


LONDON MATHEMATICAL SOCIETY LECTURE NOTE SERIES

Managing Editor: Professor I.M. James,
Mathematical Institute, 24-29 St Giles,Oxford

I. General cohomology theory and K-theory, P.HILTON
4. Algebraic topology, J.F.ADAMS
5. Commutative algebra, J.T.KNIGHT
8. Integration and harmonic analysis on compact groups, R.E.EDWARDS
9. Elliptic functions and elliptic curves, P.DU VAL
10. Numerical ranges II, F.F.BONSALL & J.DUNCAN
II. New developments in topology, G.SEGAL (ed.)
12. Symposium on complex analysis, Canterbury, 1973, J.CLUNIE

& W.K.HAYMAN (eds.)
13. Combinatorics: Proceedings of the British Combinatorial Conference

1973, T.P.McDONOUGH & V.CMAVRON (eds.)
15. An introduction to topological groups, P.J.HIGGINS
16. Topics in finite groups, T.M.GAGEN
17. Differential germs and catastrophes, Th.BROCKER & L.LANDER
18. A geometric approach to homology theory, S.BUONCRISTIANO, C.P. BOURKE

& B.J.SANDERSON
20. Sheaf theory, B.R.TENNISON
21. Automatic continuity of linear operators, A.M.SINCLAIR
23. Parallelisms of complete designs, P.J.CAMERON
24. The topology of Stiefel manifolds, I.M.JAMES
25. Lie groups and compact groups, J.F.PRICE
26. Transformation groups: Proceedings of the conference in the University

of Newcastle-upon-Tyne, August 1976, C.KOSNIOWSKI
27. Skew field constructions, P.M.COHN
28. Brownian motion, Hardy spaces and bounded mean oscillations,

K.E.PETERSEN
29. Pontryagin duality and the structure of locally compact Abelian

groups, S.A.MORRIS
30. Interaction models, N.L.BIGGS
31. Continuous crossed products and type III von Neumann algebras,

A.VAN DAELE
32. Uniform algebras and Jensen measures, T.W.GAMELIN
33. Permutation groups and combinatorial structures, N.L.BIGGS & A.T.WHITE
34. Representation theory of Lie groups, M.F. ATIYAH et al.
35. Trace ideals and their applications, B.SIMON
36. Homological group theory, C.T.C.WALL (ed.)
37. Partially ordered rings and semi-algebraic geometry, G.W.BRUMFIEL
38. Surveys in combinatorics, B.BOLLOBAS (ed.)
39. Affine sets and affine groups, D.G.NORTHCOTT
40. Introduction to Hp spaces, P.J.KOOSIS
41. Theory and applications of Hopf bifurcation, B.D.HASSARD,

N.D.KAZARINOFF & Y-H.WAN
42. Topics in the theory of group presentations, D.L.JOHNSON
43. Graphs, codes and designs, P.J.CAMERON & J.H.VAN LINT
44. Z/2-homotopy theory, M.CCRABB
45. Recursion theory: its generalisations and applications, F.R.DRAKE

& S.S.WAINER (eds.)
46. p-adic analysis: a short course on recent work, N.KOBLITZ
47. Coding the Universe, A.BELLER, R.JENSEN & P.WELCH
48. Low-dimensional topology, R.BROWN & T.L.THICKSTUN (eds.)



49. Finite geometries and designs, P.CAMERON, J.W.P.HIRSCHFELD
& D.R.HUGHES (eds.)

50. Commutator calculus and groups of homotopy classes, H.J.BAUES
51. Synthetic differential geometry, A.KOCK
52. Combinatorics, H.N.V.TEMPERLEY (ed.)
53. Singularity theory, V.I.ARNOLD
54. Markov processes and related problems of analysis, E.B.DYNKIN
55. Ordered permutation groups, A.M.W.GLASS
56. Journees arithmetiques 1980, J.V.ARMITAGE (ed.)
57. Techniques of geometric topology, R.A.FENN
58. Singularities of smooth functions and maps, J.MARTINET
59. Applicable differential geometry, F.A.E.PIRANI & M.CRAMPIN
60. Integrable systems, S.P.NOVIKOV et al.
61. The core model, A.DODD
62. Economics for mathematicians, J.W.S.CASSELS
63. Continuous semigroups in Banach algebras, A.M.SINCLAIR
64. Basic concepts of enriched category theory, G.M.KELLY
65. Several complex variables and complex manifolds I, M.J.FIELD
66. Several complex variables and complex manifolds II, M.J.FIELD
67. Classification problems in ergodic theory, W.PARRY & S.TUNCEL
68. Complex algebraic surfaces, A.BEAUVILLE
69. Representation theory, I.M.GELFAND et. al.
70. Stochastic differential equations on manifolds, K.D.ELWORTHY
71. Groups - St Andrews 1981, C.M.CAMPBELL & E.F.ROBERTSON (eds.)
72. Commutative algebra: Durham 1981, R.Y.SHARP (ed.)
73. Riemann surfaces: a view toward several complex variables,

A.T.HUCKLEBERRY
74. Symmetric designs: an algebraic approach, E.S.LANDER
75. New geometric splittings of classical knots (algebraic knots),

L.SIEBENMANN & F.BONAHON
76. Linear differential operators, H.O.CORDES
77. Isolated singular points on complete intersections, E.J.N.LOOIJENGA
78. A primer on Riemann surfaces, A.F.BEARDON
79. Probability, statistics and analysis, J.F.C.KINGMAN & G.E.H.REUTER (eds.)
80. Introduction to the representation theory of compact and locally

compact groups, A.ROBERT
81. Skew fields, P.K.DRAXL

Downloaded from Cambridge Books Online by IP 80.191.3.110 on Sat Dec 11 05:26:31 GMT 2010.
Cambridge Books Online © Cambridge University Press, 2010



London Mathematical Society Lecture Note Series. 81

Skew Fields

P.K. DRAXL

Reader in Mathematics, University of Bielefeld

CAMBRIDGE UNIVERSITY PRESS

Cambridge

London New York New Rochelie

Melbourne Sydney



CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao Paulo

Cambridge University Press

The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521272742
© Cambridge University Press 1983

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 1983

Re-issued in this digitally printed version 2007

A catalogue record for this publication is available from the British Library

Library of Congress Catalogue Card Number: 82-22036

ISBN 978-0-521-27274-2 paperback

Max Deuring

zum 75. Geburtstag

am 9. Dezember 1982

gewidmet



CONTENTS

page

Preface vii

Conventions on Terminology ix

Part I. Skew Fields and Simple Rings 1

§ 1. Some ad hoc Results on Skew Fields 3

§ 2. Rings of Matrices over Skew Fields 8

§ 3. Simple Rings and Wedderburn's Main Theorem 13

§ 4. A Short Cut to Tensor Products 18

§ 5. Tensor Products and Algebras 25

§ 6. Tensor Products and Galois Theory 33

§ 7. Skolem-Noether Theorem and Centralizer Theorem 39

§ 8. The Corestriction of Algebras 50

Part II. Skew Fields and Brauer Groups 57

§ 9. Brauer Groups over Fields 59

§ 10. Cyclic Algebras 71

§ 11. Power Norm Residue Algebras 77

§ 12. Brauer Groups and Galois Cohomology 92

§ 13. The Formalism of Crossed Products 97

§ 14. Quaternion Algebras 103

§ 15. p-Algebras 106

§ 16. Skew Fields with Involution 112

§ 17. Brauer Groups and K -Theory of Fields 119

§ 18. A Survey of some further Results 122

Part III. Reduced K -Theory of Skew Fields 125

§ 19. The Bruhat Normal Form 127

§ 20. The Dieudonne Determinant 133

§ 21. The Structure of SL (D) for n > 2 140
n —



§ 22. Reduced Norms and Traces 143

§ 23. The Reduced Whitehead Group SK (D) and Wang's Theorem 155

§ 24. SK (D) t 1 for suitable D 167

§ 25. Remarks on USK (D,I) 171

Bibliography 173

Thesaurus 179

Index 180



PREFACE

This is a substantially extended version of the notes on 25

lectures delivered at the Pennsylvania State University during Spring Term

1981 under 572.2 ("Special Topics in Algebra").

Most of the material has been presented earlier elsewhere: in

the Seminar Bielefeld-Gottingen during the Summer Term 1967 (mainly Part III),

in lectures at the Universitat Bielefeld during the Academic Year 1977/78

and in lectures at the Universite de Grenoble in February/March 1979

(mainly §§19/20.). Some of the material has been discussed afterwards in

the course of different lectures which I delivered at the Universitat

Bielefeld during the Academic Year 1981/82.

The text falls into three parts: Skew fields and simple rings,

Skew fields and Brauer groups, and Reduced K -theory of skew fields. As

regards their contents the reader is advised to consult the introductory

remarks at the beginning of each of these parts on pages 1, 57 and 125

respectively.

During the preparation of the final draft of these notes I

have enjoyed the assistance of B. Fein (Oregon State University), D. Garbe

(Universitat Bielefeld), I.M. James (Oxford University, editor of the LMS

Lecture Note Series), Ch. Preston (Universitat Bielefeld), S. Rosset

(Tel-Aviv University), B. Weisfeiler (Pennsylvania State University) and

J. Tate (Harvard University, who communicated so far unpublished work to

me and gave permission to publish his arguments here; cf. §11.); I am

grateful for their help.

Moreover, I want to take this opportunity to express gratitude

to G. Andrews, D. Brownawell, D. James, D. Rung, L.N. Vaserstein and

B. Weisfeiler who enabled my visit to the Pennsylvania State University

(during the Academic Year 1980/81) or made the stay there so enjoyable

for me and my family.



viii

Finally I must report that I have greatly benefitted from the

help of P.M. Cohn (Bedford College, University of London) whose assistance

and encouragement only made it possible for this book to appear. I am most

grateful for all his help.

Bielefeld

August 1982



CONVENTIONS ON TERMINOLOGY

As usual, N, Z, Q, R, C stand for the natural numbers,

integers, rational numbers, real numbers and complex numbers respectively.

The French reader should note 0 t N .

We write X :- Y if X is defined by Y .

From group theory we adopt the following (standard) notation:

H <̂  G H is a subgroup of G ,

H < G H is a normal subgroup of G ,

[G,G] commutator subgroup of G ,

G := G/[G,G] commutator factor group of G ,

2(G) centre of G .

If R is a ring, then we usually assume that it has a unit

element, denoted by 1 (not necessarily 1 ^ 0 ; note that 1 = 0 implies

R = {0} ), which is inherited by subrings, preserved by homomorphisms and

acts unitally on all R-modules. Moreover, we use the notation:

R additive group of R ,

R* multiplicative group of R (if 1 ^ 0 ) ,

Z(R) centre of R ,

M (R) ring of (n,n)-matrices over R ,

GL (R) := M (R)* general linear group over R .

We call a ring D a skew field if D* U {0} - D . We assume the reader to

be familiar with the fact that left/right vector spaces over a skew field

are always free of unique rank (called the left/right dimension)', the

proofs of these facts work precisely as in the commutative case (known

from Linear Algebra).

Finally we point out that we assume a good knowledge of (ordi-

nary) Field Theory (including Galois Theory of finite field extensions);

here field stands for commutative field and F stands for the (finite)
q

field with q elements.





PART I . SKEW FIELDS AND SIMPLE RINGS

The history of skew fields begins with quaternions, whose dis-

covery W.R. Hamilton (1805-1865) regarded as the climax of his career.

F. Klein [1926/27,p.184 in vol.l] writes in his famous treatise "Vorlesun-

gen iiber die Entwicklung der Mathematik im 19. Jahrhundert" (which is an

outstanding account):

Von hier aus entwickelte sich nun bei Hamilton das groBte

Interesse an der Fragestellung, ob man die niitzliche, geometrische

Interpretation des Rechnens mit x + iy in der Ebene nicht irgend-

wie - durch Schaffung neuer komplexer Zahlen - auf den Raum, d.h.

unsern gewohnlichen R , iibertragen konne. Seine unermudlichen An-
o

strengungen fiihren ihn endlich 1843 zur Erfindung der Quaternionen,

d.h. geeigneter viergliedriger Zahlen, deren Erforschung und Ver-

breitung er sich fortan ausschlieBlich widmete. Ihre Theorie legte

er dar in den beiden ausfiihrlichen Werken:

Lectures on Quaternions, Dublin 1853

Elements on Quaternions, London 1866 (posthum).

Sehr bald wurden die Quaternionen in Dublin ein alles andere

iiberragender Gegenstand des mathematischen Interesses, ja sogar ein

offizielles Examensfach, ohne dessen Kenntnis keine Absolvierung des

College mehr denkbar war. Hamilton selbst gestaltete sie fur sich zu

einer Art orthodoxer Lehre des mathematischen Credo, in die er alle

seine geometrischen und sonstigen Interessen hineinzwang, je mehr

sich gegen Ende seines Lebens sein Geist vereinseitigte und unter

den Folgen des Alkohols verdusterte.

In Part I of these lectures we start with a brief description

of Hamilton's quaternions; however, we do not take his point of view since



we use a definition involving matrices and these were only later intro-

duced into mathematics by A. Cayley (1821-1895) in 1855. All this is done

in §1. which also includes some remarks on (skew) formal Laurent series

fields introduced by D. Hilbert (1862-1943) in 1898. (Later, in Part II.

(§ 14.) we shall come back to the quaternions from a more abstract point

of view.)In §§2/3 we develop a theory of simple rings as suggested by

E. Artin (1898-1962) in the late 1920's; important special cases of the

material presented here have been introduced by J.H.M. Wedderburn (1882-

-1948) as early as 1907. In §§4/5/6 we discuss certain techniques in-

volving tensor products which are relevant to our subject. §7. contains

the backbone of these leqtures, the Skolem-Noether Theorem, proved in 1927

by T. Skolem (1887-1963) and rediscovered in 1933 by E. Noether (1882-

-1935); we treat this theorem in a setting which goes back to E. Artin

and G. Whaples (1914-1981). We close Part I with a discussion of the

corestriction of algebras intruduced by C. Riehm [1970] ; here (in §8.)

we present only a simplified version which is sufficient for our purposes.

Roughly speaking one may say that §§2,..,7 comprise a slightly

modified and modernized version of the first seven chapters of the classi-

cal set of notes by E. Artin et at, [1948]; however, in our lectures we do

not discuss (and make no use of) semisimple rings; those interested in

such things may consult for example C.W. Curtis & I. Reiner [1962] or

vol. 2 of P.M. Cohn [1974/77] (cf. also some of the exercises).



§ 1 . SOME AD HOC RESULTS ON SKEW FIELDS

<»

Consider the set of matrices

z,u € C .(C)

where z denotes the complex conjugate of z € C .An easy calculation

shows that H is in fact a ring with unit element the unit matrix 1

/ z u \
If U|2+|u|2 i 0 then

-1
- ( z

,/ z -u \

I - ) e H »
V u z /

hence H is even a skew field, called the skew field of (ordinary or

real) quaternions . Of course, H is a 4-dimensional R-vector space with

basis
/ 1 0 \ / i 0 \ / 0 1 \ / 0 i \

1= (o i )•*'=( o -i ) • M - i o) •k •- {i o)
2

with the usual i € C satisfying i = -1 .

The elements l9i9j9k satisfy the multipli-

cation table on the right. Usually one

writes a.1 + hi + cj + dk in place of

/ a+bi c+di \

\-c+di a-bi / * ' 9

Obviously the eight elements lyi^Qiki-l>-i3-Q3-k € H* form

a finite subgroup of the multiplicative group H* of our skew field

H - called the Quaternion Group - which clearly is non commutative and

hence not a cyclic group; this could never happen in a commutative field

since any finite subgroup of the multiplicative group of a commutative

field is necessarily cyclic (cf. Field Theory). Moreover the equation
2

X + 1 = 0 obviously has the six solutions i^Q\ks-i3-j3-k € H ; over a

1

i

j

k

i

-k

J

3

k

-1

-i

k

i

-1



commutative field it could have at most two solutions. Here the

above equation even has an infinite number of solutions: choose b,c,d €
2 2 2

€ R such that b + c + d = 1 , then a straightforward calculation
2

shows (hi + cj + dk) - .. - -1 . This phenomenon will be understood

later (cf. Example 1 in §7.).

Now consider the injection R -*• H , t »-»• tl ; this makes R a

commutative subfield of the skew field H such that R c z ( H ) 9 but even

R = Z(H) holds:
/ z u \ / z u \ / O v \

indeed, assume ^_- - J € Z(H) , hence ^_- - J {_- Q J =

- ( "™ ^ ) ( — — ) f°r a H v € C . This amounts to vz = vz~ and
\-v o;\-u z ;

uv = "uv for all v € C , hence z € R and u = 0 . Therefore we have

|H:Z(H)| = |H:R| - 4 = 22 . The fact that Z(H) is a field is not sur-

prising, in fact we have

Lemma 1 . Let D be a skew field* then Z(D) is a commutative

subfield of D .

Proof. Obviously Z(D) is a subring and even a field since zd = dz for

all d € D clearly implies d"1z"1 - z~1d~1 for all d € D ( z9d t 0 )

for any given z € Z(D) . •

The above example may be generalized as follows: replace the

extension C/R by an arbitrary separable quadratic extension L/K ,

select some a £ K* and consider the set of matrices

(2) D := Da(L/K)
a( : = j (_ _ J z9u € L >c M2(L)

where "z denotes the conjugate of z £ L . Again D is a ring, and an

easy calculation shows that

z u \~1(- -V
\au z /

exists if and only if zz - auu ^ 0 , i.e. if

and only if a is not a norm for the extension L/K.

Moreover we have the formula

( z u \ -1- — — _i/ z -u \
— - = (zz-auu) I — 1 »
au z / \-au z /

provided either side exists. Again D is a M--dimensional K-algebra with

Z(D) = K (here, as above, we identify t £ K with tl £ D ); this

follows in the same way as in the case of the real quaternions.



Summarizing our remarks gives

Lemma 2 . D = D (L/K) according to (2) is a 4-dimensional K-algebra with
a

centre K 3 and it is a skew field if and only if a is not a norm for

the extension L/K . a

Let us now study another classical example: let L be a

commutative field and a an automorphism of L . Call K := FixT(a) :=
L

= { x € L | a(x) = x } the fixed field of a in L .

Definition 1 . Denote by L((T;a)) the ring of formal Laurent series
oo

^> a.T in the indeterminate T with coefficients a . € L ( R € Z ) ,
i=R 1 1

with usual addition but skew multiplication such that Ta = a(a)T 9 i.e.

A = a ^ a ) ^ ( a € L ).

If a = idT then L((T:a)) is the usual commutative field of formal

Laurent series over L in T , customarily denoted L((T)). We want to

show that L((T;cr)) is always a skew field: indeed, let 0 f d =
00

a/T ( aR t 0 ) be given, l e t us ca lcu la te i t s inverse

1
d X = X I xnl3 ( xQ * 0 )

j = S D b

where S G Z and the x. € L are not yet known. We have necessarily
00 . °°

T° = 1 = (2Zx.Tj)(^Z a.T1) =
j=S 3 i=R X

r=R+S i+j=r D X

hence R + S = O , i . e . S = - R . Comparing coef f ic ien t s a t r = 0 gives

(3) x_R = ^ ( a ^ 1 ) t 0 ;

doing the same for r >_ 1 we get immediately
-R+r

0= JT^U 3

i-t]=r 3--R J J

i.e. the recurrence relations

-R-t-r-1

X-R+r ° aR ^ q ^ X j a ar-j T - 1

Hence for d f 0 we may calculate the coefficients x. of its inverse

d successively with the aid of (3) and (4). Therefore we have proved

Lemma 3 . The ring L((T;a)) according to Definition 1 is a skew

field . •

Now let L again be a commutative field (cf. Lemma 2 in §24.), then:



Lemma 4 . Let D := L((T;a )) be given* If a has infinite order3 then

Z(D) = K j hence |D:Z(D)| = °° ; if o has the finite order n in

Aut(L) 9 then Z(D) = K((Tn)) , henoe |D:Z(D)| = n2 ( K = Fixja) ) .

Proof. "£" is obvious in both cases; let us prove the converse: pick an

element
00

z = > z.T1 € Z(D) , i.e. az = za for all a G D
i=R 1

00

Set a = >̂ a.T ( ac t 0 , because we may assume a f 0 ) , then az =
j=s D s

•= za amounts to
CO

5 ~ C
iTpr J j=S J î R

00 . 00

,^_ ^.T1)(2I a.TD) = 2Z ( 2 1 z.a^a.m* ,
i=R j=S ^ r=R+S i+j=r J

h e n c e
- R + r . - R + r

( 5 ) ^> Z
V^'G° "'Ca - ) = ]> a . a - ' C z _ . ) f o r a l l r > R + S .

Now take in (5) S := 1 , a := 1 and a. := 0 for j 2> 2 .It follows

z = a(z ) for all r-1 , hence z € FixT(a) = K for all r ,
r-J_ r—1 r L
therefore

Z(D) c K((T)) in any case.

Let us now suppose that a has infinite order in Aut(L) . Take in (5)
r-1

S := 1 , a € L such that a (a ) f a for any r f 1 , and a. := 0

for j > 2 . It follows that z .cr (a ) = a a(z _ ) = a z _. ; by

construction of a this means z = 0 , and this implies
1 r-1

z = 0 for all r f 0 , i.e. z = z T = z € K .

Finally, if a has the finite order n , we proceed as follows: take in

(5) S := 1 , a € L such that oT~1(a ) f a for all r # 1 {mod n) ,

and a. := 0 for j > 2 . Just like in the previous case it follows that
r-1

z _ a (a..) = a a(z _. ) - a z _1 for all these r ; again by our choice

of a. this amounts to z _ = 0 , hence

z^ = 0 for all r # 0 {mod n) , i.e. z € K((Tn)) .

It remains to calculate the dimension |D:Z(D)| in the latter case: first

we observe |L:K| = n (see Galois Theory, in particular ArtinTs Lemma

(cf. also §6.) for L/K is obviously cyclic with generating automorphism

a . Now choose a basis {l,t,t ,..,t } of L as a K-space, then our

considerations show immediately that { t1T | 0 < i,j < n } is a basis

of D as a K((Tn))-space, hence JD:Z(D)| = n2 . •



Let us note that so far we have only seen skew fields D such

that the dimension |D:Z(D) | is either infinite or a square. Later we

shall learn that nothing else is possible (cf. §5.).

Exercise 1 . Call aZ (resp. hi + cj -t dk ) the scalar (resp. pure)

component of a quaternion al + hi + cj + dk € H ( a,b,c,d € R ) and

identify the scalar (resp. pure) quaternions - i.e. those with vanishing

pure (resp. scalar) component - with the elements in R (resp. R ). Now

show that the scalar (resp. pure) component of the product of two pure

quaternions equals the negative scalar product (resp. the vector product)

of these two quaternions (viewed as vectors in R ) .

Exercise 2 . Study the first two chapters of P.M. Cohn [1977].



§ 2 . RINGS OF MATRICES OVER SKEW FIELDS

Let R be a ring with 1 t 0 . We shall henceforth deal

with right(left) R-modules M t {0} .

Definition 1 . A right(left) R^nodule M is called "simple" (or "irre-

ducible") if M contains no proper right(left) R-submodulesj M is

called "right(left) NoetherianiArtinian]" if every increasing[decreasing]

sequence of right (left) R-subrnodules of M is necessarily finite.

Definition 2 . If in Definition 1 we are in the special case M = R ,

then we say "right(left) ideal of R " rather than right(left) R-sub-

module of R ; also we say "minimal" right(left) ideal rather than simple

right(left) ideal.

Now let D be a skew field and consider the full matrix ring M (D) ;
n

eft) vector

j-th column

2 . . . n

it is an n -dimensional right(left) vector space over D with basis

• ., ( 1 < i,j < n )l-th row — —

2
containing one 1 and n -1 0!s .

The above basis elements multiply according to

0 j ^ r
e - .0 - in case

e • ~j — r
n

Call 1 \- ̂ > e.. the unit matrix . Then we may consider the

elementary matrices $ j-th column

27.. (t) := i + te.. - y t \ ^ .i-throw

( t £ D ; i / j ; l < i , i < i i ) .

It is well-known from Linear Algebra that these elementary matrices have

the following properties (most of which are fairly obvious):



(1) .( ..(

(2)

and

( 3) E±.(tt<) =

Furthermore we introduce matrices

( u £ D *

with the properties

1 < i < n )

and

(5) Z?i(u)Z?j(u
!) = D.(u')/).(u) ( i 5̂  j ) .

Finally we assign to every permutation TT € S of n ciphers a matrix

P(IT) : =

where 6.

6. ( . v l "*" i-th row

j-th column

1 i = ir(j)
= if
0 i^(j)

Obviously in each row and each column of such a permutation matrix there

is exactly one 1 and n-1 0Ts . Moreover one checks easily

(6) P(TT)P(TT') = PCTTTT1) 9 P(id) = 2 , P(TT)"1 = PCTT"1) = Pin)* .

In this context the following is well-known from Linear Algebra:

Lemma 1 . Given A E M (D) then the "elementary row(column) operations"

are as follows:

transforming from A to

(t)A
ij

( AE (t) )
ji

amounts to

adding the left (right) t-multiple of the i-th
row(column) to the i-th row(column) ;

multiplying the i-th row(column) from the
left(right) by u ;

moving the i-th row(column) into the position



10

amounts toExample 1 . Transforming from A to 0/Q A °/

rotating the matrix A by 180 degrees (Note: this is different from going

over to the transpose A ).

Example 2 . J j-th column

If we have A = ( a. . J •*- i-th row , then we get for every TT € S

i-th row

j-th column

Lemma 2 . Let A = M (D) be the full matrix ring over a skew field D ;

then the set of matrices in A which commute with all elementary matrices

E. .(t) is exactly the set of matrices of the form zl where z € Z(D) ;

in particular: the mapping d H dl from D into A induces an isomor-

phism Z(D) ̂  Z(A) .

Proof. Obviously it suffices to prove the first statement. Call K := Z(D)

and note that K is a commutative field (cf. Lemma 1 in §1.; the reader

should notice that we do not use this fact in the course of this proof).

Clearly we get zl € Z(A) for all z € K . Conversely assume that the

matrix A - (a ) commutes with all matrices E..(t) ; then
rs i]

B := Cbrs) := ̂ ( t ) = E^(t)A .

Equating the main diagonal of B gives

a.. = b.. = a.. + a.^t for all t € D , hence

a.. = 0 for all i / j , i.e. A is a diagonal matrix.

On the other hand, equating the (i,j)-th position of B gives the

relation

a.. + ta.. = b.. = a..t + a., for all t € D 9 hence

z : = a . . = a . . € D for i f j (take t = 1 and note a.. =

= 0 according to the above) and therefore tz = zt for all

t € D , i.e. z € Z(D) = K .

All this implies A - zl . •

So far we have not made use of the fact that D is a skew field; in fact

we could replace it mutatis mutandis by any ring R with 1 ^ 0 . For the

rest of this paragraph, however, we have to use the field property of D .
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Lemma 3 . Let D be a skew field, then A = M (D) is a right(left)

Noetherian[Artinian] A-module.

Proof. Indeed, any right(left) ideal of A is a right(left) vector space

over D ; hence our assertion is clear for dimensional reasons, n

Definition 3 . Let A be a ring with 1 t 0 . We call A a "simple

ring" if A is a right Artinian A-module which has no proper two-sided

ideals.

Theorem 1 . Let D be a skew field* then A = M (D) is a simple ring.

Proof. By virtue of Lemma 3 we must show: "if a. t {0} is a two-sided

ideal of A , then 1 € a ". Indeed, let 0 / 4 = (a..) 6 a ; it follows

that we have a.. f 0 for at least one position (i,j) , hence

hence

e = a. .e .Ae. € a for all r ( l < r < n ) ,
rr 13 ri jr — — 9

1 = > e_ € a
* „ rr
r-J.

We close this paragraph with a few remarks of general import-

ance but of no importance for us in the course of these lectures (cf. also

the end of §3.).

Definition 4 . Let A be a ring with 1 t 0 . We call A a "semisimple

ring" if the intersection of all maximal right ideals in A equals {0} .

Theorem 2 . Let D be a skew field, then A = M (D) is a semisimple

ring.

For the proof it clearly suffices to prove the following

Lemma 4 . Let D be a skew field and consider the ring A = M (D) . Then

n.. := < fo — oj -«• i-th row > ( 1 £ i £ n ) is a maximal right ideal

of A

Proof. Let a => K. 9 a ? Si. be a bigger right ideal; then there must be

a position (i,j) such that a.. / 0 with some matrix (a ) € a , i.e.

* * \ / 0 0 \ /

a.. = - a . .

V
i-th row

0 '
_± j-th column

A + R where A € a
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Now denote P(i,j) the permutation matrix belonging to the transposition

(i j) ; then

and hence

1 = >̂ e € a since e £ Si. a a. for r ^ i anyway, a a
r=l

Exercise 1 . Let H be as in §1. and consider the matrices

: M2(H) .

Show that the first matrix is invertible and that the second matrix (which

is the transpose of the first one) is not invertible.

Exercise 2 . Prove (e.g. with the aid of Lemma 1)

(7)

and

(8)

n-1 n

--TJ n E (t )

1 i+1

TT n
i=n-l j=n

where t.. € R , R a ring with
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§ 3 . SIMPLE RINGS AND WEDDERBURN'S MAIN THEOREM

Our goal is to prove a sort of converse to Theorem 1 in §2.

Theorem 1 . Let A be a ring without proper two-sided ideals and let K.

be a minimal right ideal of A ; if M / {0} is a right Artinian ̂ -module
n

then M c* ̂ ^ ft as a right k-module (for some suitable n J.

Corollary 1 . All minimal right ideals of a ring without proper two-

sided ideals are isomorphic.

Corollary 2 . Every right ideal of a simple ring is a direct sum of

minimal right ideals.

Proof. The two corollaries follow easily from the theorem (in Corollary 1

take M := "a minimal right ideal" ; in Corollary 2 take M := "a right

ideal"). Now let us prove the theorem: consider

{0} t a := > a^ c A ;
a£A

a is a two-sided ideal of A and therefore we have (by assumption)

a = A . It follows

with some minimal n such that the last equation holds (the existence of

such an n is a consequence of the Artinian property of M ). This means

in particular, that the right A-module homomorphism f below is

surjeotive:

fs 0 K >M , (r ,..,r ) » X > r .
i=l i=l

n

But f is also infective, for if >̂ m.r. = 0 and (say) 0 f- r €
i=T X 1

hence r-A = H. (since K. is minimal), and therefore mJi - nur.,A cz

m./L , contradicting the minimal choice of n . •



Let R be a ring with 1 ^ 0 ; then we call an element e € R
2

an idempotent if e = e (e.g. e = 1 or e = 0 ) . Then obviously eR

(resp. Re ) is a right (resp. left) ideal of R and eRe c eR fl Re is

a ring contained in R with unit element e (not a subring unless e =

= 1 ).

Lemma 1 . Let R be a ring , e € R an idempotent and L the left

multiplication with x . Then we have an isomorphism of rings

I : eRe ̂  Endp(eR) , eae i-> L
i\ eae

Proof. L is clearly a homomorphism of rings (this is shown by a direct

verification). It is injeetive, for if eaeer = 0 for all r € R

then (take r = e ) eae = eae = 0 . But L is also surjective, for let

f be an arbitrary right R-module endomorphism of eR 9 then f(e) = ea

for some suitable a E R , and we get (for all r € R )

f(er ) = f(eer) = f(e)er = eaer = eaeer = L (er) .a
eae

Schur's Lemma . Let M be a simple right R-module (e.g. a minimal right

ideal of R j. Then EndR(M) is a skew field.

Proof. Let 0 f f £ EndT3(M) (note that such an f exists because of
K

M f {0} by virtue of our definition of a simple module) ; both Ker f

and Im f are right R-submodules of M , hence Ker f = {0} and Im f =

M , i.e. f is an automorphism of right R-modules, hence f exists. •

We need one more technical result:
Lemma 2 . Let W be a right R-module, then

Endp((t)M) at M (EndL(M)) .
K >±< n R

Proof. Set S := £ft M , s := (m-,..,m ) and define projections
i=l n

IT . : S -• M , s « m . and injections i.: M -> S , m •-> (09..,m,..90) (where

the " m stands in the i-th position). A simple calculation shows that the

above projections/injections satisfy the following equations:
idM i = j «A-

V j % if . , . and ZI V r ~- idS •
J 0 i t ~\ r=l

Now consider an arbitrary f € End_(S) ; we find ir.fi. € End (M) , and
R 1 ] K

hence we have an additive map

a:EndR(S) -• Mn(EndR(M)) 9 f M. (i^fi.) .

We claim that a is in fact a homomorphism of rings; indeed, we have
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<x(fg) = ( ir^gij ) = ( ir£f(;

C > (-n-̂ fî XTT̂ gi .) ) = a(f)a(g) and (ids) = id.̂ Z .

Conversely, let f*. € End (M) be given and consider the additive map
n n

• EndD(S) 9 ( f.. ) »
K 1")

Obviously 6(id-^Z) = idg , and we have

BCC f ^ )( g r j )) = B(

n n n

i.e. 3 is also a homomorphism of rings. But now we are done, because it

is clear from our definitions that we have a3 = identity and 3a =

identity, n

Now we are ready for the statement and proof of the first

basic theorem in these lectures.

Wedderburn's Main Theorem . A is a simple ring if and only if one has

A ^ M (D) with a skew field D (unique up to isomorphism) and a suitable

(unique) n . More precisely: if A is a simple ring and 0 f e € A an

idempotent (e.g. e - 1 )3 then:

(i) all minimal right ideals of A are isomorphio ;

(ii) eke ̂  M (D) where D :- EndA(t), H being any minimal right
m A

ideal of A ;

(Hi) D according to (ii) is a skew field such that Z(D) ̂  Z(A) 3

in particular Z(A) is a commutative field ;

(iv) M (D) ex M (E) with skew fields D and E implies m = n
n m

and D en E .

Proof. We know already from Theorem 1 in §2. that M (D) is a simple

ring provided D is a skew field. To prove the converse it clearly

suffices to show (i)3 ..3 (iv) . (i) is known from Corollary 1; as for (ii)3

e i 0 implies eA i {0} , hence (use Lemma 1, Corollary 2 and Lemma 2)
m

eAe ̂  End (eA) ̂  End ((J) H) ̂  M (D) by definition of D .

(Hi) follows then from Schur's Lemma together with Lemma 2 (§2.) and
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Lemma 1 (§1.). Let us finally prove (iv) : consider the idempotent 0 f

jf e ^ £ M (D) ; a straightforward calculation shows ^^M (D)e ^ D ,

i.e. ^.M (D) is a minimal right ideal of M (D) (for otherwise the
Ju. n n

ring ^^M (D)e^1 would be at least a 2x2 matrix ring by virtue of

Theorem 1 and Lemmas 1/2). The same is true for the right ideal

e^M (E) in the other matrix ring M (E). Because of Mn(D) =* ̂  (E)

we obtain immediately (use Corollary 1 together with Lemma 1)

D tx EndM , .(e M(D)) « EndM , . (e M(E)) « E
M CD) H n -M (E) 11 m

and hence m = n for dimensional reasons. •

Wedderburn's Main Theorem has some obvious consequences; we

present a short list below:

Theorem 2 . If A is a simple ring then it is automatically left Artin-

ian as well as right and left Noetherian as an A-module.

This is now clear from Lemma 3 in §2. n

Theorem 3 . Let k be a simple ring; then the following statements are

equivalent:

(a) A is a skew field ;

(b) A has no zero-divisors i 0 ;

(o) A has no idempotents t 0,1 ;

(d) A has no nilpotent elements i- 0 .

Proof. Obvious . •

Finally we may state (cf. Theorem 2 in §2.)

Theorem 4 . Any simple ring is in particular a semisimple ring, a

Of course one may prove the last theorem directly - i.e. without making

use of Wedderburn's Main Theorem - since the intersection of all maximal

right ideals is itself a two-sided ideal.

Exercise 1 . Let A be a simple ring and M a (say left) A-module.

Show that M is a projective A-TOodule (i.e. a direct summand of a free

module).

Exercise 2 . Let A. ( i = l,..,n ) be simple rings^ consider the ring
n
flP) A. =: A (with componentwise addition and multiplication) and show
i=l 1

that A is a semisimple ring.
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Exercise 3 . Prove: if A is a ring without proper two-sided ideals,

and A has a minimal right ideal K then A is a simple ring.
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§ 4 . A SHORT CUT TO TENSOR PRODUCTS

Throughout this paragraph let R be a ring with 1 (not

necessarily 1 ^ 0 ) , P,Q,... right R-modules, A,B,... left R-modules

and X,Y,... Z-modules (i.e. abelian groups). A Z-bilinear map

f: P x A -» X is then called R-balanced if f(pr,a) = f(p,ra) for all

p £ P 9 r € R 9 a € A .

Definition 1 . Let P9A be as above; a pair (T,t) with a 1-module

T = T(P,A) and an R-balanoed 1-bilinear map t: P x A -> T is called a

"tensor product (over R )" if the following holds:

given any R-balanced 1-bilinear

f: P x A -• X then there exists P * A ~/*X

exactly one Z-homomorphism * / Lf

Lf: T -> X such that f = Lft 3
 T

i.e. the diagram shown commutes.

Lemma 1 . Suppose two tensor products (T,t) and (T',tf) exist; then

L t: T -> T
1 is an isomorphism with inverse mapping L : T' -> T ^ i.e.

(T'9t
f) = (Lt(T),Ltlt) .

Proof. Using Definition 1 three times, we get t = id t , t = L t1 , t! =

L ,t and therefore t = LJJ , hence id = L L., for uniqueness

reasons; in the same way one gets id f = L TL . •

Lemma 2 . Suppose the tensor product (T,t) exists; then T = \t(P x A ) )

i.e. T is generated (as a Z-module) by the images under t .

Proof. Denote i: <t(P x A))> -> T the inclusion. Using Definition 1 with

X - <̂ t(P x A)) and f=t gives t = L t and therefore t = it = iL t .

On the other hand we have t = idTt , hence iL - idT for uniqueness

reasons. The latter implies the surjectivity of the inclusion i . n

Following Lemmas 1/2 it is reasonable (and customary) to write P ®_ A
K



19

rather than T = T(P,A) as well as p&a rather than t(p,a) , hence

pr®a = p&ra for all p € P 9 r € R , a E A . The commutativity of the dia-

gram in Definition 1 means then f(p,a) = Lf(p8a) and Lemma 2 amounts to

the following: given x € P ®_ A then x = ̂  p.®a. (finite sum). In

this context we must be very cautious because p®a = p®af generally does

not imply a = aT (cf. Example 1 further below) !

Hitherto it is not clear whether or not P ®n A exists for
K

any given right R-module P and left R-module A . This question will be

discussed now.

Theorem 1 . Let -n: F ̂  Q ( a: A ̂  B ) be a right(left) R-module homo-

morphism and assume the existence of both P ®D A and Q ®_ B . Then
K K

there exists exactly one 1-homomorphism 7T®a: P ®R A -> Q 8R B such that

7r®a(p®a) = 7r(p)®a(a)
Proof: Define the map f: P x A -• Q ®_ B , (p,a) i-> Tr(p)®a(a) . An easy in-

K

spection shows that f is R-balanced and Z-bilinear. Now iT®a := L^ is

the required map. •
Theorem 2 . P ®_ R existsj more precisely: there is exactly one 1-homo-

K

morphism <j>: P ® R -> P such that <j>(p®r) = pr for all p € P, r € R

and this is an isomorphism with inverse map P -* P ®R R , p *+ p®l .

Proof. The map t: P x R->p , (p,r) K pr is R-balanced and Z-bilinear.

Given now any Z-module X and any R-balanced and Z-bilinear map

f: P x R -• x , define a map Lf: P -> X , p K f(p,l) which is clearly a

Z-horaomorphism such that f(p,r) - f(pr,l) = Lf(pr) = Lrt(p,r) . Moreover,

because of t(P x R) = p , Lf is unique with this property, hence the

pair (P,t) fulfills the requirements for a tensor product according to

Definition 1, and we may take <J> = L. . The rest is clear. •

Theorem 3 . Let (A.). ( I ± ̂  a set of indices) be a family of left

^-modules and suppose that P ®n A. exists for every i G I . Then
K 1

P ® (^^A-) exists and there is exactly one isomorphism of Z-modules

P ®R ( 0A i ) « 0(p 8R Ai) such that p®2Z
 ai ̂  X I P®ai •

Proof. Define t: P x ((J-JAj -• 0(P ®R Â )̂ , (p>XI a£) K X I P®ai '

t is R-balanced and Z-bilinear. Given now any Z-module X and any

R-balanced and Z-bilinear map f: P x ((j-)A.) -> X , then - if i. de-
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notes the j-th canonical injection of A. into the direct sum - we have

for all j € I the R-balanced and Z-bilinear maps f.: P x A. -* X 9

(p9a.) » f(p,i .(a.)) . Now define Lf: (f)(P ®R A±) -» X 9 ̂ 1 ci ^

K ^ Ln (c.) .By construction we have f = L.pt , and Lr is unique with

i i 1

this property because of ^t(P x (^) A . ) ) ^ = (J)(P ®R A^) (use Lemma 2
i€l ^̂ ^ itl

for every i G I ). Hence the pair ((J)(P ® Ai),t) fulfills the re-

quirements for a tensor product according to Definition 1 and Lemma 1

furnishes the isomorphism described in the theorem. •

As an immediate consequence of Theorems 2/3 we obtain

Corollary 1 . If F is a free left R-module then P ®R F exists. •

Theorem 4 . Let A -^ B -£-• C —• 0 be an exact sequence of left

R-modules and assume the existence of P ®n A and P ®D B . Then
K K

P ® C existsj and we have the exact sequence of 2-modules
K

R R R J

i.e. 'V commutes with "Coker" .

Corollary 2 . P ®R A always exists .

Proof. The corollary is clear, since for given A there are always two

free left R-modules Fo, F^ such that the sequence F. -> FQ -> A -> 0 is

exact. Hence we get our assertion from Theorem M- together with

Corollary 2. Let us now give a proof of the theorem: set

T := Coker idD®a = P % B / idp®a(P ®p A) ;r K r K

denote z the elements in T , z G P ^ B being a representative of such
K

a class. Define

t: P x C-»T , (p9c)t-> p®b where b € B is such that

e(b) = c .

t is well-defined, for if $(b) = c = 3(bf) then bf - b = a(a) for

some a € A , hence p®bf = p®b + id ®a(p®a) . Moreover our construction

yields T = (t(P x c)^ (apply Lemma 2 to P ® B ). Now let X be any

Z-module and f: P x c -• X any R-balanced and Z-bilinear map, then the

assignment (p5b) \-* f(p,3(b)) defines an R-balanced and Z-bilinear map

g: P x B -* X . Now define
L ^ : T - > X , z " K L ( z ) ( "z € T , i.e. z € P ® p B ) .
r g R

L_ is well-defined, for if "z = "z1" then z' - z = id ®a(y) for some
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y € P 8 A . Lemma 2 gives y = ̂ > p. $a. (finite sum) , hence L (z1) =

= L(z)iL (id_®a(^T~ p.«a.))=L(z)+L (5~~ p .®a(a.)) = L (z)
g g P **•— *i i g g "-*•— *i i g

+ >̂ f(p.9$a(a.)) = L (z) . Summarizing we have
1 1 g

Lft(p,c) = Lf(p3b) = L (p«b) = f(p,B(b)) = f(p,c) ,

i.e. f = L_t and L,. is unique with this property (use Lemma 2). Hence,

thanks to Lemma 1, T «* P 0 C and idp®$(p®b) = p®3(b) = t(p,3(b)) =

= p®b , i.e. the map z -> z is the same as idp®$ . Q

Example 1 . Call M, the multiplication by b , and consider the exact
D

sequence .,

0 > Z — ^ Z > Z/bZ • 0

of Z-modules. Thanks to Theorem 4 the upper horizontal sequence of the
diagram below is also exact:

id®M,
Z/aZ ®7 Z ^ Z/aZ ®7 Z > Z/aZ ®7 Z/bZ > 0

I i
Z/aZ 5 > Z/aZ > Z/(a9b)Z

Moreover the square to the left is commutative, the vertical maps being the

isomorphisms from Theorem 2. Finally the lower horizontal sequence is

exact as is well-known from Elementary Number Theory (of course (a,b)

denotes the greatest common divisor of a and b ). Therefore we have

an isomorphism

Z/aZ ®z Z/bZ a Z/(a,b)Z ,

in particular Z/aZ ®7 Z/bZ = {0} provided a and b are coprime !

In the language of categories and functors (which in principle

we shall not assume to be known in these lectures) one may state the re-

sults which we have achieved so far as follows:

Theorem 5 . The assignment A M- P % A (resp. P >-> P ®_ A ) for fixed

P (resp. A ) defines a covariant and right exact functor from the cate-

gory of left (resp. right) R-modules into the category of 1-modules. n

If the above functor is exact, i.e. (e.g. in the first case) if for all

exact sequences 0 > A —̂ -* B of left R-modules the associated sequence

0 • p a A ld®a> P ®D B remains exact , then we call P a flat

right R-module; flat left R-modules are defined accordingly. By virtue of

Theorems 2/3 we get immediately

Theorem 6 . Any free module (e.g. a vector space over a (skew) field) is
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a flat module, n

Definition 2 . Let M be a left R-module as well as a right S-module.

If we have r(ms) = (rm)s for all r £ R, m 6 M, s £ S , then we call M

an (JR-S)—bimodule (in short an R-bimodule in case R = S ) .

Lemma 3 . Let A be a right R-module., M an (R-S)-bimodule and P a

left S-module. Then A ®D M fresp. M L P j raa2/ &e given the structure
K b

c?/ a right S-module (resp. left R-module) such that (a®m)s = a®ms (resp.

r(m®p) = rm®p ) ( a £ A, r 6 R, ID 6 M, s E S, p £ P ) . In this sense

there is exactly one 1-isomorphism
(A ®D M) ®c P £* A ®p (M ®c P) suc/z t/zafc (a®m)®p H> a®(m®p) .

Kb Kb

Proof. Consider for every s € S the right "multiplication" R : M -* M 9

m f-» ras ; this gives a ring antihomomorphism f: S -> End7(A ®_ M) , s t->

id.^R . Now define xs \- f(s)(x) ( x € A ®^ M ); this endows A %^ M
AS K K

with the structure of a right S-module as claimed. A similar procedure

leads to the left R-module structure of M % P . Now consider, for fixed

p € P , the Z-bilinear map h : A x M -> A «_ (M « P) , (a,m) H- a®(m®p) .
p Kb

This map is R-balanced (cf. the first part of this lemma), and therefore

it induces a Z-homomorphism f : A 8U M -> A 8L (M ®c P) which is uniquely
p K K b

determined by the property a®m K a®(m®p) ; therefore we may define a map
f: (A ®o M) x: p -> A 8^ (M ®o P) , (x,p) -• f (x) which is easily seen toK Kb p
be S-balanced and Z-bilinear. Consequently we have exactly one Z-homomor-
phism L_: (A 8 M) ®_ P -> A ®_ (M ®o P) such that (a®m)®p H» a^(m®p) .

r R S R b

In the same way one establishes the inverse map, hence Lj- is the iso-

morphism we were looking for. •

Now let us make further investigations in the special (but

highly important) case where R is a commutative ring; of course, in this

case we do not need to distinguish between right and left R-modules for we

have R-bimodules such that rx = xr ( r € R ) which we shall call (as

usual) R-modules.
Theorem 7 . Let R be commutative and P,A R-modules; then
(A) P 8> A may be given the structure of an R-module such that

R

r(p®a) = rp®a = pr®a = p®ra = p®ar = (p®a)r ( r € R, p € P,

a £ A ) j i.e. t:(p,a) K p®a is R-bilinear ;

(B) if in Definition 1 the "L-module X is even an R-module and if

f is R-bilinear3 then L,_ is an R-module homomorphism;
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(C) in the situation of Theorem 1 i\&u is an R-module homo-

morphism .

Proof. (A) follows from the f i r s t part of Lemma 3. (B) and (C) follow by

Inspection, a

Lemma 4 . Let R be commutative> then there is exactly one isomorphism

of R-modules A ®_ B ^ B ®̂  A such that a®b H- b®a .
R K

Proof. Consider the R-bilinear map f: A x B->B ®^ A , (a9b) l-> b®a . Then
R

Theorem 7 implies the existence of an R-module homomorphism L_: A ® B •+
-> B 8 A which is uniquely determined by the property a®b »-> b®a . Inter-

R

changing the roles of A and B gives the inverse map, hence Lf is the

claimed isomorphism, n

Another (rather obvious) consequence of our investigations is

Lemma 5 . Let R be commutative and F , F free R-modules of rank m
m n J J

and n . Then F » F is a free R-module of rank mn . •
m R n J J

An important feature of the case of a commutative ring R is

the possibility to define a tensor product of more than two modules.

Definition 3 . Let R be commutative and M,..,M ( n > 2 ) R-modules.

Define 2 /

0 M . := Mx ®R M2 and inductively ^ M ^ := Mx «R ((g)M_.)

for n > 2 j in case M = .. = M =: M write M n in place of

(̂ )M. with the additional conventions M := M and M := R .

Theorem 8 . Let R be a commutative ring, M ,..,M ( n >_ 2 ) R-modules^

T := 6£)M. (according to Definition 3) 3 and t: M x .. x M -> T ,

j = l : .
(m. , . . ,m ) V* m. ®(nu®..®m ) =: m. ®..®m . Then T i s an R-module^ t t s

J. n 1 1 n In

^-multilinear> and the pair (T,t) /zas t/ze following property:

given any R-multrilinear map ^
f: M1 x . . x M -> X then there M1 x . x M^—^ X

exists exactly one R-module \. . ^ U f

homomorphism L • T -> X suc/z

£/zat f = L t ̂  i.e. t/ze dia-

gram shown commutes.



Proof. The first two assertions follow from Theorem 7. As for the univer-

sal property of the pair (T,t) we proceed by induction on n , the case

n = 2 being clear. Therefore let n > 2 and fix m € M ; then the map

f : M x .. x. M > X , (m 9.. 9m ) H> f(m,m29..5m ) is R-multilinear and

hence (by the induction hypothesis) there is exactly one R-homomorphism
n

L : ^)M. -• X such that L (m ®..®m ) = f(m9nL.9..9m ). Now consider the
j = 2 n

R-bilinear map g: M x ((££)M.) -> X 9 (m,y) ̂  L (y) which furnishes

exactly one R-module homomorphism L : T -> X such that L (m®y) =

= gCm9y) = L Cy) , in particular L (nL.®(m ®..®m )) = L^ (m2®..®m ) =

= f (m. 9. . 9m ) . Thus we can take L,_ := L
In f g

Exercise 1 . Show that Lemmata 1/2 and Theorem 1 hold mutatis mutandis in

case of the n-fold tensor product according to Definition 3 .

Exercise 2 . Let R be a commutative ring 9 a,b ideals of R and M

an R-module.

Example 1 ) .

an R-module. Show R/a 8_ M ** M/aM and R/a ® D R/b a R/(a+b) (cf.
K K
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§ 5 . TENSOR PRODUCTS AND ALGEBRAS

Let R be a commutative ring, A a ring (both with 1 ^ 0 )

and i : R -> Z(A) c: A a ring homomorphism. As usual we call A an
A —

R-algebra and write ra instead of i (r)a ( r € R , a € A ) . A ring
A

homomorphism f: A -> B is then called
an R-algebra homomorphism if i = fiA , hs \ B

B A *r f Ni
i.e. if the diagram shown commutes . A > B

Theorem 1 . Let A,B be R-algebras; then A 8 B may be given in a

unique way the structure of an R-algebra with unit element 181 such that

(a8b)(at8bt) = aaT8bbf ( a,aT € A; b9b
f € B ) .

Proof. First the R-bilinear map (a,af) H» aaf gives an R-module homo-

morphism a: A ®_ A -* A such that a(a8aT) = aa' ; in the same way we
K

obtain 3: B 8R B -> B . On the other hand we have exactly one R-module
isomorphism h: (A »„ B) 8C (A 8^ B) ̂  (A 8^ A) 8D (B »_. B) such that

K K K K K K

(a®b)8(a'8bf) »-> (a8af )8(b8bf) ; this follows by repeated use of Lemmata

3/4- in §4. Now define a multiplication on A 1 B by

xy := a8B(h(x8y)) ( x,y £ A 8R B ) ;

this multiplication is obviously distributive and inspection shows that

it has all the asserted properties. •
The algebras A ®_ B have an important feature:

R

Theorem 2 . Let A,B,C be R-algebras and f : A - » C , g : B - > C R-algebra

homomorphisms such that f(a)g(b) =

= g(b)f(a) for all a € A, b € B , a81 A 8n B JL8bthen there exists exactly one R-algebra a^

homomorphism h: A 1 B •* C such that ^

h(aei) = f(a) and h(18b) = g(b) for \ '

all a € A, b € B ,, i.e. the diagram C

shown is commutative.

h
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Proof. Consider the R-^bilinear map $: A x. B -• C , (a ,h) i-> f(a)g(b) , then

— thanks to fCa)g(b) = g(b)f (a) - the R-iBodule horaomorphism h := L :

A ®_ B -> C such tha t h(a®b) = f(a)g(b) I s even an R-algebra homomor-
K

phism (check by inspection) and has all the required properties, n

Lemma 1 . Let P be an R-module> A an R-algebra. Then P ®R A may be

given in a unique way the structure of a left k-module such that

a'(p®a) = p®aTa ( a ' , a € A ; p € P ) . Moreover^if A is commutative and

P an R-algebra, then P ®D A is even an A-algebra.
K

Proof. Let L : A -> A be the left multiplication by a € A . Theorem 7
a,

(C) in §4. then gives a homomorphism of rings

h: A -• EndD(P « A) , a H> idD®L
K K Jr a

Hence the definition ax := h(a)(x) ( x € P G-, A ) endows P 8. A with

the structure of a left A-module in the required way, uniqueness being im-

plied by Lemma 2 in §4. The rest is clear, a

Lemma 2 . Let P be an R-module* A a commutative R-algebra and B an

K-algebra. Then there is exactly one isomorphism of left B-modules(P 8 A) 8 B c* P ®p B sucft t/zat (p®a)®b i-> p®ab . Moreofep^ if B £s
K. A K.

commutative and P an R-aZg'e&ra,, then the above isomorphism is even an

isomorphism of B-algebras.

Proof. Considers for fixed b € B , the R-bilinear map f. : P * A ->

-> P ®n B , (p9a) H» p®ab ; Theorem 7 in §4. then gives an R-module homomor-

phism L, : P ®R A -• P ®R B such that p®a H> p®ab and thus an A-bilinear

map f: (P ®R A) x B -> P ®R B , (x,b) H> L^CX) . Again this gives an

A^module homomorphism Lf: (P ®R A) ®. B -> P 0 B such that Lf((p®a)®b)

= L, (p®a) = fr (p,a) = p^ab , Lr being unique with this property because

of Lemma 2 in §4. Inspection shows that L,. is even a homomorphism of

left B-modules (in the sense of Lemma 1) and B-algebras (provided P is

an R-algebra). It remains to be shown that L_p is bijective; indeed, the

R-bilinear map g: P x B -• (P ® A) 8. B , (p,b) K (p®l)®b gives us via
K A

Theorem 7 in §4. an R-module homomorphism L : P 8D B -> (P 8_ A) 8. B
g K R A

which is easily seen to be the inverse of Lf . Q

Lemma 3 . Let A,B be R-modules and C a commutative R-algebra, Then

there is exactly one isomorphism of C-modules (A ® C) ®^ (B ®R C) ̂

^ (A 8_ B) 8_ C such that (a8c)8(b8ct) H> (a®b)®cc' . Moreover* if A,B
K K

are R-algebras* then the above isomorphism is even an isomorphism of

C-algebras.
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Proof. By Lemmas 1/2 in connection with Lemma 3 in §4. we haye unique

R-module isomorphisms (A &_ C) &n (B $_ C) ̂  A ®c (B «_ C ) ^
K L IN K K

^ CA G_ B) 8_ C such that (a$c)8(b&c!) H- a$(b®ccf) » (a«b)eccf . These
K K

are eyen C-module isomorphisms and Oalgebra isomorphisms (provided A9B

are R-algebras) as is easily seen by inspection, n

Theorem 3 . Let P be an R-moduley A an R-algebra^ X a left k-module

and f: P -> X an R-module homomorphism. Then there exists exactly one

left k-module homomorphism f. : P ®D A -> X (the so-called "left k-linear
A K.

extension of f") suc/z t/zat p®a »-• af(p) . If in addition to the above

assumptions P,X are R-algebras and if f is then an R-algebra homomor-

phisrriy then f. is also an R-algebra homomorphism and even an k-algebra
A

homomorphism provided A is commutative and X is an k-algebra.

Proof. Consider the R-bilinear map g: P x A-*X , (p,a)i-» af(p) and take

fA := L . Then (see Lemma 1) fA(a
f(p®a)) = L (p®aTa) = a'af(p) =

= a*L (p®a) = a'f (p®a) . All the rest is clear after a short calculation.a
An important application of the above theorem is

Lemma 4 . Let k be an R-algebra and j: M (R) -* M (A) the canonical

map induced by i,: R -> A , r N rl . Then the left k-linear extension

j A : M ( R ) ® p A - > M ( A ) is an isomorphism of R-algebras and left k-modules
A n i\ n
(.and k-algebras provided A is commutative).

Proof. M (R) is a free R module with basis {e. .} (see §2.), hence - by

Theorem 3 in §4- in connection with Lemma 1 - M (R) 8 A is a free left
n K

A-moduLe with basis {e..®l} , this basis being mapped onto the basis
{g..} of the left A-module M (A) . Hence j must be an isomorphism.

i] n A
The rest is clear after a quick inspection, a

Corollary 1 . M (R) ®n M (R) <* M (M (R)) = M (R) . a

n R m n m nm

Now we want to use the results hitherto described in order to

investigate the tensor product of two simple rings (in the sense of §§2/3.)

over a suitable common subring. For this purpose we need some more pre-

paration.

Definition 1 . Let k be a ring; define the "inverse'1 (or "opposite11)

ring Aop to be the additive group A equipped with the new multipli-

cation "•" such that a*b := ba (the latter being understood in the old

sense).

In this context the following can be observed without any difficulties:
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U ) CA°P)°P = A i
C2) A - A if and only if A is commutative -s

C3) Z(A°P) = Z(A) ;

f: A P -* B is a ring homomorphism if and only if f: A -* B

is a ring antihomomorphism ;

(5)
a c A is a left(right) ideal if and only a c A° P is a right

ideal ;

(6) A is a simple ring if and only A P is a simple ring ;

(7) A is an R-algebra if and only A° p is an R-algebra ;

(8) (A ®R B)°
P « A° P ®R B°

P for R-algebras A,B ;

a H- a (:= transpose of a ) gives an isomorphism of R-algebras

( 9 ) M (A)°P « M (A°P) .

n n

Lemma 5 . Let A,B be R-algebras and f: A -* B an R-algebra homomor-

phism. Then there exists exactly one R-algebra homomorphism

&-. A «_ B° p -> Endn(B) such that ft^(a®b) = L_, JL J

X K K x T\ a) D
L and R being the left and right multiplication by x on B

Proof. Consider the R-algebra homomorphisms A -> EndR(B) , a t+ L̂ ., ,

and B° P -• Endn(B) , b b i with L^, Ji. - R-^i^r ^ (this amounts to the
the associative law in B ); now use Theorem 2 and set ft- := h . n

Definition 2 . If in Lemma 5 we have A = B and f = id then the ele-

ments in Q^ (A ®R A
op) c EndR(A) are called nanalytic R-linear maps

of A " . A

Hence f € End (A) is analytic R-linear if and only if
K

(10) f(x) = > afxa^ for a finite number of suitable a^9ap e A .

Artin-Whapies Theorem . Let A be a K-algebra without proper two-sided

ideals* K := Z(A) a (commutative) field, al9..,a € A linearly inde-

pendent over K and b-,..,b € A arbitrary. Then there exists an

analytic Yi-linear map f such that f(a ) = b ( r = l,..,n ).

Proof. First we observe that it clearly suffices to prove this theorem in

the special case b. = .. = b . = 0 and b = 1 . Now let us proceed by
1 n-JL n

induction on n : the case n = 1 is trivial, since then Aa A is a

two-sided ideal ± {0} of A 9 hence 1 = >̂ a'a.a" for some a',a" €
S _L S S S

€ A . Now the case n > 1 : by induction hypothesis we may select analy-

tic K-linear maps f ,..,f 1 such that
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1 i = j
f.Ca.) = if C l < i , ] < n ) .
X : 0 i / j

The values f.(a ) are then unknown. Let us first consider the case where
1 n

f (a ) i Z(A) for some index m ( l < m < n ) ; choose a € A such thatm n •<-<
0 i b := f (a )a - af (a ) € A and set g(x) := f (x)a - af (x) (x € A);

m n m n to ra ra

now choose an analytic K-linear map h such that h(b) = 1 (cf. the

case n = 1 ). Then f := hg is analytic K-linear and by construction we
have f(a.) = ... = f(a ) = h(0) = 0 and f(a ) = h(b) = 1. Now con-

1 n-1 n
sider the remaining case where f.(a ) 6 Z(A) = K for all i = l,..,n-l .

n-1
Define g(x) := x - ̂ > f..(x)â . with b := g(ari) ± 0, for otherwise the

V"'an
in the previous subcase; again f is analytic K-linear and according to

our requirements. •

Corollary 2 . Let A be a finite dimensional K-algebra without proper

two-sided ideals * Z(A) =: K a field and n := |A:K| 9 then there is

a K-algebra isomorphism A ® Aop « M (K)

K n

Proof. The Artin-Whaples Theorem says then that the map ft., from Defi-

nition 2 is surjective. After identifying End (A) with M^VK) we see
that ft., must also be injective for dimensional reasons. •

A

An algebra A as in Corollary 2 is of course a simple ring and consequent-

ly Z(A) is automatically a field (see §3.). Conversely, every simple

ring which is a finite dimensional algebra over its centre is necessarily

an algebra of the type discussed in Corollary 2.

Definition 3 . A simple ring A with finite |A:Z(A)| is called a

"central simple K-algebra" ( K := Z(A) ). If a central simple K-algebra

is a skew field then we call it a "K-skew field".

In what follows now we shall make use of the following facts: if K is a

commutative field and if A9B are K-algebras9 then (see Theorem 6 in §4.)

we have infective K-algebra homomorphisms A —»A ®K B <— B 9 ai-^ a®l and

•IQb <-i b , hence we may - and henceforth shall - view A and B as em-

bedded in A ® B . In this sense we have:

is.

Theorem 4 . Let A9B be K-algebras* K = Z(A) a field and A without

proper two-sided ideals. Let c c A 8 B be a two-sided ideal* b : =

:- c fl B (see remarks above), then c - A 8^ 6 .
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Proof. ft^" is clear; conyersely let C 3 c - >̂ a.&b. (finite sum) ; we

may restrict ourselyes to the case where the a. are linearly independent

oyer K . Now use the Artin-Whaples Theorem and choose f. such that

1 i = j
f Ca ) - if

] 0 i * j

It follows f .®id (c) = > f,(a.)8b. = 18b.. € c n B = b for all i (cf.

the explicit form of f. as shown in (10) ) .o

Corollary 3 . Let A9B be K-algebras over a field K := Z(A) e z(B) ;

then A ®K B has no proper two-sided ideals if and only A and B have

no proper two-sided ideals .

Proof. If (say) a is a two-sided ideal of A then a 8,, B is such an

ideal in A ®^ B . The converse implication is then clear from Theorem 4.n

Before we close this paragraph we need to make a few remarks

concerning left Artinian R-modules (of course, a similar remark holds for

right modules).

Lemma 6 . Let R be a (not necessarily commutative) ring* M9N left

R-modules and f: M -> N a left R-module homomorphism. Then M is left

Artinian if and only if Ker f and Im f are left Artinian.

Corollary 4 . Let M9N be left R-modules; then M © N is Artinian if and

only if M and N are Artinian,

Proof. The corollary follows from the lemma using the projection onto one

factor. Now the proof of the lemma: first we observe that Ker f and

Im f are clearly Artinian provided M is. As for the converse we note

that any chain M ̂  M 3 M £ . . . of submodules of M gives us two

such chains I i f D f (M, ) => f(M_) 3 ... and Ker f D MJ s M' D ... where

W := M^ 0 Ker f . By assumption we get f(M ) = f(M ) and M^ = M^

for all r > n for some n . Now let x € M , hence f(x) € f(M ) c
— n n —

c f ( M ) , i . e . x = y + z € M + M ' c = M + M T = M f o r a l l r > n . T h e
- r J r n — r r r —
latter amounts to M = M for all these r . •

r n

Theorem 5 . Let A9B be K-algebras, K = Z(A) c Z(B) a field and either

|A:KI or |B:K| finite; then A 8 B is a simple ring if and only A
K

and B are simple rings.

Proof. Thanks to Corollary 3 we only have to show: A 8 B is a left
K

Artinian (A 8 B)-module if and only if A (resp. B) are left Artinian
is.
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A-(resp. B-)modules. Here the "only if" is obvious (and holds even without

the finiteness assumptions) since a strictly decreasing infinite sequence

of right ideals a of (say) A would give us an infinite such sequence

a 8K B of A 8K. B . As for the converse we note A L B ^ \&k (finite

sum) as a left A-module (provided (say) |B:K| is finite); this follows

from Theorem 3 in §4. together with Lemma 1. Therefore by Corollary 4

A 8j, B is a left Artinian A-module hence even more so a left Artinian

(A ®£ B)-module. n

Now we want to show that the finiteness condition in the previous theorem

is not superfluous.

Theorem 6 . Let A be a K-algebra without proper two-sided ideals, K -

- Z(A) a field; then A 8 A o p is a simple ring if and only if | A:K|

is finite (i.e. A is a central simple K-algebra).

Proof. The "if" has already been proved in Corollary 2 (in connection with

Theorem 1 in §2.). Conversely assume |A:K| being infinite and select a

sequence a1,a ,aQ,... € A of K-linearly independet elements in A . Now

define

r JZ c -n J ( A\ f analytic K-linear
*" := { f GEIKUA) f ( a ) = .. = f(a ) = 0

1 n

Clearly we have CL 3 0, and the Artin-Whaples Theorem implies even

a f a. ( n € N ) ; on the other hand <X is a left ideal in

ft., (A 8 A°P) (cf. Definition 2). But ft., is injeotive thanks to
idA K idA

Corollary 3 (the kernel is a two-sided ideal), hence A 8 A is not
K

left Artinian and therefore cannot be a simple ring, a

We close this paragraph with an important remark.

Theorem 7 . Let A be a central simple K-algebra, then |A:K| is a

square.

Corollary 5 . Let D be a skew field, then |D:Z(D)| is either infinite

or a square.

Proof. Let K be an algebraically closed field containing K and con-

sider the K-algebra A $ 1C with finite |A fi K:¥| = jA:K| (cf. Theorem

3 (§4.) and Lemma 1 ) . By Theorem 5 A L K is a simple ring, hence
Jx

Wedderburn's Main Theorem (§3.) gives A 8V K ̂  M (D) for some skew field
K n

D such that K c Z(D) c D and |D:*K| is finite. It follows D = K" and

this means |A:K| = n . •
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Exercise 1 . Let K he a field and L = K(0) an extension field

generated hy an element 0 with, minimal polynomial f over K. . If F/K

is any Cnot necessarily finite) extension, show that L ® F ^ F[T]/(f)

and deduce that L $„ F is a semisimple ring provided L/K is a

separable extension (cf. Exercise 2 in §3.).

Exercise 2 . Let R be a commutative ring and M an R-module. Consider

the R-module

T (M) := 0 M8n

n=0
and show that it can be endowed with the structure of an R-algebra such

that the following holds: there is an R-module homomorphism t: M -• TR(M)

such that to any given R-module homomorphism f: M -> A into an R-algebra

A there exist exactly one R-algebra homomorphism Lf: T (M) -• A ful-

filling f = L^t . TD(M) is called the "tensor algebra of M over R ".

r K
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§ 6 . TENSOR PRODUCTS AND GALOIS THEORY

Classical Galois Theory (which we assume to be known to the

reader)is founded on two basic results:

Dedekind's Lemma . Let G be a group, K a field and f.: G -> K*

( i = l,..,n ) distinct group homomorphisms. Then
n

y ~ f .(g)x. - 0 for all g G G with x € K
i _ 1 i i g

implies x - .. = x = 0

Artin's Lemma . Let G be a group of automorphisms of a field L and

K := Fix (G) its fixed field* then IL.:KI = |G| whenever either side is

finite.

For proofs of these two results cf. e.g. vol. 2 of P.M. Cohn [1974/77]. •

Now let us draw the usual conclusions therefrom concerning

Galois Cohomology. We start with a few preparatory remarks.

In what follows let V be a group (written multiplicatively,

not necessarily finite, though finite in all of our applications) and M

a left r-module - i.e. a Z-module (usually written additively, although

written multiplicatively in many of our applications) where m is de-

fined for all a € T, m € M such that m = m , a(Tm) = aTm and

a(m + m1) = am + amf ( a x £ T ; m,mT € M ) - ; if M,N are left T-mo-

dules and f: M -> N a Z-module homomorphism, then f is called a left

Y-module homomorphism if f( m) = f(m) for all a € r and m € M .As

usual we call M : = { m € M | a m = m for all o € V } the fixed module

of M ; it is the largest submodule of E on which T acts trivially.

If T is a finite group then

NL: M -> M , m <-> y ~ °m

is a left T-module homomorphism called the norm.



Definition 1 . Let Y be a finite group and M a left Y-modulej then

H°(r,M) := MF/Wr(M) is called the " 0-th Cohomology Group of M ".

Example 1 . Let L/K be finite Galois, Y := Gal(L/K) , then L* and

L are r-modules by virtue of the definition x := a(x) ( a € T,
r +r +

x € L ). Thanks to Galois Theory we have L* = K* and L = K as well
as Mr = N L / K and Mr = TrL/K ' hence

H (r,L*) = K*/N . (L*) is the norm residue class group.

J_l/ R

Moreover,

(1) H°(r,L+) = K+/TrL/K(L
+) = {0} .

Indeed, thanks to the K-linearity of the trace, it suffices to find an

element x € L such that TrT ,,,(x) t 0 ; however, the existence of such
L/J\

an x is obvious from Dedekind's Lemma (take {f.} = T and G = L* ).

Now let M be a left T-module, then

C1(r,M) : = { x : r->M | x(l) = 0 & X(CFT) = x(a) + Qx(x) }

is called the set of 1-cocycles (of Y with values in M ). C carries

the structure of a Z-module (by pointwise definition of the (say) addi-

tion) and an easy calculation shows that the 1-coboundaries
B1(r,M) := {x: Y -+ M | x(a) = % - m for some m € M }

form a Z-submodule of C . Note that in more old-fashioned terminology

C resp. B is called the group of crossed homomorphisms resp. princi-

pal crossed homomorphisms (from Y into M ).

Definition 2 . Let Y be a group and M a left Y-module3 then

H1(r,M) := C1(r,M)/B1(r,M) is called the " 1st Cohomology Group of M " .

The following results are classical and of great importance later in these

lectures.

Noether's Equations . In the situation of Example 1 above we have

E1(r,L*) = {1} .

Proof. Let x E C (F,L*) be given and use Dedekind's Lemma (take {f.} =

o€Y
- Y and G = L* ) in order to find an a € L* such that b := ]> x(a) a

^ 0 . Consequently we find

b = > x(a)

hence - if m := b € L* -

T, "5T T / vTCf ^r / v-1 , »T0 / \""1-.

b = > x(a) a = > X(T) x(ia) a = X(T) b
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X ( T ) = Tim~
1 for all x € r , i.e. :x € B^CJ^L*) . a

As a consequence of the previous result we get the Crouch older)

Hilbert's "Satz 90" . Let L/K he ay olio with generating automorphism

o > then any x € L such that NT/v-k0 = 1 is necessarily of the form
o -1

x = mm

Proof. Denote Y := Gal(L/K) = <o> define a 1-cocycle by xCcr1) : =

i-1 ffj
:= 1 T x (note that in view of N_ 7l/(x) = 1 this is really a reasonable

j=0 L / K

definition of a cocycle in C (r,L*) ) and use Noether?s Equations: this

gives immediately x = x(a)=°mm . •

Both Noether's Equations and Hilbert!s "Satz 90" (which happened to be

Theorem 90 in D. Hilbertfs famous report Die Theorie der algehraischen

Zahlkdrper published in 1897) have an additive counterpart9 namely:

Lemma 1 . In the situation of Example 1 we have

H1(r,L+) = {0} .

Corollary 1 . Let L/K he cyclic with generating automorphism a > then

any x G L such that T r
L / K(

x) = 0 is necessarily of the form
o

x = m - m .

Proof. We just copy the proof of the two preceding results mutatis mutan-

dis: first let x € C ( T 9 L ) be given, choose (using (1)) an element

a € L such that Tr_ /v(a) = 1 and define b := > x(a) a . Again one

finds

T T T Q TCJa = b - X(T) ,

hence - if m := -b € L -

X ( T ) = Tm - m for all T G V 9 i.e. x G B1(T9L
+) .

For the proof of the corollary denote T := Gal(L/K) = (a} and define a

1-cocycle just like in the proof of Hilbertfs "Satz 90" (but with "̂ > "

in place of "] f"); by the lemma this cocycle is a coboundary and so we

may conclude x = m - m . n

Hitherto we have not dealt with tensor products although they

appear in the heading of this paragraph.

Definition 3 . Let L/K he finite Galois3 Y := Gal(L/K) and V a (not

necessarily finite dimensional) vector space over L which is also a left
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T-modulej then we shall call V an tr Lfife-Galois module " if

C2) aCxv) = W for all a € r , x € L , y € y .

A straightforward calculation shows

Lemma 2 . Let L/K fre finite Galois* Y -.- Gal(L/K) and V a vector

space over K , then V ®K L (t̂ t/z Ze/t Y^module structure via id^a )

is an L/K-Galois module. Moreover, if two L/K-Galois modules V,W are gi-

ven, then V % W (with left Y-module structure via a8a ) is also an

L/K-Galois module, a

Now we are prepared for the statement and proof of

Theorem 1 . Let V be an L/K-Galois module. Then the following holds:

(I) Vr is a K-space such that LVF = V and if U 5 vr is any

K-subspace such that LU = V , then U = V ; moreover the

L-linear extension (cf. Theorem 3 in §5.) of the embedding

r r
V d ^ v is an isomorphism V 8 L ** V of L-spaces and left

Y^modules.

(II) H°(r,V) = {0} , i.e. VF = Wr(V) .

(III) If W is a further L/K-Galois module, then there is exactly
Y Y Y

one isomorphism of K-spaces V ® V W « (V 8 W) such that
V® W •"* V® W .

Corollary 2 . In the situation of Theorem 1 we have
dim^CV ) = dim_(V) whenever either side is finite.

K L
Proof. The corollary follows from (I) by Theorem 3 in §4. As for the proof

Y
of the theorem we begin by observing that V and W (V) are obviously

K-spaces. Now suppose LW (V) f V 9 then there would exist an L-linear

form f: V -> L such that f i 0 but f(W (V)) = {0} . Choose v € V

such that f(v) f 0 ; it follows

0 = f(M (xv)) = fC^Z °x°v^ ~ 5 Z ̂ ^ v ) for a11 x € L* ,

contradicting Dedekind's Lemma (take {f.} = Y and G = L* ). Therefore

V = LWr(V) c LV
r c V , hence LWr(V) = V = LV

F , in particular we get (II)

as soon as we have finished the proof of (I). Now consider the embedding

i: U ̂ --#> V j then (because of our assumption LU = V ) the L-linear ex-

tension i : U 8 L -> V (which is such that u8x H- xu ) is surjective.

L XV

We want to show its injectivity: for this purpose let y € U 8 L be
K

m
given; we write y = ̂ > v.8x. with some m and may assume the elements

3 3
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v. to be K-linear independent. Now assume iT(y) = 0 ; we must show y =
3 L
= 0 . Thanks to W (L) c K (actually we know even "=" from (1)) we obtain

m
0 = Wr(xiT(y)) = y~ (N_(xx.))v. for all x € L* , hence

r L ^ j r 3 3
0 = N_(xx.) = yZ °x°X' for all x € L* ( 1 < j < m ) ,

r D aev 3 " ""
therefore - using Dedekind's Lemma m times - x. = 0 for all j , i.e.

3 j.
y = 0 and consequently U 6V L <* V . Now let v € V be given; because

of LU = V we may find elements x. € L and K-linearly independent ele-

ments u. € U such that (for some m )
3 m m

x.u. = v = v = > x.u. for all a € r ,33 n 2iw n r
hence x. € FixT(T) = K for all j , i.e. v € U and thus U = V . This

3 L
proves (I). It remains to prove (III): first we note that the map

r r
g: V x w -> V ®r W , (v,w) H- v®_w is obviously K-bilinear; consequently

L L r r
there is exactly one K-homomorphism L : V ® W -• V 8 W such that

g is. L j, p
v l w w v®_w . Now let (v.}.^T resp. {w.}.^T be bases of V resp. W .

K L 1 lfcl 3 JfcU „ „
Then (cf. §4.) {v.8 w.} is a K-basis of the space V ®v W , on the

l K 3 •̂ >

other hand {v.®_w.} is an L-basis of V ® W (cf. again §4. together
i L 3 L r

with (I) above), hence the elements v.8 w. = L (v.®vw.) € (V ®_ W) are
l JJ ] g i K 3 L

even more so K-linearly independent which amounts to the in jec t iv i ty of
L . Finally we observe L (VF ®v W

F) c (V ®_ W)F and LL (VF ®v W
F) = V

g ^ g K ~ L gK
(cf. the argument involving the bases which proved the injectivi ty) , hence
L (Vr * WF) = (V ®T W)r by (I) . D

g j\ ii

Definition 4 . Let L/K be finite Galois, r := Gal(L/K) and A an

L-algebra which is also a left Y-module; then we shall call A an

" L/K-Galois algebra " if

(3) a(aa') = V a ' for all o € r ; a,af £ A .

Since (3) implies (2) we see that an L/K-Galois algebra is in particular

an L/K-Galois module. (3) means that the Galois group V can be viewed

(by prolongation) as a group of K-algebra automorphisms of the L-algebra

given. The following result is an almost obvious supplement to Theorem 1 :

Theorem 2 . If in Theorem 1 V and W are even L/K-Galois algebras* then

V and W are K-algebras and the isomorphisms of (I) resp. (Ill) are

L-algebra resp. K-algebra isomorphisms, a

Exercise 1 . Let r = <a} be a finite cyclic group and M a left r-module.
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Show H1(r,M) =* Ker Wr/{
 am - m | m € M } .

Exercise 2 . Let 0 • M • N —^-+ P > 0 be an exact sequence of T-

modules and r-module homomorphisms. Show that there is a Z-homomorphism

%: P -> H (r,M) such that there is an exact sequence of Z-modules and Z-

homomorphisms (here f resp. g are induced by f resp. g in the

evident way)

o —> Mr^-» r Z r 2 1 ^ 1 &pr—-2-> H 1 ( r , M ) - ^ H1(r9N)—&+ H
1(r,p) .
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§ 7 . SKOLEM-NOETHER THEOREM AND CENTRALIZER THEOREM

In this paragraph we want to establish two substantial results.

We start with

Definition 1 . Let R be a commutative ring, A,B R-algebras, f: A -> B

an R-algebra homomorphism and n_: A ®D B * -* End^CB) according to Lemma

5 in §5.^ then we denote by B_ our R-algebra B viewed as a left

(A 8 K°v)-module via xb := fl-(x)(b) ( x £ A ®D B
o p , b £ B ).

Recall from Lemma 5 in §5. that the above definition gives in particular

(af®bT)b = f(af)bb! ( a' € A ; b,bf € B ) .The following is crucial:

Theorem 1 . Let A,B be R-algebras and f9g: A -» B R-algebra homomor-

phisms, then there is a left (A ® Bop)-module isomorphism B «* B if

and only if there exists a unit b G B* such that

g(a) = bf(a)b""1 for all a € A ,

i.e. if and only if f and g differ by an inner automorphism of B

Proof, "only if": call <|>: B_ -> B the given isomorphism of (A ® B°P)-

) ( ) ) ( ( ) )modules; set b := $(1) , then <j)(x) = (|)(n_(l«x)(l)) = fi (
f g

= bx for all x € B . since <j> is an isomorphism necessarily b € B*.
Finally bf(a) = <j)(f(a)) = <Kft (a®l)(l)) = n (a«l)(*(l)) = g(a)b for all

a € A. "if": given b € B*, define <{>: B -> B , x H> bx ; obviously <j> is

then a Z-module isomorphism. Going through the above calculations back-

wards shows that § is even an isomorphism of (A ®D B
 P)-modules, a

K

Skolem-Noether Theorem . Let A9B be simple ringsy K := z(B) 5 Z(A)

and IA :K I finite. If f ,g: A -> B are K~aZ^eZ?ra homomorphisms, then there
exists a unit b € B* such that g(a) = bf(a)b for all a € A .

Corollary 1 . Let k be a simple ring, K := Z(A) and |A:K| finite.

Then every K-algebra automorphism of A is an inner automorphism.

Corollary 2 . Let A,Af be simple subrings of the simple ring B .,



K := Z(B) c z(A) = Z(Af) and A ̂  A' as K-algebras. Then this isomor-

phism arises from an inner automorphism of B if |A:K| is finite.

Proof. The corollaries are obvious (e.g. in Corollary 1 take A = B and

f = id ); as for the theorem we note that (thanks to Theorem 1) it suffi-
A

ces to show B _ =* B as left (A ®.. B°P)-modules. By Theorem 5 in §5. in
r g J\

connection with WedderburnT s Main Theorem in § 3. we have A 8 B p c *M (D)
J\ n

with unique n and some skew field D (which is unique up to isomor-
m

phism), hence - if t is a minimal left ideal of A ® B ^ - B-. ̂  (X) £
r i=l

as well as B ^ ^ £ (because of Theorem 1 in §3.; note that in §3. we

dealt with right ideals, however, analogous results hold for left ideals).

Since both B,. and B are left D-vector spaces of the same finite di-

mension , necessarily m = r and therefore Bf =* B as left (A &. B p ) -

modules. •

Example 1 . Let D be a skew field, K := Z(D) ( |D:K| may be infinite)

and f € K[T] an irreducible polynomial, then we obtain from Corollary 2:

if d,d' € D such that f(d) = 0 = f(d!) , then d1 = bdb'1 for suitable

b € D* .

Now we introduce a new notion:

Definition 2 . Let A be a ring* B c A a subring and M c A a subset;

define the "oentralizer of M in B " as the set

Z_(M) := { b € B | bm = mb for all m € M } .

In this context the following can be observed immediately:

(I) Z^(M) is a subring of B and hence also of A ;
B

Z (M) = Z ((M) ) where ( M ) denotes the subring of A which
/ Q \ JJ B A A

is generated by the set M ;
(3) Z_(M) is an R-algebra provided A and B are ;

D

(4) ZR(M) = B fl Z,(M) ;
D A

(5) Z(A) = ZA(A) ;

(6) ZA(Z(A)) = A ;

(7) M c ZA(ZA(M)) ;

(8) M => N implies Z_(M) c Z_(N) ;
— B ~~ D

(9) C c B c A implies Z.(M) c Zn(M) ;
(10) BC'Z.(B) if and only if B is commutative ;

~~~ A
(II) B = Z (B) if and only if B is maximal commutative in A ;

A



(12) if f: A -> AT is an isomorphism, then f(Z.(B)) = Z. t(f(B))
A A

Theorem 2 . Let & be a commutative field and A,Af,B9B
T K-algebras

such that A1 c A and Bf C B ; then
Z A « B ( A" 8 K B t ) = V A I ) \ V B ' » in A « K B •

K

Proof. First we point out that the statements of the theorem are to be

understood with the conventions explained preceding Theorem 4 in §5.,

i.e. A1 8V B
T resp. ZA(A

f) 8V Zn(B
!) are being regarded as K-subalge-

l\ A i\ D

bras of the K-algebra A Q B . Now we note that "3" is clear from the

various definitions; as for the converse we select bases {e.}.,-, resp.

{f.}. of A resp. B over K and choose x € Z n(A
T ® Bf) . It

follows that there exist

b. € B resp. a. € A (uniquely determined by x and = 0

for all but finitely many indices i resp. j )

such that
e.Gb. = x = ̂ > a.6f. (cf. Theorem 3 in §4.) ,
X 1 j€J 3 3

hence, by our assumptions on x ,

e.®b.bf = x(l«bf) = (l®b!)x = ]>__ e.®b'b.
1 1 i € I 1 i

for all bT G B , hence (again by Theorem 3 in §4.) b.b1 = bfb. for all

bf € B , i.e. b. £ ZD(B
f) for all i € I and similarly a. € Z.(Af)

l B 3 A
for all j € J . Therefore

x € ZA(A
f) ® B fl A » Z_(B!) = Z.(A') « Z-(B') ,

A K. J\ B A K B

the last equality being again a consequence of Theorem 3 in §4. together

with the fact that a basis of e.g. Z (A!) over K can be extended to a
A

basis of A over K . n

Let us state a few consequences of the above:

Corollary 3 . Let K be a field and A,B K-algebras> then

Z(A ® B) = Z(A) ®K Z(B) . a

Now we recall Definition 3 in §5.: combining it with Theorem 5 in §5. and

Corollary 3 above provides

Corollary 4 . A and B are central simple K-algebras if and only if

A ® B is a central simple K-algebra. a

Another consequence of Theorem 2 is
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Corollary 5 . Let K be a field and A a Yr-algebra, then Z(A) = K if

and only if Z(A ®v L) = L (here L/K is a not necessarily finite field

extension). o

Using again Definition 3 and Theorem 5 in §5. we deduce from the previous

corollary

Corollary 6 . If L/K is a (not necessarily finite) field extension, then

A is a central simple K-algebra if and only if A ® L is a central

simple L-algebra. n

Recalling Definition 4- in §6. we finally obtain (cf. Theorem 5 in §5.,

Theorems 1/2 in §6. and Corollary 5):

Corollary 7 . Let L/K be finite Galois, r := Gal(L/K) and A an

L/K-Galois algebra; then A is a simple ring with centre L if and only

%f A -£s a simple ring with centre K . a

Now let R be a commutative ring and A an R-algebra; in what

follows we shall deal with the R-algebra homomorphisms L: A -> EndR(A) ,

ah> L and R: A° P -» End_(A) , a H> R known already from Lemma 5 etc.
a K. a

in §5. (here L resp. R denotes the left resp. right multiplication
a a

by a on A ). With this notation we claim

Lemma 1 . z_ , fLAL(A)) = R(A) and z_ , rA,(R(A)) = L(A) .End (A) End (A)

Proof. In both cases 'b" is obviously true by the law of associativity of

the multiplication in A . As for the converse let us discuss the first

statement only (the second one is proved similarly): f € Z , ,..(i.(A))
R

amounts to fL = L f for all a € A , hence f(ax) = af(x) for all
a a

a,x € A 9 in particular f(a) = af(l) for all a € A , i.e. f = R f Q \ €

£ R(A) . a

Now we are fully prepared to prove the

Centralizer Theorem . Let B be a simple subring of a simple ring A 3

K := Z(A) c Z(B) and n := |B:K| finite, then:

(i) ZA(B) ®K Mn(K) <* A ®K B°
P ;

(ii) Z
A(

B) is a simple ring ;

(Hi) Z(ZA(B)) = Z(B) ;

r^; Z A(Z A(B>) = B ;

(V) if L := Z(B) and r := |L:K| ., then A « L « M (B « Z (B));
x\ r L A

i4 -is a free left (right) Z (B) -module of unique rank n ;
A
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(vii) if, in addition to the above assumptions, m := |A:K| is also

finite* then A is a free left (right) B-module of unique rank

£=IVB):K| •
Corollary 8 . Let B c A be simple rings such that K := z(A) = Z(B) ,

then A c* B 8 Z (B) whenever |B:K| is finite.
i\ A

Proof. The corollary is just fi>J in case L = K , i.e. r = 1 . For the

proof of the theorem consider the K-algebra homomorphisms

f,g: B -> A ®K EndK(B) =: C ; f(b) := b8idR , g(b) := l®Lb ;

thanks to Corollary 3 and Theorem 5 in §5. C is a simple ring with

centre K , hence we can apply the Skolem-Noether Theorem which implies

f(B) cd g(B) under an inner automorphism of C .By construction of f and

g we get (notation as in Lemma 1)

B « K = f(B) e* g(B) = K 8 L(B) ,

J\ IS.

hence by (12), Theorem 2 and Lemma 1

(13) ZA(B) ®K EndK(B) = ZQ(f(B)) ~ Zc(g(B)) = A ®K R(B) .
Now apply (12), Corollary 3 (resp. Theorem 2) and Lemma 1 to the previous

result; this gives (note Endv(B) <* M (K) and - since B has no proper
i\ n

two-sided ideals - R(B) e* B°P )

(14) Z(ZA(B)) «K K = Z(Zc(f(B))) « Z(Zc(g(B))) = K ®R Z(B°
P)

resp.

(15) ZA(Z.(B)) « K = Zn(Zn(f(B))) « Zn(Zn(g(B))) = K ®^ L(B) .

Now (13) amounts to (i) (cf. the note previous to (14)) and (i) implies

(ii) thanks to Theorem 5 in §5. (14) resp. (15) imply

Z(Z (B)) <* Z(B) resp. ZA(Z.(B)) <* B (note L(B) ̂  B ) ,

hence even "=" in both cases since we have obviously "3" in both cases

together with the fact that on both sides in either inequality there are

isomorphic finite dimensional vector spaces over K . This completes the

proof of (iii) and (iv) . Now we make use of (i) and the various isomor-

phisms of §§4/5 which provides

Z.(B) ® M (L) e* ZA(B) ®T (L %v M (K))« Z.(B) » M (K) «
A L n A L K n A K n

~ k\ B°P « (A ®K L) ®L B°
P

and therefore (use Corollaries 1/2 in §5.) - if n = rs -

( B ® Z A ( B ) ) ®T (M ( L ) ®T M ( L ) ) e* ( A %v L ) ®T ( B ° P ®_ B ) «
LA L r L S i \ L Li

« (A » L) ®T M (L) .
i\ L S
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Now we make u s e of Lemma 4 i n § 5 . and g e t

M (A 8 L) e* M (M (B G Z . ( B ) ) )
S Jt\ S r LA

which implies (v) by Wedderburn's Main Theorem in §3. (note that A 8 L
j\

and M (B 8 ZA(B)) are simple rings with centre L ). Since (vii) is a
r L A

consequence of (i)j..j(vi) (because the finiteness of |A:K| implies the

finiteness of |Z (B):K| which means that we may interchange the roles
A

of B and Z (B) in (i),..3 (vi)) we are left with the. proof of (vi): butA

(vi) is an immediate consequence of the following lemma (the rank being

calculated with the aid of (i) together with Theorem 3 in §4.):

Lemma 2 . Let A be a simple ring which is a subring of a ring R > then

R is a free right(left) k-module of unique [possibly infinite] right

(left) rank.

Proof. Let K be a minimal right ideal of A ,then - by Theorem 1 in §3.-
n

A e± £ft K as a right A-module. Since R is an A-bimodule (via the multi-

plication in R ) we may view /L 8. R as a right A-module (cf. Lemma 3 in

§4.) and obtain the right A-module homomorphism
fl 8 R at 0 K ;

jtJ
the proof thereof coincides with the one of Theorem 1 in §3., except for

the fact that the set J is not necessarily finite because we have no

finiteness condition - such as e.g. the Artinian condition - available. It

follows easily (cf. Theorems 2/3 in §4.)
n n n

R c* A 8 R at ( 0 *) 8A R « 0 (* 8A R) c* 0 0 K at
i=l i=l i=l 3tJ

~ ff} ^ft A. at ̂ ^ A as right A-modules,
j€J i=l jEJ

i.e. R is free as asserted (similarly for left modules). It remains to

be shown that the (possibly infinite) rank is unique; this, however, is

clear since A is a finite dimensional vector space over a skew field

(cf. Wedderburn!s Main Theorem in §3.). a a

In practice we shall frequently make use of

Lemma 3 . Let B be a simple subring of a skew field D , then B and

Z (B) are also skew fields.

Proof. B is a simple ring without zero-divisors t 0 , hence a skew field

thanks to Theorem 3 in §3. Consequently Z (B) is also a skew field, since



the centralizer of a skew field in a skew field is clearly a skew field, a

Definition 3 . In the situation (and with the notation) of Lemma 2 one

calls the right(left) rank of R the "right(left) degree of R over A "

and denotes it |R:A|D (|R:A|_J.
K L

Now, in precisely the same way as in the case of field extension degrees,

we can prove the degree tower formula

Lemma 4 . If A,B are simple subrings of a ring R suoh that A c B >

then |R:BL|B:A|_ = I R I A L (and similarly for left degrees), a
K K K

Note that (vi) and (vii) in the Centralizer Theorem imply that certain

left degrees are finite and equal to the corresponding right degrees.

Even in the skew field case (cf. Lemma 3) this is not always true: one

can construct examples where one of the two degrees is finite and the

other infinite (see section 5.6 in P.M. Cohn [1977]), but no examples are

known where both degrees are finite and different.

Theorem 3 . Let L be a commutative subfield of a simple ring A ., K : =

:= Z(A) 5 L and |L:K| finite, then we have L - Z (L) if and only if

|L:K|2 , |A:K| .

Proof. Since L is simple the "only if" is an easy consequence of Lemma 4

and (vi) in the Centralizer Theorem (take B = L ). Conversely, (10) im-

plies L c Zfl(L) , hence "=" thanks to (vii) in the Centralizer Theorem
~~ A

(take B = L ) for dimensional reasons, a

Now recall Definition 3 in §5.; in this sense we claim

Theorem 4 . Let D be a K-skew field, then it posesses maximal commuta-

tive sub fields and all of these include K . Moreover, L is a maximal

commutative subfield of D if and only if |L:K| = |D:K| .

Proof. The first two statements are clear, the "if" follows from Theorem 3

together with (11) and the "only if" holds for the same reasons plus the

fact that a maximal commutative subring in a skew field must be a field. Q

The next results deal with refinements of the Centralizer Theorem in cer-

tain special cases.

Theorem 5 . Let A be a simple ring, L a commutative subfield of A

such that K := Z(A) c L c A , n := |L:K| and B := Z (L) ; then L/K
A

is a Galois extension if and only if there exist elements e. € A* such



that Be,. = e±B ( i = l,..,n ) and (J) Bei = A ( e± = 1 ) .

Proof, "if": by assumption we have e.Be. = B , hence - since L = Z(B)
1 1 -1

thanks to (i%%) in the Centralizer Theorem - a.(x) := e.xe. ( x 6 L )
defines K-algebra automorphisms of L ( i = 19..,n ). If now a. = a.

- 1 - 1 1 ^
for some indices i f- j 9 then e.xe. = e.xe. for all x € L 9 i.e.
_i -̂  -̂ 3 3

e. e. € Z(L) = B , hence e. € e.B which contradicts the left linear in-

dependence of the e. over B . Therefore r := {o ,..9o } constitutes

a set of n distinct K-algebra automorphisms of L ; this means that L/K

is Galois (because of n = |L:K| ) with T = Gal(L/K) . "only if": let

T := Gal(L/K) 9 hence |r| = |L:K| = n . Using the Skolem-Noether Theorem,

we may find for every o € V an element e € A* such that
a(x) = e xe for all x € L ,

a a
hence (thanks to (12)) e Be" = B and therefore Be = e B ( a € T ).

o o oo

Thanks to e € A* any single one of the e is left linearly indepen-

dent over B . Now suppose that any t-1 of the elements e are leftlinearly independent ( 1 < t <_ n = |r| ) and let T be a subset of T

with exactly t elements, fix an element x £ T and choose x € L s

that xn(x) i T(X) for all T € T , x i x . If then

we get - recall L = Z(B) -
b e xe e = ]5 e xe b e = -e xe b e =

^ T To To t ^ F e i To To T T To To To To

= -b e x = 3 b e x = 3 b e xe e 9
T0 T0 T ^ 6 T

 T T x ^ £ T T T T T

therefore (by induction assumption) b (T (x) - x(x)) = 0 for all x € T9

x t x . By our choice of x the latter amounts to b = 0 for these x ,

hence also b e = 0 9 i.e. even b = 0 for all x 6 T . Consequently
T0 T0 T

any t elements of the e are left linearly independent, therefore, by
induction, all n of these are. Finally

A ~- 0 Be ,
OtT

because the span on the right hand side is a finite dimensional left vector

space over some skew field of the same dimension as A has (cf. (wi) in

the Centralizer Theorem). Now set e. :- e if r = {l=a ,a2,..,a } . a
i

Inspection of the above proof gives immediately



Theorem 6 . Let A be a simple ring* L a commutative sub field of A

suoh that K := Z(A) c L e A , n := |L:K| and B := Z (L) ; then L/K

is a cyclic extension if and only if there exists an element e £ A* such

n-1
that Be = eB and ^ Be1 = A . •

i=0

We close this paragraph with a theorem due to 0. Teichmuller [1940] which

is, in some sense , a converse to parts of the previous theorem.

Theorem 7 . Let L/K be a finite cyclic extension, r := Gal(L/K) = (o)

and B a simple ring with centre L . If a can be prolonged to a ring

automorphism $ of B ., then there is a simple ring A with centre K

such that B = ZA(L) and hence A 8 L ̂  M (B) ( n := |L:K| ).
A K n

Proof. The last claim follows from the second last one thanks to (v) in

the Centralizer Theorem. Now the actual proof: because of $ I = a = id
] L J-J

the Skolem-Noether Theorem provides the existence of an element a 6 B*

such that

(16) $n(b) = a^a"1 for all b £ B ;

of course, a in (16) is uniquely determined by $ only up to multipli-

cation with elements from L* (note L = Z(B) ). It follows

ao$(b)a^
1 = <Dn+1(b) = (Ka^a^1) = $(ao)$(b)$(ao)"

1

for all b € B , therefore

^ ••-- $ ( a o r l a o e Z ( B )* ~- L*

and consequently $(cio)~ tQa0 = tQ<l>(a0) aQ - *(aQ) (ao$(aQ) )aQ , hence

and thus _ . .

VK(t0» = J T O t 0 = T T (*i+1(ao)-V(ao)) = 1 .J 0 (*i+1(a)-V(
Now Hilbertfs "Satz 90" in §6. provides the existence of an element t 6 L*

such that

$(aQ)"
1a0 = tQ = ^ t "

1 = a(t)t"1 = $(t)t"1 ,

so if we replace in (16) our element a by a := a t we get $(a) = a ,

in other words we can even find an element a € B* such that

(17) *(a) = a and $n(b) = aba"1 for all b € B .

Therefore, to complete our proof, it suffices to prove the following



Lemma 5 . Let L/K be a cyclic extension* n := |L:K| , r := Gal(L/K) =

- (o) j B a simple ring with centre L 3 $ a ring automorphism of B

such that = a and finally a an element of B* such that (17)
L

holds; then

(18) A := 0 Be1 with multiplication e1 - a , eb = *(b)e
i=0

defines a simple ring with centre K such that B = Z (L) and hence

A \ L " M n ( B ) •

Proof. Again, the last claim follows from the second last one (cf. the

proof of the previous theorem). Now an entirely straightforward calcu-

lation shows that (in view of (17)) the multiplication defined in (18) is

reasonable in the sense that A is endowed with the structure of a ring

with unit element e =: 1 . B (and therefore L (note L c B )) may be

viewed being embedded into A via b •• be = bl ; in this sense B c

c: Z (L) is clear. We want to prove the converse: let z = ̂ > b.e €
~ A i=0 X

€ Z (L) be given (with uniquely determined b. G B ) and choose x € L
A . 1

1

such that x i- x for all i = l,..,n-l . It follows
n-1 . n-1 . n-1 . . n-1 i
X I xb.e1 = xz = zx = J T b.e\ = ̂ 1 b.$1(x)e1 ~- ̂ T ° xb.e1
i=0 X i=0 1 i=0 1 i=0 1

which amounts to b. = 0 for i = l,..,n-l (by our choice of x ), hence
z = b e = b 1 € B , i.e. B = Z (L) . From the latter we get

U u A

K c Z(A) = ZA(A) c Z.(L) = B , hence Z(A) c Z(B) = L
A A

and even K = Z(A) , since xe = ex = $(x)e = xe implies x € Fix (T) =
Lt

= K . By virtue of Corollary 4 in §5., in order to complete the proof of

our lemma, we are left with showing that A according to (18) has no

proper two-sided ideal; indeed, let 0 f- y € A , then y = ̂ > b.e with
some well-defined non-empty subset V = ^(y) c {0,1,..,n-1} such that

b^ = 0 for all indices i ̂  V . If now {0} i a c A is a two-sided ideal
i i "i

of A and if |^(y)| = 1 for some 0 t y € a , it follows y = b.e for
-1 i -1 ^

some j , i.e. 1 = b. y(eJ) € a and hence 0L = A (note that (18) im-
i -1 -1 n*̂ l

plies (e ) = a e ). If on the other hand |^(y)| > 2 , select x €
j r

€ L and j,r € V = ^(y) such that $3(x) = ° x t ° x = $r(x) , and con-

sider
a 3 y - $ 3 ( x ) yx = ̂ > (b. -

ble1 =: y»
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with b! £ B , b i 0 (by our choice of x ) and V := V \ {j} £ y(y») .

Because of |^(yT)| < |^T| < |^| we may conclude CL = A by induction;

this completes the proof of the lemma as well as the one of the theorem

previous to the lemma, a a

Lemma 5 is already remarkable in the (seemingly easy) special case B = L

and gives rise to the following

Definition 4 . Let L/K be a cyoliG extension* n := |L:K| > r :=

:= Gal(L/K) = (a) and a € K* , then one calls the ring

(a,L/K,a) := ^ Le1 with multi-plication e11 = a , ex = axe
i=0

( x € L ) a "cyclic algebra11.

Lemma 5 reads then as follows:

Lemma 6 . Let A : = (a,L/K,a) be a cyclic algebra* then A is a central

simple K-algebra such that L = ZA(L) and A 8.. L =* M (L) .a
n. i\ n

Exercise 1 . Let A be a simple ring with centre K and B a subring

of A containing K such that A is a finitely generated right(left)
B-module. Show that |z (B):K| < n where n denotes the number of

A

generators needed (cf. Theorem 16 in E. Artin & G. Whaples [1943] or Theo-

rem 7.3H in E. Artin et al. [1948]).

Exercise 2 . Show that the Skolem-Noether Theorem does not hold in skew

fields which are infinite dimensional over their centre (Hint. Set

L := (K((X)))((Y)) , define an automorphism a of L such that a(X) =

= X+X2 and such that D := L((T;a)) has centre K (cf. §1.); now de-

fine a K-algebra automorphism T of D suitably and prove that it cannot

be an inner automorphism.).

Exercise 3 . Modify the constructions from Exercise 2 in such a way that

you can show that e.g. (Hi) and (iv) in the Centralizer Theorem do not

hold in case |B:K| is infinite.
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§ 8 . THE CORESTRICTION OF ALGEBRAS

Let R be a commutative ring and A an R-algebra, i.e. a

ring with 1 ^ 0 together with a fixed ring homomorphism i : R -> Z(A) c:
A —

c A . Now let a be a ring automorphism of R ; with the aid of a let

us equip our ring A with a new algebra structure:

Definition 1 . Let A be an R-algebra and o a ring automorphism of

R ; define the R-algebra A to be the ring A equipped with the new

R-structure i.cr : R - > Z ( A ) < = A (where iA defines the old R-struoture

on A ).

The following is then quite obvious (cf. the beginning of §5.):

Lemma 1 . Let A,B be R-algebras, f: A -> B a ring homomorphism and a

a ring automorphism of R ; then f: A -> B f

£s an 'R-algebra homomorphism if and only if t t

fi = igC? j i.e. if and only if the dia- ±k\ |"B

gram shown commutes. R > R a

Of course, the commutativity of the diagram above reads in more conventio-

nal notation (writing as usual ra in place of i (r)a ):

f(ra) = a"1(r)f(a) ( r £ R , a € A ) ,

i.e. f is semilinear (in the usual sense). Moreover we find easily

Lemma 2 . A ca A as an R-algebra if and only if o (and hence a )

can be extended to a ring automorphism of A . °

In this context the following can be observed immediately:

(1) A = A and ( A) = A ;

(2) R ̂  R as an R-algebra ;

(3) Z(aA) = Z(A) ;

(5) °(AV B) =



51

Furthermore we claim

If S cz Fix (a) is a subring, A an S-algebra and B an

^ ; R-algebra, then 0(A ® B) - A ® aB as an R-algebra.

Indeed, A ® B resp. A ® B carry an R-algebra structure via r h*
1

•-> l®iDa (r) resp. r H> l®i (r) , hence the identity f: A ®c B ->
B B o

-> A 9 B fulfills the requirements of Lemma 1. Combination of (6) and (2)

yields

If S cr Fix (a) is a subring and A an S-algebra, then
(7 ) a

w ; (A 0 R) *t A 9 R as an R-algebra.

Finally we point out the obvious fact

(8) A is a simple ring if and only A is a simple ring .

From now on we shall deal only with the case where R is a

field, more precisely: let N/K be a finite Galois extension, L an

intermediate field, A :- Gal(N/L) £ Gal(N/K) =: r , R a system of re-

presentatives for the cosets of V modulo A - i.e. T - \^J pA - and
p£R

A an L-algebra; in this situation we claim (and this will be of great
importance in the sequel):

Lemma 3 . Given p € R , then P(A ® N) is (up to N-algebra isomor-

phism) independent of the particular choice of the system R _, hence the

same is true for the ̂ -algebra A ( F : A ) := 6?) P(A ®T N) .

Proof. Thanks to (1) and (7) we have for all 6 € A the N-algebra iso-
morphisms p6(A ®T N) c±

 P(6(A ®T N)) «
 P(A ®_ N) . •

L L L

Now let R be as above; given p € R and a € T , there are

(uniquely determined) elements

(9) ap G R and 6(a,p) £ A such that op - Qp6(a,p) .

It follows ( a,x € r ; p G R )

p6(ax,p) = (QT)P = a(xp) = a p<5(x,p) = ( p)6(a, p)6(x,p) ,

hence

( 1 0 )
 QTp = V p ) , 2p = P and 6(ax,p) = 6(a,Tp)6(T ,p) ,

6(l,p) = 1 .

Using the notions and notations just introduced we claim:

Lemma 4 . Consider the M\-a1gebra A (as defined in Lemma 3)3 then

A ' can be given the structure of an N/K-Galois algebra (cf. Defini-
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tion 4 in §6.) such that

^— p-th position ^— ° p-th position

(11) a(..®ap®..) = ,.®
6(a'p)ap®.. ( a € r , ap €

 P(A ®L N) )

where A 8 N is viewed as a left k-module via id ®a (a € A) .

i-i A

Proof. It follows immediately from Theorem 8 in §4. that x t-> Qx (accor-

ding to (11)) defines a ring automorphism of A for every a € V .

Since x = x is obvious from (10) we must now show ( x) = x (a,T €

€ r ). Again this is clear from (10) thanks to

r— p-th position ,.— p-th position ,

°T(..8a 8..) = ..86(0T'p)a 8.. = . .»6(a'Tp)6(T'p)a 8.. =
P P P

- a( G6(T»P>a ® ) - a(T( ®a ® ))
p " p
t p-th pos. i p-th position .

Finally we see a
p-p-th position |— p-th position
r A - -

axa(..g)a 8. ) = ax( ® (a'p)a 0 ) =
p ' ' p

= ..®6(Q'p)(p~xa )0.. = Q(..®p"xa 8..) = a(x(..®a «..))
a P P P
p-th position J- t. p-th position^

which completes our proof. •

If we apply Theorems 1/2 in §6. we get from the previous result

Corollary 1 . ( A ( F : A ) ) r is a K-algebra such that ( A ( r : A ) ) r ®K N «

We want to show that the K-algebra (A ' ) is (up to isomorphism) in-

dependent of the field N , i.e. depends only on the (separable) field

extension L/K . For this, however, we need more preparation:

Let M/K be a further finite Galois extension with inter-

mediate field L and assume N c M (otherwise go over to MN and apply

the next lemma twice); set H := Gal(M/L) ± Gal(M/K) =: G and N :=

:= Gal(M/N) < G , hence T - G/U and A = H/W . Furthermore, if R is

a system of representatives for the cosets of G modulo H - i.e. G =

= I ) A.H - then the set { p € r | p = K = HH G G/W = r , K € R }

(which we shall also denote R ) is likewise a system of representatives

for the cosets of r modulo A . Now consider the M-algebra isomorphisms

(use (5) together with Lemmas 2/3 in §5. |R|-times, i.e. |L:K|-times)
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(12)

®T M) « (5$ *((A ®T N) ®._ M)

« ((9) P(A ®_ N)) ®N (

here G and a fortiori N operate on the left hand side according to

(11). Hitherto we have not made use of the fact that W is a normal sub-

group of G ; now we take this into account and conclude from it imme-

diately &K a Hh(69K) for all 6 € N (note that fi(4 ,*) £ H is the

analogue in G to the function 6 according to (9)), hence even

\ = K and ft(4 ,*) = fc"1** € W for all -6 € N .

Therefore W operates on the right hand side of (12) componentwise on

each of the factors of (££) \ and trivially (cf. (7)) on (§) P(A 8 N).

From the first one of these two facts we conclude (cf. Theorems 1/2 in §6.

and use Theorem 2 in §4. ( |R| -1)-times) ( 0 M) « (x) ( M) « Q$) N «

" N , hence (after using Theorems 1/2 in §6. again) the formula (12)

implies the K-algebra isomorphisms

(A(G:H))G = ((A<G:H))W)G/N = ^ p(A ̂  H))r ̂  / ^

c ( A ( r : A ) ) r
8 K - ( A ( r s A ) ) r

Consequently we have proved:

Lemma 5 . In the situation and with the notation introduced above one has

a K-algebra isomorphism ( A ( G : H ) ) G <* ( A ( r : A ) ) r . a

Now we drop the assumption "N c: MM and use Lemma 5 twice (with NM in

place of N and M ); this gives

Theorem 1 . Let L/K be a finite separable extension and A an L-alge-

bra; then the K-algebra (A ' ) (according to Lemma 4 and Corollary 1)

is (up to K-algebra isomorphism) independent of the auxiliary field ex-

tension N/L and therefore depends only on A and L/K . •

Now the following definition is feasible:

Definition 2 . If L/K is finite separable and A an h-algebra3 then

the K-algebra C
L/ K^

A) := (A ) r is called the "corestriction of A ".

Lemma 6 . Let L/K be finite Reparable and A an L-algebra^ then:

A has no proper two-sided ideals and Z(A) = L if and only if c 7l/(A)

has no proper two-sided ideals and Z(cT/1/(A)) = K .

L/1\

Proof. Clear from the definition of the corestriction (as regards the



centre: cf. Corollaries 3/5 in §7.; as regards the two-sided ideals: cf.

Corollary 3 in § 5.). D

Furthermore we conclude from Lemma 5 and Theorems 3/7 in §4. in connection

with the definition of the corestriction:

Lemma 7 . Let L/K be finite separable and A an h-algebra, then

L*K|
|CL,K(A):K| = |A:L| ' ' whenever either side is finite, n

Corollary 2 . Let L/K be finite separable, then A is a central simple

h-algebra if and only if cT /V(A) is a central simple K-algebra. a
L/K.

Now we want to study the special case A = B 8 L with some K-algebra B ,
K

however, before we can do so we must establish another important result:

Lemma 8 . Let L/K be finite separable, then cT ,(L) & K .

L/K

Proof. Using (2) and Theorem 2 in §4. several times we obtain the N-alge-

bra isomorphisms
(13) N « @ N « @ PN « @ P(L 6 N) = L(F : A )

p€R pGR ptK
such that (note that we identify y € N with l®Ty € L 8 N in the for-

L L
mula below) _^

x ̂  x(l«..81) = ..1®P x«l.. = ..1® P x«l.. ,
p-th position f t. p-th positionhence (cf. (9) and (11)) o -1 * -1

°xHax(18,,«l) = ..l®ap"(ax)®l.. = ..l®6(a'p)(p"x)®l.. =

= a(..l®P x«l..) = a(x(l«..«D) ( a £ r , p € R ) ,

T—p-th position

i.e. under the isomorphism in (13) the standard r-action on N is carried

over to the r-action according to (11) on L . Therefore we may con-

clude K = / * (L ( r : A ) ) r = c / (L) . a

Now we are ready for the proof of (as regards the notation: cf. Definition

3 in §4.)

Lemma 9 . Let L/K be finite separable and B a K-algebra, then

cL/K(B ®K L) ~B®
d ( d := |L:K| ) .

Proof. Using (6), (13) and Lemmata 2/3 in §5. one obtains the N-algebra

isomorphisms
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(B 8K L )
( r : A ) = (g) P((B 8 K L) 8 L N) c* (g)

 P(B »K N) <*

«« (g) (B «K
 PN) « B®d 8K (ft

 PN) « B®d 8R N .

Here V operates trivially on the left term, hence our claim thanks to

Theorem 1(1) in §6. n

Writing M (L) «=* M (K) 8 L (cf. Lemma 4 in §5.) and using Lemma 9 as
n n K

well as Corollary 1 in § 5. we get

Corollary 3 . Let L/K be finite separable and A,B lr-algebras> then

c_ (M (D) <* M ,(K) ( here d := |L:K| ;. a
L/K n a ' '

n

Lemma 10 . Let L/K be finite separable and A,B L-algebraSj then

CL/K(A ®L B ) °* CL/K ( A ) \ °L/K(B) '

Proof. Use (5) and Lemma 3 in §5.; this gives N-algebra isomorphisms

(A ®T B ) ( F : A ) = (g)P((A ®_ B) «_ N) «
L /*T) L L

ptK

« 0 P ^ A ®r N ) ®M (B ®T N ) ) "

p €R L N L

- ((g) P(A ®L N)) ®N ((g)
 P(B ®L N)) = A

( F : A ) ®N B
( r : A )

such that we may apply Theorems 1/2 in §6., hence our claim. •

We close our investigations by showing that the corestriction behaves

functorially in L/K .

Lemma 11 . Let L/K be finite separable and A an L-algebra; if I is

an intermediate field of L/K _, then

CL/K ( A ) " CI/K ( CL/I ( A ) ) •

Proof. Denote E := Gal(N/I) , hence A _< E <: r ; now write

T = V J p T E , E = V j p"A , hence r = \J {J pfp"A
p'ER' p"eR" p'€R! p"€R"

i.e. we may take R := {p'p" | pT € RT , p" € R"} . Now use Corollary 1

and (5) several times; this gives the K-algebra isomorphisms

P"(A « N)))r - ( (g) (g) P'P"(A 8r N))
f =
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= cL/K(A) . D

Exercise 1 . Let L/K be finite separable and F/K an arbitrary ex-

tension such that E := L ®v F is a field. Show that for L-algebras A

we have an F-algebra isomorphism
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PART II . SKEW FIELDS AND BRAUER GROUPS

The history of Brauer groups began in 1929 when R. Brauer

(1902-1977) proved that the set of those (isomorphism classes of) skew

fields which are finite dimensional over their common centre K can be

endowed with the structure of an abelian torsion group. This group is

nowadays called the Brauer group Br(K) and turns out to be a subtle in-

variant of K which is closely related to Galois Cohomology via the

crossed products ("verschrankte Produkte" in the original German termino-

logy),as was first shown by E. Noether (1882-1935). Of course, in those

days there was no Galois Cohomology, so what she suggested was the heart

of a theory which was to become Galois Cohomology after general (co)homo-

logy theories had been developed later in the 1940's. Meanwhile, in the

1930's A.A. Albert (1906-1972), R. Brauer, E. Noether and H. Hasse (1898-

-1979) gave a comprehensive treatment which culminated in a complete de-

termination of Br(K) in the case where K is an algebraic number field.

All this is summed up in the two reports M. Deuring [1935] and A.A. Albert

[1939] which are even today outstanding reading matter.

Here (in Part II of these lectures) we attempt to give a com-

prehensive treatment of the basic algebraic aspects of a modern theory of

Brauer groups over fields. (Note that today there exists a corresponding

theory of Brauer groups over commutative rings which we disregard in these

lectures; cf. some remarks in §18.) Of course we can only present selected

topics (for otherwise these lectures would be three times as long), and it

is our hope that this selection will, as well as stimulating the reader's

interest, also prepare him for further reading.

In §9. we begin with the definition of Br(K) and its immedi-

ate consequences; a good knowledge of Part I is needed and in particular

we make full use of C. Riehm's corestriction procedure from §8. In §10. we

study a special class of algebras and skew fields related to cyclic field
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extensions; much of the material in this paragraph has been presented before

1929, mainly by L.E. Dickson (1874-1954). Some of the results in §10. are

really classical: for instance Frobenius' Theorem (G.F. Frobenius (1849-

-1917)) and WedderburnTs Theorem from 1905 (J.H.M. Wedderburn (1882-1948)).

In §11. we deal with power norm residue algebras: these originate from

Class Field Theory; however, following J. Milnor [1971] we present only

the algebraic aspect thereof. §§12/13. contain a description of the above

mentioned relationship between Brauer groups and Galois Cohomology (here

we follow E. Artin et al. [1948]). §14. deals with quaternion algebras

and skew fields (cf. also §1.); here they appear as special cases of the

algebras in §11. In §15. we present the theory of Br(K) in the case where

char(K) f 0 . Here we combine the advantages of A.A. Albert's approach

with those of 0. Teichmullerfs (1913-1943) and E. Witt's. In §16. we give

an introduction to W. Scharlau's [1975] version of the theory of skew

fields with involution. In §17. we attempt to describe the connection

between Br(K) and K -Theory which arises from §11. Here the situation

is in flux: A.S. Merkur'ev and A.A. Suslin (A.C. NepKypeB & A.A. Cyc/iMH

[a],[b]) have very recently achieved a spectacular result in this field !

Here we can only describe this result; the proof would comprise another

book. Finally §18. contains a survey of some further results as well as

suggestions for further reading.
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§ 9 . BRAUER GROUPS OVER FIELDS

Henceforth (i.e. throughout Part II) we shall be dealing with

central simple K-algebras and K-skew fields only (cf. Definition 3 in §5.);

these are a fortiori simple rings and hence we may (and shall) use the

theory developed in Part I. We start our investigations with

Theorem 1 . The following statements are equivalent:

(a) A is a central simple K-algebra ;

(b) A is a finite dimensional K-algebra without proper two-sided

ideals and such that K = Z(A) ;

(c) A is a simple ring which is finite dimensional over K = Z(A);

(d) A 8 L is a central simple h-algebra ( L/K any (not necessa-
ry

rily finite) field extension) ;
(e) A ® "K C± M ("K) for any algebraic closure K of K (then

ry K n

n = |A:K| ) ;
(f) A ̂  M (D) ̂  D 0 M (K) with unique r and an up to isomor-

r i\. r ^

phism unique K-skew field D (then r |D:K| = |A:K| ).
Moreover3 A,B are central simple K-algebras if and only if A ®v B is a

is.

central simple K-algebra,

Proof. This is merely a summary of various statements from §§3/5/7. n

Theorem 1 gives rise to

Definition 1 . Let A be a central simple K-algebra; then the skew field

D according to Theorem l(f) is called the nskew field component of A "

and n according to Theorem l(e) is called the "reduced degree of A " ;

the reduced degree of the skew field component of A is called the "index

of A " and is denoted by i(A) .

Obviously we have (because this amounts to the case r = 1 in Theorem l(f))

. . A central simple K-algebra A is a K-skew field if and only if

i(A)2 = |A:K| .
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We list a few features of central simple K-algebras which we shall need

frequently.

Lemma 1 . Let A,C be finite dimensional K-algebras such that |C:K| <

<_ | A: K | and let f: A -* C be a K-algebra homomorphism; thens if A is

a central simple K-algebra3 f is an isomorphism.

Proof. Since Ker f is a two-sided ideal ^ A we see that f must be

injective9 hence even surjective for dimensional reasons. •

Combining Lemma 1 with Theorem 2 in §5. yields

Lemma 2 . Let A,B,C be finite dimensional K-algebras suoh that jC:K| <_

< | A :K | | B: K | and let f : A - > C , g : B - * C be K-algebra homomophisms.

Then A ® B ̂  C provided A9B are oentral simple K-algebras. a

The following is crucial for the entire Part II :

Definition 2 . Two central simple K-algebras A,B are called "similar11

(write " A ~ B " ) if there are s,t € N suoh that

A ® M (K) c* B ft M (K) .
J\ s i\ t

Again we get from §§3/4-/5/7 (details are left to the reader)

Lemma 3 . Let A9B be oentral simple K-algebras with corresponding skew

field components D,E ., then:

(a) A ~ B if and only if D =* E ;

f3J A - B and |A:K| = |B:K| i / and only if A ^ B ;

Tŷ  f/~" is an equivalence relation ;

(6) in every equivalence class modulo t!~n there is (up to isomor-

phism) exactly one K-skew fields namely the (common) skew

field component of all the members of this class. •

Another immediate consequence of the various preceding results is (cf. in

particular Corollary 2 in §5.):

Theorem 2 . Denote by [A] the equivalence class containing A of

central simple K-algebras modulo "~", and write Br(K) for the set of

these equivalence classes (for fixed base field K ); then the definition

[A] + [B] := [A ®K B] ( [A]9[B] £ Br(K) )

is feasible and endows Br(K) with the structure of an abelian group

(1-module) such that

0 = [K] = [M (K)] and -[A] = [A°P] . n
n
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Definition 3 . The group Br(K) from Theorem 2 is called the "Brauer

group of K " .

Roughly speaking Br(K) is the set of K-skew fields (up to isomorphism)

together with a Z-module structure such that the (trivial) skew field K

is the neutral element. Moreover, it is clear from our definitions that

(2) i(A) = i(B) if [A] = [B] .

Note that we may (and henceforth shall) replace the somewhat lengthy

phrase " A is a central simple K-algebra" by " [A] € Br(K) " !

If we state Lemmas 2/3/4 in §5. in terms of our new phrasing we get

Theorem 3 . Let L/K be a (not necessarily finite) field extension, then

the assignment A f-> A 8 L induces a 1-homomorphism r_ . : Br(K) •+ Br(L)
K L/ K

which is functorial in L (i.e. r» /ir = rM/Tr_ / v if K c L c M ) . a
M/K n/L L/K — —

Definition 4 . Br(L/K) := Ker r_ . is called the "relative Brauer group
L/K

of L/K " ; if [A] € Br(K) and L/K is such that [A] 6 Br(L/K) (the
latter amounts to A ®.. L ̂  M (L) ~ L )3 then L £s called a "splitting

K n

field of A Tor o/ [A] )" .

Theorem 3 implies

( . Br(L/K) c Br(M/K) if K c L c M , i.e. extensions of

splitting fields of A are likewise splitting fields of A .

Moreover, Theorem l(e) implies:

(4) every central simple K-algebra has a splitting field.

Note that by definition the sequence of Z-modules

(5) 0 > Br(L/K) c: • Br(K) • Br(L) is exact .
PL/K

Now (1),..,(8) in §8. show

Lemma 4 . Let L/K be finite Galois and r := Gal(L/K) , then the assign-

ment a[A] := [aA] ( a € r , [A] € Br(L) ) endows Br(L) with the struc-

ture of a left T-module such that Im r , <=• Br(L) . a

L/K —

Therefore we can amplify (5) and get
Let L/K be finite Galois with T :- Gal(L/K), then

(6) r
0 > Br(L/K) c _ — • Br(K) • Br(L) is exact .

PL/K

Using Theorem 7 in §7. in connection with Lemma 2 in §8. we conclude from
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Lemma 4- above:

Theorem 4 . Let L/K be a finite cyclic extension with Galois group Y ,

then the sequence

Theorem 4 is due to 0. Teichmuller [19M-0] '9 in the same paper the image of

r , in the sequence (6) is also studied. The latter has been improved
L/K

by S. Eilenberg & S. MacLane [1948] who extend the sequence (6) to the

right by two terms (of course this is related to the Hochschild-Serre

spectral sequence, cf. §18.) . Moreover, in §15. we shall discuss the

sequence (5) extensively in the case " L/K purely inseparable" .
Theorem 3 has a counterpart in the finite separable case.

Theorem 5 . Let L/K be a finite separable extension, then the assign-
ment A K c_ /V(A) (according to Definition 2 in §8.) induces a 1-homomor-

L/K
phism c . : Br(L)—*Br(K) which is functorial in L (i.e. C M / L C L /K ~

= c™iv If K C L C M j and such thatn/J\

and
CL/KrL/K

rL/KCL/K

Proof. Clear from the various results in §8. a

Now let us restate (v) in the Centralizer Theorem in §7. in our new

language:

Theorem 6 . Let [A] € B r ( K ) , [B] € B r ( L ) and B c A ( L/K a finite

field extension); then We have in Br(L) the equations

[ZA(B)] = [A ®K L] - [B] = rL/K([A]) - [B] . •

Now consider in Theorem 6 the case "B = L" ; this gives

Corollary 1 . Let L/K be a finite extension and [A] € Br(K) such that

L c A , then [ZA(L)] = [A « L] = r_ /V([A]) . a
— n. l\ Li/ x\

The following shows that the condition "B c A" in Theorem 6 is not a

serious thing.

Lemma 5 . Let L/K be a finite extension, [A] € Br(K) and [B] € Br(L)

then there is an A! such that [A'] = [A] and B cz A ! .

Proof. Denote by L, the left multiplication ( b € B ) and consider the
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K-algebra homomorphism (here n := |A:K| )

f: B -+ A1 := Endv(B) ®v A ̂  M (K) ®v A ~ A , b H- L, ®1 .K. K n K D

Here f is injective (since B has no proper two-sided ideals), hence

we can view B as embedded in AT . n

Now we turn our attention to questions of separability.

Lemma 6 . Assume p : = char(K) t 0 and consider a K-skew field D ; let

d € D be such that d £ K but dp € K (-£.£. K(d)/K is purely insepa-

rable of degree p Jj then there exists a separable field extension L/K

such that K i L c D .

Proof. The assignment x »-> dxd defines an (inner) automorphism a ;

by construction a ^ idn but aP = id . Consider the endomorphism T :=

:= a - idD of D : obviously x i 0 but xP = (a - id D)
P = aP - idD = 0

for reasons of characteristic. Set r := max{ i | T t 0 } , hence

1 <_ r < p ; by construction there exists some y £ D such that T (y) i

i 0 . Set a := Tr~1(y) t 0 and b := x(a) i 0 ; it follows a(a) =
r+1

= x(a) + a = b + a and x(b) = x (y) = 0 , hence a(b) = b , and there-

fore - if c := b'^a € D -: a(c) = a(b~1)a(a) = b~1(b + a) = 1 + c .Now

consider the field M := K(c) = K(l+c) c D ; M/K cannot be purely in-
separable because it admits the K-algebra automorphism a idM , hence

the separable closure L of K in M has the desired properties. •

Now let us draw two important conclusions from Lemma 6 and its proof; the

first one concerns cyclic extensions of degree p of fields of charac-

teristic p (we shall make use of this result later in §15.):

Artin-Schreier Theorem . Let p := char(K) t o and consider a finite

cyclic extension N/K of degree p with r := Gal(N/K) - a ; then

N = K(c) where c is such that c = 1+c and a : = c p - c € K * 3 i.e.

c has the minimal polynomial Tp - T - a € K[T] .

Proof. Copy the proof of Lemma 6 with the following alteration: replace E

by N and forget about the d (note: there we needed the d for the

definition of a , here the a is given ! ) . Finally conclude L = M = N

for reasons of degree and observe a i- 0 as well as (for reasons of

characteristic) aa = (l+c)P - (1+c) = cP - c = a , hence a € Fix.(a) =
L

= K . •

The second application of Lemma 6 is



Corollary 2 . Let D / K be a K-skew field* then there exists a sepa-

rable field extension L/K such that K i L c D .

Proof. In case char(K) = 0 there is nothing to prove. Now consider the

case p := char(K) ^ 0 ; if there were no such extension L/K every z €

€ D would have to be purely inseparable over K , hence there would be

some e € N (depending on z ) such that d := zP t K but dP € K ; this

would contradict Lemma 6. a

From Corollary 2 we deduce the following important result.

Kbthe's Theorem . Let D be a K-skew field* then there exists a maximal

commutative subfield M c D such that M/K is separable.

Proof. We proceed by induction on the index i(D) , the case tTi(D) = 1"

being trivial. Consider the case "i(D) > 1" : take L as in Corollary 2

and consider E := Z (L) ; E is an L-skew field (cf. Lemma 3 in §7.)

of index i(E) = i(D)/|L:K| < i(D) (cf. the Centralizer Theorem in §7.).

By induction hypothesis E contains a maximal commutative subfield M

such that M/L is separable, hence M/K is separable. Thanks to Theorem

4 in §7. M is also a maximal commutative subfield of D . a

In order to make full use of K6thefs Theorem we need a characterization of

splitting fields of central simple algebras.

Theorem 7 . Let L/K be a finite extension and [A] € Br(K) ; then

[A] € Br(L/K) (i.e. L is a splitting field of A ) if and only if there

exists an A1 such that [A1] = [A ] , L C A 1 and |L:K|2 = |AT:K| .

Proof. The "if" part is easy to prove: for reasons of degree we have

Z ,(L) = L (cf. (10) in §7. and the Centralizer Theorem ibid.), hence

rL/K([A]) = rL/K([A
f]) = [L] = 0 thanks to Corollary 1 .

For the "only if" part set n2 = |A:K| = |A®KL:L| and m = |L:K| ; by

assumption we have A° P 8 L « H (L) (cf. Theorem 2). Now consider the
n

infective K-algebra homomorphisms f,g (note that L and A P have no

proper two-sided ideals !) defined in the diagram below:

x L

A

Embed L9A°
P c: B (see above) and define A1 := ZD(A°

P) in this sense.
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By construction it follows L c A' ; Theorems 2/6 yield [A'] = [B] -

~ [A°P] = 0 - (-[A]) = [A] and finally (vii) in the Centralizer Theorem

in §7. gives |A':K| = m2n2/n2 = m2 = |L:K|2 . •

If we combine Theorem 7 with Lemma 3($) we get

Corollary 3 . Let [A] € Br(L/K) such that |L:K|2 = |A:K| > then

L CL_*. A j i.e, L may be viewed as embedded in A . •

If we apply Theorem 7 to the skew field component of A and use then

Theorem l(f) we get

Corollary 4 . Let [A] € Br(K) and L a splitting field of A of fi-

nite degree |L:K| ., then i(A) divides |L:K| .a

Moreover, Theorem 7 and Theorem 4 in § 7. imply

Corollary 5 . Any maximal commutative sub field L of a K-skew field D

is a splitting field of D . •

If we apply Corollary 5 to the skew field component of a central simple

K-algebra A and make also use of Kothe's Theorem we get

Corollary 6 . Let [A] £ Br(K) , then there exists a splitting field L

of A such that L/K is separable and |L:K| = i(A) . •

Now the following amplification of Theorem 1 is obvious (cf. also (3)).

Theorem 8 . The following statements are equivalent:

(a) A is a central simple K-algebra ;

(g) A ® L =* M (L) for some finite separable L/K ;

(h) A a N en M (N) for some finite Galois N/K . •
is. n

Theorem 8(h) may be restated as

Theorem 9 . Br(K) = \^J Br(L/K) . •
L/K finite
Galois

Here we remark that Theorems 8/9 can be strengthened in the sense that

Galois can be replaced by the stronger metabelian (and hence soluble) - i.e.

Galois with metabelian (and hence soluble) Galois group; cf. §§11/17.

We come to an important application of Corollary 6 (which depends on

K6theTs Theorem):

Theorem 10 . Let [A] G Br(K) , then i(A)[A] = 0 , i.e. Br(K) is a

torsion group.
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Proof. Choose a splitting field L of A such that L/K is finite sepa-

rable of degree i(A) (see Corollary 6); then Theorem 5 yields

i(A)[A] = |L:K|[A] = cL/KrL/K(tA]) = 0 ^ ( 0 ) = 0 . n

Thanks to the preceding theorem the following definition is feasible:

Definition 5 . Let [A] € Br(K) , then o(A) := min{ r € N | r[A] = 0 }

-i.e. the order (in the sense of Group Theory) of [A] in Br(K) - is

called the uexponent of A " .

Of course we have (compare with (2))

(7) o(A) = o(B) if [A] = [B] .

Moreover, Theorem 10 implies

Corollary 7 . o(A)|i(A) for all [A] € Br(K) . •

Another easy consequence is (cf. Group Theory):

o(A®KL)|o(A) for [A] £ Br(K) ( L/K arbitrary) and

( 8 ) o(cL/K(B))|o(B) for [B] £ Br(L) ( L/K finite separable).

Our next result may be viewed as a weakened converse to Corollary 7 .

Theorem 11 . Let [A] € Br(K) and let p be a prime dividing i(A) ;

then p divides o(A) 3 i.e. index and exponent have precisely the same

prime factors (apart from multiplicities) .

Proof. By Theorem 9 we may assume [A] € Br(L/K) for some finite Galois

L/K . Let r := Gal(L/K) and choose any p-Sylow subgroup V of r ; let

L := Fix_(r ) be the corresponding p-Sylow subfield of L , then
p L p

p||L :K| but p|i(A)||L:K| = |r| (cf. Corollary 4),

hence ,-
p = |rp| = |L:Lp| > 1 .

Now [A 8> L ] € Br(L/L ) (cf. Theorem 3) and 0 i [A ®v L ] in Br(L )
K p p K p p

(for otherwise Corollary 4- would imply p|i(A)||L :K| which contradicts

our construction), hence (thanks to Corollaries 4/7)

1 t o(A®KLp)|i(A®KLp)||L:Lp| = p
f > 1 ,

therefore pp(A® L )|o(A) because of (8) . a
I K p •

Incidentally, it was R. Brauer himself who showed first that no more re-

lations between index and exponent than the ones coming from Corollary 7/

Theorem 11 can be established in general; cf. also (7) in §24.

We close this paragraph with some remarks on index reduction.
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Theorem 12 . Let [A] € Br(K) and L/K a (not necessarily finite) field

extension; then

(A) i(A»L)|i(A) ;
Is. •

(B) ,f\l . J|L:K| in case L/K is a finite extension ;
i(A®KL)?

(C) '(AS L) = 'L:K' ^ aYU^ On^y ̂  L °an ̂ e bedded into the
K

skew field component D of A .
i( A}

Definition 6 . The quotient ..^ j\ tn Theorem 12 £s called the "index
K

reduction factor (of A relative to L/K J".

Proof. Clearly we may restrict our attention to the case where A = D is

a skew field (cf. (2)). Now write D 8 L «* M (E) where the L-skew field

E is the skew field component of the left hand side (cf. Theorem l(f)) ;

by definition i(D®vL) = i(E) , hence (A) and r = ., > . Now set m :=

j\

:= |L:K| and consider the K-algebra homomorphism L: L -* Endv(L) , x »-> L

where L stands for left multiplication with x ; id ®L is then an in-
X D

j e c t i o n M (E) ^ D ®v L -• D ®v End..(L) a< D ®v M (K) =: B , hence we may
r K x\ K K m

(and shall) view both L and M (K) embedded in B . Now define C :=
r

:= Zfi(Mr(K)) ; it follows L c C and (see Theorem 6)

hence

[C] = [Z_(M (K))] = [B] - [M (K)] = [B] = [D]
r> r r

L <= C <* M (D) for suitable t

thanks to Theorem l(f). On the other hand we find B ^ C L M^(K) (cf.

Corollary 8 in §7.), consequently (see also Lemma U/Corollary 1 in §5.)

M (D) c* D ®v M (K) = B at C ®v M (K) ^ M (D) %v M (K) « M (D) 5m K m K r t K r rt

i.e. |L:K| = m = rt . This proves (B) and the "only if" part of (C) simul-

taneously. Finally, for the proof of the "if" in (C) 9 we consider E1 :=

:= Z_(L) ; then Ef is an L-skew field such that [E1] = [D «„ L] satis-
u i\

fying i(D) = i(Ef)m = i(D®vL)IL:KI (cf. the Centralizer Theorem/Lemma 3
K

in §7.). •

Corollary 8 . Let [A] € Br(K) and L/K a finite extension such that

i(A) and IL:KI are coprime; then i(A®vL) = i(A) . In particular: if

D is a K-skew field and L/K a finite extension such that |D:K| and

ILJKI are coprime, then D 8., L remains a skew field . n

Js.

Of course, Corollary 8 remains true for infinite extensions L/K if one

interprets |L:K| in this case as a supernatural number (see §2 in Ch.I
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S.S. Shatz [1972]).

Corollary 9 . If D is a K-skew field and L/K a finite extension of

prime degree3 then either L c—» D or D 8 L remains a skew field, n

Now we investigate another type of index reduction:

Theorem 13 . Let [A],[B] e Br(K) s then

(A)

(B)

K
2 ./T^2

i(A)2

hence

, |A:K|

M

9

i(AT

Corollary 10

)

n(B) -

.op _
•• A F 8

= n =

. Let

• M

K

st

n ( K )

(D 8

(cf

[A],

B « (A°P

,(K)) <* (A

. the various

[B] £ Br(K)

8KA)

rules

8 B '•

D ) t K

from

* A ° P

Ms(K)

§§4/5

i(A)

• K ( A

a B

. ) . a

and

i(A8 B)
IN.

Proof. Again we may restrict our attention to the case where A and B

are K-skew fields (cf. (2)). Then we have (cf. Theorems 1/2)

A ®K B « D ®K Mg(K) and A° P ®K D * B ®R Mt(K)

for some K-skew field D and suitable s,t € N . Since i(A8 B) = i(D)

and i(A)i(B) = i(D)s we get (A) immediately.As for (B) it suffices to

prove (say) ns|i(A) " ; using Corollary 2 in §5. we obtain (here n :=

B)

M (K)
J\ St

prvme, then i(A8 B) = i(A)i(B) . In particular: if D,E are K-skew fields

of coprime index> then D 8 E remains a skew field, D
K

Theorem 14 . Let D be a K-skew field of index i(D) = mn with coprime

m and n ; then there exist unique (up to isomorphism) K-skew fields E

and F such that i(E) = m s i(F) = n and E 8 F <*- D .

Proof. Using Corollary 7 we may write

o(D) = m n with coprime m and n such that mQ|m ,
 n

o l
n

and find unique [E],[F] € Br(K) such that (compare the elementary theory

of abelian torsion groups)

[D] = [E] + [F] where o(E) = mQ and o(F) = nQ .

Now o(E) and o(F) are coprime by our construction; consequently (cf.

Theorem 11) i(E) and i(F) are likewise coprime, hence E 8 F is also

a skew field ~ D . Now Lemma 3(6) implies even E 8 F ̂  D . •
K j-

r f
Corollary 11 . Let D be a K-skew field and i(D) = ] \ p p the prime
power factorization if its index, then
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r f
D & (2S D with K-skew fields D such that i(D ) = D p a

p==l p P P *P

Now use (8) with B := A 8 L and apply Theorem 5 ; this gives
K

Corollary 12 . Let [A] € Br(K) and L/K a finite separable extension

such that o(A) and |L:K| are coprime; then o(A®KD = o(A) . •

Note that o(A) and | L.: K| are coprime if and only if i(A) and |L:K|

are (cf. Theorem 11).

Theorem 5 and Corollaries 8/12 can be restated in a more coherent way: de-

note by Br(K) := { [A] € Br(K) | m[A] = 0 } the m-torsion component of

Br(K) - hence [A] € Br(K) if and only if o(A)|m - and by Br(K) :=
oo *?

:= [^J --Br(K) i t s ^^primary component ( m € N , p a prime ) , then
f=l p r

Corollary 13 . Let L/K be finite separable such that m and |L:K|

are coprime C m € N ) , then r_ ...: Br(K) -> Br(L) is infective and
L/K m m

preserves index as well as exponent. Moreover3 c_ . : Br(L) -> Br(K) is
L/K m m

surjective. •

Another way of expressing the same ideas is

Corollary 14 . Let L/K be finite Galois* V := Gal(L/K) * V a p-Sylow
subgroup of T and L := Fix (r ) the corresponding p-Sylow sub field of

p L p
L * then r_ .-. Br(L/K) -• Br(L/L ) is infective and preserves index as

Lp/K p p
well as exponent. Moreover3 cT ,..: Br(L/L ) -> Br(L/K) is surjective. n

L/K p p

Again the finiteness of L/K (in Corollaries 12/13/14) is not really ne-

cessary; all these results can easily be extended to the infinite case by

inductive (resp. projective) limit techniques (cf. Ch.I of S.S. Shatz

[1972]). The separability conditions are also superfluous; for instance

Corollary 12 remains correct even in the inseparable case (cf. S.A.

Amitsur [1962]).

Exercise 1 . Prove the converse of the Artin-Schreier Theorem, namely:

let p := char(K) ̂ 0 , a € K and consider the polynomial f(T) :=

:= TP - T - a € K[T] ; then either f(T) splits into p factors over K

or f(T) is irreducible and any root c generates a field K(-ga) := K(c)

such that K(ĵ a)/K is cyclic with generating automorphism a: c »+ c + 1 .

Exercise 2 . Let [A] € Br(K) and L/K a field extension, then
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L:K| if and only if r is minimal such that L

can be embedded in M (D) where D stands for the skew field

component of A .

(cf. Theorem 23 in Ch.IV of A.A. Albert [1939]; note that this exercise

generalizes Theorem 12(C))
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§ 10 . CYCLIC ALGEBRAS

In §7. (cf. Definition 4 ibid,) we have already introduced the

oyotio algebras

(a,L/K9a) := fl^ Le
1 with multiplication e = a and

(1) i=l

ex = xe (hence xe = e x ) for all x € L ;

here L/K is a finite cyclic extension of degree n with generating

automorphism a and a € K* is given. Thanks to Lemma 6 in §7. we have

(with the notation introduced in §9.)

(2) [a,L/K,a] := [(a,L/K,a)] € Br(L/K) c Br(K) .

Now we claim (situation as above)

Lemma 1 . (a,L/K,a) ̂  (b,L/K,a) -provided -€NT/V(L*) .
a LJ/J\

Proof. Write A := (a,L/K,a) = (J) Le1 and B := (b,L/K,a) = (J) Lf1 ;
i i i

now take c € L* such that b = aN_ /,,(c) and set f\_ := ec € A* . It
L/K U

follows f = (ec) = .. = NT ,..(c)a = b and f x = ecx = xec = xf̂ , for
0 L/K 0 U

all x € L , hence the assignment f K f , x » - > x ( x € L ) induces a

K-algebra homomorphism g: B -» A which is even an isomorphism because of

Lemma 1 in §9. a

Lemma 2 . Let [A] € Br(K) and L/K a oyolio extension of degree n

with generating automorphism a suoh that L c A and n = |A:K| ; then

there exists an e € A* suoh that a := e11 € K* > ex = Qxe ( x € L ) and
n-1

A = (£) Le1 . Moreover, if f € A* is suoh that b := e11 € K* s fx =
 Qxf

i=0 n-1
( x G L ; and A = ff) Lf1 , then - £ N T /V(L*) .

i=0 a 7

Proof. By Theorem 3 in §7. we see L = Z A ( D 9 hence the existence of

e € A* such that A = Q ) Le is already clear from Theorems 5/6 in §7.
i

Inspection of the proof of Theorem 5 ibid, shows that e arises from the
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Skolem-Noether Theorem in §7.:

x = exe for all x £ L .
n

It follows x = x = e xe for all x G L 9 hence a : = e € Z ( L ) = L
1

and therefore a = e e e = e = a 9 hence a 6 Fix (a) = K . Now if
l O 1fxf = x = exe for all x t L ,

then e fxf e and consequently c : = e f € Z . ( L ) = L as well as
n n nb := = NL/K(c)a .

If we replace in the preceding proof a by another generator a (note

that t and n must be coprime) of Gal(L/K), then e must be replaced

by e , hence a by a This gives

Lemma 3 . For cyclic algebras we have the rule

(a,L/K,a) a* (a ,L/K,a ) provided t and |L:KI are ooprtme.o

The next rule is crucial.

Lemma 4 . For cyclic algebras we have the rule ( n = |L:K| )

(a,L/K9a) ®K (b,L/K,a) c* Mn((ab,L/K,a)) .

Proof. Set A := (a,L/K,a) = ffi Le1 , B := (b,L/K,a) = (J) Lf1 and

C := (ab,L/K,a) = Le ; now consider the matrices

(3) A. a 0

\0 a

0

i o'
\

0 1

for j = 0,..,n , define A := A

€ M (K) and observe A . = A3 ( j as
n 3

above) .

i-th row and
I column

± n-j rows and columns

I j rows and columns

If we define g(e) := A , h(f) := e ^ ' 1 = A~XeQ , g(x) : =

h(y) := yl ( x,y € L ),

then these matrices in M (C) satisfy the following equations:

g(e)n = An = a (cf. (3)), g(e)g(x) = g(0x)g(e) (cf. Lemma 1

f\ i 0
a
x

1 \j

and

in §2.), h(f)n = = b and h(f)h(y) =

= h(ay)h(f) 9

hence two K-algebra homomorphisms g: A ̂ > M (C) , h: B-^M (C) are well-

defined. Now our claim is an easy consequence of Lemma 2 in §9. thanks to

g(e)h(f) = eQ = h(f)g(e) , g(x)h(y) = h(y)g(x) , g(e)h(y) =

= h(y)g(e) and h(f)g(x) = g(e)"1eog(x) = g(e)"
1g(ax)e0 =
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= g(x)g(e) 1e() = g(x)h(f) ( x,y € L ) . D

Theorem 1 . Let L/K be finite cyolic with generating automorphism o ,

then the assignment an- [a9L/K,a] ( a £ K*, cf. (2)) induces an isomor-

phism

V
Note that in view of Example 1 in §6. the latter isomorphism may be re-

stated in the form

(4) H°(r,L*) c* Br(L/K) in case V := Gal(L/K) is cyclic .

Proof. Thanks to (2) and Lemma 1 the map 9 is well-defined. Lemma 4

says that 0 is even a homomorphism. The injectivity of 0 follows

from Lemma 2 whereas the surjectivity is a consequence of Lemma 2 and

Theorem 7 in §9. •

Now we are ready for the proof of two really classical results:

Frobenius1 Theorem (1878) . Let D be an R-skew field t R 3 then ne-

cessarily D c* H (cf. (1) in §1.)3 i.e. Br(R) at Z/2Z .

Proof. We have Br(R) = Br(C/R) <* R*/N (C*) a R*/R*Q <* Z/2Z (see Theo-

rem 9 in §9. and Theorem 1 above), hence there is just one R-skew field

f R which must (up to isomorphism) be the one introduced in §1. n

Wedderburn's Theorem (1905) . All finite skew fields are commutative3 i.e.

Br(K) = {0} if K has only finitely many elements.

Proof. We make use of the following result from Field Theory (which we

shall prove below for the convenience of the reader):

Lemma 5 . Let K be a finite field and L/K a finite field extension;

then L/K is necessarily cyclic with surjective norm N , : L* -*• K* .

Proof. Set q :- |K| , n := |L:K| , hence q11 = |L| . It is well-known

that x H> x* defines a K-automorphism of L - called the "Frobenius

automorphism" - which is clearly of order n ; therefore L/K must be

cyclic (cf. Artin's Lemma in §6.) with the above automorphism as a genera-

tor of its Galois group. It follows

where |L*:K*| denotes the index of the multiplicative group K* in L* .

Since L* is known to be a cyclic group (cf. Field Theory) N_ ... must be
L/ I\

surjective. a
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Proof of Wedderburn's Theorem (continued). Thanks to Theorem 9 in §9.,

Lemma 5 and Theorem 1 we obtain

Br(K) = \J Br(L/K) = \ J Br(L/K) <*
L/K finite L/K finite
Galois cyclic

" W K*/NT/V(L*) « {0} . a
L/K Knite L/K

cyclic

Of course, J.H.M. Wedderburn's original proof was along different lines;

note that there exists a simple direct proof (i.e. a proof which makes no

use of the concept of Brauer groups) due to E. Witt ; it is reproduced

e.g. in the first paragraph of A. Weil [1967].

Now let us deepen our study of the formalism of cyclic algebras.

Lemma 6 . Let L/K be cyclic of degree n with generating automorphism

a and let I be an intermediate field of degree m over K ; then

am generates Gal(L/I) and

(a,L/K,a) «K I ~ (a.L/I.a™) .

Proof. Write A := (a,L/K,a) = (+) Le1 and consider Z (I) ; now let

n-1 . X

z = ̂  x.e € A be given. Then z € ZA(I) if and only if^ x. A be given. Then

i=0 * a1
ZA(

a1 i
0 = zx - xz = >̂ ( x - x)x.e for all x € I = Fix (a ) ,

i
hence if and only if x. = 0 for all i which are not multiples of m .

The latter amounts to ( s:= n/m = |L:l| )
s-1 . s-1

z = YZ x ,emi = 5 1 y.f3 ( y. := x . , f := em )
J J m m

, j _ s m s j r - m c m c j j - . r r- -.
where f = e = a and fy = e y = ye = yf , hence (cf. also

Corollary 1 in §9.)

ZA(I) - A 8U I = (a,L/K9a) « I . a

The next result is a supplement to the previous one.

Lemma 7 . Let L/K be cyclic of degree n with generating automorphism

o and let F/K be an arbitrary (not necessarily finite) extension such

that L fl F = K . Then L ®v F is a field & LF such that L $„ F/F is

likewise cyclic of degree n with generating automorphism a®idF (which

we abbreviate by a after identifying L ®v F with LF ) and such that
is.

(a,L/K,a) ®K F ~ (a,L®KF/F,a«idF) = (a,LF/F,a) .

Proof. All but the last assertion is well-known from Field Theory. As for
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the formula concerning the cyclic algebras we note that there is an ob-

vious injection (a,L/K,a) -* (a,L8..F/F,a®id ) ; F-linear extension there-
K r

of (cf. Theorem 3 in §5.) and Lemma 1 in §9. give the required isomor-

phism, D

Lemma 8 . Let L/K be cyclic of degree n with generating automorphism

o and let I be an intermediate field of degree m over K ; then

o := a generates Gal(I/K) and

(aS,L/K,a) =* M ((a,I/K,"a)) where s := - = |L:l| .
m

Proof. Let {e ,..,e } be a basis of L over I , then - if we write
sS

£ : = ( e 1 , . . , e ) G L - every x € L determines a matrix

f(x) € M (I) via x£ = £f(x) .

On the other hand we have a map F: r := Gal(L/K) -+ GL (I) via the corres-
s

pondence T£ = £F(T) ; it follows at ease ( T,p € T ; x € L )

ef(Tx)F(x) = T X £ F ( T ) = V e = T(xe) = T(ef(x)) = V f ( x ) =

= eF(x)Tf(x) and eF(xp) = T pe = T(pe) = T(eF(P)) =

= V F ( p ) = eF(T)TF(p)

(note that r acts on matrices componentwise), hence

(5) f(Tx)F(x) = F(T)Tf(x) for all x € r , x € L

and (note a = 1 ) 1

(6) F(xp) = F(T) T F(P) , in particular 1 = F(o)°F(a)..° F(a) .

n-1 . _̂_ m-1 _.
Now set A := (aS,L/K,a) = 0 Le1 , A := (a,I/K,o) = ^ Ie3 and define

i=l j=l

f(e) := F(a)e € M (A) . Thanks to

f(e)f(x) = F(a)"ef(x) = F(a)af (x)"e = f(ax)F(a)e> = f(ax)f(e)

for all x £ L (cf. (5)) and

f(e)n = (F(a)¥)n = .. = F(a)aF(a)..aI1~F(a)en = ̂ S = aS

(cf. (6)) we see that a K-algebra homomorphism f: A -* M CK) is well-
s

defined and even an isomorphism (because of Lemma 1 in §9.). Q
We close this paragraph with a lemma which will be needed later in §15.:

Lemma 9 . Let L./K be cyclic of degree n. with generating automor-

phism o. ( j = 1,2 ) such that L (1 L = K and n r = n ( r € N ) ;
3 -L ^ -1 r

then L := L. $„ L_ is a field. Moreover, if L^ := FixT(a1 ®ao) and
x IN. Z U L i- Za := (idL 3 then LQ/K is cyclic with generator a and

(a,L1/K,a1)
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Proof. The fact that L is a field is well-known from Galois Theory.
—1 r ii

Moreover, since a ®a has order n we conclude lL:^nl
 = n-i » hence

nQ := |LQ:K| = n,, . Now let xQ = ̂  xlv»x2v 6 L ( xlv € ̂  , x2v £ ̂  )

be given, then

x £ L if and only if ̂ Z a?xiv)®a2(x2v) = 2 1 xiv®
x
2v '

V V

hence a has order n = n , i.e. LQ/K is cyclic with generating

automorphism a .

Now write A. := (a,L./K,a.) = (J) L.e^ ( j = 0,1,2 ) , A := (l.L^K.a'1)

= (J) L e1 c* M (K) (cf. Theorem 1 ) and B :" Ai ®K
 A2 ' m°reover, define

embeddings

f: L c_^ L CL-^. B and g: L c^> L C-^, B

as well as elements

f(e) := e'^e^ and g(eQ) := 18>e2 .

It follows ( xn € L1 , x^ € Ln ) using the usual identification of K ® K
1 1 0 0 K

with K :
ni -1 nD

f(e) = a ̂ a = 1 , g(eQ) = l«a = a , f(e)f(x1) =

= e^1x1®e2 = a^
1(x1)e^

1®e2 = f(a~1(x;L) )f (e) and g(eo)g(xo) =

l v 2 2 v l v 2 2 v 2 0 0 0
v v

Therefore the two embeddings f,g (see above) extend to K-algebra homomor-

phisms f: A -* B and g: A -> B . Now our claim follows from Lemma 2 in

§9. thanks to

f(e)g(eQ) = g(eQ)f(e) , f(x1)g(xQ) = g(xQ)f(x1) , g(eQ)f(x1) =

= f(x1)g(e ) (all three obvious) and f(e)g(xQ) =

Exercise 1 . Let L/K be cyclic of degree r with generating automor-

phism o . Assume r = mn where m and n are coprime. Now denote by

M (resp. N ) the intermediate field of L/K of degree m (resp. n ) over

K with generating automorphism x := a (resp. p :- a ). Show

(a,L/K,a) « (b,M/K,i) ®K (c,N/K,p)

for suitable b,c € K* (depending on the given a € K* ).
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§ 11 . POWER NORM RESIDUE ALGEBRAS

Denote by y the full group of n-th roots of unity and assume

throughout this paragraph \i c: K (note that this implies char(K)/fn ).

Now choose a,b € K* and select an auxiliary field extension L/K such

that b € (L*) (for instance take L a separable closure of K ).

Furthermore denote by £ a primitive n-th root of unity, i.e. <c> - y s

and consider the matrices / ^N

A e M (K) according to (3) in §10., Z : = £ £ M^K)

and B :- BZ € M (L) for some ^° x '
n |

B E L such that B = b . i-th row and column

Lemma 1 in §2. yields

(1) AU = a , Bn = b , and AB = c ^

as well as the following obvious consequences thereof:

( 2 ) ^ X S j = C 1 ^ ^ 1 , hence

4i5j4"Vj = clj = {ABA'h'1)1^ ( i,j € Z ) .

Now consider the n matrices A B ( 0 < : i , j < n ) ; w e want to show their

L-linear independence (and therefore their K-linear independence): indeed,

consider an L-linear combination

n-1 n-1 . .
0 = ̂ Z(^Z_x A^B1) ( x € L );

irO j=0 . J J

since the r-th row of A -A. (cf. (3) in §10.) has no entries t 0 out-

side the (itr)-th column (read the indices mod n ) the same statement re-

mains true with
n-1 . .

x.^B1 1 i n Place of 4 1 ( i € {0,l,..,n-l} fixed )
j 1D

(cf. Lemma 1 in §2.), hence it suffices to prove the L-linear independence

of the n elements A±B^ ( j = 0,1,..,n-1 ) for every fixed i , i.e. -

since A € GL (K) := M (K)* - the L-linear independence of the n elements

B ( j = 0,1,..,n-1 ). The latter, however, amounts to the (well-known)

non-vanishing of the Vandermonde determinant det( v.. ) where v.. =
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= (Be1)11" ( 1 < i,j < n ). Consequently
n-1 n-1 . .

(3) 0 0 K^V =: A (note A c M (L) )
2 i=0 j=0

is an n -dimensional K-algebra such that L-linear extension of the embed-

ding (cf. Theorem 3 in §5.) defines an L-algebra isomorphism A 6 L —£*-*
—£*-->. M (L) (cf. Lemma 1 in §9.), hence A is even a central simple K-

n

algebra (cf. Theorem l(d) in §9.) which is completely determined (up to

K-algebra isomorphism) by the formulae in (1). Since any K-algebra A ge-

nerated by a, fa € A and subject to the relations a = a 9 fa = b and

ab - z,ba. is necessarily a homomorphic image of A (by (3)), it must be

c* A thanks to Lemma 1 in §9. Thus we have proved

Theorem 1 . If (c) = y c K ., then all K-algebras A generated by two

elements a3b such that

(4) a := a1 e K* , b := fan € K* , ab = xjoa

are isomorphie (namely ^ A in (3)). They are central simple K-algebras>

and any field L such that K c L and b € (L*) is a splitting fields

Definition 1 . We denote any of the isomorphie K-algebras described in

Theorem 1 by

(a,b;n,K9£)

and call it (for reasons which will become clear later in this paragraph)

a npower norm residue algebra". Moreover, we write

[a,b;n3K^] := [(a,b ;n,K,c)] € Br(K) .

If no confusion can arise we omit any of the symbols n,K,c in

(a5b;n,K,£) and [a,b;n,K,c] .

Definition 2 . If char(K) f 2 , n = 2 , hence c = -1 , we write

in place of (a,b;2,K,-l)

and call such an algebra a "quaternion algebra".

See §14. for more details on quaternion algebras.

Lemma 1 . Let <c> = y <= K , |K(9a):K| = n and [A] € Br(K(9a)/K), then

[A] = [a,b;n,K,c] in Br(K) for suitable b € K* .

Proof. In our situation it is known from Field Theory that K(9a)/K is

cyclic with generating automorphism a: 9a i-> C^a . Now we replace A by

B such that [A] = [B] , a := 9a € B and |B:K| = n2 (cf. Theorem 7 in

§9.). Then Lemma 2 in §10. implies the existence of b € B* such that
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n-1 . n-1 n-1 .
B = 0 K(a)bD = 0 ( 0 Ka1)b:] where b := bn € K* and

j=0 j=0 i=0

bx = °xb for all x € K(a) , in particular ba = x,ab ,

hence ah - cb a and therefore B ̂  (a,b;n,K,£) because of Theorem l.n

Note that the above proof includes a proof of the following

Lemma 2 . Let <c> = y € K araZ |K(9a):K| = n , then

Moreover, since in case y c K the cyclic extensions L/K of degree n

coincide with the radical extensions (as in Lemma 1) - see e.g. Prop.5 on

p.205 in vol.2 of P.M. Cohn [1974/77]; note that this is also an immediate

consequence of Hilbert's "Satz 90" in §6. thanks to N_ / V(O = 1 -, we
L/K

get from Lemma 1

Corollary 1 . Let <c> = y C K , L/K a cyolio extension of degree n

and [A] € Br(L/K) s then

[A] = [a,b;n,K,c] for suitable a,b € K* . •

Now we turn to a discussion of the main features of the power norm residue

algebras.

Lemma 3 . (a5b) ® (a',bT) <* (aaf,b) « ( a ' ^ ' V ) , i.e. [a,b] + [a',b'] =

V in Br(K) .

Lemma 3 . (a5b) ® (a',bT) <* (aa,b) «

= [aa',b] + [a',b~V] in

Proof. Write A := (a,b) := (a,b;n,K,c) , AT := (af,bf) := (aT,b' ;n,K,c) ,

and let d,b resp. a'jb' be generators of A resp. A' (cf. Theorem 1).

Now consider the elements

C := am' , d := b®l 9 c
f := l®aT and d! := b~1®bt

in A ® A' . Clearly we obtain (by straightforward calculations)
K

(5) cn = a®a' = aa' , dn = b«l = b , cc( = ccfc

and

(6) c'n = l®af = a' , d'n = b " 1 ^ 1 = b " ^ 1 , c'd< - cd'c1

(here we used the usual identification of K ® K with K ).

Moreover, all elements in (5) commute with all elements in (6). Hence the

K-algebra homomorphisms f: (aaT,b) -> A ® A' and g: (a! ,b b1 ) ->
K

-> A ® Af (which exist thanks to (5),(6) and Theorem 1) define the re-

quired isomorphism because of Lemma 2 in §9. n
Now recall that

(7) [a,b] = 0 if b € (K*)n , i.e. n is a non-zero n-th power
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(see Theorem 1: take L = K ), set b1 = b in Lemma 3 and use (7). It

follows immediately

(8) [a,b] + [a',b] = [aa1,b] + [a',l] = [aa',b] .

Now take af = 1 in (8); this gives

(9) [a,b] + [l,b] = [a,b] , hence [l,b] = 0 .

Using Lemma 3 in the case aT = a and bf = 1 we find with the help of

(7) and (9) the formula

(10) [a,b] = [a,b] + [a"1,!.] = [l,b] + [a"1^"1] = [a"1^"1]

and consequently (use (9),(10) and apply Lemma 3)

f-i-i\ [a,b] + [a,bf] = [a,b] + [a ,bf ] = [l,b] + [a ,b bf ] =

= [a,bb»] .

Combining (7),(8) and (11) gives

Lemma 4 . Let (t\ - y c: K , then the assignment (a,b) i-> [a,b;n,K,c]
' n

induces a 1-bilinear map K*/(K*)n x K*/(K*)n -* Br(K) . •

So far the primitive n-th root of unity C was fixed. Now we want to study

the impact of the change of C :

Lemma 5 . Let n and t be coprimes then (a,b;n,s) ̂  (a,b ;n,c ) > i.e.

[a,b;n,c] - t[a,b;n,£ ] in Br(K) .

Proof. Let d^b generators of A :- (a,b;C) as in (4). Define

c :- a and d := b in A .

Because of (2) this gives

cn = a , dn = 6tn = b* and cd = CLbX = rtbta = i^dc ,

hence A ̂  (a,b ;n,K,C ) by Theorem 1 . •

An important consequence of Lemma 5 is

Corollary 2 . Let y c K 3 then the assignment (a,b) K [a,b;n,K,c]®C

defines a bimultiplicative map K* x K* -• Br(K) 8^ y which is indepen-

dent of the choice of the primitive n-th root of unity c . D

Moreover, since (

from Lemmata 4/5

Moreover, since (by Theorem 1) obviously (b,a;C ) — (a,b;C) 5 we obtain

Corollary 3 . [b,a] = -[a,b] , i.e. (b9a) ~ (a,b)
op . •

The next result is of utmost importance:

Lemma 6 . Assume n = rm and {£} = y cz K _, hence (5 ) = y c:Kj then

(a,bP;n,K,c) ̂  M^((a,b;m,K,cr))* i.e. r[a5b;n,K,c] = [a,b;m5K,£
r] .

Proof. Let a,b be generators of A := (a,b;m,c ) such that (cf.
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am = a , 6m = b and ab = r^ba.

and consider the matrices

A £ M (A) according to (3) in §10. but with a £ A in place

I :=\X € V A ) "here X := (\^) € ̂(K* ^ ° W «d

(note that X coincides with the matrix Z at the beginning of this para-

graph if m = 1 ). Clearly we have (after an easy calculation; see in par-

ticular Lemma 1 in §2.)

An = A™ = am = a , Bn -- bmr = br and AB = &A ,

hence M (A) ̂  (a,b ;n,K,c) because of Theorem 1. •
r

A consequence of Lemmas. 5/6 is (cf. also Theorem 14 in §9.)

Lemma 7 . Let r,s be coprime^ i.e. 1 = xs + yr for some x,y £ Z _,

assume <£) = y c: K 3 (r\) - y c K 3 and set n := rs s c :- Cn . T/zenr s
^C) = y c K j C ^ C and n = C . Moreover^ we have

(a,b;n,C) — (ax,bX;r,C) ®v (a
y,by;s,n) which is equivalent to

2 2
[a,b;n,^] = x [a,b;r,^] + y [a,b;s,n] in Br(K) .

Proof. The fact that the last two assertions in the lemma are equivalent

is clear from Lemma 3(&) in §9. Now Lemmas 5/6 imply

[a,b;n,cl = xs[a,b;n,£] + yr[a,b;n,£] = x[a,b;r,£ ] +
r 2 2

+ y[a,b;s,C ] = x [a,b;r,£] + y [a,b;s,riJ . D

Of course, Lemma 7 means that one may restrict the attention to the case

" n = p* ( p a prime i char(K) )fT .

Now, if L/K is an arbitrary (not necessarily finite) extension, we see

that L-linear extension of the obvious embedding (a,b;K) c—*(a,b;L)

yields the L-algebra isomorphism described in the lemma below (cf. Theorem

3 in § 5. and Lemma 1 in § 9 . ) :

Lemma 8 . (a,b;K) &. L e* (a,b;L) ., i.e. rT/1.[a,b;K] = [a,b;L] . •

Combining Lemmas 4/6/8 gives then

Lemma 9 . Assume n = rm and (x\ - y c K 3 hence (c >- y ; then

;r] in Br(K(9a)) . •

Now consider Lemma 9 and use Galois Theory: the field K(9a) is Galois

over K of degree (say) m ; then m|n and our extension is even cyclic

with generating automorphism a such that ( v a ) = C V a ( r := — ).
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Moreover, a(%) = °((%f) = z™^)™ = % ,hence K($a) = K , and there-

fore we obtain from Lemma 9. and Lemma 2 - note vva = va - the important

Theorem 2 . Assume <c> = y a K and write m := |K(\J&):K| ( a € K* J;

t/zen r : = — € N ancZ we have the equation
m _i n

[a,b;n,K,d = [b ,K(Va)/K,a] ^n Br(K)

where °(%) = cr$a . •

Theorem 1 in §10., Theorem 2 and Corollary 3 clearly imply

Corollary 4 . One has [a,b;n,K] - 0 in Br(K) if and only if b is a

norm for the extension K(9a)/K which is the oase if and only if a is a

norm for the extension K(9D")/K . •

An important application of Corollary 4 is

Lemma 10 . If a,b € K* such that a + b = cn for some c € K 3 then

[a,b;n] - § in Br(K) .

Proof. Write L := K(%) , r := Gal(L/K) = a where °(%) = C ^

( r = — , m = |L:K| ;cf. the remarks previous to Theorem 2 above). Then
m n-1

Tn - a = T1(T - C 1^) € L[T] , hence (set T = c )
1 = 0 n-1 . m-1 r-1

b = c
n - a = T7(c - c1^) = TT(TT(C

m-1 j r-1 i = 0 3=0 P-0

-- T T ° (TT(c - ̂ p^)) -- N T / K(TT(C -
j=o P=o

 L/K P

Now consider the special cases c = 1 and c = 0 in Lemma 10:

Corollary 5 . [a,l-a] = 0 and [a,-a] = 0 . •

Lemma 4 and Corollary 5 imply then
Lemma 11 . [a5b] = [~,a+b] , [a,a-b] = [b,-^] + [a,-l] and

D a
€ Br(K) even ;

[a,a;n] = [a,-l;n] Q if n is

Proof. [a,a] = [a,(-a)(-l)] = [a,-a] + [a,-l] and, if n is odd:

[a,-l;n] = [a,(-l) ;n] = n[a,-l;n] = 0 . Moreover, if c := a + b , then

0 = [ac~1,l-ac~1] = [ac-^bc"1] = [a,b] - [a,c] - [c,b] + [c,c] =

= [a,b] - ([a,c] - [b,c] + [~l9c]) = [a,b] - [--,a+b] and consequently

[a,a-b] = [a,-l] + [a,b-a] = [a,-l] + [^_,b] = [a,-l] + [ b , — ] . a

Da a

Definition 3 . Let K be a commutative field, then we define

K (K) \- K* ®z K*/<a«( l -a) | a £ K* >.

We write K (K) additively and denote by {a,b} the class of a®b in
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the group K (K) . An element {a,b} is called a "symbol" 3 i.e. K

is generated by symbols.

Thanks to Corollaries 2/5 we have

Theorem 3 . Assume y c K , then there is exactly one homomorphism

R : K (K)/nK_(K) > Br(K) ®7 y
n,K 2 2 n L n

that {a,b} >-> [a,b;n,K,c]®c • This homomorphism is independent of the

choice of the primitive n-th root of unity t, . n

Definition 4 . The homomorphism R from Theorem 3 is called the
n jK

"(abstract) norm residue homomorphism".

Later in §17. we shall see that R is always an isomorphism ! Moreover,
n , is.

we should point out that in general K (R) may be defined for any ring R

(with 1 ^ 0 ) ; for this see J. Milnor [1971]. In the case of a commutative

field Matsumoto's Theorem (cf. §§11/12. op. cit.) leads to our definition.

It is worth mentioning that Matsumoto's Theorem can be carried over mutatis

mutandis to the general skew field case (cf. U. Rehmann [1978]). See §17.

for more information about the functor K .

Hitherto we have worked under the assumption y cz K (which

implies char(K)|n ). Now let us interrupt our investigations for a few

remarks concerning the case of cyclic algebras of reduced degree p :=

:= char(K) t 0.

So in what follows assume p := char(K) t 0 and consider the

additive homomorphism

Co: K -• K , f>x : = x - x

(this notation, which is nowadays the standard notation, goes back to E.

Witt) which gives rise to the exact sequence

(12) 0 > F c »K+ — £ — > K+ .

Now choose a 6 K*, b € K and select an auxiliary field extension L/K

such that b € fcK (for instance take L a separable closure of K ).

Moreover consider the matrices / \

A € M (K) according to (3) in §10., and B := B+i €

G M (L) where 5 € L is ^° . ^

P t
such that A B = b . i-th row and column

Lemma 1 in §2. yields

(13) AV = a , &B = b , and AB = (B+1)A

as well as the following consequences thereof:
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(14) A BA ± = B + i and AB^A = (B + I) 3 ( i,j € Z ) .

Now consider the n matrices A B ; in precisely the same way as in the

case discussed previous to Theorem 1 we can show that they are L-linearly

independent (the only difference that matters is that the Vandermonde

matrix in question has now entries v. . = (6+iV ( 1 < i,j <_ p )).

Thus we get (cf. proof of Theorem 1)
n-1 n-1 . .

(15) 0 (J) K d V =: A (note A c M (L) )

and

Theorem 4 . If p := char(K) i 0 , then all K-algebras A generated by

two elements <xyb such that

(16) a := a? € K* , b := ^6 € K , db = (b+l)a

are isomorphic (namely ^ A in (15)). They are central simple K-algebras

(more precisely: either a K-skew field or ^ M (K) ) and any field L such

that K c L and b € &L is a splitting field, a

Definition 5 . We denote any of the isomorphic K-algebras described in

Theorem 1 by

(a,b;p,K>

and call it again a "power norm residue algebra". Moreover3 we write

[a,b;p,K> := [(a,b;p,K>] € Br(K) .

If no confusion can arise we omit any of the symbols p,K in (a,b;p,K>

and [a,b;p,K> .

Definition 6 . If char(K) - 2 we write

(•%- in place of (a,b;2,K>

and call such an algebra a "quaternion algebra".

See §14. for more details on quaternion algebras.

Lemma 12 . Let p :- char(K) t 0 3 |K(fe):K| = p and [A] € Br(K(fe)/K) .,

then

[A] = [a,b;p,K> in Br(K) for suitable b € K .

Proof. If [A] = 0 take any b € ̂ K (e.g. b = 0 ). If [A] ^ 0 , then

replace A by D such that [A] = [D] , a :- Va € D and |D:K| = p

(cf.Theorem 7 in §9.). Then D is a skew field (cf. Theorem l(f) in §9.)

and Lemma 6 in §9. (see also its proof) implies the existence of an element

6 € D such that aba~ = 6 + 1 . Now, if L := K(6) , for reasons of de-

gree (cf. Theorem 4 in §7.) L/K is cyclic of degree p with generating
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automorphism o: b *-> b+1 . It follows (cf. (12))

°(fb) = (b+l)p - (b+1) = bp - b = fb ,
hence b := f>b € Fix (a) = K . Therefore - again for reasons of degree -

Theorem 4 implies

[a,b;p,K> = [D] = [A] . •

Lemma 13 . (a,b> » (ar,b'>^ (aa',b> ft (af,bf-b> ,i.e. [a,b> + [a',bf> =
K K

= [aaf,b> + [a',bf-b> in Br(K).

Proof, mutatis mutandis identical with the proof of Lemma 3 (cf. Exercise

1). a

Now, similar to the reasoning which led from Lemma 3 via (7),..,(11) to

Lemma 4, we may conclude

Lemma 14 . Let p := char(K) f. 0 3 then the assignment (a,b) H»

I-> [a,b;p,K> induces a 1-bilinear map (multiplicative in the first and

additive in the second argument)

K*/(K*) P x K/jfrK -* Br(K) . •
XT

Now, using the notation introduced in Exercise 1 in §9., it is clear from

§10. and Theorem 4 (cf. also Exercise 1):

Theorem 5 . Assume p := char(K) i 0 , then

[a,b;p,K> = [a,K(4))/K,a] in Br(K)
1

with the convention K(jgb) - K and a = id if b € ^K . o

Theorem 1 in §10. implies then

Corollary 6 . One has [a,b;p,K> - 0 in Br(K) if and only if a is a

norm for the extension K(^b)/K . •

Lemma 15 . If a € K* and c € K 3 then [a,cPa;p> - 0 in Br(K) .

Proof, see Exercise 1 . n

Now we turn our attention back to the case where y c K (which
n

implies char(K)/fn ). Here we study the problem to what extent power norm

residue algebras remain at least (up to ~ ) tensor products of cyclic al-

gebras under eorestriction (compare with Lemma 8 ). This turns out to be

a difficult problem and only partial results are available nowadays; we

shall discuss some of these and begin with some preparatory remarks.

Lemma 16 . Let L/K be finite Galois > r := Gal(L/K) and y c K ;

then ( o € r ., y = <C> )
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a(a9b;n9L9C) ~ ( a, b;n,L,O > i.e.

a[a9b;n9L9;] = [
CIa9

ab;n,L5
ac] in Br(K) .

Proof. Thanks to Lemma 2 in §8. and Lemma 1 in §9. it suffices to estab-

lish a ring homomorphism

f: A1 := (aa9
ab;n,L9

ac) -> (a9b;n9L9C) =: A

such that f(x) = a (x) for all x € L . Now assume (cf. Theorem 1 )

A = a11 = a 9 6
n = b 9 ab = r^ba ) and A' = <a'9b» = aa

b' = ab 9 a'b' = £b !a !/ 9 then it is obvious that the assignment

a' » a , b1 >-> b 9 x » a~
1(x) ( x € L )

induces the required homomorphism f: Af -> A . a

Theorem 6 . Let p be a prime t char(K) 3 y = <C> , L := K(c) *

a € L* ., b € K* and D := (a9b;p9L9c) a skew field; then either

c , [D] - 0 or there exists a cyolio extension F/K of degree p with

generating automorphism y such that

cL/K[D] = [b9F/K9y] in Br(K) .

Proof. Clearly L/K is cyclic of degree m with generating automorphism

£> ; here m|p-l 9 £ = £ for some s ̂ 0 mod p such that s s 1 mod p

Now set G :- Gal(L/K) = (-6) and consider (cf. Lemma 4 in §9.)

m-1 i m-1 i m-1 i i

Mr[D] = X I ID] =JZ Ca»b^] =2I[4a,b;4c] =
i=0 i=0 i=0

m-1 i i m-1 i m-i
= 2 1 [a,b;cS ] = 2 1 [(*a)S ,b;c] = [c,b;p,L,c]

where i=0 , . . i=0

m-1 l m-i
S

c := T 7 ( a)S € L* .
i=0

Here we have made use of Lemma 16 as well as Lemma 5. A straightforward

calculation shows (cf. Lemma 4 )
m m-1 i+1 m-(i+l) m+1 m , m+1

c s ( c ) = (I I ( a ) J = ( c a ) s
i=0

= cs mod (L*)p
 9 i.e.

(17) *c = cSdP for some d € L* .

Now consider the field N := L(\/c) = K(c9\/c) . Obviously we have either

N = L (i.e. c € ( L * ) P and therefore M^tD] = 0 thanks to Lemma 4 ) or

N/L is cyclic of order p with generating automorphism T defined by

T(v£) = C\/c (cf. Field Theory). By virtue of (17) it is feasible to ex-

tend the K-automorphism 4 of L to a K-automorphism a of N via
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( d as in (17)) , °s = c* .

Consequently N/K is Galois with r := Gal(N/K) = (a9x^ ; here aT£ =

= CS = TrfC and « # S ) = a(cfc) = CS(^S)Sd = T((fc)Sd) = ™(%) , hence
r is abelian and even cyclic with generator ax (thanks to |r| = rap

with coprirae ra and p ). If we denote by F the intermediate field of

N/K of degree p over K - i.e. F = Fix (a) -, then there exists a

generating automorphism y of the cyclic extension F/K such that

a .It follows (cf. Lemma 2 and Lemmas 3/6/8 in §10.)

[c,b;p9L9c] = [b,N/L9x"
1] = [bm

9N/L9x~
m] = [bm9N/L,(ax)"

m] =

y = ax

= rL / K[b i n
9N/K 9(ax)" 1] = r L / K [ b 9 F / K 9 ( a x ) " 1

 p ] = rL/1<[b9F/K9Y]rL / 1 <[

On the other hand we know r /K(c / K[
D]) = W^[D] = [c,b;p,L,c] (cf. Theo-

rem 5 in §9.) 9 hence, since rT ... is infective on Br(K) thanks to
L/K p

Corollary 13 in §9.9 we have either c./V[D] = 0 or c_/V[D] = [b,F/K,y]
L/K. L/K.

in Br(K) . •
An easy consequence of the theorem above is

Albert's Criterion . Let p be a prime and D a K-skew field of index

p ; then D is isomorphio to a oyolio algebra (b,F/K9y) if and only if

D contains a field K($E) such that |K(vE):K| = p .

Proof. The "only if" is obvious and always (i.e. for arbitrary index) true.

As for the "if" part, the case p = char(K) has been settled in Lemma 12

(note Theorem 5 and Corollary 5 in §9.). Now assume p t char(K) 9 let

(C) = y and set L := K(c) ; then A := D 8 L is an L-skew field of

index p (see Corollary 8 in §9.) such that

K($b) ®v L « L($b) c A and |L(fe):L| = p
(note: L/K is Galois and p,|L:K| are coprime). Lemma 1 and Lemma 3(3J/

Corollary 5 in §9. imply

A ̂  (a9b;p9L9c) for some a € L* 9

hence (because of Theorem 5 in §9. and Theorem 6 above), if m := |L:K| 9

m [ D ] = CL/K(rL/K[D]) = CL/K[A] = tb'F/K'^]

for some cyclic extension F/K of degree p (note that m[D] = CL/K[
A] = °

would imply [D] = 0 (which contradicts our assumptions) because m and

p are coprime (cf. Corollary 7 in §9.)). Therefore

D e* (b9F/K,Y
m)

because of Lemma 3f3J in §9. and Lemmas 3/4 in §10. n

The following result is of utmost importance.



Theorem 7 . Let L/K be finite separable, (c) = y c= K ., a € L* and

b € K* 9 then

cL/KU5b;n,L,c] = [NL/]<(a) ,b;n,K,d .

Proof. Let N/K be finite Galois such that L is an intermediate field

of N/K , A := Gal(N/L) < Gal(N/K) =: T and r = V J pA . Then, because
p€R

of Lemma 3 (use it repeatedly with bT = b ) and Lemmas 8/16 we find (in

the notation of §8.)

(a,b;L,C) ( r : A ) = (g) P((a,b;L,c) ®T N) ~ (g) (
pa,b;N,O «

p€tf L p€R

(18) c* ( 7 7 pa,b;N,c) % ( 6?) (Pa,l;N,c)) «
p€R AfflpCR

<* ((NL/K(a),b;K,C) ®K M^K)) ®K N ( m:= J^*'" 1 )

An analysis of the proof of Lemma 3 shows that T acts trivially on the

left factor of the right hand side of (18) (cf. Exercise 2 ; the action on

the left hand side of (18) is via (11) in §8.), hence our claim is obvious

thanks to Theorems 1/2 in §6. •

Lemma 17 . Let p := char(K) ^ 0 ^ ( c ) = P C K and assume L/K finite

separable. Consider monio irreducible polynomials f,g € K[T] such that
e

g is separable with f(T) = g(T ) for some e . Now choose t such

that tp =• 1 mod n 3 then, for any a € L* we have the equation
e e

[a,f(a);n,L,d = t[aP ,g(ap );n,L,c] in Br(L) .

Proof. Clear because of Lemma 4- . D

The next result is due to J. Tate [so far unpublished] and the author is

very grateful for J. TateTs permission to publish his argument here. His

ideas, incidentally, are refinements of arguments due to S. Rosset [1977],

[a].

Tate's Reciprocity Lemma . Assume <c)=y c K and let L/K resp. F/K

be finite separable extensions of degrees d := |L:K| resp. r := |F:K| .

Write L = K(a) resp. F = K(c) and choose monic irreducible polynomials

p,f € K[T] such that p(a) = 0 = f(c) . Then we have the "reciprocity law"

cL/]<[a,f(a);n,L,d = C F / K[

Proof. Let N be a common splitting field of f and p over K , hence
s

a,c € N . Now let f = ~| [" f. be the factorisation of f into monic
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s
irreducible factors f. € L[T] of degree r. ( ̂> r. = r ). Moreover,

for each i let c. be a root of f. and put N. := K(a,c.) = L(c.) .
1 1 ^ 1 1 1

Now choose a. € Gal(N/K) such that a.(c.) = c and define a. := a.(a)

in N as well as M. := a.(N.) = K(a.,c) = F(a.) . Then, if we denote by

p. € F[T] the monic irreducible polynomial such that p.(c.) = 0 ( i =

= l,..,s ), we know from Field Theory that we get p = | | p. . Now it is

quite clear from §8. (cf. Exercise 2 ) that we have the equalities
c-a. a.(c.)-a.(a)

C M . / K [ G ^ ' M i ^ = V C N J / K ^ J W ' -a .(a) ^
( 1 9 ) 1 X X X X

c . - a
= cN /K[<V~~"^a~~ ;Ni ] i n Br(K) ( i = l , . . , s ) ,

i
hence (cf. Lemma 11)

(20)

Using Lemma 4, Theorem 7 and Lemma 11 in §8. we compute
s

c L / K [ a , f ( a ) ; L ] = ^L/K(^Z [ a , f . ( a ) ; L ] ) =

s 1 = 1

(22)

, 1=1 l
and , v

p.(c)

s r.
[NL/K(a),(-1)

P;K] = cL/K[a,(-l )
r ;L] 1

(23)

= oF/K(
11=1 1 v I 7 1=1 1 1

Now our reciprocity law follows from (20),..,(23) . •

An immediate application of Tate's Reciprocity Lemma is the

Rosset-Tate Theorem . Assume <c) = y c K and let L/K be a finite

separable extension of degree d > then
d

c_/v[a,b;n,L,c] = > [a.,b. ;n,K,^] for suitable a.,b. € K* .
V^ -r̂- ]3 3 3

Proof. We proceed by induction on the degree d = |L:K| ; the case d = 1

is trivial. Now assume d > 1 . Thanks to Lemma 11 in §8. our claim is

transitive, hence we may assume that the extension L/K has no proper
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intermediate field. Moreover, by virtue of Corollary 3 and Theorem 7 it

suffices to assume a £ K* which amounts to L = K(a) (see above) and

therefore

b = bff(a) with a monic irreducible polynomial f € K[T]

of degree r < d and some bT € K* .

Let p € K[T] be the (monic) minimal polynomial of a over K , c a

root of f and F := K(c) . From Field Theory and Lemma 17 we know that,

after possible replacement of a by aP , we may assume f to be even

separable, hence

(25) F/K is separable and |F:K| < |L:K| .

Now Tate's Reciprocity Lemma, Theorem 7 and Lemma 4 imply

cL/K[a,b;L] = cL/K[a,b'jL] + c^ta.f (a) ;L] =

= CL/K[a'b''L] + [NL/K
( a )'(-1 ) r ; K ] + CF/K[

hence our claim by induction hypothesis (see (25)). •

A nice application of the Rosset-Tate Theorem is

Rosset's Theorem . Let p be a prime t char(K) , assume <c> = y c K .,

and let D be a K-skew field of index p j then
d

a. ,b ;p,K,d for suitable a.,b. € K* 3 d < (p-1)! 3

henoe D has the abelian splitting field K(\/a7,. . ,\/a"j o-yep K .
1 d

Proof. Let M be a maximal commutative subfield of a given K-skew field

D of index p , hence |M:K| = p and [D] € Br(M/K) (cf. Theorem 4 in

§7. and Corollary 5 in §9.). Now let N be the Galois closure of M over

K , r .- Gal(N/K) , T a p-Sylow subgroup of r and L := Fix (r )

the corresponding p-Sylow subfield of N/K . Set d := |L:K| , then

N/L is cyclic of degree p and d|(p-l)! , hence d and p

are coprime, in particular td s l mod p for some t .

Thanks to [D] E Br(M/K) c Br(N/K) we find rT , _TD] € Br(N/L) , hence
L/K

Corollary 1 implies
r , [D] = [a,b;p,L,£] in Br(L) for some a,b E L* .

Now apply c . to both sides of the above equation; using Theorem 5 in

§9., Lemma 4 and the Rosset-Tate Theorem we obtain at ease

[D] = td[D] = cT/kr(rT/1.(t[D])) = cT ̂ [a^1 1 ;p,L,c] =
j L/J\ L/J\ L/K

[a.,b.;p,K,c] for suitable a.,b. E K* ,
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hence K(v^1 9. • ,VaT) is a splitting field of D because of Theorem 2. •

Now let p be a prime t char(K) and y = (c) . Then K(c)/K is cyclic

of degree dividing p-1 , so any elementary p-abelian extension of K(c)

can be enlarged to an elementary p-abelian extension L/K(c) such that

L/K is also Galois and then a fortiori soluble. So we have proved the

important

Corollary 7 . Let p be a prime f- char(K) , then any K-skew field of

index p has a metabelian (and henoe soluble) splitting field over K . •

As we shall see later in §15. the assumption p t char(K) in the above

corollary is superfluous.

Exercise 1 . Give detailed proofs of Lemmas 13/14/15 and Theorem 5 .

Exercise 2 . Give detailed proofs of Theorem 7 and the second equation

in (19).

Exercise 3 . Prove

Dickson's Theorem . Every K-skew field of index 3 is a oyclio algebra.

(cf. A.A. Albert [1939,p.177] ; use Albert's Criterion)

Added in proof , Concerning TateTs Reciprocity Lemma cf. also the recent

paper

S. Rosset, J.Tate

[1982] A Reciprocity Law for K -Traces, Forschungsinstitut fur Mathe-
matik ETH Zurich, ¥repr%nt (September 1982)
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§ 12 . BRAUER GROUPS AND GALOIS COHOMOLOGY

In this paragraph we shall achieve interesting results by com-

bining Theorem 5 in §7. with Theorems 7/9 in §9.

Theorem 1 . Let L/K be finite Galois, Y : = Gal(L/K) 3 [A] € Br(L/K) s

L c A and |L:K|2 = |A:K| . Then there exist elements e £ A* ( a £ V )

such that

(i) A = ff)Le , e . = l , e x = a x e ( x € L , a € r )
^JB^, a id a a

and

(ii) e e = x(o,T)e ( a,x € r , x(a,i) € L* ) .
a T ax

Here

(Hi) x(a,x)x(ax,p) = X(T,P )x(a,Tp) and x(a,id) = 1 = x(id,x) .

Moreover> if there are elements f satisfying (i) just as the elements

e do, and if those f define elements y(a,x) according to (ii)> then

(iv) e = z(a)f ( a € r ) where z(a) € L* , z(id) = 1
a a

/„) x(a,T) _ z(g)Qz(T) f c v \
(v) JT^TO ~ z(ax) ( a,x e r ) .
Proof. T̂ J is clear from Theorem 5 in §7. thanks to Z.(L) = L (cf. Theo-

A
rem 3 in § 7.). Now we have

-1 ax a.x . -1 -1 _ __ _ _ ,
e xe = x = ( x ) = e e x e e for all x £ L , hence
OT OT O T T O

e e e € Z A ( L ) = L (see above)
OT a T A

and therefore (ii) with x(a,x) := T(e e e ) . (Hi) merely reflects the
OT c T

law of associativity in A , namely
x ( a , x ) x ( a x , p ) e = x ( a , x ) e e = (e e )e = e (e e ) =

axp a x p a x p a x p

= e x ( x , p ) e = x ( x , p ) e e = x ( x , p ) x ( a , x p ) e ,
a TP a xp axp

hence (Hi) since the elements e are invertible (the rest of (Hi) is
axp

obvious because of (ii) and e. = 1 ). Now (iv) : again

eaXea = °x = f
a
x fa for all x € L , hence
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f e € ZA(L) = L (see above)
oo A

and therefore (iv) with z(a) := (f e ) € L . Finally, (v) results from
a a

a simple calculation using (i) 9(ii) and (iv) . n

The formulae (ii),.. , (v) are one historical source of a series of defini-

tions, namely (cf. §6.): let M be a left r-module, then

c2(v NO •- -f x. r x r -> M
 x(a>T> + x(a^9p)

 = a*(T,p) + -,c cr.M) .- t x. r x r -* M + x(ajTp) & x(a>1) = 0 = x(ljT) >
2

is called the set of 2-cocycles (of Y with values in M ) . C carries

the structure of a Z-module (by pointwise definition of the (say) addi-

tion) and an easy calculation shows that the 2-coboundaries

2(
o

B (r,M) .- { x. r x r -> M w h e r e z: r ^ M w i t h z ( 1 ) = 0 >

2 2
form a Z-submodule of C . Note that in more old-fashioned terminology C

2
resp. B is called the group of factor sets resp. principal factor sets

(from r into M ).

Definition 1 . Let r be a group and M a left T-module3 then

H2(r,M) := C2(r,M)/B2(r,M) is called the " 2nd Cohomology Group of M " .

Theorem 2 . Let L/K be finite Galois, V := Gal(L/K) , n := |L:K| = |r|
2 2

and x € C (r,L*) . Define on the n -dimensional K-vector space
(x,L/K) := 0 Le

o€T °

a multiplication by the following formulae

e x = xe ( x € L ) , e e = x ( a , x ) e and
a a a x ax

x e )CS y e ) = 5 x e y e

Then the elements e are invertible* e. , = 1 , and (x,L/K) is a central
o id

simple K-algebra with splitting field L , i.e.

[x,L/K] := [(x,L/K)] € Br(L/K) .

Proof.Write A := (x,L/K) ; the associativity of the multiplication de-

fined above is clear (same calculation as in the proof of formula (iii) in

Theorem 1); so is e. = 1 (thanks to x(a,id) = 1 = x(id,x) ) and hence

/ I \ - 1 / ~ 1 \ ~ 1 /O , - l v N - l
(1) e^ = x(a ,a) e _± - ( x(o,o )) e _±

a a

Now embed L c— >A via x •-> xe. , = x , and assume

0 = x(y~ x e ) - (V~ x e )x = V " (x-ax)x e ( x £ L ) ,

Ter ° ° tev ° ° lev
This implies first Z (L) = L (choose x € L such that x f x for all



o t id ), hence Z(A) = Z (A) c Z (L) = L (cf. (5) and (8) in $7.) and
A —~ A

therefore Z(.A) = Fix (T) = K . Now we must show that A has no proper

two-sided ideal (cf. Theorem lib) in §9.); this is done mutatis mutandis

as in case of the corresponding statement in the course of the proof of

Lemma 5 in §7. (here we have B = L and e in place of e ; moreover,

L/K is not cyclic any more, however, this does not affect our arguments

here). Finally we conclude [x,L/K] € Br(L/K) thanks to Theorem 7 in §9. •

Definition 2 . An algebra (x,L/K) as in Theorem 2 is called a "crossed

product".
2

Lemma 1 . In the situation of Theorem 2 let x,y € C (r,L*) be such that
2

x = y mod B (r,L*) 3 then

(x,L/K) ~ (y,L/K) .

Proof. By assumption we have

X(Q,T) z(a) Z(T) ,- j- T * , /-J\ 1

__.—»—_ = ^ — for some function z: r -> L* where z(id)=l.
y(a,T) z(ax)

Consider A := (x,L/K) = (£) Le , B :- (y,L/K) = (I) Lf , and call
a€F aET

ef := z(a)f £ B .
a a

Then we find

e'x = z(a)f x - xz(a)f = xe' ( x € L ) as well as
o o o o

e'e' = z(a)f z(x)f = z(a) z(x)y(a,T)f = x(a,x)z(ax)f =
ax a x ax ax

= x(a,x)eT ,

hence

f: A > B , y x e »-> ^> x ef

a€r a a a€r a °

is a K-algebra homoraorphism and thus an isomorphism because of Lemma 1

in §9. D

Theorem 3 . Let L/K be finite Galois3 V : = Gal(L/K) and x,y €

€ C2(r,L*) 3 then

(x,L/K) « (y,L/K) - (xy,L/K) .
2

Note that we write the Z-module C (T,L*) multiplicatively.

Proof. Set A := (x,L/K) = 0 LeQ , B \- (y,L/K) = (ft LfQ , C :=

:= (xy,L/K) - (ft Lg , and consider the commutative k-algebra L % L c

c A 8 B . Now write L = K(0) and consider the (monic) minimal polynomial

f € K[T] of 0 over K . Then
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n
f (T) = 2 Z a-Tl = T T (T - Q0) G L[T] (a = 1 , n = |L:K|).

i=0 X a€r n

Consider the element

f K K
081 - 081

and regard f as an element in K 6 K[T] rather than in K[T] . Then

e(0«l - l«6) = T T i 8 9) = T-9—: - ̂-§-= = 0 , hence
' ' denominator denominator denominator
otT

e(081) = (180)e , and therefore (by induction) eC©1®!) = (l®01)e , con-
n-1

sequently (because of L = ̂ ^ K0 )
i=0

(2) e(x81) = (18x)e for all x € L .

Now fix x € r and define

0®1 - 0®1 K - K

using (2) (n-l)-times and taking into account that L ® L is commutative

gives

(3) ee = e , in particular (in the case T = id ): e = e .

By our construction the numerator of e is a polynomial of degree n-1

in 081 over K ® L with constant term -18-N (0) t 0 . Therefore -
K n-1 e L / K

because of L 8 L = ̂  (0®1)1(K 8 L) - we get e i 0 , hence
i=0

e € L 8., L c A 8., B is an idempotent i 0 .
K — i\

Let us now consider the ring e(A 8 B)e =: Cf with unit element e (cf.
i\

§3.). Fix Q,T € r , then

e(e 8f )e - e(e 8f ) = e (e 8f ) =
0 T ° T id^P€r 0®i

 P0®i id^per a08i ap08i ° T

e e ( a ) ( e 8f ) = e ( e 8f ) a = T ( s e e ( 2 ) ) ,
oa a ^ f o r

0 a f x ( s e e ( 3 ) ) .

Define g f := e ( e 8f )e € C ; from t h e l a s t c a l c u l a t i o n and from ( 2 ) / ( 3 )

i t f o l l ows immedia t e ly
x e ) 8 ( 5 ~ y f ) ) e = ^ Z e ^ x ®D(l®y ) ( e 8f )e =

° G ier T T o^ev ° T O T
x ayg81)g ( ; ( XQ9ya € L ) , g^g^ = e t e ^ e ^ S f T ) e =

a t"

= e(eae^f^f^)e = e(x(a,T )8y(a,T ) )(e 8f )e =

= (x(a,T)y(a,T)81)g f and g f(x81) = e(e x8f )e = e(°xe 8f )e =
01 O 0 0 O O
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( x € L , a € r ) .
u

Consequently

is a surjective K-algebra homomorphism, hence an isomorphism (cf. Lemma 1

in §9.). Now (ii) in WedderburnTs Main Theorem in §3. shows C! ~ A % B ,
i\

therefore C ~ A ® B . n
K

Summarizing all the material hitherto discussed in this paragraph gives the

Crossed Product Theorem . Let L/K he finite Galois 3 r := Gal(L/K) ,

then the assign

an isomorphism

2
then the assignment x t-+ [x,L/K] ( x € C ( r , L * ) , cf, Theorem 2 ) induces

flL/K: H
2(T9L*) - > Br(L/K) .

Proof. By Theorem 2/Lemma 1 9, . is a well-defined map; Theorem 3 says
L/K

that this map is in fact a homomorphism which is injective thanks to the
second part of Theorem 1 (see (v) ibid.). Finally Q,T ... is also surjec-

L/K

tive; this follows from the first part of Theorem 1 together with Theorem

7 in §9. D
Exercise 1 . Let M be a left r-module, T = (a) a finite cyclic group;

define for m € M a function x : T x r -> M by
m5a

 J

x (a1,a]) := if i + j n ( 0 < i,j < n ; n = |r| ) .
iBjO m ^

2 ~~
Show that x € C (T,M) and that the assignment m h* x induces an

m,a & m,a
0 2

isomorphism 0, : H (F,M) —=*__£. H (r,M) . Moreover, in the situation of

Theorem 1 in §10. show

(4) [a,L/K,a] = [x ,L/K] in Br(K) .
djU

Exercise 2 . Let M,N be left T-modules, x € C"L(r,M) and y € C1(r,N) .

Define the cup product x u y i T x r - ^ M ^ ^ N by

(xuy)(a9i)r= x(a)®
ay(T) .

2
Show that xUy € C (FjM^N) and that the assignment (x,y) »-> xUy induces
a Z-bilinear skew symmetric map

H1(r,M) x H^-CT.N) • H2(r,M®zN) .

(Here the "skew symmetric" is to be understood modulo the canonical iso-

morphism M 87 N ̂  N 8U M ) .

Exercise 3 . Deduce Noether's Equations (in §6.) from the results of

this paragraph (cf. M. Deuring [1935], p.66).
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§ 13 . THE FORMALISM OF CROSSED PRODUCTS

Let M be a left T-module, A <3 r a normal subgroup and

G := r/A the factor group, then M carries (in a natural way) the struc-

ture of a left G-module via m := m (here a € -6 , i.e. aA= 4 € G ) .

Moreover, if x € C ( G , M ) ( i = 1,2 ) then we define a function x by

x(a) := x U ) (if i=l ) resp. s(a,x) := x(& 9£) (if i=2 )

(here aA = 4 , TA = t ; 49t € G ) ,

and it is easily seen that x € C1(r,M) ( i = 1,2 ) holds. A straightfor-

ward calculation gives then:

Lemma 1 . In the situation described above the assignment X H X indu-

ces a homomorphism

inf£/A: H
X(G,MA) • H1(I\M) ( i = 1,2 )

which is called the "inflation", u

Theorem 1 . Let L/K be finite Galois of degree n 3 Y : = Gal (L/K) 3 and

consider an intermediate field I of degree m over K which is like-

wise Galois over K . Let A := Gal(L/I) < T 3 hence s :- — -
— mand G :- r/A = Gal(I/K) . Then, if

2
X € C (G,I*) is given, we have

(x,L/K) « M ((

H (G9I*)
inf.

-> HZ(T,L*)

r/A

I/K

Br(I/K) -» Br(L/K)

( x as in Lemma 1 )3 i,e, the

diagram shown commutes. (Here

the vertical arrows are the iso-

morphisms from the Crossed Product Theorem in §12.)

Proof. The proof is almost identical with the proof of Lemma 8 in §10.:

every x € L resp. a € r determines a matrix

f(x) € M (I) resp. F(a) € GL (I)

such that (note that r acts on M (I) componentwise)

(1) f(ax)F(a) = F(a)af(x) ( x € L , a G r )
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and

(2) F(ax) = F(a)aFCx) ( a,T € r ) .

Now set A := (x,L/K) = £ft Le , A : = (x,I/K) = ff) Ie and define
a€r Q 4€G 4

f(e ) := F(a)e ( a £ r ; 4 = aA € G ) .
a 4

It follows from (1)

f(e )f(x) = F(a)e f(x) = F(a)4f(x)eA = F(a)
af(x)eA =

= f(ax)F(a)e4 = f(
ax)f(e ) ( x 6 L ; a 6 r , 4 = aA £ G )

and from (2) - note f(x) = xl if x € I -

f(ea)f(eT) = F(a)^F(x)e;t = F C a ^ F C x ) ^ ^ = F(a)
aF(x )xU ,tH^

= F(ax)x(a,x)<> = f(x(a,x))F(ax)£x+ = f(x(a,x))f(e )

( a,x 6 T ; 4 = aA , t = TA ; 4,t E G ) .

Consequently a K-algebra homomorphism f: A > M (A) is well-defined and

even an isomorphism thanks to Lemma 1 in §9. •

A nice application of the above is:

Theorem 2 . Assume char(K)/fm ( m € N given) and take [A] € Br(K) .

Then there exists a finite Galois extension L/K with Galois group V

suoh that y c: L and
m ? 2
[A] = [y,L/K] With suitable y € C (T,y ) c C (T,L*) .

Proof. Thanks to Theorem 9 in §9. and the Crossed Product Theorem in §12.

we can find a finite Galois extension I/K with Galois group G such that
y c: L and
m 9

[A] = [X,I/K] for some X € C (G,I*) .

By assumption we have then (thanks to m[A] = 0 )

) z(t) ( K + c r \y(K y^ ( K \
xU9t) ~ zltt) ( * ' * € G }

for some function z: G -> I* satisfying z(id) = 1 . Now select L/K f i -

nite Galois such that I,y c L and \taU) € L for all 4 € G . Setting
m

y(a,x) := x(a,x)——-, r— with x as in Lemma 1 and
z(.crx)

z(a) := (V^U))" 1 ( a,x € r ; 4 = aA € G ; A := Gal(L/I) <

< Gal(L/K) =: r and r/A = G )

we easily find y(a,x)m = 1 - hence y(a,x) E y - and (cf. Theorem 1

and the Crossed Product Theorem in §12.)

[A] = [X,I/K] = [x,L/K] = [y,L/K] . a

Let M be a left T-module, then it is in particular a left

A-module for any subgroup A •< r ; hence the following is obvious:



99

Lemma 2 . In the situation described above any given x € C1(T,M) ( i =

= 1,2 ) may be viewed (by restricting the variables to A ) as an element

in C (A,M) ., and this procedure induces a homomorphism

resJ;/A: H
1(r,M) > H^A.M) ( i = 1,2 )

which is called the "restriction", n

Theorem 3 . Let L/K be finite Galois, r : = Gal(L/K) , I an intermediate

field and A : = Gal(L/I) < r . Then, R2 ^ ^ R2 # )

i/ x € C (r,L*) is given and viewed res^ y
2

as an element in C (A,L*) (see
L/K

Lemma 2 J, we have

(x,L/K) «R I ~ (x,L/I) , B r ( L / K ) > B r ( L / I )

i.e. the diagram shown on the right

commutes. (Again the vertical arrows are the isomorphisms from the Crossed

Product Theorem in §12J

Proof. Write A := (x,L/K) = ^ft Le and compute Z (I) ; consider a =

x e 6 A , then a € Z (I) if and only if we have for all x € I

0 = xa - ax = *S (x~ x ) x e ="5 (x~ x ) x e
o£Y ofcA

which amounts to x = 0 for all a fc A . Hence we conclude (cf. Corollary

1 in §9.)

(x,L/K) ®K I = A ®K I - Z (I) = (t) Le6 = (x,L/I) . n

The next result is a supplement to the previous.

Theorem 4 . Let L/K be finite Galois with Galois group Y and let F/K

be an arbitrary (not necessarily finite) extension such that L D F = K .

Then L 8 F is a field ^ LF such that L 8> F/F is likewise Galois

with mutatis mutandis the same Galois group Y (via the correspondence

o •-> a®id ; here we abbreviate a®id by a after identifying L ®.. F

with LF j. Moreover, we may view any x € C (r,L*) as an element in
2

C (r,(LF)*) and in this sense we have

(x,L/K) » F ~ (x,LF/F) .
j\

Proof. All but the last assertion is well-known from Field Theory. As for

the formula concerning the crossed products we note that there is an ob-

vious injection (x,L/K) -> (x,LF/F) ; F-linear extension thereof (cf.

Theorem 3 in §5.) and Lemma 1 in §9. give the required isomorphism, n

We should remark that if in Theorem 4 we drop the assumption
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"L n F = KM it would not do any harm in the following sense: consider the

intermediate field I :- L D F of the extension L/K and use Theorem 3

before using Theorem 4 (with I in place of K ). This shows that in all

cases (x,L/K) ® F may be computed in terms of crossed products.

Let T be a group, A < V a normal subgroup and M a left

A-moduie. Then, if x € C (A,M) ( i = 1,2 ) and a € T are given, we

define a function x by

(ax)(6) := °x(o~16o) (if i=l) resp. (ax)(6,e) :=

:= ax(a~15a,a~1ea) (if i=2 ) ( 6,e € A ) ,

and it is easily seen that °x € C1(A,M) ( i = 1,2 ) holds. A straight-

forward calculation gives then:

Lemma 3 . In the situation described above the assignment x i-> ax indu-

ces a homomorphism

con^: H1(A,M) > H1(A,M) ( i = 1,2 )

which is called the "conjugation"'. •

Theorem 5 . Let L/K be finite Galois, r : = Gal(L/K) 3 and consider an

intermediate field I which is likewise Galois over K . Let A :-

:= Gal(L/I) < V , hence G := r/A = ^ ^ ^ ^

= Gal(I/K) . Then, if x £ C (A,L*) con

and a £ V are given, we have

a L / I

( x.L/I)

'°L/I

( 6 = aA € G ;3 i.e. t/ze diagram Br(L/I) -—• Br(L/I)
[A] K [ A ]

shown commutes. (Here the vertical
arrows are the isomorphisms from the Crossed Product Theorem in §12J

Proof. Thanks to Lemma 2 in §8. and Lemma 1 in §9. it suffices to establish

a ring homomorphism

f: (ax,L/I) > (x,L/I)

such that f(x) - i> (x) = a (x) for all x € I . For this purpose let

A := (x,L/I) = (3) Le^ , B := (ax,L/I) = 0 Lf and define f via the
6€A 6€A

assignments

x h > Q x ( x 6 L ) and f x ^ e , ( 6 € A ) .
6 -1 oa So

Thanks to

e _± ° x = ° (6x)e _± ( x € L , 6 G A )
o 6o a So

and _ -1
e _^ e - x(o 5a,a ea)e _1 = (( x)(6,e))e
o 6a a ea a Seo a Sea
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( <5,e € A ) we see that our definition of f is feasible. D

Of course we may interpret Lemma 3 such that conjugation endows H (A,M)

( i = 1,2 ) with the structure of a left T-module. In this context one can

show that H (A,M) is a trivial A-module, hence a r/A-module (cf. Exer-

cise 1); in the special situation of Theorem 5 the latter is clear !

Moreover, if we combine Theorems 1/3/5 with (6) and Theorem 4

in §9. we see that there is an exact sequence

(3) 1 > H2(G,I*) — > H2(r,L*)

infr/A

and a short exact sequence

(1+) 1 > H2(G,I*) > H2(T,L*) > H2(A,L*)G > 1

if 6 = r/A is cyclic.

Both sequences are valid (under certain conditions) in the general situa-

tion (see Exercise 1).

Now let M be a left r-module , A £ r a subgroup of finite

index n and R a system of representatives for the cosets of r modulo

A , i.e. T = U pA , | R | = | r : A | = n . Given p € R and a € T , there

p€R
are (uniquely determined) elements

(5) ap € R and 6(a,p) € A such that ap = ap6(a,p)

satisfying

(6) aTp = V p ) , 1p = p ; <5(crr,p) = 6(a,Tp)6(T,P ) , 6(l,p) = 1

(cf. (9) and (10) in §8.). Now take any x € C1(A,M) ( i = 1,2 ) and de-

fine a function c^x by
K O

(cRx)(a) := ̂ Z P^(5(a,p)) (if i=l ) resp. (cRx)(a,x) : =

Px(6(a,Tp),6(T,p)) (if i=2 ) (here a,x G r ) .
A somewhat lengthy (but entirely straightforward) calculation shows that

c«x € C (F,M) holds. Moreover, an even longer calculation shows (the de-

tails are left to the reader, cf. Exercise 3)

Lemma 4 . In the situation described above the assignment x •-* c-x indu-

ces a homomorphism

cor^/A:H
1(A,M) > H1(r,M) ( i = 1,2 )

which is independent of the choice of R and called the "corestriction".

Moreover ( i = 1,2 )

C O rr/A r e Sr/A = l r : Al i d ( id := identity on C1(r,M) )

and
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if A <: r is a normal subgroup_, G := r/A . P

Theorem 6 . Let L/K 2?e finite Galoiss r := Gal(L/K) I an intermedi-

ate field and A : = Gal(L/I) < r . Then,
2

if x € C (A,L*) is given, we have

cI/K(x,L/I) ~ (cRx,L/K)

( c«x as in Lemma 4 ), i.e. the

H CA9L*)

Br(L/I)

Lr/A

H (r,L*)

Br(L/K)diagram shown commutes. (Here the

vertical arrows are the isomor-

phisms from the Crossed Product Theorem in §12.)

Proof. We omit the (rather technical) proof of this theorem (see Exercise

3) since we shall nowhere make use of this result in these lectures, o

Exercise 1 . Let r be a group, A < r a normal subgroup, G := r/A

the factor group and N a left A-module. Show that H (A,N) is a left

G-module via conjugation ( i = 1,2 ). Now let M be a left r-module;

prove the inflation restriction sequences, i.e. show that the following

sequences are well-defined and exact:

and

(8)

H1(G,MA)

H2(G,MA)

H1(r,M)

inf

H2(A,M)G

if H (A,M) = {0} .

Note that Noether's Equations in §6. and (8) imply (3) !

Exercise 2 . Establish commutation rules between inflation/restriction/

conjugation/corestriction (cf. Lemmas 1/2/3/4) and the isomorphism ft

from Exercise 1 in §12. in the case where T is a finite cyclic group.

Exercise 3 . Prove Lemma 4 and Theorem 6 . (For a proof of Theorem 6 see

Theorem 11 in C. Riehm [1970]; however,note that there a description of the

isomorphism 0, . in the Crossed Product Theorem (in §12.) is used which

is not exactly the one we introduced (cf. J.-P. Serre [1962 ,p.l66]).)
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§ 14 . QUATERNION ALGEBRAS

In §11. we introduced quaternion algebras

( a5b € K* ) resp. ^ j ( a € K* , b G K )

if char(K) i 2 resp. char(K) = 2 (cf. Definitions 2 resp. 6 in §11.)

as special cases of power norm residue algebras, hence we may use all re-

sults of §11. in order to describe the behaviour of quaternion algebras.

It is worth rewriting these results in the special notation of quaternion

algebras; here we shall use the special notation

(1) (~1</ ^ ^ e resPec'ti-ve rule applies regardless of char(K) .

We start with the (almost obvious)

Theorem 1 . A K-algebra A is a quaternion algebra if and only if it is

a central simple K-algebra of reduced degree 2 (i.e. |A:K| -2 = 4 J.

Proof. The "only if" is trivial; "if" : because of Theorem ±(f) in §9. we

have either A ̂  M (K) - in which case A obviously is a quaternion

algebra - or A is a skew field (of index 2 ). In the latter case A has

a separable quadratic - and thus over K cyclic - subfield (cf. Kothe's

Theorem in §9.), hence A is a cyclic algebra thanks to Lemma 2 in §10.

Now our assertion is clear from Lemma 2/Corollary 3 resp. Theorem 5 in §11.

if char(K) i 2 resp. = 2 . n

Theorems 1/4 in §11. read as follows:

Theorem 2 . All K-algebras A generated by two elements a,b which are

subject to the relations

a := a 2 € K* , b := b 2 € K*, ab - -ba.

are isomorphic to f"~̂ ~) if char(K) i 2 . D

Theorem 3 . All K-algebras A generated by two elements a,b which are

subject to the relations
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a := a2 e K* , b := b2 + 6 € K , ah = (b+l)a

are isomorphic to (•%- ^/ char(K) = 2 (i.e. -1 = 1 j. a

Theorems 2/3 imply

D (L/K) e* (HT~ ) w i t h suitable b depending on L

where the left hand side is according to (2) in §1. Moreover, one sees

Now if we rewrite Lemmas 4/8/14 & Corollaries 3/4/6 in §11. we find the

following (cf. the convention introduced in (1))

Rules for quaternion algebras .

(2) \^K) ~ M2(
K) if and on^y if the equation a = x2 - y2b

is soluble over K ;

(3) V K | ~ M 2
( K ) ^ and only if t}ie elation a = x2 + xy + y2b

ll
2
(

is soluble over K ;

(¥)-(¥) ••

Another interesting result is (use Lemmas 1/12 in §11. & Lemma 3($) in §9.)

Theorem 4 . Assume |K(Va):K| = 2 and let K(\/a) be a splitting field

of the quaternion algebra A1 :- f—^—J 3 then A' ̂  (~̂ ~) for suit~

able b . n

For the next result recall the definition introduced in the course of

Exercise 1 in §9.; then use Corollary 3 in §9., Lemma 2 in §10. and Theo-

rem 5 in §11. This gives

Theorem 5 . Assume |K(-*b):K| - 2 and let K(ib) be a splitting field

of the quaternion algebra Af := \~b— .> then AT ^ \y~\ for suitable

a . •

The following results on quaternion algebras seem to be not so well-known.
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Theorem 6 . Let Af,A" be quaternion algebras over K • then A' % A"
K

is not a skew field if and only if A' and AM have a oommon splitting

field which is separable quadratic over K .
Proof, cf. Exercise 1 . a

With the aid of (4) and Theorems 4/5 one can restate the preceding theorem

in the following way:

Corollary 1 . Assume ( £ ^ " ) | \ i~^~)\ ~ (^YT)] > then one QOn find

^^A such that

Interesting enough one can show that (under the same assumptions as in

Corollary 1) in the case "char(K) = 2" it is not always possible to find

suitable c,d',d" such that (^] ~ i^f] and ] ] ( j
(cf. (4.26) on p.134 in R. Baeza [1978]).

1a' b' M /a" b"M

— i — ) | ~ /—z—j 3 then there exists an element

' ftrj\ - (nf4)]" (^)1 •
Proof, cf. Exercise 2 . •

Exercise 1 . Prove Theorem 6 (see A.A. Albert [1972] and P. Draxl [1975]).

Exercise 2. Prove Theorem 7 (see J. Tate [I976,p.267] if char(K) f 2 ).

Exercise 3 . Recall that a field is called formally real if -1 cannot be

expressed as a sum of squares. Now call a field Pythagorean if it is, for-

mally real and every sum of squares therein is a square.(Note that a for-

mally real field must have characteristic 0.) Show that a field K is

Pythagorean if and only if (~~JT—) is a skew field such that any of its

maximal commutative subfields is K-isomorphic to K(\/-l) (see B. Fein &

M. Schacher [1976] ).

We close this paragraph with a remark: the reader should know

that the theory of quaternion algebras is closely linked to the theory of

quadratic forms via the Clifford algebras. Standard references for that

are for instance O.T. O'Meara [1963] and T.Y. Lam [1973] .
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§ 15 . p-Algebras

In this paragraph we investigate the p-primary component

Br(K) of the Brauer group Br(K) of a field K with p := char(K) t 0 .

Definition 1 . Let p := char(K) t 0 3 then any central simple K-algebra

A such that |A:K | = p-power is called a "-p-algebra over K ".

From the various results of §9. the following is clear:

Lemma 1 . Let A be a ^-algebra over K , then i(A) = p-power and

[A] € Br(K) . Conversely, if i(A) = p-power or (equivalently) [A] €

£ Br(K) j then the skew field component D of A is a ̂ -algebra

over K . n

Clearly the algebras (a,b;p,K> from §11. are p-algebras and it is clear

that they have the purely inseparable splitting field K(va) over K .

The last observation is just an example to the following general

Theorem 1 . Let A be a ^-algebra over K ., then [A] € Br(I/K) for

some purely inseparable extension I/K such that I C K .

Corollary 1 . Let K be a perfect field of characteristic p ^ 0 > then

Br(K) = {0} , i.e. p|i(A) for all [A] € Br(K) . •

Proof. Put o(A) = p with suitable e € N (in case e = 0 there is

nothing to show). Now write (cf. §12. and Theorem 9 in §9.)

[A] = [x,L/K] for some finite Galois L/K with r := Gal(L/K)

and x € C2(r,L*) .

The Crossed Product Theorem in §12. implies then

for some function z: r -* L* satisfying z(id) = 1 . Now consider the

field

M := L({pv z(a)|a,T€r} ), i.e. M/L is purely inseparable .
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If y € T one can extend y to an automorphism of M by setting

Y( P? Tz(a)) :=
hence r may be viewed as a group of K-automorphisms of the field M .

Now set
r

I := M , then M/I is Galois with group V .
e

Moreover, x € I c M implies xP € L (by definition of M ) and there-
e e e

fore Y(x p ) = xp (by definition of I ), hence xP € K . Concluding we
have I D L = K and M = IL =* I ®v L , i.e. we may use Theorem 4 in §13.:

K

if we set

u(a) := P\/ST7) ( a € r )
we find

x(ajT) =
 n(lfa

U
T\

T) , hence x £ B2(r,M*)

and therefore (cf. also the Crossed Product Theorem in §12.)

r [A] = r> [x,L/K] = [x,LI/l] = [x,M/l] = 0 .a
l/K l/K

Before we proceed we need two results from Field Theory which appear not

to be so widely known. The first of it is a special case of deep results

due to E. Witt [1936] :

Lemma 2 . Assume p : = char(K) t 0 and let L/K be a finite cyclic ex-

tension of degree p with generating automorphism T . Then there exists

a cyclic extension N/K of degree p with generating automorphism o

such that K c L c N and a

Proof. Choose an element a € L such that TrT /ir(a) = 1 (cf. (1) in §6.);
L/J\

now use the additive endomorphism fo of L (see §11.) which commutes

with T r
L/ K

 a s well as with T (this is clear from Field Theory), hence
Tr U a ) = A(Tr (a)) = pi - 0 .
L/K 0 0 L/K 0

Therefore Corollary 1 in §6. implies

r = b - b for suitable b £ L .

We claim b (. ah . Indeed, if we had b = jpc for some c € L we would
T T T

get »a = b - b = (fi>c) - ̂ c = fo( c - c) , hence (cf. the exact sequence
(12) in §11.) a = c - c + x with some x € F c K ,and the latter would

P f
then lead to the contradiction 1 = Tr /v(s.) - Tr /v(x) = p x = 0 .

L/K L/K

Now define (cf. Exercise 1 in §9.)

N := L(*-b) = L(d) where Ofci = b and N/L is cyclic of de-

gree p with generating automorphism y: d *+ d + 1
Furthermore, extend T to an automorphism a of N via d »-> d + a .
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f f .
p p 1

It follows d = ... = d + y Ta = d + T r L/ K(
a) = d + 1 = Yd , hence

a has order p in Aut(N) . Therefore N/K is the required field

extension, a

An immediate application of Lemma 2 is

Lemma 3 . Let p := char(K) t 0 and [A] = [a,L/K,x] € Br(K) 3 then there

exists a [B] € Br(K) such that [A] = p[B] in Br(K) .

Proof. Take [B] := [a,N/K,a] € Br(K) (in the sense of Lemma 2 ) and use

Lemmas 4/8 in §10. •

The second result from Field Theory which we shall need is the following

Lemma 4 . Let I/K be a finite and purely inseparable extension and

LT/I finite separable (resp. Galois); then there exists a separable

(resp. Galois) extension L/K such that L ® I ̂  LI = L! . Moreover, in

the Galois case rf := Gal(Lf/I) and F := Gal(L/K) can be identified

via the correspondences a ! »-* af I ( a' € FT j and a y* a®id ( a € F ). n

Now we are fully prepared for
e

Theorem 2 . Let p : = char(K) t 0 3 |K(P\/a):K| = pG and [A] €
e

€ Br(K(Pv£)/K) 3 then

[A] = [a,L/K,a] in Br(K)

for some cyclic extension L/K of degree p

Proof. We proceed by induction on e ; the case e = 1 has been settled in

Lemma 12 in §11. (see also its proof). Now assume e > 1 , set
e

F :- K(PVa) and I := K($a) , hence |F:l| = p and

r . [A] e Br(F/I) .

Consequently the induction hypothesis implies

rT/1/[A] = [Va,L_/I,a_] for some cyclic L_/I of degree p
1/J\ U U U

Now let us use Lemmas 2/4 simultaneously: this gives a cyclic extension

L./K of degree p such that LI/I is also cyclic of

generating automorphism a where I c L c L1I and a
S = a° •

Lemmas 7/8 in §10. yield then

rI/K[A] = [VS,LO/I,ao] = [a.I^I/I.o^ = r ^ a . ^ / K , ^ ]

The latter implies

[A] - [a,L1/K,a1] € Br(K(\/a)/K) and |K(§a):K| = p ,
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hence (see the case e = 1 ) for some cyclic L /K of degree p :

(1) [A] = [a,L1/K,a1] + [SL.L^K.O^ .

From Field Theory we know that either L fi L = K or L c L .

In the first case the assertion follows then immediately from (1) because

of Lemma 9 and Theorem 1 in §10., whereas in the second we can find t € N
-j- p-*l p

coprime with p such that o = ao . Now, if s(l+tp ) si mod p (note
i 2 2

e—1 e
that 1+tp and p are coprime), Lemmas 3/8 in §10. imply

[a,L2/K,a2] = [a^I^/K.a*] = [a
tp ,1^/K,^] ,

and therefore we may conclude from (1) thanks to Lemmas 3/4 in §10.

[A] = (l+tpe"1)[a,L1/K,a1] = (l+tp
e"1)[aS,L1/K,a^J =

= [a,L/K,a] where L := L and o := a . n
e e L

Theorem 3 . Let p :- char(K) f 0 , I := K(p \/a7,..,p \/a~) and assume

r e

|l:K| = T~7 P i ; then* if [A] € Br(I/K) ,

[A] = 2 1 [ai,Li/K,ai]

for suitable cyclic extensions L./K .

Proof. We proceed by induction on r ; the case r = 1 has been settled in

the preceding theorem. Now suppose r > 1 and set

D V D
er D

61
F := K(p Va^,..,p \^T) c I , hence I = F(p \ls~) ,

e
r , [A] € Br(I/F) and |l:F = p 1 .

It follows (use Theorem 2 and Lemma 4 together with Lemma 7 in §10.)

rF/K[

which amounts to

rp/K[A] =

r g #
[A] - [a ,L /K,a ] € Br(F/K) where |F:K| - J~\ p i

1 1 i = 2
and therefore to our assertion (by construction of F ) thanks to the

induction hypothesis. •

Now let [A] € Br(K) be given and select a minimal purely inseparable

extension I/K such that [A] € Br(I/K) and I v c K (such a field I

exists thanks to Theorem 1 ). Then I is of the form described in Theorem

3 and we get the important

Theorem 4 . Assume p := char(K) t 0 and take [A] € Br(K) ., o(A) = p e .

then there exist elements a.,. . ,a € K* , 0 < e. < .. < e = e and cyclic

extensions L,/K,..,L /K such that
1 r

r
[A] = 5 3 [a.,L./K,a.] . a

i=l



110

More old-fashionedly one would state Theorem 4 in the form

Corollary 2 . Every -p-algebra over K is similar to a tensor product of

ay olio algebras. •

Moreover, if in Theorem 4 we denote by L := L...L the composite field

of the cyclic fields L. over K , then L/K is abelian, hence

Corollary 3 . If p : = char(K) t 0 3 then every [A] £ Br(K) has an

abelian splitting field over K . n

Witt's Theorem . Let p : = char(K) t 0 , then Br(K) is ̂ -divisible.

Proof. Only the p-primary component Br(K) matters since Br(K) is a

torsion group (cf. Theorem 10 in §9.), however, the p-divisibility of

Br(K) is clear from Lemma 3 and Theorem 4 . n
P

Another important result is (compare it with Theorem 4 in §9.)

Hochschild's Theorem . Let L/K be a finite purely inseparable exten-

sion, then the sequence

0 > Br(L/K) 5 > Br(K) • Br(L) > 0

is exact,
e

Proof. Let [A] € Br(L) be given and choose e such that LP c K .

Using Witt's Theorem repeatedly we can find [B] € Br(L) such that [A] =

= p [B] . Now take F/L finite Galois with Galois group T such that

[B] = [x,F/L] for some x € C2(r,F*)

(cf. Theorem 9 in §9. and the Crossed Product Theorem in §12.). Thanks to

Lemma 4 we have F = NL with some finite Galois extension N/K with

Galois group r (via restriction of the action of the K-automorphisms of

F to N ) and such that FP c N , hence

xP € C2(T,N*) ,

and therefore (see the Crossed Product Theorem in §12. and Theorem 4 in

§13.) the equation

[A] = pe[B] = [xP ,NL/L] = rL/K[x
P ,N/K] . D

The theory of p-algebras culminates in

Albert's Main Theorem . Assume p := char(K) t 0 and take [A] € Br(K) .,

then there exist a cyclic extension L/K and a € K* such that

[A] = [a,L/K,a] 9

i.e. A has a cyclic splitting field over K .
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Proof, see A.A. Albert[1939,p.109] or Exercises 1/2 . •

Although Albert's Main Theorem is much stronger than Theorem 4- and Corol-

lary 3 the latter two results are sufficient for most applications. More-

over one should point out that a p-algebra A over K is not necessarily

isomorphio to a cyclic algebra (see 0. Teichmuller [1936,pp.386]). Finally

we remark that the reader may find different (and most interesting) approa-

ches to the theory of p-algebras in E. Witt [1937] and G. Hochschild

[1955].
e

Exercise 1 . Assume p := char(K) t 0 , set I := K(P\/a) ( a G K* ) and .

let L/I be finite separable. Show I = K(N /T(b)) for some b € L* .

L/l

Exercise 2 . Use Exercise 1 for a proof of the following result (which is

clearly sufficient to prove Albert's Main Theorem): if A,B are cyclic

p-algebras over K , then A 8^ B is isomorphic to a cyclic p-algebra

over K .

Exercise 3 . Let p be a prime f char(K) and assume (c) = y c K .

Moreover, let L/K be a finite cyclic extension of degree p with ge-

nerating automorphism T such that £ € N_ ...(L*) . Show that there

exists a cyclic extension N/K of degree p with generating automor-

phism a such that K c L c N and a _ = T .(Hint. Modify the proof of

— — L
Lemma 2 .)
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§ 16 . SKEW FIELDS WITH INVOLUTION

Let A be a ring (with 1 ^ 0 ) , then we call as usual a Z-mo-

dule automorphism 0 of A a ring anti-automorphism of A if 0(x)0(y) =

= 0(yx) for all x,y € A . In this context the following is obvious:

(1) If 0 is a ring antiautomorphism of A ,then 0 defines an

isomorphism A ̂  A ^ .

(2) If 0 is a ring antiautomorphism of A ,then the same is true

for 0"1 .

(3) If 0,°, are ring antiautomorphisms of A ,then 0ft is a ring

automorphism of A .

(4) If 0 is a ring antiautomorphism of A , then, for any a € A*

0 : A -*• A , x H> a0(x)a is again a ring antiautomorphism
a

of A .

(5) Any ring antiautomorphism 0 of A can be extended to a ring

antiautomorphism of M (A) via 0( x.. ) := ( 0(x..) ) .

Definition 1 . Let A be a ring (with 1 t 0 ) and I a ring antiauto-
2

morphism of A such that I = id 3 then I is called an "involution
I

of A " and we write x in place of I(x) f x 6 A j, Moreovery we denote

by S (A) := { x 6 A | x = x } the 1-module of " I-symmetric elements"

In what follows let K be a commutative field and A a K-al-

gebra satisfying Z(A) = K (e.g. a central simple K-algebra). Then, if I

is an involution of A it must preserve the centre (argue as if I were

an automorphism; cf. (12) in §7.),hence either I = id (in case K c

c S (A) ) or I I f id (in case k := K fl S_(A) f K ) .

i 11\ x\ l

Definition 2 . Let A be a K-algebra with K = Z(A) . An involution I

of A is called of the "first kind" (resp. "second kind") if

k := K fl SJ(A) = K (resp. t K ) .
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Let us investigate the case of central simple K-algebras; first, we

observe that then (4) has a converse, namely:

Lemma 1 . If Q^Q are ring antiautomorphisms of the central simple K-al-

gebra A such that 0 L = ftL , then ft = 0 (in the sense of {i\))for
I Jx i\ a

suitable a € A* (which is unique modulo K* ).

Proof. Thanks to (2) and (3) 0 ft is a ring automorphism of A and

even a K-algebra automorphism (because of 0 = ft ), hence

0 ft(x) = txt for some (modulo K* unique) t € A*

by virtue of the Skolem-Noether Theorem in §7., i.e.

ft(x) = a0(x)a"1 = 0 (x) ( x € A ) where a := 0(t) € A* . n
a

Second, we may restrict our attention to K-skew fields thanks to

Lemma 2 . Let D be a K-skew field and A := M (D) . Then, if § is a

ring antiautomorphism of A there exists an a € A* such that 0 ari-
a

ses from a ring antiautomorphism of D as described in (5).

Proof. Take the matrices e . . € M ( D ) = A (cf. §2.) and consider the ele-
13 r

ments /.. := 0(e..) € A which satisfy the identities
0 j / r

/. ./ = 0(e..)0(e ) = Q(e e..) = if
13 rs 31 sr sr 31 e(* .) ~-f. j = r

si J is J

hence
r r r r^ 0 Keii " © © ^ii as K- s u b a lS e b r a s of A >
i=l j=l i=l j=l

and therefore Corollary 2 in §7. implies

(6) e.. = a/..a = 0 (e..) for a suitable a € A* .

Now take d 6 D ; it follows
0 (d)e.. = 0 (d)0 (e..) = 0 (e..d) = 0 (de..) =
a 13 a a 31 a 31 a 31
= 0 (e..)Q (d) = e. .0 (d) ,

a 31 a 13 a '
hence

(7) 0 (d) E ZM ,nx(M (K)) = D for all d £ D .
a M \D) v

But (6) and (7) amount clearly to the fact that 0 arises from a ring
a

antiautomorphism of D as described in (5). D

Corollary 1 . Let A be a central simple K-algebra. The fact whether or

not A admits a ring antiautomorphism (e.g. an involution) depends only

on its class [A] in the Brauer group Br(K) . a

Now we are prepared for the following result due to A.A. Albert:
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Theorem 1 . Let [A] € Br(K) ., then A admits an involution of the

first kind if and only if 2[A] = 0 (i.e. [A] € 2Br(K) ).

Proof. The "only if" is clear since the isomorphism A ̂  A ^ from (1) is

then a K-algebra isomorphism, hence [A] = [A *j = -[A] . For the proof of

the "if" we note that by virtue of Corollary 1, Theorem 9 in §9. and the

Crossed Product Theorem in §12. we may suppose

A = (x,L/K) = ffi Le where L/K is finite Galois with

Galois group T and x € C (T,L*) such that x(a,x) =

z Z ( ° ) ^ ( T ) ( a,T € T ; Z: r -> L* such that z(id) = 1 ),

hence

(8) x(a,x)"1z(a)az(T) = z(ax)x(a,x) .

Now define

I: A > A , "5 x e »-»3> e z(a)x ;

clearly I is a Z-module endomorphism of A such that (cf. (8))

I(xe ye ) = I(x yx(a,x)e ) = e^ z(ax)x(a,x)x y =

- 1 ., v - 1 f ,o f y. a f v - 1 . s o f N a
= e^x(a,x) z(a) z(x)x y = (ea

e
T)

 z( a) Z(T)X y =

= (e^1z(x)y)(e^1z(a)x) = I(yeT)I(xea) ( x,y £ L ; a,x € r )

and consequently

I2(eQ) = Ke^zfo)) = I(z(a))I(e^
1) = z(a)I(ea)"

1 =

= z(a)(e~1z(a))~1 = eQ ( a € r ) ,

hence I is the involution we were looking for. o

From Theorem 1 it is clear that any tensor product of quaternion algebras

admits an involution of the first kind. Just recently it has been proved

(see A.C. NepKypeB [1981]; §17.) that the converse is mutatis mutandis

also true, namely:

If a central simple algebra admits an involution of the first

(9) kind, then it is similar to a tensor product of quaternion

algebras.

For further information on this cf. J.-P. Tignol [1981] and the various

references there.

Now let us focus our attention on the case of central simple

K-algebras admitting involutions of the second kind. We begin with a slight-

ly more general situation: if A is a K-algebra such that K = Z(A) and

if A admits an involution I of the second kind, then we have an auto-
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2morphism a := I ., f id., of K such that a^ = id., , i.e. the non-tri-
i\ J\ is.

vial k-automorphism a of the separable quadratic field extension K/k

( k : = K f l S ( A ) ) is extended to our ring antiautomorphism I of A .

This suggests the following

Definition 3 . Let K/k be a separable quadratic field extension with

Galois group V :- {a,id} and A a K-algebra such that K - Z(A) , then

a ring antiautomorphism © of A satisfying 0 - o is called a

" K/k-antiautomorphism of A " . Moreover, if a K/k-antiautomorphism is an

involution, we call it a " K/k-involution",

From now on we present the extremely elegant arguments due to W. Scharlau

[1975] .

Scharlau1 s Lemma . Let K/k be separable quadratic, r := Gal(K/k) =

= {a,id} and 0 a K/k-antiautomorphism of the central simple K-algebra

A , then there exists an element b € A* such that

(10) 02(x) = bxb"1 ( x £ A ) .

Moreover, if we take any b € A* such that (10) is fulfilled, then

(11) b©(b) = 0(b)b € k*

holds and the class of b©(b) in k*/N.,,. (K*) = H°(r,K*) depends only on
K/k

the class [A] in the Brauer group Br(K) . Finally, if we replace 0

by 0 and b by b := aO(a)~ b , then
02(.x) = b xb"1 and b 0 (b ) - bO(b) .
a a a a a a

Proof. (10) is clear from (3) together with the Skolem-Noether Theorem in
2 2

§7. because 0 must be a K-algebra automorphism thanks to a = id .
K

Now we deduce from (10) for all x € A the equations

b0(x)b"1 = 02(0(x)) = 0(02(x)) = ©(bxb"1) = O(b)"10(x)0(b) ,

hence 0(b)b € Z(A)* = K* and consequently

(bO(b))2 = b(0(b)b)0(b) = (O(b)bHbO(b)) , i.e. b©(b) = 0(b)b,

as well as

Q(0(b)b) = 0(0(b)b) = O(b)G2(b) = ©(b)bbb X = 0(b)b

hence (11). Now we note that b in (10) is unique modulo K* 9 so, if we

replace b by be ( c € K* ) we get

bc©(bc) = bc0(c)0(b) = bO(b)cQc = b0(b)Nv/1(c) .
K/K

Now replace 0 by 0 etc.; it follows
a

02(x) = a0(a©(x)a 1)a X - a0(a) Xbxb 10(a)a 1 = b xb 1
a a a

and
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b 0 Cb ) = a0(a)~1ba0(a0(a)"1b)a"1 =
a a a

= a0(a)~1baC0(b)b)a"1b"10(a)a"1 = 0(b)b = b0(b) .

Finally assume A = M (D) for some K-skew field D . By the preceding ar-

guments and thanks to Lemma 2 we may assume

i

By virtue of

0(D) = D and ©( cL . ) = ( ©(d.J )

0"( x.. ) = 0( 0(x..) ) = ( 02(x..) ) ( x.. € D )
i] ji 13 i]

we may then choose b € D* c= A* in (10); this completes our proof, n

From Scharlau's Lemma one obtains

Scharlau's Criterion . Let K/k be separable quadratic and [A] € Br(K).,

then A admits a K/k-involution if and only if it admits a K/k-antiauto-

morphism 0 such that bO(b) € N w . (K*) (here 02(x) = bxb"1 ).
K/K

Proof. The "only if" is trivial, for if I is a K/k-involution we may

take 0 = 1 and b = 1 . For the proof of the "if" we use an argument due

to R. Scharlau (W. Scharlau's original argument was slightly more compli-

cated): thanks to Lemma 2 and Scharlau's Lemma we may restrict our atten-

tion to the case where A is a K-skew field. Now assume b©(b) =

= N W 1 (c) = c0(c) for some c € K* , then - if d := be" -
K/K

d©(d) = 1 and 0 (d) = d ,
and we may consider the commutative subfield L := K(d) of our skew fieldA . Obviously 0(L) = L and 0 = idT . Now either 0|T = idT , hence

L L |L L

d = 1 and therefore b € K* which means that I := 0 is our involution,

or 0 £ id_ . In the latter case Hilbert's "Satz 90" in §6. yields an
-1

element a € L c A such that b = 0(a)a . Now take I := 0 which gives
a

I2(x) = 02(x) = a0(a0(x)a"1)a"1 = a0(a)~1bxb~10(a)a"1 = x . D
a

K/k-involutions ( i . e . involutions of the second kind) are in relationship

with the corestriction from §8. This comes from

Scharlau's Theorem . Let K/k be separable quadratic, r :- Gal(K/k) =

= {a,id} and [A] € Br(K) . Then the following conditions are equivalent:

(i) A admits a K/k-antiautomorphism 0 ;

(ii) A ̂  A as K.-algebras;

(Hi) rK/k(cK/k[A]) = ° i n B r ( K ) ;

(iv) A admits a K/k-antiautomorphism 0 such that we have

c w i [A] = [bO(b),K/k,a] in Br(k) (here 02(x) = bxb"1 ) .
K/K



117

Proof, (iv) implies (i) trivially and (i) implies (ii) because the isomor-

phism from (1) is in fact a K-algebra isomorphism A ̂  A ^ given by 0

(cf. Lemma 1 in §8.; note a = a ). (ii) implies (iii) thanks to (cf.

Theorem 5 in §9.)

rK/k(cK/k[A]) = Mp[A] = [A] + [
QA] = [A] + [A°P] = 0 .

Now, since the same calculation shows that (iii) implies (i) it suffices

to deduce (iv) from (i) 9(ii) , f m j .

Indeed, from §8. we know that C := c w , (A) = (A ev
 QA) c A 8V

 QA is a
IS./ K J\ — I\

k-subalgebra; moreover, if 0 is the K/k-antiautomorphism from (i) we can

find a K-algebra isomorphism (cf. (ii) and Definition 1 in §7.)

f: A «v
 aA -£** EndfA) such that f(a«b)(x) = ax0(b)( x € A ).

In particular, we may view A as a left C-module (via f and the embed-

ding of C ), and therefore it makes sense to consider the k-algebra
End_(A) . Since (iii) implies [C] = cv/, [A] € Br(K/k) we get i(C)|2

L J\/K

(cf. Corollary 4 in §9.), hence (in what follows now cf. §3.)

C ~ D for the k-skew field D ̂  End {K) where h. is a

minimal right ideal of C .

On the other hand A is a left C-module (see above), hence a right C P-

module, but C ^ C ^ thanks to i(C)|2 , so we may view A likewise as

a right C-module, and in this sense we have (see again §3.)
m

(12) A « £T) h. and consequently End (A) a M (D) .

i=l 2

Now set n := |A:K| , hence |C:k| = n (see Lemma 7 in §8.). Then we get

either C=*M(k) (if i(C) = 1 ) and consequently dim (/L) = n , mn =
n K

= |Ark | = 2n which amounts to End (A) c* M (k) , or C ex M . (D) (if

i(C) = 2 ) and |D:k| = 4 , hence dim An.) - 2n , m2n = |A:k| = 2n and
K

thus End (A) «* D .In any case we have (after summarizing; cf. (12))

(13) c w , [A] = [End.(A)] in Br(k) and |Endn(A):k| = 4 .

From (13) we conclude with the aid of Lemma 1 in §9. that, in order to

complete the proof of (iv) it suffices to establish a k-algebra homomor-

phism (here we view A as a left C-module via f ; see above)

g: (b0(b),K/k,a) > End^A) .

2
For this purpose write (b0(b),K/k,a) = K 0 Ke where e = b©(b) and

ey = 0(y)e = ye ( y € K ) and define g via

g(y)(x) := yx ( y € K ) and

g(e)(x) := ©(b)O(x) for all x € A .



118

Now a lengthy but entirely straightforward calculation shows that both

g(e),g(y) are left C-module endomorphisms of A such that ( y € K )

g(e)2 = g(b (b)) and g(e)g(y) = g(0(y))g(e) = g(ay)g(e) . •

We close this paragraph by combining Scharlau's Theorem with Scharlau's

Criterion which yields (cf. Theorem 1 in §10.)

Riehm's Theorem . Let [A] € Br(K) ., then A admits an involution of the

second kind if and only if there exists a separable quadratic subfield k

of K such that c w i [A] = 0 in Br(k) . (The involution is then a K/k-
K./ K

involution,) u

For further results on involutions cf. W. Scharlau [1981] and Ch.X in

A.A. Albert [1939] .

Exercise 1 . Let K/k be separable quadratic and F/k cyclic such that

K D F = k . Set L := K F « K 8 F 5 then L/K is cyclic with generating
K

automorphism (say) y . Show that the cyclic algebra (a,L/K,y) admits

a K/k-involution if and only if N ,, (a) = N , (b) for some b € F* .

Exercise 2 . Let K/k be separable quadratic. Show that a quaternion

algebra A over K admits a K/k-involut:

for some quaternion algebra B over k .

algebra A over K admits a K/k-involution if and only if A ̂  B ® K
K
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§ 17 . BRAUER GROUPS AND ^-THEORY OF FIELDS

In §11. (cf. Definitions 3/4 and Theorem 3 ibid. ) we have al-

ready seen that in case y c K (which implies char(K)|n ) the assign-

ment {a,b} »-> [a,b;n,K,c] induces the abstract norm residue homomorphism

(1) R -. Ko(K)/nKo(K) > Br(K) ®7 y

n,K 2 2 n L n

which is independent of the choice of the primitive n-th root of unity C •

Now recently A.S. Merkur'ev and A.A. Suslin have presented a proof of the

following spectacular result:

Merkur'ev-Susl in Theorem . Let p be a -prime i char(K) and assume that

every finite field extension of K has p-power degree over K (this im-

plies y c K Jj then R v is an isomorphism, a

p p ,j\

It is impossible to give (even a sketch of) the proof within the scope of

a book like ours since numerous deep and intrinsic arguments from Algebraic

Geometry (e.g. Brauer-Severi varieties), Algebraic K-Theory and Class Field

Theory are involved. So we can refer only to the original papers

A.C. NepKypeB & A.A. Cyc/iMH [a],[b].

Later we shall restate the MerkurTev-Suslin Theorem in a more

general setting, however, before we do this let us study the impact of the

Merkurfev-Suslin Theorem on the theory of Brauer groups; we claim that it

implies the following (widely conjectured)

Theorem 1 . Assume y c K and take [A] G Br(K) , then
d n n

[A] = ]>~ [a. ,b. ;n,K,d for suitable a.,b. € K*3 <c> = y
j=l D 3 3 3 n

and d = d(A) € N ,

hence A has the abelian splitting field K(vaT,. . ,^a~) over K .

Note that Theorem 1 implies Rosset's Theorem in §11., however, without an

effectively calculable bound for d(A) .

Proof. Thanks to Lemma 7 in §11. it suffices to assume n = p a p-power.
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Let us begin with the case flf=lM ; then - using Galois Theory of infinite

extensions (cf. e.g. Ch.I/IV in S.S. Shatz [1972]) - we may consider the

fixed field L of a p-Sylow subgroup of the (profinite) Galois group

Gal(K/K) of a separable closure K of K ; obviously L is such that

one can apply the Merkur*ev-Suslin Theorem: from the surjectivity of

R _ we see that our claim holds over L . Now L can be viewed as a
p,L

union of fields L such that the extensions L /K are finite of degree

coprime with p , hence - after using Corollary 13 in §9. together with

the Rosset-Tate Theorem in §11. possibly infinitely many times - our

assertion is true even over K if f = 1 . Suppose f > 1 ; we proceed

by induction on f . Assume (̂ ) - y f
 c K and take [A] € J3r(K) ;

f-1 p P

then p [A] € Br(K) , hence (see above and use Lemma 6 in §11.)
f-1^ m f - 1 m f_-]_ f

P [A] = 2 Z te^b^p.K,^ ] = 2 Z P [ai,bi;p ,K,d
which amounts to

m
[A] - ]>"" [a.,b.:p ,K,<;] € _ ,Br(K) .

*7—— i i r-1
1 = 1 P

Now the induction hypothesis yields (use again Lemma 6 in §11.)
m j- d r - i

[A] - 2 1 [aiSbiSp ,K,C] = 2 1 [ai,bi;p " ,K,C
P] =

, i=l i=m+l
f

a.,b. ;D ,K,c] . °21 K ^
i=m+l

In precisely the same way as in the case of Rossetfs Theorem in §11. we

find that Theorem 1 (together with Corollary 3 in §15.) implies

Corollary 1 . Any central simple K-algebra has a metabelian (and a

fortiori soluble) splitting field over K . •

Some people believe that "metabelian" could be improved to "abelian",

however, no reasonable idea for a proof seems to be known. For this and

similar questions cf. R.L. Snider [1979].

Now let us make a few additional remarks on the homomorphism

R in (1), If one introduces the (profinite) Galois group r :=
n ,i\

:= GalCK/K) of a separable closure "K of K , then it is possible to

interpret the results from §§12/13. in such a way that we even have iso-

morphisms

H2(T,K*) - > Br(K) and H2(I\un) c*—*nBr(K) (char(K)Jn)

where the H is to be understood as built up from continuous 2-cocycles

(the profinite group V is a topological group) only (one calls this the
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continuous cohomology ). Now, if y cz K , then y is a trivial r-module,

hence the Z-isomorphism y ®7 y ^ y (cf. Example 1 in §4. ) is even a
n Z n n "

F-isomorphism and we have (see above)
(2) H2(r,yn®zyn) ̂  H2(I\yn) ®z yn ^

In the general situation (i.e. without the assumption y cz K ) one can
2 n

still consider H (r,y ®7y ), and J. Tate [1976] has established a homo-n L n
morphism

(3) R' : K0(K)/nK_(K) »H2(r,y ®7y ) if char(K)|n

n 9 i \ z /. n z. n

which coincides with the one from (1) modulo the isomorphisms from (2) in

the case where y c K (cf. Theorem (3.1) ibid. ; for a motivation cf.

Exercise 2 ).

Now, using transfer arguments (formally similar to the argu-

ments from our proof of Theorem 1) one can show (cf. A.C. NepKypeB & A.A.

Cyc/iMH [a],[b]) rather easily that the Merkur'ev-Suslin Theorem can be

amplified to the

General Merkur'ev-Suslin Theorem . The homomorphism from (3) (and hence

the homomorphism from (1)) is an isomorphism, o

Exercise 1 . Show that Br(K) is generated by the classes of cyclic

algebras. (Hint. Use Theorem 1 together with Theorem 6 in §11.)

Exercise 2 . Assume <£> = y c K and L/K finite Galois, r := Gal(L/K).

Show that for any c € K* D (L*)n - i.e. c = cn for some C € L* -

x (a) := CC defines an element x € Hom(r,y ) = C (r,y ) which is in-
c c n n
dependent of the choice of c . Now identify y with y ®7 y (both

i i n n Z n
are trivial r-modules) via C *-* C ®C a^d consider (cf. Exercise 2 in §12.)

x ux, € C2(T,y ®7y ) = C2(T,y ) ( a,b G K* fl (L*)n ) .
a D n L n n

Now show

[a,b;n,K,d = [x UxK,L/K] in Br(K) if |K(9a):K| = n .
a D

(Hint. Use Lemma 2 in §11., Exercise 1 in §12. and Theorem 2 in §13.)
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§ 18 . A SURVEY OF SOME FURTHER RESULTS

There are many aspects of Brauer groups which we cannot dis-

cuss here for various reasons.

First, the relationship with Galois Cohomology (cf. §§12/13.

where we established an isomorphism Br(L/K) « H2(Gal(L/K),L*) =: H2(L/K)

for Galois extensions L/K ) leads to further results if one makes use of

general Cohomology Theory: then some of our results appear as special

cases of rather general constructions (such as Theorem 4 in §9. and the

exact sequence (4) in §13. which are both easy consequences of the Hoch-

schild-Serre spectral sequence). A good reference for this point of view

is A. Babakhanian [1972] or E. Weiss [1969].

Second, the relationship with cohomology (see above) may be

generalized in the following way: one may establish an isomorphism
2

Br(L/K) ̂  H (L/K) even when L/K is not Galois but separable. Then, of
2

course, H (L/K) has to be given a new meaning: it is no more a Galois
2

Cohomology group H (Gal(L/K),L*) but an Adamson Cohomology group. Here

we refer the reader to the original paper I.T. Adamson [1954].

Third, by introducing even more general cohomology groups -

the Amitsur Cohomology groups - one can obtain for instance all our results

on Br(K) without making use of Kothefs Theorem (as we do frequently).

The main advantage of this method, however, is based on the fact that all

this works to a wide extend over a commutative ring R rather than a

field K ; in these notes we disregard the notion of the Brauer group over

a ring although this theory is today highly developed. The reader should

consult for an introduction first F. DeMeyer & E. Ingraham [1971] and

then M.-A. Knus & M. Ojanguren [1974].

Fourth, there is a method - called the method of Polynomial

Identity algebras (PT-algebras) - which has been originally developed by

S.A. Amitsur for the purpose of furnishing his famous examples of K-skew
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fields D which are not crossed products (i.e. which contain no maximal

commutative subfield which is Galois over K ). A selection of references

is: the book C. Procesi [1973] and N. Jacobson [1975].

Fifth, much is known in the number theoretic cases, i.e. if

K is a local field {- a finite extension of either some p-adic field Q

or F ( ( T ) ) ) o r a global field (= a finite extension of either Q or

F (T) ). It turns out that the theory of Brauer groups over such fields is

closely related to Class Field Theory. Here we want to mention two nice

results for illustration: the first result is classical (from the 1930's)

and very deep in the global case:

If K is local or globalj then every K-skew field D is a

(1) cyclic algebra such that i(D) = o(D) . (cf. M. Deuring [1935,

pp.118] or A.A. Albert [1939,pp.149])

The second one has been established only recently and depends on the (also

recently established) classification of finite simple groups:

Let K C L be global fields such that K i L , then Br(L/K)

(2) is infinite.{see Corollary 4 in B. Fein et at. [1981] and more

generally B. Fein & M. Schacher [1982])

Basic references (for readers with background in Algebraic Number Theory)

are for example: J.-P. Serre [1962], J.W.S. Cassels & A. Frohlich [1967],

A. Weil [1967] and I. Reiner [1975].

For more information on the points mentioned so far in this

paragraph see the various articles in the proceedings D. Zelinsky [1976]

and M. Kervaire & M. Ojanguren [1981].

Sixth, one may link the theory of (infinite dimensional) skew

fields with Functional Analysis in the following way; the well-known

Mazur-Gelfand Theorem (cf. e.g. K. Yoshida [1965]) states:

,Qx Every skew field D which is at the same time a normed

algebra over C is isomorphic to C .

It is not difficult to deduce from (3) the following generalization of

Frobenius' Theorem in §10.:

- x Every skew field D which is at the same time a normed

algebra over R is isomorphic to R or C or H .

An immediate consequence of (4) is "Ostrowski's Second Theorem" from

Valuation Theory:

•5x Every skew field D which admits a complete archimedian

valuation is isomorphic to R or C or H .
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Finally, there are many results on Br(K) available in the

case where K is a Valued field (in the general sense of W. Krull); cf.

for instance O.F.G. Schilling [1950], W. Scharlau [1969] and P. Draxl [a].

Exercise 1 . Deduce (4) from (3) .
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PART III . REDUCED K^THEORY OF SKEW FIELDS

The history of reduced K -Theory begins with Y. Matsushima & T.

Nakayama [194-3] who proved (in modern notation) for a K-skew field D

(1) SK (D)-(l} in case K is a p-adic field .

Later Wang Shianghaw [1950] established a proof of

(2) SK (D) = {1} in case K is an algebraic number field .

In his proof he used the Grunwald Theorem (on the existence of cyclic

number field extensions with prescribed local behaviour) from Class Field

Theory. On this occasion, incidentally, Wang Shianghaw discovered the

(famous) gap in Grunwaldfs original proof and suggested a new version of

the above mentioned theorem which is nowadays called the Grunwald-Wang

Theorem (see e.g. E. Artin & J. Tate [1968]).

It was because of the results (1) and (2) that

(3) S K ^ D ^ C l }

was widely believed to hold in general*

Finally V.P. Platonov (cf. B.FI. fl/iaTOHOB [1975]) proved that

(3) is false in general ! In §24. we explain this by introducing an ad hoc

counter example (which, in order to be understood, requires hardly more

knowledge of skew fields than contained in §1. of these lectures). Before

this, however, we develop a theory of (the functorial properties of) K.

and SK over a skew field (see §22/23.) which includes proofs of the

algebraic part of the classical results (1) and (2) (some number theoretic

facts needed for the proof can only be stated without proof,for otherwise

we would have to go far beyond the scope of these lectures). For a proper

treatment of §§22/23. it is necessary to discuss certain results about

Dieudonne determinants (of matrices over skew fields). This is done in

§20. using a Bruhat normal form introduced in §19. (this is not exactly

the customary way to introduce Dieudonne determinants). §21. contains a

proof of the simplicity of the projective special linear group over a skew
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field; this, incidentally has nothing to do with K or SK^ . Finally in

§25. we sketch reduced unitary K -Theory which connects §16. (Part II)

with §§ 22/23/24. and makes use of §21.
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§ 19 . THE BRUHAT NORMAL FORM

Let R be a ring with 1 / 0 ; consider the full matrix ring

M (R) and call (as usual) GL (R) := M (R)* its (multiplicative) group

of invertible elements. In this context we introduced in §2. certain spe-

cial matrices, namely (cf. §2. for the exact definition)

E..(t) ( t 6 R ; i / j ; 1 < i,j < n ) ,

D.(u) ( u € R* ; 1 < i < n ) and

P(TT) ( if € Sn )

with properties

(1) £..(t)£..(t') = E..(t+t») , E.AO) = 1 , E.At)'1 = E .(-t) ,
lj 13 13 13 -*-3 -̂J

( 2 ) £'

(3) ^ i r r j i r r j

(4) Z?1(u)Z? i(u t) = D±(uu1) , Z? (1) = I , D . ( u ) " 1 = ^ . ( u " 1 ) ,

(5) Z? i (u)D. (u f ) = Z ) . ( u ' ) ^ i ( u ) ( i ^ j ) ,

(6) P(TT)P(TT') = P(TTTT') , P ( i d ) = i , P ( T T ) " 1 = P ( T T " 1 ) = P(TT)1

and (c f . Examples 1/2 in §2 . )

t r ans fo rming from A t o / A / I amounts t o

(7) u u; u
rotating the matrix A by 180 degrees

as well as (more generally than (7))
in the (i,j)-th position of the matrix P(TT) AP(TI) one finds

(8)
the element from the (TT( i) ,TT( j) )-th position of A .

In this context we want to remind the reader of Lemma 1 in §2. which is

responsible for most of the rules listed above. For our own convenience we

state this lemma again (this time, however, we do so in three steps):
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transforming from A to Em m(t)A (resp. AE..(t) ) amounts

(9) to adding the left(resp. right) t-multiple of the j-th row

(resp. column) to the i-th row(resp. column),

transforming from A to D.(u)A (resp. AD.(u) ) amounts to

(10) multiplying the i-th row(resp. -column) from the left(resp.

right) by u

and

transforming from A to P(K)A (resp. AP(-n) ) amounts to

(11) moving the i-th row(resp. column) into the position of the

fr(i)-th row(resp. column).

Now we are fully prepared for the important

Theorem 1 . Let D be a skew field and A € M (D) such that either its

rows are left linearly independent over D or AB - 1 for some B £

€ M (D) ; then there exists a decomposition

A - TUP(-n)V where T = \ ° L£/= Q \ ° ( u. t 0 ) 3

(12) V = X * and IT € S such that P(TT)FP(7T)"1

are uniquely determined by A .

Definition 1 . The decomposition of an A € M (D) according to (12) is

called the "strict Bruhat normal form of A ".

Proof. Let us first show that the T9U9V9T\ in (12) are uniquely deter-

mined: indeed let

TUP(T\)V - T't/'PU')^' be two such decompositions,

then

where the left-hand side of (13) is a lower triangular matrix. On the other

hand we find

VV1 - 1 + N where N is an upper triangular matrix with

0's in the main diagonal (hence a nilpotent matrix).

Obviously there is no position (i,j) where both matrices on the right-hand

side of (14) have an entry ? 0 ; thanks to (8) this remains true for the

right-hand side of (cf. (13) and (14))

(15) P(7r)F7t~1P(7r1)"1 = P(TT)P(TT! ) ~ X + P(-n)NP(-n' ) " 1 .

On the other hand we know that the matrix P(7r)P(irt) = P(TTirf ) has in

each row and each column exactly one 1 and n-1 0's ; therefore this
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matrix must be the unit matrix 1 - and this amounts to TT! = TT -, since

otherwise (by what we have observed concerning the right-hand side of (15))

the left-hand side of (13) could not be a lower triangular matrix. Hence

the right-hand side of (13) can be rewritten

and is a lower triangular matrix which is of the form o \ (cf. the

conditions on V and TT in (12)). ^ '

Therefore both sides of (13) are equal to 1 , and this implies (note that

TT' = TT is already known) V - V as well as TW = TU . Clearly the

latter implies T1 - T and U1 - U 9 and this completes the proof of the

uniqueness of the strict Bruhat normal form.

Now let us turn to the existence proof: according to our assumptions on A

we know that its first row has at least one entry i- 0 ; let (l,p(l)) be

the left-most position in the first row with such an entry ^ 0 ; then

n-1 row operations of the type described / $ T p(l)st

in (9) will transform our original /it- * 0 column
'~ \ I *

matrix A to the new matrix Ar as shown: \ 0 /
2

More precisely, A1 - ~| [ E..(-t. .)A for some elements t.- . Now con-
i=n

sider the second row of Af : if the rows of A are left linearly inde-

pendent over D , then the same is true for the rows of A' since left

multiplication with a matrix of the type £\ .(t) does not affect this

property (see (9)); if - on the other hand - AB - 1 for some matrix B ,
n

then i4!S! = 1 where By :- B~] [ E.^it^) (see (1)) . Hence we may con-
i=2 1

elude that the second row of A1 has at least one entry i 0 which is

then necessarily outside the p(l)st column; let (2,p(2)) be the left-

most position in the second row of A ' with such an entry f 0 and call

this entry u , then n-2 row operations of the type described in (9)

will transform our matrix A f to a matrix A" which has 0Ts only be-

low as well as in front of u (̂  0 and in position (l,p(l)) ) and u^

(̂  0 and in position (2,p(2)) ).After repeating this procedure another

(n-3)-times we will end up with a matrix
( -i ̂  1 j+1

A^n l) _ y-y YJ E±.(-ti.)A such that if u± is the left-

j=n-l i=n 1;] 1"5

(16) most entry i 0 in the i-th row of A , then u^ is in

the p(i)-th column (where p is some permutation of n ciphers)

and all entries below any u^ vanish.
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n-1 n 1 \ u 0
Now set T := f T T T £ . . ( t . . ) = V , U := \ and TT := p ""

j = l i=j+l ^ ID V * V V 0 u ^

€ S and conclude from (16) (using (10) and (11))

V :-- P W W i l = PMUh _

It remains to prove that P(TT)7P(TT) is upper triangular again; indeed,

according to our construction, the matrix U A has the following

properties (use (10) and (16)):

the left-most entry ^ 0 in the i-th row equals 1 and is

(17) situated in the p(i)-th column; moreover, all entries below

such an entry vanish.

Now our claim is obvious from (17) and (11) thanks to P(TT)TP(TT) -

= t f V 1 1 - 1 ^ ) " 1 since transforming from ZTV11"1* to z r V 1 1 " 1 ^ ) "

moves the p(i)-th column to the i-th column, n

Example 1 . In M (D) the strict Bruhat normal form of a matrix looks

as follows:
/ 0 b \ / 1 1 0 V b 0 V 0 1 V 1 0 \ ,

U d J ~- U b " 1 1 A o c A i o A o i) and

\ / 1 1 0 V a 0 1 V 1 0 V 1 a"2b\ .

) ~- W1 1 A 0 d-ca'VV 0 1 A 0 1 ) l

Lemma 1 . Let V = r /X I a n ^ IT € S 2?e given; then we may find ele-

(\*Y v \^*\
v' - A and 7M = JX ^n M (D) such that V = 7 '7"

P(Tr)y"P(Tr) X = X ° as well as P(TT)K'P(TT) -1-

V ° v V 'i;
Proof. Going through the existence proof of the previous theorem in the

special case A :- P(TT)7 we see that we can write

P(TT)7 - A - !Z7|tP(ir)7"

where the right hand side is the strict Bruhat normal form of the left

hand side . Now set 7T := VVU ; inspection shows that the required

properties hold. •

Now we turn to a weakened version of Theorem 1 ; this new theorem turns

out to be more suitable for applications (see next paragraph).

Theorem 2 . If a matrix A E M (D) ( D a skew field) admits a decompo-

sition
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A = TUP(T[)V according to (12) but without the requirement

that P(TT)1/P(7T) be upper triangular*

then the diagonal matrix V and the permutation TT are still uniquely

determined by A .

Proof. We start by writing V = VTK" according to Lemma 1; this gives

(19) A = TUP(v)V = TUT'P(-n)V" = T"£/P(TT)7"

where

T1 := P(TT)FIP(TT)~1 and 21" := TUT'U'1 are lower triangular

(cf. Lemma 1 and (10)). Since the right-hand side of (19) is the strict

Bruhat normal form of A the uniqueness of U and TT is an immediate

consequence of Theorem 1. •

Definition 2 . Any decomposition of an A £ M (D) according to (18) is

called a "Bruhat normal form of A ".

Theorem 3 . Let D be a skew field and A £ M (D) > then the following

conditions are equivalent:

(a.) A € GL (D) 3 i.e. A is inVertible;

(&) AB = 1 for some B 6 M (D) 3 i.e. A has a right inverse;

(y) CA - 1 for some C G H (D) j i.e. A has a left inverse;

(6) the rows of A are left linearly independent over D ;

(e) the columns of A are right linearly independent over D .

Corollary 1 . Precisely the matrices in GL (D) ( D a skew field) ad-

mit a Bruhat normal form and even the strict Bruhat normal form, a

Example 2 . Let D be a ring (with 1 ^ 0 ) which admits elements

a,b E D such that u := ab - ba € D* (e.g. take for D a skew field

which is not commutative). Then

:Xs °Xo ;
although the rows (resp. columns) of A are right (resp. left) linearly

dependent over D . Consequently

A* = ( 1 ^ ) t GL (D) (cf. Exercise 1 in §2.). All this
\ a ab / n

shows that one must handle "right" and "left" in the context of Theorem 3

with the utmost care I

Proof of Theorem 3. "(a)=>($) 9(y) " is trivial; "fBJ ,(6)=>(a)" follows from

Theorem 1 because the various factors in the (strict) Bruhat normal form

are invertible (use (1)..(6) in connection with (7)/(8) in §2.); "(

(D)
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is also clear, because the previous argument yields C € GL (D) and conse-

quently A € GL (D) ; "(a)=>(6) ,fej" can be seen as follows: operations

on a matrix according to (9),(10),(11) do not affect the properties des-

cribed in items (6)/(e) , but V9T visibly have these properties (if we

decompose A according to Theorem 1); finally we must prove "(ej=>(aj":

indeed since A (-> A defines an isomorphism M (D)°P ̂  M (D°P) (cf. (9)
n n

in §5.) we are able to make use of "(&)**(a)" above, a

Exercise 1 . Let D be a skew field with involution I (cf. §16.). Set

A := M (D) and extend I to A via ( a.. ) := ( a . . ) . Now take
n i] ]i

A € A* such that A - A and let
(u 0

A = TUP(-n)V be a Bruhat normal form , U = \
, \ 0 u
show N n

IT = 7T a n d u . = u x.v ( i = l , . . , n )

(cf. P. Draxl [1980,p.108]).

Exercise 2 . In the situation and with the notation of Exercise 1 show

that one can achieve V - T provided char(D) i- 2 .

Exercise 3 . Use Exercise 2 for a proof of Theorem 5 in L. Eisner [1979].
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§ 20 . THE DIEUDONNE DETERMINANT

Thanks to the various results of the previous §19. the

following definition is feasible.

Definition 1 . Let D be a skew field; define a function 6ex: M (D) -* D

A t GL (D) j
6ET(A) := «j n if n

sgn(7T)TT u- * ° A £ GL (D) ;-{
here the u. are the (non Vanishing) diagonal elements of the matrix U

and TT is the permutation of a Bruhat normal form of A .

Note that U (hence the u. ) and TT above are uniquely determined by A

thanks to Theorem 2 in §19.

Example 1 . Example 1 in §19. yields the following formulae in M (D) :

6eT( c d ) = ~bG a n d 6 e T( c d ) = a d " a c a ^ i f a

Let us establish rules for handling 6ex :

Lemma 1 . Let D be a skew field and B 6 GL (D) 3 then

Proof. This is obvious since the matrix U and the permutation IT in a

Bruhat normal form of B remain unchanged, a

In order to avoid complicated and lengthy phrasing let us introduce the

following (certainly not classical) notation:

Definition 2 . In a skew field D for elements a,b 6 D the notation
i——i — 1

" b = a[r] " will stand for the phrase "a b is a product of at most

r commutators of elements in D* ".

In this sense we claim



134

Lemma 2 . Let V be a skew field, B G GL (D) and £/ := \
n \ 0 u )

( u. ?* 0 ); t/zen SeT(UB) = ] f U.6£T(5) [n-l|

Proof. Let 5 = T't/'PU' )V! be a Bruhat normal form of 5 , then a

straightforward calculation shows

UB - UT'U'Pitt'W = rf£/"P(Trf)P

/l \ /u" 0 \
I7" := [/T'[/ -1- = ^ N ^ a n d u" = UU' = I 1 \ (here

< o
1 \ and uV = u.u! )

n7 n . •This completes the proof thanks to ~| f uV = ~| f u. ] f u! [ n-11
i=l X i=l "• i=l X

Now we come to the core of our analysis of the function 6E:T .

Lemma 3 . Let D be a skew field, B € GL (D) and P(i,i+1) the per-

mutation matrix belonging to the transposition (i i+1) ; then

= -6ET(S) [T] .

Proof. Let B - TUP(-n)V be a Bruhat normal form of B and write T -

= ( t ) (with t = 1 and t = 0 if r < s ) ; now denote t :=
rs rr rs '

:= u. -t. . .u. € D where u is the r-th entry of the (diagonal) matrix
l+l i+l,i I r

[/ in the above Bruhat normal form. A straightforward calculation gives

(1) P(i

Now assume either t = 0 (this amounts to t. . = 0 ) or IT (i) >

> 7T (i+1) (this amounts to the fact that E. . (t) remains upper tri-

angular after being "moved around the two permutation matrices" on its

right hand side in (1)); then it follows (cf. (1)..(11) in §19.) from (1):

Since the right-hand side of (2) is a Bruhat normal form of the left-hand

side thereof and since sgn(i i+1) = -1 , we get our assertion immediately

from u1..ui+1u...un = r

r=l
Now assume the contrary of the above, i.e. t i- 0 (this amounts to 0

f t. . ) and 7T (i) < 7T (i+1) (this amounts to the fact that the
l+l, I
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matrix E. . At) becomes lower trianguler after being "moved around..."
1 , l+l

(see above) in (1)); an easy inspection shows that the identity
/ i t V o i \ _/i o V t o . V i t"x\

U i A i o) - W 1 1 A o -t-xA o i J
is valid, and this gives the formula ( t £ D* )

(3) BM+1(t)P(i.i+l> = * 1 + l f i ( t - ^ ^ ( t ^ ^ - t - ^ B ^ ^ t -
1 )

(note that the right-hand side of (3) is the strict Bruhat normal form of

its left-hand side). Merging (1) with (3) yields (after using (1)..(11) in

§19. several times)

where the right-hand side of (M-) is a Bruhat normal form of the left-hand

side thereof. This gives the required formula for 6ex thanks to

-1 -1 A
) = u t ut

u..(-u tut )..u =-u..t .ut .u ..u = -i r u m • °
1 i+1 i n 1 i+l,i i i+l,i l+l n ' ' r1—'

• ' r=l

The three preceding lemmas may be united into a single statement, namely

Theorem 1 . Let D be a skew field and 6ex: M (D) -* D the function

according to Definition 1; then 6ex is surjective and has the property

A t GL (D) or B t GL (D) ,
• ~ n n•{ n -1 A9B £ GL (D)

1 n

Corollary 1 . Let D be a skew field and 6ex as above; then 6ex in-

duces a surjective homomorphism of groups

det: GL (D) •D*/[D*,D*] =: D*ab

n

which coincides with the usual determinant in case D is a commutative

field.

Definition 3 . The function det according to Corollary 1 is called the

"Dieudonne determinant".

Proof. The upper line of the formula to be proved is clear, also the sur-

jectivity of 6ex thanks to 6ex(Z?.(d)) = d for any index i ( d £ D ).

For the proof of the lower line of our formula let A - TUP(v)V be a

Bruhat normal form of A , hence
n /u 0

&£T(A) - sgnCir)! f u. where U = >0 v
Now select the permutation x £ S such that P(x) = •p^7rM1/

/'o) > hence
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sgn(x) = (-1) sgn(Tr) since the matrix (-I/Q) is a product of

(n-l)n/2 matrices of the type P(i,i+1) . Therefore (cf. (7) in §19.)

A = TVP{T)TX[°/^\ where T1 arises from V via rotation

by 180 degrees (and is hence lower triangular with l?s in the

main diagonal) ,

and consequently (using Lemmas 1/2/3 repeatedly in connection with (5))

= TT u
1=1 n

= sgn(T)(-l)(n"1)n/2TT

= sgn(Tr)"] f u i

Corollary 2 . If D is a

n2-l

field and A9B € GL (D) 3 then

2(n -1)

Proof. Apply Theorem 1 to both sides of the equation B(B AB) = AB . a

Corollary 3 . If D is a skew field and A € GL (D) a product of at

most r commutators of elements in GL (D) ., t/zenJ n

-1) and

6ex([GL (D),GL (D)]) = [D*9D*] .

Proof. The second statement follows from the first one; as for the first

one, apply Corollary 2 to both sides of the equation A(A B AB) - B AB

which yields our assertion in case r = 1 . Then use induction on r . Q

Definition 4 . Let D be a skew field; write SL (D) :- Ker det < GL (D)

and E (D) :=
n

. .(t) < n t € J)\ < GL (D)/ — n

Obviously E (D) c SL (D) ; our goal is to prove equality. For this pur-

pose we need two auxiliary results which are also of general interest.

Theorem 2 . Let D be a skew field and A £ GL (D) , then A = ED (a)

for suitable E € E (D) and a € D* where the class 1 - det (A) € D*ab

is uniquely determined by A .

Corollary 4 . Let D be a sk

a product of triangular matrices.

Corollary 4 . Let D be a skew field, then every matrix A € GL (D) is
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Proof. The corollary and the last assertion of the theorem are clear; it

remains to prove the existence of such a decomposition A - ED (a) .We

proceed by repeated row operations of type (9) in §19. as follows: thanks

to Theorem 3 in §19. the first column of A must have an entry £ 0 ,

hence we can transform A via left multiplication with elements from

E (D) to a matrix A1 € GL (D) such that Ar has a 1 in position

(1,1) and O's elsewhere in the first column (note that we do not need

row operations of type (10) in §19.; cf. also E. Artin [1957 ,pp.151]).

Now we observe (again because of Theorem 3 in §19.) that the second column

of Ar must have an entry t 0 outside the first row, hence we can

transform A} via left multiplication with elements from E (D) to a

matrix A" E GL (D) with l's in positions (1,1) and (2,2) and with

0!s elsewhere in the first two columns. After repeating this procedure

another n-2 times we end up with a matrix D (a) for some a £ D* .

Summarizing we find

FA = D (a) with some matrix F which is a product of

hence

n 2
certainly less than n matrices of type E..(t) ,

A = ED (a) where E := F'1 € E (D)
n n

Whitehead Lemma . Let R he a ring (with 1 t 0 ) and u,v € R* > then

0 u / \ 0 u vu v / 2

Note that the definition of E (R) (cf. Definition 4) makes also sense
n

for rings (and not only for skew fields).

Proof. Inspection shows that we have the identities

1 -u
u o \ ( I i \ / i o V i i
o u V " V o i A - i l A o i

\ 0 uvu v V V 0 u A 0 v A 0 u v "
and f1 ° ) ( u " l o Y v " l

Theorem 3 . If D is a skew field, then E (D) - SL (D) .

Proof. Mc" has been observed already; as for "JD" everything is clear from

Theorem 2 because the Whitehead Lemma obviously implies D (a) € E (D)
n n

for all a € [D*9D*] •

Definition 5 . Let A he a simple ring i M (F: ) > then

KX(A) := A*/U*,A*] =: A*
a b

is Galled the "Whitehead group of A " .

It should be pointed out that in general K (R) may be defined for any
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ring R (with 1 ^ 0 ) ; for this see e.g. J. Milnor [1971]. In the case

of a simple ring t M (F ) our definition is easier to state and amounts

to the same.

Theorem 4 . Let D be a skew field* then

(i) SL (D) = [GL (D),GL (D)] unless n = 2 and D = F_ ;n n n 2

(ii) SL (D) = [SL (D)9SL (D)] unless n = 2 and D = F or F3 ;

(Hi) if A := M (D) i M (F ), then the Dieudonne determinant det

induces an isomorphism

K^det): K^A) -OL*K (D) ;

its inverse is induced by a )-* D (a) .

Proof. (Hi) is clear from (-£,) together with Corollary 1 and Theorems 2/3.

Moreover, "£" in f£J and (ii) is obvious; on the other hand we have in

GL (F ) the identity

( o i ) z ( o i ) = ( o -l )( o i )( o -l ) ( o i ) '

hence - after eventually going over to transpose and inverse -

SL2(F3) c [GL2(F3),GL2(F3)] .

Therefore it suffices to show TttT in (ii) ; by Theorem 3 this

is clear thanks to (3) in §19. provided n >_ 3 > i.e. we are left with

the case n = 2 and |D| >_ ^ . Here we make use of the identities

/ 1 b-aba\ _ / a 0 , V 1 -b V a ° iVV 1
\0 1 ) = { 0 a-VV 0 1 A 0 a"V U

/ 1 0 \ /a"1 0 V 1 0 Y* 0 VV ! °
\b-aba 1 / \ 0 a A"b ! / \ ° a / \~b ! /

which show - in connection with the Whitehead Lemma - that it suffices to

prove the following technical result:

Lemma 4 . Let D be a skew field i F ,F ; then every d € D may be
2. o

written
d = ̂  ( a b a -b ) with suitable a 9b € D* .'j r r r r r r

Proof. In case "char(D) f 2" (this implies |D| > 5 and i-6 Z(D) ) we

can write either
_ d+1 d+1 d-1, .vd-1 r . .. , ,

d - —r—1—« 1 + —r-H-D—« C-l) if a / 1,-1
or

+l = +(d+l) + (-d) with some d f -2,-1,0,1 where +(d+l), -d

may be written as in the first of these two subcases.

In the remaining case "char(D) = 2" (i.e. 1 = -1 ) we write either

1 = (d+l)l(d+l) - 1 + did - 1 with some d t 0,1 or
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0 = I3 - 1 or finally

d = (d+l)d(d+l) - d + d3 - d if d t 0,1 . • •

We close this paragraph with a few additional remarks concerning Theorem

4: of course one would wish to know how many commutators are really ne-

cessary in (%) and (ii,) in order to represent an element in SL (D) .At

least in the case of a commutative field D this question has a nice

answer: "one" in (i) and "at most two" in (ii) (cf. R.C. Thompson [1961]).

In the non commutative case, however, all this turns out to be much more

complicated; references are e.g. U. Rehmann [1980] and B.B. KypcoB [1979]

in the (generally not so well-known) reports of the Byelorussian Academy

of Sciences at Minsk (USSR).

Exercise 1 . In the situation and with the notation of Exercise 1 in §19.

show: if H A is such that A = A , then 6ex(A) is modulo [D*,D*]

a product of at most n elements d 6 D satisfying d = d .



§ 21 . THE STRUCTURE OF SI_n(D) FOR n > 2

In the previous paragraph (cf. Theorem 4- ibid. ) we have seen

that SL (D) is a perfect group (i.e. coincides with its own commutator

subgroup) provided D is a skew field (unless n - 2 and D = F or

= F ). Here we aim at a deeper investigation of the structure of SL (D).
o n

For an alternative point of view the reader should consult Chapter IV in

E. Artin [1957] as well as Chapter II ibid, where the relationship of all

that to projective and affine geometry is emphasized much more than here.

Theorem 1 . Let D be a skew field, then

Z(GL (D)) = { dl | d € Z(D)* } and

Z(SL (D)) = { dl | d € Z(D)* and dn € [D*,D*] }.

Proof. According to Lemma 2 in §2. the right-hand sides in the theorem are

equal to Z(M (D)) fl GL (D) resp. Z(M (D)) PI SL (D) , hence we get "3"
n n n n —

of our claim. For the proof of the converse it clearly suffices to show

{ A £ M (D) | AB - BA for all B £ SL (D) } c Z(M (D)) .

By virtue of Theorem 3 in §20. this is exactly what has been shown in

Lemma 2 in § 2. •

In the sequel we shall study three auxiliary results.

Lemma 1 . Let D be a skew field and G := SLn(D) (resp. := GLn(D) ),

then G. := { ( a ) £ G | a. = 0 for all s i i } is a maximal sub-

group in G ( i = l , . . , n ; n > > 2 ) .

Proof. The fact that G. is a group is checked quickly by inspection. Now

by definition (cf. §§2./19.)

(1) E (t) € G. (resp. £ (t),Z) (u) £ G.) for all r t i ,

r s i r s s i

hence by virtue of Theorem 3 in §20. (resp. Theorems 2/3 in §20.) using

(3) in §19. it suffices to show the following:
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given a subgroup H c G such that H t G. , H => G. ; then

E. (t) G H for some s .j* i and all t € D*9 hence H = G .

For the proof of (2) let us select a matrix A - ( a ) G H \ G. , this

implies a. ^ 0 for some index s f i . After possible left multipli-
1 S -1 -1

cation with 22.(ta. )D (a. t ) G SL (D) we may assume that we can find
I is s is n J

an index s i i with the following property:

given t G D* , then there exists a matrix A = ( a ) G

G H \ G. such that a. = t .
1 IS

From now on we proceed basically as in the proof of Theorem 2 in §20.,

namely: by repeated use of operations of type (9) in §19. we may transform
from A to E. (t) inside our subgroup H , hence (2). a

is

Lemma 2 . If in the situation of Lemma 1 we have a normal subgroup N < G

such that N $£ Z(G) , then NG. = G for some index i .

Proof. If N ^ G. for some index i , then NG. = G by the preceding
n

lemma. Now suppose N c ( j G. = {diagonal matrices in G } ; since N is

normal in G the matrix (cf. (9)/(10) in §19.)

E (t) 1 \ \E (t)"1 = "\ \E (u^tu -t)
rs I . \ frs rt\ frs r s

V 0 u / \ 0 u /N n' N n'

must be a diagonal matrix in G for all r t s and all t G D , hence

in particular 0 t u-,=••= u G Z(D) , i.e. N cz Z(G) by Theorem 1 . a

Lemma 3 . Let D be a skew field, G := SL (D) and G. according to

L e m m a 1 : then H . :- ( E . ( t ) I t G D ; r = l , . . , n ; r ^ i ^ is a normal
I \ ri ' /

abelian subgroup of G. such that ( i = l,..,n,n>_2)

G = <^gH.g~ | g G Q>y(i.e. G is the normal closure of any

of its subgroups H. ).

Proof. The fact that H. is an abelian group is clear from (2) in §19.

Thanks to (3) in §19. the assertion (3) is certainly true in case n >_ 3

(cf. also Theorem 3 in §20.). In the remaining case n = 2 , however, (3)

is also easily seen because of

) -1
. 0

Therefore we are left with showing that H. is normal in G. : let A -

= ( a ) G G. and B :- A'1 = ( b ) GG. , then (cf. (9) in §19.)
rs I mr I

E..(t)A -: Ax = ( a! ) where a1.. - a.. + ta.. and a' - a in all
]i rs ]i ]i n rs rs

other cases. It follows



= 1 if m = s ^ i and = 0 if
b a'
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— mr m ^ = l if m = s = i and = b .ta.. if m
mj 11

which amounts to
n

A E. .(t)A - BA' - 7~y E .(b .ta..) G H. ( j t i ) . a
m=l

Now we come to the principal result of this paragraph.

Theorem 2 . Let D be a skew field, then - unless n = 2 and D = F or

= F - the proper normal subgroups of SL (D) ( n > 2 ) are precisely
o n

the subgroups of the centre Z(SL (D)) > i.e. the factor group

PSL (D) := SL (D)/Z(SL (D)) is a simple group for n > 2 .

Proof. Let N _< SL (D) =: G be a normal subgroup such that N <k Z(G) ;

then Lemma 2 implies NG. = G for some index i , hence (because of Lemma

3) we obtain

G - \ ng.H.g. n n € N 9 g. E G . ) - \ nH.n n 6 N / -x ei i&i ' * &i l / \ I ' /
= NH.

I

and therefore - since H. is abelian - [GSG] = [NH.,NH.] c N . Now use

(ii) of Theorem 4 in §20. which implies G = [G,G] = N . n

Theorem 2 leads to a series of finite simple groups PSL (F )

(unless n = 2 and q = 2 or =3 ); remarks on these may be found e.g.

in E. Artin [1957, pp.170]. Another good reference for this paragraph is

Chapter II in J. Dieudonne [1963] .

Exercise 1 . Show that G L
2C

r
2'

) " SL2^F?') " P S L 2^
F
2^

 i s isomorphic to

the dihedral group of order 6 (which is neither perfect nor simple).

Exercise 2 . Prove that SL (F ) is not perfect and show that PSLO(F )

is isomorphic to the alternating group of degree 4 (which has order 12

and is not simple).

Note that the exercises show that Theorem 2 is best possible.



§ 22 . REDUCED NORMS AND TRACES

Let A be an (associative) K-algebra ( K a (commutative)

field) of finite degree |A:K| =: m . Consider the left multiplication

L : A -> A , x t-> ax
a

and identify it (as usual) via L 6 EncL(A) ̂  M (K) with a matrix.

a K m

Definition 1 . In the above situation

N (a) :- det(L ) "norm of A/K "
a is called the ( a € A ).

TrA/1/a) := tr(L ) "trace of A/K "

A/ JA a

Of course, the above norm resp. trace coincide with the usual norm resp.

trace in case A/K is a (finite) field extension. Moreover, the following

formulae are clear from the definitions (since the corresponding proper-

ties of det and tr are well-known from Linear Algebra):

(1) N A / K : A ~* K is a m u l t i P l i c a t i v e m aP *
(2) NA/K(a) = a

m if a 6 K ( m = |A:K| ) ;
(3) TrA/K: A "* K i s K ~ l i n e a r '9
(4) Tr , (a) = ma if a € K ( m = |A:K| ) ;

(5) TrA/K(aa') = TrA/K(a
!a) ( a,a' £ A ) .

Furthermore, we find

(6) N , (a) t 0 if and only if a € A* ;

here the "if" is obvious whereas the "only if" may be seen as follows:
N , (a) f- 0 means that L is an automorphism, hence L f = id for some
A/ IN. a a A

f £ Aut (A) , i.e. af(l) = 1 and therefore a € A* .

The next result should be well-known:

Lemma 1 . Let L/K be a finite field extension of degree m :- |L:K| and

V a vector space over L of finite dimension n := dim (V) (hence mn =
L

= dim (V) ), Then any f € End_(V) may be viewed as an element in Endv(V)



and in this sense we have

detK(f) = NL/K(detL(f)) and trK(f) = Tr L / K(t L

P r o o f . L e t { e . 9 . . , e } be a n L - b a s i s o f V and { f i S . . , f } a K - b a s i s o f
I n 1 m

L , h e n c e { f . e . | 1 <_ i <£ m , 1 _< j <: n } a K - b a s i s o f V . Then we g e t

f ( e . ) = > x . e w i t h x . € L ( 1 < j < n ) and

m
L ( f . ) = y~ yr*!f with yr;? € K ( 1 < i < m ) ,

hence
n mf ( f . e . ) = f . f (e . ) = y~ y ~ yr^f e

^ 1 3 ^ 1 ^ 1 S 1 S r

All this implies the second of our two formulae thanks to

X± ^ L / K r r L/K
r=l s=l r=l r=l

The first formula is somewhat deeper; for its proof we apply the following

trick: on both sides of the formula we find multiplicative functions, hence

- by Corollary 4 in §20. - it suffices to assume that

( x . ) 6 GL (L) is triangular
rj n

(note that the case f £ Aut (V) is trivial since both sides of our for-
L

mula vanish). Then
( yr;? ) € M (M (K)) = M (K) is block triangular

si n m mn
rr

with the (m,m)-blocks ( y . ) € M (K) in the main block diagonal. Now we
si m

may use standard results from Linear Algebra concerning determinants of

triangular block matrices and obtain

det (f) = TT detK( y£ ) = TT V K ^ = NL/K(T7 Xrr) =
r=l r=l r=l

= NL/K ( d e tL ( f ) ) °

An immediate application of Lemma 1 are the

Tower Formulae . Let L/K be a finite field extension and A a finite

dimensional h-algebra^ then ( a € A )

NA/K ( a ) = NL/K(NA/L(a)) and T rA/K ( a ) = TrL/K(TrA/L(a)) ' °

In the case of a central simple K-algebra A it turns out that N . and
A/ IN.

TrA/K a r e no1: soPnis"t^-ca"te^ enough (cf. Lemma 3 below); in order to under-

stand this we need some preparation: in what follows we use the notation

and terminology from Part II and start our investigations with the highly

important
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Lemma 2 . Let [A] € Br(K) and E a splitting field of A y i.e. one

has an isomorphism f: A ft E ^ > M (E) . Then we have
IN. II

det(f(a®l)),tr(f(a®l)) € K for all a € A

and these elements in K are independent of the choice of E and f .

Definition 2 . In the above situation (a € A)

RN , (a) := det(f(a®l)) "reduced norm of A/K "
A / K is called the

RTrA/ fa) \- tr(f(a®l)) "reduced trace of A/K ".

A/ K

Proof. If we have another isomorphism g: A ® E -̂ -»- M (E) then g(a®l) =

= tf(aftl)t~ for some t € GL (E) because of the Skolem-Noether Theorem
n

in §7., hence our claim. Now let F be another splitting field of A ; we

may assume E c F (for otherwise consider EF and apply our reasoning

twice in the situations E c E F and F c EF ) and consider the isomor-

phisms

A ft F-s*^(A «„ E) ft F
K h K E

where h is according to Lemma 2 in §5. (such that h(a®x) = (aftl)ftx for

all a 6 A 9 x € F ) and j is the isomorphism of Lemma 4 in §5. Now

call g :- j (fftidp)h ; it follows

g(aftl) = j (f(aftl)ftl) = f(aftl) for all a £ A ,

hence the claimed independence of the choice of the splitting field. It

remains to be proved that det(f(aftl)) and tr(f(aftl)) lie in the base

field K . Now by what we have just seen we may assume E/K to be finite

Galois (cf. Theorem 9 in §9.) with V := Gal(E/K); then A ft E resp.

M (E) carry the structure of a left T-module via

x := id fta(x) ( x 6 A ft E ) resp. componentwise in M (E) .

Therefore it makes sense to define a map f by
°f: A ft E -• M (E) , x h> a(f( a

 x)) ( a € r ) .
i\ n

A straightforward calculation shows that f is likewise an E-algebra

isomorphism for every a € T , hence - since the independence of the

choice of the isomorphism is already known -

det(f(aftl)) = det(af(aftl)) = det(a(f(a®a 1))) =

= det(a(f(a®l))) = adet(f(aftl)) for all o € T

which amounts to det(f(aftl)) € K ( tr(f(aftl)) £ K is shown similarly), a

Lemma 3 . Let [A] € Br(K) and n := |A:K| (i.e. n the reduced degree

of A/K )3 then

NA/K(a) = (RNA/K(a))
n and TrA/R(a) = n(RTrA/R(a)) ( a € A ).
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This lemma, incidentally, justifies the names reduced norm resp. trace !

Proof. Select a splitting field E of A such that |E:K| divides n

(cf. Corollary 6 in §9.), i.e. rs = n where r := |E:K| . Now consider

the maps

a®l A 8 E -^-*M (E) tx End_(En) c Endv(E
n) tx M (K) A

K f n E — K rn

a A > M (K) = M (M (K)) Al .
h n2 s rn

Thanks to Lemmas 1/2 we find

det(h(a)) = (detK(f(a®l)))
S = (NL/K(detL(f(a®l)))f =

= (detL(f(a®l)))
n = (RNA/K(a))

n .

On the other hand (by Definition 1) we get N
A/K(

a) = det(h(a)) thanks to

the Skolem-Noether Theorem in §7., hence our first claim; the second claim

(concerning traces) follows in exactly the same manner, n

Now we state five formulae which are more or less clear from our defi-

nitions:

(7) RN , : A -> K is a multiplicative map ;

(8) RNfl/v(a) = a
n if a G K ( n2 = |A:K| )

(9) RTrA/K: A "* K i s K " l i n e a r '

(10) RTrA/K(a) = na if a € K ( n2 = |A:K| ) ;

(11) RTrA/K(aa') = R T r ^ a ' a ) ( a,a' G A ) .

Furthermore, we find (cf. (6) and Lemma 3)

(12) RNA/K(a) t 0 if and only if a G A* .

Before we proceed we need to make a remark: if D is a skew field then we

may define the trace tr: M (D) -#• D in the usual way (i.e. the sum of the

entries of the main diagonal), however we must handle this function with

care: for instance, it will not in general fulfill tv(AB) = tr(BA) as in

the case of a commutative ring.

Theorem 1 . Let D be a K-skew field, A := M (D) (i.e. A a central

simple K-algebra)j 6ex: A -> D according to Definition 1 in §20. and

tr: A -> D the trace, then ( a G A )

RNA/K(a) = RND/K(6ex(a)) and RTrA/K(a) = RTrD/K(tr(a)) .

Proof. Let E be a maximal commutative subfield of D , hence a splitting
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field of D and A (cf. Corollary 6 in §9.); this implies i := i(D) =

= |E:K| . Now denote f: D ® E ^» M.(E) the isomorphism which exists by
K i

our assumptions on E ; then we find isomorphisms
g: A » E - ^ M (D ®v E) , f : M (D » E) -ot* M (M.(E)) and

K n K n n K . n i

h : = f g : A L E-^->M (M.(E)) = M .(E)
n K n I ni

( g is the E-linear extension of the K-linear map M (D) •• H (D 1 E)
r n n K

which arises naturally from the embedding D •+ D ®.. E , d H> d®l ; f

J\ n

arises componentwise from f ). The idea of the proof is that we compute

(say) the reduced norm with regard to D (resp. A ) with the aid of f

(resp. h ); so if a = ( a ) € M (D) = A then h(a®l) is a block matrix

with the (i,i)-block ( f(a 81) ) G M.(E) in the position (r,s). It

follows (cf. (9))RTrA/K(a) = tr(h(a«l)) = g tr(f ( a g

= RTrD/K(g a^) =RTrD/K(tr(a)) ,

hence the second of the formulae claimed. The first one is more sophisti-

cated: clearly it suffices to prove it in case a € A* - GL (D) only

(for otherwise both sides of the equation vanish; cf. (12) and Definition

1 in §20.); then - since both functions RN. . and RN , 6ex are multi-

plicative (cf. (7) and Theorem 1 in §20.) although 6ex is not in general

(cf. e.g. Example 1 in §20.) - we may use the trick already known from the

proof of Lemma 1, namely - by Corollary 4- in §20. - we may assume that

a = ( a ) € GL (D) = A* is triangular,
rs n

Then h(a«l) is block triangular with the (i,i)-blocks ( f(a 81) ) €

€ M.(E) in the block main diagonal. Again we may use standard results

from Linear Algebra concerning determinants of triangular block matrices

and obtain (cf. also (7))

RNA/K(a) = det(h(a«l)) = Jl det(f (a^l)) = JJ
 RND/K

(arr} =

= RND/K(fT arr) = RND/K(6eT(a)) .a
r=l

The preceding theorem can be restated in terms of the functor K (see

Definition 5 in §20.) with the aid of Wedderburn's Main Theorem in §3.

(here K (det) is the isomorphism described in Theorem 4- in §20.).

Corollary 1 . Let A be a central simple ^-algebra and D its skew

field component (i.e. A c± M (D) for some n ), then RN , (resp.
n A/1\
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RN ) induce homomorphisms K (RN. ) K,(A) • K,(K) = K*
D/K 1 A/K J. ^ (J^J ) 1

(resp. Ki^RNn/K^ ^ such that the dia- (A^+\ \ ^ A 7 K

on the right hand side commutes(here A * M ^ ) ;: VD) K^J ^ ' °

Lemma 4 . Let [A] € Br(K) * t/zen RTr , : A -• K is surjective.

Proof. If it were not surjective it would have to vanish identically (be-

cause it is K-linear by (9)). Let E be a splitting field of A , i.e.

f: A »„ E a* M (E) , and {a, ,. . ,a } a K-basis of A ( m = n2 ) 9 thenK n 1 m
{a 81,..,a 81} is an L-basis of A t L (cf. Theorem 3 in §4.), hence
1 m K

tr would consequently vanish on M (E) (because of tr(f(a.®l)) =

RTr < (a.) = 0 for all j ) which is obviously nonsense ! Q
A/IN. 3

Needless to say, thanks to Lemma 3 the (ordinary) trace Tr^/^ va~

nishes identically if the characteristic of K divides |A:K| 5 hence

the reduced trace obviously gives more information than the trace (which

gives no information at all in the above mentioned case).

Theorem 2 . Let [A] € Br(K) and L/K a (not necessarily finite) field

extension* then ( a € A )

A« L/L &/K R T rA« L / L ( a 8 1 ) = R T r
A / K

( a ) •

K K

Proof. Let E be a splitting field of A 8 V L , hence one of A (see

Lemma 2 in §5.), and let h: A Q E ^ > (A % L) ®_ E be the isomorphism
K. K L

from Lemma 2 in §5. (such that h(a®x) = (a®l)®x ) , then - if g:
(A ® v L) ®T E—c*-*M (E) is the isomorphism which exists by our assump-1\ L n
tions - we may consider the isomorphism f := gh: A 8^ E ~ > M (E) . It

K n
follows RNAia T / T ^ ^ D = det(g((a81)81)) = det(f(a81)) = RN. /lx(a)Aol./ij/L A/K

K
and similarly for the reduced trace. Q

Again we want to restate the first claim of the preceding theorem in terms

of K ; this gives (with the notations introduced in Corollary 1)

Corollary 2 . Let [A] € Br(K) and L/K a (not necessarily finite)

field extension* then the embedding K (A8 L) > K (L) = L*

iT /v: A -> A 8^ L , a K a81 induces . . N f 1 A® L/L
7 K1(lT/K)

a homomorphism K ( i y ) swc/z t /zat ' I I
1 L / K / A \ \s

the diagram shown commutes (here 1/ ' K /R>j T* i
1^ A/K;

A ĵ  M2(F2) ):
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K V B / K ^ = (RNA/K(a)) and mVkKW*
X) = m(RTrA/K(a)) •

K K
Proof. Take a common splitting field E of A and B , and consider the

o
isomorphisms f: A ft E -£*-> M (E) and g: B ft E ~£*-* M (E) (where n =

K n Km
= |A:K| ) ; now i f <f>: (A ft B) ft E -**+ (A ft E) ®_ (A ft E) i s t h e i s o -

K K K Ju K
morphism according to Lemma 3 in §5. (such that <|>((a«b)ftx) = (aftl)ft(bftx) )
and if;: M (E) ft M (E)-^-»M (M (E)) = M (E) is the one described inn E m m n mn

Corollary 1 in §5. (which is such that tjj(aftl) -3.1 ) we consider the iso-

morphism h :- i|>(fftg)$: (A ftv B) «__ E -e*> M (M (E)) = M (E) . Here it is
K K m n mn

easily seen that h((a®l)®l) is a diagonal block matrix with m identical

(n,n)-blocks f(aftl) € M (E) in the main block diagonal, hence
RN._ _/kr(aftl) = det(h((aftl)ftl)) = (det(f(aftl)) )

m = (RNAAW B/K A/ i\K

and similarly for the reduced trace, a

In terms of the functor K the above amounts to

Corollary 3 . Let [A],[B] € Br(K) and v ,Ltt R, fc v (Y,
^ i\ v fi«y^JD ) * i\ \r^J

m = | B: K| j then the embedding i-u/v- f ^i^R^A® B/X? 4 m

K (i ) K x

A -> A ft B , a H- a»l induces a homomor- 1 B/K ±
phism K.d-,,,) suc/z t/zat t/ze diagram K,(A) • K,(K)

1 B/K * 1 K (RN ) 1

shown commutes (here A ^ M ( F ) j : 1 A/K ^ Q

Before we discuss the next result (which is more of a technical nature) we

want to remind the reader of a few simple facts: if A is a ring, then

any automorphism as well as any antiautomorphism of A preserves the

centre Z(A) (although, in general, not elementwise); see also (5) and

(12) in §7. In this sense we claim

Lemma 5 . Let [A] € Br(K) and 0 a ring automorphism (resp. antiauto-

morphism) of A s then ( a € A )

RNA/K(0(a)) = 0(RNA/K(a)) and RTrA/R(0(a)) = 0(RTrA/K(a)) .

Proof. Select a splitting field E of A such that E c A (e.g. take

a maximal commutative subfield of the skew field component of A ; cf.

Corollary 6 in §9.), hence 0(E) makes sense and is likewise a sub-

field of A . Now consider the E-algebra isomorphism f: A ft E ^» M (E)
K n

(which exists by assumption on E ) and the isomorphism (resp. antiiso-

morphism) 0 : M (E) —et*M (0(E)) of rings which arises componentwise from

0 (resp. which arises componentwise from 0 via the transpose), then
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it is easily seen by inspection that g := 0 f(0®0| ) : A ® 0(E) —c*-»

M (0(E)) is a 0(E)-algebra isomorphism, hence 0(E) is likewise a

splitting field of A . Moreover ( a 6! A )

RNA/ fO(a)) = det(g(0(a)®l)) = det(0 (f(a®l))) =
A/ i\ n

= 0(det(f(a®l))) = 0( R N A / K ( a ) )

and similarly for the reduced trace, a

Now we come to the principal result of this paragraph:

Reduced Tower Formulae . Let [A]GBr(K) and B a sim-ple subring of A

such that L :- Z(B) => K . Moreover* if C : = ZA(L) , then Z(C) = L 3

[B],[C] G Br(L) y t \- |z (B):L| and We have the formulae

R NA/K ( b ) - ( NL/K ( R NB/L ( b ) ) ) t and

RTrA/K(b) = t(TrL/K(RTrB/L(b))) for all b £ B c A .

Corollary 4 . Let [A] € Br(K) , n2 = |A:K| ani L/K a field exten-

sion of degree r such that K c L c A

/ a l l x € L 5 A .

Corollary 5 . Let [A] G Br(K) ., L/K a field extension such that K 5

c L c A .If B := Z (L) ^ t/zen [ B ] 6 Br(L) and We have the formulae

RNA/K (b ) = NL/K ( R NB/L ( b ) ) and

R T r A/K ( b ) = T r L / K ( R T r B / L ( b ) ) f ° r a l 1 t> G B c A .

Proof. The proof will be somewhat lengthy (for alternative proofs cf. Exer-

cises 1/2); let us start with the corollaries: Corollary 4 is clear, be-

cause in the case B = L we have Z (B) = C fl Z (L) = C = Z (L) and con-
2 2 2 .

sequently t = Z (L):L = n /r thanks to (vii) in the Centralizer
A

Theorem in §7.; Corollar 5 is also an easy consequence of the Reduced

Tower Formulae because of

Z.(B) = c n Z.(B) = c n Z A ( Z . ( L ) ) = c n L = L
U A A A

thanks to (iv) in the Centralizer Theorem in §7.

Now we start with the actual proof of the Reduced Tower Formulae: first we

claim that

(13) it suffices to prove Corollary 5 only.

Indeed, B c c is clear from the definitions and [B],[C] G Br(L) follows

from the Centralizer Theorem in §7., hence
C ̂  B 8 Z (B) because of Corollary 8 in §7.

L C
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Now, if we identify b G B c C with b81 € B 8_ Z_(B) ^ C we obtain the
— L C

Reduced Tower Formulae from Corollary 5 in connection with Theorem 3 ;

this proves (13).

In the second step of our proof we show that

, v it suffices to prove Corollary 5 in the cases " L/K purely

inseparable" and " L/K separable" respectively.

Indeed, if M denotes the separable closure of K in L , i.e. L/M

purely inseparable and M/K separable, we introduce D := Z (M) =
= B fl ZA(M) = ZA(L) 0 ZA(M) = ZA(M) (cf. (8) in §7.) which is such that

A A A A
[D] € Br(M) , B c D c A and Zn(L) = D fl Z.(L) = D PI B = B (cf. the Cen-

JJ A

tralizer Theorem in §7.). It follows (with the aid of the Tower Formulae

for field extensions)

^ A / K ^ = NM/K(RND/M(b)) = NM/K(NL/M(RNB/L(b))) =

= N L / K(
R N

B / I/
b)) f o r alJL b G B c D c A

and similarly for the reduced trace.

In the third step we shall prove

(15) Corollary 5 is true in case " L/K purely inseparable".

For the proof of (15) let E be a splitting field of A such that (say)

E/K is finite Galois (cf. Theorem 9 in §9.); this implies L fl E = K and

L %v E is a field ^ LE (note that the fact that L 8V E is a field is

the only fact that matters in our context), and from Field Theory we know

then
( 1 6 ) NLE/E(X) = NL/K(X) S n d T rLE/E(x ) = T3?L/K(x) f ° P a 1 1 X € L '

By virtue of

[B] = [A 8V L] in Br(L) ( cf. Corollary 1 in §9.)
K

we see that LE is a splitting field of B (cf. Lemma 2 in §5.), hence

we have an LE-algebra (and therefore an E-algebra) isomorphism g: B 8 LE
2

L

B 8T (L 8^ E) * B 8T LE -<*-* M (LE) « EndTTr,(LE
S)

L A K L g s Lh

M (LE) ( here s := n/|L:K| where n = |A:K| ) in addition to the

(assumed) E-algebra isomorphism f: A 8 E ^ > M (E) . Now consider the
K n

maps (here h is according to Lemma 2 in §5.)

L

B 8 E > M (E) <* End_(LES) ;
K h n E

clearly h is an E-algebra homomorphism and we find from (16) and Lemmas

1/2 the equation

NL/K(RNB/L(b)) =
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= det(h(b®l)) for all b € B .

On the other hand the embedding i|>: B c__*. A gives an E-algebra homoraor-

phism h! := fC^id.): B « E -> M (E) such that
E K n

RN /K(b) = det(h'(b®l)) for all b E B ;

now since B ®.. E is simple by Theorem 5 in §5. (for it is ^ B 8 LE as

we have seen above) the Skolem-Noether Theorem in §7. implies

h!(b®l) - thCb^Dt"1 for some t € GL (E) ( b £ B ) ,

hence (15) since the reduced traces can be handled in the same way.

Now we come to the fourth step: we want to prove

(17) Corollary 5 is true in case " L/K separable".

Again select a splitting field E of A such that E/K is finite Galois

(cf. Theorem 9 in §9.); E is then likewise a splitting field of B

(thanks to LB] = [A «., L] in Br(L) ; cf. Corollary 1 in §9.). Of course
is.

we may assume L cz E ; now we claim that

(18) it suffices to assume E <= A

for otherwise we replace A by A' := M (A) where t is suitable such

that E c A' (cf. Lemma 5 in §9.; note [A] = [A!] € Br(K) ). Then

Bf := Z t(L) = M (B) (see e.g. the Centralizer Theorem in §7.: "3" is trueAt

trivially and "=" follows then for dimensional reasons) and E is clearly

a splitting field of both Af and B! . Now let b € B be given; set

then (cf. Theorem 1) RNA,/K(b
f) = RNA/K(b) and R N ^ ^ b ' ) = RNB/L(b)

(resp. RTrAf/K(b
f) = RTrA/K(b) and R T r ^ ^ b ' ) = RTrR/L(b) ), hence (18).

So the fifth (and final) step in our proof will consist of showing

Corollary 5 is true in case there exists a splitting field E
(19)

of A such that E/K is Galois and K c L c E c A .

Our proof of (19) will be lengthy (but entirely straightforward in some

sense): consider C := Z_(E) = B fl ZA(E) = ZA(L) 0 ZA(E) = ZA(E) c B 5
JJ A A A A —

denote T := Gal(E/K) ,> Gal(E/L) =: A and choose a system R of repre-

sentatives for the cosets of r modulo A 5 i.e. T = I) Ap = I ) p A
p€R p^R

hence (use Theorem 5 in §7. twice (for the notation cf. its proof))

B = H ^ e C = O-) ce and

in (20) we have in general B / e Be but always e Be c C

P P J p p -
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Moreover, by construction E is a common splitting field of A , B and C

(cf. Corollary 1 in §9.) hence

f: C -&*-> M (E) as E-algebras for some m .
m

Now fix p £ R and define another E-algebra isomorphism

pf: C -c*-* M (E) , c ~ ^ f U ^ c e ))

m P P

where p acts on the matrices on the right-hand side componentwise (cf.

the proof of Theorem 5 in §7.). The Skolem-Noether Theorem in §7. then

gives ( p £ R , c € C )
(21) Pf(c) = t f(c)t"1 for some t £ GL (E) .

P P p m

Now regard B via (20) as a free right C-module of rank h := |A| = |E:L| ;

if we denote L: B -> End (B) , b *•> L the L-algebra homomorphism arising

from left multiplication we obtain the isomorphisms of E-algebras

( s := hm )

where f arises from f componentwise and L stands for the E-linear

extension of L (cf. Theorem 3 in §5.) which is an isomorphism for di-

mensional reasons (note that it is injective since B 8 E has no proper
L

two-sided ideals thanks to Corollary 3 in §5.). We find (cf. (20))

End

B 8

c ( B ) c

t
1

L E "

* Mh(C)—o h

- -» M

m
( E ) )

(E)

(b) = det(g(b®l)) = det( f(c .) ) and
Li £0

(22) g(bei) = ( f(c J ) where be. = 2 _ e c * ( 6 € A ) .
£0 0 £ . . £ £ 0

Clearly we have for all b £ B

RND; RTr_,_(b) = tr(g(b«l)) = ̂  tp(f(c^)) (here tr in M (E) ).
B/L -fp-r oS m

On the other hand - again via (20) - we may now regard A as a free right

C-module of rank rh = |r| = |E:K| ( r := |L:K| = |R| ) and consider the

E-algebra isomorphisms (argue as above)

n := rhm , n2 = |A:K| )

RNA/K(a) = det(k(a«l)) and RTrA/K(a) = tr(k(a«l)) ( a £ A ).

which yield the formulae

RNA/K(a) = d

Now assume b £ B cz A ; it follows (cf. (22) )
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L (e.e ) = be.e = ]T~ e c e = ]>~~ e e (elc xe ) ( b € B ),b 6 p 6 p <~-^ e e6 p ^-^ e p p e6 p

/ \ - 1 0
hence - if t := P t € M (M (E))* = GL (E) (cf. (21)) - thanks to

[ P J r s
(21) and (22):

(M (E)) GL (

o P\J r s

f(e"c .e ) = P (t f(c )t

o p e6 p^; v o p e6 p

= t P (f(c J) t"1 = t P (g(bftl)) t 1 € M (M (E))

v £6^y U ^;
for all b € B c A .

Using standard results from Linear Algebra concerning determinants and

traces of diagonal block matrices we obtain immediately from (23) and (24)

the formulae

RNA/K(b) = det(k(b®l)) = "TT
 P (RNB/L(b)) = NL/K(RNB/L(b))

pcK
for all b € B c A

and similarly for the reduced trace. n

Exercise 1 . Study section 9 (pp.112) of I. Reiner [1975] where you can

find a different approach to reduced norms and traces.

Exercise 2 . Give an alternative proof for the Reduced Tower Formulae

by showing that a specialisation argument (involving rational function

fields in one variable) reduces the problem to the much simpler (ordinary)

Tower Formulae (see P. Draxl & M. Kneser [1980]).

Exercise 3 . Let H be the skew field of real quaternions (see §1.);

describe the function RNn/n explicitely and show

RN, (H*) = R* := multiplicative group of positive reals .H/R
For another interesting result cf. W.C. Waterhouse [1982]
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§ 23 . THE REDUCED WHITEHEAD GROUP SK-^D) AND WANG'S THEOREM

In this paragraph we want to study the Whitehead group K (D)

:= D* (cf. Definition 5 in §20.) of a K-skew field D by comparing it

with K (K) = K* . Thanks to Wedderburn's Theorem in §10. we may restrict

ourself to the case of -infinite base fields K .

If A is a central simple K-algebra (e.g. a K-skew field),

then K (A) and K (K) = K* are linked by the homomorphism K (RN . )
1 1 1 A/ i\

which is induced by the reduced norm (cf. Corollary 1 in §22.). In this

sense we have

Definition 1 . Let [A] G Br(K) y then

SK1(A) := Ker ^ ( R N ^ ) = { a € A | RNA/K(a) = 1 }/[A*9A*]

is called the "reduced Whitehead group of A " and

SH°(A) := Coker ̂ ( R N ^ ) = K*/RNA/K(A*)

the "reduced norm residue group of A ".

Obviously we get

(1) SK (K) = 1 and SH°(K) = 1

as well as (cf. Lemma 5 in §22.)

(2) SK1(A°
P) = SK1(A) and SH°(A°P) = SH°(A) .

Now denote D the skew field component of A (i.e. A ^ M ( D ) for some

n ); thanks to Corollary 1 in §22. we have a commutative diagram

1 > SKX(A) -* KX(A) -> K^K) > SH°(A) -> 1

(3) [ K(det)k

1 > S^CD) -+ K (D) -• ̂ (K) > SH°(D) > 1

where the rows are exact and K (det) is as in Theorem 4 in §20.

Of course (3) means that SK (A) and SH (A) depend (up to isomorphism)
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on the class [A] in the Brauer group Br(K) only.

Now let us reinterpret Corollary 2 in §22. in terms of Definition 1 : it

says that we have a commutative diagram

S K ( A ® L ) —> KAA^L) —• Kn(L) —> SH°(A®n/L)
1 A K 1 K 1 ,

(4) I t f |
Kl(lL/K^ I IU 0»

SK1(A) > K±(A) • KX(K) > SHU(A)
with exact rows (for any field extension L/K ).

Corollary 2 in §22. has a converse:

Lemma 1 . Let [A] £ Br(K) and L/K a finite field extension of degree

m : = |L:K| ; then there is a K (A8 L) • K (L) = L*

homomorphism K (N ) such that I KI <- R NA« T/T ) I
1 L / K y /». \ -*- riW^ij/JJ

t/ze diagram shown commutes and 1 L/K I I L/K
t/zat K (A) • K (K) = K*

K ( R N )

Proof. Let L:L-*M(K) be the K-algebra homomorphism arising from left

multiplication together with the standard isomorphism EndK(L) « M (K) ;

then id.®L induces a group homomorphism (cf.Lemma 4 in §5.)
A

I T : K ( A 8 L ) > K A A Q V M ( K ) ) « K ( M ( A ) ) .
IK 1 K m 1 m

Now we see from Theorem 2 in §7. tha t the embedding A ® L CL_* A ® M (K)

i s such tha t Z ( K ) (K 8K L) = ZA(K) ^ ^ ( K ) (L ) = A \ L (note tha t
K m m

Z , v(L) = L follows for dimensional reasons from the Centralizer Theo-
m

rem in §7. if we view L as embedded into M (K) via L above), hence
m

(5) R V » (K)/K(X) = NL/K ( R 1W/L U ) ) for a11 ^ ^ K 1
Km K

by the reduced Tower Formulae in §22. (or Corollary 5 in §22.).

Now assume A a K-skew field (we may do this in view of (3) above) and

define

K.(NT/1J := K.(det)7T with det: GL (A) -» A*ab = K.(A) .
1 L/K 1 m l

Now (5) and Corollary 1 in §22. imply the commutativity of the diagram

shown in our lemma9 hence we are left with the proof of the relation

K1(N . )K (i , ) = |L:K|id , , ; for this we consider the two K-algebra
-i J_i/i\ _L L/K xx^vAj
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homomorphisms

f,g: A -* M (A) =* A a M (K) ; f(a) = a®L. , g(a) = al
m ix m j.

which differ by an inner automorphism of M (A) only (cf. the Skolem-

Noether Theorem in §7.). The latter implies that the classes f(a) and

g(a) coincide in the factor group K.(M (A)) = GL (A) , hence - thanks

to 6ex(al) = a (see §20.) - we obtain

det("^®ri) = d e t ( i I ) =

= am = a™ = |L:K|idK (A)(a)

for all a" € K (A) ( a £ A* ) . •

An immediate consequence of Lemma 1 is the existence and commutativity of

the diagram

1 > SK.. (A8UL) > K1 (A8L.L) > K. (L) > SH°(A^L) > 1

I I I INL/K

SH°(A)

with exact rows (for any finite field extension L/K ).

Since there is always a splitting field L of A such that |L:K| = i(A)

we obtain from (l),(3)9(
Ll-),(6) and the last assertion of Lemma 1 immedi-

ately the important

Lemma 2 . Let [A] € Br(K) ., then SK (A) and SH°(A) are abelian tor-

sion groups with fixed exponent dividing i(A) .a

Later in this paragraph we shall strengthen the first of the two asser-

tions of the preceding lemma.

Another immediate consequence of the last assertion of Lemma 1 (together

with Lemma 2 is)

Lemma 3 . Let [A] € Br(K) and L/K a finite field extension of degree

m = |L:K| ; then a «-* a®l (resp. the embedding K c L j induce injections

SK (A) <=_>SK1(Aei/L) (resp. SH°(A) cz_» SH°(A®1.L) ) provided |L:K| and
i — 1 i\ — J\

i(A) are coprime, n

The first assertion of Lemma 2 may be stated in a more quantitative way:

Lemma 4 . Let D be a K-skew field of index i := i(D) ; if d E D*

such that RNn/1,(d) = 1 (for instance if d € [D*,D*] ) then d is a

product of at most 2(i -1) commutators of elements in D* .
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Proof. Take a splitting field L of D (which implies the existence of

a K-algebra isomorphism f: D 8 L ^ > M.(L) ) and consider the two

K-algebra homomorphisms g9h: D -* M.(D) defined by g(d) :- dl and

d«l D & L ex—> M.(L)

i r r T
D • M.(D) .

h !

The Skolem-Noether Theorem implies g(d) = th(d)t for some t E GL.(D) ;

by definition of the reduced norm in §22. (together with the fact that

Sex coincides with the usual determinant in the commutative case; cf.

Theorem I/Corollary 1 in §20.) we get

6ex(h(d)) = Sex(f(d®l)) = RND/K(d) = 1 ,

hence

d1 = 6ex(di) = Sex(g(d)) = 6ex(th(d)t~1) =
2

= a product of at most 2(i -1) commutators of elements in D*
because of Corollary 2 in §20. a

Now let us reinterpret Corollary 3 in §22. in terms of Defi-

nition 1 : it says that for [A],[B] £ Br(K) we have a commutative dia-

gram

1 > SK(A^B) > K^A^B) > K(K) > SH°(A®1.B) > 1

f f t x 1 ( B ) "
(7) K l (i B / K) J

I I x ,
1 > SK1(A) > K^A) > K±(K) > SHU(A) • 1

with exact rows (here B may assumed to be a K-skew field thanks to (3),

hence i(B) = m (in the sense of Corollary 3 in §22.)).

Corollary 3 in §22. has also a converse:

Lemma 5 . Let [A],[B] € Br(K) 3 K^A^B) * K^K) = K* x

then there -is a homomorphism A ^ A®B/K
KI^PD/I/) su°h that the diagram
l B/K y

shown commutes and such that 1

1

K 1 ( P B / K ) K 1 ( 1 B / K ) '-

Proof. It suffices to study the case where A and B are skew fields

(see (3)); consider

Kl(iB°P/K): K1(A8KB) - V A W ° P ) "^ V M . m
2
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(remember A 8 B 8., B° P ̂  A 1 M (K) ̂  H (A) thanks to Lemma 3 in §4.
K i\ K r r

and Corollary 2/Lemma 4 in §5.) and define

K1(PB/K} := Kl ( d e t ) Kl ( iB° P/K ) W i t h d e t : G L
r
( A ) •* K i ( A )

where r := |B:K| = i(B) (because B is a skew field). In view of

i(B ) = i(B) the commutativity of the diagram in our lemma is clear

from (3) and (7); therefore we are left with the proof of the relation
2

K (p . )K (i . ) = i(B) id,. . , ; for this we consider the two K-algebra

2
homomorphisms ( r := i(B) as above )

f,g: A -• M (A) c* A % B 8 B° P ; f(a) = a8181 , g(a) = al
r J\ J\

which differ by an inner automorphism of M (A) only (cf. the Skolem-

Noether Theorem in §7.). The latter implies that the classes f(a) and

g(a) in the factor group K (M (A)) = GL (A) coincide 9 hence - thanks
r

to 6ex(ai) = a (see §20.) - we obtain

K1(PB/K)K1(1B/K)(i:) Z

= ar = ar = i(B)2idVA)(1T)

for all "a € K (A) ( a € A* ) . •

An immediate consequence of Lemma 5 is the existence and commutativity of

the diagram

1 > SK1(A®KB) > K1(A8KB) > K^K) > SH°(A®KB) > 1

(8) I h^B/A I I.
1 > SKX(A) • K (A) > K^K) > SH°(A) > 1

with exact rows.

Thanks to Lemma 2,(7),(8) and the last assertion of Lemma 5 we may con-

clude easily:

If i(A) and i(B) are coprime, then there are injections

(9) SK(A) ci^ SK AkQ^B) (resp. SH°(A) <=-*. SH°(A8VB) ) induced
1 — I K ' (n\ —

by a i-> a81 (resp. x H> x ) .

The statement (9) can easily be improved as follows:

use (9) again (but restrict it to the i(A)-torsion component of SK.(A8 B)

and SH (A8VB) ) with A 8 B (resp. B° P ) in place of A (resp. B ) and
K K ry

apply the isomorphism A ®.. B 8V B
 P & M (A) ( r := i(B) ) which we

K K r
have used already above; now observe that K. (pn/1.) and K. (i op, )

1 b/J\ 1 D /J\

differ by an automorphism only (namely by K (det) ; see the definition
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of the map K (p . ) in the course of the proof of Lemma 5 ), hence
J. B/K

K (p ) induces an isomorphism from the i(A)-torsion component of

SKAA&B) onto SK,(A) . Therefore K. (i_,..) is an isomorphism of
IK 1 1 D/IS.

SK (A) onto the i(A)-torsion component of SK (A® B) . By a similar (but
1 IK

r
actually easier) argument we see that X H X induces an isomorphism of

SH (A) onto the i(A)-torsion component of SH (A8..B) . Interchanging the

roles of A and B gives (cf. the Theory of Torsion Groups)

Lemma 6 . Let [A],[B] € Br(K) such that the indices i(A) and i(B)

are coprime* then we have isomorphisms
SK..(A®VB) ̂  SK.(A) x SK.(B) and SH°(A®l,B) ̂  SH°(A) x SH°(B). n

1 K 1 1 J\
In view of Corollary 11 in §9. all this implies (together with (3))

Corollary 1 . Let [A] € Br(K) , then for the study of the structure of

the groups SK (A) and SH (A) it suffices to consider the case of a

K-skew field A of prime power index .•

Now let us turn to more special results (note that so far in

this paragraph we discussed the general functorial behaviour of the func-

tors SK and SH without restrictions).

Lemma 7 . Let D be a K-skew field and L a maximal commutative sub-

field of D such that L/K is either purely inseparable or cyclic. If

d € L* c D* and RN_/1.(d) = 1 , then d is a commutator.
— D/K

Proof. Let us start with the purely inseparable case: then i(D) = |L:K| -

= p where p := char(K) i- 0 . Thanks to Corollary 4 in §22. we get
f f f

0 = RND/K(d) - 1 = NL/K(d) - 1 = d
P - 1P = (d-l)P ,

hence d = 1 and therefore even more so our assertion (for the last two

steps in the above formula cf. Field Theory). Now the cyclic case: let

r := Gal(L/K) = (a) > then N /K(d) = RND/K(d) = 1 thanks to Corollary 4

in §22. (note i(D) = |L:K| since L is maximal commutative in D ; cf.

Theorem 4 in §7.); therefore we may find some m € L* cz D* such that

The
-1

d - % m 1 (cf. Hilbert's "Satz 90" in §6.) . The Skolem-Noether Theorem

in §7. implies the existence of some t G D* such that m = tmt

hence d = tmt m . •

Now take any quaternion skew field D -i.e. i(D) = 2 -; then, if K

denotes the centre of D 9 every element d € D lies in some quadratic

field extension L/K which must be either purely inseparable or cyclic.
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Consequently the following result is clear:

Theorem 1 . Let D be a K-skew field of index 2 (i.e. a quaternion

skew field, e.g. D = H ; see §lj , then SK (D)={1}3 more precisely:

any d € D* such that RN , (d) = 1 is a commutator, in particular:
D/1\

[D*9D*] consists only of commutators, a

Before we proceed with our investigations of SK we must

introduce some new notions from Galois Cohomology. We start with (cf. §6.)

Lemma 8 . Let M be a left T-module, then

Ir(M) := { y~~(°m -m )| m € M , m - 0 for almost all o }

is a T-submudule of M ; moreover, if V is finite then If(M) c Ker hi .

Proof. Straightforward calculations, •

Note that M := M/I (M) is the largest factor module of M on which Y

acts trivially.

Definition 2 . Let r be a finite group and M a left T-module, then

H""1(r9M) := Ker W /I (M) is called the " (-l)-st Cohomology Group of M ".

Lemma 9 . Let r be a finite group and M a left Y-module3 then

H (r,M) is an abelian torsion group with fixed exponent dividing |r| .

Proof. Write n := |r| and take x € Ker hi , i.e. > °x - hi (x) = 0 ;

it follows nx = 2 Z Gx - nx = 2Z( Qx - x) € I (M) . a

Lemma 10 . Let r = {a) be a finite cyclic group and M a left Y-module,

then I (M) = { am - m | m € M } .

Proof, 'b" is clear; as for the converse we find
i i-1 j i-1 j
m - m = (> m) - (> m) . a

j=0 j=0

Combination of Lemma 10 with Exercise 1 in §6. yields

(10) H1(T9M) c* H^CT.M) in case V is finite cyclic.

Note that HilbertTs "Satz 90" in §6. may now be stated in the form

H~ (T9L*) = {1} if L/K is a finite cyclic field extension

with Galois group V .

Note that (10) stresses the fact that HilbertTs "Satz 90" is merely a con-

sequence of NoetherTs Equations (see also §6.).
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In what follows let L/K be a finite Galois extension with

T := Gal(L/K) ; then Br(L) is a left r-module (cf. §9.) and we recall

(cf. Lemma 2 in §8.):

, s [A] £ Br(L) if and only if every o £ T can be extended to

a ring automorphism of A .

In this context we claim

Lemma 11 . Let L/K be finite Galois, r : = Gal(L/K) and [A] £ Br(L)F ;

then K (A) can be given in a natural way the structure of a left T-modu-

le such that K-I/RNA/T) ^S a left T-homomorphism ( K (L) = L* being

viewed as a Y-module in the usual way); in particular: Im K (RN , ) =
1 A/ L

= R N
A / I /

A * ) i s a Tsubmodule of L* = K (L) .

Proof. Let o £ V be given and <j> a r ing automorphism such tha t (f> =
O 0" J_i

= a (cf. (12)). If \JJ is another such automorphism then the Skolem-

Noether Theorem in §7. implies the existence of some t € A* such that

ty~1$ (a) - tat"1 for all a £ A . It follows that for given a" £ K (A) =

= A*a ( a € A* ) the element

°a := cj>a(a) = i

= J1JJ £ KX(A)

is independent of the choice of the extension cj) of a , hence a is

well-defined and furnishes K (A) with the structure of a T-module. The

rest is then clear thanks to Lemma 5 in §22. a

Now we are fully prepared for a generalization of the cyclic part of

Lemma 7 above.

Theorem 2 . Let [A] € Br(K) , L/K Galois , L c A , r := Gal(L/K) and
Y

B := Z (L) ; then [B] £ Br(L) . Moreover, denoteA
SK(A)L := { b £ B* c A* | RNA/V(b) = 1 }/(B* fl [A*,A*])

1 I b — n/ J\

the subgroup of SK (A) which is generated by the elements of B* 3 then

we have the two exact sequences

SK (B) • SKn(A)L • X > 1
1 f 1 |B g

ana

H"1(r,RNR/T(B*)) > X > 1 .
B/L h

Here X := RNB/L({b G B*|RNA/K(b) = 1})/RNB/L(B* fl [A*,A*]) , f and h

induced by embeddings and g is induced by RN ,
D/ L
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Corollary 2 . In the situation and with the notation of Theorem 2 we have

SK^A) = {1} provided SK/B) = {1} and H x(r,RN ._ (B*)) = {1} . a

Corollary 3 . In the situation and with the notation of Theorem 2 it

follows that the exponent of (the torsion group) SK 1(A)L divides
1 I D

L:K|-times the exponent of SK (B) . •

Moreover, we want to point out that we may recover the cyclic part of

Lemma 7 with the aid of Corollary 2 because of

B = L (since L is maximal commutative) and hence

and

SK^B) = {1} by (1)

H 1(r9RNB/L(B*)) = H
 1(T5L*) = {1} by (11)

Proof (of Theorem 2). Thanks to (6) and Corollary 1 in §9. [B] € Br(L)

is clear and consequently RND,T(B*) is a r-submodule of L* . Because of
B/L

Corollary 5 in §22. f and g are well-defined and the upper sequence is

clearly exact. Again by Corollary 5 in §22. we find

RNB/L({b € B*|RNA/K(b) = 1}) = Ker H L / K| R N (B*)

which implies that in order to prove the exactness of the lower sequence

it suffices to show that h is well-defined which clearly amounts to

showing the inclusion (cf. Definition 2)

Ir(KNB/L(B*)) ERN B / L(B* 0 [A*,A*]) ;

the latter, however9 is not difficult: let o £ T be given, then the

Skolem-Noether Theorem in §7. implies the existence of e € A* such that

e Be = B and e xe = x for all x £ L (see Theorem 5 in §7. and
oo oo

the proof thereof) . Now use Lemma 5 in §22. for obtaining

aRNB/L(b)RNB/L(b)-
1 = R N ^ e ^ V 1 ) £ RN^CB* 0 [A*,A*]>

for all b € B* . •

Theorem 2 (more precisely: Corollary 2) suggests the following definition

which is feasible because of Lemma 11 :

Definition 3 . A commutative field k is called "reasonable11 if for any

finite separable field extension K/k , any finite Galois extension L/K

with r := Gal(L/K) and any [B] € Br(L)F the embedding RNB/L(B*) c L*

induces an isomorphism

H" 1(T,RN B / L(B*)) ^ H"
1(r,L*) .

We shall see in a moment that the class of reasonable fields is not empty.
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Theorem 3 . Let k be a reasonable field and [D] € Br(k) 3 then

SK^D) = {1} .

Theorem 4 . Let [D] € Br(k) > then SK (D) is an abelian torsion group

of fixed exponent dividing i(D)/i(D) where in(D) denotes the greatest

squarefree divisor of i(D) .

Corollary 4 . Let [D] € Br(k) be such that i(D) is squarefree (i.e.

a product of distinct primes)> then SK (D) = {1} .a

Note that Theorem 4 improves the first claim of Lemma 2 and is best possib-

le (cf. (7) in the following §24.); Corollary 4 generalizes parts of

Theorem 1 .

Proof. We will prove Theorems 3/4 simultaneously: first of all , thanks to

Corollary 1 it suffices to study the case

(13) D a k-skew field of index i(D) = p for some prime p

Let d € D* be given and assume RNn/, (d) = 1 ; we must show
f-1 D / k

(14) d (resp. dP ) £ [D*,D*] in case of Theorem 3 (resp. 4) .

Now let M be a maximal commutative subfield of D such that d € M*

(then |M:k| = p because of Theorem 4 in §7.); in view of Lemma 7 it

suffices to discuss the case " M/k is not purely inseparable" only ! If

then S denotes the separable closure of k in M we see that S/k

is a separable field extension of degree p where 1 <_ e <_ f

Now let F be a Galois closure of S over k , ft : = Gal(F/k) , ft a

p-Sylow subgroup of ft and K := Fix (ft ) the corresponding p-Sylow

subfield; then K:k and p are coprime and hence A := D ®, K re-
f

mains a skew field -i.e. i(A) = p , [A] 6 Br(K) - (cf. Corollary 8 in

§9.) and we have an embedding SK (D) c__» SK (A) (cf. Lemma 3) via the

usual embedding D -> D 8 K . Therefore5 writing a :- d81 £ A* 9 in or-
K

der to prove (14) it will suffice to prove
f-1

(15) a (resp. aP ) € [A*9A*] in case of Theorem 3 (resp. 4) .

Now consider N := M ®. K c D ®. K = A and T := S 8. K c N ; both N
k — k K —

and T are fields (for otherwise the skew field A would have zero-

divisors ^ 0 (cf. Exercise 1 in §5. and Exercise 2 in §3.)) such that

|N:K| = p (i.e. N is maximal commutative in A ) and T/K is sepa-

rable of degree p e ( l ; S e £ f ) » Therefore - by the elementary theory

of p-groups - we may find an intermediate field L of the extension T/K

such that
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L/K is cyclic of degree p with Galois group (say) r

Consequently (cf. (10) and (8) in §7.)

a € N c Z (N) c Z (L) -: B

where B is an L-skew field of index i(B) = p (cf. Lemma 3/Centralizer

Theorem in §7.). From all this we conclude (with the notations of Theorem

2): in order to prove (15) it suffices to show

(16) S M A > L = {1} (resp. exp(SK1(A)L)|p
f"1 )1 I rJ 1 I D

Now we use induction on f ( f as introduced in (13)): the case Mf=lM is

then clear from Lemma 7 ( L is then maximal commutative in A for degree

reasons and we get directly (15) from Lemma 7 ; note that Theorems 3/4

coincide in case f = 1 ). Now assume f > 1 ; in case of Theorem 4 we get

(16) from Corollary 3 because we may assume (by induction hypothesis) that
t-2

the exponent of SK (B) divides p ; finally, in case of Theorem 3 ,

we conclude (16) from Corollary 2 because we may assume SK (B) = {1}

(again by induction hypothesis) as well as

H"1(r,RNB/L(B*)) ^H"
1(r,L*) = {1}

(thanks to (11) and the fact that k is assumed to be reasonable). •

Although the above proof appears first in P. Draxl [1977] its core may be

found in disguise in B.M. FlHHeBCKMki [1975]; the general idea, however, -

as well as the general idea of practically everything else in this para-

graph - goes back to Wang Shianghaw [1950].

Now how about the mysterious reasonable fields ? We have just

seen that they are defined in precisely the way which enables us to

substantiate Wang ShianghawTs original ideas for a proof of tT SK = {1} ".

Since it is known from Number Theory that SH (A) = {1} for all central

simple K-algebras over local fields K (cf. §18. for the definition of

a local field; cf. e.g. Prop. 6, §2. in Ch. X of A. Weil [1967] for the

above claim) we see:

(17) Any local field is reasonable.

Consequently Theorem 3 includes a proof of (1) in the preface of Part III.

On the other hand one can show (see Satz 1 in P. Draxl [1977]) that also

global fields are reasonable (cf. §18. for the definition of a global

field); this result is much deeper than the corresponding local version:

it depends mainly on the description of SH (A) over global fields via

"Eichler's Norm Theorem" - see also the "Hasse-Schilling-MaaiB Theorem" -
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(cf. e.g. Prop. 3, §3. in Ch. XI of A. Weil [1967]). We repeat:

(18) Any global field is reasonable.

Consequently Theorem 3 includes also a proof of (2) in the preface of

Part III., usually called "Wang's Theorem" . Note that for the proof of

"Eichler's Norm Theorem" the Grunwald-Wang Theorem is not needed (see

M. EichlerTs own proof in A. Weil too, ait.), although complicated things

from global Class Field Theory are still involved.

Summarizing we get from all of the above:

(19) K (H) e* R*Q (Cf. Theorem 1 and Exercise 3 in §22.) ;

(20) K (D) c* K* if D is a K-skew field over a local field K ;

(21) KJD) «RNn/1,(D*) if D is a K-skew field and K is global.

Exercise 1 . Give a quantitative version of Theorems 3/4 (just as Lemma

4- is a quantitative version of Lemma 2); cf. P. Draxl [1980] .

Exercise 2 . Consider the situation of Theorem 2 : if we denote by r

the degree of L/K 9 then M (B) & A 0 L (cf. (v) in the Centralizer

Theorem in §7.); show

KAK-/v) = flC(det) where det: GL (B) -> KfB) .
1 L/K l r l

Again f: K(B)->K(A) is induced by the embedding.
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§ 24 . SK^D) + 1 FOR SUITABLE D

Until 1975 no example for SK (D) til) for a suitable skew

field D was known; the problem of finding one (or alternatively proving

that there is none) often was referred to as the Tannaka-Artin Problem

(particularly in the Russian literature).

Looking back all this seems strange since we shall introduce

later in this paragraph such an example which - in order to be understood

- r-equires hardly more knowledge on skew fields than displayed already

in §1. !

The first example for SK (D) ^(l), however, was somewhat more

complicated; it was given by B.fl. H/iaTOHOB [1975], Further information on

that V.P. Platonov developed a whole theory of examples and published it

in many (mostly short) papers) and related points of view (partially due

to the author) may be obtained from the report P. Draxl & M. Kneser [1980]

and the literature list therein (cf. also the remarks at the end of this

paragraph).

Now for the just mentioned example: we start with the obvious

Lemma 1 . If in Definition 1 in §1. the field L is assumed to be only

a skew field (and not a commutative field)y then Definition 1 in §1. still

makes sense and Lemma 3 in §1. remains correct, a

In this context, of course, Lemma 4 in §1. has to be modified since it

does not make sense as it stands if L is not commutative; since any

automorphism a of a skew field L preserves the centre (cf. (5) and

(12) in §7.) we may consider

V = a Z(L)
and denote K^ := Fix_,Tv(a.)

Doing so we note that our new notation coincides with the one from §1. as

soon as L is commutative. Copying the proof of Lemma 4 in §1. with the

notational changes just introduced we obtain the important
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Lemma 2 . Let L be a skew field and D := L((T;a)) (see Lemma 1). If

0 has infinite order, then Z(D) = K , henoe |D:Z(D) | = °° ; if a

has the finite order n in Aut(Z(L)) ,, then Z(D) = K ((Tn)) 3 henoe

|D:Z(D)| = n2|L:Z(L)| . •

Now select a commutative field k of characteristic i- 2 and define

(skew) fields and automorphisms thereof as follows (in the sense of Lemma

1 above):

L := k((t )) and a such that t »-> -t , a

E := L((t2;a)) ;

F := E((t )) and T such that t ^ -t , x

D := F((t4;x)) .

= idn

E

Thus D is the k-space of iterated formal Laurent series in four variab-

les t 5t2't35"t4- ' w e u s e m u l t i i n c i e x notation t1 , i = (i ,i ,i ,i ) ,
±1 i2 13 \

for the monomials t t t t and order the quadruples i lexixographi-
1 Z o 4"

cally. Thanks to the commutation relations t t. = -t1to 5 "t. t = ~tQtu

Z ± 1 Z Ho oH

and t.t. = t.t. ( i € {1,2} , j £ {3,4-} ) every element d £ D can be

uniquely written in the form

d = 5 a-t ( a. £ k ) .
I

Set v(d) :- min{ i | a. / 0 } ; then v(ddf) = v(d) + v(d') (in fact v
1 2

is even a Henselian valuation of rank 4 ). Now define (write T. := t. )
(2) K := k((T1))((T2))((T3))((T4)) c D .

Theorem 1 . Let D be according to (1) ; then D is a K-skew field ( K

according to (2) ) of index i(D) = 4 and exponent o(D) - 2 ; moreover

(3) D ̂  I——-} «v [——-^l (in the notation of §14.>
\ K / K \ K /

and

(4) [D*5D*] c { tl + 2 1 a^ 1 > •

Furthermore> if k contains a primitive ^-th root of unity c j then

RND/K(c) = 1 but c t [D*,D*] 3 fcewee S^CD) ̂ {1}.

Proof. Repeated application of Lemma 1 shows that D is a skew field. Now

we use Lemma 2 repeatedly and get from (1) and (2) :

FixT(a) = k((t?)) > hence Z(E) = k((t?))((t^)) and

|E:Z(E)| = 4 ;
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Z(F) = Z(E)((t3)) , hence T Q := T Z(F): t3

TO|Z(E) " ldZ(E) '

Fixz(F)(TQ) = Z(E)((tg)) = k((t*))((t;;))((tg)) , hence

Z(D) = (Fixz(F)(T0))((t^)) = K and |D:K| = 4|F:Z(F)| =

= 4|E:Z(E)| = 16 9 hence i(D) = 4 .

The isomorphism (3) and hence o(D) = 2 (cf. §9.) is clear enough since

evidently we have the two K-algebra isomorphisms (cf. Theorem 2 in §14.)

• • " • ( J f 1 ) - "

which are such that f(a)f(b) = f(b)f(a) for all a € A , b € B . This

gives a K-algebra homomorphism A 0 B -* D (cf. Theorem 2 in §5.) which

is an isomorphism for dimensional reasons (note that A ® B is simple).

Finally we must study the shape of a commutator in D* : because of Lemma

1 and the commutation rules of the t. the construction of the inverse

described in the proof of Lemma 3 in §1. goes through with multiindices

mutatis mutandis. We have v(ddfd~1dt~1) = 0 and thus ddtd~1d'~ =

= a + ̂ > a.t ( a € k* ) where we find a = -1 in view of the commu-

tation rules of the t. . Therefore obviously x> t [D*,D*] but RN (e)

=C = C = 1 thanks to (8) in §22. a

Again we point out that Theorem 1 is founded on the (compara-

tively elementary) results of §1.; save for the definition of the veduoed

norm and its property (8) in §22. nothing about K-skew fields is needed !

It should be remarked that the construction (1) is related to

B.A. /iHriHHLiKHH [1976], moreover, the reader should compare the skew field

D according to (1) with the skew fields on pp.94,..,104 of the lecture

notes N. Jacobson [1975],

We close this paragraph by stating some more interesting re-

sults (without proof):

There is a field K such that if [A] runs through Br(K) ,

(5) then SK (A) runs through all finite abelian groups (cf.

P. Draxl [1975/76] together with Satz 9 in P. Draxl [1977]).

SK (A) may be any countable infinite abelian torsion group

(6) with given fixed finite exponent for suitable A (cf. the

seminar report H.-G. Grabe [1980]).



170

There is a field K with the following properties:

(i) SK^A) * Z/^fyZ for all [A] € Br(K) ;

, . (ii) given m,n € N with the same prime factors and such

that m|n , then there is an [A] € Br(K) such that

i(A) = n and o(A) = m .

(cf. P. Draxl [a] ; notation as in §9.)

The last result is related to HD./l. EpwoB [1982].

As far as applications of "SK (D) f 1" are concerned we refer

the reader to B.fl. 11/iaTOHOB [1977]9[l980]9 to the book B.E. BocKpeceHCKHH

[1977] and to the surveys J. Tits [1976/77] and B. Weisfeiler [1982].

Exercise 1 . Consider the skew fields described on pp .94,..9104 of

N. Jacobson [1975] (cf. Exercise 1 in §11.) and show that for any such

skew field D there is an exact sequence

—* ° (cf- also p- Draxl [a])-
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§ 25 . REMARKS ON USK^D.I)

Let A be a central simple K-algebra which admits an invo-

lution I of the second kind, i.e. a K/k-involution for some separable

quadratic subfield k , r :- Gal(K/k) = {a,id} (cf. §16.). If S (A)

denotes as usual the set of I-symmetric elements of A we define

(1) S;[(A) := <S].(A) fl A*> < A*

the subgroup of A* which is generated by I-symmetric elements.

Lemma 1 . z (A) < A* .

Proof. Ix = x implies txt"1 = (txIt)(I(t~1 )t~1) € E (A) for all t € A*.n

Lemma 2 . Given a € A* such that I is also an involution, then there

exists c € S (A) n A* such that I = I . Conversely I is an invo-
i a c a

lution for all a € S (A) fl A* .

Proof. By Scharlau's Lemma in §16. I is an involution if and only if
T _i a

a( a) =: b € K* . It follows N (b ) = b I (b ) = 1 , hence
a K/K a a a a

a(Ia)~1 = ̂ d " 1 = Idd"1 for some d € K*

by Hilbert's MSatz 90" in §6. which means that we can take c := ad €

€ S (A) fl A* . The converse is obvious. •

Lemma 3 . Z (A) = Z (A) for all a € A* 3 hence (by Lemma 1 in §16 J
a

E (A) depends only on the extension K/k .

Proof. Thanks to Lemma 2 we may assume a = a , hence x = x implies

x = (xa )a where xa ,a £ S (A) . Therefore Z (A) 5 Z (A) and
a a

even "=" for reasons of symmetry, n

A vevy important result is (cf. Exercise 1)

Vaserstein's Lemma . Let D be a K-skew field which admits an involution

I of the second kind, then [D*,D*] c Z (D) . •
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Now let A be a central simple K-algebra which admits an involution I

of the second kind (note that this implies K i F ,F ) and D its skew

field component - i.e. we may assume A = M (D) -, then Lemma 2 in §16.

and Lemma 3 imply that for the study of £ (A) we may also assume

Z( d±j ) = ( 1dji ) in Mn(D) = A .

We want to show (cf. Theorem 4 in §20.) SL (D) = [A*,A*]cE_(A) if
n — I

n > 2 (the case n = 1 is covered by Vaserstein's Lemma). Indeed, if the

latter were false, Lemma 1 would imply that E (A) fl SL (D) is a proper

normal subgroup of SL (D), hence (see Theorem 2 in §21.)

Z_(A) n SL (D) c Z(SL (D)) .
1 n — n

The latter, however, leads to a contradiction (see Exercise 2), hence

Jancevskii's Lemma . If A is a central simple K-algebra with an involution

I of the second kind, then [A*,A*] c z (A) . a

Definition 1 . Let A be a central simple K-algebra with an involution

I of the second kind, then

UK1(A,I) := A*/EI(A)

is called the "unitary Whitehead group of A and I ".

From what we have seen above UK (A,I) is always abelian (and hence a

homomorphic image of K (A) ) and depends only on the extension K/k where

k = K 0 S (A) ; in particular: UK (K,I) = K*/k* . Moreover, Lemma 5 in

§22. yields RN , (E (A)) c k* , hence RN , induces a homomorphism
A / x\ JL A/ x\

(2) UK1(I'RNA/K): U V A j I ) ^UK1(K,I) = K*/k* .

Definition 2 . Let k be a central simple K-algebra with an involution

I of the second kind, then

USKX(A,I) := Ker U K ^ ^ R N ^ ) =

= { a € A | RNA/K(a) € k* }/lJ{k)

is called the "reduced unitary Whitehead group of A and I ".

Now, by modifying the methods from §§23/25 appropriately one can establish

a theory of USK in formally the same way as in the case SK . Most of

this is due to V.I. Jancevskii (cf. the survey P. Draxl [1979] and the

references therein). For different aspects see P. Draxl [1980] ,[1982].

Exercise 1 . Prove Vaserstein's Lemma (see B.fl. fi/iaTOHOB & B.H.

[1973]).

Exercise 2 . Complete the proof of Jancevskiifs Lemma (see B.M.

[1974]).
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M. Deuring
[1935]

A/K einfache
normale Algebra

A*

K
n
(A:K)

\/£A7K)

-

direktes Pro-
dukt A*B

AL
Brauersche
Gruppe

{A} (in multi-
plicative no-
tation)

Index von A

Exponent von A

verschranktes
Produkt (x,L)

zyklische
Algebra (a,L,a)

A.A. Albert
[1939]

A normal simple
algebra over K

A"1

M , M
norder of A

degree of A

A = A-commu-
tator of B

direct product
AxB

AL
class group

(A) (in multi-
plicative no-
tation)

index of A

exponent of A

crossed product
(L,x)

cyclic algebra
(L,a,a)

E. Artin et at.
[1948]

A simple algebra
with center K

A*

M
n
(A:K) = degree
of A

\AA:K)
A = commutator
of B

Kronecker pro-
duct Ax B

K.

-

-

-

exponent of A

crossed product
(L/K,x )

cyclic algebra
(L/K,a,a)

these notes
[1982]

A central simple
K-algebra

A°P

Mn(K)

|A:K| = degree
of A

reduced degree of A

Z (B) = centralizer
of B in A

tensor product
A®KB

A \ L

Brauer group Br(K)

[A] (in additive
notation)

i(A) = index of A

o(A) =exponent of A

crossed product
(x,L/K)

cyclic algebra
(a,L/K,a)
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involution (of a ring) 112

inverse ring 27 opposite ring 27

irreducible module 8 ordinary quaternions 3

Ostrowski's Second Theorem 123

JancevskiiTs Lemma 172

p-algebra 106

K^A) 137 perfect group 140

K(K) 82 permutation matrix 9

Kothe's Theorem 64 PJ-algebra 122

power norm residue algebra 78

Laurent series 5 projective module 16

linear extension 27 Pythagorean field 105

local field 123

quadratic form 105

Matsumoto's Theorem 83 quaternion 3
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quaternion algebra

quaternion group

real quaternions

reasonable field

reduced degree

- norm

- norm residue group

- tower formulae

- trace

- unitary Whitehead group

- Whitehead group

relative Brauer group

restriction (in cohomology)

Riehm's Theorem

Rosset's -Theorem

Rosset-Tate Theorem

ScharlauTs

Scharlau's

Scharlau's

semisimple

SH°(A)
similar

Criterion

Lemma

Theorem

ring

simple module

simple ring

SK (A)

skew field component

K-skew field

Skolem-Noether Theorem

soluble field extension

splitting field

strict Bruhat normal form

supernatural number

symbol (in K-Theory)

78, 84

3

3

163

59

145

155

150

145

172

155

61

99

118

90

89

116

115

116

11

155

60

8

11

155

59

29

38

65

61

128

67

83

Tate's Reciprocity Lemma

tensor product (of modules)

tensor product (of algebras)

tower formulae

reduced -

trace (of an algebra)

reduced -

UK1(A,I)

unitary Whitehead group

USK1(A,I)

Vaserstein's Lemma

Wang's Theorem

Wedderburn's Main Theorem

Wedderburn's Theorem

Whitehead group

reduced -

Whitehead Lemma

Witt's Theorem

88

18

25

144

150

143

145

172

172

172

171

166

15

73

137

155

137

11C

Tannaka-Artin Problem 167


	SKEW FIELDS
	London Mathematical Society Lecture Note Series
	Title Page
	Copyright Page
	Contents
	Preface
	Conventions on Terminology
	Part I: Skew Fields and Simple Rings
	§ 1. Some ad hoc Results on Skew Fields
	§ 2. Rings of Matrices over Skew Fields
	§ 3. Simple Rings and Wedderburn's Main Theorem
	§ 4. A Short Cut to Tensor Products
	§ 5. Tensor Products and Algebras
	§ 6. Tensor Products and Galois Theory
	§ 7. Skolem–Noether Theorem and Centralizer Theorem
	§ 8. The Corestriction of Algebras

	Part II: Skew Fields and Brauer Groups
	§ 9. Brauer Groups over Fields
	§ 10. Cyclic Algebras
	§ 11. Power Norm Residue Algebras
	§ 12. Brauer Groups and Galois Cohomology
	§ 13. The Formalism of Crossed Products
	§ 14. Quaternion Algebras
	§ 15. p-Algebras
	§ 16. Skew Fields with Involution
	§ 17. Brauer Groups and K 2-Theory of Fields
	§ 18. A Survey of some further Results

	Part III: Reduced K 1-Theory of Skew Fields
	§ 19. The Bruhat Normal Form
	§ 20. The Dieudonné Determinant
	§ 21. The Structure of SL n (D) for n ≥ 2
	§ 22. Reduced Norms and Traces
	§ 23. The Reduced Whitehead Group SK 1 (D) and Wang's Theorem
	§ 24. SK 1 (D) ≠ 1 for suitable D
	§ 25. Remarks on USK 1 (D, I)

	Bibliography
	Thesaurus
	Index



