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Preface

This book could have been entitled “Analysis and Geometry.” The authors
are addressing the following issue: Is it possible to perform some harmonic
analysis on a set? Harmonic analysis on groups has a long tradition. Here
we are given a metric set X with a (positive) Borel measure μ and we would
like to construct some algorithms which in the classical setting rely on the
Fourier transformation. Needless to say, the Fourier transformation does not
exist on an arbitrary metric set.

This endeavor is not a revolution. It is a continuation of a line of research
which was initiated, a century ago, with two fundamental papers that I would
like to discuss briefly.

The first paper is the doctoral dissertation of Alfred Haar, which was
submitted at to University of Göttingen in July 1907. At that time it was
known that the Fourier series expansion of a continuous function may diverge
at a given point. Haar wanted to know if this phenomenon happens for every
orthonormal basis of L2[0, 1]. He answered this question by constructing an
orthonormal basis (today known as the Haar basis) with the property that
the expansion (in this basis) of any continuous function uniformly converges
to that function.

Today we know that Haar was the grandfather of wavelets and we also
know that wavelet bases offer a powerful and flexible alternative to Fourier
analysis. Indeed wavelet bases are unconditional bases of most of the func-
tional spaces we are using in analysis. In other words wavelet expansions
offer an improved numerical stability, as compared with Fourier series expan-
sions. One of the goals of this book is to construct wavelets on any metric set
equipped with a positive measure which is compatible with the given metric.
In this setting we do not have Fourier analysis at our disposal.

The second paper which preluded the authors’ endeavor was written in
French by Marcel Riesz in 1926. It is entitled “Sur les fonctions conjuguées.”
The author proves that the Hilbert transform is bounded on Lp(R) when 1 <
p < ∞. The Hilbert transform H is the convolution with 1

π p.v. 1
x , which is a

distribution. In other words H(f)(x) = 1
π p.v.

∫ f(y)
x−y dy. The Fourier transform

v



vi Preface

of H(f) is −i sign(ξ)f̂(ξ) when f̂(ξ) is the Fourier transform of f. Therefore,
H is isometric on L2(R).

The proof given by Riesz relies on the properties of holomorphic functions
F in the unit disc D of the complex plane. The boundary Γ of D is the unit
circle identified to [0, 2π] and functions on Γ can be written as Fourier series.
If a holomorphic function F in D extends to the boundary Γ, then the Fourier
series of F on Γ coincides with its Taylor series. Moreover if u is the real part
of a holomorphic function F and v is the imaginary part, then v is the Hilbert
transform of u on Γ.

To prove his claim, Riesz used the Cauchy formula and the fact that F p

(F raised to the power p) is still holomorphic when p is an integer or when
F has no zero in D. This attack was named “complex methods” by Antoni
Zygmund.

In the 1950s Alberto Calderón and Zygmund discovered a new strategy
for proving Lp estimates. They could not use complex methods anymore
since they were interested in operators acting on L2(Rn). The operators con-
structed by Calderón and Zygmund are the famous pseudo-differential oper-
ators and soon became one of the most powerful tools in partial differential
equations.

Let us sketch the proof of Lp estimates discovered by Calderón and Zyg-
mund. It begins with a lemma which is known as the “Calderón–Zygmund
decomposition.” It says the following. Let f be any function in L1(Rn) and
let λ > 0 be a given threshold. Then f can be split into a sum u + v where
|u| is bounded by λ and belongs to L2(Rn), while v is oscillating and sup-
ported by a set of measure not exceeding C

λ . As noticed by Joseph Doob, the
proof of this lemma is indeed a stopping time argument applied to a dyadic
martingale. On the other hand, the Haar basis yields a martingale expansion.
Calderón and Zygmund argued as follows. They assumed that the distribu-
tional kernel K(x, y) of an operator T satisfies the following conditions: There
exists a constant C such that for every x ∈ R

n and every x′ �= x one has
∫

|y−x|≥2|x′−x|

|K(x′, y) − K(x, y)|dy ≤ C

and there exists a constant C ′ such that for every y ∈ R
n and every y′ �= y

one has ∫

|x−y′|≥2|y−y′|

|K(x, y′) − K(x, y)|dx ≤ C ′. (†)

Calderón and Zygmund proved a remarkable result. If T is bounded on
L2(Rn) and if the distributional kernel K(x, y) of T satisfies (†), then for ev-
ery f in L1(Rn), T (f) belongs to weak L1. There exists a constant C such that
for every positive λ the measure of the set of points x for which |T (f)(x)| > λ

does not exceed C ‖f‖1
λ . This is optimal, since f = δx0(Dirac mass at x0) yields
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T (f)(x) = K(x, x0) which belongs to weak L1 and not to L1. This theorem
follows from the Calderón–Zygmund decomposition. Then the Marcinkiewicz
interpolation theorem implies the required Lp estimates for 1 < p ≤ 2. Apply-
ing the same argument to the adjoint operator T ∗, we obtain the Lp estimates
for 2 ≤ p < ∞.

The arguments which were used in these two steps do not rely on Fourier
methods; therefore, this scheme easily extends to geometrical settings where
the Fourier transformation does not exist. Such generalizations were achieved
by Ronald Coifman and Guido Weiss. They discovered that the “spaces of
homogeneous type” are the metric spaces to which the Calderón–Zygmund
theory extends naturally. A space of homogeneous type is a metric space X
endowed with a positive measure μ which is compatible with the given metric
in a sense which will be detailed in this book. Roughly speaking, the measure
μ(B(x, r)) of a ball centered at x with radius r scales as a power of r.

Coifman and Weiss observed that any bounded operator T : L2(X, dμ) →
L2(X, dμ) whose distributional kernel satisfies (†)—with |x − y′| ≥ 2|y − y′|
replaced by d(x, y′) ≥ 2d(y, y′)—maps L1 into weak L1. That implies Lp

estimates for 1 < p ≤ 2. This can be found in the remarkable book Analyse
Harmonique Non- commutative sur Certains Espaces Homogènes which was
published in 1971.

But this does not tell us how to prove the fundamental L2 estimate. We
will return to this issue after a detour.

In the 1960s Calderón launched an ambitious program. He wanted to free
the pseudo-differential calculus from the unnecessary smoothness assump-
tions which were usually required to obtain commutator estimates. The first
issue he addressed was the following problem. Let A be the pointwise mul-
tiplication by a function A(x) and let T be any pseudo-differential operator
of order 1. Can we find a necessary and sufficient condition on A imply-
ing that all commutators [A, T ] are bounded on L2(Rn)? This is required
for every pseudo-differential operator of order 1 and the particular choices
Tj = ∂

∂xj
, 1 ≤ j ≤ n, show that A must be a Lipschitz function. The other

way around is much more difficult and was proved by Calderón in 1965. The
proof relies on new estimates on the Hardy space H1(R). Calderón proved
that the H1 norm of a holomorphic function F is controlled by the L1 norm
of the Lusin area function of F. This connection between an L2 estimate and
the Hardy space H1 is the most surprising. An explanation will be given by
the T (1) theorem of David and Journé.

This spectacular achievement gave a second life to the theory of Hardy
spaces and Charles Fefferman, in collaboration with Elias Stein, proved that
the dual of H1(Rn) is BMO(Rn). Here H1(Rn) is the real variable version
of the Hardy space H1(R). In other words, H1 is the subspace of L1 which
is defined by n+1 conditions f ∈ L1 and Rjf ∈ L1, where Rj , 1 ≤ j ≤ n, are
the Riesz transforms.

Calderón conjectured that the Cauchy kernel on a Lipschitz curve Γ is
bounded on L2(R). A Lipschitz curve Γ is the graph of a (real-valued)



viii Preface

Lipschitz function A. The curve Γ admits a parameterization given by
z(x) = x + iA(x),−∞ < x < ∞, and the Cauchy operator can be writ-
ten as

C(f)(x) = p.v.
1
πi

∞∫

−∞

(z(x) − z(y))−1f(y)dy.

If ‖A′‖∞ < 1, the Cauchy operator is given by a Taylor expansion
∞∑

0
Cn(f), where Cn are the iterated commutators between A (the point-

wise multiplication with A(x)) and DnH. Here, as above, H is the Hilbert
transform and D = −i d

dx .
In 1977 Calderón used a refinement of the method which was successful

for the first commutator and could prove the boundedness of the Cauchy
kernel under the frustrating condition ‖A′‖∞ < β, where β is a small positive
number. Guy David combined this result with new real variable methods and
got rid of the limitation in Calderón’s theorem.

But the main breakthrough came when David and Jean-Lin Journé at-
tacked a much more general problem. They moved to R

n and studied singular
integral operators which are defined by

T (f)(x) = p.v.

∫
K(x, y)f(y)dy,

where K(x, y) = −K(y, x), |K(x, y)| ≤ C|x−y|−n, and |∇xK(x, y)| ≤ C ′|x−
y|−n−1.

They discovered that T is bounded on L2(Rn) if and only if T (1) ∈
BMO(Rn). Here T (1)(x) = p.v.

∫
K(x, y)dy and in many situations this

calculation is trivial. For instance, when Kn(x, y) = (A(x)−A(y))n

(x−y)n+1 is the n-th
commutator,

p.v.

∫
Kn(x, y)dy = − 1

n
p.v.

∫
Kn−1(x, y)A′(y)dy,

which immediately yields Calderón’s theorem. Complex methods are beaten
by real variable methods and the surprising connection between Hardy spaces
and L2 estimates is explained. Indeed BMO is the dual of H1.

A spectacular discovery by David, Journé, and S. Semmes is the general-
ization of the T (1) theorem to spaces of homogeneous type.

This version of the T (1) theorem will receive a careful exposition in this
book. It paves the road to a broader program which is the extension to spaces
of homogeneous type of the Littlewood–Paley theory. The Littlewood–Paley
theory began with the fundamental achievements of J. E. Littlewood and R.
E. A. C. Paley.

Let me say a few words on this discovery. We consider the Fourier series
∞∑

−∞
ck exp(ikx) of a 2π-periodic function f(x) and we define the dyadic blocks

Dj(f)(x), j ∈ N, by
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Djf(x) =
∑

2j≤|k|<2j+1

ck exp(ikx).

Then the square function S(f) of Littlewood and Paley is defined by

S(f)(x) =
( ∞∑

0

|Dj(f)(x)|2
) 1

2 .

Littlewood and Paley proved that we have

cp‖f‖p ≤ |c0| + ‖S(f)‖p ≤ Cp‖f‖p

when 1 < p < ∞.
The definition of the square function S(f) was generalized by Elias Stein.

Then Lp[0, 2π] can be replaced by Lp(Rn). Jean-Michel Bony used Stein’s
version of the Littlewood–Paley theory to construct his famous paraproducts.
Such paraproducts play a pivotal role in the proof of the T (1) theorem.

The authors of this book show us how to extend the Littlewood–Paley
theory to spaces of homogeneous type. This is a key achievement since
most of the usual functional spaces admit simple characterizations using the
Littlewood–Paley theory.

The last but not the least contribution of the authors is the construc-
tion of wavelet bases on spaces of homogeneous type. Once again, wavelets
offer an alternative to Fourier analysis. As we know, wavelet analysis can
be traced back to a fundamental identity discovered by Calderón. If ψ is a
radial function in the Schwartz class with a vanishing integral and if, for
t > 0, ψt(x) = t−nψ(x

t ), then for f ∈ L2(Rn) we have

f = c

∞∫

0

f ∗ ψ̃t ∗ ψt
dt

t
,

where c > 0 is a normalizing factor and ψ̃(x) = ψ(−x). In other words, one
computes the wavelet coefficients by

W (y, t) =
∫

f(x)ψt(x − y)dx

and one recovers f through

f(x) = c

∞∫

0

∫

Rn

W (y, t)ψt(x − y)dy
dt

t
.

Everything works as if the wavelets ψt,y(x) = t−n/2ψ(x−y
t ) were an or-

thonormal basis of L2(Rn). Indeed, orthonormal wavelet bases exist. There
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exist 2n − 1 functions ψε ∈ S (Rn), ε ∈ F,#F = 2n − 1, such that the func-
tions ψε(x) = 2

nj
2 ψε(2jx − k), j ∈ Z, k ∈ Z

n, ε ∈ F, are an orthonormal basis
of L2(Rn).

The authors succeeded in generalizing the construction of wavelet bases to
spaces of homogeneous type; however, wavelet bases are replaced by frames,
which in many applications offer the same service.

One is amazed by the dramatic changes that occurred in analysis during
the twentieth century. In the 1930s complex methods and Fourier series played
a seminal role. After many improvements, mostly achieved by the Calderón–
Zygmund school, the action takes place today on spaces of homogeneous type.
No group structure is available, the Fourier transform is missing, but a version
of harmonic analysis is still present. Indeed the geometry is conducting the
analysis.

Donggao Deng passed away after completing a preliminary version of this
book. In his last moments he knew his efforts were not in vain and that his
collaboration with Yongsheng Han would eventually lead to this remarkable
treatise.

China 2007 Yves Meyer
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Introduction

As Y. Meyer wrote in [M2]: “At the beginning of the 1980’s, many scientists
were already using ‘wavelets’ as an alternative to traditional Fourier analy-
sis. This alternative gave grounds for hoping for simpler numerical analysis
and more robust synthesis of certain transitory phenomena.” He also wrote:
“To mention only the most striking, R. Coifman and G. Weiss invented the
‘atoms’ and ‘molecules’ which were to form the basic building blocks of var-
ious function spaces, the rules of assembly being clearly defined and easy to
use. Certain of these atomic decompositions could, moreover, be obtained by
making a discrete version of a well-known identity, due to A. Calderón, in
which ‘wavelets’ were implicitly involved. That identity was later rediscovered
by Morlet and his collaborators.” Y. Meyer further wrote: “These separate
investigations had such a ‘family resemblance’ that it seemed necessary to
gather them together into a coherent theory, mathematically well-founded
and, at the same time, universally applicable.”

Today we know that this coherent theory is wavelet analysis. This theory
played and will, doubtless, play an important role in many different branches
of science and technology. Wavelet analysis provides a simpler and more effi-
cient way to analyze those functions and distributions that have been studied
by use of Fourier series and integrals. But, however, Fourier analysis still plays
a key role in constructing the orthonormal bases of wavelets.

Fourier analysis also plays an essential role in the study of the boundedness
of convolution operators. In the 1950’s when Calderón and Zygmund system-
atically studied convolution operators appearing in elliptic partial differential
equations, they developed the theory of Calderón-Zygmund convolution op-
erators. The continuity of these Calderón-Zygmund convolution operators on
L2(Rn) follows immediately from the Fourier transform. The boundedness of
such operators on Lp(Rn), 1 < p < ∞, is then obtained by the so-called real
variable method of Calderón and Zygmund. This real variable method, in
general, still applies to non-convolution operators whenever kernels of those
non-convolution operators satisfy the regularity conditions of Calderón and
Zygmund and the continuity of those non-convolution operators on L2(Rn)

D. Deng and Y. Han, Harmonic Analysis on Spaces of Homogeneous Type, Lecture
Notes in Mathematics 1966, 1
c© Springer-Verlag Berlin Heidelberg 2009



2 Introduction

has been known. These non-convolution operators are now called Calderón-
Zygmund operators. Therefore, the L2 boundedness becomes the core of the
boundedness of Calderón-Zygmund operators on other functional spaces. Ob-
viously, the Fourier transform is no longer available to get the L2 continuity
for non-convolution operators. The T1 theorem, that is, the necessary and
sufficient conditions of the L2 boundedness of non-convolution operators, as
a substitute of the Fourier transform, was finally proved by G. David and J.
L. Journé ([DJ]). In the original proof of the T1 theorem on R

n, the Fourier
transform was not used explicitly, but implicitly.

Today we have reached a better understanding of the connections between
wavelets and Calderón-Zygmund operators. Indeed any Calderón-Zygmund
operator T satisfying T (1) = T ∗(1) = 0 is almost diagonal in any orthonormal
wavelet bases. This applies, for example, to the Hilbert transform and solves
the problem raised by Antoni Zygmund. Conversely an operator which is
diagonal or almost diagonal in a wavelet basis is such a Calderón-Zygmund
operator. A question arises: How does one prove the T1 theorem on spaces
of homogeneous type? Here spaces of homogeneous type were introduced in
the 1970’s by R. Coifman and G. Weiss in order to develop the theory of
Calderón-Zygmund operators in a more general setting. There are, however,
no translations or dilations, and no analogue of the Fourier transform or
convolution operation on general spaces of homogeneous type. In 1985, using
Coifman’s idea on decomposition of the identity operator, G. David, J. L.
Journé and S. Semmes developed the Littlewood-Paley analysis on spaces
of homogeneous type and used it to give a proof of the T1 theorem on this
general setting. Before explaining Coifman’s idea and the Littlewood-Paley
analysis on spaces of homogeneous type, let us first describe the Littlewood-
Paley analysis on the standard case of R

n.
Two versions of the Littlewood-Paley analysis exist. The first one is the

most familiar and can be traced back to the early thirties. It amounts to
splitting a Fourier series expansion into dyadic blocks Δj(f). We then have
f =

∑

j

Δj(f) and most functional spaces are characterized by size estimates

on Δj(f). For instance f is Hölder α if and only if ‖Δj(f)‖∞ ≤ C2−jα.
If one moves from Fourier series expansion to problems concerning func-

tions on R
n, the familiar Littlewood-Paley analysis can be defined by the

following way. One starts with a bump function φ in the Schwartz class
S (Rn) and one assumes the following properties (a)

∫
φ(x)dx = 1 and (b)∫

xαφ(x)dx = 0 for |α| ≥ 1. It often suffices to have (b) when 1 ≤ |α| ≤ N
where N is related to the functional space one would like to describe.

Then we write φj(x) = 2njφ(2jx), j ∈ Z, and the convolution operator Sj

are defined by Sj(f) = f ∗ φj .
When we let Sj act on L2(Rn), we have

Sj → I (j → +∞), Sj → 0 (j → −∞)

which implies
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I =
∞∑

−∞
Δj , Δj = Sj+1 − Sj .

This is the first version of the Littlewood-Paley analysis.
One has Δj(f) = f ∗ ψj , ψj(x) = 2njψ(2jx) and ψ(x) = 2nφ(2x) − φ(x).

One should observe that ψ ∈ S (Rn) and
∫

xαψ(x)dx = 0 for all α ∈ N
n.

Therefore ψ is a wavelet.
The second version of the Littlewood-Paley analysis is referred to as

Calderón’s identity. Instead of requiring that f =
∞∑

j=−∞
Δj(f), one instead re-

quires that ‖f‖2
2 =

∞∑

j=−∞
‖Δj(f)‖2

2 which is equivalent to Calderón’s identity

([C1])

I =
∞∑

−∞
Δ∗

jΔj . (0.1)

If, as above, Δj(f) = f ∗ ψj , then (0.1) is equivalent to

1 =
∞∑

−∞
|ψ̂(2−jξ)|2, ξ �= 0.

Unfortunately the construction of ψ heavily relies on the full power of
Fourier analysis and cannot be achieved on a space of homogeneous type.

To circumvent this drawback and develop a form of Littlewood-Paley anal-
ysis on a space of homogeneous type, G. David, J. L. Journé and S. Semmes
used an idea of Coifman and constructed a remarkable decomposition of
the identity operator. Let {Dk} be a family of operators whose kernels sat-
isfy certain size, smoothness, cancellation conditions, and the nondegeneracy
condition, see Chapter 1 below for more details, such that

I =
∑

k∈Z

Dk (0.2)

on L2.
Coifman’s idea consists in rewriting (0.2) as

I =
∑

k∈Z

Dk

∑

l∈Z

Dl =
∑

|l|>N

∑

k∈Z

Dk+lDk +
∑

k∈Z

(
∑

|l|≤N

Dk+l)Dk = RN + TN ,

where RN =
∑

|l|>N

∑

k∈Z

Dk+lDk, TN =
∑

k∈Z

DN
k Dk with DN

k =
∑

|l|≤N

Dk+l, and

N is a fixed large integer.
In [DJS] it was proved, using Cotlar-Stein-type lemma and Calderón-

Zygmund theory, that for N sufficiently large, T−1
N exists on L2 and is
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bounded on Lp, 1 < p < ∞. This in turn permitted to establish the
Littlewood-Paley estimates on Lp, 1 < p < ∞. Indeed for 1 < p < ∞ there
exists a constant Cp, such that

C−1
p ‖f‖p ≤

∥
∥
∥
{∑

k∈Z

|Dk(f)|2
} 1

2
∥
∥
∥

p
≤ Cp‖f‖p.

The key step in [DJS] was to show that RN is a Calderón-Zygmund oper-
ator with norm at most C2−Nδ for some δ > 0. The essential ingredient used
in [DJS] is the following identity

I = T−1
N TN =

∑

k∈Z

T−1
N DN

k Dk = TNT−1
N =

∑

k∈Z

DkDN
k T−1

N . (0.3)

In the standard case of R
n, Calderón’s identity (0.1) provides a continuous

version of wavelet expansions. However, the identities (0.3) cannot directly
provide such a wavelet expansion on a space of homogeneous type. The dif-
ference between the identities (0.3) on a space of homogeneous type and
Calderón’s identity (0.1) on R

n is the presence of the operator T−1
N . The re-

sults given in [DJS] only say that T−1
N is bounded uniformly on L2(Rn), or

more generally, on Lp(Rn), 1 < p < ∞. Therefore one did not know if the
identities (0.3) could provide a continuous version of wavelet expansions on
spaces of homogeneous type.

Then one wonders if Calderón’s identity can be obtained in the general
context of a space of homogeneous type where we do not have a Fourier
transformation at our disposal. One of the main goals of this book is to
build a wavelet analysis on space of homogeneous type. To be precise, we will
prove some Calderón’s identities and use them to write wavelet expansions of
functions and distributions on a space of homogeneous type. Moreover these
wavelet expansions will reflect the local or global regularity of functions and
distributions as in the standard case.

To achieve this goal, we will first define test functions and what we call
wavelet spaces on a space of homogeneous type. Then we will prove a new
“T1 theorem”, namely the boundedness on wavelet spaces of a certain class
of Calderón-Zygmund operators whose kernels satisfy some additional second
order smoothness condition.

One then checks that the operator RN , as mentioned above, belongs to
this class of Calderón-Zygmund operators with an operator norm at most
C2−Nδ for some δ > 0. This implies that T−1

N is bounded on these wavelet
spaces when N is large.

Let D̃k = T−1
N DN

k and ˜̃
Dk = DN

k T−1
N . Then we will prove that the kernels

of D̃k and ˜̃
Dk are wavelets in the following sense. We say that a function

K(x, y) defined on the product space X ×X is a wavelet if it is a wavelet in
y for each frozen x and vice versa. The precise definition of wavelets is to be
found in Definition 2.2 below. Therefore we can rewrite (0.3) as



Introduction 5

I =
∑

k∈Z

D̃kDk =
∑

k∈Z

Dk
˜̃
Dk, (0.4)

which provides a new Calderón’s identity and hence a continuous version of
wavelet expansions on space of homogeneous type.

Finally, we will replace (0.4) by a discrete version of a wavelet expan-
sion, obtained by using the dyadic cubes of M. Christ on spaces of homoge-
neous type ([Ch2]) and the boundedness of operators on wavelet spaces. These
wavelets are not an orthonormal basis, but instead are a frame ψλ, λ ∈ Λ. It
means that the wavelet expansion of a function f ∈ L2(X, dμ) into a wavelet
series will be given by

f(x) =
∑

λ∈Λ

α(λ)ψλ(x)

where

‖f‖2 ≈
{∑

λ∈Λ

|α(λ)|2
} 1

2

and where the wavelet coefficients α(λ) are given by

α(λ) =
∫

f(x)ψ̃λ(x)dμ(x). (0.5)

We will prove the following result. The dual wavelets ψ̃λ are sharing with
ψλ the same localization, smoothness and vanishing integral properties. This
will imply that most functional spaces can be characterized by simple size
properties of the wavelet coefficients in (0.5). These wavelet expansions and
characterizations of functional spaces will constitute the heart of this book.

Up to now, even though one does not know how to construct orthonor-
mal wavelet bases on general spaces of homogeneous type, these wavelet ex-
pansions will provide us with a new and universally applicable tool at our
command: “everything that comes to hand”, which can be used to carry out
many important results on R

n to spaces of homogeneous type.
In the case of a space of homogeneous type, the Hölder regularity of the

modified distance function ρ(x, y), see Chapter 1 for details, is replacing the
differential structure in the standard situation of R

n or of a differentiable
manifold. The construction of wavelets will follow from the properties of
ρ(x, y). We do not have other tools at our disposal to prove the existence of
wavelet bases on spaces of homogeneous type.

The contents of this book may be roughly summarized as follows.
In the first chapter, we restate the major notation and basic results of

the theory of Calderón-Zygmund operators on spaces of homogeneous type.
We describe the Littlewood-Paley analysis and prove the T1 theorem of G.
David, J. L. Journé and S. Semmes on spaces of homogeneous type.
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We then define test functions and wavelet spaces on spaces of homogeneous
type in the second chapter (see Definition 2.2). We prove one of main results
in this book, namely the boundedness of Calderón-Zygmund operators whose
kernels satisfy some additional smoothness condition, on wavelet spaces. This
result will be the main tool used in Chapter 3.

Chapter 3 is addressed to all kinds of wavelet expansions on spaces of
homogeneous type. For reader’s convenience some few facts about frames on
a Hilbert space are included.

Chapter 4 is devoted to the study of functional spaces on spaces of
homogeneous type in terms of wavelet coefficients. These spaces include
Lp, 1 < p < ∞, the generalized Sobolev spaces L̇p,s, the Hardy spaces Hp,
BMO and the Besov spaces. The T1 type theorems on these spaces are pre-
sented.

In recent years it has been known that central results of the classical theory
of Calderón-Zygmund operators hold true in very general situations where
the standard doubling condition on the underlying measure is not needed.
Metric spaces where this happens are now called non homogeneous spaces.
It came as a great surprise. Indeed the theory of spaces of homogeneous type
were so much adapted to the theory of Calderón-Zygmund operators that
everyone believed they were essentially the right context. In the last chapter,
Chapter 5, we will outline the Littlewood-Paley analysis on non homogeneous
space obtained by X. Tolsa. It is still based on Coifman’s decomposition of
the identity operator, Although we do not know if there exists a wavelet
expansion on a non homogeneous space, we will show that Tolsa’s Littlewood-
Paley analysis on Lp, 1 < p < ∞, still works for the study of new functional
spaces, namely the Besov spaces on non homogeneous spaces.

This book is based on some recent work by the authors and their collabo-
rators. This research project started twenty years ago: The first author was
invited by R. Coifman to visit Yale University and in the meantime, the sec-
ond author was invited by G. Weiss to visit Washington University. At that
time, the authors planned to build a Littlewood-Paley analysis and then use
it to develop a wavelet analysis on spaces of homogeneous type. R. Coifman
kindly suggested a kind of identity to the first author, as a key tool to achieve
the above aim. Meanwhile, the second author was discussing with G. Weiss
on the first manuscript on orthonormal wavelet bases written by Y. Meyer.

Partial material of this book is taken from the lecture notes of graduate
students classes given by the second author in the Fall semester 1999 at
Washington University in St. Louis and the lectures given at Zhongshan
University and Beijing Normal University in China. The first author thanks
R. Coifman for his invitation and suggestions. The second author thanks G.
Weiss for his invitation in 1999 and for his continuous encouragement and
support during many years. The second author would also like to thank E.
Sawyer and D. Yang for fruitful collaborations that they have had throughout
the years. A thanks goes to Ji Li, Chin-Cheng Lin and Kunchuan Wang.
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Without their help, this book would not be presented by this final version in
LaTex.

This book was supported by the NSF in China. The first author thanks the
NSF in China for its support. This book has been written during the second
author’s visit at Zhongshan University. He would like to thank Zhongshan
University for their warm hospitality and support.



Chapter 1

Calderón-Zygmund Operator
on Space of Homogeneous Type

1.1 Introduction

In the 1970’s, in order to extend the theory of Calderón-Zygmund singular
integrals to a more general setting, R. Coifman and G. Weiss introduced
certain topological measure spaces which are equipped with a metric which
is compatible with the given measure in a sense which will be detailed in
this chapter. These spaces are called spaces of homogeneous type. In this
chapter we present the major notational conventions and basic results of
the theory of Calderón-Zygmund operators on spaces of homogeneous type.
As we already noticed, it becomes indispensable to have a criterion for L2

continuity, without which the theory collapses like a house built on sandy
beach. One such criterion is the T1 theorem of G. David, J. L. Journé and
S. Semmes on spaces of homogeneous type. Before proving the T1 theorem of
G. David, J. L. Journé and S. Semmes, we will explain the Littlewood-Paley
analysis on spaces of homogeneous type, which, based on Coifman’s idea on
decomposition of the identity operator, was developed by the above authors.
The Littlewood -Paley analysis on spaces of homogeneous type becomes a
starting point to provide wavelet expansions of functions and distributions.
This will be addressed in Chapter 3.

1.2 Definition of Calderón-Zygmund Operators
on Spaces of Homogeneous Type

A quasi-metric δ on a set X is a function δ : X × X :→ [0,∞] satisfying

δ(x, y) = 0 if and only if x = y, (1.1)

δ(x, y) = δ(y, x) for all x, y ∈ X, (1.2)

D. Deng and Y. Han, Harmonic Analysis on Spaces of Homogeneous Type, Lecture
Notes in Mathematics 1966, 9
c© Springer-Verlag Berlin Heidelberg 2009
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and there exists a constant A < ∞ such that for all x, y, z ∈ X,

δ(x, z) ≤ A[δ(x, y) + δ(y, z)]. (1.3)

Any quasi-metric defines a topology, for which the balls B(x, r) = {y ∈
X : δ(x, y) < r} form a base. But the balls need not be open when A > 1.

It is not difficult to see that the constant A in (1.3) must be ≥ 1.
We now state the definition of a space of homogeneous type. This definition

was introduced by R. Coifman and G. Weiss.

Definition 1.1 ([CW1]). A space of homogeneous type (X, δ, μ) is a set X
together with a quasi-metric δ and a nonnegative measure μ on X such that
0 < μ(B(x, r)) < ∞ for all x ∈ X and all r > 0, and so that there exists
A′ < ∞ such that for all x ∈ X and r > 0,

μ(B(x, 2r)) ≤ A′μ(B(x, r)). (1.4)

Here μ is assumed to be defined on a σ-algebra which contains all Borel sets
and all balls B(x, r) for x ∈ X and r > 0. The property of the measure μ
in (1.4) is called the doubling condition. We suppose that μ({x}) = 0 for all
x ∈ X. Macias and Segovia have shown ([MS] Theorems 2 and 3) that in this
case, the functional

ρ′(x, y) = inf{μ(B) : B are balls containing x and y} (1.5)

is a quasi-metric on X yielding the same topology as δ. Moreover, there is
a quasi-metric ρ equivalent to ρ′ in the sense that C−1ρ′(x, y) ≤ ρ(x, y) ≤
Cρ′(x, y) for some constant C > 0 and for all x, y ∈ X. Moreover there are a
constant C > 0, and 0 < θ < 1 such that

C−1r ≤ μ(B(x, r)) ≤ Cr (1.6)

for all x ∈ X, r > 0, and

|ρ(x, y) − ρ(x′, y)| ≤ C(ρ(x, x′))θ[ρ(x, y) + ρ(x′, y)]1−θ (1.7)

for all x, x′ and y ∈ X.
It is easy to verify, by (1.7), that the balls associated to ρ are open sets.

Moreover, there is a positive constant M such that d(x, y) = (ρ(x, y))
1

M is
equivalent to a metric on X × X.

We would like to emphasize that in (1.6), and for the remainder of this
book, all balls are ρ-balls defined by B(x, r) = {y ∈ X : ρ(x, y) < r}, where
ρ satisfies the estimate (1.7).

From (1.6), we obtain, by decomposing into annuli for example, the often
used following estimates

∫

B(x,r)

(ρ(z, x))ε−1dμ(z) ≈ rε and
∫

B(x,r)c

(ρ(z, x))−ε−1dμ(z) ≈ r−ε (1.8)

for all ε > 0.
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The Hölder spaces on a space of homogeneous type are defined as follows.

Definition 1.2. Let Cη
0 (X), η > 0, be the space of all continuous functions

on X with compact support such that

‖f‖Cη = sup
x	=y

|f(x) − f(y)|
ρ(x, y)η

< ∞. (1.9)

We would like to remark that for 0 < η ≤ θ, Cη
0 (X) is not empty (i.e.

reduced to {0}). To see this, we let f(x) be a C1 function defined on R with
a compact support. Define g(x) = f(ρ(x, x0)) for any fixed x0 ∈ X. It is easy
to check that g is a function in Cη

0 (X) with 0 < η ≤ θ < 1.
It is well known that the homogeneous Banach space Cβ(R) of Hölder

functions with exponent β has the following properties (a) if 0 < β < 1,
Ċβ(R) is isomorphic to �∞, (b) if β = 1, the Zygmund class is isomorphic to
�∞ and the class of Lipschitz functions is isomorphic to L∞(R).

It implies that the dual space of Cβ(R) is not a functional space. Indeed the
dual space of �∞(Z) is not a space of sequences. The same objection applies
to Cβ

0 (R) or Cβ
0 (X). This, however, can be solved. It suffices to replace Cβ(R)

by the closure Ċβ(R) for the Cβ norm of Cγ(R) where γ > β. This closure
does not depend on γ.

Following this argument we define the function space Ċη
0 (X) as the closure

for the Cη
0 (X) norm of functions in Cβ

0 (X) where η < β, and let (Ċη
0 (X))′ be

dual space of Ċη
0 (X). The following theorem implies that these new spaces

do not depend on β.

Theorem 1.3. The two following properties of f ∈ Cα(X) are equivalent
ones

(1) f ∈ Ċα
0 (X), the closure of functions in Ċβ

0 (X), β > α, with respect to the
Cα norm;

(2) lim
ρ(x,y)→0,orρ(x,y)→∞

(f(x) − f(y))[ρ(x, y)]−α = 0

and this limit is uniform in (x, y) ∈ X × X.

The implication (1) ⇒ (2) is easy. The results given in [MS] can be used
to show the other implication.

Before describing the theory of Calderón-Zygmund operators on spaces of
homogeneous type, we give several examples of spaces of homogeneous type
([CW2] and [Ch1]).

(1) X = R
n, ρ(x, y) = |x − y| =

( n∑

j=1

(xj − yj)2
) 1

2
and μ equals Lebesgue

measure.
(2) X = R

n, ρ(x, y) =
n∑

j=1

(xj − yj)αj , where α1, α2, ..., αn are positive

numbers, not necessarily equal, and μ equals Lebesgue measure (this distance
is called nonisotropic).
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(3) X = [0, 1), ρ(x, y) is the length of the smallest dyadic interval contain-
ing x and y, and μ is Lebesgue measure.

(4) X is the boundary of a Lipschitz domain in R
n, ρ is the Euclidean

distance and μ is the harmonic measure or the Lebesgue surface measure.
(5) X = R

+ = {r ∈ R : r ≥ 0}, dμ(r) = rn−1dr, ρ is the usual distance.
(6) Any C∞ compact Riemannian manifold with the Riemannian metric

and volume.
(7) Let n ≥ 1 be an integer and d ∈ (0, n] a real number. Let E ⊂ R

n

be a closed subset whose d-dimensional Hausdorff measure λd(E) is finite
and positive. Suppose it happens that there exists C < ∞ so that for every
x ∈ E and r > 0, C−1rd ≤ λd(E ∩ B(x, r)) ≤ Crd. Then equipped with the
Euclidean metric and μ = λd, E is a space of homogeneous type.

(8) Let G be a nilpotent Lie group with a left-invariant Riemannian metric
and μ is the induced measure.

(9) Let Ω be an open set in R
n and let X1, · · · ,Xk be C∞ vector fields

in Ω. Suppose that {Xj} satisfy the condition of Hörmander. It means that
together with all their commutators of all orders, {Xj} span the tangent
space to R

n at each x ∈ Ω. We say that a Lipschitz curve γ : [0, r] → Ω is

admissible if for almost every t, dγ
dt =

k∑

j=1

cj(t)Xj(γ(t)) where
∑

|cj(t)|2 ≤ 1.

Define ρ(x, y) to be the infimum of the set of all r for which there exists an
admissible curve γ with γ(0) = x and γ(r) = y. It was proved that such
an admissible curve exists for any x, y ∈ Ω (provided Ω is connected). Then
(Ω, ρ) with the Lebesgue measure becomes a space of homogeneous type. See
[NSW] for a detailed discussion of various concrete examples.

(10) In an open subset Ω of R
n let A(x) = (ai,j(x))n

i,j=1 be a C∞ family
of symmetric matrices with real-valued entries, nonnegative in the sense that

n∑

i,j=1

ai,j(x)titj ≥ 0 for all x and t ∈ R
n. A vector v ∈ R

n is said to be subunit

at x if for every t ∈ R
n,

∣
∣
∣
∣
∑

j

tjvj

∣
∣
∣
∣

2

≤
n∑

i,j=1

ai,j(x)titj .

A Lipschitz curve γ : [0, r] → R
n is said to be admissible if dγ(s)/ds is

subunit for almost every s. Define ρ(x, y) to be infinite if there exists no
admissible path γ joining x to y, and otherwise ρ(x, y) = inf{r : there exists
an admissible curve γ satisfying γ(0) = x and γ(r) = y}. If there exist ε > 0
and C < ∞ such that R(x, y) ≤ C|x − y|ε for all x and y close to x, then
(Ω, ρ) becomes a space of homogeneous type when equipped with Lebesgue
measure.

(11) When X is the boundary of a smooth and bounded pseudo-convex
domain in C

n one can introduce a nonisotropic quasi-distance that is related
to the complex structure in such a way that we obtain a space of homogeneous
type by using Lebesgue surface measure. For example, if X is the surface of
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the unit sphere σ2n−1 =
{

z ∈ C
n : z · z̄ =

n∑

j=1

zj z̄j = 1
}

, the nonisotropic

distance is given by d(z, w) = |1 − z · w̄| 12 .
(12) Let U be a bounded open subset of C

2 with C∞ boundary. At any
z ∈ ∂U the vector space of linear combinations a1

∂
∂z̄1

+ a2
∂

∂z̄2
belonging to

the complexified tangent space to ∂U has dimension 1 over C. Fix a nonvan-
ishing C∞ complex vector field L̄z̄ = a1

∂
∂z̄1

+ a2
∂

∂z̄2
which is tangent to ∂U

at every point z in some open set V ⊂ ∂U. Write L̄ = X + iY where X,Y
are real vector fields. If U is strictly pseudo-convex then the pair X,Y satis-
fies the condition of Hörmander and V becomes a space of homogeneous type .

We now introduce the maximal function of Hardy and Littlewood.

Definition 1.4. Suppose f ∈ L1
loc(X). The Hardy-Littlewood maximal func-

tion of f is defined by

Mf(x) = sup
r>0

1
μ(B(x, r))

∫

B(x,r)

|f(y)|dμ(y).

Theorem 1.5 ([CW1]). M is bounded on Lp(X,μ) for 1 < p ≤ ∞, and is
of weak type (1, 1).

Indeed, the Vitali-type covering lemma still holds on spaces of homoge-
neous type.

Lemma 1.6. Let K ⊆ X be a compact set. Let {B(xα, rα)} be a collection
of open balls that cover K. Then there is a subcollection {B(xαj

, rαj
)} that

is pairwise disjoint and such that {B(xαj
, Crαj

)} still cover K, where C =
2A2 + A.

Proof. Since K is compact, we may suppose that the collection {B(xα, rα)}
is a finite collection of balls {B(xk, rk)}. Now choose a ball {B(xk1 , rk1)} of
greatest radius. Then choose {B(xk2 , rk2)} from among those balls such that
it has greatest possible radius and is disjoint from {B(xk1 , rk1)}.

Repeating this procedure, the process must eventually stop since the col-
lection is finite. We claim that this new collection satisfies the requirement of
Lemma 1.6. By the construction, all balls in this collection are pairwise dis-
joint. We only need to check that {B(xkj

, Crkj
)} cover K for C = 2A2+A. It

suffices to show that {B(xkj
, Crkj

)} cover the original collection {B(xk, rk)}.
Take one of the original balls B(xk, rk) and assume it is not one of the selected
balls. Then, by the construction, there is a first selected ball B(xkp

, rkp
) that

intersects it with rkp
≥ rk. We claim that B(xk, rk) ⊆ B(xkp

, Crkp
). To see

this, let z ∈ B(xk, rk) ∩B(xkp
, rkp

) and let x ∈ B(xk, rk) be arbitrary. Then

ρ(x, xkp
) ≤ A[ρ(x, z) + ρ(z, xkp

)] ≤ A[A(ρ(x, xk) + ρ(xk, z)) + rkp
]

≤ A[A(rk + rk) + rkp
] ≤ [2A2 + A]rkp

which shows B(xk, rk) ⊆ B(xkp
, Crkp

) with C = 2A2 + A.
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We also have a Calderón-Zygmund decomposition on spaces of homoge-
neous type.

Theorem 1.7 ([CW1]). Let f ∈ L1(X) and α > 0, and assume that μ(X) >
α−1‖f‖1. Then f can be decomposed as f = g + b where

‖g‖2
2 ≤ Cα‖f‖1,

b =
∑

j

bj ,

where each bj is supported on some ball B(xj , rj),
∫

bj(x)dμ(x) = 0,

‖bj‖1 ≤ Cαμ(B(xj , rj)),
∑

j

μ(B(xj , rj)) ≤ Cα−1‖f‖1.

We now introduce Calderón-Zygmund operator on spaces of homogeneous
type.

Definition 1.8 ([CW1]). A continuous function K : X × X\{x = y} → C

(the complement of the diagonal in X×X) is said to be a Calderón-Zygmund
singular integral kernel if there exist 0 < ε ≤ θ and C < ∞ such that

|K(x, y)| ≤ C

ρ(x, y)
(1.10)

for all x �= y,

|K(x, y) − K(x′, y)| ≤ Cρ(x, x′)ερ(x, y)−(1+ε) (1.11)

for ρ(x, x′) ≤ 1
2Aρ(x, y),

|K(x, y) − K(x, y′)| ≤ Cρ(y, y′)ερ(x, y)−(1+ε) (1.12)

for ρ(y, y′) ≤ 1
2Aρ(x, y).

Definition 1.9 ([CW1]). A continuous linear operator T : Ċη
0 (X) →

(Ċη
0 (X))′, is said to be a Calderón-Zygmund singular integral operator if

T is associated to a Calderón-Zygmund kernel K such that

〈Tf, g〉 =
∫ ∫

K(x, y)f(y)g(x)dμ(y)dμ(x) (1.13)

for all f and g ∈ Ċη
0 (X) with supp(f) ∩ supp(g) = ∅.
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We let CZK(ε) denote the collection of Calderón-Zygmund singular inte-
gral operators T satisfying (1.10), (1.11) and (1.12).

Using Theorem 1.7, one can show the following result:

Theorem 1.10 ([CW1]). Any Calderón-Zygmund singular integral operator
which is bounded on L2(X) is also bounded on Lp(X) for 1 < p < ∞, and is
of weak type (1, 1).

We say that T is a Calderón-Zygmund operator if T is a Calderón-
Zygmund singular integral and bounded on L2.

As in the case of R
n, we define BMO functions as follows.

Definition 1.11. Suppose f ∈ L1
loc(X). Then f belongs to BMO(X) if

‖f‖BMO = sup
r>0,x∈X

1
μ(B(x, r))

∫

B(x,r)

|f(y) − fB |dμ(y) < ∞

where fB = 1
μ(B(x,r))

∫

B(x,r)

f(y)dμ(y).

As in the case of R
n, the following result gives the endpoint estimate of

the Calderón -Zygmund operators at p = ∞.

Theorem 1.12 ([P]). Any Calderón-Zygmund operator maps L∞(X) bound-
edly to BMO(X).

From Theorem 1.10 a question arises: Under what conditions a Calderón-
Zygmund singular integral is bounded on L2? This question was answered
by the well-known T1 theorem of G. David and J. L. Journé, and G. David,
J. L. Journé and S. Semmes in the standard case of R

n and in spaces of
homogeneous type, respectively. The main tool they used is the Littlewood-
Paley analysis which has been explained in the case of R

n. We will describe
the Littlewood-Paley analysis on spaces of homogeneous type in the next
section.

1.3 Littlewood-Paley Analysis on Spaces
of Homogeneous Type

We aim at estimating the Lp norm of a function f by the Lp norm of its
Littlewood-Paley function S(f). The proof relies on a decomposition of the
identity operator suggested by R. R. Coifman.

We take a nonnegative smooth function h(x) equal to 1 on [1, 9] and to
0 for x ≤ 0 and x ≥ 10. Let Hk be the operator with kernel 2kh(2kρ(x, y)).
The doubling condition on μ and the construction of h imply that C−1 ≤
Hk(1)(x) ≤ C for all k ∈ Z, x ∈ X and some constant C > 0. Let Mk and Wk
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be the operators of pointwise multiplication by mk(x) = (Hk(1)(x))−1 and
wk(x) = (Hk(mk)(x))−1, respectively, and finally, let Sk = MkHkWkHkMk.
We, particularly, emphasize that this special construction will be used in
Chapter 4. It is easy to check that Sk(x, y), the kernel of Sk, satisfies the
following conditions: There exists a constant C such that for all k ∈ Z and
all x, x′, y ∈ X:

(i) Sk(x, y) = 0 if ρ(x, y) ≥ C2−k and ‖Sk‖∞ ≤ C2k;
(ii) |Sk(x, y) − Sk(x′, y)| ≤ C2k(1+θ)ρ(x, x′)θ;
(iii)

∫

X

Sk(x, y)dμ(y) = 1;

(iv) Sk(x, y) = Sk(y, x).
From (i) and (iii), it is clear that lim

k→∞
Sk = I, the identity operator on

L2(X), and lim
k→−∞

Sk = 0 in the strong operator topology on L2(X). The

construction of wavelets on a space of homogeneous type (see Theorem 3.25)
will be based on this approximation to the identity.

We now come to Coifman’s decomposition of the identity operator. Set

Dk = Sk − Sk−1 so that I =
∞∑

k=−∞
Dk with strong convergence. The idea of

Coifman is to rewrite

I =
∞∑

k=−∞
Dk

∞∑

j=−∞
Dj =

∑

|k−j|≤N

DkDj +
∑

|k−j|>N

DkDj = TN + RN .

We prove that (TN )−1 exists on L2 as N is large. More precisely, we have

Theorem 1.13. Let TN be the same as above. Then TN is invertible on
L2(X) when N is large enough. Moreover, (TN )−1, the inverse of TN , is
uniformly bounded on L2(X) when N ≥ N0.

By the almost orthogonal argument (see the proof of Lemma 3.7 below in
a more general case), DkDj(x, y), the kernel of DkDj , satisfies the following
estimate

|DkDj(x, y)| ≤ C2−|j−k|θ2(k∧j)χ({ρ(x, y) ≤ C2−(k∧j)}) (1.14)

where k ∧ j = min(k, j) and χ is the indicator function.
The estimate in (1.14) allows one to apply the famous Cotlar-Stein Lemma

([MC]).

Lemma 1.14. Suppose that {Tj} is a finite collection of bounded operators
on some Hilbert space H satisfying the following estimates

‖TiT
∗
j ‖ ≤ [γ(i − j)]2,

and
‖T ∗

i Tj‖ ≤ [γ(i − j)]2,
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where A =
∞∑

j=−∞
γ(j) < ∞ Then T =

∑

j

Tj is bounded on H (this being

obvious) with ‖T‖ ≤ A.

The estimate in (1.14) together with the Cotlar-Stein Lemma 1.14 implies
that the operator RN is bounded on L2 with an operator norm not larger
than C2−Nδ for some fixed constant C > 0 and δ > 0. This yields that TN

converges to the identity, as an operator on L2, when N → ∞, TN is invertible
on L2 as N is large, and (TN )−1, the inverse of TN , is uniformly bounded on
L2(X) for large N. This ends the proof of Theorem 1.13.

One observes that the operator RN is a Calderón-Zygmund operator with
an operator norm at most C2−Nδ. This implies that TN is bounded on
Lp, 1 < p < ∞, and (TN )−1 is also uniformly bounded on Lp, 1 < p < ∞, for
large N.

We now enter the proof of the Littlewood-Paley estimate

C−1‖f‖2 ≤ C

∥
∥
∥
∥

(∑

k

|Dkf |2
) 1

2
∥
∥
∥
∥

2

≤ C‖f‖2.

We first prove the right-hand side by a duality argument which runs as
follows

sup
{(∑

k

‖Dkf‖2
2

) 1
2

: f ∈ L2, ‖f‖2 ≤ 1
}

= sup
{∣
∣
∣
∣
∑

k

〈Dkf, gk〉
∣
∣
∣
∣ : f ∈ L2, ‖f‖2 ≤ 1,

∑

k

‖gk‖2
2 ≤ 1

}

= sup
{∥
∥
∥
∥
∑

k

D∗
kgk

∥
∥
∥
∥

2

:
∑

k

‖gk‖2
2 ≤ 1

}

.

But
∥
∥
∥
∥
∑

k

D∗
kgk

∥
∥
∥
∥

2

2

=
〈∑

k

D∗
kgk,

∑

i

D∗
i gi

〉

=
∑

k

∑

i

〈DiD
∗
kgk, gi〉

≤
∑

k

∑

i

‖DiD
∗
k‖2,2‖gk‖2‖gi‖2

≤ C
∑

k

‖gk‖2
2

where the last inequality follows from the estimate in (1.14). This implies
∑

k

‖Dkf‖2
2 ≤ C‖f‖2

2.
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We now turn to the left-hand side. Again, by a duality argument, we have

‖TNf‖2 = sup
{
∣
∣
〈
TNf, g

〉∣
∣ : ‖g‖2 ≤ 1

}

≤ sup
{

(2N + 1)
(∑

k

‖Dkf‖2
2

) 1
2
(∑

k

‖Dkg‖2
2

) 1
2 : ‖g‖2 ≤ 1

}

≤ C(2N + 1)
(∑

k

‖Dkf‖2
2

) 1
2

where the last inequality follows from the above estimate.
The integer N will be viewed as a large constant in what follows. This

constant will be incorporated inside the generic constant C. In other words the
reader should not raise the issue of considering limits as N tends to ∞. The
estimates above together with Theorem 1.13 yield the following Littlewood-
Paley estimate on L2.

C−1‖f‖2

= C−1‖(TN )−1TNf‖2 ≤ ‖TN (f)‖2 ≤ C

∥
∥
∥
∥

(∑

k

|Dkf |2
) 1

2
∥
∥
∥
∥

2

≤ C‖f‖2.

By a routine argument, for example considering S(f) =
(∑

k

|Dkf |2
) 1

2
as

a vector-valued Calderón-Zygmund operator, we obtain

∥
∥
∥
∥

(∑

k

|Dkf |2
) 1

2
∥
∥
∥
∥

p

≤ C‖f‖p

where 1 < p < ∞.
The above estimate together with the identity on L2

f = (TN )−1
∑

k

DN
k Dkf

provides the Littlewood-Paley estimates on Lp, 1 < p < ∞,

C−1‖f‖p ≤
∥
∥
∥
∥

(∑

k

|Dkf |2
) 1

2
∥
∥
∥
∥

p

≤ C‖f‖p.

This is the Littlewood-Paley analysis of G. David, J. L. Journé and S.
Semmes on spaces of homogeneous type. We are now ready to prove the T1
theorem of G. David, J. L. Journé and S. Semmes, which will be given in the
next section.
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1.4 The T1 Theorem on Spaces of Homogeneous Type

In this section we prove the T1 theorem of G. David, J. L. Journé and S.
Semmes on spaces of homogeneous type.

We suppose that μ(X) = ∞ and μ({x}) = 0 for all x ∈ X. We give neces-
sary and sufficient conditions for L2(X) boundedness of a Calderón-Zygmund
singular integral operator T. This statement is the so-called T1 theorem.
To formulate the T1 theorem, we need the definition of weak boundedness.
For δ ∈ (0, θ], x0 ∈ X and r > 0, we define A(δ, x0, r) to be the set of all
φ ∈ Ċδ

0(X) supported in B(x0, r) satisfying ‖φ‖∞ ≤ 1 and ‖φ‖δ ≤ r−δ.

Definition 1.15. An operator T is weakly bounded if there exist 0 < δ ≤ θ
and C < ∞ such that for all x0 ∈ X, r > 0, and φ, ψ ∈ A(δ, x0, r),

|〈Tφ, ψ〉| ≤ Cμ(B(x0, r)). (1.15)

If T is weakly bounded, we write T ∈ WBP.

It is easy to see that weak boundedness is obviously implied by L2 bound-
edness. Calderón-Zygmund singular integral operator whose kernel is anti-
symmetrical kernel, that is K(x, y) = −K(y, x), has the weak boundedness
property.

We now define T (1). The difficulty is that 1 is not a function in Ċη
0 (X).

This will lead to the fact that T (1) is not a distribution in (Ċη
0 )′, but is a dis-

tribution modulo constant functions. The definition is based on the following
lemma ([MC]).

Lemma 1.16. Let S be a distribution in (Ċη
0 )′. Suppose that there exists

R > 0 such that the restriction of S to the open set {x ∈ X : ρ(x, x0) > R},
where x0 is a fixed point in X, is a continuous function and such that S(x) =
O(ρ(x, x0)−1−γ) as ρ(x, x0) → ∞. If γ > 0, then the integral

∫

X

S(x)dμ(x) = 〈S, 1〉 (1.16)

converges.

We first write 1 = φ1(x) + φ2(x), where φ1 ∈ Ċη
0 (X) for some η > 0 and

φ1(x) = 1 for ρ(x, x0) ≤ R. Then 〈S, 1〉 is defined by 〈S, φ1〉 + 〈S, φ2〉 =
〈S, φ1〉 +

∫
S(x)φ2(x)dμ(x) since the integral converges absolutely. It is easy

to check that 〈S, 1〉 is independent of the decomposition.
Before defining T1, we use the following definition.

Definition 1.17. Let Ċ0,0(X) ⊂ Ċ0(X) be defined by
∫

X

f(x)dμ(x) = 0.

If f ∈ Ċη
0,0(X), we define 〈T1, f〉 = 〈1, T ∗f〉. In fact, if the support of f is

contained in {x ∈ X : ρ(x, x0) ≤ R}, then
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T ∗(f)(x) =
∫

[K(y, x) − K(x0, x)]f(y)dμ(y) = O
(
ρ(x, x0)−1−ε

)

for ρ(x, x0) > R and ε > 0.
Now T1 is a continuous linear form on Ċη

0,0(X) ⊂ Ċη
0 (X). We extend

T1 to a distribution S ∈ (Ċη
0 )′ as follows: Let φ ∈ Ċη

0 (X) be a function
with

∫
φ(x)dμ(x) = 1, then for all f ∈ Ċη

0 (X), f can be written uniquely as
f = λφ + g, where λ =

∫
f(x)dμ(x) and g ∈ Ċη

0,0(X). Now choose 〈S, φ〉
arbitrarily and put 〈S, f〉 = λ〈S, φ〉 + 〈1, g〉. So T1 = S on Ċη

0,0(X), and is a
distribution modulo the constant. T ∗1 can be defined by a similar way.

We now state and prove the following T1 theorem ([DJS]).

Theorem 1.18. Let T be a Calderón-Zygmund singular integral operator.
Then a necessary and sufficient condition for the extension of T as a contin-
uous linear operator on L2(X) is that the following properties are all satisfied:
(a) T1 ∈ BMO, (b) T ∗1 ∈ BMO, (c) T is weakly bounded.

Indeed, by Theorem 1.12, we only need to prove the sufficient condition.
Before proving Theorem 1.18, we first outline the general philosophy of the
proof of the T1 theorem when X = R

n. The T1 theorem on R
n was proved

in two steps. In the first step, one considered the case T (1) = T ∗(1) = 0.
For this step a clever approximation of the identity operator is used. To be
precise, let ψ ∈ C∞

0 (Rn) be radial and satisfy
∫ ∞

0

|ψ̂(tξ)|2 dt

t
= 1

for all ξ �= 0. Let ψt(x) = 1
tn ψ(x

t ) and Qt be the operator of convolution with
ψt. The operator

Um =
∫ m

1
m

Q2
t

dt

t

converges strongly to the identity, as an operator on L2(Rn), when m → ∞.
Since Um is continuous on C∞

0 (Rn) and on its dual, so UmTUn is well defined
from C∞

0 (Rn) into its dual. For all m,n, T will be bounded on L2 if and only
if UmTUn is bounded on L2 with a norm that is independent of m and n. To
show that UmTUn is bounded on L2 uniformly for m and n, the regularity
conditions of the kernel, the weak boundedness property of T, the conditions
T (1) = T ∗(1) = 0, and the Littlewood-Paley theory are playing a key role.
This Littlewood-Paley theory replaces the Cotlar-Stein almost orthogonality
lemma which was used in the first proof. In the second step we know that
T (1) = β and T ∗(1) = γ lie in BMO. Then David and Journé used the so-
called para-product operators Πβ and (Πγ)∗ which are Calderón-Zygmund
operators whenever β and γ belong to BMO. The L2 continuity of these
para-products is equivalent to the characterization of BMO through Carleson
measures. Moreover, Πβ(1) = β and (Πβ)∗(1) = 0. Thus, T − Πβ − (Πγ)∗ is
bounded on L2 by the first step, and hence, T is bounded on L2.
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We now return to spaces of homogeneous type and to the proof of the first
step of Theorem 1.18. We assume that T (1) = T ∗(1) = 0. The proof relies on
the Littlewood-Paley estimate on L2 and estimates which will be proved later
in this book. Roughly speaking if T satisfies all conditions of Theorem 1.18
and T (1) = T ∗(1) = 0, then a similar estimate as in (1.14) still holds. Indeed
the matrix Ω whose entries are the operator norms ω(j, k) = ‖DjTDk‖2,2 is
bounded on l2 (see Lemma 4.23 below). Observe, by the Littlewood -Paley
estimate on L2, that for all f, g ∈ Ċη

0 ,

|〈TNTTN (f), g〉| = |
∑

j

∑

k

〈DN
j DjTDkDN

k (f), g〉|

≤ C
∑

j

∑

k

‖DjTDk‖2,2‖DN
k f‖2‖(DN

j )∗g‖2

≤ C(2N + 1)2
(∑

k

‖Dkf‖2
2

) 1
2
(∑

k

‖Dkg‖2
2

) 1
2

≤ C(2N + 1)2‖f‖2‖g‖2

where the estimate given in Lemma 4.23 applies to the estimate on
‖DjTDk‖2,2.

To finish the proof of the first step of Theorem 1.18 we now use Theorem
1.13 together with the following lemma. The exponent θ is defined in (1.7).

Lemma 1.19. If 0 < s < η the series TN =
∑

j

DjD
N
j converges strongly on

Ċs
0 . If 0 < 2s < θ, TN is bounded on Ċs

0 , and the operator norm of I −TN on
Ċs

0 tends to 0 as N → ∞.

The space Ċs
0 is defined in Theorem 1.3. Let us use this lemma to prove

that T extends to a bounded operator on L2. First, we can use the size
estimate of the kernel of T to extend T to a continuous linear operator from
Ċs

0 ∩ L2 into (Ċs
0)′. To see this, let f ∈ Ċs

0 ∩ L2 and g ∈ Ċs
0 , and choose

θ(x) ∈ Ċs
0 with θ(x) = 1 on a neighborhood of the support of g, then we

can define 〈g, Tf〉 = 〈g, T (θf)〉 + 〈g, T (1 − θ)f〉. The first term makes sense
since θf ∈ Ċs

0 , while the second term can be defined by the size estimate of
the kernel of T and the assumption f ∈ L2. It is clear that this definition
doesn’t depend on θ. In view of the claim, TN is defined and bounded on
Ċs

0 ∩ L2, with norm ‖ · ‖s + ‖ · ‖2, and it is invertible on Ċs
0 ∩ L2 if N is

large enough. Notice that the series
∑

j

DjD
N
j converges strongly on L2 since

sup
m,n

∥
∥
∥

m∑

j=−n

DjD
N
j

∥
∥
∥

2,2
< ∞ and

∑

j

DjD
N
j f converges in L2 if f ∈ Ċη

0 . Thus
∑

j

DjD
N
j converges strongly on Ċs

0 ∩ L2, by the lemma.
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Let f1 ∈ Ċs
0 have compact support and let f2 = T−1

N f1 ∈ Ċs
0 ∩L2, so that

lim
n→∞

n∑

j=−n

DjD
N
j f2 = f1

in Ċs
0 ∩ L2. If g ∈ L2 with compact support, then

∣
∣
∣
∣

〈 n∑

j=−n

DjD
N
j g, Tf1

〉∣
∣
∣
∣ =

∣
∣
∣
∣ lim

m→∞

〈 n∑

j=−n

DjD
N
j g, T

m∑

j=−m

DjD
N
j f2

〉∣
∣
∣
∣

≤ C‖g‖2‖f2‖2 ≤ C‖g‖2‖f1‖2.

A similar argument allows one to show that if g1 ∈ Ċs
0 has compact sup-

port, then |〈g1, T f1〉| ≤ C‖g1‖2‖f1‖2. Thus T extends to a bounded operator
on L2.

We now return to the proof of Lemma 1.19. The norm in Ċs
0 will be simply

denoted by ‖ · ‖s and cannot be confused with a norm in a Lebesgue space.
To do this, we need the following preliminary facts:

(a) if 0 < β < γ, then ‖f‖β ≤ ‖f‖
γ−β

γ
∞ ‖f‖

β
γ
γ ;

(b) ‖Dk‖∞ + ‖Sk‖∞ ≤ C and ‖Dkf‖θ ≤ C2kθ‖f‖∞;
(c) if 0 < s < β, gk ∈ L∞ ∩ Ċβ

0 , ‖gk‖∞ ≤ 2−ks and ‖gk‖β ≤ 2k(β−s), then∥
∥
∥
∑

k

gk

∥
∥
∥

s
≤ C(s, β), where the series converges locally in the norm ‖ · ‖η for

0 < η < s, but not necessarily in Ċs
0 .

It is easy to verify (a) and (b) follow from the definitions of Sk and Dk. For
(c), let x, y ∈ X be given and choose k0 such that 2−k0 ≤ ρ(x, y) ≤ 2−k0+1.
Then

∣
∣
∣
∣
∑

k

gk(x) −
∑

k

gk(y)
∣
∣
∣
∣ ≤

∑

k≥k0

|gk(x) − gk(y)| +
∑

k<k0

|gk(x) − gk(y)|

≤
∑

k≥k0

2‖gk‖∞ +
∑

k<k0

ρ(x, y)β‖gk‖β

≤ C2−k0s + C2k0(β−s)ρ(x, y)β

≤ Cρ(x, y)s.

Suppose that g ∈ Ċs
0 . Since Dk(1) = 0,

|Dk(g)(x)| =
∣
∣
∣
∣

∫
Dk(x, y)g(y)dμ(y)

∣
∣
∣
∣

=
∣
∣
∣
∣

∫
Dk(x, y)[g(y) − g(x)]dμ(y)

∣
∣
∣
∣ ≤ C2−ks‖g‖s;
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applying (b) and (c) to gk = DkDN
k g yields

∥
∥
∥
∑

k

DkDN
k g

∥
∥
∥

s
≤ CN‖g‖s. If

g ∈ Ċr
0 for some r > s, then

∑

k

DkDN
k g converges uniformly and in Ċs

0 norm.

Thus,
∑

k

DkDN
k is defined and bounded on Ċs

0 . To show the operator norm

of I − TN on Ċs
0 tends to 0 as N → ∞, we write (I − TN )g =

∑

k

Dk(I −

Sk+N )g +
∑

k

DkSk−N−1g. Since the kernel of Sk is 0 when ρ(x, y) ≥ C2−k

and (I − SN+k)(1) = 0, so ‖(I − SN+k)g‖∞ ≤ C2−(N+k)s‖g‖s. If gk =
Dk(I − Sk+N )g, then (b) and (c) imply that

∥
∥
∥
∑

k

gk

∥
∥
∥

s
≤ C2−Ns‖g‖s.

Let gk = DkSk−N−1g, and let Lk,N (x, y) denote the kernel of DkSk−N−1.
Since Lk,N (1) = 0, Lk,N (x, y) = 0 if ρ(x, y) ≥ C2−(k−N), and |Lk,N (x, y)| ≤
C2(k−N)(1+θ)−kθ. Thus,

‖gk‖∞ ≤ 2−(k−N)s2(k−N)(1+θ)−kθ−(k−N)‖g‖s

≤ C2−Nθ−(k−N)s‖g‖s.

If ρ(x, x′) ≤ C2−(k−N), then

|gk(x) − gk(x′)| ≤ C2kθ−(k−N)sρ(x, x′)θ‖g‖s.

When ρ(x, x′) ≥ C2−(k−N),

|gk(x) − gk(x′)| ≤ 2‖gk‖∞ ≤ C2kθ−(k−N)sρ(x, x′)θ‖g‖s.

Thus,
‖gk‖θ ≤ C2kθ−(k−N)s‖g‖s.

Using (a), we get that

‖gk‖β ≤ C2kβ−N(θ−β)−(k−N)s‖g‖s ≤ C2−N(θ−2β)+(k−N)(β−s)‖g‖s.

Applying (c) to g̃k = 2N(θ−2β)gk+N , it follows that
∥
∥
∥
∥
∑

k

gk

∥
∥
∥
∥

s

≤ C2−N(θ−2β)‖g‖s

if s < β < θ.
If 2s < θ, we can choose β so that 2−N(θ−2β) tends to 0 as N → ∞, which

implies Lemma 1.19.
We turn to the second step of the proof of Theorem 1.18. It consists in

building, for each b ∈ BMO, a Calderón-Zygmund operator Πb, the para-
product operator, such that Πb(1) = b and (Πb)∗(1) = 0. For this purpose,
define for b ∈ BMO,
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Πb(f)(x) =
∑

k

DN
k {Dk(TN )−1(b)(·)Sk(f)(·)}(x).

To see that the operator Πb is well defined, we show that TN is invertible
also on BMO for large N. Observe that I−TN =

∑

k

Dk(I−DN
k ) =

∑

k

Dk(I−

Sk+N ) −
∑

k

DkSk−N−1. It is not difficult to check that the kernels of the

operators
∑

k

Dk(I − Sk+N ) and
∑

k

DkSk−N−1 satisfy the estimate in (1.10)

with the constant C2−εN , which follows from the facts that (I−Sk+N )(1) = 0
and Dk(1) = 0 together with the smoothness in x of the kernel of Sk−N−1.
The kernel of I − TN also satisfies the estimate in (1.11) with a constant
not depending on N. See more details of these estimates in Section 3 of
Chapter 3. The geometric mean of these two estimates on I − TN implies
that the kernel of I − TN satisfies the estimate in (1.11) with ε replaced by
ε
2 and a constant C2−N ε

2 . These estimates on I −TN together with the facts
that (I − TN )(1) = 0 in BMO and I − TN has L2-operator norm at most
C2−Nδ, δ > 0 imply that I − TN has a small BMO -operator norm when N
is large. Therefore TN is invertible on BMO if N is large.

To show that Πb is bounded on L2 for b ∈ BMO, it suffices to prove that
∑

k

|〈DN
k {Dk(TN )−1(b)(·)Sk(f), g〉| ≤ C‖f‖2‖g‖2

for f, g ∈ L2. Using two times Cauchy-Schwarz inequality we obtain
∑

k

|〈DN
k {Dk(TN )−1(b)(·)Sk(f), g〉|

≤
∑

k

‖(DN
k )∗(g)‖2‖Dk(TN )−1(b)(·)Sk(f)‖2

≤
{∑

k

‖(DN
k )∗(g)‖2

2

} 1
2
{∑

k

‖Dk(TN )−1(b)(·)Sk(f)‖2
2

} 1
2

.

By the Littlewood-Paley estimate on L2, the first factor is at most C‖g‖2.
This estimate also implies that dμ(x, t) =

∑

k

|Dk(TN )−1(b)|2dμ(x)dδk(t) is a

Carleson measure on X×(0,∞), where δk(t) is the Dirac measure at 2−k. We
define a function F (x, t) by F (x, t) = Sk(f)(x) if t = 2−k and 0 otherwise.
Then F (x, t) has a nontangential maximal function dominated by the Hardy-
Littlewood maximal function of f. From Carleson’s inequality, it follows that

∑

k

‖Dk(TN )−1(b)(·)Sk(f)‖2
2 =

∫∫
|F (x, t)|2dμ(x, t)

≤ C‖(TN )−1(b)‖2
BMO‖f‖2

2 ≤ C‖b‖2
BMO‖f‖2

2.
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See [MC] for more details about the Carleson measure and Carleson’s
inequality.

Moreover, Πb(1) =
∑

k

DN
k {Dk(TN )−1(b)}(x) = b(x) and (Πb)∗(1) = 0.

Define U = T −ΠT (1) − (ΠT∗(1))∗. Then U satisfies the hypotheses of the
theorem, moreover, U(1) = U∗(1) = 0. So U is bounded on L2(X) by the
first step of the proof of Theorem 1.18, and hence T is bounded on L2(X).
This completes the proof of Theorem 1.18.

As it is well known in the standard case of R
n, the construction of wavelet

cannot be obtained from classical Littlewood-Paley expansions. Multiresolu-
tion analysis is seminal in the construction of wavelet bases. This also hap-
pens for spaces of homogeneous type. Indeed the Littlewood-Paley analysis
developed by G. David, J. L. Journé and S. Semmes cannot provide wavelet
expansions on spaces of homogeneous type. In the next chapter, we will prove
a new “T1 theorem”, namely the boundedness of Calderón-Zygmund opera-
tors on a wavelet space. This new “T1 theorem” will be a main tool to provide
a wavelet analysis.



Chapter 2

The Boundedness of Calderón-Zygmund
Operators on Wavelet Spaces

We first define test functions and wavelet spaces on spaces of homogeneous
type. Then we prove the main result of this chapter, namely that Calderón-
Zygmund operators whose kernels satisfy an additional smoothness condition
are bounded on wavelet spaces. This result will be a crucial tool to provide
wavelet expansions of functions and distributions on spaces of homogeneous
type in the next chapter.

We first introduce test functions on spaces of homogeneous type.

Definition 2.1. Fix 0 < γ, β < θ. A function f defined on X is said to be a
test function of type (x0, r, β, γ), x0 ∈ X, and r > 0, if f satisfies the following
conditions:

(i) |f(x)| ≤ C rγ

(r+ρ(x,x0))1+γ ;

(ii) |f(x) − f(y)| ≤ C
(

ρ(x,y)
r+ρ(x,x0)

)β
rγ

(r+ρ(x,x0))1+γ for all x, y ∈ X with

ρ(x, y) ≤ 1
2A (r + ρ(x, x0)).

Such functions exist and the reader will find a recipe two lines after Defini-
tion 1.2. If f is a test function of type (x0, r, β, γ), we write f ∈ M(x0, r, β, γ),
and the norm of f in M(x0, r, β, γ) is defined by

‖f‖M(x0,r,β,γ) = inf{C : (i) and (ii) hold}.

One should observe that if f ∈ M(x0, r, β, γ), then

‖f‖1 ≈ ‖f‖M(x0,r,β,γ).

We say that a function f is a scaling function if f ∈ M(x0, r, β, γ) and∫
f(x)dμ(x) = 1.
Now fix x0 ∈ X and denote M(β, γ) = M(x0, 1, β, γ). It is easy to see that

M(x1, r, β, γ) = M(β, γ) with equivalent norms for all x1 ∈ X and r > 0.
Furthermore, it is also easy to check that M(β, γ) is a Banach space with
respect to the norm in M(β, γ).

D. Deng and Y. Han, Harmonic Analysis on Spaces of Homogeneous Type, Lecture
Notes in Mathematics 1966, 27
c© Springer-Verlag Berlin Heidelberg 2009
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Definition 2.2. A function f defined on X is said to be a wavelet of type
(x0, r, β, γ) if f ∈ M(x0, r, β, γ) and

∫
f(x)dμ(x) = 0. We denote this by

f ∈ M0(x0, r, β, γ).

These wavelets are named molecules by Guido Weiss. A compactly supported
molecule is an atom. Atomic decompositions preluded wavelet analysis, as
indicated in the Introduction. Moreover Caderón-Zygmund operators T sat-
isfying T (1) = T ∗(1) = 0 have the remarkable property map a molecule into
a molecule. We use the notation M0(β, γ), when the dependence in x0 and
r can be forgotten, as a space of wavelets with regularity (β, γ).

To study the boundedness of Calderón-Zygmund singular integral opera-
tors on a wavelet space, we define the following “strong” weak boundedness
property.

Definition 2.3. An operator T defined by a distributional kernel K, is said
to have the “strong weak boundedness property” if there exist η > 0 and
C < ∞ such that

|〈K, f〉| ≤ Cr (2.1)

for all f ∈ Cη
0 (X × X) with supp(f) ⊆ B(x1, r) × B(y1, r), x1 and y1 ∈

X, ‖f‖∞ ≤ 1, ‖f(·, y)‖η ≤ r−η, and ‖f(x, ·)‖η ≤ r−η for all x and y ∈ X.

If T has the “strong weak boundedness property”, we write T ∈ SWBP.
Note that if ψ and φ are functions satisfying the conditions in Defini-

tion 1.15, then f(x, y) = ψ(x) × φ(y) satisfies the conditions in Definition
2.3, and hence |〈Tψ, φ〉| = |〈K, f〉| ≤ Cr if T has the “strong weak bound-
edness property”. This means that the strong weak boundedness property
implies the weak boundedness property. However, in the standard situa-
tion of R

n, the weak boundedness property implies the strong one. In-
deed any smooth function f(x, y), x ∈ B, y ∈ B, supported by B × B can
be written, by a double Fourier series expansion, as

∑
αjfj(x)gj(y) with∑

|αj | < ∞, ‖fj‖Cβ
0
≤ 1, ‖gj‖Cβ

0
≤ 1.

If T ∈ CZK(ε), we say that T ∗(1) = 0 if
∫

T (f)(x)dx = 0 for all f ∈
M0(β, γ). Similarly, T (1) = 0 if

∫
T ∗(f)(x)dx = 0 for all f ∈ M0(β, γ).

The main result in this chapter is the following theorem.

Theorem 2.4. Suppose that T ∈ CZK(ε) ∩ SWBP, and T (1) = T ∗(1) = 0.
Suppose further that K(x, y), the kernel of T, satisfies the following condition:

|K(x, y) − K(x′, y) − K(x, y′) + K(x′, y′)| (2.2)
≤ Cρ(x, x′)ερ(y, y′)ερ(x, y)−(1+2ε)

for ρ(x, x′), ρ(y, y′) ≤ 1
2Aρ(x, y). Then there exists a constant C such that

for each wavelet f ∈ M0(x0, r, β, γ) with x0 ∈ X, r > 0 and 0 < β, γ < ε,
Tf ∈ M0(x0, r, β, γ). Moreover
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‖T (f)‖M(x0,r,β,γ) ≤ C‖T‖‖f‖M(x0,r,β,γ) (2.3)

where ‖T‖ denote the smallest constant in the “strong weak boundedness prop-
erty” and in the estimates of the kernel of T.

Before proving Theorem 2.4, we observe that this theorem will provide
wavelet expansions which, as in the standard case of R

n, will be the building
blocks of most functional spaces.

To prove Theorem 2.4, we first need the following lemma.

Lemma 2.5. Suppose that T is a continuous linear operator from Ċη
0 to (Ċη

0 )′

satisfying T ∈ CZK(ε)∩SWBP with η < ε, and T (1) = 0. Then there exists
a constant C such that

‖Tφ‖∞ ≤ C (2.4)

whenever there exist x0 ∈ X and r > 0 such that suppφ ⊆ B(x0, r) with
‖φ‖∞ ≤ 1 and ‖φ‖η ≤ r−η.

Proof. We follow the idea of the proof in [M1]. Fix a function θ ∈ C∞(R)
with the following properties: θ(x) = 1 for |x| ≤ 1 and θ(x) = 0 for |x| > 2.

Let χ0(x) = θ(ρ(x,x0)
2r ) and χ1 = 1−χ0. Then φ = φχ0 and for all ψ ∈ Cη

0 (X),

〈Tφ, ψ〉 = 〈K(x, y), φ(y)ψ(x)〉 = 〈K(x, y), χ0(y)φ(y)ψ(x)〉
= 〈K(x, y), χ0(y)[φ(y) − φ(x)]ψ(x)〉 + 〈K(x, y), χ0(y)φ(x)ψ(x)〉
:= p + q

where K(x, y) is the distribution kernel of T.

To estimate p, let λδ(x, y) = θ(ρ(x,y)
δ ). Then

p = 〈K(x, y), (1 − λδ(x, y))χ0(y)[φ(y) − φ(x)]ψ(x)〉
+〈K(x, y), λδ(x, y)χ0(y)[φ(y) − φ(x)]ψ(x)〉

:= p1,δ + p2,δ. (2.5)

Since K is locally integrable on Ω = {(x, y) ∈ X × X : x �= y}, the first
term on the right hand side of (2.5) satisfies

|p1,δ| =
∣
∣
∣
∣

∫

Ω

K(x, y)(1 − λδ(x, y))χ0(y)[φ(y) − φ(x)]ψ(x)dμ(x)dμ(y)
∣
∣
∣
∣

≤ C

∫

X

∫

X

|K(x, y)χ0(y)[φ(y) − φ(x)]ψ(x)|dμ(x)dμ(y)

≤ C

∫

X

|ψ(x)|dμ(x) = C‖ψ‖1.

Thus it remains to show that lim
δ→0

p2,δ = 0, i.e.,
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lim
δ→0

〈K(x, y), λδ(x, y)χ0(y)[φ(y) − φ(x)]ψ(x)〉 = 0, (2.6)

and it is here that we use the “strong” weak boundedness property of T :

|〈K, f〉| ≤ Cr (2.7)

for all f ∈ Cη
0 (X × X) satisfying suppf ⊆ B(x0, r) × B(y0, r), ‖f‖∞ ≤

1, ‖f(·, y)‖η ≤ r−η and ‖f(x, ·)‖η ≤ r−η for all x, y ∈ X.
To show (2.6), let {yj}j∈Z ∈ X be a maximal collection of points satisfying

1
2
δ < inf

j 	=k
ρ(yj , yk) ≤ δ. (2.8)

By the maximality of {yj}j∈Z, we have that for each x ∈ X there ex-
ists a point yj such that ρ(x, yj) ≤ δ. Let ηj(y) = θ(ρ(y,yj)

δ ) and η̄j(y) =
[∑

i

ηi(y)
]−1

ηj(y). To see that η̄j is well defined, it suffices to show that

for any y ∈ X, there are only finitely many ηj with ηj(y) �= 0. This
follows from the following fact: ηj(y) �= 0 if and only if ρ(y, yj) ≤ 2δ
and hence this implies that B(yj , δ) ⊆ B(y, 4Aδ). Inequalities (2.8) show
B(yj ,

δ
4A ) ∩ B(yk, δ

4A ) = φ, and thus there are at most CA points yj ∈ X

such that B(yj ,
δ

4A ) ⊆ B(y, 4Aδ). Now let Γ = {j : η̄j(y)χ0(y) �= 0}. Note
that #Γ ≤ Crδ since μ(suppχ0) ∼ r and μ(suppη̄j) ∼ δ. We write

λδ(x, y)χ0(y)[φ(y) − φ(x)]ψ(x) =
∑

j∈Γ

λδ(x, y)η̄j(y)χ0(y)[φ(y) − φ(x)]ψ(x),

and we obtain

〈K(x, y), λδ(x, y)χ0(y)[φ(y) − φ(x)]ψ(x)〉
=
∑

j∈Γ

〈K(x, y), λδ(x, y)η̄j(y)χ0(y)[φ(y) − φ(x)]ψ(x)〉.

It is then easy to check that supp{λδ(x, y)η̄j(y)χ0(y)[φ(y)−φ(x)]ψ(x)} ⊆
B(yj , 3Aδ) × B(yj , 2δ) and

‖λδ(x, y)η̄j(y)χ0(y)[φ(y) − φ(x)]ψ(x)‖∞ ≤ Cδη

where C is a constant depending only on θ, φ, ψ, x0, and r but not on δ and j.
We claim that

‖λδ(., y)η̄j(y)χ0(y)[φ(y) − φ(.)]ψ(.)‖η ≤ C, (2.9)

and

‖λδ(x, .)η̄j(.)χ0(.)[φ(.) − φ(x)]ψ(x)‖η ≤ C. (2.10)
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We accept (2.9) and (2.10) for the moment. Then, since T satisfies the
“strong” weak boundedness property, we have

|〈K(x, y), λδ(x, y)χ0(y)[φ(y) − φ(x)]ψ(x)〉|
≤
∑

j∈Γ

|〈K(x, y), λδ(x, y)η̄j(y)χ0(y)[φ(y) − φ(x)]ψ(x)〉|

≤
∑

j∈Γ

Cμ(B(yj , 3Aδ))δη ≤ C
r

δ
CAδδη = CArδη

which yields (2.6).
It remains to show (2.9) and (2.10). We prove only (2.9) since the proof

of (2.10) is similar. To show (2.9) it suffices to show that for x, x1 ∈ X and
ρ(x, x1) ≤ δ,

|η̄j(y)χ0(y)|
∣
∣λδ(x, y)[φ(y) − φ(x)]ψ(x) − λδ(x1, y)[φ(y) − φ(x1)]ψ(x1)

∣
∣

≤ Cρ(x, x1)η,

since if ρ(x, x1) ≥ δ, then the expansion on the left above is clearly bounded
by

|η̄j(y)χ0(y)|
{
|λδ(x, y)[φ(y) − φ(x)]ψ(x)| + |λδ(x1, y)[φ(y) − φ(x1)]ψ(x1)|

}

≤ Cδη ≤ Cρ(x, x1)η.

By the construction of η̄j , it follows that

|η̄j(y)χ0(y)| ≤ C

for all y ∈ X. Thus

|η̄j(y)χ0(y)||λδ(x, y)[φ(y) − φ(x)]ψ(x) − λδ(x1, y)[φ(y) − φ(x1)]ψ(x1)|
≤ C|λδ(x, y)[φ(y) − φ(x)]ψ(x) − λδ(x1, y)[φ(y) − φ(x1)]ψ(x1)|
≤ C|[λδ(x, y) − λδ(x1, y)][φ(y) − φ(x)]ψ(x)|

+|λδ(x1, y)[φ(x) − φ(x1)]ψ(x)|
+|λδ(x1, y)[φ(y) − φ(x1)][ψ(x) − ψ(x1)]|

:= I + II + III.

Recall that ρ(x, x1) ≤ δ. If ρ(x, y) > Cδ, where C is a constant depending
on A but not on δ, then λδ(x, y) = λδ(x1, y) = 0, so I = 0. Thus we may
assume that ρ(x, y) ≤ Cδ and with θ in (1.7),

I ≤ C
∣
∣
∣
ρ(x, y)

δ
− ρ(x1, y)

δ

∣
∣
∣ρ(x, y)η ≤ Cδη−1ρ(x, x1)θ[ρ(x, y) + ρ(x1, y)]1−θ

≤ Cδη−θρ(x, x1)θ ≤ Cρ(x, x1)η
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since we may assume η ≤ θ. Terms II and III are easy to estimate:

II ≤ Cρ(x, x1)η,

III ≤ Cρ(x, x1)η,

since we can assume that δ < 1. This completes the proof of (2.9) and implies

|p| ≤ C‖ψ‖1.

To finish the proof of Lemma 2.5, we now estimate q. It suffices to show
that for x ∈ B(x0, r),

|Tχ0(x)| ≤ C. (2.11)

To see this, it is easy to check that q = 〈Tχ0, φψ〉, and hence (2.10) implies

|q| ≤ ‖Tχ0‖L∞(B(x0,r))‖φψ‖L1(B(x0,r)) ≤ C‖ψ‖1.

To show (2.11), we use Meyer’s idea again ([M1]). Let ψ ∈ Cη(X)
with suppψ ⊆ B(x0, r) and

∫
ψ(x)dμ(x) = 0. By the facts that T (1) =

0,
∫

ψ(x)dμ(x) = 0, and the conditions on K, we obtain

|〈Tχ0, ψ〉| = | − 〈Tχ1, ψ〉| =
∣
∣
∣
∣

∫∫
[K(x, y) − K(x0, y)]χ1(y)ψ(x)dμ(x)dμ(y)

∣
∣
∣
∣

≤ C‖ψ‖1.

Thus, Tχ0(x) = ω + γ(x) for x ∈ B(x0, r), where ω is a constant
and ‖γ‖∞ ≤ C. To estimate ω, choose φ1 ∈ Cη

0 (X) with supp φ1 ⊆
B(x0, r), ‖φ1‖∞ ≤ 1, ‖φ1‖η ≤ r−η and

∫
φ1(x)dμ(x) = Cr. We then have, by

the “strong” weak boundedness property of T,

∣
∣
∣
∣Crω +

∫
φ1(x)γ(x)dμ(x)

∣
∣
∣
∣ = |〈Tχ0, φ1〉| ≤ Cr

which implies |ω| ≤ C and hence Lemma 2.5.

We remark that the calculation above, together with the dominated con-
vergence theorem and T1 = 0, yields the following integral representation:

〈Tφ, ψ〉

=
∫

Ω

K(x, y){χ0(y)[φ(y) − φ(x)] − χ1(y)φ(x)}ψ(x)dμ(y)dμ(x) (2.12)

and

〈K(x, y), [φ(y) − φ(x)]χ0(y)〉

= lim
δ→0

∫

ρ(x,y)≥δ

K(x, y)χ0(y)[φ(y) − φ(x)]dμ(y) (2.13)

where χ0, φ and ψ are defined as above.
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We return to prove the Theorem 2.4. Fix a function θ ∈ C1(R) with
supp θ ⊆ {x ∈ R : |x| ≤ 2} and θ = 1 on {x ∈ R : |x| ≤ 1}. Suppose
that f ∈ M0(x0, r, β, γ) with x0 ∈ X, r > 0 and 0 < β, γ < ε. We first
prove that T (f)(x) satisfies the size condition (i) of Definition 2.1. To do
this, we first consider the case where ρ(x, x0) ≤ 5r. Set 1 = ξ(y)+η(y) where
ξ(y) = θ(ρ(y,x0)

10Ar ). Then we have

T (f)(x) =
∫

K(x, y)ξ(y)[f(y) − f(x)]dμ(y) +
∫

K(x, y)η(y)f(y)dμ(y)

+f(x)
∫

K(x, y)ξ(y)dμ(y) := I + II + III.

Using (2.13),

|I| ≤ C

∫

ρ(x,y)≤25A2r

|K(x, y)||f(y) − f(x)|dμ(y)

≤ C‖f‖M(x0,r,β,γ)

∫

ρ(x,y)≤25A2r

ρ(x, y)−1 ρ(x, y)β

r1+β
dμ(y)

≤ C‖f‖M(x0,r,β,γ)r
−1.

By Lemma 2.5,

|III| ≤ C|f(x)| ≤ C‖f‖M(x0,r,β,γ)r
−1.

For term II we have

|II| ≤ C‖f‖M(x0,r,β,γ)

∫

ρ(x,y)≥10Ar

ρ(x, y)−1 rγ

ρ(y, x0)1+γ
dμ(y)

≤ C‖f‖M(x0,r,β,γ)r
−1

since ρ(x, x0) ≤ 5r.
This implies that T (f)(x) satisfies (i) of Definition 2.1 with ρ(x, x0) ≤ 5r.

Consider now ρ(x, x0) = R > 5r. Following the proof in [M1], set 1 = I(y) +
J(y) + L(y), where I(y) = θ(4Aρ(y,x)

R ), J(y) = θ(4Aρ(y,x0)
R ), and f1(y) =

f(y)I(y), f2(y) = f(y)J(y), and f3(y) = f(y)L(y). Then it is easy to check
the following estimates:

|f1(y)| ≤ C‖f‖M(x0,r,β,γ)
rγ

R1+γ
; (2.14)

|f1(y) − f1(y′)| ≤ |I(y)||f(y) − f(y′)| + |f(y′)||I(y) − I(y′)| (2.15)

≤ C‖f‖M(x0,r,β,γ)
ρ(y, y′)β

Rβ

rγ

R1+γ

for all y and y′;
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|f3(y)| ≤ C‖f‖M(x0,r,β,γ)
rγ

ρ(y, x0)1+γ
χ{y∈X:ρ(y,x0)>

1
4A R}; (2.16)

∫
|f3(y)|dμ(y) ≤ C‖f‖M(x0,r,β,γ)

rγ

Rγ
; (2.17)

∣
∣
∣
∣

∫
f2(y)dμ(y)

∣
∣
∣
∣ =

∣
∣
∣
∣−

∫
f1(y)dμ(y) −

∫
f3(y)dμ(y)

∣
∣
∣
∣ (2.18)

≤ C‖f‖M(x0,r,β,γ)
rγ

Rγ
.

We write

T (f1)(x) =
∫

K(x, y)u(y)[f1(y) − f1(x)]dμ(y) + f1(x)
∫

K(x, y)u(y)dμ(y)

= σ1(x) + σ2(x)

where u(y) = θ(2Aρ(x,y)
R ). Applying the estimate (2.15) and Lemma 2.5, we

obtain

|σ1(x)| ≤ C‖f‖M(x0,r,β,γ)

∫

ρ(x,y)≤R
A

ρ(x, y)−1 ρ(x, y)β

Rβ

rγ

R1+γ
dμ(y)

≤ C‖f‖M(x0,r,β,γ)
rγ

R1+γ
;

and

|σ2(x)| ≤ C|f1(x)| ≤ C‖f‖M(x0,r,β,γ)
rγ

R1+γ
.

Notice that x is not in the support of f2. We can write

T (f2)(x) =
∫

[K(x, y) − K(x, x0)]f2(y)dμ(y) + K(x, x0)
∫

f2(y)dμ(y)

= δ1(x) + δ2(x).

Using the estimates on the kernel of T and on f2 in (2.18), we then get

|δ1(x)| ≤ C‖f‖M(x0,r,β,γ)

∫

ρ(x0,y)≤ R
2A

ρ(x0, y)ε

R1+ε
rγ

ρ(x0, y)1+γ
dμ(y)

≤ C‖f‖M(x0,r,β,γ)
rγ

R1+γ

since γ < ε, and

|δ2(x)| ≤ CR−1

∣
∣
∣
∣

∫
f2(y)dμ(y)

∣
∣
∣
∣ ≤ C‖f‖M(x0,r,β,γ)

rγ

R1+γ
.

Finally, since x is not in the support of f3, (2.16) implies
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|T (f3)(x)| ≤ C‖f‖M(x0,r,β,γ)

∫

ρ(x,y)≥ R
4A ,ρ(x0,y)≥ R

4A

ρ(x, y)−1 rγ

ρ(x0, y)1+γ
dμ(y)

≤ C‖f‖M(x0,r,β,γ)
rγ

R1+γ
.

This yields that T (f)(x) satisfies (i) of Definition 2.1 for ρ(x, x0) > 5r and
hence, estimate (i) of Definition 2.1 for all x ∈ X.

Now we prove that T (f)(x) satisfies the smoothness condition (ii) of Def-
inition 2.1. To do this, set ρ(x, x0) = R and ρ(x, x′) = δ. We consider
first the case where R ≥ 10r and δ ≤ 1

20A2 (r + R). As in the above, set
1 = I(y) + J(y) + L(y), where I(y) = θ(8Aρ(y,x)

R ), J(y) = θ(8Aρ(y,x0)
R ), and

f1(y) = f(y)I(y), f2(y) = f(y)J(y), and f3(y) = f(y)L(y). We write

T (f1)(x) =
∫

K(x, y)u(y)[f1(y) − f1(x)]dμ(y)

+
∫

K(x, y)v(y)f1(y)dμ(y) + f1(x)
∫

K(x, y)u(y)dμ(y)

where u(y) = θ(ρ(x,y)
2Aδ ) and v(y) = 1−u(y). Denote the first term of the above

right-hand side by p(x) and the last two terms by q(x). The size condition of
K and the smoothness of f1 in (2.15) yield

|p(x)| ≤ C‖f‖M(x0,r,β,γ)

∫

ρ(x,y)≤4Aδ

ρ(x, y)−1 ρ(x, y)β

Rβ

rγ

R1+γ
dμ(y)

≤ C‖f‖M(x0,r,β,γ)
δβ

Rβ

rγ

R1+γ
.

This estimate still holds with x replaced by x′ for ρ(x, x′) = δ. Thus

|p(x) − p(x′)| ≤ C‖f‖M(x0,r,β,γ)
δβ

Rβ

rγ

R1+γ
.

For q(x), using the condition T1 = 0, we obtain

q(x) − q(x′) =
∫

[K(x, y) − K(x′, y)]v(y)[f1(y) − f1(x)]dμ(y)

+[f1(y) − f1(x)]
∫

K(x, y)u(y)dμ(y)

= I + II.

Using Lemma 2.5 and the estimate for f1 in (2.15),

|II| ≤ C|f1(x) − f1(x′)| ≤ C‖f‖M(x0,r,β,γ)
δβ

Rβ

rγ

R1+γ
.

Observing
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|f1(y) − f1(x)||v(y)| ≤ C‖f‖M(x0,r,β,γ)
ρ(x, y)β

Rβ

rγ

R1+γ

for all y ∈ X, we see that I is dominated by

C

∫

ρ(x,y)≥2Aδ

|K(x, y) − K(x′, y)||v(y)||f1(y) − f1(x)|dμ(y)

≤ C‖f‖M(x0,r,β,γ)

∫

ρ(x,y)≥2Aδ

ρ(x, x′)ε

ρ(x, y)1+ε
ρ(x, y)β

Rβ

rγ

R1+γ
dμ(y)

≤ C‖f‖M(x0,r,β,γ)
δβ

Rβ

rγ

R1+γ

since β < ε. This implies

|T (f1)(x) − T (f1)(x′)| ≤ C‖f‖M(x0,r,β,γ)
δβ

Rβ

rγ

R1+γ
.

Note that for ρ(x, x′) = δ ≤ 1
20A2 (r + R) and R ≥ 10r, x and x′ are not in

the supports of f2 and f3. Using the condition for K and the estimate for f2

in (2.18), then

|T (f2)(x) − T (f2)(x′)| =
∣
∣
∣
∣

∫
[K(x, y) − K(x′, y)]f2(y)dμ(y)

∣
∣
∣
∣

≤
∫

|K(x, y) − K(x′, y) − K(x, x0) − K(x′, x0)||f2(y)|dμ(y)

+|K(x, x0) − K(x′, x0)|
∣
∣
∣
∣

∫
f2(y)dμ(y)

∣
∣
∣
∣

≤ C‖f‖M(x0,r,β,γ)

{∫

ρ(x0,y)≤ R
4A

ρ(x, x′)ερ(y, x0)ε

R2+ε
rγ

ρ(y, x0)1+γ
dμ(y)

+
δε

R1+ε

rγ

Rγ

}

≤ C‖f‖M(x0,r,β,γ)
δε

Rε

rγ

R1+γ

since γ < ε. Finally, we have

|T (f3)(x) − T (f3)(x′)| =
∣
∣
∣
∣

∫
[K(x, y) − K(x′, y)]f3(y)dμ(y)

∣
∣
∣
∣

≤ C

∫

ρ(x,y)≥ R
8A≥2Aδ

ρ(x, x′)ε

ρ(x, y)1+ε |f3(y)|dμ(y) ≤ C‖f‖M(x0,r,β,γ)
δε

Rε

rγ

R1+γ
.

These estimates imply that T (f)(x) satisfies the condition (ii) of Definition
2.1 for the case where ρ(x, x0) = R ≥ 10r and ρ(x, x′) = δ ≤ 1

20A2 (r+R). We
now consider the other cases. Note first that if ρ(x, x0) = R and 1

2A (r+R) ≥



2 Boundedness of CZO on Wavelet Space 37

ρ(x, x′) = δ ≥ 1
20A2 (r+R), then the estimate (ii) of Definition 2.1 for T (f)(x)

follows from the estimate (i) of Definition 2.1 for T (f)(x). So we only need
to consider the case where R ≤ 10r and δ ≤ 1

20A2 (r +R). This case is similar
and easier. In fact, all we need to do is to replace R in the proof above by r.
We leave these details to the reader. The proof of Theorem 2.4 is completed.

We remark that the condition in (2.2) is also necessary for the boundedness
of Calderón-Zygmund operators on wavelet spaces. To be precise, in the next
chapter, we will prove all kinds of Calderón’s identities and use them to
provide all kinds of wavelet expansions of functions and distributions on
spaces of homogeneous type. Suppose that T is a Calderón-Zygmund operator
and maps the wavelet space M0(x0, r, β, γ) to itself. By the wavelet expansion
given in Theorem 3.25 below, K(x, y), the kernel of T, can be written as
K(x, y) =

∑

λ∈Λ

T (ψ̃λ)(x)ψλ(y). Since ψ̃λ(x) is a wavelet, by the assumption

on T, T (ψ̃λ)(x) is also a wavelet. Then one can easily check that K(x, y)
satisfies the condition (2.2) but the exponent ε must be replaced by ε′ with
0 < ε′ < β, γ. We leave these details to the reader.



Chapter 3

Wavelet Expansions on Spaces
of Homogeneous Type

3.1 Introduction

Up to now, we succeeded in building a Littlewood-Paley analysis on a space
of homogeneous type developed by G. David, J. L. Journé and S. Semmes,
and in proving the boundedness of a class of Calderón-Zygmund operators on
wavelet spaces. Now we aim at bridging the gap between operator theory and
wavelets. We will use the theory of Calderón-Zygmund operators to derive
a wavelet expansion from a Littlewood-Paley analysis. For doing it we recall
the Littlewood-Paley analysis developed by G. David, J. L. Journé and S.
Semmes, which has been described in Chapter 1. Let Sk and Dk be operators
defined by Coifman’s construction. G. David, J. L. Journé and S. Semmes
provided the following identity: For f ∈ L2,

f =
∑

k

(TN )−1DN
k Dk(f)

where the operator TN is invertible on L2 for large N and (TN )−1 is bounded
on L2 uniformly for large N.

As we explained before, this identity is different from Calderón’s identity.
But, however, it is a starting point leading to Calderón’s identity on spaces
of homogeneous type. In Section 3.3, we introduce the definition of an ap-
proximation to the identity and give basic estimates on the kernels of an
approximation to the identity. One can easily check that DN

k (x, y), the ker-
nels of DN

k , are wavelets in the sense given in the Introduction. In Section 3.4,
we will prove the fundamental fact that (TN )−1 is bounded on wavelet spaces.
Let D̃k = (TN )−1DN

k . Then Calderón’s identity on spaces of homogeneous
type is given by:

f =
∑

k

D̃kDk(f)

where the kernels of D̃k are wavelets in the sens given in the Introduction.

D. Deng and Y. Han, Harmonic Analysis on Spaces of Homogeneous Type, Lecture
Notes in Mathematics 1966, 39
c© Springer-Verlag Berlin Heidelberg 2009
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By a discrete version of the above identity, we obtain one of main results
in this book, that is, Theorem 3.25 below. To highlight the relation between
Theorem 3.25 and wavelet expansions on spaces of homogeneous type, let us
return to the classical setting. If ψj,k(x) = 2

nj
2 (2jx − k), j ∈ Z, k ∈ Z

n, ψ ∈
F ⊂ S (Rn) is an orthonormal wavelet basis, we have

f(x) =
∑

j

∑

k

〈f, ψj,k〉ψj,k(x) (3.1)

(the sum over the finite set F consisting of the 2n − 1 mother wavelets ψ is
omitted).

Let Δj(f) be f ∗ ψj where ψj(x) = 2njψ(2jx) and let Dj(x, y) =
2njψ(2j(x − y)) be the kernel of Δj . Then we can write

ψj,k(x) = 2−
nj
2 Dj(x, k2−j) (3.2)

which is ridiculous but paves the way to Theorem 3.25. We also have

2
nj
2 〈f, ψj,k〉 = (Δ∗

jf)(k2−j) (3.3)

where Δ∗
j is the adjoint of Δj .

Finally (3.1) can be rewritten as

f(x) =
∑

j

∑

k

2−njDj(x, k2−j)(Δ∗
jf)(k2−j) (3.4)

which is exactly Theorem 3.25.
But conversely (and this is far more important) Theorem 3.25 yields a

wavelet series expansion. This is the true meaning of Theorem 3.25. The
same remark applies to Theorem 3.27. Theorem 3.25 says that

f =
∑

λ∈Λ

〈f, ψλ〉ψ̃λ (3.5)

while Theorem 3.27 is a variant where one does not use “large wavelets” since
these wavelets sum up to the scaling function. The proofs of Theorem 3.25
and Theorem 3.27 will be given in Section 3.5.

Orthonormal wavelets bases are out of reach on a space of homogeneous
type. Instead the theory of frames will be used. Roughly speaking using a
frame means that you tolerate a limited amount of redundancy while redun-
dancy is compeletely avoided with a basis. For reader’s convenience, some
few facts about frames will be proved now in the next section.
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3.2 The Theory of Frames

Let H be a Hilbert space and let ej , j ∈ J, be a collection of vectors in H.
This collection is a frame if and only if there exists a constant C ≥ 1 such
that, for every x in H, we have

1
C
‖x‖2 ≤

∑

j∈J

|〈x, ej〉|2 ≤ C‖x‖2. (3.6)

This is equivalent to saying that the self-adjoint operator

S(x) =
∑

j∈J

〈x, ej〉ej (3.7)

has the following property

1
C

I ≤ S ≤ CI. (3.8)

where I is the identity operator. Therefore S is invertible and x can be re-
covered through

x =
∑

j∈J

〈x, ej〉fj (3.9)

where fj = S−1(ej).

Theorem 3.1. The following two properties are equivalent ones:
(a) ej , j ∈ J, is a frame in H.
(b) The operator Λ : �2(J)→ H defined by Λ(αj) =

∑

j

αjej is continuous

and onto.

We first prove that (a) implies (b). The continuity of Λ is proved by the
following way:

∥
∥
∥
∑

αjej

∥
∥
∥ = sup

‖x‖≤1

∣
∣
∣
〈∑

αjej , x
〉∣
∣
∣

= sup
‖x‖≤1

∣
∣
∣
∑

αj〈x, ej〉
∣
∣
∣

≤ C
(∑∣

∣
∣αj

∣
∣
∣
2) 1

2

since
∑

|〈x, ej〉|2 ≤ C by (3.6).
We already proved that Λ is onto. We now turn to the converse implication.
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If Λ is onto, Banach’s theorem says that there exists a constant C such
that for each x ∈ H one can find αj ∈ �2(J) with x =

∑
αjej and

∑
|αj |2 ≤

C2‖x‖2. Therefore

‖x‖2 = 〈x, x〉 =
〈∑

αjej , x
〉

=
∑

αj〈x, ej〉

≤
(∑

|αj |2
) 1

2
(∑

|〈x, ej〉|2
) 1

2

≤ C‖x‖
(∑

|〈x, ej〉|2
) 1

2
.

It implies ‖x‖ ≤ C(
∑

|〈x, ej〉|2)
1
2 . This is the “difficult half” of (3.6). The

other implication is simpler. We have

(∑

j∈J

|〈x, ej〉|2
) 1

2

= sup
‖αj‖2≤1

∣
∣
∣
∑

αj〈x, ej〉
∣
∣
∣.

But
∑

αj〈x, ej〉 = 〈x,
∑

αj , ej〉 and the continuity of Λ implies the re-
quired conclusion.

Definition 3.2. We say that (ej)j∈J is almost orthogonal in H if a constant
C exists such that

∥
∥
∥
∥
∑

j∈J

αjej

∥
∥
∥
∥ ≤ C

(∑

j∈J

|αj |2
) 1

2

(3.10)

for every sequence (αj)j∈J ∈ �2(J).

This is equivalent to
∑

j∈J

|〈x, ej〉|2 ≤ ‖x‖2 (3.11)

for all x ∈ H.

Theorem 3.3. Let (ej)j∈J and (fj)j∈J be two families of vectors in H. Let
us assume that both (ej)j∈J and (fj)j∈J satisfy (3.10). Then the operator
S : H → H defined by

S(x) =
∑

j∈J

〈x, ej〉fj (3.12)

is continuous from H to H. If S is one to one, then both (ej)j∈J and (fj)j∈J

are frames.

The proof is fairly obvious. We have for a positive constant γ,
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γ‖x‖ ≤ ‖S(x)‖ ≤ C
(∑

|〈x, ej〉|2
) 1

2
(3.13)

by (3.10) applied to the family (fj)j∈J . Therefore (ej)j∈J is a frame. But the
same argument applies to S∗ and (fj)j∈J is also a frame.

One should observe that the frame expansion given in (3.9) is not a wavelet
expansion because, in general, fj are not wavelets even ej could be wavelets.
For our purpose, however, we will provide a wavelet expansion. This leads to
add some extra conditions on frames. We describe these conditions now in
the next section.

3.3 Approximation to the Identity and Basic Estimates

We now define an approximation to the identity on spaces of homogeneous
type. This generalizes the properties of Sk in Section 1.3.

Definition 3.4. A sequence {Sk}k∈Z of operators is said to be an approxi-
mation to the identity if there exist 0 < σ, ε ≤ θ and C < ∞ such that for all
x, x′, y and y′ ∈ X,Sk(x, y), the kernel of Sk, are functions from X ×X into
C satisfying

|Sk(x, y)| ≤ C
2−kε

(2−k + ρ(x, y))1+ε
; (3.14)

|Sk(x, y) − Sk(x′, y)| ≤ C
( ρ(x, x′)

2−k + ρ(x, y)

)σ 2−kε

(2−k + ρ(x, y))1+ε
(3.15)

for ρ(x, x′) ≤ 1
2A (2−k + ρ(x, y);

|Sk(x, y) − Sk(x, y′)| ≤ C
( ρ(y, y′)

2−k + ρ(x, y)

)σ 2−kε

(2−k + ρ(x, y))1+ε
(3.16)

for ρ(y, y′) ≤ 1
2A (2−k + ρ(x, y);

∫
Sk(x, y)dμ(y) = 1 (3.17)

for all x ∈ X;
∫

Sk(x, y)dμ(x) = 1 (3.18)

for all y ∈ X.
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One should observe that if Sk is an approximation to the identity, Sk(x, y),
the kernel of Sk, as a function of x when y is fixed, or a function of y when
x is fixed, is a scaling function (see Definition 2.1 and the remarks following
this definition). For our purpose, we also need the following double Lipschitz
condition for an approximation to the identity . This condition is crucial for
providing wavelet expansions on spaces of homogeneous type.

Definition 3.5. An approximation to the identity {Sk}k∈Z is said to satisfy
the double Lipschitz condition if

|Sk(x, y) − Sk(x′, y) − Sk(x, y′) + Sk(x′, y′)| (3.19)

≤ C
( ρ(x, x′)

2−k + ρ(x, y)

)σ( ρ(y, y′)
2−k + ρ(x, y)

)σ 2−kε

(2−k + ρ(x, y))1+ε

for ρ(x, x′) ≤ 1
2A (2−k + ρ(x, y)) and ρ(y, y′) ≤ 1

2A (2−k + ρ(x, y)).

The following lemmas provide the basic estimates of approximations to
the identity, which will be often used later.

Lemma 3.6. Suppose that Sk(x, y), k ∈ Z, the kernels of operators Sk, k ∈ Z,
satisfy the conditions (3.14), (3.15) and (3.17). Set Dk = Sk − Sk−1 for all
k ∈ Z. Then for any σ′ ≤ σ and σ′ < ε, there exists a constant C which
depends only on σ, σ′ and ε but not on k and l, such that

|DkDl(x, y)| ≤ C(2−(k−l)σ′ ∧ 1)
2−(k∧l)ε

(2−(k∧l) + ρ(x, y))1+ε
(3.20)

where DkDl(x, y) is the kernel of operator DkDl and a ∧ b = min{a, b}.
To prove the estimate in (3.20), we write DkDl(x, y) =

∫
Dk(x, z)Dl(z, y)

dμ(z) and consider that l ≥ k. In this case, we use only the size condition
(3.14). Considering ρ(x, y) ≤ 4A2−k and ρ(x, y) > 4A2−k, respectively, the
estimate in (3.20) follows easily.

We now consider that l ≤ k. In this case, Dl(x, z), the kernel of Dl, as the
function of z, is flat, and Dk(z, y), the kernel of Dk, as the function of z, has
more oscillations, so we use the cancellation condition (3.17) on Dk and the
smoothness condition (3.15) on Dl(z, y). We have

|DkDl(x, y)| =
∣
∣
∣
∣

∫
Dk(x, z)[Dl(z, y) − Dl(x, y)]dμ(z)

∣
∣
∣
∣

≤
∫

W1

|Dk(x, z)||Dl(z, y) − Dl(x, y)|dμ(z)

+
∫

W2

|Dk(x, z)||Dl(z, y) − Dl(x, y)|dμ(z) = I + II

where W1 = {z ∈ X : ρ(z, x) ≤ 1
2A (2−l + ρ(x, y))} and W2 = {z ∈ X :

ρ(z, x) ≥ 1
2A (2−l + ρ(x, y))}.
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Using the smoothness estimate (3.15) and the fact σ′ < ε,

I ≤ C

∫
2−kε

(2−k + ρ(x, z))1+ε

( ρ(x, z)
2−l + ρ(x, y)

)σ′ 2−lε

(2−l + ρ(x, y))1+ε
dμ(z)

≤ C2−(k−l)σ′ 2−lε

(2−l + ρ(x, y))1+ε
.

Applying the size estimate (3.14) to term II implies

II ≤
∫

W2

|Dk(x, z)||Dl(z, y)|dμ(z)

+
∫

W2

|Dk(x, z)||Dl(x, y)|dμ(z)

≤ C
2−kε

(2−l + ρ(x, y))1+ε

∫

W2

2−lε

(2−l + ρ(z, y))1+ε
dμ(z)

+C
2−lε

(2−l + ρ(x, y))1+ε

∫

W2

2−kε

ρ(x, z)1+ε
dμ(z)

≤ C2−(k−l)ε 2−lε

(2−l + ρ(x, y))1+ε
.

This yields (3.20).
As a consequence of Lemma 3.6, we obtain the following almost orthogonal

estimate.

Lemma 3.7. Suppose that {Sk}k∈Z is an approximation to the identity . Set
Dk = Sk − Sk−1 for all k ∈ Z. Then for any σ′ ≤ σ and σ′ < ε, there exists
a constant C which depends only on σ, σ′ and ε but not on k and l, such that

|DkDl(x, y)| ≤ C2−|l−k|σ′ 2−(k∧l)ε

(2−(k∧l) + ρ(x, y))1+ε
. (3.21)

Remark 3.8. The estimate in (3.21) means that the kernels of an approxima-
tion to the identity satisfy the so-called almost orthogonal estimate. Suppose
that Sk(x, y), k ∈ Z, the kernels of operators Sk, satisfy the conditions (3.14),
(3.16) and (3.17), and Pk(x, y), k ∈ Z, the kernels of operators Pk, satisfy the
conditions (3.14), (3.15) and (3.18). Set Dk = Sk − Sk−1 for all k ∈ Z and
Ek = Pk −Pk−1 for all k ∈ Z. Then for any σ′ ≤ σ and σ′ < ε, there exists a
constant C which depends only on σ, σ′ and ε but not on k, such that

|DkEl(x, y)| ≤ C2−|l−k|σ′ 2−(k∧l)ε

(2−(k∧l) + ρ(x, y))1+ε
.



46 3 Wavelet Expansions

In fact, to see this, note that in the proof of Lemma 3.7 only the moment
and smoothness conditions of Dk(x, y) on the variable y and of El(x, y) on
the variable x, are needed. This remark will be used later.

We now give the smoothness estimate on the kernel of DkDl.

Lemma 3.9. Suppose that Dk(x, y), k ∈ Z, the kernels of operators Dk, k ∈
Z, satisfy the same conditions as in Lemma 3.6. Then there exists a constant
C which depends only on σ, and ε but not on k, such that if k ≥ l,

|DkDl(x, y) − DkDl(x′, y)| ≤ C
( ρ(x, x′)

2−l + ρ(x, y)

)σ 2−lε

(2−l + ρ(x, y))1+ε
(3.22)

for ρ(x, x′) ≤ 1
2A (2−l + ρ(x, y)).

Proof. It suffices to consider only the case where ρ(x, x′) ≤ 1
4A2 (2−l+ρ(x, y))

because otherwise the estimate in (3.22) follows directly from Lemma 3.6. By
the condition (3.17), Dk(1) = 0, and we get

|DkDl(x, y) − DkDl(x′, y)|

=
∣
∣
∣
∣

∫
[Dk(x, z) − Dk(x′, z)][Dl(z, y) − Dl(x, y)]dμ(z)

∣
∣
∣
∣

≤
∫

|Dk(x, z) − Dk(x′, z)||Dl(z, y) − Dl(x, y)|dμ(z)

=
∫

W1

· · · +
∫

W2

· · · +
∫

W3

· · · = I + II + III

where

W1 =
{

z ∈ X : ρ(x, x′) ≤ 1
4A2

(2−l + ρ(x, y)) ≤ 1
2A

(2−k + ρ(x, z))
}

,

W2 =
{

z ∈ X : ρ(x, x′) ≤ 1
2A

(2−k + ρ(x, z)) ≤ 1
4A2

(2−l + ρ(x, y))
}

,

W3 =
{

z ∈ X : ρ(x, x′) >
1

2A
(2−k + ρ(x, z))

}

.

Note that if z ∈ W2, then ρ(x, z)) ≤ 1
2A (2−l + ρ(x, y)). Using the estimate

(3.15),

II ≤ C

∫

W2

( ρ(x, x′)
2−k + ρ(x, z)

)σ 2−kε

(2−k + ρ(x, z))1+ε

( ρ(z, x)
2−l + ρ(x, y)

)σ

2−lε

(2−l + ρ(x, y))1+ε
dμ(z) ≤ C

( ρ(x, x′)
2−l + ρ(x, y)

)σ 2−lε

(2−l + ρ(x, y))1+ε
.

The estimates (3.14) and (3.15) yield
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I ≤ C

∫

W1

( ρ(x, x′)
2−k + ρ(x, z)

)σ 2−kε

(2−k + ρ(x, z))1+ε

×
[ 2−lε

(2−l + ρ(z, y))1+ε
+

2−lε

(2−l + ρ(x, y))1+ε

]
dμ(z)

≤ C
( ρ(x, x′)

2−l + ρ(x, y)

)σ 2−kε

(2−l + ρ(x, y))1+ε

∫

W1

2−lε

(2−l + ρ(z, y))1+ε
dμ(z)

+
( ρ(x, x′)

2−l + ρ(x, y)

)σ 2−lε

(2−l + ρ(x, y))1+ε

∫

W1

2−kε

(2−k + ρ(x, z))1+ε
dμ(z)

≤ C
( ρ(x, x′)

2−l + ρ(x, y)

)σ 2−lε

(2−l + ρ(x, y))1+ε

since k ≥ l.
Finally, note that if z ∈ W3, then ρ(x, z)) ≤ 1

2A (2−l+ρ(x, y)) and ρ(x, z) ≤
2Aρ(x, x′). By the estimate (3.15) and (3.14),

III ≤ C

∫

W3

[ 2−kε

(2−k + ρ(x, z))1+ε
+

2−kε

(2−k + ρ(x′, z))1+ε

]

×
( ρ(z, x)

2−l + ρ(x, y)

)σ 2−lε

(2−l + ρ(x, y))1+ε
dμ(z)

≤ C
( ρ(x, x′)

2−l + ρ(x, y)

)σ 2−lε

(2−l + ρ(x, y))1+ε
.

This implies (3.22) for the case where ρ(x, x′) ≤ 1
4A2 (2−l + ρ(x, y)) and

hence Lemma 3.9.

Lemma 3.10. Suppose that Dk(x, y), k ∈ Z, the kernels of operators Dk,
satisfy the same conditions as in Lemma 3.6. Then there exists a constant C
which depends only on σ′ ≤ σ and σ′ < ε but not on l, such that if l ≥ k,

|DkDl(x, y) − DkDl(x′, y)|

≤ C
( ρ(x, x′)

2−k + ρ(x, y)

)σ′ 2−k(ε−σ′)

(2−k + ρ(x, y))1+(ε−σ′)
(3.23)

for ρ(x, x′) ≤ 1
2A (2−k + ρ(x, y)).

The proof of this lemma is similar to the previous one. Instead we only
use the size condition on the kernel of Dl. We leave the details to the reader.

As a consequence of Lemma 3.9 and Lemma 3.10, we have

Lemma 3.11. Suppose that {Sk}k∈Z is an approximation to the identity .
Set Dk = Sk − Sk−1 for all k ∈ Z. Then for any σ′ ≤ σ and σ′ < ε, there
exists a constant C which depends only on σ, σ′ and ε but not on k, l such
that
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|DkDl(x, y) − DkDl(x′, y)|

≤ C
( ρ(x, x′)

2−l + ρ(x, y)

)σ 2−lε

(2−l + ρ(x, y))1+ε
(3.24)

for k ≥ l and ρ(x, x′) ≤ 1
2A (2−l + ρ(x, y));

|DkDl(x, y) − DkDl(x′, y)|

≤ C
( ρ(x, x′)

2−k + ρ(x, y)

)σ′ 2−k(ε−σ′)

(2−k + ρ(x, y))1+(ε−σ′)
(3.25)

for k ≤ l and ρ(x, x′) ≤ 1
2A (2−k + ρ(x, y));

|DkDl(x, y) − DkDl(x, y′)|

≤ C
( ρ(y, y′)

2−k + ρ(x, y)

)σ 2−kε

(2−k + ρ(x, y))1+ε
(3.26)

for k ≤ l and ρ(y, y′) ≤ 1
2A (2−k + ρ(x, y));

|DkDl(x, y) − DkDl(x, y′)|

≤ C
( ρ(y, y′)

2−l + ρ(x, y)

)σ′ 2−l(ε−σ′)

(2−l + ρ(x, y))1+(ε−σ′)
(3.27)

for l ≤ k and ρ(y, y′) ≤ 1
2A (2−l + ρ(x, y)).

We now give the double Lipschitz estimates.

Lemma 3.12. Suppose that {Sk}k∈Z is an approximation to the identity and
Sk(x, y), the kernels of Sk, satisfy the condition (3.19). Set Dk = Sk − Sk−1

for all k ∈ Z. Then for any σ′ ≤ σ and σ′ < ε, there exists a constant C
which depends only on σ, σ′ and ε but not on k or l, such that

|DkDl(x, y) − DkDl(x′, y) − DkDl(x, y′) + DkDl(x′, y′)| (3.28)

≤ C
( ρ(x, x′)

2−(k∧l) + ρ(x, y)

)σ′( ρ(y, y′)
2−(k∧l) + ρ(x, y)

)σ′ 2−(k∧l)(ε−σ′)

(2−(k∧l) + ρ(x, y))1+(ε−σ′)

for ρ(x, x′) ≤ 1
2A (2−(k∧l) + ρ(x, y)) and ρ(y, y′) ≤ 1

2A (2−(k∧l) + ρ(x, y)).

Proof. We only prove the case where k ≤ l. The proof of the case where
k ≥ l is similar. We also only consider ρ(x, x′) ≤ 1

4A2 (2−(k∧l) + ρ(x, y)) and
ρ(y, y′) ≤ 1

4A2 (2−(k∧l) + ρ(x, y)). We leave the details for other cases to the
reader. Using the moment condition, we write
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|DkDl(x, y) − DkDl(x′, y) − DkDl(x, y′) + DkDl(x′, y′)|

=
∣
∣
∣
∣

∫
[Dk(x, z) − Dk(x′, z)][Dl(z, y′) − Dl(z, y′)]dμ(z)

∣
∣
∣
∣

=
∣
∣
∣
∣

∫
[Dk(x, z) − Dk(x′, z) − Dk(x, y) − Dk(x′, y)]

×[Dl(z, y′) − Dl(z, y′)]dμ(z)
∣
∣
∣
∣

≤
∫

|Dk(x, z) − Dk(x′, z) − Dk(x, y) − Dk(x′, y)|

×|Dl(z, y′) − Dl(z, y′)|dμ(z)

=
∫

W1

· · · +
∫

W2

· · · +
∫

W3

· · · +
∫

W4

· · · = I + II + III + IV

where

W1 =
{

z ∈ X : ρ(y, y′) ≤ 1
2A

(2−l + ρ(z, y)) ≤ 1
4A2

(2−k + ρ(x, y))
}

,

W2 =
{

z ∈ X : ρ(y, y′) ≤ 1
4A2

(2−k + ρ(x, y)) ≤ 1
2A

(2−l + ρ(z, y))

and ρ(x, x′) ≤ 1
2A

(2−k + ρ(z, x))
}

,

W3 =
{

z ∈ X : ρ(y, y′) ≤ 1
4A2

(2−k + ρ(x, y)) ≤ 1
2A

(2−l + ρ(z, y))

and ρ(x, x′) ≥ 1
2A

(2−k + ρ(z, x))
}

,

W4 =
{

z ∈ X : ρ(y, y′) >
1

2A
(2−l + ρ(z, y))

}

.

Note that if z ∈ W1, then ρ(z, y)) ≤ 1
2A (2−k+ρ(x, y)) and ρ(x, x′) ≤ 1

2A (2−k+
ρ(x, y)). Using the condition (3.19), we obtain

I ≤ C

∫

W1

( ρ(z, y)
2−k + ρ(x, y)

)σ( ρ(x, x′)
2−k + ρ(x, y)

)σ

× 2−kε

(2−k + ρ(x, y))1+ε
(

ρ(y, y′)
2−l + ρ(z, y)

)σ 2−lε

(2−l + ρ(z, y))1+ε
dμ(z)

≤ C
( ρ(x, x′)

2−k + ρ(x, y)

)σ( ρ(y, y′)
2−k + ρ(x, y)

)σ 2−kε

(2−k + ρ(x, y))1+ε
.

If z ∈ W4, then 2Aρ(y, y′) > ρ(z, y), ρ(z, y)) ≤ 1
2A (2−k + ρ(x, y)) and

ρ(x, x′) ≤ 1
2A (2−k + ρ(x, y)). Thus,
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IV ≤ C

∫

W4

( ρ(z, y)
2−k + ρ(x, y)

)σ( ρ(x, x′)
2−k + ρ(x, y)

)σ 2−kε

(2−k + ρ(x, y))1+ε

×
[ 2−lε

(2−l + ρ(z, y))1+ε
+

2−lε

(2−l + ρ(z, y′))1+ε

]
dμ(z)

≤ C
( ρ(x, x′)

2−k + ρ(x, y)

)σ( ρ(y, y′)
2−k + ρ(x, y)

)σ 2−kε

(2−k + ρ(x, y))1+ε
.

For term II, by the smoothness condition,

II ≤ C

∫

W2

[( ρ(x, x′)
2−k + ρ(x, z)

)σ 2−kε

(2−k + ρ(x, z))1+ε

+
( ρ(x, x′)

2−k + ρ(x, y)

)σ 2−kε

(2−k + ρ(x, y))1+ε

]

×
( ρ(y, y′)

2−l + ρ(z, y)

)σ 2−lε

(2−l + ρ(z, y))1+ε
dμ(z)

≤ C
(ρ(x, x′)

2−k

)σ′( ρ(y, y′)
2−k + ρ(x, y)

)σ 2−lε

(2−k + ρ(x, y))1+ε

×
∫

W2

2−kε

(2−k + ρ(x, z))1+ε
dμ(z)

+C
( ρ(x, x′)

2−k + ρ(x, y)

)σ( ρ(y, y′)
2−k + ρ(x, y)

)σ 2−kε

(2−k + ρ(x, y))1+ε

≤ C
( ρ(x, x′)

2−k + ρ(x, y)

)σ′( ρ(y, y′)
2−k + ρ(x, y)

)σ 2−k(ε−σ′)

(2−k + ρ(x, y))1+(ε−σ′)
.

Finally, if z ∈ W3, then 2Aρ(x, x′)2k ≥ 1. Using the size and smoothness
conditions,

III ≤ C

∫

W3

[
2−kε

(2−k + ρ(x, z))1+ε
+

2−kε

(2−k + ρ(x′, z))1+ε
+ (

ρ(x, x′)
2−k + ρ(x, y)

)σ

· 2−kε

(2−k + ρ(x, y))1+ε

]

× (
ρ(y, y′)

2−l + ρ(z, y)
)σ 2−lε

(2−l + ρ(z, y))1+ε
dμ(z)

≤ C
( ρ(y, y′)

2−k + ρ(z, y)

)σ 2−kε

(2−k + ρ(z, y))1+ε

+C
( ρ(x, x′)

2−k + ρ(x, y)

)σ( ρ(y, y′)
2−k + ρ(x, y)

)σ 2−kε

(2−k + ρ(x, y))1+ε

≤ C
( ρ(x, x′)

2−k + ρ(x, y)

)σ′( ρ(y, y′)
2−k + ρ(x, y)

)σ 2−k(ε−σ′)

(2−k + ρ(x, y))1+(ε−σ′)

which implies (3.28) for the case where k ≤ l and hence, Lemma 3.12.
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It is easy to check that the approximation to the identity constructed by
Coifman’s idea satisfies the condition (3.19). The following result implies that
SkSk, where Sk is an approximation to the identity , satisfies the condition
(3.19).

Lemma 3.13. Suppose that {Sk}k∈Z is an approximation to the identity .
Then SkSk is an approximation to the identity and SkSk(x, y), the kernels
of SkSk, satisfy the following conditions: For any σ′ ≤ σ and σ′ < ε, there
exists a constant C such that

|SkSk(x, y)| ≤ C
2−kε

(2−k + ρ(x, y))1+ε
;

|SkSk(x, y) − SkSk(x′, y)| ≤ C
( ρ(x, x′)

2−k + ρ(x, y)

)σ′ 2−k(ε−σ′)

(2−k + ρ(x, y))1+(ε−σ′)

for ρ(x, x′) ≤ 1
2A (2−k + ρ(x, y);

|SkSk(x, y) − SkSk(x, y′)| ≤ C
( ρ(y, y′)

2−k + ρ(x, y)

)σ′ 2−k(ε−σ′)

(2−k + ρ(x, y))1+(ε−σ′)

for ρ(y, y′) ≤ 1
2A (2−k + ρ(x, y);

∫
SkSk(x, y)dμ(y) = 1

for all x ∈ X; ∫
SkSk(x, y)dμ(x) = 1

for all y ∈ X;

|SkSk(x, y) − SkSk(x′, y) − SkSk(x, y′) + SkSk(x′, y′)|

≤ C
( ρ(x, x′)

2−k + ρ(x, y)

)σ′( ρ(y, y′)
2−k + ρ(x, y)

)σ′ 2−k(ε−σ′)

(2−k + ρ(x, y))1+(ε−σ′)

for ρ(x, x′) ≤ 1
2A (2−k + ρ(x, y)) and ρ(y, y′) ≤ 1

2A (2−k + ρ(x, y)).

Note that when k = l, the moment condition is not needed. So the proof
of Lemma 3.13 is similar to the proofs of the above lemmas. We leave the
details to the reader.

As in the case of R
n, we define “father” and “mother” functions on X×X

where X is a space of homogeneous type.

Definition 3.14. A family of functions {Sk(x, y)}k∈Z is said to be a family
of “father functions” if {Sk(x, y)}k∈Z are kernels of an approximation to the
identity, which satisfies the double Lipschitz condition (3.19) with σ = ε. A
family of functions {Dk(x, y)}k∈Z is said to be a family of “mother functions”
if Dk(x, y) = Sk(x, y) − Sk−1(x, y) where {Sk(x, y)}k∈Z are father functions.
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We are now ready to prove Calderón’s identity on spaces of homogeneous
type in the next section.

3.4 Calderón’s Identity on Spaces of Homogeneous Type

The purpose of this section is to prove Calderón’s identity on spaces of ho-
mogeneous type. We first prove the following fundamental result which is a
substitute for the missing Fourier transformation.

Theorem 3.15. ([HS] and [H1]) Suppose that {Dk(x, y)}k∈Z is a family
of mother functions. Then there exist families of operators {D̃k}k∈Z and

{ ˜̃Dk}k∈Z such that for f ∈ M0(β, γ),

f =
∑

k

D̃kDk(f) =
∑

k

Dk
˜̃
Dk(f) (3.29)

where the series converge in the norm of M(β′, γ′) for 0 < β′ < β and
0 < γ′ < γ, and in the Lp(X) spaces for 1 < p < ∞. Moreover, D̃k(x, y),
the kernels of D̃k, as functions of x are wavelets (in the sense given in the
Introduction) satisfying (3.14) and (3.15) with ε replaced by ε′, for 0 < ε′ < ε,

and
∫

D̃k(x, y)dμ(y) =
∫

D̃k(x, y)dμ(x) = 0 for all k ∈ Z, and ˜̃
Dk(x, y), the

kernels of ˜̃
Dk, as functions of y are wavelets satisfying the conditions (3.14)

and (3.16) with ε replaced by ε′, for 0 < ε′ < ε, and
∫ ˜̃

Dk(x, y)dμ(y) =
∫ ˜̃

Dk(x, y)dμ(x) = 0 for all k ∈ Z.

Before proving the above theorem, we would like to point out that in
the standard R

n case, we begin with a function ψ(x) ∈ L1(Rn) whose in-
tegral over R

n is zero and whose Fourier transform ψ̂(ξ), ξ ∈ R
n, satisfies

∞∫

0

|ψ̂(tξ)|2 dt
t = 1 for every ξ �= 0. To construct a function satisfying this con-

dition, we begin with a function ψ(x) which is sufficiently regular, localized,
the integral over R

n being zero and which is a radial function. Then there is
a constant c > 0 such that cψ(x) satisfies this condition. A. Grossmann and
J. Morlet ([GrMo]) defined the “wavelet coefficients” of f ∈ L2(Rn) by

α(u, t) = (f, ψ(u,t)) (3.30)

where ψ(u,t) = ψt(x − u) and ψt = t−nψ(x
t ).

We then can construct f from the coefficients by

f(x) =

∞∫

0

∫

Rn

α(u, t)ψ(u,t)du
dt

t
. (3.31)
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An equivalent formulation of the above equality is Calderón’s identity
given by

I =

∞∫

0

QtQ
∗
t

dt

t
(3.32)

where Qt(f) = f ∗ ψt and Q∗
t is the adjoint of Qt.

It is clear that Theorem 3.15 provides a Calderón’s identity on spaces of ho-
mogeneous type. Therefore Theorem 3.15 also provides a continuous version
of wavelet expansions on spaces of homogeneous type. Moreover, Theorem
3.15 says that such a continuous version of wavelet expansions holds not only
on L2, but also on Lp for all p : 1 < p < ∞.

We now prove Theorem 3.15. First of all, we show the following result.

Proposition 3.16 Suppose that {Sk}k∈Z is an approximation to the identity
and its kernels satisfy the condition (3.19) with σ = ε ≤ θ. Set Dk = Sk−Sk−1

for all k ∈ Z. Let TN =
∑

k

DN
k Dk where DN

k =
∑

|j|≤N

Dk+j and N is a fixed

positive integer. Then T−1
N exists if N is a sufficiently large integer. Moreover,

there exists a constant C such that for f ∈ M0(x1, r, β, γ) with x1 ∈ X, r > 0
and 0 < β, γ < ε, thenT−1

N (f) ∈ M0(x1, r, β, γ) and

‖T−1
N (f)‖M(x1,r,β,γ) ≤ C‖f‖M(x1,r,β,γ). (3.33)

By Coifman’s decomposition of identity operator as described in Chap-
ter 1,

I =
∑

k

∑

l

DkDl = TN + RN (3.34)

where RN =
∑

|l|>N

∑

k

Dk+lDk.

It suffices to show that RN satisfies all conditions of Theorem 2.4 with
the constant C in (2.3) less than 1 for a fixed large positive integer N. The
following lemma gives the required estimates on RN .

Lemma 3.17. Suppose that {Sk}k∈Z is an approximation to the identity and
its kernels satisfy the condition (3.19) with σ = ε ≤ θ. Set Dk = Sk −
Sk−1 for all k ∈ Z. Let RN =

∑

|l|>N

∑

k

Dk+lDk. Then for 0 < ε′ < ε,RN ∈

CZK(ε′) ∩ SWBP,RN (1) = (RN )∗(1) = 0. Moreover, RN (x, y), the kernels
of RN satisfy the following estimates: there exist constants 0 < C < ∞, which
is independent of N, and δ > 0 such that

|RN (x, y)| ≤ C2−Nδρ(x, y)−1; (3.35)
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|RN (x, y) − RN (x′, y)| ≤ C2−Nδρ(x, x′)ε′ρ(x, y)−(1+ε′) (3.36)

for ρ(x, x′) ≤ 1
2Aρ(x, y);

|RN (x, y) − RN (x, y′)| ≤ C2−Nδρ(y, y′)ε′ρ(x, y)−(1+ε′) (3.37)

for ρ(y, y′) ≤ 1
2Aρ(x, y);

|RN (x, y) − RN (x′, y) − RN (x, y′) + RN (x′, y′)| (3.38)

≤ C2−Nδρ(x, x′)ε′ρ(y, y′)ε′ρ(x, y)−(1+2ε′)

for ρ(x, x′) ≤ 1
2Aρ(x, y) and ρ(y, y′) ≤ 1

2Aρ(x, y);

|〈RN , f〉| ≤ C2−Nδr (3.39)

for all f ∈ Cη
0 (X × X) with supp(f) ⊆ B(x1, r) × B(y1, r), x1 and y1 ∈

X, ‖f‖∞ ≤ 1, ‖f(., y)‖η ≤ r−η, and ‖f(x, )‖η ≤ r−η for all x and y ∈ X.

Assuming Lemma 3.17 for the moment, by Theorem 2.4, for all f ∈
M0(x1, r, β, γ) with x1 ∈ X, r > 0 and 0 < β, γ < ε, there exists a con-
stant C such that

‖RN (f)‖M(x1,r,β,γ) ≤ C2−Nδ‖f‖M(x1,r,β,γ)

which, together with the fact that T−1
N =

∑

k=0

(RN )k if N is large enough,

implies (3.33) and hence Proposition 3.16.
We now prove Lemma 3.17. We write

|RN (x, y)| =
∣
∣
∣
∣
∑

|l|>N

∑

k

Dk+lDk(x, y)
∣
∣
∣
∣ ≤

∑

|l|>N

∑

k

|Dk+lDk(x, y)|.

Using the estimates in Lemma 3.7 with σ = ε, we have

|RN (x, y)| ≤ C
∑

|l|>N

∑

k

2−|l|ε′ 2−((k+l)∧k)ε

(2−((k+l)∧k) + ρ(x, y))1+ε
≤ C2−Nε′ρ(x, y)−1

which yields (3.35).
To see (3.36), by the geometric mean of estimates in Lemma 3.7 and

Lemma 3.11, for ρ(x, x′) ≤ 1
2Aρ(x, y) we get

|Dk+lDk(x, y) − Dk+lDk(x′, y)| (3.40)

≤ C2−|l|δ
( ρ(x, x′)

2−((k+l)∧k) + ρ(x, y)

)ε′ 2−((k+l)∧k)ε′

(2−((k+l)∧k) + ρ(x, y))1+ε′

where 0 < ε′ < ε and δ > 0. Thus, for ρ(x, x′) ≤ 1
2Aρ(x, y),
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|RN (x, y) − RN (x′, y)|

=
∣
∣
∣
∣
∑

|l|>N

∑

k

[Dk+lDk(x, y) − Dk+lDk(x′, y)]
∣
∣
∣
∣

≤
∑

|l|>N

∑

k

|Dk+lDk(x, y) − Dk+lDk(x′, y)|

≤ C
∑

|l|>N

∑

k

2−|l|δ
( ρ(x, x′)

2−(k∧l) + ρ(x, y)

)ε′ 2−(k∧l)ε′

(2−(k∧l) + ρ(x, y))1+ε′

≤ C2−Nδρ(x, x′)ε′ρ(x, y)−(1+ε′).

The proof of (3.37) is the same. By the geometric mean of estimates in
Lemma 3.7 and Lemma 3.11, we obtain that for ρ(y, y′) ≤ 1

2Aρ(x, y),

|Dk+lDk(x, y) − Dk+lDk(x, y′)| (3.41)

≤ C2−|l|δ
( ρ(y, y′)

2−((k+l)∧k) + ρ(x, y)

)ε′ 2−((k+l)∧k)ε′

(2−((k+l)∧k) + ρ(x, y))1+ε′

where 0 < ε′ < ε and δ > 0. Thus, for ρ(y, y′) ≤ 1
2Aρ(x, y),

|RN (x, y) − RN (x, y′)|

=
∣
∣
∣
∣
∑

|l|>N

∑

k

[Dk+lDk(x, y) − Dk+lDk(x, y′)
∣
∣
∣
∣

≤
∑

|l|>N

∑

k

|Dk+lDk(x, y) − Dk+lDk(x, y′)|

≤ C
∑

|l|>N

∑

k

2−|l|δ
( ρ(y, y′)

2−(k∧l) + ρ(x, y)

)ε′ 2−(k∧l)ε′

(2−(k∧l) + ρ(x, y))1+ε′

≤ C2−Nδρ(y, y′)ε′ρ(x, y)−(1+ε′).

To show (3.38), by the geometric mean of the estimates in Lemma 3.12,
(3.40) and (3.41), we get that for ρ(x, x′) ≤ 1

2Aρ(x, y) and ρ(y, y′) ≤
1

2Aρ(x, y),

|Dk+lDk(x, y) − Dk+lDk(x′, y) − Dk+lDk(x, y′) − Dk+lDk(x′, y′)|

≤ C2−|l|δ
( ρ(x, x′)

2−((k+l)∧k) + ρ(x, y)

)ε′( ρ(y, y′)
2−((k+l)∧k) + ρ(x, y)

)ε′

× 2−((k+l)∧k)(ε−ε′)

(2−((k+l)∧k) + ρ(x, y))1+(ε−ε′)
.

Thus, for ρ(x, x′) ≤ 1
2Aρ(x, y) and ρ(y, y′) ≤ 1

2Aρ(x, y),
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|RN (x, y) − RN (x′, y) − RN (x, y′) + RN (x′, y′)|
≤

∑

|l|>N

∑

k

|Dk+lDk(x, y) − Dk+lDk(x′, y) − Dk+lDk(x, y′)

−Dk+lDk(x′, y′)|

≤ C
∑

|l|>N

∑

k

2−|l|δ
( ρ(x, x′)

2−((k+l)∧k) + ρ(x, y)

)ε′( ρ(y, y′)
2−((k+l)∧k) + ρ(x, y)

)ε′

× 2−((k+l)∧k)(ε−ε′)

(2−((k+l)∧k) + ρ(x, y))1+(ε−ε′)

≤ C2−Nδρ(x, x′)ε′ρ(y, y′)ε′ρ(x, y)−(1+2ε′).

Finally, we prove (3.39). Suppose that f ∈ Cη
0 (X × X) with supp(f) ⊆

B(x1, r) × B(y1, r), x1 and y1 ∈ X, ‖f‖∞ ≤ 1, ‖f(·, y)‖η ≤ r−η, and
‖f(x, ·)‖η ≤ r−η for all x and y ∈ X. We get

|〈Dk+lDk, f〉| =
∣
∣
∣
∣

∫ ∫
Dk+lDk(x, y)f(x, y)dμ(y)dμ(x)

∣
∣
∣
∣ (3.42)

≤ C2−|l|ε′‖f‖∞r ≤ C2−|l|ε′r.

On the other hand, for η < ε,

|〈Dk+lDk, f〉|

≤
∣
∣
∣
∣

∫ ∫ ∫
Dk+l(x, z)Dk(z, y)f(x, y)dμ(z)dμ(y)dμ(x)

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ ∫ ∫
Dk+l(x, z)Dk(z, y)[f(x, y) − f(x, z)]dμ(z)dμ(y)dμ(x)

∣
∣
∣
∣

≤ C2−kηr−ηr. (3.43)

We also have

|〈Dk+lDk, f〉| ≤
∣
∣
∣
∣

∫ ∫ ∫
Dk+l(x, z)Dk(z, y)f(x, y)dμ(z)dμ(y)dμ(x)

∣
∣
∣
∣(3.44)

≤ C2kr2.

The geometric means of (3.42) and (3.43) yields

|〈Dk+lDk, f〉| ≤ C2−|l|δ2−kη′
r−η′

r, (3.45)

and the geometric means of (3.42) and (3.44) implies

|〈Dk+lDk, f〉| ≤ C2−|l|δ2kη′′
rη′′

r (3.46)

where δ, η′ and η′′ > 0. Therefore,
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|〈RN , f〉| =
∣
∣
∣
∣

〈 ∑

|l|>N

∑

k

Dk+lDk, f

〉∣
∣
∣
∣

≤
∑

|l|>N

∑

2−k>r

|〈Dk+lDk, f〉| +
∑

|l|>N

∑

2−k≤r

|〈Dk+lDk, f〉|

≤ C2−Nδr

which implies (3.39), and hence Lemma 3.17.
We now return to the proof of Theorem 3.15. Let D̃k = T−1

N DN
k , where

DN
k is defined in Proposition 3.16 and N is a fixed large integer so that

T−1
N maps M0(x1, r, β, γ), for all x1 ∈ X, r > 0, and 0 < β, γ < ε, into

M0(x1, r, β, γ) by Proposition 3.16. It is easy to check that DN
k (x, y), the

kernel of DN
k , is in M0(y, 2−k, ε, ε). Thus, D̃k(x, y) = T−1

N [DN
k (·, y)](x), the

kernel of D̃k, is in M0(y, 2−k, ε′, ε′) with 0 < ε′ < ε by Proposition 3.16.
This implies that D̃k(x, y) satisfy the estimates of (3.14) and (3.15) with
ε replaced by ε′, 0 < ε′ < ε.

∫
D̃k(x, y)dμ(y) =

∫
D̃k(x, y)dμ(x) = 0 for

all k ∈ Z, follow from the facts that DN
k (1) = (T−1

N )∗(1) = 0. Similarly,

let ˜̃
Dk = DN

k T−1
N . Thus, ˜̃

Dk(x, y) = [DN
k (x, ·)T−1

N ](y), the kernel of ˜̃
Dk,

is in M0(x, 2−k, ε′, ε′) with 0 < ε′ < ε by Proposition 3.16. This implies

that ˜̃
Dk(x, y) satisfy the estimates of (3.14) and (3.16) with ε replaced by

ε′, 0 < ε′ < ε.
∫ ˜̃

Dk(x, y)dμ(y) =
∫ ˜̃

Dk(x, y)dμ(x) = 0 for all k ∈ Z, follow
from the facts that (DN

k )∗(1) = T−1
N (1) = 0.

All we need to do now is to prove that the series in (3.29) converge in the
norm of M(β′, γ′) for 0 < β′ < β and 0 < γ′ < γ, and Lp(X), for 1 < p < ∞.

Suppose first that f ∈ M0(β, γ). Then the convergence of (3.29) in
M(β′, γ′) is equivalent to

lim
M→∞

∥
∥
∥
∥

∑

|k|≤M

D̃kDk(f) − f

∥
∥
∥
∥
M(β′,γ′)

= 0

for 0 < β′ < β and 0 < γ′ < γ.
Since

∑

|k|≤M

D̃kDk(f) = T−1
N

( ∑

|k|≤M

DN
k Dk(f)

)

= T−1
N

(

TN −
∑

|k|>M

DN
k Dk(f)

)

= f − lim
m→∞

Rm
N (f) − T−1

N

( ∑

|k|>M

DN
k Dk(f)

)

,

to show the convergence of (3.29) in M(β
′
, γ

′
), it suffices to prove

lim
m→∞

‖Rm
N (f)‖M(β′,γ′) = 0, (3.47)
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and

lim
M→∞

∥
∥
∥
∥T−1

N

( ∑

|k|>M

DN
k Dk(f)

)∥
∥
∥
∥
M(β′,γ′)

= 0. (3.48)

By Lemma 3.17 and Theorem 2.4, since 0 < β′ < β and 0 < γ′ < γ,

‖Rm
N (f)‖M(β′,γ′) ≤ (C2−Nδ)m‖f‖M(β′,γ′) ≤ (C2−Nδ)m‖f‖M(β,γ)

which implies (3.47). The proof of (3.48) is based on the following estimate
∥
∥
∥
∥

∑

|k|>M

DN
k Dk(f)

∥
∥
∥
∥
M(β′,γ′)

≤ C2−σM‖f‖M(β,γ) (3.49)

for all 0 < β′ < β and 0 < γ′ < γ and some σ > 0, and constant C is
independent of f and M.

Assuming (3.49) for the moment, by Proposition 3.16, for 0 < β′ < β and
0< γ′ < γ,

∥
∥
∥
∥T−1

N

( ∑

|k|>M

DN
k Dk(f)

)∥
∥
∥
∥
M(β′,γ′)

≤ C

∥
∥
∥
∥

∑

|k|>M

DN
k Dk(f)

∥
∥
∥
∥
M(β′,γ′)

≤ C2−σM‖f‖M(β,γ)

which yields (3.48).
To prove (3.49), it suffices to show that for 0 < β′ < β and 0 < γ′ < γ

there exist a constant C which is independent of f and M, and some σ′ > 0
such that

∣
∣
∣
∣
∑

|k|>M

DN
k Dk(f)(x)

∣
∣
∣
∣ ≤ C2−σ′M (1 + ρ(x, x0))−(1+γ′)‖f‖M(β,γ), (3.50)

and
∣
∣
∣
∣
∑

|k|>M

DN
k Dk(f)(x) −

∑

|k|>M

DN
k Dk(f)(x′)

∣
∣
∣
∣ (3.51)

≤ C
( ρ(x, x′)

1 + ρ(x, x0)

)β′′

(1 + ρ(x, x0))−(1+γ′)‖f‖M(β,γ)

for ρ(x, x′) ≤ 1
2 (1 + ρ(x, x0)) and any 0 < β′ < β′′ < β.

To see this, by taking the geometric mean between (3.51) and the following
estimate
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∣
∣
∣
∣
∑

|k|>M

DN
k Dk(f)(x) −

∑

|k|>M

DN
k Dk(f)(x′)

∣
∣
∣
∣ (3.52)

≤
∣
∣
∣
∣
∑

|k|>M

DN
k Dk(f)(x)

∣
∣
∣
∣ +

∣
∣
∣
∣
∑

|k|>M

DN
k Dk(f)(x′)

∣
∣
∣
∣

≤ C2−σ′M (1 + ρ(x, x0))−(1+γ′)‖f‖M(β,γ)

for ρ(x, x′) ≤ 1
2 (1 + ρ(x, x0)), we obtain

∣
∣
∣
∣
∑

|k|>M

DN
k Dk(f)(x) −

∑

|k|>M

DN
k Dk(f)(x′)

∣
∣
∣
∣ (3.53)

≤ C2−Mσ
( ρ(x, x′)

1 + ρ(x, x0)

)β′

(1 + ρ(x, x0))−(1+γ′)‖f‖M(β,γ)

for ρ(x, x′) ≤ 1
2 (1 + ρ(x, x0)).

Now (3.50) and (3.53), together with the facts that
∫ ∑

|k|>M

DN
k Dk(f)(x)dμ(x) =

∫ ∑

|k|>M

Dk(f)(y)(DN
k )∗(1)(y)dμ(y) = 0,

imply that
∑

|k|>M

DN
k Dk(f)(x)dμ(x) ∈ M0(β′, γ′)

and
∥
∥
∥
∥

∑

|k|>M

DN
k Dk(f)

∥
∥
∥
∥
M(β′,γ′)

≤ C2−σ′M‖f‖M(β,γ)

which gives (3.49).
We now prove (3.50). Denote DN

k Dk = Ek. By Lemma 3.7 and Lemma
3.11, it is easy to check that Ek(x, y), the kernel of Ek, satisfies the estimates
(3.29), (3.15) and (3.16) with ε replaced by ε′, 0 < ε′ < ε, 0 < β, γ < ε′, and
Ek(1) = 0 for all k ∈ Z. We get
∣
∣
∣
∣
∑

|k|>M

DN
k Dk(f)(x)

∣
∣
∣
∣ =

∣
∣
∣
∣
∑

|k|>M

Ek(f)(x)
∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ ∑

k>M

Ek(x, y)[(f)(y) − f(x)]dμ(y)
∣
∣
∣
∣ +

∣
∣
∣
∣

∫ ∑

k<−M

Ek(x, y)(f)(y)dμ(y)
∣
∣
∣
∣

:= I + II.
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For term I, we first decompose X into the regions ρ(x, y) ≤ 1
2A (1 + ρ(x, x0))

and ρ(x, y) > 1
2A (1 + ρ(x, x0)). Using the smoothness condition and size

condition on these two regions, respectively, yields

I ≤
∑

k>M

∫

ρ(x,y)≤ 1
2A (1+ρ(x,x0))

|Ek(x, y)||f(y) − f(x)|dμ(y)

+
∑

k>M

∫

ρ(x,y)> 1
2A (1+ρ(x,x0))

|Ek(x, y)|[|f(y)| + |f(x)|]dμ(y)

≤ C
∑

k>M

∫

ρ(x,y)≤ 1
2A (1+ρ(x,x0))

|Ek(x, y)|( ρ(x, y)
1 + ρ(x, x0)

)β

×(1 + ρ(x, x0))−(1+γ)dμ(y)‖f‖M(β′,γ′)

+ C
∑

k>M

∫

ρ(x,y)> 1
2A (1+ρ(x,x0))

|Ek(x, y)|[(1 + ρ(y, x0))−(1+γ)

+(1 + ρ(x, x0))−(1+γ)dμ(y)‖f‖M(β′,γ′)

≤ C
∑

k>M

{2−kβ(1 + ρ(x, x0))−(1+γ) + 2−kε′(1 + ρ(x, x0))−(1+ε′)

+2−kε′(1 + ρ(x, x0))−(1+γ)}‖f‖M(β,γ)

≤ C2−βM (1 + ρ(x, x0))−(1+γ)‖f‖M(β,γ).

For term II, by use of the fact that
∫

f(x)dμ(x) = 0, we obtain

|DN
k Dk(f)(x)| = |Ek(f)(x)| =

∣
∣
∣
∣

∫
[Ek(x, y) − Ek(x, x0)]f(y)dμ(y)

∣
∣
∣
∣

≤
∫

W1

|Ek(x, y) − Ek(x, x0)||f(y)|dμ(y)

+
∫

W2

|Ek(x, y) − Ek(x, x0)||f(y)|dμ(y)

:= II1 + II2

where

W1 =
{

z ∈ X : ρ(y, x0) ≤
1

2A
(2−k + ρ(x, x0))

}

,

and

W2 =
{

z ∈ X :
1

2A
(2−k + ρ(x, x0)) < ρ(y, x0)

}

.

By the smoothness condition on Ek,
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II1 ≤ C

∫

W1

( ρ(y, x0)
2−k + ρ(x, x0)

)ε′ 2−kε′

(2−k + ρ(x, x0))1+ε′
|f(y)|dμ(y)

≤ C

∫

W1

( ρ(y, x0)
2−k + ρ(x, x0)

)γ′′ 2−kε′

(2−k + ρ(x, x0))1+ε′
|f(y)|dμ(y)

≤ C

∫

W1

( ρ(y, x0)
2−k + ρ(x, x0)

)γ′′ 2−kε′

(2−k + ρ(x, x0))1+ε′
1

(1 + ρ(y, x0))1+γ

×dμ(y)‖f‖M(β,γ)

≤ C2σ1k(1 + ρ(x, x0))−(1+γ′)‖f‖M(β,γ)

where γ′ < γ′′ and σ1 = γ′′ − γ′ > 0.
For term II2, using the size condition on Ek,

II2 ≤ C

∫

W2

[ 2−kε′

(2−k + ρ(x, y))1+ε′
+

2−kε′

(2−k + ρ(x, x0))1+ε′

]

× 1
(1 + ρ(y, x0))1+γ

dμ(y)‖f‖M(β,γ)

≤ C
[ 1
(2−k + ρ(x, x0))1+γ

+
2−kε′

(2−k + ρ(x, x0))1+ε′
1

(2−k + ρ(x, x0))γ

]

×‖f‖M(β,γ)

≤ C
1

(2−k + ρ(x, x0))1+γ
‖f‖M(β,γ)

≤ C2σ2k(1 + ρ(x, x0))−(1+γ′)‖f‖M(β,γ)

where k ≤ −M and σ2 = γ − γ′ > 0.
Putting these estimates on II1 and II2 into term II, we obtain

II ≤ C
∑

k<−M

2σk(1 + ρ(x, x0))−(1+γ′)‖f‖M(β,γ)

≤ C2−Mσ(1 + ρ(x, x0))−(1+γ′)‖f‖M(β,γ)

where σ > 0.
These estimates imply (3.50). It remains to show (3.51). To do this, let

T =
∑

|k|>M

DN
k Dk. Then it suffices to show that the operator T satisfies

the conditions of Theorem 2.4. More precisely, using the same proof as in the
proof of Lemma 3.17, one can show that the kernel of T satisfies the conditions
in Theorem 2.4 with ε replaced by ε′, 0 < ε′ < ε, and the constant C in these
estimates is independent of M. Thus, applying Theorem 2.4 implies (3.51).
We leave all details to the reader.

Finally, to see that the series in (3.29) converges in Lp for 1 < p < ∞,
by the proof above, we only need to show that (3.47) and (3.48) still hold
with the norm of M(β′, γ′) replaced by the norm of Lp for 1 < p < ∞. The
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estimates in Lemma 3.17 and the T1 theorem show that RN is a Calderón-
Zygmund operator with the operator norm at most C2−Nδ and, hence, RN

is bounded on Lp for 1 < p < ∞ with the operator norm at most C2−Nδ.
This yields that (3.47) holds with the norm of M(β′, γ′) replaced by the
norm of Lp for 1 < p < ∞. To see that (3.48) still holds with the norm of
M(β′, γ′) replaced by the norm of Lp for1 < p < ∞, it suffices to show that
lim

M→∞
‖

∑

|k|>M

DN
k Dk(f)‖p = 0 for f ∈ Lp, 1 < p < ∞. More precisely,

∥
∥
∥
∥

∑

|k|>M

DN
k Dk(f)

∥
∥
∥
∥

p

= sup
‖g‖p′≤1

∣
∣
∣
∣

〈 ∑

|k|>M

DN
k Dk(f), g

〉∣
∣
∣
∣

≤ sup
‖g‖p′≤1

∥
∥
∥
∥

( ∑

|k|>M

|Dk(f)|2
) 1

2
∥
∥
∥
∥

p

·
∥
∥
∥
∥

( ∑

|k|>M

|(DN
k )∗(g)|2

) 1
2
∥
∥
∥
∥

p′

≤ C sup
‖g‖p′≤1

∥
∥
∥
∥

( ∑

|k|>M

|Dk(f)|2
) 1

2
∥
∥
∥
∥

p

‖g‖p′

≤ C

∥
∥
∥
∥

( ∑

|k|>M

|Dk(f)|2
) 1

2
∥
∥
∥
∥

p

where, by the Littlewood-Paley estimate on L2 given in Section 1.3 and the
Lebesgue dominated convergence theorem, the last term tends to zero as M
tends to infinity. This ends the proof of Theorem 3.15.

We now consider the distribution spaces (Ṁ0(β, γ))′, the dual of Ṁ0(β, γ),
where Ṁ0(β, γ) is the closure of functions of M0(ε, ε) in the norm of M(β, γ)
with 0 < β, γ < ε, where ε is the regularity exponent in Definition 3.1. One
should observe that (Ṁ0(β, γ))′ is NOT a space of distributions but rather a
space of distributions modulo constant functions. That will explain what is
happening to the wavelet expansion of the function 1. By a duality argument,
we obtain the following Calderón’s identity.

Theorem 3.18. Suppose that {Dk}k∈Z, {D̃k}k∈Z and { ˜̃Dk}k∈Z are same as
in Theorem 3.15. Then for f ∈ (Ṁ0(β, γ))′,

f =
∑

k

D̃kDk(f) =
∑

k

Dk
˜̃
Dk(f)

where the series converge in the sense that for all g ∈ Ṁ0(β′, γ′) for 0 < β <
β′ and 0 < γ < γ′,
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lim
M→∞

〈 ∑

|k|≤M

D̃kDk(f), g
〉

= 〈f, g〉,

and

lim
M→∞

〈 ∑

|k|≤M

Dk
˜̃
Dk(f), g

〉

= 〈f, g〉.

Theorem 3.15 do not provide expansions which converge in L1 when f is
integrable. If for instance the integral of f is 1, the convergence in L1 would
imply 1=0 because

∫
Dk(x, y)dμ(x) =

∫
D̃k(x, y)dμ(x) = 0.

Theorem 3.18 can be used to decompose arbitrary distributions f ∈
(Ṁ0(β, γ))′, without worrying about their growth at infinity. But the ex-
pansion is only defined modulo constant functions. Once more if f(x) is

identically equal to 1, for all k, each Dk(1) or ˜̃
Dk(1) is zero because

∫
Dk(x, y)dμ(y) =

∫ ˜̃
Dk(x, y)dμ(y) = 0. This would give 1=0.

The difficulties we just described, however, disappear if a variant of
Calderón’s identity is being used. Instead of starting with the identity
I =

∑

k

Dk, one instead has

I = Sk0 +
∑

k>k0

Dk (3.54)

where {Sk}k∈Z is an approximation to the identity, Dk = Sk − Sk−1 and k0

is any fixed integer.
The following theorem gives this variant of Calderón’s identities ([H4]).

Theorem 3.19. Suppose that {Sk(x, y)}k∈Z are father functions. Set Dk(x, y)
= Sk(x, y) − Sk−1(x, y) for all k ≥ 1,D0(x, y) = S0(x, y), and Dk(x, y) = 0
for all k < 0. Then there exist a positive integer N, and families of scaling

functions {S̃k(x, y)} and {˜̃Sk(x, y)} for 0 ≤ k ≤ N, and wavelets {D̃k(x, y)},
{ ˜̃Dk(x, y)} for k > N such that, for every f ∈ M(β, γ),

f =
∑

0≤k≤N

S̃kDk(f) +
∑

k>N

D̃kDk(f) (3.55)

=
∑

0≤k≤N

Dk
˜̃
Sk(f) +

∑

k>N

Dk
˜̃
Dk(f)

where {S̃k}, {˜̃Sk} and {D̃k}, { ˜̃Dk} are operators with kernels {S̃k(x, y)},
{˜̃Sk(x, y)} and {D̃k(x, y)}, { ˜̃Dk(x, y)}, respectively, the series converge in
the norm of M(β′, γ′) for 0 < β′ < β and 0 < γ′ < γ, and in the
Lp(X) spaces for 1 < p < ∞. Moreover, S̃k(x, y) and D̃k(x, y) satisfy
the conditions (3.14) and (3.15) with ε replaced by ε′, 0 < ε′ < ε, and∫

S̃k(x, y)dμ(y) =
∫

S̃k(x, y)dμ(x) = 1 for 0 ≤ k ≤ N,
∫

D̃k(x, y)dμ(y) =
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∫
D̃k(x, y)dμ(x) = 0 for all k > N, and ˜̃

Sk(x, y) and ˜̃
Dk(x, y) satisfy

the conditions (3.14) and (3.16) with ε replaced by ε′, 0 < ε′ < ε, and
∫ ˜̃

Sk(x, y)dμ(y) =
∫ ˜̃

Sk(x, y)dμ(x) = 1 for 0 ≤ k ≤ N ,
∫ ˜̃

Dk(x, y)dμ(y) =
∫ ˜̃

Dk(x, y)dμ(x) = 0 for all k > N.

By a duality argument, the series in (3.55) also converge in (Ṁ(β′, γ′))′, β <
β′, γ < γ′, where (Ṁ(β′, γ′))′ is the dual of (Ṁ(β′, γ′), the closure of func-
tions of M(ε, ε) in the norm of M(β′, γ′) with 0 < β′, γ′ < ε.

We remark that the series in (3.55) cannot converge for the L1 norm by the
same reason as given above. But, (3.55) still holds for f(x) being identically

equal to 1 since D0(1) = S̃k(1) = ˜̃
Sk(1) = 1 for 0 ≤ k ≤ N, and Dk(1) = 0

for all k ≥ 1 and ˜̃
Dk(1) = 0 for all k > N.

To show Theorem 3.19, we need the following lemmas, which are similar
to Proposition 3.16 and Lemma 3.17.

Proposition 3.20 Suppose that {Sk}k∈Z is an approximation to the identity
and its kernels satisfy the condition (3.19) with σ = ε ≤ θ. Set Dk = Sk−Sk−1

for all k ≥ 1,D0 = S0, and Dk = 0 for all k < 0. Let TN =
∑

k≥0

DN
k Dk where

DN
k =

∑

|j|≤N

Dk+j and N is a fixed positive integer. Then T−1
N exists if N is

a sufficiently large integer. Moreover, there exists a constant C such that for
f ∈ M0(x1, r, β, γ) with x1 ∈ X, r > 0 and 0 < β, γ < ε,

‖T−1
N (f)‖M(x1,r,β,γ) ≤ C‖f‖M(x1,r,β,γ).

The proof of Proposition 3.20 is based on the following lemma.

Lemma 3.21. Suppose that {Sk}k∈Z is an approximation to the identity and
its kernels satisfy the condition (3.19) with σ = ε ≤ θ. Set Dk = Sk−Sk−1 for
all k ≥ 1,D0 = S0, and Dk = 0 for all k < 0. Let RN =

∑

|l|>N

∑

k≥0

Dk+lDk.

Then for 0 < ε′ < ε, RN ∈ CZK(ε′) ∩ SWBP , RN (1) = (RN )∗(1) = 0.
Moreover, RN (x, y), the kernels of RN satisfy the following estimates: there
exist a constants 0 < C < ∞ which is independent of N, and δ > 0 such that

|RN (x, y)| ≤ C2−Nδρ(x, y)−1;

|RN (x, y) − RN (x′, y)| ≤ C2−Nδρ(x, x′)ε′ρ(x, y)−(1+ε′)

for ρ(x, x′) ≤ 1
2Aρ(x, y);

|RN (x, y) − RN (x, y′)| ≤ C2−Nδρ(y, y′)ε′ρ(x, y)−(1+ε′)

for ρ(y, y′) ≤ 1
2Aρ(x, y);

|RN (x, y) − RN (x′, y) − RN (x, y′) + RN (x′, y′)|
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≤ C2−Nδρ(x, x′)ε′ρ(y, y′)ε′ρ(x, y)−(1+2ε′)

for ρ(x, x′) ≤ 1
2Aρ(x, y) and ρ(y, y′) ≤ 1

2Aρ(x, y);

|〈RN , f〉| ≤ C2−Nδr

for all f ∈ Cη
0 (X × X) with supp(f) ⊆ B(x1, r) × B(y1, r), x1 and y1 ∈

X, ‖f‖∞ ≤ 1, ‖f(·, y)‖η ≤ r−η, and ‖f(x, ·)‖η ≤ r−η for all x and y ∈ X.

It is clear that Proposition 3.20 follows immediately from Lemma 3.21.
To show Lemma 3.21, note that there are only three cases in the definition
of RN : (i) Dk+lDk with k + l ≥ 1 and k ≥ 1; (ii) Dk+lDk = S0Dk with
k + l = 0 and k ≥ 1; (iii) Dk+lDk = DlS0 with l ≥ 1 and k = 0. So we can
handle case (i) as in Lemma 3.17. To deal with cases (ii) and (iii), by the
remarks in Section 3.2, we can obtain the same estimates as in the case (i),
and, hence, this implies Lemma 3.21. We leave all details to the reader.

We now return to the proof of Theorem 3.19. Since the proofs of the two
identities in Theorem 3.19 are similar, so we only show the first identity in
(3.55). Fix a large integer N such that Proposition 3.20 holds. It is easy
to check that Dk(·, y), the kernel of Dk, is in M0(y, 2−k, ε, ε) for all k ≥ 1
and DN

k (·, y), the kernel of DN
k , is in M0(y, 2−k, ε, ε) for all k > N. Set

S̃k = T−1
N (DN

k ) for 0 ≤ k ≤ N, and D̃k = T−1
N (DN

k ) for k > N, where T−1
N

is defined as in Proposition 3.20. Note that DN
k =

∑

|j|≤N

Dk+j =
∑

0≤j≤k+N

Dj

for 0 ≤ k ≤ N and DN
k =

∑

|j|≤N

Dk+j =
∑

k−N≤j≤k+N

Dj for k > N. By

Proposition 3.20, D̃k ∈ M0(y, 2−k, ε′, ε′) with 0< ε′ < ε and this implies
that D̃k(x, y), the kernels of D̃k, satisfy conditions (3.14) and (3.15) with ε

replaced by ε′, and
∫

D̃k(x, y)dμ(x) = 0. The fact that (T−1
N )∗(1) = 1 yields

∫
D̃k(x, y)dμ(y) =

∫
DN

k (x, y)dμ(y) = 0 for k > N.
We know that

S̃k = T−1
N (DN

k ) = T−1
N

( ∑

0≤j≤k+N

Dj

)

=
∑

0≤j≤k+N

T−1
N (Dj)

= T−1
N (S0) +

∑

1≤j≤k+N

T−1
N (Dj)

for 0 ≤ k ≤ N. In order to prove that S̃k(x, y), the kernels of S̃k, satisfy the
conditions (3.14) and (3.15) with ε replaced by ε′ and

∫
S̃k(x, y)dμ(y) =

∫
S̃k(x, y)dμ(x) = 1, it suffices to prove that T−1

N S0(x, y), the kernel of
T−1

N S0, satisfies the conditions (3.14) and (3.15) with ε replaced by ε′

and
∫

T−1
N S0(x, y)dμ(y) =

∫
T−1

N S0(x, y)dμ(x) = 1 since, by Proposition
3.20, T−1

N (Dj) ∈ M0(y, 2−j , ε′, ε′) for 0 < ε′ < ε and j > 0. To esti-
mate T−1

N S0(x, y), Theorem 2.4 cannot be applied because S0(x, y) is not
in M0(y, 1, ε′, ε′). However, we claim that (RN )nS0(x, y), the kernels of
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(RN )nS0, satisfy the following estimates: For 0 < ε′ < ε and n ≥ 1, there
exist constants C and δ > 0 such that

|(RN )nS0(x, y)| ≤ (C2−Nδ)n 1
(1 + ρ(x, y))1+ε

, (3.56)

|(RN )nS0(x, y) − (RN )nS0(x′, y)| (3.57)

≤ (C2−Nδ)n
( ρ(x, x′)

1 + ρ(x, y)

)ε′ 1
(1 + ρ(x, x0))1+ε′

for ρ(x, x′) ≤ 1
2A (1 + ρ(x, y).

Inequalities (3.56) and (3.57), together with the following fact

T−1
N S0(x, y) =

∞∑

n=0

(RN )nS0(x, y),

imply that if N is sufficiently large, then T−1
N S0(x, y) satisfies the condi-

tions (3.14) and (3.15) with ε replaced by ε′. Then
∫

T−1
N S0(x, y)dμ(x) =∫

T−1
N S0(x, y)dμ(y) = 1 follows from the facts that

∫
S0(x, y)dμ(x) =∫

S0(x, y)dμ(y) = 1 and RN (1) = (RN )∗(1) = 0.
We now prove (3.56) and (3.57). To do this, we first write (RN )nS0(x, y),

the kernel of (RN )nS0, as follows:

(RN )nS0(x, y) =
∑

|jn|>N

∑

kn≥0

· · ·

×
∑

|j2|>N

∑

k2≥0

∑

|j1|>N

∑

k1≥0

Dkn+jn
Dkn

· · ·Dk2+j2Dk2Dk1+j1Dk1S0(x, y).

So it suffices to show the following estimates:

|Dkn+jn
Dkn

· · ·Dk2+j2Dk2Dk1+j1Dk1S0(x, y)| (3.58)

≤ Cn2−knε′2−kn−1ε′ · · · 2−k1ε′ 1
(1 + ρ(x, y))1+ε

,

|Dkn+jn
Dkn

· · ·Dk2+j2Dk2Dk1+j1Dk1S0(x, y)| (3.59)

≤ Cn2−|jn|ε′2−|jn−1|ε′ · · · 2−|j1|ε′ 1
(1 + ρ(x, y))1+ε

,

|Dkn+jn
Dkn

· · ·Dk2+j2Dk2Dk1+j1Dk1S0(x, y) (3.60)
−Dkn+jn

Dkn
· · ·Dk2+j2Dk2Dk1+j1Dk1S0(x′, y)|

≤ Cn
( ρ(x, x′)

1 + ρ(x, y)

)ε 1
(1 + ρ(x, x0))1+ε
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for ρ(x, x′) ≤ 1
4A2 (1 + ρ(x, y).

Assuming these estimates for the moment, from (3.58) and (3.59), we
obtain

|Dkn+jn
Dkn

· · ·Dk2+j2Dk2Dk1+j1Dk1S0(x, y)| (3.61)

≤ Cn2−
1
2 |jn|ε′2−

1
2 |jn−1|ε′ · · · 2− 1

2 |j1|ε
′
2−

1
2 knε′2−

1
2 kn−1ε′ · · · 2− 1

2 k1ε′

× 1
(1 + ρ(x, y))1+ε

,

|Dkn+jn
Dkn

· · ·Dk2+j2Dk2Dk1+j1Dk1S0(x, y) (3.62)
−Dkn+jn

Dkn
· · ·Dk2+j2Dk2Dk1+j1Dk1S0(x′, y)|

≤ Cn2−
1
2 |jn|ε′2−

1
2 |jn−1|ε′ · · · 2− 1

2 |j1|ε
′
2−

1
2 knε′2−

1
2 kn−1ε′ · · · 2− 1

2 k1ε′

× 1
(1 + ρ(x, y))1+ε

for ρ(x, x′) ≤ 1
4A2 (1 + ρ(x, y).

Taking the geometric mean of (3.60) and (3.62) yields

|Dkn+jn
Dkn

· · ·Dk2+j2Dk2Dk1+j1Dk1S0(x, y) (3.63)
−Dkn+jn

Dkn
· · ·Dk2+j2Dk2Dk1+j1Dk1S0(x′, y)|

≤ Cn2−|jn|δ2−|jn−1|δ · · · 2−|j1|δ2−knδ2−kn−1δ · · · 2−k1δ
( ρ(x, x′)

1 + ρ(x, y)

)ε′

× 1
(1 + ρ(x, y))1+ε′

for ρ(x, x′) ≤ 1
4A2 (1 + ρ(x, y), 0 < ε′ < ε, and δ > 0.

Summing over k1, k2, · · · , kn, and then j1, j2, · · · , jn, (3.61) implies (3.56)
and (3.63) implies (3.57), respectively. So it remains to show (3.58), (3.59)
and (3.60). Consider n = 1 first. Following the proof of Proposition 3.16 and
Lemma 3.9, Dk1S0(x, y), the kernel of Dk1S0, satisfies the following estimates:
For k1 ≥ 0

|Dk1S0(x, y)| ≤ C2−k1ε′ 1
(1 + ρ(x, y))1+ε

,

|Dk1S0(x, y) − Dk1S0(x′, y)| ≤ C
( ρ(x, x′)

1 + ρ(x, y)

)ε 1
(1 + ρ(x, y))1+ε

for ρ(x, x′) ≤ 1
4A2 (1 + ρ(x, y).

The estimates above imply, again, that for k1 ≥ 0 and k1 + j1 ≥ 0

|Dk1+j1Dk1S0(x, y)| ≤ C2−(k1+j1)ε
′
2−k1ε′ 1

(1 + ρ(x, y))1+ε

≤ C2−k1ε′ 1
(1 + ρ(x, y))1+ε

,



68 3 Wavelet Expansions

|Dk1+j1Dk1S0(x, y)−Dk1+j1Dk1S0(x′, y)| ≤ C
( ρ(x, x′)

1 + ρ(x, y)

)ε 1
(1 + ρ(x, y))1+ε

for ρ(x, x′) ≤ 1
4A2 (1 + ρ(x, y).

Similarly, estimating first the kernel of Dk1+j1Dk1 and then the kernel of
Dk1+j1Dk1S0, we obtain

|Dk1+j1Dk1S0(x, y)| ≤ C2−[(k1+j1)∧k1]ε
′
2−|j1|ε′ 1

(1 + ρ(x, y))1+ε

≤ C2−|j1|ε′ 1
(1 + ρ(x, y))1+ε

for k1 ≥ 0 and k1 + j1 ≥ 0. These estimates imply (3.58), (3.59) and (3.60)
with n = 1. Repeating the above proof we can show that the estimates
(3.58), (3.59) and (3.60) hold for all n ≥ 1. The proof used for verifying the

conditions for ˜̃
Sk and ˜̃

Dk is similar. We leave these details to the reader.
We now prove that the series in (3.55) converges in the norm of M(β′, γ′)

for 0 < β′ < β and 0 < γ′ < γ. To do this, suppose f ∈ M(β, γ). Then
∑

0≤k≤N

S̃kDk(f) +
∑

N+1≤k≤M

D̃kDk(f)

= T−1
N

( ∑

0≤k≤M

DN
k Dk

)

(f)

= T−1
N

(

TN −
∑

k>M

DN
k Dk

)

(f)

= T−1
N TN (f) − T−1

N

( ∑

k>M

DN
k Dk

)

(f)

= f − lim
j→∞

(RN )j(f) − T−1
N

( ∑

k>M

DN
k Dk

)

(f).

Thus,
∥
∥
∥
∥

∑

0≤k≤N

S̃kDk(f) +
∑

N+1≤k≤M

D̃kDk(f) − f

∥
∥
∥
∥
M(β′,γ′)

≤ lim
j→∞

‖(RN )j(f)‖M(β′,γ′) +
∥
∥
∥
∥T−1

N

( ∑

k>M

DN
k Dk

)
(f)

∥
∥
∥
∥
M(β′,γ′)

.

By a similar proof as given in (3.47) and the fact that (RN )∗(1) = 0, it is
easy to see that RN (f)(x) ∈ M(β′′, γ′′) with β′ < β′′ < β, γ′ < γ′′ < γ.
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By Lemma 3.17 and Theorem 2.4, we obtain

‖(RN )j(f)‖M(β′,γ′) ≤ (C2−Nδ)j‖f‖M(β′,γ′) (3.64)

which implies lim
j→∞

‖(RN )j(f)‖M(β′,γ′) = 0.

To prove that
∥
∥
∥T−1

N (
∑

k>M

DN
k Dk)(f)

∥
∥
∥
M(β′,γ′)

tends to zero as M tends to

infinity, it suffices to show the following estimate:
∥
∥
∥
∥

( ∑

k>M

DN
k Dk

)

(f)
∥
∥
∥
∥
M(β′,γ)

≤ C2−σM‖f‖M(β,γ) (3.65)

for all 0 < β′ < β and some σ > 0, and a constant C which is independent
of f and M.

In fact, we will show that for 0 < β′ < β′′ < β and some σ > 0, there
exists a constant C which is independent of f and M such that

∣
∣
∣
∣
∑

k>M

DN
k Dk(f)(x)

∣
∣
∣
∣ ≤ C2−βM (1 + ρ(x, x0))−(1+γ)‖f‖M(β,γ), (3.66)

∣
∣
∣
∣
∑

k>M

DN
k Dk(f)(x) −

∑

k>M

DN
k Dk(f)(x′)

∣
∣
∣
∣ (3.67)

≤ C
( ρ(x, x′)

1 + ρ(x, x0)

)β′′

(1 + ρ(x, x0))−(1+γ)‖f‖M(β,γ)

for ρ(x, x′) ≤ 1
4A2 (1 + ρ(x, x0).

To see this, note that if ρ(x, x′) ≤ 1
4A2 (1 + ρ(x, x0)) then, by (3.66),

∣
∣
∣
∣
∑

k>M

DN
k Dk(f)(x) −

∑

k>M

DN
k Dk(f)(x′)

∣
∣
∣
∣ (3.68)

≤ C2−βM (1 + ρ(x, x0))−(1+γ)‖f‖M(β,γ).

Taking the geometric mean of (3.67) and (3.68), we obtain
∣
∣
∣
∣
∑

k>M

DN
k Dk(f)(x) −

∑

k>M

DN
k Dk(f)(x′)

∣
∣
∣
∣ (3.69)

≤ C2−σM
( ρ(x, x′)

1 + ρ(x, x0)

)β′

(1 + ρ(x, x0))−(1+γ)‖f‖M(β,γ)

for ρ(x, x′) ≤ 1
4A2 (1 + ρ(x, x0), which together with (3.66) implies (3.65).
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We first prove (3.66). Denote Ek = DN
k Dk. It is easy to check that Ek(x, y),

the kernel of Ek, satisfies the condition (3.14), (3.15) and (3.16) with ε re-
placed by ε′, 0 < β, γ < ε′ < ε, and Ek(1) = 0 for k ≥ 1. Then

∣
∣
∣
∣
∑

k>M

DN
k Dk(f)(x)

∣
∣
∣
∣ =

∣
∣
∣
∣
∑

k>M

Ek(f)(x)
∣
∣
∣
∣

=
∣
∣
∣
∣
∑

k>M

∫
Ek(x, y)[f(y) − f(x)]dμ(y)

∣
∣
∣
∣

≤
∑

k>M

∫

ρ(x,y)≤ 1
2A (1+ρ(x,x0)

|Ek(x, y)||f(y) − f(x)|dμ(y)

+
∑

k>M

∫

ρ(x,y)> 1
2A (1+ρ(x,x0)

|Ek(x, y)||f(y) − f(x)|dμ(y)

≤ C
∑

k>M

∫

ρ(x,y)≤ 1
2A (1+ρ(x,x0)

|Ek(x, y)|
( ρ(x, y)

1 + ρ(x, x0)

)β

×(1 + ρ(x, x0))−(1+γ)‖f‖M(β,γ)dμ(y)

+C
∑

k>M

∫

ρ(x,y)> 1
2A (1+ρ(x,x0)

|Ek(x, y)|[(1 + ρ(x, y))−(1+γ)

+(1 + ρ(x, x0))−(1+γ)]‖f‖M(β,γ)dμ(y)

≤ C
∑

k>M

{2−βk(1 + ρ(x, x0))−(1+γ) + 2−kε′(1 + ρ(x, x0))−(1+ε′)

+2−kε′(1 + ρ(x, x0))−(1+γ)}‖f‖M(β,γ)

≤ C2−βM (1 + ρ(x, x0))−(1+γ)‖f‖M(β,γ),

from which (3.66) follows.
Now we prove (3.67). Consider the case where ρ(x, x′) ≤ 1

4A2 (1 + ρ(x, x0).
We write

∣
∣
∣
∣
∑

k>M

DN
k Dk(f)(x) −

∑

k>M

DN
k Dk(f)(x′)

∣
∣
∣
∣

=
∣
∣
∣
∣
∑

k>M

∫
[Ek(x, y) − Ek(x′, y)]f(y)dμ(y)

∣
∣
∣
∣

=
∣
∣
∣
∣
∑

k>M

∫
[Ek(x, y) − Ek(x′, y)][f(y) − f(x)]dμ(y)

∣
∣
∣
∣

≤
∑

k>M

∫

W1

|Ek(x, y) − Ek(x′, y)||f(y) − f(x)|dμ(y)

+
∑

k>M

∫

W2

|Ek(x, y) − Ek(x′, y)||f(y) − f(x)|dμ(y)
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+
∑

k>M

∫

W3

|Ek(x, y) − Ek(x′, y)||f(y) − f(x)|dμ(y)

:= I + II + III

where

W1 =
{

z ∈ X : ρ(x, x′) ≤ 1
4A2

(1 + ρ(x, x0)) ≤
1

2A
(2−k + ρ(x, y))

}

,

W2 =
{

z ∈ X : ρ(x, x′) ≤ 1
2A

(2−k + ρ(x, y)) ≤ 1
4A2

(1 + ρ(x, x0))
}

,

W3 =
{

z ∈ X : ρ(x, x′) >
1

2A
(2−k + ρ(x, y))

}

.

By the smoothness conditions on Ek and f, we obtain

II ≤ C
∑

k>M

∫

W2

( ρ(x, x′)
2−k + ρ(x, y)

)ε′ 2−kε′

(2−k + ρ(x, y))1+ε′

( ρ(x, y)
1 + ρ(x, x0)

)β

×(1 + ρ(x, x0))−(1+γ)‖f‖M(β,γ)dμ(y)

≤ C
∑

k>M

( ρ(x, x′)
1 + ρ(x, x0)

)β′

(1 + ρ(x, x0))−(1+γ)‖f‖M(β,γ)

×
∫

W2

2−kε′

(2−k + ρ(x, y))1+ε′
(ρ(x, y))(β−β′)dμ(y)

≤ C
∑

k>M

2−k(β−β′)
( ρ(x, x′)

1 + ρ(x, x0)

)β′

(1 + ρ(x, x0))−(1+γ)‖f‖M(β,γ)

≤ C
( ρ(x, x′)

1 + ρ(x, x0)

)β′

(1 + ρ(x, x0))−(1+γ)‖f‖M(β,γ).

Using the smoothness condition on Ek and size condition on f,

I ≤ C
∑

k>M

∫

W1

( ρ(x, x′)
2−k + ρ(x, y)

)ε′ 2−kε′

(2−k + ρ(x, y))1+ε′
{|f(y)| + |f(x)|}dμ(y)

≤ C
∑

k>M

( ρ(x, x′)
1 + ρ(x, x0)

)ε′ 2−kε′

(1 + ρ(x, x0))1+ε′

∫

W1

|f(y)|dμ(y)

+C
∑

k>M

( ρ(x, x′)
1 + ρ(x, x0)

)ε′

|f(x)|
∫

W1

2−kε′

(2−k + ρ(x, y))1+ε′
dμ(y)

≤ C
( ρ(x, x′)

1 + ρ(x, x0)

)β′

(1 + ρ(x, x0))−(1+γ)‖f‖M(β,γ).

The size condition on Ek and smoothness on f yield
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III ≤ C
∑

k>M

∫

W3

{|Ek(x, y)| + |Ek(x′.y)|}
( ρ(x, y)

1 + ρ(x, x0)

)β

×(1 + ρ(x, x0))−(1+γ)‖f‖M(β,γ)dμ(y)

≤ C
∑

k>M

( ρ(x, x′)
1 + ρ(x, x0)

)β′

(1 + ρ(x, x0))−(1+γ)‖f‖M(β,γ)

×
∫

W3

{|Ek(x, y)| + |Ek(x′, y)|}ρ(x, y)(β−β′)dμ(y)

≤ C
( ρ(x, x′)

1 + ρ(x, x0)

)β′

(1 + ρ(x, x0))−(1+γ)‖f‖M(β,γ)

which implies (3.67).
Finally, to see that the series in (3.55) converges in Lp for 1 < p < ∞

we use the above proof and we only need to show that the last two terms
in (3.64) tend to zero as M tends to infinity when the norm of M(β′, γ′)
is replaced by the norm of Lp for 1 < p < ∞. The estimates in Lemma
3.17, as we have proved above, imply that RN is a Calderón-Zygmund op-
erator with the operator norm at most C2−Nδ and, hence, RN is bounded
on Lp for 1 < p < ∞ with the operator norm at most C2−Nδ. This also
implies that T−1

N is bounded on Lp for 1 < p < ∞. So it suffices to show
lim

M→∞
‖

∑

k>M

DN
k Dk(f)‖p = 0 for f ∈ Lp, 1 < p < ∞. More precisely,

∥
∥
∥
∥
∑

k>M

DN
k Dk(f)

∥
∥
∥
∥

p

= sup
‖g‖p′≤1

∣
∣
∣
∣

〈 ∑

k>M

DN
k Dk(f), g

〉∣
∣
∣
∣

=≤ sup
‖g‖p′≤1

∥
∥
∥
∥

( ∑

k>M

|Dk(f)|2
) 1

2

∥
∥
∥
∥

p

·
∥
∥
∥
∥

( ∑

k>M

|(DN
k )∗(g)|2

) 1
2
∥
∥
∥
∥

p′

=≤ C sup
‖g‖p′≤1

∥
∥
∥
∥

( ∑

k>M

|Dk(f)|2
) 1

2
∥
∥
∥
∥

p

‖g‖p′ ≤ C

∥
∥
∥
∥

( ∑

k>M

|Dk(f)|2
) 1

2
∥
∥
∥
∥

p

where by the Littlewood-Paley estimates on Lp, 1 < p < ∞ the last term
tends to zero as M tends to infinity. This ends the proof of Theorem 3.19.

In the next section a discrete version of Calderón’s identity will provide
wavelet expansions on spaces of homogeneous type.
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3.5 Wavelet Expansions on Spaces
of Homogeneous Type

In this section, we provide wavelet expansions on L2(X) and prove that these
wavelet expansions still hold on Lp(X), 1 < p < ∞, and distribution spaces.

Let us first return to the standard case of R
n. As we mentioned in Section

3.4, let ψ ∈ L1(Rn) be a function whose integral is zero and whose Fourier
transform ψ̂(ξ) satisfies

∞∫

0

|ψ̂(tξ)|2 dt

t
= 1

for each ξ �= 0. We use ψ to define wavelets ψ(a,b), a > 0, b ∈ R
n, by

ψ(a,b)(x) = a−n
2 ψ(x−b

a ). Notice that this definition is inconsistent with the
one used in (3.30). We define the “wavelet transformation” of f ∈ L2(Rn) by
F (a, b) = 〈f, ψ(a,b)〉, as a function of a and b. We obtain a continuous version
of wavelet expansion on L2(Rn):

f(x) =

∞∫

0

∫

Rn

F (a, b)ψ(a,b)db
da

a1+n
.

Finally we can replace the above identity by a discrete version, obtained by
paving R

n by “Whitney cubes”. We then summarily replace a by 2−j and
b by k2−j , k ∈ Z

n, and dadb by the volume of the Whitney cube, that is,
2−(n+1)j . This volume exactly compensates for a1+n, and the above identity
becomes

f(x) ≈
∑

j

∑

k

α(j, k)2
nj
2 ψ(2jx − k).

One should observe that using the theory of frames, one can give an exact
formula on iteration which has been developed by Daubechies ([Da]) as we
described in Section 3.2. But, however, this iteration method, in general,
cannot provide an identity with a wavelet expansion. The method we will use
is the theory of Calderón-Zygmund operators as used in the previous section
for proving Calderón’s identity.

We now come to a general space of homogeneous type. One needs an
analogue of the Whitney cubes on spaces of homogeneous type. This is the
following result given by M. Christ [Ch2], which provides an analogue of the
grid of Euclidean dyadic cubes on spaces of homogeneous type.

Theorem 3.22. For every integer k ∈ Z, there exist a collection of open
subsets {Qk

τ ⊆ X : k ∈ Z, τ ∈ Ik}, where Ik denotes some (possibly finite)
index set depending on k, and a constant δ ∈ (0, 1), a0 > 0, η > 0 and 0 < c1,
c2 < ∞ such that

μ({X \ ∪Qk
τ}) = 0

for all k ∈ Z.
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If l ≥ k then either
Ql

τ ′ ⊆ Qk
τ

or
Ql

τ ′ ∩ Qk
τ = φ.

For each (k, τ) and l < k there is a unique τ ′ such that

Qk
τ ⊆ Ql

τ ′ ,

Diameter(Qk
τ ) ≤ c1δ

k,

Each Qk
τ contains some ball B(zk

τ , a0δ
k).

For simplifying the discussion we may assume δ = 1
2 in Theorem 3.22. We

say that a cube Q ⊂ X is a dyadic cube if Q = Qk
τ for some k ∈ Z and τ ∈ Ik.

The index τ indicates the position of these cubes. Theorem 3.22 says that the
“length” of the “dyadic cube” Qk

τ is roughly δk, 0 < δ < 1. For every integer
j, we denote by Qk,ν

τ , ν = 1, 2, ..., N(k, τ) the dyadic cubes Qk+j
τ ′ ⊂ Qk

τ and
by yk,ν

τ any points in Qk,ν
τ . In other words the cube Qk,ν

τ ′ are all the cubes
contained in Qk

τ with the side length δk+j . Here Qk,ν
τ should be denoted by

Qk,ν
τ ′ because τ and τ ′ are different. The role of j is to refine the partition of

X by the dyadic cubes Qk
τ together with the accuracy of the approximation

of integrals by a Riemann sum. Suppose that Dk(x, y) are mother functions.
By Coifman’s decomposition of the identity operator, for each f ∈ L2(X),

f(x) = TN (f)(x) + RN (f)(x) =
∑

k

DN
k Dk(f)(x) + RN (f)(x)

where DN
k (x, y), the kernel of DN

k , are wavelets as defined in the Introduction.
We now replace

∑

k

DN
k Dk(f)(x) =

∑

k

∫

X

DN
k (x, y)Dk(f)(y)dμ(y)

by a discrete version, obtained by paving X into the union of the dyadic
cubes Qk,ν

τ , where for each fixed k ∈ Z the union takes over τ ∈ Ik and
ν, 1 ≤ ν ≤ N(k, τ). This leads to the following approximation

f(x) ≈
∑

k∈Z

∑

τ∈Ik

N(k,τ)∑

ν=1

μ(Qk,ν
τ )DN

k (x, yk,ν
τ )Dk(f)(yk,ν

τ ).

We define the operator S = SN,j by

S(f)(x) =
∑

k∈Z

∑

τ∈Ik

N(k,τ)∑

ν=1

μ(Qk,ν
τ )DN

k (x, yk,ν
τ )Dk(f)(yk,ν

τ ),



3.5 Wavelet Expansion 75

and the operator R̃N = R̃N,j by

R̃N (f)(x)

=
∑

k∈Z

∑

τ∈Ik

N(k,τ)∑

ν=1

∫

Qk,ν
τ

[DN
k (x, y)Dk(f)(y) − DN

k (x, yk,ν
τ )Dk(f)(yk,ν

τ )]dμ(y).

Then we have a discrete version of decomposition on the identity operator:

I = S + R̃N + RN .

The L2-boundedness of S follows easily from the theory of frames described

in Section 3.2. Indeed, for any fixed N, we write ψλ(x) =
√

μ(Qk,ν
τ )Dk(yk,ν

τ , x),
where λ ∈ Λ, the set Λ = {(k, τ, ν) : k ∈ Z, τ ∈ Ik, 1 ≤ ν ≤ N(k, τ)} and

ψN
λ (x) =

√
μ(Qk,ν

τ )DN
k (x, yk,ν

τ ). Then the L2-boundedness of S follows from
the fact that both ψλ and ψN

λ are almost orthogonal in L2(X) as in the Def-
inition 3.2. We prove this fact only for ψλ because the same proof applies to
ψN

λ . We write

∥
∥
∥
∥
∑

λ∈Λ

αλψλ(x)
∥
∥
∥
∥

2

2

=
∫ ∑

k∈Z

∑

τ∈Ik

N(k,τ)∑

ν=1

(μ(Qk,ν
τ ))

1
2 αk,ν

τ Dk(yk,ν
τ , x)

×
∑

k′∈Z

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

(μ(Qk′,ν′

τ ′ ))
1
2 αk′,ν′

τ ′ Dk′(yk′,ν′

τ ′ , x)dμ(x)

=
∑

k∈Z

∑

τ∈Ik

N(k,τ)∑

ν=1

∑

k′∈Z

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

αk,ν
τ αk′,ν′

τ ′ I(k, τ, ν, k′, τ ′, ν′)

where

I(k, τ, ν, k′, τ ′, ν′) =
∫

(μ(Qk,ν
τ ))

1
2 (μ(Qk′,ν′

τ ′ ))
1
2 Dk(yk,ν

τ , x)Dk′(yk′,ν′

τ ′ , x)dμ(x).

By the almost orthogonal argument for Dk, we have
∣
∣
∣
∣

∫
Dk(yk,ν

τ , x)Dk′(yk′,ν′

τ ′ , x)dμ(x)
∣
∣
∣
∣

≤ C2−|k−k′|ε′ 2−(k∧k′)ε

(2−(k∧k′) + ρ(yk,ν
τ , yk′,ν′

τ ′ )1+ε

≤ C2(k∧k′)2−|k−k′|ε′
[

2−(k∧k′)

(2−(k∧k′) + ρ(yk,ν
τ , yk′,ν′

τ ′ )

](1+ε)
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where 0 < ε′ < ε. Thus,

|I(k, τ, ν, k′, τ ′, ν′)| ≤ C2−|k−k′|(ε′+ 1
2 )

[
2−(k∧k′)

(2−(k∧k′) + ρ(yk,ν
τ , yk′,ν′

τ ′ )

](1+ε)

.

The above estimate together with Schur’s lemma gives the desired con-
clusion. Schur’s lemma says the following. If one is given a matrix M =
m(x, y), x ∈ E, y ∈ E, (E is a set) and if there exists a positive and finite
weight function ω(x) such that

∑
x∈E |m(x, y)|ω(x) ≤ ω(y) for every y and∑

y∈E |m(x, y)|ω(y) ≤ ω(x) for every x, then the operator norm of M acting
on l2(E) does not exceed 1.

We now prove that the operator S is invertible on L2(X). Indeed, we will
further prove that S−1, the inverse of S on L2(X), also maps M0(x1, r, β, γ)
into itself for x1 ∈ X, r > 0 and 0 < β, γ < ε. As a consequence of theses
results, we provide wavelet expansions on spaces of homogeneous type. To
this end, note that I = S + R̃N + RN . We have proved in Section 3.4 that
the operator norm of RN on Lp, 1 < p < ∞, and M0(x1, r, β, γ) is at most
C2−Nδ for a constant C > 0 and some δ > 0. The following result gives the
estimate on the operator R̃N . In this lemma the integer j is any fixed integer.

Lemma 3.23. The operator R̃N is defined as above and depends on the inte-
ger j ≥ 1 which is used to improve the accuracy in the Riemann sum defining
R̃N . Then the kernel R̃N (x, y), of R̃N , satisfies the following estimates: for
0 < ε′ < ε there exist a constants 0 < C < ∞ and δ > 0 such that for integer
N > 0,

|R̃N (x, y)| ≤ C2−jδρ(x, y)−1; (3.70)

|R̃N (x, y) − R̃N (x, y′)| ≤ C2−jδρ(y, y′)ε′ρ(x, y)−(1+ε′) (3.71)

for ρ(y, y′) ≤ 1
2Aρ(x, y);

|R̃N (x, y) − R̃N (x′, y)| ≤ C2−jδρ(x, x′)ε′ρ(x, y)−(1+ε′) (3.72)

for ρ(x, x′) ≤ 1
2Aρ(x, y);

|R̃N (x, y) − R̃N (x′, y) − R̃N (x, y′) + R̃N (x′, y′)| (3.73)

≤ C2−jδρ(x, x′)ε′ρ(y, y′)ε′ρ(x, y)−(1+2ε′)

for ρ(x, x′) ≤ 1
2Aρ(x, y) and ρ(y, y′) ≤ 1

2Aρ(x, y);

|〈R̃N , f〉| ≤ C2−jδr (3.74)

for all f ∈ Cη
0 (X × X) with supp(f) ⊆ B(x1, r) × B(y1, r), x1 and y1 ∈ X,

‖f‖∞ ≤ 1, ‖f(·, y)‖η ≤ r−η, and ‖f(x, ·)‖η ≤ r−η for all x and y ∈ X.
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We point out that the almost orthogonal estimate was used in the proof of
Lemma 3.17. But, however, this almost orthogonal argument is not needed
for the proof of Lemma 3.23. The key facts used in the proof of Lemma 3.23
are the smoothness condition of Dk(x, y) on the variable y and the fact that
the side length of Qk,ν

τ is equivalent to 2−k−j .

We now prove Lemma 3.23. First of all, we rewrite R̃N as follows.

R̃N (f)(x)=
∑

k∈Z

∑

τ∈Ik

N(k,τ)∑

ν=1

∫

Qk,ν
τ

[DN
k (x, y) − DN

k (x, yk,ν
τ )]Dk(f)(y)dμ(y) (3.75)

+
∑

k∈Z

∑

τ∈Ik

N(k,τ)∑

ν=1

∫

Qk,ν
τ

DN
k (x, yk,ν

τ )[Dk(f)(y) − Dk(f)(yk,ν
τ )]dμ(y)

= R1(f)(x) + R2(f)(x).

We prove that the kernels of R1 and R2 satisfy the estimates of (3.70) –
(3.74). It is easy to see that if the kernel of R1 is denoted by R1(x, y), then

R1(x, y) =
∑

k∈Z

∑

τ∈Ik

N(k,τ)∑

ν=1

∫

Qk,ν
τ

[DN
k (x, z) − DN

k (x, yk,ν
τ )]Dk(z, y)dμ(z).

Note that DN
k (x, y), the kernel of DN

k , satisfies the same estimates (3.14) –
(3.19) with the constant C depending on N, and observe that the side length
of Qk,ν

τ is equivalent to 2−k−j . We obtain
∫

Qk,ν
τ

|DN
k (x, z) − DN

k (x, yk,ν
τ )||Dk(z, y)|dμ(z)

≤ C

∫

Qk,ν
τ

(
ρ(z, yk,ν

τ )
2−k + ρ(x, z)

)ε 2−kε

(2−k + ρ(x, z))1+ε
|Dk(z, y)|dμ(z)

≤ C2−jε

∫

Qk,ν
τ

2−kε

(2−k + ρ(x, z))1+ε
|Dk(z, y)|dμ(z).

Thus,

|R1(x, y)| ≤ C2−jε
∑

k∈Z

∑

τ∈Ik

N(k,τ)∑

ν=1

∫

Qk,ν
τ

2−kε

(2−k + ρ(x, z))1+ε
|Dk(z, y)|dμ(z)

≤ C2−jε
∑

k∈Z

∫

X

2−kε

(2−k + ρ(x, z))1+ε
|Dk(z, y)|dμ(z)

≤ C2−jε
∑

k∈Z

2−kε

(2−k + ρ(x, y))1+ε
≤ C2−jερ(x, y)−1 (3.76)
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which implies that the kernel of R1 satisfies the estimate (3.70) with the
constant C2−jε.

To show (3.71) for R1, we write

R1(x, y) − R1(x, y′)

=
∑

k∈Z

∑

τ∈Ik

N(k,τ)∑

ν=1

∫

Qk,ν
τ

[DN
k (x, z) − DN

k (x, yk,ν
τ )][Dk(z, y) − Dk(z, y′)]dμ(z).

For z ∈ X, consider two cases: (i) W1 =
{
z ∈ X : ρ(y, y′) ≤ 1

2A (2−k +
ρ(z, y))

}
and (ii) W2 =

{
z ∈ X : 1

4A2 ρ(x, y) ≥ ρ(y, y′) ≥ 1
2A (2−k + ρ(z, y))

}
.

For the first case,

|DN
k (x, z) − DN

k (x, yk,ν
τ )||Dk(z, y) − Dk(z, y′)|

≤ C
2−kε

(2−k + ρ(x, z))1+ε

( ρ(y, y′)
2−k + ρ(z, y)

)ε 2−kε

(2−k + ρ(z, y))1+ε

where yk,ν
τ ∈ Qk,ν

τ .
For the second case, note that 1

4A2 ρ(x, y) ≥ ρ(y, y′) ≥ 1
2A (2−k + ρ(z, y))

implies ρ(y, y′) ≥ 1
A2−1−k and 1

2Aρ(x, y) ≤ ρ(x, z). This yields

|DN
k (x, z) − DN

k (x, yk,ν
τ )||Dk(z, y) − Dk(z, y′)|

≤ C
2−kε

(2−k + ρ(x, z))1+ε

[
2−kε

(2−k + ρ(z, y))1+ε
+

2−kε

(2−k + ρ(z, y′))1+ε

]

.

Thus, if 1
4A2 ρ(x, y) ≥ ρ(y, y′),

|R1(x, y) − R1(x, y′)| (3.77)

≤ C
∑

k∈Z

∫

W1

2−kε

(2−k + ρ(x, z))1+ε

(
ρ(y, y′)

2−k + ρ(z, y)

)ε 2−kε

(2−k + ρ(z, y))1+ε
dμ(z)

+C
∑

k∈Z

∫

W2

2−kε

(2−k + ρ(x, z))1+ε

[
2−kε

(2−k + ρ(z, y))1+ε

+
2−kε

(2−k + ρ(z, y′))1+ε

]

dμ(z)

≤ C
∑

k∈Z

(
ρ(y, y′)

2−k + ρ(x, y)

)ε′ 2−k(ε−ε′)

(2−k + ρ(x, y))1+(ε−ε′)
≤ Cρ(y, y′)ε′ρ(x, y)−(1+ε′)

where 0 < ε′ < ε.
The estimate (3.76) yields that if 1

4A2 ρ(x, y) ≥ ρ(y, y′),

|R1(x, y) − R1(x, y′)| ≤ C2−jερ(x, y)−1. (3.78)
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Taking the geometrical mean of (3.77) and (3.78) implies that R1(x, y), the
kernel of R1, satisfies (3.71) with the constant C2−jδ.

Similarly, considering two cases: (i) W1 =
{
z ∈ X : ρ(x, x′) ≤ 1

2A (2−k +
ρ(x, z))

}
and (ii) W2 =

{
z ∈ X : 1

4A2 ρ(x, y) ≥ ρ(x, x′) ≥ 1
2A (2−k + ρ(x, z))

}
,

then we have

|R1(x, y) − R1(x′, y)| (3.79)

≤
∑

k∈Z

∑

τ∈Ik

N(k,τ)∑

ν=1

∫

Qk,ν
τ

|[DN
k (x, z) − DN

k (x, yk,ν
τ )]

−[DN
k (x′, z) − DN

k (x′, yk,ν
τ )]||Dk(z, y)|dμ(z)

≤ C
∑

k∈Z

∫

W1

2−kε

(2−k + ρ(x, z))1+ε

(
ρ(x, x′)

2−k + ρ(x, z)

)ε 2−kε

(2−k + ρ(z, y))1+ε
dμ(z)

+C
∑

k∈Z

∫

W2

[
2−kε

(2−k + ρ(x, z))1+ε
+

2−kε

(2−k + ρ(x′, z))1+ε

]

× 2−kε

(2−k + ρ(z, y))1+ε
dμ(z)

≤ C
∑

k∈Z

(
ρ(x, x′)

2−k + ρ(x, y)

)ε′ 2−k(ε−ε′)

(2−k + ρ(x, y))1+(ε−ε′)

≤ Cρ(x, x′)ε′ρ(x, y)−(1+ε′)

where 0 < ε′ < ε.
As above, the estimate (3.79) together with the estimate (3.76) implies

that R1(x, y) satisfies the estimate (3.72) with the constant C2−jδ.
We now prove the estimate (3.73) for R1(x, y). We first write

|R1(x, y) − R1(x′, y) − R1(x, y′) + R1(x′, y′)|

≤
∑

k∈Z

∑

τ∈Ik

N(k,τ)∑

ν=1

∫

Qk,ν
τ

∣
∣[DN

k (x, z) − DN
k (x, yk,ν

τ )]

−[DN
k (x′, z) − DN

k (x′, yk,ν
τ )]

∣
∣× |Dk(z, y) − Dk(z, y′)|dμ(z).

If 1
4A2 ρ(x, y) ≥ ρ(x, x′) and 1

4A2 ρ(x, y) ≥ ρ(y, y′), then for any z ∈ X, we
have the following three cases: (i) W1 =

{
z ∈ X : ρ(x, x′) ≤ 1

2A (2−k +ρ(x, z))
and ρ(y, y′) ≤ 1

2A (2−k + ρ(z, y))
}
; (ii) W2 =

{
z ∈ X : ρ(x, x′) ≤ 1

2A (2−k +
ρ(x, z)) and ρ(y, y′) ≥ 1

2A (2−k +ρ(z, y))
}
; and (iii) W3 =

{
z ∈ X : ρ(x, x′) ≥

1
2A (2−k + ρ(x, z)) and ρ(y, y′) ≤ 1

2A (2−k + ρ(z, y))
}
.
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If z ∈ W1 ∩ Qk,ν
τ , then

|[DN
k (x, z) − DN

k (x, yk,ν
τ )] − [DN

k (x′, z) − DN
k (x, yk,ν

τ )]||Dk(z, y) − Dk(z, y′)|

≤ C

(
ρ(x, x′)

2−k + ρ(x, z)

)ε 2−kε

(2−k + ρ(x, z))1+ε

(
ρ(y, y′)

2−k + ρ(z, y)

)ε

× 2−kε

(2−k + ρ(z, y))1+ε
.

If z ∈ W2 ∩ Qk,ν
τ , then ρ(y, y′) ≥ 1

A2−1−k and 1
2Aρ(x, y) ≤ ρ(x, z). Thus,

|[DN
k (x, z) − DN

k (x, yk,ν
τ )] − [DN

k (x′, z) − DN
k (x′, yk,ν

τ )]||Dk(z, y) − Dk(z, y′)|

≤ C

(
ρ(x, x′)

2−k + ρ(x, z)

)ε 2−kε

(2−k + ρ(x, z))1+ε

×
{

2−kε

(2−k + ρ(z, y))1+ε
+

2−kε

(2−k + ρ(z, y′))1+ε

}

≤ C

(
ρ(x, x′)

2−k + ρ(x, y)

)ε 2−kε

(2−k + ρ(x, y))1+ε

×
{

2−kε

(2−k + ρ(z, y))1+ε
+

2−kε

(2−k + ρ(z, y′))1+ε

}

.

If z ∈ W3 ∩ Qk,ν
τ , then ρ(x, x′) ≥ 1

A2−1−k and 1
2Aρ(x, y) ≤ ρ(z, y) yield

|[DN
k (x, z) − DN

k (x, yk,ν
τ )] − [DN

k (x′, z) − DN
k (x′, yk,ν

τ )]||Dk(z, y) − Dk(z, y′)|

≤ C

[
2−kε

(2−k + ρ(x, z))1+ε
+

2−kε

(2−k + ρ(x′, z))1+ε

](
ρ(y, y′)

2−k + ρ(z, y)

)ε

× 2−kε

(2−k + ρ(z, y))1+ε

≤ C

[
2−kε

(2−k + ρ(x, z))1+ε
+

2−kε

(2−k + ρ(x′, z))1+ε

](
ρ(y, y′)

2−k + ρ(x, y)

)ε

× 2−kε

(2−k + ρ(x, y))1+ε
.

We now get

|R1(x, y) − R1(x′, y) − R1(x, y′) + R1(x′, y′)| (3.80)

≤ C
∑

k∈Z

∫

W1

(
ρ(x, x′)

2−k + ρ(x, z)

)ε 2−kε

(2−k + ρ(x, z))1+ε

×
(

ρ(y, y′)
2−k + ρ(z, y)

)ε 2−kε

(2−k + ρ(z, y))1+ε
dμ(z)
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+C
∑

k∈Z

∫

W2

(
ρ(x, x′)

2−k + ρ(x, y)

)ε 2−kε

(2−k + ρ(x, y))1+ε

×
{

2−kε

(2−k + ρ(z, y))1+ε
+

2−kε

(2−k + ρ(z, y′))1+ε

}

dμ(z)

+C
∑

k∈Z

∫

W3

[
2−kε

(2−k + ρ(x, z))1+ε
+

2−kε

(2−k + ρ(x′, z))1+ε

]

×
(

ρ(y, y′)
2−k + ρ(x, y)

)ε 2−kε

(2−k + ρ(x, y))1+ε
dμ(z)

≤ Cρ(x, x′)ε′ρ(y, y′)ε′ρ(x, y)−(1+2ε′)

where 0 < ε′ < ε.
On the other hand, if 1

4A2 ρ(x, y) ≥ ρ(x, x′) and 1
4A2 ρ(x, y) ≥ ρ(y, y′), then,

by the estimate (3.76), we have

|R1(x, y) − R1(x′, y) − R1(x, y′) + R1(x′, y′)| (3.81)
≤ |R1(x, y)| + |R1(x′, y)| + |R1(x, y′)| + |R1(x′, y′)|
≤ C2−jερ(x, y)−1.

Again, as above, the geometrical mean of (3.80) and (3.81) implies that
R1(x, y) satisfies the estimate (3.73).

The proof of (3.74) for R1 is same as in the proof of Lemma 3.17. The
proofs for R2 are similar to the proofs of R1. We leave these details to the
reader. By Lemma 3.17, as mentioned above, RN satisfies all estimates of
(3.70) - (3.74).

Note that R̃N (1) = R̃∗
N (1) = 0 and the fact that S−1 =

∞∑

m=0
(R̃N + RN )m.

As an immediate consequence of Theorem 1.17 and Theorem 2.4, we obtain
the following result.

Proposition 3.24 If j and N are large integers, then S−1, the inverse of
the operator S, maps test function to test function, and it is bounded on Lp

for 1 < p < ∞. Moreover, there exist constant C which is independent of
f ∈ M0(x1, r, β, γ) with x1 ∈ X, r > 0 and 0 < β, γ < ε and Cp which
depends only on p for 1 < p < ∞, such that

‖S−1(f)‖M(x1,r,β,γ) ≤ C‖f‖M(x1,r,β,γ), (3.82)

and

‖S−1(f)‖p ≤ Cp‖f‖p. (3.83)

We now prove the main result, namely wavelet expansions on spaces of
homogeneous type ([H3]). Wavelets are defined in Definition 2.2.
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Theorem 3.25. There exist three families ψλ(x), ψ̃λ(x), ˜̃ψλ(x) of wavelets
such that, for every square integrable function f one has

f(x) =
∑

λ∈Λ

ψ̃λ(x)〈f, ψλ〉 (3.84)

=
∑

λ∈Λ

ψλ(x)〈f,
˜̃
ψλ〉.

The first family is given by

ψλ(x) =
√

μ(Qk,ν
τ )Dk(yk,ν

τ , x), λ ∈ Λ
= {(k, τ, ν) : k ∈ Z, τ ∈ Ik, 1 ≤ ν ≤ N(k, τ)}

where Dk(x, y) are mother functions and the sampling grid yk,ν
τ is given by

any point yk,ν
τ ∈ Qk,ν

τ .
The second and third family have a similar definition.

Let ψ̃λ(x) = S−1(DN
k (·, yk,ν

τ )(x) where DN
k (x, y) are kernels of DN

k and
N is a fixed large integer. The Proposition 3.24 implies that D̃k(x, y) sat-
isfy the estimates of (3.14) and (3.15) with ε replaced by ε′, for 0 < ε′ < ε,

and
∫

D̃k(x, y)dμ(y) =
∫

D̃k(x, y)dμ(x) = 0 for all k ∈ Z, follow from the

facts that DN
k (1) = (S−1)∗(1) = 0. Similarly, let ˜̃

ψλ(x) = DN
k S−1(·, yk,ν

τ )(x).

Then Proposition 3.24 implies that ˜̃
Dk(x, y) satisfy the estimates of (3.14)

and (3.16) with ε replaced by ε′, for 0 < ε′ < ε.
∫ ˜̃

Dk(x, y)dμ(y) =
∫ ˜̃

Dk(x, y)dμ(x) = 0 for all k ∈ Z, follow from the facts that (DN
k )∗(1) =

(S−1)(1) = 0. These facts yield that ψ̃λ and ˜̃
ψλ are wavelets. It remains to

prove that the series in (3.84) converge in L2(X). Since

∑

|k|≤M

∑

τ∈Ik

N(k,τ)∑

ν=1

μ(Qk,ν
τ )D̃k(x, yk,ν

τ )Dk(f)(yk,ν
τ )

= S−1

{ ∑

|k|≤M

∑

τ∈Ik

N(k,τ)∑

ν=1

μ(Qk,ν
τ )DN

k (·, yk,ν
τ )Dk(f)(yk,ν

τ )
}

(x)

= S−1

{

S(f)(·) −
∑

|k|≥M

∑

τ∈Ik

N(k,τ)∑

ν=1

μ(Qk,ν
τ )DN

k (·, yk,ν
τ )Dk(f)(yk,ν

τ )
}

(x)

= f(x) − lim
m→∞

(R)m(f)(x) − S−1

×
{ ∑

|k|≥M

∑

τ∈Ik

N(k,τ)∑

ν=1

μ(Qk,ν
τ )DN

k (·, yk,ν
τ )Dk(f)(yk,ν

τ )
}

(x)

where R = R̃N + RN .
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So all we need to do is to show that (R)m(f)(x) and

S−1

{ ∑

|k|≥M

∑

τ∈Ik

N(k,τ)∑

ν=1

μ(Qk,ν
τ )DN

k (·, yk,ν
τ )Dk(f)(yk,ν

τ )
}

(x)

converge to zero in L2(X) as m,M tend to infinity.
By the fact ‖(R)m(f)‖2 ≤ Cm(2−jδ + 2−Nδ)m‖f‖2, it follows that

lim
m→∞

(R)m(f)(x) = 0 in the norm of L2, for fixed large integers j and N.

To show

S−1

{ ∑

|k|≥M

∑

τ∈Ik

N(k,τ)∑

ν=1

μ(Qk,ν
τ )DN

k (·, yk,ν
τ )Dk(f)(yk,ν

τ )
}

(x)

converges to zero in the norm of L2(X) as M tends to infinity, it suffices to
prove that

lim
M→∞

∥
∥
∥
∥

∑

|k|≥M

∑

τ∈Ik

N(k,τ)∑

ν=1

μ(Qk,ν
τ )DN

k (x, yk,ν
τ )Dk(f)(yk,ν

τ )
∥
∥
∥
∥

2

= 0. (3.85)

This estimate will follow from the general situation which we describe now.
Indeed the wavelet expansions in Theorem 3.25 still hold on M(β′, γ′) and
Lp, 1 < p < ∞. To see these results, all we need to do is to show that if
f ∈ M0(β, γ), (R)m(f)(x) and

S−1

{ ∑

|k|≥M

∑

τ∈Ik

N(k,τ)∑

ν=1

μ(Qk,ν
τ )DN

k (·, yk,ν
τ )Dk(f)(yk,ν

τ )
}

(x)

converge to zero in the norm of M(β′, γ′) for 0 < β′ < β and 0 < γ′ < γ and
Lp(X), for 1 < p < ∞, as m,M tend to infinity.

By Theorem 1.10, for 1 < p < ∞,

‖(R)m(f)‖p ≤ Cm(2−jδ + 2−Nδ)m‖f‖p

which implies lim
m→∞

(R)m(f)(x) = 0 in the norm of Lp, 1 < p < ∞, as m

tends to infinity uniformly for large integers j and N. To show

S−1

{ ∑

|k|≥M

∑

τ∈Ik

N(k,τ)∑

ν=1

μ(Qk,ν
τ )DN

k (·, yk,ν
τ )Dk(f)(yk,ν

τ )
}

(x)

converges to zero in the norm of Lp(X), for 1 < p < ∞, as M tends to
infinity, it suffices to show that for 1 < p < ∞,
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lim
M→∞

∥
∥
∥
∥

∑

|k|≥M

∑

τ∈Ik

N(k,τ)∑

ν=1

μ(Qk,ν
τ )DN

k (x, yk,ν
τ )Dk(f)(yk,ν

τ )
∥
∥
∥
∥

p

= 0. (3.86)

Let 1
p + 1

q = 1. By the duality argument,

∥
∥
∥
∥

∑

|k|≥M

∑

τ∈Ik

N(k,τ)∑

ν=1

μ(Qk,ν
τ )DN

k (x, yk,ν
τ )Dk(f)(yk,ν

τ )
∥
∥
∥
∥

p

= sup
‖g‖q≤1

∣
∣
∣
∣

〈 ∑

|k|≥M

∑

τ∈Ik

N(k,τ)∑

ν=1

μ(Qk,ν
τ )DN

k (x, yk,ν
τ )Dk(f)(yk,ν

τ ), g
〉∣
∣
∣
∣

≤ sup
‖g‖q≤1

∑

|k|≥M

∑

τ∈Ik

N(k,τ)∑

ν=1

μ(Qk,ν
τ )|(DN

k )∗(g)(yk,ν
τ )||Dk(f)(yk,ν

τ )|

≤ sup
‖g‖q≤1

∑

|k|≥M

∑

τ∈Ik

N(k,τ)∑

ν=1

∫

Qk,ν
τ

|(DN
k )∗(g)(yk,ν

τ )||Dk(f)(yk,ν
τ )|dμ(y).

By a similar proof to Theorem 4.1, we obtain

∑

|k|≥M

∑

τ∈Ik

N(k,τ)∑

ν=1

∫

Qk,ν
τ

|(DN
k )∗(g)(yk,ν

τ )||Dk(f)(yk,ν
τ )|dμ(y)

≤ C‖g‖q

∥
∥
∥
∥

{ ∑

|k|>M

|Dk(f)|2
} 1

2
∥
∥
∥
∥

p

.

Thus,

∥
∥
∥
∥

∑

|k|≥M

∑

τ∈Ik

N(k,τ)∑

ν=1

μ(Qk,ν
τ )DN

k (x, yk,ν
τ )Dk(f)(yk,ν

τ )
∥
∥
∥
∥

p

≤ C

∥
∥
∥
∥

{ ∑

|k|>M

|Dk(f)|2
} 1

2
∥
∥
∥
∥

p

where the last term above, by the Littlewood-Paley estimates on Lp, 1 < p <
∞, tends to zero as M tends to infinity.

We now prove that the series in (3.84) converge in the norm of M(β′, γ′)
for each f ∈ M0(β, γ) with 0 < β′ < β, 0 < γ′ < γ. This follows from the
fact that for 0 < β′ < β, 0 < γ′ < γ and f ∈ M0(β, γ),

lim
M→∞

∥
∥
∥
∥

∑

|k|≥M

∑

τ∈Ik

N(k,τ)∑

ν=1

μ(Qk,ν
τ )DN

k (x, yk,ν
τ )Dk(f)(yk,ν

τ )
∥
∥
∥
∥
M(β′,γ′)

= 0. (3.87)
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To show (3.87), we denote

Ek(f)(x) :=
∑

τ∈Ik

N(k,τ)∑

ν=1

μ(Qk,ν
τ )DN

k (x, yk,ν
τ )Dk(f)(yk,ν

τ )

=
∫ ∑

τ∈Ik

N(k,τ)∑

ν=1

μ(Qk,ν
τ )DN

k (x, yk,ν
τ )Dk(yk,ν

τ , y)f(y)dμ(y)

where

Ek(x, y) =
∑

τ∈Ik

N(k,τ)∑

ν=1

μ(Qk,ν
τ )DN

k (x, yk,ν
τ )Dk(yk,ν

τ , y).

Then, Ek(x, y), the kernel of Ek, satisfies the estimates of (3.14). To see this,
we have

|Ek(x, y)| =
∣
∣
∣
∣
∑

τ∈Ik

N(k,τ)∑

ν=1

∫

Qk,ν
τ

DN
k (x, yk,ν

τ )Dk(yk,ν
τ , y)dμ(z)

∣
∣
∣
∣

≤
∑

τ∈Ik

N(k,τ)∑

ν=1

∫

Qk,ν
τ

|DN
k (x, yk,ν

τ )||Dk(yk,ν
τ , y)|dμ(z)

≤ C
∑

τ∈Ik

N(k,τ)∑

ν=1

∫

Qk,ν
τ

2−kε

(2−k + ρ(x, yk,ν
τ ))1+ε

2−kε

(2−k + ρ(yk,ν
τ , y))1+ε

dμ(z)

≤ C
∑

τ∈Ik

N(k,τ)∑

ν=1

∫

Qk,ν
τ

2−kε

(2−k + ρ(x, z))1+ε

2−kε

(2−k + ρ(z, y))1+ε
dμ(z)

= C

∫

X

2−kε

(2−k + ρ(x, z))1+ε

2−kε

(2−k + ρ(z, y))1+ε
dμ(z)

≤ C
2−kε

(2−k + ρ(x, y))1+ε
.

Note that

|DN
k (x, yk,ν

τ ) − DN
k (x′, yk,ν

τ )|

≤ C
( ρ(x, x′)

2−k + ρ(x, yk,ν
τ )

)ε[ 2−kε

(2−k + ρ(x, yk,ν
τ ))1+ε

+
2−kε

(2−k + ρ(x′, yk,ν
τ ))1+ε

]
,

we obtain if ρ(x, x′) ≤ 1
2A (2−k + ρ(x, y)) and 0 < ε′ < ε,
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|Ek(x, y) − Ek(x′, y)|

=
∣
∣
∣
∣
∑

τ∈Ik

N(k,τ)∑

ν=1

∫

Qk,ν
τ

[DN
k (x, yk,ν

τ ) − DN
k (x′, yk,ν

τ )]Dk(yk,ν
τ , y)dμ(z)

∣
∣
∣
∣

≤
∑

τ∈Ik

N(k,τ)∑

ν=1

∫

Qk,ν
τ

|DN
k (x, yk,ν

τ ) − DN
k (x′, yk,ν

τ )||Dk(yk,ν
τ , y)|dμ(z)

≤ C
∑

τ∈Ik

N(k,τ)∑

ν=1

∫

Qk,ν
τ

( ρ(x, x′)

2−k + ρ(x, yk,ν
τ )

)ε

×
[ 2−kε

(2−k + ρ(x, yk,ν
τ ))1+ε

+
2−kε

(2−k + ρ(x′, yk,ν
τ ))1+ε

]

× 2−kε

(2−k + ρ(yk,ν
τ , y))1+ε

dμ(z)

≤ C
∑

τ∈Ik

N(k,τ)∑

ν=1

∫

Qk,ν
τ

(
ρ(x, x′)

2−k + ρ(x, z)

)ε

×
[ 2−kε

(2−k + ρ(x, z))1+ε
+

2−kε

(2−k + ρ(x′, z))1+ε

]

× 2−kε

(2−k + ρ(z, y))1+ε
dμ(z)

= C

∫

X

( ρ(x, x′)
2−k + ρ(x, z)

)ε[ 2−kε

(2−k + ρ(x, z))1+ε
+

2−kε

(2−k + ρ(x′, z))1+ε

]

× 2−kε

(2−k + ρ(z, y))1+ε
dμ(z)

≤ C
( ρ(x, x′)

2−k + ρ(x, y)

)ε′ 2−kδ

(2−k + ρ(x, y))1+δ

where δ = ε − ε′ > 0.
Similarly, if ρ(y, y′) ≤ 1

2A (2−k + ρ(x, y)) and 0 < ε′ < ε,

|Ek(x, y) − Ek(x, y′)| ≤ C
( ρ(y, y′)

2−k + ρ(x, y)

)ε′ 2−kδ

(2−k + ρ(x, y))1+δ

and, if ρ(x, x′) ≤ 1
2A (2−k + ρ(x, y)), ρ(y, y′) ≤ 1

2A (2−k + ρ(x, y)) and
0 < ε′ < ε,

|Ek(x, y) − Ek(x′, y) − Ek(x, y′) + Ek(x′, y′)|

≤ C
( ρ(x, x′)

2−k + ρ(x, y)

)ε′( ρ(y, y′)
2−k + ρ(x, y)

)ε′ 2−kδ

(2−k + ρ(x, y))1+δ
.

It is easy to see that Ek(1) = (Ek)∗(1) = 0. Let T (f) =
∑

|k|>M

Ek(f). Then

T satisfies Theorem 2.4 with ε replaced by ε′, 0 < ε′ < ε. As in the proof of
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Theorem 3.15, it suffices to show that for 0 < β′ < β and 0 < γ′ < γ there
exist a constant C which is independent of f and M, and some σ > 0 such
that

∣
∣
∣
∣
∑

|k|>M

Ek(f)(x)
∣
∣
∣
∣ ≤ C2−σM (1 + ρ(x, x0))−(1+γ′)‖f‖M(β,γ), (3.88)

and
∣
∣
∣
∣
∑

|k|>M

Ek(f)(x) −
∑

|k|>M

Ek(f)(x′)
∣
∣
∣
∣ (3.89)

≤ C
( ρ(x, x′)

1 + ρ(x, x0)

)β′′

(1 + ρ(x, x0))−(1+γ′)‖f‖M(β,γ)

for ρ(x, x′) ≤ 1
2 (1 + ρ(x, x0)) and β′ < β′′ < ε′.

Again, as in the proof of Theorem 3.15, (3.89) follows from Theorem 2.4
and (3.88) follows from the same proof for (3.75). We leave these details to
the reader. The proof of Theorem 3.25 is complete.

By a duality argument, we obtain wavelet expansions on distribution space,
which is given by the following theorem.

Theorem 3.26. The wavelet expansions in Theorem 3.25 hold on distribu-
tion spaces (Ṁ0(β, γ))′. More precisely, if f ∈ (Ṁ0(β′, γ′))′ then the wavelet
expansions in (3.84) hold in (Ṁ0(β, γ))′ with β > β′ and γ > γ′.

As we mentioned for a continuous version of wavelet expansions in Theo-
rem 3.15, the similar difficulties occur: one obstacle is that we cannot replace
L2(X) by L∞(X) in (3.84). However, these difficulties, as we have described
before, will disappear once we establish wavelet expansions by starting with a
scaling function. This variant of wavelet expansions is given by the following
theorem.

Theorem 3.27. There exist four families φλ, φ̃λ, φ̄λ, ¯̄φλ of scaling functions

and six families ψλ, ψ̃λ,
˜̃
ψλ, ψ̄λ, ¯̄ψλ,

¯̄̄
ψλ of wavelets such that for every square

integrable function f one has

f(x) =
∑

λ=(0,τ,ν)

φλ(x)〈f, φ̃λ〉 +
∑

λ=(k,τ,ν),1≤k≤N

φλ(x)〈f, ψ̃λ〉 (3.90)

+
∑

λ=(k,τ,ν),k≥N+1

˜̃
ψλ(x)〈f, ψλ〉

=
∑

λ=(0,τ,ν)

φ̄λ(x)〈f, ¯̄φλ〉 +
∑

λ=(k,τ,ν),1≤k≤N

φ̄λ(x)〈f, ψ̄λ〉

+
∑

λ=(k,τ,ν),k≥N+1

¯̄ψλ(x)〈f,
¯̄̄
ψλ〉
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where the series converge in the norm of M(β′, γ′) for f ∈ M(β, γ), 0 < β′ <
β and 0 < γ′ < γ, and the norm of Lp(X), for 1 < p < ∞.

Let {Sk}k∈Z
be an approximation to the identity and its kernels satisfy

(3.19) with σ = ε ≤ θ. Set Dk = Sk−Sk−1 for k ≥ 1, D0 = S0, and Dk = 0 for
k < 0. As in the proof of Theorem 3.19, we have the following decomposition
of the identity operator

I =
∑

k

Dk

∑

l

Dl =
∑

k

DN
k Dk +

∑

k

∑

|l|>N

Dk+lDk

= TN + RN ,

where DN
k =

∑

|l|≤N

Dk+l.

Note that in Theorem 3.19, we have proved that

‖RN (f)‖M(β,γ) ≤ C2−Nδ‖f‖M(β,γ).

Next, we decompose TN as follows:

TN (f)(x) =
∑

k

DN
k Dk(f)(x)

=
∑

0≤k≤N

∫
DN

k (x, y)Dk(f)(y)dμ(y)+
∑

k>N

∫
DN

k (x, y)Dk(f)(y)dμ(y)

=
∑

0≤k≤N

∑

τ∈Ik

N(k,τ)∑

v=1

μ(Qk,v
τ )mQk,v

τ
(DN

k (x, ·))mQk,v
τ

(Dk(f))

+
∑

k>N

∑

τ∈Ik

J(k,τ)∑

v=1

μ(Qk,v
τ )DN

k (x, yk,v
τ )Dk(f)(yk,v

τ ) + R1
N (f)(x)

+R2
N (f)(x)

where mQ(f) = 1
μ(Q)

∫

Q

f(x)dμ(x),

R1
N (f)(x) =

∑

0≤k≤N

∑

τ∈Ik

N(k,τ)∑

v=1

∫

Qk,v
τ

[DN
k (x, y)Dk(f)(y)

−mQk,v
τ

(DN
k (x, ·))mQk,v

τ
(Dk(f))]dμ(y)

and

R2
N (f)(x) =

∑

k>N

∑

τ∈Ik

J(k,τ)∑

v=1

∫

Qk,v
τ

[DN
k (x, y)Dk(f)(y)

−DN
k (x, yk,v

τ )Dk(f)(yk,v
τ )]dμ(y).
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By the same proof as in Lemma 3.23, R2
N (x, y), the kernel of R2

N , satisfies
(3.70)-(3.74), and R2

N (1) = 0, (R2
N )∗(1) = 0, because

∫
DN

k (x, y)dμ(x) =∫
DN

k (x, y)dμ(y) = 0 for k > N . Hence ‖R2
N (f)‖M(β,γ) ≤ CN2−jδ‖f‖M(β,γ),

where CN is a constant depending on N .
Now we estimate R1

N . To this end, we write

R1
N (f)(x)

=
∑

0≤k≤N

∑

τ∈Ik

N(k,τ)∑

v=1

∫

Qk,v
τ

[DN
k (x, y) − mQk,v

τ
(DN

k (x, ·))]Dk(f)(y)dμ(y)

+
∑

0≤k≤N

∑

τ∈Ik

N(k,τ)∑

v=1

∫

Qk,v
τ

mQk,ν
τ

(DN
k (x, ·))[Dk(f)(y) − mQk,v

τ
(Dk(f))]dμ(y)

= R1,1
N (f)(x) + R1,2

N (f)(x).

Since the estimates for R1,1
N and R1,2

N are similar, we only estimate R1,2
N .

It is easy to check that if the kernel of R1,2
N is denoted by R1,2

N (x, y), then

R1,2
N (x, y) =

∑

0≤k≤N

∑

τ∈Ik

N(k,τ)∑

v=1

1

μ(Qk,v
τ )

∫

Qk,v
τ

∫

Qk,v
τ

DN
k (x, z)

×[Dk(w, y) − Dk(z, y)]dμ(w)dμ(z).

By the same proof as in Lemma 3.23, R1,2
N (x, y) satisfies (3.70)-(3.74). All

we need to check is that R1,2
N (1) = (R1,2

N )∗(1) = 0. In fact, we have

R1,2
N (1)(x) =

∑

0≤k≤N

∑

τ∈Ik

N(k,τ)∑

v=1

∫

Qk,v
τ

mQk,ν
τ

(DN
k (x, ·))

×[Dk(1)(y) − mQk,v
τ

(Dk(1))]dμ(y).

Note that Dk(1)(y) =
∫

Dk(z, y)dμ(z) = 0 for 1 ≤ k ≤ N and that∫
D0(z, y)dμ(z) =

∫
S0(z, y)dμ(z) = 1, this implies [Dk(1)(y) − mQk,v

τ

(Dk(1))] = 0 for 0 ≤ k ≤ N . Hence R1,2
N (1) = 0.

As to (R1,2
N )∗(1), note that

∫
DN

k (x, z)dμ(x) = 1 for 0 ≤ k ≤ N , so

(R1,2
N )∗(1)(y)

=
∑

0≤k≤N

∑

τ∈Ik

N(k,τ)∑

v=1

1

μ(Qk,v
τ )

∫

Qk,v
τ

∫

Qk,v
τ

[Dk(w, y) − Dk(z, y)]dμ(w)dμ(z) = 0.

By the same proof as R2
N , we obtain ‖R1,2

N (f)‖M(β,γ) ≤ CN2−jδ‖f‖M(β,γ),
where CN is a constant depending on N . Similarly, as we mentioned,
‖R1,1

N (f)‖M(β,γ) ≤ CN2−jδ‖f‖M(β,γ).
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We now define the operator S by

S(f)(x) =
∑

0≤k≤N

∑

τ∈Ik

N(k,τ)∑

v=1

μ(Qk,v
τ )mQk,v

τ
(DN

k (x, ·))mQk,v
τ

(Dk(f))

+
∑

k>N

∑

τ∈Ik

J(k,τ)∑

v=1

μ(Qk,v
τ )DN

k (x, yk,v
τ )Dk(f)(yk,v

τ ).

Let R(f)(x) = RN (f) + R1
N (f)(x) + R2

N (f)(x). Then we get I = S +
R. Now first choose N sufficiently large, and then choose j such that

‖R‖M(β,γ)→M(β,γ) < 1. Hence S is invertible on M(β, γ) and S−1 =
∞∑

m=0
Rm.

Define φλ(x) = mQk,v
τ

S−1(DN
k (·, ·))(x) for 0 ≤ k ≤ N, φ̃λ(x) =

mQ0,v
τ

(S0(·, x), ψ̃λ(x) = mQk,v
τ

(Dk(·, x)) for 1 ≤ k ≤ N, and ˜̃
ψλ(x) =

S−1(DN
k (·, yk,v

τ )(x), ψλ = Dk(yk,v
τ , x) for k ≥ N + 1. We obtain the first

identity in Theorem 3.27.
To see that the series converge in the norm of M(β′, γ′) for 0 < β′ < β

and 0 < γ′ < γ, and in the spaces of Lp(X), for 1 < p < ∞, we write

∑

0≤k≤N

∑

τ∈Ik

N(k,τ)∑

v=1

μ(Qk,v
τ )mQk,v

τ
(S̃k(x, ·))mQk,v

τ
(Dk(f))

+
L∑

k=N+1

∑

τ∈Ik

J(k,τ)∑

v=1

μ(Qk,v
τ )D̃k(x, yk,v

τ )Dk(f)(yk,v
τ )

= S−1

( ∑

0≤k≤N

∑

τ∈Ik

N(k,τ)∑

v=1

μ(Qk,v
τ )mQk,v

τ
(DN

k (x, ·))mQk,v
τ

(Dk(f))

+
L∑

k=N+1

∑

τ∈Ik

J(k,τ)∑

v=1

μ(Qk,v
τ )DN

k (x, yk,v
τ )Dk(f)(yk,v

τ )
)

= S−1

(

S(f) −
∞∑

k=L+1

∑

τ∈Ik

J(k,τ)∑

v=1

μ(Qk,v
τ )DN

k (x, yk,v
τ )Dk(f)(yk,v

τ )
)

.

Then the conclusion follows from the same proof of Theorem 3.25. The
proof for the second identity is the same. We leave the details to reader.



Chapter 4

Wavelets and Spaces of Functions
and Distributions

4.1 Introduction

In Chapter 3 we built wavelet expansions on a space of homogeneous type,
which was one of main goals in this book. These wavelets are not orthonor-
mal bases, but wavelet frames ψλ, λ ∈ Λ. These wavelets are (i) localized,
(ii) smooth and (iii) oscillating. These oscillations are described by the fun-
damental cancellation property (iv)

∫

X

ψλ(x)dμ(x) = 0. This being said, the

expansion of a function f ∈ L2(X, dμ) into a wavelet series is given by

f(x) =
∑

λ∈Λ

a(λ)ψ̃λ(x) (4.1)

where

‖f‖2 ≈
{∑

λ∈Λ

|a(λ)|2
} 1

2

(4.2)

and where the coefficients a(λ) are given by

a(λ) =
∫

f(x)ψλ(x)dμ(x). (4.3)

The key point is the following. The dual wavelets ψ̃λ are sharing with
ψλ the same localization, smoothness and vanishing integral properties. This
implies that most functional spaces will be characterized by simple size prop-
erties of the wavelet coefficients in (4.3). These wavelet expansions and char-
acterization of functional spaces will constitute the heart of this book, which
will be given in this chapter.

In order to define or characterize some spaces of functions and distribu-
tions by size properties of wavelet coefficients, one should first prove that

D. Deng and Y. Han, Harmonic Analysis on Spaces of Homogeneous Type, Lecture
Notes in Mathematics 1966, 91
c© Springer-Verlag Berlin Heidelberg 2009
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these size properties do not depend on the choice of wavelets. We will first
prove a comparison theorem for these size properties of the wavelet coeffi-
cients. In the next four Sections, 4.3-4.6, we will use the size properties of
wavelet expansions to study the classical Hölder spaces, Lebesgue space Lp,
generalized Sobolev spaces, Hardy spaces Hp, BMO and Besov spaces on
spaces of homogeneous type. As we mentioned, wavelet expansions provide a
bridge between operators and spaces of functions and distributions. In Sec-
tion 4.7, we will prove the T1 type theorems, that is, the boundedness of
Calderón-Zygmund operators on these spaces. As we described in Chapter 3,
the condition (3.19), namely the double Lipschitz condition, is crucial for the
construction of wavelet expansions. This condition, however, is not needed
for establishing the Littlewood-Paley estimates obtained by G. David, J. L.
Journé and S. Semmes, on Lp(X, dμ), 1 < p < ∞. A natural question arises:
Can these spaces be characterized without using the condition (3.19)? As a
beautiful application of the T1 type theorems, we will give a positive answer
for this question in the last Section 4.7.

4.2 Comparison Properties of Wavelet Coefficients

Suppose that both ψλ, and ψλ, λ ∈ Λ, are wavelets as given in Theorem
3.25. 〈f, ψλ〉 and 〈f, ψλ〉 are the wavelet coefficients of f with respect to
wavelets ψλ and ψλ, respectively. We prove the following comparisons of the
size properties of the wavelet coefficients. See [H2] for more details.

Theorem 4.1 (the comparison property). Suppose f ∈
(
Ṁ0(β, γ)

)′ with
0 < β, γ < θ. Then for −θ < s < θ,max

(
1

1+θ , 1
1+θ+s

)
< p < ∞,

∥
∥
∥
∥

{∑

λ∈Λ

[

2k(s+ 1
2 )|〈f, ψλ〉|χQλ

]2} 1
2
∥
∥
∥
∥

p

≈
∥
∥
∥
∥

{∑

λ∈Λ

[

2k(s+ 1
2 )|〈f, ψλ〉|χQλ

]2} 1
2
∥
∥
∥
∥

p

(4.4)

and if −θ < s < θ,max
(

1
1+θ , 1

1+θ+s

)
< p ≤ ∞ and 0 < q ≤ ∞,

{∑

k∈Z

( ∑

λ∈Λk

[

2k(s+ 1
2− 1

p )|〈f, ψλ〉|
]p) q

p
} 1

q

≈
{∑

k∈Z

( ∑

λ∈Λk

[

2k(s+ 1
2− 1

p )|〈f, ψλ〉|
]p) q

p
} 1

q

(4.5)

where Λ = {(k, τ, ν) : k ∈ Z, τ ∈ Ik, 1 ≤ ν ≤ N(k, τ)} and Λk = {(k, τ, ν) :
τ ∈ Ik, 1 ≤ ν ≤ N(k, τ)}.
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The key idea to prove Theorem 4.1 is to use the almost orthogonal ar-
gument for wavelets and wavelet expansions. We first prove the comparison
(4.4). Using the wavelet expansion given by wavelets ψλ, we have

〈f, ψλ〉 =
∑

λ′

〈ψ̃λ′ , ψλ〉〈f, ψλ′〉.

By the almost orthogonal argument in Lemma 3.7, there exists a constant C
such that

|〈ψ̃λ′ , ψλ〉| ≤ C2−
k
2 2−

k′
2 2−|k−k′|ε 2−(k∧k′)ε

(2−(k∧k′) + ρ(yλ, yλ′))1+ε
(4.6)

where |s| < ε < θ,max( 1
1+ε ,

1
1+ε+s ) < p < ∞, λ ∈ Λk, λ′ ∈ Λk′ , yλ, and

yλ′ are any points which, as in Theorem 3.25, are chosen from Qλ and Qλ′ ,
respectively. Thus,

|〈f, ψλ〉|

≤ C
∑

k′∈Z

∑

λ′∈Λk′

2−
k
2 2−

k′
2 2−|k−k′|ε 2−(k∧k′)ε

(2−(k∧k′) + ρ(yλ, yλ′))1+ε
|〈f, ψλ′〉|. (4.7)

We get

{∑

λ∈Λ

[

2k(s+ 1
2 )|〈f, ψλ〉|χQλ

]2} 1
2

≤ C

{∑

λ∈Λ

[ ∑

k′∈Z

∑

λ′∈Λk′

2ks2−|k−k′|ε− k′
2

· 2−(k∧k′)ε

(2−(k∧k′) + ρ(x, yk′,ν′

τ ′ ))1+ε
|〈f, ψλ′〉|χQλ

]2} 1
2

.

By an estimate in [FJ],

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

2−(k∧k′)ε

(2−(k∧k′) + ρ(x, yk′,ν′

τ ′ ))1+ε
|〈f, ψλ′〉|

≤ C2(k∧k′)+ [k′−(k∧k′)]
r

{

M

( ∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

|〈f, ψλ′〉|χQλ′

)r} 1
r

(x)

where p > r > 1
1+ε .

Putting this estimate into the last term above and applying Hölder’s in-
equality yield
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{∑

λ∈Λ

[

2k(s+ 1
2 )|〈f, ψλ〉|χQλ

]2} 1
2

≤ C

{∑

k∈Z

[ ∑

k′∈Z

2(k−k′)s−|k−k′|ε2
(k∧k′)+[k′−(k∧k′)]

r

×
[

M

( ∑

λ′∈Λk′

2k′(s+ 1
2 )|〈f, ψλ′〉| χQλ′

)r] 1
r

(x)
]2} 1

2

≤ C

{ ∑

k′∈Z

[

M

( ∑

λ′∈Λk′

2k′(s+ 1
2 )|〈f, ψλ′〉|χQλ′

)r] 2
r

(x)
} 1

2

where we use the facts that |s| < ε,max{ 1
1+ε ,

1
1+ε+s} < r < p, and

sup
k

∑

k′

2(k−k′)s−|k−k′|ε+(k∧k′)+ [k′−(k∧k′)]
r < ∞,

sup
k′

∑

k

2(k−k′)s−|k−k′|ε+(k∧k′)+ [k′−(k∧k′)]
r < ∞.

Now, the Fefferman-Stein vector-valued maximal function inequality [FS]
implies

∥
∥
∥
∥

{∑

λ∈Λ

[

2k(s+ 1
2 )|〈f, ψλ〉|χQk,ν

τ

]2} 1
2
∥
∥
∥
∥

p

≤ C

∥
∥
∥
∥

{∑

λ∈Λ

[

2k(s+ 1
2 )|〈f, ψλ〉|χQk,ν

τ

]2} 1
2
∥
∥
∥
∥

p

which implies one implication in (4.4). The other implication in (4.4) follows
from the same proof.

We now prove (4.5). If p > 1
1+ε , using the estimates in (4.6) and (4.7) and

applying Hölder’s inequality for p > 1 and the triangle inequality (a + b)p ≤
ap + bp for p ≤ 1, we have

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

μ(Qk′,ν′

τ ′ )
[

2−(k∧k′)ε

(2−(k∧k′) + ρ(zk,ν
τ , yk′,ν′

τ ′ ))1+ε

](p∧1)

≤ C

∫ [
2−(k∧k′)ε

(2−(k∧k′) + ρ(zk,ν
τ , y))1+ε

](p∧1)

dμ(y)

≤ C2−(k∧k′)[1−((p∧1)].
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Therefore, by the estimates in (4.6) and (4.7), we obtain

∑

λ∈Λk

[

2k(s+ 1
2−

1
p )|〈f, ψλ〉|

]p

≤ C
∑

λ∈Λk

[ ∑

k′∈Z

∑

λ′∈Λk′

2(k−k′)s−|k−k′|ε− k
p−k′

× 2−(k∧k′)ε

(2−(k∧k′) + ρ(yλ, yλ′))1+ε
2k′(s+ 1

2 |〈f, ψλ′〉|
]p

≤ C
∑

k′∈Z

∑

λ′∈Λk′

2(k−k′)s(p∧1)−|k−k′|ε(p∧1)−(k∧k′)[1−(p∧1)]−k′(p∧1)

×[2k′(s+ 1
2 )|〈f, ψλ′〉|]p.

Finally, by Hölder’s inequality again for q/p > 1 and the triangle inequality
(a + b)q/p ≤ aq/p + bq/p for q/p ≤ 1, we get

{∑

k∈Z

( ∑

λ∈Λk

[

2k′(s+ 1
2− 1

p )|〈f, ψλ〉|
]p) q

p
} 1

q

≤ C

{∑

k∈Z

( ∑

k′∈Z

2(k−k′)s(p∧1)−|k−k′|ε(p∧1)−(k∧k′)[1−(p∧1)]−k′(p∧1)

×
∑

λ′∈Λk′

[2k′(s+ 1
2−

1
p )|〈f, ψλ′〉|]p

) q
p
} 1

q

≤ C

{∑

k∈Z

∑

k′∈Z

(2(k−k′)s(p∧1)−|k−k′|ε(p∧1)−(k∧k′)[1−(p∧1)]−k′(p∧1))(
q
p∧1)

×
( ∑

λ′∈Λk′

[2k′(s+ 1
2− 1

p )|〈f, ψλ′〉|]p
) q

p
} 1

q

≤ C

{ ∑

k′∈Z

( ∑

λ′∈Λk′

[2k′(s+ 1
2− 1

p )|〈f, ψλ′〉|]p
) q

p
} 1

q

where we use the facts that if |s| < ε and p > 1
1+s+ε ,

sup
k

∑

k′

2(k−k′)s(p∧1)−|k−k′|ε(p∧1)−(k∧k′)[1−(p∧1)]−k′(p∧1) < ∞

and

sup
k′

∑

k

(2(k−k′)s(p∧1)−|k−k′|ε(p∧1)−(k∧k′)[1−(p∧1)]−k′(p∧1))(
q
p∧1) < ∞.
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This implies the proof of one implication in (4.5). The proof of the other
implication in (4.5) is similar. The proof of Theorem 4.1 is complete.

The key fact used in the proof of Theorem 4.1 is the wavelet expansion
provided by Theorem 3.25. As we already noticed, this expansion does not
converge in some functional spaces, like L1 or L∞. This can be improved by
using the wavelet expansion described in Theorem 3.27. This means that we
will prove the following “inhomogeneous comparison” of the size properties
of wavelet coefficients.

Suppose that φλ, φ̃λ, φλ, φ̃λ are scaling functions and ψλ, ψ̃λ,
˜̃
ψλ, ψλ, ψ̃λ,

˜̃
ψλ

are wavelets such that Theorem 3.27 holds:

f(x) =
∑

λ=(0,τ,ν)

φλ(x)〈f, φ̃λ〉 +
∑

λ=(k,τ,ν),1≤k≤N

φλ(x)〈f, ψ̃λ〉 (4.8)

+
∑

λ=(0,τ,ν),k≥N+1

˜̃
ψλ(x)〈f, ψλ〉

=
∑

λ=(0,τ,ν)

φλ(x)〈f, φ̃λ〉 +
∑

λ=(k,τ,ν),1≤k≤N

φλ(x)〈f, ψ̃λ〉

+
∑

λ=(0,τ,ν),k≥N+1

˜̃
ψλ(x)〈f, ψλ〉.

The inhomogeneous comparison of the size properties of the above two
wavelet expansions is given by the following theorem.

Theorem 4.2 (the inhomogeneous comparison). Suppose that f ∈
(Ṁ

(
β, γ)

)′ with 0 < β, γ < θ, −θ < s < θ. Then if max
(

1
1+θ , 1

1+θ+s

)
<

p < ∞ and max
(

1
1+θ , 1

1+θ+s

)
< q < ∞,

{ ∑

λ=(0,τ,ν)

|〈f, φ̃λ|p
}1/p

+
∥
∥
∥
∥

{ ∑

λ=(k,τ,ν),1≤k≤N

[
2k(s+ 1

2 )|〈f, ψ̃λ|χQλ
(·)
]q
}1/q∥∥

∥
∥

p

+
∥
∥
∥
∥

{ ∑

λ=(k,τ,ν),k≥N+1

[
2k(s+ 1

2 )|〈f, ψλ|χQλ
(·)
]q
}1/q∥∥

∥
∥

p

≈
{ ∑

λ=(0,τ,ν)

|〈f, φ̃λ|p
}1/p

+
∥
∥
∥
∥

{ ∑

λ=(k,τ,ν),1≤k≤N

[
2k(s+ 1

2 )|〈f, ψ̃λ|χQλ
(·)
]q
}1/q∥∥

∥
∥

p

+
∥
∥
∥
∥

{ ∑

λ=(k,τ,ν),k≥N+1

[
2k(s+ 1

2 )|〈f, ψλ|χQλ
(·)
]q
}1/q∥∥

∥
∥

p

and if max
(

1
1+θ , 1

1+θ+s

)
< p ≤ ∞ and max

(
1

1+θ , 1
1+θ+s

)
< q ≤ ∞, then
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{ ∑

λ=(0,τ,ν)

|〈f, φ̃λ|p
}1/p

+
{ N∑

k=1

∑

τ∈Ik

N(k,τ)∑

ν=1

[
2

k(s+ 1
2− 1

p
) |〈f, ψ̃λ|

]p
}q/p}1/p

+
{ ∞∑

k=N+1

∑

τ∈Ik

N(k,τ)∑

ν=1

[
2

k(s+ 1
2− 1

p
) |〈f, ψλ|

]p
}q/p}1/p

≈
{ ∑

λ=(0,τ,ν)

|〈f, φ̃λ|p
}1/p

+
{ N∑

k=1

∑

τ∈Ik

N(k,τ)∑

ν=1

[
2

k(s+ 1
2− 1

p
) |〈f, ψ̃λ|

]p
}q/p}1/p

+
{ ∞∑

k=N+1

∑

τ∈Ik

N(k,τ)∑

ν=1

[
2

k(s+ 1
2− 1

p
) |〈f, ψλ|

]p
}q/p}1/p

.

The proof of Theorem 4.2 is similar to the proof of Theorem 4.1. One in-
stead uses the wavelet expansions in (4.8). The almost orthogonal argument
is not needed when we deal with terms with 0 ≤ k ≤ N. This almost orthog-
onal argument is only used to deal with the last terms where N +1 ≤ k < ∞.
We leave these details to the reader.

In the following sections, based on Theorem 4.1 and Theorem 4.2, we will
use fixed wavelet expansions. As in the standard case of R

n, the advantage of
wavelet expansions is the ease with which they adapt to various commonly
used functional analysis norms. That is, if f belongs to one of the classical
spaces, such as Hölder spaces, Sobolev spaces, Hardy spaces, or Besov spaces,
the corresponding wavelet expansions will converge automatically to f in the
appropriate norm. These properties will be described in the next sections.

4.3 Hölder Spaces

We will follow [M2] in this section. Let 0 < s < θ where θ is the regularity
of a quasi-metric ρ given in (1.7). There are two kinds of Hölder spaces, that
is, the homogeneous Hölder spaces Ċs(X) and the inhomogeneous Hölder
spaces Cs(X). We first recall the definition of the homogeneous Hölder spaces
Ċs(X), 0 < s < θ. For a continuous function f : X → C, we define the
modulus of continuity ωf (h) by ωf (h) = sup

ρ(x,y)≤h

|f(x) − f(y)|. Then f ∈

Ċs(X) if and only if there exists a constant C such that, for every h > 0, we
have ωf (h) ≤ Chs. The norm of f in Ċs(X) is defined by the lower bound of
the constants C. Note that the norm we just defined is not a norm, because the
constant functions have norm zero. This means that the homogeneous Hölder
space Ċs(X) is not a functional space, instead it is a space of equivalent
classes modulo the constant functions. Finally, we define Ċs(X), 0 < s < θ,
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to be the quotient space of the above function space modulo the constant
functions.

To prove that such a defined Ċs(X) is a Banach space, we have to de-
fine an operator, that is, for each equivalent class there is a corresponding
function f0 such that it is a representative of the class f and satisfies the
inequalities sup

K
|f0| ≤ C(K)‖f‖Ċs , where K is an arbitrary compact subset

in X and the constant C(K) depends only on K. These inequalities pro-

vide the following proof of the complement of Ċs(X). Given a series
∞∑

j=1

fj ,

with ‖fj‖Ċs ≤ C2−j . It suffices to show that the series converges to function
f ∈ Ċs. To do this, for each class of fj we can choose a representative fj,0

such that sup
K

|fj,0| ≤ C(K)2−j , which implies that the series
∞∑

1
fj,0 converges

uniformly to a function f0 on K. It is easy to see that f0 ∈ Ċs. Therefore f0

is a representative of an equivalence class of Ċs, and hence Ċs is a Banach
space.

The simplest way to choose a representative of a class f ∈ Ċs is to fix
any point x0 ∈ X and then choose a function f0 in a class in Ċs so that
f0(x0) = 0, where x0 is any fixed point in X. This can be done by setting
f0(x) = f(x) − f(x0) for f ∈ Ċs. Thus, for all x ∈ X, |f0(x)| ≤ C(ρ(x, x0))s.
From this, the inequality sup

K
|f0| ≤ C(K)‖f‖Ċs follows easily.

Before giving a characterization of Ċs in terms of a wavelet expansion, we
come to the Littlewood-Paley analysis developed by G. David, J. L. Journé
and S. Semmes. The following lemma gives a characterization of Ċs.

Lemma 4.3. Let 0 < s < θ. Suppose that {Dk(x, y)}k∈Z with the regularity
order θ, is a family of mother functions given in Theorem 3.18. Let f ∈
(Ṁ0(β, γ))′, s < β, γ < θ such that by Theorem 3.18, f =

∑

k

D̃kDk(f),

in the sense of converges in (Ṁ0(β′, γ′))′, β < β′ < θ, γ < γ′ < θ. Then
f belongs to Ċs, 0 < s < θ, if and only if ‖Dk(f)‖∞ ≤ C2−ks, for some
constant C and for all k ∈ Z.

Suppose first that f ∈ Ċs, 0 < s < θ. We may assume that f(x0) = 0
for some fixed point x0 ∈ X. The above proof of the complement of Ċs

tells us that f(x) grows slowly at infinity. Therefore f is a distribution in
(Ṁ0(β, γ))′, s < β, γ < θ. We have

Dk(f)(x) =
∫

Dk(x, y)f(y)dμ(y)

=
∫

Dk(x, y)[f(y) − f(x)]dμ(y),

because Dk(x, y) is a wavelet and its integral is zero. Thus
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‖Dk(f)‖∞ ≤ C

∫
|Dk(x, y)|ρs(x, y)dμ(y) ≤ C2−ks.

We now prove the converse implication of Lemma 4.3. Suppose that f =∑

k

D̃kDk(f), in the sense of converges in (Ṁ0(β′, γ′))′, β < β′ < θ, γ < γ′ <

θ. Then we can rewrite, in the sense of distribution, f = f1 + f2, where

f1(x) =
∞∑

k=1

D̃kDk(f)(x)

and

f2(x) =
0∑

k=−∞

∫
[D̃k(x, y) − D̃k(x0, y)]Dk(f)(y)dμ(y)

where x0 is any fixed point in X.
The condition ‖Dk(f)‖∞ ≤ C2−ks implies immediately that f1 is con-

tinuous and bounded on X. The smoothness condition of wavelets D̃k(x, y)
yields

|
∫

[D̃k(x, y) − D̃k(x0, y)]Dk(f)(y)dμ(y)| ≤ C2(ε−s)kρε(x, x0)

where ε is the order of the regularity of wavelets D̃k(x, y) and 0 < s < ε < θ.
This implies that f2(x) is continuous on any compact subset in X, and

thus f(x) is continuous on any compact subset in X. To see f belongs to Ċs,
we have

f(x) − f(x′) =
∑

k

∫
[D̃k(x, y) − D̃k(x′, y)]Dk(f)(y)dμ(y).

We define a positive integer m by 2−m ≤ ρ(x, x′) < 2−m+1 and divide the
above series into

∑

k≤m

and
∑

k>m

.

For the first sum, the smoothness of wavelets D̃k(x, y) and the size condi-
tion on Dk(f) give

|
∫

[D̃k(x, y) − D̃k(x′, y)]Dk(f)(y)dμ(y)| ≤ Cρε(x, x′)2(ε−s)k.

The contribution of the corresponding terms is Cρε(x, x′)2(ε−s)m ≤ C

ρs(x, x′). The size condition of wavelets D̃k(x, y) and the size condition on
Dk(f) imply

|
∫

[D̃k(x, y) − D̃k(x′, y)]Dk(f)(y)dμ(y)| ≤ C2−sk

which yields that the second sum is dominated by C2−sm ≤ Cρs(x, x′).
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The next theorem characterizes the homogeneous Hölder space Ċs, 0 <
s < θ, in terms of the order of magnitude of wavelet coefficients. To this end,
we choose a family of wavelets ψλ with the order of the regularity ε, 0 < s <
ε < θ, as given in Theorem 3.25.

Theorem 4.4. A wavelet series
∑

λ

α(λ)ψ̃λ defines a function in the homo-

geneous Hölder space Ċs, 0 < s < θ, if and only if there exists a constant C
such that, for all k ∈ Z and all λ = (k, τ, ν), τ ∈ Ik, 1 ≤ ν ≤ N(k, τ),

|α(λ)| ≤ C2−
1
2 k2−sk. (4.9)

To see this theorem, we denote by fk(x) the series
∑

λ∈Λk

α(λ)ψ̃λ(x). This

series is convergent because the wavelets ψ̃λ are localized. But, however, the
series

∑

k

fk(x) cannot converge in the usual sense, and must be renormalized

as in Lemma 4.3. More precisely, by the regularity of wavelets ψ̃λ(x) and the
size condition on α(λ), for any fixed point x0 ∈ X, we have

|fk(x) − fk(x0)| ≤
∑

λ∈Λk

|α(λ)|[ψ̃λ(x) − ψ̃λ(x0)]|

≤ Cρε(x, x0)2k(ε−s)

where ε, s < ε < θ, is the order of the regularity of wavelets ψ̃λ.
We divide the series

∑

k

fk(x) into the series
∑

k>0

fk and
∑

k≤0

fk. Then the

first series converges and while the second is convergent on any compact sub-
set in X. Finally, to show that the series

∑

k

fk(x) belongs to the homogeneous

Hölder space Ċs, 0 < s < θ, for any fixed x, x′ ∈ X, we define an integer m
by 2−m ≤ ρ(x, x′) < 2−m+1 and divide the series

∑

k

fk(x) into
∑

k≤m

and
∑

k>m

.

By the same method we used in Lemma 4.3, these imply the desired result.
We now return to the second kind of Hölder space, namely the inho-

mogeneous Hölder space Cs(X). The difference between these two spaces
is that the boundedness is needed for the inhomogeneous Hölder space
Cs(X), 0 < s < θ. To be more precise, the norm of f ∈ Cs(X) is defined by
‖f‖∞ + sup

0<h≤1
ω(h)hs, where ω(h) are modulus of continuity defined for the

homogeneous Hölder space Ċs(X). It is easy to see that the inhomogeneous
Hölder space Cs(X) is a Banach space.

It is impossible to characterize the inhomogeneous Hölder space Cs(X)
by the wavelet expansion given in Theorem 3.25, as we did for homogeneous
Hölder space Ċs(X) because L∞(X) is a component of Cs(X) and L∞(X)
cannot be characterized by the wavelet coefficients given in Theorem 3.25.
Instead of using a wavelet expansion in Theorem 3.25, instead one uses a
wavelet expansion given in Theorem 3.27. This is the following theorem.
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Theorem 4.5. Suppose that families of φλ, φ̃λ are scaling functions and fam-

ilies of ψλ, ψ̃λ,
˜̃
ψλ are wavelets given in Theorem 3.27 with the regularity

epsilon, 0 < s < ε < θ. A function f ∈ L1
loc(X) belongs to Cs(X), 0 < s <

ε < θ if and only if the wavelet coefficients

β(λ) = 〈f, φ̃λ〉

for λ = (0, τ, ν), and
α(λ) = 〈f, ψ̃λ〉

for λ = (k, τ, ν), 1 ≤ k ≤ N,

α(λ) = 〈f, ψλ〉

for λ = (k, τ, ν), k > N, satisfy

|β(λ)| ≤ C0,

and
|α(λ)| ≤ C12−

k
2 2−sk.

The condition |β(λ)| ≤ C0 follows immediately from the fact that f ∈
L∞(X) and φ̃ ∈ L1(X). The conditions on the α(λ) follow from the same
proof for homogeneous case because ‖f‖∞ is not needed. We leave these
details to the reader.

4.4 Lebesgue and Generalized Sobolev Spaces

We first characterize Lp, 1 < p < ∞, in terms of the wavelet coefficients.
Suppose that ψλ and ψ̃λ are wavelets as given in Theorem 3.25. If f ∈

Lp, 1 < p < ∞, and α(λ) are the wavelet coefficients of f corresponding to
ψλ, we have

f =
∑

λ

α(λ)ψ̃λ

where α(λ) are the wavelet coefficients of f and the series converges in the
norm of Lp.

The characterization of Lp, 1 < p < ∞, is the following theorem.

Theorem 4.6. For 1 < p < ∞, the norms ‖f‖p,
∥
∥
∥
{∑

λ

|α(λ)|2|ψ̃λ(x)|2
} 1

2
∥
∥
∥

p
,

and
∥
∥
∥
{ ∑

λ∈Λ

|α(λ)|2(μ(Qλ))−1χQλ

} 1
2
∥
∥
∥

p
are equivalent.

Following the method given by Y. Meyer in [M2], we first prove that the
first and the second norm are equivalent. We let Ω denote the product set
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{−1, 1}Λ and dμ(ω) denote the Bernoulli probability measure, obtained by
taking the product of the measures on each factor which gives a mass of 1

2
to each of the points -1 and 1. An element ω of Ω is a sequence ω(λ), λ ∈ Λ,
consisting of -1 or 1.

For each ω ∈ Ω we define the operator Tω : L2(X) → L2(X) given by
Tω(ψλ) = ω(λ)ψλ. We then get

Lemma 4.7. The set {Tω : ω ∈ Ω} is a bounded set of Calderón-Zygmund
operators.

This lemma is obvious, because the operators Tω are bounded on L2(X)
uniformly in ω and the kernels Kω(x, y) =

∑

λ∈Λ

ω(λ)ψ̃λ(x)ψλ(y) satisfy

|Kω(x, y)| ≤ Cρ−1(x, y)

and

|Kω(x, y) − Kω(x′, y)| + |Kω(y, x) − Kω(y, x′)| ≤ Cρ−1−ε(x, y)

uniformly in ω for ρ(x, x′) ≤ 1
2Aρ(x, y) and some ε > 0.

We also need Khinchin’s well-known inequality ([Z]).

Lemma 4.8. For 1 < p < ∞, all the Lp(Ω, dμ(ω)) norms are equiva-
lent on the closed subspace of L2(Ω) consisting of the functions S(ω) =∑

λ∈Λ

〈f, ψλ〉ω(λ). Moreover, for each p, there are constants Cp ≥ C ′
p > 0 such

that

C ′
p

(∑

λ

|〈f, ψλ〉|2
) 1

2

≤
(∫

Ω

|S(ω)|pdμ(ω)
) 1

p

≤ Cp

(∑

λ

|〈f, ψλ〉|2
) 1

2

.

We now use Lemma 4.8 to show Theorem 4.6. By Calderón-Zygmund
theory, ‖Tω(f)‖p ≤ C‖f‖p. Raising this inequality to the power p and then
taking the mean over ω ∈ Ω of the resulting inequality, we obtain a double
integral over X ×Ω, with respect to dμ(x)dμ(ω). Applying Fubini’s theorem
and, for each x ∈ X, Khinchin’s inequality yields

∥
∥
∥
∥

{∑

λ

|α(λ)|2|ψ̃λ(x)|2
} 1

2
∥
∥
∥
∥

p

≤ C ′‖f‖p.

To get the converse inequality, we have

C−p
p

∫

ω∈Ω

‖Tω(f)‖p
pdμ(ω) ≤

∥
∥
∥
∥

{∑

λ

|α(λ)|2|ψ̃λ(x)|2
} 1

2
∥
∥
∥
∥

p

p

where the second part of Khinchin’s inequality is used.
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Finally, observing that T 2
ω = I, we have ‖f‖p ≤ C‖Tω(f)‖p, for each ω,

and this gives the converse part of the equivalence between the first and the
second norm in Theorem 4.6.

We now prove that the first and the third norm are equivalent. Suppose
that {Dk}k∈Z are given as in Section 1.3. We claim that

∥
∥
∥
∥

{∑

λ∈Λ

|〈f, ψλ〉|2(μ(Qλ))−1χQλ

} 1
2
∥
∥
∥
∥

p

≤ C

∥
∥
∥
∥

{∑

k

|Dk(f)|2
} 1

2
∥
∥
∥
∥

p

≤ C‖f‖p

where the last inequality follows from the Littlewood-Paley estimates on
Lp, 1 < p < ∞, given by G. David, J. L. Journé and S. Semmes. This implies
that the third norm is dominated by the first norm.

The proof that the first norm is dominated by the third norm follows from
a standard method. Indeed, the claim and the duality argument yield

‖f‖p = sup
‖h‖p′≤1

∣
∣
∣
∣

〈∑

λ

〈f, ψλ〉ψ̃λ, h

〉∣
∣
∣
∣

≤ C sup
‖h‖p′≤1

∫ ∑

λ

|〈f, ψλ〉||〈ψ̃λ, h〉|(μ(Qλ))−1χQλ
(x)dμ(x)

≤ C

∥
∥
∥
∥

{∑

λ∈Λ

|〈f, ψλ〉|2(μ(Qλ))−1χQλ

} 1
2
∥
∥
∥
∥

p

where the last inequality follows from the claim.
Finally, we prove the claim. By the construction of wavelets given in The-

orem 3.25, ψλ(x) =
√

μ(Qλ)Dk(yλ, x), λ ∈ Λ = {(k, τ, ν) : k ∈ Z, τ ∈ Ik, 1 ≤
ν ≤ N(k, τ)}, where Dk(x, y) are mother functions and the sampling grid yλ

is given by an arbitrary point in Qλ. Thus, be choosing yλ, we have

〈f, ψλ〉χQk,ν
τ

(x) ≤
√

μ(Qλ)Dk(f)(x)χQk,ν
τ

(x).

Taking power by 2, then Multiplying (μ(Qλ))−1 for the both sides and
finally summing up over λ give

∑

λ∈Λ

|〈f, ψλ〉|2(μ(Qλ))−1χQλ
(x) ≤ C

∑

k

|Dk(f)(x)|2

which implies immediately the claim.
We remark that Theorem 4.6, based on Theorem 4.1, holds for any choice

of wavelet expansions.
We now intend to study the generalized Sobolev spaces on a space of

homogeneous type. Let us recall these spaces on standard case of R
n. There

are two kinds of Sobolev spaces on R
n, that is, the homogeneous Sobolev

space L̇p,s(Rn) and the inhomogeneous Sobolev space Lp,s(Rn).
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If 1 < p < ∞ and s ≥ 0 is a positive real number, then Lp,s(Rn) is the
subspace of Lp consisting of functions f ∈ Lp such that (I − Δ)

s
2 f is also in

Lp, where Δ is the Laplacian on R
n.

The homogeneous Sobolev space corresponding to L̇p,s(Rn) is formally
defined by ‖(−Δ)

s
2 f‖p < ∞. See [M2] for more discussion.

Using the Littlewood-Paley analysis, the generalized Sobolev space on
spaces of homogeneous type had been defined in [HS] and [H2]. We only
describe and study the homogeneous case. The inhomogeneous case is simi-
lar and we leave these details to the reader.

Definition 4.9. Suppose that {Dk}k∈Z are mother functions as given in The-
orem 3.15. We say that f ∈ (Ṁ0(β, γ))′ belongs to the generalized homo-
geneous Sobolev space L̇p,s(X),−θ < s < θ,max{ 1

1+θ , 1
1+θ+s} < p < ∞,

if

‖f‖L̇p,s =
∥
∥
∥
∥

{∑

k

(2sk|Dk(f)|)2
} 1

2
∥
∥
∥
∥

p

< ∞.

Suppose again that ψλ and ψ̃λ are wavelets with the regularity order ε, ε <
θ, and f ∈ (Ṁ0(β, γ))′, 0 < β, γ < ε < θ. By Theorem 3.25, we have

f =
∑

λ

〈f, ψλ〉ψ̃λ

where the series converges in the sense of distribution.
Then we have the following criterion for L̇p,s(X) in terms of the wavelet

coefficients.

Theorem 4.10. Let −θ < s < θ,max{ 1
1+θ , 1

1+θ+s} < p < ∞. Suppose
that a distribution f ∈ (Ṁ0(β, γ))′, 0 < β, γ < ε < θ and f has a
wavelet expansion f =

∑

λ

〈f, ψλ〉ψ̃λ, where the regularity order of ψλ is

ε, |s| < ε < θ,max( 1
1+ε ,

1
1+ε+s ) < p, 0 < β, γ < ε. Then f belongs to L̇p,s(X)

if and only if

{∑

λ∈Λ

[

2k(s+ 1
2 )|〈f, ψλ〉|χQλ

]2} 1
2

∈ Lp(X).

The proof is similar to one given in Theorem 4.6 for the equivalence be-
tween the first and the third norm. Indeed, we first choose the point yλ ∈ Qλ

so that

|〈f, ψλ〉|χQλ
(x) =

√
μ(Qλ)|Dk(f)(yλ)|χQλ

(x) ≤ C2
−k
2 |Dk(f)(x)|χQλ

(x).

Taking power by 2, multiplying 2k(s+ 1
2 ) and then summing over λ yield

one implication:
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∥
∥
∥
∥

{∑

λ∈Λ

[

2k(s+ 1
2 )|〈f, ψλ〉|χQλ

]2} 1
2
∥
∥
∥
∥

p

≤ C

∥
∥
∥
∥

{∑

k

(2sk|Dk(f)|)2
} 1

2
∥
∥
∥
∥

p

≤ C‖f‖L̇p,s .

Instead one chooses the point yλ ∈ Qλ so that

|〈f, ψλ〉|χQλ
(x) =

√
μ(Qλ)|Dk(f)(yλ)|χQλ

(x) ≥ C2
−k
2 |Dk(f)(x)|χQλ

(x)

which implies

∥
∥
∥
∥

{∑

k

(2sk|Dk(f)|)2
} 1

2
∥
∥
∥
∥

p

≤ C

∥
∥
∥
∥

{∑

λ∈Λ

[

2k(s+ 1
2 )|〈f, ψλ〉|χQλ

]2} 1
2
∥
∥
∥
∥

p

and from this the other implication follows.

4.5 Wavelets, the Hardy and BMO Spaces

In the previous section, the extreme cases p = 1 and p = ∞ are excluded.
This is because the spaces L1 or L∞ on R

n have no unconditional bases
and hence it is impossible to characterize these spaces by size properties on
wavelet coefficients. But there are good substitutes for these two spaces, that
is, the Hardy space H1(Rn) and space of BMO. One should observe that the
wavelets developed in Chapter 3 are not orthonormal bases instead they are
wavelet frames. We, however, still can use such wavelet frames to study the
Hardy space H1 and BMO.

Following Y. Meyer in [M2], we first give some general definitions for series
of vectors in a Banach space.

Let B be a Banach space and
∞∑

0
xk a series of elements of B. We say

that this series converges unconditionally to an element x ∈ B if, for each
ε > 0, there exists a finite set F (ε) ⊂ N such that, for every finite set F ⊂ N

containing F (ε), ∥
∥
∥
∥
∑

k∈F

xk − x

∥
∥
∥
∥ ≤ ε.

We say that a series
∞∑

0
xk is unconditionally convergent if there exists an

x such that the series converges unconditionally to x. Therefore, if a series
∞∑

0
xk is unconditionally convergent, there exists a constant C such that, for

every integer n ≥ 1 and every sequence α0, α1, · · ·, αn of real or complex
numbers satisfying |α0| ≤ 1, · · ·, |αn| ≤ 1, we have

‖α0x0 + · · · + αnxn‖ ≤ C.
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The unconditional convergence of a series
∞∑

0
xk can be stated by another

way: the series is commutatively convergent, that is, for every permutation

of the integers σ : N → N, the series
∞∑

0
xσk converges in norm to x =

∞∑

0
xk.

In this section, we shall first consider the limiting case where p = 1. We
will only consider certain functions f ∈ L1(X) having the special property
that their wavelet series converges unconditionally to f. We will give a char-
acterization of such functions in terms of the wavelet coefficients. This char-
acterization differs from the traditional approach given by E. Stein and G.
Weiss, and C. Fefferman and E. Stein in [SW] and [FS]. We will prove that
all these characterizations are equivalent and give the first characterization
of the space H1(X) now.

We say that f ∈ H1(X) if f ∈ L1(X) and the wavelet series
∑

λ∈λ

〈f, ψ̃λ〉ψλ(x)

converges unconditionally to f.
As we mentioned above, this imposes the existence of a constant C ≥ 1

such that, for each finite subset F ⊂ Λ and every sequence ε(λ), λ ∈ F, taking
the values -1 or 1, we have

∥
∥
∥
∥
∑

λ∈F

ε(λ)〈f, ψ̃λ〉ψλ(x)
∥
∥
∥
∥

1

≤ C. (4.10)

Following [M2], the upper bound, over all F and sequences ε(λ), λ ∈ F, of
the left-hand side of (4.10) will be the first norm we consider on the space
H1(X).

We need to specify which particular wavelets ψλ are being used. We recall
the construction of Coifman. {Sk}k∈Z is constructed as described in Section
1.3 of Chapter 1. Set Dk = Sk −Sk−1 and ψλ(x) =

√
μ(Qλ)Dk(yλ, x), where

λ ∈ Λ = {(k, τ, ν) : k ∈ Z, τ ∈ Ik, 1 ≤ ν ≤ N(k, τ)} and yλ is chosen to be
the center of Qλ.

As in [M2], using Khinchin’s well-known inequality: there exists a constant
C > 1 such that, for every integer n ≥ 1 and every sequence a1, · · ·, an of
complex numbers,

( n∑

1

|aj |2
) 1

2

≤ C2−n
∑

ε1

· · ·
∑

εn

|ε1a1 + · · · + εnan| (4.11)

where, on the right-hand side, the sum is taken over all sequences ε = (ε1, · ·
·, εn) of 1s and -1s.

The inequality implies the existence of a constant C such that
∫

X

(∑

λ∈F

|〈f, ψ̃λ〉|2|ψλ(x)|2
) 1

2

dμ(x) ≤ C

for every finite subset F ⊂ Λ.



4.5 Wavelets, Hardy and BMO Spaces 107

This leads to the second norm of H1(X), defined by

∫

X

(∑

λ∈Λ

|〈f, ψ̃λ〉|2|ψλ(x)|2
) 1

2

dμ(x) < ∞. (4.12)

As explained in [M2], it is not obvious that this second norm is equivalent
to the first, because, in passing from (4.10) to (4.12), we have lost informa-
tion since we have replaced an inequality which is uniform, with respect to
sequences of 1 and -1, by an inequality in the mean. But, however, we will
prove that these two norms are equivalent.

To show this, we will use other three norms of H1(X). First, by the con-
struction of ψλ, it is easy to see that there are two constants C1 > 0 and γ > 0
such that, for every λ ∈ Λ, |ψλ(x)| ≥ C1 when x ∈ Qλ,γ , where Qλ,γ ⊂ Qλ

with μ(Qλ,γ) ≥ γμ(Qλ).
Then the third norm of H1(X) will be

∥
∥
∥
∥

(∑

λ∈Λ

|〈f, ψ̃λ〉|2μ(Qλ,γ)−1χQλ,γ

) 1
2
∥
∥
∥
∥

1

(4.13)

where χQλ,γ
is the characteristic function of Qλ,γ .

The only relevant property of Qλ,γ is the fact that μ(Qλ,γ) ≥ γμ(Qλ).
The fourth norm we use is defined by (4.13), but with Qλ,γ replaced by

Qλ.
The last norm of H1(X) does not involve wavelet expansions. It is the

well-known atomic definition of H1(X).

Definition 4.11. An atom of H1(X) is a function a(x), belonging to L2(X),
such that there exists a ball B ∈ X, whose volume is denoted by μ(B), and
for which the three following properties hold:

a(x) = 0 (4.14)

if x /∈ B;

‖a‖2 ≤ μ(B)
−1
2 ; (4.15)

∫

B

a(x)dμ(x) = 0. (4.16)

Applying the Cauchy-Schwarz inequality, we see that a(x) is integrable
and that ‖a‖1 ≤ 1, so that property (4.16) makes sense.

We say that a function f ∈ L1(X) belongs to atomic H1(X) if there exists
a sequence aj(x) of atoms and a sequence λj of scaler coefficients such that
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f(x) =
∞∑

0
λjaj(x) with

∞∑

0
|λj | < ∞, where the series clearly converges in

L1(X).
The norm of atomic f ∈ H1(X) is then defined as the infimum of the

quantities
∞∑

0
|λj | corresponding to all possible atomic decompositions of f.

The main result of this section is the following theorem.

Theorem 4.12. The above five norms of H1(X) are equivalent.

To clarify the proof, we denote the following properties whose equivalence
will be proved, by A, B, C, D and E.

(A) sup
F⊂λ

sup
ε(λ)=±1

∥
∥
∥
∑

λ∈F

ε(λ)α(λ)ψλ(x)
∥
∥
∥

1
< ∞;

(B)
∥
∥
∥
( ∑

λ∈Λ

|α(λ)|2|ψλ|2
) 1

2
∥
∥
∥

1
< ∞;

(C)
∥
∥
∥
( ∑

λ∈Λ

|α(λ)|2μ(Qλ,γ)−1χQλ,γ

) 1
2
∥
∥
∥

1
< ∞;

(D)
∥
∥
∥
( ∑

λ∈Λ

|α(λ)|2μ(Qλ)−1χQλ

) 1
2
∥
∥
∥

1
< ∞; and

(E)f(x) =
∑

λ

α(λ)ψλ(x) has an atomic decomposition. Here α(λ) = 〈f, ψ̃λ〉
are the wavelet coefficients of f.

We have already explained that (A) ⇒ (B), and it is clear that (B) ⇒ (C).
Note that if μ(Qλ,γ) > γμ(Qλ) then for all r > 0, χQλ

≤ γ− 1
r (M(χQλ,γ

)r)
1
r ,

where M is the Hardy-Littlewood maximal operator. Choosing r < 1 and ap-
plying the Fefferman -Stein vector-valued maximal function inequality yields

∥
∥
∥
∥

(∑

λ∈Λ

|α(λ)|2μ(Qλ)−1χQλ

) 1
2
∥
∥
∥
∥

1

≤ Cγ− 1
r

∥
∥
∥
∥

(∑

λ∈Λ

(M(|α(λ)|μ(Qλ, γ)−
1
2 χQλ,γ)r)

2
r

) r
2
∥
∥
∥
∥

1
r

1
r

≤ C

∥
∥
∥
∥

(∑

λ∈Λ

|α(λ)|2μ(Qλ,γ)−1χQλ,γ

) 1
2
∥
∥
∥
∥

1

which yields (C) ⇒ (D).
We now prove (D) ⇒ (E). Let us denote

S(α)(x) =
(∑

λ

|α(λ)|2μ(Qλ)−1χQλ
(x)

) 1
2

.

Set Ωk = {x ∈ X : S(α)(x) > 2k} and Bk = {Q : μ(Q ∩ Ωk) >
1
2μ(Q), μ(Q ∩ Ωk+1) ≤ 1

2μ(Q)}. Therefore, we can write
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∑

λ

α(λ)ψλ(x) =
∑

k

∑

Qλ∈Bk

α(λ)ψλ(x) =
∑

k

∑

Q̃∈Bk

∑

Qλ⊂Q̃,Qλ∈Bk

α(λ)ψλ(x)

where Q̃ are maximal dyadic cubes in Bk, that is, if both Q̃ and Q are in Bk

and Q̃ ⊂ Q, then Q̃ = Q.
Let us denote that ak(Q̃)(x) = (Cμ(Q̃)

∑

Qλ⊂Q̃,Qλ∈Bk

|α(λ)|2)−1
2

∑

Qλ⊂Q̃,Qλ∈Bk

α(λ)ψλ(x) and λk(Q̃) = (Cμ(Q̃)
∑

Qλ⊂Q̃,Qλ∈Bk

|α(λ)|2) 1
2 , where C is a constant

to be chosen later. Then
∑

λ

α(λ)ψλ(x) =
∑

k

∑

Q̃∈Bk

λk(Q̃)ak(Q̃)(x).

To see that this gives an atomic decomposition, we clearly have that (i)
each ak(Q̃)(x) has the support Q̃; (ii) by duality argument,

∥
∥
∥
∥

∑

Qλ⊂Q̃,Qλ∈Bk

α(λ)ψλ(x)
∥
∥
∥
∥

2

= sup
‖h‖2≤2

∣
∣
∣
∣

〈 ∑

Qλ⊂Q̃,Qλ∈Bk

α(λ)ψλ(x), h
〉∣
∣
∣
∣

≤ C sup
‖h‖2≤2

( ∑

Qλ⊂Q̃,Qλ∈Bk

|α(λ)|2
) 1

2

‖h‖2

≤ C

( ∑

Qλ⊂Q̃,Qλ∈Bk

|α(λ)|2
) 1

2

which implies ‖ak(Q̃)(x)‖2 ≤ μ(Q̃)−
1
2 ; (iii) finally,

∑

k

∑

Q̃∈Bk

|λk(Q̃)| ≤ C
∑

k

∑

Q̃∈Bk

μ(Q̃)
1
2

∑

Qλ⊂Q̃,Qλ∈Bk

(|α(λ)|2) 1
2 (4.17)

≤ C
∑

k

{ ∑

Q̃∈Bk

μ(Q̃)
} 1

2
{ ∑

Q̃∈Bk

∑

Qλ⊂Q̃,Qλ∈Bk

(|α(λ)|2)
} 1

2

.

To estimate the last term above, let us denote Ω̃k = {x ∈ X : M(χΩk
)(x) >

1
2}. It is clear that if Qλ ∈ Bk, then Qλ ⊂ Ω̃k. Therefore the last term in
(4.17) is dominated by

C
∑

k

μ(Ω̃k)
1
2

{ ∑

Qλ∈Bk

|α(λ)|2)
} 1

2

≤ C
∑

k

μ(Ω̃k)
1
2 2kμ(Ω̃k)

1
2

≤ C
∑

k

2kμ(Ω̃k) ≤ C
∑

k

2kμ(Ωk) ≤ C‖S(α)‖1 < ∞ (4.18)
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where the first inequality follows from the facts that if Q ∈ Bk, then Q ⊂
Ω̃k and

∑

Qλ∈Bk

|α(λ)|2 ≤ C
∫

Ω̃k\Ωk

S2(α(λ)(x)dμ(x) ≤ C22kμ(Ω̃k), and the

third inequality follows from the fact that μ(Ω̃k) ≤ Cμ(Ωk), by the maximal
operator theorem.

Finally, the verification of (E) ⇒ (D) is an easy exercise, because it is
sufficient to do it for each atom taken separately. The same proof yields
(E) ⇒ (A). The proof of Theorem 4.12 is complete.

Before we continue to study the Hardy spaces Hp(X), p < 1, we first
describe the space BMO in terms of wavelet expansions. The space BMO
has been defined in Section 1.2 of Chapter 1. For this purpose, we choose
wavelet expansion f(x) =

∑

λ

α(λ)ψλ(x), α(λ) = 〈f, ψ̃λ〉. Then we have

Theorem 4.13. Let b(x) be a function belonging to BMO(X). Then its
wavelet coefficients α(λ) = 〈b, ψ̃λ〉 satisfy Carleson’s condition, as follows:
There exists a constant C such that for each dyadic cube Q,

∑

Qλ⊂Q

|α(λ)|2 ≤ Cμ(Q). (4.19)

Conversely, if the coefficients α(λ), λ ∈ Λ, satisfy (4.19), then the wavelet ex-
pansion

∑

λ

α(λ)ψλ(x) converges, in the σ(BMO,H1)−topology, to a function

of BMO.

We first prove that if b ∈ BMO, then (4.19) holds.
For given Q, we decompose b(x) by b(x) = b1(x) + b2(x) + c(Q), where

c(Q) is the mean of b(x) over mQ and where b1(x) = b(x)− c(Q) if x ∈ mQ,
and b1(x) = 0 otherwise. We obtain

∑

Qλ⊂Q

|〈b1, ψ̃λ〉|2 ≤
∑

λ∈Λ

|〈b1, ψ̃λ〉|2 ≤ C‖b1‖2
2 ≤ Cm‖b‖2

BMOμ(Q).

By the cancellation of ψ̃λ(x), we may assume the average of b2 over Q
is zero because otherwise one can replace b2 by b2 − (b2)Q, where (b2)Q =

1
μ(Q)

∫

Q

b2(x)dμ(x). Then we have

|〈b2, ψ̃λ〉| ≤ C2(k0−k)ε2−
1
2 k‖b‖BMO

where λ = (k, τ, ν) and μ(Q) ≈ 2−k0 . This implies
∑

Qλ⊂Q

|〈b2, ψ̃λ〉|2 ≤ C‖b‖2
BMO

∑

k≥k0

22(k0−k)εμ(Q) ≤ C‖b‖2
BMOμ(Q).

Suppose that (4.19) is satisfied. Following [M2], let B be a ball with center
x0 and of radius r > 0. We define the integer q ∈ Z by 2−q ≤ r < 2−q+1. We
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split the sum
∑

λ

α(λ)ψλ(x) into two parts. We first consider “small” cubes

of side 2−k ≤ 2−q and then “large” cubes for which k < q. The wavelets
corresponding to the small cubes are themselves of two kinds: their supports
either meet B or don’t meet B. If a small cube Qλ has the property that
mQλ meets B, then Qλ is necessarily contained in MB, where M > 1 is a
constant depending only on m. Let b = b1 + b2, where b1 is corresponding to
the small cubes and b2 to the large cubes. Then b1 splits into b1,1 + b1,2, and
b1,2 = 0 on B. Then, by the fact that the small cubes Qλ are contained in
MB,

‖b1,1‖2
2 ≤

∑

Qλ⊂MB

|α(λ)|2 ≤ Cμ(B).

To deal with the large cubes and the corresponding subseries b2 of∑

λ

α(λ)ψλ(x), by the regularity of wavelets, we have |ψλ(x) − ψλ(x0)| ≤

C2k(1+ε)2−
k
2 ρ(x, x0)ε. Since |α(λ)| ≤ C(μ(Qλ))

1
2 ≤ C2−

k
2 by (4.19), sum-

ming up gives
∑

k<q

2kερ(x, x0)ε = 2qερ(x, x0)ε ≤ 2ε, since ρ(x, x0) ≤ r <

2−q+1, where x0 is the center of B and r > 0 is its radius.
Using the above theorem, we prove

Theorem 4.14. Let b(x) be a function belonging to the space BMO. Then
b(x) defines a continuous linear functional on H1(X) by

�(f) =
∑

λ

α(λ)β(λ) (4.20)

where α(λ) = 〈f, ψ̃λ〉, β(λ) = 〈b, ψ̃λ〉.
Conversely, every continuous linear functional on H1(X) is defined in this

way.

We use the first part of Theorem 4.13 to show the first part of Theorem
4.14. Let all notations be same as in Theorem 4.12. Then, by the same proof
of the implication (D) ⇒ (E) in Theorem 4.12, we have
∣
∣
∣
∣
∑

λ

α(λ)β(λ)
∣
∣
∣
∣ =

∣
∣
∣
∣
∑

k

∑

Qλ∈Bk

α(λ)β(λ)
∣
∣
∣
∣

=
∣
∣
∣
∣
∑

k

∑

Q̃∈Bk

∑

Qλ⊂Q̃,Qλ∈Bk

α(λ)β(λ)
∣
∣
∣
∣

≤
∑

k

∑

Q̃∈Bk

{ ∑

Qλ⊂Q̃,Qλ∈Bk

|α(λ)|2
} 1

2
{ ∑

Qλ⊂Q̃,Qλ∈Bk

|β(λ)|2
} 1

2

≤ C‖b‖BMO

∑

k

∑

Q̃∈Bk

μ(Q̃)
1
2

{ ∑

Qλ⊂Q̃,Qλ∈Bk

|α(λ)|2
} 1

2
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since, by the first part of Theorem 4.13,
∑

Qλ⊂Q̃

|β(λ)|2 ≤ Cμ(Q̃).

This together with the same proof as in the implication (D) ⇒ (E) in
Theorem 4.12 gives

∣
∣
∣
∣
∑

λ

α(λ)β(λ)
∣
∣
∣
∣ ≤ C‖b‖BMO

∑

k

2kμ(Ωk) ≤ C‖b‖BMO‖f‖H1

which implies the first part of Theorem 4.14.
To show the second part of Theorem 4.14, we define a sequence space

by α(λ) ∈ s if
{∑

λ

|α(λ)|2μ(Qλ)−1χQλ
(x)

} 1
2

belongs to L1(X) and this L1

norm is defined as the norm of the sequence α(λ) in s. We also define another
sequence space by β(λ) ∈ c if, for each dyadic cube Q,

∑

Qλ⊂Q

|β(λ)|2 ≤ Cμ(Q).

The norm of β(λ) ∈ c is defined by the smallest constant C.
We then have

Theorem 4.15. s∗ = c, where s∗ is the dual of s.

Applying the similar proof of the first part of Theorem 4.14 implies that
c ⊂ s∗. Conversely, every � ∈ s∗ is of the form �(α(λ)) =

∑

λ

α(λ)β(λ) for some

sequence β(λ). Let Q be fixed cube and define s0 by the sequence space of all
α(λ) so that Qλ ⊂ Q and let σ be a measure on s0 such that the σ−measure
at Qλ is μ(Qλ

μ(Q) . Then

(
1

μ(Q)

∑

Qλ⊂Q

|β(λ)|2
) 1

2

= ‖μ(Qλ)−
1
2 β(λ)‖l2(s0,dσ)

= sup
‖α(λ)‖l2(s0,dσ)≤1

∣
∣
∣
∣

1
μ(Q)

∑

Qλ⊂Q

α(λ)μ(Qλ)−
1
2 β(λ)

∣
∣
∣
∣

≤ ‖β‖s∗ sup
‖α(λ)‖l2(s0,dσ)≤1

∥
∥
∥
∥α(λ)

μ(Qλ)
1
2

μ(Q)

∥
∥
∥
∥

s

.

By Hölder’s inequality,

∥
∥
∥
∥α(λ)

μ(Qλ)
1
2

μ(Q)

∥
∥
∥
∥

s

=
1

μ(Q)

∫

Q

( ∑

Qλ⊂Q

|α(λ)|2χQλ

) 1
2

≤
(

1
μ(Q)

∫

Q

∑

Qλ⊂Q

|α(λ)|2χQλ

) 1
2

= ‖α(λ)‖l2(s0,dσ).
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We now return to the proof of the second part of Theorem 4.14. Suppose
that � is a continuous linear functional defined on H1(X). We define l(α(λ)) =
�(f), where f ∈ H1(X), α(λ) are the wavelet coefficients of f. Then, by
Theorem 4.12 and Theorem 4.13, l is a continuous linear functional defined on
a subspace of s. Thus, by Hahn-Banach theorem, l can extend to a continuous
linear functional on s. By Theorem 4.15, there exists a sequence β(λ) such
that l(α(λ)) =

∑

λ

α(λ)β(λ), where β(λ) satisfies (4.19) with α replaced by β.

By Theorem 4.13,
∑

λ

β(λ)ψλ(x) belongs to the space BMO. This ends the

proof of the second part of Theorem 4.14.
We now consider the Hardy spaces Hp(X), p < 1. The difference between

H1(X) and Hp(X) is that if f ∈ Hp(X), p < 1, then f is not necessarily
a function in Lp(X). More precisely, Hp, p < 1, is the collection of certain
distributions. Following [CW2], we define the Hardy spaces Hp, p < 1, by the
atomic decomposition method.

Hp, p < 1, is defined as the subspace of all f ∈ (Ṁ0(β, γ))′ such that f
can be written as

f(x) =
∞∑

0

λkak(x) (4.21)

where
∞∑

0
|λk|p < ∞ and ak are (p, 2) atoms.

The (p, 2) atoms are defined as follows: for each atom ak(x), there exists a
ball Bk, of volume μ(Bk), such that the support of ak(x) is contained in Bk,

‖ak‖2 ≤ μ(Bk)
1
2− 1

p , (4.22)

and
∫

ak(x)dμ(x) = 0. (4.23)

Under these conditions, the series (4.21) converges in the sense of distribu-

tions. More precisely, if g(x) ∈ Ṁ0(β, γ), the series
∞∑

0
λk〈g, ak〉 is absolutely

convergent, whose convergence is based on an obvious fact: there exists a
constant C such that for each g ∈ Ṁ0(β, γ) and each (p, 2)−atom a(x) with
the support B of radius r, then |〈g, ak〉| ≤ C‖g‖Ṁ(β,γ).

To characterize the space Hp, p < 1, by use of wavelet expansions, we
choose wavelets ψλ, λ ∈ Λ, with the regularity ε, and use all notations as in
Theorem 4.12. We then have

Theorem 4.16. Suppose that a distribution f ∈ (Ṁ0(β, γ))′, 0 < β, γ < θ,
and f has a wavelet series f(x) =

∑

λ∈Λ

α(λ)ψλ(x). Then, for 1
1+ε < p < 1,

the following ones are equivalent:
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f ∈ Hp(X); (4.24)
( ∑

λ∈Λ

|α(λ)|2|ψλ(x)|2
) 1

2 ∈ Lp(X); (4.25)

( ∑

λ∈Λ

|α(λ)|2μ(Qλ,γ)−1χQλ,γ
(x)

) 1
2 ∈ Lp(X); (4.26)

and
(∑

λ∈Λ

|α(λ)|2μ(Qλ)−1χQλ
(x)

) 1
2

∈ Lp(X). (4.27)

The proof of the equivalence between (4.25) and (4.27) is a straightforward
rewriting of that of Theorem 4.6. It depends on the fact that, for every
sequence ω(λ), λ ∈ Λ, of ±1s, the operator Tω : L2(X) → L2(X), defined by
Tω(ψλ) = ω(λ)ψλ, ω = (ω(λ))λ∈Λ, extends to a continuous linear operator
on Hp, 1

1+ε < p < 1. This result follows from a general result on Hp whose
proof will be given in Section 4.6, see Theorem 4.27.

Proposition 4.17 Let T : L2(X) → L2(X) be a Calderón-Zygmund opera-
tor. Suppose that T ∗(1) = 0. Then T extends to a continuous linear operator
on Hp, 1

1+θ < p ≤ 1.

The proof of the above Proposition will be given in Section 4.6.
The proofs of (4.26) ⇐⇒ (4.27) ⇐⇒ (4.24) are similar to the proofs of

Theorem 4.12. We leave these details to the reader.
From [CW2] it is well known that the dual of Hp(X), 1

1+θ < p ≤ 1, is
the homogeneous Hölder spaces Ċγ with γ = 1

p − 1. Furthermore, it is also
well known that Ċγ is equivalent to the so-called Campanato-Morrey spaces.
These spaces are defined by a similar way to the space BMO.

Definition 4.18. We say that a locally integrable function g(x) defined on
X belongs to the Campanato-Morrey space L(β, 2), β ≥ 0, if

‖g‖L(β,2) = sup
B

μ(B)−β

(∫

B

|g(x) − γB |2 dμ(x)
μ(B)

) 1
2

where B are balls in X and γB is a constant depending only on B.

One should observe that L(0, 2) = BMO and 2 can be replaced by q, 1 ≤
q < ∞.

In the following result, we will give a new characterization of L(β, 2) with
β = 1

p − 1, in terms of the wavelet coefficients.

Theorem 4.19. Let g(x) be a function belonging to L( 1
p − 1, 2). Then its

wavelet coefficients α(λ) = 〈g, ψλ〉 satisfy generalized Carleson’s condition:
there exists a constant C such that, for each dyadic cube Q,
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∑

Qλ⊂Q

|α(λ)|2 ≤ C(μ(Q))
2
p−1. (4.28)

Conversely, if the coefficients α(λ), λ ∈ Λ, satisfy (4.28), then the series
∑

λ

α(λ)ψ̃λ(x) converges, in the σ(L( 1
p − 1, 2),Hp)−topology, to a function of

L( 1
p − 1, 2).

The proof of this theorem is a straightforward rewriting of Theorem 4.13.
Using Theorem 4.19, we can give a proof of the duality between Hp and

L( 1
p − 1, 2). Again, we choose the wavelets with the regularity ε.

Theorem 4.20. Let g(x) ∈ L( 1
p − 1, 2), 1

1+ε < p < 1. Then g(x) defines a
continuous linear functional � on Hp by

�(f) =
∑

λ

α(λ)β(λ)

where α(λ) and β(λ) are the wavelet coefficients of f and g, respectively.
Conversely, every continuous linear functional on Hp, 1

1+ε < p < 1, is
defined in this way.

The proof of this theorem is similar to the proof of Theorem 4.14. One
only needs to define the sequence spaces sp and cp by ‖S(α)(x)‖p < ∞ and
(μ(Q))1−

2
p

∑

Qλ⊂Q

|β(λ)|2 < ∞, respectively. A similar proof to Theorem 4.15

implies that (sp)∗ = cp. We leave these details to the reader.

4.6 Besov Spaces on Spaces of Homogeneous Type

We begin with recalling the definition of the Besov spaces on the standard
case of R

n. We shall define the homogeneous Besov spaces by use of the
Littlewood -Paley decomposition I =

∑

j

Δj , where Δj is the operator of

convolution with ψj as we described in the Introduction.
The homogeneous Besov space Ḃs,q

p (Rn) when s < n
p or s = n

p and q = 1,

is a space of distributions. This means that Ḃs,q
p (Rn) is a vector-subspace

of S ′(Rn) and that the inclusion Ḃs,q
p (Rn) ⊂ S ′(Rn) is continuous. A dis-

tribution f ∈ S ′(Rn) belongs to Ḃs,q
p (Rn) if and only if the following two

conditions are satisfied: (i) the partial sums
m∑

−m
Δj(f) converge to f for the

σ(S ′,S)−topology; (ii) ‖f‖Ḃs,q
p

=
{ ∑

j∈Z

(2sj‖Δj(f)‖p)q
} 1

q

< ∞.

For example, when s < n
p , the function 1 does not belong to Ḃs,q

p (Rn)
because Δj(1) = 0 for every j ∈ Z.
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If s = n
p and q > 1, or if s > n

p , Ḃs,q
p (Rn) is no long even a space of

distributions, instead it is a quotient space. In these cases, the function 1
belongs to Ḃs,q

p (Rn) but it is identified with the function which is identically
zero.

Let σ = s− n
p > 0. The Besov space Ḃs,q

p (Rn) can be defined as a subspace
of the homogeneous Hölder space Ċσ. This inclusion is based on the fact that

‖Δj(f)‖∞ ≤ C2
nj
p ‖Δj(f)‖p. Therefore the series

∞∑

−∞
Δj(f) converges to f

in the quotient space. Moreover, the Besov spaces Ḃs,q
p (Rn) are generaliza-

tions of the homogeneous Sobolev spaces L̇s,2(Rn) = Ḃs,2
2 (Rn) and of the

homogeneous Hölder spaces Ċs(Rn) = Ḃs,∞
∞ (Rn).

In [HS] and [H2], the homogeneous Besov spaces on spaces of homogeneous
type are similarly defined with convolution operators Δj(f) replaced by non
-convolution operators Dj(f), where Dj(x, y), the kernel of Dj , are wavelets
given in Theorem 3.15 and f ∈ (Ṁ0(β, γ))′, 0 < β, γ < θ. The main result in
this section is to give the following characterization of Ḃs,q

p (X) in terms of
the wavelet coefficients.

Theorem 4.21. Suppose that f ∈ (Ṁ0(β, γ))′, 0 < β, γ < θ and f has the
wavelet expansion

∑

λ

α(λ)ψ̃λ(x). Then for −θ < s < θ,max{ 1
1+θ , 1

1+s+θ} <

p, q ≤ ∞, f ∈ Ḃs,q
p (X) if and only if

{∑

k

( ∑

λ∈Λk

(2k(s+ 1
2− 1

p )|α(λ)|)p

) q
p
} 1

q

< ∞

where Λk = {(k, τ, ν) : τ ∈ Ik, 1 ≤ ν ≤ N(k, τ)}.
The proof of this theorem is based on the comparison property of the

wavelet coefficients in Theorem 4.1. By choosing appropriate point from each
Qλ, λ ∈ Λk, we have

|Dk(f)(x)| ≤ (μ(Qλ))−
1
2 |〈f, ψλ〉| ≤ C2

k
2 |α(λ)|.

This implies one implication in Theorem 4.21. The other implication in The-
orem 4.21 follows similarly.

The inhomogeneous Besov spaces can be studied by a similar way. We
would like to leave these details to the reader.

4.7 The T1 Type Theorems

We have proved the T1 Theorem on L2(X) in Section 4 of Chapter 1. In this
section we establish the T1 type theorems for spaces which are studied in the
previous sections. To deal with certain applications, it is convenient to have
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several different ways of expressing the necessary and sufficient conditions
which appear in the T1 type theorems.

We suppose, throughout this section, that the conditions (1.10), (1.11),
(1.12) and Definition 1.14 of the weak boundedness property are all used for
operators T and the corresponding kernels K(x, y).

We have characterized some functional spaces in the previous sections by
simple size conditions on the wavelet coefficients. Suppose that we are given a
wavelet series f(x) =

∑

λ

α(λ)ψλ(x) and an operator T. Formally, the wavelet

series of T (f) is given by

T (f)(x) =
∑

λ

∑

λ′

α(λ′)〈T (ψλ′), ψ̃λ〉ψλ(x).

Let us denote σ(λ, λ′) = 〈T (ψλ′), ψ̃λ〉 and then we can consider
∑

λ′
α(λ′)

σ(λ, λ′) as the wavelets coefficients of T (f) with respect to the wavelets
ψλ, λ ∈ Λ. To show that T is bounded on the certain space, by the char-
acterization in terms of the wavelet coefficients, we only need to know the
behavior of the wavelet coefficients of T (f). This immediately follows from
the properties of σ(λ, λ′). We will examine, in great depth, the relationship
between all conditions (1.10)-(1.12), the weak boundedness property, T (1)
and T ∗(1). Roughly speaking, we will consider two kinds of conditions: the
first kind of conditions is satisfied by T (1) = T ∗(1) = 0, and the second ones
are either T (1) = 0, or T ∗(1) = 0. We will also describe the cases where
T (1) �= 0, or T ∗(1) �= 0.

We start with the following fundamental estimate on σ(λ, λ′).

Lemma 4.22. Suppose that T is a Calderón-Zygmund singular integral oper-
ator with the kernel satisfying the conditions (1.10) and (1.11) (i.e. smooth-
ness in the x variable only), and also T (1) = 0, T ∈ WBP and that
ψλ, λ ∈ Λ = {(k, τ, ν) : k ∈ Z, τ ∈ Ik, 1 ≤ ν ≤ N(k, τ)}, are wavelets
used in Theorem 3.25. Then there exists a constant C independent of f such
that

|σ(λ, λ′)| ≤ C2−
1
2 (k′+k)(2−(k−k′)ε′ ∧ 1)

2−(k′∧k)ε

(2−(k′∧k) + ρ(yλ, yλ′)1+ε
(4.29)

where 0 < ε′ < ε < θ, yλ′ and yλ are any fixed points in Qλ′ and Qλ,
respectively.

By the construction of wavelets ψλ, we may assume that ψλ(x), λ =
(k, τ, ν), are supported in the ball B(yλ, 2−k). We first consider the case
where k′ ≥ k and ρ(yλ′ , yλ) ≤ 4A22−k. By the weak boundedness of T,

|σ(λ, λ′)| ≤ C2−k(1+2η)‖ψλ′‖η‖ψλ‖η ≤ C2−
1
2 (k+k′)2k

which yields (4.29) for the case where k′ ≥ k and ρ(yλ′ , yλ) ≤ 4A22−k.
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Consider the case where k′ ≥ k and ρ(yλ′ , yλ) > 4A22−k. Recall that
ψλ(x) =

√
μ(Qλ)Dk(yλ, x). By the fact that Dk(1) = 0, we can write

|σ(λ, λ′)| =
√

μ(Qλ′
√

μ(Qλ)
∣
∣
∣
∣

∫∫
Dk(yλ, u)K(u, v)Dk′(yλ′ , v)dμ(u)dμ(v)

∣
∣
∣
∣

=
√

μ(Qλ′
√

μ(Qλ)
∣
∣
∣
∣

∫∫
Dk(yλ, u)[K(u, v) − K(yλ, v)]Dk′(yλ′ , v)dμ(u)dμ(v)

∣
∣
∣
∣

≤ C2−
1
2 (k+k′)

∫∫
2−kε

(2−k + ρ(yλ, u))1+ε

2−kε

ρ(yλ, yλ′)1+ε

2−k′ε

(2−k′ + ρ(v, yλ′))1+ε

×dμ(u)dμ(v)

≤ C2−
1
2 (k+k′)2−kερ(yλ, yλ′)−(1+ε)

which implies (4.29) for the case where k′ ≥ k and ρ(yλ, yλ′) > 4A22−k.
Now Consider the case where k′ < k and ρ(yλ, yλ′) > 4A22−k′

. In this
case, using the fact that Dk(1) = 0, we have

|σ(λ, λ′)|

=
√

μ(Qλ′)
√

μ(Qλ)
∣
∣
∣
∣

∫∫
Dk(yλ, u)[K(u, v) − K(yλ, v)]Dk′(yλ′ , v)dμ(u)dμ(v)

∣
∣
∣
∣

≤ C2−
1
2 (k+k′)

∫∫
2−kε

(2−k + ρ(yλ, u))1+ε

2−kε

ρ(yλ, yλ′)1+ε

2−k′ε

(2−k′ + ρ(v, yλ′)1+ε

×dμ(u)dμ(v)

≤ C2−
1
2 (k+k′)2−kερ(yλ, yλ′)−(1+ε)

which implies (4.29) for the case whenever k′ < k and ρ(yλ, yλ′) > 4A22−k′
.

Finally, we consider the crucial case where k′ < k and ρ(yλ, yλ′) ≤
4A22−k′

. Using the facts that Dk(1) = T (1) = 0, we get
∫∫

Dk(yλ, u)K(u, v)[Dk′(yλ′ , v) − Dk′(yλ′ , yλ)]dμ(u)dμ(v)

=
∫∫

Dk(yλ, u)K(u, v)[Dk′(yλ′ , v) − Dk′(yλ′ , yλ)]η1

(ρ(v, yλ)
4A22−k

)
dμ(u)dμ(v)

+
∫∫

Dk(yλ, u)[K(u, v) − K(yλ, v)][Dk′(yλ′ , v) − Dk′(yλ′ , yλ)]η2

(ρ(v, yλ)
4A22−k

)

×dμ(u)dμ(v)
= A + B,

where η1 ∈ C1(R), η1(x) = 1 for |x| ≤ 4 and η1(x) = 0 for |x| ≥ 6, and
η2 = 1 − η1.

With ψλ(u) =
√

μ(Qλ)Dk(yλ, u) and φλ′(v) =
√

μ(Qλ′)[Dk′(yλ′ , v) −
Dk′(yλ′ , yλ)]η1(

ρ(v,yλ)
2−k ), then, by the fact that T ∈ WBP ,
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|〈Tφλ′ , ψλ〉|| = |
√

μ(Qλ)
√

μ(Qλ′)A|
≤ C2−

1
2 (k′+k)2−k(1+2η)‖φλ′‖η‖ψλ‖η

≤ C2−
1
2 (k′+k)2−k(1+2η){2−k(ε+η)2k′(1+ε)}{2k(1+η)}

≤ C2−
1
2 (k′+k)2−kε2k′(1+ε) = C2−

1
2 (k′+k)2(k′−k)ε2k′

which is dominated by the right-hand side of (4.29) whenever k′ < k and
ρ(yλ, yλ′) ≤ 4A22−k′

.
Using the smoothness of K(x, y) in x, together with

|Dk′(yλ′ , v) − Dk′(yλ′ , yλ)| ≤ C2k′

and

|Dk′(yλ′ , v) − Dk′(yλ′ , yλ)| ≤ C2k′
(

ρ(yλ, v)
2−k′ + ρ(yλ, yλ′)

)ε

when ρ(yλ, v) ≤ cA2−k′
, we then have

|
√

μ(Qλ)
√

μ(Qλ′)B|

≤ C2−
1
2 (k′+k)2−kε2k′

∫

ρ(yλ,v)≥cA2−k′
ρ(yλ, v)−(1+ε)dμ(v)

+C2−
1
2 (k′+k)2(k′−k)ε

∫

cA2−k′≥ρ(yλ,v)≥cA2−k

ρ(yλ, v)−1dμ(v)

≤ C(1 + log 2(k−k′))2
1
2 (k′+k)2(k′−k)ε2k′

which, again, is dominated by the right-hand side of (4.29) when k′ < k and
ρ(yλ, yλ′) ≤ 4A22−k′

. This completes the proof of Lemma 4.22.
If adding the conditions (1.12) and T ∗(1) = 0 into Lemma 4.22 and re-

peating the similar proof, we have

Lemma 4.23. Suppose that T is a Calderón-Zygmund singular integral oper-
ator with kernel satisfying the conditions (1.10), (1.11) and (1.12), and also
T (1) = T ∗(1) = 0, T ∈ WBP and that ψλ, λ ∈ Λ = {(k, τ, ν) : k ∈ Z, τ ∈
Ik, 1 ≤ ν ≤ N(k, τ)}, are wavelets used in Theorem 3.25. Then there exists a
constant C such that

|σ(λ, λ′)| ≤ C2−
1
2 (k′+k)2−|k−k′|ε 2−(k′∧k)ε

(2−(k′∧k) + ρ(yλ, yλ′)1+ε
. (4.30)

We are now on the position to prove the T1 type theorems. We start with
the first kind of the T1 theorem.

Theorem 4.24. Suppose that T is a Calderón-Zygmund singular integral op-
erator with kernel satisfying the conditions (1.10), (1.11), (1.12), T (1) =
T ∗(1) = 0, and T ∈ WBP. Then T is bounded on all spaces studied in the pre-
vious sections, namely Lp, 1 < p < ∞; L̇s,p,−ε < s < ε,max{ 1

1+ε ,
1

1+s+ε} <
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p < ∞; Ċs,−ε < s < ε; Hp, 1
1+ε < p ≤ 1; BMO and Ḃs,q

p ,−ε < s <

ε, max{ 1
1+ε ,

1
1+s+ε} < p, q ≤ ∞. Moreover, the norms of Tf on these spaces

are dominated by a constant times the norm of f on the corresponding spaces.

Note first that Lp(X) = L̇p,0, 1 < p < ∞, L̇p,0 = Hp, 1
1+ε < p ≤

1, (H1)∗ = BMO, and Ḃs,∞
∞ = Ċs if −ε < s < ε. Thus, we only need to

prove Theorem 4.24 for spaces L̇p,s and Ḃs,q
p .

Suppose that f(x) =
∑

λ

α(λ)ψλ(x). Then we can write T (f)(x), formally,

by
T (f)(x) =

∑

λ

∑

λ′

σ(λ, λ′)α(λ′)ψ̃λ(x).

Therefore, to show that T is bounded on L̇p,s, we only need to prove that
there exists a constant C such that, for

∥
∥
∥
∥

{ ∑

λ∈Λ

[

2k(s+ 1
2 )|β(λ)|χQλ

]2} 1
2
∥
∥
∥
∥

p

≤ C

∥
∥
∥
∥

{ ∑

λ∈Λ

[

2k(s+ 1
2 )|α(λ)|χQλ

]2} 1
2
∥
∥
∥
∥

p

where β(λ) =
∑

λ′
σ(λ, λ′)α(λ′). To see this, by Lemma 4.23, we have

|β(λ)| ≤ C
∑

k′

2−
1
2 (k′+k)2|k−k′|ε

∑

λ′∈Λk′

|α(λ′)| 2−(k′∧k)ε

(2−(k′∧k) + ρ(yλ, yλ′)1+ε
.

(4.31)

To estimate the last term above, we use the following lemma.

Lemma 4.25. Suppose that 0 < ε < θ and 1
1+ε < r < p. Then there exists a

constant C such that, for each x ∈ Qλ,

∑

λ′∈Λk′

|α(λ′)| 2−(k′∧k)ε

(2−(k′∧k) + ρ(yλ, yλ′)1+ε

≤ C2(k′∧k)+ (k′−k∧k′)
r

{
M

( ∑

λ′∈Λk′

|α(λ′)|rχQλ′

)
(x)

} 1
r .

The proof of this lemma is easy. To see this, for fixed yλ we let B0 = {Qλ′ :
ρ(yλ, yλ′) ≤ 2−(k′∧k) and Bj = {Qλ′ : 2j−12−(k′∧k) < ρ(yλ, yλ′) ≤ 2j2−(k′∧k)

for j ≥ 1. Then

∑

λ′∈Λk′

|α(λ′)| 2−(k′∧k)ε

(2−(k′∧k) + ρ(yλ, yλ′))1+ε

≤ C2(k′∧k)
∑

j≥0

2−j(1+ε)

( ∑

Qλ′∈Bj

|α(λ′)|r
) 1

r
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≤ C
∑

j≥0

2(k′∧k)2
(k′−k∧k′)

r 2−j((1+ε)− 1
r )

(∫ ∑

Qλ′∈Bj

|α(λ′)|rχQλ′

) 1
r

≤ C2(k′∧k)2
(k′−k∧k′)

r

∑

j≥0

2−j((1+ε)− 1
r )

(

M
( ∑

Qλ′∈Bj

|α(λ′)|χQλ′

)r

(x)
) 1

r

.

Summing over j yields the result.
Applying this lemma and Hölder inequality implies

∑

λ∈Λ

(2k(s+ 1
2 )|β(λ)|)2χQλ

≤ C
∑

λ

(∑

k′

2ks2−
1
2 k′

2−|k−k′|ε2(k′∧k)2
(k′−k∧k′)

r

×
(

M
( ∑

λ′∈Λk′

|α(λ′)|χQλ′

)r
) 1

r
)2

χQλ

≤ C
∑

λ

(∑

k′

2(k−k′)s2−k′
2−|k−k′|ε2(k′∧k)2

(k′−k∧k′k)
r

×
(

M
( ∑

λ′∈Λk′

2k′(s+ 1
2 )|α(λ′)|χQλ′

)r
) 1

r
)2

χQλ

≤ C
∑

λ

∑

k′

2(k−k′)s2−k′
2−|k−k′|ε2(k′∧k)2

(k′−k∧k′k)
r

×
(

M
( ∑

λ′∈Λk′

2k′(s+ 1
2 )|α(λ′)|χQλ′

)r
) 2

r

χQλ

≤ C
(
M(

∑

λ′

2k′(s+ 1
2 )|α(λ′)|χQλ′ )r(x)

) 2
r

where the last inequality follows from the facts that if 1
1+s+ε < r < p and

0 < s < ε, then

∑

k′

2(k−k′)s2−k′
2−|k−k′|ε2(k′∧k)2

(k′−k∧k′)
r ≤ C

and ∑

k

2(k−k′)s2−k′
2−|k−k′|ε2(k′∧k)2

(k′−k∧k′)
r ≤ C.

Taking square root and the Lp norm on the both side, and then apply-
ing the Fefferman-Stein vector valued maximal function inequality yield the
desired result.
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We now prove that T is bounded on Ḃs,q
p ,max{ 1

1+ε ,
1

1+s+ε} < p, q ≤ ∞.

By the characterization of Ḃs,q
p in terms of the wavelet coefficients, we only

need to show
{∑

k

( ∑

λ∈Λk

(2ks2k( 1
2− 1

p )|β(λ)|))p

) q
p
} 1

q

≤ C

{∑

k

( ∑

λ∈Λk

(2ks2k( 1
2− 1

p )|α(λ)|))p

) q
p
} 1

q

where α(λ) and β(λ) are same as above.
Using the same notation and the estimates in (4.33), we have

∑

k

( ∑

λ∈Λk

(
2ks2k( 1

2− 1
p )|β(λ)|)

)p
) q

p

≤ C
∑

k

( ∑

λ∈Λk

(∑

λ′

2ks2k( 1
2−

1
p )2−

1
2 (k′+k)2|k−k′|ε

× 2−(k′∧k)ε

2−(k′∧k) + ρ(yλ, yλ′)1+ε
|α(λ′)|

)p
) q

p

= C
∑

k

( ∑

λ∈Λk

(∑

k′

∑

λ′∈Λk′

2(k−k′)s2|k−k′|ε 2k′
2−(k′∧k)ε

(2−(k′∧k) + ρ(yλ, yλ′))1+ε

×[2k′(s+ 1
2− 1

p )|α(λ′)|]
)p

) q
p

.

Applying Hölder inequality for p > 1 and the p−inequality (a + b)p ≤ ap +
bp, a, b > 0 for 1

1+ε < p ≤ 1, and then taking the sum over λ ∈ Λk, imply
that the last term above is dominated by

C
∑

k

(∑

k′

2(k−k′)s(p∧1)2|k−k′|ε(p∧1)2−(k∧k′)(1−(p∧1))2k′(1−(p∧1))

×
∑

λ′∈Λk′

[2k′(s+ 1
2− 1

p )|α(λ′)|]p
) q

p

.

Finally, applying Hölder inequality for q
p > 1, and the q

p−inequality for q
p ≤ 1,

and then interchanging the summations over k and k′ yield

∑

k

( ∑

λ∈Λk

(2ks2k( 1
2− 1

p )|β(λ)|)p

) q
p

≤ C

(∑

k′

( ∑

λ′∈Λ′

2k′(s+ 1
2− 1

p )|α(λ′)|
)p

) q
p

.

Taking the 1
q th power gives the desired result.
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One should observe that Theorem 4.24 gives the another proof of the T1
theorem. More precisely, the proof of Theorem 4.24 implies the first step of
the proof of the T1 theorem when T (1) = T ∗(1) = 0.

If the only half conditions are satisfied, then we have the following second
kind of the T1 theorem ([L] and [DH]).

Theorem 4.26. Suppose that T is a Calderón-Zygmund singular integral op-
erator with kernel satisfying the conditions (1.10), (1.11), T (1) = 0, and
T ∈ WBP. Then T is bounded on L̇s,p, 0 < s < ε, 1

1+ε < p < ∞ and
Ḃs,q

p , 0 < s < ε, 1
1+ε < p, q ≤ ∞. Moreover, the norm of Tf on these spaces

are dominated by a constant times the norm of f on the corresponding spaces.

Replacing Lemma (4.23) by Lemma (4.22) in the proof of Theorem 4.24
gives the proof of Theorem 4.26. We leave details to the reader.

In Theorem 4.24 and Theorem 4.26, the conditions T (1) = 0, or T ∗(1) = 0
are sufficient conditions. A natural problem is that when these conditions are
also necessary. The following result answers this problem.

Theorem 4.27. Suppose that T is a Calderón-Zygmund operator.Then T
extends to a continuous linear operator on Hp, 1

1+ε < p ≤ 1, if and only if
T ∗(1) = 0.

The condition T ∗(1) = 0 is clearly necessary. Indeed,
∫

T (ψ)(x)dμ(x) = 0
for all wavelets ψ(x). The integral is well defined since T (ψ)(x) =
O((ρ(x, x0))−1−ε as ρ(x, x0) → ∞ for any fixed x0 ∈ X. By the definition,
this means T ∗(1) = 0.

To show that the condition T ∗(1) = 0 is also sufficient, as G. Weiss re-
marked in [CW2], it is enough to prove that T maps each atom of Hp to
molecule of Hp. However, we would like to give another proof which uses
Theorem 4.24 and a result about the para-product operator.

We now define the para-product operator Πb. Let φλ be father functions
and ψλ be wavelets constructed by Coifman’s idea as given in Theorem 3.25.
Let b be a function in BMO. We define the para-product operator Πb by

Πb(f)(x) =
∑

λ

α(λ)β(λ)ψ̃λ(x)

where α(λ) = 〈b, ψλ〉, β(λ) = 〈f, φλ〉 and ψ̃λ are given by Theorem 3.25.
It is easy to see that Πb(1) = b, (Πb)∗(1) = 0 and the kernel of Πb satisfies

all conditions (1.10), (1.11) and (1.12). Moreover, Πb is bounded on L2(X).
To see this, we apply Πb to an arbitrary function f ∈ L2(X). By Theorem
4.6, we have

‖Πb(f)‖2
2 ≤ C

∑

λ

|α(λ)|2|β(λ)|2.

To find an upper bound for this last sum, we use Carleson’s well-known
lemma.
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Lemma 4.28. Let p(λ), λ ∈ Λ, be a sequence of positive numbers such that∑

Qλ⊂Q

p(λ) ≤ μ(Q), for every dyadic cube Q. Then, for every sequence ω(λ) ≥

0, λ ∈ Λ, we have
∑

λ∈λ

ω(λ)p(λ) ≤
∫

X

ω(x)dμ(x)

where ω(x) = sup
x∈Qλ

ω(λ).

See [MC] for the proof of this lemma. In our case, if we ignore the constants,
we have p(λ) = |α(λ)|2, ω(λ) = |β(λ)|2 and ω(x) = (M(f))2(x), where M(f)
is the Hardy-Littlewood maximal function of f. We finish by observing that∫

X

(M(f))2(x)dμ(x) ≤ C‖f‖2
2. We return to the proof of the second part of

Theorem 4.27. It is now enough to show that Πb is bounded on Hp, 1
1+ε <

p ≤ 1 because, by Theorem 4.24, T̃ = T − ΠT (1) is bounded on Hp since
T̃ (1) = (T̃ )∗(1) = 0. We will use atomic decomposition to show that Πb is
bounded on Hp.

Moreover, as G. Weiss remarked in [CW2], it suffices to check that
‖Πb(a)‖Hp ≤ C, where a is any Hp-atom and the constant C is indepen-
dent of a. To this end, we may assume that a is an atom with the support
Q ∈ Λ0. Let Q̃ ∈ Λ−8 and 4Q ⊂ Q̃. We denote β(λ) = 〈a, φλ〉. By the charac-
terization of Hp in terms of the wavelet coefficients, one only needs to show
that there exists a constant C such that ‖S(a)(x)‖p ≤ C, where

S(a)(x) = {
∑

λ

|α(λ)|2|β(λ)|2(μ(Qλ))−1χQλ
(x)} 1

2 .

Since Πb is bounded on L2(X), by the conditions on a, we have
∫

Q̃

Sp(x)dμ(x) ≤ (μ(Q̃))1−
p
2 ‖a‖p

2 ≤ C.

Note that if x /∈ Q̃ and β(λ) �= 0, then there is only one Qλ, λ ∈ Λk with
k ≤ −4. Moreover,

β(λ) =
∫

Q

a(y)φλ(y)dμ(y) =
∫

Q

a(y)[φλ(y) − φλ(y0)]dμ(y)

where y0 is the center of Q.
By the size and smoothness conditions on φλ, the support condition on a

and the fact that |α(λ)| ≤ C2−
k
2 , we get

|α(λ)||β(λ)|χQλ
(x) ≤ C2−

k
2

2−kε

(2−k + ρ(x, y0))1+2ε
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where λ ∈ Λk, k ≤ −4.
This implies that if x �∈ Q̃, then S(a)(x) ≤ C 1

(ρ(x,y0))1+ε and hence

∫

(Q̃)c

Sp(a)(x)dμ(x) ≤ C.

This gives the proof of Theorem 4.27.
Up to now, we have considered the continuity of Calderón-Zygmund singu-

lar integral operators T which satisfy the conditions T (1) = 0 or T ∗(1) = 0.
In what follows, we study the continuity of Calderón-Zygmund operators T
which do not satisfy T (1) = 0. More precisely, we will consider the continuity
of operators on Ḃ0,1

1 . See [MM] for a similar question on the standard case of
R

n. Let us denote σ(λ, λ′) = 〈Tψλ′ , ψλ〉, where ψλ, λ ∈ Λ are wavelets given
as in Theorem 3.25. The following result gives a simple characterization of
the matrices M = σ(λ, λ′), (λ, λ′) ∈ Λ × Λ′, corresponding to the continuous
linear operators T : Ḃ0,1

1 → Ḃ0,1
1 .

Proposition 4.29 The operator T is continuous on Ḃ0,1
1 if and only if there

exists a constant C such that, for all λ′ ∈ Λ′,

∑

λ∈Λ

|σ(λ, λ′)|(μ(Qλ))
1
2 ≤ C(μ(Qλ′)

1
2 . (4.32)

The proof of the above proposition is easy, because, by the characteriza-
tion of Ḃ0,1

1 in terms of the wavelet coefficients, Theorem 4.21 and (4.32)
mean that, for each λ′ ∈ Λ′, T ((μ(Q′

λ))−
1
2 ψλ′) belongs to Ḃ0,1

1 with the norm
bounded by a constant which is independent of ψλ′ . This implies that

‖T (f)‖Ḃ0,1
1

≤
∑

λ

|α(λ)|(μ(Qλ))
1
2 ‖T ((μ(Qλ))−

1
2 ψλ)‖Ḃ0,1

1

≤ C
∑

λ

|α(λ)|(μ(Qλ))
1
2 ≤ C‖f‖Ḃ0,1

1
.

The proof of the other implication is immediate because, again by the
characterization of Ḃ0,1

1 , if T is bounded on Ḃ0,1
1 , then T ((μ(Qλ′))

−1
2 ψλ′)

belongs to Ḃ0,1
1 and ‖T ((μ(Qλ′))

−1
2 ψλ′)‖Ḃ0,1

1
≤ C. This is equivalent to (4.32).

To characterize the boundedness of T on Ḃ0,1
1 in terms of the conditions

on T (1) and T ∗(1), we define the following generalized Carleson measure.

Definition 4.30. Suppose that α(λ) are wavelet coefficients of f correspond-
ing to the wavelets ψλ, λ ∈ Λ. We say that α(λ) satisfies the generalized Car-
leson measure condition if there exists a constant C, for each dyadic cube Q,
such that

∑

Qλ⊂Q

|α(λ)|(μ(Qλ))
1
2 ≤ Cμ(Q). (4.33)
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The following result provides an example that T (1) = 0 is not the necessary
condition for the continuity of operators.

Theorem 4.31. Suppose that T is a Calderón-Zygmund singular integral op-
erator. Then T extends to a continuous linear operator on Ḃ0,1

1 if and only if
T ∗(1) = 0 and the wavelet coefficients of T (1) satisfy the generalized Carleson
measure condition (4.33).

The condition T ∗(1) = 0 is clearly necessary for T being continuous on
Ḃ0,1

1 because Ḃ0,1
1 ⊂ H1. We first prove the “if” part. To do this, as in the

proof of Theorem 4.27, it suffices to show that there exists a constant C such
that

‖Πb(2
k′
2 ψλ′)‖Ḃ0,1

1
≤ C

where Πb is the para-product operator used in the proof of Theorem 4.27 and
b = T (1).

Because Πb(2
k′
2 ψ′

λ)(x) =
∑

λ

α(λ)β(λ)ψ̃λ(x), where α(λ) are wavelet coef-

ficients of T (1) and β(λ) = 〈2 k′
2 ψλ′ , φλ〉, one only needs to show

∑

λ

|α(λ)||β(λ)|(μ(Qλ))
1
2 ≤ C

where C is a constant. For each ψλ′ , by the construction, its support is
contained in Qλ′ . We split all dyadic cubes Qλ into two groups: G1 = {Qλ :
Qλ ⊆ Qλ′} and G2 = {Qλ : Qλ′ ⊂ Qλ}. Based on the conditions on the
supports of ψλ′ and φλ, if k′ > k and β(λ) �= 0, then there exists one and
only one Qλ such that Qλ′ ⊂ Qλ. Suppose that Qλ′ ⊂ Qλ where k′ > k and
β(λ) �= 0. Then, by the estimate in Lemma 3.7,

|β(λ)| ≤ C2−|k′−k|ε2k

which together with the fact that |α(λ)| ≤ C(μ(Qλ))
1
2 , implies

∑

Qλ∈G2

|α(λ)||β(λ)|(μ(Qλ))
1
2 ≤ C.

If Qλ ⊆ Qλ′ , the size conditions on ψλ′ and φλ imply that |β| ≤
C(μ(Qλ′))−1. Therefore, by (4.33),

∑

Qλ⊂Qλ′

|α(λ)||β(λ)|(μ(Qλ))
1
2 ≤ C.

We now return to prove the “only if” part. It suffices to show that if the
para-product operator Πb where b = T (1) is bounded on Ḃ0,1

1 , then b satis-
fies the generalized Carleson measure condition (4.33). This is because if T is
bounded on Ḃ0,1

1 then T ∗(1) = 0. By the result above, T̃ = T−Πb, is bounded
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on Ḃ0,1
1 , where Πb is the para-product operator with b = T (1). Let us re-

call that {Sk(x, y)}k∈Z are father functions constructed by Coifman’s idea in
Section 1.3 and {Dk(x, y)}k∈Z are corresponding mother unctions. Let φλ =
Sk(x, yλ), for λ ∈ Λk,Λk = {(k, τ, ν) : τ ∈ Ik, 1 ≤ ν ≤ N(k, τ)}, ψλ(x) =√

QλDk(yk,ν
τ , x), λ ∈ Λ = {(k, τ, ν) : k ∈ Z, τ ∈ Ik, 1 ≤ ν ≤ N(k, τ)} be the

wavelets given in Theorem 3.25. For each given dyadic cube P, let 100P be
the dyadic cube containing P with 100 times side length as P. We denote ψλ0

by the wavelet corresponding to 100P. Then it is not difficult to check that
‖Πb(2

k0
2 ψλ0)‖Ḃ0,1

1
≤ C and

‖Πb(2
k0
2 ψλ0)‖Ḃ0,1

1
≈
∑

λ

|α(λ)||β(λ)|(μ(Qλ))
1
2

where β(λ) = 〈k0
2 ψλ0 , φλ〉.

One observe that |β(λ)| = |〈2
k0
2 ψλ0 , φλ〉| ≥ C2k0 whenever Qλ ⊆ P, for

some constant C independent of k0. Therefore we have
∑

Qλ⊆P

|α(λ)|(μ(Qλ))
1
2 ≤ C2−k0

∑

λ

|α(λ)||β(λ)|(μ(Qλ))
1
2

≤ C2−k0‖Πb(2
k0
2 ψλ0)‖Ḃ0,1

1
≤ C2−k0 ≤ Cμ(P )

which implies that b = T (1) satisfies the generalized Carleson measure con-
dition (4.33).

Before finishing this chapter, we give a nice application of the T1 theorem.
By using the wavelet coefficients, we have given characterizations of all spaces
which are studied in previous sections. However, by the Littlewood-Paley
theory developed by G. David, J. L. Journé and S. Semmes, the Lp, 1 <
p < ∞, spaces can be characterized in terms of an approximation to the
identity without requiring the condition (3.19), namely the double Lipschitz
condition. One should observe that the condition (3.19) plays a crucial role in
developing the wavelet analysis in Chapter 3. Therefore, a natural question
arises: If one can characterize all spaces studied in previous sections by use
of an approximation to the identity with only conditions (3.14)-(3.18). As
an application of the T1 theorem, we will give a positive answer about this
question. The results given below demonstrate that the Calderón-Zygmund
operator theory, namely the T1 theorems, are a powerful tool not only for
the boundedness of operators but also for the study of spaces of functions
and distributions.

Since the Hardy spaces Hp are special generalized Sobolev spaces L̇p,0 and
the Hölder spaces Cs are special Besov spaces Ḃs,∞

∞ , in what follows, we only
give new characterizations of L̇p,s and Ḃs,q

p .

Theorem 4.32. Suppose that {Pk}k∈Z is an approximation to the identity
whose kernels satisfy only conditions (3.14)-(3.18). Let Qk = Pk − Pk−1.
Then for f ∈ L2(X) and −θ < s < θ,
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‖f‖Ḃs,p
q

≈
{∑

k∈Z

(2ks‖Qk(f)‖p)q

} 1
q

(4.34)

for max
(

1
1+θ , 1

1+θ+s

)
< p ≤ ∞ and 0 < q ≤ ∞,

‖f‖L̇s,p ≈
∥
∥
∥
∥

{∑

k∈Z

(2ks|Qk(f)|)2
} 1

2
∥
∥
∥
∥

p

(4.35)

for max
(

1
1+θ , 1

1+θ+s

)
< p < ∞.

We first prove that if f ∈ L2(X),

{∑

k∈Z

(2ks||Qk(f)‖p)q

} 1
q

≤ C‖f‖Ḃs,p
q

(4.36)

for −θ < s < θ and max( 1
1+θ , 1

1+θ+s ) < p ≤ ∞ and 0 < q ≤ ∞,

∥
∥
∥
∥

{∑

k∈Z

(2ks|Qk(f)|)q

} 1
q
∥
∥
∥
∥

p

≤ C‖f‖L̇s,p (4.37)

for −θ < s < θ and max
(

1
1+θ , 1

1+θ+s

)
< p, q < ∞.

The T1 theorem does not play any role for these proofs in (4.36) and (4.37).
Suppose that f =

∑

λ∈Λ

α(λ)ψ̃λ(x) and −θ < s < θ and max
(

1
1+θ , 1

1+θ+s

)
<

p ≤ ∞ and 0 < q ≤ ∞. By Theorem 3.25, we have

Qj(f)(x) =
∑

λ∈Λ

α(λ)(Qjψ̃λ)(x).

By the almost orthogonal estimate in Lemma 3.7, (Qjψ̃λ)(x) satisfies the
following estimate

|(Qjψ̃λ)(x)| ≤ C2−
1
2 k2−|j−k|ε 2−(k∧j)ε

(2−(k∧j) + ρ(x, yk,ν
τ ))1+ε

(4.38)

where λ = (k, τ, ν) and ε < θ.
By first observing

‖Qk(f)‖p ≤
∑

τ∈Ik

N(k,τ)∑

ν=1

[

(μ(Qj,ν
τ ))

1
p sup

z∈Qk,ν
τ

|Qk(f)(z)|
]p) 1

p

and then using the same proof of Theorem 4.1 and the estimate in (4.38), we
obtain



4.7 The T1 Theorem 129

{∑

j∈Z

(2js‖Qj(f)‖p)q

} 1
q

≤
{∑

j∈Z

( ∑

τ∈Ij

N(j,τ)∑

ν=1

[

(μ(Qj,υ
τ ))−s+ 1

p sup
z∈Qj,υ

τ

|Qj(f)(z)|
]p) q

p
} 1

q

≤ C

{∑

k∈Z

( ∑

λ∈Λk

[(μ(Qk,ν
τ ))−s+ 1

p + 1
2 |α(λ)|]p

) q
p
} 1

q

≤ C‖f‖Ḃs,p
q

where the last inequality follows from the wavelet coefficients characterization
for the Besov spaces in Theorem 4.24. This yields (4.36).

The proof of (4.37) is similar. We first write
∑

k∈Z

(2ks|Qk(f)(x)|)q =
∑

k∈Z

∑

λ∈Λk

2kqs|Qk(f)(x)|qχQλ
(x).

The proof of (4.37) then follows from the estimate in (4.38) and the proof
of Theorem 4.1.

The T1 theorem will be used in the proofs of the other implications of
(4.36) and (4.37). More precisely, we decompose the identity operator on
L2(X) by I = R + S, where

S(f)(x) =
∑

k∈Z

∑

τ∈Ik

N(k,τ)∑

ν=1

μ(Qk,ν
τ )QN

k (x, yk,υ
τ )Qk(f)(yk,ν

τ ).

Let us denote that
√

μ(Qk,ν
τ )QN

k (x, yk,ν
τ ) = θ̃λ(x) and

√
μ(Qk,ν

τ )Qk(yk,ν
τ , x) =

θλ(x).
Then S(f) defined above can be rewritten as

S(f)(x) =
∑

λ

a(λ)θ̃λ(x)

where a(λ) = 〈f, θλ〉.
We shall show that S−1 is bounded in the norm of Ḃs,p

q and L̇s,p for the
range of s, p, q indicated in Theorem 4.32. Assuming, for the moment, that
this has been done, by the wavelet coefficients characterization of the Besov
spaces in Theorem 4.24 and Theorem 4.1, we have

‖S(f)‖Ḃs,p
q

≤ C

{ ∑

k′∈Z

( ∑

λ′∈Λk′

[(μ(Qλ′))−s+ 1
p + 1

2 |a(λ′)|]p
) q

p
} 1

q

≤ C

{∑

k∈Z

(2ks||Qk(f)‖p)q

} 1
q

.
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This, by the assumption that S−1 is bounded on Ḃs,p
q , implies that

‖f‖Ḃs,p
q

= ‖S−1S(f)‖Ḃs,p
q

≤ C

{∑

k∈Z

(2ks||Qk(f)‖p)q

} 1
q

.

Similarly, by the wavelet coefficients characterization of the generalized
Sobolev spaces, Theorem 4.1 and the assumption that S−1 is bounded on
L̇s,p, we have

‖f‖L̇s,p = ‖S−1S(f)‖L̇s,p ≤ C

∥
∥
∥
∥

{ ∑

λ′∈Λ′

[(μ(Qλ′))−s− 1
2 |α(λ′)|χQλ′ (x)]q

} 1
q
∥
∥
∥
∥

p

≤ C

∥
∥
∥
∥

{∑

k∈Z

(2ks|Qk(f)|)q

} 1
q
∥
∥
∥
∥

p

.

Now all we need to do is to show that S−1 is bounded in the norm of Ḃs,p
q

and L̇s,p for the range of α, p, q indicated in Theorem 4.32.
As in the proof of Lemma 3.23, R = I − S, where R = R̃N + RN and

RN (x, y), the kernel of RN satisfies the conditions (3.35)-(3.37), (3.39) and
RN (1) = R∗

N (1) = 0, and the kernel of R̃N satisfies the conditions (3.70)-
(3.72), (3.74) and R̃N (1) = R̃∗

N (1) = 0. So by the T1 Theorem 4.24, R is
bounded on spaces Ḃs,p

q and L̇s,p
2 for the range of s, p, q indicated in Theorem

4.32 with norm less than C2−Nδ + CN2−jδ. By choosing N large first and
then j large enough, then S−1 is bounded on spaces Ḃs,p

q and L̇s,p
2 for the

range of α, p, q indicated in Theorem 4.32.
Indeed, the Besov spaces of Ḃs,p

q , for 0 < |s| < θ and 1 ≤ p, q ≤ ∞ and
the generalized Sobolev spaces L̇s,p, for 0 < |s| < ε and 1 < p, q < ∞, can
be characterized by more general operators whose kernels satisfy only half
(depending on the sign of s) of the usual size, smoothness and cancellation
conditions. More precisely, we have

Theorem 4.33. Suppose that {Pk}k∈Z is a sequence of operators whose
kernels Pk(x, y) satisfying the conditions 3.14, 3.15 and 3.17. Let Qk =
Pk − Pk−1. Then, for f ∈ L2 and 0 < s < θ,

‖f‖Ḃs,p
q

≈
{∑

k∈Z

(2ks‖Qk(f)‖p)q

} 1
q

(4.39)

for 1 ≤ p, q ≤ ∞, and for 1 < p, q < ∞,

‖f‖L̇s,p ≈
∥
∥
∥
∥

{∑

k∈Z

(2ks|Qk(f)|)q

} 1
q
∥
∥
∥
∥

p

. (4.40)
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Indeed, repeating the same proof as in Theorem 4.32 and replacing the
estimate in (4.38) by

|(Qjψ̃λ)(x)| ≤ C2−
1
2 k(1 ∧ 2−(j−k)ε)

2−(k∧j)ε

(2−(k∧j) + ρ(x, yk,ν
τ ))1+ε

(4.41)

where λ ∈ Λk, we then obtain

{∑

k∈Z

(2ks||Qk(f)||p)q

} 1
q

≤ C‖f‖Ḃs,p
q

(4.42)

for 0 < s < θ and 1 ≤ p, q ≤ ∞, and

∥
∥
∥
∥

{∑

k∈Z

(2ks|Qk(f)|)q

} 1
q
∥
∥
∥
∥

p

≤ C‖f‖L̇s,p (4.43)

for 0 < s < θ and 1 < p, q < ∞.
To show the other implications in (4.42) and (4.43), we need the following

two lemmas.

Lemma 4.34. Suppose 0 < s < θ. Then there exists a constant C > 0 such
that

∥
∥
∥
∥

∑

k−j>N

QjQk(f)
∥
∥
∥
∥

Ḃs,p
q

≤ C2−Ns‖f‖Ḃs,p
q

(4.44)

for 1 ≤ p, q ≤ ∞, and
∥
∥
∥
∥

∑

k−j>N

QjQk(f)
∥
∥
∥
∥

L̇s,p

≤ C2−Ns‖f‖L̇s,p (4.45)

for 1 < p, q < ∞.

We first prove (4.44). By the definition of Ḃs,p
q ,

∥
∥
∥
∥

∑

k−j>N

QjQk(f)
∥
∥
∥
∥

Ḃs,p
q

=
{∑

�∈Z

(

2�s

∥
∥
∥
∥D�

∑

k−j>N

QjQk(f)
∥
∥
∥
∥

p

)q} 1
q

≤
{∑

�∈Z

(

2�s
∑

k−j>N

‖D�Qj‖p,p‖Qk(f)‖p

)q} 1
q

≤ C

{∑

�∈Z

(

2�s
∑

k−j>N

(2(j−�)ε ∧ 1)‖Qk(f)‖p

)q} 1
q

since D�Qj(x, y) satisfies the estimate in Lemma 3.6. Therefore,
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∥
∥
∥
∥

∑

k−j>N

QjQk(f)
∥
∥
∥
∥

Ḃs,p
q

= C

{∑

�∈Z

( ∑

k−j>N

(2(j−�)ε ∧ 1)2(�−j)s2(j−k)s2ks‖Qk(f)‖p

)q} 1
q

≤ C

{∑

�∈Z

( ∑

k−j>N

(2(j−�)ε ∧ 1)2(�−j)s2(j−k)s

) q
q′

×
[ ∑

k−j>N

(2(j−�)ε ∧ 1)2(�−j)s2(j−k)s(2ks‖Qk(f)‖p)q

]} 1
q

≤ C2−Ns‖f‖Ḃs,p
q

,

where the last inequality follows from the facts that 0 < s < ε < θ and
∑

k−j>N

(2(j−�)ε ∧ 1)2(�−j)s2(j−k)s ≤ C2−Ns. (4.46)

The proof of (4.45) is similar. By the definition of L̇s,p,

∥
∥
∥
∥

∑

k−j>N

QjQk(f)
∥
∥
∥
∥

L̇s,p

=
∥
∥
∥
∥

{∑

�∈Z

(
2�s

∣
∣
∣D�

∑

k−j>N

QjQk(f)
∣
∣
∣
)q
} 1

q
∥
∥
∥
∥

p

≤
∥
∥
∥
∥

{∑

�∈Z

(
2�s

∑

k−j>N

|D�QjQk(f)|
)q
} 1

q
∥
∥
∥
∥

p

≤ C

∥
∥
∥
∥

{∑

�∈Z

(
2�s

∑

k−j>N

(2(j−�)ε′∧ 1)M(Qk(f))‖p

)q
} 1

q
∥
∥
∥
∥

p

since D�Qj(x, y) satisfies the estimate in Lemma 3.6. This yields
∥
∥
∥
∥

∑

k−j>N

QjQk(f)
∥
∥
∥
∥

L̇s,p

= C

∥
∥
∥
∥

{∑

�∈Z

( ∑

k−j>N

(2(j−�)ε ∧ 1)2(�−j)s2(j−k)s2ksM(Qk(f))
)q} 1

q
∥
∥
∥
∥

p

≤ C

{∑

�∈Z

( ∑

k−j>N

(2(j−�)ε ∧ 1)2(�−j)s2(j−k)s

) q
q′

×
[ ∑

k−j>N

(2(j−�)ε ∧ 1)2(�−j)s2(j−k)s(2ksM(Qk(f)))q

]} 1
q

≤ C2−Ns‖f‖L̇s,p .

The last inequality follows from (4.46) and the Fefferman-Stein vector valued
maximal inequality.
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Lemma 4.35. Suppose 0 < s < θ. Then there exist constants C > 0 and
δ > 0 such that

∥
∥
∥
∥

∑

j−k≥N

QjQk(f)
∥
∥
∥
∥

Ḃs,p
q

≤ C2−Nδ‖f‖Ḃs,p
q

(4.47)

for 1 ≤ p, q ≤ ∞, and
∥
∥
∥
∥

∑

j−k≥N

QjQk(f)
∥
∥
∥
∥

L̇s,p

≤ C2−Nδ‖f‖L̇s,p (4.48)

for 1 < p, q < ∞.

We write
∑

j−k≥N

QjQk(f) =
∑

j≥N

∑

k

Qj+kQk(f) and denote Qj
k = Qj+kQk.

We then have

|Qj
k(x, y)| ≤ C2−jε 2−kε

(2−k+ρ(x,y))1+ε , (4.49)

|Qj
k(x, y) − Qj

k(x′, y)| ≤ C
(

ρ(x,x′)
2−k+ρ(x,y)

)ε
2−kε

(2−k+ρ(x,y))1+ε (4.50)

for ρ(x, x′) ≤ 1
2A (2−k + ρ(x, y)), and

∫
Qj

k(x, y)dμ(y) = 0. (4.51)

The geometric mean between (4.49) and (4.50) implies that for 0 < ε′ < ε,
and some δ > 0,

|Qj
k(x, y) − Qj

k(x′, y)| ≤ C2−jδ
( ρ(x, x′)

2−k + ρ(x, y)

)ε′ 2−kε′

(2−k + ρ(x, y))1+ε′
(4.52)

for ρ(x, x′) ≤ 1
2A (2−k + ρ(x, y)).

Thus, by the definition of the Besov space and using Calderón’s identity
in Theorem 3.15,
∥
∥
∥
∥

∑

j−k≥N

QjQk(f)
∥
∥
∥
∥

Ḃα,p
q

=
{∑

�∈Z

(

2�s

∥
∥
∥
∥D�

∑

j>N

∑

k

Qj
k

(∑

i

D̃iDif

)∥
∥
∥
∥

p

)q} 1
q

=
{∑

�∈Z

( ∑

j>N

∑

k

∑

i

2�s‖D�Q
j
kD̃iDif)‖p

)q} 1
q

=
{∑

�∈Z

( ∑

j>N

∑

k≥�

∑

i

2�s‖D�Q
j
kD̃iDif)‖p

)q} 1
q

+
{∑

�∈Z

( ∑

j>N

∑

k<�

∑

i

2�s‖D�Q
j
kD̃iDif)‖p

)q} 1
q

= I + II.
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Note that for k < �,

|D�Q
j
kD̃i(x, y)| ≤ C2−jδ(2(k−�)ε′′ ∧ 1)(2(i−k)ε′′ ∧ 1)

2−(k∧i∧�)ε′

(2−(k∧i∧�) + ρ(x, y))1+ε′

where 0 < s < ε′′ < ε.
Therefore

II ≤ C

{∑

�∈Z

( ∑

j>N

∑

k<�

∑

i

2�s2−js(2(k−�)ε′′ ∧ 1)(2(i−k)ε′′ ∧ 1)‖Dif)‖p

)q} 1
q

≤ C2−Nδ

{∑

�∈Z

(∑

k<�

∑

i

2�s(2(k−�)ε′′ ∧ 1)(2(i−k)ε′′ ∧ 1)‖Dif)‖p

)q} 1
q

≤ C2−Nδ

{∑

�∈Z

[∑

k<�

∑

i

2(�−k)s2(k−i)s(2(k−�)ε′′ ∧ 1)(2(i−k)ε′′ ∧ 1)
] q

q′

×
[∑

k<�

∑

i

2(�−k)s2(k−i)s(2(k−�)ε′′ ∧ 1)(2(i−k)ε′′ ∧ 1)(2is‖Dif)‖p)q

]} 1
q

≤ C2−Nδ

{∑

i

(2is‖Dif)‖p)q

} 1
q

≤ C2−Nδ‖f‖Ḃs,p
q

.

Note that for k ≥ �,

|D�Q
j
kD̃i(x, y)| ≤ C2−jδ(2(i−k)ε′′ ∧ 1)

2−(∧i∧�)ε′

(2−(∧i∧�) + ρ(x, y))1+ε′

where 0 < s < ε′′ < ε < θ.
Thus

I ≤ C

{∑

�∈Z

( ∑

j>N

∑

k≥�

∑

i

2�s2−jδ(2(i−k)ε′′ ∧ 1)‖Dif)‖p

)q} 1
q

≤ C2−Nδ

{∑

�∈Z

(∑

k≥�

∑

i

2�s(2(i−k)ε′′ ∧ 1)‖Dif)‖p

)q} 1
q

≤ C2−Nδ

{∑

�∈Z

[∑

k≥�

∑

i

2(�−k)s2(k−i)s(2(i−k)ε′′ ∧ 1)
] q

q′

×
[∑

k≥�

∑

i

2(�−k)s2(k−i)s(2(i−k)ε′′ ∧ 1)(2is‖Dif)‖p)q

]} 1
q

≤ C2−Nδ

{∑

i

(2is‖Dif)‖p)q]
} 1

q

≤ C2−Nδ‖f‖Ḃs,p
q

.



4.7 The T1 Theorem 135

These estimates imply (4.50). The proof of (4.51) is similar.
Now we return to the proof of Theorem 4.32.
We decompose the identity operator I by writing I = RN + TN , where

RN =
∑

|j−k|≥N

QjQk and TN =
∑

k

QN
k Qk with QN

k =
∑

|j|≤N

Qk+j . Lemma

4.33 and 4.34 imply that

‖RN (f)‖Ḃs,p
q

≤ C(2−Ns + 2−Nδ)‖f‖Ḃs,p
q

(4.53)

for 0 < s < ε and 1 ≤ p, q ≤ ∞, and

‖RN (f)‖L̇s,p ≤ C(2−Ns + 2−Nδ)‖f‖L̇s,p (4.54)

for 0 < s < ε and 1 < p, q < ∞.
If we choose N large enough, then (TN )−1, the inverse of TN , is bounded

on Ḃs,p
q , for 0 < s < ε and 1 ≤ p, q ≤ ∞, and L̇s,p, for 0 < s < ε and

1 < p, q < ∞. Now we have

‖TN (f)‖Ḃs,p
q

=
{∑

k

(2ks‖DkTNf‖p)q

} 1
q

≤
{∑

k

(

2ks

∥
∥
∥
∥Dk

∑

j

QN
j Qjf

∥
∥
∥
∥

p

)q} 1
q

≤
{∑

k

(

2ks
∑

j

‖DkQN
j ‖p,p‖Qjf‖p

)q} 1
q

≤ C

{∑

k

(∑

j

2ks(2(j−k)ε′ ∧ 1)‖Qjf‖p

)q} 1
q

≤ C

{∑

j

(2js‖Qjf‖p)q

} 1
q

.

This yields

‖f‖Ḃs,p
q

≤ C‖TN (f)‖Ḃs,p
q

≤ C

{∑

j

(2js‖Qjf‖p)q

} 1
q

.

Similarly,

‖TN (f)‖L̇s,p =
∥
∥
∥
∥

{∑

k

(2ks|DkTNf |)q

} 1
q
∥
∥
∥
∥

p

≤
∥
∥
∥
∥

{∑

k

(2ks|Dk

∑

j

QN
j Qjf |)q

} 1
q
∥
∥
∥
∥

p
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≤
∥
∥
∥
∥

{∑

k

(

2kα
∑

j

|DkQN
j Qjf |

)q} 1
q
∥
∥
∥
∥

p

≤ C

∥
∥
∥
∥

{∑

k

(∑

j

2ks(2(j−k)ε′ ∧ 1)M(Qjf)|
)q} 1

q
∥
∥
∥
∥

p

≤ C

∥
∥
∥
∥

{∑

j

(2js|Qjf |)q

} 1
q
∥
∥
∥
∥

p

.

This implies

‖f‖L̇s,p ≤ C‖TN (f)‖L̇s,p ≤ C

∥
∥
∥
∥

{∑

j

(2js|Qjf |)q

} 1
q
∥
∥
∥
∥

p

and the proof of Theorem 4.32 is completed.



Chapter 5

Littlewood-Paley Analysis
on Non Homogeneous Spaces

5.1 Introduction

It is well know that the doubling property of the underlying measure is a basic
hypothesis in the classical Calderón-Zygmund theory. A measure μ on R

n is
said to be doubling if there exists some constant C such that μ(B(x, 2r)) ≤
cμ(B(x, r)) for all x ∈ supp(μ), r > 0, where B(x, r) = {y ∈ R

n : |y − x| <
r}. Recently it has been shown that many results of the classical Calderón-
Zygmund theory also hold without assuming the doubling property. See [GM],
[MMNO], [NTV1], [NTV2], [NTV3], [T1], [T2] and [T3] for more material.

Suppose that μ is a Radon measure on R
n, which may be non-doubling

and only satisfies the growth condition, namely there is a constant C > 0
such that for all x ∈ supp(μ) and r > 0,

μ(B(x, r)) ≤ C0r
d (5.1)

where 0 < d ≤ n.
One motivation for studying non doubling measures is the problem of

analytic capacity which has a long history. More than a century ago Painlevé
became interested in the problem of removable sets for bounded analytic
functions. Let us consider a compact set E such that Ω = C\E is connected.
Then E is a removable set for bounded analytic functions if any function
f which is analytic and bounded in C \ E is a constant. In 1888 Painlevé
proved that any compact set with zero one-dimensional Hausdorff measure
is removable. In 1947 L. V. Ahlfors rephrased Painlevé’s problem in terms of
analytic capacity ([A]). The analytic capacity γ(E) of E is

γ(E) = sup
{

lim
z→∞

|zf(z)| : f ∈ A(E)
}

with A(E) = {f : f analytic on Ω, ‖f(z)‖L∞(Ω) ≤ 1, lim
z→∞

f(z) = 0}. Then
Ahlfors proved that E is removable for bounded analytic functions if and
only if γ(E) = 0.

D. Deng and Y. Han, Harmonic Analysis on Spaces of Homogeneous Type, Lecture
Notes in Mathematics 1966, 137
c© Springer-Verlag Berlin Heidelberg 2009
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If the Hausdorff dimension of E is larger than 1, then the analytic capacity
of E is positive. Thus Painlevé’s problem is easy except for sets with Hausdorff
dimension dim(E) = 1 and Hausdorff measure Λ1(E) > 0. For a subset E
of a line, A. Denjoy proved that if Λ1(E) > 0 then γ(E) > 0. Today we
know that γ(E) = 1

4Λ1(E) if E ⊂ R. The well-known Denjoy conjecture says
that Λ1(E) > 0 ⇒ γ(E) > 0 whenever E is a subset of a rectifiable curve.
The Denjoy conjecture was solved in 1977 by using the L2 boundedness of
the Cauchy integral on a Lipschitz curve with small Lipschitz constant, due
to A. P. Calderón ([C2]). This was the first time that harmonic analysis
entered the Painlevé problem. In 1967 Vitushkin conjectured that γ(E) = 0
if and only if E has zero Favard length, that is, the projection of E onto
a line of almost every slope has zero length ([V]). However the Vitushkin
conjecture on Favard length is false in general. P. W. Jones and T. Murai
([JM]) constructed a set E with zero Favard length but γ(E) > 0. Mattila,
Melnikov and Verdera ([MMV]) in 1996 proved Vitushkin’s Favard length
conjecture in the case where E satisfies Ahlfors regularity

C−1r ≤ Λ1(E ∩ B(x, r)) ≤ Cr

for all z ∈ E and all r < diam(E).
The one of main ideas in [MMV] is to use the Menger curvature and the

formula ∫ ∣
∣
∣
∣

∫
dμ(ζ)
z − ζ

∣
∣
∣
∣dμ(z) =

c2(μ)
6

+ O

(∫
dμ

)

which is valid if μ satisfies the growth condition (5.1). This intriguing formula
needs to be explained. See [MMV] for more details.

G. David proved Vitushkin’s Favard length conjecture when E is not
Ahlfors regular but Λ1(E) < ∞. This is remarkable because the Ahlfors
regularity of E implies that the measure μ(A) = Λ1(A∩E) is doubling ([D]).
We remark that the doubling condition is necessary for the covering lemmas
at the root of Calderón-Zygmund theory. A little later F. L. Nazarov, S. Treil
and A. L. Volberg provided the T (b) theorem on non homogeneous spaces
which proves a conjecture of Vitushkin ([NTV3]).

Recently X. Tolsa gave a complete answer to the Painlevé problem ([T4]):
A compact set E ⊂ C is non-removable for bounded analytic functions if and
only if it supports a positive Radon measure μ with the growth condition
(5.1) and finite curvature (the definition of the curvature of E with respect
to μ will not be detailed here).

The purpose of this chapter is to give an outline of the Littlewood-Paley
theory and functional spaces on non homogeneous spaces. Here (Rn, μ) is
called a non homogeneous space if the Radon measure μ defined on R

n sat-
isfies the condition (5.1).

X. Tolsa in [T2] developed the Littlewood-Paley theory and used this the-
ory to give another proof of the T1 theorem on non homogeneous spaces. We
now describe Tolsa’s results in the next section.
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5.2 Littlewood-Paley Theory on Non Homogeneous
Spaces

We will first describe Tolsa’s construction that will derive the Littlewood-
Paley theory on L2(μ) for a measure μ satisfying (5.1) and non-doubling in
general.

As in the case of spaces of homogeneous type, the key point is to construct
a sequence of integral operators {Sk}k∈Z given by kernels Sk(x, y) defined on
R

n × R
n. This sequence of operators will yield some kind of approximation

to the identity, namely Sk → I as k → ∞ and Sk → 0 as k → −∞ strongly
in L2(μ). The kernels Sk(x, y) should satisfy some appropriate size and reg-
ularity conditions and

∫
Sk(x, y)dμ(y) = 1

for all x ∈ R
n,

∫
Sk(x, y)dμ(x) = 1

for all y ∈ R
n.

For each k we set Dk = Sk+1 − Sk, and then, as in the case of spaces of
homogeneous type, at least formally,

I =
∑

k∈Z

Dk.

Using Coifman’s idea on the decomposition of the identity operator, we
rewrite the above series as

I =
(∑

k∈Z

Dk

)(∑

j∈Z

Dj

)

=
∑

|k|≤N

∑

j∈Z

Dk+jDj +
∑

|k|>N

∑

j∈Z

Dk+jDj = TN + RN .

Repeating the same proof as in the case of spaces of homogeneous type,
one can prove the Littlewood -Paley estimate on L2(μ),

C−1‖f‖L2(μ) ≤
∑

k

‖Dk(f)‖2
L2(μ) ≤ C‖f‖L2(μ) (5.2)

for all f ∈ L2(μ).
Indeed, To prove the right inequality in (5.2) it suffices to show that the op-

erator
∑

k

D∗
kDk is bounded on L2(μ), since

∑

k

‖Dk(f)‖2
L2(μ) = 〈

∑

k

D∗
kDk(f), f〉

and then Cotlar-Stein’s lemma can be applied.
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To obtain the left inequality in (5.2), under the appropriate conditions on
Dk, we will see that ‖RN‖2,2 < 1 for N big enough. This implies that TN is
an invertible operator on L2(μ), and hence ‖f‖L2(μ) ≤ C‖TN (f)‖L2(μ). This
together with the right inequality in (5.2) implies the left inequality in (5.2).
The Lp, 1 < p < ∞, estimates then follows from the theory of Calderón-
Zygmund operators on non homogeneous spaces.

One of the difficulties for implementing the arguments above when μ is a
non-doubling measure arises from the non trivial construction of the kernels
Sk(x, y) satisfying the required properties. When μ is a non-doubling measure
the difficult step consists of obtaining functions Tk(x, y) such that

∫
Tk(x, y)dμ(y) ≈ 1

for each x ∈ supp(μ),
∫

Tk(x, y)dμ(x) ≈ 1

for each y ∈ supp(μ).
As soon as the above functions Tk(x, y) are constructed, then one can

apply Coifman’s idea to set Sk = MkTkWkT ∗
k Mk, with the same notation as

in Chapter 2. Since Tk(x, y) �= Tk(y, x) in general, so Tk �= T ∗. To describe
Tolsa’s construction, for reader’s convenience, we recall some basic notation
and definitions, see [T2] and [T3] for more details.

Throughout this section, we denote by Q a closed cube with sides parallel
to the axes, and by cQ the cube concentric with Q whose side length is c
times the side length of Q.

We will assume that the constant C0 in (5.1) has been chosen large enough
so that for all cubes Q ⊂ R

n we have μ(Q) ≤ C0�(Q)d, where 0 < d ≤ n and
�(Q) is the side length of Q.

Definition 5.1. Given α > 1 and β > αd, we say that the cube Q ⊂ R
n is

(α, β)-doubling if μ(Q) ≤ βμ(Q).

Based on the growth condition (5.1), there are a lot of ”big” and ”small”
doubling cubes. Given cubes Q,R ⊂ R

n, we denote by zQ the center of Q,
and by QR the smallest cube concentric with Q containing Q and R.

Definition 5.2. Given two cubes Q,R ⊂ R
n, we set

δ(Q,R) = max
(∫

QR\Q

1
|x − zQ|d

dμ(x),
∫

RQ\R

1
|x − zR|d

dμ(x)
)

.

Notice that �(QR) ≈ �(RQ) ≈ �(Q) + �(R) + dist(Q,R), and if Q ⊂ R,
then RQ = R and �(R) ≤ �(QR) ≤ 2�(R). We may treat points x ∈ supp(μ)
as if they were cubes(with �(x) = 0). So for x, y ∈ supp(μ) and some cube Q,
the notation δ(x,Q) and δ(x, y) make sense.
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We now recall the definition of cubes of different generations. See again
[T2] and [T3] for more details.

Definition 5.3. We say that x ∈ supp(μ) is a stopping point(or stopping
cube) if δ(x,Q) < ∞ for some cube x ∈ Q with 0 < �(Q) < ∞. We say that
R

n is an initial cube if δ(Q, Rn) < ∞ for some cube Q with 0 < �(Q) < ∞.
The cubes Q such that 0 < �(Q) < ∞ are called transit cubes.

It is easily seen that if δ(x,Q) < ∞ for some transit cube Q containing
x, the δ(x,Q′) < ∞ for any other transit cube Q′ containing x. Also, if
δ(Q,Rn) < ∞ for some transit cube Q, then δ(Q′, Rn) < ∞ for any transit
cube Q′.

Definition 5.4. Assume that R
n is not an initial cube. We fix some doubling

cube R0. If Q is a transit cube, we say that Q is a cube of generation k ≥ 1
if

δ(Q, Rn) = kA ± ε1.

If Q = x is a stopping cube, we say that Q is a cube of generation k ≥ 1 if

δ(x, Rn) = kA ± ε1.

Moreover, for all k ≤ 1 we say that R
n is a cube of generation k.

In what follows, for any x ∈ supp(μ), we denote by Qx,k some fixed dou-
bling cube centered at x of the kth generation. supp(μ) supp(μ)

X. Tolsa in [T2] constructed functions Tk(x, y) such that 1
4 ≤

∫
Tk(x, y)dμ

(y),
∫

Tk(x, y)dμ(x) ≤ 3
2 . This enable him to define the operators Sk by Sk =

MkTkWkT ∗
k Mk where, as in the case of spaces of homogeneous type, Mk is the

operator of multiplication by mk(x) = (Tk(1)(x))−1 and Wk is the operator
of multiplication by wk(x) = (T ∗

k (mk)(x))−1. The following result gives an
approximation to the identity on non homogeneous space.

Lemma 5.5. There exists a sequence of operators {Sk}k∈Z such that, for
each k ∈ Z, Sk(x, y), the kernel of Sk satisfies the following properties:

Sk(x, y) = Sk(y, x); (5.3)
∫

Rn Sk(x, y)dμ(y) = 1, for x ∈ supp(μ); (5.4)

If Qx,k is a transit cube, then

supp(Sk(x, ·)) ⊂ Qx,k−1; (5.5)

If Qx,k and Qy,k are transit cubes, then

0 ≤ Sk(x, y) ≤ C

(�(Qx,k) + �(Qy,k) + |x − y|)d
; (5.6)

If Qx,k, Qx′,k, Qy,k are transit cubes, and x, x′ ∈ Qx0,k for some x0 ∈ supp(μ),
then
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|Sk(x, y) − Sk(x′, y)| ≤ C
|x − x′|
�(Qx0,k)

1
(�(Qx,k) + �(Qy,k) + |x − y|)d

; (5.7)

If Qx,k, Qx′,k, Qy,k, Qy′,k are transit cubes, x, x′ ∈ Qx0,k and y, y′ ∈ Qx0,k for
some x0, y0 ∈ supp(μ), then

|[Sk(x, y) − Sk(x′, y)] − [Sk(x, y′) − Sk(x′, y′)]| (5.8)

≤ C
|x − x′|
�(Qx0,k)

|y − y′|
�(Qy0,k)

1
(�(Qx,k) + �(Qy,k) + |x − y|)d

.

See [T2] for the proof of (5.3)-(5.7) and [DHY] for the proof of (5.8).
For each k ∈ Z, we set Dk = Sk − Sk−1, Ek =

∑

j∈Z

Dk+jDj and, for each

N ≥ 1,ΦN =
∑

|k|≤N

Ek. The following lemma gives the desired estimates

which will be used to prove the Littlewood-Paley estimate on L2(Rn, μ).

Lemma 5.6. We have

(a) ‖DjDk‖2,2 ≤ C2−|j−k|η for all j, k ∈ Z and some η > 0;

(b)
∑

k∈Z

Dk = I, with strong convergence in L2(Rn, μ);

(c) The series
∑

j∈Z

Dk+jDj = Ek converges strongly in L2(Rn, μ) and

‖Ek‖2,2 ≤ C|k|2−|k|η

for all k ∈ Z;
(d) ΦN → I as N → ∞ in the operator norm in L2(Rn, μ).

By these estimates and an application of the Cotlar-Stein Lemma, namely
Lemma 1.13, we get

Theorem 5.7. If f ∈ L2(Rn, μ), then there exists a constant C such that

C−1‖f‖2
L2(μ) ≤

∑

k

‖Dk(f)‖2
L2(μ) ≤ C‖f‖2

L2(μ).

From this theorem we derive the following corollary.

Corollary 5.8. Let 1 < p < ∞. If f ∈ Lp(Rn, μ), then there is a constant C
such that

C−1‖f‖Lp(μ) ≤
∥
∥
∥
∥

(∑

k

‖Dk(f)‖2
) 1

2

∥
∥
∥
∥

Lp(μ)

≤ C‖f‖Lp(μ). (5.9)

The right inequality in (5.9) follows from the theory of vector valued
Calderón-Zygmund operators. This theory has been extended by Garćıa-
Cuerva and Martell [GM] to the case of non homogeneous spaces. The left
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inequality then follows from the right one by an argument similar to the one
used for p = 2.

Using the Littlewood-Paley estimates, we will describe the proof of the T1
theorem on non homogeneous spaces in the next section.

5.3 The T1 Theorem on Non Homogeneous Spaces

In order to state the T1 theorem, we need to introduce some notation and
definitions.

Definition 5.9. A kernel K(x, y) : R
n × R

n\{(x, y) : x = y} �→ R is called a
(d-dimensional) Calderón-Zygmund(CZ) kernel if

(1) |K(x, y)| ≤ C|x − y|−d if x �= y;
(2) there exists 0 < δ ≤ 1 such that

|K(x, y) − K(x′, y)| + |K(y, x) − K(y, x′)| ≤ C
|x − x′|δ
|x − y|d+δ

if |x − x′| ≤ 1
2 |x − y|.

We say that T is a Calderón-Zygmund singular integral associated with
the kernel K(x, y) if for any compactly supported function f ∈ L2(Rn, μ)

T (f)(x) =
∫

K(x, y)f(y)dμ(y) (5.10)

if x /∈ supp(f).
One should observe that the integral in (5.10) may be non convergent for

x ∈ supp(f), even for very nice functions. For this reason it is convenient to
introduce the truncated operators Tε, ε > 0 :

Tε(f)(x) =
∫

|x−y|>ε

K(x, y)f(y)dμ(y).

It is now easy to see that this integral is absolutely convergent for any f ∈
L2(Rn, μ) and x ∈ R

n.
We say that T is bounded on L2(Rn, μ) if the truncated operators Tε are

bounded on L2(Rn, μ) uniformly on ε > 0.
Given a fixed constant κ > 1, we say that f ∈ L1

loc(R
n, μ) belongs to the

space BMOκ(Rn, μ) if for some constant C

sup
Q

1
μ(κQ)

∫

Q

|f − mQ(f)|dμ ≤ C
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where the supremum is taken over all cubes Q and mQ(f) stands for the
mean of f over Q with respect to μ, that is, mQ(f) = 1

μ(Q)

∫

Q

fdμ.

As in the case of spaces of homogeneous type, we need weak boundedness
property. This is the following definition.

Definition 5.10. We say that T is weakly bounded if

|〈TεχQ, χQ〉| ≤ Cμ(Q) (5.11)

for any cube Q, uniformly on ε > 0.

Let us notice that this definition differs slightly from the usual definition
of weak boundedness in spaces of homogeneous type. But, however, if T
is bounded on L2(Rn, μ), then T is weakly bounded. See [NTV2] for more
details.

Now we are in the position to state the T1 theorem.

Theorem 5.11. If T is a Calderón-Zygmund singular integral operator which
is weak bounded and Tε(1), T ∗

ε (1) ∈ BMOκ(Rn, μ) uniformly on ε > 0 for
some κ > 1, then T extends to a bounded operator on L2(Rn, μ).

We remark that in the theorem, T ∗
ε stands for the adjoint of Tε with

respect to the duality 〈f, g〉 =
∫

fgdμ. Moreover, Tε and T ∗
ε can be extended

to L∞(Rn, μ) in the usual way. Notice also that the kernel of the truncated
operators Tε do not satisfy the smoothness conditions in the definition of
Calderón-Zygmund singular integral operator. For this reason one needs to
introduce the regularized operators T̃ε. To do this, let φ be a radial C∞

function with 0 ≤ φ ≤ 1, vanishing on B(0, 1
2 ) and identically equal to 1 on

R
n\B(0, 1). For each ε > 0, we consider the integral operator T̃ε with the

kernel φ(x−y
ε )K(x, y). It is not difficult to check that

|Tε(f) − T̃ε(f)| ≤ Mμ(f)

where Mμ is the centered maximal Hardy-Littlewood operator with respect
to measure dμ. So Tε is bounded on L2(Rn, μ) uniformly on ε > 0 if and
only if the same holds for T̃ε. The kernel of T̃ε is L∞ bounded and it is a
CZ kernel with the constant uniformly on ε > 0. One can also check that if
Tε(1), T ∗

ε (1) ∈ BMOκ(Rn, μ) uniformly on ε > 0 for some κ > 1, then these
still hold for T̃ε. The T1 theorem on non homogeneous spaces is proved first
for the case where T (1) = T ∗(1) = 0, and then the general case follows from
using the para-product operators on non homogeneous spaces, as in the case
of standard R

n. See [T2] for more details.
We remark that the crucial ingredient used in [T2] is again the following

identity:

I = T−1
N TN =

∑

k∈Z

T−1
N DN

k Dk = TNT−1
N =

∑

k∈Z

DkDN
k T−1

N .
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This identity is not a wavelet expanson, but, however, it is a start point to
study the new functional spaces, which we describe now in the next section.

5.4 The Besov Space on Non Homogeneous Spaces

The purpose of this section is to study the Besov space on non homogeneous
spaces. It is well known that the wavelet expansions(Calderón’s identity) in
Theorem 3.15 and Theorem 3.25 are crucial tools to study the Besov space
on spaces of homogeneous type. Now the difficulty is that there are no such
expansions. To be more precise, based on Tolsa’s construction given in Lemma
5.5, we introduce the following definition of an approximation to the identity
on non homogeneous spaces .

Definition 5.12. A sequence of operators {Sk}k∈Z) is said to be an approx-
imation to the identity on (Rn, μ) if {Sk(x, y)}k∈Z), the kernels of {Sk}k∈Z),
satisfy the conditions (5.3)-(5.8).

Following [T2], we can write

I = TN + RN

where TN =
∑

|k−j|≤N

DkDj and RN =
∑

|k−j|>N

DkDj .

In [T2], as we describe in the previous section, X. Tolsa proved that T−1
N

exists and bounded on L2(Rn, μ). This immediately implies

I =
∑

k∈Z

DN
k DkT−1

N (5.12)

where DN
k =

∑

|j|≤N

Dk+j and the series converges in L2(Rn, μ).

The key observation to study the Besov space on non homogeneous spaces
is the following result ([DHY]).

Theorem 5.13. Let {Sk}k∈Z, {Pk}k∈Z and {Ak}k∈Z be approximations to
the identity as defined in Definition 5.12. Set Ek = Pk−Pk−1, Gk = Ak−Ak−1

and RN is defined by Dk as above. Then there exist constants C and ν, 0 <
ν < 1

2 such that, for all 1 ≤ p, q ≤ ∞, |s| < 2νθ, and for each f ∈ L2(Rn, μ),

{∑

j∈Z

2jsq‖EjRNf‖q
Lp(μ)

} 1
q

(5.13)

≤ C(2−N(s+2νθ) + 2−N(2νθ−s))
{∑

k∈Z

2ksq‖Gkf‖q
Lp(μ)

} 1
q

.
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Moreover if N is chosen such that C(2−N(s+2νθ) + 2−N(2νθ−s)) < 1, then,
for each f ∈ L2(Rn, μ),

{∑

j∈Z

2jsq‖EjT
−1
N f‖q

Lp(μ)

} 1
q

≤ C

{∑

k∈Z

2ksq‖Gkf‖q
Lp(μ)

} 1
q

. (5.14)

As a consequence of the above theorem, we have

Proposition 5.14 Let {Sk}k∈Z and {Pk}k∈Z be approximations to the iden-
tity as defined in Definition 5.12. Set Dk = Sk − Sk−1 and Ek = Pk − Pk−1.
Then, for all 1 ≤ p, q ≤ ∞, |s| < θ, and for each f ∈ L2(Rn, μ),

{∑

k∈Z

2ksq‖Dkf‖q
Lp(μ)

} 1
q

≈
{∑

k∈Z

2ksq‖Ekf‖q
Lp(μ)

} 1
q

. (5.15)

The above proposition follows immediately from (5.12) and Theorem 5.13.
Indeed, for each f ∈ L2(Rn, μ), by (5.12)

{∑

j∈Z

2jsq‖Dkf‖q
Lp(μ)

} 1
q

≤
{∑

j∈Z

2jsq
∑

k∈Z

‖EjD
N
k DkT−1

N f‖Lp(μ)

]q
} 1

q

.

By the estimate ‖EjD
N
k ‖2,2 ≤ C2−2θ|j−k| and applying Hölder inequality,

we have
{∑

j∈Z

2jsq‖Djf‖q
Lp(μ)

} 1
q

≤ C

{∑

k∈Z

2ksq‖DkT−1
N f‖q

Lp(μ)

} 1
q

.

Finally, the desired result follows from Theorem 5.13.
Proposition 5.14 leads to introduce the following subspaces of L2(Rn, μ).

Definition 5.15. Let {Sk}k∈Z be an approximation to the identity as defined
in Definition 5.12. Set Dk = Sk − Sk−1 for k ∈ Z. Let θ be the regularity
of the approximation to the identity {Sk}k. For |s| < θ, 1 ≤ p, q ≤ ∞, and
f ∈ L2(Rn, μ), we define

‖f‖Ḃs,q
q (μ) =

{∑

k∈Z

2ksq‖Dkf‖q
Lp(μ)

} 1
q

and define a subspace of L2(Rn, μ) by

Ḃs,q
p (μ) =

{
f ∈ L2(Rn, μ) : ‖f‖Ḃs,q

q (μ) < ∞
}
.

Proposition 5.14 means that the definition of Ḃs,q
p (μ) is independent of the

choice of the approximations to the identity. The following theorem is one
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of main results for the study of the Besov space on non homogeneous spaces
([DHY]).

Theorem 5.16. Let θ and Dk be the same as in Definition 5.15. If 1 ≤ p, q ≤
∞ and for all f ∈ Ḃs,q

p (μ),

f =
∑

k∈Z

DN
k DkT−1

N (f) =
∑

k∈Z

T−1
N DN

k Dk(f) (5.16)

holds in the norm of ‖ · ‖Ḃs,q
p (μ). Moreover, for all g ∈ Ḃs,q

p (μ) with 1 ≤ p, q ≤
∞,

〈f, g〉 =
∑

k∈Z

〈DkDN
k T−1

N (f), g〉 =
∑

k∈Z

〈T−1
N DkDN

k (f), g〉 (5.17)

holds for f ∈
(
Ḃs,q

p (μ)
)′

, the dual of Ḃs,q
p (μ), with 1 ≤ p, q ≤ ∞.

We remark that the condition (5.8) is crucial in the proof in (5.17). This
theorem is not saying that we have the wavelet expansions on non homoge-
neous spaces in the usual way, because the present of the operator T−1

N . But,
however, the expansions in Theorem 5.16 can be considered as a generalized
wavelet expansion since, by Theorem 5.13, TN is bounded on Ḃs,q

p (μ) and
hence the expansions in (5.16) provide a kind of wavelet expansion on non
homogeneous spaces.

Now we are ready to introduce the Besov space on non homogeneous
spaces.

Definition 5.17. Let θ and Dk be the same as in Definition 5.15. Let |s| <
θ, 1 ≤ p, q ≤ ∞, and p′, q′ be the conjugate index of p, q, respectively. We
define

Ḃs,q
p (μ) =

{
f ∈ (Ḃ−s,q′

p′ (μ))′ : ‖f‖Ḃs,q
p

(μ) < ∞
}
.

We can use the expansions in (5.16) to show that this definition does not
depend on the choice of the approximations to the identity. Furthermore, we
also can study the properties of the Besov space Ḃs,q

p (μ), such that the dual
space and the boundedness of operators on such a space, which include the
Riesz operators defined via the approximation to the identity. See [DHY] for
more details.

We remark that even if we obtain a kind of expansions as given in Theorem
5.16, we do not know if there is a discrete version of the wavelet expansions
as given in Theorem 3.25 on spaces of homogeneous type.
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