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PREFACE

This is a substantially extended version of the notes on 25
lectures delivered at the Pennsylvania State University during Spring Term
1981 under 572.2 ("Special Topics in Algebra').

Most of the material has been presented earlier elsewhere: in
the Seminar Bielefeld-GSttingen during the Summer Term 1967 (mainly Part III),
in lectures at the Universitdt Bielefeld during the Academic Year 1977/78
and in lectures at the Université de Grenoble in February/March 1979
(mainly §§19/20.). Some of the material has been discussed afterwards in
the course of different lectures which I delivered at the Universitdt
Bielefeld during the Academic Year 1981/82.

The text falls into three parts: Skew fields and simple rings,
Skew fields and Brauer groups, and Reduced Kl—theory of skew fields. As
regards their contents the reader is advised to consult the introductory
remarks at the beginning of each of these parts on pages 1, 57 and 125
respectively.

During the preparation of the final draft of these notes I
have enjoyed the assistance of B. Fein (Oregon State University), D. Garbe
(Universitdt Bielefeld), I.M. James (Oxford University, editor of the LMS
Lecture Note Series), Ch. Preston (Universitidt Bielefeld), S. Rosset
(Tel-Aviv University), B. Weisfeiler (Pennsylvania State University) and
J. Tate (Harvard University, who communicated so far unpublished work to
me and gave permission to publish his arguments here; cf. §11.); I am
grateful for their help.

Moreover, I want to take this opportunity to express gratitude
to G. Andrews, D. Brownawell, D. James, D. Rung, L.N. Vaserstein and
B. Weisfeiler who enabled my visit to the Pennsylvania State University
(during the Academic Year 1980/81l) or made the stay there so enjoyable

for me and my family.



viii

Finally I must report that I have greatly benefitted from the
help of P.M. Cohn (Bedford College, University of London) whose assistance
and encouragement only made it possible for this book to appear. I am most

grateful for all his help.

Bielefeld
August 1982



CONVENTIONS ON TERMINOLOGY

As usual, N, Z, Q, R, C stand for the natural numbers,
integers, rational numbers, real numbers and complex numbers respectively.
The French reader should note O € N .

We write X := Y if X 1is defined by Y .

From group theory we adopt the following (standard) notation:

H<G H 1is a subgroup of G ,

HQG H 1is a normal subgroup of G ,
[G,6] commutator subgroup of G ,

¢ = G/[6,6] commutator factor group of G ,
2(3) centre of G .

If R 1is a ring, then we usually assume that it has a unit
element, denoted by 1 (not necessarily 1 # O ; note that 1 = O implies
R = {0} ), which is inherited by subrings, preserved by homomorphisms and

acts unitally on all R-modules. Moreover, we use the notation:
+

R additive group of R ,

R* multiplicative group of R ( if 1 #0 ) ,
Z(R) centre of R ,

Mn(R) ring of (n,n)-matrices over R ,

GLn(R) = Mn(R)* general linear group over R .

We call a ring D a skew field if D¥ U {0} = D . We assume the reader to
be familiar with the fact that left/right vector spaces over a skew field
are always free of unique rank (called the left/right dimension); the
proofs of these facts work precisely as in the commutative case (known
from Linear Algebra).

Finally we point out that we assume a good knowledge of (ordi-
nary) Field Theory (including Galois Theory of finite field extensions);
here field stands for commutative field and Fq stands for the (finite)

field with q elements.






PART I . SKEW FIELDS AND SIMPLE RINGS

The history of skew fields begins with quaternions, whose dis-

covery W.R. Hamilton (1805-1865) regarded as the climax of his career.

F. Klein [1926/27,p.184 in vol.l] writes in his famous treatise 'Vorlesun-

gen liber die Entwicklung der Mathematik im 19. Jahrhundert" (which is an

outstanding account):

e

Von hier aus entwickelte sich nun bei Hamilton das grdBte
Interesse an der Fragestellung, ob man die niitzliche, geometrische
Interpretation des Rechnens mit x + iy in der Ebene nicht irgend-
wie - durch Schaffung neuer komplexer Zahlen - auf den Raum, d.h.
unsern gewShnlichen RS, Ubertragen kénne. Seine unermidlichen An-
strengungen flhren ihn endlich 1843 zur Erfindung der Quaternionen,
d.h. geeigneter viergliedriger Zahlen, deren Erforschung und Ver-
breitung er sich fortan ausschlieBlich widmete. Ihre Theorie legte
er dar in den beiden ausfiihrlichen Werken:

Lectures on Quaternions, Dublin 1853

Elements on Quaternions, London 1866 (posthum).

Sehr bald wurden die Quaternionen in Dublin ein alles andere
Uberragender Gegenstand des mathematischen Interesses, ja sogar ein
offizielles Examensfach, ohne dessen Kenntnis keine Absolvierung des
College mehr denkbar war. Hamilton selbst gestaltete sie fiir sich zu
einer Art orthodoxer Lehre des mathematischen Credo, in die er alle
seine geometrischen und sonstigen Interessen hineinzwang, je mehr
sich gegen Ende seines Lebens sein Gelst vereinseitigte und unter

den Folgen des Alkohols verdiisterte.

In Part I of these lectures we start with a brief description

of Hamilton's quaternions; however, we do not take his point of view since



we use a definition involving matrices and these were only later intro-
duced into mathematics by A. Cayley (1821-1895) in 1855. All this is done
in §1. which also includes some remarks on (skew) formal Laurent series
fields introduced by D, Hilbert (1862-1943) in 1898. (Later, in Part II.
(§ 14.) we shall come back to the quaternions from a more abstract point
of view.)In §§2/3 we develop a theory of simple rings as suggested by
E. Artin (1898-1962) in the late 1920's; important special cases of the
material presented here have been introduced by J.H.M. Wedderburn (1882-
-1948) as early as 1907. In §§4/5/6 we discuss certain techniques in-
volving tensor products which are relevant to our subject. §7. contains
the backbone of these leqtures, the Skolem-Noether Theorem, proved in 1927
by T. Skolem (1887-1963) and rediscovered in 1933 by E. Noether (1882-
~1935); we treat this theorem in a setting which goes back to E. Artin
and G. Whaples (13914-1981). We close Part I with a discussion of the
corestriction of algebras intruduced by C. Riehm [1970]; here (in §8.)
we present only a simplified version which is sufficient for our purposes.
Roughly speaking one may say that §§2,..,7 comprise a slightly
modified and modernized version of the first seven chapters of the classi-~
cal set of notes by E. Artin et al. [1948]; however, in our lectures we do
not discuss (and make no use of) semisimple rings; those interested in
such things may consult for example C.W. Curtis & I. Reiner [1962] or

vol. 2 of P.M. Cohn [1974/77] (cf. also some of the exercises).



§ 1 . SOME AD HOC RESULTS ON SKEW FIELDS

Consider the set of matrices

o e{(3)

where z denotes the complex conjugate of z € C . An easy calculation

z,u € C } c M2(C)

shows that H is in fact a ring with unit element the unit matrix I

z u 2,112
If (—E);!O » i.e. |z[%+[u[” £ 0 , then

z u\71 Z -u
2 -1
(5 %) =del®ad™(g, )en .

hence H is even a skew field, called the skew field of (ordinary or

real) quaternions . Of course, H is a 4-dimensional R-vector space with

(30 e (E0) i (2 ) e (00)

with the usual i € C satisfying i2 =1

basis

The elements 1,7,j,k satisfy the multipli- 1|2 ]d]k
cation table on the right. Usually one -1 | k[
writes al + bZ + ¢ + dk in place of J |-k j-11¢7

k| J |- |-2

atbi c+di
(-c+di a-bi

) ( a,b,e,d€R) .

Obviously the eight elements 1,%7,J,K,=1,-Z,—fj,-k € H* form
a finite subgroup of the multiplicative group H* of our skew field
H - called the Quaternion Group - which clearly is non commutative and
hence not a cyclic group; this could never happen in a commutative field
since any finite subgroup of the multiplicative group of a commutative
field is necessarily cyclic (cf. Field Theory). Moreover the equation

X2 + 1 =0 obviously has the six solutions <,J,k,-Z,-J,-k € H ; over a



commutative field it could have at most two solutions. Here the
above equation even has an infinite number of solutions: choose b,c,d €
€ R such that b° +c? +d% =1 , then a straightforward calculation
shows (bZ + cf + dk)2 = .. = =1 . This phenomenon will be understood
later (cf. Example 1 in §7.).

Now consider the injection R -+ H , teo tI ; this makes R a
commutative subfield of the skew field H such that R < zZ(H) , but even

R = Z(H) holds:

zZ u z u 0 v
indeed, assume ( — = > € Z(H) , hence ( —— ) ( — )
-u z -u z -v 0

=<9- V)(E E—) for all v € C . This amounts to vz = vz and
-v 0 -u z

uv = uv for all v € C , hence z € R and u = 0 . Therefore we have
[H:z(H)| = |[H:R| = 4 = 2?2 | The fact that 7(H) is a field is not sur-

prising, in fact we have

Lemma 1 . Let D be a skew field, then Z(D) <8 a commutative
subfield of D .

Proof. Obviously 7Z(D) is a subring and even a field since zd = dz for
all d € D clearly implies <:1-lz“l = z-ld_:L for all 4d €D ( z,d#0)
for any given =z € Z(D) . O

The above example may be generalized as follows: replace the
extension C/R by an arbitrary separable quadratic extension L/K ,

select some a € K*¥ and consider the set of matrices

zZ u
(2) D := D_(L/K) ::{ <as E)

where z denotes the conjugate of z € L . Again D is a ring, and an

Z,u € L }E MQ(L)

easy calculation shows that

z u\-1
(—- —) exists if and only if zz - awu # 0 , i.e. if
au z

and only if a is not a norm for the extension L/K.

Moreover we have the formula

z u\7*t - — -1 Z -u
- = = (zz-auu) — .
au z -au z

provided either side exists. Again D is a 4-dimensional K-algebra with
7Z(D) = K (here, as above, we identify t € K with tI € D ); this

follows in the same way as in the case of the real quaternions.



Summarizing our remarks gives

Lemma 2 . D = Da(L/K) according to (2) Zs a 4-dimensional K-algebra with
centre X , and it is a skew field if and only if a is not a norm for

the extension L/K . O

Let us now study another classical example: let L be a
commutative field and ¢ an automorphism of L . Call K := FixL(c) =

={ x€L| o(x) =x} the fixed field of ¢ in L .

Definition 1 . Denote by L((T;0)) the ring of formal Laurent series

Rd k3

aiTl in the indeterminate T with coefficients a; €L (REZ),
1=R
with usual addition but skew multiplication such that Ta = o(a)T , i.e.

Tia = Gi(a)Ti (a€L).

If o = idL then L((T30)) is the usual commutative field of formal

Laurent series over L in T , customarily denoted L((T)). We want to

show that L((T3q)) 1is always a skew field: indeed, let O # d =

©

= E aiTl ( ag £ 0 ) Dbe given, let us calculate its inverse
i=R o .
At =STxd (k. #0)
35 ) s

where S € Z and the Xy € L are not yet known. We have necessarily

oo o«
0 _ 4 _ j i, _
T —l-(:_S__ ij )('E_ aiT)_
J=S i=R
= E ( E x.cj(ai))Tr s
r=R+S itj=r J
hence R+ S =0 , i.e. S = -R ., Comparing coefficients at r = 0 gives
-R -1
(3) Xp = [} (aR Yy #0
doing the same for r > 1 we get immediately
. -R+1 .
0 = E xjcj(ai) = E x.oj(ar_.) ,
iti=pr j=-R J L
i.e. the recurrence relations
-R+r, -1 "5—*51 j
4 = - . .
(u) X pop g (ap ) > x50 (a, ) (r>1)

=R ) -

Hence for d # O we may calculate the coefficients xj of its inverse
d-:L successively with the aid of (3) and (4). Therefore we have proved
Lemma 3 . The ring L((T30)) according to Definition 1 7Zs a skew
field . o

Now let L again be a commutative field (cf. Lemma 2 in §24.), then:



Lemma 4 . Let D := L((T30 )) be given. If o has infinite order, then
Z(D) = K , hence |D:2(D)| =« ; 2f o has the finite order n in
mut(L) , then 2(D) = K((T™)) , hence |D:Z(D)| = n® ( K = Fix (o) ) .

Proof. "S" is obvious in both cases; let us prove the converse: pick an

element
L]

2= 2. TN € Z(D) , i.e. az = za for all a €D .
< 73
i=R
-]

Set a = é a.T? ( ag # 0 , because we may assume a # O ) , then az =

3=5
= za amounts to
© . [ . 0 .
<~ J r _ o(~— J 1y _ - -
= (.E'_ a0 (zi))T = (; ajT )(“E_ z,T ) = az = za =
r=R+S it+j=r j=S i=R
o0 . o . @« .
=G 2,™C a 1) = (S zo (et
iR j=5 3 r=R+S it3=r ]
hence
-R+r r-j ~R+r ;
(5) E. Zpmi® (aj) = E. a0 (Zr—j) for all »>R + S .
1=5 1=S
Now take in (5) S := 1 , a = 1 and aj := 0 for j > 2. It follows
2,4 * G(Zr-l) for all r-1 , hence z, € leL(c) =K forall r ,
therefore

Z(D) < K((T)) in any case.

Let us now suppose that o has infinite order in Aut(L) . Take in (5)

S =1, a; € L such that cr—l(al) # a; for any r # 1 , and aj = 0

. r-1 - - .
for j > 2 . It follows that z,_40 (al) = alc(zr_l) a;z s by
construction of a, this means zZ,q = 0 , and this implies

z =0 forall »r#0 , i.e. 2z =2z TO =z €K.
r 0 ¢}

Finally, if ¢ has the finite order =n , we proceed as follows: take in

(5) s :=1, a, € L such that cr-l(al) # a; for all r # 1 (mod n) ,

and aj := 0 for J > 2 . Just like in the previous case it follows that
r=1 _ _ 3 . .
z, 49 (a,) = alo(zr_l) =a,z _, for all these r ; again by our choice
of a this amounts to 2z = 0 , hence
1 r-1 n
z =0 forall »r# 0 (modn) , i.e. z € K((T)) .

T
It remains to calculate the dimension |D:Z(D)| in the latter case: first

we observe |L:K| = n (see Galois Theory, in particular Artin's Lemma

(cf. also §6.) for L/K 1s obviously cyclic with generating automorphism

o . Now choose a basis {1,t,t2,..,tn-l} of L as a K-space, then our

considerations show immediately that { t*r) l 0<i,j <n} is a basis

of D as a K((Tn))-space, hence [D:Z(D)[ = n2 . a



Let us note that so far we have only seen skew fields D such
that the dimension |D:Z(D)| is either infinite or a square. later we

shall learn that nothing else is possible (cf. §5.).

Exercise 1 . call al (resp. bZ + cj + dk ) the scalar (resp. pure)
component of a quaternion al +bf +cj +dk € H ( a,b,c,d € R ) and
identify the scalar (resp. pure) quaternions - i.e. those with vanishing
pure (resp. scalar) component - with the elements in R (resp. R3 ). Now
show that the scalar (resp. pure) component of the product of two pure
quaternions equals the negative scalar product (resp. the vector product)

of these two quaternions (viewed as vectors in R3 ) .

Exercise 2 . Study the first two chapters of P.M. Cohn [1977}.



§ 2 . RINGS OF MATRICES OVER SKEW FIELDS

Let R be a ring with 1 # 0 . We shall henceforth deal
with right(left) R-modules M # {0} .

Definition 1 . A right(left) R-module M <is called "simple" (or "irre-
ductble™) If M contains no proper right(left) R-submodules; M s
called "right(left) NoetherianlArtinianl" if every increasingldecreasing]

sequence of right(left) R-submodules of M <s necessarily finite.

Definition 2 . If in Definition 1 we are in the special case M =R ,
then we say '"right(left) ideal of R " rather than right(left) R-sub-
module of R ; also we say "minimal” right(left) ideal rather than simple
right(left) ideal.

Now let D be a skew field and consider the full matrix ring Mn(D) 5
it is an n2—dimensional right(left) vector space over D with basis

2 j-th column

e,. =

1] ( 1 <« i-th row (1§l’jin)

containing one 1 and n2—l O's .

The above basis elements multiply according to

0 JjEr
€14%ps © . in case .
is 1=
n
Call 1 := E ess the unit matrix . Then we may consider the
1=1
elementary matrices T j-th column
1
Byle) s= 1+ tegq = ( t\l) « i-th row

(t€D;i#js;1<ij<n)

It is well-known from Linear Algebra that these elementary matrices have

the following properties (most of which are fairly obvious):



(1) E,..(t)E..(t') = E.. ' = 1. -
lj(t) 13(t ) Elj(t+t ) Eij(O) 1, Eij(t) = Eij( t) ,
(2) Eij(t)Ers(t') = Ers(t')Eij(t) (j#Zrégsfgifi)
and
"o -1 -1 , .
(3) E'ij(tt ) = E, () E’rj(t') Eir(t)Erj(t ) (r#i#3#r)
Purthermore we introduce matrices
¥ i-th column
1 0
Di(u) = 1+ (u--l)eii = u\\\\ - i-th row
0 1
(u€D¥ ;1<i<n)
with the properties
() D (wD;(u") = Dy(wa') , D(1) =1, D) = Dy(uh)
and
(5) Di(u)Dj(u') = Dj(u‘)Di(U) Ci#3)

Finally we assign to every permutation g € § of n ciphers a matrix
n

P(m) := ( Gi,n(j) ) « i-th row

4 o j-th column
1 i=7n(j)
where Gi 7(3) = if
2T o 1 # (i)

Obviously in each row and each column of such a permutation matrix there

is exactly one 1 and n-1 O0's . Moreover one checks easily
(6) P(mP(n') = P(nn') , P(id) = 1 , P(m)"L = P(x") = P(m)®
In this context the following is well-known from Linear Algebra:

Lemma 1 . Given 4 € Mn(D) then the "elementary row(column) operations"
are as follows:
transforming from A to amounts to

adding the left(right) t-multiple of the j-th

Eij(t)A ( AEji(t) ) row(column) to the i-th row(column) ;

miltiplying the i-th row(column) from the
left(right) by u ;

moving the i-th row(ecolumn) into the position
of the w(i)-th row(column)

Di(u)A ( ADi(u) )

P(m)A ( aP(m)71



10

1 1
Example 1 . Transforming from 4 to © al® amounts to
1///6 1///6

rotating the matrix A by 180 degrees (Note: this is different from going

over to the transpose at ).

Example 2 . ¥ j-th column
If we have A = ( aij ) < i-th row , then we get for every m € Sn

P(ﬂ)-lAP(ﬂ) = ( ar(1),m(3) ) < i-th row

b j-th column
Lemma 2 . Let A =M (D) be the full matrix ring over a skew field D ;
then the set of matrices in A which commute with all elementary matrices
Eij(t) 18 exactly the set of matrices of the form zl1 where z € Z(D) ;
in particular: the mapping dw» d1 from D <Into A <induces an isomor—
phism Z(D) =~ Z(A) .

Proof. Obviously it suffices to prove the first statement. Call K := Z(D)
and note that K is a commutative field (cf. Lemma 1 in §1.; the reader
should notice that we do not use this fact in the course of this proof).
Clearly we get 2l € Z(A) for all z € K . Conversely assume that the

matrix A = (ars) commutes with all matrices Eij(t) ; then

B = (brs) 1= AEij(t) = Eij(t)A .

Equating the main diagonal of B gives

ajj = bjj = ajj + ajit for all t € D , hence
aji =0 forall i#3j, i.e. A 1is a diagonal matrix.
On the other hand, equating the (i,j)-th position of B gives the
relation

aij + taii = bij = ajjt + aij for all t+t € D , hence

zZ i=ag; T ajj €ED for i#j (take t =1 and note aij =

= 0 according to the above) and therefore tz = zt for all

t€D,i.e. z€Z(D) =K.
All this implies 4 =21 , O

So far we have not made use of the fact that D is a skew field; in fact
we could replace it mutatis mutandis by any ring R with 1 # O . For the

rest of this paragraph, however, we have to use the field property of D .
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Lenma 3 . Let D be a skew field, then A = Mn(D) 18 a right(left)

NoetherianlArtinian] A-module.

Proof. Indeed, any right(left) ideal of A 1is a right(left) vector space

over D ; hence our assertion is clear for dimensional reasons. O

Definition 3 . Let A be aringwith 1 # 0 . We call A a "simple
ring" if A 18 a right Artinian A-module which has no proper two-sided
ideals.

Theorem 1 . Let D be a skew field, then A = Mn(D) 18 a simple ring.

Proof. By virtue of Lemma 3 we must show: "if a # {0} is a two-sided
ideal of A, then 1 € a ". Indeed, let 0 #4 = (aij) €a ; it follows

that we have a;s £ 0 for at least one position (i,j) , hence

J
e =atl.e.Ae.€a forall r (1<r<n),
rr ij ri™ir - -
hence n
1:2 err€a.l:|
r=1

We close this paragraph with a few remarks of general import-
ance but of no importance for us in the course of these lectures (cf. also
the end of §3.).

Definition 4 . Let A be a ring with 1 # 0 . We call A a '"semisimple
ring' if the intersection of all maximal right ideals in A equals {0}
Theorem 2 . Let D be a skew field, then A = Mn(D) 18 a semisimple
ring.

For the proof it clearly suffices to prove the following

Lemma 4 . Let D be a skew field and consider the ring A = Mn(D) . Then

*
Ry iE { (O—O) <+ i-th row } (1<1i<n) <Zs a maximal right ideal
* 1=

of A

Proof. Let a2 /Li , a# /Li be a bigger right ideal; then there must be

a position (i,3) such that a . # 0 with some matrix (ars) €a, i.e.

% * 0 0 % %
a 3 a.. = |—a.,.— | +}0 0| + i~th row
1) 1)
* * * %
4 0 1 0 j-th column

=: A + R where A4 € a
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Now denote P(i,j) the permutation matrix belonging to the transposition
(i j) ; then
_ -1 . s
g; = Aaijeij(l,j) € a

and hence a

= 3 . C i . aa
1 Eil e € a since e € h,ca for r # i anyway

Exercise 1 . Let H be as in §1. and consider the matrices
1 < 1 4
(550
Show that the first matrix is invertible and that the second matrix (which
is the transpose of the first one) is not invertible.

Exercise 2 . Prove (e.g. with the aid of Lemma 1)

1
t2l 0 n-1 n
(7) * = ‘ E’i(ti)
j=1 i=j+1 3 Y
1
and nl
1 t12=%,
* 1 i+l
(8) = Ei.(ti.) s
0 i=n-1 j=n J L
1

where tij €R, R aringwith 1# 0.
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§ 3 . SIMPLE RINGS AND WEDDERBURN'S MAIN THEOREM

Our goal is to prove a sort of converse to Theorem 1 in §2.

Theorem 1 . Let A be a ring without proper two-sided ideals and let

be a minimal right ideal of A ; if M # {0} <s a right Artinian R-module
n
then M =~ @ A as a right A-module (for some suitable n ).
i=]
Corollary 1 . ALl minimal right ideals of a ring without proper two-
sided ideals are isomorphic.

Corollary 2 . Every right ideal of a simple ring is a direct sum of

minimal right ideals.

Proof. The two corollaries follow easily from the theorem (in Corollary 1
take M := "a minimal right ideal" ; in Corollary 2 take M := "a right
ideal"). Now let us prove the theorem: consider
{0} £ a :=Zaf1t_:_A 3
acA
a is a two-sided ideal of A and therefore we have (by assumption)

a = A . It follows n

M-‘-%mA=Zma:ZZmaﬂ.=2mih

mEM mEM a€A 1=1
with some minimal n such that the last equation holds (the existence of
such an n 1is a consequence of the Artinian property of M ). This means

in particular, that the right A-module homomorphism f below is

surjective: n A
f: @ n—sNM, (rl,..,rn) > 'E_ mer. .
i=1 n i=1
But f is also Znjective, for if 1‘2-1 mr. = 0 and (say) O # r, €En,
hence rlA = 1 (since 1 is minimal), and therefore mlfL = mlrlA c
n

< 12-1 m, contradicting the minimal choice of n . O
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Let R be a ring with 1 # O ; then we call an element e € R
an idempotent if ?=e ( e.g. e=1 or e =0 ). Then obviously eR
(resp. Re ) is a right (resp. left) ideal of R and eRe € eR Nl Re is
a ring contained in R with unit element e (not a subring unless e =

=1).

Lemma 1 . Let R be a ring , e € R an idempotent and LX the left
multiplication with x . Then we have an isomorphism of rings
L

eRe = EndR(eR) , eae Leae .

Proof. L is clearly a homomorphism of rings (this is shown by a direct
verification). It is i<njective, for if eaeer = 0 for all r € R

then (take r = e ) eae = eae3 = Q . But L is also surjective, for let
£ be an arbitrary right R-module endomorphism of eR , then £f(e) = ea
for some suitable a € R , and we get (for all r € R )

f(er ) = f(eer) = f(e)er = eaer = eaecer = Leae(er) . 0

Schur's Lemma . Let M be a simple right R-module (e.g. a minimal right
tdeal of R ). Then Endp(M) <s a skew field.

Proof. Let 0 # £ € EndR(M) (note that such an f exists because of
M # {0} by virtue of our definition of a simple module) ; both Ker f
and Im f are right R-submodules of M , hence Ker £ = {0} and Im f =
M, i.e. f 1is an automorphism of right R-modules, hence f_l exists. O

We need one more technical result:

Lemma 2 . ILet M be a right R-module, then
n
EndR(@ M) =~ M_(Endp(M))
n

Proof. Set S := 6{) M, s := (ml,..,mn) and define projections

1=1
LFE S+M, s+ m, and injections 1 M-S ,m® (0,..,m,..,0) (where
the "m stands in the i-th position). A simple calculation shows that the
above projections/injections satisfy the following equations:

id i=3 n

ﬂilj = if . ] and jg: 1T, E idS .

0 i#3 r=1
Now consider an arbitrary f € EndR(S) ; we find niflj € EndR(M) , and
hence we have an additive map

a: EndR(S) - Mn(EndR(M)) , £ (niflj) .

We claim that o 1is in fact a homomorphism of rings; indeed, we have
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a(fg) = ( w.fglj = ( W, f(iz: 1T )g1 =

( :E:Kﬂ f1,)(n 284 ) ) = alfalg) and  (idg) = idJ
r=1

Conversely, let fij € EndR(M) be given and consider the additive map

8: M _(Endp(M)) - Endp(S) , ( fij ) »lezl yf 1473

Obviously S(idMl) = idS , and we have

Tl
BCC £, ) g5 ) = B %firgrj )

n n n
n n n n
=( (FE ™, 1. g .m.) = B(C £, Y g.. ),

i.e. B 1is also a homomorphism of rings. But now we are done, because it
is clear from our definitions that we have af = identity and Ba =

identity. O

Now we are ready for the statement and proof of the first

basic theorem in these lectures.

Wedderburn's Main Theorem . A <s a simple ring <f and only <if one has
A=~ M (D) with a skew field D (unique up to isomorphism) and a suitable
(unique) n . More precisely: if A <is a simple ring and O # e € A an
idempotent ( e.g. e = 1), then:

(%) all minimal right ideals of A are isomorphic ;

(17) ehe = Mm(D) where D := EndA(n), n being any minimal right
ideal of A ;

(i12) D according to (Z7) Zs a skew field such that Z(D) =~ Z(A) ,
in particular Z(A) is a commutative field ;

(Zv) M (D) = M (E) with skew fields D and E <mplies m =n
and D~E .

Proof. We know already from Theorem 1 in §2. that Mn(D) is a simple
ring provided D 1is a skew field. To prove the converse it clearly
suffices to show (Z),..,(Zv). (Z) is known from Corollary 1; as for (iZ)/,

e # 0 implies eA # {0} , hence (use Lemma 1, Corollary 2 and Lemma 2)
m
eAe =~ EndA(eA) o EndA(gig n) = Mm(D) by definition of D .

(717) follows then from Schur's Lemma together with Lemma 2 (§2.) and
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Lemma 1 (§1.). Let us finally prove (Zv): consider the idempotent O #
# e € Mn(D) $ a straightforward calculation shows elan(D)ell ~D,
i.e. elan(D) is a minimal right ideal of Mn(D) (for otherwise the
ring elan(D)e11 would be at least a 2x2 matrix ring by virtue of
Theorem 1 and Lemmas 1/2). The same is true for the right ideal
gllmm(E) in the other matrix ring Mm(E). Because of Mn(D) o~ Mm(E)

We obtain immediately (use Corollary 1 together with Lemma 1)

D e EndMn(D)(elan(D)) =~ End Mm(E)) ~E

(e
Mm(E) 11

and hence m = n for dimensional reasons. O
Wedderburn's Main Theorem has some obvious consequences; we

present a short list below:

Theorem 2 . If A s a simple ring then it <8 automatically left Artin-

ian as well as right and left Noetherian as an A-module.
This is now clear from Lemma 3 in §2. O

Theorem 3 . Let A be a simple ring; then the following statements are

equivalent:

(a) A Zs a skew field ;

(b) A has no zero-divisors # 0 ;

(e) A has no idempotents # 0,1 ;

(d) A has no nilpotent elements # 0 .

Proof. Obvious . O
Finally we may state (cf. Theorem 2 in §2.)
Theorem 4 . Any simple ring is in particular a semisimple ring. O

Of course one may prove the last theorem directly - i.e. without making
use of Wedderburn's Main Theorem - since the intersection of all maximal

right ideals is itself a two-sided ideal.

Exercise 1 . Let A be a simple ring and M a (say left) A-module.
Show that M 1is a projective Awmodule (i.e. a direct summand of a free

module) .

Exercise 2 . Let Ai (i=1,..,n) be simple rings; consider the ring
n

é}} Ai =: A (with componentwise addition and multiplication) and show
izl

that A 1is a semisimple ring.



Exercise 3 .

Prove:

if A

is a ring without proper two-sided ideals,

and A has a minimal right ideal & then A is a simple ring.

17
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§ 4 . A SHORT CUT TO TENSOR PRODUCTS

Throughout this paragraph let R be a ring with 1 (not
necessarily 1 #0 ), P,Q,... right R-modules, A,B,... left R-modules
and X,Y,... Z-modules (i.e. abelian groups). A Z-bilinear map
f: P x A » X 1is then called R-balanced if f(pr,a) = f(p,ra) for all
p€ P, rER, a€A.

Definition 1 . Let P,A be as above; a paitr (T,t) with a L-module
T = T(P,A) and an R-balanced I-bilinear map t: P x A » T <s called a
"tensor product (over R )" if the following holds:

given any R-balanced I-bilinear

) xAi»x
f: P x A= X then there exists
exactly one IL-homomorphism l d L
Le: T =X such that f = Lft R

Z.e. the diagram shown commutes.

Lemma 1 . Suppose two tensor products (T,t) and (T',t') exist; then
Ly T T 18 an isomorphism with inmverse mapping L:T' =T, Z.e.
(T',t') = (Lt(T),Lt,t) .

Proof. Using Definition 1 three times, we get t = ith , t = Ltt' , t' =
L+t and therefore t = LL. hence id = LLg for uniqueness
reasons; in the same way one gets idT, = Lt'Lt .o

Lemma 2 . Suppose the tensor product (T,t) exists; then T = <%(P x A$>,

Z.e. T 1Zs generated (as a L-module) by the images under t .

Proof. Denote 1i: <&(P x Ai} - T the inclusion. Using Definition 1 with
= <%(P x Ai> and f=t gives t = L .t and therefore t = it = iL t
On the other hand we have t = ith » hence iLt = id,, for uniqueness

T
reasons. The latter implies the surjectivity of the inclusion i . O

Following Lemmas 1/2 it is reasonable (and customary) to write P @R A
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rather than T = T(P,A) as well as p®a rather than t(p,a) , hence
pr®a = p8ra for all p € P, r € R, a € A . The commutativity of the dia-
gram in Definition 1 means then f(p,a) = Lf(p®a) and Lemma 2 amounts to
the following: given x € P @R A then x = :E:: pieai (finite sum). In
this context we must be very cautious because p®a = pRa' generally does
not imply a = a' (cf. Example 1 further below) !

Hitherto it is not clear whether or not P @R A exists for
any given right R-module P and left R-module A . This question will be

discussed now.

Theorem 1 . Let =: P> Q ( a: A > B ) be a right(left) R-module homo-
R A and Q & B . Then
there exists exactly one I~homomorphism m8a: P B, A> Q8B such that
mRa(p®a) = n(p)Bala)

morphism and assume the existence of both P &

Proof: Define the map f: P x A » Q @R B , (p,a) v n(p)8a(a) . An easy in-

spection shows that f is R-balanced and Z-bilinear. Now m®a := Lf is

the required map. O

Theorem 2 . P & R exists, more precisely: there ig exactly one I-homo-
R = P such that ¢(p®r) = pr for all p € P, r €R

R
and this is an isomorphism with inverse map P - P &, R , p b pRl .

morphism ¢: P @

R
Proof. The map t: Px R—> P , (p,r) b pr is R-balanced and Z-bilinear.
Given now any Z-module X and any R-balanced and Z-bilinear map

f: PxR-» X, defineamap L.: P= X, pr f(p,1) which is clearly a

£
Z-homomorphism such that f£(p,r) = f(pr,1) = Lf(pr) = Lft(p,r) . Moreover,
because of t(P x R) = P , Lf is unique with this property, hence the
pair (P,t) fulfills the requirements for a tensor product according to

Definition 1, and we may take ¢ = L The rest is clear. O

£ -
Theorem 3 . Let (Ai)iEI ( I #N a set of indices) be a family of left

R-modules and suppose that P 8 Ay extsts for every 1 € I . Then

P N ((})A ) exists and there is exactly one isomorphism of IL-modules

iel
pe, (Pa) = Pr e, a,) such that p@Za HZp@a.

i€l i€l

Proof. Define t: Px(@A)—»@(P@ A),(p,Za)»Zpﬁa ;

i€l i€l
t 1is R-balanced and Z-bilinear. Given now any Z—module X and any

R-balanced and Z-bilinear map f: P x (GI)A ) > X , then - if Y de-
i€eT
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notes the j~th canonical injection of Aj into the direct sum - we have
for all j € I the R-balanced and Z-bilinear maps fj: P x Aj - X,
(p,aj)'» f(p,lj(aj)) . Now define Lg: 5%%(P 8 Ai) -+ X, %' ey b

g E Lf.(ci) . By construction we have f = L.t , and Le is unique with
i i

£
this property because of <%(P x (Gi)Aif> {%}(P @R Ai) (use Lemma 2
ier i€I

for every i € I ). Hence the pair ( (P @R Ai),t) fulfills the re-

. i€l e
quirements for a tensor product accorélng to Definition 1 and Lemma 1

furnishes the isomorphism described in the theorem. O
As an immediate consequence of Theorems 2/3 we obtain

Corollary 1 . If F <s a free left R-module then P e F exists. O
Theorem 4 . Let A s B - C — 0 be an exact sequence of left

R-modules and assume the existence of P &, A and P &, B . Then

R R
P & C exists, and we have the exact sequence of L-modules
P@RA—l—‘ig’—“-»P@RB—i@B—»P@Rc — o0,

Z.e. "®" commutes with "Coker'" .

Corollary 2 . P &, A qlways exists .

R
Proof. The corollary is clear, since for given A there are always two
free left R-modules FO’ F1 such that the sequence Fl - Fo - A0 is
exact. Hence we get our assertion from Theorem 4 together with

Corollary 2. Let us now give a proof of the theorem: set

T := Coker idp@a = P @ B / 1d 8a(P €y A) ;

denote z the elements in T , z € P @RB being a representative of such
a class. Define

t: Px C=-»T, (p,c) » p®b where b € B is such that

8(b) = c .
t is well-defined, for if B(b) = ¢ = B(b') then b' - Db = a(a) for
some a € A , hence p&b' = p8b + idP@u(p@a) . Moreover our construction

yields T = <&(P x CX} (apply Lemma 2 to P QR B ). Now let X be any
Z-module and f: P x C » X any R-balanced and Z-bilinear map, then the
assignment (p,b) » f(p,B(b)) defines an R-balanced and Z-bilinear map
g: P x B> X . Now define

Lf:T»X,‘z‘n-»Lg(z) (Z€T,ie. z€P8 B).

L. is well-defined, for if z

P =2' then z' -2z = idPQa(y) for some
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R
=L(2) L (id8a(3> p.8a;)) = L (2) Lg(:§:: pi8a(a;)) = L (2) +

+ f(pi,Ba(ai)) = L (z) . Summarizing we have

y€P8A . Lemma 2 gives y = E p;%a. (finite sum) , hence Lg(z') =

Lft(p,c) = Lf(peb) = Lg(p@b) = £(p,8(b)) = f(p,c) ,

ie. £ = Lft and Lg is unique with this property (use Lemma 2). Hence,

thanks to Lemma 1, T = P 8, C and id,@8(p€b) = p8B(b) = t(p,B(b)) =

=P8b , i.e. themap z >z is the same as id @8 . O
Example 1 . call Mb the multiplication by b , and consider the exact
sequence

0 — 7 —207 — 72/37 — 0

of Z-modules. Thanks to Theorem 4 the upper horizontal sequence of the

diagram below is also exact:
ideM,
Z/al sz 1l —— Z/al 8, 17— 7/al @Z /bl —— 0

P

1/aZ b 7/al 7/(a,p)l —— 0

Moreover the square to the left is commutative, the vertical maps being the

isomorphisms from Theorem 2. Finally the lower horizontal sequence is

exact as is well-known from Elementary Number Theory (of course (a,b)
denotes the greatest common divisor of a and b ). Therefore we have
an isomorphism

2/al 8, Z/vZ =~ Z/(a,b)L
in particular Z/aZ @Z Z/bZ = {0} provided a and b are coprime !

In the language of categories and functors (which in principle
we shall not assume to be known in these lectures) one may state the re-

sults which we have achieved so far as follows:

Theorem 5 . The assigmment A+ P 8_ A (resp. Pw P @R A ) for fixed

R
P (resp. A ) defines a covariant and right exact functor from the cate-

gory of left (resp. right) R-modules into the category of I-modules. O

If the above functor is exact, i.e. (e.g. in the first case) if for all

exact sequences 0 — A —2. B of left R-modules the associated sequence
0 ——P GR A —iégg» P QR B remains exact , then we call P a flat

right R-module; flat left R-modules are defined accordingly. By virtue of

Theorems 2/3 we get immediately

Theorem 6 . Any free module (e.g. a vector space over a (skew) field) <s
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a flat module. O

Definition 2 . Let M be a left R-module as well as a right S-module.
If we have r(ms) = (rm)s for all » € R, m € M, s € S , then we call M
an (R-S)-bimodule (in short an R-bimodule in case R =S ) .

Lemma 3 . Let A be a right R-module, M an (R-S)-bimodule and P a
left S-module. Then A & M (resp. M &, P ) may be given the structure
of a right S-module (resp. left R-module) such that (a@m)s = a®ms (resp.
r(m@p) = rm®p ) ( a €A, rER, mE M, s €S, p€P ). In this sense

there is exactly one IL-isomorphism
(A N M) &, P =~ A8 (M & P) such that (a8m)®p » a®(mp) .

Proof. Consider for every s € S the right "multiplication” /RS: M-> M,
m+> ms ; this gives a ring antihomomorphism f: S - Endz(A @R M) , sw
idAGRS . Now define =xs := f(s)(x) ( x € A @R M ); this endows A ®R M
with the structure of a right S-module as claimed. A similar procedure
leads to the left R-module structure of M @S P . Now consider, for fixed
p € P, the Z-bilinear map hp: AxM-=A @R (M ®S ?) , (a,m) +» a®(m@p) .
This map is R-balanced (c¢f. the first part of this lemma), and therefore
it induces a Z-homomorphism fp: A @R M- A @R (M @S P) which is uniquely
determined by the property a®m b a®(m®p) ; therefore we may define a map
f: (A QR M) x P> A @R (M @S P) , (x,p) = fp(x) which is easily seen to
be S-balanced and Z-bilinear. Consequently we have exactly one Z-homomor-
phism Lf: (A @R M) @S P-A ®R (M @S P) such that (a®m)®p r a®(mép) .
In the same way one establishes the inverse map, hence Le is the iso-
morphism we were looking for. o

Now let us make further investigations in the special (but
highly important) case where R is a commutative ring; of course, in this
case we do not need to distinguish between right and left R-modules for we
have R-bimodules such that rx = xr ( r € R ) which we shall call (as

usual) R-modules.

Theorem 7 . Let R be commutative and P,A R-modules; then

(4) P&, A may be given the structure of an R-module such that
r(p®a) = rp®a = pr®a = plra = plar = (pRa)r ( r € R, p € P,
a€A), Z.e. t:(p,a)w pRa <s R-bilinear ;

(B) Zf in Definition 1 the Z-module X <s even an R-module and if

f <s R-bilinear, then L. <8 an R-module homomorphism;

£
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(c) in the situation of Theorem 1 w8a <s an R-module homo-

morphism .

Proof. (A) follows from the first part of Lemma 3. (B) and (C) follow by

inspection. @

Lemma 4 . Let R be commutative, then there is exactly one isomorphism

of R=modules A 8, BB & A such that a®b i+ ba .

Proof. Consider the R-bilinear map f: A x B -» B @R A , (a,b) » b®a . Then
Theorem 7 implies the existence of an R-module homomorphism Lf: A GR B>
-+ B QR A which is uniquely determined by the property afb + b®a . Inter-
changing the roles of A and B gives the inverse map, hence Lf is the
claimed isomorphism. O

Another (rather obvious) consequence of our investigations is

Lemma 5 . Let R be commutative and F s F free R=modules of rank m

and n . Then F 8 Fn 18 a free R-module of rank mm . O

An important feature of the case of a commutative ring R is

the possibility to define a tensor product of more than two modules.

Definition 3 . Let R be commutative and MysensM ( n>2) R-modules.
Define

2 n n
QM = My 8 M, and inductively @Mj = M 8 (@Mj)
J=1 j=1 3=2
for n> 2 ; in case M= Moo= M write w&® i place of
& @1 €0
®M. with the additional conventions M~ := M and M := R .
sl
Theorem 8 . Let R be a commutative ring, Ml""Mn ( n>2 ) R-modules,
n
T := ®M. (according to Definition 3) , and t: M, x .. x M =T,
= 3 1 n

(ml,..,mn) [ mle(mQQ..Gmn) =i my

R-multilinear, and the pair (T,t) has the following property:

@..@mn . Then T <8 an R-module, t s

given any R-multilinear map £
f:Mlx..an*X then there Mlx"xM_;:X
exists exactly one R-module t l //Lf
homomorphism Let T X such T/

that £ = Let t.e. the dia-

gram shown commutes.
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Proof. The first two assertions follow from Theorem 7. As for the univer-
sal property of the pair (T,t) we proceed by induction on n , the case

n = 2 being clear. Therefore let n > 2 and fix m€ M then the map

1 s
fm: M2 x ., x Mn — X, (m2,..,mn)'» f(m,m2,..,mn) is R-multilinear and

hence (by the induction hypothesis) there is exactly one R-homomorphism
CEQM - X such that L (m @..em ) = f(m,m s oM ). Now consider the

-blllnear map g: M X (CEDM ) > X, (my)»» L (y) which furnishes
3=
exactly one R-module homomorphlsm Lg: T » X such that Lg(m@y) =

glm,y) = Lm(y) » in particular Lg(ml@(m2®..®mn)) = Lml(m2®"®mn) =

]

. . = . 0
f(ml, ,mn) Thus we can take Le Lg

Exercise 1 . Show that Lemmata 1/2 and Theorem 1 hold mutatis mutandis in

case of the n-fold tensor product according to Definition 3

Exercise 2 . Let R be a commutative ring , a,b ideals of R and M
an R-module. Show R/a 8, M = M/aM and R/a & R/b =~ R/(a+b) (cf.
Example 1).
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§ 5 . TENSOR PRODUCTS AND ALGEBRAS

Let R be a commutative ring, A a ring (both with 1 # 0 )
and iA: R > Z(A) € A a ring homomorphism. As usual we call A an
R-algebra and write ra instead of iA(r)a (r€R, a€A). Aring
homomorphism f: A -+ B 1is then called

. R
an R-algebra homomorphism if iB = fiA . :Ey// \\hi‘
£

i.e. if the diagram shown commutes. A ~———— B

Theorem 1 . Let A,B be R-algebras; then A ®_ B may be given in a

R
unique way the structure of an R-algebra with unit element 181 such that

(a8b)(a'®b') = aa'®bb' ( a,a' € Ay b,b' € B ) .

Proof. First the R-bilinear map (a,a') » aa' gives an R-module homo-
morphism a: A QR A - A such that a(a®a') = aa' ; in the same way we
obtain B: B &, B - B . On the other hand we have exactly one R-module

R
isomorphism h: (A & B) & (A N B) =~ (A & A) & (B QR B) such that
(agb)®(a'®b’') » (a®a')®(beb') ; this follows by repeated use of Lemmata
R B by
xy := a®B8(h(x8y)) ( %,y € A 8, B )

this multiplication is obviously distributive and inspection shows that

3/% in §u4. Now define a multiplication on A ®

it has all the asserted properties. O
The algebras A QR B have an important feature:

Theorem 2 . Let A,B,C be R-algebras and f: A= C , g: B> C R-algebra
homomorphisms such that £(a)g(b) =

= g(b)f(a) for all a € A, b €B , agl A @R B 1&b
then there exists exactly one R-algebra a“/” ///7
homomorphism h: A ©, B> C such that A ; h B
h(a®l) = f(a) and h(18b) = g(b) for \ J'//

. . N g
all a €A, b €B, Z.e. the diagram ¢

shown is commutative.
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Proof. Consider the R<bilinear map ¢: A x B~» C , (a,b) » f(a)g(b) , then
— thanks to f(a)g(b) = g(b)f(a) =~ the R-module homomorphism h := L¢:
A ®R B » C such that h(a®b) = f(a)g(b) is even an R-algebra homomor-
phism (check by inspection) and has all the required properties. O

Lemma 1 . Let P be an R-module, A an R-algebra. Then P 8 A may be
given in a unique way the structure of a left A-module such that

a'(p®a) = p®a'a ( a',a € A; p'€ P }. Moreover,if A <8 commutative and

P an R-algebra, then P 8, A 18 even an A-algebra.

Proof. Let La: A - A be the left multiplication by a € A . Theorem 7
(C) in §4. then gives a homomorphism of rings
h: A~ EndR(P @R A) , ap 1dP®La

Hence the definition ax := h(a)(x) ( x € P®, A ) endows P @R A with

R
the structure of a left A-module in the required way, uniqueness being im-

plied by Lemma 2 in §4. The rest is clear. O

Lemma 2 . Let P be an R-module, A a commutative R-algebra and B an
A~algebra. Then there is exactly one isomorphism of left B-modules

(p €. A) ® B =P @ B such that (p®a)&b » pRab . Moreover, if B 1s
commutative and P an R-algebra, then the above tsomorphism is even an

i8omorphism of B-~algebras.

Proof. Consider, for fixed b € B , the R-bilinear map fb: Px A=
- P QR B, (p,a) » pB®ab ; Theorem 7 in §4. then gives an R-module homomor-

phism L.: P®, 6 A - P ®, B such that p®a + pRab and thus an A-bilinear

bt R R
map f: (P & A) x B» P ®:

A=module homomorphism Lg: (P @R A) QA B-P @R B such that Lf((pGa)@b)

B, (x,b) » Lb(x) . Again this gives an

= Lb(p®a) = fb(p,a) = péab , L being unique with this property because

of Lemma 2 in §4. Inspection shows that L. is even a homomorphism of

£
left B-modules (in the sense of Lemma 1) and B-algebras (provided P is

an R-algebra). It remains to be shown that L is bijective; indeed, the

£
R-bilinear map g: P x B » (P @R A) @A B , (p,b) » (p81)8b gives us via
Theorem 7 in §4. an R-module homomorphism Lg: P @R B - (P @R A) ®A B

which is easily seen to be the inverse of Lf . o

Lemma 3 . Let A,B be R-modules and C a commutative R-algebra. Then
there 18 exactly one isomorphism of C-modules (A & c) €. (B & C) =
=~ (A @R B) &R C such that (a®c)®(bBc') +» (a®b)Bcc' . Moreover, if A,B
are R-algebras, then the above isomorphism is even an tsomorphism of

C-algebras.
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Proof. By Lemmas 1/2 in connection with Lemma 3 in §4. we have unigue
R-module isomorphisms (A & C) 8. (B @R C) = A &R (B 8, C ) =

= (A &R B) @R C such that (a8c)@(b8c') - a®(bRec') » (a®b)Bec' . These
are even C-module isomorphisms and C-algebra isomorphisms (provided A,B

are R-algebras) as is easily seen by inspection. D

Theorem 3 . Let P be an R-module, A an R-algebra, X a left A-module
and f£: P -» X an R-module homomorphism. Then there exists exactly one

R A= X (the so-called "left A-linear
extenstion of f£'") such that p8a = af(p) . If in addition to the above

left A-module homomorphism f,: P8

assumptions P,X are R-algebras and if £ <is then an R-algebra homomor—
phism, then fA <8 also an R-algebra homomorphism and even an A-algebra
homomorphism provided A <s commutative and X <s an A-algebra.

Proof. Consider the R-bilinear map g: P x A » X , (p,a) » af(p) and take
fA 1= Lg . Then (see Lemma 1) fA(a'(pea)) = Lg(p@a'a) = a'af(p) =

= a'Lg(p@a) = a'fA(an) . All the rest is clear after a short calculation.Q

An important application of the above theorem is

Lemma 4 . Let A be an R-algebra and 73: Mn(R) - Mn(A) the canonical
map tnduced by iA: R=> A, rwrl . Then the left A-linear extension

jA: M (R) & A - M (A) <s an isomorphism of R-algebras and left A-modules
(and A-algebras provided A is commutative).

Proof. Mn(R) is a free R module with basis {eij} (see §2.), hence - by
Theorem 3 in §4 in connection with Lemma 1 - Mn(R) QR A 1is a free left
A-module with basis {eijel} , this basis being mapped onto the basis
{eij} of the left A-module M (A) . Hence
The rest is clear after a quick inspection. O

jA must be an isomorphism.

Corollary 1 . Mn(R) & Mm(R) o~ Mn(Mm(R)) = Mnm(R) .o

Now we want to use the results hitherto described in order to
investigate the tensor product of two simple rings (in the sense of §§2/3.)
over a suitable common subring. For this purpose we need some more pre-

paration.

Definition 1 . ILet A be a ring; define the "inverse" (or "opposite')
ring A°P to be the additive group A equipped with the new multipli-
cation """ such that a-b := ba (the latter being understood in the old
sense).

In this context the following can be observed without any difficulties:
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(1) (4P = a5
(2) A%’ = A if and only if A is commutative ;
(3) 2(a°P) = z(A) ;
f: AP 5B isa ring homomorphism if and only if f: A - B
() is a ring antihomomorphism ;
ac A is a left(right) ideal if and only a & A% is a right
() ideal j
(6) A is a simple ring if and only AP is a simple ring ;
(7) A is an R-algebra if and only AP is an R-algebra ;
(8) (a & B)°P ~ a°P 8 B°P for R-algebras 4,B ;

av at (= transpose of @ ) gives an isomorphism of R-algebras
(9) op °p
Mn(A) =M n(A )

Lemma 5 . Let A,B be R-algebras and f: A - B an R-algebra homomor-
phism. Then there exists exactly ome R-algebra homomorphism
. op -
Qi A8 BT o EndR(B) such that Qf(aeb) = Lf(a)Kb s

LX and Rx being the left and right multiplication by % on B .
Proof. Consider the R-algebra homomorphisms A - EndR(B) , ar Lf(a)

op . _ .
and B F - EndR(B) , bt Rb with Lf(a)Rb = Rb"f(a) (this amounts to the

the associative 1law in B ); now use Theorem 2 and set Qf :=h .0

Definition 2 . If in Lemma 5 we have A = B and f = idA then the ele-
ments in Q.4 (A @ 2Py < Endp(R) are called "analytic R-linear maps

R
of A". A

Hence f € EndR(A) is analytic R-linear if and only if
- \] " LI ¥ ] 1
(10) f(x) = E ajxal for a finite number of suitable al»ay €A,

Artin-Whaples Theorem . Let A be a K-algebra without proper two-stded

ideals, K := Z(A) a (commutative) field, ajsesd € A linearly inde-

pendent over X and bys..sb € A arbitrary. Then there exists an
analytic K-linear map £ such that f(ar) = br (r=1,..,n).

Proof. First we observe that it clearly suffices to prove this theorem in
the special case bl = .. = bn-l = 0 and bn = 1 . Now let us proceed by

induction on n : the case n = 1 is trivial, since then AalA is a

e - = 1] " ] "
two-sided ideal # {0} of A , hence l E aza,an for some al,al €
€ A . Now the case n > 1 : by induction hypothesis we may select analy-

.»F such that
n

tic K-linear maps f -1

1°°
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1 i=7
f.(a.) = if (1<i,j<n}.
10 i# 7
The values fi(an) are then unknown. Let us first consider the case where
fm(an) ¢ 7(A) for some index m ( 1 £m<n); choose a € A such that
0 = - = - .
£b fm(an)a afm(an) € A and set g(x) fm(x)a afm(x) (x € A);
now choose an analytic K-linear map h such that h(b) =1 (cf. the

case n =1 ). Then f := hg is analytic K-linear and by construction we

have f(al) = o= f(an_l) = h(0) = 0 and f(an) = h(b) = 1. Now con-
sider the remaining case where fi(an) € Z(A) = K for all i =1,..,n-1.
n-1

Define g(x) := x - E fi(x)ai with b := g(an) # 0, for otherwise the
i=1

Ay5ee5dy would be linearly dependent over K . Now define h and f as
in the previous subcase; again f is analytic K-linear and according to

our requirements. O

Corollary 2 . Let A be a finite dimensional X-algebra without proper
two-sided ideals, Z(A) =: K a field and n := |A:K| , then there is
a K-algebra isomorphism A 8, AP Mn(K) .

Proof. The Artin-Whaples Theorem says then that the map Qid from Defi-
nition 2 is surjective. After identifying EndK(A) with MneK) Wwe see

that Qid must also be injective for dimensional reasons. O
A

An algebra A as in Corollary 2 is of course a simple ring and consequent-
ly Z(A) is automatically a field (see §3.). Conversely, every simple
ring which is a finite dimensional algebra over its centre is necessarily

an algebra of the type discussed in Corollary 2.

Definition 3 . 4 simple ring A with finite |A:2(A)| s called a
- Meentral stmple K-algebra' ( X := Z(A) ). If a central simple K-algebra
18 a skew field then we call it a "K-skew field".

In what follows now we shall make use of the following facts: if K is a
commutative fZeld and if A,B are K-algebras, then (see Theorem 6 in §4.)
we have injective K-algebra homomorphisms A —>A OK BeB , ar»al®l and
18b «+h , hence we may - and henceforth shall - view A and B as en-

bedded in A &K B . In this sense we have:

Theorem 4 . Let A,B be K-algebras, K = Z(A) a field and A without
" B be a two-sided ideal, b :=

iz ¢ N B (see remarks above), then ¢ = A 8 b .

proper two-sided ideals. Let ¢ S A ®
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Proof. ">" is clear; conversely let ¢ 3 c¢ = E aj®bj (finite sum) 3 we
may restrict ourselves to the case where the a are linearly independent
over K . Now use the Artin-Whaples Theorem and choose fi such that
1 i=13
f.(a.) = if .
SR B i# 3
It follows fiﬁldB(c) = Ej fi(aj)ebj = l@bi €cNB=b forall i (cf.

the explicit form of fi as shown in (10) ).oO

Corollary 3 . Let A,B be K-algebras over a field X := Z(A) € Z(B) ;
then A e B has no proper two-sided ideals if and only A and B have
no proper two-sided ideals .

Proof. If (say) a 1is a two-sided ideal of A then a & B is such an

ideal in A @K B . The converse implication is then clear from Theorem 4.0

Before we close this paragraph we need to make a few remarks
concerning left Artinian R-modules (of course, a similar remark holds for

right modules).

Lemma 6 . Let R be a (not necessarily commutative) ring, M,N left
R-modules and £: M > N a left R-module homomorphism. Then M is left
Artinian if and only if Ker £ and Im £ are left Artinian.

Corollary 4 . Let M,N be left R-modules; then M @ N <s Artinian if and
only 1f M and N are Artinian.

Proof. The corollary follows from the lemma using the projection onto one
factor. Now the proof of the lemma: first we observe that Ker f and
Im £ are clearly Artinian provided M is. As for the converse we note

that any chain M2 M, 2 M2 > ... of submodules of M gives us two

1

such chains Im £ 2 f(Ml) 2> f(M2) 2 ... and Ker £> Mi 2 Mé D ... where
[ - 3 = t = M

Mr- = M N Ker £ . By assumption we get f(Mr) f(Mn) and M7 Mn

for all r >n for some n . Now let x € Mn , hence f(x) € f(Mn) c

cf(M) ,ie. x=y+2€M + M cM +M =M forall r>n . The

= r r n—= r T r =

latter amounts to Mr = Mn for all these r . O

Theorem 5 . Let A,B be K-algebras, X = Z(A) € Z(B) a field and either
|a:x] or |B:K| finite; then A ®
and B are simple rings.

K B 8 a simple ring if and only A

Proof. Thanks to Corollary 3 we only have to show: A @K B 1is a left

Artinian (A @K B)-module if and only if A (resp. B) are left Artinian
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A-(resp. B-)modules. Here the "only if" is obvious (and holds even without
the finiteness assumptions) since a strictly decreasing infinite sequence
of right ideals a, of (say) A would give us an infinite such sequence
a GKAB of A &K.B . As for the converse we note A @K_B = €£)A (finite
sum) as a left A-module (provided (say) |B:K| is finite); this follows
from Theorem 3 in §4. together with Lemma 1. Therefore by Corollary 4
A® B is a left Artinian A-module hence even more so a left Artinian

(a @K_B)—module. o

Now we want to show that the finiteness condition in the previous theorem

is not superfluous.

Theorem 6 . Let A be a K-algebra without proper two-sided ideals, K =
= 2(A) a field; then A 8 A°P  is q simple ring if and only if |A:K|
s finite (Z.e. A is a central simple K-algebra).

Proof. The "if" has already been proved in Corollary 2 (in connection with
Theorem 1 in §2.). Conversely assume |A:K] being infinite and select a
sequence a;,a,sd55.-- € A of K-linearly independet elements in A . Now

define
f analytic K-linear }

an = { f € BndK(A) f(al) =z .. = f(an) =0

Clearly we have an bl an+l and the Artin-Whaples Theorem implies even

a, fa (n€N) ; on the other hand a is a left ideal in

n+l
Q.. (A ® A°P) (cf. Definition 2). But Q, is injective thanks to
1dA K 1dA
Corollary 3 (the kernel is a two-sided ideal), hence A © a%?  is not

K
left Artinian and therefore cannot be a simple ring. O

We close this paragraph with an important remark.

Theorem 7 . Let A be a central simple K-algebra, then |A:K| <& a
square.

Corollary 5 . Let D be a skew field, then |D:Z(D)| <is either infinite
or a square.

Proof. Let K be an algebraically closed field containing K and con-

sider the K-algebra A @, K with finite |A 9 K:K| = |A:K] (cf. Theorem

K
3 (§%.) and Lemma 1). By Theorem 5 A @K'K is a simple ring, hence

K‘K o Mn(D) for some skew field
D such that K< z(D) €D and |D:'l'<'] is finite. It follows D = X and

this means [A:K]| = 0 .o

Wedderburn's Main Theorem (§3.) gives A ®



Exercise 1 . Let K bhe a field and L = K(0) an extension field
generated by an element © with minimal polynomial f over K . If F/K
 F = FITI/(£)
and deduce that L ®, 6 F is a semisimple ring provided L/K is a

K
separable extension (cf. Exercise 2 in §3.).

is any (not necessarily finite) extension, show that L &

Exercise 2 . Let R be a commutative ring and M an R-module. Consider
the R-module -
_ fn
T (M) = P o

n=0
and show that it can be endowed with the structure of an R-algebra such
that the following holds: there is an R-module homomorphism t: M - TR(M)
such that to any given R-module homomorphism f£: M -+ A into an R-algebra
£ TR(M) > A ful-

filling f = Lft . TR(M) is called the "tensor algebra of M over R ",

A there exist exactly one R-algebra homomorphism L
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§ 6 . TENSOR PRODUCTS AND GALOIS THEORY

Classical Galois Theory (which we assume to be known to the

reader)is founded on two basic results:

Dedekind's Lemma . Let G be a group, K a field and £ 60 K*
(i=1,..,n) distinet group homomorphisms. Then

n
E f(g)x, =0 forall g€ G with x_€ K
=t + ¢ &

1 . = %, =0 .

implies x
Artin's Lemma . Let G be a group of automorphisms of a field L and
K := Fix (G) ¢s fimed field, then |L:K| = |G| whenever either side is
finite.
For proofs of these two results cf. e.g. vol. 2 of P.M. Cohn [1974/77]. o

Now let us draw the usual conclusions therefrom concerning

Galots Cohomology. We start with a few preparatory remarks.

In what follows let T be a group (written multiplicatively,
not necessarily finite, though finite in all of our applications) and M
a left T-module - i.e. a Z-module (usually written additively, although
written multiplicatively in many of our applications) where m is de-
fined for all o € ', m € M such that lm =m, 0(Tm) = %Tn and

“n + m (ot€T; mm' €M)~ 3 if M,N are left I'-mo-

Ym+m') =
dules and f: M > N a Z-module homomorphism, then f is called a left
T-module homomorphism if £(°m) = “f(m) for all o €T and m € M . As
usual we call MF = {meEM| “m=m forall g €T} the fixed module
of M ; it is the largest submodule of M on which T acts trivially.

If T is a finite group then

NF: M>M ,ne~ E %
o€l

is a left T-module homomorphism called the norm.
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Definition 1 . Let T be a finite group and M a left T-module, then
HO(P,M) 1= MP/NP(M) 18 called the " 0-th Cohomology Group of M ".

Example 1 . Let L/K be finite Galois, T := Gal(L/K) , then L* and

LY are r-modules by virtue of the definition % = o(x) (o€ T,
x € L ). Thanks to Galois Theory we have L*P = K* and L+P = k¥ as well
as NF = NL/K and NF = TrL/K , hence

HO(F,L*) = K*/NL/K(L*) is the norm restidue class group.
Moreover,

0 o +y
1) H'(r,L7) = K /TPL/K(L )y = {0} .

Indeed, thanks to the K-linearity of the trace, it suffices to find an

element x € L such that Tr,, (x) # 0 ; however, the existence of such

L/K
an x 1is obvious from Dedekind's Lemma (take {fi} =T and G = L* ).

Now let M be a left I'-module, then
Cl(F,M) = { x: T»M | x(1) = 0 & x(ot) = x(a) + %%(1) }

. . . 1 .
is called the set of l-cocycles (of T with values in M ). CT carries
the structure of a Z-module (by pointwise definition of the (say) addi-

tion) and an easy calculation shows that the l-coboundaries
Bl(F,M) iz {x: T->M | (o) = %m - m for some m € M }

form a Z-submodule of Cl . Note that in more old-fashioned terminology
Cl resp. Bt is called the group of cerossed homomorphisms resp. princi-

pal crossed homomorphisms (from T into M ).

Definition 2 . Let T be a group and M a left T-module, then
Hl(F,M) = Cl(F,M)/Bl(P,M) 18 called the " lst Cohomology Group of M " .

The following results are classical and of great importance later in these

Jectures.
Noether's Equations . In the situation of Example 1 above we have
g (r,1%) = (1} .

Proof. Let x € Cl(F,L*) be given and use Dedekind's Lemma (take {fi} =
=T and G = L* ) in order to find an a € L* such that b := E x(c)ca

o€T
# O . Consequently we find

B =S )V = ST x(0) (1) = x(0)b
og{ g€er
hence - if m := b ~ € L* -
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2(1) = T forall t€T s l.e. x € Bl(r,L*) . B
As a consequence of the previous result we get the (much older)

Hilbert's "Satz 90" . Let L/K be cyclic with generating automorphism

g, then any = € L such that N

.o -1
X = mm .

L/KfX) = 1 <8 necessarily of the form

Proof. Denote T := Gal(L/K) = {o) define a l-cocycle by x(ah) :=
i-1 j

= Tx (note that in view of NL K(x) = 1 this is really a reasonable

: /

3=0
definition of a cocyecle in Cl(P,L*) ) and use Noether's Equations: this
gives immediately x = x(g) = “m . o

Both Noether's Equations and Hilbert's "Satz 90" (which happened to be
Theorem 90 in D, Hilbert's famous report Die Theorie der algebratischen

Zahlkdrper published in 1897) have an additive counterpart, namely:
Lemma 1 . In the situation of Example 1 we have
wh(r,th = (o .

Corollary 1 . Let L/K be cycliec with generating automorphism o , then

any x € L such that Tr, , . (x) = 0 <s necessarily of the form

" a L/K
X="m-~m.

Proof. We just copy the proof of the two preceding results mutatis mutan-—
dis: first let x € Cl(F,L+) be given, choose (using (1)) an element

_ R - o .
a € L such that TrL/K(a) = 1 and define b : E x(o) a . Again one

finds ofT

T

b=3S "x(0) % = %‘f (x(10) - x(tN™a = b - x(1) ,

€T
hence - if m := -b € L -

%(1) = m-m forall T €T , i.e. x € Bl(F,L+)
For the proof of the corollary denote T := Gal(L/K) = <§> and define a
l-cocycle just like in the proof of Hilbert's "Satz 90" (but with 'fE:T
in place of "| |"); by the lemma this cocycle is a coboundary and so we

[+
may conclude x = m-m . O

Hitherto we have not dealt with tensor products although they
appear in the heading of this paragraph.

Definition 3 . Let L/K be finite Galois, T := Gal(L/K) and V a (not
necessarily finite dimensional) vector space over L which is also a left



36

T-module; then we shall call V an " L/K—Galots module " if
(2) “%v) = %% forall c€T ,x€L ,vE€V .
A straightforward calculation shows

Lemma 2 . Let L/K be finite Galots, T := Gal(L/K) and V a vector
space over X , then V & L (with left T-module structure via idy8c )
is an L/K-Galots module. Moreover, if two L/K-Galois modules V,W are gi-
ven, then V ®L
L/K-Galots module. 0

W (with left T'-module structure via o®c ) is also an

Now we are prepared for the statement and proof of

Theorem 1 . Let V be an L/K=Galois module. Then the following holds:
(1) Vi oisa K-space such that wh =V and if Uc Vi s any
K-subspace such that LU =V , then U = Vr ; moreover the
L-linear extension (cf. Theorem 3 in §5.) of the embedding

vyl S V s an isomorphism v 8 L~V of L-spaces and left

T<modules.
(IT) HO(T,v) = {0} , Zee. V' = NLCT)
(I1I) If W ig a further L/X-Galoils module, then there is exactly

one isomorphism of K-spaces VP & W 4 & w)r such that

v@Kw (24 v@Lw .

Corollary 2 . In the situation of Theorem 1 we have
dimK(Vr) = dimL(V) whenever either side is finite.

Proof. The corollary follows from (I) by Theorem 3 in §4. As for the proof
of the theorem we begin by observing that VF and NI,(V) are obviously
K~-spaces. Now suppose LNI,(V) £ V , then there would exist an L-linear
form f: V=L such that f # 0 but f(Nr(V)) = {0} . Choose v €V
such that f£(v) # 0 ; it follows

- _ 0. 0.\ _ g
0= f(Nr(xv)) = f(E X V) = E
o€r o€l
contradicting Dedekind's Lemma (take {fi} =T and G = L* ). Therefore
y = LNI,(V) c LVr < V , hence LNI,(V) =V = LVr , in particular we get (II)

xf(ov) for all x € L* |

as soon as we have finished the proof of (I). Now consider the embedding
i: Uc—s» V , then (because of our assumption LU = V ) the L-linear ex-

tension iL: U 81( L - V (which is such that u@x + xu ) is surjective.
We want to show its injectivity: for this purpose let y € U oK L be
m
given; we write y = E v.®x. with some m and may assume the elements
j=1
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vj to be K-linear independent. Now assume iL(y) = 0 ; we must show y =

= 0 . Thanks to NF(L) € K (actually we know even "=" from (1)) we obtain
m
- . - %
0= Nr(le(y)) = ;il (Nr(xxj))vj for all x € L* , hence
0= N (xx.) = %%, forall x €L*¥ (1<j<m),
= o€T J -7
therefore - using Dedekind's Lemma m times - x. = 0 for all j , i.e.

y = 0 and consequently U ®, L=V . Now let v € Vr be given; because

K
of LU =V we may find elements x, € L and K-linearly independent ele-

ments u., € U such that (for some m )
m m
X.,u, =V = 9% = E cx.u. for all o€T ,
=1 33 5=1 33

hence xj € FixL(F) =K forall j , i.e. v€U and thus U = Vr

. This
proves (I). It remains to prove (III): first we note that the map
g: Vr x Wr -V @L W, (v,w) VOL

there is exactly one K-homomorphism Lg: Vr OK wr -V oL W such that

T T
VOle* v@Lw . Now let {vi}ieI resp. {wj}j€J be bas?s of I‘V resp. W
Then (cf. §u.) {vieij} is a K-basis of the space V OK W , on the
other hand {viOij} is an L-basis of V & W (cf. again §4. together

- r
ij = Lg(vioij) € (v QL W) are
even more so K-linearly independent which amounts to the injectivity of

L, - Finally we observe Lg(vr 8 W) c (Ve W and LLg(vr o W)=V

w is obviously K-bilinear; consequently

with (I) above), hence the elements vie

K
(cf. the argument involving the bases which proved the injectivity), hence

r r. _ r
Lg(V' 8 W) = (Ve W) by (I) .o

Definition 4 . Let L/K be finite Galois, T := Gal({L/K) and A an
L-algebra which ig also a left T-module; then we shall call A an
" L/K-Galots algebra " if

(3) 9aa') = %% for all o €T ; a,a' € A .

Since (3) implies (2) we see that an L/K-Galois algebra is in particular
an L/K-Galois module. (3) means that the Galois group I can be viewed

(by prolongation) as a group of K-algebra automorphisms of the L-algebra
given. The following result is an almost obvious supplement to Theorem 1 :
Theorem 2 . If in Theorem 1 V and W are even L/K-Galois algebras, then
v oand Wl are K-algebras and the isomorphisms of (I) resp. (III) are
L-algebra resp. K-algebra isomorphisme. ©

Exercise 1 . Let I = {o) be a finite cyclic group and M a left T'-module.
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Show HL(T,M) & Ker N -m [meEm)

Exercise 2 . Let 0 — M £ N—£+ P—— 0 be an exact sequence of I'-
modules and I'-module homomorphisms. Show that there is a Z-homomorphism
R Pr-’ Hl(I‘,M) such that there is an exact sequence of Z-modules and Z-
homomorphisms (here fl resp. gl are induced by f resp. g in the

evident way) 1 1
0 — il =5 §F—&4 2, yler,my -5 wler,n —&s whr,p)
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§ 7 . SKOLEM-NOETHER THEOREM AND CENTRALIZER THEOREM

In this paragraph we want to establish two substantial results.

We start with

Definition 1 . Let R be a commutative ring, A,B R-algebras, f: A =+ B
an R-algebra homomorphism and § £ A& 8°P - EndR(B) according to Lemma
5 in §5., then we denote by B g our R-algebra B viewed as a left

(a8 BP)-module via xb := 2.(x)(b) (x €A @, B°P ., pez).

Recall from Lemma 5 in §5. that the above definition gives in particular

(a'@b')b = f(a')bb' ( a' € A ; b,b' € B ) . The following is crucial:

Theorem 1 . Let A,B be R-algebras and £,g: A - B R-algebra homomor-
phisms, then there is a left (A &
and only if there exists a unit b € B¥ such that

g(a) = bf(a)b™' for all a €4,
Z.e. if and only if £ and g differ by an inner automorphism of B
OP)_

BP)-module isomorphism B £ Bg if

Proof, "only if": call ¢: Bf - Bg the given isomorphism of (A @R B
modules; set b := ¢(1) , then ¢(x) = ¢(Qf(l@x)(l)) = Qg(l@x)(¢(1)) =
= bx for all x € B . since ¢ is an isomorphism necessarily b € B*.
Finally bf(a) = ¢(f(a)) = ¢(Qf(a@l)(l)) = ﬂg(a@l)(¢(1)) = g(a)b for all
a € A, "if": given b € B*, define ¢: Bf -~ Bg s X & bx ; obviously ¢ is
then a Z-module isomorphism. Going through the above calculations back-

wards shows that ¢ is even an isomorphism of (A © B°P)-modules. O

R
Skolem-Noether Theorem . Let A,B be simple rings, K := Z(B) < Z(A)

and |A:x| finite. If f,g: A > B are K-algebra homomorphisms, then there
exists a unit b € B* such that g(a) = bf(a)b > for all a € A .

Corollary 1 . Let A be a simple ring, K := Z(A) and |A:K| finite.
Then every K-algebra automorphism of A 18 an inner automorphism.

Corollary 2 . Let A,A' be simple subrings of the simple ring B,
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K := 2(B) € Z2(A) = Z(A') and A =~ A' as K-algebras. Then this isomor-
phism arises from an immer automorphism of B if |A:K| <s finite.

Proof. The corollaries are obvious (e.g. in Corollary 1 take A = B and

f = idA ); as for the theorem we note that (thanks to Theorem 1) it suffi-

£

connection with Wedderburn's Main Theorem in §3. we have A @K BP ~ Mn(D)

with unique n and some skew field D (which is unique up to isomor-
m
phism), hence - if £ is a minimal left ideal of A @ B°P - B, =~ {I} £
e : £
as well as Bg o~ (}9 £ (because of Theorem 1 in §3.; note that in §3. we
3=1
dealt with right ideals, however, analogous results hold for left ideals).

ces to show B_ = Bg as left (A QK B°P)-modules. By Theorem 5 in §5. in

£

mension , necessarily m = r and therefore Bf o Bg as left (A @K B°P)-

Since both B_ and Bg are left D-vector spaces of the same finite di-

modules. O

Example 1 . Let D be a skew field, K := Z(D) ( [D:K| may be infinite)
and f € K[T] an irreducible polynomial, then we obtain from Corollary 2:
if d,d' € D such that f(d) = 0 = £(d') , then d' = bdb-1 for suitable
b € D¥ .,

Now we introduce a new notion:

Definition 2 . Let A be a ring, B< A a subring and M C A a subset;
define the "centralizer of M in B " as the set
ZB(M) :={b€B | bm=mb forall m€M]} .

In this context the following can be observed immediately:

(1) ZB(M) is a subring of B and hence also of A
Zo(M) = ZB((M)A) where <M>A denotes the subring of A which
(2) is generated by the set M ;
(3) ZB(M) is an R-algebra provided A and B are ;
(u) ZB(M) =B N ZA(M) H
(5) Z(A) = 7,(A) ;
(6) zA(Z(A)) = A
(N M 2,(2,(0) ;
(8) M2 N implies ZB(M) E'ZB(N) 5
(9) CcBcA implies Z, (M) € Z (M) ;
(10) Bc ZA(B) if and only if B is commutative ;
(11) B = ZA(B) if and only if B is maximal commutative in A 3
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(12) if f: A - A' is an isomorphism, then £(z,(B)) = ZA,(f(B))

Theorem 2 . Let x be a commutative field and A,A',B,B' K-algebras
such that A' < A and B' = B ; then

' t - 1 ' ’
(A OK B') = ZA(A ) @K ZB(B ) in A @K B .

ZA ®K B
Proof. First we point out that the statements of the theorem are to be
understood with the conventions explained preceding Theorem 4 in §5.,
i.e. A! @K B' resp. ZA(A') @K ZB(B') are being regarded as K-subalge-

bras of the K-algebra A ® B . Now we note that "2" is clear from the

K
various definitions; as for the converse we select bases {ei}iEI resp.

1 1
{fj}jEJ of A resp. B over K and choose x € Z B(A @K B') . It

. A 0K

follows that there exist
bi € B resp. aj € A (uniquely determined by x and = 0
for all but finitely many indices i resp. 3J )

such that

E ei&bi =X = ‘E ajefj (cf. Theorem 3 in §4.) ,

i€l j€J
hence, by our assumptions on x ,

.E eiﬁbib' = x(18b') = (18b')x = E ein'bi

i€l iel
for all b' € B , hence (again by Theorem 3 in §4.) bib' = b'bi for all
b' € B, i.e. bi € ZB(B') for all 1 € I and similarly aj € ZA(A')
for all j € J . Therefore

' 1y = [ '
x € ZA(A ) @K BNA @K ZB(B ) = ZA(A ) QK ZB(B ),

the last equality being again a consequence of Theorem 3 in §4. together
with the fact that a basis of e.g. ZA(A') over K can be extended to a

basis of A over K . D
Let us state a few consequences of the above:

Corollary 3 . Let K be a field and A,B K-algebras, then
Z(A & B) = Z(A) 8 z(B) . o

Now we recall Definition 3 in §5.: combining it with Theorem 5 in §5. and

Corollary 3 above provides

Corcllary 4 . A and B are central simple K-algebras if and only if

A8 B 8 a central simple K-algebra. O

Another consequence of Theorem 2 is
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Corollary 5 . Let K be a field and A a K-algebra, then 7Z(A) = K <f
and only ©f 7Z(A 8 L) =L (here L/K <8 a not necessarily fintte field

extension). O

Using again Definition 3 and Theorem 5 in §5. we deduce from the previous

corollary

Corollary 6 . If L/K 728 a (not necessarily finite) field extension, then
A is a central simple K-algebra if and only if A & L 8 a central
simple L-algebra. ©

Recalling Definition 4 in §6. we finally obtain (c¢f. Theorem 5 in §5.,

Theorems 1/2 in §6. and Corollary 5):

Corollary 7 . Let L/K be finite Galois, T := Gal(L/K) and A an
L/K-Galots algebra; then A <is a simple ring with centre L <f and only
if Ar i8 a simple ring with centre K . ©

Now let R be a commutative ring and A an R-algebra; in what
follows we shall deal with the R-algebra homomorphisms L: A - EndR(A) N
ar La and R: AP » EndR(A) s am Ra known already from Lemma 5 ete.
in §5. (here La resp. Ra denotes the left resp. right multiplication

by a on A ). With this notation we claim

Lemma 1 . Z )(L(A)) = R(A) and 2 )(R(A)) = L(A)

EndR(A

Proof. In both cases "2" is obviously true by the law of associativity of

EndR(A

the multiplication in A . As for the converse let us discuss the first

(L(a))

statement only (the second one is proved similarly): f € Z
EndR(A)

amounts to fLa = Laf for all a € A , hence f(ax) = af(x) for all
a,x € A , in particular f£(a) = af(1) for all a € A , i.e. £ =R
€ R(A) . O

£(1) €

Now we are fully prepared to prove the

Centralizer Theorem . Let B be a simple subring of a simple ring A ,

K := Z(A) € Z(B) and n := |B:K| finite, then:
. ~ op .,
(1) ZA(B) 8 M (K) = A 8 B
(iz) ZA(B) is a simple ring ;
(127) Z(ZA(B)) = Z(B) ;
(iv) ZA(ZA(B)) =B ;
(v) ©f L := 2(B) and v := |L:K| , then A 8 LM (Be z,(B));

(vi) A is a free left(right) ZA(B)—moduZe of unique rank n ;
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(vit) if, in addition to the above assumptions, m := |A:K| <s also
finite, then A 1is a free left(right) B-module of unique rank
m_ .
= = 12,(B):x| .

Corollary 8 . Let B < A be simple rings such that K := 2(A) = Z(B) ,

then A ~B ® Z,(B) whenever |B:K| s finite.

Proof. The corollary is just (v) in case L =K , i.e. r = 1 ., For the

proof of the theorem consider the K-algebra homomorphisms
f,g: B> A @K EndK(B) =: C 3 £f(b) := b@idB s g(b) := l@Lb 3

thanks to Corollary 3 and Theorem 5 in §5. C 1is a simple ring with
centre K , hence we can apply the Skolem-Noether Theorem which implies
f(B) = g(B) under an inner automorphism of C . By construction of f and
g we get (notation as in Lemma 1)

B ® K:f(B)zg(B):K@KL(B) R

K

hence by (12), Theorem 2 and Lemma 1
(13) ZA(B) & EndK(B) = Zc(f(B)) =~ ZC(g(B)) = A& R(B)
Now apply (12), Corollary 3 (resp. Theorem 2) and Lemma 1 to the previous
result; this gives (note EndK(B) o Mn(K) and - since B has no proper
two-sided ideals - R(B) e B°P )

- - op
(1) Z(ZA(B)) & K = Z(ZC(f(B))) o Z(Zc(g(B))) = K& Z(B™%)
resp.
(15) ZA(ZA(B)) QK K = ZC(ZC(f(B))) = ZC(ZC(g(B))) = K QK L(B)

Now (13) amounts to (Z) (cf. the note previous to (14)) and (Z) implies
(7Z) thanks to Theorem 5 in §5. (14) resp. (15) imply

Z(ZA(B)) o Z(B) resp. ZA(ZA(B)) ~ B (note L(B)=3B ),
hence even "=" in both cases since we have obviously "2" in both cases
together with the fact that on both sides in either inequality there are
isomorphic finite dimensional vector spaces over K . This completes the
proof of (4Z7Z) and (Zv). Now we make use of (Z) and the various isomor-
phisms of §§4/5 which provides

ZA(B) e Mn(L) o ZA(B) eL (L 8, Mn(K))r= ZA(B) eK Mn(K) =

op _, op
>~ A @K B™" =~ (A @K L) @L B
and therefore (use Corollaries 1/2 in §5.) - if n = rs -
op
(B 8 ZA(B)) 8 (MP(L) 8 MS(L)) = (A 8 L) e (87" & B) =~

= (A OK L) @L MS(L)
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Now we make use of Lemma 4 in §5. and get
MS(A GK L) o Ms(Mr(B @L ZA(B)))

which implies (v) by Wedderburn's Main Theorem in §3. (note that A @K L

and Mr(B @L ZA(B)) are simple rings with centre L ). Since (viZ) is a
consequence of (%),..,(vt) (because the finiteness of |A:K| implies the
finiteness of |ZA(B):K| which means that we may interchange the roles
of B and ZA(B) in (Z),..,(vi)) we are left with the proof of (vz): but
(vi) is an immediate consequence of the following lemma (the rank being

calculated with the aid of (Z) together with Theorem 3 in §i4.):

Lemma 2 . Let A be a simple ring which is a subring of a ring R , then

R 1g a free right(left) A-module of unique [possibly infinitel] right

(left) rank.

Proof. Let 2 be a minimal right ideal of A ,then - by Theorem 1 in §3.-
n

A e <£) 7 as a right A-module. Since R is an A-bimodule (via the multi-
iT1

plication in R ) we may view 4 8, R as a right A-module (cf. Lemma 3 in

A
§4.) and obtain the right A-module homomorphism

ne Rm@ﬂ, :
A €5
the proof thereof coincides with the one of Theorem 1 in §3., except for
the fact that the set J is not necessarily finite because we have no

finiteness condition - such as e.g. the Artinian condition - available. It

follows easily (c¢f. Theorems 2/3 in §4.)

R = (@n)e Rm@(n@ R) = @@/Lu
@ hoe2 @ A as right A-modules,
=1 J

i.e. R 1is free as asserted (similarly for left modules). It remains to

@:>

be shown that the (possibly infinite) rank is unique; this, however, is
clear since A 1is a finite dimensional vector space over a skew field

(cf. Wedderburn's Main Theorem in §3.). oo
In practice we shall frequently make use of

Lemma 3 . Let B be a simple subring of a skew field D, then B and

ZD(B) are also skew fields.

Proof. B 1is a simple ring without zero-divisors # O , hence a skew field

thanks to Theorem 3 in §3. Consequently ZD(B) is also a skew field, since
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the centralizer of a skew field in a skew field is clearly a skew field. O

Definition 3 . In the situation (and with the notation) of Lemma 2 one
calls the right(left) rank of R the "right(left) degree of R over A "
and denotes it |R:Alp (|R:A[L).

Now, in precisely the same way as in the case of field extension degrees,

we can prove the degree tower formula

Lemma 4 . If A,B are simple subrings of a ring R such that A S B,
then |R:B|R|B:A|R = IR:A|R (and similarly for left degrees). a

Note that (vZ) and (viZ) in the Centralizer Theorem imply that certain
left degrees are finite and equal to the corresponding right degrees.
Even in the skew field case (¢f. Lemma 3) this is not always true: one
can construct examples where one of the two degrees is finite and the
other infinite (see section 5.6 in P.M. Cohn [1977]), but no examples are

known where both degrees are finite and different.

Theorem 3 . Let L be a commutative subfield of a simple ring A , K :=
i= 2(A) € L and |L:K| finite, then we have L = 2,(L) <f and only if
|L:1<|2 = |a:x] .

Proof. Since L 1is simple the "only if" is an easy consequence of Lemma 4
and (vZ) in the Centralizer Theorem (take B = L ). Conversely, (10) im-
plies Lc ZA(L) , hence "=" thanks to (vZZ) in the Centralizer Theorem

(take B = L ) for dimensional reasons. O
Now recall Definition 3 in §5.; in this sense we claim

Theorem 4 . Let D be a K-skew field, then it posesses maximal commuta-
tive subfields and all of these include K . Moreover, L is a maximal
commutative subfield of D <if and only if |L:K|2 = |D:k| .

Proof. The first two statements are clear, the "if" follows from Theorem 3

together with (11) and the "only if'" holds for the same reasons plus the

fact that a maximal commutative subring in a skew field must be a field. 0

The next results deal with refinements of the Centralizer Theorem in cer-

tain special cases.

Theorem 5 . Let A be a simple ring, L a commutative subfield of A
such that X := Z(A) S L €A, n := |L:K| and B := 2,(L) ; then L/K

18 a Galots extension if and only if there exist elements e, € A*  such
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n
that Be, = e.B (i=1,..on) and §£} Be;, = A ( e = 1) .
i=1
Proof. "if'": by assumption we have eiBe;l = B , hence - since L = Z(B)
thanks to (ZZ%Z) in the Centralizer Theorem - ai(x) = eixe;l (x€L)

defines K-algebra automorphisms of L ( i = 1,..,n ). If now o, = Oj
for some indices 1 # j , then eixe£l = ejxegl for all X €L , i.e.
e:_ilei € ZA(L) = B , hence e, € ejB which contradicts the left linear in-
dependence of the e, over B . Therefore T := {cl,..,on} constitutes

a set of n distinct K-algebra automorphisms of L ; this means that L/K
is Galois (because of n = |L:K| ) with T = Gal(L/K) . "only if": let

I := Gal(L/K) , hence |T| = |[L:K| = n . Using the Skolem-Noether Theorem,

we may find for every ¢ € T an element e € A* such that

o(x) = e xe_l for all x €L ,
¢ o

hence (thanks to (12)) ecBe;1 = B and therefore Be0 = qu (og€T).

Thanks to e € A* any single one of the es is left linearly indepen-
dent over B . Now suppose that any t-1 of the elements e are left
linearly independent ( 1 < t < mn = [T ) and let T be a subset of T
with exactly t elements; fix an element o € T and choose x € L such

that TO(X) # 1(x) forall T€T, T# Ty - If then

E bre_ =0,
TET
we get - recall L

A

z(B) -
bTeT xegle = E e, xe;leeT = e xe;lbr eT =

ToFTET 0 0 T FTET 0 0 0 000

= - - _ -1

= bT e X = E bTeTx = E bTeTxeT e. s

0 0 TO¢T€T TO#TET
therefore (by induction assumption) br(TO(X) - 1(x)) =0 forall TE€T,
T# Ty - By our choice of x the latter amounts to bT = 0 for these Tt ,
hence also bT e, = 0, i.e. even bT =0 for all T € T . Consequently
o 0

any t elements of the e, are left linearly independent, therefore, by

induction, all n of these are. Finally

A= {%} Beo s
o€l
because the span on the right hand side is a finite dimensional left vector

space over some skew field of the same dimension as A has (cf. (vZ) in

the Centralizer Theorem). Now set e, = ey if T = {l:al,o2,..,on} . O
i

Inspection of the above proof gives immediately
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Theorem 6 . Let A be a simple ring, L a commutative subfield of A

such that K := Z(A) S LS A, n := |L:K| and B := Z,(L) ; then L/K

i8 a cyelic extenston if and only if there exists an element e € A* such
n-1 s

that Be = eB and (P Be = A .o
i=o

We close this paragraph with a theorem due to O. Teichmiiller [1940] which

is, in some sense , a converse to parts of the previous theorem.

Theorem 7 . Let L/K be a finite cyelic extension, T := Gal(L/K) = {o)
and B a simple ring with centre L . If o can be prolonged to a ring
automorphism & of B , then there 18 a simple ring A with centre K

such that B = 2,(L) and hence A ® LM (B) (n:= |L:x| ).
Proof. The last claim follows from the second last one thanks to (v) in
the Centralizer Theorem. Now the actual proof: because of o" LS o = idL

the Skolem-Noether Theorem provides the existence of an element a, € B*

such that
(16) e™(b) = aobaal for all b € B ;
of course, a, in (16) is uniquely determined by ¢ only up to multipli-

0
cation with elements from L* (note L = Z(B) ). It follows

-1 _ .n+l _ -1, _ -1
aO<I>(b)aO = ¢ “(b) = @(aoba0 ) = @(ao)é(b)¢(ao)

for all b € B , therefore

.z -1 * = [*

ty iF @(ao) a, € Z(B)* = L

and consequently ¢(a )—lt a. = t.¢(a )-la = ¢(a )_l(a o(a )—l)a hence
0 070 0 0 0 0 0 0 0
even
-1 _ _ -1

@(ao) ay =ty = aOQ(aO)

and thus .
L = T U S I
NL/K(tO) = N ty = l:o (¢ (ao) 9 (ao)) = 1.

Now Hilbert's "Satz 90" in §6. provides the existence of an element t € L¥
such that

-1 _ _ o -1 _ -1 _ -1
¢(ao) ay = to = "¢t T o= o(t)t T = e(t)t .

so if we replace in (16) our element a. by a := a.t we get ¢(a) = a ,

0 0
in other words we can even find an element a € B*¥ such that

(17) 8(a) = a and ®™(b) = aba ' forall bEB .

Therefore, to complete our proof, it suffices to prove the following
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Lemma 5 . Let L/K be a cyclic extension, n := |L:K| , T := Gal(L/K) =
= (o) , B a simple ring with centre L , ¢ a ring automorphism of B
such that @lL = 0 and finally a an element of B* such that (17)
holds; then

ol i n
(18) 8 := (D Be" with multiplication e" = a, eb = #(be

i=0

defines a simple ring with centre K such that B = ZA(L) and hence
A® L~M(B).
K n

Proof. Again, the last claim follows from the second last one (cf. the
proof of the previous theorem). Now an entirely straightforward calcu-
lation shows that (in view of (17)) the multiplication defined in (18) is
reasonable in the sense that A 1is endowed with the structure of a ring
ﬁmthdmmteoml.B (and therefore L (note L € B )) may be

viewed being embedded into A via b » be® = bl 3 in this sense B &
n-1 i
< Z,(L) is clear. We want to prove the converse: let 2z = E b.e™ €
- A i=o *
€ ZA(L) be given (with uniquely determined bi € B ) and choose x € L
i

such that % x #x forall 1i=1,..,n-1 . It follows
n-1 i n-1 i n-1 ; i n-1 0i ;
; xbie = XZ = 2ZX = E bie X = E biQ (x)e™ = E xbie
=0 i=0 i=0 i=0

which amounts to bi =0 for i=1,..,n-1 (by our choice of x ), hence

z = boeo = bol €B, i,e. B = ZA(L) . From the latter we get
Kez(a) = 2,(A) €7,(L) =B, hence 7Z(A) € Z(B) =L

and even K = Z(A) , since xe = ex = ¢(x)e = I%e implies x € FixL(F) =
= K . By virtue of Corollary 4 in §5., in order to complete the proof of
our lemma, we are left with showing that A according to (18) has no
proper two-sided ideal; indeed, let O # y € A, then y = :E: biei with
some well-defined non-empty subset Y = Y(y) < {O,l,..,n—l}leguch that

bi = 0 for all indices i ¢ Y . If now {0} # a CA isa two-sided~ideal
of A and if |Y¥(y)| = 1 for some 0 #y € a , it follows y = b.ed for
some j , i.e. 1 = bfly(ej)_1 € a and hence a4 = A (note that (18) im-
plies (ei)_l = a-len 1 ). If on the other hand [Y(y)] > 2, select x €

] o3 o r
€L and j,r € ¥ = Y(y) such that 03(x) = Tx # % x = oT(x) , and con-

sider

a

w
«<
1

G0 yx = Zy (b, - $3G0 e op) e’ =
. i€

. iey?
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with bi €B, br # O (by our choice of x ) and V' := Y N {j} 2 ¥(y") .
Because of |Y¥(y')| < |V']| < |¥| we may conclude @ = A by induction;
this completes the proof of the lemma as well as the one of the theorem

previous to the lemma. 0 O

Lemma 5 is already remarkable in the (seemingly easy) special case B = L

and gives rise to the following

Definition 4 . Let L/K be a eyeclic extension, n := |L:K| , T :=
:= Gal(L/K) = {0) and a € K¥ , then one calls the ring
n-1 .
(a,L/K,0) := €£> Le' with multiplication = a s €X = Ixe

i=0
( x €L) a "eyclic algebra”.

Lemma 5 reads then as follows:

Lemma 6 . Let A := (a,L/K,0) be a cyclic algebra, then A <s a central

simple X-algebra such that L = ZA(L) and A 8 L= Mn(L) .o

Exercise 1 . Let A be a simple ring with centre K and B a subring
of A containing K such that A 1is a finitely generated right(left)
B-module. Show that |ZA(B):K| < n where n denotes the number of
generators needed (cf. Theorem 16 in E. Artin & G. Whaples [1943] or Theo-
rem 7.3H in E. Artin et al. [1948]).

Exercise 2 . Show that the Skolem-Noether Theorem does not hold in skew
fields which are infinite dimensional over their centre (Hint. Set

L := (K((X)))((Y)) , define an automorphism o of L such that o(X) =

= X+X2 and such that D := L((T;0)) has centre K (cf. §1.); now de-
fine a K-algebra automorphism <t of D suitably and prove that it cannot

be an inner automorphism.).

Exercise 3 . Modify the constructions from Exercise 2 in such a way that
you can show that e.g. (ZZZ) and (Zv) in the Centralizer Theorem do not

hold in case |B:K| is infinite.
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§ 8 . THE CORESTRICTION OF ALGEBRAS

Let R Dbe a commutative ring and A an R-algebra, i.e. a
ring with 1 # O together with a fixed ring homomorphism iA: R - Z(A) =
S A . Now let ¢ be a ring automorphism of R ; with the aid of o let

us equip our ring A with a new algebra structure:

Definition 1 . Let A be an R-algebra and o a ring automorphism of
R ; define the R-algebra °A to be the ring A equipped with the new

R-structure i,0 *: R 2(A) € A (where i

A defines the old R-structure

A
on A ).

The following is then quite obvious (ef. the beginning of §5.):

Lemma 1 . Let A,B be R-algebras, f: A » B a ring homomorphism and o

a ring automorphism of R ; then f: A -~ g A £ B

18 an R-algebra homomorphism if and only if

fiA = iBo_l s T.e. 1f and only if the dia- iAI -1 IiB
gram shown commutes. R —2—— R o

Of course, the commutativity of the diagram above reads in more conventio-
nal notation (writing as usual ra in place of iA(r)a ):

f(ra) = o_l(r)f(a) (r€R,a€r) ,
i.e. f 1is semilinear (in the usual sense). Moreover we find easily
Lemma 2 . A~ %A as an R-algebra if and only if oY (and hence o)

can be extended to a ring automorphism of A . D

In this context the following can be observed immediately:

(1) My o n and ) = %0
(2) °R ~ R as an R-algebra ;
(3) z(°a) = z(a)

(1) ‘() = u (Fh)

g _¢ o3
(5) (A@RB)-AQRB .
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Furthermore we claim

If sc FixR(o) is a subring, A an S-algebra and B an

(6) R-algebra, then C°(A 0, B) = A8

S %8 as an R-algebra.

Indeed, A ® i resp. A @S B carry an R-algebra structure via r =

S
[ l@ch l(r) resp. r+ l@iB(r) , hence the identity f: A @S 9B
- A ®S B fulfills the requirements of Lemma 1. Combination of (6) and (2)
yields

If sc FixR(o) is a subring and A an S-algebra, then

7 ‘(a9  R) =48

s R as an R-algebra.

Finally we point out the obvious fact

(8) 92 is a simple ring if and only A is a simple ring .

From now on we shall deal only with the case where R 1is a
field, more precisely: let N/K be a finite Galois extension, L an
intermediate field, A := Gal(N/L) < Gal(N/K) =: T , R a system of re-

presentatives for the cosets of T modulo A - i.e. T = \~j pA - and
p€ER
A an L-algebra; in this situation we claim (and this will be of great

importance in the sequel):
Lemma 3 . Given p € R, then °(a @L N) s (up to N=-algebra isomor—
phism) independent of the particular choice of the system R , hence the

same ig true for the N-algebra A(F:A) 1= @ P(a 8 N) .
p€ER

Proof. Thanks to (1) and (7) we have for all & € A the N-algebra iso-
morphisms °S(a o, N) °S(a 6 M) = °ea e, N) .o

Now let R be as above; given p € R and ¢ € T , there are
(uniquely determined) elements
(9) 0p €R and &(g,p) € A such that op = 0pé(o,p) .
It follows ( 0,T €T 3 p €ER)
°("p)8(0,"0)8(T0)

9T58(atsp) = (0m)p = 0(1p) = 0 p8(T,p)

hence
(10) O = %oy , Yo = p and  8(ot,e) = 8(0,%0)6(T,0)
6(1,p) = 1 .
Using the notions and notations just introduced we claim:
(T:n)

Lemma 4 . Consider the N-algebra A (as defined in Lemma 3), then

A(F:A) can be given the structure of an N/K-Galois algebra (cf. Defini-
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tion 4 in §6.) such that
— p=th position — To-th posttion
(11) °(..6a8..) = ..@6(°’°)ape.. (ser,a €Pae W )

where A 8, N <s viewed as a left A-module via idA@o (o € 4) .

Proof. It follows immediately from Theorem 8 in §4. that x® %% (accor-

(T:p)

ding to (11)) defines a ring automorphism of A for every o € T .

Since lx = X 1is obvious from (10) we must now show 0(Tx) = 9 (0,7 €
€ T ). Again this is clear from (10) thanks to
g P-th position 9To-th posit%on
OT(..8a 8..) = ..659TP), g = g8(0r @IS0 o
[¢] [ Y
= °<..@5(T’°)ap@..> = 9("(..6a8..))
t__Tp—th pos. t_p-th position .
Finally we see e c -
r—p—th position I— p-th p031t10?
Y g -
qu(..@a 8..) = 0x(..®6(c’p)a 8..)=..0° oxé(c,p)a ®.. =
P P P
8(a,0) 0 " o, ot o
= ,.8 xap)&.. = (..8 xap@..) = (x(..@ap@..))
0p—th position _# + p-th position 4

which completes our proof. O

If we apply Theorems 1/2 in §6. we get from the previous result
Corollary 1 (A(P:A))r (A(P:A))r
(r:4a)

~ A . o

18 a K-algebra such that 8 N«

We want to show that the K-algebra (A(F:A))P

is (up to isomorphism) in-
dependent of the field N , i.e. depends only on the (separable) field
extension L/K . For this, however, we need more preparation:

Let M/K be a further finite Galois extension with inter-
mediate field L and assume N < M (otherwise go over to MN and apply
the next lemma twice); set H := Gal(M/L) < Gal(M/K) =: G and N :=
1= Gal(M/N) <G , hence T = G/N and A = H/N . Furthermore, if R 1is
a system of representatives for the cosets of G modulo H - i.e. G =
= %Eé AH - then the set { p €T | p = n'N =AN€EG/N=T ,€ER}

(which we shall also denote R ) is likewise a system of representatives
for the cosets of T modulo A . Now consider the M-algebra isomorphisms

(use (5) together with Lemmas 2/3 in §5. [R|-times, i.e. |L:K|-times)
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7 n
(A ® M)u@ ((A 8 N)@®, M)
,@z L AER L N

~ (R Pae. M) 8 ((%)’LM);
;@z L N eR

here G and a fortiori N operate on the left hand side according to

(12)

(11). Hitherto we have not made use of the fact that N is a normal sub-
group of G ; now we take this into account and conclude from it imme-
diately &4 = #h(s,4) for all A4 € N (note that n(s,n) € H 1is the
analogue in G to the function & according to (9)), hence even

3% =1 and h(s.n) = n"lbn €N forall s €N .
Therefore N operates on the right hand side of (12) componentwise on

each of the factors of CSD &M and trivially (ef. (7)) on CgD p(A ® N).
L
rER pER
From the first one of these two facts we conclude (cf. Theorems 1/2 in §6.

and use Theorem 2 in §4. (|R|-1)~times) (Cgb AM)N o C§D (MM)N o2 Cgb N o
HER HER HER

e N , hence (after using Theorems 1/2 in §6. again) the formula (12)

implies the K-algebra isomorphisms

(G:H) .G - ((A(G:H))N)G/N - (Cg% N @L N))F e NF o
P

4 .
.

)

(I‘:A))l" &K K o (A(I‘:A)

Consequently we have proved:

= (A

Lemma 5 . In the situation and with the notation introduced above one has

a K-algebra isomorphism (A(G:H))G o~ (A(P:A))P 4

Now we drop the assumption "N € M" and use Lemma 5 twice (with NM in
place of N and M ); this gives

Theorem 1 . Let L/K be a finite separable extension and A an L-alge-

bra; then the K-algebra (A(F:A))F (according to Lemma 4 and Corollary 1)
18 (up to K-algebra isomorphism) independent of the auxiliary field ex-—

tension N/L and therefore depends only on A and L/K . 0O
Now the following definition is feasible:

Definition 2 . If L/K <s finite separable and A an L-algebra, then
the K-algebra CL/K(A) := (A(F:A))r 18 called the "corestriction of A ".

Lemma 6 . Let L/K be finite .geparable and A an L-algebra, then:
A has no proper two-sided ideals and Z(A) = L <f and only if <
has no proper two-sided ideals and Z(CL/K(A)) =K.

L/K(A)

Proof. Clear from the definition of the corestriction (as regards the
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centre: cf., Corollaries 3/5 in §7.; as regards the two-sided ideals: cf.
Corollary 3 in §5.). O

Furthermore we conclude from Lemma 5 and Theorems 3/7 in §4. in connection

with the definition of the corestriction:

Lemma 7 . Let L/K be finite separable and A an L-algebra, then

ch/K(A):K| = |A:LllI":KI whenever either side is finite. O

Corollary 2 . Let L/K be finite separable, then A is a central simple
L-algebra if and only if cL/K(A) 18 a central simple K-algebra. o

Now we want to study the special case A = B 8 L with some K-algebra B ,

K
however, before we can do so we must establish another important result:

Lemma 8 . Let L/K be finite separable, then K(L) =~ K.

ey
Proof. Using (2) and Theorem 2 in §4. several times we obtain the N-alge-

bra isomorphisms

(T:A)
(13) N = Nfz@pNu@p(Le N) =L
S%% p€R pER L

such that (note that we identify y € N with l@Ly €L @L N in the for-

mula below)

-1 c -1
x P x(16..81) = ..18° x81.. = ..18 °? xe1.. ,
p-th position 4 Gp—th position
hence (cf. (9) and (11)) _ - ¥
o 0 % Lg §(a,0) 0
x+ x(18..81) = ..18 ("x)8l.. = ..18 AN x)el.. =

-1
..18° x81..) = “(x(18..81)) (G ET ,p €ER) ,

T--—-p-th position

%

i.e. under the isomorphism in (13) the standard T'-action on N is carried
over to the l-action according to (11) on L(F:A) . Therefore we may con-

clude K = N o (LFFBN)T = (L) . @

°L/K
Now we are ready for the proof of (as regards the notation: cf. Definition
3 in §4.)

Lemma 9 . Let L/K be finite separable and B a K-algebra, then

8d .
cp/x(B & L) =™ (d := |L:x| ) .

Proof. Using (6), (13) and Lemmata 2/3 in §5. one obtains the N-algebra

isomorphisms
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T:A
(B@KL)( )=®°((B@KL)@LN)=@°(B@KN)3
(14) pER P

u@(BQKpN)uBQdGK(@ PN) o B“@KN )
pER pER

Here T operates trivially on the left term, hence our claim thanks to

Theorem 1(I) in §6. B
Writing Mn(L) o Mn(K) @K L (cf. Lemma 4 in §5.) and using Lemma 9 as
well as Corollary 1 in §5. we get

Corollary 3 . Let L/K be finite separable and A,B L~algebras, then

(M (L)) =M LK) ( here d := |L:K| ). @

c
L/ n

Lemma 10 . Let L/K be finite separable and A,B L-algebras, then
cL/K(A 8 B) =~ cL/K(A) 8 cL/K(B) .

Proof. Use (5) and Lemma 3 in §5.; this gives N-algebra isomorphisms

(r:8) _ o o
(A & B) -@ ((a 8 B) 8 N)

R

fe] o~
‘@ ((a 8 N) 8 (B8 W)=

p p _ (T:hp) (T:A)
(g% (A e N)) &y (F@ (B 8 N)) = A 8 B

such that we may apply Theorems 1/2 in §6., hence our claim. O

R

We close our investigations by showing that the corestriction behaves

functorially in L/K .

Lemma 11 . Let L/K be finite separable and A an L-algebra; if 1 <is
an intermediate field of L/K , then

cL/K(A) = CI/K(CL/I(A)) .
Proof. Denote I := Gal{N/I) , hence A < I <T ; now write
r=1\J e'c,z2=\_Jo",hence T= ) Joom ,
p'GR' p"ER" O'GR' p"€R"

i.e. we may take R := {p'p" I p' € R' , p" € R"} . Now use Corollary 1

and (5) several times; this gives the K-algebra isomorphisms

. - P I
o ey (A)) = [Q@' (o, p(0) 8, M) =

~ (@ . @ P(a e 1) = () 29 P*"a 0, )"
pv t pn t p'€R' pn R



= cL/K(A) . o

Exercise 1 . Let L/K be finite separable and F/K an arbitrary ex-
tension such that E := L QK F 1is a field. Show that for L-algebras
we have an F-algebra isomorphism

CL/K(A) 8 Feo cE/F(A 8 E) .

A

56
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PART II . SKEW FIELDS AND BRAUER GROUPS

The history of Brauer groups began in 1929 when R. Brauer
(1902-1977) proved that the set of those (isomorphism classes of) skew
fields which are finite dimensional over their common centre K can be
endowed with the structure of an abelian torsion group. This group is
nowadays called the Brauer group Br(K) and turns out to be a subtle in-
variant of K which is closely related to Galois Cohomology via the
crossed products ("verschrdnkte Produkte" in the original German termino-
logy),as was first shown by E. Noether (1882-1935). Of course, in those
days there was no Galois Cohomology, so what she suggested was the heart
of a theory which was to become Galois Cohomology after general (co)homo-
logy theories had been developed later in the 1940's. Meanwhile, in the
1930's A.A. Albert (1906-1972), R. Brauer, E. Noether and H. Hasse (1898-
-1979) gave a comprehensive treatment which culminated in a complete de-
termination of Br(K) in the case where K 1is an algebraic number field.
All this is summed up in the two reports M. Deuring [1935] and A.A. Albert
[1939] which are even today outstanding reading matter.

Here (in Part II of these lectures) we attempt to give a com-
prehensive treatment of the basie algebraic aspects of a modern theory of
Brauer groups over fields. (Note that today there exists a corresponding
theory of Brauer groups over commutative rings which we disregard in these
lectures; cf. some remarks in §18.) Of course we can only present selected
topics (for otherwise these lectures would be three times as long), and it
is our hope that this selection will, as well as stimulating the reader's
interest, also prepare him for further reading.

In §9. we begin with the definition of Br(K) and its immedi-
ate consequences; a good knowledge of Part I is needed and in particular
we make full use of C. Riehm's corestriction procedure from §8. In §10. we

study a special class of algebras and skew fields related to cyclic field
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extensions; much of the material in this paragraph has been presented before
1929, mainly by L.E. Dickson (1874-1954). Some of the results in §10. are
really classical: for instance Frobenius' Theorem (G.F. Frobenius (1849-
-1917)) and Wedderburn's Theorem from 1905 (J.H.M. Wedderburn (1882-1948)).
In §11. we deal with power norm residue algebras: these originate from
Class Field Theory; however, following J. Milnor [1971] we present only
the algebraic aspect thereof. §§12/13. contain a description of the above
mentioned relationship between Brauer groups and Galois Cohomology (here
we follow E. Artin et al. [19u48]). §1u4. deals with quaternion algebras

and skew fields (cf. also §1.); here they appear as special cases of the
algebras in §11. In §15. we present the theory of Br(K) in the case where
char(K) £ 0 . Here we combine the advantages of A.A. Albert's approach
with those of 0. Teichmiiller's (1913-1943) and E. Witt's. In §16. we give
an introduction to W. Scharlau's [1975] version of the theory of skew
fields with involution. In §17. we attempt to describe the connection
between Br(K) and K2-Theory which arises from §11. Here the situation
is in flux: A.S. Merkur'ev and A.A. Suslin (A.C. Mepxypes & A.A. Cycaun
[2},[bl) have very recently achieved a spectacular result in this field !
Here we can only describe this result; the proof would comprise another
book. Finally §18. contains a survey of some further results as well as

suggestions for further reading.
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§ 9 . BRAUER GROUPS OVER FIELDS

Henceforth (i.e. throughout Part II) we shall be dealing with
central simple X-algebras and K-skew fields only (cf. Definition 3 in §5.);
these are a fortiori simple rings and hence we may (and shall) use the

theory developed in Part I. We start our investigations with

Theorem 1 . The following statements are equivalent:

(a) A i3 a central simple K-algebra ;

(b) A s a finite dimensional K-algebra without proper two-sided
ideals and such that X = Z(A) ;

(c) A is a simple ring which is finite dimensional over K = Z(A);

(d) A8 L 18 a central simple L—algebra ( L/K any (not necessa-
rily finite) field extension) ;

(e) A® K= Mn('K) for any algebraic closure K of K (then
n? = [a:K]| ) ;

(f) A e MP(D) =D 8 Mr(K) with unitque v and an up to tsomor-—
phism unique K-skew field D (then v2|D:k| = |A:K| ).

Moreover, A,B are central simple K-algebras if and only if A 8 B is a
central simple K-algebra.

Proof. This is merely a summary of various statements from §§3/5/7. O
Theorem 1 gives rise to

Definition 1 . Let A be a central simple K-algebra; then the skew field
D aceording to Theorem 1(f) is called the "skew field compoment of A "
and n according to Theorem l(e) is called the "reduced degree of A " ;
the reduced degree of the skew field component of A is called the "index
of A " and is denoted by i(A)

Obviously we have (because this amounts to the case r = 1 in Theorem 1(f))
(1) A central simple K-algebra A is a K-skew field if and only if
im? = [a:x| .
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We list a few features of central simple K-algebras which we shall need
frequently.

Lemma 1 . Let A,C be finite dimensional K-algebras such that |C:K| <
< |A:K| and let f£: A > C be a K-algebra homomorphism; then, if A <s

a central simple K-algebra, £ is an isomorphism.

Proof. Since Ker f is a two-sided ideal # A we see that f must be

injective, hence even surjective for dimensional reasons. O
Combining Lemma 1 with Theorem 2 in §5. yields

Lemma 2 . Let A,B,C be finite dimensional K-algebras such that |C:K| <
< |A:K||B:K| and let £: A~>C , g: B> C be K-algebra homomophisms.
Then A @K B =~ C provided A,B are central simple K-algebras. O

The following is crucial for the entire Part II :

Definition 2 . Two central simple K-algebras A,B are called "similar'
(write " A~ B " ) if there are s,t € N such that

A @K MS(K) =~ B @K Mt(K)

Again we get from §§3/4/5/7 (details are left to the reader)

Lemma 3 . Let A,B be central simple K-algebras with corresponding skew
fZeld components D,E , then:

(a) A~B ifand only ©f D=E ;

(8) A~B and |A:X| = |B:K| 4f and only if A =B ;

(y) "' {3 an equivalence relation ;

(8) in every equivalence class modulo "~" there is (up to <somor—

phism) exactly one K-skew field, namely the (common) skew
field component of all the members of this class. O

Another immediate consequence of the various preceding results is (cf. in

particular Corollary 2 in §5.):

Theorem 2 . Denote by [A]l the equivalence class containing A of
central simple K-algebras modulo "~", and write Br(K) for the set of
these equivalence classes (for fixed base field K ); then the definition
(Al + [B] := [Aa & B] ( [A],[B] € Br(K) )
is feasible and endows Br(K) with the structure of an abelian group
(Z-module) such that
0=kl =M (0] and -[a] = [4°F] .o
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Definition 3 . The group Br(X) from Theorem 2 is called the "Brauer
group of K " .

Roughly speaking Br(K) is the set of K-skew fields (up to isomorphism)
together with a Z-module structure such that the (trivial) skew field X
is the neutral element. Moreover, it is clear from our definitions that
(2) i(a) = i(B) if [Al = [B]

Note that we may (and henceforth shall) replace the somewhat lengthy
phrase " A 1is a central simple K-algebra" by " [A] € Br(k) " !

If we state Lemmas 2/3/4 in §5. in terms of our new phrasing we get

Theorem 3 . Let L/K be a (not necessarily finite) field extension, then
LK Br(K) - Br(L)
KeLeM). o

the assignment A+ A ® L <induces a L-homomorphism r

which ©s functorial in l(L (Z.e. Ty/k = TM/LFL/K if
Definition 4 . Br(L/K) := Ker K 18 called the ''relative Brauer group
of L/K " ; if [A] € Br(K) and L/K s such that [A] € Br(L/K) (the
latter amounts to A GK L Mn(L) ~ L), then L <s called a "splitting

field of A (or of [A]l )" .
Theorem 3 implies

(3) Br(L/K) c Br(M/K) if K<L cM , i.e. extensions of

splitting fields of A are likewise splitting fields of A .
Moreover, Theorem 1(e) implies:
(%) every central simple K-algebra has a splitting field.
Note that by definition the sequence of Z-modules
(5) 0 — Br(L/K) &— Br(K) —— Br(L) is exact .

FL/K

Now (1),..,(8) in §8. show
Lemma 4 . Let L/K be finite Galois and T := Gal(L/K) , then the assign-—

ment °[A] := [°A] ( o €T , [A) € Br(L) ) endows Br(L) with the struc-

ture of a left T-module such that Im LK < Br(L)r . o

Therefore we can amplify (5) and get

Let L/K be finite Galois with T := Gal(L/K), then
0 — Br(L/K} &— Br(K) —— Br(L)r is exact .
r
L/K

Using Theorem 7 in §7. in connection with Lemma 2 in §8. we conclude from

(6)
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Lemma 4 above:

Theorem 4 . Let L/K be a finite cyclic extension with Galois group T ,
then the sequence
0 —— Br(L/K) &—— Br(K) —— Br(L)| —— 0

. r
is exact. g L/K

Theorem 4 is due to 0. Teichmiiller [1940]; in the same paper the image of
rL/K in the sequence (6) is also studied. The latter has been improved
by S. Eilenberg & S. MacLane [1948] who extend the sequence (6) to the
right by two terms (of course this is related to the Hochschild-Serre
spectral sequence, cf. §18.) . Moreover, in §15. we shall discuss the

sequence (5) extensively in the case " L/K purely inseparable" .
Theorem 3 has a counterpart in the finite separable case.
Theorem 5 . Let L/K be a finite separable extension, then the assign—

ment A cL/K(A) (according to Definition 2 in §8.) <nduces a Z-homomor-

phism /K Br(L) —Br(K) which is functorial in L (Z.e. /LK =
= Cy/x if KeLcM) and such that

cL/KrL/K = lL:KIldBr(K)
and

T ACL/K S Nr if L/K <s Galots with T := Gal(L/K) .

Proof, Clear from the various results in §8. O

Now let us restate (v) in the Centralizer Theorem in §7. in our new

language:

Theorem 6 . Let [A]l € Br(K) , [B] € Br(L) and B< A ( L/K a finite
field extension); then we have im Br(L) the equations
(z,(8)] = [a & L] - [B] = rL/K([A]) -[B] .o

Now consider in Theorem 6 the case "B = L" ; this gives

Corollary 1 . Let L/K be a finite extension and [A]l € Br(K) such that
Lea, then [2,(L)) = (A8 L] =x (1A .o

The following shows that the condition "B < A" in Theorem 6 is not a

serious thing.

Lemma 5 . Let L/K be a finite extension, [A]l € Br(X) and [B] € Br(L)
then there is an A' such that [A'] = [A] and BcA' .

Proof. Denote by Lb the left multiplication ( b € B ) and consider the
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K-algebra homomorphism (here n := ‘A:K| )
. t .= ~
£: B+ A' := End(B) 8 A~ M (K) @ A~A,br Lel.
Here f is injective (since B has no proper two-sided ideals), hence

we can view B as embedded in A' ., O
Now we turn our attention to questions of separability.

Lemma 6 . Assume p := char(K) # 0 and congider a K-skew field D ; let
d €D be such that d ¢ K but d° € K (Z.e. K(d)/K is purely insepa-
rable of degree p ), then there exists a separable field extension L/K

such that K # L<D .

Proof. The assignment x+ dxclnl defines an (inner) automorphism g ;

by construction o # idD but of = idD . Consider the endomorphism Tt :=
:= 0 - id) of D : obviously T #0 but T = (o - idD)p =of -ida =0
for reasons of characteristic. Set r := max{ i I <t # 0 } , hence

1 <r < p ; by construction there exists some y €D such that Tr(y) £
20 .Set a := Tr—l(y) #0 and b := 1(a) # 0 3 it follows o(a) =
=1(a) +a=b+a and 1(b) = rr+l(y) =0, hence o(b) = b , and there-
fore - if ¢ :=b ta €D -: ole) = c(b-l)o(a) b b +a)z=1+c . Now
consider the field M := K(c) = K(1+¢c) € D ; M/K cannot be purely in-
separable because it admits the K-algebra automorphism o M # idM » hence

the separable closure L of K in M has the desired properties. ©

Now let us draw two important conclusions from Lemma 6 and its proof; the
first one concerns cyclic extensions of degree p of fields of charac-

teristic p (we shall make use of this result later in §15.):

Artin-Schreier Theorem . Let p := char(K) # 0 and consider a finite
eyclic extension N/K of degree p with T := Gal(N/K) = o ; then
N = K(c) where c is such that °c = l+c and a := cP - c € K¥, .e.

¢ has the minimal polynomial TF - T - a € K[T] .

Proof, Copy the proof of Lemma 6 with the following alteration: replace D
by N and forget about the d (note: there we needed the d for the
definition of o , here the ¢ is given !). Finally conclude L = M =N
for reasons of degree and observe a # O as well as (for reasons of
characteristic) % = (1+c)P = (14e) = P

=K .n

-c¢c=a, hence a € FixL(o) =

The second application of Lemma 6 is
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Corollary 2 . Let D # K be a K-skew field, then there exists a sepa-
rable field extension L/K such that K#L<D .

Proof. In case char(K) = 0 there is nothing to prove. Now consider the
case p := char(K) # 0 3 if there were no such extension L/K every 2z €
€ D would have to be purely inseparable over K , hence there would be

some e € N (depending on z ) such that d := zPe ¢ x but dP € K 3 this

would contradict Lemma 6. O
From Corollary 2 we deduce the following important result.

Kothe's Theorem . Let D be a K-skew field, then there exists a maximal
commutative subfield M < D such that M/X <s separable.

Proof. We proceed by induction on the index i(D) , the case "i(D) = 1"
being trivial. Consider the case "i(D) > 1" : take L as in Corollary 2
and consider E := ZD(L) 3y E is an L-skew field (cf. Lemma 3 in §7.)

of index i(E) = i(D)/|L:K| < i(D) (ef. the Centralizer Theorem in §7.).
By induction hypothesis E contains a maximal commutative subfield M
such that M/L is separable, hence M/K is separable. Thanks to Theorem

4 in §7. M is also a maximal commutative subfield of D . O

In order to make full use of Kdthe's Theorem we need a characterization of

splitting fields of central simple algebras.

Theorem 7 . Let L/K be a finite extension and [A]l € Br(K) ; then
[A] € Br(L/K) (Z.e. L 1is a splitting field of A ) if and only if there
exists an A' such that [A'] = [Al, Lc A" and |L:x|? = |ar:k| .

Proof. The "if" part is easy to prove: for reasons of degree we have
ZA,(L) =L (ecf. (10) in §7. and the Centralizer Theorem Zbid.}, hence

PL/K([A]) = PL/K([A']) = [L] = 0 thanks to Corollary 1 .

For the "only if" part set n? = |A:K]| = IAOKL:LI and m = |L:K| ; by
assumption we have A°P 8 L Mn(L) (cf. Theorem 2). Now consider the
injective K-algebra homomorphisms £,g (note that L and A°® have no
proper two-sided ideals !) defined in the diagram below:
I T
1% 4%Pg Lo M (L) e End (I%) c End (1) « M_(K) =B .
a®l K n L = K _mn

1 ///
a A%P g

Embed L,AoP S B (see above) and define A' := ZB(AOP) in this sense.
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By construction it follows L € A' ; Theorems 2/6 yield [A'] = [B] -

- [a°P1 = 0 - (-[A]) = [A] and finally (vii) in the Centralizer Theorem

in §7. gives |A':K]| = m2n2/n2 =m’ = IL:K|2 . o

If we combine Theorem 7 with Lemma 3(B) we get

Corollary 3 . Let [A]l € Br(L/K) such that |L:1<l2 = |AK]| , then
LewsA, t.e. L may be viewed as embedded in A . D

If we apply Theorem 7 to the skew field component of A and use then
Theorem 1(f) we get

Corollary 4 . rLet [A] € Br(K) and L a splitting field of A of fi-
nite degree |L:K| , then i(A) divides |L:k| . o

Moreover, Theorem 7 and Theorem 4 in §7. imply

Corollary 5 . Any maximal commutative subfield L of a K-skew field D
i8 a splitting field of D . O

If we apply Corollary 5 to the skew field component of a central simple

K-algebra A and make also use of Kdthe's Theorem we get

Corollary 6 . Let [A] € Br(K) , then there exists a splitting field L
of A such that L/K <s separable and |L:X| = i(A) . o

Now the following amplification of Theorem 1 is obvious (cf. also (3)).

Theorem 8 . The following statements are equivalent:

(a) A 18 a central simple K-algebra ;
(g) A 8 L= Mn(L) for some finite separable L/K ;
(h) A® Ne Mn(N) for some finite Galois N/K . @

Theorem 8(%) may be restated as

Theorem 9 . Br(x) = \_J Bo(L/k) .o
L/K finite
Galotis

Here we remark that Theorems 8/9 can be strengthened in the sense that
Galots can be replaced by the stronger metabelian (and hence soluble) - i.e.
Galois with metabelian (and hence soluble) Galois group; cf. §8§11/17.

We come to an important application of Corollary 6 (which depends on

K&the's Theorem):

Theorem 10 . Let [A] € Br(K) , then i(a)[Al =0, Z.e. Br(K) Zs a

torsion group.
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Proof. Choose a splitting field L of A such that L/K 1is finite sepa-
rable of degree 1i(A) (see Corollary 6); then Theorem 5 yields

i(a)lal = |L:K|[A]='CL/KrL/K([A]) =e (0 =0 .0

Thanks to the preceding theorem the following definition is feasible:

Definition 6 . Let [A]l € Be(K) , then o(A) := min{ »r € N | r[a) = 0}
- Z.e. the order (in the sense of Group Theory) of [Al in Br(K) - is

called the "exponent of A " .

0f course we have (compare with (2))
(7) o(A) = o(B) if [A] = [B]

Moreover, Theorem 10 implies
Corollary 7 . o(a)|i(A) for all [A] € Br(X) . o
Another easy consequence is (cf. Group Theory):

o(A@KL)Io(A) for [A] € Br(K) ( L/K arbitrary) and

(8) (B))!o(B) for {B] € Br(L) ( L/K f£finite separable).

o(cL/K

Our next result may be viewed as a weakened converse to Corollary 7 .

Theorem 11 . Let [A] € Br(K) and let p be a prime dividing i(A) ;
then p divides o(A) , Z.e. index and exponent have precisely the same
prime factors (apart from multiplicities).

Proof. By Theorem 9 we may assume [A] € Br(L/K) for some finite Galois

L/K . Let T := Gal(L/K) and choose any p-Sylow subgroup Pp of T ;3 let

Lp iz FixL(F ) be the corresponding p-Sylow subfield of L , then

p*|Lp:K| but p|i(A)||L:K| = |T| (cf. Corollary 4),

hence pf (= L] > 1
P P

Now [A & Lp] € Br(L/L ) (cf. Theorem 3) and O # [A € L] in Br(Lp)

(for otherwise Corollary 4 would imply pli(A)||Lp:Kl which contradicts

our construction), hence (thanks to Corollaries 4/7)

. . _ _f
14 o(A@KLp)Il(A@KLP)||L.LP| =p >1,

therefore p o(A@KLp)lo(A) because of (8) . o

Incidentally, it was R. Brauer himself who showed first that no more re-
lations between index and exponent than the ones coming from Corollary 7/

Theorem 11 can be established in general; cf. also (7) in §2u.

We close this paragraph with some remarks on index reduction.
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Theorem 12 . Let [A) € Br(K) and L/K a (not necessarily finite) field

extension; then

(A) (a0, 1) |i(A)
(B) E?%éﬁ%TllL:K‘ in case L/K <is a finite extension ;
(c) E?%%§%7 = |L:K| <f and only <f L can be embedded into the
skew field component D of A .
Definition 6 . The quotient ilh) in Theorem 12 Zs called the "index
1(A0KL)

reduction factor (of A relative to L/K )".

Proof. Clearly we may restrict our attention to the case where A =D is
a skew field (cf. (2)). Now write D @K L = Mr(E) where the L-skew field
E 1is the skew field component of the left hand side (cf. Theorem 1(f)) ;

e eas , . _ i)
by definition 1(D®KL) = i(E) , hence (A) and r = E?ﬁ@;fj

. Now set m :=
:= |L:K| and consider the K-algebra homomorphism L: L - EndK(L) s X & Lx
where Lx stands for left multiplication with x ; idD@L is then an in-
jection Mr(E) =~ @K L->D @K EndK(L) = D QK Mm(K) =: B , hence we may
(and shall) view both L and Mr(K) embedded in B . Now define C :=
1= ZB(Mr(K)) 3 it follows L < C and (see Theorem 6)

{c] = [ZB(MP(K))] = [B] - [Mr(K)] = [B] = [D] ,

hence
LS C= Mt(D) for suitable t

thanks to Theorem 1(f). On the other hand we find B =C & Mr(K) (cf.

Corollary 8 in §7.), consequently (see also Lemma 4/Corollary 1 in §5.)
M(D)~D®& M(K)=BaC@® M(K)=~M(D) & M(K)=~M_ (D),

i.e. |L:K| = m = rt . This proves (B) and the "only if" part of (C) simul-

taneously. Finally, for the proof of the "if" in (C), we consider E' :=

= ZD(L) ; then E' is an L-skew field such that [E'] = [D QK L] satis-

fying i(D) = i(E')m = i(D@KL)|L:K| (cf. the Centralizer Theorem/Lemma 3

in §7.). ©

Corollary 8 . Let [A]l € Br(K) and L/K a finite extension such that
i(A) and |L:K| are coprime; then (A8 L) = i(A) . In particular: if
D <8 a K-skew field and L/K a finite extenston such that |D:K| and

|L:K| are coprime, then D & L remains a skew field . o

K
0f course, Corollary 8 remains true for i¢nfinite extensions L/K if one

interprets |L:K| in this case as a supernatural number (see §2 in Ch.I
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S.S. Shatz [1972]).

Corollary 9 . If D <8 a K-skew field and L/K a finite extension of

prime degree, then either L <D or D 8 L remains a skew field. o

K

Now we investigate another type of index reduction:

Theorem 13 . Let [A],[B] € Br(K) , then

(4) i(a8,B) |i(W)i(B)
i(A)i(B) |, 2 . 2
(B) _ETKBEET i(A)",1(B)

Proof. Again we may restrict our attention to the case where A and B
are K-skew fields (cf. (2)). Then we have (cf. Theorems 1/2)
~ op
A8 B=D8 MS(K) and A" ® D =B 8 Mt(K)
for some K-skew field D and suitable s,t € N . Since i(A@KB) = i(D)
and 1(A)i(B) = i(D)s we get (4) immediately.As for (B) it suffices to
prove (say) "s|i(A)2" ; using Corollary 2 in §5. we obtain (here n :=
. 2
i) = Ja:x] )
o °pP ~ p%P o
M (B) =M (K) 8 Bex (A7 @ A) & BaA™ & (A8 B)

o op o oP o2
A @K (D @K MS(K)) (A 8, D) @K MS(K) B @K Ms,c(K) .

hence i(A)2 = n = st (cf. the various rules from §§4/5.). O

Corollary 10 . Let [a),[B) € Br(K) such that i(A) and i(B) are co-
prime, then i(AeKB) = i(A)i(B) . In particular: if D,E are K-skew fields
of coprime index, then D 8 E remains a skew field. o

Theorem 14 . Let D be a K-skew field of index i(D) = mn with coprime
m and n ; then there exist unique (up to isomorphism) K-skew fields E
and F such that i(E) =m, i(F) =n and E 8 Fx~D.

Proof. Using Corollary 7 we may write

o(D) = mn, with coprime L and ny such that molm , n0|n
and find unique [E],[F] € Br(K) such that (compare the elementary theory
of abelian torsion groups)

[p] = [E] + [F] where o(E) = m, and o(F) = ng
Now o(E) and o(F) are coprime by our construction; consequently (cf,

Theorem 11) i(E) and i(F) are likewise coprime, hence E & F is also

K
a skew field ~ D . Now Lemma 3(68) implies even E ®K F~D .,0D
r f
Corollary 11 . Let D be a K-gkew field and i(D) = ppp the prime
p=1

power factorization if its index, then
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r £
D e D with K-skew fields D i =p?f
@L o f o such that 1(Dp) p, - O

Now use (8) with B := A QK L and apply Theorem 5 ; this gives

Corollary 12 . Let [A] € Br(K) and L/K a finite separable extension
such that o(A) and |L:K| are coprime; then o(A,L) = o(a) . o

Note that o(A) and |L:K| are coprime if and only if i(A) and |L:K|

are (cf. Theorem 11).

Theorem 5 and Corollaries 8/12 can be restated in a more coherent way: de-
note by  Br(K) := { [A] € Br(X) | m[A) = 0 } the m~torsion component of
Br(K) - hence [Al € Br(K) if and only if o(A)|m - and by Br(K)P =

1= k.) fBr(l() its p-primary component ( m € N , p a prime ), then-
f=1p

Corollary 13 . Let L/K be finite separable such that m and |L:K|

are coprime ( m € N ), then r Br(K) - mBr(L) 18 injective and

L/K m
preserves index as well as exponent. Moreover, mBr(L) - mBr(K) 18

CL/K:
surjective, O

Another way of expressing the same ideas is

Corollary 14 . Let L/K be finite Galots, I' := Gal(L/K) , Pp a p-Sylow
subgroup of T and Lp 1z FixL(PP) the corresponding p~Sylow subfield of

L, then » Br(L/K)p - Br(L/Lp) 18 injective and preserves index as

L/

well as exponent. Moreover, Br(L/Lp) - Br(L/K)p 18 surjective. O

ch/K:
Again the finiteness of L/K (in Corollaries 12/13/14) is not really ne-
cessary; all these results can easily be extended to the infinite case by
inductive (resp. projective) limit techniques (cf. Ch.I of S.S. Shatz
[1972]). The separability conditions are also superfluous; for instance
Corollary 12 remains correct even in the inseparable case (cf. S.A.

Amitsur [19621).

Exercise 1 . Prove the converse of the Artin-Schreier Theorem, namely:
let p := char(K) # 0 , a € K and consider the polynomial f£(T) :=

:= TP - T - a € KIT] ; then either f£(T) splits into p factors over K
or £(T) is irreducible and any root ¢ generates a field K(%a) 1= K(e)

such that K(%a)/K is cyclic with generating automorphism ¢: cw ¢ + 1 .

Exercise 2 . Let [A] € Br(K) and L/K a field extension, then
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i(a)
i(ae, L)
can be embedded in Mr(D) where D stands for the skew field

= p|L:X| if and only if r is minimal such that L

component of A .
(cf. Theorem 23 in Ch.IV of A.A. Albert [1939]; note that this exercise

generalizes Theorem 12(C))
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§ 10 . CYCLIC ALGEBRAS

In §7. (cf. Definition 4 Zbid.) we have already introduced the
cyelic algebras

(a,L/K,0) := @ Le® with multiplication e” = a and
(1) i=

ex = %xe (hence xe-l = e_lcx ) for all x €L ;

here L/K is a finite cyclic extension of degree n with generating
automorphism o and a € K*¥ is given. Thanks to Lemma 6 in §7. we have
(with the notation introduced in §9.)

(2) [a,L/K,0] := [(a,L/K,0)] € Br(L/K) € Br(K)

Now we claim (situation as above)

Lemma 1 . (a,L/K,0) =~ (b,L/K,q) provided be L*)

a NL/K(
Proof. Write A := (a,L/K,q0) = @ Le® and B := (b,L/K,0) = @ LE* R
i i i

now take ¢ € L¥ such that b = aNL/K(c) and set fO iz ec € A¥ |, It
n _ n _ B _ 0 _ 0o
follows fO = (ec) = L/K(C)a = b and f X T ecx = xec = xfO for

all x € L , hence the assignment £+ fo , x» x ( R€ L) induces a
K-algebra homomorphism g: B—> A which is even an isomorphism because of
Lemma 1 in §9. o

Lemma 2 . Let {A] € Br(K) and L/K a cyelic extension of degree n
2 _

with generating automorphism o such that L <A and n |A:K| ; then
there exists an e € A*¥ such that a := e" € K* , ex = % (x€ L) and
= @ Le® . Moreover, if £ € A* <4s such that b := e Kk, fx = Ox£
i= n-1 .
- 1
(x€L) and A-iQ:}OLf,then € Ny (1%)

Proof. By Theorem 3 in §7. we see L = ZA(L) » hence the existence of

e € A¥ such that A = @ Le® is already clear from Theorems 5/6 in §7.

Inspection of the proof of Theorem 5 7bid. shows that e arises from the
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Skolem-Noether Theorem in §7.:

% = exe_l for all x € L .
It follows x = 02 = enxe_n for all x € L , hence a := en € ZA(L) = L
and therefore 0a = eene-l =e=a s, hence a € FixL(o) = K . Now if
£xft = % = exe™t forall x€L,

then e_lfxf_le and consequently ¢ := e—lf € ZA(L) = L as well as
[ : n _ _ n o_
b := £ = (ec) = .. = NL/K(c)e = NL/K(c)a .0

If we replace in the preceding proof o by another generator ot (note
that t and n must be coprime) of Gal(L/K), then e must be replaced

by et , hence a by at . This gives

Lemma 3 . For cyeclic algebras we have the rule
(a,L/K,0) = (at,L/K,ot) provided t and |L:K| are coprime.o

The next rule is crucial.

Lemma 4 . For cyclic algebras we have the rule ( n = |L:K| )
(a,L/K,0) 8, (b,L/K,0) = M_((ab,L/K,0))

Proof. Set A :

(a,L/K,0) = G{) Le® , B := (b,L/K,0) = €£> LS and
i 1

C := (ab,L/K,o0) 6}} Leé ; now consider the matrices
i

0 El\\O for j = 0,..,n , define 4 := Al
(3) Aj iz 'g-—zﬁfl-Jk € Mn(K) and observe Aj =43 ¢ j as
1
O\\a: 0 above)
4 . n-j rows and columns i-th row and
. l column
j rows and columns
4 \\ci 0
If we define g(e) := 4 , h(f) := eOA = A & > g(x) := X and

AN
h(y) :=ylI ( x,y € L),
then these matrices in Mn(C) satisfy the following equations:
gle)® = 4™ = a (cf. (3)), gle)g(x) = g(%x)gle) (cf. Lemma 1
in §2.), n(H" = A"“eg =aab = b and h(£)h(y) = A'leoy =
= "y te, = h(°y)h(£)

hence two K-algebra homomorphisms g: A - Mn(C) , h: B » Mn(C) are well-

s

defined. Now our claim is an easy consequence of Lemma 2 in §9. thanks to
g(e)h(f) = ey = h(flgle) , g(x)h(y) = h(ylglx) , glelhly) =
= h(y)gle) and h(Hgx) = gle) Teg(x) = gle) Tg("x)e, =
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= g(x)g(e)—leO = g(x)h(f) (x,y€EL) .no

Theorem 1 . Let L/K be finite cyclic with generating automorphism o ,
then the assigmment a v [a,L/K,0)} ( a € K¥, cf. (2)) induces an isomor-
phism

0, K*/NL/K(L*)—Axa Br(L/K) .

Note that in view of Example 1 in §6. the latter isomorphism may be re-
stated in the form
4) HO(F,L*) & Br(L/K) in case T := Gal(L/K) 1is cyclic .

Proof. Thanks to (2) and Lemma 1 the map Oo is well-defined. Lemma 4
says that Oc is even a homomorphism. The injectivity of Oc follows
from Lemma 2 whereas the surjectivity is a consequence of Lemma 2 and

Theorem 7 in §3. o
Now we are ready for the proof of two really classical results:

Frobenius' Theorem (1878) . Let D be an R-skew field # R , then ne-
cessarily D =~H (ef. (1) in §1.), Z.e. Br(R) = Z/2Z .

Proof. We have Br(R) = Br(C/R) = R*/NC/R(C*) ~ R*/R;O ~ 7/27 (see Theo-
rem 9 in §9. and Theorem 1 above), hence there is just one R-skew field

# R which must (up to isomorphism) be the one introduced in §1. O

Wedderburn's Theorem (1905) . ALl finite skew fields are commutative, i.e.
Br(K) = {0} Zf K has only finitely many elements.

Proof. We make use of the following result from Field Theory (which we

shall prove below for the convenience of the reader):

Lemma 5 . Let K be a finite field and L/K a finite field extension;

then L/K s necessarily cyclic with surjective norm NL/K: L* » K* |
Proof. Set q := |K| , n := |L:K| , hence qn = |L| . It is well-known
that x + xY defines a K-automorphism of L - called the "Frobenius

automorphism" - which is clearly of order n ; therefore L/K must be

cyclic (cf. Artin's Lemma in §6.) with the above automorphism as a genera-

tor of its Galois group. It follows
n
. -1
n-1 i - ok
N (x) = x3 = x81 : le 2
L/K s
1=0
where |L*¥:K*| denotes the index of the multiplicative group X* in L¥ .
Since L* is known to be a cyclic group (cf. Field Theory) NL/K must be

surjective, O
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Proof of Wedderburn's Theorem (continued). Thanks to Theorem 9 in §9.,

Lemma 5 and Theorem 1 we obtain

Br(K) = Br(L/K) = Br(L/K) o
L/K\?Iﬁite L/k}?ﬁﬁite

Galois cyclic
o K¥/N_ , (I*¥) = {0} . ©
L/K%ite L/K
cyclic

Of course, J.H.M. Wedderburn's original proof was along different lines;
note that there exists a simple direct proof (i.e. a proof which makes no
use of the concept of Brauer groups) due to E. Witt ; it is reproduced

e.g. in the first paragraph of A. Weil [1967].
Now let us deepen our study of the formalism of cyclic algebras.

Lemma 6 . Let L/K be cyclic of degree n with generating automorphism
o and let I be an intermediate field of degree m over K ; then
" generates Gal(L/1) and

(a,L/K,0) 8, I ~ (a,L/1,0™) .

Proof. Write A := (a,L/K,0) = éf} Le® and consider ZA(I) 3 now let
n-1 i +
z = x.e € A be given. Then 2z € ZA(I) if and only if
i=0 i s
_ _ o _ i oo m
0=2x - x2 = %.( X x)xie for all x €1 = leL(O )
hence if and only if x, = 0 for all i which are not multiples of m .

The latter amounts to ( s:= n/m = |L:I| )

s-1 m3 s-1 3 m
zZ = X .e " = £ L= x ., Fize
5 ™ Zo yiE Oy, mj ° )
3=0 = m m
where f£° = ™ = a and fy = emy = 0yem = Oyf » hence (cf. also

Corollary 1 in §9.)

(a,L/I,0") = Z,(1) ~A® I=(a,l/K,0) 8 1.0

K

The next result is a supplement to the previous one.

Lemma 7 . Let L/K be cyclic of degree n with generating automorphism

6 and let F/K be an arbitrary (not necessarily finite) extension such

that LNF =K . Then L & F 18 a field =~ LF such that L 8 F/F 1is

likewise cyclic of degree n with generating automorphism o®idy (which

we abbreviate by o after identifying L e F with LF ) and such that
(a,L/K,0) & F o (a,LOKF/F,GOidF) = (a,LF/F,0) .

Proof. All but the last assertion is well-known from Field Theory. As for
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the formula concerning the cyclic algebras we note that there is an ob-
vious injection (a,L/K,o0) - (a,L@KF/F,o@idF) 3 P-linear extension there-
of (cf. Theorem 3 in §5.) and Lemma 1 in §9. give the required isomor-

phism. O

Lemma 8 . Let L/K be cyclic of degree n with generating automorphism
o and let 1 be an intermediate field of degree m over K ; then
Tizg [ generates Gal(1/K) and

(a®,L/K,0) =~ MS((a,I/K,E)) where s := % = |L:1f .

Proof. Let {el,..,es} be a basis of L over I , then - if we write

e := (el,..,es) €1’ - every x € L determines a matrix
£(x) € MS(I) via xe = ef(x)

On the other hand we have a map F: T := Gal(L/K) - GLS(I) via the corres-
pondence Te = eF(1) 3 it follows at ease ( 1,0 €T ; X €L )

ef("x)F(1) = "xer(1) = "xTe = T(xe) = T(ef(x)) = TeT£(x) =
eF(1)TE(x) and eF(tp) = e = "(Pe) = T(eF(p)) =
Te'F(p) = eF(1)'F(p)

(note that T acts on matrices componentwise), hence

u

(5) £("x)F(1) = F(1)"f(x) forall T€T , x €L

and (note o = 1) n-1

(6) F(tp) = F(T)TF(p) , in particular I = F(G)OF(G)..0 F(o) .
n-1 . m-1 .

Now set A := (aS,L/K,o) = (}} Le* , B := (a,I/K,0) = g{i Te? and define
i=1 j=

f(e) := F(o)e € MS(K) . Thanks to

£(e)f(x) = F(0)ef(x) = F(0) £(x)e = £(°x)F(0)e = £("x)f(e)
for all x € L (ef. (5)) and n-1

£#(e)® = (F(0)O” = .. = F(0)°F(0)..0 F(o)e" =T = a°
(cf. (6)) we see that a K-algebra homomorphism f: A - MS(X) is well-

defined and even an isomorphism (because of Lemma 1 in §39.). O
We close this paragraph with a lemma which will be needed later in §15.:

Lemma 9 . Let Lj/K be cyclic of degree ny with generating automor-
phism °j (j = 1,2) such that Ll n L2 = K and nr =, (r€N);
_ s . . U =l, r
then L := L, QK L, isa field. Moreover, if Ly := F:.xL(o1 @02) and

9 i (idLl@cz) Lo , then LO/K 18 cyclic with generator % and
-1
(a,Ll/K,cl) 8 (a,L2/K,02) = (1,L,/K,0,7) & (a,LO/K,cO)
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Proof. The fact that L is a field is well-known from Galois Theory.
Moreover, since 011802 has order n, we conclude IL:L0| =n
ngy = |LO:K| =mn, . Now let x, = % %, 8%, €L (%

be given, then

. . - r —
%5 € LO if and only if %) cl%xlv)ﬁoz(xzv) = %} leQXQv N

, hence
v € L2 )

1
v € L1 s X

1 2

hence % has order ny =B, i.e. LO/K is cyclic with generating

automorphism 9y -

. ° _ i . a -
Now write A, := (a,Li/K,04) = 619 Liel (320,1,2) , A = (1,L/K,0]

L

= 6{} Llel o Mn (K) (cf. Theorem 1 ) and B := A, 8 A_ ; moreover, define

1 K "2
1 1
embeddings
£ L & L&»B and g: LO > Lcs B
as well as elements
_ ~l, r .
f(e) := e ®e2 and g(eo) = 1®e2 .
It follows ( Xy € Ll s X € L0 ) using the usual identification of K @K K
with K :
LS o
fe) “~=a ® =1, g(eo) = 18a = a , f(e)f(xl) =
_ -1 r _ -1 -1, r _ -1 -
= e xl@e2 =0 (xl)el ®e2 = f(cl (xl))f(e) and g(eo)g(xo) =

Z\) X1088% gy = Z\) %1,895(%p )8,y = 8log(xg))eley)
Therefore the two embeddings f,g (see above) extend to K-algebra homomor-
phisms f: A=+ B and g: AO - B . Now our claim follows from Lemma 2 in
§9. thanks to

fle)gley) = gle)f(e) , £lxalxy) = glx)f(x)) gleg)f(x,) =

f(xl)g(eo) (all three obvious) and f(e)g(xo) =
_ -1 r _ -1 -1, r roo_
- Z\) ey Xy 8e%yy T Z\) 0y (xp)e; 80, (%, e, =
-1 r

1l
x
[
<
o
Py
3
X
N
<
o
N
"

g(xo)f(e) . o

Exercise 1 . Let L/K be cyclic of degree r with generating automor-

phism 0 , Assume r = mn where m and n are coprime. Now denote by

M (resp. N ) the intermediate field of L/K of degree m (resp. n ) over

K with generating automorphism T := ¢ M (resp. p := ¢ N ). Show
(a,L/K,0) = (b,M/K,1) 8 (c,N/K,p)

for suitable b,c € K*¥ (depending on the given a € K* ),
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§ 11 . POWER NORM RESIDUE ALGEBRAS

Denote by vy the full group of n-th roots of unity and assume
throughout this paragraph u_ < K (note that this implies char(K)/n ).
Now choose a,b € K¥ and select an auxiliary field extension L/K such
that b € (I*)" (for instance take L a separable closure of K ).
Furthermore denote by ¢ a primitive n-th root of unity, i.e. () = L

and consider the matrices

A € Mn(K) according to (3) in §10., Z := \\;{\f) € Mn(K)
and B := BbZ € Mn(L) for some 0
B €L such that B = b . i-th row and column
Lemma 1 in §2., yields
(1) A" = a ,B" =b, and 4B = B4
as well as the following obvious consequences thereof:
(2) A%B? =.Z;i?.Bin.3 hence
a8 = s uma s HY (15e2) .

Now consider the n2 matrices 4'B? (0 <1i,j <n ); we want to show their
L-linear independence (and therefore their K-linear independence): indeed,
consider an L-linear combination

n-1 n-1 i3

0= (S %, A'B) (x,.€L);

i=0 j=0 .3 +J
since the r-th row of A% = Ai (cf, (3) in §10.) has no entries # 0 out-
gide the (i+r)-th column (read the indices mod n ) the same statement re-

mains true with

n-1 i3 :
S x4 B) in place of 4% ( i € {0,1,..,n-1} fixed )
3=0
(cf. Lemma 1 in §2.), hence it suffices to prove the L-linear independence
of the n elements A7B7 (3j=0,1,..,n-1 ) for every fixed i , i.e. -
since A € GLn(K) = Mn(K)* - the L-linear independence of the n elements
B3 (3j=0,l,..,n0-1 ). The latter, however, amounts to the (well-known)

non-vanishing of the Vandermonde determinant det( Vij )  where vij =
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= (5;1)3_1 (1<1i,j<n ). Consequently

n-1 n-1 i3
(3) @ @ KA™B? =: A (note AEMn(L) )

i=0 j=0
is an n -dimensional K-algebra such that L-linear extension of the embed-
ding (cf. Theorem 3 in §5.) defines an L-algebra isomorphism A @K L ot
e~ Mn(L) (cf. Lemma 1 in §8.), hence A is even a central simple K-
algebra (cf, Theorem 1(d) in §9.) which is completely determined (up to
K-algebra isomorphism) by the formulae in (1). Since any K-algebra A ge-
nerated by a,b € A and subject to the relations a®za, b =b and
ab = zba is necessarily a homomorphic image of A (by (3)), it must be

=~ A thanks to Lemma 1 in §9. Thus we have proved

Theorem 1 . If <(t) = uoSK, then all K-algebras A generated by two
elements a,b such that

(1) a:=a’€x* ,b:=b€xk, ab = cba

are isomorphic (namely = A in (3)). They are central simple K-algebras,
and any field L such that K<L and b € (1) is a splitting field.o

Definition 1 . We denote any of the isomorphic K-algebras described in
Theorem 1 by

(a,b;n,K,z)
and call it (for reasons which will become clear later in this paragraph)
a "power norm residue algebra'. Moreover, we write

la,bsn,K,t] := [(a,b3n,K,z)] € Br(K)
If no confusion can arise we omit any of the symbols n,K,z in
(a,b;n,K,z) and [a,b;n,K,z]

Definition 2 . If char(K) # 2 , n =2 , hence ¢ = -1 , we write

(9??-) in place of (a,b;2,K,-1)

and call such an algebra a "quaternion algebra'.
See §14, for more details on quaternion algebras.

Lemma 1 . Let (g} = W S K, [k(Va):k| = n and [A) € Br(x(VR)/K), then
[al = [a,b;n,K,z] <n Br(K) for suitoble b € K* .

Proof. In our situation it is known from Field Theory that k(W3 is
cyclic with generating automorphism a: Va e ceg . Now we replace A by
B such that [A] =[B) , a :=Va€B and |B:K| = 0% (cf. Theorem 7 in
§9.). Then Lemma 2 in §10, implies the existence of b € B* such that
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n-1 . n-1 n-1 i oa -1 n
B = €£> K(a)bJ = é{}(éE} Ka')bd where b := b € K¥ and
30 330 10

bx = “xb for all x € K(a) , in particular ba = zab ,

hence ab‘l = cb-la and therefore B = (a,b;n,K,;) because of Theorem 1.0
Note that the above proof includes a proof of the following

Lemma 2 . Zet (¢ =u_ €K and |k(Va)ik| = n, then
(a,b3m,K,0) = (b L,kME) /Ko = (b,x(Pa) /K6 ™)
where 0(%) = cVé . 0

Moreover, since in case un < K the cyclic extensions L/K of degree n

coincide with the radical extensions (as in Lemma 1) - see e.g. Prop.5 on

P.205 in vol.2 of P.M. Cohn [1974/77]; note that this is also an immediate
consequence of Hilbert's "Satz 90" in §6. thanks to NL/K(C) =1 -, we

get from Lemma 1

Corollary 1 . Let (g) = W, < K, L/K a eyclic extension of degree n
and [A] € Br(L/K) , then
[A] = [a,byn,K,z] for suitable a,b € K* . o

Now we turn to a discussion of the main features of the power norm residue

algebras.

Lemma 3 . (a,b) &, (a',b') = (aa',b) 8 (a’,b_lb') s> Z.e. [a,b] + [a',b']=
= [aa',b] + [a',b "b'] Zn Br(X) .

Proof. Write A := (a,b) := (a,b;n,K,z) , A' := (a',b') := (a',b';n,K,z) ,
and let a,b resp. a',b' be generators of A resp. A' (cf. Theorem 1).

Now consider the elements

¢ :=aga' , d := b®1l , ¢' := 18a' and d' := b™2ebr
in A QK A' . Clearly we obtain (by straightforward calculations)
(5) e zaga' zaa' ,d" =b8l =b , ed = zde
and
(6) e'® = 18a' =a' , d'® = b leb' = bbr , erd' = cdre!

(here we used the usual identification of K ®K K with K ).

Moreover, all elements in (5) commute with all elements in (6). Hence the
K-algebra homomorphisms f: (aa',b) - A QK A' and g: (a',b—lb') -

- A ®K A' (which exist thanks to (5),(6) and Theorem 1) define the re-

quired isomorphism because of Lemma 2 in §9. O

Now recall that

(7) [a,b] =0 if b € (K¥)® , i.e. n is a non-zero n-th power
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(see Theorem 1: take L = K ), set b' = b in Lemma 3 and use (7). It

follows immediately

(8) [a,b) + [a',b] = [aa',b] + [a',1] = [aa',b] .
Now take a' = 1 in (8); this gives
(9 [a,b] + [1,b] = [a,b] , hence [1,bl =0 .

Using Lemma 3 in the case a' = a—l and b' = 1 we find with the help of
(7) and (9) the formula

(10) [a,b] = [a,b] + [a™1,1] = [1,b] + [a™+,57H) "yt

= [a 7,b 7]
and consequently (use (9),(10) and apply Lemma 3)

[a,b] + [a,b'] = [a,b] + [a~1,p' 1]
= [a,bb'] .

Combining (7),(8) and (11) gives

= [1,b] + [a_l,b_lb'_l] =

(11)

Lemma 4 . Let (c) Su SK, then the assigmment (a,b) » [a,b;n,K,z]
induces a I-bilinear map ¥*/(x*)" x k*/(x*)" o nBr(K) . o

So far the primitive n-th root of unity ¢ was fixed. Now we want to study
the impact of the change of ¢ :

Lemma 5 . Let n and t be coprime, then (a,b;n,g) = (a,bt;n,ct) s L.e.
[a,b;n,z] = t[a,b;n,ct] in Br(K) .

Proof. Let a,b generators of A := (a,b;z) as in (4). Define
c:=a and d :=b° in A .

Because of (2) this gives
Mza,d = ¥ = b% and cod = ab® = ctbta = Ltdc ,

hence A =~ (a,bt;n,K,ct) by Theorem 1 , O
An important consequence of Lemma 5 is

Corollary 2 . TLet uoSK, then the assigmment (a,b) » [a,b;n,K,z]18r
defines a bimultiplicative map K* x K* - rlBr(K) 8w, which is indepen-
dent of the choice of the primitive n—th root of unity ¢ . O

Moreover, since (by Theorem 1) obviously (b,a;gnl) =~ (a,b;z) , we obtain

from Lemmata 4/5
Corollary 3 . [b,al = -[a,b] , Z.e. (b,a)~ (a,p)? . @
The next result is of utmost importance:

Lemma 6 . Asswme n =rm and () = u < K , hence (cr} =u SK, then
(a,bP;n,K,c) o MP((a,b;m,K,cP)), Z.e. rla,b;n,K,z] = [a,b;m,K,cr] .

Proof, Let a,b be generators of A := (a,b;m,cr) such that (cf. (4))
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A =a,bt"=b and ab = Fba

and consider the matrices

A€ MP(A) according to (3) in §10. but with a € A in place

of a€K, N ]

;O A
B := bX € M (A) where X := ct € M (K) i-th row and
r 0 \\ r column

(note that X coincides with the matrix Z at the beginning of this para-
graph if m = 1 ). Clearly we have (after an easy calculation; see in par-
ticular Lemma 1 in §2.)

A" =™ = d" = a ,B" = b™ = b" and 4B = ¢BA ,

hence M (A) o (a,br;n,K,C) because of Theorem 1. O
r
A consequence of Lemmas 5/6 is (cf. also Theorem 14 in §9.)

Lemma 7 . Let r,s be coprime, i.e. 1 = xs + yr for some =x,y € L,
assune &) =u, SK, id U, SK, and set n :=rs , ¢ := En . Then
gy = M, S K, £ = t% and n = &7 . Moreover, we have

(a,b3n,z) = (ax,bX;r,F,) @K (ay,by;s,n) which 1is equivalent to
[a,bsn,z] = x2[a,b;r,£] + y2[a,b;s,n] in Br(K) .

Proof. The fact that the last two assertions in the lemma are equivalent
is clear from Lemma 3(B) in §9. Now Lemmas 5/6 imply

[a,byn,z] = xsla,b;n,z] + yrla,byn,z] = x[a,b;r,;s] +

+ yla,b;s,g"] = x2[a,b;r,5] + y2[a,b;s,n] .o

Of course, Lemma 7 means that one may restrict the attention to the case
"= pt ( p a prime # char(K) )" .

Now, if L/K is an arbitrary (not necessarily finite) extension, we see
that L-linear extension of the obvious embedding (a,b;K) = (a,b;L)
yields the L-algebra isomorphism described in the lemma below (cf. Theorem

3 in §5. and Lemma 1 in §9.):

Lemma 8 . (a,b;K) 8 L= (a,b3L) , Z.e. [a,b;K] = [a,b;L] . O

"L/K

Combining Lemmas 4/6/8 gives then
r
Lemma 9 . Asswme n =rm and (T) = W, < K, hence (g )= WS then

T (05 lasbinaKstl = WA, bm,x(¥a),c"] in Br(x(Va)) . a

Now consider Lemma 9 and use Galois Theory: the field K(QE) is Galois
over K of degree (say) m ; then mln and our extension is even cyclic

with generating automorphism ¢ such that Wy =2 (ro:= % ).
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Moreover, Way = Y™ = A" = VA Jhence K(VR) = X , and there-

fore we obtain from Lemma 9 and Lemma 2 -~ note a = 05 - the important
Theorem 2 . Assume {r) = W S K and write m := |[K(YA):K| ( a € K* );
then v := 2-€ N and we have the equation

[a bin,K,z] = (571, k(Wa)/K,0] in Bo(k)

where 0(95 =z 95 .0
Theorem 1 in §10., Theorem 2 and Corollary 3 clearly imply

Corollary 4 . One has la,b;n,K] = 0 4Zn Br(K) <if and only Zf b 18 a
norm for the extension K(Va)/K which is the case if and only ©f a s a

norm for the extension K(YB)/K . o

An important application of Corollary 4 is

Lemma 10 . If a,b € K¥ such that a + b = M for some ¢ € K, then

[a,b;n] = 0 Zm Br(K)

Proof. Write L := K(¥a) , I' := Gal(L/K) = ¢ where 9¥a) = CPBE

(r= % s M = ]L:K| ; c¢f. the remarks previous to Theorem 2 above). Then
n-1 .
™ - a = (1 - ¢'Va) € LIT] , hence (set T = ¢ )
i=0
n n-1 m 1l r-1 ri+p
b=c"-a-= T"T<c - ¢Mm = T Tee - ¢7%a)) =
g3 -1 JOoO
e (T“T<c - ey = (TTe - ey .o
j=0 p=0 [}

Now consider the special cases ¢ =1 and ¢ = 0 in Lemma 10:
Corollary 5 . [a,1-al =0 and [a,-al =0 .o
Lemma 4 and Corollary 5 imply then

Lemma 11 . [a,b] = [-g,a+b] , la,a-b] = [b,2 ] + [a,-1] and
€ _Br(K) even ;

2 if n is
=0 odd .

{a,a;n] = [a,-1;n]

Proof. [a,al = [a,(-a)(-1)] = [a,-a] + [a,-1] and, if n is odd:
[a,-l;n] = [a,(-1)%n] = nla,-1;n] = 0 . Moreover, if ¢ := a + b , then
= [ac_1 1-ac™1] = [ac—l,bc_l] = [a,b] - [a,c] - [e,b] + [c,e] =
= [a,b] - ({a,c] - [b,e] + [-1,ec]) = [a, b] - [—-,a+b] and consequently

[a,a-b] = [a,-1] + [a,b-a] = [a,-1] + [ ,b] (a,-1] + [b,———] .0
Definition 3 . Let K be a commutative field, then we define

K (K) := K* &, K*/av(1-a) | 2 € k¥ >.
We write KZ(K) additively and denote by {a,b} the class of a®b <in
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the group KQ(K) . An element {a,b} <s called a "symbol" , Z.e. KQ(K)

18 generated by symbols,

Thanks to Corollaries 2/5 we have

Theorem 3 . Assume B < K , then there is exactly one homomorphism
Rn,K: K2(K)/nK2(K) — Br(K) 8; u

such that {a,b} » [a,b;n,K,z]8z . This homomorphism is independent of the

n

chotce of the primitive n—th root of unity ¢ . O

Definition 4 . The homomorphism Rn K from Theorem 3 g called the
k3

"(abstract) norm residue homomorphism”,

Later in §17. we shall see that R <8 always an tsomorphism ! Moreover,

we should point out that in general,KKz(R) may be defined for any ring R
(with 1 # 0 ); for this see J. Milnor [1971]. In the case of a commutative
field Matsumoto's Theorem (cf., §§11/12, op. cit.) leads to our definition.
It is worth mentioning that Matsumoto's Theorem can be carried over mutatis
mutandis to the general skew field case (cf. U. Rehmann [1978]). See §17.
for more information about the functor K2 .

Hitherto we have worked under the assumption W, < K (which
implies char(K)*n ). Now let us Interrupt our investigations for a few
remarks concerning the case of cyclic algebras of reduced degree p :=
:= char(X) # O.

So in what follows assume p := char(K) # 0 and consider the
additive homomorphism

g: K+ nd K+ s fR 1= xp - x
(this notation, which is nowadays the standard notation, goes back to E.
Witt) which gives rise to the exact sequence

+ +

(12) 0 — Fp K -—3;——» K' .

Now choose a € K¥, b € K and select an auxiliary field extension L/K

such that b € pK (for instance take L a separable closure of K ).

Moreover consider the matrices N 0
A € MP(K) according to (3) in §10., and B := B+i\\) €
€1 (L) where BEL is 0
such that ﬁB =b . i-th row and column

Lemma 1 in §2, yields
(13) AP =&, fB = b, and 4B = (B+1)A

as well as the following consequences thereof:
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(1) Bl s oana a3 (i5ez) .
Now consider the n2 matrices AiBj ;5 1n precisely the same way as in the
case discussed previous to Theorem 1 we can show that they are L-linearly
independent (the only difference that matters is that the Vandermonde
matrix in question has now entries vij = (E+i)j—l (1<i,j<p M.

Thus we get (cf. proof of Theorem 1)

n=1 n-1 P
(15) D D xa's? =: A (note A<M (L))

120 =0 P
and
Theorem 4 . If p := char(K) # 0, then all K-algebras A generated by
two elements a,b such that
(18) a:=al €x* , bz pb €K, ab= (btla
are isomorphic (namely = A in (15)). They are central simple K-algebras
(more precisely: either a K-skew field or =~ M (K) ) and any field L such
that K<L and b€ £ s a splitting field. o

Definition 5 . We denote any of the isomorphic X-algebras described in
Theorem 1 by
(a,b;p,K>
and call it again a "power norm residue algebra”. Moreover, we write
[a,b;p,k> := [(a,b;p,K>] € Br(K) .
If no confusion can arise we omit any of the symbols p,K in (a,b;p,K>

and [a,b;p,K> .
Definition 6 . If char(K) = 2 we write

(éﬁg] in place of (a,b;2,K>

and call such an algebra a "quaternion algebra'.
See §14, for more details on quaternion algebras.

Lemma 12 . Let p := char(K) # 0, |K(95):K| =p and [A]l € Br(K(eg)/K),
then
[A] = [a,b;p,k> in Br(K) for suitable b € K .

Proof. If [A] = 0 take any b 6‘:}( (e.g. b=0).1If [A] # 0, then
replace A by D such that [A] =[D]) , a := 83 €D and |D:K| = p2
(cf.Theorem 7 in §9.). Then D is a skew field (cf. Theorem 1(f) in §9.)
and Lemma 6 in §9. (see also its proof) implies the existence of an element
b €D such that aba ! = b +1 . Now, if L := K(b) , for reasons of de-

gree (cf. Theorem 4 in §7.) L/K 1is cyclic of degree p with generating
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automorphism ¢: b+ b+l . It follows (cf. (12))

Ypb) = (b+1)P - (b+1) = bP - b = pb ,
hence b := pb € FixL(o) = K . Therefore - again for reasons of degree -
Theorem 4 implies

[a,b;p,k> = [D] = [A] . o

Lemma 13 . (a,b> aK (a',b'™> =~ (aa',b> 8, (a',b'-b> ,Z.e. [a,b> + [a',b'> =

= [aa',b> + [a',b'-b> <n Br(X).

Proof. mutatis mutandis identical with the proof of Lemma 3 (cf. Exercise
1). o
Now, similar to the reasoning which led from Lemma 3 via (7),..,(11) to

Lemma 4, we may conclude

Lemma 14 . Let p := char(K) # O , then the assigmment (a,b)
» [a,b;p,K> induces a I-bilinear map (multiplicative in the first and
additive in the second argument)
K*/(k*)P x K/pK » Br(k) . O
/ 2

Now, using the notation introduced in Exercise 1 in §9., it is clear from

§10. and Thecrem 4 (cf. also Exercise 1):

Theorem 5 . Assume p := char(K) # 0, then
[a,b;p,K> = [a,K(%b)/K,G] in Br(K)
with the convention K(%b) =K and o =id Zf b EZﬁK . 0

Theorem 1 in §10. implies then

Corollary 6 . One has [a,b;p,K> = 0 in Br(K) <f and only if a s a
norm for the extension KQ%b)/K .o

Lemma 15 . If a € K* and c € K, then la,cPa;p> = 0 in Br(K) .
Proof., see Exercise 1 . O

Now we turn our attention back to the case where un < K (which
implies char(X)/n ). Here we study the problem to what extent power norm
residue algebras remain at least (up to ~ ) tensor products of cyclic al-
gebras under corestriction (compare with Lemma 8 ). This turns out to be
a difficult problem and only partial results are available nowadays; we

shall discuss some of these and begin with some preparatory remarks.

Lemma 16 . Let L/K be finite Galois , T := Gal(L/K) and woe Ky
then (o €T, u =<g))
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(%a,%bn,1,%) , t.e.

R

U(a,b;n,L,c)

[9a,%;3n,L,%] n Br(k)

9la,b;n,L,z)

Proof. Thanks to Lemma 2 in §8, and Lemma 1 in §9. it suffices to estab-
lish a ring homomorphism
£: a' := (%°a,%;n,0,%) » (a,bin,L,5) =: A
such that f£(x) = o_l(x) for all x € L . Now assume (cf, Theorem 1 )
a={ab|a=a,b"=b,ab=cba) and A' = {a',b' | a'" =",
b = % , a'b'= c’c;b'(l’) , then it is obvious that the assignment
atmwa , b mb ,ch-l(x) (X €L)

induces the required homomorphism f: A' - A . O

Theorem 6 . Let p be a prime # char(K) , up ={¢) , L :=K(),
a€Ll*¥, bEKF aud D := (a,b;p,L,) a skew field; then etither
cL /K[D] = 0 or there exists a cyclic extension F/K of degree p with
generating automorphism vy such that

cL/K[D] = [b,F/Kyy] in Br(K)
Proof, Clearly L/K is cyclic of degree m with generating automorphism
4 3 here m|p-1 . A; = ;S for some s #0 mod p such that " = 1 mod p .

Now set G := Gal(L/K) = {(4) and consider (cf. Lemma 4 in §9.)

m-1 Ai m=-1 éi m-1 Ai Ai
Ngtpl = 3 ° [0l =3~ ° [a,bsz] = 3 (%a,bs7¢l] =
i=0 i=0 i=0
m~-1 Ai si m-1 4i Sm-i
= [Ca,bsz” 1 2> [(Ca) »b3t] = [e,bsp,L,zl]
1=0 i=0

where . .
i m-i

n-l AT .8
c iz ("a) € L* ,
i=0

Here we have made use of Lemma 16 as well as Lemma 5. A straightforward

calculation shows (cf, Lemma 4 )

m m=1 i+l m-(i+l) m+l m m+l
Ac = (Ac)s - (T~T (é a)s s - (cas l)s =
i=0
= ¢ mod (L*)p s lee.
(17) Ac = %3P for some d € L* .

Now consider the field N := L(SE) = K(E,eg) . Obviously we have either
N=L (i.e. c € (I*)P and therefore NG[D] = 0 thanks to Lemma 4 ) or
N/L is cyclic of order p with generating automorphism Tt defined by
1(55) = CSE (cf. Field Theory). By virtue of (17) it is feasible to ex-

tend the K-automorphism 4 of L +to a K-automorphism o of N via
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W) = %)% (a asin 7)), % =S
Consequently N/K is Galois with T := Gal(N/K) = <c,r> 3 here UT; =
== "% and @) = Vo) = W% = T(dor*ay = W) , hence
T is abelian and even cyclic with generator ot (thanks to |P| = mp

with coprime m and p ). If we denote by F the intermediate field of

N/K of degree p over K =-i,e, [ = FixN(c) -, then there exists a
generating automorphism vy of the cyclic extension F/K such that
y_l = ot . It follows (cf. Lemma 2 and Lemmas 3/6/8 in §10.)

P
[esbipsLsz] = [byN/Lyt ~1 = [B™,N/L,t ™ = [B™,N/L,(ot) ™] =

_ m -1, _ -1 _
= rL/K[b LN/K,(o1) 7] = rL/K[b,F/K,(OT) F] -PL/K[b,F/K,Y] .

L/K(cL/K[D]) = NG[D] = [e,b;p,L,z] (cf, Theo-
LK is injective on Br(K) thanks to
Corollary 13 in §9., we have either cL/K[D] =0 or cL/K[D] = [b,F/K,v]
in Br(K) . 0O

On the other hand we know =

rem 5 in §9.), hence, since

An easy consequence of the theorem above is

Albert's Criterion . Let p be a prime and D a K-skew field of index
p ; then D <s igomorphic to a cyclic algebra (b,F/K,y) <if and only if
D contains a field k(¥6) such that |K(55):K| =p .

Proof, The "only if" is obvious and always (i.e. for arbitrary index) true.
As for the "if" part, the case p = char(K) has been settled in Lemma 12
(note Theorem 5 and Corollary 5 in §9.). Now assume p # char(K) , let
&) = up and set L := K(g) ; then A :=D @K L is an L-skew field of
index p (see Corollary 8 in §9.) such that

k(¥5) 8 L« L(¥5) c A and lL¥):L] = p
(note: L/K is Galois and p,|L:K] are coprime). Lemma 1 and Lemma 3(8)/
Corollary 5 in §9. imply

A =~ (a,bjp,L,z) for some a € L¥ |
s

hence (because of Theorem 5 in §9. and Theorem 6 above), if m := |L:K|

m[D] = cL/K(rL/K[D]) = cL/K[A] = [b,F/K,v]

for some cyclic extension F/K of degree p (note that mlD] = cL/K[A] =0
would imply [D] = 0 (which contradicts our assumptions) because m and
p are coprime (cf, Corollary 7 in §9.)). Therefore

D = (b,F/K,y™)

because of Lemma 3(8) in §9. and Lemmas 3/4 in §10. o

The following result is of utmost importance.
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Theorem 7 . Let L/K be finite separable, () = w K, a € L* and
b € K¥ , then

cL/K[a,b;n,L,C] = [NL/K(a),b;n,K,;]

Proof. Let N/K be finite Galois such that L is an intermediate field
of N/K , A :=Gal(N/L) < Gal(N/K) =: T and T = \E) pA . Then, because
p€R

of Lemma 3 (use it repeatedly with b' = b ) and Lemmas 8/16 we find (in
the notation of §8,)

(a,b31,0) ) = r%)z ®((a,b3L,2) 8 1) & (D (Pa,biN,g) ~

p€R
(18) = (T pa,b;N,r,) 8y ( (pa,l;N,g)) =~
p€R ABPER ] |
_ L:K]|-1
~ (N, (@)5b3K,0) 8 M (0] 8 N (m:i=n )

An analysis of the proof of Lemma 3 shows that T acts trivially on the
left factor of the right hand side of (18) (cf. Exercise 2 ; the action on
the left hand side of (18) is via (11) in §8.), hence our claim is obvious

thanks to Theorems 1/2 in §6. O

Lemma 17 . Let p := char(K) # 0, () = W, < K and assume L/K finite
separable. Consider monic irreducible polynomials f,g € K[T] such that

e
g 1s separable with f£(T) = g(Tp ) for some e . Now choose t such
that tpe = 1lmod n , then, for any a € L¥ we have the equation

e e
[a,f(a);n,L,z] = tlaP ,g(aP Ysn,L,z] Zm Br(L) .
Proof. Clear because of Lemma 4 . O

The next result is due to J. Tate [so far unpublished] and the author is
very grateful for J. Tate's permission to publish his argument here. His
ideas, incidentally, are refinements of arguments due to S. Rosset [1977],

[al.

Tate's Reciprocity Lemma . Assume {(g) =u SK and let L/K resp. F/K
be finite separable extensions of degrees d := |L:K| resp. r := |F:K| .
Write L = K(a) resp. F = K(¢) and choose monic irreductible polynomials
p,f € KIT] such that p(a) = 0 = £(c) . Then we have the "reciprocity Llaw"

[a,f(a);n,L,z] = ¢ [c,%%%%;n,F,g] + [NL/K(a),(—l)P;n,K,c].

°L/K F/K
Proof., Let N be a common splitting field of f and p over K , hence

s
a,c € N . Now let f = fi be the factorisation of f into monic
i=1
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s

irreducible factors fi € LIT] of degree r. ( E r,=r ). Moreover,
i=1

for each 1 let s be a root of fi and put Ni := K(a,ci) = L(ci) .

Now choose oy € Gal(N/K) such that oi(ci) = ¢ and define a; := ci(a)

in N as well as Mi 1= oi(Ni) = K(ai,c) = F(ai) . Then, if we denote by
p; € P[T] the monic irreducible polynomial such that p (c )=0 (1i-=

= 1,..,8 ), we know from Field Theory that we get p = p; - Now it is

i=1
quite clear from §8, (cf. Exercise 2 ) that we have the equalities
c-a; o.(ci)-ci(a)
cMi/K[C,:gj—gMi] =y Ly )/K[o (c, ),——~:§T(57-—;0i(Ni)] =
(19) i i
c.-a

l 1 4 -
cNi/K[ci,—jg—,Ni] in Bo(K) (4 =1,...8 ) ,

hence (ef. Lemma 11)
c-ai
(20) cy /K[a,a—ci;Ni] = /K[a,-l;Ni] le,—= - ;Mi] in Br(K).
i 8

N, u, S
1

Using Lemma 4, Theorem 7 and Lemma 11 in §8. we compute

s
cL/K[a,f(a);L] =c .S la,£,(a);L]) =

L/K <=
(21) . i=1 .
= CL/K(Z—l [a’NNi/L(a_Ci);L]) = l% CNi/K[a’a_ci o1
S r,
r - r, - - 1, =
[NL/K(a),(-l) ;K1 = cL/K[a,(—l) ;L] = :E; cL/K[a,( 1) “3L] =
(22) < e
= 2oy ylanta]
and i=1 i
p(e) = Pile)
P/K[C’P(O)’ Fl = °P/1<(Z les5™5y (o)’F]) -
(23)

c-a. C-a.

M(Z feN, /F(O - ) F1) = Z ey o]

Now our reciprocity law follows from (20),..,(23) . O
An immediate application of Tate's Reciprocity Lemma is the

Rosset-Tate Theorem . Asswne (t) = u <K and let L/K be a finite
separable extension of degree d s then
cL/K[a,b;n,L,Q] E - [aj ,b.n,K,z] for suitable a. b] € K¥
i=
Proof. We proceed by induction on the degree d = |L:K| ; the case d =1
is trivial. Now assume d > 1 . Thanks to Lemma 11 in §8. our claim is

transitive, hence we may assume that the extension L/K has no proper
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intermediate field. Moreover, by virtue of Corollary 3 and Theorem 7 it
suffices to assume a € K* which amounts to L = K(a) (see above) and
therefore

b = b'f(a) with a monic irreducible polynomial f € K[T]
(24 of degree r < d and some b' € K¥ .
Let p € K[T] be the (mwonic) minimal polynomial of a over K, ¢ a
root of £ and F := K(¢) . From Field Theory and Lemma 17 we know that,
after possible replacement of a by ape, we may assume f to be even
separable, hence
(25) F/K is separable and |F:K| < |L:K]|
Now Tate's Reciprocity Lemma, Theorem 7 and Lemma 4 imply

cL/K[a,b;L] = cL/K[a,b';L] + cL/K[a,f(a);L]

[C ELEl.F] =

1. _1Y)*.
CL/K[a,b ,L] + [NL/K(a)’( 1) ,K] + C ’p(O)’

F/K

ple)
F/K[C’ 6]

hence our claim by induction hypothesis (see (25)). O

2

[NL/K(a),b'(-l)r;K] + e

A nice application of the Rosset-Tate Theorem is

"
ks

Rosset's Theorem . Let p be a prime # char(K) , assume 49
and let D be a K—skew field of index p ; then

<K,

>

[pl = 2{: [a, sby3psKsel for suitable aJ by € KF,d < (p-1)t
j=1
hence D has the abelzan splztting fiela K(vr_ .,VES) over K

Proof. Let M be a maximal commutative subfield of a given K-skew field
D of index p , hence |M:K| = p and [D] € Br(M/K) (cf, Theorem 4 in
§7. and Corollary 5 in §9.). Now let N be the Galois closure of M over
K, T := Gal(N/K) , Fp a p-Sylow subgroup of T and L := FixN(FP)
the corresponding p-Sylow subfield of N/K . Set d := |L:K| , then
N/L 1is cyclic of degree p and dl(p-l)! , hence d and p
are coprime, in particular td = 1 mod p for some ¢t .
Thanks te [D] € Br(M/K) < Br(N/K) we find rL/K[D] € Br(N/L) , hence
Corollary 1 implies

PL/K[D] = [a,b;p,L,z] in Br(L) for some a,b € L¥ ,

Now apply ¢ to both sides of the above equation; using Theorem 5 in

L/K
§9., Lemma 4 and the Rosset-Tate Theorem we obtain at ease

_ - t, _
[p] = tdlp] = L/K L/K(t[D])) = cL/K[a,b 3psL,z] =

d
= E [a.,b.;p,XK,z] for suitable a.,b. € K¥ ,
= 33 373
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hence K(@S’,..,@E&) is a splitting field of D because of Theorem 2. 0O

Now let p be a prime # char(XK) and up = () . Then K(g)/K is cyclic
of degree dividing p-1 , so any elementary p-abelian extension of K(Z)
can be enlarged to an elementary p-abelian extension L/K(z) such that

L/K is also Galois and then a fortiori soluble. So we have proved the

important

Corollary 7 . Let p be a prime # char(K) , then any K-skew field of
index p has a metabelian (and hence soluble) splitting field over X . o

As we shall see later in §15. the assumption p # char(K) in the above

corollary is superfluous.
Exercise 1 . Give detailed proofs of Lemmas 13/14/15 and Theorem 5

Exercise 2 . Give detailed proofs of Theorem 7 and the second equation
in (19).

Exercise 3 . Prove
Dickson's Theorem . Every K-skew field of index 3 <s a cyeclic algebra.
(ef. A.A. Albert [1933,p.177]; use Albert's Criterion)

Added in proof . Concerning Tate's Reciprocity Lemma cf, also the recent
paper
S. Rosset, J.Tate

[1982] A Reciprocity Law for K -Traces, Forschungsinstitut fiir Mathe-
matik ETH Zirich, Preprint (September 1982)
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§ 12 . BRAUER GROUPS AND GALOIS COHOMOLOGY

In this paragraph we shall achieve interesting results by com-

bining Theorem 5 in §7. with Theorems 7/9 in §9.

Theorem 1 . Let L/K be finite Galois, T := Gal(L/K) , [A] € Br(L/K) ,
LcA and |L:K|2 = |A:K| . Then there exist elements e €A (o €T)
such that

X ~ _ _a

() A-;@Leo,eid-l,eox—xeo(x€L,0€I‘)

and

(27) e e = x(c,‘r)eOT (o,T€T , x(g,1) € 1L ) .

Here

(211) x(0,1)x(0T,0) = 0x(-r,p)x(o,rp) and x(c,id) = 1 = x(id,t) .

Moreover, if there are elements fG satisfying (1) Just as the elements

e, do, and if those f0 define elements y(o,1) according to (ii), then

1

(zv) ey = z(cr)f0 (o €T ) where z(o) € L¥ , z(id)
and
(v)

x{(0,1) _ z(o)cz(r)
y(o,t) ~ z(oT)

(og,TE€ET ) .

Proof. (Z) is clear from Theorem 5 in §7. thanks to ZA(L) = L (cf, Theo-

rem 3 in §7.). Now we have

e xe_l =97y = 0(Tx) = e e xe e for all x € L , hence
ot ot T T O
-1 _
LICICR € ZA(L) = L (see above)
and therefore (77) with =x(o,T) := UT(e;iece_[) . (277) merely reflects the

law of associativity in A , namely

0,T)x(0T,p)e = = = =
x(0,1)x(0T,0) oto X(O,T)eoTep (eceT)ep eo(eTeo)
o} o
= e x(t,0)e = "x(1,p)ee = x x(o e
g sP 0 ( »0) 10 (t,0) ( »TP) otp ?

hence (Z77) since the elements eOTp are invertible (the rest of (74%Z) is

obvious because of (7Z) and &y " 1 ). Now (Zv): again

d
-1 _ o _ -1
&8, = ¥ = £xf " for all x € L , hence
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—l _
f0 e € ZA(L) = L (see above)

and therefore (7Zv) with z(o) := (f;lec) € L . Finally, (v) results from

a simple calculation using (Z),(ZZ) and (Zv). ©

The formulae (Z%Z),..,(v) are one historical source of a series of defini-
tions, namely (cf. §6.): let M be a left -module, then

2 x(0,7) + x(01,0) = “xlt,0) +
CH(T,M) :={ x: TxT>»M ' N ch’w) g xzo,l) =02 x(1,7)
is called the set of 2-cocycles (of T with values tn M J. 02 carries
the structure of a Z-module (by poihtwise definition of the (say) addi-
tion) and an easy calculation shows that the 2-coboundaries

x(0,1) = z(g) - z(oT) + GZ(T) }

2 - .
BU(ILM) 2= { x: T x T > M where z: ' » M with z(1) = 0

form a Z-submodule of C2 . Note that in more old-fashioned terminology C2
resp. B2 is called the group of factor sets resp. principal factor sets
(from T into M ).

Definition 1 . Let T be a group and M a left T-module, then
H2(F,M) ez CQ(F,M)/BQ(F,M) 18 called the " 2nd Cohomology Group of M " .

Theorem 2 . Let L/K be finite Galots, T := Gal(L/K) , n := |L:K| = |[T]
and x € C2(P,L*) . Define on the n2—dimensional K-vector space

(%,L/K) := (P Le
cer ¢

a multiplication by the following formulae
—0 -
ek = e (x€L), ee. = x(o,r)eOT and
( E x e ) E y e ) = E X eye_ .
oer °9 TEer U7 0,TET coTrt
Then the elements e, are invertible, €14
stmple K-algebra with splitting field L , tZ.e.

[x,L/K] := [(x,L/K)] € Br(L/K) .

=1, and (x,L/K) <s a central

Proof.Write A := (x,L/K) ; the associativity of the multiplication de-
fined above is clear (same calculation as in the proof of formula (77Z) in

Theorem 1); so is &g © 1 (thanks to x(g,id) = 1 = x(id,t) ) and hence
-1
-1 -1 -1 g -1,.,~1
1) e, = x(0 ~,0) eo_l = (7 x(g,0 7)) eo_l .

Now embed L & A via x» xe, = x , and assume

d

O=x(er)-(er)x=Z(x—ox)xe (x€L),
o€T o0 o€T o0 o€T ¢0

This implies first ZA(L) = L {(choose x € L such that %% # x for all
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o # id ), hence Z(A) = ZA(A) = ZA(L) =L (ef. (5) and (8) in §7.) and
therefore Z(A) = FiXL(F) = K . Now we must show that A has no proper
two-sided ideal (cf. Theorem 1(b) in §9.); this is done mutatis mutandis
as in case of the corresponding statement in the course of the proof of
Lemma 5 in §7. (here we have B = L and e, in place of ei 3 moreover,
L/K is not cyclic any more, however, this does not affect our arguments

here). Finally we conclude [x,L/K] € Br(L/K) thanks to Theorem 7 in §9. ©

Definition 2 . An algebra (x,L/K) as in Theorem 2 28 called a "erossed

product”.

Lemma 1 . In the situation of Theorem 2 let x,y € CQ(F,L*) be such that
x = y mod BQ(F,L*) » then
(x,L/K) = (y,L/K) .

Proof., By assumption we have

x(0,1) _ 2(0)°z(1)
y(o,T) z{ot)
Consider A := (x,L/K) = GE) LeO s B := (y,L/K) = Gi) Lf  , and call
o€l o€l
z(o)fo €B .

for some function z: I' » L* where z(id)=1.

el
o
Then we find

e'x = z(o)f x = ze(o)f = %' (% €L ) as well as
o o o Io}

T = - g - -
e(;eT = z(c)fcz(r)fT = z(o) z(r)y(o,r)fOT = x(o,r)z(crt)fOT =
= x(a,‘r)e(‘jT .

hence

. [ '
f: A—B , E Xoec ;%r X.e,

o€T
is a K-algebra homomorphism and thus an isomorphism because of Lemma 1

in §9. O

Theorem 3 . Let L/K be finite Galois, I' := Gal(L/K) and x,y €
€ CQ(F,L*) 5 then

(x,L/K) 8 (y,L/K) ~ (xy,L/K)
Note that we write the Z-module C2(F,L*) multiplicatively.

Proof. Set A := (x,L/K) = <£> Le_, B := (y,L/K) = {i} Lf ,C :=
(s} o
ofT o€l

L

:= (xy,L/K) = é%} Lg0 , and consider the commutative K-algebra L QK
oeT

c A @K B . Now write L = K(6) and consider the (monic) minimal polynomial

£y € KIT] of © over K . Then
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n .
F() =S ar =T J(r-%)eLlt] (a =1,n= |L:K].
€] < 1 n
i=0 c€ET
Consider the element

(<]
e := o8l - 18 0 €L8 LcAB B,

id#s€r oel - “oel K K
and regard fe as an element in K & K[T] rather than in K[T] . Then

£ _(o81) f (0)8l
- =TT Lo8l - 18%) _ o ___® -

e(061 - 160) = s¢r denominator = Jenominator - denmomimator - O » hence
e(081l) = (180)e , and therefore (by induction) e(0781) = (180%)e , con-

n-1 .
sequently (because of L = (}} ko' )

i=0
(2) e(x®1) = (18x)e for all x € L .
Now fix T € T and define

T o

) s -2 Pcre L B,
id#o€r ‘o8l - ' o8l
using (2) (n-1)-times and taking into account that L @K L is commutative
gives
() _ . . . . 2 _

(3) ee = e , in particular (in the case t = id ): e¢” = e .

By our construction the numerator of e 1is a polynomial of degree n-1

in 081 over K ® L with constant term i.l@}N (6) # 0 . Therefore -

K-y 9 L/K
because of L ® L = GE) (O@l)l(K ® L) - we get e # 0 , hence
K 0 K
e €L SK LcA @K B is an idempotent # O .
Let us now consider the ring e(A @K B)e =: C' with unit element e (cf.

§3.). Fix o,t € T , then

_ 1eP %9el - 18%P
e(e of Je = ee 8f) T | O8r -~ 186 - . T7 _SEE___iﬁ_J@(eO@fT) .

1d#p€r 081 - Fesl iaoer %081 - Pos1
(o) _ _
_ee (eoafo) = e(e0®fo) o o =1 (see (2)),
0 g £ 1 (see (3)) .

Define g' := e(eoﬁfo)e € C' 3 from the last calculation and from (2)/(3)

it follows immediately

e(CT xye)0S "y £))e = S elx _81)(18y (e €f e =
o€T T€r o,T€T

2
' 1ot = =
j%p (xoycﬁl)g0 ( XY €L), 8581 e(eGQfo)e (eTafT)e

e(egeT®f0fT)e = e(x(o,r)@y(c,T))(eOTQfUT)e =

(X(G,T)y(G,T)@l)g&T and gé(x@l) = e(eoxefc)e = e(cxecﬁfa)e =
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= (“x8l)g! (x€L,0€T ),
Consequently

. t 1

f: C=—— C' , E X B " E (xcal)gc
o€T o€T

is a surjective K-algebra homomorphism, hence an isomorphism (cf. Lemma 1

in §9.). Now (ZZ) in Wedderburn's Main Theorem in §3. shows C' ~ A & B ,

K
therefore C ~ A ®K B .o

Summarizing all the material hitherto discussed in this paragraph gives the

Crossed Product Theorem . Let L/K be finite Galois , T := Gal(L/K) ,
then the assigmment x v [x,L/K] ( x € CQ(F,L*) , cf. Theorem 2 ) Znduces
an igomorphism

2 HA(T,1*) —~s Br(L/K) .

Proof. By Theorem 2/Lemma 1 & is a well-defined map; Theorem 3 says

L/K
that this map is in fact a homomorphism which is injective thanks to the

second part of Theorem 1 (see (v) 7bid.). Finally Q is also surjec-

L/K
tive; this follows from the first part of Theorem 1 together with Theorem

7 in §9. o

Exercise 1 . Let M be a left I'-module, T = (o) a finite cyclic group;
define for m € MF a function x ot I x ' > M by

b

i j o . . . < . -
Xm,c(o ,cj):: it if i+ Z.n (0<i,j<n ;ns= vl

Show that xm s € CQ(F,M) and that the assignment m xm o induces an
L] 5

isomorphism QO: HO(F,M) —y HQ(F,M) . Moreover, in the situation of
Theorem 1 in §10. show

(W) [a,L/K,0] = [xa,o,L/K] in Br(K) .

Exercise 2 . Let M,N be left I'-modules, x € Cl(F,M) and y € Cl(F,N) .
Define the cup product x v y: I x T » M &, N by

(xuy)(0,1):= x(0)8%y(1) .
Show that xuUy € CQ(P,MQZN) and that the assigmment (x,y) » xUy induces
a Z-bilinear skew symmetric map

grr,m) x BHr,N) — HQ(I‘,M@ZN) )
(Here the "skew symmetric" is to be understood modulo the canonical iso-

morphism M 8; NN @&, M ) .

Exercise 3 . Deduce Noether's Equations (in §6.) from the results of
this paragraph (cf. M. Deuring [1935], p.66).
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§ 13 . THE FORMALISM OF CROSSED PRODUCTS

Let M be a left T-module, 4 < T a normal subgroup and
G := T/A the factor group, then MA carries (in a natural way) the struc-
ture of a left G-module via Am 2= (here 0 € 4 , i.e. cA=5 € G ) .
Moreover, if x € Ci(G,MA) (i=1,2) then we define a function x by
x(0) := x(48) (if i=1 ) resp. s(o,1) := x(4,£) (if i=2 )
(here oA =4 , T80 =% ;4,L€G) ,
and it is easily seen that x € Ci(F,M) (1i=1,2 ) holds. A straightfor-

ward calculation gives then:

Lemma 1 . In the situation described above the assigmment X v x indu—
ces a homomorphism

R i, A i .

lan/A: H(GM ) —> H (P,M) (1i=1,2)

which is called the "inflation”. o

Theorem 1 . Let L/K be finite Galois of degree n , T := Gal(L/K) , and

consider an intermediate field 1 of degree m over K which s like=~

wise Galois over K . Let A := Gal(L/I) 4T , hence s := % = |L:1| = |a]
and g := T/A = Gal(I/K) . Then, if H2(G,I*) 5 HQ(F,L*)
X € CT(G,I*) <g given, we have ian/A
(x,L/K) = M_{(x,1/K))
s fr/x f 9k
( x as in Lemma 1 ), Z.e. the
diagram shown commutes. (Here Br(I/K) &« Br(L/K)

the vertical arrows are the iso-—

morphisms from the Crossed Product Theorem in §12.)

Proof. The proof is almost identical with the proof of Lemma 8 in §10.:
every x € L resp. o0 € I' determines a matrix
f(x) € MS(I) resp. F(o) € GLS(I)
such that (note that T acts on MS(I) componentwise )
(1) £%0)F(0) = F(0)%8(x) (x €L, 0 €T )
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and

(2) F(ot) = F(0)’F(1) (o,t €T )

Now set A := (x,L/K) = % Le_» A = (X,I/K) = g% Te, and define
f(eo) 1= F(ct)e/5 (0c€T ;4 =08€EG)

It follows from (1)
£(e )E(x) = F(o)e,£(x) = F(0)*F(x)e, = F(0) E(x)e, =
= f(qX)P(cr)(vl,5 = f(cx)f(ec) (x€L ;0€T ,4=0A€EG)

and from (2) - note f(x) = xI if x €1 -
£e )f(e ) = F(o)e,F(r)e, = F(0)°F(t)e e, = F(o) F(TIX(8,0)e =
= F(or)x(o,r)eét = f(x(o,r))F(ct)ebt = f(x(o,r))f(edr)
(0, T€ET 346 =00 ,% =10 ;5,L€G6)

Consequently a K-algebra homomorphism f: A — MS(A) is well-defined and

even an isomorphism thanks to Lemma 1 in §9, O
A nice application of the above is:

Theorem 2 . Assume char{K)fm ( m € N given) and take [A]l € IO
Then there exists a finite Galois extension L/K with Galois group T
such that W cL and

[A)] = [y,L/K} with suitable y € cQ(r,um) c CQ(I‘,L*)

Proof. Thanks to Theorem 9 in §9. and the Crossed Product Theorem in §12.
we can find a finite Galois extension I/K with Galois group G such that
u <L and
n 2

[A} = [x,I/K] for some x € C°(G,I*)
By assumption we have then (thanks to m[A] = 0 )

Z(A)AZ(I)
z(4%)

for some function z: G -» I* satisfying 2z(id) = 1 . Now select L/K fi-
nite Galois such that I,um cL and Vz{3) € L for all 4 € G . Setting

o
y(o,1) := x(c,r)zig%gfgll with x as in Lemma 1 and

2(c) 1= (VaEH™ (o,t €T ;5 =00 €6 ; A :=Gal(L/I) @
2 Gal(L/K) =: T and I/A =G )

we easily find y(o,r)m =1 - hence y(o,T1) € moooT and (cf. Theorem 1

x(8,)" = (5,2€6)

and the Crossed Product Theorem in §12.)

(Al = [x,1/K] = [x,L/K] = [y,L/K] . O

Let M be a left I'-module, then it is in particular a left

A-module for any subgroup A < T ; hence the following is obvious:
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Lemma 2 . In the situation described above any given x € Ci(F,M) (i-=
= 1,2 ) may be viewed (by restricting the variables to & ) as an element
in Ci(A,M) » and this procedure induces a homomorphism

resy y¢ KT, M) —— ') (1=1,2)
which is called the "restriction'. o

Theorem 3 . Let L/K be finite Galois, T := Gal(L/K) , I an intermediate

field and2 A := Gal(L/I) < T . Then, HQ(F,L*) S H2(A,L*)
if x € C(T,L*) <s given and viewed resp
as an element in CQ(A,L*) (see
87k i i 8/1
Lemma 2 ), we have
G,L/K) 8 I~ (x,L/T) , Br(L/K) =———————— Br(L/I)
F1/K

t.e. the diagram shown on the right
commutes. (Again the vertical arrows are the isomorphisms from the Crossed
Product Theorem in §12.)

Proof., Write A := (x,L/K) = G%) LeG and compute ZA(I) ; consider a =
o€T

= X e €A, then a€ ZA(I) if and only if we have for all x € I

_ K _ R

xXa - ax = E (x x)xceo = % (x X)Xoec
o€T oA

which amounts to X, = 0 for all o € A . Hence we conclude (cf. Corollary

1 in §9.)

o
"

(x,L/K) 8, I = A8 I~2/(I)= g%% Le, = (x,L/1) . ®

The next result is a supplement to the previous.

Theorem 4 . Let L/K be finite Galois with Galois group T and let F/K
be an arbitrary (not necessarily finite) extension such that L N F = K .
Then L @K F 48 a field =~ LF such that L @K F/F <& likewise Galois
with mutatis mutandis the same Galois group T (via the correspondence
g o@idF s here we abbreviate o@idF by o after identifying L & F
with LT ). Moreover, we may view any x € C2(F,L*) as an element in
C2(F,(LF)*) and in this sense we have

(x,L/K) @K F = (x,LF/F)

Proof. All but the last assertion is well-known from Field Theory. As for
the formula concerning the crossed products we note that there is an ob-
vious injection (x,L/K) = (x,LF/F) ; F-linear extension thereof (cf.

Theorem 3 in §5.) and Lemma 1 in §9. give the required isomorphism. O

We should remark that if in Theorem 4 we drop the assumption
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", N F = K" it would not do any harm in the following sense: consider the
intermediate field I := LN F of the extension L/K and use Theorem 3
before using Theorem 4 (with I in place of K ). This shows that in all

cases (x,L/K) 8 T may be computed in terms of crossed products.

K
Let T be agroup, A4 < T a normal subgroup and M a left
A-module. Then, if x € Cl(A,M) (i=1,2)and o €T are given, we
define a function °‘x by
o] o -1 e s e
("x)(8) := "x(¢o “80) (if i=1) resp. (x)(8,e) :=
1= Gx(c_léo,c_lso) (if i=2) ( 8,e €4r ) ,
and it is easily seen that % € Cl(A,M) (1=1,2) holds. A straight-

forward calculation gives then:

Lemma 3 . In the situation described above the assignment x & 9% indu-
ces a homomorphism

coni: mha,m) — wia,M) (i=1,2)
which is called the "eonjugation”. o

Theorem 5 . Let L/K be finite Galois, T := Gal(L/K) , and consider an

intermediate field 1 which is likewise Galois over K . Let A :=

:= Gal(L/I) 9T , hence G :Z r/a = 42ea,1%) H2(a,L*%)
= Gal(I/K) . Then, 7f x € C (4a,L*) con
and o €T are given, we have Q Q
. . L/T /1
(x,L/1) = ("x,L/1)
(5 =0b€G), T.e. the diagran Br(L/I) —— Br(L/I)

shown commutes. (Here the vertical [al » [7a]

arrows are the isomorphisms from the Crossed Product Theorem in §12.)

Proof. Thanks to Lemma 2 in §8. and Lemma 1 in §9. it suffices to establish
a ring homomorphism
£: ("%, L/1)— (x,L/1)
such that f(x) = A_l(x) = c_l(x) for all x € I . For this purpose let
A := (x,L/I) = g%z Lea , B := (OX,L/I) E g%% Lfé and define f wvia the

assignments

-1
xp % x (x€L ) and f_ e (s8€en) .
§ -1
o “d&o

Thanks to g_l 0_16

e x = ("x)e (x€L,8€A)

-1 -1
o " §o g 8o
and -1
_ -1 ~1 _ 0 o
e ; e, = x(o ~80,0 “eo)e -1 = 7 ((Tx)(8,e))e -1

o 80 ¢ “eo g “Seo o “8eo
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( 8,6 € A ) we see that our definition of f 1is feasible., DO

Of course we may interpret Lemma 3 such that conjugation endows Hi(A,M)
(i=1,2) with the structure of a left I'-module. In this context one can
show that Hi(A,M) is a trivial A-module, hence a T'/A-module (cf. Exer-
cise 1) in the special situation of Theorem 5 the latter is clear !
Moreover, if we combine Theorems 1/3/5 with (6) and Theorem 4

in §9. we see that there is an exact sequence

(3) 1 — H2(G,T*) — H2(r,1*) — n2ca,1%)°
1nfr,/A resr/A

and a short exact sequence

- 1 —— H2(G,1%) — H2(r,1%) —— 128,190 —— 1
if G = T/A is cyclic.
Both sequences are valid (under certain conditions) in the general situa-
tion (see Exercise 1),

Now let M be a left T-module , A < T a subgroup of finite

index n and R a system of representatives for the cosets of T modulo

A,ie. T =\_J)pr , |Rl =|r:A| =n .Given p € R and o €T , there
pER
are (uniquely determined) elements
(5) Gp € R and 6(g,p) € A such that op = 0pd(o,p)
satisfying
o g 1
(8) o =%"), "o =0 ; 8(o1,p) = 80, p)8(T,0) , §(1,0) = 1

(cf. (9) and (10) in §8.). Now take any x € Cl(A,M) (1i=1,2) and de-

fine a function Ccpx by

o
(cgx)(o) := > Px(6(0,0)) (if i=1 ) resp. (cqr)(o,1) :=
p€R
oT
=S Px(8(0,%0),8(1,0)) (if i=2 ) (here o,T €T ) .

p€ER

A somewhat lengthy (but entirely straightforward) calculation shows that
epX € Ci(F,M) holds. Moreover, an even longer calculation shows (the de-
tails are left to the reader, cf. Exercise 3)
Lemma 4 . In the situation described above the assigrnment x » cR¥ indu-
ces a homomorphism

corp p E (A, M) — HI(T,M) (1= 1,2)
which is independent of the choice of R and called the '"ecorestriction”.
Moreover (i =1,2)

cor%/Aresi/A = |r:alid ( id := identity on Ci(F,M) )
and
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resi cor-i =N
r/a”"r/a T 76

if A< T s a normal subgroup, G :=T/A . D

Theorem 6 . Let L/K be finite Galoite, T := Gal(L/K) , I an intermedi-

ate fieldzand A := Gal(L/I) < T . Then, H2(A,L*) 5 HQ(F,L*)
7f x € C7(A,L*) s given, we have cory 1
c. . (x,L/T) ~ (¢ x,L/K)
I/K R QL/I R QL/K
( cpr as in Lemma 4 ), Z.e. the
diagram shown commutes. (Here the Br(L/I) R a— Br(L/K)
I/K

vertical arrows are the isomor—

phisms from the Crossed Product Theorem in §12.)

Proof. We omit the (rather technical) proof of this theorem (see Exercise

3) since we shall nowhere make use of this result in these lectures. D

Exercise 1 . Let T be a group, 4 9T a normal subgroup, G := I'/A
the factor group and N a left A-module. Show that Hi(A,N) is a left
G-module via conjugation ( i = 1,2 ), Now let M be a left I'-module;
prove the inflation restriction sequences, i.e. show that the following

sequences are well-defined and exact:

7 0 —— v 6,1 — v —— ihe,m°
inf res
and
0 ——— HQ(G,MA)-———75» (T, M) ——s #2¢a,m°
(8) inf res

if HYA,M) = {0} .
Note that Noether's Equations in §6. and (8) imply (3) !

Exercise 2 . Establish commutation rules between inflation/restriction/
conjugation/corestriction (cf. Lemmas 1/2/3/4) and the isomorphism @

from Exercise 1 in §12. in the case where T 1is a finite cyclic group.

Exercise 3 . Prove Lemma 4 and Theorem 6 . (For a proof of Theorem 6 see
Theorem 11 in C. Riehm [1970]; however,note that there a description of the
isomorphism & / in the Crossed Product Theorem (in §12.) is used which

.

is not exactly the one we introduced (cf. J.-P. Serre [1962,p.166]).)
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§ 14 . QUATERNION ALGEBRAS

In §11. we introduced quaternion algebras

(§§2> ( a,b € K¥ ) resp. (aéb] (a€KF ,bEK)

if char(K) # 2 resp. char(K) = 2 (cf. Definitions 2 resp. 6 in §11.)
as special cases of power norm residue algebras, hence we may use all re-
sults of §11. in order to describe the behaviour of quaternion algebras.
It is worth rewriting these results in the special notation of quaternion

algebras; here we shall use the special notation
1) <Eﬁ9>] if the respective rule applies regardless of char(K) .
We start with the (almost obvious)

Theorem 1 . A K-algebra A <is a quaternion algebra if and only if it is

a central simple K-algebra of reduced degree 2 (i.e. |A:K| = 2?2 =y ).

Proof. The "only if" is trivialj "if" : because of Theorem 1(f) in §9. we
have eitther A = M2(K) - in which case A obviously is a quaternion
algebra - or A 1is a skew field (of index 2 ). In the latter case A has
a separable quadratic - and thus over K cayclie - subfield (cf., KSthe's
Theorem in §9.), hence A is a cyclic algebra thanks to Lemma 2 in §10.
Now our assertion is clear from Lemma 2/Corollary 3 resp. Theorem 5 in §11.

if char(K) # 2 resp. = 2 . O
Theorems 1/4 in §11. read as follows:

Theorem 2 . All K-algebras A genevated by two elements a,b which are
subject to the relations
a:z=a’ €+, b= b’ €K*, ab = -ba

are isomorphic to (Eég) Zf char(K) # 2 .0

Theorem 3 . ALl x-algebras A generated by two elements a,b which are
subject to the relations
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a:=a2€K*,b:= b2+b€}<, ab = (b+l)a

a,b

are isomorphic to ( X ] Zf char(K) = 2 (Z.,e. -1 =1). D

Theorems 2/3 imply

Da(L/K) = (§§E>] with suitable b depending on L

where the left hand side is according to (2) in §1. Moreover, one sees

-1,-1
“”‘( R )

Now if we rewrite Lemmas 4/8/14 & Corollaries 3/4/6 in §11. we find the

following (cf. the convention introduced in (1))

Rules for quaternion algebras .

2 (Eé}l) =~ M, (K) <f and only if the equation a = %2 - y2b
18 soluble over K ;
(3) (%2] = m,00 i and onty if the equation a =3+ xy + v

18 soluble over X ;
() <a b) (bKa>
© ()] . () -
N ) |
N <a,K'] 0 (a,Kb"] . (a b'+b"] ;
(8) (aKb ] - (aib ]

Another interesting result is (use Lemmas 1/12 in §11. & Lemma 3(8) in §9.)

Theorem 4 . Assume |K(Va):K| = 2 and let K(Va) be a splitting field
a',b’ ~ (2:2 e
(—-K—>] s then A' = ( 12 )] for suit

For the next result recall the definition introduced in the course of

of the quaternion algebra A
able b . D

Exercise 1 in §9.; then use Corollary 3 in §9., Lemma 2 in §10. and Theo-

rem 5 in §11. This gives

Theorem 5 . Assume [K(%b):K| 2 and let Ks%b) be a splitting field

t 1
of the quaternion algebra A' := (E—ié—] s then A' = (Eﬁg] for suitable

a .o

The following results on quaternion algebras seem to be not so well-known.
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Theorem 6 . Let A',A" be quaternion algebras over X ; then A' 8, Av
18 not a skew field if and only if A' and A" have a common splitting
field which is separable quadratic over X .

Proof, cf. Exercise 1 . O

With the aid of (4) and Theorems 4/5 one can restate the preceding theorem

in the following way:

a',b’ a",b" N §£ s
Corollary 1 . Assume ( ” )] @K ( K )] ( ¥ )] » then one can find

ct,e",d such that (21§2l7] o (E%?Q)] and (2:§21)] o (E%fg>] . O

Interesting enough one can show that (under the same assumptions as in

Corollary 1) in the case 'char(K) = 2" it is not always possible to find
a' b' c d' a" b" c dll
suitable c¢,d',d" such that |——{ ~|=2 and 2 o | =2

K K K K
(¢f. (4.26) on p.134 in R. Baeza [1978]).
a' b' al' b" .
Theorem 7 . Assume ——7%—— o ——ﬁ—— s then there exists an element

a"b' - a"d ~ a",d ~ a"’b"
d such that ( K ) ‘( K)]‘( K)]‘( K )] :

Proof. cf, Exercise 2 , O
Exercise 1 . Prove Theorem 6 (see A.A. Albert [1972]} and P. Draxl [1975]).
Exercise 2. Prove Theorem 7 (see J. Tate [1976,p.267] if char(K) # 2 ).

Exercise 3 . Recall that a field is called formally real if -1 cannot be
expressed as a sum of squares. Now call a field Pythagorean if it is. for-
mally real and every sum of squares therein is a square.(Note that a for-

mally real field must have characteristic 0.) Show that a field K is

-1,-1
K

maximal commutative subfields is K-isomorphic to K(V1) (see B. Fein &

M. Schacher [1976]).

Pythagorean if and only if is a skew field such that any of its

We close this paragraph with a remark: the reader should know
that the theory of quaternion algebras is closely linked to the theory of
quadratic forms via the Clifford algebras. Standard references for that
are for instance 0.T. 0O'Meara [1963] and T.Y. Lam [1973] .
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§ 15 . p-Algebras

In this paragraph we investigate the p-primary component
Br(K)p of the Brauer group Br(K) of a field K with p := char(K) # 0 .

Definition 1 . Let p := char(K) # 0 , then any central simple K~algebra
A such that |A:K| = p-power <s called a "p-algebra over X ".

From the various results of §9. the following is clear:

Lemma 1 . Let A be a p-algebra over K , then i(A) = p-power and
[A] € Br(K)_ . Conversely, ©f i(A) = p-power or (equivalently) [A] €
€ Br(l()p » then the sgkew field component D of A ig a p-algebra
over K. D

Clearly the algebras (a,b;p,k> from §11, are p-algebras and it is clear
that they have the purely inseparable splitting field K(eg) over K .
The last observation is just an example to the following general

Theorem 1 . Let A be a p-algebra over K , then [A] € Br(I/K) for

some purely inseparable extension 1/K such that IO(A) S K.

Corollary 1 , Let K be a perfect field of characteristic p # 0 , then
Br(K) = (0} , Z.e. pJi(A) for all [A] € Br(K) . O

Proof., Put o(A) = pe with suitable e € N (in case e = 0 there is
nothing to show). Now write (cf. §12. and Theorem 9 in §9.)
[A) = [x,L/K] for some finite Galois L/K with T := Gal(L/K)
and x € CQ(P,L*) .

The Crossed Product Theorem in §12, implies then

x(o T)pe = EﬁngEill (o, t €T )
> - z(ot) ?
for some function z: ' » L* satisfying z(id) = 1 . Now consider the

field e
M iz L({PV Tz(o)'o,rEF}), i,e. M/L is purely inseparable .
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If y €T one can extend y to an automorphism of M by setting

e e
YV T2(0)) 1= BV 2(0)

hence T may be viewed as a group of K-automorphisms of the field M .
Now set
I:= Mr , then M/I eis Galois with group T .

Moreover, x € I € M implies x? €L (by definition of M ) and there-

e e e
fore Y(xP ) = %P (by definition of I ), hence x* €K, Concluding we
have INL =K and M=IL=~I®, L , i.e. we may use Theorem 4 in §13.:

K
if we set e
u(o) :=PVz(e) (o €T )
we find .
x(0,1) = ulo) ulr) , hence x € B2(F,M*)
u(ot)

and therefore (cf. also the Crossed Product Theorem in §12.)

rI/K[A] = [x,L/K} = [x,LI/I] = [x,M/I] =0 .0

P1/K

Before we proceed we need two results from Field Theory which appear not
to be so widely known. The first of it is a special case of deep results

due to E. Witt [1936]:

Lenma 2 . Assume ©p := char(K) # 0 and let L/K be a finite cyclic ex—
tension of degree pf with generating automorphism <t . Then there exists
a eyelic extension N/K of degree pf+l with generating automorphism o
such that X< L< N and o

.

;A

Proof., Choose an element a € L such that TrL/K(a) =1 (cf. (1) in §6.);
now use the additive endomorphism Jb of Lt (see §11.) which commutes
with TrL/K as well as with 1 (this is clear from Field Theory), hence

TrL/K(fa) = of:(TrL/K(a)) =fL=0
Therefore Corollary 1 in §6. implies
fa ="b - b for suitable b € L .
We claim b € ﬁL . Indeed, if we had b = rc for some ¢ € L we would
get &a ="b - b= T(ﬁc) - p° =p(Tc - ¢) , hence (cf. the exact sequence
(12) in §11.) a = ‘¢ - ¢ + x with some x € FP < K ,and the latter would
then lead to the contradiction 1 = TrL/K(a) = TrL/K(x) = pfx =0.
Now define (cf. Exercise 1 in §9.)
N := L(%b) = L(d) where gﬁ = b and N/L is cyclic of de-
gree p with generating automorphism vy: de» d + 1

Furthermore, extend <t to an automorphism o of N via dP» d +a.
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oP :Eé Ti
It follows d= ... =4+ a=4d+ TPL/
¢ has order pf+l in Aut(N) . Therefore N/K is the required field

K(a) =d+1="d , hence

extension. O
An immediate application of Lemma 2 is

Lemma 3 . Let p := char(K) # 0 and [A]l = [a,L/K,t] € Br(K) , then there
exists a [B] € Br(K) such that [A] = p[B] <n Br(K) .

Proof. Take [B]} := [a,N/K,0] € Br(K) (in the sense of Lemma 2 ) and use
Lemmas 4/8 in §10, O

The second result from Field Theory which we shall need is the following

Lemma 4 . Let I/K be a finite and purely inseparable extension and

L'/1 finite separable (resp. Galois); then there exists a separable
(resp. Galots) extenston L/K such that L 8 I =~LI = L' . Moreover, in
the Galots case T' := Gal(L'/1) and T := Gal(L/K) can be identified
via the correspondences o' - c'IL (o' €T ) and ow o®id; (c€T ). o

Now we are fully prepared for
e
Theorem 2 . Let p := char(K) # 0 , |K(PVa):k| = p° and [A] €

e
€ Br(K(PVR)/K) , then
[a] = [a,L/K,0] Zrn Br(X)

for some cyclic extension L/K of degree pe .

Proof, We proceed by induction on e ; the case e = 1 has been settled in
Lemma 12 in §11. (see also its proof). Now assume e > 1 , set

N e-1
F:=x(PVa) and I := K(Bg) , hence |F:I| =p and

PI/K[A] € Br(F/I1) .

Consequently the induction hypothesis implies

e . e-1
PI/K[A] = [vg,LO/I,GO] for some cyclic Ly/I of degree p .

Now let us use Lemmas 2/4 simultaneously: this gives a cyclic extension
Ll/K of degree pe such that LlI/I is also cyclic of degree pe with

generating automorphism o, where I C LO cL,I and ¢ =0, .

1 1L 0

1 0

Lemmas 7/8 in §10. yield then

rI/K[A] = [BS,LO/I,OO] = [a,LlI/I,cl] = [a,Ll/K,ol] .

FI/K
The latter implies
(al - [a,L,/K,0,] € Br(K(Va)/K) and |K(55):K| =p ,
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hence (see the case e = 1 ) for some cyclic L2/K of degree p :

&) [a] = [a,Ll/K,ol] + [a,LQ/K,02] .

From Field Theory we know that etther Ll n L,=K or L ,cL .
In the first case the assertion follows then immediately from (1) because

of Lemma 9 and Theorem 1 in §10., whereas in the second we can find t € N

coprime with p such that 9l = o; . Now, if s(l+tpe-l)El mod pe (note
2
that l+tpe 1 and pe are coprime), Lemmas 3/8 in §10. imply
e-1

[a,LQ/K,UQ] = [at,LQ/K,o;] = [atp ,Ll/K,cll ,

and therefore we may conclude from (1) thanks to Lemmas 3/4 in §10.

(Al = (1+tpe'l)[a,Ll/K,cl] = (l+tpe—l)[aS,Ll/K,0i] =

= [a,L/K,0] where L := L. and o := ¢ . 0
L. ol
7
Theorem 3 . Let p := char(K) # 0, I := k(P Val,..,p Var) and assume

r
[7:x] =T p°i ; then, if [A] € Br(1/K) ,
i=1 r
[A] = ;g; la;,L,/K,0,]
for suitable cyclic extensions Li/K .

Proof. We proceed by induction on r ; the case r = 1 has been settled in

the preceding theorem. Now suppose r > 1 and set

e e
2 r 1
F:=x®va,..,p Var) I, hence I = rP Ve,

e
rpclAl € Br(I/F) and |I:F| = p 1.

It follows (use Theorem 2 and Lemma 4 together with Lemma 7 in §10.)

[(al = la,,L F/Fo0,] = r

T/ sty Ly/K0))

which amounts to

r e,
[a] - [a;,L;/K,0,] € Br(F/K) where [E:x| =T p?
i=2

F

and therefore to our assertion (by construction of F ) thanks to the

induction hypothesis. O

Now let [A] € Br(K)p be given and select a minimal purely inseparable

°(A) <« (such a field I

extension I/K such that [A]} € Br(I/K) and I
exists thanks to Theorem 1 ). Then I is of the form described in Theorem

3 and we get the important

Theorem 4 . Assume p := char(K) # 0 and take [A] € Br(K)p , o(pA) = pe .

then there exist elements a0 esd € K¥, 0< e, <..%e =e and cyclic

extensions Ll/K""Lr/K such that
r
[a] = ;il [ai,Li/K,oi] . o
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More old-fashionedly one would state Theorem 4 in the form

Corollary 2 . Every p-algebra over X <s similar to a temsor product of

cyclic algebras. o

Moreover, if in Theorem 4 we denote by L := L .Lr the composite field

K
of the cyclic fields Li over K , then L/K 1is abelian, hence
Corollary 3 . If p := char(K) # 0 , then every [A] € Br(K)p has an

abelian splitting field over K . O
Witt's Theorem . Let p := char(K) # 0, then Br(K) is p-divisible.

Proof., Only the p-primary component Br(K)_ matters since Br(K) is a
torsion group (cf. Theorem 10 in §9.), however, the p-divisibility of

Br(K)p is clear from Lemma 3 and Theorem 4 ., O
Another important result is (compare it with Theorem 4 in §9.)

Hochschild's Theorem . Let L/K be a finite purely inseparable exten—
gion, then the sequence
0 —— Br(L/K) &« ——» Br(K) — Br(L) —— 0

is exact.

Proof. Let [A] € Br(L) be given and choose e such that LPe c K.
Using Witt's Theorem repeatedly we can find [B] € Br(L) such that [A] =
= pe[B] . Now take F/L finite Galois with Galois group T such that

[B] = [x,F/L] for some x € C2(F,F*)
(cf. Theorem 9 in §9. and the Crossed Product Theorem in §12.). Thanks to
Lemma 4 we have F = NL with some finite Galois extension N/K with
Galois group T (via restricgion of the action of the K-automorphisms of

F to N ) and such that FP < N , hence

€ _ 2
P € ci(r, ),
and therefore (see the Crossed Product Theorem in §12. and Theorem 4 in
§13.) the equation

e e
(A = p%[B) = [x® ,NL/L) = ¢ [xP ,N/K] .o

L/K
The theory of p-algebras culminates in
Albert's Main Theorem . Asswme p := char(K) # 0 and take [A] € Br(K)p »
then there exist a cyclic extension L/K and a € K* such that

(Al = [a,L/K,0] ,
Z.e. A has a cyclic splitting field over K .
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Proof. see A.A. Albert[1939,p.109] or Exercises 1/2 ., O

Although Albert's Main Theorem is much stronger than Theorem % and Corol-
lary 3 the latter two results are sufficient for most applications. More-
over one should point out that a p-algebra A over K is not necessarily
isomorphie to a cyclic algebra (see 0. Teichmiiller [1936,pp.386)). Finally
we remark that the reader may find different (and most interesting) approa-
ches to the theory of p-algebras in E. Witt [1937] and G. Hochschild
[1955].

e
Exercise 1 . Assume p := char(K) # 0 , set I :=K(®VG) ( a € K* ) and.
let L/I be finite separable. Show I = K(NL/I(b)) for some b € L* ,

Exercise 2 . Use Exercise 1 for a proof of the following result (which is
clearly sufficient to prove Albert's Main Theorem): if A,B are cyclic

p-algebras over K , then A QK B is isomorphic to a cyclic p-algebra

over K .

Exercise 3 . Let p be a prime # char(K) and assume () = up <K .
Moreover, let L/K be a finite cyclic extension of degree pf with ge-

nerating automorphism T such that ¢ € NL/K(L*) . Show that there

f+1

exists a cyclic extemsion N/K of degree p with generating automor-

phism ¢ such that K€ L& N and ¢ LT .(Hint. Modify the proof of

Lemma 2 .)
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§ 16 . SKEW FIELDS WITH INVOLUTION

Let A be a ring (with 1 # 0 ), then we call as usual a Z-mo-
dule automorphism © of A a ring antiautomorphism of A if o(x)e(y) =
= 0(yx) for all x,y € A . In this context the following is obvious:

(1) If © 1is a ring antiautomorphism of A ,then 6 defines an
isomorphism A = A% .

(2) If © 1is a ring antiautomorphism of A ,then the same is true
for O_l .

(3) If 0,0 are ring antiautomorphisms of A ,then 0 is a ring

automorphism of A .
4) If © is a ring antiautomorphism of A , then, for any a € A¥

Oa: A A ,xb ae(x)a-l is again a ring antiautomorphism

of A .
(5) Any ring antiautomorphism © of A can be extended to a ring
antiautomorphism of Mn(A) via 06 xij ) = «( O(in) ) .
Definition 1 . Let A be aring (with 1 # 0 ) and 1 a ring antiauto-
morphism of A such that 1% = 1a then 1 <s called an "involution

AJ
of A " and we write Ix in place of 1(x) ( x € A ). Moreover, we denote

by Sp(A) :={ x€A | e = x ) the Z-module of " I-gymmetric elements”

in A .

In what follows let K be a commutative field and A a K-al-
gebra satisfying Z(A) = K (e.g. a central simple K-algebra). Then, if I
is an involution of A it must preserve the centre-(argue as if I were
an automorphism; cf. (12) in §7.),hence either I| = id, (in case K <

] K K
c SI(A) Yor I X #id, (in case k := KN SI(A) FK) .,

K
Definition 2 . Let A be a K-algebra with K = Z(A) . An tnvolution I
of A <s called of the "first kind" (resp. '"second kind") if

k := KN SI(A) = K (resp. # K ).
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Let us investigate the case of central simple K-algebras; first, we

observe that then (4) has a converse, namely:

lemma 1 . If 0,0 are ring antiautomorphisms of the central simple K-al-
gebra A such that OIK = QlK s, then § = o, (in the sense of (4))for
suttable a € A* (which is unique modulo K* ),

Proof. Thanks to (2) and (3) O_lQ is a ring automorphism of A and

even a K-algebra automorphism (because of OIK = QlK ), hence

O_lQ(x) = tx‘c_l for some (modulo K*¥* unique) t € A*
by virtue of the Skolem-Noether Theorem in §7., i.e.
Qx) = ae(x)a-1 = Oa(x) (x €A ) where a := 0(t) € A¥ . o

Second, we may restrict our attention to K-skew fields thanks to

Lemma 2 . Let D be a K-skew field and A := Mr(D) . Then, if 0 s a
ring antiautomorphism of A there exists an a € A* such that 0, ari-

ses from a ring antiaqutomorphism of D as described in (5).

Proof. Take the matrices eij € Mr(D) = A (cf. §2.) and consider the ele-
ments fij = O(eji) € A which satisfy the identities

0 j#r
fijfrs = e(eji)o(esr) = O(esrﬂeji) = ole ) = f if P ’
si is 1=
hence
r r
Kei. o~ Kfi. as K-subalgebras of A ,
S S RS S U S
and therefore Corollary 2 in §7. implies
- -1 _ ; *
(6) eij = afija = Oa(eji) for a suitable a € A* |

Now take d € D ; it follows
Ga(d)eij = Oa(d)@a(eji) = ea(ejid) = ea(deji) =
= ea(eji)ea(d) - eijea(d) >

hence

(7) 0.(d) € g (M (K)) =D forall 4€0D.
a Y p

Mr(D
But (6) and (7) amount clearly to the fact that Oa arises from a ring

antiautomorphism of D as described in (5). o

Corollary 1 . Let A be a central simple K-algebra. The fact whether or
not A admits a ring antiautomorphism (e.g. an involution) depends only

on its elass [Al <in the Brauer group Br(K) .o

Now we are prepared for the following result due to A.A. Albert:
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Theorem 1 . Let [A] € Br(K) , then A admits an involution of the
first kind if and only if 2[A) =0 (Z.e. [A) € Br() ).

Proof. The "only if" is clear since the isomorphism A = AP from (1) is
then a K-algebra isomorphism, hence [A] = [A°P] = -[A] . For the proof of
the "if" we note that by virtue of Corollary 1, Theorem 9 in §3. and the
Crossed Product Theorem in §12. we may suppose

A = (x,L/K) = {%} Le0 where L/K is finite Galois with
o€l

Galois group T and x € CQ(F,L*) such that x(c,‘r)2 =

_ 2(0)%2(1)

= - * 14y =
) (o, T €T 3 2: T » L*¥ such that 2z(id) =1 ),

hence
(8) x(o,r)_lz(c)cz(r) = z(ot)x(o,1) .

Now define

-1
I: A— A, E xceoHE e z(cr)xcr 3
o€T o€T
clearly I is a Z-module endomorphism of A  such that (cf. (8))
I(xe ye ) = I(xgyx(o T)e ) = e_lZ(OT)X(G T)xcy =
[sad 4 "ot ot >

= e;ix(c,r)_lz(c)cz(r)xcy = (eoeT)_lz(O)OZ(r)xay =

-1 -1
(eT Z(T)y)(e0 z(g)x) = I(yeT)I(xeg) (x,y€L ;0,TET)
and consequently
IQ(e ) = I(e_lz(o)) = I(z(o))I(e_l) = z(o)I(e )-l =
o o o o

= o) taeN T =, (o€T)

hence I 1is the involution we were looking for. O

From Theorem 1 it is clear that any tensor product of quaternion algebras
admits an involution of the first kind. Just recently it has been proved
(see A.C. Mepuypes [1981]; §17.) that the converse is mutatis mutandis
also true, namely:
If a central simple algebra admits an involution of the first
(9) kind, then it is similar to a tensor product of quaternion
algebras.
For further information on this cf. J.-P. Tignol [1981] and the various

references there.

Now let us focus our attention on the case of central simple
K-algebras admitting involutions of the second kind. We begin with a slight-
ly more general situation: if A is a K-algebra such that K = Z(A) and

if A admits an involution I of the second kind, then we have an auto-
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morphism o := I K # idK of K such that 02 = idK s, 1.e. the non-tri~

vial k-automorphism o of the separable quadratic field extension K/k

(k:=KD SI(A) ) is extended to our ring antiautomorphism I of A .
This suggests the following

Definition 3 . Let X/k be a separable quadratic field extension with
Galois group T := {0,id} and A a K-algebra such that K = Z(A) , then
a ring antiautomorphism © of A satisfying OIK = o g8 called a

" K/k-antiautomorphism of A " . Moreover, if a K/k-antiautomorphism is an

involution, we call it a " K/k=involution”.

From now on we present the extremely elegant arguments due to W. Scharlau
[1975].

Scharlau's Lemma . Let K/k be separable quadratic, T := Gal(K/k) =
= {0,id} and © a K/k-antiautomorphism of the central simple K-algebra
A , then there exists an element b € A* such that

(10) 0°(x) = bxdb T (x €A ) .

Moreover, if we take any b € A¥ such that (10) is fulfilled, then
(11) bo(b) = 0(b)b € k*
holds and the class of bO(b) <n k*/NK/k(K*) = HO(F,K*) depends only on
the class [Al <n the Brauer group Br(K) . Finally, if we replace ©
by 0, and b by b = ao(a)—lb s then

Oi(x) = baxb;l and b0 (b)) = bo(b) .
Proof. (10) is clear from (3) together with the Skolem-Noether Theorem in
§7. because 62 must be a K-algebra automorphism thanks to 02 = idK .
Now we deduce from (10) for all x € A the equations
0%(0(x)) = 0(8%(x)) = a(bxb 1) = o(b) Te(x)eb) ,

K*¥ and consequently

bO(x)b "t
hence 0O(b)b € Z(A)*

(b0(b))?

b(e(b)b)e(b) = (6(b)b)(bo(b)) , i.e. bo(b) = 8(blb,
as well as

(6(b)b) = 0(8(b)b) = 6(b)6(b) = B(b)bbb * = 0(b)d
hence (11). Now we note that b in (10) is unique modulo K¥ , so, if we
replace b by be ( c € K¥ ) we get

bed(be) = beo(e)e(b) = bo(b)e’e = bo(bIN , (e) .
Now replace @ by Oa etc.; it follows

Oi(x) = a0(ao(x)a Ha™t = ae(a)'lbxb'le(a)a'l = baxb;l

and
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baOa(ba) = 20(a) Thao(ao(a) b)at =

= a0(a) ba(e(bIb)a b Te(a)a Tt = 6(b)b = bO(B) .
Finally assume A = Mr(D) for some K-skew field D . By the preceding ar-
guments and thanks to Lemma 2 we may assume
8(D) = D and 6 dij ) = ( e(dji) ).
By virtue of
2

R _ 2
0°( i ) = o e(xji) y=1(9 (xij) Y « X5 €D)

we may then choose b € D* < A* in (10); this completes our proof. D
From Scharlau's Lemma one obtains

Scharlau's Criterion . Let K/k be separable quadratic and [A]l € Br(K),
then A admite a K/k~imvolution if and only if it admits a K/k-antiauto-

morphism © such that bo(b) € NK/k(K*) (here ©°(x) = bxb™! ).

Proof, The "only if" is trivial, for if I 1is a K/k-involution we may
take © = I and b =1 , For the proof of the "if" we use an argument due
to R, Scharlau (W. Scharlau's original argument was slightly more compli-
cated): thanks to Lemma 2 and Scharlau's Lemma we may restrict our atten-
tion to the case where A 1is a K-skew field. Now assume bO(b) =
= NK/k(c) = ¢cO(c) for some ; € K* , then - if d := bc_l -

do(d) =1 and 0°(d) =d ,

and we may consider the commutative subfield L := K(d) of our skew field
A . Obviously o(L) = L and 02 L s idL . Now eilther O L= idL » hence
d2 = 1 and therefore b € K*¥ which means that I := @ is our involution,

or O L # idL . In the latter case Hilbert's "Satz 90" in §6. yields an
element a € LS A such that b = O(a)a-l . Now take I := Oa which gives

I2(x) = Oz(x) = aG)(a@(x)a-l)a_1 = aG)(a)_lbxb_l@(a)a—l =x .0

K/k-involutions (i.e. involutions of the second kind) are in relationship

with the corestriction from §8. This comes from

Scharlau's Theorem . Let K/k be separable quadratic, T := Gal(K/k) =
= {0,id} and [A) € Br(K) . Then the following conditions are equivalent:

() A admits a K/k~antiautomorphism 0 ;
(22) %8 = 2P g K~algebras;
(227) rK/k(cK/k[A]) =0 in Br(K) ;

(iv) A admits a K/k-antiautomorphism © such that we have
cK/k[A] = [bo(b),K/k,0] <n Br(k) (here Oz(x) = bxb—1 ).
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Proof. (Zv) implies (Z) trivially and (%) implies (ZZ) because the isomor-
phism from (1) is in fact a K-algebra isomorphism 9p o %P given by ©
(cf, Lemma 1 in §8.; note o = ot ). (22) implies (Z7%Z) thanks to (cf.
Theorem 5 in §9.)

ey ilAD) = Nlal = (A [%a) = [a] + (&P} =0 .

Now, since the same calculation shows that (Z¢Z) implies (Z) it suffices
to deduce (Zv) from (7),(Z%),(%77).

- o g .
K/k(A) (A8 A)cA® A isa

k-subalgebra; moreover, if @ 1is the K/k-antiautomorphism from (Z) we can

Indeed, from §8. we know that C := ¢

find a K-algebra isomorphism (cf. (Z7Z) and Definition 1 in §7.)

£: A 8 T oy End,(A) such that f£(a®b)(x) = ax0(b)( x € A ).

In particular, we may view A as a left C-module (via f and the embed-
ding of C ), and therefore it makes sense to consider the k-algebra
K/k[A] € Br(K/k) we get i(C)|2
(cf. Corollary 4 in §9.), hence (in what follows now cf. §3.)

EndC(A) . Since (ZZ7) implies {[C] = ¢

C~ D for the k-skew field D = Endc(&) where 2 is a
minimal right ideal of C .
On the other hand A 1is a left C-module (see above), hence a right cP-
module, but C = ¢ thanks to i(c)|2 , so we may view A likewise as

a right C-module, and in this sense we have (see again §3.)

(12) A e ggz n  and consequently EndC(A) o Mm(D) .

Now set n := |A:K| , hence |[C:k]| = n? (see Lemma 7 in §8.). Then we get
etther C o Mn(k) (if i(C) = 1 ) and consequently dimk(n) =n ,mn =

= |A:k| = 2n  which amounts to End (A) > M (k) , or CaM (D) (if

i(c) =2 ) and |D:k| = 4 , hence dimk(&) =2n , m2n = |A:k] = 2n and

thus EndC(A) ~ D , In any case we have (after summarizing; cf. (12))
(13) cK/k[A] = [End (M)] in Br(k) and IEndC(A):kI =y

From (13) we conclude with the aid of Lemma 1 in §9. that, in order to
complete the proof of (Zv) it suffices to establish a k-algebra homomor-
phism (here we view A as a left C-module via f ; see above)

g: (bo(b),K/k,0) — EndC(A) .

For this purpose write (bO0(b),K/k,0) = K @ Ke where e2 = bo(b) and
ey = 0(yle = 0ye (y €K) and define g via
g(y)(x)
gle)(x) :

yx (y €K ) and
0(b)e(x) for all x € A .
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Now a lengthy but entirely straightforward calculation shows that both
gle),g(y) are left C-module endomorphisms of A such that (y € K )
2
g(e)* = g(b () and gle)g(y) = gloly)g(e) = g(°y)gle) . o

We close this paragraph by combining Scharlau's Theorem with Scharlau's

Criterion which yields (cf. Theorem 1 in §10.)

Riehm's Theorem . Let {A] € Br(K) , then A admits an involution of the
second kind iIf and only if there exists a separable quadratic subfield k
of K such that cK/k[A] = 0 in Br(k) .(The involution is then a K/k-

involution.) o

For further results on involutions cf. W. Scharlau [1981] and Ch.X in
A.A. Albert [1939] .

Exercise 1 . Let K/k be separable quadratic and F/k cyclic such that

KNP =k .Set L :=KF=~K @k F , then L/K is cyclic with generating

automorphism (say) vy . Show that the cyclic algebra (a,L/K,y) admits

a K/k-involution if and only if NK/k(a) = N_, (b) for some b € F* .

F/k
Exercise 2 . Let K/k be separable quadratic. Show that a quaternion
algebra A over K admits a K/k-involution if and only if A =B ® K

k
for some quaternion algebra B over k .
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§ 17 . BRAUER GROUPS AND K2-THEORY OF FIELDS

In §11., (cf. Definitions 3/4% and Theorem 3 Zbid.) we have al-
ready seen that in case bo< K (which implies char(K)/n ) the assign-

ment {a,b} +~ [a,b;n,K,z] induces the abstract norm residue homomorphism

(1) KQ(K)/HKQ(K) — nBr(K) 8 1

Rn,K:
which is independent of the choice of the primitive n-th root of unity ¢ .
Now recently A.S. Merkur'ev and A.A. Suslin have presented a proof of the

following spectacular result:

Merkur'ev-Suslin Theorem . Let p be a prime # char(K) and assume that
every finite field extension of K has p-power degree over K (this im-

plies up < K ), then Rp K 18 an Zgomorphism. O
b

It is impossible to give (even a sketch of) the proof within the scope of

a book like ours since numerous deep and intrinsic arguments from Algebraic
Geometry (e.g. Brauer-Severi varieties), Algebraic K-Theory and Class Field
Theory are involved. So we can refer only to the original papers

A.C. Meprypee & A.A. Cycamn [al,[b].

Later we shall restate the Merkur'ev-Suslin Theorem in a more
general setting, however, before we do this let us study the impact of the
Merkur 'ev-Suslin Theorem on the theory of Brauer groups; we claim that it
implies the following (widely conjectured)

Theorem 1 . Assume W, < K and take [A] € nBP(K) , then
d
[A] = EE: {a.,b.in,K,2] for suitable a.,b, € K¥, (z) = u
37 373 n
and d = d(A) €N,

hence A has the abelian splitting field K(%“l,..,%;) over K .

Note that Theorem 1 implies Rosset's Theorem in §11., however, without an
effectively calculable bound for d(A)

Proof. Thanks to Lemma 7 in §11. it suffices to assume n = pf a p-power.
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Let us begin with the case "fz1" ; then - using Galois Theory of infinite
extensions (cf. e.g. Ch.I/IV in S.S. Shatz [1972]) - we may consider the
fixed field L of a p-Sylow subgroup of the (profinite) Galois group
Gal(K/K) of a separable closure K of K ; obviously L is such that
one can apply the Merkur'ev-Suslin Theorem: from the surjectivity of
Rp,L we see that our claim holds over L . Now L can be viewed as a
union of fields L1 such that the extensions Ll/K are finite of degree
coprime with p , hence - after using Corollary 13 in §9. together with
the Rosset-Tate Theorem in §11. possibly infinitely many times - our
assertion is true even over K if f = 1 ., Suppose f > 1 ; we proceed
by induction on f . Assume (c) U S K and take fa]l € fBr(K) 5
then pf—l[A] € pBP(K) s hence (see agove and use Lemma 6 in gll.)

m f-1

1 Do £l £
(al =3 fa.,b.;p,K,2% ] = > p la,,b.sp LKzl
N 1 1 N 1 1
i=1 i=1
which amounts to

m
(a} - >~ [ai,bi;pf,}(,i;] € . ,Br(x)

i=1
Now the induction hypothesis yields (use again Lemma 6 in §11.)

m

(8] - S la,b,5p K2l = Z[ab K,gP] =
i=1 i=m+l

£
= E [alabg'sp aKaE] . D
i=m+l

In precisely the same way as in the case of Rosset's Theorem in §11. we

find that Theorem 1 (together with Corollary 3 in §15.) implies

Corollary 1 . A4ny central simple K~algebra has a metabelian (and a
fortiort soluble) splitting field over K . O

Some people believe that '"metabelian" could be improved to "abelian™,
however, no reasonable idea for a proof seems to be known. For this and

similar questions cf. R.L. Snider [1979].

Now let us make a few additional remarks on the homomorphism
Rn K in (1). If one introduces the (profinite) Galois group T :=
:= Gal(K/K) of a separable closure K of X , then it is possible to
interpret the results from $§12/13. in such a way that we even have iso-
morphisms
HQ(F,K*) —~=z3 Br(K) and HQ(F,un)———'x—»nBr(K) {char(K)fn)
where the H2 is to be understood as built up from continuous 2-cocycles

(the profinite group T is a topological group) only (one calls this the
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continuous cohomology). Now, if W, < K , then L is a trivial T'-module,
hence the Z-isomorphism My ®Z B (cf. Example 1 in §4.) is even a
I-isomorphism and we have (see above)

(2) Hz(l",unébzun) o HQ(F,un) 8, e nBr(K) & vy

In the general 31tuatlon (i.e. without the assumption u < K ) one can
still consider H (F,u @Zu ), and J. Tate [1976] has establlshed a homo-
morphism

(3) Rr'a,K: 1<2(1<)/n1<2(1<) — Hz(r,unezun) if char(K)/n

which coincides with the one from (1) modulo the isomorphisms from (2) in
the case where W, < K (cf. Theorem (3.1) Zbid.; for a motivation cf.
Exercise 2 ).

Now, using transfer arguments (formally similar to the argu-
ments from our proof of Theorem 1) one can show (cf. A.C. Mepuypes & A.A.
Cycaun [al,[bl) rather easily that the Merkur'ev-Suslin Theorem can be
amplified to the
General Merkur'ev-Suslin Theorem . The homomorphism from (3) (and hence

the homomorphism from (1)) is an igomorphism. D

Exercise 1 . Show that 3Br(K) is generated by the classes of cyclic
algebras. (Hint. Use Theorem 1 together with Theorem 6 in §11.)

Exercise 2 . Assume (I} = B, K and L/K finite Galois, T := Gal(L/K).
Show that for any c¢ € K* N (1*)" - i.e. ¢ =" for some c € L¥ -

%, (o) := Ucc-l defines an element 2, € Hom(F,u ) = Cl(F,u ) which is in-
dependent of the choice of c. Now 1dent1fy M with uy @Z v (both

are trivial T'-modules) via ; oz @c and con31der (cf. Exer01se 2 in §12.)

2 - * *
xauxb €C (T,pHQZun) =C (F,un) (a,be x*n (L ) ) .

Now show
fa,byn,K,z] = [xauxb,L/K] in Br(K) if |K(95):K]

(Hint. Use Lemma 2 in §11., Exercise 1 in §12. and Theorem 2 in §13.)
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§ 18 . A SURVEY OF SOME FURTHER RESULTS

There are many aspects of Brauer groups which we cannot dis-
cuss here for various reasons.

First, the relationship with Galois Cohomology (cf. §§12/13.
where we established an isomorphism Br(L/K) = HQ(Gal(L/K),L*) = HQ(L/K)
for Galois extensions L/K ) leads to further results if one makes use of
general Cohomology Theory: then some of our results appear as special
cases of rather general constructions (such as Theorem 4 in §3. and the
exact sequence (4) in §13. which are both easy consequences of the Hoch-
schild-Serre spectral sequence). A good reference for this point of view
is A. Babakhanian [1972] or E. Weiss [1969].

Second, the relationship with cohomology (see above) may be
generalized in the following way: one may establish an isomorphism
Br(L/K) = HQ(L/K) even when L/K 1s not Galois but separable. Then, of
course, H2(L/K) has to be given a new meaning: it is no more a Galois
Cohomology group HQ(Gal(L/K),L*) but an Adamson Cohomology group. Here
we refer the reader to the original paper I.T. Adamson [1954].

Third, by introducing even more general cohomology groups -
the Amitsur Cohomology groups - one can obtain for instance all our results
on Br(K) without making use of Kdthe's Theorem (as we do frequently).
The main advantage of this method, however, is based on the fact that all
this works to a wide extend over a commutative ring R rather than a
field K ; in these notes we disregard the notion of the Brauer group over
a ring although this theory is today highly developed. The reader should
consult for an introduction first F. DeMeyer & E. Ingraham [1971] and
then M.-A. Knus & M. Ojanguren [1974].

Fourth, there is a method - called the method of Polynomial
Identity algebras (PI-algebras) - which has been originally developed by

S.A. Amitsur for the purpose of furnishing his famous examples of K-skew
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fields D which are not crossed products (i.e. which contain no maximal
commutative subfield which is Galois over K ). A selection of references
is: the book C. Procesi [1973] and N. Jacobson [1975].

Fifth, much is known in the number theoretic cases, i.e. if
K is a Zocal field (= a finite extension of either some p-adic field Qp
or Fq((T)) ) or a global field (= a finite extension of either Q or
Fq(T) ). It turns out that the theory of Brauer groups over such fields is
closely related to Class Field Theory. Here we want to mention two nice
results for illustration: the first result is classical (from the 1930's)
and very deep in the global case:

If K s local or global, then every K-skew field D s a
(1) eyelic algebra such that i(D) = o(D) . (cf. M. Deuring [1935,

pp-118] or A.A. Albert [1939,pp.149])

The second one has been established only recently and depends on the (also
recently established) classification of finite simple groups:

Let K< L be global fields such that K # L , then Br(L/K)
(2) is infinite.(see Corollary 4 in B. Fein et ql. [1981] and more

generally B. Fein & M. Schacher [1982])

Basic references (for readers with background in Algebraic Number Theory)
are for example: J.-P., Serre [1962], J.W.S. Cassels & A. Frdhlich [1967],
A. Weil [1967] and I. Reiner [1975].

For more information on the points mentioned so far in this
paragraph see the various articles in the proceedings D. Zelinsky [1976]
and M, Kervaire & M. Ojanguren [1981].

Sixth, one may link the theory of (infinite dimensional) skew
fields with Functional Analysis in the following way; the well-known
Mazur-Gelfand Theorem (cf. e.g. K. Yoshida [1965]) states:

(3) Every skew field D which is at the same time a normed

algebra over C s isomorphic to C .

It is not difficult to deduce from (3) the following generalization of
Frobenius! Theorem in §10.:
(1) Every skew field D which ig at the same time a normed

algebra over R is <{somorphic to R or C or H.

An immediate consequence of (4) is "Ostrowski's Second Theorem" from
Valuation Theory:
(5) Every skew field D which admits a complete archimedian

valuation 1s tsomorphic to R or C or H .,
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Finally, there are many results on Br(K) available in the
case where K 1is a valued field (in the general sense of W. Krull); cf.

for instance 0.F.G. Schilling [1950], W. Scharlau [1969] and P. Draxl [a].

Exercise 1 . Deduce (4) from (3) .
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PART III . REDUCED K,-THEORY OF SKEW FIELDS

1

The history of reduced Kl—Theory begins with Y. Matsushima & T.
Nakayama [1943] who proved (in modern notation) for a K-skew field D
(1) SKl(D) ={1} in case K is a p-adic field .
Later Wang Shianghaw [1950] established a proof of
(2) SKl(D)::{l} in case K 1is an algebraic number field .
In his proof he used the Grunwald Theorem (on the existence of cyclic
number field extensions with prescribed local behaviour) from Class Field
Theory. On this occasion, incidentally, Wang Shianghaw discovered the
(famous) gap in Grunwald's original proof and suggested a new version of
the above mentioned theorem which is nowadays called the Grunwald-Wang
Theorem (see e.g. E. Artin & J. Tate [1968]).

It was because of the results (1) and (2) that
(3) K, (D) = {1}
was widely believed to hold Zn general.

Finally V.P. Platonov (cf. B.M. MnaTtonos {1975]) proved that
(3) s false in general ! In §24. we explain this by introducing an ad hoc
counter example (which, in order to be understood, requires hardly more
knowledge of skew fields than contained in §1. of these lectures). Before
this, however, we develop a theory of (the functorial properties of) K

1
and SK over a skew field (see §22/23.) which includes proofs of the

algebraic part of the classical results (1) and (2) (some nunber theoretic
facts needed for the proof can only be stated without proof, for otherwise
we would have to go far beyond the scope of these lectures). For a proper
treatment of §§22/23. it is necessary to discuss certain results about
Dieudonné determinants (of matrices over skew fields). This is done in
§20. using a Bruhat normal form introduced in §19. (this is not exactly
the customary way to introduce Dieudonné determinants). §21. contains a

proof of the simplicity of the projective special linear group over a skew
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field; this, incidentally has nothing to do with Kl or SKl . Finally in

§25. we sketch reduced unitary Kl-Theory which connects §16. (Part II)
with §§ 22/23/24. and makes use of §21.



127

§ 19 . THE BRUKAT NORMAL FORM

Let R be a ring with 1 # O ; consider the full matrix ring
Mn(R) and call (as usual) GLn(R) = Mn(R)* its (multiplicative) group
of invertible elements. In this context we introduced in §2. certain spe-

cial matrices, namely (cf. §2. for the exact definition)

Es() (t€R;i#j;1<83<n),
Di(u) (u€RK;1<i<n) and
P(w) (7€ Sn )

with properties

-1

(1) Eij(t)Eij(t') = Eij(t+t') s Eij(O) =171, Eij(t) = Eij(-t) s

(2) Eij(t)Ers(t') Ers(t')Eij(t) (J#r#Fs#Fi#éi),

o -1 -1 L
(3) Eij(tt ) = Eir(t) Erj(t ) Eir(t)Erj(t') (r£ifiér),
(1) Dy (D (u') = D (uu') , D(1) =1, (w7 = D, ,

(s) Di(U)Dj(U’) = Dj(u')Di(U) (1#£3) ,

(6) P(m)P(n') = P(nn') , P(3d) = 1 , P(m) > = P(n 1) = P(m*

and (cf. Examples 1/2 in §2.)

1 1
. 0 0
transforming from 4 to (l///; ) A (1///6 ) amounts to

rotating the matrix A4 by 180 degrees

(7

as well as (more generally than (7))

in the (i,j)-th position of the matrix P(ﬂ)_lAP(ﬂ) one finds

(8 the element from the (w(i),m(3))-th position of 4

In this context we want to remind the reader of Lemma 1 in §2. which is
responsible for most of the rules listed above. For our own convenience we

state this lemma again (this time, however, we do so in three steps):
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transforming from A to E_ (t)A (resp. AEji(t) ) amounts
i
(9) to adding the left(resp. rig%t) t-multiple of the j-th row

(resp. column) to the i-th row(resp. column),

transforming from A4 to Di(u)A (resp. ADi(u) ) amounts to
(10) multiplying the i-th row(resp..column) from the left(resp.

right) by u
and

transforming from A4 to P(wm)4A (resp. AP(ﬂ)_l ) amounts to
(1) moving the i-th row(resp. column) into the position of the

m(1i)-th row(resp. column).
Now we are fully prepared for the important

Theorem 1 . Let D be a skew field and A € Mn(D) such that either its
rows are left linearly independent over D or AB = 1 for some B €

€ Mn(D) 3 then there exists a decomposition

T o Y10
A = TUP(w)V where T = *\ =1 0N Cu, 20,
(l . 1 un -1 (l\u )
(12) V= and w € S_ such that P(m)VP(w) =
5\\\1 n 0] 1

are uniquely determined by A .

Definition 1 . The decomposition of an A € Mn(D) according to (12) s
called the "strict Bruhat normal form of A .

Proof. Let us first show that the T,U,V,nm in (12) are uniquely deter-
mined: indeed let

TUP(mw)V = T'U'P(w')V' be two such decompositions,
then
(13) vy = oy e Tt
where the left-hand side of (13) is a lower triangular matrix. On the other
hand we find

VV'_1 =1+ 0V where N is an upper triangular matrix with

(1) 0's in the main diagonal (hence a nilpotent matrix).

Obviously there is no position (i,j) where both matrices on the right-hand
side of (14) have an entry # O ; thanks to (8) this remains true for the
right-hand side of (cf. (13) and (14))

(15) Py ey = p(mp(r) Tt + B(mwp(e) T

On the other hand we know that the matrix P(n)P(n')-l = P(ﬂﬂ'-l) has in

each row and each column exactly one 1 and n-1 O's ; therefore this
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matrix must be the unit matrix I - and this amounts to w' = 7 -, since
otherwise (by what we have observed concerning the right-hand side of (15))
the left-hand side of (13) could not be a lower triangular matrix. Hence
the right-hand side of (13) can be rewritten

= P(rVP(m) MRV () T .
and is a lower triangular matrix which is of the form 6\\? (cf. the
conditions on ¥V and w in (12)). 1
Therefore both sides of (13) are equal to I , and this implies (note that
m' = v 1is already known) V' =V as well as T'W' = TU . Clearly the
latter implies T' =T and U' = U , and this completes the proof of the
uniqueness of the strict Bruhat normal form.
Now let us turn to the existence proof: according to our assumptions on A
we know that its first row has at least one entry # 0 ; let (1,p(1l)) be

the left-most position in the first row with such an entry # O ; then

n-1 row operations of the type described 0—0 i p(1)st
*
in (9) will transform our original A1 .= * ?l column
= *
matrix A to the new matrix A' as shown: 0 .

2
1 L - -
More precisely, A' = I Eil( til)A for some elements tyy - Now con

sider the second row of A' : if the rows of 4 are left linearly inde-
pendent over D , then the same is true for the rows of A' since left
multiplication with a matrix of the type Eij(t) does not affect this
property (see (9)); if - on the other hand - 4B = I for some matrix B ,

n
then A4'B' = 1 where B' := B Eil(til) (see (1)) . Hence we may con-
i=2

clude that the second row of A' has at least one entry # O which is
then necessarily outside the p(1l)st column; let (2,p(2)) be the left-
most position in the second row of A' with such an entry # O and call

this entry u then n-2 row operations of the type described in (9)

2 t]
will transform our matrix A' to a matrix A" which has 0's only be-
low as well as in front of uy (# 0 and in position (1,p(1)) ) and u,
(# 0 and in position (2,p(2)) ).After repeating this procedure another

(n-3)-times we will end up with a matrix

(n-1) 1 j+1
A = Ei.(-ti.)A such that if u, is the left-~
j=n-1 i=n J ]
(16) most entry # O in the i-th row of A(n_l), then ug is in

the p(i)-th column (where p is some permutation of n ciphers)

and all entries below any u_  vanish.
i
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n-1 n 1 u, O
0 1 -1
N T := E,(t,.) = s U i= d m:=p
ow set j( ( *\1) ( AN ) an

j=1 d=j+¢1 H) M
€ Sn and conclude from (16) (using (10) and (11))

1 - - _ 1. %
v iz pemy el = poyr D) - N ) .
1

It remains to prove that P(ﬂ)VP(w)—l is upper triangular again; indeed,
according to our construction, the matrix U-lA(n_l) has the following
properties (use (10) and (16)):
the left-most entry # O in the i-th row equals 1 and is
(17) situated in the p(i)-th column; moreover, all entries below
such an entry vanish.
Now our claim is obvious from (17) and (11) thanks to P(ﬂ)VP(ﬂ)_l =

- U—¥A(n—l) —lA(n-l) -1,(n-1)

- -1
P(w) 1 since transforming from U to U A P(m)

moves the p(i)-th column to the i-th column. O

Example 1 . In M2(D) the strict Bruhat normal form of a matrix looks
as follows:

(03)= (a2 )5 202 55 8) o

-1
a b 1 0 a 0 1 0 l1a’™ .

(L - £ 0.
(c d) (call><0d-calb>(0 1)(0 1)1 a ¥

1«
lemma 1 . Let V = ( 5\\\1) and T € Sn be given; then we may find ele-

1 1
ments V' = ( 5\\j1) and V" = ( d\\tl) in Mn(D) such that V = V'V"
1 1
Cand P(myp(m) Tt = ( N ) as well as P(m)V'P(n) " = ( N ) .
1 1

Proof., Going through the existence proof of the previous theorem in the
special case A := P(w)V we see that we can write

P(m)V = A = T"P(m)V"
where the right hand side is the strict Bruhat normal form of the left
hand side . Now set V' := VT/"-l 3 inspection shows that the required

properties hold. o

Now we turn to a weakened version of Theorem 1 ; this new theorem turns

out to be moresuitable for applications (see next paragraph).

Theorem 2 . If a matrix A € Mn(D) ( D a skew field) admits a decompo-
sition
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A = TUP(7)V according to (12) but without the requivement
(18) that P(mVP(1) ™ be wpper triangular,
then the diagonal matrix U and the permutation m are still uniquely

determined by A .
Proof. We start by writing V = V'V" according to Lemma 1; this gives

(19) A = TUP(m)V = TUT'P(w)V" = T"UP(m)V"
where

T 3= P(H)V'P(ﬂ)_l and T" := TUT‘U_l are lower triangular
(cf. Lemma 1 and (10)). Since the right-hand side of (19) is the strict
Bruhat normal form of A the uniqueness of U and 7 is an immediate

consequence of Theorem 1. D

Definition 2 . Any decomposition of an A € M (D) according to (18) s
called a "Bruhat normal form of A .

Theorem 3 . Let D be a skew field and A € Mn(D) » then the following

conditions are equivalent:

(a) A€ GLn(D) > T.e. A is invertible;

(B) AB =1 for some B € Mn(D) s L.e. A has a right inverse;
(y) CA =1 for some C € Mn(D) , t.e. A has a left inverse;
(8) the rows of A are left linearly independent over D ;

(e) the columms of A are right linearly independent over D .

Corollary 1 . Precisely the matrices in GLn(D) ( D a skew field) ad-
mit a Bruhat normal form and even the strict Bruhat normal form. O

Example 2 . Let D be a ring (with 1 # 0 ) which admits elements
a,b € D such that u := ab - ba € D* (e.g. take for D a skew field

which is not commutative). Then

(1 aY_({10YY10Y1 a
Az_(bab)“(b 1)(0 u><o 1)€GLn(D)

although the rows (resp. columns) of A are right (resp. left) linearly

dependent over D . Consequently

t_(1b ‘ ‘ ~
A" = ( a ab ) ¢ 6L (D) (cf. Exercise 1 in §2.). All this

shows that one must handle "right" and "left" in the context of Theorem 3
with the utmost care !

Proof of Theorem 3. "(a)=(B),(y)" is trivial; "(B),(8)=(a)" follows from
Theorem 1 because the various factors in the (strict) Bruhat normal form

are invertible (use (1)..(6) in connection with (7)/(8) in §2.); "(yJ)=(ao)"
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is also clear, because the previous argument yields C € GLn(D) and conse-
quently A4 € GLn(D) s "(a)=(8),(e)" can be seen as follows: operations

on a matrix according to (9),(10),(11) do not affect the properties des-
cribed in items (8)/(e) , but V,T visibly have these properties (if we
decompose A according to Theorem 1); finally we must prove "(e)=(a)":
indeed since A+ AY defines an isomorphism Mn(D)Op = Mn(DOp) (cf. (9)
in §5.) we are able to make use of "(8)=(a)" above. D

Exercise 1 . Let D be a skew field with involution I (cf. §16.). Set
A := Mn(D) and extend I to A via I( aij Y = ( Iaji ) . Now take

A € A* such that W=4 ama let

u 0
A = TUP(1)V be a Bruhat normal form , U = l\ :
u

show n

n—l = 1 and Iu = u (i=1 n)

- i T Tw(i) Tt

(cf. P. Draxl [1980,p.108]).
Exercise 2 . In the situation and with the notation of Exercise 1 show

that one can achieve V = IT provided char(D) # 2 .

Exercise 3 . Use Exercise 2 for a proof of Theorem 5 in L. Elsner [1979].
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§ 20 . THE DIEUDONNE DETERMINANT

Thanks to the various results of the previous §19. the

following definition is feasible.

Definition 1 . Let D be a skew field; define a function &et: Mn(D) -+ D
by

Set(4) := if

{ 0 AE eL (D) ,
n

sgn(m)T | u, #0 4 €c (D)
i=1

here the u, are the (non vanishing) diagonal elements of the matrix U

and w 18 the permutation of a Bruhat normal form of A .

Note that U (hence the ug ) and w above are uniquely determined by 4

thanks to Theorem 2 in §19.

Example 1 . Example 1 in §19. yields the following formulae in MQ(D)

SeT 0 b = -bc and det a b = ad - aca_lb if a#£0.
c d c d

Let us establish rules for handling 6et

Lemma 1 . Let D be a skew field and B € GLn(D) , then

1
Ger(( N )B) = §et(B)
1

Proof. This is obvious since the matrix U and the permutation 7 1in a

Bruhat normal form of B remain unchanged. O

In order to avoid complicated and lengthy phrasing let us introduce the

following (certainly not classical) notation:

Definition 2 . In a skew field D for elements a,b € D the notation
"b = a " will stand for the phrase " a—lb 18 a product of at most

r commutators of elements in D¥* ',

In this sense we claim
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Lemma 2 . Let D be a skew field, B € GLn(D) and U :

"
c
s
< O
S———

n
Cug #0); then Set(UB) = TT uiss—r(B) .
i=1

Proof. Let B = T'U'P(wn')Y' be a Bruhat normal form of B , then a
straightforward calculation shows
UB = UT'U'P(n")V' = T"U"P(n')V!

-1 [t\o U O
oz ury = | NG | and vtz o =) N | (here U =
1

"
ui 0 ° n
= AN and u' = u.u! )
o N i ii

ot n n n
This completes the proof thanks to u'j'_ = u, ui . o
i=1 i=1 i=1

where

Now we come to the core of our analysis of the function éet

Lemma 3 . Let D be a skew field, B € GLn(D) and P(i,i+l) the per-

mutation matrix belonging to the transposition (1 i+l) ; then
set(P(i,i+1)B) = -set(B)[1] .

Proof. Let B = TUP(w)V be a Bruhat normal form of B and write T =

=(t ) (with t_ =1 and t =0 if r < s ) ; now denote t :=
rs rr rs

-1 . R .
= ui+lti+l,iui € D where u, is the r-th entry of the (diagonal) matrix
U 1in the above Bruhat normal form. A straightforward calculation gives

1 N\ 0
0 u. P
i, = +1
(1) P(i,i+1)B *\\1 i E; 3y (OPGLIAP(MV
[¢]
Now assume etther t = O (this amounts to ti+l ;G 0 ) or n_l(i) >
1]

> n_l(i+l) (this amounts to the fact that Ei i+l(t) remains upper tri-
»
angular after being "moved around the two permutation matrices" on its

right hand side in (1)); then it follows (cf. (1)..(11) in §19.) from (1):
0

1 0 \u. 1 *
(2) P(,irDB = | N0 B m| N )
INo N 1
Since the right-hand side of (2) is a Bruhat normal form of the left-hand

side thereof and since sgn(i i+l) = -1 , we get our assertion immediately
n

from Upeely qULeou = 1 ur .

Now assume the contrary of the above, i.e. t # O (this amounts to O #

£t ) and n_l(i) < ﬂ_l(i+l) (this amounts to the fact that the

i+l,1
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matrix E, .
i,1+1

(see above) in (1)); an easy inspection shows that the identity

I ECH N BN

is valid, and this gives the formula ( t € D* )

(t) Dbecomes lower trianguler after being "moved around..."

1

(-t E -1

- _ -1
(3) Ei,i+1(t)P(1’l+l) = Ei+1,i(t )Di(t)Di+1 (t )

(note that the right-hand side of (3) is the strict Bruhat normal form of

i,i+1

its left-hand side). Merging (1) with (3) yields (after using (1)..(11) in

§19. several times)
~ 0

Yo Yint 1o
(1) P(i,i+1)B = Al s €D 0\1
N
where the right-hand side of (4) is a Bruhat normal form of the left-hand

side thereof. This gives the required formula for &et thanks to

n
-1
co(-u, . .o = -u. ..t .u.t, IS IR 1 . D
ul (u1+ltu1t ) Un ul t1+l,41u1t1+1,1u1+l un =l ur
The three preceding lemmas may be united into a single statement, namely

Theorem 1 . Let D be a skew field and Set: Mn(D) - D the function
according to Definition 1; then 6&et <s surjective and has the property
- 8et(4)8et(B) A ¢ 6L (D) or B g e (D),

8et(4B) = { if
2
(SET(A)(SET(B) A,B € GLn(D)

Corollary 1 . Let D be a skew field and 8et as above; then 8et in-

duces a surjective homomorphism of groups
det: GL (D) — D¥/[D*,D*] =: p*aP

which coincides with the usual determinant in case D s a commutative

field.

Definition 3 . The function det according to Corollary 1 s called the

"Dieudorné determinant’”.

Proof. The upper line of the formula to be proved is clear, also the sur-
jectivity of &et thanks to 66T(Di(d)) =d for any index 1 ( d €D ).
For the proof of the lower line of our formula let A4 = TUP(w)V be a
Brubat normal form of A , hence
n ul 0
Set(4) = sgn(w) uy where U = N
i=1 0

1

Now select the permutation T € Sn such that P(1) = P(n)(i,/o

) s hence
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sgn(t) = (-l)(n—l)n/2 (_.OL/'$>

(n-1)n/2 matrices of the type P(i,i+l) . Therefore (cf. (7) in §19.)

sgn(m) since the matrix is a product of

A = TUP(T)T'(?//é) where 7' arises from V via rotation
(5)

by 180 degrees (and is hence lower triangular with 1's in the
main diagonal) ,

and consequently (using Lemmas 1/2/3 repeatedly in connection with (5))

8et(AB) = ser(TUP(r)T'G/é)B) = 661’(UP(T)T'<§/$>B) -

n
L‘lr uiaer(P(r)T'(g/é)B) =
n
= sgn(T)I:I uiseT(T'(i//é>B) (n-1)+(n-1)n/2
n
= sen(0) (-0 VYT user(8) [l (Tim)
izl

n
= sgn(m)T | u,8et(B) [(n-1)(nt1)] = tSet(A)ae-r(B) . g
izl

Corollary 2 . If D <is a skew field and A,B € GLn(D) , then

set(B714B) = se1(B) tset(4)set(B)

Proof. Apply Theorem 1 to both sides of the equation B(B_lAB) = 4B . O

Corollary 3 . If D <s a skew field and A € GLn(D) a product of at
most v commutators of elements in GLn(D) » then

set(4) = r+(ur-l)(n2—1)| and

6er([GLn(D),GLn(D)]) = [D*,D*]
Proof. The second statement follows from the first onej; as for the first

one, apply Corollary 2 to both sides of the equation A(A_lB_lAB) Y

which yields our assertion in case r = 1 . Then use inductionon r . ®©
Definition 4 . Let D be a skew field; write SLn(D) 1= Ker det < GLn(D)
and E (D) := <E..(t)|1<i,j<n,i¢j,t€D><GL(D)

n ij - = = 5hy
Obviously En(D) < SLn(D) ; our goal is to prove equality. For this pur-

pose we need two auxiliary results which are also of general interest.

Theorem 2 . Let D be a skew field and A € GLn(D) , then A = EDn(a)
for suitable E € En(D) and a € D* where the class a = det(4) € p*3

s untquely determined by A .

Corollary 4 . Let D be a skew field, then every matrix A € GLn(D) 18

a product of triangular matrices.
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Proof. The corollary and the last assertion of the theorem are clear; it
remains to prove the existence of such a decomposition 4 = EDn(a) . We
proceed by repeated row operations of type (9) in §19. as follows: thanks
to Theorem 3 in §19. the first column of 4 must have an entry # 0 ,
hence we can transform A via left multiplication with elements from
En(D) to a matrix A' € GLn(D) such that A' has a 1 in position
(1,1) and O's elsewherein the first column (note that we do not need
row operations of type (10) in §19.; cf. also E. Artin [1957,pp.151]).
Now we observe (again because of Theorem 3 in §19.) that the second column
of A' must have an entry # 0 outside the first row, hence we can
transform A' wvia left multiplication with elements from En(D) to a
matrix A" € GLn(D) with 1's in positions (1,1) and (2,2) and with
0's elsewhere in the first two columns. After repeating this procedure
another n-2 times we end up with a matrix Dn(a) for some a € D* ,
Summarizing we find

FA = Dn(a) with some matrix F which is a product of

certainly less than n2 matrices of type Eij(t) ,
hence

A = EDn(a) where FE := F—l € En(D) . g
Whitehead Lemma . Let R be a ring (with 1 # 0 ) and u,v € R* | then

uo 1 o]
( 0 u_l)’( 0 uvu lv_l) € E2(R)

Note that the definition of En(R) (cf. Definition 4) makes also sense
for rings (and not only for skew fields).

Proof. Inspection shows that we have the identities
uo Y (1 1)y1o0)1 1)1 Wty 1 ooy 1 -t
0u “\No0 1 A-1 1 ) 0 1 0o 1 u 1 o 1
and 10, ). (uvto vt w 0} g
0 uvu v “"\0 u 0 v Ou'v :

Theorem 3 . If D <¢ a skew field, then En(D) = SLn(D) .

o

Proof. "&" has been observed already; as for '"O" everything is clear from
Theorem 2 because the Whitehead Lemma obviously implies Dn(a) € En(D)
for all a € [pD*,D*] o

Definition 5 . Let A be a simple ring # M2(F2) , then
K (A) = A%/[a%,a%] = ax3d
18 called the "Whitehead group of A " .

It should be pointed out that in general Kl(R) may be defined for any
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ring R (with 1 # 0 ) ; for this see e.g. J. Milnor [1971]. In the case
of a simple ring # M2(F2) our definition is easier to state and amounts

to the same.

Theorem 4 . Let D be a skew field, then

(Z) SLn(D) = [GLn(D),GLn(D)] unless n =2 and D = F2 3
(i7) SLn(D) = [SLn(D),SLn(D)] unless n=2 and D = F2 or F3 3
(112) if A := Mn(D) # MQ(FQ), then the Dieudonné determinant det

tnduces an isomorphism
K, (det): K, (A) - K, (D) ;

its inverse is induced by a » Dn(a)

Proof. (7ZiZ) is clear from (7) together with Corollary 1 and Theorems 2/3.
Moreover, "2" in () and (Z7) is obvious; on the other hand we have in
GL2(F3) the identity

1 1Y_(1-2Y_/{1o0Y11Y1o\Y¥1 1\t

0 1/7"\o1/"\o0-1 01 0 -1 0 1 >
hence - after eventually going over to transpose and inverse -

SLQ(FS) c [GLQ(Fa),GL2(F3)] .

Therefore it suffices to show "&" in (7%); by Theorem 3 this

is clear thanks to (3) in §19. provided n >3, i.e. we are left with

the case n = 2 and |D| > 4 ., Here we make use of the identities

(o) = (a5 Nse (52)
(ae 2)= (5 )2 XS )@ o)

which show - in connection with the Whitehead Lemma - that it suffices to

and

prove the following technical result:

Lemma 4 . Let D be a skew field # F2,F

written

33 then every 4 € D may be

n
_ _ R . *
d = rzzl (arbrar br) with suitable ar,br €D

Proof. In case "char(D) # 2" (this implies |D| > 5 and %-E Z(D) ) we

can write either

d = —d—;il%l— -1+ d—;l(—l)i;—:L - (-1) if d#1,-1

or
F1=3(d+1) + (¥d) with some d # -2,-1,0,1 where F(d+1), d
may be written as in the first of these two subcases.

In the remaining case "char(D) = 2" (i.e. 1 = -1 ) we write etther

1= (d+1)1(d+1) - 1 + di1d - 1 with some d # 0,1 or
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13 - 1 or finally
(d+1)d(d+1) - d +d°> -d if d#0,1 .00D

n

We close this paragraph with a few additional remarks concerning Theorem
4: of course one would wish to know how many commutators are really ne-
cessary in (Z) and (7ZZ) in order to represent an element in SLn(D) . At
least in the case of a commutative field D this question has a nice
answer: "one" in (7) and "at most two" in (Z%Z) (cf. R.C. Thompson [1981]).
In the non commutative case, however, all this turns out to be much more
complicated; references are e.g. U. Rehmann [1980] and B.B. Hypcos [1979]

in the (generally not so well-known) reports of the Byelorussian Academy
of Sciences at Minsk (USSR).

Exercise 1 . In the situation and with the notation of Exercise 1 in §19.

show: if A € A is such that "4 = 4 , then &et(4) is modulo [D*,D*]

a product of at most n elements d € D satisfying Id =d
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§ 21 . THE STRUCTURE OF SLn(D) FOR n > 2

In the previous paragraph (cf. Theorem 4 tbid.) we have seen
that SLn(D) is a perfect group (i.e. coincides with its own commutator
subgroup) provided D 1is a skew fileld (unless n = 2 and D = F2 or
= F3 ). Here we aim at a deeper investigation of the structure of SLn(D).
For an alternative point of view the reader should consult Chapter IV in
E. Artin [1957] as well as Chapter II Zbid. where the relationship of all

that to projective and affine geometry is emphasized much more than here.

Theorem 1 . Let D be a skew field, then

2(eL (D)) = { a1 | 4 €z(d)*} and

2(sL (D)) = { dI | d € 2(D)* and d" € [D*,D*] }.

Proof. According to Lemma 2 in §2. the right-hand sides in the theorem are
equal to Z(Mn(D)) n GLn(D) resp. Z(Mn(D)) n SLn(D) » hence we get "2"

of our claim. For the proof of the converse it clearly suffices to show
{ A€M (D) | 4B =54 forall BE€SL(D)}cz(M (D) .

By virtue of Theorem 3 in §20. this is exactly what has been shown in

Lemma 2 in §2. o
In the sequel we shall study three auxiliary results.

Lemma 1 . Let D be a skew fileld and G := SLn(D) (resp. := GL (D) s
then G, :={ (a__)€EG| a,_ =0 forall s# i} <s a maximal sub~-

i rs is
group tn G (i=1,..,n 3n>2)
Proof. The fact that Gi is a group is checked quickly by inspection. Now
by definition (cf. §§2./19.)
(1) Ers(t) € Gi (resp. Ers(t)’Ds(U) € Gi) for all r #1i

hence by virtue of Theorem 3 in §20. (resp. Theorems 2/3 in §20.) using

(3) in §19. it suffices to show the following:



141

given a subgroup H < G such that H # Gi , H> Gi 3 then

(2) Eis(t) €H for some s.# i and all t € D*, hence H =G .

For the proof of (2) let us select a matrix A4 = ( a. ) € HN\ Gi ; this
implies ag # O for some index s # i . After possible left multipli-
cation with D.(ta?l)D (a, t_l) € SL_(D) we may assume that we can find
it TisUs is n

an index s # i with the following property:

given t € D¥ , then there exists a matrix 4 = ( a_. ) €

€ H\G, such that a, =1t .

i is

From now on we proceed basically as in the proof of Theorem 2 in §20.,
namely: by repeated use of operations of type (9) in §19. we may transform

from 4 to Eis(t) inside our subgroup H , hence (2). O

Lemma 2 . If in the situation of Lemma 1 we have a normal subgroup N < G
such that Nf 2(G) , then NG, = G for some index 1 .

Proof. If blié Gi for some index 1 , then NGi = G by the preceding

n
lemma. Now suppose N < (*\ Gi = {diagonal matrices in G } ; since N is

i=1l
normal in G the matrix (cf. (9)/(10) in §19.)
u 0 u 0
1 -1 (%1 -1,
E () AN st T = \ ps(U, tu 1)
0 un 0 un

must be a diagonal matrix in G for all r # s and all t € D , hence

in particular 0 # u, =..= u € Z(D) , i.e. N < Z(G) by Theorem 1 . O

1
Lemma 3 . Let D be a skew field, G := SLn(D) and G, according to
Lemma 1; then Hi 1= <Eri(t) | t€Dj3r=1,..,0n 3 v # 1.> is a normal
abelian subgroup of Gi such that ( i = 1,..,n 3 n>2)

G = <gHig-l l g € G>(1l.e. G 18 the normal closure of any

() of its subgroups Hy ).

Proof. The fact that Hi is an abelian group is clear from (2) in §19.
Thanks to (3) in §19. the assertion (3) is certainly true in case n > 3
(cf. also Theorem 3 in §20.). In the remaining case n = 2 , however, (3)

is also easily seen because of

-1
_{0o-1 _ 0 -1
E (1) = ( 1 0 ) EQl( t)( 10 ) .

Therefore we are left with showing that Hi is normal in Gi t let A=
=(a )€G, and B := A-l = (b )EG, , then (cf. (9) in §19.)
rs i my i
E..(t)Ad =: A* = ( a' ) where a', = a.. + ta,, and a' = a in all
ji rs ji ji ii rs rs
other cases. It follows
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n =1 if m=s#1i and =0 if m# s #i
> buel
r=1 =1 if m=s =i and =bmjtaii1fm¢s-1
which amounts to n
-1 o ..
A E’ji(t)A = BA' = m[_l| Emi(bmjtaii) € Hi (J#1) .o
m#EL

Now we come to the principal result of this paragraph.

Theorem 2 . Let D be a skew field, then — unless n =2 and D = F2 or
= F3 = the proper normal subgroups of SLn(D) (n>2) are precisely
the subgroups of the centre Z(SLn(D)) s> T.e. the factor group

PSL (D) := SLn(D)/Z(SLn(D)) ig a simple group for n > 2 .

Proof. Let N < SLn(D) =: G Dbe a normal subgroup such that N f 0(G6)
then Lemma 2 implies NGi = G for some index i , hence (because of Lemma

3) we obtain

_ -1 -1 _ -1 _
G-<ngiHigin |n€N,gi€Gi>—<nHin ]n€N>-
= NH,
i
and therefore - since H, is abelian - [c,6] = [NHi’NHi] c N , Now use

(7Z) of Theorem 4 in §20. which implies G = [¢,G] =N . o

Theorem 2 leads to a series of finite simple groups PSLn(Fq)
(unless n =2 and q = 2 or =3 ); remarks on these may be found e.g.
in E. Artin [1957, pp.170]. Another good reference for this paragraph is
Chapter II in J. Dieudonné [1963] .

Exercise 1 . Show that GL2(F2) = SLQ(FQ) = PSLQ(FQ) is isomorphic to

the dihedral group of order 6 (which is neither perfect nor simple).

Exercise 2 . Prove that SLQ(Fa) is not perfect and show that PSL2(F3)
is isomorphic to the alternating group of degree 4 (which has order 12

and is not simple).

Note that the exercises show that Theorem 2 is best possible.
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§ 22 . REDUCED NORMS AND TRACES

Let A be an (associative) K-algebra ( K a (commutative)
field) of finite degree |A:K| =: m . Consider the left multiplication

La: A-> A, xb ax
and identify it (as usual) via La € EndK(A) o Mm(K) with a matrix.

Definition 1 . In the above situation

NA/K(a) := det(L) ) "norm of A/K "

Zs called the (a€a).
TrA/K(a) 1= tr(La) "trace of A/K "
Of course, the above norm resp. trace coincide with the usual norm resp.
trace in case A/K is a (finite) field extension. Moreover, the following
formulae are clear from:the definitions (since the corresponding proper-

ties of det and tr are well-known from Linear Algebra):

(1) NA/K: A - K is a multiplicative map ;
- m H = . .
(2) Ny @) =a if a€K (nm= [a:x] ) ;
(3) TrA/K: A > K is K-linear ;
(%) TrA/K(a) =ma if a €K (m= |A:K] ) ;
] - 1 ]
(5) TrA/K(aa ) = TrA/K(a a) (a,a' €4A) .

Furthermore, we find

(6) k(@) # 0 if and only if a € A*

NA/
here the "if" is obvious whereas the "only if' may be seen as follows:
NA/K(a) # 0 means that La is an automorphism, hence Laf = idA for some
fe AutK(A) s, 1.e. af(l) = 1 and therefore a € A¥* .

The next result should be well-known:

Lemma 1 . Let L/K be a finite field extension of degree m := |L:K| and
V a vector space over L of finite dimension n := dimL(V) (hence mn =

= dimK(V) ). Then any £ € EndL(V) may be viewed as an element in End, (V)
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and in this sense we have

det (f) = NL/K(detL(f)) and  tr (f) = (tr (£)) .

TPL/K
Proof. Let {el,..,en} be an L-basis of V and {fl""fm} a K-basis of
L , hence ({f, eJ | 1 <i<m,1<3<n} akK-basis of V . Then we get

f(e ) = E X, .e with er €L (1<j<n) and
_ rj . rj .
LX (fi) = 2. ySifS with Yei €K (1<i<m),

hence rl

f(fiej):ff(e)-zzys:.sr :

All this implies the second of our two formulae thanks to

n n
tr (f) = ZZ y Z TPL/K(XPI‘) = TrL/K(Z xrr) =
r=1 s= r=l r=1
L/K('l:r*L(f)) .

The first formula is somewhat deeper; for its proof we apply the following
trick: on both sides of the formula we find multiplicative functions, hence
- by Corollary 4 in §20. - it suffices to assume that

( er ) € GLn(L) is triangular

(note that the case f ¢ AutL(V) is trivial since both sides of our for-
mula vanish). Then

( yzi ) € M (M (K)) = an(K) is block triangular

with the (m,m)-blocks ( y "Y€ M (K) in the main block diagonal. Now we
may use standard results from Llnear Algebra concerning determinants of
triangular block matrices and obtain
reoy
det (f) = I det ( Ysi ) = NL/K rr L/K( er
L/K(detL(f)) a

An immediate application of Lemma 1 are the

Tower Formulae . Let L/K be a finite field extension and A a finite
dimensional L-algebra, them ( a € A )

N /K(a) =N (a)) and TrA/K(a) = TrL/K(Tr (a)) . o

L/K A/L A/L

In the case of a central simple K-algebra A it turns out that NA/K and
TrA/K are not sophisticated enough (c¢f. Lemma 3 below); in order to under-
stand this we need some preparation: in what follows we use the notation
and terminology from Part II and start our investigations with the highly

important
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Lemma 2 . Let [A]l € Br(K) and E a splitting field of A, Z.e. one

has an isomorphism f: A 6 E —ots Mn(E) . Then we have
det(f(a®l)),tr(£f(a®l)) € K for all a € A

and these elements in K are independent of the choice of E and £ .

Definition 2 . 1In the above situation (a € A)
RNA/K(a) := det(f(a8l)) "reduced norm of A/K "
s called the
RTrA/K(a) := tr(£(a®l)) "veduced trace of A/K ".
Proof. If we have another isomorphism g: A ®
= tf(agl)t t

in §7., hence our claim. Now let F be another splitting field of A ; we

K E —==» Mn(E) then g(a8l) =

for some t € GLn(E) because of the Skolem-Noether Theorem

may assume E C F (for otherwise consider EF and apply our reasoning
twice in the situations E < EF and F < EF ) and consider the isomor-

phisms

E

A® F-~3(A® E)® F—or sM (E) 8
K h K E foid,

P —s M (F)
3 n
F
where h 1is according to Lemma 2 in §5. (such that h(a®x) = (a®1l)8x for

all a€A ,x €F ) and jF is the isomorphism of Lemma 4 in §5. Now
call g := jF(fGidF)h 3 it follows

g(adl) = jF(f(ael)Ql) = f(a®l) for all a € A,
hence the claimed independence of the choice of the splitting field. It
remains to be proved that det(f(a®l)) and tr(f(a®l)) lie in the base
field K . Now by what we have just seen we may assume E/K to be finite

Galois (cf. Theorem 9 in §9.) with T := Gal(E/K); then A ®,6 L resp.

X
Mn(E) carry the structure of a left I-module via

% := idAea(x) (X €A ®,E ) resp. componentwise in Mn(E) .

K
Therefore it makes sense to define a map of by

1
UﬂA@KE»%w>,x»°wﬂxn (c€T) .

A straightforward calculation shows that 9¢ is likewise an E-algebra
isomorphism for every o € T , hence - since the independence of the

choice of the isomorphism is already known - -1
det(£(ae1)) = det(°£(a®1)) = det(“(£(a’ 1))) =
= det(°(£(a81))) = %det(£(a€1l)) for all ¢ €T

which amounts to det(f(a®l)) € K ( tr(f(a®l)) € K is shown similarly). O

Lemma 3 . Let [A] € Br(K) and nZ := |A:K| (f.e. n the reduced degree
of A/K ), then

NA/K(a) = (RNA/K(a)) and TrA/K(a) = n(RTrA/K(a)) (a€aA).
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This lemma, incidentally, justifies the names reduced norm resp. trace !

Proof. Select a splitting field E of A such that |E:K| divides n

(cf. Corollary 6 in §9.), i.e. rs = n where r := |E:K| . Now consider
the maps
n n
aEl A ®K E —??)MH(E) o EndE(E ) < EndK(E ) = Mrn(K) i
a A==~ cTmo - Mn2(K) = MS(Mrn(K)) Al .

Thanks to Lemmas 1/2 we find
_ s _ s _
det(h(a)) = (detK(f(an))) = (NL/K(detL(f(an)))) =

= (det (£(a81))™ = (RN, , (a))"

A/K
On the other hand (by Definition 1) we get NA/K(a) = det(h(a)) thanks to
the Skolem-Noether Theorem in §7., hence our first claim; the second claim

(concerning traces) follows in exactly the same manner. O

Now we state five formulae which are more or less clear from our defi-

nitions:

(7 RNA/K: A - K is a multiplicative map ;
_.n. 2 _ .

(8) RN, (@) =a" if a€K (0= la:x| )

(9) RTPA/K: A > K is K-linear ; ,

(10) RTrA/K(a) =na if a€K (n" = |A:k|) ;
1 - 1 1

(11) RTrA/K(aa ) = RTrA/K(a a) (a,a'€4a) .

Furthermore, we find (cf. (6) and Lemma 3)
(12) RNA/K(a) # 0 if and only if a € A* ,

Before we proceed we need to make a remark: if D is a skew field then we
may define the trace tr: Mn(D)-+ D in the usual way (i.e. the sum of the
entries of the main diagonal), however we must handle this function with

care: for instance, it will not in general fulfill +tr(4B) = tr(BA) as in

the case of a commutative ring.

Theorem 1 . Let D be a K-skew field, A := Mn(D) (Z.e. A a central
simple X-algebra), 6ect: A = D according to Definition 1 in §20. and
tr: A > D the trace, then ( a € A )

RNA/K(a) = RND/K(deT(a)) and RTrA/K(a) = RTrD/K(tr(a)) .

Proof. Let E be a maximal commutative subfield of D , hence a splitting
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field of D and A (cf. Corollary 6 in §9.); this implies i := i(D) =
= |E:K] . Now denote f£: D 8 E =2 Mi(E) the isomorphism which exists by
our assumptions on E ; then we find isomorphisms

: o : . d
g: A @K E-—-—;Mn(D @K E) , fn Mn(D @K E)A-;Mn(Ml(E)) an

h := fng: A @K E-—2a>Mn(Mi(E)) = Mni(E)

( g 1is the E-linear extension of the K-linear map Mn(D) - Mn(D & E)

which arises naturally from the embedding D=-»D 8, E , d = d81 ; fn

arises componentwise from f ). The idea of the priof is that we compute
(say) the reduced norm with regard to D (resp. A ) with the aid of f£
(resp. h )3 so if a = ( a s ) € Mn(D) = A then h(a®l) is a block matrix
with the (i,i)-block ( f(aPSQl) ) € Mi(E) in the position (r,s). It

follows (cf. (9))

n n
RTr, () = tr(h(a8l)) = >_ tr(f(a @1) = %RTPD/K(a ) =

rr
r=1 r

RTPD/K(Egg arr) = RTrD/K(tr(a)) R

hence the second of the formulae claimed. The first one is more sophisti-
cated: clearly it suffices to prove it in case a € A*¥ = GLn(D) only
(for otherwise both sides of the equation vanish; cf. (12) and Definition
and RN

1 in §20.); then - since both functions et are multi-

Ry /¢ D/K
plicative (cf. (7) and Theorem 1 in §20.) although §&et 1is mot in general
(cf. e.g. Example 1 in §20.) - we may use the trick already known from the
proof of Lemma 1, namely - by Corollary 4% in §20. - we may assume that

= Y . .
a=(a_)€QGL (D) =A% is triangular

Then h(a®l) is block triangular with the (i,i)-blocks ( f(aPPQl) ) €
€ Mi(E) in the block main diagonal. Again we may use standard results
from Linear Algebra concerning determinants of triangular block matrices

and obtain (cf. also (7))

n n
RNA/K(a) = det(h(a®l)) = I:I det(f(a  81)) = I:I RND/K(arP) =

n
= RND/K(I:I'aPP) = RND/K(Ger(a)) . o

The preceding theorem can be restated in terms of the functor Kl (see

Definition 5 in §20.) with the aid of Wedderburn's Main Theorem in §3.

(here Kl(det) is the isomorphism described in Theorem 4 in §20.).

Corollary 1 . Let A be a central simple K-algebra and D <ts skew

field component (Z.e. A = Mn(D) for some n ), then RN (resp.

A/K
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RND/K ) induce homomorphisms Kl(RNA/K) Kl(A) ];755557:; Kl(K) = K*
La— 1
(resp. K (RN ) ) such that the dia K, (det) / “
gram on the right hand side commutes
K, (D) ——— K (K) .
(here A # M_(F,) ): 1 1 o
272 Kl(RND/K

Lemma 4 . Let [A] € Br(K) , then RIr A > K s surjective.

A/K
Proof. If it were not surjective it would have to vanish identically (be-
cause it is K-linear by (9)). Let E be a splitting field of A , i.e.
f: A @K E = Mn(E) , and {al,..,am} a K-basis of A (m= n2 ) , then
{al@l,..,am®1} is an L-basis of A @K L (cf. Theorem 3 in §4.), hence
tr would consequently vanish on Mn(E) (because of tr(f(aj@l)) =

RTrA/K(aj) = 0 for all J ) which is obviously nonsense ! O

Needless to say, thanks to Lemma 3 the (ordinary) trace TPA/K va-~
nishes identically if the characteristic of K divides |A:K| , hence
the reduced trace obviously gives more information than the trace (which

gives no information at all in the above mentioned case).

Theorem 2 . Let [A) € Br(K) and L/K a (not necessarily finite) field
extension, then ( a € A )

RN (a®1l) = RN, , (a) and RIr (a®l) = RTr, , (a) .

A@KL/L A/K A@KL/L A/K

Proof. Let E be a splitting field of A @K L , hence one of A (see
Lemma 2 in §5.), and let h: A SK
from Lemma 2 in §5. (such that h(a®x) = (a®l)®x ) , then - if g:

E -y (A & L) & E be the isomorphism

(a @K L) ®L E-—aupMn(E) is the isomorphism which exists by our assump-
tions - we may consider the isomorphism f := gh: A ®, E —ez»Mn(E) It

follows

K

RN (a®l) = det(g((a®1)®1)) = det(f(a®l)) = RN, , (&)

A®KL/L

and similarly for the reduced trace. O

A/K

Again we want to restate the first claim of the preceding theorem in terms

of Kl 3 this gives (with the notations introduced in Corollary 1)

Corollary 2 . Let [A]l € Br(K) and L/K a (not necessarily finite)
L*

field extension, then the embedding Kl(A@KL).______~__+ K, (L)

i A A® L, abael dnduces | )T Kl(RNAeKL/L) L

a homomorphism Kl(iL/K) such that 1T7L/K |

the diagram shown commutes (here K (A) “;Z?Ei"";» K (K) = K*
A EULAF) ) B .o
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Theorem 3 . Let [A],[B] € Br(K) and m° = |B:X| , then ( a € A )

RN (a8l) = (RNA/K(a))m and RTr (a61) = m(RTr, () .

A@KB/K AGKB/K

Proof. Take a common splitting field E of A and B , and consider the
isomorphisms £: A @K E —nL>Mn(E) and g: B @K E —ng>Mm(E) (where n2 =
= |A:K] ); now if ¢: (A 8 B) @ E-~»(A® E) 6 (A8 E) is the iso-
morphism according to Lemma 3 in §5. (such that ¢((a®b)8x) = (a®l)®(bsx)
and y: Mn(E) &E Mm(E)~—aL>Mm(Mn(E)) = an(E) is the one described in

~

Corollary 1 in §5. (which is such that ¢(a®l) = al ) we consider the iso-
morphism h := Y(f@gld: (A @K B) QK E —o2» Mm(Mn(E)) = an(E) . Here it is
easily seen that h((a®l)®l) is a diagonal block matrix with m identical
(nyn)-blocks f(a®l) € Mn(E) in the main block diagonal, hence

(a8l) = det(h((a81)81)) = (det(f(ag1)))™ = (RN, K(a))m

RN
A@KB/K

and similarly for the reduced trace. O

/

In terms of the functor Kl the above amounts to

COY‘OHaY‘y 3. Let [A],[B] € BP(K) and Kl(A@KB) —_— Kl(K)

nl = |B:K| , then the embedding i G Kl(RNAGKB/K) o

A=A @K B , ab a®l <nduces a homomor- 1 lB/K) fi
. . .

phism Kl( lB/K) such that the diagram Kl(A) —————*K T Kl(K)

shown commutes (here A # MQ(FQ) )z 1Ak . o

Before we discuss the next result (which is more of a technical nature) we
want to remind the reader of a few simple facts: if A is a ring, then
any automorphism as well as any antiautomorphism of A preserves the
centre Z(A) (although, in general, not elementwise); see also (5) and

(12) in §7. In this sense we claim

Lemma 5 . Let [A] € Br(X) and © a ring automorphism (resp. antiauto-~
morphism) of A , then ( a € A )
RNA/K(O(a)) = O(RNA/K(a)) and RTr, p(0(a)) = O(RTrA/K(a)) .

Proof. Select a splitting field E of A such that Ec A (e.g. take
a maximal commutative subfield of the skew field component of A ; cf.
Corollary 6 in §9.), hence O(E) makes sense and is likewise a sub-
field of A . Now consider the E-algebra isomorphism £: A ®K E —:&a.Mn(E)
(which exists by assumption on E ) and the isomorphism (resp. antiiso-
morphism) 0,: Mn(E) -sia.Mn(e(E)) of rings which arises componentwise from

® (resp. which arisescomponentwise from @ via the transpose), then
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it is easily seen by inspection that g := Onf(OQOlE)_l'

A @K O(E) —c2y
Mn(O(E)) is a @(E)-algebra isomorphism, hence O(E) is likewise a
splitting field of A . Moreover ( a € A )

RNA/K(O(a)) = det(g(0(a)8l)) = det(en(f(ael))) =

= O(det(f(a®l))) = O(RNA/K(a))

and similarly for the reduced trace., O
Now we come to the principal result of this paragraph:

Reduced Tower Formulae . Let [Al€Br(K) and B a simple subring of A
such that L := Z(B) 2 K . Moreover, if C := ZA(L) , then Z(C) = L,
[B],lc] € Br(L) , t2 := ZC(B):L] and we have the formulae

. t
RNA/K(b) = (NL/K(RNB/L(b))) and

RTrA/K(b) = t(TrL/K(RTrB/L

Corollary 4 . Let [a] € Br(K) , n? = |a:K| and L/X a field exten—
sion of degree v such that K< L C A, then
x) = (N, H™T

(b))) for all bEBCA.

_n
RNA/K and RTrA/K(x) = ;ﬂTrL/K(x))

for all x€L<A.,

L/K

Corollary 5 . Let I[A] € Br(K) , L/K a field extension such that X c
cLca . If B:=12,(0), then [B] € Br(L) and we have the formulae
RNA/K(b) = NL/K(RNB/L(b)) and

RTrA/K(b) = TrL/K(RTrB/L(b)) for all b €BCA

Proof. The proof will be somewhat lengthy (for alternative proofs cf. Exer-
cises 1/2); let us start with the corollaries: Corollary 4% is clear, be-
cause in the case B = L we have ZC(B) =Ccn ZA(L) =C= ZA(L) and con-
sequently t2 = |ZA(L):L| = n?‘/r2 thanks to (vZZ) in the Centralizer
Theorem in §7.; Corollar 5 is also an easy consequence of the Reduced
Tower Formulae because of

Zo(B) =CNZ,(B) =CNZ,(z,(L)=CNL=L
thanks to (Zv) in the Centralizer Theorem in §7.
Now we start with the actual proof of the Reduced Tower Formulae: first we
claim that

(13) it suffices to prove Corollary 5 only.

Indeed, B < C 1is clear from the definitions and [B],[c] € Br(L) follows
from the Centralizer Theorem in §7., hence

C=~B @L ZC(B) because of Corollary 8 in §7.
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Now, if we identify b € B< C with b8l € B ®L ZC(B) =~ C we obtain the

Reduced Tower Formulae from Corollary 5 in connection with Theorem 3 3

this proves (13).

In the second step of our proof we show that

(14) it suffices to prove Corollary 5 in the cases " L/K purely

inseparable" and " L/K separable" respectively.

Indeed, if M denotes the separable closure of K in L , i.e. L/M

purely inseparable and M/K separable, we introduce D := ZB(M) =

=B N ZA(M) = ZA(L) n ZA(M) = ZA(M) (cf. (8) in §7.) which is such that

(D] € Br(M) , B D<A and Z,(L) =D N Z(L) =DNB=58 (cf. the Cen-

tralizer Theorem in §7.). It follows (with the aid of the Tower Formulae

for field extensions)
RN/ (P) = My (RNp )y (B)) = N (RNg

/ w/x N/ L(P))) =

= NL/K(RNB/L(b)) for all bE€B<SDCcCA

/

and similarly for the reduced trace.

In the third step we shall prove

(15) Corollary 5 is true in case " L/K purely inseparable".

For the proof of (15) let E be a splitting field of A such that (say)

E/K 1is finite Galois (cf. Theorem 9 in §9.); this implies L N E = K and
L @K E is a field =~ LE (note that the fact that L @K E is a field is

the only fact that matters in our context), and from Field Theory we know

then
(16) (x) for all x €L .

(x) = NL/K(X) and Tr (x) = Tr

NE/E LE/E L/X
By virtue of
[B] = {A 8, L} in Br(L) ( cf. Corollary 1l in §9.)

we see that LE 1is a splitting field of B (cf. Lemma 2 in §5.), hence
we have an LE-algebra (and therefore an E-algebra) isomorphism g: B ®L LE
ASe»MS(LE) ( here s := n/|L:K| where n? = |A:k| ) in addition to the
(assumed) E-algebra isomorphism f: A ®K E —DL;Mn(B) . Now consider the
maps (here h is according to Lemma 2 in §5.)
B (L8 E)~EB8 LE—oMH (LE) = End, (LE®)

¢ T & In

8
B @K Evm=====-- - Mn(E) o EndE(LE )

clearly h is an E-algebra homomorphism and we find from (16) and Lemmas
1/2 the equation

N (RNB

L/K /L(b)) = NLE/E(detLE(g(le))) = detE(g(le)) =
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= det(h(b®1l)) for all b € B .
On the other hand the embedding ¢: B —— A gives an E-algebra homomor-
phism h' := f(w@idE): B @K E - Mn(E) such that

RNA/K(b) = det(h'(b®l)) for all b € B ;

now since B GK E 1is simple by Theorem 5 in §5. (for it is =B @L LE as
we have seen above) the Skolem-Noether Theorem in §7. implies

h'(b61) = th(be1)t * for some t € GL (E) (DbEB ),
hence (15) since the reduced traces can be handled in the same way.
Now we come to the fourth step: we want to prove
(17) Corollary 5 is true in case " L/K separable"”.
Again select a splitting field E of A such that E/K 1is finite Galois
(cf. Theorem 9 in §9.)3; E 1is then likewise a splitting field of B
(thanks to LB] = [A ®K L] in Br(L) ; cf. Corollary 1 in §9.). Of course
we may assume L € E ; now we claim that
(18) it suffices to assume E C A
for otherwise we replace A by A' := Mt(A) where t 1is suitable such
that E < A' (cf. Lemma 5 in §9.; note [A] = [A'] € Br(K) ). Then
B' := ZA,(L) = Mt(B) (see e.g. the Centralizer Theorem in §7.: "©" is true
trivially and "=" follows then for dimensional reasons) and E 1is clearly

a splitting field of both A' and B' . Now let b € B be given; set

1 0 o 0
b' := \\l (resp. := \\O ) EB'cA',

0™ 0D
then (cf. Theorem 1) RNA'/K(b') = RNA/K(b) and RNB,/L(b') = RNB/L(b)
(resp. RTrA,/K(b') = RTrA/K(b) and RTrB,/L(b') = RTrB/L(b) ), hence (18).

So the fifth (and final) step in our proof will consist of showing
Corollary 5 is true in case there exists a splitting field E

(19) of A such that E/K is Galois and KS LS EcCA .

Our proof of (19) will be lengthy (but entirely straightforward in some

sense): consider C := Zg(E) = B N Z,(E) = Z2,(L) 0 Z,(E) = Z,(E) € B,

denote T := Gal(E/K) > Gal(E/L) =: A and choose a system R of repre-

sentatives for the cosets of T modulo A , i.e. T = \E} Ap = \E) p—lA ,
p€R pER

hence (use Theorem 5 in §7. twice (for the notation cf. its proof))

e C = Ce and
S T-R -t LTy
pER € ° P oER &Eh Poer P

in (20) we have in general B # epBep-l but always epBe;l cC .

B
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Moreover, by construction E is a common splitting field of A , B and C
(cf. Corollary 1 in §9.) hence

f: C 2 Mm(E) as E-algebras for some m .
Now fix p € R and define another E-algebra isomorphism

Pe. P -1

f: C A—»Mm(E) s, CP (f(ep cep))
where p acts on the matrices on the right-hand side componentwise (cf.
the proof of Theorem 5 in §7.). The Skolem-Noether Theorem in §7. then

gives (pER ,c€C)
(21) PEe) = t f(c)t—l for some t_ € GL (E)
[ P 8] m

Now regard B via (20) as a free right C-module of rank h := |A| = |E:L};
if we denote L: B =~ EndC(B) , br Lb the L-algebra homomorphism arising

from left multiplication we obtain the isomorphisms of E-algebras

End (B) = Mh(C)——0L>Mh(Mm(E))

C
L "
ER 1 (s := hm)
B8 E-—-=-----~ - M_(E)
L g
where fh arises from f componentwise and LE stands for the E-linear

extension of L (cf. Theorem 3 in §5.) which is an isomorphism for di-
mensional reasons (note that it is injective since B QL E has no proper

two~sided ideals thanks to Corollary 3 in §5.). We find (ef. (20))

(22) g(b8l) = ( f(ced) ) where be6 = :%; e Cs ( §€EA)
Clearly we have for all b € B &

RNB/L(b) = det(g(b8l))
RTr, , (b) = tr(g(b&l))

det( f(ced) ) and

(29) > te(f(egy)) (here tr in M (E) ).
8€h

B/L

On the other hand - again via (20) - we may now regard A as a free right
C-module of rank rh = |T| = |E:K| ( r := |L:K| = |R| ) and consider the

E-algebra isomorphisms (argue as above)
Endc(A) o Mrh(E)——4=—e Mrh(Mm(B))

Ly F rh " (niermm, ol = o] )

which yield the formulae
RNA/K(a) = det(k(a®l)) and RTPA/K(a) = tr(k(a®l)) (a€A).

Now assume b € B < A ; it follows (cf. (22) )
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_ ~ _ -1
Lb(eSep) = bedep = EéA eeceéep = séA eeep(ep CESep) (b€EB),

N -10
hence - if t := Py €M (M (E))* = GL_ (E) (cf. (21)) - thanks to
0 P s n

(21) and (22):

~ 0 \p—l 4.0
k(b®1l) = Of(ep ceéepz\\ = . (tpf(ceé)tp\l\ =
~ -1 0 S~ -1 0\ _
(24) =i Pee 0 = t( P (g(ve1)) )t Yew u @)
0 €9 0 ~ ¥

for all bE€BCA .
Using standard results from Linear Algebra concerning determinants and
traces of diagonal block matrices we obtain immediately from (23) and (24)
the formulae

-1
RN, /i (B) = det(k(b8l)) = TT? (ru

(b)) = N
pER L

(R 1 ()

B/L
for all b E€BcA

and similarly for the reduced trace. O

Exercise 1 . Study section 9 (pp.112) of I. Reiner [1975] where you can

find a different approach to reduced norms and traces.

Exercise 2 . Give an alternative proof for the Reduced Tower Formulae
by showing that a specialisation argument (involving rational function
fields in one variable) reduces the problem to the much simpler (ordinary)

Tower Formulae (see P. Draxl & M. Kneser [1980]).

Exercise 3 . Let H be the skew field of real quaternions (see §1.);
describe the function RNH/R explicitely and show

RNH/R(H*) = R;O := multiplicative group of positive reals .

For another interesting result cf, W,C, Waterhouse [1982]
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§ 23 . THE REDUCED WHITEHEAD GROUP SKl(D) AND WANG'S THEOREM

In this paragraph we want to study the Whitehead group Kl(D)
HE D*ab (ef. Definition 5 in §20.) of a K-skew field D by comparing it
with Kl(K) = K* . Thanks to Wedderburn's Theorem in §10. we may restrict
ourself to the case of Infinite base fields K .

If A is a central simple K-algebra (e.g. a K-skew field),
then Kl(A) and Kl(K) = K* are linked by the homomorphism Kl(RNA/K)
which is induced by the reduced norm (cf. Corollary 1 in §22.). In this

sense we have
Definition 1 . Let [A] € Br(K) , then

SK (A) := Ker K (RN, ) = { a €A | Ry, , (a) = 1 }/[a%*,a%]

A/K
is called the "reduced Whitehead group of A ' and

A/K

0 _ _
SH”(A) := Coker Kl(RNA ) = K*/RNA/K(A*)

/K
the "reduced norm residue group of A ".
Obviously we get

(1 SK,(K) =1 and SHO(K) = 1
as well as (cf. Lemma 5 in §22.)

(2) sk (A%P) = SK (A) and siPa®Py = sy .

Now denote D the skew field component of A (i.e. A = Mn(D) for some

n ); thanks to Corollary 1 in §22. we have a commutative diagram

0
1 SKl(A) —_— Kl(A) — Kl(K) > SH (A) —— 1
(3) % Kl(det)k u ﬂ
1 — SKl(D)-~———+ Kl(D)—————» Kl(K) - SH (D) — 1

where the rows are exact and Kl(det) is as in Theorem 4 in §20.

0f course (3) means that SKl(A) and SHO(A) depend (up to isomorphism)
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on the class [A] in the Brauer group Br(K) only.
Now let us reinterpret Corollary 2 in §22., in terms of Definition 1 : it

says that we have a commutative diagram

0
11— SKl(AOKL) — Kl(AQKL) — Kl(L) - SH (A@KL) — 1

o el T

)
1 — SKl(A) — Kl(A)-——» Kl(K) -—> SH(A) —= 1

with exact rows (for any field extension L/K ).

Corollary 2 in §22. has a converse:

Lemma 1 . Let [A] € Br(K) and L/K a finite field extension of degree

m := |L:K| ; then there is a K (A8, L) K (L) = I*

. 1 1
homomorphism Kl(NL/K) such that L Kl(RNAQKL/L)
the diagram shown commutes and 1 L/K L/K
such that K, (4) ——————— Kl(K) = K*
W (i) = BV
K Gy Gy ) =
= |L:K|id .
K, (A)

Proof, Let L: L - Mm(K) be the K-algebra homomorphism arising from left
multiplication together with the standard isomorphism EndK(L) o Mm(K) 5

then idAQL induces a group homomorphism (cf.Lemma 4 in §5.)
T Kl(AQKL) — Kl(AeKMm(K)) o Kl(Mm(A)) .

Now we see from Theorem 2 in §7. that the embedding A @K Le— A @K Mm(K)
is such that ZAQKMm(K)(K QK L) = ZA(K) GK ZMm(K)(L) - A QK L (note that

ZM (K)(L) = L follows for dimensional reasons from the Centralizer Theo-
m

rem in §7. if we view L as embedded into Mm(K) via L above), hence

(RN (x)) forall x€A®, L

(5) R K

(x) = N

N
A@KMm(K)/K L/K A@KL/L

by the reduced Tower Formulae in §22. (or Corollary 5 in §22.).
Now assume A a K-skew field (we may do this in view of (3) above) and

define

.= . . ab -
Kl(NL/K) : Kl(det)n with det: GLm(A) - A Kl(A) .

Now (5) and Corollary 1 in §22. imply the commutativity of the diagram
shown in our lemma, hence we are left with the proof of the relation

Kl(NL/K)Kl(lL/K) = ]L:KlldKl(A) ; for this we consider the two K-algebra
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homomorphisms

f,g: A~ Mm(A) ~ A ® Mm(K) ; fa) = a@Ll , gla) = al

X
which differ by an inner automorphism of Mm(A) only (cf. the Skolem-
Noether Theorem in §7.). The latter implies that the classes T(a) and
g(a) coincide in the factor group Kl(Mm(A)) = GLm(A)ab , hence - thanks
to det(al) = a" (see §20.) - we obtain

)(@) = K (N )(381) = det(FWL) = det(al) =

Ky (Np 0K, (4

L/K L/K

=eral) = a" =3 = |L:K|id (@)
K (8)
for all ‘a'eKl(A) (a€A*) .o
An immediate consequence of Lemma 1 is the existence and commutativity of

the diagram

0
1— SKl(A@KL) —_— Kl(A@KL) —_ Kl(L) —> SH (A@KL) — 1

l
() l Kl(NL/K)l j/NL/K i
1 —— K, (8) = K () K, (K) —— su%(a) 1

with exact rows (for any finite field extension L/K ).
Since there is always a splitting field L of A such that [L:K| = i(A)
we obtain from (1),(3),(4),(6) and the last assertion of Lemma 1 immedi-

ately the important

Lemma 2 . Let [A] € Br(X) , then SKl(A) and SHO(A) are abelian tor-
ston groups with fixed exponent dividing i(A) . O

Later in this paragraph we shall strengthen the first of the two asser-
tions of the preceding lemma.
Another immediate consequence of the last assertion of Lemma 1 (together

with Lemma 2 is)

Lemma 3 . Let [A] € Br(K) and L/K a finite field extension of degree
m = |L:K| ; then aw a8l (resp. the embedding X < L ) induce injections
SKl(A) 55_;SK1(A®KL) (resp. SHO(A) ey SHO(AQKL) ) provided |L:iK| and

i(A) are coprime. 0

The first assertion of Lemma 2 may be stated in a more quantitative way:

Lemma 4 . Let D be a K-skew field of index i := i(D) ; #f 4 € D*
such that RND/K(d) = 1 (for instance if d € [D*,D*] ) then d is a

product of at most 2(i2—1) commutators of elements in D¥ .
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Proof. Take a splitting field L of D (which implies the existence of
a K-algebra isomorphism £: D @K L -°L9Mi(L) ) and consider the two
K-algebra homomorphisms g,h: D = Mi(D) defined by g(d) := dI and

81 D8 L —=—p Mi(L)

bor

d D——}—l—-vMi(D) .
The Skolem-Noether Theorem implies g(d) = th(d)tnl for some t € GLi(D) 5
by definition of the reduced norm in §22. (together with the fact that
Set coincides with the usual determinant in the commutative case; cf.
Theorem 1/Corollary 1 in §20.) we get

Set(h(d)) = Sev(£(d81)) = RND/K(d) =1 ,
hence

al = ger(an) = set(g(d)) = ser(th()t™d) =

= a product of at most 2(i2—1) commutators of elements in D¥
because of Corollary 2 in §20. O

Now let us reinterpret Corollary 3 in §22. in terms of Defi-
nition 1 : it says that for [A],[B] € Br(K) we have a commutative dia-
gram

L SKl(A@KB) — Kl(AQKB) — K (K) — SHO(AGKB) — 1

i(B)
(7 Kl(iB/K)T Tz I
X
11— SKl(A) _— Kl(A)  — Kl(K) —— SHO(A) ——— 1

with exact rows (here B may assumed to be a K-skew field thanks to (3),
hence 1i(B) = m (in the sense of Corollary 3 in §22.)).

Corollary 3 in §22. has also a converse:

K*

Lemma 5 . Let [a],[B] € Br(K) , Kl(AGKB)Km—-—-*)Kl(K) = X
then there is a homomorphism K. (p )l 1777A8 B/XK l
Kl(PB/K) such that the diagram 17B/K 1(5)
shown commutes and such that Ky (&) K_(r K (K) = K* %
1 A/K
Ky (P %, (g ) i(B)QidKl(A) '

Proof. It suffices to study the case where A and B are skew fields
(see (3)); consider

. ) 5 op
K, (igop )¢ K, (A8B) = K, (A€, BEB™) = Kl(Mi(B)Q(A))
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(remember A & B & BP o g L Mr(K) o Mr(A) thanks to Lemma 3 in §h.
and Corollary 2/Lemma 4 in §5.) and define

Kl(pB/K) 1= Kl(det)Kl(iBop/K) with det: GLP(A) - Kl(A)

where r := |B:K| = i(B)2 (because B is a skew field). In view of
i(8°P) = i(B) the commutativity of the diagram in our lemma is clear
from (3) and (7); therefore we are left with the proof of the relation
. NS
)Kl(lB K) = i(B)"id

Kl(PB/K / Kl(A) ;3 for this we consider the two K-algebra

homomorphisms ( r := i(B)2 as above )

f,g: A~ Mr(A) o~ A QK B @K g°P ; f(a) = a818l , g(a) =

which differ by an inner automorphism of Mr(A) only (cf. the Skolem-
Noether Theorem in §7.). The latter implies that the classes T(a) and
g(a) in the factor group Kl(Mr(A)) = GLr(A)ab coincide , hence - thanks
to éet(al) = ar (see §20.) - we obtain

Kl(pB/K)K (lB/K)(a) = Kl(pB/K)(3§T) = det(a®i®I) = det(al) =
_ v _=r _, 2. —
= fet(al)y =a =a = i(B) ldKl(A)(a)

for all a € Kl(A) (a€a*) .o

An immediate consequence of Lemma 5 is the existence and commutativity of
the diagram

1—> SK. (A® B) — K (A8 B) — K_(K) — SHO(AQ B) — 1

1 K 1 K

X
(8) j Kl(pB/K)\ ] Ii(B) l
X

0
1— 8K (A) — K (A) — K (K) —— SH™(A) —— 1

K

with exact rows.
Thanks to Lemma 2,(7),(8) and the last assertion of Lemma 5 we may con-
clude easily:

If i(A) and i(B) are coprime, then there are injections
(9) SK,(A) C» 5K (A6,8) (resp. SH(A) = SH'(48,) ) induced

by at a®l (resp. xb xl(B) ) .

The statement (9) can easily be improved as follows:

use (9) agaln (but restrict it to the i(A)-torsion component of SK (A® B)
and SH (A® B) ) with A @K B (resp. B °P y ip place of A (resp B ) and
apply the 1somorphlsm A @K B OK BP o~ Mr(A) (r:= 1(B) ) which we
have used already above; now observe that Kl(PB/K) and Kl(iBOP/K)
differ by an automorphism only (namely by Kl(det) ; see the definition



160

of the map Kl(PB/K) in the course of the proof of Lemma 5 ), hence

Kl(p /K) induces an isomorphism from the i(A)-torsion component of
B

SKl(AOKB) onto SKl(A) . Therefore Kl(i is an isomorphism of

B/K
SKl(A) onto the i(A)-torsion component of SKl(AeKB) . By a similar (but
actually easier) argument we see that =x & x*  induces an isomorphism of
SHO(A) onto the i(A)-torsion component of SHO(AQKB) . Interchanging the

roles of A and B gives (cf. the Theory of Torsion Groups)

Lemma 6 . Let [A)l,[B] € Br(K) such that the indices i(A) and i(B)
are coprime, then we have isomorphisms
SK, (48,8) = SK (&) x SK,(B) and sHO(48,B) = sH(a) x s1%(8). @

In view of Corollary 1l in §9. all this implies (together with (3))

Corollary 1 . Let [A] € Br(K) , then for the study of the structure of
the groups SKl(A) and SHO(A) it suffices to consider the case of a
K-skew field A of prime power index .0

Now let us turn to more special results (note that so far in
this paragraph we discussed the general functorial behaviour of the func-

tors SKl and SHO without restrictions).

Levma 7 . Let D be a K-skew field and L a maximal commutative sub=-
field of D such that L/K <s either purely inseparable or cyclic. If
d € L* < D¥ and RND/K(d) =1 , them d <8 a commutator.

Proof. Let us start with the purely inseparable case: then i(D) = |L:K| =
= pf where p := char(K) # O . Thanks to Corollary 4 in §22. we get
£ £ b
- o4 S 2 gP - 4P - (a-1iyP
O—RND/K(d) 1 NL/K(d) 1=4a 1 (a-1) >
hence d = 1 and therefore even more so our assertion (for the last two
steps in the above formula cf. Field Theory). Now the cyclic case: let
' := Gal(L/K) = (0) , then NL/K(d) = RND/K(d) = 1 thanks to Corollary 4
in §22. (note i(D) = |L:K| since L is maximal commutative in D j cf.

Theorem 4 in §7.); therefore we may find some m € L* < D*¥ such that

d = amm-l (cf. Hilbert's "Satz 90" in §6.) . The Skolem-Noether Theorem
in §7. implies the existence of some t € D¥* such that m = tmt_l .
hence d = tmtulm_l . a

Now take any quaternion skew field D =~ i.e. i(D) = 2 ~-; then, if K

denotes the centre of D , every element d € D 1lies in some quadratic

field extension L/K which must be either purely inseparable or cyclic.



lel

Consequently the following result is clear:

Theorem 1 . Let D be a K-skew field of index 2 (7Z.e. a quaternion
skew field, e.g. D = H : see §1.) , then SKl(D)={1}, more precisely:
any d € D* such that RND/K
[D*,0*%] consists only of commutators. o

(d) = 1 <e a commutator, in particular:

Before we proceed with our investigations of SKl we must

introduce some new notions from Galois Cohomology. We start with (cf. §6.)
Lemma 8 . Let M be a left M-module, then
- o - =
IF(M) = { GEGF( m mo)l L €M, my 0 for almost all o }
18 a T-submudule of M ; moreover, if T 1is finite then IF(M) c Ker“Nr .
Proof. Straightforward calculations. O

Note that MF := M/IF(M) is the largest factor module of M on which T

acts trivially.

Definition 2 . Let T be a finite group and M a left T-module, then
H_l(I‘,M) := Ker NF/II,(M) s called the " (-1)-st Cohomology Group of M ".

Lemma 9 . Let T be a finite group and M a left T-module, then
H(r,M) <s an abelian torsion group with fized exponent dividing |T|

. . o
Proof. Write n := |T| and take x € Ker NF » 1l.e. Eir X = NF(X) =0
. - o - Oy -
it follows nx = > 'x - nx = > ('x - x) € IF(M) . 8
o€T o€l

Lenma 10 . Let T = {o) be a finite cyclic group and M a left T-module,
then 1.1 ={’m-n|men}

Proof. "2" is clear; as for the converse we find
ci s i-1 0j i-1 Uj
m-m=z (> ‘m)-CG_"m) .o
50 50
Combination of Lemma 10 with Exercise 1 in §6. yields
(10) Hl(F,M) I~ H_l(F,M) in case T is finite cyclic.
Note that Hilbert's "Satz 90" in §6. may now be stated in the form

(11) H_l(F,L*) = {1} if L/K is a finite cyclic field extension

with Galois group T .

Note that (10) stresses the fact that Hilbert's "Satz 90" is merely a con-

sequence of Noether's Equations (see also §6.).
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In what follows let L/K be a finite Galois extension with
I := Gal(L/K) ; then Br(L) is a left I'-module (cf. §9.) and we recall
(cf. Lemma 2 in §8.):
(12) [a] € Br(L)r if and only if every o € I' can be extended to
a ring automorphism of A .

In this context we claim

Lemma 11 . Let L/K be finite Galots, T := Gal(L/K) and [A] € Br(L)F ;
then Kl(A) can be given in a natural way the structure of a left T'-modu—
le such that Kl(RNA/L
viewed as a T-module in the usual way); in particular: Im Kl(RNA
= RN, , (A*) <s a T-submodule of L* = Kl(L) .

) s a left I'-homomorphism ( Kl(L) = L* being

/)

A/L
Proof. Let o € T be given and ¢G a ring automorphism such that ¢0 L=
= o (ef. (12)). If Vg is another such automorphism then the Skolem-
Noether Theorem in §7. implies the existence of some +t € A* such that
¢;l¢c(a) = ta't_l for all a € A . It follows that for given a € Kl(A) =
= A*ab ( a € A* ) the element

°F = 0@ =y (rat ) = g (v (@ (0N (a) v (a) =
= ¢03a5 € Kl(A)

is independent of the choice of the extension ¢0 of o , hence %3 is

well-defined and furnishes Kl(A) with the structure of a 'module. The

rest is then clear thanks to Lemma 5 in §22. O

Now we are fully prepared for a generalization of the cyclic part of

Lemma 7 above.

Theorem 2 . Let ([A] € Br(K) , L/K Galois , L< A, T := Gal(L/K) and
B := ZA(L) ; then [B] € Br(L)F . Moreover, denote

sk (A)|p = { b € B¥ c a* | RN, (B) = 1 Y (B* n [a*,a%])

the subgroup of SKl(A) which is generated by the elements of B* , then
we have the two exact sequences
SK, (B) ——— SK (A)‘ — X — 1
£ 1 B ¢
and

17 r, Ry

* — .
(B*)) -—?;—* X 1

B/L
gL (b € B¥[RN, , (b) = 13)/RNg, (B* 0 [4%,4%]) , £ and b
are induced by embeddings and g 18 induced by RN

Here X := RN

B/L
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Corollary 2 . In the situation and with the notation of Theorem 2 we have

SKl(A)\B = (1) provided Sk (B) = {1} and H'l(r,RNB/L(B*)) = {1} .o

Corollary 3 . In the situation and with the notation of Theorem 2 1t
follows that the exponent of (the torsion group) SKl(A) B divides
|L:K|~times the ewponent of Sk (B) . O

Moreover, we want to point out that we may recover the cyclic part of
Lemma 7 with the aid of Corollary 2 because of
B=1L (since L is maximal commutative) and hence
SK,(B) = {1} by (1)
and

H_l(I‘,RN (B*%)) = H'l(r,L*) = {1} by (11) .

B/L
Proof (of Theorem 2). Thanks to (8) and Corollary 1 in §9. [B] € Br(L)r
is clear and consequently RNB/L(B*) is a T'-submodule of L* . Because of
Corollary 5 in §22. f and g are well-defined and the upper sequence is

clearly exact. Again by Corollary 5 in §22. we find

({b € B*|RN, , (b) = 1}) = Ker N

RNG /1, 3L

which implies that in order to prove the exactness of the lower sequence

A/K L/K|RN
it suffices to show that h is well-defined which clearly amounts to
showing the inclusion (cf., Definition 2)

I(RY, [ (B¥)) < RNy, (B* 0 [a*,a%])

the latter, however, is not difficult: let o € I be given, then the
Skolem-Noether Theorem in §7. implies the existence of e € A* such that
eoBe;l = B and ecxe;l = x for all x € L (see Theorem 5 in §7. and
the proof thereof) . Now use Lemma 5 in §22. for obtaining

o] -1

-1 -1
RNB/L(b)RNB (b) be b 7) € RNB/L(B* n [a*,a*])

/L = RN ;e

for all b € B* . o

Theorem 2 (more precisely: Corollary 2) suggests the following definition

which is feasible because of Lemma 11 :

Definition 3 . A commutative field k <is called "reasonable'" if for any
finite separable field extension X/k , any finite Galois extension L/K
with T := Gal(L/K) and any [B] € Br(L)|  the embedding RN, (B¥) c L*
tnduces an isomorphism

B, Ry

B/L

-1
B/L(B*))uH (r,L*) .

We shall See in a moment that the class of reasonable fields is not empty.
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Theorem 3 . Let k be a reasonable field and [D] € Br(k) , then
sk (D) = {1} .

Theorem 4 . Let (D] € Br(k) , then SKl(D) i8¢ an abelian torsion group
of fized exponent dividing i(D)/iO(D) where iO(D) denotes the greatest
squarefree divisor of 1(D) .

Corollary 4 . Let [D] € Br(k) be such that i(D) is squarefree (i.e.
a product of distinct primes), then SKl(D) = {1} . o

Note that Theorem 4 improves the first claim of Lemma 2 and is best possib-
le (ef. (7) in the following §24.); Corollary 4 generalizes parts of

Theorem 1 .

Proof. We will prove Theorems 3/4 simultaneously: first of all , thanks to

Corollary 1 it suffices to study the case

(13) D a k-skew field of index 1i(D) = pf for some prime P .
Let d € D* be given and assume RN (d) = 1 ; we must show

£o1 D/k
(14) d (resp. dP ) € [D*,D*] in case of Theorem 3 (resp. 4)

Now let M be a maximal commutative subfield of D such that d € M*
(then |M:k| = pf because of Theorem 4% in §7.); in view of Lemma 7 it
suffices to discuss the case " M/k is not purely inseparable" only ! If
then S denotes the separable closure of k in M we see that S/k

is a separable field extension of degree pe where 1 <e<f .

Now let F be a Galois closure of S over k , @ := Gal(F/k) , Qp a
p-Sylow subgroup of §© and K := FixF(QP) the corresponding p-Sylow
subfield; then |K:k| and pf are coprime and hence A := D @k K re-
mains a skew field - i.e. i(A) = pf , [A] € Br(K) - (cf. Corollary 8 in
§9.) and we have an embedding SKl(D) o SKl(A) (cf. Lemma 3) via the

usual embedding D - D @k K . Therefore, writing a := d81 € A¥ , in or-
der to prove (14) it will suffice to prove

f-1
(15) a (resp. a® ) € [A*,A*] 1in case of Theorem 3 (resp. 4) .

Now consider N := M @k KeD @k K=A and T := S @k KS N ; both N
and T are fields (for otherwise the skew field A would have zero-
divisors # O (cf. Exercise 1 in §5. and Exercise 2 in §3.)) such that
ek = pf
rable of degree pe (1 <e<f ). Therefore - by the elementary theory

(i.e. N is maximal commutative in A ) and T/K 1is sepa-

of p-groups - we may find an intermediate field L of the extension T/K

such that
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L/K 1is cyeliec of degree p with Galois group (say) T .
Consequently (cf. (10) and (8) in §7.)
a€Nc ZA(N) c ZA(L) =: B

£-1 (cf. Lemma 3/Centralizer

where B is an L-skew field of index i(B) = p
Theorem in §7.). From all this we conclude (with the notations of Theorem
2): in order to prove (15) it suffices to show

- £-1
(16) SK ()], = {1} (xesp. exp(SKl(A)IB)Ip )

Now we use induction on f ( f as introduced in (13)): the case "fz1" is
then clear from Lemma 7 ( L is then maximal commutative in A for degree
reasons and we get directly (15) from Lemma 7 ; note that Theorems 3/4
coincide in case f = 1 ). Now assume f > 1 ; in case of Theorem 4 we get
(16) from Corollary 3 because we may assume (by induction hypothesis) that
the exponent of SKl(B) divides pt_2 3 finally, in case of Theorem 3 ,
we conclude (16) from Corollary 2 because we may assume SKl(B) = {1}
(again by induction hypothesis) as well as

-1 -1 _
H (I‘,RNB/L(B*)) =~ H “(T,L*¥) = {1}

(thanks to (11) and the fact that k is assumed to be reasonable). O

Although the above proof appears first in P. Draxl [1977] its core may be
found in disguise in B.W. fAxuescumi [1975]; the general idea, however, -
as well as the general idea of practically everything else in this para-

graph - goes back to Wang Shianghaw [1950].

Now how about the mysterious reasonable fields ? We have just
seen that they are defined in precisely the way which enables us to
substantiate Wang Shianghaw's original ideas for a proof of " SKl = {1} .
Since it is known from Number Theory that SHO(A) = {1} for all central
simple K-algebras over local fields K (cf. §18. for the definition of
a local field; cf. e.g. Prop. 6, §2. in Ch. X of A. Weil [1967] for the

above claim) we see:
(17) Any local field is reasonable.

Consequently Theorem 3 includes a proof of (1) in the preface of Part III.
On the other hand one can show (see Satz 1 in P. Draxl [1977]) that also
global fields are reasonable (cf. §18. for the definition of a global
field); this result is much deeper than the corresponding local version:
it depends mainly on the description of SHO(A) over global fields via

"Eichler's Norm Theorem" - see also the "Hasse-Schilling-MaaB Theorem' -



166

(cf. e.g. Prop. 3, §3. in Ch. XI of A. Weil [1967]). We repeat:
(18) Any global field is reasonable.

Consequently Theorem 3 includes also a proof of (2) in the preface of
Part III., usually called "Wang's Theorem'" . Note that for the proof of
"Eichler's Norm Theorem" the Grunwald-Wang Theorem is not needed (see

M. Eichler's own proof in A. Weil loe. eit.), although complicated things

from global Class Field Theory are still involved.

Summarizing we get from all of the above:

(19) Kl(H) e~ R;O (cf. Theorem 1 and Exercise 3 in §22.) ;

(20) Kl(D) ~ K¥ if D is a K-skew field over a local field K ;
(21) Kl(D) o RND/K(D*) if D is a K-skew field and K is global.
Exercise 1 . Give a quantitative version of Theorems 3/4 (just as Lemma

4 is a quantitative version of Lemma 2); cf. P. Draxl [1980] .

Exercise 2 . Consider the situation of Theorem 2 : if we denote by r
the degree of L/K , then Mr(B) =~ A @K L (ef. (v) in the Centralizer
Theorem in §7.); show

Kl(NL/K) = le(det) where det: GLP(B) - Kl(B) .

Again f: Kl(B) - Kl(A) is induced by the embedding.
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§ 24 . SKl(D) # 1 FOR SUITABLE D

Until 1975 no example for SKl(D) #{1} for a suitable skew
field D was known; the problem of finding one (or alternatively proving
that there is none) often was referred to as the Tannaka-Artin Problem
(particularly in the Russian literature).

Looking back all this seems strange since we shall introduce
later in this paragraph such an example which - in order to be understood
- requires hardly more knowledge on skew fields than displayed already
in §1.

The first example for SKl(D) #{1}, however, was somewhat more
complicated; it was given by B.M. Mnatonos [1975]. Further information on
that V.P. Platonov developed a whole theory of examples and published it
in many (mostly short) papers) and related points of view (partially due
to the author) may be obtained from the report P. Draxl & M. Kneser [1980]
and the literature list therein (cf. also the remarks at the end of this
paragraph) .

Now for the just mentioned example: we start with the obvious

Lemma 1 . If i<n Definition 1 in §1. the field L <s asswmed to be only
a skew field (and not a commutative field), then Definition 1 in §1. still

makes sense and Lemma 3 in §1. remains correct. o

In this context, of course, Lemma 4 in §1. has to be modified since it
does not make sense as it stands if L 1is not commutative; since any
automorphism ¢ of a skew field L preserves the centre (cf. (5) and
(12) in §7.) we may consider

oo:= o] 7(L) and denote KO = leZ(L)

(o)
Doing so we note that our new notation coincides with the one from §1. as
soon as L is commutative. Copying the proof of Lemma 4 in $§1. with the

notational changes just introduced we obtain the important
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Lemma 2 . Let L be a skew field and D := L((T;0)) (see Lemma 1). If
o, has infinite order, then 7(D) = Ky » hence [D:Z(D)] = = ; if %
has the finite order n in Aut(Z(L)) , then Z(D) = K ((TM) , hence

ID:2(D)| = n?|L:2(1)] . ©

Now select a commutative field k of characteristic # 2 and define

(skew) fields and automorphisms thereof as follows (in the sense of Lemma

1 above):
L := k((tl)) and o such that t b -t , clk = iq
E := L(t,30)) 3

(1)
F := E((ts)) and Tt such that Tty Pty T|E = idE 3
D :=

F((t,31))
Thus D is the k-space of iterated formal Laurent series in four variab-

les ’(::I-,'c2,1:3,1:,+ ; we use multiindex notation t— , 1= (iu,i binsil)

i, i, 3w
for the monomials tl t2 tS 't‘+ and order the quadruples 1 lexixographi-
cally. Thanks to the commutation relations t2tl = -'I:lt2 . ‘cut3 = -t3t|+
and tjti = titj (i€ {1,2} , 7€ {3,4} ) every element d € D can be

uniquely written in the form
_ i
d = %' a,t ( a; € k)
Set wv(d) := min{ i | a, # 01} ; then v(dd') = v(d) + v(d'") (in fact v

2

is even a Henselian valuation of rank 4 ). Now define (write Ti iz ti )

(2) K 1= k(T (T, (THT,)) € D

Theorem 1 . Let D be according to (1) ; then D g a K-skew field ( X
according to (2) ) of index i(D) = 4 and exponent o(D) = 2 ; moreover

T ,T2 TS’T4
(3) D =~ ( ) 8, ( ) (in the notation of §1lu.)
K K
and
() 0¥l c {11+ S5 att ).
o *t

Furthermore, if k contains a primitive 4-th root of unity <t , then
RN (2) =1 but ¢ £ [D*,D¥] , hence SK (D) #{1}.

Proof. Repeated application of Lemma 1 shows that D is a skew field. Now
we use Lemma 2 repeatedly and get from (1) and (2)

Pix,(0) = k((t2)) , hence Z(E) = k((+]))((t3)) and

|E:Z(E)| = & 3
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Z(F) = Z(E)((ta)) , hence Tp T IZ(F) t > t3 .
TOIZ(E) = ddyepy 3
Fixy py(15) = Z<E>(<t >) KN (ED)((£2)) , hence

(D) = (Fix,opy (1, ))((t )) = K and |D:K]
= 4|E:2(E)| = 16 , hence i(p) =

4|F:2(F)|

The isomorphism (3) and hence o(D) = 2 (cf. §9.) is clear enough since

evidently we have the two K-algebra isomorphisms (cf. Theorem 2 in §14.)

T

12 2
£ A.-( < )A—»KG)K‘CJ_QK'CQeal(tl‘c2
and

T3 4
g: B:= (—}(—)—A’-»K@Kt G)Kt @Kt3 n

which are such that f(a)f(b) = f(b)f(a) for all a € A , b € B . This
gives a K-algebra homomorphism A ®,6 B - D (cf. Theorem 2 in §5.) which

K

is an isomorphism for dimensional reasons (note that A OK B is simple).

Finally we must study the shape of a commutator in D¥ : because of Lemma
1 and the commutation rules of the ti the construction of the inverse

described in the proof of Lemma 3 in §1. goes through with multiindices

mutatis mitandis. We have v(dd'd 'a'™') = 0 and thus ddaraTtarT =

= a+ E a. t ( a € k¥ ) where we find a = 1-1 in view of the commu-
i>0

tation rules of the t. . Therefore obviously ¢ € [D*,D*] but RN

__i(p) mn i . D/K

=g = ¢ = 1 thanks to (8) in §22. @

() =

Again we point out that Theorem 1 is founded on the (compara-
tively elementary) results of §1.; save for the definition of the reduced
norm and its property (8) in §22. nothing about K-skew fields is needed !

It should be remarked that the construction (1) is related to
B.A. JnAHummi [1976], moreover, the reader should compare the skew field
D according to (1) with the skew fields on pp.94,..,104 of the lecture
notes N. Jacobson [1975].

We close this paragraph by stating some more interesting re-
sults (without proof):

There is a field K such that if [A] runs through Br(K) ,
(5) then SKl(A) runs through all finite abelian groups (cf.

P. Draxl [1975/76] together with Satz 9 in P. Draxl [1977]).

SKl(A) may be any countable infinite abelian torsion group

(6) with given fixed finite exponent for suitable A (cf. the
seminar report H.-G. Gribe [1980]).
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There is a field K with the following properties:

(i) SKl(A) I~ Z/i%%%z for all [A] € Br(K) ;
7 (ii) given m,n € N with the same prime factors and such

that m|n , then there is an [A] € Br(K) such that
i(A) = n and o(A) = m .

(cf. P. Draxl [al ; notation as in §9.)
The last result is related to H.Jl. Epwos [1982].

As far as applications of "SKl(D) # 1" are concerned we refer
the reader to B.M. MnatoHoe [1977],01980], to the book B.E. BocHpeceHckui
[1977]) and to the surveys J. Tits [1976/77] and B. Weisfeiler [1982].

Exercise 1 . Consider the skew fields described on pp.94,..,104 of
N. Jacobson [1975] (cf. Exercise 1 in §11.) and show that for any such
skew field D there is an exact sequence

i(D)
o(D)

SKl(D)-——* 1/ /— 0 (cf. also P. Draxl [a]).
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§ 25 . REMARKS ON USKl(D,I)

Let A be a central simple K-algebra which admits an invo-
lution I of the second kind, i.e. a K/k-involution for some separable
quadratic subfield k , T := Gal(K/k) = {o,id} (ecf. §16.). If SI(A)
denotes as usual the set of I-symmetric elements of A we define
(1) 2.(8) = {8(A) N A*D < a

the subgroup of A* which is generated by I-symmetric elements.

Lemma 1 . (A) @ A%

I
Proof. 1x = x implies txt * = (txlt)((£T)t™1) € £ (#) for all t € A*.o

Lemma 2 . Given a € A*¥ such that Ia 18 also an involution, then there
exists c € s (&) n A*  such that ,=1, . Conversely I s an invo-
lution for all a € SI(A) n a*

Proof. By Scharlau's Lemma in §16. Ia is an involution if and only if
I_.-1
= * = =
a(Ta) : ba € K¥ | It follows NK/k(ba) baIa(ba) 1 , hence
a(IE\)_l = %aq™t - Idd—l for some d € K*
by Hilbert's "Satz 90" in §6. which means that we can take c¢ := ad €

€ SI(A) N A*¥ ., The converse is obvious. O

Lemma 3 . ZI(A) = I (A) for all a € A* , hence (by Lemma 1 in §16.)
a

ZI(A) depends only on the extension K/k .
Proof. Thanks to Lemma 2 we may assume Ia = a , hence Ix = x implies

x = (xa_l)a where xanl,a € SI (A) . Therefore ZI(A) - ZI (A) and
a a
even "z=" for reasons of symmetry. O

A very important result is (cf, Exercise 1)

Vaserstein's Lemma . Let D be a K-skew field which admits an involution
I of the second kind, then [D*,D¥] < EI(D) .o



172

Now let A be a central simple K-algebra which admits an involution I
of the second kind (note that this implies K # F2,F3 ) and D its skew
field component - i.e. we may assume A = Mn(D) ~, then Lemma 2 in §16.
and Lemma 3 imply that for the study of ZI(A) we may also assume

Tea.y=cTa, ) in w(=a.

ij ji n

We want to show (cf. Theorem 4 in §20.) SLn(D) = [A*,A*]EZI(A) if
n> 2 (the case n = 1 1is covered by Vaserstein’s Lemma). lndeed, if the
latter were false, Lemma 1 would imply that ZI(A) n SLn(D) is a proper
normal subgroup of SLn(D), hence (see Theorem 2 in §21.)

Z_(A) N SL_(D) < Z(SL (D)) .
I n - n
The latter, however, leads to a contradiction (see Exercise 2), hence

Janlevski¥'s Lemma . If A 7s a central simple K-algebra with an involution
I of the second kind, then [A¥,A*] c z.(a) .o

Definition 1 . Let A be a central simple K-algebra with an involution
1 of the second kind, then

UK, (A,1) := A¥/I ()
is called the "unitary Whitehead group of A and 1 ".

From what we have seen above UKl(A,I) is always abelian (and hence a
homomorphic image of Kl(A) ) and depends only on the extension K/k where
k=KNnN SI(A) 3 in particular: UKl(K,I) = K¥/k* , Moreover, Lemma 5 in

; *
§22, yields RNA/K(EI(A)) < k* , hence
(2) UK, (I,RN

RNA/K induces a homomorphism

ask) 7 UK (A,T) —— UK (K,I) = K*/K* .
Definition 2 . Let A be a central simple K-algebra with an involution
I of the second kind, then

USKl(A,I) := Ker UKl(I,RNA/K) =

={a€n| R, (a)€ Kkt 11 (A)
8 called the "reduced unitary Whitehead group of A and 1 ",
Now, by modifying the methods from §§23/25 appropriately one can establish
a theory of USKl in formally the same way as in the case SKl . Most of
this is due to V.I. JanlevskiY (cf. the survey P. Draxl [1979] and the
references therein). For different aspects see P. Draxl [1980],[1982].

Exercise 1 . Prove Vaserstein's Lemma (see B.M. MnatoHos & B.W. fAHuerckud
[1373]).

Exercise 2 . Complete the proof of Janlevskil's Lemma (see B.M. Anuescuui
[1974]).
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M. Deuring A.A. Albert
[1935] {1939])

A/K einfache
normale Algebra
A¥

K
n

(A:K)

V(A:K)

direktes Pro-
dukt AxB

A

Brauersche
Gruppe

{A} (in multi-
plicative no-
tation)

Index von A
Exponent von A

verschrdnktes
Produkt (x,L)

zyklische
Algebra (a,L,o)

A normal simple
algebra over K
A—l

Mn s M

order of A

degree of A

AB = A-commu-

tator of B
direct product
AxB

Ay

class group

(A) (in multi-
plicative no-
tation)

index of A
exponent of A

crossed product
(L,x)

cyclic algebra
(L,0,a)

E. Artin et al.
[1948]

A simple algebra
with center K

A¥

n
(A:K) = degree
of A

V(A:K)

AB = commutator
of B

Kronecker pro-

duct AXKB

AXKL

exponent of A

crossed product
(L/K’Xc,r)
cyelic algebra

(L/K,0,a)
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these notes

[1982]

A central simple
K-algebra

AP

M_(K)

n

[A:K]| = degree
of A

reduced degree of A

ZA(B) = centralizer

of B in A
tensor product
A@KB
A@KL

Brauer group Br(K)

[A] (in additive
notation)

i(A) = index of A
o(A) zexponent of A

crossed product
(x,L/K)

cyclic algebra
(a,L/K,0)
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Albert's Criterion
Albert's Main Theorem
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Clifford -

ceyelic -

Galois -

p- -

PI- -

quaternion -
algebra homomorphism
Alkohol
alternating group
Amitsur cohomology group
antiautomorphism
Artinian module
Artin-Schreier Theorem
Artin's Lemma

Artin-Whaples Theorem

sl(r,m)

B2(r M)

balanced map

bimodule

Brauer group
relative -

Bruhat normal form

strict -
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110

25

105
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37
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142
122
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33
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3u
93
18
22
61
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131
128

cl(r,M)

e2(r,m)

centralizer
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central simple algebra
Clifford algebra
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corestriction (in cohomology)
corestriction (of algebras)
crossed product

Crossed Product Theorem
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Dieudonné determinant
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Frobenius' Theorem
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Galois module

r'-module

General Merkur'ev-Suslin Theorem
global field

Grunwald Theorem

Grunwald-Wang Theorem
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Hasse-Schilling-MaaB Theorem
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Hochschild's Theorem
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idempotent
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index reduction factor
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inverse ring
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Laurent series
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reduced -

norm residue class group

norm residue homomorphism
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ordinary quaternions

Ostrowski's Second Theorem

p-algebra

perfect group
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PI-algebra

power norm residue algebra
projective module

Pythagorean field
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quaternion

181

45
40
123
119
121
65

22
21
33
36
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