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Preface

The aim of these lecture notes is to present an introduction to the representation
theory of wreath products of finite groups and to harmonic analysis on the
corresponding homogeneous spaces.

The exposition is completely self-contained. The only requirements are the
fundamentals of the representation theory of finite groups, for which we refer
the possibly inexperienced reader to the monographs by Serre [67], Simon
[68], Sternberg [73] and to our recent books [11, 15].

The first chapter constitutes an introduction to the theory of induced repre-
sentations. It focuses on two main topics, namely harmonic analysis on homo-
geneous spaces which decompose with multiplicity, and Clifford theory. The
latter is developed with the aim of presenting a general formulation of the little
group method. The exposition is based on our papers [12, 13, 64].

The second chapter is the core of the monograph. We develop the representa-
tion theory of wreath products of finite groups following, in part, the approach
by James and Kerber [38] and Huppert [35] and developing our research expos-
itory paper [14]. Our approach is both analytical and geometrical. In particular,
we interpret the exponentiation and composition actions in terms of actions on
suitable finite rooted trees and describe the group of automorphisms of a finite
rooted tree as the iterated wreath product of symmetric groups.

We explicitly describe the conjugacy classes of wreath products and the cor-
responding parameterization of irreducible representations. This is illustrated
by a wealth of examples including finite lamplighter groups and the wreath
product S, ¢ S, of symmetric groups.

The third chapter presents an exposition of our recent papers [9, 63, 64]
where we develop harmonic analysis on some homogeneous spaces obtained
by the composition and the exponentiation actions and their generalization,
namely the wreath product of permutation representations, introduced in [64].
As a particular case of the wreath product, we analyze in detail the lamplighter

X1



Xii Preface

group and develop an exhaustive harmonic analysis on the corresponding finite
lamplighter spaces. We also devote a section to the generalized Johnson scheme
and to a general construction of finite Gelfand pairs, which we introduced in
[9], based on the action of the group of automorphisms of a finite rooted tree
on the space of its rooted subtrees.

We wish to express our deepest gratitude to Roger Astley and Gaia Poggio-
galli at Cambridge University Press and to Susan Parkinson, our copy-editor,
for their most kind, constant and valuable help at all stages of the editing
process.

Roma, April 2013 TCS, FS and FT



1

General theory

In this chapter we discuss the notion of an induced representation and the struc-
ture of the commutant of a representation, and we present a new approach to
Clifford theory. We assume the reader to be familiar with the basic rudiments
of the representation theory of finite groups. We refer to the monographs by
Bump [7], Fulton and Harris [29], Isaacs [36], Serre [67], Simon [68] and
Sternberg [73] as basic references; see also our monograph [15].

In Section 1.1 we present the main properties of induction, focusing on the
Frobenius character formula and Frobenius reciprocity. Then, in Section 1.2,
we discuss several aspects of Frobenius reciprocity for a permutation represen-
tation; in particular, we show that the spherical Fourier transform provides an
explicit isomorphism between the commutant of a permutation representation
and the algebra of bi-K -invariant functions. In the last part of the section we
examine the particular case of a multiplicity free permutation representation,
which yields the notion of a Gelfand pair. Finally, in Section 1.3, we present an
exposition of Clifford theory, which provides a powerful tool for relating the
representation theory of a group G and the representation theory of a normal
subgroup N < G.

1.1 Induced representations

The presentation of this section was inspired by the books by Bump [7], Serre
[67] and Sternberg [73] and by our research-expository paper [12].

1.1.1 Definitions

Let G be a finite group. Let K be a subgroup of G and (p, W) a representation
of K.Let § C G be a system of representatives for the left cosets of K in G,
so that



2 General theory

G=]_[s1< 1.1)

(here, and in what follows, | | denotes a disjoint union). We shall always sup-
pose that the unit element 15 of G belongs to S. Consider the space WS =
{f: S — W}.Given g € G, we define the linear map o (g) : W5 — W5 by
setting

[0(8) f1(s) = p(k™HIf ()] (1.2)

for all f € WS ands € S, where 7 € S and k € K are the unique elements
such that g~ 1s = tk.

Letgi,go€ G, f e WSands € S. Also let s, s € S and k1, k» € K such
that gl_ls = 51k and gz_lsl = s7k>. Note that (glgz)’ls = s2(kok1). We then
have

[o(g1)(0(22) )1(s) = p(k1 " H(0(82) )(s1)]
= plki™Hpka™HIf (52)]
= plkak) "' [f (s2)]
= [0(g182) /)1(s).

It follows that (o, WS) is a representation of G.
We will always suppose that the representations (p, W) are unitary, that is,
W is equipped with a scalar product (-, -)w and one has

(p(@w. p(@w)w = (w, whw
forallg € Gand w,w’ € W.

Remark 1.1.1 Note that if (o, W) is unitary then (o, W¥) is also unitary with
respect to the scalar product on W* defined by

(s fyws = D), F/)w

ses

forall f, f/ € WS, Indeed, for all f, f' € WS and g € G we have

(0@ f,0@) [ ws =D _([06(2)f1(), [0(2) [ 1) w

ses

=Y (pl Y f ), ples ) (1)) w

seS
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=Y (). flaw

seS

=Y (f@), f'O)w

teS

=(f. fhws

where, for all s € S, t; € S and k; € K are the unique elements such that
g’ls = tyky. Note that, since the map sK +— #,K, that is, left multiplication
by g~ yields a bijection on the left cosets of K in G, then the map s > f; is
a bijection on S.

Consider now the space W¢ = {f : G — W} and define the subspace
Z € WO by setting

Z={feWC: f(gk)=pk ") f(g)forallg e Gandk € K}. (1.3)
Given g1 € G define the linear map 6(g1) : Z — Z by setting

[0(g1) f1(g2) = f(g; ' g2) (1.4)

forall gp € Gand f € Z. Let g1,82,83 € G,k € K and f € Z. We then
have

[0(g1) f1(g2k) = f(gy ' 82k) = p(k ) f(g7 " g2) = p(k~)[O(g1) f1(g2),

which shows that 6(g1) f € Z. Moreover,

[0(g182) f1(g3) = f((g182) "' g3)
= f(g;'g; " g3
= 10(s2) f1(g7 ' 83)
= [0(g1)0(g2) f1(83)-

This shows that (6, Z) is a representation of G.

Proposition 1.1.2  The G-representations (0, Z) and (o, WS) are equiva-
lent. In particular, the equivalence class of the representation (o, WS) does
not depend on the particular choice of the set of representatives for the left
cosets of the subgroup.



4 General theory

Proof Consider the map ® : WS — WY defined by setting

D()(g) = pk™ ) f(s)

forall f € WS and g € G, where s € S and k € K are the unique elements
such that g = sk.

Letg e Gandk € K. Letalsos € S and & € K such that g = sh and note
that gk = s(hk). We have

D(f)(gk) = p((hk)™ ) f(s)
=ptk " Hp™ £ (s)
= p(k"Hd(f) ().

This shows that the image of ® is contained in Z (see (1.3)).

Note that & is a bijection of WS onto Z, since every element in Z is uniquely
determined by its restriction to S.

Let us show that @ intertwines the representations o and 6. Let g1, g» € G
and f € WS. Let also 52,5 € S and ko, k € K such that g2 = s2kp and
gl_lsz = sk and observe that skk, = gl_lszkz = gl_lgz. Then we have

®lo(g1) f1(g2) = p(ky Hlo(g1) f(52)]
= pU; DIk ()]
= p((kk2)™") £ (s)

= ®(f)(skkz)
= 2(f)(g; '82)
=[0(g)P(/)1(g2).
This shows that & intertwines the representations o and 6. It follows that
o ~0. (]

Definition 1.1.3 The G-representation (o, WS), where o is defined by (1.2),
is called the representation induced by (p, W) from K to G and is denoted by
(Ind% p, Ind¢ W).

It follows from Proposition 1.1.2 that the induced representation is, up to
equivalence, independent of the choice of the system S of representatives for
the left cosets of K in G. Recalling that the dimension of a representation
(p, W) is defined as dim(W), we have that the dimension of the induced rep-
resentation (Indg,o, Indg W) is given by

dim(Ind{ W) = [G : K]1dim(W), (1.5)
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which immediately follows from the equalities dim(W¥) = |S| dim(W) and
S| =[G : K].
Moreover, from (1.2) we deduce that

[Ind§ p(g) f1(s) = p(s~' g f (1)] (1.6)

where ¢ is the unique element in S such that s~!gr € K. As a consequence,
setting p(g') = 0if ¢’ € G \ K, we can represent the linear map Indgp(g) by
the § x § matrix with entries in End(W) given by

(o67'es2)) . (1.7)

Sl,SQGS

Exercise 1.1.4 Show that, for g1, go € G, the matrix representing the linear
map Indg,o(g 182) is the product of the matrices representing Indgp(gl) and
Ind p(g2).

Given a finite set X we denote by Sym(X) the symmetric group on X, that
is, the set of all bijective maps (called permutations) m: X — X with multi-
plication given by composition. When | X | = n, we denote Sym(X) by S, and
refer to it as to the symmetric group of degree n.

Example 1.1.5 Let G = S3 = {e, (12), (13), (23), (123), (132)}. Consider
the subgroup K = {e, (12)} = S,. We choose as a set of representatives for
the left cosets of K in G the set S = {e, (123), (132)}. Note that (13) =
(123)(12) and (23) = (132)(12). The unique representations of K are one
dimensional, namely the trivial representation (i, C) and the alternating rep-
resentation (g, C). For simplicity of notation, we denote by ¢ and € the corre-
sponding induced representations of G on C @ (123)C & (132)C (note that
here W = C). Given f € C & (123)C & (132)C we then have

[ie)f1(e) = f(e). [i(e)f1(123) = £(123),  [i(e) f1(132) = £(132);
[[12)f1(e) = fe).  [(12)f1(123) = £(132),  [(12)£1(132) = f(123);
[[13)f1(e) = £(123),  [(13)f1(123) = fle),  [E13)f1(132) = f(132);
[[23)f1(e) = £(132),  [(23)f1(123) = £(123),  [123)f](132) = f(e);
[[(123)f1(e) = £(132), [E(123)f1(123) = f(e),  [1(123)f1(132) = f(123);
[[(132) f1(e) = £(123), [E(132)£1(123) = f(132), [€(132)f](132) = f(e).

The corresponding matrices as in (1.7) are given by

1 00 1 00 01 0
ey=(0 1 0}, (12)={(0 0 1), wI3)=({1 0 O},
0 0 1 01 0 0 0 1
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0 0 1 0 0 1 01 0
123) =10 1 O], ©123)=1{1 0 O), w(132)=]10 0 1
1 00 010 1 00

Similarly,
[E(e) f1(e) = f(e), [£(e) f1(123) = f(123), [E(e) f1(132) = f(132);

[E(2) f1(e) = —f(e), [£(12) f1(123) = — f(132), [€(12) f] (132) = — f(123);
[E(3) f1(e) = —f(123), [e(13)f](123) = —f{(e), [£(13) f1(132) = — f(132);
[£23)f1(e) = —f(132), [e(23)f1(123) = —f(123), [€(23)f1(132) = —f(e);
[£(123) f1(e) = f(132),  [(123) f]1(123) = f(e), [£(123) f] (132) = f(123);
[e(132) f1(e) = f(123),  [£(132) f]1(123) = f(132), [e(132)f](132) = f(e),

and the corresponding matrices, again as in (1.7), are given by

100 -1 0 0 0 -1 0
se)=l010],ga2=10 0o -1}, za3)=[-1 0 o0
00 1 0 -1 0 0 0 -1
0 0 -1 00 1 010
23 =10 -1 0), 5(123):(1 00 ,5(132):(0 0 1
-1 0 0 010 100

Definition 1.1.6 Let G be a finite group acting transitively on a finite set
X and denote by L(X) the space of all functions f : X — C. Then the
corresponding permutation representation (A, L(X)) is defined by

() 100) = fg™ ')
forallg € G, f € L(X),and x € X.
Fix a point xg € X and denote by K = {g € G : gxo = xo} its stabilizer;
then we can identify X and the set G/K of left cosets of K as G-spaces. We

refer to X = G/K as an homogeneous space. Denote by (¢, C) the trivial
(one-dimensional) representation of K.

Proposition 1.1.7 The permutation representation A and the induced repre-
sentation Indgt are equivalent.

Proof Let®:L(X)— C5= Indg(C be the map defined by

[Pf1(s) = f(sx0)

forall f € L(X) and s € S. Clearly ® is a vector space isomorphism. More-

over, for all f € L(X),g € G,ands € S,ift € S and k € K are such that

g~ s = tk then we have
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[@((8) F)1(s) = [A(g) f1(sx0)
= f(g " "sx0)
= f(txo)
=[®f1()
= [Ind{ () Df1(s).

This shows that ® intertwines A and IndgL. It is easy to see that @ is a bijection
and therefore A ~ IndgL. (]

Definition 1.1.8 Suppose that G is a finite group, K a subgroup of G, and
(o, V) arepresentation of G. The restriction Resgo of o from G to K is the
representation of K on V defined by setting Resgo(k) =o(k) forallk € K.

In the notation of Definition 1.1.8, if W < V is a K-invariant subspace
(thatis, o(k)w € W for all k € K and w € W) then we may also consider
the representation Resga|w of K on W (here, and in what follows, given sets
X,Yand Z € Xandamap f : X — Y wedenote by f|z : Z — Y the
restriction map defined by f|z(x) = f(x) forall x € Z).

In the notation of Definition 1.1.3, set Wo = {f € WS : f(s) = 0if s #
1}. Then we have

@) Resgo|WO is equivalent to p;
(i) Ind§W = @, g0 (s)Wo.

Indeed (i) is obvious, while to prove (ii) it suffices to note that for s, ¢ € S and
fo € Wp we have

0 ifs £t

= ok~ ! —
[o(s) fol (1) = p(k™ ") folq) :fo(lc) s

where g € S, k € K are chosen in such a way that s 't = gk. These two prop-
erties provide a characterization of induced representations (or an alternative
definition; see [67]):

Proposition 1.1.9 Let G, K, and S be as above. Let (o, V) be a represen-
tation of G. Let W < V be a K-invariant subspace and set p = Resgo
Suppose that

w*

1% =@a(s)w.

seS

Then Indgp ~o0.
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Proof Firstletussett = Indgp. Consider the linear map
WS — VvV
[ Bes () ().

It is clearly a bijection. Moreover, we have, for f € wSs, geGands e S,

[t(2) f1(s) = plk; ) f(t) = o (k) F (1),

where t; € S and ky € K are chosen in such a way that g_ls = tyk;. Therefore

o1(g)f = Po@Ir(@) 1)

seS

=Pos)otk ) f)

seS

=Po@o)ft) (k' = gty)

seS

=0 P o))

seS

=0 (g)df.

This proves that @ also intertwines Indg p and o. It follows that the two
representations are equivalent. U

1.1.2 Transitivity and additivity of induction

One of the most important properties of induction is transitivity.

Proposition 1.1.10 (Induction in stages) Let G be a finite group, K < H <
G be subgroups and (p, W) a representation of K. Then

Ind (Ind? W) = nd§ w (1.8)
as G-representations.

Proof LetT C H (resp. S C G) be a set of representatives for the left cosets
of K in H (resp. of H in G). Then the map (s, ) — st establishes a bijection
between S x T and the set ST = {st : s € §,t € T} C G. Moreover, ST is a
set of representatives for the left cosets of K in G.

Consider the map

o: Wi > (wh)S (1.9)
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defined by [®f(s)] (r) = f(st) forall f € WST s e Sandt e T. It follows
from the above observations that @ is a linear isomorphism. Let us show that ®
intertwines the representations Indgp and Indglndg p.Let f e W3T g € G,
s € Sandr € T.Denote by s’ € S,t" € T and k € K the unique elements
such that g~ !(st) = s't'k. Also set

h=rtkt"" e H. (1.10)

‘We then have on the one hand
[Ind% p(8) f1(st) = p(k=") f(s't")
so that

{®[IndE p(g) F1()}1) = pk™ ") {[@F (H] (N} . (1.11)

1

On the other hand we have, using (1.10) (that is, the identities g~'s = s’k and

(h~H=Y% = ht = 1'k),

{mdgmagl p@) @) | ) = {maf pn=H1er 1} o)
= pkH{[er O}, (12)

Comparing (1.11) and (1.12), the proof is complete. O
Another property of the induction operation is additivity.

Proposition 1.1.11 Ler G be a finite group and K < G a subgroup. Let
(p1, W1) and (p2, Wa) be two representations of K. Then

Indg (p1 & p2) ~ Indg (p1) @ Ind§ (p2). (1.13)

Proof Let S C G be a set of representatives for the left cosets of K in G.
Consider the linear map ®: (W; @ W2)S — WIS ® WZS defined by

[@(H]i(s) =[f()N and [@(H]2(s) =[f()]2

forall f € (Wi @W,)S and s € S.Itit clear that ® is a linear isomorphism. Let
us show that @ intertwines Indg (p1®p2) and Indg (,ol)@Ind,((; (p2).Letg € G,
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seSand f = (W) & W»)S. Then we can find unique ¢ € S and k € K such
that g‘ls = tk. We then have, fori =1, 2,

[®(Ind¥ (o1 ® p2)(8) 1i(s) = [(IndG (o1 & p2)(8) ) ()]
=1k ® p2 (k™) (D
= pi (k" DHLfO)];
= pi (k" HIP(NHLi ()
= Ind§ (p)) ([P (/)] (5)
= [(Ind§ (1) ® IndG (02)) ()P (f)]; (5).

This shows that ® intertwines Indg (p1 @ p2) and Indg (p1) ® Indg (p2) and
the proof is complete. U

1.1.3 Frobenius character formula

Theorem 1.1.12 (Frobenius character formula for induced representations)
Let G be a finite group, K < G a subgroup and S C G a system of representa-
tives of left cosets of K in G. Let (p, W) be a representation of K and denote
by xp its character. Then the character X1nd$ of the induced representation is
given by

XinaGp &) = D Kp(sT'g9). (1.14)
ses:
s_lgseK
Proof Let (-, -)w denote the scalar product on W and let {e; : j € J} be
an orthonormal basis for W. Then, we define a scalar product on WS as in
Remark 1.1.1. Also, denote by f; ; € WS the map defined by fs (s =
8s50¢j € Wioralls,s" € Sand j € J. It follows that {fy ; : s € S, j € J}is
an orthonormal basis for W5 = Indi.
Now let g € G and s € S. Then there exist unique ¢ € S and k € K such
that g_ls = tk or, equivalently,

k' =s"1gr. (1.15)
Setting o = Indgp we deduce that

[0(8) fu /1) = p(™ ") fu j () = Suip(k~ e (1.16)
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forall u € S and j € J. We then have

KinaG o (&) = D (0 @) fujs fujdws = D (10(&) fu 1), fui(D)w
j€s “s

> Suibustpk ej ejlw  (by (1.16)
u,seS

jeJ

D 8silok ey edw
jE

D oG gs)ejepyw (by (1.15)

seS:

x_lgseK
jeJ

= Z Xp(silgs)-

seS:
s’lgseK O

Exercise 1.1.13  Give an alternative proof of the Frobenius character formula
(1.14) by using the matrix representation (1.7).

1.1.4 Induction and restriction

Induction and restriction are not inverse operations: this follows immediately
after comparing dimensions (see (1.5)). The following example shows that,
even in the case of the trivial representation, the composition of these two
operations is quite different from the identity.

Example 1.1.14 Let K be a subgroup of a group G and set X = G/K. Con-
sider first the trivial representation (tg, C) of G. We clearly have ResgLG =
1k . Therefore Ind¢Res$ 1 = IndGix = (A, L(X)) (cf. Definition 1.1.6 and
Proposition 1.1.7). Thus, if K # G we easily deduce that InngesgLG #1G,
where ({g, L(X)) is the G-representation defined by i (g) f = f forallg € G
and f € L(X).

Consider now the trivial representation (tx, C) of K. Let us show that if K
is not a normal subgroup then Resglndgt K # lx, where ({g, L(X)) is the K-
representation defined by ix (k) f = f forall k € K and f € L(X). Denoting
by xo € X a point fixed by K, by our assumption we can find k € K and
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g € Gsuchthat g~'k~!g ¢ K or equivalently k' gxo # gxo. Then, recalling
that IndgLK = (A, L(X)), we have

[Res% Ind$ 1k (k)Sgx,](gx0) = [Res A(k)Sgx,]1(gx0)
= [A(k)Sgx,1(g0)
= 8gxg (k™' gx0)
=0#1
= [84x,](gx0)
= [Tk (k)85 1(gx0),

where 8 € L(X) is the Dirac function at x € X (thatis, 8,(y) = lifx =y
and 0 otherwise).

However, the following two results establish the right connection between
induction and restriction.

Proposition 1.1.15  Let (0, V) be a representation of a group G and (p, W) a
representation of a subgroup K < G. Then we have the following isomorphism
of G-representations:

V @ Ind¢W = Ind$[(Res§ V) @ WI. (1.17)

Proof Let S C G be a set of representatives for the left cosets of K in G.
Consider the linear map ®: VWS — (VQW)* defined on simple tensors by

[P NI =06 Hv® f(s)

forallv e V, f € WS and s € S. Let us prove that ® is a linear isomorphism.

To show that it is surjective, fix F € Indg[(Resg V) ® W]. Then, for every

s € S there exists a finite index set /; and vf e V,w] € W,i e I, such

that F(s) = ) ;c; v; ® w;. Consider the element 7 = ) jef, ()] ® f] €
) S

te

Ve Indi where fi’(s) = (Ss,,wf for all + € S. We claim that ®(r) = F.
Indeed we have, forall s € S,

[@)1(s) = D06~} ® £ (5)
iel;
teS

_ s s
= E v; ® w;

ielg

= F(s).
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This shows that @ is surjective. Moreover, using (1.5) we have
dim(V ® Ind¢ W) = dim(V) dim(W)[G : K] = dim(Ind§[(Res§ V) @ W),
so that, by linearity, we deduce that ® is also injective. Thus & is a linear
isomorphism between V & Indg W and Indg [(Resg V)y® W].
Let us show that ® intertwines 6 ®Indg p and Indg (Res%@ ®p).Letv eV,
f e WS, g € Gands e S. Then we can find unique elements t € 7 and k € K
such that g~ls = tk (so that s~'g = k~'+~!). We have on the one hand
[o10 8 magp)@we NI} = {elb@ve st o1} ©)
=06~ H0@v® Pk~ f (1)
=06 " v e ek f@6)  (1.18)
and, on the other hand,
[Ind§ (Res§6 ® p) ()P ® f)I(s) = [(Resgok™H @ pk~NPW® f)I(1)
=[0G~ @ pG HIOC Hv ® £(1)]

=0k Hoa @ pkH f(1).
(1.19)

A comparison between (1.18) and (1.19) shows that @ is an intertwiner, com-
pleting the proof. O

Corollary 1.1.16 Let G be a group and K < G a subgroup, denote by X
the homogeneous space G /K and let (6, V') be a representation of G. Then we
have

Ind¢Res¢V = V @ L(X). (1.20)

Proof Apply Proposition 1.1.15 with (p, W) = (1, C), the trivial represen-
tation of K. In this case, Inde = L(X) and (ResgV) QW = (ResgV) ®
C = Res@V. O

Remark 1.1.17 Let G be a group and K < G a subgroup. If (o1, V1) and
(02, V2) are two representations of G then we clearly have

Resg (o1 ® 02) ~ Resg (01) ® Resg (02).

On the contrary, if K is a proper subgroup of G and (p1, Wp) and (o2, W») are
two representations of K then we always have

nd$ (01 ® p2) # Ind$ (01) ® Ind$ (p2),

as immediately follows from (1.5).
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1.1.5 Induced representations and induced operators
Let G be a finite group and K < G a subgroup. Let (p1, W) and (p2, W>) be
two representations of K and let 7: W; — W; be a K -intertwining operator.

Fix a set S C G of representatives for the set of left cosets of K in G. We
define an operator Indg T: Indg W, — Indg W by setting

[Ind$ 7 (/)1(s) = TLf ()] (1.21)
forall f € Vi = W) and s € S.
Proposition 1.1.18  With the above notation we have

@) Indg T intertwines Indg p1 and Indg 02,
(ii) Ker Ind{7T = Ind${Ker T;
(iii) Ran Ind¢7 = Ind$Ran 7.

Proof Let f € WS, g € G ands € S. Then we can find unique € S and
k € K such that g~'s = rk and therefore

{Ind%m(g)[lnd%T(f)]} () = (k1) {[Ind%T(f >J<t>}
= p(k"HTLf ()]
=Tlo (k™) f ()]
=7 { I p1(9) /1)
= {mag 7 o1 ()1} 9.

This shows (i). To show the remaining part, let f € V| = WIS .

We have f € Ker Ind$ T if and only if 0 = [Ind% T (f)1(s) = T[f(s)]
for all s € S, that is, if and only if f(s) € Ker T for all s € S, equivalently,
f € Ind{Ker T. This shows (ii).

Similarly, we have f € RanInd{7 if and only if there exists f' € Ind§ W =
W} such that f(s) = [Ind$ T (f)1(s) = T[f'(s)] forall s € S, that is, if and
only if f(s) € Ran T for all s € S, equivalently, f € Inngan T. Thus, (iii)
follows as well. O

1.1.6 Frobenius reciprocity

Theorem 1.1.19 (Frobenius reciprocity) Let G be a finite group, K < G
a subgroup, (0,V) a representation of G and (p, W) a representation of K.
For T € Homg(V, IndG W) define the linear map T:V—>W by setting, for
everyv € V,
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Tv=[Tv](lg). (1.22)

Then T € Homg (Resg V, W) and the map T +— T is a linear isomorphism
between the space of all operators that intertwine (6, V') with (Indg 0, Indg W)
and the space of all operators that intertwine the restriction (Resﬁ@, V) of
0, V) to K with (p, W). The corresponding formula is

Homg (V, Ind§ W) = Homg (Res% V, W).

Proof We first check that T € Hom K (Resg V, W); this follows immediately
from
TO(k)v = [TOk)v)](16)
=, [IndZ p () T](16)
= P(O[Tv(16)]
= p(k)Tv (1.23)
where k € K, v € V; moreover, =, follows from the fact that 7 is an inter-
twiner and =, from the definition of induction.
Conversely, let S € G be a system of representatives for the left cosets of

K in G. Then, given U € Homg (Resg V, W), define U:V — Indi by
setting, forevery v € V and s € S,

[Uv](s) = UA(s M.
Again, it is easy to check that Ue Homg (V, Indg W) and, moreover, from

[Tv](s) = [Indgp(s—l)rv] (1g) = [TOGs Hvl(lg) = TG Hv  (1.24)

one deduces that T > T and U + U are inverse to one another, thus estab-
lishing the required isomorphism. O

In particular we deduce

Corollary 1.1.20 Let G be a finite group, K < G a subgroup and W and V
irreducible representations of G and K, respectively. Then the multiplicity of
W in Indg V equals the multiplicity of V in Resg w. O

From the point of view of character theory we have

Corollary 1.1.21  With the same hypotheses as in Theorem 1.1.19,

1
_<XR65297 Xp)K = E

K] (X0, Xlndgp)c-
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1.2 Harmonic analysis on a finite homogeneous space

In this section we describe the structure of the permutation representation and
of its commutant. Our approach emphasizes the harmonic analytic point of
view and is based on [64] and [65].

1.2.1 Frobenius reciprocity for permutation representations

Definition 1.2.1 Let G be a finite group and (o, V') arepresentation of G. The
commutant of V is the algebra Homg (V, V) consisting of all linear operators
intertwining V with itself.

Theorem 1.2.2 Let G be a finite group and (o, V) a representation of G.
Let V = pe1 Mp W)y denote an orthogonal decomposition of V' into (not
necessarily irreducible) subrepresentations.

(i) We have
Homg(V,V) = @ mpmyHomg (W,, Wyr) (1.25)
p.p'el
as vector spaces. In particular,
dim Homg(V, V) = Y mpm, dim Homg(W,, Wy).  (1.26)
p.p'el

(i) If, in addition, the subrepresentations (p, W), p € I, are irreducible and
pairwise inequivalent then we have

Homg (V. V) = €D M, m, (C) (1.27)
pel
as algebras. In particular,
dim Homg (V. V) = > " m?. (1.28)
pel
(iii) Conversely, if (1.28) holds then the subrepresentations (p, W), p € 1,

are irreducible and pairwise inequivalent.

Proof For every p € I set V, = m,W, and observe that the V,’s are G-
invariant and pairwise orthogonal (by assumption). Let 7 € Homg (V, V). For
all p, p" € I define a linear map 7, , : V, — Vlﬁ by setting

Ty, = PyTly,,
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where |y, denotes the restriction to the subspace V, and Py @ V. — Vy
is the orthogonal projection onto the subspace V,. We claim that 7, , €
Homg (V),, V). Indeed, if g € G and v € V,,, we have

Ty pp(@v=PyTlyv,p(g)v
= PyTo(g)v
= Pyo(g)Tv (since T € Homg (V, V))
=p'(g)PyTv
=p'(g)PyT|v,v
= p/(g)Tp’,pU~
It is immediate that the map T+ (T, ,),, 71 yields a vector space isomor-
phism
Homg (V. V) = @D Homg(V,. V). (1.29)
p.p'el
Observe now that if p ~ 7 and p° ~ 7’ then Homg(W,, W,) =
Homg (W, W;/). It then follows from the previous argument that
Homg (V),, V) = Homg(m, Wy, myWy) = mpymyHomeg (W,, Wy).

From (1.29) we then obtain (1.25) and its immediate consequence (1.26).

Suppose now that the p’s are irreducible and pairwise inequivalent. By
Schur’s lemma, we have that Homg (V,, V,) is nontrivial if and only if p ~ p.
Then (1.29) becomes the vector space isomorphism

Homg (V, V) 5 T = (T ) per € @) Homa (V,, V). (1.30)
pel
Let us show that (1.30) is multiplicative. First observe that, in this case, if

Z € Homg(V,V) and p € I then Zv = Z, ,v for all v € V,. Thus, if
R,T € Homg(V, V) and v € V,, we have

(RT)p,pv=RTv=R(T, pv) =Ry T, pv,

showing that (RT),., = Ry, pT,,,. It follows that (1.30) is an algebra isomor-
phism.
Fix p € I; let us show that

Homg (V,, V,)) = My, i, (O). (1.31)

LetV, =m,W, = Wg @W3@~ . ~69W,’)n ” denote an orthogonal decomposition
of the isotypic component V,,. Then, using Schur’s lemma, we can choose a
basis {Tl.f)j tpel i, j=1,2,...,my} of Homg(V,, V,) with the following
properties:
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o Ker 7/, = (W)H*
PR
e Ran le = W;,

PP _ b
° Ti,jTj,k =Ty

Therefore any 7 € Homg (V,, V,)), can be uniquely written as

Mp
_ o P
T=) o1/,
ij=1

S O
with a ;€ C, and the map
p \Mm
T (@) j—
yields the desired isomorphism (1.31) of algebras. Combining (1.30) and (1.31),
we get (1.27) and its immediate consequence (1.28).
Conversely, suppose that (1.28) holds. From (1.26) and the fact that
dimHomg (V,, V) > 1if p = p’ (the identity map Idy, € Homg(V,, V,))
and the m,’s are nonnegative, we have

Z m? = dim Homg (V, V)
pel

=Y m2 dim Homg(W,, W,) + »_ m,m, dim Homg(W,, W)

pel p.p' el

p#p:

o~p

+ Z mpm  dim Homg (W,, W),
p.p' el
pp’

which forces, on the one hand, Homg (W), W,/) = 0 for all distinct p, p el
such that p ~ p’ (yielding pairwise inequivalence of the p’s) and, on the other
hand, dim Homg (W,, W,) = 1 (yielding the irreducibility of the p’s). U

Corollary 1.2.3

(1) The orthogonal projections onto the isotypic components constitute a basis
for the center of Homg (V, V).

(i) An operator T belongs to the center of Homg(V, V) if and only if every
isotypic component m,W,, p € I, constitutes an eigenspace for T. (]

Suppose that G acts transitively on a set X and denote by (A, L(X)) the
corresponding permutation representation of G. Fix a point xo € X and denote
by K < G its stabilizer.
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Definition 1.2.4 Let G be a group and (o, V) a G-representation. We denote
by VK = (v € V : o(k)v = vforall k € K} the subspace of K-invariant
vectors in V.

Suppose now that (o, V) is irreducible, and denote by d, its dimension. Also
suppose that VX is nontrivial. With every v € VX we associate a linear map
T, : V — L(X) defined by setting

do
(Tyw)(x) = m(lv, o(&v)y (1.32)

for all w € V and x € X, where g € G is such that gxo = x. Note that
such a group element exists by the transitivity of the action; moreover, (1.32)
is well defined since if & € G also satisfies hxy = x then A~} gXo = Xo, so that
h_lg = k € K and therefore o (g)v = o (hk)v = o(h)o(k)v = o (h)v. We
have that 7, € Homg (V, L(X)); indeed, forall g,h € Gandw € V,

ds
[Tyo (Ww](gxo) = ﬁ(o(h)w, o(Qv)y

_ /%(w,a(h)_la(g)v)v
dy _
- /mw},a(h "9y

= [T, w](h ™" gx0)
= [A(W)Tyw](gxo),
which shows that T,o (h)w = A(h)T,w.

Proposition 1.2.5 (Orthogonality relations) With the notation above, for all
v,ueVvk and w, z € V one has

(Tyw, Tyz)Lx) = (w, 2)v (v, u)y. (1.33)
In particular,

(1) if lvllv = 1 then T, is an isometric immersion of V into L(X);
(i) Im(7,) L Im(Ty) < u L v.

Proof Fix u,v € VX and define a linear map R = Ry.» : V — V by setting

1
Rw = ) (w. o (9uhyo(g)v (1.34)

|K|
geG
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for all w € V. It is easy to check that R € Homg(V, V) and, since V is irre-
ducible, Schur’s lemma implies that R = aly, whereow € Cand Iy: V — V
is the identity map on V. Moreover, if {w; : i = 1,2, ..., ds} is an orthonor-
mal basis for V we have

ds

2 1
— <m2(wi,a(g)u)vU(8)vai>
; 14

d
1 o
~ 1Kl Z Z<wis a(gu)y(o(gv, wily
K] i=1geG
1
= = D _lo(@v.o(@u)y
K| <=5
1
K] (v, u)y
geG

= |X[{v, u)y.

Thus, ad, = Tr(aly) = Tr(R) = |X[{v,u)y, which implies that R =
%(v, u)y Iy. Therefore, if w, z € V, we have (the overbar denotes the com-

plex conjugate)

(Tow, Ty2) L) = — — Y (w, p(u)v(z, 0(Hv)y
K| |X]
geG
ds
2 (Rw,
|X|< w, 2)v

This proves (1.33). Finally, (i) and (ii) follow immediately from (1.33). O

We equip the vector space Homg (V, L(X)) with the normalized Hilbert—
Schmidt scalar product, given by

d,

Q

(R, T)us = Tr(R*S) (1.35)

1
do i=1
for all R, T € Homg(V, L(X)), where {w; : i = 1,2,...,d,} denotes any
orthonormal basis in V and R* € Hom(L(X), V) is the adjoint of R.
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Theorem 1.2.6 (Frobenius reciprocity for permutation representations)
Let G be a finite group and K < G a subgroup and set X = G/K. Let (o, V)
be an irreducible G-representation of dimension d, and suppose that VX is
nontrivial. For any v € VK let T, : V — L(X) be as in (1.32). Then the map

vE 5 v+ T, e Homg(V, L(X))

is an antilinear isometric vector space isomorphism. In particular, the multi-
plicity of (o, V) in (A, L(X)) is equal to dim VK,

Proof We start by observing that if &, 8 € C, u,v € VK, then Tyyipy =
oaTl, + BT v, that is, the map v +— T, is antilinear. We now show that it is also
a bijection. If T € Homg(V, L(X)) then V 3 w — (Tw)(xp) € C is a linear
map and therefore, by the Riesz theorem, there exists a unique v € V such that
(Tw)(xg) = (w, v)y, for all w € V. Therefore, forall w € V and g € G, we
have
[Tw](gx0) = [A(g™ ) Tw](x0)

=[To(g Hwl(xo)  (because T € Homg(V, L(X)))

= (0(¢ Hw, v)y

= (w,o(g)v)y. (1.36)

This shows that 7 =,/ %‘Tv. Moreover, for all w € V and k € K we have
from (1.36)

(w, v}y = [Twl(xo) = [Tw](kxo) = (w, o (k)v)v.

It follows that o (k)v = v for all k € K, thatis, v € VK.
Finally, we show that the map is isometric: if u, v € VK and wy, wo, ..., Wy,
constitute an orthonormal basis in V then, by (1.33),

d,
1 o
(TmTv)HS:d_ E ij,ij v =(v,u)y.

O

Corollary 1.2.7 The vectors vy, va, .. ., Uy form an orthogonal basis for vk
if and only if

T,VOT,V& T,

is an orthogonal decomposition of the V -isotypic component of L(X). 0
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Exercise 1.2.8 Use the notation in Theorem 1.1.19 and let (¢, C) denote the
trivial representation of K.

(i) Show that the map v +— S, v € VK defined forallu € V by

500 = [ 4 (u,v)
u)=_[— u,v)y,
v IX| \4
yields a vector space isomorphism from VX onto Homg (Resg v, C).

(ii) Show that the composition of the maps VX 3 vi— T, e Homg (V, L(X))
(cf. Theorem 1.2.6) and Homg(V, L(X))> T Te Homg (ResgV, C)
(cf. Theorem 1.1.19; here, according to Proposition 1.1.7, we identify
Indg(C and L(X)), namely the map VK 3 v ﬁ € Homg (Resg V,0O),
coincides with the map v — S, in ().

(ii1) Deduce that the following diagram is commutative:

vKE —  Homg(V, L(X))

\ !

Homg (Res§ V, €).

1.2.2 Spherical functions

Let G be a finite group. Then the vector space L(G) = {f : G — C} can be
endowed with the structure of an algebra by defining the convolutional product
f1 * fa of two functions fi, f» € L(G):

Lfi% f20@) =) filgh™") falh)

heG

forall g € G.

Now let K < G be a subgroup. We denote by L(G)K = {felL(G):
f(gk)=f(g) forall ge G, ke K} and XL(G)X ={f € L(G) : f(kigks) =
f(g) forall g € G, ki, kr, € K} the subsets of L(G) consisting of the right-
K -invariant and bi-K -invariant functions on G, respectively.

Exercise 1.2.9 Show that L(G)X and XL(G)X are indeed subalgebras of
L(G).

Our next target is to present a description of the commutant of a permutation
representation in terms of bi- K -invariant functions.
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Let X = G/K be the homogeneous space consisting of the left cosets of
K in G. The group G naturally acts (transitively) on X by left multiplication.
We denote by xo € X the coset K. Note that xo € X is fixed by K. Set
LX)={f:X - Cland LX)X = {f € L(X) : Mk)f = f,Vk € K},
where A is the permutation representation.

Exercise 1.2.10 Given fi, f> € L(X) define fi x f> € L(X) by setting

[fi % f21() = D fitxo) fa(sxo), (137)

ts=g

where x € X and g € G are such that gxop = x. Prove that the multiplication
in (1.37) is well defined (that is, it does not depend on the particular choice
of g) and induces the structure of an algebra on L(X). Show that L(X)X is a
subalgebra of L(X).

With each f € L(X) we associate f € L(G), defined by setting

f(®) = f(gx0) (138)

forall g € G.
Clearly, f € L(G)X for every f € L(X) and the map f + f establishes
an algebra isomorphism between L(X) and L(G)X.

Remark 1.2.11 Note that the map f — fclearly induces an algebra iso-
morphism between L(X)X and KL(G)X.

Theorem 1.2.12 The commutant Homg (L(X), L(X)) is isomorphic to the
algebra XL(G)X of bi-K -invariant functions on G.

Proof LetT € Homg(L(X), L(X)) and let {6, : x € X} denote the basis
of L(X) consisting of the Dirac functions. Let (¢(x, y))x yex be the com-
plex matrix associated with the linear operator 7 in the given basis, so that
[Tflx) = Zyext(x, y)f(y) for all f € L(X) and x € X. Note that, by
virtue of the G-invariance of 7', we have 7(gx, gy) = ft(x,y) for all g €
G. Consider the function Y7 € L(X) defined by ¥7(x) = ﬁt(x, xo) for all
x € X. Observe that Y7 (kx) = %t(kx,xo) = ﬁt(x, klxo) = ﬁt(x,
x0) = Yr(x) fork € K, x € X, so that 7 € L(X)X. We have, forall g € G
and f € L(X),
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Tf(g) = [Tf1(gx0)
= > t(gx0. M) F ()

yeX

1
=K 1(gx0, hxo) f (hxo)
heG

1
= m t(h~ ' gxo, x0) f (hxo) (by the G-invariance of T')
heG

=Y Ur(h ') f(h)

heG

= (f*¥1)(9).

This shows that

Tf=f=*vyr. (1.39)

The function ¥r € KL(G)X is called the convolutional kernel of the
operator 7.

For £ € L(G), define £* € L(G) by setting £%(g) = g(g " forall geG.
Note that the operation £ > £% is an involution, that is, (£¥)* = &, and antim-
ultiplicative, that is,

(1 %5 =57 x&F (1.40)

for all £, &1, & € L(G). Finally, note that £* € KL(G)X for all £ € KL(G)X.
Consider the map W : Homg (L(X), L(X)) — XL(G)X given by

W(T) = (Yr)*

for all T € Homg(L(X), L(X)); let us show that W is the desired algebra
isomorphism. Linearity and injectivity are obvious. Moreover, if n € KL(G)X
then the operator 7;, : L(X) — L(X) defined by

—~

Trzf=f*77tI

forall f € L(X) is G-invariant and W(T;) = 5. Indeed, for all f € L(X) and
g, g1 € G, we have on the one hand
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[T,(2) £1(g1) = [A(2) f * n*1(g1)
= 3" ) fl(g18: D (g2)

ngG

= > flg ' g8y Hne)

226G
= [/ *n"1g g1
= fn?(g_lgl)
= [A(e)(Ty )1(g1).

showmg the G- 1nvar1ance of T;. On the other hand, for every f € L(X) we
have f s =T, f = f * an or, equivalently,

f* —yr) =0. (1.41)

By taking f = §gy, with g € G in (1.41) one easily gets nt = 1/7;”, that is,
W (T,) =n.

To complete the proof we need only to prove that W preserves multiplication.
Let T1, T» € Homg(L(X), L(X)). Forevery f € L(X) we have, by (1.39) and
the definition of the map W,

f*W(Ti o) = f % Wror,

=(TioT)f

= T\(Tof) = To f % W(T})?

= [ W(T)? % W(T))*

= [ (W(T) « W(T)*  (by (1.40)),

which shows that W (7} o Tp) = W (T)) x V(Tp). [l

Let ] C G denote the set of irreducible representations contained in L(X)
(here, and in what follows, we denote by G the dual of the group G, that
is, a complete set of pairwise inequivalent irreducible representations of the
group G). We can summarize Theorem 1.2.12 and the second statement in
Theorem 1.2.2 by writing

Homg (L(X), L(X)) = XL(G)X = EBM," (©), (1.42)

pel

psMp
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where L(X) = @ ,c;m,V, is the decomposition of the permutation repre-
sentation into its irreducible components (with multiplicities). An irreducible
G-representation that appears in the decomposition of the permutation repre-
sentation is called a spherical representation.

Corollary 1.2.13  With the above notation we have

Z mf) = number of K -orbits on X. (1.43)
pel

Proof From (1.42) we deduce that

> m? =dim [ D My,.m, (C) | = dim(*L(G)¥).
pel pel

Moreover, we have already seen (cf. Remark 1.2.11) that the algebras KL (G)X
and L(X)X are isomorphic; in particular dim(¥L(G)X) = dim(L(X)X).
Finally, we note that a function f € L(X) belongs to L(X)X if and only if
it is constant on each K -orbit of X. Thus, the dimension of L(X)X equals the
number of such K -orbits and this ends the proof. (]

In the remaining part of the section, we construct an explicit algebra iso-
morphism between XL(G)X and @D ,c1 Mn,.m,(C). We also introduce two
remarkable subalgebras of XL(G)X that are worthwhile studying, with their
relative spherical functions.

Definition 1.2.14 Let (p, V,) be a spherical representation. Select an
orthonormal basis B, = {v{,v5, ..., vy }in VX, the subspace of K -invariant

vectors in V.

(i) The spherical matrix coefficients of (p, V,) with respect to B, are the
functions ¢fj € L(G),i,j=1,2,...,m,, defined by

o (8) = (], p(V))v,. (1.44)

(ii) The spherical functions of (p, V,) with respect to B, are the coefficients
¢ i=1,2,...,mp.

(iii) The spherical character of (p, V,) is the function x 5 = Z:"z" : ¢>l./f -

Exercise 1.2.15  Show that x 5 is independent of the orthonormal basis B,.
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Remark 1.2.16 Note that since the vectors vl'.o ,

invariant then the spherical matrix coefficients 4)1'.0 I i
bi- K -invariant. Moreover, by (1.32) we have

| X|
¢! (g) = [, / va;vf } (gx0)

and from Proposition 1.2.5 we deduce that the spherical matrix coefficients
q&fj, i,j =1,2,...,mp, p € I, form an orthogonal basis for L(G)X with
||¢;fj||§(G) = % (note that by (1.42) we have dimXL(G)X = > el m?).

i =12,...,m,, are K-
J=12,...,m,, are

The spherical matrix coefficients satisfy the usual convolutional identity of
the matrix coefficients of irreducible representations. We give a proof for the
sake of completeness.

Lemma 1.2.17 With the above notation we have

|G|
97 % Bk = —81180.000 (1.45)
P

foralli,j=1,2,... . mpyandh,k=1,2,...,mq,.

Proof From the orthogonality relations of the spherical matrix coefficients
we deduce

O+ 7406 = oL 604

teG
=Y peOv?)v, (07, o (7)),
teG
dﬂ
= (W, p()v)y, Y (0], pv?)y, (vF o (Ov] )y,
(=1 teG
d
S p Gl
= Z(v,- , p(8)vy )VpSE,ij,h(sp,ad_
=1 »
, G|
= ¢i,k(g)8./vh8»0»0d_’
7]

where =, follows from the identity ,o(g_l)vf = Ziil(vf, ,o(g)vf)vp v,f. O

The spherical Fourier transform relative to the matrix coefficients (1.44) is
the map

Lo - @pglMﬁp,mp((c)
f e f
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where
foi(o) = (f. ¢! )LG)-
The corresponding inversion formula is given by
1 & N
F® =g gdp ,-,-Z=1 ¢ (8) fi.j(p)- (1.46)

Theorem 1.2.18 The spherical Fourier transform

L6)* - P M, (©)
pel

is an isomorphism of algebras.

Proof Note first that the spherical Fourier transform is a linear isomorphism
(whose inverse is given by (1.46)). Thus, it only remains to show the multi-
plicativity property, namely that

Fxf=FF (1.47)

forall f, f' € L(K\G/K).
By the inversion formula (1.46), given f, f' € KL(G)X we have

f*flz %de Z ﬁ](ﬂ)d’fl * |71|sz Z ?h,k(o)(l’g,k

pel i,j=1 oel h,k=1

m m
1 L —~ ~
=GP D dods DY Fii 0 k()] %87,
p.oel i,j=1hk=1

mp mp

1 —~ ~
=G odp DD Fri o) f )¢l (by (1.45)

el ik=1j=I

1 mp mp . N
=G >dy > Fii ) f k(o) | 8L
1

pel k=1 \j=
This shows that £ /7, c(0) = Y17, fi.j(p) ' 4 (p). and (1.47) follows. [

Now we examine the effect of a change of basis on the spherical Fourier
transform.
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Lemma 1.2.19 Let U = (u,'j):.nf:l be a unitary matrix and let vip, ¢>l.pj be as
above. Then the spherical matrix coefficients with respect to the orthonormal
basis

H‘lp
{Zuk’iv,f i=1,2,...,m,
k=1

are the functions §ip j given by

Mp
P p —
§ ;= Z Ui k Py oltj €

k=1

Moreover, if f(p) is the spherical Fourier transfrom of a function f € XL(G)X
with respect to the coefficients ¢l'-o j then

U*f(p)U
is the spherical transform with respect to the coefficients %.ip e

Proof We have

mp mp
§i@) =Y (Wfui, p(@vfue v, = Y uridp g
k=1 k,l=1
and therefore
mp mp
WL E o) = Y W uid o) uG) = ) WiV e

k=1 k. 4=1

O
We now consider the XL (G)X -subalgebra

A=span{g!, :pel, i=1,2,...,mp}. (1.48)

Clearly, A depends on the choice of the bases {v{, v}, ..., vp, }. p € I.
Proposition 1.2.20

(1) A is a maximal Abelian subalgebra of KL (G)K.

(ii)) Forp € I andi = 1,2,...,my, define a linear operator Eip LX) —>
L(X) by setting

o o

|G |G|

for f € L(X), g € G (f is as in (1.38)). Then El'-o is the orthogonal

projection from L(X) onto T,»V, (T,pV, is as in Proposition 1.2.5).

(EL ) (gx0) = L F (@) ) = 21T % dL1(g)  (1.49)
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Proof (i) This follows from the general fact that diagonal matrices form a
maximal Abelian subalgebra of a full matrix algebra and that maximal
Abelianness is preserved under isomorphisms.

(i1)) Extend each basis of VpK to an orthonormal basis {vf , vg s vgp} of V,,
for all p € I. Any function f € Ty Vo is the Tyo-image of a vector

de e K :
ijl ajvi € Vg, and so it can be expressed as

d, d,
dy = dy =
[ (hxo) = ézaﬂv}’,o(h)v,?)va = |7"|Za,-¢;’,k(h>,
j=1 j=1
wherea; € Cforall j =1,2,...,d, and h € G. Thus,

d -
(E! f)(gx0) = ﬁ > fhxo)e! (g7 h)

heG
d,
dp [ds . P
:ﬁ mj,laj[d);k*d)i’i](g)

d

[d, &
= i) 2 Wbendhidfi(e)  (by (145)

j=1

_ | f(gxo) ifp=oandi=k
o otherwise. 0

Given a function ¥ € L(G) we define ¥° € L(G) by setting
() =¥
forall g € G.

Lemma 1.2.21

(i) The spherical Fourier transform of ¥° is
(¥°), ;) = Vi (p)

forallp € Iandi, j =1,2,...,m,. In matrix terms, 17f\<>(p) is the adjoint
of ¥ (p).

(ii) If T € Homg(L(X), L(X)) and  is its convolution kernel (see (1.39))
then ¢ is the convolution kernel of T*.
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Proof (i) Since ¢ ;(g7") = ¢7(¢), we have

—

(¥°), () =W ¢ )16
= > V& ®

geG

=Y 97,V

geG

=¥;i(p).

(ii) Recall that we have Tf = f % v, for all f € L(X). Then for fi, f> €
L(X) we get

(Th. Pre) = Y fixv(@) ()

geG

=Y > Aty fae)

geG heG
=> A Y heveg'h
heG geG

= (fi, f % VL),

KT f1, f2)Lx)

and this implies that T* f = fo * ¥°.
O

Corollary 1.2.22 For an operator T € Homg (L(X), L(X)), with convolu-
tion kernel \r, the following conditions are equivalent:

() T is normal;
(i1)  and ¥°® commute;

@iii) T belongs to a maximal commutative subalgebra of the form (1.48).

Proof From Lemma 1.2.21 it follows that 7 and 7* commute if and only
if ¥ and ¥° commute and this is equivalent to the condition that for each
p € I the matrix 17f(p) is normal. But IZ(p) is normal if and only if it is
unitarily diagonalizable. By virtue of Lemma 1.2.19, this is in turn equivalent
to the existence of a diagonalizing orthonormal basis {v{, v5, ..., vjy,} in VpK.
Invoking the isomorphism (1.42), we end the proof. O

Proposition 1.2.23 [fT € Homg (L(X), L(X)) is normal then we can choose
the orthonormal bases {vf, vg, e, v,%p }, p € I, in such a way that we have
an orthogonal decomposition
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L) =6 TV,

pel i=1
(see Corollary 1.2.7) where each T,p V), is an eigenspace of T. Moreover, the
eigenvalue corresponding to T,p V,, is 1’/71-, i (0), where r is the convolution ker-

nel of T.

Proof If we choose the bases as at the end of the proof of Corollary 1.2.22,
the spherical inversion formula for ¥ becomes

1 < -

V=G 2 de 297955 (0.
oel j=1

Moreover, by virtue of (1.49), for all f € Tv;r, Vs we have

~ ~ d ~
f@=Elf(g)= |?p| > Fmyel ().

heG

Therefore, for all € G, we get

TI) =y =Y f@vE'n

geG
1 =~ dP iy P o —1

= > do D U0 s Y F [of a7, 7'

G =" — G| ~ ’

o€ j= €
P d ~
=805, jwi,i<p)|?”| D Fgli Ty (by (1.45)
heG

= Vii(0)EL f(1)
=vii(p) f(@). O
Consider now the KL (G)X -subalgebra
B =span{yX :pe1}. (1.50)
Proposition 1.2.24
(i) B is the center of KL(G)X.
(ii) For p € I define a linear operator EP : L(X) — L(X) by setting

d, ~ d
o _Zr K =L
(E” f)(gxo) = G (f 28Xy )L = Gl

for f € L(X), g € G (f is as in (1.38)). Then EP” is the orthogonal
projection from L(X) onto the isotypic component m,V,.

[ * xX1(9)
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(iii) If x, is the character of p then the spherical character (see Definition
1.2.14) is given by

Xy (8) = |K| > xokg).

keK
Proof Parts (i) and (ii) are consequences of the previous proposition and
Corollary 1.2.3. The orthogonal projection of V), onto the subspace VpK of K-
invariant vectors is given by the operator ﬁ Y ke P(k); applying the latter to
Xp one obtains x X, yielding (iii). O

Proposition 1.2.25 An operator T € Homg(L(X), L(X)) belongs to the
center of Homg (L(X), L(X)) if and only if any isotypic component m,V,
constitutes an eigenspace of T. Moreover, if this is the case then the eigenvalue
corresponding to m,V, is equal to l’ﬁ\l’l (p) = m_lp“”’ Xf).

Proof This is just a particular case of Proposition 1.2.23, taking into account
that if 7 € Homg (L(X), L(X)) then also T* € Homg (L(X), L(X)) and that
the center of M, o (C) is constituted by all scalar matrices. O

Corollary 1.2.26  If the multiplicity of V,, in L(X) is equal to d,, then x ;f =
Xp and

|G| L xo0r).

teG

Proof Suppose that the multiplicity of V, in L(X) is equal to d,. Then
Vo = VpK and therefore Xf = Xp. It follows that, for each f € L(X),
we have

E” f(gxo) = F @ x0)L6) (by Proposition 1.2.24)

Lo
|G|
LN Fhxo)x (g~ Th)

heG

Z f(hx0)xp(hg=1) (X, is central)
heG

LN Fa gxox, 7 T =hgh

teG

Z X (DIA() £1(8%0).

teG

IGI
IGI
IGI

The computational aspects of Corollary 1.2.26 were explored in [21].
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1.2.3 The other side of Frobenius reciprocity for
permutation representations

In Theorem 1.1.19 Frobenius reciprocity is stated as an explicit isomorphism,
namely

Homg (Resg V, U) = Homg (V, Ind%U) ,

where K < G, V is a G-representation and U is a K -representation. The
special case in which U is the trivial representation was examined in Theo-
rem 1.2.6. In [7, Corollary 34.1] it is observed that Frobenius reciprocity may
be also stated as an explicit isomorphism

Homg (U, Resg V) = Homg (Inng, V) .

This formulation of Frobenius reciprocity is particularly useful when the irre-
ducible representations of G are obtained as induced representations; this is
the case for a wreath product (see Section 2.4). In this subsection, we examine
this equivalent formulation of Frobenius reciprocity in the particular case in
which V is a permutation representation.

Let G be again a finite group acting transitively on X and suppose that H is a
subgroup of G. Let (p, W) be an H-representation. Set 7 = Indg p and denote
by A the permutation representation of G on X. Let S be a set of representatives
for the left cosets of H in G, thatis, G = ]_[S cs 8 H; as usual, we suppose that
g € S.

Theorem 1.2.27 (Frobenius reciprocity for permutation representations,

<
II) Let L € Homg (W, ResgL(X)) and define L: WS — L(X) by setting

(L 1) = —== S ILF©Is ), (1.51)
es

1
VIST ¢
for every f € WS = ndSW and x € X. Then I, € Homg(Ind$ W, L(X))
and the map

Hompy (W, Res L(X)) —> Homg (Ind% W, L(X))
L+— Z
is an isometric isomorphism.
Proof First observe that if L € Hompg (W, ResgL(X )) then we have

[Lo(h~Hwl(x) = [~ Lw](x) = [Lw](hx) (1.52)
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forallx €e X,h ¢ Handw € W.Lett = Indgp, f € Indi = WS and
g € G. Also, forevery s € Slett € S and h € H be the unique elements such
that g~'s = rh. We then have

L 7(2) f1(x)

= <5 L (L@ )
seS

Z{L[p(h_l)f(t)]}((gth)_lx) (by Definition 1.1.3)

teS

SILFONR g™ ) (by (1.52))

teS

= S ILF 01 e )
\/l?tes

=L flig"'x)  (by (1.51)
= [A(g) L f1(x).

1
ZW
m

This shows that 7, € Homg (Ind$ W, L(X)).
For w € W define 6,, € W5 by setting 8y, (s) = 8s,1,w. Then, given P €
Homg (IndG W, L(X)), we define P:W— L(X) by setting

Pw = P&, (1.53)

forallw e W.
Let us check that P € Hompg (W, ResgL(X)). Leth € H,w € W and
s € S. We have
p(h)[aw(lG)] = ,O(h)w ifs = 1G

h)é
[z(M)3wl(s) = ok~ D)[8,,(1)] = 0 otherwise,

where ¢ € S and k € H are the unique elements such that A~'s = tk. This
shows that

T(h)dy = Sphyw- (1.54)

Thus
AM[Pw] = A(W)[PSy],
= Pt(h)dy (P € Homg (7, 1))
= Péphyw (by (1.54))
= P(p(hw)
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and therefore P intertwines W and ResgL(X ). Moreover, for every L €
Homg (W, ResgL(X)), w € Wandx € X, we have (by (1.53) and (1.51)),

) = 18 _ gy L
[Lw](x) = [L §wl(x) = NE] g[Mw(S)](S x) = m[LW](X)- (1.55)
Moreover, first observe that
D )8 = f (1.56)
seS

forall f € WS Indeed, for all € S we have
[Z 7(5)8 f(s)} )= p(h™ (@) = f)
seS ses

where z € S and i € H are the unique elements such that s~'¢ = zh (note
that there is only one nonzero summand corresponding to the case z = 1g,
which forces s = ¢ and h = 15). Then, for every P € Homg (Indg W, L(X)),
f e WS and x € X, we have

59 1 ~
P /1) = - D IPF©)Is™ )
seS

1
= i Z[P5f(s)](s_1X)

seS
_ \/% g[x(s)mfm](x)
_ ﬁ g[mms ()
= ﬁ (P g[t(S)Sf(s)O (x)
- J%P(f)(x) (by (1.56)). (1.57)

From (1.55) and (1.57) it follows that the map P + «/|S|P7 is the inverse

<& <&
of L [ (and, in particular, that L +> [, is an isomorphism).
In order to show that the above map is isometric, let us check that

<o <
(L1, L2)us = (L1, L2)gs
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forall L1, Ly € Hompy (W, Res% L(X)). Let wy, wo, ..., w, € W constitute
an orthonormal basis of W. Then the functions §; ,,, € WS defined by

80 (1) = w; ift=s
S 0 otherwise

forall s,z € Sandi = 1,2, ..., n constitute an orthonormal basis in W5 (see
Remark 1.1.1). Then using (1.51) we deduce that

[L 8y, 1(x) = D L8, D1 x) = L LwdeTy (158)

1
NP NE]

for all L € Hompg (W, ResgL(X)), se S, i=12,...,n,and x € X. We
then have

n
< < < <
(L1, L2)us = Z Z(Ll 8&,11),-» L2 8s,w,->L(X)

seS i=1

=S S0 S I0OLL2 80, 1)

ses i=1 xeX
- ZZZ[Llwz](s O)[Law;](s~1x) (by (1.58))
seS1 1 xeX
= ZZ[Llwi](y)[szn(y)
i=1 yeX

= Z(Llwz, Low;)p(x)

i=l1

= (L1, L2)us

1.2.4 Gelfand pairs

In this subsection we present a special case of the theory illustrated in the
previous subsection, namely that of a Gelfand pair.

The theory of Gelfand pairs, originally developed for the infinite case in the
setting of Lie groups in the seminal paper by I.M. Gelfand [32], was used, in
the finite case, by P. Diaconis [20, 22] to determine the rate of convergence
to the stationary distribution of finite Markov chains (we refer to our research
expository article [10] and our monograph [11] for a more recent account).
Other applications of the theory of finite Gelfand pairs may be found in the
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monograph by E. Bannai and T. Ito [4] (of a more algebraic combinatorial
flavour) and in Ph. Delsarte’s thesis [19] (in relation to coding theory). See
also A. Terras’ monograph [74] as well as the papers [27, 51, 62, 70, 72].

Recall that a representation (o, V) of a group G is multiplicity free if it
decomposes into pairwise inequivalent irreducible subrepresentations; in terms
of formulas, Vo = @,esV,, where p 7 p’ for all distinct p, p’ € I.

Theorem 1.2.28 Let G be a finite group and K < G a subgroup and denote
by X = G/K the corresponding homogeneous space. Then the following con-
ditions are equivalent:

(1) the permutation representation L(X) is multiplicity free;
(i1) Homg (L(X), L(X)) is commutative;
(iii) XL(G)X is commutative;
(iv) for every irreducible G-representation (o, V), the subspace vK of the
K -invariant vectors is at most one dimensional;
v) A=KL(G)X (where Ais asin (1.48), see also Proposition 1.2.20);
(vi) B = KL(G)X (where B is as in (1.50), see also Proposition 1.2.24).

Proof Let L(X) = ®pe1m, V), be the decomposition of the permutation rep-
resentation into irreducible components. The equivalence between (i), (ii) and
(iii) follows from (1.42). Indeed, the algebra @®,c; Mym,.m,(C) is Abelian if
and only if m, = 1 for all p € I. Note that, if this is the case, Kp(G)k =
Homg(L(X), L(X)) = CMI. The equivalence between (i) and (iv) follows
from the Frobenius reciprocity for a permutation representation (Theorem
1.2.6). The equivalence between (iii) and (v) (resp. (vi)) follows from Proposi-
tion 1.2.20 (resp. Proposition 1.2.24). O

If one of the equivalent conditions of the above theorem is satisfied, we say
that (G, K) is a Gelfand pair. Let G be a finite group acting transitively on a
set X. We say that the action gives rise to a Gelfand pair if the permutation
representation (A, L(X)) is multiplicity free.

Remark 1.2.29 If (G, K) is a Gelfand pair, then for each spherical represen-
tation (p, V,) there is a unique spherical function ¢*. In this way the Fourier
inversion formula (1.46) becomes

1

F©® =15 Y dd” () f(p), (1.59)
pel

where f(p) = (f,#”)1(G), forall g € G and f € KL(G)K.
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Example 1.2.30 (Weakly symmetric Gelfand pairs) Let G be a finite group
and K < G a subgroup. Suppose that there exists an automorphism 7 of G
such that

g eKt(9K (1.60)

for all g € G. Then (G, K) is a Gelfand pair. To prove this, first observe that
if f € XL(G)X then by (1.60) we have

fig™h = fz(e) (1.61)

forall g € G. Let fi, f> € KL(G)X. We have

Lfix f2l(@) = ) filgh) fah™)

heG

=Y A ™) faz(h) by (1.61)

heG

=S AGE N AT (by setting = gh)

teG

=Y AEE HTE) AGEE)
teG

=LA filx(g™")

=[fax file)  (by (1.61))

forall g € G. Thus fi * f» = f> % f1, showing that the algebra XL(G)X is
commutative.
We then say that (G, K) is a weakly symmetric Gelfand pair.

When the automorphism 7 in Example 1.2.30 is equal to the identity, we say
that (G, K) is a symmetric Gelfand pair. In this case, (1.60) takes the form

¢ ' e KgK (1.62)

forall g € G.

We now use the following notation. Suppose that a group G acts on a set Y.
For two elements x, y € Y we write x ~ y if there exists g € G such that
gx =y (equivalently, if x and y belong to the same G-orbit, Gx = Gy). We
also denote by g(x,y) = (gx, gy), g € G and x, y € X, the diagonal action
of G on X x X. Finally, we say that the orbits of G on X x X (with respect
to the diagonal action) are symmetric provided that for all x, y € X one has

(x,y) ~ (¥, x).
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Proposition 1.2.31 Let X be a finite set and G a group acting transitively on
it. Let xg € X and K = Stabg (xo) = {k € G : kxo = x0} be a point of X and
its stabilizer, respectively. Then the following conditions are equivalent:

(1) the orbits of G on X x X are symmetric;
(i) (G, K) is a symmetric Gelfand pair.

Proof (i) = (ii). Suppose that the orbits of G on X x X are symmetric.
Let g € G. As (x0,¢ 'x0) = g '(gx0,x0) ~ (gx0.%0) ~(i) (X0, gx0),
there exists k € G such that k(xp, g7'x0) = (x0, gxo). This is equivalent
to kxg = xo (so that k € K) and kg‘lxo = gxo. The last condition then gives
g kg7 'xo = xo, that is, g"'kg~! € K. We then have (1.62) so that (G, K)
is a symmetric Gelfand pair.

(i) = (). Suppose that (G, K) is a symmetric Gelfand pair. Let x, y € X.
Then, by transitivity of the action, we can find ¢, s € G such that x = rx( and
y = tsxg. Moreover, by (1.62), we can find k1, ko € K such that s = kysko.
We then have

(¥, ) = 1(x0,1~"'y) ~ (x0,17"y) = (x0, sx0)
= s(s"'x0, x0) ~ (s~ 'x0, x0) = (k15kax0, x0)
= (k1sx0, X0) = ki(sx0, k; 'x0) = ki (sx0, X0)
~ (sx0,x0) = (t7"y, x0) ~ 117"y, x0) = (v, %)

This shows that the orbits of G on X x X are symmetric. O

Example 1.2.32 (2-point homogeneous Gelfand pairs) Let G be a finite
group acting isometrically on a metric space (X, d). We say that the action
is 2-point homogeneous (or distance-transitive) if, for all (x, y1), (x2, y2) in
X x X such that d(x1, y1) = d(x2, y2), there exists g € G such that gx; = x»
and gy; = y»; equivalently,

d(x1, y1) = d(x2, y2) = (x1, y1) ~ (x2, y2).

Note that, in particular, a 2-point homogeneous action is transitive. Since the
distance function d is symmetric, that is, d(x,y) = d(y,x) for all x,y €
X, we deduce that the G-orbits on X x X are symmetric. Thus, by Propo-
sition 1.2.31, every 2-point homogeneous action gives rise to a symmetric
Gelfand pair.

Definition 1.2.33 Suppose that G acts on X. The action is doubly transitive
if for all (x1, x2), (y1,y2) € (X x X) \ {(x,x) : x € X} there exists g € G
such that gx; = y; fori =1, 2.
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Exercise 1.2.34 Suppose that G acts transitively on X. Set Wy = {f :
X — C,constant} and W) = {f : X — C, ) .y f(x) = 0}. Prove that
L(X) = Wy & W is the decomposition of the permutation representation into
irreducibles if and only if G acts doubly transitively on X.

In the context of Gelfand pairs, we can reformulate Corollary 1.2.13 as
follows.

Corollary 1.2.35 Let (G, K) be a Gelfand pair and let I < G denote the
set of irreducible representations contained in the corresponding permutation
representation L(X). Then

|I| = number of K-orbits on X. (1.63)

O
We end this section with the following useful criterion for Gelfand pairs,
which is, in some sense, a converse to Corollary 1.2.35.

Theorem 1.2.36 Let G be a finite group and K < G a subgroup and denote
by X = G/K the corresponding homogeneous space. Suppose we have a
decomposition

L(X) = ®rerZ;

of the permutation representation into G-subrepresentations with |T| equal to
the number of K -orbits on X. Then the Z;’s are irreducible and (G, K) is a
Gelfand pair.

Proof Refine if necessary the decomposition L(X) of the Z,’s into irreducibles
to obtain L(X) = ) ., m,V, (where the V,’s are pairwise nonequivalent).
Then |T| < |I]| < Zpel mf) and Corollary 1.2.13 forces |T| = [I|and m, = 1
for all p € I, concluding the proof. g

1.3 Clifford theory

In this section we analyze the relation between representations of a given group
and those of its normal subgroups. These results were obtained by Alfred H.
Clifford in 1937 [16]. We follow Huppert’s monograph [35] quite closely but
our approach, based on our research-expository paper [13], rests on an explicit
analysis of the representation spaces and their decompositions rather than on
calculations with characters (as in [35]). This functional framework is more
suitable for applications in harmonic analysis problems. We also avoid a direct
application of Mackey’s lemma (Theorem 4.1 in [12]) but carefully examine
the representations involved. Other excellent expositions on Clifford theory
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are the monographs by Isaacs [36] and by Curtis and Reiner [17, 18]. The
latter also uses an explicit analysis of the representation spaces but with a more
algebraic language. See also the monographs by Grove [34], Berkovich and
Zhmud [5, 6] and Dornhoff [24].

As an application of Clifford theory, we prove a general form of the so-called
little group method, which provides an useful way to get a complete list of
irreducible representations for a wide class of groups. In particular, in the next
chapter we shall use it to obtain the representation theory of wreath products.

1.3.1 Clifford correspondence

In this section we introduce the main definitions and present Clifford corre-
spondence (Theorem 1.3.6).

Let G be a finite group and N < G a normal subgroup of G. Denote by
G (resp. N ) a set of pairwise inequivalent irreducible representations of G
(resp. N), which, by an abuse of notation, we also identify with the set of all
equivalence classes of irreducible representations of G (resp. N).

In the following, we use the following notation. Given two representations
o and p we write 0 < p, and we say that o is contained in p, if o is a
subrepresentation of p.

Definition 1.3.1 Leto € N and g€G.
(i) We set
5(0) ={0 ¢ G:o =< Resf,(@)} cG.
(ii) The g-conjugate of o is the representation o € N defined by
So(n) = o (g 'ng) (1.64)

foralln € N.

(iii) The subgroup
Igo)={geG: % ~0c}<G
is called the inertia group of o € N.

It is easy to see that (1.64) defines a left action of G on N , that is, 81820 =
81(8%0) for all g1, g0 € G and o € N. Moreover, if 01 ~ 02 and g € G then
801 ~ 807, so that the action preserves the equivalence relation. Thus /(o) is
the stabilizer of the equivalence class [o] of o € N in G under this action. In
particular, we have

Ig(%0) = g ' Ig(0)g (1.65)
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forallg €e Gando € N. Observe that I (o) contains the subgroup N. Indeed,
ifn,n; € N we have "o (n) = o (n1) ‘o (n)o (n) and therefore "o ~ o. We
then denote by Q a set of representatives for the left N-cosets in I (o) such
that that 15 € Q. We thus have

Igo)=]]4qN. (1.66)
qe0

Similarly, we denote by R a set of representatives for the left /5 (o )-cosets in
G such that that 1 € R, so that

G = ]_[ rlg(o). (1.67)

rerR

Then {[$0] : g € G} = {['o] : r € R} and the representations ‘o, r € R, are
pairwise nonequivalent.

Moreover, T = RQ is a set of representatives for the left N-cosets in G.
From (1.66) and (1.67) we deduce that

G = ]_[rlc;(o) = ]_[ L[qu:]_[tN.

reR reRqeQ teT

Note that g € T and that R € T (resp. Q € T), since 1g € R (resp.
lG (S Q)

Theorem 1.3.2  Suppose that N < G and let o € N and 6 € 6(0). IfR, O
and T are as above then, setting d = [Ig(c) : N] = |Q| and denoting by ¢
the multiplicity of o in Resﬁ@, we have that:

@) Resglndgo = @,er'c = d@, g0 expresses the decomposition of
Resglndgo into irreducible subrepresentations;

(ii) Homg(Ind§o, Ind§o) = C%;

(iii) Res$0 = (@D, 0.

Proof (i) Let V, be the representation space of o and lett € T. Set Z; =
{f € VUT : f(s) = Oforalls € T suchthats # t}. Then the linear map
L;: Vo — Z,defined by [L,;v](s) = & sv, forall s € S, is bijective. Moreover,
Z; 1is (Resglndga)-invariant and intertwines the N-representations
(Resglndgaﬂ 7, and 'o. In order to verify these facts, letn € N, v € V,,
f € Z;and s € T. Then we can write n~ls = s(s~nLls) = sm, where
m =s"'n"ls € N as N is normal in G. We now have
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[(Res§Ind§o) (n) £1(s) = [Ind§o (n) f1(s)
=o(m ) f(s)
=850 (m™ ) f ()
= 8,/ [(ResSIndS o) (n) £1(s),

that is, (Res§Ind$ o) (n) f € Z, forall f € Z, andn € N. Similarly,

[(Res§Ind$ o) (n) Lyv](s) = [(Ind§ o) (n) Lyv](s)

=0 (m™HI(L)(5)]
= SMU(m_l)v
= SI,SU(S_lns)v
= 8[,sa(flnt)v
= &.5'0(n)v
= L;['o (n)v](s).

This shows that (Resglndgo)(n)L, = L;'o (n), that is,

L, € Homy ((Res$IndS o)z, Z,), (o, V)

(observe that V, = Vi,). As Res§IndV, = @,cr Z:, we deduce that the
operator T = P,y L, is an isomorphism between Res$Ind§ o and @, o

We finally have
@’o = @@’qg = |Q|@ra.

teT reR geQ rer

(i) From the previous result we deduce that the multiplicity of o in
Resglndga is equal to d. Therefore, by Frobenius reciprocity (Theorem 1.1.19)
we have

Homg (Ind§0, Ind$ o) = Homy (o, Res$Ind$ o) = C7.
(iii) Let g € G and ® € Homy (o, Resgé). Then 6(g)® € Homy (%o,
Resf,@). Indeed, for n € N we have
0(g)®% (n) = ()P (g 'ng)
= 0(9)0(g ™ 'ng)®
=0n)0(g)d.
Moreover, the map

Homy (o, Res%@) —>  Homy (%0, Resge)

P — 0(g)® (1.68)
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is a linear isomorphism. This follows immediately after observing that
<g"71(<’>’0) = 0, so that the map

Homy (%0, Resﬁ@) —> Homy (o, Res%@)
7 — (g~ Hw

is the inverse of (1.68). Therefore every o has multiplicity ¢ in Resge, that
is, Resge > L&D, g 0. By Frobenius reciprocity, Indgo contains exactly
£ copies of 6 so that every irreducible subrepresentation in Res%@ is also
a subrepresentation of Resglnd%o. But, by (i), the latter contains only irre-
ducible subrepresentations of the form "o, and this ends the proof. (|

Corollary 1.3.3  With the notation of Theorem 1.3.2, we have that

1) Indga is irreducible if and only if Ig(c) = N;
(ii) ifo,0’ € N and Ig(0) = N = IG(0") then Ind§o ~ Ind$ o’ if and only
if o and o’ are conjugate (that is, there exists g € G such that 6’ = o).
Proof The first statement follows from (ii) in Theorem 1.3.2 combined with
Schur’s lemma.
Suppose now that I(c) = N = Ig(c’). By (i) in Theorem 1.3.2 we have
Res$Ind§ o = @, "o. Then Frobenius reciprocity implies that

Hompy (o', @, cx0) = HomN(a/,ResgIndga) = Homg(Indgo’, Indga).

Since Indga’ and Indga are G-irreducible and o’ and "o, r € R, are N-
irreducible, by Schur’s lemma we deduce that Indgo’ ~ Indgo if and only if
there exists r € R such that o’ ~ 0. O

Definition 1.3.4 Foro € N and 6 € 6(0), the number
¢ = dim Homy (0, Res$0) (1.69)
is called the inertia index of 6 with respect to N.

Note that, a priori, given o € Nand @ e 6(0) the number (1.69) is also
defined in terms of the representation o rather than only the subgroup N. How-
ever, Theorem 1.3.2(iii) guarantees that ¢ is, in fact, independent of o.

Lemma 1.3.5 Let N < G be a normal subgroup of G and o € N. Denote
by I = Ig(0) the inertia group of o. Let

Indjo = @ myy
yel(o)

be the decomposition of Indfva into I-irreducible representations (my, > 0 is
the multiplicity of V). Then the following hold.
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1) Indga = @wef(a) my Ind?llf is the decomposition of Indga into its G-
irreducible components (that is, the Indlcw ’s are G-irreducible and pair-
wise inequivalent).

(i) If0 € G(o) then 6 = Ind,GI/ffor some (unique) ¥ € 1(0).

Proof First note that, from the definition above and Frobenius reciprocity, we
have I(c) ={y €I : ¢y < Indfva}. (1) By the transitivity (Proposition 1.1.10)
and additivity (Proposition 1.1.11) of induction,

Ind§o = Ind{Indyo = @ my Indfy.
vel(o)

Moreover,
Homg (Ind$ o, Ind§o) = C? = Hom, (Ind}; 0, Ind};0),

where the first equality is exactly Theorem 1.3.2 (ii) and the second follows
from the same result with G replaced by I (note that, indeed, / coincides with
the inertia group of o in [). Then, by the commutant theorem (Theorem 1.2.2),
we have

Y my=d= ) mym,dimHomg(Indfy, Indfn).
vel(o) Vv.nel(0)

Therefore dim Homg (IndIGlﬂ, IndIGn) = 8y, and (i) follows.
(i1) This is an immediate consequence of Frobenius reciprocity: if o <

Resf,@ then 6 < Indga and therefore 6 = Inlel// for some i € T(a). U

Theorem 1.3.6 (Clifford correspondence) Let N < G and o € ]V, set
I = Ig (o) and let 1(0) be as before. Then:

(i) the map
(1.70)

is a bijection;

(1) the inertia index of ¥ € T(O’) with respect to N coincides with the inertia
index of IndIGw with respect to N, and they are equal to my, (the multi-
plicity of ¥ in Indfvo);

(iii) Resh ¢y =myo.

Proof Part (i) is just a reformulation of Lemma 1.3.5. Part (ii) follows from
Frobenius reciprocity: if ¥ € I (o) then the inertia index of ¥ with respect to
N is equal to my and coincides with the inertia index of Indlcl// with respect
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to N (by Lemma 1.3.5(1)). Finally, (iii) is given by an application of Theo-
rem 1.3.2(iii), with G replaced by I:

RCS]IVI/IZU@O'EB“-@O'.
—_—

my, times
O

Remark 1.3.7 Note thatif /(o) = G (thatis, o ~ o forall g € G) then the
first two statements of the Clifford correspondence are trivial. Indeed, if this is
the case, we have T(O’) =G (o) and the correspondence (1.70) becomes the
identity map ¢ — IndIGw = 1. Moreover, the inertia index of 1// with respect
to N, which by definition equals the dimension of Homy (o, Res$ y¥),isin turn
equal by Frobenius rec1pr001ty to my, the dlmensmn of Homg (Ind$, NOs w)
Finally, note that if 6 € G we have o := Res NG € Nifand only if Ig(0) =

and the inertia index of 6 with respect to N is equal to 1 (see Theorem | .3.2(111)).

We summarize the results obtained in Table 1.1.
Now let v € G/N. We define the inflation ¥ € G of i by setting

¥(g) =v(gN) Vges. (1.71)

Note that v is indeed a representation (of G) since it equals the composition
of the quotient homomorphism G — G/N and the representation ¢ € G/N.

Table 1.1

Induction
G _ _ ~ G
Indyo = @wel(o) my Ind} ¥
T

1 ~
Indyo = @WEI(G) ny W
T

o€eN

Restriction from 7
¥ € 1(0)
|
ResjlV Y =myo

Restriction from G
nd¥y € G(o)

Resglnd?v/ =my @, cr'o
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Moreover, if ¥ is irreducible then v is irreducible as well and if ¥ = | ® ¥
then ¥ = V| & V».

Recall that the left-regular representation of a group G is the G-represen-
tation (A, L(G)), where [A(g) f1(h) = f(¢g~'h) forall g,h € G and f €
L(G) (this is a particular case of the permutation representation (see Defini-
tion 1.1.6) corresponding to when G acts on itself by left multiplication).

Example 1.3.8 Suppose that ¢ is the left-regular representation of the group
G/N. Then v is exactly the permutation representation of G over X = G/N.
In other words (cf. Proposition 1.1.7),

¥ ~ Ind§uy (1.72)
where ¢ is the trivial representation of N.

Theorem 1.3.9 (Gallagher [30]) Let N < G and 6 0 € G and suppose that
o ResN9 e N (see Remark 1.3.7). For ¥ € G/N denote by dy the
dlmenswn of . Then the following hold:

()
Ind§o = P dyO V) (1.73)
¢eE/W

where the 6 ® Y are irreducible and pairwise nonequivalent;
(ii) the inertia index of 0 @ ¥ with respect to N is equal to dy;

(i) ift € G and Resf,r = o then T ~ 0 ® ¥ for some \ € G//J\V with
dy = 1.

Proof By Proposition 1.1.15 we have
Ind§o = Ind§ (0 ® ty) = Id§[(Res§0) ® iy] =6 ® Ind§iy =60 @ 7,

where (y denotes the trivial representation of N and A is the inflation of the
regular representation A of G/N (see (1.72)). Recalling (see for instance [11,
Theorem 3.7.11(iii)]) that A = @weG/Ndw/f we have A = @weG/Nd,pl/f
from which (1.73) immediately follows.

Applying Theorem 1.3.2(ii) and recalling that /(o) = G we find that

Homg (Ind§ o, Ind$ o) = CI9/M.
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Since |G/N| = Zw G dw (see again [11, Theorem 3.7.11(iii)]), from (1.73)
and the commutant theorem (Theorem 1.2.2) we obtain

|G/N| = dim[Homg (Ind$ o, Ind§o)]
= Y dy,dy,dim[Homg(0 ® V1.0 ® ¥)].
Ilfmlfzeg/W

which implies the irreducibility and pairwise inequivalence of the § ® ¥’s as
well as the equality of dy, with the inertia index of 0 ® ¥ with respect to N (by
Frobenius reciprocity). Thus (i) and (ii) are proved.

Suppose now that 7 € G and Resgt = 0. From Corollary 1.1.16 and (1.73)
we deduce that

t®A~IndGResN1: ~Inch7 = @ dy (6 V),

1&6@
so that, observing that dim Homg (LG,X) = 1 (which follows immediately
from Frobenius reciprocity), we necessarily have 1 ~ 7 ® (g ~ 6 ® ¥ for
some ¥ € G/N anddy = 1. U

1.3.2 The little group method

In this subsection we give a general formulation of the little group method. As
an example, we apply it to semidirect products with an Abelian normal sub-
group. This particular case was developed by Frobenius (for finite groups) and
then by Wigner [76] for groups arising in physical problems as the Poincaré
group (see [73, Sections 3.9 and 3.20]). Finally, Mackey extended this method
to topological groups [55] (see also [56]).

Definition 1.3.10 Let G be a group, H < G a subgroup of G and o € H.
An extension of o to G is a representation & € G such that Res? po=o0.

Theorem 1.3.11 (The little group method) Ler G be a finite group and
N < G a normal subgroup. Suppose that any o € N has an extension & to its
inertia group I (o) (see Definition 1.3.1). In N define an equivalence relation
& by setting o1 ~ o7 if there exists g € G such that 81 ~ 0. Let X be a set
of representatives of the corresponding quotient space N / ~.

For ¢ € [WN denote by W € m its inflation to I (o) (see (1.71)).
Then

G={Indf ,,G®V):0 X,y elgo)/N),

that is, the right-hand side is a list of all irreducible G-representations where
for different values of o and r we obtain inequivalent representations.
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Proof Leto € X.From Theorem 1.3.9 (with I (o) in place of G and & in
place of 6) we deduce that

ndy o= @ dGev) (1.74)
Velgo)/N

where the & ® ¥ are irreducible and pairwise inequivalent representations in
I (o). From the Clifford correspondence (Theorem 1.3.6) we find that the
G-representations

Indf (G @), (1.75)

VS E@, are irreducible and pairwise inequivalent. By Theorem 1.3.2(i), the
restriction to N of a representation as in (1.75) (which is contained in Indga)
is a sum of G-conjugates of . It follows that the representations corresponding
to (o1, Y1) # (02, Y2) (0 € L, ¥ € 1?(\0,-), i = 1, 2) are inequivalent (recall
that X is a system of representatives for the orbits of G on N ).

Finally, if 7 is an irreducible representation of G, by Theorem 1.3.2(iii) we
can find a 0 € X such that 7 € 6(0), and therefore, again by Clifford cor-
respondence, t is of the form Ind?G(U)E with £ an irreducible representation
of I (o) such that o < Resj\?(a)é. But then £ < Indll\‘f @), and therefore by
(1.74) there exists ¥ € I@N suchthat § =5 ® V. O

1.3.3 Semidirect products

In this section, we recall a well known construction in group theory (see, for
instance, [2, pp. 20-24] or [68, pp. 6-8]).

Definition 1.3.12 (Semidirect product) Let G be a finite group and N, H <
G two subgroups of G. Then G is the (internal) semidirect product of N by H,
and we write G = N x H when the following conditions are satisfied:

(i) N 4G;
(i) G = NH;
(i) NNH = {lg}.

Proposition 1.3.13  Suppose that G is a semidirect product of N by H. Then:

i) G/N=H;
(1) every g € G has a unique expression of the form g = nh withn € N and
heH;
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(iii) forany h € H andn € N set ¢pp(n) = hnh=. Then ¢n € Aut(N) for all
h € H, and the map

H — Aut(N)
h | — ¢h

is a homomorphism (the conjugation homomorphism);
(iv) ifnh,n1hy € G as in (ii) then their product is given by

(n1hy)(n2hy) = [nlhlnzhfl]hﬂlz = [n1¢n, (n2)1h1h2. (1.76)

Conversely, suppose that H and N are two (finite) groups with a homomor-
phism H > h +— ¢y € Aut(N). Set G = {(n,h) :n € N, h € H} and define a
product in G by setting

(n, h)(n1, hy) = (ngp(n1), hhy)

(see (1.76)). Then G is a group and is isomorphic to the (inner) semidirect
product of N = {(n, 1) :n € NNy = NbyH = {(Iy,h): H e H = H.
The group G is called the external semidirect product of N by H with respect
to ¢ and is usually denoted by N x4 H.

Moreover, with the above notation, the following conditions are equivalent:

e G is isomorphic to the direct product N x H;
e H isnormalin G;
e ¢y, is the trivial automorphism of N forall h € H.

Proof The proof is an easy exercise and is left to the reader. (]

Clearly, the internal and external semidirect products are equivalent con-
structions and we shall make no distinction between them.

1.3.4 Semidirect products with an Abelian normal subgroup

We now apply the little group method to an important class of semidirect prod-
ucts, namely that of semidirect products with an Abelian normal subgroup.
The approach with our version of the little group method considerably simpli-
fies the setting.

In the following, we adopt the convention of identifying any irreducible rep-
resentation o of an Abelian group A with its character x = x,. Recall that
x (a1 = x(a) (the complex conjugate) for all a € A.

Theorem 1.3.14 Suppose that G = A x H with A Abelian. Given x € A, its
inertia group I (x) coincides with A X H, where Hy = {h € H : h)( = x}
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Then any x € A may be extended to a one-dimensional representation ¥ €
A x H, by setting
X (ah) = x(a) Yae A, he H,. (1.77)
Moreover, with the notation used in Theorem 1.3.11,
G = {Indgwx(;’z@%) (X €3, ¥ € Hy).
Proof Fora,a; € Aand h € H we have
Wy (ar) = x(h'a"'ayah)
= x(hla™ Wy arh) x (R ah)
= x (" arh) ="y (av),

thus showing that the inertia subgroup of x coincides with A % H,.

Let x € A and let us prove that the extension of y defined by (1.77) is
a homomorphism. By the definition of H, we have that x is invariant under
conjugation with elements in H,, so that if aj,a, € A and hy,hy € H,
we have

X (athy)(azh2)) = ¥ (athiazhy (hih2))
= x(athiazhi")
= x(a1)x(a2)
= X(arth1) X (a2h2).

Finally, the last statement is just an application of Theorem 1.3.11. (]

1.3.5 The affine group over a finite field

This subsection is based on Chapters 16 and 17 of Terras’ monograph [74].
See also Diaconis’ book [20, Chapter 3, Section D, Example 4].

Let F; be a finite field, where ¢ = p”" with p a prime number and r a
positive integer. We denote by IFZ = {x € F,; : x # 0} the multiplicative group
of invertible elements in [F,.

The affine group over I, is the group of matrices

Aff(F,) = {(’8 T) :erF;,yequ}.

Itactson [, = {(i) 't e Fq} by multiplication:

GDO=0")
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Therefore, we may also consider Aff(IF,) as the group of affine transforma-
tions of F:

Aff(Fy) = {tx,y 1 x € IF:;, vy eF,},
where 7, ,(t) = xt + y for all t € F;. Note that

T,y Tu,v = Txu,xv+y-

In order to simplify the notation, we shall identify Aff(F,) with the set
{(x,y) : x € F}, y € Fy} equipped with composition law

(x, y)(u, v) = (xu, xv +y). (1.78)

Remark 1.3.15 In the lemma below we shall prove that Aff(IF,) is a semi-
direct product. However, the notation in (1.78) differs from the standard nota-
tion (see Proposition 1.3.13) since the coordinates of the elements of the
corresponding direct product are switched.

Lemma 1.3.16 (i) The identity of Aff(F,) is (1, 0) and the inverse of (x, y)
is (x, )7l = (7, —x71y).

(i) Setting A = {(1,y) : y € Fy} = F, (a group with respect to addition)
and H = {(x,0) : x € IF;} = ]Fj; (a group with respect to multiplication),
we have

Aff(F,) = A x H

and the corresponding homomorphism IF; > x = ¢, € Aut(Fy) is given
by ¢y (y) = xy forall x € ]FZ, y el

(iii) The conjugacy classes of the group Aff(IF,) are Cop = {(1,0)},C; =
{(,y):y eIFZ}andCx ={x,y):yel;}x er,x # 1.

Proof Part (i) is trivial, while (ii) and (iii) are immediate consequences of the
identity
(u, v)(x, y)(u, v)*1 =(x,—xv+uy+v) =, (1 —x)v+uy).
O

Since Aff(F,) is a semidirect product with an abelian normal subgroup,
we can apply Theorem 1.3.11 (the little group method) to get a list of all
irreducible representations of Aff(F,). As usual, IE/:; (resp. I/FE) will denote
the dual of the additive group F, (resp. the multiplicative group F7). From
Lemma 1.3.16(ii) it follows that the conjugacy action of F(’; on E is given by

Y (x) = x(a 'x) (1.79)

forall x € E, xelF,,ac IF;. Denote by xo = 1 the trivial character of F.
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Lemma 1.3.17 The action of F; on I/F; has exactly two orbits, namely {xo}
and ﬁ \ {x0}. Moreover, the stabilizer of x € E is given by

{Ir:} if x # xo
Ey =100

Fy if' x = Xo-
Proof 1t is clear that xo is a fixed point. From now on, let y € E be a
nontrivial character. For a € I, let us set

—1 .
ay — ¢ x ifaely
xo ifa=0.

We claim that the map a +— “x* yields an isomorphism from F, onto @.
Indeed it is straightforward to check that “+P)y*(x) = %¢*(x)’x*(x) for all
a,b,x e IF,. Moreover, if a # 0 we have “x* # xo since the map x — ax
is a bijection of IF,. This shows that the homomorphism a +— “x* is injective.
Since |Fy| = |ﬁ;|, it is in fact bijective. As a consequence, we have that {?x :
a # 0} = {*x* : a # 0} coincides with the set of nontrivial characters. O

Theorem 1.3.18  The group Aff(IF,) has exactly g —1 one-dimensional repre-
sentations and one (q — 1)-dimensional irreducible representation. The former
are obtained by associating with each \r € E’E the function ¥ : Aff(F,) — C
defined by

Y(x, y) =)

forall (x,y) € Aff(Fy). The (g — 1)-dimensional irreducible representation
is given by
Ind 0y (1.80)

q

where x is any nontrivial character of IF,.

Proof This is just an application of the little group method (Theorem 1.3.11).
Indeed, the inertia group of the trivial character yo € I/F; is Aff(IF,), by Lemma
1.3.17. This provides the ¢ — 1 one-dimensional representations simply by
taking any character v € ]1/?3. The inertia group of a nontrivial character x is
[F, since, by Lemma 1.3.17, (IF;;)X = {1]1:3}. O

Exercise 1.3.19 Show that (Aff(Fq), IF;;) is a symmetric Gelfand pair with
homogeneous space Aff(IF,)/ IE‘:; = I, and that the two spherical representa-
tions are the trivial representation and the one in (1.80), with corresponding
spherical functions ¢ = 1 and ¢ given by
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1 ifx=0

o1(0) = {—qu ifx £0

forall x € Iy.
Hint. The group Aff(FF,;) acts on IF, doubly transitively and one may apply
Exercise 1.2.34.

We now list some more advanced topics on the structure of finite fields that
shed more light on the representation theory of Aff(IF,). We refer to the books
by Lang [49, Chapter 6] and Winnie Li [53, Chapter 1] for complete proofs
and further details.

Theorem 1.3.20 Let I, be the finite field with g = p" elements and p a
prime number.

(1) The multiplicative group IFZ is cyclic (of order g —1); in other words there
exists g € Iy such that Fy = {1, g, g% ..., g%

(ii) The additive group of ¥, is isomophic to the direct sum of r copies of the
(additive) cyclic group of order p.

(iii) If we set tr(x) = x + xP + xP’ + -+ x?""" then tr (called the trace)
is a homomorphism of the additive group ¥ onto the additive group IF .
Moreover the kernel of tr is given by the subgroup Ker(tr) = {y — y? :
y € Fy} (Hilbert’s Satz 90).

From Theorem 1.3.20(iii) we deduce that the expression
X (x) = exp[2ri tr(x)/ p], x el (1.81)

(we identify IF, with {0, 1, ..., p — 1}), defines a nontrivial character x € I/F;.
Recall (see Theorem 1.3.18) that we may use this character to get the (unique)
higher-dimensional irreducible representation (1.80) of Aff(IF,).

Exercise 1.3.21 Show that Iﬁ; = {xs : s € F}, where
Xs(x) = x(sx) = exp[27i tr(sx)/p] (1.82)

forall s, x € FFy.
Deduce that IF% = {Xs,t 5,1 € Fy}, where

Xs.t (X, y) = x(sx +ty) = exp[2mi tr(sx + 1y)/p] (1.83)

foralls,t,x,y € Fy.
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Exercise 1.3.22 Use (1.81) together with Theorem 1.3.20(ii) to show that a

. . Aff(F, ..
matrix realization of Ind]Fq ®a) X 1s given by

U(gk, y) = D(y)W¥,

where g is a cyclic generator of ), k = 0,1,...,9 — 2,y € F,, D(y) is the
(g — 1) x (g — 1) diagonal matrix

x(y) 0 0o - 0

0 x(» 0 --- 0

D(y) = : . - :
0 0 0 - x(g 2%y

and W is the (¢ — 1) x (¢ — 1) permutation matrix

010 - 0
001 - 0
W=...~.
000 - 1
1 00 0

Hint. Use equation (1.7) with S = {g™" :i =0, 1,..., g — 2} as a system of
representatives for the left cosets of I, in Aff(IF,). Use the identities
(g%, y) = (1, »)(g*. 0) = (1, y)(g. )",
(. 0)(1,x)(g ™. 0) = (g7 g'x),
(8. 0)(g.0)(g ™. 0) = (" /T, 0)

foralli, j,k=0,1,...,q —2.

1.3.6 The finite Heisenberg group

This subsection, which is a natural continuation of the preceding one, is based
on Chapter 18 of Terras’ monograph [74].

Let F, be a finite field and g = p” with p a prime number. The Heisenberg
group over I, is the group of matrices

1
Hy = 0 ix,y,z€F,
0

S = =
—_ < N
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Exercise 1.3.23

(i) Show that H, is isomorphic to the set {(x, y,z) : x, y, z € F,;} endowed
with the composition law

(x,y, ), v,w) = +u,y+v,xv+w+2). (1.84)
In particular, check that
x5, 27" = (—x, =y, =z + x).
(i) Deduce from (1.84) that
(x,y,2) =1(0,0,2)(0, y,0)(x, 0,0). (1.85)
(iii) Show that
o, v, ) N, v, w)(x, ¥, 2) = (u, v, uy — X0+ w) (1.86)
and deduce that the conjugacy classes of H, are C,, = {(0,0, w)}, w €
F, (giving g one-element classes) and Cy, = {(u,v,w) : w € Fy},
u,vel,, (u,v) #(0,0) (giving g® — 1 classes of ¢ elements).
(iv) From (1.86) deduce that (x,0,0)~'(0, v, w)(x,0,0) = (0, v, w — xv)
and thus, in turn, that
My =T, x4 Fy,
where IF‘?I ={0,v,w) :v,w € Fy}and F; = {(x,0,0) : x € F,} are
viewed as additive groups and ¢ is the F-action on ]Ff] given by
¢x (v, w) = (v, w — xV)
with x, y, z € .
As a consequence of Exercise 1.3.23(iii), we shall denote the elements of

Hy by (x,y,2) € Fy x Fg with multiplication as in (1.84).
Using the notation from Theorem 1.3.14 (with G = Hy, A = ]Fg and H =

Fy), given x;, € @ (see (1.83)), we have

{ly} ift#0
HX:,r = .
H otherwise.

Indeed, from

000y (v, w) = x50 (v, w — xV)

= x(sv+t(w — xv))
= x((s —tx)v +tw)

= Xs—1x,: (U, W)
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we deduce that (X’O’O)XS,, = xs.r if and only if either # = O (in this case, the ~
equivalence class of each x; o reduces to the element y; ¢ itself and therefore
Hy ,=H)ort #0andx = 0 (so that H,, , = {1x}).

According to the preceding analysis, we can choose

X ={xs0:5€F;}U{xo,:t €Fy,t#0}

as a set of representatives of the quotient space A / =~ (cf. Theorem 1.3.11).
For every s, u € F, if we denote by ¥, , € H, the character defined by

Ysu(x,y,2) = x(sy + ux)

then, recalling that H, , = H (so that A x Hy , = G) and that ¥, € G
denotes the inflation of x, € G/A = H = TF,, we have

Ind{{,.pr, (X0 ® Xa) (. . 2) = (5.0 ® Far) (1, 7. 2)

= X5,0(¥, 2) Xu (x)
= x(sy + ux)
= %,u(x, v,2)
so that
Indgx Hy, o (5(:/0 ® ﬁ) = ws,w

Moreover, if t # O then Hy,, = {1y} (so that A x H,,, = A), and setting
= Indf()'(a/,) € H, we have

Indf,py,, (X0 = Ind§ (35.) = . (1.87)

From Theorem 1.3.14 we deduce that 7/-1\,1 consists exactly of the ¢> one-
dimensional representations ¥ ,, s,u € F,, and the g — 1 representations
i, t € Fy,t # 0, of dimension [G : A] = |H| = |Fy| =gq.

Exercise 1.3.24 Use (1.87) to show that a matrix realization of r; is given by
Ux,y,2) = x(t2)D(ty) W (x),

where D(ty) is the ¢ x g diagonal matrix

x© 0 0 0 - 0
0 x(@y) 0 0 . 0
Diy)=]| 0 0  xQ@ty) 0 - 0

0 0 0 0 - x(g—Dry)
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and W(x) is the g x g permutation matrix defined by
Wx)ij =38 +x)

foralli, j € Fy.

Hint. Use equation (1.85) and observe that § = {(i,0,0) : i e Fy} = H =T,
is a system of representatives for the left cosets of A = IFZ in G = H,. Use
the identities

(iv O’ O)(O, O, Z)(_jy O’ O) = (l - ja O, Z)v
(i7 Oa 0)(()’ Y, 0)(_.]7 O’ 0) = (l - j? Vs l)’),
@,0,0)(x,0,0)(—7,0,0) =G —j+x,0,0)

foralli, j,x,y,z € Fy.
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Wreath products of finite groups and their
representation theory

In this chapter, which constitutes the core of the book, we develop the repre-
sentation theory of wreath products. Our exposition is inspired by the mono-
graphs of James and Kerber [38] and Huppert [35]. Howewer, our approach
is more analytical and, in particular, we interpret the exponentiation and the
composition actions in terms of actions on suitable rooted trees. This is done
in Section 2.1.2. In Section 2.3 we describe the conjugacy classes of wreath
products F @ G, with particular emphasis on groups of the form C; * G (Sec-
tion 2.3.2), and F @ S, (Section 2.3.3), and then in Section 2.4 we use the little
group method (Theorem 1.3.11) to determine a complete list of irreducible
representations of wreath products. Finally in Sections 2.5 and 2.6 we analyze
the representation theory of groups of the form C> » G and F @ S, respec-
tively. This yields, in particular, a clear description of the representations of
finite lamplighter groups (Sections 2.5.1 and 2.5.2) as well as of the groups
Sm v Sy (Section 2.6.1).

2.1 Basic properties of wreath products of finite groups

2.1.1 Definitions

Let G and F be two finite groups and suppose that G acts on a finite set
X. Denote by FX the set of all maps f : X — F. The set FX is a group
under pointwise multiplication: (f - f')(x) = f(x)f'(x) for all f, f' € FX
and x € X. We can define a natural action of G on FX by setting (gf)(x) =
f(g7lx) forall g € G, f € FX and x € X. We have g(f - f)) =
gf - gf and (gf)~! = gf~'; in this way G acts on FX as a group of
automorphisms.

60
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Define a multiplication on the set FX x G = {(f,g): f € FX, g € G} by
setting

(L. 8)=(fgf g8 (2.1)
forall (f,g), (f',g") € FX x G, where, with the above notation,
(f - efHx) = f0) f' (g 'x) (2.2)

forall x € X.

Lemma 2.1.1 The set FX x G equipped with the multiplication (2.1) is a
group. The identity element is (1, 1), where 1p(x) = 1F forall x € X, and
the inverse of (f, g) is given by (g~ f~1, g7 1).

Proof Let(f,g),(f. &), (f" g") € FX x G. Then, we have

[ N e = (f -ef e (f". ¢"
=((f-8f)-88'f" (888"
=(f-(gf -28'f"), 8(&'e")
=(f-g(f & g&e")
= &1 ¢
= (. OIS eN(f". gM1.

This shows that the operation (2.1) is associative. It easy to show that (1, 1)
is the identity. Moreover, we have

¢ 'fe =6 g o)
=@ ')
=r, 16)
=o' e
and therefore (g~! f~1, g71) is the inverse of (f, g). U

Definition 2.1.2

(i) The set FX x G when equipped with the above group structure is called
the wreath product of F by the permutation group G and is denoted by
F: G.

(i) The subgroup

FX =((f.1g): f € FX)

is called the base group: it is naturally identified with FX.
(iii)) The subgroup diagFX ={f € FX f is constant on X} = F is called
the diagonal subgroup of the base group.
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It is easy to show that the base group is a normal subgroup of F' : G. More-
over, the wreath product may be written as the semidirect product (cf. Defini-
tion 1.3.12) of the base group by the subgroup G = {(1r,g) : g € G} = G
(note that (f,g) = (f,lg) - (1F, g) for all (f,g) € F » G). Modulo the
identification of G with G we thus have

F:1G=FXxaG.
Since

Ar. ) ([ 16) = (¢f. ) = (f. &) = (/. 16)AF. &)

forall g € G and f e diag F¥, and since (diag FX) N G = {(1F, 1)}, we
deduce that (diag FX)G, as a subgroup of F : G, is isomorphic to the direct
product F x G.

Proposition 2.1.3 Let G (resp. Gy, resp. G3) be a finite group acting on a
finite set X (resp. X1, resp. X3). Also let F be a finite group and H < G a
subgroup. Then

(F:G)/(F:H)Y=ZG/H (2.3)
and
Fr(Gy xG)ZE(F Gy x(F1Gp) 2.4)

(here G| x Gy acts on X1 || X2 as follows: (g1, g2)(xi) = gixi for x; € X;,
i=1,2)

Proof For g1, g2 € G we write g1 ~p g if there exists 1 € H such that
g1 = hgy or equivalently if g; and g, belong to the same right H-coset: Hg| =
Hg,. Analogously, for fi, f» € FX and g1, g2 € G we write (f1, 2) ~Fr. 1
(f2, g2) if there exists (f, h) € F : H such that (f1,g) = (f, h)(f2, g&2).
Denoting as usual by 1 € F X the constant function 1(x) = 1p, where
1F is the identity element in F, we have (f,g) = (f, 1g)(F, g) for all
f € FX and g € G. This shows that (f,g) ~r,xg (1f,g) forall f € FX
and g € G. Also, if g1, g2 € G and g1 ~y g2, say g1 = hgy forh € H,
then (1r, g1) = (1F, h)(1F, g2) and therefore (1f, g1) ~r, g (1F, g2). Vice
versa, if (17, g1) ~r.n (1F, g2) then one easily shows that g1 ~y g>. This
proves (2.3).
Letus set X = X || X2. We leave it to the reader to check that the map

F (G xGy) — (F1Gy) x(Fu1Gy
(f.(g1.82) = ((flx1: 8D (flxs. 82))

is a group isomorphism. (]
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2.1.2 Composition and exponentiation actions

Now suppose in addition that F acts on a finite set Y. Then there is a natural
action of F' : G on the product space X x Y, as shown in the following.

Lemma 2.14 For(f,g)e F :Gand(x,y) € X XY, set

(f, &), y) = (gx, f(gx)y) = (gx, (g~ /1Y) (2.5)

Then (2.5) defines an action of F @ G on X x Y. Moreover, (2.5) is transitive
if and only if the actions of G on X and of F on Y are both transitive.

Proof 1Ttis clear that (1, 1g)(x,y) = (x,y) for all (x,y) € X x Y. More-
over, if (f,2), (f',g) € F1G and (x,y) € X x Y then

[(f. ) (f eHx,y) = (f-gf g8 (x.y)
= (gg'x. {[(gg" " f - ¢ F1)}y)
= (gg/x. (g~ HOHLE ™ FHIyh
= (f. 9)(&'x, f1(g'x)y)
= (f. L. gNH(x. ).

It follows that (2.5) is an action. It is immediate to check that this action
is transitive if and only if the actions of G on X and of F' on Y are both
transitive. O

Definition 2.1.5 The action defined in (2.5) is called the composition of the
actions of Gon X and FonY.

When restricted to the subgroup (diag FX)G, the composition action
coincides with the product action of G x F on X x Y. Note also that

oty =@ e hoy =@ x f )

forall (f,g)e F:Gandx e X,y €Y.

The theory of wreath products becomes more transparent if we think of them
as groups acting on finite rooted trees. The rooted tree Tx xy corresponding to
X x Y is the graph (V, E) with vertex set V = {#} [ [ X [ [(X x Y) and edge
set E = {{0, x} : x € X} [{{x, (x, y)} : x € X, y € Y}. The vertex @ is called
the root of Tx xy. Moreover, if e = (u,v) € E, u, v € V then we say that the
vertices u and v are adjacent and we write u ~ v. In other words, Tx xy is the
finite rooted tree, with two levels, obtained by taking ¢ as the root and X as
the first level and then attaching to each x € X a copy of Y. All these copies
of Y constitute the second level X x Y, and its elements are called the leaves
of Txxy (see Fig. 2.1).
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0

Y Y Y

Fig. 2.1 The tree Tx wy is obtained by attaching to each x € X a copy of Y.

We denote by Aut(Txxy) the automorphism group of the tree Tyxy of
Txxy, that is, the group of all bijective maps «: V — V which respect the
adjacency relation ~ (in other words, which map edges to edges). Note that
for every o € Aut(Txxy) one has «(¥J) = ) and, more generally, «(X) = X
and o(X x Y) = X x Y. In view of this, every o € Aut(Tx«y) is uniquely
determined by its action on the leaves, that is, by o|xxy. Now, given a €
Aut(Txxy) and (x, y) € X x Y, there exist unique elements x’ = x'(x) € X
and y' = y'(x, y) € Y such that

alx, y) = (', y). (2.6)

Taking G = Sym(X) and F = Sym(Y) in Lemma 2.1.4, we have that the
composition action makes Sym(Y) : Sym(X) act on the tree Tx xy. In fact we
have the following.

Theorem 2.1.6 Aut(Txxy) = Sym(Y) : Sym(X).

Proof Note first that the composition action respects the adjacency relation
~ on the vertices of Tyy. Also, the unique element of Sym(Y) : Sym(X)
that corresponds to the trivial automorphism is the identity. This ensures that
Sym(Y) * Sym(X) can be identified with a subgroup of Aut(7Tx«y). It only
remains to show that every @« € Aut(Txxy) comes from the action of an
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element (f, g) € Sym(Y) : Sym(X). This is easy: define g = g(a) € Sym(X)
and f = f(a) € Sym(Y)¥X such that

/

gx =x and  f(gx)y =)
where a(x, y) = (x/, y’), forall x € X and y € Y. Note that f is well defined
because for every x € X we have
af, )1y e YD ={G"y):y eV} ={(gx,y):yeVY)
(o respects the adjacency relation ~). It is then clear that o and (f, g) yield the

same action on Txxy. O

Returning to the composition action (see Definition 2.1.5), since G <
Sym(X) and F < Sym(Y), from the above theorem we immediately deduce
the following.

Corollary 2.1.7 (Geometric interpretation of the composition) 7he group
F 2 G is isomorphic to a subgroup of Aut(Tx xy). O

There is also a natural action of F : G on the set YX of all maps ¢ : X — Y.

Lemma2.1.8 For(f.g) € F:1G, oYX andx € X set

[(f. )¢l(x) = f(X)p(g " x). 2.7
Then (2.7) defines an action of F ¢ G on YX. Moreover, (2.7) is transitive if

and only if the action of F on Y is transitive.

Proof Ttis clear that (17, 1)@ = ¢. Moreover, if (f, g), (f',g') € F : G,
Qe YX and x € X, we have
{[(f O el ) =[(f - gf, g8l (x)
=[f@) (g7 0l g7
= fWLf'(¢" e g7 0]
= FOL 8)elg™ ' 0)
={(/,If", gHel}(x)

and therefore (2.7) is an action. One can easily check that this action is tran-
sitive if and only if the action of F on Y is transitive (this is equivalent to a
transitive action of the base group F¥ itself on Y ¥). O

Definition 2.1.9 The action defined in (2.7) is called the exponentiation of
the action of F by the action of G. Its restriction to (diag FX)G is called the
power action of F by G.



66 Wreath products of finite groups and their representation theory

Y Y Y

Fig. 2.2 The map ¢ € YX may be seen as a subtree of the tree of X x Y.

Exercise 2.1.10 For each ¢ € YX, denote by
Gp={(x,o(x)):x e X} CXxY
the graph of ¢. Show that

(f. 809 = G(f.0)0>

where (f, 8)G, = {(f, &)(x, ¢(x)) : x € X}. In other words, on the family
{Gy : ¢ € YX} = Y¥ of subsets of X x Y the composition action induces
exactly the exponentiation action.

Example 2.1.11 (Geometric interpretation of the exponentiation action)
Consider again the tree Txxy of X x Y. We may identify every ¢ € YX with
the subtree

T, =0 [X] [t o)) : x € X)}.

In this way, Y may be seen as the family of all subtrees whose vertex set
consists of the root ¢, the whole first level X and, for every x € X, the sole
vertex (x, p(x)) € X x Y (see Fig. 2.2). Then the action of F : G on this
family of subtrees (induced by the composition action) coincides exactly with
the exponentiation action (see Exercise 2.1.10).
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2.1.3 Iterated wreath products and their actions on rooted trees

Now let H be a third group and suppose again that G (resp. F') acts transitively
on X (resp. Y). We consider the wreath products H : F = HY x F and
(H F): G = (H ! F)X x G. Alternatively, if we regard F : G as a group
acting on X x Y by means of the composition action, we can form the wreath
product H 2 (F 1 G) = HX*Y % (F 1 G). Both constructions lead to the same
result, as shown in the following theorem.

Theorem 2.1.12 (Associativity of the wreath product) The map
V: H:(F:G) —- (H1F):G
(h, f,8) @, 8),

where h € HX*Y, f e FX and g € G and where ¥ € (H )X = (HY x
F)X = (HY)X x FX, defined by setting 9 (x) = (h(x, -), f(x)) forall x € X,
is a group isomorphism.

Proof Ttis clear that W is a bijection. If we take (h, f, ), (W', ', ¢') € H 2
(F @ G) then their product is

(h’ f7 g)(h/a f/v g/) = (h . (f’ g)h/’ f ' gf/’ gg/)a
where [ - (f, )h'1(x, y) = h(x, y)h'(g~ ' x, £ (x)~'y). Therefore, on the one
hand

V(h, f,o)H, [, ¢ =®" gg),
where 9 (x) = (h(x, )W’ (g7 "x, F(x)~1), £(x) f'(g~"x)). On the other hand,
if 0,8 = Yk, f,g) and (¥, ¢g") = V@', f',g") then (%, 8)(¥',g") =
(- g, gg') and
@ - g0")(x) = D) (g7 x) = (h(x, ), FE)H (g x, ), f'(g"x))
= (h(x, ) (g7 x, fO) 1), FO0) f/ (g7 X)),

that is, @ - g#/ = ©”. This shows that

\IJ((h’ f’ g)(h/v f/v gl)) = \I’(h, fs g)\IJ(h/, f/’ g/),
so that W is an isomorphism. O

From now on, in view of Theorem 2.1.12 we will simply write the iterated
wreath productof H, Fand Gas H  F @ G.

More generally, suppose that G, Ga, ..., G, are finite groups and that
each G; acts on a finite set X;, i = 1,2...,m — 1. Set Vy = {#} and, for
k=1,2,...,m,

Vi=X1 x Xy x--- x Xg.
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Then the iterated wreath product G,, * Gyu—1 v -+ 2 G2 ¢ G1 consists of all
m-tuples (fr, fim—1,---, f2, f1), where f1 € Gyand f : Vi1 = Gk, k =2,
3, ..., m, with the multiplication law and action on V,, recursively defined by

(fks fk—lv B f2’ fl)(fk/v fk/—lt BERE) f2/v fl/)

= (fx - =ty os oo SOSE Si=t1s ooy o, FOURZts oo os fas JD)s
2.8)

where
((fi=1s fi—2s - fo, SO S0, X2, 000, Xk—1)
= Fi((fiets s foo SO0, X2, oy Xkm1)), (2.9)
and by

(fi=1, fri—2, oo os o, fO)(e X0, ooy Xk—1) = (V1L 2, -+ o5 Yk—1), (2.10)

where

01 Y25 - Yi=2) = (fe—2, -+, o, SO0, X2, .0, Xk—2)

and
V=1 = fr—1(V1, Y2, -+ s Yk—2)Xk—1
forallx; € X;, fi € G, i=1,2,...  k,andk=1,2...,m.

Exercise 2.1.13  Verify that the multiplication operation defined in (2.8) makes
Gp 2 Gp—1 -+ 2 Gy 2 Gy agroup and that (2.10) defines a group action of
Gnt1Gu_1t---0GyrGron X1 X Xp x -+ X X

Hint. Apply induction and use Lemmas 2.1.1 and 2.1.4.

Exercise 2.1.14 (Distributivity of the wreath product) Let G| (resp. G2)
be a finite group acting on a set X (resp. X2). Let F be a finite group and set
X = X [] X». Show that

F (G xGr)Z(F Gy x (F Gy,

where the wreath product on the left-hand side is defined with respect to the
action of G x G on X (see Proposition 2.1.3).
Hint. Show that the map

FX % (G1xGy) — (FX1xGy)x (F* xG»)
(fs (g1, 82)) = ((flxs 8D (flx,. 82))

where fl|x, € F Xi denotes the restriction of f € FX, yields the desired iso-
morphism.
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The iterated wreath product of permutation representations is a particular
case of a more general construction considered in [3]. It involves an indicized
family of permutation groups where the index set is a poset.

2.1.4 Spherically homogeneous rooted trees and their
automorphism group

In this subsection, we give a geometric interpretation of the iterated wreath
product: as for the wreath product of two single groups, the iterated wreath
product can be interpreted in terms of actions by automorphisms of rooted
trees.

Let X1, X2, ..., Xy, m > 1, be finite sets. Fork = 1,2,...,m, letrpy =
| Xr| and

Vi=X1 xXo x - x Xy

and setr = (r1,r2,...,rn). We then denote by Ty the spherically homoge-
neous rooted tree of branching type r (briefly, r-tree) with vertex set

v=vw][v]lv]]1]Ve

where two vertices v = (x1, X2, ..., x;) and w = (y1, y2, ..., yp) are adjacent
if |h —k| = land x; = y; foralli = 1,2,..., min{h, k}. If v and w are
adjacent and & = k + 1 we say that w is a son or successor of v and that
v is a father or predecessor of w. The set Vi, k = 0,1, ..., m, is called the
kth level of the tree. Clearly, every vertex of level £ (0 < k < m — 1) has
exactly rx41 successors. Moreover, the integer m is called the depth of T, and
the elements in V;, are called the leaves of T;. Let Aut(7;) denote the group
of all rooted automorphisms of 7., that is, of all bijective maps o: V — V
that preserve the adjacency relation and that, in addition, fix the root . Note
that every such automorphism stabilizes all levels of the tree. For every vertex
(x1,x2,...,xr) € Vi, 0 < k < m, we denote by Ty, y,,... x;) the subtree with
root (x1, x2, ..., Xx) and vertex set

(o2, o} [ G x, s x0) x X |
-~-]_[({(X1,X2,--~,Xk)} X Xip1 X Xgg2 X -+ X X))

The following constitutes a generalization of Theorem 2.1.6.

,,,,,

Theorem 2.1.15 Aut(Ty) =S, 2 S, 2=+ 0 S 2 Sy

Proof Arguing by induction, one easily proves that the iterated composition
action respects the adjacency relation ~ on the vertices of 7, and that the
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unique element of S, ¢ S;,,_; ¥ -+ S, ¢ Sy which corresponds to the trivial
automorphism is the identity. This ensures that S, ¢ S, , 2 --- 2 S, ¥ Sy
can be identified with a subgroup of Aut(7;). It remains to show that every
o € Aut(T;) comes from the action of an element in the iterated wreath
product. The argument is the same as that in Theorem 2.1.6, just a bit more
elaborated.

If o € Aut(Ty) and a(xy, x2, ..., xk) = (y1, ¥2, .., Yr) then, since o pre-
serves the adjacency relation as well as the levels, we have aT(y, r,,.. x) =
T(y,,ys....,yp)- In other words, every automorphism permutes the subtrees rooted
at vertices of the same level. In this way, every a € Aut(7y) is uniquely deter-
mined by the m-tuple h(«) = (hp, hin—1, ..., ha, h1), where

hi = hi () € Sym(Xy) !
is defined by
a(xy, X2, ..., Xk)
= (h1(D)x1, ha(x1)x2, h3(x1, x2)x3, ..., he(x1, X2, ..., xp—)xE) (2.11)

forall k = 1,2, ..., m. One calls h(«) the labeling (or portrait, see [33]) of
the automorphism «.
We now recursively define f; € Sym(X;)"-! by setting f; = hy and

fie = (fi=1, fi—2, -5 fo, fOI
forall k = 2,3, ..., m and denote by

fl) = (fus fn—1s -0 f2, f1)

the corresponding m-tuple.
Then (2.11) ensures that « can be identified with f («). O

2.1.5 The finite ultrametric space

The finite ultrametric space has been introduced and studied by G. Letac [52]
and A. Figa-Talamanca [28]. We refer to [11, Chapter 7] for more details and
information.

Let g and m be positive integers and denote by T ,, the rooted tree T, of
depth m wherer = (¢, ¢, ..., q) (thus T, ;, is homogeneous). Note that, as a
particular case of Theorem 2.1.15, we have Aut(T; ) = Sqg ¢ Sg ¢ --- 2 S4.

Denote by ¥ = {0, 1, ..., g — 1}"" the set of leaves of T ,, and equip it with
a metric structure by defining a distance functiond: ¥ x ¥ — N, by setting

d(x,y) =m —max{k : x; = y; forall i <k} (2.12)
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forall x = (x1,x2,...,x,) and y = (y1, y2,..., ym) in Y. The distance d
satisfies the ultrametric inequality

d(x,z) < max{d(x,y),d(y, z)}

for all x, y,z € Y. For this reason, one calls (Y, d) the (finite) ultrametric
space.

Consider the action of Aut(7} ;) on Y and denote by K (g, m) the stabilizer
of the point yp = (0, 0, ..., 0). We then have:

Theorem 2.1.16  (Aut(7y ), K (g, m)) is a symmetric Gelfand pair.

Proof By virtue of Example 1.2.32, it suffices to show that the action of
Aut(7y ) on Y is 2-point homogeneous.

We proceed by induction on the depth m of the tree. If m = 1, we have
Y ={0,1,...,9 — 1} and Aut(7, 1) = S,. Moreover, the ultrametric dis-
tance coincides, in this case, with the discrete distance (for x, y € Y, we have
d(x,y) = 0if x = y and d(x, y) = 1 otherwise). Let x, y,x’,y" € ¥ and
suppose that d(x, y) = d(x’, y"). We distinguish three cases: (i) if d(x, y) =
d(x’,y") = 0then x = y and x’ = y’, and we denote by g the transposition
(x x) € Sy; (i) ifd(x,y) =d(x',y") = 1 (sothatx # yand x" # y'), x =y’
and y = x’, wethensetg = (x x') = (x y) € Sy (iii) otherwise, we set
g = (xx)(yy) € S,;. Inall three cases we have gx = x’ and gy = y’. This
proves the base case of the induction.

Suppose now that the statement holds true for Aut(7, ;) with1 <k <m—1.
Let x = (x1,x2, ..., Xn), Yy = V1, Y2, ..., Ym), ¥ = (x],x},...,x,,) and
Y=Y )

If d(x,y) = d(x’,y") = m then x; # y; and x| # y|. By applying the
same argument as in the base case, we can find an element g € S, such that
gx1 = xj and gy; = y|. Consider now the element & € Aut(7, ,,) with
label h(a) = (1,1,...,1,¢) and set x”" = (x{,x),...,x,) = a(x) =
(xp, %2, o xm) and Y7 = (], ¥y, yp) = @) = (0 Y2, e Ym)-
We have that x” and x’ (resp. y” and y’) belong to the same rooted subtree,
namely Txi (resp. Tyi ), and these subtrees are distinct (since x| # y{). Since
the height of these rooted trees is m —1, after identifying Aut(Txi ) and Aut(Tyi )
with Aut(7} ,,—1) we apply induction and obtain an element 8 € Aut(7y ;,—1)
(resp. § € Aut(Ty ;,—1)), say with label h(8) = (b, bm-1,...,b2) (resp.
h(8) = (dn,dm—1, ..., d2)), such that B(x}, xJ, ... x) = (x5, x5, ..., x,,)
(resp. 8(¥Y, ¥5, .. ym) = (V5 ¥5o sy ). If y € Aut(Ty ) has a label
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h(y) = (hm, hm—1, ..., ho, hy) such that h; = g, hk(xi, 0,13, ..., 1) =
bi(tr, 13, ..., tx—1) and hk(yi, H,13,...,tk—1) = dp(tr, 13, ..., 1) for all
t,13,...,10—1 = 0,1,...,9g — 1l and 2 < k < m then we clearly have
y(x) =x"and y(y) = y".

Suppose now that d(x, y) = d(x’,y’) < m. This means that there exists

1 <n < msuchthat x; = y;,x2 = y2,...,%;, = y, and x| = y{,x) =
Vs ..oy X, = yp. In particular x; = y; (resp. x{ = y}), that is, x and y
(resp. x" and y’) belong to the same subtree T, (resp. Txi ). By the transitiv-
ity of the action of S; on {0, 1,...,g — 1}, there exists g € S, such that

gx1 = x} (and therefore gy; = y}). Let @ € Aut(Ty ) denote the element
with label 2(e) = (1,1,...,1,¢) and set x” = (x{,x,...,x;) = a(x) =
(1, x2, .. xm) and Y = (3], ¥y, ym) = a(y) = (X2, Ym)-
Then, after identifying Aut(Txi) and Aut(7} ,,—1), we can find, by the induc-
tive hypothesis, an element 8 € Aut(T, ,,—1) such that S(xJ, ..., x;) =
(x5, ....x;) and B(YY, ..., yp) = (¥, ..., V). Finally, let y € Aut(T, ;)
be an element with label A(y) = (hp, hm—1, ..., ha, k1) such that by = ¢

and hp(x], 0,83, ..., k1) = br(ta,13,...,15—1) forall i, 13,..., 11 =
0,1,....g —1and 2 < k < m, where h(B) = (b, bm—1,....b2). It is
clear that y (x) = x" and y (y) = y'. O

In order to describe the decomposition into irreducible subrepresentations
of the permutation representation L(Y'), we introduce some subspaces. Recall-
ing that Y = {0,1,...,¢9 — 1}, we regard any element f € L(Y) as a

function f = f(x1,x2,...,x,) of the variables x, x2, ..., X, ranging in
{0,1,...,9 — 1}. Moreover, if 0 < j < m — 1 and if f € L(Y) does
not depend on the last variables x; 1, Xjy1, ..., Xy, thatis, f only depends

on the vertices of the first j levels of the tree Ty ,,, then we simply write

f=fxnxo,..,x)).
Set Wo = L(¥)) = Cand, for j = 1,...,m, set

qg—1
Wy=1felL®): f= f(xl,x2,...,xj),Zf(xl,xz,...,xj_l,x) =0
x=0
(2.13)
Note that for j > 1 one has
dim(W;) = ¢/~ (g — 1). (2.14)

In other words, W; is the set of all functions f € L(Y) that depend only
on the variables x1x; - - - x; and whose mean on the sets {xjx2---x;j_1x : x =
0,1,...,q — 1} is equal to zero for all xyx2 ---x;—1 € {0,1,...,9 — 1371
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In more geometrical language, we may say that f € L(Y) belongs to W if,
for every xjx2---xj—1 € {0, 1,...,9 — l}f_1 andx € {0,1,...,qg — 1}, the
function f is constant on the set

Ax = {X1X2 XXX X2 s X

Xj41,Xj42,...,x=0,1,...,g—land = j+1,j+2,...,m}
of descendants of x1x2---x;_1x in ¥ and, denoting by f; the constant value
of £ on Ay, one has Y/_ f, = 0.
Theorem 2.1.17 L(Y) = 69;'.’=0Wj.

Proof We first show that the subspaces W;, j =0, 1, ...., m,are Aut(7y, ,)-
invariant. The first condition, namely the dependence of f € W; only on the
first j variables, is clearly invariant as Aut(7, ,,) preserves the levels.

The induced action of Aut(7 ,,) on L(Y) is given by

o™ F1x1, x2, .+ s Xp)

= f(h@)x1, h(x1)x2, h(x1, X2)X3, ..., h(X1, X2, ..., Xpp—1)Xm)

for f € L(Y) and o € Aut(7; ) with labeling as in (2.11). Thus if f € W;
we have

gq—1

Z[a‘lf](xl, X2, ., Xjo1,X)

x=0

qg—1
= Z f(h(@)xly h(xl)x%

x=0
e h(x, xo, o xj0)x o1, h(xn, X2, L Xj1)X)
g—1
= Z Fh@)xi, h(x))x2, ... h(x1,x2, ..., xj—2)Xj—1,x")
x'=0
= 0.

This shows that the second defining condition for an f to be in W; is also
invariant.
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We now show that these spaces are pairwise orthogonal; that is, if f € W,

f' € Wi then(f, f') = 0if j # j’. To fix our ideas suppose that j < j’. Then

q—1 g—1

q—1
(£ )= D Fanxa o xn) 0 X2, Xm)

x1=0x,=0 X =0

q—1 g—1

q—1
YT Y fwn

x1=0x,=0 xj’—l:()

g—1
X Zf/(xl,xz, e Xy, k)
k=0
=0.

We claim that the W;’s fill up the whole space L(Y). We use induction on
m. For m = 1, it is a standard fact that any function f(x;) can be expressed
as f(x;) = ¢+ g(x1), where ¢ € C is a constant (indeed, ¢ = é z;(l) fx)

and g is a function of mean zero: Zz;(l) g(x) = 0. Suppose now that the
assertion is true for n — 1. Again, we can express an element f € L(Y) as
fx1,x2, 000y X)) =c(X1, X2, ooy Xim—1) + &(X1, X2, - .oy Xm—1, Xm ), Where ¢
does not depend on the last variable x,, and g has mean zero with respect to
Xxm- Applying the inductive step to c, the claim follows.

For j = 0,1,...,m we denote by Q; = {x € Y : d(x,x9) = j} the
sphere of radius j centered at yo = (0, 0, ..., 0). Observe that since K (g, n)
is the stabilizer of the point yo the 2;’s are K, ,,,-invariant. In fact, by virtue of
the 2-point homogeneity of the action of Aut(7, ,,) on Y, the spheres Q; are
exactly the K, ,,-orbits. It follows that there are m + 1 such orbits.

By applying Theorem 1.2.36 we have that the W;’s are irreducible sub-
spaces, and this ends the proof. U

We remark that, incidentally, Theorem 2.1.17 offers an alternative proof
of the fact that (Aut(7; ,), K(g,n)) is a Gelfand pair (compare with Theo-
rem 2.1.16). Indeed the subspaces W; are pairwise inequivalent (they have
different dimensions, see (2.14)) and therefore the decomposition of L(Y) is
multiplicity free (cf. Theorem 1.2.28).

Our next step is the determination of the spherical functions ¢q, ¢1, ..., on
relative to (Aut(7;,,), K (g, m)): we combine the defining conditions of the
W;’s with K (¢, m)-invariance (¢; is constant on the spheres ;).
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Proposition 2.1.18 For j = 0,1, ..., m, the spherical function ¢; € W; is
given by

1 ifd(x,x0) <m—j+1
¢j) =1 - ifdx,x)=m—j+1 (2.15)
0 ifd(x,x0) >m—j+ 1.

Proof 1Tt is clear that the function in (2.15) is K (g, m)-invariant. We are only
left with showing that ¢; belongs to W;. By virtue of (2.12) we have

1 ifx1:x2:-~-:x.,‘:0
Gj(x1, X2, ... X)) = —q%l ifxy=x=---=x;_1=0andx; #0
0 otherwise.

Indeed, we first observe that if (x1,x2,...,x;-1) # (0,0,...,0) then all
points of the form (x1, x2, ..., x;;) have the same distance (> m — j + 1)
from the base point yp = (0,0, ...,0) (in fact all points in the spheres 2,
with h > m — j + 1 satisfy this condition).

The spherical function ¢; in W; is constant on the £2;’s and thus if (xi,
x2,...,xj—1) # (0,0,...,0) then ¢;(x1, x2, -+, xj—_1, x) does not depend
on x because all the (x1, x2,...,x;-1,x),withx =0, 1,...,¢g — I, belong to
the same orbit €2,. This, coupled with the condition

qg—1
Zd’j(xl,xz, e Xj1,x) =0,
x=0

implies that ¢; vanishes on all points at distance > m — j + 1 from xo.

Similarly, the points of the form (0,0, ...,0,x,yj41,..., ym) With x =
j—1

1,2,...q — 1 constitute the ball of raditjls m — j + 1. Since, by definition,

¢;(0,0,...,0,0) =1 and ¢; only depends on the first j variables, the condi-

tion ¢;(0,0,...,0,0) + ZZ;} $;(0,0,...,0,x) = 0, coupled with the con-

dition that ¢; is constant on £2,,— 1, uniquely determines the value of ¢; on

1

points at distance m — j + 1; this value is therefore equal to — =1

Finally, if d(x, x90) <m — j + 1thenx = (0,0, ...,0, yh+1, ..., yp) wWith
————

h
h > j — 1, and therefore ¢;(x) = ¢;(0,0,...,0) = 1. O
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2.2 Two applications of wreath products to group theory

A fundamental application of wreath products to group theory consists in
expressing the Sylow p-subgroups Sylow(S,») of the symmetric group S»
of degree p” (p a prime number, n > 1) as the n-iterated wreath product of the
cyclic group C), of order p; that is, we write

Sylow(Syn) = Cp 2 Cp2 -+ 2 Cp. (2.16)

n times

In general, if N = ap+ajp+---+ akpk, where 0 < a; < p, then the
Sylow p-subgroups of the symmetric group of degree N are isomorphic to the
direct product of @; copies of Sylow(Sp,-) fori =1,2,...,k.

These calculations are attributed to Kaloujnine [39-42] (see also [8]) although
Kerber [43, p. 26] refers to an 1844 work of Cauchy. We shall not discuss these
results here; the interested reader may find a detailed exposition in the book by
Rotman [60, Chapter VII, p. 176].

In this section, however, we give two other applications of wreath products
to group theory. They are relevant to the material in the present book. We
follow quite closely the monograph by Dixon and Mortimer [23].

2.2.1 The theorem of Kaloujnine and Krasner

Let G, K and N be groups. We say that G is an extension of N by K, or
equivalently that

{1} — N —G— K — {1}
is an exact sequence, if
NG and G/N =K.

A wreath product of the form N : K = NX x K (here we consider the left
regular action of K on itself) yields an extension of the base group NX by K.
We refer to this as to the regular (or standard) wreath product of N by K.

Theorem 2.2.1 (Kaloujnine—Krasner [46—48]) Let G be an extension of N
by K. Then the following hold.

(1) There exists an injective homomorphism
®:G— N:K

of G into the regular wreath product of N by K.
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(ii) Moreover, if NX is the base group of N : K then
®(N) = ®(G) N N¥.

Proof (i) Let ¢ : G —> K denote the canonical surjective homomorphism
with Ker v = N. For every k € K choose sy € G such that ¥ (s;) = k and

s1x = 1. In this way we have
G = ]_[ SkN.

keK

Since (s, ' g5y, o)-11) = k'Y (W () Tk = 1k, then s; ' gsy(p-1x € N
for all g € G and k € K. Therefore for every g € G we have a map f; :
K — N defined by setting

FAGE T T (2.17)
for all k € K. We claim that the map

P . G — N1K
g +— (fe, ¥ ()

is an injective homomorphism. First, for g, 7 € G and k € K we have

{felw @il 0 = f) fi [w@7'k] Gy 22)

_ o —1 —1
=5 gs*ﬁ(g)‘lksx/f(g)*lkhszp(h)*lz//(g)*lk (by (2.17))

(2.18)

= skflghsll/((gh)fl)k (¥ is a homomorphism)
= fen(k)  (again by (2.17)),
that is,
Tel¥ (@) ful = fon forall g, f € G. (2.19)
Then
Q)@ (h) = (fg, ¥ (&) (S, ¥ (h)) (by (2.18))
= (fe¥ (&) Jn, V()Y (1)) (by (2.1))

= (fen, ¥(gh))  (by (2.19))
=®(gh)  (by (2.18))

for all g, h € G, showing that ® is a homomorphism. It remains to show that
® is injective, that is, that Ker & = 1. This is easy: if ®(g) = 1y,x then
fe =1y and ¥ (g) = 1k and therefore

lg =1y =1nv(Ig) = fo(lg) = 5785y 0-11, = &
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In order to show (ii), it suffices to note that ®(g) € NX if and only if
Y(g) = lk, thatis,if and only if g € N. U

2.2.2 Primitivity of the exponentiation action

Let G be a finite group acting transitively on a finite set X and denote by K
the stabilizer of a point xp € X.

A block of the action of G on X is a subset B C X such that foreach g € G
one has

either gB=B or gBNB=/y. (2.20)

Let B C X be a block. We say that B is trivial if |[B| = 1 or B = X. Setting
Q = {kB : k € K}, we have that X = [[,.o A and that G acts on £ in the
obvious way.

If there exists a nontrivial block, say B, we say that the action of G on X is
imprimitive and we call Q2 a system of blocks (or system of imprimitivity) for
the action of G on X. If the action of G on X (is transitive and) has only trivial
blocks we say that it is primitive.

Lemma 2.2.2 Let B C X be a block and h € G. Then hB is also a block.
Moreover, B is trivial if and only if h B is.

Proof The statement follows immediately after taking 2! gh in place of g in
(2.20). The remaining part of the proof is trivial. d

Exercise 2.2.3 Prove that the action of G on X is primitive if and only if K
is a maximal subgroup of G.

Hint. The map H —— Hxg yields a correspondence between the set of all
subgroups H such that K < H and the set of all blocks containing x.

We recall that, in the preceding notation, the stabilizer of an element x € X
is gKg™!
action of G on X is called regular whenever the stabilizer of a point is trivial:
K = {lg} (and therefore all other stabilizers are trivial). Clearly, the action
of G is regular on X if and only if the following condition is satisfied: for any
x,y € X there exists exactly one g € G such that gx = y. In particular,
|G| = |X].

The kernel of the action of G on X is the normal subgroup N = {g € G :
gx = x for all x € X}. This is the kernel of the homomorphism G — Sym(X)
induced by the action. Note that the kernel coincides with K if and only if K
is normal in G. We say that the action is faithful when its kernel is trivial.

, where g is any group element such that gxo = x. A transitive
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Exercise 2.2.4 Suppose that the action of G on X is faithful and primitive.
Then the action is not regular if and only if Ng(K) = K, where Ng(K) =
(g € G:gKg~! = K} < G is the normalizer of K in G.

Hint. Observe that K < Ng(K) < G.

Denoting by N the kernel of the action of G on X, we have that the action is
primitive if and only if the induced action of G/N on X is primitive. Therefore,
in the study of primitive actions, the assumption that these actions are faithful
is not restrictive.

Now let F be another group acting on a finite set Y.

On the one hand, the composition action of wreath products is not primitive
because, in the notation of Definition 2.1.5, we have that {x} x Y is a block
(for the action of ' : Gon X x Y) forevery x € X.

On the other hand, we will show that exponentiation (see Definition 2.1.9)
provides a wealth of primitive actions. We first introduce some notation. Fix
yo € Y and let H be the stabilizer of yy in F. For each x € X we set W, =
(e YX 1 (x") = yo for all x” # x}.

Lemma 2.2.5 Let ® be a block for the action of F2G on YX. Then, for every
x € X, the set B = {p(x) : ¢ € W, N ®} is a block for the action of F on Y.

Proof Letx € X, ¢ € W, and suppose that f € FX satisfies f(x’) = 1 for
all x’ # x. Then one has

[(f. 16)p](x) = f()e(x)  and  [(f. 1)el(x') =y  forallx’ #x,

and therefore (f, 1g)Vy = W, and (f, lg) (Wx N D) = WU, N(f, 15)P. Since
® is a block, we have

(file) (U N®)=v,Nn®  or  [(f,1c) (W NP N (Y, NP) =0

Suppose now that s € F and f € F¥ satisfies f(x) = s and f(x") = 1 for
all x" # x. Then we have

sB ={p(x):¢ e (f lg) (VxN D)}

so that, necessarily, either sB = B or sB N B = {4, proving that B is a
block. O

Theorem 2.2.6 Suppose that the actions of G on X and of F on Y are both
faithful. Then the exponentiation action of F 2 G on Y X is primitive if and only
if the following conditions are satisfied:

(1) the action of G on X is transitive;
(ii) the action of F on Y is primitive but not regular.
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Proof We start by proving that conditions (i) and (ii) are necessary. We achieve
this by analyzing all possible cases separately.

e If the action of G on X is not transitive and A g X, A # 0, is an orbit, then
the set ® = {¢p € YX : ¢(x) = yoforall x € A} is a nontrivial block of
F:G on YX . Indeed,if (f,g) € F 1 G and (f, g)®N® # Pthen f(x) € H
for all x € A and therefore (f, g)® = &.

e If the action of F on Y is not transitive then neither is the action of F : G on
Y transitive (see Lemma 2.1.8).

e If the action of F on Y is not primitive and B C Y is a nontrivial block then
the set ® = {p € YX : ¢(x) € B forall x € X} is a nontrivial block for the
action of F 2 G on Y.

e If the action of F on Y is regular then the set ® of all constant functions
¢ : X —> Y isablock. Indeed, if (f, g) € F:G and (f, g)® NP # (@ then
there exists ¢ € ® such that (f, g)¢ € ®. This implies that [(f, g)¢](x) =
f(x)@(g~'x) is constant as a function of x. Regularity forces f to be con-
stant also, yielding (f, g)® = .

We now prove that conditions (i) and (ii) imply that the action F : G on
Y¥X is primitive. Let ® C Y X be a block for the action of F : G on YX and
suppose that |®| > 2. Since the action of F:G on Y* is transitive, by virtue of
Lemma 2.2.2 we may assume that ® contains the constant function ¢g, where
@o(x) = yo for all x € X. By our assumptions, there exists ¢ € @ such that
@ # ¢o. Thus we can find x; € X and y; € Y, y; # yo, satisfying ¢(x1) = y1.
Taking f € FX such that

f@)o(x) = @(x) forall x € X,
we have that (f, 16)¢o = ¢ and therefore
(filg)®=® (2.21)

(because @ is a block). In particular, for u = f(x1) we have uyy = y; and
u ¢ H.Since Np(H) = H (see Exercise 2.2.4) we can find h € H such
that

u hu ¢ H.
Define fi, f» € FX by setting

h  ifx=x
filx) =

17 otherwise
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and fo(x) = f1(x)”' f(x)"' fi(x) f(x), for all x € X. Then we have

h'u=hu ¢ H ifx =x
fa(x) =

1r otherwise.

Since (f1, lg)po = ¢o we also have (f1, 1g)® = & and therefore, recall-
ing (2.21),

(2 16)® = (fi, 16)7 (£ 16) 7 (i, 16)(f, 16)® = . (2.22)

Let us set v = f>(x1). By virtue of Lemma 2.2.5, the set B = {¢(x1) :
¢ € W, N @} is a block for the action of F on Y. But B contains both
Yo (because g9 € Wy, N ®) and vyg (because (f2, lg)po € Wy, N & and
[(f2, 1)eol(x1) = vyp); since vyy # yo (because v ¢ H) and F is primitive
on Y, necessarily B = Y. It follows that ® contains W,,. Since (1r, g)go = ¢o
it follows that (17, g)® = &, for all g € G. Therefore from the elementary
identity (1, g)Wy, = Wey, and the transitivity of the action of G on X, we
deduce that

® D U U, (2.23)
xeX

Now we end the proof by showing that ® = YX . Indeed, any © € Y* may be
represented in the form

9 = [H(fx,lc)} %0,

xeX

where f, € FX is defined by setting f,(x") = 1 for x’ # x and by choosing
fx(x) in such a way that fy(x)yp = ¥ (x). Noticing that (fy, lg)py € ¥,,
from (2.23) we deduce that (fy, lg)po € ; since gg € P this implies that
(fx, 1g)® = @ for all x € X. Therefore

» = [H(fx,lG)] o0 € [1‘[@;, 1G>]q>=q>.

xeX xeX

We have shown that ® = Y X, so the exponentiation action of F : G on Y¥is
necessarily primitive. (]

2.3 Conjugacy classes of wreath products

This section takes its inspiration from the monograph of James and Kerber
[38]. We recall that for any finite group G there exists a bijective
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correspondence between the set of conjugacy classes in G and the dual GofG
(that is, a complete set of pairwise inequivalent representations of G) (see [15,
Corollary 1.3.16]).

2.3.1 A general description of conjugacy classes

Recall that, given distinct elements x1, x2, ..., X, in a set X, the permutation
¢ = (x1x2 -+ - x,) in Sym(X) that maps x| to x2, x2 to x3, ..., x,—1 to x, and x,
to x; and maps every other element of X to itself is called a cycle. The integer
r = L(c) is called the length of the cycle. Also, recalling that the support
of a permutation 7 € Sym(X) is the set consisting of all x € X such that
m(x) # x, we have that given 7 € Sym(X) there exists an integer # > 0 and
cycles ¢y, ¢, . .., ¢y with mutually disjoint supports such that 7 = cjca - - - ¢p.
This is called the cycle decomposition of w (and its expression is unique up to
a permutation of the factors).

We now introduce a useful notation for cycles (see [59] and [15, Remark
3.1.1]). If # € Sym(X) and c is a cycle of 7, we write ¢ in the form

c=@x—> 7k > 1K) = = 797 (x) > x), (2.24)

where x belongs to the support of c. In this way, if o is another element of
Sym(X) and we denote by oc the cycle in o7ro ! corresponding to the cycle
c of 7 as in (2.24) then, from the elementary identity (c7ro ™" )*[o(x)] =

onko o (x)] = ok (x) forall k > 0, we get

oc=(0(x) > om(x) > on(x) > - — ot O (x) > o(x)). (2.25)

Let now G be a finite group and, for g € G, denote by €(g) = {h~'gh : h €
G} the conjugacy class of g in G. Suppose that G acts on a finite set X and
denote by 7 this action: 7w(g) € Sym(X) is the permutation of X associated
with g € G. Denote by C(;r(g)) the cycles of the permutation 7 (g). Then any
c € C(m(g)) is of the form (2.24):

c=(x > n(@x = — 79"y 5 x),
where x € X. The cycle decomposition of 7 (g) is given by

m(8) = 1_[ ¢ 1_[ (x—=m(@x > = 7" x> x),
ceC(r(g)) xeO(x(g))

where O(r(g)) C X denotes a set of representatives for the orbits of 7 (g) on

X.If g, h € G then C(w(hgh™')) = hC((g)), where if ¢ = (x — 7(g)x —
- = 1(@)"9 1y — x) € C(w(g)) then he = (m(h)x — w(h)w(g)x —
- () (e) O x — m(h)x) (cf. (2.25)).
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Now let F be another finite group and denote by © = {&(f) : f € F} the
set of its conjugacy classes. Form the wreath product F : G = FX x G.In
what follows, for the sake of simplicity we will use the notation gx to denote
m(g)x. Also, for two elements a and b in a group H, we shall write a ~y b
if a and b are conjugate in H (that is, €(a) = &€(b)). For (f, g) € F:G and

c=x - gx > - — g7y 5 x) e C(m(g)), we set

acx(fr8) = F(& 970 F(g"O72x) - f(gx) f(x) € F. (2.26)

Lemma 2.3.1 The conjugacy class of acx(f, g) in F does not depend on
the particular expression (that is, the choice of the first element x) of the cycle

c=(x—>gx— = g7 — x) e C(n(g)).

Proof If (g'x — g'Tlx — ... = gHtO~1x 5 olx) € C(n(g)) is another
equivalent way to write ¢ then

FETHOT (@ O2x) s f(g'x) ~p (1T ) F (e - f (),
because in any group the elements

aaz - a;10;Qj41 -+ - A and aidiy1 - aga1a - - Qi1
are conjugate. O

We now set YV = {(¢,g) : g € Gand ¢ : C(g) — D}. In other words,
consists of all pairs (¢, g) such that g € G and ¢ is a function which maps a
cycle of the permutation on X associated with g to a conjugacy class of F'. The
group G acts on ) in a natural way: if 2 € G and (¢, g) € ) then

h(g, g) = (he, hgh™"),
where hg : C(hgh™') — D is defined by setting hp(c) = @(h~'¢), for all
¢ € C(g). By virtue of Lemma 2.3.1, the following definition is well posed.

Definition 2.3.2 Let (f, g) € F:G and define ¢ : C(g) — O by setting ¢(c)
equal to the conjugacy class containing a. . (f, g). We then denote by A(f, g)
the orbit of G on ) containing the element (¢, g).

Lemma2.3.3 Let f € FX, g, h € G and

()1

c=kx—>gx—> > g x — x) €C(g).

Then
dex(fs 8) = anepx (hf, hgh™")
and

A(f, 8) = A((Lp, )(f, ) (Ar, B)7H.
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£(c)—1

Proof First recall that hc = (hx — hgx — --- — hg x — hx)isa

cycle of hgh~!. We then have
anex(hf, hgh™") = f(h~'hg" O~ x) - f(h ™ hx)
= F@" ) f () = acn(f. 8).
Therefore, if for every ¢ € C(g) we denote by ¢(c) (resp. ¥ (hc)) the con-
jugacy class of ac x(f, g) (resp. ancnx (hf, hgh’l)) then we have h(p, g) =
(Y. hgh™') and A(f. g) = A(hf, hgh™") = A(Ap. B)(f. g)Ap. W)™, O
Lemma2.3.4 Letf, f' € FX, g € Gand

£(c)—1

c=(x—>gx—> > g x — x) €C(g).

Then

ac,x(fv 8) ~F ac,x(f/f(gf/)ilv 8),
where (gf) "' (y) = f' (g7 ' y) " forall y € X, and

A(f, 8) = AW 1) (f, ) (f 1) h.
Proof We have

acx(f' f(gf) ) =Lf Flef) 1 O 0Lf flgfH (g4 2x)
< x L F(efN M)
e I N A ) | WA R )
x f1(g"9 20 f (81O f (g1 01!
x o x f1(g0) F@Lf O /() f L (g7 01!
= ") f (81O ) £ (g )
xox f(gx) fOLf (g7 01!
= 1" ). (f. 9L (g 017!
= (¢  Wac.(f.OLf ¢ 01!
~F acx(f, 8).
Therefore, if for every ¢ € C(g) we denote by ¢(c) (resp. ¥ (c)) the conjugacy

class of ac . (f, g) (resp. acx(f'f(gf)~', g)), then ¢ = v and A(f, g) =
A(f fefH ™ ) = A 1) (f ) (f 1) ™). 0

Theorem 2.3.5 Let (f,2),(f,g)eF 1 G. Then we have (f,g)~ rc
(f',g)ifand only if A(f, g) = A(f’, g'). In particular, the conjugacy classes
of F 1 G may be parameterized by the orbits of G on ).
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Proof The “only if” part follows from Lemmas 2.3.3 and 2.3.4 after observ-
ing that if (f”, g”") € F G then

(" e e = 1) A, g (o) Ar, &N 16)

Conversely, suppose that A(f, g) = A(f’, g’). This implies the existence of
g" € G such that

g=2g"¢"! (2.27)
and
aex(f, 8) ~F ary-1e.gn-1x(f's &)
foralle = (x - gx — --- — g'©O~lx - x) e C(g). From Lemma 2.3.3

we deduce that
A(f.9) = A(f.8) = AFr. ¢ (f . eHAr. gH ) = Ag" f. 9)
and

acx(f,8) ~F agry-1e,gn-1:(f's &) = acx (" f', &)

forallc = (x - gx — - - — g'©O~lx — x) € C(g). Therefore, for every

such ¢ € C(g) there exists g, € F such that

FE OO f( ) f ()
= 4.1 (¢ g O ) g e O - () T g (2.28)

Let f” : X — F be defined as follows. For every ¢ = (x — gx — -+ —
g' O~y = x) € C(g) we recursively set f”(g*©~1x) = g. and

g0 = o o) T e @229)
fort =4(c) —2,¢(c) —3,...,1,0. It follows that
[ =f"@Enr e g @ o
fort = £(c) — 1,£(c) — 2, ..., 1 and that, by (2.28),

f) =@ (N 0O o
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We deduce that
FE O f(HOx) - f(gx) f ()
=[O ()T O (g O T
< [f" (@120 f1((") g ) (g1
xox [ (gx) £1((8") ) (o)1
< [f" @) f (N o (O o™
= [ @O0 /(e g O ) g O
< f(g" O )T (g9 )
< £ 720 f1((¢) '8 O (g g ) !
< (g1 7 (g9 2]
o x [0 f1((&) ) f1((e) e T (g0 T f(gx)]
< L") (8" o f (g1 o

= f(g" O ) F(g" ) - Fleolf ) (e T ) (MO 0T,
(2.30)

where equality =, follows from (2.28). By comparing the first and last terms
of (2.30) we deduce that

@) = @O = FoOT 0 (g . (2.31)

It follows that f = f”(g” f)(g(f”)~") (compare this with (2.29) and (2.31))
and therefore, also using (2.27), we get

(" e e e = (@ e g @ h = (f o).
O

2.3.2 Conjugacy classes of groups of the form C,: G

Let G be a finite group acting on a set X. Let F' = C, = {0, 1} denote the
cyclic group of order two (we use additive notation). Then the wreath product
of C2 by G (with respect to the action of G on X) is the set C2: G = CéX X
G={(w,g) :we€ Cé(, g € G)} with the composition law (6, g) - (w, h) =
0 + gw, gh) forall 0, w € C2X, g.h € G, where gw(x) = w(g~'x) for all
x € X. The identity element is (Oc,, 1) and the inverse of (0, g) € C2: G is
given by (0, 8)~! = (g7'0, 7.

Now,forg e G,c=x > gx —> - > g x —>x)eC(g)and w €
Cé‘, we have a. x (0, g) = w(x)+w(gx)+-- 4w (g"©9~1x). In particular, de.x

£(e)—1
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does not depend on x and so it will be denoted simply by a.(w, g). Moreover,
D coincides with Cp, sothat Y = {(p, g) : g € Gand ¢ : C(g) — Ca}. We
also recall that A(w, g) denotes the orbit of G on ) containing (¢, g), where
¢(c) = ac(w, g) forall c € C(g).

Example 2.3.6 (The finite lamplighter group) Let G = C, denote the
cyclic group of order n: we shall use additive notation and identify G with
Z/nZ. Thus we shall think of any element k € C, as an integer representing
the equivalence class k +nZ. Let X = C,, be equipped with the Cayley action
of G. Note that, in our notation, s (kw) = (s + k)w.

Consider the wreath product C; @ C;,. We denote by C5 the set of all maps
0 :C, — Colfk € Cyand 0 € CF then k6(j) = 6(j — k) and the
multiplication in C2: C,, = {(0, k) : 0 € Cy, k € Cy} is given by

6, k) (w, h) = (0 + ko, k + h)

for all (0, k), (w, h) € Cy:C,,.

Now let k € Cp, and denote by m the order of k. Then the (cyclic) group (k)
generated by k is isomorphic to C,, and the cycles of k are the cosets of (k) in
C. Setting t = -~ we then have

Ck)y={r—=r+k—---—>r+km—-1)—=r):r=0,1,...,t —1}.

We may identify (r — r +k — --- — r +k(m — 1) — r) with r seen

~

as an element of C; = g—" (that is, r is computed modulo ¢). Then the action
m

~

of C,, on C(k) is the same thing as its action on C; = g—;: for j € C,, the

j-image of the cycle (r - r +k — -+ — r + k(m — 1) — r) is the cycle
r+j—->r+j+k—> - —>r+j+k(m—1) - r + j), which is
determined by » + j (computed modulo ). Note also that the conjugacy action
of C,, on itself is trivial. Taking into account all these considerations, instead
of Y = {(¢,k) : k € Cpand ¢ : C(k) — C,} we will consider only the set
]_[,‘n Cé (here Cé denotes, as usual, the set of all functions from C; to C», and
t varies among all divisors of n). For (w, k) € C2:C,, and for m and ¢ as
above, we denote by A(a), k) the orbit of C, on Cé containing the function
¢ : C; — C; defined by setting

o) =wr)+or+k)+ -+ +km-—1)) forr=0,1,...,t—1.

Recalling Definition 2.3.2, Theorem 2.3.5 immediately gives:
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Theorem 2.3.7 Two elements (w, k), (6, h) € Cy C, are conjugate if and
only if h = k and A(w, k) = A9, h).

Example 2.3.8 (The hyperoctahedral group) Let G = S, denote the sym-
metric group of degree n. We recall some elementary facts on the conjugacy
classes of S, (see [11, 15]). If 7 € §,, and

mn=(a —a—--—a, >a)b —>b— - = by, = by

(el = = oy — 1)

is the decomposition of 7 into disjoint cycles, with A > Ap > --- > Ar and
A1+ Ao+ -+ - Ax = n (trivial cycles are taken into account also) then the cycle
structure of m is determined by the partition A = (A1, Ao, ..., Ax) of n. We
write A = n if A is a partition of n. Let €, C S, be the set of all permutations
whose cycle structure is equal to A F n. Then the sets €, A - n, are precisely
the conjugacy classes of §,: two elements o, 7 € S, are conjugate if and only
if they have the same cycle structure.

We now take X = {1,2,...,n} and form the wreath product C>: S, =
{@,m):m e S§,,0 € C?}. Let (8,7) € Cy: S, and recall that a.(0, 7) =
O(ar) +6(az) + - - +0(ag)) forany cyclec = (a1 — ar — -+ — age) =
ay)inC(w). Fori =0, 1 we thenset C; () = {c € C(m) : a.(0, ) = i}.

Definition 2.3.9

(1) A double partition of the positive integer n is a pair (A, i), where A F &,
mhEn—kand0 < k < n. We will write (A, i) IF n to denote that (A, 1)
is a double partition of n.

(i) If (A, w) I- n we will denote by €, the set of all pairs (6, 7) € C2 S,
such that the cycle structures of the permutations

nc and nc

ceC(m): ceC(m):
ac(0,7)=0 ac(0,m)=1

are equal to A and u, respectively.
In other words, A (resp. ) is determined by the lengths of the cycles ¢ =

(g = ap — -+ = age — a1) of m on which a.(f, ) is equal to 0
(resp. 1).

Theorem 2.3.10 The sets & ., (A, u) = n, are precisely the conjugacy
classes of C2 1 Sy,.
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Proof In the present setting ) is the set of all (¢, 7) where 7 € S, and
¢ :C(w) — C;.Given (¢, p) € Yandi =0, 1 we set

Pi = HO

ceC(p):
p(c)=i

Then (¢, ) and (¥, o) in ) are in the same S,,-orbit if and only if there exists
n € S, such that nrn~! = o and (n~'c) = ¥ (c) for all ¢ € C(r), and this
is in turn equivalent to the fact that 7r; and o; have the same cyclic structure.
Applying this fact to (6, ) and (w,0) € C2 S, with ¢(c) = a.(0, 7) and
Y(c) = ac(w, o), for all ¢ € C(xr), we conclude that (6, 7) and (w, o) are
conjugate if and only if they belong to the same ;. t

2.3.3 Conjugacy classes of groups of the form F: S,

We now consider wreath products of the form F : S, with respect to the nat-
ural action of S, on X = {1,2,...,n}. Therefore, F: S, = {(f,7) : m €
S, and f : X — F} with the usual product law. We introduce a specific nota-
tion to parameterize the conjugacy classes of F : S,. For (f,w) € F Sy, we
consider the matrix

Ol(f, 7T) = (a‘[,k(fs ﬂ))‘EE@v
keX

where o  (f, ) equals the number of cycles ¢ € C(rr) such that £(c) = k and
acx(f, m) € t. Clearly,

Z ar k(f, m) = number of cycles of length k in (2.32)
T€D

and

D kD arsfim) =n. (2.33)

k=1 1e®

The matrix «( f, ) will be called the type of (f, 7).
We denote by ‘B = B(F, n) the set of matrices

B = Bri)red
keX

of nonnegative integers satisfying the condition

> kY Bri=n. (2.34)

k=1 1e®
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Theorem 2.3.11 Tivo elements in FS,, are conjugate if and only if they have
the same type. Moreover, the set of conjugacy classes of F @ S, is in bijective
correspondence with 5.

Proof Let us show that two elements (f, 7) and (f/, ') in F : S, are con-
jugate if and only if the have the same type. Observe that, by virtue of Theo-
rem 2.3.5, it suffices to prove that A(f, 7) = A(f’, ') ifand only if a(f, ) =
a(f’, ). The “only if” part is obvious.

Conversely suppose that a(f, 7) = «a(f’, 7’). From (2.32) we get & ~g,
7', because 7 and 7’ have the same cyclic structure. Moreover, we can choose
o € 6, suchthat oo~ = 7’ and, in addition, a.  (f, 7) ~F doc.ox (', ")
for all ¢ € C(7r) and for x € O(c), the orbit of ¢ in X = {1, 2, ..., n}. Indeed,
to construct a permutation o € S, such that oro !, the first step is to choose
a bijection between C(rr) and C(rr’) that preserves the length of the cycles.
Since a(f, ) = a(f’, ®’) we can choose that bijection in such a way that,
for every ¢ € C(), the elements a x(f, 7) and dagcox(f', ') belong to the
same conjugacy class. This ensures that A(f, 7) = A(f’, 7’) and proves the
first statement of the theorem.

To complete the proof, we note that «(f, 7) € B forall (f,7) € F ¢ S,.
Let now show that given any B8 € ‘B there exists (f,7) € F ¢S, such that
a(f,m) = B. We first take 7 € S,, which has ) __o B x many cycles of
length k and then construct f as follows. We arbitrarily make the partition

Cmy= [] Coxlm
Te®
keX
ﬂr,k#o

in such a way that |C; x(7)| = Brx forall T € © and k € X. Then, for each
T €9,k € X and ¢ € Cr (), we arbitrarily select an element x = x(c) €
O(c) and one element fy € 7 and then set

fo ify=x
1r  otherwise

f(y)z{

for all y € O(c). Since the orbits O., ¢ € C(mr), form a partition of X
this defines an element f € FX. It immediately follows by construction that

a(f,m) =p.
This shows that the map (f, 7) — «(f, 7) induces a bijection between the
set of conjugacy classes of F @ §,, and ®B. U

As a consequence of the above theorem, we have that the number of con-
jugacy classes of F : S, is equal to |B|. We now give a formula explicitly
expressing such a number. To this purpose we denote by c(n, &) the set of all
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finite sequences (ay, az, ..., ay), where ay, az, ..., a, are nonnegative inte-
gers and a; +a» + - - - + ap = n (such a sequence is called a composition of n
of length /). Moreover, we denote by p(n) the number of partitions of n.

Corollary 2.3.12  The number of conjugacy classes of F ¢ S, is equal to
> planpa) -+~ plap). (2.35)

(ay,az,....ap)€c(n,h)

where h = |9D|.
Proof Letus set

(F,n) = {a = (@)ren 1ar 20, Y ar = n} (2.36)

€D
and, fora € X(F,n),

A@) = (A9 = (Ap)red : Ar Fay forall T € D). (2.37)

It is obvious that the map

B> (a(,s), W“‘))) (2.38)
defined by
n
aB)r =Y kBrx
k=1
and
)\ga(ﬁ)) — (nﬂr,n’ (n— 1)/3:.;171’ o 1ﬂr,1)

forall B = (Brk)red kex € B and T € D establishes a bijection between B
and the set

N =NF,n) ={a 1) :aeX(F,n),1 e A)). (2.39)
It is now obvious that |J7| equals the quantity expressed in (2.35). U

Example 2.3.13 (Conjugacy classes of S,,:S,) We now consider the con-
jugacy classes of S, @ Sy, that is, we specify the above analysis for F @ S,
with ' = S,,. Recall that for each u = m we denote by €, the set of all
permutations in S,, whose cycle structure is equal to . We set

S0m.n) = v=urmine =0, Y ny=n (2.40)
ukEm
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and, forv € X(m, n),
AW) =AY = M pbm  Au F gl (2.41)

Note that X (m, n) is nothing other than X (S,,, n), as in (2.36), and A(v) cor-
responds to A(a) as in (2.37). It follows from Corollary 2.3.12 and its proof
that the conjugacy classes of S, » S, are parameterized by the set

N = NOm, n) = {(v W)) ‘v e Xm,n), A" e A(v)] . (2.42)

2.4 Representation theory of wreath products

This section takes its inspiration from the monographs by James and Kerber
[38] and Huppert [35].

2.4.1 The irreducible representations of wreath products

Let G, X and F be as in the previous sections. Now we want to develop the
representation theory of the wreath product F @ G. It is well known (see, for
instance, Theorem 9.1.6 and Corollary 9.1.7 in [11]) that every irreducible
representation o of the base group F¥ is of the form

=@

xeX

where o, € F forall x € X. Recalling that FX = FX x {Ig} C F 1 G, for
fo € FX we set

o (fo.16) = ) ox (fo(x)).

xeX

In other words, Vy, = @
of o, and we have

[0 (fo. 16)] (® vx) =X ox (fo(x))vy.

xeX xeX

ex Vo.» Where V. denotes the representation space

Recalling that FX = FX x {15} is normal in F : G we have the following:

Lemma 24.1 Let (f,g) € F ' G and o, € I?, for each x € X. Then the
(f, g)-conjugate of 0 = Q) .y Ox is given by the formula

(fo) _ QR Vo1, ~ R,

xeX xeX
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Proof Fix fy € FX. Since

() fo. 1) 9) = L gD (fo. 16)(f. 9)
=@ ' g ) 1),
we have on the one hand

(ﬁg)cy(fo’ 1) = ol(f. ) (fo, 1¢)(f, @)]

=o' g7 (o) T6)
= @) 0x(f(g) " folgx) £ (g))

xeX

= Q) o1, () folx) f(x))

xeX

= QYo g1, (folx)

xeX

= [@f‘”oglx} (fo, 16),

xeX

that is,
(f.8)
o=@ Vo1,
xeX

On the other hand, since f(x) € F and Og-1y € F we have

_1x

f) ~
Og-ly ~ Og-ly,

so that

(f.8)
o~ R0y

xeX

O

Lemma 2.4.2 Foreveryo = (@xex O’X) € FX, the inertia group of o with
respect to F 2 G is given by

Ip,g(0) =F 1 Tg(o),
where

Tg(0) ={g € G : 04y ~ 0y forall x € X}
={ge€G:04 =0y forallx e X} (2.43)
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(recall that FX denotes a set of representatives of the irreducible representa-
tions of FX).

Proof From Lemma 2.4.1 we immediately deduce that
Irp,g(0) ={(f,8) 1 0gx ~ oy forallx € X} = FX xTg(o) = F  T(0).
O

Lemma24.3 Everyo = (Q,cy 0x) € FX has an extension &, to the whole
of I, (o), defined by setting

3(f.8) <®vx) = Q) 01, (f @)1,

xeX xeX
forall (f,g) € F1Tg(0) and @ ,cx Vx € Qcx Vor-

Proof From the definitions of ¢ and T (o) we immediately have

5(f.8 (® vx> =) o1, (FNg-1, = Q) o (f (X))vg-1,.

xeX xeX xeX

We now prove that & is a homomorphism. Let (f1, g1), (f2, g2) € F: Tg (o).
We have

o ((f1,8D) - (f2. 82) <®vx) =0 ((f1-(81/2).8182) <®vx>

xeX xeX

= ®0x(f1 @) f2(gy ")) Sl

82
xeX
and
a((f1. 81 (?f(fzy g2) <® Ux)) =0(f1.81) <®"x(f2(x))vg2—1x>
xeX xeX
= Q) ox (fi()o, 1, (g V1,
xeX
= @ o (fim)ox(falgy DIvg1,,
xeX
= Qo (fit) gy V1
xeX

That is, & ((f1, 81) - (f2, &2)) = 0 (f1, 81)0 (f2, g2) and this proves that & is
a representation. O
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Table 2.1

General situation ~ Present setting

G F:G

N FX

I (o) F1Tg(o) = FX x Tg(0)
I(o)/N (FX % Tg(0)/FX = Tg (o)

‘We now apply the little group method (see Section 1.3.2) in order to describe

all the irreducible representations of the wreath product F' : G. Table 2.1 gives
the correspondence between the notation in the general situation and that in
the present setting.
__Let X be a system of representatives for the (¥ : G)-conjugacy classes of
FX . Foreach o € X, denote by & its extension to /g, (o) (see Lemma 2.4.3).
Moreover, for each ¥ € fg (o) denote by V¥ its inflation (1.71) to Irg(0)
(using the homomorphism Ir,g(0) — Tg(0) = Ip,G(c)/FX). This means
that

Y(f,8) =v(g)

forall (f, g) € Ir,g(0) = F ¢ Tg(o). Then, an application of Theorem 1.3.11
yields the following:

Theorem 2.4.4 With the above notation, we have

F16={md'° Ge¥y):0ex ¢elco)

F.G(0)

that is, the right-hand side constitutes a complete list of pairwise inequivalent
irreducible representations of F : G.

2.4.2 The character and matrix coefficients of the
representation o

When expressing the character and matrix coefficients of one of the irreducible
representations referred to in Theorem 2.4.4, the main problem is to compute
the character and the matrix coefficients of . Indeed, the matrix coefficients
of Y can be obtained by composing those of v with the homomorphism
Ip (o) — Tg(o) = Ipg (a)/FX. For o ® W we can use the well-known
formulas for the character and matrix coefficients of a tensor product (if (o1,
Vi) and (p2, Vo) are two irreducible representations of a group G then
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XM () = xP1(g)x (g) and uf' 513 (g) = ul'} (9)u'?,(g) for all g € G).
Finally, we may apply to Indfm ©) (G ®1) the formulas (1.14) and (1.7) for an
induced representation. Therefore, in this section we focus our attention on &.

Recall that G acts on the finite set X. Let 0 = ®,ex0y, Where oy € F for
all x € X. Recalling the definition of the subgroup 7Tg (o) < G, we observe
that if Q1, Q9,..., R, C X denote the corresponding 7 (o )-orbits then for
x,y € X we have o, = oy if and only if there exists 1 < i < m such that
x,y € ;. Therefore there exist pairwise inequivalent irreducible representa-
tions 01,02, ...,0, € fsuchthatax =og;forallx € 2;,i =1,2,...,m.In
particular, we have

=R R

i=1 xeQ;
Let v’i, vé R vZ’_ be an orthonormal basis in V;;, where d; = dim V,,,i =
1,2, ..., m. Then the character and the matrix coefficients of o; are given by

d;
Xi(0) =) (o (v, vhy,

j=1

and
u (1) = (o (v, Vi),

forallt € Fand j,k = 1,2,...,d;, respectively. Moreover, they satisfy the
following elementary properties:

dl' di

Do ul Ol (5) = uf  (19) and o (v =D uj (V.

k=1 j=I

For g € Ti (o), denote by C;(g) the set of cycles of the permutation induced
by g on ;. We also denote by A the set of all maps ¢ : X — N such that
px) e {1,2,...,d;} forall x € Q; and i = 1,2,...,m. Then, for every
¢ € A we set

m
_ i
v = & & vy
i=1 xe;

Itis clear that {v, : ¢ € A} is an orthonormal basis for V, = ®x€ x Vo, . Inthe
following, we shall use the notation a. . (f, g) from (2.26) for (f, g) € F 1 G,
x € Xandc € Ci(g).
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Theorem 2.4.5 The matrix coefficients and the character of the extension &
of o are given respectively by

uG () =TT TT #0060 F D, (2.44)

i=1xeQ

where ¢, ¥ € A, and

m

X () =[] J1 xoilac(s.en (2.45)

i=1ceCi(g)

Jorall (f,8) € Irg (o).

Proof From Lemma 2.4.3 we get, for (f, g) € Ir,g(0),

m

5 (f. 9)vp =@ Q) o (f N, 1,

i=1 xeQ;

m d;
=Q Q[ Do o0 F NV

i=1xe; \j=1

X;\ HH w<x>¢<g—1x>(f(x)) vy
Ve

i=1xeQ;

and this proves (2.44). Similarly, starting from (2.45), we can find the character
of o:

X6 (f.8) =Y (F(f. &)y, vy)

peA

=2 (l_[ I1 ”;<x>,w(g'x)(f(x)))

peA \i=1xeQ;

2}4 (H 1_[ ”w(gX) (/,(x)(f(gx)))

=1xeQ;

3

Z (1_[ l_[ (p((gx) (P(x)(f(gx))u(p(é x) [p(éx)(f(gzx))

peA “i=lceCi(g)

i )1
u(ﬂ(gé(c)flx),w(gl(c) 2x)(f(g x))”(ﬂ(x) o(gh©— 1x)(f(x)))
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d; d; d; d;
IT 2 2 o 2 2 enpwf &)

LceCi(g) p(gx)=1 p(g2x)=1  @(gt©-1x)=1px)=1

1=

i

X

1 2 ] l(c)—1
uzp(gzx),(p(gx) (f(g x)) e uip(g((c)_lx),(p(g[(c)_zx)(f(g © .X))

X uip(x),(p(gl(‘)’lx) (f(x))

d;
l_[ Z ”fp(x),w(x)(ac,x(fv g))

LceCi(g) p(x)=1

I
1=

i

I
1=

l_[ Xoi (ac(f, &),

1ceCi(g)

i

L(c)—1

wherec=(x »> gx — - —> ¢ x — x) € Ci(9). U

As a particular case of Theorem (2.4.5) we have

Corollary 2.4.6 Suppose that o, = o forall x € X (so that Tg(0) = G and
0 € FG). Then we have

X (f9) =[] xolac(f. g)
ceC(g)

forall (f,g) € FG. In particular, forall g € G and f € F¥,
x5 (1r, 1g) = dim(Vy) X,
35 (1F, 8) = dim(Vy)€),
X5 (f.16) = [ | xo (£ ().
xeX
Finally, if f is constant, say f(x) =t € F forall x € X, and for 1 <k <|X]|
we set ay(g) = |{c € C(g) : €(c) = k}|, then we have
1X|

X6 (f,8) = [ ao ).

k=1

2.5 Representation theory of groups of the form C,: G

Let G be a finite group acting transitively on a finite set X. For w, 6 € Cf we
setw-0 =Y ywx)0(x) € Co. Define the character xg of Cg‘ by setting

xo(w) = (=1)®?. Then the dual group of C§ is just C¥ = {x¢ : 0 € C5}
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and G acts on it in a natural way: for all g € G and w, 0 € g one defines
gx0(®) = xo(g 'w), that is, gxo = Xgo- The action of G on CZX is equivalent
to the action on sz and both can be identified with the action on the subsets
of X. In particular, for 6 € C2X the stabilizer Gy = {g € G : gxo = xo} (We
use this notation in place of 7 (0)) coincides with the stabilizer of the subset
Xy = {x € X : 6(x) = 0}. Then the extension ¥y € ﬁg of the character
Xo 1s given by Xp(w, g) = xo(w) for all w € CZX and g € Gy. Moreover,
if n € (/}\9 then its inflation 7 to Cy ¢ Gy is given by 7(w, g) = n(g) for all
w € Cg( and g € Gy. Both Xy and 7 are irreducible (C, : Gy)-representations
and so is their tensor product ¥y ® 7: clearly

Xo ®N(w, &) = xo(@)n(g), (2.46)
and yy is one dimensional. Applying Theorem 2.4.4 we deduce the following:

Theorem 2.5.1 Let © be a system of representatives for the orbits of G on
Cf (that is, any G-orbit has exactly one element in ©). Then

~ o~ CnG ,~ — _

Cr1G = HIndCﬂGg(xe ®7):0cOandn e Ge} ,
that is, the right-hand side constitutes a complete list of pairwise inequivalent
irreducible representations of C2 1 G. (|

2.5.1 Representation theory of the finite lamplighter group C,:C,

The group C» : C,, has already been introduced in Example 2.3.6. Every irre-
ducible representation of C, is one dimensional; it can be identified with its
character and we have C,, = {ex : k € C,}, where e (h) = exp (27i 5%) for all
h,k e Cy.

We may think of an element 6 € C7 as a periodic function 6 : Z — C3
satisfying 6(k + n) = 6(k) for any k € Z. Recall that the period of 6 is the
smallest positive integer t = ¢(6) such that 60(k +¢t) = 0(k) forany k € Z. It
is easy to show that ¢ divides n; morover, if n = mt then the stabilizer of 6 is
the subgroup C,, = (t) (recall also that, for any divisor m of n, the subgroup
of C, isomorphic to Cy, is unique [50]). The characters of the subgroup (t)
are eg| (), e1l(y, - - -» em—1l(r), where eg, ey, ..., ey are as above. Indeed, for
0 <r ¢ <m-—1we have e,({t) = exp (Znir’lﬁ) = exp (2711'%). We set
erliy(k) = e (k) when k € (t) and e,|;) (k) = O otherwise. We also set
m = m(0) = z(n_e)’ but we shall simply write ¢ and m when the element 0 is
clear from the context.
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For 0 € C} and 0 < r < m — 1, the character Xy ® e,|() of C 2 (1) is
given by
Xo ® erlyy(w, €1) = xo(w)e,(L1)
forall w € C’21 and? =0, 1,...,m—1.Let ® be a set of representatives for the
orbits of C;, on C5 (such orbits may be enumerated by mean of the so-called
Polya—Redfield theory; see [54] for an elementary account and [44] for a more
comprehensive treatment). Then we may apply Theorem 2.5.1.

Theorem 2.5.2 We have
S, CnCy > oo .
C2 1 Cy = {Indczz(t(9)>|:xe ®er|(l(9)):| :0e®,r=0,1,...,m@) — 1},

that is, the right-hand side constitutes a complete list of pairwise inequivalent
irreducible representations of C5 2 Cy. (]

2.5.2 Representation theory of the hyperoctahedral group C;: S,

As in Example 2.3.8, we have G = §,, and X = {1,2,...,n}. For any 0 <
k < n, choose 8% € C¥ such that |[{j € X : 0% (j) = 0}| = k. Then the
set (0@ M 9} constitutes a set of representatives for the orbits of S,
on CQX . Clearly, the S),-stabilizer of #% is isomorphic to S; x S,_x. We recall
that the irreducible representations of the symmetric group S; are canonically
parameterized by the partitions of 7; see, for instance, [7, 11, 15, 37, 38, 61,
68, 73]. For A F ¢t (recall that this means that X is a partition of ¢), we will
denote by (p*, §*) the irreducible representation of S; canonically associated
with A (the representation space S” is called the Young permutation module
or Specht module corresponding to A). The irreducible representations of the
group S; x S,_ are all of the form p* ® p*, with A - k and u + n — k.
We set

P = TdE G s, o[ Ko ® 0% ® pI1],
so that, applying Theorem 2.5.1, we have the following:
Theorem 2.5.3 The set

oo Ak, ut-n—kand0 <k <nj

constitutes a complete list of pairwise inequivalent irreducible representations
of (Cz ¥ Sp). (]

Basic results on the representation theory of the hyperoctahedral group may
be found in [31].
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2.6 Representation theory of groups of the form F: §,

The representation theory of groups of the form F : §,, with respect to the
natural action of S, on X = {1, 2, ..., n}, may be obtained just by specializing
the theory that we have developed so far. We now show how to express the
group TG (o) (see (2.43)) in this case. Recall that an irreducible representation
of the base group FX = F” may be written in the form

n
i=1
where 01,02, ...,0, € F.Fort € Fand o as in (2.47), we denote by n, (o)

the number of i € {1, 2,...,n} such that o; ~ 7. Then, identifying Sp with
the trivial group, we have

To(©) = [ | Snee»

teF

where [ ] denotes the direct product of groups. Therefore (cf. Table 2.1 and
Exercise 2.1.14)

Ipys,(0) = F 2 1_[ Snee | = H (F 2 Su)) - (2.48)

teF teF

We now recall some standard notation. If G is a finite group and m € N,

we set G = G x G x---x G (if m = 0 we identify G° with the trivial
m times

group). If T is a representation of G, we denote by T®" the representation

TRT®- - @t (if m = 0, we identify t®° with the trivial representation).

m times

—

Then, another way to express (2.48) is to say that every 0 = ®!_,0; € F”"
belongs to the same (F' : S,)-conjugacy class of the representation

Q). (2.49)
ref

Moreover, the representations of the form (2.49) constitute a complete sys-
tem of representatives for the (F @ S,)-conjugacy classes of F”. That is, if
we set

S(F,n) = {v=(t),cp:ne =0, ne=n

teF
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and, forv = (n),.p € T(F,n),

7= Q@

teF
then the set of such representatives is precisely given by
{oy:v e X(F,n)}
(cf. (2.48)). For v = (n¢) g we set

So=T] Su < Su-

teF

Then, the isomorphism (cf. Exercise 2.1.14)

[TFes)=|Fo]]sn|=FiS

teF teF
yields the equivalence

Q) o ~ Q) e (2.50)

teF teF

where 717 (resp. @, 5 T®") denotes the extension of ® (resp. ®
7®17) from S, to F 1 Sy, (resp. from S, to F 1 S,).

As a consequence, the representation theory of the groups of the form F
S, may be deduced from Theorem 2.4.4. Before stating the main result, we
recall that, for # € N and A + ¢, we denote by (p*, $*) the irreducible S;-
representation associated with the partition A; moreover, for v = (n;), .5 €
Y (F, n) we set

tefF

AW) =AY = (o) e i Ae F gl

and, for A = (A¢),cp € A(V),

pr =)o’

TeF

Using this notation we have:
Theorem 2.6.1 The set
[mdﬁﬁﬁ: 6 ®P) 1 v=(n7), ;€ T(F.n), A€ A(u)}

constitutes a complete list of pairwise inequivalent irreducible representations
of (F 2 Sy).
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2.6.1 Representation theory of S,,: S,

In the particular case when F' = §,,, Theorem 2.6.1 gives (for u - m we
simply write n,, instead of n,u):

Corollary 2.6.2 Setting

oy = @)™, AW) = (G rm : hn, F 1} and pr = @) p™
m ukm

foreveryv = (n,)yr-m € L(Sp,n) and , € A(v), we have that the set
|1nd§jg§§j 6 ®P0) 1 v = () € Z(Sp.n), A € A(v)} 2.51)

constitutes a complete list of pairwise inequivalent irreducible representations
of (S 2 Sp).

Remark 2.6.3 By virtue of the isomorphism (2.50) (and a similar isomor-
phism for the inflation) we can rewrite the above list of irreducible representa-

tions as
Sm S}’l —en
Indp e Q) (0@ @ phu | v = (p)urm € B(Sm.n). 2 € A(v)
u—=mm nﬂ

ukm
(cf. the list in [45, Section 4]).

Remark 2.6.4 In Example 2.3.13 we showed that the set of conjugacy classes
of the group S, ¢ S, is parameterized by the set (2.42). From (2.51) we see that
the same set, (2.42), parameterizes the set of all irreducible (pairwise inequiv-
alent) representations of S, : S,. This is in accordance with the well-known
fact that for any finite group F there is a bijective correspondence between the
sets of conjugacy classes of F and of F , the dual of F.
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Harmonic analysis on some homogeneous
spaces of finite wreath products

The present chapter is an exposition of the results in the papers [9, 63, 64].
We have rearranged material in the original sources, adding more details and
making everything consistent with the background developed in the preceding
chapters. In the first section we examine the composition of two permutation
representations (possibly with multiplicities, that is, not necessarily yielding
Gelfand pairs) and present the corresponding decomposition into irreducible
subrepresentations. We also give an explicit expression for the associated spher-
ical matrix coefficients. In Section 3.2 we study the generalized Johnson
scheme and describe a general construction of finite Gelfand pairs, introduced
in [9], which is based on the action of the group Aut(7") of automorphisms of a
finite rooted tree 7' on the space of all rooted subtrees of 7. We then study the
harmonic analysis of the exponentiation, following [64], and analyze in detail
the lamplighter group by developing a harmonic analysis on the corresponding
finite lamplighter spaces.

3.1 Harmonic analysis on the composition of two
permutation representations

In this section we examine the composition of two permutation representa-
tions. We give the rule for decomposition into irreducible representations and
the formulas for the related spherical matrix coefficients. For a more general
treatment, namely for the harmonic analysis on the composition action of a
crested product (a generalization of both the direct product and the wreath
product), we refer to [64].

3.1.1 Decomposition into irreducible representations

Let G and F be finite groups and suppose that G (resp. F') acts transitively
on a finite set X (resp. ¥). If G € L(X) and g € G, we denote by gG the

104
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g-image of G, that is, the element in L(X) defined by (¢G)(x) = G(g~'x) for
all x € X. Similarly, for 7 € L(Y) and f € F, we denote by fF € L(Y) the
f-image of F. Suppose that

L(X) = @am (resp. L(Y) = @bj W) (3.1)
=0 Jj=0

is the decomposition into irreducible G-representations (resp. F-represen-
tations) of the corresponding permutation representation. Recall that, in our
notation, Vp, Vi, ..., V, (resp. Wy, Wy, ..., W,,) are pairwise inequivalent
irreducible representations and ag, ay, ..., a, (resp. bo, by, ..., by) are their
multiplicities in L(X) (resp. in L(Y)); we also suppose that Vy (resp. Wp) is
the trivial representation and therefore, since the action is transitive, ay = 1
(resp. bp = 1). We fix xg € X and denote by K = {g € G : gxo = x¢} the
stabilizer of xg in G.

For G € L(X) and F € L(Y) we identify the elementary tensor G ® F with
the element in L(X x Y) defined by

(x,y) > GO)F () (3.2)

forall x € X and y € Y. In this way, the set {SX ®dy:xeX,y€ Y} consti-
tutes a basis for L(X x Y), and we have a natural isomorphism:

L(XxY)=L(X)®L(Y). (3.3)

With the above notation, and considering X x Y as an (F : G)-permutation
module with respect to the composition action (cf. (2.5)), we have the
following.

Theorem 3.1.1 The decomposition of L(X x Y) into irreducible (F : G)-
subrepresentations is given by

L(XxY)%[@ai(Vi(}bWo)]@ Poricxrew)|. G4

i=0 j=1

Proof First, from (3.3) and (3.1) we get (3.4) as a vector space decomposition:

LXXxY)ZLX)QLY) = |:@a,-V,-:|® Poiw;
i=0 j=0
= |:@ai(Vi®W()):|@ P (Lx)ew)|.

i=0 j=1
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We have to show that every subspace on the right-hand side of (3.4) is invariant
and irreducible.

Denote by A the permutation representation of F : G on X x Y associated
with the composition action. Then the action of A on tensor products can be
expressed as follows. Let G € L(X), F € L(Y), (x,y) € X x Y and (f, g) €
FG. Recalling the formula for the inverse of (f, g) in Lemma 2.1.1, we have

[A(f, £)(G ® F)I(x,y) = (G PI(f, &) ' (x, »)]
=GN f e Hix »
=GP 'x, f) 1y
= (8D @) [f(N)FI (). (3.5)

In general, the element in (3.5) is not an elementary tensor because [ f (x)F] ()
depends on x. But there are two special instances where this is indeed the case.
In fact, forv ® 1y € V; ® Wy, (3.5) gives

M 9)v®1y) =gv®1ly, (3.6)

yielding the (F : G)-invariance of each space V; ® Wy (we denote by 1y € W)
the function on Y with constant value 1). Also, for §; ® w € L(X) ® W; and
(x",y") € X x Y we have, again by (3.5) and recalling that g8, = 8,

L (f, ) (Ex ® WK, ¥') = Sx (x) - [f (HWI).
This implies that

M6 @w) = ng ® [f(gx)w], (3.7)

showing that each space L(X) ® W; is invariant as well.

Let us now prove irreducibility. A representation of the form V; ® Wy is
clearly irreducible, since V; is G-irreducible and Wy is trivial.

We could have obtained the same result as an application of Theorem 2.4.4.
Indeed, taking o as the trivial F X -representation, that is, the tensor product
R, cx(Wo)x (recall that Wy is the trivial representation of F'), we have that
the inertia group of o is the whole of F @ G, so that, by tensoring its extension
to ' G (which is the trivial representation of F': G) with V;, we get exactly
Vi ®@ Wo.

In order to show the irreducibility of the spaces L(X) ® W;, we again use
Theorem 2.4.4. Now, for 1 < j < m denote by o; the representation of F X on
the tensor product ®xeX We(x), where € (xg) = j and e (x) = Oforx # xo. Let
us check that the inertia group of o is F/ 2 K. This follows from Lemma 2.4.2
upon observing that TG (o) = {g € G : gxo = xo} = K. Now, denoting
by ¢ the trivial representation of (F: K)/FX = K and by & j (resp. 1) the
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extension of o (resp. the inflation of ¢) to F' ¢ K, let us show that the induced
representation

Ind, S ®3)) (3.8)

is equivalent to the representation of F2G on L(X) ® W; (clearly i® 6} ~ 0
and (3.8) is irreducible by Theorem 2.4.4). For each x € X, choose t, € G such
that £,xo = x. Then {t, : x € X} is a system of representatives for the
left cosets of K in G, and T = {(1f,t;) : x € X} is a system of repre-
sentatives for the left cosets of F: K in F : G. From (3.7) we deduce that
Mg, ty) [L({xo}) ® Wj] = [L({x}) ® Wj], and therefore we have the direct
sum decomposition

LX) ® Wj = P rdr. 1) [L({xoh) @ W)]. 3.9)

xeX

Another application of (3.7) yields, fork € K, f € FX andw € W;,

A(f k) (Bxy ® w) = 8y, @ [f (x0)w] (3.10)

and this shows that the representation of /' K on L({xo}) ® W; is equivalent to
1®o0; (see Lemma 2.4.3). By virtue of Proposition 1.1.9, from (3.9) and (3.10)
we deduce that (3.8) is equivalent to L(X) ® W;. It follows that L(X) @ W; is
(F @ G)-irreducible. O

3.1.2 Spherical matrix coefficients

Keeping the same notation and assumptions as in the previous subsection, fix
yo € Y and denote by H < F its stabilizer. Let X = [ [, _, 8, (resp. ¥ =
]_[Zzo Ay) be the decomposition of X into K-orbits (resp. of ¥ into H-orbits),
with 8o = {xo} (resp. Ao = {yo}).

Proposition 3.1.2
(1) The stabilizer of (xg, yo) in F G is

J={(f,k)e F1G:keK, f(xo) € H}.
(ii) The decomposition of X x Y into J-orbits is

t s
XxY = []_[(onz\u)}]_[[]_[(su xy)]
u=1

v=0
Proof (i) From (2.5) we have

(g, f)(xo0, yo) = (gxo, f(gx0)yo)
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and therefore (g, f)(x0, yo) = (x0, yo) if and only if g € K and f(gxp) =

f(xo) € H.
) If (f, k) € J and (xg, y) € Ep X Ay then

(f, ) (x0, y) = (x0. f(x0)y) € Eo X Ay.

This show that Eg x A, is J-invariant. Moreover, since f (xg), with (f, g) € J,
ranges among all elements of H, we deduce that J acts transitively on Eg x Ay.
This shows that the latter is a J-orbit. Analogously, if (x, y) € E, x Y, with
u > 1, then

(fs k) (x, y) = (kx, f(kx)y) € By X Y,

where the inclusion comes from the K -invariance of E,,. Moreover, the action
of J on E, x Y is transitive because on the one hand K acts transitively on &,
and on the other hand f (kx), with (f, k) € J, ranges among all elements of F'
(which acts transitively on ). O

Remark 3.1.3 From Theorem 3.1.1 and Proposition 3.1.2(i) we deduce that
if (G, K) and (F, H) are Gelfand pairs then (F : G, J) is also a Gelfand pair.

Keeping in mind the decompositions in (3.1), suppose that

(resp. wi, w3, ..., wy )

i i
Vp, Vg, ., Y ;

a;
is an orthonormal basis for the subspace of K-invariant vectors in V;, i =
0,1,...,n (resp. for the subspace of H-invariant vectors in W;, j =
0,1,...,m). Denoting by p' (resp. o/) the representation of G on V; (resp.
of F on W;), the corresponding spherical matrix coefficients (see Definition
1.2.14) are then given by

¢, (8) = (Wi, p' (i), (resp. Yo (f) = (wh. o7 (HHw))w,)

forg e G,i =0,1,...,n,and £,r = 1,2,...,qa; (resp. for f € F, j =
0,1,....,m,and p,g = 1,2,...,b;).

Theorem 3.1.4
(1) The elementary tensors
v @ wd, 0=1,2,...,4q, (3.11)

constitute an orthonormal basis for the J-invariant vectors in the irre-
ducible representation Vi @ Wy, i =0, 1, ..., n. Moreover, the associated
spherical matrix coefficients are given by

¢, (f.8) = ¢} ,(2)
for(f,g) e F1G,i=0,1,...,nand l,r =1,2,...,q.
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(ii) The elementary tensors
Sy @wh, p=1,2,...,bj, (3.12)

constitute an orthonormal basis for the J-invariant vectors in the irre-
ducible representation L(X) @ W;, j = 1,2, ..., m. Moreover, the asso-
ciated spherical matrix coefficients are given by

U q(f.8) = 1 (V.4 (f (x0)
for(f,g)e F1G, j=1,2,....mandp,q=1,2,...,b;.

Proof (i) Itis clear that the elementary tensors in (3.11) constitute a set of a;
orthonormal vectors in V; ® Wy. Therefore it suffices to show that these vectors
are J-invariant. Now, applying (3.6) and noticing that w? = %ly we get, for
all (f, k) e J,

A, k)(vfZ ® w(l)) = pi(k)vé ® w(l) = vé ® w(l).
Moreover, for (f, g) € F : G we have

¢, (f.8) = (vj; @ wl, A(f, ) ® w?)>v

i ®@Wo
= (vé ®wy, p' (@} ® w?)
! Vi®Wo
={vi, pf vi> (woy w0>
(zp(g)rvi bWy
=y, (8)-

(ii) Again, the elementary tensors in (3.12) constitute a set of b; orthonormal
vectors in L(X) ® W; and it suffices to show that these vectors are J-invariant.
For all (f, k) € J, applying (3.7) we get

M Gx ® w)) =82 ® |07 (f 0w | = 8.y @ ),
because f(xo) € H and w‘;; is H-invariant. Moreover,

Vpa(f.8) = <8x0 ® wp, A(f, 8) (8)‘0 © wq’))L(Xij

= <8x0 ® w{;, Sgxo ® [”j(f(gx(’))wépuxmw-
J

= (8., 5gx0>L(X) <w£, [aj(f(x()))wépwj

= 1k @)V} 4 (f (x0)).
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Taking into account Proposition 3.1.2, we can describe the values of the
spherical matrix coefficients on the orbits of J on X x Y (recall (1.38) and the
isomorphism L(X) = L(G)X), as follows.

Corollary 3.1.5
(i) Forv=20,1,...,1t the value of&;é’r on Eg X Ay is equal to 1.
(i1) Foru =1,2,...,s the value ofaé . on By x L(Y) is equal to the value
0f¢é’r on E,.

(i) Forv=20,1,...,t the value ofglj,,q on Eg x Ay is equal to the value of
i A
p.g O M. .

@iv) Foru =1,2,...,s the value oftﬁlj,,q on E, x L(Y) is equal to 0.

3.2 The generalized Johnson scheme

3.2.1 The Johnson scheme

The Johnson scheme refers to the Gelfand pair (S, S;,—, X Sp) and is named
after the American mathematician Selmer M. Johnson. The main sources are
Delsarte’s thesis [19] and the papers by Dunkl [25-27] and Stanton [70-72];
see also Chapter 6 of our monograph [11].

In what follows, n is a fixed positive integer and 0 < & < n. We con-
sider the action of S, (resp. S,—p, resp. Sp) on the set {1,2,...,n} (resp.
{1,2,...,n—h},resp. {n —h+1,n —h+2,...,n}) and denote by 2, the
homogeneous space S,,/(S,—n x Si), which can be identified with the space of
all h-subsets of {1, 2, ..., n}. The corresponding permutation module L(£2j)
is denoted by M~

We introduce a metric § on €2, by setting

8(A,B)=h—|AN B

for all A, B € Q. This is indeed a metric: its only nontrivial property is the
triangular inequality, which follows immediately from

h=|B|>|ANB|+|BNC|—|[ANBNC|
>|ANB|+|BNC|—|ANC]

forall A, B, C € Q.

Proposition 3.2.1
1) (Su, Sp—n x Sp) is a symmetric Gelfand pair.
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(ii) The space L(2),) decomposes into min{n — h, h} + 1 irreducible pairwise
inequivalent S, -representations.

Proof (i) By Example 1.2.32 it suffices to show that the action of the group
S, on the metric space (2, §) is 2-point homogeneous. Let A, B, A’, B’ € €,
and suppose that (A, B) = §(A’, B’). Then [AN B| = |[A' N B’|,|A\ B| =
|A’\ B’| and |B\ A| = |B’\ A’|. Therefore we can find a permutation 7= € S,
suchthat t(ANB)=A'NB,7(A\B)=A"\B ' andn(B\ A) = B’ \ A'.
It follows that 7(A) = A’ and w(B) = B’, showing that the action is 2-point
homogeneous.

(i1) Suppose first that 0 < h < n/2. Then the range of § is given by all
integers between 0 and % and there are & + 1 (S,—j, x Sp)-orbits on 2; these
are the spheres oy = {B € @ : 8(Z, B) =k}, k =0,1,2,..., h, where
A={n—h+1,n—h+2,..., n}isthe pointin £, stabilized by S,_j, x Sj,. By
Corollary 1.2.35, L(£25) decomposes into & + 1 irreducible pairwise inequiv-
alent S,-representations.

If h > n/2 then the argument is analogous: we just note that, in this case,
the range of § is given by all integers between 0 and n — h. (]

Since the spherical functions associated with the Gelfand pair (S,,
Sy—n x Sp) are bi-K -invariant (see Remark 1.2.16) and the characteristic func-
tions of the (S,,—, X Sj)-orbits constitute a basis of the space KL(G)K, we
deduce from the proof of Proposition 3.2.1(ii) that the spherical functions are
radial (they only depend on the distance from A).

We define the operator d : M1 — pn=h+LA=1 by setting

dy)By= Y (4 (3.13)

AeQ:BCA

for every B € Qj,_1 and y € M"~ Tt is easy to see that the adjoint of d is
the operator d* defined by setting

@A) = > BB (3.14)
BeQ,_1:BCA
forevery A € Qpand y € Mr—ht1Lh—1
A proof of the following results may be found in [11, Theorems 6.1.6,

6.1.10 and 6.2.1] (we use the Pochhammer symbol notation (a); = a(a+ 1)
(a+2)---(a+i—1)fora e Candi € N).

Theorem 3.2.2

(i) For0 <k <n/2, M"®knKerd = Sk is an irreducible representa-
tion of S, and its dimension is equal to (}) — (,",)-
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(i) If0 < k < min{n — h, h} then (d*)"~* maps M"~** N Kerd one to one
into M""", .

(i) M = @M (@ yh—k (M Rk O Ker d) is the decomposition of
M" " into S, -irreducible representations.

(iv) The spherical function Vr(n, h, k) of (Su, Sp—n X Sn) belonging to the

subspace isomorphic to S"~** is given by
min{n—h,h}
Y h k= Y Y h kuoy, (3.15)

u=0

(—l)k min{u,k} h—u u
w(n,h,k; u): (n—h Z <k—l><l>

k ) i=max{0,u—h+k}
L (= h kot D
(=h)j—i '

where

Notation 3.2.3 For0 <u <v <nand A € 2, 2,(A) will denote the space
of all u-subsets of A. Also, we will denote by MV~**(A) the space L(£2,(A))
seen as a module over the symmetric group S, of all permutations of A (in this
way, 2 coincides with 2, ({1, 2, ..., n})).

3.2.2 The homogeneous space ®,

Let (F, H) be a finite Gelfand pair. We denote by ¥ = F/H the correspondig
homogeneous space and fix a point yp € Y stabilized by H. Let Y = [ [I", A;
be the decomposition of ¥ into its H-orbits (with Ag = {yo}), L(Y) = &/, W;
the decomposition of L(Y) into irreducible representations of F (with Wy the
trivial representation) and ¢; the spherical functionin W;,i =0, 1, ..., m.

Let n be a positive integer and fix 0 < h < n.

We will construct a natural homogeneous space for the wreath product F: S,
using the actions of F on Y and of S,, on 2.

Let ®;, denote the set of all maps 6 : A — Y, with A ranging in ;. In
other words,

on= ][] ¥~ (3.16)
AeQy

Bearing in mind the geometric interpretation of exponentiation (see Exam-
ple 2.1.11 and Fig. 2.2), we interpret an element 6 in ®), as a subtree of type
(h, 1)in the tree of {1, 2, ...,n} x Y (see Fig. 3.1).



3.2 The generalized Johnson scheme 113

Fig. 3.1 Anelement & € ®), coincides with a subtree of type (%, 1) in the
tree of {1,2,...,n} x Y.

Let A € Q,and 6 € Y4 C ©),. We then denote by dom(0) = A the domain
of definition of 6. The group F : S, acts transitively on ®, in a natural way: if
(f,m) € F1§,and 0 € Oy then (f, m)0 is the element of ®, with domain
dom((f, 7)0) = w dom(0) € 2, defined by setting

[(f.m)01() = fF(HO ™ j)eY (3.17)
for every j € w dom(h).

Exercise 3.2.4

(i) Show that (3.17) defines an action of F : S, on ®j,.
(i1)) Show that this action is transitive.

Hint. Use the transitivity of S,, on €2 and the transitivity of F on Y.

LetA={n—h+1,n— h+2,...,n} € Qp denote the point stabilized by
Sp_n % Sy and define fp € Y4 C ©), by setting y(j) = yo for every j € A.

Modulo the identification of F 2 (S,,_j x Sp) with (F 2 S,,_5) x (FSy) (cf.
Exercise 2.1.14), we have the following.

Lemma 3.2.5 The stabilizer of 6y in F S, is equal to (F 2 S,—p) x (HSp).
Proof Let (f, ) € FS,. Then (f, m)8y = 6 if and only if 7(A) = A (so

that necessarily = € S,,—, x Sp) and

F(NBoGr ™)) = 0(j) (3.18)
forall j € dom(@y) ={n—h+1,n—h+2,...,n}.Since 6y(j) = yo for all
n—h+1<j<n,(3.18) is equivalent to

F()yo = yo. (3.19)

that is, f(j) € H foralln —h + 1 < j < n. In other words we have
the decomposition f = (fu_n, fu), where f,_, € Fl.2-n=hl and f, €
H{n=h+1ln=h+2,...n} denote the restrictions of f to {1,2,...,n —h}and {n —
h+1,n—h+2,...,n}, respectively. O
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As a consequence of this, we have the identification
Onp = (F1S)/I(F 2 Sy—n) X (HSp)]

as (F @ S,)-spaces.

A weak (m + 1)-composition of h [69] is an ordered sequence a = (ao,
ai,...,any) of m + 1 nonnegative integers such that ag +ay + --- + a,, = h.
The set of all weak (m + 1)-compositions of # will be denoted by C (h, m + 1).
It is easy to check that |C(h,m + 1)| = (m;h) Indeed, the map

(ao,ai,...,am) = {ap+1,a0+a1+2,...,a0+ar + -+ ap_1 +mj

establishes a bijection between C(h, m + 1) and the set of all m-subsets of
{1,2,...,h +m}. Fora = (ag,ay,...,a,) € C(h,m + 1) we set £(a) =

aj+ay+---+ayu =h—apanda = (ay, az, ..., ay). Clearly A is an element
of C(£(a), m).
Ifa = (ap,ai,...,am) € C(h,m + 1) and A € Q2 then a composition

of A of type a is an ordered sequence A = (Ao, Ay, ..., A,) of subsets of A
(necessarily disjoint but possibly empty) such that A = [[i_, A; and |A;| =
ai, i =0,1,...,m. In other words A is an ordered partition of A. We denote
by ©2a(A) the set of all compositions of A of type a.

For the next definition, we recall that A = {(n—h+1,n—h+2,...,n} € 2,
is the point stabilized by S,—, x Sy and that A9 = {yo}, A1, ..., A,y C Y are
the H-orbitson Y.

Definition 3.2.6 For every 6 € ®y, the type of 6 is the sequence of m + 2
nonnegative integers

type(0) = (¢, bo, b1, . .. bm),
where t = 1(9) = |[dom(9) N A| and b; = b;(9) = |{j € dom(®)NA:0()) €
A}, i =0,1,...,m.
Lemma 3.2.7 Two points 01, 0, € ®p, belong to the same orbit of (F1S,—p) X
(H 2 Sp) if and only if type(61) = type(62).
Proof Let61,0, € ®p and set Ay = dom(6y) € Q) fork =1, 2.

Suppose first that there exists (f,7) € (FS,—p) x (H ? Sp) such that
(f,m)(01) = 6. From m = (7wy—p, mp) € Sp—p X Sp, (A1) = Az and
7(A) = A and the decompositions

Ar = (A n A | Jear\ A,
k=1,2, we deduce

m(A1NA)=ANA and  m_p(Al\A) =4\ A
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so that, in particular,
[A1 NA| = |A; DAl
This shows that ¢ (6;) = 1(67).

LetO <i <m,k=12andset Ay; = {j € Ay NA : 6(j) € A;}.
Let us show that |A; ;| = [Az;|. Let j € Ay;. From (f,7)(0;) = 6> and
(3.17) we deduce that f(j)01(~1(j)) = 6>(j). Since j € Ay C A, we have
f(j) € H and therefore 0, (r ' (j)) € A, (since 62(j) € A;). This shows that
n’l(Az,,-) C Ay,;. From the decomposition

m
ArNA= ]_[ Ay
i=0

and using cardinalities, we deduce that indeed 71 (A2,;) = Ay1,;.In particular
|A1,i| = |Az,il, thatis, b; (81) = b; (62). It follows that type(61) = type(62).
We leave the proof of the converse as an exercise. (|

Corollary 3.2.8 The orbits of (HSp) X (FS,—p) on ©y, are parameterized

by the set
{(t,b) :max{0,2h —n} <t <h,be C({t,m+ 1)}
h
= J] cem+.
t=max{0,2h—n}

Proof It suffices to note that if type(6) = (¢, bo, b1, - . ., by,) then Zl’-":o b=t
and t = |dom(6) N A| is subject (only) to the condition max{0, 2k — n} <
t<h. (]

Remark 3.2.9 Suppose that 2/ < n. Then the map
(ap,ai, ...,am, am—H) — (ag,ai, ..., an)

establishes a bijection between C(h, m + 2) and ].[?:0 C(t,m + 1). Analo-
gously, the map

(ao, ai, ..., am, apm+1)
— (ap, a0 +ay,...,a0+ay+---+ap—1,a0 +ay +---+am_1 +ay)
is a bijection between C(h, m + 2) and the set {(i1, i2, ..., im+1) : 0 < i1 <

i <+ <imy1 < h}.

We end this subsection by defining two intertwining operators between the
permutation representations on ®; and ®;_1. Suppose that k < h. Then for
0 € ©p and & € O we write £ C 0 when 0 extends &, that is, when dom(§) C
dom(0) and 9|d0m(s) = & (see Fig. 3.2).
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Fig. 3.2 Anelement £ € ®,_1 such that £ € 6 (with 6 as in Fig. 3.1).

Proposition 3.2.10 Let D : L(®pn) — L(®p_1) be the linear operator
defined by setting

(DF)E) =Y F@®) forall F e L(Oy) and & € O)_.

96@/,
£Co

Then D intertwines the permutation representations L(®y) and L(®p_1).
Moreover, its adjoint D* : L(®p_1) — L(Oy,) is the linear operator defined by

(D*G)(0) = Z GE) forallG e L(®y_1) and 0 € Op,.

€0,
&co

Proof LetF € L(®p),& € ©p_1 and (f, ) € F S,. Then we have

[(£. 7)DFI(€) = [DFI (£, 1) '¢)

= > F®

96@;,:
(fm)teco

= Y F®

0e®y:
§S(fim)o

= Y Ffm)7'0)  (setting 0’ = (f.7)0)

0'cOy:
Eco’

= > (£ mF10)
6'e®y:
Eco’

= [D ((f, m)F)](&).

This shows the first statement.
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Moreover, if F € ©;, and G € ®y,_ then we have

(DF, G,y = Y, DFEGE)

€0,

=Y | > Fro|d®

£cO,_1 | 6€O,:
3

=Y FO) Y, G&

96@;, EE@;l,ﬁ
§c0

=Y F©®)D*GO)
96@11
= (F,D*G)r@))-

This proves the second statement. O

3.2.3 Two special kinds of tensor product

Let A € ;. We recall (cf. (3.3)) that there is a natural isomorphism between
L(Y)®" and L(Y4). Explicitly, given 7/ € L(Y) for j € A, the elementary
tensor ® jea F J is interpreted as an element in L(Y4) by setting

(®jeAff) © =[[F/©0G) foreveryo e v™. (3.20)
JjeEA

Now we introduce another kind of tensor product. As above, we denote by
L(Y) = EB;":O W; the decomposition of the permutation representation L(Y)
into F-irreducibles, with Wy the trivial representation. Let a = (ag, ay, ...,
am) € C(h,m + 1), B € Q. (A1, A2, ..., An) € Q3(B), Fi e W; for
jeA,i=12,... . mandy € M"—h-a0(CB) (see Notation 3.2.3); CB is the
complement of B. Then the elementary tensor y ® (® jeBF ] ) is viewed as an

element in

L ]_[ vA | = @ L(Y%)

AeQy: AeQy:
BCA BCA
by setting
[v @ (2je8F)| @ =y@om@) \ B) [[F @) 32D

JjEB

for every 0 € ©y satisfying the condition dom(f) 2 B.



118 Harmonic analysis on finite wreath products

Clearly, a tensor product as in (3.21) may be expressed by means of elemen-
tary tensors of the first kind:

ro (e )= > yAp[(8eat) @ (85087 )]. 322

A€y (CB)

where <® je A6¢0) is the characteristic function of Y40 (and each summand is

viewed as a simple tensor of the first kind acting on Y4 with A’ = Ay LI B).
In the following we describe the action of the group F : S, on such tensor
products.

Lemma 3.2.11 The action of F ¢ Sy, on the tensor products introduced above
is given by

(£.7) (8jeaF?) = Guena fOF (3.23)
and
£y e (@eF )| =@ @ (semroF ) (324
forall (f, ) € F1S,.
Proof To show (3.23)let® € Y™4. Then

(1) (©1eaF7) | ©) = (95 F ) (1. 7))
= [[ 7m0

jeA

= [[F1r@p~"oci
JjEA

= [TrroF e
temrA

[®icaar@F™ "] @.

Finally, (3.24) follows immediately from the decomposition (3.22) and from
(3.23). O

‘We now present two formulas that express the action of the operators D and
D* (see Proposition 3.2.10) on a tensor product of the second kind in terms of
the action of the operators d (see (3.13)) and d* (see (3.14)). Here we consider
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an element in
A Al
@AQB:\A\=h LY (resp. 69A’;B;|A'\:h—1 L™y

as an element in L(®jy) (resp. L(®;_1)) which does not depend on the YA
satisfying |A”| = h (resp. |[A”"| =h — 1)and A” 2 B.

Lemma 3.2.12 We have
[y e (@ )| =1vI[@n & (ee7)]
and
D[y ® (8587 )| = @) @ (®je8F).

Proof Since [y ® (®;epF/)](0) is defined for those 6°s satisfying the con-
dition dom(9) 2 B then (D [y ® (®;epF’)]) () is defined for those & €
®p_1 satisfying the condition |B \ dom(§)| < 1, that is, for those &’s for
which there exists 6 € ®, such that dom(#) DO B and £ C . On the one hand,
if |B \ dom(§)| = 0, that is, dom(§) 2 B, then

(05 (ers7)])
= Y [re(e=F)]®

0€@y:02¢
domé>DB

= > y@om®\B) [ F ©®0)

0e®):02& JjeB

> > yldom@) uwh \ B [ F @)

veCdomg yeY jeB
Y Idy)(dom(@)\ B) [] /&G
JjEB

= 1v|[@r) @ (@jesF)] @

(where the sum > yey» OF equivalently the factor |Y|, comes from the fact that
we have |Y| different possible extensions of a function £®;_; to a function
0 € ®p with dom(f) D dom(£)). On the other hand, if |B \ dom(§)| = 1 and
u is the unique element in B \ dom(§) then

(P [y @ (®5e87)]) © = viom@) [ Jun \ B 3 7o)
yeY
x [T Feon=o,

JeB\{u}
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since 7 ¢ Wy. In particular, if ag = 0 then D [y ® (®,epF/)] = 0.
The proof of (ii) is left to the reader. O

3.2.4 The decomposition of L(®)) into irreducible representations

We recall that L(Y) = @], W; is the decomposition of L(Y) into F-irreducible
representations.

Definition 3.2.13 Let A € Qj,a = (ag,ay,...,ay) € C(h,m + 1) and
A= (Ag, Ay, ..., Ay) € Qa(A). Then

(i) the space W,(A) is the subspace of L(Y4) spanned by all the tensor prod-
ucts ®jeA]-"j such that F/ € W; for every j € A;,i =0,1,...,m;

(ii) we then set
Wh,a= @ @ Wa(A)-

A€, AeQ,y(A)
It is clear that W), 5 coincides with the subspace of L(®}) spanned by all the
tensor products y ® (®jeB]—"j) where B € Qya), ¥y € M"~"-a0(CB), and such
that there exists (A1, Az, ..., Ap) € Qz(B) satisfying 7/ € W; forall j € A;
andi =1,2,...,m.
Lemma 3.2.11 ensures that each W), 4 is an (F @ S,)-invariant subspace of
L(®p).

Lemma 3.2.14 Fora e C(h, m + 1) we have

o FS, ®% ®%
Wha =Indpg o pis, < Fis,, xox FiSa, (IFzSn_h‘X’ Wo  ®@W

R - ® Wr‘n@”m> ,
where I s, , denotes the identity representation of F 2 S, _p,.
Proof From Proposition 2.1.3 we deduce that
(FUSp)/((F2Sp—p) X (F2Sq)) X (F1Sq) X+ x (F18g,))

= Su/(Snn X Sag X Say x--x S =[] ] A
A€y AeQ,(A)

Moreover, if A = (Ao, A1, ..., Ap) € Qa(A) is the composition stabilized
by Sy—n X Say X Saq X+ - - X Sy,, (so that S, is the symmetric groupon A; = {n—
h+ao+ai+---+aj—1+1,...,n—h+ap+a+---+a;},i =0,1,...,m)then
Wa(A),asa representation of (F2S, ) X (F2Sqy) X (F284,) X+ - - X (F8,,), 18
equivalent to I, , @ WS @WP"' @---@ WE™ . With these considerations,
the lemma follows from the definition of W), 5. g
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From the definition of an induced operator (see (1.21)) and from Lem-
mas 3.2.12 and 3.2.14, we immediately get the following description of the
operator D and its adjoint D*.

Corollary 3.2.15
. S, .
(1) D=|Y| InszS’H(mezsal x~~~szSamd QIR - QI;

.. S,
(i) D* = InszSn_e(a>XFlSa, Koo FiSay dFQIRQ - Q1.

O

Recalling the notation of Theorem 3.2.2(i), we introduce the following rep-
resentation.

Definition 3.2.16 For0 <k < (n — £(a))/2 we set

RS, n—t(a)—k,k @1 ®m
Whak =Indpg | o ops, soxFisy, S QWS ®---@W, .

Recalling the definition of a multinomial coefficient, namely

n _ n!
koskiy ..o k) kolki!---ky!’
Where n, k07 kl g ey km S N Satisfy n = Z:nz() kia 1t is C]ear that

. _ n n—{@ —k n—4~4@ —k
dim Whax = (n—z(a),al,...,am) [( k )_< k—1 )}

x (dim W) (dim W) - - - (dim W,,)%".

Lemma 3.2.17 We have the orthogonal direct sum decomposition
min{n—h,h—£(a)}

Wha = @ Wh.ak-
k=0

Proof Using the transitivity of induction (see Proposition 1.1.10) we get

Ind£S
F2S,—p % FzSaO X FzSa1 XX F2Sq,,
_ IndFZS" IndFESn_h+aoxF2Sgl XX F2Sg,,
FzS,,,/,JraO X F18q; XX F1Sqy, FSy—n szSaO X F18q) X+ x F1Sqy,
and, since

FaSp—ntag X FiSay XX F2Sq,, @4 QU dm
Iy, |, FuSyg x Fisa, xox FiSap (IFzSH Wy @W ®---®W, )

_ Mn_h’ao ® Wl(gal ® o ® qum

Up:s,_, ® W0®a° is the trivial representation of (F' 2 S,_p) X (F 1 Sg)), the

lemma follows from the decomposition M™% = @;{n:gn_h’ao}S"_h“LaO_k’k

from Theorem 3.2.2(iii). O
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In the following, we show how to construct the representations Wj, 4 x using
the operators D and D*. We set a=® = (ap—k,ai, ..., an).

Corollary 3.2.18

(1) Wite(a).ax = Ker DN Witpay.ar
(i) If0 < k < min{n — h, h — £(a)} then (D*)"*—t@ s an isomorphism of
Wite(@),a—0 k onto Wy a k.

Proof This is an immediate consequence of Proposition 1.1.18, Theorem
3.2.2, Corollary 3.2.15 and Lemma 3.2.17. O

We are now in a position to present the main result of this section and to
introduce the generalized Johnson scheme.

Theorem 3.2.19
(1) The set {(Wpax :a € Chym+1), 0 <k < min{n —h,h — {(a)}}
consists of the pairwise inequivalent irreducible representations of F.S,,.

(1) (F1Sy, (HSp) x (F1Sy—n)) is a Gelfand pair (the generalized Johnson
scheme).

(iii) The decomposition of L(®y,) into irreducible (F @ Sy,)-representations is
given by

min{n—h,h—£(a)}

Len= P D Whar (3.25)

aeC(h,m+1) k=0

Proof First note that from (3.16) we can immediately deduce the following
decomposition:

L(®y) = EB L(Y™Y). (3.26)
Ae)
Moreover, from the decomposition L(Y) = @T:OW,- (into irreducible F-

representations) and from the definition of W,(A) it follows that

m m m
h
LYY = L(Y)® @@"'@Wh@le'“@Wlh
1,=0

l1=01=0

- @ EB Wa(A). (3.27)

acC(h,m+1) AeQu(A)
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From (3.26), (3.27) and the definition of Wj, , we deduce that L(®),) =
@aeC(h,m+l) Wh a. Therefore from Lemma 3.2.17 it follows that (3.25) is an
orthogonal decomposition of L(®) into (F @ S,)-invariant subspaces. Now,
the map

T(t,bo,b1,...,by)

fa+n—2nbg+h—1.b1, ... by) iftn—h<h—tb)
o, bo+h—t, b1, ... by ifn—h>h—tb)

is a bijection between the set in Corollary 3.2.8, which parameterizes the ((H @
Sy) x (F v S,_p))-orbits on ®y, and the set

{(k,ap,ai,...,am) :0 <k <minfn —h,h — (@)}, a € C(h,m+ 1)},

which parameterizes the (F @ §,)-subrepresentations of L(®p) in (3.25). The
corresponding inverse map is given by

T_l(kaa()aaly"' ’am)
. (k—n+2h,ap+k—n+h,ay,...,a,) ifn—h<h—=~@)
N k+h—ao k,ar, ..., an) ifn—h>h— ).

Therefore the three statements follow from the criterion for Gelfand pairs given
in Theorem 1.2.36. g

Remark 3.2.20 The result in Theorem 3.2.19(1) may be also obtained from
the general representation theory of the wreath product F: S, (see Section 2.6).
Indeed, V = ngal ® --- ® W™ is an irreducible representation of the
base group F*", the inertia group of V is F 2 (Sj—pyag X Sa; @ -+ ® Su,,),
§n—htao—kk s an irreducible representation of Sn—h+ag X Sa; X -+ X Sq,
(trivial on S4; x -+ x S4,) and Wy 5k is obtained by the induction of
§n—hta—kk @ v from the inertia group to F 2 S,,.

3.2.5 The spherical functions

Leta = (ag,ay,...,ay) € C(hy,m+1). For0 < u < min{n — h, h — £(a)}
we define the function
& (h, a, u)
= X > [(®jeand0) ® (®jea,d1) ® - ® (®jea, dm)]
(A A2, Am)  AgeQqy (C(ALU-UAR)):
€ (4) |40\ A|=u

(3.28)
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where (® je Ai‘f’i) indicates the tensor product of a; copies of the spherical
function ¢;. From Lemma 3.2.11 we deduce that each ® (&, a, u) is ((HSj) x
(F ¢ S,—p))-invariant. Moreover, the set

(®(h,a,u):0<u<min{n — h, h — £(a)}} (3.29)

constitutes an orthogonal basis for the space of all ((H @ Sp) x (F 2 S,-n))-
invariant functions in the module W), 5. Indeed, we have

®(h,a,u) € @ L(y BBy
B1eQy_y(A)
BreQ,(CA)

and the summands on the right-hand side are orthogonal for different values
of u. The spherical functions can be expressed as linear combinations of the
@ (h, a, u)’s. We will use the notation of (3.15).

Theorem 3.2.21 The spherical function V(n, h, a, k) in Wy, o i is given by

W(n, h,a, k)
1 min{n—h,h—{(a)}
= Z Y(n—4L@),h—L@)),k;u)®h,a,u).
(a(),al ..... am) u=0

Proof The function ¥ (n, h, a, k) is ((H ¢ Sp) x (FS,—p))-invariant because
it is a linear combination of invariant functions. Moreover, its value on 6,
the point stabilized by (H @ Sp) X (F ¢ S,—p), is equal to 1. From (3.28) it
follows that

min{n—h,aqp}

Y Y —h+ao, ap k;u)®(h, a,u)

u=0
min{n—h,ag}
= Y Yy —h+ag ap. k)
(A1, A2, A) u=0
€Qa(A)
x > [(®jcan®o) @ (®jea$1) ® - ® (®ca, dm)]
A0€Q0y (C(A1U--UAL)):
[Ap\Al=u
= Y [Wom-h+anank)® (®jcad) ® @ (®jen,dm)].
(A],Az,...,Am)

€Q5(A)
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since
min{n—h,ap}
Y. V—h+ao ag.kiu) > (®jeanto)
u=0 A0y (C(A1U-UA,)):
[Ao\Al=u

coincides with the spherical function of the Gelfand pair (S, —p+aq, Sn—n X Sq4y)
belonging to the irreducible representation S"~"+a0=kk (here Sn—h+ao 18 the
symmetric group on C(AjU---UA,) and S,_p x Sq 1s the stabilizer of
A\ (AIUAyU---UAy)). Hence ¥ (n — h +ao, ap, k) @ (Rjea, ¢1) ® - ®
(®jea, ®m) belongs to S"~hta—kk g W?“' ®---® W& and, bearing in
mind Definition 3.2.16, the theorem follows. O

In the remaining part of this section, we first give the value of the spheri-
cal functions on a fixed ((H @ Sj) x (F 1 S,—p))-orbit. Then we specify the
above analysis to the particular case when (F, H) is the Gelfand pair of the
ultrametric space (see Section 2.1.5).

We denote by ¢; (j) the value of the spherical function ¢; on the orbit A ;.
The value of ®(h, a, u) on amap 6 € ®), with type() = (¢, b) is equal to 0 if
=

— u, while if t = h — u then the value is equal to

®(h,a,u;b) = Z]‘[(

(al_/ ) Jj=0

) ]‘[[¢>, (DI, (3.30)

050]»0[1/7--- U j
where the sum is over all nonnegative integer-valued matrices

(alj)l =0,1,..., m
j=0,1,.

suchthatzmooz,-j =bj,j =0,1, ,m, Z i—0 ij =a;,i =1,2,...,m
andZ o0 =ap—1. WeJustobserve thatlfAOUAIU -UA,, =dom(9)
and B; = {r € dom(0) NA:0(r) € A} then

[(®ueap$0) ® (Ruea ¢1) ® -+ ® (Quea, dn)1O) = [ | [ [1o: (1)1

i=0j=0
where
ajj = |A; N Bj| (3.31)

m
and for a fixed intersection matrix (¢;;) we have ]_[ ( b_f o ) ways to
mj

choose the subsets A; N B; of the B}, and

Ag = [dom(8) \ A] N [UT_(Ag N B))].
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It follows that the value of W (n, &, a, k) on a map 6 with type(d) = (¢, b) is
given by

W(n,h,a, k;t,b)

= +w(n —{(a),h —L@),k;h —t)D(h,a,h —t;b).
(ao,al,‘..,um)
Example 3.2.22 We specify Theorem 3.2.19 in the case where (F, H) is
the Gelfand pair of the ultrametric space, that is, ¥ = {0,1,...,q — 1}",
F = Aut(Ty ) and H = K(q, m) < Aut(T, ) is the stabilizer of the leaf
yo = (0,0,...,0). To simplify the notation, we assume that 24 < n. Then
®y, coincides with the space of all h-subsets {z1, z2, ..., z;} of the ultrametric
space (Y, d) such that d(z;, z;) = m (the maximum distance) fori # j.
From (2.15) it follows that, in this case, in (3.30) we have

m

[ Tt (i1
i=0
1 U, 1 H0m—12+F -+, . . .
_ <_qT1> ifa; j =0fori+j>m+1
0 otherwise;

that is, in (3.31) we must have A; € ByUB1U---UBy,_iy1,i =1,2,...,m,
and the value of ]_[;"zo[dn (j)]*V is determined by the cardinalities y; =
[Ap—j+1 N Bjl, j =1,2,..., m. Therefore

®(h,a,u;b)

_Zﬁ(bj><zi;;‘obw— i;}am_vﬂ) <_ ! >++
Vi ’

7 el Am—j+1 = Yj q—1
where the sum runs over all the m-tuples y = (y1, 2, . .., V) satisfying

J j—1
max 10, Y am—vi1 = ) bu) < yj < minfbj, an—j41

v=1 w=0

(in particular, we have @ (h, a, t; b) = 0 when the conditions Zi:l Ap—y+1 <
Z{UZO by,j=1,2,...,m—1,are not satisfied). So, to compute ® (A, a, u; k)
we need to choose, in all possible ways,

o the subset A;,_j41 N Bjin By, forj=1,2,...,m,

Jj—1 Jj—1
e the subset A,— 11 \ Bj in ( U Bw\ U Am_UH),forj =1,2,...,m,
w=0 v=1
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m m —_
and then, necessarily, Ag = [ U Buo\ U Am_v+1i| U [dom(@) \ A].
w=0 v=I1

Exercise 3.2.23 Deduce the results in [11, Section 7.4] as particular cases of
those obtained in the present subsection.

3.2.6 The homogeneous space V(r, s) and the associated
Gelfand pair

Let m be a positive integer and r = (ry, 12, . . . , I'y) an m-tuple of integers such
that r; > 2 foralli = 1,2, ..., m.In Section 2.1.4 we defined the spherically
homogeneous rooted tree (r-tree) 7y.

Lets = (s1, 52, ..., i) be another m-tuple that satisfies the conditions 1 <
si < ri, for all i. Denote by T the corresponding s-tree. Note that there are

exactly
i)
S1 ieo S

distinct embeddings of T as a subtree of T;.. Indeed, any such subtree is uniquely
determined by the m-tuple ( fo, f1, ..., fm—1), Where f; is the map that asso-
ciates with each vertex v at the ith level in T the set of all successors of v; for
each i there are exactly (gi:)slszmsi such maps f;.

We denote by V(r, s) the set of all s-subtrees of 7} (see Fig. 3.3).

Fig. 3.3 A tree of type (3, 3, 3) with a subtree of type (2, 2, 1).
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As usual, we denote by S; the symmetric group on k elements and by
Aut(Ty) the group of all automorphisms of 7;; in Theorem 2.1.15 we showed
that Aut(Ty) = S, 2 Sy, U+ 0Sr, S . Recall from Section 2.1.4 that every
automorphism g € Aut(7;) stabilizes the levels V; of T; and is uniquely deter-
mined by its labeling (cf. (2.11)), which we denote by g. Thus, the map g

V= UL S

v > g(v)

(with g(v) € S, if v € V;) satisfies

i+1
g(x1, x2, ..., xx) = (€W)x1, g(x1)x2, ..., (X1, X2, ..., Xk—1)Xk)

for all x; € X;, 1 <i < k < m. Itis obvious that the image of an s-subtree
under an automorphism of 7 is again a s-subtree. Thus, the group Aut(7;) acts
on V(r, s).

Let now fix an s-subtree 75* and denote by

K(r,s) = {g € Au(Ty) : gT5* = 15"}
its stabilizer. We then have the identification
V(r,s) = Aut(Ty)/K(r,s)

as Aut(7;)-spaces.
We now present an explicit expression for the group K (r, s). Suppose first
that the tree 7, has depth 1, so that r = ry and s = s1; clearly Aut(7;) = S,

and K(r,s) = S, X Sr,—s,. In general, for v’ = (r2,73,...,ry) and s’ =
(s2, 83, ..., Sm), we easily find the recursive expression
Stabaui(ry) (Ts) = (Aut(Ty) 2 Sy —5,) X (K (', 8") 2 S5)). (3.32)

In particular, when the tree 7 has depth 2, that is, when r = (r1,r2), s =
(s1, s2) and Aut(7y) = S;, 2 Sy,, we have

K(r,s) = (Srz ¢ Sr1 —sl) X ((Ssz X Srz—sz) ¢ Ss1 ).

Given two rooted trees, we say that they are rooted-isomorphic if there exists
a graph isomorphism exchanging the respective roots; clearly, the level of the
single vertices remains unchanged under such an isomorphism.

Proposition 3.2.24 Let Ty, T», T and T, be s-subtrees within Ty. Then (T,
T») and (T}, T;) belong to the same Aut(Ty)-orbit on V(r,s) x V(r,s) if and
only if Ty N T, is rooted-isomorphic to T/ N T.



3.2 The generalized Johnson scheme 129

Proof 1IfgT; = TJf, j =1,2,forsome g € Aut(7y) then g(T1NT2) = T/NT,
and the “only if” part follows trivially.

The other implication may be proved by induction on the depth m of the
tree 7y. Form = 1 we haver = r and s = s, V(r,s) is simply the set of
all r-subsets of an s-set and Aut(7y) = S,; therefore we refer to the proof of
Proposition 3.2.1.

Suppose now that Ty N T3 is rooted-isomorphic to T{ N T, and denote by
a @ Vi(T1 N T2) — Vi(T{ N T,) abijection such that if x € V(T3 N T3) then
the (71 N T»)-subtree T, rooted at x is (rooted-)isomorphic to the (7 N T)-
subtree 7, @) rooted at or(x). We may extend « to a permutation o € S, such
that o (V1 (T1)) = Vi(T{) and o (Vi(T2)) = Vi(Ty). Modulo the permutation
o, we may suppose that 71 N T and 7| N T, coincide at the first level.

By induction, forall x € Vi(T1NT3) = Vi(T{NT;) we have an x-rooted iso-
morphism g, between the (77 N T»)-subtree rooted at x and the corresponding
(T{ N T;)-subtree with the same root x. It is then clear that the automorphism
g with label g(?) = o, g(x, x2, ..., Xx,) = gx(x2,...,x,)if x € T} N T and
the identity otherwise is the desired rooted automorphism. (]

Corollary 3.2.25 The action of Aut(Ty) on V(x, ) is transitive.
Proof 1t suffices to apply Proposition 3.2.24to Ty = T and T] = T,. O
Corollary 3.2.26 (Aut(Ty), K (r, s)) is a symmetric Gelfand pair.

Proof This follows from Proposition 3.2.24 by taking Ty, T», T{, T, with
T = T and T, = T in combination with Proposition 1.2.31. O

Our next task is to relate the Gelfand pair (Aut(7y), K (r, s)) to the gener-
alized Johnson scheme. The classical Johnson scheme (S, S, x S,,_j) corre-
sponds to the Gelfand pair (Aut(7y, Ts), K (r, s)), where m = 1, r = n and
s = h. More generally, given the Gelfand pair (F, H) with F = Aut(Ty)
and H = K(r',s), v = (ra,r3,...,rp) and s’ = (52, 53, ..., i), the homo-
geneous space ®y in Section 3.2.2 coincides with V(r,s), where now r =
(n,ro,r3,...,rym) ands = (h, 53, 53, ..., Sy ). Indeed, the subgroup (H:Sp) x
(F 2 Sp—p) coincides with K (r, s) by virtue of the expression given in (3.32).
The point stabilized by (H : Sp) X (F ¢ S,—p), namely 6y € ®y, (which corre-
sponds to an h-subset A C {1,2, ..., n}),is given by 6y(j) = yo forall j € A,
where yg is the s'-subtree stabilized by H = K (r’/, §').

Remark 3.2.27 In Example 3.2.22 we considered the Gelfand pair (F, H)
(the ultrametric space), where F' = Aut(1y ) and H = K (g, m) < Aut(Ty )
is the stabilizer of the leaf yp = (0,0,...,0) € ¥ ={0,1,...,g — 1}". In
the setting of the present section, the corresponding homogeneous space ©j,
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coincides with the homogeneous space V(r,s), withr = (n,q,...,q) and
s=(h,1,...,1).

3.3 Harmonic analysis on exponentiations and on wreath
products of permutation representations

In this section we introduce the notion of a wreath product of permutation rep-
resentations that generalizes the exponentiation action (cf. (2.7)), the Cayley
action of a wreath product on itself and the lamplighter space (which will be
examined in more detail in Section 3.4). We give explicit rules for the decom-
position of the corresponding permutation representations into irreducibles and
analyze several special cases.

3.3.1 Exponentiation and wreath products

Definition 3.3.1 Let G (resp. F) be a finite group acting on two finite sets X
and Z (resp. on a finite set Y). Then we define an action of the wreath product
F1:G = FX x G onY¥ x Z by setting

(f: 9)(@. 2) = ((f, &)¢. 82) (3.33)

forall (f,g) € F:G and (¢, z) € YX x Z. We will call it the wreath product
of the action of F on Y and the actions of G on X and Z.

Note that (3.33) is just the direct product of the exponentiation action (of F: G
on Y, see (2.7)) with the inflation of the action of G on Z (which is defined by
setting (f, g)z = gz for (f, g) € F: G and z € Z). In particular, if the action
of G on Z and the action of F on Y are transitive then the wreath product
(3.33) is also a transitive action: recall that, in this case, F¥ is transitive on Y ¥
(see Lemma 2.1.8). When Z is trivial, (3.33) coincides with the exponentiation
action.

Exercise 3.3.2 Suppose that Y = F and Z = G. Show that the wreath
product of the left Cayley action of F on itself, the action of G on X and the
left Cayley action of G on itself coincides with the left Cayley action of F': G
on itself.

Notation 3.3.3 We will use the following notation for the permutation repre-
sentation of Fon Y:if & € L(Y) and f € F, weset (f&§)(y) = S(f_ly) for
all y € Y. We will use a similar notation for the permutation representation of
G on Z. However, we will denote by A the permutation representation of FX
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on L (YX) and by X its extension to F : G (which coincides with the permu-
tation representation associated with exponentiation). That is, for ¥ € L (Y¥)
and f € FX we have

NAHYI@) =¥ (f o) forallg e Y¥,

where (f~1p)(x) = f(x)"'o(x) forall x € X. Similarly, if in addition g € G,
we have

N/, V1) = vI(f, el = vl fh g Del,

where

(g7 7" g Delx) = fgx) o(gx)

forall ¢ € YX and x € X. In particular [3:(11:, g)lﬂ] (¢) = ¥ (g~ 'g), where
(g '9)(x) = @(gx). Finally, we will use the following notation for the per-
mutation representation of F : G on L (YX X Z): ifw e L (YX X Z) and
(f,g) € F:1G, we set

[(f, ©W)](p,2) = VI(f, 9) (9, 2)]  forall (p,2) € Y* x Z.

Now let ¢, € L(Y) for all x € X. We define the tensor product ) ex Vx €
L (YX) by setting

(® %) @ =[xy forallger®. (334

xeX xeX

Compare with (3.2); in particular, A may be seen as the | X |-times tensor prod-
uct of the permutation representation of F on Y. Therefore, the following
lemma may be considered as a particular case of Lemma 2.4.3, just noting
that the inertia group of A coincides with G. However, we give an easy proof
for the reader’s convenience.

Lemma 3.34 Lety, € L(Y), x € X, and (f,g) € F1G. Then
M/ 8) (® 1/fx> =@ fOV1,
xeX xeX

Proof Forany ¢ € YX and x € X, by (2.7) we have [(f,g) '¢l(x) =
f(gx)~lo(x) and therefore
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[Xui g) <®wx)} () = (®wx> [(f.9) "ol

xeX xeX

=[] v:lfe) o)l (by (3.34))

xeX

=[] Ve lr o]

xeX

= [T [F©¥e1.] (@)

xeX

= [(X)f(xwg-lx} (9). m

xeX

Let X be a system of representatives for the (¥ G)-conjugacy classes of FX
(as in Theorem 2.4.4), fix 0 € ¥ and set I = Tg(o). In the notation of Sec-
tion 2.4, we also assume that for all x € X the representation o, appears in the
decomposition of L(Y) into irreducible F-representations. Then there exists
a partition X = ]_[1’41=1 Q; of X and o1, 02, ..., 0, irreducible and pairwise
inequivalent F-representations such that o, = o; forallx € Q;,i =1,...,n,
and/ ={ge G:gQ =Q;,i =1,2,...,n}. Denote by m; the multiplicity
of o; in L(Y). For each x € ; we denote by V,;, = V; the representation
space of o, = o;. We fix a basis Tx 1, Ty 2, ..., Ty m; in Homp (Vs , L(Y))
which is orthonormal with respect to the Hilbert—Schmidt scalar product. This
means that (cf. (1.35))

Tr [Tx,h (Tx,k)*] = da,- (Tx,h» Tx,k>HS = (Sh,k

forall 1 < h, k < m;. Moreover we suppose that, for all x € ;, the operators
Tep: Vi = L(Y), 1 <h < m;,are all the same. We set

J={jeN¥:1<jx)<m forallxeQi=12....n). (3.35)

The group I acts on J in the obvious way: if g € I and j € J then gj
is defined by setting gj(x) = j(g~'x) for all x € X (recall that I stabilizes
every ;). Forany j € J, set

Tj =@ T jw)- (3.36)
xeX

It is easy to check that {T; : j € J} is an orthonormal basis for

Hom j-x (@ Vo, L (yX)) .

xeX
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We also have
Toxjen) = Txjigy  ifg el (3.37)

because Ty j does not depend on x € €;. Recall that, in the notation of
Lemma 2.4.3, & is the extension of o to F 2 [.

Lemma 3.3.5 Forg € [ and T € Hompx (Q
linear operator w(g)T : Vo — L (YX) by setting

Voo L (YX)), define a

xeX

()T = *(1p, )T F(1p, g7 ).

Then 1 is a representation of I on Homgx ( Rrex Vo L(YX)).

xeX

Proof We first check that
M1p, )T &(1F, g ") € Hompx (@ Vo, L(YX)>
xeX

forevery T € Hompx ()
a(f, 1) and

Ar. g H(fle) =@ " figHh=E"f1e)UAr, g™ h,

Voo L(YX)) and g € I. Noting thato (£, 1) =

xeX

we have
[Far T35, g7)] 0 (f16) =Xr, 9)TF (™ £ 1605 (1r, g7
= (1r Ok £ 16)TEAr 87"
=310 [F1r. 9T5 A, g7h)].
We leave to the reader the easy verification that 7 is a representation. U

Lemma 3.3.6 Forall (f,g) € F:1I and j € J we have

S )T = Toj5(f, ).

Proof We examine the actions of 3:( f.8)T; and Tg;5(f, g) on the tensor
product &), . x vx € Q,cx Vo, separately, showing that they lead to the
same expression. From (3.36), Lemma 3.3.4 and (3.37), we deduce that

|:X(f’ g)Tj:| <®Ux) :X(fv g) <®Tx,j(x)vx>

xeX xeX

= ®f(x)Tx,j(g71x)vg71x.

xeX
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Similarly, from the definition of & in Lemma 2.4.3, taking into account that
Og—1y = Ox for g € I and the fact that T j(x) € Homp(Vy,, L(Y)), x € X, it
follows that

Tg]O'(f g) (®Ux> = <®Tx,gj(x)> <®0x(f(x))vg1x>

xeX xeX xeX

= Q) T i00: (F D1,

xeX

= Q) FOT, (g 10V 1

xeX

O

Corollary 3.3.7 The representation 7w in Lemma 3.3.5 is equivalent to the
permutation representation of the group I on the finite set J.

Proof Letg € I and j € J.On the one hand, setting f = 1 in Lemma 3.3.6
we get the identity

(T =2(1F, QTi5(Ap, g7") =Ty

On the other hand, we also have g§; = 84;. Since {T; : j € J} (resp. {3; : j €
J}) is an orthonormal basis for Hom jx (®xex Vo, L ( )) (resp. for L(J)),
we conclude that the map

L(J) — Hompx ( R Ve, L (YX)>
xeX
Sj—>T;

is an isomorphism of /-representations. O

Now let (1, U) be an irreducible representation of /. Recall that the inflation
7 of nto F 21 is defined by

n(f, 9u =n(gu forall (f,g) e F:landu € U. (3.38)

The key point is to determine the multiplicity of the representation

For(gn)@r)

in the decomposition of L (YX X Z ) into irreducible (F 2 I')-representations. In
the spirit of the harmonic analysis developed in Section 1.2, what we actually
get is an orthogonal decomposition which depends on an orthogonal decom-
position of the permutation representation of / on L(J x Z). For g € I, we
denote by gy the g-image of y € L(J x Z).
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Theorem 3.3.8 Let o € X and let (n, U) be an irreducible representation of
I =Tg (o). Let (T} : j € J} be an orthonormal basis for Hompx (® Vo
L(YX)) and T € Hom; (U, L(J x Z)). Given

v=®vxe®vgx

xeX xeX

xeX

and u € U, define ?(v Qu) el (YX X Z) by setting

jeJ jelJ

[Twew]@) = {Z(Tu)(j, z)T/v} (@) =Y (Tw(j,2) - (Tjv)(9)
(3.39)

forall (¢, z) € YX x Z. Then the following hold:

(1) The operator T belongs to
Homp,/ |:(® Vox) ® U,L (YX x Z)i| )
xeX
(i) The map
Hom, (U, L(Z x J)) — Hompy [( (%9 Va\_) QU,L(Y* x z)}
A xeX
T — T

is a linear isometric isomorphism.

Proof Recall that & (resp. 77) is the extension (resp. inflation) of o (resp. n)
to FoI.Let (f,g) € FuIand (p,z) € YX x Z. Then

(TIE(f. 9 ®@7T(f. 91 v ®w}) (9. 2)
= (TIE(f. v @n(@ul) (p.2)  (by (3.38))

= (Z{[Tn(g)u](j,z)} T35, g)v) (¢)  (by (3.39))

jeJ

= (X(f, g) (Z[T(u)(glj, g '] Tg—njv)) (®)

jelJ
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(since T € Hom; (U, L(J x Z)) and X(f, DT = TG (f, g) by Lemma
3.3.6)

_ (Z[m)(j, ¢ 0] T U) ((/.£)7'¢)  (on replacing g™ by j)

jeJ
= [Teoew]((f,.e) '¢,g7'z)  (againby (3.39))
=((f, 9 [Twew]) (e 2.

This proves that 7 is an intertwiner.
In order to show that the correspondence 7 +—— 7T is a bijection, we con-
struct an explicit inverse map 7 +—— T as follows. Let

S € Hompy, ((@ vgx> Qu.L (YX x z)) . (3.40)

xeX

With every choice of u € U and z € Z we associate a linear map

Siet @ Vo — L (1Y),

xeX
defined by setting
(Si.v) (@) =[S w](p,2) (3.41)

forall v = @,y vx € ®,cx Vo, and ¢ € YX. Let us show that

S?, € Hompx (® Vo L (YX)) . (3.42)

xeX

Forall f € FX and ¢ € YX we have:

[SZ.0(f)v] (@)

= [SE .G (f. 1o)v] ()

={S[@E(f. 16)v) @ ul }(¢, 2)

=S 1)@ 1) w®u)(p.2)  (since T(f, 1g)u = u)
=[swew](f10ez)  by340)
= (SE.v) (f o)
= [M()SE v] (@),

that is,

SEo(f) =rf)SE,
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Thus (3.42) is proved. Since the operators {T; : j € J} form a basis for
Hompx (®yex Voo L (YY)), we deduce that there exist a,; € L(J) such
that

=> ()T (3.43)

jeJ

Therefore we define a linear map S:U— L(J x Z) by setting, foru € U
and (j,z) € J x Z,

(Su) (j. 2) = o2 (). (3.44)
where «, ; is given by (3.43). From (3.41), (3.43) and (3.44) it follows that

[S(wewl(@.) =Y au:(NTiv | @ =Y (Su)(j.0)Tjv| (@)
jeJ jelJ
(3.45)

Moreover, for all g € I we have

Z ([§n(g)u] (j.2) Tjv]| (9)

jeJ
= (s[Far @Far. g e n@u]) .2
(s[eare™hveu]) (are™he are™z) by G40)

— | Y (Bu) g ' TiE AR, g [(1F,g—1)<p]

je./

(Su) (j, g 7' Tyjv | () (by Lemma 3.3.6)

Il
M

| jeJ

(Su) (g7, g ' Tjv | ()

Il
g

_je]

=Y (eSu) G2 Tjv | (@)

j€]

This shows that Sy(g) = ¢S, that is, S € Hom; (U, L(J x Z)). From (3.39)
and (3.45), it is also clear that S = S and that 7\' = T, thus showing the
bijectivity of the map 7 —— 7.
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Finally, we end the proof by showing that the above map is indeed an isom-
etry. Let By (resp. B>) be an orthonormal basis in ) Vo, (resp. U). If
Ti, T» € Hom; (U, L(J x Z)), then

T Tus= Y. Y. Y [Twewle. )T @uwle. 2)

UEBl MEBZ ((p,z)erxZ

=Y | D (TG (Tjv) () [Z(Bu)(i,Z)(Tiv)(rp)]

v,u (p,2) | jeJ iel

xeX

= Y (Tiw)(j. 2) (Ta) (i, 2)(T;. Ti)uis

u,j,i,z

= > (Tiw)(j.2) (Tau) (. 2)

u,j,z
= (T1, Ta)ms.- 0
Exercise 3.3.9 Show that the linear map TP U®L(Z) — L(J) defined by
Tru®4,) = 7:32 belongs to Hom; (U ® L(Z), L(J)) and that

Hom ,; (( R Vgx> QU, L(YX x z)) —  Hom;(U ® L(Z), L(J))
xeX
T —

is a linear isomorphism.
Hint. Recall Corollary 3.3.7.

The formulation of Frobenius reciprocity in Theorem 1.2.27 yields an
explicit isometric isomorphism from

Hompy; ((@ vgx> Qu.L (yX x Z))

xeX
onto
Homp,g (Indglc |:( ® VUX> ®Uj| , L (YX X Z)) ,
xeX
given by

T T. (3.46)

By combining Theorem 3.3.8 and the isomorphism (3.46), we can reduce
the decomposition of L (YX X Z) into irreducible (F : G)-representations to
the decomposition of L(J x Z) into irreducible /-representations.
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1o
Theorem 3.3.10 The map T ——T from Hom; (U, L(Z x J)) into

Homp,g (Indgf [(@ Vgx) O% U:| L (r x Z))

xeX

is a linear isometric isomorphism. O
The following results are an immediate consequence of the above.

Corollary 3.3.11 The multiplicity of the irreducible representation Ind?i?
(0 ®Mn) in the decomposition of L(YXXZ) into irreducible (F:G)-
representations is equal to the multiplicity of n in the decomposition of
L(J x Z) into irreducible I-representations. (]

In particular, if Z is trivial then we get a rule for the decomposition of the
exponentiation action into irreducible representations:

Corollary 3.3.12  The multiplicity of Ind?iIG (6 @7 in L(YX) is equal to
the multiplicity of nin L(J). O

Remark 3.3.13 If we take Y = F and Z =G, both with their left Cayley
actions, then Theorem 3.3.10 yields a decomposition of the left regular rep-
resentation of F : G (see Exercise 3.3.2). Since the stabilizer in I of any
(j,8) € J x G is the trivial subgroup, each orbit of 7/ on J x G is equiva-
lent to the left action of I on itself and therefore I has |J| % orbitson J x G.

%; by virtue of

Corollary 3.3.11, this yields a formula for dim Ind?iIG (¢ ® 17). Note that this

% (in this

Hence the multiplicity n in L(J x G) is equal to (dimn) |J|

agrees with (1.5), since then dim Ind?i? (0 ® 1) = (dimn)(dimo)
context we have dimo = |J|).

The results in the following subsections are all particular cases and applica-
tions of Theorem 3.3.8 and Corollary 3.3.11. But it is worthwhile to examine
them separately, explore their peculiarities and develop more direct approaches
when possible.

3.3.2 The case G = C; and Z trivial

In the present subsection we examine the case G = C, = X (with the Cayley
action) and Z trivial. We identify C» with the multiplicative group {1, —1} and
denote by (g, U) the corresponding alternating representation. As before, we
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also consider a finite group F acting on a finite set Y, and we denote by

L(Y) = Q) moVs (3.47)

o€eR

the isotypic decomposition of the corresponding permutation representation
into irreducible F-representations. Finally, let Tl" , Tz" e T,SU constitute an
orthonormal basis for Hom g (V,, L(Y)). We clearly have that

LY xY)= L(Y)®L(Y)

P mome (Vo & Vo)
o0,0'eR

mg Mg/

D DD (Tf Vo ® Tﬁ’Va/) (3.48)

o,0’eR j=I1 j'=1

is an orthogonal decomposition of L(Y x Y) into irreducible (F x F)-
representations.

Theorem 3.3.14 We will use the notation in (3.47).

(1) Foro,0' € R,o #0', j=1,2,...,mgand j' = 1,2,...,mg, the
space

j,j/ . ’ ’
Wil = (T;’ Vo ® TS V(,,) @ (T;?, Vo @ TY Vg)

is an irreducible (F 1 Cyp)-representation isomorphic to (V, @ Vyr) @
(Va’ ® Va)-

(i) Foro € Randi, j =1,2,..., mg, the space
W:;,{F = <(Tigvl ® T,”z) + (va1 ® T,-"vz) 1V, U € Va>

is an irreducible (F 1 Cyp)-representation isomorphic to Vo ® V.

(iii)) Foro € Randi, j=1,2,...,mqy, i # j, the space
Wf,j_ = <(Ti"v1 ® T;’vz> - (T]f’vl ® Ti"vz) tvL,mE Vg>

is an irreducible (F @ Cp)-representation isomorphic to (Vo ® V) @ U.

(iv) The decomposition of L(Y x Y) into irreducible (F : C)-representations
is given by
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LY XV)Z | @ mome (Vo ® Vo) ® (Vor ® Vo)

o,0'eR
o#o’
fas) {GB —m"(’"; D, va)]
o€R
EB[EB%“‘”[(%@V@@U}}
o€ER
[ & v
0,0'€Ro#0’ i=1 j=I
mg P mg P
D D DWA|D| D Wl
o€R i,j=1 l'j;;:l
i#j

Proof When o # o', the inertia group of V, ® V. is F x F. Indeed, TG (0 ®
o') is trivial (since 0 # o) and therefore (see Lemma 2.4.2) Ipx,5(0 ®
0y = F1Tg(ec ® 6') = FX = F x F. Moreover, from Proposition 1.1.9 it
follows that

AL (Vo ® Vo) = (Vo ® Vo) @ (Vi ® V).
From Theorem 2.4.4 we deduce that this is an irreducible (F : C»)-
representation, and (3.48) ensures that its multiplicity in L(Y x Y) is equal to
mgm, . This agrees with Corollary 3.3.12 because, with the notation therein,
we have that I = Tg(o ® o) is trivial (so that 5 is also trivial) and there-
fore the multiplicity of n in L(J) is simply dim L(J) = |J| = mgmy. In

partlcular the subspaces W; - are mutually orthogonal and isomorphic to

FC
Ind. 7 (Vo ® Vo).

When o = o/, the inertia group of V, ® V- coincides with F : C; (indeed,
in this case, Tg(0c @ 0) = Tg(oc ® 0) = G = C,). Therefore, the induc-
tion operation is trivial and we need only apply Corollary 3.3.12. We have
J={(G,Jj):1=<1i,j < mg}and the orbits of C on J are {(7, j), (j,i)}, 1 <
i # j < mg,and {(i,i)},i = 1,...,my. This implies that L(J) contains
%mg (ms + 1) times the trivial representation of C» (this corresponds to the
case n = (, the trivial representation) and %m(, (my — 1) times the nontrivial
representation U (this corresponds to the case n = ¢, the alternating represen-
tation). The subspace W(;j+ corresponds to the choice n = ¢; in other words,
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W(’,ﬂr is isomorphic to V,; ® V, as an (F : Cy)-representation. Analogously,
for i # j the subspace Wi”j, corresponds to the choice n = ¢, that is, W(',/, is
isomorphic to (V, ® V) ® U as an (F @ Cy)-representation.

The remaining part of the proof is now clear since the representations in (i)
and (ii) exhaust the whole of L(Y x Y) (cf. the decomposition (3.47)). O

3.3.3 The case when L(Y) is multiplicity free

Suppose now that L(Y) decomposes without multiplicity and that L(Y) =
B Vi is the corresponding decomposition into inequivalent irreducible F-
representations. We think of each V; as a subspace of L(Y); this means that if
v € V; then v is a function defined on Y and we denote by v(y) its value on
y € Y. If o; is the representation of F on V; then, for any f € F, the unitary
operator o; (f) : V; — V; is given by
[oi (fHv](y) = v(f_ly) forallv e V;andy € Y. (3.49)
Foru € L(Z) and g € G we denote by gu the g-translate of u, thatis, gu(z) =
u(g_lz) forallz € Z.
Denote by H the set of all maps & : X — {0,1,...,n}. If h € H and
Uy € Vi) forall x € X, we say that @,y vx € L (YY) is a vector of type h

in L (Y*). We denote by V}, the set of all vectors of type h in L (Y*X), that s,
Vi = ®x€ x Vi(x)- Clearly we have the decomposition

L(YX) =§2Vh

into irreducible FX-representations.
In the present context, Lemma 3.3.4 has the following slightly more general
form (note that L(YX x Z) = L(YX) ® L(Z) and we use Notation 3.3.3).

Lemma 3.3.15 Let (f,g) € F1G, h € H, Q,cxvx € Vyandu € L(Z).
Then

(f. 8) [(@ vx> ® u] = (®[ah<g1x>(f<x)>vg1x]) ® gu.

xeX xeX

Proof Forall (¢,z) € YX x Z we have

((f, ) [(@;v) ®uD (¢, 2)

- [(@%) ® u} ((f, 2 e, g‘lz) (by (3.34))

xeX
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= ( 1_[ Uy [f(gx)lcp(gx)]) (gu)(z) (by (3.49), replacing x by g~ 'x)

xeX

= ( ]_[ [ah<g1x)(f(x))vglx](q)(x))) (gu)(2)

xeX

<<®|:Oh(gl)€)(f(x))vg1x:|> ® gu) ((07 2).

xeX

O

Fix h € H (equivalently, fix 0 € X as in Section 3.3.1). Now I = Tg (o)
coincides with the G-stabilizer of & (G acts on H in the obvious way:
(gh)(x) = h(g_lx) forh € H, g € G and x € X). Let n be an irreducible
I-representation contained in L(Z) and denote by Uy @ U & --- & Uy, an
orthogonal decomposition of the n-isotypic component in L(Z). We regard
each Uy as a subspace of L(Z). Finally, let S be a system of representatives for
the left cosets of 7 in G.

Theorem 3.3.16 Set

W= Va®@sU),  k=12,....m.
ses
Then we have that each Wy is isomorphic to the (F : G)-irreducible represen-
. G~ o —
tation Indy,; (0 ® 1) and

WieWw,® - & Wy

is an orthogonal decomposition of the Ind?iIG (0 ® n)-isotypic component of
L(YX xZ).

Proof In the present setting the space J (see (3.35)) is trivial since m; =1
foralli = 1,2, ..., n, so that J reduces to the constant function with value 1
on X. As a consequence, (3.39) (after identifying L(J x Z) with L(Z)) becomes
?(v ® u) = v ® Tu. Then from Theorem 3.3.8 we deduce that

m
D (@)
k=1
is an orthogonal decomposition of the (& ® 7)-isotypic component in
L (YX X Z). Now we apply (3.46). First note that {(1¢, s) : s € S} is a system
of representatives for the left cosets of F: [/ in F: G.Ifs € S, ®xex vy €V
and u € Uy, Lemma 3.3.15 yields
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(1F.s) [(@v) ®u:| = (gul) ® su.

In the setting of Theorem 1.2.27, this means that the irreducible (F : G)-
representation in L (Y X x Z) corresponding to the irreducible (F : I)-
representation Vj, @) Uy is precisely @, g (Vin @ sUx). O

The following is a particular case of Corollary 3.3.11 but also a consequence
of Theorem 3.3.16.

Corollary 3.3.17  The multiplicity of Indii? @ ®@m inL(YX x Z) is equal
to the multiplicity of n in L(Z). O

The representation-theoretic results in [66] are all particular cases of this
example.

3.3.4 Exponentiation of finite Gelfand pairs

According to Corollary 3.3.17, when Z is trivial and L(Y) is multiplicity free
then L (Y X ) is also multiplicity free. This may be translated into a result on
the exponentiation of (finite) Gelfand pairs. We will analyze this fact more
closely and with more elementary arguments; to this end, we will rearrange
the notation. Let (F, H) be a finite Gelfand pair, let G be a finite group acting
on a set X and consider the wreath product F : G = FX x G. Set ¥ =
F/H and denote by L(Y) = &} _, Vi the corresponding decomposition into
spherical representations. Also, denote by [1#]X the set consisting of all maps
i: X —{0,1,2,...,n} and set

Vi= ® Vig)-
xeX
Then we have the decomposition
L(r) = P v
ie[n]X

Denote by I'g, I'y, ..., [, the orbits of G on [n]X (with respect to the obvious
action defined by setting gi(x) = i(g~'x), forall g € G and x € X). Set

w; =P v
iel“j
Finally, denoting by ¢; the spherical functionin V;,i =0, 1,2, ..., n, we set
1

@ = > &) i
)]

iel'j xeX

forj=0,1,2,...,r.
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Theorem 3.3.18 With all the assumptions above, we have:

() (F:G)/(H:G)=YX;
(1) (F:G, HG) is a Gelfand pair;
@iii) L (XY) = @;ZO W, is the decomposition of L (YX) into spherical rep-
resentations;
(iv) ®@; is the spherical function belonging to W; forall j =0,1,2,...,r.

O

Particular cases of this construction have been studied recently (mostly from
the point of view of the theory of special functions) by Mizukawa [57] and
Akazawa and Mizukawa [1]. See also Mizukawa and Tanaka [58].

Exercise 3.3.19 Prove the claims in Theorem 3.3.18. Also prove that W; is
isomorphic to Indl;;?i Vi, where i € I'; and I} is the G-stabilizer of i.

Exercise 3.3.20 Deduce the results of Section 5.4 (“The group theoretical
approach to the Hamming scheme”) in [12] as a particular case of Theorem
3.3.18.

3.4 Harmonic analysis on finite lamplighter spaces

Here we consider the case F = Y = (3 in the setting of Section 3.3.3 (but
we use additive notation, thus identifying C, with {0, 1}). However, rather than
applying the general theory previously developed, it is now worthwhile to use
the results in Section 2.5 on the representation theory of groups of the form
C> 1 G to develop a more direct and elementary approach.

3.4.1 Finite lamplighter spaces

First we introduce the specific notation that we shall use in the present section.
Again, G is a finite group and X and Z are homogeneous G-spaces. We fix
z0 € Z and denote by H = {g € G : gzo = zo} its stabilizer, so that as
G-spaces Z and G/H may be identified. We consider the wreath product or
(finite) lamplighter group Cr 2 G = Cé‘ x G; we will use the notation in
Sections 2.3.2 and 2.5. Now the action of the group C>: G on Cg( X Z may be
described by setting

(w,8)0.2) = (w, 8)0, g2), where (v, )0 = w + g0

for all (w,g) € C2:G, 0 € Cf and z € Z. The stabilizer of (0c,, zo) is just
the subgroup H = {(0¢c,,.h) : h € H} = H, so that C; x Z=(C22G)/H as
(C2 2 G)-spaces.
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Definition 3.4.1 A (C> : G)-homogeneous space of the form Cf X Z, as
above, will be called a (finite) lamplighter space.

We shall use the isomorphism
L (cg( x Z) =L (C2X> ® L(Z)

(see (3.3)). Now Lemma 3.3.15 has a more specific form; we write it as a
formula for the action /clf an element of C> ¢ G on a tensor product of the kind
Xo @ f (where xy € C?, see Section 2.5).

Proposition 3.4.2 Let (w,8) € C2:G, 0 € C5 and f € L(Z). Then

(@, 8) (X0 ® [) = Xg0(w) [Xg0 ® &S]

Proof Given (o, z) € Cg‘ x Z, we have

[(@, 8)(x6 ® )](0,2) = (xo ® Hl(w, g) (0. 2)]
= (e ® g 'w+g o.g7 1)
=x0(g 'o+g o) flg7'2)
= x0(@) [Xg0 ® 8f1(0, 2).
O

In the notation of Theorem 2.5.1, for any 6 € ©® (a fixed system of repre-
sentatives of the G-orbits on Cg‘ ) we choose a system Sy of representatives
for the left cosets of Gy (the G-stabilizer of xp) in G (with 15 € Sp), so that
G= ]_[seSg sGy.

Let & € ® and let V be a Gy-invariant and irreducible subspace of L(Z);
we then denote by 7 the corresponding representation in 6\9, but for f € V
and g € G we simply write gf for the g-translate of f. The following result is
an immediate consequence of Proposition 3.4.2.

Corollary 3.4.3 Let (w,g8) € C2:G, s € Sg and f € sV. Suppose that
gs =thwithh € Gg andt € Sy. Then

(@, 8)(Xs0 ® f) = X0 ® [,
where f' = yio(w)ths™ f € tV.

Lemma3.4.4 Let0,0' € ® ands € Sy (resp. s’ € Sy), and let V (resp. V')
be a Gy-invariant (resp. Gy -invariant) subspace in L(Z). Then, for f € V
and f' € V', we have

(x50 ® S, Xy ® ' F') 1 (cxzy = 0,085 2 f, [ )12
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Proof We have s = 5’0’ if and only if § = 0" and s = s’. Therefore
(Xs6 ® sfs xsi00 ® ' [ (cxxz) = (Xso Xs0) () (8F 8" F )z
= 89,085, 2" f. fL(2)-

Lemma 3.4.5 We have the equivalence
Indcic, (%o @ 1) ~ P xso ® s f € V1. (3.50)
sESy

Proof From Corollary 3.4.3 (or Proposition 3.4.2) we deduce that, for
(w,h) e CrGypand f €V,

(@, h)(x0 ® ) = xo ® [xo(w)hf],

that is, the subspace {x9p ® f : f € V}of L (C? X Z) is (C2  Gg)-invariant
and the corresponding (C> : Gy)-representation is equivalent to Xg ® 7: recall
(2.46). Analogously, for s € Sp we have

(0c,,5)(x0 ® f) = x50 @ sf.
This implies that
Pixso®sf: feVi=POc, N ®f: feV) (3.51)
SES(.) SES(-)

Moreover, the space (3.51) is (C2 ¢ G)-invariant (apply Corollary 3.4.3) and
from Lemma 3.4.4 it follows that it is an orthogonal direct sum. In this way,
we can apply Proposition 1.1.9 (the set {(0c,,s) : s € Sp} is a system of
representatives for the left cosets of C2 : Gy in C> 2 G) and (3.50) is proved. [J

For each 6 € O, let
n(®)
L(Z) = P mo.iVe.i (3.52)
i=0

be the isotypic decomposition of L(Z) into irreducible Gy-representations.
This means that, for different values of i, the corresponding representations
are inequivalent; myg ; is the multiplicity of Vp ; in L(Z). Moreover, let

moiVoi=Vy ®Vy, @@V, (3.53)

be an explicit orthogonal decomposition of the isotypic component mg ; Vg ;,
(so that each VQJ ; 1s equivalent to Vjp ;). With each ng ; we associate the space

W, =D (Xse ®sf:fe Vej,i) (3.54)

sESy
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(see Lemma 3.4.5) and we set
moiWoi =Wy, @W, & Wy (3.55)

Theorem 3.4.6 The decomposition of L (C2 X Z) into irreducible (Cy: G)-
representations is given by

n(0)

L (cgf x Z) — B mo.iWa.i, (3.56)

6e® i=0

where each mg ; Wp ; is an isotypic component with (3.55) an explicit orthog-
onal decomposition into irreducible (equivalent) representations.

Proof From Theorem 2. 5 I and Lemma 3.4.5 it follows that the representa-
tions W91 i Wgzl, e, WQ are irreducible and equivalent. From Lemma 3.4.4
it follows that the right-hand side of (3.56) (resp. of (3.55)) is an orthogonal
direct sum. We end the proof by showing, by considering dimensions, that the
direct sum on the right-hand side of (3.56) fills the whole of L (C5 x Z). This
is easy:

n(0) n(6)
D0 moidim Woi =YY [Splme; dim Vp,
0e® i=0 0e® i=0
= Z ’ dim L(Z)
[4=C)
=1C511Z|

= dim L(C{ x Z).

We can now state a particular case of Corollary 3.3.17.

Corollary 3.4.7 We have that the multiplicity of the irreducible represen-
tation Indgiigﬁ o ®M) in L (C? X Z) equals the multiplicity of n in the
decomposition of L(Z) under the action of Gy. O

3.4.2 Spectral analysis of an invariant operator

We now examine the spectral analysis of a linear self-adjoint invariant operator
M on a finite lamplighter space. By virtue of Proposition 1.2.23, there exist
decompositions of the form (3.55) such that each Wej,i is an eigenspace of M.
The next theorem reduces the spectral analysis of M to the spectral analysis
of a collection {My : 0 € O} of Gy-invariant operators on L(Z).
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Theorem 3.4.8 Let M : L (C; X Z) — L (Cf X Z) be a linear, self-
adjoint, (Cy G)-invariant operator. Then the following hold:

(1) For each 6 € O, there exists a Gg-invariant, linear, self-adjoint operator
My : L(Z) — L(Z) such that

Mo ® f) =xo @ Mg f (3.57)

forall f € L(Z).
ai) If ng’i in (3.53) is an ?igenspace of My with eigenvalue )‘é,i then the cor-
responding space ng’i in (3.56) is an eigenspace of M, with the same

eigenvalue ké i

Proof (i) From Proposition 3.4.2 and the (C5: G)-invariance of M, it follows
that

(@, M(xo ® f) = xgo(@)M(xg0 ® &) (3.58)

for all (w, g) € C2 G. In particular, when g = 1, (3.58) gives

(@, 16)M(x9 ® f) = x9(@)M(x0 ® [).

This implies that M(xs ® f) belongs to {x¢ ® f' : f' € L(Z)}, the xo-
isotypic component in the decomposition of L (sz X Z) under the action of
Cf. Therefore, for any f € L(Z) there exists ' € L(Z) such that M(xs ®
f) = xo ® f'. Setting My f = f', we define a linear self-adjoint operator
My : L(Z) — L(Z) satisfying (3.57).

Moreover, we have

Xe0 ® §Mp f = (0c,, 8)(xo @ My f) (by Proposition 3.4.2)
= (0c,, OM(xo ® f)  (by (3.57))
= M(xeo ® gf)  (by (3.58))
= Xg6 ® Mgg(gf)  (again by (3.57)).

Therefore

gMy f = Mgo(gf) (3.59)

forall g € G and f € L(Z). In particular, when g € Gy equation (3.59)
becomes g My f = My(g f), showing the Gy-invariance of My.

(i) Now let Vej ; (see (3.53)) be an eigenspace of My, with corresponding
eigenvalue )Lé ;> thatis, My f = )Lg f forall f e ngi. Then for all s € Sp
we have
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M (x50 ® 5f) = xs6 @ Mso(sf) (by (3.57))
= Xs0 @ sMp f (by (3.59))

= )»é,i(Xse ®sf).

This means that ng ; (cf. (3.56)) is an eigenspace of M, with the same eigen-
value )»é ;- O

In other words, the action of the group C3 ¢ G collects together all the M-
eigenspaces {0 @ sf : f € Vejyi} into an irreducible representation.

3.4.3 Spectral analysis of lamplighter graphs

The theory developed in Section 3.4.2 has a graph-theoretic analogue that uses
only invariance under the action of C2X . Let (X, E) be a finite, simple, undi-
rected graph without loops (X is the vertex set and E, a collection of 2-subsets
of X, is the edge set). We write x ~ y to denote that two distinct vertices
x,y € X are connected (or adjacent), that is, {x, y} € E.

Definition 3.4.9 The lamplighter graph associated with (X, E) is the finite
graph (X', E'), where

X =10, 1) x X = {(w,x) :we{O,l}X,xeX},

and two vertices (w, x), (0, y) € X’ are connected if x ~ y (in X) and w(z) =
0(z) forall z # x, y.

The associated adjacency operator Ax: : L(X') — L(X') is the linear
operator defined by setting

AxF)@,x)= Y F@O.y)
0.y)~(w,x)
for all 7 € L(X’) and (w, x) € X'. Since L(X") = L ({0, 1}*) ® L(X), itis
useful to write down the action of Ax- on an elementary tensor:

[Ax(F ® f)l(@, x)
=Y [F(@)+ F@+6:) + F@+8,) + F(o+8 +8,)1f(y) (3.60)

y~x
forall F € L ({0, 1}¥), f € L(X) and (o, x) € {0, 1}* x X.

For 6 € {0, 1}X, we set Xg = {x € X : O(x) = 0} and Ey = {{x,y} €
E : x,y € Xp}. In this way, (Xg, Ep) is a subgraph of X. We define a linear
operator Ap : L(X) — L(X) by setting
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> [ ifox)=0
(Ag () = {52
0 ifo(x) =1
forall f € L(X) and x € X. In other words, Ay is the adjacency operator of

(Xp, Ep) trivially extended to the whole of L(X).
The following provides a graph-theoretic analogue of (3.57).

Lemma 3.4.10 Forall f € L(X) and 0 € {0, 1}X we have
Ax (X0 ® ) = xo ® 4A¢ f.
Proof Applying (3.60) we get
[Ax (xo ® )] (x, w)
=) [xo(@) + xo(@+8,) + xo (@ + 8,) + xo (@ + 8, + 8,)1f ().

y~x

(3.61)

Since
X6 (@) + xo(w + 6x) + xo (@ + 8y) + xo(® + 5x + dy)

= xo(@)[1 + x0(8x) + x0(8y) + xo(8x + 8,)]

= X0 (@)[1 + (=1)" + (=170 4 (-1
_ JHxe(@)  if0(x) =0(y) =0

0 otherwise,
it follows that (3.61) gives
[Ax (xo ® )] (x, 0) = 4xg(w) Z F(y) = xo(w) ® 4Ag f

yeXp:
yx

if 6(x) =0 and
[Ax(xo @ Hx, 0) = 0= xo(w) @ 4Ag f
otherwise. (]
In the following, we will show that Lemma 3.4.10 enables us to express
the spectrum of X’ in terms of the spectra of the subgraphs of (X, Ep),

0 € {0,1}*. Setting Vy = {x9 ® f : f € L(X)}, we have the orthogonal
decomposition

LX) = EB Vo. (3.62)
0e{0,1}¥

This is the Cg‘ -isotypic decomposition of L(X").
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Proposition 3.4.11 Define the linear operator é@ : L(X') — L(X) by
setting

~ 1
QP = 5557 D Flw, 0)xo()

we{0,1}X

forall F € L(X'). Then we have the orthogonal decomposition

F= ) xo®0QsF. (3.63)
0e{0,1}X

In particular, the orthogonal projection Qg : L(X') — Vy satisfies

QoF = xo ® Qo F.
Proof  First we recall the orthogonality relations in {0, 1}*X. Forw, & € {0, 1}¥
we have

1 1 1 fo=E&
T 2L @u® =55 D xe®r® =1 ot

0e{0,1}¥ 0e{0,1}X

Indeed, if @ = & then x,(0) x¢(0) = 1 forall w € {0, 1}*. Moreover, if # &
then there exists n € {0, 1} such that x,,(n) x¢(7) = —1, and thus

- Z Xo (@) x5 (0) = X () xs (n) Z Xo(0) x5 (6)
6e{0,1}X 6e{0,1}X

= Y Xo@+n)xe@+n)
fe{0,1}X

= > X®x:0).

0e{0,1}X

which forces ZGE{O’I}X X (0) xg(0) = 0. Therefore, for (w, x) € {0, I}X x X
we have

Y @ 0F | (@x)= Y o) (QsF) (x)

0e{0,1}X 0e{0,1}X
1
= Y FEgg X xe@xe®)
gef0,1}¥ 0ef0,1}X
= F(w, x).

This proves (3.63), and it is easy to check that it is an orthogonal
decomposition. O
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Now let
Ag =Xo,1Po1 +4o2Ps2+ -+ Xono)Po,ne) (3.64)

denote the spectral decomposition of Ag. That is, Ag 1, Ag2, ..., Ao n(e) are
the distinct nonzero eigenvalues and Py ; is the orthogonal projection of L(X)
onto the eigenspace of Ay ;. If Xy C X then Ay admits L(X \ Xp) as an

eigenspace with eigenvalue equal to zero; this is omitted in (3.64).

Theorem 3.4.12  The operator Ay has the following spectral decomposition:

h(0)
Ax/ = Z 24)\.0,/ (X49 ® P@,j Q@) ’
6e{0,1}X j=1

where

(xo ® P@,jéé))F =x0® Pe,jéeF

forall F € L(X'). The zero eigenvalues (in particular those corresponding to
the space L(X \ Xg)) are omitted, and the eigenvalues Ag j, 0 € {0, X, j=
1,2,..., h(0), are not necessarily distinct.

Proof The proof follows immediately from (3.63), Lemma 3.4.10 and (3.64).
Indeed, we have

AxF=Ax | > x0®QsF
00, 1)X

= > ®4A9 00 F
6el0,1)X
h(9)

= Y > 4k (10 ® Po.;O0F)

fe(0,1}X j=1

forall F € L(X'). O

Corollary 3.4.13  If Vy ; is the eigenspace of Ag corresponding to the eigen-
value dg j, j = 0,1,..., h(0) (with Vy o the eigenspace of g0 = 0), then
Wy j =1{xo ® f: f € Vy,j}isthe eigenspace of Ag corresponding to 4Xg ;.

3.4.4 The lamplighter on the complete graph

In this subsection we examine the case G = §,,, X = Z = {1,2,...,n},
with the natural action. We use the results in Section 3.4.1 for the
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representation-theoretic aspects and those in Section 3.4.3 for the spectral anal-
ysis of the related graph. Using the standard notation in the representation the-
ory of the symmetric group (see Section 3.2.1), if A is a finite set of cardinality
|A| = n then we denote by S”(A) the set of all constant complex-valued func-
tions defined on A and by S§1=L1(A) the set of all complex-valued functions
f defined on A such that )", f(a) = 0. We recall the following elemen-
tary fact:

LX) =S"(X)® s" L1 (X) (3.65)

is the decomposition of L(X) into irreducible S,-representations (cf. Exer-
cise 1.2.34). For a subgroup of S, of the form Sy x S,—x, 0 < k < n, we
denote by By the k-subset of X fixed by Sy x S,—_x. In particular, the orbits of
Sk X Sy—x on X are By and X \ By.

Theorem 3.4.14 Set

Wlo=(xe® f:|1Xal =k, flx, € S¥(Xo) and flx\x, = 0).

Woo=(xo ® f:|Xo| = k. flx, =0and flx\x, € S" (X \ Xo)).

Wii = (xo ® f : |Xal =k, flx, € SV (Xp) and flx\x, = 0),

Wiz =(xo ® f : |Xol =k, flx, =0and flx\x, € S" "X\ Xp)).
Then, a decomposition of the permutation representation of C2 Sy, on C? x X
is given by

L(C5 x X)
n—1

- (W&OGBWO;Q) @ [@ (Wﬁo ®W.o® Wit @ Wk;2>:| ® (W,};O ® Wn;l) .
k=1

Proof By using (3.65), we can decompose the space L(X) into irreducible
(Sk x S, —g)-representations for 1 <k <n — 1:

L(X) = L(By) ® L(X \ By)
=SB ® S* (B @ S"TR(X\ By) @ S"TRLL(X\ By).

An application of Theorem 3.4.6 ends the proof. (]

In the notation of Section 2.5.2 the representations of C3 : S, on Wkli0 and
Wk]‘0 are both isomorphic to p[k,0);(n—k,0)]> the representation on Wy, is
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isomorphic to p[k—1,1):(n—k,0)] and the representation on Wy is isomorphic
t0 P[(k,0): (n—k—1,1)]- In particular, the representations Wy.; and Wj.> have mul-
tiplicity 1, while the representations Wj.o have multiplicity 2.

Now let (X, E) be the complete graph on n vertices and identify X with
{1,2,...,n};thus E = X x X\ {(x, x) : x € X}. The eigenspaces of the adja-
cency operator on the complete graph on n vertices are $” (X) and §"~11(X),
with corresponding eigenvalues n — 1 and —1, respectively. Moreover, for
6 € {0, 1}X the graph (Xy, Ep) is the complete graph on | X| vertices.

For # e {0, 1}¥, we consider the linear projection Py : L(X) — L(X)
defined by setting

m L S ifx e X
Py f(x) = yeXo
0 ifx & X

for all f € L(X). Then, for |Xg| > 1, the spectral decomposition of the
operator Ay is given by

Ag = (X9l — 1) Py — (Rg — Pp),

where Ry : L(X) — L(Xp) is the orthogonal projection from L(X) onto
L(Xp). In the notation of Theorem 3.4.12 we have h(0) = 2, 19,1 = (| Xg|—1),
rp2=—1,Py1 = Pgpand Py = Ry — Py.Clearly, if | Xg| = 1 then Xg = {x}
for some x € X and Ay = 0. Moreover, in the notation of Theorem 3.4.14 we
have the following:

Wio= €P Ran(Py)

pecy
| Xo =k

is the eigenspace with eigenvalue 4(k — 1) fork = 1,2, ..., n;
Wil = @ Ran(Ry — Py)

0eCy:
|Xg|=k

fork=1,2,...,n,and

n

D Wi =D | €D Ran(ro — Po)
k=1

k=1] pecy:
|Xol=k
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is the eigenspace with eigenvalue —4; finally,

(@)@ (@)

is the eigenspace with eigenvalue 0. Note that the operator Ay’ is not in the
center of the commutant algebra (see Propositions 1.2.23 and 1.2.25). Indeed,
W/?;o and Wk];0 are equivalent but correspond to different eigenvalues, namely
0 and 4(k — 1) respectively.
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