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Preface

The study of the subgroup growth of infinite groups is an area of mathematical
research that has grown rapidly since its inception at the Groups St. Andrews
conference in 1985. It has become a rich theory requiring tools from and having
applications to many areas of group theory. Indeed, much of this progress is
chronicled by Lubotzky and Segal within their book [42].

However, one area within this study has grown explosively in the last few
years. This is the study of the zeta functions of groups with polynomial sub-
group growth, in particular for torsion-free finitely-generated nilpotent groups.
These zeta functions were introduced in [32], and other key papers in the de-
velopment of this subject include [10, 17], with [19, 23, 15] as well as [42]
presenting surveys of the area.

The purpose of this book is to bring into print significant and as yet
unpublished work from three areas of the theory of zeta functions of groups.

First, there are now numerous calculations of zeta functions of groups by
doctoral students of the first author which are yet to be made into printed form
outside their theses. These explicit calculations provide evidence in favour of
conjectures, or indeed can form inspiration and evidence for new conjectures.
We record these zeta functions in Chap. 2. In particular, we document the
functional equations frequently satisfied by the local factors. Explaining this
phenomenon is, according to the first author and Segal [23], “one of the most
intriguing open problems in the area”.

A significant discovery made by the second author was a group where
all but perhaps finitely many of the local zeta functions counting normal
subgroups do not possess such a functional equation. Prior to this discovery,
it was expected that all zeta functions of groups should satisfy a functional
equations. Prompted by this counterexample, the second author has outlined
a conjecture which offers a substantial demystification of this phenomenon.
This conjecture and its ramifications are discussed in Chap. 4.

Finally, it was announced in [16] that the zeta functions of algebraic groups
of types B;, C; and D; all possessed a natural boundary, but this work is
also yet to be made into print. In Chap.5 we present a theory of natural
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boundaries of two-variable polynomials. This is followed by Chap.6 where
the aforementioned result on the zeta functions of classical groups is proved,
and Chap. 7, where we consider the natural boundaries of the zeta functions
attached to nilpotent groups listed in Chap. 2.

The first author thanks Zeev Rudnick who first informed him of Con-
jecture 1.11, Roger Heath-Brown who started the ball rolling and Fritz
Grunewald for discussions which helped bring the ball to a stop. The first
author also thanks the Max-Planck Institute in Bonn for hospitality during
the preparation of this work and the Royal Society for support in the form of
a University Research Fellowship. The second author thanks the EPSRC for
a Research Studentship and a Postdoctoral Research Fellowship, and the first
author for supervision during his doctoral studies.

Oxford, Marcus du Sautoy
January 2007 Luke Woodward
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1

Introduction

1.1 A Brief History of Zeta Functions

Zeta functions are analytic functions with remarkable properties. They have
played a crucial role in the proof of many significant theorems in mathematics:
Dirichlet’s theorem on primes in arithmetic progressions, the Prime Number
Theorem, and the proofs of the Weil conjectures and the Taniyama—Shimura
conjecture to name just a few.

Many different types of zeta function have been defined. We summarise
below some of the more significant ones.

1.1.1 Euler, Riemann

In the eighteenth century a number of mathematicians were interested in
determining the precise value of the infinite series
1+1+1+1+ +1+ (1.1)
4 9 16 n? ’ '
the sum of the squares of the harmonic series. Daniel Bernoulli suggested 8/5
as an estimate for its value, but it was Leonhard Euler who first gave the
precise value of this sum. To do this, Euler defined the zeta function

((s) =) n*

for s € R, s > 1. The infinite sum (1.1) is then the zeta function evaluated at
s = 2. However Euler was able to do more than just give the value of ((2).
He gave a formula for the zeta function at every even positive integer:

22m,—1ﬂ.2m ‘B2m |
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As an acknowledgement of the support the Bernoulli family had given him,

he was able to identify the rational constants Bs,, as the Bernoulli numbers

discovered by Daniel’s uncle Jacob. Since By = 1/12, it follows that ((2) =

72 /6. To this day, nobody has been able to find a comparable expression for

the zeta function at odd integers. It is not even known if {(3) is transcendental.
Euler also discovered the Euler product identity. If one sets

Gl =Y =
n=0

p=s’
then

C(s) =[] ¢(s)

where the product is over all primes p. This identity is fundamental to the
connection between the zeta function and the primes. As well as encapsulating
the Fundamental Theorem of Arithmetic, it also offers a simple analytic proof
of a classical result on primes: the fact that the harmonic series 14+1/2+-- -+
1/n+ .- diverges means that there must be infinitely many primes.

The zeta function converges for s > 1 but diverges at s = 1. Later,
Bernhard Riemann, inspired by Cauchy’s work on functions of a complex
variable, considered the zeta function as a function on C. By doing so, he
could analytically continue the zeta function around the pole at s = 1, and
obtain a function meromorphic on the whole complex plane. The pole at
s =1 is simple and is the only singularity of the zeta function. Furthermore,
Riemann showed that this zeta function satisfies a functional equation. If one
sets £(s) = I'(s/2)m—%/%((s), where I'(s) is the gamma function, then

Es) =€ —s). (1.2)

This analytically-continued function is now known as the Riemann zeta func-
tion in honour of Riemann’s achievements with it.

Since the zeta function is nonzero for R(s) > 1, the only zeros of the
Riemann zeta function with £(s) < 0 are the trivial zeros at negative even
integers. Hence the only other zeros are those within the critical strip, 0 <
R(s) < 1. Riemann famously hypothesised that all the zeros lie on the critical
line R(s) = % Hardy and Littlewood [33] have since proved the existence of
infinitely many zeros on the critical line and Conrey [3] has proved that more
than 40% of the zeros lie on the line. At the time of writing, the most recent
computer calculation [27] seems to have confirmed that the first ten trillion
(1013) Riemann zeros are on the line. Despite all this evidence, it is still not
known whether a zero lies off the line.

Such is the importance of this Hypothesis that there is a considerable
body of mathematical work which depends on the truth of this Hypothesis.
Its proof would simultaneously prove numerous other theorems for which its
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truth has had to be assumed. Furthermore, its status as one of the Clay
Mathematics Institute Millennium Prize Problems would also earn its author
a million-dollar prize.

Hadamard and de la Vallée Poussin were also able to utilise the power
of the Riemann zeta function. By showing that the Riemann zeta function is
nonzero on R(s) = 1, they independently proved the Prime Number Theorem,
that

m(n)logn

lim =1
n—o0 n

)

where 7(n) is the number of primes no larger than n.

1.1.2 Dirichlet

In the meantime, Dirichlet was taking the concept of the zeta function in a
new direction. His major innovation was to attach a coefficient a,, to each
term n~°. Recall that the Riemann zeta function is defined for R(s) > 1 by

((s)=> n*.

A Dirichlet character with period m is a function x : Nyg — C that has the
following properties:

e x is totally multiplicative, i.e. x(1) = 1 and x(n1)x(n2) = x(ninsg) for all
ni,ne € Nyg.

e x(m+mn)=x(n) for all n € Ny.

e x(n)=0if ged(n,m) > 1.

The Dirichlet L-function of x is defined by
(oo}
L(s,x) =Y x(n)n™*.
n=1

Using these L-functions, Dirichlet proved that if ged(r, N) = 1, the arithmetic
progression 7, v + N, r + 2N, ... contains infinitely many primes. Further-
more, his proof yields the additional result that the primes are in some sense
evenly distributed amongst the congruence classes of integers coprime to V.
In honour of this achievement, any function of the form f(s) = >, a,n~*
is called a Dirichlet series.

If m = 1 then x is the trivial character, hence L(s, x) = ((s), the Riemann
zeta function once again, which we know can be meromorphically continued
to C. If m > 1, L(s, x) can be analytically continued to an entire function on
C. Indeed, the fact that L(s,x) is nonzero at s = 1 for nontrivial characters
X plays a key part in Dirichlet’s proof. A functional equation of L(s, x) which
takes a similar shape to (1.2) can also be given, however its statement is
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less succinct than that satisfied by the Riemann zeta function. We refer the
interested reader to the section on Dirichlet L-functions in [37].

The multiplicativity of the characters y leads easily to an Euler product
for the Dirichlet L-function,

L(s,x) = Hl—;

1= X

Indeed, it is easy to see that any Dirichlet series where the sequence (a,,) grows
at most polynomially in n and is totally multiplicative (i.e. @@, = amy for
all m,n € N) satisfies such an Euler product.

1.1.3 Dedekind

The zeta functions described above have had predominantly number-theoretic
applications. It was Dedekind who was perhaps the first to use zeta functions
for an algebraic purpose. For K a finite extension of the rational numbers Q,
the Dedekind zeta function of the field K is defined by

CK(S) = Z |19K : Cl|_s s

where |9k : a| is the index of the ideal a in the ring of integers ¥k and the
sum is over all nonzero ideals a in Y. Again, this zeta function extends to a
meromorphic function on C, with a simple pole at s = 1.

Perhaps one of the most remarkable properties of the Dedekind zeta func-
tion is the class number formula, which encodes the class number of the field
in the residue of the pole of (x(s) at s = 1. If A(K) is the discriminant of the
field K, Ry the regulator of K, u the order of the group of roots of unity within
the ring of integers ¥k, r1 (resp. r2) is the number of real (resp. the number
of pairs of complex conjugate) embeddings of K and hx the class-number of
K, then

Ress=1(Ck (s)) = W .

As with the Riemann zeta function and Dirichlet L-functions, the Dedekind
zeta function satisfies a functional equation. Let n = |K : Q|, the degree of
the field extension, and put

K(s) = <|A(K)> : (f)” I'(s)"Ck(s) -

[1]

2r2rn/2 2

Then ZEx(s) = Zx (1 — s).
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1.1.4 Artin, Weil

Dedekind’s zeta function considers finite extensions of the rational numbers
Q. E. Artin considered zeta functions connected to finite extensions of global
fields of characteristic p. One particular example he considered was the field
K = F,(z)(Va? —z), i.e. the field of rational functions with coefficients in
F,(z) extended by adjoining vz? — z. Let R be the integral closure of F,[x]
in K. Artin considered the zeta function

Cr(s) = Z |R:a]™%.

adR

If one sets y = Va3 — z, then quite clearly we have an elliptic curve y? =
2% — x. Artin found that the zeta function (z(s) was encoding the number of
points on this elliptic curve. In particular,

oo

Cnls) = (1= p~*) exp (Z W) ,

m=1

where
Npm = |{(a,b) € Fo : b =0’ —a}[+1.

The extra term is necessary to count the point at infinity in projective space.
Furthermore, Artin could show, for this elliptic curve and about 40 others,
that

2 —p )1 —p )
for a certain pair of complex conjugate numbers 7, and 7, which depend on
the elliptic curve. Hasse later extended this result to all elliptic curves, and
Weil to all smooth projective curves of arbitrary genus. Indeed, this property
that the zeros of the zeta function satisfy |r| = p'/? is known as the analogue
of the Riemann Hypothesis for the zeta function.

Weil was inspired by his work to consider the zeta function of an arbitrary
smooth projective variety X defined over a finite field F,. This is defined
analogously to Artin’s zeta function, but omitting the factor (1 —p~%), by

oo

Cx(s) = exp (Z W) ,

m=1

where Ngm is the number of points on X over the field Fym. In particular,
(x(s) was conjectured to always be a rational function in ¢—%, and to satisfy
the functional equation (x(n — s) = 4q(2"=9C(x(s), for some constant C
which can be given explicitly in terms of geometrical invariants of X. Weil was
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also able to formulate a strategy for proving these conjectures. He observed
that if one has a suitable cohomology theory similar to that for varieties
defined over C, the conjectures follow from various standard properties of
this cohomology theory. This observation motivated the development of vari-
ous cohomology theories and eventually led to the development of the [-adic
cohomology by Grothendieck and M. Artin, successfully employed by Deligne
to confirm these conjectures.

1.1.5 Birch, Swinnerton-Dyer

If one has a polynomial equation over Z, one can reduce it modulo p to give a
variety defined over a finite field. So, given the zeta functions for the reductions
mod p, what do we get when we multiply them all together? Does this ‘global’
zeta function tell us anything about the solutions of the original polynomial
over Q or Z7?

In the case where X is an elliptic curve defined over Q, such a global zeta
function has been defined. If F is an elliptic curve over Q, the L-function of
E is defined by!

1
1— app—s _|_p1—23 ’

L(Es) =[]
pr2A

where A is the discriminant of E, IV, is the number of points on £ mod p
and a, = p — N,. This Dirichlet series converges for R(s) > 2 and thanks
to the complete proof of the Taniyama-Shimura conjecture [1], it is known
that L(E, s) can be analytically continued to an entire function. A functional
equation relating L(E, s) and L(E, 2—s) also follows from Taniyama—Shimura.
It was conjectured by Birch and Swinnerton-Dyer that E has infinitely many
rational points if and only if L(E,s) is zero at s = 1, and furthermore the
torsion-free rank of the Mordell-Weil group of points on E over Q is the order
of the zero at s = 1. Coates and Wiles [2] have proved that if L(E,1) # 0
then E has only finitely many rational points, and it has since been shown
that the conjecture is true for » < 1 [5]. However the rest of the conjecture
remains open. Like the Riemann Hypothesis, the Clay Foundation offers a
million-dollar prize for the proof of this conjecture.

1.2 Zeta Functions of Groups

By no means is the above a complete list of zeta functions. We have omitted
more than we have included, for we simply do not have the space to list them
all. The final chapter of the Encyclopedic Dictionary of Mathematics [37] is

! There are factors associated to the primes p | 24 but for simplicity we ignore
them.
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a good place to start for those keen to know more about the panoply of zeta
functions.

Furthermore, the Encyclopedic Dictionary also lists four basic properties
a zeta function should ideally satisfy:

(ZF1) Tt should be meromorphic on the whole complex plane
(ZF2) It should have a Dirichlet series expansion

(ZF3) There should be some natural Euler product expansion
(ZF4) Tt should satisfy a functional equation

All the zeta functions we listed above satisfy all four of these properties. It
may also be of interest to determine the residue of the zeta function at a pole,
whenever such a singularity exists.

In this book, we consider these criteria for a relative newcomer to the
family of zeta functions, zeta functions of groups and rings. We cannot expect
that these zeta functions will reach the same lofty heights as the zeta functions
presented above, but we do hope the reader agrees with our viewpoint that
there is interesting mathematics concerning zeta functions of groups.

1.2.1 Zeta Functions of Algebraic Groups

The first example of a zeta function of a group is associated to a Q-algebraic
group & with a choice of some Q-rational representation p : & — GL,,. The
zeta function Zg ,(s) of & has been defined as the Euler product over all
primes p of the following local zeta functions defined by p-adic integrals with
respect to the normalised Haar measure pug on &(Zy):

Zo.al) = [ 1det(olo))]; diols)

p

where & = p~ (p(&(Q,)) "M, (Z))) and | - |, denotes the p-adic norm.

The definition of the zeta function of an algebraic group goes back to the
work of Hey [35] who recognised that the zeta function attached to the alge-
braic group GL,, could be used to encode the subalgebra structure of central
simple algebras. In the 1960s, Tamagawa established in [56] the meromorphic
continuation of the zeta functions of Hey attached to GL,. Subsequently,
Satake [50] and Macdonald [43] considered zeta functions of other reductive
groups. But it is the work of Igusa [36] in the 1980s that established explicit
expressions for the local factors of Chevalley groups which allow for some
analysis of the analytic behaviour of the global zeta functions. In particular
his work shows that the zeta function is built from Riemann zeta functions
and functions of the form

Z(s)= 1] W), (1.3)

p prime
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where W(X,Y) € Z[X,Y], with W(X,0) = 1. Further development of Igusa’s
work was made by the first author and Lubotzky [21] and [9] to more general
algebraic groups. The motivation for our work came from the observation in
[32] that zeta functions of algebraic groups were in fact counting subgroups
in nilpotent groups, thus extending Hey’s original motivation for the investi-
gation of these functions.

In [32] Grunewald, Segal and Smith proposed a definition of a ‘zeta func-
tion of a group G’

G(s)=>_|G:H|™*.

H<G

The function may be viewed as a non-commutative version of the Dedekind
zeta function of a number field where we sum over subgroups instead of ideals.
The superscript < in the zeta function emphasises that we are counting all
subgroups within G; we shall define variants of this zeta function later. If the
group is finitely generated (either as an abstract group or profinite group)
then the following invariant is finite for every natural number n:
aS(GQ)=|{H:H<Gand|G:H|=n}.

We can then write the zeta function as a Dirichlet series satisfying condi-
tion (ZF2):

Gls) = az(Gn*.

These zeta functions were first introduced in the 1980s by Grunewald,
Segal and Smith in [32] and studied in the particular case that G is a torsion-
free finitely generated nilpotent group (a T-group for short). The nilpotency
of G lends itself to a natural Euler product, thus satisfying condition (ZF3):

G =TI G,

p prime

where (gp(s) = Soc o asn (G)p~ .

One can also consider variants of these zeta functions in which one only
counts subgroups H with a particular property, for example normal subgroups,
whose associated zeta functions we denote by (g (s) and Cap(s). One type of
subgroup deserves special mention, namely those H whose profinite comple-
tions are isomorphic to the profinite completion G of G. When G is nilpotent
the associated zeta function counting these subgroups, denoted by (/(s), is
(up to finitely many local factors) the same as the first zeta function of the
algebraic group & of automorphisms of G (or its associated Lie algebra) with
an appropriate representation.
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1.2.2 Zeta Functions of Rings

As well as introducing zeta functions of groups, Grunewald, Segal and Smith
defined the zeta function of a not-necessarily-associative ring L additively
isomorphic to Z? for some d, by

(Gle)= D IL:H[™*.

H<L

Zeta functions only counting ideals in L, and the corresponding local zeta
functions, can be defined in a similar way, with the obvious notation. We can
also define analogues of the pro-isomorphic zeta functions. (/(s) counts all
subrings H < L such that H QZ =L ®Z, where Z is the profinite completion
of Z, with the corresponding local zeta functions ¢ ﬁp(s) counting subrings H
of p-power index such that H ® Z, =2 L ® Zj,.

Since these zeta functions are defined in an analogous way to those count-
ing in groups, it is clear that these zeta functions have Dirichlet series expan-
sions. Moreover, these zeta functions satisfy the Euler product

Gl = 11 G,

p prime

for all x € {<, <, A}, regardless of whether L is nilpotent (or even soluble).

The motivating reason for introducing zeta functions of rings is to provide
an alternative way of calculating zeta functions of groups. In [51], the Mal’cev
correspondence between a -group G and a nilpotent Lie ring L is detailed. In
particular it is noted that L is additively isomorphic to Z", where h = h(G) is
the Hirsch length of G, i.e. the number of infinite factors in any composition
series of G. In [32] this correspondence was extended to show that

CGp(8) = (1 p(s) (1.4)

for x € {<,<,A} and for all but finitely many primes p depending only on
the Hirsch length of G. For every calculation of a zeta function ¢} (s) for L a
nilpotent Lie ring, we obtain a zeta function (up to finitely many local factors)
of the zeta function of the corresponding %-group. The linearity of the rings
makes it considerably less difficult to calculate ¢} ,(s) than (7 ,(s), although
it cannot be said that these calculations are in general easy.

In the case that G is nilpotent of class 2, then we can short-circuit the
Mal’cev correspondence. We define a Lie ring on G by setting L = G/Z(G) @
Z(@G), where Z(G) is the centre of G, with the Lie bracket on L induced by the
commutator on G. It is not difficult to see in this case that (¢ ,(s) = (7 ,(s)
for all primes p.

Since there is no requirement that the rings are nilpotent, we may consider
non-nilpotent Lie rings. Indeed, the first author and Taylor calculated in [24]
the zeta function of the Lie ring sl5(Z). Furthermore, Chap. 3 is devoted to a
family of soluble Lie rings.
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1.2.3 Local Functional Equations

Many examples of local zeta functions of T-groups and Lie rings satisfy a local
functional equation of the form

CGp(9)] = (=1)"p" "¢, (9) (1.5)

for x € {<, <, A}, a,b,r € N, and for at least all but finitely many primes p.

For « = A it is known that the local zeta functions satisfy a functional
equation of the form (1.5). This was proved by the first author and Lubotzky
in [21]. This functional equation has its origins in symmetries for the associated
building of the algebraic group [21].

In [59], Voll proves that the zeta functions counting all subgroups also
satisfy functional equations. Voll also proves that the local ideal zeta functions
of T-groups of nilpotency class 2 also satisfy functional equations. However,
this result is best possible, as the following result demonstrates.

p—p~1t

Theorem 1.1. Let the Lie ring L3 2) be given by the presentation
(z,wi,we,x1, 22,41 ¢ [2,w1] = 21, [2,wa] = 2, [2,21] = Y1)

where, up to antisymmetry, all unlisted Lie brackets of basis elements are
zero. For all primes p, the local zeta function CLQ(?, » p(s) satisfies no functional

equation of the form (1.5).

Via the Mal’cev correspondence, we obtain a T-group G329 of nilpotency
class 3. For all but finitely many primes p, Cé(glz)m(s) satisfies no functional
equation. The zeta function Cf(g 2)7p(5) is given explicitly on p. 49.

Chapter 4 is concerned with a reciprocity conjecture for p-adic integrals,
‘Conjecture 4.5°. This conjecture can be used to predict when local zeta func-
tions should satisfy functional equations, and the shape of the functional equa-
tion satisfied. It agrees with the results of Voll mentioned above. However, we
have been unable to formulate this conjecture rigorously. There are techni-
cal preconditions which need to be satisfied, but we do not know what these
preconditions are. However, we do believe that these conditions are always
satisfied by the p-adic integrals representing local zeta functions of nilpotent
Lie rings.

Assuming this conjecture, we list below the most significant consequences
of it:

Theorem 1.2. Let L be a Lie ring additively isomorphic to Z for some d €
N. Assume Conjecture 4.5.

1. Under no further assumptions on the Lie ring L,

GEpl)| = DTG ()

for all but finitely many primes p.
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2. Suppose L is nilpotent of class c. Let o;(L) denote the ith term of the
upper-central series of L, and put

N = rank(L/oi(L)) .

i=0

Then either
(i) For all but finitely many primes p,

d —
G| = (1B NG (s)
or
(ii) For all but finitely many primes p, Qﬁp(s) satisfies no such functional
equation.

In particular, alternative (ii) only occurs if L has nilpotency class > 3.

Equation (1.4) yields corresponding results for the local zeta functions of
T-groups.

We also define a subset of nilpotent Lie rings within which we can de-
termine whether alternative (i) or (ii) holds. This subset contains all class-2
nilpotent Lie rings, L3 9) mentioned above, and many of the examples pre-
sented in Chap. 2. It also contains the free nilpotent Lie rings:

Theorem 1.3. For c,d > 2, let Fi. q be the free class-c-nilpotent Lie ring on
d generators. Assume Conjecture 4.5. Then Cﬁcdp(s) satisfies a functional

equation of the form (1.5) for all but finitely many primes p.

In Chap.2 we document experimental evidence concerning the existence
of these local functional equations. All this evidence counts in favour of
Conjecture 4.5.

We also present a partial proof of a significant special case of this conjec-
ture. This proof is not intended to be rigorous, merely to give some reason
why the conjecture may be true.

1.2.4 Uniformity

Many of the examples of zeta functions of nilpotent groups calculated in
[32, 28, 57, 64] can be written in terms of Riemann zeta functions and zeta
functions of type (1.3). The remaining examples had local factors that de-
pended on some finite division of primes. Indeed speculation in [32] hinted
that the following could plausibly have a positive answer:

Question 1.4. Let G be a finitely generated nilpotent group and x € {<, <}.
Do there exist finitely many rational functions W1 (X,Y),... W, (X,Y) €
Q(X,Y) such that for each prime p there is an 4 for which

Cop(s) =Wilp,p™*) ?
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Such zeta functions are called finitely uniform. If additionally r = 1, we say
the zeta function is uniform.

In [13] and [14] the first author has shown that this question in fact has a
negative answer as the following Proposition indicates:

Proposition 1.5. For each elliptic curve E = y?> — 2% + x, define a class-2-
nilpotent group G by the following presentation, where all unlisted commu-
tators are trivial:

[$1,$4] = Ys, [$1,$5] = Y1, [551,%6] = Y2,
GE': T1y---526,Y1,Y2,Y3 - [1‘2,1'4] 2917[552’175] = Y3,
[3337334] = Y2, [3?37936] =l

Then there exist two non-zero rational functions P1(X,Y) and P(X,Y) €
Q(X,Y) such that for almost all primes p,

(8, .(8) = Pilp,p™*) + |E(F) | Pa(p,p~*) (1.6)
where |E(F,)| is the number of points on E mod p.

The non-uniform behaviour therefore arises from the term |E(F,)|. To see
where the elliptic curve is hiding in the presentation, take the determinant of
the matrix with entries [z;, x;43] and you'll get the projectivised version of E.

1.2.5 Analytic Properties

We have so far considered zeta functions of groups and rings purely as formal
beasts. So what of the convergence of this series as a function in the complex
variable s? Such a Dirichlet series converges on some right half of the complex
plane if and only if the invariant a, (G) grows polynomially in n. We now
have a characterisation of groups of so called polynomial subgroup growth or
PSG groups. In the category of abstract finitely generated groups, these are
the virtually soluble groups of finite rank [41]. For pro-p groups, they are the
p-adic analytic groups [40]. For profinite groups the description is slightly more
complicated but the groups are essentially extensions of pro-soluble groups of
finite rank by products of simple groups of Lie type with bounds on the rank
and field degrees of the Lie groups involved [52]. These are the classes of
groups for which our function defines an analytic function on the right half
complex plane {s € C: R(s) > ag } where ag is the abscissa of convergence:

s — T E@(C) + -+ 0, (G))
n—oo logn

It is clear that the zeta function of a ring L additively isomorphic to Z¢ has
polynomial subring growth. This follows from the fact that subrings of L are
subgroups of Z?. We shall use the notation ozé and ag for the abscissae of
convergence of Cé (s) and ¢Z(s), and similarly for Lie rings.
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In Chap. 5, we consider the situations where we can analytically continue
these analytic functions beyond their radius of convergence to meromorphic
functions on the whole complex plane, so satisfying (ZF1). In the category of
pro-p groups or for the local zeta functions (¢ ,(s) this is possible because in
general these are rational functions in p~*°:

Proposition 1.6 ([10]). Let G be a finitely generated PSG pro-p group (i.e.
a p-adic analytic group). Then (q(s) is rational in p~* and can be continued
to a meromorphic function on the whole complex plane.

Proposition 1.7 ([10]). Let G be a finitely generated PSG group (i.e. a vir-
tually soluble group of finite rank). Then, for all primes p, (a.p(s) is a rational
function in p~*° and can be continued to a meromorphic function on the whole
complex plane.

Combining these results for the local factors of zeta functions of algebraic
groups and nilpotent groups, the local zeta functions score reasonably well
against the conditions (ZF1)—(ZF4) for a zeta function.

Let us now return to the global zeta functions which are Euler products of
these rational functions. Using the explicit expression (1.7), the first author
and Grunewald [17] show that zeta functions of nilpotent groups always admit
some analytic continuation beyond the region of convergence. The key to their
analysis is the proof of an explicit expression for local factors which depends
on counting points mod p on a system of varieties, and the use of Artin L-
functions. This work also establishes the useful result that the abscissa of
convergence of these zeta functions is always a rational number.

This analytic continuation allows us to apply the following Tauberian
Theorem (see for example the Corollary on p. 121 of [47]) to zeta func-
tions of groups and rings. This allows us to deduce the precise rate of sub-
group/subring growth:

Theorem 1.8. Let the Dirichlet series f(s) =Y . | ayn™* with non-negative
coefficients be convergent for R(s) > a > 0. Assume in its domain of conver-
gence, f(s) = g(s)(s — )™ + h(s) holds, where g(s), h(s) are holomorphic
functions in the closed half-plane R(s) > a, g(a) # 0 and w > 0. Then for x
tending to infinity, we have

> an = (agr((()i) + 0(1)> z%(log z)*~L .

n<z

In [14] the explicit expression of [17] together with the formalism of motivic
zeta functions developed in [20] is used to establish a hierarchy in the class of
nilpotent groups according to the complexity of the varieties that arise in the
explicit expression. The analysis of the following chapter can then be seen to
apply to nilpotent groups at the bottom of this hierarchy where the varieties
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involved are nothing more complicated that Q-rational varieties and hence
the zeta functions are of type (1.3). Specifically we see how the general theory
developed here applies to the early examples of [32] and [28] that led to the
speculation of Grunewald, Segal and Smith that all nilpotent groups were at
the bottom of such a hierarchy.

1.3 p-Adic Integrals

p-adic integrals are an immensely powerful tool used in the study of zeta func-
tions of groups and Lie rings. Indeed, we have already seen them used to define
the zeta function of an algebraic group. There are many other applications
that these important tools have.

We shall introduce these integrals below. Before we do this, we must intro-
duce a notion of ‘size’ of subsets of Z,,. Let p1 be the additive Haar measure on
subsets Z, normalised so that u(Z,) = 1. The key properties of this measure
are that:

1. pis additive, in that if S and Ss are disjoint measurable sets, then p(S; U
S2) = p(S51) + p(S2).
2. pis translation invariant, in that if S is measurable and a € Z,,, u(a+5) =

1(S).

As a consequence of these two properties, u(p™Z,) = p~™ for any m € N.
There are p™ pairwise disjoint additive cosets of p™Z,, all of which have
the same measure, and the sum of the measures of all p™ cosets must be 1.
Furthermore, all open subsets of Z, are measurable, since the additive cosets
of the form a + pZ, form a base of neighbourhoods for the topology of Z,.
Finally, by abuse of notation, we can extend 1 to a Haar measure on Z; for
n e N>0.

With a Haar measure in hand, we can now define the p-adic integral of
a constant function. Let x = (z1,...,z,) be n commuting indeterminates. If
f(x) takes the constant value ¢ on the measurable set S C Z, then

/ |f(x)[5 dp = pu(S)]cls -
S

In other words, we simply multiply the constant value by the measure of the
set on which the function is constant. For a nonconstant function f(x), we
split the domain of integration into pieces on which |f(x)|, is constant, and
then sum the measure of each piece. In other words, if v(x) denotes the p-adic
valuation of z and Vi (k) = {x € Zy : v(f(x)) = k }, then

IR ST
Zy k=0

p



1.3 p-Adic Integrals 15

These integrals can easily be generalised to include a factor |g(x)|, in-
dependent of s in the integrand, or to integrate over a (measurable) subset
of Zy.

One particular type of p-adic integrals, cone integrals, are especially im-
portant. Let f;(x), g;(x) be polynomials in x for 0 <4 < [. The cone integral
with cone data D = {fy(x), go(X), ..., fi(x), gi(x)} is defined to be

Zn(s,p) = L oy GO lan)l

where
U(D) ={x€Z, :v(fi(x)) <v(gi(x)) fori=1,...,1}.

The first application of p-adic integrals came with the proof that the local
zeta functions (7 ,(s) and (7 (s) for x € {<, < A} are rational functions in
p~* for all primes p. To prove this, Grunewald, Segal and Smith then showed
that these local zeta functions can be expressed as ‘definable’ p-adic integrals.
A deep theorem due to Denef [6] yields the required rationality.

Definable integrals were also employed by the first author in [11] to prove
two significant results on enumerating p-groups:

e Firstly, let f(n,p,c,d) be the number of finite groups of order p™ of nilpo-
tency class ¢ generated by d elements. Then f(n,p,c,d) satisfies a linear
recurrence relation with constant coefficients as n varies and p, ¢ and d
remain fixed.

e Secondly, the qualitative part of Newman and O’Brien’s ‘Conjecture P’ [48]
is confirmed.

Whilst the rationality of definable p-adic integrals is undoubtedly a sig-
nificant theoretical advance, it is sadly of little help if one actually wishes to
compute such an integral explicitly. This is due to the model-theoretic ‘black-
box’ at the heart of the proof. For a set of cone integral data D, the first author
and Grunewald [17] considered the resolution of singularities attached to the
polynomial F' = HE:O fi(x)gi(x). Using this approach they give an explicit
expression for a cone integral Zp(s,p) in terms of the data attached to the
resolution. The resolution of F' in some sense ‘breaks it up’ into irreducible
smooth projective varieties E; as ¢ runs through some finite indexing set T
It is then proved that

ZD(S7p) = Z Cp,IPI(pvp_s) ’ (17)
cT

where ¢ ; is the number of points mod p on all Ej; for ¢« € I and on no other
E;, and Pr(p,p~*?) are rational functions. It is then proved [17, Corollary 5.6]
that if L is a ring additively isomorphic to Z? for d € N, and * € {<1, <}, then

CLp(s) =1 —p ) Zp-(s —d,p)
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for suitable cone data D*; indeed we shall explicitly construct the polynomials
comprising the cone data in Proposition 2.1.

The explicit expression (1.7) yields immediately another proof of the ra-
tionality of the local factors (; (s). We mentioned above that the global zeta
function (}(s) of every Lie ring L additively isomorphic to Z¢ has rational
abscissa of convergence and always admits some analytic continuation beyond
this abscissa, their proofs employ a variation of (1.7).

Expression (1.7) is also of interest when studying the uniformity the local
zeta functions of a ring L. Since the factors Pr(p,p~*) are uniform in p, the
variation of C}lp(s) as p varies is controlled by the variation of the coefficients
cp,1 mod p. This of course raises the question of what varieties can be encoded
by a nilpotent group. Some progress in answering this question has been made
by Griffin [29].

The explicit expression is also of practical use in evaluating p-adic integrals.
Guided by the resolution of singularities of the appropriate polynomial, the
first author and Taylor compute in [24] the zeta function counting all subrings
of the Lie ring s(3(Z). Numerous further such calculations have been performed
by Taylor [57] and the second author [64] in their theses.

A further application of cone integrals is the conjecture due to the second
author alluded to above and presented in Chap. 4. This conjecture is essen-
tially a reciprocity conjecture involving cone integrals. It may be viewed as an
attempt to generalise a theorem due to Denef and Meuser [8] on Igusa-type
zeta functions, i.e. those defined by p-adic cone integrals for which [ = 0 and

go(x) = 1.

1.4 Natural Boundaries of Euler Products

We mentioned above that local zeta functions of groups have meromorphic
continuation to C. However, the same is not true in general for the global zeta
functions. In Chap. 5, we turn to the general analytic character of functions
of the form

Z(s)=[[W@.p™) (1.8)

defined as Euler products of two-variable polynomials. This includes the zeta
functions of algebraic groups and many of the examples of zeta functions of
groups and rings listed in Chap. 2.

We begin Chap. 5 by considering a particular example which arises in the
zeta function of the algebraic group G = GSpg and a corresponding zeta
function of type Cé’p(s) for a nilpotent group. In particular we prove:

Proposition 1.9. Let

Z(s) = H ZGSDG,p(5)~

p prime
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Then Z(s) (1) converges for R(s) > 5; (2) has meromorphic continuation to
R(s) > 4; but (3) has a natural boundary at R(s) = 4 beyond which no further
meromorphic continuation is possible.

As far as we can establish, this is the first place to document the failure of the
global zeta function of an algebraic group to have meromorphic continuation
to the whole complex plane. The proof of the natural boundary depends on
showing that every point on the line (s) = 4 can be realised as a limit point
of zeros of the local factors W(p,p~*) which all crucially lie on the right of
R(s) = 4 (i.e. in the region of meromorphic continuation established in (2)
above).

Throughout the remainder of Chap. 5, we generalise these ideas to prove a
general result about the existence of natural boundaries for functions defined
via Euler products of two-variable polynomials. This can be seen as con-
tributing to a project begun by Estermann in the 1920s [25] and continued
by Kurokawa [38, 39]. Estermann proved the following (see [25]):

Proposition 1.10. Let h(X) = 1+ a1 X + -+ agX? = [[(1 — a; X) € Z[X].
Set L(s) = [, h(p~*) which converges for %(s) > 1. Then
1. L(s) can be meromorphically continued to R(s) > 0.
2.If o] =1 fori =1,...,d (in which case we say that h(X) is unitary)
then L(s) can be meromorphically continued to the whole complex plane.
Otherwise R(s) = 0 is a natural boundary.

In our case where we are dealing with polynomials in two variables, the
following has been conjectured:

Conjecture 1.11. Let

WX, Y) =14 (aio+anX + -+ ain, X")Y' € Z[X,Y] .

i=1
Set L(s) = [[, W(p,p~*). Then L(s) can be meromorphically continued to
the whole complex plane if and only if for ¢ = 1,...,n there exist unitary

polynomials ¢;(Z) and integers b;, ¢; such that
W(X,Y) = gi(X"Y ) g, (XY en) =t

One direction of the conjecture follows easily from Estermann’s Theorem.
We can view our result in Chap.5 as a contribution to the other half of this
conjecture. To explain our result we suppose firstly that any unitary factors
of W(X,Y) have been removed and that W(X,Y) # 1 (otherwise Z(s) is
meromorphic).

Let

’nk-l-l.

a—max{ 3 .k—l,...,r},
{

%:kzl,...,r}

[ = max
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and put

WX,Y) = Y a; X7Y"
i/i=B

This is one factor of something that we have called the ghost of W(X,Y)
(see [16] and [18]). We express W (X,Y) as a unique cyclotomic expansion

wxY)= J] @-xrymen (1.9)
(n,m)€eN?

with ¢, € Z. Using this cyclotomic expansion we can prove:

Theorem 1.12. Z(s) converges on {s € C: R(s) > a} and can be meromor-
phically continued to {s € C: R(s) > G }.

We conjecture that (s) = 8 will be the natural boundary for meromorphic
continuation of Z(s). We are able to prove the following:

Theorem 1.13. Suppose that W(X,Y) # 1 and has no unitary factors. Sup-
pose that either

1. ﬁ(X, Y') is not unitary; or

2. For each N there exists a prime p > N and zeros of W(p,Y') with |Y] <
PP, and there are finitely many pairs (n, m) with Cn,m > 0; or

3. For each N there exists a prime p > N and zeros of W(p,Y) with |Y] <
p?, and there are infinitely many pairs (n,m) with Cnm > 0 and the
Riemann Hypothesis holds.

Then R(s) = B is a natural boundary for Z(s).

In case 1 we show that we are guaranteed local zeros on the right of
R(s) = B. In cases 2 and 3 we must assume the existence of such zeros. As
we shall explain, this actually covers the majority of polynomials. In case 2
we can get away without the Riemann Hypothesis, but in case 3 we must have
some control over the zeros of the Riemann zeta function to be able to prove
that their zeros won’t kill the zeros of the local factors we will be using to
realise our natural boundary.

A useful observation (see Corollaries 5.8 and 5.9) is that whenever (3 is an
integer we can’t be in case 3.

In Sect. 5.3 we explain some subcases of case 3 where we can avoid the
Riemann Hypothesis by using current estimates for the number of zeros off
the critical line. In Sect. 5.4 we speculate on some strategies for dealing with
polynomials with all their local zeros to the left of R(s) = 3. One case in
which we are successful requires a strong assumption about the zeros of the
Riemann zeta function:
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Theorem 1.14. Suppose that W (X,Y) # 1 and has no unitary factors. Sup-
pose that there are an infinite number of pairs (n,m) with ¢y m # 0 and
(n+ %)/m > (. Under the assumption that Riemann zeros are rationally in-
dependent (i.e. if p=T1+0oi and p' = 7'+ 0’1 are zeros of {(s) theno/o’ ¢ Q)
then R(s) = B is a natural boundary for Z(s).

In Chap.5 we introduce two hypotheses which can easily be checked in
any individual case to determine whether the polynomial W(X,Y) satisfies
the conditions of Theorem 1.13.

In Chaps. 6 and 7 we return to the motivating examples of zeta functions of
algebraic groups and nilpotent groups. All these examples satisfy the hypoth-
esis of Theorem 1.13 that there exist local zeros to the right of the candidate
natural boundary.

Let & be one of the classical groups GOg;41, GSpy; or GO;‘l of type By, ()
or D;. Let W be the corresponding Weyl group and A(w) denote the length
of an element w € W, @ the root system with fundamental roots aq, ..., a;,
&7 the set of positive roots of @, and a; integers defined by

l
— a;
[T o=I[a

acedpt =1

In [36], Igusa proved that Zg(s) could be expressed in terms of Riemann zeta
functions and a function of type (1.8) where

W(X,Y)=Ps(X,YV)=| > X J[ xwy®
weW o Ew(P)

where b; are integers defined by expressing the dominant weight of the natural
representation in terms of the basis for the root system.

By analysing this explicit expressions of Igusa and the root systems in each
particular case we apply in Chap. 6 the work of Chap. 5 to prove the following
result which was first announced in [18]:

Theorem 1.15. Let & be one of the classical groups GOgi11, GSpy; or GO;‘l
of type By, Cy or Dy respectively. Then Zg(s) has abscissa of convergence a;+1
and has a natural boundary at R(s) = 3 where

1. ﬁ = 12 —1= a;—1 Zf@ - G021+1,
2.6=11+1)/2—-2=a;-2/24+ 1 if & = GSpy;, and
8.8=11-1)/2-2=a;_2/2 if & = GOJ,.

Here we are taking the natural representation in the definition of Zg(s).
The proof of the Theorem in the case of GSpy; and GO;I requires an applica-
tion of a natural factorisation of the polynomial Pg(X,Y") which we establish
in Appendix B to remove various unitary factors which initially interfere with
the analysis.
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In Chap.7 we consider the natural boundaries of the zeta functions of
nilpotent groups presented in Chap. 2.

We mentioned earlier the concept of the ghost zeta function attached to
W(X,Y). This partly grew out of the analysis of Chap.5. The philosophy of
this book is that natural boundaries occur because the local zeros of W (p, p~—%)
are shifted away from the candidate natural boundary but as p tends to in-
finity, these zeros tend to points on the boundary. The concept of the ghost
polynomial grew out of this observation. The ghost polynomial W (X,Y) is
defined so that its zeros are in some sense the limit of the zeros of W(p,p~*)
as p tends to infinity. In some philosophical sense W(X ,Y) is the polynomial
that W(X,Y) is trying to be. This removes the first obstruction then to mero-
morphic continuation. So the interesting question is: does the zeta function
defined by the ghost polynomial W (X,Y") have meromorphic continuation? If
it does we say the ghost is friendly. For more details we refer the reader to
[16] and [18] where the ghosts of the classical groups are proved to be friendly.

The ghost zeta functions attached to nilpotent groups are mostly friendly
too. However there are a number that are unfriendly, in that they too fail
to have meromorphic continuation to C. In Chap. 7, we mention whether the
ghosts of the zeta functions of nilpotent Lie rings calculated in Chap.2 are
friendly.
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Nilpotent Groups: Explicit Examples

In this chapter we list some of the (now numerous) calculations of zeta func-
tions of T-groups and Lie rings. The primary emphasis is on bringing into print
explicit calculations that have yet to be published. However, we aim this chap-
ter to be more than just a gallery of results. Hence we begin the chapter with
some details about how these zeta functions have been calculated.

2.1 Calculating Zeta Functions of Groups

Zeta functions of groups have been calculated using a number of different
methods. The first examples counted ideals in T-groups of class 2 and were
calculated by Grunewald, Segal and Smith in [32]. A key part of their work is
the formula [32, Lemma 6.1]

(5 ,(8) = Canp(s) D 1A B"*|G: X(B)|™*, (2.1)
B<A

where A = 75(G), G/A = 7% and X(B)/B = Z(G/B). Their calculations are
made by evaluating (2.1) for each group in turn. Although there are a few
general lemmas proved which help speed matters along, their methods are to
some extent tailored to each group individually. Nonetheless, their methods
suffice to calculate all but perhaps finitely many of the local factors Cé'yp(s)
for every T-group G of class 2 and Hirsch length at most 6.

In [60], Voll uses (2.1) and the Bruhat-Tits building of SL,,(Q,,) to compute
normal zeta functions of T-groups whose centres are free abelian of rank 2 or
3. In particular, Voll computes the normal zeta function of all T-groups whose
centre is of rank 2, and confirms the functional equation (1.5). This work is
based on the classification of such groups by Grunewald and Segal [31]. For
centres of rank 3, the geometry of the associated Pfaffian hypersurface comes
into play. Provided the singularities of this hypersurface are in some sense
not too severe, Voll gives a formula for the local normal zeta function of L
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depending on the number of points on the Pfaffian hypersurface. A highlight
of this work is explicit expressions for the rational functions P;(X,Y) and
P,(X,Y) in the local normal zeta function of the ‘elliptic curve example’
(1.6).

A more general approach is used by Voll in [61], where he considers the case
where the Pfaffian hypersurface has no lines. Indeed this occurs generically
if the abelianisation has rank greater than 4r — 10, where r is the dimension
of the centre. Provided this Pfaffian is smooth and absolutely irreducible, the
functional equation (1.5) holds. Voll also gives in [61] an explicit formula for
the normal zeta functions of the class-2 nilpotent groups known as ‘Grenham
groups’, using a combinatorial formula for the number of points on flag vari-
eties. This formula is also employed by Voll in [58], where he gives an explicit
formula for the local zeta functions counting all subgroups in the Grenham
groups.

One key assumption Voll makes in [61] is that the associated Pfaffian
hypersurface has no lines. A forthcoming paper by Paajanen [49] presents
the first step in overcoming this obstacle. She considers the normal zeta
function of a class-2 nilpotent group Gs which encodes the Segre surface
S :x1x4 — x2x3 = 0. In particular, she calculates that

(Gep(8) =Wolp,p™*) + (p+ 1)*Wi(p,p~*) + 2(p + 1) Wa(p, p~)

for explicit rational functions W;(p,p~*), i = 0,1,2. The coefficients (p + 1)?
and 2(p + 1) arise from the geometry of S reduced mod p: being isomorphic
to PY(F,) x P1(F,) it has (p + 1)? points and 2(p + 1) lines.

Voll has also used combinatorial methods to yield an explicit expression
for the local normal zeta functions of the class-2 free nilpotent groups [62].
One key ingredient is an explicit expression for a sum of certain Hall polyno-
mials. Whilst there seems to be no simple formula for the Hall polynomials
themselves, a polynomial expression for the sum has been known for some
time.

One approach common to the work of Voll and Paajanen is to decom-
pose the local normal zeta function as a sum of rational functions with coeffi-
cients corresponding to invariants of a suitable algebraic variety. They are then
able to deduce functional equations by virtue of the fact that each individual
rational function with its coefficient satisfies the same functional equation.
In particular,

(Eep(8)] =p 712G ()
with the three rational functions above satisfying
Wo(X 1LYy = XBY2Wy(X,Y),
WX~y = X2y 2w (X,Y),
Wo(X LY ™h = XYW, (X,Y) .

p—p~1

The ‘missing’ powers of X are provided by the coefficients (p+1)? and 2(p+1).
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2.2 Calculating Zeta Functions of Lie Rings

Most of the zeta functions presented in this chapter have been calculated by
the method of Lie rings, p-adic integrals and ad-hoc resolutions of singularities.
In particular, the zeta functions calculated in the theses of Taylor [57] and the
second author [64] were calculated this way. In particular, we shall work with
Lie rings instead of groups, and leave the reader to obtain the corresponding
results concerning groups via the Mal’cev correspondence. We shall also make
the assumption that our Lie rings are additively isomorphic to either Z¢ or
Zg, i.e. (additively) finitely generated and torsion-free.

Recall that ¢ ,(s) = gz, (s). Given a Z,-Lie ring L with basis B =
(e1,...,eq) for L, calculating either of the zeta functions CLS’p or Cf’p is essen-
tially a four-stage calculation:

1. Constructing the cone integral.

2. Breaking the integral into a sum of monomial integrals.
3. Evaluating the monomial integrals.

4. Summing the resulting rational functions.

2.2.1 Constructing the Cone Integral

Let M be an upper-triangular d x d matrix M = (m; ;) with entries in Z,.
We may consider the rows my,. .. ,my of this matrix to be additive generators
of a submodule of L. This submodule will be a subring if

[m;, m;] € (my,...,mg)z, forall 1 <i<j<d (2.2)
and an ideal if

le;,m;] € (my,...,mg)z, forall 1 <i,j<d. (2.3)

The following proposition and its proof gives us an explicit description of
the cone conditions, i.e. the conditions of the form v(f;(x)) < v(g;(x)) for
1 <@ <. It is essentially Theorem 5.5 of [17].

Proposition 2.1. Let L be a Z-Lie ring with basis B = (ey,...,eq). Let V,?
be the set of all upper-triangular matrices over Z, such that Zg M < L®
Ly, and V= the set of such matrices such that Z% - M < L ® Z,. Then V,°
and fo are defined by the conjunction of polynomial divisibility conditions
v(fi(x)) < v(gi(x)) for 1 < i < 1. Furthermore, the conditions defining V,*
satisfy deg fi(x) = deggi(x), and those defining V= satisfy deg fi(x) +1 =
deg gi(x).

Proof. Let my, ..., mg denote the rows of the matrix M, C; the matrix whose
rows are ¢; = [e;,€;]. Let M’ denote the adjoint matrix of M and
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. -1 -1, -1 -1 -1
M? = M'dlag(mz2 Mg g Mg g Ty g Mg 1).

Since M is upper-triangular, the (i, k) entry of M? is a homogeneous polyno-
mial of degree k — 1 in the variables m, s with 1 <7 <s <k —1.

The rows of M generate an ideal if we can solve, for each 1 < i,j < d, the
equation

m;Cj = (Yij1,---»Yijd)M
for (Yi g1, ¥ijd) € Zg. This rearranges to

m; G M = (m1,1Yi 1., M1 - Ma,qYijd)
for (yijis--- vija) € Zs. Set g7 1 (x) to be the k' entry of the d-tuple
m;C; M°. gfj7k(x) is a homogeneous polynomial of degree k in the m, s, and
if we set fijr(x) = mi1...myx, we obtain the conditions v(f; ;r(x)) <
v(g;%; x(x)) with deg(fi ;x(x)) = deg(g;; ,(x))-
Similarly, the rows of M generate a subring if we can solve, for 1 < i <
J<d,

d
m; E mj7rCr j\4h = (ml,lyi,j,la e ,m171 N md7dyi7j7d)
=Jj

for (yij1,--- ¥ija) € ZL. Again, we set 95 x(%) to be the k™ entry of the
d-tuple m; (Zd ‘mj,TCT> M?*. However, this time 95 (%) is a homogeneous

r=j
polynomial of degree k + 1, so we obtain conditions v(f; ; x(x)) < v(g;¥; ,(x))-
Furthermore, deg(f; jr(x))+ 1= deg(gfj7k(x)). O

Whilst every subring or ideal H has a matrix M whose rows additively
generate H, these matrices are by no means unique. Multiplying a row by
a p-adic unit or adding a multiple of a row to another row above it may
change the matrix but does not alter the subring additively generated by
the rows. Each diagonal entry m;; is unique up to multiplication by p-adic
units, hence the measure of values it can take is (1 — p=1)|m; ;|,. Each off-
diagonal entry m; ; is only unique modulo \mj,j|; . Hence the measure of
upper-triangular matrices generating H is (1—p~1)%my 1]plmasl? ... [mq,ald-
Note that although m, ; may vary, |m; |, is uniquely determined by H.

Finally, we note that the index of H is |my 1ma2. ..md,d|;1. Hence we
may write

(Z,p(s) =(1 —p_l)_d /v [miq... md,d|;|m%71 .. mg’dh;l du , (2.4)

or
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(s td)=(1—p) /V s maglSlmdTt byl du . (25)

Note that the translation in (2.5) is necessary. Equation (2.4) is not a cone inte-
gral since the constant (independent of s) term in the integrand has a negative
exponent. We complete the set of cone data by setting fo(x) = m11...mad,
go(x) = m(117—11 ...mg_1,q-1 and D = {fo(x), go(x), ..., fi(x), g1(x) }. We there-
fore obtain the following result.

Proposition 2.2. Let L be a Lie ring additively isomorphic to Z4, x € {<, <}.
There exists a set of cone integral data D = {fo, g0,---, f1,91 such that, for
all primes p,

CLpls+d)=(1L—p ) Zp(s,p).

Furthermore, deg fo = d, deg gy = (;l)

2.2.2 Resolution

Once we have constructed the cone integral, the next step is to break the
integral into a sum of integrals with monomial conditions. As mentioned in
the Introduction, resolution of singularities gives us one way of doing this, and
more importantly guarantees that this can always be done. Hironaka’s proof
of resolution of singularities of any singular variety defined over a field of char-
acteristic 0 has been refined by Villamayor, Encinas, Bierstone and Milman,
and Hauser amongst others to produce an explicit constructive procedure.
In particular, Bodnar and Schicho have implemented a computer program to
calculate resolutions. We refer the reader wanting to know more to Hauser’s
accessible article on resolution [34] and its comprehensive bibliography.

However, we shall not use resolution of singularities, for a number of rea-
sons. Firstly, the computer program of Bodnar and Schicho works best in
small dimensions, and we shall typically require resolutions of a polynomial
with a large number of variables. Secondly, we shall find that we do not need
to resolve all the singularities of the polynomial F' = Hé:o fi(x)g:(x). Singu-
larities lying outside V7 do not need to be resolved. Thirdly, there are ‘tricks’
that can be applied to simplify the polynomial conditions and speed up the
process of decomposing the integral as a sum of monomial integrals. Some of
these will take advantage of the fact we are working over ), whereas reso-
lution is a general procedure for arbitrary fields of characteristic 0. A further
disadvantage of resolution is the highly technical language it is most rigor-
ously formulated in. We do not wish to alienate readers unfamiliar with this
advanced machinery.

Therefore, we resolve singularities in an elementary and ‘ad-hoc’ manner.
A collection of ‘tricks’” are used to simplify the conditions under the integral,
and when the conditions can be simplified no further we bisect the integral.
This bisection is achieved by choosing a pair of variables and splitting the
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domain of integration into two parts depending on which variable has the
larger valuation. Further ‘tricks’ and bisections may then be necessary to
reduce the integral into smaller and smaller pieces until all the pieces become
monomial.

The idea of bisecting the integral as described above has its origins in the
concept of a blow-up, an operation fundamental to the process of resolution
of singularities. Indeed, we shall refer to our bisections as ‘blow-ups’. Fur-
thermore, we can use ideas originating from algebraic geometry to provide
motivation for our choices of blow-ups. For example, suppose a non-monomial
factor of one of the cone conditions is of the form Px; 4+ Qx;, for variables z;
and z; and nonzero polynomials P and Q. Let us also assume z; and x), have
nontrivial integrand exponent or feature somewhere in a monomial condition.
The polynomial F', being the product of all the cone data polynomials, has the
factors x, x), and Px;+Qxy, and therefore has a singularity with non-normal
crossings at z; = x; = 0. A blow-up involving x; and z; will then replace
this polynomial factor with x;(P + Qz},) (where ), = z;1}) or x4 (Pz} + Q)
(where z; = zjx)) on the two sides of the blow-up. If P and @ are both
independent of x; and x, then this trick reduces the sum of the total degrees
of the terms of the non-monomial factor. This trick is even more useful when
one of x; and xj, divides the other side of the condition, since the monomial
factor x; or xj, introduced above will cancel out. Algebraic geometry therefore
provides inspiration for our method, but we do not totally rely on it.

Initially, the integrand and the left-hand side of each condition v(f;(x)) <
v(gi(x)) is monomial, and this is something we preserve. For brevity we also

write f;(x) | g:(x) instead of v(f;(x)) < v(g:(x)).

Examples of ‘Resolution’

To illustrate the concepts in the previous section, we present two example
calculation, where we construct the p-adic integral corresponding to a Lie ring
and in each case apply some ‘tricks’ and blow-ups to split it into monomial
integrals. The first example will illustrate the basic ideas, with some more
unusual and less obvious tricks employed in the second.

For the first example, we shall choose to count all subrings of the Lie ring

L = (z1,22, 23, 24,41, Y2 © [21,22] = Y1, [1, 3] = y2, [w2, 2] = 12) .
In this case, the set VpS is given by

VE ={(m11,m12...,Mee) € Zf,l D fi(x) <gi(x) for 1 <i <6},

where the six! conditions fi(x) | gi(x) are listed below:

1Tt is mere coincidence that there are six conditions in this case. Generally the
number of conditions obtained bears no relation to the rank of the underlying Lie
ring.
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mss | miimsaz2 ,
me,6 | mi2Mq4 ,
me,6 | M22Mm34 ,
me,6 | Mo 214 4
Me,6 | M1,1m33 +mi2msa ,
M35 5M6,6 | M1,1M2,2M5,6 — M1,1M2 3M5 5 — M1 2M2 415 5 + M1 4M2 25 5 -
These conditions are independent of m4 3 and m; ; for 1 <¢ < 4,5 < j <6.

For the sake of clarity, we shall relabel the remaining 12 variables as a, b, .. ., [.
Thus,

(Epls) =1 -p )1,

where
T= [ el ol
w
and W is the subset of (a,b,...,1) € Z}?* defined by the conditions
jlad, 1\bi, 1|dh, 1|di, 1|ag+bh, jl|adk—aej—bfj+cdj.

We perform a blow-up with [ and d to remove the variable ¢. On one side of
the blow-up it disappears altogether, on the other its coefficient dj divides the
sum of the other terms of the polynomial:

1. v(l) < v(d): set d = d'l. The conditions [ | dh and [ | di become trivially
true, and we can also remove the term cd’jl from the last condition. Thus

D= [ el el
jlad'l
1|bi
llag+bh
jllad kl—aej—bfj
Note that the exponent of |I|, is 2s — 7, as opposed to 2s —8 = (s — 2) +
(s —6). The discrepancy is caused by the dilation of the measure that the
change d = d'l brings about. By dividing the [ out of d, we have allowed
d’ to take a greater measure of values in Z, than d. Hence we introduce a
Jacobean ||, into the integrand to balance out the dilation.
2. v(l) > v(d): set | = dl’ with v(I") > 1. This then implies I’ | h and I’ | i.

To remove these two variable-divides-variable conditions, set h = h’l’ and

i =14'l.
I - / a5 2T gl5 il 15 s e
ilad
d|bi’
dl'|ag+bh'l’

djl’|adk—aej—bfj+cdj
v(l)>1
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The last condition implies
dj | adk —aej —bfj (2.6)

and thus [ | ¢+ (adk — aej —bfj)/dj, so we shall set ¢ = ¢/ — (adk — aej —
bfj)/dj. After this substitution, the conditions no longer imply (2.6), so
to avoid altering the value of the integral, we must explicitly enforce (2.6).
We can also set ¢ = ¢l to remove the condition [ | ¢. Hence

B= [l Tl T

jlad
d|bi’
dal’ \ag+bh'l'
djladk—aej—bfj
v(l')>1

In both cases we have removed c or ¢” from the conditions and the number
of terms in the last condition has dropped from 4 to 3.

We play a similar trick on I; and Is to remove f. By a stroke of luck it
turns out to also eliminate h from I; and A’ from I5:

1.1. v(l) < v(b): set b = b'l. Terms b'hl and =V’ fjl disappear from the last
two conditions:

o= [ el Sl o dn
jlad'l
llag
jlla(d' kl—ej)
1.2. v(l) > wv(b): set | = bl" with v(I') > 1, and ¢ = i'l". Now b | ag and
bj | a(bd'kl’ — ej) are implied by the last two conditions, so we set h =
Wl —ag/band f = f'l + a(bd'kl' — ej)/bj. Again, we must introduce
explicitly the implied conditions.

Ba= [ Tl Ol el

bjla(bd kl'—ej)
o(l)>1

2.1. v(d) <wv(b): set b=10'd:

o= [l el T
jlad
dl'|ag
dj|a(dk—ej)
v(l’)>1
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2.2. v(d) > v(b): set d = bd’ with v(d") > 1, ¢ = d'i". Also bl’ | ag and bj |
a(bd'k—ej), so we can set b’ = d'h’ —ag/bl’ and f = df’ +a(bd'k—ej)/bj:

Ba= [ laly Ol

jlabd’
bl'|ag
bjla(bd k—ej)
v(l")>1
v(d)>1

All four of these integrals are very similar, and can be reduced to monomials
in the same way. For simplicity we shall consider only I; ;.

1.1.1. v(j) < v(d'kl): in this case, d’'kl/j is an integer, so we may set e =
e +dkl/j:

Lt = / lal 5215 il 41515501250 dp
jlad’l
llag
jld' ki
llae’

1.1.2. v(j) > v(d'kl): set j = j'd'kl with v(j’) > 1:

Baa= [ el el Sl du

j'kla
llag
i'lla(l—ej")
v(i")>1

Since v(j’) > 1, v(1 — ej’) = 0. Thus

URPES / [ A P 7 1 Vi e Vb =7

j'kla

llag

j'lla
v(j")>1

In this case we can break up the initial integral into eight monomial integrals,
however larger examples may need to be broken up into many more integrals.
Evaluating these monomial integrals and summing gives us the local zeta
function counting all subrings in g¢ 4, which can be found below on p. 44.

The second example is more involved, and demonstrates some other tricks
which sometimes come in useful. We count ideals in the free class-3 2-generator
nilpotent Lie ring F3 5. This has presentation

(1, 22,y, 21, 22 ¢ [21, 2] =y, [21, Y] = 21, [12,9] = 22) .
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Now
Fim () = (1= [ syl

where W is defined by the conjunction of the following conditions:

ms3.3 | mi1, MM33 | miz2, M33 | ma2, My44 | mi1, M4a4 | mss ,
ms.s | ma2, M55 | ma3, M55 | ms33 ., 1M3,3M44 | mi,1msyg ,
Mg 4Ms 5 | ms33my 5, 113,314 4 | my,2M3 4 — MM1,3M3,3 ,
M33M44 | M22M3 4 — M2 3M33, MaaMs5 | M1 1Ma5 — M1 2M44 ,
M3, 314 4M5 5 | M1 ,2MM3 4M45 — M1 2M3 5104 4 — 1101 313314 5
3,314 415 5 | T2 213 4My4 5 — T2,213 51104, 4 — 112, 3713 3114 5
M3 314 415 5 | M1,1M3,4Myg 5 — 11 113 51104 4 — 111,313 31104 4 -

We start by setting my 1 = mj m33, mia = mjoma3z, Moo = MMy 3,
m3z3 = my3my4 and mg3 = myzms 5. Doing so ‘uses up’ five of the first
eight conditions. These conditions, and the changes that eliminate them, are
typical when calculating local ideal zeta functions. Variables m1 4, m1 5, Mo 4
and my 5 don’t feature among the above conditions. Relabelling the remainder
from a to k tells us that

= =) [l g Rl
W/
where W is the subset of all (a, ..., k) € Z}' satisfying

itlag, k|fi, k|fj, i|lbg—c, i|dg—ek, ik|agj—ahi—ci,
ik | bgj —bhi—cj, ik |dgj— dhi—ekj .

Our focus is on the conditions and how to perform blow-ups to reduce the
conditions to monomials. We shall therefore neglect to track the changes to
the integrand.

We started the last calculation by aiming to remove a variable from the
integral. We cannot do the same here. Instead, we choose a blow-up between
i and j. Note that each term of the right-hand side of each of the last three
conditions above contains an ¢ or a j. Where v(i) < v(j), we set i = i’j and
then h = I/ + gj’ to obtain that

o 1. ilag, k|fi, Ek|dh, i|bg—c,
Wl'_{(a""’k)ezp'ﬂdgek, klah' +c, k|bW +cj |-

A blow-up with & and c¢ is the thing to do here. Where v(k) < v(c), two
of the binomial conditions drop to monomial and a blow-up with ¢ and k
will suffice to reduce to monomials. However, more interesting things happen
when v(k) > wv(c). Firstly, let’s set k = ck’ with v(k’) > 1, and then set
i =7"k—bh'/c:
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c|bh' , ilag, ck'|fi, cK|dn,
Wi = (a,...,k’)eZélzﬂbg—c, i|dg—eck!, ck'|ah+c,
v(k') >1

Consider the last condition, ck’ | ah’ + ¢. Since v(k') > 1, v(ck’) > v(c). This
implies that v(ah’) = v(c), so that ah’ | c. Set ¢ = acd’h’:

alb, ilag, adPk|fi, adk|d,
Wio = (a7...7k’)€Z]101: i|bg—acdl/, i|dg—adeh'k,
A1+, vk)>1

k" | 1+ ¢ and v(k') > 1 imply that ¢ = —1 (mod p), in particular ¢’ is a
unit. We set ¢ = ¢’k —1 as well as b = ab’ and d = ad'k’. After some tidying,
we end with the following monomial conditions:

Wis={(a,....k)€Z) cilag, alk|fi, ilah’, v(k')>1}.
We now return to the second half of the initial blow-up. We have

k|fi, Vjlag, ijlbg—c, j|dh—e"k,
Wy = (a7...,k)€Z1171: k‘|d(g_h7;’)7 i'k\bg—bhi’—c,
i'k)ag—ahi’ —ci’, v(@')>1

It is best not to do a blow-up at this point. Instead, we do a couple of changes
of variable. Firstly, we set ¢ = ¢’ + hi’. Note that this change will make two
conditions longer. Setting ¢ = ¢/ +bg’ and then ¢’ = ¢’i'k gives us the binomial
conditions

k|dglv k'fj7 j|bh_0/l1€,
Wy = (a,...,k)eZélzj\dh—e”k, i'j|alg +hi'),
i'k|g(a—0bi"), v(@)>1

A blow-up between j and k will remove the first two binomial conditions. It
is then routine (although not trivial) to split the two parts into monomials.
Evaluating the resulting monomial integrals and summing yields Qﬁg ) p(s), on
p. 51.

2.2.3 Evaluating Monomial Integrals

A p-adic cone integral with monomial conditions can be expressed as a sum
of integral points within a polyhedral cone in R™, and there are algorithms
for evaluating such sums. One such example is the Elliott—-MacMahon algo-
rithm described in [54]. However, the second author considered an alternative
approach, which appears to be more efficient for the monomial cone integrals
arising from zeta functions of Lie rings, but is not guaranteed to terminate.
This approach is to continue applying ‘blow-ups’ to further decompose
the monomial integrals until the conditions become trivial. One strategy for
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choosing blow-ups is to choose the two variables which appear most frequently
on opposite sides of conditions without appearing on the same side. It is not
difficult to automate this strategy, and in practice it has worked well, but it
is not difficult to construct integrals for which this strategy will fail.

Most of the ‘tricks’ described in the previous section are aimed at reducing
non-monomial conditions to monomials and so cannot be applied. The excep-
tion is that any conditions f;(x) | ¢;(x) where g;(x) is a single variable x; can
be removed by setting z; = 2, fi(x).

2.2.4 Summing the Rational Functions

The final stage is to sum the rational functions resulting from the trivial
integrals. Whilst being the most elementary, it can also be the most compu-
tationally intensive. Given a perhaps large collection of rational functions in
two variables, we must add them up. This sort of summation can easily be
performed by a computer algebra system such as Maple or Magma. Indeed
this is the approach used by Taylor [57]. However, we can make use of the fact
that these rational functions are of the form

P(X,Y)
[T, (1 — Xayh)

for some bivariate polynomial P(X,Y) with a;,b; € N. Typically, many of
the factors of the denominator will cancel out once all the terms have been
summed. If there are a large number of rational functions, it is advantageous
to pick factors we believe will cancel, sum all the rational functions with
this factor in the denominator and then hope that the factor cancels in this
partial sum. We may then replace the rational functions we summed with the
partial sum and continue. With less factors in the denominator, the remaining
rational functions should sum more quickly.

2.3 Explicit Examples

For the rest of this chapter we give explicit expressions for the local zeta
functions of many Lie rings. We also list the functional equation satisfied by
these local zeta functions (where applicable), and the abscissae of convergence
of the corresponding global zeta functions. We also give the order of the pole
on the abscissa of convergence when it is not a simple pole. Unless we state
otherwise, the local zeta functions we present are uniform, i.e. are given by
the same rational function in p and p~* for all primes p.

It may be noted that there are more zeta functions counting ideals than
all subrings. There are usually more conditions under a p-adic integral count-
ing ideals than under one counting all subrings, but the cone conditions for
counting ideals are simpler.
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The calculations involved are frequently long and tedious and were often
performed with computer assistance. Therefore we shall not provide proofs of
the calculations. This contrasts with the approach of Taylor [57], who does
provide proofs of his calculations in his thesis. One such proof runs to 40
pages. There are several zeta functions of comparable or greater complexity
presented in this chapter, and we simply don’t have the space to present the
proofs. Nonetheless we believe that all the zeta functions listed below are
correct. In particular, there shouldn’t have been any errors in transcription
since the IXTEX source for each zeta function was generated from the computer
calculations.

The advent of computer calculations has also led to zeta functions with
the numerator and denominator of large degree. We have confined some of
the larger numerator polynomials to Appendix A. However, there are four
excessively large polynomials which we have chosen not to include since we
do not feel the extra 23 pages they would require would be justified. Further
details may be obtained from the authors on request.

Many of the examples will satisfy a functional equation of the form

CLp(5)] = (=1 H(s) (2.7)

for all but perhaps finitely many primes p. However, there are a small number
that don’t. When we say that a local zeta function ‘satisfies no functional
equation’, we mean that it satisfies no functional equation of the form (2.7).

The Lie rings we shall be considering can be presented conveniently by
giving a basis and the nontrivial Lie brackets of the basis elements. Most
of these Lie brackets will be zero, so we make the convention that, up to
antisymmetry, any Lie bracket not listed is zero.

p—p~?t

2.4 Free Abelian Lie Rings

Let L = Z%, the free abelian Lie ring of rank d. Then

d—1
SHORIGIOES J [SCEDR
i=0

where ((s) is the Riemann zeta function. Hence this function is meromorphic
on the whole of C. In particular, the Tauberian Theorem (Theorem 1.8) men-
tioned in the Introduction allows us to deduce that if a,, is the number of
subgroups of index n in Z2, then

n
>~ T

A; ~ —N
5 12 7
i=1

a result which seems remarkably difficult to obtain without the machinery of
zeta functions.
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In [22] it is shown that for any finite extension G of the free abelian group
74, the zeta functions (&(s) are all meromorphic. This is proved by relating
the zeta functions to classical L-functions that arise in the work of Solomon,
Bushnell and Reiner. The zeta functions of the 17 plane crystallographic
groups, also known as the ‘wallpaper groups’, were calculated by McDermott
and are listed in [22].

We shall see that many of the zeta functions have a factor similar to the
local factor of (za(s). It is therefore convenient to use the notation

n—1
Canp(s) = [T Gols =), (2.8)
=0

where (,(s) = (1 — p~*)~! is the p-factor of the Riemann zeta function.

2.5 Heisenberg Lie Ring and Variants

Let H be the free class two, two generator nilpotent Lie ring. This is the Lie
ring of strictly upper-triangular matrices

0Z 7
Us(Z)=[002Z
000

It is given by the presentation
H={(x,y,2:[z,y]=2),

where, as mentioned above, [z,z] = [y,z] = 0. For n > 2, let H™ denote the
direct product of n copies of the Heisenberg Lie ring.

Theorem 2.3 ([32]).

Cﬁ,p(s) = (z2,p(8)Cp(35 — 2) ,
Gin(8) = Ca2p(5)Gp(25 — 2)(p(25 — 3)Gp(3s —3) 7"

These zeta functions satisfy the functional equations
35
Grp(5)] =P G, (8)

p—p~1t
35 <
’p—»p*l =7’ 35(77,1)(8) :

The corresponding global zeta functions have abscissa of convergence af{ =

a% = 2, with (%(s) having a double pole at s = 2.
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Theorem 2.4 ([32, 57]).
Cfﬁ,p(s) = (za,p(8)Cp(3s — 4)2Cp(53 —5)Gp(Bs — 471,
Griop(8) = G p(8)Gp(25 = 4)°Gp(25 — 5)°G (35 — 5)G, (35 — T)Gp(35 — 8)
x Wi (p,p™*)
where W§2 (X,Y) is
1—-X4Y3 - 3Xx°5Y3 - X7Y3 4+ xX5y* — x%v* — XB3Y® 4+ 3X9y5 — 2x1y®
+X10Y6 + 3X11Y6 +3X12Y6 + 2X13Y6 +X14Y6 _ X14Y7 +X15Y7
o X14Y8 4 X15Y8 o X15Y9 o 2X16Y9 o 3X17Y9 o 3X18Y9 o X19Y9
+ 2Xlsyl0 _ 3X20Y10 +X21Y10 +X20Y11 _ X24Y11 +X22Y12
+ 3X24Y12 4 X25Y12 o X29Y15 .

These zeta functions satisfy the functional equations
Cﬁzﬁp(s)‘papil = p15_1OSC§2’p(S) ,
< —6s <
Cﬁzyp(s)‘ . :p15 6 CﬂQ}p(s) )
p—p
The corresponding global zeta functions have abscissa of convergence 04;12 =
afﬂ =4.
Theorem 2.5 ([57]).
Cﬁs,p(s) = (z6,p(5)Cp(3s — 6)3Cp(53 — 7)Cp(7s — 8)(p(8s — 14)W7.<{13 (p,p™%),
where W.3,(X,Y) is
1—3X%VP +2X7Y5 + XOVT —2XTY7T 4 X12y® —2x13y® 4 ox 13y 1?
o X14Y12 4 2X19y13 o X20Y13 o 2X19Y15 + 3X20Y15 o X26Y20 )

This zeta function satisfies the functional equation

Cft?»,p(s) = _p%_lssgﬁs,p(s) :

p—p~1t
The corresponding global zeta function has abscissa of convergence a;{'g =06.
Theorem 2.6 ([64]).

Ciys p(8) = Czs p(5)Gp (35 — 8)%¢y (55 — 9)¢p(Ts — 10)¢, (85 — 18)¢,(9s — 11)
X (p(10s —20)¢,(11s — 27)W§4(p,p75) ,
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where the polynomial W§4 (X,Y) is given in Appendixz A on p. 179. This zeta
function satisfies the functional equation

nyl,p(s) = p66_20547<{]4,p(3) :

p—p!
The corresponding global zeta function has abscissa of convergence 04;14 = 8.

Theorem 2.7. Let (K : Q) = 2, R be the ring of integers of K and L =
Us(R). Then

1. If p is inert (of which there are possibly infinitely many) then
(i () = Can ()G (55 — 5)Gp(65 — 8)(1 + p* ) .
2. If p is ramified (of which there are only finitely many) then
(2 o(5) = Coa p(5)Gp(3s — 4)Cp(5s — 5) .

3. If p is split then Us(R ® Zp,) = Us(Z,) x Us(Zp) and we already have a
calculation of this factor from Theorem 2.4 above.

For all split or inert primes p, this zeta function satisfies the functional equa-
tion

CEp(s)]
whereas for p ramified,
Cip(s)]

The corresponding global zeta function has abscissa of convergence a5 = 4.

i :pls—loscip(s) 7

— — p15_128Cf,p(3) .

Taking the Euler product of all these factors we can represent the global
zeta function in terms of the Riemann zeta function and the Dedekind zeta
function (x(s) of the underlying quadratic number field K (as observed in
Corollary 8.2 of [32]):

Corollary 2.8.
(L (s) = Cza(s)C(55 — 4)C(5s — 5)Ck (3s —4) /Ck (Bs —4) . (2.9)

Theorem 2.9 ([32, 57]). Let L = Us(R3) be the Lie ring of 3 x 3 upper
triangular matrices over the ring of integers Rs of a algebraic number field K
of degree 3 over Q.

1. If p is inert in R3, then
Crp(8) = Cao p(5)Gp(Ts — 8)(p(8s — 14)p(9s — 18)W i, (p,p ™)
where

W;in(Xv Y) =1 + X6Y7 + X7Y7 + X12YS + X13Y8 + X19yl5 )
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2. If p ramifies completely in Rz (i.e. if (p) = p> for some prime ideal p),
then

CEp(8) = (a0 p(8)Gp(3s — 6)Gp(Ts — 8)¢p(8s — 14) (1 +p" ) .
3. If p ramifies partially in R3 (i.e. if (p) = p>q for prime ideals p # q),
G () = Can ()G (35 — 6)2, (55 — TGy (75 — 8)y (35 — LYW, (p,p~°),
where
WL (X,Y)=1- X%+ XTY? - XTy7 — XBy® 4 X3y10
_ XUy10 4 x20y15
4. If p splits completely in Rj:
G (8) = Gan p(8)Go (35 — 6)°G (55 — T)Gu(Ts — 8)Gp(85 — LW (p,p™*),
where Wi = W3 (X,Y) given above on p. 35.

5. If p splits partially in Rs (i.e. (p) = pq for prime ideals p # q):
CLp(8) = Czo p(8)Cp(35 — 6)Cp(55 — T)Cp(Ts — 8)(p(65 — 12)¢y(8s — 14)
X Wiep®p™),
where
WL (X,Y) =14 X0 — XOy7 - X128 _ xlyl2 _ x20y13
L X20y15 | 263720

For all primes that do not ramify, this zeta function satisfies the functional
equation

CLp(s)]

The corresponding global function has abscissa of convergence aj = 6.

pop—l _p36_15scfyp(s) :

Remark 2.10. 1. Cases 3 and 5 can only occur if the field K is not a normal
extension of Q.
2. As with the case with a quadratic number field, the p-local normal zeta
function does satisfy a functional equation even when p ramifies. If f, is
the ramification degree of p in K, then

¢ ,(s) |1Hp71 = _pHm(s2)aca (o)

for all primes p.
It is possible to write the global zeta function of L in terms of Riemann

zeta functions, the zeta function of the number field and Euler products of
these two variable polynomials. However, the end result is not as neat as (2.9):
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Proposition 2.11. If (K : Q) = 3, R is the ring of integers of K and L =
Us(R) then

(F(5) = Czo(5)¢(5s = T)C(Ts — 8)((8s — 14)Cx (3s — 6) [ [ Wi, (. p™°)

p

where

Wf,in(Xa Y)(1—X7Y5)  ifp is inert in R,

1— X1y1o if p ramifies completely in R,
Wi (X,Y) = WL (X,Y) if p ramifies partially in R,

Wi (XY) if p splits completely in R,

WESP(X, Y) if p splits partially in R.

2.6 Grenham’s Lie Rings

The next examples are calculations made by Grenham in his D.Phil. thesis [28]
of zeta functions of Lie rings G,, with the following presentation:

Gn = (2,21, Tne1, Y1y Yn—1 : [z 2] =y (1 <i<n—1)) .

These Lie rings are class-2 nilpotent. Go = 'H, the Heisenberg Lie ring
again. Grenham calculated (5 (s) and ngn p(8) for n < 5. They all have the
form of products of local Riemann zeta functions together with one of the
palindromic polynomials.

Theorem 2.12 ([32, 28]).
Cés,p(s) = CZS,P(S)CP(?’S - 3)2<p(35 —4)(p(55 — 6)(p(65 — 6)71 )
(G (8) = G2 ()G (25 — 4)Gp (25 = 5)Gp(3s — W, (pp™°)
where
W5 (X,Y) =1+ X%V + X*V? — X*'Y® — X°y® — X®3y®
These zeta functions satisfy the functional equations
G p(s)] =7, (5)

< _ <
G| =G ().

p—p~?t

p—p~?t

The corresponding global zeta functions have abscissa of convergence 0@]3 =

a§3 = 3, with §_§3 (8) having a double pole at s = 3.
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Theorem 2.13 ([28]).

(5 p(8) = Cza p(5)Gp(3s — 6)C(5s — 10)(,(7s — 12)W G (p.p~*%)

where
WG(X,Y) =1+ X"Y?+ X°V? 4+ X®Y° + XoY° + X13y® |
and

(G0 (9) = Can p(9)Gp(25 — 5)Gp(25 — 6)¢p (25 — T)Gp(3s — 10) G (4s — 12)
x W5 (p.p™)
where ng (X,Y) is
14+ X424+ X5Y2 + XO0y?2 — XOy3 — XOy3 — X7y3 + X8y3 + Xy
_ Xyt xl0yt L xllyd L xlay 6 x 15y 6 x 16y 6 | x 16y T L x 1Ty T
_ X18Y7 _ X19y7 _ X20Y7 +X19Y8 +X20Y8 +X21Y8 +X25y10 )

These zeta functions satisfy the functional equations
()] i AR IOR

G| =G

p—p~t

p—p~t

The corresponding global zeta functions have abscissa of convergence 0454 =

0‘54 =4, with Cgi (s) having a double pole at s = 4.
Theorem 2.14 ([28]).

(G p(8) = Cz5 p(8)Cp(3s — 8)Cp(55 — 14)(p(Ts — 18)¢, (95 — 20) W5, (p,p~*)
where W3l (X,Y) is
L+ XV? 4 X072 4 XTY? 4+ X1OV? 4+ XHY® 4+ 2X12Y° 4+ XBY? + XY
-|—X16Y7 —|—X17Y7 -|—X17Y8 _|_X18Y8 +X19Y8 —|—X21Y10 +2x22yl0
+X23Y10 +X24Y10 +X27Y12 +X28Y12 +X29Y12 +X34Y15

and

(oo (8) = Cm p(5)Go(25 — 6)G (25 — 8)Gp (25 — 9)C(3s — 14)(, (45 — 18)
X (55 = 20)Gp(s —2) ' WE (™)

where ngo (X,Y) is
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L4+ X2V + X2 4 X072+ XOV? 4 2XTY? 4+ X°Y? + XOY® + 2X 107
+X11Y3 + 2X12Y3 +X13Y3 +X12Y4 + 2X14Y4 + 2X15Y4 +X16Y4
+ XY 4 2X1TYP 4 XBYS 42X 1Y 4+ XP0Y0 — X1PY0 — XP0YO
+ X21Y6 + 2X22Y6 + 2x23y6 + 2x24y6 + X25Y6 o X22Y7 o 2X23Y7
_ 2X24Y7 _ 2X25Y7 o X26Y7 4 X27Y7 + X29Y7 _ X27Y8 _ 2X28Y8
- X29Y8 o 2X30Y8 - X30Y9 o X31Y9 - 2X32Y9 - 2X33Y9 o X35Y9
_ X34Y10 _ 2X35Y10 _ X36Y10 _ 2x37yl0 _ X38Y10 _ X39Y11
o 2X40Y11 o X41Y11 o X42Y11 o X43Y11 o X45y12 o X47y13 .

These zeta functions satisfy the functional equations
36—14
C557p(8)| =-r Sggqsyp(s) ’

p—p~?
< 36— <
G| =G0

The corresponding global zeta functions have abscissa of convergence 04;5 =
a§5 =5, with Cg§5 (s) having a triple pole at s = 5.
In [61], Voll has given an explicit expression for ngmp(s), and in a forthcoming

paper, gives a similar expression for ngmp(s). In particular, he proves that

Theorem 2.15. Letn > 1. Then for all primes p, ngmp(s) and ngmp(s) satisfy
the functional equations

2n=1)_(3n—1)s
GO,y = =pUE 7O (s)

2n-1_(2n—1)s
ngmp(s)’pﬁpil = 7p( 5y ) —(2n—1) ng,,”p(s) )

Grenham proved that the abscissa of convergence of ngn (s) is m. Voll gives in
[61] an expression for the abscissa of convergence of ng (s), which agrees with

an expression previously derived by Paajanen. In particular, agﬁ (s) =19/3.

2.7 Free Class-2 Nilpotent Lie Rings

Let F5,, denote the free nilpotent Lie ring of class two on n generators. F5 >
is the Heisenberg Lie ring once again.

2.7.1 Three Generators

Theorem 2.16 ([32, 57]). Let the Lie ring Fy 3 have presentation
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<I1,$2,$3,y1,y27y3 : [$1,$2] = Y1, [$17$3] = Y2, [5027$3] = y3> .

Then

Gy p(8) = Caa ()G (35 — 5)Gp (55 — 8)Gy(65 — )W (p.p™*)
where

WE L (XY) =1+ X3Y3 4 XY 4 XOY5 4 XTy® + X107
and

CFyop(8) = Czo p(8)Gp(25 — 4)Gp (25 — 5) (25 — 6)Gp (s — 6)Gp(3s — 7)
X Cp(3s — 8)¢p(4s — 8)_1W§2,3(p,p_s) ,

where Wé L(XY) s

1+ X3V2 + X*Y2 4+ X°V?2 — X*v3 — X°y3 — XOy3 — X7y* — xX9v+
_ X10Y5 _ X11Y5 _ X12Y5 +X11Y6 +X12Y6 +X13Y6 +X16Y8 )

These zeta functions satisfy the functional equations
< _ . 15—95 <
@] =P

< —65 <
Cﬁz,&p(s) = p15 chﬁz,&:ﬂ(s) :

p—p~?t

; : : S
The corresponding global zeta functions have abscissa of convergence ap, , = 3,

<
Ap, , = 7/2.

The zeta function counting all subrings is interesting since the abscissa
of convergence is not an integer and is strictly greater than the rank of the
abelianisation of G. This was the first such example calculated at nilpotency
class 2.

2.7.2 n Generators

In [62], Voll gives an explicit formulae for the local ideal zeta functions of F» ,,
for all n. We shall not replicate Voll’s explicit formulae for these functions,
but we shall state some corollaries he deduces. Put h(n) = in(n + 1), the
rank of Fy .

Corollary 2.17. The local zeta functions C§2 n_’p(s) are uniform, i.e. are given
by the same rational function in p and p~* for all primes p.
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Corollary 2.18. The local ideal zeta function of Fs,, satisfies the local func-
tional equation

n h(n) — n n)s
G () = (~1)rmp(")hmEms g ()

p—p~1t
for all primes p.

Corollary 2.19. The abscissa of convergence of CﬁQ (s) 1S

aﬁzm zmax{n, ((g) _j) (n—l—’j)—i—l j e {1,...,(3) — 1}}

h(n) —j
and C;]Z’n (s) has a simple pole at s = aim,

In particular, F5 5 has abscissa of convergence ozf,‘z . =051 /10. Indeed, this
is the first Lie ring whose local ideal zeta function is known to have abscissa
of convergence strictly greater than the rank of the abelianisation.

2.8 The ‘Elliptic Curve Example’

Theorem 2.20 ([60]). Let E denote the elliptic curve y*> = x> — x. Define
the nilpotent Lie ring Lg by the presentation

[T1, 4] = y3, [T1, 5] = y1, [71, T6] = Y2,
LE: Tly---5T6,Y1,Y2,Y3 - [.702,:24]:y1,[l‘2,:]]5]:y3,
(23, Z4] = Y2, [r3, 26] = 11

Then, for all but finitely many primes p, the local zeta function of Lg is given
by

CLwp(8) = Czo p(8)Cp(5s — T)Gp(Ts — 8)(p(9s — 18)(,(8s — 14)
X (Pi(p,p~°) + |E(Fy) | P2(p,p™7))
where
|E(F,)| = [{(z:y:2) € P*(F,) : y?z = 2® —22” }|,
P(X,Y)=(14+XYVT+ X7y + X12y® 4 xB3y® 4 Xy1%)(1 - X7Y?),
Py(X,Y) = XV5(1 - Y (1 + X13Y®) .

In [13] it was shown that this zeta function is not finitely uniform, thus an-
swering in the negative a question posed by Grunewald, Segal and Smith in
[32] that seemed ‘plausible’. However, there was some doubt as to whether
this zeta function would satisfy a functional equation similar to that satisfied
by other local ideal zeta functions of Lie rings of class 2. The dependency on
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the number of points mod p on an elliptic curve did cast some doubt on this.
However, it can easily be checked that

Pl(Xilayil) = X726Y720P1(X7Y) )
Py X LY ) = X"PY 2R (X,Y) .

Together with the functional equation of the Weil zeta function applied to
|E(F,)|, this yields

Corollary 2.21 (Voll [60]). For all but finitely many primes p,

o] = PG, ()

2.9 Other Class Two Examples

We start with a number of Lie rings which appear in [32].

Theorem 2.22 ([32]). Let G(m,r) denote the direct product of Z" with the
central product of m copies of the Heisenberg Lie ring H. Then G(m,r) has
Hirsch length 2m +1r + 1.

<g(mﬂ“)ﬁv(s) = (gam+r p(8)Gp((2m +1)s — (2m + 7)) .

Form < 2,

Gy p(8) = Czrez p(8)Gp(25 = (r +2))Gp(25 — (r +3))Gp(3s — (r+3)) 7",
oy p(8) = Corea p ()G (35 — (1 + 4))G(3s — (1 + 6))¢p(35 — (r + 7))
X WGS(QJA) (p,p™%),

where

W=

G(2 T) (X, Y) _ 1 4 X’l“+5y3 o X’r‘+5y4 o XT+6y4 - X’r‘+7y4 - X’l“+8y4

+X'r‘+8y5 + X2T+13y8 )
These zeta functions satisfy the functional equations

_ (_1)2m+r+1p(2mgr+l)7(4m+r+1)s
p—p~t

Cé(m,r),p(s) Cg(m,r),p(s) ’

m-r 2m+4r+1\ _ mr s
CGomryp(5) = (12T m@mbr s s () (m=1,2).

p—p~1t

The corresponding global zeta functions have abscissa of convergence aé(m n =

2m +r for allm € Nyg, r € N andaé(mr):2m+7‘f0rm6{1,2},T€N.
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Theorem 2.23 ([32]). Forr € N,
(Gxzr p(8) = Grra (8)Gp(3s — (r+4))Gp(5s — (2r +6)) (1 +p™ 775
(G p(8) = Carra(8)Gp(28 — (1 +4))Gp(25 — (1 + 5))Gp(3s — (27 +6))
< —s
X Wg_3 X LT (pap ) )
where
Wg§3><ZT (p7p—s> =1+ Xr+3y2 + Xr+4y2 _ XT+4Y3 _ XT+5Y3 _ X2r+8y5 )
These zeta functions satisfy the functional equations
r T (r s
— (-1 +5p( 1°)—(r+8) Gz ()

r T _(r s <
= (1)l (s)

ngs XZ",p(S)

p—p~1t

<
Cés XZT,P(S)

p—p~?
: ; : < _
The corresponding global zeta functions have abscissa of convergence UGy xzr =

<
g wgr =7 + 3.

The calculations of the ideal zeta functions were made by Grunewald, Segal
and Smith in [32]. Note that they use the more cumbersome notation Fs 3/(z)
in place of Gs.

Theorem 2.24 ([32, 64]). Let

96,4 = (T1, T2, T3, T, Y1, Y2 : [T1, T2] = 1, [X1, T3] = y2, [W2, 7] = 92)
Then

aesn(8) = Cze p(5)Gp(3s — 4)(p(5s — 5)(p(65 — 9

)
(oo ap(8) = Cza p(5)¢p(25 — 5)(p(3s — 5)(, (35 — 7)<p( ) p(4s —9)
X (p(4s —11)Gp(5s — 12)W  (p,p™°)

where WQM(X, Y) is given in Appendiz A on p. 180. These zeta functions

satisfy the functional equations

_ _15-10s 4
<216,4,17(8 ‘p—»p*l =P <36,47P(8) ’
< _ 15-6s <
Goan®)] =P G e)
The corresponding global zeta functions have abscissa of convergence ol =
99 9 96,4

< _
gy, = 4.



2.10 The Maximal Class Lie Ring M3 and Variants 45

In [32], this Lie ring is given the more cumbersome name Fj3/(z) - Z. For
brevity we have changed the name. The new name is borrowed from the
classification of nilpotent Lie algebras of dimension 6 mentioned in Sect. 2.14
below.

Let T,, denote the maximal class-two quotient of the Lie ring of unitrian-
gular n x n matrices. T,, has presentation

(T1, Ty Y1y Ynet f [T, 1] = s for 1 <i <n —1) .

Ty is the Heisenberg Lie ring once again, and T35 = G3, whose zeta functions
are given in Sect. 2.6.

Theorem 2.25 ([57, 64]).

C7yp(8) = C2o,p(5)Gp(35 — 5)°Cp (55 — 6)Cp (55 — 8)¢p (65 — 10)C, (75 — 12)

x Wil(p,p™®),

where Wi (X,Y) is
1 +X4Y3 _ X5Y5 +X8Y5 _ X8Y6 _ X9Y6 _ X10Y8 _ Xl?ys _ X13Y9
+X13Y10 _ 2X14Y10 +X14Y11 +X15Y11 o X16Y11 o X17Y11 +2X17Y12
_ X18Y12 +X18Y13 +X19Y14 +X21Y14 +X22Y16 +X23Y16 o X23Y17
+X26y17 _ X27Y19 _ X31Y22

and

(T, p(8) = o p(9)Gp(25 — 5)°Cp(25 — 6)7 Gy (35 — 6) Gy (35 — 8)¢p(3s — 9)
X Cplds — 12)Gy(5s — 14)WF (p,p™%)

where the polynomial WTE (X,Y) is given in Appendiz A on p. 180. These zeta
functions satisfy the functional equations

= 7p217115<7<41’p(8) ;

G| =G ()

The corresponding global zeta functions have abscissa of convergence oz?4 =

< _
ap, =

2.10 The Maximal Class Lie Ring M3 and Variants

The most well-understood zeta functions of Lie rings are those for Lie rings
of nilpotency class 2. However, as we move to higher nilpotency classes, there
is much less in the way of theory to help us. In particular, as we mentioned
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in Chap. 1, the Mal’cev correspondence can be avoided for nilpotency class 2.
There is no such shortcut in higher nilpotency classes.

Taylor [57] was the first to calculate the zeta functions of a class-3-nilpotent
Lie ring, and since then the second author has greatly enlarged the stock of
examples at class 3.

In some sense, the ‘simplest’ Lie rings of nilpotency class n are the Lie
rings M,,, with presentation

M, = {z,21,T2,...,@p : [2,2;] = xj41 for i =1,...,n—1) .
In particular, H = M>. We now consider M3 and some variations.

Theorem 2.26. Forr € Z,

= GG~ (r+2)G (s = (£ 2)G(5s — (4 3)
Vi G (65— (7 +2)) |

and

Gty wzr p(8) = Carva p()Gp(28 — (r + 3))Gp(3s — (r + 5))Gp(3s — (2r +4))
x CP(4S - (QT + 6))WJ\§[3><ZT(p7p_S) ’

where

Wz\éfstr (p,p~°) =1+ XTH2y2 4 xr3y2 _ xr3y3 _ xr+byd 4 x2r+6yd
_9X2rt6y5 _ o x2r+Ty5 + X2r+Ty6 _ x3r+8y6
_ X3r+10y7 +X3r+10y8 +X3r+11y8 +X4r+13y10 .

These zeta functions satisfy the functional equations

T I s
C]\i[gXZ",p(S)‘ = (_1) +4p( 2 ) (r+9) CEIQ,XZT,p(S) ’

p—p~t

= (—1)r+4p(F) = (r+)s

< <
Gty (9)| Gy p(5)

p—p~t

; ; ; < —
The corresponding global zeta functions have abscissa of convergence ayy o 7 =

aAS/stz,. =r+ 2, with Cﬁg (s) having a quadruple pole at s = 2.

The zeta functions counting ideals or all subrings in M3 were first calculated
by Taylor in [57]. The second author generalised the results to M3 x Z" for
r e N.

Theorem 2.27 ([64]).

Gty p(5) = Cza p(8)(p(3s — 4)°Cp(4s — 4)p(5s — 5)(p (65 — 5)(p(Ts — 6)
X Cp(gs - 10)W7fo3(p»P_s) )
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where Wi, 1 (X,Y) is

1—2X4Y° + X°V5 — X4YS + X4Y7T —2X5Y 7 4+ x8yY — 22Xy 43Xy
o 2X10Y11 +)(9le +X10Y13 +X13Y14 +X14Y15 o 2X13Y16 +3X14Y16
o 2X14Y18 +X15Y18 o 2X18Y20 +X19Y20 o Xlgy—Zl +X18Y22
—ox19y22 | x23y27

This zeta function satisfies the functional equation

<':]{><M3,p(8)| = _p21_14sc':](><M3,p(S) .

p—p~!
The corresponding global zeta function has abscissa of convergence aﬁxM3 =4.

Theorem 2.28.

C§2X]V[3,p(s) = (z6 p(8)Cp(3s — 6)3Cp(45 —6)Cp(5s — T)(p(6s — T)(p(7s — 8)
X Gp(8s — 8)(p(8s — 14)((9s — 9)Gp(9s — 14)¢,(10s — 15)
X (p(11s — 16)¢, (125 — 21)W7fl]2xM3 (p,p~°)

for some polynomial W;‘gx]% (X,Y) of degrees 113 in X and 85 in Y. This
zeta function satisfies the functional equation

Cf@XMS)p(S) :p45_1954§12><M37p(3) .

p—p~1t

The corresponding global zeta function has abscissa of convergence 0@12 6.

XMs ™~
Theorem 2.29.
Cilax M p(8) = Cat p(8)Gp(25 — 2) (35 — 4)7Gp(4s — 4) (55 — 5)Gp (65 — 5)
x G (Ts — 5)G(Ts — 6)Gy(8s — 6)G,(9s — )¢,y (95 — 10)
% (,(10s — 10)G,(11s — 11)¢,(125 — 12)¢, (135 — 15)
X Wil sars (0,07°)
for some polynomial WJ\</]I3><M3 (X,Y) of degrees 84 in X and 95 in Y. This

zeta function satisfies the functional equation

CJT}S.XM&Z?(S)‘ :p28_1sscl\</][3><M3,p(S) .

p—p~1t

The corresponding global zeta function has abscissa of convergence 04]<\'43 ot =4
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Theorem 2.30. Let the Lie ring Mz X7z M3 have presentation

(21, 22, W1, wa, T1, T2,y [Zl,wﬂ =1, [Zz,wz] = T2, [21,131] =Y, [22»$2] =) .

Then

s p(5) = (22 p(8)(p(3s — 4)%¢, (55 — 5)Cp(Ts — 4)¢p(8s — 5)(p(9s — 6)
X (p(12s — 10)WJ\</['3XZMS (p,p~ %),

where Wi 2 (X,Y) s

1—X'YP —2x'Y® + X°V® 4+ XYY — 2X°Y? 4+ XPy "2 — 2XPy "2

4 3ngl3 o 2X10Y13 4 X10Y14 4 X9Y17 4 X14Y17 4 X13Y20 o 2X13Y21
4 3X14Y21 _ 2X14Y22 + X15Y22 _ 2xl8y25 + X19Y25 + X18Y26

o 2X19Y26 o X19Y29 +X23Y34 .

This zeta function satisfies the functional equation

21—-17
C1<V]f3><zf\/f?np(s)| =P ! S<1\</]13><ZM37P(5) .

p—p~1t

The corresponding global zeta function has abscissa of convergence ayy, . v, =4

2.11 Lie Rings with Large Abelian Ideals

As we saw in Sect. 2.6, Voll has calculated (5 (s) and Cé,“p(5> for all n > 2.
The Lie rings G,, have an abelian ideal of corank 1 (and thus of infinite index),
and it is likely that this large ideal makes it easier to get a grasp on the
structure of the lattices of ideals/subrings. Indeed the Lie rings M,, have this
property too. In this section we consider some further Lie rings of nilpotency
class 3 with this property.

Theorem 2.31 ([64]). Let the Lie ring L) have presentation
(z, w1, wa, 1, T2, Y1, Y2 : [2,w1] = 21, [z, wa] = T2, [2,21] = Y1, [2, 2] = y2) .
Then
(g0 (8) = €22 p(8)Gp(3s — 4)¢p(4s — 5)Cy(5s — 6)Cy (65 — 7)¢y(7s — 6)

x (p(85 — 10)¢p(9s — 12)¢p(11s — 12)(,(4s — 4)
X Wi, p7")
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where Wﬁm) (X,Y) is
1+ X°Y? +2x'y* — X5 4 XOV® 4+ X0y — XOv7 + Xv7 — XOy®
+ox8Y8 _ x8y9 _ x10y9 _ x9y 10 4 x12y10 _ 10y 1l x12y-11
_ xByl12 _ xl12y13 _ xldy13 _ 9x16y13 _ 9x 15y 14 _ yldy 15 _ x16y/15
_ XBy15 L 9x16y16 _ x18y16 _ x19y/16 _ x 18y 17 _ ox20y17 4 y18y/18
4 X20y18 _ x2ly18 o x19y19 | x20y19 | x22y19 4 9 x20y720 | x22y20
+X2Y?l 4 xRy _gx24y2l | x22y22 | x24y22 4 2622 4 o y25y23
4 ox2y24 | x26y24 4 28y 2Ty (2826 L x30y26  x28y27
4+ XB3Ly27 4 X80y 28 | x32y28 _ 9 yB32y29 | x34y29 | x3ly30 4 x34y30
_ X34yl x34yB2 | x36y32 9 x36y33 _ 3Ty 34 x40y87

This zeta function satisfies the functional equation

21—-15
CE(&S),p(S) =P S<L<](3,3),p(s) .

p—p~t
The corresponding global zeta function has abscissa of convergence af(s,g) =3

The second author also considered what happens when you delete generator
yo from the presentation above:

Theorem 2.32 ([64]). Let L3y be given by the presentation
(z,w1,we, 21,22,y : [2,w1] = 21, [2, w2] = 72, [2,11] = y) .
Then
CLQ(M),;;(S) = (22 p(8)Cp(35 — 4)(p(4s — 4)(p(55 — 5)(p(5s — 6)(p (65 — 6)
X (p(9s — 11)WE3‘2) (p,p~%),
where WL<](3,2>(X’ Y) is
14+ X3 — XY — XOV7 — XTY" + XBY7 — X®y® — Xy — X'0y?
+X10Y10 _ Xllylo +X10Y11 _ X11Y11 +X11Y12 _ X14Y12 +X13Y13
—X14Y13 +X14y14 +X15Y14 +X17Y16 —|—X18Y17—|—X20Y18 _X21y21
_ X24Y23
and
CLS(C,,z),p(S) = (28 p(5)Gp(25 — 4)Gp(25 — 5)%¢p(3s — T)(p(3s — 8)(p(4s — 10)
X Gp(5s = 12)WE,  (pp™")
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where WLS(”) (X,Y) is

1+ X2+ X'Y2 - XY3 — X3 4+ XOY® + XTY? —2X7v* — 28
4+ XOV5 _ox10yt _gxllys 4 xly6 | x12y6 _ 9x13y6 _ 3x14y6

L XBYT ¢ xWUyT { 3x 15y T _9x16yT _ x1TyT 4 x16y8 4 x1Tys

L oxI8Y® L ox18y9 L 9x2ly 9 | oy 21y 10 | x22y10 4 x23y/10 _ y22y11
_oX 2yl 4 gx 2yl | y25y 1l y26y 1l 3x25y12 o x26y12

L X2TY12 L x28y12 gy 28y13 9 y20y13 | y30y13 _ o x3lyld
_ox32yl4 | xB2y15 4 x33y15 _ y34yls 3515 | x35y/16 4 y36y/16
+ X378

The local zeta function counting all subrings satisfies the functional equation

< 15—6s ~<
Cf](zg)m(s) P =p 9Cl?(s,zpp(s) :

However, the local ideal zeta function satisfies no such functional equation.

The corresponding global zeta functions have abscissa of convergence aj =
(3,2)

pfl

aiw) = 3, with CLS(M) (s) having a quadruple pole at s = 3.

The zeta function counting ideals was the first calculated which satisfied no
functional equation of the form (2.7).

A couple of Lie rings similar to L3 o) were also considered. Their ideal
zeta functions also satisfy no functional equation of the form seen numerous
times before.

Theorem 2.33.

G 11 () = G (8)Go(35 — )G (35 — )G, (45 — 6)G, (55 — )G (55 — 10)

% (65 — T)Cp(65 — 10)C,(Ts — 8)Cp(Ts — 12)¢,(8s — 12)
% Cp(9s — 14)¢, (95 — 17)¢, (115 — 19)¢,(13s — 20)

x (135 ~ B)Witp,, (0.07°)

for some polynomial W?ij(m) (X,Y) of degrees 150 in X and 97 in' Y. This

local zeta function satisfies no functional equation. The corresponding global
zeta function has abscissa of convergence a7<-]LxL(3 o = 5

Theorem 2.34. Let the Lie ring L3 2,2) have presentation

Z,W| = X1, |2, wa| =T
<z,w1,w2,w3,x17x2,x3,y: [7 1] 17[7 2} 2’>~

[z, w3] = x3,[2,21] =y
Then
G2 nl5) = Gt p(5)Go (25 — 3)Gp (35 — 6)Gy(55 — T)C, (55 — 10)Gy(65 — 10)
% Cp(75 — 12)C, (85 — 12)¢, (95 — 17)¢p (135 — 23)
X W0 ®P77)
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where WL<](3 . (X,Y) is given in Appendixz A on p. 181. This local zeta func-
tion satisfies no functional equation. The corresponding global zeta function
has abscissa of convergence af(s oy = 4

2.12 F,

On p. 40 we considered the zeta functions of the free class-2 nilpotent Lie rings.
The second author has added the zeta functions of the class-3, 2-generator
nilpotent Lie ring.

Theorem 2.35 ([64]). Let the Lie ring Fs o have presentation

<$1,$2,y1,21732 : [3317962] = Y1, [331791} = z1, [33272/1] = Z2> .

Then
B, (5) = Gon (9G35 — D)0y (4 — 3)Gy (55 — 4G, (Ts — YW, (0 p™)
where Wz (X,Y) is

14 X2y* = X2y5 _ x4yT _ X6y9 _ xSyl L x8yl12 4 xl0yl6
and

CFyap(8) = C22p(8)Gp(25 — B)Gp(25 — )G (s — 6)G (45 — 8) G (5s — 8)
X Gp(5s — OWE (0,0~ ,

where Wé L(X,Y) s

L+ X2Y2 4+ X°Y2 = XPY2 4+ XYP 4 2X0Y? - 2X0Y !+ 2XTY ! - 2XTY?
_9ox8y5 _ x9y5 _ x10y6 _ xlly6 _ x10y7 _ x13y7 _ 9xl2y8

_ X1By8 _ xlys _ x15y8 | x13y9 _ x16y9 4 x14y10 4 x15y10
JrX—l(iylo + 2X17Y10 Jr)(16Y11 JrAXIE)Yll Jr)(18}/12 JrX—19Ym JrX—ZOYm
+ 2X21Y13 + 2X22Y13 _ 2X22y14 + 2X24Y14 _ 2X24Y15 _ X25Y15

4 X26y15 _ x26y16 _ x2Ty 16 2918

These zeta functions satisfy the functional equations
10—10
<§3,2,P(8)‘p—>p*1 =P S<§3,2,P(S) ’

< _ 10—5s ~<
<F3,2,p(8)‘p_)p,1 =-p SCF3.27;D(S) :

The corresponding global zeta functions have abscissa of convergence a§3 , =2,

ag,, =5/2.
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Theorem 2.36 ([64]).
4;3,2><27p(5) = (z3,p(8)(p(35 — 3)(p(4s — 4)(p(55 — 5)(p(5s — 6)(p(Ts — 8)
X W}«fflgxz(%p_s) ,
where Wi 7(X,Y) is
1+ X374 - X3y5 _ xOy7 _ x8y9 _ xUyll 4 xlyl2 | xliyl6
This zeta function satisfies the functional equation

15—11¢
C;&QXZ,[)(S) et =p QCE&Q xZ,p(S) .

The corresponding global zeta function has abscissa of convergence a;'S ,x7 =3

2.13 The Maximal Class Lie Rings M, and Fily

We saw above that M3 is in some sense the simplest Lie ring of nilpotency
class 3. The Lie ring My can be defined in a similar way, and in some sense it
is the simplest of nilpotency class 4. The M, family of Lie rings are filiform,
in that the nilpotency class is maximal given the rank.

Theorem 2.37 ([57]). Let the Lie ring My have presentation
<z,x17m2,x3, Tyq : [Za xl} = T2, [vaZ] = 3, [va?)] = £C4> .

Then

th,p(s) = (z2 p(8)(p(3s — 2)(p(58 — 2)(p(7s — 4)(p(8s — 5)(p(9s — 6)
X Cp(11s — 6)(p(125 — 7)(p (65 — 3) ' W37 (p,p™°)

where Wy (X,Y) is
14+ X2Y* = XPY° + XPY° - X2V 42XV — XY — X°y? 4 X0y
_oXPyll _ xTyl13 _ x8y13 4 xTyl4 _ x8yl4 _ x8yls _ x9yl5
4+ X9y16 _ x9y17T _ x 10y 17 | ox 9y 18 _ x10y18 | 10y 19 o xlly19
JrAXPIOYQO JrlelyQO —XHYQI Jrlely22 JrAXv12Y22 JrX—12Yz’> o X13Y23
+X12Y24 —|—X13Y24 —|—2X15Y26 _ X14Y27 +X15Y28 +X17y30 _ 2X17Y31
—|—X18Y31 o X17Y32 —|—X18Y32 o X18Y33 o X20Y37

and

Cirap(8) = Ca2 p(8)Cp(25 — 3)¢p(25 — 4)(p(35 — 6)Cp(4s — 7)¢p(4s — 8)
X Cp(7s — 12)1/1/]\344 (p,p %),
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where WI%L; (X,Y) is

14+ X272 4 X3Y2 — X3Y3 + X*4y3 4 2X5Y3 - 2XPv* + XTy?* —2X7Y?°

= XPYP 4 XOYP - 2X0Y 0 —2X10VO — XY 4 XOVT - 2X YT

. X13y7 _|_X13Y8 . X14y8 o X16Y9 +X15Y10 +X17Y11 _ Xl8y11

+X18Y12 + 2X19Y12 o X21Y12 +X2OY13 + 2X21Y13 4 2X22Y13

_ X22Y14 4 X23Y14 4 2x24yl4 _ X24Y15 + 2X26Y15 _ 2X26Y16

_ X27Y16 +X28Y16 _ X28Y17 _ X29y17 _ X31Y19 .
These zeta functions satisfy the functional equations

()] =G ()

p—p~1t
< —5s ~<
CM4’p(S) = _plo 5b<]\7447p(s> :

p—p~1t
The corresponding global zeta functions have abscissa of convergence a]<\]44 =2,
ayy, = 5/2.
Theorem 2.38 ([64]).

Cataxz,p(8) = Gz3,p(8)Gp(35 — 3)p(55 — 3) (75 — 5)Cp(85 — 7)Cp(95 — 8)

x Gp(11s — 8)(p(125 — 9)(y(6s — 4) T Wi z(p,p™°)

where Wyi (X, Y) is
1+ X%Yv* — X3Y5 4+ XYP — XPy0 4 2X1Y0 — X*'yT — XTY? + xSy!0
- 2X7Y11 o X9Y13 - X11Y13 4 X10Y14 - X11Y14 o X11Y15 o X12Y15
+ X12Y16 _ X12yl7 _ X13Y17 + 2X12Y18 _ X13Y18 + X14Y19 _ 2X15Y19
+X14Y20 +X15Y20 o X15Y21 +X15Y22 +X16Y22 +X16Y23 o X17Y23
—|—X16Y24 —|—X18Y24 +2X20y26 _ X19Y27 —|—X20Y28 —|—X23Y30 _ 2X23Y31
4 X24Y31 _ X23Y32 4 X24Y32 _ X24Y33 _ X27Y37 .

This zeta function satisfies the functional equation

CJ\</][4><Z,p(3) :p15_158C1\</]I4><Z,p(5) .

p—p~!
The corresponding global zeta function has abscissa of convergence afhxz =3.
M, is not the only filiform Lie ring of nilpotency class 4, up to isomorphism:

Theorem 2.39 ([64]). Let the Lie ring Fily have presentation

(2,21, @0, 3,4 : [2,21) = T, [2, 22] = 23, [2, 23] = x4, [w1, T2] = 74) .
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Then

C1§114,p(5) = (22 p(8)Cp(3s — 2)¢p(55 — 2)(p(7s — 4)(p(8s — 5)(p(9s — 6)
X (p(10s — 6)¢, (125 — )Wy (p,p™°) ,

where W (X,Y) is

1+ X2y4 - X2y5 4 X3Y5 — X2y6 4 x3y6 _ x3y7 — x5y9 _ x5y10

_ XSyl x6yl12 4 y6y13 _ x Tyl _ x8yl13 _ ySyl4 y xTyls

L X8Y15 _ox0y 15 o x8y17 4 x Oy 17 _ xl0y17 | x9y19 4 y10y19
LoX1Y20 Loy lly2l | xlly22 | 9 yl2y22 4 ox13y23  x13y24
LoXMy24 _ x13y25 4 yldy25 | y15y25 oy 14y 27 | o y15y27
_ox15y28 | x16y28 _ x15y29  y16y29 | x17y20  ox17y30 4 x18y/30
_ X8yl x18y32  y18y33 20335 | 20336 _ y21y36 | y20y37

_ X21yBT | x2ly 38y x23yd2

This local zeta function satisfies no functional equation. The corresponding
global zeta function has abscissa of convergence a§i14 =2.

Despite repeated efforts, we have been unable to calculate Céh,p(s). My is the
only Lie ring of nilpotency class 4 whose zeta function counting all subrings
we have calculated.

Theorem 2.40 ([64]).

CFqil4 ><Z,p<5> = (28 p(8)Cp(35 — 3)(p(55 — 3)(p(Ts = 5)(p(8s — T)(p(9s — 8)
X (p(10s — 8)(p(125 — W), (0,0 ™°)

where Wi 5 (X,Y) is

1+ X34 - X3Y5 £ X4y5 — X3yS 4+ x4yS — x4yT — xTy? — xTy10
X8yl x8yl2 4 y8yl13 _ x93 _ xlly13  xllyld 4 y10y15

L XUY1s _ox12y15 | Iy 4 w1297 yI3yT 4 y12y19 4 yldylo
4+ X15y20 | ox 15y 21 _ x15y22 4 ox16y22 | y1Ty23 | y18y23  y18y24
LoX19y24 _ xI8y25 4 y19y25 | y20y25 o y10y27 | o y20y27
_ox20y28 | x2y28 _ x20y29 | y22y29 | 23320 ox23y30 4 x24y-30
O X2AyBl _ x24y32 | y24y33 | x2Ty35 | x27y36 _ y28y/36 | y2Tys37

_ XYIT | x28y8 | y3ly42

This zeta function satisfies no functional equation. The corresponding global
zeta function has abscissa of convergence a§i14><Z =3.
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2.14 Nilpotent Lie Algebras of Dimension < 6

A complete classification of the nilpotent Lie algebras over R of dimension
< 6 is given in [44].2 We cannot hope to classify nilpotent Lie rings additively
isomorphic to Z% for some d < 6, but we can at least use a classification over
R to produce Lie rings over Z which are guaranteed be non-isomorphic. For
each Lie algebra, Magnin gives an R-basis and a list of nonzero Lie brackets
of the basis elements. The structure constants of each nilpotent Lie algebra
L listed in [44] are (fortunately) all in Z. Hence we can form Lie rings over Z
(or Z,) by taking the Z-span (or Z,-span) of the basis given.?

This approach has led to many new calculations of ideal zeta functions of
Lie rings of rank 6, and some others arising from a Lie ring of rank 5:

Theorem 2.41 ([64]). Let the Lie ring gs 3 have presentation
(T1, %2, T3, T4, T5 : [1, T2] = @4, [21, T4] = @5, [2, 23] = @5) .

Then

;,MZ"',IJ(S) = (g3 p(5)(p(3s — (r +3))(p(5s — (r +4)) ,
ggs,s,p(s) = <Z3,p(5)Cp(25 - 4)Cp(35 — 4)<p(35 — G)Cp(ﬁs — 11)%(65 —12)
X W (0:07°)

95,3
where Wgﬁdd (X,Y) is
1+ X%Y? = X'W3 4 XPY? — XOy* + XTY* + X8v* - 2XTy? — 2X8Y?®
- XY® 4+ X8y 4+ XOYO + XOYO — xW0yT —oxMyT —2x Py 4 xMY®
+X12Y8 _ X14Y8 _ X15Y8 —|—X15Y10 —|—X16Y10 _Xlsle —X19Y10
+ 2X18Y11 4 2X19Y11 +X20Y11 _ X20Y12 _ X21y12 _ X22y12 +X21Y13
=+ 2X22y13 4 2X23Y13 _ X22Y14 _ X23Y14 4 X25Y14 _ X25Y15 4 X26Y15
_ X27Ty16 _ x30y18

These zeta functions satisfy the functional equations

< 1y 5, (TP = (r411)s <
95,3><ZT7P( )’pﬂp,l 7( 1) p( 2 ) 95,3><Z7‘7p( ) ’
< __10—55,<
)] = TG )
: ; ; -
TiLe corresponding global zeta functions have abscissa of convergence ag, . =
gy 3 = 3.

% The classification was first given in [46], but we refer to [44] as this article is likely
to be more accessible.

3 We have permuted some of the bases of the Lie algebras from [44]; the bases we
give are those that make the calculations of the zeta functions easiest.
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Theorem 2.42.
Cﬁxg&s,p(s) = (25 p(8)(p(3s — 5)2<p(53 - 6)2<p(73 = T)¢p(5s — 5)_1
x (p(Ts —6)7 1.

This zeta function satisfies the functional equation

28—16
CSXBS,S,P(S) pop-1 =pr SCSX%,B,P(S) :

The corresponding global zeta function has abscissa of convergence aﬁx% ,=0.

Theorem 2.43.

ngsxgw’p(s) = (25 p(5)(p(35 — 6)(p(3s — 7)(p(5s — T)(p(Bs — 8)(p(5s — 12)
% Cp(75 — 9)Cp(Ts — 14)¢,(9s — 15)¢, (115 — 16)
X ngxgs,g(p’p_s) ’

where ng,xgs 3(X,Y) is given in Appendix A on p. 182. This zeta function
satisfies the functional equation

45—19
ngs ng,sap(s) =Pr SCQ<]3><95,37P(8) '

p—p~!
The corresponding global function has abscissa of convergence aégxgr , = 6.

We write gg,, for a Lie ring whose presentation is taken from that of the
nth Lie algebra in the list in [44]. We have already seen several examples of
rank 6, go,1 = L(3,2), 96,3 = F2.3, 86,4 = Fh3/(2) - Z and ge 5 = Us(R2) where
Ry is the ring of integers of a quadratic number field. g o = M5, whose local
zeta functions we have been unable to calculate.

Theorem 2.44 ([64]). Let the Lie ring g6 have presentation

<$1, -, T6t [331,3?2] = T4, [1‘171‘3] = Ts5, [.%‘1,3)4] = Te, [.’132,$3] = x6> .

Then

Q;,G’p(s) = CZB,p(S)CP(?’S - 4)Cp(53 - 5)<p(55 - G)Cp(63 - 6)Cp(73 - 8)
X Cp(gs - 11)Wg<e]~,76 (p’p—s) )

where W3 (X,Y) is

96,6
1 +X3Y3 o X6Y7 o X8Y8 o ngg . 2X11Y10 o X14Y12 +X14Y14
_ X15Y14 +X15Y15 +X17Y16 +X17Y17 +X19Y17 +X2OY19 +X21Y19
_ X21Y20 +X22Y20 _ X25Y24 o X28Y26 )

This local zeta function satisfies no functional equation. The corresponding

) ) a9
global zeta function has abscissa of convergence ag, & = 3.
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Theorem 2.45 ([64]). Let the Lie ring ge 7 have presentation
(@1, 26 ¢ [21, 23] = 24, [21, 24] = @5, [22, 3] = w6)

Then

o p(8) = (28 p(5)Cp(3s — 4)¢p(4s — 3)(p (55 — 5)¢p(5s — 6)¢, (65 — 6)
X C])(7S - 7)Wg<(];77(p7pis) 5

where W2 (X)Y) is

g6,7
1+X3y3 o X3y5 o 2X6Y7 o X7Y8 o X9Y9 o XlOle +X9Y11 o X10Y11
+ 2X10Y12 +X12Y14 +X13Y14 +X13Y15 +X16Y16 _ X16Y19 _ X19y21 .

This local zeta function satisfies no functional equation. The corresponding

. . P
global zeta function has abscissa of convergence ag, . = 3.

Theorem 2.46 ([64]). Let the Lie ring ge s have presentation
(T1,. ., w6 1 [T1, 2] = @3 + T4, [21, T3] = T35, [02, T4] = W6)

Then

o p(8) = (28 p(5)Cp(3s — 3)Cp(4s — 3)(p(5s — 5) (65 — 6)¢p(7s — 7)
X (p(8s — 8)(1 erl*S)ng&(p,p*S) ,

where W2 (X,Y) is

g6,8
1= XY + X°Y? - X°Y? + X7 + Xy - 2X°Y° — XOYP 4 2xtY°
+ X0Y% —2X°YT —2XOYT 4+ 3XOV® —4XTY? +4X°Y10 —axy !
_ XlOyll +X9Y12 —|—4X10Y12 _ 4X11Y13 +4X12Y14 _ 3X13Y15
+ 2X13Y16 + 2X14Y16 _ X13Y17 _ 2X15Y17 + X14Y18 + 2X16Y18
_ XBy19 _ x16y19 | x16y20 _ x17y21 | x18y22  x19y23

This zeta function satisfies the functional equation

Coos.(5)

_ 15—-12s 4
p—>p_1 _p é<g6,8’p(s) :

The corresponding global zeta function has abscissa of convergence a2 = 3.

96,8

Theorem 2.47 ([64]). Let the Lie ring ge.9 have presentation

(1, .. @6 ¢ [T, 2] = @4, [w1, w4] = @5, [1, W3] = @6, [w2, 24] = w6) .
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Then
Conop(8) = 23 p(5)Cp(55 — 5)Cp(65 — 6)(p(85 — T)(p(85 — 8)¢p(14s — 15)
x Wee (p,07°)

where W3 (X,Y) is

96,9
1+ X373 4+ X3V — X3Y° + XY° 4+ X076 + XTy7 — XOy® — XTY?
+X9Y9 +X10Y10 o X9Y11 o X10Y11 +X11Y11 o X10Y12 o X11Y12
+X12Y12 _ X11Y13 +X13Y13 _ X12Y14 _ X13Y14 _ X13Y15 +X13Y16
—X14Y16 —X15Y16 +X16Y16 —X16Y17 _ X16Y18 _ X17Y18 +X16y19
_ X18Y19 +X17Y20 _ X18Y20 _ X19Y20 +X18Y21 _ X19Y21 —X20Y21
+X19Y22 +X20Y23 _ X22Y23 _ X23Y24 +X22Y25 +X23Y26 +X25Y27
o X26y27 +X26Y28 +X26Y29 +X29Y32 )

This zeta function satisfies the functional equation
< _ 15—-12s 4
CQG,&)J’(S) pop1 =p Cgs,mp(s) :

; : ; a
The corresponding global zeta function has abscissa of convergence Qg o = 3-

Theorem 2.48 ([64]). Let v € Z\ {0, 1} be a squarefree integer. Let the Lie
ring g¢,10(7y) have presentation

P o o [T T2 = @4 (w1, 24] = w6, [41, 23] = s,
Ly 6 [m2,$3]=$6,[$2,$4] 2041'54'5{136 ’
where
oy + g = v if vy=2,3 (mod 4),
s(y=Dazs+a6 ify=1 (mod4).

Then, if p is inert in Q(\/7),
C;]a,m(v),p(s) = <Z3,p<5>Cp(35 - 3)@0(55 - 4)Cp(53 - 5>Cp(65 —6)
X (85 — 8)(p(8s — 6)71¢,(10s — 8) 71 .

If p splits in Q(\/7) and either

e y=1 (mod4) andpfi(y—1), or
e ~v#1 (mod4),

then
C;s,m(v),p(s) = (25 p(5)p(3s — 3)(p(4s — 3)(p(5s — 5)(p(65 — 6)(p(7Ts — 7)
X (p(8s = 8)(1+p'*)Wei [ (p,p™°)
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where W2 (X,Y) is given above on p. 57. For all but finitely many primes,

96,8
the local zeta function satisfies the functional equation

< 15712s<<1 ( ) .

gs,m(w),p(s) p—p—1 =P g6.10(7).p\5

Theorem 2.49 ([64]). Let the Lie ring ge 12 have presentation

(@1,... @6 : [T1, 23] = @5, [21, 5] = @6, [w2, T4] = w6) -

Then

Con 1ap(8) = Cza p(8)Gp(3s — 4)(p(65 — 4)Gp(Ts — 5)Cp(Ts —4) 7",
oo (8) = Cza p(8)Gp(25 — 5)Cp(35 — 5)Cp(35 — 6)Cp (45 — 8)¢p(4s — 9)
x Cp(5s — 12)(, (65 — 12)¢, (65 — 13)(,(Ts — 16)¢p(s — 2) 7
x W L (0,07°)

where Wg%m (X,Y) is given in Appendiz A on p. 183. These zeta functions
satisfy the functional equations

< _ . 15—13s
<96,12,P(8)‘pap,1 =p che,lzyp(s) ’

< _ 15-6s <
Cg:i,l2vp(s)‘p4>p,1 =p 5496,12117(8) .

The corresponding global zeta functions have abscissa of convergence ozgqs b=

< _
Ogg1p = 4.

It can easily be seen that ge,12 is the direct product with central amalgamation
of H with Mj.

Theorem 2.50.

C’:](XQGWIQ,])(S) = CZG,p(S)Cp(?’S - 6)2Cp(55 - 7)Cp(63 - 6)(10(75 - 7)§p(85 - 7)
X Cp(gs - 8)(@(118 - 14)W7j><96,12 (papis) )
where Wi, o (X.Y) is

1- X% — X0 — XO7® 4+ X0y —2X7y? + X PPyt —ax Byt
+2X13y12 _ X14Y12 4 2X13Y13 _ X14Y13 +X14Y14 4 2X13y15

_ Xl4y15 +X14y16 + X20Y16 +X14y17 +X20y18 +X20Y19 _ 2X19Y20
4 2X21y20 _ x20y21 _ x20y22 | x26y23 20324 x26y24 | x26y25
_ 99Xy _ x26y26 | x26y27 _ 9x 27y 27 | x26y28 _ 9 x27y28
—|—2X27Y29 _ X28Y29 4 2X33Y31 _ X34Y31 +X34Y32 +X34Y33 +X34Y35
_ x40y40
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This zeta function satisfies the functional equation

36—18:
Cﬁx%,mm(s) =P SC;]‘X%,H,P(S) .

p—p~1t

The corresponding global zeta function has abscissa of convergence aﬁX% =0
Theorem 2.51 ([64]). Let the Lie ring g 13 have presentation

<fL'1,. Tt [fL'l,.TQ] = Ts5, [xla‘r?)} = T4, [x17x4] = Tg, [.’I;27.T5] = .’L'6> .

Then

9<f]s,137p(5) = (25 ,p(8)(p(3s — 4)(p (55 — 6)(p (65 — 4) (75 — 5)(p(9s — 8)
X Wae 1, (0:07°)

96,13

where W3 (X,Y) is

96,13
1 +X3Y3 _ X4Y7 _ X7Y9 _ X8Y10 _ X11Y12 +X12Y16 +X15Y19 )

This zeta function satisfies the functional equation

ngfi‘lliap(s) = p157145<9<(]5,137p(3) )

p—p~t

; ; ; a
The corresponding global zeta function has abscissa of convergence Qg 1y = 3

Theorem 2.52 ([64]). Let v € Z be a nonzero integer, and let gg 14(7y) have
presentation

<.’£1, sy Tt [x17x3] = T4, [1’1,‘%4} = Tg, [xg,l’g] = Ts, [IQ,.T{,] - 7x6> .

Then, for all primes p not dividing -,

Cgi,mw),p(s) = CZ“,p(S)Cp(?’S - 3)Cp(33 - 4)€p(55 - 6)(17(63 - 3)Cp(75 —5)
X Cp(6s — 6)_1@7(73 -3)7".

If pt 7, the local zeta function satisfies the functional equation

<<1 15—14s < ( )

96,14(7)717(8) p—p—1 =P 96,14(7),p s

For~ = £1, the corresponding global zeta function has abscissa of convergence

< _
Qg 1a(21) = 3.

The following proposition has a routine proof which we do not repeat.

Proposition 2.53. For v1,v2 # 0, let g6.14(71) and ge14(2) be defined over
any integral domain or field R. Then g¢14(71) = g6,14(72) iff 11 = u?y2 for
some u € R*.
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It can also be shown that the local zeta functions depend only on the power
of p dividing ~y. We therefore have the following

Corollary 2.54. Let v € Z be a nonzero integer. Then ge 14(7) 2 96,14(—7)
< _ /<
but §g6,14(7)(5) = C96,14(7v)(5)'

The classification of six-dimensional Lie algebras has also given rise to
some new calculations in nilpotency class 4. In particular, the second author
found the following:

Theorem 2.55 ([64]). Define the two Lie rings g¢15 and ge17 by the pre-
sentations

[561,335] = Te, [3?2, xs} = Te

[x17$2] = T4, [.’El,l’z}] = s,
[#1,25] = w6, [T2,23) =26 /

_ 1, @] = 25 + 34, [71, 24] = 5,
86,15 = { T1,%2,X3,T4,T5,T6 : )

96,17 = <$1,$27$3,$47$5,$6 :

Then

C;i,151p(8) = C;s,u,p(s) = (23,p(5)Cp(35 — 3)(p(4s — 3)(p(65 — 4)(,(7s = 5)
x (p(9s =)Wyt . (p,p™7) , (2.10)

96,15

where W3 (X,Y) is

96,15
1— X3Y5 +X4Y5 _ X4y7 _ X7Y9 +X7Y11 _ X8Y11 +X11Y16 )

This zeta function satisfies the functional equation

C;‘w,w,P(S) = p15_168CQ<6,157P(8) )

p—p~1t

; ; ; T _
The corresponding global zeta function has abscissa of convergence ag, . = 3.

It follows from the classification [44] that g¢ 15 % g6,17, but an appeal to a
classification is not an enlightening proof. To be sure, we verify

Proposition 2.56. gs 15 and ge,17 are not isomorphic.

Proof. The rank of the centraliser of the derived subring is invariant under iso-
morphism. Firstly, g5 15 = (Y344, ¥s, Ys), which has centraliser (ys, 34, ys, ¥s)-
Secondly, g 17 = (74, 5, Z¢), which is centralised by (r2, 3, 24,5, 76). Thus
96,15 Z 06,17- O

The only other calculation at nilpotency class 4 this classification leads to
is the following:
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Theorem 2.57 ([64]). Let the Lie ring ge 16 have presentation

(@1, 23] = x4, [T1,24] = 5, [21,25] = 336>>

<$1,$2,x3,$47$5,$6 : [x27x3] = x5, [x2’$4] =24

Then
ngfi,167p(s) = CZS,p(*S)Cp(g’S = 3)Cp(55 = 4)(p(65 — 3)(p(7s — 5)(p(Ts — 3)_1 .

This zeta function satisfies the functional equation

< _ 15—17s5 4~
Cgﬁ,lﬁ)p(s) pop1 =Pr 5496,16717(8) '

; ; ; a
The corresponding global zeta function has abscissa of convergence Qg 15 = 3

2.15 Nilpotent Lie Algebras of Dimension 7

The Lie algebras of dimension 7 over algebraically closed fields and R were
first classified successfully by Gong [26]. Once again, the structure constants of
each Lie algebra are all rational integers. This includes the six one-parameter
families, providing we restrict the parameter to Z. Hence we can also use this
classification to obtain presentations of Z-Lie rings of rank 7.

We write gname for the Z-Lie ring corresponding to the Lie algebra with the
label (name) in [26]. For example, gi357r corresponds to (1357F) in [26]. The
digits are the dimensions of the terms in the upper-central series, and the suffix
letter (when shown) distinguishes non-isomorphic Lie algebras with the same
upper-central series dimensions. We have encountered some of these Lie rings
before, in particular g17 = G(3,0), gs7a = Ga, 9378 = T4, gi37a = M3 Xz M3
and goqra = L3 3). Furthermore, some of them arise as direct products with
central amalgamation: g157, @257k, g1457a and gi457p are the direct products
with central amalgamation of H with gs 3, F3 2, M4 and Fily respectively.

We saw above that ge 15 and ge 17 are non-isomorphic yet their ideal zeta
functions are equal. Amongst those calculations in rank 7 we have so far com-
pleted, there are no less than seven pairs of normally isospectral Lie rings. We
do not provide proof that the Lie rings are non-isomorphic, instead referring
the curious reader to [26].

Theorem 2.58. Let the Lie ring go7a have presentation

(1, 9,23, T4, T5, Te, Ty © [T1, Ta] = Tg, [X1, 4] = @7, [X3, 5] = 27) .
Then

Carran(8) = Cz5,p(8)Gp(35 = 5)Cp(55 — 6)Gp(Ts — 10)¢p(8s — 10) 7" .
This zeta function satisfies the functional equation

< _ 21—12s <
C927A,p(s)| =-p SCQQ’?AJ’(S) :

The corresponding global zeta function has abscissa of convergence a;m =5.

p—p~1t
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Theorem 2.59. Let the Lie ring gors have presentation
(X1, . 27 2 [21,22] = T6, [T1, 5] = @7, [X2, T3] = @7, [03, 24] = T6) .
Then
(1o (8) = Goo.p ()G (55 — )G (55 — 6)y (75 — 10)Gy(105 — 10)

This zeta function satisfies the functional equation

g (8], = PTG (5) -

The corresponding global zeta function has abscissa of convergence a§27B =5.
Theorem 2.60. Let the Lie ring gsrc have presentation

(X1, 27 ¢ [21,22] = @5, T2, 23] = @6, [¥2, 4] = 7, [v3, 24] = T5) .
Then €3, o(5) = G, (5) (v 45).
Theorem 2.61. Let the Lie Ting gs7p have presentation

(X1, .. 27 (21, 20] = @5, |21, 23] = 7, [0, 4] = 27, [23, 24] = T6) .
Then
(oo n(5) = Gt p(5)Go(35 — 5)Gy (55 — 6)G (65 — 10), (75 — 12WE (.5~
where W (X,Y) is

1 +X4Y3 —|—X8Y6 —|—X9Y6 _ X9Y8 _ XlOYS o X14Y11 _ X18Y14 )
This zeta function satisfies the functional equation

< _ 21—11s -
Cg37D7p(s)|p~>p’1 =P ’ Q37D7P(S) :

: ; ; a
The corresponding global zeta function has abscissa of convergence ag, =~ = 4.

Theorem 2.62. Let the Lie ring g1378 have presentation

[xlvxZ] = Ts, [15171'5] =7, [$2,$4] =x7, >

<£C1,.CC271'3,174,1‘5,I6,SC7 : [xS 954] = x¢ [1'3 ;176] = X7
b b b

Then Cismyl)(s) = Cf/fsszsvp(S) (p' 48}

Theorem 2.63. Let the Lie rings gis7c and gi37p have presentations

[x1, 2] = x5, [T1, 4] = 26, [21, 6] = 27,
[x2, 73] = w6, [23, 75] = —27 ’

[, 2] = x5, [X1, 24] = we, [X1, 26] = 27,
T2, 23] = Te, [T2, ¥4] = 27, [T3,75] = —x7 /

gi137c = <$17-~-,JC7 :

g137D = <$17~~~7$C71 [
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Then

<g<]137c,p(s) = <;37D,p(8> = CZ“,p(S)Cp(?’S - 4)<p(53 - 5)Cp(65 - 9)Cp(7s - 4)
X Cp(gs — G)CP(IIS — 10)@,(125 — 10)
X (p(16s —1L)WI _ (p,p~*),

g137C

where WI__ (X,Y) is

g137C
1— X484 X5y® _ XO0y® _ X5y9 _ X0yl _ x10y12 | xoy13 _ x10y13
4+ X1By15 _ x My 15 _ y10y16 | y14y 16 x15y16 4 y10y/17 _ ylly17
4 XIBY1T | x4y 19 y15y19 | x19y19 | x15y20 4 x19y20 4 yldy2l
Lox15y2l _ xl6y21 | y15y22 | yl6y22 | x18y23 | 19323 y20y23
_XIBy24 _ x19y24 | 332024 | y15y25 | x23y26 | 2426 4 y19y27
_ X19y28 4 x20y28 | y21y28 | 23328 | x24y28 | y25y28 | y25y20
_ X20y30 4 x21y30 | y20y/31  gy24y32 | 25332 | x26y732 | y24y/33
_ X25y33 _ x26y33 | y28y34 | 20334 | 2835 y20y/35  y30y35
_ X25y36 _ x29y36 _ x25y37 | y29y37 _ x30y37 _ y20y/39 | x33y-39
_ X3Ay39 4 Y2940 _ y30y40 | x34yd0 | xB0yAl  yBlyAl | y3dysds
_ X3OY43 4 x3dyAd | yB5yAs | B0yAT | 35y 48 | y39y48 | yrd0yrds
_ x44y56
This zeta function satisfies the functional equation

4 _ 21-17s <
C9137C,P(8)| 1 =P 3<9137C,p(s) .

; ; ; a
The corresponding global zeta function has abscissa of convergence ag, .. = 4.

p—p

Theorem 2.64. Let the Lie Tings gia7a and gr47s have presentations

grara = ( o1 Ty (71, 2] = @4, [11, 23] = 25, [21, w6] = 7,
o [z2, 5]*$7,[$37$4]79€7 '
[T1,T2] = 74, [xl 3] = @5, [71, 24] = 27,
=(xy,...,T7: .
g147B < 1 7 [, 26] = x7, [x3, 75 = @7
Then
C;47A,p(s) = <;47B,p(s) = CZ4,17(S)CP(3S - 4>CP(3S - 5)(17(55 - 8)CP(78 - 6)
x (p(6s —8)71 .
This zeta function satisfies the functional equation
21—16s
g<]147A1p(S)|p~>p71 =P C9147A7p(5)
The corresponding global zeta function has abscissa of convergence afmm =4.
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Theorem 2.65. Let g157 have presentation
(X1, . 27 2 |21, 22] = 23, |21, 23] = 7, [0, T4] = 7, [25, 26] = T7) .
Then
Cararp(8) = C25,p(8)Gp(3s — 5)Gp(Ts — 6) .
This zeta function satisfies the functional equation

< _ 21—15s <
<9157A7P(s)| =-p S<9157A7P(8) :

The corresponding global zeta function has abscissa of convergence 0494157 =5.

p—p~1t

Theorem 2.66. Let the Lie ring gosrs have presentation
(@1, 27 ¢ [21, 2] = 4, [0, 23] = @5, [11, 24] = w6, [X3, 5] = 27) .

Then

;47]371)(5) = (23 ,p(8)(p(3s — 4)(p(4s — 3)(p(5s — 5)(p(5s — 6)(p(65 — 5)
X (p(6s — 6)Cp(Ts — 6)Cp(7s — 7)Cp(8s — T)(p(8s — 8)
x (p(9s — 10)¢p(9s — 11)¢,(10s — 9)¢,(10s — 11)¢,(11s — 10)
x Cp(11s — 12)¢,p (125 — 12)¢, (135 — 13)¢p(s — 1) 72
X Gp(25 = 2) T Wi, L (0.0 7%)

92478

for some polynomial Wy, (X,Y) of degrees 123 in X and 128 in' Y. This
zeta function satisfies the functional equation

< _ 21—15s <
CG247B m(s) | =-p SCQQ47B,P(S) :

The corresponding global zeta function has abscissa of convergence a§2473 =3.

p—p~1t

Theorem 2.67. Let the Lie rings gas7a and gosrc have presentations

g257A = <$17 sy L7t [3?17562] = 3, [331,5103] = T¢, [5617335] = 7, [3?2756‘4] = iCG) s
gos57C = <5U17 sy 7l [Sﬂl,xz] = I3, [$1,$3] = Tg, [3627554] = Te¢, [562,305] = $7> .
Then

Corornp(8) = Covorop(8) = Cza p(8)Gp(35 — 5)¢p(5s — 6)¢p(5s — 8)¢p(Ts — 9)
XWe i (0:p™%),

g257A

where

W9<2]57A (va) =1+ X4y3 _ x9%y8 _ x13y10

This zeta function satisfies no functional equation. The corresponding global

X . g
zeta function has abscissa of convergence ag, . = 4.
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Theorem 2.68. Let the Lie ring gos7s have presentation

<-7717 s, It [-Tlax2] = I3, [1‘171‘3] = T¢, [$1,$4] = X7, [-TanS] = -777> .

Then
ggism,p(s) = CZ“JJ(S)CP(?’S - 4)<p(45 - 4)(17(55 - 6)<p(63 - 9)Cp(75 -9)
X (p(8s —10)¢, (125 — 15)I/Vg<2'57]3 (p,p~ %),

where W (X,Y) is

1— X4Y5 +X5Y5 _ 2ng8 _ X9Y9 _ X13Y10 +X13Y11 _ X14Y11

4 2X13Y12 o 2X14Y12 + X14Y13 o X15Y13 + 2X18Y15 o X19Y15
+X18Y16 —|—2X19Y17 _ X20Y17 +X23Y18 _ X22Y19 +X23Y19 _ X23Y20
+ 2X24Y20 +X24Y21 +X28Y22 _ X27Y23 _ X28Y23 + X29Y23 _ 2X28Y24
+X29Y24 _ X33y27 _ x33y28 _ x33y29 _ x38y30 + X37y32 + X42y35
This zeta function satisfies no functional equation. The corresponding global

X . PR
zeta function has abscissa of convergence ag, . = 4.

Theorem 2.69. Let gos7x have presentation

<9U1,.~7$7 : [9017152] = Ts, [xlal"s} = Tg, [$2,$5] = Z7, [9037154] = £U7> .

Then
Cgism,p(s) = CZ4,P(S)CP(38 - 4)Cp<43 - 4)Cp(55 - 5)(}?(65 - 5)Cp<73 —6)
X Cp(7s = 8)¢p(9s = 10) Wy (p,p™°) ,

where W3 (X,Y) is

1 X4 _ X5y7 _ x8y? _ x8y10 | ySyll _ x10y11 | x9y12
Lox12y18 _ x183y18 | yI3yld | ox13y15 | ylayls | xl18y16 | o xl4yl6
LXMylT _ xlayls | x15y18 | 18y 19 | y1Ty20 4 x19320 | x19y21
L x19y22 | x22y24  x28y26 | yx2Tysl

This zeta function satisfies the functional equation

4 _ 21145,
C9257K1p(8)|p—>p_1 =-r C9257}(47(8) :
. . . a
The corresponding global zeta function has abscissa of convergence ag, . = 4.

Theorem 2.70. Let the Lie ring g1357a have presentation

T 7 [$1;Z‘2] = T4, [.1?1,3}4] = s, [xl’xs] = 7,
s (22, 23] = @5, (X2, T6) = @7, (w3, 24] = —27 )
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Then
C;%M’p(s) = (g4 () (35 — 4)(p(55 — 5)(p(7s — 6) .
This zeta function satisfies the functional equation

< _ 21—19s <
CglEEﬂA;P(S) | =P S<91357A7P(S) :

; i i < _
The corresponding global zeta function has abscissa of convergence ag. ... =4.

p—p~t

Theorem 2.71. Let the Lie rings gi3s7s and gi3s7c have presentations

(@1, 22] = x4, [T1,24] = x5, [T1,75] = 27 >
)

fraoms = <a:1, ot (22, x3] = @5, [23, 24] = — 27, [23, 76] = 77

(X1, 22] = x4, [T1, 24] = x5, [T1, 75] = 27,
gi3s7c = { T1,...,27: [z2, 73] = w5, [T2, 4] = 27,
[$3,x4] = =7, [x37m6] =7

Then

Carosrnn () = Cotanne p(8) = €1 p(8)Gp (35 — 4)(p (55 — 5)(p(Ts — 4)(p(95 — 6)
X (p(11s —10)(,(16s — 11)W S _ (p,p~*) ,

913578

where W2 (X,Y) is

913578
1— X4Y8 +X5Y8 o X5Y9 o X9Y11 +X9Y12 o X10Y12 o X10Y16
+X10Y17 _ X11Y17 +X14Y19 _ X15Y19 +X15Y20 +X15y25 +X19y27
o X19Y28 +X21Y28 o X25Y36 )
This zeta function satisfies no functional equation. The corresponding global

X . b =
zeta function has abscissa of convergence ag,, . . = 4.

Theorem 2.72. Let the Lie Tings g13s7c and gi1357u have presentations

[x1, 2] = 23, [T1, 4] = 26, [21,76] = x7>
b

g1357G = <3317 s T [z2, 23] = x5, [T2, T5] = 77

[331,332] = I3, [3317964] = Te, [931,336] = 7,
g1357H = { L1,.-.,%7 : [Iz,il?s] = Ts, [5627935] = Z7, [1‘2@6] = 7,
[5E3,$4} = —I7

Then

C;357G7P(8) = <9<]1357H»p(s) = CZS,P(S)CP(SS - 4)@?(45 - 3)<p(53 - 5)CP(53 - 6)
X (p(6s — 6)(p(7s — 4)¢p(Ts — 7)(p(8s — 5)
X (p(9s — 6)(,(10s — 9)¢p(11s — 8)(, (125 — 10)
x (125 —1)WS2 __ (p,p~?)

81357G

where Wg<1]357c (X,Y) is given in Appendiz A on p. 184. This zeta function
satisfies no functional equation. The corresponding global zeta function has

. < —
abscissa of convergence Ogusre = 3
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Theorem 2.73. Let g1457A have the presentation

(X1, 27 ¢ [21,22] = @5, [21, 5] = @6, [21, T6] = @7, [v3, 24] = T7) .

Then

;457A7p(5) = (22 p(8)Cp(3s — 4)(p(4s — 4)(p(5s — 5)(p(Ts — 4)(,(9s — 6)
X (p(10s — 9)(p(11s — 10)(, (125 — 10)¢,(15s — 10)
X (p(16s —1)Wy, (0, 0™°)

g1457A

where W2 (X,Y) is given in Appendiz A on p. 186. This zeta function

] 91457A . )
satisfies the functional equation

_ 21—18
C;457A;P(8)| =-p SC;457A7P(S) '

p—p~1t

- ; : < _
The corresponding global zeta function has abscissa of convergence ag,, .. =4.

Theorem 2.74. Let g14578 have presentation

T Ty [5171,962] = Ts, [$17$5] = T, [Il,%] = I,
e (w2, 25] = 27, [T3, 24] = 27 '

Then

(3 vrmp(8) = Cza ()G (3s — 4)Gp(4s — 4)Cp(5s — 5)(p(Ts — 4)(p (95 — 6)
X (p(10s — 9)¢p(11s — 10)(,p (125 — 10)¢, (165 — 11)
X W9<1]457B (p’p_s) ’

where W2 (X,Y) is given in Appendiz A on p. 187. This zeta function

914578
satisfies no functional equation. The corresponding global zeta function has

. < —
abscissa Of convergence 0491457]3 = 4.
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Soluble Lie Rings

3.1 Introduction

In this chapter, we present some calculations of zeta functions of soluble (but
non-nilpotent) Lie rings over Z. Since these Lie rings are not nilpotent, the
Mal’cev correspondence cannot be used, and so there is no corresponding %-
group whose local zeta functions we are also calculating. We prove that the
zeta functions we consider behave in a similar fashion to those of nilpotent
Lie rings. What is remarkable is that the uniform behaviour is ‘stronger’ than
that seen with the nilpotent Lie rings.

Theorem 3.1. For n € Ny, let tv,(Z) denote the set of upper-triangular
n X n matrices, with the Lie bracket given by the familiar commutator [x,y] =
xy —yx. For each n € Nyg there exists a univariate rational function R, (Y),
with R, (0) =1, such that

Con@),p(8) = Gn () R (p™)
for all primes p. Furthermore,

in(n MY —L1(2p3 n?—5n s
(2 pOlppmt = (w1 FrDp(E) @bt -ontos a6 (3.0)

for all primes p.
We note in passing the following corollary of Theorem 3.1.

Corollary 3.2. The abscissa of convergence of CS (Z)(s) 18 afl @ =M with
a simple pole at s = n.

Proof. We have that
(o) =G [[Ralp™) -
p

It is well-known that (), (s) has abscissa of convergence n with a simple pole at
s =n. tr1(Z) £ Z, so the result is clear for n =1, and for n > 2, [[, R,.(p™)
converges for R(s) > 1. 0



70 3 Soluble Lie Rings

The proof of Theorem 3.1 is combinatorial. The following result, due to
Stanley [55, Proposition 7.1], plays a crucial part in the proof:

Theorem 3.3. Let E be a system of homogeneous linear equations in k vari-
ables a = (ay,...,ar) with coefficients in Z. Let Sg be the solution set
of E over N and Sg the solution set over Nsg. Let X = (Xi,... , Xk) be
k commuting indeterminates and use the notation X* = X{"' ... X% and
1/X =(1/X1,...,1/Xk). Define the generating functions

FE;X)= ) X*, F(E;X)= ) X*.

acSg acSg
Then F and F are rational functions in X. Furthermore, if Sg # @, then
F(E:1/X) = (—1)*F(B; X) . (3:2)
where k = k(E) is the corank of E.

Stanley’s theorem applies to systems of linear equations, and it can easily be
generalised to linear inequalities:

Corollary 3.4. Let I be a system of k —r homogeneous linear inequalities in
r variables b = (by,...,b,) with coefficients in Z. Let Sy be the solution set
of T over N, and let' Y = (Y1,...,Y,) be r commuting indeterminates. There
exists a system of linear equations B of corank v such that we may write

FILY):= > Y"=F(EX)
beSy

for suitable X = (X1,...,Xy) depending on Y. In particular, F(I;Y) is a
rational function in Y.

Proof. The system of equations E is obtained from I by adding a distinct slack
variable to th