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Preface

This volume presents a set of papers accompanying the lectures of the sixth edi-
tion of the International School on Formal Methods for the Design of Computer,
Communication and Software Systems (SFM).

This series of schools addresses the use of formal methods in computer science
as a prominent approach to the rigorous design of computer, communication and
software systems. The main aim of the SFM series is to offer a good spectrum
of current research in foundations as well as applications of formal methods,
which can be of help for graduate students and young researchers who intend to
approach the field.

SFM 2006 was devoted to formal techniques for hardware verification and
covered several aspects of the hardware design process, including hardware de-
sign languages and simulation, property specification formalisms, automatic test
pattern generation, symbolic trajectory evaluation, BDD-based and SAT-based
model checking, decision procedures, refinement, theorem proving, and the ver-
ification of floating point units.

The opening paper by Bombieri, Fummi, and Pravadelli provides a general
view on simulation-based modeling and verification strategies for developing em-
bedded systems. In particular, the paper is focussed on describing state-of-the
art co-simulation approaches and verification strategies based on fault simulation
and assertion checking.

The paper by Drechsler and Fey reviews the basic concepts and algorithms
for the postproduction test of integrated circuits. The then authors present an
advanced SAT-based tool for automatic test pattern generation.

The paper by Claessen and Roorda concentrates on simulation-based model-
checking techniques, which do not need to represent the states of the design,
but only the values that flow through each signal. In particular, the authors
introduce a high-performance simulation-based model-checking technique called
symbolic trajectory evaluation.

The paper by Cabodi and Murciano overviews binary decision diagrams
(BDD) and their application in formal hardware verification. The paper by
Gupta, Ganai, and Wang illustrates instead a promising alternative to BDD-
based symbolic model-checking methods that relies on Boolean satisfiability
(SAT).

The paper by Cimatti and Sebastiani deals with decision procedures for ver-
ification problems that can be represented as satisfiability problems in some
decidable fragments of first-order logic. The authors focus on integration tech-
niques for combining technology for propositional satisfiability and solvers able
to deal with the theory component.

The paper by Manolios addresses theorem-proving systems and shows how
they can be employed to model and verify hardware using refinement. Theorem
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proving is considered also in the closing paper by Harrison, where it is used for
the verification of floating-point algorithms.

We believe that this book offers a comprehensive view of what has been done
and what is going on worldwide in the field of formal methods for hardware
verification. We wish to thank all the lecturers and all the participants for a
lively and fruitful school. We also wish to thank the entire staff of the University
Residential Center of Bertinoro (Italy) for the organizational and administrative
support.

May 2006 Marco Bernardo and Alessandro Cimatti
SFM 2006 Directors
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Hardware Design and Simulation for Verification

Nicola Bombieri, Franco Fummi, and Graziano Pravadelli

Università di Verona, Strada le Grazie 15, 37134 Verona, Italy
{bombieri, fummi, pravadelli}@sci.univr.it

Abstract. The development of more and more complex embedded sys-
tems constitutes a very challenging task for EDA experts, due to their
HW/SW-mixed nature joint to the high demand for quality and relia-
bility. Recently, both industrial engineers and academic researchers have
developed a very large number of techniques for dynamic verification in
terms of co-simulation, which, in particular, address the different nature
of hardware and software components of an embedded system. How-
ever, a widely accepted methodology does not exist. Thus, this paper
is intended to provide a general view on simulation-based modeling and
verification strategies for developing embedded systems. In particular,
the paper is focussed on describing state-of-the art co-simulation ap-
proaches and verification strategies based on fault simulation and asser-
tion checking.

1 Introduction

An embedded system can be defined as a computer that is a component in a large
system and that relies on its own microprocessor [1, 2]. Thus, it can be viewed as
a mix of cooperating hardware and software parts, which are able to provide a
wider and more adaptable set of complex functionality with respect to ASIC and
ASIP, without requiring the large amount of resources needed by general pur-
pose systems. Examples of embedded systems include controllers for industrial
processes, automotive appliances, medical devices, multimedia portable systems,
data acquisition systems, etc. The main characteristic of embedded systems is
the reactivity: they must continuously react to asynchronous input events. Fur-
thermore, since such systems are particularly suited in real-time contexts, where
tasks must be performed within a given deadline, predictability (determinism)
can become a key issue. In such application domains, the adaptability is required
too. In fact, when determinism is required, it must be preserved also when the
system is operating in a highly non-deterministic environment.

Even if embedded systems historically operate with bounded resources, as
memory and computational power, nowadays they are increasing their resources,
leveraging on the improvements of silicon technology. In fact, technology scaling
always offers new opportunities and new challenges to system designers. Moore’s
law predicts a doubling on systems complexity (expressed as the number of
transistors per integrated circuits) every couple of years. Chips composed of tens
of million of gates, and therefore of more than a hundred million transistors, are
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today feasible in commercial production lines with a 90 nm technology. Thus,
a system that yesterday was developed as a set of several chips connected on a
printed board, nowadays can be developed in a single chip, composed of several
complex subsystems integrated on the same silicon die. Such a system is known
as System-on-a-Chip (SoC) and it represents a strong paradigm for embedded
systems [3]. Several advantages make this way to develop a system very attractive
for system developers. When the system complexity increases, the number of
pins also tends to increase, so it becomes simpler and cheaper to connect many
subsystems on a single chip than several chips on a printed board. Furthermore,
the on-chip wire capacitances are smaller than their on-board counterparts, and
this implies higher performance and lower energy requirements.

On the other side, developing a single, very complex, SoC poses many chal-
lenges for the developers. First, when the technology scales, designers have to
face new issues, like the short channel effects [4] and the crosstalking problem [5].
Even if such problems are usually faced by foundries, the system developers must
be aware of them, because high-level design choices can have a strong impact on
lower levels of abstraction.

Another issue is represented by the power quest [6]. The energy budget for
embedded systems is usually strictly limited. Those systems are often battery-
based, and the improvements on the battery capacitance cannot keep pace with
the increase on the system complexity. Thus, to obtain a usable system (in terms
of activity time), the designer must take into account the optimization of the
energy consumption. Such an optimization is pressing also for the higher power
density involved in modern integrated circuits. As the gate size reduces and the
power consumption increases, the power density to dissipate strongly increases.
Current high-performance systems, as the state of the art microprocessors, have
already reached very high power densities, and, in the near future, power density
is expected to increase even more. Those levels of power density imply a high
quantity of heat to dissipate and this fact causes an increasing cost of the package
to use. Moreover, the higher temperature of functioning has a direct impact
on the reliability and on the life time of the systems. Therefore, the energy
consumption minimization of a system is nowadays a key issue for the developer,
which has to keep it under control at every stage of the design process.

Also the development time spent is a key factor that must be accurately con-
sidered when an embedded system is designed. The growing complexity of the
development of such systems pushes towards component reuse [2]. Designers are
bound to use use pre-designed subsystems, called Intellectual Property (IP) com-
ponents, as far as possible. Such components can be of several kinds, ranging
from cell libraries over blocks which perform a standard task (e.g., MPEG de-
coder, USB controller, etc.), to very complex components, like processor cores
(ARM, MIPS and other families of microprocessors are commercially available
as pre-designed IP cores). IP components are specified at several levels of ab-
straction, so that they can be used during all steps of the system design flow.
Moreover, they are often customizable and configurable, thus designers can use
them in their own systems, tuning them according to their needs.
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The modern approach of design reuse introduces the concept of platform [7]. A
platform is a fully defined interconnection structure and a collection of customiz-
able IP blocks. A developer can start from an available platform and configure it
choosing the parameters for the given IP blocks, adding new hardware devices,
and removing useless IP blocks. A platform is then conceived as a highly reusable
system that a designer can adapt to his own needs and purposes.

The need of taking into account all the previous challenges, and the intrinsic
heterogeneous nature of embedded systems (HW and SW) makes the devel-
opment of such systems a harder task compared with more traditional digital
systems. In particular, the high demands for quality and reliability for embedded
systems have led to complementary quality assurance efforts: hardware engineers
have developed techniques for verification in terms of co-simulation, which, in
particular, addresses the different nature of hardware and software components.
Thus, these techniques are tailored for design and verification flows which com-
prises dedicated models for the hardware and the software parts.

In this context, the paper is intended to provide a review of design and verifi-
cation techniques based on simulation for developing embedded systems. The pa-
per is organized as follows. Section 2 describes a typical embedded system design
flow. Section 3 is devoted to present techniques for simulation and co-simulation.
Section 4 focuses on verification approaches which exploit testbenches and as-
sertions, and the related issues. Section 5 reports some experimental results for
the verification techniques presented in Section 4. Finally, concluding remarks
are summarized in Section 6.

2 Design Modeling

The design of an embedded system is a very challenging task which involves
the cooperation of different experts: system architects, SW developers, HW de-
signers, verification engineers, etc. Each of them operates on different views of
the system starting from a very abstract informal specification and refining the
model through the abstraction layers reported. At every level of abstraction, a
model of an embedded system can be viewed as a black box that processes the
information received at its inputs to produce corresponding outputs. This I/O
mapping defines the behavior of the system.

Figure 1 represents the classical design modeling flow where system level
is refined by applying the new transactional level modeling (TLM) style [8]. A
TLM-based design flow starts from an abstract system description and it evolves
toward more detailed implementations till it gets to RTL. In particular, verifi-
cation activity involves three main phases: first, the design implemented at the
higher abstraction level is validated considering the system functionality; then,
once the design is optimized following architecture exploration and performance
analysis, it is validated taking into account the temporal behavior. Finally, when-
ever a step of the refinement flow implies a change in the system design, a further
verification check is required in order to preserve the golden model functionality
ascertained at the preceding step.
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Fig. 1. Embedded system design flow

In spite of its name, transaction-level does not denote a single level of de-
scription; rather, it refers to a group of abstraction levels, each varying in the
degree of functional or temporal details used and expressed.

A common agreement on terminology for TLM levels is still missing so far.
Different interpretations (and terminology for the same concepts) have been



Hardware Design and Simulation for Verification 5

Level Use Features

TL3 Executable specifications and first level of
functional partitioning of data and control.
System proof of concepts.

Implementation architecture-abstract.
Untimed functionalities modeling.
Event-driven simulation semantics.
Point-to-point Initiator-Target connection.
Abstract data types.

TL2 Hardware architectural performance and
detailed behavior analysis.
HW/SW partitioning and co-development.
Cycle performance estimation.

Mapping ideal architecture into resource-constrained world.
Memory/Register map accurate.
Event driven simulation with time estimation.
Bit-width and transfer-size constrained data types to allow mapping
to bus bursts or fragments of bursts.
Split, pipelined with time delays.

TL1 Detailed analysis and low level SW
development.
Modeling CA interfaces for abstract 
simulation models of IP blocks such as
embedded processors.
CA performance simulation.

Clock-accurate protocols mapped to the chosen HW interfaces and 
bus structure.
Interface pin are hidden.
Byte-accurate data Transactions have internal structure (protocols, 
data, clock).
Transactions map directly to bus cycles.
Parametizable to model different bus protocol and signal interfaces.

Fig. 2. TLM levels use and features

proposed by both industry and academia [8, 9, 10, 11]. However, factoring out
common elements, key concepts are:

1. To implement a system at higher level means to implement the system in a
more abstract way, that is to leave implementation details in order (mainly)
to speed-up simulation for functional verification purposes.

2. To implement a system at lower level means to add implementation details
to the system in order to simulate it in a more accurate way (for performance
analysis purpose).

Hence, taking OCP-IP definition as reference, main use and features of every
TLM level (e.g., TL3, TL2, and TL1) are summarized in Figure 2.

SystemC, as a broad-range level of abstraction modeling language, well ad-
dresses TLM. However, lack of established standards and methodologies means
that each organization adopting TLM has to invent its own usage methodolo-
gies and API’s. In addition to this redundant cost, these methodologies eas-
ily differ, making IP exchange and reuse more difficult. In this context, OSCI
TLM library [12] based on SystemC represents a valuable set of templates
and implementation rules aiming at establishing a reference for TLM API’s
implementation.

A typical TLM-based SoC design flow consists of the following steps.

– System modeling (TL3). Informal specification and system constraints
are analyzed to provide a system level model of the design. At this level,
there is no distinction between the HW components and the embedded
SW. Indeed, the embedded system is considered as an interconnection of
independent functional blocks which communicate by using blocks of words
(messages) or shared memory. Implementation details like communication
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protocols, delay analysis, computation algorithms, etc. are not taken into
consideration. The most important issues of system modeling are represented
by efficiency (i.e., the model must be quickly developable), flexibility (i.e.,
the model must be easily adaptable to explore different design implemen-
tations), and functionality (i.e., the behavior of the system must reflect the
informal specification and it must satisfy the system constraints). Finite state
machines (FSMs) [13], Labeled Transition Systems [14], Kripke structures
[15], Petri nets [16, 17], process networks [18], etc. are valuable alternatives
to formally model the functionality of embedded systems at such a level.
The adoption of such semantic models makes the system level a good tar-
get for formal verification issues. However, to evaluate different architectural
alternatives and to carry out performance analysis, semantic models are typ-
ically translated into simulatable descriptions. In this context, SystemC [19]
is a very suitable language for system level modeling1: it joins the flexibility
of C++ and the standard features of the traditional hardware description
languages (HDLs), like VHDL [20], Verilog [21], etc.

– HW/SW partitioning and architecture mapping (TL2, TL1). The
system level description is then mapped onto an architecture to obtain a
transactional level model. This requires to decide which tasks will be im-
plemented by SW and which ones by HW. The partitioning is actually a
critical design choice, since there is no unique way to decide which task
must be mapped into HW and which ones into SW. Moreover, some deci-
sions about the configuration of the final system must be taken. In particular,
the designers must select the following components:

• the programmable device where the SW will run;
• the memory model;
• the HW/SW communication architecture and the bus typology;
• the HW technology (ASIC, FPGA, etc.) where HW tasks will be mapped.

HW/SW partitioning and architecture mapping provides a transactional
level model where the communication is completely separated from compu-
tation. The focus is on the data rather than on the way transfer is executed.
At this level, simulation is used intensively for evaluating different archi-
tectures. Thus, the transactional model aims at minimizing the amount of
events and the information processed during simulation in order to reduce
the verification time. SystemC represents an attractive alternative also at
the transactional level, since it allows one to describe very accurately both
SW and HW components. In this way, HW/SW partitioning is simplified,
because functional tasks can be moved from SW to HW and viceversa with-
out the need of code translations, which are required when two different
languages are used to model SW and HW components.

1 SystemC is a C++ class library which can be used to define methodologies to effec-
tively model software algorithms, hardware architectures, and HW/SW interfaces.
The class library includes a simulation engine (the SystemC kernel) that can be
linked with the user descriptions. This allows us to obtain a single executable which
exhibits the behavior of the modeled system.
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– SW coding. After partitioning, SW and HW parts follow a different design
flow. In particular, SW tasks are implemented by using a programming lan-
guage (C/C++ represents an immediate solution when SystemC is adopted
at system and transactional levels), and typical SW engineering techniques
are used to optimize the resulting code. At this level, SW developers consider
the HW part as a black box which communicates with SW via device drivers.
Thus, SW coding must take into account constraints depending on the pro-
grammable device selected during the architecture mapping, and constraints
depending on the communication interface.

– SW compilation. After the coding, the SW is compiled to object code. The
compilation process generally depends on a Real Time Operating System
(RTOS) which is selected to take care of load distribution, task scheduling,
and communication with the HW interface. However, in some cases, RTOS
may be absent, and the SW directly interacts with the device driver.

– Interface definition. Splitting the design tasks in HW components and
pieces of SW introduces the need for an interface between the two parts
that, often, is not specified in the initial requirements. This interface has to
translate the timing information from the SW to the HW, and viceversa,
because HW and SW rely on very different timing models. The HW model
is typically event driven, while the SW model is cycle based, assuming it
is executed by a programmable device. For this reason, the design of the
interface between SW and HW parts is one of the most challenging task in the
embedded system design flow. It requires to implement the device drivers for
the programmable devices where the SW runs, and the communication bus
to connect HW components, memory and programmable devices. The device
drivers represent the interface between the RTOS and the HW components.
Its purpose consists of hiding the HW to the SW layers by providing a set of
functions to control the operation of the peripheral devices. Complementary,
the purpose of the bus consists of defining the communication protocol taking
into account many parameters like cost, bandwidth, reliability, etc..

– HDL modeling and HW partitioning. The HW model generated at the
transactional level must be refined and optimized by executing different syn-
thesis steps to obtain a gate-level description. Historically, the highest level
of abstraction for HW components is represented by the behavioral level. The
HW model is implemented by using an HDL focussing on the logic function
of the HW components and ignoring implementation details. Moreover, the
HW model is possibly partitioned into various interacting modules that bet-
ter characterize the different HW units. Some books dealing with Electronic
Design Automation (EDA) [22] make a more accurate classification and re-
fer to this level as the functional level, while a behavioral level model is
intended as a functional representation of the design coupled with a descrip-
tion of the associated timing relations. Any of these two abstraction levels
keeps the complexity of digital system models quite low, allowing their rapid
simulation.

– Behavioral synthesis and IP reuse. The functional/behavioral model of
each HW component is further refined into a Register Transfer Level (RTL)
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model by means of behavioral synthesis. The functionality of the design is
decomposed and represented by a structural connection of combinational and
sequential components (generally described as finite state machines with dat-
apath (FSMD) [23]). At this level, IP reuse is performed too. Thus, already
existing components are connected with new ones to provide the final RTL
model. IP reuse sensibly decreases the time-to-market and it allows designers
to concentrate the effort in implementing the very critical functionality of
the system.

– Logic Synthesis. Finally, logic synthesis is used to translate the RTL model
to a gate-level model, where the design is mapped into a structural view of
primitive components (AND, OR, flip-flop, etc.) from which the physical
mask can be easily generated to physically produce the circuit.

A verification/testing phase is mandatory after each step of the embedded
system design flow to avoid the propagation of errors between the different ab-
straction levels. Indeed, synthesis is a dangerous process since it may introduce
further bugs. This can be due to different causes: incorrect use of synthesis tools,
incorrect code writing style that may prevent the synthesis tool to adequately
infer the required logic, bugs of the synthesis tool, etc..

Thus, most of the publications focusing on the field of EDA start claiming the
importance of verification [24] and testing [22] for shipping successful embedded
systems. While the purpose of testing is to verify that the design was manufac-
tured correctly, verification aims at ensuring that the design meets its functional
intent before manufacturing. In particular, functional verification of embedded
systems is the process of ensuring that the logical design of the system satisfies
the architectural specification by detecting and removing every possible design
error. As digital systems become more complex with each generation, verifying
that the behavior is correct has become a very challenging task. Between 60%
and 80% of the design group effort is now dedicated to verification [24]. The
trend is particularly crucial for embedded systems, which are composed of a
heterogeneous mix of hardware and software modules, and where the presence
of design errors in the early phases of the design flow may lead to a complete
failure of time-to-market fulfillment. In this context, both formal verification
and simulation-based verification represent effective solutions to remove design
errors.

There exist formal verification approaches to deal with the analysis and check
of each of the grey products in Fig. 1. On the contrary, since one needs executable
specifications to do simulation, simulation-based verification plays a predomi-
nant role in the later stages of the design process, i.e. once a design is already
available, while formal verification must do most of the work at the border with
the higher levels of abstraction. Typical abstraction-bridging verification tasks
include checking a system level design vs. constraints or abstract specifications,
checking the behavioral level design vs. partial models, checking component de-
sign vs. behavioral properties. Of course, the different approaches cover different
aspects, thus they belong to different communities of scientists (like requirement
engineering at the specification level, code analysis around a compilation task,
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etc.). Indeed, advanced design process methodologies always foresee verification
loops when working on a single artefact (e.g., to get the system constraints or the
system level design right), and verification approaches for the transformations
from one or more intermediate products to another one (e.g. given a system level
design and a reference architecture, get the architecture-specific incarnation of
that model right).

As we see, a large area of the design flow is common ground between simula-
tion-based verification and formal verification, indicating a large potential for
synergies between the two techniques which are still insufficiently exploited.

3 Design Simulation

Dynamic verification faces the correctness of a design by means of simulation-
based techniques. In dynamic verification the model functionality is essentially
verified by generating a high number of input stimuli (test set) that are simulated
to observe the behavior of the design under verification at primary outputs. The
test set generated at a specific abstraction level can be re-used (and possibly
incremented) at the lower levels after each synthesis step up to manufacturing
test.

Traditional simulation-based approaches can be adopted to verify the whole
embedded system before HW/SW partitioning, as well as, HW and SW compo-
nents separately after HW/SW partitioning. However, the most challenging task
is to perform co-verification between HW and SW components. The integration
and the synchronization of HW and SW modules requires a permanent control
of consistency and correctness that can be efficiently achieved only by exploiting
a co-simulation environment.

3.1 Co-simulation Approaches

Co-simulation becomes a mandatory step after HW/SW partitioning. For this
reason, several co-simulation platforms [25, 26, 27, 28, 29, 30, 31, 32] have been
developed in the past years. In spite of the variety of architectural targets,
performance efficiency, and description languages, we can classify these differ-
ent solutions in three main categories: homogeneous, heterogeneous, and semi-
homogeneous co-simulation environments.

Homogeneous Environments. Homogeneous environments use a single en-
gine for the simulation of both HW and SW components (see Fig. 3). The
Ptolemy [25] and Polis [26] environments are pioneering works in that direc-
tion. In these approaches, homogeneity is achieved by abstracting away the dis-
tinction between hardware and software parts that are described as functional
blocks. Homogeneous environments simplify the design modeling and they pro-
vide good simulation performance. However, they are suitable only in a very
initial phase of the design, prior to HW/SW partitioning, since the HW and SW
sides needs different techniques and different tools when the abstraction level
decreases toward a real implementation.
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Fig. 3. A homogeneous co-simulation environment
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Fig. 4. A heterogeneous co-simulation environment

Heterogeneous Environments. Heterogeneous environments ensure a more
accurate tuning between HW and SW components in comparison to homoge-
neous ones. This allows us to use a level of abstraction lower than the behavioral
for HW and to evaluate the SW in its compiled (binary code) form. Such a bi-
nary code is obtained, from the high level SW description, using standard tools
as a compiler, an assembler and a linker (see Fig. 1).

Most of the heterogeneous frameworks essentially address the same problem:
how to efficiently link an event-driven hardware simulator and a cycle-based In-
struction Set Simulator (ISS)2 (see Fig. 4). In order to model the connection
between HW components and the microprocessor, where the SW will be exe-
cuted, a communication channel (a bus) is needed. However, such a bus causes
the reduction of the simulation speed, because it requires to model the signals
involved in the communication. Thus, the resulting simulation is very slow.

Earlier HW/SW co-simulation frameworks [29, 30, 31] were mainly focused on
HW described in several hardware description languages, like Verilog, VHDL or
SystemC, and on software developed in various programming languages, like C,
C++, Java, etc.

2 An ISS provides an accurate simulation of a programmable device allowing to verify
SW before hardware is available.
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All these heterogeneous approaches are quite similar in that their main effort
aims at solving the issue of controlling and synchronizing two (or more) sim-
ulation engines. This heterogeneous style is sub-optimal in terms of simulation
performance and ease of integration, since there is the burden of the communica-
tion between two very different engines. However it was the only possible choice
when VHDL or Verilog was the highest possible description level for modeling
HW. Some commercial tools, such as Mentor Graphics Seamless [28] and Synop-
sys Eaglei [27], also provide heterogeneous co-simulation capabilities. However,
they only allow HW/SW co-simulation at bus level, where each bus transaction
involves all signals necessary to accomplish the bus function, thus degrading the
co-simulation performance.

Semi-Homogeneous Environments. The advent of design flows based on
SystemC allowed the definition of efficient semi-homogeneous approaches
[33, 34, 35, 36, 37], where the bus is not modeled at signal level. Rather, the bus
is usually modeled with a small number of simple functions which provide in-
formation on the time required by the communication, without the need to
evaluate each signal. By using such bus abstractions, the model results less ac-
curate compared with a heterogeneous description where the bus is completely
modeled, but the simulation speed is considerably faster. Moreover, in a semi-
homogeneous approach, the accuracy is higher than the one obtained with an
unpartitioned (homogeneous) description. Thus, the semi-homogeneous environ-
ments lie between the heterogeneous and the homogeneous ones, exploiting both
their benefits, and allowing us to reach an optimal tradeoff between accuracy
and simulation speed.

Semi-homogeneous approaches are homogeneous from the language point of
view, since both HW and SW are described using C++ constructs (note that
SystemC is simply a C++ library). This definitely simplifies the implementation
of the initial model, as well as the subsequent HW/SW partitioning. However,
these approaches are heterogeneous from the simulation point of view, since HW
and SW can be executed using different simulators: the SystemC simulation
kernel for the HW components and an ISS for the SW programs.

In this way, a more accurate performance estimation can be achieved, since
the heterogeneous model reflects closely the final embedded system. All these
environments are based on two basic issues (see Fig. 5):

– Interprocess communication (IPC). IPC is a software mechanism to allow
different processes to communicate, even on different computers. It is used
to realize the communication between the ISS, where the SW part runs in
its binary form, and the SystemC simulator, that models the HW part. The
simulators run as distinct processes on a host system.

– Bus wrapper. A wrapper is a SW layer which allows an existing piece of
software to interact with an environment that is different from its originally
intended one. The bus wrapper allows the use of a high level model of the
bus within an environment where the SW model is cycle-accurate and the
HW is modeled at a signal-accurate level of abstraction. Such a bus wrapper
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ensures synchronization between the system simulation and the ISS, and
it translates the information coming from the ISS into cycle-accurate bus
transactions.

Most of these approaches [33, 34, 35] define a custom interface between the
bus wrappers and the ISS. This makes the integration of new processor cores
within the co-simulation framework harder, because the ISS needs to be modified
to support the IPC primitives defined by the co-simulation system. This issue is
addressed in [32], where a standardized interface between the bus wrapper and
the ISS is proposed. It is based on the remote debugging primitives of GDB [38],
which is both an instruction-level debugger and an ISS. In this way, any ISS
that can communicate with GDB (that is, basically any, since GDB is a SW
application) can also become part of a system-level co-simulation environment.
The approach of [32] still suffers from some performance bottlenecks, since the
ISS and the SystemC simulators evolve in lock-step, because the synchronization
is driven by the host operating system via IPC.

In [36] the authors solve some limitations of previous approaches by proposing
two alternatives co-simulation methodologies that allow a SystemC description
of hardware and an ISS to efficiently co-execute. The two proposed solutions
differ with respect to the simulation kernel (SystemC or ISS) that drives the co-
simulation. The aim is to reduce the overhead of the IPC calls, which are very
expensive in terms of time. When the master is the HDL simulator, the reduction
of the IPC calls can be achieved by using and optimizing the bus wrapper, in
order to minimize the amount of data exchanged between the two engines. On
the other side, when the master is the ISS, it is possible to exploit the system
calls of the RTOS. In fact, a device driver can be added to the RTOS, and the
communication between SW and HW is handled by the software, invoking the
device driver routines.

The timing synchronization is also an important issue in a co-simulation envi-
ronment. Both simulators, the ISS and the HW simulator, have their own timing

Fig. 5. A semi-homogeneous co-simulation environment based on SystemC and ISS
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information. Forcing the two sides to remain strictly synchronized can be too
burdening for the performance. However, relaxing too much the synchronization,
can impact the simulation accuracy. Several tradeoffs between accuracy and per-
formance are addressed in the literature [39, 40, 41]. It is possible to annotate the
SW execution delay into the application (and RTOS) code [39, 40], or to add a
channel between the simulators in order to exchange timing information [41].
The latter approach allows better portability, since it is independent of the used
RTOS. Furthermore, it allows a fine tuning of the performance/accuracy trade-
off, because the granularity of the exchanged timing information can be varied.

4 Simulation for Verification

Simulation represents the main verification technique when the functionality of
large heterogeneous embedded systems has to be verified. In particular, simu-
lation techniques for embedded systems verification are classified in two main
categories:

– Simulation by testbenches.
– Assertion-based verification.

Next sections present the key concepts that distinguish the two techniques.
Moreover, some approaches are described to evaluate the quality of verification
carried out by using testbenches and assertions. Finally, a transaction-based
verification (TBV) approach is presented to show how testbenches and assertions
defined at higher levels of abstraction (e.g., at transaction level) can be reused
at lower levels (e.g., at RTL).

4.1 Simulation by Testbenches

Simulation techniques based on testbenches essentially validate the model func-
tionality by dynamically generating a high number on input stimuli (test set)
that are simulated to observe the behavior of the design under verification (DUV)
at primary outputs. What we need to perform such a dynamic verification is:
a simulatable model of the design, a simulator, a testbench to apply stimuli to
the primary input of the design, and a “method to establish the correctness” of
the design with respect to the results of the simulation. Generally, the stimuli
generator and the simulation engine are integrated in a single SW application,
called automatic test pattern generator (ATPG).

While the first three ingredients of dynamic verification are almost straight-
forward, the last one is the crucial aspect. If state explosion is the big problem
of formal verification, the big problem of simulation is represented by the lack of
exhaustiveness of the verification process. Thus, like for formal verification, dy-
namic verification is very good in finding bugs, but it cannot ensure their absence.
Simulation can hypothetically provide an exhaustive answer to the problem of
design correctness only if the set of all possible input stimuli, applied to the de-
sign, results, after design simulation, in a set of values for the primary outputs
consistent with the set of expected values. Unfortunately, this is almost impos-
sible for two reasons: the set of expected values is typically not available, and
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the set of input stimuli for sequential circuits is exponentially large in time and
space. Thus, the quality of dynamic verification, and in particular the quality
of the generated set of stimuli, is measured by means of code coverage or fault
coverage. Depending on which of these two strategies is used, we can distinguish
between two kinds of dynamic verification: logic simulation and fault simulation.

Logic simulation. In logic simulation, the quality of the set of stimuli is mea-
sured by using code coverage. This is a class of metrics that has been used in
software engineering [42] for quite some time to analyze whether test suites cover
the required functionality. The most popular metrics adopted in logic simulation
are: statement coverage, condition coverage and path coverage.

– Statement Coverage. It measures how much of the total lines of code are
executed by the test set. To bring the statement coverage metric up to 100%,
a desirable goal, it is necessary to understand what conditions are required
to cause the execution of the uncovered statements. Then, it is necessary
to understand why they never occurred. It is because the test set does not
contain a stimulus able to activate the condition or it is because the condition
can never occur? In the first case, a larger number of (or higher quality) test
cases must be generated. On the contrary, if the condition can never occur,
the code in question is effectively unreachable. Thus, either the code (and
the condition) could be removed, or the design requires some most general
refinement to allow the activation of the condition.

– Condition Coverage. It measures the various ways paths through the code
are executed. Consider for example an if statement whose condition is ((a
< 10) or (a > 20)). The then part of such a statement can be executed in
two ways: when the value of a is less than 10 (first term of the condition) and
when the value of a is greater than 20 (second term of the condition). Thus,
it is evident that the statement coverage of a code can be 100%, while the
condition coverage is lower. To increase condition coverage, it is necessary to
identify the possible terms of conditions that are not executed, and if these
terms can never be excited or they cannot be activated by the current test
set.

– Path Coverage. It measures all possible ways you can execute a sequence
of statements. Again it is important to determine the possible conditions
that cause the uncovered path to be executed, and if these conditions can
never occur or they cannot be activated by the current test set. Full 100%
path coverage is very difficult to achieve, since the number of paths in a
sequence of statements grows exponentially with the number of control-flow
statements.

What does 100% code coverage means? Not much, it indicates how thoroughly
the generated test set exercises the source code, but it does not provide precise
indications about the correctness of the DUV. Nevertheless, code coverage can
help to identify possible corner cases that are not exercise by the testbench, and
that can be symptoms of design errors.
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Fault simulation. Traditional code coverage metrics derived from SW testing
represent a low cost popular solution. However, they are based on controllability
information, i.e., the activation of statements, branches or sequences of state-
ments, and they do not address observability requirements, i.e., to see whether
effects of possible errors activated by tests can be observed at the DUV outputs.
The fact that a statement with a bug has been activated by input stimuli does
not mean that the observed outputs will be incorrect. An alternative approach
is represented by the use of high-level fault models [43], which include the char-
acteristics of both coverage metrics and logic-level fault models [44]. Thus, fault
simulation consists of simulating a design in presence of logical faults, which em-
ulate the effect of physical faults on the behavior of a system description. Faults
can be modeled by means of different fault models, targeting various kind of
errors that may affect a design, depending on the considered abstraction level.
Independently from its typical implementation (perturbed assignment, operator
substitution, mutants, saboteurs, etc.), an high-level fault provides an abstrac-
tion of a possible design error, since it produces perturbed DUV behaviors. Thus,
the analysis of its nature allows an effective verification of the expected and un-
expected behavior of the DUV, particularly when faults are directly injected into
TL or RTL code, which is very familiar to the designer.

Comparing the fault simulation results with those of the fault-free simulation
of the same design, simulated by using the same test set, we can determine the
fault coverage as the ratio between the number of faults detected by the test set
and the number of simulated faults. In such a way, the fault coverage is used
as a metrics to evaluate the quality of testbenches as well as to reveal design
errors. Achieving 100% fault coverage is generally harder than 100% statement
or condition coverage. Then, stimuli generators targeted to fault coverage allow
a wider exploration of the DUV state space. Thus, they provide better test cases
with respect to ones obtained by using traditional coverage metrics. For this
reason, fault simulation is generally preferred to logic simulation. Indeed, as for
code coverage, we cannot completely ensure the correctness of the design by
relying on the fault coverage. In fact, even a test set which achieves 100% fault
coverage may still fail to detect faults modeled by a different fault model.

4.2 Assertion-Based Verification

Functional verification based on assertions represents a valuable alternative to
fault simulation [45]. Assertion-based verification (ABV) joins formal verifica-
tion and simulation based verification to provide a more powerful and easy way
to verify complex digital systems. To test these complex systems, too much time
is spent constructing tests as design deficiencies are discovered, requiring test-
benches to be rewritten or modified, as the previous testbench code did not ad-
dress the newly discovered complexity. This process of working through the bugs
causes defects in the testbenches themselves. ABV dramatically improves the ef-
ficiency of verifying correct behavior, detecting bugs and fixing bugs throughout
the design process. Thus, more and more it is proposed into SoC verification
methodologies.
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In ABV, assertions are the central focus of the verification process; they detect
bugs and guide testbenches in the stimuli production. An assertion, sometimes
called a checker or monitor, is a precise description of what behavior is expected
when a given input is presented to the design. It raises the level of verifica-
tion from RTL to TL where users can develop tests and debug their designs
closer to design specifications. Consequently, design functions are exercised ef-
ficiently (with minimum required time) and monitored effectively by detecting
hard-to-find bugs. This methodology is called assertion based verification, since
the assertions are the primary basis for ensuring that the DUV meets the cri-
teria of design quality. ABV supports two methods: dynamic verification using
simulation, and formal or semi-formal verification using model checking. In this
second case, for historical reasons, the term property is usually adopted instead of
assertion. However, the terms assertion and property are interchangeable, thus,
in the following we use the more traditional term property.

Similarly to simulation by testbenches, ABV can prove the presence of bugs,
but not their absence. Indeed, a design which satisfies all the defined proper-
ties is not guaranteed to be correct. In fact, the verification engineers can for-
get to written some properties, missing a complete verification. Thus, a design
implementation that satisfies an incomplete set of properties cannot be consid-
ered bug-free. For this reason, a mechanism is needed to evaluate the quality
of the defined properties, as well as a metric is used to evaluate the quality of
testbenches for simulation. In this case, we use the term property coverage to
indicate the percentage of the DUV behaviors checked by the defined properties.

Different papers [46, 47, 48, 49, 50] have been proposed to address the prob-
lem of property coverage. The majority of them [46, 47, 48, 49] propose formal
method-based methodologies which statically analyze the effectiveness of prop-
erties in covering all states of the DUV. The main limitation of such techniques
is represented by the state explosion problem that may arise in case of medium-
large DUVs.

A different approach based on dynamic verification is presented in [50], where
the property coverage is computed by analyzing, via simulation, the property
capability of detecting DUV perturbations. In this case, the proposed property
coverage methodology is applied on a set of properties which hold on the DUV,
and an high-level fault model is used to generate different perturbations that
modify the original functionality of the DUV implementation. The presence of
a detectable fault implies that the behavior of the perturbed implementation
differs from the behavior of the unperturbed one. Thus, while the set of properties
is satisfied by the original unperturbed implementation, at least one of them
should be refuted if checked on the perturbed implementation. On the contrary,
the set of defined properties is unable to completely explore the DUV state
space, thus it is incomplete. Summarizing, the property coverage methodology
proposed in [50] can be described as follows:

1. a checker is generate for each defined property, by using for example FoCs [51];
2. the DUV is perturbed by using an high-level fault model to obtain a set of

faulty implementations whose behavior differs from the fault-free one;
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3. faulty implementations are simulated and their behavior is monitored by
the checkers. Fault f is covered by property p if its checker fails during the
simulation of the faulty implementation corresponding to f.

If a checker fails in presence of a fault f, the corresponding property p is able
to distinguish between the faulty and the fault-free DUVs. This means that p
covers the logic cone of the DUV that may be affected by f. Thus, according to
the selected fault model, the property coverage CP of a set of properties P is
defined as:

Cp =
# of faults covered by at least one property p ∈ P

# of generated perturbations
. (1)

All faulty implementation, whose behavior differs from the faulty-free one,
must be covered by the property set, i.e. property coverage must achieve 100%.
A lower property coverage is symptom that the property set is incomplete, and
new properties must be added to addresses the uncovered perturbations.

4.3 Reuse by Transactor-Based Verification

Fault simulation and ABV are generally faster than formal verification tech-
niques, and they allow to effectively verify large systems reducing the risk of
incurring in the state explosion problem. This motivates the recent trend of
proposing design and verification methodologies based on TLM, simulation and
ABV (see Figure 6). However, such a tendency should not leave out of consider-
ation the concept of reuse to further save time. Reuse has to be intended in two
directions: from TL to RTL and viceversa. In the first case, verification engineers
are interested in reusing testbenches and properties, once the TL components are
refined into RTL descriptions. On the contrary, the second case is motivated by
the fact that many vendors provide standard IPcores together with correspond-
ing verification kits including testbenches and properties. In this way, already

Fig. 6. Reuse of IP-cores, testbenches and properties in a mixed TL-RTL design and
verification flow
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existing IP-cores can be composed and integrated with new ones to create differ-
ent and more complex systems. However, already existent IP-cores are generally
available at RTL, while new components are modeled at transaction level. Thus,
TL-RTL mixed descriptions are becoming very common in practice to quickly
obtain high-level design implementations.

The benefits deriving from the reuse of testbenches and properties for ABV
moving through all transactional levels till to RTL and the reuse of RTL IP-
cores in a TLM context are evident. However, this arouses new challenges for
both designers and verification engineers. In fact, it is evident the lack of method-
ologies and tools to automatically derive the RTL implementation, once the TL
design has been carried out. The refinement process from TL to RTL is much
more difficult than logic synthesis from RTL to gate level. A synthesizable RTL
design contains all information required by the synthesis tool to generate the
corresponding gate-level netlist. On the contrary, a TL description is very far
from including the implementation details which must be added at RTL. Then,
a fully automatized process to convert TL designs into RTL implementations is
still an utopia. For this reason, it is mandatory that new design and verification
methodologies are proposed in order to efficiently check the correctness of the
TL-to-RTL manual conversion.

In this context, some approachesbased on Transactor-basedVerification (TBV)
have been recently proposed from both EDA companies and academic researchers
[52, 53, 54, 55]. Despite of technical details, all of them exploit the concept of trans-
actor to allow a mixed TL-RTL co-verification (Triangle shape in Figure 6). A
transactor works as a translator from a TL function call to an RTL sequence of
statements, i.e., it provides the mapping between transaction-level requests, made
by TL components, and detailed signal-level protocols on the interface of RTL IPs.
Thus, testbenches and properties, defined to check the TL design, can be directly
reused, through the transactor, to verify the RTL implementation. This avoids
time-consuming and error-prone manual conversion of testbenches and properties
moving from TL to RTL.

Figure 7 shows how the transactor is exploited to reuse TL testbenches and
assertions on the RTL design [52, 53]. The testbench carries out one transac-
tion at time, composed by two TL function calls (write() and read()). First,
data are provided to the RTL design by means of write(addr, data). The
transactor converts the write() call to the RTL protocol-dependent sequence of
signals required to drive control and data inputs of the design under verification.
Moreover, the write status is reported to the testbench to notify about successes
or errors. Then, the testbench asks for the DUV result by calling read(addr,
&res). The transactor waits until the DUV result is ready by monitoring the
output control ports, and, finally, it gets the output data. Then, testbench can
carry on with the next transaction. If property checking is desired, the param-
eter of the function calls (addr, data, write status, &res, read status),
which represent inputs and outputs of the RTL computation, are provided to
the checkers. The testbench is modeled at transaction level, thus, properties are
checked when write() and/or read() return according to the aim of properties.
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Fig. 7. The role of the transactor in TBV
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The effectiveness of the TBV with respect to a fully RTL verification, which
requires to manually convert TL testbenches and properties into RTL ones, has
been proved in [56]. The comparison methodology is summarized in Figure 8. The
TL design is refined in an equivalent RTL description by following a standard
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semi-automatic TL design flow. Then, in the upper side, the RTL module is
embedded in the transactor-based verification architecture, where it interacts
with TL testbenches and TL properties through the transactors. In this way,
both the simulation engine and the ABV infrastructure are unchanged moving
from TL to RTL. On the contrary, in the lower side of the Figure, the RTL
description communicates directly with ad-hoc RTL testbenches. Moreover, a
model checker is used to verify the RTL properties manually derived from the
TL properties. Such a twofold evaluation methodology, based on fault coverage
and assertion/property coverage, shows that the transactor-based verification
is not only valuable for time savings and conversion error avoidance, but also
because it is at least as effective as RTL verification. Next sections describes the
theoretical basis upon which the TBV evaluation methodology relies.

4.4 Testbench Reuse

A general high-level fault model is considered to theoretically show that reusing
TL testbenches by means of a transactor allows to detect the same set of faults
detectable by applying a testbench directly to the RTL model. This conjecture
relies on the following definitions and theorem.

Definition 1. Given the implementation, I , of the DUV, a set of faults, F=
{f1, . . . , fn}, a set of perturbed implementations, IF = {If |f ∈ F}, the en-
vironment, E, where I is embedded, and the set of FSM retroactive networks
originated by E, NIE ∪NIFE 3, where NIFE = {NIfE |f ∈ IF}, a fault f ∈ F is:

Detectable if there is at least an input sequence, ι = (i1, . . . , in), such that at
least one output of I differs from the respective output of If when ι is simulta-
neously applied to I and If . We say that ι is a test sequence for f on I.

E-detectable if there is at least an input sequence ι = (i1, . . . , in), such that
at least one output of NIE differs from the respective output of NIfE when ι is
simultaneously applied to NIE and NIfE . We say that ι is a test sequence for f
on NIE 4. We call E-det the set of E-detectable faults.

Definition 2. Under the same conditions of Def. 1 and assuming that the
implementation I is modeled at transaction level, a fault is TLM-detectable
if there is a test vector such that the outputs of the unperturbed and perturbed
DUVs differ when the test vector is simultaneously applied to both the designs.
The fault is TLM-undetectable if such a test vector does not exist.
Definition 3. Under the same conditions of Def. 1 and assuming that the
implementation I is modeled at RTL, a fault is RTL-detectable if there is
a test sequence such that the outputs of the unperturbed and perturbed DUVs
differ when the test sequence is simultaneously applied to both the designs. The
fault is RTL-undetectable if such a test sequence does not exist.
3 An FSM retroactive network NIE is composed of two FSMs: I, which describes the

DUV, and E , which models the environment where I is embedded. Some output lines
of I are connected to the input lines of E , and some output lines of E are connected
to input lines of I.

4 Note that ι is also a test sequence for f on I.
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It is worth to note that, at TL, testbenches are composed of test vectors,
while, at RTL, we need test sequences generally composed of more than one test
vector. This is due to the fact that TLM is untimed (eventually a clock can be
introduced at level 1), thus the result of a transaction is instantaneously avail-
able once a single test vector is applied. On the contrary, at RTL the design is
generally modeled as an FSMD where the result is available after a number of
clock cycles and it may depends on values provided to the primary inputs at dif-
ferent times. When a TL testbench is applied to an RTL design, the transactor
converts test vectors in the corresponding test sequences modeling the commu-
nication protocol needed by the RTL design. From this observation the following
definition derives.

Definition 4. Under the same conditions of Def. 1 and assuming that the imple-
mentation I is modeled at RTL and wrapped by a TL-to-RTL transactor as
defined in Section 4.3, a fault is5:

– Functionally T-detectable, if there is a test vector such that the outputs of
the transactor connected to the unperturbed and perturbed DUVs are available
at the same time and they differ, once the transactor has simultaneously
applied the test sequence derived from the test vector to both the designs.

– Timing T-detectable, if there is a test vector such that the outputs of the
transactor connected to the unperturbed and perturbed DUVs are available
at different times, but they are equal, once the transactor has simultaneously
applied the test sequence derived from the test vector to both the designs.

– Functionally and timing T-detectable, if there is a test vector such that
the outputs of the transactor connected to the unperturbed and perturbed
DUVs are available at different times, and they differ, once the transactor
has simultaneously applied the test sequence derived from the test vector to
both the designs.

– T-detectable, if it is functionally T-detectable and/or timing T-detectable.
– T-undetectable, if for each test vector the outputs of the transactor con-

nected to the unperturbed and perturbed designs are available at the same
time and they are equal, once the transactor has simultaneously applied the
test sequence derived from the test vector to both the designs.

Theorem 1. An RTL-detectable fault is also T-detectable.

Proof: If a fault is RTL-detectable there exist a test sequence such that it
propagates the effect of the fault to at least one output of the perturbed RTL
DUV (Def. 3). Note that, such a test sequence respects the protocol imposed
by the environment constraints that must be connected to the RTL DUV as
required by Def. 1.

Let us consider that the fault is propagated to a data output. Accordingly to
the transactor implementation described in Section 4.3 and Def. 4, such a fault
5 Please, note that in this case the environment constraints are directly modeled by

the transactor.
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becomes functionally T-detectable (then, T-detectable) when the RTL design
is connected to a TL testbench through the transactor. In fact, the same test
sequence generated by the RTL testbench can be obtained by applying an oppor-
tune test vector to the transactor (which acts like the environment constraints).

On the contrary, let us consider that the fault is propagated to a control
output. In this case, the communication protocol between the transactor and
the perturbed RTL DUV is necessarily changed. This causes that: the result of
the perturbed DUV is provided to the transactor with a timing discrepancy with
respect to the unperturbed DUV. Thus, according to Def. 4, the fault is timing
T-detectable (then, T-detectable). �

Theorem 1 shows that the TBV is at least as effective as the RTL verifica-
tion from the fault coverage point of view. The Theorem assumes that the TL
testbenches are able to produce a set of test vectors that can be converted from
the transactor into a set of test sequences which includes the test sequences
directly generated by the RTL testbenches. However, such an assumption is rea-
sonable, since it is much more difficult to create efficient RTL testbenches than
TL ones [52].

4.5 Property Reuse

Let us compare now TL property coverage and RTL property coverage to show
the effectiveness of reusing TL properties at RTL through TBV, instead of con-
verting them into properties specifically tailored to the RTL design. The desired
goal is to show that TL properties cover the same set of behaviors covered by
the corresponding RTL properties.

As already described, the property coverage measures the quality of proper-
ties to detect design errors in all parts of the DUV description. It is computed
by analyzing the capability of properties to highlight differences between the
unperturbed and the perturbed implementations of the same design. If a prop-
erty, which holds on the unperturbed design, fails in presence of a fault, then
the behavior perturbed by the fault is covered by the property.

Definition 5. Under the same assumption of Definition 1, the RTL property
coverage, CRTL

P , and the TL property coverage, CTL
P , are defined as:

CRTL
P =

# of faults that causes an RTL property failure
# of RTL-detectable faults

(2)

CTL
P =

# of faults that causes a TL property failure
# of T-detectable faults

(3)

Given the previous Definition and Theorem 1, TL property coverage and RTL
property coverage can be compared. In fact, the methodology presented in [50]
for RTL property coverage can be reused for TL property coverage, provided
that, the definition of RTL-detectable faults is substituted with the definition of
T-detectable faults.

For sake of completeness, it is worth to note that a set of assertions, achieving
100% property coverage on the TL design, may not achieve 100% on the RTL
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design. This is due to the fact that at TL no properties can be defined related
to communication protocols and timing between events, since such details are
not modeled at transaction level. However, this observation does not affect the
effectiveness of reusing TL properties at RTL, since they allows to check the
functionality of the RTL design. Then, new RTL properties must be added only
to verify timing and communication protocols.

5 Experimental Results

This section reports some experimental results showing the effectiveness of the
simulation-based techniques, described in Section 4, to verify a complex embed-
ded system. Moreover, an experimental confirmation is reported to show the
effectiveness of reusing test benches and properties by TBV.

The case study is represented by the STMicroelectronics Face Recognition
System shown in Figure 9. In particular, the ROOT, DIV and DISTANCE
modules are considered, since they were selected to become HW components.
Their characteristics are showed in Table 1 whose columns report the number
of gates and flip-flops, and the number of TL and RTL faulty implementations
generated to perform functional verification by using test benches and ABV.

Table 1. Characteristic of the case study

Module Gates FFs TL faults RTL faults

ROOT 7802 155 196 1627
DIV 11637 269 1017 2333
DISTANCE 40663 100 2327 3061

5.1 Functional Verification by Test Benches and ABV

The TL descriptions of ROOT, DIV and DISTANCE have been verified by
using both fault simulation by test benches and ABV. In particular, a set of
test sequences have been generated by using Laerte++ [57], a functional ATPG
equipped with different pseudo-deterministic engines, and the corresponding
fault coverage has been computed. Then, a set of properties have been defined
and their effectiveness have been evaluated by computing the related property
coverage. Table 2 reports the achieved results, where FC%, #TV, PC% and
#Prop. refer, respectively, to the fault coverage, the number of generated test
vectors, the property coverage and the number of defined properties.

5.2 TBV Evaluation

The effectiveness of TBV has been experimentally confirmed by comparing the
fault coverage and the property coverage achieved by reusing TL test benches and
properties through TBV, and the fault coverage and property coverage achieved
by generating ad-hoc RTL test benches and by manually converting TL proper-
ties into corresponding RTL ones.
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Table 2. Fault coverage and property coverage at TL

ATPG ABV

Module FC% #TV PC% #Prop.

ROOT 99.0 23 99.0 11
DIV 99.0 20 99.0 5
DISTANCE 99.0 8 99.0 3

Fault Coverage Comparison. Table 3 reports the results related to the fault
coverage comparison. Columns FC%, #TV and T ime show, respectively, the
achieved fault coverage, the number of test vectors generated by Laerte++,
and the time required to generate/simulate such vectors, for TBV and the RTL
verification flow. In particular, TBV (reuse) is related to the reuse of TL test
benches at RTL via transactor, while TBV (reuse+ATPG) is related to the
integration of the TL test benches by adding new test vectors generated by
applying an Laerte++ to the RTL module via transactor. As expected from
theoretical results reported in Section 4, the TBV fault coverage is greater than
or equal to the RTL one for all the modules. Moreover, it is interesting to note
that the number of test vectors and the time required by TBV is lower than the
corresponding RTL quantities. In particular, the time spent by TBV is extremely
lower than the one needed at RTL. This derives from the fact that, at RTL,
test vectors must be completely generated ex-novo. On the contrary, TBV can
reuse the ones generated during the verification of the TL descriptions. Thus,
fault simulation is required instead of ex-novo test generation when TBV is
applied. Indeed, the reuse of high-quality TL test vectors could be insufficient
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Fig. 9. The Face Recognition System
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Table 3. Fault coverage comparison by reusing test benches through TBV

TBV (reuse) TBV (reuse+ATPG) RTL

Design FC% #TV Time(s.) FC% #TV Time(s.) FC% #TV Time(s.)

ROOT 94.5 23 23 98.5 25 145 97.8 741 2050
DIV 84.3 20 31 97.0 191 112 86.6 1073 1774
DISTANCE 90.7 8 57 98.9 15 316 94.2 254 11540

to achieve an high-fault coverage also on the RTL design (TBV (reuse)). For
this reason, the TL test benches have been integrated by generating new test
vectors achieving the fault coverage reported in TBV (reuse+ATPG). Thus, the
TBV time is composed by summing the time required for fault simulation and
the time required for test bench integration.

Property Coverage Comparison. Table 4 shows the property coverage per-
centage (PC% ) achieved by applying the ABV methodology. As already reported
in Table 2 the TL description of the considered modules has been verified by
defining a total number of 19 properties which achieve 99% property coverage.
After TL-to-RTL refinement the RTL implementation was verified by:

1. reusing TL properties through TBV (TL Prop. Reuse);
2. converting the TL properties into RTL ones (Manual Conv.);
3. adding new properties to check implementation details and the communica-

tion protocol added at RTL (New ad-hoc Prop.).

After RTL refinement, the TL properties have been checked on the RTL
implementation by using TBV. Then, they have been manually converted into
RTL properties and verified by using the SMV model checker. Finally, the cor-
responding property coverage have been computed and compared on the RTL
implementation. The results reported in Table 4 confirms the effectiveness of
TBV, since property coverages achieved by TL property reuse and manual con-
version are equal for all modules. However, as observed in Section 4.5, TL prop-
erties are not enough to completely verify the RTL implementations, even if
they do it at TL. This emphasizes the fact that TL properties, but also the
corresponding RTL properties, are not able to identify perturbations that af-
fect behaviors depending on timing synchronization or communication protocols
typical of the RTL implementation. This has been confirmed by analyzing the

Table 4. Experimental results

ROOT DIV DISTANCE TOTAL

#Prop PC% #Prop PC% #Prop PC% #Prop PC%

TLM TL Prop. 11 99% 5 99% 3 99% 19 99%

TL Prop. Reuse 11 95% 5 86% 3 87% 19 89%
RTL Manual Conv. 11 95% 5 86% 3 87% 19 89%

New ad-hoc Prop. 1 99% 3 96% 4 96% 8 97%
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nature of high-level faults not covered by the TL properties. Thus, column New
ad-hoc Prop. reports the final property coverage achieved after new properties
have been added to check the timing synchronization and the communication
protocol.

6 Concluding Remarks

In this work, the key concepts of actual embedded system design flows have
been presented. Transaction level modeling has been showed as the emerging
system level modeling style that, starting from an abstract system description,
evolves toward more detailed descriptions till an RTL implementation. Software
coding, interface definition and HW modeling have been introduced to complete
the design process till the logic level. Then, the work have dealt with the use
of co-simulation techniques for dynamic verification. In particular, homogeneous
and heterogeneous co-simulation environments based on SystemC and ISS have
been presented. Finally, the application of simulation to dynamic verification
techniques, based on fault simulation and ABV, has been described. In this
context, fault coverage and property coverage have been introduced to provide
metrics able to evaluate the quality of such a dynamic verification. Moreover, the
transaction-based verification has been presented as an efficient strategy to reuse
IP-cores, test benches and properties, throughout the TL-to-RTL design flow.

References

1. Wolf, W.: What is embedded computing? IEEE Computer 35(1) (2002) 136–137
2. Ernst, R.: Codesign of embedded systems: Status and trends. IEEE Design and

Test of Computers 15(2) (1998) 45–54
3. Bergamaschi, R.A., Cohn, J.: The a to z of socs. In: IEEE. (2002) 791–798
4. Sze, S.M.: Physics of Semiconductor Devices. John Wiley and Sons (1981)
5. S.Hall, Hall, G., McCall, J.: High-Speed Digital System Design: A Handbook of

Interconnect Theory and Design Practices. John Wiley and Sons (2000)
6. Benini, L., Poncino, M.: Ambient intelligence: a computational platform perspec-

tive. In: Ambient intelligence: impact on embedded system design, Kluwer Aca-
demic Publishers (2003) 31–50

7. Sangiovanni-Vincentelli, A., Martin, G.: Platform-based design and software design
methodology for embedded systems. IEEE Design and Test of Computers 18 (2001)
23–33

8. Cai, L., Gajski, D.: Transaction level modeling: An overview. In: IEEE CODES
+ ISSS. (2003) 19–24

9. Ghenassia, F., et al.: Using Transactional Level Models in a SoC Design Flow.
Kluwer Academic Publishers (2003)

10. Donlin, A.: Transaction level modeling: Flows and use models. In: IEEE CODES
+ ISSS. (2004) 75–80

11. Kogel, T., Haverinen, A., Aldis, J.: Ocp tlm for architectural modeling. OCP
methodology guideline, http://www.ocpip.org (2005)

12. Rose, A., Swan, S., Pierce, J., Fernandez, J.M.: Transaction level modeling in
systemc. White paper. http://www.systemc.org (2004)



Hardware Design and Simulation for Verification 27

13. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines -
a aurvey. Proc. of the IEEE 84(8) (1996) 1090–1123

14. Valenzano, A., Sisto, R., Ciminiera, L.: An abstract execution model for basic
lotos. IEEE Software Engeneering Journal 5(6) (1990) 311–318

15. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press (2000)
16. Cortes, L., Eles, P., Peng, Z.: Hierarchical modeling and verification of embedded

systems. In: Proc. of IEEE Euromicro Symposium on Digital System Design. (2001)
63–70

17. Gomes, L., Barros, J.P.: On structuring mechanisms for petri nets based systems
design. In: IEEE. (2003) 431–438

18. Ernst, R., Jerraya, A.A.: Embedded system design with multiple languages. In:
Proc. of IEEE Conference on Asia and South Pacific Design Automation. (2000)
391–396

19. Inc.: (SystemC User’s Guide) http://www.systemc.org.
20. Armstrong, J., Gray, F.: VHDL Design Representation and Synthesis. Prentice

Hall (2000)
21. Sagdeo, V.: The Complete Verilog Book. Kluwer Academic Publisher (1998)
22. Breuer, M., Abramovici, M., Friedman, A.: Digital Systems Testing and Testable

Design. IEEE Press (1990)
23. Gajski, D., Dutt, N., Allen, S., Wu, C., Lin, Y.: High-Level Synthesis: Introduction

to Chip and System Design. First edn. Kluwer Academic Publishers (1992)
24. Bergeron, J.: Writing Testbenches: Functional Verification of HDL Models. Kluwer

Academic Publishers, Norwell Massachusetts (2000)
25. Buck, J., Ha, S., Lee, E., Messerschmitt, D.: Ptolemy: A framework for simulat-

ing and prototyping heterogeneous systems. International Journal in Computer
Simulation 4(2) (1994) 155–182

26. Balarin, F., Chiodo, M., P.Giusto, H.Hsieh, A.Jurecska, L.Lavagno, C.Passerone,
A.Sangiovanni-Vincentelli, E.Sentovich, K.Suzuki, B.Tabbara: Hardware-Software
Co-Design of Embedded Systems: The Polis Approach. Kluwer Academic Press
(1997)

27. Synopsys Inc.: (Eaglei) http://www.synopsys.com/products.
28. Mentor Graphics Inc.: (Seamless CVE) http://www.mentor.com/seamless.
29. Liem, C., Nacabal, F., Valderrama, C., Paulin, P., Jerraya, A.: System-on-chip

co-simulation and compilation. IEEE Design and Test of Computers 14(2) (1997)
16–25

30. Valderrama, C., Nacabal, F., Paulin, P., Jerraya, A.: Automatic vhdl-c interface
generation for distributed co-simulation: Application to large design examples. De-
sign Automation for Embedded Systems 3(2/3) (1998) 199–217

31. Coste, P., Hessel, F., Marrec, P.L., Sugar, Z., Romdhani, M., Suescun, R., Zer-
gainoh, N., Jerraya, A.: Multilanguage design of heterogeneous systems. In: Proc.
of IEEE International Workshop on Hardware-Software Codesign. (1999) 54–58

32. Benini, L., Bertozzi, D., Bruni, D., Drago, N., Fummi, F., Poncino, M.: Systemc
co-simulation and emulation of multi-processor soc designs. IEEE Computer 36(4)
(2003) 53–59

33. Liu, J., Lajolo, M., Sangiovanni-Vincentelli, A.: Software timing analysis using
hw/sw co-simulation and instruction set simulator. In: Proc. of IEEE International
Workshop on Hardware/Software Co-design. (1998) 65–69

34. Semeria, L., Ghosh, A.: Methodology for hardware/software co-verification in
c/c++. In: Proc. of IEEE Asian and South Pacific Design Automation Conference
(ASP-DAC). (2000) 405–408



28 N. Bombieri, F. Fummi, and G. Pravadelli

35. Lahiri, K., Raghunathan, A., Lakshminarayana, G., Dey, S.: Communication archi-
tecture tuners: a methodology for the design of high-performance communication
architectures for system-on-chips. In: Proc. of ACM/IEEE Design Automation
Conference (DAC). (2000) 513–518

36. Fummi, F., Martini, S., Perbellini, G., Poncino, M.: Native iss-systemc integration
for the co-simulation of multi-processors soc. In: Proc. of IEEE Design Automation
and Test in Europe. (2004) 564–569

37. Moussa, I., Grellier, T., Nguyen, G.: Exploring sw performance using soc
transaction-level modelling. In: Proc. of IEEE Design Automation and Test in
Europe. (2003) 120–125

38. : (Gnu project web server) http://www.gnu.org/software/.
39. Yoo, S., Bacivarov, I., Bouchhima, A., Paviot, Y., Jerraya, A.: Building fast and

accurate sw simulation models based on hardware abstraction layer and simulation
environment abstraction layer. In: Proc. of IEEE Design Automation and Test in
Europe. (2003) 550–555

40. Bacivarov, I., Yoo, S., Jerraya, A.: Timed hw-sw cosimulation using native execu-
tion of os and application sw. In: Proc. of IEEE International High Level Design
Validation and Test Workshop. (2002) 51–56

41. Formaggio, L., Fummi, F., Pravadelli, G.: A timing-accurate hw/sw co-simulation
of an iss with systemc. In: Proc. of IEEE International Conference on Hard-
ware/Software Codesign and System Synthesis. (2004) 152–157

42. Myers, G.: The Art of Software Testing. Wiley - Interscience, New York (1979)
43. Ghosh, S., Chakraborty, T.: On behavior fault modeling for digital designs. In-

ternational Journal of Electronic Testing: Theory and Applications 2(2) (1991)
135–151

44. Breuer, M., Abramovici, M., Friedman., A.: Digital Systems Testing and Testable
Design. IEEE Press (1990)

45. Synopsys Inc.: Assertion-based verification. White paper. www.synopsys.com
(2003)

46. Hoskote, Y., Kam, T., Ho, P.H., Zao, X.: Coverage estimation for symbolic model
checking. In: Proc. of ACM/IEEE DAC. (1999) 300–305

47. Katz, S., Grumberg, O., Geist, D.: Have i written enough properties? - a method
of comparison between specification and implementation. In: Proc. of IFIP
CHARME. (1999) 280–297

48. Chockler, H., Kupferman, O., Kurshan, R.P., Vardi, M.Y.: A practical approach
to coverage in model checking. In: Proc. of CAV. (2001) 66–78

49. Jayakumar, N., Purandare, M., Somenzi, F.: Dos and don’ts of ctl state coverage
estimation. In: Proc. of ACM/IEEE DAC. (2003) 292–295

50. Fummi, F., Pravadelli, G., Toto, F.: Coverage of formal properties based on a
high-level fault model and functional ATPG. In: IEEE ETS. (2005) 162–167

51. Abarbanel, Y., Beer, I., Gluhovsky, L., Keidar, S., Wolfsthal, Y.: Focs - automatic
generation of simulation checkers from formal specifications. In: CAV). Volume
1855 of Lecture Notes in Computer Science., Springer-Verlag (2000) 538–542

52. Brahme, D., Cox, S., Gallo, J., Glasser, M., Grundmann, W., Ip, C.N., Paulsen,
W., Pierce, J., Rose, J., Shea, D., Whiting, K.: The transaction-based verifica-
tion methodology. Technical Report CDNL-TR-2000-0825, Cadence Berkeley Labs
(2000)

53. Norris Ip, C., Swan, S.: A tutorial introduction on the new systemc verification
standard. White paper. www.systemc.org (2003)

54. Bombieri, N., Fedeli, A., Fummi, F.: On psl properties re-use in soc design flow
based on transactional level modeling. In: IEEE MTV. (2005)



Hardware Design and Simulation for Verification 29

55. Jindal, R., Jain, K.: Verification of transaction-level systemc models using rtl
testbenches. In: ACM/IEEE MEMOCODE. (2003) 199–203

56. Bombieri, N., Fummi, F., Pravadelli, G.: On the evaluation of transactor-based
verification for reusing tlm assertions and testbenches at rtl. In: IEEE DATE.
(2006)

57. Fin, A., Fummi, F. In: LAERTE++: An Object Oriented High-Level TPG for
SystemC Designs. Kluwer Academic Publishers (2004)



Automatic Test Pattern Generation�

Rolf Drechsler and Görschwin Fey
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Abstract. The postproduction test of integrated circuits is crucial to
ensure a high quality of the final product. This test is carried out by
checking the correct response of the chip under predefined input stim-
uli – or test patterns. These patterns are calculated by algorithms for
Automatic Test Pattern Generation (ATPG).

The basic concepts and algorithms for ATPG are reviewed in this
chapter. Then, an advanced SAT-based ATPG tool is introduced and
emprically evaluated.

1 Introduction

After producing a chip the functional correctness of the integrated circuit has
to be checked. Otherwise products with malfunctions would be delivered to cus-
tomers which is not acceptable for any company. During this postproduction test
input stimuli are applied and the correctness of the output response is controlled.
These input stimuli are called test patterns. Many algorithms for Automatic Test
Pattern Generation (ATPG) have been proposed in the last 30 years. But due
to the ever increasing design complexity new techniques have to be developed
that can cope with todays circuits.

While classical approaches are based on backtracking on the circuit structure,
since the early 80s several approaches based on Boolean Satisfiability (SAT)
have been proposed (see e.g. [41, 30, 44, 43]). In [41] comparisons to more than
40 other “classical” approaches based on FAN, PODEM and the D-algorithm
are provided showing the robustness and effectiveness of SAT-based techniques.
In contrast to the early work in the 80s, where ATPG was often reduced to
PROLOG or logic programming, the ATPG techniques developed by Larrabee
[27] and Stephan et al. [41] used many simplification and learning approaches,
like global implications [44]. By this, these algorithms combined the power of
SAT with algorithms from the testing domain.

Recently, there is a renewed interest in SAT, and many improvements for proof
engines have been proposed. SAT solvers make use of learning and implication
procedures (see e.g. [31, 32]). These new proof techniques led to breakthroughs
in several applications, like formal hardware verification [9].

In this chapter we give an introduction to ATPG. The basic concept and clas-
sical ATPG algorithms are reviewed. Then, the formulation as a SAT problem is
considered. Therefore modern SAT solvers are explained and the transformation
� This work was supported in part by DFG grant DR 287/15-1.
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Fig. 1. Basic gates

of ATPG onto SAT is discussed. Advanced techniques for SAT-based ATPG are
explained for the ATPG tool PASSAT (PAttern Search using SAT). This tool
uses techniques recently developed for SAT solvers that are today commonly
applied in the verification domain. In contrast to previous SAT approaches, that
only considered Boolean values, we study the problem for a multi-valued logic
encoding, i.e. PASSAT can also consider unknown values and tri-states. The in-
fluence of different branching heuristics is studied to tune the SAT solver towards
test generation, i.e. variable selection strategies known from SAT and strategies
applied in classical ATPG [18, 17]. Experimental results on the ISCAS bench-
marks and large industrial circuits are given to demonstrate the efficiency of the
approach.

The chapter is structured as follows: In the next section the basic concepts to
keep the presentation self-contained are introduced. Also classical ATPG algo-
rithms based on the circuit structure are briefly reviewed. In Section 3 important
concepts from SAT and SAT solvers are reviewed. The reduction of the ATPG
problem to a SAT problem and improvements to exploit the circuit structure
and handle practical multi-valued circuits are presented in Section 4. Dedicated
variable selection strategies for SAT solvers applied to ATPG are investigated in
Section 5. Experimental results are reported in Section 6. Finally, we conclude
in Section 7.

2 Preliminaries

This section provides the necessary notions to introduce the ATPG problem.
First, circuits and fault models are presented. Then, the reduction of a sequential
ATPG problem to a combinational problem is explained. Finally, classical ATPG
algorithms working on the circuit structure are briefly reviewed. The presentation
is kept brief, for further reading we refer to [21].

2.1 Circuits

In this work a circuit is assumed to be composed of the set of basic gates shown in
Figure 1. These are the well-known gates that correspond to Boolean operators:
AND, OR, XOR and NOT. Extending this library to other Boolean gates if
necessary is straightforward. The connections between gates are defined by an
underlying graph structure. Additionally, for gates that represent non-symmetric
functions (e.g. multiplexors or tri-state elements) a unique order for the inputs
is given by ordering the predecessors of a gate.
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Fig. 2. Example for the SAFM

2.2 Stuck-at Fault Model

After producing a chip the functional correctness of this chip with respect to
the Boolean gate-level specification has to be checked. Without this check an
erroneous chip would be delivered to customers that may result in a malfunc-
tion of the final product. This, of course, is not acceptable. On the other hand
a large range of malfunctions is possible due to defects in the material, process
variations during production etc. But directly checking for all possible physi-
cal defects is not feasible. Therefore an abstraction in terms of a fault model is
introduced.

The Stuck-At Fault Model (SAFM) [5] is well-known and widely used in prac-
tice. In this fault model a single line is assumed to be stuck at a fixed value
instead of depending on the input values. When a line is stuck at the value 0,
this is called a stuck-at-0 (SA0) fault. Analogously, if the line is stuck at the
value 1, this is a stuck-at-1 (SA1) fault.

Example 1. Consider the circuit shown in Figure 2(a). When a SA0 fault is
introduced on line d the faulty circuit in Figure 2(b) is resulting. The output of
the AND-gate is disconnected and the input of the OR-gate constantly assumes
the value 0.

Besides the SAFM a number of other fault models have been proposed, e.g. the
cellular fault model [16], where the function of a single gate is changed, or the
bridging fault model [23], where two lines are assumed to settle to a single value.
These fault models mainly cover static physical defects like opens or shorts.
Dynamic effects are covered by delay fault models. In the path delay fault model
[40] a single fault means that a value change along a path from the inputs to
the outputs in the circuit does not arrive within the clock-cycle time. Instead of
paths the gate delay fault model [20, 42] considers the delay at gates.

In the remainder of this chapter only the SAFM is considered further due to
the high relevance in practical applications. This relevance can be attributed to
two observations: the number of faults is in the order of the size of the circuit
and fault modeling in the SAFM is relatively easy, i.e. for the static fault model
the computational complexity of test pattern generation is lower compared to
dynamic fault models.
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2.3 Combinational ATPG

Automatic Test Pattern Generation (ATPG) is the task of calculating a set of
test patterns for a given circuit with respect to a fault model. A test pattern for
a particular fault is an assignment to the primary inputs of the circuit that leads
to different output values depending on the presence of the fault. Calculating
the Boolean difference of the faulty and fault free circuit yields all test patterns
for a particular fault. This construction is similar to a Miter circuit [4] as it can
be used for combinational equivalence checking.

Example 2. Again, consider the SA0 fault in the circuit in Figure 2. The input
assignment a = 1, b = 1, c = 1 leads to the output value f = 1 for the correct
circuit and to the output value f = 0 if the fault is present. Therefore this input
assignment is a test pattern for the fault d SA0. The construction to calculate
the Boolean difference of the fault free circuit and faulty circuit is shown in
Figure 3.

When a test pattern exists for a particular fault, this fault is classified as being
testable. When no test pattern exists, the fault is called redundant. The decision
problem to classify a fault as redundant or testable is NP-complete. The aim is
to classify all faults and to create a set of test patterns that contains at least
one test pattern for each testable fault.

Generating test patterns for circuits that contain state elements like flip-flops
is computationally more difficult, because the state elements can not directly be
set to a particular value. Instead the behavior of the circuit over time has to be
considered during ATPG. A number of tools have been proposed that directly
address this sequential problem, e.g. HITEC [33]. But in practice, the resulting
model often is too complex to be handled by ATPG tools. Therefore the full
scan mode is often considered to overcome this problem by connecting all state
elements in a scan chain [45, 13]. In the test mode the scan chain combines all
state elements into a shift register, in normal operation mode the state elements
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are driven by the ordinary logic in the circuit. As a result the state elements
can be considered as primary inputs and outputs for testing purposes and a
combinational problem results.

2.4 Classical ATPG Algorithms

Classical algorithms for ATPG usually work directly on the circuit structure to
solve the ATPG problem for a particular fault. Some of these algorithms are
briefly reviewed in the following. For an in-depth discussion we refer the reader
to text books on ATPG, e.g. [21].

One of the first complete algorithms dedicated to ATPG was the D-algorithm
proposed by Roth [34]. The basic ideas of the algorithm can be summarized as
follows:

– An error is observed due to differing values at a line in the circuit with or
without failure. Such a divergence is denoted by values D or D to mark
differences 1/0 or 0/1, respectively.

– Instead of Boolean values, the set {0, 1, D, D} is used to evaluate gates and
carry out implications.

– A gate that is not on a path between the error and any output does never
have a D-value.

– A necessary condition for testability is the existence of a path from the error
to an output, where all intermediate gates either have a D-value or are not
assigned yet. Such a path is called a potential D-chain.

– A gate is on a D-chain, if it is on a path from the error location to an output
and all intermediate gates have a D-value.

On this basis an ATPG algorithm can focus on justifying a D-value at the
fault site and propagating this D-value to an output as shown in Figure 4.
The algorithm starts with injecting the D-value at the fault site. Then, this
value has to be propagated towards the outputs. For example to propagate the
value D at one input across a 2-input AND-gate the other input must have the
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non-controlling value 1. After reaching an output the search proceeds towards
the inputs in the same manner to justify the D-value at the fault site. At some
stages in the search decisions are possible. For example to produce a 0 at the
output of an AND-gate either one or both inputs can have the value 0. Such a
decision may be wrong and may lead to a conflict later on. For example due to
a reconvergence as shown in Figure 4 justification may not be possible due to
conditions from propagation. In this case, a backtrack search has to be applied.
In summary the D-algorithm is confronted with a search space of O(2s) for a
circuit with s signals including inputs, outputs and internal signals.

A number of improvements have been proposed for this basic procedure. PO-
DEM [18] branches only on the values for primary inputs. This reduces the search
space for test pattern generation to O(2n) for a circuit with n primary inputs.
But as a disadvantage time is wasted, if all internal values are implied from
a given input pattern that finally does not detect the fault. FAN [17] improves
upon this problem by branching on stems of fanout points as well. This allows to
calculate conditions for a test pattern due to the internal structure of the circuit
as well. The branching order and value assignments are determined by heuristics
that rely on observability measures to predict a “good” variable assignment for
justification or propagation, respectively. Moreover the algorithm keeps track
of a justification frontier moving towards the inputs and a propagation frontier
moving towards the outputs. Therefore FAN can make the “most important de-
cision” first – based on a heuristic – while the D-algorithm applied a more static
order doing only propagation at first and justification afterwards. SOCRATES
[35] includes the use of global static implications by considering the circuit struc-
ture. Based on particular structures in the circuit indirect implications are possi-
ble, i.e. implications that are not directly obvious due to assignments at a single
gate, but implications that result from functional arguments across several gates.
These indirect implications are directly applied during the search process to im-
ply values earlier from partial assignments and, by this, prevent wrong decisions.
HANNIBAL [25] further improves this idea. While SOCRATES only uses a pre-
defined set of indirect implications, HANNIBAL learns from the circuit structure
in a preprocessing step. For this task recursive learning [26] is applied. In prin-
ciple, recursive learning is complete itself, but too time consuming to be used
as a stand alone procedure. Therefore learning is done in a preprocessing step.
During this step the effect of value assignments is calculated and the resulting
implications are learned. These implications are stored for the following run of
the search procedure. In HANNIBAL the FAN algorithm was used to realize this
search step.

These algorithms only address the problem of generating a test pattern for
a single fault. In the professional application such basic ATPG procedures are
complemented by a preprocessing step and a postprocessing step. In the pre-
processing phase easy-to-detect faults are classified in order to save run time
afterwards. Postprocessing concentrates on test pattern compaction, i.e. reduc-
ing the number of test patterns in the test set.
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3 Boolean Satisfiability

Before introducing an ATPG engine based on Boolean Satisfiability (SAT) the
main concepts of SAT and modern SAT solvers are reviewed. Also the standard
conversion of a given circuit into constraints for a SAT solver is introduced.

3.1 SAT Solver

SAT solvers usually work on a database that represents the Boolean formula in
Conjunctive Normal Form (CNF) or product of sums. A CNF is a conjunction
(product) of clauses, where each clause is a disjunction (sum) of literals. Finally,
a literal is a variable or its complement.

Example 3. The following Boolean formula is given in CNF:

f(a, b, c, d) = (a + c + d)
︸ ︷︷ ︸

w1

· (a + c + d)
︸ ︷︷ ︸

w2

· (a + c + d)
︸ ︷︷ ︸

w3

· (a + c + d)
︸ ︷︷ ︸

w4

· (a + b + c)
︸ ︷︷ ︸

w5

The objective during SAT solving is to find a satisfying assignment for the
given Boolean formula or to proof that no such assignment exists. A CNF is
satisfied if all clauses are satisfied. A clause is satisfied if at least one literal
in the clause is satisfied. The literal a is satisfied if the value 1 is assigned to
variable a. The literal a is satisfied if the value 0 is assigned to variable a.

Modern SAT solvers are based on the DLL procedure that was first introduced
in [7] as an improvement upon [8]. Often the DLL procedure is also referred to
as DPLL. In principle this algorithm explores the search space of all assignments
by a backtrack search as shown in Figure 5. Iteratively, a decision is done by
choosing a variable and a value for this variable according to a variable selection
strategy (Step 1). Then, implications due to this assignment are carried out (Step
2). When all clauses are satisfied the problem is solved (Step 3). Otherwise the
current assignment may only be partial and therefore no conclusion is possible
yet. In this case further assignments are necessary (Step 4). If at least one clause
is not satisfied under the current (partial) assignment conflict analysis is carried
out as will be explained in more detail in Section 3.2. Then, a new branch in the
search tree is explored by switching the variable value (Step 6). When there is
no decision to undo the search space has been completely explored and therefore
the instance is unsatisfiable (Step 7).

3.2 Advances in SAT

Only after some substantial improvements over the basic DLL procedure in the
recent past SAT solvers became a powerful engine to solve real world problems.
In particular these improvements were efficient Boolean Constraint Propagation
(BCP), conflict analysis together with non-chronological backtracking, and so-
phisticated variable selection strategies.

BCP carries out implications due to previous decisions. In order to satisfy a
CNF all clauses must be satisfied. Now assume, that under the current partial
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1. Decision:
Choose an unassigned variable and assign a new value to the variable.

2. Boolean Constraint Propagation:
Carry out implications resulting from the previous assignment.

3. Solution:
If all clauses are satisfied, output the current variable assignment and return “sat-
isfiable”.

4. If there is no unsatisfied clause due to the current assignment proceed with Step 1.
5. Conflict analysis:

If the current assignment leads to at least one unsatisfied clause, carry out conflict
analysis and add conflict clauses.

6. (Non-chronological) Backtracking:
Undo the most recent decision, where switching the variable could lead to a
solution, undo all implications due to this assignment and switch the variable
value. Goto Step 2.

7. Unsatisfiable:
Return “unsatisfiable”.

Fig. 5. DLL procedure

assignments all but one literals in a clause evaluate to 0 and the variable of the
last literal is unassigned. Then, the value of this last variable can be implied in
order to evaluate the clause to 1.

Example 4. Again, consider the CNF from Example 3. Assume the partial as-
signment a = 1 and b = 1. Then, due to clause w5 the assignment c = 1 can be
implied.

After each decision BCP has to be carried out and therefore the efficiency of this
procedure is crucial for the overall performance. In [32] an efficient architecture
for BCP was presented for the SAT solver CHAFF (the source code of the
implementation ZCHAFF can be downloaded from [3]). The basic idea is to use
the two literal watching scheme to efficiently detect, where an implication may
be possible. Two literals of each clause are watched. Only if one of these literals
evaluates to 0 upon a previous decision and the other literal is unassigned an
implication may occur for the clause. If no implication occurs, because there
is a second unassigned literal this second literal is watched. For each literal a
watching list is stored to efficiently access those clauses where the a particular
literal is watched. Therefore instead of always touching all clauses in the database
only those that may cause an implication are considered.

Conflict analysis was first proposed in [31] for the SAT solver GRASP. In
the traditional DLL procedure only the most recent decision was undone, when
a conflict, i.e. a clause that is unsatisfied under the current assignment, was
detected. In contrast a modern SAT solver analyzes such a conflict. During
BCP a conflict occurs, if opposite values are implied for a single variable due to
different clauses. Then, the reasons (i.e. the decisions) that were responsible for
this conflict are detected. From this reasons a conflict clause is created to prevent
the solver to reenter the same search space. Finally, the SAT solver backtracks to
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Fig. 6. Decision stack

the decision before the last decision that participated in the conflict. Switching
the value of the last decision that lead to the conflict is done by BCP due to the
inserted conflict clause. Therfore this value assignment becomes an implication
instead of a decision.

Example 5. Again, consider the CNF from Example 3. Each time the SAT solver
makes a decision, this decision is pushed onto the decision stack. Now, assume
that the first decision at decision level L0 is the assignment a = 0. No impli-
cations follow from this decision. Then at L1 the solver decides b = 0. Again,
no implications follow. At L3 the solver decides c = 1. Now according to clause
w1 the assignment d = 1 is implied, but also due to w2 the assignment d = 0
is implied. Therefore a conflict with respect to variable d occurs. This situation
is shown in Figure 6(a). The decision stack is shown on the left hand side. The
solver tracks reasons for assignments using an implication graph (shown on the
right hand side). Each node represents an assignment. Decisions are represented
by nodes without predecessors. Each implied assignment has as its predecessors
the reason, that caused the assignment. The edges are labeled by the clauses that
cause an assignment. In the example the assignments a = 0 and c = 1 caused
the assignment d = 1 due to clause w1. Additionally, this caused the assignment
d = 0 due to w2 and a conflict is resulting. By traversing the graph backwards
the reason for the conflict, i.e. a = 0 and c = 1, can be determined.

Now it is known that this assignment must be avoided in order to satisfy the
CNF. This information is stored by adding the conflict clause w6 = (a + c) to
the CNF. Thus, the same non-solution space is never re-entered during further
search – this is also called conflict based learning. The decision c = 1 is undone.
Due to a = 0 and the conflict clause w6 the assignment c = 0 is implied which
is called a failure driven assertion.

The implication c = 0 triggers a next conflict with respect to d as shown in
Figure 6(b). The single reason for this conflict is the decision a = 0. Therefore the
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conflict clause w7 = (a) is added. Now, the solver backtracks above decision level
L0. This happens because the decision b = 0 was not a reason for the conflict.
Instead non-chronological backtracking occurs – the solver undoes any decision
up to the most recent decision that was involved in the conflict. Therefore in the
example the decisions b = 0 and a = 0 are undone.

Due to the conflict clause w7 the assignment a = 1 is implied independent of
any decision as shown in Figure 6(c). Then, the decision b = 1 is done at L0. For
efficiency reasons the SAT solver does not check whether all clauses are satisfied
under this partial assignment, but only detects conflicts. Therefore a satisfying
assignment is found by deciding d = 0 at L1.

In summary, this example on an informal basis showed how a modern SAT solver
carries out conflict analysis and uses conflict clauses to remember non-solution-
spaces. A large number of added conflict clauses may result in memory problems.
This is resolved by removing conflict clauses from time to time which does not
change the initial problem instance. A formal and more detailed presentation
of the technique can be found in [31]. The algorithms to derive conflict clauses
have been further improved, e.g. in [46, 12]. A result of this learning is a drastic
speed-up of the solving process – in particular also for unsatisfiable formulas.

The last major improvement of SAT solvers results from sophisticated variable
selection strategies. Basically the SAT solver dynamically collects statistics about
the occurrence of literals in clauses. A dynamic procedure is used to keep track
of conflict clauses added during the search. An important observation is that
locality is acchieved by exploiting recently learned information. This helps to
speed up the search. An example is the Variable State Independent Decaying
Sum (VSIDS) strategy employed in [32]. A counter exists for each literal to
count the number of occurrences in clauses. Each time a conflict clause is added
the counters are incremented accordingly. The value of these counters is regularly
divided by two which helps to emphasize the influence of more recently learned
clauses. But a large number of other heuristics has also been investigated, e.g. in
[29, 19, 22].

Another ingredient to modern SAT solvers is a powerful preprocessing step
as proposed in [10, 11, 22]. The original CNF is usually a direct mapping of the
problem onto a CNF representation. No optimizations are carried out, e.g. unit
clauses are frequently contained in this original CNF, but these can be eliminated
without changing the solution space. When preprocessing the CNF formula opti-
mizations are applied to make the representation more compact and to improve
the performance of BCP.

Due to these advances SAT solvers have become the state of the art for solving
a large range of problems in CAD, e.g. formal verification [24, 2], debugging or
diagnosis [39, 1, 14], and test pattern generation.

3.3 Circuit to CNF Conversion

A SAT solver can be applied as a powerful black-box engine to solve a problem.
In this case transforming the problem instance into a SAT instance and the
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Table 1. Transformation of an AND-gate into CNF

(a) Truth-table

a b c c ↔ a · b
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

(b) Clauses

a + b + c

· a + b + c

· a + b + c

· a + b + c

(c) Minimized

a + c
· b + c

· a + b + c

SAT solution into a solution for the original problem is crucial. In particular for
SAT-based ATPG one step is the transformation of the circuit into a CNF. For
example in [27] the basic procedure has been presented.

The transformation of a single AND-gate into a set of clauses is shown in
Table 1. The goal is to create a CNF that models an AND-gate, i.e. a CNF that
is only satisfied for assignments that may occur for an AND-gate. For an AND-
gate with two inputs a and b, the output c must always be equal to a · b. The
truth-table for this CNF formula is shown in Figure 1(a). From the truth-table
a CNF formula is generated by extracting one clause for each assignment were
the formula evaluates to 0. These clauses are shown in Table 1(b). This CNF
representation is not minimal and can therefore be reduced by two-level logic
minimization, e.g. using SIS [36]. The clauses in Table 1(c) are the final result.

Now, the generation of the CNF for a complete circuit is straightforward.
For each gate clauses are generated according to the type of the gate. The out-
put variables and input variables of a gate and its successors are identical and
therefore establish the overall circuit structure within the CNF.

Example 6. Consider the circuit shown in Figure 2(a). This circuit is translated
into the following CNF formula:

(a + d) · (b + d) · (a + b + d)
︸ ︷︷ ︸

d↔a·b
· (c + e) · (c + e)
︸ ︷︷ ︸

e↔c

· (d + f) · (e + f) · (d + e + f)
︸ ︷︷ ︸

f↔d+e

An advantage of this transformation is the linear size complexity. Given a
circuit where n is the sum of the numbers of inputs, outputs and gates, the
number of variables in the SAT instance is also n and the number of clauses is
in O(n).
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A disadvantage is the loss of structural information. Only a set of clauses is
presented to the SAT solver. Information about predecessors and successors of
a node is lost and is not used during the SAT search. But as will be shown later
this information can be partially recovered by introducing additional constraints
into the SAT instance.

4 SAT-Based ATPG

In this section SAT-based ATPG is explained in detail. The basic problem trans-
formation is presented at first. Then, an improvement of this basic transforma-
tion by exploiting structural information is shown. This is enhanced for the
practical application to multi-valued circuits.

4.1 Basic Problem Transformation

The transformation is formulated for a single fault. Then, the process iter-
ates over all faults to generate a complete test set. Alternatively, the SAT-
based engine can be integrated within an ATPG tool that uses other engines
as well.

First, the fault site is located in the circuit. Then, the parts of the circuit that
are influenced by the fault site are calculated as shown in Figure 7. From the
fault site towards the outputs all gates in the transitive fanout are influenced,
this is also called fault shadow. Then, the cone of influence of the outputs in
the fault shadow is calculated. These gates have to be considered when creating
the ATPG instance. Analogously to the construction of the Boolean difference
shown in Figure 3 a fault free model and a faulty model of the circuit are joined
into a single SAT instance to calculate the Boolean difference between both
versions. All gates not contained in the transitive fanout of the fault site have
the same behavior in both versions. Therefore only the fault shadow is duplicated
as shown in Figure 8. Then, the Boolean difference of corresponding outputs is
calculated. At least one of these Boolean differences must assume the value 1 to
obtain a test pattern for the fault. In Figure 8 this corresponds to constraining
the output of the OR-gate to the value 1. Now, the complete ATPG instance
is formulated in terms of a circuit and can be transformed into a CNF. If the
SAT solver returns a satisfying assignment this directly determines the values
for the primary inputs to test the fault. If the SAT solver returns unsatisfiable,
the considered fault is redundant.

4.2 Structural Information

As explained earlier most of the structural information is lost during the trans-
formation of the original problem into CNF. But this can be recovered by ad-
ditional constraints. This has been suggested for the SAT-based test pattern
generator TEGUS [41]. Improvements on the justification and propagation have
been proposed in [44, 43].

In particular the observations from the D-algorithm as explained in Section
2.4 are made explicit in the CNF. Now, three variables are used for each gate g:



42 R. Drechsler and G. Fey

Fault ShadowCone of 
Influence

Fault site

Fig. 7. Influenced circuit parts

1

Fault free

Faulty

Fig. 8. Influenced circuit parts

– gf denotes the value in the faulty circuit.
– gc denotes the value in the correct circuit.
– gd = 1, iff g is on a D-chain.

This notation allows to introduce additional implications into the CNF:

– If g is on a D-chain, the values in the faulty and the correct circuit are
different: gd → (gf �= gc).

– If g is on a D-chain, at least one successor of g must be on the D-chain as
well: Let hi, 1 ≤ i ≤ q be the successors of g, then gd → ∨q

i=1 hi
d.

– If a gate g is not on a D-chain, the values in the faulty and the correct circuit
are identical: gd → (gf = gc).

Without these implications the fault shadow in the fault free version and the
faulty version of the circuit are only connected via the variables on the cut to the
shared portions of the circuit. In contrast the gd variables establish direct links
between these structures. Therefore implications are possible even when the cut
variables are not assigned yet. Moreover the information about successors of a
gate and the notion of D-chains are directly encoded in the SAT instance.
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4.3 Encoding

In this section the techniques to handle non-Boolean values are discussed. These
techniques have been proposed for the tool PASSAT [37]. First, the use of multi-
valued logic during ATPG is motivated and the four-valued logic is introduced.
Then, different possibilities to encode the multi-valued problem in a Boolean
SAT instance are discussed.

Four-Valued Logic. For practical purposes it is not sufficient to consider only
the Boolean values 0 and 1 during test pattern generation as it has been done
in earlier approaches (e.g. [41]). This has mainly two reasons.

At first circuits usually have tri-state elements. Therefore, besides the basic
gates already shown in Figure 1 also tri-state elements may occur in a circuit.
These are used if a single signal is driven by multiple sources. These gates behave
as follows:

– BUSDRIVER, Inputs: a, b, Output: c

Function: c =
{

Z, if a = 0
b, if a = 1

– BUS0, Inputs: a1, . . . , an, Output c

Function: c =
{

0, if a1 = Z, . . . , an = Z or ∃i ∈ {1, . . . , n} ai = 0
1, ∃i ∈ {1, . . . , n} ai = 1

Note, that the output value is not defined, if there are two inputs with the
opposite values 0 and 1.

– BUS1 behaves as BUS0, but assumes the value 1 if not being driven.

From a modeling point of view the tri-state elements could be transformed into
a Boolean structure with the same functionality, e.g. by inserting multiplexers.
But during test pattern generation additional constraints apply to signals driven
by tri-state elements. For example, no two drivers must drive the signal with
opposite values or if all drivers are in the high impedance state the driven signal
has an unknown value. The value Z is used to properly model these constraints
and the transition function of tri-state elements.

Environment constraints that apply to a circuit are another problem. Usually
the circuit is embedded in a larger environment. As a result some inputs of the
circuit may not be controllable. Thus, the value of such a non-controllable input
is assumed to be unknown during ATPG. The logic value U is used to model
this situation. This has to be encoded explicitly in the SAT instance, because
otherwise the SAT solver would also assign Boolean values to non-controllable
inputs.

Therefore a four-valued logic over {0, 1, Z, U} is considered in PASSAT.

Boolean Encoding. The multi-valued ATPG problem has to be transformed
into a Boolean problem to use a modern Boolean SAT solver on the four-valued
logic. Therefore each signal of the circuit is encoded by two Boolean variables.
One encoding out of the 4! = 24 mappings of four values onto two Boolean values
has to be chosen. The chosen encoding determines which clauses are needed to
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Table 2. Boolean encodings

(a) Set 1

s x x

0 a b

1 a b
U a b

Z a b

(b) Set 2

s x x

0 a b

1 a b

U a b
Z a b

(c) Set 3

s x x

0 a b

1 a b
U a b

Z a b

(d) Example: Set
1, a = 0, b = 0,
x = cs

s cs c∗s
0 0 0
1 0 1
U 1 0
Z 1 1

model particular gates. This, in turn, influences the size of the resulting SAT
instance and the efficiency of the SAT search.

All possible encodings are summarized in Tables 2(a)-2(c). The two Boolean
variables are denoted by x and x, the letters a and b are placeholders for Boolean
values. The following notations define the interpretation of the tables more for-
mally:

– A signal s is encoded by the two Boolean variables cs and c∗s.
– x ∈ {cs, c

∗
s}, x ∈ {cs, c

∗
s} \ {x}

– a ∈ {0, 1}, a ∈ {0, 1} \ {a}
– b ∈ {0, 1}, b ∈ {0, 1} \ {b}

Example 7. Consider Set 1 as defined in Table 2(a) and the following assignment:
a = 0, b = 0, x = cs. Then, the encoding in Table 2(d) results.

Thus, a particular encoding is determined by choosing values for a, b and x.
Each table defines a set of eight encodings.

Note, that for encodings in Set 1 or Set 2 one Boolean variable is sufficient
to decide, if the value of s is in the Boolean domain, i.e. in {0, 1}, or in the non-
Boolean domain, i.e. in {U, Z}. In contrast encodings in Set 3 do not have this
property. This observation will be important when the efficiency of a particular
encoding for SAT solving is determined.

Transformation to SAT Instance. The clauses to model a particular gate
type can be determined if a particular encoding and the truth-table of the
gate are given. This is done analogously to the procedure in Section 3.3. The
set of clauses can be reduced by two-level logic-optimization. Again, the tool
ESPRESSO contained in SIS [36] was used for this purpose. For the small num-
ber of clauses for the basic gate types ESPRESSO is capable of calculating a
minimal representation. The following example illustrates this flow.

Example 8. Table 3(a) shows the truth-table of an AND-gate s = t · u over
{0, 1, Z, U}. The truth-table is mapped onto the Boolean domain using the en-
coding from Example 7. The encoded truth-table is shown in Table 3(b) (for
compactness the notation “�= 0 0” is used to denote that at least one of two vari-
ables must be different from 0; “−” denotes “don’t care”). A CNF is extracted
from this truth-table and optimized by ESPRESSO.
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Table 3. AND-gate over {0, 1, Z, U}

(a) 4-valued

t u s

0 − 0
− 0 0
1 1 1
U �= 0 U
Z �= 0 U
�= 0 U U
�= 0 Z U

(b) Encoded

ct c∗t cu c∗u cs c∗s
0 0 − − 0 0
− − 0 0 0 0
0 1 0 1 0 1
1 0 �= 0 0 1 0
1 1 �= 0 0 1 0
�= 0 0 1 0 1 0
�= 0 0 1 1 1 0

Table 4. Number of clauses for each encoding

Set NAND NOR AND BUS BUS0 BUS1 BUSDR. XOR NOT OR All

1 8 9 9 10 11 10 9 5 5 8 100
2 9 8 8 10 10 11 9 5 5 9 100
3 11 11 11 8 9 9 11 5 6 11 108

Table 5. Number of gates for each type

circ. IN OUT FANO. NOT AND NAND OR NOR BUS BUSDR.

p44k 2356 2232 6845 16869 12365 528 5484 1128 0 0
p88k 4712 4565 14560 20913 27643 2838 16941 5883 144 268
p177k 11273 11031 33605 48582 49911 5707 30933 5962 0 560

Results for all possible encodings are presented in Table 4. For each gate type the
number of clauses needed to model the gate are given. Besides the well-known
Boolean gates (AND, OR, . . . ) also the non-Boolean gates BUSDRIVER, BUS0
and BUS1 are considered. The last column All in the table gives the sum of the
numbers of clauses for all gate types.

All encodings of a given set lead to clauses that are isomorphic to each other.
By mapping the polarity of literals and the choice of variables the other encodings
of the set are retrieved. Particularly, Boolean gates are modeled efficiently by
encodings from Set 1 and Set 2. The sum of clauses needed for all gates is equal
for both sets. The difference is that for example the encodings of one set are
more efficient for NAND-gates, while the encodings of the other set are more
efficient for NOR-gates. Both gate types occur with a similar frequency in our
industrial benchmarks as shown in Table 5. The same observation is true for the
other gates where the efficiency of the encodings differs. Therefore no significant
trade-off for the encodings occurs on the benchmarks.

In contrast more clauses are needed to model Boolean gates if an encoding of
Set 3 is used. At the same time this encoding is more efficient for non-Boolean
gates. In most circuits the number of non-Boolean gates is usually much smaller
than the number of Boolean gates. Therefore more compact SAT instances will
result if an encoding from Set 1 or Set 2 is used. The behavior of the SAT
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Fig. 9. Decision variables in dedicated variable selection strategies

solver does not necessarily depend on the size of the SAT instance, but if the
same problem is encoded in a much smaller instance also a better performance
of the SAT solver can be expected. These hypotheses are strengthened by the
experimental results reported in Section 6.

5 Variable Selection

A SAT solver traverses the search space by a back-tracking scheme. While BCP
and conflict analysis have greatly improved the speed of SAT solvers, the variable
selection strategy is crucial for an efficient traversal of the search space. But
no general way to choose the best variable is known, as the decision about
satisfiability of a given CNF formula is NP-complete [6]. Therefore SAT solvers
have sophisticated heuristics to select variables as explained in Section 3. Usually
the heuristic accumulates some statistics about the CNF formula during run
time of the SAT solver to use this data as the basis for decisions. This leads to
a trade-off between the quality of a decision and the overhead needed to update
the statistics. Also, the quality of a given heuristic often depends on the problem
domain. The default variable selection strategy applied by ZCHAFF is the quite
robust VSIDS strategy that has been explained earlier.

Decisions based on variable selection also occur in classical test pattern gen-
eration. Here, usually structural methods are employed to determine a good
choice for the next selection. Besides the default variable selection strategy from
ZCHAFF our tool PASSAT provides two strategies similar to strategies known
from classical ATPG: selecting primary inputs only or selecting fanout points
only.

Making decisions on primary inputs only was the improvement of PODEM
[18] upon the D-algorithm. Any other internal value can be implied from the
primary inputs. This yields a reduction of the search space and motivates to
apply the same strategy for SAT-based test pattern generation as well. For SAT
solving this is done by restricting the variable selection of the SAT solver to those
variables corresponding to primary inputs or state bits of the circuit. Within
these variables the VSIDS strategy is applied to benefit from the feedback of
conflict analysis and current position in the search space. Figure 9 visualizes
this strategy. Only the variables in the dotted oval are allowed for selection.
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Restricting the variable selection to fan-out gates only has been proposed in
FAN [17] for the first time. Again, the idea is to restrict the search space while
getting a large number of implications from a single decision. Conflicts resulting
from a decision are often due to a small region within the circuit. These conflicts
are detected with less effort, if fan-out gates and primary inputs are selected
instead of only primary inputs. PASSAT applies the VSIDS strategy to select
fan-out gates or primary inputs. In Figure 9 this corresponds to the areas in
the dotted oval and in the circles within the circuit. Including primary inputs
in this selection strategy is crucial for the SAT procedure because this ensures
that all other variable assignments can be implied from decision variables. This
is necessary because otherwise conflicts may remain undetected.

The experiments in Section 6.4 show that some heuristics are quite robust,
i.e. can classify all faults, while others are fast for some faults but abort on other
faults. Therefore an iterative approach turned out to be most effective:

1. One strategy is run with a given time out.
2. If the first strategy does not yield a test pattern a second, more robust,

strategy is applied.

Experimental results show that this approach ensures fast test pattern generation
where possible, while a more sophisticated search is done for the remaining faults.
For our experiments selecting only inputs was used as the first strategy, and
selecting any variable as the second.

6 Experimental Results

In this section we report experimental results to validate the efficiency of par-
ticular techniques of PASSAT. This tool is based on the SAT solver ZCHAFF
[32, 3] that provides the advanced SAT techniques discussed earlier. First, PAS-
SAT is compared to previous FAN-based and SAT-based approaches for ATPG.
Then, the influence of the multi-valued encoding is studied. The variable selec-
tion strategies are evaluated in another experiment. Finally, results for industrial
benchmarks are presented.

6.1 Redundancy Identification

In a first experiment we studied redundancy identification. As a hard example a
40 bit multiplier has been considered. The results for TEGUS in comparison to
PASSAT are shown in Figure 10. Reported are run times of an ATPG run for
different redundant faults. As can easily be seen, with an increasing number of
conflict clauses the run time of TEGUS grows significantly, while our approach
shows only a slight increase in run time. The redundancy is detected due to
unsatisfiability of the CNF formula. Therefore TEGUS has to exhaust the whole
search space by checking all possible assignments before recognizing a fault as
redundant. In contrast PASSAT prunes large parts of the search space due to
conflict analysis and non-chronological backtracking. Simplified, more conflict
clauses mean pruning a larger part of the search space.
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Fig. 10. Redundancies: conflict clauses vs. run time

6.2 ISCAS Benchmarks

In a next series of experiments we study the run time behavior of the two SAT-
based approaches for the benchmarks from ISCAS85 and ISCAS89. To demon-
strate the quality of SAT-based approaches a comparison to an improved version
of Atalanta [28], that is based on the FAN algorithm [17], is given1. Atalanta
was used to also generate test patterns for each fault. The back-track limit was
set to 10. The results are shown in Table 6. The first column gives the name of
the benchmark. Then the run time is given in CPU seconds for each approach.
Run times for Atalanta with fault simulation and without fault simulation are
given in Columns fs and no fs, respectively. On circuits “s35932” and “s38584.1”
Atalanta gave no results, when fault simulation was disabled. For TEGUS and
PASSAT the run time to generate the SAT instance and the time for SAT-solving
are separately given in Columns Eqn and SAT, respectively.

Both SAT approaches are significantly faster than the classical FAN-based
algorithm and solve all benchmarks in nearly no time. No fault simulation has
been applied in the SAT approaches, therefore the run times should be com-
pared to Atalanta without fault simulation. Especially for large circuits the SAT
approaches show a run time improvement of several orders of magnitude. But
even when fault simulation is enabled in Atalanta the SAT approaches are faster
by up to more than two orders of magnitude (see e.g. “s35932” and “s38584.1”).

Considering only the SAT approaches, TEGUS is faster for these simple cases.
Here test patterns for all faults are generated. In this scenario the speed-up
gained by PASSAT for difficult faults as seen in Section 6.1 is overruled by
the overhead for sophisticated variable selection and conflict analysis. Further-
more the simple two-valued encoding is used in these experiments. The situation
changes, if more complex circuits or tri-states are considered (see below).
1 Atalanta is available as public domain software from http://www.ee.vt.edu/˜

ha/cadtools/cadtools.html.
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Table 6. Results for the Boolean circuit model

Atalanta TEGUS PASSAT
Circ. fs no fs Eqn SAT Eqn SAT

c432 0.02 0.05 0.02 0.02 0.18 0.08
c880 0.03 0.13 0.00 0.02 0.16 0.02
c1355 0.02 0.90 0.05 0.02 0.29 0.21
c1908 0.12 1.00 0.06 0.00 0.54 0.10
c2670 0.58 3.12 0.04 0.08 0.79 0.12
c3540 0.85 5.73 0.23 0.16 3.17 0.66
c5315 1.12 17.70 0.08 0.04 1.17 0.27
c6288 0.75 49.43 0.21 0.10 4.78 1.79
c7552 5.72 65.93 0.20 0.42 2.61 0.70
s1494 0.08 0.37 0.01 0.00 0.06 0.01
s5378 1.70 18.37 0.03 0.02 0.37 0.06
s9234.1 18.63 83.90 0.14 0.39 3.06 0.47
s13207.1 18.63 127.40 0.29 0.16 3.03 0.61
s15850.1 27.13 204.27 0.68 0.76 7.66 1.52
s35932 87.40 - 0.47 0.09 2.68 0.28
s38417 131.77 1624.78 0.52 0.24 3.56 0.65
s38584.1 86.30 - 0.63 0.14 4.09 0.75

6.3 Encoding

Again, we study the benchmarks from ISCAS85 and ISCAS89 and consider single
stuck-at faults. But this time we use the 4-valued encoding allowing tri-states
and unknown values as discussed in Section 4.3. The results are shown in Table 7.
Additionally, the numbers of testable, redundant and aborted faults are shown
in columns Ct, Red and Ab, respectively2. As can be seen, TEGUS now has
a large number of aborted faults, only for “c6288” all faults can be classified.
Often test pattern generation fails even for non-redundant faults, e.g. consider
“c432”, where 160 detectable faults were aborted. At the same time PASSAT still
can fully classify all faults. The increase in run time compared to the Boolean
encoding in Table 6 is due to the increased size of the SAT instance as explained
in Section 4.3 and due to more decisions that are necessary in this case.

While these results evaluate the performance of different tools under the
same encoding, the results in Table 8 help to evaluate the influence of differ-
ent encodings. As explained in Section 4.3 there are 24 possibilities to choose
a particular encoding. As discussed in Section 4.3 a significant trade-off in run
time or memory needs can not be expected for the encodings of Set 1 and
Set 2. Therefore we chose one encoding from Set 2 and one encoding from the
remaining Set 3. The industrial benchmarks already shown in Table 5 were con-
sidered. Table 8 reports results for three faults on each circuit. Reported are
the name of the circuit, the fault number, and the type of encoding used. The

2 Notice that the numbers might vary slightly to numbers reported in the literature
due to the underlying AND/INVERTER graph structure.
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Table 7. Results for the 4-valued circuit model

TEGUS PASSAT
Circ. Ct Red Ab Eqn SAT Ct Red Ab Eqn SAT

c432 241 37 164 0.05 3.28 402 41 0 1.45 0.99
c880 621 0 121 0.11 1.51 742 0 0 1.34 0.97
c1355 1202 0 8 0.47 3.06 1202 8 0 8.60 39.5
c1908 1097 5 81 0.57 5.28 1175 8 0 8.41 12.8
c2670 1724 48 56 0.39 2.47 1730 99 0 6.31 3.79
c3540 1044 89 1266 3.04 76.2 2280 119 0 37.2 34.7
c5315 3653 51 167 2.02 12.3 3811 60 0 23.8 33.8
c6288 5728 2 0 17.8 61.1 5728 2 0 226 638
c7552 4018 61 1045 3.90 36.1 4995 129 0 48.2 143
s1494 1230 12 7 0.05 0.89 1237 12 0 1.23 0.55
s5378 2807 20 46 0.37 2.69 2848 25 0 3.97 3.34
s9234.1 2500 75 132 0.66 6.57 2610 97 0 7.99 2.43
s13207.1 5750 181 685 2.56 107 6362 269 0 45.4 41.4
s15850.1 7666 245 539 5.33 55.4 8116 338 0 63.4 21.7
s35932 26453 3968 4 6.61 8.48 26457 3968 0 31.2 32.7
s38417 20212 149 712 9.22 35.8 20884 189 0 79.7 65.2
s38584.1 24680 1079 857 7.37 27.3 25210 1834 0 40.9 15.1

Table 8. Memory and run time for different encodings

Circ. No. Set Clauses Cls. % Variables Memory Mem. % Eqn Eqn % SAT SAT %

p44k 1 1 173,987 56,520 13,713 41 14
3 220,375 127 56,520 14,087 103 49 120 78 557

p44k 2 1 174,083 56,542 13,713 43 16
3 220,493 127 56,542 14,088 103 51 119 79 494

p44k 3 1 174,083 56,542 13,713 43 15
3 220,493 127 56,542 14,088 103 52 121 79 527

p88k 1 1 33,406 10,307 2,824 8 4
3 41,079 123 10,307 3,410 121 10 125 7 175

p88k 2 1 33,501 10,328 2,824 9 4
3 41,188 123 10,328 3,411 121 9 100 8 200

p88k 3 1 33,517 10,289 2,825 8 8
3 41,321 123 10,289 3,412 121 9 113 8 100

p177k 1 1 96,550 34,428 8,900 23 23
3 119,162 123 34,428 9,082 102 25 107 247 1074

p177k 2 1 96,536 34,425 8,900 25 28
3 119,145 123 34,425 9,082 102 29 116 234 836

p177k 3 1 96,550 34,428 8,899 25 20
3 119,162 123 34,428 9,082 102 29 116 237 1185

memory needs were measured in the number of clauses (“Clauses”), the number
of variables (“Variables”) and memory consumption in kB (“Memory”). Again,
run times are measured for generation of the CNF formula (“Eqn”) and solv-
ing the formula (“SAT”). In all cases the overhead of the encoding from Set 3
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over the encoding from Set 2 is shown in percent. On all the test cases the en-
coding from Set 2 performs significantly better than the encoding from Set 3.
As can be expected from the number of clauses needed per gate as shown in Ta-
ble 4 the memory needs are larger for the encoding from Set 3.
The number of variables does not depend on the encoding, but on the number
of gates in the circuit and remains the same. The influence of the encoding
on the run time is even more remarkable than the influence on the memory
needs. The run time for the third fault in p177k is almost 12 times faster if
the encoding from Set 2 is applied. Therefore this encoding was chosen as the
standard encoding in PASSAT.

6.4 Variable Selection

Next, we study the influence of the different variable selection strategies intro-
duced in Section 5. The 4-valued circuit model is considered. Table 9 shows the
results for the default strategy known from ZCHAFF, using fanout-gates only,
using inputs only, and the iterative strategy. For the iterative strategy a time
out of 1 sec while selecting only inputs was allowed per fault, then the default
strategy was applied. In case of the default strategy no time out was used, for
the remaining strategies 2 seconds were used to guarantee that a single fault
does not block the test generation for remaining faults. The table shows that
the default strategy is the most robust strategy among the non-iterative strate-
gies. No abortions occur for this heuristic for the ISCAS benchmarks considered.
The selection of fanouts only yields improvements in some cases (e.g. “s35932”),
but can not classify all faults in several cases. The reason here is that the reduc-
tion of the search space does not compensate for the weak influence of conflict
analysis on further decisions. The search space is more drastically pruned, when
only inputs are allowed for selection. This yields a large speed up of up to 6
times in case of “s35932”. On the other hand difficult faults are often aborted,
because internal conflicts during SAT-solving are detected too late. This is the
case for “c6288”. Therefore the iterative strategy was applied to retrieve a fast
solution where possible, while using the more sophisticated VSIDS strategy on
all variables, where a fast solution was not possible. As a result the iterative
strategy does not lead to any aborted faults. In most cases even a remarkable
speed-up compared to the default strategy is gained. The last column of Table
9 shows the percentage of run time needed by SAT-solving using the iterative
strategy compared to the default strategy. Only for a few cases a penalty occurs.
But the improvement often is significant, e.g. less than 20% are needed in case
of “c7552” and “s35932”. Especially for the larger benchmarks significant run
time improvements were achieved.

6.5 Industrial Circuits

Finally, two industrial circuits from Philips are considered, i.e. large circuits that
also contain buses. We gave a 20 second CPU time limit to the SAT solver. The
results are given in Table 10. As can be seen for these circuits only very few faults
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Table 9. PASSAT with different variable selection strategies

Default Fanout Inputs Input, Default
Circ. Ab Eqn SAT Ab Eqn SAT Ab Eqn SAT Ab Eqn SAT Imp

c432 0 1.41 1.01 0 1.64 0.79 0 1.49 1.53 0 1.47 1.53 0.7
c880 0 1.43 0.86 0 1.44 0.94 0 1.25 0.43 0 1.42 0.28 3.1
c1355 0 8.79 38.80 0 8.70 33.30 1 8.72 8.60 0 8.92 8.72 4.4
c1908 0 8.59 12.60 2 8.83 17.80 13 8.63 16.00 0 9.90 15.80 0.8
c2670 0 5.96 4.09 0 6.30 4.09 5 6.01 6.83 0 6.61 7.70 0.5
c3540 0 38.20 33.80 2 38.40 37.30 2 39.10 15.60 0 39.80 15.30 2.2
c5315 0 24.60 33.30 0 25.20 42.50 0 24.50 8.51 0 24.60 8.31 4.0
c6288 0 229.00 634.00 169 238.00 485.00 517 234.00 635.00 0 715.00 636.00 1.0
c7552 0 49.20 141.00 12 51.00 153.00 2 49.60 24.00 0 50.10 23.50 6.0
s1494 0 1.30 0.51 0 1.30 0.59 0 1.28 0.54 0 1.29 0.55 0.9
s5378 0 4.10 3.26 0 4.65 2.94 0 4.47 1.24 0 4.17 1.48 2.2
s9234.1 0 7.73 5.43 0 8.06 5.60 0 7.90 2.25 0 8.19 2.01 2.7
s13207.1 0 31.60 92.90 30 33.80 100.00 19 32.00 40.00 0 55.40 39.90 2.3
s15850.1 0 62.90 79.70 0 67.40 72.20 0 63.50 20.50 0 63.90 20.70 3.9
s35932 0 31.90 32.60 0 66.00 11.60 0 31.40 5.32 0 32.00 5.34 6.1
s38417 0 80.70 64.60 0 100.00 66.30 0 82.20 31.80 0 82.60 32.50 2.0
s38584.1 0 40.80 26.30 0 68.10 27.50 0 40.50 14.10 0 40.80 14.30 1.8

Table 10. PASSAT for industrial benchmarks

Circ. Ct Red Ab Eqn SAT

p88k 127,084 2,354 14 12,186 9,584
p565k 1,203,690 26,426 204 5,291 8,155

remain unclassified, i.e. only 204 for circuit “p565k” that consists of more than
565k gates. For the same benchmark TEGUS gives up on more than 340,000
faults (!) demonstrating how hard the circuit is to test.

7 Conclusions

The problem of generating test patterns for the postproduction test was intro-
duced in this chapter. Basic concepts and classical algorithms have been re-
viewed. An efficient approach for SAT-based test pattern generation aiming at
circuits that include tri-state elements has been shown. Due to recent advances
in SAT-solving the approach is more robust than previous ones. Complete test
sets for the circuits from ISCAS89 have been calculated. The influence of the
variable selection strategy on the efficiency of test pattern generation is crucial.
But applying an iterative approach to combine a fast and a robust strategy yields
significant improvements. Large industrial circuits that include buses have been
studied. Also an industrial circuit with more than 500k gates test pattern have
been generated for almost all faults in a very short run time.
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12. N. Eén and N. Sörensson. An extensible SAT solver. In SAT 2003, volume 2919
of LNCS, pages 502–518, 2004.

13. E.B. Eichelberger and T.W. Williams. A logic design structure for LSI testability.
In Design Automation Conf., pages 462–468, 1977.

14. G. Fey, S. Safarpour, A. Veneris, and R. Drechsler. On the relation between
simulation-based and SAT-based diagnosis. In Design, Automation and Test in
Europe, 2006.

15. G. Fey, J. Shi, and R. Drechsler. Efficiency of multiple-valued encoding in SAT-
based ATPG. In Int’l Symp. on Multi-Valued Logic, 2006.

16. A.D. Friedman. Easily testable iterative systems. In IEEE Trans. on Comp.,
volume 22, pages 1061–1064, 1973.

17. H. Fujiwara and T. Shimono. On the acceleration of test generation algorithms.
IEEE Trans. on Comp., 32:1137–1144, 1983.

18. P. Goel. An implicit enumeration algorithm to generate tests for combinational
logic. IEEE Trans. on Comp., 30:215–222, 1981.



54 R. Drechsler and G. Fey

19. E. Goldberg and Y. Novikov. BerkMin: a fast and robust SAT-solver. In Design,
Automation and Test in Europe, pages 142–149, 2002.

20. E. R. Hsieh, R. A. Rasmussen, L. J. Vidunas, and W. T. Davis. Delay test gener-
ation. In Design Automation Conf., pages 486–491, 1977.

21. N. Jha and S. Gupta. Testing of Digital Systems. Cambridge University Press,
2003.

22. H. Jin and F. Somenzi. CirCUs: A hybrid satisfiability solver. In SAT 2004, volume
3542 of LNCS, pages 211–223. Springer Verlag, 2005.

23. K. L. Kodandapani and D. K. Pradhan. Undetectability of bridging faults and
validity of stuck-at fault test sets. IEEE Trans. on Comp., C-29(1):55–59, 1980.

24. A. Kuehlmann, V. Paruthi, F. Krohm, and M.K. Ganai. Robust Boolean reasoning
for equivalence checking and functional property verification. IEEE Trans. on
CAD, 21(12):1377–1394, 2002.

25. W. Kunz. HANNIBAL: An efficient tool for logic verification based on recursive
learning. In Int’l Conf. on CAD, pages 538–543, 1993.

26. W. Kunz and D.K. Pradhan. Recursive learning: A new implication technique
for efficient solutions of CAD problems: Test, verification and optimization. IEEE
Trans. on CAD, 13(9):1143–1158, 1994.

27. T. Larrabee. Test pattern generation using Boolean satisfiability. IEEE Trans. on
CAD, 11:4–15, 1992.

28. H.K. Lee and D.S. Ha. Atalanta: An efficient ATPG for combinational circuits.
Technical Report 12, Dep. of Electrical Engineering, Virginia Polytechnic Institute
and State University, 1993.

29. J.P. Marques-Silva. The impact of branching heuristics in propositional satisfia-
bility algorithms. In 9th Portuguese Conference on Artificial Intelligence (EPIA),
1999.

30. J.P. Marques-Silva and K.A. Sakallah. Robust search algorithms for test pattern
generation. Technical Report RT/02/97, Dept. of Informatics, Technical University
of Lisbon, Lisbon, Protugal, January 1997.

31. J.P. Marques-Silva and K.A. Sakallah. GRASP: A search algorithm for proposi-
tional satisfiability. IEEE Trans. on Comp., 48(5):506–521, 1999.

32. M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: En-
gineering an efficient SAT solver. In Design Automation Conf., pages 530–535,
2001.

33. T.M. Niermann and J.H. Patel. HITEC: A test generation package for sequential
circuits. In European Conf. on Design Automation, pages 214–218, 1991.

34. J.P. Roth. Diagnosis of automata failures: A calculus and a method. IBM J. Res.
Dev., 10:278–281, 1966.

35. M. Schulz, E. Trischler, and T. Sarfert. SOCRATES: A highly efficient automatic
test pattern generation system. In Int’l Test Conf., pages 1016–1026, 1987.

36. E. Sentovich, K. Singh, L. Lavagno, Ch. Moon, R. Murgai, A. Saldanha, H. Savoj,
P. Stephan, R. Brayton, and A. Sangiovanni-Vincentelli. SIS: A system for sequen-
tial circuit synthesis. Technical report, University of Berkeley, 1992.

37. J. Shi, G. Fey, R. Drechsler, A. Glowatz, F. Hapke, and J. Schlöffel. PASSAT:
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An Introduction to Symbolic Trajectory Evaluation

Koen Claessen and Jan-Willem Roorda

Chalmers University of Technology

1 Introduction

The rapid growth in hardware complexity has lead to a need for formal verification of
hardware designs to prevent bugs from entering the final silicon. Model-checking [3] is
by far the most popular technique for automatically verifying properties of designs. In
model-checking, a model of a design is exhaustively checked against a property, often
specified in some temporal logic. Today, all major hardware companies use model-
checkers in order to reduce the number of bugs in their designs.

Most model-checking techniques are state-based. This means that some kind of rep-
resentation of all reachable states of the design is used when checking that the temporal
properties are fulfilled. One popular way of representing the set of reachable states of a
design is by using Binary Decision Diagrams (BDDs) [2]. A BDD is a canonical way of
representing a boolean formula over a fixed set of variables. When the set of reachable
states of a design can be calculated using BDDs, state-based model-checking techniques
work very well. However, for some types of designs, it is very hard to represent all reach-
able states by BDDs; they grow exponentially in size and lead to a BDD blow-up.

A different kind of model-checking technique is simulation-based model checking.
In simulation-based model-checking, some representation of the values that drive cer-
tain signals in the design is used, in order to calculate the resulting values of other
signals in the design. In this way, we do not need to represent the states of the design,
but only the values that flow through each signal.

Symbolic Trajectory Evaluation. Symbolic Trajectory Evaluation (STE) is a high-
performance simulation-based model checking technique, originally invented by Seger
and Bryant [13]. STE uses a combination of three-valued simulation and symbolic simu-
lation. Let us look at a very simple example to understand what this means. The example
is inspired by Harrison [5].

Take a look at the circuit in Fig. 1, where a designer has built a 7-input AND-gate
out of primitive gates. Inverters are represented in the figure by a block dot (•). Suppose
it is our job to verify that this circuit actually behaves like a 7-input AND-gate.

One way to do this is to use standard boolean simulation. This means that we simu-
late the circuit for every possible combination of input values. Since we have 7 inputs,
we have to perform 27 = 128 simulation runs. An example of one of these can be
described as follows:

(in0 is 0) and (in1 is 0) and (in2 is 1) and (in3 is 0)
and (in4 is 1) and (in5 is 1) and (in6 is 0) =⇒ (out is 0)

The above formula is actually an STE assertion, and specifies that with the given input
values, the expected output value is 0. Later on, we will define more formally what
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Fig. 1. A 7-input AND-gate
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Fig. 2. Three-valued extensions of the gates

an STE assertion looks like, but for now, it is enough to know that an STE assertion
is of the form A =⇒ C, where A is called the antecedent, which specifies with what
values we should drive the simulation, and C is called the consequent, which specifies
the expected results of the simulation.

For a small circuit such as our example circuit, 128 simulation runs might be doable.
But for a design of a realistic size, an exponential amount of simulation runs might be
too much, and a more efficient alternative should be sought after.

Three-valued simulation. One observation one can make is that, as soon as one input
has the value 0, the values of all the other inputs do not matter anymore, since the output
must be 0 anyhow. A simulator could actually calculate this; for example, as soon as
we know that one of the inputs to an AND-gate is 0, a simulator could calculate that the
output is 0, regardless of the value of the other input. It seems that it would somehow
be beneficial to introduce a third value in our simulator, a don’t care or unknown value.
In STE, the don’t care value is written X, and represents the value of a signal that can
be either 0 or 1.

When performing simulation with the extra value X, we need to know how the stan-
dard gates behave with respect to this new value. In Fig. 2, we can see the three-valued
extensions of the basic gates. We can see for example that if one of the inputs of an AND-
gate is 0, the output is 0, even if the other input is X. However, when one of the inputs is
1, and the other is X, we do not know what the output is, so the output becomes X.
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The idea is now that if the value of a certain input does not matter during simulation,
instead of performing two simulation runs, one where the input is 0, and one where the
input is 1, we perform only one simulation run, namely where the input is X.

In our example, this means that we can reduce the number of simulations to 8 runs.
For example, we have one simulation run that checks that if input in0 is 0, the output
out is 0:

(in0 is 0) =⇒ (out is 0)

Here, we use the convention that if inputs are not mentioned in the antecedent, then
their value in the simulation run will be X. We can see that setting the input in0 to 0,
and all other inputs to X actually leads to the output out getting the value 0.

There are 6 more simulation runs just like the one above:

(in1 is 0) =⇒ (out is 0)
(in2 is 0) =⇒ (out is 0)
(in3 is 0) =⇒ (out is 0)
(in4 is 0) =⇒ (out is 0)
(in5 is 0) =⇒ (out is 0)
(in6 is 0) =⇒ (out is 0)

And finally, we also need to check that the output gets the value 1 when it is supposed
to. There is only one simulation run where this is the case:

(in0 is 1) and (in1 is 1) and (in2 is 1) and (in3 is 1)
and (in4 is 1) and (in5 is 1) and (in6 is 1) =⇒ (out is 1)

So, by using three-valued simulation, we have reduced the number of needed simulation
runs for a complete verification from 128 to only 8.

Symbolic simulation. Another way of reducing the number of simulation runs is to
use symbolic simulation. In symbolic simulation, the values used in simulation are lifted
to boolean expressions over symbolic variables. In STE, the symbolic expressions are
usually represented by BDDs, but other representations are possible [1, 9].

For example, we could pick one symbolic variable for each of the inputs of our
AND-gate, and perform one simulation run thusly:

(in0 is a) and (in1 is b) and (in2 is c) and (in3 is d) and (in4 is e)
and (in5 is f) and (in6 is g) =⇒ (out is (a & b & c & d & e & f & g))

As we said earlier, a BDD is a canonical datastructure for representing boolean expres-
sions over a fixed set of variables. The simulator starts by consluting the antecedent, and
computes BDDs for the one-variable expressions that drive the inputs. For each gate,
a BDD is calculated for the output, given the BDDs for the inputs. Finally, a BDD is
calculated that represents the output of the whole circuit. This BDD is then compared
for equality with the BDD specified in the consequent of the STE assertion.

For this symbolic simulation, we needed to compute BDDs containing at most 7
symbolic variables. The worst-case size complexity for BDDs is exponential in the
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number of symbolic variables. It is therefore often a good idea to reduce the number of
variables used. Again, for our simple example, BDDs with 8 variables are not a practical
problem, but for realistically sized circuits the number of inputs can be very large, and
using BDDs in the way described here is not feasible.

Three-valued symbolic simulation. In STE, we can combine the efficiency of three-
valued simulation with the preciseness of symbolic simulation. One way in which we
can make use of this combination in our example is by expressing the eight three-valued
simulation runs we saw earlier as only one three-valued symbolic simulation run. This
can be done by using only three symbolic variables (which we call p, q, and r).

The idea here is that each assignment of 0 and 1 to the three variables represents
one three-valued simulation run. Since there are 8 possible assignments, and 8 three-
valued simulation runs, this seems to be a good match. Let us make the following (rather
arbitrary) choice: When at least one of the variables p, q, r is 0, we want exactly one
of the inputs to be 0, and we let 〈p, q, r〉 be the binary number picking which input is
supposed to be 0. When all variables p, q, r are 1, then all inputs are 1. The expected
value of the output can then be expressed as p&q&r.

All this can be expressed by the following STE assertion:

((¬p&¬q&¬r) → in0 is 0) and ((¬p&¬q&r) → in1 is 0) and

((¬p&q&¬r) → in2 is 0) and ((¬p&q&r) → in3 is 0) and
((p&¬q&¬r) → in4 is 0) and ((p&¬q&r) → in5 is 0) and

((p&q&¬r) → in6 is 0) and ((p&q&r) → in6 is 0) and
((p&q&r) → (in0 is 1 and in1 is 1 and in2 is 1 and

in4 is 1 and in3 is 1 and in4 is 1 and in5 is 1 and in6 is 1))
=⇒ (out is (p&q&r))

We have used some new notation in the antecedent, namely P → A, where P is a
boolean expression and A is part of the antecedent. Logically, this can be understood
as an implication; simulation-wise, this should be read as a conditional statement under
which to use the part of the antecedent A.

The above assertion can be checked by performing only one simulation run. This
works as follows. The values used by the simulator are now representations of three-
valued expressions over a fixed set of (two-valued) symbolic variables (in this case p, q,
and r).

The three-valued expressions that are used can be represented in many ways, but
most STE tools use BDDs to this. The simplest way is to use a dual-rail encoding; a
three-valued expression E is represented by a pair of BDDs (E0, E1), where E0 is true
exactly when E has the value 0, and E1 is true exactly when E has the value 1. When
both E0 and E1 are false, E has the value X. The advantage of using BDDs is that the
representations are canonical, so they are easy to compare for equality.

Again, the antecedent is used in order to decide what three-valued expressions to use
to drive the inputs. For example, the three-valued expression that drives the input in0 is:

if ¬p&¬q&¬r then 0 else (if p&q&r then 1 else X)
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The above expression is constructed by gathering all assertions made about in0 in the
antecedent. Simplified, this becomes:

¬(¬p&¬q&¬r) & ((p&q&r) + X)

The other inputs have similar three-valued expressions that drive them.
The simulator can now calculate three-valued symbolic expressions for each of the

signals in the circuit, arriving at an expression for the output of the circuit. The expres-
sion that is calculated for out is p&q&r, which verifies the assertion.

Information loss. The power of STE comes from its use of abstraction. Abstraction is
a technique that allows one to disregard certain specific information during verification,
hopefully leading to a cheaper verification process. The cost of using abstraction is
the risk of abstracting away too much, resulting in a verification where the outcome is
ambiguous, and no conclusions can be drawn.

In STE, two forms of abstraction are used: (1) the value X can be used to abstract
from a specific boolean value of a circuit node, and (2) in the simulation, information is
only propagated forwards through the circuit (i.e. from inputs to outputs of gates) and,
as we will later see, through time (i.e. from time t to time t + 1).

The three-valued abstraction is induced by the antecedent of the assertion; when the
antecedent does not specify a value for a certain node, the value of the node is abstracted
away by using the unknown value X. The drawback of this abstraction is the information
loss inherent to the use of three-valued logic. Let us illustrate this information loss by
an example.

Consider the circuit displayed in Fig. 3, consisting of two AND-gates and an OR-
gate. The circuit implements a multiplexer: if sel is 0, input in0 is routed to the output
out, and if sel is 1, input in1 is routed to the output.

A possible STE-assertion for this circuit is:

(in0 is a) and (in1 is a) =⇒ (out is a)

The assertion states that when inputs in0 and in1 both have value a, then the output out
has value a as well. It is easy to see that this assertion is true when no abstraction is used.
However, when we perform three-valued symbolic simulation, with the expression a
for inputs in0 and in1, and the expression X for input sel, we calculate the expression
(a & ¬X) + (a & X) for out, which can be simplified to a & X. This expression is not
equivalent to the required value a: when a = 1 the simulated expression has value X.
Therefore, the property is not proved by STE.
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Such an information loss can be repaired by introducing extra symbolic variables.
In this case, we can drive the input node sel by a symbolic variable b, yielding the
following assertion.

(in0 is a) and (in1 is a) and (sel is b) =⇒ (out is a)

For this assertion, three-valued symbolic simulation calculates the expression (a &¬b)
+ (a & b) for node out, which can be simplified to a, and the verification succeeds.

A different information loss can happen due to the fact that the STE-simulator only
performs forwards simulation. This means that information is only propagated forwards
through the circuit (i.e. from inputs to outputs of gates) and through time (i.e. from time
t to time t + 1).

As an example, consider the following assertion for the 7-input AND-gate:

(out is 1) =⇒ (in0 is 1) and (in1 is 1) and (in2 is 1) and
(in3 is 1) and (in4 is 1) and (in5 is 1) and (in6 is 1)

Again, without abstraction, this assertion is true. However, this assertion can not be
proved with STE. Simulation proceeds as follows: the antecedent does not specify any-
thing for the inputs, so the value X is used for all inputs. Finally, the value X is calculated
for the output out, which at the last moment is adjusted to 1, because the antecedent
specifies this. Now, the consequent is checked, and it is reported that none of the parts
of the consequent hold!

One way to fix this is, again, to introduce extra symbolic variables for all the inputs:

(in0 is a) and (in1 is b) and (in2 is c) and (in3 is d) and
(in4 is e) and (in5 is f) and (in6 is g) and (out is 1) =⇒

(in0 is 1) and (in1 is 1) and (in2 is 1) and
(in3 is 1) and (in4 is 1) and (in5 is 1) and (in6 is 1)

Now, simulation proceeds as follows: symbolic variables are used for all inputs, and the
expression a & b & c & d & e & f & g is computed for the output out. However, out
is assumed to have the value 1 in the antecedent, which in turn means that all symbolic
variables a, b, c, d, e, f, and g should be 1; any of these symbolic variables being 0
would contradict the antecedent. Now, the consequent is checked, and the verification
succeeds.

So, constructing an STE assertion seems to be a delicate balance between using X’s,
which is cheap but leads to possible information loss, and using symbolic variables,
which is precise, but possibly more expensive.

In the next section, we will look at a larger example, namely the verification of a
memory using STE.

2 Verifying a Memory

Let us now take a look at a larger example. Consider a memory circuit, schematically
depicted in Fig. 4. It has write and read inputs wr and rd, and an address input vector
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addr and data input vector in. The output vector is called out. Internally, a number of
memory locations are present that can store data.

The circuit has two modes. When rd is 1, the circuit fetches the data stored at the
memory location with address addr, and delivers it on the output. When wr is 1, the
circuit stores the data from the input vector in in the memory location with address
addr. Writing and reading can happen simultaneously; however, a written value can
only be read in the next clock cycle.

For simplicity, let us assume that the input and output data vectors have a width of 1
bit, and the address vector has a width of 2 bits. This means there are 4 internal memory
locations of 1 bit each.

Now, let us try to verify the following property: If we write a data value data on
the address addr , and in the next clock cycle we read the value from address addr , the
result should be data . As an STE assertion, this property looks as follows:

(wr is 1) and (addr[0] is addr 0) and (addr[1] is addr 1) and (in is data)
and N ((rd is 1) and (addr[0] is addr 0) and (addr[1] is addr1))

=⇒ N (out is data)

We use a new notation here: N is a next-time operator; (N A) means that A refers to
the next point in time. We are using three symbolic variables: data , representing the
one-bit data we store in the memory, and addr 0 and addr 1 which together form the
two-bit address.

STE simulation of the above assertion involves two points in time. In the first point in
time, the input wr is driven with 1, rd is driven with X, addr is driven with 〈addr 0, addr 1〉,
and in is driven with data . In the second point in time, wr is driven with X, rd is driven
with 1, addr is again driven with 〈addr 0, addr 1〉, and in is driven with X. Lastly, in
the second point in time, the STE model-checker checks if out contains the expression
data .

What happens internally in the simulator?
Before simulation starts, the values of the memory locations need to be decided.

Because the antecedent does not specify them, they start off with X:

loc0 : X
loc1 : X
loc2 : X
loc3 : X
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After one clock cycle has been simulated, at least one memory location should have
changed value. But which one? We cannot easily answer this, since it depends on the
value of addr , which is symbolic and therefore not specific. The answer is that all
locations have changed value, but the new value depends on both the input data data
and on the address addr being written to:

loc0 : if ¬addr 0& ¬addr 1 then data else X
loc1 : if addr 0& ¬addr 1 then data else X
loc2 : if ¬addr 0& addr 1 then data else X
loc3 : if addr 0& addr 1 then data else X

So, each memory location now contains an expression that says: ”if the address being
written to was my own addres, I have now changed value to data , otherwise, I am
still X”.

What happens in the second simulation cycle? Each memory location loci has a local
output outi that is activated with the location’s contents as soon as someone reads from
the memory at the address belonging to the location. If a read is performed at an other
address, the location’s local output is 0. The global output out then simply gathers all
locations’ local outputs with a big OR-bus. Which location’s output gets activated, and
with which value? The answer is, again, all of them possibly get activated, depending
on the address being read.

For example, the local output of loc0, after simulating the second clock cycle is:

if ¬addr 0&¬addr 1 then (if ¬addr 0&¬addr 1 then data else X) else 0

In other words, ”if the address being read from is my address, then I output my contents,
otherwise, I output 0”. This can be simplified to:

if ¬addr 0&¬addr1 then data else 0

So, all locations’ local outputs look as follows after the second simulation cycle:

out0 : if ¬addr 0& ¬addr 1 then data else 0
out1 : if addr 0& ¬addr 1 then data else 0
out2 : if ¬addr 0& addr1 then data else 0
out3 : if addr 0& addr1 then data else 0

The output out consists of a big OR of the above local outputs, which gets simplified
to just data , which is what the consequent actually specified. So, the verification of the
assertion succeeds.

Larger sizes. What happens when we want to verify the memory for larger sizes?
If the data width is n and the address width is k (which means we have 2k memory
locations with width n), we only need n + k symbolic variables. The structure of the
BDDs involved is well-behaved enough so that this does not lead to a BDD blow-up.

Compare this to a standard state-based model-checker, which would have to use
one BDD variable for each state holding element in order to represent the states. This
would lead to n × 2k BDD variables, which quickly becomes infeasible even for small
values of k.
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3 STE Theory

In this section, we describe the semantics of STE assertions. The presentation here
differs from the usual presentation in the STE literature [13, 6]. However, the semantics
we present here is more precise than the semantics usually presented. For a discussion
on this topic, see [8, 10].

For an STE semantics, it is important to be faithful to the used abstractions in STE.
In the introduction, we have already seen a number of examples that would hold in a
standard semantics without abstraction, but which do not hold in STE, showing that the
concept of truth in STE is a non-trivial matter. A semantics can be used for reasoning
about STE assertions (in order to for example understand why a certain property could
not be proven) without having to understand the innards of the used STE model-checker.
Here, we present a semantics that defines precisely when an STE model-checker deems
a property to be valid.

Preliminaries. For technical reasons, next to the three values 0, 1 and X we have
already discussed, a fourth value T, called the over-constrained value, is used in simu-
lation. This value represents a clash between values; it is the resulting value of a signal
that is required to have both the value 0 and 1 during simulation. This happens for
example when the antecedent specifies confliciting values for a particular input. The
three-valued gate-definitions in Figure 2 are extended to deal with this fourth value in
such a way that whenever at least one of their inputs is T their output is also T. We call
the set of four simulation values we use V = {0, 1, X, T}.

It is handy to define an ordering on V, called the information order. The unknown
value X contains the least information, so X ≤ 0, X ≤ 1, X ≤ T, while 0 and 1 are
incomparable. The over-constrained value T contains most least information, so 0 ≤ T
and 1 ≤ T. If v ≤ w it is said that v is weaker than w.

We can see that V with the ordering ≤ forms a lattice, see Fig. 5. Thus, we can
introduce the least upper bound operator, written � as the least upper bound w.r.t. the
ordering ≤. We have for instance 0�X = 0, X � 1 = 1, and T�0 = T and T�X = T,
and in particular 0 � 1 = T.

All points in the circuit, that is, inputs, outputs, internal points, and inputs and out-
puts of registers, are collected in the set N , called the nodes of the circuit. A circuit
state, written s : State, is a function from the set of nodes of circuit to the values V.
A sequence, written σ : N → State is a function from a point in time to a circuit state,
describing the behaviour of a circuit over time. The set of all sequences is written Seq.
A three-valued sequence is a sequence that does not assign the value T to any node in
any point in time. The set of all three-valued sequences is written Seq3.

The information order ≤ can be naturally extended to states and sequences. State
s1 is weaker than state s2, written s1 ≤ s2, iff. for every node n, s1(n) ≤ s2(n).
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Sequence σ1 is weaker than sequence σ2, written σ1 ≤ σ2, iff. for every time point t,
σ1(t) ≤ σ2(t).

Trajectory Evaluation Logic. We have already seen that STE assertions have the
form A =⇒ C. Here, A and C are formulas in a language called Trajectory Evaluation
Logic (TEL). The only variables in the logic are time-independent boolean variables
taken from the set V of symbolic variables. The language is given by the following
grammar:

A, B, C ::= n is 0
| n is 1
| A1 and A2

| P → f

| NA

Here, n is a circuit node, and P is a boolean propositional formula over the set of
symbolic variables V .

The operators is 0 and is 1 are used to make a statement about the boolean value
of a particular node in the circuit, and is conjunction, → is used to make conditional
statements, and N is the next time operator. Note that symbolic variables only occur in
the Boolean propositional expressions on the left-hand side of an implication. However,
given a node n and a boolean formula P , we can write n is P as a shorthand for (P →
n is 1) and (¬P → n is 0).

The meaning of a TEL formula is defined by a satisfaction relation. In order to decide
if a TEL formula is satisfied, we need to have a sequence σ ∈ Seq as well as a boolean
valuation φ : V → {0, 1}. Satisfaction of a TEL formula A, by a sequence σ and a
valuation φ, written φ, σ |= A is defined as follows:

φ, σ |= n is b ≡ b ≤ σ(0)(n) , b ∈ {0, 1}
φ, σ |= A1 and A2 ≡ φ, σ |= A1 and φ, σ |= A2

φ, σ |= P → A ≡ φ |=Prop P implies φ, σ |= A
φ, σ |= NA ≡ φ, σ1 |= A

Here, the following notation is used: The time shifting operator σ1 is defined by σ1

(t)(n) = σ(t + 1)(n). Standard propositional satisfiability is denoted by |=Prop.
An interesting property is that, given a valuation φ, if a sequence σ makes a TEL

formula A true, i.e. φ, σ |= A, then any other sequence σ′ that is more specific than σ,
i.e. σ ≤ σ′ makes A true as well.

Circuit models. In order to define when an STE assertion holds for a given circuit, we
need to have a model of the circuit. Normally, circuits are represented by their netlist, a
list of what gates are used and how they are connected. We are going to use a slightly
more abstract way of representing circuits, namely by so-called closure functions. A
closure function can be computed from a given netlist in a standard way (which we will
describe), but we want to leave open other possibilities as well.

A closure function F : State → State represents the behaviour of the simulator
on the nodes of the circuit. Given current information about the nodes in the circuit as a
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out (s(in0) & s(in1)) � s(out)

Fig. 7. Closure function F for the AND-gate

state s : State, the closure function computes the state F (s) : S, where all information
in s has been propagated forwards through the circuit, leading to a new state.

Let us take a look at an example. Look at the AND-gate displayed in Fig. 6. Its
closure function is displayed in Fig. 7. Here, The least upper bound operator in the
expression for F (s)(out) combines the value of out in the given state s, and the value
for out that can be derived from the values of in0 and in1, being s(in0) & s(in1).

A state s : {in0, in1, out} → V can be written as a vector s(in0), s(in1), s(out). For
example, the state that assigns the value 1 to in0 and in1 and the value X to node out is
written as 11X. Applying the closure function to the state 11X yields 111. The reason
is that when both inputs to the AND-gate have value 1, then by forwards propagation
of information, also the output has value 1. Applying the closure function to the vector
1XX yields 1XX. The reason is that the output of the AND-gate is unknown when one
input has value 1 and the other value X. The forwards nature of simulation becomes
clear when the closure function is applied to the vector XX1, resulting in the vector
XX1. Although the inputs to the AND-gate must have value 1 when the output of the
gate has value 1, this cannot be derived by forwards propagation.

A final example shows how the over-constrained value T can arise. When applying
the closure function to the vector 0X1, the result is 0XT. The reason is that in the input
state node out has value 1, and node in0 has value 0. From in0 having value 0 it can be
derived by forwards propagation that node out should have value 0, therefore node out
receives the over-constrained value T.

Circuits with state. To deal with circuits with state, we use the following convention.
For each state-holding element in the circuit whit output node n, we always use the
name n′ (primed) as the input. For example, in Fig. 8, we display a simple memory
cell. The current value of the node out′ is the same as the value of the node out at the
next point in time.

A closure function for the memory cell in Fig. 8 is given in Fig. 9. Consider the state
s1 given in Fig. 10. Applying the closure function to this state yields the state F (s1).
Node p receives value 1 as it is the output of an AND-gate with inputs in and set which
both have value 1 in the input state. In the same way, node q receives value 0. Node
out′ receives value 1, because it is the output of an OR-gate with input nodes p and q.
Finally, node out receives value X as its value depends on the previous value of node
out′, its value cannot be determined from the current values of the other nodes.
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n F (s)(n)

in s(in)
set s(set)
p (s(in) & s(set)) � s(p)
q (¬s(set) & s(out)) � s(q)
out′ (F (s)(p) + F (s)(q))� s(out′)
out s(out)

Fig. 9. Closure function F for the memory cell

When an internal node is given a value in the given state, the least upper bound of
this value and the value derived by forwards propagation is used. For instance, driving
only node p with value 1 yields state s2 given in Fig. 10. Applying the closure function
F to this state yields state F (s2). Note that there is no backwards information flow; the
closure function does not demand that nodes in and set have value 1, though they are
the input nodes to an AND-gate whose output node has received value 1.

Induced closure functions. Given the netlist of a circuit c, a standard closure function
for the circuit, called the induced closure function, written Fc, can be constructed as
follows. Given a state s, for every circuit input n, the value of Fc(s)(n) is s(n). Also,
for every output n of a delay element, the value of Fc(s)(n) is given by s(n). Otherwise,
if n is the output of for example an AND-gate with input nodes n1 and n2, the value
of Fc(s)(n) is the least upper bound of s(n) and Fc(s)(n1) & Fc(s)(n2). In a similar
way, values for the outputs of OR-gates and inverters are defined. This definition is
well-defined because netlists are acyclic.

The closure functions given in the examples above are actually all examples of in-
duced closure functions.

Properties of closure functions. A closure function F should meet several require-
ments:

– Closure functions are required to be monotonic, that is, for all states s1, s2: s1 ≤ s2

implies F (s1) ≤ F (s2). This means that a more specified input state cannot lead
to a less specified result. The reason is that given a more specified input state, more
information about the state of the circuit can be derived.

– Closure functions are required to be idempotent, that is, for every state s: F (F (s))
= F (s). This means that repeated application of the closure function has the same
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n s1(n)

set 1
in 1
other X

n F (s1)(n)

set 1
in 1
p 1
q 0
out′ 1
out X

n s2(n)

p 1
other X

n F (s2)(n)

p 1
out′ 1
other X

Fig. 10. Example states

n σ(0) σ(1) σ(t), t > 1

in 1 X X
set 1 0 X
other X X X

(a)

n F→(σ)(0) F→(σ)(1) F→(σ)(2) F→(σ)(t), t > 2

in 1 X X X
set 1 0 X X
p 1 0 X X
q 0 1 X X
out′ 1 1 X X
out X 1 1 X

(b)

Fig. 11. Sequences σ and F→(σ)

result as applying the function once. The reason is that the closure function should
derive all information about the circuit state in one go.

– Finally, we require that closure functions are extensive, that is, for every state s:
s ≤ F (s). This means that the application of a closure function to a circuit state
should yield a state as least as specified as the input state. The reason is that the
closure function is required not to loose any information.

The induced closure function Fc, for a circuit c, is by construction monotonic, idempo-
tent and extensive.

Closure over time. In STE, a circuit is simulated over multiple time steps. During
simulation, information is propagated forwards through the circuit and through time,
from each time step t to time step t + 1.

To model this forwards propagation of information through time, a closure function
over time, notation F→ : Seq → Seq, is used. Given a sequence, the closure function
over time calculates all information that be can derived from that sequence by forwards
propagation. Recall that for every state holding element with output n the input to the
state holding element is node n′. Therefore, the value of node n′ at time t is propagated
to node n at time t + 1 in the forwards closure function over time.

Let us take a look at an example. For the memory cell, consider the closure function
given in Fig. 9, and the sequence σ, given in Figure 11(a). The sequence F→(σ) at time
0 depends only on the sequence σ at time 0, and is computed by applying the closure
function F to σ(0). See Figure 11(b).
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The sequence F→(σ) gives node out′ value 1 at time 0. Node out′ is the input to
the delay element with output node out. The value 1 should be propagated from out′

at time 0, to out at time 1. Therefore, when calculating the state F→(σ)(1), the node
values given by the state σ(1) and the value of node out propagated from the value of
node out′ at time 0 are combined. Let us call the state that combines these node values
σ′(1):

σ′(1)(out) = σ(1)(out) � F→(σ)(0)(out′)
σ′(1)(n) = σ(1)(n) , n 
= out

In this case σ′(1) is given by: σ′(1)(set) = 0, σ′(1)(out) = 1, and σ′(1)(n) = X for
every other node n. Applying the forwards closure F to σ′(1) yields state F→(σ)(1)
given in Figure 11(b).

The value of F→(σ)(2) is given by applying F to σ′(2), where σ′(2) is calculated
in a similar fashion as σ′(1), and is given by: σ′(2)(out) = 1, and σ′(2)(n) = X for all
other nodes n. Repeating this procedure gives the complete sequence F→(σ) given in
Figure 11(b).

Now, given a closure function F for a circuit with has a set of outputs of delay-
elements S, we inductively define the closure function over time, written F→ : Seq →
Seq, as follows:

F→(σ)(0) = F (σ(0))
F→(σ)(t + 1) = F (σ′(t + 1))

Here, σ′ is defined as:

σ′(t + 1)(n) =
{

σ(t + 1)(n) � F→(σ)(t)(n′), n ∈ S
σ(t + 1)(n), otherwise

The function F→ inherits the properties of being monotonic, idempotent and extensive
from F .

Trajectories. The last thing we need to do before we can define when circuits satisfy
an STE assertion is to define what sequences can be the result of simulating the circuit.
We define a trajectory to be such a sequence; a sequence in which no more information
can be derived by forwards propagation of the closure function. That is, a sequence τ
is a trajectory of a closure function when it is a fixed-point of the closure function over
time:

τ = F→(τ)

Because closure functions are idempotent, applying a forwards closure function F→ to
any sequence always leads to a trajectory. This is the case since:

F→(σ) = F→(F→(σ)), for all σ ∈ Seq

We have an immediate link to the simulation-nature of STE; if we create a sequence σ
containing all information specified in the antecedent A, applying F→(σ) corresponds
to the result of running the simulator with the antecedent A. F→(σ) is the weakest
trajectory τ that still has all information that σ has, and thus the weakest trajectory
satisfying A.
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Semantics of STE. Using the definition of trajectories of a circuit, we can finally
define when an assertion is true. A circuit c with closure function F satisfies a trajectory
assertion A =⇒ C iff. for every valuation φ : V → {0, 1} of the symbolic variables,
and for every three-valued trajectory τ of F , it holds that:

φ, τ |= A ⇒ φ, τ |= C

The reader can verify that this definition corresponds to the observations made for the
examples in the introduction.

Why does the above definition correspond to what an STE simulator actually calcu-
lates? The simulator only performs one simulation run, so it definitely does not check
the consequent for all trajectories τ that satisfy the antecedent. The secret lies in the
properties of the weakest trajectory that the simulator calculates; if the consequent C
holds for the weakest trajectory τ satisfying A, then the consequent C holds for all tra-
jectories that satisfy A. This is often called the Fundamental Theorem of STE [13], and
it implies that it is enough to check the consequent C only for the weakest trajectory
satisfying A, instead of all trajectories.

4 Abstraction Refinement

A common initial result in an STE verification attempt is that the model-checker cannot
prove the assertion because the simulation using the antecedent yields X’s at nodes that
are required to have a particular boolean value by the consequent. This indicates that
the used abstraction was too coarse, leading to a so-called spurious counter-model. In
contrast, a real counter-model is a simulation run that satisfies the antecedent but yields
a 0 for a node for which the consequent requires a 1, or vice-versa. A model of an
assertion is a simulation run that satisfies both the antecedent and the consequent.

When an STE model-checking run produces spurious counter-models but no real
counter-models, we say that the result of the verification is unknown. In this case, the
assertion must be refined (usually by introducing more symbolic variables in the an-
tecedent) until the property is proved, or until a real counter-model is found. Often, a
great deal of time is spent on such manual abstraction refinement [14, 1]. This is one of
the greatest hurdles in using STE.

In this section, we present a new tool called STAR (SAT-based Tool for Abstraction
Refinement in STE) that can assist in STE assertion refinement [11]. The tool is based
on the concept of a strengthening, which is a particular piece of useful information
that can help STE-users with manual abstraction refinement; given an STE assertion
and a circuit, a strengthening indicates which extra inputs of the circuit need to be
given a boolean (non-X) value in order for relevant outputs to also get a boolean value.
The tool STAR has two modes; the first mode calculates strengthenings that satisfy the
assertion (corresponding to models), and the second mode calculates strengthenings
that contradict the assertion (corresponding to real counter-models).

By inspecting a weakest satisfying strengthening, the user can gain intuition about
how to refine the assertion by introducing a minimal number of extra symbolic variables.
On the other hand, a weakest contradicting strengthening gives a minimal set of reasons
for the failure of the assertion, which can be used to gain intuition about why the circuit
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Fig. 12. A Content-Addressable Memory Circuit

does not satisfy the assertion. We give an introduction to the tool STAR by means of a
small case-study.

Verifying a CAM. Content-Addressable Memories (CAMs) are hardware implemen-
tations of lookup tables. A CAM stores a number of tags, each of which is linked to a
specific data-entry. The basis of a CAM circuit consists usually of two memory blocks,
one containing tag entries, and the other the same number of corresponding data entries,
see Fig. 12. Given an input tag, the associative-read operation consists of searching all
tags in the CAM to determine if there is a match to the input tag, and if so sending the
associated data-entry to the output. Verifying this operation is non-trivial [7].

Let us look at a case-study of how a verification engineer might use our tool STAR

to derive an STE assertion for verifying the associative-read operation of a CAM. In the
case-study, we assume that the verification engineer uses the BDD-based STE model-
checker in Intel’s in-house verification toolkit Forte [4].

An obvious way of verifying the associative-read operation using STE is to introduce
symbolic variables for each tag- and data-entry. When doing so, the antecedent of the
assertion specifies that each tag-entry tagmem[i] has symbolic value tagmemi, and
each data-entry datmem[i] has symbolic value datmem i. The consequent checks that,
for each i, when the input-tag is equal to tagmemi the output is equal to datmem i.

(aread is 1) and (tagin is tagin)
and (tagmem[0] is tagmem0) and . . . and (tagmem[15] is tagmem15)
and (datmem[0] is datmem0) and . . . and (datmem[15] is datmem15)

=⇒
((tagin = tagmem0) → (out is tagmem0))

...
and ((tagin = tagmem15) → (out is tagmem15))

(1)

This assertion, however, cannot be handled by BDD-based STE model-checkers. The
large number of symbolic variables leads to an immediate BDD-blow up.

Suppose that, instead, the user tries to verify the operation using symbolic indexing
[6]. When doing so, a vector of symbolic variables, index , is created to index over the
potentially matching tag-entries. The antecedent states that the indexed tag-entry has
symbolic value tagin and the indexed data-entry has value data . So, only variables for
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Warning: Consequent failure at time 0 on node out[63]
Current value:data[63] + X(!data[63])
Expected value:data[63]
Weak disagreement when:!data[63]
----WARNING: Some consequent errors not reported

data[16]&data[21]&data[61]&data[34]&data[2]&data[7]&data[47]&data[52]&data[20]&
data[60]&data[33]&data[38]&data[6]&data[46]&data[51]&data[19]&data[59]&data[56]&
data[24]&data[32]&data[29]&data[37]&data[5]&data[45]&data[13]&data[42]&data[53]&
data[10]&data[50]&data[18]&data[58]&data[15]&data[26]&data[55]&data[23]&data[63]&
data[31]&data[28]&data[39]&data[36]&data[43]&data[44]&data[40]&data[12]&data[41]&
data[27]&data[49]&data[17]&data[57]&data[14]&data[25]&data[54]&data[22]&data[62]&
data[30]&data[9]&data[35]&data[3]&data[4]&data[0]&data[11]&data[1]&data[8]&data[48]

Fig. 13. Forte Output for Assertion 2

Symbolic Variables
index = 1100
tagin = 00000000
data = 1111111111111111111111111111111111111111111111111111111111111100
Inputs at time 0
aread = 1
tagin = 00000000
Initial Values
tagmem1 = 00000000
tagmem12 = 00000000
datmem1 = --------------------------------------------------------------1-
datmem12 = 1111111111111111111111111111111111111111111111111111111111111100
Outputs
out = 111111111111111111111111111111111111111111111111111111111111111-

Fig. 14. A Weakest Contradicting Strengthening of Assertion (2)

the content of the indexed data-entry and tag-entry are created, instead of variables for
all tag- and data-entries. This greatly reduces the number of required symbolic variables.

Using symbolic indexing, the user could arrive at the following assertion.

(aread is 1) and (tagin is tagin)
and ((index = 0000) → ((tagmem[0] is tagin) and (datmem[0] is data)))
and ((index = 0001) → ((tagmem[1] is tagin) and (datmem[1] is data)))

...
...

...
and ((index = 1111) → ((tagmem[15] is tagin) and (datmem[15] is data)))

=⇒
out is data

(2)

When the user tries to verify this assertion with the model-checker, the result is “un-
known”. The output of the model-checker is given in Fig. 13: the simulated value for
node out[63] is (data [63] + (X & ¬data [63])), while the required value is data[63].
When the symbolic variable data [63] has value 0, the simulated value of out[63] evalu-
ates to X, indicating a spurious counter-model. The expression data[16]&....&data[48]
indicates that only when the data-entry consists of only high bits no spurious counter-
model exists.

So, the STE model-checker does not give much help with refining the assertion.
The tool STAR can be used to calculate a weakest contradicting strengthening of

Assertion 2, see Fig. 14. The table presents an assignment of the symbolic variables, and
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a weakest strengthening of the antecedent that together contradict the consequent. Here,
only bold-faced values (0 or 1) in the table represent strengthened nodes. A normal-
faced 0 or 1 represents a node that has received the value 0 or 1 because it was required
by the (original) antecedent. For instance, tagmem12 is required to have value 00000000
by the antecedent, but tagmem1 is required to have the same value by the strengthening.
To increase readability, X’s are represented by a dash -; entries for which all values are
X have been left out of the table completely.

The table states that

– the value of index vector is 1100, so, tag- and data-entry 12 are indexed,
– not only the indexed tag 12 is equal to the input tag tagin but also tag 1,
– data-entry 1 differs from the indexed data-entry 12, at the second-last position;

data-entry 1 has value 1 at this position, while the indexed data-entry has value 0,
– the value of the output of the CAM at the second-last position is 1 instead of 0 as

required by the consequent.

From this, the user can deduce that the assertion in fact does not hold for the circuit
because the assertion does not consider the case in which two tag-entries are equal to
the input tag. Also, the user can conclude that, apparently, the CAM contains a bus that,
when given both a 0 and 1 value, chooses the 1 value over the 0 value.

An obvious way of circumventing this problem is to introduce symbolic variables
for all tag-entries, and to add the constraint that there is at most one tag-entry equal to
the input tag. To do so, many extra symbolic variables are needed; one for each bit of
each tag-entry. Therefore, it is not surprising that the resulting assertion yields, again, a
BDD blow-up.

To obtain an intuition on how to, instead, refine the assertion by introducing a very
small number of extra symbolic variables, the user can calculate a weakest satisfying
strengthening of the assertion. The user knows from the output of the model-checker
that when all of the data-entries have value 1 no spurious counter-model exists. There-
fore, the constraint that at least one of the data-entries has value 0 is given to STAR.

In Fig. 15, a weakest satisfying strengthening calculated by STAR is given. In this
strengthening, for each non-indexed tag-entry either (1) the tag-entry differs at one
position from the input tag, or (2) the tag-entry consist only of X′s (tag-entries 5 and
11), and the corresponding data-entry contains a zero at the position where the indexed
data-entry has a zero, and X’s at each of the positions where the indexed data-entry
contains a 1.

This can be explained as follows. There are two ways of making sure that a non-
indexed data-entry does not corrupt the output: (1) making the tag-entry differ at at-least
one position from the input tag, or (2) as the bus in the CAM favors a 1 over a 0, for
each tag that potentially matches, having a 0 in the data-entry at each position where
the indexed data-entry contains a 0.

As for the verification of the associative read property, no assumptions on the content
of the data-entries in the CAM are wanted, the user can ask STAR to generate a weakest
satisfying strengthening of assertion (2) that does not strengthen the requirements on
the values of data-entries. This strengthening, given in Fig. 16, makes each non-indexed
tag-entry differ at one position from the input tag.
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Symbolic Variables
index = 0000
tagin = 00000010
data = 0100000000000000000000000000000000000000000000000000000000000000
Inputs at time 0
aread = 1
tagin = 00000010
Initial Values
tagmem0 = 00000010
tagmem1 = 1-------
tagmem2 = 1-------
tagmem3 = --1-----
tagmem4 = ------0-
tagmem5 = --------
tagmem6 = -1------
tagmem7 = --1-----
tagmem8 = -1------
tagmem9 = 1-------
tagmem10 = 1-------
tagmem11 = --------
tagmem12 = ---1----
tagmem13 = ----1---
tagmem14 = ------0-
tagmem15 = -1------
datmem0 = 0100000000000000000000000000000000000000000000000000000000000000
datmem5 = 0-00000000000000000000000000000000000000000000000000000000000000
datmem11 = 0-00000000000000000000000000000000000000000000000000000000000000

Fig. 15. A Weakest Satisfying Strengthening of Assertion (2)

Inspired by this strengthening, the user can modify the assertion by introducing, for
each tag-entry i, a vector of symbolic variables pi that specifies at which position the
tag-entry differs from the input tag when the tag-entry is not indexed. The formula
expressing that tag i differs from the input tag tagin at the position encoded by pi is:

mismatch(i) = ((pi = 000) → (tagmem[i][0] is ¬tagin[0]))
and ((pi = 001) → (tagmem[i][1] is ¬tagin[1]))

...
...

...
and ((pi = 111) → (tagmem[i][7] is ¬tagin[7]))

The formula expressing that each of the non-indexed tag-entries differs at at-least one
place from tagin is:

A′ = ((index �= 0000) → mismatch(0))
and ((index �= 0001) → mismatch(1))

...
...

...
and ((index �= 1111) → mismatch(15)))

The assertion obtained by adding A′ to the antecedent of assertion (2) is exactly the
assertion described in [7] and is easily proved by an STE model-checker.
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Symbolic Variables
index = 1111
tagin = 11111110
data = 0100000000000000000000000000000000000000000000000000000000000000
Inputs at time 0
aread = 1
tagin = 11111110
Initial Values
tagmem0 = -------1
tagmem1 = ------0-
tagmem2 = ---0----
tagmem3 = ---0----
tagmem4 = ------0-
tagmem5 = -------1
tagmem6 = -------1
tagmem7 = 0-------
tagmem8 = ------0-
tagmem9 = --0-----
tagmem10 = ------0-
tagmem11 = --0-----
tagmem12 = -----0--
tagmem13 = ---0----
tagmem14 = 0-------
tagmem15 = 11111110
datmem15 = 0100000000000000000000000000000000000000000000000000000000000000

Fig. 16. A Weakest Satisfying Strengthening of Ass. (2) without extra assumptions on data-entries

5 Conclusion and Further Reading

We have presented an introduction to Symbolic Trajectory Evaluation, a powerful sim-
ulation-based model-checking technique. When the right balance between X’s and sym-
bolic variables can be found, the capacity of STE goes far beyond what traditional
model-checkers can accomplish. To help with finding the right abstraction, we have
developed a tool called STAR.

However, even when the right abstraction level has been found, the high performance
of STE comes not without a price. One of the main disadvantages of STE is the limited
expressivess of STE assertions. It can be seen as a crippled form of LTL where only
assertions over a finite amount of points of time can be made. The concept of initial
state (and therefore reachable state) is completely absent.

One way to alleviate some of this restriction is to split up a desired property into a
number of lower-level STE assertions that can be checked using an STE model-checker.
An example is the following. Suppose we have a TEL formula B that we want to show
holds for all reachable states. One way to do this using STE is to split this up into two
STE assertions:

I =⇒ B and B =⇒ N B

Here, I is a TEL formula characterizing the initial state of the design. Together, by using
induction, the above two assertions imply that B must hold for all reachable states.
However, it is quite easy to make a mistake in this kind of meta-reasoning that lies
outside of STE. One solution to this is to use a theorem proving system to aid in this
reasoning. Intel’s in-house verification system Forte [4] has precisely that possibility.
You can read more about it in [12].
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wr=0

out=d
wr=0,rd=1,addr=awr=1,addr=a,in=d

Fig. 17. GSTE specification of a memory

Another way to lift the expressiveness of STE is investigated in the work on Gen-
eralized Symbolic Trajectory Evaluation (GSTE) [16]. In GSTE, assertions are made
in the form of graphs that can contain cycles. Informally, every path through the graph
represents an STE assertion. For example, take a look at a GSTE specification of a
memory in Fig. 17. We have symbolic variables a and d. The assertion says that if we
write value d to address a, after which we spend an unspecified amount of cycles not
writing, and then we read from address a, the result should be d. You can read more
about GSTE in [16, 15].

Most STE model-checkers use BDDs to represent symbolic three-valued expres-
sions. The disadvantage is that these tools can be sensitive to BDD blow-up. An alter-
native is to use a representation that is not canonical, and use a SAT-solver to check that
the consequent is fulfilled. You can read more about that in [1, 14, 9, 8].
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Abstract. This chapter overviewes Binary Decision Diagrams (BDDs)
and their application in Formal Hardware Verification. BDDs are first
described as a representation formalism for Boolean functions. BDDs
are directed acyclic graphs, deriving their efficiency from canonicity, and
from their ability to be exponentially more compact, in terms of node
count, than alternative Boolean representations. The chapter introduces
the main BDD operators, in terms of recursive graph manipulation func-
tions. Some of the most succesful Formal Verification techniques, based
on BDD engines, are then reported. The description is limited to Reduced
Ordered BDDs (ROBDDs), which, albeight being just one among several
decomposition types, are the most widely used and the most general one.

1 Introduction

Binary Decision Diagrams (BDDs1) are one of the most widely used core tech-
niques in the field of Formal Verification. They are commonly used to implicitly
represent large solution spaces in combinational and sequential problems, as they
can provide effective implicit representations for Boolean functions depending on
tens to hundreds of Boolean variables.

The interest in BDDs from the theoretical computer science community has
largely been motivated by the practical importance and success of BDDs in for-
mal hardware verification. Conversely, the growing industrial interest in formal
hardware verification has largely been inspired by the effectiveness of BDD–based
techniques in finding real bugs in practical, large–scale designs.

A BDD is a directed acyclic graph constructed in such a way that its directed
paths represent objects of interest (such as subsets, clauses, minterms, etc.). A
BDD is just a data structure for representing a Boolean function. Bryant [1]
introduced the BDD in its current form, although the general ideas have been
around for quite some time (e.g., as branching programs in the theoretical com-
puter science literature [2, 3]).

BDDs may achieve an exponential compression rate, as the number of vertices
and edges (graph size) is often exponentially lower than the number of paths
(from root to leaves).

1 Reduced Ordered BDDs (ROBDDs), or simply BDDs whenever no ambiguity arises.

M. Bernardo and A. Cimatti (Eds.): SFM 2006, LNCS 3965, pp. 78–107, 2006.
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BDDs have several useful properties. First, many common functions have
small BDDs. A BDD is a canonical representation for a Boolean function, i.e.,
every distinct Boolean function has exactly one unique BDD representation.
Thus, comparing Boolean functions becomes just a pointer comparison. BDDs
can be transformed by algorithms that visit all vertices and edges of the di-
rected graph in some order. These algorithms take therefore polynomial time
in the current size of the graph. Unfortunately, when new BDDs are created,
some algorithms tend to significantly increase the number of vertices, poten-
tially leading to exponential memory requirements. To reduce this drawback,
variable reordering techniques have been introduced.

Choosing a good variable order is important. In general, the choice of variable
order can make the difference between a linear size BDD and an exponential one.
Variable order is usually chosen either statically, i.e., by pre–processing the input
formula, or dynamically, i.e., by analyzing the outcome of previous steps.

Bryant [4] provides a detailed exposition on BDDs and surveys some applica-
tions and variations. BDDs have been adopted with success as a core technology
for various formal verification approaches. Due to their canonicity and potential
compactness, they are used

– To symbolically represent and manipulate Boolean functions generated at
circuit (input, internal as well as output) nodes. In this chapter we will de-
scribe combinational equivalence checking, symbolic simulation and symbolic
trajectory evaluation, three well known approaches in this general trend.

– To compute sets of states of sequential circuits modeled as Finite State
Machines. BDD based symbolic traversals have represented the basic steps
of both model checking and sequential equivalence checking, where BDDs are
adopted to encode and manipulare chacteristic functions of state sets.

Among the above mentioned techniques, model checking probably represents
the the main step towards fully automated formal verification. In contrast to
theorem proving, model checking is completely automatic and fast, sometimes
producing an answer in a matter of minutes.

Model checking is a technique that relies on building a finite model of a
sequential system and checking that a desired property holds in that model.
Roughly speaking, the check is performed as an exhaustive state space search,
which is guaranteed to terminate since the model is finite.

Model checking can be used to check partial specifications, and so it can pro-
vide useful information about a system’s correctness even if the system has not
been completely specified. It produces counterexamples, which usually represent
subtle errors in design, and thus can be used to aid in debugging.

The technical challenge in model checking is in devising algorithms and data
structures that allow us to handle large search spaces. Model checking has been
used primarily in hardware and protocol verification [5]; The main disadvan-
tage of model checking is the state explosion problem. In 1987 McMillan used
BDDs to represent state transition systems efficiently, thereby increasing the
size of the systems that could be verified. Model checkers today are routinely
expected to handle systems with between 100 and 200 state variables. They
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have checked interesting systems with 1020 reachable states [6], and by using
appropriate abstraction techniques, they can check systems with an essentially
unlimited number of states [7]. As a result, model checking is now powerful
enough that it is becoming widely used in industry to aid in the verification of
newly developed designs.

Space limits and memory explosion have always represented the main hurdle
for a broader BDD exploitation with ever increasing circuit sizes. BDDs can
in fact provide exponentially compact representations for Boolean functions of
hundreds to thousands variables. Nonetheless, even after almost two decades of
intensive research in the area, they have never been able to deal with the largest
models and problem instances, and they are generally deemed to be effective up
to a few hundred variables.

In the last decade, Boolean Satisfiability (SAT) Solvers [8] have generally beat
BDDs in terms of scalability and attainable circuit sizes. SAT based verification
tools are now able to work with larger circuits than BDD based tools, at least for
bug hunting (debug) purposes. Still BDDs play important roles in most formal
verification tools, either as stand–alone engines, or in mixed approaches, where
they are combined, for instance, with non canonical Boolean function representa-
tions and SAT solvers. Furthermore, several alternative decomposition types ha
ve been introduced, in order to overcome the limits of ROBDDs, either in terms
of representation or symbolic manipulation power. Describin such extensions is
outside the scope of this chapter.

In the sequel we first provide some preliminary informations about the gen-
eral background and underlying theory (section 2). Section 3 concentrates on
BDDs as a data structure with some of the most relevant implementation de-
tails. Section 4 overviewes recoursive procedures implementing the main symbolic
operators on BDDs We then move up to the applications on formal verification
(section 5): we describe in that section the main classical verification frameworks
exploiting the BDD technology, without going to deep engineering details and
optimizations. We finally draw some concluding remarks in section 6. Some of
the examples and figures presented are taken and/or inspired by the tutorial
papers [9] and [10]

2 Background

Boolean Algebra forms a cornerstone of computer science and digital system
design. Many problems in digital logic design and testing, artificial intelligence,
and combinatorics can be expressed as a sequence of operations on Boolean func-
tions. Such applications would benefit from efficient algorithms for representing
and manipulating Boolean functions symbolically.

Unfortunately, many of the tasks one would like to perform with Boolean
functions, such as testing whether there exists any assignment of input vari-
ables such that a given Boolean expression evaluates to 1 (satisfiability), or two
Boolean expressions denote the same function (equivalence) require solutions to
NP–Complete or coNP–Complete problems. Consequently, all known approaches
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to performing these operations require, in the worst case, an amount of computer
time that grows exponentially with the size of the problem. This makes it dif-
ficult to compare the relative efficiencies of different approaches to representing
and manipulating Boolean functions. In the worst case, all known approaches
perform as poorly as the naive approach of representing functions by their truth
tables and defining all of the desired operations in terms of their effect on truth
table entries. In practice, by utilizing more clever representations and manipu-
lation algorithms, we can often avoid these exponential computations.

2.1 Representations of Boolean Functions

A variety of methods have been developed for representing and manipulating
Boolean functions. Those based on classical representations such as truth tables,
Karnaugh maps, or canonical sum–of–products (SOP) forms are quite imprac-
tical as every function of n arguments has a representation of size 2n or more.
More practical approaches utilize representations that at least for many func-
tions, are not of exponential size. Example representations include reduced sum
of products, (or equivalently sets of prime cubes) and factorizations into unate
functions. These representations suffer from several drawbacks. First, certain
common functions still require representations of exponential size. For example,
the even and odd parity functions serve as worst case examples in all of the
above representations. Second, while a certain function may have a reasonable
representation, performing a simple operation such as complementation could
yield a function with an exponential representation. Finally, none of these rep-
resentations are canonical forms, i.e. a given function may have many different
representations. Consequently, testing for equivalence or satisfiability can be
quite difficult.

2.2 Representations of (Combinational and Sequential) Circuits

Combinational circuits are generally represented by netlists of gates, each one
modeled as a Boolean function. As far as we do not care about propagation
delays, the overall input–output (functional) behavior of such circuits can be
easily captured by Boolean functions, either in terms of a vector of functions
(one for each circuit output) or as an overall Boolean relation, describing the
legal correspondences of input and output values. Similar arguments apply to
combinational parts of sequential circuits.

A bigger challenge comes from sequential circuits, where we need to model
sequences of values over time. There are many kinds of system models to rep-
resent sequential systems. The models are Finite State Machines [11], Kripke
Structures, ω–regular automata [12] [13], labeled transition systems [14] [15].
We refer in the sequel to FSMs and Kripke Structures.

Definition (Finite State Machine). A Finite State Machine is a 6–tuple,
(S, S0, Σ, λ, T,O) where

– S is the set of states.
– S0 ⊆ S is the set of initial states.
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– Σ is the input alphabet.
– λ is the output alphabet.
– T ⊆ S ×Σ × S is the transition relation between the states.
– O ⊆ S ×Σ × λ is the output relation.

Definition (Kripke Structure). A Kripke structure is defined as a 4–tuple
M = (S, S0, T, L), where

– S is the set of states.
– S0 ⊆ S is the set of initial states.
– T ⊆ S × S is the transition relation between the states.
– L : S → 2A is the function that labels each state with a set of atomic

propositions.

The Kripke structure is a closed system and models all possible behaviors
of the system. A Kripke structure can be derived from an FSM by taking a
Cartesian product of S and Σ in the FSM as the set of states in the Kripke
structure.

2.3 Temporal Logic

Temporal logic is a formalism to describe the ordering of events in time without
introducing time explicitly. Therefore, temporal logics are very useful in verifying
reactive systems. There are two main families of temporal logic and they are
distinguished from each other by the capabilities to model linear time systems2

or branching time systems3.
In this chapter only branching time systems are taken into account because

of the possibility to translate their underlaying structures into BDDs. The for-
malism used to specify properties in this set of applications is called CTL, to
say, Computation Tree Logic.

There are four basic temporal operators in future tense logics:

– X - next time,
– F - eventually or in the future,
– G - always or globally,
– U - until.

Computation Tree Logic (CTL) was first proposed by Clarke and Emerson
as a branching–time temporal logic [16]. CTL formulae are composed of path
quantifiers and temporal operators. The path quantifiers are used to describe
the branching structure in the computation tree. There are two path quantifiers:
2 Systems that do not require branching time statements, for instance in Bounded

Model Checking applications, where the system gets unrolled in order to check the
desired property for a specified depth in transition relation evuolution.

3 In which the transition relation is taken in his whole size and properties must be
checked for all paths in a particular subgraph (often the entire tree). Branching time
structures are hard to manipulate but give a warranty of completeness in verifying
the model of the system against a set of properties that must hold always and
everywhere.
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– A - for all paths,
– E - there exists a path or some paths.

In CTL, every quantifier is followed by a temporal operator. Therefore, there
are eight basic CTL operators:

– AX and EX
– AF and EF
– AG and EG
– AU and EU .

Sometimes another binary operator (q R p) describes situations in which the
raising of signal q releases the holding of signal p.

The path quantifiers and the temporal operators have the following relations:

– Fφ ≡ True U φ
– Gφ ≡ ¬F¬φ
– Aφ ≡ ¬E¬φ.

Then, using these relations, each of the eight CTL operators can be expressed
in terms of only three operators that are EX , EG, and EU :

– AXφ ≡ ¬EX¬φ
– EFφ ≡ E[True U φ]
– AGφ ≡ ¬EF¬φ
– AFφ ≡ ¬EG¬φ
– A[φ U ψ] ≡ ¬E[¬ψ U (¬φ ∧ ¬ψ)] ∧ ¬EG¬ψ
The syntax of CTL is defined with state formulas (state formulas) and path

formulas (path formulas) [17].

state formula ::= 〈atomic proposition〉 |
〈state formula〉 ∧ 〈state formula〉 |
¬〈state formula〉 |
E(〈path formula〉) |
A(〈path formula〉)

path formula ::= X(〈state formula〉) |
(〈state formula〉 U 〈state formula〉)

The notation M, s � φ means that formula φ holds at state s in the Kripke
structure M . Then, the semantics of CTL are as follows.

– M, s � φ iff φ ∈ L(s)
– M, s � ¬φ iff M, s � φ
– M, s � φ ∧ ψ iff M, s � φ and M, s � ψ
– M, s � φ U ψ iff M, s � φ or M, s � ψ
– M, s � Eφ iff ∃π = (s, s1, . . . , sn),M, π � φ
– M, s � Aφ iff ∀π = (s, s1, . . . , sn),M, π � φ
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3 Introduction to BDDs

Binary Decision Diagrams (BDDs) are an alternative representation, proposing
several advantages over previous approaches to Boolean function representation
and manipulation.

BDDs have been introduced in their current form by Bryant [1], starting from
the notations of Lee [2] and Akers [3], with further restrictions on the ordering
of decision variables.

BDDs are directed acyclic graphs providing a canonical representation of
Boolean functions. An Ordered BDD (OBDD) is a tree–like graph where Shan-
non (or Boole) decomposition is recursively applied at each node, following an
ordered set of variables.

Let us denote by f |v=1 (f |v=0) the Boolean expression obtained by replacing
v with 1 (0) in f . Let v → f1, f0 be the if–then–else operator defined by

v → f1, f0 = (v ∧ f1) ∨ (¬v ∧ f0)
then it is not hard to see that the following equivalence holds:

f = v → f |v=1, f |v=0 (1)

This is known as the Shannon expansion of f with respect to v. The above simple
equation has a lot of useful applications. The first one is to generate a canonical
form from any expression f . All operators can easily be expressed using only
if–then–else operators and then constants 0 and 1. Moreover, this can be done
in such a way that all tests are performed only on (un–negated) variables and
variables occur in no other places. Hence the operator gives rise to a new kind
of normal form (INF: If–then–else Normal Form). If f contains no variables it
is either equivalent to 0 or 1. Otherwise we form the Shannon expansion of f
with respect to one of the variables v in f . Thus since f |v=1 and f |v=0 both
contain one less variable than f , we can recursively find INFs for both of these;
call them f1 and f0. An INF for f is now simply

v → f1, f0

For example, ¬x is (x → 0, 1), x ⇔ y is x → (y → 1, 0), (y → 0, 1). Since
variables must only occur in tests the Boolean expression x is resprented as
x→ 1, 0.

Example 1. Consider the Boolean expression f = (x1 ⇔ y1) ∧ (x2 ⇔ y2). If we
find an INF of f by selecting in order the variables x1, y1, x2, y2 on which to
perform Shannon expansions, we get the expressions

f = x1 → f1, f0
f0 = y1 → 0, f00
f1 = y1 → f11, 0
f00 = x2 → f001, f000
f11 = x2 → f111, f110
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f000 = y2 → 0, 1
f001 = y2 → 1, 0
f110 = y2 → 0, 1
f111 = y2 → 1, 0

Figure 1 shows the expression as a tree. Such a tree is also called a decision
tree. A lot of the subexpressions are easily seen to be identical, so it is tempting
to identify them. For example, instead of f110 we can use f000 and instead of
f111 we can use f001. If we substitute f000 for f110 in the righthand side of f11
and also f001 for f111, we see that f00 and f11 are identical, and in f1 we can
replace f11 with f00. If we identify all equal subexpressions we end up with what
is known as a binary decision diagram (a BDD). It is no longer a tree of Boolean
expressions but a directed acyclic graph (DAG).

Applying this idea of sharing, f can now be written as:

f = x1 → f1, f0
f0 = y1 → 0, f00
f1 = y1 → f00, 0
f00 = x2 → f001, f000
f000 = y2 → 0, 1
f001 = y2 → 1, 0

Each subexpression can be viewed as the node of a graph. Such a node is
either terminal, in the case of the constants 0 and 1, or non-terminal. A non-
terminal node has a low-edge corresponding to the else–part and a high-edge

Fig. 1. A decision tree for (x1 ⇔ y1) ∧ (x2 ⇔ y2). Dashed lines denote low–branches,
solid lines high–branches.
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corresponding to the then-part (see Figure 2). Notice that the number of nodes
has decreased from 9 in the decision tree to 6 in the BDD. It is not hard to
imagine that, if each of the terminal nodes were other big decision trees, the
savings would be dramatic. Since we have chosen to consistently select variables
in the same order in the recursive calls during the construction of the INF of f ,
the variables occur in the same order on all paths from the root of the BDD.
In this situation the binary decision diagram is said to be ordered (an OBDD).
Figure 2 shows a BDD that is also an OBDD.

Fig. 2. A BDD for (x1 ⇔ y1) ∧ (x2 ⇔ y2) with ordering x1 < y1 < x2 < y2. Dashed
lines denote low–edges, solid lines high–edges.

Conceptually, we can construct the BDD for a Boolean function as follows
(see Figure 3). First, build a decision tree for the desired function, obeying the
restrictions that along any path from root to leaf, no variable appears more
than once, and that along every path from root to leaf, the variables always
appear in the same order (Figure 3 (a)). Next, generate a Reduced Ordered BDD
(ROBDD), by applying the following two reduction rules as much as possible:

– Merge any duplicate (same label and same children) nodes, i.e., two isomor-
phic subgraphs are merged. The rule guarantees keeping a unique (canonical)
representation (and BDD subgraph) for any given sub–function.

– Delete a node if both child pointers point to the same child, i.e. the node
is redundant (Figure 3 (b)). The rule represents the fact that a given sub–
function does not depend on the deleted variable.

The resulting directed, acyclic graph is the BDD for the function (Figure 3 (c)).
In practice, BDDs are generated and manipulated in the fully reduced form, with-
out ever building the decision tree. In a typical implementation, all BDDs in use
by an application are merged as much as possible to maximize node sharing, so a



BDD-Based Hardware Verification 87

Fig. 3. Creating a BDD for function x⊕ y ⊕ z

function is represented by a pointer to its root node. For example, in Figure 3 (c),
the function (x) is represented by a pointer to the top node, whereas the function
(y z) is represented by just a pointer to the leftmost node labeled y, rather than by
copies of the nodes.

BDDs have several useful properties. First, many common functions have
small BDDs. For example, generalizing the pattern in Figure 3(c), we see that
the BDD for the parity of n variables requires 2n − 1 nodes, whereas parity
requires exponential size using, for instance, sum–of–products (SOP) form. A
BDD is a canonical representation for a Boolean function, i.e., every distinct
Boolean function has exactly one unique BDD representation. Thus, comparing
Boolean functions becomes just a pointer comparison.

Example 2. Figure 4 and 5 shows the BDD for the function

f(x1, x2, x3) = (x1 ∧ (¬x2) ∧ x3) ∨ ((¬x1) ∧ x2 ∧ x3)

A solid (dashed) line indicates the 1 (0) value for the decision variable.

Figure 6 shows four OBDDs. Some of the tests (e.g., on x2 in (b)) are redundant,
since both the low– and high-branch lead to the same node. Such unnecessary
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v

Fig. 4. BDD Deletion Rule. A BDD node with two equal outgoing edges is deleted.

01

0

x1

x2

3x

x2

Fig. 5. An Example of BDD

Fig. 6. Four OBBDs: a) And OBBD for 1; b) Another OBBD for 1 with two redundant
tests; c) Same as (b) with one of the redundant tests removed; d) An OBDD for x1∨x3

with one redundant test
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tests can be removed: any reference to the redundant node is simply replaced
by a reference to its subnode. If all identical nodes are shared and all redundant
tests are eliminated, the OBDD is said to be reduced (an ROBDD). ROBDDs
have some very convenient properties centered around their canonicity (Often
when people speak about BDDs they really mean ROBDDs). To summarize:

– A Binary Decision Diagram (BDD) is a rooted, directed acyclic graph with:
1. one or two terminal nodes of outdegree zero labeled 0 or 1, and
2. a set of variable nodes u of outdegree two. The two outgoing edges are

given by two functions low(u) and high(u). (In pictures, these are shown
as dotted and solid lines, respectively.) A variable var(u) is associated
with each variable node.

– A BDD is Ordered (OBDD) if on all paths through the graph the variables
respect a given linear order x1 < x2 < . . . < xn . An (O)BDD is Reduced
(R(O)BDD) if:
1. (uniqueness) no two distinct nodes u and v have the same variable name

and low– and high-successor, i.e.,
var(u) = var(v), low(u) = low(v), high(u) = high(v) implies u = v

2. (nonredundant tests) no variable node u has identical low and highsuc-
cessor, i.e.,

low(u)
= high(u)

The ordering and reducedness conditions are shown in Figure 7.

Fig. 7. The ordering and reduceness conditions of ROBDDs. Left: variables must be
ordered. Middle: Nodes must be unique. Right: Only non–redundant tests should be
present.

ROBDDs have some interesting properties. They provide compact represen-
tations of Boolean expressions, and there are efficient algorithms for performing
all kinds of logical operations on ROBDDs. They are all based on the crucial
fact that for any function f : B

n → B there is exactly one ROBDD representing
it. This means, in particular, that there is exactly one ROBDD for the constant
true (and constant false) function on B

n: the terminal node 1 (and 0 in case
of false). Hence, it is possible to test in constant time whether an ROBDD is
constantly true or false. (Recall that for Boolean expressions this problem is
NP-complete.)

Simple graph algorithms, working depth–first on BDDs, implement many op-
erators. apply, ite (if–then–else), and existential (∃)/universal (∀) quantifiers
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are well–known examples. BDDs have been widely used in verification problems
to represent functions, as well as sets, by means of their characteristic functions.
Operations on sets are efficiently implemented by Boolean operations on their
characteristic functions.

4 Graph Algorithms on BDDs

In the previous section we saw how to construct an OBDD from a Boolean
expression by a simple recursive procedure. The question arises now how do we
construct a reduced OBDD? One way is to first construct an OBDD and then
proceed by reducing it. Another more appealing approach, which we follow here,
is to reduce the OBDD during construction.

To describe how this is done we will need an explicit representation of ROB-
DDs. Nodes will be represented as numbers {0, 1, 2, . . .} with 0 and 1 reserved
for the terminal nodes. The variables in the ordering x1 < x2 < . . . < xn

are represented by their indices {1, 2, . . . , n}. The ROBDD is stored in a ta-
ble T : u �→ (i, l, h) which maps a node u to its three attributes var(u) = i,
low(u) = l, and high(u) = h. Figure 8 shows the representation of the ROBDD
from Figure 2 (with the variable names changed to x1 < x2 < x3 < x4).

Fig. 8. Representing an OBDD with ordering x1 < x2 < x3 < x4. The numebers
inside the vertices are the identities used in the representation. The numbers 0 and 1
are reserved for terminal nodes. The numbers to the right of the ROBBD shows the
index of the variables in the ordering. The constants are assigned an index which is
the number of variables in the ordering plus one (here 4 + 1 = 5). This makes some
subsequent algorithms easier to present. The low– and high–fields are unused for the
terminal nodes.
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Mk. In order to ensure that the OBDD being constructed is reduced, it is
necessary to determine from a triple (i, l, h) whether there exists a node u with
var(u) = i, low(u) = l, and high(u) = h. For this purpose we assume the
presence of a table H : (i, l, h) �→ u mapping triples (i, l, h) of variable indices i,
and nodes l, h to nodes u. The table H is the “inverse” of the table T , i.e., for
variable nodes u, T (u) = (i, l, h), if and only if, H(i, l, h) = u. The operations
needed on the two tables are:

T : u �→ (i, l, h)
init(T ) initialize T to contain only 0 and 1
u← add(T, i, l, h) allocate a new node u with attributes (i, l, h)
var(u), low(u), high(u) lookup the attributes of u in T

H : (i, l, h) �→ u
init(H) initialize H to be empty
b← member(H, i, l, h) check if (i, l, h) is in H
u← lookup(H, i, l, h) find H(i, l, h)
insert(H, i, l, h, u) make (i, l, h) map to u in H

We shall assume that all these operations can be performed in constant time,
O(1).

The function Mk[T,H ](i, l, h) (see Figure 9) searches the table H for a node
with variable index i and low-, high-branches l, h and returns a matching node
if one exists. Otherwise it creates a new node u, inserts it into H and returns the
identity of it. The running time of Mk is O(1) due to the assumptions on the
basic operations on T and H . The OBDD is ensured to be reduced if nodes are
only created through the use of mk. In describing Mk and subsequent algorithms,
we make use of the notation [T,H ] to indicate that Mk depends on the global
data structures T and H, but we leave out the arguments when invoking it as
part of other algorithms.

Mk[T, H ](i, l, h) =
if l = h then return l
else if member(H, i, l, h) then
return lookup(H, i, l, h)
else u← add(T, i, l, h)
insert(H, i, l, h, u)
return u

Fig. 9. The function Mk[T, H](i, l, h)

Build. The construction of an ROBDD from a given Boolean expression t pro-
ceeds as in the construction of an if-then-else normal form (INF) in section 2.
An ordering of the variables x1 < . . . < xn is fixed. Using the Shannon ex-
pansion t = x1 → t|x1=1, t|x1=0, a node for t is constructed by a call to Mk,
after the nodes for t|x1=0 and t|x1=1 have been constructed by recursion. The
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Build[T, H ](t) =
function Build’(t, i) =

if i > n then
if t is false then return 0 else return 1
else v0 ← Build’(t|xi=0, i + 1)
v1 ← Build’(t|xi=1, i + 1)
return Mk(i, v0, v1)

end Build’

return Build’(t, 1)

Fig. 10. Algorithm for building an ROBDD from a Boolean expression t

algorithm is shown in Figure 10. The call Build’(t, i) constructs an ROBDD
for a Boolean expression t with variables in xi, xi+1, . . . , xn. It does so by first
recursively constructing ROBDDs v0 and v1 for t|xi=0 and t|xi=1 in lines 4 and
5, and then proceeding to find the identity of the node for t in line 6. Notice
that if v0 and v1 are identical, or if there already is a node with the same i,
v0 and v1 , no new node is created. An example of using build to compute an
ROBDD is shown in figure 10. The running time of build is bad. It is easy to
see that for a variable ordering with n variables there will always be generated
on the order of 2n calls.

Apply. All the binary Boolean operators on ROBDDs are implemented by the
same general algorithm apply(op, u1, u2) that for two ROBDDs computes the
ROBDD for the Boolean expression tu1 op tu2 . The construction of apply is
based on the Shannon expansion (1):

Apply[T, H ](op, u1, u2) =
init(G)

function app(u1, u2) =
if G(u1, u2) �= empty then return G(u1, u2)
else if u1 ∈ {0, 1} and u2 ∈ {0, 1} then u← op(u1, u2)
else if var(u1) = var(u2) then

u← mk(var(u1), app(low(u1), low(u2)), app(high(u1), high(u2)))
else if var(u1) < var(u2) then

u← mk(var(u1), app(low(u1), u2), app(high(u1), u2))
else (* var(u1) > var(u2) *)

u← mk(var(u2), app(u1, low(u2)), app(u1, high(u2)))
G(u1, u2)← u
return u

end app

return app(u1, u2)

Fig. 11. The algorithm apply[T, H ](op, u1, u2)
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Observe that for all Boolean operators op the following holds:

(x→ f1, f2) op (x→ f ′
1, f

′
2) = x→ f1 op f

′
1, f2 op f

′
2 (2)

If we start from the root of the two ROBDDs we can construct the ROBDD
of the result by recursively constructing the low and the highbranches and then
form the new root from these. Again, to ensure that the result is reduced, we
create the node through a call to mk. Moreover, to avoid an exponential blowup
of recursive calls, dynamic programming is used. The algorithm is shown in
Figure 11.

Dynamic programming is implemented using a table of results G. Each entry
(i, j) is either empty or contains the earlier computed result of app(i, j). The
algorithm distinguishes between four different cases, the first of them handles the
situation where both arguments are terminal nodes, the remaining three handle
the situations where at least one argument is a variable node. If both u1 and u2

are terminal, a new terminal node is computed having the value of op applied

Fig. 12. Using build on the expression (x1 ⇔ x2)∨x3 . (a) The tree of calls to build.
(b) The ROBDD after the call build’((0⇔ 0) ∨ x3, 3). (c) After the call build’((0⇔
1) ∨ x3, 3). (d) After the call build’((0⇔ x2) ∨ x3, 2). (e) After the calls build’((1⇔
0) ∨ x3, 3) and build’((1⇔ 1) ∨ x3, 3). (f) After the call build’((1⇔ x2) ∨ x3, 2). (g)
The final result.
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Restrict[T, H ](u, j, b) =
function res(u) =

if var(u) > j then return u
else if var(u) < j then return mk(var(u), res(low(u)), res(high(u)))
else (* var(u) = j *) if b = 0 then return res(low(u))
else (* var(u) = j, b = 1 *) return res(high(u))

end res
return res(u)

Fig. 13. The algorithm restrict[T, H ](u, j, b) which computes an ROBDD for tu[j/b]

to the two truth values. (Recall, that terminal node 0 is represented by a node
with identity 0 and similarly for 1).

If at least one of u1 and u2 are nonterminal, we proceed according to the
variable index. If the nodes have the same index, the two lowbranches are paired
and app recursively computed on them. Similarly for the highbranches. This
corresponds exactly to the case shown in equation (2). If they have different
indices, we proceed by pairing the node with lowest index with the low and
highbranches of the other. This corresponds to the equation

(xi → f1, f2) op t = xi → f1 op t, f2 op t (3)

which holds for all t. Since we have taken the index of the terminals to be one
larger than the index of the nonterminals, the last two cases, var(u1) < var(u2)
and var(u1) > var(u2), take account of the situations where one of the nodes is
a terminal.

Figure 12 shows an example of applying the algorithm on two small ROBDDs.
Notice how pairs of nodes from the two ROBDDs are combined and computed.

To analyze the complexity of apply we let | u | denote the number of nodes
that can be reached from u in the ROBDD. Assume that G can be implemented
with constant lookup and insertion times. (See section 5 for details on how to
achieve this.) Due to the dynamic programming at most | u1 | · | u2 | calls to
Apply are generated. Each call takes constant time. The total running time is
therefore O(| u1 | · | u2 |).
Restrict. The next operation we consider is the restriction of a ROBDD u.
That is, given a truth assignment, for example [x3 = 0, x5 = 1, x6 = 1], we want
to compute the ROBDD for tu under this restriction, i.e., find the ROBDD for
tu|x3=0,x5=1,x6=1. As an example consider the ROBDD of Figure 12 (g) (repeated
below to the left) representing the Boolean expression (x1 ⇔ x2)∨x3 . Restricting
it with respect to the truth assignment [x2 = 0] yields an ROBDD for (¬x1∨x3).
It is constructed by replacing each occurrence of a node with label x2 by its left
branch yielding the ROBDD at the right:

The algorithm again uses mk to ensure that the resulting OBDD is reduced.
Figure 13 shows the algorithm in the case where only singleton truth assignments
(xj = b, b ∈ {0, 1}) are allowed. Intuitively, in computing restrict(u, j, b) we
search for all nodes with var = j and replace them by their low or highson
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depending on b. Since this might force nodes above the point of replacemen to
become equal, it is followed by a reduction (through the calls to mk). Due to
the two recursive calls in line 3, the algorithm has an exponential running time.

5 BDD-Based Applications

Let’s now examine the basic algorithms for formal hardware verification using
BDDs. We will start with conbinational equivalence checking and symbolic simu-
lation, that basically require expressing Boolean functions of circuit nodes. Next
we will consider sequential circuits, where BDDs are used to express/manipulate
also states and state sets.

5.1 Combinational Equivalence

The most obvious application of BDDs is to check the equivalence of two com-
binational circuits.

For example, we may want to verify that optimization or logic synthesis was
done correctly by comparing the circuit before and after. The basic algorithm
is, for each circuit, to build the BDDs for the outputs in terms of the primary
inputs. Since BDDs are a canonical representation, the two combinational cir-
cuits implement the same function if and only if they have the same BDD.
For example, let’s consider verifying that the circuit in Figure 14 implements
exclusive–OR. First, label the primary inputs with the BDDs for the variables
y and z. Next, build the BDD for each gate output as a function of its inputs,
labeling the OR gate with the BDD for (y∨z), the NAND gate with the BDD
for ¬(y ∧ z), and the AND gate with (y ∨ z) ∧ ¬(y ∧ z). For the specification
circuit, we build the BDD for (y⊕z). Since these two expressions give the same
Boolean function, they have the same BDD, which verifies that the circuit is
indeed an exclusive–OR. In practice, this approach is limited by the size of the
BDDs generated, which is highly sensitive to the function being verified and the
variable order used. For pathological examples like multipliers, even 16–bits is
too big to handle. Typically, circuits with up to a few hundred primary in-
puts can often be verified. For larger circuits, more sophisticated methods are
needed.

5.2 Symbolic Simulation

Symbolic simulation [18] is a combination of the preceding ideas and a con-
ventional logic simulator. The advantage of a conventional logic simulator is
accuracy. Detailed timing models, hazards, and oscillatory behavior can all be
simulated. The disadvantage of a conventional logic simulator is that only one
simulation vector can be run at a time. In Figure 14, we would have had to run
four simulations with the inputs equal to 00, 01, 10, and 11 to verify the cir-
cuit. A circuit with 20 inputs would have required over a million runs. Symbolic
simulation adds two innovations to conventional logic simulation that give the
effect of running large numbers of simulation vectors simultaneously. The first
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Fig. 14. A Simple Example: Is This XOR?

innovation is a third logic value X that represents an unknown value. This value
is propagated through the circuit just as the 0 and 1 logic values are, although
the X is always treated conservatively. For example, 0 ∨X is X, but 1 ∧X is 1,
since 1 is a controlling value for OR. Setting an input to X gives the effect of
simulating the circuit for both the case where the inputwas 0 and the case where
the input was 1, thereby cutting in half the number of simulation runs required.
However, the X value loses information. In 14, setting one or both inputs to X
yields an X at the output, a useless result for verification.

The more important innovation is the introduction of symbolic values, which
avoids the information loss from using X values. The basic idea is to set an input
to a symbolic value that can be either 0 or 1, rather than to a constant like 0, 1,
or X. Alternatively, we can think of the symbolic value as remembering whether
we assigned a 0 or 1 to a given input. Returning to Figure 3, suppose we set
primary input y to 1 and primary input z to the symbolic value of a.

The symbolic simulator would then calculate that the OR gate will settle to
1 (since 1 OR anything is 1), that the NAND gate will settle to ¬a, and that the
AND gate will settle to ¬a. Thus, we’ve effectively run two simulation vectors (yz
equal to 10 and 11) at once, computing the output as a function of the symbolic
values. To implement this idea, a conventional logic simulator is modified to
use BDDs to represent the values on wires as a function of the symbolic values.
In practice, the user must trade off using explicit 0s and 1s, the X value, and
symbolic values. Setting an input to an explicit value gives conventional logic
simulation. Setting an input to X halves the required number of simulation runs,
but loses information so the simulation result might not be useful. Setting an
input to a symbolic value halves the required number of simulation runs and
does not lose information, but makes the BDDs representing the values on the
wires larger. Too many symbolic values will make these BDDs too large to build.

5.3 Sequential Equivalence

Although symbolic simulation can be applied to sequential circuits as well as to
combinational circuits, we would often like to reason about sequential circuits as
finite state machines, rather than as just a bunch of gates. (This is analogous to
the difference between cyclebased and eventdriven logic simulation.) A typical
application would be comparing that two state machines have identical behavior,
in order to verify the correctness of logic optimization, register retiming, state
reencoding, etc. The problem of comparing two state machines can be converted
into the problem of finding all of the reachable states of a state machine. Given
two state machines to compare, tie the input lines together, send the outputs to a
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Fig. 15. A Product Machine: two FSMs are combined by sharing their Inputs and
comparing their Outputs

comparator, and clock the two machines together in lockstep. This combination
is just another, bigger state machine, known as Product Machine (see Figure 15).
The original two machines have identical behavior if and only if the new machine
indicates the outputs are equal for all reachable states. For example, consider the
simple circuits in Figure 4. We have two small state machines: one with input i0 ,
latch x0 , and output out0 ; the other with input i1 , latches x1 and x2 , and
output out1 . To compare the two machines, we add the dotted lines, creating a
new machine with input i, latches x0 , x1 , and x2 , and output out.

Computing the set of reachable states using BDDs requires three basic ideas:
representing sets of states using BDDs, computing images, and the reachability
iteration. The first idea is to represent sets of states using BDDs. So far, we’ve
been using BDDs to represent the logic function computed by a circuit. Now,
we’re going to use BDDs in a different manner. Basically, we can think of a BDD
as representing a set of truth assignments: if the function the BDD represents is
true for a given truth assignment, that assignment is in the set; if the function is
false, that assignment is not in the set. For example, if we consider three Boolean
variables x0 , x1 , and x2 , the BDD for the function x0∧x1∧¬x2 represents the
set containing only one truth assignment {110}; the BDD for x0 ∧ x1 represents
the set of six truth assignments {100, 101, 110, 111, 010, 011}, and the BDD for
1 (the Boolean value True) represents the set of all eight truth assignments. If
we associate a Boolean variable with each latch in a circuit, then these BDDs
can be viewed as representing sets of states of the state machine. The next
concept is image computation. Basically, if we have a BDD that represents a
set of states of a state machine, the image of that BDD is a new BDD that
represents the set of all possible states that the machine could be in exactly one
clock tick later. For example, return to the state machine in Figure 16. The BDD
for ¬x0 ∧ x1 ∧ ¬x2 represents the single state where latches x0, x1, and x2 are
outputting 0, 1, and 0. Depending on the value of the input, the machine has
two possible states at the next clock tick, so the image of this BDD is the BDD
for (¬x0 ∧ x1 ∧ ¬x2) ∨ (x0 ∧ ¬x1 ∧ x2). The simplest way to compute images is
as follows:

First, build a BDD that represents the relationship between the present and
next values of the latches. This BDD is called the transition relation. In our
example, it would be the BDD for (y0 ≡ (x0⊕i))∧(y1 ≡ (¬i∧x1)∨(i∧x2))∨(y2 ≡
(¬i ∧ x2) ∨ (i ∧ x1)). Next, AND the transition relation with the BDD whose
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Fig. 16. Comparing Two State Machines

image you are computing. Then, existentially quantify 3 out the variables for the
present state and the primary inputs. The final idea is an iteration using images
to compute all reachable states. Basically, we start with the reset state and
compute the image to get the set of states reachable in one more clock tick, i.e.,

R0 := BDD for reset state
R1 := R0 ∨ Image(R0)
. . .
Ri+1 := Ri ∨ Image(Ri)

Intuitively, Ri is the set of all states reachable in i or fewer clock ticks from
the reset state. This sequence will converge eventually, when Ri+1 = Ri (which
is easy to test, since BDDs are canonical). In our example, the reset state R0 =
¬x0 ∧x1 ∧¬x2 , after one iteration R1 = (¬x0 ∧x1 ∧¬x2)∨ (x0 ∧¬x1 ∧x2), and
after two iterations R2 = R1 , so we’re done.

Reachability Analysis. The previously described technique is known as Reach-
ability Analysis (or Symbolic Traversal). It is exploited, in one of its variants
whenever we need to compute the states reachable by a FSM. Reachability anal-
ysis is, as a matter of fact, traversing an FSM to find all states that are reach-
able from initial states, and the unreachable states can be used as don’t cares in
model checking. The pseudocode of symbolic breadth–first traversal is shown in
Figure 17. In the procedure, T is the transition relation of a system and I rep-
resents its initial states; both T and I are represented by BDDs. Reachability
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FsmTraversal(T, S0)
New = Reached = Frontier = S0

repeat
To = Img(T, Frontier)
New = To−Reached
if (New = 0)

return Reached
Frontier = bdd between(New,Reached)
Reached = Reached ∪New

Fig. 17. BFS reachability analysis algorithm

analysis is a least fixpoint computation consisting of a series of image compu-
tations. Computing Img(T,C) corresponds to finding all successor states of the
constraint states represented by C. The procedure Bdd Between returns the
smallest BDD in terms of nodes between New and Reached.

As with combinational verification, this approach is limited by the size of the
BDDs generated, which is highly sensitive to the function being verified and
the variable order used. Performance on any given circuit is extremely hard to
predict. Nevertheless, as a very rough rule of thumb, the method described in this
subsection can usually handle circuits with up to around one hundred latches.
With more sophisticated enhancements, circuits with a few hundred latches are
routinely verified, and occasionally practical circuits with thousands of latches
can be verified. The original papers on using BDDs for sequential verification
(e.g., [19] [20]) are excellent references for the basic algorithms, including image
computation and the reachability iteration.

5.4 Model Checking

Two general approaches to model checking are used in practice today. The first,
temporal model checking, is a technique developed independently in the 1980s
by Clarke and Emerson [16] and by Queille and Sifakis [21]. In this approach
specifications are expressed in a temporal logic [22] and systems are modeled as
finite state transition systems. An efficient search procedure is used to check if
a given finite state transition system is a model for the specification.

In the second approach, the specification is given as an automaton; then
the system, also modeled as an automaton, is compared to the specification to
determine whether or not its behavior conforms to that of the specification. Dif-
ferent notions of conformance have been explored, including language inclusion
[23] [13], refinement orderings [24] [25] and observational equivalence [24] [26]
[27]. Vardi and Wolper [28] showed how the temporal–logic model–checking prob-
lem could be recast in terms of automata, thus relating these two approaches.

Model checking is somehow related to the construction of a reference model
with a set of properties that hold for a limited interval of time and that can
be specified with a particular temporal logic before being automatically checked
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(e.g., one can say that a signal s1 is raised after another one s2 has lowed, or that
finally the system signals an acknowledge (acki) once a request reqi is pending.

The Problem. The CTL model checking problem is as follows: Given a Kripke
structure, M = (S, S0, T, L), and a CTL formula φ, checks whether

M, s � φ, for each s ∈ S0

This formulation is interpreted as The structure M satisfies the property φ for
each initial state in S0. The checking can be done by testing the containment
of the initial states in the set of states that satisfy the property φ. 18 shows
the pseudocode for CTL symbolic model checking. Since any CTL formula can
be expressed in terms of only three operators {EX,EG,EU}, the procedure
computes the satisfying set of states for only the three operators. The satisfying
set of states for the three operators can be computed by the following fixpoint
computations.

– EXφ = Pre(T, φ)
– EGφ = νZ. φ ∧ EX(Z)
– E[φ U ψ] = μZ. ψ U [(φ ∧ EX(Z))

where Pre(T, φ) is a preimage computation finding all predecessors of the states
φ in one step; μ and ν are least and greatest fixpoint operators, respectively [29].
Notice that the preimage computation is the basic and key operation in model
checking, and the model checking is performed by a series of preimage compu-
tations.

Model Checking Under Fairness Constraints. A fairness constraint is a
set of states that must occur infinitely often along a computation path of the
sysyem. When we have multiple fairness constraints, each fairness constraint
must occur infinitely often along the computation path. We are often inter-
ested in verifying the correctness of the design only along fair paths. A fair
path is a path along which each fairness constraint occurs infinitely often in the
path.

In the presence of fairness constraints, we first compute the sets of states that
lie along some fair paths and these states are called fair states. Since this fairness
constraints are not expressible in CTL, we need to compute the satisfying states
of CTL formulae in a different way by considering the fairness cosntraints. Using
the sets of fair states, we can compute EG under fairness constraints as below.

ECGφ = νZ.φ ∧ EX(
∨

c∈C

E[Z U (Z ∧ c)]) (4)

where C is the sets of fair states and the subscript C in ECG indicates that
the quantifiers are restricted to fair paths. We can also perform EX and EU
computations under fairness constraints as below.

ECXφ = EX(φ ∧ F )
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ModelCheck(T, f, S0)
if (S0 ⊆ Eval(T, f))

return True
else

return False

Eval(T, f)
case

f is an atomic proposition → return f
f = ¬p → return ¬ Eval(T, p)
f = p ∨ q → return Eval(T, p) ∨ Eval(T, q)
f = EXp → return EvalEX(T, Eval(T, p))
f = EGp → return EvalEG(T, Eval(T, p))
f = E(p U q) → return EvalEU(T, Eval(T, p), Eval(T, q), False)

end case

EvalEX(T, p)
return ∃v′ .(T ∧ p′)

EvalEU(T, p, q, y)
y′ = q ∨ (p∧ EvalEX(T, y))
if (y′ = y)

return y
else

return EvalEU(T, p, q, y′)

EvalEG(T, p, y)
y′ = p∧ EvalEX(T, y)
if (y′ = y)

return y
else

return EvalEU(T, p, q, y′)

Fig. 18. Symbolic CTL model checking procedure

EC [φ U ψ] = E[φ U (ψ ∧ F )]

where
F = ECG true

Invariant Checking. Invariant checking can be thought of a special type of
a model checking. It checks whether all reachable states are good states as de-
termined by the invariant formulae. It does so by first finding the set of states
that satisfy the invariant formulae, and then performing reachability analysis. At
every image computation during the reachability analysis, it is checked whether
there is any bad state in the current reached set. This also can be performed by
AG(p) in CTL model checking, where p is an atomic formula. The difference is
that invariant checking is based on forward state traversal, whereas the AG(p)
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model checking does not specify the type of search since the computation can be
done in model checking by either forward or backward state traversal [30] [31].

5.5 Symbolic Trajectory Evaluation

Symbolic trajectory evaluation [32] is an attempt to combine the efficiency of
symbolic simulation with a bit of the temporal expressiveness of model checking.
The basic idea is that if we severely restrict the temporal logic used for specifying
properties, we can verify the properties using symbolic simulation.

In symbolic trajectory evaluation, the property to be checked is written in
the form A ⇒ C, which means that whenever the circuit behavior matches
the pattern specified by A, it must also satisfy the pattern specified by C. The
formulas A and C are written in a special form called “trajectory formulas”.
A trajectory formula only allows specifying the values of circuit nodes for a
bounded number of events into the future (in contrast to CTL operators like
EF that specify behavior arbitrarily far in the future).

Furthermore, trajectory formulas cannot express negation of a trajectory
(“Match any pattern that doesn’t look like...”) or the OR of trajectories (“Match
any pattern that looks like this or that.”). In practice, the specfication language
typically provides many features to ease writing trajectory formulas, but funda-
mentally, many properties that could be expressed in, say, CTL, simply cannot
be expressed with trajectory formulas.

In exchange for this loss of expressiveness, though, comes a crucial property
for efficiency: for any trajectory formula, there is a unique symbolic simulation
vector (assignment of 0s, 1s, Xs, and symbolic values to the circuit inputs) that
captures all behaviors that satisfy the trajectory formula. Verification, therefore,
can be done with a single run of symbolic simulation — we symbolically simulate
the vector for A, and after each simulation event, we check that the circuit state
is consistent with the corresponding part of C . This algorithms is usually much
faster than the iterations required for reachability and model checking. In prac-
tice, the main obstacle to symbolic trajectory evaluation is figuring out how to
express the desired property using trajectory formulas that can be symbolically
simulated efficiently. If the simulation vector has too many symbolic variables,
the BDDs will become too big, just as in symbolic simulation.

The Evolution. The early Symbolic Trajectory Evaluators were limited in
their analytical power since their symbolic manipulation methods were weak.
Consequently, symbolic simulation for hardware verification did not evolve much
further until more efficient methods of manipulating symbols emerged. The de-
velopment of OBDDs for representing Boolean functions radically transformed
symbolic simulation.

Since a symbolic simulator is based on a traditional logic simulator, it can use
the same, quite accurate, electrical and timing models to compute the circuit
behavior. For example, a detailed switch–level model, capturing charge sharing
and subtle strengths phenomena, and a timing model, capturing bounded delay
assumptions, are well within reach. Also — and of great significance — the
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switch–level circuit used in the simulator can be extracted automatically from
the physical layout of the circuit. Hence, the correctness results can link the
physical layout with some higher level of specification.

The first “pre–OBDD” symbolic simulators were simple extensions of tradi-
tional logic simulators [33]. In these symbolic simulators the input values could
be Boolean variables rather than only 0’s, 1’s as in traditional logic simulators.
Consequently, the results of the simulation were not single values but rather
Boolean functions describing the behavior of the circuit for the set of all pos-
sible data represented by the Boolean variables. By representing these Boolean
functions as OBDDs the task of comparing the results computed by the simu-
lator and the expected results became straightforward for many circuits. Using
these methods it has become possible to check many (combinational) circuits
exhaustively.

It is important to realize that if a circuit passes an exhaustive simulation
suite, that does not necessarily mean that the circuit is formally verified correct.
In order to prove a correctness result, not only must all possible input values
be simulated, all possible initial circuit states must also be taken into account.
Hence, a verification strategy is needed as well as a sophisticated symbolic sim-
ulator. Bryant and Seger [34] developed a new generation of symbolic simulator
based verifier. Since the method has departed quite far from traditional simula-
tion, they called the approach Symbolic Trajectory Evaluation. Here a modified
version of a simulator establishes the validity of formulas expressed in a very
limited, but precisely defined, temporal logic.

This temporal logic allows the user to express properties of the circuit over
trajectories: bounded–length sequences of circuit states. The verifier checks the
validity of these formulas by a modified form of symbolic simulation. Further,
by exploiting the 3–valued modeling capability of the simulator, where the third
logic value X indicates an unknown or indeterminate value, the complexity of
the symbolic manipulations is reduced considerably.

This verifier supports a verification methodology in which the desired behavior
of the circuit is specified in terms of a set of assertions, each describing how a
circuit operation modifies some component of the (finite) state or output. The
temporal logic allows the user to define such interface details as the clocking
methodology and the timing of input and output signals. The combination of
timing and state transition information is expressed by an assertion over state
trajectories giving properties the circuit state and output should obey at certain
times whenever the state and inputs obey some constraints at earlier times.
In addition to this abstract behavior specification, the user is also required to
describe how the circuit realizes the abstract system state. This mapping is given
as an encoding of the abstract state in terms of binary values on circuit nodes
at different times in the clock cycle. This form of specification works well for
circuits that are normally viewed as state transformation systems, i.e., where
each operation is viewed as updating the circuit state. Examples of such systems
include memories, data paths and processors. For such systems, the complex
analysis permitted by model checkers is not required.
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The Underlaying Theory. In this subsection we will highlight the underlying
theory for STE. Although the general theory is equally applicable to hardware as
software systems, here we will describe a somewhat specialized version tailored
specifically to hardware verification. For the more general theory, the reader is
referred to [32] and [34]. In symbolic trajectory evaluation the circuit is mod-
eled as operating over logic levels 0, 1, and a third level X representing an
undetermined or unknown level. These values can be partially ordered by their
”information content” as X � 0 and X � 1, i.e., X conveys no information about
the node value, while 0 and 1 are fully defined values. The only constraint placed
on the circuit model — apart from the obvious requirement that it accurately
represents the physical system — is monotonicity over the information ordering.
Intuitively, changing an input from X to a binary value (i.e., 0 or 1) must not
cause an observed node to change from a binary value to X or to the opposite
binary value. In extending to symbolic simulation, the circuit nodes can take on
arbitrary ternary functions over a set of Boolean variables V .

Symbolic circuit evaluation can be thought of as computing circuit behav-
ior for many different operating conditions simultaneously, with each possible
assignment of 0 or 1 to the variables in V indicating a different condition. For-
mally, this is expressed by defining an assignment φ to be a particular mapping
from the elements of V to binary values. A formula F in the logic expresses some
property of the circuit in terms of the symbolic variables. It may hold for only
a subset D of the possible assignments. Such a subset can be represented as a
Boolean domain function d over V yielding 1 for precisely the assignments in D.
The constant functions 0 and 1, for example, represent the empty and universal
sets, respectively. Properties of the system are expressed in a restricted form of
temporal logic having just enough expressive power to describe both circuit tim-
ing and state transition properties, but remaining simple enough to be checked
by an extension of symbolic simulation.

The basic decision algorithm checks only one basic form, the assertion, in the
form of an implication A⇒ C; the antecedent A gives the stimulus and current
state, and the consequent C gives the desired response and state transition.
System states and stimuli are given as trajectories over fixed length sequences
of states. Each of these trajectories are described with a temporal formula. The
temporal logic used here, however, is extremely limited. A formula in this logic
is either:

1. UNC (unconstrained);
2. (a) n = 1 (a node is equal to 1);

(b) n = 0 (a node is equal to 0),
3. F1 ∧ F2 (F1 and F2 must both hold);
4. B → F (the property represented by formula F needs only hold for those

assignments satisfying Boolean expression B);
5. NF (F must hold in the following state).

The temporal logic supported by the evaluator is far weaker than that of other
model checkers. It lacks such basic forms as disjunction and negation, along
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with temporal operators expressing properties of unbounded state sequences.
The logic was designed as a compromise between expressive power and ease of
evaluation. It is powerful enough to express the timing and state transition be-
havior of circuits, while allowing assertions to be verified by an extended form
of symbolic simulation. The constraints placed on assertions make it possible to
verify an assertion by a single evaluation of the circuit over a number of circuit
states determined by the deepest nesting of the next–time operators. In essence,
the circuit is simulated over the unique weakest (in information content) tra-
jectory allowed by the antecedent, while checking that the resulting behavior
satisfies the consequent. In this process a Boolean function OK is computed
expressing those assignments for which the assertion holds. For a correct circuit,
this function should equal 1; otherwise, the negation of the function provides
counterexamples. The assertion syntax outlined above is very primitive. To fa-
cilitate generating more abstract notations, the specification language can be
embedded in a general purpose programming language. When a program in this
language is executed, it generates automatically the assertions and carries out
the verification process.

6 Conclusions

In this chapter we have overviewed Binary Decision Diagrams and some of their
main applications in Formal Hardware Verification. We have described the BDD
structure, a graph based representation of Boolean function, and the recursive
operators manipulating BDDs.

BDDs can be exponentially more compact than other formalisms, they are a
canonical representation, providing constant time equality checks, and efficient
symbolic recursive manipulations.

We have then introduced some of the most relevant verification frameworks
exploiting BDDs, for combinational as well as sequential circuit verification.

After several years of active research and application within several achademic
and industrial tools, BDDs show their main limitation in their potential memory
blow-up, with increasing circuit sizes. Still they retain a powerful role for the
analysis of abstract representations, or as a slave engine in mixed approaches,
combined, for instance, with SAT solvers.

A realistic view of BDDs (and their role in formal hardware verification) is to
consider them an essential formalism, and low level technology, for Boolean func-
tion representation and manipulation. The ability to provide compact represen-
tations for several practical cases, as well as to support state set representations
in breadth–first traversals, both represent relevant aspects of BDD usage.
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Abstract. Verification methods based on Boolean Satisfiability (SAT) have 
emerged as a promising alternative to BDD-based symbolic model checking 
methods. This paper provides a tutorial on various SAT-based verification 
methods we have developed for verifying large hardware designs. We focus 
separately on methods for finding bugs and for finding proofs for correctness 
properties, along with highlighting the many common themes that benefit these 
methods. We also describe practical experiences with these methods 
implemented in our verification platform called VeriSol (formerly DiVer), 
which has been used successfully in industry practice. 

1   Introduction 

With the growing size and complexity of hardware designs, functional verification 
has become a bottleneck in the hardware and system development cycle. The cost of 
detecting bugs late in the design cycle is very high, both in terms of design re-spins 
and time lost to market. Simulation continues to be the primary workhorse for 
functional verification, primarily due to its scalability in performing dynamic analysis 
for a given testcase. However, its main problems are the prohibitive cost of exhaustive 
coverage and the practical difficulty in assessing good coverage. Formal verification 
techniques provide a complementary benefit to simulation, where static analysis is 
performed on a formal mathematical model of the given design, to check its 
correctness with respect to a given specification under all possible input scenarios. 
This provides exhaustive coverage, without any testcases, but at the expense of higher 
complexity of analysis. 

Model checking is a formal verification technique for property checking, in which 
the design is typically modeled as a labeled state transition system, the correctness 
property is specified as a temporal logic formula, and verification is performed by 
checking whether the formula is true in the model provided by the design [1]. The 
practical application of model checking is limited by the state explosion problem, i.e. 
the state space to be searched grows exponentially with the number of state 
components in the design.  Symbolic model checking techniques [2, 3] typically use 
methods based on Binary Decision Diagrams (BDDs) [4] to symbolically manipulate 
sets of states and transitions without explicit enumeration. Though this improves 
scalability to some degree, these techniques are unable to handle the large problems 
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encountered in current industrial practice, mainly due to an explosion in memory 
requirements for BDDs. As an alternative, verification methods based on Boolean 
Satisfiability (SAT) have emerged as a promising solution. The success of SAT-based 
verification methods is due primarily to the many recent advances in SAT-solvers [5-
8] that have enabled significantly larger problems to be solved  in the last decade than 
ever before [9].  

This paper provides a tutorial on the SAT-based verification methods we have 
developed for the purpose of verifying large scale industry designs. We focus mainly 
on property checking and model checking methods. (Sequential equivalence checking 
can be formulated in terms of model checking, and most of the methods described 
here can apply equally well in that context.) We describe the main technical ideas in 
relationship to SAT, along with pointers to related work. For a more comprehensive 
survey on SAT-based verification methods, the interested reader is referred to [10]; a 
discussion of SAT-based combinational equivalence checking techniques can be 
found in [11].  

Our main classification is based on whether the methods are used for finding bugs 
(falsification) or for finding proofs (verification)1. In the former category, we discuss 
primarily Bounded Model Checking (BMC) [12] and its enhancements [13-15],  
while the latter category includes methods based on induction [16, 17], Unbounded 
Model Checking (UMC) [18-21], and proof-based iterative abstraction [22, 23].  In 
our experience, both falsification and verification methods are required for handling 
hardware verification problems in an industry setting. Furthermore, there are many 
common themes that benefit methods in both categories. In particular, we highlight 
the benefits of using an efficient circuit representation that supports on-the-fly 
simplifications [24]. We also exploit a hybrid SAT solver [25] that combines the 
benefits of circuit-based and CNF-based SAT solving techniques. It is useful for the 
circuit representation to also support symbolic manipulation through BDDs, and we 
describe many methods that combine SAT and BDDs to derive their complementary 
benefits in significantly enhancing the performance or scalability of the overall 
application. Another common theme is the use of bounded unrolling of the design 
(also called time frame expansion in related work on automatic test pattern generation 
[26]) to cast the associated problem as a SAT problem. This has been utilized by 
many falsification as well as verification methods. We use this feature most 
effectively for handling embedded memories, where our Embedded Memory 
Modeling (EMM) techniques abstract out the explicit memory elements, but add the 
data forwarding and other memory modeling constraints at each step of the unrolling 
[27]. This avoids the state space explosion of modeling the memory state, while 
preserving the accuracy of verification. Again, the EMM techniques have been used 
in both falsification [27] as well as verification methods [28]. 

We also describe practical experiences with these methods implemented in our 
verification platform called VeriSol (formerly DiVer), which has been used 
successfully in industry practice for the last four years to verify large hardware 
designs [29]. In addition to verifying correctness properties specified by a user on 

                                                           
1 Although these categories correspond quite naturally to bounded and unbounded verification, 

respectively, we would like to avoid overloading the term bounded, since many verification 
methods we describe here use bounded design unrolling for unbounded verification.  
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RTL (Register Transfer Level) designs, it has also been used for checking 
automatically generated properties. Specifically, VeriSol has been integrated within a 
high level behavioral synthesis system called Cyber [30]. The Cyber system 
automatically generates RTL designs from high-level behavioral descriptions. In 
addition, it automatically generates correctness properties for these RTL designs also. 
The back-end property checking for Cyber can be performed by VeriSol. We have 
also added the capability of generating automatic correctness properties for typical 
Verilog RTL designs.  

More recently, we have also used many of our SAT-based verification methods for 
performing the back-end verification in a system called F-Soft, which is targeted for 
verifying software programs [31, 32]. The F-Soft verification platform combines 
several recent advances in formal verification, including SAT-based verification, 
static analyses, and predicate abstraction. Basically, we accurately model the program 
behavior as a finite state symbolic model (under assumptions of finite data and 
control), use static analyses to reduce the size of the verification model, and perform 
back-end model checking using VeriSol. Although we will not describe the software 
verification applications in this paper, it is interesting to note that by adding several 
customized heuristics for software, our SAT-based methods in VeriSol could be 
applied successfully for verifying models generated from software programs.  

Finally, we would like to note that there has been a lot of interest in applying SAT 
solver techniques to decision procedures for richer logics, such as quantifier-free 
fragments of first order logic [33, 34] . In our own work, we have proposed new 
solvers for difference logic, called SLICE [35] and SDSAT [36]. Since SAT solvers 
and such decision procedures provide essential components of many theorem provers, 
the SAT-based verification methods described here can be naturally extended to 
provide a bridge from model checking to theorem proving applications.  

The paper is organized as follows. Section 2 briefly reviews the terminology and 
background for the basic SAT algorithms and model checking techniques. Section 3 
describes the SAT-based verification methods, while their applications for hardware 
verification in a practical industry setting are described in Section 4. Finally, we 
conclude in Section 5. 

2   Background  

2.1   Boolean Satisfiability (SAT) Problem 

The Boolean Satisfiability (SAT) problem is a well-known constraint satisfaction 
problem, with many applications in the fields of VLSI Computer-Aided Design 
(CAD) and Artificial Intelligence. Given a propositional formula, the Boolean 
Satisfiability problem is to determine whether there exists a variable assignment under 
which the formula evaluates to true. The SAT problem is known to be NP-Complete 
[37]. In practice, there has been tremendous progress in SAT solver technology over 
the years, summarized in a survey [9].   

Most SAT solvers use a Conjunctive Normal Form (CNF) representation of the 
Boolean formula. In CNF, the formula is represented as a conjunction of clauses, each 
clause is a disjunction of literals, and a literal is a variable or its negation. Note that in 
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order for the formula to be satisfied, each clause must also be satisfied, i.e., evaluate 
to true. A Boolean circuit can be encoded as a satisfiability equivalent CNF formula 
[38]. Alternatively, for SAT applications arising from the circuit domain, the SAT 
solver may be modified to work directly on the Boolean circuit representation. 

 
 

SAT_Solve(P=1) { // Check if constraint P=1 satisfiable?  

     while(Decide()=SUCCESS) //Selects a new variable 

       while(Deduce()=CONFLICT)//BCP till conflict/no-conflict 

         if (Diagnose()=FAILURE) //Add conflict learnt clause(s) 

    return UNSAT;//Conflict found at decision level 0 

     return SAT;} //No more decision to make 
 

Fig. 1. DPLL style SAT Solver 

Most modern SAT solvers are based on a DPLL-style [39] as shown in Figure 1 
with three  main engines: decision, deduction, and diagnosis. All these engines have 
seen remarkable progress in the last few years, e.g. the VSIDS decision heuristic and 
the lazy two-literal watching scheme for deduction in Chaff [6], and the conflict 
analysis and conflict-driven learning in Grasp [5]. Conflict-driven learning results in 
addition of conflict clauses to the SAT problem in order to prevent the same conflict 
from occurring again during the search. Additionally, information recorded during 
conflict analysis has been used very effectively to provide a proof when a formula is 
determined to be unsatisfiable by the SAT solver. This proof can be independently 
checked to verify the SAT solver itself [40, 41]. These techniques can also be easily 
adapted to identify a subset of clauses from the original problem, called the 
unsatisfiable core [40, 42], such that these clauses are sufficient for implying 
unsatisfiability. The use of such techniques in verification methods are described in 
more detail in Section 3.2.2. 

2.2   Circuit-Based and Hybrid SAT Solvers 

SAT has many applications in the logic circuit domain, such as automatic test pattern 
generation (ATPG), verification, timing analysis. The Boolean problem in these 
applications is typically derived from the circuit structure. This has also led to interest 
in circuit-based SAT solvers [43-45] that work directly on the circuit structure, and 
use circuit-specific heuristics to guide the search. In general, attempts to include 
circuit structure information into CNF-based SAT solvers have been unsuccessful due 
to their significant overhead.  

Before we compare circuit-based and CNF-based SAT solvers, it is instructive to 
consider how each performs Boolean Constraint Propagation (BCP) which constitutes 
the core of most deduction engines, and typically consumes 80% of the SAT runtime. 
Circuit-based BCP is typically performed by using a lookup table for fast implication 
propagation [45]. Based on the current values of the inputs and output of the circuit 
node, the lookup table determines the next “state” of the gate where the state 
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encapsulates any implied values and the next action to be taken for the node. The 
implication algorithm is iterated over the entire circuit graph. For each vertex, it 
determines new implied values and the direction for further processing. As an 
example, Figure 2 (from [45]) shows some cases from the implication lookup table 
for a two-input AND gate. Note that only one case, a logical 0 at the output of an 
AND vertex, requires a new case split to be scheduled for justification. All other cases 
either cause a conflict and backtracking, or further implications, or a return to process 
the next element to be justified. Due to its low overhead, this table lookup-based 
implication algorithm is very efficient in practice.  

 

Fig. 2. Lookup Table for Fast Implication Propagation on a 2-input AND Gate 

For CNF-based BCP, consider the lazy two-literal watching scheme proposed by 
Chaff [6] :  

• For each clause, only two literals are monitored for state change. 
• The clause state is updated lazily when a variable is assigned, i.e., only when 

the two monitored literals coincide. 
• It does not require state change for clauses during the backtracking process, 

thus unassigning a variable takes constant time. 

For clauses with many literals, this lazy update works significantly better than other 
BCP schemes like those in SATO [7], and GRASP [5]. It avoids unnecessary lookups 
for a clause, thereby significantly improving the underlying cache behavior and the 
resulting performance. 

To get back to the comparison between circuit-based and CNF-based BCP, note 
that there is an inherent overhead built into the translation of circuit gates into clauses. 
A two-input gate translates to three clauses in the CNF approach, while in the circuit-
based approach a gate is regarded as a monolithic entity. Therefore, in the circuit 
approach an implication across a gate requires a single table lookup, while in the CNF 
approach it requires processing multiple clauses. In addition, the CNF-based BCP in 
Chaff does not keep track of the clauses that have been satisfied in order to reduce 
overheads. However, there is an inherent cost associated with visiting the satisfied 
clauses. Specifically, even if a clause gets satisfied due to an assignment to some  
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un-watched literal, the watched literal pointers could still get updated. Overall, for the 
generally small clauses arising from circuit gates, these differences translate to 
significant differences in BCP time, usually in favor of the circuit-based approach. 

On the other hand, learned conflict clauses arising from conflict analysis are 
typically much larger than those arising from two-input gates. Adding a large learned 
clause as a gate tree can lead to a significant increase in the size of the circuit. This in 
turn, can increase the number of implications, thereby negating any potential gains 
obtained from circuit-based BCP. For such clauses, it is more useful to maintain them 
as monolithic clauses and take advantage of CNF-based two-literal watching and lazy 
update to process them efficiently. 

Based on these observations, we proposed a hybrid SAT solver [25] to combine the 
relative benefits of CNF-based and circuit-based SAT solvers. In our scheme, the 
original circuit problem is represented as a gate-level netlist, while the learned 
conflict clauses are represented in CNF. The hybrid BCP engine consists of table 
lookups for the gates, and a Chaff-style two-literal watching scheme for the conflict 
clauses, thereby combining the advantages of both. Furthermore, a hybrid 
representation of the Boolean problem also allows exploitation of both circuit-based 
and CNF-based decision heuristics. In particular, we effectively exploit the 
justification frontier heuristic [43], which restricts the decision nodes to be those that 
justify the values on their fanout node. The use of this heuristic further improves 
performance in many practical instances of SAT problems arising in circuit 
applications. We typically obtained speedup by a factor of two, in comparison to a 
pure CNF-based approach. Since SAT is a core engine in many verification 
applications like equivalence checking and BMC, a consistent speedup can prove to 
be very significant in practice. Furthermore, any future improvements in the 
performance of circuit-based and CNF-based SAT solvers can directly translate into 
improvements of the hybrid SAT solver as well. 

In related work, Kuehlmann et al. [46] used circuit-based SAT in combination with 
other useful techniques like BDD sweeping and dynamic circuit transformation for 
combinational equivalence checking. However, they did not propose any effective 
way to perform conflict-driven learning with conflict clauses represented as large OR-
tree circuits. Other more recent efforts have also combined the advantages of multiple 
symbolic representations including circuit graphs, SAT, and BDDs [47, 48], and used 
these ideas along with additional conflict-driven learning, in order to improve the 
SAT solver performance [11]. 

2.3   Model Checking 

In model checking [1], the design is typically modeled as a labeled state transition 
system, the property is specified as a temporal logic formula, and verification consists 
of checking whether the formula is true in that model. Temporal logics are very useful 
for specifying dynamic behavior over time. Different variants of temporal logics have 
become popular, such as Linear Temporal Logic (LTL) and Computation Tree Logic 
(CTL), depending on whether a linear or a branching view of time is considered, 
respectively. In this paper, we focus mainly on simple safety properties, denoted as 
AGp. This formula specifies that on all(A) paths of a system, globally (G) in each state 
of the path, the property p holds. Such properties can be verified by an exhaustive 
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traversal of the state space to check that p holds in every reachable state. This state 
space traversal forms the computational core of most model checking techniques.  

Explicit state model checkers, such as SPIN [49], use an explicit representation of 
the states and transitions in the system, and enumerate all reachable states explicitly. 
They utilize many additional techniques such as state hashing for compaction of state 
representations, and partial order methods to avoid exploring all interleavings of 
concurrent processes. The scalability issue in explicit state enumeration makes these 
checkers unsuitable for hardware designs, although they have found practical success 
in verification of controllers and software. In contrast, symbolic model checkers, such 
as SMV [3], avoid an explicit enumeration of the state space by using symbolic 
representations of sets of states and transitions. They typically use BDDs, which 
provide a canonical representation of Boolean formulas and efficient symbolic 
manipulation algorithms. For hardware designs, where these symbolic representations 
effectively capture the regularity in the state-space, symbolic model checking has 
significantly extended the ability to handle large state spaces.  

The core steps in symbolic model checking are the image/pre-image computations, 
which compute the set of states reachable in one step from/to a given set of states via 
the transition relation, as follows: 

Img(Y) = SN(Y) = ∃ X,W.  SC(X) ∧ T(X,Y,W) (1) 

PreImg (X) = SC(X) = ∃ Y,W.  SN(Y) ∧ T(X,Y,W)   (2) 

Here, the variable sets X, Y, W, denote the present state, next state, and primary input 
variables, respectively; and SC , SN  and T denote the next states, the current states, and 
the transition relation, respectively. When these state sets and the transition relation 
are represented symbolically as BDDs (or its variants), these computations can be 
performed symbolically by using the BDD-based operations for conjoining and 
existential quantification. However, for many large designs, these BDD-based 
operations can cause a blow up in memory size. 

A basic algorithm for symbolic model checking simple safety properties can be 
formulated as shown in Figure 3.  Let B be the set of bad states, in which property p 
does not hold, and I the set of initial states. It represents sets of states symbolically, 
and searches for bad states in breadth first order starting from the initial states.  

1. model-check(I,T,B) 
2.     SC =∅; SN = I; 
3.     while SC ≠ SN  do 
4.          SC = SN ; 
5.         if B ∩ SC  ≠ ∅  then  
6.             return ``found counter-example'';  
7.         SN = SC ∪ Img(SC); 
8.     done; 
9.     return ``no bad state reachable''; 

 
Fig. 3. Forward model checking algorithm for simple safety properties 
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This forward model checking algorithm starts at the initial states and searches 
forward along the transition relation, relying on the symbolic image computation 
described earlier. Similarly, there are backward model checking algorithms, which 
search backward from the bad states, and rely on the symbolic pre-image 
computation.  

3   SAT-Based Verification Methods  

We start by describing methods specialized for finding bugs in hardware designs.  
Most of these are based on the Bounded Model Checking (BMC) framework 
proposed by Biere et al. [12]. In the second half of this section, we focus on methods 
targeted for finding proofs. Many of these use our efficient BMC framework and add 
techniques on top to provide completeness of verification. We also describe additional 
techniques for proof-based abstraction and unbounded model checking using SAT. 

3.1   Methods for Finding Bugs 

Despite the considerable benefits of symbolic model checking using BDDs, the basic 
verification approach of exhaustive analysis does not scale well in practice. An 
alternative is the use of falsification approaches which focus primarily on the search 
for finding bugs. One of the most popular falsification approaches is Bounded Model 
Checking (BMC) [12]. We describe the basic BMC framework, followed by various 
performance enhancements, and a distributed BMC framework useful for overcoming 
memory limitations of a single workstation environment. We also describe EMM 
techniques which allow efficient handling of embedded memories in hardware 
designs for BMC applications.   

3.1.1   Bounded Model Checking (BMC) 
In BMC, the problem of searching for a counter-example of length k is translated to a 
Boolean formula such that the formula is satisfiable if and only if there exists a 
counter-example of length k. Effectively, the translation to a Boolean formula is 
performed by unrolling the transition relation of the design for k time frames, and 
adding appropriate constraints due to the property. The satisfiability check is typically 
performed by using a Boolean SAT solver in the back-end. 

In this paper, we consider the following notation and formulation of BMC. The 
design is described as a Kripke structure M = (S, I, T, L), with a finite set of states S, a 
set of initial states I, a transition relation between states T, and a labeling L of states 
with atomic propositions. Let T(x,y,w,z) denote the symbolic transition relation in 
terms of  present state variables x, next state variables y, primary input variables w, 
and intermediate variables z. Let yk denote the symbolic state (in terms of latch 
variables) after k time frames in the unrolled design. In addition, we can also consider 
environmental constraints on variables (signals) e in the design, which are required to 
hold in every time frame.  

Definition 1. We use the following Boolean formula, denoted BMC(M,f,k), to check 
the existence of a k-length witness for property f: 

BMC(M, f, k) = I(y0) ∧ 1≤ j ≤ k [ T(xj,yj,wj,zj) ∧ ( y j-1 = xj )] ∧  0 ≤ j ≤ k  [Env(ej)] ∧ 〈 f 〉k 



116 A. Gupta, M.K. Ganai, and C. Wang 

Here, the different sets of constraints are described as follows:  

1. I(y0) : Initial state constraints on initial state y0 
2. T(xj, yj, wj, zj) : Transition relation constraints for time frame j, 1 ≤ j ≤ k  
3. (yj-1 = xj ) : Latch interface propagation constraints, 1 ≤ j ≤ k, which capture the 

propagation of latch inputs in one time frame to the latch outputs in the next time 
frame 

4. Env(ej) : Environmental constraints on signals e in each time frame j, 0 ≤ j ≤ k  
5. 〈 f 〉k : Constraints due to property translation of formula f in time frames up to k 

Verification typically proceeds by looking for witnesses or counter-examples (CE) 
of increasing length until some completeness threshold [12, 50] is reached.  The 
overall algorithm of a SAT-based BMC procedure for checking (or falsifying) a 
simple safety property AG p is shown in Figure 4, where Unroll corresponds to an 
unrolling of the symbolic transition relation of the design, and P corresponds to the 
circuit representation of the proposition p. Note that the SAT problems generated by 
the BMC translation procedure grow bigger as k increases. Therefore, the practical 
efficiency of the backend SAT solver becomes critical in enabling deeper searches to 
be performed. 

     

  BMC(k,P){//Falsify safety property AG p within bound k 

     for (int i=0; i<=k ; i++) { 

    Pi=Unroll(P,i);//Get property p at i
th unrolled frame   

     if (SAT_Solve(Pi=0)=SAT) return CE; //Try to falsify  

     } 

     return NO_CE; } //No counter-example found  

Fig. 4. SAT-based BMC for Safety Property AG p 

Since BMC was first proposed, several methods have improved upon the basic 
BMC framework described above. These include use of variable ordering techniques 
to guide the decision heuristics of the back-end SAT solver [51], use of incremental 
SAT solvers to exploit the learning across related problems in SAT-based BMC [52, 
53], as well as improved techniques for finding completeness thresholds [54, 55]. We 
now describe in detail our BMC enhancements, along with related work. 

3.1.2   Performance Enhancements for BMC 

Circuit Simplification. In our BMC implementation, we use circuit simplification 
techniques to build the transition relation of the design and for unrolling it during the 
course of property checking. The main motivation is to simplify the generated SAT 
problems in order to reduce the overall verification time. Furthermore, we have found 
that circuit simplification techniques are more efficient in handling of constants, in 
comparison to constant propagation within CNF-based SAT decision procedures. 
Such constants arise due to initial state and environmental constraints involving 
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constant values on flip-flops (I(y0) and Env(ej) constraints in Definition 1 above), and 
learned constant constraints added during property checking. Circuit simplification is 
achieved by using a non-canonical two-input AND/INVERTER graph representation 
[56], and an on-the-fly reduction algorithm [24, 45] on such a graph representation.   

Hybrid SAT Solver. We also use a hybrid SAT solver (described in Section 2.2) as 
the back-end SAT solver for our BMC applications. In addition to the performance 
benefits, it also provides us memory savings, since it avoids the need for maintaining 
a separate CNF representation of the unrolled design. We have also implemented 
incremental SAT solving techniques in our hybrid SAT solver to take advantage of 
our incremental formlations of the BMC problem, described below. 

Customized Property Translations. We use customized property translations for the 
LTL formulas (〈 f 〉 k  constraints in Definition 1 above) [15]. Rather than generating a 
monolithic SAT formula as in standard BMC, our property translations can be viewed 
as building the SAT formula incrementally, by lazily indexing over the bounded 
conjunctions/disjunctions, terminating early when possible. Though the standard 
BMC procedure also partitions the overall problem into separate k-instances, in our 
customized translation we further partition each k-instance problem into multiple, 
smaller SAT sub-problems. To mitigate the overhead due to multiple problems, we 
use an incremental SAT solver in the back-end. Additionally, our property 
partitioning is formulated in a way that facilitates the following kinds of SAT-based 
learning:  

• Learning from shared constraints (L1): Given two SAT instances S1 and S2, 
conflict clauses that are deduced solely from the set of constraints shared between 
S1 and S2 can be used as learned clauses while solving S1 or S2 [52, 57]. 

• Learning from satisfiable results (L2): Suppose {ϕ1,…,ϕn} represents a series of 
SAT problems where  problem ϕi is built incrementally by adding and removing 
constraints to and from ϕi-1 respectively. The satisfying solution for ϕi-1 (if it exists) 
can be used to guide SAT decision engine to solve ϕI  [57]. 

• Learning from unsatisfiable results (L3): Let a SAT problem Φ be a disjunction 
of sub-problems {ϕ1,…,ϕn}. Instead of solving Φ  as a monolithic problem, one can 
solve ϕi starting from i=1 with the additional constraint Ci=¬ϕ1∧…∧¬ϕi-1 where 
each ϕj is unsatisfiable for all j< i. More benefit will be potentially obtained when 
the problem ϕi shares more with the additional constraint Ci, thereby, allowing L1 
learning. 

In a standard BMC procedure, there is a considerable overlap of circuit constraints 
due to unrolled transition relations between a k-instance and a (k+1)-instance of the 
BMC problem. Some researchers have applied L1 learning across k-instances [52, 57] 
while some researchers have used L3 learning for safety properties to reduce the 
overall verification time [58]. In our customized BMC translations, sharing occurs not 
just between the circuit constraints due to the unrolled transition relation, but also 
between the constraints arising from our property translations and between constraints 
learned from unsatisfiable SAT sub-problems. In order to take advantage of 
incremental SAT techniques, our property translations are geared toward an 
incremental formulation, i.e. reuse of variables and constraints wherever possible. 
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This allows use of incremental SAT learning techniques L1, L2 and L3 in the SAT 
solver very effectively. In contrast, the standard property translation in BMC does not 
provide such an incremental formulation of the property constraints.  

 
Experimental Results.  We briefly describe the results of some experiments 
(performed on a workstation with 2.8 GHz Xeon Processors with 4GB running Red 
Hat Linux 7.2) to show the benefits of our customized translation for checking 
liveness properties on industry designs D1-D3. These are bus core designs with 
multiple masters and slaves. The properties are of the type “request should be 
eventually followed by acknowledge or error”. We compare various learning schemes 
i.e. NL (no learning), L1+L3, L2+L3, and L1+L2+L3 in our customized approach, 
called custom. We also compare them against standard BMC in VIS [59], called 
standard. For fair comparison, we use the same SAT heuristics in our SAT solver as 
those used in the  backend SAT solver (zChaff [6]) in VIS BMC. We present the 
comparison results in Table 1. Columns 2-4 show the characteristics of the designs in 
Column 1, i.e., number of flip-flops, primary inputs and gates, respectively; Column 5 
shows the length of counter example (CEX); Columns 6-9 and 10 report the time 
taken by (in seconds) our customized translation with different learning schemes, and 
the standard translation, respectively. Clearly, our customized translation is able to 
find counterexamples far quicker than the standard monolithic translation.  Moreover, 
the various learning schemes improve the performance of BMC significantly. 

Table 1. BMC Performance Improvements due to Customized Translations 

D Custom (DiVer) 
 

#FF #PI #G CEX 
(D) NL L1,3 L2,3 L1,2,3

Standard 
(VIS) 

D1 2316 76 14655 19 2.3 2.2 2.3 2 77 
D2 2563 88 16686 22 11.2 8.9 11.7 8 201 
D3 2810 132 18740 28 730 290 862 240 2728 

 

BDD Learning. As demonstrated by the recent SAT solvers, learned clauses play a 
crucial role in determining performance, both by pruning the search space, and by 
affecting the choice of decision variables.  In addition to the incremental SAT 
learning opportunities described above, we use an additional technique [13] for using 
learned clauses automatically generated from a BDD-based analysis. We call this 
BDD Learning. Essentially, a BDD is used to capture the relationship between 
Boolean variables of (a part of) the SAT problem, in the form of a characteristic 
function. In such a BDD, each path to a “0” (false) node denotes a conflict. A learned 
clause corresponding to this conflict is easily obtained by negating the literals that 
define the path. Since a BDD captures all paths to 0, i.e. all possible conflicts, the 
potential advantage is that multiple learned clauses can be generated and added to the 
SAT solver at the same time. In contrast, a SAT solver typically analyzes a single 
conflict at a time, thereby generating a single learned clause. An example with 
multiple learned clauses generated from a BDD is shown in Figure 5.  
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Fig. 5. Example of Learned Clauses from BDD Learning 

In BMC, or any circuit-based application involving time frame expansion, the bulk 
of the constraints that define the SAT problem arise from the k-times unrolled 
transition relation of the design. Therefore, the transition relation is a natural 
candidate for the application of BDD Learning, i.e. BDDs are generated for “seed” 
nodes in the circuit structure graph corresponding to the transition relation (either 
before or after unrolling). At the same time, there is an overhead associated with the 
addition of each learned clause, e.g. during BCP. Due to this potential overhead of 
adding too many learned clauses, the choice of the seed nodes becomes crucial. To 
ensure a good tradeoff between the usefulness and the overheads of adding learned 
clauses, we experimented with the following kinds of learning:  

• Static learning: seed nodes are selected using static information, and learned 
clauses are added statically, before the SAT solver starts the search. 

• Dynamic learning: seed nodes are selected using dynamic SAT information, and 
learned clauses are added on-the-fly, during the SAT search. 

In static learning, the seed selections will tend to reflect only the circuit structure 
information, while for dynamic learning they will also reflect the dynamic state of the 
SAT solver. Clearly, it is easier to integrate static learning with a SAT solver. On the 
other hand, we found that dynamic learning is crucial in attaining a good balance in 
the tradeoff between the usefulness and overhead of adding learned clauses. In our 
experimental results, we obtained up to 73% reduction in runtime, allowing us to 
perform deeper searches (with up to 45% more time frames) within the allotted time. 

Additional Constraints from BDD-based Reachability Analysis.  Another BDD-
based technique that we have used very successfully with SAT-based methods is the 
addition of external constraints (not necessarily from conflicts) generated by 
performing BDD-based reachability analysis. While BDD-based reachability analysis 
provides a complete verification method, it works only on small models. On the other 
hand, SAT-based BMC can handle much larger models, but it is incomplete in 
practice. Conservative abstractions, i.e. abstractions that over-approximate the paths 
in concrete models, are the key in providing a link between the two. In particular, we 
use conservative approximations of reachable state sets, computed as BDDs, as 
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additional constraints in BMC. Other related efforts have also used BDD-based 
enlarged targets [54], and BDD-based approximate reachability state sets [60], but 
only in searching for counterexamples with BMC. Our application of this idea in 
helping derive proofs by induction is described later in Section  3.2.1. 

Since the BDD constraints for BMC are required to be over-approximations, we 
obtain “existential” abstractions of the design by considering some latches in the 
concrete design as pseudo-primary inputs. For example, we abstract away latches 
farther in the dependency closure of the property signals, identified by localization 
techniques [61]. Given a conservative abstract model, and a correctness property, we 
use exact or approximate symbolic model checking techniques to generate the BDD 
constraints. For example, for simple safety properties, we store the union of the state 
sets computed iteratively by the pre-image operation, backwards from the set of bad 
states, as shown in Figure 6 (a). We also store the union of the state sets in the 
forward reachability analysis, starting from the initial state, as shown in Figure 6 (b).  

 

Fig. 6. Generation of BDD Reachability Constraints 
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Fig. 7. Use of BDD Constraints in BMC 
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We convert each BDD to either a gate-level circuit or a CNF formula, where each 
internal BDD node is regarded as a multiplexor controlled by that node’s variable. 
The size of the resulting circuit or CNF formula is linear in the size of the BDD, due 
to introduction of extra CNF variables for each BDD node. We use BDD reordering 
heuristics as well as over-approximation methods to keep down the BDD sizes. 
Finally, we use the BDD constraints as additional constraints on the state variables at 
each (or some) cycle of the unrolled design during BMC, as shown by dark boxes in 
Figure 7. Note that while these constraints are redundant, in practice they can improve 
the efficiency of the back-end SAT solver and allow deeper searches for bugs. 

3.1.3   Distributed SAT and Distributed BMC 
In SAT-based BMC the problems get larger as the depth of unrolling increases. 
Sometimes, the memory limitation of a single server, rather than SAT solver 
performance, can become a bottleneck for doing deeper BMC search for bugs. We 
have proposed methods for distributing SAT and distributing the BMC computation 
over a network of workstations (e.g. connected by Ethernet LAN) to overcome this 
memory limitation, albeit at increased communication cost and some performance 
overhead [14].  

Our distributed methods use a master/client model where each client has an 
exclusive partition of the SAT problem and uses knowledge of the distributed 
partition topology to communicate with other clients. Due to the design unrolling, a 
BMC problem provides a natural linear partitioning of the overall SAT problem, 
thereby suggesting a linear topology for configuing the computing  resources. An 
example topology using one master and several clients is shown in Figure 8. Each 
client Ci hosts a part of the unrolled design in BMC, e.g., from ni+1 to an ni+1 where ni 
represents the partition depth. Each Ci  (except for the terminal clients) is connected to 
Ci+1 and Ci-1. The master is connected to each of the clients. Using a linear topology, 
we can also distribute parts of the unrolled design dynamically over additional clients 
as and when memory resources on current clients get close to exhaustion. 

 

Fig. 8. Distributed BMC Configuration with Master/Clients 
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For distributed SAT, the master controls the overall execution between the 
parallelized decision, deduction, and diagnosis engines. The decision engine is 
distributed in a way such that each client selects a good local variable and the master 
then chooses the globally best variable to branch on.  During the deduction phase, 
each client performs BCP on its exclusive local partitions, and communicates 
implications on the common variables to its neighboring clients. The master performs 
BCP on the global pool of learned conflict clauses, and also communicates the 
implications to all the clients. Diagnosis is performed by the master, and each client 
performs a local backtrack when requested by the master. Note that the master does 
not keep all problem clauses and variables; however, the master maintains the global 
assignment stack and the global state for diagnosis. This requires much less memory 
than the entire problem data.  

Though this work is closely related to [62], there are some important differences. 
In that approach, although each client has a disjoint set of clauses, the variables are 
not shared in any set pattern. Therefore, each client broadcasts its implications to all 
other clients after completing the local BCP. In a communication network 
implementation like ours (unlike the application specific processor framework 
considered in [62]) broadcasting all these implications can be a significant overhead. 
In our improved distributed BCP, however,  each client has knowledge of the 
topology of the SAT-problem partitioning, and uses it to communicate with other 
clients. This ensures that the receiving client has to never read a message that is not 
meant for it. To ensure proper execution of the parallel algorithm, each client is 
required to be synchronized. In addition, we use several optimization schemes to 
reduce the effect of communication overhead on performance in general-purpose 
networks by identifying and executing tasks in parallel while messages are in transit. 
For a large industry design with ~13K flip-flops and ~0.5Million gates, our 
distributed BMC approach enabled us to search up to a depth of 323 with only 30% 
communication overhead, while we could analyze only up to 120 time frames in a 
single workstation environment before running out of memory.  

3.1.4   Efficient Memory Modeling (EMM) for Finding Bugs 
Designs with large embedded memories have wide application in the industry. 
However, such designs add further complexity to formal verification tasks due to an 
exponential increase in the state space for each additional memory bit. For BMC, with 
each time frame unrolling of a design, the search space becomes prohibitively large to 
analyze beyond a reasonable depth. In order to make BMC more useful, it is 
important to have some abstraction of the memories. However, for finding real bugs, 
it is sufficient that the abstraction techniques capture the memory semantics [63] 
without explicitly modeling each memory bit.  

To capture the memory semantics, Burch and Dill introduced the interpreted read 
and write operations in their logic of equality with un-interpreted functions (EUF) 
[63] instead of an un-interpreted abstraction of memories. These interpreted functions 
are used to represent the memory symbolically by creating nested if-then-else (ITE) 
expressions to record the history of writes to the memory. Such interpretated 
functions have also been exploited in later derivative verification efforts [64, 65].  
More recently, Bryant et al. proposed the logic of Counter arithmetic with Lambda 
expressions and Un-interpreted functions (CLU) to model infinite-state systems and 
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unbounded memory in the UCLID system [66]. Memory is modeled as a functional 
expression whose body changes with time step. Similar to [63], the memory is 
represented symbolically by creating nested ITE expressions, which are translated by 
the CLU decision procedure and handled by a back-end SAT solver.  

Our EMM approach [27] is similar to the abstract interpretation of memory that 
captures its data forwarding semantics, i.e., a data read from a memory location is 
same as the most recent data written at the same location. We construct a BMC 
problem instance as follows.  For our discussion, assume a single port memory with 
the following interface signals: Address Bus (Addr), Write Data Bus (WD), Read Data 
Bus (RD), Write Enable (WE), and Read Enable (RE). Assume that the write phase of 
the memory requires one clock cycle, i.e., in the current clock cycle when the data 
value is assigned to WD bus, write address location is assigned to Addr bus and WE 
signal is made active, then the new data is available in the next clock cycle. The read 
phase of memory is regarded as a same cycle event, i.e., when the read address 
location is assigned to Addr bus and the RE is made active, the read data is assigned 
to RD bus in the same clock cycle. Assume that we unroll the design up to depth k. 
Let Sj denote a memory interface signal variable S at time frame j. Let the Boolean 
variable Eij denote the address comparison between time frames i and j, defined as 
Eij=(Addri=Addrj). Then the forwarding semantics of the memory can be expressed 
as: 

RDk = {WDj | Ejk=1∧WEj=1∧REk=1∧∀j<i<k(E
ik=0∨WEi=0)},  where j<k (3) 

In other words, data read at depth k equals the data written at depth j if memory 
addresses are equal at k and j, write enable is active at j, read enable is active at k, and 
for all depths i between j and k, either the address at i is different from that at k or the 
write enable at i is inactive. 

Note that the BMC problem instance is generated by eliminating memory arrrays 
but retaining the memory interface signals  in the design, and adding memory-
modeling constraints on those signals at every depth of unrolling to preserve the 
semantics of the memory. The additional novelty of our EMM approach is that the 
formulation of the memory-modeling constraints (not shown here) capture the 
exclusivity of a read and write pair  explicitly, i.e., when a SAT-solver decides on a 
valid read and write pair, other pairs  are implied invalid immediately, thereby 
reducing the SAT solve time. Furthermore, we use a hybrid circuit-based and CNF-
based representation of these constraints, where their size depends linearly on the bus 
widths of memory interface signals and quadratically on the number of memory 
accesses. Since the unrolling depth of BMC bounds the number of memory accesses, 
the size of these constraints is significantly smaller than an explicit modeling of the 
memory state in BMC. We can also apply the EMM approach for handling multiple 
memories, with multiple read and write ports [28]. 

The modified BMC algorithm using EMM is shown in Figure 9. The memory 
modeling constraints are generated by the procedure EMM_Constraints, which is 
invoked after every unrolling. The updated constraints Ci 

 in line 5 capture the 
forwarding semantics of the memory up to depth i very efficiently using hybrid 
symbolic representations, i.e., 2-input gates and CNF clauses, in order to improve the 
SAT solve time. We have experimented with our EMM method on a number of 
hardware and software designs with large embedded memories, where we have 
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obtained at least an order of magnitude improvement (both in time and space) using 
our method over explicit modeling of each memory bit. We have also shown that the 
particular form of our memory modeling constraints boosts the performance of the 
SAT solver significantly, in comparison to the conventional way of modeling these 
constraints as nested if-then-else expressions [63, 66].  

 

BMC-EMM (n, P) { // BMC with EMM 

  C-1=φ; // initialize memory modeling constraints 

  for (int i=0; i<=n ; i++) { 

      Pi = Unroll(P,i); // get property node at ith unrolling     

      Ci = Ci-1 ∪ EMM_Constraints(i); // update the constraints 

      if (SAT_Solve(I∧¬Pi∧Ci)=SAT) return CE;} 

  return NO_CE; } // no counter-example found  

 

Fig. 9. SAT-based BMC with Efficient Memory Modeling (EMM) 

3.2   Methods for Finding Proofs 

In this section we describe SAT-based methods targeted for finding proofs. These 
methods can prove the correctness of a property on a design, as well as find counter-
examples for failing properties. The method may or may not be complete, i.e. it may 
not be able to prove every correct property. We describe induction-based methods that 
have been found useful for proving safety properties. Next, we describe abstraction-
refinement methods, where SAT-based BMC is used primarily for abstraction or 
refinement, and is supplemented by other techniques for obtaining proofs on the 
abstract models. We also describe the application of induction and proof-based 
abstraction in the context of our EMM approach, for finding proofs for embedded 
memory designs. Finally, we describe SAT-based methods that directly implement 
unbounded model checking. Many of these replace or supplement the use of BDDs by 
SAT solvers in traditional symbolic model checking techniques. In principle, 
completeness of verification can also be achieved by making the transition from SAT 
to solvers for Quantified Boolean Formulas (QBF) – we do not discuss QBF-based 
techniques here.   

3.2.1   SAT-Based Induction 

Induction with increasing depth k, and restriction to loop-free paths, provides a 
complete proof technique for safety properties and has been proposed for use with 
SAT solvers [16, 67]. Induction with depth k consists of the following two steps: 

• Base step: to prove that the property holds on every k-length path starting from the 
initial state. 
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• Inductive step: to prove that if the property holds on a k-length path starting from 
any arbitrary state, then it also holds on all its extensions to a (k+1)-length path. 

The restriction to loop-free paths imposes the constraints that no two states in a path 
are identical.  

1 2 3 kInitial
State

SAT(!p)?

…

SAT(!p)? SAT(!p)? SAT(!p)?
Base Step

1 2 3 k k+1
Arbitrary
State

p p p p SAT(!p)?
…

p

Inductive Step

B* SAT(B*)?

F*

1 2 3 kInitial
State

SAT(!p)?

…

SAT(!p)? SAT(!p)? SAT(!p)?
Base Step

1 2 3 k k+1
Arbitrary
State

p p p p SAT(!p)?
…

p

Inductive Step

B* SAT(B*)?

F*

 

Fig. 10. Proof by Induction using SAT-based BMC (with BDD Constraints) 

We use the BMC framework for performing a proof by induction, as shown 
pictorially in Figure 10 for the safety property AGp. (For the moment, disregard the 
boxes labeled B* and F*.) For the base step, the satisfiability of negated p is checked 
at each cycle up to k, starting from the initial state. If it is satisfiable, then the property 
is proved to be false. If it is not, then the inductive step is carried out. For the 
inductive step, it is assumed that the property p holds at the first k cycles, starting 
from an arbitrary state, and satisfiability of negated p is checked at the (k+1)th cycle. 
If it is unsatisfiable, then the induction proof is complete, and the property is proved 
to be true. However, if it is satisfiable, then the verification is incomplete. In this case, 
the depth of induction (k) can be increased, and the proof steps repeated, until the 
longest loop-free paths have been examined.  

Note that the base step includes use of the initial state constraint, but the inductive 
step does not. Therefore, the inductive step may search through unreachable states 
also. In practice, this may not allow the induction proof to go through at small depths, 
i.e. the proof may need stronger induction invariants than the property itself. In 
general, any circuit constraints known by the designers can be used to strengthen the 
induction invariant. We use BDD-based reachability constrains, described earlier in 
Section 3.1.2.  

In our enhanced BMC method for induction [17], we use the BDD-based 
reachability constraints not as redundant constraints, but as additional constraints to 
the SAT problem in order to facilitate the proof by induction. This use is shown 
pictorially by the boxes labeled B* and F* in Figure 10. For the base step, after we 
have checked the unsatisfiability of the negated property at each cycle up to k cycles, 
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we can additionally check the satisfiability of the B* BDD constraint after k cycles. If 
it is unsatisfiable, then the property is proved to be true, without performing any more 
inductive steps by BMC. In a sense, the inductive step has been already performed by 
the BDD-based fixpoint operation on the abstract model.  However, if B* is 
satisfiable, we proceed with the inductive step. For the inductive step, we use the F* 
BDD to constrain the arbitrary state at the start of the k+1 cycles. This provides an 
additional reachability invariant, which can potentially allow the inductive step to 
succeed with BMC. It is intructive to note that the base step of an induction proof 
proceeds in the forward direction, and therefore the B* constraint derived from the 
backward BDD-based analysis complements BMC to provide completeness. In 
contrast, the inductive step constitutes a backward style of reasoning. Therefore, the 
F* constraint derived from the forward BDD-based analysis complements BMC to 
provide completeness. 
 
Experiment Results. Our results for using this technique for checking safety 
properties on some large industrial designs are shown in Table 2. Here, Columns 2 – 5 
report the results for BDD-based analysis on the abstract model (number of flip-flops 
#FF, number of gates #G, the CPU time taken for traversal, the number of forward 
iterations, and the final size of the BDD F*, respectively). Columns 6 – 9 report the 
results for a BMC-based proof by induction on the concrete design, with use of the 
BDD constraints (the verification status, and the time and memory used by the BMC 
engine, respectively). We obtained the abstract models automatically from the 
unconstrained designs, by abstracting away latches farther in the dependency closure 
of the property variables. Due to the small size of the abstract models, we could keep 
the resource requirements for BDDs fairly low. The important observation is that 
despite gross approximations in the abstract models, the BDD reachability invariants 
were strong enough to let the induction proof go through successfully with BMC in 
each case. Though neither the BDD-based engine, nor the BMC engine, could 
individually prove these safety properties, their combination allowed the proof to be 
completed very easily (in less than a minute). 

Table 2. Experimental Results for Proof by Induction using BDD-based Reachability 
Invariants 

#FF /  #G Time(s) Depth Size of F* #FF /     #G Status Time(s) Mem(MB)
D1-p1 41 /  462 1.6 7 131 2198 / 14702 TRUE 0.07 2.72
D2-p2 115 / 1005 15.3 12 677 2265 / 16079 TRUE 0.11 2.84
D3-p3 63 / 1001 18.8 18 766 2204 / 16215 TRUE 0.1 2.85

Induction Proof with BDD Constraints on Concrete DesignBDD-based Abstract Model Analysis

 

3.2.2   Proof-Based Iterative Abstraction (PBIA) 

In order to handle large designs, there has been a great deal of interest in the use of 
abstraction and refinement techniques for verification. Most efforts are refinement-
based approaches, where starting from a small abstract model of the concrete design, 
counterexamples found on these models are used to refine the model iteratively until 
either a conclusive result is obtained by conservative model checking, or the resources 
are exhausted [61, 68]. In a separate development, resolution-based proof analysis 
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techniques for SAT solvers [40, 42] can be used to identify a set of original clauses 
from an unsatisfiable SAT problem, called the unsatisfiable core, that are sufficient 
for implying unsatisfiability.  These techniques have been independently used for 
verification applications also – counterexample guided refinement [69], proof-based 
abstraction [22, 42], unbounded model checking using interpolants [70]. Here we 
describe the details of our proof-based iterative abstraction (PBIA) technique [22, 23], 
based on our SAT-based BMC framework. It can be used to generate small abstract 
models, on which proofs can be derived using any unbounded verification methods. 
In the next section, we describe its use in conjunction with EMM techniques to find 
proofs for designs with embedded memories.  

Proof-based Abstraction using SAT-based BMC. A proof-based abstraction 
technique works as follows. BMC is performed for increasing depths on the concrete 
design. Recall that when there is no counterexample at (or up to) a given depth of 
unrolling, the Boolean formula BMC(M,f,k) (Definition 1 in Section 3.1.1) is 
unsatisfiable. In this case, an unsatisfiable core consisting of a subset of constraints is 
identified using resolution-based proof analysis techniques. Then a latch-based [22]  
(or a gate-based [42]) abstraction is used to generate a conservative abstract model 
that is guaranteed to have more behaviors than the concrete design. In addition, due to 
the sufficiency property of the unsatisfiable core, the abstract model is guaranteed to 
preserve correctness of the related property up to the given depth. In many cases, the 
abstract model can also be proved correct for all depths, by using unbounded model 
checking techniques, such as those based on BDDs or SAT-based unbounded model 
checking. Since the abstract model has more behaviors than the concrete design, this 
also proves correctness for the concrete design. The usefulness of the proof-based 
abstractions stems from the empirical evidence that for typical verification 
applications, the unsatisfiable cores and the corresponding abstract models are much 
smaller than the concrete designs, thereby making it easier to apply unbounded 
verification methods for deriving proofs.  

Proof-based Iterative Abstraction. We further use an iterative abstraction 
framework [22], where a proof-based abstraction is used in the inner loop (unlike 
other proof-based methods [42]). This is shown in Figure 11. Given a concrete model 
M, and an LTL formula f (negation of the given correctness property), the shown 
procedure either finds a true counterexample for the correctness property, or returns a 
final abstract model on which bounded or unbounded verification can be performed.  

Starting from the concrete model, an outer loop indexed by i (line 3) performs 
BMC on increasingly more abstract models, denoted M[i]. In each iteration of the 
outer loop, BMC is performed on model M[i] for increasing bound k (line 6).  If the 
BMC formula is satisfiable, the counterexample is checked to see if it is spurious. If it 
is not spurious, the correctness property is shown to be false. If it is spurious, a new 
model M’ is derived, either by using proof-based refinement, or by deriving a proof-
based abstraction from M[i-1] for a bound d > k (line 8). The current iteration is 
started again for the new model M’ (line 10). On the other hand, if the BMC formula 
is unsatisfiable for bound k, an abstract model A[k] is derived by using a proof-based 
abstraction on the unsatisfiable core (line 14), e.g. the latch interface abstraction. If 
the abstract model is stable, e.g. if its size does not change over the last few time 
frames (indexed by k), then a new iteration is started with this model chosen as 



128 A. Gupta, M.K. Ganai, and C. Wang 

M[i+1] (line 16).  Otherwise, BMC is performed again on the current model M[i] 
after incrementing k (line 19). As shown here, the outer loop is iterated up to 
convergence of the size of the abstract model M[i] (line 21). Alternatively, 
unbounded verification can be attempted for any of the abstract models M[i], where a 
true result is conclusive, while a counterexample is handled the same way as a 
satisfiable BMC formula (lines 6-12).  

     1   Proof_Based_Iterative_Abstraction (M,f)  { 
     2      M[1] = M;  // start with concrete design 
     3      for (i=1; i; i++)  { // multiple iterations  
     4         k = 1;  
     5         do { 
     6          if (BMC(M[i], f, k)_is_satisfiable)   // counterexample  
     7                if (counterexample_is_spurious)  { 
     8                   M’ = get_refined_model(M[i], M[i-1], f, k); 
     9                   M[i] = M’;  
   10                   k = 1; }  // restart iteration i with model M’  
   11                else  
   12                   return(property_is_false); 
   13          else  {   // unsatisfiable BMC formula 
   14                A[k] = get_abstract_model(M[i], f, k); 
   15                if (model_A[k]_is_stable)  { 
   16                   M[i+1] = A[k]; 
   17                   break; }  // out of do-while loop  
   18                else 
   19                    k++; } 
   20         } while (1); 
   21         if (size(M[i+1]) = = size(M[i])) 
   22            break;  // out of loop on i   
   23      }  // end of for loop 
   24      return(M[i]);  // final abstract model for verification 
   25   } 

 

Fig. 11. Pseudo-code for Iterative Abstraction 

The overall flow in iterative abstraction is targeted at reducing the size of the 
abstract models across successive iterations. The potential benefit is that for 
properties that are false, BMC search for deeper counterexamples is performed on 
successively smaller models, thereby increasing the likelihood of finding them. For 
properties that are true, the successive iterations help to reduce the size of the abstract 
models, thereby increasing the likelihood of completing the proof by unbounded 
verification methods. We obtained typically two orders of magnitude reduction in the 
size of the abstract model across all iterations. In our experience, this reduction was 
crucial for successful verification of large industry designs. 
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Lazy Constraints in Proof-based Abstraction. We further proposed the idea of 
lazy constraints [23], where the main motivation is to delay propagating the effect 
of values implied by certain constraints, in order to derive smaller unsatisfiable 
cores for proof-based abstractions. In a standard DPLL-based SAT solver, the BCP 
procedure treats all constraints as eager constraints, i.e. implications due to the 
constraints are performed as soon as possible (modulo some ordering). Rather than 
modify the SAT solver, we change the CNF representation of certain single-literal 
constraints to achieve the desired lazy effect. This allows us to directly use, without 
any modification, the latest improvements in SAT solver technology. In particular, 
a 1-literal eager constraint (x) can be converted to a lazy constraint by replacing it 
with (x+y)(x+y’), where y is a fresh variable not appearing in the remaining 
formula.  

We use lazy constraints in SAT-based BMC for handling initial state constraints 
for latches and for environmental constraints provided by the designer (I(y0) and 
Env(ej), respectively, in Definition 1, Section 3.1.1). Intuitively, lazy initial state 
constraints provide a way to get away from the “irrelevant” initial state values, which 
may otherwise get forced into the unsatisfiable core due to eager implication at the 
time of pre-processing in the SAT solver. Delaying such irrelevant implications (so 
that they potentially never take effect) can often lead to a much smaller invariant 
abstract model. Similarly, lazy constraints provide a way to delay enforcing 
“irrelevant” environmental constraints, potentially leading to a smaller set being 
actually used in the proof of unsatisfiability.  

Experimental Results. Our experimental results for proof-based iterative abstraction 
are shown below in Table 3. The first three columns report the design name, the 
number of flip-flops and gates in the concrete design, respectively. The next three 
columns report the results for use of PBIA without lazy constraints, with number of 
flip-flops in the final abstract model, the number of iterations it took to derive the 
model, and the total time taken (in seconds), respectively. The last three columns 
report these data for use of PBIA with lazy constraints.  

Note first that in all examples, the use of PBIA automatically generates much 
smaller abstract models than concrete designs. This greatly facilitates the use of 
unbounded verification methods on the abstract models to prove properties on the 
concrete design. With respect to use of lazy constraints, note that delaying 
implications by using lazy constraints can result in a performance penalty in some 
cases, since the efficiency of a SAT solver depends upon performing more 
implications in order to avoid search. On the other hand, it often results in further 
reduction in the sizes of the abstract models. In this sense, use of lazy constraints can 
be regarded as a heuristic targeted at deriving a smaller abstract model using proof-
based abstraction. In practice, we also identify a sufficient set of environmental 
constraints for a given property, in order to generate smaller abstract models. In many 
cases, these techniques are crucial in being able to complete unbounded verification 
on the derived abstract models. 
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Table 3. Experimental Results for Proof-Based Iterative Abstraction (PBIA) 

D

#FF # G #FF # I T(s) #FF # I T(s)
D1 3378 28384 522 9 60476 294 4 11817
D2 4367 36471 1223 8 80630 1119 9 64361
D3 910 13997 433 5 11156 166 10 29249
D4 12716 416182 369 4 1099 71 6 1310
D5 2714 77220 187 2 17 3 3 21
D6 1635 26059 228 6 5958 148 3 4102
D7 1635 26084 244 3 3028 155 5 2768
D8 1670 26729 149 3 25 148 3 28
D9 1670 26729 162 3 40 147 3 44
D10 1635 26064 159 2 12 146 3 30
D11 1670 26729 149 3 25 148 3 28
D12 1670 26729 183 4 2119 182 4 2376
D13 1670 26729 180 2 63 154 3 71
D14 1635 26085 190 3 1352 154 5 1480
D15 1635 26060 153 3 125 153 3 142

Model
Abstract Models from PBIAConcrete 

No Lazy  With Lazy 

 

3.2.3   EMM for Finding Proofs 

In this section, we describe extensions of our EMM method described earlier (for 
finding bugs, in Section 3.1.4), to providing correctness proofs for embedded memory 
systems. The novelties of our extended EMM approach [28] are: 

• Modeling    an arbitrary memory state precisely, and thereby, providing the ability 
to derive induction proofs using SAT-based BMC  

• Combining EMM with proof-based abstraction to find irrelevant memory 
modules/ports that do not affect correctness of a given property 

Induction with EMM. To model a memory with an arbitrary initial state, we 
introduce new symbolic variables at every time frame. Note that for a k-depth analysis 
of a design, there can be at most k different memory read accesses from a read port; 
out of which at most k accesses can be to un-written memory locations. Therefore, in 
total we need to introduce k symbolic variables for the different data words in 
memory. However, these variables are not completely independent, and simply 
introducing new variables introduces spurious behaviors in the verification model. 
Therefore, we need to identify a sufficient set of constraints on these fresh variables 
that capture the arbitrary memory state precisely. This is done by identifying pairs of 
read operations from the same address, which should forward the same data, provided 
no other write operations have been performed on the same address in between the 
two reads.  Again, we use a hybrid representation of these constraints and add them to 
the BMC problem at each depth of unrolling.  

EMM with Proof-based Abstraction. Recall that EMM can significantly reduce the 
size of the verification model by eliminating explicit modeling of memory state. 
However, for checking the correctness of a given safety property, we may not require 
all the memory modules or the ports in the memory subsystem of a design. To further 



 SAT-Based Verification Methods and Applications in Hardware Verification 131 

reduce the model, we can abstract out irrelevant memory modules or ports 
completely. In this case, we do not need to add the memory modeling constraints for 
the irrelevant memory modules or ports, thereby further reducing the BMC problem 
size.  

For the purpose of automatically identifying irrelevant memory modules and ports, 
we use a technique combining EMM constraints with proof-based abstraction. We use 
SAT-based BMC with memory-modeling constraints added according to our EMM 
approach. Again, we derive an unsatisfiable core whenever the BMC problem is 
unsatisfiable at a given depth k. The latches appearing in the unsatisfiable core are 
accumulated over the depths in a set LR. If a latch in the control logic of a memory 
module (the logic driving its memory interface signals) does not appear in the set LR, 
we do not add the EMM modeling constraints for that memory module. In other 
words, since the correctness of the property does not depend on that memory module 
(up to depth k), we abstract it out completely. Note this corresponds to a conservative 
abstraction, i.e. a proof of correctness on the abstract model implies correctness on the 
original design. This reduction in the EMM constraints reduces the BMC problem 
size and significantly improves the performance in our experience.  

4.2.4   SAT-Based Unbounded Model Checking (UMC) 

Due to the success of SAT solvers in bounded model checking, there has been 
growing interest in their use for unbounded model checking as well. Here, the crucial 
non-trivial operation is quantifier elimination, which converts a QBF to a 
propositional Boolean formula. This is shown below for the image operation and pre-
image operations, which form the computational core of symbolic model checking 
methods (also described in Section 2.3): 

Img (Y) = SN(Y) = ∃ X,W,Z.  SC(X) ∧ T(X,Y,W,Z) (4) 

PreImg(X) = SC(X) = ∃ Y,W,Z.  SN(Y) ∧ T(X,Y,W,Z) (5) 

As before, the variable sets X, Y, W, denote the present state, next state, and input 
variables respectively; and SC , SN  and T denote the next states, the current states, and 
the transition relation, respectively. Note that there is an additional set of variables Z 
denoting the internal variables needed for a CNF representation of the transition 
relation. In addition to the issue of quantification of these additional variables, there is 
also the issue of what representation to use for the state sets. There have been many 
efforts with different approaches for handling these issues. We first discuss methods 
that use SAT in combination with other methods, and then methods that use purely 
SAT for symbolic model checking.  

SAT with Other Symbolic UMC Methods. Symbolic model checking based on 
combining non-canonical decision diagrams like Reduced Boolean Circuits (RBCs) 
[71] and Boolean Expression Diagrams (BEDs) [72] with SAT-solvers were proposed 
to alleviate the problems seen in pure BDD-based approaches.  However, the use of 
circuit-based existential quantification (∃xf=fx+fx’) in pre-image/image computation 
results in a formula size that grows exponentially with the number of quantified 
variables, in spite of all heuristic attempts to mitigate the growth. These approaches 
are, therefore, limited to designs with a small number of primary inputs. 
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We have also proposed a combined method [18], which integrates BDD-based 
techniques tightly into the SAT decision procedure. We represent the transition 
relation T in CNF, and the set of states SC and SN as BDDs. For image computation, 
quantifier elimination is performed by using SAT techniques to enumerate all 
solutions to the CNF formula, and by projecting each solution on the set of image 
variables (Y).  The search for solutions is constrained by the BDD for SC, using a 
technique called BDD Bounding, whereby any partial solution in SAT which is 
inconsistent with the BDD is regarded as a conflict. This technique is also used 
effectively to avoid repeating image set solutions by bounding against the BDD 
representing the currently computed image set SN.  

Another novelty of our method is that in order to avoid enumeration of all solutions 
in SAT, we generate BDD-based subproblems on-the-fly for a partial assignment in 
SAT. The decision about when to generate a BDD subproblem is heuristically 
determined, e.g. when the number of assigned variables in SAT is some fraction of 
the total number of variables. The BDD subproblem corresponds to the transition 
relation cofactored with the current partial assignment in SAT. Indeed, each BDD 
subproblem is very similar to the standard BDD formulation of image computation, 
except that the CNF representation of the (cofactored) transition relation provides a 
much finer-grained conjunctive partition of the transition relation. This provides 
additional opportunities for early quantification of primary input variables. The 
overall image computation can be viewed as the SAT decision tree providing a 
disjunctive partitioning into multiple BDD subproblems at its leaves, as shown below 
in Figure 12. This combination of decision heuristics and implications provided by 
SAT, with the efficient computation of smaller subproblems using BDDs, is highly 
beneficial in handling large designs. We enhanced this basic image computation 
procedure by adding circuit structure information to the CNF formula of the transition 
relation, in order to dynamically detect and remove redundant clauses [19]. We also 
added partition-based SAT decision heuristics to further improve its performance [20].  

Leaves of SAT search tree: 
BDD sub-problems 

Top level search tree: 
SAT Decision Tree 

 

Fig. 12. Symbolic Image Computation Combining SAT and BDDs 

Purely SAT-based UMC Methods. In purely SAT-based approaches, the transition 
relation is maintained in a conjunctive normal form (CNF) and a SAT procedure is 
used to enumerate all solutions for the required state set. Typically, the solution cubes 
are enumerated by the SAT solver for computing the pre-image state set [73, 74], and 
a blocking clause representing the negation of the enumerated state cube is added at 
each step in order to prevent repeating the solutions. In [73] a redrawing of the SAT 
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solver’s implication graph is carried out to enlarge the state cube. In [74], a two-level 
minimizer is used to compact the CNF formula after addition of new blocking 
clauses.  Note that in both approaches, only a single state cube is captured at any 
enumeration step. Since the number of required enumerations is bounded below by 
the size of a two-level prime and irredundant cover of the solution set, quantifier 
elimination based on cube-by-cube enumeration tends to be expensive. In yet another 
approach [47], an ATPG solver is used as the search engine, and state cube 
enlargement is achieved using a separate justification procedure once a satisfying 
result is found by the SAT solver. This approach is also limited by its cube-wise 
enumeration strategy. 

A different model checking approach based on use of SAT techniques and Craig 
interpolants has been proposed by McMillan [70]. Given an unsatisfiable Boolean 
problem, and a proof of unsatisfiability derived by a SAT solver, a Craig interpolant 
can be efficiently computed to characterize the interface between two partitions of the 
Boolean problem. In particular, when no counterexample exists for depth k, i.e., the 
SAT problem in BMC for depth k is found to be unsatisfiable, a Craig interpolant is 
used to obtain an over-approximation of the set of states reachable from the initial 
state in 1 step (or any fixed number of steps). This provides an approximate image 
operator, which can be used iteratively to compute an over-approximation of the set 
of reachable states, i.e., till a fixpoint is obtained. If at any point, the over-
approximate reachable set is found to violate the given property, then the depth k is 
increased for BMC, till either a true counterexample is found, or the over-
approximation converges without violating the property. The main advantage of the 
interpolant-based method is that it does not require an enumeration of satisfying 
assignments by the SAT solver. Indeed, the proof of unsatisfiability is used to 
efficiently compute the interpolant, which serves directly as an over-approximated 
state set. However, this approach can computes approximate reachable states, which 
are sufficient for proving safety properties, but are harder to apply for exact model 
checking. 

Our SAT-based quantifier elimination method is considerably different from the 
other efforts. It dramatically reduces the number of enumerations of satisfying 
solutions in comparison to the cube-based approaches, thereby, significantly 
improving the performance of pre-image and fixed-point computation in SAT-based 
UMC [21]. Our SAT-based method is shown in Figure 13: 

Note that we too use a SAT solver to enumerate solutions, but the novelty in our 
approach is that we use cofactoring after each enumeration, as follows:  

• Get the satisfying assignment α, which could be a cube (line 4) 
• Pick a satisfying input minterm m by choosing an assignment on the unassigned 

input variables in the satisfying cube α (line 5)  
• Cofactor the function f with respect to the satisfying input minterm m (line 6)  

Note that the cofactored function fm is used to represent the set of satisfying states 
derived from a single solution enumerated by the SAT solver. In general, a cofactor 
can capture not just a single cube of the state solution set, but several cubes. 
Specifically, our cofactoring approach is guaranteed to contain the set of new states 
captured in each enumeration step by the cube-based approaches. Therefore, our 
approach is also guaranteed to require a smaller number of enumerations by the SAT 
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solver. In our experience, cofactoring-based quantification greatly reduces the total 
number of solutions enumerated by the SAT solver, sometimes by several orders of 
magnitude, in comparison to cube-wise enumeration approaches. Furthermore, we do 
not require a redrawing of the implication graph [73], or an enlargement of the 
enumerated cube as a post-processing step [47].   

 

SAT-EQuant(f,A,B) { // calculate ∃
 B
 f(A,B)   

  C = ∅; //initialize constraint 

  while (SAT_Solve(f=1∧C=0) is SAT) { 

    α = get_satisfying_cube(); 

    m = get_satisfying_input_minterm(α,B); 

    f
m 
= cofactor_cube(f, m);  

    C = C ∨ f
m
; } 

  return C; } // return when no more solution 

 

Fig. 13. SAT-based existential quantification using Circuit Cofactoring 

Additionally, we use circuit cofactoring techniques based on efficient circuit 
graphs [46] for representing the solution states, which is more robust in practice than 
CNF-based blocking clauses or BDD-based representations. We also use our hybrid 
SAT solver [25] to directly work on these representations. We also observed that the 
total number of enumerations depends, though less severely, on the choice of values 
chosen on the unassigned input variables in the satisfying cube assignment which 
determine the cofactor. We also proposed several SAT solver heuristics to choose an 
input minterm that enlarges the set represented by fm. 

Our circuit cofactoring-based quantification technique can be used to compute 
exact image/pre-image state sets, unlike the interpolant-based technique (described 
earlier), which computes approximate state sets. It has been used in SAT-based 
unbounded symbolic model checking to handle many difficult industry examples, 
which could not be handled by either BDDs or blocking-clause based SAT 
approaches. We have also used it in SAT-based UMC formulations (greatest fixed 
point, and least fixed point computations) for determining completeness bounds for 
liveness properties, which are then used in our customized translations with BMC to 
find proofs [15].  More recently, we have combined our SAT-based UMC technique 
with symmetry reduction [75] to obtain further performance improvements, due to 
both the reduced state space and simplification in the resulting SAT problems. 

Experimental Results. We show experimental results on 102 examples for checking 
safety properties on designs from the VIS verification benchmark suite (VVB) [76] 
with a time limit of 1000s for each example. We present the comparison of our 
Circuit Cofactoring approach (CC) with the Blocking Clauses (BC) approach, and the 
BDD and BMC approaches in VIS, as scatter plots in Figure 14.  
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Fig. 14. Experimental Results for Circuit Cofactoring-based UMC Method (CC): (a) CC vs. 
BDD   (b) CC vs. BC   (c) CC vs. BMC   (d) Swap example results 

As shown in the scatter plot of CC/BDD in Figure 14 (a), our approach performed 
better in 68 cases while BDD performed better in 16 cases. We observe here the 
complementary strengths of BDD-based and SAT-based approaches. As shown in the 
scatter plots of CC/BC and CC/BMC in Figure 14 (b) and 14 (c), respectively, our CC 
approach is almost always better than both BC and SAT-based BMC. 

We also experimented on a design swap [73] that swaps non-deterministically 
consecutive elements in an array of length n. The correctness criterion is that all 
elements of the array are distinct. We compared our approach CC with BC and BDD 
(VIS) for varying n, each with a time limit of 1000s. The performance results are 
shown in Figure 14(d). Note that there is a time-out for BDDs for n>8 (also noted by 
others). With our CC approach, we can successfully analyze the design up to n=24, 
while with BC the analysis can complete only up to n=16. Note that our approach is 
about an order of magnitude faster than the BC approach on this example. 

4   SAT-Based Applications in Hardware Verification 

We have implemented our various SAT-based methods in a verification platform 
called VeriSol (formerly DiVer), targeted at verification of large scale hardware 
designs in the industry [29]. Due to an efficient and flexible infrastructure, VeriSol 
provides a very productive platform for research and development. A view of VeriSol 
as a “wheel of verification engines” is shown in Figure 15, where all these engines 
and their novel features have been described earlier in Section 3.  
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Fig. 15.  Wheel of Verification Engines in VeriSol 

In addition to the verification methods, VeriSol also has the ability to handle industry 
design features including multiple clocks, multiple phase and gated clocks, embedded 
memories with multiple read and write ports, environmental and fairness constraints.  
VeriSol has matured over the last four years, and has been used successfully by 
designers in our company to discover bugs that either could not have been found or 
were missed by functional simulation.  

4.1   Selected Case Studies 

Using selected case studies from the industry, we demonstrate the role of various 
engines in VeriSol at each step of the verification. It is interesting to note that without 
an interplay between the engines, we could not have verified any of these designs. 
The first two case studies do not contain large embedded memories, and use the 
verification flow shown in Figure 16(a). The next two case studies have large 
embedded memories and use the verification flow shown in Figure 16(b). All 
experiments were performed on a server with 2.8 GHz Xeon processors with 4GB 
running Red Hat Linux 7.2.  

Industry Design I. The design has 13K flip-flops (FFs), ~0.5M gates in the cone of 
influence of a safety property. Using BMC, we showed that there was no witness up 
to depth 120 (in 1643s) before we run out of memory. Using d-BMC, we showed no 
witness up to depth 323 (in 8643s) using 5 workstations (configured as 1 Master and 4 
Clients and connected with 1Gps Ethernet LAN), with a communication overhead of 
30% and scalability factor of 0.1 (i.e, potentially we could do a 10 times deeper 
analysis than that on the single server.) We hypothesized that the property is correct. 
We used the PBIA engine to obtain an abstract model with 71 FFs and ~1K gates in 6 
iterations taking ~1200s. By using standard BDD-based symbolic model checking on  
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Fig. 16. (a) Standard Verification Flow           (b) Verification Flow with EMM 

the conservative abstract model, we proved the property correct in 30s.  This implied 
correctness on the original (much larger) design. 

 
Industry Design II. The design with environmental constraints has 3.3K FFs and 
~28K gates for a safety property. Using BMC, we showed there was no witness up to 
depth 113 (in ~3hr, 720MB). Again, we hypothesized the correctness of the property. 
We used PBIA to obtain an abstract model A1 with 163 FFs and ~2K gates in 4 
iterations taking 9000s. Without the environmental constraints, the abstract model A2 
has only 66 FFs and ~1K gates. We computed a reachability invariant on the A2 
model (in ~4s) and used this invariant with SAT-based UMC on the A1 model to 
obtain a correctness proof in ~60s. Interestingly, for this example, none of the other 
UMC techniques (SAT-based induction, BDD-based symbolic model checking) was 
successful on the A1 model, even though the model was fairly small. 

 
Industry Design III. The design has 756 FFs (excluding the memory registers), and 
~15K gates. It has two memory modules, both having address width, AW = 10 and 
data width, DW = 8. Each memory module has 1 write and 1 read port, with the 
memory state initialized to 0. There are 216 reachabality properties to be checked. 
Using BMC+EMM, we found witnesses for 206 of the 216 properties, taking ~400s 
and 50Mb. The maximum depth over all witnesses was 51. Using exact memory 
modeling of the state, we required 20540s (~6hrs) and 912Mb to find witnesses for all 
206 properties. By using induction with BMC+EMM, we proved the remaining 10 
properties in <1s (this took 25 s with exact modeling of the memory state).  

 
Quicksort.  A hardware implementation of  this algorithm has two memory modules: 
an un-initialized array  with AW=10, DW=32, 1 read and 1 write port; and an  
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un-initialized stack (for implementing the recursive function calls) with AW=10, 
DW=24, 1 read and 1 write port. The design has 167 FFs (excluding memory 
registers), and ~9K gates for array size of 5. The correctness property states that after 
return from a recursive call, the program counter should go to a recursive call on the 
right partition or return to the parent on the recursion stack. Using 
BMC+EMM+PBIA, we reduced the model to 91 FFs and ~3K gates, and also 
identified that the array module was irrelevant for this property (since the array data 
does not affect the control structure of the algorithm). On this reduced model we 
proved correctness using forward induction (proof diameter = 59) in 2.3Ks, 116MB. 
Without the proof-based abstraction, the induction proof in BMC+EMM takes ~5Ks, 
400MB. When modeling the exact memory state, however, we could obtain neither a 
proof nor an abstract model in 3 hours.  

4.2   Integration of VeriSol with Hardware Design Methodology 

Although checking properties on the hardware design can be made (almost) fully 
automatic, VeriSol relies on the designers or verification engineers to provide 
correctness properties. Properties must capture the design intent and at the same time 
be expressed in some kind of formal syntax [77].  This requires the users to have both 
detailed knowledge of the design and some background in formal methods. Despite 
the growing popularity of formal verification and assertion-based verification, many 
designers are often reluctant to specify properties due to lack of either interest or 
training.  We believe this has been one of the major hurdles in the wider application 
of formal verification in hardware design 

In terms of our efforts in this direction, VeriSol has been integrated within a high 
level behavioral synthesis system called Cyber [30] developed in NEC Japan, which 
is used in-house by many system design groups. The Cyber system automatically 
generates RTL designs from high-level behavioral descriptions. In addition, it also 
automatically generates correctness properties for these RTL designs. The back-end 
property checking for Cyber can be performed by VeriSol.  

We have also added techniques to automatically generate verification properties 
from RTL Verilog designs. The properties include both simple Boolean assertions and 
temporal property checkers (those describing the behavior of the model over time). 
Although they are generated with absolutely no user effort, these properties often 
capture some important aspects of the design intent and cover corner case conditions 
that are critical for the design to be correct. VeriSol can be used to either formally 
verify these properties using its various SAT-based and BDD-based engines, or 
generate simulation monitors from these properties. Our automatic checker generation 
procedure targets properties in the categories of checking register usage (write before 
read, read before initialized), memory usage (unused, read-only, write-only, multiple 
drivers), full case / parallel case, unreachable or constant condition branches, etc. 

Automatic property generation can significantly increase VeriSol's ability in 
capturing subtle corner case errors in early RTL design stages with absolutely no user 
effort, and significantly ease the burden that has traditionally been put solely on 
designers or verification engineers. Once the users start benefiting from these 
automatically generated properties, they can be motivated to start thinking of new 
properties to cover more subtle design errors. In this sense, it also helps in promoting 
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formal verification techniques to a wider design community in real industry settings. 
Our target users include both designers using the Cyber design synthesis flow and 
designers using Verilog only. We have also developed an IDE (Integrated Design 
Environment) for VeriSol in the Verilog design flow, utilizing an Eclipse-based GUI 
and Icarus Verilog [78] in the tool front-end. 

5   Conclusions 

In this paper we have described SAT-based verification methods we have developed 
for verifying large hardware designs. Due to many recent advances in SAT solver 
technology, these methods have emerged as a promising alternative to the traditional 
BDD-based symbolic model checking methods. At the same time, we have found in 
our experience on industry designs that many of these methods need to be combined 
with each other, and also with other BDD-based and circuit-based methods, in order 
to successfully find bugs or proofs for correctness properties in practice.  

While a lot of progress has been made, much remains to be done to make these 
methods more robust in order to apply them reliably to large scale industry designs. In 
terms of industry applications, there is also a need for more effort in integrating these 
methods and the related tools within practical design methodology flows, in order to 
more fully realize the potential of formal verification. 
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Abstract. Many verification problems can be naturally represented as satisfia-
bility problems in some decidable fragments of first order logic. Efficient deci-
sion procedures for such problems can be obtained by combining technology for
propositional satisfiability and solvers able to deal with the theory component.

We provide a unifying and abstract, theory-independent perspective on the
various integration schemas and techniques. Within this framework, we survey,
analyze and classify the most effective integration techniques and optimizations
for the development of decision procedures. We also discuss the relative benefits
and drawbacks of the various techniques, and we analyze the features for SAT
solvers and theory-specific solvers which make them more suitable for an inte-
gration.

1 Introduction

In the last decade we have witnessed an impressive advance in the efficiency of propo-
sitional satisfiability techniques (SAT henceforth), which has brought large and previ-
ously intractable problems at the reach of state-of-the-art SAT solvers (see, e.g., [86]).
As a consequence, some hard real-world problems have been successfully solved by
encoding them into SAT. SAT solvers are now a fundamental tool in most formal ver-
ification design flows for hardware systems, both for equivalence, property checking,
and ATPG [16, 61, 75]. Other application areas include the verification of safety critical
systems [42, 18], and AI planning in its classical formulation [56], and in its extensions
to nondeterministic domains [29, 53].

However, the formalism of boolean logic is not expressive enough for representing
many other real-world problems, including the verification of pipelined microproces-
sors, of real-time and hybrid control systems, and the analysis of proof obligations
in software verification. In other cases, such as the verification of RTL designs or
assembly-level code, even if boolean logic is expressive enough to encode the verifi-
cation problem, it does not seem to be the most effective level of abstraction — for
instance, words in the data path are typically treated as collections of unrelated boolean
variables. Such problems are naturally expressible in decidable fragments of first order
logics (quantifier-free first-order theories, or simply “theories” henceforth), and deci-
sion procedures have been developed that allow to evaluate the satisfiability of first
order formulae with respect to such theories. Decision procedures have been conceived
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in different communities, like, e.g., automated theorem proving, AI planning, formal
verification, and address several theories, including

– separation logic (DL)1 [2, 4, 60, 77, 3, 66],
– linear arithmetic on Q (LA(Q)) or on Z (LA(Z))2 [82, 40, 4, 10, 37, 41, 21],
– logic of equality and uninterpreted functions (EUF ) [81, 40, 10, 71, 43],
– logics of bit-vectors (BV (Z)) [40, 10, 78],
– logic of arrays (AR (Z)) [40, 10, 78, 41].

Most effort has been concentrated in producing ad hoc procedures of increasing
expressiveness and efficiency, and in combining them in the most efficient way
[64, 73, 40, 12, 72, 37, 20]. In many such communities, however, the importance of
dealing efficiently with the boolean component of the problem has been been rec-
ognized and investigated only recently. This has lead to the development of new
techniques for integrating efficient boolean reasoning within theory-specific deci-
sion procedures, producing big performance improvements when applied (see, e.g.,
[49, 55, 68, 2, 44, 34, 10]). Nearly all such results have been produced by building de-
cision procedures on top of SAT procedures3. Most procedures are based on variants
of the DPLL algorithm [33, 32, 74, 15, 63, 51, 39]. In addition to the improvements in
SAT technology, the above results rely on a clever integration between SAT solvers and
theory-specific decision procedures.

In this chapter we survey, analyze and classify the most effective integration tech-
niques and optimizations for the development of decision procedures which have been
proposed in the various communities. Our goal is to provide a unifying and abstract,
theory-independent perspective on the various integration schemas and techniques. We
also discuss the relative benefits and drawbacks of the various techniques, and we an-
alyze the features for SAT solvers and theory-specific solvers which make them more
suitable for an integration.

We briefly mention here an alternative, translational approach to the development
of decision procedures [77, 71]. The idea is to generate a propositional formula that is
equisatisfiable to the original problem of satisfiability with respect to a given theory, and
then decide it by means of a propositional SAT solver. This approach, often referred to
as eager (to contrast it with the lazy approaches described in this chapter), relies even
more on the improvement of SAT solvers method, since huge propositional formulae
may result from the translation.

The chapter is organized as follows. In §2 we provide some theoretical back-
ground, and we recall some basic concepts about SAT procedures. In §3 we intro-
duce some general integration schemata, and discuss the features of SAT solvers and
theory-specific decision procedures which make them more suitable for integration.

1 Also called difference logic.
2 By “linear arithmetic” here we mean “boolean combinations of linear equalities and inequali-

ties on Q or Z” (and boolean propositions).
3 Notice that the idea of building decision procedures on top of a SAT procedure, and many

techniques for maximizing the benefits of this idea, have been conceived first in the domain of
modal and description logics [48, 49, 55, 68, 44], and they have been imported into the domain
of first-order theories only lately.
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In §4 we survey and analyze the various integration techniques and optimizations.
In §5, we discuss the case of combined theories. In §6 we overview the some ap-
plication domains, and in §7 we conclude, highlighting the main research directions
and challenges.

2 Background

In this section we recall some basic theoretical concepts, mostly from [50, 70, 5], pro-
viding the background for investigating the integration of SAT and decision procedures
within our theory-independent perspective. We assume that the reader is familiar with
the basic concepts and terminology in logic, theorem proving and SAT.

2.1 Basic Definitions and Results

We abstract away the information specifically related to the theories, and we consider a
generic decidable theory T , with the standard semantics of boolean connectives. Nota-
tionally, we will often use the prefix “T -” to denote “in the theory T ”. (E.g., we call a
“T -model” a model in T , and so on.)

Given a generic theory T , we consider the T -formulas built on atomic T -formulas
(T -atoms) and closed under boolean connectives: a T -atom is a T -formula; if ϕ1, ϕ2

are T -formulas, then ¬ϕ1 and (ϕ1 ∧ ϕ2) are T -formulas; nothing else is a T -formula
(e.g., no external quantifiers) 4. We use the standard boolean abbreviations: “ϕ1 ∨ ϕ2”
for “¬(¬ϕ1 ∧ ¬ϕ2)”, “ϕ1 → ϕ2” for “¬(ϕ1 ∧ ¬ϕ2)”, “ϕ1 ↔ ϕ2” for “¬(ϕ1 ∧ ¬ϕ2)∧
¬(ϕ2 ∧¬ϕ1)”, “�” (resp. “⊥” ) for the true (resp. false) constant.

We generically call T -atom any T -formula that cannot be decomposed proposi-
tionally, that is, any T -formula whose main connective is not a boolean operator. A
T -literal is either an atom (a positive literal) or its negation (a negative literal). The ex-
act definition of T -atoms and T -literals depends on the theory T addressed. Examples
of T -literals in different theories are,

– A1 and ¬A2 (boolean),
– (x − y ≤ 6) and ¬(z− y ≤ 2) (DL),
– (x1 + 5 ≤ 2x3) and ¬(2x1 + x2 + 4x3 = 5) (LA(Z)),
– (c = f (g(a,b))) and ¬(c = g( f (b),h(a))) (EUF ).

Notationally we use the Greek letters ϕ, ψ to represent T -formulas, the capital
letters Ai’s and Bi’s to represent boolean atoms, and the Greek letters α, β, γ to represent
T -atoms, the letters li’s to represent T -literals. If l is a negative T -literal ¬β, then by
“¬l” we conventionally mean β rather than ¬¬β. We denote by Atoms(ϕ) the set of T -
atoms which occur in ϕ. (For simplicity, henceforth we will sometimes omit the “T -”
prefix from “atom” and “literal” when not necessary.)

4 Notice that many theories of practical interest are quantifier-free sub-cases of first order theo-
ries, so that the variables are implicitly existentially quantified, and hence equivalent to Skolem
constants.
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For better readability, in all the examples of this chapter we will use the theory of
linear arithmetic on rational number LA(Q), because of its intuitive semantics. Never-
theless, analogous examples can be built with many other theories of interest.

We call a total truth assignment µ for a T -formula ϕ a set of T -literals

µ = {α1, . . . ,αN ,¬β1, . . . ,¬βM,A1, . . . ,AR,¬AR+1, . . . ,¬AS}, (1)

such that every T -atom in Atoms(ϕ) occurs as a either positive or negative literal in
µ. A partial truth assignment µ for ϕ is a subset of a total truth assignment for ϕ. If
µ2 ⊆ µ1, then we say that µ1 extends µ2 and that µ2 subsumes µ1. Notationally, we use
the Greek letters µ,η to represent truth assignments.

A total truth assignment µ is interpreted as a truth value assignment to all the atoms
of ϕ: αi ∈ µ means that αi is assigned to true, ¬βi ∈ µ means that βi is assigned to
false. Syntactically identical instances of the same T -atom are always assigned identi-
cal truth values; syntactically different T -atoms, e.g., (t1 ≥ t2) and (t2 ≤ t1), are treated
differently and may thus be assigned different truth values. To this extent, we intro-
duce a bijective function T 2B (“Theory-to-Boolean”) and its inverse B2T := T 2B−1

(“Boolean-to-Theory”), s.t. T 2B maps boolean atoms into themselves, T -atoms into
fresh boolean atoms —so that two atom instances in ϕ are mapped into the same
boolean atom iff they are syntactically identical— and distributes with sets and boolean
connectives. T 2B and B2T are also called boolean abstraction and refinement respec-
tively.

We say that a total truth assignment µ for ϕ propositionally T -satisfies ϕ, written
µ |=p ϕ, if and only if it makes ϕ evaluate to true, that is, for all sub-formulas ϕ1,ϕ2 of
ϕ:

µ |=p ϕ1, ϕ1 ∈ Atoms(ϕ) ⇐⇒ ϕ1 ∈ µ,
µ |=p ¬ϕ1 ⇐⇒ µ �|=p ϕ1,
µ |=p ϕ1 ∧ϕ2 ⇐⇒ µ |=p ϕ1 and µ |=p ϕ2.

We say that a partial truth assignment µ propositionally T -satisfies ϕ if and only if all
the total truth assignments for ϕ which extend µ propositionally T -satisfy ϕ. (Hence-
forth, if not specified, when dealing with propositional T -satisfiability we do not dis-
tinguish between total and partial assignments.)

Intuitively, if we consider a T -formula ϕ as a propositional formulas in its
atoms, then |=p is the standard satisfiability in propositional logic, i.e., µ |=p ϕ ⇐⇒
T 2B(µ) |= T 2B(ϕ). Thus, for every ϕ1 and ϕ2, we say that ϕ1 |=p ϕ2 if and only if
µ |=p ϕ2 for every µ s.t. µ |=p ϕ1. We say that ϕ is propositionally T -satisfiable if and
only if there exist an assignment µ s.t. µ |=p ϕ. We also say that |=p ϕ (ϕ is proposi-
tionally valid) if and only if µ |=p ϕ for every assignment µ for ϕ. Thus ϕ1 |=p ϕ2 if
and only if |=p ϕ1 → ϕ2, and |=p ϕ iff ¬ϕ is propositionally T -unsatisfiable. Notice
that |=p is stronger than |=T , that is, if ϕ1 |=p ϕ2, then ϕ1 |=T ϕ2, but not vice
versa. E.g., (x1 ≤ x2) ∧ (x2 ≤ x3) |=T (x1 ≤ x3), but (x1 ≤ x2) ∧ (x2 ≤ x3) �|=p

(x1 ≤ x3).
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Example 1. Consider the following LA(Q)-formula ϕ:

ϕ = {¬(2x2 − x3 > 2) ∨A1} ∧
{¬A2 ∨ (x1 − x5 ≤ 1)} ∧
{(3x1 − 2x2 ≤ 3) ∨A2} ∧
{¬(2x3 + x4 ≥ 5) ∨¬(3x1 − x3 ≤ 6) ∨¬A1} ∧
{A1 ∨ (3x1 − 2x2 ≤ 3)} ∧
{(x2 − x4 ≤ 6) ∨ (x5 = 5 − 3x4)∨¬A1} ∧
{A1 ∨ (x3 = 3x5 + 4) ∨A2}

The partial truth assignment µ given by the underlined literals above is:

{¬(2x2 −x3 > 2),¬A2,(3x1 −2x2 ≤ 3),¬(3x1 −x3 ≤ 6),(x2 −x4 ≤ 6),(x3 = 3x5 +4)}.

(Notice that the two occurrences of (3x1 − 2x2 ≤ 3) in rows 3 and 5 of ϕ are both
assigned true.) µ is a partial assignment which propositionally T -satisfies ϕ, as it assigns
to true one literal of every disjunction in ϕ, so that every total assignment which extends
µ propositionally T -satisfies ϕ. Notice that µ is not T -satisfiable, as its sub-assignment

{(3x1 − 2x2 ≤ 3),¬(2x2 − x3 > 2),¬(3x1 − x3 ≤ 6)} (2)

(rows 3, 1 and 4 in ϕ) is inconsistent.

We say that a collection M = {µ1, . . . ,µn} of partial assignments propositionally
T -satisfying ϕ is complete if and only if, for every total assignment η s.t. η |=p ϕ,
there exists µ j ∈ M s.t. µ j ⊆ η. M thus represents the set of all total assignments
propositionally satisfying ϕ.

Proposition 1. Let ϕ be a T -formula and let M = {µ1, . . . ,µn} be a complete collec-
tion of truth assignments propositionally satisfying ϕ. Then, ϕ is T -satisfiable if and
only if µ j is T -satisfiable for some µ j ∈ M .

We also notice the following fact.

Proposition 2. Let α be a non-boolean atom occurring only positively [resp. nega-
tively] in ϕ. Let M be a complete set of assignments satisfying ϕ, and let

M ′ := {µ j \ {¬α}| µ j ∈ M } [resp. {µ j \ {α} | µ j ∈ M }].

Then (i) for every η′ ∈ M ′, η′ |=p ϕ, and (ii) ϕ is satisfiable if and only if there exist a
satisfiable η′ ∈ M ′.

By proposition 1, T -satisfiability of ϕ can be decomposed into two orthogonal com-
ponents: a purely boolean one, consisting in searching for (up to a complete set of)
propositional models µ’s propositionally satisfying ϕ, and a purely theory-dependent
one, consisting in checking the T -consistence of µ (that is, for the set of T -literals in
µ). This suggests that a decision procedure for a theory T can be seen as a combination
of two basic ingredients: a Truth Assignment Enumerator and a Theory Solver for T .
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We call a Truth Assignment Enumerator (ENUMERATOR henceforth) a total func-
tion which takes as input a T -formula ϕ and returns a complete collection M :=
{µ1, . . . ,µn} of assignments propositionally satisfying ϕ.

We call a Theory Solver for T (T -SOLVE henceforth) a total function which takes
as input a set of T -literals µ and decides whether µ is T -satisfiable; optionally, it can
return a T -model satisfying µ, or Null if there is none. (It can return also some other
information, which we will discuss in §3.2.)

Examples of calls to T -SOLVE for different theories T are:

– (EUF ): EUF -SOLVE({a = b,b = f (c),¬(g(a) = g( f (c)))}) returns ”unsat”;
– (DL): DL -SOLVE({(x − y ≤ 3),(y − z ≤ 4),¬(x − z ≤ 8)}) returns ”unsat”;
– (LA(Q)): DL -SOLVE({(x − 2y ≤ 3),(4y − 2z < 9),¬(x − z ≤ 7)}) returns ”sat”;
– (LA(Z)): DL -SOLVE({(x−2y ≤ 3),(4y−2z < 9),¬(x− z ≤ 7)}) returns ”unsat”.

Notice that T can be a combination of sub-theories, and hence T -SOLVE be a com-
bined solver, as in [64, 73, 40, 12, 72].

2.2 Basics on SAT and Boolean Reasoning

A SAT solver is a procedure which decides whether an input boolean formula ϕ is
satisfiable, returning a satisfying assignment if this is the case. (Notice the difference
between a SAT solver and a truth assignment enumerator: the former has to find only
one satisfying assignment —or to decide there is none— while the latter has to find a
complete collection of satisfying assignments.)

Most state-of-the-art SAT procedures are variants of the DPLL procedure [33, 32].
The “classic” recursive schema of DPLL is described in Figure 1. (For simplicity, we
assume here that the input formulas are given in CNF; to see how to use a DPLL with
non-CNF formulas see, e.g., [47, 79].) The function SAT takes in input a boolean for-
mula ϕ and returns a truth value asserting whether ϕ is satisfiable or not. SAT invokes
DPLL passing as arguments ϕ and (by reference) an empty assignment µ. DPLL tries
to build recursively a truth assignment µ satisfying ϕ, according to the following steps:

– (base) If ϕ == �, then µ satisfies ϕ. Thus DPLL returns Sat.
– (backtrack) If ϕ == ⊥, then µ has lead to a contradiction. Thus DPLL returns

Unsat and backtracks.
– (unit propagation) If a literal l occurs in ϕ as a unit clause, then l must be assigned

to true. To obtain this, DPLL is invoked recursively with arguments the formula
returned by assign(l,ϕ) and the assignment obtained by adding l to µ. assign(l,ϕ)
substitutes every occurrence of l in ϕ with � and propositionally simplifies the
result.

– (pure literal) If a literal l occurs only positively in ϕ, then l must be assigned to
true. In this case DPLL behaves as with unit propagation.

– (split) If none of the above situations occurs, then choose-literal(ϕ) returns an unas-
signed literal l according to some heuristic criterion. Then DPLL is first invoked
recursively with arguments assign(l,ϕ) and µ ∪{l}. If the result is Sat, then such
value is returned. If the result is Unsat, then DPLL is invoked with arguments
assign(¬l,ϕ) and µ ∪{¬l}.
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function SAT(Bool formula ϕ)
return DPLL(ϕ,{});

function DPLL(Bool formula ϕ,assignment & µ)
if (ϕ == �) /* base */

then return Sat;
if (ϕ == ⊥) /* backtrack */

then return Unsat;
if {l occurs in ϕ as a unit clause} /* unit prop. */

then return DPLL(assign(l,ϕ),µ∪{l});
if {l occurs only positively in ϕ} /* pure literal */

then return DPLL(assign(l,ϕ),µ∪{l});
l := choose-literal(ϕ); /* split */
if ( DPLL(assign(l,ϕ),µ∪{l}) == Sat )

then return Sat;
else return DPLL(assign(¬l,ϕ),µ∪{¬l});

Fig. 1. The basic recursive schema of DPLL

In current SAT solvers, the pure literal rule is rarely implemented, because its benefits
do not balance its overheads.

DPLL can be used as truth assignment enumerator as well, by modifying the “base”
step so that it stores the assignment µ and backtracks, and by dropping the pure literal
step ([49, 50]). The resulting collection of assignments is complete [70].

In order to keep our explanation as simple as possible, in this chapter we will adopt
the basic recursive representation of DPLL of Figure 1. We notice, however, that this
schema is, to many extents, over-simplified. Modern DPLL implementation are non-
recursive, and are based on very efficient, destructive data structures to handle boolean
formulas and assignments. They benefit of sophisticated search techniques (e.g., back-
jumping, learning, restarts [74, 15, 52]), smart splitting heuristics (e.g., [63, 51, 39]),
highly-engineered data structures and implementation tricks (e.g., the two-watched lit-
eral scheme [63]), and advanced preprocessing techniques [24, 8, 38].

In particular, modern DPLL implementations perform conflict analysis on failed as-
signments µ’s, which detect the reason of each failure, that is, a (typically much smaller)
subset µ′ of µ which alone causes the failure. When this happens, the procedure

– adds the negation of µ′ as a new clause to the formula, so that no assignment con-
taining µ′ will be ever investigated again. This technique is called learning;

– backtracks to the highest point in the stack where one literal l in the learned clause
¬µ′ is not assigned, it unit propagates l, and it proceeds with the search. This tech-
nique is called backjumping.

Backjumping and learning are of great interest in our discussion, as it will be made clear
in §4. The other enhancements come for free by using state-of-the-art SAT solvers and
they are substantially orthogonal to our discussion, so that they will not be discussed
here.
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3 Integrating DPLL and Theory-Specific Solvers

The basic schema of a decision procedure for T -satisfiability, which we generically call
“T -SAT” henceforth, is reported in Figure 2. T -SAT takes as input a T -formula ϕ, and
builds its boolean abstraction ϕp =̇ T 2B(ϕ). (Notationally, we use the superscript p to
denote boolean abstractions: given a T -expression e, we write ep to denote T 2B(e).
Similarly, we write e to denote B2T (ep).) Notice that both T 2B and B2T can be
implemented so that to require constant time to map a literal from one representation to
the other.

ϕp is given in input to ENUMERATOR, which enumerates all the assignments in a
complete collection {µp

1 , ..,µ
p
n} for ϕp. Each time a new µp is generated, its correspond-

ing list of T -literals µ is fed to the theory solver T -SOLVE (T -SOLVE can be invoked
also on intermediate assignments during their constructions, as it will be made clear in
§4.) If µ is found T -satisfiable, then the procedure ends and returns “Sat”. If not, a new
assignment is generated by ENUMERATOR, and so on. The process is repeated until
either one T -satisfiable assignment is found, or no more assignments are generated by
ENUMERATOR. In the former case ϕ is T -satisfiable, in the latter case it is not.

3.1 The Online and Offline Integration Schemata

A DPLL-based T -SAT solver (T -DPLL henceforth) is a variant of the DPLL pro-
cedure, modified to work as an enumerator of assignments, whose T -satisfiability is
checked by T -SOLVE, in accordance with the paradigm of Figure 2.

In Figure 3 we propose a representation of T -DPLL, following the simplified
schema of DPLL given in Figure 1. (The reader may refer, e.g., to [23] for a more real-
istic representation of a modern T -DPLL engine.) Like DPLL, T -DPLL gets as input
a boolean formula, which is the result of applying T 2B to the input T -formula, and
by reference, an empty assignment µ. The T -DPLL schema differs from that of DPLL
only by two steps. (We temporarily ignore the “early pruning” step in T -DPLL, which
will be discussed in §4.)

The first is the “base” case: when DPLL finds an assignment µ which proposition-
ally satisfies the input formula, simply returns “Sat”. T -DPLL instead, whenever an
assignment µ has been found, has to check the T -satisfiability of the corresponding
set of T -literals by invoking T -SOLVE(B2T (µ)). If the latter returns “Sat”, then the
whole formula is satisfiable and T -DPLL returns “Sat” as well; otherwise, T -DPLL
backtracks and looks for the next assignment, and so on.

Enumerator

Sat/Unsat

Sat/Unsatµp: assignment µ: T -literal list

ϕ: T -formula

ϕp: boolean formula

T -Solve

Fig. 2. Basic schema of an integrated procedure
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function T -SAT(T -formula φ)
return T -DPLL(T 2B(φ),{});

function T -DPLL(Bool formula ϕ,assignment & µ)
if (ϕ == �) /* base */

then return T -SOLVE(B2T (µ)) ;
if (ϕ == ⊥) /* backtrack */

then return Unsat;
if {l occurs in ϕ as a unit clause} /* unit prop. */

then return T -DPLL(assign(l,ϕ),µ∪{l});
if (T -SOLVE(B2T (µ)) == Unsat) /* early pruning */

then return Unsat;
l := choose-literal(ϕ); /* split */
if ( T -DPLL(assign(l,ϕ),µ∪{l}) == Sat )

then return Sat;
else return T -DPLL(assign(¬l,ϕ),µ∪{¬l});

Fig. 3. The basic schema of a DPLL-based satisfiability procedure for T .

The second is in the fact that the pure literal step is removed in T -DPLL. In fact
the sets of assignments generated by DPLL with pure literal rule may be incomplete
and cause incorrect results, as shown by the following example.

Example 2. Let ϕ be the following T -formula:

((x−y ≤ 1)∨A1) ∧((y−z ≤ 2)∨A2) ∧(¬(x−z ≤ 4)∨A2) ∧(¬A2 ∨A3) ∧(¬A2 ∨¬A3).

ϕ is T -satisfiable, because µ = {A1,¬A2,(y − z ≤ 2),¬(x − z ≤ 4)} is a consistent as-
signment propositionally satisfying ϕ. It is easy to see that no satisfiable assignment
propositionally satisfying ϕ contains (x − y ≤ 1). Unfortunately, as (x − y ≤ 1) occurs
only positively in ϕ, DPLL with the pure literal rule may assign (x − y ≤ 1) to true as
first step, which leads the procedure to return the incorrect value “Unsat”.

An alternative way of integrating DPLL and T -SOLVE is that independently pro-
posed in [10] and in [35]. In its naivest form, the idea works as follows. The propo-
sitional abstraction of the input formula ϕ (T 2B(ϕ) in our notation) is given as input
to a SAT solver, which either decides that T 2B(ϕ) is unsatisfiable, and hence ϕ is T -
unsatisfiable, or it returns a satisfying assignment µ; in the latter case, µ is mapped back
to the domain T (B2T (µ) in our notation), and B2T (µ) is given as input to T -SOLVE.
If B2T (µ) is found T -consistent, then ϕ is T -consistent. If not, the negation of B2T (µ)
is added as a clause to ϕ, and the SAT solver is restarted from scratch on (the boolean
abstraction of) the resulting formula. The proposed schema can be improved when T -
SOLVE is able to return the subset η which caused the T -inconsistency of B2T (µ)
(see §4).

Following [41], we call offline integration schemata those in which DPLL is used
as a SAT solver, and thus is reinvoked from scratch each time an assignment is found
T -unsatisfiable (e.g., [10, 35]); we call online integration schema(s) those in which
DPLL is customized to be used directly as an enumerator, that is, in which each time
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it continues the boolean search from the point the checked assignment was found (e.g.,
[48, 55, 82, 2, 4, 23]). An extreme case of online approach is that of the tool DPLL(T)
described in [43, 66], where a DPLL enumerator is implemented ad-hoc, so that to
embed some theory-specific reasoning steps within the SAT solver.

An alternative way of describing DPLL-based decision procedures is proposed by
[80, 67], who introduced rule-based logical frameworks for representing both DPLL
and of DPLL-based procedures, which are thus represented as control strategies applied
to a set of formal rules. This framework allows for expressing and formally reasoning
about most known variants of both DPLL and DPLL-based decision procedures (see
also [43, 66]).

3.2 Features of Theory Solvers

We now discuss some features for T -SOLVE, which can be extremely useful to maxi-
mize the benefits of the interaction between T -SOLVE and ENUMERATOR, in partic-
ular when the latter is a DPLL solver.

Incrementality and Backtrackability. It is often the case that T -SOLVE is invoked
sequentially on incremental assignments, in a stack-based manner, like in the following
trace (left column first, then right) [21]:

T -SOLVE(µ1) =⇒ Sat Undo µ4, µ3, µ2

T -SOLVE(µ1 ∪µ2) =⇒ Sat T -SOLVE(µ1 ∪µ′
2) =⇒ Sat

T -SOLVE(µ1 ∪µ2 ∪µ3) =⇒ Sat T -SOLVE(µ1 ∪µ′
2 ∪µ′

3) =⇒ Sat
T -SOLVE(µ1 ∪µ2 ∪µ3 ∪µ4) =⇒ Unsat ...

Thus, a key efficiency issue of T -SOLVE is that of being incremental and backtrack-
able. Incremental means that T -SOLVE “remembers” its computation status from one
call to the other, so that, whenever it is given in input an assignment µ1 ∪ µ2 such that
µ1 has just been proved T -satisfiable, it avoids restarting the computation from scratch
by restarting the computation from the previous status. Backtrackable5 means that it
is possible to efficiently undo previous additions and return to a previous status on the
stack.

For instance, there are incremental and backtrackable versions of the congruence
closure algorithm for EUF logic [65], of the Belman-Ford algorithm for DL [30, 66],
and of the Simplex LP procedure for LA(Q) [9].

Conflict set generation. Given a T -unsatisfiable assignment µ, we call a conflict set 6

any T -unsatisfiable sub-assignment µ′ ⊆ µ; we say that µ′ is a minimal conflict set if all
strict subsets of µ′ are T -consistent. (E.g., in Example 1, (2) is a minimal conflict set for
µ.) A key efficiency issue for T -SOLVE, whenever it is invoked on an T -inconsistent
assignment µ, is its ability to produce the (possibly minimal) conflict set of µ which has
caused its inconsistency.

For instance, there exist conflict-set-producing variants for the Belman-Ford algo-
rithm for DL [30], for the Simplex LP procedures for LA(Q) [9] and for the congru-
ence closure algorithm for EUF [65].

5 The word resettable is used in other contests (e.g., [64]) to indicate the same feature.
6 Conflict sets are sometimes referred to as reasons or proofs.
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Deduction. For some theories it is possible to implement T -SOLVE so that some
call to T -SOLVE(µ) returning “Sat” can also perform a set of deductions in the form
µ′ |=T l, s.t. µ′ ⊆ µ and l is a literal on a not-yet-assigned atom in ϕ. We say that T -
SOLVE is deduction-complete if it can perform all possible such deductions. 7

Example 3. Consider the T -formula ϕ in Example 1, and suppose T -SOLVE is called
on {¬(2x2 −x3 > 2),¬(3x1 −x3 ≤ 6),(x3 = 3x5 +4)} (1st, 4th and 7th rows in ϕ); then
T -SOLVE returns “Sat” and may perform and return the deduction

{¬(2x2 − x3 > 2),¬(3x1 − x3 ≤ 6)} |=T ¬(3x1 − 2x2 ≤ 3). (3)

For instance, for EUF , the computation of congruence closure allows for efficiently
deducing positive equalities, like {(a = b),(b = g(c))} |=eu f ( f (a) = f (g(c))) [65].
For DL , a very efficient implementation of a deduction-complete T -SOLVE has been
presented by [66]. For LA(Q) and LA(Z) the task is much harder. A very partial
form of deduction is that of [4], which computes equivalence classes on variables and
performs substitutions in the unassigned atoms.

Notice that, in principle, every T -SOLVE has deduction capabilities, as it is always
possible to call T -SOLVE(µ ∪ {¬l}) for every unassigned literal l. This technique,
called plunging [37], is in practice very inefficient, unless applied in some particular
applications [2].

4 Efficient Integration Techniques

The basic integration schemata of §3.1 are rather naive, as T -DPLL interacts with T -
SOLVE in a blind way, without exchanging any information with T -SOLVE about
the semantics of the T -atoms to which it is assigning boolean values. This may cause
an excessive number of calls to T -SOLVE on assignments which are obviously T -
inconsistent, or whose inconsistency could have been easily derived from that of previ-
ously checked assignments.

In this section we describe the most effective integration techniques and optimiza-
tions which have been proposed in various communities, for the theories listed in §1.
Such techniques have been collected from a large and very heterogeneous bibliography,
“cleaned up” of any information related to the theory T , renamed and grouped accord-
ing to the form of interaction between the boolean and the theory-specific components
of reasoning. To this extent, we remark a few facts.

First, we focus on the interaction between boolean reasoning and theory-speci-
fic reasoning. Therefore techniques and optimizations focused only on pure boolean
reasoning (e.g., boolean preprocessing [24, 8, 38] or restarts [52]) or on pure theory-
specific reasoning (e.g., layering [4, 21]) are not considered here.

Second, the techniques and optimizations described here may have been called dif-
ferent names in their source papers, so that the names used here may differ from those

7 Notice the difference between the deduction of generic unassigned literal, which must occur in
ϕ, and that performed by theory solvers in Nelson-Oppen style tools (e.g., [64, 73, 40, 12, 72]),
which deduce equalities in the form x = y which do not necessarily occur in ϕ.
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used by some of the authors. (E.g., Theory-driven deduction (see §4.6) is called for-
ward reasoning in [2], enhanced early pruning in [4], theory propagation in [67, 66],
theory-driven deduction or T -deduction in [21].)

Third, we may present as separate techniques which some authors present as one
technique (but some other authors do not). (E.g., early pruning (§4.3) and theory-driven
deduction (§4.6) are often described as only one technique (e.g., in [43]).)

Finally, and more generally, due to the effort of collecting and describing from a
unified perspective techniques which have been presented by a variety of authors in
different domains, the description of some technique may differ significantly from that
given by some of the authors. (E.g., [67, 43, 66] describe their procedures in terms of
inference rules and control strategies, whilst most authors instead prefer a pseudo-code
description.)

We coarsely distinguish four main categories of integration techniques and opti-
mizations.

Preprocessing. Rewrite the input T -formula ϕ into an equivalent or equivalently satis-
fiable one which is supposedly easier to solve for T -DPLL. Among them we have
normalizing T -atoms and static learning.

Look-ahead. Analyze the current status of the search and get from it as much informa-
tion as possible which is useful to prune the remaining search space. Among them
we have early pruning, theory-driven deduction, and branching heuristics.

Look-back. When recovering from a failure, try to understand the cause of that failure
and use such an information to improve future search. Among them we have theory-
driven backjumping and theory-driven learning.

Assignment simplification. T -DPLL can provide useful information to make the as-
signment smaller and/or simpler for T -SOLVE. Among them we have clustering,
reduction of assignments to prime implicants, pure literal filtering and theory literal
filtering.

4.1 Normalizing T -Atoms

The idea of normalizing the T -atoms was first suggested by [48] for their DPLL-based
procedure for modal logics; similar idea were then introduced for description logics in
[55, 68], and for LA(Z) in [4].

One potential source of inefficiency for T -DPLL is the fact that semantically equiv-
alent but syntactically different atoms are not recognized to be identical [resp. one the
negation of the other] and thus they may be assigned different [resp. identical] truth val-
ues. For instance, syntactically different atoms may be equivalent modulo reordering or
associativity of operators, or may be one the negation of the other. This causes the unde-
sired generation of a potentially very big amount of intrinsically T -unsatisfiable assign-
ments (for instance, up to 2Atoms(ϕ)−2 assignments of the kind {(x1 < x2),(x1 ≥ x2), ...}).

To avoid these problems, it is wise to preprocess atoms so that to map semantically
equivalent atoms into syntactically identical ones. Some typical rewriting steps are:

– Rewrite dual operators. E.g., (x1 < x2), (x1 ≥ x2) =⇒ ¬(x1 ≥ x2), (x1 ≥ x2).
– Exploit associativity of operators. E.g., (x1 +(x2 + x3) = 1), ((x1 + x2)+ x3) = 1

=⇒ (x1 + x2 + x3 = 1).
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– Sort. E.g., (x1 + x2 − x3 ≤ 1), (x2 + x1 − 1 ≤ x3) =⇒ (x1 + x2 − x3 ≤ 1)).
– Exploiting specific properties of T . E.g., in LA(Z), (x1 ≤ 3), (x1 < 4) =⇒ (x1 ≤ 3).

Of course, the applicability and effectiveness of these mappings depend on the the-
ory addressed. Although rather straightforward, normalizing atoms is an essential step
which may drastically reduce the global amount of search (see, e.g., [48]).

4.2 Static Learning

The following idea was proposed by [2] for their procedure DL . Similar such tech-
niques were generalized and used in [7, 58, 21].

On some specific kind of problems, it is possible to quickly detect a priori short and
“obviously T -inconsistent” assignments of T -atoms occurring in the original formula
(typically pairs or triplets). Some examples are:

– incompatible value assignments (e.g., {x = 0,x = 1}),
– congruence constraints (e.g., {(x1 = y1),(x2 = y2),¬( f (x1,x2) = f (y1,y2))}),
– incompatible difference constraints (e.g., {(x − y = 2),(y − z ≤ 4),¬(x − z ≤ 5)}),
– equivalence constraints ({(x = y),(2x − 3z ≤ 3),¬(2y − 3z ≤ 3)}).

If so, the clauses obtained by negating the assignments (e.g., ¬(x = 0)∨¬(x = 1)) can be
added a priori to the formula before the search starts. Thus, whenever all but one of the
literals in the inconsistent assignment are assigned, the negation of the remaining one
is deterministically assigned by unit propagation, which prevents the solver generating
any assignment including the inconsistent one. This technique may drastically prune
the boolean search space, and thus produce very relevant speed-ups [2, 7, 21].

Notice that, unlike the extra clauses added in [77, 71], the clauses added by static
learning refer only to atoms which already occur in the original formula, so that no new
atom is added. This means that the boolean search space is not enlarged. Furthermore,
we remark that, unlike with [77, 71], these added clauses are not needed for correctness
and completeness, but rather they are only used for reducing the boolean search space.

4.3 Early Pruning

The following enhancement to the basic integration schema of Figure 3, here called
early pruning8, was introduced by [48] in procedures for modal and description log-
ics; [82, 4, 10, 43] developed similar ideas in procedures for LA(Q), LA(Z), EUF ,
BV (Z), AR (Z) and inductive datatypes.

Typically most assignments found by T -DPLL are “trivially” T -unsatisfiable, in
the sense that their T -unsatisfiability is caused by much smaller subsets (conflict sets).
If an assignment µ′ is T -unsatisfiable, then all its extensions are T -unsatisfiable. If the
unsatisfiability of an assignment µ′ is detected during its construction, then this prevents
checking the T -satisfiability of all the up to 2|Atoms(ϕ)|−|µ′| total truth assignments which
extend µ′.

This suggests to introduce an intermediate T -satisfiability test on intermediate
assignments before each decision (in Figure 3, just before the “split” step). If T -
SOLVE(µ) returns Unsat, then all possible extensions of µ are unsatisfiable, and there-
fore T -DPLL returns Unsat and backtracks, avoiding a possibly big amount of useless
search.

8 Also called intermediate assignment checking [48] and eager notification [10].
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Example 4. Consider the formula ϕ of Example 1. Suppose that, after four decisions,
T -DPLL builds the intermediate assignment:

µ′ = {¬(2x2 − x3 > 2),¬A2,(3x1 − 2x2 ≤ 3),¬(3x1 − x3 ≤ 6)}, (4)

(rows 1, 2, 3 and 5, 4 of ϕ respectively). If T -SOLVE is invoked on µ′, it returns Unsat,
and T -DPLL backtracks without exploring any extension of µ′.

In theory, the introduction of an intermediate consistency check before every split could
negatively affect the global worst-case performance. In practice, it is sufficient an aver-
age pruning of one split per branch to make the intermediate consistency check worth
doing9. (E.g., in the worst-case in which no intermediate test causes backtracking, the
number of T -SOLVE calls doubles.) Notice that the overhead of intermediate calls in
early pruning reduces drastically if T -SOLVE is incremental (see §3.2).

Some variants of early pruning have been proposed in the literature.

Selective or intermittent early pruning. Some heuristic criteria can be introduced to
reduce the number of redundant calls to T -SOLVE in early pruning steps. One way is
not to invoke T -SOLVE when it is very unlikely that, since last call, the new literals
added to µ′ can cause inconsistency. For instance, this is the case when they are added
only literals which either are purely-propositional [48] or contain new variables [4].

Another way is to call T -SOLVE every k branching steps, k being an user-defined
integer parameter [3].

Weakened early pruning. In order to further reduce the overhead due to early pruning,
another idea is to use, for intermediate checks only, weaker but faster versions of T -
SOLVE [22]. This is possible because intermediate checks are not necessary to the
correctness and completeness of the procedure. The notion of “weaker T -SOLVE”
depends on the theory we are dealing with. Some general ideas are:

– in case of “Sat” response, avoid reconstructing the satisfying assignments and mod-
els (which are non-informative in intermediate checks);

– check only easier-to-check sub-assignments of µ. E.g., as DL is much easier than
LA , if µ is {(x − y ≤ 4),(z − x ≤ −6),(z − y = 0),(x − y = z − w)}, then one can
test only the sub-assignment dealing with DL terms (e.g., the first three literals in
µ, which are inconsistent) and backtrack if this is inconsistent10;

– check µ only on some easier theory T ’ s.t., if ϕ is inconsistent in T ’ then ϕ is
inconsistent in T . For example, as LA(Z) is way harder than LA(Q) (see [17]),
we may want to check the consistency of an assignment on R rather than on Z, and
backtrack if T -SOLVE return “Unsat”.

On the whole, there is a tradeoff between the benefits of reducing the overhead and the
drawbacks of reducing the pruning effect.

9 In fact, in a binary tree the number of internal nodes equals the number of leaves minus one.
10 This situation is the very frequent in the domain of bounded model checking for timed systems,

where we have a big majority of DL literals, and only very few LA literals [7].



158 A. Cimatti and R. Sebastiani

Eager early pruning. Some DPLL-based procedures for various theories (e.g.,
[82, 78, 43, 66]) perform a more eager form of early pruning, in which the theory solver
is invoked every time a new T -atom is added to the assignment (including those added
by unit propagation). In the schema of Figure 3, this corresponds to move the early
pruning step before the unit propagation one. The eager approach benefits of a more
aggressive pruning due to T -inconsistencies, but pays for extra overhead.

4.4 Theory-Driven Backjumping

This technique, which generalizes that of backjumping in standard DPLL, was intro-
duced by [55] and [68] for description logics; [82, 4, 35, 78] proposed the same idea for
many other theories.

As for early pruning, the rationale of Theory-driven backjumping (T -backjumping
henceforth) it to avoid investigating parts of the boolean search tree under an inter-
mediate branch which is T -inconsistent. Suppose a satisfying assignment µ is found
and T -SOLVE is invoked on µ, which is found T -inconsistent; suppose also that T -
SOLVE is able to return also a conflict set η ⊆ µ causing the T -unsatisfiability of the
input assignment µ, as discussed in §3.2. If so, T -DPLL can jump back in its search
to the most recent branching point s.t. at least one literal l ∈ η is not assigned; in fact,
all subbranches of the branch below that point contain the conflict set η, so that there is
no need to explore them. This allows for pruning all these subbranches from the search
tree11.

Conflict Set:� �
3x1 � 2x2 � 3 � �	 �

2x2 � x3 
 2 � �	 �
3x1 � x3 � 6 � �

�
3x1 � 2x2 � 3 �

	 �
2x2 � x3 
 2 �

	 �
3x11 � x3 � � 6 �

Conflict Set:

Learned clause:

	 �
3x1 � x3 � 6 �

�
3x1 � x3 � 6 � 	 �

2x2 � x3 
 2 �
	 �

3x1 � 2x2 � 3 �� �
3x1 � 2x2 � 3 � �	 �

2x2 � x3 
 2 � �	 �
3x1 � x3 � 6 � �

	 �
3x1 � 2x2 � 3 � �

�
2x2 � x3 
 2 � �

�
3x1 � x3 � 6 �

�
3x1 � 2x2 � 3 �

	 �
2x2 � x3 
 2 �

	 �
3x1 � x3 � 6 ��

2x2 � x3 
 2 � 	 �
2x2 � x3 
 2 �

	 �
3x1 � x3 � 6 �

Fig. 4. Example of search trees: left: with theory-driven backjumping; right: with theory-driven
learning

11 In more modern implementations, T -DPLL can jump back in its search to the highest point
where only one literal l ∈ η is not assigned, unit-propagate ¬l, and proceed with the search.
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Example 5. Consider the formula ϕ and the assignment µ of Example 1, and suppose
that ϕ is a small subpart of a much bigger formula ϕ′, and that µ is a small subpart
of an assignment µ′ propositionally satisfying it. Assume the literals in µ have been
assigned in order. Consider the following scenario, depicted in the search schema of
Figure 4, left: T -SOLVE is invoked on µ′, and returns the conflict set (2) in Example 1;
thus T -DPLL can jump back directly to the most recent branching point where at
least one literal in the conflict set is not assigned (say ¬(3x1 − x3 ≤ 6)), because all
subbranches below that point would lead to assignment containing the conflict set, and
can thus be skipped. (E.g., no need to try to assign negative values to (x2 − x4 ≤ 6) and
(x3 = 3x5 + 4)).

T -backjumping is very similar to standard DPLL backjumping. The main difference is
in the notion of conflict set used: here a conflict set is an assignment which is intrinsi-
cally inconsistent in T , rather than an assignment which forces propositional inconsis-
tency if added to ϕ.

In general, the benefits of T -backjumping depend on the “quality” of the conflict set
returned by T -SAT. To this extent, techniques to force T -SOLVE to return “better” or
“best” conflict sets have been proposed in [83, 3] for different theories.

4.5 Theory-Driven Learning

This technique, which generalizes that of learning in standard DPLL procedures, was
introduced by [82] for LA(Q); [4, 35, 78, 41] proposed the same idea for many other
theories.

The rationale of theory-driven learning (T -learning henceforth) is that, when T -
SOLVE returns a conflict set η, the clause ¬η can be added in conjunction to ϕ. Since
then, T -DPLL will never again generate any branch containing η. In fact, as soon
as |η| − 1 literals in η are assigned to true, the remaining literal will be immediately
assigned to false by unit propagation.

Example 6. Consider the formula ϕ of Example 1. As in Examples 5, suppose T -
SOLVE returns the conflict set (2). Then the clause

¬(3x1 − 2x2 ≤ 3)∨ (2x2 − x3 > 2)∨ (3x1 − x3 ≤ 6)

is added in conjunction to ϕ. Thus, in all future branches, whenever a branch contains
two elements of the conflict set, then T -DPLL will immediately assign the third to
false by unit propagation (Figure 4, right).

As for T -backjumping, the only difference wrt. standard DPLL learning is in the no-
tion of conflict set used, which is an assignment intrinsically inconsistent in T . To this
extent, notice that, whilst for T -backjumping the best conflict set is that which forces
the highest jump in the stack, for T -learning the best conflict set is the one which causes
the pruning of most future branches. In practice, these are the shortest conflict sets and
those containing most atoms occurring in future branches (relevant atoms). To this ex-
tent, techniques to force T -SOLVE to return shorter conflict sets have been proposed
in [83, 3, 36] for different theories.
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Like all learning techniques, T -learning must be used with some care, because it
may cause an explosion in size of ϕ. To avoid this, one has to introduce techniques for
discarding learned clauses when necessary [15]. Luckily, by using one modern DPLL
implementation from the shelf, one gets this feature for free.

As with static learning, the clauses added by T -learning refer only to atoms which
already occur in the original formula, so that no new atom is added. [41] proposed
an interesting generalization of T -learning, in which at each consistency check more
than one clause may be added, which may contain also new atoms. To overcome the
consequent enlargement of the search space, they proposed to restrict splitting to the
original atoms. [20, 23] used a similar idea to improve the efficiency of Delayed Theory
Combination (see §5).

4.6 Theory-Driven Deduction of Unassigned Literals

Theory-driven deduction of unassigned literals —T -deduction henceforth 12— was in-
troduced in its simplest form (plunging) by [2] for DL ; [4], [80], [14] proposed similar
or improved techniques for other theories; however, the technique showed its full po-
tential in [43, 66], where solvers for EUF and DL have been presented, which apply
T -deduction aggressively, obtaining impressive performances. Remarkably, the latter
paper introduced also a general technique for exploiting the use of deduction-complete
theory solvers.

As discussed in §3.2, for some theories it is possible to implement T -SOLVE so
that any call to T -SOLVE(µ) returning “Sat” can also perform a set of deductions in
the form µ′ |=T l, s.t. µ′ ⊆ µ and l is a literal on a not-yet-assigned atom in ϕ. If this
is the case, then T -SOLVE can return l, which is unit-propagated away by T -DPLL.
This may induce new literals to be assigned, new calls to T -SOLVE, new assignments
deduced, and so on, possibly causing a beneficial loop between T -deduction and unit
propagation 13.

The effects of T -deduction can be used also for learning. Whenever T -SOLVE
deduces a literal l as a T -consequence of {l1, ..., lk}, the clause

∨k
i=1 ¬li ∨ l can be

learned, with benefits analogous to those of T -learning. (Again, one must take into
account the problem of the potential explosion of ϕ, as hinted in §4.5.)

Example 7. Consider the following scenario with the T -formula ϕ in Example 1: T -
SOLVE is called on {¬(2x2 − x3 > 2),¬(3x1 − x3 ≤ 6),(x3 = 3x5 + 4)} (1st, 4th and
7th rows in ϕ); then T -SOLVE returns “Sat” and deduces {¬(3x1 − 2x2 ≤ 3)} (3rd
and 5th rows) as a consequence of the first two literals. This forces unit-propagating A1

and A2, and hence (x1 − x5 ≤ 1) (2nd row); then T -SOLVE is invoked on the resulting
assignment:

{¬(2x2 − x3 > 2),¬(3x1 − x3 ≤ 6),(x3 = 3x5 + 4),¬(3x1 − 2x2 ≤ 3),(x1 − x5 ≤ 1)}

12 Also called forward reasoning in [2], enhanced early pruning in [4], theory propagation in
[67, 66].

13 As an implementation remark, implementing this technique on top of a modern DPLL imple-
mentation can be tricky, as the deduction mechanism may interfere with the “reason” in the
construction of the implication graph [74] of DPLL. [43] show how to tackle these problems.
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which is inconsistent because of the 2nd, 3rd and 5th literals, so that the whole proce-
dure backtracks, learning the corresponding conflict clause. The deduction step allows
for learning also the clause

(2x2 − x3 > 2)∨ (3x1 − x3 ≤ 6)∨¬(3x1 − 2x2 ≤ 3),

which is the same as in Example 6, and will thus produce the benefits described there.

As T -deduction is performed during the intermediate calls to T -SOLVE, it is always
related to early pruning. Like with early pruning, T -deduction can be applied either in
a lazy way, before any new branching [4], or, more eagerly, every time a new T -atom is
added to the assignment (including those added by unit propagation) [2, 13, 80, 14, 43].
As with early pruning, the eager approach benefits of a more aggressive pruning, but
pays for extra overhead.

4.7 Clustering

This technique was proposed in [21] for EUF , LA(Q) and LA(Z).
At the beginning of the search, the set of T -atoms of ϕ is partitioned into a set

of disjoint clusters C1 ∪ ·· · ∪Ck, s.t. atoms which do not interfere to each-other’s T -
satisfiability belong to different clusters. Consequently, every assignment µ can be par-
titioned into k disjoint sub-assignments µi, one for each cluster, so that µ is T -satisfiable
iff each µi is. Based on this idea, instead of having a single, monolithic solver, T -
SOLVE is instantiated (up to) k different times: each is responsible for the handling of
the reasoning within a single cluster.

The advantage of this “divide-and-conquer” approach is manifold. First, k solvers
running on k disjoint problems are typically faster then running one solver monolithi-
cally on the union of the problems. Second, the solvers can be activated in a lazy way: if
one returns “Unsat”, there is no need to call the others. Third, the construction of smaller
conflict sets becomes easier, and this may result in significant gain in the overall search.

4.8 Reduction of Assignments to Prime Implicants

The following technique was recently proposed for DL [3].
Let µ be an assignment propositionally satisfying the input formula ϕ. Sometimes

µ may not be a prime implicant for ϕ, that is, some of the literals in µ may be unnec-
essary to propositionally satisfy ϕ (i.e., µ \ {l} |=p ϕ for some l ∈ µ). The typical case
is when more than two literals in the same clause are satisfied by µ. Thus T -SOLVE
may eliminate such literals l’s from µ. There are a couple of potential benefits for this
behavior. Let µ′ be the reduced version of µ. First, µ′ might be T -satisfiable despite µ is
T -unsatisfiable. If so, T -DPLL can stop. Second, if both µ′ and µ are T -unsatisfiable,
checking the consistency of µ′ rather than that of µ can be faster and cause smaller
conflict sets, so that to improve the effectiveness of T -backjumping and T -learning.

Example 8. Consider the following scenario with the T -formula ϕ in Example 1:
T -DPLL generates the following assignment µ, which propositionally satisfies ϕ:
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{¬(2x2 − x3 > 2),¬A2,(3x1 − 2x2 ≤ 3),¬(3x1 − x3 ≤ 6),¬A1,(x3 = 3x5 + 4)}.

If T -SOLVE is invoked on µ without reduction, then it will return “Unsat” due to
the conflict set {¬(2x2 − x3 > 2),(3x1 − 2x2 ≤ 3),¬(3x1 − x3 ≤ 6)}. We notice that
the literal ¬(3x1 − x3 ≤ 6) is unnecessary for satisfying ϕ, because the 4th clause is
‘satisfied also by ¬A1. Thus, if we drop it from µ, we obtain a T -satisfiable assignment
µ′ s.t. µ′ |=p ϕ, so that T -DPLL can return “Sat” without further backtracking.

4.9 Pure Literal Filtering

This technique, which we call pure literal filtering,14 was implicitly proposed by [82]
and then generalized by [45, 4, 22].

The idea is that, if we have non-boolean T -atoms occurring only positively [resp.
negatively] in the input formulas, we can drop any negative [resp. positive] occurrence
of them from the assignment to be checked by T -SOLVE. (The correctness of this
process is a consequence of Proposition 2.)

We notice first that this techniques has the same two benefits a described for re-
duction to prime implicants in §4.8. Moreover, this technique is particularly useful in
some situations. For instance, in mathematical reasoning many solvers cannot handle
efficiently disequalities (e.g., (x1 − x2 �= 3)), so that they are forced to split them into
the disjunction of strict inequalities (x1 − x2 > 3)∨ (x1 − x2 < 3). In many problems its
very frequent that an equality like (x1 −x2 = 3) occurs with positive polarity only. If so,
and if it is assigned to false by T -DPLL, then the technique described avoids adding to
µ the corresponding disequality (x1 − x2 �= 3) [82, 4].

4.10 Theory Literal Filtering

This technique has been recently proposed by [22] to further reduce the amount of T -
literals given to T -SOLVE.

Let C = l1 ∨ ·· · ∨ ln be a theory-learned clause, that is, a clause resulting from ei-
ther static learning (§4.2), or theory-driven learning (§4.5), or theory-driven deduction
(§4.6). By construction, {¬l1, . . . ,¬ln} is T -unsatisfiable, so that, all interpretations that
satisfy all ¬l1, . . . ,¬li−1,¬li+1, . . . ,¬ln must satisfy the literal li, for every i ∈ [1...n].
Thus, if the current assignment µ contains the literals ¬l1, . . . ,¬li−1,¬li+1, . . . ,¬ln, and
hence li is forced to true by unit propagation on the clause C, then there is no need to
pass li to T -SOLVE as µ is T -satisfiable iff µ ∪{li} is. In order to detect these cases,
the theory-deduced clauses can be marked with a flag.

Combining the filtering methods requires some care, as ¬l1, . . . ,¬li−1,¬li+1, . . . ,¬ln
in the current truth assignment must have been passed to T -SOLVE (i.e. not filtered)
in order to apply theory-deduced literal filtering to li. Moreover, also combining one or
both literal filtering method(s) with T -deduction requires some care, in order to prevent
T -SOLVE to perform useless T -deductions of literals which have been filtered away.
In fact, if both T -deduction and some form of literal filtering is implemented, then it
is advisable that the filtered atoms are dropped not only from the assignment, but also
from the list of atoms which can be T -deduced.
14 Also called triggering [82, 4].
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4.11 Branching Heuristics

In the efficiency of standard DPLL algorithms, a key role is played by the heuristic
adopted for selecting the literal to branch on (the function “choose-literal” in the schema
of Figure 3). Traditionally, most heuristics were variants of the so-called MOMS
schema: pick the literal occurring most often in the minimal size clauses (see, e.g.,
[54]); others select a candidate set of literals, perform explicitly unit propagation on all
of them in turn, and choose the choice leading to the smaller clause set [59]; more re-
cent ones privilege literals occurring in clauses which have been learned most recently
[63, 51, 39]. Moreover, when formulas derive from the encoding of some specific prob-
lem, it is often useful to allow the encoder to provide to the DPLL solver a list of
“privileged” variables on which to branch on first (e.g., action variables in SAT-based
planning [46], primary inputs in bounded model checking [76], transition variables for
verification of timed automata [7]).

In general, good splitting heuristics for “pure” DPLL are not necessary good for
T -DPLL-like procedures as well. First, a heuristic which is good to search for one
assignment is not necessary good for enumerating up to a complete collection of them.
More importantly, traditional DPLL heuristics are “blind”, in the sense that they do not
take into account the T -semantics of the literals.

Despite some interesting attempts (e.g., DLP has a heuristic aiming at maximiz-
ing the benefits of T -backjumping [68]) so far there seem to be no really satisfactory
proposals in this direction, and most tool simply use standard DPLL heuristics.

One of the main reason for this fact may be that the problem of taking into account
the semantics of T -atoms in splitting is trickier then one would expect. In fact, to be
effective, the heuristic should not only take into account the semantics of the literal
chosen, but also that of all the literals that are assigned as a deterministic consequence
(unit propagation, T -deduction) of that choice. (For instance, with some problems it is
often the case that boolean literals are better choices than others, because they cause
longer chains of unit propagations [48, 49, 7].)

Example 9. Consider the T -formula ϕ in Example 1. Branching on the boolean literal
¬A1 causes the assignment of ¬(2x2 − x3 > 2) and (3x1 −2x2 ≤ 3) by unit propagation
(rows 1, 5 and hence 3) and hence of (3x1 − x3 ≤ 6) by T -deduction.

Unfortunately, the whole sets of deterministic consequences of a branch choice are dif-
ficult to predict a priori. One possible direction, is to perform all propagations explicitly
on all the candidate literals in turn as in [59], but this is likely to be extremely expen-
sive. Another direction is, as with the pure boolean case, to provide to T -DPLL solver
a list of “privileged” variables on which to branch on first [7].

4.12 Discussion

For most of the integration techniques described in §4, the applicability and the benefits
of their application depend on many factors.

First, some integration techniques require as necessary conditions some of the spe-
cific features of T -SOLVE described in §3.2. For instance, T -backjumping and T -
learning can not be applied if the theory solver is not capable of producing (good
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enough) conflict sets; similarly, the benefits of T -deduction depend only on the de-
duction capabilities of T -SOLVE, and on their efficiency.

Second, the effects of the different integration techniques are not mutually inde-
pendent, and are thus difficult to evaluate as stand-alone ones. Some techniques can
share part of their benefits: for instance, T -learning and T -deduction may learn the
same clauses, as in Examples 6 and 7. Some other can interact negatively: pure literal
filtering can reduce the pruning power of early pruning, because it may drop literals
causing T -inconsistencies, and thus some pruning of the boolean search. Finally, some
other techniques are pairwise related: for instance, T -deduction is associated with early
pruning; both T -backjumping and T -learning benefit of the conflict sets generated by
T -SOLVE, and are thus implemented together in most solvers.

We also remark that the benefits of many integration techniques, like early pruning
and T -deduction, depend on the theory T addressed and, in particular, on the tradeoff
between the cost of T -solving and the benefits of reducing boolean search space. 15 For
some theories T -solving is extremely cheap, so that it is typically worth performing ex-
tra calls to T -SOLVE if this allows for pruning the boolean search. E.g., the satisfiabil-
ity of sets of constraints in EUF and DL can be solved respectively in O(nlog(n)) and
O(n2) time, and very fast algorithms are available [30, 65, 66]. For some other theories,
T -solving is expensive, so that trading T -SOLVE calls for boolean search reduction is
not always a good deal.

Thus, with very few exceptions, there is no universal, theory-independent recipe for
choosing the right integration techniques to apply.

5 Decision Procedures for Combined Theories

In many practical applications, the theory T is a combination of two (or more) theories
T1 and T2. For instance, an atom of the form f (x + 3y) = g(2x − y), that combines
uninterpreted function symbols (from EUF ) with arithmetic functions (from LA(Q)),
could be used to naturally model in a uniform setting the abstraction of some functional
blocks in an arithmetic circuit. Other relevant examples of combination include, for
instance, DL and EUF , and LA(Z) and EUF . In the following, we discuss two
approaches to the development of T -decision procedures, where T is the combination
of two different theories.

We first provide some additional background notions. A theory T is stably-infinite
iff every quantifier-free T -satisfiable formula is satisfiable in an infinite model of T .
Notice that EUF , DL , LA(Q), LA(Z) are stably-infinite, whilst e.g. bit-vector theo-
ries typically are not. In what follows, we shall assume to deal only with stably-infinite
theories with disjoint signatures.

T is convex iff, for every set l1, ..., lk, l′, l′′ of literals in T s.t. l′, l′′ are in the form
(x = y), x,y being variables, we have that

{l1, ..., lk} |=T (l′ ∨ l′′) ⇐⇒ {l1, ..., lk} |=T l′ or {l1, ..., lk} |=T l′′.

15 Notice that “reducing the boolean search” means not only reducing the time spent on boolean
reasoning but also, and much more importantly, reducing the size of the boolean search tree
and consequently the number of calls to T -SOLVE.
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Notice that EUF , DL , LA(Q) are convex, whilst LA(Z) is not.
Let now T1 and T2 be two theories with equality and disjoint signatures Σ1,Σ2. An

atom ψ is i-pure if only =, variables and symbols from Σi occur in ψ. We say ψ is strictly
i-pure if at least one symbol from Σi occurs in ψ. A formula ϕ is pure iff every atom in
ϕ is i-pure for some i ∈ {1,2}. Every non-pure T1 ∪T2 formula ϕ can be converted into
an equivalently satisfiable pure formula ϕ′, by recursively labeling terms t with fresh
variables vt , and by adding the atom (vt = t). For instance, f (x + 3y) = g(2x − y) can
be transformed into (w = x + 3y)∧ (t = 2x − y)∧ ( f (w) = g(t)). This process, called
purification, is linear in the size of the input formula. Without loss of generality, in the
following we assume that all input formulas ϕ ∈ T1 ∪T2 are pure.

If ϕ is a pure T1 ∪ T2 formula, then a variable v is an interface variable for ϕ iff it
occurs in both strictly 1-pure and 2-pure atoms of ϕ. An equality (vi = v j) is an interface
equality for ϕ iff vi, v j are interface variables for ϕ.

Henceforth we denote the interface equality (vi = v j) by “ei j”; we call ei j-deduction
every deduction in the form µ |=T (

∨
j e j) s.t. all e j’s are interface equalities; we say

that a T -conflict set η is ¬ei j-minimal iff η\ {¬ei j} is T -satisfiable, for every negated
interface equality ¬ei j ∈ η.

5.1 Nelson-Oppen Combination

The first approach we discuss is conceptually very simple: we instantiate the approach
proposed in Figure 3 to the case where the theory solver for the theory T1 ∪ T2 is ob-
tained by means of the Nelson-Oppen’s combination schema [64], in the following
referred to as NO.

Given two signature-disjoint stably infinite theories T1 and T2, NO allows for solv-
ing the satisfiability problem for T1 ∪ T2 (i.e. the problem of checking the T1 ∪ T2-
satisfiability of sets of Σ1 ∪ Σ2-literals) by using the satisfiability procedures for T1

and T2. The decision procedure is based a structured interchange of information in-
ferred from either theory, and propagated to the other, until convergence is reached.
The schema requires the exchange of information, the kind of which depends on the
convexity of the involved theories. In the case of convex theories, the two solvers com-
municate to each other single interface equalities. In the case of non-convex theories,
the NO schema becomes more complicated, because the two solvers need to exchange
arbitrary disjunctions of interface equalities, which have to be managed within the de-
cision procedure by means of case splitting and of backtrack search. In the latter case,
the NO schema performs a number of branches to check the consistency of a set of
literals which depends on how many disjunctions of equalities are exchanged at each
step: if the current set of literals is µ, and one of the T i-solver sends the disjunction
∨n

k=1(ei j)k to the other, the latter must further investigate up to n branches to check the
consistency of each of the µ ∪{(ei j)k} sets separately.

We notice that the ability to carry out deductions is crucial for efficiency: each
solver must be able to derive the (disjunctions of) interface equalities ei j entailed by
its current facts ϕ. If the T i-solver is always capable of doing this, we say that it is
ei j-deduction complete. When this capability is not available, it must be replaced by
“guessing” followed by a satisfiability check with respect to T i. In what follows we
shall assume that all the T i-solver’s used in a NO schema are ei j-deduction complete.
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Fig. 5. Representation of the NO search tree for the formula of Example 10

Hereafter, we denote with µT i
the subassignment of µ containing only i-pure literals.

Example 10. Consider the following EUF ∪LA(Z) formula ϕ

EUF : ¬( f (v1) = f (v2))∧¬( f (v2) = f (v4))∧ ( f (v3) = v5)∧ ( f (v1) = v6)∧
LA(Z) : (v1 ≥ 0)∧ (v1 ≤ 1)∧ (v5 = v4 − 1)∧ (v3 = 0)∧ (v4 = 1)∧

(v2 ≥ v6)∧ (v2 ≤ v6 + 1).
(5)

Here all the variables (v1, . . . ,v6) are interface ones. ϕ contains only unit clauses, so after
the first run of unit propagations, DPLL generates the assignment µ which is simply the
set of literals in ϕ. The NO combination schema then runs as depicted in Fig. 5.

First, the sub-assignment µEUF is given to the EUF solver, which reports its
consistency and deduces no interface equality. Then, the sub-assignment µLA(Z) is
given to the LA(Z) solver, which reports its consistency and deduces the disjunction
(v1 = v3)∨ (v1 = v4). Next, there is a case-splitting and the two equalities (v1 = v3)
and (v1 = v4) are passed to the EUF solver. The first branch, corresponding to se-
lecting (v1 = v3), is opened: then the set µEUF ∪ {(v1 = v3)} is EUF -consistent,
and the equality (v5 = v6) is deduced. After that, the assignment µLA(Z) ∪{(v5 = v6)}
is passed to the LA(Z) solver, that reports its consistency and deduces another dis-
junction, (v2 = v3) ∨ (v2 = v4). At this point, another case-splitting is needed in
the EUF solver, resulting in the two branches µEUF ∪ {(v1 = v3),(v2 = v3)} and
µEUF ∪{(v1 = v3),(v2 = v4)}. Both of them are found inconsistent, so the whole branch
previously opened by the selection of (v1 = v3) is found inconsistent.

At this point, the other case of the branch (i.e. the equality (v1 = v4)) is selected,
and since the assignment µEUF ∪{(v1 = v4)} is EUF -consistent and no new interface
equality is deduced, the Nelson-Oppen method reports the EUF ∪LA(Z)-satisfiability
of ϕ under the whole assignment µ.
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function Bool+T1+T2 (ϕi: quantifier-free formula)
1 ϕ ←− purify(ϕi)
2 A p ←− T 2B(Atoms(ϕ)∪ interface equalities(ϕ))
3 ϕp ←− T 2B(ϕ)
4 while Bool-solver (ϕp) do
5 µp

1 ∧µp
2 ∧µp

e = µp ←− pick total assign(A p,ϕp)
6 (ρ1,π1)←− T1-solver (B2T (µp

1 ∧µp
e ))

7 (ρ2,π2)←− T2-solver (B2T (µp
2 ∧µp

e ))
8 if (ρ1 = sat∧ρ2 = sat) then return sat else
9 if ρ1 = unsat then ϕp ←− ϕp ∧¬T 2B(π1)
10 if ρ2 = unsat then ϕp ←− ϕp ∧¬T 2B(π2)
11 end while
12 return unsat
end function

Fig. 6. The Delayed Theory Combination procedure for SMT(T1 ∪T2)

5.2 Delayed Theory Combination

The Delayed Theory Combination (DTC, [20, 23]) schema tackles the SMT(T1 ∪ T2)
problem in a different way. Instead of using the Nelson-Oppen schema to combine two
decision procedures for T1 and T2 by exchange of (disjunctions of) interface equalities,
each of the two T i solvers only interacts with the boolean enumeration level: there is no
direct exchange of information between the theory solvers. Their mutual consistency is
ensured by augmenting the input problem with all interface equalities ei j, even if these
do not occur in the original problem. The enumerated assignments include not only the
atoms in the formula, but also the interface equalities ei j. Both theory solvers receive,
from the boolean level, the same truth assignment µe for ei j: under such conditions, the
two “partial” models found by each decision procedure can be merged into a model for
the input formula.

Notationally, we call “new” ei j’s all the interface equalities ei j’s which do not occur
in any clause of the input formula ϕ (including all the clauses learned). Moreover, in
the following we often write sets of literals {l1, ..., ln} as conjunctions l1 ∧ ...∧ ln, and
we often write clauses (

∨
i li)∨ (

∨
j l j) as implications: (

∧
i ¬li) → (

∨
j l j).

A simplified view of the algorithm is presented in Fig. 6. Initially (lines 1–3), the
formula is purified, the new ei j’s are created and added to the set of propositional sym-
bols A p, and the propositional abstraction ϕp of ϕ is created. Then, the main loop is
entered (lines 4–11): while ϕp is propositionally satisfiable (line 4), a satisfying truth
assignment µp is selected (line 5). It is important to stress that truth values are associ-
ated not only to atoms in ϕ, but also to the ei j atoms, even though they do not occur in
ϕ. µp is then (implicitly) separated into µp

1 ∧µp
e ∧µp

2 , where B2T (µp
i ) is a set of i-pure

literals and B2T (µp
e ) is a set of ei j-literals. The relevant part of µp are checked for con-

sistency against each theory (lines 6–7); T i-solver(µi ∧µe) returns a pair (ρi,πi), where
ρi is unsat iff µ is unsatisfiable in T i, and sat otherwise. If both calls to T i-solver re-
turn sat, then the formula is satisfiable. Otherwise, when ρi is unsat, then πi is a theory
conflict set, i.e. πi ⊆ µ and πi is T i-unsatisfiable. Then, ϕp is strengthened to exclude
truth assignments which may fail in the same way (line 9–10), and the loop is resumed.
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Fig. 7. DTC execution of Example 11 on LA(Z)∪EUF , with no ei j-deduction

Unsatisfiability is returned (line 12) when the loop is exited without having found a
model.

Practical implementations of DTC are based on a DPLL engine, that exploits unit-
propagation, early pruning, T -backjumping and T -learning.

Example 11. Consider the EUF ∪ LA(Z) formula ϕ (5) and the assignment µ of
Example 10. We assume here that both the EUF - and LA(Z)-solver’s have no ei j-
deduction capabilities, but that they always return ¬ei j-minimal conflict sets. A session
of DTC is depicted in Fig. 7. (We adopt here a strategy for DTC which is described in
detail in [26]. )

Initially, both µLA(Z) and µEUF are found consistent in each of the theories by the
respective solvers. Then DTC starts selecting new ¬ei j’s, and proceeds without causing
conflicts, until it selects ¬(v1 = v4) and ¬(v1 = v3), which cause a LA(Z) conflict. The
branch is in the form µ ∪⋃

j ¬e j, so that, the ¬ei j-minimal conflict set η13 returned is
in the form µ′

LA(Z) ∪{¬(v1 = v3),¬(v1 = v4)}. 16 DTC learns the corresponding clause
C13, and backjumps up to the highest point which allows for unit-propagating (v1 = v3)
on C13, and performs such unit propagation. Then DTC selects a chain of new ¬ei j’s
without causing conflicts, until it selects ¬(v5 = v6), which causes a EUF conflict. As
EUF is convex, ¬(v5 = v6) is the only ¬ei j occurring in the conflict set, so that DTC

learns clause C56, backtracks over the last chain of ¬ei j’s and unit-propagates (v5 = v6).
Again, DTC selects a chain of new ¬ei j’s without causing conflicts, until it se-

lects ¬(v2 = v4) and ¬(v2 = v3), which cause a LA(Z) conflict. As before, it learns
clause C23, and backjumps to the highest point where it can unit-propagate (v2 = v3)
on C23. Performing the latter unit propagation causes a EUF conflict, with conflict-

16 Hereafter, µ′
T , µ′′

T , µ′′′
T will denote generic subsets of µT , T ∈ {EUF ,LA(Q),LA(Z)}.
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ing clause C24. By resolving on literal (v2 = v3) the conflicting clause C24 with the
clause C23 (which caused the unit-propagation of (v2 = v3)), DTC may obtain a clause
C′

24 : (µ′′
LA(Z) ∧µ′′

EUF ∧(v5 = v6)∧(v1 = v3)) → (v2 = v4), which allows for backjump-

ing over all the remaining ¬ei j’s of the current chain and unit-propagating (v2 = v4). 17

The latter causes a new EUF conflict represented by the conflicting clause C14.
Then C14 is resolved with the clauses C′

24, C56, C13 (which caused the unit-propagation
of (v2 = v4), (v5 = v6), (v1 = v3) respectively), obtaining thus the new conflict clause
C′

14 : (µ′
LA(Z) ∧µ′′

LA(Z) ∧µ′
EUF ∧µ′′

EUF ∧µ′′′
EUF ) → (v1 = v4), which allows for back-

jumping up to µ and for unit-propagating (v1 = v4).
Finally, DTC selects a sequence of ¬ei j’s (possibly unit-propagating some value due

to the clauses learned) without generating conflicts, so that to conclude that the formula
is T1 ∪T2-satisfiable.

Unlike NO, DTC allows for using Ti-solver’s with partial or no ei j-deduction capability,
as part of all the ei j-deduction is played by the SAT solver. Moreover, in DTC the SAT
solver is aware a priori of the ei j’s, so that DTC can learn clauses containing ei j’s,
which can be used in subsequent branches to prune search and avoid redoing the same
search/deductions from scratch. We refer the reader to [20, 23, 26] for a more detailed
description of DTC and for an analytical comparison with NO.

6 Decision Procedures for Formal Verification

Decision procedures have been applied in different domains in verification. In particu-
lar, the well known techniques based on SAT solvers [16, 61] can be generalized from
the propositional case to analyze transition systems whose dynamics can be represented
as T -formulae in some theory T . The verification subproblems are then reduced to
checking the satisfiability of T -formulae representing the unrolling of the transition
relation over multiple steps of exectuion.

This approach has been proposed for timed systems, hybrid systems, and also for
the analysis of abstractions of extemely large or infinite state spaces (see for instance
[7, 6, 57]).

In the following, we concentrate on the potential application of decision proce-
dures to the formal checking at Register-Transfer Level (RTL), that is currently a
fundamental step in the design of hardware circuits. A number of techniques and tools
have been developed, able to carry out equivalence checking and property checking of
combinational and sequential circuits. Most tools for formal checking, however, work
at the boolean level, which is not expressive enough to capture the abstract, high level
(e.g., structural, word level) information of RTL designs. Tools for formal checking are
thus confronted with problems which are “flattened” down to boolean level (e.g., integer

17 In building the conflict clause, a literal l which has been assigned by unit-propagation on a
previously learned clause Cl can be eliminated from the conflicting clause C by resolving the
latter with Cl . This is a standard technique implemented in most SAT solvers in order to
traverse backward the implication graph and to build the boolean conflict clauses [85], and
which can be used for building T -conflict clauses as well.
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VAR a,b : word[32];
VAR I : word[1];
DEFINE k : word[32] = 0d32_100000000;
DEFINE d : word[32] = a+b;
DEFINE G : word[1] = (a<k);
DEFINE C : word[1] = I & G;
TRANS next(a) = ite(C,d,a)
TRANS next(b) = ite(C,a,b)

Fig. 8. RTL representation of a simple sequential circuit (left) and the corresponding representa-
tions in bit-vectors (right). Solid lines represent 32-bit datapath lines (words), whilst dashed lines
represent control lines (single bits).

data values are encoded and manipulated as arrays of booleans), so that a predominant
part of their computational effort is wasted in performing useless boolean search on the
bitwise encoding of integer data and arithmetical operations (e.g., up to a 232 factor in
the amount of boolean search for a 32-bit integer value).

This phenomenon is particularly hard in the presence of mathematical reasoning.
In fact, boolean solvers are “bad at mathematics”, in the sense that reasoning on the
boolean encoding of arithmetical operations (e.g., sums) causes a blowup of the com-
putational effort.

The problem of RTL verification trying to avoid bit-blasting, i.e. the uniform re-
duction to a problem of propositional satisfiability, has received significant attention in
the last years. The approaches proposed in [25, 84] are based on the encoding of bits,
bit-vectors and their operators into integer linear programming (ILP) expressions. An
ILP procedure is then used to solve the problem. The main difference with respect to
the approaches described in this chapter is that single bits and relative operators are also
handled within the ILP rather than with efficient SAT solving techniques.

In [28, 62, 31, 11], the decision procedure is engineered to be a component of more
general reasoning frameworks. For this reason, they rely on various combination sche-
mata (e.g. Nelson-Oppen, Shostak). Another remarkable difference is that the decision
procedures described in [62, 31] extend Binary Decision Diagrams [27].

A completely different approach is followed in [71, 1]: abstract representations of
an RTL circuit are generated by abstracting away information on the datapath, and
the resulting encoding is then fed into propositional SAT tools. The approach in [1] is
subject to loss of information, and iterative refinement may be required.

In [19] an alternative approach is proposed, where RTL constructs are encoded into
formulae in LA(Z) or in EUF ∪ LA(Z). Such formulae can be handled by decision
procedures directly, without flattening to boolean level, so that to reduce the computa-
tional effort. The main assumption is that an RTL circuit can be partitioned into control
and datapath components. The former can be directly encoded int boolean formulas,
and can be handled by the SAT solver embedded in the decision procedure. The latter
is encoded (as much as possible) into terms in LA(Z), so that to be handled directly by
the LA(Z) solver, thus avoiding bit-blasting as much as possible.
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Example 12. The transition relation of the circuit of Figure 8 can be encoded into a
LA(Z) formula as follows:

〈Range({a,a′,b,b′,d})〉 : (0 ≤ a)∧ (a < 232)∧ ...∧ (0 ≤ d)∧ (d < 232)∧
DEFINE k : (k = 100000000)∧
>: (G ↔ (a < k))∧
and : (C ↔ (G∧ I))∧
ite : (C → (a′ = d))∧ (¬C → (a′ = a))∧
ite : (C → (b′ = a))∧ (¬C → (b′ = b))∧
〈Adder d := a+b〉 : (d = a + b − o ·232)∧ (0 ≤ o)∧ (o ≤ 1).

In general, the verification of RTL circuit design may involve different theories, like
EUF , linear arithmetic on Z, theory of arrays, theory of bitvectors, which may be
used both alone or in combination.

7 Conclusions and Future Perspectives

We have presented a survey of the techniques for the development of decision proce-
dures based on an integration of efficient boolean reasoning, DPLL in particular, and
dedicated theory solvers. For their ability to deal efficiently with fragments of first-order
logic that are interesting from the practical view point, decision procedures have been
devoted a substantial effort in the last few years.

In fact, the area of decision procedures is extremely active. A remarkable initia-
tive is STM-LIB [69], whose goal is to establish a standard language and a library of
benchmarks for satisfiability with respect to background theories.

Yet, many research challenges remain open. A primary goal is to devise new al-
gorithms and techniques that will enable decision procedures to deal effectively on
problems of practical relevance with the same strength of SAT solvers. Key issues to
be investigated are theory-dependent splitting heuristics, finding a balance between the
amount of effort spent in boolean reasoning and in theory reasoning, and developing
effective incremental and backtrackabile theory solving algorithms. Other important
features appear to be the ability to enumerate all models (i.e. to carry out a form of
quantifier elimination), to produce explanations (i.e. proofs of unsatisfiability), and to
optimize specific cost functionals over the space of all solutions.
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1 Introduction

In this chapter, we describe the ACL2 theorem proving system and show how it
can be used to model and verify hardware using refinement.

This is a timely problem, as the ever-increasing complexity of microproces-
sor designs and the potentially devastating economic consequences of shipping
defective products has made functional verification a bottleneck in the micro-
processor design cycle, requiring a large amount of time, human effort, and re-
sources [1, 58]. For example, the 1994 Pentium FDIV bug cost Intel $475 million
and it is estimated that a similar bug in the current generation Intel Pentium
processor would cost Intel $12 billion [2].

One of the key optimizations used in these designs is pipelining, a topic that
has received a fair amount of interest from the research community. In this
chapter, we show how to define a pipelined machine in ACL2 and how to use
refinement to verify that it correctly implements its instruction set architecture.
We discuss how to automate such proofs using theorem proving, decision proce-
dures, and hybrid approaches that combine these two methods. We also outline
future research directions.

2 The ACL2 Theorem Proving System

“ACL2” stands for “A Computational Logic for Applicative Common Lisp.” It
is the name of a programming language, a first-order mathematical logic based
on recursive functions, and a mechanical theorem prover for that logic.

ACL2 is an industrial-strength version of the Boyer-Moore theorem prover [5]
and was developed by Kaufmann and Moore , with early contributions by Robert
Boyer; all three developers were awarded the 2005 ACM Software System Award
for their work. Of special note is its “industrial-strength”: as a programming
language, it executes so efficiently that formal models written in it have been used
as simulation platforms for pre-fabrication requirements testing; as a theorem
prover, it has been used to prove the largest and most complicated theorems ever
proved about commercially designed digital artifacts. In this section we give an
informal overview of the ACL2 system.
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The sources for ACL2 are freely available on the Web, under the GNU General
Public License. The ACL2 homepage is http://www.cs.utexas.edu/users/-
moore/acl2 [26]. Extensive documentation, including tutorials, a user’s manual,
workshop proceedings, and related papers are available from the ACL2 home-
page. ACL2 is also described in a textbook by Kaufmann, Manolios, and Moore
[23]. There is also a book of case studies [22]. Supplementary material for both
books, including all the solutions to the exercises (over 200 in total) can be found
on the Web [25, 24].

We recently released ACL2s [13], a version of ACL2 that features a mod-
ern graphical integrated development environment in Eclipse, levels appropri-
ate for beginners through experts, state-of-the-art enhancements such as our
recent improvements to termination analysis [45], etc. ACL2s is available at
http://www.cc.gatech.edu/home/manolios/acl2s and is being developed
with the goal of making formal reasoning accessible to the masses, with an em-
phasis on building a tool that any undergraduate can profitably use in a short
amount of time. The tool includes many features for streamlining the learning
process that are not found in ACL2. In general, the goal is to develop a tool that
is “self-teaching,” i.e., it should be possible for an undergraduate to sit down
and play with it and learn how to program in ACL2 and how to reason about
the programs she writes.

ACL2, the language, is an applicative, or purely functional programming lan-
guage. The ACL2 data types and expressions are presented in sections 2.1 and
2.2, respectively. A consequence of the applicative nature of ACL2 is that the
rule of Leibniz, i.e., x = y ⇒ f.x = f.y, written in ACL2 as (implies
(equal x y) (equal (f x) (f y))), is a theorem. This effectively rules out
side effects. Even so, ACL2 code can be made to execute efficiently. One way
is to compile ACL2 code, which can be done with any Common Lisp [59] com-
piler. Another way is to use stobjs, single-threaded objects. Logically, stobjs
have applicative semantics, but syntactic restrictions on their use allow ACL2
to produce code that destructively modifies stobjs. Stobjs have been very useful
when efficiency is paramount, as is the case when modeling complicated comput-
ing systems such as microprocessors. For example, Hardin, Wilding, and Greve
compare the speeds of a C model and an ACL2 model of the JEM1 (a silicon
Java Virtual Machine designed by Rockwell Collins). They found that the ACL2
model runs at about 90% of the speed of the C model [16].

ACL2, the logic, is a first-order logic. The logic can be extended with events ;
examples of events are function definitions, constant definitions, macro defi-
nitions, and theorems. Logically speaking, function definitions introduce new
axioms. Since new axioms can easily render the theory unsound, ACL2 has a
definitional principle which limits the kinds of functions one can define. For ex-
ample, the definitional principle guarantees that functions are total , i.e., that
they terminate. ACL2 also has macros, which allow one to customize the syntax.
In section 2.3 we discuss the issues.

We give a brief overview of how the theorem prover works in section 2.4. We
also describe encapsulation, a mechanism for introducing constrained functions,
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functions that satisfy certain constraints, but that are otherwise undefined. We
end section 2.4 by describing books in section 2.4. Books are files of events that
often contain libraries of theorems and can be loaded by ACL2 quickly, without
having to prove theorems.

In section 2.5 we list some of the applications to which ACL2 has been applied.
We end in section 2.6, by showing, in detail, how to model hardware in ACL2. We
do this by defining a simple, but not trivial, pipelined machine and its instruction
set architecture.

2.1 Data Types

The ACL2 universe consists of atoms and conses. Atoms are atomic objects and
include the following.

1. Numbers includes integers, rationals, and complex rationals. Examples in-
clude -1, 3/2, and #c(-1 2).

2. Characters represent the ASCII characters. Examples include #\2, #\a, and
#\Space.

3. Strings are finite sequences of characters; an example is "Hello World!".
4. Symbols consist of two strings: a package name and a symbol name. For

example, the symbol FOO::BAR has package name "FOO" and symbol name
"BAR". ACL2 is case-insensitive with respect to symbol and package names.
If a package name is not given, then the current package name is used, e.g.,
if the current package is "FOO", then BAR denotes the symbol FOO::BAR. The
symbols t and nil are used to denote true and false, respectively.

Conses are ordered pairs of objects. For example, the ordered pair consisting
of the number 1 and the string "A" is written (X . "X"). The left component
of a cons is called the car and the right component is called the cdr. You can
think of conses as binary trees; the cons (X . "X") is depicted in figure 1(a).
Of special interest are a class of conses called true lists. A true list is either
the symbol nil, which denotes the empty list and can be written (), or a cons
whose cdr is a true list. For example, the true list containing the numbers 0 and
1
2 , written (0 1/2), is depicted in figure 1(b). Also of interest are association
lists or alists. An alist is a true list of conses and is often used to represent a
mapping that associates the car of an element in the list with its cdr. The alist
((X . 3) (Y . 2)) is shown in figure 1(c).

2.2 Expressions

Expressions, which are also called terms, represent ACL2 programs and evaluate
to ACL2 objects. We give an informal overview of expressions in this section.
This allows us to suppress many of the details while focusing on the main ideas.
Expressions depend on what we call a history, a list recording events. One reason
for this dependency is that it is possible to define new functions (see section 2.3
on page 182) and these new functions can be used to form new expressions.
User interaction with ACL2 starts in what we call the ground-zero history which
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(a) (b) (c)

X "X"

Y 2 nil

X 3

0

1/2 nil

(X . "X") (0 1/2) ((X . 3) (Y . 2))

Fig. 1. Examples of conses

includes an entry for the built-in functions. As new events arise, the history is
extended, e.g., a function definition extends the history with an entry, which
includes the name of the function and its arity. We are now ready to discuss
expressions. Essentially, given history h, an expression is:

– A constant symbol, which includes the symbols t, nil, and symbols in the
package "KEYWORD"; constant symbols evaluate to themselves.

– A constant expression, which is a number, a character, a string, or a quoted
constant, a single quote (’) followed by an object. Numbers, characters, and
strings evaluate to themselves. The value of a quoted constant is the object
quoted. For example, the values of 1, #\A, "Hello", ’hello, and ’(1 2 3)
are 1, #\A, "Hello", (the symbol) hello, and (the list) (1 2 3), respectively.

– A variable symbol, which is any symbol other than a constant symbol. The
value of a variable symbol is determined by an environment.

– A function application, (f e1 . . . en), where f is a function expression of
arity n in history h and ei, for 1 ≤ i ≤ n, is an expression in history h.
A function expression of arity n is a symbol denoting a function of arity
n (in history h) or a lambda expression of the form (lambda (v1 . . . vn)
body), where v1, . . . , vn are distinct, body is an expression (in history h), and
the only variables occurring freely in body are v1, . . . , vn. The value of the
expression is obtained by evaluating function f in the environment where
the values of v1, . . . , vn are e1, . . . , en, respectively.

ACL2 contains many built-in, or primitive, functions. For example, cons is a
built-in function of two arguments that returns a cons whose left element is the
value of the first argument and whose right element is the value of the second
argument. Thus, the value of the expression (cons ’x 3) is the cons (x . 3)
because the value of the quoted constant ’x is the symbol x and the value of the
constant 3 is itself. Similarly, the value of expression (cons (cons nil ’(cons
a 1)) (cons ’x 3)) is ((nil . (cons a 1)) . (x . 3)). There are built-in
functions for manipulating all of the ACL2 data types. Some of the built-in
functions are described in table 1.
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Table 1. Some built-in function symbols and their values

Expression Value

(equal x y) T if the value of x equals the value of y, else nil

(if x y z) The value of z if the value of x is nil, else the value of y

(implies x y) T if the value of x is nil or the value of y is not nil, else nil

(not x) T if the value of x is nil, else nil

(acl2-numberp x) T if the value of x is a number, else nil

(integerp x) T if the value of x is an integer, else nil

(rationalp x) T if the value of x is a rational number, else nil

(atom x) T if the value of x is an atom, else nil

(endp x) Same as (atom x)

(zp x) T if the value of x is 0 or is not a natural number, else nil

(consp x) T if the value of x is a cons, else nil

(car x) If the value of x is a cons, its left element, else nil

(cdr x) If the value of x is a cons, its right element, else nil

(cons x y) A cons whose car is the value of x and whose cdr is
the value of y

(binary-append x y) The list resulting from concatenating the value of x
and the value of y

(len x) The length of the value of x, if it is a cons, else 0

Table 2. Some commonly used macros and their values

Expression Value

(caar x) The car of the car of x

(cadr x) The car of the cdr of x
(cdar x) The cdr of the car of x
(cddr x) The cdr of the cdr of x
(first x) The car of x

(second x) The cadr of x
(append x1 . . . xn) The binary-append of x1 . . . xn

(list x1 . . . xn) The list containing x1 . . . xn

(+ x1 . . . xn) Addition
(* x1 . . . xn) Multiplication
(- x y) Subtraction
(and x1 . . . xn) Logical conjunction
(or x1 . . . xn) Logical disjunction

Comments are written with the use of semicolons: anything following a semi-
colon, up to the end of the line on which the semicolon appears, is a comment.
Notice that an expression is an (ACL2) object and that an object is the value of
some expression. For example, the object (if (consp x) (car x) nil) is the
value of the expression ’(if (consp x) (car x) nil).

Expressions also include macros, which are discussed in more detail in sec-
tion 2.3. Macros are syntactic sugar and can be used to define what seem to
be functions of arbitrary arity. For example, + is a macro that can be used as
if it is a function of arbitrary arity. We can write (+), (+ x), and (+ x y z)
which evaluate to 0, the value of x, and the sum of the values of x, y, and z,
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respectively. The way this works is that binary-+ is a function of two arguments
and expressions involving + are abbreviations for expressions involving 0 or more
occurrences of binary-+, e.g., (+ x y z) is an abbreviation for (binary-+ x
(binary-+ y z)).

Commonly used macros include the ones listed in table 2.
An often used macro is cond. Cond is a generalization of if. Instead of deciding

between two expressions based on one test, as happens with if, one can decide
between any number of expressions based on the appropriate number of tests.
Here is an example.

(cond (test1 exp1)
. . .
(testn expn)
(t expn+1))

The above cond is an abbreviation for the following expression.

(if test1 exp1

. . .
(if testn expn

expn+1) . . . )

Another important macro is let. Let expressions are used to (simultaneously)
bind values to variables and expand into lambdas. For example

(let ((v1 e1)
. . .
(vn en))

body)

is an abbreviation for

((lambda (v1 . . . vn)
body)

e1 . . . en)

Consider the expression (let ((x ’(1 2)) (y ’(3 4))) (append x y)).
It is an abbreviation for ((lambda (x y) (binary-append x y)) ’(1 2) ’(3
4)), whose value is the list (1 2 3 4).

Finally, let* is a macro that is used to sequentially bind values to variables
and can be defined using let, as we now show.

(let* ((v1 e1)
. . .
(vn en))

body)

is an abbreviation for

(let ((v1 e1))
(let* (. . .

(vn en))
body))
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2.3 Definitions

In this section, we give an overview of how one goes about defining new functions
and macros in ACL2.

Functions. Functions are defined using defun. For example, we can define the
successor function, a function of one argument that increments its argument by
1, as follows.

(defun succ (x)
(+ x 1))

The form of a defun is (defun f doc dcl1 . . . dclm (x1 . . . xn) body), where:

– x1 . . . xn are distinct variable symbols
– the free variables in body are in x1 . . . xn

– doc is a documentation string and is optional
– dcl1 . . . dclm are declarations and are optional
– functions, other than f , used in body have been previously introduced
– body is an expression in the current history, extended to allow function ap-

plications of f
– if f is recursive we must prove that it terminates

A common use of declarations is to declare guards. Guards are used to indicate
the expected domain of a function. Since ACL2 is a logic of total functions, all
functions, regardless of whether there are guard declarations or not, are defined
on all ACL2 objects. However, guards can be used to increase efficiency because
proving that guards are satisfied allows ACL2 to directly use the underlying
Common Lisp implementation to execute functions. For example, endp and eq
are defined as follows.

(defun endp (x)
(declare (xargs :guard (or (consp x) (equal x nil))))
(atom x))

(defun eq (x y)
(declare (xargs :guard (if (symbolp x) t (symbolp y))))
(equal x y))

Both endp and eq are logically equivalent to atom and equal, respectively. The
only difference is in their guards, as atom and equal both have the guard t. If
eq is only called when one of its arguments is a symbol, then it can be imple-
mented more efficiently than equal, which can be called on anything, including
conses, numbers, and strings. Guard verification consists of proving that defined
functions respect the guards of the functions they call. If guards are verified,
then ACL2 can use efficient versions of functions.

Another common use of declarations is to declare the measure used to prove
termination of a function. Consider the following function definition.

(defun app (x y)
(declare (xargs :measure (len x)))
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(if (consp x)
(cons (car x) (app (cdr x) y))

y))

App is a recursive function that can be used to concatenate lists x and y. Such a
definition introduces the axiom (app x y) = body where body is the body of the
function definition. The unconstrained introduction of such axioms can render
the theory unsound, e.g., consider the “definition” (defun bad (x) (not (bad
x))). The axiom introduced, namely, (bad x) = (not (bad x)) allows us to
prove nil (false). To guarantee that function definitions are meaningful, ACL2
has a definitional principle which requires that the we prove that the function
terminates. This requires exhibiting a measure, an expression that decreases on
each recursive call of the function. For many of the common recursion schemes,
ACL2 can guess the measure. In the above example, we explicitly provide a
measure for function app using a declaration. The measure is the length of x.
Notice that app is called recursively only if x is a cons and it is called on the
cdr of x, hence the length of x decreases. For an expression to be a measure, it
must evaluate to an ACL2 ordinal on any argument. ACL2 ordinals correspond
to the ordinals up to ε0 in set theory [43, 41, 42, 44]. They allow one to use many
of the standard well-founded structures commonly used in termination proofs,
e.g., the lexicographic ordering on tuples of natural numbers [42].

Macros. Macros are really useful for creating specialized notation and for ab-
breviating commonly occurring expressions. Macros are functions on ACL2 ob-
jects, but they differ from ACL2 functions in that they map the objects given
as arguments to expressions, whereas ACL2 functions map the values of the
objects given as arguments to objects. For example, if m is a macro then (m
x1 . . . xn) may evaluate to an expression obtained by evaluating the function
corresponding to the macro symbol m on arguments x1, . . . , xn (not their values,
as happens with function evaluation), obtaining an expression exp. Exp is the
immediate expansion of (m x1 . . . xn) and is then further evaluated until no
macros remain, resulting in the complete expansion of the term. The complete
expansion is then evaluated, as described previously.

Suppose that we are defining recursive functions whose termination can be
shown with measure (len x), where x is the first argument to the function.
Instead of adding the required declarations to all of the functions under con-
sideration, we might want to write a macro that generates the required defun.
Here is one way of doing this.

(defmacro defunm (name args body)
‘(defun ,name

,args
(declare (xargs :measure (len ,(first args))))
,body))

Notice that we define macros using defmacro, in a manner similar to function
definitions. Notice the use of what is called the backquote notation. The value
of a backquoted list is a list that has the same structure as the backquoted list



184 P. Manolios

except that expressions preceded by a comma are replaced by their values. For
example, if the value of name is app, then the value of ‘(defun ,name) is (defun
app).

We can now use defunm as follows.

(defunm app (x y)
(if (consp x)

(cons (car x) (app (cdr x) y))
y))

This expands to the following.

(defun app (x y)
(declare (xargs :measure (len x)))
(if (consp x)

(cons (car x) (app (cdr x) y))
y))

When the above is processed, the result is that the function app is defined. In
more detail, the above macro is evaluated as follows. The macro formals name,
args, and body are bound to app, (x y), and (if (consp x) (cons (car x)
(app (cdr x) y)) y), respectively. Then, the macro body is evaluated. As per
the discussion on the backquote notation, the above expansion is produced.

We consider a final example to introduce ampersand markers. The example
is the list macro and its definition follows.

(defmacro list (&rest args)
(list-macro args))

Recall that (list 1 2) is an abbreviation for (cons 1 (cons 2 nil)). In ad-
dition, list can be called on an arbitrary number of arguments; this is accom-
plished with the use of the &rest ampersand marker. When this marker is used,
it results in the next formal, args, getting bound to the list of the remain-
ing arguments. Thus, the value of (list 1 2) is the value of the expression
(list-macro ’(1 2)). In this way, an arbitrary number of objects are turned
into a single object, which is passed to the function list-macro, which in the
above case returns the expression (cons 1 (cons 2 nil)).

2.4 The Theorem Prover

The ACL2 theorem prover is an integrated system of ad hoc proof techniques
that include simplification, generalization, induction and many other techniques.

Simplification is, however, the key technique. The typewriter font keywords
below refer to online documentation topics accessible from the ACL2 online
user’s manual [26]. The simplifier includes the use of (1) evaluation (i.e., the
explicit computation of constants when, in the course of symbolic manipula-
tion, certain variable-free expressions, like (expt 2 32), arise), (2) conditional
rewrite rules (derived from previously proved lemmas), cf. rewrite, (3) defini-
tions (including recursive definitions), cf. defun, (4) propositional calculus (im-
plemented both by the normalization of if-then-else expressions and the use of
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BDDs), cf. bdd, (5) a linear arithmetic decision procedure for the rationals (with
extensions to help with integer problems and with non-linear problems [17]), cf.
linear-arithmetic, (6) user-defined equivalence and congruence relations, cf.
equivalence, (7) user-defined and mechanically verified simplifiers, cf. meta, (8)
a user-extensible type system, cf. type-prescription, (9) forward chaining, cf.
forward-chaining, (10) an interactive loop for entering proof commands, cf.
proof-checker, and (11) various means to control and monitor these features
including heuristics, interactive features, and user-supplied functional programs.

The induction heuristic, cf. induction, automatically selects an induction
based on the recursive patterns used by the functions appearing in the conjec-
ture or a user-supplied hint. It may combine various patterns to derive a “new”
one considered more suitable for the particular conjecture. The chosen induc-
tion scheme is then applied to the conjecture to produce a set of new subgoals,
typically including one or more base cases and induction steps. The induction
steps typically contain hypotheses identifying a particular non-base case, one
or more instances of the conjecture to serve as induction hypotheses, and, as
the conclusion, the conjecture being proved. The system attempts to select an
induction scheme that will provide induction hypotheses that are useful when
the function applications in the conclusion are expanded under the case analysis
provided. Thus, while induction is often considered the system’s forte, most of
the interesting work, even for inductive proofs, occurs in the simplifier.

We now discuss how to prove theorems with ACL2. All of the system’s proof
techniques are sensitive to the database of previously proved rules, included in
the logical world or world and, if any, user-supplied hints. By proving appropriate
theorems (and tagging them in pragmatic ways) it is possible to make the system
expand functions in new ways, replace one term by another in certain contexts,
consider unusual inductions, add new known inequalities to the linear arithmetic
procedure, restrict generalizations, etc.

The command for submitting theorems to ACL2 is defthm. Here is an example.

(defthm app-is-associative
(equal (app (app x y) z)

(app x (app y z))))

ACL2 proves this theorem automatically, given the definition of app, but with
more complicated theorems ACL2 often needs help. One way of providing help
is to prove lemmas which are added to the world and can then be used in
future proof attempts. For example, ACL2 does not prove the following theorem
automatically.

(defthm app-is-associative-with-one-arg
(equal (app (app x x) x)

(app x (app x x))))

However, if app-is-associative is in the world, then ACL2 recognizes that the
above theorem follows (it is a special case of app-is-associative). Another way
of providing help is to give explicit hints, e.g., one can specify what induction
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scheme to use, or what instantiations of previously proven theorems to use, and
so on. More generally, the form of a defthm is

(defthm name formula
:rule-classes (class1 . . . classn)
:hints . . .)

where both the :rule-classes and :hints parts are optional.

Encapsulation. ACL2 provides a mechanism called encapsulation by which
one can introduce constrained functions. For example, the following event can
be used to introduce a function that is constrained to be associative and com-
mutative.

(encapsulate
(((ac * *) => *))
(local (defun ac (x y) (+ x y)))
(defthm ac-is-associative

(equal (ac (ac x y) z)
(ac x (ac y z))))

(defthm ac-is-commutative
(equal (ac x y)

(ac y x))))

This event adds the axioms ac-is-associative and ac-is-commutative. The
sole purpose of the local definition of ac in the above encapsulate form is to
establish that the constraints are satisfiable. In the world after admission of the
encapsulate event, the function ac is undefined; only the two constraint axioms
are known.

There is a derived rule of inference called functional instantiation that is used
as follows. Suppose f is a constrained function with constraint φ and suppose
that we prove theorem ψ. Further suppose that g is a function that satisfies
the constraint φ, with f replaced by g, then replacing f by g in ψ results in a
theorem as well. That is, any theorem proven about f holds for any function
satisfying the constraints on f . For example, we can prove the following theorem
about ac. Notice that we had to provide hints to ACL2.

(defthm commutativity-2-of-ac
(equal (ac y (ac x z))

(ac x (ac y z)))
:hints (("Goal"

:in-theory (disable ac-is-associative)
:use ((:instance ac-is-associative)

(:instance ac-is-associative
(x y) (y x))))))

We can now use the above theorem and the derived rule of inference to show
that any associative and commutative function satisfies the above theorem. For
example, here is how we show that * satisfies the above theorem.
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(defthm commutativity-2-of-*
(equal (* y (* x z))

(* x (* y z)))
:hints (("Goal"

:by (:functional-instance
commutativity-2-of-ac
(ac (lambda (x y) (* x y)))))))

ACL2 generates and establishes the necessary constraints, that * is associative
and commutative.

Encapsulation and functional instantiation allow quantification over functions
and thus have the flavor of a second order mechanism, although they are really
first-order. For the full details see [4, 29].

Books. A book is a file of ACL2 events analogous to a library. The ACL2
distribution comes with many books, including books for arithmetic, set theory,
data structures, and so on. The events in books are certified as admissible and
can be loaded into subsequent ACL2 sessions without having to replay the proofs.
This makes it possible to structure large proofs and to isolate related theorems
into libraries. Books can include local events that are not included when books
are included, or loaded, into an ACL2 session.

2.5 Applications

ACL2 has been applied to a wide range of commercially interesting verification
problems. We recommend visiting the ACL2 home page [26] and inspecting the
links on Tours, Demo, Books and Papers, and for the most current work, The
Workshops and Related Meetings. See especially [22]. ACL2 has been used on
various large projects, including the verification of floating point [48, 50, 52,
51, 53], microprocessor verification [18, 19, 7, 20, 56, 57, 54, 15, 14, 16, 8], and
programming languages [47, 3]. There are various papers describing aspects the
internals of ACL2, including single-threaded objects [6], encapsulation [29], and
the base logic [27].

2.6 Modeling Hardware

In this section, we show how to model a simple machine both at the instruction
set architecture (ISA) level and at the microarchitecture (MA) level. The MA
machine is roughly based on Sawada’s simple machine [55, 54] and the related
machines appearing in [30, 31]. It contains a three-stage pipeline and in the
sequel, we will be interested in verifying that it “correctly” implements the ISA
machine.

The ISA machine has instructions that are four-tuples consisting of an op-
code, a target register, and two source registers. The MA machine is a pipelined
machine with three stages. A pipeline is analogous to an assembly line. The
pipeline consists of several stages each of which performs part of the compu-
tation required to complete an instruction. When the pipeline is full many in-
structions are in various degrees of completion. A diagram of the MA machine
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Fig. 2. Our simple three-stage pipeline machine

appears in Fig. 2. The three stages are fetch, set-up, and write. During the fetch
stage, the instruction pointed to by the PC (program counter) is retrieved from
memory and placed into latch 1. During the set-up stage, the contents of the
source registers (of the instruction in latch 1) are retrieved from the register file
and sent to latch 2 along with the rest of the instruction in latch 1. During the
write stage, the appropriate ALU (arithmetic logic unit) operation is performed
and the result is used to update the value of the target register.

Let us consider a simple example where the contents of memory are as follows.

Inst
0 add rb ra ra
1 add ra rb ra

When this simple two-line code fragment is executed on the ISA and MA
machines, we get the following traces, where we only show the value of the
program counter and the contents of registers ra and rb.

Clock ISA MA Inst 0 Inst 1
0 〈0, 〈1, 1〉〉 〈0, 〈1, 1〉〉
1 〈1, 〈1, 2〉〉 〈1, 〈1, 1〉〉 Fetch
2 〈2, 〈3, 2〉〉 〈2, 〈1, 1〉〉 Set-up Fetch
3 〈2, 〈1, 2〉〉 Write Stall
4 〈 , 〈1, 2〉〉 Set-up
5 〈 , 〈3, 2〉〉 Write

The rows correspond to steps of the machines, e.g., row Clock 0 corresponds
to the initial state, Clock 1 to the next state, and so on. The ISA and MA
columns contain the relevant parts of the state of the machines: a pair consisting
of the PC and the register file (itself a pair consisting of registers ra and rb). The
final two columns indicate what stage the instructions are in (only applicable to
the MA machine).

In the initial state (in row Clock 0) the PCs of the ISA and MA machines
contain the value 0 (indicating that the next instruction to execute is Inst 0) and
both registers have the value 1. In the next ISA state (in row Clock 1), the PC is
incremented and the add instruction performed, i.e., register rb is updated with
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the value ra + ra = 2. The final entry in the ISA column contains the state of
the ISA machine after executing Inst 1.

After one step of the MA machine, Inst 0 completes the fetch phase and the
PC is incremented to point to the next instruction. After step 2 (in row Clock 2),
Inst 0 completes the set-up stage, Inst 1 completes the fetch phase, and the PC is
incremented. After step 3, Inst 0 completes the write-back phase and the register
file is updated for the first time with rb set to 2. However, Inst 1 is stalled during
step 3 because one of its source registers is rb, the target register of the previous
instruction. Since the previous instruction has not completed, the value of rb is
not available and Inst 1 is stalled for one cycle. In the next cycle, Inst 1 enters
the set-up stage and Inst 2 enters the fetch stage (not shown). Finally, after
step 5, Inst 1 is completed and register ra is updated.

ISA Definition. We now consider how to define the ISA and MA machines
using ACL2. The first machine we define is ISA. The main function is ISA-step,
a function that steps the ISA machine, i.e., it takes an ISA state and returns the
next ISA state. The definition of ISA-step follows.

(defun ISA-step (ISA)
(let ((inst (g (g :pc ISA) (g :imem ISA))))
(let ((op (g :opcode inst))

(rc (g :rc inst))
(ra (g :ra inst))
(rb (g :rb inst)))

(case op
(add (ISA-add rc ra rb ISA))
;; REGS[rc] := REGS[ra] + REGS[rb]

(sub (ISA-sub rc ra rb ISA))
;; REGS[rc] := REGS[ra] - REGS[rb]

(mul (ISA-mul rc ra rb ISA))
;; REGS[rc] := REGS[ra] * REGS[rb]

(load (ISA-load rc ra ISA))
;; REGS[rc] := MEM[ra]

(loadi (ISA-loadi rc ra ISA))
;; REGS[rc] := MEM[REGS[ra]]

(store (ISA-store ra rb ISA))
;; MEM[REGS[ra]] := REGS[rb]

(bez (ISA-bez ra rb ISA))
;; REGS[ra]=0 -> pc:=pc+REGS[rb]

(jump (ISA-jump ra ISA))
;; pc:=REGS[ra]

(otherwise (ISA-default ISA))))))

The ISA-step function uses a book (library) for reasoning about records. One
of the functions exported by the records books is g (get), where (g f r) gets
the value of field f from record r. Therefore, ISA-step fetches the instruction
in the instruction memory (the field :imem of ISA state ISA) referenced by the
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program counter (the field :pc of ISA state ISA) and stores this in inst, which
itself is a record consisting of fields :opcode, :rc, :ra, and :rb. Then, based
on the opcode, the appropriate action is taken. For example, in the case of an
add instruction, the next ISA state is (ISA-add rc ra rb ISA), where ISA-add
provides the semantics of add instructions. The definition of ISA-add is given
below

(defun ISA-add (rc ra rb ISA)
(seq-isa nil

:pc (1+ (g :pc ISA))
:regs (add-rc ra rb rc (g :regs ISA))
:imem (g :imem ISA)
:dmem (g :dmem ISA)))

(defun add-rc (ra rb rc regs)
(seq regs rc (+ (g ra regs)

(g rb regs))))

The macro seq-isa is used to construct an ISA state whose four fields have
the given values. Notice that the program counter is incremented and the register
file is updated by setting the value of register rc to the sum of the values in
registers ra and rb. This happens in fuction add-rc, where seq is a macro that
given a record, r, and a collection of field/value pairs, updates the fields in r
with the given values and returns the result.

TheotherALUinstructions are similarlydefined.Wenowshowhowtodefine the
semantics of the rest of the instructions (ifix forces its argument to be an integer).

(defun ISA-loadi (rc ra ISA)
(let ((regs (g :regs ISA)))
(seq-isa nil

:pc (1+ (g :pc ISA))
:regs (load-rc (g ra regs) rc regs (g :dmem ISA))
:imem (g :imem ISA)
:dmem (g :dmem ISA))))

(defun load-rc (ad rc regs dmem)
(seq regs rc (g ad dmem)))

(defun ISA-load (rc ad ISA)
(seq-isa nil

:pc (1+ (g :pc ISA))
:regs (load-rc ad rc (g :regs ISA) (g :dmem ISA))
:imem (g :imem ISA)
:dmem (g :dmem ISA)))

(defun ISA-store (ra rb ISA)
(seq-isa nil
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:pc (1+ (g :pc ISA))
:regs (g :regs ISA)
:imem (g :imem ISA)
:dmem (store ra rb (g :regs ISA) (g :dmem ISA))))

(defun store (ra rb regs dmem)
(seq dmem (g ra regs) (g rb regs)))

(defun ISA-jump (ra ISA)
(seq-isa nil

:pc (ifix (g ra (g :regs ISA)))
:regs (g :regs ISA)
:imem (g :imem ISA)
:dmem (g :dmem ISA)))

(defun ISA-bez (ra rb ISA)
(seq-isa nil

:pc (bez ra rb (g :regs ISA) (g :pc ISA))
:regs (g :regs ISA)
:imem (g :imem ISA)
:dmem (g :dmem ISA)))

(defun bez (ra rb regs pc)
(if (equal 0 (g ra regs))

(ifix (+ pc (g rb regs)))
(1+ pc)))

(defun ISA-default (ISA)
(seq-isa nil

:pc (1+ (g :pc ISA))
:regs (g :regs ISA)
:imem (g :imem ISA)
:dmem (g :dmem ISA)))

MA Definition. ISA is the specification for MA, a three stage pipelined machine,
which contains a program counter, a register file, a memory, and two latches.
The first latch contains a flag which indicates if the latch is valid, an opcode,
the target register, and two source registers. The second latch contains a flag as
before, an opcode, the target register, and the values of the two source registers.
The definition of MA-step follows.

(defun MA-step (MA)
(seq-ma nil

:pc (step-pc MA)
:regs (step-regs MA)
:dmem (step-dmem MA)
:imem (g :imem MA)
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:latch1 (step-latch1 MA)
:latch2 (step-latch2 MA)))

MA-step works by calling functions that given one of the MA components
return the next state value of that component. Note that this is very different
from ISA-step, which calls functions, based on the type of the next instruction,
that return the complete next ISA state.

Below, we show how the register file is updated. If latch2 is valid, then if we
have an ALU instruction, the output of the ALU is used to update register rc.
Otherwise, if we have a load instruction, then we update register rc with the
appropriate word from memory.

(defun step-regs (MA)
(let* ((regs (g :regs MA))

(dmem (g :dmem MA))
(latch2 (g :latch2 MA))
(validp (g :validp latch2))
(op (g :op latch2))
(rc (g :rc latch2))
(ra-val (g :ra-val latch2))
(rb-val (g :rb-val latch2)))

(if validp
(cond ((alu-opp op)

(seq regs rc (ALU-output op ra-val rb-val)))
((load-opp op)
(seq regs rc (g ra-val dmem)))

(t regs))
regs)))

(defun alu-opp (op)
(in op ’(add sub mul)))

(defun load-opp (op)
(in op ’(load loadi)))

(defun in (x y)
(if (endp y)

nil
(or (equal x (car y))

(in x (cdr y)))))

(defun ALU-output (op val1 val2)
(cond ((equal op ’add)

(+ val1 val2))
((equal op ’sub)
(- val1 val2))
(t (* val1 val2))))
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We now show how to update latch2. If latch1 is not valid or if it will be stalled,
then latch2 is invalidated. Othewise, we copy the :op and :rc fields from latch1
and read the contents of registers :rb and :ra, except for load instructions.
The :pch field is a history variable: it does not affect the computation of the
machine and is used only to aid the proof process. We use one more history
variable in latch1. Both history variables serve the same purpose: they are used
to record the address of the instruction with which they are associated.

(defun step-latch2 (MA)
(let* ((latch1 (g :latch1 MA))

(l1op (g :op latch1)))
(if (or (not (g :validp latch1))

(stall-l1p MA))
(seq-l2 nil :validp nil)

(seq-l2 nil
:validp t
:op l1op
:rc (g :rc latch1)
:ra-val (if (equal l1op ’load)

(g :ra latch1)
(g (g :ra latch1) (g :regs MA)))

:rb-val (g (g :rb latch1) (g :regs MA))
:pch (g :pch latch1)))))

We update latch1 as follows. If it will be stalled then, it stays the same. If
it will be invalidated, then it is. Otherwise, we fetch the next instruction from
memory and store it in the register (and record the address of the instruction
in the history variable :pch). Latch1 is stalled exactly when it and latch2 are
valid and latch2 contains an instruction that will modify one of the registers
latch1 depends on. Latch1 is invalidated if it contains any branch instruction
(because the jump address cannot be determined yet) or if latch2 contains a bez
instruction (again, the jump address cannot be determined for bez instructions
until the instruction has made its way through the pipeline, whereas the jump
address for jump instructions can be computed during the second stage of the
machine).

(defun step-latch1 (MA)
(let ((latch1 (g :latch1 MA))

(inst (g (g :pc MA) (g :imem MA))))
(cond ((stall-l1p MA)

latch1)
((invalidate-l1p MA)
(seq-l1 nil :validp nil))
(t (seq-l1 nil

:validp t
:op (g :opcode inst)
:rc (g :rc inst)
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:ra (g :ra inst)
:rb (g :rb inst)
:pch (g :pc MA))))))

(defun stall-l1p (MA)
(let* ((latch1 (g :latch1 MA))

(l1validp (g :validp latch1))
(latch2 (g :latch2 MA))
(l1op (g :op latch1))
(l2op (g :op latch2))
(l2validp (g :validp latch2))
(l2rc (g :rc latch2))
(l1ra (g :ra latch1))
(l1rb (g :rb latch1)))

(and l2validp l1validp
(rc-activep l2op)
(or (equal l1ra l2rc)

(and (uses-rbp l1op)
(equal l1rb l2rc))))))

(defun rc-activep (op)
(or (alu-opp op)

(load-opp op)))

(defun uses-rbp (op)
(or (alu-opp op)

(in op ’(store bez))))

(defun uses-rbp (op)
(or (alu-opp op)

(in op ’(store bez))))

(defun invalidate-l1p (MA)
(let* ((latch1 (g :latch1 MA))

(l1op (g :op latch1))
(l1validp (g :validp latch1))
(latch2 (g :latch2 MA))
(l2op (g :op latch2))
(l2validp (g :validp latch2)))

(or (and l1validp
(in l1op ’(bez jump)))

(and l2validp
(equal l2op ’bez)))))

Memory is updated only when we have a store instruction, in which case we
update the memory appropriately.



Refinement and Theorem Proving 195

(defun step-dmem (MA)
(let* ((dmem (g :dmem MA))

(latch2 (g :latch2 MA))
(l2validp (g :validp latch2))
(l2op (g :op latch2))
(l2ra-val (g :ra-val latch2))
(l2rb-val (g :rb-val latch2)))

(if (and l2validp (equal l2op ’store))
(seq dmem l2ra-val l2rb-val)

dmem)))

Finally, the program counter is updated as follows. If latch1 will stall, then
the program counter is not modified. Otherwise, if latch1 will be invalidated,
then if this is due to a bez instruction in latch2, the jump address can be now
be determined, so the program counter is updated as per the semantics of the
bez instruction. Otherwise, if the invalidation is due to a jump instruction in
latch1, the jump address can be computed and the program counter is set to
this address. The only other possibility is that the invalidation is due to a bez
instruction in latch1; in this case the jump address has not yet been determined,
so the pc is not modified. Note, this simple machine does not have a branch
predictor. If the invalidate signal does not hold, then we increment the program
counter unless we are fetching a branch instruction.

(defun step-pc (MA)
(let* ((pc (g :pc MA))

(inst (g (g :pc MA) (g :imem MA)))
(op (g :opcode inst))
(regs (g :regs MA))
(latch1 (g :latch1 MA))
(l1op (g :op latch1))
(latch2 (g :latch2 MA))
(l2op (g :op latch2))
(l2validp (g :validp latch2))
(l2ra-val (g :ra-val latch2))
(l2rb-val (g :rb-val latch2)))

(cond ((stall-l1p MA)
pc)
((invalidate-l1p MA)
(cond ((and l2validp

(equal l2op ’bez))
(if (equal 0 l2ra-val)

(ifix (ALU-output ’add pc l2rb-val))
(1+ pc)))

((equal l1op ’jump)
(ifix (g (g :ra latch1) regs)))
(t pc)))
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;;; must be bez instruction
((in op ’(jump bez))
pc)
(t (1+ pc)))))

This ends the description of the ISA and MA machines. To summarize, we can
use ACL2 to define machines models at any level of abstraction we like. What
we wind up with are simulators for the machines, which we can execute. For
example, consider the following program to multiply x and y (without using
the mul instruction). The data memory contains the constants 0, 1, 4, and 6 in
memory locations 0, 1, 4, and 6, respectively. It also contains x and y in memory
locations 2 and 3.

(defun mul-dmem (x y)
(seq nil 0 0 1 1 2 x 3 y 4 4 6 6))

The instruction memory contains the following code.

(defun inst (op rc ra rb)
(seq nil :opcode op :rc rc :ra ra :rb rb))

(defun mul-imem ()
(seq nil

0 (inst ’load 0 1 nil)
1 (inst ’load 1 2 nil)
2 (inst ’load 2 3 nil)
3 (inst ’load 3 0 nil)
4 (inst ’load 4 4 nil)
5 (inst ’load 6 6 nil)
6 (inst ’bez nil 1 4)
7 (inst ’sub 1 1 0)
8 (inst ’add 3 3 2)
9 (inst ’jump nil 6 nil)))

The code works by adding x copies of y in register 3. For example (isa-run
(isa-state 0 nil (mul-imem) (mul-dmem 3 4)) 19) is an ISA state whose
:pc is 10 (indicating exit from the loop) and with a value of 12 in regis-
ter 3. Similarly, (ma-run (ma-state 0 nil (mul-imem) (mul-dmem 3 4) nil
nil) 30) is the corresponding MA state.

3 Refinement

In the previous section, we saw how one can model a pipelined machine and
its instruction set architecture in ACL2. We now discuss how to verify such
machines. Consider the partial traces of the ISA and MA machines on the simple
two-line code fragment from the previous section (add rb ra ra followed by
add ra rb ra). We are only showing the value of the program counter and the
contents of registers ra and rb.
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ISA MA
〈0, 〈1,1〉〉 〈0, 〈1,1〉〉
〈1, 〈1,2〉〉 〈1, 〈1,1〉〉
〈2, 〈3,2〉〉 〈2, 〈1,1〉〉

〈2, 〈1,2〉〉
〈 , 〈1,2〉〉
〈 , 〈3,2〉〉

→
Commit

PC

MA
〈0, 〈1,1〉〉
〈0, 〈1,1〉〉
〈0, 〈1,1〉〉
〈1, 〈1,2〉〉
〈1, 〈1,2〉〉
〈2, 〈3,2〉〉

→
Remove
Stutter

MA
〈0, 〈1,1〉〉
〈1, 〈1,2〉〉
〈2, 〈3,2〉〉

Notice that the PC differs in the two traces and this occurs because the
pipeline, initially empty, is being filled and the PC points to the next instruction
to fetch. If the PC were to point to the next instruction to commit (i.e., the next
instruction to complete), then we would get the trace shown in column 3. Notice
that in column 3, the PC does not change from 0 to 1 until Inst 0 is committed
in which case the next instruction to commit is Inst 1. We now have a trace that
is the same as the ISA trace except for stuttering; after removing the stuttering
we have, in column 4, the ISA trace.

We now formalize the above and start with the notion of a refinement map, a
function that maps MA states to ISA states. In the above example we mapped
MA states to ISA states by transforming the PC. Proving correctness amounts
to relating MA states with the ISA states they map to under the refinement map
and proving a WEB (Well-founded Equivalence Bisimulation). Proving a WEB
guarantees that MA states and related ISA states have related computations up
to finite stuttering. This is a strong notion of equivalence, e.g., a consequence is
that the two machines satisfy the same CTL∗ \X properties.1 This includes the
class of next-time free safety and liveness (including fairness) properties, e.g.,
one such property is that the MA machine cannot deadlock (because the ISA
machine cannot deadlock).

Why “up to finite stuttering”? Because we are comparing machines at differ-
ent levels of abstraction: the pipelined machine is a low-level implementation of
the high-level ISA specification. When comparing systems at different levels of
abstraction, it is often the case that the low-level system requires several steps
to match a single step of the high-level system.

Why use a refinement map? Because there may be components in one system
that do not appear in the other, e.g., the MA machine has latches but the ISA
machine does not. In addition, data can be represented in different ways, e.g., a
pipelined machine might use binary numbers whereas its instruction set architec-
ture might use a decimal representation. Yet another reason is that components
present in both systems may have different behaviors, as is the case with the
PC above. Notice that the refinement map affects how MA and ISA states are
related, not the behavior of the MA machine.

The theory of refinement we present is based on transition systems (TSs). A
TS, M, is a triple 〈S, ���, L〉, consisting of a set of states, S, a left-total transition
relation, ���⊆ S2, and a labeling function L whose domain is S and where L.s
(we sometimes use an infix dot to denote function application) corresponds to
1 CTL∗ is a braching-time temporal logic; CTL∗ \ X is CTL∗ without the next-time

operator X .
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what is “visible” at state s. Clearly, the ISA and MA machines can be thought of
as transition systems (TS).

Our notion of refinement is based on the following definition of stuttering
bisimulation [9], where by fp(σ, s) we mean that σ is a fullpath (infinite path)
starting at s, and by match(B, σ, δ) we mean that the fullpaths σ and δ are
equivalent sequences up to finite stuttering (repetition of states).

Definition 1. B ⊆ S × S is a stuttering bisimulation (STB) on TS M =
〈S, ���,L〉 iff B is an equivalence relation and for all s, w such that sBw:

(Stb1) L.s = L.w

(Stb2) 〈∀σ : fp(σ, s) : 〈∃δ : fp(δ, w) : match(B, σ, δ)〉〉
Browne, Clarke, and Grumberg have shown that states that are stuttering bisim-
ilar satisfy the same next-time-free temporal logic formulas [9].

Lemma 1. Let B be an STB on M and let sBw. For any CTL∗ \X formula f ,
M, w |= f iff M, s |= f .

We note that stuttering bisimulation differs from weak bisimulation [46] in that
weak bisimulation allows infinite stuttering. Stuttering is a common phenomenon
when comparing systems at different levels of abstraction, e.g., if the pipeline
is empty, MA will require several steps to complete an instruction, whereas ISA
completes an instruction during every step. Distinguishing between infinite and
finite stuttering is important, because (among other things) we want to distin-
guish deadlock from stutter.

When we say that MA refines ISA, we mean that in the disjoint union (
) of
the two systems, there is an STB that relates every pair of states w, s such that
w is an MA state and r(w) = s.

Definition 2. (STB Refinement) Let M = 〈S, ���, L〉, M′ = 〈S′, ���′, L′〉,
and r : S → S′. We say that M is a STB refinement of M′ with respect to
refinement map r, written M ≈r M′, if there exists a relation, B, such that
〈∀s ∈ S :: sBr.s〉 and B is an STB on the TS 〈S 
 S′, ��� 
 ���′,L〉, where
L.s = L′.s for s an S′ state and L.s = L′(r.s) otherwise.

STB refinement is a generally applicable notion. However, since it is based on
bisimulation, it is often too strong a notion and in this case refinement based
on stuttering simulation should be used (see [32, 33]). The reader may be sur-
prised that STB refinement theorems can be proved in the context of pipelined
machine verification; after all, features such as branch prediction can lead to
non-deterministic pipelined machines, whereas the ISA is deterministic. While
this is true, the pipelined machine is related to the ISA via a refinement map
that hides the pipeline; when viewed in this way, the nondeterminism is masked
and we can prove that the two systems are stuttering bisimilar (with respect to
the ISA visible components).

A major shortcoming of the above formulation of refinement is that it re-
quires reasoning about infinite paths, something that is difficult to automate [49].
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In [32], WEB-refinement, an equivalent formulation is given that requires only
local reasoning, involving only MA states, the ISA states they map to under the
refinement map, and their successor states.

Definition 3. Well-Founded Equivalence Bisimulation (WEB [34, 49]) B is a
well-founded equivalence bisimulation on TS M = 〈S, ���, L〉 iff:

B is an equivalence relation on S; and1.
〈∀s, w ∈ S : sBw : L.s = L.w〉; and2.
There exists function erank : S × S →W, with 〈W,≺〉 well-founded, and3.
〈∀s, u, w ∈ S : sBw ∧ s ��� u :

〈∃v : w ��� v : uBv〉 ∨
(uBw ∧ erank(u, u) ≺ erank(s, s)) ∨
〈∃v : w ��� v : sBv ∧ erank(u, v) ≺ erank(u,w)〉〉

We call a pair 〈rank , 〈W,≺〉〉 satisfying condition 3 in the above definition, a
well-founded witness. The third WEB condition guarantees that related states
have the same computations up to stuttering. If states s and w are in the same
class and s can transit to u, then one of the following holds.

1. The transition can be matched with no stutter, in which case, u is matched
by a step from w.

2. The transition can be matched but there is stutter on the left (from s), in
which case, u and w are in the same class and the rank function decreases
(to guarantee that w is forced to take a step eventually).

3. The transition can be matched but there is stutter on the right (from w),
in which case, there is some successor v of w in the same class as s and the
rank function decreases (to guarantee that u is eventually matched).

To prove a relation is a WEB, note that reasoning about single steps of ���
suffices. In addition we can often get by with a rank function of one argument.

Note that the notion of WEB refinement is independent of the refinement
map used. For example, we can use the standard flushing refinement map [11],
where MA states are mapped to ISA states by executing all partially completed
instructions without fetching any new instructions, and then projecting out the
ISA visible components. In previous work, we have explored the use of other
refinement maps, e.g., in [39, 38, 21], we present new classes of refinement maps
that can provide several orders of magnitude improvements in verification times
over the standard flushing-based refinement maps. In this paper, however, we
use the commitment refinement map, introduced in [30].

A very important property of WEB refinement is that it is compositional,
something that we have exploited in several different contexts [40, 37].

Theorem 1. (Composition) If M ≈r M′ and M′ ≈q M′′ then M ≈r;q M′′.

Above, r; q denotes composition, i.e., (r; q)(s) = q(r.s).
From the above theorem we can derive several other composition results; for

example:
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Theorem 2. (Composition)
MA ≈r · · · ≈q ISA
ISA ‖ P � ϕ

MA ‖ P � ϕ

In this form, the above rule exactly matches the compositional proof rules in [12].
The above theorem states that to prove MA ‖ P � ϕ (that MA, the pipelined ma-
chine, executing program P satisfies property ϕ, a property over the ISA visible
state), it suffices to prove MA ≈ ISA and ISA ‖ P � ϕ: that MA refines ISA (which
can be done using a sequence of refinement proofs) and that ISA, executing P ,
satisfies ϕ. That is, we can prove that code running on the pipelined machine
is correct, by first proving that the pipelined machine refines the instruction
set architecture and then proving that the software running on the instruction
set—not on the pipelined machine—is correct.

4 Pipelined Machine Verification

In this section, we show how to use ACL2 to prove the correctness of the pipelined
machine we have defined, using WEB-refinement. We start, in section 4.1 by
discussing how we deal with quantification in ACL2. We then discuss how the
refinement maps are defined, in section 4.2. Finally, in section 4.3, we discuss
the proof of correctness.

4.1 Quantification

The macro defun-sk is used to implement quantification in ACL2 by intro-
ducing witness functions and constraints. For example, the quantified formula
〈∃x :: P (x, y)〉 is expressed in ACL2 as the function EP with the constraints (P x
y) ⇒ (EP y) and (EP y) = (P (W y) y). To see that this corresponds to quan-
tification, notice that the first constraint gives us one direction of the argument:
it says that if any value of x makes (P x y) true (i.e., if 〈∃x :: P (x, y)〉) then
(EP y) is true. This constraint allows us to establish an existentially quantified
formula by exhibiting a witness, but the constraint can be satisfied if EP always
returns t. The second constraint gives us the other direction. It introduces the
witness function W and requires that (EP y) is true iff (P (W y) y) is true.
As a result, if (EP y) is true, then some value of x makes (P x y) true. As is
mentioned in the ACL2 documentation [26], this idea was known to Hilbert.

We wish to use quantification and encapsulation in the following way. We
prove that a set of constrained functions satisfy a quantified formula. We then
use functional instantiation to show that a set of functions satisfying these con-
straints also satisfy the (analogous) quantified formula. We want this proof obli-
gation to be generated by macros but have found that the constraints generated
by the quantified formulas complicate the design of such macros. The follow-
ing observation has allowed us to simplify the process. The quantified formulas
are established using witness functions, as is often the case. Therefore, only the
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first constraint generated by defun-sk is required for the proof. We defined the
macro defun-weak-sk which generates only this constraint, e.g., the following

(defun-weak-sk E (y)
(exists (x) (P x y)))

leads only to the constraint that (P x y) ⇒ (E y). By functional instantiation,
any theorem proved about E also holds when E is replaced by EP (since EP satisfies
the constraint on E). We use defun-weak-sk in our scripts and at the very end
we prove the defun-sk versions of the main results by functional instantiation
(a step taken to make the presentation of the final result independent of our
macros).

4.2 Refinement Map Definitions

To prove that MA is a correct implementation of ISA, we prove a WEB on the
(disjoint) union of the machines, with MA states labeled by the appropriate refine-
ment map. Once the required notions are defined, the macros implementing our
proof methodology can be used to prove correctness without any user supplied
theorems. In this section, we present the definitions which make the statement
of correctness precise.

The following function is a recognizer for “good” MA states.

(defun good-MA (ma)
(and (integerp (g :pc MA))

(let* ((latch1 (g :latch1 MA))
(latch2 (g :latch2 MA))
(nma (committed-ma ma)))

(cond ((g :validp latch2)
(equiv-ma (ma-step (ma-step nma)) ma))
((g :validp latch1)
(equiv-ma (ma-step nma) ma))
(t t)))))

First, we require that pc, the program counter, is an integer. Such type restric-
tions are common. Next, we require that MA states are reachable from clean states
(states with invalid latches). The reason for this restriction is that otherwise MA
states can be inconsistent (unreachable), e.g., consider an MA state whose first
latch contains an add instruction, but where there are no add instructions in
memory. We check for this by stepping the committed state, the state obtained
by invalidating all partially completed instructions and altering the program
counter so that it points to the next instruction to commit.

(defun committed-MA (MA)
(let* ((pc (g :pc MA))

(latch1 (g :latch1 MA))
(latch2 (g :latch2 MA)))

(seq-ma nil :pc (committed-pc latch1 latch2 pc)
:regs (g :regs MA)
:dmem (g :dmem MA)
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:imem (g :imem MA)
:latch1 (seq-l1 nil)
:latch2 (seq-l2 nil))))

The program counter of the committed state is obtained from the history variable
of the first valid latch.

(defun committed-pc (l1 l2 pc)
(cond ((g :validp l2)

(g :pch l2))
((g :validp l1)
(g :pch l1))
(t pc)))

Finally, we note that equiv-MA relates two MA states if they have the same pc,
regs, memories, and if their latches match, i.e., they have equivalent latch 1s or
both states have an invalid latch 1 and similarly with latch 2.

Note that committed-MA invalidates pending instructions and adjusts the
program counter accordingly. To make sure that a state is not inconsistent, we
check that it is reachable from the corresponding committed state. Now that we
have made precise what the MA states are, the refinement map is:

(defun MA-to-ISA (MA)
(let ((MA (committed-MA MA)))
(seq-isa nil :pc (g :pc MA)

:regs (g :regs MA)
:dmem (g :dmem MA)
:imem (g :imem MA))))

The final definition required is that of the well-founded witness. The function
MA-rank serves this purpose by computing how long it will take an MA state to
commit an instruction. An MA state will commit an instruction in the next step
if its second latch is valid. Otherwise, if its first latch is valid it will be ready
to commit an instruction in one step. Otherwise, both latches are invalid and it
will be ready to commit an instruction in two steps.

(defun MA-rank (MA)
(let ((latch1 (g :latch1 MA))

(latch2 (g :latch2 MA)))
(cond ((g :validp latch2)

0)
((g :validp latch1)
1)
(t 2))))

4.3 Proof of Correctness

To complete the proof we have to define the machine corresponding to the dis-
joint union of ISA and MA, define a WEB that relates a (good) MA state s to
(MA-to-ISA s), define the well-founded witness, and prove that indeed the pur-
ported WEB really is a WEB. We have implemented macros which automate
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this. The macros are useful not only for this example, but have also been used
to verification many other machines, including machines defined at the bit level.
(Non-deterministic versions have also been developed that can be used to reason
about machines with interrupts [31, 30].) The proof of correctness is completed
with the following three macro calls.

(generate-full-system isa-step isa-p ma-step ma-p
ma-to-isa good-ma ma-rank)

(prove-web isa-step isa-p ma-step ma-p ma-to-isa ma-rank)

(wrap-it-up isa-step isa-p ma-step ma-p good-ma
ma-to-isa ma-rank)

The first macro, generate-full-system,generates the definition of B, the pur-
ported WEB, as well as R, the transition relation of the disjoint union of the ISA
and MA machines. The macro translates to the following. (Some declarations and
forward-chaining theorems used to control the theorem prover have been elided.)

(progn
(defun wf-rel (x y)
(and (ISA-p x)

(MA-p y)
(good-MA y)
(equal x (MA-to-ISA y))))

(defun B (x y)
(or (wf-rel x y)

(wf-rel y x)
(equal x y)
(and (MA-p x)

(MA-p y)
(good-MA x)
(good-MA y)
(equal (MA-to-ISA x) (MA-to-ISA y)))))

(defun rank (x)
(if (MA-p x) (MA-rank x) 0))

(defun R (x y)
(cond ((ISA-p x) (equal y (ISA-step x)))

(t (equal y (MA-step x))))))

What is left is to prove that B—the reflexive, symmetric, transitive closure
of wf-rel—is a WEB with well-founded witness rank. We do this in two steps.
First, the macro prove-web is used to prove the “core” theorem (as well as some
“type” theorems not shown).

(defthm B-is-a-wf-bisim-core
(let ((u (ISA-step s))
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(v (MA-step w)))
(implies (and (wf-rel s w)

(not (wf-rel u v)))
(and (wf-rel s v)

(o< (MA-rank v) (MA-rank w))))))

Comparing B-is-a-wf-bisim-corewith the definition of WEBs, we see that
B-is-a-wf-bisim-core does not contain quantifiers and it mentions neither B
nor R. This is on purpose as we use “domain-specific” information to construct
a simplified theorem that is used to establish the main theorem. To that end
we removed the quantifiers and much of the case analysis. For example, in the
definition of WEBs, u ranges over successors of s and v is existentially quantified
over successors of w, but because we are dealing with deterministic systems, u
and v are defined to be the successors of s and w, respectively. Also, wf-rel is
not an equivalence relation as it is not reflexive, symmetric, or transitive. Finally,
we ignore the second disjunct in the third condition of the definition of WEBs
because ISA does not stutter. The justification for calling this the “core” theorem
is that we have proved in ACL2 that a constrained system which satisfies a
theorem analogous to B-is-a-wf-bisim-core (and some “type” theorems) also
satisfies a WEB. Using functional instantiation we can now prove MA correct.
The use of this domain-specific information makes a big difference, e.g., when
we tried to prove the theorem obtained by a naive translation of the WEB
definition (sans quantifiers), ACL2 ran out of memory after many hours, yet the
above theorem is now proved in about 1,000 seconds.

The final macro call generates the events used to finish the proof. We present the
generated events germane to this discussion below. The first step is to show that B
is an equivalence relation. This theorem is proved by functional instantiation.

(defequiv B
:hints (("goal" :by (:functional-instance

encap-B-is-an-equivalence . . .))))

The second WEB condition, that related states have the same label, is taken
care of by the refinement map. We show that rank is a well-founded witness.

(defthm rank-well-founded
(o-p (rank x)))

We use functional instantiation and B-is-a-wf-bisim-core as described
above to prove the following.

(defun-weak-sk exists-w-succ-for-u-weak (w u)
(exists (v) (and (R w v) (B u v))))

(defun-weak-sk exists-w-succ-for-s-weak (w s)
(exists (v)
(and (R w v)

(B s v)
(o< (rank v) (rank w)))))
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(defthm B-is-a-wf-bisim-weak
(implies (and (B s w)

(R s u))
(or (exists-w-succ-for-u-weak w u)

(and (B u w)
(o< (rank u) (rank s)))

(exists-w-succ-for-s-weak w s)))
:hints
(("goal" :by (:functional-instance

B-is-a-wf-bisim-sk . . .)))
:rule-classes nil)

We use defun-weak-sk for these definitions for the reasons outlined in Sec-
tion 4.1. Stating the result in terms of the built-in macro defun-sk involves a
trivial functional instantiation (since the single constraint generated by
defun-weak-sk is one of the constraints generated by defun-sk).

(defun-sk exists-w-succ-for-u (w u)
(exists (v) (and (R w v) (B u v))))

(defun-sk exists-w-succ-for-s (w s)
(exists (v)
(and (R w v)

(B s v)
(o< (rank v) (rank w)))))

(defthm B-is-a-wf-bisim
(implies (and (B s w)

(R s u))
(or (exists-w-succ-for-u w u)

(and (B u w)
(o< (rank u) (rank s)))

(exists-w-succ-for-s w s)))
:hints
(("goal"

:by
(:functional-instance b-is-a-wf-bisim-weak

(exists-w-succ-for-u-weak exists-w-succ-for-u)
(exists-w-succ-for-s-weak exists-w-succ-for-s))))

:rule-classes nil))

5 Verifying Complex Machines

While the proof of the pipelined machine defined in this paper required little
more than writing down the correctness statement, unfortunately, using theo-
rem proving to verify more complicated machines requires heroic effort [54]. The
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second major approach to the pipeline machine verification problem is based
on decision procedures such as UCLID [10]. UCLID is a tool that decides the
CLU logic, a logic containing the boolean connectives, uninterpreted functions
and predicates, equality, counter arithmetic, ordering, and restricted lambda
expressions. This approach is very automatic, e.g., in a carefully constructed
experiment, problems that took ACL2 days took seconds with UCLID [36]. Un-
fortunately, this approach has several problems. For example, pipelined machines
that exceed the complexity threshold of the tools used, which happens rather eas-
ily, cannot be analyzed. Another serious limitation is that the pipelined machine
models used are term-level models: they abstract away the datapath, implement
a small subset of the instruction set, require the use of numerous abstractions,
and are far from executable. Nonetheless, one can automatically handle much
more complex machines with decision procedures than one can handle with gen-
eral purpose theorem provers. In this section, we discuss some of our current
work on this topic, as well as directions for future work.

5.1 Automating Verification of Term-Level Machines

In [35], it is shown how to automate the refinement proofs in the context of term-
level pipelined machine verification. The idea is to strengthen, thereby simplify-
ing, the refinement proof obligation; the result is the CLU-expressible formula,
where rank is a function that maps states of MA into the natural numbers. MA
≈r ISA if:

〈∀w ∈ MA :: s = r.w ∧ u = ISA-step(s) ∧
v = MA-step(w) ∧ u�= r.v

=⇒ s = r.v ∧ rank .v < rank .w〉

In the formula above s and u are ISA states, and w and v are MA states; ISA-step
is a function corresponding to stepping the ISA machine once and MA-step is a
function corresponding to stepping the MA machine once. It may help to think
of the first conjunct of the consequent (s = r.v) as the safety component of the
proof and the second conjunct rank .v < rank .w as the liveness component.

5.2 Compositional Reasoning

We have developed a compositional reasoning framework based on refinement
that consists of a set of convenient, easily-applicable, and complete compositional
proof rules [37]. Our framework greatly extends the applicability of decision
procedures, e.g., we were able to verify, in seconds, a complex, deeply pipelined
machine that state-of-the-art tools cannot currently handle. Our framework can
be added to the design cycle, which is also compositional. In addition, one of
the most important benefits of our approach over current methods is that the
counterexamples generated tend to be much simpler, in terms of size and number
of simulation steps involved and can be generated much more quickly.
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5.3 Combining ACL2 and UCLID

The major problem with approaches based on decision procedures is that they
only work for abstract term-level models and do not provide a firm connection
with RTL models. In order to be industrially useful, we need both automation
and a connection to the RTL level. As an initial step towards verifying RTL-
level designs, we have combined ACL2 and UCLID in order to verify pipelined
machine models with bit-level interfaces [40]. We use ACL2 to reduce the proof
that an executable, bit-level machine refines its instruction set architecture to a
proof that a term level abstraction of the bit-level machine refines the instruction
set architecture, which is then handled automatically by UCLID. The amount
of effort required is about 3-4 times the effort required to prove the term-level
model correct using only UCLID. This allows us to exploit the strengths of ACL2
and UCLID to prove theorems that are not possible to even state using UCLID
and that would require prohibitively more effort using just ACL2.

5.4 Conclusion and Future Perspectives

We view our work on compositional reasoning and on combining ACL2 and UCLID
as promising first steps. Clearly, compositional reasoning will be needed to allow
us to handle the verification problems one component at a time. With regard to
RTL-level reasoning, our work has shown that we can automate the problem to
within a small constant factor of what can be done for term-level models, but it
will be important to change the factor to 1 + ε. Several ideas for doing this in-
clude: developing a pattern database that with some intelligent search that can
automatically decompose verification problems, automating some of the simpler
refinement steps we currently perform, using counter-example guided abstraction-
refinement to automatically abstract RTL designs to term-level designs, automat-
ing the handling of memories and register files, improved decision procedures, and
creating analyses that work directly on hardware description languages.
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Abstract. This chapter describes our work on formal verification of
floating-point algorithms using the HOL Light theorem prover.

1 Introduction

Representation of real numbers on the computer is fundamental to much of ap-
plied mathematics, from aircraft control systems to weather forecasting. Most
applications use floating-point approximations, though this raises significant
mathematical difficulties because of rounding and approximation errors. Even
if rounding is properly controlled, “bugs” in software using real numbers can
be particularly subtle and insidious. Yet because real-number programs are of-
ten used in controlling and monitoring physical systems, the consequences can
be catastrophic. A spectacular example is the destruction of the Ariane 5 rocket
shortly after takeoff in 1996, owing to an uncaught floating-point exception. Less
dramatic, but very costly and embarrassing to Intel, was an error in the FDIV
(floating-point division) instruction of some early Intel® Pentium® processors
in 1994 [45]. Intel set aside approximately $475M to cover costs arising from this
issue.

So it is not surprising that a considerable amount of effort has been applied
to formal verification in the floating-point domain, not just at Intel [44, 34], but
also at AMD [40, 50] and IBM [51], as well as in academia [33, 5]. Floating-point
algorithms are in some ways an especially natural and appealing target for formal
verification. It is not hard to come up with widely accepted formal specifications
of how basic floating-point operations should behave. In fact, many operations
are specified almost completely by the IEEE Standard governing binary floating-
point arithmetic [32]. This gives a clear specification that high-level algorithms
can rely on, and which implementors of instruction sets and compilers need to
realize.

In some other respects though, floating-point operations present a difficult
challenge for formal verification. In many other areas of verification, significant
success has been achieved using highly automated techniques, usually based on
a Boolean or other finite-state model of the state of the system. For example, ef-
ficient algorithms for propositional logic [7, 15, 53] and their aggressively efficient
implementation [41, 19] have made possible a variety of techniques ranging from
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simple Boolean equivalence checking of combinational circuits to more advanced
symbolic simulation or model checking of sequential systems [10, 47, 8, 52].

But it is less easy to verify non-trivial floating-point arithmetic operations
using such techniques. The natural specifications, including the IEEE Standard,
are based on real numbers, not bit-strings. While simple adders and multipliers
can be specified quite naturally in Boolean terms, this becomes progressively
more difficult when one considers division and square root, and seems quite
impractical for transcendental functions. So while model checkers and similar
tools are of great value in dealing with low-level details, at least some parts of
the proof must be constructed in general theorem proving systems that enable
one to talk about high-level mathematics.

There are many theorem proving programs,1 and quite a few have been ap-
plied to floating-point verification, including at least ACL2, Coq, HOL Light
and PVS. We will concentrate later on our own work using HOL Light [23], but
this is not meant to disparage other important work being done at Intel and
elsewhere in other systems.

2 Architectural Context

Most of the general points we want to make here are independent of particular
low-level details. Whether certain operations are implemented in software, mi-
crocode or hardware RTL, the general verification problems are similar, though
the question of how they fit into the low-level design flow can be different. Nev-
ertheless, in order to appreciate the examples that follow, the reader needs to
know that the algorithms are mainly intended for software implementation on
the Intel® Itanium® architecture, and needs to understand something about
IEEE floating-point numbers and the special features of the Itanium floating-
point architecture.

2.1 The IEEE-754 Floating Point Standard

The IEEE Standard 754 for Binary Floating-Point Arithmetic [32] was developed
in response to the wide range of incompatible and often surprising behaviours of
floating-point arithmetic on different machines. In the 1970s, this was creating
serious problems in porting numerical programs from one machine to another,
with for example VAX, IBM/360 and Cray families all having different formats
for floating point numbers and incompatible ways of doing arithmetic on them.
Practically all of the arithmetics displayed peculiarities that could ensnare in-
experienced programmers, for example x = y being false but x − y = 0 true.
The sudden proliferation of microprocessors in the 1970s promised to create
even more problems, and was probably a motivating factor in the success of the
IEEE standardization effort. Indeed, before the Standard was ratified, Intel had

1 See http://www.cs.ru.nl/∼freek/digimath/index.html for a list, and
http://www.cs.ru.nl/∼freek/comparison/index.html for a comparison of
the formalization of an elementary mathematical theorem in several.
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produced the 8087 math coprocessor to implement it, and other microproces-
sor makers followed suit. Since that time, practically every new microprocessor
floating-point architecture has conformed to the standard.

Floating point numbers, at least in the conventional binary formats considered
by the IEEE Standard 754,2 are those of the form:

±2ek

with the exponent e subject to a certain bound, and the fraction (also called
significand or mantissa) k expressible in a binary positional representation using
a certain number p of bits:

k = k0 · k1k2 · · · kp−1

The bound on the exponent range Emin ≤ e ≤ Emax, together with the al-
lowed precision p determines a particular floating point format. The novel aspect
of the IEEE formats, and by far the most controversial part of the whole Stan-
dard, consists in allowing k0 to be zero even when other ki’s are not. In the
model established by most earlier arithmetics, the number 2Emin1.00 · · · 0 is the
floating point number with smallest nonzero magnitude. But the IEEE-754 Stan-
dard allows for a set of smaller numbers 2Emin0.11 · · ·11, 2Emin0.11 · · · 10, . . . ,
2Emin0.00 · · ·01 which allow a more graceful underflow. Note that the above pre-
sentation enumerates some values redundantly, with for example 2e+10 ·100 · · ·0
and 2e1 · 000 · · · 0 representing the same number. For many purposes, we con-
sider the canonical representation, where k0 = 0 only if e = Emin. Indeed, when
it specifies how some floating point formats (single and double precision) are
encoded as bit patterns, the Standard uses an encoding designed to avoid re-
dundancy. Note, however, that the Standard specifies that the floating point
representation must maintain the distinction between a positive and negative
zero.

Floating point numbers cover a wide range of values from the very small to
the very large. They are evenly spaced except that at the points 2j the interval
between adjacent numbers doubles. (Just as in decimal the gap between 1.00
and 1.01 is ten times the gap between 0.999 and 1.00, where all numbers are
constrained to three significant digits.) The intervals 2j ≤ x ≤ 2j+1, possi-
bly excluding one or both endpoints, are often called binades (by analogy with
‘decades’), and the numbers 2j binade boundaries. The following diagram illus-
trates this.

�
2j

In the IEEE Standard, the results of the basic algebraic operations (addi-
tion, subtraction, multiplication, division, remainder and square root) on finite
2 The IBM/360 family, for example, used a hexadecimal not a binary system. Exotic

formats such as those proposed in [11] depart even more radically from the Standard.
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operands3 are specified in a simple and uniform way. According to the standard
(section 5):

. . . each of these operations shall be performed as if it first produced an
intermediate result correct to infinite precision and unbounded range and
then coerced this intermediate result to fit in the destination’s format.

In non-exceptional situations (no overflow etc.) the coercion is done using
a simple and natural form of rounding, defined in section 4 of the standard.
Rounding essentially takes an arbitrary real number and returns another real
number that is its best floating point approximation. Which particular number
is considered ‘best’ may depend on the rounding mode. In the usual mode of
round to nearest, the representable value closest to the exact one is chosen. If
two representable values are equally close, i.e. the exact value is precisely the
midpoint of two adjacent floating point numbers, then the one with its least
significant bit zero is delivered. (See [48] for a problem caused by systematically
truncating rather than rounding to even in such cases).

Other rounding modes force the exact real number to be rounded to the
representable number closest to it yet greater or equal (‘round toward +∞’ or
‘round up’), less or equal (‘round toward −∞’ or ‘round down’) or smaller or
equal in magnitude (‘round toward 0’). The following diagram illustrates some
IEEE-correct roundings; y is assumed to be exactly a midpoint, and rounds to
2j because of the round-to-even preference.

�
2j

�
x rounded down

�
x

�

x rounded to nearest

�
y

�

y rounded to nearest

�
y rounded up

2.2 The Intel® Itanium® Floating Point Architecture

The Intel® Itanium® architecture is a 64-bit computer architecture jointly de-
veloped by Hewlett-Packard and Intel. In an attempt to avoid some of the limi-
tations of traditional architectures, it incorporates a unique combination of fea-
tures, including an instruction format encoding parallelism explicitly, instruction
predication, and speculative/advanced loads [17]. However, we will not need to
discuss general features like this, but only the special features of its floating-point
architecture.

The centerpiece of the Intel® Itanium® floating-point architecture is the
fma (floating point multiply-add or fused multiply-accumulate) instruction. This
computes xy + z from inputs x, y and z with a single rounding error. Except for
subtleties over signed zeros, floating point addition and multiplication are just

3 In other words, those representing ordinary floating point numbers, rather than
infinities or ‘NaN’s (NaN = not a number).
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degenerate cases of fma, 1y + z and xy +0, so do not need separate instructions.
However, there are variants of the fma to switch signs of operands: fms computes
xy − z while fnma computes z − xy. While the IEEE standard does not explic-
itly address fma-type operations, the main extrapolation is obvious and natural:
these operations behave as if they rounded an exact result, xy + z for fma. The
fact that there is only one rounding at the end, with no intermediate rounding
of the product xy, is crucial in much of what follows.

It needs a little more care to specify the signs of zero results in IEEE style.
First, the interpretation of addition and multiplication as degenerate cases of fma
requires some policy on the sign of 1 × −0 + 0. More significantly, the fma leads
to a new possibility: a × b + c can round to zero even though the exact result is
nonzero. Out of the operations in the standard, this can occur for multiplication
or division, but in this case the rules for signs are simple and natural. A little
reflection shows that this cannot happen for pure addition, so the rule in the
standard that ‘the sign of a sum . . . differs from at most one of the addend’s
signs’ is enough to fix the sign of zeros when the exact result is nonzero. For
the fma this is not the case, and fma-type instructions guarantee that the sign
correctly reflects the sign of the exact result in such cases. This is important,
for example, in ensuring that the algorithms for division that we consider later
yield the correctly signed zeros in all cases without special measures.

The Intel® Itanium® architecture supports several different IEEE-specified
or IEEE-compatible floating point formats. For the four most important formats,
we give the conventional name, the precision, and the minimum and maximum
exponents.

Format name p Emin Emax

Single 24 -126 127
Double 53 -1022 1023
Double-extended 64 -16382 16383
Register 64 -65534 65535

The single and double formats are mandated and completely specified in the
Standard. The double-extended format (we will often just call it ‘extended’)
is recommended and only partially specified by the Standard; the particular
version used in Intel® Itanium® is the one introduced by on the 8087.4 The
register format has the same precision as extended, but allows greater exponent
range, helping to avoid overflows and underflows in intermediate calculations. In
a sense, the register format is all-inclusive, since its representable values properly
include those of all other formats.

Most operations, including the fma, take arguments and return results in
some of the 128 floating point registers provided for by the architecture. All the
formats are mapped into a standard bit encoding in registers, and any value
4 A similar format was supported by the Motorola 68000 family, but now it is mainly

supported by Intel processors.
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represented by a floating point register is representable in the ‘Register’ floating
point format.5 By a combination of settings in the multiple status fields and
completers on instructions, the results of operations can be rounded in any of
the four rounding modes and into any of the supported formats.

In most current computer architectures, in particular Intel IA-32 (x86) cur-
rently represented by the Intel® Pentium® processor family, instructions are
specified for the floating point division and square root operations. In the Ita-
nium architecture, the only instructions specifically intended to support divi-
sion and square root are initial approximation instructions. The frcpa (floating
point reciprocal approximation) instruction applied to an argument a gives an
approximation to 1/a, while the frsqrta (floating point reciprocal square root
approximation) instruction gives an approximation to 1/

√
a. (In each case, the

approximation may have a relative error of approximately 2−8.8 in the worst
case, so they are far from delivering an exact result. Of course, special action is
taken in some special cases like a = 0.) There are several reasons for relegating
division and square root to software.

– In typical applications, division and square root are not extremely frequent
operations, and so it may be that die area on the chip would be better
devoted to something else. However they are not so infrequent that a grossly
inefficient software solution is acceptable, so the rest of the architecture
needs to be designed to allow reasonably fast software implementations. As
we shall see, the fma is the key ingredient.

– By implementing division and square root in software they immediately in-
herit the high degree of pipelining in the basic fma operations. Even though
these operations take several clock cycles, new ones can be started each cycle
while others are in progress. Hence, many division or square root operations
can proceed in parallel, leading to much higher throughput than is the case
with typical hardware implementations.

– Greater flexibility is afforded because alternative algorithms can be substi-
tuted where it is advantageous. First of all, any improvements can quickly
be incorporated into a computer system without hardware changes. Second,
it is often the case that in a particular context a faster algorithm suffices,
e.g. because the ambient IEEE rounding mode is known at compile-time,
or even because only a moderately accurate result is required (e.g. in some
graphics applications).

3 HOL Light

Theorem provers descended from Edinburgh LCF [22] reduce all reasoning to
formal proofs in something like a standard natural deduction system. That is,
everything must be proved in detail at a low level, not simply asserted, nor even
claimed on the basis of running some complex decision procedure. However, the
5 However, that for reasons of compatibility, there are bit encodings used for extended

precision numbers but not register format numbers.
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user is able to write arbitrary programs in the metalanguage ML to automate
patterns of inferences and hence reduce the tedium involved. The original LCF
system implemented Scott’s Logic of Computable Functions (hence the name
LCF), but as emphasized by Gordon [20], the basic LCF approach is applicable
to any logic, and now there are descendents implementing a variety of higher
order logics, set theories and constructive type theories.

In particular, members of the HOL family [21] implement a version of simply
typed λ-calculus with logical operations defined on top, more or less following
Church [9]. They take the LCF approach a step further in that all theory de-
velopments are pursued ‘definitionally’. New mathematical structures, such as
the real numbers, may be defined only by exhibiting a model for them in the
existing theories (say as Dedekind cuts of rationals). New constants may only
be introduced by definitional extension (roughly speaking, merely being a short-
hand for an expression in the existing theory). This fits naturally with the LCF
style, since it ensures that all extensions, whether of the deductive system or
the mathematical theories, are consistent per construction. HOL Light [23] is
our own version of the HOL prover. It maintains most of the general principles
underlying its ancestors, but attempts to be more logically coherent, simple and
elegant. It is written entirely in a fairly simple and mostly functional subset
of Objective CAML [57, 14], giving it advantages of portability and efficient re-
source usage compared with its ancestors, which are based on LISP or Standard
ML.

Like other LCF provers, HOL Light is in essence simply a large OCaml pro-
gram that defines data structures to represent logical entities, together with a
suite of functions to manipulate them in a way guaranteeing soundness. The
most important data structures belong to one of the datatypes hol type, term
and thm, which represent types, terms (including formulas) and theorems re-
spectively. The user can write arbitrary programs to manipulate these objects,
and it is by creating new objects of type thm that one proves theorems. HOL’s
notion of an ‘inference rule’ is simply a function with return type thm.

In order to guarantee logical soundness, however, all these types are encap-
sulated as abstract types. In particular, the only way of creating objects of type
thm is to apply one of HOL’s 10 very simple inference rules or to make a new
term or type definition. Thus, whatever the circuitous route by which one ar-
rives at it, the validity of any object of type thm rests only on the correctness of
the rather simple primitive rules (and of course the correctness of OCaml’s type
checking etc.). For example, one of HOL’s primitives is the rule of transitivity
of equality:

Γ � s = t Δ � t = u
Γ ∪ Δ � s = u

TRANS

This allows one to make the following logical step: if under assumptions Γ
one can deduce s = t (that is, s and t are equal), and under assumptions Δ one
can deduce t = u, then one can deduce that from all the assumptions together,
Γ ∪ Δ, that s = u holds. If the two starting theorems are bound to the names
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th1 and th2, then one can apply the above logical step in HOL and bind the
result to th3 via:

let th3 = TRANS th1 th2;;

One doesn’t normally use such low-level rules much, but instead interacts with
HOL via a series of higher-level derived rules, using built-in parsers and printers
to read and write terms in a more natural syntax. For example, if one wants to
bind the name th6 to the theorem of real arithmetic that when |c − a| < e and
|b| ≤ d then |(a + b) − c| < d + e, one simply does:

let th6 = REAL_ARITH

‘abs(c - a) < e ∧ abs(b) <= d

=⇒ abs((a + b) - c) < d + e‘;;

If the purported fact in quotations turns out not to be true, then the rule
will fail by raising an exception. Similarly, any bug in the derived rule (which
represents several dozen pages of code written by the present author) would lead
to an exception.6 But we can be rather confident in the truth of any theorem
that is returned, since it must have been created via applications of primitive
rules, even though the precise choreographing of these rules is automatic and of
no concern to the user. What’s more, users can write their own special-purpose
proof rules in the same style when the standard ones seem inadequate — HOL
is fully programmable, yet retains its logical trustworthiness when extended by
ordinary users.

Among the facilities provided by HOL is the ability to organize proofs in a
mixture of forward and backward steps, which users often find more congenial.
The user invokes so-called tactics to break down the goal into more manageable
subgoals. For example, in HOL’s inbuilt foundations of number theory, the proof
that addition of natural numbers is commutative is written as follows (the symbol
∀ means ‘for all’):

let ADD_SYM = prove

(‘∀m n. m + n = n + m‘,

INDUCT_TAC THEN

ASM_REWRITE_TAC[ADD_CLAUSES]);;

The tactic INDUCT TAC uses mathematical induction to break the original
goal down into two separate goals, one for m = 0 and one for m + 1 on the
assumption that the goal holds for m. Both of these are disposed of quickly
simply by repeated rewriting with the current assumptions and a previous, even
more elementary, theorem about the addition operator. The identifier THEN is
a so-called tactical, i.e. a function that takes two tactics and produces another
tactic, which applies the first tactic then applies the second to any resulting
subgoals (there are two in this case).
6 Or possibly to a true but different theorem being returned, but this is easily guarded

against by inserting sanity checks in the rules.
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For another example, we can prove that there is a unique x such that x =
f(g(x)) if and only if there is a unique y with y = g(f(y)) using a single stan-
dard tactic MESON TAC, which performs model elimination [36] to prove theorems
about first order logic with equality. As usual, the actual proof under the surface
happens by the standard primitive inference rules.

let WISHNU = prove

(‘(∃!x. x = f (g x)) ⇔ (∃!y. y = g(f y))‘,

MESON_TAC[]);;

These and similar higher-level rules certainly make the construction of proofs
manageable whereas it would be almost unbearable in terms of the primitive
rules alone. Nevertheless, we want to dispel any false impression given by the
simple examples above: nontrivial proofs, as are carried out in the work described
here, often require long and complicated sequences of rules. The construction
of these proofs often requires considerable persistence. Moreover, the resulting
proof scripts can be quite hard to read, and in some cases hard to modify to
prove a slightly different theorem. One source of these difficulties is that the
proof scripts are highly procedural — they are, ultimately, OCaml programs,
albeit of a fairly stylized form. Perhaps in the future a more declarative style for
proof scripts will prove to be more effective, but the procedural approach has its
merits [24], particularly in applications like this one where we program several
complex specialized inference rules.

In presenting HOL theorems below, we will use standard symbols for the log-
ical operators, as we have in the above examples, but when actually interacting
with HOL, ASCII equivalents are used:

Standard symbol ASCII version Meaning
⊥ F falsity
	 T truth
¬p ~p not p
p ∧ q p /\ q p and q
p ∨ q p \/ q p or q
p =⇒ q p ==> q if p then q
p ⇔ q p <=> q p if and only if q
∀x. p !x. p for all x, p
∃x. p ?x. p there exists x such that p
εx. p @x. p some x such that p
λx. t \x. t the function x �→ t
x ∈ s x IN s x is a member of set s

For more on the fundamentals of the HOL logic, see the appendix of our PhD
dissertation [25], or actually download the system and its documentation from:

http://www.cl.cam.ac.uk/users/jrh/hol-light/index.html
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Our thesis [25] also gives extensive detail on the definition of real numbers in
HOL and the formalization of mathematical analysis built on this foundation. In
what follows, we exploit various results of pure mathematics without particular
comment. However, it may be worth noting some of the less obvious aspects of
the HOL symbolism when dealing with numbers:

HOL notation Standard symbol Meaning
m EXP n mn Natural number exponentiation
& (none) Natural map N → R

--x −x Unary negation of x
inv(x) x−1 Multiplicative inverse of x
abs(x) |x| Absolute value of x
x pow n xn Real x raised to natural number power n

HOL’s type system distinguishes natural numbers and reals, so & is used to
map between them. It’s mainly used as part of real number constants like &0, &1
etc. Note also that while one might prefer to regard 0−1 as ‘undefined’ (in some
precise sense), we set inv(&0) = &0 by definition.

4 Application Examples

We will now give a brief overview of some of our verification projects using HOL
Light at Intel. For more details on the various parts, see [26, 28, 29, 27].

4.1 Formalization of Floating Point Arithmetic

The first stage in all proofs of this kind is to formalize the key floating point
concepts and prove the necessary general lemmas. We have tried to provide a
generic, re-usable theory of useful results that can be applied conveniently in
these and other proofs. In what follows we will just discuss things in sufficient
detail to allow the reader to get the gist of what follows.

Floating point numbers can be stored either in floating point registers or in
memory, and in each case we cannot always assume the encoding is irredun-
dant (i.e. there may be several different encodings of the same real value, even
apart from IEEE signed zeros). Thus, we need to take particular care over the
distinction between values and their floating point encodings.7 Systematically
making this separation nicely divides our formalization into two parts: those
that are concerned only with real numbers, and those where the floating point
encodings with the associated plethora of special cases (infinities, NaNs, signed
zeros etc.) come into play. Most of the interesting issues can be considered at the
level of real numbers, and we will generally follow this approach here. However
there are certainly subtleties over the actual representations that we need to be
aware of, e.g. checking that zero results have the right sign and characterizing
the situations where exceptions can or will occur.
7 In the actual standard (p7) ‘a bit-string is not always distinguished from a number

it may represent’.
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Floating point formats. Our formalization of the encoding-free parts of the
standard is highly generic, covering an infinite collection of possible floating point
formats, even including absurd formats with zero precision (no fraction bits). It
is a matter of taste whether the pathological cases should be excluded at the
outset. We sometimes need to exclude them from particular theorems, but many
of the theorems turn out to be degenerately true even for extreme values.

Section 3.1 of the standard parametrizes floating point formats by precision p
and maximum and minimum exponents Emax and Emin. We follow this closely,
except we represent the fraction by an integer rather than a value 1 ≤ f < 2,
and the exponent range by two nonnegative numbers N and E. The allowable
floating point numbers are then of the form ±2e−Nk with k < 2p and 0 ≤ e < E.
This was not done because of the use of biasing in actual floating point encodings
(as we have stressed before, we avoid such issues at this stage), but rather to
use nonnegative integers everywhere and carry around fewer side-conditions.
The cost of this is that one needs to remember the bias when considering the
exponents of floating point numbers. We name the fields of a format triple as
follows:

|- exprange (E,p,N) = E

|- precision (E,p,N) = p

|- ulpscale (E,p,N) = N

and the definition of the set of real numbers corresponding to a triple is:8

|- format (E,p,N) =

{ x | ∃s e k. s < 2 ∧ e < E ∧ k < 2 EXP p ∧
x = --(&1) pow s * &2 pow e * &k / &2 pow N}

This says exactly that the format is the set of real numbers representable in
the form (−1)s2e−Nk with e < E and k < 2p (the additional restriction s < 2
is just a convenience). For many purposes, including floating point rounding, we
also consider an analogous format with an exponent range unbounded above.
This is defined by simply dropping the exponent restriction e < E. Note that
the exponent is still bounded below, i.e. N is unchanged.

|- iformat (E,p,N) =

{ x | ∃s e k. s < 2 ∧ k < 2 EXP p ∧
x = --(&1) pow s * &2 pow e * &k / &2 pow N}

Ulps. The term ‘unit in the last place’ (ulp) is only mentioned in passing by the
standard on p. 12 when discussing binary to decimal conversion. Nevertheless, it
8 Recall that the ampersand denotes the injection from N to R, which HOL’s type

system distinguishes. The function EXP denotes exponentiation on naturals, and pow
the analogous function on reals.
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is of great importance for later proofs because the error bounds for transcenden-
tal functions need to be expressed in terms of ulps. Doing so is quite standard,
yet there is widespread confusion about what an ulp is, and a variety of incom-
patible definitions appear in the literature [43]. Given a particular floating-point
format and a real number x, we define an ulp in x as the distance between the
two closest straddling floating point numbers a and b, i.e. those with a ≤ x ≤ b
and a �= b assuming an unbounded exponent range.

This seems to convey the natural intuition of units in the last place, and
preserves the important mathematical properties that rounding to nearest cor-
responds to an error of 0.5ulp and directed roundings imply a maximum error
of 1ulp. The actual HOL definition is explicitly in terms of binades, and defined
using the Hilbert choice operator ε:9

|- binade(E,p,N) x =

εe. abs(x) <= &2 pow (e + p) / &2 pow N ∧
∀e’. abs(x) <= &2 pow (e’ + p) / &2 pow N =⇒ e <= e’

|- ulp(E,p,N) x = &2 pow (binade(E,p,N) x) / &2 pow N

After a fairly tedious series of proofs, we eventually derive the theorem that
an ulp does indeed yield the distance between two straddling floating point
numbers.

Rounding. Floating point rounding takes an arbitrary real number and chooses
a floating point approximation. Rounding is regarded in the Standard as an op-
eration mapping a real to a member of the extended real line R∪{+∞, −∞}, not
the space of floating point numbers itself. Thus, encoding and representational
issues (e.g. zero signs) are not relevant to rounding. The Standard defines four
rounding modes, which we formalize as the members of an enumerated type:

roundmode = Nearest | Down | Up | Zero

Our formalization defines rounding into a given format as an operation that
maps into the corresponding format with an exponent range unbounded above.
That is, we do not take any special measures like coercing overflows back into
the format or to additional ‘infinite’ elements; this is defined separately when we
consider operations. While this separation is not quite faithful to the letter of the
Standard, we consider our approach preferable. It has obvious technical conve-
nience, avoiding the formally laborious adjunction of infinite elements to the real
line and messy side-conditions in some theorems about rounding. Moreover, it
avoids duplication of closely related issues in different parts of the Standard. For
example, the rather involved criterion for rounding to ±∞ in round-to-nearest
mode in sec. 4.1 of the Standard (‘an infinitely precise result with magnitude at
least Emax(2 − 2−p) shall round to ∞ with no change of sign’) is not needed.
In our setup we later consider numbers that round to values outside the range-
restricted format as overflowing, so the exact same condition is implied. This
9 Read ‘εe. . . . ’ as ‘the e such that . . . ’.
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approach in any case is used later in the Standard 7.3 when discussing the rais-
ing of the overflow exception (‘. . . were the exponent range unbounded’).

Rounding is defined in HOL as a direct transcription of the Standard’s defi-
nition. There is one clause for each of the four rounding modes:

|- (round fmt Nearest x =

closest_such (iformat fmt) (EVEN o decode_fraction fmt) x) ∧
(round fmt Down x = closest {a | a ∈ iformat fmt ∧ a <= x} x) ∧
(round fmt Up x = closest {a | a ∈ iformat fmt ∧ a >= x} x) ∧
(round fmt Zero x =

closest {a | a ∈ iformat fmt ∧ abs a <= abs x} x)

For example, the result of rounding x down is defined to be the closest to x of
the set of real numbers a representable in the format concerned (a ∈ iformat
fmt) and no larger than x (a <= x). The subsidiary notion of ‘the closest member
of a set of real numbers’ is defined using the Hilbert ε operator. As can be seen
from the definition, rounding to nearest uses a slightly elaborated notion of
closeness where the result with an even fraction is preferred.10

|- is_closest s x a ⇔
a ∈ s ∧ ∀b. b ∈ s =⇒ abs(b - x) >= abs(a - x)

|- closest s x = εa. is_closest s x a

|- closest_such s p x =

εa. is_closest s x a ∧ (∀b. is_closest s x b ∧ p b =⇒ p a)

In order to derive useful consequences from the definition, we then need to
show that the postulated closest elements always exist. Actually, this depends on
the format’s being nontrivial. For example, if the format has nonzero precision,
then rounding up behaves as expected:

|- ¬(precision fmt = 0)

=⇒ round fmt Up x ∈ iformat fmt ∧
x <= round fmt Up x ∧
abs(x - round fmt Up x) < ulp fmt x ∧
∀c. c ∈ iformat fmt ∧ x <= c

=⇒ abs(x - round fmt Up x) <= abs(x - c)

The strongest results for rounding to nearest depend on the precision being at
least 2. This is because in a format with p = 1 nonzero normalized numbers all
have fraction 1, so ‘rounding to even’ no longer discriminates between adjacent
floating point numbers in the same way.
10 Note again the important distinction between real values and encodings. The canon-

ical fraction is used; the question of whether the actual floating point value has
an even fraction is irrelevant. We do not show all the details of how the canonical
fraction is defined.
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The (1 + ε) lemma. The most widely used lemma about floating point arith-
metic, often called the ‘(1 + ε)’ property, is simply that the result of a floating
point operation is the exact result, perturbed by a relative error of bounded
magnitude. Recalling that in our IEEE arithmetic, the result of an operation is
the rounded exact value, this amounts to saying that x rounded is always of the
form x(1 + ε) with |ε| bounded by a known value, typically 2−p where p is the
precision of the floating point format. We can derive a result of this form fairly
easily, though we need sideconditions to exclude the possibility of underflow (not
overflow, which we consider separately from rounding). The main theorem is as
follows:

|- ¬(losing fmt rc x) ∧ ¬(precision fmt = 0)

=⇒ ∃e. abs(e) <= mu rc / &2 pow (precision fmt - 1) ∧
round fmt rc x = x * (&1 + e)

This essentially states exactly the ‘1+e’ property, and the bound on ε depends
on the rounding mode, according to the following auxiliary definition of mu:

|- mu Nearest = &1 / &2 ∧
mu Down = &1 ∧
mu Up = &1 ∧
mu Zero = &1

The theorem has two sideconditions, the second being the usual nontriviality
hypothesis, and the first being an assertion that the value x does not lose preci-
sion, in other words, that the result of rounding x would not change if the lower
exponent range were extended. We will not show the formal definition [26] here,
since it is rather complicated. However, a simple and usually adequate sufficient
condition is that the exact result lies in the normal range (or is zero):

|- normalizes fmt x =⇒ ¬(losing fmt rc x)

where

|- normalizes fmt x ⇔
x = &0 ∨
&2 pow (precision fmt - 1) / &2 pow (ulpscale fmt) <= abs(x)

In a couple of places, however, we need a sharper criterion for when the result
of an fma operation will not lose precision. The proof of the following result
merely observes that either the result is in the normalized range, or else the
result will cancel so completely that the result will be exactly representable;
however the technical details are non-trivial.

|- ¬(precision fmt = 0) ∧
a ∈ iformat fmt ∧
b ∈ iformat fmt ∧
c ∈ iformat fmt ∧
&2 pow (2 * precision fmt - 1) / &2 pow (ulpscale fmt) <= abs(c)

=⇒ ¬(losing fmt rc (a * b + c))
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Lemmas about exactness. The ‘(1 + ε)’ property allows us to ignore most
of the technical details of floating point rounding, and step back into the world
of exact real numbers and straightforward algebraic calculations. Many highly
successful backward error analyses of higher-level algorithms [59] often rely essen-
tially only on this property. Indeed, for most of the operations in the algorithms
we are concerned with here, ‘(1 + ε)’ is the only property needed for us to verify
what we require of them.

However, in lower-level algorithms like the ones considered here and others
that the present author is concerned with verifying, a number of additional
properties of floating point arithmetic are sometimes exploited by the algorithm
designer, and proofs of them are required for verifications. In particular, there
are important situations where floating point arithmetic is exact, i.e. results
round to themselves. This happens if and only if the result is representable as a
floating point number:

|- a ∈ iformat fmt =⇒ round fmt rc a = a

|- ¬(precision fmt = 0) =⇒ (round fmt rc x = x ⇔ x ∈ iformat fmt)

There are a number of situations where arithmetic operations are exact. Per-
haps the best-known instance is subtraction of nearby quantities; cf. Theorem
4.3.1 of [54]:

|- a ∈ iformat fmt ∧ b ∈ iformat fmt ∧ a / &2 <= b ∧ b <= &2 * a

=⇒ (b - a) ∈ iformat fmt

The availability of an fma operation leads us to consider generalization where
results with higher intermediate precision are subtracted. The following is a
direct generalization of the previous theorem, which corresponds to the case
k = 0.11

|- ¬(p = 0) ∧
a ∈ iformat (E1,p+k,N) ∧
b ∈ iformat (E1,p+k,N) ∧
abs(b - a) <= abs(b) / &2 pow (k + 1)

=⇒ (b - a) ∈ iformat (E2,p,N)

Another classic result [39, 16] shows that we can obtain the sum of two float-
ing point numbers exactly in two parts, one a rounding error in the other, by
performing the floating point addition then subtracting both summands from
the result, the larger one first:

|- x ∈ iformat fmt ∧
y ∈ iformat fmt ∧
abs(x) <= abs(y)

=⇒ (round fmt Nearest (x + y) - y) ∈ iformat fmt ∧
(round fmt Nearest (x + y) - (x + y)) ∈ iformat fmt

11 With an assumption that a and b belong to the same binade, the (k + 1) can be
strengthened to k.
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Once again, we have devised a more general form of this theorem, with the
above being the k = 0 case.12 It allows a laxer relationship between x and y if
the smaller number has k fewer significant digits:

|- k <= ulpscale fmt ∧
x ∈ iformat fmt ∧
y ∈ iformat(exprange fmt,precision fmt - k,ulpscale fmt - k) ∧
abs(x) <= abs(&2 pow k * y)

=⇒ (round fmt Nearest (x + y) - y) ∈ iformat fmt ∧
(round fmt Nearest (x + y) - (x + y)) ∈ iformat fmt

The fma leads to a new result of this kind, allowing us to obtain an exact
product in two parts:13

|- a ∈ iformat fmt ∧ b ∈ iformat fmt ∧
&2 pow (2 * precision fmt - 1) / &2 pow (ulpscale fmt) <= abs(a * b)

=⇒ (a * b - round fmt Nearest (a * b)) ∈ iformat fmt

A note on floating point axiomatics. The proofs of many of the above lem-
mas, and other more specialized results used in proofs, are often quite awkward
and technical. In particular, they often require us to return to the basic defi-
nitions of floating point numbers and expand them out as sign, exponent and
fraction before proceeding with some detailed bitwise or arithmetical proofs. This
state of affairs compares badly with the organization of material in much of pure
mathematics. For example the HOL theory of abstract real numbers proves from
the definitions of reals (via a variant of Cauchy sequences) some basic ‘axioms’
from which all of real analysis is developed; once the reals have been constructed,
the details of how the real numbers were constructed are irrelevant.

One naturally wonders if there is a clean set of ‘axioms’ from which most
interesting floating point results can be derived more transparently. The idea of
encapsulating floating point arithmetic in a set of axioms has attracted some
attention over the years. However, the main point of these exercises was not
so much to simplify and unify proofs in a particular arithmetic, but rather to
produce proofs that would cover various different arithmetic implementations.
With the almost exclusive use of IEEE arithmetic these days, that motivation
has lost much of its force. Nevertheless it is worth looking at whether the axiom
sets that have been proposed would be useful for our purposes.

The cleanest axiom systems are those that don’t make reference to the under-
lying floating point representation [58, 60, 31]. However these are also the least
useful for deriving results of the kind we consider, where details of the floating
point representation are clearly significant. Moreover, at least one axiom in [60]
is actually false for IEEE arithmetic, and according to [46], for almost every
commercially significant machine except for the Cray X-MP and Y-MP.
12 See [35] for other generalizations that we do not consider.
13 We are not sure where this result originated; it appears in some of Kahan’s lecture

notes at http://www.cs.berkeley.edu∼wkahan/ieee754status/ieee754.ps .
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Generally speaking, in order to make it possible to prove the kind of subtle
exactness results that we sometimes need, axioms that are explicit about the
floating point representation are needed [16, 6]. Once this step is taken, there
don’t seem to be many benefits over our own explicit proofs, given that one
is working in a precisely defined arithmetic. On the other hand, it is certainly
interesting to see how many results can be proved by weaker hypotheses. For
example, using the floating point representation explicitly but only assuming
about rounding that it is, in Dekker’s terminology, faithful, Priest [46] deduces
several interesting consequences including Sterbenz’s theorem about cancellation
in subtraction, part of the theorem on exact sums, and the following:14

0 ≤ a ≤ b ∧ fl(b − a) = b − a =⇒ ∀c. a ≤ c ≤ b =⇒ fl(c − a) = c − a

However, he also makes some interesting remarks on the limitations of this ax-
iomatic approach.

4.2 Division

It is not immediately obvious that without tricky and time-consuming bit-
twiddling, it is possible to produce an IEEE-correct quotient and set all the
IEEE flags correctly via ordinary software. Remarkably, however, fairly short
straight-line sequences of fma operations (or negated variants), suffice to do so.
This approach to division was pioneered by Markstein [38] on the IBM RS/600015

family. It seems that the ability to perform both a multiply and an add or sub-
tract without an intermediate rounding is essential here.

Refining approximations. First we will describe in general terms how we
can use fma operations to refine an initial reciprocal approximation (obtained
from frcpa) towards a better reciprocal or quotient approximation. For clarity
of exposition, we will ignore rounding errors at this stage, and later show how
they are taken account of in the formal proof.

Consider determining the reciprocal of some floating point value b. Starting
with a reciprocal approximation y with a relative error ε:

y =
1
b
(1 + ε)

we can perform just one fnma operation:

e = 1 − by

and get:

e = 1 − by

= 1 − b
1
b
(1 + ε)

= 1 − (1 + ε)
= −ε

14 Think of fl as denoting rounding to nearest.
15 All other trademarks are the property of their respective owners.
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Now observe that:

1
b

=
y

(1 + ε)
= y(1 − ε + ε2 − ε3 + · · ·)
= y(1 + e + e2 + e3 + · · ·)

This suggests that we might improve our reciprocal approximation by multi-
plying y by some truncation of the series 1+ e + e2 + e3 + · · ·. The simplest case
using a linear polynomial in e can be done with just one more fma operation:

y′ = y + ey

Now we have

y′ = y(1 + e)

=
1
b
(1 + ε)(1 + e)

=
1
b
(1 + ε)(1 − ε)

=
1
b
(1 − ε2)

The magnitude of the relative error has thus been squared, or looked at an-
other way, the number of significant bits has been approximately doubled. This,
in fact, is exactly a step of the traditional Newton-Raphson iteration for recip-
rocals. In order to get a still better approximation, one can either use a longer
polynomial in e, or repeat the Newton-Raphson linear correction several times.
Mathematically speaking, repeating Newton-Raphson iteration n times is equiv-
alent to using a polynomial 1 + e + · · · + e2n−1, e.g. since e′ = ε2 = e2, two
iterations yield:

y′′ = y(1 + e)(1 + e2) = y(1 + e + e2 + e3)

However, whether repeated Newton iteration or a more direct power series
evaluation is better depends on a careful analysis of efficiency and the impact of
rounding error. The Intel algorithms use both, as appropriate.

Now consider refining an approximation to the quotient with relative error
ε; we can get such an approximation in the first case by simply multiplying a
reciprocal approximation y ≈ 1

b by a. One approach is simply to refine y as
much as possible and then multiply. However, this kind of approach can never
guarantee getting the last bit right; instead we also need to consider how to
refine q directly. Suppose

q =
a

b
(1 + ε)

We can similarly arrive at a remainder term by an fnma:

r = a − bq
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when we have:

r = a − bq

= a − b
a

b
(1 + ε)

= a − a(1 + ε)
= −aε

In order to use this remainder term to improve q, we also need a reciprocal
approximation y = 1

b (1 + η). Now the fma operation:

q′ = q + ry

results in, ignoring the rounding:

q′ = q + ry

=
a

b
(1 + ε) − aε

1
b
(1 + η)

=
a

b
(1 + ε − ε(1 + η))

=
a

b
(1 − εη)

Obtaining the final result. While we have neglected rounding errors hitherto,
it is fairly straightforward to place a sensible bound on their effect. To be precise,
the error from rounding is at most half an ulp in round-to-nearest mode and a
full ulp in the other modes.

	 ¬(precision fmt = 0)

=⇒ (abs(error fmt Nearest x) <= ulp fmt x / &2) ∧
(abs(error fmt Down x) < ulp fmt x) ∧
(abs(error fmt Up x) < ulp fmt x) ∧
(abs(error fmt Zero x) < ulp fmt x)

where

	 error fmt rc x = round fmt rc x - x

It turn, we can easily get fairly tight lower (|x|/2p ≤ ulp(x)) and upper
(ulp(x) ≤ |x|/2p−1) bounds on an ulp in x relative to the magnitude of x, the
upper bound assuming normalization:

	 abs(x) / &2 pow (precision fmt) <= ulp fmt x

and

	 normalizes fmt x ∧ ¬(precision fmt = 0) ∧ ¬(x = &0)

=⇒ ulp fmt x <= abs(x) / &2 pow (precision fmt - 1)
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Putting these together, we can easily prove simple relative error bounds on all
the basic operations, which can be propagated through multiple calculations by
simple algebra. It is easy to see that while the relative errors in the approxima-
tions are significantly above 2−p (where p is the precision of the floating point
format), the effects of rounding error on the overall error are minor. However,
once we get close to having a perfectly rounded result, rounding error becomes
highly significant. A crucial theorem here is the following due to Markstein [38]:

Theorem 1. If q is a floating point number within 1 ulp of the true quotient a/b
of two floating point numbers, and y is the correctly rounded-to-nearest approxi-
mation of the exact reciprocal 1

b , then the following two floating point operations:

r = a − bq

q′ = q + ry

using round-to-nearest in each case, yield the correctly rounded-to-nearest quo-
tient q′.

This is not too difficult to prove in HOL. First we observe that because the
initial q is a good approximation, the computation of r cancels so much that
no rounding error is committed. (This is intuitively plausible and stated by
Markstein without proof, but the formal proof was surprisingly messy).

	 2 <= precision fmt ∧
a ∈ iformat fmt ∧ b ∈ iformat fmt ∧ q ∈ iformat fmt ∧
normalizes fmt q ∧ abs(a / b - q) <= ulp fmt (a / b) ∧
&2 pow (2 * precision fmt - 1) / &2 pow (ulpscale fmt) <= abs(a)

=⇒ (a - b * q) ∈ iformat fmt

Now the overall proof given by Markstein is quite easily formalized. However,
we observed that the property actually used in the proof is in general some-
what weaker than requiring y to be a perfectly rounded reciprocal. The theorem
actually proved in HOL is:

Theorem 2. If q is a floating point number within 1 ulp of the true quotient
a/b of two floating point numbers, and y approximates the exact reciprocal 1

b
to a relative error < 1

2p , where p is the precision of the floating point format
concerned, then the following two floating point operations:

r = a − bq

q′ = q + ry

using round-to-nearest in each case, yield the correctly rounded-to-nearest quo-
tient q′.
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The formal HOL statement is as follows:

	 2 <= precision fmt ∧
a ∈ iformat fmt ∧ b ∈ iformat fmt ∧
q ∈ iformat fmt ∧ r ∈ iformat fmt ∧
¬(b = &0) ∧
¬(a / b ∈ iformat fmt) ∧
normalizes fmt (a / b) ∧
abs(a / b - q) <= ulp fmt (a / b) ∧
abs(inv(b) - y) < abs(inv b) / &2 pow (precision fmt) ∧
r = a - b * q ∧
q’ = q + r * y

=⇒ round fmt Nearest q’ = round fmt Nearest (a / b)

Although in the worst case, the preconditions of the original and modified
theorem hardly differ (recall that |x|/2p ≤ ulp(x) ≤ |x|/2p−1), it turns out
that in many situations the relative error condition is much easier to satisfy. In
Markstein’s original methodology, one needs first to obtain a perfectly rounded
reciprocal, which he proves can be done as follows:

Theorem 3. If y is a floating point number within 1 ulp of the true reciprocal
1
b , then one iteration of:

e = 1 − by

y′ = y + ey

using round-to-nearest in both cases, yields the correctly rounded reciprocal, ex-
cept possibly when the mantissa of b consists entirely of 1s.

If we rely on this theorem, we need a very good approximation to 1
b before these

two further serial operations and one more to get the final quotient using the
new y′. However, with the weaker requirement on y′, we can get away with a
correspondingly weaker y. In fact, we prove:

Theorem 4. If y is a floating point number that results from rounding a value
y0, and the relative error in y0 w.r.t. 1

b is ≤ d
22p for some natural number d

(assumed ≤ 2p−2), then y will have relative error < 1
2p w.r.t. 1

b , except possibly
if the mantissa of b is one of the d largest. (That is, when scaled up to an integer
2p−1 ≤ mb < 2p, we have in fact 2p − d ≤ mb < 2p.)

Proof. For simplicity we assume b > 0, since the general case can be deduced by
symmetry from this. We can therefore write b = 2emb for some integer mb with
2p−1 ≤ mb < 2p. In fact, it is convenient to assume that 2p−1 < mb, since when
b is an exact power of 2 the main result follows easily from d ≤ 2p−2. Now we
have:

1
b

= 2−e 1
mb

= 2−(e+2p−1)(
22p−1

mb
)
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and ulp(1
b ) = 2−(e+2p−1). In order to ensure that |y − 1

b | < |1b |/2p it suffices,
since |y − y0| ≤ ulp(1

b )/2, to have:

|y0 − 1
b
| < (

1
b
)/2p − ulp(

1
b
)/2

= (
1
b
)/2p − 2−(e+2p−1)/2

= (
1
b
)/2p − (

1
b
)mb/22p

By hypothesis, we have |y0 − 1
b | ≤ (1

b ) d
22p . So it is sufficient if:

(
1
b
)d/22p < (

1
b
)/2p − (

1
b
)mb/22p

Cancelling (1
b )/22p from both sides, we find that this is equivalent to:

d < 2p − mb

Consequently, the required relative error is guaranteed except possibly when d ≥
2p − mb, or equivalently mb ≥ 2p − d, as claimed.

The HOL statement is as follows. Note that it uses e = d/22p as compared with
the statement we gave above, but this is inconsequential.

	 2 <= precision fmt ∧
b ∈ iformat fmt ∧
y ∈ iformat fmt ∧
¬(b = &0) ∧
normalizes fmt b ∧
normalizes fmt (inv(b)) ∧
y = round fmt Nearest y0 ∧
abs(y0 - inv(b)) <= e * abs(inv(b)) ∧
e <= inv(&2 pow (precision fmt + 2)) ∧
&(decode_fraction fmt b) <

&2 pow (precision fmt) - &2 pow (2 * precision fmt) * e

=⇒ abs(inv(b) - y) < abs(inv(b)) / &2 pow (precision fmt)

Thanks to this stronger theorem, we were actually able to design more efficient
algorithms than those based on Markstein’s original theorems, a surprising and
gratifying effect of our formal verification project. For a more elaborate number-
theoretic analysis of a related algorithm, see [30]; the proof described there has
also been formalized in HOL Light.

Flag settings. We must ensure not only correct results in all rounding modes,
but that the flags are set correctly. However, this essentially follows in general
from the correctness of the result in all rounding modes (strictly, in the case
of underflow, we need to verify this for a format with slightly larger exponent
range). For the correct setting of the inexact flag, we need only prove the fol-
lowing HOL theorem:
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	 ¬(precision fmt = 0) ∧
(∀rc. round fmt rc x = round fmt rc y)

=⇒ ∀rc. round fmt rc x = x ⇔ round fmt rc y = y

The proof is simple: if x rounds to itself, then it must be representable. But
by hypothesis, y rounds to the same thing, that is x, in all rounding modes. In
particular the roundings up and down imply x <= y and x >= y, so y = x. The
other way round is similar.

4.3 Square Root

Similarly, the Intel® Itanium® architecture defers square roots to software, and
we have verified a number of sequences for the operation [29]. The process of
formal verification follows a methodology established by Cornea [13]. A general
analytical proof covers the majority of cases, but a number of potential excep-
tions are isolated using number-theoretic techniques and dealt with using an
explicit case analysis. Proofs of this nature, large parts of which involve intricate
but routine error bounding and the exhaustive solution of diophantine equa-
tions, are very tedious and error-prone to do by hand. In practice, one would do
better to use some kind of machine assistance, such as ad hoc programs to solve
the diophantine equations and check the special cases so derived. Although this
can be helpful, it can also create new dangers of incorrectly implemented helper
programs and transcription errors when passing results between ‘hand’ and ‘ma-
chine’ portions of the proof. By contrast, we perform all steps of the proof in
HOL Light, and can be quite confident that no errors have been introduced.

In general terms, square root algorithms follow the same pattern as division
algorithms: an initial approximation (now obtained by frsqrta) is successively
refined, and at the end some more subtle steps are undertaken to ensure correct
rounding. The initial refinement is similar in kind to those for reciprocals and quo-
tients, though slightly more complicated, and we will not describe them in detail;
interested readers can refer to [37, 12, 29]. Instead we focus on ensuring perfect
rounding at the end. Note that whatever the final fma operation may be, say

S := S3 + e3H3

we can regard it, because of the basic IEEE correctness of the fma, as the
rounding of the exact mathematical result S3 + e3H3, which we abbreviate S∗.
Thanks to the special properties of the fma, we can design the initial refinement
to ensure that the relative error in S∗ is only a little more than 2−2p where p is
the floating-point precision. How can we infer from such a relative error bound
that S will always be correctly rounded? We will focus on the round-to-nearest
mode here; the proof for the other rounding modes are similar but need special
consideration of earlier steps in the algorithm to ensure correct results when the
result is exact (

√
0.25 = 0.5 etc.)

Exclusion zones. On general grounds we note that
√

a cannot be exactly the
mid-point between two floating-point numbers. This is not hard to see, since the
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square root of a number in a given format cannot denormalize in that format,
and a non-denormal midpoint has p+1 significant digits, so its square must have
more than p.16

|- &0 <= a ∧ a ∈ iformat fmt ∧ b ∈ midpoints fmt

=⇒ ¬(sqrt a = b)

This is a useful observation. We’ll never be in the tricky case where there are
two equally close floating-point numbers (resolved by the ‘round to even’ rule.)
So in round-to-nearest, S∗ and

√
a could only round in different ways if there

were a midpoint between them, for only then could the closest floating-point
numbers to them differ. For example in the following diagram where large lines
indicate floating-point numbers and smaller ones represent midpoints,

√
a would

round ‘down’ while S∗ would round ‘up’:17

�
��√

a
S∗

Although analyzing this condition combinatorially would be complicated,
there is a much simpler sufficient condition. One can easily see that it would
suffice to show that for any midpoint m:

|
√

a − S∗| < |
√

a − m|

In that case
√

a and S∗ couldn’t lie on opposite sides of m. Here is the formal
theorem in HOL:

|- ¬(precision fmt = 0) ∧
(∀m. m ∈ midpoints fmt =⇒ abs(x - y) < abs(x - m))

=⇒ round fmt Nearest x = round fmt Nearest y

One can arrive at an ‘exclusion zone’ theorem giving the minimum possible
|
√

a−m|. However, this can be quite small, about 2−(2p+3) relative to
√

a, where
p is the precision. For example, when p = 64, consider the square root of the
next floating-point number below 1, whose mantissa consists entirely of 1s. Its
square root is about 2−131 from a midpoint:

√
1 − 2−64 ≈ (1 − 265) − 2−131

Therefore, our relative error in S∗ of rather more than 2−2p is not adequate to
justify perfect rounding based on the simple ‘exclusion zone’ theorem. However,
16 An analogous result holds for quotients but here the denormal case must be dealt

with specially. For example 2Emin × 0.111· · ·111/2 is exactly a midpoint.
17 Similarly, in the other rounding modes, misrounding could only occur if

√
a and S∗

are separated by a floating-point number. However we also need to consider the case
when

√
a is a floating-point number.



Floating-Point Verification Using Theorem Proving 235

our relative error bounds are far from sharp, and it seems quite plausible that
the algorithm does nevertheless work correctly. What can we do?

One solution is to use more refined theorems [37], but this is complicated
and may still fail to justify several algorithms that are intuitively believed to
work correctly. An ingenious alternative developed by Cornea [13] is to observe
that there are relatively few cases like 0.111 · · ·1111 whose square roots come
close enough to render the exclusion zone theorem inapplicable, and these can be
isolated by fairly straightforward number-theoretic methods. We can therefore:

– Isolate the special cases a1, . . . , an that have square roots within the critical
distance of a midpoint.

– Conclude from the simple exclusion zone theorem that the algorithm will
give correct results except possibly for a1, . . . , an.

– Explicitly show that the algorithm is correct for the a1, . . . , an, (effectively
by running it on those inputs).

This two-part approach is perhaps a little unusual, but not unknown even
in pure mathematics.18 For example, consider “Bertrand’s Conjecture” (first
proved by Chebyshev), stating that for any positive integer n there is a prime p
with n ≤ p ≤ 2n. The most popular proof, originally due to Erdös [18], involves
assuming n > 4000 for the main proof and separately checking the assertion for
n ≤ 4000.19

By some straightforward mathematics [13] formalized in HOL without diffi-
culty, one can show that the difficult cases for square roots have mantissas m,
considered as p-bit integers, such that one of the following diophantine equations
has a solution k for some integer |d| ≤ D, where D is roughly the factor by which
the guaranteed relative error is excessive:

2p+2m = k2 + d 2p+1m = k2 + d

We consider the equations separately for each chosen |d| ≤ D. For example, we
might be interested in whether 2p+1m = k2 −7 has a solution. If so, the possible
value(s) of m are added to the set of difficult cases. It’s quite easy to program
HOL to enumerate all the solutions of such diophantine equations, returning a
disjunctive theorem of the form:

� 2p+1m = k2 + d =⇒ m = n1 ∨ . . . ∨ m = ni

The procedure simply uses even-odd reasoning and recursion on the power of
two (effectively so-called ‘Hensel lifting’). For example, if

225m = k2 − 7
18 A more extreme case is the 4-color theorem, whose proof relies on extensive

(computer-assisted) checking of special cases [3].
19 An ‘optimized’ way of checking, referred to by [2] as “Landau’s trick”, is to verify

that 3, 5, 7, 13, 23, 43, 83, 163, 317, 631, 1259, 2503 and 4001 are all prime and each
is less than twice its predecessor.
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then we know k must be odd; we can write k = 2k′ + 1 and deduce:

224m = 2k′2 + 2k′ − 3

By more even/odd reasoning, this has no solutions. In general, we recurse
down to an equation that is trivially unsatisfiable, as here, or immediately solv-
able. One equation can split into two, but never more. For example, we have a
formally proved HOL theorem asserting that for any double-extended number
a,20 rounding

√
a and

√
a(1 + ε) to double-extended precision using any of the

four IEEE rounding modes will give the same results provided |ε| < 31/2131,
with the possible exceptions of 22em for:

m ∈ { 10074057467468575321, 10376293541461622781,
10376293541461622787, 11307741603771905196,
13812780109330227882, 14928119304823191698,
16640932189858196938, 18446744073709551611,
18446744073709551612, 18446744073709551613,
18446744073709551614, 18446744073709551615}

and 22e+1m for

m ∈ { 9223372036854775809, 9223372036854775811,
11168682418930654643}

Note that while some of these numbers are obvious special cases like 264 − 1,
the “pattern” in others is only apparent from the kind of mathematical analysis
we have undertaken here. They aren’t likely to be exercised by random testing,
or testing of plausible special cases.21

Checking formally that the algorithm works on the special cases can also be
automated, by applying theorems on the uniqueness of rounding to the concrete
numbers computed. (For a formal proof, it is not sufficient to separately test
the implemented algorithm, since such a result has no formal status.) In order
to avoid trying all possible even or odd exponents for the various significands,
we exploit some results on invariance of the rounding and arithmetic involved in
the algorithm under systematic scaling by 22k, doing a simple form of symbolic
simulation by formal proof.

4.4 Transcendental Functions

We have also proven rigorous error bounds for implementations of several com-
mon transcendental functions. Note that, according to current standard practice,

20 Note that there is more subtlety required when using such a result in a mixed-
precision environment. For example, to obtain a single-precision result for a double-
precision input, an algorithm that suffices for single-precision inputs may not be
adequate even though the final precision is the same.

21 On the other hand, we can well consider the mathematical analysis as a source of
good test cases.
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the algorithms do not aim at perfect rounding, but allow a small additional rel-
ative error. Although ensuring perfect rounding for transcendental functions is
possible, and may become standard in the future, it is highly non-trivial and
involves at least some efficiency penalty [42]. We will consider here a floating-
point sin and cos function; as will become clear shortly the internal structure is
largely identical in the two cases.

As is quite typical for modern transcendental function implementations [56],
the algorithm can be considered as three phases:

– Initial range reduction
– Core computation
– Reconstruction

For our trigonometric functions, the initial argument x is reduced modulo
π/2. Mathematically, for any real x we can always write:

x = N(π/2) + r

where N is an integer (the closest to x· 2
π ) and |r| ≤ π/4. The core approximation

is then a polynomial approximation to sin(r) or cos(r) as appropriate, similar
to a truncation of the familiar Taylor series:

sin(x) = x − x3

3!
+

x5

5!
− x7

7!
+ . . .

cos(x) = 1 − x2

2!
+

x4

4!
− x6

6!
+ . . .

but with the pre-stored coefficients computed numerically to minimize the max-
imum error over r’s range, using the so-called Remez algorithm [49]. Finally, the
reconstruction phase: to obtain either sin(x) and/or cos(x), just return one of
sin(r), cos(r), −sin(r) or −cos(r) depending on N modulo 4. For example:

sin((4M + 3)(π/2) + r) = −cos(r)

Verification of range reduction. The principal difficulty of implementing
trigonometric range reduction is that the input argument x may be large and
yet the reduced argument r very small, because x is unusually close to a multiple
of π/2. In such cases, the computation of r needs to be performed very carefully.
Assuming we have calculated N , we need to evaluate:

r = x − N
π

2
However, π

2 is irrational and so cannot be represented exactly by any finite sum
of floating point numbers. So however the above is computed, it must in fact
calculate

r′ = x − NP
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for some approximation P = π
2 + ε. The relative error |r′−r|

|r| is then N |ε|
|r| which is

of the order |xε
r |. Therefore, to keep this relative error within acceptable bounds

(say 2−70) the accuracy required in the approximation P depends on how small
the (true) reduced argument can be relative to the input argument. In order
to formally verify the accuracy of the algorithm, we need to answer the purely
mathematical question: how close can a double-extended precision floating point
number be to an integer multiple of π

2 ? Having done that, we can proceed with
the verification of the actual computation of the reduced argument in floating
point arithmetic. This requires a certain amount of elementary number theory,
analyzing convergents [4].

The result is that for nonzero inputs the reduced argument has magnitude at
least around 2−69. Assuming the input has size ≤ 263, this means that an error
of ε in the approximation of π/2 can constitute approximately a 2132ε relative
error in r. Consequently, to keep the relative error down to about 2−70 we need
|ε| < 2−202. Since a floating-point number has only 64 bits of precision, it would
seem that we would need to approximate π/2 by four floating-point numbers
P1, . . . , P4 and face considerable complications in keeping down the rounding
error in computing x − N(P1 + P2 + P3 + P4). However, using an ingenious
technique called pre-reduction [55], the difficulties can be reduced.

Verification of the core computation. The core computation is simply a
polynomial in the reduced argument; the most general sin polynomial used is of
the form:22

p(r) = r + P1r
3 + P2r

5 + · · · + P8r
17

where the Pi are all floating point numbers. Note that the Pi are not the same
as the coefficients of the familiar Taylor series (which in any case are not exactly
representable as floating point numbers), but arrived at using the Remez algo-
rithm to minimize the worst-case error over the possible reduced argument range.
The overall error in this phase consists of the approximation error p(r) − sin(r)
as well as the rounding errors for the particular evaluation strategy for the poly-
nomial. All of these require some work to verify formally; for example we have
implemented an automatic HOL derived rule to provably bound the error in
approximating a mathematical function by a polynomial over a given interval.
The final general correctness theorems we derive have the following form:

|- x ∈ floats Extended ∧ abs(Val x) <= &2 pow 64

=⇒ prac (Extended,rc,fz) (fcos rc fz x) (cos(Val x))

(#0.07341 * ulp(rformat Extended) (cos(Val x)))

The function prac means ‘pre-rounding accuracy’. The theorem states that
provided x is a floating point number in the double-extended format, with
|x| ≤ 264 (a range somewhat wider than needed), the result excluding the fi-
nal rounding is at most 0.07341 units in the last place from the true answer
22 In fact, the reduced argument needs to be represented as two floating-point numbers,

so there is an additional correction term that we ignore in this presentation.
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of cos(x). This theorem is generic over all rounding modes rc and flush-to-zero
settings fz. An easy corollary of this is that in round-to-nearest mode without
flush-to-zero set the maximum error is 0.57341 ulps, since rounding to nearest
can contribute at most 0.5 ulps. In other rounding modes, a more careful anal-
ysis is required, paying careful attention to the formal definition of a ‘unit in
the last place’. The problem is that the true answer and the computed answer
before the final rounding may in general lie on opposite sides of a (negative,
since |cos(x)| ≤ 1) power of 2. At this point, the gap between adjacent floating
point numbers is different depending on whether one is considering the exact or
computed result. In the case of round-to-nearest, however, this does not matter
since the result will always round to the straddled power of 2, bringing it even
closer to the exact answer.

5 Conclusion and Future Perspectives

Formal verification in this area is a good target for theorem proving. The work
outlined here has contributed in several ways: bugs have been found, potential
optimizations have been uncovered, and the general level of confidence and intel-
lectual grasp has been raised. In particular, two key strengths of HOL Light are
important: (i) available library of formalized real analysis, and (ii) programma-
bility of special-purpose inference rules without compromising soundness. Sub-
sequent improvements might focus on integrating the verification more tightly
into the design flow as in [44].
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