
F are presented.

In Chapter 6, we study the probability distribution of such sampling statistics
as the sample mean and the sample variance. We show how to use a remarkable
theoretical result of probability, known as the central limit theorem, to approximate
the probability distribution of the sample mean. In addition, we present the joint
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probability distribution of the sample mean and the sample variance in the impor-
tant special case in which the underlying data come from a normally distributed
population.

Chapter 7 shows how to use data to estimate parameters of interest. For instance, a
scientist might be interested in determining the proportion of Midwestern lakes that are
afflicted by acid rain. Two types of estimators are studied. The first of these estimates
the quantity of interest with a single number (for instance, it might estimate that 47
percent of Midwestern lakes suffer from acid rain), whereas the second provides an esti-
mate in the form of an interval of values (for instance, it might estimate that between
45 and 49 percent of lakes suffer from acid rain). These latter estimators also tell us
the “level of confidence” we can have in their validity. Thus, for instance, whereas we
can be pretty certain that the exact percentage of afflicted lakes is not 47, it might very
well be that we can be, say, 95 percent confident that the actual percentage is between
45 and 49.

Chapter 8 introduces the important topic of statistical hypothesis testing, which is
concerned with using data to test the plausibility of a specified hypothesis. For instance,
such a test might reject the hypothesis that fewer than 44 percent of Midwestern lakes
are afflicted by acid rain. The concept of the p-value, which measures the degree of
plausibility of the hypothesis after the data have been observed, is introduced. A variety
of hypothesis tests concerning the parameters of both one and two normal populations
are considered. Hypothesis tests concerning Bernoulli and Poisson parameters are also
presented.

Chapter 9 deals with the important topic of regression. Both simple linear
regression — including such subtopics as regression to the mean, residual analysis, and
weighted least squares — and multiple linear regression are considered.

Chapter 10 introduces the analysis of variance. Both one-way and two-way (with and
without the possibility of interaction) problems are considered.

Chapter 11 is concerned with goodness of fit tests, which can be used to test whether a
proposed model is consistent with data. In it we present the classical chi-square goodness
of fit test and apply it to test for independence in contingency tables. The final section
of this chapter introduces the Kolmogorov–Smirnov procedure for testing whether data
come from a specified continuous probability distribution.

Chapter 12 deals with nonparametric hypothesis tests, which can be used when one
is unable to suppose that the underlying distribution has some specified parametric form
(such as normal).

Chapter 13 considers the subject matter of quality control, a key statistical technique
in manufacturing and production processes. A variety of control charts, including not only
the Shewhart control charts but also more sophisticated ones based on moving averages
and cumulative sums, are considered.

Chapter 14 deals with problems related to life testing. In this chapter, the exponential,
rather than the normal, distribution, plays the key role.
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NEW TO THIS EDITION
New exercises and real data examples have been added throughout, including:

• The One-sided Chebyshev Inequality for Data (Section 2.4)
• The Logistics Distribution and Logistic Regression (Sections 5.4 and 9.11)
• Estimation and Testing in proofreader problems (Examples 7.2B and 8.7g)
• Product Form Estimates of Life Distributions (Section 7.2.1)
• Observational Studies (Example 8.6e)

About the CD

Packaged along with the text is a PC disk that can be used to solve most of the statistical
problems in the text. For instance, the disk computes the p-values for most of the hypothesis
tests, including those related to the analysis of variance and to regression. It can also be
used to obtain probabilities for most of the common distributions. (For those students
without access to a personal computer, tables that can be used to solve all of the problems
in the text are provided.)

One program on the disk illustrates the central limit theorem. It considers random
variables that take on one of the values 0, 1, 2, 3, 4, and allows the user to enter the
probabilities for these values along with an integer n. The program then plots the probability
mass function of the sum of n independent random variables having this distribution. By
increasing n, one can “see” the mass function converge to the shape of a normal density
function.
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Chapter 1

INTRODUCTION TO STATISTICS

1.1 INTRODUCTION
It has become accepted in today’s world that in order to learn about something, you must
first collect data. Statistics is the art of learning from data. It is concerned with the collection
of data, its subsequent description, and its analysis, which often leads to the drawing of
conclusions.

1.2 DATA COLLECTION AND DESCRIPTIVE STATISTICS
Sometimes a statistical analysis begins with a given set of data: For instance, the government
regularly collects and publicizes data concerning yearly precipitation totals, earthquake
occurrences, the unemployment rate, the gross domestic product, and the rate of inflation.
Statistics can be used to describe, summarize, and analyze these data.

In other situations, data are not yet available; in such cases statistical theory can be used to
design an appropriate experiment to generate data. The experiment chosen should depend
on the use that one wants to make of the data. For instance, suppose that an instruc-
tor is interested in determining which of two different methods for teaching computer
programming to beginners is most effective. To study this question, the instructor might
divide the students into two groups, and use a different teaching method for each group.
At the end of the class the students can be tested and the scores of the members of the
different groups compared. If the data, consisting of the test scores of members of each
group, are significantly higher in one of the groups, then it might seem reasonable to
suppose that the teaching method used for that group is superior.

It is important to note, however, that in order to be able to draw a valid conclusion
from the data, it is essential that the students were divided into groups in such a manner
that neither group was more likely to have the students with greater natural aptitude for
programming. For instance, the instructor should not have let the male class members be
one group and the females the other. For if so, then even if the women scored significantly
higher than the men, it would not be clear whether this was due to the method used
to teach them, or to the fact that women may be inherently better than men at learning

1
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programming skills. The accepted way of avoiding this pitfall is to divide the class members
into the two groups “at random.” This term means that the division is done in such
a manner that all possible choices of the members of a group are equally likely.

At the end of the experiment, the data should be described. For instance, the scores
of the two groups should be presented. In addition, summary measures such as the aver-
age score of members of each of the groups should be presented. This part of statistics,
concerned with the description and summarization of data, is called descriptive statistics.

1.3 INFERENTIAL STATISTICS AND
PROBABILITY MODELS

After the preceding experiment is completed and the data are described and summarized,
we hope to be able to draw a conclusion about which teaching method is superior. This
part of statistics, concerned with the drawing of conclusions, is called inferential statistics.

To be able to draw a conclusion from the data, we must take into account the possibility
of chance. For instance, suppose that the average score of members of the first group is
quite a bit higher than that of the second. Can we conclude that this increase is due to the
teaching method used? Or is it possible that the teaching method was not responsible for
the increased scores but rather that the higher scores of the first group were just a chance
occurrence? For instance, the fact that a coin comes up heads 7 times in 10 flips does
not necessarily mean that the coin is more likely to come up heads than tails in future
flips. Indeed, it could be a perfectly ordinary coin that, by chance, just happened to land
heads 7 times out of the total of 10 flips. (On the other hand, if the coin had landed
heads 47 times out of 50 flips, then we would be quite certain that it was not an ordinary
coin.)

To be able to draw logical conclusions from data, we usually make some assumptions
about the chances (or probabilities) of obtaining the different data values. The totality of
these assumptions is referred to as a probability model for the data.

Sometimes the nature of the data suggests the form of the probability model that is
assumed. For instance, suppose that an engineer wants to find out what proportion of
computer chips, produced by a new method, will be defective. The engineer might select
a group of these chips, with the resulting data being the number of defective chips in this
group. Provided that the chips selected were “randomly” chosen, it is reasonable to suppose
that each one of them is defective with probability p, where p is the unknown proportion
of all the chips produced by the new method that will be defective. The resulting data can
then be used to make inferences about p.

In other situations, the appropriate probability model for a given data set will not be
readily apparent. However, careful description and presentation of the data sometimes
enable us to infer a reasonable model, which we can then try to verify with the use of
additional data.

Because the basis of statistical inference is the formulation of a probability model to
describe the data, an understanding of statistical inference requires some knowledge of
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the theory of probability. In other words, statistical inference starts with the assumption
that important aspects of the phenomenon under study can be described in terms of
probabilities; it then draws conclusions by using data to make inferences about these
probabilities.

1.4 POPULATIONS AND SAMPLES
In statistics, we are interested in obtaining information about a total collection of elements,
which we will refer to as the population. The population is often too large for us to examine
each of its members. For instance, we might have all the residents of a given state, or all the
television sets produced in the last year by a particular manufacturer, or all the households
in a given community. In such cases, we try to learn about the population by choosing
and then examining a subgroup of its elements. This subgroup of a population is called
a sample.

If the sample is to be informative about the total population, it must be, in some sense,
representative of that population. For instance, suppose that we are interested in learning
about the age distribution of people residing in a given city, and we obtain the ages of the
first 100 people to enter the town library. If the average age of these 100 people is 46.2
years, are we justified in concluding that this is approximately the average age of the entire
population? Probably not, for we could certainly argue that the sample chosen in this case
is probably not representative of the total population because usually more young students
and senior citizens use the library than do working-age citizens.

In certain situations, such as the library illustration, we are presented with a sample and
must then decide whether this sample is reasonably representative of the entire population.
In practice, a given sample generally cannot be assumed to be representative of a population
unless that sample has been chosen in a random manner. This is because any specific
nonrandom rule for selecting a sample often results in one that is inherently biased toward
some data values as opposed to others.

Thus, although it may seem paradoxical, we are most likely to obtain a representative
sample by choosing its members in a totally random fashion without any prior consid-
erations of the elements that will be chosen. In other words, we need not attempt to
deliberately choose the sample so that it contains, for instance, the same gender percentage
and the same percentage of people in each profession as found in the general population.
Rather, we should just leave it up to “chance” to obtain roughly the correct percentages.
Once a random sample is chosen, we can use statistical inference to draw conclusions about
the entire population by studying the elements of the sample.

1.5 A BRIEF HISTORY OF STATISTICS
A systematic collection of data on the population and the economy was begun in the Italian
city states of Venice and Florence during the Renaissance. The term statistics, derived from
the word state, was used to refer to a collection of facts of interest to the state. The idea of
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collecting data spread from Italy to the other countries of Western Europe. Indeed, by the
first half of the 16th century it was common for European governments to require parishes
to register births, marriages, and deaths. Because of poor public health conditions this last
statistic was of particular interest.

The high mortality rate in Europe before the 19th century was due mainly to epidemic
diseases, wars, and famines. Among epidemics, the worst were the plagues. Starting with
the Black Plague in 1348, plagues recurred frequently for nearly 400 years. In 1562, as a
way to alert the King’s court to consider moving to the countryside, the City of London
began to publish weekly bills of mortality. Initially these mortality bills listed the places
of death and whether a death had resulted from plague. Beginning in 1625 the bills were
expanded to include all causes of death.

In 1662 the English tradesman John Graunt published a book entitled Natural and
Political Observations Made upon the Bills of Mortality. Table 1.1, which notes the total
number of deaths in England and the number due to the plague for five different plague
years, is taken from this book.

TABLE 1.1 Total Deaths in England

Year Burials Plague Deaths

1592 25,886 11,503
1593 17,844 10,662
1603 37,294 30,561
1625 51,758 35,417
1636 23,359 10,400

Source: John Graunt, Observations Made upon the Bills of Mortality.
3rd ed. London: John Martyn and James Allestry (1st ed. 1662).

Graunt used London bills of mortality to estimate the city’s population. For instance,
to estimate the population of London in 1660, Graunt surveyed households in certain
London parishes (or neighborhoods) and discovered that, on average, there were approxi-
mately 3 deaths for every 88 people. Dividing by 3 shows that, on average, there was
roughly 1 death for every 88/3 people. Because the London bills cited 13,200 deaths in
London for that year, Graunt estimated the London population to be about

13,200 × 88/3 = 387,200

Graunt used this estimate to project a figure for all England. In his book he noted that
these figures would be of interest to the rulers of the country, as indicators of both the
number of men who could be drafted into an army and the number who could be taxed.

Graunt also used the London bills of mortality — and some intelligent guesswork as to
what diseases killed whom and at what age — to infer ages at death. (Recall that the bills
of mortality listed only causes and places at death, not the ages of those dying.) Graunt
then used this information to compute tables giving the proportion of the population that
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TABLE 1.2 John Graunt’s Mortality Table

Age at Death Number of Deaths per 100 Births

0–6 36
6–16 24

16–26 15
26–36 9
36–46 6
46–56 4
56–66 3
66–76 2
76 and greater 1

Note: The categories go up to but do not include the right-hand value. For instance,
0–6 means all ages from 0 up through 5.

dies at various ages. Table 1.2 is one of Graunt’s mortality tables. It states, for instance,
that of 100 births, 36 people will die before reaching age 6, 24 will die between the age of
6 and 15, and so on.

Graunt’s estimates of the ages at which people were dying were of great interest to those
in the business of selling annuities. Annuities are the opposite of life insurance in that one
pays in a lump sum as an investment and then receives regular payments for as long as one
lives.

Graunt’s work on mortality tables inspired further work by Edmund Halley in 1693.
Halley, the discoverer of the comet bearing his name (and also the man who was most
responsible, by both his encouragement and his financial support, for the publication of
Isaac Newton’s famous Principia Mathematica), used tables of mortality to compute the
odds that a person of any age would live to any other particular age. Halley was influential
in convincing the insurers of the time that an annual life insurance premium should depend
on the age of the person being insured.

Following Graunt and Halley, the collection of data steadily increased throughout
the remainder of the 17th and on into the 18th century. For instance, the city of Paris
began collecting bills of mortality in 1667; and by 1730 it had become common practice
throughout Europe to record ages at death.

The term statistics, which was used until the 18th century as a shorthand for the
descriptive science of states, became in the 19th century increasingly identified with
numbers. By the 1830s the term was almost universally regarded in Britain and France
as being synonymous with the “numerical science” of society. This change in meaning
was caused by the large availability of census records and other tabulations that began to
be systematically collected and published by the governments of Western Europe and the
United States beginning around 1800.

Throughout the 19th century, although probability theory had been developed by such
mathematicians as Jacob Bernoulli, Karl Friedrich Gauss, and Pierre-Simon Laplace, its
use in studying statistical findings was almost nonexistent, because most social statisticians
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at the time were content to let the data speak for themselves. In particular, statisticians
of that time were not interested in drawing inferences about individuals, but rather were
concerned with the society as a whole. Thus, they were not concerned with sampling but
rather tried to obtain censuses of the entire population. As a result, probabilistic inference
from samples to a population was almost unknown in 19th century social statistics.

It was not until the late 1800s that statistics became concerned with inferring conclusions
from numerical data. The movement began with Francis Galton’s work on analyzing
hereditary genius through the uses of what we would now call regression and correlation
analysis (see Chapter 9), and obtained much of its impetus from the work of Karl Pearson.
Pearson, who developed the chi-square goodness of fit tests (see Chapter 11), was the first
director of the Galton Laboratory, endowed by Francis Galton in 1904. There Pearson
originated a research program aimed at developing new methods of using statistics in
inference. His laboratory invited advanced students from science and industry to learn
statistical methods that could then be applied in their fields. One of his earliest visiting
researchers was W. S. Gosset, a chemist by training, who showed his devotion to Pearson
by publishing his own works under the name “Student.” (A famous story has it that Gosset
was afraid to publish under his own name for fear that his employers, the Guinness brewery,
would be unhappy to discover that one of its chemists was doing research in statistics.)
Gosset is famous for his development of the t-test (see Chapter 8).

Two of the most important areas of applied statistics in the early 20th century were
population biology and agriculture. This was due to the interest of Pearson and others at
his laboratory and also to the remarkable accomplishments of the English scientist Ronald
A. Fisher. The theory of inference developed by these pioneers, including among others

TABLE 1.3 The Changing Definition of Statistics

Statistics has then for its object that of presenting a faithful representation of a state at a determined
epoch. (Quetelet, 1849)

Statistics are the only tools by which an opening can be cut through the formidable thicket of
difficulties that bars the path of those who pursue the Science of man. (Galton, 1889)

Statistics may be regarded (i) as the study of populations, (ii) as the study of variation, and (iii) as the
study of methods of the reduction of data. (Fisher, 1925)

Statistics is a scientific discipline concerned with collection, analysis, and interpretation of data obtained
from observation or experiment. The subject has a coherent structure based on the theory of
Probability and includes many different procedures which contribute to research and development
throughout the whole of Science and Technology. (E. Pearson, 1936)

Statistics is the name for that science and art which deals with uncertain inferences — which uses
numbers to find out something about nature and experience. (Weaver, 1952)

Statistics has become known in the 20th century as the mathematical tool for analyzing experimental
and observational data. (Porter, 1986)

Statistics is the art of learning from data. (this book, 2004)
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Karl Pearson’s son Egon and the Polish born mathematical statistician Jerzy Neyman,
was general enough to deal with a wide range of quantitative and practical problems. As
a result, after the early years of the 20th century a rapidly increasing number of people
in science, business, and government began to regard statistics as a tool that was able to
provide quantitative solutions to scientific and practical problems (see Table 1.3).

Nowadays the ideas of statistics are everywhere. Descriptive statistics are featured in
every newspaper and magazine. Statistical inference has become indispensable to public
health and medical research, to engineering and scientific studies, to marketing and quality
control, to education, to accounting, to economics, to meteorological forecasting, to
polling and surveys, to sports, to insurance, to gambling, and to all research that makes
any claim to being scientific. Statistics has indeed become ingrained in our intellectual
heritage.

Problems

1. An election will be held next week and, by polling a sample of the voting
population, we are trying to predict whether the Republican or Democratic
candidate will prevail. Which of the following methods of selection is likely to
yield a representative sample?

(a) Poll all people of voting age attending a college basketball game.
(b) Poll all people of voting age leaving a fancy midtown restaurant.
(c) Obtain a copy of the voter registration list, randomly choose 100 names, and

question them.
(d) Use the results of a television call-in poll, in which the station asked its listeners

to call in and name their choice.
(e) Choose names from the telephone directory and call these people.

2. The approach used in Problem 1(e) led to a disastrous prediction in the 1936
presidential election, in which Franklin Roosevelt defeated Alfred Landon by a
landslide. A Landon victory had been predicted by the Literary Digest. The maga-
zine based its prediction on the preferences of a sample of voters chosen from lists
of automobile and telephone owners.

(a) Why do you think the Literary Digest’s prediction was so far off?
(b) Has anything changed between 1936 and now that would make you believe

that the approach used by the Literary Digest would work better today?

3. A researcher is trying to discover the average age at death for people in the United
States today. To obtain data, the obituary columns of the New York Times are read
for 30 days, and the ages at death of people in the United States are noted. Do
you think this approach will lead to a representative sample?



8 Chapter 1: Introduction to Statistics

4. To determine the proportion of people in your town who are smokers, it has been
decided to poll people at one of the following local spots:

(a) the pool hall;
(b) the bowling alley;
(c) the shopping mall;
(d) the library.

Which of these potential polling places would most likely result in a reasonable
approximation to the desired proportion? Why?

5. A university plans on conducting a survey of its recent graduates to determine
information on their yearly salaries. It randomly selected 200 recent graduates and
sent them questionnaires dealing with their present jobs. Of these 200, however,
only 86 were returned. Suppose that the average of the yearly salaries reported was
$75,000.

(a) Would the university be correct in thinking that $75,000 was a good approxi-
mation to the average salary level of all of its graduates? Explain the reasoning
behind your answer.

(b) If your answer to part (a) is no, can you think of any set of conditions relat-
ing to the group that returned questionnaires for which it would be a good
approximation?

6. An article reported that a survey of clothing worn by pedestrians killed at night in
traffic accidents revealed that about 80 percent of the victims were wearing dark-
colored clothing and 20 percent were wearing light-colored clothing. The conclu-
sion drawn in the article was that it is safer to wear light-colored clothing at night.

(a) Is this conclusion justified? Explain.
(b) If your answer to part (a) is no, what other information would be needed

before a final conclusion could be drawn?

7. Critique Graunt’s method for estimating the population of London. What
implicit assumption is he making?

8. The London bills of mortality listed 12,246 deaths in 1658. Supposing that a
survey of London parishes showed that roughly 2 percent of the population died
that year, use Graunt’s method to estimate London’s population in 1658.

9. Suppose you were a seller of annuities in 1662 when Graunt’s book was published.
Explain how you would make use of his data on the ages at which people were
dying.

10. Based on Graunt’s mortality table:

(a) What proportion of people survived to age 6?
(b) What proportion survived to age 46?
(c) What proportion died between the ages of 6 and 36?



Chapter 2

DESCRIPTIVE STATISTICS

2.1 INTRODUCTION
In this chapter we introduce the subject matter of descriptive statistics, and in doing
so learn ways to describe and summarize a set of data. Section 2.2 deals with ways of
describing a data set. Subsections 2.2.1 and 2.2.2 indicate how data that take on only
a relatively few distinct values can be described by using frequency tables or graphs, whereas
Subsection 2.2.3 deals with data whose set of values is grouped into different intervals.
Section 2.3 discusses ways of summarizing data sets by use of statistics, which are numerical
quantities whose values are determined by the data. Subsection 2.3.1 considers three
statistics that are used to indicate the “center” of the data set: the sample mean, the sample
median, and the sample mode. Subsection 2.3.2 introduces the sample variance and its
square root, called the sample standard deviation. These statistics are used to indicate the
spread of the values in the data set. Subsection 2.3.3 deals with sample percentiles, which
are statistics that tell us, for instance, which data value is greater than 95 percent of all
the data. In Section 2.4 we present Chebyshev’s inequality for sample data. This famous
inequality gives a lower bound to the proportion of the data that can differ from the
sample mean by more than k times the sample standard deviation. Whereas Chebyshev’s
inequality holds for all data sets, we can in certain situations, which are discussed in
Section 2.5, obtain more precise estimates of the proportion of the data that is within k
sample standard deviations of the sample mean. In Section 2.5 we note that when a graph
of the data follows a bell-shaped form the data set is said to be approximately normal, and
more precise estimates are given by the so-called empirical rule. Section 2.6 is concerned
with situations in which the data consist of paired values. A graphical technique, called
the scatter diagram, for presenting such data is introduced, as is the sample correlation
coefficient, a statistic that indicates the degree to which a large value of the first member
of the pair tends to go along with a large value of the second.

2.2 DESCRIBING DATA SETS
The numerical findings of a study should be presented clearly, concisely, and in such
a manner that an observer can quickly obtain a feel for the essential characteristics of

9
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the data. Over the years it has been found that tables and graphs are particularly useful
ways of presenting data, often revealing important features such as the range, the degree
of concentration, and the symmetry of the data. In this section we present some common
graphical and tabular ways for presenting data.

2.2.1 Frequency Tables and Graphs

A data set having a relatively small number of distinct values can be conveniently presented
in a frequency table. For instance, Table 2.1 is a frequency table for a data set consisting of the
starting yearly salaries (to the nearest thousand dollars) of 42 recently graduated students
with B.S. degrees in electrical engineering. Table 2.1 tells us, among other things, that the
lowest starting salary of $47,000 was received by four of the graduates, whereas the highest
salary of $60,000 was received by a single student. The most common starting salary was
$52,000, and was received by 10 of the students.

TABLE 2.1 Starting Yearly Salaries

Starting Salary Frequency

47 4
48 1
49 3
50 5
51 8
52 10
53 0
54 5
56 2
57 3
60 1

Data from a frequency table can be graphically represented by a line graph that plots the
distinct data values on the horizontal axis and indicates their frequencies by the heights of
vertical lines. A line graph of the data presented in Table 2.1 is shown in Figure 2.1.

When the lines in a line graph are given added thickness, the graph is called a bar graph.
Figure 2.2 presents a bar graph.

Another type of graph used to represent a frequency table is the frequency polygon, which
plots the frequencies of the different data values on the vertical axis, and then connects the
plotted points with straight lines. Figure 2.3 presents a frequency polygon for the data of
Table 2.1.

2.2.2 Relative Frequency Tables and Graphs

Consider a data set consisting of n values. If f is the frequency of a particular value, then
the ratio f /n is called its relative frequency. That is, the relative frequency of a data value is
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FIGURE 2.3 Frequency polygon for starting salary data.

the proportion of the data that have that value. The relative frequencies can be represented
graphically by a relative frequency line or bar graph or by a relative frequency polygon.
Indeed, these relative frequency graphs will look like the corresponding graphs of the
absolute frequencies except that the labels on the vertical axis are now the old labels (that
gave the frequencies) divided by the total number of data points.

EXAMPLE 2.2a Table 2.2 is a relative frequency table for the data of Table 2.1. The rela-
tive frequencies are obtained by dividing the corresponding frequencies of Table 2.1 by
42, the size of the data set. ■

A pie chart is often used to indicate relative frequencies when the data are not numerical
in nature. A circle is constructed and then sliced into different sectors; one for each distinct
type of data value. The relative frequency of a data value is indicated by the area of its sector,
this area being equal to the total area of the circle multiplied by the relative frequency of
the data value.

EXAMPLE 2.2b The following data relate to the different types of cancers affecting the 200
most recent patients to enroll at a clinic specializing in cancer. These data are represented
in the pie chart presented in Figure 2.4. ■
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TABLE 2.2

Starting Salary Frequency

47 4/42 = .0952
48 1/42 = .0238
49 3/42
50 5/42
51 8/42
52 10/42
53 0
54 5/42
56 2/42
57 3/42
60 1/42

Melanoma
4.5%

Bladder
6%

Lung
21%

Breast
25%

Colon
16%

Prostate
27.5%

FIGURE 2.4
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Type of Cancer Number of New Cases Relative Frequency

Lung 42 .21
Breast 50 .25
Colon 32 .16
Prostate 55 .275
Melanoma 9 .045
Bladder 12 .06

2.2.3 Grouped Data, Histograms, Ogives, and

Stem and Leaf Plots

As seen in Subsection 2.2.2, using a line or a bar graph to plot the frequencies of data values
is often an effective way of portraying a data set. However, for some data sets the number
of distinct values is too large to utilize this approach. Instead, in such cases, it is useful to
divide the values into groupings, or class intervals, and then plot the number of data values
falling in each class interval. The number of class intervals chosen should be a trade-off
between (1) choosing too few classes at a cost of losing too much information about the
actual data values in a class and (2) choosing too many classes, which will result in the

TABLE 2.3 Life in Hours of 200 Incandescent Lamps

Item Lifetimes

1,067 919 1,196 785 1,126 936 918 1,156 920 948
855 1,092 1,162 1,170 929 950 905 972 1,035 1,045

1,157 1,195 1,195 1,340 1,122 938 970 1,237 956 1,102
1,022 978 832 1,009 1,157 1,151 1,009 765 958 902

923 1,333 811 1,217 1,085 896 958 1,311 1,037 702

521 933 928 1,153 946 858 1,071 1,069 830 1,063
930 807 954 1,063 1,002 909 1,077 1,021 1,062 1,157
999 932 1,035 944 1,049 940 1,122 1,115 833 1,320
901 1,324 818 1,250 1,203 1,078 890 1,303 1,011 1,102
996 780 900 1,106 704 621 854 1,178 1,138 951

1,187 1,067 1,118 1,037 958 760 1,101 949 992 966
824 653 980 935 878 934 910 1,058 730 980
844 814 1,103 1,000 788 1,143 935 1,069 1,170 1,067

1,037 1,151 863 990 1,035 1,112 931 970 932 904
1,026 1,147 883 867 990 1,258 1,192 922 1,150 1,091

1,039 1,083 1,040 1,289 699 1,083 880 1,029 658 912
1,023 984 856 924 801 1,122 1,292 1,116 880 1,173
1,134 932 938 1,078 1,180 1,106 1,184 954 824 529

998 996 1,133 765 775 1,105 1,081 1,171 705 1,425
610 916 1,001 895 709 860 1,110 1,149 972 1,002
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frequencies of each class being too small for a pattern to be discernible. Although 5 to 10
class intervals are typical, the appropriate number is a subjective choice, and of course, you
can try different numbers of class intervals to see which of the resulting charts appears to
be most revealing about the data. It is common, although not essential, to choose class
intervals of equal length.

The endpoints of a class interval are called the class boundaries. We will adopt the
left-end inclusion convention, which stipulates that a class interval contains its left-end but
not its right-end boundary point. Thus, for instance, the class interval 20–30 contains
all values that are both greater than or equal to 20 and less than 30.

Table 2.3 presents the lifetimes of 200 incandescent lamps. A class frequency table for
the data of Table 2.3 is presented in Table 2.4. The class intervals are of length 100, with
the first one starting at 500.

TABLE 2.4 A Class Frequency Table

Frequency
(Number of Data Values in

Class Interval the Interval)

500–600 2
600–700 5
700–800 12
800–900 25
900–1000 58

1000–1100 41
1100–1200 43
1200–1300 7
1300–1400 6
1400–1500 1

5 6 7 8 9 10 11 12 13 14 15

Life in units of 100 hours

Number of
occurrences

60

50

40

30

20

10

0
0

FIGURE 2.5 A frequency histogram.
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FIGURE 2.6 A cumulative frequency plot.

A bar graph plot of class data, with the bars placed adjacent to each other, is called
a histogram. The vertical axis of a histogram can represent either the class frequency or the
relative class frequency; in the former case the graph is called a frequency histogram and
in the latter a relative frequency histogram. Figure 2.5 presents a frequency histogram of the
data in Table 2.4.

We are sometimes interested in plotting a cumulative frequency (or cumulative relative
frequency) graph. A point on the horizontal axis of such a graph represents a possible
data value; its corresponding vertical plot gives the number (or proportion) of the data
whose values are less than or equal to it. A cumulative relative frequency plot of the data
of Table 2.3 is given in Figure 2.6. We can conclude from this figure that 100 percent
of the data values are less than 1,500, approximately 40 percent are less than or equal to
900, approximately 80 percent are less than or equal to 1,100, and so on. A cumulative
frequency plot is called an ogive.

An efficient way of organizing a small- to moderate-sized data set is to utilize a stem
and leaf plot. Such a plot is obtained by first dividing each data value into two parts —
its stem and its leaf. For instance, if the data are all two-digit numbers, then we could let
the stem part of a data value be its tens digit and let the leaf be its ones digit. Thus, for
instance, the value 62 is expressed as

Stem Leaf
6 2

and the two data values 62 and 67 can be represented as

Stem Leaf
6 2, 7
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EXAMPLE 2.2c Table 2.5 gives the monthly and yearly average daily minimum tempera-
tures in 35 U.S. cities.

The annual average daily minimum temperatures from Table 2.5 are represented in the
following stem and leaf plot.

7 0.0
6 9.0
5 1.0, 1.3, 2.0, 5.5, 7.1, 7.4, 7.6, 8.5, 9.3
4 0.0, 1.0, 2.4, 3.6, 3.7, 4.8, 5.0, 5.2, 6.0, 6.7, 8.1, 9.0, 9.2
3 3.1, 4.1, 5.3, 5.8, 6.2, 9.0, 9.5, 9.5
2 9.0, 9.8

2.3 SUMMARIZING DATA SETS
Modern-day experiments often deal with huge sets of data. For instance, in an attempt
to learn about the health consequences of certain common practices, in 1951 the medical
statisticians R. Doll and A. B. Hill sent questionnaires to all doctors in the United Kingdom
and received approximately 40,000 replies. Their questions dealt with age, eating habits,
and smoking habits. The respondents were then tracked for the ensuing 10 years and the
causes of death for those who died were monitored. To obtain a feel for such a large amount
of data, it is useful to be able to summarize it by some suitably chosen measures. In this
section we present some summarizing statistics, where a statistic is a numerical quantity
whose value is determined by the data.

2.3.1 Sample Mean, Sample Median, and Sample Mode

In this section we introduce some statistics that are used for describing the center of a set
of data values. To begin, suppose that we have a data set consisting of the n numerical
values x1, x2, . . . , xn. The sample mean is the arithmetic average of these values.

Definition
The sample mean, designated by x̄, is defined by

x̄ =
n∑

i=1

xi/n

The computation of the sample mean can often be simplified by noting that if for constants
a and b

yi = axi + b, i = 1, . . . , n
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TABLE 2.5 Normal Daily Minimum Temperature — Selected Cities

[In Fahrenheit degrees. Airport data except as noted. Based on standard 30-year period, 1961 through 1990]

Annual
State Station Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec. avg.

AL Mobile . . . . . . . . . . . . . . . 40.0 42.7 50.1 57.1 64.4 70.7 73.2 72.9 68.7 57.3 49.1 43.1 57.4
AK Juneau. . . . . . . . . . . . . . . . 19.0 22.7 26.7 32.1 38.9 45.0 48.1 47.3 42.9 37.2 27.2 22.6 34.1
AZ Phoenix . . . . . . . . . . . . . . 41.2 44.7 48.8 55.3 63.9 72.9 81.0 79.2 72.8 60.8 48.9 41.8 59.3
AR Little Rock . . . . . . . . . . . . 29.1 33.2 42.2 50.7 59.0 67.4 71.5 69.8 63.5 50.9 41.5 33.1 51.0
CA Los Angeles . . . . . . . . . . . 47.8 49.3 50.5 52.8 56.3 59.5 62.8 64.2 63.2 59.2 52.8 47.9 55.5

Sacramento . . . . . . . . . . . 37.7 41.4 43.2 45.5 50.3 55.3 58.1 58.0 55.7 50.4 43.4 37.8 48.1
San Diego . . . . . . . . . . . . 48.9 50.7 52.8 55.6 59.1 61.9 65.7 67.3 65.6 60.9 53.9 48.8 57.6
San Francisco . . . . . . . . . . 41.8 45.0 45.8 47.2 49.7 52.6 53.9 55.0 55.2 51.8 47.1 42.7 49.0

CO Denver . . . . . . . . . . . . . . . 16.1 20.2 25.8 34.5 43.6 52.4 58.6 56.9 47.6 36.4 25.4 17.4 36.2
CT Hartford . . . . . . . . . . . . . . 15.8 18.6 28.1 37.5 47.6 56.9 62.2 60.4 51.8 40.7 32.8 21.3 39.5
DE Wilmington . . . . . . . . . . . 22.4 24.8 33.1 41.8 52.2 61.6 67.1 65.9 58.2 45.7 37.0 27.6 44.8
DC Washington . . . . . . . . . . . 26.8 29.1 37.7 46.4 56.6 66.5 71.4 70.0 62.5 50.3 41.1 31.7 49.2
FL Jacksonville . . . . . . . . . . . 40.5 43.3 49.2 54.9 62.1 69.1 71.9 71.8 69.0 59.3 50.2 43.4 57.1

Miami . . . . . . . . . . . . . . . . 59.2 60.4 64.2 67.8 72.1 75.1 76.2 76.7 75.9 72.1 66.7 61.5 69.0
GA Atlanta . . . . . . . . . . . . . . . 31.5 34.5 42.5 50.2 58.7 66.2 69.5 69.0 63.5 51.9 42.8 35.0 51.3
HI Honolulu . . . . . . . . . . . . . 65.6 65.4 67.2 68.7 70.3 72.2 73.5 74.2 73.5 72.3 70.3 67.0 70.0
ID Boise . . . . . . . . . . . . . . . . . 21.6 27.5 31.9 36.7 43.9 52.1 57.7 56.8 48.2 39.0 31.1 22.5 39.1
IL Chicago . . . . . . . . . . . . . . 12.9 17.2 28.5 38.6 47.7 57.5 62.6 61.6 53.9 42.2 31.6 19.1 39.5

Peoria . . . . . . . . . . . . . . . . 13.2 17.7 29.8 40.8 50.9 60.7 65.4 63.1 55.2 43.1 32.5 19.3 41.0
IN Indianapolis . . . . . . . . . . . 17.2 20.9 31.9 41.5 51.7 61.0 65.2 62.8 55.6 43.5 34.1 23.2 42.4
IA Des Moines . . . . . . . . . . . 10.7 15.6 27.6 40.0 51.5 61.2 66.5 63.6 54.5 42.7 29.9 16.1 40.0
KS Wichita . . . . . . . . . . . . . . . 19.2 23.7 33.6 44.5 54.3 64.6 69.9 67.9 59.2 46.6 33.9 23.0 45.0
KY Louisville . . . . . . . . . . . . . 23.2 26.5 36.2 45.4 54.7 62.9 67.3 65.8 58.7 45.8 37.3 28.6 46.0
LA New Orleans . . . . . . . . . . 41.8 44.4 51.6 58.4 65.2 70.8 73.1 72.8 69.5 58.7 51.0 44.8 58.5
ME Portland . . . . . . . . . . . . . . 11.4 13.5 24.5 34.1 43.4 52.1 58.3 57.1 48.9 38.3 30.4 17.8 35.8
MD Baltimore . . . . . . . . . . . . . 23.4 25.9 34.1 42.5 52.6 61.8 66.8 65.7 58.4 45.9 37.1 28.2 45.2
MA Boston . . . . . . . . . . . . . . . 21.6 23.0 31.3 40.2 49.8 59.1 65.1 64.0 56.8 46.9 38.3 26.7 43.6
MI Detroit . . . . . . . . . . . . . . . 15.6 17.6 27.0 36.8 47.1 56.3 61.3 59.6 52.5 40.9 32.2 21.4 39.0

Sault Ste. Marie . . . . . . . . 4.6 4.8 15.3 28.4 38.4 45.5 51.3 51.3 44.3 36.2 25.9 11.8 29.8
MN Duluth . . . . . . . . . . . . . . . −2.2 2.8 15.7 28.9 39.6 48.5 55.1 53.3 44.5 35.1 21.5 4.9 29.0

Minneapolis-St. Paul . . . 2.8 9.2 22.7 36.2 47.6 57.6 63.1 60.3 50.3 38.8 25.2 10.2 35.3
MS Jackson . . . . . . . . . . . . . . . 32.7 35.7 44.1 51.9 60.0 67.1 70.5 69.7 63.7 50.3 42.3 36.1 52.0
MO Kansas City . . . . . . . . . . . 16.7 21.8 32.6 43.8 53.9 63.1 68.2 65.7 56.9 45.7 33.6 21.9 43.7

St. Louis . . . . . . . . . . . . . . 20.8 25.1 35.5 46.4 56.0 65.7 70.4 67.9 60.5 48.3 37.7 26.0 46.7
MT Great Falls . . . . . . . . . . . . 11.6 17.2 22.8 31.9 40.9 48.6 53.2 52.2 43.5 35.8 24.3 14.6 33.1

Source: U.S. National Oceanic and Atmospheric Administration, Climatography of the United States, No. 81.
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then the sample mean of the data set y1, . . . , yn is

ȳ =
n∑

i=1

(axi + b)/n =
n∑

i=1

axi/n +
n∑

i=1

b/n = ax̄ + b

EXAMPLE 2.3a The winning scores in the U.S. Masters golf tournament in the years from
1982 to 1991 were as follows:

284, 280, 277, 282, 279, 285, 281, 283, 278, 277

Find the sample mean of these scores.

SOLUTION Rather than directly adding these values, it is easier to first subtract 280 from
each one to obtain the new values yi = xi − 280:

4, 0, −3, 2, −1, 5, 1, 3, −2, −3

Because the arithmetic average of the transformed data set is

ȳ = 6/10

it follows that

x̄ = ȳ + 280 = 280.6 ■

Sometimes we want to determine the sample mean of a data set that is presented in
a frequency table listing the k distinct values v1, . . . , vk having corresponding frequencies
f1, . . . , fk . Since such a data set consists of n = ∑k

i=1 fi observations, with the value vi

appearing fi times, for each i = 1, . . . , k, it follows that the sample mean of these n data
values is

x̄ =
k∑

i=1

vi fi/n

By writing the preceding as

x̄ = f1
n

v1 + f2
n

v2 + · · · + fk
n

vk

we see that the sample mean is a weighted average of the distinct values, where the weight
given to the value vi is equal to the proportion of the n data values that are equal to
vi , i = 1, . . . , k.
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EXAMPLE 2.3b The following is a frequency table giving the ages of members of a symphony
orchestra for young adults.

Age Frequency

15 2
16 5
17 11
18 9
19 14
20 13

Find the sample mean of the ages of the 54 members of the symphony.

SOLUTION

x̄ = (15 · 2 + 16 · 5 + 17 · 11 + 18 · 9 + 19 · 14 + 20 · 13)/54 ≈ 18.24 ■

Another statistic used to indicate the center of a data set is the sample median; loosely
speaking, it is the middle value when the data set is arranged in increasing order.

Definition
Order the values of a data set of size n from smallest to largest. If n is odd, the sample
median is the value in position (n + 1)/2; if n is even, it is the average of the values in
positions n/2 and n/2 + 1.

Thus the sample median of a set of three values is the second smallest; of a set of four
values, it is the average of the second and third smallest.

EXAMPLE 2.3c Find the sample median for the data described in Example 2.3b.

SOLUTION Since there are 54 data values, it follows that when the data are put in increasing
order, the sample median is the average of the values in positions 27 and 28. Thus, the
sample median is 18.5. ■

The sample mean and sample median are both useful statistics for describing the
central tendency of a data set. The sample mean makes use of all the data values and
is affected by extreme values that are much larger or smaller than the others; the sample
median makes use of only one or two of the middle values and is thus not affected by
extreme values. Which of them is more useful depends on what one is trying to learn
from the data. For instance, if a city government has a flat rate income tax and is trying to
estimate its total revenue from the tax, then the sample mean of its residents’ income would
be a more useful statistic. On the other hand, if the city was thinking about constructing
middle-income housing, and wanted to determine the proportion of its population able
to afford it, then the sample median would probably be more useful.
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EXAMPLE 2.3d In a study reported in Hoel, D. G., “A representation of mortality data by
competing risks,” Biometrics, 28, pp. 475–488, 1972, a group of 5-week-old mice were
each given a radiation dose of 300 rad. The mice were then divided into two groups;
the first group was kept in a germ-free environment, and the second in conventional
laboratory conditions. The numbers of days until death were then observed. The data for
those whose death was due to thymic lymphoma are given in the following stem and leaf
plots (whose stems are in units of hundreds of days); the first plot is for mice living in the
germ-free conditions, and the second for mice living under ordinary laboratory conditions.

Germ-Free Mice

1 58, 92, 93, 94, 95
2 02, 12, 15, 29, 30, 37, 40, 44, 47, 59
3 01, 01, 21, 37
4 15, 34, 44, 85, 96
5 29, 37
6 24
7 07
8 00

Conventional Mice

1 59, 89, 91, 98
2 35, 45, 50, 56, 61, 65, 66, 80
3 43, 56, 83
4 03, 14, 28, 32

Determine the sample means and the sample medians for the two sets of mice.

SOLUTION It is clear from the stem and leaf plots that the sample mean for the set of mice put
in the germ-free setting is larger than the sample mean for the set of mice in the usual labora-
tory setting; indeed, a calculation gives that the former sample mean is 344.07, whereas the
latter one is 292.32. On the other hand, since there are 29 data values for the germ-free mice,
the sample median is the 15th largest data value, namely, 259; similarly, the sample median
for the other set of mice is the 10th largest data value, namely, 265. Thus, whereas the
sample mean is quite a bit larger for the first data set, the sample medians are approximately
equal. The reason for this is that whereas the sample mean for the first set is greatly affected
by the five data values greater than 500, these values have a much smaller effect on the
sample median. Indeed, the sample median would remain unchanged if these values were
replaced by any other five values greater than or equal to 259. It appears from the stem and
leaf plots that the germ-free conditions probably improved the life span of the five longest
living rats, but it is unclear what, if any, effect it had on the life spans of the other rats. ■
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Another statistic that has been used to indicate the central tendency of a data set is the
sample mode, defined to be the value that occurs with the greatest frequency. If no single
value occurs most frequently, then all the values that occur at the highest frequency are
called modal values.

EXAMPLE 2.3e The following frequency table gives the values obtained in 40 rolls of a die.

Value Frequency

1 9
2 8
3 5
4 5
5 6
6 7

Find (a) the sample mean, (b) the sample median, and (c) the sample mode.

SOLUTION (a) The sample mean is

x̄ = (9 + 16 + 15 + 20 + 30 + 42)/40 = 3. 05

(b) The sample median is the average of the 20th and 21st smallest values, and is thus
equal to 3. (c) The sample mode is 1, the value that occurred most frequently. ■

2.3.2 Sample Variance and Sample Standard Deviation

Whereas we have presented statistics that describe the central tendencies of a data set,
we are also interested in ones that describe the spread or variability of the data values.
A statistic that could be used for this purpose would be one that measures the average
value of the squares of the distances between the data values and the sample mean. This
is accomplished by the sample variance, which for technical reasons divides the sum of
the squares of the differences by n − 1 rather than n, where n is the size of the data set.

Definition
The sample variance, call it s2, of the data set x1, . . . , xn is defined by

s2 =
n∑

i=1

(xi − x̄)2/(n − 1)

EXAMPLE 2.3f Find the sample variances of the data sets A and B given below.

A : 3, 4, 6, 7, 10 B : −20, 5, 15, 24
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SOLUTION As the sample mean for data set A is x̄ = (3 + 4 + 6 + 7 + 10)/5 = 6, it follows
that its sample variance is

s2 = [(−3)2 + (−2)2 + 02 + 12 + 42]/4 = 7.5

The sample mean for data set B is also 6; its sample variance is

s2 = [(−26)2 + (−1)2 + 92 + (18)2]/3 ≈ 360.67

Thus, although both data sets have the same sample mean, there is a much greater
variability in the values of the B set than in the A set. ■

The following algebraic identity is often useful for computing the sample variance:

An Algebraic Identity
n∑

i=1

(xi − x̄)2 =
n∑

i=1

x2
i − nx̄2

The identity is proven as follows:

n∑
i=1

(xi − x̄)2 =
n∑

i=1

(
x2
i − 2xi x̄ + x̄2)

=
n∑

i=1

x2
i − 2x̄

n∑
i=1

xi +
n∑

i=1

x̄2

=
n∑

i=1

x2
i − 2nx̄2 + nx̄2

=
n∑

i=1

x2
i − nx̄2

The computation of the sample variance can also be eased by noting that if

yi = a + bxi , i = 1, . . . , n

then ȳ = a + bx̄, and so
n∑

i=1

( yi − ȳ)2 = b2
n∑

i=1

(xi − x̄)2

That is, if s2y and s2x are the respective sample variances, then

s2y = b2s2x
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In other words, adding a constant to each data value does not change the sample variance;
whereas multiplying each data value by a constant results in a new sample variance that is
equal to the old one multiplied by the square of the constant.

EXAMPLE 2.3g The following data give the worldwide number of fatal airline accidents
of commercially scheduled air transports in the years from 1985 to 1993.

Year 1985 1986 1987 1988 1989 1990 1991 1992 1993

Accidents 22 22 26 28 27 25 30 29 24
Source: Civil Aviation Statistics of the World, annual.

Find the sample variance of the number of accidents in these years.

SOLUTION Let us start by subtracting 22 from each value, to obtain the new data set:

0, 0, 4, 6, 5, 3, 8, 7, 2

Calling the transformed data y1, . . . , y9, we have
n∑

i=1

yi = 35,
n∑

i=1

y2
i = 16 + 36 + 25 + 9 + 64 + 49 + 4 = 203

Hence, since the sample variance of the transformed data is equal to that of the original
data, upon using the algebraic identity we obtain

s2 = 203 − 9(35/9)2

8
≈ 8.361 ■

Program 2.3 on the text disk can be used to obtain the sample variance for large data
sets.

The positive square root of the sample variance is called the sample standard deviation.

Definition
The quantity s, defined by

s =
√√√√ n∑

i=1

(xi − x̄)2/(n − 1)

is called the sample standard deviation.

The sample standard deviation is measured in the same units as the data.

2.3.3 Sample Percentiles and Box Plots

Loosely speaking, the sample 100p percentile of a data set is that value such that 100p
percent of the data values are less than or equal to it, 0 ≤ p ≤ 1. More formally, we have
the following definition.
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Definition
The sample 100p percentile is that data value such that 100p percent of the data are less
than or equal to it and 100(1 − p) percent are greater than or equal to it. If two data values
satisfy this condition, then the sample 100p percentile is the arithmetic average of these
two values.

To determine the sample 100p percentile of a data set of size n, we need to determine
the data values such that

1. At least np of the values are less than or equal to it.

2. At least n(1 − p) of the values are greater than or equal to it.

To accomplish this, first arrange the data in increasing order. Then, note that if np is not
an integer, then the only data value that satisfies the preceding conditions is the one whose
position when the data are ordered from smallest to largest is the smallest integer exceeding
np. For instance, if n = 22, p = .8, then we require a data value such that at least 17.6 of
the values are less than or equal to it, and at least 4.4 of them are greater than or equal to
it. Clearly, only the 18th smallest value satisfies both conditions and this is the sample 80
percentile. On the other hand, if np is an integer, then it is easy to check that both the
values in positions np and np + 1 satisfy the preceding conditions, and so the sample 100p
percentile is the average of these values.

EXAMPLE 2.3h Table 2.6 lists the populations of the 25 most populous U.S. cities for the
year 1994. For this data set, find (a) the sample 10 percentile and (b) the sample 80
percentile.

SOLUTION (a) Because the sample size is 25 and 25(.10) = 2.5, the sample 10 percentile
is the third smallest value, equal to 520,947.

(b) Because 25(.80) = 20, the sample 80 percentile is the average of the twentieth and
the twenty-first smallest values. Hence, the sample 80 percentile is

1,151,977 + 1,524,249

2
= 1,338,113 ■

The sample 50 percentile is, of course, just the sample median. Along with the sample
25 and 75 percentiles, it makes up the sample quartiles.

Definition
The sample 25 percentile is called the first quartile; the sample 50 percentile is called the
sample median or the second quartile; the sample 75 percentile is called the third quartile.

The quartiles break up a data set into four parts, with roughly 25 percent of the data
being less than the first quartile, 25 percent being between the first and second quartile,
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TABLE 2.6 Population of 25 Largest U.S. Cities, 1994

Rank City Population

1 New York, NY. . . . . . . . . . . . . . . . . 7,333,253
2 Los Angeles, CA . . . . . . . . . . . . . . . 3,448,613
3 Chicago, IL . . . . . . . . . . . . . . . . . . . 2,731,743
4 Houston, TX . . . . . . . . . . . . . . . . . . 1,702,086
5 Philadelphia, PA . . . . . . . . . . . . . . . 1,524,249
6 San Diego, CA. . . . . . . . . . . . . . . . . 1,151,977
7 Phoenix, AR. . . . . . . . . . . . . . . . . . . 1,048,949
8 Dallas, TX . . . . . . . . . . . . . . . . . . . . 1,022,830
9 San Antonio, TX. . . . . . . . . . . . . . . 998,905

10 Detroit, MI . . . . . . . . . . . . . . . . . . . 992,038
11 San Jose, CA . . . . . . . . . . . . . . . . . . 816,884
12 Indianapolis, IN . . . . . . . . . . . . . . . 752,279
13 San Francisco, CA. . . . . . . . . . . . . . 734,676
14 Baltimore, MD . . . . . . . . . . . . . . . . 702,979
15 Jacksonville, FL . . . . . . . . . . . . . . . . 665,070
16 Columbus, OH . . . . . . . . . . . . . . . . 635,913
17 Milwaukee, WI . . . . . . . . . . . . . . . . 617,044
18 Memphis, TN . . . . . . . . . . . . . . . . . 614,289
19 El Paso, TX . . . . . . . . . . . . . . . . . . . 579,307
20 Washington, D.C. . . . . . . . . . . . . . 567,094
21 Boston, MA . . . . . . . . . . . . . . . . . . . 547,725
22 Seattle, WA . . . . . . . . . . . . . . . . . . . 520,947
23 Austin, TX . . . . . . . . . . . . . . . . . . . . 514,013
24 Nashville, TN . . . . . . . . . . . . . . . . . 504,505
25 Denver, CO . . . . . . . . . . . . . . . . . . . 493,559

25 percent being between the second and third quartile, and 25 percent being greater than
the third quartile.

EXAMPLE 2.3i Noise is measured in decibels, denoted as dB. One decibel is about the level
of the weakest sound that can be heard in a quiet surrounding by someone with good
hearing; a whisper measures about 30 dB; a human voice in normal conversation is about
70 dB; a loud radio is about 100 dB. Ear discomfort usually occurs at a noise level of about
120 dB.

The following data give noise levels measured at 36 different times directly outside of
Grand Central Station in Manhattan.

82, 89, 94, 110, 74, 122, 112, 95, 100, 78, 65, 60, 90, 83, 87, 75, 114, 85

69, 94, 124, 115, 107, 88, 97, 74, 72, 68, 83, 91, 90, 102, 77, 125, 108, 65

Determine the quartiles.
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30 31.5 34
4027

FIGURE 2.7 A box plot.

SOLUTION A stem and leaf plot of the data is as follows:

6 0, 5, 5, 8, 9
7 2, 4, 4, 5, 7, 8
8 2, 3, 3, 5, 7, 8, 9
9 0, 0, 1, 4, 4, 5, 7

10 0, 2, 7, 8
11 0, 2, 4, 5
12 2, 4, 5

The first quartile is 74.5, the average of the 9th and 10th smallest data values; the second
quartile is 89.5, the average of the 18th and 19th smallest values; the third quartile is
104.5, the average of the 27th and 28th smallest values. ■

A box plot is often used to plot some of the summarizing statistics of a data set. A straight
line segment stretching from the smallest to the largest data value is drawn on a horizontal
axis; imposed on the line is a “box,” which starts at the first and continues to the third
quartile, with the value of the second quartile indicated by a vertical line. For instance,
the 42 data values presented in Table 2.1 go from a low value of 27 to a high value of 40.
The value of the first quartile (equal to the value of the 11th smallest on the list) is 30; the
value of the second quartile (equal to the average of the 21st and 22nd smallest values) is
31.5; and the value of the third quartile (equal to the value of the 32nd smallest on the
list) is 34. The box plot for this data set is shown in Figure 2.7.

The length of the line segment on the box plot, equal to the largest minus the smallest
data value, is called the range of the data. Also, the length of the box itself, equal to the
third quartile minus the first quartile, is called the interquartile range.

2.4 CHEBYSHEV’S INEQUALITY
Let x̄ and s be the sample mean and sample standard deviation of a data set. Assuming that
s > 0, Chebyshev’s inequality states that for any value of k ≥ 1, greater than 100(1 − 1/k2)
percent of the data lie within the interval from x̄ − ks to x̄ + ks. Thus, by letting k = 3/2,
we obtain from Chebyshev’s inequality that greater than 100(5/9) = 55.56 percent of the
data from any data set lies within a distance 1.5s of the sample mean x̄; letting k = 2 shows
that greater than 75 percent of the data lies within 2s of the sample mean; and letting k = 3
shows that greater than 800/9 ≈ 88.9 percent of the data lies within 3 sample standard
deviations of x̄.
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When the size of the data set is specified, Chebyshev’s inequality can be sharpened, as
indicated in the following formal statement and proof.

Chebyshev’s Inequality
Let x̄ and s be the sample mean and sample standard deviation of the data set consisting

of the data x1, . . . , xn, where s > 0. Let

Sk = {i, 1 ≤ i ≤ n : |xi − x̄| < ks}
and let N (Sk) be the number of elements in the set Sk . Then, for any k ≥ 1,

N (Sk)

n
≥ 1 − n − 1

nk2 > 1 − 1

k2

Proof

(n − 1)s2 =
n∑

i=1

(xi − x̄)2

=
∑
i∈Sk

(xi − x̄)2 +
∑
i �∈Sk

(xi − x̄)2

≥
∑
i �∈Sk

(xi − x̄)2

≥
∑
i �∈Sk

k2s2

= k2s2(n − N (Sk))

where the first inequality follows because all terms being summed are nonnegative, and the
second follows since (x1 − x̄)2 ≥ k2s2 when i �∈ Sk . Dividing both sides of the preceding
inequality by nk2s2 yields that

n − 1

nk2 ≥ 1 − N (Sk)

n

and the result is proven. �

Because Chebyshev’s inequality holds universally, it might be expected for given data
that the actual percentage of the data values that lie within the interval from x̄ − ks to
x̄ + ks might be quite a bit larger than the bound given by the inequality.

EXAMPLE 2.4a Table 2.7 lists the 10 top-selling passenger cars in the United States in
1999. A simple calculation gives that the sample mean and sample standard deviation of
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TABLE 2.7 Top 10 Selling Cars for 1999

1999

1. Toyota Camry . . . . . . . . . . . . . . . . . 448,162
2. Honda Accord . . . . . . . . . . . . . . . . . 404,192
3. Ford Taurus . . . . . . . . . . . . . . . . . . . 368,327
4. Honda Civic . . . . . . . . . . . . . . . . . . 318,308
5. Chevy Cavalier . . . . . . . . . . . . . . . . 272,122
6. Ford Escort . . . . . . . . . . . . . . . . . . . 260,486
7. Toyota Corolla . . . . . . . . . . . . . . . . 249,128
8. Pontiac Grand Am . . . . . . . . . . . . . 234,936
9. Chevy Malibu . . . . . . . . . . . . . . . . . 218,540

10. Saturn S series . . . . . . . . . . . . . . . . . 207,977

these data are
x̄ = 298,217.8, s = 124,542.9

Thus Chebyshev’s inequality yields that at least 100(5/9) = 55.55 percent of the data lies
in the interval (

x̄ − 3

2
s, x̄ + 3

2
s
)

= (173,674.9, 422, 760.67)

whereas, in actuality, 90 percent of the data falls within those limits. ■

Suppose now that we are interested in the fraction of data values that exceed the sample
mean by at least k sample standard deviations, where k is positive. That is, suppose that x̄
and s are the sample mean and the sample standard deviation of the data set x1, x2, . . . , xn.
Then, with

N (k) = number of i : xi − x̄ ≥ ks

what can we say about N (k)/n? Clearly,

N (k)

n
≤ number of i : |xi − x̄| ≥ ks

n

≤ 1

k2 by Chebyshev’s inequality

However, we can make a stronger statement, as is shown in the following one-sided version
of Chebyshev’s inequality.

The One-Sided Chebyshev Inequality
For k > 0,

N (k)

n
≤ 1

1 + k2
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Proof

Let yi = xi − x̄, i = 1, . . . , n. For any b > 0, we have that

n∑
i=1

( yi + b)2 ≥
∑

i:yi≥ks

( yi + b)2

≥
∑

i:yi≥ks

(ks + b)2

= N (k)(ks + b)2 (2.4.1)

where the first inequality follows because ( yi + b)2 ≥ 0, and the second because both ks
and b are positive. However,

n∑
i=1

( yi + b)2 =
n∑

i=1

( y2
i + 2byi + b2)

=
n∑

i=1

y2
i + 2b

n∑
i=1

yi + nb2

= (n − 1)s2 + nb2

where the final equation used that
∑n

i=1 yi = ∑n
i=1(xi − x̄) = ∑n

i=1 xi − nx̄ = 0.
Therefore, we obtain from Equation (2.4.1) that

N (k) ≤ (n − 1)s2 + nb2

(ks + b)2

implying that
N (k)

n
≤ s2 + b2

(ks + b)2

Because the preceding is valid for all b > 0, we can set b = s/k (which is the value of b
that minimizes the right-hand side of the preceding) to obtain that

N (k)

n
≤ s2 + s2/k2

(ks + s/k)2

Multiplying the numerator and the denominator of the right side of the preceding by k2/s2

gives

N (k)

n
≤ k2 + 1

(k2 + 1)2
= 1

k2 + 1
and the result is proven. Thus, for instance, where the usual Chebyshev inequality shows
that at most 25 percent of data values are at least 2 standard deviations greater than
the sample mean, the one-sided Chebyshev inequality lowers the bound to “at most
20 percent.” ■
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2.5 NORMAL DATA SETS
Many of the large data sets observed in practice have histograms that are similar in shape.
These histograms often reach their peaks at the sample median and then decrease on both
sides of this point in a bell-shaped symmetric fashion. Such data sets are said to be normal
and their histograms are called normal histograms. Figure 2.8 is the histogram of a normal
data set.

If the histogram of a data set is close to being a normal histogram, then we say that
the data set is approximately normal. For instance, we would say that the histogram given
in Figure 2.9 is from an approximately normal data set, whereas the ones presented in
Figures 2.10 and 2.11 are not (because each is too nonsymmetric). Any data set that is
not approximately symmetric about its sample median is said to be skewed. It is “skewed
to the right” if it has a long tail to the right and “skewed to the left” if it has a long tail
to the left. Thus the data set presented in Figure 2.10 is skewed to the left and the one of
Figure 2.11 is skewed to the right.

It follows from the symmetry of the normal histogram that a data set that is approxi-
mately normal will have its sample mean and sample median approximately equal.

FIGURE 2.8 Histogram of a normal data set.

FIGURE 2.9 Histogram of an approximately normal data set.
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FIGURE 2.10 Histogram of a data set skewed to the left.

FIGURE 2.11 Histogram of a data set skewed to the right.

Suppose that x̄ and s are the sample mean and sample standard deviation of an approxi-
mately normal data set. The following rule, known as the empirical rule, specifies the
approximate proportions of the data observations that are within s, 2s, and 3s of the
sample mean x̄.

The Empirical Rule
If a data set is approximately normal with sample mean x̄ and sample standard deviation

s, then the following statements are true.

1. Approximately 68 percent of the observations lie within

x̄ ± s

2. Approximately 95 percent of the observations lie within

x̄ ± 2s
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3. Approximately 99.7 percent of the observations lie within

x̄ ± 3s

EXAMPLE 2.5a The following stem and leaf plot gives the scores on a statistics exam taken
by industrial engineering students.

9 0, 1, 4
8 3, 5, 5, 7, 8
7 2, 4, 4, 5, 7, 7, 8
6 0, 2, 3, 4, 6, 6
5 2, 5, 5, 6, 8
4 3, 6

By standing the stem and leaf plot on its side we can see that the corresponding histogram
is approximately normal. Use it to assess the empirical rule.

SOLUTION A calculation gives that

x̄ ≈ 70. 571, s ≈ 14. 354

Thus the empirical rule states that approximately 68 percent of the data are between 56.2
and 84.9; the actual percentage is 1,500/28 ≈ 53.6. Similarly, the empirical rule gives that
approximately 95 percent of the data are between 41.86 and 99.28, whereas the actual
percentage is 100. ■

A data set that is obtained by sampling from a population that is itself made up of
subpopulations of different types is usually not normal. Rather, the histogram from such
a data set often appears to resemble a combining, or superposition, of normal histograms
and thus will often have more than one local peak or hump. Because the histogram will
be higher at these local peaks than at their neighboring values, these peaks are similar to
modes. A data set whose histogram has two local peaks is said to be bimodal. The data set
represented in Figure 2.12 is bimodal.

2.6 PAIRED DATA SETS AND THE SAMPLE
CORRELATION COEFFICIENT

We are often concerned with data sets that consist of pairs of values that have some
relationship to each other. If each element in such a data set has an x value and a y value,
then we represent the ith data point by the pair (xi , yi). For instance, in an attempt to
determine the relationship between the daily midday temperature (measured in degrees
Celsius) and the number of defective parts produced during that day, a company recorded
the data presented in Table 2.8. For this data set, xi represents the temperature in degrees
Celsius and yi the number of defective parts produced on day i.
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FIGURE 2.12 Histogram of a bimodal data set.

TABLE 2.8 Temperature and Defect Data

Day Temperature Number of Defects

1 24.2 25
2 22.7 31
3 30.5 36
4 28.6 33
5 25.5 19
6 32.0 24
7 28.6 27
8 26.5 25
9 25.3 16

10 26.0 14
11 24.4 22
12 24.8 23
13 20.6 20
14 25.1 25
15 21.4 25
16 23.7 23
17 23.9 27
18 25.2 30
19 27.4 33
20 28.3 32
21 28.8 35
22 26.6 24

A useful way of portraying a data set of paired values is to plot the data on a two-
dimensional graph, with the x-axis representing the x value of the data and the y-axis
representing the y value. Such a plot is called a scatter diagram. Figure 2.13 presents a
scatter diagram for the data of Table 2.8.
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FIGURE 2.13 A scatter diagram.

A question of interest concerning paired data sets is whether large x values tend to be
paired with large y values, and small x values with small y values; if this is not the case,
then we might question whether large values of one of the variables tend to be paired
with small values of the other. A rough answer to these questions can often be provided
by the scatter diagram. For instance, Figure 2.13 indicates that there appears to be some
connection between high temperatures and large numbers of defective items. To obtain
a quantitative measure of this relationship, we now develop a statistic that attempts to
measure the degree to which larger x values go with larger y values and smaller x values
with smaller y values.

Suppose that the data set consists of the paired values (xi , yi), i = 1, . . . , n. To obtain
a statistic that can be used to measure the association between the individual values of a
set of paired data, let x̄ and ȳ denote the sample means of the x values and the y values,
respectively. For data pair i, consider xi − x̄ the deviation of its x value from the sample
mean, and yi − ȳ the deviation of its y value from the sample mean. Now if xi is a large
x value, then it will be larger than the average value of all the x’s, so the deviation xi − x̄
will be a positive value. Similarly, when xi is a small x value, then the deviation xi − x̄ will
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be a negative value. Because the same statements are true about the y deviations, we can
conclude the following:

When large values of the x variable tend to be associated with large values
of the y variable and small values of the x variable tend to be associated
with small values of the y variable, then the signs, either positive or
negative, of xi − x̄ and yi − ȳ will tend to be the same.

Now, if xi − x̄ and yi − ȳ both have the same sign (either positive or negative), then
their product (xi − x̄)( yi − ȳ) will be positive. Thus, it follows that when large x values
tend to be associated with large y values and small x values are associated with small y
values, then

∑n
i=1(xi − x̄)( yi − ȳ) will tend to be a large positive number. [In fact, not

only will all the products have a positive sign when large (small) x values are paired with
large (small) y values, but it also follows from a mathematical result known as Hardy’s
lemma that the largest possible value of the sum of paired products will be obtained when
the largest xi − x̄ is paired with the largest yi − ȳ, the second largest xi − x̄ is paired with
the second largest yi − ȳ, and so on.] In addition, it similarly follows that when large values
of xi tend to be paired with small values of yi then the signs of xi − x̄ and yi − ȳ will be
opposite and so

∑n
i=1(xi − x̄)( yi − ȳ) will be a large negative number.

To determine what it means for
∑n

i=1(xi − x̄)( yi − ȳ) to be “large,” we standardize
this sum first by dividing by n − 1 and then by dividing by the product of the two sample
standard deviations. The resulting statistic is called the sample correlation coefficient.

Definition
Let sx and sy denote, respectively, the sample standard deviations of the x values and the
y values. The sample correlation coefficient, call it r , of the data pairs (xi , yi), i = 1, . . . , n
is defined by

r =

n∑
i=1

(xi − x̄)( yi − ȳ)

(n − 1)sx sy

=

n∑
i=1

(xi − x̄)( yi − ȳ)√
n∑

i=1
(xi − x̄)2

n∑
i=1

( yi − ȳ)2

When r > 0 we say that the sample data pairs are positively correlated, and when r < 0 we
say that they are negatively correlated.

The following are properties of the sample correlation coefficient.
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Properties of r

1. −1 ≤ r ≤ 1

2. If for constants a and b, with b > 0,

yi = a + bxi , i = 1, . . . , n

then r = 1.

3. If for constants a and b, with b < 0,

yi = a + bxi , i = 1, . . . , n

then r = −1.

4. If r is the sample correlation coefficient for the data pairs xi , yi , i = 1, . . . , n then it
is also the sample correlation coefficient for the data pairs

a + bxi , c + dyi , i = 1, . . . , n

provided that b and d are both positive or both negative.

Property 1 says that the sample correlation coefficient r is always between −1 and +1.
Property 2 says that r will equal +1 when there is a straight line (also called a linear) relation
between the paired data such that large y values are attached to large x values. Property 3
says that r will equal −1 when the relation is linear and large y values are attached to small
x values. Property 4 states that the value of r is unchanged when a constant is added to each
of the x variables (or to each of the y variables) or when each x variable (or each y variable)
is multiplied by a positive constant. This property implies that r does not depend on the
dimensions chosen to measure the data. For instance, the sample correlation coefficient
between a person’s height and weight does not depend on whether the height is measured
in feet or in inches nor whether the weight is measured in pounds or in kilograms. Also, if
one of the values in the pair is temperature, then the sample correlation coefficient is the
same whether it is measured in Fahrenheit or in Celsius.

The absolute value of the sample correlation coefficient r (that is, |r|, its value without
regard to its sign) is a measure of the strength of the linear relationship between the x and
the y values of a data pair. A value of |r| equal to 1 means that there is a perfect linear
relation — that is, a straight line can pass through all the data points (xi , yi), i = 1, . . . , n.
A value of |r| of around .8 means that the linear relation is relatively strong; although there
is no straight line that passes through all of the data points, there is one that is “close” to
them all. A value for |r| of around .3 means that the linear relation is relatively weak.
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r = –.50 r = 0

r = –.90

FIGURE 2.14 Sample correlation coefficients.

The sign of r gives the direction of the relation. It is positive when the linear relation is
such that smaller y values tend to go with smaller x values and larger y values with larger x
values (and so a straight line approximation points upward), and it is negative when larger
y values tend to go with smaller x values and smaller y values with larger x values (and so
a straight line approximation points downward). Figure 2.14 displays scatter diagrams for
data sets with various values of r .

EXAMPLE 2.6a Find the sample correlation coefficient for the data presented in Table 2.8.

SOLUTION A computation gives the solution

r = .4189

thus indicating a relatively weak positive correlation between the daily temperature and
the number of defective items produced that day. ■
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FIGURE 2.15 Scatter diagram of years in school and pulse rate.

EXAMPLE 2.6b The following data give the resting pulse rates (in beats per minute) and
the years of schooling of 10 individuals. A scatter diagram of these data is presented in
Figure 2.15. The sample correlation coefficient for these data is r = −.7638. This negative
correlation indicates that for this data set a high pulse rate is strongly associated with
a small number of years in school, and a low pulse rate with a large number of years in
school. ■

Person 1 2 3 4 5 6 7 8 9 10

Years of School 12 16 13 18 19 12 18 19 12 14
Pulse Rate 73 67 74 63 73 84 60 62 76 71

■

Correlation Measures Association, Not Causation

The results of Example 2.6b indicate a strong negative correlation
between an individual’s years of education and that individual’s rest-
ing pulse rate. However, this does not imply that additional years of
school will directly reduce one’s pulse rate. That is, whereas additional
years of school tend to be associated with a lower resting pulse rate, this
does not mean that it is a direct cause of it. Often, the explanation for
such an association lies with an unexpressed factor that is related to both
variables under consideration. In this instance, it may be that a person
who has spent additional time in school is more aware of the latest find-
ings in the area of health, and thus may be more aware of the importance
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of exercise and good nutrition; or it may be that it is not knowledge that
is making the difference but rather it is that people who have had more
education tend to end up in jobs that allow them more time for exercise
and money for good nutrition. The strong negative correlation between
years in school and resting pulse rate probably results from a combination
of these as well as other underlying factors.

■

We will now prove the first three properties of the sample correlation coefficient r . That
is, we will prove that |r| ≤ 1 with equality when the data lie on a straight line. To begin,
note that

∑(
xi − x̄

sx
− yi − ȳ

sy

)2

≥ 0 (2.6.1)

or ∑ (xi − x̄)2

s2x
+
∑ ( yi − ȳ)

s2y

2

− 2
∑ (xi − x̄)( yi − ȳ)

sx sy
≥ 0

or

n − 1 + n − 1 − 2(n − 1)r ≥ 0

showing that

r ≤ 1

Note also that r = 1 if and only if there is equality in Equation (2.6.1). That is, r = 1 if
and only if for all i,

yi − ȳ
sy

= xi − x̄
sx

or, equivalently,

yi = ȳ − sy
sx

x̄ + sy
sx

xi

That is, r = 1 if and only if the data values (xi , yi) lie on a straight line having a positive
slope.

To show that r ≥ −1, with equality if and only if the data values (xi , yi) lie on a straight
line having a negative slope, start with

∑(
xi − x̄

sx
+ yi − ȳ

sy

)2

≥ 0

and use an argument analogous to the one just given.
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Problems

1. The following is a sample of prices, rounded to the nearest cent, charged per gallon
of standard unleaded gasoline in the San Francisco Bay area in June 1997.

137, 139, 141, 137, 144, 141, 139, 137, 144, 141, 143, 143, 141

Represent these data in

(a) a frequency table;
(b) a relative frequency line graph.

2. Explain how a pie chart can be constructed. If a data value had relative frequency
r, at what angle would the lines defining its sector meet?

3. The following are the estimated oil reserves, in billions of barrels, for four regions
in the western hemisphere.

United States 38.7
South America 22.6
Canada 8.8
Mexico 60.0

Represent these data in a pie chart.

4. The following table gives the average travel time to work for workers in each of the
50 states as well as the percentage of those workers who use public transportation.

(a) Represent the data relating to the average travel times in a histogram.
(b) Represent the data relating to the percentage of workers using public

transportation in a stem and leaf plot.

Means of Transportation
to Work

Average Travel
Region, Division, Percent Using Public Time to Work1

and State Transportation (minutes)

United States . . 5.3 22.4
Northeast . . . . . . . . . 12.8 24.5

New England . . . . 5.1 21.5
Maine . . . . . . . . 0.9 19.0
New Hampshire 0.7 21.9
Vermont . . . . . . 0.7 18.0
Massachusetts . . 8.3 22.7

(continued )
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Means of Transportation
to Work

Average Travel
Region, Division, Percent Using Public Time to Work1

and State Transportation (minutes)

Rhode Island . . . . . . 2.5 19.2
Connecticut . . . . . . . 3.9 21.1

Middle Atlantic . . . . . . 15.7 25.7
New York . . . . . . . . . 24.8 28.6
New Jersey . . . . . . . . 8.8 25.3
Pennsylvania . . . . . . 6.4 21.6

Midwest . . . . . . . . . . . . . . 3.5 20.7
East North Central … 4.3 21.7

Ohio . . . . . . . . . . . . . 2.5 20.7
Indiana . . . . . . . . . . . 1.3 20.4
Illinois . . . . . . . . . . . . 10.1 25.1
Michigan . . . . . . . . . 1.6 21.2
Wisconsin . . . . . . . . 2.5 18.3

West North Central . . 1.9 18.4
Minnesota . . . . . . . . 3.6 19.1
Iowa . . . . . . . . . . . . . 1.2 16.2
Missouri . . . . . . . . . . 2.0 21.6
North Dakota . . . . . 0.6 13.0
South Dakota . . . . . 0.3 13.8
Nebraska . . . . . . . . . 1.2 15.8
Kansas . . . . . . . . . . . . 0.6 17.2

South . . . . . . . . . . . . . . . . . 2.6 22.0
South Atlantic . . . . . . . 3.4 22.5

Delaware . . . . . . . . . 2.4 20.0
Maryland . . . . . . . . . 8.1 27.0
Virginia . . . . . . . . . . . 4.0 24.0
West Virginia . . . . . 1.1 21.0
North Carolina . . . . 1.0 19.8
South Carolina . . . . 1.1 20.5
Georgia . . . . . . . . . . . 2.8 22.7
Florida . . . . . . . . . . . 2.0 21.8

East South Central … 1.2 21.1
Kentucky . . . . . . . . . 1.6 20.7
Tennessee . . . . . . . . . 1.3 21.5
Alabama . . . . . . . . . . 0.8 21.2
Mississippi . . . . . . . . 0.8 20.6

West South Central . . 2.0 216
Arkansas . . . . . . . . . . 0.5 19.0

(continued )
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Means of Transportation
to Work

Average Travel
Region, Division, Percent Using Public Time to Work1

and State Transportation (minutes)

Louisiana . . . . . . . . . 3.0 22.3
Oklahoma . . . . . . . . 0.6 19.3
Texas . . . . . . . . . . . . . 2.2 22.2

West . . . . . . . . . . . . . . . . . . 4.1 22.7
Mountain . . . . . . . . . . . 2.1 19.7

Montana . . . . . . . . . . 0.6 14.8
Idaho. . . . . . . . . . . . . 1.9 17.3
Wyoming . . . . . . . . . 1.4 15.4
Colorado . . . . . . . . . 2.9 20.7
New Mexico . . . . . . 1.0 19.1
Arizona . . . . . . . . . . . 2.1 21.6
Utah . . . . . . . . . . . . . 2.3 18.9
Nevada . . . . . . . . . . . 2.7 19.8

Pacific . . . . . . . . . . . . . . 4.8 23.8
Washington . . . . . . . 4.5 22.0
Oregon . . . . . . . . . . . 3.4 19.6
California . . . . . . . . . 4.9 24.6
Alaska . . . . . . . . . . . . 2.4 16.7
Hawaii . . . . . . . . . . . 7.4 23.8

1Excludes persons who worked at home.
Source: U.S. Bureau of the Census. Census of Population and Housing, 1990.

5. Choose a book or article and count the number of words in each of the first 100
sentences. Present the data in a stem and leaf plot. Now choose another book or
article, by a different author, and do the same. Do the two stem and leaf plots look
similar? Do you think this could be a viable method for telling whether different
articles were written by different authors?

6. The following table gives the number of commercial airline accidents and fatalities
in the United States in the years from 1980 to 1995.

(a) Represent the number of yearly airline accidents in a frequency table.
(b) Give a frequency polygon graph of the number of yearly airline accidents.
(c) Give a cumulative relative frequency plot of the number of yearly airline

accidents.
(d) Find the sample mean of the number of yearly airline accidents.
(e) Find the sample median of the number of yearly airline accidents.
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U.S. Airline Safety, Scheduled Commercial Carriers, 1980–1995

Fatal
Accidents

Fatal per Fatal
Departures Acci- Fatal- 100,000 Departures Acci- Fatal-
(millions) dents ities Departures (millions) dents ities

1980 5.4 0 0 0.000 1988 6.7 3 285
1981 5.2 4 4 0.077 1989 6.6 11 278
1982 5.0 4 233 0.060 1990 6.9 6 39
1983 5.0 4 5 0.079 1991 6.8 4 62
1984 5.4 1 4 0.018 1992 7.1 4 33
1985 5.8 4 197 0.069 1993 7.2 1 1
1986 6.4 2 5 0.016 1994 7.5 4 239
1987 6.6 4 231 0.0461 1995 8.1 2 166

Source: National Transportation Safety Board.

(f ) Find the sample mode of the number of yearly airline accidents.
(g) Find the sample standard deviation of the number of yearly airline accidents.

7. (Use the table from Problem 6.)

(a) Represent the number of yearly airline fatalities in a histogram.
(b) Represent the number of yearly airline fatalities in a stem and leaf plot.
(c) Find the sample mean of the number of yearly airline fatalities.
(d) Find the sample median of the number of yearly airline fatalities.
(e) Find the sample standard deviation of the number of yearly airline fatalities.

8. The following table gives the winning scores in the Masters golf tournament for
the years from 1967 to 2002. Use it

(a) to construct a stem and leaf plot, and
(b) to find the sample median of the winning scores in these years.

Year Player Score

1967 Gay Brewer, Jr. 280
1968 Bob Goalby 277
1969 George Archer 281
1970 Billy Casper (69) 279
1971 Charles Coody 279
1972 Jack Nicklaus 286
1973 Tommy Aaron 283
1974 Gary Player 278

(continued )
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Year Player Score

1975 Jack Nicklaus 276
1976 Ray Floyd 271
1977 Tom Watson 276
1978 Gary Player 277
1979 Fuzzy Zoeller 280
1980 Seve Ballesteros 275
1981 Tom Watson 280
1982 Craig Stadler 284
1983 Seve Ballesteros 280
1984 Ben Crenshaw 277
1985 Bernhard Langer 282
1986 Jack Nicklaus 279
1987 Larry Mize 285
1988 Sandy Lyle 281
1989 Nick Faldo 283
1990 Nick Faldo 278
1991 Ian Woosnam 277
1992 Fred Couples 275
1993 Bernhard Langer 277
1994 José Maria Olazábal 279
1995 Ben Crenshaw 274
1996 Nick Faldo 276
1997 Tiger Woods 270
1998 Mark O’Meara 279
1999 José Maria Olazábal 280
2000 Vijay Singh 278
2001 Tiger Woods 272
2002 Tiger Woods 276

9. Using the table given in Problem 4, find the sample mean and sample median of
the average travel time for those states in the

(a) northeast;
(b) midwest;
(c) south;
(d) west.

10. The following data are the median prices for single-family homes in a variety of
American cities for the years 1992 and 1994.

(a) Represent the 1992 data in a histogram.
(b) Represent the 1994 data in a stem and leaf plot.
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Median Price of Existing Single-Family Homes

City Apr. 1992 Apr. 1994

Akron, OH $75,500 $81,600
Albuquerque, NM 86,700 103,100
Anaheim/Santa Ana, CA 235,100 209,500
Atlanta, GA 85,800 93,200
Baltimore, MD 111,500 115,700
Baton Rouge, LA 71,800 78,400
Birmingham, AL 89,500 99,500
Boston, MA 168,200 170,600
Bradenton, FL 80,400 86,400
Buffalo, NY 79,700 82,400
Charleston, SC 82,000 91,300
Chicago, IL 131,100 135,500
Cincinnati, OH 87,500 93,600
Cleveland, OH 88,100 94,200
Columbia, SC 85,100 82,900
Columbus, OH 90,300 92,800
Corpus Christi, TX 62,500 71,700
Dallas, TX 90,500 95,100
Daytona Beach, FL 63,600 66,200
Denver, CO 91,300 111,200
Des Moines, IA 71,200 77,400
Detroit, MI 77,500 84,500
El Paso, TX 65,900 73,600
Grand Rapids, MI 73,000 76,600
Hartford, CT 141,500 132,900
Honolulu, HI 342,000 355,000
Houston, TX 78,200 84,800
Indianapolis, IN 80,100 90,500
Jacksonville, FL 75,100 79,700
Kansas City, MO 76,100 84,900
Knoxville, TN 78,300 88,600
Las Vegas, NV 101,400 110,400
Los Angeles, CA 218,000 188,500

Source: National Association of Realtors: Data as of midyear 1994.

(c) Find the sample median of these median prices for 1992.
(d) Find the sample median of these median prices for 1994.

11. The following table gives the number of pedestrians, classified according to age
group and sex, killed in fatal road accidents in England in 1922.

(a) Approximate the sample means of the ages of the males.
(b) Approximate the sample means of the ages of the females.
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(c) Approximate the quartiles of the males killed.
(d) Approximate the quartiles of the females killed.

Age Number of Males Number of Females

0–5 120 67
5–10 184 120

10–15 44 22
15–20 24 15
20–30 23 25
30–40 50 22
40–50 60 40
50–60 102 76
60–70 167 104
70–80 150 90
80–100 49 27

12. The following are the percentages of ash content in 12 samples of coal found in
close proximity:

9.2, 14.1, 9.8, 12.4, 16.0, 12.6, 22.7, 18.9, 21.0, 14.5, 20.4, 16.9

Find the

(a) sample mean, and
(b) sample standard deviation of these percentages.

13. Using the table given in Problem 4, find the sample variance of the average travel
time for those states in the

(a) south Atlantic;
(b) mountain region.

14. The sample mean and sample variance of five data values are, respectively, x̄ = 104
and s2 = 4. If three of the data values are 102, 100, 105, what are the other two
data values?

15. The following table gives the average annual pay, per state, in the years 1992 and
1993.

(a) Do you think that the sample mean of the averages for the 50 states will equal
the value given for the entire United States?

(b) If the answer to part (a) is no, explain what other information aside from just
the 50 averages would be needed to determine the sample mean salary for the
entire country. Also, explain how you would use the additional information
to compute this quantity.
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Average Annual Pay, by State: 1992 and 1993
[In dollars, except percent change. For workers covered by State unemployment insurance laws and for
Federal civilian workers covered by unemployment compensation for Federal employees, approximately
96 percent of wage and salary civilian employment in 1993. Excludes most agricultural workers on small
farms, all Armed Forces, elected officials in most States, railroad employees, most domestic workers,
most student workers at school, employees of certain nonprofit organizations, and most self-employed
individuals. Pay includes bonuses, cash value of meals and lodging, and tips and other gratuities.]

Average Average
Annual Pay Annual Pay

State 1992 1993 State 1992 1993

United States . . . . . . 25,897 26,362 Missouri . . . . . . . . 23,550 23,898
Alabama . . . . . . . . . . . . . 22,340 22,786 Montana . . . . . . . . 19,378 19,932
Alaska . . . . . . . . . . . . . . . 31,825 32,336 Nebraska . . . . . . . . 20,355 20,815
Arizona . . . . . . . . . . . . . . 23,153 23,501 Nevada . . . . . . . . . 24,743 25,461
Arkansas . . . . . . . . . . . . . 20,108 20,337 New Hampshire . 24,866 24,962
California . . . . . . . . . . . . 28,902 29,468 New Jersey . . . . . . 32,073 32,716
Colorado. . . . . . . . . . . . . 25,040 25,682 New Mexico . . . . 21,051 21,731
Connecticut . . . . . . . . . . 32,603 33,169 New York . . . . . . . 32,399 32,919
Delaware . . . . . . . . . . . . . 26,596 27,143 North Carolina . . 22,249 22,770
District of Columbia . . . 37,951 39,199 North Dakota . . . 18,945 19,382
Florida. . . . . . . . . . . . . . . 23,145 23,571 Ohio . . . . . . . . . . . 24,845 25,339
Georgia . . . . . . . . . . . . . . 24,373 24,867 Oklahoma . . . . . . 21,698 22,003
Hawaii . . . . . . . . . . . . . . 25,538 26,325 Oregon . . . . . . . . . 23,514 24,093
Idaho . . . . . . . . . . . . . . . . 20,649 21,188 Pennsylvania . . . . 25,785 26,274
Illinois . . . . . . . . . . . . . . . 27,910 28,420 Rhode Island . . . . 24,315 24,889
Indiana . . . . . . . . . . . . . . 23,570 24,109 South Carolina … 21,398 21,928
Iowa. . . . . . . . . . . . . . . . . 20,937 21,441 South Dakota . . . 18,016 18,613
Kansas . . . . . . . . . . . . . . . 21,982 22,430 Tennessee . . . . . . . 22,807 23,368
Kentucky . . . . . . . . . . . . 21,858 22,170 Texas . . . . . . . . . . . 25,088 25,545
Louisiana . . . . . . . . . . . . 22,342 22,632 Utah . . . . . . . . . . . 21,976 22,250
Maine . . . . . . . . . . . . . . . 21,808 22,026 Vermont . . . . . . . . 22,360 22,704
Maryland . . . . . . . . . . . . 27,145 27,684 Virginia . . . . . . . . . 24,940 25,496
Massachusetts . . . . . . . . 29,664 30,229 Washington . . . . . 25,553 25,760
Michigan . . . . . . . . . . . . 27,463 28,260 West Virginia . . . . 22,168 22,373
Minnesota . . . . . . . . . . . 25,324 25,711 Wisconsin . . . . . . . 23,008 23,610
Mississippi . . . . . . . . . . . 19,237 19,694 Wyoming . . . . . . . 21,215 21,745

Source: U.S. Bureau of Labor Statistics, Employment and Wages Annual Averages 1993; and USDL News Release 94 – 451, Average Annual
Pay by State and Industry, 1993.

(c) Find the sample median of the averages for 1992 and for 1993.
(d) Find the sample mean of the 1992 averages of the first 10 states listed.
(e) Find the sample standard deviation of the 1993 averages of the last 10 states

listed.
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16. The following data represent the lifetimes (in hours) of a sample of 40 transistors:

112, 121, 126, 108, 141, 104, 136, 134

121, 118, 143, 116, 108, 122, 127, 140

113, 117, 126, 130, 134, 120, 131, 133

118, 125, 151, 147, 137, 140, 132, 119

110, 124, 132, 152, 135, 130, 136, 128

(a) Determine the sample mean, median, and mode.
(b) Give a cumulative relative frequency plot of these data.

17. An experiment measuring the percent shrinkage on drying of 50 clay specimens
produced the following data:

18.2 21.2 23.1 18.5 15.6
20.8 19.4 15.4 21.2 13.4
16.4 18.7 18.2 19.6 14.3
16.6 24.0 17.6 17.8 20.2
17.4 23.6 17.5 20.3 16.6
19.3 18.5 19.3 21.2 13.9
20.5 19.0 17.6 22.3 18.4
21.2 20.4 21.4 20.3 20.1
19.6 20.6 14.8 19.7 20.5
18.0 20.8 15.8 23.1 17.0

(a) Draw a stem and leaf plot of these data.
(b) Compute the sample mean, median, and mode.
(c) Compute the sample variance.
(d) Group the data into class intervals of size 1 percent starting with the value

13.0; and draw the resulting histogram.
(e) For the grouped data acting as if each of the data points in an interval was

actually located at the midpoint of that interval, compute the sample mean
and sample variance and compare this with the results obtained in parts (b)
and (c). Why do they differ?

18. A computationally efficient way to compute the sample mean and sample variance
of the data set x1, x2, . . . , xn is as follows. Let

x̄j =

j∑
i=1

xi

j
, j = 1, . . . , n
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be the sample mean of the first j data values; and let

s2j =

j∑
i=1

(xi − x̄j )2

j − 1
, j = 2, . . . , n

be the sample variance of the first j, j ≥ 2, values. Then, with s21 = 0, it can be
shown that

x̄j+1 = x̄j + xj+1 − x̄j

j + 1

and

s2j+1 =
(

1 − 1

j

)
s2j + (j + 1)(x̄j+1 − x̄j )

2

(a) Use the preceding formulas to compute the sample mean and sample variance
of the data values 3, 4, 7, 2, 9, 6.

(b) Verify your results in part (a) by computing as usual.
(c) Verify the formula given above for x̄j+1 in terms of x̄j .

19. Use the data concerning the prices of single-family homes provided in Problem 10
to find the

(a) 10 percentile of the median prices;
(b) 40 percentile of the median prices;
(c) 90 percentile of the median prices.

20. Use the following table to find the quartiles of the average annual pay in the
specified areas.

Average Annual Pay by New York State Metropolitan Areas, 1999

Rank Amt. Rank Amt.

Albany-Sch’dy-Troy $31,901 Nassau-Suffolk $36,944
Binghamton 29,167 New York City 52,351
Buffalo-Niagara Falls 30,487 Newburgh, NY-PA 27,671
Dutchess County 35,256 Rochester 32,588
Elmira 26,603 Syracuse 30,423
Glens Falls 26,140 Utica-Rome 25,881
Jamestown 24,813 US metro area avg. $34,868

Source: U.S. Bureau of Labor Statistics data.

21. Use the following figure, which gives the amounts of federal research money given
to 15 universities in 1992, to answer this problem.
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Source: Chart prepared by U.S. Bureau of the Census.

Johns Hopkins University

Mass. Institute of Technology

Stanford University

University of Washington

University of Michigan

University of CA–Los Angeles

University of CA–San Diego

University of CA–San Francisco

University of Wisconsin–Madison

Columbia University–Main Division

University of Pennsylvania

University of Minnesota

Harvard University

Yale University

University of Pittsburgh

Top 15 universities — federal research and development obligations: 1992.

(a) Which universities were given more than $225 million?
(b) Approximate the sample mean of the amounts given to these universities.
(c) Approximate the sample variance of the amounts given to these universities.
(d) Approximate the quartiles of the amounts given to these universities.

22. Use the part of the table given in Problem 4 that gives the percentage of workers
in each state that use public transportation to get to work to draw a box plot of
these 50 percentages.

23. The following table gives the numbers of dogs, categorized by breed, registered in
the American Kennel Club in 2000. Represent these numbers in a box plot.

24. The average particulate concentration, in micrograms per cubic meter, was
measured in a petrochemical complex at 36 randomly chosen times, with the
following concentrations resulting:

5, 18, 15, 7, 23, 220, 130, 85, 103, 25, 80, 7, 24, 6, 13, 65, 37, 25,

24, 65, 82, 95, 77, 15, 70, 110, 44, 28, 33, 81, 29, 14, 45, 92, 17, 53

(a) Represent the data in a histogram.
(b) Is the histogram approximately normal?
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Dogs

Rank Breed 2000

1 Retrievers (Labrador) 172,841
2 Retrievers (Golden) 66,300
3 German Shepherd Dogs 57,660
4 Dachshunds 54,773
5 Beagles 52,026
6 Poodles 45,868
7 Yorkshire Terriers 43,574
8 Chihuahuas 43,096
9 Boxers 38,803

10 Shih Tzu 37,599
11 Rottweilers 37,355
12 Pomeranians 33,568
13 Miniature Schnauzers 30,472
14 Spaniels (Cocker) 29,393
15 Pugs 24,373
16 Shetland Sheepdogs 23,866
17 Miniature Pinschers 22,020
18 Boston Terriers 19,922
19 Siberian Huskies 17,551
20 Maltese 17,446

Source: American Kennel Club, New York, NY: Dogs registered during
calendar year shown.

25. A chemical engineer desiring to study the evaporation rate of water from brine
evaporation beds obtained data on the number of inches of evaporation in each
of 55 July days spread over 4 years. The data are given in the following stem and
leaf plot, which shows that the smallest data value was .02 inches, and the largest
.56 inches.

.0 2, 6

.1 1, 4

.2 1, 1, 1, 3, 3, 4, 5, 5, 5, 6, 9

.3 0, 0, 2, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 5, 6, 6, 7, 8, 9

.4 0, 1, 2, 2, 2, 3, 4, 4, 4, 5, 5, 5, 7, 8, 8, 8, 9, 9

.5 2, 5, 6

Find the

(a) sample mean;
(b) sample median;
(c) sample standard deviation of these data.
(d) Do the data appear to be approximately normal?
(e) What percentage of data values are within 1 standard deviation of the mean?



Problems 53

26. The following are the grade point averages of 30 students recently admitted to the
graduate program in the Department of Industrial Engineering and Operations
Research at the University of California at Berkeley.

3.46, 3.72, 3.95, 3.55, 3.62, 3.80, 3.86, 3.71, 3.56, 3.49, 3.96, 3.90, 3.70, 3.61,

3.72, 3.65, 3.48, 3.87, 3.82, 3.91, 3.69, 3.67, 3.72, 3.66, 3.79, 3.75, 3.93, 3.74,

3.50, 3.83

(a) Represent the preceding data in a stem and leaf plot.
(b) Calculate the sample mean x̄.
(c) Calculate the sample standard deviation s.
(d) Determine the proportion of the data values that lies within x̄ ± 1.5s and

compare with the lower bound given by Chebyshev’s inequality.
(e) Determine the proportion of the data values that lies within x̄ ± 2s and

compare with the lower bound given by Chebyshev’s inequality.

27. Do the data in Problem 26 appear to be approximately normal? For parts (c) and
(d) of this problem, compare the approximate proportions given by the empirical
rule with the actual proportions.

28. Would you expect that a histogram of the weights of all the members of a health
club would be approximately normal?

29. Use the data of Problem 16.

(a) Compute the sample mean and sample median.
(b) Are the data approximately normal?
(c) Compute the sample standard deviation s.
(d) What percentage of the data fall within x̄ ± 1.5s?
(e) Compare your answer in part (d) to that given by the empirical rule.
(f) Compare your answer in part (d) to the bound given by Chebyshev’s

inequality.

30. Use the data concerning the first 10 states listed in the table given in Problem 15.

(a) Draw a scatter diagram relating the 1992 and 1993 salaries.
(b) Determine the sample correlation coefficient.

31. The following table gives the median salaries for recent U.S. doctorate recipients,
categorized by scientific field and type of employment. Draw a scatter diagram
relating salaries in private firms to those in government, and determine the sample
correlation coefficient.

32. Use the table to find the sample correlation coefficients between salaries in

(a) government and universities
(b) private firms and universities.
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Median salaries for recent U.S. doctorate recipients (1–3 years after degree), by sector of employment: 1999
(Dollars)

Tenure-track
Private at four-year Other

Ph.D. field Total noneducational Government institution Postdoc educational

Total 48,800 68,000 55,000 43,400 30,000 33,000
Computer sciences 75,000 82,000 66,000 53,000 — 60,000
Engineering 66,700 70,000 65,000 56,300 38,000 55,000
Life sciences 35,000 61,000 48,000 42,500 28,000 36,000
Mathematical 45,000 60,500 55,200 39,500 40,000 38,000

sciences
Social sciences 45,000 53,000 52,400 40,000 30,500 35,000
Physical sciences 52,000 64,000 58,000 39,400 32,700 39,000

—=Fewer than 50 cases.
Source: National Science Foundation Division of Science Resources Statistics (NSF/SRS), Survey of Doctorate Recipients, 1999.

33. Using data on the first 10 cities listed in Table 2.5, draw a scatter diagram and find
the sample correlation coefficient between the January and July temperatures.

34. Verify property 3 of the sample correlation coefficient.

35. Verify property 4 of the sample correlation coefficient.

36. In a study of children in grades 2 through 4, a researcher gave each student
a reading test. When looking at the resulting data the researcher noted a posi-
tive correlation between a student’s reading test score and height. The researcher
concluded that taller children read better because they can more easily see the
blackboard. What do you think?



Chapter 3

ELEMENTS OF PROBABILITY

3.1 INTRODUCTION
The concept of the probability of a particular event of an experiment is subject to various
meanings or interpretations. For instance, if a geologist is quoted as saying that “there is
a 60 percent chance of oil in a certain region,” we all probably have some intuitive idea
as to what is being said. Indeed, most of us would probably interpret this statement in one
of two possible ways: either by imagining that

1. the geologist feels that, over the long run, in 60 percent of the regions whose
outward environmental conditions are very similar to the conditions that prevail
in the region under consideration, there will be oil; or, by imagining that

2. the geologist believes that it is more likely that the region will contain oil than it is
that it will not; and in fact .6 is a measure of the geologist’s belief in the hypothesis
that the region will contain oil.

The two foregoing interpretations of the probability of an event are referred to as being
the frequency interpretation and the subjective (or personal) interpretation of probability.
In the frequency interpretation, the probability of a given outcome of an experiment is
considered as being a “property” of that outcome. It is imagined that this property can be
operationally determined by continual repetition of the experiment — the probability of
the outcome will then be observable as being the proportion of the experiments that result
in the outcome. This is the interpretation of probability that is most prevalent among
scientists.

In the subjective interpretation, the probability of an outcome is not thought of as being
a property of the outcome but rather is considered a statement about the beliefs of the
person who is quoting the probability, concerning the chance that the outcome will occur.
Thus, in this interpretation, probability becomes a subjective or personal concept and has
no meaning outside of expressing one’s degree of belief. This interpretation of probability
is often favored by philosophers and certain economic decision makers.

55
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Regardless of which interpretation one gives to probability, however, there is a general
consensus that the mathematics of probability are the same in either case. For instance,
if you think that the probability that it will rain tomorrow is .3 and you feel that the
probability that it will be cloudy but without any rain is .2, then you should feel that the
probability that it will either be cloudy or rainy is .5 independently of your individual
interpretation of the concept of probability. In this chapter, we present the accepted rules,
or axioms, used in probability theory. As a preliminary to this, however, we need to study
the concept of the sample space and the events of an experiment.

3.2 SAMPLE SPACE AND EVENTS
Consider an experiment whose outcome is not predictable with certainty in advance.
Although the outcome of the experiment will not be known in advance, let us suppose
that the set of all possible outcomes is known. This set of all possible outcomes of an
experiment is known as the sample space of the experiment and is denoted by S . Some
examples are the following.

1. If the outcome of an experiment consists in the determination of the sex of a
newborn child, then

S = { g , b}
where the outcome g means that the child is a girl and b that it is a boy.

2. If the experiment consists of the running of a race among the seven horses having
post positions 1, 2, 3, 4, 5, 6, 7, then

S = {all orderings of (1, 2, 3, 4, 5, 6, 7)}

The outcome (2, 3, 1, 6, 5, 4, 7) means, for instance, that the number 2 horse is
first, then the number 3 horse, then the number 1 horse, and so on.

3. Suppose we are interested in determining the amount of dosage that must be given
to a patient until that patient reacts positively. One possible sample space for this
experiment is to let S consist of all the positive numbers. That is, let

S = (0, ∞)

where the outcome would be x if the patient reacts to a dosage of value x but not to
any smaller dosage.

Any subset E of the sample space is known as an event. That is, an event is a set consisting
of possible outcomes of the experiment. If the outcome of the experiment is contained in
E, then we say that E has occurred. Some examples of events are the following.
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In Example 1 if E = { g}, then E is the event that the child is a girl. Similarly, if
F = {b}, then F is the event that the child is a boy.

In Example 2 if

E = {all outcomes in S starting with a 3}

then E is the event that the number 3 horse wins the race.
For any two events E and F of a sample space S, we define the new event E ∪ F , called

the union of the events E and F, to consist of all outcomes that are either in E or in F or in
both E and F. That is, the event E ∪ F will occur if either E or F occurs. For instance, in
Example 1 if E = { g} and F = {b}, then E ∪ F = { g , b}. That is, E ∪ F would be the
whole sample space S. In Example 2 if E = {all outcomes starting with 6} is the event that
the number 6 horse wins and F = {all outcomes having 6 in the second position} is the
event that the number 6 horse comes in second, then E ∪ F is the event that the number
6 horse comes in either first or second.

Similarly, for any two events E and F, we may also define the new event EF, called the
intersection of E and F, to consist of all outcomes that are in both E and F. That is, the
event EF will occur only if both E and F occur. For instance, in Example 3 if E = (0, 5)
is the event that the required dosage is less than 5 and F = (2, 10) is the event that it is
between 2 and 10, then EF = (2, 5) is the event that the required dosage is between 2
and 5. In Example 2 if E = {all outcomes ending in 5} is the event that horse number
5 comes in last and F = {all outcomes starting with 5} is the event that horse number 5
comes in first, then the event EF does not contain any outcomes and hence cannot occur.
To give such an event a name, we shall refer to it as the null event and denote it by ∅.
Thus ∅ refers to the event consisting of no outcomes. If EF = ∅, implying that E and F
cannot both occur, then E and F are said to be mutually exclusive.

For any event E, we define the event Ec , referred to as the complement of E, to consist
of all outcomes in the sample space S that are not in E. That is, Ec will occur if and only
if E does not occur. In Example 1 if E = {b} is the event that the child is a boy, then
Ec = { g} is the event that it is a girl. Also note that since the experiment must result in
some outcome, it follows that Sc = ∅.

For any two events E and F, if all of the outcomes in E are also in F, then we say that
E is contained in F and write E ⊂ F (or equivalently, F ⊃ E ). Thus if E ⊂ F , then the
occurrence of E necessarily implies the occurrence of F. If E ⊂ F and F ⊂ E , then we say
that E and F are equal (or identical) and we write E = F .

We can also define unions and intersections of more than two events. In particu-
lar, the union of the events E1, E2, . . . , En, denoted either by E1 ∪ E2 ∪ · · · ∪ En or by
∪n

1Ei , is defined to be the event consisting of all outcomes that are in Ei for at least one
i = 1, 2, . . . , n. Similarly, the intersection of the events Ei , i = 1, 2, . . . , n, denoted by
E1E2 · · · En, is defined to be the event consisting of those outcomes that are in all of the
events Ei , i = 1, 2, . . . , n. In other words, the union of the Ei occurs when at least one of
the events Ei occurs; the intersection occurs when all of the events Ei occur.
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3.3 VENN DIAGRAMS AND THE ALGEBRA OF EVENTS
A graphical representation of events that is very useful for illustrating logical relations
among them is the Venn diagram. The sample space S is represented as consisting of all
the points in a large rectangle, and the events E , F , G , . . ., are represented as consisting of
all the points in given circles within the rectangle. Events of interest can then be indicated
by shading appropriate regions of the diagram. For instance, in the three Venn diagrams
shown in Figure 3.1, the shaded areas represent respectively the events E ∪ F , EF, and Ec .
The Venn diagram of Figure 3.2 indicates that E ⊂ F .

The operations of forming unions, intersections, and complements of events obey
certain rules not dissimilar to the rules of algebra. We list a few of these.

Commutative law E ∪ F = F ∪ E EF = FE
Associative law (E ∪ F ) ∪ G = E ∪ (F ∪ G ) (EF )G = E (FG )
Distributive law (E ∪ F )G = EG ∪ FG EF ∪ G = (E ∪ G )(F ∪ G )

These relations are verified by showing that any outcome that is contained in the event on
the left side of the equality is also contained in the event on the right side and vice versa.
One way of showing this is by means of Venn diagrams. For instance, the distributive law
may be verified by the sequence of diagrams shown in Figure 3.3.

S

E F

(a) Shaded region: E F

S

E F

(b) Shaded region: EF

S

(c) Shaded region: Ec

FIGURE 3.1 Venn diagrams.

S

E ⊂F

E
F

FIGURE 3.2 Venn diagram.
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E F

(a) Shaded region: EG

G

E F

(b) Shaded region: FG

G

E F

(c) Shaded region: (E F )G
(E F )G = EG FG

G

FIGURE 3.3 Proving the distributive law.

The following useful relationship between the three basic operations of forming unions,
intersections, and complements of events is known as DeMorgan’s laws.

(E ∪ F )c = EcF c

(EF )c = Ec ∪ F c

3.4 AXIOMS OF PROBABILITY
It appears to be an empirical fact that if an experiment is continually repeated under the
exact same conditions, then for any event E, the proportion of time that the outcome is
contained in E approaches some constant value as the number of repetitions increases. For
instance, if a coin is continually flipped, then the proportion of flips resulting in heads will
approach some value as the number of flips increases. It is this constant limiting frequency
that we often have in mind when we speak of the probability of an event.

From a purely mathematical viewpoint, we shall suppose that for each event E of an
experiment having a sample space S there is a number, denoted by P(E ), that is in accord
with the following three axioms.
AXIOM 1

0 ≤ P(E ) ≤ 1

AXIOM 2

P(S ) = 1

AXIOM 3
For any sequence of mutually exclusive events E1, E2, . . . (that is, events for which EiEj = ∅
when i �= j),

P

(
n⋃

i=1

Ei

)
=

n∑
i=1

P(Ei), n = 1, 2, . . . , ∞

We call P(E ) the probability of the event E.

Thus, Axiom 1 states that the probability that the outcome of the experiment is
contained in E is some number between 0 and 1. Axiom 2 states that, with probability 1,
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the outcome will be a member of the sample space S. Axiom 3 states that for any set of
mutually exclusive events the probability that at least one of these events occurs is equal to
the sum of their respective probabilities.

It should be noted that if we interpret P(E ) as the relative frequency of the event E
when a large number of repetitions of the experiment are performed, then P(E ) would
indeed satisfy the above axioms. For instance, the proportion (or frequency) of time that
the outcome is in E is clearly between 0 and 1, and the proportion of time that it is in S
is 1 (since all outcomes are in S ). Also, if E and F have no outcomes in common, then
the proportion of time that the outcome is in either E or F is the sum of their respective
frequencies. As an illustration of this last statement, suppose the experiment consists of
the rolling of a pair of dice and suppose that E is the event that the sum is 2, 3, or 12 and
F is the event that the sum is 7 or 11. Then if outcome E occurs 11 percent of the time
and outcome F 22 percent of the time, then 33 percent of the time the outcome will be
either 2, 3, 12, 7, or 11.

These axioms will now be used to prove two simple propositions concerning prob-
abilities. We first note that E and Ec are always mutually exclusive, and since E ∪ Ec = S ,
we have by Axioms 2 and 3 that

1 = P(S ) = P(E ∪ Ec ) = P(E ) + P(Ec )

Or equivalently, we have the following:

PROPOSITION 3.4.1

P(Ec ) = 1 − P(E )

In other words, Proposition 3.4.1 states that the probability that an event does not occur
is 1 minus the probability that it does occur. For instance, if the probability of obtaining
a head on the toss of a coin is 3

8 , the probability of obtaining a tail must be 5
8 .

Our second proposition gives the relationship between the probability of the union of
two events in terms of the individual probabilities and the probability of the intersection.

PROPOSITION 3.4.2

P(E ∪ F ) = P(E ) + P(F ) − P(EF )

Proof

This proposition is most easily proven by the use of a Venn diagram as shown in Figure
3.4. As the regions I, II, and III are mutually exclusive, it follows that

P(E ∪ F ) = P(I) + P(II) + P(III)

P(E ) = P(I) + P(II)

P(F ) = P(II) + P(III)
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S

E F

I II III

FIGURE 3.4

which shows that

P(E ∪ F ) = P(E ) + P(F ) − P(II)

and the proof is complete since II = EF.

EXAMPLE 3.4a A total of 28 percent of American males smoke cigarettes, 7 percent smoke
cigars, and 5 percent smoke both cigars and cigarettes. What percentage of males smoke
neither cigars nor cigarettes?

SOLUTION Let E be the event that a randomly chosen male is a cigarette smoker and let B
be the event that he is a cigar smoker. Then, the probability this person is either a cigarette
or a cigar smoker is

P(E ∪ F ) = P(E ) + P(F ) − P(EF ) = .07 + . 28 − . 05 = .3

Thus the probability that the person is not a smoker is .7, implying that 70 percent of
American males smoke neither cigarettes nor cigars. ■

The odds of an event A is defined by

P(A)

P(Ac )
= P(A)

1 − P(A)

Thus the odds of an event A tells how much more likely it is that A occurs than that it
does not occur. For instance if P(A) = 3/4, then P(A)/(1 − P(A)) = 3, so the odds is 3.
Consequently, it is 3 times as likely that A occurs as it is that it does not.

3.5 SAMPLE SPACES HAVING EQUALLY
LIKELY OUTCOMES

For a large number of experiments, it is natural to assume that each point in the sample
space is equally likely to occur. That is, for many experiments whose sample space S is a
finite set, say S = {1, 2, . . . , N }, it is often natural to assume that

P({1}) = P({2}) = · · · = P({N }) = p (say)
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Now it follows from Axioms 2 and 3 that

1 = P(S ) = P({1}) + · · · + P({N }) = Np

which shows that

P({i}) = p = 1/N

From this it follows from Axiom 3 that for any event E,

P(E ) = Number of points in E
N

In words, if we assume that each outcome of an experiment is equally likely to occur, then
the probability of any event E equals the proportion of points in the sample space that are
contained in E.

Thus, to compute probabilities it is often necessary to be able to effectively count the
number of different ways that a given event can occur. To do this, we will make use of the
following rule.

BASIC PRINCIPLE OF COUNTING

Suppose that two experiments are to be performed. Then if experiment 1 can result in
any one of m possible outcomes and if, for each outcome of experiment 1, there are n
possible outcomes of experiment 2, then together there are mn possible outcomes of the
two experiments.

Proof of the Basic Principle

The basic principle can be proven by enumerating all the possible outcomes of the two
experiments as follows:

(1, 1), (1, 2), . . . , (1, n)
(2, 1), (2, 2), . . . , (2, n)

...
(m, 1), (m, 2), . . . , (m, n)

where we say that the outcome is (i, j) if experiment 1 results in its ith possible outcome
and experiment 2 then results in the jth of its possible outcomes. Hence, the set of
possible outcomes consists of m rows, each row containing n elements, which proves the
result. ■

EXAMPLE 3.5a Two balls are “randomly drawn” from a bowl containing 6 white and 5
black balls. What is the probability that one of the drawn balls is white and the other black?
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SOLUTION If we regard the order in which the balls are selected as being significant, then
as the first drawn ball may be any of the 11 and the second any of the remaining 10, it
follows that the sample space consists of 11 · 10 = 110 points. Furthermore, there are
6 · 5 = 30 ways in which the first ball selected is white and the second black, and similarly
there are 5 · 6 = 30 ways in which the first ball is black and the second white. Hence,
assuming that “randomly drawn” means that each of the 110 points in the sample space is
equally likely to occur, then we see that the desired probability is

30 + 30

110
= 6

11
■

When there are more than two experiments to be performed the basic principle can be
generalized as follows:

■

Generalized Basic Principle of Counting

If r experiments that are to be performed are such that the first one may
result in any of n1 possible outcomes, and if for each of these n1 possible
outcomes there are n2 possible outcomes of the second experiment, and
if for each of the possible outcomes of the first two experiments there are
n3 possible outcomes of the third experiment, and if, . . . , then there are
a total of n1 · n2 · · · nr possible outcomes of the r experiments.

■

As an illustration of this, let us determine the number of different ways n distinct objects
can be arranged in a linear order. For instance, how many different ordered arrangements
of the letters a, b, c are possible? By direct enumeration we see that there are 6; namely, abc,
acb, bac, bca, cab, cba. Each one of these ordered arrangements is known as a permutation.
Thus, there are 6 possible permutations of a set of 3 objects. This result could also have
been obtained from the basic principle, since the first object in the permutation can be
any of the 3, the second object in the permutation can then be chosen from any of the
remaining 2, and the third object in the permutation is then chosen from the remaining
one. Thus, there are 3 · 2 · 1 = 6 possible permutations.

Suppose now that we have n objects. Similar reasoning shows that there are

n(n − 1)(n − 2) · · · 3 · 2 · 1

different permutations of the n objects. It is convenient to introduce the notation n!, which
is read “n factorial,” for the foregoing expression. That is,

n! = n(n − 1)(n − 2) · · · 3 · 2 · 1
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Thus, for instance, 1! = 1, 2! = 2 · 1 = 2, 3! = 3 · 2 · 1 = 6, 4! = 4 · 3 · 2 · 1 = 24, and
so on. It is convenient to define 0! = 1.

EXAMPLE 3.5b Mr. Jones has 10 books that he is going to put on his bookshelf. Of these,
4 are mathematics books, 3 are chemistry books, 2 are history books, and 1 is a language
book. Jones wants to arrange his books so that all the books dealing with the same subject
are together on the shelf. How many different arrangements are possible?

SOLUTION There are 4! 3! 2! 1! arrangements such that the mathematics books are first
in line, then the chemistry books, then the history books, and then the language book.
Similarly, for each possible ordering of the subjects, there are 4! 3! 2! 1! possible arrange-
ments. Hence, as there are 4! possible orderings of the subjects, the desired answer is
4! 4! 3! 2! 1! = 6,912. ■

EXAMPLE 3.5c A class in probability theory consists of 6 men and 4 women. An exam is
given and the students are ranked according to their performance. Assuming that no two
students obtain the same score, (a) how many different rankings are possible? (b) If all
rankings are considered equally likely, what is the probability that women receive the top
4 scores?

SOLUTION

(a) Because each ranking corresponds to a particular ordered arrangement of the 10
people, we see the answer to this part is 10! = 3,628,800.

(b) Because there are 4! possible rankings of the women among themselves and 6!
possible rankings of the men among themselves, it follows from the basic principle
that there are (6!)(4!) = (720)(24) = 17,280 possible rankings in which the women
receive the top 4 scores. Hence, the desired probability is

6!4!
10! = 4 · 3 · 2 · 1

10 · 9 · 8 · 7
= 1

210
■

Suppose now that we are interested in determining the number of different groups of
r objects that could be formed from a total of n objects. For instance, how many different
groups of three could be selected from the five items A, B, C , D, E ? To answer this, reason
as follows. Since there are 5 ways to select the initial item, 4 ways to then select the next
item, and 3 ways to then select the final item, there are thus 5 · 4 · 3 ways of selecting the
group of 3 when the order in which the items are selected is relevant. However, since every
group of 3, say the group consisting of items A, B, and C, will be counted 6 times (that
is, all of the permutations ABC, ACB, BAC, BCA, CAB, CBA will be counted when the
order of selection is relevant), it follows that the total number of different groups that can
be formed is (5 · 4 · 3)/(3 · 2 · 1) = 10.

In general, as n(n − 1) · · · (n − r + 1) represents the number of different ways that a
group of r items could be selected from n items when the order of selection is considered
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relevant (since the first one selected can be any one of the n, and the second selected any
one of the remaining n − 1, etc.), and since each group of r items will be counted r! times
in this count, it follows that the number of different groups of r items that could be formed
from a set of n items is

n(n − 1) · · · (n − r + 1)

r! = n!
(n − r)!r!

NOTATION AND TERMINOLOGY

We define
(n

r

)
, for r ≤ n, by (

n
r

)
= r!

(n − r)!r!
and call

(n
r

)
the number of combinations of n objects taken r at a time.

Thus
(n

r

)
represents the number of different groups of size r that can be selected from a

set of size n when the order of selection is not considered relevant. For example, there are

(
8

2

)
= 8 · 7

2 · 1
= 28

different groups of size 2 that can be chosen from a set of 8 people, and

(
10

2

)
= 10 · 9

2 · 1
= 45

different groups of size 2 that can be chosen from a set of 10 people. Also, since 0! = 1,
note that (

n
0

)
=
(

n
n

)
= 1

EXAMPLE 3.5d A committee of size 5 is to be selected from a group of 6 men and 9 women.
If the selection is made randomly, what is the probability that the committee consists of
3 men and 2 women?

SOLUTION Let us assume that “randomly selected” means that each of the
(15

5

)
possible

combinations is equally likely to be selected. Hence, since there are
(6
3

)
possible choices

of 3 men and
(9
2

)
possible choices of 2 women, it follows that the desired probability is

given by (
6
3

)(
9
2

)
(

15
5

) = 240

1001
■
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EXAMPLE 3.5e From a set of n items a random sample of size k is to be selected. What is
the probability a given item will be among the k selected?

SOLUTION The number of different selections that contain the given item is
(1
1

)(n−1
k−1

)
.

Hence, the probability that a particular item is among the k selected is(
n − 1

k − 1

)/(
n
k

)
= (n − 1)!

(n − k)!(k − 1)!
/

n!
(n − k)!k! = k

n
■

EXAMPLE 3.5f A basketball team consists of 6 black and 6 white players. The players are to
be paired in groups of two for the purpose of determining roommates. If the pairings are
done at random, what is the probability that none of the black players will have a white
roommate?

SOLUTION Let us start by imagining that the 6 pairs are numbered — that is, there is a
first pair, a second pair, and so on. Since there are

(12
2

)
different choices of a first pair; and

for each choice of a first pair there are
(10

2

)
different choices of a second pair; and for each

choice of the first 2 pairs there are
(8
2

)
choices for a third pair; and so on, it follows from

the generalized basic principle of counting that there are(
12

2

)(
10

2

)(
8

2

)(
6

2

)(
4

2

)(
2

2

)
= 12!

(2!)6

ways of dividing the players into a first pair, a second pair, and so on. Hence there are
(12)!/266! ways of dividing the players into 6 (unordered) pairs of 2 each. Furthermore,
since there are, by the same reasoning, 6!/233! ways of pairing the white players among
themselves and 6!/233! ways of pairing the black players among themselves, it follows that
there are (6!/233!)2 pairings that do not result in any black–white roommate pairs. Hence,
if the pairings are done at random (so that all outcomes are equally likely), then the desired
probability is (

6!
233!

)2 / (12)!
266! = 5

231
= .0216

Hence, there are roughly only two chances in a hundred that a random pairing will not
result in any of the white and black players rooming together. ■

EXAMPLE 3.5g If n people are present in a room, what is the probability that no two of
them celebrate their birthday on the same day of the year? How large need n be so that
this probability is less than 1

2 ?

SOLUTION Because each person can celebrate his or her birthday on any one of 365 days,
there are a total of (365)n possible outcomes. (We are ignoring the possibility of someone
having been born on February 29.) Furthermore, there are (365)(364)(363) ·(365−n+1)
possible outcomes that result in no two of the people having the same birthday. This is so



3.6 Conditional Probability 67

because the first person could have any one of 365 birthdays, the next person any of the
remaining 364 days, the next any of the remaining 363, and so on. Hence, assuming that
each outcome is equally likely, we see that the desired probability is

(365)(364)(363) · · · (365 − n + 1)

(365)n

It is a rather surprising fact that when n ≥ 23, this probability is less than 1
2 . That is, if

there are 23 or more people in a room, then the probability that at least two of them have
the same birthday exceeds 1

2 . Many people are initially surprised by this result, since 23
seems so small in relation to 365, the number of days of the year. However, every pair of
individuals has probability 365

(365)2 = 1
365 of having the same birthday, and in a group of

23 people there are
(23

2

)= 253 different pairs of individuals. Looked at this way, the result
no longer seems so surprising. ■

3.6 CONDITIONAL PROBABILITY
In this section, we introduce one of the most important concepts in all of probability
theory — that of conditional probability. Its importance is twofold. In the first place, we
are often interested in calculating probabilities when some partial information concerning
the result of the experiment is available, or in recalculating them in light of additional
information. In such situations, the desired probabilities are conditional ones. Second, as
a kind of a bonus, it often turns out that the easiest way to compute the probability of an
event is to first “condition” on the occurrence or nonoccurrence of a secondary event.

As an illustration of a conditional probability, suppose that one rolls a pair of dice. The
sample space S of this experiment can be taken to be the following set of 36 outcomes

S = {(i, j), i = 1, 2, 3, 4, 5, 6, j = 1, 2, 3, 4, 5, 6}
where we say that the outcome is (i, j) if the first die lands on side i and the second on
side j. Suppose now that each of the 36 possible outcomes is equally likely to occur and
thus has probability 1

36 . (In such a situation we say that the dice are fair.) Suppose further
that we observe that the first die lands on side 3. Then, given this information, what is the
probability that the sum of the two dice equals 8? To calculate this probability, we reason
as follows: Given that the initial die is a 3, there can be at most 6 possible outcomes of our
experiment, namely, (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), and (3, 6). In addition, because
each of these outcomes originally had the same probability of occurring, they should still
have equal probabilities. That is, given that the first die is a 3, then the (conditional)
probability of each of the outcomes (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6) is 1

6 , whereas
the (conditional) probability of the other 30 points in the sample space is 0. Hence, the
desired probability will be 1

6 .
If we let E and F denote, respectively, the event that the sum of the dice is 8 and the

event that the first die is a 3, then the probability just obtained is called the conditional
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E F

EF

FIGURE 3.5 P(E |F ) = P(EF )
P(F ) .

probability of E given that F has occurred, and is denoted by

P(E |F )

A general formula for P(E |F ) that is valid for all events E and F is derived in the same
manner as just described. Namely, if the event F occurs, then in order for E to occur it is
necessary that the actual occurrence be a point in both E and F; that is, it must be in EF.
Now, since we know that F has occurred, it follows that F becomes our new (reduced)
sample space and hence the probability that the event EF occurs will equal the probability
of EF relative to the probability of F. That is,

P(E |F ) = P(EF )

P(F )
(3.6.1)

Note that Equation 3.6.1 is well defined only when P(F ) > 0 and hence P(E |F ) is defined
only when P(F ) > 0. (See Figure 3.5.)

The definition of conditional probability given by Equation 3.6.1 is consistent with the
interpretation of probability as being a long-run relative frequency. To see this, suppose
that a large number n of repetitions of the experiment are performed. Then, since P(F )
is the long-run proportion of experiments in which F occurs, it follows that F will occur
approximately nP(F ) times. Similarly, in approximately nP(EF ) of these experiments,
both E and F will occur. Hence, of the approximately nP(F ) experiments whose outcome
is in F, approximately nP(EF ) of them will also have their outcome in E. That is, for
those experiments whose outcome is in F, the proportion whose outcome is also in E is
approximately

nP(EF )

nP(F )
= P(EF )

P(F )

Since this approximation becomes exact as n becomes larger and larger, it follows that
(3.6.1) gives the appropriate definition of the conditional probability of E given that F has
occurred.

EXAMPLE 3.6a A bin contains 5 defective (that immediately fail when put in use), 10
partially defective (that fail after a couple of hours of use), and 25 acceptable transistors.
A transistor is chosen at random from the bin and put into use. If it does not immediately
fail, what is the probability it is acceptable?
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SOLUTION Since the transistor did not immediately fail, we know that it is not one of the
5 defectives and so the desired probability is:

P{acceptable|not defective}

= P{acceptable, not defective}
P{not defective}

= P{acceptable}
P{not defective}

where the last equality follows since the transistor will be both acceptable and not defective
if it is acceptable. Hence, assuming that each of the 40 transistors is equally likely to be
chosen, we obtain that

P{acceptable|not defective} = 25/40

35/40
= 5/7

It should be noted that we could also have derived this probability by working directly
with the reduced sample space. That is, since we know that the chosen transistor is not
defective, the problem reduces to computing the probability that a transistor, chosen
at random from a bin containing 25 acceptable and 10 partially defective transistors, is
acceptable. This is clearly equal to 25

35 . ■

EXAMPLE 3.6b The organization that Jones works for is running a father–son dinner for
those employees having at least one son. Each of these employees is invited to attend along
with his youngest son. If Jones is known to have two children, what is the conditional
probability that they are both boys given that he is invited to the dinner? Assume that the
sample space S is given by S = {(b, b), (b, g ), ( g , b), ( g , g )} and all outcomes are equally
likely [(b, g ) means, for instance, that the younger child is a boy and the older child is
a girl].

SOLUTION The knowledge that Jones has been invited to the dinner is equivalent to know-
ing that he has at least one son. Hence, letting B denote the event that both children are
boys, and A the event that at least one of them is a boy, we have that the desired probability
P(B|A) is given by

P(B|A) = P(BA)

P(A)

= P({(b, b)})
P({(b, b), (b, g ), ( g , b)})

=
1
4
3
4

= 1

3

Many readers incorrectly reason that the conditional probability of two boys given at least
one is 1

2 , as opposed to the correct 1
3 , since they reason that the Jones child not attending
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the dinner is equally likely to be a boy or a girl. Their mistake, however, is in assuming that
these two possibilities are equally likely. Remember that initially there were four equally
likely outcomes. Now the information that at least one child is a boy is equivalent to
knowing that the outcome is not ( g , g ). Hence we are left with the three equally likely
outcomes (b, b), (b, g ), ( g , b), thus showing that the Jones child not attending the dinner
is twice as likely to be a girl as a boy. ■

By multiplying both sides of Equation 3.6.1 by P(F ) we obtain that

P(EF ) = P(F )P(E |F ) (3.6.2)

In words, Equation 3.6.2 states that the probability that both E and F occur is equal to
the probability that F occurs multiplied by the conditional probability of E given that
F occurred. Equation 3.6.2 is often quite useful in computing the probability of the
intersection of events. This is illustrated by the following example.

EXAMPLE 3.6c Ms. Perez figures that there is a 30 percent chance that her company will
set up a branch office in Phoenix. If it does, she is 60 percent certain that she will be
made manager of this new operation. What is the probability that Perez will be a Phoenix
branch office manager?

SOLUTION If we let B denote the event that the company sets up a branch office in Phoenix
and M the event that Perez is made the Phoenix manager, then the desired probability is
P(BM), which is obtained as follows:

P(BM ) = P(B)P(M |B)

= (.3)(.6)

= .18

Hence, there is an 18 percent chance that Perez will be the Phoenix manager. ■

3.7 BAYES’ FORMULA
Let E and F be events. We may express E as

E = EF ∪ EF c

for, in order for a point to be in E, it must either be in both E and F or be in E but not in F.
(See Figure 3.6.) As EF and EF c are clearly mutually exclusive, we have by Axiom 3 that

P(E ) = P(EF ) + P(EF c )

= P(E |F )P(F ) + P(E |F c )P(F c )

= P(E |F )P(F ) + P(E |F c )[1 − P(F )] (3.7.1)



3.7 Bayes’ Formula 71

E F

EFc EF

FIGURE 3.6 E = EF ∪ EF c .

Equation 3.7.1 states that the probability of the event E is a weighted average of the
conditional probability of E given that F has occurred and the conditional probability of
E given that F has not occurred: Each conditional probability is given as much weight as
the event it is conditioned on has of occurring. It is an extremely useful formula, for its
use often enables us to determine the probability of an event by first “conditioning” on
whether or not some second event has occurred. That is, there are many instances where
it is difficult to compute the probability of an event directly, but it is straightforward to
compute it once we know whether or not some second event has occurred.

EXAMPLE 3.7a An insurance company believes that people can be divided into two
classes — those that are accident prone and those that are not. Their statistics show
that an accident-prone person will have an accident at some time within a fixed 1-year
period with probability .4, whereas this probability decreases to .2 for a non-accident-prone
person. If we assume that 30 percent of the population is accident prone, what is the prob-
ability that a new policy holder will have an accident within a year of purchasing a policy?

SOLUTION We obtain the desired probability by first conditioning on whether or not the
policy holder is accident prone. Let A1 denote the event that the policy holder will have
an accident within a year of purchase; and let A denote the event that the policy holder is
accident prone. Hence, the desired probability, P(A1), is given by

P(A1) = P(A1|A)P(A) + P(A1|Ac )P(Ac )

= (.4)(.3) + (.2)(. 7) = .26 ■

In the next series of examples, we will indicate how to reevaluate an initial probability
assessment in the light of additional (or new) information. That is, we will show how to
incorporate new information with an initial probability assessment to obtain an updated
probability.

EXAMPLE 3.7b Reconsider Example 3.7a and suppose that a new policy holder has an
accident within a year of purchasing his policy. What is the probability that he is accident
prone?

SOLUTION Initially, at the moment when the policy holder purchased his policy, we
assumed there was a 30 percent chance that he was accident prone. That is, P(A) = .3.
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However, based on the fact that he has had an accident within a year, we now reevaluate
his probability of being accident prone as follows.

P(A|A1) = P(AA1)

P(A1)

= P(A)P(A1|A)

P(A1)

= (.3)(.4)

.26
= 6

13
= .4615 ■

EXAMPLE 3.7c In answering a question on a multiple-choice test, a student either knows
the answer or she guesses. Let p be the probability that she knows the answer and 1 − p
the probability that she guesses. Assume that a student who guesses at the answer will be
correct with probability 1/m, where m is the number of multiple-choice alternatives. What
is the conditional probability that a student knew the answer to a question given that she
answered it correctly?

SOLUTION Let C and K denote, respectively, the events that the student answers the
question correctly and the event that she actually knows the answer. To compute

P(K |C ) = P(KC )

P(C )

we first note that

P(KC ) = P(K )P(C |K )

= p · 1

= p

To compute the probability that the student answers correctly, we condition on whether
or not she knows the answer. That is,

P(C ) = P(C |K )P(K ) + P(C |K c )P(K c )

= p + (1/m)(1 − p)

Hence, the desired probability is given by

P(K |C ) = p
p + (1/m)(1 − p)

= mp
1 + (m − 1)p

Thus, for example, if m = 5, p = 1
2 , then the probability that a student knew the answer

to a question she correctly answered is 5
6 . ■
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EXAMPLE 3.7d A laboratory blood test is 99 percent effective in detecting a certain disease
when it is, in fact, present. However, the test also yields a “false positive” result for
1 percent of the healthy persons tested. (That is, if a healthy person is tested, then, with
probability .01, the test result will imply he or she has the disease.) If .5 percent of the
population actually has the disease, what is the probability a person has the disease given
that his test result is positive?

SOLUTION Let D be the event that the tested person has the disease and E the event that
his test result is positive. The desired probability P(D|E ) is obtained by

P(D|E ) = P(DE)

P(E )

= P(E |D)P(D)

P(E |D)P(D) + P(E |Dc )P(Dc )

= (.99)(.005)

(.99)(.005) + (.01)(.995)

= .3322

Thus, only 33 percent of those persons whose test results are positive actually have the
disease. Since many students are often surprised at this result (because they expected this
figure to be much higher since the blood test seems to be a good one), it is probably
worthwhile to present a second argument which, though less rigorous than the foregoing,
is probably more revealing. We now do so.

Since .5 percent of the population actually has the disease, it follows that, on the average,
1 person out of every 200 tested will have it. The test will correctly confirm that this person
has the disease with probability .99. Thus, on the average, out of every 200 persons tested,
the test will correctly confirm that .99 person has the disease. On the other hand, out of
the (on the average) 199 healthy people, the test will incorrectly state that (199) (.01) of
these people have the disease. Hence, for every .99 diseased person that the test correctly
states is ill, there are (on the average) 1.99 healthy persons that the test incorrectly states
are ill. Hence, the proportion of time that the test result is correct when it states that
a person is ill is

.99

.99 + 1.99
= .3322 ■

Equation 3.7.1 is also useful when one has to reassess one’s (personal) probabilities in
the light of additional information. For instance, consider the following examples.

EXAMPLE 3.7e At a certain stage of a criminal investigation, the inspector in charge is
60 percent convinced of the guilt of a certain suspect. Suppose now that a new piece of
evidence that shows that the criminal has a certain characteristic (such as left-handedness,
baldness, brown hair, etc.) is uncovered. If 20 percent of the population possesses this
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characteristic, how certain of the guilt of the suspect should the inspector now be if it turns
out that the suspect is among this group?

SOLUTION Letting G denote the event that the suspect is guilty and C the event that he
possesses the characteristic of the criminal, we have

P(G |C ) = P(GC )

P(C )

Now

P(GC ) = P(G )P(C |G )

= (.6)(1)

= .6

To compute the probability that the suspect has the characteristic, we condition on whether
or not he is guilty. That is,

P(C ) = P(C |G )P(G ) + P(C |Gc )P(Gc )

= (1)(.6) + (.2)(.4)

= .68

where we have supposed that the probability of the suspect having the characteristic if
he is, in fact, innocent is equal to .2, the proportion of the population possessing the
characteristic. Hence

P(G |C ) = 60

68
= .882

and so the inspector should now be 88 percent certain of the guilt of the suspect. ■

EXAMPLE 3.7e (continued) Let us now suppose that the new evidence is subject to different
possible interpretations, and in fact only shows that it is 90 percent likely that the criminal
possesses this certain characteristic. In this case, how likely would it be that the suspect is
guilty (assuming, as before, that he has this characteristic)?

SOLUTION In this case, the situation is as before with the exception that the probability
of the suspect having the characteristic given that he is guilty is now .9 (rather than 1).
Hence,

P(G |C ) = P(GC )

P(C )

= P(G )P(C |G )

P(C |G )P(G ) + P(C |Gc )P(Gc )
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= (.6)(.9)

(.9)(.6) + (.2)(.4)

= 54

62
= .871

which is slightly less than in the previous case (why?). ■

Equation 3.7.1 may be generalized in the following manner. Suppose that F1, F2, . . . , Fn

are mutually exclusive events such that

n⋃
i=1

Fi = S

In other words, exactly one of the events F1, F2, . . . , Fn must occur. By writing

E =
n⋃

i=1

EFi

and using the fact that the events EFi , i = 1, . . . , n are mutually exclusive, we obtain that

P(E ) =
n∑

i=1

P(EFi)

=
n∑

i=1

P(E |Fi)P(Fi) (3.7.2)

Thus, Equation 3.7.2 shows how, for given events F1, F2, . . . , Fn of which one and only
one must occur, we can compute P(E ) by first “conditioning” on which one of the Fi

occurs. That is, it states that P(E ) is equal to a weighted average of P(E |Fi), each term
being weighted by the probability of the event on which it is conditioned.

Suppose now that E has occurred and we are interested in determining which one of
Fj also occurred. By Equation 3.7.2, we have that

P(Fj |E ) = P(EFj )

P(E )

= P(E |Fj )P(Fj )
n∑

i=1
P(E |Fi)P(Fi)

(3.7.3)

Equation 3.7.3 is known as Bayes’ formula, after the English philosopher Thomas Bayes. If
we think of the events Fj as being possible “hypotheses” about some subject matter, then
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Bayes’ formula may be interpreted as showing us how opinions about these hypotheses
held before the experiment [that is, the P(Fj )] should be modified by the evidence of the
experiment.

EXAMPLE 3.7f A plane is missing and it is presumed that it was equally likely to have
gone down in any of three possible regions. Let 1 − αi denote the probability the plane
will be found upon a search of the ith region when the plane is, in fact, in that region,
i = 1, 2, 3. (The constants αi are called overlook probabilities because they represent the
probability of overlooking the plane; they are generally attributable to the geographical
and environmental conditions of the regions.) What is the conditional probability that the
plane is in the ith region, given that a search of region 1 is unsuccessful, i = 1, 2, 3?

SOLUTION Let Ri , i = 1, 2, 3, be the event that the plane is in region i; and let E be the
event that a search of region 1 is unsuccessful. From Bayes’ formula, we obtain

P(R1|E ) = P(ER1)

P(E )

= P(E |R1)P(R1)
3∑

i=1
P(E |Ri)P(Ri)

= (α1)(1/3)

(α1)(1/3) + (1)(1/3) + (1)(1/3)

= α1

α1 + 2

For j = 2, 3,

P(Rj |E ) = P(E |Rj )P(Rj )

P(E )

= (1)(1/3)

(α1)1/3 + 1/3 + 1/3

= 1

α1 + 2
, j = 2, 3

Thus, for instance, if α1 = .4, then the conditional probability that the plane is in region
1 given that a search of that region did not uncover it is 1

6 . ■

3.8 INDEPENDENT EVENTS
The previous examples in this chapter show that P(E |F ), the conditional probability of
E given F, is not generally equal to P(E ), the unconditional probability of E. In other
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words, knowing that F has occurred generally changes the chances of E ’s occurrence. In
the special cases where P(E |F ) does in fact equal P(E ), we say that E is independent
of F. That is, E is independent of F if knowledge that F has occurred does not change
the probability that E occurs.

Since P(E |F ) = P(EF )/P(F ), we see that E is independent of F if

P(EF ) = P(E )P(F ) (3.8.1)

Since this equation is symmetric in E and F, it shows that whenever E is independent of
F so is F of E. We thus have the following.

Definition
Two events E and F are said to be independent if Equation 3.8.1 holds. Two events E
and F that are not independent are said to be dependent.

EXAMPLE 3.8a A card is selected at random from an ordinary deck of 52 playing cards. If
A is the event that the selected card is an ace and H is the event that it is a heart, then A
and H are independent, since P(AH) = 1

52 , while P(A) = 4
52 and P(H ) = 13

52 . ■

EXAMPLE 3.8b If we let E denote the event that the next president is a Republican and
F the event that there will be a major earthquake within the next year, then most people
would probably be willing to assume that E and F are independent. However, there would
probably be some controversy over whether it is reasonable to assume that E is independent
of G, where G is the event that there will be a recession within the next two years. ■

We now show that if E is independent of F then E is also independent of F c .

PROPOSITION 3.8.1 If E and F are independent, then so are E and F c .

Proof

Assume that E and F are independent. Since E = EF ∪ EF c , and EF and EF c are obvi-
ously mutually exclusive, we have that

P(E ) = P(EF ) + P(EF c )

= P(E )P(F ) + P(EF c ) by the independence of E and F

or equivalently,

P(EF c ) = P(E )(1 − P(F ))

= P(E )P(F c )

and the result is proven. �
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Thus if E is independent of F, then the probability of E ’s occurrence is unchanged by
information as to whether or not F has occurred.

Suppose now that E is independent of F and is also independent of G. Is E then
necessarily independent of FG ? The answer, somewhat surprisingly, is no. Consider the
following example.

EXAMPLE 3.8c Two fair dice are thrown. Let E7 denote the event that the sum of the dice
is 7. Let F denote the event that the first die equals 4 and let T be the event that the
second die equals 3. Now it can be shown (see Problem 36) that E7 is independent of
F and that E7 is also independent of T; but clearly E7 is not independent of FT [since
P(E7|FT ) = 1]. ■

It would appear to follow from the foregoing example that an appropriate definition
of the independence of three events E, F, and G would have to go further than merely
assuming that all of the

(3
2

)
pairs of events are independent. We are thus led to the following

definition.

Definition
The three events E, F, and G are said to be independent if

P(EFG ) = P(E )P(F )P(G )

P(EF ) = P(E )P(F )

P(EG ) = P(E )P(G )

P(FG ) = P(F )P(G )

It should be noted that if the events E, F, G are independent, then E will be independent
of any event formed from F and G. For instance, E is independent of F ∪ G since

P(E (F ∪ G )) = P(EF ∪ EG )

= P(EF) + P(EG ) − P(EFG )

= P(E )P(F ) + P(E )P(G ) − P(E )P(FG )

= P(E )[P(F ) + P(G ) − P(FG )]
= P(E )P(F ∪ G )

Of course we may also extend the definition of independence to more than three
events. The events E1, E2, . . . , En are said to be independent if for every subset
E1′ , E2′ , . . . , Er ′ , r ≤ n, of these events

P(E1′E2′ · · · Er ′) = P(E1′)P(E2′) · · · P(Er ′)



3.8 Independent Events 79

A

1

2

3

n

B

FIGURE 3.7 Parallel system: functions if current flows from A to B.

It is sometimes the case that the probability experiment under consideration consists of
performing a sequence of subexperiments. For instance, if the experiment consists of
continually tossing a coin, then we may think of each toss as being a subexperiment. In
many cases it is reasonable to assume that the outcomes of any group of the subexperiments
have no effect on the probabilities of the outcomes of the other subexperiments. If such is
the case, then we say that the subexperiments are independent.

EXAMPLE 3.8d A system composed of n separate components is said to be a parallel system
if it functions when at least one of the components functions. (See Figure 3.7.) For such
a system, if component i, independent of other components, functions with probability
pi , i = 1, . . . , n, what is the probability the system functions?

SOLUTION Let Ai denote the event that component i functions. Then

P{system functions} = 1 − P{system does not function}
= 1 − P{all components do not function}
= 1 − P

(
Ac

1Ac
2 · · · Ac

n
)

= 1 −
n∏

i=1

(1 − pi) by independence ■

EXAMPLE 3.8e A set of k coupons, each of which is independently a type j coupon with
probability pj ,

∑n
j=1 pj = 1, is collected. Find the probability that the set contains

a type j coupon given that it contains a type i, i �= j.

SOLUTION Let Ar be the event that the set contains a type r coupon. Then

P(Aj |Ai) = P(AjAi)

P(Ai)

To compute P(Ai) and P(AjAi), consider the probability of their complements:

P(Ai) = 1 − P(Ac
i )

= 1 − P{no coupon is type i}
= 1 − (1 − pi)

k
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P(AiAj ) = 1 − P(Ac
i ∪ Ac

j )

= 1 − [P(Ac
i ) + P(Ac

j ) − P(Ac
i A

c
j )]

= 1 − (1 − pi)
k − (1 − pj )

k + P{no coupon is type i or type j}
= 1 − (1 − pi)

k − (1 − pj )
k + (1 − pi − pj )

k

where the final equality follows because each of the k coupons is, independently, neither
of type i or of type j with probability 1 − pi − pj . Consequently,

P(Aj |Ai) = 1 − (1 − pi)k − (1 − pj )k + (1 − pi − pj )k

1 − (1 − pi)k
■

Problems

1. A box contains three marbles — one red, one green, and one blue. Consider an
experiment that consists of taking one marble from the box, then replacing it in
the box and drawing a second marble from the box. Describe the sample space.
Repeat for the case in which the second marble is drawn without first replacing
the first marble.

2. An experiment consists of tossing a coin three times. What is the sample space
of this experiment? Which event corresponds to the experiment resulting in more
heads than tails?

3. Let S = {1, 2, 3, 4, 5, 6, 7}, E = {1, 3, 5, 7}, F = {7, 4, 6}, G = {1, 4}. Find
(a) EF; (c) EG c ; (e) Ec (F ∪ G );
(b) E ∪ FG; (d) EF c ∪ G ; (f ) EG ∪ FG.

4. Two dice are thrown. Let E be the event that the sum of the dice is odd, let F be
the event that the first die lands on 1, and let G be the event that the sum is 5.
Describe the events EF, E ∪ F, FG, EF c , EFG.

5. A system is composed of four components, each of which is either working or failed.
Consider an experiment that consists of observing the status of each component,
and let the outcome of the experiment be given by the vector (x1, x2, x3, x4) where
xi is equal to 1 if component i is working and is equal to 0 if component i is failed.

(a) How many outcomes are in the sample space of this experiment?
(b) Suppose that the system will work if components 1 and 2 are both working,

or if components 3 and 4 are both working. Specify all the outcomes in the
event that the system works.

(c) Let E be the event that components 1 and 3 are both failed. How many
outcomes are contained in event E ?
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6. Let E, F, G be three events. Find expressions for the events that of E, F, G

(a) only E occurs;
(b) both E and G but not F occur;
(c) at least one of the events occurs;
(d) at least two of the events occur;
(e) all three occur;
(f ) none of the events occurs;
(g) at most one of them occurs;
(h) at most two of them occur;
(i) exactly two of them occur;
( j) at most three of them occur.

7. Find simple expressions for the events

(a) E ∪ Ec ;
(b) EE c ;
(c) (E ∪ F )(E ∪ F c );
(d) (E ∪ F )(Ec ∪ F )E ∪ F c );
(e) (E ∪ F )(F ∪ G).

8. Use Venn diagrams (or any other method) to show that

(a) EF ⊂ E , E ⊂ E ∪ F ;
(b) if E ⊂ F then F c ⊂ Ec ;
(c) the commutative laws are valid;
(d) the associative laws are valid;
(e) F = FE ∪ FE c ;
(f ) E ∪ F = E ∪ EcF ;
(g) DeMorgan’s laws are valid.

9. For the following Venn diagram, describe in terms of E, F, and G the events
denoted in the diagram by the Roman numerals I through VII.

E F

G

S

I
II

IV
III

VVII

VI
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10. Show that if E ⊂ F then P(E ) ≤ P(F ). (Hint: Write F as the union of two
mutually exclusive events, one of them being E.)

11. Prove Boole’s inequality, namely that

P

(
n⋃

i=1

Ei

)
≤

n∑
i=1

P(Ei)

12. If P(E ) = .9 and P(F ) = .9, show that P(EF ) ≥ .8. In general, prove
Bonferroni’s inequality, namely that

P(EF ) ≥ P(E ) + P(F ) − 1

13. Prove that

(a) P(EF c ) = P(E ) − P(EF )
(b) P(EcF c ) = 1 − P(E ) − P(F ) + P(EF )

14. Show that the probability that exactly one of the events E or F occurs is equal to
P(E ) + P(F ) − 2P(EF ).

15. Calculate
(9
3

)
,
(9
6

)
,
(7
2

)
,
(7
5

)
,
(10

7

)
.

16. Show that (
n
r

)
=
(

n
n − r

)
Now present a combinatorial argument for the foregoing by explaining why a
choice of r items from a set of size n is equivalent to a choice of n − r items from
that set.

17. Show that (
n
r

)
=
(

n − 1

r − 1

)
+
(

n − 1

r

)
For a combinatorial argument, consider a set of n items and fix attention on one
of these items. How many different sets of size r contain this item, and how many
do not?

18. A group of 5 boys and 10 girls is lined up in random order — that is, each of the
15! permutations is assumed to be equally likely.

(a) What is the probability that the person in the 4th position is a boy?
(b) What about the person in the 12th position?
(c) What is the probability that a particular boy is in the 3rd position?

19. Consider a set of 23 unrelated people. Because each pair of people shares the same
birthday with probability 1/365, and there are

(23
2

) = 253 pairs, why isn’t the
probability that at least two people have the same birthday equal to 253/365?
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20. A town contains 4 television repairmen. If 4 sets break down, what is the probabil-
ity that exactly 2 of the repairmen are called? What assumptions are you making?

21. A woman has n keys, of which one will open her door. If she tries the keys at
random, discarding those that do not work, what is the probability that she will
open the door on her kth try? What if she does not discard previously tried keys?

22. A closet contains 8 pairs of shoes. If 4 shoes are randomly selected, what is the
probability that there will be (a) no complete pair and (b) exactly 1 complete pair?

23. Of three cards, one is painted red on both sides; one is painted black on both sides;
and one is painted red on one side and black on the other. A card is randomly
chosen and placed on a table. If the side facing up is red, what is the probability
that the other side is also red?

24. A couple has 2 children. What is the probability that both are girls if the eldest is
a girl?

25. Fifty-two percent of the students at a certain college are females. Five percent of
the students in this college are majoring in computer science. Two percent of
the students are women majoring in computer science. If a student is selected at
random, find the conditional probability that

(a) this student is female, given that the student is majoring in computer science;
(b) this student is majoring in computer science, given that the student is female.

26. A total of 500 married working couples were polled about their annual salaries,
with the following information resulting.

Husband

Wife Less than $25,000 More than $25,000

Less than $25,000 212 198
More than $25,000 36 54

Thus, for instance, in 36 of the couples the wife earned more and the husband
earned less than $25,000. If one of the couples is randomly chosen, what is

(a) the probability that the husband earns less than $25,000;
(b) the conditional probability that the wife earns more than $25,000 given that

the husband earns more than this amount;
(c) the conditional probability that the wife earns more than $25,000 given that

the husband earns less than this amount?

27. There are two local factories that produce radios. Each radio produced at factory A
is defective with probability .05, whereas each one produced at factory B is defective
with probability .01. Suppose you purchase two radios that were produced at the
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same factory, which is equally likely to have been either factory A or factory B. If
the first radio that you check is defective, what is the conditional probability that
the other one is also defective?

28. A red die, a blue die, and a yellow die (all six-sided) are rolled. We are interested
in the probability that the number appearing on the blue die is less than that
appearing on the yellow die which is less than that appearing on the red die. (That
is, if B (R) [Y ] is the number appearing on the blue (red) [yellow] die, then we are
interested in P(B < Y < R). )

(a) What is the probability that no two of the dice land on the same number?
(b) Given that no two of the dice land on the same number, what is the conditional

probability that B < Y < R?
(c) What is P(B < Y < R)?
(d) If we regard the outcome of the experiment as the vector B, R, Y, how many

outcomes are there in the sample space?
(e) Without using the answer to (c), determine the number of outcomes that

result in B < Y < R.
(f ) Use the results of parts (d) and (e) to verify your answer to part (c).

29. You ask your neighbor to water a sickly plant while you are on vacation. Without
water it will die with probability .8; with water it will die with probability .15. You
are 90 percent certain that your neighbor will remember to water the plant.

(a) What is the probability that the plant will be alive when you return?
(b) If it is dead, what is the probability your neighbor forgot to water it?

30. Two balls, each equally likely to be colored either red or blue, are put in an urn.
At each stage one of the balls is randomly chosen, its color is noted, and it is
then returned to the urn. If the first two balls chosen are colored red, what is the
probability that

(a) both balls in the urn are colored red;
(b) the next ball chosen will be red?

31. A total of 600 of the 1,000 people in a retirement community classify themselves as
Republicans, while the others classify themselves as Democrats. In a local election
in which everyone voted, 60 Republicans voted for the Democratic candidate,
and 50 Democrats voted for the Republican candidate. If a randomly chosen
community member voted for the Republican, what is the probability that she or
he is a Democrat?

32. Each of 2 balls is painted black or gold and then placed in an urn. Suppose that each
ball is colored black with probability 1

2 , and that these events are independent.

(a) Suppose that you obtain information that the gold paint has been used (and
thus at least one of the balls is painted gold). Compute the conditional
probability that both balls are painted gold.



Problems 85

(b) Suppose, now, that the urn tips over and 1 ball falls out. It is painted gold.
What is the probability that both balls are gold in this case? Explain.

33. Each of 2 cabinets identical in appearance has 2 drawers. Cabinet A contains a
silver coin in each drawer, and cabinet B contains a silver coin in one of its drawers
and a gold coin in the other. A cabinet is randomly selected, one of its drawers
is opened, and a silver coin is found. What is the probability that there is a silver
coin in the other drawer?

34. Prostate cancer is the most common type of cancer found in males. As an indicator
of whether a male has prostate cancer, doctors often perform a test that measures
the level of the PSA protein (prostate specific antigen) that is produced only by
the prostate gland. Although higher PSA levels are indicative of cancer, the test
is notoriously unreliable. Indeed, the probability that a noncancerous man will
have an elevated PSA level is approximately .135, with this probability increasing
to approximately .268 if the man does have cancer. If, based on other factors,
a physician is 70 percent certain that a male has prostate cancer, what is the
conditional probability that he has the cancer given that

(a) the test indicates an elevated PSA level;
(b) the test does not indicate an elevated PSA level?

Repeat the preceding, this time assuming that the physician initially believes there
is a 30 percent chance the man has prostate cancer.

35. Suppose that an insurance company classifies people into one of three classes —
good risks, average risks, and bad risks. Their records indicate that the probabilities
that good, average, and bad risk persons will be involved in an accident over a
1-year span are, respectively, .05, .15, and .30. If 20 percent of the population
are “good risks,” 50 percent are “average risks,” and 30 percent are “bad risks,”
what proportion of people have accidents in a fixed year? If policy holder A had
no accidents in 1987, what is the probability that he or she is a good (average)
risk?

36. A pair of fair dice is rolled. Let E denote the event that the sum of the dice is equal
to 7.

(a) Show that E is independent of the event that the first die lands on 4.
(b) Show that E is independent of the event that the second die lands on 3.

37. The probability of the closing of the ith relay in the circuits shown is given by
pi , i = 1, 2, 3, 4, 5. If all relays function independently, what is the probability
that a current flows between A and B for the respective circuits?

38. An engineering system consisting of n components is said to be a k-out-of-
n system (k ≤ n) if the system functions if and only if at least k of the n
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A
1

B

(a)

2 3

54

(b)

A
1

3

2

4

5 B

(c)

A
1

3

2

4

5

B

components function. Suppose that all components function independently of
each other.

(a) If the ith component functions with probability Pi , i = 1, 2, 3, 4, compute
the probability that a 2-out-of-4 system functions.

(b) Repeat (a) for a 3-out-of-5 system.

39. Five independent flips of a fair coin are made. Find the probability that

(a) the first three flips are the same;
(b) either the first three flips are the same, or the last three flips are the same;
(c) there are at least two heads among the first three flips, and at least two tails

among the last three flips.

40. Suppose that n independent trials, each of which results in any of the outcomes
0, 1, or 2, with respective probabilities .3, .5, and .2, are performed. Find the
probability that both outcome 1 and outcome 2 occur at least once. (Hint: Consider
the complementary probability.)

41. A parallel system functions whenever at least one of its components works. Consider
a parallel system of n components, and suppose that each component indepen-
dently works with probability 1

2 . Find the conditional probability that component
1 works, given that the system is functioning.

42. A certain organism possesses a pair of each of 5 different genes (which we will
designate by the first 5 letters of the English alphabet). Each gene appears in 2
forms (which we designate by lowercase and capital letters). The capital letter will
be assumed to be the dominant gene in the sense that if an organism possesses
the gene pair xX, then it will outwardly have the appearance of the X gene. For
instance, if X stands for brown eyes and x for blue eyes, then an individual having
either gene pair XX or xX will have brown eyes, whereas one having gene pair
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xx will be blue-eyed. The characteristic appearance of an organism is called its
phenotype, whereas its genetic constitution is called its genotype. (Thus 2 organ-
isms with respective genotypes aA, bB, cc, dD, ee and AA, BB, cc, DD, ee would
have different genotypes but the same phenotype.) In a mating between 2 organ-
isms each one contributes, at random, one of its gene pairs of each type. The 5
contributions of an organism (one of each of the 5 types) are assumed to be inde-
pendent and are also independent of the contributions of its mate. In a mating
between organisms having genotypes aA, bB, cC, dD, eE, and aa, bB, cc, Dd, ee,
what is the probability that the progeny will (1) phenotypically, (2) genotypically
resemble

(a) the first parent;
(b) the second parent;
(c) either parent;
(d) neither parent?

43. Three prisoners are informed by their jailer that one of them has been chosen at
random to be executed, and the other two are to be freed. Prisoner A asks the jailer
to tell him privately which of his fellow prisoners will be set free, claiming that
there would be no harm in divulging this information because he already knows
that at least one of the two will go free. The jailer refuses to answer this question,
pointing out that if A knew which of his fellow prisoners were to be set free, then
his own probability of being executed would rise from 1

3 to 1
2 because he would

then be one of two prisoners. What do you think of the jailer’s reasoning?

44. Although both my parents have brown eyes, I have blue eyes. What is the
probability that my sister has blue eyes?

45. A set of k coupons, each of which is independently a type j coupon with probability
pj ,

∑n
j=1 pj = 1, is collected. Find the probability that the set contains either

a type i or a type j coupon.
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Chapter 4

RANDOM VARIABLES AND
EXPECTATION

4.1 RANDOM VARIABLES
When a random experiment is performed, we are often not interested in all of the details
of the experimental result but only in the value of some numerical quantity determined
by the result. For instance, in tossing dice we are often interested in the sum of the two
dice and are not really concerned about the values of the individual dice. That is, we may
be interested in knowing that the sum is 7 and not be concerned over whether the actual
outcome was (1, 6) or (2, 5) or (3, 4) or (4, 3) or (5, 2) or (6, 1). Also, a civil engineer
may not be directly concerned with the daily risings and declines of the water level of
a reservoir (which we can take as the experimental result) but may only care about the
level at the end of a rainy season. These quantities of interest that are determined by the
result of the experiment are known as random variables.

Since the value of a random variable is determined by the outcome of the experiment,
we may assign probabilities of its possible values.

EXAMPLE 4.1a Letting X denote the random variable that is defined as the sum of two fair
dice, then

P{X = 2} = P{(1, 1)} = 1
36 (4.1.1)

P{X = 3} = P{(1, 2), (2, 1)} = 2
36

P{X = 4} = P{(1, 3), (2, 2), (3, 1)} = 3
36

P{X = 5} = P{(1, 4), (2, 3), (3, 2), (4, 1)} = 4
36

P{X = 6} = P{(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)} = 5
36

P{X = 7} = P{(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)} = 6
36

89
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P{X = 8} = P{(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)} = 5
36

P{X = 9} = P{(3, 6), (4, 5), (5, 4), (6, 3)} = 4
36

P{X = 10} = P{(4, 6), (5, 5), (6, 4)} = 3
36

P{X = 11} = P{(5, 6), (6, 5)} = 2
36

P{X = 12} = P{(6, 6)} = 1
36

In other words, the random variable X can take on any integral value between 2 and 12
and the probability that it takes on each value is given by Equation 4.1.1. Since X must
take on some value, we must have

1 = P(S) = P

(
12⋃

i=2

{X = i}
)

=
12∑

i=2

P{X = i}

which is easily verified from Equation 4.1.1.
Another random variable of possible interest in this experiment is the value of the first

die. Letting Y denote this random variable, then Y is equally likely to take on any of the
values 1 through 6. That is,

P{Y = i} = 1/6, i = 1, 2, 3, 4, 5, 6 ■

EXAMPLE 4.1b Suppose that an individual purchases two electronic components each of
which may be either defective or acceptable. In addition, suppose that the four possible
results — (d, d ), (d, a), (a, d ), (a, a) — have respective probabilities .09, .21, .21, .49
[where (d, d ) means that both components are defective, (d, a) that the first component
is defective and the second acceptable, and so on]. If we let X denote the number of
acceptable components obtained in the purchase, then X is a random variable taking on
one of the values 0, 1, 2 with respective probabilities

P{X = 0} = .09

P{X = 1} = .42

P{X = 2} = .49

If we were mainly concerned with whether there was at least one acceptable component,
we could define the random variable I by

I =
{

1 if X = 1 or 2

0 if X = 0

If A denotes the event that at least one acceptable component is obtained, then the random
variable I is called the indicator random variable for the event A, since I will equal 1



4.1 Random Variables 91

or 0 depending upon whether A occurs. The probabilities attached to the possible values
of I are

P{I =1} = .91

P{I =0} = .09 ■

In the two foregoing examples, the random variables of interest took on a finite num-
ber of possible values. Random variables whose set of possible values can be written either
as a finite sequence x1, . . . , xn, or as an infinite sequence x1, . . . are said to be discrete. For
instance, a random variable whose set of possible values is the set of nonnegative integers
is a discrete random variable. However, there also exist random variables that take on
a continuum of possible values. These are known as continuous random variables. One
example is the random variable denoting the lifetime of a car, when the car’s lifetime is
assumed to take on any value in some interval (a, b).

The cumulative distribution function, or more simply the distribution function, F of the
random variable X is defined for any real number x by

F (x) = P{X ≤ x}

That is, F (x) is the probability that the random variable X takes on a value that is less than
or equal to x.

Notation: We will use the notation X ∼ F to signify that F is the distribution function
of X .

All probability questions about X can be answered in terms of its distribution function
F . For example, suppose we wanted to compute P{a < X ≤ b}. This can be accomplished
by first noting that the event {X ≤ b} can be expressed as the union of the two mutually
exclusive events {X ≤ a} and {a < X ≤ b}. Therefore, applying Axiom 3, we obtain that

P{X ≤ b} = P{X ≤ a} + P{a < X ≤ b}

or

P{a < X ≤ b} = F (b) − F (a)

EXAMPLE 4.1c Suppose the random variable X has distribution function

F (x) =
{

0 x ≤ 0

1 − exp{−x2} x > 0

What is the probability that X exceeds 1?
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SOLUTION The desired probability is computed as follows:

P{X > 1} = 1 − P{X ≤ 1}
= 1 − F (1)

= e−1

= .368 ■

4.2 TYPES OF RANDOM VARIABLES
As was previously mentioned, a random variable whose set of possible values is a sequence
is said to be discrete. For a discrete random variable X , we define the probability mass
function p(a) of X by

p(a) = P{X = a}

The probability mass function p(a) is positive for at most a countable number of values
of a. That is, if X must assume one of the values x1, x2, . . . , then

p(xi) > 0, i = 1, 2, . . .

p(x) = 0, all other values of x

Since X must take on one of the values xi , we have

∞∑
i=1

p(xi) = 1

EXAMPLE 4.2a Consider a random variable X that is equal to 1, 2, or 3. If we know that

p(1) = 1
2 and p(2) = 1

3

then it follows (since p(1) + p(2) + p(3) = 1) that

p(3) = 1
6

A graph of p(x) is presented in Figure 4.1. ■

The cumulative distribution function F can be expressed in terms of p(x) by

F (a) =
∑

all x ≤ a

p(x)

If X is a discrete random variable whose set of possible values are x1, x2, x3, . . ., where
x1 < x2 < x3 < · · · , then its distribution function F is a step function. That is, the value
of F is constant in the intervals [xi−1, xi) and then takes a step (or jump) of size p(xi) at xi .
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p(x)

FIGURE 4.1 Graph of ( p)x, Example 4.2a.
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x
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1
2

F(x)

1

FIGURE 4.2 Graph of F (x).

For instance, suppose X has a probability mass function given (as in Example 4.2a) by

p(1) = 1
2 , p(2) = 1

3 , p(3) = 1
6

then the cumulative distribution function F of X is given by

F (a) =




0 a < 1
1
2 1 ≤ a < 2
5
6 2 ≤ a < 3

1 3 ≤ a

This is graphically presented in Figure 4.2.
Whereas the set of possible values of a discrete random variable is a sequence, we

often must consider random variables whose set of possible values is an interval. Let X
be such a random variable. We say that X is a continuous random variable if there exists
a nonnegative function f (x), defined for all real x ∈ (−∞, ∞), having the property that
for any set B of real numbers

P{X ∈ B} =
∫

B
f (x) dx (4.2.1)

The function f (x) is called the probability density function of the random variable X .
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In words, Equation 4.2.1 states that the probability that X will be in B may be obtained
by integrating the probability density function over the set B. Since X must assume some
value, f (x) must satisfy

1 = P{X ∈ (−∞, ∞)} =
∫ ∞

−∞
f (x) dx

All probability statements about X can be answered in terms of f (x). For instance, letting
B = [a, b], we obtain from Equation 4.2.1 that

P{a ≤ X ≤ b} =
∫ b

a
f (x) dx (4.2.2)

If we let a = b in the above, then

P{X = a} =
∫ a

a
f (x) dx = 0

In words, this equation states that the probability that a continuous random variable will
assume any particular value is zero. (See Figure 4.3.)

The relationship between the cumulative distribution F (·) and the probability density
f (·) is expressed by

F (a) = P{X ∈ (−∞, a]} =
∫ a

−∞
f (x) dx

Differentiating both sides yields

d
da

F (a) = f (a)

a

1

Area of shaded region = P { a < X < b }

x

f(x) = e−x

b

FIGURE 4.3 The probability density function f (x) =
{

e−x x ≥ 0

0 x < 0
.
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That is, the density is the derivative of the cumulative distribution function. A somewhat
more intuitive interpretation of the density function may be obtained from Equation 4.2.2
as follows:

P
{
a − ε

2
≤ X ≤ a + ε

2

}
=
∫ a+ε/2

a−ε/2
f (x) dx ≈ εf (a)

when ε is small. In other words, the probability that X will be contained in an interval
of length ε around the point a is approximately εf (a). From this, we see that f (a) is
a measure of how likely it is that the random variable will be near a.

EXAMPLE 4.2b Suppose that X is a continuous random variable whose probability density
function is given by

f (x) =
{

C (4x − 2x2) 0 < x < 2

0 otherwise

(a) What is the value of C ?

(b) Find P{X > 1}.
SOLUTION (a) Since f is a probability density function, we must have that∫∞
−∞ f (x) dx = 1, implying that

C
∫ 2

0
(4x − 2x2) dx = 1

or

C
[
2x2 − 2x3

3

] ∣∣∣x=2

x=0
= 1

or

C = 3
8

(b) Hence

P{X > 1} =
∫ ∞

1
f (x) dx = 3

8

∫ 2

1
(4x − 2x2) dx = 1

2 ■

4.3 JOINTLY DISTRIBUTED RANDOM VARIABLES
For a given experiment, we are often interested not only in probability distribution
functions of individual random variables but also in the relationships between two or
more random variables. For instance, in an experiment into the possible causes of cancer,
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we might be interested in the relationship between the average number of cigarettes
smoked daily and the age at which an individual contracts cancer. Similarly, an engi-
neer might be interested in the relationship between the shear strength and the diameter
of a spot weld in a fabricated sheet steel specimen.

To specify the relationship between two random variables, we define the joint
cumulative probability distribution function of X and Y by

F (x, y) = P{X ≤ x, Y ≤ y}
A knowledge of the joint probability distribution function enables one, at least in theory, to
compute the probability of any statement concerning the values of X and Y . For instance,
the distribution function of X — call it FX — can be obtained from the joint distribution
function F of X and Y as follows:

FX (x) = P{X ≤ x}
= P{X ≤ x, Y < ∞}
= F (x, ∞)

Similarly, the cumulative distribution function of Y is given by

FY ( y) = F (∞, y)

In the case where X and Y are both discrete random variables whose possible values
are, respectively, x1, x2, . . ., and y1, y2, . . ., we define the joint probability mass function of
X and Y , p(xi , yj ), by

p(xi , yj ) = P{X = xi , Y = yj}
The individual probability mass functions of X and Y are easily obtained from the joint

probability mass function by the following reasoning. Since Y must take on some value yj ,
it follows that the event {X = xi} can be written as the union, over all j, of the mutually
exclusive events {X = xi , Y = yj}. That is,

{X = xi} =
⋃

j

{X = xi , Y = yj}

and so, using Axiom 3 of the probability function, we see that

P{X = xi} = P


⋃

j

{X = xi , Y = yj}

 (4.3.1)

=
∑

j

P{X = xi , Y = yj}

=
∑

j

p(xi , yj )
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Similarly, we can obtain P{Y = yj} by summing p(xi , yj ) over all possible values of xi ,
that is,

P{Y = yj} =
∑

i

P{X = xi , Y = yj} (4.3.2)

=
∑

i

p(xi , yj )

Hence, specifying the joint probability mass function always determines the individual mass
functions. However, it should be noted that the reverse is not true. Namely, knowledge of
P{X = xi} and P{Y = yj} does not determine the value of P{X = xi , Y = yj}.
EXAMPLE 4.3a Suppose that 3 batteries are randomly chosen from a group of 3 new, 4
used but still working, and 5 defective batteries. If we let X and Y denote, respectively,
the number of new and used but still working batteries that are chosen, then the joint
probability mass function of X and Y , p(i, j) = P{X = i, Y = j}, is given by

p(0, 0) =
(

5

3

)/(
12

3

)
= 10/220

p(0, 1) =
(

4

1

)(
5

2

)/(
12

3

)
= 40/220

p(0, 2) =
(

4

2

)(
5

1

)/(
12

3

)
= 30/220

p(0, 3) =
(

4

3

)/(
12

3

)
= 4/220

p(1, 0) =
(

3

1

)(
5

2

)/(
12

3

)
= 30/220

p(1, 1) =
(

3

1

)(
4

1

)(
5

1

)/(
12

3

)
= 60/220

p(1, 2) =
(

3

1

)(
4

2

)/(
12

3

)
= 18/220

p(2, 0) =
(

3

2

)(
5

1

)/(
12

3

)
= 15/220

p(2, 1) =
(

3

2

)(
4

1

)/(
12

3

)
= 12/220

p(3, 0) =
(

3

3

)/(
12

3

)
= 1/220

These probabilities can most easily be expressed in tabular form as shown in Table 4.1.
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TABLE 4.1 P{X = i, Y = j }
j Row Sum

i 0 1 2 3 = P {X = i }�
0 10

220
40
220

30
220

4
220

84
220

1 30
220

60
220

18
220 0 108

220

2 15
220

12
220 0 0 27

220

3 1
220 0 0 0 1

220

Column
Sums =

P{Y = j } 56
220

112
220

48
220

4
220

The reader should note that the probability mass function of X is obtained by computing
the row sums, in accordance with the Equation 4.3.1, whereas the probability mass function
of Y is obtained by computing the column sums, in accordance with Equation 4.3.2.
Because the individual probability mass functions of X and Y thus appear in the margin of
such a table, they are often referred to as being the marginal probability mass functions of
X and Y , respectively. It should be noted that to check the correctness of such a table we
could sum the marginal row (or the marginal column) and verify that its sum is 1. (Why
must the sum of the entries in the marginal row (or column) equal 1?) ■

EXAMPLE 4.3b Suppose that 15 percent of the families in a certain community have no
children, 20 percent have 1, 35 percent have 2, and 30 percent have 3 children; suppose
further that each child is equally likely (and independently) to be a boy or a girl. If a
family is chosen at random from this community, then B, the number of boys, and G ,
the number of girls, in this family will have the joint probability mass function shown
in Table 4.2.

TABLE 4.2 P{B = i, G = j }
j Row Sum

i 0 1 2 3 = P {B = i }�
0 .15 .10 .0875 .0375 .3750
1 .10 .175 .1125 0 .3875
2 .0875 .1125 0 0 .2000
3 .0375 0 0 0 .0375

Column
Sum =

P{G = j } .3750 .3875 .2000 .0375
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These probabilities are obtained as follows:

P{B = 0, G = 0} = P{no children}
= .15

P{B = 0, G = 1} = P{1 girl and total of 1 child}
= P{1 child}P{1 girl|1 child}
= (.20)

( 1
2

) = .1

P{B = 0, G = 2} = P{2 girls and total of 2 children}
= P{2 children}P{2 girls|2 children}
= (.35)

( 1
2

)2 = .0875

P{B = 0, G = 3} = P{3 girls and total of 3 children}
= P{3 children}P{3 girls|3 children}
= (.30)

( 1
2

)3 = .0375

We leave it to the reader to verify the remainder of Table 4.2, which tells us, among other
things, that the family chosen will have at least 1 girl with probability .625. ■

We say that X and Y are jointly continuous if there exists a function f (x, y) defined for
all real x and y, having the property that for every set C of pairs of real numbers (that is,
C is a set in the two-dimensional plane)

P{(X , Y ) ∈ C } =
∫∫

(x,y)∈C

f (x, y) dx dy (4.3.3)

The function f (x, y) is called the joint probability density function of X and Y . If A and B
are any sets of real numbers, then by defining C = {(x, y) : x ∈ A, y ∈ B}, we see from
Equation 4.3.3 that

P{X ∈ A, Y ∈ B} =
∫

B

∫
A

f (x, y) dx dy (4.3.4)

Because

F (a, b) = P{X ∈ (−∞, a], Y ∈ (−∞, b]}

=
∫ b

−∞

∫ a

−∞
f (x, y) dx dy
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it follows, upon differentiation, that

f (a, b) = ∂2

∂a ∂b
F (a, b)

wherever the partial derivatives are defined. Another interpretation of the joint density
function is obtained from Equation 4.3.4 as follows:

P{a < X < a + da, b < Y < b + db} =
∫ d+db

b

∫ a+da

a
f (x, y) dx dy

≈ f (a, b)da db

when da and db are small and f (x, y) is continuous at a, b. Hence f (a, b) is a measure of
how likely it is that the random vector (X , Y ) will be near (a, b).

If X and Y are jointly continuous, they are individually continuous, and their
probability density functions can be obtained as follows:

P{X ∈ A} = P{X ∈ A, Y ∈ (−∞, ∞)} (4.3.5)

=
∫

A

∫ ∞

−∞
f (x, y) dy dx

=
∫

A
fX (x) dx

where

fX (x) =
∫ ∞

−∞
f (x, y) dy

is thus the probability density function of X . Similarly, the probability density function
of Y is given by

fY ( y) =
∫ ∞

−∞
f (x, y) dx (4.3.6)

EXAMPLE 4.3c The joint density function of X and Y is given by

f (x, y) =
{

2e−x e−2y 0 < x < ∞, 0 < y < ∞
0 otherwise

Compute (a) P{X > 1, Y < 1}; (b) P{X < Y }; and (c) P{X < a}.
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SOLUTION

(a) P{X > 1, Y < 1} =
∫ 1

0

∫ ∞

1
2e−x e−2y dx dy

=
∫ 1

0
2e−2y(−e−x |∞1 ) dy

= e−1
∫ 1

0
2e−2y dy

= e−1(1 − e−2)

(b) P{X < Y } =
∫∫

(x,y):x<y

2e−x e−2y dx dy

=
∫ ∞

0

∫ y

0
2e−x e−2y dx dy

=
∫ ∞

0
2e−2y(1 − e−y) dy

=
∫ ∞

0
2e−2y dy −

∫ ∞

0
2e−3y dy

= 1 − 2
3

= 1
3

(c) P{X < a} =
∫ a

0

∫ ∞

0
2e−2ye−x dy dx

=
∫ a

0
e−x dx

= 1 − e−a ■

4.3.1 Independent Random Variables

The random variables X and Y are said to be independent if for any two sets of real
numbers A and B

P{X ∈ A, Y ∈ B} = P{X ∈ A}P{Y ∈ B} (4.3.7)

In other words, X and Y are independent if, for all A and B, the events EA = {X ∈ A}
and FB = {Y ∈ B} are independent.

It can be shown by using the three axioms of probability that Equation 4.3.7 will follow
if and only if for all a, b

P{X ≤ a, Y ≤ b} = P{X ≤ a}P{Y ≤ b}
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Hence, in terms of the joint distribution function F of X and Y , we have that X and Y
are independent if

F (a, b) = FX (a)FY (b) for all a, b

When X and Y are discrete random variables, the condition of independence
Equation 4.3.7 is equivalent to

p(x, y) = pX (x)pY ( y) for all x, y (4.3.8)

where pX and pY are the probability mass functions of X and Y . The equivalence follows
because, if Equation 4.3.7 is satisfied, then we obtain Equation 4.3.8 by letting A and B
be, respectively, the one-point sets A = {x}, B = { y}. Furthermore, if Equation 4.3.8 is
valid, then for any sets A, B

P{X ∈ A, Y ∈ B} =
∑
y∈B

∑
x∈A

p(x, y)

=
∑
y∈B

∑
x∈A

pX (x)pY ( y)

=
∑
y∈B

pY ( y)
∑
x∈A

pX (x)

= P{Y ∈ B}P{X ∈ A}

and thus Equation 4.3.7 is established.
In the jointly continuous case, the condition of independence is equivalent to

f (x, y) = fX (x)fY ( y) for all x, y

Loosely speaking, X and Y are independent if knowing the value of one does not change
the distribution of the other. Random variables that are not independent are said to be
dependent.

EXAMPLE 4.3d Suppose that X and Y are independent random variables having the
common density function

f (x) =
{

e−x x > 0

0 otherwise

Find the density function of the random variable X /Y .
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SOLUTION We start by determining the distribution function of X /Y . For a > 0

FX /Y (a) = P{X /Y ≤ a}

=
∫∫

x/y≤a

f (x, y) dx dy

=
∫∫

x/y≤a

e−x e−y dx dy

=
∫ ∞

0

∫ ay

0
e−x e−y dx dy

=
∫ ∞

0
(1 − e−ay)e−y dy

=
[
−e−y + e−(a+1)y

a + 1

] ∣∣∣∞
0

= 1 − 1

a + 1

Differentiation yields that the density function of X /Y is given by

fX /Y (a) = 1/(a + 1)2, 0 < a < ∞ ■

We can also define joint probability distributions for n random variables in exactly
the same manner as we did for n = 2. For instance, the joint cumulative probability
distribution function F (a1, a2, . . . , an) of the n random variables X1, X2, . . . , Xn is defined
by

F (a1, a2, . . . , an) = P{X1 ≤ a1, X2 ≤ a2, . . . , Xn ≤ an}

If these random variables are discrete, we define their joint probability mass function
p(x1, x2, . . . , xn) by

p(x1, x2, . . . , xn) = P{X1 = x1, X2 = x2, . . . , Xn = xn}

Further, the n random variables are said to be jointly continuous if there exists a function
f (x1, x2, . . . , xn), called the joint probability density function, such that for any set C in
n-space

P{(X1, X2, . . . , Xn) ∈ C } =
∫ ∫

(x1,..., xn)∈C
. . .

∫
f (x1, . . . , xn) dx1 dx2 · · · dxn



104 Chapter 4: Random Variables and Expectation

In particular, for any n sets of real numbers A1, A2, . . . , An

P{X1 ∈ A1, X2 ∈ A2, . . . , Xn ∈ An}
=
∫

An

∫
An−1

. . .
∫

A1

f (x1, . . . , xn) dx1 dx2 . . . dxn

The concept of independence may, of course, also be defined for more than two random
variables. In general, the n random variables X1, X2, . . . , Xn are said to be independent if,
for all sets of real numbers A1, A2, . . . , An,

P{X1 ∈ A1, X2 ∈ A2, . . . , Xn ∈ An} =
n∏

i=1

P{Xi ∈ Ai}

As before, it can be shown that this condition is equivalent to

P{X1 ≤ a1, X2 ≤ a2, . . . , Xn ≤ an}

=
n∏

i=1

P{X1 ≤ ai} for all a1, a2, . . . , an

Finally, we say that an infinite collection of random variables is independent if every finite
subcollection of them is independent.

EXAMPLE 4.3e Suppose that the successive daily changes of the price of a given stock are
assumed to be independent and identically distributed random variables with probability
mass function given by

P{daily change is i} =




−3 with probability .05

−2 with probability .10

−1 with probability .20

0 with probability .30

1 with probability .20

2 with probability .10

3 with probability .05

Then the probability that the stock’s price will increase successively by 1, 2, and 0 points
in the next three days is

P{X1 = 1, X2 = 2, X3 = 0} = (.20)(.10)(.30) = .006

where we have let Xi denote the change on the ith day. ■
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*4.3.2 Conditional Distributions

The relationship between two random variables can often be clarified by consideration of
the conditional distribution of one given the value of the other.

Recall that for any two events E and F , the conditional probability of E given F is
defined, provided that P(F ) > 0, by

P(E |F ) = P(EF )

P(F )

Hence, if X and Y are discrete random variables, it is natural to define the conditional
probability mass function of X given that Y = y, by

pX |Y (x|y) = P{X = x|Y = y}
= P{X = x, Y = y}

P{Y = y}
= p(x, y)

pY ( y)

for all values of y such that pY ( y) > 0.

EXAMPLE 4.3f If we know, in Example 4.3b, that the family chosen has one girl, compute
the conditional probability mass function of the number of boys in the family.

SOLUTION We first note from Table 4.2 that

P{G = 1} = .3875

Hence,

P{B = 0|G = 1} = P{B = 0, G = 1}
P{G = 1} = .10

.3875
= 8/31

P{B = 1|G = 1} = P{B = 1, G = 1}
P{G = 1} = .175

.3875
= 14/31

P{B = 2|G = 1} = P{B = 2, G = 1}
P{G = 1} = .1125

.3875
= 9/31

P{B = 3|G = 1} = P{B = 3, G = 1}
P{G = 1} = 0

Thus, for instance, given 1 girl, there are 23 chances out of 31 that there will also be
at least 1 boy. ■

* Optional section.



106 Chapter 4: Random Variables and Expectation

EXAMPLE 4.3g Suppose that p(x, y), the joint probability mass function of X and Y , is
given by

p(0, 0) = .4, p(0, 1) = .2, p(1, 0) = .1, p(1, 1) = .3.

Calculate the conditional probability mass function of X given that Y = 1.

SOLUTION We first note that

P{Y = 1} =
∑

x

p(x, 1) = p(0, 1) + p(1, 1) = .5

Hence,

P{X = 0|Y = 1} = p(0, 1)

P{Y = 1} = 2/5

P{X = 1|Y = 1} = p(1, 1)

P{Y = 1} = 3/5 ■

If X and Y have a joint probability density function f (x, y), then the conditional
probability density function of X , given that Y = y, is defined for all values of y such
that fY ( y) > 0, by

fX |Y (x| y) = f (x, y)

fY ( y)

To motivate this definition, multiply the left-hand side by dx and the right-hand side by
(dx dy)/dy to obtain

fX |Y (x| y) dx = f (x, y) dx dy
fY ( y) dy

≈ P{x ≤ X ≤ x + dx, y ≤ Y ≤ y + dy}
P{ y ≤ Y ≤ y + dy}

= P{x ≤ X ≤ x + dy| y ≤ Y ≤ y + dy}

In other words, for small values of dx and dy, fX |Y (x| y) dx represents the conditional
probability that X is between x and x + dx, given that Y is between y and y + dy.

The use of conditional densities allows us to define conditional probabilities of events
associated with one random variable when we are given the value of a second random
variable. That is, if X and Y are jointly continuous, then, for any set A,

P{X ∈ A|Y = y} =
∫

A
fX |Y (x| y) dx
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EXAMPLE 4.3h The joint density of X and Y is given by

f (x, y) =
{

12
5 x(2 − x − y) 0 < x < 1, 0 < y < 1

0 otherwise

Compute the conditional density of X , given that Y = y, where 0 < y < 1.

SOLUTION For 0 < x < 1, 0 < y < 1, we have

fX |Y (x| y) = f (x, y)

fY ( y)

= f (x, y)∫∞
−∞ f (x, y) dx

= x(2 − x − y)∫ 1
0 x(2 − x − y) dx

= x(2 − x − y)
2
3 − y/2

= 6x(2 − x − y)

4 − 3y
■

4.4 EXPECTATION
One of the most important concepts in probability theory is that of the expectation
of a random variable. If X is a discrete random variable taking on the possible values
x1, x2, . . ., then the expectation or expected value of X , denoted by E [X ], is defined by

E [X ] =
∑

i

xiP{X = xi}

In words, the expected value of X is a weighted average of the possible values that X can
take on, each value being weighted by the probability that X assumes it. For instance, if
the probability mass function of X is given by

p(0) = 1
2 = p(1)

then

E [X ] = 0
( 1

2

)+ 1
( 1

2

) = 1
2

is just the ordinary average of the two possible values 0 and 1 that X can assume. On the
other hand, if

p(0) = 1
3 , p(1) = 2

3
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then

E [X ] = 0
( 1

3

)+ 1
( 2

3

) = 2
3

is a weighted average of the two possible values 0 and 1 where the value 1 is given twice as
much weight as the value 0 since p(1) = 2p(0).

Another motivation of the definition of expectation is provided by the frequency
interpretation of probabilities. This interpretation assumes that if an infinite sequence
of independent replications of an experiment is performed, then for any event E , the pro-
portion of time that E occurs will be P(E ). Now, consider a random variable X that must
take on one of the values x1, x2, . . . , xn with respective probabilities p(x1), p(x2), . . . , p(xn);
and think of X as representing our winnings in a single game of chance. That is, with
probability p(xi) we shall win xi units i = 1, 2, . . . , n. Now by the frequency interpreta-
tion, it follows that if we continually play this game, then the proportion of time that we
win xi will be p(xi). Since this is true for all i, i = 1, 2, . . . , n, it follows that our average
winnings per game will be

n∑
i=1

xip(xi) = E [X ]

To see this argument more clearly, suppose that we play N games where N is very large.
Then in approximately Np(xi) of these games, we shall win xi , and thus our total winnings
in the N games will be

n∑
i=1

xiNp(xi)

implying that our average winnings per game are

n∑
i=1

xiNp(xi)

N
=

n∑
i=1

xip(xi) = E [X ]

EXAMPLE 4.4a Find E [X ] where X is the outcome when we roll a fair die.

SOLUTION Since p(1) = p(2) = p(3) = p(4) = p(5) = p(6) = 1
6 , we obtain that

E [X ] = 1
( 1

6

)+ 2
( 1

6

)+ 3
( 1

6

)+ 4
( 1

6

)+ 5
( 1

6

)+ 6
( 1

6

) = 7
2

The reader should note that, for this example, the expected value of X is not a value that X
could possibly assume. (That is, rolling a die cannot possibly lead to an outcome of 7/2.)
Thus, even though we call E [X ] the expectation of X , it should not be interpreted as the
value that we expect X to have but rather as the average value of X in a large number of
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repetitions of the experiment. That is, if we continually roll a fair die, then after a large
number of rolls the average of all the outcomes will be approximately 7/2. (The interested
reader should try this as an experiment.) ■

EXAMPLE 4.4b If I is an indicator random variable for the event A, that is, if

I =
{

1 if A occurs

0 if A does not occur

then

E [I ] = 1P(A) + 0P(Ac ) = P(A)

Hence, the expectation of the indicator random variable for the event A is just the
probability that A occurs. ■

EXAMPLE 4.4c Entropy For a given random variable X , how much information is conveyed
in the message that X = x? Let us begin our attempts at quantifying this statement by
agreeing that the amount of information in the message that X = x should depend on
how likely it was that X would equal x. In addition, it seems reasonable that the more
unlikely it was that X would equal x, the more informative would be the message. For
instance, if X represents the sum of two fair dice, then there seems to be more information
in the message that X equals 12 than there would be in the message that X equals 7, since
the former event has probability 1

36 and the latter 1
6 .

Let us denote by I ( p) the amount of information contained in the message that an event,
whose probability is p, has occurred. Clearly I ( p) should be a nonnegative, decreasing
function of p. To determine its form, let X and Y be independent random variables, and
suppose that P{X = x} = p and P{Y = y} = q. How much information is contained in
the message that X equals x and Y equals y? To answer this, note first that the amount
of information in the statement that X equals x is I ( p). Also, since knowledge of the fact
that X is equal to x does not affect the probability that Y will equal y (since X and Y are
independent), it seems reasonable that the additional amount of information contained in
the statement that Y = y should equal I (q). Thus, it seems that the amount of information
in the message that X equals x and Y equals y is I ( p)+ I (q). On the other hand, however,
we have that

P{X = x, Y = y} = P{X = x}P{Y = y} = pq

which implies that the amount of information in the message that X equals x and Y equals
y is I ( pq). Therefore, it seems that the function I should satisfy the identity

I ( pq) = I ( p) + I (q)
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However, if we define the function G by

G( p) = I (2−p)

then we see from the above that

G( p + q) = I (2−( p+q))

= I (2−p2−q)

= I (2−p) + I (2−q)

= G( p) + G(q)

However, it can be shown that the only (monotone) functions G that satisfy the foregoing
functional relationship are those of the form

G( p) = cp

for some constant c. Therefore, we must have that

I (2−p) = cp

or, letting q = 2−p

I (q) = −c log2(q)

for some positive constant c. It is traditional to let c = 1 and to say that the information
is measured in units of bits (short for binary digits).

Consider now a random variable X , which must take on one of the values x1, . . . , xn

with respective probabilities p1, . . . , pn. As log2( pi) represents the information conveyed
by the message that X is equal to xi , it follows that the expected amount of information
that will be conveyed when the value of X is transmitted is given by

H (X ) = −
n∑

i=1

pi log2( pi)

The quantity H (X ) is known in information theory as the entropy of the random
variable X . ■

We can also define the expectation of a continuous random variable. Suppose that X is
a continuous random variable with probability density function f . Since, for dx small

f (x) dx ≈ P{x < X < x + dx}
it follows that a weighted average of all possible values of X , with the weight given to x
equal to the probability that X is near x, is just the integral over all x of xf (x) dx. Hence,
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-1
p (-1) = .10,

center of gravity = .9

0
p (0) = .25,

1
p (1) = .30,

2
p (2) = .35

FIGURE 4.4

it is natural to define the expected value of X by

E [X ] =
∫ ∞

−∞
xf (x) dx

EXAMPLE 4.4d Suppose that you are expecting a message at some time past 5 P.M. From
experience you know that X , the number of hours after 5 P.M. until the message arrives,
is a random variable with the following probability density function:

f (x) =



1

1.5
if 0 < x < 1.5

0 otherwise

The expected amount of time past 5 P.M. until the message arrives is given by

E [X ] =
∫ 1.5

0

x
1.5

dx = .75

Hence, on average, you would have to wait three-fourths of an hour. ■

REMARKS

(a) The concept of expectation is analogous to the physical concept of the center of gravity
of a distribution of mass. Consider a discrete random variable X having probability mass
function P(xi), i ≥ 1. If we now imagine a weightless rod in which weights with mass
P(xi), i ≥ 1 are located at the points xi , i ≥ 1 (see Figure 4.4), then the point at which
the rod would be in balance is known as the center of gravity. For those readers acquainted
with elementary statics, it is now a simple matter to show that this point is at E [X ].*
(b) E [X ] has the same units of measurement as does X .

4.5 PROPERTIES OF THE EXPECTED VALUE
Suppose now that we are given a random variable X and its probability distribution (that
is, its probability mass function in the discrete case or its probability density function in
the continuous case). Suppose also that we are interested in calculating, not the expected

* To prove this, we must show that the sum of the torques tending to turn the point around E [X ] is equal to 0. That
is, we must show that 0 = ∑

i (xi − E [X ])p(xi ), which is immediate.
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value of X , but the expected value of some function of X , say g (X ). How do we go
about doing this? One way is as follows. Since g (X ) is itself a random variable, it must
have a probability distribution, which should be computable from a knowledge of the
distribution of X . Once we have obtained the distribution of g (X ), we can then compute
E [g (X )] by the definition of the expectation.

EXAMPLE 4.5a Suppose X has the following probability mass function

p(0) = .2, p(1) = .5, p(2) = .3

Calculate E [X 2].
SOLUTION Letting Y = X 2, we have that Y is a random variable that can take on one of
the values 02, 12, 22 with respective probabilities

pY (0) = P{Y = 02} = .2

pY (1) = P{Y = 12} = .5

pY (4) = P{Y = 22} = .3

Hence,

E [X 2] = E [Y ] = 0(.2) + 1(.5) + 4(.3) = 1.7 ■

EXAMPLE 4.5b The time, in hours, it takes to locate and repair an electrical breakdown in
a certain factory is a random variable — call it X — whose density function is given by

fX (x) =
{

1 if 0 < x < 1

0 otherwise

If the cost involved in a breakdown of duration x is x3, what is the expected cost of such
a breakdown?

SOLUTION Letting Y = X 3 denote the cost, we first calculate its distribution function as
follows. For 0 ≤ a ≤ 1,

FY (a) = P{Y ≤ a}
= P{X 3 ≤ a}
= P{X ≤ a1/3}

=
∫ a1/3

0
dx

= a1/3
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By differentiating FY (a), we obtain the density of Y ,

fY (a) = 1

3
a−2/3, 0 ≤ a < 1

Hence,

E [X 3] = E [Y ] =
∫ ∞

−∞
afY (a) da

=
∫ 1

0
a

1

3
a−2/3 da

= 1

3

∫ 1

0
a1/3 da

= 1

3

3

4
a4/3|10

= 1

4
■

While the foregoing procedure will, in theory, always enable us to compute the expec-
tation of any function of X from a knowledge of the distribution of X , there is an easier
way of doing this. Suppose, for instance, that we wanted to compute the expected value
of g (X ). Since g (X ) takes on the value g (X ) when X = x, it seems intuitive that E [g (X )]
should be a weighted average of the possible values g (X ) with, for a given x, the weight
given to g (x) being equal to the probability (or probability density in the continuous case)
that X will equal x. Indeed, the foregoing can be shown to be true and we thus have the
following proposition.

PROPOSITION 4.5.1 EXPECTATION OF A FUNCTION OF A RANDOM VARIABLE
(a) If X is a discrete random variable with probability mass function p(x), then for any

real-valued function g ,

E [g (X )] =
∑

x

g (x)p(x)

(b) If X is a continuous random variable with probability density function f (x), then
for any real-valued function g ,

E [g (X )] =
∫ ∞

−∞
g (x)f (x) dx
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EXAMPLE 4.5c Applying Proposition 4.5.1 to Example 4.5a yields

E [X 2] = 02(0.2) + (12)(0.5) + (22)(0.3) = 1.7

which, of course, checks with the result derived in Example 4.5a. ■

EXAMPLE 4.5d Applying the proposition to Example 4.5b yields

E [X 3] =
∫ 1

0
x3dx (since f (x) = 1, 0 < x < 1)

= 1

4
■

An immediate corollary of Proposition 4.5.1 is the following.

Corollary 4.5.2
If a and b are constants, then

E [aX + b] = aE [X ] + b

Proof

In the discrete case,

E [aX + b] =
∑

x

(ax + b)p(x)

= a
∑

x

xp(x) + b
∑

x

p(x)

= aE [X ] + b

In the continuous case,

E [aX + b] =
∫ ∞

−∞
(ax + b)f (x) dx

= a
∫ ∞

−∞
xf (x) dx + b

∫ ∞

−∞
f (x) dx

= aE [X ] + b �

If we take a = 0 in Corollary 4.5.2, we see that

E [b] = b
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That is, the expected value of a constant is just its value. (Is this intuitive?) Also, if we take
b = 0, then we obtain

E [aX ] = aE [X ]

or, in words, the expected value of a constant multiplied by a random variable is just the
constant times the expected value of the random variable. The expected value of a random
variable X , E [X ], is also referred to as the mean or the first moment of X . The quantity
E [X n], n ≥ 1, is called the nth moment of X . By Proposition 4.5.1, we note that

E [X n] =



∑

x

xnp(x) if X is discrete∫ ∞

−∞
xnf (x) dx if X is continuous

4.5.1 Expected Value of Sums of Random Variables

The two-dimensional version of Proposition 4.5.1 states that if X and Y are random
variables and g is a function of two variables, then

E [g (X , Y )] =
∑

y

∑
x

g (x, y)p(x, y) in the discrete case

=
∫ ∞

−∞

∫ ∞

−∞
g (x, y)f (x, y) dx dy in the continuous case

For example, if g (X , Y ) = X + Y , then, in the continuous case,

E [X + Y ] =
∫ ∞

−∞

∫ ∞

−∞
(x + y)f (x, y) dx dy

=
∫ ∞

−∞

∫ ∞

−∞
xf (x, y) dx dy +

∫ ∞

−∞

∫ ∞

−∞
yf (x, y) dx dy

= E [X ] + E [Y ]

A similar result can be shown in the discrete case and indeed, for any random variables X
and Y ,

E [X + Y ] = E [X ] + E [Y ] (4.5.1)

By repeatedly applying Equation 4.5.1 we can show that the expected value of the sum
of any number of random variables equals the sum of their individual expectations.
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For instance,

E [X + Y + Z ] = E [(X + Y ) + Z ]
= E [X + Y ] + E [Z ] by Equation 4.5.1

= E [X ] + E [Y ] + E [Z ] again by Equation 4.5.1

And in general, for any n,

E [X1 + X2 · · · + Xn] = E [X1] + E [X2] + · · · + E [Xn] (4.5.2)

Equation 4.5.2 is an extremely useful formula whose utility will now be illustrated by
a series of examples.

EXAMPLE 4.5e A construction firm has recently sent in bids for 3 jobs worth (in profits)
10, 20, and 40 (thousand) dollars. If its probabilities of winning the jobs are respectively
.2, .8, and .3, what is the firm’s expected total profit?

SOLUTION Letting Xi , i = 1, 2, 3 denote the firm’s profit from job i, then

total profit = X1 + X2 + X3

and so

E [total profit] = E [X1] + E [X2] + E [X3]
Now

E [X1] = 10(.2) + 0(.8) = 2

E [X2] = 20(.8) + 0(.2) = 16

E [X3] = 40(.3) + 0(.7) = 12

and thus the firm’s expected total profit is 30 thousand dollars. ■

EXAMPLE 4.5f A secretary has typed N letters along with their respective envelopes. The
envelopes get mixed up when they fall on the floor. If the letters are placed in the mixed-up
envelopes in a completely random manner (that is, each letter is equally likely to end up
in any of the envelopes), what is the expected number of letters that are placed in the
correct envelopes?

SOLUTION Letting X denote the number of letters that are placed in the correct envelope,
we can most easily compute E [X ] by noting that

X = X1 + X2 + · · · + XN
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where

Xi =
{

1 if the ith letter is placed in its proper envelope

0 otherwise

Now, since the ith letter is equally likely to be put in any of the N envelopes, it follows
that

P{Xi = 1} = P{ith letter is in its proper envelope} = 1/N

and so

E [Xi] = 1P{Xi = 1} + 0P{Xi = 0} = 1/N

Hence, from Equation 4.5.2 we obtain that

E [X ] = E [X1] + · · · + E [XN ] =
(

1

N

)
N = 1

Hence, no matter how many letters there are, on the average, exactly one of the letters will
be in its own envelope. ■

EXAMPLE 4.5g Suppose there are 20 different types of coupons and suppose that each time
one obtains a coupon it is equally likely to be any one of the types. Compute the expected
number of different types that are contained in a set for 10 coupons.

SOLUTION Let X denote the number of different types in the set of 10 coupons. We
compute E [X ] by using the representation

X = X1 + · · · + X20

where

Xi =
{

1 if at least one type i coupon is contained in the set of 10

0 otherwise

Now

E [Xi] = P{Xi = 1}
= P{at least one type i coupon is in the set of 10}
= 1 − P{no type i coupons are contained in the set of 10}
= 1 − ( 19

20

)10
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when the last equality follows since each of the 10 coupons will (independently) not be
a type i with probability 19

20 . Hence,

E [X ] = E [X1] + · · · + E [X20] = 20
[
1 − ( 19

20

)10
]

= 8.025 ■

An important property of the mean arises when one must predict the value of a random
variable. That is, suppose that the value of a random variable X is to be predicted. If
we predict that X will equal c, then the square of the “error” involved will be (X − c)2.
We will now show that the average squared error is minimized when we predict that X
will equal its mean µ. To see this, note that for any constant c

E [(X − c)2] = E [(X − µ + µ − c)2]
= E [(X − µ)2 + 2(µ − c)(X − µ) + (µ − c)2]
= E [(X − µ)2] + 2(µ − c)E [X − µ] + (µ − c)2

= E [(X − µ)2] + (µ − c2) since E [X − µ] = E [X ] − µ = 0

≥ E [(X − µ)2]
Hence, the best predictor of a random variable, in terms of minimizing its mean square
error, is just its mean.

4.6 VARIANCE
Given a random variable X along with its probability distribution function, it would be
extremely useful if we were able to summarize the essential properties of the mass function
by certain suitably defined measures. One such measure would be E [X ], the expected value
of X . However, while E [X ] yields the weighted average of the possible values of X , it does
not tell us anything about the variation, or spread, of these values. For instance, while the
following random variables W, Y, and Z having probability mass functions determined by

W = 0 with probability 1

Y =
{

−1 with probability 1
2

1 with probability 1
2

Z =
{

−100 with probability 1
2

100 with probability 1
2

all have the same expectation — namely, 0 — there is much greater spread in the possible
values of Y than in those of W (which is a constant) and in the possible values of Z than
in those of Y .
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Because we expect X to take on values around its mean E [X ], it would appear that
a reasonable way of measuring the possible variation of X would be to look at how far
apart X would be from its mean on the average. One possible way to measure this would
be to consider the quantity E [|X − µ|], where µ = E [X ], and [X − µ] represents the
absolute value of X − µ. However, it turns out to be mathematically inconvenient to deal
with this quantity and so a more tractable quantity is usually considered — namely, the
expectation of the square of the difference between X and its mean. We thus have the
following definition.

Definition
If X is a random variable with mean µ, then the variance of X , denoted by Var(X ), is
defined by

Var(X ) = E [(X − µ)2]

An alternative formula for Var(X ) can be derived as follows:

Var(X ) = E [(X − µ)2]
= E [X 2 − 2µX + µ2]
= E [X 2] − E [2µX ] + E [µ2]
= E [X 2] − 2µE [X ] + µ2

= E [X 2] − µ2

That is,

Var(X ) = E [X 2] − (E [X ])2 (4.6.1)

or, in words, the variance of X is equal to the expected value of the square of X minus the
square of the expected value of X . This is, in practice, often the easiest way to compute
Var(X ).

EXAMPLE 4.6a Compute Var(X ) when X represents the outcome when we roll a fair die.

SOLUTION Since P{X = i} = 1
6 , i = 1, 2, 3, 4, 5, 6, we obtain

E [X 2] =
6∑

i−1

i2P{X = i}

= 12 ( 1
6

)+ 22 ( 1
6

)+ 32 ( 1
6

)+ 42 ( 1
6

)+ 52 ( 1
6

)+ 62 ( 1
6

)
= 91

6
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Hence, since it was shown in Example 4.4a that E [X ] = 7
2 , we obtain from Equation

4.6.1 that

Var(X ) = E [X 2] − (E [X ])2

= 91
6 − ( 7

2

)2 = 35
12 ■

EXAMPLE 4.6b Variance of an Indicator Random Variable. If, for some event A,

I =
{

1 if event A occurs

0 if event A does not occur

then

Var(I ) = E [I 2] − (E [I ])2
= E [I ] − (E [I ])2 since I 2 = I (as 12 = 1 and 02 = 0)

= E [I ](1 − E [I ])
= P(A)[1 − P(A)] since E [I ] = P(A) from Example 4.4b ■

A useful identity concerning variances is that for any constants a and b,

Var(aX + b) = a2Var(X ) (4.6.2)

To prove Equation 4.6.2, let µ = E [X ] and recall that E [aX + b] = aµ + b. Thus, by
the definition of variance, we have

Var(aX + b) = E [(aX + b − E [aX + b])2]
= E [(aX + b − aµ − b)2]
= E [(aX − aµ)2]
= E [a2(X − µ)2]
= a2E [(X − µ)2]
= aaVar(X )

Specifying particular values for a and b in Equation 4.6.2 leads to some interesting
corollaries. For instance, by setting a = 0 in Equation 4.6.2 we obtain that

Var(b) = 0

That is, the variance of a constant is 0. (Is this intuitive?) Similarly, by setting a = 1 we
obtain

Var(X + b) = Var(X )
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That is, the variance of a constant plus a random variable is equal to the variance of the
random variable. (Is this intuitive? Think about it.) Finally, setting b = 0 yields

Var(aX ) = a2Var(X )

The quantity
√

Var(X ) is called the standard deviation of X . The standard deviation
has the same units as does the mean.

REMARK

Analogous to the mean’s being the center of gravity of a distribution of mass, the variance
represents, in the terminology of mechanics, the moment of inertia.

4.7 COVARIANCE AND VARIANCE OF SUMS OF
RANDOM VARIABLES

We showed in Section 4.5 that the expectation of a sum of random variables is equal to
the sum of their expectations. The corresponding result for variances is, however, not
generally valid. Consider

Var(X + X ) = Var(2X )

= 22 Var(X )

= 4 Var(X )

�= Var(X ) + Var(X )

There is, however, an important case in which the variance of a sum of random vari-
ables is equal to the sum of the variances; and this is when the random variables are
independent. Before proving this, however, let us define the concept of the covariance of
two random variables.

Definition
The covariance of two random variables X and Y , written Cov(X , Y ) is defined by

Cov(X , Y ) = E [(X − µx )(Y − µy)]
where µx and µy are the means of X and Y , respectively.

A useful expression for Cov(X , Y ) can be obtained by expanding the right side of the
definition. This yields

Cov(X , Y ) = E [XY − µxY − µyX + µxµy]
= E [XY ] − µxE [Y ] − µyE [X ] + µxµy
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= E [XY ] − µxµy − µyµx + µxµy

= E [XY ] − E [X ]E [Y ] (4.7.1)

From its definition we see that covariance satisfies the following properties:

Cov(X , Y ) = Cov(Y , X ) (4.7.2)

and

Cov(X , X ) = Var(X ) (4.7.3)

Another property of covariance, which immediately follows from its definition, is that, for
any constant a,

Cov(aX , Y ) = a Cov(X , Y ) (4.7.4)

The proof of Equation 4.7.4 is left as an exercise.
Covariance, like expectation, possesses an additive property.

Lemma 4.7.1

Cov(X + Z , Y ) = Cov(X , Y ) + Cov(Z , Y )

Proof

Cov(X + Z , Y )

= E [(X + Z )Y ] − E [X + Z ]E [Y ] from Equation 4.7.1

= E [XY ] + E [ZY ] − (E [X ] + E [Z ])E [Y ]
= E [XY ] − E [X ]E [Y ] + E [ZY ] − E [Z ]E [Y ]
= Cov(X , Y ) + Cov(Z , Y ) �

Lemma 4.7.1 can be easily generalized (see Problem 48) to show that

Cov

(
n∑

i=1

Xi , Y

)
=

n∑
i=1

Cov(Xi , Y ) (4.7.5)

which gives rise to the following.

PROPOSITION 4.7.2

Cov


 n∑

i=1

Xi ,
m∑

j=1

Yj


 =

n∑
i=1

m∑
j=1

Cov(Xi , Yj )
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Proof

Cov


 n∑

i=1

Xi ,
m∑

j=1

Yj




=
n∑

i=1

Cov


Xi ,

m∑
j=1

Yj


 from Equation 4.7.5

=
n∑

i=1

Cov


 m∑

j=1

Yj , Xi


 by the symmetry property Equation 4.7.2

=
n∑

i=1

m∑
j=1

Cov(Yj , Xi) again from Equation 4.7.5

and the result now follows by again applying the property Equation 4.7.2. �

Using Equation 4.7.3 gives rise to the following formula for the variance of a sum of
random variables.

Corollary 4.7.3

Var

(
n∑

i=1

Xi

)
=

n∑
i=1

Var(Xi) +
n∑

i=1

n∑
j=1
j �=i

Cov(Xi , Xj )

Proof

The proof follows directly from Proposition 4.7.2 upon setting m = n, and Yj = Xj for
j = 1, . . . , n. �

In the case of n = 2, Corollary 4.7.3 yields that

Var(X + Y ) = Var(X ) + Var(Y ) + Cov(X , Y ) + Cov(Y , X )

or, using Equation 4.7.2,

Var(X + Y ) = Var(X ) + Var(Y ) + 2Cov(X , Y ) (4.7.6)

Theorem 4.7.4
If X and Y are independent random variables, then

Cov(X , Y ) = 0
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and so for independent X1, . . . , Xn,

Var

(
n∑

i=1

Xi

)
=

n∑
i=1

Var(Xi)

Proof

We need to prove that E [XY ] = E [X ]E [Y ]. Now, in the discrete case,

E [XY ] =
∑

j

∑
i

xiyjP{X = xi , Y = yj}

=
∑

j

∑
i

xiyjP{X = xi}P{Y = yj} by independence

=
∑

y

yjP{Y = yj}
∑

i

xiP{X = xi}

= E [Y ]E [X ]

Because a similar argument holds in all other cases, the result is proven. �

EXAMPLE 4.7a Compute the variance of the sum obtained when 10 independent rolls of
a fair die are made.

SOLUTION Letting Xi denote the outcome of the ith roll, we have that

Var

(
10∑
1

Xi

)
=

10∑
1

Var(Xi)

= 1035
12 from Example 4.6a

= 175
6 ■

EXAMPLE 4.7b Compute the variance of the number of heads resulting from 10 indepen-
dent tosses of a fair coin.

SOLUTION Letting

Ij =
{

1 if the jth toss lands heads

0 if the jth toss lands tails
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then the total number of heads is equal to

10∑
j=1

Ij

Hence, from Theorem 4.7.4,

Var


 10∑

j=1

Ij


 =

10∑
j=1

Var(Ij )

Now, since Ij is an indicator random variable for an event having probability 1
2 , it follows

from Example 4.6b that

Var(Ij ) = 1
2

(
1 − 1

2

) = 1
4

and thus

Var


 10∑

j=1

Ij


 = 10

4
■

The covariance of two random variables is important as an indicator of the relationship
between them. For instance, consider the situation where X and Y are indicator variables
for whether or not the events A and B occur. That is, for events A and B, define

X =
{

1 if A occurs

0 otherwise
, Y =

{
1 if B occurs

0 otherwise

and note that

XY =
{

1 if X = 1, Y = 1

0 otherwise

Thus,

Cov(X , Y ) = E [XY ] − E [X ]E [Y ]
= P{X = 1, Y = 1} − P{X = 1}P{Y = 1}

From this we see that

Cov(X , Y ) > 0 ⇔ P{X = 1, Y = 1} > P{X = 1}P{Y = 1}
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⇔ P{X = 1, Y = 1}
P{X = 1} > P{Y = 1}

⇔ P{Y = 1|X = 1} > P{Y = 1}
That is, the covariance of X and Y is positive if the outcome X = 1 makes it more likely
that Y = 1 (which, as is easily seen by symmetry, also implies the reverse).

In general, it can be shown that a positive value of Cov(X , Y ) is an indication that
Y tends to increase as X does, whereas a negative value indicates that Y tends to decrease
as X increases. The strength of the relationship between X and Y is indicated by the
correlation between X and Y , a dimensionless quantity obtained by dividing the covari-
ance by the product of the standard deviations of X and Y . That is,

Corr(X , Y ) = Cov(X , Y )√
Var(X )Var(Y )

It can be shown (see Problem 49) that this quantity always has a value between −1 and +1.

4.8 MOMENT GENERATING FUNCTIONS
The moment generating function φ(t ) of the random variable X is defined for all values
t by

φ(t ) = E [etX ] =




∑
x

etxp(x) if X is discrete

∫ ∞

−∞
etx f (x) dx if X is continuous

We call φ(t ) the moment generating function because all of the moments of X can be
obtained by successively differentiating φ(t ). For example,

φ′(t ) = d
dt

E [etX ]

= E
[

d
dt

(etX )

]

= E [XetX ]
Hence,

φ′(0) = E [X ]
Similarly,

φ′′(t ) = d
dt

φ′(t )

= d
dt

E [XetX ]
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= E
[

d
dt

(XetX )

]

= E [X 2etX ]

and so

φ′′(0) = E [X 2]

In general, the nth derivative of φ(t ) evaluated at t = 0 equals E [X n]; that is,

φn(0) = E [X n], n ≥ 1

An important property of moment generating functions is that the moment generating
function of the sum of independent random variables is just the product of the individual
moment generating functions. To see this, suppose that X and Y are independent and have
moment generating functions φX (t ) and φY (t ), respectively. Then φX +Y (t ), the moment
generating function of X + Y , is given by

φX +Y (t ) = E [et (X +Y )]
= E [etX etY ]
= E [etX ]E [etY ]
= φX (t )φY (t )

where the next to the last equality follows from Theorem 4.7.4 since X and Y , and thus
etX and etY , are independent.

Another important result is that the moment generating function uniquely determines
the distribution. That is, there exists a one-to-one correspondence between the moment
generating function and the distribution function of a random variable.

4.9 CHEBYSHEV’S INEQUALITY AND THE WEAK LAW OF
LARGE NUMBERS

We start this section by proving a result known as Markov’s inequality.

PROPOSITION 4.9.1 MARKOV’S INEQUALITY
If X is a random variable that takes only nonnegative values, then for any value a > 0

P{X ≥ a} ≤ E [X ]
a
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Proof

We give a proof for the case where X is continuous with density f .

E [X ] =
∫ ∞

0
xf (x) dx

=
∫ a

0
xf (x) dx +

∫ ∞

a
xf (x) dx

≥
∫ ∞

a
xf (x) dx

≥
∫ ∞

a
af (x) dx

= a
∫ ∞

a
f (x) dx

= aP{X ≥ a}
and the result is proved. �

As a corollary, we obtain Proposition 4.9.2.

PROPOSITION 4.9.2 CHEBYSHEV’S INEQUALITY
If X is a random variable with mean µ and variance σ 2, then for any value k > 0

P{|X − µ| ≥ k} ≤ σ 2

k2

Proof

Since (X − µ)2 is a nonnegative random variable, we can apply Markov’s inequality
(with a = k2) to obtain

P{(X − µ)2 ≥ k2} ≤ E [(X − µ)2]
k2 (4.9.1)

But since (X − µ) ≥ k2 if and only if |X − µ| ≥ k, Equation 4.9.1 is equivalent to

P{|X − µ| ≥ k} ≤ E [(X − µ)2]
k2 = σ 2

k2

and the proof is complete. �

The importance of Markov’s and Cheybyshev’s inequalities is that they enable us to
derive bounds on probabilities when only the mean, or both the mean and the variance, of
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the probability distribution are known. Of course, if the actual distribution were known,
then the desired probabilities could be exactly computed and we would not need to resort
to bounds.

EXAMPLE 4.9a Suppose that it is known that the number of items produced in a factory
during a week is a random variable with mean 50.

(a) What can be said about the probability that this week’s production will exceed 75?

(b) If the variance of a week’s production is known to equal 25, then what can be said
about the probability that this week’s production will be between 40 and 60?

SOLUTION Let X be the number of items that will be produced in a week:

(a) By Markov’s inequality

P{X > 75} ≤ E [X ]
75

= 50

75
= 2

3

(b) By Chebyshev’s inequality

P{|X − 50| ≥ 10} ≤ σ 2

102 = 1

4

Hence

P{|X − 50| < 10} ≥ 1 − 1

4
= 3

4

and so the probability that this week’s production will be between 40 and 60 is at
least .75. ■

By replacing k by kσ in Equation 4.9.1, we can write Chebyshev’s inequality as

P{|X − µ| > kσ } ≤ 1/k2

Thus it states that the probability a random variable differs from its mean by more than k
standard deviations is bounded by 1/k2.

We will end this section by using Chebyshev’s inequality to prove the weak law of large
numbers, which states that the probability that the average of the first n terms in a sequence
of independent and identically distributed random variables differs by its mean by more
than ε goes to 0 as n goes to infinity.

Theorem 4.9.3 The Weak Law of Large Numbers
Let X1, X2, . . . , be a sequence of independent and identically distributed random variables,
each having mean E [Xi] = µ. Then, for any ε > 0,

P
{∣∣∣X1 + · · · + Xn

n
− µ

∣∣∣ > ε

}
→ 0 as n → ∞



130 Chapter 4: Random Variables and Expectation

Proof

We shall prove the result only under the additional assumption that the random variables
have a finite variance σ 2. Now, as

E
[

X1 + · · · + Xn

n

]
= µ and Var

(
X1 + · · · + Xn

n

)
= σ 2

n

it follows from Chebyshev’s inequality that

P
{∣∣∣X1 + · · · + Xn

n
− µ

∣∣∣ > ε

}
≤ σ 2

nε2

and the result is proved. �

For an application of the above, suppose that a sequence of independent trials is
performed. Let E be a fixed event and denote by P(E ) the probability that E occurs
on a given trial. Letting

Xi =
{

1 if E occurs on trial i

0 if E does not occur on trial i

it follows that X1 +X2 +· · ·+Xn represents the number of times that E occurs in the first
n trials. Because E [Xi] = P(E ), it thus follows from the weak law of large numbers that
for any positive number ε, no matter how small, the probability that the proportion of the
first n trials in which E occurs differs from P(E ) by more than ε goes to 0 as n increases.

Problems

1. Five men and 5 women are ranked according to their scores on an examination.
Assume that no two scores are alike and all 10! possible rankings are equally likely.
Let X denote the highest ranking achieved by a woman (for instance, X = 2 if
the top-ranked person was male and the next-ranked person was female). Find
P{X = i}, i = 1, 2, 3, . . . , 8, 9, 10.

2. Let X represent the difference between the number of heads and the number of
tails obtained when a coin is tossed n times. What are the possible values of X ?

3. In Problem 2, if the coin is assumed fair, for n = 3, what are the probabilities
associated with the values that X can take on?
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4. The distribution function of the random variable X is given

F (x) =




0 x < 0
x
2

0 ≤ x < 1

2

3
1 ≤ x < 2

11

12
2 ≤ x < 3

1 3 ≤ x

(a) Plot this distribution function.
(b) What is P{X > 1

2 }?
(c) What is P{2 < X ≤ 4}?
(d) What is P{X < 3}?
(e) What is P{X = 1}?

5. Suppose you are given the distribution function F of a random variable X . Explain
how you could determine P{X = 1}. (Hint: You will need to use the concept of
a limit.)

6. The amount of time, in hours, that a computer functions before breaking down is
a continuous random variable with probability density function given by

f (x) =
{
λe−x/100 x ≥ 0
0 x < 0

What is the probability that a computer will function between 50 and 150 hours
before breaking down? What is the probability that it will function less than
100 hours?

7. The lifetime in hours of a certain kind of radio tube is a random variable having
a probability density function given by

f (x) =
{

0 x ≤ 100
100

x2 x > 100

What is the probability that exactly 2 of 5 such tubes in a radio set will have
to be replaced within the first 150 hours of operation? Assume that the events
Ei , i = 1, 2, 3, 4, 5, that the ith such tube will have to be replaced within this
time are independent.

8. If the density function of X equals

f (x) =
{

ce−2x 0 < x < ∞
0 x < 0

find c. What is P{X > 2}?
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9. A bin of 5 transistors is known to contain 3 that are defective. The transistors are
to be tested, one at a time, until the defective ones are identified. Denote by N1

the number of tests made until the first defective is spotted and by N2 the number
of additional tests until the second defective is spotted; find the joint probability
mass function of N1 and N2.

10. The joint probability density function of X and Y is given by

f (x, y) = 6

7

(
x2 + xy

2

)
, 0 < x < 1, 0 < y < 2

(a) Verify that this is indeed a joint density function.
(b) Compute the density function of X .
(c) Find P{X > Y }.

11. Let X1, X2, . . . , Xn be independent random variables, each having a uniform distri-
bution over (0, 1). Let M =maximum (X1, X2, . . . , Xn). Show that the distribution
function of M , FM (·), is given by

FM (x) = xn, 0 ≤ x ≤ 1

What is the probability density function of M ?

12. The joint density of X and Y is given by

f (x, y) =
{

xe(−x+y) x > 0, y > 0

0 otherwise

(a) Compute the density of X .
(b) Compute the density of Y .
(c) Are X and Y independent?

13. The joint density of X and Y is

f (x, y) =
{

2 0 < x < y, 0 < y < 1

0 otherwise

(a) Compute the density of X .
(b) Compute the density of Y .
(c) Are X and Y independent?

14. If the joint density function of X and Y factors into one part depending only on
x and one depending only on y, show that X and Y are independent. That is, if

f (x, y) = k(x)l ( y), −∞ < x < ∞, −∞ < y < ∞
show that X and Y are independent.
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15. Is Problem 14 consistent with the results of Problems 12 and 13?

16. Suppose that X and Y are independent continuous random variables. Show that

(a) P{X + Y ≤ a} =
∫ ∞

−∞
FX (a − y)fY ( y) dy

(b) P{X ≤ Y } =
∫ ∞

−∞
FX ( y)fY ( y) dy

where fY is the density function of Y , and FX is the distribution function
of X .

17. When a current I (measured in amperes) flows through a resistance R (measured
in ohms), the power generated (measured in watts) is given by W = I 2R. Suppose
that I and R are independent random variables with densities

fI (x) = 6x(1 − x) 0 ≤ x ≤ 1

fR (x) = 2x 0 ≤ x ≤ 1

Determine the density function of W .

18. In Example 4.3b, determine the conditional probability mass function of the size
of a randomly chosen family containing 2 girls.

19. Compute the conditional density function of X given Y = y in (a) Problem 10
and (b) Problem 13.

20. Show that X and Y are independent if and only if

(a) PX /Y
(x/y) = pX (x) in the discrete case

(b) fX /Y
(x/y) = fX (x) in the continuous case

21. Compute the expected value of the random variable in Problem 1.

22. Compute the expected value of the random variable in Problem 3.

23. Each night different meteorologists give us the “probability” that it will rain the
next day. To judge how well these people predict, we will score each of them as
follows: If a meteorologist says that it will rain with probability p, then he or she
will receive a score of

1 − (1 − p)2 if it does rain
1 − p2 if it does not rain

We will then keep track of scores over a certain time span and conclude that
the meteorologist with the highest average score is the best predictor of weather.
Suppose now that a given meteorologist is aware of this and so wants to maximize
his or her expected score. If this individual truly believes that it will rain tomorrow
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with probability p∗, what value of p should he or she assert so as to maximize the
expected score?

24. An insurance company writes a policy to the effect that an amount of money A
must be paid if some event E occurs within a year. If the company estimates that
E will occur within a year with probability p, what should it charge the customer
so that its expected profit will be 10 percent of A?

25. A total of 4 buses carrying 148 students from the same school arrive at a football
stadium. The buses carry, respectively, 40, 33, 25, and 50 students. One of the
students is randomly selected. Let X denote the number of students that were on
the bus carrying this randomly selected student. One of the 4 bus drivers is also
randomly selected. Let Y denote the number of students on her bus.

(a) Which of E [X ] or E [Y ] do you think is larger? Why?
(b) Compute E [X ] and E [Y ].

26. Suppose that two teams play a series of games that end when one of them has won
i games. Suppose that each game played is, independently, won by team A with
probability p. Find the expected number of games that are played when i = 2.
Also show that this number is maximized when p = 1

2 .

27. The density function of X is given by

f (x) =
{

a + bx2 0 ≤ x ≤ 1

0 otherwise

If E [X ] = 3
5 , find a, b.

28. The lifetime in hours of electronic tubes is a random variable having a probability
density function given by

f (x) = a2xe−ax , x ≥ 0

Compute the expected lifetime of such a tube.

29. Let X1, X2, . . . , Xn be independent random variables having the common density
function

f (x) =
{

1 0 < x < 1

0 otherwise

Find (a) E [Max(Xi , . . . , Xn)] and (b) E [Min(X1, . . . , Xn)].
30. Suppose that X has density function

f (x) =
{

1 0 < x < 1

0 otherwise
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Compute E [X n] (a) by computing the density of Xn and then using the definition
of expectation and (b) by using Proposition 4.5.1.

31. The time it takes to repair a personal computer is a random variable whose density,
in hours, is given by

f (x) =
{

1
2 0 < x < 2

0 otherwise

The cost of the repair depends on the time it takes and is equal to 40 + 30
√

x
when the time is x. Compute the expected cost to repair a personal computer.

32. If E [X ] = 2 and E [X 2] = 8, calculate (a) E [(2+4X )2)] and (b) E [X 2+(X +1)2].
33. Ten balls are randomly chosen from an urn containing 17 white and 23 black

balls. Let X denote the number of white balls chosen. Compute E [X ]
(a) by defining appropriate indicator variables Xi , i = 1, . . . , 10 so that

X =
10∑

i=1

Xi

(b) by defining appropriate indicator variables Yi , = 1, . . . , 17 so that

X =
17∑

i=1

Yi

34. If X is a continuous random variable having distribution function F , then its
median is defined as that value of m for which

F (m) = 1/2

Find the median of the random variables with density function

(a) f (x) = e−x , x ≥ 0;

(b) f (x) = 1, 0 ≤ x ≤ 1.

35. The median, like the mean, is important in predicting the value of a random
variable. Whereas it was shown in the text that the mean of a random variable
is the best predictor from the point of view of minimizing the expected value of
the square of the error, the median is the best predictor if one wants to minimize
the expected value of the absolute error. That is, E [|X − c|] is minimized when
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c is the median of the distribution function of X . Prove this result when X is
continuous with distribution function F and density function f . (Hint: Write

E [|X − c|] =
∫ ∞

−∞
|x − c| f (x) dx

=
∫ c

−∞
|x − c| f (x) dx +

∫ ∞

c
|x − c| f (x) dx

=
∫ c

−∞
(c − x)f (x) dx +

∫ ∞

c
(x − c)f (x) dx

= cF (c) −
∫ c

−∞
xf (x) dx +

∫ ∞

c
xf (x) dx − c[1 − F (c)]

Now, use calculus to find the minimizing value of c.)

36. We say that mp is the 100p percentile of the distribution function F if

F (mp) = p

Find mp for the distribution having density function

f (x) = 2e−2x , x ≥ 0

37. A community consists of 100 married couples. If during a given year 50 of the
members of the community die, what is the expected number of marriages that
remain intact? Assume that the set of people who die is equally likely to be any of

the
(

200
50

)
groups of size 50. (Hint: For i = 1, . . . , 100 let

Xi =
{

1 if neither member of couple i dies

0 otherwise

38. Compute the expectation and variance of the number of successes in n indepen-
dent trials, each of which results in a success with probability p. Is independence
necessary?

39. Suppose that X is equally likely to take on any of the values 1, 2, 3, 4. Compute
(a) E [X ] and (b) Var(X ).

40. Let pi = P{X = i} and suppose that p1 + p2 + p3 = 1. If E [X ] = 2, what values
of p1, p2, p3 (a) maximize and (b) minimize Var(X )?

41. Compute the mean and variance of the number of heads that appear in 3 flips of
a fair coin.
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42. Argue that for any random variable X

E [X 2] ≥ (E [X ])2

When does one have equality?

43. A random variable X , which represents the weight (in ounces) of an article, has
density function given by f (z),

f (z) =



(z − 8) for 8 ≤ z ≤ 9
(10 − z) for 9 < z ≤ 10
0 otherwise

(a) Calculate the mean and variance of the random variable X .
(b) The manufacturer sells the article for a fixed price of $2.00. He guarantees

to refund the purchase money to any customer who finds the weight of his
article to be less than 8.25 oz. His cost of production is related to the weight
of the article by the relation x/15 + .35. Find the expected profit per article.

44. Suppose that the Rockwell hardness X and abrasion loss Y of a specimen (coded
data) have a joint density given by

fXY (u, v) =
{

u + v for 0 ≤ u, v ≤ 1

0 otherwise

(a) Find the marginal densities of X and Y .
(b) Find E (X ) and Var(X ).

45. A product is classified according to the number of defects it contains and the
factory that produces it. Let X1 and X2 be the random variables that represent
the number of defects per unit (taking on possible values of 0, 1, 2, or 3) and the
factory number (taking on possible values 1 or 2), respectively. The entries in the
table represent the joint possibility mass function of a randomly chosen product.

X2
X1 1 2�
0 1

8
1
16

1 1
16

1
16

2 3
16

1
8

3 1
8

1
4

(a) Find the marginal probability distributions of X1 and X2.
(b) Find E [(X1)], E [(X2)], Var(X1), Var(X2), and Cov(X1, X2).
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46. A machine makes a product that is screened (inspected 100 percent) before being
shipped. The measuring instrument is such that it is difficult to read between 1 and
11

3 (coded data). After the screening process takes place, the measured dimension
has density

f (z) =



kz2 for 0 ≤ z ≤ 1
1 for 1 < z ≤ 11

3
0 otherwise

(a) Find the value of k.
(b) What fraction of the items will fall outside the twilight zone (fall between

0 and 1)?
(c) Find the mean and variance of this random variable.

47. Verify Equation 4.7.4.

48. Prove Equation 4.7.5 by using mathematical induction.

49. Let X have variance σ 2
x and let Y have variance σ 2

y . Starting with

0 ≤ Var(X /σx + Y /σy)

show that

−1 ≤ Corr(X , Y )

Now using that

0 ≤ Var(X /σx − Y /σy)

conclude that

−1 ≤ Corr(X , Y ) ≤ 1

Using the result that Var(Z ) = 0 implies that Z is constant, argue that if
Corr(X , Y ) = 1 or −1 then X and Y are related by

Y = a + bx

where the sign of b is positive when the correlation is 1 and negative when it
is −1.

50. Consider n independent trials, each of which results in any of the outcomes i, i =
1, 2, 3, with respective probabilities p1, p2, p3,

∑3
i=1 pi = 1. Let Ni denote the
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number of trials that result in outcome i, and show that Cov(N1, N2) = −np1p2.
Also explain why it is intuitive that this covariance is negative. (Hint: For i =
1, . . . , n, let

Xi =
{

1 if trial i results in outcome 1

0 if trial i does not result in outcome 1

Similarly, for j = 1, . . . , n, let

Yj =
{

1 if trial j results in outcome 2

0 if trial j does not result in outcome 2

Argue that

N1 =
n∑

i=1

Xi , N2 =
n∑

j=1

Yj

Then use Proposition 4.7.2 and Theorem 4.7.4.)

51. In Example 4.5f, compute Cov(Xi , Xj ) and use this result to show that Var(X ) = 1.

52. If X1 and X2 have the same probability distribution function, show that

Cov(X1 − X2, X1 + X2) = 0

Note that independence is not being assumed.

53. Suppose that X has density function

f (x) = e−x , x > 0

Compute the moment generating function of X and use your result to determine
its mean and variance. Check your answer for the mean by a direct calculation.

54. If the density function of X is

f (x) = 1, 0 < x < 1

determine E [etX ]. Differentiate to obtain E [X n] and then check your answer.

55. Suppose that X is a random variable with mean and variance both equal to 20.
What can be said about P{0 ≤ X ≤ 40}?
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56. From past experience, a professor knows that the test score of a student taking her
final examination is a random variable with mean 75.

(a) Give an upper bound to the probability that a student’s test score will
exceed 85.
Suppose in addition the professor knows that the variance of a student’s test
score is equal to 25.

(b) What can be said about the probability that a student will score between
65 and 85?

(c) How many students would have to take the examination so as to ensure, with
probability at least .9, that the class average would be within 5 of 75?

57. Let X and Y have respective distribution functions FX and FY , and suppose that
for some constants a and b > 0,

FX (x) = FY

(
x − a

b

)

(a) Determine E [X ] in terms of E [Y ].
(b) Determine Var(X ) in terms of Var(Y ).

Hint: X has the same distribution as what other random variable?



Chapter 5

SPECIAL RANDOM VARIABLES

Certain types of random variables occur over and over again in applications. In this chapter,
we will study a variety of them.

5.1 THE BERNOULLI AND BINOMIAL
RANDOM VARIABLES

Suppose that a trial, or an experiment, whose outcome can be classified as either a “success”
or as a “failure” is performed. If we let X = 1 when the outcome is a success and X = 0
when it is a failure, then the probability mass function of X is given by

P{X = 0} = 1 − p (5.1.1)

P{X = 1} = p

where p, 0 ≤ p ≤ 1, is the probability that the trial is a “success.”
A random variable X is said to be a Bernoulli random variable (after the Swiss mathe-

matician James Bernoulli) if its probability mass function is given by Equations 5.1.1 for
some p ∈ (0, 1). Its expected value is

E [X ] = 1 · P{X = 1} + 0 · P{X = 0} = p

That is, the expectation of a Bernoulli random variable is the probability that the random
variable equals 1.

Suppose now that n independent trials, each of which results in a “success” with prob-
ability p and in a “failure” with probability 1 − p, are to be performed. If X represents
the number of successes that occur in the n trials, then X is said to be a binomial random
variable with parameters (n, p).

141
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The probability mass function of a binomial random variable with parameters n and p
is given by

P{X = i} =
(

n
i

)
pi(1 − p)n−i , i = 0, 1, . . . , n (5.1.2)

where
( n

i

) = n!/[i!(n − i)!] is the number of different groups of i objects that can be
chosen from a set of n objects. The validity of Equation 5.1.2 may be verified by first
noting that the probability of any particular sequence of the n outcomes containing i
successes and n − i failures is, by the assumed independence of trials, pi(1 − p)n−i .
Equation 5.1.2 then follows since there are

( n
i

)
different sequences of the n outcomes

leading to i successes and n − i failures — which can perhaps most easily be seen by
noting that there are

(n
i

)
different selections of the i trials that result in successes. For

instance, if n = 5, i = 2, then there are
( 5

2

)
choices of the two trials that are to result in

successes — namely, any of the outcomes

(s, s, f , f , f ) ( f , s, s, f , f ) ( f , f , s, f , s)

(s, f , s, f , f ) ( f , s, f , s, f )

(s, f , f , s, f ) ( f , s, f , f , s) ( f , f , f , s, s)

(s, f , f , f , s) ( f , f , s, s, f )

where the outcome ( f , s, f , s, f ) means, for instance, that the two successes appeared on
trials 2 and 4. Since each of the

(5
2

)
outcomes has probability p2(1 − p)3, we see that the

probability of a total of 2 successes in 5 independent trials is
( 5

2

)
p2(1 − p)3. Note that, by

the binomial theorem, the probabilities sum to 1, that is,

∞∑
i=0

p(i) =
n∑

i=0

(n
i

)
pi(1 − p)n−i = [p + (1 − p)]n = 1

The probability mass function of three binomial random variables with respective param-
eters (10, .5), (10, .3), and (10, .6) are presented in Figure 5.1. The first of these is
symmetric about the value .5, whereas the second is somewhat weighted, or skewed, to
lower values and the third to higher values.

EXAMPLE 5.1a It is known that disks produced by a certain company will be defective
with probability .01 independently of each other. The company sells the disks in packages
of 10 and offers a money-back guarantee that at most 1 of the 10 disks is defective.
What proportion of packages is returned? If someone buys three packages, what is the
probability that exactly one of them will be returned?

SOLUTION If X is the number of defective disks in a package, then assuming that customers
always take advantage of the guarantee, it follows that X is a binomial random variable
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FIGURE 5.1 Binomial probability mass functions.

with parameters (10, .01). Hence the probability that a package will have to be replaced is

P{X > 1} = 1 − P{X = 0} − P{X = 1}

= 1 −
(

10

0

)
(.01)0(.99)10 −

(
10

1

)
(.01)1(.99)9 ≈ .005
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Because each package will, independently, have to be replaced with probability .005, it
follows from the law of large numbers that in the long run .5 percent of the packages will
have to be replaced.

It follows from the foregoing that the number of packages that the person will have to
return is a binomial random variable with parameters n = 3 and p = .005. Therefore, the

probability that exactly one of the three packages will be returned is
(

3
1

)
(.005)(.995)2 =

.015. ■

EXAMPLE 5.1b The color of one’s eyes is determined by a single pair of genes, with the gene
for brown eyes being dominant over the one for blue eyes. This means that an individual
having two blue-eyed genes will have blue eyes, while one having either two brown-eyed
genes or one brown-eyed and one blue-eyed gene will have brown eyes. When two people
mate, the resulting offspring receives one randomly chosen gene from each of its parents’
gene pair. If the eldest child of a pair of brown-eyed parents has blue eyes, what is the
probability that exactly two of the four other children (none of whom is a twin) of this
couple also have blue eyes?

SOLUTION To begin, note that since the eldest child has blue eyes, it follows that both
parents must have one blue-eyed and one brown-eyed gene. (For if either had two brown-
eyed genes, then each child would receive at least one brown-eyed gene and would thus
have brown eyes.) The probability that an offspring of this couple will have blue eyes is
equal to the probability that it receives the blue-eyed gene from both parents, which is( 1

2

)( 1
2

) = 1
4 . Hence, because each of the other four children will have blue eyes with

probability 1
4 , it follows that the probability that exactly two of them have this eye color is

(
4

2

)
(1/4)2(3/4)2 = 27/128 ■

EXAMPLE 5.1c A communications system consists of n components, each of which will,
independently, function with probability p. The total system will be able to operate
effectively if at least one-half of its components function.

(a) For what values of p is a 5-component system more likely to operate effectively
than a 3-component system?

(b) In general, when is a 2k + 1 component system better than a 2k − 1 component
system?

SOLUTION
(a) Because the number of functioning components is a binomial random variable

with parameters (n, p), it follows that the probability that a 5-component system
will be effective is (

5

3

)
p3(1 − p)2 +

(
5

4

)
p4(1 − p) + p5
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whereas the corresponding probability for a 3-component system is(
3

2

)
p2(1 − p) + p3

Hence, the 5-component system is better if

10p3(1 − p)2 + 5p4(1 − p) + p5 ≥ 3p2(1 − p) + p3

which reduces to

3( p − 1)2(2p − 1) ≥ 0

or

p ≥ 1

2

(b) In general, a system with 2k + 1 components will be better than one with 2k − 1
components if (and only if) p ≥ 1

2 . To prove this, consider a system of 2k + 1
components and let X denote the number of the first 2k − 1 that function. Then

P2k+1(effective)=P{X ≥k+1}+P{X =k}(1−(1−p)2)+P{X =k−1}p2

which follows since the 2k + 1 component system will be effective if either

(1) X ≥ k + 1;
(2) X = k and at least one of the remaining 2 components function; or
(3) X = k − 1 and both of the next 2 function.

Because

P2k−1(effective) = P{X ≥ k}
= P{X = k} + P{X ≥ k + 1}

we obtain that

P2k+1(effective) − P2k−1(effective)

= P{X = k − 1} p2 − (1 − p)2P{X = k}

=
(

2k − 1

k − 1

)
pk−1(1 − p)kp2 − (1 − p)2

(
2k − 1

k

)
pk(1 − p)k−1

=
(

2k − 1

k

)
pk(1 − p)k[p − (1 − p)] since

(
2k − 1

k − 1

)
=
(

2k − 1

k

)

≥ 0 ⇔ p ≥ 1

2
■
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EXAMPLE 5.1d Suppose that 10 percent of the chips produced by a computer hardware
manufacturer are defective. If we order 100 such chips, will X, the number of defective
ones we receive, be a binomial random variable?

SOLUTION The random variable X will be a binomial random variable with parameters
(100, .1) if each chip has probability .9 of being functional and if the functioning of
successive chips is independent. Whether this is a reasonable assumption when we know
that 10 percent of the chips produced are defective depends on additional factors. For
instance, suppose that all the chips produced on a given day are always either functional
or defective (with 90 percent of the days resulting in functional chips). In this case, if we
know that all of our 100 chips were manufactured on the same day, then X will not be
a binomial random variable. This is so since the independence of successive chips is not
valid. In fact, in this case, we would have

P{X = 100} = .1

P{X = 0} = .9 ■

Since a binomial random variable X, with parameters n and p, represents the number of
successes in n independent trials, each having success probability p, we can represent X as
follows:

X =
n∑

i=1

Xi (5.1.3)

where

Xi =
{

1 if the ith trial is a success

0 otherwise

Because the Xi , i = 1, . . . , n are independent Bernoulli random variables, we have that

E [Xi] = P{Xi = 1} = p

Var(Xi) = E [X 2
i ] − p2

= p(1 − p)

where the last equality follows since X 2
i = Xi , and so E [X 2

i ] = E [Xi] = p.
Using the representation Equation 5.1.3, it is now an easy matter to compute the mean

and variance of X:

E [X ] =
n∑

i=1

E [Xi]

= np
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Var(X ) =
n∑

i=1

Var(Xi) since the Xi are independent

= np(1 − p)

If X1 and X2 are independent binomial random variables having respective parameters
(ni , p), i = 1, 2, then their sum is binomial with parameters (n1 + n2, p). This can most
easily be seen by noting that because Xi , i = 1, 2, represents the number of successes in ni

independent trials each of which is a success with probability p, then X1 + X2 represents
the number of successes in n1 + n2 independent trials each of which is a success with
probability p. Therefore, X1 + X2 is binomial with parameters (n1 + n2, p).

5.1.1 Computing the Binomial Distribution Function

Suppose that X is binomial with parameters (n, p). The key to computing its distribution
function

P{X ≤ i} =
i∑

k=0

(
n
k

)
pk(1 − p)n−k , i = 0, 1, . . . , n

is to utilize the following relationship between P{X = k + 1} and P{X = k}:

P{X = k + 1} = p
1 − p

n − k
k + 1

P{X = k} (5.1.4)

The proof of this equation is left as an exercise.

EXAMPLE 5.1e Let X be a binomial random variable with parameters n = 6, p = .4. Then,
starting with P{X = 0} = (.6)6 and recursively employing Equation 5.1.4, we obtain

P{X = 0} = (.6)6 = .0467

P{X = 1} = 4
6

6
1P{X = 0} = .1866

P{X = 2} = 4
6

5
2P{X = 1} = .3110

P{X = 3} = 4
6

4
3P{X = 2} = .2765

P{X = 4} = 4
6

3
4P{X = 3} = .1382

P{X = 5} = 4
6

2
5P{X = 4} = .0369

P{X = 6} = 4
6

1
6P{X = 5} = .0041. ■

The text disk uses Equation 5.1.4 to compute binomial probabilities. In using it, one enters
the binomial parameters n and p and a value i and the program computes the probabilities
that a binomial (n, p) random variable is equal to and is less than or equal to i.



148 Chapter 5: Special Random Variables

Binomial Distribution

Enter Value For p:

Enter Value For n:

Enter Value For i:

.75

100

70

Probability (Number of Successes = i)

Probability (Number of Successes <= i)

.04575381

.14954105

Start

Quit

FIGURE 5.2

EXAMPLE 5.1f If X is a binomial random variable with parameters n = 100 and p = .75,
find P{X = 70} and P{X ≤ 70}.
SOLUTION The text disk gives the answers shown in Figure 5.2. ■

5.2 THE POISSON RANDOM VARIABLE
A random variable X, taking on one of the values 0, 1, 2, . . . , is said to be a Poisson
random variable with parameter λ, λ > 0, if its probability mass function is given by

P{X = i} = e−λ λi

i! , i = 0, 1, . . . (5.2.1)

The symbol e stands for a constant approximately equal to 2.7183. It is a famous constant in
mathematics, named after the Swiss mathematician L. Euler, and it is also the base of the
so-called natural logarithm.

Equation 5.2.1 defines a probability mass function, since

∞∑
i=0

p(i) = e−λ
∞∑

i=0

λi/i! = e−λeλ = 1

A graph of this mass function when λ = 4 is given in Figure 5.3.
The Poisson probability distribution was introduced by S. D. Poisson in a book he wrote

dealing with the application of probability theory to lawsuits, criminal trials, and the like.
This book, published in 1837, was entitled Recherches sur la probabilité des jugements en
matière criminelle et en matière civile.
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FIGURE 5.3 The Poisson probability mass function with λ = 4.

As a prelude to determining the mean and variance of a Poisson random variable, let
us first determine its moment generating function.

φ(t ) = E [etX ]

=
∞∑

i=0

eti e−λλi/i!

= e−λ
∞∑

i=0

(λet )i/i!

= e−λeλet

= exp{λ(et − 1)}

Differentiation yields

φ′(t ) = λet exp{λ(et − 1)}
φ′′(t ) = (λet )2 exp{λ(et − 1)} + λet exp{λ(et − 1)}
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Evaluating at t = 0 gives that

E [X ] = φ′(0) = λ

Var(X ) = φ′′(0) − (E [X ])2
= λ2 + λ − λ2 = λ

Thus both the mean and the variance of a Poisson random variable are equal to the
parameter λ.

The Poisson random variable has a wide range of applications in a variety of areas because
it may be used as an approximation for a binomial random variable with parameters (n, p)
when n is large and p is small. To see this, suppose that X is a binomial random variable
with parameters (n, p) and let λ = np. Then

P{X = i} = n!
(n − 1)!i!p

i(1 − p)n−i

= n!
(n − 1)!i!

(
λ

n

)i (
1 − λ

n

)n−i

= n(n − 1) . . . (n − i + 1)

ni

λi

i!
(1 − λ/n)n

(1 − λ/n)i

Now, for n large and p small,(
1 − λ

n

)n

≈ e−λ n(n − 1) . . . (n − i + 1)

ni ≈ 1

(
1 − λ

n

)i

≈ 1

Hence, for n large and p small,

P{X = i} ≈ e−λ λi

i!
In other words, if n independent trials, each of which results in a “success” with probability
p, are performed, then when n is large and p small, the number of successes occurring is
approximately a Poisson random variable with mean λ = np.

Some examples of random variables that usually obey, to a good approximation, the
Poisson probability law (that is, they usually obey Equation 5.2.1 for some value of λ) are:

1. The number of misprints on a page (or a group of pages) of a book.

2. The number of people in a community living to 100 years of age.

3. The number of wrong telephone numbers that are dialed in a day.

4. The number of transistors that fail on their first day of use.

5. The number of customers entering a post office on a given day.
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6. The number of α-particles discharged in a fixed period of time from some radioactive
particle.

Each of the foregoing, and numerous other random variables, is approximately Poisson
for the same reason — namely, because of the Poisson approximation to the binomial. For
instance, we can suppose that there is a small probability p that each letter typed on a page
will be misprinted, and so the number of misprints on a given page will be approximately
Poisson with mean λ = np where n is the (presumably) large number of letters on that
page. Similarly, we can suppose that each person in a given community, independently, has
a small probability p of reaching the age 100, and so the number of people that do will have
approximately a Poisson distribution with mean np where n is the large number of people
in the community. We leave it for the reader to reason out why the remaining random
variables in examples 3 through 6 should have approximately a Poisson distribution.

EXAMPLE 5.2a Suppose that the average number of accidents occurring weekly on a par-
ticular stretch of a highway equals 3. Calculate the probability that there is at least one
accident this week.

SOLUTION Let X denote the number of accidents occurring on the stretch of highway in
question during this week. Because it is reasonable to suppose that there are a large number
of cars passing along that stretch, each having a small probability of being involved in
an accident, the number of such accidents should be approximately Poisson distributed.
Hence,

P{X ≥ 1} = 1 − P{X = 0}

= 1 − e−3 30

0!
= 1 − e−3

≈ .9502 ■

EXAMPLE 5.2b Suppose the probability that an item produced by a certain machine will
be defective is .1. Find the probability that a sample of 10 items will contain at most one
defective item. Assume that the quality of successive items is independent.

SOLUTION The desired probability is
(10

0

)
(.1)0(.9)10 + (10

1

)
(.1)1(.9)9 = .7361, whereas

the Poisson approximation yields the value

e−1 10

0! + e−1 11

1! = 2e−1 ≈ .7358 ■

EXAMPLE 5.2c Consider an experiment that consists of counting the number of α parti-
cles given off in a one-second interval by one gram of radioactive material. If we know
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from past experience that, on the average, 3.2 such α-particles are given off, what is a good
approximation to the probability that no more than 2 α-particles will appear?

SOLUTION If we think of the gram of radioactive material as consisting of a large number n
of atoms each of which has probability 3.2/n of disintegrating and sending off an α-particle
during the second considered, then we see that, to a very close approximation, the number
of α-particles given off will be a Poisson random variable with parameter λ = 3.2. Hence
the desired probability is

P{X ≤ 2} = e−3.2 + 3.2e−3.2 + (3.2)2

2
e−3.2

= .382 ■

EXAMPLE 5.2d If the average number of claims handled daily by an insurance company is
5, what proportion of days have less than 3 claims? What is the probability that there will
be 4 claims in exactly 3 of the next 5 days? Assume that the number of claims on different
days is independent.

SOLUTION Because the company probably insures a large number of clients, each having a
small probability of making a claim on any given day, it is reasonable to suppose that the
number of claims handled daily, call it X, is a Poisson random variable. Since E (X ) = 5,
the probability that there will be fewer than 3 claims on any given day is

P{X ≤ 3} = P{X = 0} + P{X = 1} + P{X = 2}

= e−5 + e−5 51

1! + e−5 52

2!
= 37

2
e−5

≈ .1247

Since any given day will have fewer than 3 claims with probability .125, it follows, from
the law of large numbers, that over the long run 12.5 percent of days will have fewer than
3 claims.

It follows from the assumed independence of the number of claims over successive days
that the number of days in a 5-day span that has exactly 4 claims is a binomial random
variable with parameters 5 and P{X = 4}. Because

P{X = 4} = e−5 54

4! ≈ .1755

it follows that the probability that 3 of the next 5 days will have 4 claims is equal to(
5

3

)
(.1755)3(.8245)2 ≈ .0367 ■
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The Poisson approximation result can be shown to be valid under even more general
conditions than those so far mentioned. For instance, suppose that n independent trials
are to be performed, with the ith trial resulting in a success with probability pi , i = 1, . . . , n.
Then it can be shown that if n is large and each pi is small, then the number of successful
trials is approximately Poisson distributed with mean equal to

∑n
i=1 pi . In fact, this

result will sometimes remain true even when the trials are not independent, provided that
their dependence is “weak.” For instance, consider the following example.

EXAMPLE 5.2e At a party n people put their hats in the center of a room, where the
hats are mixed together. Each person then randomly chooses a hat. If X denotes the
number of people who select their own hat then, for large n, it can be shown that X has
approximately a Poisson distribution with mean 1. To see why this might be true, let

Xi =
{

1 if the ith person selects his or her own hat

0 otherwise

Then we can express X as
X = X1 + · · · + Xn

and so X can be regarded as representing the number of “successes” in n “trials” where trial
i is said to be a success if the ith person chooses his own hat. Now, since the ith person is
equally likely to end up with any of the n hats, one of which is his own, it follows that

P{Xi = 1} = 1

n
(5.2.2)

Suppose now that i �= j and consider the conditional probability that the ith person
chooses his own hat given that the jth person does — that is, consider P{Xi = 1|Xj = 1}.
Now given that the jth person indeed selects his own hat, it follows that the ith individual
is equally likely to end up with any of the remaining n−1, one of which is his own. Hence,
it follows that

P{Xi = 1|Xj = 1} = 1

n − 1
(5.2.3)

Thus, we see from Equations 5.2.2 and 5.2.3 that whereas the trials are not independent,
their dependence is rather weak [since, if the above conditional probability were equal to
1/n rather than 1/(n − 1), then trials i and j would be independent]; and thus it is not
at all surprising that X has approximately a Poisson distribution. The fact that E [X ] = 1
follows since

E [X ] = E [X1 + · · · + Xn]
= E [X1] + · · · + E [Xn]

= n
(

1

n

)
= 1
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The last equality follows since, from Equation 5.2.2,

E [Xi] = P{Xi = 1} = 1

n
■

The Poisson distribution possesses the reproductive property that the sum of indepen-
dent Poisson random variables is also a Poisson random variable. To see this, suppose that
X1 and X2 are independent Poisson random variables having respective means λ1 and λ2.
Then the moment generating function of X1 + X2 is as follows:

E [et (X1+X2)] = E [etX1etX2]
= E [etX1]E [etX2] by independence

= exp{λ1(et − 1)} exp{λ2(et − 1)}
= exp{(λ1 + λ2)(et − 1)}

Because exp{(λ1 + λ2)(et − 1)} is the moment generating function of a Poisson random
variable having mean λ1 +λ2, we may conclude, from the fact that the moment generating
function uniquely specifies the distribution, that X1 + X2 is Poisson with mean λ1 + λ2.

EXAMPLE 5.2f It has been established that the number of defective stereos produced daily
at a certain plant is Poisson distributed with mean 4. Over a 2-day span, what is the
probability that the number of defective stereos does not exceed 3?

SOLUTION Assuming that X1, the number of defectives produced during the first day, is
independent of X2, the number produced during the second day, then X1 + X2 is Poisson
with mean 8. Hence,

P{X1 + X2 ≤ 3} =
3∑

i=0

e−8 8i

i! = .04238 ■

Consider now a situation in which a random number, call it N, of events will occur, and
suppose that each of these events will independently be a type 1 event with probability p or
a type 2 event with probability 1 − p. Let N1 and N2 denote, respectively, the numbers of
type 1 and type 2 events that occur. (So N = N1 + N2.) If N is Poisson distributed
with mean λ, then the joint probability mass function of N1 and N2 is obtained as
follows.

P{N1 = n, N2 = m} = P{N1 = n, N2 = m, N = n + m}
= P{N1 = n, N2 = m|N = n + m}P{N = n + m}

= P{N1 = n, N2 = m|N = n + m}e−λ λn+m

(n + m)!
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Now, given a total of n + m events, because each one of these events is independently
type 1 with probability p, it follows that the conditional probability that there are exactly
n type 1 events (and m type 2 events) is the probability that a binomial (n + m, p) random
variable is equal to n. Consequently,

P{N1 = n, N2 = m} = (n + m)!
n!m! pn(1 − p)me−λ λn+m

(n + m)!
= e−λp (λp)n

n! e−λ(1−p) (λ(1 − p))m

m! (5.2.4)

The probability mass function of N1 is thus

P{N1 = n} =
∞∑

m=0

P{N1 = n, N2 = m}

= e−λp (λp)n

n!
∞∑

m=0

e−λ(1−p) (λ(1 − p))m

m!

= e−λp (λp)n

n! (5.2.5)

Similarly,

P{N2 = m} =
∞∑

n=0

P{N1 = n, N2 = m} = e−λ(1−p) (λ(1 − p))m

m! (5.2.6)

It now follows from Equations 5.2.4, 5.2.5, and 5.2.6, that N1 and N2 are independent
Poisson random variables with respective means λp and λ(1 − p).

The preceding result generalizes when each of the Poisson number of events can be
classified into any of r categories, to yield the following important property of the Poisson
distribution: If each of a Poisson number of events having mean λ is independently classified as
being of one of the types 1, . . . , r, with respective probabilities p1, . . . , pr ,

∑r
i=1 pi = 1, then

the numbers of type 1, . . . , r events are independent Poisson random variables with respective
means λp1, . . . , λpr .

5.2.1 Computing the Poisson Distribution Function

If X is Poisson with mean λ, then

P{X = i + 1}
P{X = i} = e−λλi+1/(i + 1)!

e−λλi/i! = λ

i + 1
(5.2.7)
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Starting with P{X = 0} = e−λ, we can use Equation 5.2.7 to successively compute

P{X = 1} = λP{X = 0}
P{X = 2} = λ

2
P{X = 1}

...

P{X = i + 1} = λ

i + 1
P{X = i}

The text disk includes a program that uses Equation 5.2.7 to compute Poisson probabilities.

5.3 THE HYPERGEOMETRIC RANDOM VARIABLE
A bin contains N + M batteries, of which N are of acceptable quality and the other M are
defective. A sample of size n is to be randomly chosen (without replacements) in the sense
that the set of sampled batteries is equally likely to be any of the

(N +M
n

)
subsets of size n.

If we let X denote the number of acceptable batteries in the sample, then

P{X = i} =
(N

i

)( M
n−i

)
(N +M

n

) , i = 0, 1, . . . , min(N , n)∗ (5.3.1)

Any random variable X whose probability mass function is given by Equation 5.3.1 is said
to be a hypergeometric random variable with parameters N , M , n.

EXAMPLE 5.3a The components of a 6-component system are to be randomly chosen from
a bin of 20 used components. The resulting system will be functional if at least 4 of its
6 components are in working condition. If 15 of the 20 components in the bin are in
working condition, what is the probability that the resulting system will be functional?

SOLUTION If X is the number of working components chosen, then X is hypergeometric
with parameters 15, 5, 6. The probability that the system will be functional is

P{X ≥ 4} =
6∑

i = 4

P{X = i}

=

(
15

4

)(
5

2

)
+
(

15

5

)(
5

1

)
+
(

15

6

)(
5

0

)
(

20

6

)

≈ .8687 ■

* We are following the convention that
(m

r
) = 0 if r > m or if r < 0.
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To compute the mean and variance of a hypergeometric random variable whose prob-
ability mass function is given by Equation 5.3.1, imagine that the batteries are drawn
sequentially and let

Xi =
{

1 if the ith selection is acceptable

0 otherwise

Now, since the ith selection is equally likely to be any of the N + M batteries, of which
N are acceptable, it follows that

P{Xi = 1} = N
N + M

(5.3.2)

Also, for i �= j,

P{Xi = 1, Xj = 1} = P{Xi = 1}P{Xj = 1|Xi = 1}
= N

N + M
N − 1

N + M − 1
(5.3.3)

which follows since, given that the ith selection is acceptable, the jth selection is equally
likely to be any of the other N + M − 1 batteries of which N − 1 are acceptable.

To compute the mean and variance of X, the number of acceptable batteries in the
sample of size n, use the representation

X =
n∑

i=1

Xi

This gives

E [X ] =
n∑

i=1

E [Xi] =
n∑

i=1

P{Xi = 1} = nN
N + M

(5.3.4)

Also, Corollary 4.7.3 for the variance of a sum of random variables gives

Var(X ) =
n∑

i=1

Var(Xi) + 2
∑∑
1≤i<j≤n

Cov(Xi , Xj ) (5.3.5)

Now, Xi is a Bernoulli random variable and so

Var(Xi) = P{Xi = 1}(1 − P{Xi = 1}) = N
N + M

M
N + M

(5.3.6)
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Also, for i < j,

Cov(Xi , Xj ) = E [XiXj ] − E [Xi]E [Xj ]
Now, because both Xi and Xj are Bernoulli (that is, 0 − 1) random variables, it follows
that XiXj is a Bernoulli random variable, and so

E [XiXj ] = P{XiXj = 1}
= P{Xi = 1, Xj = 1}

= N (N − 1)

(N + M )(N + M − 1)
from Equation 5.3.3 (5.3.7)

So from Equation 5.3.2 and the foregoing we see that for i �= j,

Cov(Xi , Xj ) = N (N − 1)

(N + M )(N + M − 1)
−
(

N
N + M

)2

= −NM
(N + M )2(N + M − 1)

Hence, since there are
( n

2

)
terms in the second sum on the right side of Equation 5.3.5,

we obtain from Equation 5.3.6

Var(X ) = nNM
(N + M )2

− n(n − 1)NM
(N + M )2(N + M − 1)

= nNM
(N + M )2

(
1 − n − 1

N + M − 1

)
(5.3.8)

If we let p = N /(N +M ) denote the proportion of batteries in the bin that are acceptable,
we can rewrite Equations 5.3.4 and 5.3.8 as follows.

E (X ) = np

Var(X ) = np(1 − p)

[
1 − n − 1

N + M − 1

]

It should be noted that, for fixed p, as N + M increases to ∞, Var(X) converges to
np(1 − p), which is the variance of a binomial random variable with parameters (n, p).
(Why was this to be expected?)

EXAMPLE 5.3b An unknown number, say N, of animals inhabit a certain region.
To obtain some information about the population size, ecologists often perform the
following experiment: They first catch a number, say r, of these animals, mark them
in some manner, and release them. After allowing the marked animals time to disperse
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throughout the region, a new catch of size, say, n is made. Let X denote the number of
marked animals in this second capture. If we assume that the population of animals in the
region remained fixed between the time of the two catches and that each time an animal
was caught it was equally likely to be any of the remaining uncaught animals, it follows
that X is a hypergeometric random variable such that

P{X = i} =
( r

i

) (N −r
n−i

)
(

N
n

) ≡ Pi(N )

Suppose now that X is observed to equal i. That is, the fraction i/n of the animals in
the second catch were marked. By taking this as an approximation of r/N , the proportion
of animals in the region that are marked, we obtain the estimate rn/i of the number of
animals in the region. For instance, if r = 50 animals are initially caught, marked, and
then released, and a subsequent catch of n = 100 animals revealed X = 25 of them
that were marked, then we would estimate the number of animals in the region to be
about 200. ■

There is a relationship between binomial random variables and the hypergeo-
metric distribution that will be useful to us in developing a statistical test concerning
two binomial populations.

EXAMPLE 5.3c Let X and Y be independent binomial random variables having respective
parameters (n, p) and (m, p). The conditional probability mass function of X given that
X + Y = k is as follows.

P{X = i|X + Y = k} = P{X = i, X + Y = k}
P{X + Y = k}

= P{X = i, Y = k − i}
P{X + Y = k}

= P{X = i}P{Y = k − i}
P{X + Y = k}

=

(
n
i

)
pi(1 − p)n−i

(
m

k − i

)
pk−i(1 − p)m−(k−i)

(
n + m

k

)
pk(1 − p)n+m−k

=

(
n
i

)(
m

k − i

)
(

n + m
k

)
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where the next-to-last equality used the fact that X + Y is binomial with parameters
(n + m, p). Hence, we see that the conditional distribution of X given the value of X + Y
is hypergeometric.

It is worth noting that the preceding is quite intuitive. For suppose that n + m inde-
pendent trials, each of which has the same probability of being a success, are performed;
let X be the number of successes in the first n trials, and let Y be the number of successes
in the final m trials. Given a total of k successes in the n + m trials, it is quite intuitive
that each subgroup of k trials is equally likely to consist of those trials that resulted in
successes. That is, the k success trials are distributed as a random selection of k of the
n + m trials, and so the number that are from the first n trials is hypergeometric. ■

5.4 THE UNIFORM RANDOM VARIABLE
A random variable X is said to be uniformly distributed over the interval [α, β] if its
probability density function is given by

f (x) =



1

β − α
if α ≤ x ≤ β

0 otherwise

A graph of this function is given in Figure 5.4. Note that the foregoing meets the
requirements of being a probability density function since

1

β − α

∫ β

α

dx = 1

The uniform distribution arises in practice when we suppose a certain random variable is
equally likely to be near any value in the interval [α, β].

The probability that X lies in any subinterval of [α, β] is equal to the length of that
subinterval divided by the length of the interval [α, β]. This follows since when [a, b]

f(x)

a b

1
b – a

x

FIGURE 5.4 Graph of f (x) for a uniform [α, β].



5.4 The Uniform Random Variable 161

f(x)

a b

1
b – a

a b
x

FIGURE 5.5 Probabilities of a uniform random variable.

is a subinterval of [α, β] (see Figure 5.5),

P{a < X < b} = 1

β − α

∫ b

a
dx

= b − a
β − α

EXAMPLE 5.4a If X is uniformly distributed over the interval [0, 10], compute the
probability that (a) 2 < X < 9, (b) 1 < X < 4, (c) X < 5, (d) X > 6.

SOLUTION The respective answers are (a) 7/10, (b) 3/10, (c) 5/10, (d) 4/10. ■

EXAMPLE 5.4b Buses arrive at a specified stop at 15-minute intervals starting at 7 A.M. That
is, they arrive at 7, 7:15, 7:30, 7:45, and so on. If a passenger arrives at the stop at a time
that is uniformly distributed between 7 and 7:30, find the probability that he waits

(a) less than 5 minutes for a bus;
(b) at least 12 minutes for a bus.

SOLUTION Let X denote the time in minutes past 7 A.M. that the passenger arrives at the
stop. Since X is a uniform random variable over the interval (0, 30), it follows that the
passenger will have to wait less than 5 minutes if he arrives between 7:10 and 7:15 or
between 7:25 and 7:30. Hence, the desired probability for (a) is

P{10 < X < 15} + P{25 < X < 30} = 5
30 + 5

30 = 1
3

Similarly, he would have to wait at least 12 minutes if he arrives between 7 and 7:03 or
between 7:15 and 7:18, and so the probability for (b) is

P{0 < X < 3} + P{15 < X < 18} = 3
30 + 3

30 = 1
5 ■
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The mean of a uniform [α, β] random variable is

E [X ] =
∫ β

α

x
β − α

dx

= β2 − α2

2(β − α)

= (β − α)(β + α)

2(β − α)

or

E [X ] = α + β

2

Or, in other words, the expected value of a uniform [α, β] random variable is equal to the
midpoint of the interval [α, β], which is clearly what one would expect. (Why?)

The variance is computed as follows.

E [X 2] = 1

β − α

∫ β

α

x2dx

= β3 − α3

3(β − α)

= β2 + αβ + α2

3

and so

Var(X ) = β2 + αβ + α2

3
−
(

α + β

2

)2

= α2 + β2 − 2αβ

12

= (β − α)2

12

EXAMPLE 5.4c The current in a semiconductor diode is often measured by the Shockley
equation

I = I0(eaV − 1)

where V is the voltage across the diode; I0 is the reverse current; a is a constant; and I is
the resulting diode current. Find E[I] if a = 5, I0 = 10−6, and V is uniformly distributed
over (1, 3).
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SOLUTION

E [I ] = E [I0(eaV − 1)]
= I0E [eaV − 1]
= I0(E [eaV ] − 1)

= 10−6
∫ 3

1
e5x 1

2
dx − 10−6

= 10−7(e15 − e5) − 10−6

≈ .3269 ■

The value of a uniform (0, 1) random variable is called a random number. Most com-
puter systems have a built-in subroutine for generating (to a high level of approximation)
sequences of independent random numbers — for instance, Table 5.1 presents a set of
independent random numbers generated by an IBM personal computer. Random numbers
are quite useful in probability and statistics because their use enables one to empirically
estimate various probabilities and expectations.

TABLE 5.1 A Random Number Table

.68587 .25848 .85227 .78724 .05302 .70712 .76552 .70326 .80402 .49479

.73253 .41629 .37913 .00236 .60196 .59048 .59946 .75657 .61849 .90181

.84448 .42477 .94829 .86678 .14030 .04072 .45580 .36833 .10783 .33199

.49564 .98590 .92880 .69970 .83898 .21077 .71374 .85967 .20857 .51433

.68304 .46922 .14218 .63014 .50116 .33569 .97793 .84637 .27681 .04354

.76992 .70179 .75568 .21792 .50646 .07744 .38064 .06107 .41481 .93919

.37604 .27772 .75615 .51157 .73821 .29928 .62603 .06259 .21552 .72977

.43898 .06592 .44474 .07517 .44831 .01337 .04538 .15198 .50345 .65288

.86039 .28645 .44931 .59203 .98254 .56697 .55897 .25109 .47585 .59524

.28877 .84966 .97319 .66633 .71350 .28403 .28265 .61379 .13886 .78325

.44973 .12332 .16649 .88908 .31019 .33358 .68401 .10177 .92873 .13065

.42529 .37593 .90208 .50331 .37531 .72208 .42884 .07435 .58647 .84972

.82004 .74696 .10136 .35971 .72014 .08345 .49366 .68501 .14135 .15718

.67090 .08493 .47151 .06464 .14425 .28381 .40455 .87302 .07135 .04507

.62825 .83809 .37425 .17693 .69327 .04144 .00924 .68246 .48573 .24647

.10720 .89919 .90448 .80838 .70997 .98438 .51651 .71379 .10830 .69984

.69854 .89270 .54348 .22658 .94233 .08889 .52655 .83351 .73627 .39018

.71460 .25022 .06988 .64146 .69407 .39125 .10090 .08415 .07094 .14244

.69040 .33461 .79399 .22664 .68810 .56303 .65947 .88951 .40180 .87943

.13452 .36642 .98785 .62929 .88509 .64690 .38981 .99092 .91137 .02411

.94232 .91117 .98610 .71605 .89560 .92921 .51481 .20016 .56769 .60462

.99269 .98876 .47254 .93637 .83954 .60990 .10353 .13206 .33480 .29440

.75323 .86974 .91355 .12780 .01906 .96412 .61320 .47629 .33890 .22099

.75003 .98538 .63622 .94890 .96744 .73870 .72527 .17745 .01151 .47200
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For an illustration of the use of random numbers, suppose that a medical center is
planning to test a new drug designed to reduce its users’ blood cholesterol levels. To test
its effectiveness, the medical center has recruited 1,000 volunteers to be subjects in the
test. To take into account the possibility that the subjects’ blood cholesterol levels may be
affected by factors external to the test (such as changing weather conditions), it has been
decided to split the volunteers into 2 groups of size 500 — a treatment group that will be
given the drug and a control group that will be given a placebo. Both the volunteers and
the administrators of the drug will not be told who is in each group (such a test is called
a double-blind test). It remains to determine which of the volunteers should be chosen
to constitute the treatment group. Clearly, one would want the treatment group and the
control group to be as similar as possible in all respects with the exception that members
in the first group are to receive the drug while those in the other group receive a placebo;
then it will be possible to conclude that any difference in response between the groups is
indeed due to the drug. There is general agreement that the best way to accomplish this is
to choose the 500 volunteers to be in the treatment group in a completely random fashion.
That is, the choice should be made so that each of the

(1000
500

)
subsets of 500 volunteers is

equally likely to constitute the control group. How can this be accomplished?

*EXAMPLE 5.4d Choosing a Random Subset From a set of n elements — numbered
1, 2, . . . , n — suppose we want to generate a random subset of size k that is to be chosen
in such a manner that each of the

(n
k

)
subsets is equally likely to be the subset chosen.

How can we do this?
To answer this question, let us work backwards and suppose that we have indeed

randomly generated such a subset of size k. Now for each j = 1, . . . , n, we set

Ij =
{

1 if element j is in the subset

0 otherwise

and compute the conditional distribution of Ij given I1, . . . , Ij−1. To start, note that the
probability that element 1 is in the subset of size k is clearly k/n (which can be seen either by
noting that there is probability 1/n that element 1 would have been the jth element chosen,
j = 1, . . . , k; or by noting that the proportion of outcomes of the random selection that

results in element 1 being chosen is
(

1
1

) (
n−1
k−1

)
/
(n

k

) = k/n). Therefore, we have that

P{I1 = 1} = k/n (5.4.1)

To compute the conditional probability that element 2 is in the subset given I1, note
that if I1 = 1, then aside from element 1 the remaining k − 1 members of the subset
would have been chosen “at random” from the remaining n−1 elements (in the sense that

* Optional.
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each of the subsets of size k − 1 of the numbers 2, . . . , n is equally likely to be the other
elements of the subset). Hence, we have that

P{I2 = 1|I1 = 1} = k − 1

n − 1
(5.4.2)

Similarly, if element 1 is not in the subgroup, then the k members of the subgroup would
have been chosen “at random” from the other n − 1 elements, and thus

P{I2 = 1|I1 = 0} = k
n − 1

(5.4.3)

From Equations 5.4.2 and 5.4.3, we see that

P{I2 = 1|I1} = k − I1

n − 1

In general, we have that

P{Ij = 1|I1, . . . , Ij−1} =
k −

j−1∑
i=1

Ii

n − j + 1
, j = 2, . . . , n (5.4.4)

The preceding formula follows since
∑j−1

i=1 Ii represents the number of the first j − 1

elements that are included in the subset, and so given I1, . . . , Ij−1 there remain k−∑j−1
i=1 Ii

elements to be selected from the remaining n − ( j − 1).
Since P{U < a} = a, 0 ≤ a ≤ 1, when U is a uniform (0, 1) random variable,

Equations 5.4.1 and 5.4.4 lead to the following method for generating a random subset
of size k from a set of n elements: Namely, generate a sequence of (at most n) random
numbers U1, U2, . . . and set

I1 =

1 if U1 <

k
n

0 otherwise

I2 =

1 if U2 <

k − I1

n − 1
0 otherwise

...

Ij =
{

1 if Uj <
k−I1−···−Ij−1

n−j+1

0 otherwise
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U1 < .4 U1 > .4

U2 < .5 U2 > .5U2 > .25U2 < .25

U3 < –1
3

U3 > –1
3

U3 < –1
3

U3 > –1
3

U3 < –2
3

U4 < –1
2

U4 > –1
2

U4 > –1
2

U4 < –1
2 U4 –1

2

U4 > –1
2

S = {1, 3}

S = {1, 2}

S = {2, 3}

U3 > –2
3

S = {4, 5}

S = {3, 5}S = {3, 4}S = {2, 5}S = {2, 4}S = {1, 5}S = {1, 4}

FIGURE 5.6 Tree diagram.

This process stops when I1 +· · ·+ Ij = k and the random subset consists of the k elements
whose I-value equals 1. That is, S = {i : Ii = 1} is the subset.

For instance, if k = 2, n = 5, then the tree diagram of Figure 5.6 illustrates the
foregoing technique. The random subset S is given by the final position on the tree. Note
that the probability of ending up in any given final position is equal to 1/10, which can be
seen by multiplying the probabilities of moving through the tree to the desired endpoint.
For instance, the probability of ending at the point labeled S = {2, 4} is P{U1 >

.4}P{U2 < .5}P{U3 > 1
3 }P{U4 > 1

2 } = (.6)(.5)
( 2

3

) ( 1
2

) = .1.
As indicated in the tree diagram (see the rightmost branches that result in S = {4, 5}),

we can stop generating random numbers when the number of remaining places in the
subset to be chosen is equal to the remaining number of elements. That is, the general

procedure would stop whenever either
∑j

i=1 Ii = k or
∑j

i=1 Ii = k − (n − j). In the
latter case, S = {i ≤ j : Ii = 1, j + 1, . . . , n}. ■

EXAMPLE 5.4e The random vector X, Y is said to have a uniform distribution over the
two-dimensional region R if its joint density function is constant for points in R, and is 0
for points outside of R. That is, if

f (x, y) =
{

c if (x, y) ∈ R

0 if otherwise
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Because

1 =
∫

R
f (x, y) dx dy

=
∫

R
c dx dy

= c × Area of R

it follows that

c = 1

Area of R

For any region A ⊂ R,

P{(X , Y ) ∈ A} =
∫ ∫

(x,y)∈A
f (x, y) dx dy

=
∫ ∫

(x,y)∈A
c dx dy

= Area of A
Area of R

Suppose now that X, Y is uniformly distributed over the following rectangular region R:

a, b0, b

0, 0 a, 0

R

Its joint density function is

f (x, y) =
{

c if 0 ≤ x ≤ a, 0 ≤ y ≤ b

0 otherwise

where c = 1
Area of rectangle = 1

ab . In this case, X and Y are independent uniform random

variables. To show this, note that for 0 ≤ x ≤ a, 0 ≤ y ≤ b

P{X ≤ x, Y ≤ y} = c
∫ x

0

∫ y

0
dy dx = xy

ab
(5.4.5)
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0 3−3
(a)

f(x) = 1
2p e−x2/2

(b)

0.399
s

m m + sm − sm − 3s m + 3s

FIGURE 5.7 The normal density function (a) with µ = 0, σ = 1 and (b) with arbitrary µ and σ 2.

First letting y = b, and then letting x = a, in the preceding shows that

P{X ≤ x} = x
a

, P{Y ≤ y} = y
b

(5.4.6)

Thus, from Equations 5.4.5 and 5.4.6 we can conclude that X and Y are independent,
with X being uniform on (0, a) and Y being uniform on (0, b). ■

5.5 NORMAL RANDOM VARIABLES
A random variable is said to be normally distributed with parameters µ and σ 2, and we
write X ∼ N (µ, σ 2), if its density is

f (x) = 1√
2πσ

e−(x−µ)2/2σ 2
, −∞ < x < ∞∗

The normal density f (x) is a bell-shaped curve that is symmetric about µ and that
attains its maximum value of 1/σ

√
2π ≈ 0. 399/σ at x = µ (see Figure 5.7).

The normal distribution was introduced by the French mathematician Abraham de
Moivre in 1733 and was used by him to approximate probabilities associated with binomial
random variables when the binomial parameter n is large. This result was later extended by
Laplace and others and is now encompassed in a probability theorem known as the central
limit theorem, which gives a theoretical base to the often noted empirical observation that,
in practice, many random phenomena obey, at least approximately, a normal probability
distribution. Some examples of this behavior are the height of a person, the velocity in any
direction of a molecule in gas, and the error made in measuring a physical quantity.

* To verify that this is indeed a density function, see Problem 29.
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The moment generating function of a normal random variable with parameters µ and
σ 2 is derived as follows:

φ(t ) = E [etX ]

= 1√
2πσ

∫ ∞

−∞
etx e−(x−µ)2/2σ 2

dx

= 1√
2π

eµt
∫ ∞

−∞
etσ ye−y2/2 dy by letting y = x − µ

σ

= eµt
√

2π

∫ ∞

−∞
exp

{
−
[

y2 − 2tσ y
2

]}
dy

= eµt
√

2π

∫ ∞

−∞
exp

{
− (y − tσ )2

2
+ t2σ 2

2

}
dy

= exp

{
µt + σ 2t2

2

}
1√
2π

∫ ∞

−∞
e−(y−tσ )2/2 dy

= exp

{
µt + σ 2t2

2

}
(5.5.1)

where the last equality follows since

1√
2π

e−(y−tσ )2/2

is the density of a normal random variable (having parameters tσ and 1) and its integral
must thus equal 1.

Upon differentiating Equation 5.5.1, we obtain

φ′(t ) = (µ + tσ 2) exp

{
µt + σ 2 t2

2

}

φ′′(t ) = σ 2 exp

{
µt + σ 2 t2

2

}
+ exp

{
µt + σ 2 t2

2

}
(µ + tσ 2)2

Hence,

E [X ] = φ′(0) = µ

E [X 2] = φ′′(0) = σ 2 + µ2

and so

E [X ] = µ

Var(X ) = E [X 2] − (E [X ])2 = σ 2

Thus µ and σ 2 represent respectively the mean and variance of the distribution.
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An important fact about normal random variables is that if X is normal with mean µ

and variance σ 2, then Y = αX + β is normal with mean αµ + β and variance α2σ 2.
That this is so can easily be seen by using moment generating functions as follows.

E [et (αX +β)] = etβE [eαtX ]
= etβ exp{µαt + σ 2(αt )2/2} from Equation 5.5.1

= exp{(β + µα)t + α2σ 2t2/2}
Because the final equation is the moment generating function of the normal random
variable with mean β + µα and variance α2σ 2, the result follows.

It follows from the foregoing that if X ∼ N (µ, σ 2), then

Z = X − µ

σ

is a normal random variable with mean 0 and variance 1. Such a random variable Z is
said to have a standard, or unit, normal distribution. Let 
(·) denote its distribution
function. That is,


(x) = 1√
2π

∫ x

−∞
e−y2/2dy, −∞ < x < ∞

This result that Z = (X − µ)/σ has a standard normal distribution when X is normal
with parameters µ and σ 2 is quite important, for it enables us to write all probability
statements about X in terms of probabilities for Z. For instance, to obtain P{X < b}, we
note that X will be less than b if and only if (X − µ)/σ is less than (b − µ)/σ , and so

P{X < b} = P
{

X − µ

σ
<

b − µ

σ

}

= 


(
b − µ

σ

)

Similarly, for any a < b,

P{a < X < b} = P
{

a − µ

σ
<

X − µ

σ
<

b − µ

σ

}

= P
{

a − µ

σ
< Z <

b − µ

σ

}

= P
{

Z <
b − µ

σ

}
− P

{
Z <

a − µ

σ

}

= 


(
b − µ

σ

)
− 


(
a − µ

σ

)
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0 x−x

P {Z < −x} P {Z > x}P

FIGURE 5.8 Standard normal probabilities.

It remains for us to compute 
(x). This has been accomplished by an approximation
and the results are presented in Table A1 of the Appendix, which tabulates
(x) (to a 4-digit
level of accuracy) for a wide range of nonnegative values of x. In addition, Program 5.5a of
the text disk can be used to obtain 
(x).

While Table A1 tabulates 
(x) only for nonnegative values of x, we can also obtain

(−x) from the table by making use of the symmetry (about 0) of the standard normal
probability density function. That is, for x > 0, if Z represents a standard normal random
variable, then (see Figure 5.8)


(−x) = P{Z < −x}
= P{Z > x} by symmetry

= 1 − 
(x)

Thus, for instance,

P{Z < −1} = 
(−1) = 1 − 
(1) = 1 − .8413 = .1587

EXAMPLE 5.5a If X is a normal random variable with mean µ = 3 and variance
σ 2 = 16, find

(a) P{X < 11};
(b) P{X > −1};
(c) P{2 < X < 7}.

SOLUTION

(a) P{X < 11} = P
{

X − 3

4
<

11 − 3

4

}

= 
(2)

= .9772

(b) P{X > −1} = P
{

X − 3

4
>

−1 − 3

4

}

= P{Z > −1}
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= P{Z < 1}
= .8413

(c) P{2 < X < 7} = P
{

2 − 3

4
<

X − 3

4
<

7 − 3

4

}

= 
(1) − 
(−1/4)

= 
(1) − (1 − 
(1/4))

= .8413 + .5987 − 1 = .4400 ■

EXAMPLE 5.5b Suppose that a binary message — either “0” or “1” — must be transmitted
by wire from location A to location B. However, the data sent over the wire are subject
to a channel noise disturbance and so to reduce the possibility of error, the value 2 is sent
over the wire when the message is “1” and the value −2 is sent when the message is “0.” If
x, x = ±2, is the value sent at location A then R, the value received at location B, is given
by R = x + N , where N is the channel noise disturbance. When the message is received
at location B, the receiver decodes it according to the following rule:

if R ≥ .5, then “1” is concluded

if R < .5, then “0” is concluded

Because the channel noise is often normally distributed, we will determine the error
probabilities when N is a standard normal random variable.

There are two types of errors that can occur: One is that the message “1” can be
incorrectly concluded to be “0” and the other that “0” is incorrectly concluded to be “1.”
The first type of error will occur if the message is “1” and 2 + N < .5, whereas the second
will occur if the message is “0” and −2 + N ≥ .5.

Hence,

P{error|message is “1”} = P{N < −1.5}
= 1 − 
(1.5) = .0668

and

P{error|message is “0”} = P{N > 2.5}
= 1 − 
(2.5) = .0062 ■

EXAMPLE 5.5c The power W dissipated in a resistor is proportional to the square of the
voltage V. That is,

W = rV 2
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where r is a constant. If r = 3, and V can be assumed (to a very good approximation) to
be a normal random variable with mean 6 and standard deviation 1, find

(a) E [W];
(b) P{W > 120}.

SOLUTION
(a) E [W ] = E [3V 2]

= 3E [V 2]
= 3(Var[V ] + E 2[V ])
= 3(1 + 36) = 111

(b) P{W > 120} = P{3V 2 > 120}
= P{V >

√
40}

= P{V − 6 >
√

40 − 6}
= P{Z > .3246}
= 1 − 
(.3246)

= .3727 ■

Another important result is that the sum of independent normal random variables is
also a normal random variable. To see this, suppose that Xi , i = 1, . . . , n, are independent,
with Xi being normal with mean µi and variance σ 2

i . The moment generating function
of
∑n

i=1 Xi is as follows.

E

[
exp

{
t

n∑
i=1

Xi

}]
= E

[
etX1etX2 · · · etXn

]

=
n∏

i=1

E
[
etXi

]
by independence

=
n∏

i=1

eµi t+σ 2
i t2/2

= eµt+σ 2t2/2

where

µ =
n∑

i=1

µi , σ 2 =
n∑

i=1

σ 2
i

Therefore,
∑n

i=1 Xi has the same moment generating function as a normal random variable
having mean µ and variance σ 2. Hence, from the one-to-one correspondence between
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moment generating functions and distributions, we can conclude that
∑n

i=1 Xi is normal
with mean

∑n
i=1 µi and variance

∑n
i=1 σ 2

i .

EXAMPLE 5.5d Data from the National Oceanic and Atmospheric Administration indicate
that the yearly precipitation in Los Angeles is a normal random variable with a mean of
12.08 inches and a standard deviation of 3.1 inches.

(a) Find the probability that the total precipitation during the next 2 years will exceed
25 inches.

(b) Find the probability that next year’s precipitation will exceed that of the
following year by more than 3 inches.
Assume that the precipitation totals for the next 2 years are independent.

SOLUTION Let X1 and X2 be the precipitation totals for the next 2 years.

(a) Since X1 +X2 is normal with mean 24.16 and variance 2(3.1)2 = 19.22, it follows
that

P{X1 + X2 > 25} = P
{

X1 + X2 − 24.16√
19.22

>
25 − 24.16√

19.22

}

= P{Z > .1916}
≈ .4240

(b) Since −X2 is a normal random variable with mean −12.08 and variance
(−1)2(3.1)2, it follows that X1 − X2 is normal with mean 0 and variance 19.22.
Hence,

P{X1 > X2 + 3} = P{X1 − X2 > 3}

= P
{

X1 − X2√
19. 22

>
3√

19. 22

}

= P{Z > .6843}
≈ .2469

Thus there is a 42.4 percent chance that the total precipitation in Los Angeles
during the next 2 years will exceed 25 inches, and there is a 24.69 percent chance
that next year’s precipitation will exceed that of the following year by more than
3 inches. ■

For α ∈ (0, 1), let zα be such that

P{Z > zα} = 1 − 
(zα) = α

That is, the probability that a standard normal random variable is greater than zα is equal
to α (see Figure 5.9.)
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FIGURE 5.9 P{Z > zα} = α.

The value of zα can, for any α, be obtained from Table A1. For instance, since

1 − 
(1. 645) = .05

1 − 
(1. 96) = .025

1 − 
(2. 33) = .01

it follows that

z.05 = 1.645, z.025 = 1.96, z.01 = 2.33

Program 5.5b on the text disk can also be used to obtain the value of zα .
Since

P{Z < zα} = 1 − α

it follows that 100(1 − α) percent of the time a standard normal random variable will
be less than zα . As a result, we call zα the 100(1 − α) percentile of the standard normal
distribution.

5.6 EXPONENTIAL RANDOM VARIABLES
A continuous random variable whose probability density function is given, for some
λ > 0, by

f (x) =
{

λe−λx if x ≥ 0

0 if x < 0

is said to be an exponential random variable (or, more simply, is said to be exponen-
tially distributed) with parameter λ. The cumulative distribution function F (x) of an
exponential random variable is given by

F (x) = P{X ≤ x}

=
∫ x

0
λe−λy dy

= 1 − e−λx , x ≥ 0



176 Chapter 5: Special Random Variables

The exponential distribution often arises, in practice, as being the distribution of the
amount of time until some specific event occurs. For instance, the amount of time (starting
from now) until an earthquake occurs, or until a new war breaks out, or until a telephone
call you receive turns out to be a wrong number are all random variables that tend in
practice to have exponential distributions (see Section 5.6.1 for an explanation).

The moment generating function of the exponential is given by

φ(t ) = E [etX ]

=
∫ ∞

0
etxλe−λx dx

= λ

∫ ∞

0
e−(λ−t )x dx

= λ

λ − t
, t < λ

Differentiation yields

φ′(t ) = λ

(λ − t )2

φ′′(t ) = 2λ

(λ − t )3

and so

E [X ] = φ′(0) = 1/λ

Var(X ) = φ′′(0) − (E [X ])2
= 2/λ2 − 1/λ2

= 1/λ2

Thus λ is the reciprocal of the mean, and the variance is equal to the square of the mean.
The key property of an exponential random variable is that it is memoryless, where we

say that a nonnegative random variable X is memoryless if

P{X > s + t |X > t} = P{X > s} for all s, t ≥ 0 (5.6.1)

To understand why Equation 5.6.1 is called the memoryless property, imagine that X
represents the length of time that a certain item functions before failing. Now let us
consider the probability that an item that is still functioning at age t will continue to
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function for at least an additional time s. Since this will be the case if the total functional
lifetime of the item exceeds t + s given that the item is still functioning at t , we see that

P{additional functional life of t-unit-old item exceeds s}
= P{X > t + s|X > t}

Thus, we see that Equation 5.6.1 states that the distribution of additional functional
life of an item of age t is the same as that of a new item — in other words, when
Equation 5.6.1 is satisfied, there is no need to remember the age of a functional item
since as long as it is still functional it is “as good as new.”

The condition in Equation 5.6.1 is equivalent to

P{X > s + t , X > t}
P{X > t} = P{X > s}

or

P{X > s + t} = P{X > s}P{X > t} (5.6.2)

When X is an exponential random variable, then

P{X > x} = e−λx , x > 0

and so Equation 5.6.2 is satisfied (since e−λ(s+t ) = e−λs e−λt ). Hence, exponentially
distributed random variables are memoryless (and in fact it can be shown that they are
the only random variables that are memoryless).

EXAMPLE 5.6a Suppose that a number of miles that a car can run before its battery wears
out is exponentially distributed with an average value of 10,000 miles. If a person desires
to take a 5,000-mile trip, what is the probability that she will be able to complete her trip
without having to replace her car battery? What can be said when the distribution is not
exponential?

SOLUTION It follows, by the memoryless property of the exponential distribution, that the
remaining lifetime (in thousands of miles) of the battery is exponential with parameter
λ = 1/10. Hence the desired probability is

P{remaining lifetime > 5} = 1 − F (5)

= e−5λ

= e−1/2 ≈ .604
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However, if the lifetime distribution F is not exponential, then the relevant probability is

P{lifetime > t + 5|lifetime > t} = 1 − F (t + 5)

1 − F (t )

where t is the number of miles that the battery had been in use prior to the start of the
trip. Therefore, if the distribution is not exponential, additional information is needed
(namely, t ) before the desired probability can be calculated. ■

For another illustration of the memoryless property, consider the following example.

EXAMPLE 5.6b A crew of workers has 3 interchangeable machines, of which 2 must be
working for the crew to do its job. When in use, each machine will function for an expo-
nentially distributed time having parameter λ before breaking down. The workers decide
to initially use machines A and B and keep machine C in reserve to replace whichever of
A or B breaks down first. They will then be able to continue working until one of the
remaining machines breaks down. When the crew is forced to stop working because only
one of the machines has not yet broken down, what is the probability that the still operable
machine is machine C?

SOLUTION This can be easily answered, without any need for computations, by invoking
the memoryless property of the exponential distribution. The argument is as follows:
Consider the moment at which machine C is first put in use. At that time either A or
B would have just broken down and the other one — call it machine 0 — will still be
functioning. Now even though 0 would have already been functioning for some time,
by the memoryless property of the exponential distribution, it follows that its remaining
lifetime has the same distribution as that of a machine that is just being put into use. Thus,
the remaining lifetimes of machine 0 and machine C have the same distribution and so,
by symmetry, the probability that 0 will fail before C is 1

2 . ■

The following proposition presents another property of the exponential distribution.

PROPOSITION 5.6.1 If X1, X2, . . . , Xn are independent exponential random variables hav-
ing respective parameters λ1, λ2, . . . , λn, then min (X1, X2, . . . , Xn) is exponential with
parameter

∑n
t=1 λi .

Proof

Since the smallest value of a set of numbers is greater than x if and only if all values are
greater than x, we have

P{min(X1, X2, . . . , Xn) > x} = P{X1 > x, X2 > x, . . . , Xn > x}

=
n∏

i=1

P{Xi > x} by independence
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=
n∏

i=1

e−λi x

= e−∑n
i=1 λi x �

EXAMPLE 5.6c A series system is one that needs all of its components to function in
order for the system itself to be functional. For an n-component series system in which
the component lifetimes are independent exponential random variables with respective
parameters λ1, λ2, . . . , λn, what is the probability that the system survives for a time t ?

SOLUTION Since the system life is equal to the minimal component life, it follows from
Proposition 5.6.1 that

P{system life exceeds t} = e−∑
i λi t ■

Another useful property of exponential random variables is that cX is exponential with
parameter λ/c when X is exponential with parameter λ, and c > 0. This follows since

P{cX ≤ x} = P{X ≤ x/c}
= 1 − e−λx/c

The parameter λ is called the rate of the exponential distribution.

*5.6.1 The Poisson Process

Suppose that “events” are occurring at random time points, and let N (t ) denote the number
of events that occurs in the time interval [0, t]. These events are said to constitute a Poisson
process having rate λ, λ > 0, if

(a) N (0) = 0
(b) The numbers of events that occur in disjoint time intervals are independent.
(c) The distribution of the number of events that occur in a given interval depends

only on the length of the interval and not on its location.

(d) lim
h→0

P{N (h) = 1}
h

= λ

(e) lim
h→0

P{N (h) ≥ 2}
h

= 0

Thus, Condition (a) states that the process begins at time 0. Condition (b), the inde-
pendent increment assumption, states for instance that the number of events by time t
[that is, N (t )] is independent of the number of events that occurs between t and t + s
[that is, N (t + s) − N (t )]. Condition (c), the stationary increment assumption, states that
probability distribution of N (t + s) − N (t ) is the same for all values of t . Conditions (d)

* Optional section.
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FIGURE 5.10

and (e) state that in a small interval of length h, the probability of one event occurring is
approximately λh, whereas the probability of 2 or more is approximately 0.

We will now show that these assumptions imply that the number of events occurring
in any interval of length t is a Poisson random variable with parameter λt . To be precise,
let us call the interval [0, t] and denote by N (t ) the number of events occurring in that
interval. To obtain an expression for P{N (t ) = k}, we start by breaking the interval [0, t]
into n nonoverlapping subintervals each of length t/n (Figure 5.10). Now there will be k
events in [0, t] if either

(i) N (t ) equals k and there is at most one event in each subinterval;
(ii) N (t ) equals k and at least one of the subintervals contains 2 or more events.

Since these two possibilities are clearly mutually exclusive, and since Condition (i) is
equivalent to the statement that k of the n subintervals contain exactly 1 event and the
other n − k contain 0 events, we have that

P{N (t ) = k} = P{k of the n subintervals contain exactly 1 event (5.6.3)

and the other n − k contain 0 events} + P{N (t ) = k

and at least 1 subinterval contains 2 or more events}
Now it can be shown, using Condition (e), that

P{N (t ) = k and at least 1 subinterval contains 2 or more events}
−→ 0 as n → ∞ (5.6.4)

Also, it follows from Conditions (d) and (e) that

P{exactly 1 event in a subinterval} ≈ λt
n

P{0 events in a subinterval} ≈ 1 − λt
n

Hence, since the numbers of events that occur in different subintervals are independent
[from Condition (b)], it follows that

P{k of the subintervals contain exactly 1 event and the other n − k contain 0 events}

≈
(n

k

)(λt
n

)k (
1 − λt

n

)n−k

(5.6.5)
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with the approximation becoming exact as the number of subintervals, n, goes to ∞.
However, the probability in Equation 5.6.5 is just the probability that a binomial random
variable with parameters n and p = λt/n equals k. Hence, as n becomes larger and larger,
this approaches the probability that a Poisson random variable with mean nλt/n = λt
equals k. Hence, from Equations 5.6.3, 5.6.4, and 5.6.5, we see upon letting n approach
∞ that

P{N (t ) = k} = e−λt (λt )k

k!
We have shown:

PROPOSITION 5.6.2 For a Poisson process having rate λ

P{N (t ) = k} = e−λt (λt )k

k! , k = 0, 1, . . .

That is, the number of events in any interval of length t has a Poisson distribution with
mean λt .

For a Poisson process, let X1 denote the time of the first event. Further, for n > 1,
let Xn denote the elapsed time between (n − 1)st and the nth events. The sequence
{Xn, n = 1, 2, . . .} is called the sequence of interarrival times. For instance, if X1 = 5 and
X2 = 10, then the first event of the Poisson process would have occurred at time 5 and
the second at time 15.

We now determine the distribution of the Xn. To do so, we first note that the event
{X1 > t} takes place if and only if no events of the Poisson process occur in the interval
[0, t] and thus,

P{X1 > t} = P{N (t ) = 0} = e−λt

Hence, X1 has an exponential distribution with mean 1/λ. To obtain the distribution of
X2, note that

P{X2 > t |X1 = s} = P{0 events in (s, s + t]|X1 = s}
= P{0 events in (s, s + t]}
= e−λt

where the last two equations followed from independent and stationary increments. There-
fore, from the foregoing we conclude that X2 is also an exponential random variable with
mean 1/λ, and furthermore, that X2 is independent of X1. Repeating the same argument
yields:

PROPOSITION 5.6.3 X1, X2, . . . are independent exponential random variables each with
mean 1/λ.
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*5.7 THE GAMMA DISTRIBUTION
A random variable is said to have a gamma distribution with parameters (α, λ), λ > 0,
α > 0, if its density function is given by

f (x) =



λe−λx (λx)α−1

�(α) x ≥ 0

0 x < 0

where

�(α) =
∫ ∞

0
λe−λx (λx)α−1 dx

=
∫ ∞

0
e−yyα−1 dy (by letting y = λx)

The integration by parts formula
∫

u dv = uv−∫ v du yields, with u = yα−1, dv = e−ydy,
v = −e−y , that for α > 1,∫ ∞

0
e−yyα−1 dy = −e−yyα−1

∣∣∣∣ y = ∞
y = 0

+
∫ ∞

0
e−y(α − 1)yα−2 dy

= (α − 1)
∫ ∞

0
e−yyα−2 dy

or

�(α) = (α − 1)�(α − 1) (5.7.1)

When α is an integer — say, α = n — we can iterate the foregoing to obtain that

�(n) = (n − 1)�(n − 1)

= (n − 1)(n − 2)�(n − 2) by letting α = n − 1 in Eq. 5.7.1

= (n − 1)(n − 2)(n − 3)�(n − 3) by letting α = n − 2 in Eq. 5.7.1

...

= (n − 1)!�(1)

Because

�(1) =
∫ ∞

0
e−y dy = 1

* Optional section.
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we see that

�(n) = (n − 1)!
The function �(α) is called the gamma function.

It should be noted that when α = 1, the gamma distribution reduces to the exponential
with mean 1/λ.

The moment generating function of a gamma random variable X with parameters (α, λ)
is obtained as follows:

φ(t ) = E [etX ]

= λα

�(α)

∫ ∞

0
etx e−λxxα−1 dx

= λα

�(α)

∫ ∞

0
e−(λ−t )xxα−1 dx

=
(

λ

λ − t

)α 1

�(α)

∫ ∞

0
e−yyα−1 dy [by y = (λ − t )x]

=
(

λ

λ − t

)α

(5.7.2)

Differentiation of Equation 5.7.2 yields

φ′(t ) = αλα

(λ − t )α+1

φ′′(t ) = α(α + 1)λα

(λ − t )α+2

Hence,

E [X ] = φ′(0) = α

λ
(5.7.3)

Var(X ) = E [X 2] − (E [X ])2

= φ′′(0) −
(α

λ

)2

= α(α + 1)

λ2 − α2

λ2 = α

λ2 (5.7.4)

An important property of the gamma is that if X1 and X2 are independent gamma
random variables having respective parameters (α1, λ) and (α2, λ), then X1 + X2 is a
gamma random variable with parameters (α1 + α2, λ). This result easily follows since

φX1+X2 (t ) = E [et (X1+X2)] (5.7.5)

= φX1 (t )φX2 (t )
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=
(

λ

λ − t

)α1
(

λ

λ − t

)α2

from Equation 5.7.2

=
(

λ

λ − t

)α1+α2

which is seen to be the moment generating function of a gamma (α1 + α2, λ) random
variable. Since a moment generating function uniquely characterizes a distribution, the
result entails.

The foregoing result easily generalizes to yield the following proposition.

PROPOSITION 5.7.1 If Xi , i = 1, . . . , n are independent gamma random variables with
respective parameters (αi , λ), then

∑n
i=1 Xi is gamma with parameters

∑n
i=1 αi , λ.
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FIGURE 5.11 Graphs of the gamma (α, 1) density for (a) α = .5, 2, 3, 4, 5 and (b) α = 50.
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Since the gamma distribution with parameters (1, λ) reduces to the exponential with
the rate λ, we have thus shown the following useful result.

Corollary 5.7.2
If X1, . . . , Xn are independent exponential random variables, each having rate λ, then∑n

i=1 Xi is a gamma random variable with parameters (n, λ).

EXAMPLE 5.7a The lifetime of a battery is exponentially distributed with rate λ. If a stereo
cassette requires one battery to operate, then the total playing time one can obtain from a
total of n batteries is a gamma random variable with parameters (n, λ). ■

Figure 5.11 presents a graph of the gamma (α, 1) density for a variety of values of α. It
should be noted that as α becomes large, the density starts to resemble the normal density.
This is theoretically explained by the central limit theorem, which will be presented in the
next chapter.

5.8 DISTRIBUTIONS ARISING FROM THE NORMAL

5.8.1 The Chi-Square Distribution

Definition
If Z1, Z2, . . . , Zn are independent standard normal random variables, then X , defined by

X = Z 2
1 + Z 2

2 + · · · + Z 2
n (5.8.1)

is said to have a chi-square distribution with n degrees of freedom. We will use the notation

X ∼ χ2
n

to signify that X has a chi-square distribution with n degrees of freedom.

The chi-square distribution has the additive property that if X1 and X2 are independent
chi-square random variables with n1 and n2 degrees of freedom, respectively, then X1 +X2

is chi-square with n1 + n2 degrees of freedom. This can be formally shown either by the
use of moment generating functions or, most easily, by noting that X1 + X2 is the sum of
squares of n1 + n2 independent standard normals and thus has a chi-square distribution
with n1 + n2 degrees of freedom.

If X is a chi-square random variable with n degrees of freedom, then for any α ∈ (0, 1),
the quantity χ2

α,n is defined to be such that

P{X ≥ χ2
α,n} = α

This is illustrated in Figure 5.12.
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8 χa, n
2

Area = a

FIGURE 5.12 The chi-square density function with 8 degrees of freedom.

In Table A2 of the Appendix, we list χ2
α,n for a variety of values of α and n (including

all those needed to solve problems and examples in this text). In addition, Programs 5.8.1a
and 5.8.1b on the text disk can be used to obtain chi-square probabilities and the values
of χ2

α,n.

EXAMPLE 5.8a Determine P{χ2
26 ≤ 30} when χ2

26 is a chi-square random variable with
26 degrees of freedom.

SOLUTION Using Program 5.8.1a gives the result

P{χ2
26 ≤ 30} = .7325 ■

EXAMPLE 5.8b Find χ2
.05,15.

SOLUTION Use Program 5.8.1b to obtain:

χ2
.05,15 = 24.996 ■

EXAMPLE 5.8c Suppose that we are attempting to locate a target in three-dimensional
space, and that the three coordinate errors (in meters) of the point chosen are independent
normal random variables with mean 0 and standard deviation 2. Find the probability that
the distance between the point chosen and the target exceeds 3 meters.

SOLUTION If D is the distance, then

D2 = X 2
1 + X 2

2 + X 2
3

where Xi is the error in the ith coordinate. Since Zi = Xi/2, i = 1, 2, 3, are all standard
normal random variables, it follows that

P{D2 > 9} = P{Z 2
1 + Z 2

2 + Z 2
3 > 9/4}

= P{χ2
3 > 9/4}

= .5222

where the final equality was obtained from Program 5.8.1a. ■
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*5.8.1.1 THE RELATION BETWEEN CHI-SQUARE AND GAMMA RANDOM VARIABLES

Let us compute the moment generating function of a chi-square random variable with n
degrees of freedom. To begin, we have, when n = 1, that

E [etX ] = E [etZ 2] where Z ∼ N (0, 1) (5.8.2)

=
∫ ∞

−∞
etx2

fZ (x) dx

= 1√
2π

∫ ∞

−∞
etx2

e−x2/2 dx

= 1√
2π

∫ ∞

−∞
e−x2(1−2t )/2 dx

= 1√
2π

∫ ∞

−∞
e−x2/2σ̄ 2

dx where σ̄ 2 = (1 − 2t )−1

= (1 − 2t )−1/2 1√
2πσ̄

∫ ∞

−∞
e−x2/2σ̄ 2

dx

= (1 − 2t )−1/2

where the last equality follows since the integral of the normal (0, σ̄ 2) density equals 1.
Hence, in the general case of n degrees of freedom

E [etX ] = E
[
et
∑n

i=1 Z 2
i

]

= E

[
n∏

i=1

etZ 2
i

]

=
n∏

i=1

E [etZ 2
i ] by independence of the Zi

= (1 − 2t )−n/2 from Equation 5.8.2

However, we recognize [1/(1 − 2t )]n/2 as being the moment generating function of a
gamma random variable with parameters (n/2, 1/2). Hence, by the uniqueness of moment
generating functions, it follows that these two distributions — chi-square with n degrees
of freedom and gamma with parameters n/2 and 1/2 — are identical, and thus we can

* Optional section.
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n = 1

n = 3

n = 10

FIGURE 5.13 The chi-square density function with n degrees of freedom.

conclude that the density of X is given by

f (x) =
1

2
e−x/2

(x
2

)(n/2)−1

�
(n

2

) , x > 0

The chi-square density functions having 1, 3, and 10 degrees of freedom, respectively,
are plotted in Figure 5.13.

Let us reconsider Example 5.8c, this time supposing that the target is located in the
two-dimensional plane.

EXAMPLE 5.8d When we attempt to locate a target in two-dimensional space, suppose that
the coordinate errors are independent normal random variables with mean 0 and standard
deviation 2. Find the probability that the distance between the point chosen and the target
exceeds 3.

SOLUTION If D is the distance and Xi , i = 1, 2 are the coordinate errors, then

D2 = X 2
1 + X 2

2

Since Zi = Xi/2, i = 1, 2, are standard normal random variables, we obtain

P{D2 > 9} = P{Z 2
1 + Z 2

2 > 9/4} = P{χ2
2 > 9/4} = e−9/8 ≈ .3247

where the preceding calculation used the fact that the chi-square distribution with
2 degrees of freedom is the same as the exponential distribution with parameter 1/2. ■

Since the chi-square distribution with n degrees of freedom is identical to the gamma
distribution with parameters α = n/2 and λ = 1/2, it follows from Equations 5.7.3
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and 5.7.4 that the mean and variance of a random variable X having this distribution is

E [X ] = n, Var(X ) = 2n

5.8.2 The t-Distribution

If Z and χ2
n are independent random variables, with Z having a standard normal distribu-

tion and χ2
n having a chi-square distribution with n degrees of freedom, then the random

variable Tn defined by

Tn = Z√
χ2

n /n

is said to have a t-distribution with n degrees of freedom. A graph of the density function of
Tn is given in Figure 5.14 for n = 1, 5, and 10.

Like the standard normal density, the t-density is symmetric about zero. In addition, as n
becomes larger, it becomes more and more like a standard normal density. To understand
why, recall that χ2

n can be expressed as the sum of the squares of n standard normals,
and so

χ2
n

n
= Z 2

1 + · · · + Z 2
n

n

where Z1, . . . , Zn are independent standard normal random variables. It now follows from
the weak law of large numbers that, for large n, χ2

n /n will, with probability close to 1,
be approximately equal to E [Z 2

i ] = 1. Hence, for n large, Tn = Z /
√

χ2
n /n will have

approximately the same distribution as Z .
Figure 5.15 shows a graph of the t -density function with 5 degrees of freedom

compared with the standard normal density. Notice that the t -density has thicker “tails,”
indicating greater variability, than does the normal density.

n = 10

n = 5

n = 1

FIGURE 5.14 Density function of Tn.
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0.4

0.3

0.2

0.1

−3 −2 −1 0 1 2 3

t-density with 5 degrees of freedom

Standard normal density

FIGURE 5.15 Comparing standard normal density with the density of T5.

The mean and variance of Tn can be shown to equal

E [Tn] = 0, n > 1

Var(Tn) = n
n − 2

, n > 2

Thus the variance of Tn decreases to 1 — the variance of a standard normal random
variable — as n increases to ∞. For α, 0 < α < 1, let tα,n be such that

P{Tn ≥ tα,n} = α

It follows from the symmetry about zero of the t -density function that −Tn has the same
distribution as Tn, and so

α = P{−Tn ≥ tα,n}
= P{Tn ≤ −tα,n}
= 1 − P{Tn > −tα,n}

Therefore,

P{Tn ≥ −tα,n} = 1 − α

leading to the conclusion that

−tα,n = t1−α,n

which is illustrated in Figure 5.16.
The values of tα,n for a variety of values of n and α have been tabulated in Table A3

in the Appendix. In addition, Programs 5.8.2a and 5.8.2b on the text disk compute the
t -distribution function and the values tα,n, respectively.
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Area = a

0−ta, n = t1−a, n ta, n

Area = a

FIGURE 5.16 t1−α,n = −tα,n.

EXAMPLE 5.8e Find (a) P{T12 ≤ 1.4} and (b) t.025,9.

SOLUTION Run Programs 5.8.2a and 5.8.2b to obtain the results.

(a) .9066 (b) 2.2625 ■

5.8.3 The F-Distribution

Ifχ2
n andχ2

m are independent chi-square random variables with n and m degrees of freedom,
respectively, then the random variable Fn,m defined by

Fn,m = χ2
n /n

χ2
m/m

is said to have an F-distribution with n and m degrees of freedom.
For any α ∈ (0, 1), let Fα,n,m be such that

P{Fn,m > Fα,n,m} = α

This is illustrated in Figure 5.17.
The quantities Fα,n,m are tabulated in Table A4 of the Appendix for different values

of n, m, and α ≤ 1
2 . If Fα,n,m is desired when α > 1

2 , it can be obtained by using the

0

Area = a

Fa, n, m

FIGURE 5.17 Density function of Fn,m.
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following equalities:

α = P
{

χ2
n /n

χ2
m/m

> Fα,n,m

}

= P
{

χ2
m/m

χ2
n /n

<
1

Fα,n,m

}

= 1 − P
{

χ2
m/m

χ2
n /n

≥ 1

Fα,n,m

}

or, equivalently,

P
{

χ2
m/m

χ2
n /n

≥ 1

Fα,n,m

}
= 1 − α (5.8.3)

But because (χ2
m/m)/(χ2

n /n) has an F -distribution with degrees of freedom m and n, it
follows that

1 − α = P
{

χ2
m/m

χ2
n /n

≥ F1−α,m,n

}

implying, from Equation 5.8.3, that

1

Fα,n,m
= F1−α,m,n

Thus, for instance, F.9,5,7 = 1/F.1,7,5 = 1/3.37 = .2967 where the value of F.1,7,5 was
obtained from Table A4 of the Appendix.

Program 5.8.3 computes the distribution function of Fn,m.

EXAMPLE 5.8f Determine P{F6,14 ≤ 1. 5}.
SOLUTION Run Program 5.8.3 to obtain the solution .7518. ■

*5.9 THE LOGISTICS DISTRIBUTION
A random variable X is said to have a logistics distribution with parameters µ and v > 0 if
its distribution function is

F (x) = e(x−µ)/v

1 + e(x−µ)/v
, −∞ < x < ∞

* Optional section.
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Differentiating F (x) = 1 − 1/(1 + e(x−µ)/v) yields the density function

f (x) = e(x−µ)/v

v(1 + e(x−µ)/v)2
, −∞ < x < ∞

To obtain the mean of a logistics random variable,

E [X ] =
∫ ∞

−∞
x

e(x−µ)/v

v(1 + e(x−µ)/v)2
dx

make the substitution y = (x − µ)/v. This yields

E [X ] = v
∫ ∞

−∞
yey

(1 + ey)2
dy + µ

∫ ∞

−∞
ey

(1 + ey)2
dy

= v
∫ ∞

−∞
yey

(1 + ey)2
dy + µ (5.9.1)

where the preceding equality used that ey/((1 + ey)2) is the density function of a logistic
random variable with parameters µ = 0, v = 1 (such a random variable is called a standard
logistic) and thus integrates to 1. Now,

∫ ∞

−∞
yey

(1 + ey)2
dy =

∫ 0

−∞
yey

(1 + ey)2
dy +

∫ ∞

0

yey

(1 + ey)2
dy

= −
∫ ∞

0

xe−x

(1 + e−x )2
dx +

∫ ∞

0

yey

(1 + ey)2
dy

= −
∫ ∞

0

xex

(ex + 1)2
dx +

∫ ∞

0

yey

(1 + ey)2
dy

= 0 (5.9.2)

where the second equality is obtained by making the substitution x = −y, and the third
by multiplying the numerator and denominator by e2x . From Equations 5.9.1 and 5.9.2
we obtain

E [X ] = µ

Thus µ is the mean of the logistic; v is called the dispersion parameter.
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Problems

1. A satellite system consists of 4 components and can function adequately if at
least 2 of the 4 components are in working condition. If each component is,
independently, in working condition with probability .6, what is the probability
that the system functions adequately?

2. A communications channel transmits the digits 0 and 1. However, due to static,
the digit transmitted is incorrectly received with probability .2. Suppose that we
want to transmit an important message consisting of one binary digit. To reduce
the chance of error, we transmit 00000 instead of 0 and 11111 instead of 1. If the
receiver of the message uses “majority” decoding, what is the probability that the
message will be incorrectly decoded? What independence assumptions are you
making? (By majority decoding we mean that the message is decoded as “0” if
there are at least three zeros in the message received and as “1” otherwise.)

3. If each voter is for Proposition A with probability .7, what is the probability that
exactly 7 of 10 voters are for this proposition?

4. Suppose that a particular trait (such as eye color or left-handedness) of a person
is classified on the basis of one pair of genes, and suppose that d represents a
dominant gene and r a recessive gene. Thus, a person with dd genes is pure
dominance, one with rr is pure recessive, and one with rd is hybrid. The pure
dominance and the hybrid are alike in appearance. Children receive 1 gene from
each parent. If, with respect to a particular trait, 2 hybrid parents have a total
of 4 children, what is the probability that 3 of the 4 children have the outward
appearance of the dominant gene?

5. At least one-half of an airplane’s engines are required to function in order for it
to operate. If each engine independently functions with probability p, for what
values of p is a 4-engine plane more likely to operate than a 2-engine plane?

6. Let X be a binomial random variable with

E [X ] = 7 and Var(X ) = 2.1

Find

(a) P{X = 4};
(b) P{X > 12}.

7. If X and Y are binomial random variables with respective parameters (n, p) and
(n, 1 − p), verify and explain the following identities:

(a) P{X ≤ i} = P{Y ≥ n − i};
(a) P{X = k} = P{Y = n − k}.
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8. If X is a binomial random variable with parameters n and p, where 0 < p < 1,
show that

(a) P{X = k + 1} = p
1 − p

n − k
k + 1

P{X = k}, k = 0, 1, . . . , n − 1.

(b) As k goes from 0 to n, P{X = k} first increases and then decreases, reaching
its largest value when k is the largest integer less than or equal to (n + 1)p.

9. Derive the moment generating function of a binomial random variable and then
use your result to verify the formulas for the mean and variance given in the text.

10. Compare the Poisson approximation with the correct binomial probability for
the following cases:

(a) P{X = 2} when n = 10, p = .1;
(b) P{X = 0} when n = 10, p = .1;
(c) P{X = 4} when n = 9, p = .2.

11. If you buy a lottery ticket in 50 lotteries, in each of which your chance of winning
a prize is 1

100 , what is the (approximate) probability that you will win a prize (a)
at least once, (b) exactly once, and (c) at least twice?

12. The number of times that an individual contracts a cold in a given year is a Poisson
random variable with parameter λ = 3. Suppose a new wonder drug (based on
large quantities of vitamin C) has just been marketed that reduces the Poisson
parameter to λ = 2 for 75 percent of the population. For the other 25 percent of
the population, the drug has no appreciable effect on colds. If an individual tries
the drug for a year and has 0 colds in that time, how likely is it that the drug is
beneficial for him or her?

13. In the 1980s, an average of 121.95 workers died on the job each week. Give
estimates of the following quantities:

(a) the proportion of weeks having 130 deaths or more;
(b) the proportion of weeks having 100 deaths or less.

Explain your reasoning.

14. Approximately 80,000 marriages took place in the state of New York last year.
Estimate the probability that for at least one of these couples

(a) both partners were born on April 30;
(b) both partners celebrated their birthday on the same day of the year.

State your assumptions.

15. The game of frustration solitaire is played by turning the cards of a randomly
shuffled deck of 52 playing cards over one at a time. Before you turn over the
first card, say ace; before you turn over the second card, say two, before you turn
over the third card, say three. Continue in this manner (saying ace again before
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turning over the fourteenth card, and so on.) You lose if you ever turn over a card
that matches what you have just said. Use the Poisson paradigm to approximate
the probability of winning. (The actual probability is .01623.)

16. The probability of error in the transmission of a binary digit over a communication
channel is 1/103. Write an expression for the exact probability of more than 3
errors when transmitting a block of 103 bits. What is its approximate value?
Assume independence.

17. If X is a Poisson random variable with mean λ, show that P{X = i } first increases
and then decreases as i increases, reaching its maximum value when i is the largest
integer less than or equal to λ.

18. A contractor purchases a shipment of 100 transistors. It is his policy to test 10
of these transistors and to keep the shipment only if at least 9 of the 10 are in
working condition. If the shipment contains 20 defective transistors, what is the
probability it will be kept?

19. Let X denote a hypergeometric random variable with parameters n, m, and k.
That is,

P{X = i} =

(n
i

)( m
k − i

)
(

n + m
k

) , i = 0, 1, . . . , min(k, n)

(a) Derive a formula for P{X = i} in terms of P{X = i − 1}.
(b) Use part (a) to compute P{X = i} for i = 0, 1, 2, 3, 4, 5 when n = m = 10,

k = 5, by starting with P{X = 0}.
(c) Based on the recursion in part (a), write a program to compute the

hypergeometric distribution function.
(d) Use your program from part (c) to compute P{X ≤ 10} when n = m = 30,

k = 15.

20. Independent trials, each of which is a success with probability p, are successively
performed. Let X denote the first trial resulting in a success. That is, X will equal
k if the first k −1 trials are all failures and the kth a success. X is called a geometric
random variable. Compute

(a) P{X = k}, k = 1, 2, . . .;
(b) E[X].

Let Y denote the number of trials needed to obtain r successes. Y is called a
negative binomial random variable. Compute

(c) P{Y = k}, k = r , r + 1, . . . .
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(Hint: In order for Y to equal k, how many successes must result in the first k −1
trials and what must be the outcome of trial k?)

(d) Show that

E [Y ] = r/p

(Hint: Write Y = Y1 + . . . + Yr where Yi is the number of trials needed to go
from a total of i − 1 to a total of i successes.)

21. If U is uniformly distributed on (0, 1), show that a + (b − a)U is uniform
on (a, b).

22. You arrive at a bus stop at 10 o’clock, knowing that the bus will arrive at some
time uniformly distributed between 10 and 10:30. What is the probability that
you will have to wait longer than 10 minutes? If at 10:15 the bus has not yet
arrived, what is the probability that you will have to wait at least an additional
10 minutes?

23. If X is a normal random variable with parameters µ = 10, σ 2 = 36, compute

(a) P{X > 5};
(b) P{4 < X < 16};
(c) P{X < 8};
(d) P{X < 20};
(e) P{X > 16}.

24. The Scholastic Aptitude Test mathematics test scores across the population of
high school seniors follow a normal distribution with mean 500 and standard
deviation 100. If five seniors are randomly chosen, find the probability that
(a) all scored below 600 and (b) exactly three of them scored above 640.

25. The annual rainfall (in inches) in a certain region is normally distributed with
µ = 40, σ = 4. What is the probability that in 2 of the next 4 years the rainfall
will exceed 50 inches? Assume that the rainfalls in different years are independent.

26. The width of a slot of a duralumin forging is (in inches) normally distributed with
µ = .9000 and σ = .0030. The specification limits were given as .9000± .0050.
What percentage of forgings will be defective? What is the maximum allowable
value of σ that will permit no more than 1 in 100 defectives when the widths are
normally distributed with µ = .9000 and σ = .0030?

27. A certain type of lightbulb has an output that is normally distributed with mean
2,000 end foot candles and standard deviation 85 end foot candles. Determine
a lower specification limit L so that only 5 percent of the lightbulbs produced
will be defective. (That is, determine L so that P{X ≥ L} = .95, where X is the
output of a bulb.)

28. A manufacturer produces bolts that are specified to be between 1.19 and
1.21 inches in diameter. If its production process results in a bolt’s diameter
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being normally distributed with mean 1.20 inches and standard deviation .005,
what percentage of bolts will not meet specifications?

29. Let I = ∫∞
−∞ e−x2/2 dx.

(a) Show that for any µ and σ

1√
2πσ

∫ ∞

−∞
e−(x−µ)2/2σ 2

dx = 1

is equivalent to I = √
2π .

(b) Show that I = √
2π by writing

I 2 =
∫ ∞

−∞
e−x2/2 dx

∫ ∞

−∞
e−y2/2 dy =

∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2)/2 dx dy

and then evaluating the double integral by means of a change of variables to
polar coordinates. (That is, let x = r cos θ , y = r sin θ , dx dy = r dr dθ .)

30. A random variable X is said to have a lognormal distribution if log X is nor-
mally distributed. If X is lognormal with E [log X ] = µ and Var(log X ) = σ 2,
determine the distribution function of X. That is, what is P{X ≤ x}?

31. The lifetimes of interactive computer chips produced by a certain semiconductor
manufacturer are normally distributed having mean 4.4 × 106 hours with a
standard deviation of 3 × 105 hours. If a mainframe manufacturer requires that
at least 90 percent of the chips from a large batch will have lifetimes of at least
4.0 × 106 hours, should he contract with the semiconductor firm?

32. In Problem 31, what is the probability that a batch of 100 chips will contain at
least 4 whose lifetimes are less than 3.8 × 106 hours?

33. The lifetime of a color television picture tube is a normal random variable with
mean 8.2 years and standard deviation 1.4 years. What percentage of such tubes
lasts

(a) more than 10 years;
(b) less than 5 years;
(c) between 5 and 10 years?

34. The annual rainfall in Cincinnati is normally distributed with mean 40.14 inches
and standard deviation 8.7 inches.

(a) What is the probability this year’s rainfall will exceed 42 inches?
(b) What is the probability that the sum of the next 2 years’ rainfall will exceed

84 inches?
(c) What is the probability that the sum of the next 3 years’ rainfall will exceed

126 inches?
(d) For parts (b) and (c), what independence assumptions are you making?
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35. The height of adult women in the United States is normally distributed with
mean 64.5 inches and standard deviation 2.4 inches. Find the probability that
a randomly chosen woman is

(a) less than 63 inches tall;
(b) less than 70 inches tall;
(c) between 63 and 70 inches tall.
(d) Alice is 72 inches tall. What percentage of women is shorter than Alice?
(e) Find the probability that the average of the heights of two randomly chosen

women exceeds 66 inches.
(f ) Repeat part (e) for four randomly chosen women.

36. An IQ test produces scores that are normally distributed with mean value 100
and standard deviation 14.2. The top 1 percent of all scores are in what range?

37. The time (in hours) required to repair a machine is an exponentially distributed
random variable with parameter λ = 1.

(a) What is the probability that a repair time exceeds 2 hours?
(b) What is the conditional probability that a repair takes at least 3 hours, given

that its duration exceeds 2 hours?

38. The number of years a radio functions is exponentially distributed with parameter
λ = 1

8 . If Jones buys a used radio, what is the probability that it will be working
after an additional 10 years?

39. Jones figures that the total number of thousands of miles that a used auto can be
driven before it would need to be junked is an exponential random variable with
parameter 1

20 . Smith has a used car that he claims has been driven only 10,000
miles. If Jones purchases the car, what is the probability that she would get at least
20,000 additional miles out of it? Repeat under the assumption that the lifetime
mileage of the car is not exponentially distributed but rather is (in thousands of
miles) uniformly distributed over (0, 40).

*40. Let X1, X2, . . . , Xn denote the first n interarrival times of a Poisson process and
set Sn = ∑n

i=1 Xi .

(a) What is the interpretation of Sn?
(b) Argue that the two events {Sn ≤ t} and {N (t ) ≥ n} are identical.
(c) Use part (b) to show that

P{Sn ≤ t} = 1 −
n−1∑
j=0

e−λt (λt )j /j!

(d) By differentiating the distribution function of Sn given in part (c), conclude
that Sn is a gamma random variable with parameters n and λ. (This result
also follows from Corollary 5.7.2.)

* From optional sections.
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*41. Earthquakes occur in a given region in accordance with a Poisson process with
rate 5 per year.

(a) What is the probability there will be at least two earthquakes in the first half
of 2010?

(b) Assuming that the event in part (a) occurs, what is the probability that there
will be no earthquakes during the first 9 months of 2011?

(c) Assuming that the event in part (a) occurs, what is the probability that there
will be at least four earthquakes over the first 9 months of the year 2010?

*42. When shooting at a target in a two-dimensional plane, suppose that the horizontal
miss distance is normally distributed with mean 0 and variance 4 and is indepen-
dent of the vertical miss distance, which is also normally distributed with mean
0 and variance 4. Let D denote the distance between the point at which the shot
lands and the target.

Find E[D].

43. If X is a chi-square random variable with 6 degrees of freedom, find

(a) P{X ≤ 6};
(b) P{3 ≤ X ≤ 9}.

44. If X and Y are independent chi-square random variables with 3 and 6 degrees of
freedom, respectively, determine the probability that X + Y will exceed 10.

45. Show that �(1/2) = √
π (Hint: Evaluate

∫∞
0 e−xx−1/2 dx by letting x = y2/2,

dx = y dy.)

46. If T has a t-distribution with 8 degrees of freedom, find (a) P{T ≥ 1},
(b) P{T ≤ 2}, and (c) P{−1 < T < 1}.

47. If Tn has a t -distribution with n degrees of freedom, show that T 2
n has an

F -distribution with 1 and n degrees of freedom.

48. Let 
 be the standard normal distribution function. If, for constants a
and b > 0

P{X ≤ x} = 


(
x − a

b

)
characterize the distribution of X.

* From optional sections.



Chapter 6

DISTRIBUTIONS OF SAMPLING
STATISTICS

6.1 INTRODUCTION
The science of statistics deals with drawing conclusions from observed data. For instance,
a typical situation in a technological study arises when one is confronted with a large
collection, or population, of items that have measurable values associated with them. By
suitably sampling from this collection, and then analyzing the sampled items, one hopes
to be able to draw some conclusions about the collection as a whole.

To use sample data to make inferences about an entire population, it is necessary to
make some assumptions about the relationship between the two. One such assumption,
which is often quite reasonable, is that there is an underlying (population) probability
distribution such that the measurable values of the items in the population can be thought
of as being independent random variables having this distribution. If the sample data
are then chosen in a random fashion, then it is reasonable to suppose that they too are
independent values from the distribution.

Definition
If X1, . . . , Xn are independent random variables having a common distribution F, then
we say that they constitute a sample (sometimes called a random sample) from the
distribution F.

In most applications, the population distribution F will not be completely specified and
one will attempt to use the data to make inferences about F. Sometimes it will be supposed
that F is specified up to some unknown parameters (for instance, one might suppose that
F was a normal distribution function having an unknown mean and variance, or that it
is a Poisson distribution function whose mean is not given), and at other times it might
be assumed that almost nothing is known about F (except maybe for assuming that it is
a continuous, or a discrete, distribution). Problems in which the form of the underlying
distribution is specified up to a set of unknown parameters are called parametric inference

201
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problems, whereas those in which nothing is assumed about the form of F are called
nonparametric inference problems.

EXAMPLE 6.1a Suppose that a new process has just been installed to produce computer
chips, and suppose that the successive chips produced by this new process will have useful
lifetimes that are independent with a common unknown distribution F. Physical reasons
sometimes suggest the parametric form of the distribution F; for instance, it may lead us
to believe that F is a normal distribution, or that F is an exponential distribution. In such
cases, we are confronted with a parametrical statistical problem in which we would want
to use the observed data to estimate the parameters of F. For instance, if F were assumed
to be a normal distribution, then we would want to estimate its mean and variance; if F
were assumed to be exponential, we would want to estimate its mean. In other situations,
there might not be any physical justification for supposing that F has any particular form;
in this case the problem of making inferences about F would constitute a nonparametric
inference problem. ■

In this chapter, we will be concerned with the probability distributions of certain
statistics that arise from a sample, where a statistic is a random variable whose value is
determined by the sample data. Two important statistics that we will discuss are the sample
mean and the sample variance. In Section 6.2, we consider the sample mean and derive
its expectation and variance. We note that when the sample size is at least moderately
large, the distribution of the sample mean is approximately normal. This follows from
the central limit theorem, one of the most important theoretical results in probability,
which is discussed in Section 6.3. In Section 6.4, we introduce the sample variance and
determine its expected value. In Section 6.5, we suppose that the population distribution
is normal and present the joint distribution of the sample mean and the sample variance.
In Section 6.6, we suppose that we are sampling from a finite population of elements and
explain what it means for the sample to be a “random sample.” When the population size
is large in relation to the sample size, we often treat it as if it were of infinite size; this is
illustrated and its consequences are discussed.

6.2 THE SAMPLE MEAN
Consider a population of elements, each of which has a numerical value attached to it.
For instance, the population might consist of the adults of a specified community and the
value attached to each adult might be his or her annual income, or height, or age, and so
on. We often suppose that the value associated with any member of the population can
be regarded as being the value of a random variable having expectation µ and variance
σ 2. The quantities µ and σ 2 are called the population mean and the population variance,
respectively. Let X1, X2, . . . , Xn be a sample of values from this population. The sample
mean is defined by

X = X1 + · · · + Xn

n
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Since the value of the sample mean X is determined by the values of the random variables
in the sample, it follows that X is also a random variable. Its expected value and variance
are obtained as follows:

E [X ] = E
[

X1 + · · · + Xn

n

]

= 1

n
(E [X1] + · · · + E [Xn])

= µ

and

Var(X ) = Var

(
X1 + · · · + Xn

n

)

= 1

n2 [Var(X1) + · · · + Var(Xn)] by independence

= nσ 2

n2

= σ 2

n

where µ and σ 2 are the population mean and variance, respectively. Hence, the expected
value of the sample mean is the population mean µ whereas its variance is 1/n times
the population variance. As a result, we can conclude that X is also centered about the
population mean µ, but its spread becomes more and more reduced as the sample size
increases. Figure 6.1 plots the probability density function of the sample mean from
a standard normal population for a variety of sample sizes.

n = 10

n = 4

n = 2

n = 1

−4 −2 2 4

FIGURE 6.1 Densities of sample means from a standard normal population.
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6.3 THE CENTRAL LIMIT THEOREM
In this section, we will consider one of the most remarkable results in probability —
namely, the central limit theorem. Loosely speaking, this theorem asserts that the sum of
a large number of independent random variables has a distribution that is approximately
normal. Hence, it not only provides a simple method for computing approximate prob-
abilities for sums of independent random variables, but it also helps explain the remarkable
fact that the empirical frequencies of so many natural populations exhibit a bell-shaped
(that is, a normal) curve.

In its simplest form, the central limit theorem is as follows:

Theorem 6.3.1 The Central Limit Theorem
Let X1, X2, . . . , Xn be a sequence of independent and identically distributed random
variables each having mean µ and variance σ 2. Then for n large, the distribution of

X1 + · · · + Xn

is approximately normal with mean nµ and variance nσ 2.
It follows from the central limit theorem that

X1 + · · · + Xn − nµ

σ
√

n

is approximately a standard normal random variable; thus, for n large,

P
{

X1 + · · · + Xn − nµ

σ
√

n
< x

}
≈ P{Z < x}

where Z is a standard normal random variable.

EXAMPLE 6.3a An insurance company has 25,000 automobile policy holders. If the yearly
claim of a policy holder is a random variable with mean 320 and standard deviation 540,
approximate the probability that the total yearly claim exceeds 8.3 million.

SOLUTION Let X denote the total yearly claim. Number the policy holders, and let Xi

denote the yearly claim of policy holder i. With n = 25,000, we have from the central
limit theorem that X = ∑n

i=1 Xi will have approximately a normal distribution with
mean 320 × 25,000 = 8 × 106 and standard deviation 540

√
25,000 = 8.5381 × 104.

Therefore,

P{X > 8.3 × 106} = P

{
X − 8 × 106

8.5381 × 104
>

8.3 × 106 − 8 × 106

8.5381 × 104

}

= P

{
X − 8 × 106

8.5381 × 104
>

.3 × 106

8.5381 × 104

}
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≈ P{Z > 3.51} where Z is a standard normal

≈ .00023

Thus, there are only 2.3 chances out of 10,000 that the total yearly claim will exceed
8.3 million. ■

EXAMPLE 6.3b Civil engineers believe that W, the amount of weight (in units of
1,000 pounds) that a certain span of a bridge can withstand without structural dam-
age resulting, is normally distributed with mean 400 and standard deviation 40. Suppose
that the weight (again, in units of 1,000 pounds) of a car is a random variable with mean
3 and standard deviation .3. How many cars would have to be on the bridge span for the
probability of structural damage to exceed .1?

SOLUTION Let Pn denote the probability of structural damage when there are n cars on the
bridge. That is,

Pn = P{X1 + · · · + Xn ≥ W }
= P{X1 + · · · + Xn − W ≥ 0}

where Xi is the weight of the ith car, i = 1, . . . , n. Now it follows from the central
limit theorem that

∑n
i=1 Xi is approximately normal with mean 3n and variance .09n.

Hence, since W is independent of the Xi , i = 1, . . . , n, and is also normal, it follows that∑n
i=1 Xi − W is approximately normal, with mean and variance given by

E

[
n∑
1

Xi − W

]
= 3n − 400

Var

(
n∑
1

Xi − W

)
= Var

(
n∑
1

Xi

)
+ Var(W ) = .09n + 1,600

Therefore, if we let

Z =

n∑
i=1

Xi − W − (3n − 400)

√
.09n + 1,600

then

Pn = P
{

Z ≥ −(3n − 400)√
.09n + 1,600

}

where Z is approximately a standard normal random variable. Now P{Z ≥ 1.28} ≈ .1,
and so if the number of cars n is such that

400 − 3n√
.09n + 1,600

≤ 1.28
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or

n ≥ 117

then there is at least 1 chance in 10 that structural damage will occur. ■

The central limit theorem is illustrated by Program 6.1 on the text disk. This program
plots the probability mass function of the sum of n independent and identically distributed
random variables that each take on one of the values 0, 1, 2, 3, 4. When using it, one
enters the probabilities of these five values, and the desired value of n. Figures 6.2(a)–(f )
give the resulting plot for a specified set of probabilities when n = 1, 3, 5, 10, 25, 100.

One of the most important applications of the central limit theorem is in regard to
binomial random variables. Since such a random variable X having parameters (n, p)
represents the number of successes in n independent trials when each trial is a success
with probability p, we can express it as

X = X1 + · · · + Xn

where

Xi =
{

1 if the ith trial is a success
0 otherwise

Enter the probabilities and number of random
variables to be summed. The output gives the mass
function of the sum along with its mean and
variance.

0 1 2 4
i

0.4

0.3

0.2

0.1

0.0

p(i)

Central Limit Theorem

Start

Quit

.25

.15

.1

.2

.3

P0

P1

P2

P3

P4

1n =

3

(a)

FIGURE 6.2 (a) n = 1, (b) n = 3, (c) n = 5, (d ) n = 10, (e) n = 25, ( f ) n = 100.
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Enter the probabilities and number of random
variables to be summed. The output gives the mass
function of the sum along with its mean and
variance.

0 5 10 15
i

0.15

0.10

0.05

0.00

p(i)

Central Limit Theorem

Start

Quit

.25

.15

.1

.2

.3

P0

P1

P2

P3

P4

3n =

(b)

Enter the probabilities and number of random
variables to be summed. The output gives the mass
function of the sum along with its mean and
variance.

0 5 10 15
i

0.15

0.10

0.05

0.00

p(i)

Central Limit Theorem

Start

Quit

.25

.15

.1

.2

.3

P0

P1

P2

P3

P4

5n =

(c)

Mean = 10.75

Variance = 12.6375

20

FIGURE 6.2 (continued)
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Enter the probabilities and number of random
variables to be summed. The output gives the mass
function of the sum along with its mean and
variance.

0 10 20 30
i

0.08

0.06

0.04

0.02

0.00

p(i)

Central Limit Theorem

Start

Quit

.25

.15

.1

.2

.3

P0

P1

P2

P3

P4

10n =

(d)

Mean = 21.5

Variance = 25.275

40

Enter the probabilities and number of random
variables to be summed. The output gives the mass
function of the sum along with its mean and
variance.

0 20
i

0.05
0.04
0.03
0.02
0.01
0.00

p(i)

Central Limit Theorem

Start

Quit

.25

.15

.1

.2

.3

P0

P1

P2

P3

P4

25n =

(e)

Mean = 53.75

Variance = 63.1875

10040 60 80

FIGURE 6.2 (continued)
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Enter the probabilities and number of random
variables to be summed. The output gives the mass
function of the sum along with its mean and
variance.

0 100
i

0.030
0.025
0.020
0.015
0.010
0.005
0.000

p(i)

Central Limit Theorem

Start

Quit

.25

.15

.1

.2

.3

P0

P1

P2

P3

P4

100n =

(f)

Mean = 215.

Variance = 252.75

400200 300

FIGURE 6.2 (continued)

Because

E [Xi] = p, Var(Xi) = p(1 − p)

it follows from the central limit theorem that for n large

X − np√
np(1 − p)

will approximately be a standard normal random variable [see Figure 6.3, which graphically
illustrates how the probability mass function of a binomial (n, p) random variable becomes
more and more “normal” as n becomes larger and larger].

EXAMPLE 6.3c The ideal size of a first-year class at a particular college is 150 students.
The college, knowing from past experience that, on the average, only 30 percent of those
accepted for admission will actually attend, uses a policy of approving the applications of
450 students. Compute the probability that more than 150 first-year students attend this
college.

SOLUTION Let X denote the number of students that attend; then assuming that each
accepted applicant will independently attend, it follows that X is a binomial random
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0.30

0.25

0.20

0.15

0.10

0.05

0.0
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x
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0.0
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x
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0.16
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0.12
0.10
0.08
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0.0
0 5 10 15 20 25
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0.12
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0.08
0.06
0.04
0.02

0.0
0 10 20 30 40

x

(50, 0.7)

30 50

FIGURE 6.3 Binomial probability mass functions converging to the normal density.

variable with parameters n = 450 and p = .3. Since the binomial is a discrete and the
normal a continuous distribution, it is best to compute P{X = i} as P{i−.5 < X < i+.5}
when applying the normal approximation (this is called the continuity correction). This
yields the approximation

P{X > 150.5} = P
{

X − (450)(.3)√
450(.3)(.7)

≥ 150.5 − (450)(.3)√
450(.3)(.7)

}

≈ P{Z > 1.59} = .06

Hence, only 6 percent of the time do more than 150 of the first 450 accepted actually
attend. ■

It should be noted that we now have two possible approximations to binomial proba-
bilities: The Poisson approximation, which yields a good approximation when n is large
and p small, and the normal approximation, which can be shown to be quite good when
np(1 − p) is large. [The normal approximation will, in general, be quite good for values
of n satisfying np(1 − p) ≥ 10.]

6.3.1 Approximate Distribution of the Sample Mean

Let X1, . . . , Xn be a sample from a population having mean µ and variance σ 2. The central
limit theorem can be used to approximate the distribution of the sample mean

X =
n∑

i=1

Xi/n
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Since a constant multiple of a normal random variable is also normal, it follows from
the central limit theorem that X will be approximately normal when the sample size n is
large. Since the sample mean has expected value µ and standard deviation σ /

√
n, it then

follows that

X − µ

σ /
√

n

has approximately a standard normal distribution.

EXAMPLE 6.3d The weights of a population of workers have mean 167 and standard
deviation 27.

(a) If a sample of 36 workers is chosen, approximate the probability that the sample
mean of their weights lies between 163 and 170.

(b) Repeat part (a) when the sample is of size 144.

SOLUTION Let Z be a standard normal random variable.

(a) It follows from the central limit theorem that X is approximately normal with
mean 167 and standard deviation 27/

√
36 = 4.5. Therefore,

P{163 < X < 170} = P

{
163 − 167

4.5
<

X − 167

4.5
<

170 − 167

4.5

}

= P

{
−.8889 <

X − 167

4.5
< .8889

}

≈ 2P{Z < .8889} − 1

≈ .6259

(b) For a sample of size 144, the sample mean will be approximately normal with mean
167 and standard deviation 27/

√
144 = 2.25. Therefore,

P{163 < X < 170} = P

{
163 − 167

2.25
<

X − 167

2.25
<

170 − 167

2.25

}

= P

{
−1.7778 <

X − 167

4.5
< 1.7778

}

≈ 2P{Z < 1.7778} − 1

≈ .9246

Thus increasing the sample size from 36 to 144 increases the probability from .6259
to .9246. ■
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EXAMPLE 6.3e An astronomer wants to measure the distance from her observatory to
a distant star. However, due to atmospheric disturbances, any measurement will not
yield the exact distance d. As a result, the astronomer has decided to make a series of
measurements and then use their average value as an estimate of the actual distance. If
the astronomer believes that the values of the successive measurements are independent
random variables with a mean of d light years and a standard deviation of 2 light years,
how many measurements need she make to be at least 95 percent certain that her estimate
is accurate to within ± .5 light years?

SOLUTION If the astronomer makes n measurements, then X , the sample mean of these
measurements, will be approximately a normal random variable with mean d and standard
deviation 2/

√
n. Thus, the probability that it will lie between d ± .5 is obtained as

follows:

P{−.5 < X − d < .5} = P

{
−.5

2/
√

n
<

X − d
2/

√
n

<
.5

2/
√

n

}

≈ P{−√
n/4 < Z <

√
n/4}

= 2P{Z <
√

n/4} − 1

where Z is a standard normal random variable.
Thus, the astronomer should make n measurements, where n is such that

2P{Z <
√

n/4} − 1 ≥ .95

or, equivalently,

P{Z <
√

n/4} ≥ .975

Since P{Z < 1.96} = .975, it follows that n should be chosen so that

√
n/4 ≥ 1.96

That is, at least 62 observations are necessary. ■

6.3.2 How Large a Sample Is Needed?

The central limit theorem leaves open the question of how large the sample size n needs to be
for the normal approximation to be valid, and indeed the answer depends on the population
distribution of the sample data. For instance, if the underlying population distribution
is normal, then the sample mean X will also be normal regardless of the sample size. A
general rule of thumb is that one can be confident of the normal approximation whenever
the sample size n is at least 30. That is, practically speaking, no matter how nonnormal
the underlying population distribution is, the sample mean of a sample of size at least 30
will be approximately normal. In most cases, the normal approximation is valid for much
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1.2
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0.0
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n = 1
n = 5
n = 10

FIGURE 6.4 Densities of the average of n exponential random variables having mean 1.

smaller sample sizes. Indeed, a sample of size 5 will often suffice for the approximation
to be valid. Figure 6.4 presents the distribution of the sample means from an exponential
population distribution for samples of sizes n = 1, 5, 10.

6.4 THE SAMPLE VARIANCE
Let X1, . . . , Xn be a random sample from a distribution with mean µ and variance σ 2. Let
X be the sample mean, and recall the following definition from Section 2.3.2.

Definition
The statistic S2, defined by

S2 =

n∑
i=1

(Xi − X )2

n − 1

is called the sample variance. S = √
S2 is called the sample standard deviation.

To compute E [S2], we use an identity that was proven in Section 2.3.2: For any
numbers x1, . . . , xn

n∑
i=1

(xi − x)2 =
n∑

i=1

x2
i − nx2
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where x = ∑n
i=1 xi/n. It follows from this identity that

(n − 1)S2 =
n∑

i=1

X 2
i − nX

2

Taking expectations of both sides of the preceding yields, upon using the fact that for any
random variable W , E [W 2] = Var(W ) + (E [W ])2,

(n − 1)E [S2] = E

[
n∑

i=1

X 2
i

]
− nE [X 2]

= nE [X 2
1 ] − nE [X 2]

= nVar(X1) + n(E [X1])2 − nVar(X ) − n(E [X ])2
= nσ 2 + nµ2 − n(σ 2/n) − nµ2

= (n − 1)σ 2

or

E [S2] = σ 2

That is, the expected value of the sample variance S2 is equal to the population
variance σ 2.

6.5 SAMPLING DISTRIBUTIONS FROM A
NORMAL POPULATION

Let X1, X2, . . . , Xn be a sample from a normal population having mean µ and variance σ 2.
That is, they are independent and Xi ∼ N (µ, σ 2), i = 1, . . . , n. Also let

X =
n∑

i=1

Xi/n

and

S2 =

n∑
i=1

(Xi − X )2

n − 1

denote the sample mean and sample variance, respectively. We would like to compute
their distributions.
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6.5.1 Distribution of the Sample Mean

Since the sum of independent normal random variables is normally distributed, it follows
that X is normal with mean

E [X ] =
n∑

i=1

E [Xi]
n

= µ

and variance

Var(X ) = 1

n2

n∑
i=1

Var(Xi) = σ 2/n

That is, X , the average of the sample, is normal with a mean equal to the population mean
but with a variance reduced by a factor of 1/n. It follows from this that

X − µ

σ /
√

n

is a standard normal random variable.

6.5.2 Joint Distribution of X and S2

In this section, we not only obtain the distribution of the sample variance S2, but we also
discover a fundamental fact about normal samples — namely, that X and S2 are indepen-
dent with (n − 1)S2/σ 2 having a chi-square distribution with n − 1 degrees of freedom.

To start, for numbers x1, . . . , xn, let yi = xi − µ, i = 1, . . . , n. Then as y = x − µ,
it follows from the identity

n∑
i=1

( yi − y)2 =
n∑

i=1

y2
i − ny2

that
n∑

i=1

(xi − x)2 =
n∑

i=1

(xi − µ)2 − n(x − µ)2

Now, if X1, . . . , Xn is a sample from a normal population having mean µ variance σ 2,
then we obtain from the preceding identity that

n∑
i=1

(Xi − µ)2

σ 2 =

n∑
i=1

(Xi − X )2

σ 2 + n(X − µ)2

σ 2
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or, equivalently,

n∑
i=1

(
Xi − µ

σ

)2

=

n∑
i=1

(Xi − X )2

σ 2 +
[√

n(X − µ)

σ

]2

(6.5.1)

Because (Xi − µ)/σ , i = 1, . . . , n are independent standard normals, it follows that the
left side of Equation 6.5.1 is a chi-square random variable with n degrees of freedom.
Also, as shown in Section 6.5.1,

√
n(X − µ)/σ is a standard normal random vari-

able and so its square is a chi-square random variable with 1 degree of freedom. Thus
Equation 6.5.1 equates a chi-square random variable having n degrees of freedom to the
sum of two random variables, one of which is chi-square with 1 degree of freedom. But it
has been established that the sum of two independent chi-square random variables is also
chi-square with a degree of freedom equal to the sum of the two degrees of freedom. Thus,
it would seem that there is a reasonable possibility that the two terms on the right side of
Equation 6.5.1 are independent, with

∑n
i=1(Xi −X )2/σ 2 having a chi-square distribution

with n − 1 degrees of freedom. Since this result can indeed be established, we have the
following fundamental result.

Theorem 6.5.1
If X1, . . . , Xn is a sample from a normal population having mean µ and variance σ 2, then
X and S2 are independent random variables, with X being normal with mean µ and
variance σ 2/n and (n − 1)S2/σ 2 being chi-square with n − 1 degrees of freedom.

Theorem 6.5.1 not only provides the distributions of X and S2 for a normal population
but also establishes the important fact that they are independent. In fact, it turns out
that this independence of X and S2 is a unique property of the normal distribution. Its
importance will become evident in the following chapters.

EXAMPLE 6.5a The time it takes a central processing unit to process a certain type of
job is normally distributed with mean 20 seconds and standard deviation 3 seconds. If
a sample of 15 such jobs is observed, what is the probability that the sample variance will
exceed 12?

SOLUTION Since the sample is of size n = 15 and σ 2 = 9, write

P{S2 > 12} = P
{

14S2

9
>

14

9
. 12

}

= P{χ2
14 > 18.67}

= 1 − .8221 from Program 5.8.1a

= .1779 ■
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The following corollary of Theorem 6.5.1 will be quite useful in the following chapters.

Corollary 6.5.2
Let Xi , . . . , Xn be a sample from a normal population with mean µ. If X denotes the
sample mean and S the sample standard deviation, then

√
n

(X − µ)

S
∼ tn−1

That is,
√

n(X − µ)/S has a t-distribution with n − 1 degrees of freedom.

Proof

Recall that a t-random variable with n degrees of freedom is defined as the distribution of

Z√
χ2

n /n

where Z is a standard normal random variable that is independent of χ2
n , a chi-square

random variable with n degrees of freedom. It then follows from Theorem 6.5.1 that
√

n(X − µ)/σ√
S2/σ 2

= √
n

(X − µ)

S

is a t-random variable with n − 1 degrees of freedom. �

6.6 SAMPLING FROM A FINITE POPULATION
Consider a population of N elements, and suppose that p is the proportion of the
population that has a certain characteristic of interest; that is, Np elements have this
characteristic, and N (1− p) do not. A sample of size n from this population is said to
be a random sample if it is chosen in such a manner that each of the

(N
n

)
population subsets

of size n is equally likely to be the sample. For instance, if the population consists of the
three elements a, b, c, then a random sample of size 2 is one that is chosen so that each
of the subsets {a, b}, {a, c}, and {b, c} is equally likely to be the sample. A random subset
can be chosen sequentially by letting its first element be equally likely to be any of the N
elements of the population, then letting its second element be equally likely to be any of
the remaining N − 1 elements of the population, and so on.

Suppose now that a random sample of size n has been chosen from a population of size
N. For i = 1, . . . , n, let

Xi =
{

1 if the ith member of the sample has the characteristic
0 otherwise
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Consider now the sum of the Xi ; that is, consider

X = X1 + X2 + · · · + Xn

Because the term Xi contributes 1 to the sum if the ith member of the sample has the
characteristic and 0 otherwise, it follows that X is equal to the number of members of the
sample that possess the characteristic. In addition, the sample mean

X = X /n =
n∑

i=1

Xi/n

is equal to the proportion of the members of the sample that possess the characteristic.
Let us now consider the probabilities associated with the statistics X and X . To begin,

note that since each of the N members of the population is equally likely to be the ith
member of the sample, it follows that

P{Xi = 1} = Np
N

= p

Also,

P{Xi = 0} = 1 − P{Xi = 1} = 1 − p

That is, each Xi is equal to either 1 or 0 with respective probabilities p and 1 − p.
It should be noted that the random variables X1, X2, . . . , Xn are not independent. For

instance, since the second selection is equally likely to be any of the N members of the
population, of which Np have the characteristic, it follows that the probability that the
second selection has the characteristic is Np/N = p. That is, without any knowledge of
the outcome of the first selection,

P{X2 = 1} = p

However, the conditional probability that X2 = 1, given that the first selection has the
characteristic, is

P{X2 = 1|X1 = 1} = Np − 1

N − 1
which is seen by noting that if the first selection has the characteristic, then the second
selection is equally likely to be any of the remaining N −1 elements, of which Np−1 have
the characteristic. Similarly, the probability that the second selection has the characteristic
given that the first one does not is

P{X2 = 1|X1 = 0} = Np
N − 1

Thus, knowing whether or not the first element of the random sample has the character-
istic changes the probability for the next element. However, when the population size N
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is large in relation to the sample size n, this change will be very slight. For instance, if
N = 1,000, p = .4, then

P{X2 = 1|X1 = 1} = 399

999
= .3994

which is very close to the unconditional probability that X2 = 1; namely,

P{X2 = 1} = .4

Similarly, the probability that the second element of the sample has the characteristic given
that the first does not is

P{X2 = 1|X1 = 0} = 400

999
= .4004

which is again very close to .4.
Indeed, it can be shown that when the population size N is large with respect to

the sample size n, then X1, X2, . . . , Xn are approximately independent. Now if we think
of each Xi as representing the result of a trial that is a success if Xi equals 1 and a failure
otherwise, it follows that X = ∑n

i=1 Xi can be thought of as representing the total number
of successes in n trials. Hence, if the Xi were independent, then X would be a binomial
random variable with parameters n and p. In other words, when the population size N
is large in relation to the sample size n, then the distribution of the number of members
of the sample that possess the characteristic is approximately that of a binomial random
variable with parameters n and p.

REMARK

Of course, X is a hypergeometric random variable (Section 5.4); and so the preceding
shows that a hypergeometric can be approximated by a binomial random variable when
the number chosen is small in relation to the total number of elements.

For the remainder of this text, we will suppose that the underlying
population is large in relation to the sample size and we will take the
distribution of X to be binomial.

By using the formulas given in Section 5.1 for the mean and standard deviation of
a binomial random variable, we see that

E [X ] = np and SD(X ) = √
np(1 − p)

Since X , the proportion of the sample that has the characteristic, is equal to X /n, we see
from the preceding that

E [X ] = E [X ]/n = p
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and

SD(X ) = SD(X )/n = √
p(1 − p)/n

EXAMPLE 6.6a Suppose that 45 percent of the population favors a certain candidate in an
upcoming election. If a random sample of size 200 is chosen, find

(a) the expected value and standard deviation of the number of members of the
sample that favor the candidate;

(b) the probability that more than half the members of the sample favor the candidate.

SOLUTION
(a) The expected value and standard deviation of the proportion that favor the

candidate are

E [X ] = 200(.45) = 90, SD(X ) =
√

200(.45)(1 − .45) = 7.0356

(b) Since X is binomial with parameters 200 and .45, the text disk gives the solution

P{X ≥ 101} = .0681

If this program were not available, then the normal approximation to the binomial
(Section 6.3) could be used:

P{X ≥ 101} = P{X ≥ 100.5} (the continuity correction)

= P
{

X − 90

7.0356
≥ 100.5 − 90

7.0356

}

≈ P{Z ≥ 1.4924}
≈ .0678

The solution obtained by the normal approximation is correct to 3 decimal
places. ■

Even when each element of the population has more than two possible values, it still
remains true that if the population size is large in relation to the sample size, then the
sample data can be regarded as being independent random variables from the population
distribution.

EXAMPLE 6.6b According to the U.S. Department of Agriculture’s World Livestock Situa-
tion, the country with the greatest per capita consumption of pork is Denmark. In 1994,
the amount of pork consumed by a person residing in Denmark had a mean value of 147
pounds with a standard deviation of 62 pounds. If a random sample of 25 Danes is chosen,
approximate the probability that the average amount of pork consumed by the members
of this group in 1994 exceeded 150 pounds.
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SOLUTION If we let Xi be the amount consumed by the ith member of the sample,
i = 1, . . . , 25, then the desired probability is

P
{

X1 + · · · + X25

25
> 150

}
= P{X > 150}

where X is the sample mean of the 25 sample values. Since we can regard the Xi as being
independent random variables with mean 147 and standard deviation 62, it follows from
the central limit theorem that their sample mean will be approximately normal with mean
147 and standard deviation 62/5. Thus, with Z being a standard normal random variable,
we have

P{X > 150} = P

{
X − 147

12.4
>

150 − 147

12.4

}

≈ P{Z > .242}
≈ .404 ■

Problems

1. Plot the probability mass function of the sample mean of X1, . . . , Xn, when

(a) n = 2;
(a) n = 3.

Assume that the probability mass function of the Xi is

P{X = 0} = .2, P{X = 1} = .3, P{X = 3} = .5

In both cases, determine E [X ] and Var(X ).

2. If 10 fair dice are rolled, approximate the probability that the sum of the values
obtained (which ranges from 20 to 120) is between 30 and 40 inclusive.

3. Approximate the probability that the sum of 16 independent uniform (0, 1)
random variables exceeds 10.

4. A roulette wheel has 38 slots, numbered 0, 00, and 1 through 36. If you bet
1 on a specified number, you either win 35 if the roulette ball lands on that
number or lose 1 if it does not. If you continually make such bets, approximate the
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probability that

(a) you are winning after 34 bets;
(b) you are winning after 1,000 bets;
(c) you are winning after 100,000 bets.

Assume that each roll of the roulette ball is equally likely to land on any of the
38 numbers.

5. A highway department has enough salt to handle a total of 80 inches of snowfall.
Suppose the daily amount of snow has a mean of 1.5 inches and a standard deviation
of .3 inches.

(a) Approximate the probability that the salt on hand will suffice for the next
50 days.

(b) What assumption did you make in solving part (a)?
(c) Do you think this assumption is justified? Explain briefly.

6. Fifty numbers are rounded off to the nearest integer and then summed. If the
individual roundoff errors are uniformly distributed between −.5 and .5, what is
the approximate probability that the resultant sum differs from the exact sum by
more than 3?

7. A six-sided die, in which each side is equally likely to appear, is repeatedly rolled
until the total of all rolls exceeds 400. Approximate the probability that this will
require more than 140 rolls.

8. The amount of time that a certain type of battery functions is a random variable
with mean 5 weeks and standard deviation 1.5 weeks. Upon failure, it is imme-
diately replaced by a new battery. Approximate the probability that 13 or more
batteries will be needed in a year.

9. The lifetime of a certain electrical part is a random variable with mean 100 hours
and standard deviation 20 hours. If 16 such parts are tested, find the probability
that the sample mean is

(a) less than 104;
(b) between 98 and 104 hours.

10. A tobacco company claims that the amount of nicotine in its cigarettes is a random
variable with mean 2.2 mg and standard deviation .3 mg. However, the sample
mean nicotine content of 100 randomly chosen cigarettes was 3.1 mg. What is the
approximate probability that the sample mean would have been as high or higher
than 3.1 if the company’s claims were true?

11. The lifetime (in hours) of a type of electric bulb has expected value 500 and
standard deviation 80. Approximate the probability that the sample mean of n
such bulbs is greater than 525 when

(a) n = 4;
(b) n = 16;
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(c) n = 36;
(d) n = 64.

12. An instructor knows from past experience that student exam scores have mean
77 and standard deviation 15. At present the instructor is teaching two separate
classes — one of size 25 and the other of size 64.

(a) Approximate the probability that the average test score in the class of size 25
lies between 72 and 82.

(b) Repeat part (a) for a class of size 64.
(c) What is the approximate probability that the average test score in the class of

size 25 is higher than that of the class of size 64?
(d) Suppose the average scores in the two classes are 76 and 83. Which class, the

one of size 25 or the one of size 64, do you think was more likely to have
averaged 83?

13. If X is binomial with parameters n = 150, p = .6, compute the exact value of
P{X ≤ 80} and compare with its normal approximation both (a) making use of
and (b) not making use of the continuity correction.

14. Each computer chip made in a certain plant will, independently, be defective
with probability .25. If a sample of 1,000 chips is tested, what is the approximate
probability that fewer than 200 chips will be defective?

15. A club basketball team will play a 60-game season. Thirty-two of these games
are against class A teams and 28 are against class B teams. The outcomes of
all the games are independent. The team will win each game against a class
A opponent with probability .5, and it will win each game against a class B
opponent with probability .7. Let X denote its total number of victories in the
season.

(a) Is X a binomial random variable?
(b) Let XA and XB denote, respectively, the number of victories against class A

and class B teams. What are the distributions of XA and XB?
(c) What is the relationship between XA, XB , and X ?
(d) Approximate the probability that the team wins 40 or more games.

16. Argue, based on the central limit theorem, that a Poisson random variable having
mean λ will approximately have a normal distribution with mean and variance
both equal to λ when λ is large. If X is Poisson with mean 100, compute the
exact probability that X is less than or equal to 116 and compare it with its normal
approximation both when a continuity correction is utilized and when it is not.
The convergence of the Poisson to the normal is indicated in Figure 6.5.

17. Use the text disk to compute P{X ≤ 10} when X is a binomial random variable
with parameters n = 100, p = .1. Now compare this with its (a) Poisson and
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Problems 225

(b) normal approximation. In using the normal approximation, write the desired
probability as P{X < 10.5} so as to utilize the continuity correction.

18. The temperature at which a thermostat goes off is normally distributed with
variance σ 2. If the thermostat is to be tested five times, find

(a) P{S2/σ 2 ≤ 1.8}
(b) P{.85 ≤ S2/σ 2 ≤ 1.15}
where S2 is the sample variance of the five data values.

19. In Problem 18, how large a sample would be necessary to ensure that the probability
in part (a) is at least .95?

20. Consider two independent samples — the first of size 10 from a normal population
having variance 4 and the second of size 5 from a normal population having
variance 2. Compute the probability that the sample variance from the second
sample exceeds the one from the first. (Hint: Relate it to the F-distribution.)

21. Twelve percent of the population is left-handed. Find the probability that there
are between 10 and 14 left-handers in a random sample of 100 members of this
population. That is, find P{10 ≤ X ≤ 14}, where X is the number of left-handers
in the sample.

22. Fifty-two percent of the residents of a certain city are in favor of teaching evolution
in high school. Find or approximate the probability that at least 50 percent of a
random sample of size n is in favor of teaching evolution, when

(a) n = 10;
(b) n = 100;
(c) n = 1,000;
(d) n = 10,000.

23. The following table gives the percentages of individuals, categorized by gender,
that follow certain negative health practices. Suppose a random sample of 300 men
is chosen. Approximate the probability that

(a) at least 150 of them rarely eat breakfast;
(b) fewer than 100 of them smoke.

Sleeps 6 Hours Rarely Eats Is 20 Percent or
or Less per Night Smoker Breakfast More Overweight

Men 22.7 28.4 45.4 29.6
Women 21.4 22.8 42.0 25.6

Source: U.S. National Center for Health Statistics, Health Promotion and Disease Prevention, 1990.

24. (Use the table from Problem 23.) Suppose a random sample of 300 women is
chosen. Approximate the probability that
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(a) at least 60 of them are overweight by 20 percent or more;
(b) fewer than 50 of them sleep 6 hours or less nightly.

25. (Use the table from Problem 23.) Suppose random samples of 300 women and
of 300 men are chosen. Approximate the probability that more women than men
rarely eat breakfast.

26. The following table uses 1989 data concerning the percentages of male and female
full-time workers whose annual salaries fall in different salary groupings. Suppose
random samples of 1,000 men and 1,000 women were chosen. Use the table to
approximate the probability that

(a) at least half of the women earned less than $20,000;
(b) more than half of the men earned $20,000 or more;
(c) more than half of the women and more than half of the men earned $20,000

or more;
(d) 250 or fewer of the women earned at least $25,000;
(e) at least 200 of the men earned $50,000 or more;
(f) more women than men earned between $20,000 and $24,999.

Earnings Range Percentage of Women Percentage of Men

$4,999 or less 2.8 1.8
$5,000 to $9,999 10.4 4.7
$10,000 to $19,999 41.0 23.1
$20,000 to $25,000 16.5 13.4
$25,000 to $49,999 26.3 42.1
$50,000 and over 3.0 14.9

Source: U.S. Department of Commerce, Bureau of the Census.

27. In 1995 the percentage of the labor force that belonged to a union was 14.9. If
five workers had been randomly chosen in that year, what is the probability that
none of them would have belonged to a union? Compare your answer to what it
would be for the year 1945, when an all time high of 35.5 percent of the labor
force belonged to a union.

28. The sample mean and sample standard deviation of all San Francisco student
scores on the most recent Scholastic Aptitude Test examination in mathematics
were 517 and 120. Approximate the probability that a random sample of 144
students would have an average score exceeding

(a) 507;
(b) 517;
(c) 537;
(d) 550.
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29. The average salary of newly graduated students with bachelor’s degrees in chemical
engineering is $43,600, with a standard deviation of $3,200. Approximate the
probability that the average salary of a sample of 12 recently graduated chemical
engineers exceeds $45,000.

30. A certain component is critical to the operation of an electrical system and must be
replaced immediately upon failure. If the mean lifetime of this type of component
is 100 hours and its standard deviation is 30 hours, how many of the components
must be in stock so that the probability that the system is in continual operation
for the next 2000 hours is at least .95?
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Chapter 7

PARAMETER ESTIMATION

7.1 INTRODUCTION
Let X1, . . . , Xn be a random sample from a distribution Fθ that is specified up to a vector
of unknown parameters θ . For instance, the sample could be from a Poisson distribution
whose mean value is unknown; or it could be from a normal distribution having an
unknown mean and variance. Whereas in probability theory it is usual to suppose that
all of the parameters of a distribution are known, the opposite is true in statistics, where
a central problem is to use the observed data to make inferences about the unknown
parameters.

In Section 7.2, we present the maximum likelihood method for determining estimators
of unknown parameters. The estimates so obtained are called point estimates, because they
specify a single quantity as an estimate of θ . In Section 7.3, we consider the problem
of obtaining interval estimates. In this case, rather than specifying a certain value as our
estimate of θ , we specify an interval in which we estimate that θ lies. Additionally, we
consider the question of how much confidence we can attach to such an interval estimate.
We illustrate by showing how to obtain an interval estimate of the unknown mean of
a normal distribution whose variance is specified. We then consider a variety of interval
estimation problems. In Section 7.3.1, we present an interval estimate of the mean of a
normal distribution whose variance is unknown. In Section 7.3.2, we obtain an interval
estimate of the variance of a normal distribution. In Section 7.4, we determine an interval
estimate for the difference of two normal means, both when their variances are assumed to
be known and when they are assumed to be unknown (although in the latter case we suppose
that the unknown variances are equal). In Sections 7.5 and the optional Section 7.6, we
present interval estimates of the mean of a Bernoulli random variable and the mean of an
exponential random variable.

In the optional Section 7.7, we return to the general problem of obtaining point esti-
mates of unknown parameters and show how to evaluate an estimator by considering its
mean square error. The bias of an estimator is discussed, and its relationship to the mean
square error is explored.

229
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In the optional Section 7.8, we consider the problem of determining an estimate of an
unknown parameter when there is some prior information available. This is the Bayesian
approach, which supposes that prior to observing the data, information about θ is always
available to the decision maker, and that this information can be expressed in terms of
a probability distribution on θ . In such a situation, we show how to compute the Bayes
estimator, which is the estimator whose expected squared distance from θ is minimal.

7.2 MAXIMUM LIKELIHOOD ESTIMATORS
Any statistic used to estimate the value of an unknown parameter θ is called an estimator
of θ . The observed value of the estimator is called the estimate. For instance, as we shall
see, the usual estimator of the mean of a normal population, based on a sample X1, . . . , Xn

from that population, is the sample mean X = ∑
i Xi/n. If a sample of size 3 yields the

data X1 = 2, X2 = 3, X3 = 4, then the estimate of the population mean, resulting from
the estimator X , is the value 3.

Suppose that the random variables X1, . . . , Xn, whose joint distribution is assumed
given except for an unknown parameter θ , are to be observed. The problem of interest
is to use the observed values to estimate θ . For example, the Xi ’s might be independent,
exponential random variables each having the same unknown mean θ . In this case, the
joint density function of the random variables would be given by

f (x1, x2, . . . , xn)

= fX1 (x1)fX2 (x2) · · · fXn (xn)

= 1

θ
e−x1/θ 1

θ
e−x2/θ · · · 1

θ
e−xn/θ , 0 < xi < ∞, i = 1, . . . , n

= 1

θn exp

{
−

n∑
1

xi/θ

}
, 0 < xi < ∞, i = 1, . . . , n

and the objective would be to estimate θ from the observed data X1, X2, . . . , Xn.
A particular type of estimator, known as the maximum likelihood estimator, is widely

used in statistics. It is obtained by reasoning as follows. Let f (x1, . . . , xn|θ ) denote the joint
probability mass function of the random variables X1, X2, . . . , Xn when they are discrete,
and let it be their joint probability density function when they are jointly continuous
random variables. Because θ is assumed unknown, we also write f as a function of θ .
Now since f (x1, . . . , xn|θ ) represents the likelihood that the values x1, x2, . . . , xn will be
observed when θ is the true value of the parameter, it would seem that a reasonable estimate
of θ would be that value yielding the largest likelihood of the observed values. In other
words, the maximum likelihood estimate θ̂ is defined to be that value of θ maximizing
f (x1, . . . , xn|θ ) where x1, . . . , xn are the observed values. The function f (x1, . . . , xn|θ ) is
often referred to as the likelihood function of θ .
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In determining the maximizing value of θ , it is often useful to use the fact that
f (x1, . . . , xn|θ ) and log[ f (x1, . . . , xn|θ )] have their maximum at the same value of θ .
Hence, we may also obtain θ̂ by maximizing log[ f (x1, . . . , xn|θ )].
EXAMPLE 7.2a Maximum Likelihood Estimator of a Bernoulli Parameter Suppose that n inde-
pendent trials, each of which is a success with probability p, are performed. What is the
maximum likelihood estimator of p?

SOLUTION The data consist of the values of X1, . . . , Xn where

Xi =
{

1 if trial i is a success

0 otherwise

Now

P{Xi = 1} = p = 1 − P{Xi = 0}

which can be succinctly expressed as

P{Xi = x} = px (1 − p)1−x , x = 0, 1

Hence, by the assumed independence of the trials, the likelihood (that is, the joint
probability mass function) of the data is given by

f (x1, . . . , xn|p) = P{X1 = x1, . . . , Xn = xn|p}
= px1 (1 − p)1−x1 · · · pxn (1 − p)1−xn

= p�n
1xi (1 − p)n−�n

1xi , xi = 0, 1, i = 1, . . . , n

To determine the value of p that maximizes the likelihood, first take logs to obtain

log f (x1, . . . , xn|p) =
n∑
1

xi log p +
(

n −
n∑
1

xi

)
log(1 − p)

Differentiation yields

d
dp

log f (x1, . . . , xn|p) =

n∑
1

xi

p
−

(
n −

n∑
1

xi

)
1 − p
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Upon equating to zero and solving, we obtain that the maximum likelihood estimate p̂
satisfies

n∑
1

xi

p̂
=

n −
n∑
1

xi

1 − p̂

or

p̂ =

n∑
i=1

xi

n

Hence, the maximum likelihood estimator of the unknown mean of a Bernoulli
distribution is given by

d (X1, . . . , Xn) =

n∑
i=1

Xi

n

Since
∑n

i=1 Xi is the number of successful trials, we see that the maximum likelihood
estimator of p is equal to the proportion of the observed trials that result in successes.
For an illustration, suppose that each RAM (random access memory) chip produced by
a certain manufacturer is, independently, of acceptable quality with probability p. Then
if out of a sample of 1,000 tested 921 are acceptable, it follows that the maximum likelihood
estimate of p is .921. ■

EXAMPLE 7.2b Two proofreaders were given the same manuscript to read. If proofreader
1 found n1 errors, and proofreader 2 found n2 errors, with n1,2 of these errors being found
by both proofreaders, estimate N, the total number of errors that are in the manuscript.

SOLUTION Before we can estimate N we need to make some assumptions about the
underlying probability model. So let us assume that the results of the proofreaders are
independent, and that each error in the manuscript is independently found by proofreader
i with probability pi , i = 1, 2.

To estimate N, we will start by deriving an estimator of p1. To do so, note that each
of the n2 errors found by reader 2 will, independently, be found by proofreader 1 with
probability pi . Because proofreader 1 found n1,2 of those n2 errors, a reasonable estimate
of p1 is given by

p̂1 = n1,2

n2
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However, because proofreader 1 found n1 of the N errors in the manuscript, it is reasonable
to suppose that p1 is also approximately equal to n1

N . Equating this to p̂1 gives that

n1,2

n2
≈ n1

N

or

N ≈ n1n2

n1,2

Because the preceding estimate is symmetric in n1 and n2, it follows that it is the same
no matter which proofreader is designated as proofreader 1.

An interesting application of the preceding occurred when two teams of researchers
recently announced that they had decoded the human genetic code sequence. As part
of their work both teams estimated that the human genome consisted of approximately
33,000 genes. Because both teams independently arrived at the same number, many
scientists found this number believable. However, most scientists were quite surprised by
this relatively small number of genes; by comparison it is only about twice as many as a
fruit fly has. However, a closer inspection of the findings indicated that the two groups
only agreed on the existence of about 17,000 genes. (That is, 17,000 genes were found by
both teams.) Thus, based on our preceding estimator, we would estimate that the actual
number of genes, rather than being 33,000, is

n1n2

n1,2
= 33,000 × 33,000

17,000
≈ 64,000

(Because there is some controversy about whether some of genes claimed to be found are
actually genes, 64,000 should probably be taken as an upper bound on the actual number
of genes.)

The estimation approach used when there are two proofreaders does not work when
there are m proofreaders, when m > 2. For, if for each i, we let p̂i be the fraction of the
errors found by at least one of the other proofreaders j, ( j �= i), that are also found by i,
and then set that equal to ni

N , then the estimate of N, namely ni
p̂i

, would differ for different

values of i. Moreover, with this approach it is possible that we may have that p̂i > p̂j

even if proofreader i finds fewer errors than does proofreader j. For instance, for m = 3,
suppose proofreaders 1 and 2 find exactly the same set of 10 errors whereas proofreader 3
finds 20 errors with only 1 of them in common with the set of errors found by the others.
Then, because proofreader 1 (and 2) found 10 of the 29 errors found by at least one of the
other proofreaders, p̂i = 10/29, i = 1, 2. On the other hand, because proofreader 3 only
found 1 of the 10 errors found by the others, p̂3 = 1/10. Therefore, although proofreader
3 found twice the number of errors as did proofreader 1, the estimate of p3 is less than
that of p1. To obtain more reasonable estimates, we could take the preceding values of
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p̂i , i = 1, . . . , m, as preliminary estimates of the pi . Now, let nf be the number of errors
that are found by at least one proofreader. Because nf /N is the fraction of errors that are
found by at least one proofreader, this should approximately equal 1 −∏m

i=1(1 − pi), the
probability that an error is found by at least one proofreader. Therefore, we have

nf

N
≈ 1 −

m∏
i=1

(1 − pi)

suggesting that N ≈ N̂ , where

N̂ = nf

1 −∏m
i=1(1 − p̂i)

(7.2.1)

With this estimate of N, we can then reset our estimates of the pi by using

p̂i = ni

N̂
, i = 1, . . . , m (7.2.2)

We can then reestimate N by using the new value (7.2.1). (The estimation need not stop
here; each time we obtain a new estimate N̂ of N we can use (7.2.2) to obtain new estimates
of the pi , which can then be used to obtain a new estimate of N, and so on.) ■

EXAMPLE 7.2c Maximum Likelihood Estimator of a Poisson Parameter Suppose X1, . . . , Xn

are independent Poisson random variables each having mean λ. Determine the maxi-
mum likelihood estimator of λ.

SOLUTION The likelihood function is given by

f (x1, . . . , xn|λ) = e−λλx1

x1! · · · e−λλxn

xn!
= e−nλλ�n

1xi

x1! . . . xn!
Thus,

log f (x1, . . . , xn|λ) = −nλ +
n∑
1

xi log λ − log c

where c = ∏n
i=1 xi ! does not depend on λ, and

d
dλ

log f (x1, . . . , xn|λ) = −n +

n∑
1

xi

λ
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By equating to zero, we obtain that the maximum likelihood estimate λ̂ equals

λ̂ =

n∑
1

xi

n

and so the maximum likelihood estimator is given by

d (X1, . . . , Xn) =

n∑
i=1

Xi

n

For example, suppose that the number of people that enter a certain retail establishment
in any day is a Poisson random variable having an unknown mean λ, which must be
estimated. If after 20 days a total of 857 people have entered the establishment, then
the maximum likelihood estimate of λ is 857/20 = 42.85. That is, we estimate that
on average, 42.85 customers will enter the establishment on a given day. ■

EXAMPLE 7.2d The number of traffic accidents in Berkeley, California, in 10 randomly
chosen nonrainy days in 1998 is as follows:

4, 0, 6, 5, 2, 1, 2, 0, 4, 3

Use these data to estimate the proportion of nonrainy days that had 2 or fewer accidents
that year.

SOLUTION Since there are a large number of drivers, each of whom has a small probability
of being involved in an accident in a given day, it seems reasonable to assume that the daily
number of traffic accidents is a Poisson random variable. Since

X = 1

10

10∑
i=1

Xi = 2.7

it follows that the maximum likelihood estimate of the Poisson mean is 2.7. Since the
long-run proportion of nonrainy days that have 2 or fewer accidents is equal to P{X ≤ 2},
where X is the random number of accidents in a day, it follows that the desired estimate is

e−2.7(1 + 2.7 + (2.7)2/2) = .4936

That is, we estimate that a little less than half of the nonrainy days had 2 or fewer
accidents. ■



236 Chapter 7: Parameter Estimation

EXAMPLE 7.2e Maximum Likelihood Estimator in a Normal Population Suppose X1, . . . , Xn

are independent, normal random variables each with unknown mean µ and unknown
standard deviation σ . The joint density is given by

f (x1, . . . , xn|µ, σ ) =
n∏

i=1

1√
2πσ

exp

[−(xi − µ)2

2σ 2

]

=
(

1

2π

)n/2 1

σ n exp




−
n∑
1

(xi − µ)2

2σ 2




The logarithm of the likelihood is thus given by

log f (x1, . . . , xn|µ, σ ) = −n
2

log(2π ) − n log σ −

n∑
1

(xi − µ)2

2σ 2

In order to find the value of µ and σ maximizing the foregoing, we compute

∂

∂µ
log f (x1, . . . , xn|µ, σ ) =

n∑
i=1

(xi − µ)

σ 2

∂

∂σ
log f (x1, . . . , xn|µ, σ ) = − n

σ
+

n∑
1

(xi − µ)2

σ 3

Equating these equations to zero yields that

µ̂ =
n∑

i=1

xi/n

and

σ̂ =
[

n∑
i=1

(xi − µ̂)2/n

]1/2
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Hence, the maximum likelihood estimators of µ and σ are given, respectively, by

X and

[
n∑

i=1

(Xi − X )2/n

]1/2

(7.2.3)

It should be noted that the maximum likelihood estimator of the standard deviation σ

differs from the sample standard deviation

S =
[

n∑
i=1

(Xi − X )2/(n − 1)

]1/2

in that the denominator in Equation 7.2.3 is
√

n rather than
√

n − 1. However, for n of
reasonable size, these two estimators of σ will be approximately equal. ■

EXAMPLE 7.2f Kolmogorov’s law of fragmentation states that the size of an individual particle
in a large collection of particles resulting from the fragmentation of a mineral compound
will have an approximate lognormal distribution, where a random variable X is said to
have a lognormal distribution if log(X ) has a normal distribution. The law, which was
first noted empirically and then later given a theoretical basis by Kolmogorov, has been
applied to a variety of engineering studies. For instance, it has been used in the analysis of
the size of randomly chosen gold particles from a collection of gold sand. A less obvious
application of the law has been to a study of the stress release in earthquake fault zones
(see Lomnitz, C., “Global Tectonics and Earthquake Risk,” Developments in Geotectonics,
Elsevier, Amsterdam, 1979).

Suppose that a sample of 10 grains of metallic sand taken from a large sand pile have
respective lengths (in millimeters):

2.2, 3.4, 1.6, 0.8, 2.7, 3.3, 1.6, 2.8, 2.5, 1.9

Estimate the percentage of sand grains in the entire pile whose length is between 2 and 3
mm.

SOLUTION Taking the natural logarithm of these 10 data values, the following transformed
data set results

.7885, 1.2238, .4700, −.2231, .9933, 1.1939, .4700, 1.0296, .9163, .6419

Because the sample mean and sample standard deviation of these data are

x = .7504, s = .4351
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it follows that the logarithm of the length of a randomly chosen grain has a normal
distribution with mean approximately equal to .7504 and with standard deviation approxi-
mately equal to .4351. Hence, if X is the length of the grain, then

P{2 < X < 3} = P{log(2) < log(X ) < log(3)}

= P
{

log(2) − .7504

.4351
<

log(X ) − .7504

.4351
<

log(3) − .7504

.4351

}

= P
{
−.1316 <

log(X ) − .7504

.4351
< .8003

}

≈ 
(.8003) − 
(−.1316)

= .3405 ■

In all of the foregoing examples, the maximum likelihood estimator of the population
mean turned out to be the sample mean X . To show that this is not always the situation,
consider the following example.

EXAMPLE 7.2g Estimating the Mean of a Uniform Distribution Suppose X1, . . . , Xn consti-
tute a sample from a uniform distribution on (0, θ ), where θ is unknown. Their joint
density is thus

f (x1, x2, . . . , xn|θ ) =



1

θn 0 < xi < θ , i = 1, . . . , n

0 otherwise

This density is maximized by choosing θ as small as possible. Since θ must be at least as
large as all of the observed values xi , it follows that the smallest possible choice of θ is equal
to max(x1, x2, . . . , xn). Hence, the maximum likelihood estimator of θ is

θ̂ = max(X1, X2, . . . , Xn)

It easily follows from the foregoing that the maximum likelihood estimator of θ /2, the
mean of the distribution, is max(X1, X2, . . . , Xn)/2. ■

*7.2.1 Estimating Life Distributions

Let X denote the age at death of a randomly chosen child born today. That is, X = i if
the newborn dies in its ith year, i ≥ 1. To estimate the probability mass function of X,
let λi denote the probability that a newborn who has survived his or her first i − 1 years

* Optional section.
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dies in year i. That is,

λi = P{X = i|X > i − 1} = P{X = i}
P{X > i − 1}

Also, let

si = 1 − λi = P{X > i}
P{X > i − 1}

be the probability that a newborn who survives her first i − 1 years also survives year i.
The quantity λi is called the failure rate, and si is called the survival rate, of an individual
who is entering his or her ith year. Now,

s1s2 · · · si = P{X > 1}P{X > 2}P{X > 3}
P{X > 1}P{X > 2} · · · P{X > i}

P{X > i − 1}
= P{X > i}

Therefore,

P{X = n} = P{X > n − 1}λn = s1 · · · sn−1(1 − sn)

Consequently, we can estimate the probability mass function of X by estimating the
quantities si , i = 1, . . . , n. The value si can be estimated by looking at all individuals
in the population who reached age i one year ago, and then letting the estimate ŝi be
the fraction of them who are alive today. We would then use ŝ1 ŝ2 · · · ŝn−1

(
1 − ŝn

)
as the

estimate of P{X = n}. (Note that although we are using the most recent possible data to
estimate the quantities si , our estimate of the probability mass function of the lifetime of
a newborn assumes that the survival rate of the newborn when it reaches age i will be the
same as last year’s survival rate of someone of age i.)

The use of the survival rate to estimate a life distribution is also of importance in health
studies with partial information. For instance, consider a study in which a new drug is
given to a random sample of 12 lung cancer patients. Suppose that after some time we
have the following data on the number of months of survival after starting the new drug:

4, 7∗, 9, 11∗, 12, 3, 14∗, 1, 8, 7, 5, 3∗

where x means that the patient died in month x after starting the drug treatment, and x∗
means that the patient has taken the drug for x months and is still alive.

Let X equal the number of months of survival after beginning the drug treatment, and
let

si = P{X > i|X > i − 1} = P{X > i}
P{X > i − 1}
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To estimate si , the probability that a patient who has survived the first i − 1 months will
also survive month i, we should take the fraction of those patients who began their ith
month of drug taking and survived the month. For instance, because 11 of the 12 patients
survived month 1, ŝ1 = 11/12. Because all 11 patients who began month 2 survived,
ŝ2 = 11/11. Because 10 of the 11 patients who began month 3 survived, ŝ3 = 10/11.
Because 8 of the 9 patients who began their fourth month of taking the drug (all but the
ones labelled 1, 3, and 3∗) survived month 4, ŝ4 = 8/9. Similar reasoning holds for the
others, giving the following survival rate estimates:

ŝ1 = 11/12

ŝ2 = 11/11

ŝ3 = 10/11

ŝ4 = 8/9

ŝ5 = 7/8

ŝ6 = 7/7

ŝ7 = 6/7

ŝ8 = 4/5

ŝ9 = 3/4

ŝ10 = 3/3

ŝ11 = 3/3

ŝ12 = 1/2

ŝ13 = 1/1

ŝ14 = 1/2

We can now use
∏ j

i=1 ŝi to estimate the probability that a drug taker survives at least j
time periods, j = 1, . . . , 14. For instance, our estimate of P{X > 6} is 35/54.

7.3 INTERVAL ESTIMATES
Suppose that X1, . . . , Xn is a sample from a normal population having unknown mean µ

and known varianceσ 2. It has been shown that X = ∑n
i=1 Xi/n is the maximum likelihood

estimator for µ. However, we don’t expect that the sample mean X will exactly equal µ,
but rather that it will “be close.” Hence, rather than a point estimate, it is sometimes more
valuable to be able to specify an interval for which we have a certain degree of confidence
that µ lies within. To obtain such an interval estimator, we make use of the probability
distribution of the point estimator. Let us see how it works for the preceding situation.
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In the foregoing, since the point estimator X is normal with mean µ and variance σ 2/n,
it follows that

X − µ

σ /
√

n
= √

n
(X − µ)

σ

has a standard normal distribution. Therefore,

P

{
−1.96 <

√
n

(X − µ)

σ
< 1.96

}
= .95

or, equivalently,

P
{
−1.96

σ√
n

< X − µ < 1.96
σ√
n

}
= .95

Multiplying through by −1 yields the equivalent statement

P
{
−1.96

σ√
n

< µ − X < 1.96
σ√
n

}
= .95

or, equivalently,

P
{

X − 1.96
σ√
n

< µ < X + 1.96
σ√
n

}
= .95

That is, 95 percent of the time µ will lie within 1.96σ /
√

n units of the sample average. If
we now observe the sample and it turns out that X = x, then we say that “with 95 percent
confidence”

x − 1.96
σ√
n

< µ < x + 1.96
σ√
n

(7.3.1)

That is, “with 95 percent confidence” we assert that the true mean lies within 1. 96σ /
√

n
of the observed sample mean. The interval

(
x − 1.96

σ√
n

, x + 1.96
σ√
n

)

is called a 95 percent confidence interval estimate of µ.

EXAMPLE 7.3a Suppose that when a signal having value µ is transmitted from location A
the value received at location B is normally distributed with mean µ and variance 4. That
is, if µ is sent, then the value received is µ + N where N , representing noise, is normal
with mean 0 and variance 4. To reduce error, suppose the same value is sent 9 times. If
the successive values received are 5, 8.5, 12, 15, 7, 9, 7.5, 6.5, 10.5, let us construct a
95 percent confidence interval for µ.
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Since

x = 81

9
= 9

It follows, under the assumption that the values received are independent, that a 95 percent
confidence interval for µ is

(
9 − 1.96

σ

3
, 9 + 1.96

σ

3

)
= (7.69, 10.31)

Hence, we are “95 percent confident” that the true message value lies between 7.69 and
10.31. ■

The interval in Equation 7.3.1 is called a two-sided confidence interval. Sometimes,
however, we are interested in determining a value so that we can assert with, say, 95
percent confidence, that µ is at least as large as that value.

To determine such a value, note that if Z is a standard normal random variable then

P{Z < 1.645} = .95

As a result,

P

{
√

n
(X − µ)

σ
< 1.645

}
= .95

or

P
{

X − 1.645
σ√
n

< µ

}
= .95

Thus, a 95 percent one-sided upper confidence interval for µ is

(
x − 1.645

σ√
n

, ∞
)

where x is the observed value of the sample mean.
A one-sided lower confidence interval is obtained similarly; when the observed value of

the sample mean is x, then the 95 percent one-sided lower confidence interval for µ is

(
−∞, x + 1.645

σ√
n

)

EXAMPLE 7.3b Determine the upper and lower 95 percent confidence interval estimates
of µ in Example 7.3a.
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SOLUTION Since

1.645
σ√
n

= 3.29

3
= 1.097

the 95 percent upper confidence interval is

(9 − 1.097, ∞) = (7.903, ∞)

and the 95 percent lower confidence interval is

(−∞, 9 + 1.097) = (−∞, 10.097) ■

We can also obtain confidence intervals of any specified level of confidence. To do so,
recall that zα is such that

P{Z > zα} = α

when Z is a standard normal random variable. But this implies (see Figure 7.1) that for
any α

P{−zα/2 < Z < zα/2} = 1 − α

As a result, we see that

P

{
−zα/2 <

√
n

(X − µ)

σ
< zα/2

}
= 1 − α

or

P
{
−zα/2

σ√
n

< X − µ < zα/2
σ√
n

}
= 1 − α

or

P
{
−zα/2

σ√
n

< µ − X < zα/2
σ√
n

}
= 1 − α

That is,

P
{

X − zα/2
σ√
n

< µ < X + zα/2
σ√
n

}
= 1 − α

Area = –

0−za/2 za/2

a
2

Area = –a
2

FIGURE 7.1 P{−zα/2 < Z < zα/2} = 1 − α.
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Hence, a 100(1 − α) percent two-sided confidence interval for µ is(
x − zα/2

σ√
n

, x + zα/2
σ√
n

)

where x is the observed sample mean.

Similarly, knowing that Z = √
n (X −µ)

σ
is a standard normal random variable, along

with the identities

P{Z > zα} = α

and

P{Z < −zα} = α

results in one-sided confidence intervals of any desired level of confidence. Specifically, we
obtain that (

x − zα

σ√
n

, ∞
)

and (
−∞, x + zα

σ√
n

)

are, respectively, 100(1 − α) percent one-sided upper and 100(1 − α) percent one-sided
lower confidence intervals for µ.

EXAMPLE 7.3c Use the data of Example 7.3a to obtain a 99 percent confidence interval
estimate of µ, along with 99 percent one-sided upper and lower intervals.

SOLUTION Since z.005 = 2.58, and

2.58
α√
n

= 5.16

3
= 1.72

it follows that a 99 percent confidence interval for µ is

9 ± 1.72

That is, the 99 percent confidence interval estimate is (7.28, 10.72).
Also, since z.01 = 2.33, a 99 percent upper confidence interval is

(9 − 2.33(2/3), ∞) = (7.447, ∞)

Similarly, a 99 percent lower confidence interval is

(−∞, 9 + 2.33(2/3)) = (−∞, 10.553) ■
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Sometimes we are interested in a two-sided confidence interval of a certain level, say
1 − α, and the problem is to choose the sample size n so that the interval is of a certain
size. For instance, suppose that we want to compute an interval of length .1 that we can
assert, with 99 percent confidence, contains µ. How large need n be? To solve this, note
that as z.005 = 2.58 it follows that the 99 percent confidence interval for µ from a sample
of size n is (

x − 2.58
α√
n

, x + 2.58
α√
n

)

Hence, its length is

5.16
σ√
n

Thus, to make the length of the interval equal to .1, we must choose

5.16
σ√
n

= .1

or

n = (51.6σ )2

REMARK

The interpretation of “a 100(1 − α) percent confidence interval” can be confusing. It
should be noted that we are not asserting that the probability that µ ∈ (x −1. 96σ /

√
n, x +

1. 96σ /
√

n ) is .95, for there are no random variables involved in this assertion. What we
are asserting is that the technique utilized to obtain this interval is such that 95 percent of
the time that it is employed it will result in an interval in which µ lies. In other words,
before the data are observed we can assert that with probability .95 the interval that will
be obtained will contain µ, whereas after the data are obtained we can only assert that
the resultant interval indeed contains µ “with confidence .95.”

EXAMPLE 7.3d From past experience it is known that the weights of salmon grown at
a commercial hatchery are normal with a mean that varies from season to season but with
a standard deviation that remains fixed at 0.3 pounds. If we want to be 95 percent certain
that our estimate of the present season’s mean weight of a salmon is correct to within
±0.1 pounds, how large a sample is needed?

SOLUTION A 95 percent confidence interval estimate for the unknown mean µ, based on
a sample of size n, is

µ ∈
(

x − 1.96
σ√
n

, x + 1.96
σ√
n

)
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Because the estimate x is within 1.96(σ /
√

n) = .588/
√

n of any point in the interval, it
follows that we can be 95 percent certain that x is within 0.1 of µ provided that

.588√
n

≤ 0.1

That is, provided that
√

n ≥ 5.88

or

n ≥ 34.57

That is, a sample size of 35 or larger will suffice. ■

7.3.1 Confidence Interval for a Normal Mean When the Variance

Is Unknown

Suppose now that X1, . . . , Xn is a sample from a normal distribution with unknown mean
µ and unknown variance σ 2, and that we wish to construct a 100(1−α) percent confidence
interval for µ. Since σ is unknown, we can no longer base our interval on the fact that√

n(X −µ)/σ is a standard normal random variable. However, by letting S2 = ∑n
i=1(Xi −

X )2/(n − 1) denote the sample variance, then from Corollary 6.5.2 it follows that

√
n

(X − µ)

S

is a t -random variable with n − 1 degrees of freedom. Hence, from the symmetry of the
t -density function (see Figure 7.2), we have that for any α ∈ (0, 1/2),

P

{
−tα/2,n−1 <

√
n

(X − µ)

S
< tα/2,n−1

}
= 1 − α

or, equivalently,

P
{

X − tα/2,n−1
S√
n

< µ < X + tα/2,n−1
S√
n

}
= 1 − α

Thus, if it is observed that X = x and S = s, then we can say that “with 100(1 − α)
percent confidence”

µ ∈
(

x − tα/2,n−1
s√
n

, x + tα/2,n−1
s√
n

)
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Area = a/2

tta/2, n–1

Area = a/2

–ta/2, n–1

P{–ta/2, n–1 < Tn–1 < ta/2, n–1} = 1 – a

FIGURE 7.2 t -density function.

EXAMPLE 7.3e Let us again consider Example 7.3a but let us now suppose that when the
value µ is transmitted at location A then the value received at location B is normal with
mean µ and variance σ 2 but with σ 2 being unknown. If 9 successive values are, as in
Example 7.3a, 5, 8.5, 12, 15, 7, 9, 7.5, 6.5, 10.5, compute a 95 percent confidence
interval for µ.

SOLUTION A simple calculation yields that

x = 9

and

s2 =
∑

x2
i − 9(x)2

8
= 9.5

or

s = 3.082

Hence, as t.025,8 = 2.306, a 95 percent confidence interval for µ is

[
9 − 2.306

(3.082)

3
, 9 + 2.306

(3.082)

3

]
= (6.63, 11.37)

a larger interval than obtained in Example 7.3a. The reason why the interval just obtained
is larger than the one in Example 7.3a is twofold. The primary reason is that we have
a larger estimated variance than in Example 7.3a. That is, in Example 7.3a we assumed
that σ 2 was known to equal 4, whereas in this example we assumed it to be unknown



248 Chapter 7: Parameter Estimation

and our estimate of it turned out to be 9.5, which resulted in a larger confidence interval.
In fact, the confidence interval would have been larger than in Example 7.3a even if our
estimate of σ 2 was again 4 because by having to estimate the variance we need to utilize
the t -distribution, which has a greater variance and thus a larger spread than the standard
normal (which can be used when σ 2 is assumed known). For instance, if it had turned out
that x = 9 and s2 = 4, then our confidence interval would have been

(9 − 2.306 · 2
3 , 9 + 2.306 · 2

3 ) = (7.46, 10.54)

which is larger than that obtained in Example 7.3a. ■

REMARKS

(a) The confidence interval for µ when σ is known is based on the fact that
√

n(X −
µ)/σ has a standard normal distribution. When σ is unknown, the foregoing
approach is to estimate it by S and then use the fact that

√
n(X − µ)/S has

a t -distribution with n − 1 degrees of freedom.
(b) The length of a 100(1 − α) percent confidence interval for µ is not always larger

when the variance is unknown. For the length of such an interval is 2zασ /
√

n when
σ is known, whereas it is 2tα,n−1S/

√
n when σ is unknown; and it is certainly

possible that the sample standard deviation S can turn out to be much smaller
than σ . However, it can be shown that the mean length of the interval is longer
when σ is unknown. That is, it can be shown that

tα,n−1E [S] ≥ zασ

Indeed, E [S] is evaluated in Chapter 14 and it is shown, for instance, that

E [S] =
{

.94σ when n = 5

.97σ when n = 9

Since

z.025 = 1.96, t.025,4 = 2.78, t.025,8 = 2.31

the length of a 95 percent confidence interval from a sample of size 5 is
2 × 1.96σ /

√
5 = 1.75σ when σ is known, whereas its expected length is

2×2.78× .94σ /
√

5 = 2.34σ when σ is unknown — an increase of 33.7 percent.
If the sample is of size 9, then the two values to compare are 1.31σ and 1.49σ — a
gain of 13.7 percent. ■

A one-sided upper confidence interval can be obtained by noting that

P

{
√

n
(X − µ)

S
< tα,n−1

}
= 1 − α
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or

P
{

X − µ <
S√
n

tα,n−1

}
= 1 − α

or

P
{
µ > X − S√

n
tα,n−1

}
= 1 − α

Hence, if it is observed that X = x, S = s, then we can assert “with 100(1 − α) percent
confidence” that

µ ∈
(

x − s√
n

tα,n−1, ∞
)

Similarly, a 100(1 − α) lower confidence interval would be

µ ∈
(

−∞, x + s√
n

tα,n−1

)

Program 7.3.1 will compute both one- and two-sided confidence intervals for the mean
of a normal distribution when the variance is unknown.

EXAMPLE 7.3f Determine a 95 percent confidence interval for the average resting pulse
of the members of a health club if a random selection of 15 members of the club yielded
the data 54, 63, 58, 72, 49, 92, 70, 73, 69, 104, 48, 66, 80, 64, 77. Also determine
a 95 percent lower confidence interval for this mean.

SOLUTION We use Program 7.3.1 to obtain the solution (see Figure 7.3). ■

Our derivations of the 100(1−α) percent confidence intervals for the population mean
µ have assumed that the population distribution is normal. However, even when this is
not the case, if the sample size is reasonably large then the intervals obtained will still
be approximate 100(1 − α) percent confidence intervals for µ. This is true because, by
the central limit theorem,

√
n(X − µ)/σ will have approximately a normal distribution,

and
√

n(X − µ)/S will have approximately a t -distribution.

EXAMPLE 7.3g Simulation provides a powerful method for evaluating single and multi-
dimensional integrals. For instance, let f be a function of an r-valued vector ( y1, . . . , yr ),
and suppose that we want to estimate the quantity θ , defined by

θ =
∫ 1

0

∫ 1

0
· · ·

∫ 1

0
f ( y1, y2, . . . , yr ) dy1dy2, . . . , dyr

To accomplish this, note that if U1, U2, . . . , Ur are independent uniform random
variables on (0, 1), then

θ = E [ f (U1, U2, . . . , Ur )]
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The 95% confidence interval for the mean is (60.865, 77.6683)

Confidence Interval: Unknown Variance

Start

Quit

(a)

One-Sided

Two-Sided

Upper

Lower

Enter the value of a:
(0 < a < 1)

.05

Data value = 77 54
63
58
72
49
92
70

Sample size = 15

Add This Point To List

Remove Selected Point From List

Data Values

Clear List

The 95% lower confidence interval for the mean is (-infinity, 76.1662)

Confidence Interval: Unknown Variance

Start

Quit

(b)

One-Sided

Two-Sided

Upper

Lower

Enter the value of a:
(0 < a < 1)

.05

Data value = 77 54
63
58
72
49
92
70

Sample size = 15

Add This Point To List

Remove Selected Point From List

Data Values

Clear List

FIGURE 7.3 (a) Two-sided and (b) lower 95 percent confidence intervals for Example 7.3f.
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Now, the values of independent uniform (0, 1) random variables can be approximated on
a computer (by so-called pseudo random numbers); if we generate a vector of r of them,
and evaluate f at this vector, then the value obtained, call it X1, will be a random variable
with mean θ . If we now repeat this process, then we obtain another value, call it X2,
which will have the same distribution as X1. Continuing on, we can generate a sequence
X1, X2, . . . , Xn of independent and identically distributed random variables with mean θ ;
we then use their observed values to estimate θ . This method of approximating integrals
is called Monte Carlo simulation.

For instance, suppose we wanted to estimate the one-dimensional integral

θ =
∫ 1

0

√
1 − y2 dy = E [

√
1 − U 2]

where U is a uniform (0, 1) random variable. To do so, let U1, . . . , U100 be independent
uniform (0, 1) random variables, and set

Xi =
√

1 − U 2
i , i = 1, . . . , 100

In this way, we have generated a sample of 100 random variables having mean θ . Suppose
that the computer generated values of U1, . . . , U100, resulting in X1, . . . , X100 having
sample mean .786 and sample standard deviation .03. Consequently, since t.025,99 =
1.985, it follows that a 95 percent confidence interval for θ would be given by

.786 ± 1.985(.003)

As a result, we could assert, with 95 percent confidence, that θ (which can be shown to
equal π /4) is between .780 and .792. ■

7.3.2 Confidence Intervals for the Variance of a

Normal Distribution

If X1, . . . , Xn is a sample from a normal distribution having unknown parameters µ and
σ 2, then we can construct a confidence interval for σ 2 by using the fact that

(n − 1)
S2

σ 2 ∼ χ2
n−1

Hence,

P
{
χ2

1−α/2,n−1 ≤ (n − 1)
S2

σ 2 ≤ χ2
α/2,n−1

}
= 1 − α

or, equivalently,

P

{
(n − 1)S2

χ2
α/2,n−1

≤ σ 2 ≤ (n − 1)S2

χ2
1−α/2,n−1

}
= 1 − α
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Hence when S2 = s2, a 100(1 − α) percent confidence interval for σ 2 is

{
(n − 1)s2

χ2
α/2,n−1

,
(n − 1)s2

χ2
1−α/2,n−1

}

EXAMPLE 7.3h A standardized procedure is expected to produce washers with very small
deviation in their thicknesses. Suppose that 10 such washers were chosen and measured.
If the thicknesses of these washers were, in inches,

.123 .133

.124 .125

.126 .128

.120 .124

.130 .126

what is a 90 percent confidence interval for the standard deviation of the thickness of a
washer produced by this procedure?

SOLUTION A computation gives that

S2 = 1.366 × 10−5

Because χ2
.05,9 = 16.917 and χ2

.95,9 = 3.334, and because

9 × 1.366 × 10−5

16.917
= 7.267 × 10−6,

9 × 1.366 × 10−5

3.334
= 36.875 × 10−6

TABLE 7.1 100(1 − α) Percent Confidence Intervals
X1, . . . , Xn ∼ N (µ, σ 2)

X =
n∑

i=1

Xi /n, S =
√√√√ n∑

i=1

(Xi − X )2/(n − 1)

Assumption Parameter Confidence Interval Lower Interval Upper Interval

σ 2 known µ X ± zα/2
σ√
n

(
−∞, X + zα

σ√
n

) (
X + zα

σ√
n

, ∞
)

σ 2 unknown µ X ± tα/2,n−1
S√
n

(
−∞, X + tα,n−1

S√
n

) (
X − tα,n−1

S√
n

, ∞
)

µ unknown σ 2

(
(n − 1)S2

χ2
α/2,n−1

,
(n − 1)S2

χ2
1−α/2,n−1

) (
0,

(n − 1)S2

χ2
1−α,n−1

) (
(n − 1)S2

χ2
α,n−1

, ∞
)
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it follows that, with confidence .90,

σ 2 ∈ (7.267 × 10−6, 36.875 × 10−6)

Taking square roots yields that, with confidence .90,

σ ∈ (2.696 × 10−3, 6.072 × 10−3) ■

One-sided confidence intervals for σ 2 are obtained by similar reasoning and are
presented in Table 7.1, which sums up the results of this section.

7.4 ESTIMATING THE DIFFERENCE IN MEANS OF TWO
NORMAL POPULATIONS

Let X1, X2, . . . , Xn be a sample of size n from a normal population having mean µ1 and
variance σ 2

1 and let Y1, . . . , Ym be a sample of size m from a different normal population
having mean µ2 and variance σ 2

2 and suppose that the two samples are independent of
each other. We are interested in estimating µ1 − µ2.

Since X = ∑n
i=1 Xi/n and Y = ∑m

i=1 Yi/m are the maximum likelihood estimators of
µ1 and µ2 it seems intuitive (and can be proven) that X − Y is the maximum likelihood
estimator of µ1 − µ2.

To obtain a confidence interval estimator, we need the distribution of X − Y . Because

X ∼ N (µ1, σ 2
1 /n)

Y ∼ N (µ2, σ 2
2 /m)

it follows from the fact that the sum of independent normal random variables is also
normal, that

X − Y ∼ N
(

µ1 − µ2,
σ 2

1

n
+ σ 2

2

m

)
Hence, assuming σ 2

1 and σ 2
2 are known, we have that

X − Y − (µ1 − µ2)√
σ 2

1

n
+ σ 2

2

m

∼ N (0, 1) (7.4.1)

and so

P


−zα/2 <

X − Y − (µ1 − µ2)√
σ 2

1

n
+ σ 2

2

m

< zα/2


 = 1 − α
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or, equivalently,

P


X − Y − zα/2

√
σ 2

1

n
+ σ 2

2

m
< µ1 − µ2 < X − Y + zα/2

√
σ 2

1

n
+ σ 2

2

m


 = 1 − α

Hence, if X and Y are observed to equal x and y, respectively, then a 100(1 − α) two-
sided confidence interval estimate for µ1 − µ2 is

µ1 − µ2 ∈

x − y − zα/2

√
σ 2

1

n
+ σ 2

2

m
, x − y + zα/2

√
σ 2

1

n
+ σ 2

2

m




One-sided confidence intervals for µ1 − µ2 are obtained in a similar fashion, and we
leave it for the reader to verify that a 100(1 − α) percent one-sided interval is given by

µ1 − µ2 ∈
(

−∞, x − y + zα

√
σ 2

1 /n + σ 2
2 /m

)

Program 7.4.1 will compute both one- and two-sided confidence intervals for µ1 −µ2.

EXAMPLE 7.4a Two different types of electrical cable insulation have recently been tested
to determine the voltage level at which failures tend to occur. When specimens were
subjected to an increasing voltage stress in a laboratory experiment, failures for the two
types of cable insulation occurred at the following voltages:

Type A Type B
36 54 52 60
44 52 64 44
41 37 38 48
53 51 68 46
38 44 66 70
36 35 52 62
34 44

Suppose that it is known that the amount of voltage that cables having type A insulation can
withstand is normally distributed with unknown mean µA and known variance σ 2

A = 40,
whereas the corresponding distribution for type B insulation is normal with unknown
mean µB and known variance σ 2

B = 100. Determine a 95 percent confidence interval
for µA − µB . Determine a value that we can assert, with 95 percent confidence, exceeds
µA − µB .

SOLUTION We run Program 7.4.1 to obtain the solution (see Figure 7.4). ■
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The 95% confidence interval for the mean is (-19.6056, -6.4897)

Confidence Interval: Two Normal Means, Known Variance

Start

Quit

(a)

Clear List 2

Clear List 1

One-Sided

Two-Sided

Upper

Lower

Enter the value of a:
(0 < a < 1)

0.05

Data value = 62

Data value = 44
34
54
52
37
51
44
35
44

List 1 Sample size = 14

Add This Point To List 1

Remove Selected Point From List 1

List 2 Sample size = 12 66
52
60
44
48
46
70
62

Add This Point To List 2

Remove Selected Point From List 2

40
Population
Variance
of List 1

=

100
Population
Variance
of List 2

=

FIGURE 7.4 (a) Two-sided and (b) lower 95 percent confidence intervals for Example 7.4a.

Let us suppose now that we again desire an interval estimator of µ1 − µ2 but that the
population variances σ 2

1 and σ 2
2 are unknown. In this case, it is natural to try to replace

σ 2
1 and σ 2

2 in Equation 7.4.1 by the sample variances

S2
1 =

n∑
i=1

(Xi − X )2

n − 1

S2
2 =

m∑
i=1

(Yi − Y )2

m − 1
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The 95% lower confidence interval for the mean is (-infinity, -7.544)

Confidence Interval: Two Normal Means, Known Variance

Start

Quit

(b)

Clear List 2

Clear List 1

One-Sided

Two-Sided

Upper

Lower

Enter the value of a:
(0 < a < 1)

0.05

Data value = 62

Data value = 44
34
54
52
37
51
44
35
44

List 1 Sample size = 14

Add This Point To List 1

Remove Selected Point From List 1

List 2 Sample size = 12 66
52
60
44
48
46
70
62

Add This Point To List 2

Remove Selected Point From List 2

40
Population
Variance
of List 1

=

100
Population
Variance
of List 2

=

FIGURE 7.4 (continued)

That is, it is natural to base our interval estimate on something like

X − Y − (µ1 − µ2)√
S2

1 /n + S2
2 /m

However, to utilize the foregoing to obtain a confidence interval, we need its distribution
and it must not depend on any of the unknown parameters σ 2

1 and σ 2
2 . Unfortunately, this

distribution is both complicated and does indeed depend on the unknown parameters σ 2
1

and σ 2
2 . In fact, it is only in the special case when σ 2

1 = σ 2
2 that we will be able to obtain

an interval estimator. So let us suppose that the population variances, though unknown,
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are equal and let σ 2 denote their common value. Now, from Theorem 6.5.1 it follows
that

(n − 1)
S2

1

σ 2 ∼ χ2
n−1

and

(m − 1)
S2

2

σ 2 ∼ χ2
m−1

Also, because the samples are independent, it follows that these two chi-square ran-
dom variables are independent. Hence, from the additive property of chi-square random
variables, which states that the sum of independent chi-square random variables is also
chi-square with a degree of freedom equal to the sum of their degrees of freedom, it
follows that

(n − 1)
S2

1

σ 2 + (m − 1)
S2

2

σ 2 ∼ χ2
n+m−2 (7.4.2)

Also, since

X − Y ∼ N
(

µ1 − µ2,
σ 2

n
+ σ 2

m

)
we see that

X − Y − (µ1 − µ2)√
σ 2

n
+ σ 2

m

∼ N (0, 1) (7.4.3)

Now it follows from the fundamental result that in normal sampling X and S2 are inde-
pendent (Theorem 6.5.1), that X 1, S2

1 , X 2, S2
2 are independent random variables. Hence,

using the definition of a t -random variable (as the ratio of two independent random vari-
ables, the numerator being a standard normal and the denominator being the square root
of a chi-square random variable divided by its degree of freedom parameter), it follows
from Equations 7.4.2 and 7.4.3 that if we let

S2
p = (n − 1)S2

1 + (m − 1)S2
2

n + m − 2

then

X − Y − (µ1 − µ2)√
σ 2(1/n + 1/m)

÷
√

S2
p /σ 2 = X − Y − (µ1 − µ2)√

S2
p (1/n + 1/m)

has a t -distribution with n + m − 2 degrees of freedom. Consequently,

P

{
−tα/2,n+m−2 ≤ X − Y − (µ1 − µ2)

Sp
√

1/n + 1/m
≤ tα/2,n+m−2

}
= 1 − α



258 Chapter 7: Parameter Estimation

Therefore, when the data result in the values X = x, Y = y, Sp = sp, we obtain the
following 100(1 − α) percent confidence interval for µ1 − µ2:

(
x − y − tα/2,n+m−2sp

√
1/n + 1/m, x − y + tα/2,n+m−2sp

√
1/n + 1/m

)
(7.4.4)

One-sided confidence intervals are similarly obtained.
Program 7.4.2 can be used to obtain both one- and two-sided confidence intervals for

the difference in means in two normal populations having unknown but equal variances.

EXAMPLE 7.4b There are two different techniques a given manufacturer can employ to
produce batteries. A random selection of 12 batteries produced by technique I and of 14
produced by technique II resulted in the following capacities (in ampere hours):

Technique I Technique II
140 132 144 134
136 142 132 130
138 150 136 146
150 154 140 128
152 136 128 131
144 142 150 137

130 135

Determine a 90 percent level two-sided confidence interval for the difference in means,
assuming a common variance. Also determine a 95 percent upper confidence interval for
µI − µII.

SOLUTION We run Program 7.4.2 to obtain the solution (see Figure 7.5). ■

REMARK

The confidence interval given by Equation 7.4.4 was obtained under the assumption that
the population variances are equal; with σ 2 as their common value, it follows that

X − Y − (µ1 − µ2)√
σ 2/n + σ 2/m

= X − Y − (µ1 − µ2)

σ
√

1/n + 1/m

has a standard normal distribution. However, since σ 2 is unknown this result cannot be
immediately applied to obtain a confidence interval; σ 2 must first be estimated. To do so,
note that both sample variances are estimators of σ 2; moreover, since S2

1 has n −1 degrees
of freedom and S2

2 has m−1, the appropriate estimator is to take a weighted average of the
two sample variances, with the weights proportional to these degrees of freedom. That is,
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the estimator of σ 2 is the pooled estimator

S2
p = (n − 1)S2

1 + (m − 1)S2
2

n + m − 2

and the confidence interval is then based on the statistic

X − Y − (µ1 − µ2)√
S2

p
√

1/n + 1/m

The 90% confidence interval for the mean difference is (2.4971, 11.9315)

Confidence Interval: Unknown But Equal Variances

Start

Quit

(a)

Clear List 2

Clear List 1

One-Sided

Two-Sided

Upper

Lower

Enter the value of a:
(0 < a < 1)

.1

Data value = 135

Data value = 142
152
144
132
142
150
154
136
142

List 1 Sample size = 12

Add This Point To List 1

Remove Selected Point From List 1

List 2 Sample size = 14 134
130
146
128
131
137
135

Add This Point To List 2

Remove Selected Point From List 2

FIGURE 7.5 (a) Two-sided and (b) upper 90 percent confidence intervals for Example 7.4b.
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The 95% lower confidence interval for the mean difference is (2.4971, infinity)

Confidence Interval: Unknown but Equal Variances

Start

Quit

(b)

Clear List 2

Clear List 1

One-Sided

Two-Sided

Upper

Lower

Enter the value of a:
(0 < a < 1)

.05

Data value = 135

Data value = 142
152
144
132
142
150
154
136
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List 1 Sample size = 12

Add This Point To List 1

Remove Selected Point From List 1

List 2 Sample size = 14 134
130
146
128
131
137
135

Add This Point To List 2

Remove Selected Point From List 2

FIGURE 7.5 (continued)

which, by our previous analysis, has a t -distribution with n + m − 2 degrees of freedom.
The results of this section are summarized up in Table 7.2.

7.5 APPROXIMATE CONFIDENCE INTERVAL FOR THE
MEAN OF A BERNOULLI RANDOM VARIABLE

Consider a population of items, each of which independently meets certain standards with
some unknown probability p. If n of these items are tested to determine whether they meet
the standards, how can we use the resulting data to obtain a confidence interval for p?

If we let X denote the number of the n items that meet the standards, then X is a
binomial random variable with parameters n and p. Thus, when n is large, it follows by
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TABLE 7.2 100(1 − σ ) Percent Confidence Intervals for µ1 − µ2

X1, . . . , Xn ∼ N (µ1, σ 2
1 )

Y1, . . . , Ym ∼ N (µ2, σ 2
2 )

X =
n∑

i=1

Xi /n, S2
1 =

n∑
i=1

(Xi − X )2/(n − 1)

Y =
m∑

i=1

Yi /n, S2
2 =

m∑
i=1

(Yi − Y )2/(m − 1)

Assumption Confidence Interval

σ1, σ2 known X − Y ± zα/2

√
σ 2

1 /n + σ 2
2 /m

σ1, σ2 unknown but equal X − Y ± tα/2,n+m−2

√(
1

n
+ 1

m

)
(n − 1)S2

1 + (m − 1)S2
2

n + m − 2

Assumption Lower Confidence Interval

σ1, σ2 known (−∞, X − Y + zα
√

σ 2
1 /n + σ 2

2 /m)

σ1, σ2 unknown but equal


−∞, X − Y + tα,n+m−2

√(
1

n
+ 1

m

)
(n − 1)S2

1 + (m − 1)S2
2

n + m − 2




Note: Upper confidence intervals for µ1 − µ2 are obtained from lower confidence intervals for µ2 − µ1.

the normal approximation to the binomial that X is approximately normally distributed
with mean np and variance np(1 − p). Hence,

X − np√
np(1 − p)

·∼N (0, 1) (7.5.1)

where
·∼ means “is approximately distributed as.” Therefore, for any α ∈ (0, 1),

P

{
−zα/2 <

X − np√
np(1 − p)

< zα/2

}
≈ 1 − α

and so if X is observed to equal x, then an approximate 100(1 − α) percent confidence
region for p is {

p : −zα/2 <
x − np√
np(1 − p)

< zα/2

}

The foregoing region, however, is not an interval. To obtain a confidence interval for
p, let p̂ = X /n be the fraction of the items that meet the standards. From Example 7.2a,
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p̂ is the maximum likelihood estimator of p, and so should be approximately equal
to p. As a result,

√
np̂(1 − p̂) will be approximately equal to

√
np(1 − p) and so from

Equation 7.5.1 we see that

X − np√
np̂(1 − p̂)

·∼N (0, 1)

Hence, for any α ∈ (0, 1) we have that

P

{
−zα/2 <

X − np√
np̂(1 − p̂)

< zα/2

}
≈ 1 − α

or, equivalently,

P{−zα/2

√
np̂(1 − p̂) < np − X < zα/2

√
np̂(1 − p̂)} ≈ 1 − α

Since p̂ = X /n, the preceding can be written as

P{ p̂ − zα/2

√
p̂(1 − p̂)/n < p < p̂ + zα/2

√
p̂(1 − p̂)/n} ≈ 1 − α

which yields an approximate 100(1 − α) percent confidence interval for p.

EXAMPLE 7.5a A sample of 100 transistors is randomly chosen from a large batch and
tested to determine if they meet the current standards. If 80 of them meet the standards,
then an approximate 95 percent confidence interval for p, the fraction of all the transistors
that meet the standards, is given by

(.8 − 1.96
√

.8(.2)/100, .8 + 1.96
√

.8(.2)/100) = (.7216, .8784)

That is, with “95 percent confidence,” between 72.16 and 87.84 percent of all transistors
meet the standards. ■

EXAMPLE 7.5b On October 14, 2003, the New York Times reported that a recent poll
indicated that 52 percent of the population was in favor of the job performance of
President Bush, with a margin of error of ±4 percent. What does this mean? Can we
infer how many people were questioned?

SOLUTION It has become common practice for the news media to present 95 percent
confidence intervals. Since z.025 = 1.96, a 95 percent confidence interval for p, the
percentage of the population that is in favor of President Bush’s job performance, is
given by

p̂ ± 1.96
√

p̂(1 − p̂)/n = .52 ± 1.96
√

.52(.48)/n
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where n is the size of the sample. Since the “margin of error” is ±4 percent, it follows that

1.96
√

.52(.48)/n = .04

or

n = (1.96)2(.52)(.48)

(.04)2
= 599.29

That is, approximately 599 people were sampled, and 52 percent of them reported favorably
on President Bush’s job performance. ■

We often want to specify an approximate 100(1 − α) percent confidence interval for
p that is no greater than some given length, say b. The problem is to determine the
appropriate sample size n to obtain such an interval. To do so, note that the length of
the approximate 100(1 − α) percent confidence interval for p from a sample of size n is

2zα/2

√
p̂(1 − p̂)/n

which is approximately equal to 2zα/2
√

p(1 − p)/n. Unfortunately, p is not known in
advance, and so we cannot just set 2zα/2

√
p(1 − p)/n equal to b to determine the necessary

sample size n. What we can do, however, is to first take a preliminary sample to obtain
a rough estimate of p, and then use this estimate to determine n. That is, we use p∗, the
proportion of the preliminary sample that meets the standards, as a preliminary estimate
of p; we then determine the total sample size n by solving the equation

2zα/2
√

p∗(1 − p∗)/n = b

Squaring both sides of the preceding yields that

(2zα/2)2p∗(1 − p∗)/n = b2

or

n = (2zα/2)2p∗(1 − p∗)

b2

That is, if k items were initially sampled to obtain the preliminary estimate of p, then an
additional n − k (or 0 if n ≤ k) items should be sampled.

EXAMPLE 7.5c A certain manufacturer produces computer chips; each chip is indepen-
dently acceptable with some unknown probability p. To obtain an approximate 99 percent
confidence interval for p, whose length is approximately .05, an initial sample of 30
chips has been taken. If 26 of these chips are of acceptable quality, then the prelimi-
nary estimate of p is 26/30. Using this value, a 99 percent confidence interval of length
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approximately .05 would require an approximate sample of size

n = 4(z.005)2

(.05)2
26

30

(
1 − 26

30

)
= 4(2.58)2

(.05)2
26

30

4

30
= 1,231

Hence, we should now sample an additional 1,201 chips and if, for instance, 1,040 of
them are acceptable, then the final 99 percent confidence interval for p is

(
1,066

1,231
−
√

1,066

(
1 − 1,066

1,231

)
z.005

1,231
,
1,066

1,231
+
√

1,066

(
1 − 1,066

1,231

)
z.005

1,231

)

or

p ∈ (.84091, .89101) ■

REMARK

As shown, a 100(1 − α) percent confidence interval for p will be of approximate length b
when the sample size is

n = (2zα/2)2

b2 p(1 − p)

Now it is easily shown that the function g (p) = p(1 − p) attains its maximum value of 1
4 ,

in the interval 0 ≤ p ≤ 1, when p = 1
2 . Thus an upper bound on n is

n ≤ (zα/2)2

b2

and so by choosing a sample whose size is at least as large as (zα/2)2/b2, one can be
assured of obtaining a confidence interval of length no greater than b without need of any
additional sampling. ■

One-sided approximate confidence intervals for p are also easily obtained; Table 7.3
gives the results.

TABLE 7.3 Approximate 100(1 − α) Percent Confidence Intervals for p

X Is a Binomial (n, p) Random Variable
p̂ = X /n

Type of Interval Confidence Interval

Two-sided p̂ ± zα/2
√

p̂(1 − p̂)/n

One-sided lower
(
−∞, p̂ + zα

√
p̂(1 − p̂)/n

)
One-sided upper

(
p̂ − zα

√
p̂(1 − p̂)/n, ∞

)
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*7.6 CONFIDENCE INTERVAL OF THE MEAN OF THE
EXPONENTIAL DISTRIBUTION

If X1, X2, . . . , Xn are independent exponential random variables each having mean θ , then
it can be shown that the maximum likelihood estimator of θ is the sample mean

∑n
i=1 Xi/n.

To obtain a confidence interval estimator of θ , recall from Section 5.7 that
∑n

i=1 Xi has
a gamma distribution with parameters n, 1/θ . This in turn implies (from the relationship
between the gamma and chi-square distribution shown in Section 5.8.1.1) that

2

θ

n∑
i=1

Xi ∼ χ2
2n

Hence, for any α ∈ (0, 1)

P

{
χ2

1−α/2,2n <
2

θ

n∑
i=1

Xi < χ2
α/2,2n

}
= 1 − α

or, equivalently,

P




2
n∑

i=1
Xi

χ2
α/2,2n

< θ <

2
n∑

i=1
Xi

χ2
1−α/2,2n


 = 1 − α

Hence, a 100(1 − α) percent confidence interval for θ is

θ ∈




2
n∑

i=1
Xi

χ2
α/2,2n

,

2
n∑

i=1
Xi

χ2
1−α/2,2n




EXAMPLE 7.6a The successive items produced by a certain manufacturer are assumed to
have useful lives that (in hours) are independent with a common density function

f (x) = 1

θ
e−x/θ , 0 < x < ∞

If the sum of the lives of the first 10 items is equal to 1,740, what is a 95 percent confidence
interval for the population mean θ ?

* Optional section.



266 Chapter 7: Parameter Estimation

SOLUTION From Program 5.8.1b (or Table A2), we see that

χ2
.025,20 = 34.169, χ2

.975,20 = 9.661

and so we can conclude, with 95 percent confidence, that

θ ∈
(

3480

34.169
,

3480

9.661

)

or, equivalently,

θ ∈ (101.847, 360.211) ■

*7.7 EVALUATING A POINT ESTIMATOR
Let X = (X1, . . . , Xn) be a sample from a population whose distribution is specified up to
an unknown parameter θ , and let d = d (X) be an estimator of θ . How are we to determine
its worth as an estimator of θ ? One way is to consider the square of the difference between
d (X) and θ . However, since (d (X) − θ )2 is a random variable, let us agree to consider
r(d , θ ), the mean square error of the estimator d , which is defined by

r(d , θ ) = E [(d (X) − θ )2]

as an indication of the worth of d as an estimator of θ .
It would be nice if there were a single estimator d that minimized r(d , θ ) for all possible

values of θ . However, except in trivial situations, this will never be the case. For example,
consider the estimator d ∗ defined by

d ∗(X1, . . . , Xn) = 4

That is, no matter what the outcome of the sample data, the estimator d ∗ chooses 4 as its
estimate of θ . While this seems like a silly estimator (since it makes no use of the data), it
is, however, true that when θ actually equals 4, the mean square error of this estimator is 0.
Thus, the mean square error of any estimator different than d ∗ must, in most situations,
be larger than the mean square error of d ∗ when θ = 4.

Although minimum mean square estimators rarely exist, it is sometimes possible to
find an estimator having the smallest mean square error among all estimators that satisfy
a certain property. One such property is that of unbiasedness.

* Optional section.
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Definition
Let d = d (X) be an estimator of the parameter θ . Then

bθ (d ) = E [d (X)] − θ

is called the bias of d as an estimator of θ . If bθ (d ) = 0 for all θ , then we say that d is
an unbiased estimator of θ . In other words, an estimator is unbiased if its expected value
always equals the value of the parameter it is attempting to estimate.

EXAMPLE 7.7a Let X1, X2, . . . , Xn be a random sample from a distribution having unknown
mean θ . Then

d1(X1, X2, . . . , Xn) = X1

and

d2(X1, X2, . . . , Xn) = X1 + X2 + · · · + Xn

n
are both unbiased estimators of θ since

E [X1] = E
[

X1 + X2 + · · · + Xn

n

]
= θ

More generally, d3(X1, X2, . . . , Xn) = ∑n
i=1 λiXi is an unbiased estimator of θ whenever∑n

i=1 λi = 1. This follows since

E

[
n∑

i=1

λiXi

]
=

n∑
i=1

E [λiXi]

=
n∑

i=1

λiE (Xi)

= θ

n∑
i=1

λi

= θ ■

If d (X1, . . . , Xn) is an unbiased estimator, then its mean square error is given by

r(d , θ ) = E [(d (X) − θ )2]
= E [(d (X) − E [d (X)])2] since d is unbiased

= Var(d (X))

Thus the mean square error of an unbiased estimator is equal to its variance.
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EXAMPLE 7.7b Combining Independent Unbiased Estimators. Let d1 and d2 denote inde-
pendent unbiased estimators of θ , having known variances σ 2

1 and σ 2
2 . That is, for

i = 1, 2,

E [di] = θ , Var(di) = σ 2
i

Any estimator of the form

d = λd1 + (1 − λ)d2

will also be unbiased. To determine the value of λ that results in d having the smallest
possible mean square error, note that

r(d , θ ) = Var(d )

= λ2 Var(d1) + (1 − λ)2 Var(d2)

by the independence of d1and d2

= λ2σ 2
1 + (1 − λ)2σ 2

2

Differentiation yields that

d
dλ

r(d , θ ) = 2λσ 2
1 − 2(1 − λ)σ 2

2

To determine the value of λ that minimizes r(d , θ ) — call it λ̂ — set this equal to 0
and solve for λ to obtain

2 λ̂σ 2
1 = 2(1 − λ̂)σ 2

2

or

λ̂ = σ 2
2

σ 2
1 + σ 2

2

= 1/σ 2
1

1/σ 2
1 + 1/σ 2

2

In words, the optimal weight to give an estimator is inversely proportional to its variance
(when all the estimators are unbiased and independent).

For an application of the foregoing, suppose that a conservation organization wants to
determine the acidity content of a certain lake. To determine this quantity, they draw some
water from the lake and then send samples of this water to n different laboratories. These
laboratories will then, independently, test for acidity content by using their respective
titration equipment, which is of differing precision. Specifically, suppose that di , the result
of a titration test at laboratory i, is a random variable having mean θ , the true acidity of the
sample water, and variance σ 2

i , i = 1, . . . , n. If the quantities σ 2
i , i = 1, . . . , n are known
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to the conservation organization, then they should estimate the acidity of the sampled
water from the lake by

d =

n∑
i=1

di/σ 2
i

n∑
i=1

1/σ 2
i

The mean square error of d is as follows:

r(d , θ ) = Var(d ) since d is unbiased

=
(

n∑
i=1

1/σ 2
i

)−2 n∑
i=1

(
1

σ 2
i

)2

σ 2
i

= 1
n∑

i=1
1/σ 2

i

■

A generalization of the result that the mean square error of an unbiased estimator is
equal to its variance is that the mean square error of any estimator is equal to its variance
plus the square of its bias. This follows since

r(d , θ ) = E [(d (X) − θ )2]
= E [(d − E [d ] + E [d ] − θ )2]
= E [(d − E [d ])2 + (E [d ] − θ )2 + 2(E [d ] − θ )(d − E [d ])]
= E [(d − E [d ])2] + E [(E [d ] − θ )2]

+ 2E [(E [d ] − θ )(d − E [d ])]
= E [(d − E [d ])2] + (E [d ] − θ )2 + 2(E [d ] − θ )E [d − E [d ]]

since E [d ] − θ is constant

= E [(d − E [d ])2] + (E [d ] − θ )2

The last equality follows since

E [d − E [d ]] = 0

Hence

r(d , θ ) = Var(d ) + b2
θ (d )
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EXAMPLE 7.7c Let X1, . . . , Xn denote a sample from a uniform (0, θ ) distribution, where
θ is assumed unknown. Since

E [Xi] = θ

2
a “natural” estimator to consider is the unbiased estimator

d1 = d1(X) =
2

n∑
i=1

Xi

n

Since E [d1] = θ , it follows that

r(d1, θ ) = Var(d1)

= 4

n
Var(Xi)

= 4

n
θ2

12
since Var(Xi) = θ2

12

= θ2

3n

A second possible estimator of θ is the maximum likelihood estimator, which, as shown
in Example 7.2d, is given by

d2 = d2(X) = max
i

Xi

To compute the mean square error of d2 as an estimator of θ , we need to first compute
its mean (so as to determine its bias) and variance. To do so, note that the distribution
function of d2 is as follows:

F2(x) ≡ P{d2(X) ≤ x}
= P{max

i
Xi ≤ x}

= P{Xi ≤ x for all i = 1, . . . , n}

=
n∏

i=1

P{Xi ≤ x} by independence

=
( x
θ

)n
x ≤ θ

Hence, upon differentiating, we obtain that the density function of d2, is

f2(x) = nxn−1

θn , x ≤ θ
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Therefore,

E [d2] =
∫ θ

0
x

nxn−1

θn dx = n
n + 1

θ (7.7.1)

Also

E [d 2
2 ] =

∫ θ

0
x2 nxn−1

θn dx = n
n + 2

θ2

and so

Var(d2) = n
n + 2

θ2 −
(

n
n + 1

θ

)2

(7.7.2)

= nθ2
[

1

n + 2
− n

(n + 1)2

]
= nθ2

(n + 2)(n + 1)2

Hence

r(d2, θ ) = (E (d2) − θ )2 + Var(d2) (7.7.3)

= θ2

(n + 1)2
+ nθ2

(n + 2)(n + 1)2

= θ2

(n + 1)2

[
1 + n

n + 2

]

= 2θ2

(n + 1)(n + 2)

Since
2θ2

(n + 1)(n + 2)
≤ θ2

3n
n = 1, 2, . . .

it follows that d2 is a more superior estimator of θ than is d1.
Equation 7.7.1 suggests the use of even another estimator — namely, the unbiased

estimator (1 + 1/n)d2(X) = (1 + 1/n) maxi Xi . However, rather than considering this
estimator directly, let us consider all estimators of the form

dc (X) = c max
i

Xi = c d2(X)

where c is a given constant. The mean square error of this estimator is

r(dc (X), θ ) = Var(dc (X)) + (E [dc (X)] − θ )2

= c2 Var(d2(X)) + (cE [d2(X)] − θ )2

= c2nθ2

(n + 2)(n + 1)2
+ θ2

(
cn

n + 1
− 1

)2

by Equations 7.7.2 and 7.7.1 (7.7.4)
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To determine the constant c resulting in minimal mean square error, we differentiate to
obtain

d
dc

r(dc (X), θ ) = 2cnθ2

(n + 2)(n + 1)2
+ 2θ2n

n + 1

(
cn

n + 1
− 1

)
Equating this to 0 shows that the best constant c — call it c∗ — is such that

c∗

n + 2
+ c∗n − (n + 1) = 0

or

c∗ = (n + 1)(n + 2)

n2 + 2n + 1
= n + 2

n + 1
Substituting this value of c into Equation 7.7.4 yields that

r
(

n + 2

n + 1
max

i
Xi , θ

)
= (n + 2)nθ2

(n + 1)4
+ θ2

(
n(n + 2)

(n + 1)2
− 1

)2

= (n + 2)nθ2

(n + 1)4
+ θ2

(n + 1)4

= θ2

(n + 1)2

A comparison with Equation 7.7.3 shows that the (biased) estimator (n + 2)/
(n + 1) maxi Xi has about half the mean square error of the maximum likelihood
estimator maxi Xi . ■

*7.8 THE BAYES ESTIMATOR
In certain situations it seems reasonable to regard an unknown parameter θ as being the
value of a random variable from a given probability distribution. This usually arises when,
prior to the observance of the outcomes of the data X1, . . . , Xn, we have some information
about the value of θ and this information is expressible in terms of a probability distribution
(called appropriately the prior distribution of θ ). For instance, suppose that from past
experience we know that θ is equally likely to be near any value in the interval (0, 1).
Hence, we could reasonably assume that θ is chosen from a uniform distribution on (0, 1).

Suppose now that our prior feelings about θ are that it can be regarded as being the
value of a continuous random variable having probability density function p(θ ); and
suppose that we are about to observe the value of a sample whose distribution depends
on θ . Specifically, suppose that f (x|θ ) represents the likelihood — that is, it is the
probability mass function in the discrete case or the probability density function in the

* Optional section.
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continuous case — that a data value is equal to x when θ is the value of the parameter.
If the observed data values are Xi = xi , i = 1, . . . , n, then the updated, or conditional,
probability density function of θ is as follows:

f (θ |x1, . . . , xn) = f (θ , x1, . . . , xn)

f (x1, . . . , xn)

= p(θ )f (x1, . . . , xn|θ )∫
f (x1, . . . , xn|θ )p(θ ) dθ

The conditional density function f (θ |x1, . . . , xn) is called the posterior density function.
(Thus, before observing the data, one’s feelings about θ are expressed in terms of the
prior distribution, whereas once the data are observed, this prior distribution is updated
to yield the posterior distribution.)

Now we have shown that whenever we are given the probability distribution of a random
variable, the best estimate of the value of that random variable, in the sense of minimizing
the expected squared error, is its mean. Therefore, it follows that the best estimate of
θ , given the data values Xi = xi , i = 1, . . . , n, is the mean of the posterior distribution
f (θ |x1, . . . , xn). This estimator, called the Bayes estimator, is written as E [θ |X1, . . . , Xn].
That is, if Xi = xi , i = 1, . . . , n, then the value of the Bayes estimator is

E [θ |X1 = x1, . . . , Xn = xn] =
∫

θ f (θ |x1, . . . , xn) dθ

EXAMPLE 7.8a Suppose that X1, . . . , Xn are independent Bernoulli random variables, each
having probability mass function given by

f (x|θ ) = θ x (1 − θ )1−x , x = 0, 1

where θ is unknown. Further, suppose that θ is chosen from a uniform distribution on
(0, 1). Compute the Bayes estimator of θ .

SOLUTION We must compute E [θ |X1, . . . , Xn]. Since the prior density of θ is the uniform
density

p(θ ) = 1, 0 < θ < 1

we have that the conditional density of θ given X1, . . . , Xn is given by

f (θ |x1, . . . , xn) = f (x1, . . . , xn, θ )

f (x1, . . . , xn)

= f (x1, . . . , xn|θ )p(θ )∫ 1
0 f (x1, . . . , xn|θ )p(θ ) dθ

= θ�n
1xi (1 − θ )n−�n

1xi∫ 1
0 θ�n

1xi (1 − θ )n−�n
1xi dθ
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Now it can be shown that for integral values m and r

∫ 1

0
θm(1 − θ )r dθ = m!r!

(m + r + 1)! (7.8.1)

Hence, upon letting x = ∑n
i=1 xi

f (θ |x1, . . . , xn) = (n + 1)!θ x (1 − θ )n−x

x!(n − x)! (7.8.2)

Therefore,

E [θ |x1, . . . , xn] = (n + 1)!
x!(n − x)!

∫ 1

0
θ1+x (1 − θ )n−x dθ

= (n + 1)!
x!(n − x)!

(1 + x)!(n − x)!
(n + 2)! from Equation 7.8.1

= x + 1

n + 2

Thus, the Bayes estimator is given by

E [θ |X1, . . . , Xn] =

n∑
i=1

Xi + 1

n + 2

As an illustration, if 10 independent trials, each of which results in a success with probability
θ , result in 6 successes, then assuming a uniform (0, 1) prior distribution on θ , the Bayes
estimator of θ is 7/12 (as opposed, for instance, to the maximum likelihood estimator
of 6/10). ■

REMARK

The conditional distribution of θ given that Xi = xi , i = 1, . . . , n, whose density function
is given by Equation 7.8.2, is called the beta distribution with parameters

∑n
i=1 xi + 1,

n −∑n
i=1 xi + 1. ■

EXAMPLE 7.8b Suppose X1, . . . , Xn are independent normal random variables, each having
unknown mean θ and known variance σ 2

0 . If θ is itself selected from a normal population
having known mean µ and known variance σ 2, what is the Bayes estimator of θ ?

SOLUTION In order to determine E [θ |X1, . . . , Xn], the Bayes estimator, we need first
determine the conditional density of θ given the values of X1, . . . , Xn. Now

f (θ |x1, . . . , xn) = f (x1, . . . , xn|θ )p(θ )

f (x1, . . . , xn)
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where

f (x1, . . . , xn|θ ) = 1

(2π )n/2σ n
0

exp

{
−

n∑
i=1

(xi − θ )2/2σ 2
0

}

p(θ ) = 1√
2πσ

exp{−(θ − µ)2/2σ 2}

and

f (x1, . . . , xn) =
∫ ∞

−∞
f (x1, . . . , xn|θ )p(θ ) dθ

With the help of a little algebra, it can now be shown that this conditional density is a
normal density with mean

E [θ |X1, . . . , Xn] = nσ 2

nσ 2 + σ 2
0

X + σ 2
0

nσ 2 + σ 2
0

µ (7.8.3)

=
n

σ 2
0

n

σ 2
0

+ 1

σ 2

X +
1

σ 2

n

σ 2
0

+ 1

σ 2

µ

and variance

Var(θ |X1, . . . , Xn) = σ 2
0 σ 2

nσ 2 + σ 2
0

Writing the Bayes estimator as we did in Equation 7.8.3 is informative, for it shows that it
is a weighted average of X , the sample mean, and µ, the a priori mean. In fact, the weights
given to these two quantities are in proportion to the inverses of σ 2

0 /n (the conditional
variance of the sample mean X given θ ) and σ 2 (the variance of the prior distribution). ■

REMARK: ON CHOOSING A NORMAL PRIOR

As illustrated by Example 7.8b, it is computationally very convenient to choose a normal
prior for the unknown mean θ of a normal distribution — for then the Bayes estimator
is simply given by Equation 7.8.3. This raises the question of how one should go about
determining whether there is a normal prior that reasonably represents one’s prior feelings
about the unknown mean.

To begin, it seems reasonable to determine the value — call it µ — that you a priori
feel is most likely to be near θ . That is, we start with the mode (which equals the mean
when the distribution is normal) of the prior distribution. We should then try to ascertain
whether or not we believe that the prior distribution is symmetric about µ. That is, for
each a > 0 do we believe that it is just as likely that θ will lie between µ − a and µ as it is
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that it will be between µ and µ+ a? If the answer is positive, then we accept, as a working
hypothesis, that our prior feelings about θ can be expressed in terms of a prior distribution
that is normal with mean µ. To determine σ , the standard deviation of the normal prior,
think of an interval centered about µ that you a priori feel is 90 percent certain to contain
θ . For instance, suppose you feel 90 percent (no more and no less) certain that θ will lie
between µ − a and µ + a. Then, since a normal random variable θ with mean µ and
variance σ 2 is such that

P
{
−1.645 <

θ − µ

σ
< 1.645

}
= .90

or

P{µ − 1.645σ < θ < µ + 1.645σ } = .90

it seems reasonable to take

1.645σ = a or σ = a
1.645

Thus, if your prior feelings can indeed be reasonably described by a normal distribution,
then that distribution would have mean µ and standard deviation σ = a/1.645. As a test
of whether this distribution indeed fits your prior feelings you might ask yourself such
questions as whether you are 95 percent certain that θ will fall between µ − 1.96σ and
µ + 1.96σ , or whether you are 99 percent certain that θ will fall between µ − 2.58σ and
µ + 2.58σ , where these intervals are determined by the equalities

P
{
−1.96 <

θ − µ

σ
< 1.96

}
= .95

P
{
−2.58 <

θ − µ

σ
< 2.58

}
= .99

which hold when θ is normal with mean µ and variance σ 2.

EXAMPLE 7.8c Consider the likelihood function f (x1, . . . , xn|θ ) and suppose that θ is
uniformly distributed over some interval (a, b). The posterior density of θ given X1, . . . , Xn

equals

f (θ |x1, . . . , xn) = f (x1, . . . , xn|θ )p(θ )∫ b
a f (x1, . . . , xn|θ )p(θ ) dθ

= f (x1, . . . , xn|θ )∫ b
a f (x1, . . . , xn|θ ) dθ

a < θ < b

Now the mode of a density f (θ ) was defined to be that value of θ that maximizes f (θ ).
By the foregoing, it follows that the mode of the density f (θ |x1, . . . , xn) is that value of θ
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maximizing f (x1, . . . , xn|θ ); that is, it is just the maximum likelihood estimate of θ [when
it is constrained to be in (a, b)]. In other words, the maximum likelihood estimate equals
the mode of the posterior distribution when a uniform prior distribution is assumed. ■

If, rather than a point estimate, we desire an interval in which θ lies with a specified
probability — say 1 − α — we can accomplish this by choosing values a and b such that

∫ b

a
f (θ |x1, . . . , xn) dθ = 1 − α

EXAMPLE 7.8d Suppose that if a signal of value s is sent from location A, then the signal
value received at location B is normally distributed with mean s and variance 60. Suppose
also that the value of a signal sent at location A is, a priori, known to be normally distributed
with mean 50 and variance 100. If the value received at location B is equal to 40, determine
an interval that will contain the actual value sent with probability .90.

SOLUTION It follows from Example 7.8b that the conditional distribution of S , the signal
value sent, given that 40 is the value received, is normal with mean and variance given by

E [S |data] = 1/60

1/60 + 1/100
40 + 1/100

1/60 + 1/100
50 = 43.75

Var(S |data) = 1

1/60 + 1/100
= 37.5

Hence, given that the value received is 40, (S − 43.75)/
√

37.5 has a unit standard
distribution and so

P
{
−1.645 <

S − 43.75√
37.5

< 1.645|data

}
= .90

or

P{43.75 − 1.645
√

37.5 < S < 43.75 + 1.645
√

37.5|data} = .95

That is, with probability .90, the true signal sent lies within the interval (33.68, 53.82). ■

Problems

1. Let X1, . . . , Xn be a sample from the distribution whose density function is

f (x) =
{

e−(x−θ ) x ≥ θ

0 otherwise

Determine the maximum likelihood estimator of θ .
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2. Determine the maximum likelihood estimator of θ when X1, . . . , Xn is a sample
with density function

f (x) = 1
2 e−|x−θ |, −∞ < x < ∞

3. Let X1, . . . , Xn be a sample from a normal µ, σ 2 population. Determine the max-
imum likelihood estimator of σ 2 when µ is known. What is the expected value of
this estimator?

4. The height of a radio tower is to be measured by measuring both the horizontal
distance X from the center of its base to a measuring instrument and the vertical
angle of the measuring device (see the following figure). If five measurements of
the distance L give (in feet) values

150.42, 150.45, 150.49, 150.52, 150.40

and four measurements of the angle θ give (in degrees) values

40.26, 40.27, 40.29, 40.26

estimate the height of the tower.

tower

X

q

5. Suppose that X1, . . . , Xn are normal with mean µ1; Y1, . . . , Yn are normal with
mean µ2; and W1, . . . , Wn are normal with mean µ1 + µ2. Assuming that all 3n
random variables are independent with a common variance, find the maximum
likelihood estimators of µ1 and µ2.

6. River floods are often measured by their discharges (in units of feet cubed per
second). The value v is said to be the value of a 100-year flood if

P{D ≥ v} = .01

where D is the discharge of the largest flood in a randomly chosen year. The
following table gives the flood discharges of the largest floods of the Blackstone
River in Woonsocket, Rhode Island, in each of the years from 1929 to 1965.
Assuming that these discharges follow a lognormal distribution, estimate the value
of a 100-year flood.
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Annual Floods of the Blackstone River (1929–1965)

Flood Discharge
Year (ft3/s)

1929 4,570
1930 1,970
1931 8,220
1932 4,530
1933 5,780
1934 6,560
1935 7,500
1936 15,000
1937 6,340
1938 15,100
1939 3,840
1940 5,860
1941 4,480
1942 5,330
1943 5,310
1944 3,830
1945 3,410
1946 3,830
1947 3,150
1948 5,810
1949 2,030
1950 3,620
1951 4,920
1952 4,090
1953 5,570
1954 9,400
1955 32,900
1956 8,710
1957 3,850
1958 4,970
1959 5,398
1960 4,780
1961 4,020
1962 5,790
1963 4,510
1964 5,520
1965 5,300

7. A manufacturer of heat exchangers requires that the plate spacings of its exchang-
ers be between .240 and .260 inches. A quality control engineer sampled 20
exchangers and measured the spacing of the plates on each exchanger. If the
sample mean and sample standard deviation of these 20 measurements are .254
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and .005, estimate the fraction of all exchangers whose plate spacings fall outside
the specified region. Assume that the plate spacings have a normal distribution.

8. An electric scale gives a reading equal to the true weight plus a random error that
is normally distributed with mean 0 and standard deviation σ = .1 mg. Suppose
that the results of five successive weighings of the same object are as follows: 3.142,
3.163, 3.155, 3.150, 3.141.

(a) Determine a 95 percent confidence interval estimate of the true weight.
(b) Determine a 99 percent confidence interval estimate of the true weight.

9. The PCB concentration of a fish caught in Lake Michigan was measured by a
technique that is known to result in an error of measurement that is normally
distributed with a standard deviation of .08 ppm (parts per million). Suppose the
results of 10 independent measurements of this fish are

11.2, 12.4, 10.8, 11.6, 12.5, 10.1, 11.0, 12.2, 12.4, 10.6

(a) Give a 95 percent confidence interval for the PCB level of this fish.
(b) Give a 95 percent lower confidence interval.
(c) Give a 95 percent upper confidence interval.

10. The standard deviation of test scores on a certain achievement test is 11.3. If a
random sample of 81 students had a sample mean score of 74.6, find a 90 percent
confidence interval estimate for the average score of all students.

11. Let X1, . . . , Xn, Xn+1 be a sample from a normal population having an unknown
mean µ and variance 1. Let X̄n = ∑n

i=1 Xi/n be the average of the first n of them.

(a) What is the distribution of Xn+1 − X̄n?
(b) If X̄n = 4, give an interval that, with 90 percent confidence, will contain the

value of Xn+1.

12. If X1, . . . , Xn is a sample from a normal population whose mean µ is unknown
but whose variance σ 2 is known, show that (−∞, X + zασ /

√
n) is a 100(1 − α)

percent lower confidence interval for µ.

13. A sample of 20 cigarettes is tested to determine nicotine content and the average
value observed was 1.2 mg. Compute a 99 percent two-sided confidence interval for
the mean nicotine content of a cigarette if it is known that the standard deviation
of a cigarette’s nicotine content is σ = .2 mg.

14. In Problem 13, suppose that the population variance is not known in advance
of the experiment. If the sample variance is .04, compute a 99 percent two-sided
confidence interval for the mean nicotine content.

15. In Problem 14, compute a value c for which we can assert “with 99 percent
confidence” that c is larger than the mean nicotine content of a cigarette.
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16. Suppose that when sampling from a normal population having an unknown
mean µ and unknown variance σ 2, we wish to determine a sample size n so
as to guarantee that the resulting 100(1 − α) percent confidence interval for µ

will be of size no greater than A, for given values α and A. Explain how we can
approximately do this by a double sampling scheme that first takes a subsample
of size 30 and then chooses the total sample size by using the results of the first
subsample.

17. The following data resulted from 24 independent measurements of the melting
point of lead.

330◦C 322◦C 345◦C
328.6◦C 331◦C 342◦C
342.4◦C 340.4◦C 329.7◦C
334◦C 326.5◦C 325.8◦C
337.5◦C 327.3◦C 322.6◦C
341◦C 340◦C 333◦C
343.3◦C 331◦C 341◦C
329.5◦C 332.3◦C 340◦C

Assuming that the measurements can be regarded as constituting a normal sample
whose mean is the true melting point of lead, determine a 95 percent two-sided
confidence interval for this value. Also determine a 99 percent two-sided confidence
interval.

18. The following are scores on IQ tests of a random sample of 18 students at a large
eastern university.

130, 122, 119, 142, 136, 127, 120, 152, 141,

132, 127, 118, 150, 141, 133, 137, 129, 142

(a) Construct a 95 percent confidence interval estimate of the average IQ score
of all students at the university.

(b) Construct a 95 percent lower confidence interval estimate.
(c) Construct a 95 percent upper confidence interval estimate.

19. Suppose that a random sample of nine recently sold houses in a certain city resulted
in a sample mean price of $222,000, with a sample standard deviation of $22,000.
Give a 95 percent upper confidence interval for the mean price of all recently sold
houses in this city.

20. A company self-insures its large fleet of cars against collisions. To determine its
mean repair cost per collision, it has randomly chosen a sample of 16 accidents.
If the average repair cost in these accidents is $2,200 with a sample standard
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deviation of $800, find a 90 percent confidence interval estimate of the mean cost
per collision.

21. A standardized test is given annually to all sixth-grade students in the state of
Washington. To determine the average score of students in her district, a school
supervisor selects a random sample of 100 students. If the sample mean of these
students’ scores is 320 and the sample standard deviation is 16, give a 95 percent
confidence interval estimate of the average score of students in that supervisor’s
district.

22. Each of 20 science students independently measured the melting point of lead.
The sample mean and sample standard deviation of these measurements were
(in degrees centigrade) 330.2 and 15.4, respectively. Construct (a) a 95 percent
and (b) a 99 percent confidence interval estimate of the true melting point of
lead.

23. A random sample of 300 CitiBank VISA cardholder accounts indicated a sam-
ple mean debt of $1,220 with a sample standard deviation of $840. Construct
a 95 percent confidence interval estimate of the average debt of all cardholders.

24. In Problem 23, find the smallest value v that “with 90 percent confidence,” exceeds
the average debt per cardholder.

25. Verify the formula given in Table 7.1 for the 100(1−α) percent lower confidence
interval for µ when σ is unknown.

26. The range of a new type of mortar shell is being investigated. The observed ranges,
in meters, of 20 such shells are as follows:

2,100 1,984 2,072 1,898
1,950 1,992 2,096 2,103
2,043 2,218 2,244 2,206
2,210 2,152 1,962 2,007
2,018 2,106 1,938 1,956

Assuming that a shell’s range is normally distributed, construct (a) a 95 percent
and (b) a 99 percent two-sided confidence interval for the mean range of a shell.
(c) Determine the largest value v that, “with 95 percent confidence,” will be less
than the mean range.

27. Studies were conducted in Los Angeles to determine the carbon monoxide
concentration near freeways. The basic technique used was to capture air sam-
ples in special bags and to then determine the carbon monoxide concentration by
using a spectrophotometer. The measurements in ppm (parts per million) over
a sampled period during the year were 102.2, 98.4, 104.1, 101, 102.2, 100.4,
98.6, 88.2, 78.8, 83, 84.7, 94.8, 105.1, 106.2, 111.2, 108.3, 105.2, 103.2, 99,
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98.8. Compute a 95 percent two-sided confidence interval for the mean carbon
monoxide concentration.

28. A set of 10 determinations, by a method devised by the chemist Karl Fischer, of
the percentage of water in a methanol solution yielded the following data.

.50, .55, .53, .56, .54,

.57, .52, .60, .55, .58

Assuming normality, use these data to give a 95 percent confidence interval for the
actual percentage.

29. Suppose that U1, U2, . . . is a sequence of independent uniform (0,1) random
variables, and define N by

N = min{n : U1 + · · · + Un > 1}

That is, N is the number of uniform (0, 1) random variables that need be summed
to exceed 1. Use random numbers to determine the value of 36 random variables
having the same distribution as N , then use these data to obtain a 95 percent
confidence interval estimate of E [N ]. Based on this interval, guess the exact value
of E [N ].

30. An important issue for a retailer is to decide when to reorder stock from a supplier.
A common policy used to make the decision is of a type called s, S : The retailer
orders at the end of a period if the on-hand stock is less than s, and orders enough to
bring the stock up to S . The appropriate values of s and S depend on different cost
parameters, such as inventory holding costs and the profit per item sold, as well as
the distribution of the demand during a period. Consequently, it is important for
the retailer to collect data relating to the parameters of the demand distribution.
Suppose that the following data give the numbers of a certain type of item sold in
each of 30 weeks.

14, 8, 12, 9, 5, 22, 15, 12, 16, 7, 10, 9, 15, 15, 12,

9, 11, 16, 8, 7, 15, 13, 9, 5, 18, 14, 10, 13, 7, 11

Assuming that the numbers sold each week are independent random variables from
a common distribution, use the data to obtain a 95 percent confidence interval for
the mean number sold in a week.

31. A random sample of 16 full professors at a large private university yielded a sample
mean annual salary of $90,450 with a sample standard deviation of $9,400. Deter-
mine a 95 percent confidence interval of the average salary of all full professors at
that university.
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32. Let X1, . . . , Xn, Xn+1 denote a sample from a normal population whose mean
µ and variance σ 2 are unknown. Suppose that we are interested in using the
observed values of X1, . . . , Xn to determine an interval, called a prediction interval,
that we predict will contain the value of Xn+1 with 100(1−α) percent confidence.
Let X n and S2

n be the sample mean and sample variance of X1, . . . , Xn.

(a) Determine the distribution of

Xn+1 − X n

(b) Determine the distribution of

Xn+1 − X n

Sn

√
1 + 1

n

(c) Give the prediction interval for Xn+1.
(d) The interval in part (c) will contain the value of Xn+1 with 100(1−α) percent

confidence. Explain the meaning of this statement.

33. National Safety Council data show that the number of accidental deaths due to
drowning in the United States in the years from 1990 to 1993 were (in units of
one thousand) 5.2, 4.6, 4.3, 4.8. Use these data to give an interval that will, with
95 percent confidence, contain the number of such deaths in 1994.

34. The daily dissolved oxygen concentration for a water stream has been recorded
over 30 days. If the sample average of the 30 values is 2.5 mg/liter and the sample
standard deviation is 2.12 mg/liter, determine a value which, with 90 percent
confidence, exceeds the mean daily concentration.

35. Verify the formulas given in Table 7.1 for the 100(1−α) percent lower and upper
confidence intervals for σ 2.

36. The capacities (in ampere-hours) of 10 batteries were recorded as follows:

140, 136, 150, 144, 148, 152, 138, 141, 143, 151

(a) Estimate the population variance σ 2.
(b) Compute a 99 percent two-sided confidence interval for σ 2.
(c) Compute a value v that enables us to state, with 90 percent confidence, that

σ 2 is less than v.

37. Find a 95 percent two-sided confidence interval for the variance of the diameter
of a rivet based on the data given here.
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6.68 6.66 6.62 6.72
6.76 6.67 6.70 6.72
6.78 6.66 6.76 6.72
6.76 6.70 6.76 6.76
6.74 6.74 6.81 6.66
6.64 6.79 6.72 6.82
6.81 6.77 6.60 6.72
6.74 6.70 6.64 6.78
6.70 6.70 6.75 6.79

Assume a normal population.

38. The following are independent samples from two normal populations, both of
which have the same standard deviation σ .

16, 17, 19, 20, 18 and 3, 4, 8

Use them to estimate σ .

39. The amount of beryllium in a substance is often determined by the use of a
photometric filtration method. If the weight of the beryllium is µ, then the
value given by the photometric filtration method is normally distributed with
mean µ and standard deviation σ . A total of eight independent measurements of
3.180 mg of beryllium gave the following results.

3.166, 3.192, 3.175, 3.180, 3.182, 3.171, 3.184, 3.177

Use the preceding data to

(a) estimate σ ;
(b) find a 90 percent confidence interval estimate of σ .

40. If X1, . . . , Xn is a sample from a normal population, explain how to obtain a
100(1 − α) percent confidence interval for the population variance σ 2 when the
population mean µ is known. Explain in what sense knowledge of µ improves the
interval estimator compared with when it is unknown.

Repeat Problem 38 if it is known that the mean burning time is 53.6 seconds.

41. A civil engineer wishes to measure the compressive strength of two different
types of concrete. A random sample of 10 specimens of the first type yielded
the following data (in psi)

Type 1: 3,250, 3,268, 4,302, 3,184, 3,266
3,297, 3,332, 3,502, 3,064, 3,116
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whereas a sample of 10 specimens of the second yielded the data

Type 2: 3,094, 3,106, 3,004, 3,066, 2,984,
3,124, 3,316, 3,212, 3,380, 3,018

If we assume that the samples are normal with a common variance, determine

(a) a 95 percent two-sided confidence interval for µ1 − µ2, the difference in
means;

(b) a 95 percent one-sided upper confidence interval for µ1 − µ2;
(c) a 95 percent one-sided lower confidence interval for µ1 − µ2.

42. Independent random samples are taken from the output of two machines on
a production line. The weight of each item is of interest. From the first machine,
a sample of size 36 is taken, with sample mean weight of 120 grams and a sam-
ple variance of 4. From the second machine, a sample of size 64 is taken, with
a sample mean weight of 130 grams and a sample variance of 5. It is assumed that
the weights of items from the first machine are normally distributed with mean
µ1 and variance σ 2, and that the weights of items from the second machine are
normally distributed with mean µ2 and variance σ 2 (that is, the variances are
assumed to be equal). Find a 99 percent confidence interval for µ1 − µ2, the
difference in population means.

43. Do Problem 42 when it is known in advance that the population variances are
4 and 5.

44. The following are the burning times in seconds of floating smoke pots of two
different types.

Type I Type II
481 572 526 537
506 561 511 582
527 501 556 605
661 487 542 558
501 524 491 578

Find a 99 percent confidence interval for the mean difference in burning times
assuming normality with unknown but equal variances.

45. If X1, . . . , Xn is a sample from a normal population having known mean µ1

and unknown variance σ 2
1 , and Y1, . . . , Ym is an independent sample from

a normal population having known mean µ2 and unknown variance σ 2
2 ,

determine a 100(1 − α) percent confidence interval for σ 2
1 /σ 2

2 .

46. Two analysts took repeated readings on the hardness of city water. Assuming
that the readings of analyst i constitute a sample from a normal population
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having variance σ 2
i , i = 1, 2, compute a 95 percent two-sided confidence interval

for σ 2
1 /σ 2

2 when the data are as follows:

Coded Measures of Hardness
Analyst 1 Analyst 2

.46 .82

.62 .61

.37 .89

.40 .51

.44 .33

.58 .48

.48 .23

.53 .25
.67
.88

47. A problem of interest in baseball is whether a sacrifice bunt is a good strategy
when there is a man on first base and no outs. Assuming that the bunter will
be out but will be successful in advancing the man on base, we could compare
the probability of scoring a run with a player on first base and no outs with
the probability of scoring a run with a player on second base and one out. The
following data resulted from a study of randomly chosen major league baseball
games played in 1959 and 1960.

(a) Give a 95 percent confidence interval estimate for the probability of scoring
at least one run when there is a man on first and no outs.

(b) Give a 95 percent confidence interval estimate for the probability of scoring
at least one run when there is a man on second and one out.

Number of Cases
Number in Which 0 Runs Total Number

Base Occupied of Outs Are Scored of Cases

First 0 1,044 1,728
Second 1 401 657

48. A random sample of 1,200 engineers included 48 Hispanic Americans, 80 African
Americans, and 204 females. Determine 90 percent confidence intervals for the
proportion of all engineers that are

(a) female;
(b) Hispanic Americans or African Americans.
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49. To estimate p, the proportion of all newborn babies that are male, the gender of
10,000 newborn babies was noted. If 5,106 of them were male, determine (a) a
90 percent and (b) a 99 percent confidence interval estimate of p.

50. An airline is interested in determining the proportion of its customers who are
flying for reasons of business. If they want to be 90 percent certain that their
estimate will be correct to within 2 percent, how large a random sample should
they select?

51. A recent newspaper poll indicated that Candidate A is favored over Candidate B
by a 53 to 47 percentage, with a margin of error of ±4 percent. The newspaper
then stated that since the 6-point gap is larger than the margin of error, its readers
can be certain that Candidate A is the current choice. Is this reasoning correct?

52. A market research firm is interested in determining the proportion of households
that are watching a particular sporting event. To accomplish this task, they plan
on using a telephone poll of randomly chosen households. How large a sample is
needed if they want to be 90 percent certain that their estimate is correct to within
±.02?

53. In a recent study, 79 of 140 meteorites were observed to enter the atmosphere
with a velocity of less than 25 miles per second. If we take p̂ = 79/140 as an
estimate of the probability that an arbitrary meteorite that enters the atmosphere
will have a speed less than 25 miles per second, what can we say, with 99 percent
confidence, about the maximum error of our estimate?

54. A random sample of 100 items from a production line revealed 17 of them to be
defective. Compute a 95 percent two-sided confidence interval for the probability
that an item produced is defective. Determine also a 99 percent upper confidence
interval for this value. What assumptions are you making?

55. Of 100 randomly detected cases of individuals having lung cancer, 67 died within
5 years of detection.

(a) Estimate the probability that a person contracting lung cancer will die within
5 years.

(b) How large an additional sample would be required to be 95 percent confident
that the error in estimating the probability in part (a) is less than .02?

56. Derive 100(1 − α) percent lower and upper confidence intervals for p, when
the data consist of the values of n independent Bernoulli random variables with
parameter p.

57. Suppose the lifetimes of batteries are exponentially distributed with mean θ . If the
average of a sample of 10 batteries is 36 hours, determine a 95 percent two-sided
confidence interval for θ .
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58. Determine 100(1−α) percent one-sided upper and lower confidence intervals for
θ in Problem 57.

59. Let X1, X2, . . . , Xn denote a sample from a population whose mean value θ is
unknown. Use the results of Example 7.7b to argue that among all unbiased
estimators of θ of the form

∑n
i=1 λiXi ,

∑n
i=1 λi = 1, the one with minimal mean

square error has λi ≡ 1/n, i = 1, . . . , n.

60. Consider two independent samples from normal populations having the same
variance σ 2, of respective sizes n and m. That is, X1, . . . , Xn and Y1, . . . , Ym are
independent samples from normal populations each having variance σ 2. Let S2

x
and S2

y denote the respective sample variances. Thus both S2
x and S2

y are unbiased

estimators of σ 2. Show by using the results of Example 7.7b along with the fact
that

Var(χ2
k ) = 2k

where χ2
k is chi-square with k degrees of freedom, that the minimum mean square

estimator of σ 2 of the form λS2
x + (1 − λ)S2

y is

S2
p = (n − 1)S2

x + (m − 1)S2
y

n + m − 2

This is called the pooled estimator of σ 2.

61. Consider two estimators d1 and d2 of a parameter θ . If E [d1] = θ ,
Var(d1) = 6 and E [d2] = θ + 2, Var(d2) = 2, which estimator should be
preferred?

62. Suppose that the number of accidents occurring daily in a certain plant has a
Poisson distribution with an unknown mean λ. Based on previous experience
in similar industrial plants, suppose that a statistician’s initial feelings about the
possible value of λ can be expressed by an exponential distribution with parameter
1. That is, the prior density is

p(λ) = e−λ, 0 < λ < ∞

Determine the Bayes estimate of λ if there are a total of 83 accidents over the next
10 days. What is the maximum likelihood estimate?

63. The functional lifetimes in hours of computer chips produced by a certain
semiconductor firm are exponentially distributed with mean 1/λ. Suppose that
the prior distribution on λ is the gamma distribution with density function

g (x) = e−xx2

2
, 0 < x < ∞
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If the average life of the first 20 chips tested is 4.6 hours, compute the Bayes
estimate of λ.

64. Each item produced will, independently, be defective with probability p. If the
prior distribution on p is uniform on (0, 1), compute the posterior probability
that p is less than .2 given

(a) a total of 2 defectives out of a sample of size 10;
(b) a total of 1 defective out of a sample of size 10;
(c) a total of 10 defectives out of a sample of size 10.

65. The breaking strength of a certain type of cloth is to be measured for 10 spec-
imens. The underlying distribution is normal with unknown mean θ but with
a standard deviation equal to 3 psi. Suppose also that based on previous experience
we feel that the unknown mean has a prior distribution that is normally dis-
tributed with mean 200 and standard deviation 2. If the average breaking strength
of a sample of 20 specimens is 182 psi, determine a region that contains θ with
probability .95.



Chapter 8

HYPOTHESIS TESTING

8.1 INTRODUCTION
As in the previous chapter, let us suppose that a random sample from a population distri-
bution, specified except for a vector of unknown parameters, is to be observed. However,
rather than wishing to explicitly estimate the unknown parameters, let us now suppose
that we are primarily concerned with using the resulting sample to test some particular
hypothesis concerning them. As an illustration, suppose that a construction firm has just
purchased a large supply of cables that have been guaranteed to have an average breaking
strength of at least 7,000 psi. To verify this claim, the firm has decided to take a random
sample of 10 of these cables to determine their breaking strengths. They will then use the
result of this experiment to ascertain whether or not they accept the cable manufacturer’s
hypothesis that the population mean is at least 7,000 pounds per square inch.

A statistical hypothesis is usually a statement about a set of parameters of a population
distribution. It is called a hypothesis because it is not known whether or not it is true.
A primary problem is to develop a procedure for determining whether or not the values
of a random sample from this population are consistent with the hypothesis. For instance,
consider a particular normally distributed population having an unknown mean value θ

and known variance 1. The statement “θ is less than 1” is a statistical hypothesis that
we could try to test by observing a random sample from this population. If the random
sample is deemed to be consistent with the hypothesis under consideration, we say that
the hypothesis has been “accepted”; otherwise we say that it has been “rejected.”

Note that in accepting a given hypothesis we are not actually claiming that it is true but
rather we are saying that the resulting data appear to be consistent with it. For instance,
in the case of a normal (θ , 1) population, if a resulting sample of size 10 has an average
value of 1.25, then although such a result cannot be regarded as being evidence in favor
of the hypothesis “θ < 1,” it is not inconsistent with this hypothesis, which would thus
be accepted. On the other hand, if the sample of size 10 has an average value of 3, then
even though a sample value that large is possible when θ < 1, it is so unlikely that it seems
inconsistent with this hypothesis, which would thus be rejected.

291
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8.2 SIGNIFICANCE LEVELS
Consider a population having distribution Fθ , where θ is unknown, and suppose we want
to test a specific hypothesis about θ . We shall denote this hypothesis by H0 and call it
the null hypothesis. For example, if Fθ is a normal distribution function with mean θ and
variance equal to 1, then two possible null hypotheses about θ are

(a) H0 : θ = 1

(b) H0 : θ ≤ 1

Thus the first of these hypotheses states that the population is normal with mean 1 and
variance 1, whereas the second states that it is normal with variance 1 and a mean less than
or equal to 1. Note that the null hypothesis in (a), when true, completely specifies the
population distribution; whereas the null hypothesis in (b) does not. A hypothesis that,
when true, completely specifies the population distribution is called a simple hypothesis;
one that does not is called a composite hypothesis.

Suppose now that in order to test a specific null hypothesis H0, a population sample
of size n — say X1, . . . , Xn — is to be observed. Based on these n values, we must decide
whether or not to accept H0. A test for H0 can be specified by defining a region C in
n-dimensional space with the proviso that the hypothesis is to be rejected if the random
sample X1, . . . , Xn turns out to lie in C and accepted otherwise. The region C is called the
critical region. In other words, the statistical test determined by the critical region C is the
one that

accepts H0 if (X1, X2, . . . , Xn) �∈ C

and

rejects H0 if (X1, . . . , Xn) ∈ C

For instance, a common test of the hypothesis that θ , the mean of a normal population
with variance 1, is equal to 1 has a critical region given by

C =


(X1, . . . , Xn) :

∣∣∣∣∣∣∣∣

n∑
i=1

Xi

n
− 1

∣∣∣∣∣∣∣∣
>

1.96√
n


 (8.2.1)

Thus, this test calls for rejection of the null hypothesis that θ = 1 when the sample average
differs from 1 by more than 1.96 divided by the square root of the sample size.

It is important to note when developing a procedure for testing a given null hypothesis
H0 that, in any test, two different types of errors can result. The first of these, called a type
I error, is said to result if the test incorrectly calls for rejecting H0 when it is indeed correct.
The second, called a type II error, results if the test calls for accepting H0 when it is false.
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Now, as was previously mentioned, the objective of a statistical test of H0 is not to explicitly
determine whether or not H0 is true but rather to determine if its validity is consistent
with the resultant data. Hence, with this objective it seems reasonable that H0 should only
be rejected if the resultant data are very unlikely when H0 is true. The classical way of
accomplishing this is to specify a value α and then require the test to have the property
that whenever H0 is true its probability of being rejected is never greater than α. The value
α, called the level of significance of the test, is usually set in advance, with commonly chosen
values being α = .1, .05, .005. In other words, the classical approach to testing H0 is to fix
a significance level α and then require that the test have the property that the probability
of a type I error occurring can never be greater than α.

Suppose now that we are interested in testing a certain hypothesis concerning θ , an
unknown parameter of the population. Specifically, for a given set of parameter values w,
suppose we are interested in testing

H0 : θ ∈ w

A common approach to developing a test of H0, say at level of significance α, is to start by
determining a point estimator of θ — say d (X). The hypothesis is then rejected if d (X) is
“far away” from the region w. However, to determine how “far away” it need be to justify
rejection of H0, we need to determine the probability distribution of d (X) when H0 is
true since this will usually enable us to determine the appropriate critical region so as to
make the test have the required significance level α. For example, the test of the hypothesis
that the mean of a normal (θ , 1) population is equal to 1, given by Equation 8.2.1, calls
for rejection when the point estimate of θ — that is, the sample average — is farther than
1.96/

√
n away from 1. As we will see in the next section, the value 1.96/

√
n was chosen

to meet a level of significance of α = .05.

8.3 TESTS CONCERNING THE MEAN OF A
NORMAL POPULATION

8.3.1 Case of Known Variance

Suppose that X1, . . . , Xn is a sample of size n from a normal distribution having an
unknown mean µ and a known variance σ 2 and suppose we are interested in testing
the null hypothesis

H0 : µ = µ0

against the alternative hypothesis

H1 : µ �= µ0

where µ0 is some specified constant.
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Since X = ∑n
i=1 Xi/n is a natural point estimator of µ, it seems reasonable to accept

H0 if X is not too far from µ0. That is, the critical region of the test would be of the form

C = {X1, . . . , Xn : |X − µ0| > c} (8.3.1)

for some suitably chosen value c.
If we desire that the test has significance level α, then we must determine the critical

value c in Equation 8.3.1 that will make the type I error equal to α. That is, c must be
such that

Pµ0{|X − µ0| > c} = α (8.3.2)

where we write Pµ0 to mean that the preceding probability is to be computed under the
assumption that µ = µ0. However, when µ = µ0, X will be normally distributed with
mean µ0 and variance σ 2/n and so Z , defined by

Z ≡ X − µ0

σ /
√

n

will have a standard normal distribution. Now Equation 8.3.2 is equivalent to

P
{
|Z | >

c
√

n
σ

}
= α

or, equivalently,

2P
{

Z >
c
√

n
σ

}
= α

where Z is a standard normal random variable. However, we know that

P{Z > zα/2} = α/2

and so
c
√

n
σ

= zα/2

or

c = zα/2σ√
n

Thus, the significance level α test is to reject H0 if |X − µ0| > zα/2σ /
√

n and accept
otherwise; or, equivalently, to

reject H0 if

√
n

σ
|X − µ0| > zα/2

accept H0 if

√
n

σ
|X − µ0| ≤ zα/2

(8.3.3)
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Accept

0 za/2−za/2
(X − m0)n

s

FIGURE 8.1

This can be pictorially represented as shown in Figure 8.1, where we have superim-
posed the standard normal density function [which is the density of the test statistic√

n(X − µ0)/σ when H0 is true].

EXAMPLE 8.3a It is known that if a signal of value µ is sent from location A, then the
value received at location B is normally distributed with mean µ and standard deviation 2.
That is, the random noise added to the signal is an N (0, 4) random variable. There is
reason for the people at location B to suspect that the signal value µ = 8 will be sent
today. Test this hypothesis if the same signal value is independently sent five times and
the average value received at location B is X = 9. 5.

SOLUTION Suppose we are testing at the 5 percent level of significance. To begin, we
compute the test statistic

√
n

σ
|X − µ0| =

√
5

2
(1.5) = 1.68

Since this value is less than z.025 = 1.96, the hypothesis is accepted. In other words, the
data are not inconsistent with the null hypothesis in the sense that a sample average as far
from the value 8 as observed would be expected, when the true mean is 8, over 5 percent
of the time. Note, however, that if a less stringent significance level were chosen —
say α = .1 — then the null hypothesis would have been rejected. This follows since
z.05 = 1.645, which is less than 1.68. Hence, if we would have chosen a test that had a
10 percent chance of rejecting H0 when H0 was true, then the null hypothesis would have
been rejected.

The “correct” level of significance to use in a given situation depends on the individ-
ual circumstances involved in that situation. For instance, if rejecting a null hypothesis
H0 would result in large costs that would thus be lost if H0 were indeed true, then we
might elect to be quite conservative and so choose a significance level of .05 or .01. Also,
if we initially feel strongly that H0 was correct, then we would require very stringent data
evidence to the contrary for us to reject H0. (That is, we would set a very low significance
level in this situation.) ■
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The test given by Equation 8.3.3 can be described as follows: For any observed value of
the test statistic

√
n|X − µ0|/σ , call it v, the test calls for rejection of the null hypothesis

if the probability that the test statistic would be as large as v when H0 is true is less than
or equal to the significance level α. From this, it follows that we can determine whether
or not to accept the null hypothesis by computing, first, the value of the test statistic and,
second, the probability that a unit normal would (in absolute value) exceed that quantity.
This probability — called the p-value of the test — gives the critical significance level
in the sense that H0 will be accepted if the significance level α is less than the p-value
and rejected if it is greater than or equal.

In practice, the significance level is often not set in advance but rather the data are
looked at to determine the resultant p-value. Sometimes, this critical significance level is
clearly much larger than any we would want to use, and so the null hypothesis can be
readily accepted. At other times the p-value is so small that it is clear that the hypothesis
should be rejected.

EXAMPLE 8.3b In Example 8.3a, suppose that the average of the 5 values received is
X = 8.5. In this case,

√
n

σ
|X − µ0| =

√
5

4
= .559

Since

P{|Z | > .559} = 2P{Z > .559}
= 2 × .288 = .576

it follows that the p-value is .576 and thus the null hypothesis H0 that the signal sent
has value 8 would be accepted at any significance level α < .576. Since we would clearly
never want to test a null hypothesis using a significance level as large as .576, H0 would
be accepted.

On the other hand, if the average of the data values were 11.5, then the p-value of the
test that the mean is equal to 8 would be

P{|Z | > 1.75
√

5} = P{|Z | > 3.913}
≈ .00005

For such a small p-value, the hypothesis that the value 8 was sent is rejected. ■

We have not yet talked about the probability of a type II error — that is, the probability
of accepting the null hypothesis when the true mean µ is unequal to µ0. This probability
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will depend on the value of µ, and so let us define β(µ) by

β(µ) = Pµ{acceptance of H0}

= Pµ

{∣∣∣∣∣X − µ0

σ /
√

n

∣∣∣∣∣ ≤ zα/2

}

= Pµ

{
−zα/2 ≤ X − µ0

σ /
√

n
≤ zα/2

}

The function β(µ) is called the operating characteristic (or OC) curve and represents the
probability that H0 will be accepted when the true mean is µ.

To compute this probability, we use the fact that X is normal with mean µ and variance
σ 2/n and so

Z ≡ X − µ

σ /
√

n
∼ N (0, 1)

Hence,

β(µ) = Pµ

{
−zα/2 ≤ X − µ0

σ /
√

n
≤ zα/2

}

= Pµ

{
−zα/2 − µ

σ /
√

n
≤ X − µ0 − µ

σ /
√

n
≤ zα/2 − µ

σ /
√

n

}

= Pµ

{
−zα/2 − µ

σ /
√

n
≤ Z − µ0

σ /
√

n
≤ zα/2 − µ

σ /
√

n

}

= P
{

µ0 − µ

σ /
√

n
− zα/2 ≤ Z ≤ µ0 − µ

σ /
√

n
+ zα/2

}

= 


(
µ0 − µ

σ /
√

n
+ zα/2

)
− 


(
µ0 − µ

σ /
√

n
− zα/2

)
(8.3.4)

where 
 is the standard normal distribution function.
For a fixed significance level α, the OC curve given by Equation 8.3.4 is symmetric

about µ0 and indeed will depend on µ only through (
√

n/σ )|µ − µ0|. This curve with
the abscissa changed from µ to d = (

√
n/σ )|µ − µ0| is presented in Figure 8.2 when

α = .05.

EXAMPLE 8.3c For the problem presented in Example 8.3a, let us determine the probability
of accepting the null hypothesis that µ = 8 when the actual value sent is 10. To do so,
we compute

√
n

σ
(µ0 − µ) = −

√
5

2
× 2 = −√

5
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FIGURE 8.2 The OC curve for the two-sided normal test for significance level α = .05.

As z.025 = 1.96, the desired probability is, from Equation 8.3.4,


(−√
5 + 1.96) − 
(−√

5 − 1.96)

= 1 − 
(
√

5 − 1.96) − [1 − 
(
√

5 + 1.96)]
= 
(4.196) − 
(.276)

= .392 ■

REMARK

The function 1 − β(µ) is called the power-function of the test. Thus, for a given value µ,
the power of the test is equal to the probability of rejection when µ is the true value. ■

The operating characteristic function is useful in determining how large the random
sample need be to meet certain specifications concerning type II errors. For instance,
suppose that we desire to determine the sample size n necessary to ensure that the probability
of accepting H0 : µ = µ0 when the true mean is actually µ1 is approximately β. That is,
we want n to be such that

β(µ1) ≈ β

But from Equation 8.3.4, this is equivalent to




(√
n(µ0 − µ1)

σ
+ zα/2

)
− 


(√
n(µ0 − µ1)

σ
− zα/2

)
≈ β (8.3.5)

Although the foregoing cannot be analytically solved for n, a solution can be obtained by
using the standard normal distribution table. In addition, an approximation for n can be
derived from Equation 8.3.5 as follows. To start, suppose that µ1 > µ0. Then, because
this implies that

µ0 − µ1

σ /
√

n
− zα/2 ≤ −zα/2
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it follows, since 
 is an increasing function, that




(
µ0 − µ1

σ /
√

n
− zα/2

)
≤ 
(−zα/2) = P{Z ≤ −zα/2} = P{Z ≥ zα/2} = α/2

Hence, we can take




(
µ0 − µ1

σ /
√

n
− zα/2

)
≈ 0

and so from Equation 8.3.5

β ≈ 


(
µ0 − µ1

σ /
√

n
+ zα/2

)
(8.3.6)

or, since

β = P{Z > zβ} = P{Z < −zβ} = 
(−zβ )

we obtain from Equation 8.3.6 that

−zβ ≈ (µ0 − µ1)

√
n

σ
+ zα/2

or

n ≈ (zα/2 + zβ )2σ 2

(µ1 − µ0)2
(8.3.7)

In fact, the same approximation would result when µ1 < µ0 (the details are left as an
exercise) and so Equation 8.3.7 is in all cases a reasonable approximation to the sample
size necessary to ensure that the type II error at the value µ = µ1 is approximately equal
to β.

EXAMPLE 8.3d For the problem of Example 8.3a, how many signals need be sent so that
the .05 level test of H0 : µ = 8 has at least a 75 percent probability of rejection when
µ = 9.2?

SOLUTION Since z.025 = 1.96, z.25 = .67, the approximation 8.3.7 yields

n ≈ (1.96 + .67)2

(1.2)2
4 = 19.21

Hence a sample of size 20 is needed. From Equation 8.3.4, we see that with n = 20

β(9.2) = 


(
−1.2

√
20

2
+ 1.96

)
− 


(
−1.2

√
20

2
− 1.96

)

= 
(−.723) − 
(−4.643)
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≈ 1 − 
(.723)

≈ .235

Therefore, if the message is sent 20 times, then there is a 76.5 percent chance that the
null hypothesis µ = 8 will be rejected when the true mean is 9.2. ■

ONE-SIDED TESTS

In testing the null hypothesis that µ = µ0, we have chosen a test that calls for rejection
when X is far from µ0. That is, a very small value of X or a very large value appears to
make it unlikely that µ (which X is estimating) could equal µ0. However, what happens
when the only alternative to µ being equal to µ0 is for µ to be greater than µ0? That is,
what happens when the alternative hypothesis to H0 : µ = µ0 is H1 : µ > µ0? Clearly,
in this latter case we would not want to reject H0 when X is small (since a small X is more
likely when H0 is true than when H1 is true). Thus, in testing

H0 : µ = µ0 versus H1 : µ > µ0 (8.3.8)

we should reject H0 when X , the point estimate of µ0, is much greater than µ0. That is,
the critical region should be of the following form:

C = {(X1, . . . , Xn) : X − µ0 > c}

Since the probability of rejection should equal α when H0 is true (that is, when µ = µ0),
we require that c be such that

Pµ0{X − µ0 > c} = α (8.3.9)

But since

Z = X − µ0

σ /
√

n

has a standard normal distribution when H0 is true, Equation 8.3.9 is equivalent to

P
{

Z >
c
√

n
σ

}
= α

when Z is a standard normal. But since

P{Z > zα} = α

we see that

c = zασ√
n
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Hence, the test of the hypothesis 8.3.8 is to reject H0 if X − µ0 > zασ /
√

n, and accept
otherwise; or, equivalently, to

accept H0 if

√
n

σ
(X − µ0) ≤ zα

reject H0 if

√
n

σ
(X − µ0) > zα

(8.3.10)

This is called a one-sided critical region (since it calls for rejection only when X is large).
Correspondingly, the hypothesis testing problem

H0 : µ = µ0

H1 : µ > µ0

is called a one-sided testing problem (in contrast to the two-sided problem that results when
the alternative hypothesis is H1 : µ �= µ0).

To compute the p-value in the one-sided test, Equation 8.3.10, we first use the data
to determine the value of the statistic

√
n(X − µ0)/σ . The p-value is then equal to the

probability that a standard normal would be at least as large as this value.

EXAMPLE 8.3e Suppose in Example 8.3a that we know in advance that the signal value is
at least as large as 8. What can be concluded in this case?

SOLUTION To see if the data are consistent with the hypothesis that the mean is 8, we test

H0 : µ = 8

against the one-sided alternative

H1 : µ > 8

The value of the test statistic is
√

n(X −µ0)/σ = √
5(9.5 − 8)/2 = 1.68, and the p-value

is the probability that a standard normal would exceed 1.68, namely,

p-value = 1 − 
(1.68) = .0465

Since the test would call for rejection at all significance levels greater than or equal to .0465,
it would, for instance, reject the null hypothesis at the α = .05 level of significance. ■

The operating characteristic function of the one-sided test, Equation 8.3.10,

β(µ) = Pµ{accepting H0}
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can be obtained as follows:

β(µ) = Pµ

{
X ≤ µ0 + zα

σ√
n

}

= P

{
X − µ

σ /
√

n
≤ µ0 − µ

σ /
√

n
+ zα

}

= P
{

Z ≤ µ0 − µ

σ /
√

n
+ zα

}
, Z ∼ N (0, 1)

where the last equation follows since
√

n(X − µ)/σ has a standard normal distribution.
Hence we can write

β(µ) = 


(
µ0 − µ

σ /
√

n
+ zα

)
Since 
, being a distribution function, is increasing in its argument, it follows that β(µ)
decreases in µ; which is intuitively pleasing since it certainly seems reasonable that the
larger the true mean µ, the less likely it should be to conclude that µ ≤ µ0. Also since

(zα) = 1 − α, it follows that

β(µ0) = 1 − α

The test given by Equation 8.3.10, which was designed to test H0 : µ = µ0 versus
H1 : µ > µ0 can also be used to test, at level of significance α, the one-sided hypothesis

H0 : µ ≤ µ0

versus

H1 : µ > µ0

To verify that it remains a level α test, we need show that the probability of rejection is
never greater than α when H0 is true. That is, we must verify that

1 − β(µ) ≤ α for all µ ≤ µ0

or

β(µ) ≥ 1 − α for all µ ≤ µ0

But it has previously been shown that for the test given by Equation 8.3.10, β(µ) decreases
in µ and β(µ0) = 1 − α. This gives that

β(µ) ≥ β(µ0) = 1 − α for all µ ≤ µ0

which shows that the test given by Equation 8.3.10 remains a level α test for H0 : µ ≤ µ0

against the alternative hypothesis H1 : µ ≤ µ0.
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REMARK

We can also test the one-sided hypothesis

H0 : µ = µ0 (or µ ≥ µ0) versus H1 : µ < µ0

at significance level α by

accepting H0 if

√
n

σ
(X − µ0) ≥ −zα

rejecting H0 otherwise

This test can alternatively be performed by first computing the value of the test statistic√
n(X − µ0)/σ . The p-value would then equal the probability that a standard normal

would be less than this value, and the hypothesis would be rejected at any significance level
greater than or equal to this p-value.

EXAMPLE 8.3f All cigarettes presently on the market have an average nicotine content of
at least 1.6 mg per cigarette. A firm that produces cigarettes claims that it has discovered a
new way to cure tobacco leaves that will result in the average nicotine content of a cigarette
being less than 1.6 mg. To test this claim, a sample of 20 of the firm’s cigarettes were
analyzed. If it is known that the standard deviation of a cigarette’s nicotine content is
.8 mg, what conclusions can be drawn, at the 5 percent level of significance, if the average
nicotine content of the 20 cigarettes is 1.54?

Note: The above raises the question of how we would know in advance that the standard
deviation is .8. One possibility is that the variation in a cigarette’s nicotine content is due
to variability in the amount of tobacco in each cigarette and not on the method of curing
that is used. Hence, the standard deviation can be known from previous experience.

SOLUTION We must first decide on the appropriate null hypothesis. As was previously
noted, our approach to testing is not symmetric with respect to the null and the alternative
hypotheses since we consider only tests having the property that their probability of reject-
ing the null hypothesis when it is true will never exceed the significance level α. Thus,
whereas rejection of the null hypothesis is a strong statement about the data not being
consistent with this hypothesis, an analogous statement cannot be made when the null
hypothesis is accepted. Hence, since in the preceding example we would like to endorse
the producer’s claims only when there is substantial evidence for it, we should take this
claim as the alternative hypothesis.
That is, we should test

H0 : µ ≥ 1.6 versus H1 : µ < 1.6

Now, the value of the test statistic is

√
n(X − µ0)/σ = √

20(1.54 − 1.6)/.8 = −.336
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and so the p-value is given by

p-value = P{Z < −.336}, Z ∼ N (0, 1)

= .368

Since this value is greater than .05, the foregoing data do not enable us to reject, at the .05
percent level of significance, the hypothesis that the mean nicotine content exceeds 1.6
mg. In other words, the evidence, although supporting the cigarette producer’s claim, is
not strong enough to prove that claim. ■

REMARKS

(a) There is a direct analogy between confidence interval estimation and hypothesis testing.
For instance, for a normal population having mean µ and known variance σ 2, we have
shown in Section 7.3 that a 100(1 − α) percent confidence interval for µ is given by

µ ∈
(

x − zα/2
σ√
n

, x + zα/2
σ√
n

)

where x is the observed sample mean. More formally, the preceding confidence interval
statement is equivalent to

P
{
µ ∈

(
X − zα/2

σ√
n

, X + zα/2
σ√
n

)}
= 1 − α

Hence, if µ = µ0, then the probability that µ0 will fall in the interval

(
X − zα/2

σ√
n

, X + zα/2
σ√
n

)

is 1 − α, implying that a significance level α test of H0 : µ = µ0 versus H1 : µ �= µ0 is
to reject H0 when

µ0 �∈
(

X − zα/2
σ√
n

, X + zα/2
σ√
n

)

Similarly, since a 100(1 − α) percent one-sided confidence interval for µ is given by

µ ∈
(

X − zα

σ√
n

, ∞
)

it follows that an α-level significance test of H0 : µ ≤ µ0 versus H1 : µ > µ0 is to reject
H0 when µ0 �∈ (X − zασ /

√
n, ∞) — that is, when µ0 < X − zασ /

√
n.
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TABLE 8.1 X1, . . . , Xn Is a Sample from a N (µ, σ 2) Population σ 2 Is Known X =
n∑

i=1
Xi /n

Significance
H0 H1 Test Statistic TS Level α Test p-Value if TS = t

µ = µ0 µ �= µ0
√

n(X − µ0)/σ Reject if |TS | > zα/2 2P{Z ≥ |t |}
µ ≤ µ0 µ > µ0

√
n(X − µ0)/σ Reject if TS > zα P{Z ≥ t}

µ ≥ µ0 µ < µ0
√

n(X − µ0)/σ Reject if TS < −zα P{Z ≤ t}
Z is a standard normal random variable.

(b) A Remark on Robustness A test that performs well even when the underlying
assumptions on which it is based are violated is said to be robust. For instance, the tests
of Sections 8.3.1 and 8.3.1.1 were derived under the assumption that the underlying
population distribution is normal with known variance σ 2. However, in deriving these
tests, this assumption was used only to conclude that X also has a normal distribution.
But, by the central limit theorem, it follows that for a reasonably large sample size, X will
approximately have a normal distribution no matter what the underlying distribution. Thus
we can conclude that these tests will be relatively robust for any population distribution
with variance σ 2.

Table 8.1 summarizes the tests of this subsection.

8.3.2 Case of Unknown Variance: The t-Test

Up to now we have supposed that the only unknown parameter of the normal population
distribution is its mean. However, the more common situation is one where the mean µ

and variance σ 2 are both unknown. Let us suppose this to be the case and again consider a
test of the hypothesis that the mean is equal to some specified value µ0. That is, consider
a test of

H0 : µ = µ0

versus the alternative

H1 : µ �= µ0

It should be noted that the null hypothesis is not a simple hypothesis since it does not
specify the value of σ 2.

As before, it seems reasonable to reject H0 when the sample mean X is far from µ0.
However, how far away it need be to justify rejection will depend on the variance σ 2.
Recall that when the value of σ 2 was known, the test called for rejecting H0 when |X −µ0|
exceeded zα/2σ /

√
n or, equivalently, when

∣∣∣∣∣X − µ0

σ /
√

n

∣∣∣∣∣ > zα/2
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Now when σ 2 is no longer known, it seems reasonable to estimate it by

S2 =

n∑
i=1

(Xi − X )2

n − 1

and then to reject H0 when ∣∣∣∣∣X − µ0

S/
√

n

∣∣∣∣∣
is large.

To determine how large a value of the statistic∣∣∣∣∣
√

n(X − µ0)

S

∣∣∣∣∣
to require for rejection, in order that the resulting test have significance level α, we must
determine the probability distribution of this statistic when H0 is true. However, as shown
in Section 6.5, the statistic T , defined by

T =
√

n(X − µ0)

S

has, when µ = µ0, a t -distribution with n − 1 degrees of freedom. Hence,

Pµ0

{
−tα/2,n−1 ≤

√
n(X − µ0)

S
≤ tα/2,n−1

}
= 1 − α (8.3.11)

where tα/2,n−1 is the 100 α/2 upper percentile value of the t -distribution with n−1 degrees
of freedom. (That is, P{Tn−1 ≥ tα/2,n−1} = P{Tn−1 ≤ −tα/2,n−1} = α/2 when Tn−1

has a t -distribution with n − 1 degrees of freedom.) From Equation 8.3.11 we see that the
appropriate significance level α test of

H0 : µ = µ0 versus H1 : µ �= µ0

is, when σ 2 is unknown, to

accept H0 if

∣∣∣∣∣
√

n(X − µ0)

S

∣∣∣∣∣ ≤ tα/2,n−1

reject H0 if

∣∣∣∣∣
√

n(X − µ0)

S

∣∣∣∣∣ > tα/2,n−1

(8.3.12)
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FIGURE 8.3 The two-sided t-test.

The test defined by Equation 8.3.12 is called a two-sided t-test. It is pictorially illustrated
in Figure 8.3.

If we let t denote the observed value of the test statistic T = √
n(X − µ0)/S , then the

p-value of the test is the probability that |T | would exceed |t | when H0 is true. That is,
the p-value is the probability that the absolute value of a t -random variable with n − 1
degrees of freedom would exceed |t |. The test then calls for rejection at all significance
levels higher than the p-value and acceptance at all lower significance levels.

Program 8.3.2 computes the value of the test statistic and the corresponding p-value.
It can be applied both for one- and two-sided tests. (The one-sided material will be
presented shortly.)

EXAMPLE 8.3g Among a clinic’s patients having blood cholesterol levels ranging in the
medium to high range (at least 220 milliliters per deciliter of serum), volunteers were
recruited to test a new drug designed to reduce blood cholesterol. A group of 50 volunteers
was given the drug for 1 month and the changes in their blood cholesterol levels were
noted. If the average change was a reduction of 14.8 with a sample standard deviation of
6.4, what conclusions can be drawn?

SOLUTION Let us start by testing the hypothesis that the change could be due solely to
chance — that is, that the 50 changes constitute a normal sample with mean 0. Because
the value of the t -statistic used to test the hypothesis that a normal mean is equal to 0 is

T = √
n X /S = √

50 14.8/6.4 = 16.352

it is clear that we should reject the hypothesis that the changes were solely due to chance.
Unfortunately, however, we are not justified at this point in concluding that the changes
were due to the specific drug used and not to some other possibility. For instance, it is
well known that any medication received by a patient (whether or not this medication is
directly relevant to the patient’s suffering) often leads to an improvement in the patient’s
condition — the so-called placebo effect. Also, another possibility that may need to be
taken into account would be the weather conditions during the month of testing, for it is
certainly conceivable that this affects blood cholesterol level. Indeed, it must be concluded
that the foregoing was a very poorly designed experiment, for in order to test whether
a specific treatment has an effect on a disease that may be affected by many things, we
should try to design the experiment so as to neutralize all other possible causes. The
accepted approach for accomplishing this is to divide the volunteers at random into two
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groups — one group to receive the drug and the other to receive a placebo (that is, a tablet
that looks and tastes like the actual drug but has no physiological effect). The volunteers
should not be told whether they are in the actual or control group, and indeed it is best if
even the clinicians do not have this information (the so-called double-blind test) so as not
to allow their own biases to play a role. Since the two groups are chosen at random from
among the volunteers, we can now hope that on average all factors affecting the two groups
will be the same except that one received the actual drug and the other a placebo. Hence,
any difference in performance between the groups can be attributed to the drug. ■

EXAMPLE 8.3h A public health official claims that the mean home water use is 350 gallons
a day. To verify this claim, a study of 20 randomly selected homes was instigated with the
result that the average daily water uses of these 20 homes were as follows:

340 344 362 375
356 386 354 364
332 402 340 355
362 322 372 324
318 360 338 370

Do the data contradict the official’s claim?

SOLUTION To determine if the data contradict the official’s claim, we need to test

H0 : µ = 350 versus H1 : µ �= 350

This can be accomplished by running Program 8.3.2 or, if it is incovenient to utilize, by
noting first that the sample mean and sample standard deviation of the preceding data set
are

X = 353.8, S = 21.8478

Thus, the value of the test statistic is

T =
√

20(3.8)

21.8478
= .7778

Because this is less than t.05,19 = 1.730, the null hypothesis is accepted at the 10 percent
level of significance. Indeed, the p-value of the test data is

p-value = P{|T19| > .7778} = 2P{T19 > .7778} = .4462

indicating that the null hypothesis would be accepted at any reasonable significance level,
and thus that the data are not inconsistent with the claim of the health official. ■

We can use a one-sided t -test to test the hypothesis

H0 : µ = µ0 (or H0 : µ ≤ µ0)
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against the one-sided alternative

H1 : µ > µ0

The significance level α test is to

accept H0 if

√
n(X − µ0)

S
≤ tα,n−1

reject H0 if

√
n(X − µ0)

S
> tα,n−1

(8.3.13)

If
√

n(X − µ0)/S = v, then the p-value of the test is the probability that a t -random
variable with n − 1 degrees of freedom would be at least as large as v.

The significance level α test of

H0 : µ = µ0 (or H0 : µ ≥ µ0)

versus the alternative

H1 : µ < µ0

is to

accept H0 if

√
n(X − µ0)

S
≥ −tα,n−1

reject H0 if

√
n(X − µ0)

S
< −tα,n−1

The p-value of this test is the probability that a t -random variable with n − 1 degrees of
freedom would be less than or equal to the observed value of

√
n(X − µ0)/S .

EXAMPLE 8.3i The manufacturer of a new fiberglass tire claims that its average life will be
at least 40,000 miles. To verify this claim a sample of 12 tires is tested, with their lifetimes
(in 1,000s of miles) being as follows:

Tire 1 2 3 4 5 6 7 8 9 10 11 12
Life 36.1 40.2 33.8 38.5 42 35.8 37 41 36.8 37.2 33 36

Test the manufacturer’s claim at the 5 percent level of significance.

SOLUTION To determine whether the foregoing data are consistent with the hypothesis
that the mean life is at least 40,000 miles, we will test

H0 : µ ≥ 40,000 versus H1 : µ < 40,000
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A computation gives that

X = 37.2833, S = 2.7319

and so the value of the test statistic is

T =
√

12(37.2833 − 40)

2.7319
= −3.4448

Since this is less than −t.05,11 = −1.796, the null hypothesis is rejected at the 5 percent
level of significance. Indeed, the p-value of the test data is

p-value = P{T11 < −3.4448} = P{T11 > 3.4448} = .0028

indicating that the manufacturer’s claim would be rejected at any significance level greater
than .003. ■

The preceding could also have been obtained by using Program 8.3.2, as illustrated in
Figure 8.4.

The value of the t-statistic is −3.4448
The p-value is 0.0028

The p-value of the One-sample t-Test

Start

Quit

One-Sided

Two-Sided

Is greater than m0 

Is less than m0 

Enter the value of m0 : 40

Data value  = 36

Sample size = 12

Add This Point To List

Remove Selected Point From List

Data Values

Clear List

This program computes the p-value when testing that a normal
population whose variance is  unknown has mean equal to m0 

35.8
37
41
36.8
37.2
33
36

Is the alternative hypothesis Is the alternative that the mean

? ?

FIGURE 8.4
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EXAMPLE 8.3j In a single-server queueing system in which customers arrive according to a
Poisson process, the long-run average queueing delay per customer depends on the service
distribution through its mean and variance. Indeed, if µ is the mean service time, and σ 2

is the variance of a service time, then the average amount of time that a customer spends
waiting in queue is given by

λ(µ2 + σ 2)

2(1 − λµ)

provided that λµ < 1, where λ is the arrival rate. (The average delay is infinite if
λµ ≥ 1.) As can be seen by this formula, the average delay is quite large when µ is only
slightly smaller than 1/λ, where, since λ is the arrival rate, 1/λ is the average time between
arrivals.

Suppose that the owner of a service station will hire a second server if it can be shown
that the average service time exceeds 8 minutes. The following data give the service times
(in minutes) of 28 customers of this queueing system. Do they indicate that the mean
service time is greater than 8 minutes?

8.6, 9.4, 5.0, 4.4, 3.7, 11.4, 10.0, 7.6, 14.4, 12.2, 11.0, 14.4, 9.3, 10.5,

10.3, 7.7, 8.3, 6.4, 9.2, 5.7, 7.9, 9.4, 9.0, 13.3, 11.6, 10.0, 9.5, 6.6

SOLUTION Let us use the preceding data to test the null hypothesis that the mean service
time is less than or equal to 8 minutes. A small p-value will then be strong evidence
that the mean service time is greater than 8 minutes. Running Program 8.3.2 on these
data shows that the value of the test statistic is 2.257, with a resulting p-value of .016.
Such a small p-value is certainly strong evidence that the mean service time exceeds
8 minutes. ■

Table 8.2 summarizes the tests of this subsection.

TABLE 8.2 X1, . . . , Xn Is a Sample from a N (µ, σ 2) Population σ 2 Is Unknown X =
n∑

i=1
Xi /n

S2 =
n∑

i=1
(Xi − X )2/(n − 1)

Test Significance p-Value if
H0 H1 Statistic TS Level α Test TS = t

µ = µ0 µ �= µ0
√

n(X − µ0)/S Reject if |TS | > tα/2,n−1 2P{Tn−1 ≥ |t |}
µ ≤ µ0 µ > µ0

√
n(X − µ0)/S Reject if TS > tα,n−1 P{Tn−1 ≥ t}

µ ≥ µ0 µ < µ0
√

n(X − µ0)/S Reject if TS < −tα,n−1 P{Tn−1 ≤ t}
Tn−1 is a t-random variable with n − 1 degrees of freedom: P{Tn−1 > tα,n−1} = α.
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8.4 TESTING THE EQUALITY OF MEANS OF TWO
NORMAL POPULATIONS

A common situation faced by a practicing engineer is one in which she must decide whether
two different approaches lead to the same solution. Often such a situation can be modeled
as a test of the hypothesis that two normal populations have the same mean value.

8.4.1 Case of Known Variances

Suppose that X1, . . . , Xn and Y1, . . . , Ym are independent samples from normal populations
having unknown means µx and µy but known variances σ 2

x and σ 2
y . Let us consider the

problem of testing the hypothesis

H0 : µx = µy

versus the alternative

H1 : µx �= µy

Since X is an estimate of µx and Y of µy , it follows that X − Y can be used to estimate
µx −µy . Hence, because the null hypothesis can be written as H0 : µx −µy = 0, it seems
reasonable to reject it when X − Y is far from zero. That is, the form of the test should
be to

reject H0 if |X − Y | > c

accept H0 if |X − Y | ≤ c
(8.4.1)

for some suitably chosen value c.
To determine that value of c that would result in the test in Equations 8.4.1 having

a significance level α, we need determine the distribution of X − Y when H0 is true.
However, as was shown in Section 7.3.2,

X − Y ∼ N
(

µx − µy ,
σ 2

x

n
+ σ 2

y

m

)

which implies that

X − Y − (µx − µy)√
σ 2

x

n
+ σ 2

y

m

∼ N (0, 1) (8.4.2)

Hence, when H0 is true (and so µx − µy = 0), it follows that

(X − Y )

/√
σ 2

x

n
+ σ 2

y

m
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has a standard normal distribution; and thus

PH0




−zα/2 ≤ X − Y√
σ 2

x

n
+ σ 2

y

m

≤ zα/2




= 1 − α (8.4.3)

From Equation 8.4.3, we obtain that the significance level α test of H0 : µx = µy versus
H1 : µx �= µy is

accept H0 if
|X − Y |√

σ 2
x /n + σ 2

y /m
≤ zα/2

reject H0 if
|X − Y |√

σ 2
x /n + σ 2

y /m
≥ zα/2

Program 8.4.1 will compute the value of the test statistic (X − Y )
/√

σ 2
x /n + σ 2

y /m.

EXAMPLE 8.4a Two new methods for producing a tire have been proposed. To ascertain
which is superior, a tire manufacturer produces a sample of 10 tires using the first method
and a sample of 8 using the second. The first set is to be road tested at location A and the
second at location B. It is known from past experience that the lifetime of a tire that is
road tested at one of these locations is normally distributed with a mean life due to the tire
but with a variance due (for the most part) to the location. Specifically, it is known that
the lifetimes of tires tested at location A are normal with standard deviation equal to 4,000
kilometers, whereas those tested at location B are normal with σ = 6,000 kilometers. If the
manufacturer is interested in testing the hypothesis that there is no appreciable difference
in the mean life of tires produced by either method, what conclusion should be drawn at
the 5 percent level of significance if the resulting data are as given in Table 8.3?

TABLE 8.3 Tire Lives in Units of 100 Kilometers

Tires Tested at A Tires Tested at B

61.1 62.2
58.2 56.6
62.3 66.4
64 56.2
59.7 57.4
66.2 58.4
57.8 57.6
61.4 65.4
62.2
63.6
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SOLUTION A simple computation (or the use of Program 8.4.1) shows that the value of
the test statistic is .066. For such a small value of the test statistic (which has a standard
normal distribution when H0 is true), it is clear that the null hypothesis is accepted. ■

It follows from Equation 8.4.1 that a test of the hypothesis H0 : µx = µy (or H0 :
µx ≤ µy) against the one-sided alternative H1 : µx > µy would be to

accept H0 if X − Y ≤ zα

√
σ 2

x

n
+ σ 2

y

m

reject H0 if X − Y > zα

√
σ 2

x

n
+ σ 2

y

m

8.4.2 Case of Unknown Variances

Suppose again that X1, . . . , Xn and Y1, . . . , Ym are independent samples from normal
populations having respective parameters (µx , σ 2

x ) and (µy , σ 2
y ), but now suppose that all

four parameters are unknown. We will once again consider a test of

H0 : µx = µy versus H1 : µx �= µy

To determine a significance level α test of H0 we will need to make the additional
assumption that the unknown variances σ 2

x and σ 2
y are equal. Let σ 2 denote their

value — that is,

σ 2 = σ 2
x = σ 2

y

As before, we would like to reject H0 when X − Y is “far” from zero. To determine
how far from zero it need be, let

S2
x =

n∑
i=1

(Xi − X )2

n − 1

S2
y =

m∑
i=1

(Yi − Y )2

m − 1

denote the sample variances of the two samples. Then, as was shown in Section 7.3.2,

X − Y − (µx − µy)√
S2

p (1/n + 1/m)
∼ tn+m−2
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0

Area = a

−ta,k

Area = a

ta,k

FIGURE 8.5 Density of a t -random variable with k degrees of freedom.

where S2
p , the pooled estimator of the common variance σ 2, is given by

S2
p = (n − 1)S2

x + (m − 1)S2
y

n + m − 2

Hence, when H0 is true, and so µx − µy = 0, the statistic

T ≡ X − Y√
S2

p (1/n + 1/m)

has a t -distribution with n + m − 2 degrees of freedom. From this, it follows that we can
test the hypothesis that µx = µy as follows:

accept H0 if |T | ≤ tα/2,n+m−2

reject H0 if |T | > tα/2,n+m−2

where tα/2,n+m−2 is the 100 α/2 percentile point of a t -random variable with n + m − 2
degrees of freedom (see Figure 8.5).

Alternatively, the test can be run by determining the p-value. If T is observed to equal
v, then the resulting p-value of the test of H0 against H1 is given by

p-value = P{|Tn+m−2| ≥ |v|}
= 2P{Tn+m−2 ≥ |v|}

where Tn+m−2 is a t -random variable having n + m − 2 degrees of freedom.
If we are interested in testing the one-sided hypothesis

H0 : µx ≤ µy versus H1 : µx > µy

then H0 will be rejected at large values of T . Thus the significance level α test is to

reject H0 if T ≥ tα,n+m−2

not reject H0 otherwise



316 Chapter 8: Hypothesis Testing

If the value of the test statistic T is v, then the p-value is given by

p-value = P{Tn+m−2 ≥ v}

Program 8.4.2 computes both the value of the test statistic and the corresponding p-value.

EXAMPLE 8.4b Twenty-two volunteers at a cold research institute caught a cold after having
been exposed to various cold viruses. A random selection of 10 of these volunteers was
given tablets containing 1 gram of vitamin C. These tablets were taken four times a day.
The control group consisting of the other 12 volunteers was given placebo tablets that
looked and tasted exactly the same as the vitamin C tablets. This was continued for each
volunteer until a doctor, who did not know if the volunteer was receiving the vitamin C
or the placebo tablets, decided that the volunteer was no longer suffering from the cold.
The length of time the cold lasted was then recorded.

At the end of this experiment, the following data resulted.

Treated with Vitamin C Treated with Placebo

5.5 6.5
6.0 6.0
7.0 8.5
6.0 7.0
7.5 6.5
6.0 8.0
7.5 7.5
5.5 6.5
7.0 7.5
6.5 6.0

8.5
7.0

Do the data listed prove that taking 4 grams daily of vitamin C reduces the mean length
of time a cold lasts? At what level of significance?

SOLUTION To prove the above hypothesis, we would need to reject the null hypothesis in
a test of

H0 : µp ≤ µc versus H1 : µp > µc

where µc is the mean time a cold lasts when the vitamin C tablets are taken and µp is
the mean time when the placebo is taken. Assuming that the variance of the length of the
cold is the same for the vitamin C patients and the placebo patients, we test the above by
running Program 8.4.2. This yields the information shown in Figure 8.6. Thus H0 would
be rejected at the 5 percent level of significance.
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The value of the t-statistic is −1.898695

The p-value is 0.03607

The p-value of the Two-sample t-Test

Start

Quit

Clear List 2
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Data value  = 7

Data value  = 6.5
6
7.5
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7
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that the mean
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?

the mean
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FIGURE 8.6

Of course, if it were not convenient to run Program 8.4.2 then we could have performed
the test by first computing the values of the statistics X , Y , S2

x , S2
y , and S2

p . where the X
sample corresponds to those receiving vitamin C and the Y sample to those receiving
a placebo. These computations would give the values

X = 6.450, Y = 7.125

S2
x = .581, S2

y = .778

Therefore,

S2
p = 9

20
S2

x + 11

20
S2

y = .689
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and the value of the test statistic is

TS = −.675√
.689(1/10 + 1/12)

= −1.90

Since t0.5,20 = 1.725, the null hypothesis is rejected at the 5 percent level of significance.
That is, at the 5 percent level of significance the evidence is significant in establishing that
vitamin C reduces the mean time that a cold persists. ■

EXAMPLE 8.4c Reconsider Example 8.4a, but now suppose that the population variances
are unknown but equal.

SOLUTION Using Program 8.4.2 yields that the value of the test statistic is 1.028, and the
resulting p-value is

p-value = P{T16 > 1.028} = .3192

Thus, the null hypothesis is accepted at any significance level less than .3192 ■

8.4.3 Case of Unknown and Unequal Variances

Let us now suppose that the population variances σ 2
x and σ 2

y are not only unknown but

also cannot be considered to be equal. In this situation, since S2
x is the natural estimator

of σ 2
x and S2

y of σ 2
y , it would seem reasonable to base our test of

H0 : µx = µy versus H1 : µx �= µy

on the test statistic

X − Y√
S2

x

n
+ S2

y

m

(8.4.4)

However, the foregoing has a complicated distribution, which, even when H0 is true,
depends on the unknown parameters, and thus cannot be generally employed. The one
situation in which we can utilize the statistic of Equation 8.4.4 is when n and m are
both large. In such a case, it can be shown that when H0 is true Equation 8.4.4 will
have approximately a standard normal distribution. Hence, when n and m are large an
approximate level α test of H0 : µx = µy versus H1 : µx �= µy is to

accept H0 if − zα/2 ≤ X − Y√
S2

x

n
+ S2

y

m

≤ zα/2

reject otherwise
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The problem of determining an exact level α test of the hypothesis that the means of
two normal populations, having unknown and not necessarily equal variances, are equal is
known as the Behrens-Fisher problem. There is no completely satisfactory solution known.

Table 8.4 presents the two-sided tests of this section.

TABLE 8.4 X1, . . . , Xn Is a Sample from aN (µ1, σ 2
1 ) Population; Y1, . . . , Ym Is a Sample from aN (µ2, σ 2

2 )
Population

The Two Population Samples Are Independent
To Test

H0 : µ1 = µ2 versus H0 : µ1 �= µ2

Assumption Test Statistic TS Significance Level α Test p-Value if TS = t

σ1, σ2 known X −Y√
σ 2

1 /n+σ 2
2 /m

Reject if |TS | > zα/2 2P{Z ≥ |t |}

σ1 = σ2
X −Y√

(n−1)S2
1 +(m−1)S2

2
n+m−2

√
1/n+1/m

Reject if |TS | > tα/2,n+m−2 2P{Tn+m−2 ≥ |t |}

n, m large X −Y√
S2

1 /n+S2
2 /m

Reject if |TS | > zα/2 2P{Z ≥ |t |}

8.4.4 The Paired t-Test

Suppose we are interested in determining whether the installation of a certain antipollution
device will affect a car’s mileage. To test this, a collection of n cars that do not have this
device are gathered. Each car’s mileage per gallon is then determined both before and after
the device is installed. How can we test the hypothesis that the antipollution control has
no effect on gas consumption?

The data can be described by the n pairs (Xi , Yi), i = 1, . . . , n, where Xi is the gas
consumption of the ith car before installation of the pollution control device, and Yi of
the same car after installation. It is important to note that, since each of the n cars will
be inherently different, we cannot treat X1, . . . , Xn and Y1, . . . , Yn as being independent
samples. For example, if we know that X1 is large (say, 40 miles per gallon), we would
certainly expect that Y1 would also probably be large. Thus, we cannot employ the earlier
methods presented in this section.

One way in which we can test the hypothesis that the antipollution device does not
affect gas mileage is to let the data consist of each car’s difference in gas mileage. That is,
let Wi = Xi −Yi , i = 1, . . . , n. Now, if there is no effect from the device, it should follow
that the Wi would have mean 0. Hence, we can test the hypothesis of no effect by testing

H0 : µw = 0 versus H1 : µw �= 0

where W1, . . . , Wn are assumed to be a sample from a normal population having unknown
mean µw and unknown variance σ 2

w . But the t -test described in Section 8.3.2 shows that
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this can be tested by

accepting H0 if − tα/2,n−1 <
√

n
W
Sw

< tα/2,n−1

rejecting H0 otherwise

EXAMPLE 8.4d An industrial safety program was recently instituted in the computer chip
industry. The average weekly loss (averaged over 1 month) in man-hours due to accidents
in 10 similar plants both before and after the program are as follows:

Plant Before After A − B

1 30.5 23 −7.5
2 18.5 21 2.5
3 24.5 22 −2.5
4 32 28.5 −3.5
5 16 14.5 −1.5
6 15 15.5 .5
7 23.5 24.5 1
8 25.5 21 −4.5
9 28 23.5 −4.5

10 18 16.5 −1.5

Determine, at the 5 percent level of significance, whether the safety program has been
proven to be effective.

SOLUTION To determine this, we will test

H0 : µA − µB ≥ 0 versus H1 : µA − µB < 0

because this will enable us to see whether the null hypothesis that the safety program has
not had a beneficial effect is a reasonable possibility. To test this, we run Program 8.3.2,
which gives the value of the test statistic as −2.266, with

p-value = P{Tq ≤ −2.266} = .025

Since the p-value is less than .05, the hypothesis that the safety program has not been
effective is rejected and so we can conclude that its effectiveness has been established (at
least for any significance level greater than .025). ■

Note that the paired-sample t -test can be used even though the samples are not
independent and the population variances are unequal.
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8.5 HYPOTHESIS TESTS CONCERNING THE VARIANCE
OF A NORMAL POPULATION

Let X1, . . . , Xn denote a sample from a normal population having unknown mean µ and
unknown variance σ 2, and suppose we desire to test the hypothesis

H0 : σ 2 = σ 2
0

versus the alternative

H1 : σ 2 �= σ 2
0

for some specified value σ 2
0 .

To obtain a test, recall (as was shown in Section 6.5) that (n−1)S2/σ 2 has a chi-square
distribution with n − 1 degrees of freedom. Hence, when H0 is true

(n − 1)S2

σ 2
0

∼ χ2
n−1

and so

PH0

{
χ2

1−α/2,n−1 ≤ (n − 1)S2

σ 2
0

≤ χ2
α/2,n−1

}
= 1 − α

Therefore, a significance level α test is to

accept H0 if χ2
1−α/2,n−1 ≤ (n − 1)S2

σ 2
0

≤ χ2
α/2,n−1

reject H0 otherwise

The preceding test can be implemented by first computing the value of the test statistic
(n −1)S2/σ 2

0 — call it c. Then compute the probability that a chi-square random variable
with n − 1 degrees of freedom would be (a) less than and (b) greater than c. If either of
these probabilities is less than α/2, then the hypothesis is rejected. In other words, the
p-value of the test data is

p-value = 2 min(P{χ2
n−1 < c}, 1 − P{χ2

n−1 < c})

The quantity P{χ2
n−1 < c} can be obtained from Program 5.8.1.A. The p-value for

a one-sided test is similarly obtained.

EXAMPLE 8.5a A machine that automatically controls the amount of ribbon on a tape has
recently been installed. This machine will be judged to be effective if the standard deviation
σ of the amount of ribbon on a tape is less than .15 cm. If a sample of 20 tapes yields
a sample variance of S2 = .025 cm2, are we justified in concluding that the machine is
ineffective?
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SOLUTION We will test the hypothesis that the machine is effective, since a rejection of
this hypothesis will then enable us to conclude that it is ineffective. Since we are thus
interested in testing

H0 : σ 2 ≤ .0225 versus H1 : σ 2 > .0225

it follows that we would want to reject H0 when S2 is large. Hence, the p-value of the
preceding test data is the probability that a chi-square random variable with 19 degrees of
freedom would exceed the observed value of 19S2/.0225 = 19 × .025/.0225 = 21.111.
That is,

p-value = P{χ2
19 > 21.111}

= 1 − .6693 = .3307 from Program 5.8.1.A

Therefore, we must conclude that the observed value of S2 = .025 is not large enough
to reasonably preclude the possibility that σ 2 ≤ .0225, and so the null hypothesis is
accepted. ■

8.5.1 Testing for the Equality of Variances of Two

Normal Populations

Let X1, . . . , Xn and Y1, . . . , Ym denote independent samples from two normal populations
having respective (unknown) parameters µx , σ 2

x and µy , σ 2
y and consider a test of

H0 : σ 2
x = σ 2

y versus H1 : σ 2
x �= σ 2

y

If we let

S2
x =

n∑
i=1

(Xi − X )2

n − 1

S2
y =

m∑
i=1

(Yi − Y )2

m − 1

denote the sample variances, then as shown in Section 6.5, (n−1)S2
x /σ 2

x and (m−1)S2
y /σ 2

y
are independent chi-square random variables with n − 1 and m − 1 degrees of freedom,
respectively. Therefore, (S2

x /σ 2
x )/(S2

y /σ 2
y ) has an F -distribution with parameters n −1 and

m − 1. Hence, when H0 is true

S2
x /S2

y ∼ Fn−1,m−1

and so

PH0{F1−α/2,n−1,m−1 ≤ S2
x /S2

y ≤ Fα/2,n−1,m−1} = 1 − α
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Thus, a significance level α test of H0 against H1 is to

accept H0 if F1−α/2,n−1,m−1 < S2
x /S2

y < Fα/2,n−1,m−1

reject H0 otherwise

The preceding test can be effected by first determining the value of the test statistic
S2

x /S2
y , say its value is v, and then computing P{Fn−1,m−1 ≤ v} where Fn−1,m−1 is an

F -random variable with parameters n − 1, m − 1. If this probability is either less than
α/2 (which occurs when S2

x is significantly less than S2
y ) or greater than 1 − α/2 (which

occurs when S2
x is significantly greater than S2

y ), then the hypothesis is rejected. In other
words, the p-value of the test data is

p-value = 2 min(P{Fn−1,m−1 < v}, 1 − P{Fn−1,m−1 < v})
The test now calls for rejection whenever the significance level α is at least as large as the
p-value.

EXAMPLE 8.5b There are two different choices of a catalyst to stimulate a certain chemical
process. To test whether the variance of the yield is the same no matter which catalyst is
used, a sample of 10 batches is produced using the first catalyst, and 12 using the second.
If the resulting data is S2

1 = .14 and S2
2 = .28, can we reject, at the 5 percent level, the

hypothesis of equal variance?

SOLUTION Program 5.8.3, which computes the F cumulative distribution function, yields
that

P{F9,11 ≤ .5} = .1539
Hence,

p-value = 2 min{.1539, .8461}
= .3074

and so the hypothesis of equal variance cannot be rejected. ■

8.6 HYPOTHESIS TESTS IN BERNOULLI POPULATIONS
The binomial distribution is frequently encountered in engineering problems. For
a typical example, consider a production process that manufactures items that can be
classified in one of two ways — either as acceptable or as defective. An assumption often
made is that each item produced will, independently, be defective with probability p; and
so the number of defects in a sample of n items will thus have a binomial distribution with
parameters (n, p). We will now consider a test of

H0 : p ≤ p0 versus H1 : p > p0

where p0 is some specified value.



324 Chapter 8: Hypothesis Testing

If we let X denote the number of defects in the sample of size n, then it is clear that
we wish to reject H0 when X is large. To see how large it need be to justify rejection at the
α level of significance, note that

P{X ≥ k} =
n∑

i=k

P{X = i} =
n∑

i=k

(
n
i

)
pi(1 − p)n−i

Now it is certainly intuitive (and can be proven) that P{X ≥ k} is an increasing function
of p — that is, the probability that the sample will contain at least k errors increases in the
defect probability p. Using this, we see that when H0 is true (and so p ≤ p0),

P{X ≥ k} ≤
n∑

i=k

(
n
i

)
pi

0(1 − p0)n−i

Hence, a significance level α test of H0 : p ≤ p0 versus H1 : p > p0 is to reject H0 when

X ≥ k∗

where k∗ is the smallest value of k for which
∑n

i=k

(n
i

)
pi

0(1 − p0)n−i ≤ α. That is,

k∗ = min

{
k :

n∑
i=k

(
n
i

)
pi

0(1 − p0)n−i ≤ α

}

This test can best be performed by first determining the value of the test statistic —
say, X = x — and then computing the p-value given by

p-value = P{B(n, p0) ≥ x}

=
n∑

i=x

(
n
i

)
pi

0(1 − p0)n−i

EXAMPLE 8.6a A computer chip manufacturer claims that no more than 2 percent of the
chips it sends out are defective. An electronics company, impressed with this claim, has
purchased a large quantity of such chips. To determine if the manufacturer’s claim can be
taken literally, the company has decided to test a sample of 300 of these chips. If 10 of
these 300 chips are found to be defective, should the manufacturer’s claim be rejected?

SOLUTION Let us test the claim at the 5 percent level of significance. To see if rejection
is called for, we need to compute the probability that the sample of size 300 would
have resulted in 10 or more defectives when p is equal to .02. (That is, we compute the
p-value.) If this probability is less than or equal to .05, then the manufacturer’s claim
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should be rejected. Now

P.02{X ≥ 10} = 1 − P.02{X < 10}

= 1 −
9∑

i=0

(
300

i

)
(.02)i(.98)300−i

= .0818 from Program 3.1

and so the manufacturer’s claim cannot be rejected at the 5 percent level of significance. ■

When the sample size n is large, we can derive an approximate significance level α test
of H0 : p ≤ p0 versus H1 : p > p0 by using the normal approximation to the binomial. It
works as follows: Because when n is large X will have approximately a normal distribution
with mean and variance

E [X ] = np, Var(X ) = np(1 − p)

it follows that

X − np√
np(1 − p)

will have approximately a standard normal distribution. Therefore, an approximate
significance level α test would be to reject H0 if

X − np0√
np0(1 − p0)

≥ zα

Equivalently, one can use the normal approximation to approximate the p-value.

EXAMPLE 8.6b In Example 8.6a, np0 = 300(.02) = 6, and
√

np0(1 − p0) = √
5.88.

Consequently, the p-value that results from the data X = 10 is

p-value = P.02{X ≥ 10}
= P.02{X ≥ 9.5}

= P.02

{
X − 6√

5.88
≥ 9.5 − 6√

5.88

}

≈ P{Z ≥ 1.443}
= .0745 ■
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Suppose now that we want to test the null hypothesis that p is equal to some specified
value; that is, we want to test

H0 : p = p0 versus H1 : p �= p0

If X , a binomial random variable with parameters n and p, is observed to equal x, then
a significance level α test would reject H0 if the value x was either significantly larger or
significantly smaller than what would be expected when p is equal to p0. More precisely,
the test would reject H0 if either

P{Bin(n, p0) ≥ x} ≤ α/2 or P{Bin(n, p0) ≤ x} ≤ α/2

In other words, the p-value when X = x is

p-value = 2 min(P{Bin(n, p0) ≥ x}, P{Bin(n, p0) ≤ x})
EXAMPLE 8.6c Historical data indicate that 4 percent of the components produced at
a certain manufacturing facility are defective. A particularly acrimonious labor dispute has
recently been concluded, and management is curious about whether it will result in any
change in this figure of 4 percent. If a random sample of 500 items indicated 16 defectives
(3.2 percent), is this significant evidence, at the 5 percent level of significance, to conclude
that a change has occurred?

SOLUTION To be able to conclude that a change has occurred, the data need to be strong
enough to reject the null hypothesis when we are testing

H0 : p = .04 versus H1 : p �= .04

where p is the probability that an item is defective. The p-value of the observed data of 16
defectives in 500 items is

p-value = 2 min{P{X ≤ 16}, P{X ≥ 16}}
where X is a binomial (500, .04) random variable. Since 500 × .04 = 20, we see that

p-value = 2P{X ≤ 16}
Since X has mean 20 and standard deviation

√
20(.96) = 4.38, it is clear that twice the

probability that X will be less than or equal to 16 — a value less than one standard deviation
lower than the mean — is not going to be small enough to justify rejection. Indeed, it can
be shown that

p-value = 2P{X ≤ 16} = .432

and so there is not sufficient evidence to reject the hypothesis that the probability of
a defective item has remained unchanged. ■
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8.6.1 Testing the Equality of Parameters in Two

Bernoulli Populations

Suppose there are two distinct methods for producing a certain type of transistor; and
suppose that transistors produced by the first method will, independently, be defective
with probability p1, with the corresponding probability being p2 for those produced by
the second method. To test the hypothesis that p1 = p2, a sample of n1 transistors is
produced using method 1 and n2 using method 2.

Let X1 denote the number of defective transistors obtained from the first sample and X2

for the second. Thus, X1 and X2 are independent binomial random variables with respective
parameters (n1, p1) and (n2, p2). Suppose that X1 + X2 = k and so there have been a total
of k defectives. Now, if H0 is true, then each of the n1 + n2 transistors produced will have
the same probability of being defective, and so the determination of the k defectives will
have the same distribution as a random selection of a sample of size k from a population
of n1 + n2 items of which n1 are white and n2 are black. In other words, given a total of
k defectives, the conditional distribution of the number of defective transistors obtained
from method 1 will, when H0 is true, have the following hypergeometric distribution*:

PH0{X1 = i|X1 + X2 = k} =

(
n1

i

)(
n2

k − i

)
(

n1 + n2

k

) , i = 0, 1, . . . , k (8.6.1)

Now, in testing

H0 : p1 = p2 versus H1 : p1 �= p2

it seems reasonable to reject the null hypothesis when the proportion of defective transistors
produced by method 1 is much different than the proportion of defectives obtained under
method 2. Therefore, if there is a total of k defectives, then we would expect, when H0

is true, that X1/n1 (the proportion of defective transistors produced by method 1) would
be close to (k − X1)/n2 (the proportion of defective transistors produced by method 2).
Because X1/n1 and (k − X1)/n2 will be farthest apart when X1 is either very small or very
large, it thus seems that a reasonable significance level α test of Equation 8.6.1 is as follows.
If X1 + X2 = k, then one should

reject H0 if either P{X ≤ x1} ≤ α/2 or P{X ≥ x1} ≤ α/2
accept H0 otherwise

* See Example 5.3b for a formal verification of Equation 8.6.1.
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where X is a hypergeometric random variable with probability mass function

P{X = i} =

(
n1

i

)(
n2

k − i

)
(

n1 + n2

k

) i = 0, 1, . . . , k (8.6.2)

In other words, this test will call for rejection if the significance level is at least as large as
the p-value given by

p-value = 2 min(P{X ≤ x1}, P{X ≥ x1}) (8.6.3)

This is called the Fisher-Irwin test.

COMPUTATIONS FOR THE FISHER-IRWIN TEST

To utilize the Fisher-Irwin test, we need to be able to compute the hypergeometric
distribution function. To do so, note that with X having mass function Equation 8.6.2,

P{X = i + 1}
P{X = i} =

(
n1

i + 1

)(
n2

k − i − 1

)
(

n1

i

)(
n2

k − i

) (8.6.4)

= (n1 − i)(k − i)
(i + 1)(n2 − k + i + 1)

(8.6.5)

where the verification of the final equality is left as an exercise.
Program 8.6.1 uses the preceding identity to compute the p-value of the data for the

Fisher-Irwin test of the equality of two Bernoulli probabilities. The program will work
best if the Bernoulli outcome that is called unsuccessful (or defective) is the one whose
probability is less than .5. For instance, if over half the items produced are defective, then
rather than testing that the defect probability is the same in both samples, one should test
that the probability of producing an acceptable item is the same in both samples.

EXAMPLE 8.6d Suppose that method 1 resulted in 20 unacceptable transistors out of 100
produced; whereas method 2 resulted in 12 unacceptable transistors out of 100 produced.
Can we conclude from this, at the 10 percent level of significance, that the two methods
are equivalent?

SOLUTION Upon running Program 8.6.1, we obtain that

p-value = .1763

Hence, the hypothesis that the two methods are equivalent cannot be rejected. ■
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The ideal way to test the hypothesis that the results of two different treatments are
identical is to randomly divide a group of people into a set that will receive the first
treatment and one that will receive the second. However, such randomization is not
always possible. For instance, if we want to study whether drinking alcohol increases the
risk of prostate cancer, we cannot instruct a randomly chosen sample to drink alcohol.
An alternative way to study the hypothesis is to use an observational study that begins by
randomly choosing a set of drinkers and one of nondrinkers. These sets are followed for
a period of time and the resulting data is then used to test the hypothesis that members of
the two groups have the same risk for prostate cancer.

Our next sample illustrates another way of performing an observational study.

EXAMPLE 8.6e In 1970, the researchers Herbst, Ulfelder, and Poskanzer (H-U-P) sus-
pected that vaginal cancer in young women, a rather rare disease, might be caused by
one’s mother having taken the drug diethylstilbestrol (usually referred to as DES) while
pregnant. To study this possibility, the researchers could have performed an observa-
tional study by searching for a (treatment) group of women whose mothers took DES
when pregnant and a (control) group of women whose mothers did not. They could then
observe these groups for a period of time and use the resulting data to test the hypoth-
esis that the probabilities of contracting vaginal cancer are the same for both groups.
However, because vaginal cancer is so rare (in both groups) such a study would require
a large number of individuals in both groups and would probably have to continue for
many years to obtain significant results. Consequently, H-U-P decided on a different
type of observational study. They uncovered 8 women between the ages of 15 and 22
who had vaginal cancer. Each of these women (called cases) was then matched with 4
others, called referents or controls. Each of the referents of a case was free of the cancer
and was born within 5 days in the same hospital and in the same type of room (either
private or public) as the case. Arguing that if DES had no effect on vaginal cancer then the
probability, call it pc , that the mother of a case took DES would be the same as the prob-
ability, call it pr , that the mother of a referent took DES, the researchers H-U-P decided
to test

H0 : pc = pr against H1 : pc �= pr

Discovering that 7 of the 8 cases had mothers who took DES while pregnant, while
none of the 32 referents had mothers who took the drug, the researchers (see Herbst, A.,
Ulfelder, H., and Poskanzer, D., “Adenocarcinoma of the Vagina: Association of Maternal
Stilbestrol Therapy with Tumor Appearance in Young Women,” New England Journal of
Medicine, 284, 878–881, 1971) concluded that there was a strong association between
DES and vaginal cancer. (The p-value for these data is approximately 0.) ■

When n1 and n2 are large, an approximate level α test of H0 : p1 = p2, based on the
normal approximation to the binomial, is outlined in Problem 63.
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8.7 TESTS CONCERNING THE MEAN OF A
POISSON DISTRIBUTION

Let X denote a Poisson random variable having mean λ and consider a test of

H0 : λ = λ0 versus H1 : λ �= λ0

If the observed value of X is X = x, then a level α test would reject H0 if either

Pλ0{X ≥ x} ≤ α/2 or Pλ0{X ≤ x} ≤ α/2 (8.7.1)

where Pλ0 means that the probability is computed under the assumption that the Poisson
mean is λ0. It follows from Equation 8.7.1 that the p-value is given by

p-value = 2 min(Pλ0{X ≥ x}, Pλ0{X ≤ x})

The calculation of the preceding probabilities that a Poisson random variable with mean
λ0 is greater (less) than or equal to x can be obtained by using Program 5.2.

EXAMPLE 8.7a Management’s claim that the mean number of defective computer chips
produced daily is not greater than 25 is in dispute. Test this hypothesis, at the 5 percent
level of significance, if a sample of 5 days revealed 28, 34, 32, 38, and 22 defective chips.

SOLUTION Because each individual computer chip has a very small chance of being defec-
tive, it is probably reasonable to suppose that the daily number of defective chips is
approximately a Poisson random variable, with mean, say, λ. To see whether or not
the manufacturer’s claim is credible, we shall test the hypothesis

H0 : λ ≤ 25 versus H1 : λ > 25

Now, under H0, the total number of defective chips produced over a 5-day period is
Poisson distributed (since the sum of independent Poisson random variables is Poisson)
with a mean no greater than 125. Since this number is equal to 154, it follows that the
p-value of the data is given by

p-value = P125{X ≥ 154}
= 1 − P125{X ≤ 153}
= .0066 from Program 5.2

Therefore, the manufacture’s claim is rejected at the 5 percent (as it would be even at the
1 percent) level of significance. ■
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REMARK

If Program 5.2 is not available, one can use the fact that a Poisson random variable
with mean λ is, for large λ approximately normally distributed with a mean and variance
equal to λ.

8.7.1 Testing the Relationship Between Two Poisson Parameters

Let X1 and X2 be independent Poisson random variables with respective means λ1 and λ2,
and consider a test of

H0 : λ2 = cλ1 versus H1 : λ2 �= cλ1

for a given constant c. Our test of this is a conditional test (similar in spirit to the Fisher-
Irwin test of Section 8.6.1), which is based on the fact that the conditional distribution
of X1 given the sum of X1 and X2 is binomial. More specifically, we have the following
proposition.

PROPOSITION 8.7.1

P{X1 = k|X1 + X2 = n} =
(

n
k

)
[λ1/(λ1 + λ2)]k[λ2/(λ1 + λ2)]n−k

Proof

P{X1 = k|X1 + X2 = n}

= P{X1 = k, X1 + X2 = n}
P{X1 + X2 = n}

= P{X1 = k, X2 = n − k}
P{X1 + X2 = n}

= P{X1 = k}P{X2 = n − k}
P{X1 + X2 = n} by independence

= exp{−λ1}λk
1/k! exp{−λ2}λn−k

2 /(n − k)!
exp{−(λ1 + λ2)}(λ1 + λ2)n/n!

= n!
(n − k)!k! [λ1/(λ1 + λ2)]k[λ2/(λ1 + λ2)]n−k �

It follows from Proposition 8.7.1 that, if H0 is true, then the conditional distribution of
X1 given that X1+X2 = n is the binomial distribution with parameters n and p = 1/(1+c).
From this we can conclude that if X1 +X2 = n, then H0 should be rejected if the observed
value of X1, call it x1, is such that either

P{Bin(n, 1/(1 + c)) ≥ x1} ≤ α/2
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or

P{Bin(n, 1/(1 + c)) ≤ x1} ≤ α/2

EXAMPLE 8.7b An industrial concern runs two large plants. If the number of accidents
during the last 8 weeks at plant 1 were 16, 18, 9, 22, 17, 19, 24, 8 while the number of
accidents during the last 6 weeks at plant 2 were 22, 18, 26, 30, 25, 28, can we conclude,
at the 5 percent level of significance, that the safety conditions differ from plant to plant?

SOLUTION Since there is a small probability of an industrial accident in any given minute,
it would seem that the weekly number of such accidents should have approximately a
Poisson distribution. If we let X1 denote the total number of accidents during an 8-week
period at plant 1, and let X2 be the number during a 6-week period at plant 2, then if the
safety conditions did not differ at the two plants we would have that

λ2 = 3
4λ1

where λi ≡ E [Xi], i = 1, 2. Hence, as X1 = 133, X2 = 149 it follows that the p-value of
the test of

H0 : λ2 = 3
4λ1 versus H1 : λ2 �= 3

4λ1

is given by

p-value = 2 min
(
P
{
Bin

(
282, 4

7

) ≥ 133
}
, P
{
Bin

(
282, 4

7

) ≤ 133
})

= 9.408 × 10−4

Thus, the hypothesis that the safety conditions at the two plants are equivalent is
rejected. ■

EXAMPLE 8.7c In an attempt to show that proofreader A is superior to proofreader B, both
proofreaders were given the same manuscript to read. If proofreader A found 28 errors,
and proofreader B found 18, with 10 of these errors being found by both, can we conclude
that A is the superior proofreader?

SOLUTION To begin, we need a model. So let us assume that each manuscript error is
independently found by proofreader A with probability PA and by proofreader B with
probability PB . To see if the data prove that A is the superior proofreader, we need to
check if it would lead to rejecting the hypothesis that B is at least as good. That is, we need
to test the null hypothesis

H0 : PA ≤ PB

against the alternative hypothesis

H1 : PA > PB
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To determine a test, note that each error can be classified as being of one of 4 types: it
is type 1 if it is found by both proofreaders; it is type 2 if found by A but not by B; it is
type 3 if found by B but not by A; and it is type 4 if found by neither. Thus, under our
independence assumptions, it follows that each error will independently be type i with
probability pi , where

p1 = PAPB , p2 = PA(1 − PB), p3 = (1 − PA)PB , p4 = (1 − PA)(1 − PB)

Now, if we do our analysis under the assumption that N , the total number of errors in the
manuscript, is a random variable that is Poisson distributed with some unknown mean λ,
then it follows from the results of Section 5.2 that the numbers of errors of types 1, 2, 3,
4 are independent Poisson random variables with respective means λp1, λp2, λp3, λp4.
Now, because x

1−x = 1
1/x−1 is an increasing function of x in the region 0 ≤ x ≤ 1,

PA > PB ⇔ PA

1 − PA
>

PB

1 − PB
⇔ PA(1 − PB) > (1 − PA)PB

In other words, PA > PB if and only if p2 > p3. As a result, it suffices to use the data to
test

H0 : p2 ≤ p3 versus H1 : p2 > p3

Therefore, with N2 denoting the number of errors of type 2 (that is, the number of errors
found by A but not by B), and N3 the number of errors of type 3 (that is, the number
found by B but not by A), it follows that we need to test

H0 : E [N2] ≤ E [N3] versus H1 : E [N2] > E [N3] (8.7.2)

where N2 and N3 are independent Poisson random variables. Now, by Proposition 8.7.1,
the conditional distribution of N2 given N2 + N3 is binomial (n, p) where n = N2 + N3

and p = (E [N2])/(E [N2] + E [N3]). Because Equation 8.7.2 is equivalent to

H0 : p ≤ 1/2 versus H1 : p > 1/2

it follows that the p-value that results when N2 = n2, N3 = n3 is

p-value = P{Bin(n2 + n3, .5) ≥ n2}

For the data given, n2 = 18, n3 = 8, yielding that

p-value = P{Bin(26, .5) ≥ 18} = .0378

Consequently, at the 5 percent level of significance, the null hypothesis is rejected leading
to the conclusion that A is the superior proofreader. ■
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Problems

1. Consider a trial in which a jury must decide between the hypothesis that the
defendant is guilty and the hypothesis that he or she is innocent.

(a) In the framework of hypothesis testing and the U.S. legal system, which of
the hypotheses should be the null hypothesis?

(b) What do you think would be an appropriate significance level in this situation?

2. A colony of laboratory mice consists of several thousand mice. The average
weight of all the mice is 32 grams with a standard deviation of 4 grams. A
laboratory assistant was asked by a scientist to select 25 mice for an experi-
ment. However, before performing the experiment the scientist decided to weigh
the mice as an indicator of whether the assistant’s selection constituted a ran-
dom sample or whether it was made with some unconscious bias (perhaps the
mice selected were the ones that were slowest in avoiding the assistant, which
might indicate some inferiority about this group). If the sample mean of the
25 mice was 30.4, would this be significant evidence, at the 5 percent level
of significance, against the hypothesis that the selection constituted a random
sample?

3. A population distribution is known to have standard deviation 20. Determine the
p-value of a test of the hypothesis that the population mean is equal to 50, if the
average of a sample of 64 observations is
(a) 52.5; (b) 55.0; (c) 57.5.

4. In a certain chemical process, it is very important that a particular solution that
is to be used as a reactant have a pH of exactly 8.20. A method for determining
pH that is available for solutions of this type is known to give measurements that
are normally distributed with a mean equal to the actual pH and with a standard
deviation of .02. Suppose 10 independent measurements yielded the following
pH values:

8.18 8.17
8.16 8.15
8.17 8.21
8.22 8.16
8.19 8.18

(a) What conclusion can be drawn at the α = .10 level of significance?
(b) What about at the α = .05 level of significance?

5. The mean breaking strength of a certain type of fiber is required to be at least
200 psi. Past experience indicates that the standard deviation of breaking strength
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is 5 psi. If a sample of 8 pieces of fiber yielded breakage at the following pressures,

210 198
195 202
197.4 196
199 195.5

would you conclude, at the 5 percent level of significance, that the fiber is
unacceptable? What about at the 10 percent level of significance?

6. It is known that the average height of a man residing in the United States is 5 feet
10 inches and the standard deviation is 3 inches. To test the hypothesis that men
in your city are “average,” a sample of 20 men have been chosen. The heights of
the men in the sample follow:

Man Height in Inches Man

1 72 70.4 11
2 68.1 76 12
3 69.2 72.5 13
4 72.8 74 14
5 71.2 71.8 15
6 72.2 69.6 16
7 70.8 75.6 17
8 74 70.6 18
9 66 76.2 19

10 70.3 77 20

What do you conclude? Explain what assumptions you are making.

7. Suppose in Problem 4 that we wished to design a test so that if the pH were really
equal to 8.20, then this conclusion will be reached with probability equal to .95.
On the other hand, if the pH differs from 8.20 by .03 (in either direction), we
want the probability of picking up such a difference to exceed .95.

(a) What test procedure should be used?
(b) What is the required sample size?
(c) If x = 8.31, what is your conclusion?
(d) If the actual pH is 8.32, what is the probability of concluding that the pH is

not 8.20, using the foregoing procedure?

8. Verify that the approximation in Equation 8.3.7 remains valid even when
µ1 < µ0.

9. A British pharmaceutical company, Glaxo Holdings, has recently developed a new
drug for migraine headaches. Among the claims Glaxo made for its drug, called
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somatriptan, was that the mean time it takes for it to enter the bloodstream is less
than 10 minutes. To convince the Food and Drug Administration of the validity of
this claim, Glaxo conducted an experiment on a randomly chosen set of migraine
sufferers. To prove its claim, what should they have taken as the null and what as
the alternative hypothesis?

10. The weights of salmon grown at a commercial hatchery are normally distributed
with a standard deviation of 1.2 pounds. The hatchery claims that the mean
weight of this year’s crop is at least 7.6 pounds. Suppose a random sample of 16
fish yielded an average weight of 7.2 pounds. Is this strong enough evidence to
reject the hatchery’s claims at the

(a) 5 percent level of significance;
(b) 1 percent level of significance?
(c) What is the p-value?

11. Consider a test of H0 : µ ≤ 100 versus H1 : µ > 100. Suppose that a sample of
size 20 has a sample mean of X = 105. Determine the p-value of this outcome if
the population standard deviation is known to equal
(a) 5; (b) 10; (c) 15.

12. An advertisement for a new toothpaste claims that it reduces cavities of children in
their cavity-prone years. Cavities per year for this age group are normal with mean
3 and standard deviation 1. A study of 2,500 children who used this toothpaste
found an average of 2.95 cavities per child. Assume that the standard deviation of
the number of cavities of a child using this new toothpaste remains equal to 1.

(a) Are these data strong enough, at the 5 percent level of significance, to establish
the claim of the toothpaste advertisement?

(b) Do the data convince you to switch to this new toothpaste?

13. There is some variability in the amount of phenobarbitol in each capsule sold
by a manufacturer. However, the manufacturer claims that the mean value is
20.0 mg. To test this, a sample of 25 pills yielded a sample mean of 19.7 with
a sample standard deviation of 1.3. What inference would you draw from these
data? In particular, are the data strong enough evidence to discredit the claim of
the manufacturer? Use the 5 percent level of significance.

14. Twenty years ago, entering male high school students of Central High could do
an average of 24 pushups in 60 seconds. To see whether this remains true today,
a random sample of 36 freshmen was chosen. If their average was 22.5 with
a sample standard deviation of 3.1, can we conclude that the mean is no longer
equal to 24? Use the 5 percent level of significance.

15. The mean response time of a species of pigs to a stimulus is .8 seconds. Twenty-
eight pigs were given 2 oz of alcohol and then tested. If their average response time
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was 1.0 seconds with a standard deviation of .3 seconds, can we conclude that
alcohol affects the mean response time? Use the 5 percent level of significance.

16. Suppose that team A and team B are to play a National Football League game and
that team A is favored by f points. Let S(A) and S(B) denote the scores of teams
A and B, and let X = S(A) − S(B) − f . That is, X is the amount by which team
A beats the point spread. It has been claimed that the distribution of X is normal
with mean 0 and standard deviation 14. Use data from randomly chosen football
games to test this hypothesis.

17. A medical scientist believes that the average basal temperature of (outwardly)
healthy individuals has increased over time and is now greater than 98.6 degrees
Fahrenheit (37 degrees Celsius). To prove this, she has randomly selected 100
healthy individuals. If their mean temperature is 98.74 with a sample standard
deviation of 1.1 degrees, does this prove her claim at the 5 percent level? What
about at the 1 percent level?

18. Use the results of a Sunday’s worth of NFL professional football games to test the
hypothesis that the average number of points scored by winning teams is less than
or equal to 28. Use the 5 percent level of significance.

19. Use the results of a Sunday’s worth of major league baseball scores to test the
hypothesis that the average number of runs scored by winning teams is at least 5.6.
Use the 5 percent level of significance.

20. A car is advertised as having a gas mileage rating of at least 30 miles/gallon in
highway driving. If the miles per gallon obtained in 10 independent experiments
are 26, 24, 20, 25, 27, 25, 28, 30, 26, 33, should you believe the advertisement?
What assumptions are you making?

21. A producer specifies that the mean lifetime of a certain type of battery is at least
240 hours. A sample of 18 such batteries yielded the following data.

237 242 232
242 248 230
244 243 254
262 234 220
225 236 232
218 228 240

Assuming that the life of the batteries is approximately normally distributed, do
the data indicate that the specifications are not being met?

22. Use the data of Example 2.3i of Chapter 2 to test the null hypothesis that the
average noise level directly outside of Grand Central Station is less than or equal
to 80 decibels.
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23. An oil company claims that the sulfur content of its diesel fuel is at most .15
percent. To check this claim, the sulfur contents of 40 randomly chosen samples
were determined; the resulting sample mean and sample standard deviation were
.162 and .040. Using the 5 percent level of significance, can we conclude that the
company’s claims are invalid?

24. A company supplies plastic sheets for industrial use. A new type of plastic has been
produced and the company would like to claim that the average stress resistance
of this new product is at least 30.0, where stress resistance is measured in pounds
per square inch (psi) necessary to crack the sheet. The following random sample
was drawn off the production line. Based on this sample, would the claim clearly
be unjustified?

30.1 32.7 22.5 27.5
27.7 29.8 28.9 31.4
31.2 24.3 26.4 22.8
29.1 33.4 32.5 21.7

Assume normality and use the 5 percent level of significance.

25. It is claimed that a certain type of bipolar transistor has a mean value of current
gain that is at least 210. A sample of these transistors is tested. If the sample mean
value of current gain is 200 with a sample standard deviation of 35, would the
claim be rejected at the 5 percent level of significance if

(a) the sample size is 25;
(b) the sample size is 64?

26. A manufacturer of capacitors claims that the breakdown voltage of these capacitors
has a mean value of at least 100 V. A test of 12 of these capacitors yielded the
following breakdown voltages:

96, 98, 105, 92, 111, 114, 99, 103, 95, 101, 106, 97

Do these results prove the manufacturer’s claim? Do they disprove them?

27. A sample of 10 fish were caught at lake A and their PCB concentrations were
measured using a certain technique. The resulting data in parts per million were

Lake A: 11.5, 10.8, 11.6, 9.4, 12.4, 11.4, 12.2, 11, 10.6, 10.8

In addition, a sample of 8 fish were caught at lake B and their levels of PCB were
measured by a different technique than that used at lake A. The resultant data were

Lake B: 11.8, 12.6, 12.2, 12.5, 11.7, 12.1, 10.4, 12.6
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If it is known that the measuring technique used at lake A has a variance of .09
whereas the one used at lake B has a variance of .16, could you reject (at the
5 percent level of significance) a claim that the two lakes are equally contaminated?

28. A method for measuring the pH level of a solution yields a measurement value
that is normally distributed with a mean equal to the actual pH of the solution
and with a standard deviation equal to .05. An environmental pollution scientist
claims that two different solutions come from the same source. If this were so, then
the pH level of the solutions would be equal. To test the plausibility of this claim,
10 independent measurements were made of the pH level for both solutions, with
the following data resulting.

Measurements of Measurements of
Solution A Solution B

6.24 6.27
6.31 6.25
6.28 6.33
6.30 6.27
6.25 6.24
6.26 6.31
6.24 6.28
6.29 6.29
6.22 6.34
6.28 6.27

(a) Do the data disprove the scientist’s claim? Use the 5 percent level of
significance.

(b) What is the p-value?

29. The following are the values of independent samples from two different
populations.

Sample 1 122, 114, 130, 165, 144, 133, 139, 142, 150

Sample 2 108, 125, 122, 140, 132, 120, 137, 128, 138

Let µ1 and µ2 be the respective means of the two populations. Find the p-value
of the test of the null hypothesis

H0 : µ1 ≤ µ2

versus the alternative

H1 : µ1 > µ2
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when the population standard deviations are σ1 = 10 and
(a) σ2 = 5; (b) σ2 = 10; (c) σ2 = 20.

30. The data below give the lifetimes in hundreds of hours of samples of two types of
electronic tubes. Past lifetime data of such tubes have shown that they can often be
modeled as arising from a lognormal distribution. That is, the logarithms of the
data are normally distributed. Assuming that variance of the logarithms is equal
for the two populations, test, at the 5 percent level of significance, the hypothesis
that the two population distributions are identical.

Type 1 32, 84, 37, 42, 78, 62, 59, 74

Type 2 39, 111, 55, 106, 90, 87, 85

31. The viscosity of two different brands of car oil is measured and the following data
resulted:

Brand 1 10.62, 10.58, 10.33, 10.72, 10.44, 10.74

Brand 2 10.50, 10.52, 10.58, 10.62, 10.55, 10.51, 10.53

Test the hypothesis that the mean viscosity of the two brands is equal, assuming
that the populations have normal distributions with equal variances.

32. It is argued that the resistance of wire A is greater than the resistance of wire B.
You make tests on each wire with the following results.

Wire A Wire B

.140 ohm .135 ohm

.138 .140

.143 .136

.142 .142

.144 .138

.137 .140

What conclusion can you draw at the 10 percent significance level? Explain what
assumptions you are making.

In Problems 33 through 40, assume that the population distributions are normal
and have equal variances.

33. Twenty-five men between the ages of 25 and 30, who were participating in a well-
known heart study carried out in Framingham, Massachusetts, were randomly
selected. Of these, 11 were smokers and 14 were not. The following data refer to
readings of their systolic blood pressure.
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Smokers Nonsmokers

124 130
134 122
136 128
125 129
133 118
127 122
135 116
131 127
133 135
125 120
118 122

120
115
123

Use these data to test the hypothesis that the mean blood pressures of smokers and
nonsmokers are the same.

34. In a 1943 experiment (Whitlock and Bliss, “A Bioassay Technique for Anti-
helminthics,” Journal of Parasitology, 29, pp. 48–58) 10 albino rats were used
to study the effectiveness of carbon tetrachloride as a treatment for worms. Each
rat received an injection of worm larvae. After 8 days, the rats were randomly
divided into two groups of 5 each; each rat in the first group received a dose of
.032 cc of carbon tetrachloride, whereas the dosage for each rat in the second group
was .063 cc. Two days later the rats were killed, and the number of adult worms
in each rat was determined. The numbers detected in the group receiving the .032
dosage were

421, 462, 400, 378, 413

whereas they were

207, 17, 412, 74, 116

for those receiving the .063 dosage. Do the data prove that the larger dosage is
more effective than the smaller?

35. A professor claims that the average starting salary of industrial engineering
graduating seniors is greater than that of civil engineering graduates. To study
this claim, samples of 16 industrial engineers and 16 civil engineers, all of whom
graduated in 1993, were chosen and sample members were queried about their
starting salaries. If the industrial engineers had a sample mean salary of $47,700 and
a sample standard deviation of $2,400, and the civil engineers had a sample mean
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salary of $46,400 and a sample standard deviation of $2,200, has the professor’s
claim been verified? Find the appropriate p-value.

36. In a certain experimental laboratory, a method A for producing gasoline from
crude oil is being investigated. Before completing experimentation, a new method
B is proposed. All other things being equal, it was decided to abandon A in
favor of B only if the average yield of the latter was clearly greater. The yield of
both processes is assumed to be normally distributed. However, there has been
insufficient time to ascertain their true standard deviations, although there appears
to be no reason why they cannot be assumed equal. Cost considerations impose
size limits on the size of samples that can be obtained. If a 1 percent significance
level is all that is allowed, what would be your recommendation based on the
following random samples? The numbers represent percent yield of crude oil.

A 23.2, 26.6, 24.4, 23.5, 22.6, 25.7, 25.5

B 25.7, 27.7, 26.2, 27.9, 25.0, 21.4, 26.1

37. A study was instituted to learn how the diets of women changed during the winter
and the summer. A random group of 12 women were observed during the month
of July and the percentage of each woman’s calories that came from fat was deter-
mined. Similar observations were made on a different randomly selected group of
size 12 during the month of January. The results were as follows:

July 32.2, 27.4, 28.6, 32.4, 40.5, 26.2, 29.4, 25.8, 36.6, 30.3, 28.5, 32.0

January 30.5, 28.4, 40.2, 37.6, 36.5, 38.8, 34.7, 29.5, 29.7, 37.2, 41.5, 37.0

Test the hypothesis that the mean fat percentage intake is the same for both months.
Use the (a) 5 percent level of significance and (b) 1 percent level of significance.

38. To learn about the feeding habits of bats, 22 bats were tagged and tracked by
radio. Of these 22 bats, 12 were female and 10 were male. The distances flown
(in meters) between feedings were noted for each of the 22 bats, and the following
summary statistics were obtained.

Female Bats Male Bats

n = 12 m = 10
X = 180 Y = 136
Sx = 92 Sy = 86

Test the hypothesis that the mean distance flown between feedings is the same
for the populations of both male and of female bats. Use the 5 percent level of
significance.
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39. The following data summary was obtained from a comparison of the lead content of
human hair removed from adult individuals that had died between 1880 and 1920
with the lead content of present-day adults. The data are in units of micrograms,
equal to one-millionth of a gram.

1880–1920 Today

Sample size: 30 100
Sample mean: 48.5 26.6
Sample standard deviation: 14.5 12.3

(a) Do the above data establish, at the 1 percent level of significance, that the
mean lead content of human hair is less today than it was in the years between
1880 and 1920? Clearly state what the null and alternative hypotheses are.

(b) What is the p-value for the hypothesis test in part (a)?

40. Sample weights (in pounds) of newborn babies born in two adjacent counties in
Western Pennsylvania yielded the following data.

n = 53, m = 44

X = 6.8, Y = 7.2

S2 = 5.2, S2 = 4.9

Consider a test of the hypothesis that the mean weight of newborns is the same in
both counties. What is the resulting p-value?

41. To verify the hypothesis that blood lead levels tend to be higher for children whose
parents work in a factory that uses lead in the manufacturing process, researchers
examined lead levels in the blood of 33 children whose parents worked in a battery
manufacturing factory. (Morton, D., Saah, A., Silberg, S., Owens, W., Roberts,
M., and Saah, M., “Lead Absorption in Children of Employees in a Lead-Related
Industry,” American Journal of Epidemiology, 115, 549–555, 1982.) Each of these
children were then matched by another child who was of similar age, lived in a
similar neighborhood, had a similar exposure to traffic, but whose parent did not
work with lead. The blood levels of the 33 cases (sample 1) as well as those of
the 33 controls (sample 2) were then used to test the hypothesis that the average
blood levels of these groups are the same. If the resulting sample means and sample
standard deviations were

x̄1 = .015, s1 = .004, x̄2 = .006, s2 = .006

find the resulting p-value. Assume a common variance.
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42. Ten pregnant women were given an injection of pitocin to induce labor. Their
systolic blood pressures immediately before and after the injection were:

Patient Before After Patient Before After

1 134 140 6 140 138
2 122 130 7 118 124
3 132 135 8 127 126
4 130 126 9 125 132
5 128 134 10 142 144

Do the data indicate that injection of this drug changes blood pressure?

43. A question of medical importance is whether jogging leads to a reduction in
one’s pulse rate. To test this hypothesis, 8 nonjogging volunteers agreed to begin
a 1-month jogging program. After the month their pulse rates were determined
and compared with their earlier values. If the data are as follows, can we conclude
that jogging has had an effect on the pulse rates?

Subject 1 2 3 4 5 6 7 8

Pulse Rate Before 74 86 98 102 78 84 79 70

Pulse Rate After 70 85 90 110 71 80 69 74

44. If X1, . . . , Xn is a sample from a normal population having unknown parameters
µ and σ 2, devise a significance level α test of

H0 = σ 2 ≤ σ 2
0

versus the alternative

H1 = σ 2 > σ 2
0

for a given positive value σ 2
0 .

45. In Problem 44, explain how the test would be modified if the population mean µ

were known in advance.

46. A gun-like apparatus has recently been designed to replace needles in administering
vaccines. The apparatus can be set to inject different amounts of the serum, but
because of random fluctuations the actual amount injected is normally distributed
with a mean equal to the setting and with an unknown variance σ 2. It has been
decided that the apparatus would be too dangerous to use if σ exceeds .10. If a
random sample of 50 injections resulted in a sample standard deviation of .08,
should use of the new apparatus be discontinued? Suppose the level of significance
is α = .10. Comment on the appropriate choice of a significance level for this
problem, as well as the appropriate choice of the null hypothesis.
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47. A pharmaceutical house produces a certain drug item whose weight has a standard
deviation of .5 milligrams. The company’s research team has proposed a new
method of producing the drug. However, this entails some costs and will be
adopted only if there is strong evidence that the standard deviation of the weight
of the items will drop to below .4 milligrams. If a sample of 10 items is produced
and has the following weights, should the new method be adopted?

5.728 5.731
5.722 5.719
5.727 5.724
5.718 5.726
5.723 5.722

48. The production of large electrical transformers and capacitators requires the use of
polychlorinated biphenyls (PCBs), which are extremely hazardous when released
into the environment. Two methods have been suggested to monitor the levels
of PCB in fish near a large plant. It is believed that each method will result in
a normal random variable that depends on the method. Test the hypothesis at
the α = .10 level of significance that both methods have the same variance, if a
given fish is checked 8 times by each method with the following data (in parts per
million) recorded.

Method 1 6.2, 5.8, 5.7, 6.3, 5.9, 6.1, 6.2, 5.7

Method 2 6.3, 5.7, 5.9, 6.4, 5.8, 6.2, 6.3, 5.5

49. In Problem 31, test the hypothesis that the populations have the same variances.

50. If X1, . . . , Xn is a sample from a normal population with variance σ 2
x , and

Y1, . . . , Yn is an independent sample from normal population with variance σ 2
y ,

develop a significance level α test of

H0 : σ 2
x < σ 2

y versus H1 : σ 2
x > σ 2

y

51. The amount of surface wax on each side of waxed paper bags is believed to be
normally distributed. However, there is reason to believe that there is greater
variation in the amount on the inner side of the paper than on the outside.
A sample of 75 observations of the amount of wax on each side of these bags
is obtained and the following data recorded.

Wax in Pounds per Unit Area of Sample

Outside Surface Inside Surface

x = .948 y = .652∑
x2
i = 91

∑
y2
i = 82
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Conduct a test to determine whether or not the variability of the amount of wax on
the inner surface is greater than the variability of the amount on the outer surface
(α = .05).

52. In a famous experiment to determine the efficacy of aspirin in preventing heart
attacks, 22,000 healthy middle-aged men were randomly divided into two equal
groups, one of which was given a daily dose of aspirin and the other a placebo that
looked and tasted identical to the aspirin. The experiment was halted at a time
when 104 men in the aspirin group and 189 in the control group had had heart
attacks. Use these data to test the hypothesis that the taking of aspirin does not
change the probability of having a heart attack.

53. In the study of Problem 52, it also resulted that 119 from the aspirin group and
98 from the control group suffered strokes. Are these numbers significant to show
that taking aspirin changes the probability of having a stroke?

54. A standard drug is known to be effective in 72 percent of the cases in which it
is used to treat a certain infection. A new drug has been developed and testing
has found it to be effective in 42 cases out of 50. Is this strong enough evidence
to prove that the new drug is more effective than the old one? Find the relevant
p-value.

55. Three independent news services are running a poll to determine if over half the
population supports an initiative concerning limitations on driving automobiles
in the downtown area. Each wants to see if the evidence indicates that over half
the population is in favor. As a result, all three services will be testing

H0 : p ≤ .5 versus H1 : p > .5

where p is the proportion of the population in favor of the initiative.

(a) Suppose the first news organization samples 100 people, of which 56 are in
favor of the initiative. Is this strong enough evidence, at the 5 percent level
of significance, to reject the null hypothesis and so establish that over half the
population favors the initiative?

(b) Suppose the second news organization samples 120 people, of which 68 are
in favor of the initiative. Is this strong enough evidence, at the 5 percent level
of significance, to reject the null hypothesis?

(c) Suppose the third news organization samples 110 people, of which 62 are in
favor of the initiative. Is this strong enough evidence, at the 5 percent level of
significance, to reject the null hypothesis?

(d) Suppose the news organizations combine their samples, to come up with
a sample of 330 people, of which 186 support the initiative. Is this strong
enough evidence, at the 5 percent level of significance, to reject the null
hypothesis?
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56. According to the U.S. Bureau of the Census, 25.5 percent of the population of
those age 18 or over smoked in 1990. A scientist has recently claimed that this
percentage has since increased, and to prove her claim she randomly sampled 500
individuals from this population. If 138 of them were smokers, is her claim proved?
Use the 5 percent level of significance.

57. An ambulance service claims that at least 45 percent of its calls involve life-
threatening emergencies. To check this claim, a random sample of 200 calls
was selected from the service’s files. If 70 of these calls involved life-threatening
emergencies, is the service’s claim believable at the

(a) 5 percent level of significance;
(b) 1 percent level of significance?

58. A standard drug is known to be effective in 75 percent of the cases in which it
is used to treat a certain infection. A new drug has been developed and has been
found to be effective in 42 cases out of 50. Based on this, would you accept, at
the 5 percent level of significance, the hypothesis that the two drugs are of equal
effectiveness? What is the p-value?

59. Do Problem 58 by using a test based on the normal approximation to the
binomial.

60. In a recently conducted poll, 54 out of 200 people surveyed claimed to have a
firearm in their homes. In a similar survey done earlier, 30 out of 150 people
made that claim. Is it possible that the proportion of the population having
firearms has not changed and the foregoing is due to the inherent randomness in
sampling?

61. Let X1 denote a binomial random variable with parameters (n1, p1) and X2 an
independent binomial random variable with parameters (n2, p2). Develop a test,
using the same approach as in the Fisher-Irwin test, of

H0 : p1 ≤ p2

versus the alternative
H1 : p1 > p2

62. Verify that Equation 8.6.5 follows from Equation 8.6.4.

63. Let X1 and X2 be binomial random variables with respective parameters n1, p1

and n2, p2. Show that when n1 and n2 are large, an approximate level α test of
H0 : p1 = p2 versus H1 : p1 �= p2 is as follows:

reject H0 if
|X1/n1 − X2/n2|√

X1 + X2

n1 + n2

(
1 − X1 + X2

n1 + n2

)(
1

n1
+ 1

n2

) > zα/2
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Hint: (a) Argue first that when n1 and n2 are large

X1

n1
− X2

n2
− ( p1 − p2)√

p1(1 − p1)

n1
+ p2(1 − p2)

n2

∼̇ N (0, 1)

where ∼̇ means “approximately has the distribution.”

(b) Now argue that when H0 is true and so p1 = p2, their common value
can be best estimated by (X1 + X2)/(n1 + n2).

64. Use the approximate test given in Problem 63 on the data of Problem 60.

65. Patients suffering from cancer must often decide whether to have their tumors
treated with surgery or with radiation. A factor in their decision is the 5-year
survival rates for these treatments. Surprisingly, it has been found that patient’s
decisions often seem to be affected by whether they are told the 5-year survival
rates or the 5-year death rates (even though the information content is identical).
For instance, in an experiment a group of 200 male prostate cancer patients were
randomly divided into two groups of size 100 each. Each member of the first group
was told that the 5-year survival rate for those electing surgery was 77 percent,
whereas each member of the second group was told that the 5-year death rate for
those electing surgery was 23 percent. Both groups were given the same information
about radiation therapy. If it resulted that 24 members of the first group and 12
of the second group elected to have surgery, what conclusions would you draw?

66. The following data refer to Larry Bird’s results when shooting a pair of free throws in
basketball. During two consecutive seasons in the National Basketball Association,
Bird shot a pair of free throws on 338 occasions. On 251 occasions he made both
shots; on 34 occasions he made the first shot but missed the second one; on 48
occasions he missed the first shot but made the second one; on 5 occasions he
missed both shots.

(a) Use these data to test the hypothesis that Bird’s probability of making the first
shot is equal to his probability of making the second shot.

(b) Use these data to test the hypothesis that Bird’s probability of making the
second shot is the same regardless of whether he made or missed the first one.

67. In the nineteen seventies, the U.S. Veterans Administration (Murphy, 1977) con-
ducted an experiment comparing coronary artery bypass surgery with medical
drug therapy as treatments for coronary artery disease. The experiment involved
596 patients, of whom 286 were randomly assigned to receive surgery, with the
remaining 310 assigned to drug therapy. A total of 252 of those receiving surgery,
and a total of 270 of those receiving drug therapy were still alive three years after
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treatment. Use these data to test the hypothesis that the survival probabilities are
equal.

68. Test the hypothesis, at the .05 level of significance, that the yearly number of
earthquakes felt on a certain island has mean 52 if the readings for the last 8 years
are 46, 62, 60, 58, 47, 50, 59, 49. Assume an underlying Poisson distribution and
give an explanation to justify this assumption.

69. The following table gives the number of fatal accidents of U.S. commercial airline
carriers in the 16 years from 1980 to 1995. Do these data disprove, at the 5 percent
level of significance, the hypothesis that the mean number of accidents in a year is
greater than or equal to 4.5? What is the p-value? (Hint: First formulate a model
for the number of accidents.)

U.S. Airline Safety, Scheduled Commercial Carriers, 1980–1995

Fatal
Accidents

Depar- Fatal per Depar- Fatal
tures Acci- Fatal- 100,000 tures Acci- Fatal-

(millions) dents ities Departures (millions) dents ities

1980 …. 5.4 0 0 .000 1988 …. 6.7 3 285
1981 …. 5.2 4 4 .077 1989 …. 6.6 11 278
1982 …. 5.0 4 233 .060 1990. . . 6.9 6 39
1983 …. 5.0 4 15 .079 1991 …. 6.8 4 62
1984 …. 5.4 1 4 .018 1992 …. 7.1 4 33
1985 …. 5.8 4 197 .069 1993 …. 7.2 1 1
1986 …. 6.4 2 5 .016 1994 …. 7.5 4 239
1987 …. 6.6 4 231 .046 1995 …. 8.1 2 166

Source: National Transportation Safety Board

70. For the following data, sample 1 is from a Poisson distribution with mean λ1 and
sample 2 is from a Poisson distribution with mean λ2. Test the hypothesis that
λ1 = λ2.

Sample 1 24, 32, 29, 33, 40, 28, 34, 36

Sample 2 42, 36, 41

71. A scientist looking into the effect of smoking on heart disease has chosen a large
random sample of smokers and of nonsmokers. She plans to study these two
groups for 5 years to see if the number of heart attacks among the members of the
smokers’ group is significantly greater than the number among the nonsmokers.
Such a result, the scientist feels, should be strong evidence of an association between
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smoking and heart attacks. Given that

1. Older people are at greater risk of heart disease than are younger people; and
2. As a group, smokers tend to be somewhat older than nonsmokers;

would the scientist be justified in her conclusion? Explain how the experi-
mental design can be improved so that meaningful conclusions can be drawn.

72. A researcher wants to analyze the average yearly increase in a stock over a 20 year
period. To do so, she plans to randomly choose 100 stocks from the listing of
current stocks, discarding any that were not in existence 20 years ago. She will then
compare the current price of each stock with its price 20 years ago to determine
its percentage increase. Do you think this is a valid method to study the average
increase in the price of a stock?
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REGRESSION

9.1 INTRODUCTION
Many engineering and scientific problems are concerned with determining a relationship
between a set of variables. For instance, in a chemical process, we might be interested in
the relationship between the output of the process, the temperature at which it occurs,
and the amount of catalyst employed. Knowledge of such a relationship would enable us
to predict the output for various values of temperature and amount of catalyst.

In many situations, there is a single response variable Y , also called the dependent vari-
able, which depends on the value of a set of input, also called independent, variables
x1, . . . , xr . The simplest type of relationship between the dependent variable Y and the
input variables x1, . . . , xr is a linear relationship. That is, for some constants β0, β1, . . . , βr

the equation

Y = β0 + β1x1 + · · · + βr xr (9.1.1)

would hold. If this was the relationship between Y and the xi , i = 1, . . . , r , then it would
be possible (once the βi were learned) to exactly predict the response for any set of input
values. However, in practice, such precision is almost never attainable, and the most that
one can expect is that Equation 9.1.1 would be valid subject to random error. By this we
mean that the explicit relationship is

Y = β0 + β1x1 + · · · + βr xr + e (9.1.2)

where e, representing the random error, is assumed to be a random variable having mean
0. Indeed, another way of expressing Equation 9.1.2 is as follows:

E [Y |x] = β0 + β1x1 + · · · + βr xr

where x = (x1, . . . , xr ) is the set of independent variables, and E [Y |x] is the expected
response given the inputs x.

Equation 9.1.2 is called a linear regression equation. We say that it describes the regression
of Y on the set of independent variables x1, . . . , xr . The quantities β0, β1, . . . , βr are called

351
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the regression coefficients, and must usually be estimated from a set of data. A regression
equation containing a single independent variable — that is, one in which r = 1 — is
called a simple regression equation, whereas one containing many independent variables is
called a multiple regression equation.

Thus, a simple linear regression model supposes a linear relationship between the mean
response and the value of a single independent variable. It can be expressed as

Y = α + βx + e

where x is the value of the independent variable, also called the input level, Y is the
response, and e, representing the random error, is a random variable having mean 0.

EXAMPLE 9.1a Consider the following 10 data pairs (xi , yi), i = 1, . . . , 10, relating y, the
percent yield of a laboratory experiment, to x, the temperature at which the experiment
was run.

i xi yi i xi yi

1 100 45 6 150 68
2 110 52 7 160 75
3 120 54 8 170 76
4 130 63 9 180 92
5 140 62 10 190 88

A plot of yi versus xi — called a scatter diagram — is given in Figure 9.1. As this scatter
diagram appears to reflect, subject to random error, a linear relation between y and x, it
seems that a simple linear regression model would be appropriate. ■
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FIGURE 9.1 Scatter plot.
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9.2 LEAST SQUARES ESTIMATORS OF THE
REGRESSION PARAMETERS

Suppose that the responses Yi corresponding to the input values xi , i = 1, . . . , n are to be
observed and used to estimate α and β in a simple linear regression model. To determine
estimators of α and β we reason as follows: If A is the estimator of α and B of β, then the
estimator of the response corresponding to the input variable xi would be A + Bxi . Since
the actual response is Yi , the squared difference is (Yi − A − Bxi)2, and so if A and B are
the estimators of α and β, then the sum of the squared differences between the estimated
responses and the actual response values — call it SS — is given by

SS =
n∑

i=1

(Yi − A − Bxi)
2

The method of least squares chooses as estimators of α and β the values of A and B that
minimize SS. To determine these estimators, we differentiate SS first with respect to A and
then to B as follows:

∂SS
∂A

= −2
n∑

i=1

(Yi − A − Bxi)

∂SS
∂B

= −2
n∑

i=1

xi(Yi − A − Bxi)

Setting these partial derivatives equal to zero yields the following equations for the
minimizing values A and B:

n∑
i=1

Yi = nA + B
n∑

i=1

xi (9.2.1)

n∑
i=1

xiYi = A
n∑

i=1

xi + B
n∑

i=1

x2
i

The Equations 9.2.1 are known as the normal equations. If we let

Y =
∑

i

Yi/n, x =
∑

i

xi/n

then we can write the first normal equation as

A = Y − B x (9.2.2)
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Substituting this value of A into the second normal equation yields

∑
i

xiYi = (Y − B x)nx + B
∑

i

x2
i

or

B

(∑
i

x2
i − nx2

)
=
∑

i

xiYi − nxY

or

B =

∑
i

xiYi − nxY

∑
i

x2
i − nx2

Hence, using Equation 9.2.2 and the fact that nY = ∑n
i=1 Yi , we have proven the

following proposition.

PROPOSITION 9.2.1 The least squares estimators of β and α corresponding to the data set
xi , Yi , i = 1, . . . , n are, respectively,

B =

n∑
i=1

xiYi − x
n∑

i=1
Yi

n∑
i=1

x2
i − nx2

A = Y − B x

The straight line A + Bx is called the estimated regression line.
Program 9.2 computes the least squares estimators A and B. It also gives the user the

option of computing some other statistics whose values will be needed in the following
sections.

EXAMPLE 9.2a The raw material used in the production of a certain synthetic fiber is stored
in a location without a humidity control. Measurements of the relative humidity in the
storage location and the moisture content of a sample of the raw material were taken over
15 days with the following data (in percentages) resulting.

Relative
humidity 46 53 29 61 36 39 47 49 52 38 55 32 57 54 44

Moisture
content 12 15 7 17 10 11 11 12 14 9 16 8 18 14 12
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FIGURE 9.2 Example 9.2a.

These data are plotted in Figure 9.2. To compute the least squares estimator and the
estimated regression line, we run Program 9.2; results are shown in Figure 9.3. ■

9.3 DISTRIBUTION OF THE ESTIMATORS
To specify the distribution of the estimators A and B, it is necessary to make additional
assumptions about the random errors aside from just assuming that their mean is 0. The
usual approach is to assume that the random errors are independent normal random
variables having mean 0 and variance σ 2. That is, we suppose that if Yi is the response
corresponding to the input value xi , then Yi , . . . , Yn are independent and

Yi ∼ N (α + βxi , σ
2)

Note that the foregoing supposes that the variance of the random error does not depend
on the input value but rather is a constant. This value σ 2 is not assumed to be known but
rather must be estimated from the data.

Since the least squares estimator B of β can be expressed as

B =
∑
i

(xi − x)Yi∑
i

x2
i − nx2 (9.3.1)
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we see that it is a linear combination of the independent normal random variables Yi ,
i = 1, . . . , n and so is itself normally distributed. Using Equation 9.3.1, the mean and
variance of B are computed as follows:

E [B] =
∑
i

(xi − x)E [Yi]∑
i

x2
i − nx2

=
∑
i

(xi − x)(α + βxi)∑
i

x2
i − nx2
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=
α
∑
i

(xi − x) + β
∑
i

xi(xi − x)∑
i

x2
i − nx2

= β

[∑
i

x2
i − x

∑
i

xi
]

∑
i

x2
i − nx2 since

∑
i

(xi − x) = 0

= β

Thus E [B] = β and so B is an unbiased estimator of β. We will now compute the variance
of B.

Var(B) =
Var

(
n∑

i=1
(xi − x)Yi

)
(

n∑
i=1

x2
i − nx2

)2

=

n∑
i=1

(xi − x)2 Var(Yi)(
n∑

i=1
x2
i − nx2

)2 by independence

=
σ 2

n∑
i=1

(xi − x)2

(
n∑

i=1
x2
i − nx2

)2

= σ 2

n∑
i=1

x2
i − nx2

(9.3.2)

where the final equality results from the use of the identity

n∑
i=1

(xi − x)2 =
n∑

i=1

x2
i − nx2
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Using Equation 9.3.1 along with the relationship

A =
n∑

i=1

Yi

n
− B x

shows that A can also be expressed as a linear combination of the independent normal
random variables Yi , i = 1, . . . , n and is thus also normally distributed. Its mean is
obtained from

E [A] =
n∑

i=1

E [Yi]
n

− xE [B]

=
n∑

i=1

(α + βxi)

n
− xβ

= α + βx − xβ

= α

Thus A is also an unbiased estimator. The variance of A is computed by first expressing
A as a linear combination of the Yi . The result (whose details are left as an exercise) is that

Var(A) =
σ 2

n∑
i=1

x2
i

n
(

n∑
i=1

x2
i − nx2

) (9.3.3)

The quantities Yi − A − Bxi , i = 1, . . . , n, which represent the differences between the
actual responses (that is, the Yi) and their least squares estimators (that is, A + Bxi) are
called the residuals. The sum of squares of the residuals

SSR =
n∑

i=1

(Yi − A − Bxi)
2

can be utilized to estimate the unknown error variance σ 2. Indeed, it can be shown that

SSR

σ 2 ∼ χ2
n−2

That is, SSR /σ 2 has a chi-square distribution with n−2 degrees of freedom, which implies
that

E
[

SSR

σ 2

]
= n − 2
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or

E
[

SSR

n − 2

]
= σ 2

Thus SSR /(n − 2) is an unbiased estimator of σ 2. In addition, it can be shown that SSR

is independent of the pair A and B.

REMARKS

A plausibility argument as to why SSR /σ 2 might have a chi-square distribution with n − 2
degrees of freedom and be independent of A and B runs as follows. Because the Yi are
independent normal random variables, it follows that (Yi −E [Yi])/

√
Var(Yi), i = 1, . . . , n

are independent standard normals and so

n∑
i=1

(Yi − E [Yi])2
Var(Yi)

=
n∑

i=1

(Yi − α − βxi)2

σ 2 ∼ χ2
n

Now if we substitute the estimators A and B for α and β, then 2 degrees of freedom
are lost, and so it is not an altogether surprising result that SSR /σ 2 has a chi-square
distribution with n − 2 degrees of freedom.

The fact that SSR is independent of A and B is quite similar to the fundamental result
that in normal sampling X and S2 are independent. Indeed this latter result states that
if Y1, . . . , Yn is a normal sample with population mean µ and variance σ2, then if in the
sum of squares

∑n
i=1(Yi − µ)2/σ 2, which has a chi-square distribution with n degrees

of freedom, one substitutes the estimator Y for µ to obtain the new sum of squares∑
i(Yi − Y )2/σ 2, then this quantity [equal to (n − 1)S2/σ 2] will be independent of

Y and will have a chi-square distribution with n − 1 degrees of freedom. Since SSR /σ 2

is obtained by substituting the estimators A and B for α and β in the sum of squares∑n
i=1(Yi − α − βxi)2/σ 2, it is not unreasonable to expect that this quantity might be

independent of A and B.
When the Yi are normal random variables, the least square estimators are also the

maximum likelihood estimators. To verify this remark, note that the joint density of
Y1, . . . , Yn is given by

f Y1,...,Yn ( y1, . . . , yn) =
n∏

i=1

f Yi ( yi)

=
n∏

i=1

1√
2πσ

e−( yi−α−βxi )2/2σ 2

= 1

(2π )n/2σ n e−∑n
i=1( yi−α−βxi )2/2σ 2
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Consequently, the maximum likelihood estimators of α and β are precisely the values of α

and β that minimize
∑n

i=1(yi − α − βxi)2. That is, they are the least squares estimators.

Notation
If we let

SxY =
n∑

i=1

(xi − x)(Yi − Y ) =
n∑

i=1

xiYi − nxY

Sxx =
n∑

i=1

(xi − x)2 =
n∑

i=1

x2
i − nx2

SYY =
n∑

i=1

(Yi − Y )2 =
n∑

i=1

Y 2
i − nY

2

then the least squares estimators can be expressed as

B = SxY

Sxx

A = Y − B x

The following computational identity for SSR , the sum of squares of the residuals, can
be established.

Computational Identity for SSR

SSR = SxxSYY − S2
xY

Sxx
(9.3.4)

The following proposition sums up the results of this section.

PROPOSITION 9.3.1 Suppose that the responses Yi , i = 1, . . . , n are independent normal
random variables with means α + βxi and common variance σ 2. The least squares
estimators of β and α

B = SxY

Sxx
, A = Y − B x

are distributed as follows:

A ∼ N


α,

σ 2 ∑
i

x2
i

nSxx




B ∼ N (β, σ 2/Sxx )
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In addition, if we let

SSR =
∑

i

(Yi − A − Bxi)
2

denote the sum of squares of the residuals, then

SSR

σ 2 ∼ χ2
n−2

and SSR is independent of the least squares estimators A and B. Also, SSR can be computed
from

SSR = SxxSYY − (SxY )2

Sxx

Program 9.2 will compute the least squares estimators A and B as well as x,
∑

i x2
i ,

Sxx , SxY , SYY , and SSR .

EXAMPLE 9.3a The following data relate x, the moisture of a wet mix of a certain product,
to Y, the density of the finished product.

xi yi
5 7. 4
6 9. 3
7 10. 6

10 15. 4
xi yi
12 18. 1
15 22. 2
18 24. 1
20 24. 8

Fit a linear curve to these data. Also determine SSR .

SOLUTION A plot of the data and the estimated regression line is shown in Figure 9.4.
To solve the foregoing, run Program 9.2; results are shown in Figure 9.5. ■

9.4 STATISTICAL INFERENCES ABOUT THE
REGRESSION PARAMETERS

Using Proposition 9.3.1, it is a simple matter to devise hypothesis tests and confidence
intervals for the regression parameters.
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FIGURE 9.4 Example 9.3a.

9.4.1 Inferences Concerning β

An important hypothesis to consider regarding the simple linear regression model

Y = α + βx + e

is the hypothesis that β = 0. Its importance derives from the fact that it is equivalent to
stating that the mean response does not depend on the input, or, equivalently, that there
is no regression on the input variable. To test

H0 : β = 0 versus H1 : β �= 0

note that, from Proposition 9.3.1,

B − β√
σ 2/Sxx

= √
Sxx

(B − β)

σ
∼ N (0, 1) (9.4.1)

and is independent of

SSR

σ 2 ∼ χ2
n−2

Hence, from the definition of a t -random variable it follows that

√
Sxx (B − β)/σ√

SSR
σ 2(n−2)

=
√

(n − 2)Sxx

SSR
(B − β) ∼ tn−2 (9.4.2)
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That is,
√

(n − 2)Sxx /SSR (B − β) has a t-distribution with n − 2 degrees of freedom.
Therefore, if H0 is true (and so β = 0), then

√
(n − 2)Sxx

SSR
B ∼ tn−2

which gives rise to the following test of H0.
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Hypothesis Test of H0: β = 0
A significance level γ test of H0 is to

reject H0 if

√
(n − 2)Sxx

SSR
|B| > tγ /2,n−2

accept H0 otherwise

This test can be performed by first computing the value of the test statistic√
(n − 2)Sxx /SSR |B| — call its value v — and then rejecting H0 if the desired significance

level is at least as large as

p-value = P{|Tn−2| > v}
= 2P{Tn−2 > v}

where Tn−2 is a t -random variable with n − 2 degrees of freedom. This latter probability
can be obtained by using Program 5.8.2a.

EXAMPLE 9.4a An individual claims that the fuel consumption of his automobile does
not depend on how fast the car is driven. To test the plausibility of this hypothesis, the
car was tested at various speeds between 45 and 70 miles per hour. The miles per gallon
attained at each of these speeds was determined, with the following data resulting:

Speed Miles per Gallon

45 24.2
50 25.0
55 23.3
60 22.0
65 21.5
70 20.6
75 19.8

Do these data refute the claim that the mileage per gallon of gas is unaffected by the speed
at which the car is being driven?

SOLUTION Suppose that a simple linear regression model

Y = α + βx + e

relates Y, the miles per gallon of the car, to x, the speed at which it is being driven. Now,
the claim being made is that the regression coefficient β is equal to 0. To see if the data
are strong enough to refute this claim, we need to see if it leads to a rejection of the null
hypothesis when testing

H0 : β = 0 versus H1 : β �= 0
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To compute the value of the test statistic, we first compute the values of Sxx , SYY , and SxY .
A hand calculation yields that

Sxx = 700, SYY = 21.757, SxY = −119

Using Equation 9.3.4 gives

SSR = [SxxSYY − S2
xY ]/Sxx

= [700(21.757) − (119)2]/700 = 1.527

Because

B = SxY /Sxx = −119/700 = −.17

the value of the test statistic is

TS =
√

5(700)/1.527(.17) = 8.139

Since, from Table A2 of the Appendix, t.005,5 = 4.032, it follows that the hypothesis
β = 0 is rejected at the 1 percent level of significance. Thus, the claim that the mileage
does not depend on the speed at which the car is driven is rejected; there is strong evidence
that increased speeds lead to decreased mileages. ■

A confidence interval estimator for β is easily obtained from Equation 9.4.2. Indeed,
it follows from Equation 9.4.2 that for any a, 0 < a < 1,

P


−ta/2,n−2 <

√
(n − 2)Sxx

SSR
(B − β) < ta/2,n−2


 = 1 − a

or, equivalently,

P

{
B −

√
SSR

(n − 2)Sxx
ta/2,n−2 < β < B +

√
SSR

(n − 2)Sxx
ta/2,n−2

}
= 1 − a

which yields the following.

Confidence Interval for β

A 100(1 − a) percent confidence interval estimator of β is

(
B −

√
SSR

(n − 2)Sxx
ta/2,n−2, B +

√
SSR

(n − 2)Sxx
ta/2,n−2

)
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REMARK

The result that

B − β√
σ 2/Sxx

∼ N (0, 1)

cannot be immediately applied to make inferences about β since it involves the unknown
parameter σ 2. Instead, what we do is use the preceding statistic with σ 2 replaced by its
estimator SSR /(n − 2), which has the effect of changing the distribution of the statistic
from the standard normal to the t-distribution with n − 2 degrees of freedom.

EXAMPLE 9.4b Derive a 95 percent confidence interval estimate of β in Example 9.4a.

SOLUTION Since t.025,5 = 2.571, it follows from the computations of this example that
the 95 percent confidence interval is

−.170 ± 2.571

√
1.527

3500
= −.170 ± .054

That is, we can be 95 percent confident that β lies between −.224 and −.116. ■

9.4.1.1 REGRESSION TO THE MEAN

The term regression was originally employed by Francis Galton while describing the laws
of inheritance. Galton believed that these laws caused population extremes to “regress
toward the mean.” By this he meant that children of individuals having extreme values
of a certain characteristic would tend to have less extreme values of this characteristic
than their parent.

If we assume a linear regression relationship between the characteristic of the off-
spring (Y ), and that of the parent (x), then a regression to the mean will occur when
the regression parameter β is between 0 and 1. That is, if

E [Y ] = α + βx

and 0 < β < 1, then E [Y ] will be smaller than x when x is large and greater than x
when x is small. That this statement is true can be easily checked either algebraically or
by plotting the two straight lines

y = α + βx

and

y = x

A plot indicates that, when 0 < β < 1, the line y = α + βx is above the line y = x for
small values of x and is below it for large values of x.
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FIGURE 9.6 Scatter diagram of son’s height versus father’s height.

EXAMPLE 9.4c To illustrate Galton’s thesis of regression to the mean, the British statistician
Karl Pearson plotted the heights of 10 randomly chosen sons versus that of their fathers.
The resulting data (in inches) were as follows.

Fathers’ height 60 62 64 65 66 67 68 70 72 74

Sons’ height 63.6 65.2 66 65.5 66.9 67.1 67.4 68.3 70.1 70

A scatter diagram representing these data is presented in Figure 9.6.
Note that whereas the data appear to indicate that taller fathers tend to have taller

sons, it also appears to indicate that the sons of fathers that are either extremely short or
extremely tall tend to be more “average” than their fathers — that is, there is a “regression
toward the mean.”

We will determine whether the preceding data are strong enough to prove that there is
a regression toward the mean by taking this statement as the alternative hypothesis. That
is, we will use the above data to test

H0 : β ≥ 1 versus H1 : β < 1

which is equivalent to a test of

H0 : β = 1 versus H1 : β < 1
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It now follows from Equation 9.4.2 that when β = 1, the test statistic

TS = √
8Sxx /SSR (B − 1)

has a t-distribution with 8 degrees of freedom. The significance level α test will reject H0

when the value of TS is sufficiently small (since this will occur when B, the estimator of
β, is sufficiently smaller than 1). Specifically, the test is to

reject H0 if
√

8Sxx /SSR (B − 1) < −tα,8

Program 9.2 gives that√
8Sxx /SSR (B − 1) = 30.2794(.4646 − 1) = −16.21

Since t.01,8 = 2.896, we see that

TS < −t.01,8

and so the null hypothesis that β ≥ 1 is rejected at the 1 percent level of significance. In
fact, the p-value is

p-value = P{T8 ≤ −16.213} ≈ 0

and so the null hypothesis that β ≥ 1 is rejected at almost any significance level, thus
establishing a regression toward the mean (see Figure 9.7).

A modern biological explanation for the regression to the mean phenomenon would
roughly go along the lines of noting that as an offspring obtains a random selection of
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FIGURE 9.7 Example 9.4c for x small, y > x. For x large, y < x.
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one-half of its parents’ genes, it follows that the offspring of, say, a very tall parent would,
by chance, tend to have fewer “tall” genes than its parent.

While the most important applications of the regression to the mean phenomenon
concern the relationship between the biological characteristics of an offspring and that
of its parents, this phenomenon also arises in situations where we have two sets of data
referring to the same variables. ■

EXAMPLE 9.4d The data of Table 9.1 relate the number of motor vehicle deaths occurring
in 12 counties in the northwestern United States in the years 1988 and 1989.

A glance at Figure 9.8 indicates that in 1989 there was, for the most part, a reduction in
the number of deaths in those counties that had a large number of motor deaths in 1988.
Similarly, there appears to have been an increase in those counties that had a low value in
1988. Thus, we would expect that a regression to the mean is in effect. In fact, running
Program 9.2 yields that the estimated regression equation is

y = 74.589 + .276x

showing that the estimated value of β indeed appears to be less than 1.
One must be careful when considering the reason behind the regression to the mean

phenomenon in the preceding data. For instance, it might be natural to suppose that
those counties that had a large number of deaths caused by motor vehicles in 1988 would
have made a large effort — perhaps by improving the safety of their roads or by making
people more aware of the potential dangers of unsafe driving — to reduce this number.
In addition, we might suppose that those counties that had the fewest number of deaths
in 1988 might have “rested on their laurels” and not made much of an effort to further
improve their numbers — and as a result had an increase in the number of casualties the
following year.

TABLE 9.1 Motor Vehicle Deaths, Northwestern United States, 1988 and 1989

County Deaths in 1988 Deaths in 1989

1 121 104
2 96 91
3 85 101
4 113 110
5 102 117
6 118 108
7 90 96
8 84 102
9 107 114

10 112 96
11 95 88
12 101 106
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FIGURE 9.8 Scatter diagram of 1989 deaths versus 1988 deaths.

While the above supposition might be correct, it is important to realize that a regression
to the mean would probably have occurred even if none of the counties had done anything
out of the ordinary. Indeed, it could very well be the case that those counties having large
numbers of casualties in 1988 were just very unlucky in that year and thus a decrease
in the next year was just a return to a more normal result for them. (For an analogy, if
9 heads results when 10 fair coins are flipped then it is quite likely that another flip of these
10 coins will result in fewer than 9 heads.) Similarly, those counties having few deaths in
1988 might have been “lucky” that year and a more normal result in 1989 would thus lead
to an increase.

The mistaken belief that regression to the mean is due to some outside influence when
it is in reality just due to “chance” occurs frequently enough that it is often referred to as
the regression fallacy. ■

9.4.2 Inferences Concerning α

The determination of confidence intervals and hypothesis tests for α is accomplished in
exactly the same manner as was done for β. Specifically, Proposition 9.3.1 can be used to
show that √√√√n(n − 2)Sxx∑

i
x2
i SSR

(A − α) ∼ tn−2 (9.4.3)

which leads to the following confidence interval estimator of α.
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Confidence Interval Estimator of α

The 100(1 − a) percent confidence interval for α is the interval

A ±

√√√√ ∑
i

x2
i SSR

n(n − 2)Sxx
ta/2,n−2

Hypothesis tests concerning α are easily obtained from Equation 9.4.3, and their
development is left as an exercise.

9.4.3 Inferences Concerning the Mean Response α+βx0
It is often of interest to use the data pairs (xi , Yi), i = 1, . . . , n, to estimate α + βx0, the
mean response for a given input level x0. If it is a point estimator that is desired, then the
natural estimator is A + Bx0, which is an unbiased estimator since

E [A + Bx0] = E [A] + x0E [B] = α + βx0

However, if we desire a confidence interval, or are interested in testing some hypothesis
about this mean response, then it is necessary to first determine the probability distribution
of the estimator A + Bx0 . We now do so.

Using the expression for B given by Equation 9.3.1 yields that

B = c
n∑

i=1

(xi − x)Yi

where

c = 1
n∑

i=1
x2
i − nx2

= 1

Sxx

Since

A = Y − B x

we see that

A + Bx0 =

n∑
i=1

Yi

n
− B(x − x0)

=
n∑

i=1

Yi

[
1

n
− c(xi − x)(x − x0)

]

Since the Yi are independent normal random variables, the foregoing equation shows
that A + Bx0 can be expressed as a linear combination of independent normal random
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variables and is thus itself normally distributed. Because we already know its mean, we
need only compute its variance, which is accomplished as follows:

Var(A + Bx0) =
n∑

i=1

[
1

n
− c(xi − x)(x − x0)

]2

Var(Yi)

= σ 2
n∑

i=1

[
1

n2 − c2(x − x0)2(xi − x)2 − 2c(xi − x)
(x − x0)

n

]

= σ 2

[
1

n
+ c2(x − x0)2

n∑
i=1

(xi − x)2 − 2c(x − x0)
n∑

i=1

(xi − x)

n

]

= σ 2
[

1

n
+ (x − x0)2

Sxx

]

where the last equality followed from

n∑
i=1

(xi − x)2 =
n∑

i=1

x2
i − nx2 = 1/c = Sxx ,

n∑
i=1

(xi − x) = 0

Hence, we have shown that

A + Bx0 ∼ N
(

α + βx0, σ 2
[

1

n
+ (x0 − x)2

Sxx

])
(9.4.4)

In addition, because A + Bx0 is independent of

SSR /σ 2 ∼ χ2
n−2

it follows that
A + Bx0 − (α + βx0)√
1

n
+ (x0 − x)2

Sxx

√
SSR

n − 2

∼ tn−2 (9.4.5)

Equation 9.4.5 can now be used to obtain the following confidence interval estimator of
α + βx0.

Confidence Interval Estimator of α + βx0

With 100(1 − a) percent confidence, α + βx0 will lie within

A + Bx0 ±
√

1

n
+ (x0 − x)2

Sxx

√
SSR

n − 2
ta/2,n−2



9.4 Statistical Inferences About the Regression Parameters 373

EXAMPLE 9.4e Using the data of Example 9.4c, determine a 95 percent confidence interval
for the average height of all males whose fathers are 68 inches tall.

SOLUTION Since the observed values are

n = 10, x0 = 68, x = 66.8, Sxx = 171.6, SSR = 1.49721

we see that √
1

n
+ (x0 − x)2

Sxx

√
SSR

n − 2
= .1424276

Also, because

t.025,8 = 2.306, A + Bx0 = 67.56751

we obtain the following 95 percent confidence interval,

α + βx0 ∈ (67.239, 67.896) ■

9.4.4 Prediction Interval of a Future Response

It is often the case that it is more important to estimate the actual value of a future response
rather than its mean value. For instance, if an experiment is to be performed at temperature
level x0, then we would probably be more interested in predicting Y (x0), the yield from this
experiment, than we would be in estimating the expected yield — E [Y (x0)] = α + βx0.
(On the other hand, if a series of experiments were to be performed at input level x0, then
we would probably want to estimate α + βx0, the mean yield.)

Suppose first that we are interested in a single value (as opposed to an interval) to use
as a predictor of Y (x0), the response at level x0. Now, it is clear that the best predictor of
Y (x0) is its mean value α + βx0. [Actually, this is not so immediately obvious since one
could argue that the best predictor of a random variable is (1) its mean — which minimizes
the expected square of the difference between the predictor and the actual value; or (2) its
median — which minimizes the expected absolute difference between the predictor and
the actual value; or (3) its mode — which is the most likely value to occur. However, as the
mean, median, and mode of a normal random variable are all equal — and the response is,
by assumption, normally distributed — there is no doubt in this situation.] Since α and β

are not known, it seems reasonable to use their estimators A and B and thus use A + Bx0

as the predictor of a new response at input level x0.
Let us now suppose that rather than being concerned with determining a single value

to predict a response, we are interested in finding a prediction interval that, with a given
degree of confidence, will contain the response. To obtain such an interval, let Y denote
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the future response whose input level is x0 and consider the probability distribution of the
response minus its predicted value — that is, the distribution of Y − A − Bx0. Now,

Y ∼ N (α + βx0, σ 2)

and, as was shown in Section 9.4.3,

A + Bx0 ∼ N
(

α + βx0, σ 2
[

1

n
+ (x0 − x)2

Sxx

])

Hence, because Y is independent of the earlier data values Y1, Y2, . . . , Yn that were used
to determine A and B, it follows that Y is independent of A + Bx0 and so

Y − A − Bx0 ∼ N
(

0, σ 2
[
1 + 1

n
+ (x0 − x)2

Sxx

])

or, equivalently,

Y − A − Bx0

σ

√
n + 1

n
+ (x0 − x)2

Sxx

∼ N (0, 1) (9.4.6)

Now, using once again the result that SSR is independent of A and B (and also of Y ) and

SSR

σ 2 ∼ χ2
n−2

we obtain, by the usual argument, upon replacing σ 2 in Equation 9.4.6 by its estimator
SSR /(n − 2) that

Y − A − Bx0√
n + 1

n
+ (x0 − x)2

Sxx

√
SSR

n − 2

∼ tn−2

and so, for any value a, 0 < a < 1,

p




−ta/2,n−2 <
Y − A − Bx0√

n + 1

n
+ (x0 − x)2

Sxx

√
SSR

n − 2

< ta/2,n−2




= 1 − a

That is, we have just established the following.
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Prediction Interval for a Response at the Input Level x0

Based on the response values Yi corresponding to the input values xi , i = 1, 2, . . . , n:
With 100(1−a) percent confidence, the response Y at the input level x0 will be contained
in the interval

A + Bx0 ± ta/2,n−2

√[
n + 1

n
+ (x0 − x)2

Sxx

]
SSR

n − 2

EXAMPLE 9.4f In Example 9.4c, suppose we want an interval that we can “be 95 percent
certain” will contain the height of a given male whose father is 68 inches tall. A simple
computation now yields the prediction interval

Y (68) ∈ 67.568 ± 1.050

or, with 95 percent confidence, the person’s height will be between 66.518 and
68.618. ■

REMARKS

(a) There is often some confusion about the difference between a confidence and a pre-
diction interval. A confidence interval is an interval that does contain, with a given degree
of confidence, a fixed parameter of interest. A prediction interval, on the other hand, is an
interval that will contain, again with a given degree of confidence, a random variable of
interest.
(b) One should not make predictions about responses at input levels that are far from
those used to obtain the estimated regression line. For instance, the data of Example 9.4c
should not be used to predict the height of a male whose father is 42 inches tall.

9.4.5 Summary of Distributional Results

We now summarize the distributional results of this section.

Model: Y = α + βx + e, e ∼ N (0, σ 2)

Data: (xi , Yi), i = 1, 2, . . . , n

Inferences About Use the Distributional Result

β

√
(n − 2)Sxx

SSr
(B − β) ∼ tn−2

α

√√√√√n(n − 2)Sxx∑
i

x2
i SSR

(A − α) ∼ tn−2
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Inferences About Use the Distributional Result

α + βx0
A + Bx0 − α − βx0√√√√(

1

n
+ (x0 − x)2

Sxx

)(
SSR

n − 2

) ∼ tn−2

Y (x0)
Y (x0) − A − Bx0√√√√(

1 + 1
n + (x0 − x)2

Sxx

)(
SSR

n − 2

) ∼ tn−2

9.5 THE COEFFICIENT OF DETERMINATION AND THE
SAMPLE CORRELATION COEFFICIENT

Suppose we wanted to measure the amount of variation in the set of response values
Y1, . . . , Yn corresponding to the set of input values x1, . . . , xn. A standard measure in
statistics of the amount of variation in a set of values Y1, . . . , Yn is given by the quantity

SYY =
n∑

i=1

(Yi − Y )2

For instance, if all the Yi are equal — and thus are all equal to Y — then SYY would
equal 0.

The variation in the values of the Yi arises from two factors. First, because the input
values xi are different, the response variables Yi all have different mean values, which will
result in some variation in their values. Second, the variation also arises from the fact
that even when the differences in the input values are taken into account, each of the
response variables Yi has variance σ 2 and thus will not exactly equal the predicted value
at its input xi .

Let us consider now the question as to how much of the variation in the values of the
response variables is due to the different input values, and how much is due to the inherent
variance of the responses even when the input values are taken into account. To answer
this question, note that the quantity

SSR =
n∑

i=1

(Yi − A − Bxi)
2

measures the remaining amount of variation in the response values after the different input
values have been taken into account.
Thus,

SYY − SSR
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represents the amount of variation in the response variables that is explained by the different
input values; and so the quantity R2 defined by

R2 = SYY − SSR

SYY

= 1 − SSR

SYY

represents the proportion of the variation in the response variables that is explained by the
different input values. R2 is called the coefficient of determination.

The coefficient of determination R2 will have a value between 0 and 1. A value of R2

near 1 indicates that most of the variation of the response data is explained by the different
input values, whereas a value of R2 near 0 indicates that little of the variation is explained
by the different input values.

EXAMPLE 9.5a In Example 9.4c, which relates the height of a son to that of his father, the
output from Program 9.2 yielded that

SYY = 38.521, SSR = 1.497

Thus,

R2 = 1 − 1.497

38.531
= .961

In other words, 96 percent of the variation of the heights of the 10 individuals is explained
by the heights of their fathers. The remaining (unexplained) 4 percent of the variation is
due to the variance of a son’s height even when the father’s height is taken into account.
(That is, it is due to σ 2, the variance of the error random variable.) ■

The value of R2 is often used as an indicator of how well the regression model fits the
data, with a value near 1 indicating a good fit, and one near 0 indicating a poor fit. In
other words, if the regression model is able to explain most of the variation in the response
data, then it is considered to fit the data well.

Recall that in Section 2.6 we defined the sample correlation coefficient r of the set of
data pairs (xi , Yi), i = 1, . . . , n, by

r =

n∑
i=1

(xi − x)(Yi − Y )√
n∑

i=1
(xi − x)2

n∑
i=1

(Yi − Y )2

It was noted that r provided a measure of the degree to which high values of x are
paired with high values of Y and low values of x with low values of Y . A value of r
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near +1 indicated that large x values were strongly associated with large Y values and
small x values were strongly associated with small Y values, whereas a value near −1 indi-
cated that large x values were strongly associated with small Y values and small x values
with large Y values.

In the notation of this chapter,

r = SxY√
SxxSYY

Upon using identity (9.3.4):

SSR = SxxSYY − S2
xY

Sxx

we see that

r2 = S2
xY

SxxSYY

= SxxSYY − SSRSxx

SxxSYY

= 1 − SSR

SYY

= R2

That is,

|r| =
√

R2

and so, except for its sign indicating whether it is positive or negative, the sample correla-
tion coefficient is equal to the square root of the coefficient of determination. The sign of
r is the same as that of B.

The above gives additional meaning to the sample correlation coefficient. For instance,
if a data set has its sample correlation coefficient r equal to .9, then this implies that a
simple linear regression model for these data explains 81 percent (since R2 = .92 = .81)
of the variation in the response values. That is, 81 percent of the variation in the response
values is explained by the different input values.

9.6 ANALYSIS OF RESIDUALS: ASSESSING THE MODEL
The initial step for ascertaining whether or not the simple linear regression model

Y = α + βx + e, e ∼ N (0, σ 2)
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is appropriate in a given situation is to investigate the scatter diagram. Indeed, this is
often sufficient to convince one that the regression model is or is not correct. When the
scatter diagram does not by itself rule out the preceding model, then the least square
estimators A and B should be computed and the residual Yi − (A + Bxi), i = 1, . . . , n
analyzed. The analysis begins by normalizing, or standardizing, the residuals by dividing
them by

√
SSR /(n − 2), the estimate of the standard deviation of the Yi . The resulting

quantities

Yi − (A + Bxi)√
SSR /(n − 2)

, i = 1, . . . , n

are called the standardized residuals.
When the simple linear regression model is correct, the standardized residuals are

approximately independent standard normal random variables, and thus should be ran-
domly distributed about 0 with about 95 percent of their values being between −2 and
+2 (since P{−1.96 < Z < 1.96} = .95). In addition, a plot of the standardized residuals
should not indicate any distinct pattern. Indeed, any indication of a distinct pattern should
make one suspicious about the validity of the assumed simple linear regression model.

Figure 9.9 presents three different scatter diagrams and their associated standardized
residuals. The first of these, as indicated both by its scatter diagram and the random nature
of its standardized residuals, appears to fit the straight-line model quite well. The second
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FIGURE 9.9 (continued )

residual plot shows a discernible pattern, in that the residuals appear to be first decreasing
and then increasing as the input level increases. This often means that higher-order (than
just linear) terms are needed to describe the relationship between the input and response.
Indeed, this is also indicated by the scatter diagram in this case. The third standardized
residual plot also shows a pattern, in that the absolute value of the residuals, and thus their
squares, appear to be increasing, as the input level increases. This often indicates that the
variance of the response is not constant but, rather, increases with the input level.
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9.7 TRANSFORMING TO LINEARITY
In many situations, it is clear that the mean response is not a linear function of the input
level. In such cases, if the form of the relationship can be determined it is sometimes
possible, by a change of variables, to transform it into a linear form. For instance, in
certain applications it is known that W (t ), the amplitude of a signal a time t after its
origination, is approximately related to t by the functional form

W (t ) ≈ ce−dt

On taking logarithms, this can be expressed as

log W (t ) ≈ log c − dt

If we now let

Y = log W (t )

α = log c

β = −d

then the foregoing can be modeled as a regression of the form

Y = α + βt + e

The regression parameters α and β would then be estimated by the usual least squares
approach and the original functional relationships can be predicted from

W (t ) ≈ e A+Bt

EXAMPLE 9.7a The following table gives the percentages of a chemical that were used up
when an experiment was run at various temperatures (in degrees celsius). Use it to estimate
the percentage of the chemical that would be used up if the experiment were to be run at
350 degrees.

Temperature Percentage

5◦ .061
10◦ .113
20◦ .192
30◦ .259
40◦ .339
50◦ .401
60◦ .461
80◦ .551
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FIGURE 9.10 Example 9.7a.

SOLUTION Let P(x) be the percentage of the chemical that is used up when the experiment
is run at 10x degrees. Even though a plot of P(x) looks roughly linear (see Figure 9.10),
we can improve upon the fit by considering a nonlinear relationship between x and P(x).
Specifically, let us consider a relationship of the form

1 − P(x) ≈ c(1 − d )x

That is, let us suppose that the percentage of the chemical that survives an experiment run
at temperature x approximately decreases at an exponential rate when x increases. Taking
logs, the preceding can be written as

log(1 − P(x)) ≈ log(c) + x log(1 − d )

Thus, setting

Y = −log(1 − P)

α = −log c

β = −log(1 − d )

we obtain the usual regression equation

Y = α + βx + e



9.7 Transforming to Linearity 383

TABLE 9.2

Temperature −log(1 − P)

5◦ .063
10◦ .120
20◦ .213
30◦ .300
40◦ .414
50◦ .512
60◦ .618
80◦ .801
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0.0
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x

–log (1 – P)

FIGURE 9.11

To see whether the data support this model, we can plot −log(1 − P) versus x. The
transformed data are presented in Table 9.2 and the graph in Figure 9.11.

Running Program 9.2 yields that the least square estimates of α and β are

A = .0154

B = .0099
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TABLE 9.3

x P P̂ P −P̂

5 .061 .063 −.002
10 .113 .109 .040
20 .192 .193 −.001
30 .259 .269 −.010
40 .339 .339 .000
50 .401 .401 .000
60 .461 .458 .003
80 .551 .556 −.005

Transforming this back into the original variable gives that the estimates of c and d are

ĉ = e−A = .9847

1 − d̂ = e−B = .9901

and so the estimated functional relationship is

P̂ = 1 − .9847(.9901)x

The residuals P − P̂ are presented in Table 9.3. ■

9.8 WEIGHTED LEAST SQUARES
In the regression model

Y = α + βx + e

it often turns out that the variance of a response is not constant but rather depends on its
input level. If these variances are known — at least up to a proportionality constant —
then the regression parameters α and β should be estimated by minimizing a weighted
sum of squares. Specifically, if

Var(Yi) = σ 2

wi

then the estimators A and B should be chosen to minimize

∑
i

[Yi − (A + Bxi)]2
Var(Yi)

= 1

σ 2

∑
i

wi(Yi − A − Bxi)
2
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On taking partial derivatives with respect to A and B and setting them equal to 0, we
obtain the following equations for the minimizing A and B.

∑
i

wiYi = A
∑

i

wi + B
∑

i

wixi (9.8.1)

∑
i

wixiYi = A
∑

i

wixi + B
∑

i

wix2
i

These equations are easily solved to yield the least squares estimators.

EXAMPLE 9.8a To develop a feel as to why the estimators should be obtained by mini-
mizing the weighted sum of squares rather than the ordinary sum of squares, consider
the following situation. Suppose that X1, . . . , Xn are independent normal random vari-
ables each having mean µ and variance σ 2. Suppose further that the Xi are not directly
observable but rather only Y1 and Y2, defined by

Y1 = X1 + · · · + Xk , Y2 = Xk+1 + · · · + Xn, k < n

are directly observable. Based on Y1 and Y2, how should we estimate µ?
Whereas the best estimator of µ is clearly X = ∑n

i=1 Xi/n = (Y1 + Y2)/n, let us see
what the ordinary least squares estimator would be. Since

E [Y1] = kµ, E [Y2] = (n − k)µ

the least squares estimator of µ would be that value of µ that minimizes

(Y1 − kµ)2 + (Y2 − [n − k]µ)2

On differentiating and setting equal to zero, we see that the least squares estimator of
µ — call it µ̂ — is such that

−2k(Y1 − kµ̂) − 2(n − k)[Y2 − (n − k)µ̂] = 0

or

[k2 + (n − k)2]µ̂ = kY1 + (n − k)Y2

or

µ̂ = kY1 + (n − k)Y2

k2 + (n − k)2

Thus we see that while the ordinary least squares estimator is an unbiased estimator of
µ — since

E [µ̂] = kE [Y1] + (n − k)E [Y2]
k2 + (n − k)2

= k2µ + (n − k)2µ

k2 + (n − k)2
= µ

it is not the best estimator X .
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Now let us determine the estimator produced by minimizing the weighted sum of
squares. That is, let us determine the value of µ — call it µw — that minimizes

(Y1 − kµ)2

Var(Y1)
+ [Y2 − (n − k)µ]2

Var(Y2)

Since

Var(Y1) = kσ 2, Var(Y2) = (n − k)σ 2

this is equivalent to choosing µ to minimize

(Y1 − kµ)2

k
+ [Y2 − (n − k)µ]2

n − k

Upon differentiating and then equating to 0, we see that µw , the minimizing value, satisfies

−2k(Y1 − kµw)

k
− 2(n − k)[Y2 − (n − k)µw]

n − k
= 0

or

Y1 + Y2 = nµw

or

µw = Y1 + Y2

n

That is, the weighted least squares estimator is indeed the preferred estimator
(Y1 + Y2)/n = X . ■

REMARKS

(a) Assuming normally distributed data, the weighted least squares estimators are precisely
the maximum likelihood estimators. This follows because the joint density of the data
Y1, . . . , Yn is

f Y1,...,Yn ( y1, . . . , yn) =
n∏

i=1

1√
2π (σ /

√
wi)

e−( yi−α−βxi )2/(2σ 2/wi )

=
√

w1 . . . wn

(2π )n/2σ n e−∑n
i=1 wi ( yi−α−βxi )2/2σ 2

Consequently, the maximum likelihood estimators of α and β are precisely the values of
α and β that minimize the weighted sum of squares

∑n
i=1 wi( yi − α − βxi)2.
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(b) The weighted sum of squares can also be seen as the relevant quantity to be minimized
by multiplying the regression equation

Y = α + βx + e

by
√

w. This results in the equation

Y
√

w = α
√

w + βx
√

w + e
√

w

Now, in this latter equation the error term e
√

w has mean 0 and constant variance.
Hence, the natural least squares estimators of α and β would be the values of A and B that
minimize ∑

i

(Yi
√

wi − A
√

wi − Bxi
√

wi)
2 =

∑
i

wi(Yi − A − Bxi)
2

(c) The weighted least squares approach puts the greatest emphasis on those data pairs
having the greatest weights (and thus the smallest variance in their error term). ■

At this point it might appear that the weighted least squares approach is not particularly
useful since it requires a knowledge, up to a constant, of the variance of a response at an
arbitrary input level. However, by analyzing the model that generates the data, it is often
possible to determine these values. This will be indicated by the following two examples.

EXAMPLE 9.8b The following data represent travel times in a downtown area of a certain
city. The independent, or input, variable is the distance to be traveled.

Distance (miles) .5 1 1.5 2 3 4 5 6 8 10

Travel time (minutes) 15.0 15.1 16.5 19.9 27.7 29.7 26.7 35.9 42 49.4

Assuming a linear relationship of the form

Y = α + βx + e

between Y , the travel time, and x, the distance, how should we estimate α and β? To utilize
the weighted least squares approach we need to know, up to a multiplicative constant, the
variance of Y as a function of x. We will now present an argument that Var(Y ) should be
proportional to x.

SOLUTION Let d denote the length of a city block. Thus a trip of distance x will consist of
x/d blocks. If we let Yi , i = 1, . . . , x/d , denote the time it takes to traverse block i, then
the total travel time can be expressed as

Y = Y1 + Y2 + · · · + Yx/d
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Now in many applications it is probably reasonable to suppose that the Yi are
independent random variables with a common variance, and thus,

Var(Y ) = Var(Y1) + · · · + Var(Yx/d )

= (x/d )Var(Y1) since Var(Yi) = Var(Y1)

= xσ 2, where σ 2 = Var(Y1)/d

Thus, it would seem that the estimators A and B should be chosen so as to minimize

∑
i

(Yi − A − Bxi)2

xi

Using the preceding data with the weights wi = 1/xi , the least squares Equations 9.8.1 are

104.22 = 5.34A + 10B

277.9 = 10A + 41B

which yield the solution

A = 12.561, B = 3.714

A graph of the estimated regression line 12. 561 + 3. 714x along with the data points is
presented in Figure 9.12. As a qualitative check of our solution, note that the regression
line fits the data pairs best when the input levels are small, which is as it should be since
the weights are inversely proportional to the inputs. ■

EXAMPLE 9.8c Consider the relationship between Y , the number of accidents on a heavily
traveled highway, and x, the number of cars traveling on the highway. After a little thought
it would probably seem to most that the linear model

Y = α + βx + e

would be appropriate. However, as there does not appear to be any a priori reason why
Var(Y ) should not depend on the input level x, it is not clear that we would be justified in
using the ordinary least squares approach to estimate α and β. Indeed, we will now argue
that a weighted least squares approach with weights 1/x should be employed — that is, we
should choose A and B to minimize

∑
i

(Yi − A − Bxi)2

xi
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FIGURE 9.12 Example 9.8b.

The rationale behind this claim is that it seems reasonable to suppose that Y has
approximately a Poisson distribution. This is so since we can imagine that each of the x
cars will have a small probability of causing an accident and so, for large x, the number
of accidents should be approximately a Poisson random variable. Since the variance of
a Poisson random variable is equal to its mean, we see that

Var(Y ) � E [Y ] since Y is approximately Poisson

= α + βx

� βx for large x ■

REMARKS

(a) Another technique that is often employed when the variance of the response depends
on the input level is to attempt to stabilize the variance by an appropriate transformation.
For example, if Y is a Poisson random variable with mean λ, then it can be shown [see
Remark (b)] that

√
Y has approximate variance .25 no matter what the value of λ. Based

on this fact, one might try to model E [√Y ] as a linear function of the input. That is, one
might consider the model

√
Y = α + βx + e
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(b) Proof that Var
√

Y ≈ .25 when Y is Poisson with mean λ. Consider the Taylor series
expansion of g (y) = √

y about the value λ. By ignoring all terms beyond the second
derivative term, we obtain that

g ( y) ≈ g (λ) + g ′(λ)( y − λ) + g ′′(λ)( y − λ)2

2
(9.8.2)

Since

g ′(λ) = 1
2λ−1/2, g ′′(λ) = − 1

4λ−3/2

we obtain, on evaluating Equation 9.8.2 at y = Y , that

√
Y ≈ √

λ + 1
2λ−1/2(Y − λ) − 1

8λ−3/2(Y − λ)2

Taking expectations, and using the results that

E [Y − λ] = 0, E [(Y − λ)2] = Var(Y ) = λ

yields that

E [√Y ] ≈ √
λ − 1

8
√

λ

Hence

(E [√Y ])2 ≈ λ + 1

64λ
− 1

4

≈ λ − 1

4

and so

Var(
√

Y ) = E [Y ] − (E [√Y ])2

≈ λ −
(

λ − 1

4

)

= 1

4
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9.9 POLYNOMIAL REGRESSION
In situations where the functional relationship between the response Y and the independent
variable x cannot be adequately approximated by a linear relationship, it is sometimes
possible to obtain a reasonable fit by considering a polynomial relationship. That is, we
might try to fit to the data set a functional relationship of the form

Y = β0 + β1x + β2x2 + · · · + βr xr + e

where β0, β1, . . . , βr are regression coefficients that would have to be estimated. If the
data set consists of the n pairs (xi , Yi), i = 1, . . . , n, then the least square estimators of
β0, . . . , βr — call them B0, . . . , Br — are those values that minimize

n∑
i=1

(Yi − B0 − B1xi − B2x2
i − · · · − Brxr

i )2

To determine these estimators, we take partial derivatives with respect to B0 . . . Br

of the foregoing sum of squares, and then set these equal to 0 so as to determine the
minimizing values. On doing so, and then rearranging the resulting equations, we obtain
that the least square estimators B0, B1, . . . , Br satisfy the following set of r + 1 linear
equations called the normal equations.

n∑
i=1

Yi = B0n + B1

n∑
i=1

xi + B2

n∑
i=1

x2
i + · · · + Br

n∑
i=1

xr
i

n∑
i=1

xiYi = B0

n∑
i=1

xi + B1

n∑
i=1

x2
i + B2

n∑
i=1

x3
i + · · · + Br

n∑
i=1

xr+1
i

n∑
i=1

x2
i Yi = B0

n∑
i=1

x2
i + B1

n∑
i=1

x3
i + · · · + Br

n∑
i=1

xr+2
i

...
...

...
n∑

i=1

xr
i Yi = B0

n∑
i=1

xr
i + B1

n∑
i=1

xr+1
i + · · · + Br

n∑
i=1

x2r
i

In fitting a polynomial to a set of data pairs, it is often possible to determine the necessary
degree of the polynomial by a study of the scatter diagram. We emphasize that one should
always use the lowest possible degree that appears to adequately describe the data. [Thus,
for instance, whereas it is usually possible to find a polynomial of degree n that passes
through all the n pairs (xi , Yi), i = 1, . . . , n, it would be hard to ascribe much confidence
to such a fit.]
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Even more so than in linear regression, it is extremely risky to use a polynomial fit to
predict the value of a response at an input level x0 that is far away from the input levels
xi , i = 1, . . . , n used in finding the polynomial fit. (For one thing, the polynomial fit
may be valid only in a region around the xi , i = 1, . . . , n and not including x0.)

EXAMPLE 9.9a Fit a polynomial to the following data.

x Y
1 20.6
2 30.8
3 55
4 71.4
5 97.3
6 131.8
7 156.3
8 197.3
9 238.7

10 291.7

SOLUTION A plot of these data (see Figure 9.13) indicates that a quadratic relationship

Y = β0 + β1x + β2x2 + e
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FIGURE 9.13
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might hold. Since

∑
i

xi = 55,
∑

i

x2
i = 385,

∑
i

x3
i = 3,025,

∑
i

x4
i = 25, 333

∑
i

Yi = 1,291.1,
∑

i

xiYi = 9,549.3,
∑

i

x2
i Yi = 77,758.9

the least squares estimates are the solution of the following set of equations.

1,291.1 = 10B0 + 55B1 + 385B2 (9.9.1)

9,549.3 = 55B0 + 385B1 + 3,025B2

77,758.9 = 385B0 + 3,025B1 + 25,333B2

Solving these equations (see the remark following this example) yields that the least
squares estimates are

B0 = 12.59326, B1 = 6.326172, B2 = 2.122818

Thus, the estimated quadratic regression equation is

Y = 12.59 + 6.33x + 2.12x2

This equation, along with the data, is plotted in Figure 9.14. ■
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REMARK

In matrix notation Equation 9.9.1 can be written as


 1,291.1

9,549.3
77,758.9


 =


 10 55 385

55 385 3, 025
385 3,025 25,333




B0

B1

B2




which has the solution


B0

B1

B2


 =


 10 55 385

55 385 3,025
385 3,025 25,333




−1 
 1,291.1

9,549.3
77,758.9




*9.10 MULTIPLE LINEAR REGRESSION
In the majority of applications, the response of an experiment can be predicted more
adequately not on the basis of a single independent input variable but on a collection of
such variables. Indeed, a typical situation is one in which there are a set of, say, k input
variables and the response Y is related to them by the relation

Y = β0 + β1x1 + · · · + βkxk + e

where xj , j = 1, . . . , k is the level of the jth input variable and e is a random error that
we shall assume is normally distributed with mean 0 and (constant) variance σ 2. The
parameters β0, β1, . . . , βk and σ 2 are assumed to be unknown and must be estimated
from the data, which we shall suppose will consist of the values of Y1, . . . , Yn where Yi is
the response level corresponding to the k input levels xi1, . . . , xi2, . . . , xik . That is, the Yi

are related to these input levels through

E [Yi] = β0 + β1xi1 + β2xi2 + · · · + βkxik

If we let B0, B1, . . . , Bk denote estimators of β0, . . . , βk , then the sum of the squared
differences between the Yi and their estimated expected values is

n∑
i=1

(Yi − B0 − B1xi1 − B2xi2 − · · · − Bkxik)2

The least squares estimators are those values of B0, B1, . . . , Bk that minimize the foregoing.

* Optional section.
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To determine the least squares estimators, we repeatedly take partial derivatives of the
preceding sum of squares first with respect to B0, then to B1, . . . , then to Bk . On equating
these k + 1 equations to 0, we obtain the following set of equations:

n∑
i=1

(Yi − B0 − B1xi1 − B2xi2 − · · · − Bkxik) = 0

n∑
i=1

xi1(Yi − B0 − B1xi1 − · · · − Bkxik) = 0

n∑
i=1

xi2(Yi − B0 − B1xi1 − · · · − Bkxik) = 0

...
n∑

i=1

xik(Yi − B0 − B1xi1 − · · · − Bixik) = 0

Rewriting these equations yields that the least squares estimators B0, B1, . . . , Bk satisfy
the following set of linear equations, called the normal equations:

n∑
i=1

Yi = nB0 + B1

n∑
i=1

xi1 + B2

n∑
i=1

xi2 + · · · + Bk

n∑
i=1

xik (9.10.1)

n∑
i=1

xi1Yi = B0

n∑
i=1

xi1 + B1

n∑
i=1

x2
i1 + B2

n∑
i=1

xi1xi2 + · · · + Bk

n∑
i=1

xi1xik

...

k∑
i=1

xikYi = B0

n∑
i=1

xik + B1

n∑
i=1

xikxi1 + B2

n∑
i=1

xikxi2 + · · · + Bk

n∑
i=1

x2
ik

Before solving the normal equations, it is convenient to introduce matrix notation. If
we let

Y =




Y1

Y2
...

Yn


 , X =




1 x11 x12 · · · x1k
1 x21 x22 · · · x2k
...

...
...

...
1 xn1 xn2 · · · xnk



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β =




β0

β1
...

βk


 , e =




e1

e2
...
en




then Y is an n × 1, X an n × p, β a p × 1, and e an n × 1 matrix where p ≡ k + 1.
The multiple regression model can now be written as

Y = Xβ + e

In addition, if we let

B =




B0

B1
...

Bk




be the matrix of least squares estimators, then the normal Equations 9.10.1 can be written as

X ′XB = X ′Y (9.10.2)

where X ′ is the transpose of X.
To see that Equation 9.10.2 is equivalent to the normal Equations 9.10.1, note that

X ′X =




1 1 · · · 1
x11 x21 · · · xn1

x12 x22 · · · xn2
...

...
...

x1k x2k · · · xnk







1 x11 x12 · · · x1k
1 x21 x22 · · · x2k
...

...
...

...
1 xn1 xn2 · · · xnk




=




n
∑
i

xi1
∑
i

xi2 · · · ∑
i

xik∑
i

xi1
∑
i

x2
i1

∑
i

xi1xi2 · · · ∑
i

xi1xik

...
...

...
...∑

i
xik

∑
i

xikxi1
∑
i

xikxi2 · · · ∑
i

x2
ik




and

X ′Y =




∑
i

Yi∑
i

xi1Yi

...∑
i

xikYi



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It is now easy to see that the matrix equation

X ′XB = X ′Y

is equivalent to the set of normal Equations 9.10.1. Assuming that (X′X)−1 exists, which
is usually the case, we obtain, upon multiplying it by both sides of the foregoing, that
the least squares estimators are given by

B = (X ′X)−1X ′Y (9.10.3)

Program 9.10 computes the least squares estimates, the inverse matrix (X ′X)−1,
and SSR .

EXAMPLE 9.10a The data in Table 9.4 relate the suicide rate to the population size and the
divorce rate at eight different locations.

TABLE 9.4

Population Divorce Rate Suicide Rate
Location in Thousands per 100,000 per 100,000

Akron, Ohio 679 30.4 11.6
Anaheim, Ca. 1,420 34.1 16.1
Buffalo, N.Y. 1,349 17.2 9.3
Austin, Texas 296 26.8 9.1
Chicago, IL. 6,975 29.1 8.4
Columbia, S.C. 323 18.7 7.7
Detroit, Mich. 4,200 32.6 11.3
Gary, Indiana 633 32.5 8.4

Fit a multiple linear regression model to these data. That is, fit a model of the form

Y = β0 + β1x1 + β2x2 + e

where Y is the suicide rate, x1 is the population, and x2 is the divorce rate.

SOLUTION We run Program 9.10, and results are shown in Figures 9.15, 9.16, and 9.17.
Thus the estimated regression line is

Y = 3.5073 − .0002x1 + .2609x2

The value of β1 indicates that the population does not play a major role in predicting the
suicide rate (at least when the divorce rate is also given). Perhaps the population density,
rather than the actual population, would have been more useful. ■
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Multiple Linear Regression
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FIGURE 9.15

It follows from Equation 9.10.3 that the least squares estimators B0, B1, . . . , Bk —
the elements of the matrix B — are all linear combinations of the independent normal
random variables Y1, . . . , Yn and so will also be normally distributed. Indeed in such
a situation — namely, when each member of a set of random variables can be expressed
as a linear combination of independent normal random variables — we say that the set of
random variables has a joint multivariate normal distribution.

The least squares estimators turn out to be unbiased. This can be shown as follows:

E [B] = E [(X ′X)−1X ′Y]
= E [(X ′X)−1X ′(Xβ + e)] since Y = Xβ + e

= E [(X ′X)−1X ′Xβ + (X ′X)−1X ′e]
= E [β + (X ′X)−1X ′e]
= β + (X ′X)−1X ′E[e]
= β
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The variances of the least squares estimators can be obtained from the matrix (X ′X)−1.
Indeed, the values of this matrix are related to the covariances of the Bi ’s. Specifically, the
element in the (i + 1)st row, ( j + 1)st column of (X ′X)−1 is equal to Cov(Bi , Bj )/σ 2.

To verify the preceding statement concerning Cov(Bi , Bj ), let

C = (X ′X)−1X ′

Since X is an n×p matrix and X ′ a p×n matrix, it follows that X ′X is p×p, as is (X ′X)−1,
and so C will be a p × n matrix. Let Cij denote the element in row i, column j of this
matrix. Now 



B0
...

Bi−1
...

Bk




= B = CY =




C11 · · · C1n
...

...
Ci1 · · · Cin
...

...
Cp1 · · · Cpn







Y1

...
Yn



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and so

Bi−1 =
n∑

l=1

Cil Yl

Bj−1 =
n∑

r=1

CjrYr

Hence

Cov(Bi−1, Bj−1) = Cov

(
n∑

l=1

Cil Yl ,
n∑

r=1

CjrYr

)

=
n∑

r=1

n∑
l=1

Cil Cjr Cov(Yl , Yr )

Now Yl and Yr are independent when l �= r , and so

Cov(Yl , Yr ) =
{

0 if l �= r
Var(Yr ) if l = r
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Since Var(Yr ) = σ 2, we see that

Cov(Bi−1, Bj−1) = σ 2
n∑

r=1

CirCjr (9.10.4)

= σ 2(CC′)ij

where (CC′)ij is the element in row i, column j of CC′.
If we now let Cov(B) denote the matrix of covariances — that is,

Cov(B) =



Cov(B0, B0) · · · Cov(B0, Bk)
...

...
Cov(Bk , B0) · · · Cov(Bk , Bk)




then it follows from Equation 9.10.4 that

Cov(B) = σ 2CC′ (9.10.5)

Now

C′ =
(
(X ′X)−1X ′)′

= X
(
(X ′X)−1

)′

= X(X ′X)−1

where the last equality follows since (X ′X)−1 is symmetric (since X ′X is) and so is equal
to its transpose. Hence

CC′ = (X ′X)−1X ′X(X ′X)−1

= (X ′X)−1

and so we can conclude from Equation 9.10.5 that

Cov(B) = σ 2(X ′X)−1 (9.10.6)

Since Cov(Bi , Bi) = Var(Bi), it follows that the variances of the least squares estimators
are given by σ 2 multiplied by the diagonal elements of (X ′X)−1.



402 Chapter 9: Regression

The quantity σ 2 can be estimated by using the sum of squares of the residuals. That is,
if we let

SSR =
n∑

i=1

(Yi − B0 − B1xi1 − B2xi2 − · · · − Bkxik)2

then it can be shown that
SSr

σ 2 ∼ χ2
n−(k+1)

and so

E
[

SSR

σ 2

]
= n − k − 1

or

E [SSR /(n − k − 1)] = σ 2

That is, SSR /(n − k − 1) is an unbiased estimator of σ 2. In addition, as in the case
of simple linear regression, SSR will be independent of the least squares estimators
B0, B1, . . . , Bk .

REMARK

If we let ri denote the ith residual

ri = Yi − B0 − B1xi1 − · · · − Bkxik , i = 1, . . . , n

then

r = Y − XB

where

r =




r1

r2
...
rn




Hence, we may write

SSR =
n∑

i=1

r2
i (9.10.7)

= r′r
= (Y − XB)′(Y − XB)

= [Y ′ − (XB)′](Y − XB)
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= (Y ′ − B′X ′)(Y − XB)

= Y ′Y − Y ′XB − B′X ′Y + B′X ′XB

= Y ′Y − Y ′XB

where the last equality follows from the normal equations

X ′XB = X ′Y

Because Y ′ is 1 × n, X is n × p, and B is p × 1, it follows that Y ′XB is a 1 × 1 matrix.
That is, Y ′XB is a scalar and thus is equal to its transpose, which shows that

Y ′XB = (Y ′XB)′

= B′X ′Y

Hence, using Equation 9.10.7 we have proven the following identity:

SSR = Y ′Y − B′X ′Y

The foregoing is a useful computational formula for SSR (though one must be careful
of possible roundoff error when using it).

EXAMPLE 9.10b For the data of Example 9.10a, we computed that SSR = 34.12. Since
n = 8, k = 2, the estimate of σ 2 is 34.12/5 = 6.824. ■

EXAMPLE 9.10c The diameter of a tree at its breast height is influenced by many factors.
The data in Table 9.5 relate the diameter of a particular type of eucalyptus tree to its age,
average rainfall at its site, site’s elevation, and the wood’s mean specific gravity. (The data
come from R. G. Skolmen, 1975, “Shrinkage and Specific Gravity Variation in Robusta
Eucalyptus Wood Grown in Hawaii.” USDA Forest Service PSW-298.)

Assuming a linear regression model of the form

Y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + e

where x1 is the age, x2 is the elevation, x3 is the rainfall, x4 is the specific gravity, and Y is
the tree’s diameter, test the hypothesis that β2 = 0. That is, test the hypothesis that, given
the other three factors, the elevation of the tree does not affect its diameter.

SOLUTION To test this hypothesis, we begin by running Program 9.10, which yields, among
other things, the following:

(X ′X)−1
3,3 = .379, SSR = 19.262, B2 = .075
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TABLE 9.5

Diameter
Age Elevation Rainfall Specific at Breast Height

(years) (1,000 ft) (inches) Gravity (inches)

1 44 1.3 250 .63 18.1
2 33 2.2 115 .59 19.6
3 33 2.2 75 .56 16.6
4 32 2.6 85 .55 16.4
5 34 2.0 100 .54 16.9
6 31 1.8 75 .59 17.0
7 33 2.2 85 .56 20.0
8 30 3.6 75 .46 16.6
9 34 1.6 225 .63 16.2

10 34 1.5 250 .60 18.5
11 33 2.2 255 .63 18.7
12 36 1.7 175 .58 19.4
13 33 2.2 75 .55 17.6
14 34 1.3 85 .57 18.3
15 37 2.6 90 .62 18.8

It now follows from Equation 9.10.6 that

Var(B2) = .379σ 2

Since B2 is normal and

E [B2] = β2

we see that

B2 − β2

.616σ
∼ N (0, 1)

Replacing σ by its estimator SSR /10 transforms the foregoing standard normal distri-
bution into a t -distribution with 10(= n − k − 1) degrees of freedom. That is,

B2 − β2

.616
√

SSR /10
∼ t10

Hence, if β2 = 0 then

√
10/SSRB2

.616
∼ t10
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Since the value of the preceding statistic is (
√

10/19.262)(.075)/.616 = .088, the p-value
of the test of the hypothesis that β2 = 0 is

p-value = P{|T10| > .088}
= 2P{T10 > .088}
= .9316 by Program 5.8.2.A

Hence, the hypothesis is accepted (and, in fact, would be accepted at any significance level
less than .9316). ■

REMARK

The quantity

R2 = 1 − SSR∑
i

(Yi − Y )2

which measures the amount of reduction in the sum of squares of the residuals when using
the model

Y = β0 + β1x1 + · · · + βnxn + e

as opposed to the model

Y = β0 + e

is called the coefficient of multiple determination.

9.10.1 Predicting Future Responses

Let us now suppose that a series of experiments is to be performed using the input levels
x1, . . . , xk . Based on our data, consisting of the prior responses Y1, . . . , Yn, suppose we
would like to estimate the mean response. Since the mean response is

E [Y |x] = β0 + β1x1 + · · · + βkxk

a point estimate of it is simply
∑k

i=0 Bixi where x0 ≡ 1.
To determine a confidence interval estimator, we need the distribution of

∑k
i=0 Bixi .

Because it can be expressed as a linear combination of the independent normal random
variables Yi , i = 1, . . . , n, it follows that it is also normally distributed. Its mean and
variance are obtained as follows:

E


 k∑

i=0

xiBi


 =

k∑
i=0

xiE [Bi] (9.10.8)

=
k∑

i=0

xiβi since E [Bi] = βi
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That is, it is an unbiased estimator. Also, using the fact that the variance of a random
variable is equal to the covariance between that random variable and itself, we see that

Var


 k∑

i=0

xiBi


 = Cov


 k∑

i=0

xiBi ,
k∑

j=0

xjBj


 (9.10.9)

=
k∑

i=0

k∑
j=0

xixjCov(Bi , Bj )

If we let x denote the matrix

x =




x0

x1
...

xk




then, recalling that Cov(Bi , Bj )/σ 2 is the element in the (i +1)st row and ( j +1)st column
of (X ′X)−1, we can express Equation 9.10.9 as

Var


 k∑

i=0

xiBi


 = x′(X ′X)−1xσ 2 (9.10.10)

Using Equations 9.10.8 and 9.10.10, we see that

k∑
i=0

xiBi −
k∑

i=0
xiβi

σ
√

x′(X ′X)−1x
∼ N (0, 1)

If we now replace σ by its estimator
√

SSR /(n − k − 1) we obtain, by the usual argument,
that

k∑
i=0

xiBi −
k∑

i=0
xiβi√

SSR

(n − k − 1)

√
x′(X ′X)−1x

∼ tn−k−1

which gives rise to the following confidence interval estimator of
∑k

i=0 xiβi .

Confidence Interval Estimate of E [Y|x] =
∑k

i =0xiβi, (x0 ≡ 1)

A 100(1 − a) percent confidence interval estimate of
∑k

i=0 xiβi is given by

k∑
i=0

xibi ±
√

ssr
(n − k − 1)

√
x′(X ′X)−1x ta/2,n−k−1
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TABLE 9.6

Annealing Temperature
Hardness Copper Content (units of 1,000◦F)

79.2 .02 1.05
64.0 .03 1.20
55.7 .03 1.25
56.3 .04 1.30
58.6 .10 1.30
84.3 .15 1.00
70.4 .15 1.10
61.3 .09 1.20
51.3 .13 1.40
49.8 .09 1.40

where b0, . . . , bk are the values of the least squares estimators B0, B1, . . . , Bk , and ssr is the
value of SSR .

EXAMPLE 9.10d A steel company is planning to produce cold reduced sheet steel consisting
of .15 percent copper at an annealing temperature of 1,150 (degrees F), and is interested
in estimating the average (Rockwell 30-T) hardness of a sheet. To determine this, they
have collected the data shown in Table 9.6 on 10 different specimens of sheet steel having
different copper contents and annealing temperatures. Estimate the average hardness and
determine an interval in which it will lie with 95 percent confidence.

SOLUTION To solve this, we first run Program 9.10, which gives the results shown in
Figures 9.18, 9.19, and 9.20.

Hence, a point estimate of the expected hardness of sheets containing .15 percent
copper at an annealing temperature of 1,150 is 69.862. In addition, since t.025,7 = 2.365,
a 95 percent confidence interval for this value is

69.862 ± 4.083 ■

When it is only a single experiment that is going to be performed at the input levels
x1, . . . , xk , we are usually more concerned with predicting the actual response than its
mean value. That is, we are interested in utilizing our data set Y1, . . . , Yn to predict

Y (x) =
k∑

i=0

βixi + e, where x0 = 1

A point prediction is given by
∑k

i=0 Bixi where Bi is the least squares estimator of βi based
on the set of prior responses Y1, . . . , Yn, i = 1, . . . , k.
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FIGURE 9.18

To determine a prediction interval for Y (x), note first that since B0, . . . , Bk are based
on prior responses, it follows that they are independent of Y (x). Hence, it follows that
Y (x) −∑k

i=0 Bixi is normal with mean 0 and variance given by

Var


Y (x) −

k∑
i=0

Bixi


 = Var[Y (x)] + Var


 k∑

i=0

Bixi


 by independence

= σ 2 + σ 2x′(X ′X)−1x from Equation 9.10.10

and so

Y (x) −
k∑

i=0
Bixi

σ
√

1 + x′(X ′X)−1x
∼ N (0, 1)
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Multiple Linear Regression
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which yields, upon replacing σ by its estimator, that

Y (x) −
k∑

i=0
Bixi√

SSR

(n − k − 1)

√
1 + x′(X ′X)−1x

∼ tn−k−1

We thus have:

Prediction Interval for Y(x)
With 100(1 − a) percent confidence Y (x) will lie between

k∑
i=0

xibi ±
√

ssr
(n − k − 1)

√
1 + x′(X ′X)−1x ta/2,n−k−1

where b0, . . . , bk are the values of the least squares estimators B0, B1, . . . , Bk , and ssr is
the value of SSR .

EXAMPLE 9.10e If in Example 9.10d we were interested in determining an interval in which
a single steel sheet, produced with a carbon content of .15 percent and at an annealing
temperature of 1,150◦F, would lie, then the midpoint of the prediction interval would
be as given before. However, the half-length of this prediction interval would differ from
the confidence interval for the mean value by the factor

√
1.313/

√
.313. That is, the

95 percent prediction interval is

69.862 ± 8.363 ■

9.11 LOGISTIC REGRESSION MODELS FOR BINARY
OUTPUT DATA

In this section we consider experiments that result in either a success or a failure. We will
suppose that these experiments can be performed at various levels, and that an experiment
performed at level x will result in a success with probability p(x), −∞ < x < ∞. If p(x)
is of the form

p(x) = ea+bx

1 + ea+bx

then the experiments are said to come from a logistic regression model and p(x) is called
the logistics regression function. If b > 0, then p(x) = 1/[e−(a+bx) + 1] is an increasing
function that converges to 1 as x → ∞; if b < 0, then p(x) is a decreasing function that
converges to 0 as x → ∞. (When b = 0, p(x) is constant.) Plots of logistics regression
functions are given in Figure 9.21. Notice the s-shape of these curves.
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FIGURE 9.21 Logistic regression functions.

Writing p(x) = 1 − [1/(1 + e a+bx )] and differentiating gives that

∂

∂x
p(x) = be a+bx

(1 + e a+bx )2
= bp(x)[1 − p(x)]

Thus the rate of change of p(x) depends on x and is largest at those values of x for which
p(x) is near .5. For instance, at the value x such that p(x) = .5, the rate of change is
∂
∂x p(x) = .25b, whereas at that value x for which p(x) = .8 the rate of change is .16b.

If we let o(x) be the odds for success when the experiment is run at level x, then

o(x) = p(x)

1 − p(x)
= ea+bx

Thus, when b > 0, the odds increase exponentially in the input level x; when b < 0, the
odds decrease exponentially in the input level x. Taking logs of the preceding shows the
the log odds, called the logit, is a linear function:

log[o(x)] = a + bx

The parameters a and b of the logistic regression function are assumed to be unknown
and need to be estimated. This can be accomplished by using the maximum likelihood
approach. That is, suppose that the experiment is to be performed at levels x1, . . . , xk .
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Let Yi be the result (either 1 if a success, or 0 if a failure) of the experiment when performed
at level xi . Then, using the Bernoulli density function (that is, the binomial density for
a single trial), gives

P{Yi = yi} = [p(xi)] yi [1 − p(xi)]1−yi =
(

ea+bx

1 + ea+bx

)yi (
1

1 + ea+bx

)1−yi

, yi = 0, 1

Thus, the probability that the experiment at level xi results in outcome yi , for all
i = 1, . . . , k, is

P{Yi = yi , i = 1, . . . , k} =
∏

i

(
ea+bxi

1 + ea+bxi

)yi (
1

1 + ea+bxi

)1−yi

=
∏

i

(
ea+bxi

)yi

1 + ea+bxi

Taking logarithms gives that

log
(
P{Yi = yi , i = 1, . . . , k}) =

k∑
i=1

yi(a + bxi)−
k∑

i=1

log
(
1 + ea+bxi

)

The maximum likelihood estimates can now be obtained by numerically finding the values
of a and b that maximize the preceding likelihood. However, because the likelihood
is nonlinear this requires an iterative approach; consequently, one typically resorts to
specialized software to obtain the estimates.

Whereas the logistic regression model is the most frequently used model when the
response data are binary, other models are often employed. For instance in situations
where it is reasonable to suppose that p(x), the probability of a positive response when the
input level is x, is an increasing function of x, it is often supposed that p(x) has the form of
a specified probability distribution function. Indeed, when b > 0, the logistic regression
model is of this form because p(x) is equal to the distribution function of a logistic random
variable (Section 5.9) with parameters µ = −a/b, ν = 1/b. Another model of this type is
the probit model, which supposes that for some constants, α, β > 0

p(x) = 
(α + βx) = 1√
2π

∫ α+βx

−∞
e−y2/2 dy

In other words p(x) is equal to the probability that a standard normal random variable
is less than α + βx.

EXAMPLE 9.11a A common assumption for whether an animal becomes sick when
exposed to a chemical at dosage level x is to assume a threshold model, which supposes
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that each animal has a random threshold and will become ill if the dosage level exceeds
that threshold. The exponential distribution has sometimes been used as the threshold
distribution. For instance, a model considered in Freedman and Zeisel (“From Mouse to
Man: The Quantitative Assessment of Cancer Risks,” Statistical Science, 1988, 3, 1, 3–56)
supposes that a mouse exposed to x units of DDT (measured in ppm) will contract cancer
of the liver with probability

p(x) = 1 − e−ax , x > 0

Because of the lack of memory of the exponential distribution, this is equivalent to assuming
that if the mouse who is still healthy after receiving a (partial) dosage of level x is as good
as it was before receiving any dosage.

It was reported in Freedman and Zeisel that 84 of 111 mice exposed to DDT at a level
of 250 ppm developed cancer. Therefore, α can be estimated from

1 − e−250α̂ = 84

111

or

α̂ = − log(27/111)

250
= .005655 ■

Problems

1. The following data relate x, the moisture of a wet mix of a certain product, to Y ,
the density of the finished product.

xi Yi

5 7.4
6 9.3
7 10.6

10 15.4
12 18.1
15 22.2
18 24.1
20 24.8

(a) Draw a scatter diagram.
(b) Fit a linear curve to the data.
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2. The following data relate the number of units of a good that were ordered as a
function of the price of the good at six different locations.

Number ordered 88 112 123 136 158 172

Price 50 40 35 30 20 15

How many units do you think would be ordered if the price were 25?

3. The corrosion of a certain metallic substance has been studied in dry oxygen at
500 degrees Centigrade. In this experiment, the gain in weight after various periods
of exposure was used as a measure of the amount of oxygen that had reacted with
the sample. Here are the data:

Hours Percent Gain

1.0 .02
2.0 .03
2.5 .035
3.0 .042
3.5 .05
4.0 .054

(a) Plot a scatter diagram.
(b) Fit a linear relation.
(c) Predict the percent weight gain when the metal is exposed for 3.2 hours.

4. The following data indicate the relationship between x, the specific gravity of
a wood sample, and Y , its maximum crushing strength in compression parallel to
the grain.

xi yi(psi) xi yi(psi)
.41 1,850 .39 1,760
.46 2,620 .41 2,500
.44 2,340 .44 2,750
.47 2,690 .43 2,730
.42 2,160 .44 3,120

(a) Plot a scatter diagram. Does a linear relationship seem reasonable?
(b) Estimate the regression coefficients.
(c) Predict the maximum crushing strength of a wood sample whose specific

gravity is .43.
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5. The following data indicate the gain in reading speed versus the number of weeks
in the program of 10 students in a speed-reading program.

Speed Gain
Number of Weeks (wds/min)

2 21
3 42
8 102

11 130
4 52
5 57
9 105
7 85
5 62
7 90

(a) Plot a scatter diagram to see if a linear relationship is indicated.
(b) Find the least squares estimates of the regression coefficients.
(c) Estimate the expected gain of a student who plans to take the program for

7 weeks.

6. Infrared spectroscopy is often used to determine the natural rubber content of
mixtures of natural and synthetic rubber. For mixtures of known percentages, the
infrared spectroscopy gave the following readings:

Percentage 0 20 40 60 80 100

Reading .734 .885 1.050 1.191 1.314 1.432

If a new mixture gives an infrared spectroscopy reading of 1.15, estimate its
percentage of natural rubber.

7. The following table gives the 1996 SAT mean math and verbal scores in each
state and the District of Columbia, along with the percentage of the states’ gradu-
ating high school students that took the examination. Use data relating to the
first 20 locations listed (Alabama to Maine) to develop a prediction of the mean
student mathematics score in terms of the percentage of students that take the
examination. Then compare your predicted values for the next 5 states (based on
the percentage taking the exam in these states) with the actual mean math scores.
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SAT Mean Scores by State, 1996 (recentered scale)

1996 % Graduates
Taking

Verbal Math SAT

Alabama . . . . . . . . . . . . . . . . 565 558 8
Alaska . . . . . . . . . . . . . . . . . . 521 513 47
Arizona . . . . . . . . . . . . . . . . . 525 521 28
Arkansas . . . . . . . . . . . . . . . . 566 550 6
California . . . . . . . . . . . . . . . 495 511 45
Colorado . . . . . . . . . . . . . . . 536 538 30
Connecticut . . . . . . . . . . . . . 507 504 79
Delaware . . . . . . . . . . . . . . . . 508 495 66
Dist. of Columbia . . . . . . . . 489 473 50
Florida . . . . . . . . . . . . . . . . . 498 496 48
Georgia . . . . . . . . . . . . . . . . . 484 477 63
Hawaii . . . . . . . . . . . . . . . . . 485 510 54
Idaho . . . . . . . . . . . . . . . . . . . 543 536 15
Illinois . . . . . . . . . . . . . . . . . . 564 575 14
Indiana . . . . . . . . . . . . . . . . 494 494 57
Iowa . . . . . . . . . . . . . . . . . . . 590 600 5
Kansas . . . . . . . . . . . . . . . . . . 579 571 9
Kentucky . . . . . . . . . . . . . . . 549 544 12
Louisiana . . . . . . . . . . . . . . . 559 550 9
Maine . . . . . . . . . . . . . . . . . . 504 498 68
Maryland . . . . . . . . . . . . . . . 507 504 64
Massachusetts . . . . . . . . . . . 507 504 80
Michigan . . . . . . . . . . . . . . . 557 565 11
Minnesota . . . . . . . . . . . . . . 582 593 9
Mississippi . . . . . . . . . . . . . . 569 557 4
Missouri . . . . . . . . . . . . . . . . 570 569 9
Montana . . . . . . . . . . . . . . . . 546 547 21
Nebraska. . . . . . . . . . . . . . . . 567 568 9
Nevada . . . . . . . . . . . . . . . . . 508 507 31
New Hampshire . . . . . . . . . 520 514 70
New Jersey . . . . . . . . . . . . . 498 505 69
New Mexico . . . . . . . . . . . . 554 548 12
New York . . . . . . . . . . . . . . 497 499 73
North Carolina . . . . . . . . . . 490 486 59
North Dakota . . . . . . . . . . . 596 599 5
Ohio . . . . . . . . . . . . . . . . . . . 536 535 24
Oklahoma . . . . . . . . . . . . . . 566 557 8
Oregon . . . . . . . . . . . . . . . . 523 521 50
Pennsylvania . . . . . . . . . . . . 498 492 71

(continued )
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1996 % Graduates
Taking

Verbal Math SAT

Rhode Island . . . . . . . . . . . . 501 491 69
South Carolina . . . . . . . . . . 480 474 57
South Dakota . . . . . . . . . . . 574 566 5
Tennessee . . . . . . . . . . . . . . . 563 552 14
Texas . . . . . . . . . . . . . . . . . . . 495 500 48
Utah . . . . . . . . . . . . . . . . . . . 583 575 4
Vermont . . . . . . . . . . . . . . . . 506 500 70
Virginia . . . . . . . . . . . . . . . . . 507 496 68
Washington . . . . . . . . . . . . . 519 519 47
West Virginia . . . . . . . . . . . 526 506 17
Wisconsin . . . . . . . . . . . . . . 577 586 8
Wyoming . . . . . . . . . . . . . . . 544 544 11
National Average . . . . . . . . . 505 508 41

Source: The College Board

8. Verify Equation 9.3.3, which states that

Var(A) =
σ 2

n∑
i=1

x2
i

n
n∑

i=1
(xi − x̄)2

9. In Problem 4,

(a) Estimate the variance of an individual response.
(b) Determine a 90 percent confidence interval for the variance.

10. Verify that

SSR = SxxSYY − S2
xY

Sxx

11. The following table relates the number of sunspots that appeared each year from
1970–1983 to the number of auto accident deaths during that year. Test the
hypothesis that the number of auto deaths is not affected by the number of
sunspots. (The sunspot data are from Jastrow and Thompson, Fundamentals and
Frontiers of Astronomy, and the auto death data are from General Statistics of the U.S.
1985.)
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Auto Accidents Deaths
Year Sunspots (1,000s)

70 165 54.6
71 89 53.3
72 55 56.3
73 34 49.6
74 9 47.1
75 30 45.9
76 59 48.5
77 83 50.1
78 109 52.4
79 127 52.5
80 153 53.2
81 112 51.4
82 80 46
83 45 44.6

12. The following data set presents the heights of 12 male law school classmates whose
law school examination scores were roughly equal. It also gives their annual salaries
5 years after graduation. Each of them went into corporate law. The height is in
inches and the salary in units of $1,000.

Height Salary

64 91
65 94
66 88
67 103
69 77
70 96
72 105
72 88
74 122
74 102
75 90
76 114

(a) Do the above data establish the hypothesis that a lawyer’s salary is related to
his height? Use the 5 percent level of significance.

(b) What was the null hypothesis in part (a)?
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13. Suppose in the simple linear regression model

Y = α + βx + e

that 0 < β < 1.

(a) Show that if x < α/(1 − β), then

x < E [Y ] <
α

1 − β

(b) Show that if x > α/(1 − β), then

x > E [Y ] >
α

1 − β

and conclude that E [Y ] is always between x and α/(1 − β).

14. A study has shown that a good model for the relationship between X and Y , the
first and second year batting averages of a randomly chosen major league baseball
player, is given by the equation

Y = .159 + .4X + e

where e is a normal random variable with mean 0. That is, the model is
a simple linear regression with a regression toward the mean.

(a) If a player’s batting average is .200 in his first year, what would you predict
for the second year?

(b) If a player’s batting average is .265 in his first year, what would you predict
for the second year?

(c) If a player’s batting average is .310 in his first year, what would you predict
for the second year?

15. Experienced flight instructors have claimed that praise for an exceptionally fine
landing is typically followed by a poorer landing on the next attempt, whereas
criticism of a faulty landing is typically followed by an improved landing. Should
we thus conclude that verbal praise tends to lower performance levels, whereas
verbal criticism tends to raise them? Or is some other explanation possible?

16. Verify Equation 9.4.3.

17. The following data represent the relationship between the number of alignment
errors and the number of missing rivets for 10 different aircrafts.

(a) Plot a scatter diagram.
(b) Estimate the regression coefficients.
(c) Test the hypothesis that α = 1.
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Number of Number of
Missing Rivets = x Alignment Errors = y

13 7
15 7
10 5
22 12
30 15
7 2

25 13
16 9
20 11
15 8

(d) Estimate the expected number of alignment errors of a plane having 24
missing rivets.

(e) Compute a 90 percent confidence interval estimate for the quantity in (d).

18. The following data give the average price of all books reviewed in the journal
Science in the years from 1990 to 1996.

Price (Dollars)

1990 1991 1992 1993 1994 1995 1996

54.43 54.08 57.58 51.21 59.96 60.52 62.13

Give an interval that, with 95 percent confidence, will contain the average price
of all books reviewed in Science in 1997.

Problems 19 through 23 refer to the following data relating cigarette smoking
and death rates for 4 types of cancers in 14 states. The data are based in part on
records concerning 1960 cigarette tax receipts.

Cigarette Smoking and Cancer Death Rates

Deaths per Year per 100,000 People

Cigarettes Bladder Lung Kidney
State per Person Cancer Cancer Cancer Leukemia

California 2,860 4.46 22.07 2.66 7.06
Idaho 2,010 3.08 13.58 2.46 6.62
Illinois 2,791 4.75 22.80 2.95 7.27

(continued )
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Deaths per Year per 100,000 People

Cigarettes Bladder Lung Kidney
State per Person Cancer Cancer Cancer Leukemia

Indiana 2,618 4.09 20.30 2.81 7.00
Iowa 2,212 4.23 16.59 2.90 7.69
Kansas 2,184 2.91 16.84 2.88 7.42
Kentucky 2,344 2.86 17.71 2.13 6.41
Massachusetts 2,692 4.69 22.04 3.03 6.89
Minnesota 2,206 3.72 14.20 3.54 8.28
New York 2,914 5.30 25.02 3.10 7.23
Alaska 3,034 3.46 25.88 4.32 4.90
Nevada 4,240 6.54 23.03 2.85 6.67
Utah 1,400 3.31 12.01 2.20 6.71
Texas 2,257 3.21 20.74 2.69 7.02

19. (a) Draw a scatter diagram of cigarette consumption versus death rate from
bladder cancer.

(b) Does the diagram indicate the possibility of a linear relationship?
(c) Find the best linear fit.
(d) If next year’s average cigarette consumption is 2,500, what is your prediction

of the death rate from bladder cancer?

20. (a) Draw a scatter diagram relating cigarette use and death rates from lung
cancer.

(b) Estimate the regression parameters α and β.
(c) Test at the .05 level of significance the hypothesis that cigarette consumption

does not affect the death rate from lung cancer.
(d) What is the p-value of the test in part (c)?

21. (a) Draw a scatter diagram of cigarette use versus death rate from kidney cancer.
(b) Estimate the regression line.
(c) What is the p-value in the test that the slope of the regression line is 0?
(d) Determine a 90 percent confidence interval for the mean death rate from

kidney cancer in a state whose citizens smoke an average of 3,400 cigarettes
per year.

22. (a) Draw a scatter diagram of cigarettes smoked versus death rate from leukemia.
(b) Estimate the regression coefficients.
(c) Test the hypothesis that there is no regression of the death rate from leukemia

on the number of cigarettes used. That is, test that β = 0.
(d) Determine a 90 percent prediction interval for the leukemia death rate in

a state whose citizens smoke an average of 2,500 cigarettes.



422 Chapter 9: Regression

23. (a) Estimate the variances in Problems 19 through 22.
(b) Determine a 95 percent confidence interval for the variance in the data relating

to lung cancer.
(c) Break up the lung cancer data into two parts — the first corresponding to

states whose average cigarette consumption is less than 2,300, and the second
greater. Assume a linear regression model for both sets of data. How would
you test the hypothesis that the variance of a response is the same for both
sets?

(d) Do the test in part (c) at the .05 level of significance.

24. Plot the standardized residuals from the data of Problem 1. What does the plot
indicate about the assumptions of the linear regression model?

25. It is difficult and time consuming to measure directly the amount of protein in
a liver sample. As a result, medical laboratories often make use of the fact that
the amount of protein is related to the amount of light that would be absorbed
by the sample. As a result, a spectrometer that emits light is shined on a solution
that contains the liver sample and the amount of light absorbed is then used to
estimate the amount of protein.

The above procedure was tried on five samples having known amounts of
protein, with the following data resulting.

Light Absorbed Amount of Protein (mg)

.44 2

.82 16
1.20 30
1.61 46
1.83 55

(a) Determine the coefficient of determination.
(b) Does this appear to be a reasonable way of estimating the amount of protein

in a liver sample?
(c) What is the estimate of the amount of protein when the light absorbed is 1.5?
(d) Determine a prediction interval, in which we can have 90 percent confidence,

for the quantity in part (c).

26. The determination of the shear strength of spot welds is relatively difficult, whereas
measuring the weld diameter of spot welds is relatively simple. As a result, it would
be advantageous if shear strength could be predicted from a measurement of weld
diameter. The data are as follows:

(a) Draw a scatter diagram.
(b) Find the least squares estimates of the regression coefficients.



Problems 423

Shear Strength (psi) Weld Diameter (.0001 in.)

370 400
780 800

1,210 1,250
1,560 1,600
1,980 2,000
2,450 2,500
3,070 3,100
3,550 3,600
3,940 4,000
3,950 4,000

(c) Test the hypothesis that the slope of the regression line is equal to 1 at the .05
level significance.

(d) Estimate the expected value of shear strength when the weld diameter is .2500.
(e) Find a prediction interval such that, with 95 percent confidence, the value

of shear strength corresponding to a weld diameter of .2250 inch will be
contained in it.

(f ) Plot the standardized residuals.
(g) Does the plot in part (f) support the assumptions of the model?

27. A screw manufacturer is interested in giving out data to his customers on the
relation between nominal and actual lengths. The following results (in inches)
were observed.

Nominal x Actual y
1
4 .262 .262 .245
1
2 .496 .512 .490
3
4 .743 .744 .751

1 .976 1.010 1.004
1 1

4 1.265 1.254 1.252

1 1
2 1.498 1.518 1.504

1 3
4 1.738 1.759 1.750

2 2.005 1.992 1.992

(a) Estimate the regression coefficients.
(b) Estimate the variance involved in manufacturing a screw.
(c) For a large set of nominal 1-inch screws, find a 90 percent confidence interval

for the average length.
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(d) For a nominal 1-inch screw, find a 90 percent prediction interval for its actual
length.

(e) Plot the standardized residuals.
(f ) Do the residuals in part (e) indicate any flaw in the regression model?
(g) Determine the index of fit.

28. Glass plays a key role in criminal investigations, because criminal activity often
results in the breakage of windows and other glass objects. Since glass fragments
often lodge in the clothing of the criminal, it is of great importance to be able
to identify such fragments as originating at the scene of the crime. Two physical
properties of glass that are useful for identification purposes are its refractive index,
which is relatively easy to measure, and its density, which is much more difficult
to measure. The exact measurement of density is, however, greatly facilitated if
one has a good estimate of this value before setting up the laboratory experiment
needed to determine it exactly. Thus, it would be quite useful if one could use the
refractive index of a glass fragment to estimate its density.

The following data relate the refractive index to the density for 18 pieces of
glass.

Refractive Index Density Refractive Index Density

1.5139 2.4801 1.5161 2.4843
1.5153 2.4819 1.5165 2.4858
1.5155 2.4791 1.5178 2.4950
1.5155 2.4796 1.5181 2.4922
1.5156 2.4773 1.5191 2.5035
1.5157 2.4811 1.5227 2.5086
1.5158 2.4765 1.5227 2.5117
1.5159 2.4781 1.5232 2.5146
1.5160 2.4909 1.5253 2.5187

(a) Predict the density of a piece of glass with a refractive index 1.52.
(b) Determine an interval that, with 95 percent confidence, will contain the

density of the glass in part (a).

29. The regression model

Y = βx + e, e ∼ N (0, σ 2)

is called regression through the origin since it presupposes that the expected
response corresponding to the input level x = 0 is equal to 0. Suppose that
(xi , Yi), i = 1, . . . , n is a data set from this model.

(a) Determine the least squares estimator B of β.
(b) What is the distribution of B?
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(c) Define SSR and give its distribution.
(d) Derive a test of H0 : β = β0 versus H1 : β �= β0.
(e) Determine a 100(1 − a) percent prediction interval for Y (x0), the response

at input level x0.

30. Prove the identity

R2 = S2
xY

SxxSYY

31. The weight and systolic blood pressure of randomly selected males in age-group
25 to 30 are shown in the following table.

Subject Weight Systolic BP Subject Weight Systolic BP

1 165 130 11 172 153
2 167 133 12 159 128
3 180 150 13 168 132
4 155 128 14 174 149
5 212 151 15 183 158
6 175 146 16 215 150
7 190 150 17 195 163
8 210 140 18 180 156
9 200 148 19 143 124

10 149 125 20 240 170

(a) Estimate the regression coefficients.
(b) Do the data support the claim that systolic blood pressure does not depend

on an individual’s weight?
(c) If a large number of males weighing 182 pounds have their blood pressures

taken, determine an interval that, with 95 percent confidence, will contain
their average blood pressure.

(d) Analyze the standardized residuals.
(e) Determine the sample correlation coefficient.

32. It has been determined that the relation between stress (S) and the number of
cycles to failure (N ) for a particular type alloy is given by

S = A
N m

where A and m are unknown constants. An experiment is run yielding the following
data.
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Stress N
(thousand psi) (million cycles to failure)

55.0 .223
50.5 .925
43.5 6.75
42.5 18.1
42.0 29.1
41.0 50.5
35.7 126
34.5 215
33.0 445
32.0 420

Estimate A and m.

33. In 1957 the Dutch industrial engineer J. R. DeJong proposed the following model
for the time it takes to perform a simple manual task as a function of the number
of times the task has been practiced:

T ≈ ts−n

where T is the time, n is the number of times the task has been practiced, and t
and s are parameters depending on the task and individual. Estimate t and s for
the following data set.

T 22.4 21.3 19.7 15.6 15.2 13.9 13.7
n 0 1 2 3 4 5 6

34. The chlorine residual in a swimming pool at various times after being cleaned is
as given:

Chlorine Residual
Time (hr) (pt/million)

2 1.8
4 1.5
6 1.45
8 1.42

10 1.38
12 1.36

Fit a curve of the form

Y ≈ ae−bx

What would you predict for the chlorine residual 15 hours after a cleaning?
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35. The proportion of a given heat rise that has dissipated a time t after the source is
cut off is of the form

P = 1 − e−αt

for some unknown constant α. Given the data

P .07 .21 .32 .38 .40 .45 .51
t .1 .2 .3 .4 .5 .6 .7

estimate the value of α. Estimate the value of t at which half of the heat rise is
dissipated.

36. The following data represent the bacterial count of five individuals at different
times after being inoculated by a vaccine consisting of the bacteria.

Days Since Inoculation Bacterial Count

3 121,000
6 134,000
7 147,000
8 210,000
9 330,000

(a) Fit a curve.
(b) Estimate the bacteria count of a new patient after 8 days.

37. The following data yield the amount of hydrogen present (in parts per million)
in core drillings of fixed size at the following distances (in feet) from the base of
a vacuum-cast ingot.

Distance 1 2 3 4 5 6 7 8 9 10

Amount 1.28 1.50 1.12 .94 .82 .75 .60 .72 .95 1.20

(a) Draw a scatter diagram.
(b) Fit a curve of the form

Y = α + βx + γ x2 + e

to the data.

38. A new drug was tested on mice to determine its effectiveness in reducing cancerous
tumors. Tests were run on 10 mice, each having a tumor of size 4 grams, by
varying the amount of the drug used and then determining the resulting reduction
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in the weight of the tumor. The data were as follows:

Coded Amount of Drug Tumor Weight Reduction

1 .50
2 .90
3 1.20
4 1.35
5 1.50
6 1.60
7 1.53
8 1.38
9 1.21

10 .65

Estimate the maximum expected tumor reduction and the amount of the drug
that attains it by fitting a quadratic regression equation of the form

Y = β0 + β1x + β2x2 + e

39. The following data represent the relation between the number of cans damaged in
a boxcar shipment of cans and the speed of the boxcar at impact.

Speed Number of Cans Damaged

3 54
3 62
3 65
5 94
5 122
5 84
6 142
7 139
7 184
8 254

(a) Analyze as a simple linear regression model.
(b) Plot the standardized residuals.
(c) Do the results of part (b) indicate any flaw in the model?
(d) If the answer to part (c) is yes, suggest a better model and estimate all resulting

parameters.
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40. Redo Problem 5 under the assumption that the variance of the gain in reading
speed is proportional to the number of weeks in the program.

41. The following data relate the proportions of coal miners who exhibit symptoms of
pneumoconiosis to the number of years of working in coal mines.

Years Working Proportion Having Penumoconiosis

5 0
10 .0090
15 .0185
20 .0672
25 .1542
30 .1720
35 .1840
40 .2105
45 .3570
50 .4545

Estimate the probability that a coal miner who has worked for 42 years will have
pneumoconiosis.

42. The following data set refers to Example 9.8c.

Number of Cars Number of Accidents
(Daily) (Monthly)

2,000 15
2,300 27
2,500 20
2,600 21
2,800 31
3,000 16
3,100 22
3,400 23
3,700 40
3,800 39
4,000 27
4,600 43
4,800 53

(a) Estimate the number of accidents in a month when the number of cars using
the highway is 3,500.
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(b) Use the model
√

Y = α + βx + e

and redo part (a).

43. The peak discharge of a river is an important parameter for many engineering
design problems. Estimates of this parameter can be obtained by relating it to the
watershed area (x1) and watershed slope (x2). Estimate the relationship based on
the following data.

Peak
x 1 x 2 Discharge

(m2) (ft/ft) (ft3/sec)

36 .005 50
37 .040 40
45 .004 45
87 .002 110

450 .004 490
550 .001 400

1,200 .002 650
4,000 .0005 1,550

44. The sediment load in a stream is related to the size of the contributing drainage
area (x1) and the average stream discharge (x2). Estimate this relationship using
the following data.

Area Discharge Sediment Yield
(×103 mi2) (ft3/sec) (Millions of tons/yr)

8 65 1.8
19 625 6.4
31 1,450 3.3
16 2,400 1.4
41 6,700 10.8
24 8,500 15.0
3 1,550 1.7
3 3,500 .8
3 4,300 .4
7 12,100 1.6

45. Fit a multiple linear regression equation to the following data set.
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x1 x2 x3 x4 y

1 11 16 4 275
2 10 9 3 183
3 9 4 2 140
4 8 1 1 82
5 7 2 1 97
6 6 1 −1 122
7 5 4 −2 146
8 4 9 −3 246
9 3 16 −4 359

10 2 25 −5 482

46. The following data refer to Stanford heart transplants. It relates the survival time
of patients that have received heart transplants to their age when the transplant
occurred and to a so-called mismatch score that is supposed to be an indicator of
how well the transplanted heart should fit the recipient.

Survival Time (in days) Mismatch Score Age

624 1.32 51.0
46 .61 42.5
64 1.89 54.6

1,350 .87 54.1
280 1.12 49.5
10 2.76 55.3

1,024 1.13 43.4
39 1.38 42.8

730 .96 58.4
136 1.62 52.0
836 1.58 45.0
60 .69 64.5

(a) Letting the dependent variable be the logarithm of the survival time, fit
a regression on the independent variables mismatch score and age.

(b) Estimate the variance of the error term.

47. (a) Fit a multiple linear regression equation to the following data set.
(b) Test the hypothesis that β0 = 0.
(c) Test the hypothesis that β3 = 0.
(d) Test the hypothesis that the mean response at the input levels x1 = x2 =

x3 = 1 is 8.5.
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x1 x2 x3 y

7.1 .68 4 41.53
9.9 .64 1 63.75
3.6 .58 1 16.38
9.3 .21 3 45.54
2.3 .89 5 15.52
4.6 .00 8 28.55
.2 .37 5 5.65

5.4 .11 3 25.02
8.2 .87 4 52.49
7.1 .00 6 38.05
4.7 .76 0 30.76
5.4 .87 8 39.69
1.7 .52 1 17.59
1.9 .31 3 13.22
9.2 .19 5 50.98

48. The tensile strength of a certain synthetic fiber is thought to be related to x1, the
percentage of cotton in the fiber, and x2, the drying time of the fiber. A test of 10
pieces of fiber produced under different conditions yielded the following results.

Y = Tensile x 1 = Percentage x 2 = Drying
Strength of Cotton Time

213 13 2.1
220 15 2.3
216 14 2.2
225 18 2.5
235 19 3.2
218 20 2.4
239 22 3.4
243 17 4.1
233 16 4.0
240 18 4.3

(a) Fit a multiple regression equation.
(b) Determine a 90 percent confidence interval for the mean tensile strength of

a synthetic fiber having 21 percent cotton whose drying time is 3.6.

49. The time to failure of a machine component is related to the operating volt-
age (x1), the motor speed in revolutions per minute (x2), and the operating
temperature (x3).



Problems 433

A designed experiment is run in the research and development laboratory, and the
following data, where y is the time to failure in minutes, are obtained.

y x 1 x2 x3

2,145 110 750 140
2,155 110 850 180
2,220 110 1,000 140
2,225 110 1,100 180
2,260 120 750 140
2,266 120 850 180
2,334 120 1,000 140
2,340 130 1,000 180
2,212 115 840 150
2,180 115 880 150

(a) Fit a multiple regression model to these data.
(b) Estimate the error variance.
(c) Determine a 95 percent confidence interval for the mean time to failure

when the operating voltage is 125, the motor speed is 900, and the operating
temperature is 160.

50. Explain why, for the same data, a prediction interval for a future response always
contains the corresponding confidence interval for the mean response.

51. Consider the following data set.

x1 x2 y
5.1 2 55.42
5.4 8 100.21
5.9 −2 27.07
6.6 12 169.95
7.5 −6 −17.93
8.6 16 197.77
9.9 −10 −25.66

11.4 20 264.18
13.1 −14 −53.88
15 24 317.84
17.1 −18 −72.53
19.4 28 385.53

(a) Fit a linear relationship between y and x1, x2.
(b) Determine the variance of the error term.
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(c) Determine an interval that, with 95 percent confidence, will contain the
response when the inputs are x1 = 10. 2 and x2 = 17.

52. The cost of producing power per kilowatt hour is a function of the load factor
and the cost of coal in cents per million Btu. The following data were obtained
from 12 mills.

Load Factor Cost of Power
(in percent) Coal Cost

84 14 4.1
81 16 4.4
73 22 5.6
74 24 5.1
67 20 5.0
87 29 5.3
77 26 5.4
76 15 4.8
69 29 6.1
82 24 5.5
90 25 4.7
88 13 3.9

(a) Estimate the relationship.
(b) Test the hypothesis that the coefficient of the load factor is equal to 0.
(c) Determine a 95 percent prediction interval for the power cost when the load

factor is 85 and the coal cost is 20.

53. The following data relate the systolic blood pressure to the age (x1) and weight
(x2) of a set of individuals of similar body type and lifestyle.

Age Weight Blood Pressure

25 162 112
25 184 144
42 166 138
55 150 145
30 192 152
40 155 110
66 184 118
60 202 160
38 174 108

(a) Test the hypothesis that, when an individual’s weight is known, age gives
no additional information in predicting blood pressure.
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(b) Determine an interval that, with 95 percent confidence, will contain the
average blood pressure of all individuals of the preceding type that are
45 years old and weigh 180 pounds.

(c) Determine an interval that, with 95 percent confidence, will contain the
blood pressure of a given individual of the preceding type who is 45 years old
and weighs 180 pounds.

54. A recently completed study attempted to relate job satisfaction to income (in
1,000s) and seniority for a random sample of 9 municipal workers. The job sat-
isfaction value given for each worker is his or her own assessment of such, with a
score of 1 being the lowest and 10 being the highest. The following data resulted.

Yearly Income Years on the Job Job Satisfaction

27 8 5.6
22 4 6.3
34 12 6.8
28 9 6.7
36 16 7.0
39 14 7.7
33 10 7.0
42 15 8.0
46 22 7.8

(a) Estimate the regression parameters.
(b) What qualitative conclusions can you draw about how job satisfaction changes

when income remains fixed and the number of years of service increases?
(c) Predict the job satisfaction of an employee who has spent 5 years on the job

and earns a yearly salary of $31,000.

55. Suppose in Problem 54 that job satisfaction was related solely to years on the job,
with the following data resulting.

Years on the Job Job Satisfaction

8 5.6
4 6.3

12 6.8
9 6.7

16 7.0
14 7.7
10 7.0
15 8.0
22 7.8
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(a) Estimate the regression parameters α and β.
(b) What is the qualitative relationship between years of service and job

satisfaction? That is, what appears to happen to job satisfaction as service
increases?

(c) Compare your answer to part (b) with the answer you obtained in part (b) of
Problem 54.

(d) What conclusion, if any, can you draw from your answer in part (c)?

56. For the logistics regression model, find the value x such that p(x) = .5

57. A study of 64 prematurely born infants was interested in the relation between
the gestational age (in weeks) of the infant at birth and whether the infant was
breast-feeding at the time of release from the birthing hospital. The following data
resulted:

Gestational Age Frequency Number Breast-Feeding

28 6 2
29 5 2
30 9 7
31 9 7
32 20 16
33 15 14

In the preceding, the frequency column refers to the number of babies born after
the specified gestational number of weeks.

(a) Explain how the relationship between gestational age and whether the infant
was breast-feeding can be analyzed via a logistics regression model.

(b) Use appropriate software to estimate the parameters for this model.
(c) Estimate the probability that a newborn with a gestational age of 29 weeks

will be breast-feeding.

58. Twelve first-time heart attack victims were given a test that measures internal
anger. The following data relates their scores and whether they had a second heart
attack within 5 years.

Anger Score Second Heart Attack

80 yes
77 yes
70 no
68 yes
64 no

(continued )
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Anger Score Second Heart Attack

60 yes
50 yes
46 no
40 yes
35 no
30 no
25 yes

(a) Explain how the relationship between a second heart attack and one’s anger
score can be analyzed via a logistics regression model.

(b) Use appropriate software to estimate the parameters for this model.
(c) Estimate the probability that a heart attack victim with an anger score of 55

will have a second attack within 5 years.
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Chapter 10

ANALYSIS OF VARIANCE

10.1 INTRODUCTION
A large company is considering purchasing, in quantity, one of four different computer
packages designed to teach a new programming language. Some influential people within
this company have claimed that these packages are basically interchangeable in that the one
chosen will have little effect on the final competence of its user. To test this hypothesis the
company has decided to choose 160 of its engineers, and divide them into 4 groups of size
40. Each member in group i will then be given teaching package i, i = 1, 2, 3, 4, to learn
the new language. When all the engineers complete their study, a comprehensive exam
will be given. The company then wants to use the results of this examination to determine
whether the computer teaching packages are really interchangeable or not. How can they
do this?

Before answering this question, let us note that we clearly desire to be able to conclude
that the teaching packages are indeed interchangeable when the average test scores in all
the groups are similar and to conclude that the packages are essentially different when
there is a large variation among these average test scores. However, to be able to reach
such a conclusion, we should note that the method of division of the 160 engineers
into 4 groups is of vital importance. For example, suppose that the members of the first
group score significantly higher than those of the other groups. What can we conclude
from this? Specifically, is this result due to teaching package 1 being a superior teaching
package, or is it due to the fact that the engineers in group 1 are just better learners? To be
able to conclude the former, it is essential that we divide the 160 engineers into the 4 groups
in such a way so as to make it extremely unlikely that one of these groups is inherently
superior. The time-tested method for doing this is to divide the engineers into 4 groups
in a completely random fashion. That is, we should do it in such a way so that all possible
divisions are equally likely; for in this case, it would be very unlikely that any one group
would be significantly superior to any other group. So let us suppose that the division of the
engineers was indeed done “at random.” (Whereas it is not at all obvious how this can be
accomplished, one efficient procedure is to start by arbitrarily numbering the 160 engineers.
Then generate a random permutation of the integers 1, 2, . . . , 160 and put the engineers

439
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whose numbers are among the first 40 of the permutation into group 1, those whose num-
bers are among the 41st through the 80th of the permutation into group 2, and so on.)

It is now probably reasonable to suppose that the test score of a given individual
should be approximately a normal random variable having parameters that depend on
the package from which he was taught. Also, it is probably reasonable to suppose that
whereas the average test score of an engineer will depend on the teaching package she
was exposed to, the variability in the test score will result from the inherent varia-
tion of 160 different people and not from the particular package used. Thus, if we let
Xij , i = 1, . . . , 4, j = 1, . . . , 40, denote the test score of the jth engineer in group i,
a reasonable model might be to suppose that the Xij are independent random variables
with Xij having a normal distribution with unknown mean µi and unknown variance σ 2.
The hypothesis that the teaching packages are interchangeable is then equivalent to the
hypothesis that µ1 = µ2 = µ3 = µ4.

In this chapter, we present a technique that can be used to test such a hypothesis. This
technique, which is rather general and can be used to make inferences about a multitude
of parameters relating to population means, is known as the analysis of variance.

10.2 AN OVERVIEW
Whereas hypothesis tests concerning two population means were studied in Chapter 8,
tests concerning multiple population means will be considered in the present chapter. In
Section 10.3, we suppose that we have been provided samples of size n from m distinct
populations and that we want to use these data to test the hypothesis that the m population
means are equal. Since the mean of a random variable depends only on a single factor,
namely, the sample the variable is from, this scenario is said to constitute a one-way
analysis of variance. A procedure for testing the hypothesis is presented. In addition, in
Section 10.3.1 we show how to obtain multiple comparisons of the

(m
2

)
differences between

the pairs of population means; and in Section 10.3.2 we show how the equal means
hypothesis can be tested when the m sample sizes are not all equal.

In Sections 10.4 and 10.5, we consider models that assume that there are two factors
that determine the mean value of a variable. In these models, the variables can be thought
of as being arranged in a rectangular array, with the mean value of a specified variable
depending both on the row and on the column in which it is located. Such a model is
called a two-way analysis of variance. In these sections we suppose that the mean value of a
variable depends on its row and column in an additive fashion; specifically, that the mean
of the variable in row i, column j can be written as µ + αi + βj . In Section 10.4, we
show how to estimate these parameters, and in Section 10.5 how to test hypotheses to the
effect that a given factor — either the row or the column in which a variable is located —
does not affect the mean. In Section 10.6, we consider the situation where the mean of
a variable is allowed to depend on its row and column in a nonlinear fashion, thus allowing
for a possible interaction between the two factors. We show how to test the hypothesis that
there is no interaction, as well as ones concerning the lack of a row effect and the lack of
a column effect on the mean value of a variable.
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In all of the models considered in this chapter, we assume that the data are normally
distributed with the same (although unknown) variance σ 2. The analysis of variance
approach for testing a null hypothesis H0 concerning multiple parameters relating to the
population means is based on deriving two estimators of the common variance σ 2. The
first estimator is a valid estimator of σ 2 whether the null hypothesis is true or not, while
the second one is a valid estimator only when H0 is true. In addition, when H0 is not true
this latter estimator will tend to exceed σ 2. The test will be to compare the values of these
two estimators, and to reject H0 when the ratio of the second estimator to the first one is
sufficiently large. In other words, since the two estimators should be close to each other
when H0 is true (because they both estimate σ 2 in this case) whereas the second estimator
should tend to be larger than the first when H0 is not true, it is natural to reject H0 when
the second estimator is significantly larger than the first.

We will obtain estimators of the variance σ 2 by making use of certain facts concerning
chi-square random variables, which we now present. Suppose that X1, . . . , XN are inde-
pendent normal random variables having possibly different means but a common variance
σ 2, and let µi = E [Xi], i = 1, . . . , N . Since the variables

Zi = (Xi − µi)/σ , i = 1, . . . , N

have standard normal distributions, it follows from the definition of a chi-square random
variable that

N∑
i=1

Z 2
i =

N∑
i=1

(Xi − µi)
2/σ 2 (10.2.1)

is a chi-square random variable with N degrees of freedom. Now, suppose that each of the
values µi , i = 1, . . . , N , can be expressed as a linear function of a fixed set of k unknown
parameters. Suppose, further, that we can determine estimators of these k parameters,
which thus gives us estimators of the mean values µi . If we let µ̂i denote the resulting
estimator of µi , i = 1, . . . , N , then it can be shown that the quantity

N∑
i=1

(Xi − µ̂i)
2/σ 2

will have a chi-square distribution with N − k degrees of freedom.
In other words, we start with

N∑
i=1

(Xi − E [Xi])2/σ 2

which is a chi-square random variable with N degrees of freedom. If we now write each
E [Xi] as a linear function of k parameters and then replace each of these parameters by its
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estimator, then the resulting expression remains chi-square but with a degree of freedom
that is reduced by 1 for each parameter that is replaced by its estimator.

For an illustration of the preceding, consider the case where all the means are known
to be equal; that is,

E [Xi] = µ, i = 1, . . . , N

Thus k = 1, because there is only one parameter that needs to be estimated. Substituting
X , the estimator of the common mean µ, for µi in Equation 10.2.1, results in the quantity

N∑
i=1

(Xi − X )2/σ 2 (10.2.2)

and the conclusion is that this quantity is a chi-square random variable with N − 1
degrees of freedom. But in this case where all the means are equal, it follows that the
data X1, . . . , XN constitute a sample from a normal population, and thus Equation 10.2 is
equal to (N − 1)S2/σ 2, where S2 is the sample variance. In other words, the conclusion
in this case is just the well-known result (see Section 6.5.2) that (N − 1)S2/σ 2 is a
chi-square random variable with N − 1 degrees of freedom.

10.3 ONE-WAY ANALYSIS OF VARIANCE
Consider m independent samples, each of size n, where the members of the ith sample —
Xi1, Xi2, . . . , Xin — are normal random variables with unknown mean µi and unknown
variance σ 2. That is,

Xij ∼ N (µi , σ
2), i = 1, . . . , m, j = 1, . . . , n

We will be interested in testing

H0 : µ1 = µ2 = · · · = µm

versus

H1 : not all the means are equal

That is, we will be testing the null hypothesis that all the population means are equal
against the alternative that at least two of them differ. One way of thinking about this is
to imagine that we have m different treatments, where the result of applying treatment
i on an item is a normal random variable with mean µi and variance σ2. We are then
interested in testing the hypothesis that all treatments have the same effect, by applying
each treatment to a (different) sample of n items and then analyzing the result.
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Since there are a total of nm independent normal random variables Xij , it follows that
the sum of the squares of their standardized versions will be a chi-square random variable
with nm degrees of freedom. That is,

m∑
i=1

n∑
j=1

(Xij − E [Xij ])2/σ 2 =
m∑

i=1

n∑
j=1

(Xij − µi)
2/σ 2 ∼ χ2

nm (10.3.1)

To obtain estimators for the m unknown parameters µ1, . . . , µm, let Xi . denote the
average of all the elements in sample i; that is,

Xi =
n∑

j=1

Xij /n

The variable Xi . is the sample mean of the ith population, and as such is the estimator of
the population mean µi , for i = 1, . . . , m. Hence, if in Equation 10.3.1 we substitute
the estimators Xi . for the means µi , for i = 1, . . . , m, then the resulting variable

m∑
i=1

n∑
j=1

(Xij − Xi .)
2/σ 2 (10.3.2)

will have a chi-square distribution with nm − m degrees of freedom. (Recall that 1 degree
of freedom is lost for each parameter that is estimated.) Let

SSW =
m∑

i=1

n∑
j=1

(Xij − Xi)
2

and so the variable in Equation 10.4 is SSW /σ 2. Because the expected value of a chi-
square random variable is equal to its number of degrees of freedom, it follows upon
taking the expectation of the variable in 10.4 that

E [SSW ]/σ 2 = nm − m

or, equivalently,

E [SSW /(nm − m)] = σ 2

We thus have our first estimator of σ 2, namely, SSW /(nm − m). Also, note that this
estimator was obtained without assuming anything about the truth or falsity of the null
hypothesis.
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Definition
The statistic

SSW =
m∑

i=1

n∑
j=1

(Xij − Xi .)
2

is called the within samples sum of squares because it is obtained by substituting the sample
population means for the population means in expression 10.3. The statistic

SSW /(nm − m)

is an estimator of σ 2.
Our second estimator of σ 2 will only be a valid estimator when the null hypothesis is

true. So let us assume that H0 is true and so all the population means µi are equal, say,
µi = µ for all i. Under this condition it follows that the m sample means X1. , X2. , . . . , Xm.
will all be normally distributed with the same mean µ and the same variance σ 2/n. Hence,
the sum of squares of the m standardized variables

Xi. − µ√
σ 2/n

= √
n(Xi . −µ)/σ

will be a chi-square random variable with m degrees of freedom. That is, when H0 is true,

n
m∑

i=1

(Xi. − µ)2/σ 2 ∼ χ2
m (10.3.3)

Now, when all the population means are equal to µ, then the estimator of µ is the average
of all the nm data values. That is, the estimator of µ is X .., given by

X .. =

m∑
i=1

n∑
j=1

Xij

nm
=

m∑
i=1

Xi .

m

If we now substitute X .. for the unknown parameter µ in expression 10.5, it follows,
when H0 is true, that the resulting quantity

n
m∑

i=1

(Xi. − X..)
2/σ 2
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will be a chi-square random variable with m − 1 degrees of freedom. That is, if we define
SSb by

SSb = n
m∑

i=1

(Xi. − X..)
2

then it follows that

when H0 is true,
SSb/σ 2 is chi-square with m − 1 degrees of freedom

From the above we obtain that when H0 is true,

E [SSb]/σ 2 = m − 1

or, equivalently,

E [SSb/(m − 1)] = σ 2 (10.3.4)

So, when H0 is true, SSb/(m − 1) is also an estimator of σ 2.

Definition
The statistic

SSb = n
m∑

i=1

(Xi. − X..)
2

is called the between samples sum of squares. When H0 is true, SSb/(m − 1) is an estimator
of σ 2.

Thus we have shown that

SSW /(nm − m) always estimates σ 2

SSb/(m − 1) estimates σ 2 when H0 is true

Because* it can be shown that SSb/(m − 1) will tend to exceed σ 2 when H0 is not true, it
is reasonable to let the test statistic be given by

TS = SSb/(m − 1)

SSW /(nm − m)

and to reject H0 when TS is sufficiently large.

* A proof is given at the end of this section.
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TABLE 10.1 Values of Fr ,s,.05

r = Degrees of Freedom
for the Numerators = Degrees of

Freedom for the
Denominator 1 2 3 4

4 7.71 6.94 6.59 6.39
5 6.61 5.79 5.41 5.19

10 4.96 4.10 3.71 3.48

To determine how large TS needs to be to justify rejecting H0, we use the fact that
it can be shown that if H0 is true then SSb and SSW are independent. It follows from
this that, when H0 is true, TS has an F -distribution with m − 1 numerator and nm − m
denominator degrees of freedom. Let Fm−1,nm−m,α denote the 100(1 − α) percentile of
this distribution — that is,

P{Fm−1,nm−m > Fm−1,nm−m,α} = α

where we are using the notation Fr ,s to represent an F -random variable with r numerator
and s denominator degrees of freedom.

The significance level α test of H0 is as follows:

reject H0 if
SSb/(m − 1)

SSW /(nm − m)
> Fm−1,nm−m,α

do not reject H0 otherwise

A table of values of Fr ,s,.05 for various values of r and s is presented in Table A4 of the
Appendix. Part of this table is presented in Table 10.1. For instance, from Table 10.1 we
see that there is a 5 percent chance that an F -random variable having 3 numerator and 10
denominator degrees of freedom will exceed 3.71.

Another way of doing the computations for the hypothesis test that all the population
means are equal is by computing the p-value. If the value of the test statistic is TS = v,
then the p-value will be given by

p-value = P{Fm−1,nm−m ≥ v}

Program 10.3 will compute the value of the test statistic TS and the resulting p-value.

EXAMPLE 10.3a An auto rental firm is using 15 identical motors that are adjusted to run
at a fixed speed to test 3 different brands of gasoline. Each brand of gasoline is assigned to
exactly 5 of the motors. Each motor runs on 10 gallons of gasoline until it is out of fuel.
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p-Values in a One-way ANOVA

Start

Quit

1
2
3
4
5

Sample  1
220
251
226
246
260

244
235
232
242
225

The value of the f-statistic is 2.6009
The p-value is 0.1124

SSW
M*(N−1) = 165.9667

SSB
M−1 = 431.6667

Sample 2 Sample 3 
252
272
250
238
256

FIGURE 10.1

The following represents the total mileages obtained by the different motors:

Gas 1 : 220 251 226 246 260
Gas 2 : 244 235 232 242 225
Gas 3 : 252 272 250 238 256

Test the hypothesis that the average mileage obtained is not affected by the type of gas
used. Use the 5 percent level of significance.

SOLUTION We run Program 10.3 to obtain the results shown in Figure 10.1. Since the
p-value is greater than .05, the null hypothesis that the mean mileage is the same for all 3
brands of gasoline cannot be rejected. ■

The following algebraic identity, called the sum of squares identity, is useful when
doing the computations by hand.

The Sum of Squares Identity

m∑
i=1

n∑
j=1

X 2
ij = nmX 2

.. + SSb + SSW
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When computing by hand, the quantity SSb defined by

SSb = n
m∑

i=1

(Xi. − X..)
2

should be computed first. Once SSb has been computed, SSW can be determined from the
sum of squares identity. That is,

∑m
i=1

∑n
j=1 X 2

ij and X 2
.. should also be computed and

then SSW determined from

SSW =
m∑

i=1

n∑
j=1

X 2
ij − nmX 2

.. − SSb

EXAMPLE 10.3b Let us do the computations of Example 10.3a by hand. The first thing to
note is that subtracting a constant from each data value will not affect the value of the test
statistic. So we subtract 220 from each data value to get the following information.

Gas Mileage
∑

j Xij
∑

j X 2
ij

1 0 31 6 26 40 103 3,273
2 24 15 12 22 5 78 1,454
3 32 52 30 18 36 168 6,248

Now m = 3 and n = 5 and

X1. = 103/5 = 20.6

X2. = 78/5 = 15.6

X3. = 168/5 = 33.6

X.. = (103 + 78 + 168)/15 = 23.2667, X 2
.. = 541.3393

Thus,

SSb = 5[(20.6 − 23.2667)2 + (15.6 − 23.2667)2 + (33.6 − 23.2667)2] = 863.3335

Also, ∑∑
X 2

ij = 3,273 + 1,454 + 6,248 = 10,975

and, from the sum of squares identity,

SSW = 10,975 − 15(541.3393) − 863.3335 = 1991.5785
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The value of the test statistic is thus

TS = 863.3335/2

1991.5785/12
= 2.60

Now, from Table A4 in the Appendix, we see that F2,12,.05 = 3.89. Hence, because
the value of the test statistic does not exceed 3.89, we cannot, at the 5 percent level of
significance, reject the null hypothesis that the gasolines give equal mileage. ■

Let us now show that

E [SSb/(m − 1)] ≥ σ 2

with equality only when H0 is true. So, we must show that

E

[
m∑

i=1

(Xi. − X..)
2/(m − 1)

]
≥ σ 2/n

with equality only when H0 is true. To verify this, let µ. = ∑m
i=1 µi/m be the average

of the means. Also, for i = 1, . . . , m, let

Yi = Xi. − µi + µ.

Because Xi. is normal with mean µi and variance σ 2/n, it follows that Yi is normal
with mean µ. and variance σ 2/n. Consequently, Y1, . . . , Ym constitutes a sample from
a normal population having variance σ 2/n. Let

Ȳ = Y. =
m∑

i=1

Yi/m = X.. − µ. + µ. = X..

be the average of these variables. Now,

Xi. − X.. = Yi + µi − µ. − Y.

Consequently,

E

[
m∑

i=1

(Xi. − X..)
2

]
= E

[
m∑

i=1

(Yi − Y. + µi − µ.)
2

]

= E

[
m∑

i=1

[(Yi − Y.)
2 + (µi − µ.)

2 + 2(µi − µ.)(Yi − Y.)

]

= E

[
m∑

i=1

(Yi − Y.)
2

]
+

m∑
i=1

(µi − µ.)
2+2

m∑
i=1

(µi − µ.)E [Yi − Y.]
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= (m − 1)σ 2/n +
m∑

i=1

(µi − µ.)
2 + 2

m∑
i=1

(µi − µ.)E [Yi − Y.]

= (m − 1)σ 2/n +
m∑

i=1

(µi − µ.)
2

where the next to last equality follows because the sample variance
∑m

i=1(Yi −Y.)2/(m−1)
is an unbiased estimator of its population variance σ 2/n and the final equality because
E [Yi] − E [Y.] = µ. − µ. = 0. Dividing by m − 1 gives that

E

[
m∑

i=1

(Xi. − X..)
2/(m − 1)

]
= σ 2/n +

m∑
i=1

(µi − µ.)
2/(m − 1)

and the result follows because
∑m

i=1(µi − µ.)2 ≥ 0, with equality only when all the µi

are equal.
Table 10.2 sums up the results of this section.

TABLE 10.2 One-Way ANOVA Table

Source of Degrees of Value of Test
Variation Sum of Squares Freedom Statistic

Between samples SSb = n
∑m

i=1(Xi. − X..)2 m − 1

Within samples SSW = ∑m
i=1

∑n
j=1(Xij − Xi.)2 nm − m

TS = SSb/(m−1)
SSW /(nm−m)

Significance level α test:
reject H0 if TS ≥ Fm−1,nm−m,α
do not reject otherwise

If TS = v, then p-value = P{Fm−1,nm−m ≥ v}

10.3.1 Multiple Comparisons of Sample Means

When the null hypothesis of equal means is rejected, we are often interested in a comparison
of the different sample means µ1, . . . , µm. One procedure that is often used for this
purpose is known as the T -method. For a specified value of α, this procedure gives joint
confidence intervals for all the

(m
2

)
differences µi − µj , i �= j, i, j = 1, . . . , m, such that

with probability 1 − α all of the confidence intervals will contain their respective quantities
µi − µj . The T -method is based on the following result:

With probability 1 − α, for every i �= j

Xi. − Xj. − W < µi − µj < Xi. − Xj. + W
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where

W = 1√
n

C (m, nm − m, α)
√

SSW /(nm − m)

and where the values of C (m, nm − m, α) are given, for α = .05 and α = .01, in Table
A5 of the Appendix.

EXAMPLE 10.3c A college administrator claims that there is no difference in first-year
grade point averages for students entering the college from any of three different city
high schools. The following data give the first-year grade point averages of 12 randomly
chosen students, 4 from each of the three high schools. At the 5 percent level of signifi-
cance, do these data disprove the claim of the administrator? If so, determine confidence
intervals for the difference in means of students from the different high schools, such that
we can be 95 percent confident that all of the interval statements are valid.

School 1 School 2 School 3

3.2 3.4 2.8
3.4 3.0 2.6
3.3 3.7 3.0
3.5 3.3 2.7

SOLUTION To begin, note that there are m = 3 samples, each of size n = 4. Program 10.3
on the text disk yields the results:

SSW /9 = .0431

p-value = .0046

so the hypothesis of equal mean scores for students from the three schools is rejected.
To determine the confidence intervals for the differences in the population means, note

first that the sample means are

X1. = 3.350, X2. = 3.350, X3. = 2.775

From Table A5 of the Appendix, we see that C (3, 9, .05) = 3.95; thus, as W =
1√
4
3.95

√
. 0431 = .410, we obtain the following confidence intervals.

−.410 < µ1 − µ2 < .410

. 165 < µ1 − µ3 < .985

. 165 < µ2 − µ3 < .985
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Hence, with 95 percent confidence, we can conclude that the mean grade point average
of first-year students from high school 3 is less than the mean average of students from
high school 1 or from high school 2 by an amount that is between .165 and .985, and
that the difference in grade point averages of students from high schools 1 and 2 is less
than .410. ■

10.3.2 One-Way Analysis of Variance with Unequal Sample Sizes

The model in the previous section supposed that there were an equal number of data points
in each sample. Whereas this is certainly a desirable situation (see the Remark at the end
of this section), it is not always possible to attain. So let us now suppose that we have m
normal samples of respective sizes n1, n2, . . . , nm. That is, the data consist of the

∑m
i=1 n1

independent random variables Xij , j = 1, . . . , ni , i = 1, . . . , m, where

Xij ∼ N (µi , σ
2)

Again we are interested in testing the hypothesis H0 that all means are equal.
To derive a test of H0, we start with the fact that

m∑
i=1

ni∑
j=1

(Xij − E [Xij ])2/σ 2 =
m∑

i=1

ni∑
j=1

(Xij − µi)
2/σ 2

is a chi-square random variable with
∑m

i=1 ni degrees of freedom. Hence, upon replacing
each mean µi by its estimator Xi., the average of the elements in sample i, we obtain

m∑
i=1

ni∑
j=1

(Xij − Xi.)
2/σ 2

which is chi-square with
∑m

i=1 ni − m degrees of freedom. Therefore, letting

SSW =
m∑

i=1

ni∑
j=1

(Xij − Xi.)
2

it follows that SSW /
(∑m

i=1 ni − m
)

is an unbiased estimator of σ 2.
Furthermore, if H0 is true and µ is the common mean, then the random variables

Xi . , i = 1, . . . , m will be independent normal random variables with

E [Xi.] = µ, Var(Xi.) = σ 2/ni

As a result, when H0 is true

m∑
i=1

(Xi. − µ)2

σ 2/ni
=

m∑
i=1

ni(Xi. − µ)2/σ 2
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is chi-square with m degrees of freedom; therefore, replacing µ in the preceding by its
estimator X.., the average of all the Xij , results in the statistic

m∑
i=1

ni(Xi. − X..)
2/σ 2

which is chi-square with m − 1 degrees of freedom. Thus, letting

SSb =
m∑

i=1

ni(Xi. − X..)
2

it follows, when H0 is true, that SSb/(m−1) is also an unbiased estimator of σ 2. Because it
can be shown that when H0 is true the quantities SSb and SSW are independent, it follows
under this condition that the statistic

SSb/(m − 1)

SSW
/( m∑

i=1
ni − m

)

is an F -random variable with m − 1 numerator and
∑m

i=1 ni − m denominator degrees of
freedom. From this we can conclude that a significance level α test of the null hypothesis

H0 : µ1 = · · · = µm

is to

reject H0 if
SSb/(m − 1)

SSW
/( m∑

i=1
ni − m

) > Fm−1,N ,α

(
N =

∑
i

ni − m

)

not reject H0 otherwise

REMARK

When the samples are of different sizes we say that we are in the unbalanced case. Whenever
possible it is advantageous to choose a balanced design over an unbalanced one. For one
thing, the test statistic in a balanced design is relatively insensitive to slight departures from
the assumption of equal population variances. (That is, the balanced design is more robust
than the unbalanced one.)
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10.4 TWO-FACTOR ANALYSIS OF VARIANCE:
INTRODUCTION AND PARAMETER ESTIMATION

Whereas the model of Section 10.3 enabled us to study the effect of a single factor on a
data set, we can also study the effects of several factors. In this section, we suppose that
each data value is affected by two factors.

EXAMPLE 10.4a Four different standardized reading achievement tests were administered
to each of 5 students, with the scores shown in the table resulting. Each value in this set
of 20 data points is affected by two factors, namely, the exam and the student whose score
on that exam is being recorded. The exam factor has 4 possible values, or levels, and the
student factor has 5 possible levels.

In general, let us suppose that there are m possible levels of the first factor and n possible
levels of the second. Let Xij denote the value obtained when the first factor is at level i
and the

Student

Exam 1 2 3 4 5

1 75 73 60 70 86
2 78 71 64 72 90
3 80 69 62 70 85
4 73 67 63 80 92

second factor is at level j. We will often portray the data set in the following array of rows
and columns.

X11 X12 . . . X1j . . . X1n

X21 X22 . . . X2j . . . X2n

Xi1 Xi2 . . . Xij . . . Xin

Xm1 Xm2 . . . Xmj . . . Xmn

Because of this we will refer to the first factor as the “row” factor, and the second factor as
the “column” factor.

As in Section 10.3, we will suppose that the data Xij , i = 1, . . . , m j = 1, . . . , n are
independent normal random variables with a common variance σ 2. However, whereas
in Section 10.3 we supposed that only a single factor affected the mean value of a data
point — namely, the sample to which it belongs — we will suppose in the present section
that the mean value of data depends in an additive manner on both its row and its column.

If, in the model of Section 10.3, we let Xij represent the value of the jth member of
sample i, then that model could be symbolically represented as

E [Xij ] = µi
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However, if we let µ denote the average value of the µi — that is,

µ =
m∑

i=1

µi/m

then we can rewrite the model as

E [Xij ] = µ + αi

where αi = µi − µ. With this definition of αi as the deviation of µi from the average
mean value, it is easy to see that

m∑
i=1

αi = 0

A two-factor additive model can also be expressed in terms of row and column deviations.
If we let µij = E [Xij ], then the additive model supposes that for some constants ai , i =
1, . . . , m and bj , j = 1, . . . , n

µij = ai + bj

Continuing our use of the “dot” (or averaging) notation, we let

µi. =
n∑

j=1

µij /n, µ.j =
m∑

i=1

µij /m, µ.. =
m∑

i=1

n∑
j=1

µij /nm

Also, we let

a. =
m∑

i=1

ai/m, b. =
n∑

j=1

bj /n

Note that

µi. =
n∑

j=1

(ai + bj )/n = ai + b.

Similarly,

µ.j = a. + bj , µ.. = a. + b.

If we now set

µ = µ.. = a. + b.

αi = µi. − µ = ai − a.

βj = µ.j − µ = bj − b.

then the model can be written as

µij = E [Xij ] = µ + αi + βj
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where
m∑

i=1

αi =
n∑

j=1

βj = 0

The value µ is called the grand mean, αi is the deviation from the grand mean due to row i,
and βj is the deviation from the grand mean due to column j.

Let us now determine estimators of the parameters µ, αi , βj , i = 1, . . . , m, j = 1, . . . , n.
To do so, continuing our use of “dot” notation, we let

Xi. =
n∑

j=1

Xij /n = average of the values in row i

X.j =
m∑

i=1

Xij /m = average of the values in column j

X.. =
m∑

i=1

n∑
j=1

Xij /nm = average of all data values

Now,

E [Xi.] =
n∑

j=1

E [Xij ]/n

= µ +
n∑

j=1

αi/n +
n∑

j=1

βj /n

= µ + αi since
n∑

j=1

βj = 0

Similarly, it follows that

E [X.j ] = µ + βj

E [X..] = µ

Because the preceding is equivalent to

E [X..] = µ

E [Xi. − X..] = αi

E [X.j − X..] = βj
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we see that unbiased estimators of µ, αi , βj — call them µ̂, α̂i , β̂j — are given by

µ̂ = X..

α̂i = Xi. − X..

β̂j = X.j − X.. ■

EXAMPLE 10.4b The following data from Example 10.4a give the scores obtained when
four different reading tests were given to each of five students. Use it to estimate the
parameters of the model.

Student

Examination 1 2 3 4 5 Row Totals Xi.

1 75 73 60 70 86 364 72.8
2 78 71 64 72 90 375 75
3 80 69 62 70 85 366 73.2
4 73 67 63 80 92 375 75

Column totals 306 280 249 292 353 1480 ← grand total

X.j 76.5 70 62.25 73 88.25 X.. = 1480

20
= 74

SOLUTION The estimators are

µ̂ = 74

α̂1 = 72.8 − 74 = −1.2 β̂1 = 76.5 − 74 = 2.5
α̂2 = 75 − 74 = 1 β̂2 = 70 − 74 = −4
α̂3 = 73.2 − 74 = −.8 β̂3 = 62.25 − 74 = −11.75
α̂4 = 75 − 74 = 1 β̂4 = 73 − 74 = −1

β̂5 = 88.25 − 74 = 14.25

Therefore, for instance, if one of the students is randomly chosen and then given a randomly
chosen examination, then our estimate of the mean score that will be obtained is µ̂ = 74.
If we were told that examination i was taken, then this would increase our estimate of the
mean score by the amount α̂i ; and if we were told that the student chosen was number
j, then this would increase our estimate of the mean score by the amount β̂j . Thus, for
instance, we would estimate that the score obtained on examination 1 by student 2 is the
value of a random variable whose mean is µ̂ + α̂1 + β̂2 = 74 − 1.2 − 4 = 68.8. ■
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10.5 TWO-FACTOR ANALYSIS OF VARIANCE:
TESTING HYPOTHESES

Consider the two-factor model in which one has data Xij , i = 1, . . . , m and j = 1, . . . , n.
These data are assumed to be independent normal random variables with a common
variance σ 2 and with mean values satisfying

E [Xij ] = µ + αi + βj

where
m∑

i=1

αi =
n∑

j=1

βj = 0

In this section, we will be concerned with testing the hypothesis

H0 : all αi = 0

against

H1 : not all the αi are equal to 0

This null hypothesis states that there is no row effect, in that the value of a datum is not
affected by its row factor level.

We will also be interested in testing the analogous hypothesis for columns, that is

H0 : all βj are equal to 0

against

H1 : not all βj are equal to 0

To obtain tests for the above null hypotheses, we will apply the analysis of variance
approach in which two different estimators are derived for the variance σ 2. The first will
always be a valid estimator, whereas the second will only be a valid estimator when the null
hypothesis is true. In addition, the second estimator will tend to overestimate σ 2 when
the null hypothesis is not true.

To obtain our first estimator of σ 2, we start with the fact that

m∑
i=1

n∑
j=1

(Xij − E [Xij ])2/σ 2 =
m∑

i=1

n∑
j=1

(Xij − µ − αi − βj )
2/σ 2

is chi-square with nm degrees of freedom. If in the above expression we now
replace the unknown parameters µ, α1, α2, . . . , αm, β1, β2, . . . , βn by their estimators
µ̂, α̂1, α̂2, . . . , α̂m, β̂1, β̂2, . . . , β̂n, then it turns out that the resulting expression will remain
chi-square but will lose 1 degree of freedom for each parameter that is estimated. To deter-
mine how many parameters are to be estimated, we must be careful to remember that
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∑m
i=1 αi = ∑n

j=1 βj = 0. Since the sum of all the αi is equal to 0, it follows that once
we have estimated m − 1 of the αi then we have also estimated the final one. Hence, only
m − 1 parameters are to be estimated in order to determine all of the estimators α̂i . For
the same reason, only n − 1 of the βj need be estimated to determine estimators for all
n of them. Because µ also must be estimated, we see that the number of parameters that
need to be estimated is 1 + m − 1 + n − 1 = n + m − 1. As a result, it follows that

m∑
i=1

n∑
j=1

(Xij − µ̂ − α̂i − β̂j )
2/σ 2

is a chi-square random variable with nm − (n + m − 1) = (n − 1)(m − 1) degrees of
freedom.

Since µ̂ = X.., α̂i = Xi.−X.., β̂j = X.j −X.., it follows that µ̂+α̂i +β̂j = Xi.+X.j −X..;
thus,

m∑
i=1

n∑
j=1

(Xij − Xi. − X.j + X..)
2/σ 2 (10.5.1)

is a chi-square random variable with (n − 1)(m − 1) degrees of freedom.

Definition
The statistic SSe defined by

SSe =
m∑

i=1

n∑
j=1

(Xij − Xi. − X.j + X..)
2

is called the error sum of squares.

If we think of the difference between a value and its estimated mean as being an “error,”
then SSe is equal to the sum of the squares of the errors. Since SSe/σ 2 is just the expression
in 10.5.1, we see that SSe/σ 2 is chi-square with (n−1)(m−1) degrees of freedom. Because
the expected value of a chi-square random variable is equal to its number of degrees of
freedom, we have that

E [SSe/σ
2] = (n − 1)(m − 1)

or
E [SSe/(n − 1)(m − 1)] = σ 2

That is,

SSe/(n − 1)(m − 1)

is an unbiased estimator of σ 2.
Suppose now that we want to test the null hypothesis that there is no row effect — that

is, we want to test
H0 : all the αi are equal to 0

against

H1 : not all the αi are equal to 0
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To obtain a second estimator of σ 2, consider the row averages Xi., i = 1, . . . , m. Note
that, when H0 is true, each αi is equal to 0, and so

E [Xi.] = µ + αi = µ

Because each Xi. is the average of n random variables, each having variance σ 2, it follows
that

Var(Xi.) = σ 2/n

Thus, we see that when H0 is true

m∑
i=1

(Xi. − E [Xi.])2/Var(Xi.) = n
m∑

i=1

(Xi. − µ)2/σ 2

will be chi-square with m degrees of freedom. If we now substitute X.. (the estimator of
µ) for µ in the above, then the resulting expression will remain chi-square but with 1 less
degree of freedom. We thus have the following:

when H0 is true

n
m∑

i=1

(Xi. − X..)
2/σ 2

is chi-square with m − 1 degrees of freedom.

Definition
The statistic SSr is defined by

SSr = n
m∑

i=1

(Xi. − X..)
2

and is called the row sum of squares.

We saw earlier that when H0 is true, SSr /σ 2 is chi-square with m−1 degrees of freedom.
As a result, when H0 is true,

E [SSr /σ
2] = m − 1

or, equivalently,

E [SSr /(m − 1)] = σ 2

In addition, it can be shown that SSr /(m − 1) will tend to be larger than σ 2 when H0 is
not true. Thus, once again we have obtained two estimators of σ 2. The first estimator,
SSe/(n −1)(m −1), is a valid estimator whether or not the null hypothesis is true, whereas
the second estimator, SSr /(m − 1), is only a valid estimator of σ 2 when H0 is true and
tends to be larger than σ 2 when H0 is not true.
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We base our test of the null hypothesis H0 that there is no row effect, on the ratio of
the two estimators of σ 2. Specifically, we use the test statistic

TS = SSr /(m − 1)

SSe/(n − 1)(m − 1)

Because the estimators can be shown to be independent when H0 is true, it follows that
the significance level α test is to

reject H0 if TS ≥ Fm−1,(n−1)(m−1),α
do not reject H0 otherwise

Alternatively, the test can be performed by calculating the p-value. If the value of the test
statistic is v, then the p-value is given by

p-value = P{Fm−1,(n−1)(m−1) ≥ v}
A similar test can be derived for testing the null hypothesis that there is no column

effect — that is, that all the βj are equal to 0. The results are summarized in Table 10.3.
Program 10.5 will do the computations and give the p-value.

TABLE 10.3 Two-Factor ANOVA

Sum of Squares Degrees of Freedom

Row SSr = n
∑m

i=1(Xi. − X..)2 m − 1
Column SSc = ∑n

j=1(X.j − X..)2 n − 1

Error SSe = ∑m
i=1

∑n
j=1(Xij − Xi. − X.j + X..)2 (n − 1)(m − 1)

Let N = (n – 1)(m – 1)
Null Test Significance p-value if

Hypothesis Statistic Level α Test TS = v

All αi = 0
SSr /(m − 1)

SSe /N
Reject if P{Fm−1,N ≥ v}

TS ≥ Fm−1,N ,α

All βj = 0
SSc /(n − 1)

SSe /N
Reject if P{Fn−1,N ≥ v}

TS ≥ Fn−1,N ,α

EXAMPLE 10.5a The following data* represent the number of different macroinvertebrate
species collected at 6 stations, located in the vicinity of a thermal discharge, from 1970 to
1977.

* Taken from Wartz and Skinner, “A 12 year macroinvertebrate study in the vicinity of 2 thermal discharges to the
Susquehanna River near York, Haven, PA.” Jour. of Testing and Evaluation. Vol. 12. No. 3, May 1984, 157–163.
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Station

Year 1 2 3 4 5 6

1970 53 35 31 37 40 43
1971 36 34 17 21 30 18
1972 47 37 17 31 45 26
1973 55 31 17 23 43 37
1974 40 32 19 26 45 37
1975 52 42 20 27 26 32
1976 39 28 21 21 36 28
1977 40 32 21 21 36 35

The p-values in a Two-Way ANOVA  

Start

Quit

1
2
3
4
5
6

A
53
36
47
55
40
52

35
34
37
31
32
43

31
17
17
17
19
38

B C D E F
37
21
31
23
26
27

40
30
45
43
45
36

43
18
26
37
37
22

The value of the F-statistic for testing that there is no row effect is 3.72985

The p-value for testing that there is no row effect is 0.00404

The value of the F-statistic for testing that there is no column effect is
22.47898

The p-value for testing that there is no column effect is less than 0.0001

FIGURE 10.2

To test the hypotheses that the data are unchanging (a) from year to year, and (b) from
station to station, run Program 10.5. Results are shown in Figure 10.2. Thus both the
hypothesis that the data distribution does not depend on the year and the hypothesis that
it does not depend on the station are rejected at very small significance levels. ■
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10.6 TWO-WAY ANALYSIS OF VARIANCE WITH
INTERACTION

In Sections 10.4 and 10.5, we considered experiments in which the distribution of the
observed data depended on two factors — which we called the row and column factor.
Specifically, we supposed that the mean value of Xij , the data value in row i and column
j, can be expressed as the sum of two terms — one depending on the row of the element
and one on the column. That is, we supposed that

Xij ∼ N (µ + αi + βj , σ
2), i = 1, . . . , m, j = 1, . . . , n

However, one weakness of this model is that in supposing that the row and column effects
are additive, it does not allow for the possibility of a row and column interaction.

For instance, consider an experiment designed to compare the mean number of defective
items produced by four different workers when using three different machines. In analyzing
the resulting data, we might suppose that the incremental number of defects that resulted
from using a given machine was the same for each of the workers. However, it is certainly
possible that a machine could interact in a different manner with different workers. That
is, there could be a worker–machine interaction that the additive model does not allow for.

To allow for the possibility of a row and column interaction, let

µij = E [Xij ]

and define the quantities µ, αi , βj , γij , i = 1, . . . , m, j = 1, . . . , n as follows:

µ = µ..

αi = µi. − µ..

βj = µ.j − µ..

γij = µij − µi. − µ.j + µ..

It is immediately apparent that

µij = µ + αi + βj + γij

and it is easy to check that

m∑
i=1

αi =
n∑

j=1

βj =
m∑

i=1

γij =
n∑

j=1

γij = 0

The parameter µ is the average of all nm mean values; it is called the grand mean. The
parameter αi is the amount by which the average of the mean values of the variables in
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row i exceeds the grand mean; it is called the effect of row i. The parameter βj is the amount
by which the average of the mean values of the variables in column j exceeds the grand
mean; it is called the effect of column j. The parameter γij = µij − (µ + αi + βj ) is the
amount by which µij exceeds the sum of the grand mean and the increments due to row
i and to column j; it is thus a measure of the departure from row and column additivity
of the mean value µij , and is called the interaction of row i and column j.

As we shall see, in order to be able to test the hypothesis that there are no row and column
interactions — that is, that all γij = 0 — it is necessary to have more than one observation
for each pair of factors. So let us suppose that we have l observations for each row and
column. That is, suppose that the data are {Xijk , i = 1, . . . , m, j = 1, . . . , n, k = 1, . . . , l },
where Xijk is the kth observation in row i and column j. Because all observations are
assumed to be independent normal random variables with a common variance σ 2, the
model is

Xijk ∼ N (µ + αi + βj + γij , σ
2)

where
m∑

i=1

αi =
n∑

j=1

βj =
m∑

i=1

γij =
n∑

j=1

γij = 0 (10.6.1)

We will be interested in estimating the preceding parameters, and in testing the following
null hypotheses:

H r
0 : αi = 0, for all i

H c
0 : βj = 0, for all j

H int
0 : γij = 0, for all i, j

That is, H r
0 is the hypothesis of no row effect; H c

0 is the hypothesis of no column effect;
and H int

0 is the hypothesis of no row and column interaction.
To estimate the parameters, note that it is easily verified from Equation 10.8 and the

identity

E [Xijk] = µij = µ + αi + βj + γij

that

E [Xij.] = µij = µ + αi + βj + γij

E [Xi..] = µ + αi

E [X.j.] = µ + βj

E [X...] = µ
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Therefore, with a “hat” over a parameter denoting the estimator of that parameter, we
obtain from the preceding that unbiased estimators are given by

µ̂ = X...

β̂j = X.j. − X...

α̂i = Xi.. − X...

γ̂ij = Xij. − µ̂ − β̂j − α̂i = Xij. − Xi.. − X.j. + X...

To develop tests for the null hypotheses H int
0 , H r

0 , and H c
0 , start with the fact that

l∑
k=1

n∑
j=1

m∑
i=1

(Xijk − µ − αi − βj − γij )2

σ 2

is a chi-square random variable with nml degrees of freedom. Therefore,

l∑
k=1

n∑
j=1

m∑
i=1

(Xijk − µ̂ − α̂i − β̂j − γ̂ij )2

σ 2

will also be chi-square, but with 1 degree of freedom lost for each parameter that is
estimated. Now, since

∑
i αi = 0, it follows that m − 1 of the αi need to be estimated;

similarly, n−1 of the βj need to be estimated. Also, since
∑

i γij = ∑
j γij = 0, it follows

that if we arrange all the γij in a rectangular array having m rows and n columns, then all
the row and column sums will equal 0, and so the values of the quantities in the last row
and last column will be determined by the values of all the others; hence we need only
estimate (m − 1)(n − 1) of these quantities. Because we also need to estimate µ, it follows
that a total of

n − 1 + m − 1 + (n − 1)(m − 1) + 1 = nm
parameters needs to be estimated. Since

µ̂ + α̂i + β̂j + γ̂ij = Xij .

it thus follows from the preceding that if we let

SSe =
l∑

k=1

n∑
j=1

m∑
i=1

(Xijk − Xij.)
2

then
SSe

σ 2 is chi-square with nm(l − 1) degrees of freedom

Therefore,

SSe

nm(l − 1)
is an unbiased estimator of σ 2
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Suppose now that we want to test the hypothesis that there are no row and column
interactions — that is, we want to test

H int
0 : γij = 0, i = 1, . . . , m, j = 1, . . . , n

Now, if H int
0 is true, then the random variables Xij . will be normal with mean

E [Xij.] = µ + αi + βj

Also, since each of these terms is the average of l normal random variables having variance
σ 2, it follows that

Var(Xij.) = σ 2/l

Hence, under the assumption of no interactions,

n∑
j=1

m∑
i=1

l (Xij. − µ − αi − βj )2

σ 2

is a chi-square random variable with nm degrees of freedom. Since a total of 1 + m −
1 + n − 1 = n + m − 1 of the parameters µ, αi , i = 1, . . . , m, βj , j = 1, . . . , n, must be
estimated, it follows that if we let

SSint =
n∑

j=1

m∑
i=1

l (Xij. − µ̂ − α̂i − β̂j )
2 =

n∑
j=1

m∑
i=1

l (Xij. − Xi.. − X.j. + X...)
2

then, under H int
0 ,

SSint

σ 2 is chi-square with (n − 1)(m − 1) degrees of freedom

Therefore, under the assumption of no interactions,

SSint

(n − 1)(m − 1)
is an unbiased estimator of σ 2

Because it can be shown that, under the assumption of no interactions, SSe and SSint are
independent, it follows that when H int

0 is true

Fint = SSint /(n − 1)(m − 1)

SSe/nm(l − 1)

is an F -random variable with (n − 1)(m − 1) numerator and nm(l − 1) denominator
degrees of freedom. This gives rise to the following significance level α test of

H int
0 : all γij = 0
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Namely,

reject H int
0 if

SSint /(n − 1)(m − 1)

SSe/nm(l − 1)
> F(n−1)(m−1),nm(l−1),α

do not reject H int
0 otherwise

Alternatively, we can compute the p-value. If Fint = v, then the p-value of the test of the
null hypothesis that all interactions equal 0 is

p-value = P{F(n−1)(m−1),nm(l−1) > v}

If we want to test the null hypothesis

H r
0 : αi = 0, i = 1, . . . , m

then we use the fact that when H r
0 is true, Xi.. is the average of nl independent normal

random variables, each with mean µ and variance σ 2. Hence, under H r
0 ,

E [Xi..] = µ, Var(Xi..) = σ 2/nl

and so
m∑

i=1

nl
(Xi.. − µ)2

σ 2

is chi-square with m degrees of freedom. Thus, if we let

SSr =
m∑

i=1

nl (Xi.. − µ̂)2 =
m∑

i=1

nl (Xi.. − X..)
2

then, when H r
0 is true,

SSr

σ 2 is chi-square with m − 1 degrees of freedom

and so
SSr

m − 1
is an unbiased estimator of σ 2

Because it can be shown that, under H r
0 , SSe and SSr are independent, it follows that

when H r
0 is true

SSr /(m − 1)

SSe/nm(l − 1)
is an Fm−1, nm(l − 1) random variable
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Thus we have the following significance level α test of

H r
0 : all αi = 0

versus

H r
1 : at least one αi �= 0

Namely,

reject H r
0 if

SSr /(m − 1)

SSe/nm(l − 1)
> Fm−1,nm(l−1),α

do not reject H r
0 otherwise

Alternatively, if
SSr /(m − 1)

SSe/nm(l − 1)
= v, then

p-value = P{Fm−1,nm(l−1) > v}
Because an analogous result can be shown to hold when testing H0 : all βj = 0, we obtain
the ANOVA information shown in Table 10.4.

Note that all of the preceding tests call for rejection only when their related F -statistic
is large. The reason that only large (and not small) values call for rejection of the null
hypothesis is that the numerator of the F -statistic will tend to be larger when H0 is not
true than when it is, whereas the distribution of the denominator will be the same whether
or not H0 is true.

Program 10.6 computes the values of the F -statistics and their associated p-values.

EXAMPLE 10.6a The life of a particular type of generator is thought to be influenced by
the material used in its construction and also by the temperature at the location where it
is utilized. The following table represents lifetime data on 24 generators made from three
different types of materials and utilized at two different temperatures. Do the data indicate
that the material and the temperature do indeed affect the lifetime of a generator? Is there
evidence of an interaction effect?

Temperature

Material 10◦C 18◦C

1 135, 150 50, 55
176, 85 64, 38

2 150, 162 76, 88
171, 120 91, 57

3 138, 111 68, 60
140, 106 74, 51

SOLUTION Run Program 10.6 (see Figures 10.3 and 10.4). ■
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TABLE 10.4 Two-way ANOVA with l Observations per Cell: N = nm(l − 1)

Source of Degrees of
Variation Freedom Sum of Squares F-Statistic Level α Test p-Value if F = v

Row m − 1 SSr = ln
∑m

i=1
(Xi.. − X...)

2 Fr = SSr /(m − 1)

SSe /N
Reject H r

0 P{Fm−1,N > v}
if Fr > Fm−1,N ,α

Column n − 1 SSe = lm
∑n

j=1
(X.j. − X...)

2 Fc = SSc /(n − 1)

SSe /N
Reject H c

0 P{Fn−1,N > v}
if Fc > Fn−1,N , α

Interaction (n − 1)(m − 1) SSint = l
∑n

j=1
Fint = SSint /(n − 1)(m − 1)

SSe /N
Reject H int

0 P{F(n−1)(m−1),N > v}
×
∑m

i=1
(Xij. − Xi.. − X.j. + X...)

2 if Fint > F(n−1)(m−1),N ,α

Error N SSe =
∑l

k=1

∑n

j=1

×
∑m

i=1
(Xijk − Xij.)

2
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The p-values in a Two-way ANOVA with a Possible Interaction

Enter the number of rows:

Enter the number of columns:

Enter the number of

3

2

4

Begin Data Entry

Quit
observations in each cell:

FIGURE 10.3

The p-values in a Two-way ANOVA with Possible Interaction

Start

Clear All Observations

1
2
3

A B
Click on a cell to enter data

135, 150, 176, 85
150, 162, 171, 120
138, 111, 140, 106

50, 55, 64, 38
76, 88, 91, 57
68, 60, 74, 51

The value of the F-statistic for testing that there is no row effect is 2.47976
The p-value for testing that there is no row effect is 0.1093
The value of the F-statistic for testing that there is no column effect is 69.63223
The p-value for testing that there is no column effect is less than 0.0001
The value of the F-statistic for testing that there is no interaction effect is 0.64625
The p-value for testing that there is no interaction effect is 0.5329

FIGURE 10.4
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Problems

1. A purification process for a chemical involves passing it, in solution, through a
resin on which impurities are adsorbed. A chemical engineer wishing to test the
efficiency of 3 different resins took a chemical solution and broke it into 15 batches.
She tested each resin 5 times and then measured the concentration of impurities
after passing through the resins. Her data were as follows:

Concentration of Impurities

Resin I Resin II Resin III

.046 .038 .031

.025 .035 .042

.014 .031 .020

.017 .022 .018

.043 .012 .039

Test the hypothesis that there is no difference in the efficiency of the resins.

2. We want to know what type of filter should be used over the screen of a cathode-
ray oscilloscope in order to have a radar operator easily pick out targets on the
presentation. A test to accomplish this has been set up. A noise is first applied to
the scope to make it difficult to pick out a target. A second signal, representing the
target, is put into the scope, and its intensity is increased from zero until detected
by the observer. The intensity setting at which the observer first notices the target
signal is then recorded. This experiment is repeated 20 times with each filter. The
numerical value of each reading listed in the table of data is proportional to the
target intensity at the time the operator first detects the target.

Filter No. 1 Filter No. 2 Filter No. 3

90 88 95
87 90 95
93 97 89
96 87 98
94 90 96
88 96 81
90 90 92
84 90 79

101 100 105
96 93 98
90 95 92

(continued )
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Filter No. 1 Filter No. 2 Filter No. 3

82 86 85
93 89 97
90 92 90
96 98 87
87 95 90
99 102 101

101 105 100
79 85 84
98 97 102

Test, at the 5 percent level of significance, the hypothesis that the filters are the
same.

3. Explain why we cannot efficiently test the hypothesis H0 : µ1 = µ2 = · · · = µm

by running t -tests on all of the
(m

2

)
pairs of samples.

4. A machine shop contains 3 ovens that are used to heat metal specimens. Subject to
random fluctuations, they are all supposed to heat to the same temperature. To test
this hypothesis, temperatures were noted on 15 separate heatings. The following
data resulted.

Oven Temperature

1 492.4, 493.6, 498.5, 488.6, 494
2 488.5, 485.3, 482, 479.4, 478
3 502.1, 492, 497.5, 495.3, 486.7

Do the ovens appear to operate at the same temperature? Test at the 5 percent
level of significance. What is the p-value?

5. Four standard chemical procedures are used to determine the magnesium content
in a certain chemical compound. Each procedure is used four times on a given
compound with the following data resulting.

Method

1 2 3 4

76.42 80.41 74.20 86.20
78.62 82.26 72.68 86.04
80.40 81.15 78.84 84.36
78.20 79.20 80.32 80.68

Do the data indicate that the procedures yield equivalent results?
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6. Twenty overweight individuals, each more than 40 pounds overweight, were ran-
domly assigned to one of two diets. After 10 weeks, the total weight losses (in
pounds) of the individuals on each of the diets were as follows:

Weight Loss

Diet 1 Diet 2

22.2 24.2
23.4 16.8
24.2 14.6
16.1 13.7
9.4 19.5
12.5 17.6
18.6 11.2
32.2 9.5
8.8 30.1
7.6 21.5

Test, at the 5 percent level of significance, the hypothesis that the two diets have
equal effect.

7. In a test of the ability of a certain polymer to remove toxic wastes from water, exper-
iments were conducted at three different temperatures. The data below give the
percentages of the impurities that were removed by the polymer in 21 independent
attempts.

Low Temperature Medium Temperature High Temperature

42 36 33
41 35 44
37 32 40
29 38 36
35 39 44
40 42 37
32 34 45

Test the hypothesis that the polymer performs equally well at all three temperatures.
Use the (a) 5 percent level of significance and (b) 1 percent level of significance.

8. In the one-factor analysis of variance model with n observations per sample, let S2
i ,

i = 1, . . . , m denote the sample variances for the m samples. Show that

SSW = (n − 1)
m∑

i=1

S2
i
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9. The following data relate to the ages at death of a certain species of rats that were
fed 1 of 3 types of diet. Thirty rats of a type having a short life span were randomly
divided into 3 groups of size 10 each. The sample means and sample variances of
the ages at death (measured in months) of the 3 groups are as follows:

Very Low Calorie Moderate Calorie High Calorie

Sample mean 22.4 16.8 13.7
Sample variance 24.0 23.2 17.1

Test the hypothesis, at the 5 percent level of significance, that the mean lifetime
of a rat is not affected by its diet. What about at the 1 percent level?

10. Plasma bradykininogen levels are related to the body’s ability to resist inflamma-
tion. In a 1968 study (Eilam, N., Johnson, P. K., Johnson, N. L., and Creger, W.,
“Bradykininogen levels in Hodgkin’s disease,” Cancer, 22, pp. 631–634), levels
were measured in normal patients, in patients with active Hodgkin’s disease, and
in patients with inactive Hodgkin’s disease. The following data (in micrograms of
bradykininogen per milliliter of plasma) resulted.

Normal Active Hodgkin’s Disease Inactive Hodgkin’s Disease

5.37 3.96 5.37
5.80 3.04 10.60
4.70 5.28 5.02
5.70 3.40 14.30
3.40 4.10 9.90
8.60 3.61 4.27
7.48 6.16 5.75
5.77 3.22 5.03
7.15 7.48 5.74
6.49 3.87 7.85
4.09 4.27 6.82
5.94 4.05 7.90
6.38 2.40 8.36

Test, at the 5 percent level of significance, the hypothesis that the mean
bradykininogen levels are the same for all three groups.

11. A study of the trunk flexor muscle strength of 75 girls aged 3 to 7 was reported
by Baldauf, K., Swenson, D., Medeiros, J., and Radtka, S., “Clinical assessment
of trunk flexor muscle strength in healthy girls 3 to 7,” Physical Therapy, 64, pp.
1203–1208, 1984. With muscle strength graded on a scale of 0 to 5, and with 15
girls in each age group, the following sample means and sample standard deviations
resulted.
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Age 3 4 5 6 7

Sample mean 3.3 3.7 4.1 4.4 4.8
Sample standard deviation .9 1.1 1.1 .9 .5

Test, at the 5 percent level of significance, the hypothesis that the mean trunk
flexor strength is the same for all five age groups.

12. An emergency room physician wanted to know whether there were any differences
in the amount of time it takes for three different inhaled steroids to clear a mild
asthmatic attack. Over a period of weeks she randomly administered these steroids
to asthma sufferers, and noted the time it took for the patients’ lungs to become
clear. Afterward, she discovered that 12 patients had been treated with each type
of steroid, with the following sample means (in minutes) and sample variances
resulting.

Steroid Xi S2
i

A 32 145
B 40 138
C 30 150

(a) Test the hypothesis that the mean time to clear a mild asthmatic attack is the
same for all three steroids. Use the 5 percent level of significance.

(b) Find confidence intervals for all quantities µi − µj that, with 95 percent
confidence, are valid.

13. Five servings each of three different brands of processed meat were tested for fat
content. The following data (in fat percentage per gram) resulted.

Brand 1 2 3

32 41 36
Fat 34 32 37
content 31 33 30

35 29 28
33 35 33

(a) Does the fat content differ depending on the brand?
(b) Find confidence intervals for all quantities µi − µj that, with 95 percent

confidence, are valid.

14. A nutritionist randomly divided 15 bicyclists into 3 groups of 5 each. The first
group was given a vitamin supplement to take with each of their meals during the
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next 3 weeks. The second group was instructed to eat a particular type of high-fiber
whole-grain cereal for the next 3 weeks. The final group was instructed to eat as
they normally do. After the 3-week period elapsed, the nutritionist had each of the
bicyclists ride 6 miles. The following times were recorded.

Vitamin group: 15.6 16.4 17.2 15.5 16.3
Fiber cereal group: 17.1 16.3 15.8 16.4 16.0
Control group: 15.9 17.2 16.4 15.4 16.8

(a) Are the data consistent with the hypothesis that neither the vitamin nor
the fiber cereal affected the bicyclists’ speeds? Use the 5 percent level of
significance.

(b) Find confidence intervals for all quantities µi − µj that, with 95 percent
confidence, are valid.

15. Test the hypothesis that the following three independent samples all come from
the same normal probability distribution.

Sample 1 Sample 2 Sample 3

35 29 44
37 38 52
29 34 56
27 30
30 32

16. For data xij , i = 1, . . . , m, j = 1, . . . , n, show that

x.. =
m∑

i=1

xi./m =
n∑

j=1

x.j /n

17. If xij = i + j2, determine

(a)
∑3

j=1

∑2

i=1
xij

(b)
∑2

i=1

∑3

j=1
xij

18. If xij = ai + bj , show that

m∑
i=1

n∑
j=1

xij = n
m∑

i=1

ai + m
n∑

j=1

bj

19. A study has been made on pyrethrum flowers to determine the content of pyrethrin,
a chemical used in insecticides. Four methods of extracting the chemical are used,
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and samples are obtained from flowers stored under three conditions: fresh flowers,
flowers stored for 1 year, and flowers stored for 1 year but treated. It is assumed
that there is no interaction present. The data are as follows:

Pyrethrin Content, Percent

Method
Storage

Condition A B C D

1 1.35 1.13 1.06 .98
2 1.40 1.23 1.26 1.22
3 1.49 1.46 1.40 1.35

Suggest a model for the preceding information, and use the data to estimate its
parameters.

20. The following data refer to the number of deaths per 10,000 adults in a large
Eastern city in the different seasons for the years 1982 to 1986.

Year Winter Spring Summer Fall

1982 33.6 31.4 29.8 32.1
1983 32.5 30.1 28.5 29.9
1984 35.3 33.2 29.5 28.7
1985 34.4 28.6 33.9 30.1
1986 37.3 34.1 28.5 29.4

(a) Assuming a two-factor model, estimate the parameters.
(b) Test the hypothesis that death rates do not depend on the season. Use the

5 percent level of significance.
(c) Test, at the 5 percent level of significance, the hypothesis that there is no

effect due to the year.

21. For the model of Problem 19:

(a) Do the methods of extraction appear to differ?
(b) Do the storage conditions affect the content? Test at the α = .05 level of

significance.

22. Three different washing machines were employed to test four different detergents.
The following data give a coded score of the effectiveness of each washing.

(a) Estimate the improvement in mean value when using detergent 1 over using
detergents (i) 2; (ii) 3; (iii) 4.

(b) Estimate the improvement in mean value when using machine 3 as opposed
to using machine (i) 1; (ii) 2.
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Machine

1 2 3

Detergent 1 53 50 59
Detergent 2 54 54 60
Detergent 3 56 58 62
Detergent 4 50 45 57

(c) Test the hypothesis that the detergent used does not affect the score.
(d) Test the hypothesis that the machine used does not affect the score.

Use, in both (c) and (d), the 5 percent level of significance.

23. An experiment was devised to test the effects of running 3 different types of gasoline
with 3 possible types of additive. The experiment called for 9 identical motors to
be run with 5 gallons for each of the pairs of gasoline and additives. The following
data resulted.

Mileage Obtained

Additive

Gasoline 1 2 3

1 124.1 131.5 127
2 126.4 130.6 128.4
3 127.2 132.7 125.6

(a) Test the hypothesis that the gasoline used does not affect the mileage.
(b) Test the hypothesis that the additives are equivalent.
(c) What assumptions are you making?

24. Suppose in Problem 6 that the 10 people placed on each diet consisted of 5 men
and 5 women, with the following data.

Diet 1 Diet 2

Women 7.6 19.5
8.8 17.6
12.5 16.8
16.1 13.7
18.6 21.5

Men 22.2 30.1
23.4 24.2
24.2 9.5
32.2 14.6
9.4 11.2
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(a) Test the hypothesis that there is no interaction between gender and diet.
(b) Test the hypothesis that the diet has the same effect on men and women.

25. A researcher is interested in comparing the breaking strength of different laminated
beams made from 3 different types of glue and 3 varieties of wood. To make the
comparison, 5 beams of each of the 9 combinations were manufactured and then
put under a stress test. The following table indicates the pressure readings at which
each of the beams broke.

Glue�Wood G1 G2 G3

196 208 214 216 258 250
W 1 247 216 235 240 264 248

221 252 272
216 228 215 217 246 247

W 2 240 224 235 219 261 250
236 241 255
230 242 212 218 255 251

W 3 232 244 216 224 261 258
228 222 247

(a) Test the hypothesis that the wood and glue effect is additive.
(b) Test the hypothesis that the wood used does not affect the breaking strength.
(c) Test the hypothesis that the glue used does not affect the breaking strength.

26. A study was made as to how the concentration of a certain drug in the blood,
24 hours after being injected, is influenced by age and gender. An analysis of the
blood samples of 40 people given the drug yielded the following concentrations
(in milligrams per cubic centimeter).

Age Group

11–25 26–40 41–65 Over 65

Male 52 52.5 53.2 82.4
56.6 49.6 53.6 86.2
68.2 48.7 49.8 101.3
82.5 44.6 50.0 92.4
85.6 43.4 51.2 78.6

Female 68.6 60.2 58.7 82.2
80.4 58.4 55.9 79.6
86.2 56.2 56.0 81.4
81.3 54.2 57.2 80.6
77.2 61.1 60.0 82.2
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(a) Test the hypothesis of no age and gender interaction.
(b) Test the hypothesis that gender does not affect the blood concentration.
(c) Test the hypothesis that age does not affect blood concentration.

27. Suppose, in Problem 23, that there has been some controversy about the assump-
tion of no interaction between gasoline and additive used. To allow for the
possibility of an interaction effect between gasoline and additive, it was decided to
run 36 motors — 4 in each grouping. The following data resulted.

Additive

Gasoline 1 2 3

1 126.2 130.4 127
124.8 131.6 126.6
125.3 132.5 129.4
127.0 128.6 130.1

2 127.2 142.1 129.5
126.6 132.6 142.6
125.8 128.5 140.5
128.4 131.2 138.7

3 127.1 132.3 125.2
128.3 134.1 123.3
125.1 130.6 122.6
124.9 133.0 120.9

(a) Do the data indicate an interaction effect?
(b) Do the gasolines appear to give equal results?
(c) Test whether or not there is an additive effect or whether all additives work

equally well.
(d) What conclusions can you draw?

28. An experiment has been devised to test the hypothesis that an elderly person’s
memory retention can be improved by a set of “oxygen treatments.” A group of
scientists administered these treatments to men and women. The men and women
were each randomly divided into 4 groups of 5 each, and the people in the ith
group were given treatments over an (i − 1) week interval, i = 1, 2, 3, 4. (The
2 groups not given any treatments served as “controls.”) The treatments were set
up in such a manner that all individuals thought they were receiving the oxygen
treatments for the total 3 weeks. After treatment ended, a memory retention
test was administered. The results (with higher scores indicating higher memory
retentions) are shown in the table.

(a) Test whether or not there is an interaction effect.
(b) Test the hypothesis that the length of treatment does not affect memory

retention.
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(c) Is there a gender difference?
(d) A randomly chosen group of 5 elderly men, without receiving any oxygen

treatment, were given the memory retention test. Their scores were 37, 35,
33, 39, 29. What conclusions can you draw?

Scores

Number of Weeks of Oxygen Treatment

0 1 2 3

Men 42 39 38 42
54 52 50 55
46 51 47 39
38 50 45 38
51 47 43 51

Women 49 48 27 61
44 51 42 55
50 52 47 45
45 54 53 40
43 40 58 42

29. In a study of platelet production, 16 rats were put at an altitude of 15,000 feet,
while another 16 were kept at sea level (Rand, K., Anderson, T., Lukis, G., and
Creger, W., “Effect of hypoxia on platelet level in the rat,” Clinical Research, 18,

Spleen Removed Normal Spleen

Altitude 528 434
444 331
338 312
342 575
338 472
331 444
288 575
319 384

Sea Level 294 272
254 275
352 350
241 350
291 466
175 388
241 425
238 344
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p. 178, 1970). Half of the rats in both groups had their spleens removed. The
fibrinogen levels on day 21 are reported below.

(a) Test the hypothesis that there are no interactions.
(b) Test the hypothesis that there is no effect due to altitude.
(c) Test the hypothesis that there is no effect due to spleen removal. In all cases,

use the 5 percent level of significance.

Suppose that µ, α1, . . . , αm, β1, . . . , βn and µ′, α′
1, . . . , α′

m, β ′
1, . . . , β ′

n are such
that

µ + αi + βj = µ′ + α′
i + β ′

j for all i, j∑
i

αi =
∑

i

α′
i =

∑
j

βj =
∑

j

β ′
j = 0

Show that

µ = µ′, αi = α′
i , βj = β ′

j

for all i and j. This shows that the parameters µ, α1, . . . , αm, β1, . . . , βn in our
representation of two factor ANOVA are uniquely determined.
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GOODNESS OF FIT TESTS AND
CATEGORICAL DATA ANALYSIS

11.1 INTRODUCTION
We are often interested in determining whether or not a particular probabilistic model
is appropriate for a given random phenomenon. This determination often reduces to
testing whether a given random sample comes from some specified, or partially specified,
probability distribution. For example, we may a priori feel that the number of industrial
accidents occurring daily at a particular plant should constitute a random sample from
a Poisson distribution. This hypothesis can then be tested by observing the number of
accidents over a sequence of days and then testing whether it is reasonable to suppose
that the underlying distribution is Poisson. Statistical tests that determine whether a given
probabilistic mechanism is appropriate are called goodness of fit tests.

The classical approach to obtaining a goodness of fit test of a null hypothesis that
a sample has a specified probability distribution is to partition the possible values of the
random variables into a finite number of regions. The numbers of the sample values
that fall within each region are then determined and compared with the theoretical
expected numbers under the specified probability distribution, and when they are signifi-
cantly different the null hypothesis is rejected. The details of such a test are presented
in Section 11.2, where it is assumed that the null hypothesis probability distribution is
completely specified. In Section 11.3, we show how to do the analysis when some of the
parameters of the null hypothesis distribution are left unspecified; that is, for instance, the
null hypothesis might be that the sample distribution is a normal distribution, without
specifying the mean and variance of this distribution. In Sections 11.4 and 11.5, we con-
sider situations where each member of a population is classified according to two distinct
characteristics, and we show how to use our previous analysis to test the hypothesis that
the characteristics of a randomly chosen member of the population are independent. As
an application, we show how to test the hypothesis that m population all have the same
discrete probability distribution. Finally, in the optional section, Section 11.6, we return

483
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to the problem of testing that sample data come from a specified probability distribution,
which we now assume is continuous. Rather than discretizing the data so as to be able to
use the test of Section 11.2, we treat the data as given and make use of the Kolmogorov–
Smirnov test.

11.2 GOODNESS OF FIT TESTS WHEN ALL PARAMETERS
ARE SPECIFIED

Suppose that n independent random variables — Y1, . . . , Yn, each taking on one of the
values 1, 2, . . . , k — are to be observed and we are interested in testing the null hypothesis
that {pi , i = 1, . . . , k} is the probability mass function of the Yj . That is, if Y represents
any of the Yj , then the null hypothesis is

H0 : P{Y = i} = pi , i = 1, . . . , k

whereas the alternative hypothesis is

H1 : P{Y = i} �= pi , for same i = 1, . . . , k

To test the foregoing hypothesis, let Xi , i = 1, . . . , k, denote the number of the Yj ’s that
equal i. Then as each Yj will independently equal i with probability P{Y = i}, it follows
that, under H0, Xi is binomial with parameters n and pi . Hence, when H0 is true,

E [Xi] = npi

and so (Xi − npi)2 will be an indication as to how likely it appears that pi indeed equals
the probability that Y = i. When this is large, say, in relationship to npi , then it is an
indication that H0 is not correct. Indeed such reasoning leads us to consider the following
test statistic:

T =
k∑

i=1

(Xi − npi)2

npi
(11.2.1)

and to reject the null hypothesis when T is large.
To determine the critical region, we need first specify a significance level α and then

we must determine that critical value c such that

PH0{T ≥ c} = α

That is, we need determine c so that the probability that the test statistic T is at least as
large as c, when H0 is true, is α. The test is then to reject the hypothesis, at the α level of
significance, when T ≥ c and to accept when T < c.

It remains to determine c. The classical approach to doing so is to use the result that
when n is large T will have, when H0 is true, approximately (with the approximation
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becoming exact as n approaches infinity) a chi-square distribution with k − 1 degrees of
freedom. Hence, for n large, c can be taken to equal χ2

α,k−1; and so the approximate α

level test is

reject H0 if T ≥ χ2
α,k−1

accept H0 otherwise

If the observed value of T is T = t , then the preceding test is equivalent to rejecting H0

if the significance level α is at least as large as the p-value given by

p-value = PH0{T ≥ t}
≈ P{χ2

k−1 ≥ t}

where χ2
k−1 is a chi-square random variable with k − 1 degrees of freedom.

An accepted rule of thumb as to how large n need be for the foregoing to be a good
approximation is that it should be large enough so that npi ≥ 1 for each i, i = 1, . . . , k,
and also at least 80 percent of the values npi should exceed 5.

REMARKS

(a) A computationally simpler formula for T can be obtained by expanding the square
in Equation 11.2.1 and using the results that

∑
i pi = 1 and

∑
i Xi = n (why is this

true?):

T =
k∑

i=1

X 2
i − 2npiXi + n2p2

i

npi
(11.2.2)

=
∑

i

X 2
i /npi − 2

∑
i

Xi + n
∑

i

pi

=
∑

i

X 2
i /npi − n

(b) The intuitive reason why T , which depends on the k values X1, . . . , Xk , has only k −1
degrees of freedom is that 1 degree of freedom is lost because of the linear relationship∑

i Xi = n.
(c) Whereas the proof that, asymptotically, T has a chi-square distribution is advanced, it
can be easily shown when k = 2. In this case, since X1 + X2 = n, and p1 + p2 = 1, we
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see that

T = (X1 − np1)2

np1
+ (X2 − np2)2

np2

= (X1 − np1)2

np1
+ (n − X1 − n[1 − p1])2

n(1 − p1)

= (X1 − np1)2

np1
+ (X1 − np1)2

n(1 − p1)

= (X1 − np1)2

np1(1 − p1)
since

1

p
+ 1

1 − p
= 1

p(1 − p)

However, X1 is a binomial random variable with mean np1 and variance np1(1 − p1)
and thus, by the normal approximation to the binomial, it follows that (X1 − np1)/√

np1(1 − p1) has, for large n, approximately a unit standard distribution; and so its
square has approximately a chi-square distribution with 1 degree of freedom.

EXAMPLE 11.2a In recent years, a correlation between mental and physical well-being
has increasingly become accepted. An analysis of birthdays and death days of famous
people could be used as further evidence in the study of this correlation. To use these
data, we are supposing that being able to look forward to something betters a person’s
mental state; and that a famous person would probably look forward to his or her birth-
day because of the resulting attention, affection, and so on. If a famous person is in
poor health and dying, then perhaps anticipating his birthday would “cheer him up and
therefore improve his health and possibly decrease the chance that he will die shortly
before his birthday.” The data might therefore reveal that a famous person is less likely
to die in the months before his or her birthday and more likely to die in the months
afterward.

SOLUTION To test this, a sample of 1,251 (deceased) Americans was randomly chosen
from Who Was Who in America, and their birth and death days were noted. (The data
are taken from D. Phillips, “Death Day and Birthday: An Unexpected Connection,” in
Statistics: A Guide to the Unknown, Holden-Day, 1972.) The data are summarized in
Table 11.1.

If the death day does not depend on the birthday, then it would seem that each of the
1,251 individuals would be equally likely to fall in any of the 12 categories. Thus, let us
test the null hypothesis

H0 = pi = 1

12
, i = 1, . . . , 12
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TABLE 11.1 Number of Deaths Before, During, and After the Birth Month

6 5 4 3 2 1 1 2 3 4 5
Months Months Months Months Months Month The Month Months Months Months Months
Before Before Before Before Before Before Months After After After After After

Number of
deaths 90 100 87 96 101 86 119 118 121 114 113 106

n = 1,251
n/12 = 104.25
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Since npi = 1, 251/12 = 104. 25, the chi-square test statistic for this hypothesis is

T = (90)2 + (100)2 + (87)2 + · · · + (106)2

104.25
− 1,251

= 17.192

The p-value is

p-value ≈ P{χ2
11 ≥ 17.192}

= 1 − .8977 = .1023 by Program 5.8.1a

The results of this test leave us somewhat up in the air about the hypothesis that an
approaching birthday has no effect on an individual’s remaining lifetime. For whereas the
data are not quite strong enough (at least, at the 10 percent level of significance) to reject
this hypothesis, they are certainly suggestive of its possible falsity. This raises the possibility
that perhaps we should not have allowed as many as 12 data categories, and that we might
have obtained a more powerful test by allowing for a fewer number of possible outcomes.
For instance, let us determine what the result would have been if we had coded the data
into 4 possible outcomes as follows:

outcome 1 = −6, −5, −4

outcome 2 = −3, −2, −1

outcome 3 = 0, 1, 2

outcome 4 = 3, 4, 5

That is, for instance, an individual whose death day occurred 3 months before his or her
birthday would be placed in outcome 2. With this classification, the data would be as
follows:

Number of
Outcome Times Occurring

1 277
2 283
3 358
4 333

n = 1,251
n/4 = 312.75
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The test statistic for testing H0 = pi = 1/4, i = 1, 2, 3, 4 is

T = (277)2 + (283)2 + (358)2 + (333)2

312.75
− 1.251

= 14.775

Hence, as χ2
.01,3 = 11.345, the null hypothesis would be rejected even at the 1 percent level

of significance. Indeed, using Program 5.8.1a yields that

p-value ≈ P{χ2
3 ≥ 14.775} = 1 − .998 = .002

The foregoing analysis is, however, subject to the criticism that the null hypothesis
was chosen after the data were observed. Indeed, while there is nothing incorrect about
using a set of data to determine the “correct way” of phrasing a null hypothesis, the
additional use of those data to test that very hypothesis is certainly questionable. Therefore,
to be quite certain of the conclusion to be drawn from this example, it seems prudent
to choose a second random sample — coding the values as before — and again test
H0 : pi = 1/4, i = 1, 2, 3, 4 (see Problem 3). ■

Program 11.2.1 can be used to quickly calculate the value of T .

EXAMPLE 11.2b A contractor who purchases a large number of fluorescent lightbulbs has
been told by the manufacturer that these bulbs are not of uniform quality but rather have
been produced in such a way that each bulb produced will, independently, either be of
quality level A, B, C, D, or E, with respective probabilities .15, .25, .35, .20, .05. However,
the contractor feels that he is receiving too many type E (the lowest quality) bulbs, and
so he decides to test the producer’s claim by taking the time and expense to ascertain the
quality of 30 such bulbs. Suppose that he discovers that of the 30 bulbs, 3 are of quality
level A, 6 are of quality level B, 9 are of quality level C, 7 are of quality level D, and 5 are of
quality level E. Do these data, at the 5 percent level of significance, enable the contractor
to reject the producer’s claim?

SOLUTION Program 11.2.1 gives the value of the test statistic as 9.348. Therefore,

p-value = PH0{T ≥ 9.348}
≈ P{χ2

4 ≥ 9.348}
= 1 − .947 from Program 5.8.1a

= .053

Thus the hypothesis would not be rejected at the 5 percent level of significance (but since
it would be rejected at all significance levels above .053, the contractor should certainly
remain skeptical). ■
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11.2.1 Determining the Critical Region by Simulation

From 1900 when Karl Pearson first showed that T has approximately (becoming exact as
n approaches infinity) a chi-square distribution with k − 1 degrees of freedom, until quite
recently, this approximation was the only means available for determining the p-value of
the goodness of fit test. However, with the recent advent of inexpensive, fast, and easily
available computational power a second, potentially more accurate, approach has become
available: namely, the use of simulation to obtain to a high level of accuracy the p-value
of the test statistic.

The simulation approach is as follows. First, the value of T is determined — say, T = t .
Now to determine whether or not to accept H0, at a given significance level α, we need to
know the probability that T would be at least as large as t when H0 is true. To determine
this probability, we simulate n independent random variables Y (1)

1 , . . . , Y (1)
n each having

the probability mass function {pi , i = 1, . . . , k} — that is,

P{Y (1)
j = i} = pi , i = 1, . . . , k, j = 1, . . . , n

Now let

X (1)
i = number j : Y (1)

j = i

and set

T (1) =
k∑

i=1

(X (1)
i − npi)2

npi

Now repeat this procedure by simulating a second set, independent of the first set, of n
independent random variables Y (2)

1 , . . . , Y (2)
n each having the probability mass function

{pi , i = 1, . . . , k} and then, as for the first set, determining T (2). Repeating this a large
number, say, r , of times yields r independent random variables T (1), T (2), . . . , T (r), each
of which has the same distribution as does the test statistic T when H0 is true. Hence, by
the law of large numbers, the proportion of the Ti that are as large as t will be very nearly
equal to the probability that T is as large as t when H0 is true — that is,

number l : T (l ) ≥ t
r

≈ PH0{T ≥ t}

In fact, by letting r be large, the foregoing can be considered to be, with high probability,
almost an equality. Hence, if that proportion is less than or equal to α, then the p-value,
equal to the probability of observing a T as large as t when H0 is true, is less than α and
so H0 should be rejected.
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REMARKS

(a) To utilize the foregoing simulation approach to determine whether or not to accept
H0 when T is observed, we need to specify how one can simulate, or generate, a random
variable Y such that P{Y = i} = pi , i = 1, . . . , k. One way is as follows:

Step 1: Generate a random number U .
Step 2: If

p1 + · · · + pi−1 ≤ U < p1 + · · · + pi

set Y = i (where p1 + · · · + pi−1 ≡ 0 when i = 1). That is,

U < p1 ⇒ Y = 1

p1 ≤ U < p1 + p2 ⇒ Y = 2

...

p1 + · · · + pi−1 ≤ U < p1 + · · · + pi ⇒ Y = i

...

p1 + · · · + pn−1 < U ⇒ Y = n

Since a random number is equivalent to a uniform (0, 1) random variable, we have that

P{a < U < b} = b − a, 0 < a < b < 1

and so

P{Y = i} = P{p1 + · · · + pi−1 < U < p1 + · · · + pi} = pi

(b) A significant question that remains is how many simulation runs are necessary. It has
been shown that the value r = 100 is usually sufficient at the conventional 5 percent level
of significance.*

EXAMPLE 11.2c Let us reconsider the problem presented in Example 11.2b. A simulation
study yielded the result

PH0{T ≤ 9.52381} = .95

and so the critical value should be 9.52381, which is remarkably close to χ2
.05,4 = 9.488

given as the critical value by the chi-square approximation. This is most interesting since
the rule of thumb for when the chi-square approximation can be applied — namely, that

* See Hope, A., “A Simplified Monte Carlo Significance Test Procedure,” J. of Royal Statist. Soc., B. 30, 582–598,
1968.
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each npi ≥ 1 and at least 80 percent of the npi exceed 5 — does not apply, thus raising
the possibility that it is rather conservative. ■

Program 11.2.2 can be utilized to determine the p-value.
To obtain more information as to how well the chi-square approximation performs,

consider the following example.

EXAMPLE 11.2d Consider an experiment having six possible outcomes whose prob-
abilities are hypothesized to be .1, .1, .05, .4, .2, and .15. This is to be tested by performing
40 independent replications of the experiment. If the resultant number of times that each
of the six outcomes occurs is 3, 3, 5, 18, 4, 7, should the hypothesis be accepted?

SOLUTION A direct computation, or the use of Program 11.2.1, yields that the value of the
test statistic is 7.4167. Utilizing Program 5.8.1a gives the result that

P{χ2
5 ≤ 7.4167} = .8088

and so

p-value ≈ .1912

To check the foregoing approximation, we ran Program 11.2.2, using 10,000 simulation
runs, and obtained an estimate of the p-value equal to .1843 (see Figure 11.1).

The estimate of the p-value is 0.1843

Simulation Approximation to the p-Value in Goodness of Fit

Start

Quit

Enter sample size:

Enter desired number
of simulation runs:

Enter the value of the
test statistic:

40

Enter value for p: .15

Add This Point To List

Remove Selected Point From List

Probabilities

Clear List

This program uses simulation to approximate
the p-value in the goodness of fit test.

0.1
0.1
0.05
0.4
0.2
0.15

10000

7.416667

FIGURE 11.1
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Since the number of the 104 simulated values that exceed 7.4167 is a binomial random
variable with parameters n = 104 and p = p-value, it follows that a 90 percent confidence
interval for the p-value is

p-value ∈ .1843 ± 1.645
√

.1843(.8157)/104

That is, with 90 percent confidence

p-value ∈ (.1779, .1907) ■

11.3 GOODNESS OF FIT TESTS WHEN SOME
PARAMETERS ARE UNSPECIFIED

We can also perform goodness of fit tests of a null hypothesis that does not completely
specify the probabilities {pi , i = 1, . . . , k}. For instance, consider the situation previously
mentioned in which one is interested in testing whether the number of accidents occurring
daily in a certain industrial plant is Poisson distributed with some unknown mean λ. To
test this hypothesis, suppose that the daily number of accidents is recorded for n days — let
Y1, . . . , Yn be these data. To analyze these data we must first address the difficulty that the
Yi can assume an infinite number of possible values. However, this is easily dealt with by
breaking up the possible values into a finite number k of regions and then considering the
region in which each Yi falls. For instance, we might say that the outcome of the number
of accidents on a given day is in region 1 if there are 0 accidents, region 2 if there is 1
accident, and region 3 if there are 2 or 3 accidents, region 4 if there are 4 or 5 accidents,
and region 5 if there are more than 5 accidents. Hence, if the distribution is indeed Poisson
with mean λ, then

P1 = P{Y = 0} = e−λ (11.3.1)

P2 = P{Y = 1} = λe−λ

P3 = P{Y = 2} + P{Y = 3} = e−λλ2

2
+ e−λλ3

6

P4 = P{Y = 4} + P{Y = 5} = e−λλ4

24
+ e−λλ5

120

P5 = P{Y > 5} = 1 − e−λ − λe−λ − e−λλ2

2
− e−λλ3

6
− e−λλ4

24
− e−λλ5

120

The second difficulty we face in obtaining a goodness of fit test results from the fact
that the mean value λ is not specified. Clearly, the intuitive thing to do is to assume that
H0 is true and then estimate it from the data — say, λ̂ is the estimate of λ — and then
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compute the test statistic

T =
k∑

i=1

(Xi − np̂i)2

np̂i

where Xi is, as before, the number of Yj that fall in region i, i = 1, . . . , k, and p̂i is
the estimated probability of the event that Yj falls in region i, which is determined by
substituting λ̂ for λ in expression 11.3.1 for pi .

In general, this approach can be utilized whenever there are unspecified parameters in
the null hypothesis that are needed to compute the quantities pi , i = 1, . . . , k. Suppose
now that there are m such unspecified parameters and that they are to be estimated by the
method of maximum likelihood. It can then be proven that when n is large, the test statistic
T will have, when H0 is true, approximately a chi-square distribution with k − 1 − m
degrees of freedom. (In other words, one degree of freedom is lost for each parameter that
needs to be estimated.) The test is, therefore, to

reject H0 if T ≥ χ2
α,k−1−m

accept H0 otherwise

An equivalent way of performing the foregoing is to first determine the value of the test
statistic T , say T = t , and then compute

p-value ≈ P{χ2
k−1−m ≥ t}

The hypothesis would be rejected if α ≥ p-value.

EXAMPLE 11.3a Suppose the weekly number of accidents over a 30-week period is as
follows:

8 0 0 1 3 4 0 2 12 5
1 8 0 2 0 1 9 3 4 5
3 3 4 7 4 0 1 2 1 2

Test the hypothesis that the number of accidents in a week has a Poisson distribution.

SOLUTION Since the total number of accidents in the 30 weeks is 95, the maximum
likelihood estimate of the mean of the Poisson distribution is

λ̂ = 95

30
= 3.16667

Since the estimate of P{Y = i} is then

P{Y = i} est= e−λ̂λ̂i

i!
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we obtain, after some computation, that with the five regions as given in the beginning of
this section,

p̂1 = .04214

p̂2 = .13346

p̂3 = .43434

p̂4 = .28841

p̂5 = .10164

Using the data values X1 = 6, X2 = 5, X3 = 8, X4 = 6, X5 = 5, an additional
computation yields the test statistic value

T =
5∑

i=1

(Xi − 30p̂i)2

30p̂i
= 21.99156

To determine the p-value, we run Program 5.8.1a. This yields

p-value ≈ P{χ2
3 > 21.99}

= 1 − .999936

= .000064

and so the hypothesis of an underlying Poisson distribution is rejected. (Clearly,
there were too many weeks having 0 accidents for the hypothesis that the underlying
distribution is Poisson with mean 3.167 to be tenable.) ■

11.4 TESTS OF INDEPENDENCE IN CONTINGENCY
TABLES

In this section, we consider problems in which each member of a population can
be classified according to two distinct characteristics — which we shall denote as the
X -characteristic and the Y -characteristic. We suppose that there are r possible values for
the X -characteristic and s for the Y -characteristic, and let

Pij = P{X = i, Y = j}

for i = 1, . . . , r , j = 1, . . . , s. That is, Pij represents the probability that a randomly
chosen member of the population will have X -characteristic i and Y -characteristic j.
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The different members of the population will be assumed to be independent. Also, let

pi = P{X = i} =
s∑

j=1

Pij , i = 1, . . . , r

and

qj = P{Y = j} =
r∑

i=1

Pij , j = 1, . . . , s

That is, pi is the probability that an arbitrary member of the population will have
X -characteristic i, and qj is the probability it will have Y -characteristic j.

We are interested in testing the hypothesis that a population member’s X - and
Y -characteristics are independent. That is, we are interested in testing

H0 : Pij = piqj , for all i = 1, . . . , r

j = 1, . . . , s

against the alternative

H1 : Pij �= piqj , for some i, j i = 1, . . . , r
j = 1, . . . , s

To test this hypothesis, suppose that n members of the population have been sampled, with
the result that Nij of them have simultaneously had X -characteristic i and Y -characteristic
j, i = 1, . . . , r , j = 1, . . . , s.

Since the quantities pi , i = 1, . . . , r , and qj , j = 1, . . . , s are not specified by the null
hypothesis, they must first be estimated. Now since

Ni =
s∑

j=1

Nij , i = 1, . . . , r

represents the number of the sampled population members that have X -characteristic i,
a natural (in fact, the maximum likelihood) estimator of pi is

p̂i = Ni

n
, i = 1, . . . , r

Similarly, letting

Mj =
r∑

i=1

Nij , j = 1, . . . , s
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denote the number of sampled members having Y -characteristic j, the estimator for qj is

q̂j = Mj

n
, j = 1, . . . , s

At first glance, it may seem that we have had to use the data to estimate r + s parameters.
However, since the pi ’s and qj ’s have to sum to 1 — that is,

∑r
i=1 pi = ∑s

j=1 qj = 1 —
we need estimate only r − 1 of the p’s and s − 1 of the q’s. (For instance, if r were
equal to 2, then an estimate of p1 would automatically provide an estimate of p2 since
p2 = 1 − p1.) Hence, we actually need estimate r − 1 + s − 1 = r + s − 2 parameters,
and since each population member has k = rs different possible values, it follows that the
resulting test statistic will, for large n, have approximately a chi-square distribution with
rs − 1 − (r + s − 2) = (r − 1)(s − 1) degrees of freedom.

Finally, since

E [Nij ] = nPij

= npiqj when H0 is true

it follows that the test statistic is given by

T =
s∑

j=1

r∑
i=1

(Nij − np̂i q̂j )2

np̂i q̂j
=

s∑
j=1

r∑
i=1

N 2
ij

np̂i q̂j
− n

and the approximate significance level α test is to

reject H0 if T ≥ χ2
α,(r−1)(s−1)

not reject H0 otherwise

EXAMPLE 11.4a A sample of 300 people was randomly chosen, and the sampled individ-
uals were classified as to their gender and political affiliation, Democrat, Republican, or
Independent. The following table, called a contingency table, displays the resulting data.

j

i Democrat Republican Independent Total

Women 68 56 32 156
Men 52 72 20 144
Total 120 128 52 300

Thus, for instance, the contingency table indicates that the sample of size 300 contained
68 women who classified themselves as Democrats, 56 women who classified themselves
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as Republicans, and 32 women who classified themselves as Independents; that is, N11 =
68, N12 = 56, and N13 = 32. Similarly, N21 = 52, N22 = 72, and N23 = 20.

Use these data to test the hypothesis that a randomly chosen individual’s gender and
political affiliation are independent.

SOLUTION From the above data, we obtain that the six values of np̂i q̂j = NiMj /n are as
follows:

N1M1

n
= 156 × 120

300
= 62.40

N1M2

n
= 156 × 128

300
= 66.56

N1M3

n
= 156 × 52

300
= 27.04

N2M1

n
= 144 × 120

300
= 57.60

N2M2

n
= 144 × 128

300
= 61.44

N2M3

n
= 144 × 52

300
= 24.96

The value of the test statistic is thus

TS = (68 − 62.40)2

62.40
+ (56 − 66.56)2

66.56
+ (32 − 27.04)2

27.04
+ (52 − 57.60)2

57.60

+ (72 − 61.44)2

61.44
+ (20 − 24.96)2

24.96

= 6.433

Since (r − 1)(s − 1) = 2, we must compare the value of TS with the critical value χ2
.05,2.

From Table A2

χ2
.05,2 = 5.991

Since TS ≥ 5. 991, the null hypothesis is rejected at the 5 percent level of significance.
That is, the hypothesis that gender and political affiliation of members of the population
are independent is rejected at the 5 percent level of significance. ■

The results of the test of independence of the characteristics of a randomly chosen
member of the population can also be obtained by computing the resulting p-value. If
the observed value of the test statistic is T = t , then the significance level α test would
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call for rejecting the hypothesis of independence if the p-value is less than or equal to α,
where

p-value = PH0{T ≥ t}
≈ P{χ2

(r−1)(s−1) ≥ t}

Program 11.4 will compute the value of T .

EXAMPLE 11.4b A company operates four machines on three separate shirts daily. The
following contingency table presents the data during a 6-month time period, concerning
the machine breakdowns that resulted.

Number of Breakdowns

Machine

A B C D Total per Shift

Shift 1 10 12 6 7 35
Shift 2 10 24 9 10 53
Shift 3 13 20 7 10 50
Total per Machine 33 56 22 27 138

Suppose we are interested in determining whether a machine’s breakdown probability
during a particular shift is influenced by that shift. In other words, we are interested in
testing, for an arbitrary breakdown, whether the machine causing the breakdown and the
shift on which the breakdown occurred are independent.

SOLUTION A direct computation, or the use of Program 11.4, gives that the value of
the test statistic is 1.8148 (see Figure 11.2). Utilizing Program 5.8.1a then gives that

p-value ≈ P{χ2
6 ≥ 1.8148}

= 1 − .0641

= .9359

and so the hypothesis that the machine that causes a breakdown is independent of the shift
on which the breakdown occurs is accepted. ■

11.5 TESTS OF INDEPENDENCE IN CONTINGENCY
TABLES HAVING FIXED MARGINAL TOTALS

In Example 11.4a, we were interested in determining whether gender and political affili-
ation were dependent in a particular population. To test this hypothesis, we first chose
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The Test Statistic for Independence in a Contingency Table

Start

Quit

1
2
3

A B C
10
10
13

12
24
20

D
6
9
7

7
10
10

The test statistic has value t = 1.81478

FIGURE 11.2

a random sample of people from this population and then noted their characteristics.
However, another way in which we could gather data is to fix in advance the numbers of
men and women in the sample and then choose random samples of those sizes from the
subpopulations of men and women. That is, rather than let the numbers of women and
men in the sample be determined by chance, we might decide these numbers in advance.
Because doing so would result in fixed specified values for the total numbers of men and
women in the sample, the resulting contingency table is often said to have fixed margins
(since the totals are given in the margins of the table).

It turns out that even when the data are collected in the manner prescribed above, the
same hypothesis test as given in Section 11.4 can still be used to test for the independence
of the two characteristics. The test statistic remains

TS =
∑

i

∑
j

(Nij − êij )2

êij

where

Nij = number of members of sample who have both X -characteristic i

and Y -characteristic j

Ni = number of members of sample who have X -characteristic i

Mj = number of members of sample who have Y -characteristic j



11.5 Tests of Independence in Contingency Tables Having Fixed Marginal Totals 501

and

êij = np̂i q̂j = NiMj

n

where n is the total size of the sample.
In addition, it is still true that when H0 is true, TS will approximately have a chi-square

distribution with (r − 1)(s − 1) degrees of freedom. (The quantities r and s refer, of
course, to the numbers of possible values of the X - and Y -characteristic, respectively.) In
other words, the test of the independence hypothesis is unaffected by whether the marginal
totals of one characteristic are fixed in advance or result from a random sample of the entire
population.

EXAMPLE 11.5a A randomly chosen group of 20,000 nonsmokers and one of 10,000
smokers were followed over a 10-year period. The following data relate the numbers
of them that developed lung cancer during that period.

Smokers Nonsmokers Total

Lung cancer 62 14 76
No lung cancer 9,938 19,986 29,924
Total 10,000 20,000 30,000

Test the hypothesis that smoking and lung cancer are independent. Use the 1 percent level
of significance.

SOLUTION The estimates of the expected number to fall in each ij cell when smoking and
lung cancer are independent are

ê11 = (76)(10,000)

30,000
= 25.33

ê12 = (76)(20,000)

30,000
= 50.67

ê21 = (29,924)(10,000)

30,000
= 9,974.67

ê22 = (29,924)(20,000)

30,000
= 19,949.33
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Therefore, the value of the test statistic is

TS = (62 − 25.33)2

25.33
+ (14 − 50.67)2

50.67
+ (9,938 − 9,974.67)2

9,974.67

+ (19,986 − 19,949.33)2

19,949.33

= 53.09 + 26.54 + .13 + .07 = 79.83

Since this is far larger than χ2
.01,1 = 6.635, we reject the null hypothesis that whether

a randomly chosen person develops lung cancer is independent of whether that person is
a smoker. ■

We now show how to use the framework of this section to test the hypothesis that
m discrete population distributions are equal. Consider m separate populations, each of
whose members takes on one of the values 1, . . . , n. Suppose that a randomly chosen
member of population i will have value j with probability

pi, j , i = 1, . . . , m, j = 1, . . . , n

and consider a test of the null hypothesis

H0 : p1, j = p2, j = p3, j = · · · = pm, j , for each j = 1, . . . , n

To obtain a test of this null hypothesis, consider first the superpopulation consisting
of all members of each of the m populations. Any member of this superpopulation can
be classified according to two characteristics. The first characteristic specifies which of
the m populations the member is from, and the second characteristic specifies its value.
The hypothesis that the population distributions are equal becomes the hypothesis that,
for each value, the proportion of members of each population having that value are the
same. But this is exactly the same as saying that the two characteristics of a randomly
chosen member of the superpopulation are independent. (That is, the value of a randomly
chosen superpopulation member is independent of the population to which this member
belongs.)

Therefore, we can test H0 by randomly choosing sample members from each
population. If we let Mi denote the sample size from population i and let Ni,j

denote the number of values from that sample that are equal to j, i = 1, . . . , m, j =
1, . . . , n, then we can test H0 by testing for independence in the following contingency
table.
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Population

Value 1 2 .. i. m Totals

1 N1,1 N2,1 . . . Ni,1 . . . Nm,1 N1
2
...
j N1,j N2,j . . . Ni,j . . . Nm,j Nj
...
n N1,n N2,n . . . Ni,n Nm,n Nn

Totals M1 M2 . . . Mi . . . Mm

Note that Nj denotes the number of sampled members that have value j.

EXAMPLE 11.5b A recent study reported that 500 female office workers were randomly
chosen and questioned in each of four different countries. One of the questions related to
whether these women often received verbal or sexual abuse on the job. The following data
resulted.

Country Number Reporting Abuse

Australia 28
Germany 30
Japan 51
United States 55

Based on these data, is it plausible that the proportions of female office workers who
often feel abused at work are the same for these countries?

SOLUTION Putting the above data in the form of a contingency table gives the following.

Country

1 2 3 4 Totals

Receive abuse 28 30 58 55 171
Do not receive abuse 472 470 442 445 1,829
Totals 500 500 500 500 2,000

We can now test the null hypothesis by testing for independence in the preceding contin-
gency table. If we run Program 11.4, then the value of the test statistic and the resulting
p-value are

TS = 19.51, p-value ≈ .0002
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Therefore, the hypothesis that the percentages of women who feel they are being abused
on the job are the same for these countries is rejected at the 1 percent level of significance
(and, indeed, at any significance level above .02 percent). ■

*11.6 THE KOLMOGOROV–SMIRNOV GOODNESS OF
FIT TEST FOR CONTINUOUS DATA

Suppose now that Y1, . . . , Yn represents sample data from a continuous distribution, and
suppose that we wish to test the null hypothesis H0 that F is the population distribution,
where F is a specified continuous distribution function. One approach to testing H0 is to
break up the set of possible values of the Yj into k distinct intervals, say,

( y0, y1), ( y1, y2), . . . , ( yk−1, yk), where y0 = −∞, yk = +∞

and then consider the discretized random variables Y d
j , j = 1, . . . , n, defined by

Y d
j = i if Yj lies in the interval ( yi−1, yi)

The null hypothesis then implies that

P{Y d
j = i} = F ( yi) − F ( yi−1), i = 1, . . . , k

and this can be tested by the chi-square goodness of fit test already presented.
There is, however, another way of testing that the Yj come from the continuous dis-

tribution function F that is generally more efficient than discretizing; it works as follows.
After observing Y1, . . . , Yn, let Fe be the empirical distribution function defined by

Fe(x) = #i : Yi ≤ x
n

That is, Fe(x) is the proportion of the observed values that are less than or equal to x.
Because Fe(x) is a natural estimator of the probability that an observation is less than or
equal to x, it follows that, if the null hypothesis that F is the underlying distribution is
correct, it should be close to F (x). Since this is so for all x, a natural quantity on which to
base a test of H0 is the test quantity

D ≡ Maximum
x

|Fe(x) − F (x)|

where the maximum is over all values of x from −∞ to +∞. The quantity D is called the
Kolmogorov–Smirnov test statistic.

* Optional section.
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To compute the value of D for a given data set Yj = yj , j = 1, . . . , n, let y(1), y(2), . . . , y(n)
denote the values of the yj in increasing order. That is,

y( j) = jth smallest of y1, . . . , yn

For example, if n = 3 and y1 = 3, y2 = 5, y3 = 1, then y(1) = 1, y(2) = 3, y(3) = 5. Since
Fe(x) can be written

Fe(x) =




0 if x < y(1)
1

n
if y(1) ≤ x < y(2)

...
j
n

if y( j) ≤ x < y( j+1)

...
1 if y(n) ≤ x

we see that Fe(x) is constant within the intervals ( y( j−1), y( j)) and then jumps by 1/n at
the points y(1), . . . , y(n). Since F (x) is an increasing function of x that is bounded by 1, it
follows that the maximum value of Fe(x) − F (x) is nonnegative and occurs at one of the
points y( j), j = 1, . . . , n (see Figure 11.3).

That is,

Maximum
x

{Fe(x) − F (x)} = Maximum
j=1,...,n

{
j
n

− F ( y( j))

}
(11.6.1)

1

x

F(x)

Fe(x)

y(5)y(4)y(3)y(2)y(1)

FIGURE 11.3 n = 5.
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Similarly, the maximum value of F (x)−Fe(x) is also nonnegative and occurs immediately
before one of the jump points y( j); and so

Maximum
x

{F (x) − Fe(x)} = Maximum
j=1,...,n

{
F ( y( j)) − j − 1

n

}
(11.6.2)

From Equations 11.6.1 and 11.6.2, we see that

D = Maximum
x

|Fe(x) − F (x)|
= Maximum{Maximum{Fe(x) − F (x)}, Maximum{F (x) − Fe(x)}}

= Maximum

{
j
n

− F ( y( j)), F ( y( j)) − j − 1

n
, j = 1, . . . , n

}
(11.6.3)

Equation 11.6.3 can be used to compute the value of D.
Suppose now that the Yj are observed and their values are such that D = d . Since a

large value of D would appear to be inconsistent with the null hypothesis that F is the
underlying distribution, it follows that the p-value for this data set is given by

p-value = PF {D ≥ d }

where we have written PF to make explicit that this probability is to be computed under
the assumption that H0 is correct (and so F is the underlying distribution).

The above p-value can be approximated by a simulation that is made easier by the
following proposition, which shows that PF {D ≥ d } does not depend on the underlying
distribution F . This result enables us to estimate the p-value by doing the simulation
with any continuous distribution F we choose [thus allowing us to use the uniform (0, 1)
distribution].

PROPOSITION 11.6.1
PF {D ≥ d } is the same for any continuous distribution F .

Proof

PF {D ≥ d } = PF

{
Maximum

x

∣∣∣∣#i : Yi ≤ x
n

− F (x)

∣∣∣∣ ≥ d
}

= PF

{
Maximum

x

∣∣∣∣#i : F (Yi) ≤ F (x)

n
− F (x)

∣∣∣∣ ≥ d
}

= P
{

Maximum
x

∣∣∣∣#i : Ui ≤ F (x)

n
− F (x)

∣∣∣∣ ≥ d
}
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where U1, . . . , Un are independent uniform (0, 1) random variables: the first equality
following because F is an increasing function and so Y ≤ x is equivalent to F (Y ) ≤ F (x);
and the second because of the result (whose proof is left as an exercise) that if Y has the
continuous distribution F then the random variable F (Y ) is uniform on (0, 1).

Continuing the above, we see by letting y = F (x) and noting that as x ranges from
−∞ to +∞, F (x) ranges from 0 to 1, that

PF {D ≥ d } = P
{

Maximum
0≤y≤1

∣∣∣∣#i : Ui ≤ y
n

− y

∣∣∣∣ ≥ d
}

which shows that the distribution of D, when H0 is true, does not depend on the actual
distribution F . ■

It follows from the above proposition that after the value of D is determined from the
data, say, D = d , the p-value can be obtained by doing a simulation with the uniform
(0, 1) distribution. That is, we generate a set of n random numbers U1, . . . , Un and then
check whether or not the inequality

Maximum
0≤y≤1

∣∣∣∣#i : Ui ≤ y
n

− y

∣∣∣∣ ≥ d

is valid. This is then repeated many times and the proportion of times that it is valid is
our estimate of the p-value of the data set. As noted earlier, the left side of the inequality
can be computed by ordering the random numbers and then using the identity

Max

∣∣∣∣#i : Ui ≤ y
n

− y

∣∣∣∣ = Max

{
j
n

− U( j), U( j) − ( j − 1)

n
, j = 1, . . . , n

}

where U( j) is the jth smallest value of U1, . . . , Un. For example, if n = 3 and U1 = .7, U2 =
.6, U3 = .4, then U(1) = .4, U(2) = .6, U(3) = .7 and the value of D for this data set is

D = Max

{
1

3
− .4,

2

3
− .6, 1 − .7, .4, .6 − 1

3
, .7 − 2

3

}
= .4

A significance level α test can be obtained by considering the quantity D∗ defined by

D∗ = (
√

n + .12 + .11/
√

n)D

Letting d ∗
α be such that

PF {D∗ ≥ d ∗
α } = α

then the following are accurate approximations for d ∗
α for a variety of values:

d ∗
.1 = 1.224, d ∗

.05 = 1.358, d ∗
.025 = 1.480, d ∗

.01 = 1.626
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The level α test would reject the null hypothesis that F is the distribution if the observed
value of D∗ is at least as large as d ∗

α .

EXAMPLE 11.6a Suppose we want to test the hypothesis that a given population distribu-
tion is exponential with mean 100; that is, F (x) = 1 − e−x/100. If the (ordered) values
from a sample of size 10 from this distribution are

66, 72, 81, 94, 112, 116, 124, 140, 145, 155

what conclusion can be drawn?

SOLUTION To answer the above, we first employ Equation 11.6.3 to compute the value of
the Kolmogorov–Smirnov test quantity D. After some computation this gives the result
D = .4831487, which results in

D∗ = .48315(
√

10 + 0.12 + 0.11/
√

10) = 1.603

Because this exceeds d ∗
.025 = 1.480, it follows that the null hypothesis that the data come

from an exponential distribution with mean 100 would be rejected at the 2.5 percent level
of significance. (On the other hand, it would not be rejected at the 1 percent level of
significance.) ■

Problems

1. According to the Mendelian theory of genetics, a certain garden pea plant should
produce either white, pink, or red flowers, with respective probabilities 1

4 , 1
2 , 1

4 .
To test this theory, a sample of 564 peas was studied with the result that 141
produced white, 291 produced pink, and 132 produced red flowers. Using the
chi-square approximation, what conclusion would be drawn at the 5 percent level
of significance?

2. To ascertain whether a certain die was fair, 1,000 rolls of the die were recorded,
with the following results.

Outcome Number of Occurrences

1 158
2 172
3 164
4 181
5 160
6 165
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Test the hypothesis that the die is fair (that is, that pi = 1
6 , i = 1, . . . , 6) at the

5 percent level of significance. Use the chi-square approximation.

3. Determine the birth and death dates of 100 famous individuals and, using the
four-category approach of Example 11.2a, test the hypothesis that the death month
is not affected by the birth month. Use the chi-square approximation.

4. It is believed that the daily number of electrical power failures in a certain
Midwestern city is a Poisson random variable with mean 4.2. Test this hypothesis
if over 150 days the number of days having i power failures is as follows:

Failures Number of Days

0 0
1 5
2 22
3 23
4 32
5 22
6 19
7 13
8 6
9 4

10 4
11 0

5. Among 100 vacuum tubes tested, 41 had lifetimes of less than 30 hours, 31 had
lifetimes between 30 and 60 hours, 13 had lifetimes between 60 and 90 hours,
and 15 had lifetimes of greater than 90 hours. Are these data consistent with the
hypothesis that a vacuum tube’s lifetime is exponentially distributed with a mean
of 50 hours?

6. The past output of a machine indicates that each unit it produces will be

top grade with probability .40
high grade with probability .30
medium grade with probability .20
low grade with probability .10

A new machine, designed to perform the same job, has produced 500 units with
the following results.
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top grade 234
high grade 117
medium grade 81
low grade 68

Can the difference in output be ascribed solely to chance?

7. The neutrino radiation from outer space was observed during several days. The
frequencies of signals were recorded for each sidereal hour and are as given
below:

Frequency of Neutrino Radiation from Outer Space

Hour Frequency Hour Frequency
Starting at of Signals Starting at of Signals

0 24 12 29
1 24 13 26
2 36 14 38
3 32 15 26
4 33 16 37
5 36 17 28
6 41 18 43
7 24 19 30
8 37 20 40
9 37 21 22

10 49 22 30
11 51 23 42

Test whether the signals are uniformly distributed over the 24-hour period.

8. Neutrino radiation was observed over a certain period and the number of hours in
which 0, 1, 2, … signals were received was recorded.

Number of Number of Hours with
Signals per Hour This Frequency of Signals

0 1,924
1 541
2 103
3 17
4 1
5 1
6 or more 0

Test the hypothesis that the observations come from a population having a Poisson
distribution with mean .3.
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9. In a certain region, insurance data indicate that 82 percent of drivers have no
accidents in a year, 15 percent have exactly 1 accident, and 3 percent have 2 or
more accidents. In a random sample of 440 engineers, 366 had no accidents, 68
had exactly 1 accident, and 6 had 2 or more. Can you conclude that engineers
follow an accident profile that is different from the rest of the drivers in the region?

10. A study was instigated to see if southern California earthquakes of at least moderate
size (having values of at least 4.4 on the Richter scale) are more likely to occur on
certain days of the week than on others. The catalogs yielded the following data
on 1,100 earthquakes.

Day Sun Mon Tues Wed Thurs Fri Sat

Number of Earthquakes 156 144 170 158 172 148 152

Test, at the 5 percent level, the hypothesis that an earthquake is equally likely to
occur on any of the 7 days of the week.

11. Sometimes reported data fit a model so well that it makes one suspicious that the
data are not being accurately reported. For instance, a friend of mine has reported
that he tossed a fair coin 40,000 times and obtained 20,004 heads and 19,996
tails. Is such a result believable? Explain your reasoning.

12. Use simulation to determine the p-value and compare it with the result you
obtained using the chi-square approximation in Problem 1. Let the number of
simulation runs be

(a) 1,000;
(b) 5,000;
(c) 10,000.

13. A sample of size 120 had a sample mean of 100 and a sample standard deviation
of 15. Of these 120 data values, 3 were less than 70; 18 were between 70 and 85;
30 were between 85 and 100; 35 were between 100 and 115; 32 were between
115 and 130; and 2 were greater than 130. Test the hypothesis that the sample
distribution was normal.

14. In Problem 4, test the hypothesis that the daily number of failures has a Poisson
distribution.

15. A random sample of 500 families was classified by region and income (in units of
$1,000). The following data resulted.

Income South North

0–10 42 53
10–20 55 90
20–30 47 88
>30 36 89
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Determine the p-value of the test that a family’s income and region are
independent.

16. The following data relate the mother’s age and the birthweight (in grams) of her
child.

Birthweight

Maternal Age Less Than 2,500 Grams More Than 2,500 Grams

20 years or less 10 40
Greater than 20 15 135

Test the hypothesis that the baby’s birthweight is independent of the mother’s age.

17. Repeat Problem 16 with all of the data values doubled — that is, with these data:

20 80
30 270

18. The number of infant mortalities as a function of the baby’s birthweight (in grams)
for 72,730 live white births in New York in 1974 is as follows:

Outcome at the End of 1 Year

Birthweight Alive Dead

Less than 2,500 4,597 618
Greater than 2,500 67,093 422

Test the hypothesis that the birthweight is independent of whether or not the baby
survives its first year.

19. An experiment designed to study the relationship between hypertension and
cigarette smoking yielded the following data.

Nonsmoker Moderate Smoker Heavy Smoker

Hypertension 20 38 28
No hypertension 50 27 18

Test the hypothesis that whether or not an individual has hypertension is
independent of how much that person smokes.

20. The following table shows the number of defective, acceptable, and superior items
in samples taken both before and after the introduction of a modification in the
manufacturing process.
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Defective Acceptable Superior

Before 25 218 22
After 9 103 14

Is this change significant at the .05 level?

21. A sample of 300 cars having cellular phones and one of 400 cars without phones
were tracked for 1 year. The following table gives the number of these cars involved
in accidents over that year.

Accident No Accident

Cellular phone 22 278
No phone 26 374

Use the above to test the hypothesis that having a cellular phone in your car
and being involved in an accident are independent. Use the 5 percent level of
significance.

22. To study the effect of fluoridated water supplies on tooth decay, two communities
of roughly the same socioeconomic status were chosen. One of these communities
had fluoridated water while the other did not. Random samples of 200 teenagers
from both communities were chosen, and the numbers of cavities they had were
determined. The following data resulted.

Cavities Fluoridated Town Nonfluoridated Town

0 154 133
1 20 18
2 14 21

3 or more 12 28

Do these data establish, at the 5 percent level of significance, that the number
of dental cavities a person has is not independent of whether that person’s water
supply is fluoridated? What about at the 1 percent level?

23. To determine if a malpractice lawsuit is more likely to follow certain types of
surgery, random samples of three different types of surgeries were studied, and the
following data resulted.

Type of Operation Number Sampled Number Leading to a Lawsuit

Heart surgery 400 16
Brain surgery 300 19
Appendectomy 300 7
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Test the hypothesis that the percentages of the surgical operations that lead to
lawsuits are the same for each of the three types.

(a) Use the 5 percent level of significance.
(b) Use the 1 percent level of significance.

24. In a famous article (S. Russell, “A red sky at night…,” Metropolitan Magazine
London, 61, p. 15, 1926) the following data set of frequencies of sunset colors and
whether each was followed by rain was presented.

Sky Color Number of Observations Number Followed by Rain

Red 61 26
Mainly red 194 52
Yellow 159 81
Mainly yellow 188 86
Red and yellow 194 52
Gray 302 167

Test the hypothesis that whether it rains tomorrow is independent of the color of
today’s sunset.

25. Data are said to be from a lognormal distribution with parameters µ and σ if the
natural logarithms of the data are normally distributed with mean µ and standard
deviation σ . Use the Kolmogorov–Smirnov test with significance level .05 to
decide whether the following lifetimes (in days) of a sample of cancer-bearing
mice that have been treated with a certain cancer therapy might come from a
lognormal distribution with parameters µ = 3 and σ = 4.

24, 12, 36, 40, 16, 10, 12, 30, 38, 14, 22, 18
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NONPARAMETRIC HYPOTHESIS TESTS

12.1 INTRODUCTION
In this chapter, we shall develop some hypothesis tests in situations where the data come
from a probability distribution whose underlying form is not specified. That is, it will not
be assumed that the underlying distribution is normal, or exponential, or any other given
type. Because no particular parametric form for the underlying distribution is assumed,
such tests are called nonparametric.

The strength of a nonparametric test resides in the fact that it can be applied without any
assumption on the form of the underlying distribution. Of course, if there is justification
for assuming a particular parametric form, such as the normal, then the relevant parametric
test should be employed.

In Section 12.2, we consider hypotheses concerning the median of a continuous dis-
tribution and show how the sign test can be used in their study. In Section 12.3, we
consider the signed rank test, which is used to test the hypothesis that a continuous popu-
lation distribution is symmetric about a specified value. In Section 12.4, we consider the
two-sample problem, where one wants to use data from two separate continuous distribu-
tions to test the hypothesis that the distributions are equal, and present the rank sum test.
Finally, in Section 12.5 we study the runs test, which can be used to test the hypothesis that
a sequence of 0’s and 1’s constitutes a random sequence that does not follow any specified
pattern.

12.2 THE SIGN TEST
Let X1, . . . , Xn denote a sample from a continuous distribution F and suppose that we
are interested in testing the hypothesis that the median of F , call it m, is equal to a
specified value m0. That is, consider a test of

H0 : m = m0 versus H1 : m �= m0

where m is such that F (m) = .5.

515
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This hypothesis can easily be tested by noting that each of the observations will,
independently, be less than m0 with probability F (m0). Hence, if we let

Ii =
{

1 if Xi < m0

0 if Xi ≥ m0

then I1, . . . , In are independent Bernoulli random variables with parameter p = F (m0);
and so the null hypothesis is equivalent to stating that this Bernoulli parameter is equal to
1
2 . Now, if v is the observed value of

∑n
i=1 Ii — that is, if v is the number of data values

less than m0 — then it follows from the results of Section 8.6 that the p-value of the test
that this Bernoulli parameter is equal to 1

2 is

p-value = 2 min(P{Bin(n, 1/2) ≤ v}, P{Bin(n, 1/2) ≥ v}) (12.2.1)

where Bin(n, p) is a binomial random variable with parameters n and p.
However,

P{Bin(n, p) ≥ v} = P{n − Bin(n, p) ≤ n − v}
= P{Bin(n, 1 − p) ≤ n − v} (why?)

and so we see from Equation 12.2.1 that the p-value is given by

p-value = 2 min(P{Bin(n, 1/2) ≤ v}, P{Bin(n, 1/2) ≤ n − v}) (12.2.2)

=



2P{Bin(n, 1/2) ≤ v} if v ≤ n
2

2P{Bin(n, 1/2) ≤ n − v} if v ≥ n
2

Since the value of v = ∑n
i=1 Ii depends on the signs of the terms Xi − m0, the foregoing

is called the sign test.

EXAMPLE 12.2a If a sample of size 200 contains 120 values that are less than m0 and 80
values that are greater, what is the p-value of the test of the hypothesis that the median is
equal to m0?

SOLUTION From Equation 12.2.2, the p-value is equal to twice the probability that
binomial random variable with parameters 200, 1

2 is less than or equal to 80.
The text disk shows that

P{Bin(200, .5) ≤ 80} = .00284

Therefore, the p-value is .00568, and so the null hypothesis would be rejected at even the
1 percent level of significance. ■
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The sign test can also be used in situations analogous to ones in which the paired
t -test was previously applied. For instance, let us reconsider Example 8.4c, which is inter-
ested in testing whether or not a recently instituted industrial safety program has had
an effect on the number of man-hours lost to accidents. For each of 10 plants, the data
consisted of the pair Xi , Yi , which represented, respectively, the average weekly loss at
plant i before and after the program. Letting Zi = Xi − Yi , i = 1, . . . , 10, it follows
that if the program had not had any effect, then Zi , i = 1, . . . , 10, would be a sample
from a distribution whose median value is 0. Since the resulting values of Zi , — namely,
7.5, −2.3, 2.6, 3.7, 1.5, −.5, −1, 4.9, 4.8, 1.6 — contain three whose sign is negative and
seven whose sign is positive, it follows that the hypothesis that the median of Z is 0 should
be rejected at significance level α if

3∑
i=0

(
10

i

)(
1

2

)10

≤ α

2

Since

3∑
i=0

(
10

i

)(
1

2

)10

= 176

1,024
= .172

it follows that the hypothesis would be accepted at the 5 percent significance level (indeed,
it would be accepted at all significance levels less than the p-value equal to .344).

Thus, the sign test does not enable us to conclude that the safety program has had
any statistically significant effect, which is in contradiction to the result obtained in
Example 8.4c when it was assumed that the differences were normally distributed. The
reason for this disparity is that the assumption of normality allows us to take into account
not only the number of values greater than 0 (which is all the sign test considers) but also
the magnitude of these values. (The next test to be considered, while still being nonpara-
metric, improves on the sign test by taking into account whether those values that most
differ from the hypothesized median value m0 tend to lie on one side of m0 — that is,
whether they tend to be primarily bigger or smaller than m0.)

We can also use the sign test to test one-sided hypotheses about a population median.
For instance, suppose that we want to test

H0 : m ≤ m0 versus H1 : m > m0

where m is the population median and m0 is some specified value. Let p denote the
probability that a population value is less than m0, and note that if the null hypothesis is
true then p ≥ 1/2, and if the alternative is true then p < 1/2 (see Figure 12.1).

To use the sign test to test the preceding hypothesis, choose a random sample of n
members of the population. If v of them have values that are less than m0, then the
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area = 1/2

m

area > 1/2

m0m

area < 1/2

mm0

FIGURE 12.1

resulting p-value is the probability that a value of v or smaller would have occurred by
chance if each element had probability 1/2 of being less than m0. That is,

p-value = P{Bin(n, 1/2) ≤ v}
EXAMPLE 12.2b A financial institution has decided to open an office in a certain commu-
nity if it can be established that the median annual income of families in the community is
greater than $90,000. To obtain information, a random sample of 80 families was chosen,
and the family incomes determined. If 28 of these families had annual incomes below
and 52 had annual incomes above $90,000, is this significant enough to establish, say, at
the 5 percent level of significance, that the median annual income in the community is
greater than $90,000?

SOLUTION We need to see if the data are sufficient to enable us to reject the null hypothesis
when testing

H0 : m ≤ 90 versus H1 : m > 90

The preceding is equivalent to testing

H0 : p ≥ 1/2 versus H1 : p < 1/2
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where p is the probability that a randomly chosen member of the population has an annual
income of less than $90,000. Therefore, the p-value is

p-value = P{Bin(80, 1/2) ≤ 28} = .0048

and so the null hypothesis that the median income is less than or equal to $90,000 is
rejected. ■

A test of the one-sided null hypothesis that the median is at least m0 is obtained
similarly. If a random sample of size n is chosen, and v of the resulting values are less
than m0, then the resulting p-value is

p-value = P{Bin(n, 1/2) ≥ v}

12.3 THE SIGNED RANK TEST
The sign test can be employed to test the hypothesis that the median of a continuous
distribution F is equal to a specified value m0. However, in many applications one is really
interested in testing not only that the median is equal to m0 but that the distribution is
symmetric about m0. That is, if X has distribution function F , then one is often interested
in testing the hypothesis H0 : P{X < m0 − a} = P{X > m0 + a} for all a > 0
(see Figure 12.2). Whereas the sign test could still be employed to test the foregoing
hypothesis, it suffers in that it compares only the number of data values that are less than
m0 with the number that are greater than m0 and does not take into account whether or
not one of these sets tends to be further away from m0 than the other. A nonparametric test
that does take this into account is the so-called signed rank test. It is described as follows.

Let Yi = Xi − m0, i = 1, . . . , n and rank (that is, order) the absolute values
|Y1|, |Y2|, . . . , |Yn|, Set, for j = 1, . . . , n.

Ij =



1 if the jth smallest value comes from a data value that is smaller
than m0

0 otherwise

Now, whereas
∑n

j=1 Ij represents the test statistic for the sign test, the signed rank test
uses the statistic T = ∑n

j=1 jIj . That is, like the sign test it considers those data values
that are less than m0, but rather than giving equal weight to each such value it gives larger
weights to those data values that are farthest away from m0.

EXAMPLE 12.3a If n = 4, m0 = 2, and the data values are X1 = 4.2, X2 = 1.8, X3 = 5.3,
X4 = 1.7, then the rankings of |Xi − 2| are .2, .3, 2.2, 3.3. Since the first of these
values — namely, .2 — comes from the data point X2, which is less than 2, it follows that
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FIGURE 12.2 A symmetric density: m = 3.

f (x) =
{

max{0, .4(x − 3) + √
.4} x ≤ 3

max{0, −.4(x − 3) + √
.4} x > 3

I1 = 1. Similarly, I2 = 1, and I3 and I4 equal 0. Hence, the value of the test statistic is
T = 1 + 2 = 3. ■

When H0 is true, the mean and variance of the test statistic T are easily computed.
This is accomplished by noting that, since the distribution of Yj = Xj − m0 is symmetric
about 0, for any given value of |Yj | — say, |Yj | = y — it is equally likely that either Yj = y
or Yj = −y. From this fact it can be seen that under H0, I1, . . . , In will be independent
random variables such that

P{Ij = 1} = 1
2 = P{Ij = 0}, j = 1, . . . , n

Hence, we can conclude that under H0,

E [T ] = E


 n∑

j=1

jIj




=
n∑

j=1

j
2

= n(n + 1)

4
(12.3.1)
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Var(T ) = Var


 n∑

j=1

jIj




=
n∑

j=1

j2 Var(Ij )

=
n∑

j=1

j2

4
= n(n + 1)(2n + 1)

24
(12.3.2)

where the fact that the variance of the Bernoulli random variable Ij is 1
2 (1 − 1

2 ) = 1
4

is used.
It can be shown that for moderately large values of n (n > 25 is often quoted as being

sufficient) T will, when H0 is true, have approximately a normal distribution with mean
and variance as given by Equations 12.3.1 and 12.3.2. Although this approximation can be
used to derive an approximate level α test of H0 (which has been the usual approach until
the recent advent of fast and cheap computational power), we shall not pursue this approach
but rather will determine the p-value for given test data by an explicit computation of the
relevant probabilities. This is accomplished as follows.

Suppose we desire a significance level α test of H0. Since the alternative hypothesis is
that the median is not equal to m0, a two-sided test is called for. That is, if the observed
value of T is equal to t , then H0 should be rejected if either

PH0{T ≤ t} ≤ α

2
or PH0{T ≥ t} ≤ α

2
(12.3.3)

The p-value of the test data when T = t is given by

p-value = 2 min(PH0{T ≤ t}, PH0{T ≥ t}) (12.3.4)

That is, if T = t , the signed rank test calls for rejection of the null hypothesis if the
significance level α is at least as large as this p-value. The amount of computation necessary
to compute the p-value can be reduced by utilizing the following equality (whose proof
will be given at the end of the section).

PH0{T ≥ t} = PH0

{
T ≤ n(n + 1)

2
− t

}

Using Equation 12.3.4, the p-value is given by

p-value = 2 min

(
PH0{T ≤ t}, PH0

{
T ≤ n(n + 1)

2
− t

})

= 2PH0{T ≤ t∗}
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where

t∗ = min

(
t ,

n(n + 1)

2
− t

)

It remains to compute PH0{T ≤ t∗}. To do so, let Pk(i) denote the probability, under
H0, that the signed rank statistic T will be less than or equal to i when the sample size is k.
We will determine a recursive formula for Pk(i) starting with k = 1. When k = 1, since
there is only a single data value, which, when H0 is true, is equally likely to be either less
than or greater than m0, it follows that T is equally likely to be either 0 or 1. Thus

P1(i) =



0 i < 0
1
2 i = 0
1 i ≥ 1

(12.3.5)

Now suppose the sample size is k. To compute Pk(i), we condition on the value of Ik as
follows:

Pk(i) = PH0




k∑
j=1

jIj ≤ i




= PH0




k∑
j=1

jIj ≤ i|Ik = 1


 PH0{Ik = 1}

+ PH0




k∑
j=1

jIj ≤ i|Ik = 0


 PH0{Ik = 0}

= PH0




k−1∑
j=1

jIj ≤ i − k|Ik = 1


 PH0{Ik = 1}

+ PH0




k−1∑
j=1

jIj ≤ i|Ik = 0


 PH0{Ik = 0}

= PH0




k−1∑
j=1

jIj ≤ i − k


 PH0{Ik = 1} + PH0




k−1∑
j=1

jIj ≤ i


 PH0{Ik = 0}

where the last equality utilized the independence of I1, . . . , Ik−1, and Ik (when H0 is
true). Now

∑k−1
j=1 jIj has the same distribution as the signed rank statistic of a sample

of size k − 1, and since

PH0{Ik = 1} = PH0{Ik = 0} = 1
2
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we see that

Pk(i) = 1
2Pk−1(i − k) + 1

2Pk−1(i) (12.3.6)

Starting with Equation 12.3.5, the recursion given by Equation 12.3.6 can be successfully
employed to compute P2(·), then P3(·), and so on, stopping when the desired value Pn(t∗)
has been obtained.

EXAMPLE 12.3b For the data of Example 12.3a,

t∗ = min

(
3,

4 · 5

2
− 3

)
= 3

Hence the p-value is 2P4(3), which is computed as follows:

P2(0) = 1
2 [P1(−2) + P1(0)] = 1

4

P2(1) = 1
2 [P1(−1) + P1(1)] = 1

2

P2(2) = 1
2 [P1(0) + P1(2)] = 3

4

P2(3) = 1
2 [P1(1) + P1(3)] = 1

P3(0) = 1
2 [P2(−3) + P2(0)] = 1

8 since P2(−3) = 0

P3(1) = 1
2 [P2(−2) + P2(1)] = 1

4

P3(2) = 1
2 [P2(−1) + P2(2)] = 3

8

P3(3) = 1
2 [P2(0) + P2(3)] = 5

8

P4(0) = 1
2 [P3(−4) + P3(0)] = 1

16

P4(1) = 1
2 [P3(−3) + P3(1)] = 1

8

P4(2) = 1
2 [P3(−2) + P3(2)] = 3

16

P4(3) = 1
2 [P3(−1) + P3(3)] = 5

16 ■

Program 12.3 will use the recursion in Equations 12.3.5 and 12.3.6 to compute the
p-value of the signed rank test data. The input needed is the sample size n and the value
of test statistic T .

EXAMPLE 12.3c Suppose we are interested in determining whether a certain population
has an underlying probability distribution that is symmetric about 0. If a sample of size 20
from this population results in a signed rank test statistic of value 142, what conclusion
can we draw at the 10 percent level of significance?
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SOLUTION Running Program 12.3 yields that

p-value = .177

Thus the hypothesis that the population distribution is symmetric about 0 is accepted at
the α = .10 level of significance. ■

We end this section with a proof of the equality

PH0{T ≥ t} = PH0

{
T ≤ n(n + 1)

2
− t

}

To verify the foregoing, note first that 1 − Ij will equal 1 if the jth smallest value of
|Y1|, . . . , |Yn| comes from a data value larger than m0, and it will equal 0 otherwise.
Hence, if we let

T 1 =
n∑

j=1

j(1 − Ij )

then T 1 will represent the sum of the ranks of the |Yj | that correspond to data values larger
than m0. By symmetry, T 1 will have, under H0, the same distribution as T . Now

T 1 =
n∑

j=1

j −
n∑

j=1

jIj = n(n + 1)

2
− T

and so

P{T ≥ t} = P{T 1 ≥ t} since T and T 1 have the same distribution

= P
{

n(n + 1)

2
− T ≥ t

}

= P
{

T ≤ n(n + 1)

2
− t

}

REMARK ON TIES

Since we have assumed that the population distribution is continuous, there is no possi-
bility of ties — that is, with probability 1, all observations will have different values.
However, since in practice all measurements are quantized, ties are always a distinct
possibility. If ties do occur, then the weights given to the values less than m0 should
be the average of the different weights they could have had if the values had differed
slightly. For instance, if m0 = 0 and the data values are 2, 4, 7, −5, −7, then the ordered
absolute values are 2, 4, 5, 7, 7. Since 7 has rank both 4 and 5, the value of the test statistic
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T is T = 3 + 4.5 = 7.5. The p-value should be computed as when we assumed that all
values were distinct. (Although technically this is not correct, the discrepancy is usually
minor.)

12.4 THE TWO-SAMPLE PROBLEM
Suppose that one is considering two different methods for producing items having
measurable characteristics with an interest in determining whether the two methods result
in statistically identical items.

To attack this problem let X1, . . . , Xn denote a sample of the measurable values of n
items produced by method 1, and, similarly, let Y1, . . . , Ym be the corresponding value
of m items produced by method 2. If we let F and G , both assumed to be continuous,
denote the distribution functions of the two samples, respectively, then the hypothesis we
wish to test is H0 : F = G .

One procedure for testing H0 — which is known by such names as the rank sum test,
the Mann-Whitney test, or the Wilcoxon test — calls initially for ranking, or ordering,
the n + m data values X1, . . . , Xn, Y1, . . . , Ym. Since we are assuming that F and G are
continuous, this ranking will be unique — that is, there will be no ties. Give the smallest
data value rank 1, the second smallest rank 2, . . . , and the (n + m)th smallest rank n + m.
Now, for i = 1, . . . , n, let

Ri = rank of the data value Xi

The rank sum test utilizes the test statistic T equal to the sum of the ranks from the first
sample — that is,

T =
n∑

i=1

Ri

EXAMPLE 12.4a An experiment designed to compare two treatments against corrosion
yielded the following data in pieces of wire subjected to the two treatments.

Treatment 1 65.2, 67.1, 69.4, 78.2, 74, 80.3

Treatment 2 59.4, 72.1, 68, 66.2, 58.5

(The data represent the maximum depth of pits in units of one thousandth of an inch.)
The ordered values are 58.5, 59.4, 65.2∗, 66.2, 67.1∗, 68, 69.4∗, 72.1, 74∗, 78.2∗, 80.3∗
with an asterisk noting that the data value was from sample 1. Hence, the value of the test
statistic is T = 3 + 5 + 7 + 9 + 10 + 11 = 45. ■
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Suppose that we desire a significance level α test of H0. If the observed value of T is
T = t , then H0 should be rejected if either

PH0{T ≤ t} ≤ α

2
or PH0{T ≥ t} ≤ α

2
(12.4.1)

That is, the hypothesis that the two samples are equivalent should be rejected if the sum of
the ranks from the first sample is either too small or too large to be explained by chance.

Since for integral t ,

P{T ≥ t} = 1 − P{T < t}
= 1 − P{T ≤ t − 1}

it follows from Equation 12.4.1 that H0 should be rejected if either

PH0{T ≤ t} ≤ α

2
or PH0{T ≤ t − 1} ≥ 1 − α

2
(12.4.2)

To compute the probabilities in Equation 12.4.2, let P(N , M , K ) denote the prob-
ability that the sum of the ranks of the first sample will be less than or equal to K
when the sample sizes are N and M and H0 is true. We will now determine a recur-
sive formula for P(N , M , K ), which will then allow us to obtain the desired quantities
P(n, m, t ) = PH0{T ≤ t} and P(n, m, t − 1).

To compute the probability that the sum of the ranks of the first sample is less than or
equal to K when N and M are the sample sizes and H0 is true, let us condition on whether
the largest of the N + M data values belongs to the first or second sample. If it belongs to
the first sample, then the sum of the ranks of this sample is equal to N + M plus the sum
of the ranks of the other N − 1 values from the first sample. Hence this sum will be less
than or equal to K if the sum of the ranks of the other N − 1 values is less than or equal
to K − (N + M ). But since the remaining N − 1 + M — that is, all but the largest —
values all come from the same distribution (when H0 is true), it follows that the sum of
the ranks of N − 1 of them will be less than or equal to K − (N + M ) with probability
P(N −1, M , K −N −M ). By a similar argument we can show that, given that the largest
value is from the second sample, the sum of the ranks of the first sample will be less than
or equal to K with probability P(N , M − 1, K ). Also, since the largest value is equally
likely to be any of the N + M values X1, . . . , XN , Y1, . . . , YM , it follows that it will come
from the first sample with probability N /(N +M ). Putting these together, we thus obtain
that

P(N , M , K ) = N
N + M

P(N − 1, M , K − N − M )

+ M
N + M

P(N , M − 1, K ) (12.4.3)
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Starting with the boundary condition

P(1, 0, K ) =
{

0 K ≤ 0
1 K > 0

, P(0, 1, K ) =
{

0 K < 0
1 K ≥ 0

Equation 12.4.3 can be solved recursively to obtain P(n, m, t − 1) and P(n, m, t ).

EXAMPLE 12.4b Suppose we wanted to determine P(2, 1, 3). We use Equation 12.4.3 as
follows:

P(2, 1, 3) = 2
3P(1, 1, 0) + 1

3P(2, 0, 3)

and

P(1, 1, 0) = 1
2P(0, 1, −2) + 1

2P(1, 0, 0) = 0

P(2, 0, 3) = P(1, 0, 1)

= P(0, 0, 0) = 1

Hence,

P(2, 1, 3) = 1
3

which checks since in order for the sum of the ranks of the two X values to be less than
or equal to 3, the largest of the values X1, X2, Y1, must be Y1, which, when H0 is true, has
probability 1

3 . ■

Since the rank sum test calls for rejection when either

2P(n, m, t ) ≤ α or α ≥ 2[1 − P(n, m, t − 1)]
it follows that the p-value of the test statistic when T = t is

p-value = 2 min{P(n, m, t ), 1 − P(n, m, t − 1)}
Program 12.4 uses the recursion in Equation 12.4.3 to compute the p-value for the

rank sum test. The input needed is the sizes of the first and second samples and the sum
of the ranks of the elements of the first sample. Whereas either sample can be designated
as the first sample, the program will run fastest if the first sample is the one whose sum of
ranks is smallest.

EXAMPLE 12.4c In Example 12.4a, the sizes of the two samples are 5 and 6, respectively,
and the sum of the ranks of the first sample is 21. Running Program 12.4 yields the
result:

p-value = .1255 ■



528 Chapter 12: Nonparametric Hypothesis Tests

The p-value in the Two-sample Rank Sum Test

Enter the size of sample 1:

Enter the size of sample 2:

Enter the sum of the ranks

9

13

72

The p-value is 0.03642

Start

Quit

This program computes the p-value for the two sample rank sum test.

of the first sample:

FIGURE 12.3

EXAMPLE 12.4d Suppose that in testing whether 2 production methods yield identical
results, 9 items are produced using the first method and 13 using the second. If, among all
22 items, the sum of the ranks of the 9 items produced by method 1 is 72, what conclusions
would you draw?

SOLUTION Run Program 12.4 to obtain the result shown in Figure 12.3. Thus, the hypo-
thesis of identical results would be rejected at the 5 percent level of significance. ■

It remains to compute the value of the test statistic T . It is quite efficient to compute
T directly by first using a standard computer science algorithm (such as quicksort) to sort,
or order, the n + m values. Another approach, easily programmed, although efficient for
only small values of n and m, uses the following identity.

PROPOSITION 12.4.1 For i = 1, . . . , n, j = 1, . . . , m, let

Wij =
{

1 if Xi > Yj

0 otherwise

Then

T = n(n + 1)

2
+

n∑
i=1

m∑
j=1

Wij

Proof

Consider the values X1, . . . , Xn of the first sample and order them. Let X(i) denote the
ith smallest, i = 1, . . . , n. Now consider the rank of X(i) among all n + m data values.
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This is given by

rank of X(i) = i + number j : Yj < X(i)

Summing over i gives

n∑
i=1

rank of X(i) =
n∑

i=1

i +
n∑

i=1

(number j : Yj < X(i)) (12.4.4)

But since the order in which we add terms does not change the sum obtained, we see that

n∑
i=1

rank of X(i) =
n∑

i=1

rank of Xi = T (12.4.5)

n∑
i=1

(number j : Yj < X(i)) =
n∑

i=1

(number j : Yj < Xi)

Hence, from Equations 12.4.4 and 12.4.5, we obtain that

T =
n∑

i=1

i +
n∑

i=1

(number j : Yj < Xi)

= n(n + 1)

2
+

n∑
i=1

m∑
j=1

Wij �

12.4.1 The Classical Approximation and Simulation

The difficulty with employing the recursion in Equation 12.4.3 to compute the p-value
of the two-sample sum of rank test statistic is that the amount of computation grows
enormously as the sample sizes increase. For instance, if n = m = 200, then even if we
choose the test statistic to be the smaller sum of ranks, since the sum of all the ranks is
1 + 2 +· · ·+ 400 = 80, 200, it is possible that the test statistic could have a value as large
as 40,100. Hence, there can be as many as 1. 604 × 109 values of P(N , M , K ) that would
have to be computed to determine the p-value. Thus, for large sample sizes the approach
based on the recursion in Equation 12.4.3 is not viable. Two approximate methods that can
be utilized in such cases are (a) a classical method based on approximating the distribution
of the test statistic and (b) simulation.

(a) The Classical Approximation When the null hypothesis is true and so F = G , it
follows that all n + m data values come from the same distribution and thus all
(n + m)! possible rankings of the values X1, . . . , Xn, Y1, . . . , Ym are equally likely.
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From this it follows that choosing the n rankings of the first sample is probabilis-
tically equivalent to randomly choosing n of the (possible rank) values 1, 2, . . . ,
n + m. Using this, it can be shown that T has a mean and variance given by

EH0[T ] = n(n + m + 1)

2

VarH0 (T ) = nm(n + m + 1)

12

In addition, it can be shown that when both n and m are of moderate size (both
being greater than 7 should suffice) T has, under H0, approximately a normal
distribution. Hence, when H0 is true

T − n(n + m + 1)

2√
nm(n + m + 1)

12

∼̇N (0, 1) (12.4.6)

If we let d denote the absolute value of the difference between the observed
value of T and its mean value given above, then based on Equation 12.4.6 the
approximate p-value is

p-value = PH0{|T − EH0[T ]| > d }

≈ P

{
|Z | > d /

√
nm(n + m + 1)

12

}
where Z ∼ N (0, 1)

= 2P

{
Z > d /

√
nm(n + m + 1)

12

}

EXAMPLE 12.4e In Example 12.4a, n = 5, m = 6, and the test statistic’s value is 21. Since

n(n + m + 1)

2
= 30

nm(n + m + 1)

12
= 30

we have that d = 9 and so

p-value ≈ 2P
{

Z >
9√
30

}

= 2P{Z > 1.643108}
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= 2(1 − .9498)

= .1004

which can be compared with the exact value, as given in Example 12.4c, of .1225.
In Example 12.4d, n = 9, m = 13, and so

n(n + m + 1)

2
= 103.5

nm(n + m + 1)

12
= 224.25

Since T = 72, we have that

d = |72 − 103.5| = 31.5

Thus, the approximate p-value is

p-value ≈ 2P
{

Z >
31.5√
224.25

}

= 2P{Z > 2.103509}
= 2(1 − .9823) = .0354

which is quite close to the exact p-value (as given in Example 12.4d) of .0364.
Thus, in the two examples considered, the normal approximation worked quite well in

the second example — where the guideline that both sample sizes should exceed 7 held —
and not so well in the first example — where the guideline did not hold. ■

(b) Simulation If the observed value of the test statistic is T = t , then the p-value is
given by

p-value = 2 min
{
PH0{T ≥ t}, PH0{T ≤ t}}

We can approximate this value by continually simulating a random selection of n
of the values 1, 2, . . . , n + m — noting on each occasion the sum of the n values.
The value of PH0{T ≥ t} can be approximated by the proportion of time that the
sum obtained is greater than or equal to t , and PH0{T ≤ t} by the proportion of
time that it is less than or equal to t .

A Chapter 12 text disk program approximates the p-value by performing the
preceding simulation. The program will run most efficiently when the sample
of smallest size is designated as the first sample.
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Simulation Approximation to the p-value in Rank Sum Test

Enter the size of sample 1:

Enter the size of sample 2:

Enter the sum of the ranks

Enter the desired number

5

6

21

10000

The p-value is 0.125

Start

Quit

This program approximates the p-value for the two sample rank sum test
by a simulation study.

of the first sample:

of simulation runs:

FIGURE 12.4

Simulation Approximation to the p-value in Rank Sum Test

Enter the size of sample 1:

Enter the size of sample 2:

Enter the sum of the ranks

Enter the desired number

9

13

72

10000

The p-value is 0.0356

Start

Quit

This program approximates the p-value for the two sample rank sum test
by a simulation study.

of the first sample:

of simulation runs:

FIGURE 12.5

EXAMPLE 12.4f Running the text disk program on the data of Example 12.4c yields
Figure 12.4, which is quite close to the exact value of .1225. Running the program using
the data of Example 12.4d yields Figure 12.5, which is again quite close to the exact value
of .0364. ■

Both of the approximation methods work quite well. The normal approximation, when
n and m both exceed 7, is usually quite accurate and requires almost no computational time.
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The simulation approach, on the other hand, can require a great deal of computational
time. However, if an immediate answer is not required and great accuracy is desired, then
simulation, by running a large number of cases, can be made accurate to an arbitrarily
prescribed precision.

12.5 THE RUNS TEST FOR RANDOMNESS
A basic assumption in much of statistics is that a set of data constitutes a random sample
from some population. However, it is sometimes the case that the data are not generated
by a truly random process but by one that may follow a trend or a type of cyclical pattern.
In this section, we will consider a test — called the runs test — of the hypothesis H0 that
a given data set constitutes a random sample.

To begin, let us suppose that each of the data values is either a 0 or a 1. That is, we shall
assume that each data value can be dichotomized as being either a success or a failure. Let
X1, . . . , XN denote the set of data. Any consecutive sequence of either 1’s or 0’s is called
a run. For instance, the data set

1 0 0 1 1 1 0 0 1 0 1 1 1 1 0 1 0 0 0 0 1 1

contains 11 runs — 6 runs of 1 and 5 runs of 0. Suppose that the data set X1, . . . , XN

contains n 1’s and m 0’s, where n + m = N , and let R denote the number of runs.
Now, if H0 were true, then X1, . . . , XN would be equally likely to be any of the N !/(n!m!)
permutations of n 1’s and m 0’s; and therefore, given a total of n 1’s and m 0’s, it follows
that, under H0, the probability mass function of R, the number of runs is given by

PH0{R = k} = number of permutations of n 1’s and m 0’s resulting in k runs(
n + m

n

)

This number of permutations can be explicitly determined and it can be shown that

PH0{R = 2k} = 2

(
m − 1
k − 1

)(
n − 1
k − 1

)
(

m + n
n

)
(12.5.1)

PH0{R = 2k + 1} =

(
m − 1
k − 1

)(
n − 1

k

)
+
(

m − 1
k

)(
n − 1
k − 1

)
(

n + m
n

)

If the data contain n 1’s and m 0’s, then the runs test calls for rejection of the hypothesis
that the data constitutes a random sample if the observed number of runs is either too
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large or too small to be explained by chance. Specifically, if the observed number of runs
is r , then the p-value of the runs test is

p-value = 2 min(PH0{R ≥ r}, PH0{R ≤ r})

Program 12.5 uses Equation 12.5.1 to compute the p-value.

EXAMPLE 12.5a The following is the result of the last 30 games played by an athletic team,
with W signifying a win and L a loss.

W W W L W W L W W L W L W W L W W W W L W L W W W L W L W L

Are these data consistent with pure randomness?

SOLUTION To test the hypothesis of randomness, note that the data, which consists of
20 W ’s and 10 L’s, contains 20 runs. To see whether this justifies rejection at, say, the
5 percent level of significance, we run Program 12.5 and observe the results in Figure 12.6.
Therefore, the hypothesis of randomness would be rejected at the 5 percent level of
significance. (The striking thing about these data is that the team always came back to
win after losing a game, which would be quite unlikely if all outcomes containing 20 wins
and 10 losses were equally likely.) ■

The above can also be used to test for randomness when the data values are not just
0’s and 1’s. To test whether the data X1, . . . , XN constitute a random sample, let s-med
denote the sample median. Also let n denote the number of data values that are less than
or equal to s-med and m the number that are greater. (Thus, if n is even and all data values

The p-value for the Runs Test for Randomness

Enter the number of 1's:

Enter the number of 0's: 

Enter the number of runs:

20

10

20

The p-value is 0.01845

Start

Quit

This program computes the p-value for the runs test of the hypothesis
that a data set of n ones and m zeroes is random.

FIGURE 12.6
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are distinct, then n = m = N /2.) Define I1, . . . , IN by

Ij =
{

1 if Xj ≤ s-med
0 otherwise

Now, if the original data constituted a random sample, then the number of runs in
I1, . . . , IN would have a probability mass function given by Equation 12.5.1. Thus, it
follows that we can use the preceding runs test on the data values I1, . . . , IN to test that
the original data are random.

EXAMPLE 12.5b The lifetime of 19 successively produced storage batteries is as follows:

145 152 148 155 176 134 184 132 145 162 165

185 174 198 179 194 201 169 182

The sample median is the 10th smallest value — namely, 169. The data indicating whether
the successive values are less than or equal to or greater than 169 are as follows:

1 1 1 1 0 1 0 1 1 1 1 0 0 0 0 0 0 1 0

Hence, the number of runs is 8. To determine if this value is statistically significant, we
run Program 12.5 (with n = 10, m = 9) to obtain the result:

p-value = .357

Thus the hypothesis of randomness is accepted. ■

It can be shown that, when n and m are both large and H0 is true, R will have
approximately a normal distribution with mean and standard deviation given by

µ = 2nm
n + m

+ 1 and σ =
√

2nm(2nm − n − m)

(n + m)2(n + m − 1)
(12.5.2)

Therefore, when n and m are both large

PH0{R ≤ r} = PH0

{
R − µ

σ
≤ r − µ

σ

}

≈ P
{

Z ≤ r − µ

σ

}
, Z ∼ N (0, 1)

= 


(
r − µ

σ

)
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and, similarly,

PH0{R ≥ r} ≈ 1 − 


(
r − µ

σ

)

Hence, for large n and m, the p-value of the runs test for randomness is approximately
given by

p-value ≈ 2 min

{



(
r − µ

σ

)
, 1 − 


(
r − µ

σ

)}

where µ and σ are given by Equation 12.5.2 and r is the observed number of runs.

EXAMPLE 12.5c Suppose that a sequence of sixty 1’s and sixty 0’s resulted in 75 runs. Since

µ = 61 and σ =
√

3,540

119
= 5.454

we see that the approximate p-value is

p-value ≈ 2 min{
(2.567), 1 − 
(2.567)}
= 2 × (1 − .9949)

= .0102

On the other hand, by running Program 12.5 we obtain that the exact p-value is

p-value = .0130

If the number of runs was equal to 70 rather than 75, then the approximate p-value would
be

p-value ≈ 2[1 − 
(1.650)] = .0990

as opposed to the exact value of

p-value = .1189 ■
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Problems

1. A new medicine against hypertension was tested on 18 patients. After 40 days of
treatment, the following changes of the diastolic blood pressure were observed.

−5, −1, +2, +8, −25, +1, +5, −12, −16
−9, −8, −18, −5, −22, +4, −21, −15, −11

Use the sign test to determine if the medicine has an effect on blood pressure.
What is the p-value?

2. An engineering firm is involved in selecting a computer system, and the choice
has been narrowed to two manufacturers. The firm submits eight problems to the
two computer manufacturers and has each manufacturer measure the number of
seconds required to solve the design problem with the manufacturer’s software.
The times for the eight design problems are given below.

Design problem 1 2 3 4 5 6 7 8

Time with computer A 15 32 17 26 42 29 12 38

Time with computer B 22 29 1 23 46 25 19 47

Determine the p-value of the sign test when testing the hypothesis that there is no
difference in the distribution of the time it takes the two types of software to solve
problems.

3. The published figure for the median systolic blood pressure of middle-aged men is
128. To determine if there has been any change in this value, a random sample of
100 men has been selected. Test the hypothesis that the median is equal to 128 if

(a) 60 men have readings above 128;
(b) 70 men have readings above 128;
(c) 80 men have readings above 128.

In each case, determine the p-value.

4. To test the hypothesis that the median weight of 16-year-old females from
Los Angeles is at least 110 pounds, a random sample of 200 such females was
chosen. If 120 females weighed less than 110 pounds, does this discredit the
hypothesis? Use the 5 percent level of significance. What is the p-value?

5. In 1987, the national median salary of all U.S. physicians was $124,400. A recent
random sample of 14 physicians showed 1990 incomes of (in units of $1,000)

125.5, 130.3, 133.0, 102.6, 198.0, 232.5, 106.8,

114.5, 122.0, 100.0, 118.8, 108.6, 312.7, 125.5
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Use these data to test the hypothesis that the median salary of physicians in 1990
was not greater than in 1987. What is the p-value?

6. An experiment was initiated to study the effect of a newly developed gasoline
detergent on automobile mileage. The following data, representing mileage per
gallon before and after the detergent was added for each of eight cars, resulted.

Mileage Mileage
Car without Additive with Additive

1 24.2 23.5
2 30.4 29.6
3 32.7 32.3
4 19.8 17.6
5 25.0 25.3
6 24.9 25.4
7 22.2 20.6
8 21.5 20.7

Find the p-value of the test of the hypothesis that mileage is not affected by the
additive when

(a) the sign test is used;
(b) the signed rank test is used.

7. Determine the p-value when using the signed rank statistic in Problems 1 and 2.

8. Twelve patients having high albumin content in their blood were treated with
a medicine. Their blood content of albumin was measured before and after
treatment. The measured values are shown in the table.

Blood Content of Albumina

Patient N Before Treatment After Treatment

1 5.02 4.66
2 5.08 5.15
3 4.75 4.30
4 5.25 5.07
5 4.80 5.38
6 5.77 5.10
7 4.85 4.80
8 5.09 4.91
9 6.05 5.22

(continued )
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Patient N Before Treatment After Treatment

10 4.77 4.50
11 4.85 4.85
12 5.24 4.56

aValues given in grams per 100 ml.

Is the effect of the medicine significant at the 5 percent level?

(a) Use the sign test.
(b) Use the signed rank test.

9. An engineer claims that painting the exterior of a particular aircraft affects its
cruising speed. To check this, the next 10 aircraft off the assembly line were flown
to determine cruising speed prior to painting, and were then painted and reflown.
The following data resulted.

Cruising Speed (knots)

Aircraft Not Painted Painted

1 426.1 416.7
2 418.4 403.2
3 424.4 420.1
4 438.5 431.0
5 440.6 432.6
6 421.8 404.2
7 412.2 398.3
8 409.8 405.4
9 427.5 422.8

10 441.2 444.8

Do the data uphold the engineer’s claim?

10. Ten pairs of duplicate spectrochemical determinations for nickel are presented
below. The readings in column 2 were taken with one type of measuring instrument
and those in column 3 were taken with another type.

Sample Duplicates

1 1.94 2.00
2 1.99 2.09
3 1.98 1.95
4 2.07 2.03
5 2.03 2.08

(continued )
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Sample Duplicates

6 1.96 1.98
7 1.95 2.03
8 1.96 2.03
9 1.92 2.01

10 2.00 2.12

Test the hypothesis, at the 5 percent level of significance, that the two measuring
instruments give equivalent results.

11. Let X1, . . . , Xn be a sample from the continuous distribution F having median m;
and suppose we are interested in testing the hypothesis H0 : m = m0 against the
one-sided alternative H1 : m > m0. Present the one-sided analog of the signed
rank test. Explain how the p-value would be computed.

12. In a study of bilingual coding, 12 bilingual (French and English) college students
are divided into two groups. Each group reads an article written in French, and
each answers a series of 25 multiple-choice questions covering the content of the
article. For one group the questions are written in French; the other takes the
examination in English. The score (total correct) for the two groups is:

Examination in French 11 12 16 22 25 25

Examination in English 10 13 17 19 21 24

Is this evidence at the 5 percent significance level that there is difficulty in
transferring information from one language to another?

13. Fifteen cities, of roughly equal size, are chosen for a traffic safety study. Eight of
them are randomly chosen, and in these cities a series of newspaper articles dealing
with traffic safety is run over a 1-month period. The number of traffic accidents
reported in the month following this campaign is as follows:

Treatment group 19 31 39 45 47 66 74 81

Control group 28 36 44 49 52 52 60

Determine the exact p-value when testing the hypothesis that the articles have
not had any effect.

14. Determine the p-value in Problem 13 by

(a) using the normal approximation;
(b) using a simulation study.
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15. The following are the burning times in seconds of floating smoke pots of two
different types:

Type X Type Y

481 572 526 537
506 561 511 582
527 501 556 601
661 487 542 558
500 524 491 578

We are interested in testing the hypothesis that the burning time distributions are
the same.

(a) Determine the exact p-value.
(b) Determine the p-value yielded by the normal approximation.
(c) Run a simulation study to estimate the p-value.

16. In a 1943 experiment (Whitlock and Bliss, “A bioassay technique for anti-
helminthics,” Journal of Parasitology, 29, pp. 48–58, 10), albino rats were used to
study the effectiveness of carbon tetrachloride as a treatment for worms. Each rat
received an injection of worm larvae. After 8 days, the rats were randomly divided
into 2 groups of 5 each; each rat in the first group received a dose of .032 cc of
carbon tetrachloride, whereas the dosage for each rat in the second group was .063
cc. Two days later the rats were killed, and the number of adult worms in each
rat was determined. The numbers detected in the group receiving the .032 dosage
were

421, 462, 400, 378, 413

whereas they were

207, 17, 412, 74, 116

for those receiving the .063 dosage. Do the data prove that the larger dosage is
more effective than the smaller?

17. In a 10-year study of the dispersal patterns of beavers (Sun and Muller-Schwarze,
“Statistical resampling methods in biology: A case study of beaver disper-
sal patterns,” American Journal of Mathematical and Management Sciences, 16,
pp. 463–502, 1996) a total of 332 beavers were trapped in Allegheny State Park
in southwestern New York. The beavers were tagged (so as to be identifiable when
later caught) and released. Over time a total of 32 of them, 9 female and 23 male,
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were discovered to have resettled in other sites. The following data give the disper-
sal distances (in kilometers) between these beavers’ original and resettled sites for
the females and for the males.

Females: .660, .984, .984, 1.992, 4.368, 6.960, 10.656, 21.600, 31.680

Males: .288, .312, .456, .528, .576, .720, .792, .984, 1.224,

1.584, 2.304, 2.328, 2.496, 2.688, 3.096, 3.408, 4.296, 4.884,

5.928, 6.192, 6.384, 13.224, 27.600

Do the data prove that the dispersal distances are gender related?

18. The m sample problem: Consider m independent random samples of respective
sizes n1, . . . , nm from the respective population distributions F1, . . . , Fm; and con-
sider the problem of testing H0 : F1 = F2 = · · · = Fm. To devise a test, let Ri

denote the sum of the ranks of the ni elements of sample i, i = 1, . . . , m. Show
that when H0 is true

(a) E [Ri] = ni(N + 1)

2
where N =

∑
ni .

(b) Using the foregoing, and drawing insight from the goodness of fit test
statistic, determine an appropriate test statistic for H0.

(c) Explain how an algorithm that generates a random permutation of the
integers 1, 2, . . . , N can be employed in a simulation study to determine
the p-value when using the statistic in part (b) to test H0.

19. A production run of 50 items resulted in 11 defectives, with the defectives occur-
ring on the following items (where the items are numbered by their order of
production): 8, 12, 13, 14, 31, 32, 37, 38, 40, 41, 42. Can we conclude that
the successive items did not constitute a random sample?

20. The following data represent the successive quality levels of 25 articles: 100, 110,
122, 132, 99, 96, 88, 75, 45, 211, 154, 143, 161, 142, 99, 111, 105, 133,
142, 150, 153, 121, 126, 117, 155. Does it appear that these data are a random
sample from some population?

21. Can we use the runs test if we consider whether each data value is less than or
greater than some predetermined value rather than the value s-med?

22. The following table (taken from Quinn, W. H., Neal, T. V., and Antuñez de
Mayolo, 1987, “El Niño occurrences over the past four-and-a-half centuries,”
Journal of Geophysical Research, 92 (C13), pp. 14,449–14,461) gives the years
and magnitude (either moderate or strong) of major El Niño years between 1800
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and 1987. Use it to test the hypothesis that the successive El Niño magnitudes
constitute a random sample.

Year and Magnitude (0 = moderate, 1 = strong ) of Major El Niño Events, 1800–1987

Year Magnitude Year Magnitude Year Magnitude

1803 1 1866 0 1918 0
1806 0 1867 0 1923 0
1812 0 1871 1 1925 1
1814 1 1874 0 1930 0
1817 0 1877 1 1932 1
1819 0 1880 0 1939 0
1821 0 1884 1 1940 1
1824 0 1887 0 1943 0
1828 1 1891 1 1951 0
1832 0 1896 0 1953 0
1837 0 1899 1 1957 1
1844 1 1902 0 1965 0
1850 0 1905 0 1972 1
1854 0 1907 0 1976 0
1857 0 1911 1 1982 1
1860 0 1914 0 1987 0
1864 1 1917 1
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Chapter 13

QUALITY CONTROL

13.1 INTRODUCTION
Almost every manufacturing process results in some random variation in the items it
produces. That is, no matter how stringently the process is being controlled, there is
always going to be some variation between the items produced. This variation is called
chance variation and is considered to be inherent to the process. However, there is another
type of variation that sometimes appears. This variation, far from being inherent to the
process, is due to some assignable cause and usually results in an adverse effect on the
quality of the items produced. For instance, this latter variation may be caused by a faulty
machine setting, or by poor quality of the raw materials presently being used, or by incorrect
software, or human error, or any other of a large number of possibilities. When the only
variation present is due to chance, and not to assignable cause, we say that the process is
in control, and a key problem is to determine whether a process is in or is out of control.

The determination of whether a process is in or out of control is greatly facilitated by
the use of control charts, which are determined by two numbers — the upper and lower
control limits. To employ such a chart, the data generated by the manufacturing process
are divided into subgroups and subgroup statistics — such as the subgroup average and
subgroup standard deviation — are computed. When the subgroup statistic does not fall
within the upper and lower control limit, we conclude that the process is out of control.

In Sections 13.2 and 13.3, we suppose that the successive items produced have
measurable characteristics, whose mean and variance are fixed when the process is in
control. We show how to construct control charts based on subgroup averages (in
Section 13.2) and on subgroup standard deviations (in Section 13.3). In Section 13.4,
we suppose that rather than having a measurable characteristic, each item is judged by
an attribute — that is, it is classified as either acceptable or unacceptable. Then we show
how to construct control charts that can be used to indicate a change in the quality of
the items produced. In Section 13.5, we consider control charts in situations where each
item produced has a random number of defects. Finally, in Section 13.6 we consider more
sophisticated types of control charts — ones that don’t consider each subgroup value in

545
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isolation but rather take into account the values of other subgroups. Three different control
charts of this type — known as moving-average, exponential weighted moving-average,
and cumulative sum control charts — are presented in Section 13.6.

13.2 CONTROL CHARTS FOR AVERAGE VALUES:
THE X -CONTROL CHART

Suppose that when the process is in control the successive items produced have measurable
characteristics that are independent, normal random variables with mean µ and variance
σ 2. However, due to special circumstances, suppose that the process may go out of control
and start producing items having a different distribution. We would like to be able to
recognize when this occurs so as to stop the process, find out what is wrong, and fix it.

Let X1, X2, . . . denote the measurable characteristics of the successive items produced.
To determine when the process goes out of control, we start by breaking the data up into
subgroups of some fixed size — call it n. The value of n is chosen so as to yield uniformity
within subgroups. That is, n may be chosen so that all data items within a subgroup were
produced on the same day, or on the same shift, or using the same settings, and so on.
In other words, the value of n is chosen so that it is reasonable that a shift in distribution
would occur between and not within subgroups. Typical values of n are 4, 5, or 6.

Let X i , i = 1, 2, . . . denote the average of the ith subgroup. That is,

X 1 = X1 + · · · + Xn

n

X 2 = Xn+1 + · · · + X2n

n

X 3 = X2n+1 + · · · + X3n

n

and so on. Since, when in control, each of the Xi have mean µ and variance σ 2, it follows
that

E (X i) = µ

Var(X i) = σ 2

n

and so

X i − µ√
σ 2

n

∼ N (0, 1)
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That is, if the process is in control throughout the production of subgroup i, then√
n(X i − µ)/σ has a standard normal distribution. Now it follows that a standard nor-

mal random variable Z will almost always be between −3 and +3. (Indeed, P{−3 <

Z < 3} = .9973.) Hence, if the process is in control throughout the production of the
items in subgroup i, then we would certainly expect that

−3 <
√

n
X i − µ

σ
< 3

or, equivalently, that

µ − 3σ√
n

< X i < µ + 3σ√
n

The values

UCL ≡ µ + 3σ√
n

and

LCL ≡ µ − 3σ√
n

are called, respectively, the upper and lower control limits.
The X -control chart, which is designed to detect a change in the average value of an

item produced, is obtained by plotting the successive subgroup averages X i and declaring
that the process is out of control the first time X i does not fall between LCL and UCL
(see Figure 13.1).

EXAMPLE 13.2a A manufacturer produces steel shafts having diameters that should be
normally distributed with mean 3 mm and standard deviation .1 mm. Successive samples
of four shafts have yielded the following sample averages in millimeters.

Sample X Sample X

1 3.01 6 3.02
2 2.97 7 3.10
3 3.12 8 3.14
4 2.99 9 3.09
5 3.03 10 3.20

What conclusion should be drawn?
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0

X

m + 3s
n

= LCL

42 6 8 10 12 14
Subgroup

Out of control

= UCL

m − 3s
n

FIGURE 13.1 Control chart for X , n = size of subgroup.

SOLUTION When in control the successive diameters have mean µ = 3 and standard
deviation α = .1, and so with n = 4 the control limits are

LCL = 3 − 3(.1)√
4

= 2.85, UCL = 3 + 3(.1)√
4

= 3.15

Because sample number 10 falls above the upper control limit, it appears that there is
reason to suspect that the mean diameter of shafts now differs from 3. (Clearly, judging
from the results of Samples 6 through 10 it appears to have increased beyond 3.) ■

REMARKS

(a) The foregoing supposes that when the process is in control the underlying distribution
is normal. However, even if this is not the case, by the central limit theorem it follows that
the subgroup averages should have a distribution that is roughly normal and so would be
unlikely to differ from its mean by more than 3 standard deviations.
(b) It is frequently the case that we do not determine the measurable qualities of all the
items produced but only those of a randomly chosen subset of items. If this is so then it is
natural to select, as a subgroup, items that are produced at roughly the same time.

It is important to note that even when the process is in control there is a chance —
namely, .0027 — that a subgroup average will fall outside the control limit and so one
would incorrectly stop the process and hunt for the nonexistent source of trouble.

Let us now suppose that the process has just gone out of control by a change in the
mean value of an item from µ to µ + a where a > 0. How long will it take (assuming
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things do not change again) until the chart will indicate that the process is now out of
control? To answer this, note that a subgroup average will be within the control limits if

−3 <
√

n
X − µ

σ
< 3

or, equivalently, if

−3 − a
√

n
σ

<
√

n
X − µ

σ
− a

√
n

σ
< 3 − a

√
n

σ

or

−3 − a
√

n
σ

<
√

n
X − µ − a

σ
< 3 − a

√
n

σ

Hence, since X is normal with mean µ + a and variance σ 2/n — and so
√

n(X −
µ − a)/σ has a standard normal distribution — the probability that it will fall within
the control limits is

P
{
−3 − a

√
n

σ
< Z < 3 − a

√
n

σ

}
= 


(
3 − a

√
n

σ

)
− 


(
−3 − a

√
n

σ

)

≈ 


(
3 − a

√
n

σ

)

and so the probability that it falls outside is approximately 1 − 
(3 − a
√

n/σ ). For
instance, if the subgroup size is n = 4, then an increase in the mean value of 1 standard
deviation — that is, a = σ — will result in the subgroup average falling outside of the
control limits with probability 1 − 
(1) = .1587. Because each subgroup average will
independently fall outside the control limits with probability 1−
(3−a

√
n/σ ), it follows

that the number of subgroups that will be needed to detect this shift has a geometric
distribution with mean {1 − 
(3 − a

√
n/σ )}−1. (In the case mentioned before with

n = 4, the number of subgroups one would have to chart to detect a change in the mean
of 1 standard deviation has a geometric distribution with mean 6.3.)

13.2.1 Case of Unknown µ and σ

If one is just starting up a control chart and does not have reliable historical data, then µ

and σ would not be known and would have to be estimated. To do so, we employ k of the
subgroups where k should be chosen so that k ≥ 20 and nk ≥ 100. If X i , i = 1, . . . , k is

the average of the ith subgroup, then it is natural to estimate µ by X the average of these
subgroup averages. That is,

X = X 1 + · · · + X k

k
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To estimate σ , let Si denote the sample standard deviation of the ith subgroup,
i = 1, . . . , k. That is,

S1 =
√√√√ n∑

i=1

(Xi − X 1)2

n − 1

S2 =
√√√√ n∑

i=1

(Xn+i − X 2)2

n − 1

...

Sk =
√√√√ n∑

i=1

(X(k−1)n+i − X k)2

n − 1

Let

S = (S1 + · · · + Sk)/k

The statistic S will not be an unbiased estimator of σ — that is, E [S] �= σ . To transform
it into an unbiased estimator, we must first compute E [S], which is accomplished as
follows:

E [S] = E [S1] + · · · + E [Sk]
k

(13.2.1)

= E [S1]

where the last equality follows since S1, . . . , Sk are independent and identically distributed
(and thus have the same mean). To compute E [S1], we make use of the following
fundamental result about normal samples — namely, that

(n − 1)S2
1

σ 2 =
n∑

i=1

(Xi − X 1)2

σ 2 ∼ χ2
n−1 (13.2.2)

Now it is not difficult to show (see Problem 3) that

E [√Y ] =
√

2�(n/2)

�( n−1
2 )

when Y ∼ χ2
n−1 (13.2.3)

Since

E [
√

(n − 1)S2/σ 2] = √
n − 1E [S1]/σ
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we see from Equations 13.2.2 and 13.2.3 that

E [S1] =
√

2�(n/2)σ√
n − 1�( n−1

2 )

Hence, if we set

c(n) =
√

2�(n/2)√
n − 1�( n−1

2 )

then it follows from Equation 13.2.1 that S/c(n) is an unbiased estimator of σ .
Table 13.1 presents the values of c(n) for n = 2 through n = 10.

TECHNICAL REMARK

In determining the values in Table 13.1, the computation of �(n/2) and �(n − 1
2 ) was

based on the recursive formula

�(a) = (a − 1)�(a − 1)

TABLE 13.1 Values of c(n)

c (2) = .7978849
c (3) = .8862266
c (4) = .9213181
c (5) = .9399851
c (6) = .9515332
c (7) = .9593684
c (8) = .9650309
c (9) = .9693103
c (10) = .9726596

which was established in Section 5.7. This recursion yields that, for integer n,

�(n) = (n − 1)(n − 2) · · · 3 · 2 · 1 · �(1)

= (n − 1)! since �(1) =
∫ ∞

0
e−x dx = 1

The recursion also yields that

�

(
n + 1

2

)
=
(

n − 1

2

)(
n − 3

2

)
· · · 3

2
· 1

2
· �

(
1

2

)
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with

�

(
1

2

)
=
∫ ∞

0
e−xx−1/2 dx

=
∫ ∞

0
e−y2/2

√
2

y
y dy by x = y2

2
dx = y dy

= √
2
∫ ∞

0
e−y2/2 dy

= 2
√

π
1√
2π

∫ ∞

0
e−y2/2 dy

= 2
√

πP[N (0, 1) > 0]
= √

π

The preceding estimates for µ and σ make use of all k subgroups and thus are reasonable
only if the process has remained in control throughout. To check this, we compute the
control limits based on these estimates of µ and σ , namely,

LCL = X − 3S√
nc(n)

(13.2.4)

UCL = X + 3S√
nc(n)

We now check that each of the subgroup averages X i falls within these lower and upper
limits. Any subgroup whose average value does not fall within the limits is removed (we
suppose that the process was temporarily out of control) and the estimates are recomputed.
We then again check that all the remaining subgroup averages fall within the control limits.
If not, then they are removed, and so on. Of course, if too many of the subgroup averages
fall outside the control limits, then it is clear that no control has yet been established.

EXAMPLE 13.2b Let us reconsider Example 13.2a under the new supposition that the
process is just beginning and so µ and σ are unknown. Also suppose that the sample
standard deviations were as follows:

X S X S

1 3.01 .12 6 3.02 .08
2 2.97 .14 7 3.10 .15
3 3.12 .08 8 3.14 .16
4 2.99 .11 9 3.09 .13
5 3.03 .09 10 3.20 .16
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Since X = 3. 067, S = .122, c(4) = .9213, the control limits are

LCL = 3.067 − 3(.122)

2 × .9213
= 2.868

UCL = 3.067 + 3(.122)

2 × .9213
= 3.266

Since all the X i fall within these limits, we suppose that the process is in control with
µ = 3.067 and σ = S/c(4) = .1324.

Suppose now that the values of the items produced are supposed to fall within the
specifications 3 ± .1. Assuming that the process remains in control and that the foregoing
are accurate estimates of the true mean and standard deviation, what proportion of the
items will meet the desired specifications?

SOLUTION To answer the foregoing, we note that when µ = 3.067 and σ = .1324,

P{2.9 ≤ X ≤ 3.1} = P
{

2.9 − 3.067

.1324
≤ X − 3.067

.1324
≤ 3.1 − 3.067

.1324

}

= 
(.2492) − 
(−1.2613)

= .5984 − (1 − .8964)

= .4948

Hence, 49 percent of the items produced will meet the specifications. ■

REMARKS

(a) The estimator X is equal to the average of all nk measurements and is thus the obvious
estimator of µ. However, it may not immediately be clear why the sample standard
deviation of all the nk measurements, namely,

S ≡
√√√√ nk∑

i=1

(Xi − X )2

nk − 1

is not used as the initial estimator of σ . The reason it is not is that the process may not have
been in control throughout the first k subgroups, and thus this latter estimator could be
far away from the true value. Also, it often happens that a process goes out of control by an
occurrence that results in a change of its mean value µ while leaving its standard deviation
unchanged. In such a case, the subgroup sample deviations would still be estimators of σ ,
whereas the entire sample standard deviation would not. Indeed, even in the case where the
process appears to be in control throughout, the estimator of σ presented is preferred over
the sample standard deviation S . The reason for this is that we cannot be certain that the



554 Chapter 13: Quality Control

mean has not changed throughout this time. That is, even though all the subgroup averages
fall within the control limits, and so we have concluded that the process is in control, there
is no assurance that there are no assignable causes of variation present (which might have
resulted in a change in the mean that has not yet been picked up by the chart). It merely
means that for practical purposes it pays to act as if the process was in control and let
it continue to produce items. However, since we realize that some assignable cause of
variation might be present, it has been argued that S/c(n) is a “safer" estimator than the
sample standard deviation. That is, although it is not quite as good when the process has
really been in control throughout, it could be a lot better if there had been some small
shifts in the mean.
(b) In the past, an estimator of σ based on subgroup ranges — defined as the difference
between the largest and smallest value in the subgroup — has been employed. This was
done to keep the necessary computations simple (it is clearly much easier to compute the
range than it is to compute the subgroup’s sample standard deviation). However, with
modern-day computational power this should no longer be a consideration, and since the
standard deviation estimator both has smaller variance than the range estimator and is more
robust (in the sense that it would still yield a reasonable estimate of the population standard
deviation even when the underlying distribution is not normal), we will not consider the
latter estimator in this text.

13.3 S-CONTROL CHARTS
The X -control charts presented in the previous section are designed to pick up changes in
the population mean. In cases where one is also concerned about possible changes in the
population variance, we can utilize an S-control chart.

As before, suppose that, when in control, the items produced have a measurable
characteristic that is normally distributed with mean µ and variance σ 2. If Si is the
sample standard deviation for the ith subgroup, that is,

Si =
√√√√ n∑

j=1

(X(i−1)n+j − X i)2

(n − 1)

then, as was shown in Section 13.2.1,

E [Si] = c(n)σ (13.3.1)

In addition,

Var(Si) = E [S2
i ] − (E [Si])2 (13.3.2)

= σ 2 − c2(n)σ 2

= σ 2[1 − c2(n)]
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where the next to last equality follows from Equation 13.2.2 and the fact that the expected
value of a chi-square random variable is equal to its degrees of freedom parameter.

On using the fact that, when in control, Si has the distribution of a constant (equal
to σ /

√
n − 1) times the square root of a chi-square random variable with n − 1 degrees

of freedom, it can be shown that Si will, with probability near to 1, be within 3 standard
deviations of its mean. That is,

P{E [Si] − 3
√

Var(Si) < Si < E [Si] + 3
√

Var(Si)} ≈ .99

Thus, using the formulas 13.3.1 and 13.3.2 for E [Si] and Var(Si), it is natural to set the
upper and lower control limits for the S chart by

UCL = σ [c(n) + 3
√

1 − c2(n)] (13.3.3)

LCL = σ [c(n) − 3
√

1 − c2(n)]

The successive values of Si should be plotted to make certain they fall within the upper
and lower control limits. When a value falls outside, the process should be stopped and
declared to be out of control.

When one is just starting up a control chart and σ is unknown, it can be estimated
from S/c(n). Using the foregoing, the estimated control limits would then be

UCL = S[1 + 3
√

1/c2(n) − 1] (13.3.4)

LCL = S[1 − 3
√

1/c2(n) − 1]

As in the case of starting up an X -control chart, it should then be checked that the k
subgroup standard deviations S1, S2, . . . , Sk all fall within these control limits. If any of
them falls outside, then those subgroups should be discarded and S recomputed.

EXAMPLE 13.3a The following are the X and S values for 20 subgroups of size 5 for
a recently started process.

Subgroup X S Subgroup X S Subgroup X S Subgroup X S

1 35.1 4.2 6 36.4 4.5 11 38.1 4.2 16 41.3 8.2
2 33.2 4.4 7 35.9 3.4 12 37.6 3.9 17 35.7 8.1
3 31.7 2.5 8 38.4 5.1 13 38.8 3.2 18 36.3 4.2
4 35.4 3.2 9 35.7 3.8 14 34.3 4.0 19 35.4 4.1
5 34.5 2.6 10 27.2 6.2 15 43.2 3.5 20 34.6 3.7
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Since X = 35.94, S = 4.35, c(5) = .9400, we see from Equations 13.2.4 and 13.3.4 that
the preliminary upper and lower control limits for X and S are

UCL(X ) = 42.149

LCL(X ) = 29.731

UCL(S) = 9.087

LCL(S) = −.386

0 5
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10 15 20 25
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FIGURE 13.2
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The control charts for X and S with the preceding control limits are shown in Figures 13.2a
and 13.2b. Since X 10 and X 15 fall outside the X control limits, these subgroups must be
eliminated and the control limits recomputed. We leave the necessary computations as an
exercise. ■

13.4 CONTROL CHARTS FOR THE FRACTION DEFECTIVE
The X - and S-control charts can be used when the data are measurements whose values can
vary continuously over a region. There are also situations in which the items produced have
quality characteristics that are classified as either being defective or nondefective. Control
charts can also be constructed in this latter situation.

Let us suppose that when the process is in control each item produced will independently
be defective with probability p. If we let X denote the number of defective items in a
subgroup of n items, then assuming control, X will be a binomial random variable with
parameters (n, p). If F = X /n is the fraction of the subgroup that is defective, then
assuming the process is in control, its mean and standard deviation are given by

E [F ] = E [X ]
n

= np
n

= p

√
Var(F ) =

√
Var(X )

n2 =
√

np(1 − p)

n2 =
√

p(1 − p)

n

Hence, when the process is in control the fraction defective in a subgroup of size n should,
with high probability, be between the limits

LCL = p − 3

√
p(1 − p)

n
, UCL = p + 3

√
p(1 − p)

n

The subgroup size n is usually much larger than the typical values of between 4 and 10 used
in X and S charts. The main reason for this is that if p is small and n is not of reasonable
size, then most of the subgroups will have zero defects even when the process goes out of
control. Thus, it would take longer than it would if n were chosen so that np were not
close to zero to detect a shift in quality.

To start such a control chart it is, of course, necessary first to estimate p. To do so,
choose k of the subgroups, where again one should try to take k ≥ 20, and let Fi denote the
fraction of the ith subgroup that are defective. The estimate of p is given by F defined by

F = F1 + · · · + Fk

k
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Since nFi is equal to the number of defectives in subgroup i, we see that Fk can also be
expressed as

F = nF1 + · · · + nFk

nk

= total number of defectives in all the subgroups

number of items in the subgroups

In other words, the estimate of p is just the proportion of items inspected that are defective.
The upper and lower control limits are now given by

LCL = F − 3

√
F (1 − F )

n
, UCL = F + 3

√
F (1 − F )

n

We should now check whether the subgroup fractions F1, F2, . . . , Fk fall within these
control limits. If some of them fall outside, then the corresponding subgroups should be
eliminated and F recomputed.

EXAMPLE 13.4a Successive samples of 50 screws are drawn from the hourly production of
an automatic screw machine, with each screw being rated as either acceptable or defective.
This is done for 20 such samples with the following data resulting.

Subgroup Defectives F Subgroup Defectives F

1 6 .12 11 1 .02
2 5 .10 12 3 .06
3 3 .06 13 2 .04
4 0 .00 14 0 .00
5 1 .02 15 1 .02
6 2 .04 16 1 .02
7 1 .02 17 0 .00
8 0 .00 18 2 .04
9 2 .04 19 1 .02

10 1 .02 20 2 .04

We can compute the trial control limits as follows:

F = total number defectives

total number items
= 34

1,000
= .034
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and so

UCL = .034 + 3

√
(.034)(.968)

50
= .1109

LCL = .034 − 3

√
(.034)(.966)

50
= −.0429

Since the proportion of defectives in the first subgroup falls outside the upper control limit,
we eliminate that subgroup and recompute F as

F = 34 − 6

950
= .0295

The new upper and lower control limits are .0295 ± √
(.0295)(1 − .0295)/50, or

LCL = −.0423, UCL = .1013

Since the remaining subgroups all have fraction defectives that fall within the control limits,
we can accept that, when in control, the fraction of defective items in a subgroup should
be below .1013. ■

REMARK

Note that we are attempting to detect any change in quality even when this change results
in improved quality. That is, we regard the process as being “out of control” even when
the probability of a defective item decreases. The reason for this is that it is important to
notice any change in quality, for either better or worse, to be able to evaluate the reason
for the change. In other words, if an improvement in product quality occurs, then it is
important to analyze the production process to determine the reason for the improvement.
(That is, what are we doing right?)

13.5 CONTROL CHARTS FOR NUMBER OF DEFECTS
In this section, we consider situations in which the data are the numbers of defects in units
that consist of an item or group of items. For instance, it could be the number of defective
rivets in an airplane wing, or the number of defective computer chips that are produced
daily by a given company. Because it is often the case that there are a large number of
possible things that can be defective, with each of these having a small probability of actually
being defective, it is probably reasonable to assume that the resulting number of defects
has a Poisson distribution.* So let us suppose that, when the process is in control, the
number of defects per unit has a Poisson distribution with mean λ.

* See Section 5.2 for a theoretical explanation.
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If we let Xi denote the number of defects in the ith unit, then, since the variance of
a Poisson random variable is equal to its mean, when the process is in control

E [Xi] = λ, Var(Xi) = λ

Hence, when in control each Xi should with high probability be within λ ± 3
√

λ, and so
the upper and lower control limits are given by

UCL = λ + 3
√

λ, LCL = λ − 3
√

λ

As before, when the control chart is started and λ is unknown, a sample of k units should
be used to estimate λ by

X = (X1 + · · · + Xk)/k

This results in trial control limits

X + 3
√

X and X − 3
√

X

If all the Xi , i = 1, . . . , k fall within these limits, then we suppose that the process is in
control with λ = X . If some fall outside, then these points are eliminated and we recompute
X , and so on.

In situations where the mean number of defects per item (or per day) is small, one
should combine items (days) and use as data the number of defects in a given number —
say, n — of items (or days). Since the sum of independent Poisson random variables
remains a Poisson random variable, the data values will be Poisson distributed with a
larger mean value λ. Such combining of items is useful when the mean number of defects
per item is less than 25.

To obtain a feel for the advantage in combining items, suppose that the mean number
of defects per item is 4 when the process is under control; and suppose that something
occurs that results in this value changing from 4 to 6, that is, an increase of 1 standard
deviation occurs. Let us see how many items will be produced, on average, until the process
is declared out of control when the successive data consist of the number of defects in n
items.

Since the number of defects in a sample of n items is, when under control, Poisson
distributed with mean and variance equal to 4n, the control limits are 4n ± 3

√
4n or

4n ± 6
√

n. Now if the mean number of defects per item changes to 6, then a data value
will be Poisson with mean 6n and so the probability that it will fall outside the control
limits — call it p(n) — is given by

p(n) = P{Y > 4n + 6
√

n} + P{Y < 4n − 6
√

n}
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when Y is Poisson with mean 6n. Now

p(n) ≈ P{Y > 4n + 6
√

n}

= P
{

Y − 6n√
6n

>
6
√

n − 2n√
6n

}

≈ P
{

Z >
6
√

n − 2n√
6n

}
where Z ∼ N (0, 1)

= 1 − 


(√
6 − 2

√
n
6

)

Because each data value will be outside the control limits with probability p(n), it follows
that the number of data values needed to obtain one outside the limits is a geometric
random variable with parameter p(n), and thus has mean 1/p(n). Finally, since there are n
items for each data value, it follows that the number of items produced before the process
is seen to be out of control has mean value n/p(n):

Average number of items produced while out of control = n/(1 − 
(
√

6 −
√

2n
3 ))

We plot this for various n in Table 13.2. Since larger values of n are better when the
process is in control (because the average number of items produced before the process is
incorrectly said to be out of control is approximately n/.0027), it is clear from Table 13.2
that one should combine at least 9 of the items. This would mean that each data value
(equal to the number of defects in the combined set) would have mean at least 9×4 = 36.

TABLE 13.2

n Average Number of Items

1 19.6
2 20.66
3 19.80
4 19.32
5 18.80
6 18.18
7 18.13
8 18.02
9 18

10 18.18
11 18.33
12 18.51

EXAMPLE 13.5a The following data represent the number of defects discovered at a factory
on successive units of 10 cars each.
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Cars Defects Cars Defects Cars Defects Cars Defects

1 141 6 74 11 63 16 68
2 162 7 85 12 74 17 95
3 150 8 95 13 103 18 81
4 111 9 76 14 81 19 102
5 92 10 68 15 94 20 73

Does it appear that the production process was in control throughout?

SOLUTION Since X = 94.4, it follows that the trial control limits are

LCL = 94.4 − 3
√

94.4 = 65.25

UCL = 94.4 + 3
√

94.4 = 123.55

Since the first three data values are larger than UCL, they are removed and the sample
mean recomputed. This yields

X = (94.4)20 − (141 + 162 + 150)

17
= 84.41

and so the new trial control limits are

LCL = 84.41 − 3
√

84.41 = 56.85

UCL = 84.41 + 3
√

84.41 = 111.97

At this point since all remaining 17 data values fall within the limits, we could declare that
the process is now in control with a mean value of 84.41. However, because it seems that
the mean number of defects was initially high before settling into control, it seems quite
plausible that the data value X4 also originated before the process was in control. Thus, it
would seem prudent in this situation to also eliminate X4 and recompute. Based on the
remaining 16 data values, we obtain that

X = 82.56

LCL = 82.56 − 3
√

82.56 = 55.30

UCL = 82.56 + 3
√

82.56 = 109.82

and so it appears that the process is now in control with a mean value of 82.56. ■
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13.6 OTHER CONTROL CHARTS FOR DETECTING
CHANGES IN THE POPULATION MEAN

The major weakness of the X -control chart presented in Section 13.2 is that it is relatively
insensitive to small changes in the population mean. That is, when such a change occurs,
since each plotted value is based on only a single subgroup and so tends to have a relatively
large variance, it takes, on average, a large number of plotted values to detect the change.
One way to remedy this weakness is to allow each plotted value to depend not only on
the most recent subgroup average but on some of the other subgroup averages as well.
Three approaches for doing this that have been found to be quite effective are based on
(1) moving averages, (2) exponentially weighted moving averages, and (3) cumulative sum
control charts.

13.6.1 Moving-Average Control Charts

The moving-average control chart of span size k is obtained by continually plotting the
average of the k most recent subgroups. That is, the moving average at time t , call it Mt ,
is defined by

Mt = Xt + X t−1 + · · · + X t−k+1

k

where X i is the average of the values of subgroup i. The successive computations can be
easily performed by noting that

kMt = X t + X t−1 + · · · + X t−k+1

and, substituting t + 1 for t ,

kMt+1 = X t+1 + X t + · · · + X t−k+2

Subtraction now yields that

kMt+1 − kMt = X t+1 − X t−k+1

or

Mt+1 = Mt + X t+1 − X t−k+1

k

In words, the moving average at time t + 1 is equal to the moving average at time t
plus 1/k times the difference between the newly added and the deleted value in the
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moving average. For values of t less than k, Mt is defined as the average of the first t
subgroups. That is,

Mt = X 1 + · · · + X t

t
if t < k

Suppose now that when the process is in control the successive values come from a
normal population with mean µ and variance σ 2. Therefore, if n is the subgroup size, it
follows that X i is normal with mean µ and variance σ 2/n. From this we see that the average
of m of the X i will be normal with mean µ and variance given by Var(X i)/m = σ 2/nm
and, therefore, when the process is in control

E [Mt ] = µ

Var(Mt ) =
{
σ 2/nt if t < k
σ 2/nk otherwise

Because a normal random variable is almost always within 3 standard deviations of its
mean, we have the following upper and lower control limits for Mt :

UCL =
{
µ + 3σ /

√
nt if t < k

µ + 3σ /
√

nk otherwise

LCL =
{
µ − 3σ /

√
nt if t < k

µ − 3σ /
√

nk otherwise

In other words, aside from the first k − 1 moving averages, the process will be declared
out of control whenever a moving average differs from µ by more than 3σ /

√
nk.

EXAMPLE 13.6a When a certain manufacturing process is in control, it produces items
whose values are normally distributed with mean 10 and standard deviation 2. The fol-
lowing simulated data represent the values of 25 subgroup averages of size 5 from a normal
population with mean 11 and standard deviation 2. That is, these data represent the sub-
group averages after the process has gone out of control with its mean value increasing
from 10 to 11. Table 13.3 presents these 25 values along with the moving averages based
on span size k = 8 as well as the upper and lower control limits. The lower and upper
control limits for t > 8 are 9.051318 and 10.94868.

As the reader can see, the first moving average to fall outside its control limits occurred
at time 11, with other such occurrences at times 12, 13, 14, 16, and 25. (It is interesting
to note that the usual control chart — that is, the moving average with k = 1 — would
have declared the process out of control at time 7 since X 7 was so large. However, this is
the only point where this chart would have indicated a lack of control (see Figure 13.3).
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TABLE 13.3

t X t Mt LCL UCL

1 9.617728 9.617728 7.316719 12.68328
2 10.25437 9.936049 8.102634 11.89737
3 9.876195 9.913098 8.450807 11.54919
4 10.79338 10.13317 8.658359 11.34164
5 10.60699 10.22793 8.8 11.2
6 10.48396 10.2706 8.904554 11.09545
7 13.33961 10.70903 8.95815 11.01419
8 9.462969 10.55328 9.051318 10.94868

...
...

9 10.14556 10.61926
10 11.66342 10.79539

∗11 11.55484 11.00634
∗12 11.26203 11.06492
∗13 12.31473 11.27839
∗14 9.220009 11.1204
15 11.25206 10.85945
16 10.48662 10.98741
17 9.025091 10.84735
18 9.693386 10.6011
19 11.45989 10.58923
20 12.44213 10.73674
21 11.18981 10.59613
22 11.56674 10.88947
23 9.869849 10.71669
24 12.11311 10.92

∗25 11.48656 11.22768

∗ = Out of control.

There is an inverse relationship between the size of the change in the mean value that
one wants to guard against and the appropriate moving-average span size k. That is, the
smaller this change is, the larger k ought to be. ■

13.6.2 Exponentially Weighted Moving-Average Control Charts

The moving-average control chart of Section 13.6.1 considered at each time t a weighted
average of all subgroup averages up to that time, with the k most recent values being
given weight 1/k and the others given weight 0. Since this appears to be a most effective
procedure for detecting small changes in the population mean, it raises the possibility that
other sets of weights might also be successfully employed. One set of weights that is often
utilized is obtained by decreasing the weight of each earlier subgroup average by a constant
factor.
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Let

Wt = αX t + (1 − α)Wt−1 (13.6.1)

where α is a constant between 0 and 1, and where

W0 = µ

The sequence of values Wt , t = 0, 1, 2, . . . is called an exponentially weighted moving
average. To understand why it has been given that name, note that if we continually
substitute for the W term on the right side of Equation 13.6.1, we obtain that

Wt = αX t + (1 − α)[αX t−1 + (1 − α)Wt−2] (13.6.2)

= αX t + α(1 − α)X t−1 + (1 − α)2Wt−2

= αX t + α(1 − α)X t−1 + (1 − α)2[αX t−2 + (1 − α)Wt−3]
= αX t + α(1 − α)X t−1 + α(1 − α)2X t−2 + (1 − α)3Wt−3

...

= αX t + α(1 − α)X t−1 + α(1 − α)2X t−2 + · · ·
+ α(1 − α)t−1X 1 + (1 − α)tµ
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where the foregoing used the fact that W0 = µ. Thus we see from Equation 13.6.2 that
Wt is a weighted average of all the subgroup averages up to time t , giving weight α to
the most recent subgroup and then successively decreasing the weight of earlier subgroup
averages by the constant factor 1 − α, and then giving weight (1 − α)t to the in-control
population mean.

The smaller the value of α, the more even the successive weights. For instance, if
α = .1 then the initial weight is .1 and the successive weights decrease by the factor .9;
that is, the weights are .1, .09, .081, .073, .066, .059, and so on. On the other hand,
if one chooses, say, α = .4, then the successive weights are .4, .24, .144, .087, .052, . . .
Since the successive weights α(1 − α)i−1, i = 1, 2, . . . , can be written as

α(1 − α)i−1 = αe−βi

where

α = α

1 − α
, β = − log(1 − α)

we say that the successively older data values are “exponentially weighted” (see
Figure 13.4).

To compute the mean and variance of the Wt , recall that, when in control, the subgroup
averages X i are independent normal random variables each having mean µ and variance
σ 2/n. Therefore, using Equation 13.6.2, we see that

E [Wt ] = µ[α + α(1 − α) + α(1 − α)2 + · · · + α(1 − α)t−1 + (1 − α)t ]

= µα[1 − (1 − α)t ]
1 − (1 − α)

+ µ(1 − α)t

= µ

i
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FIGURE 13.4 Plot of α(1 − α)i−1 when α = .4.
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To determine the variance, we again use Equation 13.6.2:

Var(Wt ) = σ 2

n

{
α2 + [α(1 − α)]2 + [α(1 − α)2]2 + · · · + [α(1 − α)t−1]2}

= σ 2

n
α2[1 + β + β2 + · · · + β t−1] where β = (1 − α)2

= σ 2α2[1 − (1 − α)2t ]
n[1 − (1 − α)2]

= σ 2α[1 − (1 − α)2t ]
n(2 − α)

Hence, when t is large we see that, provided that the process has remained in control
throughout,

E [Wt ] = µ

Var(Wt ) ≈ σ 2α

n(2 − α)
since (1 − α)2t ≈ 0

Thus, the upper and lower control limits for Wt are given by

UCL = µ + 3σ

√
α

n(2 − α)

LCL = µ − 3σ

√
α

n(2 − α)

Note that the preceding control limits are the same as those in a moving-average control
chart with span k (after the initial k values) when

3σ√
nk

= 3σ

√
α

n(2 − α)

or, equivalently, when

k = 2 − α

α
or α = 2

k + 1

EXAMPLE 13.6b A repair shop will send a worker to a caller’s home to repair electronic
equipment. Upon receiving a request, it dispatches a worker who is instructed to call in
when the job is completed. Historical data indicate that the time from when the server
is dispatched until he or she calls is a normal random variable with mean 62 minutes
and standard deviation 24 minutes. To keep aware of any changes in this distribution,
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the repair shop plots a standard exponentially weighted moving-average (EWMA) control
chart with each data value being the average of 4 successive times, and with a weighting
factor of α = .25. If the present value of the chart is 60 and the following are the next 16
subgroup averages, what can we conclude?

48, 52, 70, 62, 57, 81, 56, 59, 77, 82, 78, 80, 74, 82, 68, 84

SOLUTION Starting with W0 = 60, the successive values of W1, . . . , W16 can be obtained
from the formula

Wt = .25X t + .75Wt−1

This gives

W1 = (.25)(48) + (.75)(60) = 57

W2 = (.25)(52) + (.75)(57) = 55.75

W3 = (.25)(70) + (.75)(55.75) = 59.31

W4 = (.25)(62) + (.75)(59.31) = 59.98

W5 = (.25)(57) + (.75)(59.98) = 59.24

W6 = (.25)(81) + (.75)(59.24) = 64.68

and so on, with the following being the values of W7 through W16:

62.50, 61.61, 65.48, 69.60, 71.70, 73.78, 73.83, 75.87, 73.90, 76.43

Since

3

√
.25

1.75

24√
4

= 13.61

the control limits of the standard EWMA control chart with weighting factor α = .25 are

LCL = 62 − 13.61 = 48.39

UCL = 62 + 13.61 = 75.61

Thus, the EWMA control chart would have declared the system out of control after
determining W14 (and also after W16). On the other hand, since a subgroup standard
deviation is σ /

√
n = 12, it is interesting that no data value differed from µ = 62 by even

as much as 2 subgroup standard deviations, and so the standard X -control chart would
not have declared the system out of control. ■
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EXAMPLE 13.6c Consider the data of Example 13.6a but now use an exponentially
weighted moving-average control chart with α = 2/9. This gives rise to the following
data set.

t X t Wt t X t Wt

1 9.617728 9.915051 14 9.220009 10.84522
2 10.25437 9.990456 15 11.25206 10.93563
3 9.867195 9.963064 16 10.48662 10.83585
4 10.79338 10.14758 17 9.025091 10.43346
5 10.60699 10.24967 18 9.693386 10.269
6 10.48396 10.30174 19 11.45989 10.53364

∗7 13.33961 10.97682 ∗20 12.44213 10.95775
8 9.462969 10.64041 ∗21 11.18981 11.00932
9 10.14556 10.53044 ∗22 11.56674 11.13319

10 11.66342 10.78221 23 9.869849 10.85245
∗11 11.55484 10.95391 ∗24 12.11311 11.13259
∗12 11.26203 11.02238 ∗25 11.48656 11.21125
∗13 12.31473 11.30957

∗ = Out of control.

14

12

10

8

60 5 10 15 20 25 30
t

UCL

LCL

Moving-Average Control Chart

FIGURE 13.5

Since

UCL = 10.94868

LCL = 9.051318

we see that the process could be declared out of control as early as t = 7
(see Figure 13.5). ■
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13.6.3 Cumulative Sum Control Charts

The major competitor to the moving-average type of control chart for detecting a small-
to moderate-sized change in the mean is the cumulative sum (often reduced to cu-sum)
control chart.

Suppose, as before, that X 1, X 2, . . . represent successive averages of sugroups of size n
and that when the process is in control these random variables have mean µ and standard
deviation σ /

√
n. Initially, suppose that we are only interested in determining when an

increase in the mean value occurs. The (one-sided) cumulative sum control chart for
detecting an increase in the mean operates as follows: Choose positive constants d and B,
and let

Yj = X j − µ − dσ /
√

n, j ≥ 1

Note that when the process is in control, and so E [X j ] = µ,

E [Yj ] = −dσ /
√

n < 0

Now, let

S0 = 0

Sj+1 = max{Sj + Yj+1, 0}, j ≥ 0

The cumulative sum control chart having parameters d and B continually plots Sj , and
declares that the mean value has increased at the first j such that

Sj > Bσ /
√

n

To understand the rationale behind this control chart, suppose that we had decided
to continually plot the sum of all the random variables Yi that have been observed so far.
That is, suppose we had decided to plot the successive values of Pj , where

Pj =
j∑

i=1

Yi

which can also be written as

P0 = 0

Pj+1 = Pj + Yj+1, j ≥ 0

Now, when the system has always been in control, all of the Yi have a negative expected
value, and thus we would expect their sum to be negative. Hence, if the value of Pj ever
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became large — say, greater than Bσ /
√

n — then this would be strong evidence that the
process has gone out of control (by having an increase in the mean value of a produced
item). The difficulty, however, is that if the system goes out of control only after some
large time, then the value of Pj at that time will most likely be strongly negative (since up
to then we would have been summing random variables having a negative mean), and thus
it would take a long time for its value to exceed Bσ /

√
n. Therefore, to keep the sum from

becoming very negative while the process is in control, the cumulative sum control chart
employs the simple trick of resetting its value to 0 whenever it becomes negative. That
is, the quantity Sj is the cumulative sum of all of the Yi up to time j, with the exception
that any time this sum becomes negative its value is reset to 0.

EXAMPLE 13.6d Suppose that the mean and standard deviation of a subgroup average are
µ = 30 and σ /

√
n = 8, respectively, and consider the cumulative sum control chart

with d = .5, B = 5. If the first eight subgroup averages are

29, 33, 35, 42, 36, 44, 43, 45

then the successive values of Yj = X j − 30 − 4 = X j − 34 are

Y1 = −5, Y2 = −1, Y3 = 1, Y4 = 8, Y5 = 2, Y6 = 10, Y7 = 9, Y8 = 11

Therefore,

S1 = max{−5, 0} = 0

S2 = max{−1, 0} = 0

S3 = max{1, 0} = 1

S4 = max{9, 0} = 9

S5 = max{11, 0} = 11

S6 = max{21, 0} = 21

S7 = max{30, 0} = 30

S8 = max{41, 0} = 41

Since the control limit is

Bσ /
√

n = 5(8) = 40

the cumulative sum chart would declare that the mean has increased after observing the
eighth subgroup average. ■

To detect either a positive or a negative change in the mean, we employ two one-sided
cumulative sum charts simultaneously. We begin by noting that a decrease in E [Xi] is
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equivalent to an increase in E [−Xi]. Hence, we can detect a decrease in the mean value
of an item by running a one-sided cumulative sum chart on the negatives of the subgroup
averages. That is, for specified values d and B, not only do we plot the quantities Sj as
before, but, in addition, we let

Wj = −X j − (−µ) − dσ /
√

n = µ − X j − dσ /
√

n

and then also plot the values Tj , where

T0 = 0

Tj+1 = max{Tj + Wj+1, 0}, j ≥ 0

The first time that either Sj or Tj exceeds Bσ /
√

n, the process is said to be out of control.
Summing up, the following steps result in a cumulative sum control chart for detecting

a change in the mean value of a produced item: Choose positive constants d and B; use the
successive subgroup averages to determine the values of Sj and Tj ; declare the process out
of control the first time that either exceeds Bσ /

√
n. Three common choices of the pair of

values d and B are d = .25, B = 8.00, or d = .50, B = 4.77, or d = 1, B = 2.49. Any
of these choices results in a control rule that has approximately the same false alarm rate as
does the X -control chart that declares the process out of control the first time a subgroup
average differs from µ by more than 3σ /

√
n. As a general rule of thumb, the smaller the

change in mean that one wants to guard against, the smaller should be the chosen value
of d .

Problems

1. Assume that items produced are supposed to be normally distributed with mean
35 and standard deviation 3. To monitor this process, subgroups of size 5 are
sampled. If the following represents the averages of the first 20 subgroups, does it
appear that the process was in control?

Subgroup No. X Subgroup No. X

1 34.0 6 32.2
2 31.6 7 33.0
3 30.8 8 32.6
4 33.0 9 33.8
5 35.0 10 35.8

(continued )
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Subgroup No. X Subgroup No. X

11 35.8 16 31.6
12 35.8 17 33.0
13 34.0 18 33.2
14 35.0 19 31.8
15 33.8 20 35.6

2. Suppose that a process is in control with µ = 14 and σ = 2. An X -control chart
based on subgroups of size 5 is employed. If a shift in the mean of 2.2 units occurs,
what is the probability that the next subgroup average will fall outside the control
limits? On average, how many subgroups will have to be looked at in order to
detect this shift?

3. If Y has a chi-square distribution with n − 1 degrees of freedom, show that

E [√Y ] = √
2

�(n/2)

�[(n − 1)/2]
(Hint : Write

E [√Y ] =
∫ ∞

0

√
yfχ2

n−1
( y) dy

=
∫ ∞

0

√
y

e−y/2y(n−1)/2−1 dy

2(n−1)/2�

[
(n − 1)

2

]

=
∫ ∞

0

e−y/2yn/2−1 dy

2(n−1)/2�

[
(n − 1)

2

]

Now make the transformation x = y/2. )

4. Samples of size 5 are taken at regular intervals from a production process, and
the values of the sample averages and sample standard deviations are calculated.
Suppose that the sum of the X and S values for the first 25 samples are given by∑

X i = 357.2,
∑

Si = 4.88

(a) Assuming control, determine the control limits for an X -control chart.
(b) Suppose that the measurable values of the items produced are supposed to be

within the limits 14.3 ± .45. Assuming that the process remains in control
with a mean and variance that is approximately equal to the estimates derived,
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approximately what percentage of the items produced will fall within the
specification limits?

5. Determine the revised X - and S-control limits for the data in Example 13.3a.

6. In Problem 4, determine the control limits for an S-control chart.

7. The following are X and S values for 20 subgroups of size 5.

Subgroup X S Subgroup X S Subgroup X S

1 33.8 5.1 8 36.1 4.1 15 35.6 4.8
2 37.2 5.4 9 38.2 7.3 16 36.4 4.6
3 40.4 6.1 10 32.4 6.6 17 37.2 6.1
4 39.3 5.5 11 29.7 5.1 18 31.3 5.7
5 41.1 5.2 12 31.6 5.3 19 33.6 5.5
6 40.4 4.8 13 38.4 5.8 20 36.7 4.2
7 35.0 5.0 14 40.2 6.4

(a) Determine trial control limits for an X -control chart.
(b) Determine trial control limits for an S-control chart.
(c) Does it appear that the process was in control throughout?
(d) If your answer in part (c) is no, suggest values for upper and lower control

limits to be used with succeeding subgroups.
(e) If each item is supposed to have a value within 35 ± 10, what is your estimate

of the percentage of items that will fall within this specification?

8. Control charts for X and S are maintained on the shear strength of spot welds.
After 30 subgroups of size 4,

∑
X i = 12,660 and

∑
Si = 500. Assume that the

process is in control.

(a) What are the X -control limits?
(b) What are the S-control limits?
(c) Estimate the standard deviation for the process.
(d) If the minimum specification for this weld is 400 pounds, what percentage of

the welds will not meet the minimum specification?

9. Control charts for X and S are maintained on resistors (in ohms). The subgroup size
is 4. The values of X and S are computed for each subgroup. After 20 subgroups,∑

X i = 8,620 and
∑

Si = 450.

(a) Compute the values of the limits for the X and S charts.
(b) Estimate the value of σ on the assumption that the process is in statistical

control.
(c) If the specification limits are 430 ± 30, what conclusions can you draw

regarding the ability of the process to produce items within these specifications?
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(d) If µ is increased by 60, what is the probability of a subgroup average falling
outside the control limits?

10. The following data refer to the amounts by which the diameters of 1
4 -inch ball

bearings differ from 1
4 -inch in units of .001 inches. The subgroup size is n = 5.

Subgroup Data Values

1 2.5 .5 2.0 −1.2 1.4
2 .2 .3 .5 1.1 1.5
3 1.5 1.3 1.2 −1.0 .7
4 .2 .5 −2.0 .0 −1.3
5 −.2 .1 .3 −.6 .5
6 1.1 −.5 .6 .5 .2
7 1.1 −1.0 −1.2 1.3 .1
8 .2 −1.5 −.5 1.5 .3
9 −2.0 −1.5 1.6 1.4 .1

10 −.5 3.2 −.1 −1.0 −1.5
11 .1 1.5 −.2 .3 2.1
12 .0 −2.0 −.5 .6 −.5
13 −1.0 −.5 −.5 −1.0 .2
14 .5 1.3 −1.2 −.5 −2.7
15 1.1 .8 1.5 −1.5 1.2

(a) Set up trial control limits for X - and S-control charts.
(b) Does the process appear to have been in control throughout the sampling?
(c) If the answer to part (b) is no, construct revised control limits.

11. Samples of n = 6 items are taken from a manufacturing process at regular
intervals. A normally distributed quality characteristic is measured, and X and
S values are calculated for each sample. After 50 subgroups have been analyzed, we
have

50∑
i=1

X i = 970 and
50∑

i=1

Si = 85

(a) Compute the control limit for the X - and S-control charts. Assume that all
points on both charts plot within the control limits.

(b) If the specification limits are 19 ± 4.0, what are your conclusions regarding
the ability of the process to produce items conforming to specifications?

12. The following data present the number of defective bearing and seal assemblies in
samples of size 100.
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Sample Number of Sample Number of
Number Defectives Number Defectives

1 5 11 4
2 2 12 10
3 1 13 0
4 5 14 8
5 9 15 3
6 4 16 6
7 3 17 2
8 3 18 1
9 2 19 6

10 5 20 10

Does it appear that the process was in control throughout? If not, determine revised
control limits if possible.

13. The following data represent the results of inspecting all personal computers
produced at a given plant during the last 12 days.

Day Number of Units Number Defective

1 80 5
2 110 7
3 90 4
4 80 9
5 100 12
6 90 10
7 80 4
8 70 3
9 80 5

10 90 6
11 90 5
12 110 7

Does the process appear to have been in control? Determine control limits for
future production.

14. Suppose that when a process is in control each item will be defective with probabil-
ity .04. Suppose that your control chart calls for taking daily samples of size 500.
What is the probability that, if the probability of a defective item should suddenly
shift to .08, your control chart would detect this shift on the next sample?

15. The following data represent the number of defective chips produced on the last
15 days: 121, 133, 98, 85, 101, 78, 66, 82, 90, 78, 85, 81, 100, 75, 89. Would
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you conclude that the process has been in control throughout these 15 days? What
control limits would you advise using for future production?

16. Surface defects have been counted on 25 rectangular steel plates, and the data are
shown below. Set up a control chart. Does the process producing the plates appear
to be in statistical control?

Number of Number of
Plate Numbers Defects Plate Numbers Defects

1 2 14 10
2 3 15 2
3 4 16 2
4 3 17 6
5 1 18 5
6 2 19 4
7 5 20 6
8 0 21 3
9 2 22 7

10 5 23 0
11 1 24 2
12 7 25 4
13 8

17. The following data represent 25 successive subgroup averages and moving-averages
of span size 5 of these subgroup averages. The data are generated by a process that,
when in control, produces normally distributed items having mean 30 and variance
40. The subgroups are of size 4. Would you judge that the process has been in
control throughout?

X t Mt X t Mt

35.62938 35.62938 35.80945 32.34106
39.13018 37.37978 30.9136 33.1748
29.45974 34.73976 30.54829 32.47771
32.5872 34.20162 36.39414 33.17019
30.06041 33.37338 27.62703 32.2585
26.54353 31.55621 34.02624 31.90186
37.75199 31.28057 27.81629 31.2824
26.88128 30.76488 26.99926 30.57259
32.4807 30.74358 32.44703 29.78317
26.7449 30.08048 38.53433 31.96463
34.03377 31.57853 28.53698 30.86678
32.93174 30.61448 28.65725 31.03497
32.18547 31.67531
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18. The data shown below give subgroup averages and moving averages of the values
from Problem 17. The span of the moving averages is k = 8. When in control the
subgroup averages are normally distributed with mean 50 and variance 5. What
can you conclude?

X t Mt

50.79806 50.79806
46.21413 48.50609
51.85793 49.62337
50.27771 49.78696
53.81512 50.59259
50.67635 50.60655
51.39083 50.71859
51.65246 50.83533
52.15607 51.00508
54.57523 52.05022
53.08497 52.2036
55.02968 52.79759
54.25338 52.85237
50.48405 52.82834
50.34928 52.69814
50.86896 52.6002
52.03695 52.58531
53.23255 52.41748
48.12588 51.79759
52.23154 51.44783

19. Redo Problem 17 by employing an exponential weighted moving average control
chart with α = 1

3 .

20. Analyze the data of Problem 18 with an exponential weighted moving-average
control chart having α = 2

9 .

21. Explain why a moving-average control chart with span size k must use different
control limits for the first k−1 moving averages, whereas an exponentially weighted
moving-average control chart can use the same control limits throughout. [Hint:
Argue that Var(Mt ) decreases in t , whereas Var(Wt ) increases, and explain why
this is relevant.]

22. Repeat Problem 17, this time using a cumulative sum control chart with

(a) d = .25, B = 8;
(b) d = .5, B = 4.77.

23. Repeat Problem 18, this time using a cumulative sum control chart with d = 1
and B = 2.49.
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Chapter 14*

LIFE TESTING

14.1 INTRODUCTION
In this chapter, we consider a population of items having lifetimes that are assumed to
be independent random variables with a common distribution that is specified up to an
unknown parameter. The problem of interest will be to use whatever data are available to
estimate this parameter.

In Section 14.2, we introduce the concept of the hazard (or failure) rate function — a
useful engineering concept that can be utilized to specify lifetime distributions. In
Section 14.3, we suppose that the underlying life distribution is exponential and show
how to obtain estimates (point, interval, and Bayesian) of its mean under a variety of
sampling plans. In Section 14.4, we develop a test of the hypothesis that two exponen-
tially distributed populations have a common mean. In Section 14.5, we consider two
approaches to estimating the parameters of a Weibull distribution.

14.2 HAZARD RATE FUNCTIONS
Consider a positive continuous random variable X, that we interpret as being the lifetime
of some item, having distribution function F and density f. The hazard rate (sometimes
called the failure rate) function λ(t ) of F is defined by

λ(t ) = f (t )
1 − F (t )

To interpret λ(t ), suppose that the item has survived for t hours and we desire
the probability that it will not survive for an additional time dt. That is, consider

* Optional chapter.

581
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P{X ∈ (t , t + dt ) | X > t}. Now

P{X ∈ (t , t + dt )|X > t} = P{X ∈ (t , t + dt ), X > t}
P{X > t}

= P{X ∈ (t , t + dt )}
P{X > t}

≈ f (t )
1 − F (t )

dt

That is, λ(t ) represents the conditional probability intensity that an item of age t will fail
in the next moment.

Suppose now that the lifetime distribution is exponential. Then, by the memoryless
property of the exponential distribution it follows that the distribution of remaining life
for a t-year-old item is the same as for a new item. Hence λ(t ) should be constant, which
is verified as follows:

λ(t ) = f (t )
1 − F (t )

= λe−λt

e−λt

= λ

Thus, the failure rate function for the exponential distribution is constant. The parameter
λ is often referred to as the rate of the distribution.

We now show that the failure rate function λ(t ), t ≥ 0, uniquely determines the
distribution F. To show this, note that by definition

λ(s) = f (s)
1 − F (s)

=
d
ds F (s)

1 − F (s)

= d
ds

{− log[1 − F (s)]}

Integrating both sides of this equation from 0 to t yields

∫ t

0
λ(s) ds = − log[1 − F (t )] + log[1 − F (0)]

= − log[1 − F (t )] since F (0) = 0
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which implies that

1 − F (t ) = exp

{
−
∫ t

0
λ(s) ds

}
(14.2.1)

Hence a distribution function of a positive continuous random variable can be specified
by giving its hazard rate function. For instance, if a random variable has a linear hazard
rate function — that is, if

λ(t ) = a + bt

then its distribution function is given by

F (t ) = 1 − e−at−bt2/2

and differentiation yields that its density is

f (t ) = (a + bt )e−(at+bt2/2), t ≥ 0

When a = 0, the foregoing is known as the Rayleigh density function.

EXAMPLE 14.2a One often hears that the death rate of a person that smokes is, at each
age, twice that of a nonsmoker. What does this mean? Does it mean that a nonsmoker has
twice the probability of surviving a given number of years as does a smoker of the same
age?

SOLUTION If λs(t ) denotes the hazard rate of a smoker of age t and λn(t ) that of a
nonsmoker of age t, then the foregoing is equivalent to the statement that

λs(t ) = 2λn(t )

The probability that an A-year-old nonsmoker will survive until age B, A < B, is

P{A-year-old nonsmoker reaches age B}
= P{nonsmoker’s lifetime > B | nonsmoker’s lifetime > A}

= 1 − Fnon(B)

1 − Fnon(A)

=
exp

{
− ∫ B

0 λn(t )dt
}

exp
{
− ∫ A

0 λn(t )dt
} from Equation 14.2.1

= exp

{
−
∫ B

A
λn(t )dt

}
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whereas the corresponding probability for a smoker is, by the same reasoning,

P{A-year-old smoker reaches age B} = exp

{
−
∫ B

A
λs(t ) dt

}

= exp

{
−2

∫ B

A
λn(t ) dt

}

=
[
exp

{
−
∫ B

A
λn(t ) dt

}]2

In other words, of two individuals of the same age, one of whom is a smoker and the
other a nonsmoker, the probability that the smoker survives to any given age is the square
(not one-half) of the corresponding probability for a nonsmoker. For instance, if λn(t ) =
1/20, 50 ≤ t ≤ 60, then the probability that a 50-year-old nonsmoker reaches age 60 is
e−1/2 = .607, whereas the corresponding probability for a smoker is e−1 = .368. ■

REMARK ON TERMINOLOGY

We will say that X has failure rate function λ(t ) when more precisely we mean that the
distribution function of X has failure rate function λ(t ).

14.3 THE EXPONENTIAL DISTRIBUTION IN LIFE TESTING

14.3.1 Simultaneous Testing — Stopping at the r th Failure

Suppose that we are testing items whose life distribution is exponential with unknown
mean θ . We put n independent items simultaneously on test and stop the experiment
when there have been a total of r, r ≤ n, failures. The problem is to then use the observed
data to estimate the mean θ .

The observed data will be the following:

Data: x1 ≤ x2 ≤ · · · ≤ xr , i1, i2, . . . , ir (14.3.1)

with the interpretation that the jth item to fail was item ij and it failed at time xj . Thus, if
we let Xi , i = 1, . . . , n denote the lifetime of component i, then the data will be as given
in Equation 14.3.1 if

Xi1 = x1, Xi2 = x2, . . . , Xir = xr

other n − r of the Xj are all greater than xr

Now the probability density of Xij is

fXij
(xj ) = 1

θ
e−xj /θ , j = 1, . . . , r
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and so, by independence, the joint probability density of Xij , j = 1, . . . , r is

fXi1 ,...,Xir
(x1, . . . , xr ) =

r∏
j=1

1

θ
e−xj /θ

Also, the probability that the other n − r of the X’s are all greater than xr is, again using
independence,

P{Xj > xr for j �= i1 or i2 . . . or ir} = (e−xr /θ )n−r

Hence, we see that the likelihood of the observed data — call it L(x1, . . . , xr ,
i1, . . . , ir ) — is, for x1 ≤ x2 ≤ · · · ≤ xr ,

L(x1, . . . , xr , i1, . . . , ir ) (14.3.2)

= fXi1 ,Xi2,...Xir
(x1, . . . , xr )P{Xj > xr , j �= i1, . . . , ir}

= 1

θ
e−x1/θ · · · 1

θ
e−xr /θ (e−xr /θ )n−r

= 1

θ r exp


−

r∑
i=1

xi

θ
− (n − r)xr

θ




REMARK

The likelihood in Equation 14.3.2 not only specifies that the first r failures occur at
times x1 ≤ x2 ≤ · · · ≤ xr but also that the r items to fail were, in order, i1, i2, . . . , ir .
If we only desired the density function of the first r failure times, then since there are
n(n − 1) · · · (n − (r − 1)) = n!/(n − r)! possible (ordered) choices of the first r items to
fail, it follows that the joint density is, for x1 ≤ x2 ≤ · · · ≤ xr ,

f (x1, x2, . . . , xr ) = n!
(n − r)!

1

θ r exp


−

r∑
i=1

xi

θ
− (n − r)

θ
xr




To obtain the maximum likelihood estimator of θ , we take the logarithm of both sides
of Equation 14.3.2. This yields

log L(x1, . . . , xr , i1, . . . , ir ) = −r log θ −

r∑
i=1

xi

θ
− (n − r)xr

θ
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and so

∂

∂θ
log L(x1, . . . , xr , i1, . . . , ir ) = − r

θ
+

r∑
i=1

xi

θ2 + (n − r)xr

θ2

Equating to 0 and solving yields that θ̂ , the maximum likelihood estimate, is given by

θ̂ =

r∑
i=1

xi + (n − r)xr

r

Hence, if we let X(i) denote the time at which the ith failure occurs (X(i) is called the ith
order statistic), then the maximum likelihood estimator of θ is

θ̂ =

r∑
i=1

X(i) + (n − r)X(r)

r
(14.3.3)

= τ

r

where τ , defined to equal the numerator in Equation 14.3.3, is called the total-time-on-test
statistic. We call it this since the ith item to fail functions for a time X(i) (and then fails),
i = 1, . . . , r , whereas the other n − r items function throughout the test (which lasts for
a time X(r)). Hence the sum of the times that all the items are on test is equal to τ .

To obtain a confidence interval for θ , we will determine the distribution of τ , the total
time on test. Recalling that X(i) is the time of the ith failure, i = 1, . . . , r , we will start
by rewriting the expression for τ . To write an expression for τ , rather than summing the
total time on test of each of the items, let us ask how much additional time on test was
generated between each successive failure. That is, let us denote by Yi , i = 1, . . . , r , the
additional time on test generated between the (i − 1)st and ith failure. Now up to the first
X(1) time units (as all n items are functioning throughout this interval), the total time on
test is

Y1 = nX(1)

Between the first and second failures, there are a total of n − 1 functioning items, and so

Y2 = (n − 1)(X(2) − X(1))
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In general, we have

Y1 = nX(1)

Y2 = (n − 1)(X(2) − X(1))

...

Yj = (n − j + 1)(X( j) − X( j−1))

...

Yr = (n − r + 1)(X(r) − X(r−1))

and

τ =
r∑

j=1

Yj

The importance of the foregoing representation for τ follows from the fact that the
distributions of the Yj ’s are easily obtained as follows. Since X(1), the time of the first
failure, is the minimum of n independent exponential lifetimes, each having rate 1/θ , it
follows from Proposition 5.6.1 that it is itself exponentially distributed with rate n/θ . That
is, X(1) is exponential with mean θ /n; and so nX(1) is exponential with mean θ . Also, at the
moment when the first failure occurs, the remaining n − 1 functioning items are, by the
memoryless property of the exponential, as good as new and so each will have an additional
life that is exponential with mean θ ; hence, the additional time until one of them fails is
exponential with rate (n − 1)/θ . That is, independent of X(1), X(2) − X(1) is exponential
with mean θ /(n−1) and so Y2 = (n−1)(X(2) −X(1)) is exponential with mean θ . Indeed,
continuing this argument leads us to the following conclusion:

Y1, . . . , Yr are independent exponential

random variables each having mean θ (14.3.4)

Hence, since the sum of independent and identically distributed exponential random
variables has a gamma distribution (Corollary 5.7.2), we see that

τ ∼ gamma(r , 1/θ )

That is, τ has a gamma distribution with parameters r and 1/θ . Equivalently, by recalling
that a gamma random variable with parameters (r, 1/θ ) is equivalent to θ /2 times a
chi-square random variable with 2r degrees of freedom (see Section 5.8.1), we obtain that

2τ

θ
∼ χ2

2r (14.3.5)
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That is, 2τ /θ has a chi-square distribution with 2r degrees of freedom. Hence,

P
{
χ2

1−α/2,2r < 2τ /θ < χ2
α/2,2r

} = 1 − α

and so a 100(1 − α) percent confidence interval for θ is

θ ∈
(

2τ

χ2
α/2,2r

,
2τ

χ2
1−α/2,2r

)
(14.3.6)

One-sided confidence intervals can be similarly obtained.

EXAMPLE 14.3a A sample of 50 transistors is simultaneously put on a test that is to be
ended when the 15th failure occurs. If the total time on test of all transistors is equal to
525 hours, determine a 95 percent confidence interval for the mean lifetime of a transistor.
Assume that the underlying distribution is exponential.

SOLUTION From Program 5.8.1b,

χ2
.025,30 = 46.98, χ2

.975,30 = 16.89

and so, using Equation 14.3.6, we can assert with 95 percent confidence that

θ ∈ (22.35, 62.17) ■

In testing a hypothesis about θ , we can use Equation 14.3.6 to determine the p-value
of the test data. For instance, suppose we are interested in the one-sided test of

H0 : θ ≥ θ0

versus the alternative

H1 : θ < θ0

This can be tested by first computing the value of the test statistic 2τ /θ0 — call this
value v — and then computing the probability that a chi-square random variable with 2r
degrees of freedom would be as small as v. This probability is the p-value in the sense that
it represents the (maximal) probability that such a small value of 2τ /θ0 would have been
observed if H0 were true. The hypothesis should then be rejected at all significance levels
at least as large as this p-value.

EXAMPLE 14.3b A producer of batteries claims that the lifetimes of the items it manufac-
tures are exponentially distributed with a mean life of at least 150 hours. To test this claim,
100 batteries are simultaneously put on a test that is slated to end when the 20th failure
occurs. If, at the end of the experiment, the total test time of all the 100 batteries is equal
to 1,800, should the manufacturer’s claim be accepted?
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SOLUTION Since 2τ /θ0 = 3,600/150 = 24, the p-value is

p-value = P{χ2
40 ≤ 24}

= .021 from Program 5.8.1a

Hence, the manufacturer’s claim should be rejected at the 5 percent level of significance
(indeed at any significance level at least as large as .021). ■

It follows from Equation 14.3.5 that the accuracy of the estimator τ /r depends only
on r and not on n, the number of items put on test. The importance of n resides in the
fact that by choosing it large enough we can ensure that the test is, with high probability,
of short duration. In fact, the moments of X(r), the time at which the test ends are easily
obtained. Since, with X(0) ≡ 0,

X( j) − X( j−1) = Yj

n − j + 1
, j = 1, . . . , r

it follows upon summing that

X(r) =
r∑

j=1

Yj

n − j + 1

Hence, from Equation 14.3.4, X(r) is the sum of r independent exponentials having
respective means θ /n, θ /(n − 1), . . . , θ /(n − r + 1). Using this, we see that

E [X(r)] =
r∑

j=1

θ

n − j + 1
= θ

n∑
j=n−r+1

1

j
(14.3.7)

Var(X(r)) =
r∑

j=1

(
θ

n − j + 1

)2

= θ2
n∑

j=n−r+1

1

j2

where the second equality uses the fact that the variance of an exponential is equal to the
square of its mean. For large n, we can approximate the preceding sums as follows:

n∑
j=n−r+1

1

j
≈
∫ n

n−r+1

dx
x

= log

(
n

n − r + 1

)

n∑
j=n−r+1

1

j2
≈
∫ n

n−r+1

dx
x2 = 1

n − r + 1
− 1

n
= r − 1

n(n − r + 1)
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Thus, for instance, if in Example 14.3b the true mean life was 120 hours, then the
expectation and variance of the length of the test are approximately given by

E [X(20)] ≈ 120 log

(
100

81

)
= 25.29

Var(X(20)) ≈ (120)2
19

100(81)
= 33.78

14.3.2 Sequential Testing

Suppose now that we have an infinite supply of items, each of whose lifetime is exponential
with an unknown mean θ , which are to be tested sequentially, in that the first item is put
on test and on its failure the second is put on test, and so on. That is, as soon as an item
fails, it is immediately replaced on life test by the next item. We suppose that at some fixed
time T the text ends.

The observed data will consist of the following:

Data: r , x1, x2, . . . , xr

with the interpretation that there has been a total of r failures with the ith item on test
having functioned for a time xi . Now the foregoing will be the observed data if

Xi = xi , i = 1, . . . , r ,
r∑

i=1

xi < T (14.3.8)

Xr+1 > T −
r∑

i=1

xi

where Xi is the functional lifetime of the ith item to be put in use. This follows since
in order for there to be r failures, the rth failure must occur before time T — and so∑r

i=1 Xi < T — and the functional life of the (r + 1)st item must exceed T −∑r
i=1 Xi

(see Figure 14.1).

TimeT

Xr + 1

0 r + 1

i = 1 
ΣXi

r

i = 1 
ΣXi

Time of rth failure Time of (r + 1)st failure

FIGURE 14.1 r failures by time T.
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From Equation 14.3.8, we obtain that the likelihood of the data r , x1, . . . , xr is as
follows:

f (r , x1, . . . , xr |θ )

= fX1,...,Xr (x1, . . . , xr )P

{
Xr+1 > T −

r∑
i=1

xi

}
,

r∑
i=1

xi < T

= 1

θ r e−�r
i=1xi /θ e−(T −�r

i=1xi )/θ

= 1

θ r e−T /θ

Therefore,

log f (r , x1, . . . , xr |θ ) = −r log θ − T
θ

and so

∂

∂θ
log f (r , x1, . . . , xr |θ ) = − r

θ
+ T

θ2

On equating to 0 and solving, we obtain that the maximum likelihood estimate for θ is

θ̂ = T
r

Since T is the total time on test of all items, it follows once again that the maximum
likelihood estimate of the unknown exponential mean is equal to the total time on test
divided by the number of observed failures in this time.

If we let N(T ) denote the number of failures by time T, then the maximum likelihood
estimator of θ is T /N (T ). Suppose now that the observed value of N (T ) is N (T ) = r . To
determine a 100(1 − α) percent confidence interval estimate for θ , we will first determine
the values θL and θU , which are such that

PθU {N (T ) ≥ r} = α

2
, PθL{N (T ) ≤ r} = α

2

where by Pθ (A) we mean that we are computing the probability of the event A under the
supposition that θ is the true mean. The 100(1 − α) percent confidence interval estimate
for θ is

θ ∈ (θL, θU )

To understand why those values of θ for which either θ < θL or θ > θU are not
included in the confidence interval, note that Pθ {N (T ) ≥ r} decreases and Pθ {N (T ) ≤ r}
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increases in θ (why?). Hence,

if θ < θL, then Pθ {N (T ) ≤ r} < PθL{N (T ) ≤ r} = α

2

if θ > θU , then Pθ {N (T ) ≥ r} < PθU {N (T ) ≥ r} = α

2

It remains to determine θL and θU . To do so, note first that the event that N (T ) ≥ r is
equivalent to the statement that the rth failure occurs before or at time T. That is,

N (T ) ≥ r ⇔ X1 + · · · + Xr ≤ T

and so

Pθ {N (T ) ≥ r} = Pθ {X1 + · · · + Xr ≤ T }
= P{γ (r , 1/θ ) ≤ T }

= P
{

θ

2
χ2

2r ≤ T
}

= P
{
χ2

2r ≤ 2T /θ
}

Hence, upon evaluating the foregoing at θ = θU , and using the fact that P{χ2
2r ≤

χ2
1−α/2,2r} = α/2, we obtain that

α

2
= P

{
χ2

2r ≤ 2T
θU

}

and that

2T
θU

= χ2
1−α/2,2r

or

θU = 2T /χ2
1−α/2,2r

Similarly, we can show that

θL = 2T /χ2
α/2,2r

and thus the 100(1 − α) percent confidence interval estimate for θ is

θ ∈ (2T /χ2
α/2,2r , 2T /χ2

1−α/2,2r )
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EXAMPLE 14.3c If a one-at-a-time sequential test yields 10 failures in the fixed time of
T = 500 hours, then the maximum likelihood estimate of θ is 500/10 = 50 hours. A 95
percent confidence interval estimate of θ is

0 ∈ (1,000/χ2
.025,20, 1,000/χ2

.975,20)

Running Program 5.8.1b yields that

χ2
.025,20 = 34.17, χ2

.975,20 = 9.66

and so, with 95 percent confidence,

θ ∈ (29.27, 103.52) ■

If we wanted to test the hypothesis

H0 : θ = θ0

versus the alternative

H1 : θ �= θ0

then we would first determine the value of N (T ). If N (T ) = r , then the hypothesis would
be rejected provided either

Pθ0{N (T ) ≤ r} ≤ α

2
or Pθ0{N (T ) ≥ r} ≤ α

2

In other words, H0 would be rejected at all significance levels greater than or equal to the
p-value given by

p-value = 2 min(Pθ0{N (T ) ≥ r}, Pθ0{N (T ) ≤ r})
p-value = 2 min(Pθ0{N (T ) ≥ r}, 1 − Pθ0{N (T ) ≥ r + 1})

= 2 min

(
P
{
χ2

2r ≤ 2T
θ0

}
, 1 − P

{
χ2

2(r+1) ≤ 2T
θ0

})

The p-value for a one-sided test is similarly obtained.
The chi-square probabilities in the foregoing can be computed by making use of

Program 5.8.1a.

EXAMPLE 14.3d A company claims that the mean lifetimes of the semiconductors it
produces is at least 25 hours. To substantiate this claim, an independent testing ser-
vice has decided to sequentially test, one at a time, the company’s semiconductors for
600 hours. If 30 semiconductors failed during this period, what can we say about the
validity of the company’s claim? Test at the 10 percent level.
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SOLUTION This is a one-sided test of

H0 : θ ≥ 25 versus H1 : θ < 25

The relevant probability for determining the p-value is the probability that there would
have been as many as 30 failures if the mean life were 25. That is,

p-value = P25{N (600) ≥ 30}
= P{χ2

60 ≤ 1,200/25}
= .132 from Program 5.8.1a

Thus, H0 would be accepted when the significance level is .10. ■

14.3.3 Simultaneous Testing — Stopping by a Fixed Time

Suppose again that we are testing items whose life distributions are independent exponential
random variables with a common unknown mean θ . As in Section 14.3.1, the n items are
simultaneously put on test, but now we suppose that the test is to stop either at some fixed
time T or whenever all n items have failed — whichever occurs first. The problem is to
use the observed data to estimate θ .

The observed data will be as follows:

Data : i1, i2, . . . , ir , x1, x2, . . . , xr

with the interpretation that the preceding results when the r items numbered i1, . . . , ir are
observed to fail at respective times x1, . . . , xr ; and the other n − r items have not failed by
time T.

Since an item will not have failed by time T if and only if its lifetime is greater than T,
we see that the likelihood of the foregoing data is

f (i1, . . . , ir , x1, . . . , xr ) = fXi1 ,...,Xir
(x1, . . . , xr )P{Xj > T , j �= i1, . . . , ir}

= 1

θ
e−x1/θ · · · 1

θ
e−xr /θ (e−T /θ )n−r

= 1

θ r exp


−

r∑
i=1

xi

θ
− (n − r)T

θ




To obtain the maximum likelihood estimates, take logs to obtain

log f (i1, . . . , ir , x1, . . . , xr ) = −r log θ −

r∑
1

xi

θ
− (n − r)T

θ
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Hence,

∂

∂θ
log f (i1, . . . , ir , x1, . . . , xr ) = − r

θ
+

r∑
1

xi + (n − r)T

θ2

Equating to 0 and solving yields that θ̂ , the maximum likelihood estimate, is given by

θ̂ =

r∑
i=1

xi + (n − r)T

r

Hence, if we let R denote the number of items that fail by time T and let X(i) be the
ith smallest of the failure times, i = 1, . . . , R, then the maximum likelihood estimator
of θ is

θ̂ =

R∑
i=1

X(i) + (n − R)T

R

Let τ denote the sum of the times that all items are on life test. Then, because the R
items that fail are on test for times X(1), . . . , X(R) whereas the n − R nonfailed items are all
on test for time T, it follows that

τ =
R∑

i=1

X(i) + (n − R)T

and thus we can write the maximum likelihood estimator as

θ̂ = τ

R

In words, the maximum likelihood estimator of the mean life is (as in the life testing
procedures of Sections 14.3.1 and 14.3.2) equal to the total time on test divided by the
number of items observed to fail.

REMARK

As the reader may possibly have surmised, it turns out that for all possible life test-
ing schemes for the exponential distribution, the maximum likelihood estimator of the
unknown mean θ will always be equal to the total time on test divided by the number of
observed failures. To see why this is true, consider any testing situation and suppose that
the outcome of the data is that r items are observed to fail after having been on test for
times x1, . . . , xr , respectively, and that s items have not yet failed when the test ends — at
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which time they had been on test for respective times y1, . . . , ys . The likelihood of this
outcome will be

likelihood = K
1

θ
e−x1/θ . . .

1

θ
e−xr /θ e−y1/θ . . . e−ys /θ

= K
θ r exp




−
(

r∑
i=1

xi +
s∑

i=1
yi

)
θ




(14.3.9)

where K, which is a function of the testing scheme and the data, does not depend on θ .
(For instance, K may relate to a testing procedure in which the decision as to when to stop
depends not only on the observed data but is allowed to be random.) It follows from the
foregoing that the maximum likelihood estimate of θ will be

θ̂ =

r∑
i=1

xi +
s∑

i=1
yi

r
(14.3.10)

But
∑r

i=1 xi + ∑s
i=1 yi is just the total-time-on-test statistic and so the maximum like-

lihood estimator of θ is indeed the total time on test divided by the number of observed
failures in that time.

The distribution of τ /R is rather complicated for the life testing scheme described in
this section* and thus we will not be able to easily derive a confidence interval estimator for
θ . Indeed, we will not further pursue this problem but rather will consider the Bayesian
approach to estimating θ .

14.3.4 The Bayesian Approach

Suppose that items having independent and identically distributed exponential lifetimes
with an unknown mean θ are put on life test. Then as noted in the remark given in Section
14.3.3, the likelihood of the data can be expressed as

f (data|θ ) = K
θ r e−t/θ

where t is the total time on test — that is, the sum of the time on test of all items used —
and r is the number of observed failures for the given data.

Let λ = 1/θ denote the rate of the exponential distribution. In the Bayesian approach,
it is more convenient to work with the rate λ rather than its reciprocal. From the

* For instance, for the scheme considered, τ and R are not only both random but are also dependent.
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foregoing we see that

f (data|λ) = K λr e−λt

If we suppose prior to testing, that λ is distributed according to the prior density g(λ),
then the posterior density of λ given the observed data is as follows:

f (λ|data) = f (data|λ)g (λ)∫
f (data|λ)g (λ) dλ

= λr e−λt g (λ)∫
λr e−λt g (λ) dλ

(14.3.11)

The preceding posterior density becomes particularly convenient to work with when g is
a gamma density function with parameters, say, (b, a) — that is, when

g (λ) = ae−aλ(aλ)b−1

�(b)
, λ > 0

for some nonnegative constants a and b. Indeed for this choice of g we have from
Equation 14.3.11 that

f (λ|data) = Ce−(a+t )λλr+b−1

= Ke−(a+t )λ[(a + t )λ]b+r−1

where C and K do not depend on λ. Because we recognize the preceding as the gamma
density with parameters (b + r , a + t ), we can rewrite it as

f (λ|data) = (a + t )e−(a+t )λ[(a + t )λ]b+r−1

�(b + r)
, λ > 0

In other words, if the prior distribution of λ is gamma with parameters (b, a), then no
matter what the testing scheme, the (posterior) conditional distribution of λ given the
data is gamma with parameters (b + R, a + τ ), where τ and R represent respectively the
total-time-on-test statistic and the number of observed failures. Because the mean of a
gamma random variable with parameters (b, a) is equal to b/a (see Section 5.7), we can
conclude that E [λ|data], the Bayes estimator of λ, is

E [λ|data] = b + R
a + τ

EXAMPLE 14.3e Suppose that 20 items having an exponential life distribution with an
unknown rate λ are put on life test at various times. When the test is ended, there have
been 10 observed failures — their lifetimes being (in hours) 5, 7, 6.2, 8.1, 7.9, 15, 18,
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3.9, 4.6, 5.8. The 10 items that did not fail had, at the time the test was terminated,
been on test for times (in hours) 3, 3.2, 4.1, 1.8, 1.6, 2.7, 1.2, 5.4, 10.3, 1.5. If prior
to the testing it was felt that λ could be viewed as being a gamma random variable with
parameters (2, 20), what is the Bayes estimator of λ?

SOLUTION Since

τ = 116.1, R = 10

it follows that the Bayes estimate of λ is

E [λ|data] = 12

136. 1
= .088 ■

REMARK

As we have seen, the choice of a gamma prior distribution for the rate of an exponential
distribution makes the resulting computations quite simple. Whereas, from an applied
viewpoint, this is not a sufficient rationale, such a choice is often made with one justification
being that the flexibility in fixing the two parameters of the gamma prior usually enables
one to reasonably approximate their true prior feelings.

14.4 A TWO-SAMPLE PROBLEM
A company has set up two separate plants to produce vacuum tubes. The company
supposes that tubes produced at Plant I function for an exponentially distributed time
with an unknown mean θ1 whereas those produced at Plant II function for an exponen-
tially distributed time with unknown mean θ2. To test the hypothesis that there is no
difference between the two plants (at least in regard to the lifetimes of the tubes they
produce), the company samples n tubes from Plant I and m from Plant II and then utilizes
these tubes to determine their lifetimes. How can they thus determine whether the two
plants are indeed identical?

If we let X1, . . . , Xn denote the lifetimes of the n tubes produced at Plant I and Y1, . . . , Ym

denote the lifetimes of the m tubes produced at Plant II, then the problem is to test
the hypothesis that θ1 = θ2 when the Xi , i = 1, . . . , n are a random sample from an
exponential distribution with mean θ1 and the Yi , i = 1, . . . , m are a random sample from
an exponential distribution with mean θ2. Moreover, the two samples are supposed to be
independent.

To develop a test of the hypothesis that θ1 = θ2, let us begin by noting that
∑n

i=1 Xi

and
∑m

i=1 Yi (being the sum of independent and identically distributed exponentials) are
independent gamma random variables with respective parameters (n, 1/θ1) and (m, 1/θ2).
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Hence, by the equivalence of the gamma and chi-square distribution it follows that

2

θ1

n∑
i=1

Xi ∼ χ2
2n

2

θ2

m∑
i=1

Yi ∼ χ2
2m

Hence, it follows from the definition of the F -distribution that(
2

θ1

n∑
i=1

Xi

)
2n(

2

θ2

m∑
i=1

Yi

)
2m

∼ Fn,m

That is, if X and Y are the two sample means, respectively, then

θ2X

θ1Y
has an F -distribution with n and m degrees of freedom

Hence, when the hypothesis θ1 = θ2 is true, we see that X /Y has an F -distribution with
n and m degrees of freedom. This suggests the following test of the hypothesis that
θ1 = θ2.

Test: H0 : θ1 = θ2 vs. alternative H1 : θ1 �= θ2

Step 1: Choose a significance level α.
Step 2: Determine the value of the test statistic X /Y — say its value is v.
Step 3: Compute P{F ≤ v} where F ∼ Fn,m. If this probability is either less

than α/2 (which occurs when X is significantly less than Y ) or greater
than 1 −α/2 (which occurs when X is significantly greater than Y ) then
the hypothesis is rejected.

In other words, the p-value of the test data is given by

p-value = 2 min(P{F ≤ v}, 1 − P{F ≤ v})

EXAMPLE 14.4a Test the hypothesis, at the 5 percent level of significance, that the lifetimes
of items produced at two given plants have the same exponential life distribution if a sample
of size 10 from the first plant has a total lifetime of 420 hours whereas a sample of 15 from
the second plant has a total lifetime of 510 hours.
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SOLUTION The value of the test statistic X /Y is 42/34 = 1.2353. To compute the prob-
ability that an F -random variable with parameters 10, 15 is less than this value, we run
Program 5.8.3a to obtain that

P{F10,15 < 1.2353} = .6554

Because the p-value is equal to 2(1 − .6554) = .6892, we cannot reject H0. ■

14.5 THE WEIBULL DISTRIBUTION IN LIFE TESTING
Whereas the exponential distribution arises as the life distribution when the hazard rate
function λ(t ) is assumed to be constant over time, there are many situations in which it is
more realistic to suppose that λ(t ) either increases or decreases over time. One example of
such a hazard rate function is given by

λ(t ) = αβtβ−1, t > 0 (14.5.1)

where α and β are positive constants. The distribution whose hazard rate function is given
by Equation 14.5.1 is called the Weibull distribution with parameters (α, β). Note that
λ(t ) increases when β > 1; decreases when β < 1; and is constant (reducing to the
exponential) when β = 1.

The Weibull distribution function is obtained from Equation 14.5.1 as follows:

F (t ) = 1 − exp

{
−
∫ t

0
λ(s) ds

}
, t > 0

= 1 − exp{−αtβ}
Differentiating yields its density function:

f (t ) = αβtβ−1 exp{−αtβ}, t > 0 (14.5.2)

This density is plotted for a variety of values of α and β in Figure 14.2.
Suppose now that X1, . . . , Xn are independent Weibull random variables each having

parameters (α, β), which are assumed unknown. To estimate α and β, we can employ the
maximum likelihood approach. Equation 14.5.2 yields the likelihood, given by

f (x1, . . . , xn) = αnβnxβ−1
1 · · · xβ−1

n exp

{
−α

n∑
i=1

xβ
i

}

Hence,

log f (x1, . . . , xn) = n log α + n log β + (β − 1)
n∑

i=1

log xi − α

n∑
i=1

xβ
i
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FIGURE 14.2 Weibull density functions.

and

∂

∂α
log f (x1, . . . , xn) = n

α
−

n∑
i=1

xβ
i

∂

∂β
log f (x1, . . . , xn) = n

β
+

n∑
i=1

log xi − α

n∑
i=1

xβ
i log xi

Equating to zero shows that the maximum likelihood estimates α̂ and β̂ are the solutions of

n
α̂

=
n∑

i=1

x β̂
i

n

β̂
+

n∑
i=1

log xi = α̂

n∑
i=1

x β̂
i log xi
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or, equivalently,

α̂ = n
n∑

i=1
x β̂
i

n + β̂ log

(
n∏

i=1

xi

)
=

nβ̂
n∑

i=1
x β̂
i log xi

n∑
i=1

x β̂
i

This latter equation can then be solved numerically for β̂, which will then also determine α̂.
However, rather than pursuing this approach any further, let us consider a second approach,
which is not only computationally easier but appears, as indicated by a simulation study,
to yield more accurate estimates.

14.5.1 Parameter Estimation by Least Squares

Let X1, . . . , Xn be a sample from the distribution

F (x) = 1 − e−αxβ

, x ≥ 0

Note that

log(1 − F (x)) = −αxβ

or

log

(
1

1 − F (x)

)
= αxβ

and so

log log

(
1

1 − F (x)

)
= β log x + log α (14.5.3)

Now let X(1) < X(2) < · · · < X(n) denote the ordered sample values — that is, for
i = 1, . . . . n,

X(i) = ith smallest of X1, . . . , Xn

and suppose that the data results in X(i) = x(i). If we were able to approximate the quantities
log log(1/[1 − F (x(i))]) — say, by the values y1, . . . , yn — then from Equation 14.5.3, we
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could conclude that

yi ≈ β log x(i) + log α, i = 1, . . . , n (14.5.4)

We could then choose α and β to minimize the sum of the squared errors — that is, α

and β are chosen to

minimize
α,β

n∑
i=1

( yi − β log x(i) − log α)2

Indeed, using Proposition 9.2.1 we obtain that the preceding minimum is attained when
α = α̂, β = β̂ where

β̂ =

n∑
i=1

yi log x(i) − n log xȳ

n∑
i=1

(log x(i))
2 − n(log x)2

log α̂ = ȳ − β log x

where

log x =
n∑

i=1

(log x(i))
/

n, ȳ =
n∑

i=1

yi

/
n

To utilize the foregoing, we need to be able to determine values yi that approximate log
log(1/[1−F (x(i))] = log[− log(1−F (x(i)))), i = 1, . . . , n. We now present two different
methods for doing this.

Method 1: This method uses the fact that

E [F (X(i))] = i
(n + 1)

(14.5.5)

and then approximates F (x(i)) by E [F (X(i))]. Thus, this method calls for using

yi = log{− log(1 − E [F (X(i))])} (14.5.6)

= log

{
− log

(
1 − i

(n + 1)

)}

= log

{
− log

(
n + 1 − i

n + 1

)}



604 Chapter 14*: Life Testing

Method 2: This method uses the fact that

E [− log(1 − F (X(i))] = 1

n
+ 1

n − 1
+ 1

n − 2
+ · · · + 1

n − i + 1
(14.5.7)

and then approximates − log(1 − F (x(i))) by the foregoing. Thus, this second method
calls for setting

yi = log

[
1

n
+ 1

(n − 1)
+ · · · + 1

(n − i + 1)

]
(14.5.8)

REMARKS

(a) It is not, at present, clear which method provides superior estimates of the param-
eters of the Weibull distribution, and extensive simulation studies will be necessary
to determine this.

(b) Proofs of equalities 14.5.5 and 14.5.7 [which hold whenever X(i) is the ith small-
est of a sample of size n from any continuous distribution F ] are outlined in
Problems 28–30.

Problems

1. A random variable whose distribution function is given by

F (t ) = 1 − exp{−αtβ}, t ≥ 0

is said to have a Weibull distribution with parameters α, β. Compute its failure
rate function.

2. If X and Y are independent random variables having failure rate functions λx (t )
and λy(t ), show that the failure rate function of Z = min(X , Y ) is

λz (t ) = λx (t ) + λy(t )

3. The lung cancer rate of a t -year-old male smoker, λ(t ), is such that

λ(t ) = .027 + .025

(
t − 40

10

)4

, t ≥ 40

Assuming that a 40-year-old male smoker survives all other hazards, what is
the probability that he survives to (a) age 50, (b) age 60, without contracting
lung cancer? In the foregoing we are assuming that he remains a smoker throughout
his life.
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4. Suppose the life distribution of an item has failure rate function λ(t ) = t3, 0 <

t < ∞.

(a) What is the probability that the item survives to age 2?
(b) What is the probability that the item’s life is between .4 and 1.4?
(c) What is the mean life of the item?
(d) What is the probability a 1-year-old item will survive to age 2?

5. A continuous life distribution is said to be an IFR (increasing failure rate)
distribution if its failure rate function λ(t ) is nondecreasing in t .

(a) Show that the gamma distribution with density

f (t ) = λ2te−λt , t > 0

is IFR.
(b) Show, more generally, that the gamma distribution with parameters α, λ is

IFR whenever α ≥ 1.
Hint: Write

λ(t ) =
[∫∞

t λe−λs(λs)α−1 ds

λe−λt (λt )α−1

]−1

6. Show that the uniform distribution on (a, b) is an IFR distribution.

7. For the model of Section 14.3.1, explain how the following figure can be used to
show that

τ =
r∑

j=1

Yj

where

Yj = (n − j + 1)(X( j) − X( j−1))

0

X(r)

1 2 3 nrr − 3 r − 2 r − 1

X(r − 1)

X(r − 2)

X(3)

X(2)

X(1)

(Hint: Argue that both τ and
∑r

j=1 Yj equal the total area of the figure shown.)
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8. When 30 transistors were simultaneously put on a life test that was to be terminated
when the 10th failure occurred, the observed failure times were (in hours) 4.1,
7.3, 13.2, 18.8, 24.5, 30.8, 38.1, 45.5, 53, 62.2. Assume an exponential life
distribution.

(a) What is the maximum likelihood estimate of the mean life of a transistor?
(b) Compute a 95 percent two-sided confidence interval for the mean life of a

transistor.
(c) Determine a value c that we can assert, with 95 percent confidence, is less

than the mean transistor life.
(d) Test at the α = .10 level of significance the hypothesis that the mean lifetime

is 7.5 hours versus the alternative that it is not 7.5 hours.

9. Consider a test of H0 : θ = θ0 versus H1 : θ �= θ0 for the model of Sec-
tion 14.3.1. Suppose that the observed value of 2τ /θ0 is v. Show that the
hypothesis should be rejected at significance level α whenever α is less than the
p-value given by

p-value = 2 min(P{χ2
2r < v}, 1 − P{χ2

2r < v})

where χ2
2r is a chi-square random variable with 2r degrees of freedom.

10. Suppose 30 items are put on test that is scheduled to stop when the 8th failure
occurs. If the failure times are, in hours, .35, .73, .99, 1.40, 1.45, 1.83, 2.20,
2.72, test, at the 5 percent level of significance, the hypothesis that the mean life
is equal to 10 hours. Assume that the underlying distribution is exponential.

11. Suppose that 20 items are to be put on test that is to be terminated when the
10th failure occurs. If the lifetime distribution is exponential with mean 10 hours,
compute the following quantities.

(a) The mean length of the testing period.
(b) The variance of the testing period.

12. Vacuum tubes produced at a certain plant are assumed to have an underlying
exponential life distribution having an unknown mean θ . To estimate θ it has
been decided to put a certain number n of tubes on test and to stop the test at
the 10th failure. If the plant officials want the mean length of the testing period
to be 3 hours when the value of θ is θ = 20, approximately how large should
n be?

13. A one-at-a-time sequential life testing scheme is scheduled to run for 300 hours.
A total of 16 items fail within that time. Assuming an exponential life distribution
with unknown mean θ (measured in hours):

(a) Determine the maximum likelihood estimate of θ .
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(b) Test at the .05 level of significance the hypothesis that θ = 20 versus the
alternative that θ �= 20.

(c) Determine a 95 percent confidence interval for θ .

14. Using the fact that a Poisson process results when the times between successive
events are independent and identically distributed exponential random variables,
show that

P{X ≥ n} = Fχ2
2n

(x)

when X is a Poisson random variable with mean x/2 and Fχ2
2n

is the chi-square
distribution function with 2n degrees of freedom. (Hint: Use the results of
Section 14.3.2.)

15. From a sample of items having an exponential life distribution with unknown
mean θ , items are tested in sequence. The testing continues until either the rth
failure occurs or after a time T elapses.

(a) Determine the likelihood function.
(b) Verify that the maximum likelihood estimator of θ is equal to the total time

on test of all items divided by the number of observed failures.

16. Verify that the maximum likelihood estimate corresponding to Equation 14.3.9
is given by Equation 14.3.10.

17. A testing laboratory has facilities to simultaneously life test 5 components. The
lab tested a sample of 10 components from a common exponential distribution
by initially putting 5 on test and then replacing any failed component by one still
waiting to be tested. The test was designed to end either at 200 hours or when all
10 components had failed. If there were a total of 9 failures occurring at times 15,
28.2, 46, 62.2, 76, 86, 128, 153, 197, what is the maximum likelihood estimate
of the mean life of a component?

18. Suppose that the remission time, in weeks, of leukemia patients that have under-
gone a certain type of chemotherapy treatment is an exponential random variable
having an unknown mean θ . A group of 20 such patients is being monitored and,
at present, their remission times are (in weeks) 1.2, 1.8∗, 2.2, 4.1, 5.6, 8.4, 11.8∗,
13.4∗, 16.2, 21.7, 29∗, 41, 42∗, 42.4∗, 49.3, 60.5, 61∗, 94, 98, 99.2∗ where
an asterisk next to the data means that the patient’s remission is still continuing,
whereas a data point without an asterisk means that the remission ended at that
time. What is the maximum likelihood estimate of θ ?

19. In Problem 17, suppose that prior to the testing phase and based on past experi-
ence one felt that the value of λ = 1/θ could be thought of as the outcome of a
gamma random variable with parameters 1, 100. What is the Bayes estimate of λ?
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20. What is the Bayes estimate of λ = 1/θ in Problem 18 if the prior distribution on
λ is exponential with mean 1/30?

21. The following data represent failure times, in minutes, for two types of electrical
insulation subject to a certain voltage stress.

Type I 212, 88.5, 122.3, 116.4, 125, 132, 66

Type II 34.6, 54, 162, 49, 78, 121, 128

Test the hypothesis that the two sets of data come from the same exponential
distribution.

22. Suppose that the life distributions of two types of transistors are both exponential.
To test the equality of means of these two distributions, n1 type 1 transistors are
simultaneously put on a life test that is scheduled to end when there have been
a total of r1 failures. Similarly, n2 type 2 transistors are simultaneously put on a life
test that is to end when there have been r2 failures.

(a) Using results from Section 14.3.1, show how the hypothesis that the means
are equal can be tested by using a test statistic that, when the means are equal,
has an F -distribution with 2r1 and 2r2 degrees of freedom.

(b) Suppose n1 = 20, r1 = 10 and n2 = 10, r2 = 7 with the following data
resulting.

Type 1 failures at times:

10.4, 23.2, 31.4, 45, 61.1, 69.6, 81.3, 95.2, 112, 129.4

Type 2 failures at times:

6.1, 13.8, 21.2, 31.6, 46.4, 66.7, 92.4

What is the smallest significance level α for which the hypothesis of equal
means would be rejected? (That is, what is the p-value of the test data?)

23. If X is a Weibull random variable with parameters (α, β), show that

E [X ] = α−1/β�(1 + 1/β)

where �( y) is the gamma function defined by

�( y) =
∫ ∞

0
e−xxy−1 dx

Hint: Write

E [X ] =
∫ ∞

0
tαβtβ−1 exp{−αtβ} dt
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and make the change of variables

x = αtβ , dx = αβtβ−1 dt

24. Show that if X is a Weibull random variable with parameters (α, β), then

Var(X ) = α−2/β

[
�

(
1 + 2

β

)
−
(

�

(
1 + 1

β

))2
]

25. If the following are the sample data from a Weibull population having unknown
parameters α and β, determine the least square estimates of these quantities, using
either of the methods presented.

Data: 15.4, 16.8, 6.2, 10.6, 21.4, 18.2, 1.6, 12.5, 19.4, 17

26. Show that if X is a Weibull random variable with parameters (α, β), then αX β is
an exponential random variable with mean 1.

27. If U is uniformly distributed on (0, 1) — that is, U is a random number —
show that [−(1/α) log U ]1/β is a Weibull random variable with parameters
(α, β).

The next three problems are concerned with verifying Equations 14.5.5 and
14.5.7.

28. If X is a continuous random variable having distribution function F , show that

(a) F (X ) is uniformly distributed on (0, 1);
(b) 1 − F (X ) is uniformly distributed on (0, 1).

29. Let X(i) denote ith smallest of a sample of size n from a continuous distribution
function F . Also, let U(i) denote the ith smallest from a sample of size n from a
uniform (0, 1) distribution.

(a) Argue that the density function of U(i) is given by

fU(i) (t ) = n!

(n − i)!(i − 1)! t
i−1(1 − t )n−i , 0 < t < 1

[Hint: In order for the ith smallest of n uniform (0, 1) random variables to
equal t , how many must be less than t and how many must be greater? Also,
in how many ways can a set of n elements be broken into three subsets of
respective sizes i − 1, 1, and n − i?]
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(b) Use part (a) to show that E [U (i)] = i/(n + 1). [Hint: To evaluate the
resulting integral, use the fact that the density in part (a) must integrate to 1.]

(c) Use part (b) and Problem 28a to conclude that E [F (X(i))]= i/(n + 1).

30. If U is uniformly distributed on (0, 1), show that − log U has an exponen-
tial distribution with mean 1. Now use Equation 14.3.7 and the results of the
previous problems to establish Equation 14.5.7.
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TABLE A1 Standard Normal Distribution Function: 
(x) = 1√
2π

∫ x

−∞
e−y2/2 dy

x .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359

.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753

.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141

.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517

.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879

.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224

.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549

.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852

.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133

.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389

1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621
1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830
1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015
1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177
1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319
1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441
1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545
1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633
1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706
1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767

2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817
2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857
2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890
2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916
2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936
2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952
2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964
2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974
2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981
2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986

3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990
3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993
3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995
3.3 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997
3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998
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TABLE A2 Values of x2
α,n

n α = .995 α = .99 α = .975 α = .95 α = .05 α = .025 α = .01 α = .005

1 .0000393 .000157 .000982 .00393 3.841 5.024 6.635 7.879
2 .0100 .0201 .0506 .103 5.991 7.378 9.210 10.597
3 .0717 .115 .216 .352 7.815 9.348 11.345 12.838
4 .207 .297 .484 .711 9.488 11.143 13.277 14.860
5 .412 .554 .831 1.145 11.070 12.832 13.086 16.750

6 .676 .872 1.237 1.635 12.592 14.449 16.812 18.548
7 .989 1.239 1.690 2.167 14.067 16.013 18.475 20.278
8 1.344 1.646 2.180 2.733 15.507 17.535 20.090 21.955
9 1.735 2.088 2.700 3.325 16.919 19.023 21.666 23.589

10 2.156 2.558 3.247 3.940 18.307 20.483 23.209 25.188

11 2.603 3.053 3.816 4.575 19.675 21.920 24.725 26.757
12 3.074 3.571 4.404 5.226 21.026 23.337 26.217 28.300
13 3.565 4.107 5.009 5.892 22.362 24.736 27.688 29.819
14 4.075 4.660 5.629 6.571 23.685 26.119 29.141 31.319
15 4.601 5.229 6.262 7.261 24.996 27.488 30.578 32.801

16 5.142 5.812 6.908 7.962 26.296 28.845 32.000 34.267
17 5.697 6.408 7.564 8.672 27.587 30.191 33.409 35.718
18 6.265 7.015 8.231 9.390 28.869 31.526 34.805 37.156
19 6.844 7.633 8.907 10.117 30.144 32.852 36.191 38.582
20 7.434 8.260 9.591 10.851 31.410 34.170 37.566 39.997

21 8.034 8.897 10.283 11.591 32.671 35.479 38.932 41.401
22 8.643 9.542 10.982 12.338 33.924 36.781 40.289 42.796
23 9.260 10.196 11.689 13.091 35.172 38.076 41.638 44.181
24 9.886 10.856 12.401 13.484 36.415 39.364 42.980 45.558
25 10.520 11.524 13.120 14.611 37.652 40.646 44.314 46.928

26 11.160 12.198 13.844 15.379 38.885 41.923 45.642 48.290
27 11.808 12.879 14.573 16.151 40.113 43.194 46.963 49.645
28 12.461 13.565 15.308 16.928 41.337 44.461 48.278 50.993
29 13.121 14.256 16.047 17.708 42.557 45.772 49.588 52.336
30 13.787 14.953 16.791 18.493 43.773 46.979 50.892 53.672

Other Chi-Square Probabilities:
x2
.9,9 = 4.2 P{x2

16 < 14.3} = .425 P{x2
11 < 17.1875} = .8976.
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TABLE A3 Values of tα,n

n α = .10 α = .05 α = .025 α = .01 α = .005

1 3.078 6.314 12.706 31.821 63.657
2 1.886 2.920 4.303 6.965 9.925
3 1.638 2.353 3.182 4.541 5.841
4 1.533 2.132 2.776 3.474 4.604
5 1.476 2.015 2.571 3.365 4.032

6 1.440 1.943 2.447 3.143 3.707
7 1.415 1.895 2.365 2.998 3.499
8 1.397 1.860 2.306 2.896 3.355
9 1.383 1.833 2.262 2.821 3.250

10 1.372 1.812 2.228 2.764 3.169

11 1.363 1.796 2.201 2.718 3.106
12 1.356 1.782 2.179 2.681 3.055
13 1.350 1.771 2.160 2.650 3.012
14 1.345 1.761 2.145 2.624 2.977
15 1.341 1.753 2.131 2.602 2.947

16 1.337 1.746 2.120 2.583 2.921
17 1.333 1.740 2.110 2.567 2.898
18 1.330 1.734 2.101 2.552 2.878
19 1.328 1.729 2.093 2.539 2.861
20 1.325 1.725 2.086 2.528 2.845

21 1.323 1.721 2.080 2.518 2.831
22 1.321 1.717 2.074 2.508 2.819
23 1.319 1.714 2.069 2.500 2.807
24 1.318 1.711 2.064 2.492 2.797
25 1.316 1.708 2.060 2.485 2.787

26 1.315 1.706 2.056 2.479 2.779
27 1.314 1.703 2.052 2.473 2.771
28 1.313 1.701 2.048 2.467 2.763
29 1.311 1.699 2.045 2.462 2.756

∞ 1.282 1.645 1.960 2.326 2.576

Other t Probabilities:
P{T8 < 2.541} = .9825 P{T8 < 2.7} = .9864 P{T11 < .7635} = .77 P{T11 < .934} = .81 P{T11 <

1.66} = .94 P{T12 < 2.8} = .984.
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TABLE A4 Values of F.05,n,m

m = Degrees n = Degrees of Freedom
for Numerator

of Freedom
for

Denominator 1 2 3 4 5

1 161 200 216 225 230
2 18.50 19.00 19.20 19.20 19.30
3 10.10 9.55 9.28 9.12 9.01
4 7.71 6.94 6.59 6.39 6.26
5 6.61 5.79 5.41 5.19 5.05

6 5.99 5.14 4.76 4.53 4.39
7 5.59 4.74 4.35 4.12 3.97
8 5.32 4.46 4.07 3.84 3.69
9 5.12 4.26 3.86 3.63 3.48

10 4.96 4.10 3.71 3.48 3.33

11 4.84 3.98 3.59 3.36 3.20
12 4.75 3.89 3.49 3.26 3.11
13 4.67 3.81 3.41 3.18 3.03
14 4.60 3.74 3.34 3.11 2.96
15 4.54 3.68 3.29 3.06 2.90

16 4.49 3.63 3.24 3.01 2.85
17 3.45 3.59 3.20 2.96 2.81
18 4.41 3.55 3.16 2.93 2.77
19 4.38 3.52 3.13 2.90 2.74
20 4.35 3.49 3.10 2.87 2.71

21 4.32 3.47 3.07 2.84 2.68
22 4.30 3.44 3.05 2.82 2.66
23 4.28 3.42 3.03 2.80 2.64
24 4.26 3.40 3.01 2.78 2.62
25 4.24 3.39 2.99 2.76 2.60

30 4.17 3.32 2.92 2.69 2.53
40 4.08 3.23 2.84 2.61 2.45
60 4.00 3.15 2.76 2.53 2.37

120 3.92 3.07 2.68 2.45 2.29

∞ 3.84 3.00 2.60 2.37 2.21

Other F Probabilities:
F.1,7,5 = .337 P{F7.7 < 1.376} = .316 P{F20,14 < 2.461} = .911 P{F9,4 < .5} = .1782.
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TABLE A5 Values of C(m, d, α)
m

d α 2 3 4 5 6 7 8 9 10 11

5 .05 3.64 4.60 5.22 5.67 6.03 6.33 6.58 6.80 6.99 7.17
.01 5.70 6.98 7.80 8.42 8.91 9.32 9.67 9.97 10.24 10.48

6 .05 3.46 4.34 4.90 5.30 5.63 5.90 6.12 6.32 6.49 6.65
.01 5.24 6.33 7.03 7.56 7.97 8.32 8.61 8.87 9.10 9.30

7 .05 3.34 4.16 4.68 5.06 5.36 5.61 5.82 6.00 6.16 6.30
.01 4.95 5.92 6.54 7.01 7.37 7.68 7.94 8.17 8.37 8.55

8 .05 3.26 4.04 4.53 4.89 5.17 5.40 5.60 5.77 5.92 6.05
.01 4.75 5.64 6.20 6.62 6.96 7.24 7.47 7.68 7.86 8.03

9 .05 3.20 3.95 4.41 4.76 5.02 5.24 5.43 5.59 5.74 5.87
.01 4.60 5.43 5.96 6.35 6.66 6.91 7.13 7.33 7.49 7.65

10 .05 3.15 3.88 4.33 4.65 4.91 5.12 5.30 5.46 5.60 5.72
.01 4.48 5.27 5.77 6.14 6.43 6.67 6.87 7.05 7.21 7.36

11 .05 3.11 3.82 4.26 4.57 4.82 5.03 5.20 5.35 5.49 5.61
.01 4.39 5.15 5.62 5.97 6.25 6.48 6.67 6.84 6.99 7.13

12 .05 3.08 3.77 4.20 4.51 4.75 4.95 5.12 5.27 5.39 5.51
.01 4.32 5.05 5.50 5.84 6.10 6.32 6.51 6.67 6.81 6.94

13 .05 3.06 3.73 4.15 4.45 4.69 4.88 5.05 5.19 5.32 5.43
.01 4.26 4.96 5.40 5.73 5.98 6.19 6.37 6.53 6.67 6.79

14 .05 3.03 3.70 4.11 4.41 4.64 4.83 4.99 5.13 5.25 5.36
.01 4.21 4.89 5.32 5.63 5.88 6.08 6.26 6.41 6.54 6.66

15 .05 3.01 3.67 4.08 4.37 4.59 4.78 4.94 5.08 5.20 5.31
.01 4.17 4.84 5.25 5.56 5.80 5.99 6.16 6.31 6.44 6.55

16 .05 3.00 3.65 4.05 4.33 4.56 4.74 4.90 5.03 5.15 5.26
.01 4.13 4.79 5.19 5.49 5.72 5.92 6.08 6.22 6.35 6.46

17 .05 2.98 3.63 4.02 4.30 4.52 4.70 4.86 4.99 5.11 5.21
.01 4.10 4.74 5.14 5.43 5.66 5.85 6.01 6.15 6.27 6.38

18 .05 2.97 3.61 4.00 4.28 4.49 4.67 4.82 4.96 5.07 5.17
.01 4.07 4.70 5.09 5.38 5.60 5.79 5.94 6.08 6.20 6.31

19 .05 2.96 3.59 3.98 4.25 4.47 4.65 4.79 4.92 5.04 5.14
.01 4.05 4.67 5.05 5.33 5.55 5.73 5.89 6.02 6.14 6.25

20 .05 2.95 3.58 3.96 4.23 4.45 4.62 4.77 4.90 5.01 5.11
.01 4.02 4.64 5.02 5.29 5.51 5.69 5.84 5.97 6.09 6.19

24 .05 2.92 3.53 3.90 4.17 4.37 4.54 4.68 4.81 4.92 5.01
.01 3.96 4.55 4.91 5.17 5.37 5.54 5.69 5.81 5.92 6.02

30 .05 2.89 3.49 3.85 4.10 4.30 4.46 4.60 4.72 4.82 4.92
.01 3.89 4.45 4.80 5.05 5.24 5.40 5.54 5.65 5.76 5.85

40 .05 2.86 3.44 3.79 4.04 4.23 4.39 4.52 4.63 4.73 4.82
.01 3.82 4.37 4.70 4.93 5.11 5.26 5.39 5.50 5.60 5.69

60 .05 2.83 3.40 3.74 3.98 4.16 4.31 4.44 4.55 4.65 4.73
.01 3.76 4.28 4.59 4.82 4.99 5.13 5.25 5.36 5.45 5.53

120 .05 2.80 3.36 3.68 3.92 4.10 4.24 4.36 4.47 4.56 4.64
.01 3.70 4.20 4.50 4.71 4.87 5.01 5.12 5.21 5.30 5.37

∞ .05 2.77 3.31 3.63 3.86 4.03 4.17 4.29 4.39 4.47 4.55
.01 3.64 4.12 4.40 4.60 4.76 4.88 4.99 5.08 5.16 5.23
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A
Analysis of variance (ANOVA)

applications, 439–440
multiple comparison constants,

616
one-way, 440

between samples sum of squares,
445–446, 453

multiple comparisons of sample means,
450–452

null hypothesis, 442, 445–446
sum of squares identity, 447–450
unequal sample sizes, 452–453
within samples sum of squares, 443–445,

452–453
overview, 440–442
two-way, 440, 454–457

column sum of squares, 461
error sum of squares, 459, 465
grand mean, 456, 463
hypothesis testing, 458–462
null hypothesis, 464, 467–468
parameter estimation, 458–459
row and column interaction,

463–468
row sum of squares, 460–461

Approximately normal data set, 31
Assignable cause, 545
Attribute, quality control, 545
Axioms of probability, 59–61

B
Bar graph, 10
Basic principle of counting

generalized, 63
proof, 62–63

Bayes, T., 75
Bayes estimator, 272–274

Bernoulli random variables, 273–274
normal mean, 274–275
life testing, 596–598

Bayes formula, 70–76
Behrens-Fisher problem, 319
Bernoulli, J., 5, 141
Bernoulli random variable, 141, 157–158

approximate confidence interval for mean of
distribution, 260–264

Bayes estimator, 273–274
testing equality of parameters in two Bernoulli

populations, 327–329
Beta distribution, 274
Between samples sum of squares, 445–446, 453
Bias of an estimator, 267, 272
Bimodal data set, 33–34
Binomial distribution function, 147–148
Binomial random variable

definition, 141
hypergeometric random variable relationship,

159–160, 219–220
probability calculations, 142–146
probability mass function, 142

617
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Binomial random variable (continued )
testing equality of parameters in two Bernoulli

populations, 327–329
Binomial theorem, 142
Box plot, 27

C
Central limit theorem, 204–206, 209–210

approximate distribution of sample mean,
210–212

sample size requirements, 212–213
Chance variation, 545
Chebyshev’s inequality

for data sets
definition, 9, 27–28
one-sided Chebyshev inequality,

29–30
proof, 28

probabilities, 127–129
Chi-square distribution

definition, 185–186
probabilities for random variables, 613
relation between chi-square and gamma

random variables, 187–189
sum of squares of residuals in linear regression,

358–359
summation of random variables, 216

Class interval, 14–15
Coefficient of determination, 376–378
Coefficient of multiple determination, 405
Column sum of squares, 461
Combinations of objects, 65
Composite hypothesis, 292
Conditional distribution, 105–107
Conditional probability, 67–70
Confidence interval estimators, 241–242

Bernoulli mean, 260–264
difference of two normal means,

253–260
exponential mean, 265–266
interpretation, 245–246
normal mean with unknown variance,

246–249, 251
one-sided lower, 242–243, 249
one-sided upper, 242–243, 248

regression parameters
a, 370
b, 365–366
mean response, 372–373

two-sided confidence interval, 242,
244–245

variances of a normal distribution,
251–253

Contingency tables
with fixed marginal totals, 499–504
tests of independence, 495–499

Continuous random variable, 91, 93
Control charts

cumulative sum charts, 571–573
estimation of mean and variance,

549–551
exponentially weighted moving-average charts,

565–570
for fraction defective, 557–559
lower control limit, 547–548, 552–553,

555–559, 562
moving-average charts, 563–565
for number of defects, 559–562
S-charts, 554
upper control limit, 547–548, 552–553,

555–559, 562
X -charts, 546–554

Correlation coefficient, see Sample correlation
coefficient

Covariance
definition, 121–122
multiple linear regression, 399–401
properties, 122–123
sums of random variables, 125–126

Cumulative sum control charts, 571–573

D
de Moivre, A., 168
DeMorgan’s laws, 59
Dependent variable, 351
Descriptive statistics, 1–2, 9
Discrete random variable, 91–92
Distribution function, 91–93
Doll, R., 17
Double-blind test, 164
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E
Effect of column, 464
Effect of row, 464
Empirical rule, 32–33
Entropy, 109–111
Error sum of squares, 459, 465
Estimate, 230
Estimated regression line, 354
Estimator, 230
Event

algebraic operations, 58–59
axioms of probability, 59–61
complement, 57
definition, 56
independent events, 76–80
intersection of events, 57
mutually exclusive events, 57
union of events, 57

Expectation, see Expected value
Expected value

calculation, 107–109
definition, 107
expectation of a function of a random variable,

113–115
nomenclature, 115
properties, 111–113
sums of random variables, 115–118

Exponentially weighted moving-average control
charts, 565–570

Exponential random variable
confidence interval for mean of distribution,

260–264
definition, 175–176
memoryless property, 176–178
moment generating function, 176
Poisson process, 179–181
properties, 176–179

F
Failure rate, 239, 581

functions, 581–584
Finite population sampling, 217–221
First moment, 115
Fisher, R. A., 6
Fisher-Irwin test, 328–329

F-random variable
distribution, 191–192
probabilities for, 615

Frequency interpretation of probability, 55
Frequency polygon, 10
Frequency table, 10

G
Galton, F., 6, 366
Gamma distribution

definition, 182
moment generating function of gamma

random variable, 183
properties of gamma random variables,

183–185
relation between chi-square and

gamma random variables,
187–189

Gamma function, 183
Gauss, K. F., 5
Generalized basic principle of counting, 63
Goodness of fit tests, 483

critical region determination by simulation,
490–493

Kolmogorov–Smirnov test, 504–508
specified parameters, 484–489
tests of independence in contingency tables,

495–499
with fixed marginal totals, 499–504

unspecified parameters, 493–495
Gosset, W. S., 6
Grand mean, 456, 463
Graphs

bar graph, 10, 16
frequency polygon, 10
line graph, 10
relative frequency graph, 10, 12

Graunt, J., 4–5

H
Halley, E., 5
Hazard rate, see Failure rate
Herbst, A., 329
Hill, A. B., 17
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Histogram
bimodal data set, 33–34
definition, 16
normal data set, 31

Hotel, D. G., 21
Hypergeometric random variable, 156–157

binomial random variable relationship,
159–160, 219–220

mean, 157
variance, 157–158

Hypothesis test, see Statistical hypothesis test

I
Independent events, 76–80
Independent random variables, 101–105
Independent variable, 351
Indicator random variable, 90–91

expectation, 109
variance, 120

Inferential statistics, 2–3
Information theory, entropy, 108
Interaction of row and column in analysis of

variance, 464
Interval estimates, 240

J
Joint distribution, sample mean and sample

variance in normal population,
215–217

Jointly continous random variables, 99
Jointly distributed random variables, 95–101
Joint probability density function, 99–100
Joint probability mass function, 96

K
Kolmogorov’s law of fragmentation, 237–238
Kolmogorov–Smirnov goodness of fit test,

504–508
Kolmogorov–Smirnov test statistic, 504–507

L
Laplace, P., 5
Least squares estimators in linear regression

distribution of estimators, 355–362

estimated regression line, 354
mean and variance computation, 356–357
multiple linear regression, 394–405
normal equations, 353–354
notation, 360
sum of squared differences, 353
weighted least squares, 384–390

Left-end inclusion convention, 15
Life testing

exponential distribution
Bayesian appproach, 596–598
sequential testing, 590–594
simultaneus testing, 584–590, 594

hazard rate functions, 581–584
maximum likelihood estimator of life

distributions, 238–240
Likelihood function, 230

parameter estimation by least squares,
602–604

two-sample problem, 598–600
Weibull distribution, 600–602

Linear regression equation, 351–352
Linear transformation, 381–384
Line graph, 10
Logistic regression model, 410–413
Logistics regression function, 410
Logistics distribution, 192–193
Logit, 411
Lower control limit, 547–548, 552–553,

555–559, 562

M
Mann-Whitney test, 525
Marginal probability mass function, 98
Markov’s inequality, 127–129
Maximum likelihood estimator

of Bernoulli parameter, 231–233
definition, 230–231
Kolmogorov’s law of fragmentation, 237–238
of life distributions, 238–240
of normal population, 236–238
of Poisson parameter, 234–235
of uniform distribution, 238

Mean, see Sample mean
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Mean response
confidence interval estimator, 372–373,

405–408
prediction interval of future response,

373–375, 410
statistical inferences, 371–372

Mean square error, 266–271
Median, see Sample median
Memoryless property, 176–178
Modal value, 22
Mode, see Sample mode
Mode of a density, 276–277
Moment generating function, 126–127

exponential random variable, 176
gamma random variable, 183
normal random variable, 169–170, 173
Poisson random variable, 149–150, 154

Monte Carlo simulation, 251
Moving-average control charts, 563–565
Multiple linear regression, 394–405
Multiple regression equation, 352
Multivariate normal disttribution, 398

N
Negatively correlated, 36
Newton, I., 5
Neyman, J., 7
Nonparametric hypothesis tests

definition, 515
rank sum test

classical approximation, 529–531
null hypothesis, 526
simulation, 531–533
T statistic, 525–529

runs test for randomness, 533–536
signed rank test, 519–525
sign test, 515–519

Nonparametric interference problem, 202
Normal data set

approximately normal data set, 31
definition, 31
empirical rule, 32–33
histogram, 31

Normal density, 275
Normal distribution, 168–170

Normal equations, 395
Normal prior distribution, 275–277
Normal random variable

definition, 168
moment generating function, 169–170, 173
probability calculations, 174–175
summation, 173

Null hypothesis, 292
analysis of variance

one-way, 442, 445–446
two-way, 464, 467–468

Bernoulli populations, 323–330
equality of normal variances, 321–323
equality of two normal means

known variances, 312–314
paired t-test, 319–320
unknown and unequal variances, 318
unknown variances, 314–318

goodness of fit tests, 484–485, 494, 496, 502,
504

normal population mean with known
variance, 293–305

one-sided tests, 300–305
Poisson distribution mean, 330–333
rank sum test, 526
regression parameter b, 363–365
signed rank test, 521
sign test, 515, 517, 519

O
Observational study, 329
Ogive, 16
One-way analysis of variance, see Analysis of

variance
Operating characteristic curve, 297
Order statistics, 586
Out of control process, 545
Overlook probabilities, 76

P
Paired data sets, 33–36
Paired t-test, 319–320
Parametric interference problem, 201–202
Pearson, E., 7
Pearson, K., 6, 367, 490
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Permutation, 63
Pie chart, 12
Point estimator, 240–241

evaluation, 266–272
mean square error, 266–271
unbiased estimator, 267

Poisson, S. D., 148
Poisson distribution function, 155–156
Poisson process, 179–181
Poisson random variable

applications, 150–153
definition, 148
moment generating function, 149–150, 154
square root, 389–390
tests concerning Poisson distribution mean,

330–333
Polynomial regression, 391–394
Pooled estimator, 259, 315
Population, 3, 201
Population mean, 202
Population variance, 202
Positively correlated, 36
Poskanzer, D., 329
Posterior density function, 273, 276
Power function, 298
Prediction interval, future response in regression,

373–375, 410
Prior distribution, 272, 275–277
Probability

axioms, 59–61
conditional, 67–70
frequency interpretation, 55
subjective interpretation, 55

Probability density function
joint probability density function, 99–100
random variable, 93–95
sample means, 203

Probability mass function
binomial random variable, 142
joint probability mass function, 96
marginal probability mass function, 98
random variable, 92

Probit model, 412
Pseudo random number, 251
p-value, 296, 303–304, 309, 311

Q
Quadratic regression equation, 393
Quality control, see Control charts
Quartiles, 25–27

R
Randomness, runs test, 533–536
Random number, 163
Random sample, 217
Random variable

Bernoulli random variable, 141
binomial random variable, 141–148
chi-square distribution, 185–187
conditional distributions, 105–107
continuous random variable, 91, 93
covariance

definition, 121–122
properties, 122–123
sums of random variables, 125–126

definition, 89–90
discrete random variable, 91–92
distribution function, 91–93
entropy, 109–111
expectation, 107–118
exponential random variables, 175–181
F-distribution, 191–192
gamma distribution, 182–185
hypergeometric random variable, 156–160
independent random variables, 101–105
indicator random variable, 90–91
jointly distributed random variables, 95–101
logistics distribution, 192–193
moment generating functions, 126–127
normal random variables, 168–175
Poisson random variable, 148–156
probability density function, 93–95
probability mass function, 92
sums of random variables, expected value,

115–118
t-distribution, 189–191
uniform random variable, 160–168
variance

definition, 118–120
standard deviation, 121, 126
sums of random variables, 123–125
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Range of data, 27
Rank sum test

classical approximation, 529–531
null hypothesis, 526
simulation, 531–533
T statistic, 525–529

Rayleigh density function, 583
Regression coefficients

definition, 352
statistical inferences concerning regression

parameters

a, 370
b, 362–370
mean response, 371–373
prediction intervals of future response,

373–375
Regression fallacy, 370
Regression to the mean, 366–370
Relative frequency, 10, 12, 15
Residuals in regression, 358

model assessment, 378–380
standardized residuals, 379
sum of squares

chi-square distribution, 358–359
computational identity, 360–362
multiple linear regression, 397, 402–403

Robust test, 305
Row sum of squares, 460–461
Runs test, 533–536

S
Sample, 3, 201–202
Sample correlation coefficient

coefficient of determination relationship, 378
definition, 36
positive versus negative correlations, 36
properties, 37–40

Sample mean
analysis of variance for multiple comparisons

of sample means, 450–452
approximate distribution, 210–212
definition, 17, 19, 202–203
distribution from a normal population, 215

joint distribution with sample variance,
215–217

probability density function, 203
Sample median, 20–21
Sample mode, 21
Sample percentile

definition, 25
quartiles, 25–27

Sample space
definition, 56
spaces having equally likely outcomes, 61–67

Sample standard deviation, 24, 213
Sample variance

algebraic identity for computation, 23–24
definition, 22–23, 213–214
joint distribution with sample mean, 215–217

Scatter diagram, 34, 352
S-control charts, 554
Sequence of interarrival times, 181
Shockley equation, 162
Signed rank test, 519–525
Significance level, 293, 306, 309
Sign test, 515–519
Simple hypothesis, 292
Simple regression equation, 352
Skewed data set, 31
Standard deviation, see Sample standard

deviation; Variance
Standard normal distribution function, 170–171,

175, 612
Standardized residuals, 379
Statistic, 202
Statistical hypothesis test

Bernoulli populations, 323–330
composite hypothesis, 292
definition, 291
equality of normal variances, 321–323
equality of two normal means

known variances, 312–314
paired t-test, 319–320
unknown and unequal variances, 318
unknown variances, 314–318

level of significance, 293
normal population mean with known

variance, 293–305
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Statistical hypothesis test (continued )
null hypothesis, 292
one-sided tests, 300–305
Poisson distribution mean, 330–333
power function, 298
p-value, 296, 303–304
regression parameter b, 363–365
robustness, 305
simple hypothesis, 292
t-test, 305–311

Statistics
definition, 1, 6
descriptive, 1–2, 9
historical perspective, 3–7
inferential, 2–3
summarizing, 17

Stem and leaf plot, 16–17
Subjective interpretation of probability, 55
Sum of squares identity, 447–450
Survival rate, 239–240

T
Total time-on test statistic, 586
t-random variable

distribution, 189–191
probabilities for, 614

Tree diagram, 166
T statistic, 306–307, 310, 368, 445–446,

484–485, 489, 525
t-test, 305–306

level of significance, 306, 309

p-value, 307–310
two-sided tests, 307–311

Two-factor analysis of variance, see Analysis of
variance

Type I error, 292
Type II error, 292

U
Ulfelder, H., 329
Unbiased estimator, 267, 271, 357–358, 398
Uniform distribution, 166–168
Uniform random variable, 160–168
Unit normal distribution, 170
Upper control limit, 547–548, 552–553,

555–559, 562

V
Variance, see also Sample variance

definition, 118–120
standard deviation, 121, 126
sums of random variables, 123–125

Venn diagram, 58

W
Weak law of large numbers, 129–130
Weibull distribution, 600–602
Weighted average, 19
Weighted least squares, 384–390
Wilcoxon test, 525
Within samples sum of squares, 443–445,

452–453
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