WY Ve
IGITALS
PROCE

Lale arnd A
entais and App

Digital Signal
Processing

This page intentionally left blank

Digital Signal
Processing

Fundamentals and
Applications

Li Tan

DeVry University
Decatur, Georgia

AMSTERDAM ¢ BOSTON « HEIDELBERG ¢« LONDON
NEW YORK ¢« OXFORD ¢ PARIS ¢ SAN DIEGO
& SAN FRANCISCO ¢ SINGAPORE * SYDNEY » TOKYO

ELSEVIER Academic Press is an imprint of Elsevier

Academic Press is an imprint of Elsevier

30 Corporate Drive, Suite 400, Burlington, MA 01803, USA
525 B Street, Suite 1900, San Diego, California 92101-4495, USA
84 Theobald’s Road, London WCI1X 8RR, UK

This book is printed on acid-free paper. >
Copyright © 2008, Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopy, recording, or any information storage and
retrieval system, without permission in writing from the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333,
E-mail: permissions@elsevier.com. You may also complete your request on-line via
the Elsevier homepage (http://elsevier.com), by selecting “Support & Contact” then
“Copyright and Permission” and then ‘“Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data
Application submitted.

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN: 978-0-12-374090-8

For information on all Academic Press publications
visit our Web site at www.books.elsevier.com

Printed in the United States of America
07 08 09 10 11 9 8 7 6 5 4 3 2 1

Working together to grow
libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER BOOKRAID g, Foundation

Preface

Contents

About the Author

1 Introduction to Digital Signal Processing

1.1
1.2

1.3

1.4
1.5

Basic Concepts of Digital Signal Processing

Basic Digital Signal Processing Examples in Block Diagrams
1.2.1 Digital Filtering

1.2.2 Signal Frequency (Spectrum) Analysis

Overview of Typical Digital Signal Processing in Real-World
Applications

1.3.1 Digital Crossover Audio System

1.3.2 Interference Cancellation in Electrocardiography
1.3.3 Speech Coding and Compression

1.3.4 Compact-Disc Recording System

1.3.5 Digital Photo Image Enhancement

Digital Signal Processing Applications

Summary

2 Signal Sampling and Quantization

2.1
2.2

2.3

24
2.5
2.6

Sampling of Continuous Signal

Signal Reconstruction

2.2.1 Practical Considerations for Signal Sampling:
Anti-Aliasing Filtering

2.2.2 Practical Considerations for Signal Reconstruction:
Anti-Image Filter and Equalizer

Analog-to-Digital Conversion, Digital-to-Analog

Conversion, and Quantization

Summary

MATLAB Programs

Problems

3 Digital Signals and Systems

3.1

Digital Signals
3.1.1 Common Digital Sequences
3.1.2 Generation of Digital Signals

xiii
xvil

B W L = e

25

29

35
49
50
51

57
57
58
62

vi

CONTENTS

3.2

33

34
3.5
3.6
3.7

Linear Time-Invariant, Causal Systems

3.2.1 Linearity

3.2.2 Time Invariance

3.2.3 Causality

Difference Equations and Impulse Responses
3.3.1 Format of Difference Equation

3.3.2 System Representation Using Its Impulse Response
Bounded-in-and-Bounded-out Stability
Digital Convolution

Summary

Problems

Discrete Fourier Transform and Signal Spectrum

4.1

4.2
4.3
4.4
4.5

4.6
4.7

Discrete Fourier Transform

4.1.1 Fourier Series Coefficients of Periodic Digital Signals
4.1.2 Discrete Fourier Transform Formulas
Amplitude Spectrum and Power Spectrum
Spectral Estimation Using Window Functions
Application to Speech Spectral Estimation
Fast Fourier Transform

4.5.1 Method of Decimation-in-Frequency
4.5.2 Method of Decimation-in-Time
Summary

Problems

The z-Transform

5.1
5.2
53

54
5.5
5.6

Definition

Properties of the z-Transform

Inverse z-Transform

5.3.1 Partial Fraction Expansion Using MATLAB
Solution of Difference Equations Using the z-Transform
Summary

Problems

Digital Signal Processing Systems, Basic Filtering Types,
and Digital Filter Realizations

6.1
6.2

6.3
6.4
6.5

The Difference Equation and Digital Filtering
Difference Equation and Transfer Function

6.2.1 Impulse Response, Step Response, and System Response

The z-Plane Pole-Zero Plot and Stability
Digital Filter Frequency Response
Basic Types of Filtering

64
64
65
67
68
68
69
72
74
82
&3

87
87
88
92
98
110
117
120
121
127
131
131

135
135
139
142
148
151
155
156

159
159
165
169
171
179
188

6.6 Realization of Digital Filters

6.7

6.8
6.9

6.6.1 Direct-Form I Realization

6.6.2 Direct-Form II Realization

6.6.3 Cascade (Series) Realization

6.6.4 Parallel Realization

Application: Speech Enhancement and Filtering
6.7.1 Pre-Emphasis of Speech

6.7.2 Bandpass Filtering of Speech

Summary

Problems

Finite Impulse Response Filter Design

7.1
7.2
7.3
7.4

7.5
7.6
7.7

7.8
7.9

Finite Impulse Response Filter Format
Fourier Transform Design

Window Method

Applications: Noise Reduction and
Two-Band Digital Crossover

7.4.1 Noise Reduction

7.4.2 Speech Noise Reduction

7.4.3 Two-Band Digital Crossover
Frequency Sampling Design Method
Optimal Design Method

Realization Structures of Finite Impulse Response Filters

7.7.1 Transversal Form
7.7.2 Linear Phase Form

Coefficient Accuracy Effects on Finite Impulse Response Filters

CONT

ENTS

Summary of Finite Impulse Response (FIR) Design Procedures

and Selection of FIR Filter Design Methods in Practice

7.10 Summary

7.11

MATLAB Programs

7.12 Problems

Infinite Impulse Response Filter Design

8.1
8.2

8.3

Infinite Impulse Response Filter Format
Bilinear Transformation Design Method

8.2.1 Analog Filters Using Lowpass Prototype Transformation
8.2.2 Bilinear Transformation and Frequency Warping

8.2.3 Bilinear Transformation Design Procedure

Digital Butterworth and Chebyshev Filter Designs

8.3.1 Lowpass Prototype Function and Its Order

8.3.2 Lowpass and Highpass Filter Design Examples
8.3.3 Bandpass and Bandstop Filter Design Examples

vii

195
195
196
197
198
202
202
205
208
209

215
215
217
229

253
253
255
256
260
268
280
280
282
283

287
290
291
294

303
303
305
306
310
317
322
322
326
336

viii

CONTENTS

8.4
8.5

8.6
8.7

8.8

8.9

8.10

8.11

8.12

8.13
8.14

Higher-Order Infinite Impulse Response Filter Design

Using the Cascade Method

Application: Digital Audio Equalizer

Impulse Invariant Design Method

Polo-Zero Placement Method for Simple Infinite Impulse

Response Filters

8.7.1 Second-Order Bandpass Filter Design

8.7.2 Second-Order Bandstop (Notch) Filter Design

8.7.3 First-Order Lowpass Filter Design

8.7.4 First-Order Highpass Filter Design

Realization Structures of Infinite Impulse Response Filters

8.8.1 Realization of Infinite Impulse Response Filters in
Direct-Form I and Direct-Form II

8.8.2 Realization of Higher-Order Infinite Impulse
Response Filters via the Cascade Form

Application: 60-Hz Hum Eliminator and Heart Rate

Detection Using Electrocardiography

Coefficient Accuracy Effects on Infinite Impulse

Response Filters

Application: Generation and Detection of Dual-Tone

Multifrequency Tones Using Goertzel Algorithm

8.11.1 Single-Tone Generator

8.11.2 Dual-Tone Multifrequency Tone Generator

8.11.3 Goertzel Algorithm

8.11.4 Dual-Tone Multifrequency Tone Detection

Using the Modified Goertzel Algorithm

Summary of Infinite Impulse Response (IIR) Design

Procedures and Selection of the IIR Filter Design Methods

in Practice

Summary

Problems

Hardware and Software for Digital Signal Processors

9.1
9.2

9.3
94

Digital Signal Processor Architecture
Digital Signal Processor Hardware Units
9.2.1 Multiplier and Accumulator

9.2.2 Shifters

9.2.3 Address Generators

Digital Signal Processors and Manufactures
Fixed-Point and Floating-Point Formats
9.4.1 Fixed-Point Format

9.4.2 Floating-Point Format

9.4.3 1EEE Floating-Point Formats

343
346
350

358
359
360
362
364
365

366

368

370

377

381
382
384
386

391

396
401
402

413
413
416
416
417
418
419
420
420
429
434

10

11

9.5

9.6

9.7
9.8

CONTENTS

9.4.5 Fixed-Point Digital Signal Processors
9.4.6 Floating-Point Processors

Finite Impulse Response and Infinite Impulse Response
Filter Implementation in Fixed-Point Systems
Digital Signal Processing Programming Examples
9.6.1 Overview of TMS320C67x DSK

9.6.2 Concept of Real-Time Processing

9.6.3 Linear Buffering

9.6.4 Sample C Programs

Summary

Problems

Adaptive Filters and Applications

10.1

10.2
10.3

10.4

10.5
10.6

Introduction to Least Mean Square Adaptive Finite
Impulse Response Filters
Basic Wiener Filter Theory and Least Mean Square Algorithm
Applications: Noise Cancellation, System Modeling,
and Line Enhancement
10.3.1 Noise Cancellation
10.3.2 System Modeling
10.3.3 Line Enhancement Using Linear Prediction
Other Application Examples
10.4.1 Canceling Periodic Interferences Using
Linear Prediction
10.4.2 Electrocardiography Interference Cancellation
10.4.3 Echo Cancellation in Long-Distance
Telephone Circuits
Summary
Problems

Waveform Quantization and Compression

11.1
11.2

11.3

11.4

Linear Midtread Quantization

w-law Companding

11.2.1 Analog p-Law Companding

11.2.2 Digital w-Law Companding

Examples of Differential Pulse Code Modulation (DPCM),

Delta Modulation, and Adaptive DPCM G.721

11.3.1 Examples of Differential Pulse Code Modulation
and Delta Modulation

11.3.2 Adaptive Differential Pulse Code Modulation G.721

Discrete Cosine Transform, Modified Discrete Cosine

Transform, and Transform Coding in MPEG Audio

11.4.1 Discrete Cosine Transform

ix

437
439

441
447
447
451
452
455
460
461

463

463
467

473
473
479
484
486

487
488

489
491
491

497
497
501
501
506

510

510
515

522
522

X

12

13

CONT

11.5
11.6
11.7

ENTS

11.4.2 Modified Discrete Cosine Transform
11.4.3 Transform Coding in MPEG Audio
Summary

MATLAB Programs

Problems

Multirate Digital Signal Processing, Oversampling of
Analog-to-Digital Conversion, and Undersampling of
Bandpass Signals

12.1

12.2
12.3

12.4
12.5
12.6
12.7

Multirate Digital Signal Processing Basics

12.1.1 Sampling Rate Reduction by an Integer Factor

12.1.2 Sampling Rate Increase by an Integer Factor

12.1.3 Changing Sampling Rate by a Non-Integer Factor L/M

12.1.4 Application: CD Audio Player

12.1.5 Multistage Decimation

Polyphase Filter Structure and Implementation

Oversampling of Analog-to-Digital Conversion

12.3.1 Oversampling and Analog-to-Digital Conversion
Resolution

12.3.2 Sigma-Delta Modulation Analog-to-Digital Conversion

Application Example: CD Player

Undersampling of Bandpass Signals

Summary

Problems

Image Processing Basics

13.1

13.2

13.3

Image Processing Notation and Data Formats

13.1.1 8-Bit Gray Level Images

13.1.2 24-Bit Color Images

13.1.3 8-Bit Color Images

13.1.4 Intensity Images

13.1.5 Red, Green, Blue Components and Grayscale
Conversion

13.1.6 MATLAB Functions for Format Conversion

Image Histogram and Equalization

13.2.1 Grayscale Histogram and Equalization

13.2.2 24-Bit Color Image Equalization

13.2.3 8-Bit Indexed Color Image Equalization

13.2.4 MATLAB Functions for Equalization

Image Level Adjustment and Contrast

13.3.1 Linear Level Adjustment

13.3.2 Adjusting the Level for Display

525
530
533
534
550

557
557
558
564
570
575
578
583
589

590
593
599
601
609
610

617
617
618
619
620
621

622
624
625
625
632
633
636
637
638
641

13.4

13.5
13.6
13.7

13.8
13.9

13.10
13.11
13.12

CONT

13.3.3 Matlab Functions for Image Level Adjustment

Image Filtering Enhancement

13.4.1 Lowpass Noise Filtering

13.4.2 Median Filtering

13.4.3 Edge Detection

13.4.4 MATLAB Functions for Image Filtering

Image Pseudo-Color Generation and Detection

Image Spectra

Image Compression by Discrete Cosine Transform

13.7.1 Two-Dimensional Discrete Cosine Transform

13.7.2 Two-Dimensional JPEG Grayscale Image
Compression Example

13.7.3 JPEG Color Image Compression

Creating a Video Sequence by Mixing Two Images

Video Signal Basics

13.9.1 Analog Video

13.9.2 Digital Video

Motion Estimation in Video

Summary

Problems

Appendix A Introduction to the MATLAB Environment

Al
A2
A3
A4
A.S

Basic Commands and Syntax

MATLAB Array and Indexing

Plot Utilities: Subplot, Plot, Stem, and Stair
MATLAB Script Files

MATLAB Functions

Appendix B Review of Analog Signal Processing Basics

B.1

B.2

B.3

Fourier Series and Fourier Transform

B.1.1 Sine-Cosine Form

B.1.2 Amplitude-Phase Form

B.1.3 Complex Exponential Form

B.1.4 Spectral Plots

B.1.5 Fourier Transform

Laplace Transform

B.2.1 Laplace Transform and Its Table

B.2.2 Solving Differential Equations Using
Laplace Transform

B.2.3 Transfer Function

Poles, Zeros, Stability, Convolution, and Sinusoidal

Steady-State Response

ENTS

xi

642
642
643
646
651
655
657
661
664
666

669
671
677
677
678
685
687
690
692

699
699
703
704
704
705

709
709
709
710
711
714
721
726
726

727
730

731

xii CONTENTS

B.3.1 Poles, Zeros, and Stability
B.3.2 Convolution
B.3.3 Sinusoidal Steady-State Response

B.4 Problems

Appendix C Normalized Butterworth and Chebyshev Fucntions
C.1 Normalized Butterworth Function
C.2 Normalized Chebyshev Function

Appendix D Sinusoidal Steady-State Response of Digital Filters
D.1 Sinusoidal Steady-State Response
D.2 Properties of the Sinusoidal Steady-State Response

Appendix E Finite Impulse Response Filter Design Equations by the
Frequency Sampling Design Method

Appendix F Some Useful Mathematical Formulas
Bibliography
Answers to Selected Problems

Index

731
733
735
736
741
741
744
749
749
751
753
757
761
765

791

Preface

Technologies such as microprocessors, microcontrollers, and digital signal pro-
cessors have become so advanced that they have had a dramatic impact on the
disciplines of electronics engineering, computer engineering, and biomedical
engineering. Technologists need to become familiar with digital signals and
systems and basic digital signal processing (DSP) techniques. The objective of
this book is to introduce students to the fundamental principles of these subjects
and to provide a working knowledge such that they can apply DSP in their
engineering careers.

The book is suitable for a sequence of two-semester courses at the senior level
in undergraduate electronics, computer, and biomedical engineering technology
programs. Chapters 1 to 8 provide the topics for a one semester course, and a
second course can complete the rest of the chapters. This textbook can also be
used in an introductory DSP course at the junior level in undergraduate elec-
trical engineering programs at traditional colleges. Additionally, the book
should be useful as a reference for undergraduate engineering students, science
students, and practicing engineers.

The material has been tested in two consecutive courses in signal processing
sequence at DeVry University on the Decatur campus in Georgia. With the
background established from this book, students can be well prepared to move
forward to take other senior-level courses that deal with digital signals and
systems for communications and controls.

The textbook consists of 13 chapters, organized as follows:

m Chapter 1 introduces concepts of DSP and presents a general DSP block
diagram. Application examples are included.

m Chapter 2 covers the sampling theorem described in time domain and
frequency domain and also covers signal reconstruction. Some practical
considerations for designing analog anti-aliasing lowpass filters and anti-
image lowpass filters are included. The chapter ends with a section dealing
with analog-to-digital conversion (ADC) and digital-to-analog conversion
(DACQ), as well as signal quantization and encoding.

m Chapter 3 introduces digital signals, linear time-invariant system concepts,
difference equations, and digital convolutions.

Xiv

PREFACE

Chapter 4 introduces the discrete Fourier transform (DFT) and digital
signal spectral calculations using the DFT. Applying the DFT to estimate
the speech spectrum is demonstrated. The chapter ends with a section
dedicated to illustrating fast Fourier transform (FFT) algorithms.

Chapter 5 is devoted to the z-transform and difference equations.

Chapter 6 covers digital filtering using difference equations, transfer func-
tions, system stability, digital filter frequency responses, and implementa-
tion methods such as the direct form I and direct form II.

Chapter 7 deals with various methods of finite impulse response (FIR)
filter design, including the Fourier transform method for calculating FIR
filter coefficients, window method, frequency sampling design, and optimal
design. Chapter 7 also includes applications using FIR filters for noise
reduction and digital crossover system design.

Chapter 8 covers various methods of infinite impulse response (IIR) filter
design, including the bilinear transformation (BLT) design, impulse invari-
ant design, and pole-zero placement design. Applications using IIR filters
include audio equalizer design, biomedical signal enhancement, dual-tone
multifrequency (DTMF) tone generation and detection with the Goertzel
algorithm.

Chapter 9 introduces DSP architectures, software and hardware, and
fixed-point and floating-point implementations of digital filters.

Chapter 10 covers adaptive filters with applications such as noise cancel-
lation, system modeling, line enhancement, cancellation of periodic inter-
ferences, echo cancellation, and 60-Hz interference cancellation in
biomedical signals.

Chapter 11 is devoted to speech quantization and compression, including
pulse code modulation (PCM) coding, mu-law compression, adaptive dif-
ferential pulse code modulation (ADPCM) coding, windowed modified
discrete cosine transform (W-MDCT) coding, and MPEG audio format,
specifically MP3 (MPEG-1, layer 3).

Chapter 12 covers topics pertaining to multirate DSP and applications, as
well as principles of oversampling ADC, such as sigma-delta modulation.
Undersampling for bandpass signals is also examined.

Finally, Chapter 13 covers image enhancement using histogram equaliza-
tion and filtering methods, including edge detection. The chapter also
explores pseudo-color image generation and detection, two-dimensional
spectra, JPEG compression using DCT, and the mixing of two images to

PREFACE xv

create a video sequence. Finally, motion compensation of the video sequence
is explored, which is a key element of video compression used in MPEG.

MATLAB programs are listed wherever they are possible. Therefore, a
MATLAB tutorial should be given to students who are new to the MATLAB
environment.

m Appendix A serves as a MATLAB tutorial.

m Appendix B reviews key fundamentals of analog signal processing. Topics
include Fourier series, Fourier transform, Laplace transform, and analog
system basics.

m Appendixes C, D, and E overview Butterworth and Chebyshev filters,
sinusoidal steady-state responses in digital filters, and derivation of the
FIR filter design equation via the frequency sampling method, respectively.

m Appendix F offers general useful mathematical formulas.

Instructor support, including solutions, can be found at http://textbooks.
elsevier.com. MATLAB programs and exercises for students, plus Real-
time C programs, can be found at http://books.elsevier.com/companions/
9780123740908.

The author wishes to thank Dr. Samuel D. Stearns (professor at the Univer-
sity of New Mexico; Sandia National Laboratories, Albuquerque, NM),
Dr. Delores M. Etler (professor at the United States Naval Academy at
Annapolis, MD) and Dr. Neeraj Magotra (Texas Instruments, former professor
at the University of New Mexico) for inspiration, guidance, and sharing of
their insight into DSP over the years. A special thanks goes to Dr. Jean Jiang
(professor at DeVry University in Decatur) for her encouragement, support,
insightful suggestions, and testing of the manuscript in her DSP course.

Special thanks go to Tim Pitts (senior commissioning editor), Rick Adams
(senior acquistions editor), and Rachel Roumeliotis (acquisitions editor) and to
the team members at Elsevier Science publishing for their encouragement and
guidance in developing the complete manuscript.

I also wish to thank Jamey Stegmaier (publishing project manager) at SPi for
coordinating the copyediting of the manuscript.

Thanks to all the faculty and staff at DeVry University, Decatur, for their
encouragement and support.

The book has benefited from many constructive comments and suggestions
from the following reviewers and anonymous reviewers. The author takes this
opportunity to thank them for their significant contributions:

Professor Mateo Aboy, Oregon Institute of Technology, Klamath Falls, OR
Professor Jean Andrian, Florida International University, Miami, FL
Professor Rabah Aoufi, DeVry University, Irving, TX

Professor Larry Bland, John Brown University, Siloam Springs, AR

Xvi PREFACE

Professor Phillip L. De Leon, New Mexico State University, Las Cruces, NM

Professor Mohammed Feknous, New Jersey Institute of Technology, Newark, NJ

Professor Richard L. Henderson, DeVry University, Kansas City, MO

Professor Ling Hou, St. Cloud State University, St. Cloud, MN

Professor Robert C. (Rob) Maher, Montana State University, Bozeman, MT

Professor Abdulmagid Omar, DeVry University, Tinley Park, IL

Professor Ravi P. Ramachandran, Rowan University, Glassboro, NJ

Professor William (Bill) Routt, Wake Technical Community College, Raleigh, NC

Professor Samuel D. Stearns, University of New Mexico; Sandia National Laboratories,
Albuquerque, NM

Professor Les Thede, Ohio Northern University, Ada, OH

Professor Igor Tsukerman, University of Akron, Akron, OH

Professor Vijay Vaidyanathan, University of North Texas, Denton, TX

Professor David Waldo, Oklahoma Christian University, Oklahoma City, OK

Finally, I am immensely grateful to my wife, Jean, and my children, Ava,
Alex, and Amber, for their extraordinary patience and understanding during the
entire preparation of this book.

Li Tan

DeVry University
Decatur, Georgia
May 2007

About the Author

Dr. Li Tan is a Professor of Electronics Engineering Technology at DeVry
University, Decatur, Georgia. He received his M.S. and Ph.D. degrees in Elec-
trical Engineering from the University of New Mexico. He has extensively
taught analog and digital signal processing and analog and digital communica-
tions for many years. Before teaching at DeVry University, Dr. Tan worked in
the DSP and communications industry.

Dr. Tan is a senior member of the Institute of Electronic and Electronic
Engineers (IEEE). His principal technical areas include digital signal processing,
adaptive signal processing, and digital communications. He has published a
number of papers in these areas.

Objectives:

This chapter introduces concepts of digital signal processing (DSP) and reviews
an overall picture of its applications. Illustrative application examples include
digital noise filtering, signal frequency analysis, speech and audio compression,
biomedical signal processing such as interference cancellation in electrocardiog-
raphy, compact-disc recording, and image enhancement.

1.1 Basic Concepts of Digital Signal
Processing

Digital signal processing (DSP) technology and its advancements have dramat-
ically impacted our modern society everywhere. Without DSP, we would not
have digital/Internet audio or video; digital recording; CD, DVD, and MP3
players; digital cameras; digital and cellular telephones; digital satellite and TV;
or wire and wireless networks. Medical instruments would be less efficient or
unable to provide useful information for precise diagnoses if there were no
digital electrocardiography (ECG) analyzers or digital x-rays and medical
image systems. We would also live in many less efficient ways, since we would
not be equipped with voice recognition systems, speech synthesis systems, and
image and video editing systems. Without DSP, scientists, engineers, and tech-
nologists would have no powerful tools to analyze and visualize data and
perform their design, and so on.

1 INTRODUCTION TO DIGITAL SIGNAL PROCESSING

Analog Band-limited Digital Processed Output Analog
input signal signal digital signal signal output
N Analog o DS o » | Reconstruction N

filter > ADC "| processor [T DAC g filter

FIGURE 1.1 A digital signal processing scheme.

The concept of DSP is illustrated by the simplified block diagram in
Figure 1.1, which consists of an analog filter, an analog-to-digital conversion
(ADC) unit, a digital signal (DS) processor, a digital-to-analog conversion
(DAC) unit, and a reconstruction (anti-image) filter.

As shown in the diagram, the analog input signal, which is continuous in
time and amplitude, is generally encountered in our real life. Examples of such
analog signals include current, voltage, temperature, pressure, and light inten-
sity. Usually a transducer (sensor) is used to convert the nonelectrical signal to
the analog electrical signal (voltage). This analog signal is fed to an analog filter,
which is applied to limit the frequency range of analog signals prior to the
sampling process. The purpose of filtering is to significantly attenuate aliasing
distortion, which will be explained in the next chapter. The band-limited signal
at the output of the analog filter is then sampled and converted via the ADC
unit into the digital signal, which is discrete both in time and in amplitude. The
DS processor then accepts the digital signal and processes the digital data
according to DSP rules such as lowpass, highpass, and bandpass digital filtering,
or other algorithms for different applications. Notice that the DS processor
unit is a special type of digital computer and can be a general-purpose digital
computer, a microprocessor, or an advanced microcontroller; furthermore, DSP
rules can be implemented using software in general.

With the DS processor and corresponding software, a processed digital
output signal is generated. This signal behaves in a manner according to the
specific algorithm used. The next block in Figure 1.1, the DAC unit, converts
the processed digital signal to an analog output signal. As shown, the signal is
continuous in time and discrete in amplitude (usually a sample-and-hold signal,
to be discussed in Chapter 2). The final block in Figure 1.1 is designated as
a function to smooth the DAC output voltage levels back to the analog signal
via a reconstruction (anti-image) filter for real-world applications.

In general, the analog signal process does not require software, an algorithm,
ADC, and DAC. The processing relies wholly on electrical and electronic
devices such as resistors, capacitors, transistors, operational amplifiers, and
integrated circuits (ICs).

DSP systems, on the other hand, use software, digital processing, and algo-
rithms; thus they have a great deal of flexibility, less noise interference, and no

1.2 Basic Digital Signal Processing Examples in Block Diagrams

signal distortion in various applications. However, as shown in Figure 1.1, DSP
systems still require minimum analog processing such as the anti-aliasing and
reconstruction filters, which are musts for converting real-world information
into digital form and digital form back into real-world information.

Note that there are many real-world DSP applications that do not require
DAUC, such as data acquisition and digital information display, speech recogni-
tion, data encoding, and so on. Similarly, DSP applications that need no ADC
include CD players, text-to-speech synthesis, and digital tone generators, among
others. We will review some of them in the following sections.

1.2 Basic Digital Signal Processing
Examples in Block Diagrams

We first look at digital noise filtering and signal frequency analysis, using block
diagrams.

1.2.1 Digital Filtering

Let us consider the situation shown in Figure 1.2, depicting a digitized noisy
signal obtained from digitizing analog voltages (sensor output) containing
a useful low-frequency signal and noise that occupies all of the frequency
range. After ADC, the digitized noisy signal x(r), where n is the sample number,
can be enhanced using digital filtering.

Since our useful signal contains the low-frequency component, the high-
frequency components above that of our useful signal are considered as noise,
which can be removed by using a digital lowpass filter. We set up the DSP block
in Figure 1.2 to operate as a simple digital lowpass filter. After processing the
digitized noisy signal x(n), the digital lowpass filter produces a clean digital
signal y(n). We can apply the cleaned signal y(n) to another DSP algorithm for a
different application or convert it to the analog signal via DAC and the recon-
struction filter.

The digitized noisy signal and clean digital signal, respectively, are plotted in
Figure 1.3, where the top plot shows the digitized noisy signal, while the bottom
plot demonstrates the clean digital signal obtained by applying the digital low-
pass filter. Typical applications of noise filtering include acquisition of clean

x(n n
(n) ~ DsP y(n)
Digitized noisy input | Digital filtering Clean digital signal

FIGURE 1.2 The simple digital filtering block.

1 INTRODUCTION TO DIGITAL SIGNAL PROCESSING

Noisy signal
2 T T T T T
| | | | |
[0} | | | | |
o | | |
2 |
= oFr--I- -+ -4 - -4 - -[- - | — - -t - -t- -
Q.
2 | I :
b -H- - AR - S L
| | | | |
| | | | |
2 | | | | |
0 0.005 0.01 0.015 0.02 0.025 0.03
Time (sec)
Clean signal
2 T T T T T
| | | | |
| | | | |
1 7777777 d - - - - = S\ - — — — = — — L o - A - — — - e e e e e — = — — — — —]
[0) | | |
o |
2 |
50 T
£ |
e T 1 N G A
-2 | | | | |
0 0.005 0.01 0.015 0.02 0.025 0.03

Time (sec)

FIGURE 1.3 (Top) Digitized noisy signal. (Bottom) Clean digital signal using the digital
lowpass filter.

digital audio and biomedical signals and enhancement of speech recording,
among others (Embree, 1995; Rabiner and Schafer, 1978; Webster, 1998).

1.2.2 Signal Frequency (Spectrum) Analysis

As shown in Figure 1.4, certain DSP applications often require that time domain
information and the frequency content of the signal be analyzed. Figure 1.5
shows a digitized audio signal and its calculated signal spectrum (frequency
content), defined as the signal amplitude versus its corresponding frequency for
the time being via a DSP algorithm, called fast Fourier transform (FFT), which
will be studied in Chapter 4. The plot in Figure 1.5 (a) is a time domain display
of the recorded audio signal with a frequency of 1,000 Hz sampled at 16,000
samples per second, while the frequency content display of plot (b) displays the
calculated signal spectrum versus frequencies, in which the peak amplitude is
clearly located at 1,000 Hz. Plot (c) shows a time domain display of an audio
signal consisting of one signal of 1,000 Hz and another of 3,000 Hz sampled at
16,000 samples per second. The frequency content display shown in Plot (d)

1.2 Basic Digital Signal Processing Examples in Block Diagrams

Analog
input x(n) P Time domain display
I Af?ﬁelz?g > ADC > alggrsit::ms
P Frequency content display
FIGURE 1.4 Signal spectral analysis.
6 T T T
| | |
3 £ ! ! |
g— bor) | [
© @ ; | 1000 Hz
© ©
S S 2t AT
® 7z l l l
| | |
1 0 Il Il Il
0 0.005 0.01 0 2000 4000 6000 8000
A Time (sec) B Frequency (Hz)
10 T 6
|
(0]
S 5 €
£ g 4t
= o}
§ o 2
g g 2f-
2 -5 k=)
7] (7]
-10 : 0
0 0.005 0.01 0
C Time (sec) D Frequency (Hz)

FIGURE 1.5 Audio signals and their spectrums.

gives two locations (1,000 Hz and 3,000 Hz) where the peak amplitudes reside,
hence the frequency content display presents clear frequency information of the
recorded audio signal.

As another practical example, we often perform spectral estimation of a
digitally recorded speech or audio (music) waveform using the FFT algorithm
in order to investigate spectral frequency details of speech information. Figure
1.6 shows a speech signal produced by a human in the time domain and
frequency content displays. The top plot shows the digital speech waveform
versus its digitized sample number, while the bottom plot shows the frequency
content information of speech for a range from 0 to 4,000 Hz. We can observe
that there are about ten spectral peaks, called speech formants, in the range
between 0 and 1,500 Hz. Those identified speech formants can be used for

1 INTRODUCTION TO DIGITAL SIGNAL PROCESSING

x10% Speech data: We lost the golden chain.

| |
| |
el | I b
i f

Speech amplitude
o

400

300

200

100

Amplitude spectrum

1
0 500 1000 1500 2000 2500 3000 3500 4000
Frequency (Hz)

FIGURE 1.6 Speech sample and speech spectrum.

applications such as speech modeling, speech coding, speech feature extraction
for speech synthesis and recognition, and so on (Deller et al., 1993).

1.3 Overview of Typical Digital Signal
Processing in Real-World
Applications

1.3.1 Digital Crossover Audio System

An audio system is required to operate in an entire audible range of frequen-
cies, which may be beyond the capability of any single speaker driver. Several
drivers, such as the speaker cones and horns, each covering a different frequency
range, are used to cover the full audio frequency range.

Figure 1.7 shows a typical two-band digital crossover system consisting of
two speaker drivers: a woofer and a tweeter. The woofer responds to low
frequencies, while the tweeter responds to high frequencies. The incoming digital
audio signal is split into two bands by using a digital lowpass filter and a digital
highpass filter in parallel. Then the separated audio signals are amplified.
Finally, they are sent to their corresponding speaker drivers. Although the

1.3 Overview of Typical Digital Signal Processing in Real-World Applications

Gain | _— Tweeter:
Digital _>Q_> ®/ The crossover passes
Digital highpass filter high frequencies
audio x(n)

Gain | __— Woofer:

Digital_ The crossover passes
lowpass filter ’ () ' low frequencies

FIGURE 1.7 Two-band digital crossover.

traditional crossover systems are designed using the analog circuits, the digital
crossover system offers a cost-effective solution with programmable ability,
flexibility, and high quality. This topic is taken up in Chapter 7.

1.3.2 Interference Cancellation in
Electrocardiography

In ECG recording, there often is unwanted 60-Hz interference in the recorded
data (Webster, 1998). The analysis shows that the interference comes from
the power line and includes magnetic induction, displacement currents in leads
or in the body of the patient, effects from equipment interconnections, and
other imperfections. Although using proper grounding or twisted pairs minim-
izes such 60-Hz effects, another effective choice can be use of a digital notch
filter, which eliminates the 60-Hz interference while keeping all the other useful
information. Figure 1.8 illustrates a 60-Hz interference eliminator using a
digital notch filter. With such enhanced ECG recording, doctors in clinics
can give accurate diagnoses for patients. This technique can also be applied
to remove 60-Hz interferences in audio systems. This topic is explored in depth
in Chapter 8.

1.3.3 Speech Coding and Compression

One of the speech coding methods, called waveform coding, is depicted in
Figure 1.9(a), describing the encoding process, while Figure 1.9(b) shows the
decoding process. As shown in Figure 1.9(a), the analog signal is first filtered by
analog lowpass to remove high-frequency noise components and is then passed
through the ADC unit, where the digital values at sampling instants are cap-
tured by the DS processor. Next, the captured data are compressed using data
compression rules to save the storage requirement. Finally, the compressed
digital information is sent to storage media. The compressed digital information

1 INTRODUCTION TO DIGITAL SIGNAL PROCESSING

Digital notch filter for
» eliminating 60 Hz . ”
ECG signal 9]

interference
with 60 Hz
inteference ECG recorder with
the removed 60 Hz
60 Hz interference
interference

ECG

\/\ \/\ preamplifier

FIGURE 1.8 Elimination of 60-Hz interference in electrocardiography (ECG).

Analog

input Storage

Analog . . DSP g

| itter ADC compressor media

FIGURE 1.9A Simplified data compressor.
Analog
output
Storage DSP N Reconstruction
media decompressor [7| DAC d filter I

FIGURE 1.9B Simplified data expander (decompressor).

can also be transmitted efficiently, since compression reduces the original data
rate. Digital voice recorders, digital audio recorders, and MP3 players are
products that use compression techniques (Deller et al., 1993; Li and Drew,
2004; Pan, 1985).

To retrieve the information, the reverse process is applied. As shown in
Figure 1.9b, the DS processor decompresses the data from the storage media
and sends the recovered digital data to DAC. The analog output is acquired by
filtering the DAC output via the reconstruction filter.

1.3 Overview of Typical Digital Signal Processing in Real-World Applications 9

1.3.4 Compact-Disc Recording System

A compact-disc (CD) recording system is described in Figure 1.10a. The analog
audio signal is sensed from each microphone and then fed to the anti-aliasing
lowpass filter. Each filtered audio signal is sampled at the industry standard
rate of 44.1 kilo-samples per second, quantized, and coded to 16 bits for each
digital sample in each channel. The two channels are further multiplexed and
encoded, and extra bits are added to provide information such as playing time
and track number for the listener. The encoded data bits are modulated for
storage, and more synchronized bits are added for subsequent recovery of
sampling frequency. The modulated signal is then applied to control a laser
beam that illuminates the photosensitive layer of a rotating glass disc. When
the laser turns on and off, the digital information is etched onto the photosensi-
tive layer as a pattern of pits and lands in a spiral track. This master disc forms
the basis for mass production of the commercial CD from the thermoplastic
material.

During playback, as illustrated in Figure 1.10b, a laser optically scans
the tracks on a CD to produce a digital signal. The digital signal is then

Left mic

Anti-aliasing 16-bit
(O— "™ ™ ane [

Encoding

) . Multiplex—»{ Modulation
Right mic Synchronization

Anti-aliasing 16-bit
O— "Fiier® [ave

FIGURE 1.10A Simplified encoder of the CD recording system.

Amplified
left speaker

Demodulation |—»{ Ve
: sampling
Error correction

14-bit Anti-image
DAC LP filter

CD

14-bit Anti-image
ax [7] pac [LPfiter o]
Optical pickup

Amplified
right speaker

FIGURE 1.10B Simplified decoder of the CD recording system.

10 1 INTRODUCTION TO DIGITAL SIGNAL PROCESSING

demodulated. The demodulated signal is further oversampled by a factor of
4 to acquire a sampling rate of 176.4 kHz for each channel and is then passed
to the 14-bit DAC unit. For the time being, we can consider the over-
sampling process as interpolation, that is, adding three samples between
every two original samples in this case, as we shall see in Chapter 12. After
DAC, the analog signal is sent to the anti-image analog filter, which is a lowpass
filter to smooth the voltage steps from the DAC unit. The output from each
anti-image filter is fed to its amplifier and loudspeaker. The purpose of the
oversampling is to relieve the higher-filter-order requirement for the anti-
image lowpass filter, making the circuit design much easier and economical
(Ambardar, 1999).

Software audio players that play music from CDs, such as Windows Media
Player and RealPlayer, installed on computer systems, are examples of DSP
applications. The audio player has many advanced features, such as a graphical
equalizer, which allows users to change audio with sound effects such as boost-
ing low-frequency content or emphasizing high-frequency content to make
music sound more entertaining (Ambardar, 1999; Embree, 1995; Ifeachor and
Jervis, 2002).

1.3.5 Digital Photo Image Enhancement

We can look at another example of signal processing in two dimensions. Figure
1.11(a) shows a picture of an outdoor scene taken by a digital camera on a cloudy
day. Due to this weather condition, the image was improperly exposed in natural
light and came out dark. The image processing technique called histogram equal-
ization (Gonzalez and Wintz, 1987) can stretch the light intensity of an

Original image Enhanced image

A

FIGURE 1.11 Image enhancement.

1.4 Digital Signal Processing Applications 1

image using the digital information (pixels) to increase image contrast so that
detailed information in the image can clearly be seen, as we can see in Figure
1.11(b). We will study this technique in Chapter 13.

1.4 Digital Signal Processing
Applications

Applications of DSP are increasing in many areas where analog electronics are
being replaced by DSP chips, and new applications are depending on DSP
techniques. With the cost of DS processors decreasing and their performance
increasing, DSP will continue to affect engineering design in our modern daily
life. Some application examples using DSP are listed in Table 1.1.

However, the list in the table by no means covers all DSP applications. Many
more areas are increasingly being explored by engineers and scientists. Applica-
tions of DSP techniques will continue to have profound impacts and improve
our lives.

TABLE 1.1 Applications of digital signal processing.

Digital audio and speech Digital audio coding such as CD players, digital
crossover, digital audio equalizers, digital stereo and
surround sound, noise reduction systems, speech
coding, data compression and encryption, speech
synthesis and speech recognition

Digital telephone Speech recognition, high-speed modems, echo
cancellation, speech synthesizers, DTMF (dual-tone
multifrequency) generation and detection, answering
machines

Automobile industry Active noise control systems, active suspension
systems, digital audio and radio, digital controls

Electronic communications Cellular phones, digital telecommunications,
wireless LAN (local area networking), satellite
communications

Medical imaging equipment ECG analyzers, cardiac monitoring, medical
imaging and image recognition, digital x-rays
and image processing

Multimedia Internet phones, audio, and video; hard disk
drive electronics; digital pictures; digital cameras;
text-to-voice and voice-to-text technologies

12 1 INTRODUCTION TO DIGITAL SIGNAL PROCESSING

1.5 Summary

1. An analog signal is continuous in both time and amplitude. Analog signals
in the real world include current, voltage, temperature, pressure, light
intensity, and so on. The digital signal is the digital values converted
from the analog signal at the specified time instants.

2. Analog-to-digital signal conversion requires an ADC unit (hardware) and a
lowpass filter attached ahead of the ADC unit to block the high-frequency
components that ADC cannot handle.

3. The digital signal can be manipulated using arithmetic. The manipulations
may include digital filtering, calculation of signal frequency content, and so
on.

4. The digital signal can be converted back to an analog signal by sending the
digital values to DAC to produce the corresponding voltage levels and
applying a smooth filter (reconstruction filter) to the DAC voltage steps.

5. Digital signal processing finds many applications in the areas of digital speech
and audio, digital and cellular telephones, automobile controls, communica-
tions, biomedical imaging, image/video processing, and multimedia.

Ambardar, A. (1999). Analog and Digital Signal Processing, 2nd ed. Pacific Grove, CA:
Brooks/Cole Publishing Company.

Deller, J. R., Proakis, J. G., and Hansen, J. H. L. (1993). Discrete-Time Processing of Speech
Signals. New York: Macmillian Publishing Company.

Embree, P. M. (1995). C Algorithms for Real-Time DSP. Upper Saddle River, NI:
Prentice Hall.

Gonzalez, R. C., and Wintz, P. (1987). Digital Image Processing, 2nd ed. Reading, MA:
Addison-Wesley Publishing Company.

Ifeachor, E. C., and Jervis, B. W. (2002). Digital Signal Processing: A Practical Approach,
2nd ed. Upper Saddle River, NJ: Prentice Hall.

Li, Z.-N., and Drew, M. S. (2004). Fundamentals of Multimedia. Upper Saddle River, NIJ:
Pearson Prentice Hall.

Pan, D. (1995). A tutorial on MPEG/audio compression. I[EEE Multimedia, 2, 60-74.

Rabiner, L. R., and Schafer, R. W. (1978). Digital Processing of Speech Signals. Englewood
Cliffs, NJ: Prentice Hall.

Webster, J. G. (1998). Medical Instrumentation: Application and Design, 3rd ed. New York:
John Wiley & Sons, Inc.

Signal Sampling and Quantization

Objectives:

This chapter investigates the sampling process, sampling theory, and the signal
reconstruction process. It also includes practical considerations for anti-aliasing
and anti-image filters and signal quantization.

2.1 Sampling of Continvous Signal

As discussed in Chapter 1, Figure 2.1 describes a simplified block diagram of
a digital signal processing (DSP) system. The analog filter processes the
analog input to obtain the band-limited signal, which is sent to the analog-
to-digital conversion (ADC) unit. The ADC unit samples the analog signal,
quantizes the sampled signal, and encodes the quantized signal levels to the
digital signal.

Here we first develop concepts of sampling processing in time domain.
Figure 2.2 shows an analog (continuous-time) signal (solid line) defined at
every point over the time axis (horizontal line) and amplitude axis (vertical
line). Hence, the analog signal contains an infinite number of points.

It is impossible to digitize an infinite number of points. Furthermore, the
infinite points are not appropriate to be processed by the digital signal (DS)
processor or computer, since they require infinite amount of memory and
infinite amount of processing power for computations. Sampling can solve
such a problem by taking samples at the fixed time interval, as shown in Figure
2.2 and Figure 2.3, where the time 7 represents the sampling interval or
sampling period in seconds.

14 2 SIGNAL SAMPLING AND QUANTIZATION

Analog band-limited Digital Processed Output Analog
input signal signal digtal signal signal output
——py Analog » ADC » DsP » DAC p Fleconstuction |y

FIGURE 2.1 A digital signal processing scheme.

As shown in Figure 2.3, each sample maintains its voltage level during the
sampling interval T to give the ADC enough time to convert it. This process is
called sample and hold. Since there exists one amplitude level for each sampling
interval, we can sketch each sample amplitude level at its corresponding sam-
pling time instant shown in Figure 2.2, where 14 samples at their sampling time
instants are plotted, each using a vertical bar with a solid circle at its top.

For a given sampling interval 7, which is defined as the time span between
two sample points, the sampling rate is therefore given by

1
fs= T samples per second (Hz).

For example, if a sampling period is T = 125 microseconds, the sampling rate is
determined as f; = 1/125u s = 8,000 samples per second (Hz).

After the analog signal is sampled, we obtain the sampled signal whose
amplitude values are taken at the sampling instants, thus the processor is able
to handle the sample points. Next, we have to ensure that samples are collected
at a rate high enough that the original analog signal can be reconstructed or
recovered later. In other words, we are looking for a minimum sampling rate to
acquire a complete reconstruction of the analog signal from its sampled version.

Signal samples

5 1 Analog signal/continuous-time signal
Sampling interval T
0
-5 »nT

0 2T 4T 6T 8T 10T 12T

FIGURE 2.2 Display of the analog (continuous) signal and display of digital samples
versus the sampling time instants.

2.1 Sampling of Continuous Signal 15

x(1) Voltage for ADC
Analog signal

» nT

0 2T 4T 6T 8T 10T 12T

FIGURE 2.3 Sample-and-hold analog voltage for ADC.

If an analog signal is not appropriately sampled, aliasing will occur, which
causes unwanted signals in the desired frequency band.

The sampling theorem guarantees that an analog signal can be in theory
perfectly recovered as long as the sampling rate is at least twice as large as the
highest-frequency component of the analog signal to be sampled. The condition
is described as

fszzfmam

where frax 1S the maximum-frequency component of the analog signal to be
sampled. For example, to sample a speech signal containing frequencies up to
4 kHz, the minimum sampling rate is chosen to be at least 8 kHz, or 8,000
samples per second; to sample an audio signal possessing frequencies up to
20 kHz, at least 40,000 samples per second, or 40 kHz, of the audio signal are
required.

Figure 2.4 illustrates sampling of two sinusoids, where the sampling interval
between sample points is 7 =0.01 second, thus the sampling rate is
fs = 100 Hz. The first plot in the figure displays a sine wave with a frequency
of 40 Hz and its sampled amplitudes. The sampling theorem condition is
satisfied, since 2fi.x = 80 Hz < f;. The sampled amplitudes are labeled using
the circles shown in the first plot. We notice that the 40-Hz signal is adequately
sampled, since the sampled values clearly come from the analog version of the
40-Hz sine wave. However, as shown in the second plot, the sine wave with a
frequency of 90 Hz is sampled at 100 Hz. Since the sampling rate of 100 Hz is
relatively low compared with the 90-Hz sine wave, the signal is undersampled
due to 2fm.x = 180 Hz > f;. Hence, the condition of the sampling theorem is
not satisfied. Based on the sample amplitudes labeled with the circles in the
second plot, we cannot tell whether the sampled signal comes from sampling a
90-Hz sine wave (plotted using the solid line) or from sampling a 10-Hz sine
wave (plotted using the dot-dash line). They are not distinguishable. Thus they

16 2 SIGNAL SAMPLING AND QUANTIZATION

Sampling condition is satisfied

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Time (sec)

Sampling condition is not satisfied

0 0.01 0.02 0.038 0.04 0.05 006 0.07 008 0.09 0.1
Time (sec)

FIGURE 2.4 Plots of the appropriately sampled signals and nonappropriately sam-
pled (aliased) signals.

are aliases of each other. We call the 10-Hz sine wave the aliasing noise in this
case, since the sampled amplitudes actually come from sampling the 90-Hz
sine wave.

Now let us develop the sampling theorem in frequency domain, that is, the
minimum sampling rate requirement for an analog signal. As we shall see, in
practice this can help us design the anti-aliasing filter (a lowpass filter that will
reject high frequencies that cause aliasing) to be applied before sampling, and
the anti-image filter (a reconstruction lowpass filter that will smooth the recov-
ered sample-and-hold voltage levels to an analog signal) to be applied after the
digital-to-analog conversion (DAC).

Figure 2.5 depicts the sampled signal x,(¢) obtained by sampling the con-
tinuous signal x(7) at a sampling rate of f; samples per second.

Mathematically, this process can be written as the product of the continuous
signal and the sampling pulses (pulse train):

x,(1) = x()p(0), (2.1)

2.1 Sampling of Continuous Signal 17

ADC
encoding

: i
Exl
2
R
X
Ly, P2
& 3
N
3
N
N

FIGURE 2.5 The simplified sampling process.

where p(?) is the pulse train with a period 7' = 1/f;. From spectral analysis, the
original spectrum (frequency components) X(/) and the sampled signal spec-
trum X(f) in terms of Hz are related as

Y=g 3 X -, .2
where X(f) is assumed to be the original baseband spectrum, while X(f) is its
sampled signal spectrum, consisting of the original baseband spectrum X(/) and
its replicas X(f * nf;). Since Equation (2.2) is a well-known formula, the
derivation is omitted here and can be found in well-known texts (Ahmed and
Natarajan, 1983; Alkin, 1993; Ambardar, 1999; Oppenheim and Schafer, 1975;
Proakis and Manolakis, 1996).

Expanding Equation (2.2) leads to the sampled signal spectrum in Equation
(2.3):

1 1 1
X(f) =t XU L)+ XN+ X =)+ 23)

Equation (2.3) indicates that the sampled signal spectrum is the sum of the
scaled original spectrum and copies of its shifted versions, called replicas. The
sketch of Equation (2.3) is given in Figure 2.6, where three possible sketches
are classified. Given the original signal spectrum X(f) plotted in Figure 2.6(a),
the sampled signal spectrum according to Equation (2.3) is plotted in Figure
2.6(b), where the replicas, + X (f), + X(f — f5), +X(f +), ..., have separations
between them. Figure 2.6(c) shows that the baseband spectrum and its replicas,
LX), +X(f = f), = X(f +f5), ..., are just connected, and finally, in Figure

1 2 SIGNAL SAMPLING AND QUANTIZATION

X(f)
1.0
B = finax
A f
Lowpass filter
P’
2
B : - ' : f
-fs-B -f, -fs+B -B 0 B TfS_B fs f+B
Xs(f) Folding frequency/Nyquist limit
1
7_
C : : f
-f;—B —fs -B 0 B fs fs+B
Xs(f)
1
T
D : : f
-fs—B —fs-B -fs+B o f,-B B f fs+B

FIGURE 2.6 Plots of the sampled signal spectrum.

2.6(d), the original spectrum 4 X (/) and its replicas + X (f — £,), = X(f +£5), ...,
are overlapped; that is, there are many overlapping portions in the sampled
signal spectrum.

From Figure 2.6, it is clear that the sampled signal spectrum consists of the
scaled baseband spectrum centered at the origin and its replicas centered at the
frequencies of +nf; (multiples of the sampling rate) for each of n =1,2,3,....

If applying a lowpass reconstruction filter to obtain exact reconstruction of
the original signal spectrum, the following condition must be satisfied:

Js = fmax = fmax- (2.4)
Solving Equation (2.4) gives
Js = 2fmax- (2.5)

In terms of frequency in radians per second, Equation (2.5) is equivalent to

Wy > 2Wmax- (2.6)

2.1 Sampling of Continuous Signal 19

This fundamental conclusion is well known as the Shannon sampling theorem,
which is formally described below:

For a uniformly sampled DSP system, an analog signal can be perfectly recovered as
long as the sampling rate is at least twice as large as the highest-frequency component
of the analog signal to be sampled.

We summarize two key points here.

1. Sampling theorem establishes a minimum sampling rate for a given band-
limited analog signal with the highest-frequency component f,... If the
sampling rate satisfies Equation (2.5), then the analog signal can be
recovered via its sampled values using the lowpass filter, as described in
Figure 2.6(Db).

2. Half of the sampling frequency f;/2 is usually called the Nyquist frequency
(Nyquist limit), or folding frequency. The sampling theorem indicates that
a DSP system with a sampling rate of f; can ideally sample an analog
signal with its highest frequency up to half of the sampling rate without
introducing spectral overlap (aliasing). Hence, the analog signal can be
perfectly recovered from its sampled version.

Let us study the following example.

Example 2.1.
Suppose that an analog signal is given as
x() = 5cos (27 - 1000¢), for t > 0

and is sampled at the rate of 8,000 Hz.
a. Sketch the spectrum for the original signal.

b. Sketch the spectrum for the sampled signal from 0 to 20 kHz.
Solution:

a. Since the analog signal is sinusoid with a peak value of 5 and frequency
of 1,000 Hz, we can write the sine wave using Euler’s identity:

/2mx10000 2710001
2

5cos (27 x 1000) =5 - (> = 2.5¢/2m 10000 4 9 5m/Rm1000",

which is a Fourier series expansion for a continuous periodic signal in
terms of the exponential form (see Appendix B). We can identify the
Fourier series coefficients as

Ccl = 2.5, and Cc_1 = 2.5.

20 2 SIGNAL SAMPLING AND QUANTIZATION

Using the magnitudes of the coefficients, we then plot the two-sided spectrum as

X(f)

1]

FRI

FIGURE 2.7A Spectrum of the analog signal in Example 2.1.

b. After the analog signal is sampled at the rate of 8,000 Hz, the sampled signal
spectrum and its replicas centered at the frequencies +nf;, each with the
scaled amplitude being 2.5/7, are as shown in Figure 2.7b:

Xs(f)

Tﬁ.sn
I
-9-8 -7 -1 1 78 9 1516 17

FIGURE 2.7B Spectrum of the sampled signal in Example 2.1

Notice that the spectrum of the sampled signal shown in Figure 2.7b contains
the images of the original spectrum shown in Figure 2.7a; that the images
repeat at multiples of the sampling frequency f; (for our example, 8 kHz, 16
kHz, 24 kHz, .. .); and that all images must be removed, since they convey no
additional information.

2.2 Signal Reconstruction

In this section, we investigate the recovery of analog signal from its sampled
signal version. Two simplified steps are involved, as described in Figure 2.8.
First, the digitally processed data y(n) are converted to the ideal impulse train
ys(?), in which each impulse has its amplitude proportional to digital output
y(n), and two consecutive impulses are separated by a sampling period of T;
second, the analog reconstruction filter is applied to the ideally recovered
sampled signal y(¢) to obtain the recovered analog signal.

To study the signal reconstruction, we let y(n) = x(n) for the case of no DSP,
so that the reconstructed sampled signal and the input sampled signal are
ensured to be the same; that is, y,(¢) = x,(¢). Hence, the spectrum of the sampled
signal y(¢) contains the same spectral content as the original spectrum X(f),

2.2 Signal Reconstruction 21

Digital signal ys(t) Lowpass y(t)
———— » DAC » reconstruction——»
y(n) filter
y(n) Ys(t) y(t)
y(0) 3. y(1) ¥5(0) 3. ys(T)
LR e T‘ays(zn -----
U il 39 L e
| 1.4 n | ¥+ t | t
T
A Digital signal processed B Sampled signal recovered C Analog signal recovered
y(f)
1.0
fmax =B
| f
-B 0 B

D Recovered signal spectrum

FIGURE 2.8 Signal notations at reconstruction stage.

that is, Y(f) = X(f), with a bandwidth of f,.x = B Hz (described in Figure
2.8(d) and the images of the original spectrum (scaled and shifted versions). The
following three cases are discussed for recovery of the original signal spectrum

X()-

Case 1: f, = 2f ..
As shown in Figure 2.9, where the Nyquist frequency is equal to the max-

imum frequency of the analog signal x(¢), an ideal lowpass reconstruction
filter is required to recover the analog signal spectrum. This is an impractical
case.

-f,-B -B 0 B fs f,+B

FIGURE 2.9 Spectrum of the sampled signal when f; = 2f,,ox.

22 2 SIGNAL SAMPLING AND QUANTIZATION

f-B —f, £+B -B 0 B f,-B f, f+B

FIGURE 2.10 Spectrum of the sampled signal when f; > 2f,ox.

Case 2: f; > 2f .«

In this case, as shown in Figure 2.10, there is a separation between the
highest-frequency edge of the baseband spectrum and the lower edge of the
first replica. Therefore, a practical lowpass reconstruction (anti-image) filter can
be designed to reject all the images and achieve the original signal spectrum.

Case 3: f; < 2f .«

Case 3 violates the condition of the Shannon sampling theorem. As we can
see, Figure 2.11 depicts the spectral overlapping between the original baseband
spectrum and the spectrum of the first replica and so on. Even when we apply an
ideal lowpass filter to remove these images, in the baseband there is still some
foldover frequency components from the adjacent replica. This is aliasing, where
the recovered baseband spectrum suffers spectral distortion, that is, contains an
aliasing noise spectrum; in time domain, the recovered analog signal may consist
of the aliasing noise frequency or frequencies. Hence, the recovered analog
signal is incurably distorted.

Note that if an analog signal with a frequency fis undersampled, the aliasing
frequency component f,;,s in the baseband is simply given by the following
expression:

f;tlias :j& _f.'

The following examples give a spectrum analysis of the signal recovery.

o T

|
-f,-B -f,-B -f+B 0 f,-B B f.+B

FIGURE 2.11 Spectrum of the sampled signal when f; < 2f;,ox.

2.2 Signal Reconstruction 23

Example 2.2.
Assuming that an analog signal is given by
x(¢) = Scos (27 - 2000¢) + 3 cos (27 - 3000¢), for ¢t > 0

and it is sampled at the rate of 8,000 Hz,
a. Sketch the spectrum of the sampled signal up to 20 kHz.

b. Sketch the recovered analog signal spectrum if an ideal lowpass filter with
a cutoff frequency of 4 kHz is used to filter the sampled signal
(y(n) = x(n) in this case) to recover the original signal.

Solution: Using Euler’s identity, we get

3 5 5 3
x(f) = 5 230000 | 2 ,=j2w20000 | 2 2720000 4 2 ,j2m30001

2 2 2

The two-sided amplitude spectrum for the sinusoids is displayed in Figure 2.12:

11-10 —6-5-3-2 23 56 81011131416 1819

FIGURE 2.12 Spectrum of the sampled signal in Example 2.2.

b. Based on the spectrum in (a), the sampling theorem condition is satisfied;
hence, we can recover the original spectrum using a reconstruction low-
pass filter. The recovered spectrum is shown in Figure 2.13:

rmr

FIGURE 2.13 Spectrum of the recovered signal in Example 2.2.

24 2 SIGNAL SAMPLING AND QUANTIZATION

Example 2.3.
Given an analog signal
x(t) = Scos (27 x 2000¢) + 1 cos (27 x 5000¢), for =0,

which is sampled at a rate of 8,000 Hz,
a. Sketch the spectrum of the sampled signal up to 20 kHz.

b. Sketch the recovered analog signal spectrum if an ideal lowpass filter with
a cutoff frequency of 4 kHz is used to recover the original signal
(y(n) = x(n) in this case).

Solution:

a. The spectrum for the sampled signal is sketched in Figure 2.14:

Aliasing noise

-11-10 -6-5 3—2 23 56 810111314161819
FIGURE 2.14 Spectrum of the sampled signal in Example 2.3.

b. Since the maximum frequency of the analog signal is larger than that of
the Nyquist frequency—that is, twice the maximum frequency of the
analog signal is larger than the sampling rate—the sampling theorem
condition is violated. The recovered spectrum is shown in Figure 2.15,
where we see that aliasing noise occurs at 3 kHz.

Y(f)
Aliasing noise
S

. f kHz
-3-2 | 23

FIGURE 2.15 Spectrum of the recovered signal in Example 2.3.

2.2 Signal Reconstruction 25

2.2.1 Practical Considerations for Signal
Sampling: Anti-Aliasing Filtering

In practice, the analog signal to be digitized may contain other frequency
components in addition to the folding frequency, such as high-frequency
noise. To satisfy the sampling theorem condition, we apply an anti-aliasing
filter to limit the input analog signal, so that all the frequency components are
less than the folding frequency (half of the sampling rate). Considering the worst
case, where the analog signal to be sampled has a flat frequency spectrum,
the band-limited spectrum X(f) and sampled spectrum X,(f) are depicted in
Figure 2.16, where the shape of each replica in the sampled signal spectrum is
the same as that of the anti-aliasing filter magnitude frequency response.

Due to nonzero attenuation of the magnitude frequency response of the anti-
aliasing lowpass filter, the aliasing noise from the adjacent replica still appears in
the baseband. However, the level of the aliasing noise is greatly reduced. We can
also control the aliasing noise level by either using a higher-order lowpass filter
or increasing the sampling rate. For illustrative purposes, we use a Butterworth
filter. The method can also be extended to other filter types such as the Cheby-
shev filter. The Butterworth magnitude frequency response with an order of n is
given by

H)| = @.7)

A\ 2n
1+ (%)

For a second-order Butterworth lowpass filter with the unit gain, the transfer
function (which will be discussed in Chapter 8) and its magnitude frequency
response are given by

Anti-aliasing Sample and ADC Digital value

LP filter hold coding

Analog signal spectrum

(worst case)/

-

f f, f /'fafc fs T : f
fS
2

aliasing noise level X,
at f, (image from fs—f,)

FIGURE 2.16 Spectrum of the sampled analog signal with a practical
anti-aliasing filter.

26 2 SIGNAL SAMPLING AND QUANTIZATION

Choose Co

1.4142

17 R7C, 2nt, Cy
.o 1
" RyRyC, (2112

FIGURE 2.17 Second-order unit gain Sallen-Key lowpass filter.

_ (2mf.)*
1) =5 +1.4142 x 27f)s + (2mf,)> 5
and |H(f)| = % (2.9)

1+ (Jé)

A unit gain second-order lowpass filter using a Sallen-Key topology is shown in
Figure 2.17. Matching the coefficients of the circuit transfer function to that of
the second-order Butterworth lowpass transfer function in Equation (2.10) gives
the design formulas shown in Figure 2.17, where for a given cutoff frequency of
f.in Hz, and a capacitor value of C,, we can determine the other elements using
the formulas listed in the figure.

1
RiRCi1 G (2Wﬂ‘)2

24 <ﬁ+ﬁ)s+m 2+ 1.4142 x (27f,)s + (2f,)?

(2.10)

As an example, for a cutoff frequency of 3,400 Hz, and by selecting C; = 0.01
micro-farad (uF), we can get

Ry = Ry, = 6620 (), and C; = 0.005 uF.

Figure 2.18 shows the magnitude frequency response, where the absolute gain of
the filter is plotted. As we can see, the absolute attenuation begins at the level of
0.7 at 3,400 Hz and reduces to 0.3 at 6,000 Hz. Ideally, we want the gain
attenuation to be zero after 4,000 Hz if our sampling rate is 8,000 Hz. Practic-
ally speaking, aliasing will occur anyway to some degree. We will study achiev-
ing the higher-order analog filter via Butterworth and Chebyshev prototype
function tables in Chapter 8. More details of the circuit realization for the
analog filter can be found in Chen (1986).

2.2 Signal Reconstruction 27

Magnitude response

O Lo =

00 2000 3000 4000 5000 6000 7000 8000 9000 10000
Frequency (Hz)

FIGURE 2.18 Magnitude frequency response of the second-order Butterworth low-
pass filter.

According to Figure 2.16, we can derive the percentage of the aliasing noise
level using the symmetry of the Butterworth magnitude function and its first
replica. It follows that

X, _ ‘H(f)|f:fs—j;
X(f) |_/':_f;, [H(f) |f:.f;1

1+(()2n

=———° for 0=f=f,. (2.11)
A
1+ (>)
With Equation (2.11), we can estimate the aliasing noise level, or choose a

higher-order anti-aliasing filter to satisfy the requirement for the percentage of
aliasing noise level.

aliasing noise level % =

Example 2.4.

Given the DSP system shown in Figures 2.16 to 2.18, where a sampling rate
of 8,000 Hz is used and the anti-aliasing filter is a second-order Butterworth
lowpass filter with a cutoff frequency of 3.4 kHz,

28 2 SIGNAL SAMPLING AND QUANTIZATION

a. Determine the percentage of aliasing level at the cutoff frequency.
b. Determine the percentage of aliasing level at the frequency of 1,000 Hz.

Solution:
fs = 8000, f. = 3400, and n = 2.
a. Since f, = f. = 3400 Hz, we compute

2x2
1+ (H7 14142

00 2.0858
VI+ 5

/1+ LZXZ
o) 2 14033505017 = 23.05%.
Vi+EDT '

Let us examine another example with an increased sampling rate.

= 67.8%.

aliasing noise level % =

b. With f, = 1000 Hz, we have

aliasing noise level % =

Example 2.5.

a. Given the DSP system shown in Figures 2.16 to 2.18, where a sampling
rate of 16,000 Hz is used and the anti-aliasing filter is a second-order
Butterworth lowpass filter with a cutoff frequency of 3.4 kHz, determine
the percentage of aliasing level at the cutoff frequency.

Solution:
f; = 16000, f. = 3400, and n = 2.
a. Since f, = f. = 3400 Hz, we have

1+ (5 414

— .22 137699
1+ (53

= 10.26%.

aliasing noise level % =

As a comparison with the result in Example 2.4, increasing the sampling
rate can reduce the aliasing noise level.

The following example shows how to choose the order of the anti-aliasing
filter.

2.2 Signal Reconstruction 29

Example 2.6.

a. Given the DSP system shown in Figure 2.16, where a sampling rate of
40,000 Hz is used, the anti-aliasing filter is a Butterworth lowpass filter
with a cutoff frequency of 8 kHz, and the percentage of aliasing level at the
cutoff frequency is required to be less than 1%, determine the order of
the anti-aliasing lowpass filter.

Solution:

a. Using f; = 40,000, f, = 8000, and f, = 8000Hz, we try each of the
following filters with the increasing number of the filter order.

—
+
/N
oolco
S—
&)
X

1.4142
n = 1, aliasing noise level % = = = 34.30%
I+ @D 1@y
1.4142
n = 2, aliasing noise level % = ————= = 8.82%
1+ @
n = 3, aliasing noise level % = _Lale =2.21%
1+ 4)P°
y . 1.4142
n = 4, aliasing noise level % = ————==0.55 % < 1%
1+ (4)°

To satisfy 1% aliasing noise level, we choose n = 4.

2.2.2 Practical Considerations for Signal
Reconstruction: Anti-Image Filter
and Equalizer

The analog signal recovery for a practical DSP system is illustrated in
Figure 2.19.

As shown in Figure 2.19, the DAC unit converts the processed digital signal
y(n) to a sampled signal y(¢), and then the hold circuit produces the sample-and-
hold voltage yg(¢). The transfer function of the hold circuit can be derived to be

1—eT

Hy(s) = (2.12)
We can obtain the frequency response of the DAC with the hold circuit by
substituting s = jw into Equation (2.12). It follows that

Lurasin(@T/2) 01

Hiyw) = ¢ wT/2

30 2 SIGNAL SAMPLING AND QUANTIZATION

Hals) = =2
s
Digital Signal Hold Anti-

——» DAC Cir(c):uit Equalizer—»| image ——»

v yilt yult) fiter | Y1)
y(n) Ys(t) YH(t) y(t)

1 re. T i A x
| 44 n | =YY t t
T
A B D

FIGURE 2.19 Signal notations at the practical reconstruction stage. (a) Processed digital
signal. (b) Recovered ideal sampled signal. (c) Recovered
sample-and-hold voltage. (d) Recovered analog signal.

The magnitude and phase responses are given by

Hy(w)| = sina()(;l/”z/Z) B sinx(x) (2.14)
/Hy(w) = —oT)/2, (2.15)
where x = wT'/2. In terms of Hz, we have
Hi(f)] = W‘ 2.16)
(Hy(f)=—7fT. (2.17)

The plot of the magnitude effect is shown in Figure 2.20.

The magnitude frequency response acts like lowpass filtering and shapes
the sampled signal spectrum of Y(f). This shaping effect distorts the sampled
signal spectrum Y,(/) in the desired frequency band, as illustrated in Figure 2.21.
On the other hand, the spectral images are attenuated due to the lowpass effect of
sin(x)/x. This sample-and-hold effect can help us design the anti-image filter.

As shown in Figure 2.21, the percentage of distortion in the desired fre-
quency band is given by

distortion % = (1 — Hh(f)) x 100%

_ (4 sin(nf T)
_< - afT

2.18
> x 100% @18)

2.2 Signal Reconstruction 31

sin(x)/x

! ‘ 1 1 1 1 1
T S S TSNS IO S
506 T [I [T

R | | | | |
T 04 e LN R ity ARCEREY
02 oo T R S S

0 1 : 1 1 1 :

0 0.5 1 1.5 2 2.5 3

Radians

FIGURE 2.20 Sample-and-hold lowpass filtering effect.

Let us look at Example 2.7.

Example 2.7.

Given a DSP system with a sampling rate of 8,000 Hz and a hold circuit used
after DAC,

a. Determine the percentage of distortion at the frequency of 3,400 Hz.

b. Determine the percentage of distortion at the frequency of 1,000 Hz.

Y(f)
() i=1) -2 Spectral images
e
‘\\\\ Sample-and-hold effect
....... _ — i
x|
N N f
0 f, of,

FIGURE 2.21 Sample-and-hold effect and distortion.

32 2 SIGNAL SAMPLING AND QUANTIZATION

Solution:

a. Since /T = 3400 x 1/8000 = 0.425,

B sin (0.4257)

) o,
distortion % = (1 0425,

) x 100% = 27.17%.

b. Since f7 = 1000 x 1/8000 = 0.125,

B sin (0.1257)

. N
distortion % = <1 0125

> x 100 % = 2.55%.

To overcome the sample-and-hold effect, the following methods can be applied.

1. We can compensate the sample-and-hold shaping effect using an equalizer
whose magnitude response is opposite to the shape of the hold
circuit magnitude frequency response, which is shown as the solid line in
Figure 2.22.

2. We can increase the sampling rate using oversampling and interpolation
methods when a higher sampling rate is available at the DAC. Using the
interpolation will increase the sampling rate without affecting the signal
bandwidth, so that the baseband spectrum and its images are separated
farther apart and a lower-order anti-image filter can be used. This subject
will be discussed in Chapter 12.

3. We can change the DAC configuration and perform digital pre-equaliza-
tion using the flexible digital filter whose magnitude frequency response is
against the spectral shape effect due to the hold circuit. Figure 2.23 shows
a possible implementation. In this way, the spectral shape effect can be
balanced before the sampled signal passes through the hold circuit. Fi-
nally, the anti-image filter will remove the rest of the images and recover
the desired analog signal.

The following practical example will illustrate the design of an anti-image
filter using a higher sampling rate while making use of the sample-and-hold effect.

Example 2.8.

a. Determine the cutoff frequency and the order for the anti-image filter
given a DSP system with a sampling rate of 16,000 Hz and specifications
for the anti-image filter as shown in Figure 2.24.

2.2 Signal Reconstruction 33

Equalizer gain

Radians

FIGURE 2.22 Ideal equalizer magnitude frequency response to overcome the distor-
tion introduced by the sample-and-hold process.

Design requirements:
B Maximum allowable gain variation from 0 to 3,000 Hz = 2dB
m 33 dB rejection at the frequency of 13,000 Hz
m Butterworth filter assumed for the anti-image filter
Solution:

a. We first determine the spectral shaping effects at f = 3000 Hz and
f = 13,000 Hz; that is,

Digital signal Anti-
— | Digital equalizer DAC Hold —» image —»

i y(t)
y(n) Vel Vi) filter

Yu(t)

FIGURE 2.23 Possible implementation using the digital equalizer.

34 2 SIGNAL SAMPLING AND QUANTIZATION

Digital signal Anti-
DAC Hold —» image —»
y(n) filter | ¥(1)

Ys(t)

yu(t)

FIGURE 2.24 DSP recovery system for Example 2.8.

f =3000Hz, fT = 3000 x 1/16000 = 0.1785
_ sin(0.17857) B

and

£ = 13000 Hz, /T = 13000 x 1/16000 = 0.8125
i — sin (0.81257)
g = o5

This gain would help the attenuation requirement.

=0.2177 = —13dB.

Ye(f)

0.2177
0.9484 1 '
\
,,,,,,, \\
v v T e
03 1316 32

FIGURE 2.25 Spectral shaping by the sample-and-hold effect in Example 2.8.
Hence, the design requirements for the anti-image filter are:
m Butterworth lowpass filter

B Maximum allowable gain variation from 0 to 3,000Hz = (2 — 0.46)
=1.54dB

m (33 — 13) = 20dB rejection at frequency 13,000 Hz.

We set up equations using log operations of the Butterworth magnitude
function as

1/2
20 10g<1 + (3000/ﬁ)2”) <1.54

1/2
20 log<1 + (13000/fc)2”) =20.

From these two equations, we have to satisfy

2.3 Analog-to-Digital Conversion, Digital-to-Analog Conversion, and Quantization 35

(13000/£,)*"= 10 — 1.

Taking the ratio of these two equations yields

13000\ > 107 — 1
3000) 100154 —1°

Then 1 — log((10% — 1)/(10°1%* — 1))/ 1og(13000/3000) = 1.86 ~ 2.

2
Finally, the cutoff frequency can be computed as
13000 13000
fo= ; o = 7= 4121.30 Hz
(102 —1) (102 —1)
Je= 2000 000 37142312

(100154 — 1)1/(2'1) - (100154 — 1)1/4

We choose the smaller one, that is,
f.=3714.23Hz.

With the filter order and cutoff frequency, we can realize the anti-image (recon-
struction) filter using the second-order unit gain Sallen-Key lowpass filter
described in Figure 2.17.

Note that the specifications for anti-aliasing filter designs are similar to those
for anti-image (reconstruction) filters, except for their stopband edges. The anti-
aliasing filter is designed to block the frequency components beyond the folding
frequency before the ADC operation, while the reconstruction filter is to block

the frequency components beginning at the lower edge of the first image after
the DAC.

2.3 Analog-to-Digital Conversion,
Digital-to-Analog Conversion,
and Quantization

During the ADC process, amplitudes of the analog signal to be converted have
infinite precision. The continuous amplitude must be converted into digital data
with finite precision, which is called the quantization. Figure 2.26 shows that
quantization is a part of ADC.

36 2 SIGNAL SAMPLING AND QUANTIZATION

x(1) ADC
Anti- sample Quantization Digital Zero- Anti- | YD
» allgsmg T and hold g binary —™ signal » DAC o image —>
filter encoder processor hold filter

FIGURE 2.26 A block diagram for a DSP system.

There are several ways to implement ADC. The most common ones are
m flash ADC,

B successive approximation ADC, and

m sigma-delta ADC.

In this chapter, we will focus on a simple 2-bit flash ADC unit, described in
Figure 2.27, for illustrative purposes. Sigma-delta ADC will be studied in
Chapter 12.

As shown in Figure 2.27, the 2-bit flash ADC unit consists of a serial
reference voltage created by the equal value resistors, a set of comparators,
and logic units. As an example, the reference voltages in the figure are 1.25 vollts,
2.5 volts, 3.75 volts, and 5 volts. If an analog sample-and-hold voltage is V;, = 3
volts, then the lower two comparators will each output logic 1. Through the
logic units, only the line labeled 10 is actively high, and the rest of the lines are
actively low. Hence, the encoding logic circuit outputs a 2-bit binary code of 10.

Vg=

in

—_

5

Comparators logic 0 11| Encoding
: logic

+ logic 1

i 10
““logic 0 fogic 1 \ ::

logic 0 01

Iogic 1 logic 0
Va I 00
—=1.25 :

~logic 1 logic 0

FIGURE 2.27 An example of a 2-bit flash ADC.

3V,
—”—375

2.3 Analog-to-Digital Conversion, Digital-to-Analog Conversion, and Quantization 37

Flash ADC offers the advantage of high conversion speed, since all bits are
acquired at the same time. Figure 2.28 illustrates a simple 2-bit DAC unit using
an R-2R ladder. The DAC contains the R-2R ladder circuit, a set of single-
throw switches, a summer, and a phase shifter. If a bit is logic 0, the switch
connects a 2R resistor to ground. If a bit is logic 1, the corresponding 2R
resistor is connected to the branch to the input of the operational amplifier
(summer). When the operational amplifier operates in a linear range, the
negative input is virtually equal to the positive input. The summer adds all
the currents from all branches. The feedback resistor R in the summer provides
overall amplification. The ladder network is equivalent to two 2R resistors in
parallel. The entire network has a total current of I = % using Ohm’s law,
where Vy is the reference voltage, chosen to be 5 volts for our example. Hence,
half of the total current flows into the b; branch, while the other half flows
into the rest of the network. The halving process repeats for each branch
successively to the lower bit branches to get lower bit weights. The second
operational amplifier acts like a phase shifter to cancel the negative sign of the
summer output. Using the basic electric circuit principle, we can determine the
DAC output voltage as

1 1
V() — VR<§bl +?b0>,

where b; and by are bits in the 2-bit binary code, with by as the least significant
bit (LSB).

FIGURE 2.28 R-2R ladder DAC.

38 2 SIGNAL SAMPLING AND QUANTIZATION

As an example shown in Figure 2.28, where we set Vg = 5 and b1by = 10, the
ADC output is expected to be

Vo=5x (%x 1+%x0> = 2.5 volts.
As we can see, the recovered voltage of Vy = 2.5 volts introduces voltage error
as compared with V;, = 3, discussed in the ADC stage. This is due to the fact
that in the flash ADC unit, we use only four (i.e., finite) voltage levels to
represent continuous (infinitely possible) analog voltage values. The introduc-
tion is called quantization error, obtained by subtracting the original analog
voltage from the recovered analog voltage. For our example, we have the
quantization error as

Vo— Vi, =2.5—-3=-0.5 volts.

Next, we focus on quantization development. The process of converting analog
voltage with infinite precision to finite precision is called the quantization
process. For example, if the digital processor has only a 3-bit word, the ampli-
tudes can be converted into eight different levels.

A unipolar quantizer deals with analog signals ranging from 0 volt to a
positive reference voltage, and a bipolar quantizer has an analog signal range
from a negative reference to a positive reference. The notations and general rules
for quantization are:

(xmax - xmin)
A= T 2.19
- (2.19)
L=2m (2.20)
. X — Xmin
i = round (7A) (2.21)
Xy = Xmin + A, for i=0,1,..., L—1, (2.22)

where Xmax and Xy, are the maximum and minimum values, respectively, of the
analog input signal x. The symbol L denotes the number of quantization levels,
which is determined by Equation (2.20), where m is the number of bits used in
ADC. The symbol A is the step size of the quantizer or the ADC resolution.
Finally, x, indicates the quantization level, and 7 is an index corresponding to
the binary code.

Figure 2.29 depicts a 3-bit unipolar quantizer and corresponding binary
codes. From Figure 2.29, we see that xpuin = 0, xmax = 8A, and m = 3. Applying
Equation (2.22) gives each quantization level as follows:
x,=0+1iA,i=0,1,..., L—1, where L = 23 =8 and i is the integer corre-
sponding to the 3-bit binary code. Table 2.1 details quantization for each
input signal subrange.

2.3 Analog-to-Digital Conversion, Digital-to-Analog Conversion, and Quantization 39

Binary code X
A9

111 --- - 7A+

110 ----6a

101 --- - 5A

100 - - - - 4A—

011 ----3A+

010 --- 2A+

001 ---- A+ Lo

000 -+ —=H—H—————+—1rx
e 0 4 24 34 4r 5A 6 TA 8A

FIGURE 2.29 Characteristics of the unipolar quantizer.

Similarly, a 3-bit bipolar quantizer and binary codes are shown in
Figure 2.30, where we have xyy, = —4A, xmax = 4A, and m = 3. The corre-
sponding quantization table is given in Table 2.2.

Example 2.9.

Assuming that a 3-bit ADC channel accepts analog input ranging from 0 to 5
volts, determine the following:

a. number of quantization levels

b. step size of the quantizer or resolution

TABLE 2.1 Quantization table for the 3-bit unipolar quantizer (step
size = A = (Xmax — Xmin)/23, Xmax = maximum voltage, and

Xpin = 0)-

Binary Code Quantization Level x, (V) Input Signal Subrange (V)
000 0 0=x < 0.5A

001 A 0.5A=x < 1.5A
010 2A 1.5A=x < 2.5A
011 3A 2.5A=x < 3.5A
100 4A 3.5A=x < 4.5A

101 5A 45A=x < 5.5A
110 6A 5.5A=x < 6.5A

111 7A 6.5A=x < 7.5A

40 2 SIGNAL SAMPLING AND QUANTIZATION

Binary code

FIGURE 2.30 Characteristics of the bipolar quantizer.

¢. quantization level when the analog voltage is 3.2 volts
d. binary code produced by the ADC
Solution:

Since the range is from 0 to 5 volts and the 3-bit ADC is used, we have

Xmin = 0 volt, xmax = 5 volts, and m = 3 bits.

a. Using Equation (2.20), we get the number of quantization levels as

TABLE 2.2 Quantization table for the 3-bit bipolar quantizer (step
size = A = (Xmax — Xmin)/23, Xmax = maximum voltage, and

Xmin = 7xmux)'

Binary Code Quantization Level x, (V) Input Signal Subrange (V)
000 —4A —4A=x < —3.5A

001 —3A —35A=x < -2.5A
010 —2A —2.5A=x < —1.5A
011 —A —1.5=x < —0.5A

100 0 —0.5A=x < 0.5A

101 A 0.5A=x < 1.5A

110 2A 1.5A=x < 2.5A

111 3A 2.5A=x < 3.5A

2.3 Analog-to-Digital Conversion, Digital-to-Analog Conversion, and Quantization 41

L=2"=2=38.
b. Applying Equation (2.19) yields

A= 5—g0 = 0.625 volt.

¢. When x = 3.2ﬁ‘25 = 5.12A, from Equation (2.21) we get

X — Xmin

i= round(A

) = round(5.12) = 5.

From Equation (2.22), we determine the quantization level as
Xy =0+ 5A =5 x0.625 = 3.125 volts.
d. The binary code is determined as 101, from either Figure 2.29 or Table 2.1.

After quantizing the input signal x, the ADC produces binary codes, as
illustrated in Figure 2.31.

The DAC process is shown in Figure 2.32. As shown in the figure, the DAC
unit takes the binary codes from the DS processor. Then it converts the binary
code using the zero-order hold circuit to reproduce the sample-and-hold signal.
Assuming that the spectrum distortion due to sample-and-hold effect can be
ignored for our illustration, the recovered sample-and-hold signal is further
processed using the anti-image filter. Finally, the analog signal is yielded.

ADC conversion

-
>
x(t) Anti- NN i
L | Sample | Quantization |—»
aliasing "|and Hold | and coding [*
filter L Ly
>
>
Binary code
00001001
01001011
: 11010010
00001101

FIGURE 2.31 Typical ADC process.

42 2 SIGNAL SAMPLING AND QUANTIZATION

DAC conversion

] Digital signal
:: Anti- | Analog signal
—»{ Quantization | zero-order o
—» and coding " hold " |rpage
L » ilter
—»
—

Binary code

00001001

01001011

11010010

00001101

FIGURE 2.32 Typical DAC process.

When the DAC outputs the analog amplitude x, with finite precision, it
introduces the quantization error, defined as

ey = X4 — X. (2.23)
The quantization error as shown in Figure 2.29 is bounded by half of the step

size, that is,

- % <e,= %, (2.24)

where A is the quantization step size, or the ADC resolution. We also refer to A
as Vnin (minimum detectable voltage) or the LSB value of the ADC.

Example 2.10.

a. Using Example 2.9, determine the quantization error when the analog
input is 3.2 volts.

Solution:
a. Using Equation (2.23), we obtain
e, =x,—x=3.125-32=—-0.075volt.
Note that the quantization error is less than half of the step size, that is,

leg| = 0.075 < A/2 = 0.3125 volt.

2.3 Analog-to-Digital Conversion, Digital-to-Analog Conversion, and Quantization 43

In practice, we can empirically confirm that the quantization error appears in
uniform distribution when the step size is much smaller than the dynamic range
of the signal samples and we have a sufficiently large number of samples. Based
on theory of probability and random variables, the power of quantization noise
is related to the quantization step and given by

A2
2
E(eq) ==, (2.25)
where E() is the expectation operator, which actually averages the squared
values of the quantization error (the reader can get more information from
the texts by Roddy and Coolen (1997); Tomasi (2004); and Stearns and Hush
(1990)). The ratio of signal power to quantization noise power (SNR) due to
quantization can be expressed as

SNR = % (2.26)
()
If we express the SNR in terms of decibels (dB), we have
SNR;p = 10 - log,, (SNR) dB. (2.27)
Substituting Equation (2.25) and E(x*)= X, into Equation (2.27), we achieve
SNRuz = 10.79 + 20 - logy, (XA’") (2.28)

where x,,,,; is the RMS (root mean squared) value of the signal to be quantized x.
Practically, the SNR can be calculated using the following formula:

N-1 N-1
N 2 X 3 X
SNR = —=2 =20, (2.29)
v 2 g 3 e

where x(n) is the nth sample amplitude and e,(n) is the quantization error from
quantizing x(n).

Example 2.11.
a. If the analog signal to be quantized is a sinusoidal waveform, that is,
x(t) = Asin (2w x 1000¢7),

and if the bipolar quantizer uses m bits, determine the SNR in terms of m
bits.

4 2 SIGNAL SAMPLING AND QUANTIZATION

Solution:

a. Since X,,; = 0.7074 and A = 2 A/2 m, substituting x,,,; and A into Equa-
tion (2.28) leads to

0.7074

24/2m
=10.79 4 20 - log,, (0.707/2) + 20m - log;, 2.

After simplifying the numerical values, we get

SNRuz = 1.76 + 6.02m dB. (2.30)

Example 2.12.

For a speech signal, if a ratio of the RMS value over the absolute maximum value
of the analog signal (Roddy and Coolen, 1997) is given, that is, (S) and the

|“\‘max

ADC quantizer uses m bits, determine the SNR in terms of m bits.
Solution:
Since

A— Xmax — Xmin _ 2‘x|max
B L oo

substituting A in Equation (2.28) achieves

SNRgz = 10.79 + 20 - log;, <2|x’x7/2> '

=10.79 + 20 - logy, <M> + 20mlog;y 2 — 20log, 2.

|x’max

Thus, after numerical simplification, we have

SNRyp = 4.77 + 20 - log,, (o > +6.02m. (2.31)

‘x’max
From Examples 2.11 and 2.12, we observed that increasing 1 bit of the ADC
quantizer can improve SNR due to quantization by 6 dB.

Example 2.13.
Given a sinusoidal waveform with a frequency of 100 Hz,
x(7) = 4.5 - sin 27w x 1007),

2.3 Analog-to-Digital Conversion, Digital-to-Analog Conversion, and Quantization 45

sampled at 8,000 Hz,

a. Write a MATLAB program to quantize the x(¢) using 4 bits to obtain and
plot the quantized signal x,, assuming that the signal range is between —5
and 5 volts.

b. Calculate the SNR due to quantization.

Solution:

a. Program 2.1. MATLAB program for Example 2.13.

$Example 2.13
clear all;close all
disp (‘Generate 0.02-second sine wave of 100 Hz and Vp=5') ;

fs =8000; % Sampling rate

T=1/fs; % Sampling interval

t=0:T:0.02; % Duration of 0.02 second

sig=4.5"sin (2"pi*100*t) ; % Generate the sinusoid

bits = input (‘input number of bits =>');

lg = length(sig); % Length of the signal vector sig

forx=1:1qg

[Index (x) pq] =biquant (bits, -5,5, sig(x)); % Output the quantizedindex
end

% transmitted

% received

forx=1:1g

gsig(x) =bigtdec(bits, -5,5, Index(x)); $Recover the quantized value
end

gerr = gsig-sig; $Calculate the quantized errors

stairs(t,gsig) ;hold $ Plot the signal in a staircase style

plot(t,siqg); grid; % Plot the signal

xlabel ('Time (sec.)’) ;ylabel (‘Quantized x(n)’)
disp (‘Signal to noise power ratio due to quantization’)
snr (sig,gsig);

b. Theoretically, applying Equation (2.30) leads to
SNR;p=1.76+6.02 -4 = 25.84dB.

46 2 SIGNAL SAMPLING AND QUANTIZATION

Quantized x(n)

ob----

"0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

Time (sec)

FIGURE 2.33 Comparison of the quantized signal and the original signal.

Practically, using Equation (2.29), the simulated result is obtained as
SNR;p = 25.78 dB.
It is clear from this example that the ratios of signal power to noise power due to
quantization achieved from theory and from simulation are very close. Next, we
look at an example for quantizing a speech signal.
Example 2.14.
Given a speech signal sampled at 8,000 Hz in the file we.dat,

a. Write a MATLAB program to quantize the x(¢) using 4-bit quantizers to

obtain the quantized signal x,, assuming that the signal range is from —5
to 5 volts.

b. Plot the original speech, quantized speech, and quantization error,
respectively.

c. Calculate the SNR due to quantization using the MATLAB program.

2.3 Analog-to-Digital Conversion, Digital-to-Analog Conversion, and Quantization 47

Solution:

a. Program 2.2. MATLAB program for Example 2.14.

$Example 2.14

clear all; close all

disp ('load speech: We') ;

load we.dat% Load speech data at the current folder

)

sig = we; % Provided by the instructor

£fs=8000; % Sampling rate

lg=length(sig); % Length of the signal vector

T=1/fs; % Sampling period

t=1[0:1:1g—1]1"T; % Time instants in second

sig=4.5"sig/max (abs (sig)); $Normalizes speech inthe range from—4.5to04.5
Xmax = max (abs (siqg)); % Maximum amplitude

Xrms = sqrt (sum(sig .*

disp ('Xrms/Xmax')

k=Xrms/Xmax

disp ('20* 1og10 (k) =>') ;

k =20*1og 10 (k)

bits = input (‘input number of bits =>') ;

lg = length(sig);

forx=1:1g

[Index (x) pg] =biquant (bits, —5,5, sig(x)); sOutput the quantized index.
end

Transmitted

Received

forx=1:1g

gsig(x) =bigtdec (bits, —5,5, Index(x)); %$Recover the quantized value
end

sig) / length(sig)) % RMS value

o
°
o
©

gerr = sig-gsig; $Calculate the quantized errors
subplot(3,1,1);plot(t,siqg);

ylabel ('Original speech’);Title (‘'we.dat: we');
subplot(3,1,2);stairs(t, gsig) ;grid

ylabel (‘Quantized speech’)

subplot(3,1,3);stairs(t, gerr) ;grid

ylabel ('Quantized error’)

xlabel ('Time (sec.)’);axis ([0 0.25-111);

disp (‘signal to noise ratio due to quantization noise’)
snr (sig,gsig); % Signal to noise power ratio in dB: sig = signal vector,
% gsig =quantized signal vector

48 2 SIGNAL SAMPLING AND QUANTIZATION

we.dat: we
% 5
% 0 AW)\nJWM H ﬂﬂ kﬁ Mﬂ MAM.M ﬂl\‘ ﬂmﬁn ﬁh J\n A
g T WWW wwwwwuvu PP
2
0 0.05 0.1 0.15 0.2 0.25

e B b ok g b o L

II\I'“\I FIM !““I“” I I! Irl” !II

Quantized speech
o

0 0.05 0.1 0.15 0.2 0.25

I I ARt ML L thmu\hl AN I
]“ 1”1 l”“ |||\|' il \I\Il‘ |\|‘| |\|\‘|\ n||| Uil ||1|||‘\ |‘|| ”\ il ‘|\| Il \|‘¥\II HI” '| |\|\||\ ”. I w

Quantized error
o
N
£l

0 0.05 0.1 0.15 0.2 0.25
Time (sec)

FIGURE 2.34 Original speech, quantized speech using the 4-bit bipolar quantizer,
and quantization error.

b. In Figure 2.34, the top plot shows the speech wave to be quantized, while
the middle plot displays the quantized speech signal using 4 bits. The
bottom plot shows the quantization error. It also shows that the absolute
value of the quantization error is uniformly distributed in a range between
—0.3125 and 0.3125.

c. From the MATLAB program, we have lel::x = 0.203. Theoretically, from
Equation (2.31), it follows that

SNRyp = 4.77 + 201og, (;C”"”) +6.02-4

‘ ’max

=4.77 4 2010g;, (0.203) + 6.02 - 4 = 15dB.
On the other hand, the simulated result using Equation (2.29) gives
SNR;z = 15.01dB.

Results for SNRs from Equations (2.31) and (2.29) are very close in this
example.

2.4 Summary 49

2.4 Summary

1.

Analog signal is sampled at a fixed time interval so the ADC will convert
the sampled voltage level to a digital value; this is called the sampling
process.

The fixed time interval between two samples is the sampling period, and the
reciprocal of the sampling period is the sampling rate. Half of the sampling
rate is the folding frequency (Nyquist limit).

The sampling theorem condition that the sampling rate be larger than twice
the highest frequency of the analog signal to be sampled must be met in
order to have the analog signal be recovered.

The sampled spectrum is explained using the well-known formula

X(f) = o X L) X+ X =)+

that is, the sampled signal spectrum is a scaled and shifted version of its
analog signal spectrum and its replicas centered at the frequencies that are
multiples of the sampling rate.

The analog anti-aliasing lowpass filter is used before ADC to remove
frequency components having high frequencies larger than the folding
frequency to avoid aliasing.

The reconstruction (analog lowpass) filter is adopted after DAC to remove
the spectral images that exist in the sample-and-hold signal and obtain the
smoothed analog signal. The sample-and-hold DAC effect may distort the
baseband spectrum, but it also reduces image spectrum.

Quantization means that the ADC unit converts the analog signal ampli-
tude with infinite precision to digital data with finite precision (a finite
number of codes).

When the DAC unit converts a digital code to a voltage level, quantization
error occurs. The quantization error is bounded by half of the quantization
step size (ADC resolution), which is a ratio of the full range of the signal
over the number of the quantization levels (number of the codes).

The performance of the quantizer in terms of the signal to quantization noise
ratio (SNR), in dB, is related to the number of bits in ADC. Increasing 1 bit
used in each ADC code will improve 6 dB SNR due to quantization.

50 2 SIGNAL SAMPLING AND QUANTIZATION

2.5 MATLAB Programs

Program 2.3. MATLAB function for uniform quantization encoding.

function [I, pg] = biquant (NoBits, Xmin, Xmax, value)
% function pg = biquant (NoBits, Xmin, Xmax, value)
This routine is created for simulation of the uniform quantizer.

NoBits: number of bits used in quantization.
Xmax: overload value.

Xmin: minimum value

value: input to be quantized.

pg: output of the quantized value
I: coded integer index

L =2"NoBits;

delta= (Xmax-Xmin) /L;

I=round((value-Xmin) /delta);

if (I==L)

I=I-1;

end

1if I <0

I=0;

end

pg=Xmin+I*delta;

A% o o° P o° O o° O o

Program 2.4. MATLAB function for uniform quantization decoding.

function pg = bigtdec (NoBits, Xmin, Xmax, I)
% function pg = bigtdec (NoBits, Xmin, Xmax, I)
This routine recovers the quantized value.

NoBits: number of bits used in quantization.
Xmax: overload value

Xmin: minimum value

pg: output of the quantized value

$ I: coded integer index

L= 2"NoBits;

delta= (Xmax-Xmin) /L;

pg=Xmin+I*delta;

O o o° o o° d° o° o

2.6 Problems 51

Program 2.5. MATLAB function for calculation of signal to quantization noise
ratio.

function snr = calcsnr (speech, gspeech)
% function snr = calcsnr (speech, gspeech)
this routine is created for calculation of SNR

o° oo

oe

speech: original speech waveform.
gspeech: quantized speech.
snr: output SNR in dB.

o° oo

oe

gerr = speech-gspeech;
snr=10"10g 10 (sum (speech.*speech) /sum(gerr.x*gerr))

2.6 Problems
2.1. Given an analog signal

x(t) = Scos (2x - 15001), for =0,
sampled at a rate of 8,000 Hz,
a. sketch the spectrum of the original signal;

b. sketch the spectrum of the sampled signal from 0 kHz to 20 kHz.

2.2. Given an analog signal

x(#) = Scos (27 - 2500¢) + 2 cos (27 - 3200¢), for =0,
sampled at a rate of 8,000 Hz,
a. sketch the spectrum of the sampled signal up to 20 kHz;

b. sketch the recovered analog signal spectrum if an ideal lowpass filter
with a cutoff frequency of 4 kHz is used to filter the sampled signal in
order to recover the original signal.

2.3. Given an analog signal

x(t) = 5cos (2m - 2500¢) + 2 cos (27 - 4500¢), for =0,
sampled at a rate of 8,000 Hz,
a. sketch the spectrum of the sampled signal up to 20 kHz;

52

SIGNAL SAMPLING AND QUANTIZATION

Choose C,
- R, - 1:4142
02 27L'fc
1
C=RAC 2
1R Gy (2f)" =

FIGURE 2.35 Filter circuit in Problem 2.5.

b. sketch the recovered analog signal spectrum if an ideal lowpass filter
with a cutoff frequency of 4 kHz is used to filter the sampled signal in
order to recover the original signal;

c¢. determine the frequency/frequencies of aliasing noise.

2.4. Assuming a continuous signal is given as

2.5.

2.6.

2.7.

x(t) = 10 cos (27 - 5500¢) + 5 sin (27 - 7500¢), for =0,
sampled at a sampling rate of 8,000 Hz,
a. sketch the spectrum of the sampled signal up to 20 kHz;

b. sketch the recovered analog signal spectrum if an ideal lowpass filter
with a cutoff frequency of 4 kHz is used to filter the sampled signal in
order to recover the original signal;

c¢. determine the frequency/frequencies of aliasing noise.
Given the following second-order anti-aliasing lowpass filter, which is a

Butterworth type, determine the values of circuit elements if we want the
filter to have a cutoff frequency of 1,000 Hz.

From Problem 2.5, determine the percentage of aliasing level at the
frequency of 500 Hz, assuming that the sampling rate is 4,000 Hz.

Given a DSP system in which a sampling rate of 8,000 Hz is used and the
anti-aliasing filter is a second-order Butterworth lowpass filter with a
cutoff frequency of 3.2 kHz, determine

a. the percentage of aliasing level at the cutoff frequency;

b. the percentage of aliasing level at the frequency of 1,000 Hz.

2.6 Problems

Digital signal Anti-
DAC Hold —» image ——»
y(n) Vo) filter | Y(1)
YH(t)
FIGURE 2.36 Analog signal reconstruction in Problem 2.10.

2.8. Given a DSP system in which a sampling rate of 8,000 Hz is used and
the anti-aliasing filter is a Butterworth lowpass filter with a cutoff
frequency of 3.2 kHz, determine the order of the Butterworth lowpass
filter for the percentage of aliasing level at the cutoff frequency required
to be less than 10%.

2.9. Given a DSP system with a sampling rate of 8,000 Hz and assuming

that the hold circuit is used after DAC, determine

a. the percentage of distortion at the frequency of 3,200 Hz;

b. the percentage of distortion at the frequency of 1,500 Hz.

2.10. A DSP system is given with the following specifications:

Design requirements:

m Sampling rate 20,000 Hz

m Maximum allowable gain variation from 0 to 4,000 Hz = 2dB

Vg=5 » V;,=2 volts
R Comparators 11 | Encoding
3V T 10 logic
R_
Tz 37 % = b1b0
R
Va + 01
o = 2.5 _
R
00
+
—A =125 _
R
FIGURE 2.37 2-bit flash ADC in Problem 2.11.

54 2 SIGNAL SAMPLING AND QUANTIZATION

1 1
2—1b1+2—2b0

FIGURE 2.38 2-bit R-2R DAC in Problem 2.12.

m 40 dB rejection at the frequency of 16,000 Hz

m Butterworth filter assumed

Determine the cutoff frequency and order for the anti-image filter.

2.11. Given the 2-bit flash ADC unit with an analog sample-and-hold voltage
of 2 volts shown in Figure 2.37, determine the output bits.

2.12. Given the R-2R DAC unit with a 2-bit value of b;hy = 01 shown in
Figure 2.38, determine the converted voltage.

2.13. Assuming that a 4-bit ADC channel accepts analog input ranging from
0 to 5 volts, determine the following:

a.
b.

C.
d.

c.

number of quantization levels;

step size of the quantizer or resolution;

quantization level when the analog voltage is 3.2 volts;
binary code produced by the ADC;

quantization error.

2.14. Assuming that a 3-bit ADC channel accepts analog input ranging from
—2.5 to 2.5 volts, determine the following:

a.

b.

number of quantization levels;

step size of the quantizer or resolution;

2.6 Problems 55

c. quantization level when the analog voltage is —1.2 volts;
d. binary code produced by the ADC;

€. quantization error.
2.15. If the analog signal to be quantized is a sinusoidal waveform, that is,

x(f) = 9.5sin (2000 x 77),
and if the bipolar quantizer uses 6 bits, determine
a. number of quantization levels;

b. quantization step size or resolution, A, assuming that the signal range
1s from —10 to 10 volts;

c. the signal power to quantization noise power ratio.
2.16. For a speech signal, if the ratio of the RMS value over the absolute

maximum value of the signal is given, that is, |;“””f = 0.25, and the
ADC bipolar quantizer uses 6 bits, determine -

a. number of quantization levels;
b. quantization step size or resolution, A, if the signal range is 5 volts;
c. the signal power to quantization noise power ratio.

Computer Problems with MATLAB: Use the MATLAB programs in Section
2.5 to solve the following problems.

2.17. Given a sinusoidal waveform of 100 Hz,

x(t) = 4.5sin 27 x 100¢)
sample it at 8,000 samples per second and

a. write a MATLAB program to quantize x(z) using a 6-bit bipolar
quantizer to obtain the quantized signal x,, assuming the signal
range to be from —5 to 5 volts;

b. plot the original signal and the quantized signal;

c. calculate the SNR due to quantization using the MATLAB program.

56 2 SIGNAL SAMPLING AND QUANTIZATION

2.18. Given a speech signal sampled at 8,000 Hz, as shown in Example 2.14,

a. write a MATLAB program to quantize x(¢) using a 6-bit bipolar
quantizer to obtain the quantized signal x,, assuming that the signal
range is from —5 to 5 volts;

b. plot the original speech waveform, quantized speech, and quantiza-
tion error;

c. calculate the SNR due to quantization using the MATLAB pro-
gram.

Ahmed, N., and Natarajan, T. (1983). Discrete-Time Signals and Systems. Reston, VA:
Reston Publishing Co.

Alkin, O. (1993). Digital Signal Processing: A Laboratory Approach Using PC-DSP. Engle-
wood Cliffs, NJ: Prentice Hall.

Ambardar, A. (1999). Analog and Digital Signal Processing, 2nd ed. Pacific Grove, CA:
Brooks/Cole Publishing Company.

Chen, W. (1986). Passive and Active Filters: Theory and Implementations. New York: John
Wiley & Sons.

Oppenheim, A. V., and Schafer, R. W. (1975). Discrete-Time Signal Processing. Englewood
Cliffs, NJ: Prentice Hall.

Proakis, J. G., and Manolakis, D. G. (1996). Digital Signal Processing: Principles, Algo-
rithms, and Applications, 3rd ed. Upper Saddle River, NJ: Prentice Hall.

Roddy, D., and Coolen, J. (1997). Electronic Communications, 4th ed. Englewood Cliffs, NJ:
Prentice Hall.

Stearns, S. D., and Hush, D. R. (1990). Digital Signal Analysis, 2nd ed. Englewood Cliffs,
NIJ: Prentice Hall.

Tomasi, W. (2004). Electronic Communications Systems: Fundamentals Through Advanced,
Sth ed. Upper Saddle River, NJ: Pearson/Prentice Hall.

Digital Signals and Systems

Objectives:

This chapter introduces notations for digital signals and special digital
sequences that are widely used in this book. The chapter continues to study
some properties of linear systems such as time invariance, BIBO (bounded-
in-and-bounded-out) stability, causality, impulse response, difference equation,
and digital convolution.

3.1 Digital Signals

In our daily lives, analog signals appear as speech, audio, seismic, biomedical,
and communications signals. To process an analog signal using a digital signal
processor, the analog signal must be converted into a digital signal; that is,
analog-to-digital conversion (ADC) must take place, as discussed in Chapter 2.
Then the digital signal is processed via digital signal processing (DSP) algo-
rithm(s).

A typical digital signal x(n) is shown in Figure 3.1, where both the time and
the amplitude of the digital signal are discrete. Notice that the amplitudes of
digital signal samples are given and sketched only at their corresponding time
indices, where x(n) represents the amplitude of the nth sample and n is the
time index or sample number. From Figure 3.1, we learn that

x(0): zero-th sample amplitude at the sample number n = 0,

x(1): first sample amplitude at the sample number n = 1,

x(2): second sample amplitude at the sample number n = 2,

x(3): third sample amplitude at the sample number n = 3, and so on.

58 3 DIGITAL SIGNALS AND SYSTEMS

x(n)
x(0) x(1)
X2 .
LT
2 a4 o 1 2 | & "
x(3)

FIGURE 3.1 Digital signal notation.

Furthermore, Figure 3.2 illustrates the digital samples whose amplitudes are the
discrete encoded values represented in the DS processor. Precision of the data is
based on the number of bits used in the DSP system. The encoded data format
can be either an integer if a fixed-point DS processor is used or a floating-point
number if a floating-point DS processor is used. As shown in Figure 3.2 for the
floating-point DS processor, we can identify the first five sample amplitudes at
their time indices as follows:

x(0) = 2.25
x(1)=2.0
x(2)=1.0
x(3)=-1.0
x(4)=0.0

Again, note that each sample amplitude is plotted using a vertical bar with
a solid dot. This notation is well accepted in the DSP literature.

3.1.1 Common Digital Sequences

Let us study some special digital sequences that are widely used. We define and
plot each of them as follows:

x(n)
2.252.0
10 L
] 3 00
2 -1 Jo 1 R

FIGURE 3.2 Plot of the digital signal samples.

3.1 Digital Signals 59

FIGURE 3.3 Unit-impulse sequence.

Unit-impulse sequence (digital unit-impulse function):
1 n=0
o(n) = {0 n+0 (3.1

The plot of the unit-impulse function is given in Figure 3.3. The unit-impulse
function has the unit amplitude at only n = 0 and zero amplitudes at other time
indices.

Unit-step sequence (digital unit-step function):

w(n) = {(1) " i 8 3.2)

The plot is given in Figure 3.4. The unit-step function has the unit amplitude at
n =0 and for all the positive time indices, and amplitudes of zero for all the
negative time indices.
The shifted unit-impulse and unit-step sequences are displayed in Figure 3.5.
As shown in Figure 3.5, the shifted unit-impulse function 6(n — 2) is obtained
by shifting the unit-impulse function &(n) to the right by two samples, and the

FIGURE 3.4 Unit-step sequence.

n

8(n+2) u(n+2)

----- R AR

n T n

FIGURE 3.5 Shifted unit-impulse and unit-step sequences.

60 3 DIGITAL SIGNALS AND SYSTEMS

FIGURE 3.6 Plot of samples of the sinusoidal function.

FIGURE 3.7 Plot of samples of the exponential function.

shifted unit-step function u(n — 2) is achieved by shifting the unit-step function
u(n) to the right by two samples; similarly, 6(n + 2) and u(n + 2) are acquired by
shifting 6(n) and u(n) via two samples to the left, respectively.

Sinusoidal and exponential sequences are depicted in Figures 3.6 and 3.7,
respectively.

For the sinusoidal sequence for the case of x(n) = A4 cos (0.1257n)u(n), and
A =10, we can calculate the digital values for the first eight samples and list
their values in Table 3.1.

TABLE 3.1 Sample values calculated from the sinusoidal
function.

x(n) = 10 cos (0.1257n)u(n)

10.0000
9.2388
7.0711
3.8628
0.0000

—3.8628
—7.0711
—9.2388

NNV kWO —=O S

3.1 Digital Signals 61

TABLE 3.2 Sample values calculated from the
exponential function.

10(0.75)"u(n)

10.0000
7.5000
5.6250
4.2188
3.1641
2.3730
1.7798
1.3348

NN N WD —=O S

For the exponential sequence for the case of x(n) = A4(0.75)"u(n), the
calculated digital values for the first eight samples with 4 = 10 are listed in
Table 3.2.

Example 3.1.
Given the following,
x(n) =6(n+1)4+0.56(n — 1) + 26(n — 2),
a. Sketch this sequence.
Solution:

a. According to the shift operation, 6(n + 1) is obtained by shifting 6(n) to
the left by one sample, while 6(n — 1) and &(n — 2) are yielded by shifting
o(n) to the right by one sample and two samples, respectively. Using the
amplitude of each impulse function, we yield the following sketch.

FIGURE 3.8 Plot of digital sequence in Example 3.1.

62 3 DIGITAL SIGNALS AND SYSTEMS

3.1.2 Generation of Digital Signals

Given the sampling rate of a DSP system to sample the analytical function of an
analog signal, the corresponding digital function or digital sequence (assuming
its sampled amplitudes are encoded to have finite precision) can be found.
The digital sequence is often used to

1. calculate the encoded sample amplitude for a given sample number 7,
2. generate the sampled sequence for simulation.

The procedure to develop the digital sequence from its analog signal function is
as follows. Assuming that an analog signal x(¢) is uniformly sampled at the time
interval of Ar = T, where T is the sampling period, the corresponding digital
function (sequence) x(n) gives the instant encoded values of the analog signal x()
at all the time instants t = nAt = nT and can be achieved by substituting time
t = nT into the analog signal x(¢), that is,

x(n) = x(t)|,_,r = x(nT). (3.3)
Also notice that for sampling the unit-step function u(¢), we have
u(0)|;—yr = u(nT) = u(n). (3.4)

The following example will demonstrate the use of Equations (3.3) and (3.4).

Example 3.2.

Assuming a DSP system with a sampling time interval of 125 microseconds,
a. Convert each of the following analog signals x(¢) to the digital signal
x(n).

1. x(f) = 10e™39%07(z)
2. x(¢) = 10sin (20007r#)u(r)
b. Determine and plot the sample values from each obtained digital function.
Solution:

a. Since 7 = 0.000125 seconds in Equation (3.3), substituting t = nT =
n x 0.000125 = 0.0001257 into the analog signal x(¢) expressed in
(a) leads to the digital sequence

1. x(n) = x(nT) = 10e~>000x0000125n,, 63, 7y — 100625 (py).
Similarly, the digital sequence for (b) is achieved as follows:
2. x(n) = x(nT) = 10sin (20007 x 0.000125n)u(nT) = 10sin (0.257n)u(n).

3.1 Digital Signals

x(n)
10
104
5.3526

- 2.8650
T=125 I 1.5335

0.8208
[)

n Sample index

o 1 2 3 4
| 1 1 | 1
0

t Micro-seconds (usec)
S t=nT

125 250 375 500 6

N 4o o

FIGURE 3.9 Plot of the digital sequence for (1) in Example 3.2.

x(n)
10.0
10T 70711 7.0711
00 ['% 00 5 6 77T
} + J J ! n Sample index
0 1 2 3 4

-5+

104 : —7.Q711 —7.Q711

-10.0
i i i | | | I t Micro-seconds (usec)
0 125 250 375 500 625 750 875 tpT

FIGURE 3.10 Plot of the digital sequence for (2) in Example 3.2.

b.1. The first five sample values are calculated below and plotted in Figure 3.9.
x(0) = 10e=%62>%044(0) = 10.0
x(1) = 10e7%6251(1) = 5.3526
x(2) = 10e%625%244(2) = 2.8650
x(3) = 10e706253(3) = 1.5335
x(4) = 10e262%4(4) = 0.8208
2. The first eight amplitudes are computed below and sketched in Figure 3.10.
x(0) = 10sin (0.257 x 0)u(0) =0
x(1) = 10sin (0.257 x Du(1) = 7.0711
x(2) = 10sin (0.257 x 2)u(2) = 10.0

64 3 DIGITAL SIGNALS AND SYSTEMS

x(3) = 10sin (0.257 x 3)u(3) = 7.0711
x(4) = 105in (0.257 x 4)u(4) = 0.0

x(3) = 10sin (0.257 x S)u(5) = —7.0711
x(6) = 105in (0.257 x 6)u(6) = —10.0
x(7) = 10sin (0.257 x Tyu(7) = —7.0711

3.2 Linear Time-Invariant, Cauvsal
Systems

In this section, we study linear time-invariant causal systems and focus on
properties such as linearity, time invariance, and causality.

3.2.1 Linearity

A linear system is illustrated in Figure 3.11, where y;(n) is the system output
using an input xi(n), and y,(n) is the system output using an input x,(n).

Figure 3.11 illustrates that the system output due to the weighted sum inputs
axi(n) + Bxy(n) is equal to the same weighted sum of the individual outputs
obtained from their corresponding inputs, that is,

y(n) = ayi(n) + Bya(n), (3.5)
where o and B8 are constants.

For example, assuming a digital amplifier as y(n) = 10x(n), the input is multi-
plied by 10 to generate the output. The inputs xi(n) = u(n) and x,(n) = 6(n)
generate the outputs

y1(n) = 10u(n) and y,(n) = 106(n), respectively.

If, as described in Figure 3.11, we apply to the system using the combined input
x(n), where the first input is multiplied by a constant 2 while the second input is
multiplied by a constant 4,

x(n) = 2x1(n) + 4x3(n) = 2u(n) + 46(n),

SR (n) System y1(n)

Xo(n) System ¥a(n)
axy(n)+ Bxo(n) ay(n)+Bys(n)
—_— System —

FIGURE 3.11 Digital linear system.

3.2 Linear Time-Invariant, Causal Systems 65

then the system output due to the combined input is obtained as

y(n) = 10x(n) = 10Q2u(n) + 48(n)) = 20u(n) + 408(n). (3.6)
If we verify the weighted sum of the individual outputs, we see
2y1(n) + 4y:(n) = 20u(n) 4 406(n). (3.7)
Comparing Equations (3.6) and (3.7) verifies
y(n) = 2y1(n) + 4y2(n). (3.8)

Hence, the system y(n) = 10x(n) is a linear system. Linearity means that the
system obeys the superposition, as shown in Equation (3.8). Let us verify a
system whose output is a square of its input:

y(n) = X*(n).
Applying to the system with the inputs x;(n) = u(n) and x,(n) = 8(n) leads to

yi(n) = w’(n) = u(n) and yx(n) = 8%(n) = 8(n).

It is very easy to verify that u2(n) = u(n) and 8(n) = 8(n).

We can determine the system output using a combined input, which is the
weighed sum of the individual inputs with constants 2 and 4, respectively.
Working on algebra, we see that

y(n) = X*(n) = (4x1(n) + 2x5(m))*
= (4u(n) + 26(n))*= 16u*(n) + 16u(n)d(n) + 48*(n) (3.9
= 16u(n) + 206(n).

Note that we use a fact that u(n)6(n) = 8(n), which can be easily verified.
Again, we express the weighted sum of the two individual outputs with the
same constants 2 and 4 as

4y1(n) + 2y2(n) = 4u(n) + 26(n). (3.10)
It is obvious that
y(n) # 4y1(n) + 2y2(n). (3.11)

Hence, the system is a nonlinear system, since the linear property, superposition,
does not hold, as shown in Equation (3.11).

3.2.2 Time Invariance

A time-invariant system is illustrated in Figure 3.12, where y;(n) is the system
output for the input x;(n). Let x,(n) = x1(n — ng) be the shifted version of x;(n)

66 3 DIGITAL SIGNALS AND SYSTEMS

x;(n) y1(n)
ﬂl_’_L’_v; n JL n
— System >
Xo(n)=x1(n—no) Ya(n)=y1(n—no)
‘ —o . n ool l \ Te n
ng Shifted by n, samples ny Shifted by n, samples
FIGURE 3.12 lllustration of the linear time-invariant digital system.

by ny samples. The output y,(n) obtained with the shifted input x,(n) = x1(n — ng)
is equivalent to the output y,(n) acquired by shifting y;(n) by ny samples,

ya2(n) = y1(n — no).
This can simply be viewed as the following:

If the system is time invariant and y;(n) is the system output due to the input x;(n),
then the shifted system input x;(n — ng) will produce a shifted system output y;(n —)
by the same amount of time .
Example 3.3.
Given the linear systems
a. y(n) =2x(n—5)
b. y(n) = 2x(3n),
determine whether each of the following systems is time invariant.
Solution:

a. Let the input and output be x;(n) and y;(n), respectively; then the system
output is y1(n) = 2x1(n — 5). Again, let x,(n) = x1(n — ny) be the shifted
input and y,(n) be the output due to the shifted input. We determine the
system output using the shifted input as

y2(n) = 2xp(n — 5) = 2x1(n — np — 5).
Meanwhile, shifting y(n) = 2x;(n — 5) by ny samples leads to
yi(n —ng) = 2x1(n — 5 — np).

3.3 Difference Equations and Impulse Responses 67

We can verify that y,(n) = y1(n — ng). Thus the shifted input of ny samples
causes the system output to be shifted by the same ny samples, thus the
system is time invariant.

b. Let the input and output be x;(n) and y;(n), respectively; then the system
output is yi(n) = 2x1(3n). Again, let the input and output be x,(n) and
y2(n), where x»(n) = x1(n — ng), a shifted version, and the corresponding
output is y»(n). We get the output due to the shifted input
x2(n) = x1(n — ng) and note that x,(3n) = x1(3n — ny):

Y2(n) = 2x2(3n) = 2x1(3n — n).

On the other hand, if we shift y;(n) by ny samples, which replaces n in
y1(n) = 2x,(3n) by n — ng, we yield

yi(n —ng) = 2x1(3(n — ng)) = 2x1(3n — 3ny).

Clearly, we know that y,(n) # y1(n — ng). Since the system output y,(n)
using the input shifted by ny samples is not equal to the system output
y1(n) shifted by the same ny samples, the system is not time invariant.

3.2.3 Cavusality

A causal system is one in which the output y(n) at time n depends only on the
current input x(n) at time n, its past input sample values such as x(n — 1),
x(n —2),.... Otherwise, if a system output depends on the future input values,
such as x(n + 1), x(n+ 2),..., the system is noncausal. The noncausal system
cannot be realized in real time.

Example 3.4.
Given the following linear systems,
a. y(n) = 0.5x(n) +2.5x(n — 2), forn > 0
b. y(n) =025x(n — 1) + 0.5x(n + 1) — 0.4y(n — 1), for n > 0,
determine whether each is causal.
Solution:

a. Since for n > 0, the output y(n) depends on the current input x(n) and its
past value x(n — 2), the system is causal.

b. Since for n > 0, the output y(n) depends on the current input x(#) and its
future value x(n + 2), the system is noncausal.

68 3 DIGITAL SIGNALS AND SYSTEMS

3.3 Difference Equations and Impulse
Responses

Now we study the difference equation and its impulse response.

3.3.1 Format of Difference Equation

A causal, linear, time-invariant system can be described by a difference equation
having the following general form:

ym)+ayym—1)+...+ayy(n — N)

=box(n) +bix(n—1)+ ...+ byx(n — M), (3.12)

where ay,..., ay and by, by,..., by are the coefficients of the difference
equation. Equation (3.12) can further be written as

y(n)=—ayin—1)—... —ayy(n—N) (3.13)
+ box(n) +bix(n— 1)+ ...+ byx(n — M) '
or
N M
y(n) = — Z a;y(n — i) + ijx(n —))- (3.14)
i=1 =0

Notice that y(n) is the current output, which depends on the past output samples
y(n—1),..., y(n— N), the current input sample x(#), and the past input sam-
ples, x(n — 1),..., x(n — N).

We will examine the specific difference equations in the following examples.
Example 3.5.
Given the following difference equation:

y(n) = 0.25p(n — 1) + x(n),

a. Identify the nonzero system coefficients.
Solution:

a. Comparison with Equation (3.13) leads to

by =1
—a; =0.25,
that 1s, a; = —0.25.

3.3 Difference Equations and Impulse Responses 69

3(n) h(n)
— | Linear time-invariant system ——

FIGURE 3.13 Unit-impulse response of the linear time-invariant system.

x(n) y(n)
—— > hn) —

FIGURE 3.14 Representation of a linear time-invariant system using the impulse
response.

Example 3.6.
Given a linear system described by the difference equation
y(n) = x(n) + 0.5x(n — 1),
a. Determine the nonzero system coefficients.
Solution:
a. By comparing Equation (3.13), we have
bo =1, and b; = 0.5.

3.3.2 System Representation Using Its Impulse
Response

A linear time-invariant system can be completely described by its unit-impulse
response, which is defined as the system response due to the impulse input 6(r)
with zero initial conditions, depicted in Figure 3.13.

With the obtained unit-impulse response A(n), we can represent the linear
time-invariant system in Figure 3.14.

Example 3.7.
Given the linear time-invariant system

y(n) = 0.5x(n) + 0.25x(n — 1) with an initial condition x(—1) = 0,

70 3 DIGITAL SIGNALS AND SYSTEMS

a. Determine the unit-impulse response /().
b. Draw the system block diagram.
c. Write the output using the obtained impulse response.
Solution:
a. According to Figure 3.13, let x(n) = &(n), then
h(n) = y(n) = 0.5x(n) + 0.25x(n — 1) = 0.56(n) + 0.256(n — 1).
Thus, for this particular linear system, we have
0.5 n=0
h(n) = {0.25 n=1
0 elsewhere

b. The block diagram of the linear time-invariant system is shown as

x(n) y(n)
—| h(n)=0.56(n)+0.256(n-1) —»

FIGURE 3.15 The system block diagram in Example 3.7.

c. The system output can be rewritten as

y(n) = h(0)x(n) + h()x(n — 1).

From this result, it is noted that if the difference equation without the past
output terms, y(n—1),..., y(n — N), that is, the corresponding coefficients
a, ..., ay, are zeros, the impulse response /4(r) has a finite number of terms.
We call this a finite impulse response (FIR) system. In general, we can express the
output sequence of a linear time-invariant system from its impulse response and
inputs as

Y1) = ...+ h(— Dx(n+ 1)+ h(0)x(n) + h(D)x(n — 1)+ hQ)x(n —2) +.... (3.15)

Equation (3.15) is called the digital convolution sum, which will be explored in a
later section. We can verify Equation (3.15) by substituting the impulse sequence
x(n) = 8(n) to get the impulse response

h(n) = ...+ h(—1)d(n + 1) + h(0)8(n) + h(1)d(n — 1) + h(2)d(n —2) +,

3.3 Difference Equations and Impulse Responses VAl

where ... h(—1), h(0), (1), h(2)... are the amplitudes of the impulse response at
the corresponding time indices. Now let us look at another example.

Example 3.8.
Given the difference equation
y(n) =0.25y(n — 1) + x(n) for n=0 and y(—1) =0,

Determine the unit-impulse response /(n).

o ®

. Draw the system block diagram.

c

Write the output using the obtained impulse response.

&

For a step input x(n) = u(n), verify and compare the output responses for
the first three output samples using the difference equation and digitial
convolution sum (Equation 3.15).

Solution:

a. Let x(n) = 6(n), then

h(n) = 0.25h(n — 1) 4 6(n).
To solve for h(n), we evaluate
h(0) =0254(—-1)+06(0)=025x0+1=1
h(1) =0.254(0) +6(1) =025 x 1 +0=0.25
h(2) = 0.25h(1) +6(2) = 0.25 x 0.5+ 0 = 0.0625

With the calculated results, we can predict the impulse response as
h(n) = (0.25)"u(n) = 8(n) + 0.258(n — 1) + 0.06258(n —2) +
b. The system block diagram is given in Figure 3.16.

*) y(n)
—> h(n)=6(n)+0.256(n—1)+- —»

FIGURE 3.16 The system block diagram in Example 3.8.

72 3 DIGITAL SIGNALS AND SYSTEMS

c. The output sequence is a sum of infinite terms expressed as

y(n) = h(0)x(n) + h(D)x(n — 1) + h(Q)x(n — 2) + . ..
= x(n) + 0.25x(n — 1) + 0.0625x(n — 2) + . ..

d. From the difference equation and using the zero-initial condition, we have

y(n) =0.25y(n — 1)+ x(n) forn >0 and y(—1)=0
n=20,y0)=025(— 1)+ x(0) = u(0) =1

n=1,p(1) = 0.25p(0) + x(1) = 0.25 x u(0) + u(1) = 1.25
n=2y2)=0.25p(1)+ x(2) = 0.25 x 1.25 + u(2) = 1.3125

Applying the convolution sum in Equation (3.15) yields
y(n) = x(n) + 0.25x(n — 1) + 0.0625x(n — 2) + . ..

n =0, p(0) = x(0) + 0.25x(— 1) + 0.0625x(— 2) + ...
—u(0)+ 025 x u(—)+ 0125 x u(= 2) +... =1

n=1, y(1) = x(1) + 0.25x(0) + 0.0625x(— 1) + ...
=u(l)+025xu(0)+0.125 x u(— 1) +...=1.25

n=2, 92) = x(2) + 0.25x(1) + 0.0625x(0) + . ..
— u(2) +0.25 x u(1) + 0.0625 x u(0) + ... = 1.3125

Comparing the results, we verify that a linear time-invariant system can be
represented by the convolution sum using its impulse response and input
sequence. Note that we verify only the causal system for simplicity, and the
principle works for both causal and noncausal systems.

Notice that this impulse response /(n) contains an infinite number of terms in
its duration due to the past output term y(n — 1). Such a system as described in
the preceding example is called an infinite impulse response (IIR) system, which
will be studied in later chapters.

3.4 Bounded-in-and-Bounded-ovut
Stability

We are interested in designing and implementing stable linear systems. A stable
system is one for which every bounded input produces a bounded output

3.4 Bounded-in-and-Bounded-out Stability 73

(BIBO). There are many other stability definitions. To find the stability criter-
ion, consider a linear time-invariant representation with all the inputs reaching
the maximum value M for the worst case. Equation (3.15) becomes

ym)y=M(...+h(—1)+h0)+h(1)+h2)+...). (3.16)
Using the absolute values of the impulse response leads to
y(n) < M(...+ |h(= D] + [h(O0)| + |A(D)| + |A2)| + .. .). (3.17)

If the absolute sum in Equation (3.17) is a finite number, the product of the
absolute sum and the maximum input value is therefore a finite number. Hence,
we have a bounded input and a bounded output. In terms of the impulse
response, a linear system is stable if the sum of its absolute impulse response
coefficients is a finite number. We can apply Equation (3.18) to determine
whether a linear time-invariant system is stable or not stable, that is,

S= > |hk)] = ...+ k(= D]+ [HO)] + [A(D)] + ... < 0. (3.18)

k=—00

Figure 3.17 describes a linear stable system, where the impulse response de-
creases to zero in finite amount of time so that the summation of its absolute
impulse response coefficients is guaranteed to be finite.

Example 3.9.
Given the linear system in Example 3.8,
y(n) =0.25y(n — 1) + x(n) for n=0 and y(—1) =0,
which is described by the unit-impulse response
h(n) = (0.25)"u(n),

a. Determine whether this system is stable or not.

a(n) h(n)

n { I [1, n
! Linear stable ! !
system

—_—

FIGURE 3.17 lllustration of stability of the digital linear system.

74 3 DIGITAL SIGNALS AND SYSTEMS

Solution:
a. Using Equation (3.18), we have
S = ki \h(k)| = ki 1(0.25) u(k)|.
Applying the definition of the unit-step function u(k) = 1 for k =0, we have
S = i(o.zs)k =1+4+0254+025+....
k=0

Using the formula for a sum of the geometric series (see Appendix F),

k=0
where a = 0.25 < 1, we conclude
1 4
_ 2 _ _
S=1+0.254+0.25 +...—1_0.25—3<oo.

Since the summation is a finite number, the linear system is stable.

3.5 Digital Convolution

Digital convolution plays an important role in digital filtering. As we verify in
the last section, a linear time-invariant system can be represented by using a
digital convolution sum. Given a linear time-invariant system, we can determine
its unit-impulse response /(n), which relates the system input and output. To
find the output sequence y(n) for any input sequence x(n), we write the digital
convolution as shown in Equation (3.15) as:

y(n) =" h(k)x(n — k)
k=—00

=...+h(—Dx(n+ 1)+ h0)x(n)+ h(1)x(n — 1)+ h2)x(n —2) + ...
(3.19)
The sequences /(k) and x(k) in Equation (3.19) are interchangeable. Hence, we
have an alternative form as

o0

y(m) =Y x(k)h(n — k)

k=—00
=...+x(— Dh(n+ 1)+ x(0)h(n) + x(1)h(n — 1) + x(2Q)h(n — 2) + ...
(3.20)

3.5 Digital Convolution 75

Using a conventional notation, we express the digital convolution as
y(n) = h(n)xx(n). (3.21)
Note that for a causal system, which implies its impulse response
h(n) =0 for n <0,

the lower limit of the convolution sum begins at 0 instead of oo, that is

vy =Y h(k)x(n — k) = x(k)h(n — k). (3.22)
k=0

k=0

We will focus on evaluating the convolution sum based on Equation (3.20). Let
us examine first a few outputs from Equation (3.20):

7(0)= i XU —K) = .4 x(— 1)h(1) 4+ X(0VA(0) + x(1)h(— 1)+ x(2)h(—2) + ...
k=—00

y(1)= i XU = k) = ...+ x(— 1)h(2) + x(0)h(1) +x(1)h(0) + x(2)h(— 1)+ ..
k=—00

$(2)= i XU —F) = ...+ x(— 1D)h(3) +x(0)h(2) + x(1)h(1) + x(2)h(0) + ...
k=—00

We see that the convolution sum requires the sequence /4(n) to be reversed and
shifted. The graphical, formula, and table methods will be discussed for evalu-
ating the digital convolution via the several examples. To begin with evaluating
the convolution sum graphically, we need to apply the reversed sequence and
shifted sequence. The reversed sequence is defined as follows: If /(n) is the given
sequence, /i(— n) is the reversed sequence. The reversed sequence is a mirror
image of the original sequence, assuming the vertical axis as the mirror. Let us
study the reversed sequence and shifted sequence via the following example.

Example 3.10.
Given a sequence,
3, k=0,
h(k) = { I, k=23
0 elsewhere
where k is the time index or sample number,
a. Sketch the sequence /(k) and reversed sequence A(— k).
b. Sketch the shifted sequences /(k + 3) and A(— k — 2).

76 3 DIGITAL SIGNALS AND SYSTEMS

Solution:

a. Since (k) is defined, we plot it in Figure 3.18. Next, we need to find the
reversed sequence si(— k). We examine the following for

- N W
o I
4
—o
=

FIGURE 3.18 Plots of the digital sequence and its reversed sequence in Example 3.10.

k>0,h—k)y=0
k=0,h(—0)=hnh0)=3
k=—1,h(—k)=h(—(=1)=nl)=3
k==2,h(—k)y=h(-(=2)=hn2)=1
k==3,h—k)y=h(—(=3)=hr3)=1
One can verify that k= —4,h(— k) = 0. Then the reversed sequence
h(— k) is shown as the second plot in Figure 3.18.
As shown in the sketches, 4(— k) is just a mirror image of the original
sequence /i(k).
b. Based on the definition of the original sequence, we know that
h(0) = (1) = 3, (2) = h(3) = 1, and the others are zeros. The time in-
dices correspond to the following:

—k+3=0,k=3
—k+3=1k=2
—k+3=2,k=1

—k+3=3,k=0.

Thus we can sketch 4(— k + 3), as shown in Figure 3.19.

3.5 Digital Convolution 77

FIGURE 3.19 Plot of the sequence h(— k + 3) in Example 3.10.

Similarly, i(— k — 2) is yielded in Figure 3.20.

FIGURE 3.20 Plot of the sequence h(— k — 2) in Example 3.10.

We can get i(— k + 3) by shifting 4(— k) to the right by three samples, and we
can obtain i(— k — 2) by shifting #(— k) to the left by two samples.

In summary, given A(— k), we can obtain /i(n — k) by shifting h(— k) n
samples to the right or the left, depending on whether n is positive or
negative.

Once we understand the shifted sequence and reversed sequence, we can
perform digital convolution of two sequences /(k) and x(k), defined in Equation
(3.20) graphically. From that equation, we see that each convolution value y(n)
is the sum of the products of two sequences x(k) and h(n — k), the latter of which
is the shifted version of the reversed sequence /(— k) by |n| samples. Hence, we
can summarize the graphical convolution procedure in Table 3.3.

We illustrate digital convolution sum via the following example.

Example 3.11.
Using the following sequences defined in Figure 3.21, evaluate the digital
convolution

o0

vy =Y x(k)h(n — k)

k=—00

78 3 DIGITAL SIGNALS AND SYSTEMS

TABLE 3.3 Digital convolution using the graphical method.

Step 1. Obtain the reversed sequence A(— k).

Step 2. Shift i(— k) by |n| samples to get h(n — k). If n=0, h(— k) will be
shifted to the right by »n samples; but if n < 0, A(— k) will be shifted to the
left by |n| samples.

Step 3. Perform the convolution sum that is the sum of the products of two
sequences x(k) and A(n — k) to get y(n).

Step 4. Repeat steps 1 to 3 for the next convolution value y(n).

a. By the graphical method.
b. By applying the formula directly.
Solution:

a. To obtain y(0), we need the reversed sequence i(— k); and to obtain y(1),
we need the reversed sequence /(1 — k), and so on. Using the technique we
have discussed, sequences A(— k), h(—k+ 1), h(—k+2), h(—k + 3),
and i(— k + 4) are achieved and plotted in Figure 3.22, respectively.
Again, using the information in Figures 3.21 and 3.22, we can compute
the convolution sum as:

sum of product of x(k) and h(— k): »(0)=3x3=9

sum of product of x(k) and h(1 —k): y(1)=1x34+3x2=9

sum of product of x(k) and /(2 — k): y2)=2x3+1x2+3x1=11

sum of product of x(k) and h(3 — k): y3)=2x24+1x1=5

sum of product of x(k) and h(4 — k): y(4)=2x1=2

sum of product of x(k) and i(5 — k): y(n) = 0 for n > 4, since sequences x(k) and
h(n — k) do not overlap.

Finally, we sketch the output sequence y(n) in Figure 3.23.
b. Applying Equation (3.20) with zero initial conditions leads to
y(n) = x(0)h(n) + x(Hh(n — 1) + x2)h(n — 2)

h(k) X(K)
3 3
2 2
1 1
: . . I —k : . I . —k
-1 0 1 2 3 -1 0 1 2 3

FIGURE 3.21 Plots of digital input sequence and impulse sequence in Example 3.11.

3.5 Digital Convolution 79

h(=K)
3 ¢+
K
'1 —+
f I f — k
3 2 4 o0 1
h(-k+1)
3 —+
2 {
1 —+
f f I — K

- N W
4
4
=

inan

0 1 2 3 4

FIGURE 3.22 lllustration of convolution of two sequences x(k) and h(k) in Example
3.11.

n =0, y(0) = x(0)2(0) + x(DA(= 1)+ x2)W(—2)=3x3+1x0+2x0=9,
n=1, y(1) = x(0)a(1) + x(1)A0) + x2)h(— 1) =3 x2+1x3+2x0=09,
n=2,y2)=x(0)h2) + x(DHh(1) +x2)h0) =3 x 1 +1x2+2x3 =11,

n =73, y(3) = x(0)A(3) + x(HAR2) + x()h(1) =3 x0+1x1+2x2=25.

n=4, y(4) = x(0)h(4) + x(1)h(3) + x(2)h(2) =3 x 0+ 1 x0+2x 1 =2,

n>75, y(n) = x(0)h(n) + x(Hh(n — 1)+ xQ)h(n —2) =3 x0+1x0+2x0=0.

80 3

FIGURE 3.23

DIGITAL SIGNALS AND SYSTEMS

e

IS
o+

Plot of the convolution sum in Example 3.11.

In simple cases such as Example 3.11, it is not necessary to use the graphical or
formula methods. We can compute the convolution by treating the input
sequence and impulse response as number sequences and sliding the reversed
impulse response past the input sequence, cross-multiplying, and summing the
nonzero overlap terms at each step. The procedure and calculated results are
listed in Table 3.4.

We can see that the calculated results using all the methods are consistent.
The steps using the table method are concluded in Table 3.5.

Example 3.12.

Given the following two rectangular sequences,

a. Convolve them using the table method.

Solution:

x(n) = {

1
0

n=20,1,2
otherwise

0 n=0
and h(n) = {1 n=1,2
0 otherwise

a. Using Table 3.5 as a guide, we list the operations and calculations in

Convolution sum using the table method.

Table 3.6.
TABLE 3.4
k: -2
x(k):
h(—k): 1
(1l —k)
h2 —k)
h(3 —k)
h4 —k)

W5 — k)

-1

2
1

0

— N W W

1

98]

2

3

4

5

y0)=3x%x3=9
y1)=3x24+1x3=9
y2)=3x14+1x2+2x3=11
yB3)=1x14+2x2=5
y4)=2x1=2

y(5) = 0 (no overlap)

3.6 Summary 81

TABLE 3.5 Digital convolution steps via the table.

Step 1. List the index k covering a sufficient range.
Step 2. List the input x(k).

Step 3. Obtain the reversed sequence /(— k), and align the rightmost element of 4(n — k)
to the leftmost element of x(k).

Step 4. Cross-multiply and sum the nonzero overlap terms to produce y(n).
Step 5. Slide i(n — k) to the right by one position.
Step 6. Repeat step 4; stop if all the output values are zero or if required.

Note that the output should show the trapezoidal shape.
Let us examine convolving a finite long sequence with an infinite long
sequence.

Example 3.13.
A system representation using the unit-impulse response for the linear system
y(n) =0.25y(n — 1)+ x(n) forn=0and y(—1)=0

is determined in Example 3.8 as

o0

ym) =Y x(kh(n — k),

k=—o00
where i(n) = (0.25)"u(n). For a step input x(n) = u(n),

a. Determine the output response for the first three output samples using the
table method.

Solution:

a. Using Table 3.5 as a guide, we list the operations and calculations in
Table 3.7.
Asexpected, the output values are the same as those obtained in Example 3.8.

TABLE 3.6 Convolution sum in Example 3.12.

k: -2 -1 0 1 2 3 4 5

x(k): 1 1 1

h(—k): 1 1 0 »(0) = 0 (no overlap)

h(l —k) 1 1 0 yH=1x1=1

h(2—k) 1 1 0 y2)=1x14+1x1=2
h(3 —k) 1 1 0 yB)=1x14+1x1=2
h4—k) 1 1 0 yd=1x1=1

h(n — k) 1 1 0 y(n) =0, n=5 (no overlap)

Stop

82

3 DIGITAL SIGNALS AND SYSTEMS

TABLE 3.7 Convolution sum in Example 3.13.

k: 2 -1 0 1 23...

x(k): 1 1 11...

h(—k): 0.0625 0.25 1 p0)=1x1=1

(1 — k) 0.0625 0.25 1 y(1)=1x025+1x1=125

h(2 — k) 0.0625 0.25 1 $(2)=1x0.0625+1x025+1x1

= 1.3125
Stop as required

3.6 Summary

1.

Digital signal samples are sketched using their encoded amplitudes versus
sample numbers with vertical bars topped by solid circles located at their
sampling instants, respectively. Impulse sequence, unit-step sequence, and
their shifted versions are sketched in this notation.

The analog signal function can be sampled to its digital (discrete-time)
version by substituting time ¢ = n7T into the analog function, that is,

x(n) = x(t)|,_,r = x(nT).

The digital function values can be calculated for the given time index (sample
number).

3.

The DSP system we wish to design must be a linear, time-invariant, causal
system. Linearity means that the superposition principle exists. Time in-
variance requires that the shifted input generates the corresponding shifted
output with the same amount of time. Causality indicates that the system
output depends on only its current input sample and past input sample(s).

The difference equation describing a linear, time-invariant system has a
format such that the current output depends on the current input, past
input(s), and past output(s) in general.

The unit-impulse response can be used to fully describe a linear, time-
invariant system. Given the impulse response, the system output is the
sum of the products of the impulse response coefficients and corresponding
input samples, called the digital convolution sum.

BIBO is a type of stability in which a bounded input will produce a
bounded output. The condition for a BIBO system requires that the sum
of the absolute impulse response coefficients be a finite number.

3.7 Problems 83

7. Digital convolution sum, which represents a DSP system, is evaluated in

three ways: the graphical method, evaluation of the formula, and the table
method. The table method is found to be most effective.

3.7 Problems

3.1.

3.2.

3.3.

3.4.

3.5.

Sketch each of the following special digital sequences:
a. 56(n)

b. —26(n —9)

—5Su(n)

d. Su(n—2)

o

Calculate the first eight sample values and sketch each of the following
sequences:

a. x(n) = 0.5"u(n)

b. x(n) = 5sin (0.27n)u(n)

c. x(n) = 5cos(0.17n + 30%)u(n)
d. x(n) = 5(0.75)" sin (0.17rn)u(n)

Sketch the following sequences:

a. x(n)=36(n+2)—0.56(n) + 56(mn—1) —46(n — 5)

b. x(n) =86(n+1)—28(n — 1) + Su(n — 4)

Given the digital signals x(n) in Figures 3.24 and 3.25, write an expression

for each digital signal using the unit-impulse sequence and its shifted
sequences.

Assuming that a DS processor with a sampling time interval of 0.01
second converts each of the following analog signals x(¢) to the digital
signal x(n), determine the digital sequences for each of the following
analog signals.

a. x(t) = e >u(r)

b. x(f) = 5sin 0mt)u(t)

84 3 DIGITAL SIGNALS AND SYSTEMS

c. x(1) = 10 cos (407 + 30%)u(7)
d. x(¢) = 10e~1%% sin (157¢)u(t)

3.6. Determine which of the following is a linear system.
a. y(n) = 5x(n) + 2x*(n)
b. y(n) =xm— 1)+ 4x(n)
c. y(n) =4x3(n — 1) — 2x(n)

3.7. Given the following linear systems, find which one is time invariant.
a. y(n) = —5x(n — 10)
b. y(n) = 4x(n?)

3.8. Determine which of the following linear systems is causal.
a. y(n) = 0.5x(n) + 100x(n — 2) — 20x(n — 10)
b. y(n) = x(n + 4) + 0.5x(n) — 2x(n — 2)
3.9. Determine the causality for each of the following linear systems.

a. y(n) = 0.5x(n) + 20x(n —2) — 0.1y(n — 1)

x(n)

- N oW A
N

e
=}

-

adl o o
L o
WA—e —

FIGURE 3.24 The first digitial signal in Problem 3.4.

FIGURE 3.25 The second digitial signal in Problem 3.4.

3.10.

3.11.

3.12.

3.13.

3.14.

3.15.

3.7 Problems 85

b. y(m) =x(n+2)—04y(n—1)
c. y(m)=x(n—-1)4+0.5y(n+2)

Find the unit-impulse response for each of the following linear systems.
a. y(n) = 0.5x(n) — 0.5x(n — 2); forn=0, x(—2)=0,x(—1)=0

b. y(n) =0.75y(n — 1) + x(n); for n =0, y(— 1) =0

c. y(m)=—-08ym—1)+x(n—1);forn=0,x(—-1)=0,p(—-1)=0

For each of the following linear systems, find the unit-impulse response,
and draw the block diagram.

a. y(n) = Sx(n — 10)
b. y(n) = x(n) + 0.5x(n — 1)

Determine the stability for the following linear system.
y(n) = 0.5x(n) + 100x(n — 2) — 20x(n — 10)

Determine the stability for each of the following linear systems.

a. y(n) =S 0.75x(n — k)
k=0
b. y(n) = 2%x(n — k)
k=0
Given the sequence
2, k=0,12
hky=<1, k=34
0 elsewhere,

where £ is the time index or sample number,
a. sketch the sequence A(k) and the reverse sequence A(— k);

b. sketch the shifted sequences 4(— k + 2) and h(— k — 3).

Using the following sequence definitions,

2, k:0,1,2 2’ k:o
h(k)z{l, k=34 and x(k)=<{1, k=12

0 elsewhere 0 elsewhere,

86 3

3.16.

3.17.

DIGITAL SIGNALS AND SYSTEMS

evaluate the digital convolution

o0

yn) = x(k)h(n — k)

k=—00

a. using the graphical method;
b. using the table method;

c. applying the convolution formula directly.

Using the sequence definitions

_27 k:(),l,z 2, k:o
ﬂ@z{L k=34 and h(k)=< -1, k=12
0 elsewhere 0 elsewhere,

evaluate the digital convolution

y(n) =" h(k)x(n — k)
k=—00

a. using the graphical method;
b. using the table method;

c. applying the convolution formula directly.

Convolve the following two rectangular sequences:

0 n=0
sy ={; "=l and hm={1 n=12
0 otherwise 0 otherwise

using the table method.

Discrete Fourier Transform and
Signal Spectrum

Objectives:

This chapter investigates discrete Fourier transform (DFT) and fast Fourier
transform (FFT) and their properties; introduces the DFT/FFT algorithms to
compute signal amplitude spectrum and power spectrum; and uses the window
function to reduce spectral leakage. Finally, the chapter describes the FFT
algorithm and shows how to apply it to estimate a speech spectrum.

4.1 Discrete Fourier Transform

In time domain, representation of digital signals describes the signal amplitude
versus the sampling time instant or the sample number. However, in some
applications, signal frequency content is very useful otherwise than as digital
signal samples. The representation of the digital signal in terms of its frequency
component in a frequency domain, that is, the signal spectrum, needs to be
developed. As an example, Figure 4.1 illustrates the time domain representation
of a 1,000-Hz sinusoid with 32 samples at a sampling rate of 8,000 Hz; the
bottom plot shows the signal spectrum (frequency domain representation),
where we can clearly observe that the amplitude peak is located at the frequency
of 1,000 Hz in the calculated spectrum. Hence, the spectral plot better displays
frequency information of a digital signal.

The algorithm transforming the time domain signal samples to the frequency
domain components is known as the discrete Fourier transform, or DFT. The
DFT also establishes a relationship between the time domain representation and

4 DISCRETE FOURIER TRANSFORM

-5 L
0 5 10 15 20 25 30
Sample number n
6 T T T T T T T
1S
=
B 4r i
[0
Q.
)
2ot .
2
0
o(/ a Fany Fan) @S O @S
0 500 1000 1500 2000 2500 3000 3500 4000

Frequency (Hz)

FIGURE 4.1 Example of the digital signal and its amplitude spectrum.

the frequency domain representation. Therefore, we can apply the DFT to
perform frequency analysis of a time domain sequence. In addition, the DFT
is widely used in many other areas, including spectral analysis, acoustics, im-
aging/video, audio, instrumentation, and communications systems.

To be able to develop the DFT and understand how to use it, we first study
the spectrum of periodic digital signals using the Fourier series. (Detailed
discussion of Fourier series is in Appendix B.)

4.1.1 Fourier Series Coefficients of Periodic
Digital Signals

Let us look at a process in which we want to estimate the spectrum of a periodic
digital signal x(n) sampled at a rate of f;Hz with the fundamental period
To = NT, as shown in Figure 4.2, where there are N samples within the duration
of the fundamental period and 7 = 1/f; is the sampling period. For the time
being, we assume that the periodic digital signal is band limited to have all
harmonic frequencies less than the folding frequency f;/2 so that aliasing does
not occur.

According to Fourier series analysis (Appendix B), the coefficients of the
Fourier series expansion of a periodic signal x(¢) in a complex form is

4.1 Discrete Fourier Transform 89

x(n) (N+1)=x(1)
A . .
x(1) A
\k ; ; “‘. \ \ L X .
! ‘1 L‘. g
0 [« N > -
To=NT x(N)=x(0)

FIGURE 4.2 Periodic digital signal.

= 1 x()e*et dy — 00 < k < oo, 4.1)
Ty J71,

where & is the number of harmonics corresponding to the harmonic frequency of
kfy and wy = 2m/Ty and fy = 1/T) are the fundamental frequency in radians
per second and the fundamental frequency in Hz, respectively. To apply Equa-
tion (4.1), we substitute 7y = NT', wy = 27/ T, and approximate the integration
over one period using a summation by substituting df = T and ¢t =nT. We
obtain

1 N-1 i
o= Y x(me T, — oo <k < oo 4.2)

N n=0

Since the coefficients ¢, are obtained from the Fourier series expansion in the
complex form, the resultant spectrum ¢; will have two sides. There is an
important feature of Equation (4.2) in which the Fourier series coefficient ¢y is
periodic of N. We can verify this as follows

N-1

1 1 N 2akn i27n
ChaiN = I nz:;x(n)e TN = v ; x(n)e™ N e/, 4.3)

277(/\ + N)n

Since e 2™ = cos (27rn) — j sin (27n) = 1, it follows that
Ck+N = Ck- (4.4)

Therefore, the two-sided line amplitude spectrum |c| is periodic, as shown in
Figure 4.3.
We note the following points:

a. As displayed in Figure 4.3, only the line spectral portion between the
frequency —f;/2 and frequency f;/2 (folding frequency) represents
the frequency information of the periodic signal.

90 4 DISCRETE FOURIER TRANSFORM

DC component kfy=0xfy=0 Hz
|c | 1st harmonic kfy=1xfy=fy Hz

Other harmonics ... Other harmonics ...

%
NiZ4ln

f,/2 foty | £htfy f

A
A4

2nd harmonic kfy=2xfy=2f, Hz

FIGURE 4.3 Amplitude spectrum of the periodic digital signal.

b. Notice that the spectral portion from f;/2 to f; is a copy of the spectrum in
the negative frequency range from —f; /2 to 0 Hz due to the spectrum being
periodic for every NfyHz. Again, the amplitude spectral components
indexed from f;/2 to f; can be folded at the folding frequency f;/2 to
match the amplitude spectral components indexed from 0 to f;/2 in terms
of fy — f Hz, where f'is in the range from f;/2 to f;. For convenience, we
compute the spectrum over the range from 0 to f; Hz with nonnegative
indices, that is,

N-1

Cr = % Z x(n)e™

n=0

ok=01,...,N—1. (4.5)

We can apply Equation (4.4) to find the negative indexed spectral values if
they are required.

c. For the kth harmonic, the frequency is

f =kfo Hz (4.6)

The frequency spacing between the consecutive spectral lines, called the
frequency resolution, is fy Hz.

Example 4.1.
The periodic signal
x(t) = sin (27r1)

is sampled using the rate f; = 4 Hz.

4.1 Discrete Fourier Transform 91

a. Compute the spectrum c; using the samples in one period.
b. Plot the two-sided amplitude spectrum |c;| over the range from —2 to
2 Hz.
Solution:

a. From the analog signal, we can determine the fundamental frequency
wo = 2 radians per second and fy = $2 = 37 = | Hz, and the fundamental
period Ty = 1 second. Since using the sampling interval 7' = 1/f; = 0.25
second, we get the sampled signal as

x(n) = x(nT) = sin (27nT) = sin (0.57n)
and plot the first eight samples as shown in Figure 4.4.

N=4
FIGURE 4.4 Periodic digital signal.

Choosing the duration of one period, N = 4, we have the sample values as
follows

x(0)=0; x(1) =1; x(2) = 0; and x(3) = —
Using Equation (4.5),

0+1+0-1)=0

4>|»—

W=y Z X9 = 5 (5(0) + (1) + 3(2) + x(3)) =
a=y nzzg x(n)e 24 — % (x(O) + x(D)e 7™ 4+ x(2)e 7™ + x(3)e_j3”/2j

1
= 7 ((0) —jx(1) = x(2) +jx(3) = 0 — j(1) =0 +j(1)) = —/0.5.

Similarly, we get

1< . 1 ;
o= > x(m)e P4 =0, and ¢3 =] Y x(k)e P = jo.s.
k=0 =0

92 4 DISCRETE FOURIER TRANSFORM

Using periodicity, it follows that
c.1=c3=j0.5and ¢, = ¢, =0.
b. The amplitude spectrum for the digital signal is sketched in Figure 4.5.

|Ck|

0.5 0.5 0.5 0.5 0.5 0.5

‘ 2 4
+ fHz
1 3

FIGURE 4.5 Two-sided spectrum for the periodic digital signal in Example 4.1.

As we know, the spectrum in the range of —2 to 2 Hz presents the
information of the sinusoid with a frequency of 1 Hz and a peak value
of 2|¢;| = 1, which is converted from two sides to one side by doubling the
spectral value. Note that we do not double the direct-current (DC)
component, that is, co.

4.1.2 Discrete Fourier Transform Formulas

Now, let us concentrate on development of the DFT. Figure 4.6 shows one way
to obtain the DFT formula.

First, we assume that the process acquires data samples from digitizing the
interested continuous signal for a duration of 7" seconds. Next, we assume that a
periodic signal x(n) is obtained by copying the acquired N data samples with the
duration of T to itself repetitively. Note that we assume continuity between the N
data sample frames. This is not true in practice. We will tackle this problem in
Section 4.3. We determine the Fourier series coefficients using one-period N data
samples and Equation (4.5). Then we multiply the Fourier series coefficients by a
factor of N to obtain

N-1
X(k) = Ny = Zx(n)e*f’;’vk”, k=0,1,...,N—1,
n=0

where X(k) constitutes the DFT coefficients. Notice that the factor of N is a
constant and does not affect the relative magnitudes of the DFT coefficients
X(k). As shown in the last plot, applying DFT with N data samples of x(n)
sampled at a rate of f; (sampling period is 7" = 1/f;) produces N complex DFT

4.1 Discrete Fourier Transform

x(t) This portion of the signal is used for
DFT and spectrum calculation

x(1) & 1
~d s n=0,1,-,N-1 k=0,1,--,N—1

T B - » DFT —»
‘. X(N=1)
-

t=nT f=kAf
Af=fs I N

N
x(n) ‘ x(n) X(k) = Ney

x(0)

FIGURE 4.6 Development of DFT formula.

coefficients X(k). The index 7 is the time index representing the sample number
of the digital sequence, whereas k is the frequency index indicating each
calculated DFT coefficient, and can be further mapped to the corresponding
signal frequency in terms of Hz.

Now let us conclude the DFT definition. Given a sequence x(n),
0<n<N —1,its DFT is defined as

N-1 N-1
X(k) = x(me PN =" xmWy', fork=0,1,....,N—1. (47
n=0 n=0

Equation (4.7) can be expanded as

X (k) = x(0) WA + x(1) W + xQWIE + ...+ x(N — g™,

(4.8)
fork=0,1,..., N —1,

where the factor Wy (called the twiddle factor in some textbooks) is defined as

94 4 DISCRETE FOURIER TRANSFORM

, 2 2
Wy = e >N = cos (%) —jsin (%) 4.9)

The inverse DFT is given by
| M-l) 1 V-l
— J2mkn/N _ — —kn — _
x(n) ¥ /;_0 X(k)e ~ kE:O Xkywy™, forn=0,1,..., N —1. (4.10)

Proof can be found in Ahmed and Natarajan (1983); Proakis and Manolakis
(1996); Oppenheim, Schafer, and Buck (1999); and Stearns and Hush (1990).
Similar to Equation (4.7), the expansion of Equation (4.10) leads to

1 - —1)n
x(n) =% (X(O)W];O" F XMW+ XQW + .+ X(N — g™)

forn=0,1,..., N —1.
(4.11)

As shown in Figure 4.6, in time domain we use the sample number or time index
n for indexing the digital sample sequence x(n). However, in frequency domain,
we use index k for indexing N calculated DFT coefficients X(k). We also refer to
k as the frequency bin number in Equations (4.7) and (4.8).

We can use MATLAB functions fft() and ifft() to compute the DFT
coefficients and the inverse DFT with the following syntax:

TABLE 4.1 MATLAB FFT functions.

X = fft(x) % Calculate DFT coefficients
x = ifft(X) % Inverse DFT

X = input vector

X = DFT coefficient vector

The following examples serve to illustrate the application of DFT and the
inverse of DFT.

Example 4.2.

Given a sequence x(n) for 0 =n =3, where x(0) =1, x(1) =2, x(2) = 3, and
x(3) =4,

a. Evaluate its DFT X(k).
Solution:

a. Since N =4 and W, = e¢7/3, using Equation (4.7) we have a simplified
formula,

4.1 Discrete Fourier Transform 95

3

3
Xy =" xmywi =" x(me ™"

n=0 n=0
Thus, for k =0

3
X(0) = Z x(n)e ™ = x(0)e ™ + x(1e ™ + x(2)e 7 + x(3)e°

n=0
= x(0) + x(1) + x(2) + x(3)
=14+2+3+4=10

fork=1

3
X(1) = Z x(m)e 7% = x(0)e ™ + x(1)e % + x(2)e 7™ + x(3)e F
n=0

= x(0) — jx(1) — x(2) + jx(3)
=1—-/2-34j4=-2+4,2
fork=2

3
X2) =Y x(me?™ = x(0)e” + x(1)e ™ + x(2)e P + x(3)e P
n=0

= x(0) — x(1) + x(2) — x(3)
=1-243-4=-2
and for k =3

3
X(3) =Y xme 7 = x(0)e ™ + x(D)e 7 + x(2)e 7+ x(3)e 7E
n=0

= x(0) +/x(1) — x(2) — jx(3)
=142-3—-j4=-2-j2
Let us verify the result using the MATLAB function fft():

> X = fft(1 2 3 4])
X =10.0000 — 2.0000 +2.0000i —2.0000 — 2.0000 — 2.0000i

Example 4.3.
Using the DFT coefficients X(k) for 0 = k£ = 3 computed in Example 4.2,

a. Evaluate its inverse DFT to determine the time domain sequence x(n).

96 4 DISCRETE FOURIER TRANSFORM

Solution:

a. Since N =4 and W, ! = ¢/3, using Equation (4.10) we achieve a simplified
formula,

1< 3
x(n) = S xtowm™ = 7 Z X(k)e™".
k=0 k=0

Then forn =20

3
X(0) =5 > X(k)e! = (X(O)efO + X(De” + X(2)e” + X (3)e”)

¢>I

(10+(=2+4/2)-2+(-2-,2) =

forn=1
3
x(1) = l Z X(k)e.i%" = l (X(O)e.iO + X(el? + X(2)e/™ + X(3)e-/37”)

(X(O) +JX(1) - X(2) —jX(3))

(104+/(=24/2)—(-2)—j(—2-j2) =

¢>I—‘$>|

forn=2
3
X(2) = 1 Z X(k)e™ = % (X(0)e” + X(1)e/™ + X(2)e*™ + X (3)e’’™)

(X(O) X()+X©2) - X03))

(10— (=242 + (=2 —(-2-,2) =

$>I~‘$>|

and for n =3

k3

3
*(3) = i > Xt =y 3 (YO £ X 1+ X @ 1+ X))

(X(O) —JX(1) - X(2) +/X(3))

$>|~‘$>I

(10—j(=2+/2) = (=2)+j(-2-,2) =

4.1 Discrete Fourier Transform 97

This example actually verifies the inverse DFT. Applying the MATLAB func-
tion ifft() achieves:

> x =ifft((10 —2+2j -2 —2-2j)
x=1 2 3 4

Now we explore the relationship between the frequency bin k and its associated
frequency. Omitting the proof, the calculated N DFT coefficients X(k) represent
the frequency components ranging from 0 Hz (or radians/second) to f; Hz (or wy
radians/second), hence we can map the frequency bin k to its corresponding
frequency as follows:

w= l% (radians per second), (4.12)
or in terms of Hz,
f :% (Hz), (4.13)

where w; = 27 f;.

We can define the frequency resolution as the frequency step between two
consecutive DFT coefficients to measure how fine the frequency domain pre-
sentation is and achieve

Aw = % (radians per second), (4.14)
or in terms of Hz, it follows that
Af :ji (Hz). (4.15)
N

Let us study the following example.

Example 4.4.

In Example 4.2, given a sequence x(n) for 0 = n = 3, where x(0) = 1, x(1) = 2,
x(2) =3, and x(3) =4, we have computed four DFT coefficients X(k) for
0=k=3asX0)=10, X(1)=-2+,2, X2)=-2,and X(3)=-2—j2. If
the sampling rate is 10 Hz,

a. Determine the sampling period, time index, and sampling time instant for
a digital sample x(3) in time domain.

b. Determine the frequency resolution, frequency bin number, and mapped
frequency for each of the DFT coefficients X(1) and X(3) in frequency
domain.

98 4 DISCRETE FOURIER TRANSFORM

Solution:
a. In time domain, we have the sampling period calculated as

T =1/f;=1/10=0.1 second.

For data x(3), the time index is » = 3 and the sampling time instant is
determined by

t=nT =3-0.1=0.3 second.

b. In frequency domain, since the total number of DFT coefficients is four,
the frequency resolution is determined by
fs 10
Af =—=—=25Hz
S =N"3 i
The frequency bin number for X(1) should be k = 1 and its corresponding
frequency is determined by

kfy 1x10
f_—N == = 2.5Hz.
Similarly, for X(3) and k = 3,
kfs 3x10
f_—N_) = 7.5Hz.

Note that from Equation (4.4), k = 3 is equivalent tok — N =3 —4 = —1, and
f =7.5Hz is also equivalent to the frequency f = (— 1 x 10)/4 = —2.5Hz,
which corresponds to the negative side spectrum. The amplitude spectrum at
7.5 Hz after folding should match the one at f; — f = 10.0 — 7.5 = 2.5Hz. We
will apply these developed notations in the next section for amplitude and power
spectral estimation.

4.2 Amplitude Spectrum and Power
Specirum

One of the DFT applications is transformation of a finite-length digital signal
x(n) into the spectrum in frequency domain. Figure 4.7 demonstrates such an
application, where A; and Pj are the computed amplitude spectrum and the
power spectrum, respectively, using the DFT coefficients X(k).

First, we achieve the digital sequence x(n) by sampling the analog signal x(7)
and truncating the sampled signal with a data window with a length Ty = NT,
where T is the sampling period and N the number of data points. The time for
data window is

To = NT. (4.16)

4.2 Amplitude Spectrum and Power Spectrum 99

Acor P Af=fg/N

X(K) §
Power
DSP. spectrum or T I T [K
processing > amplitude > |
DFT or FFT spectrum 0 N/2 N-1
NAF
f=kf,/ N
FIGURE 4.7 Applications of DFT/FFT.
For the truncated sequence x(n) with a range of n =0, 1, 2,..., N — 1, we get
x(0), x(1), x(2), ..., x(N —1). 4.17)

Next, we apply the DFT to the obtained sequence, x(n), to get the N DFT
coefficients

=

X(k) =Y x(m)Wi fork=0,1,2,..., N —1. (4.18)

n

Il
o

Since each calculated DFT coefficient is a complex number, it is not convenient
to plot it versus its frequency index. Hence, after evaluating Equation (4.18), the
magnitude and phase of each DFT coefficient (we refer to them as the amplitude
spectrum and phase spectrum, respectively) can be determined and plotted
versus its frequency index. We define the amplitude spectrum as

1 1
Ay = 51X 0] = 1/ (Reall X() -+ (Imag X ()%,
k=0,1,2,...,N—1. (4.19)

We can modify the amplitude spectrum to a one-sided amplitude spectrum by
doubling the amplitudes in Equation (4.19), keeping the original DC term at
k = 0. Thus we have

= (4.20)

P Lix©), k=0 |
21x(k), k=1,...,N/)2

100 4 DISCRETE FOURIER TRANSFORM

We can also map the frequency bin £ to its corresponding frequency as

ks
=5 4.21
f== (4.21)
Correspondingly, the phase spectrum is given by

_y (Imag[X (k)]
= tan~!
¢ = tan (Real[X(k)}
Besides the amplitude spectrum, the power spectrum is also used. The DFT
power spectrum is defined as

),k:0,1,2,...,N—1. (4.22)

Py — % X (k)[*= % {(Real[X(k)})er(Imag[X (k)])z}a

k=0,1,2,..., N—1. (4.23)
Similarly, for a one-sided power spectrum, we get
1 2 g

P =]gz |X(O) 5 k=0 (4.24)

= XB)" k=0,1,...,N/2

kfs

=25, 4.25
and f N (4.25)

Again, notice that the frequency resolution, which denotes the frequency
spacing between DFT coefficients in frequency domain, is defined as

Af:%

It follows that better frequency resolution can be achieved by using a longer
data sequence.

(Hz). (4.26)

Example 4.5.

Consider the sequence
x(n)

L

0 1 2 3
|
[

4

pdt—e o

To=NT

FIGURE 4.8 Sampled values in Example 4.5.

4.2 Amplitude Spectrum and Power Spectrum 101

Assuming that f; = 100 Hz,
a. Compute the amplitude spectrum, phase spectrum, and power spectrum.
Solution:

a. Since N = 4, and using the DFT shown in Example 4.1, we find the DFT
coefficients to be

X(0) =10
X(1)=-2+j2
X(2)=-2
X(3)=-2—j2.

The amplitude spectrum, phase spectrum, and power density spectrum are
computed as follows.

Fork=0,f=k-f;/N=0x100/4=0Hz,

Lo (TmagXO) o
Ay = 1 | X(0)| = 2.5, ¢y = tan (Real([X(O)]> -

1
Po=7; 1 X(0)]*= 6.25.
Fork =1, f =1 x 100/4 = 25Hz,
1 B _ oo (TmagX(D]\ oo
Ay =Z|X(1)] = 07071, ¢, = tan <Real[X(1)] =135,
1
P = E|X(1)12= 0.5000.
Fork =2, f =2 x 100/4 = 50 Hz,
1 —1 (Imag[X(2)]
A, =~1X(2)| =0. = tan” = 180°
2 4’ ()’ 0 5’ (%) tan (Real[X(2)] 80 5
1
Py=4 1 X(2))*= 0.2500.
Similarly, for k = 3, f =3 x 100/4 = 75 Hz,
1 N _ oot (Imag[XG)\ oo
Az = 7|X(3)] = 07071, @3 = tan (Real[X(3)] = —135°,
1
Py=4 | X (3)]*= 0.5000.

102 4 DISCRETE FOURIER TRANSFORM

Thus, the sketches for the amplitude spectrum, phase spectrum, and
power spectrum are given in Figure 4.9.

Ak
4
25
0.7071
0.7?71 0.5 ;
SN S S —
0 1 2 3
| | | — f(H2)
0 25 50 75
Pk
2000 - 1800
1350
1000 +
00 3
. | | k
-1 |0 A 2
-1000 +
-1350
2000 +

A

FIGURE 4.9A Amplitude spectrum and phase spectrum in Example 4.5.

Py
8
6.25
4
T L] T k
T T T T
0 1 2 3
f f f —f (Hz)
B 0 25 50 75

FIGURE 4.9B Power density spectrum in Example 4.5.

Note that the folding frequency in this example is 50 Hz and the amplitude
and power spectrum values at 75 Hz are each image counterparts (corre-
sponding negative-indexed frequency components). Thus values at 0, 25,
and 50 Hz correspond to the positive-indexed frequency components.

4.2 Amplitude Spectrum and Power Spectrum 103

We can easily find the one-sided amplitude spectrum and one-sided power
spectrum as

A}) = 25, /Il = 14141, /IQ =1 and
Py=625 P =2, P,=1.

We plot the one-sided amplitude spectrum for comparison:

Ay
4
2.5
) 1.4141
1
L
0 2
b (Hz)
0 25 50

FIGURE 4.10 One-sided amplitude spectrum in Example 4.5.

Note that in the one-sided amplitude spectrum, the negative-indexed fre-
quency components are added back to the corresponding positive-indexed
frequency components; thus each amplitude value other than the DC term is
doubled. It represents the frequency components up to the folding frequency.

Example 4.6.

Consider a digital sequence sampled at the rate of 10 kHz. If we use a size of
1,024 data points and apply the 1,024-point DFT to compute the spectrum,

a. Determine the frequency resolution.

b. Determine the highest frequency in the spectrum.
Solution:

a. Af =% =100 _ 9 776 Hz.

b. The highest frequency is the folding frequency, given by

Ny b
fmax—jAf— 2

= 512-9.776 = 5000 Hz

As shown in Figure 4.7, the DFT coefficients may be computed via a fast
Fourier transform (FFT) algorithm. The FFT is a very efficient algorithm for

104 4 DISCRETE FOURIER TRANSFORM

computing DFT coefficients. The FFT algorithm requires the time domain
sequence x(n) to have a length of data points equal to a power of 2; that is, 2™
samples, where m is a positive integer. For example, the number of samples in
x(n) can be N = 2,4,8,16, etc.

In the case of using the FFT algorithm to compute DFT coefficients, where
the length of the available data is not equal to a power of 2 (required by the
FFT), we can pad the data sequence with zeros to create a new sequence with
a larger number of samples, N = 2" > N. The modified data sequence for
applying FFT, therefore, is

N _Jx(n) 0=n=N-1
x@_{o VTN (4.27)
It is very important to note that the signal spectra obtained via zero-padding the
data sequence in Equation (4.27) does not add any new information and does not
contain more accurate signal spectral presentation. In this situation, the fre-
quency spacing is reduced due to more DFT points, and the achieved spectrum
is an interpolated version with “better display.” We illustrate the zero padding
effect via the following example instead of theoretical analysis. A theoretical
discussion of zero padding in FFT can be found in Proakis and Manolakis (1996).

Figure 4.11a shows the 12 data samples from an analog signal containing
frequencies of 10 Hz and 25 Hz at a sampling rate of 100 Hz, and the amplitude

< 9 ,,,,,,,,,,L,,,,,,, i —— T
g | ! 05F+—- I S Ol
T 0 A\ qD |
: LL ‘ 5 |
(=) ! I I
2 | | |
Fals2l " % 2 4lelacbeals
A 0 10 0 50 100

Number of samples Frequency (Hz)

€
=
©
(]
Q.
[}
(]
e
=2
=1
IS
<
€
2 2
527~~~*~~?*~~~* 0 B ——
N | | o |
¥ 9 o) @ 1
2 O OTE % 8 |
3 A wopaddmrj 2 CF ‘ CF
o Rl e — 1 3 g 9900009
B & o0 10 15 £ 70 50 100
Number of samples € Frequency (Hz)
1]
o 2
S] e e
S a |
S i O,
g2 < R e s ot Il (%
C a o 10 20 30 E o 100
Number of samples Frequency (Hz)

FIGURE 4.11 Zero padding effect by using FFT.

4.2 Amplitude Spectrum and Power Spectrum 105

spectrum obtained by applying the DFT. Figure 4.11b displays the signal samples
with padding of four zeros to the original data to make up a data sequence of
16 samples, along with the amplitude spectrum calculated by FFT. The data se-
quence padded with 20 zeros and its calculated amplitude spectrum using FFT are
shown in Figure 4.11c. It is evident that increasing the data length via zero padding
to compute the signal spectrum does not add basic information and does not change
the spectral shape but gives the “interpolated spectrum” with the reduced frequency
spacing. We can get a better view of the two spectral peaks described in this case.
The only way to obtain the detailed signal spectrum with a fine frequency
resolution is to apply more available data samples, that is, a longer sequence of
data. Here, we choose to pad the least number of zeros possible to satisfy the
minimum FFT computational requirement. Let us look at another example.

Example 4.7.

We use the DFT to compute the amplitude spectrum of a sampled data sequence
with a sampling rate f; = 10 kHz. Given that it requires the frequency resolution
to be less than 0.5 Hz,

a. Determine the number of data points by using the FFT algorithm, as-
suming that the data samples are available.

Solution:
Af =0.5Hz
B fs _ 10000
N_Af_ 05 = 20000

a. Since we use the FFT to compute the spectrum, the number of the data
points must be a power of 2, that is,

N =2 =32768.
And the resulting frequency resolution can be recalculated as

£ 10000
Af =25 = 20 031 Ha,
=N~ 32768~ 031 HZ

Next, we study a MATLAB example.

Example 4.8.

Given the sinusoid

x(n) = 2 - sin (200077 : ono 0)

106

DISCRETE FOURIER TRANSFORM

obtained by sampling the analog signal

x(#) = 2 - sin(20007¢)

with a sampling rate of f; = 8,000 Hz,

a.

Use the MATLAB DFT to compute the signal spectrum with the
frequency resolution to be equal to or less than 8 Hz.

Use the MATLAB FFT and zero padding to compute the signal spec-
trum, assuming that the data samples are available in (1).

Solution:

a.

The number of data points is found to be N = A‘—}, = 8000 — 1000. There is
no zero padding needed if we use the DFT formula. Detailed implemen-
tation is given in Program 4.1. The first and second plots in Figure 4.12
show the two-sided amplitude and power spectra, respectively, using the
DFT, where each frequency counterpart at 7,000 Hz appears. The third
and fourth plots are the one-side amplitude and power spectra, where the
true frequency contents are displayed from 0 Hz to the Nyquist frequency
of 4 kHz (folding frequency).

If the FFT is used, the number of data points must be a power of 2.

Hence we choose
N =20 =1024.

Assuming there are only 1,000 data samples available in (a), we need to
pad 24 zeros to the original 1,000 data samples before applying the FFT
algorithm, as required. Thus the calculated frequency resolution is
Af =f;/N = 8000/1024 = 7.8125Hz. Note that this is an interpolated

Program 4.1. MATLAB program for Example 4.8

% Example 4.8

close all;clear all

% Generate the sine wave sequence

fs=8000; $Sampling rate
N=1000; % Number of data points
x=2%*sin (2000* pi*[0:1:N—1]1/£fs);

% Apply the DFT algorithm

figure (1)

xf =abs (fft (x))/N; $Compute the amplitude spectrum

4.3 Spectral Estimation Using Window Functions 107

P = xf.*xf; %Compute the power spectrum

f=10:1:N—-1] *fs/N; %Map the frequency bin to the frequency (Hz)
subplot(2,1,1); plot(f,xf) ;grid

xlabel ('Frequency (Hz)'); ylabel ('Amplitude spectrum (DFT)’) ;
subplot(2,1,2);plot(f,P);grid

xlabel ('Frequency (Hz)'); ylabel ('"Power spectrum (DFT)’) ;
figure (2)

% Convert it to one-sided spectrum

xf (2:N) = 2*xf (2:N) ; % Get the single-sided spectrum
P =xf.*xf; % Calculate the power spectrum

£f=1[0:1:N/2]*fs/N % Frequencies up to the folding frequency
subplot (2,1,1); plot (f,x£(1:N/2+1));grid

xlabel ('Frequency (Hz)'); ylabel ('Amplitude spectrum (DFT)’) ;
subplot (2,1,2);plot (f,P(l:N/2+1));grid

xlabel ('Frequency (Hz)'); ylabel ('"Power spectrum (DFT)’) ;

figure (3)

% Zero padding to the length of 1024

x = [x, zeros (1,24)1;

N = length (x) ;

xf =abs (fft(x)) /N; %Compute the amplitude spectrum with zero padding
P = xf.*xf; %Compute the power spectrum

f=10:1:N—1] *fs/N; $Map frequency bin to frequency (Hz)

subplot(2,1,1); plot(f,xf);grid

xlabel ('Frequency (Hz)'); ylabel ('Amplitude spectrum (FFT)');
subplot(2,1,2);plot (£f,P);grid

xlabel ('Frequency (Hz)'); ylabel ('Power spectrum (FEFT)’);
figure (4)

% Convert it to one-sided spectrum

xf (2:N) = 2*xf (2:N) ;

P = xf.*xf;

f=1[0:1:N/2]1*fs/N;

subplot (2,1,1); plot (f,xf(1:N/2+ 1)) ;grid

xlabel ('Frequency (Hz)'); ylabel ('Amplitude spectrum (FFT)’);
subplot (2,1,2);plot (f,P(l:N/2+1));grid

xlabel ('Frequency (Hz)'); ylabel ('Power spectrum (FFT)’);

frequency resolution by using zero padding. The zero padding actually
interpolates a signal spectrum and carries no additional frequency infor-
mation. Figure 4.13 shows the spectral plots using FFT. The detailed
implementation is given in Program 4.1.

DISCRETE FOURIER TRANSFORM

4

108

8000

3000 4000 5000 6000 7000

2000

Frequency (Hz)

1000

0

(14@) wnuoads spnydwy

(14Q) wnuoeds Jemod

2000 3000 4000 5000 6000 7000 8000

1000

Frequency (Hz)

2000 2500 3000 3500 4000

1500

Frequency (Hz)

1000

500

1000 1500 2000 2500 3000 3500 4000

500

Frequency (Hz)

Amplitude spectrum and power spectrum using DFT for Example 4.8.

FIGURE 4.12

109

4.3 Spectral Estimation Using Window Functions

o
o
T =) T T T T
| o | | | |
I I I I I
o			
I S I I I			
T o T T T T			
I R I I I I			
I I I I I			
o			
! S			
i © i i i i			
I I I I I			
I m I I I I			
S S RS S T S N			
I (= I I I I			
CEOL L			
	0		
o3			
i o	1 i		
=3		I	
I < 98 I I I I			
ml			
et			
I o I I I I			
e M m s S o E e			
%]			
I I I I I			
S o			
e s =1 —— o —— o ——			
" « oo			
I I I I I			
.			
Q			
I o ! I I			
=			
-			
I I I I I			
o			
- 0 o - ® © % o ©o

(144) wnuoeds spnydwy

(144) wnuoeds Jemod

5000 6000 7000 8000

4000
Frequency (Hz)

o
o

T T T o T T T

| | | < | | |

| | | | | |

| | | | | |

| | | | | |

| | | S | | |
i S S ey W I B H e

| | | ™ | | |

| | | | | |

| | | | | |

. .

SN S IS -

| | | 3 | | |

| | | | | |

| | | | | |

| | | | | |

s N
R e e e | et s s et

| | | NN | | |

| | | T | | |

o < L

| | | o W,. | | |
'L SO = S IS S A AN

| | | x 8 , | |

| | | o | | |

| | | [0 | | |

| | | S | | |

SRR S - S A O B
————4t——————"+t————"—"F——- w ——t————t === -

| | | — | | |

| | | | | |

| | | | | |

| | | | | |

1 s L

i i i =4 i i i

| | | | | |

| | | | | |

| | | | | |

| | | | | |
A S S N = A T A N

| | | [Te) | | |

| | | | | |

| | | | | |

| | | | | |

| | | | | |

| | | | | |

| | | o | | |

~— o
(144) wnnoads spnydwy (144) wnuoads Jamod

1000 1500 2000 2500 3000 3500 4000

500

Frequency (Hz)

Amplitude spectrum and power spectrum using FFT for Example 4.8.

FIGURE 4.13

1M0 4 DISCRETE FOURIER TRANSFORM

4.3 Spectral Estimation Using Window
Functions

When we apply DFT to the sampled data in the previous section, we theoretically
imply the following assumptions: first, that the sampled data are periodic to
themselves (repeat themselves), and second, that the sampled data are continuous
to themselves and band limited to the folding frequency. The second assumption
is often violated, thus the discontinuity produces undesired harmonic frequen-
cies. Consider the pure 1-Hz sine wave with 32 samples shown in Figure 4.14.

As shown in the figure, if we use a window size of N = 16 samples, which is a
multiple of the two waveform cycles, the second window repeats with continu-
ity. However, when the window size is chosen to be 18 samples, which is not a
multiple of the waveform cycles (2.25 cycles), the second window repeats the
first window with discontinuity. It is this discontinuity that produces harmonic
frequencies that are not present in the original signal. Figure 4.15 shows the
spectral plots for both cases using the DFT/FFT directly.

The first spectral plot contains a single frequency, as we expected, while the
second spectrum has the expected frequency component plus many harmonics,
which do not exist in the original signal. We call such an effect spectral leakage.

0 5 10 15 20 25 30 35

0 5 10 15 20 25 30 35 40
Window size: N =18 (not multiple of waveform cycles)

FIGURE 4.14 Sampling a 1-Hz sine wave using (top) 16 samples per cycle and
(boftom) 18 samples per cycle.

4.3 Spectral Estimation Using Window Functions 111

R S

z 1778 7O <04y
x
-0.5 - ”,X - e
1 1 S i &
0 5 5 10 15
Window size: N =16 Window size: N =16

| . ok
6?‘ :% L ! ! !
i i A T < ! : :
05 f------- (D G e T

» : : : N T?%WWWW
0 5 10 15 0 5 10
Window size: N =18 Window size: N =18

15

FIGURE 4.15 Signal samples and spectra without spectral leakage and with spectral
leakage.

The amount of spectral leakage shown in the second plot is due to amplitude
discontinuity in time domain. The bigger the discontinuity, the more the leak-
age. To reduce the effect of spectral leakage, a window function can be used
whose amplitude tapers smoothly and gradually toward zero at both ends.
Applying the window function w(n) to a data sequence x() to obtain a wind-
owed sequence x,,(n) is better illustrated in Figure 4.16 using Equation (4.28):

Xp(n) = x(mwn), forn=0,1,..., N —1. (4.28)

The top plot is the data sequence x(n), and the middle plot is the window
function w(n). The bottom plot in Figure 4.16 shows that the windowed sequence
x,(n) is tapped down by a window function to zero at both ends such that the
discontinuity is dramatically reduced.

Example 4.9.
In Figure 4.16, given
B x(2) = 1 and w(2) = 0.2265;
m x(5) = —0.7071 and w(5) = 0.7008,

a. Calculate the windowed sequence data points x,,(2) and x,,(5).

112

Solution:

DISCRETE FOURIER TRANSFORM

a. Applying the window function operation leads to

x(2) = X(2) x w(2) = 1 x 0.2265 = 0.2265 and
x(5) = x(5) x w(5) = —0.7071 x 0.7008 = —0.4956,

which agree with the values shown in the bottom plot in the Figure 4.16.
Using the window function shown in Example 4.9, the spectral plot is
reproduced. As a result, spectral leakage is greatly reduced, as shown in
Figure 4.17.

The common window functions are listed as follows.
The rectangular window (no window function):

The triangular window:

The Hamming window:

Window w(n)
o
o

o

—_

Windowed xw(n)
o

|
N

FIGURE 4.16

wr(n) =1 0=n=N-1 (4.29)
- N+1
iy = 1~ =N vy (4.30)
N1
2mn
Wim(12) = 0.54—0.46cos(N 1), O=n=N_1 @.31)

N L] K
o 2 4 6 8 10 12 14 16

: : s : : :

| R ~. | |
1T Tt
0 2 4 6 8 10 12 14 16

NERARNEE
a«f@fﬁi—— @ --r-- %TT»@ 3@

| \L\i [N
0 é 4‘1— 6 é 16 1é 1‘4 1‘6

Time index n

lllustration of the window operation.

4.3 Spectral Estimation Using Window Functions 113

0.4

[TE T ——
- \l BN i/
0.5 f--n---- e R T

AR\ & . @9 T??@@@@@@@??
0 5 10 15 0 5 10
Time index n Frequency index

Ak

(n) (original signal)
[=}
o [6)]
V—/;ﬁg)
LA
o |
— O
e
@ I
o __

15

0.4 |- L L —

W feel
SR I VI
0

0 5 10 15 0 5 10 15
Time index n Frequency index

Windowed x(n)
o
o [6)]
o
=3
o
O—
— 0
\/\
6=
@ 1
Windowed Ak

FIGURE 4.17 Comparison of spectra calculated without using a window function and
using a window function to reduce spectral leakage.

The Hanning window:

2
mﬂm:OS—ij%&7z>OSnSN—l (4.32)

Plots for each window function for a size of 20 samples are shown in Figure 4.18.
The following example details each step for computing the spectral informa-
tion using the window functions.

Example 4.10.

Considering the sequence x(0) = 1, x(1) = 2, x(2) = 3, and x(3) = 4, and given
fs =100Hz, T = 0.01 seconds, compute the amplitude spectrum, phase spec-
trum, and power spectrum

a. Using the triangular window function.
b. Using the Hamming window function.
Solution:

a. Since N = 4, from the triangular window function, we have

M4 4 DISCRETE FOURIER TRANSFORM

Q

=
S 08 H1t4-H -t H-H 1 B 08
£ °
; 0.6 F14-11-F 11111 1-r11111 = 0.6
S «
© 04 F1- 11 Pt r Tttt 3 04
cC (o))
g 5
8 02 Pt F 1t H it = 02
o

0 0

0 5 10 15 20
! T oTTe
| (0] [0) |

§08 - N B e z
° i i S
£ ! c
206 - R B A R—— B
(o)) ! o
c
é 04 t----QrA--tH-F1-Ft4P------ %
2oz eI o) 2

ot P

0 5 10 15 2

0

FIGURE 4.18 Plots of window sequences.

2x0—d+1|
A0 =1-2X0 72
Wr() 41
2x1—4+1
wm-(1):1—%:o.6667.

Similarly, w,4(2) = 0.6667, w,;(3) = 0. Next, the windowed sequence is
computed as
X(0) = x(0) x w,;(0)=1x0=0
X,(1) = x(1) X wyi(1) =2 x 0.6667 = 1.3334
Xp(2) = x(2) X wyi(2) = 3 x 0.6667 = 2
xw(3) = x(3) X wyi(3) =4 x 0= 0.
Applying DFT Equation (4.8) to x,,(n) for k =0, 1, 2, 3, respectively,
X(k) = xy QY WEO + x(DWE 4 xQWE2 + xB)WE.
We have the following results:
X(0) = 3.3334
X(1)=-2—-j1.3334
X(2) = 0.6666

4.3 Spectral Estimation Using Window Functions 115

X(3)=—-2+/1.3334

1 1
Af‘ﬁ_4-o.01

Applying Equations (4.19), (4.22), and (4.23) leads to

=25Hz

fl _ _ -1 0 _no
Ao = 71X(0)] = 0.8334, ¢ = tan <3‘3334) = 0",

1
Py= | X (0)]*= 0.6954

1 —1.3334
A, :Zy)m)y = 0.6009, ¢, = tan™! < _3233) = —146.31°,
1 2
P :E|X(1)| =0.3611
1
A, ==|XQ)| =0.1667, ¢, = tan"! [——) = 0°
2=z 1X@) 2 = tan <0.6666> :

1
Py=4 |X(2)]*= 0.0278.

Similarly,

1 1.3334
A3 = Z1X(3)| = 0.6009, ¢y = tan ™" <—2> = 146.31°,

1
P; = E|X(3)|2: 0.3611.

. Since N =4, from the Hamming window function, we have

2 % 0
Wim(0) = 0.54 — 0.46 cos< I a 1) —0.08

2 x 1
Wim(1) = 0.54 — 0.46 cos< Z ><1 > —0.77.

Similarly, wy,,(2) = 0.77, wy,,(3) = 0.08. Next, the windowed sequence is
computed as

X,,(0) = x(0) X wp,(0) =1 x 0.08 = 0.08
Xp(1) = x(1) X wp,,(1) =2 x0.77 = 1.54
X,(2) = x(2) X wp(2) =3 x 0.77 = 2.31
Xp(0) = x(3) X wpm(3) =4 x 0.08 =0.32.
Applying DFT Equation (4.8) to x,,(n) for k =0, 1, 2, 3, respectively,

1M6 4 DISCRETE FOURIER TRANSFORM

X(k) = xy(0)YWEO 4 x(YWE 4 xQWE2 + xB)yWE,
We yield the following:
X(0)=4.25
X(1)=-223—-,1.22
X(2)=0.53
X(3)=-223+,1.22
1 1
M=N7 =500
Using Equations (4.19), (4.22), and (4.23), we achieve

= 25Hz

B - a0\
Ay = 71X(0)] = 1.0625, ¢ = tan <4,25> =0

1
Py = E|X(O)|2: 1.1289

1 B (122 o
Ay = Z1X(1)] = 06355,) = tan <_2_23>_ 151.32°,

1
Pi= | X (1)[*= 0.4308

A —lyX(z)y—01325 —tan! (-0} = o
27y Bl 053) =

1
Py=5 1X(2))*= 0.0176.

Similarly,

1 _ (122 0
A3 = |X(3)| = 0.6355, ¢ = tan (_223> = 151.32°,

1
Py = |X(3)= 0.4308.

Example 4.11.

Given the sinusoid

x(n) = 2 - sin (20007r &;’W)

obtained by using a sampling rate of f; = 8,000 Hz, use the DFT to compute the
spectrum with the following specifications:

4.4 Application to Speech Spectral Estimation 117

a. Compute the spectrum of a triangular window function with a window
size = 50.

b. Compute the spectrum of a Hamming window function with a window
size = 100.

c. Compute the spectrum of a Hanning window function with a window
size = 150 and one-sided spectrum.

The MATLAB program is listed in Program 4.2, and the results are plotted in
Figures 4.19 to 4.21. As compared with the no-windowed (rectangular window)
case, all three windows are able to effectively reduce spectral leakage, as shown
in the figures.

B
o
e}
= £
£ =
x o
£
X
<
0 I I
0 2000 4000 6000 8000
Frequency (Hz)
< 2
- ©
g g
o (o]
Ee] e}
c £
£ s
5 8
5 =}
= ; ; [=
0 20 40 60 0 2000 4000 6000 8000

Time index n Frequency (Hz)

FIGURE 4.19 Comparison of a spectrum without using a window function and a spectrum
using a triangular window of size of 50 samples in Example 4.11.

Program 4.2. MATLAB program for Example 4.11

$Example 4.11
close all;clear all
% Generate the sine wave sequence
fs =8000; T=1/fs; % Sampling rate and sampling period
(Continued)

1M8 4 DISCRETE FOURIER TRANSFORM

X =2*sin (2000*pi*[0:1:50]*T) ; %Generate the 51 2000-Hz samples
% Apply the FFT algorithm

N = length (x) ;

index_t = [0:1:N—1];

f=1[0:1—11*8000/N; %Map the frequency bin to the frequency (Hz)
xf=abs (fft (x)) /N; %$Calculate the amplitude spectrum

figure (1)

%Using the Bartlett window

xb = x.*bartlett (N)'; $Apply the triangular window function

xf b =abs (fft (xb))/N; %$Calculate the amplitude spectrum

subplot (2,2,1) ;plot (index t,x);grid

xlabel ('Time index n') ; ylabel ('x(n)’) ;

subplot (2,2,3); plot (index t,x b);grid

xlabel ('Time index n’) ; ylabel (‘'Triangular windowed x (n)’) ;
subplot (2,2,2) ;plot (f,xf);grid;axis ([0 80000 1]);
xlabel ('Frequency (Hz)'); ylabel ('Ak (no window)’) ;

subplot (2,2,4); plot (f,xf b);grid; axis ([0 80000 1]);
xlabel ('Frequency (Hz)'); ylabel (‘Triangular windowed Ak’') ;
figure (2)

% Generate the sine wave sequence

X =2%*sin (2000*pi*[0:1:100]*T) ; %Generate the 101 2000-Hz samples.
% Apply the FFT algorithm

N=length (x) ;

index_t = [0:1:N—11];

f=1[0:1:N—1]*fs/N;

xf =abs (fft (x)) /N;

%Using the Hamming window

x_hm = x.*hamming (N)'; %Apply the Hamming window function
xf hm=abs (fft (x_hm)) /N; %Calculate the amplitude spectrum

subplot (2,2,1) ;plot(index t,x);grid

xlabel ('Time index n’) ; ylabel ('x(n)’);

subplot (2,2,3); plot(index t,x hm);grid

xlabel ('Time index n’) ; ylabel (‘Hamming windowed x (n)’) ;
subplot(2,2,2);plot (f,xf);grid;axis ([0 £fs01]);

xlabel ('Frequency (Hz)'); ylabel ('Ak (no window)’) ;
subplot (2,2,4); plot (f,xf hm);grid;axis ([0 £fs01]);
xlabel ('Frequency (Hz)'); ylabel ('Hamming windowed AK') ;
figure (3)

% Generate the sine wave sequence

x =2%*s8in (2000*pi*[0:1:150]*T); % Generate the 151 2-kHz samples
% Apply the FFT algorithm

N=length (x) ;

4.4 Application to Speech Spectral Estimation 119

index_t =[0:1:N—11];

f=1[0:1:N—1]*fs/N;

xf =2*abs (fft(x)) /N;xf (1) =x£(1)/2; % Single-sided spectrum
%Using the Hanning window

x_hn = x.*hanning (N)';;

xfhn=2%abs (fft (xhn)) /N;xfhn (1) =xfhn(l)/2; $Single-sided spectrum
subplot (2,2,1) ;plot(index t,x);grid

xlabel ('Time index n'); ylabel ('x(n)’) ;

subplot (2,2,3); plot(index t,x hn);grid

xlabel ('Time index n’) ; ylabel ('Hanning windowed x (n)’) ;

subplot (2,2,2) ;plot(f(1l:(N-1)/2),xf(1:(N-1)/2));grid;axis ([0 fs/201]);
xlabel ('Frequency (Hz)'); ylabel ('Ak (no window)’) ;

subplot (2,2,4); plot (f(1:(N-1)/2),xf hn(l:(N-1)/2));grid;axis([0£fs/201]);
xlabel ('Frequency (Hz)'); ylabel ('Hanning windowed AX') ;

2
VR B

| T

— i £
S ot o=
!]

: £
_177——7—73———7 -|1 - <¥E

0 2000 4000 6000 8000
Frequency (Hz)

< x 1 : ‘ ‘

3 < | | |

o 008 F------ PO bemmm - H

: : o

o Lol el __

2 EO'G ; ;

= = I (S S S

g g

: E02 [

© © I | !

I ! I 0 1 1 1

0 50 100 0 2000 4000 6000 8000

Time index n Frequency (Hz)

FIGURE 4.20 Comparison of a spectrum without using a window function and
a spectrum using a Hamming window of size of 100 samples in
Example 4.11.

120 4 DISCRETE FOURIER TRANSFORM

2 ‘ 2
A RAEHAEAAEEAEAEE E15 - booeee- bomeoe-
°
= £
o R s EEREEE! EEREE B
* o
£
=1 Fi A A A A f(0.5 f-----f-—--—-r--mm—r--————
2 1 1 0 j ‘ ‘
0 50 100 150 0 1000 2000 3000 4000
Time index n Frequency (Hz)
- 2
(= X | i |
= ; | | |
3 e
g $1o : : :
8 B | | |
g S At S S
E = ! !
o =2 i I i
£ S05[- A 777777
c = I
5] < |
T i . T oo i ‘ ‘
0 50 100 150 0 1000 2000 3000 4000
Time index n Frequency (Hz)
FIGURE 4.21 Comparison of a one-sided spectrum without using the window function

and a one-sided spectrum using a Hanning window of size of 150
samples in Example 4.11.

4.4 Application to Speech Spectral
Estimation

The following plots show the comparisons of amplitude spectral estimation for
speech data (we.dat) with 2,001 samples and a sampling rate of 8,000 Hz using the
rectangular window (no window) function and the Hamming window function.
As demonstrated in Figure 4.22 (two-sided spectrum) and Figure 4.23 (one-sided
spectrum), there is little difference between the amplitude spectrum using
the Hamming window function and the spectrum without using the window
function. This is due to the fact that when the data length of the sequence
(e.g., 2,001 samples) increases, the frequency resolution will be improved and
spectral leakage will become less significant. However, when data length is short,
reduction of spectral leakage using a window function will come to be prominent.

4.5 Fast Fourier Transform

Now we study FFT in detail. FFT is a very efficient algorithm in computing
DFT coefficients and can reduce a very large amount of computational com-
plexity (multiplications). Without loss of generality, we consider the digital

4.5 Fast Fourier Transform 121

1000 1500 2000

Time index n
<= 10000 ;
x !
el |
2 j
3 5000 !
o |
£ '
s |
2 o 4
€ |
£ | |
5] | |
T -5000 - . : 0

0 500 1000 1500 2000 0 2000 4000 6000 8000
Time index n Frequency (Hz)

FIGURE 4.22 Comparison of a spectrum without using a window function and a
spectrum using the Hamming window for speech data.

~ 800 ; ; 7
< : : :
Seo0f - i Saattt R
3 : : :
[} | | |
& 400 fpq---- po-o-e- poo-oo- Foooe- 8
@ | | |
: 3 : : :
: T £ 200 fHf---- T rT T
I I Q I I I
i i £ | i i
1 ‘ : : < MMM,MM“ et
0 500 1000 1500 2000 0 1000 2000 3000
Time index n Frequency (Hz)
= 10000 ——— ———— s s ~ 800 ‘ ‘ ‘
=1 ‘ ‘ ‘ < ‘ ‘ ‘
: : : ° : : :
E ! : : £ 600 === e R,
§ 5000 === TN T . S : : :
K ! : 2 : | :
H : ‘ 3 400 g7 T T T
2 o0 ! 2 o
€ w € 200 [Hf----r------ R eeeeoo]
£ | | £ R
< ‘ | ‘ £ : ‘
T _5000 0
0 500 1000 1500 2000 0 1000 2000 3000
Time index n Frequency (Hz)

FIGURE 4.23 Comparison of a one-sided spectrum without using a window function
and a one-sided spectrum using the Hamming window for speech data.

122 4 DISCRETE FOURIER TRANSFORM

sequence x(n) consisting of 2™ samples, where m is a positive integer—the
number of samples of the digital sequence x(n) is a power of 2, N =2, 4, 8§,
16, etc. If x(n) does not contain 2" samples, then we simply append it with zeros
until the number of the appended sequence is equal to an integer of a power of 2
data points.

In this section, we focus on two formats. One is called the decimation-
in-frequency algorithm, while the other is the decimation-in-time algorithm.
They are referred to as the radix-2 FFT algorithms. Other types of FFT algorithms
are the radix-4 and the split radix and their advantages can be exploited
(see Proakis and Manolakis, 1996).

4.5.1 Method of Decimation-in-Frequency

We begin with the definition of DFT studied in the opening section of this
chapter as follows:

=

X(k)y =Y x(myWi fork=0,1,..., N —1, (4.33)

n

Il
<}

where Wy = e is the twiddle factor, and N = 2, 4, 8, 16, ... Equation (4.33)
can be expanded as

X(k) = x(0) + x(WWE + ...+ x(N — YWD, (4.34)
Again, if we split Equation (4.34) into
_ i N k(N /2-1)
X(k) =x(0) + X(DWy + ... + x5 = 1| Wy
+x<%> WENZ L 4 x(N = D)W =D (4.35)

then we can rewrite as a sum of the following two parts

(N/2)-1 N-1
Xky= > xmWy+ > xmWy' (4.36)
n=0 n=N/2

Modifying the second term in Equation (4.36) yields

(N/2)-1 (/2)k(N/2)—1 N
X(k) = whn N) wkn, 4.37
k) ; x(myWy' + Wy ; x<n+ 2) N ()

N/2 _2m(N/2) .
Recall WN/ =e¢/ 7~ =e7/" = —1; then we have

4.5 Fast Fourier Transform 123

(N/2)—1 N
X(k) = — 1y =)| whn 4.38
(k) ; (x(n)+()x<n+2)> v (4.38)
Now letting k = 2m as an even number achieves
(N/2)—1 N
Xemy= > <x(n) + X <n + 3» wamn, (4.39)
n=0
while substituting £ = 2m + 1 as an odd number yields
(N/2)—1 N)
X2m+1)= Z; (x(n) — x<n + 3» Wi wamn, (4.40)
Using the fact that W3 = e o = Wy », it follows that
(N/2)—1
X@2m)= > am)Wy, = DFT{a(n) with (N /2) points} (4.41)
n=0
(N/2)—1
XC2m+1) = Z bWy Wy, = DFT{b(n) Wy with (N /2) points}, (4.42)
n=0

where a(n) and b(n) are introduced and expressed as

a(”):X(”)—i—x(n—kg),forn:O,l...,%—l (4.43a)
b(")zx(n)—x<n+g>,forn:0,1,...,%—1. (4.43b)

Equations (4.33), (4.41), and (4.42) can be summarized as

DFT{a(n) with (N/2) points}

DFT{b(n)W}, with (N /2) points} (4.44)

DFT{x(n) with N points} = {
The computation process can be illustrated in Figure 4.24. As shown in this
figure, there are three graphical operations, which are illustrated in Figure 4.25.
If we continue the process described by Figure 4.24, we obtain the block
diagrams shown in Figures 4.26 and 4.27.

Figure 4.27 illustrates the FFT computation for the eight-point DFT, where
there are 12 complex multiplications. This is a big saving as compared with the
eight-point DFT with 64 complex multiplications. For a data length of N,
the number of complex multiplications for DFT and FFT, respectively, are
determined by

124 4 DISCRETE FOURIER TRANSFORM

———— X(0)

N .
? -point | o X(2)
DFT |—>——=X(4)

——>—— X(6)

N .
?-pomt —— X(3)

DFT [X(5)

—>—o X(7)

FIGURE 4.24 The first iteration of the eight-point FFT.

Z=Xx+y
X X
Z=wx
X —r
w
y y
1 z=x-y

FIGURE 4.25 Definitions of the graphical operations.

Complex multiplications of DFT = N?, and
e N
Complex multiplications of FFT = > log, (N).

To see the effectiveness of FFT, let us consider a sequence with 1,024 data
points. Applying DFT will require 1,024 x 1,024 = 1,048,576 complex multipli-
cations; however, applying FFT will need only (1,024/2)log, (1,024) = 5,120
complex multiplications. Next, the index (bin number) of the eight-point DFT
coefficient X(k) becomes 0, 4, 2, 6, 1, 5, 3, and 7, respectively, which are not in
the natural order. This can be fixed by index matching. Index matching between
the input sequence and the output frequency bin number by applying reversal
bits is described in Table 4.2.

X(O) > > > > % -point [X(O)
(1) ? > Q ol O e x(4)
oSS e
o) XXX L S o
x(4) - WA{ / — W X(1)
x(5) = v <o X
X©) T <t T [O
X(7) - LT e X)

FIGURE 4.26 The second iteration of the eight-point FFT.

4.5 Fast Fourier Transform 125

o

XX
o &
Y
-
Y
X)
\
\ A
=
] X] X
Y 2§o‘ Y
X X X X X X X X
Jegzerse

(N

FIGURE 4.27 Block diagram for the eight-point FFT (total twelve multiplications).

TABLE 4.2 Index mapping for fast Fourier transform.

Input Data Index Bits Reversal Bits Output Data
x(0) 000 000 X(0)
x(1) 001 100 X4)
x(2) 010 010 X(2)
x(3) 011 110 X(6)
x(4) 100 001 X(1)
x(5) 101 101 X(5)
x(6) 110 011 X(3)
x(7) 111 111 X(7)

Figure 4.28 explains the bit reversal process. First, the input data with indices
0,1,2,3,4,5, 6,7 are split into two parts. The first half contains even indices—O0,
2, 4, 6—while the second half contains odd indices. The first half with indices 0,
2, 4, 6 at the first iteration continues to be split into even indices 2, 4 and odd
indices 4, 6, as shown in the second iteration. The second half with indices 1, 3, 5,

Binary index 1st split 2nd split 3rd split Bit reversal

000 O 0 0 0 000
001 1 2 4 4 100
010 2 4 2 2 010
011 3 6 6 6 011
100 4 1 1 1 001
101 5 3 5 5 101
110 6 5 3 3 011
111 7 7 7 7 111

FIGURE 4.28 Bit reversal process in FFT.

126 4 DISCRETE FOURIER TRANSFORM

7 at the first iteration is split into even indices 1, 5 and odd indices 3, 7 in
the second iteration. The splitting process continues to the end at the third
iteration. The bit patterns of the output data indices are just the respective
reversed bit patterns of the input data indices. Although Figure 4.28 illustrates
the case of an eight-point FFT, this bit reversal process works as long as N is a
power of 2.

The inverse FFT is defined as

1N71 1N71 B
==Y XWy" == X(lWy' fork=0,1,....N—1. (4.4
X0 =5 2 XOW =5) XOWY fork=0,1,.... N =1 (449

Comparing Equation (4.45) with Equation (4.33), we notice the difference as
follows: The twiddle factor Wy is changed to be Wy = Wﬁl, and the sum is
multiplied by a factor of 1/N. Hence, by modifying the FFT block diagram as
shown in Figure 4.27, we achieve the inverse FFT block diagram shown in
Figure 4.29.

,
x(0) > 2e—r-Se X(0)
x(1) / > / > :><; Z? X(4)
x2) S ><><1: o st X(2)
X9) G WL =)
x(4) 1'@7 s = 5 X(1)
x(5) N VgN / > ><: N8 X(5)
X(6) ~_1 Yy ><><_1: Yy e X(3)
X(7) \31 M!N :1 VYN:><_1: N8 X(7)

FIGURE 4.29 Block diagram for the inverse of eight-point FFT.

Example 4.12.

Given a sequence x(n) for 0 < n < 3, where x(0) =1, x(1) = 2, x(2) = 3, and
x(3) = 4,

a. Evaluate its DFT X(k) using the decimation-in-frequency FFT method.
b. Determine the number of complex multiplications.
Solution:

a. Using the FFT block diagram in Figure 4.27, the result is shown in
Figure 4.30.

4.5 Fast Fourier Transform 127

Bit index 4 10 Bit reversal
00 x0)=1 / 6 ><[v°;1 5 X0 00
01 x(1)=2 > g onsl s X2) 10
SSrLw
O e W 22 D
1 x(3)=4 - e 4 X@) 11

FIGURE 4.30 Four-point FFT block diagram in Example 4.12.

b. From Figure 4.30, the number of complex multiplications is four, which
can also be determined by

N 4
5 log, (N) = 10g2 4) =

Example 4.13.
Given the DFT sequence X(k) for 0 =k =3 computed in Example 4.12,

a. Evaluate its inverse DFT x(n) using the decimation-in-frequency
FFT method.

Solution:

a. Using the inverse FFT block diagram in Figure 4.28, we have

Bit index 1 Bit reversal
00 X(0)=10 d 2L (0)=1

> > = 00
o1 Xx(1)=_2+12 / —4 :><EV4 =112 1 x(2)=3 10
10 X(2)=— ><><1: 12 W4 L 8 - x(1)=2 01
11 X(@3)=-2-j2 \; p Wi ~1W4~=”6 i, x(4)=4 11

FIGURE 4.31 Four-point inverse FFT block diagram in Example 4.13.

4.5.2 Method of Decimation-in=-Time

In this method, we split the input sequence x(n) into the even indexed x(2m) and
x(2m + 1), each with N data points. Then Equation (4.33) becomes

N/2)-1 (N/2)—1
X(ky= > x@mWy*+ > x@m+ HWEW,
m=0 m=0
fork=0,1,..., N —1. (4.46)

Using the relation WI%, = Wy 2, it follows that

126 4 DISCRETE FOURIER TRANSFORM

(N/2)—1 (N/2)-1
X(ky= > xCm)Wgh+ Wk > xQ2m+ DWW,
m=0 m=0 (447)

fork=0,1,...,N—1.

Define new functions as

(N/2)—1
Gy =Y xQm)W}%, = DFT{x(2m) with (N/2) points} (4.48)
m=0
(N/2)—1
H(ky= > x(2m+ D)Wy}, = DFT{x(2m+ 1) with (N /2) points}. (4.49)
m=0
Note that
G(k):G(JD for k=0, 1,.];[1 (4.50)
H(k):H(]2V> for k=0, 1,.];] 1. (4.51)

Substituting Equations (4.50) and (4.51) into Equation (4.47) yields the first half
frequency bins

X (k) = G(k) + W& H(k), for k=0, 1,... % -1 (4.52)

Considering the following fact and using Equations (4.50) and (4.51),
WD — k. (4.53)
Then the second half of frequency bins can be computed as follows:

X(%Jrk) = G(k) — WX H(k), for k =0, 1,...,%—1. (4.54)
If we perform backward iterations, we can obtain the FFT algorithm. Procedure
using Equations (4.52) and (4.54) is illustrated in Figure 4.32, the block diagram
for the eight-point FFT algorithm.

From a further iteration, we obtain Figure 4.33. Finally, after three recur-
sions, we end up with the block diagram in Figure 4.34.

The index for each input sequence element can be achieved by bit reversal
of the frequency index in a sequential order. Similar to the method of
decimation-in-frequency, after we change Wy to Wy in Figure 4.34 and multi-
ply the output sequence by a factor of 1/N, we derive the inverse FFT block
diagram for the eight-point inverse FFT in Figure 4.35.

4.5 Fast Fourier Transform 129

x(0) —] oo, —— X(0)

x(4) — DT [-G@ <, . X2

(6) 6, XX . e

- XK

x(3) =—— 4 - point :E?; qu ><><>’(1 —— X(5)

W _
x(i)] OFT hp M:/% :_1 : i(s)
x(7) = P ~ ™
FIGURE 4.32 The first iteration.
x(0) —— 2-point —* > ——— X(0)
X(4) —o o < Ja X(1)
x(2) ~——2-point ‘o><><1: > 2. . X(2)
X(G) DFT VyN \ . \><></ > X(3)
Wi 1, XXX K
x(1) 2 point > Py T~ X(4)
X(3) . 2 point . ><><: WN \3_‘1 . X(6)
X(7) —| oFT. | WA Wi NI
w2 -1 w -1 @)
FIGURE 4.33 The second iteration.
x(0) oy > ——— X(0)
X(2) > 0><: . / > / > X(1)
xd) 2 - ><1: > & x0)
X(G) . 0><: Vysz \ . \><></ > X(3)
X(1) WB :1 Vys :1 . OW > X(4)
N SN /0 O A NI
X(5) WS :1 . ><: VY8 \>_‘1 > X(6)
W~ S We N
X(7) > —— o —S—— X(7)
Wg -1 W -1 W -1

FIGURE 4.34 The eight-point FFT algorithm using decimation-in-time (twelve complex
multiplications).

130 4 DISCRETE FOURIER TRANSFORM

1
X(0) — o> ——> o ——— x(0)
X4 l;vo><_1: > Q g ? —— x(1)
X(2) —2 vt s S S ——— x(2)
X(6) V:“/O:><1: gSO_ \; > ><></ > ;3 X(3)

8 L s N

RN ; S I
X(3) WBO :1 > ><><: V:‘(B X‘]) x(6)
X(7) > ><: I{VSU \1. Vy82 }(1 > % x(7)

_k
=
|
N

WSO -1 ng —
FIGURE 4.35 The eight-point IFFT using decimation-in-time.

Example 4.14.

Given a sequence x(n) for 0 < n < 3, where x(0) =1, x(1) = 2, x(2) = 3, and
x(3) = 4,

a. Evaluate its DFT X{(k) using the decimation-in-time FFT method.
Solution:

a. Using the block diagram in Figure 4.34 leads to

FIGURE 4.36 The four-point FFT using decimation in time.

Example 4.15.
Given the DFT sequence X(k) for 0 =<k =3 computed in Example 4.14,

a. Evaluate its inverse DFT x(n) using the decimation-in-time FFT method.
Solution:

a. Using the block diagram in Figure 4.35 yields

;
X(0)=10 > >< = / 5 e x(0)=1
X==2 o3 1 SIS 0 i x(1)=2
X(1)=—2+4j2 otr RO > i e x(2)=3
: > j4 W=t S~ 16 !
X(3)=—2-j2 o > - > ‘e x(3)=4
W40=1 -1 W‘I:] -1

FIGURE 4.37 The four-point IFFT using decimation in time.

4.7 Problems 131

4.6 Summary

1.

The Fourier series coefficients for a periodic digital signal can be used to
develop the DFT.

The DFT transforms a time sequence to the complex DFT coeftficients, while
the inverse DFT transforms DFT coefficients back to the time sequence.

The frequency bin number is the same as the frequency index. Frequency
resolution is the frequency spacing between two consecutive frequency
indices (two consecutive spectrum components).

The DFT coefficients for a given digital signal are applied for computing
the amplitude spectrum, power spectrum, or phase spectrum.

The spectrum calculated from all the DFT coefficients represents the
signal frequency range from 0 Hz to the sampling rate. The spectrum
beyond the folding frequency is equivalent to the negative-indexed spec-
trum from the negative folding frequency to 0 Hz. This two-sided
spectrum can be converted into a one-sided spectrum by doubling alter-
nating-current (AC) components from 0 Hz to the folding frequency and
retaining the DC component as it is.

To reduce the burden of computing DFT coefficients, the FFT algorithm
is used, which requires the data length to be a power of 2. Sometimes zero
padding is employed to make up the data length. Zero padding actually
does interpolation of the spectrum and does not carry any new informa-
tion about the signal; even the calculated frequency resolution is smaller
due to the zero padded longer length.

Applying the window function to the data sequence before DFT reduces
the spectral leakage due to abrupt truncation of the data sequence when
performing spectral calculation for a short sequence.

. Two radix-2 FFT algorithms—decimation-in-frequency and decimation-

in-time—are developed via the graphical illustrations.

4.7 Problems

4.1.

4.2.

4.3.

Given a sequence x(n) for 0=n=3, where x(0)=1, x(1)=1,
x(2) = —1, and x(3) = 0, compute its DFT X(k).

Given a sequence x(n) for 0 =n =3, where x(0) = 4, x(1) = 3, x(2) = 2,
and x(3) = 1, evaluate its DFT X(k).

Given the DFT sequence X(k) for 0 =<k =3 obtained in Problem 4.2,
evaluate its inverse DFT x(n).

132 4 DISCRETE FOURIER TRANSFORM

4.4. Given a sequence x(n), where x(0) = 4, x(1) = 3, x(2) = 2, and x(3) = 1
with the last two data zero-padded as x(4) = 0, and x(5) = 0, evaluate its
DFT X(k).

4.5. Using the DFT sequence X(k) for 0 <k =5 computed in Problem 4.4,
evaluate the inverse DFT x(0) and x(4).

4.6. Consider a digital sequence sampled at the rate of 20,000 Hz. If we use
the 8,000-point DFT to compute the spectrum, determine

a. the frequency resolution
b. the folding frequency in the spectrum.

4.7. We use the DFT to compute the amplitude spectrum of a sampled data
sequence with a sampling rate f; = 2,000 Hz. It requires the frequency
resolution to be less than 0.5 Hz. Determine the number of data points
used by the FFT algorithm and actual frequency resolution in Hz, assuming
that the data samples are available for selecting the number of data points.

4.8. Given the sequence in Figure 4.38

x(n)
4 4

- N W
N

n
w
IS

o |

To=NT

FIGURE 4.38 Data sequence in Problem 4.8.
and assuming that f; = 100 Hz, compute the amplitude spectrum, phase spec-
trum, and power spectrum.
4.9. Compute the following window functions for a size of 8:
a. Hamming window function.
b. Hanning window function.

4.10. Given the following data sequence with a length of 6,
x(0)=0,x(1)=1,x2)=0,x3)=—-1,x(4) =0, x(5) =1
compute the windowed sequence x,,(n) using the

4.7 Problems 133

a. triangular window function.

b. Hamming window function.

c. Hanning window function.
4.11. Given the sequence in Figure 4.39

x(n)
4 4

N

- N W

N
B E—]
1 o
- O

3

L

To=NT

N

w

g
PO—
L

FIGURE 4.39 Data sequence in Problem 4.11.

where f; = 100Hz and T = 0.01 sec, compute the amplitude spectrum, phase
spectrum, and power spectrum using the

a. triangular window.
b. Hamming window.

c. Hanning window.

4.12. Given the sinusoid

. n
x(n) = 2 - sin (2000 O M)
obtained by using the sampling rate at f; = 8,000 Hz, we apply the DFT to
compute the amplitude spectrum.

a. Determine the frequency resolution when the data length is 100
samples. Without using the window function, is there any spectral
leakage in the computed spectrum? Explain.

b. Determine the frequency resolution when the data length is 73
samples. Without using the window function, is there any spectral
leakage in the computed spectrum? Explain.

4.13. Given a sequence x(n) for 0 < n < 3, where x(0) = 4, x(1) = 3, x(2) = 2,
and x(3) = 1, evaluate its DFT X{(k) using the decimation-in-frequency
FFT method, and determine the number of complex multiplications.

134 4

4.14.

4.15.

4.16.

4.17

4.18.

DISCRETE FOURIER TRANSFORM

Given the DFT sequence X{(k) for 0 < k < 3 obtained in Problem 4.13,
evaluate its inverse DFT x(n) using the decimation-in-frequency FFT
method.

Given a sequence x(n) for 0 < n < 3, where x(0) = 4, x(1) = 3, x(2) = 2,
and x(3) = 1, evaluate its DFT X(k) using the decimation-in-time FFT
method, and determine the number of complex multiplications.

Given the DFT sequence X(k) for 0 < k < 3 computed in Problem 4.15,
evaluateits inverse DFT x(#) using the decimation-in-time FFT method.

Given three sinusoids with the following amplitude and phases:
x1(?) = 5cos (27(500)¢)
x2(t) = 5cos (27(1200)¢ + 0.257)
x3(f) = 5cos(2(1800)¢ + 0.57)
a. Create a MATLAB program to sample each sinusoid and generate
a sum of three sinusoids, that is, x(n) = x1(n) + x2(n) + x3(n), using

a sampling rate of 8000 Hz, and plot the sum x(n) over a range of
time that will exhibit approximately 0.1 second.

b. Use the MATLAB function fft() to compute DFT coefficients, and
plot and examine the spectrum of the signal x(n).

Using the sum of sinusoids in Problem 4.17,

a. Generate the sum of sinusoids for 240 samples using a sampling rate
of 8000 Hz.

b. Write a MATLAB program to compute and plot the amplitute
spectrum of the signal x(n) with the FFT and using each of the
following window functions

(1) Rectangular window (no window)
(2) Triangular window
(3) Hamming window
c. Examine the effect of spectral leakage for each window used in (b).

Ahmed, N., and Natarajan, T. (1983). Discrete-Time Signals and Systems. Reston, VA:
Reston Publishing Co.

Oppenheim, A. V., Schafer, R.W., and Buck, J. R. (1999). Discrete-Time Signal Processing,
2nd ed. Upper Saddle River, NJ: Prentice Hall.

Proakis, J. G., and Manolakis, D. G. (1996). Digital Signal Processing: Principles, Algo-
rithms, and Applications, 3rd ed. Upper Saddle River, NJ: Prentice Hall.

Stearns, S. D., and Hush, D. R. (1990). Digital Signal Analysis, 2nd ed. Englewood Cliffs,
NJ: Prentice Hall.

The z-Transform

Objectives:

This chapter introduces the z-transform and its properties; illustrates how to
determine the inverse z-transform using partial fraction expansion; and applies
the z-transform to solve linear difference equations.

The z-transform is a very important tool in describing and analyzing digital
systems. It also offers the techniques for digital filter design and frequency
analysis of digital signals. We begin with the definition of the z-transform.

The z-transform of a causal sequence x(n), designated by X(z) or Z(x(n)), is
defined as

[0.¢]

X(2) = Z(x(n)) = ;X(’?)Z_" (5.1)

=x(0)z7"+ x(Dz '+ x2)z2 + ...

where z is the complex variable. Here, the summation taken from n =0 to
n = oo is according to the fact that for most situations, the digital signal x(n)
is the causal sequence, that is, x(n) =0 for n < 0. Thus, the definition in
Equation (5.1) is referred to as a one-sided z-transform or a unilateral transform.
In Equation (5.1), all the values of z that make the summation to exist form a
region of convergence in the z-transform domain, while all other values of z
outside the region of convergence will cause the summation to diverge. The
region of convergence is defined based on the particular sequence x(n) being

136 5 THE Z-TRANSFORM

applied. Note that we deal with the unilateral z-transform in this book, and
hence when performing inverse z-transform (which we shall study later), we are
restricted to the causal sequence. Now let us study the following typical
examples.

Example 5.1.
Given the sequence

x(n) = u(n),

a. Find the z-transform of x(n).
Solution:

a. From the definition of Equation (5.1), the z-transform is given by

00 o0

X(z) = Zu(n)z_" = Z (Z_l)n: 1+ (z_l) + (z_l)2+ e

n=0 n=0

This is an infinite geometric series that converges to

z

X(z) =

z—1

with a condition }z‘l‘ < 1. Note that for an infinite geometric series, we
have 1 +r+r* +... = ;& when |r| < 1. The region of convergence for all
values of z is given as |z| > 1.

Example 5.2.
Considering the exponential sequence

x(n) = d"u(n),

a. Find the z-transform of the sequence x(n).
Solution:

a. From the definition of the z-transform in Equation (5.1), it follows that

X(z) = ia”u(n)zf" = XOO: (azfl)n: 1+ (az7") + (azfl)z—i- cees
n=0 n=0

Since this is a geometric series which will converge for ‘az‘l‘ <1, it is
further expressed as

X(z) = ——, for |z > |a].
z—a

5.1 Definition 137

The z-transforms for common sequences are summarized in Table 5.1.
Example 5.3 illustrates finding the z-transform using Table 5.1.

TABLE 5.1 Table of z-transform pairs.
Region of
Line No. x(n), n=0 z-Transform X(z) Convergence
1 x(n) Z x(n)z™"
n=0
2 8(n) 1 |z >0
az
3 au(n) P |z| > 1
z
4 nu(n — z|>1
(n) - g
1
5 n*u(n) Azt 3) lz| > 1
(z—1)
z
6 a"u(n) E— |z| > |al
—na . —a
7 e "u(n) e |z| > e
az
8 na"u(n) m |z| > |al
) zsin (a)
1
9 sin (an)u(n) 2 2zcos(@) + 1 |z| >
z[z — cos (a)]
1
10 cos (an)u(n) 2~ 2zcos(a) + 1 |z| >
) [asin (b)]z
" b
11 a" sin (bn)u(n) 2~ Dacos(b): + & |z| > |al
. z[z — acos (b)]
12 a" cos (bn)u(n) 2 Dacos(b)z+a? |z| > |al
e e sin (b)) »
13 e~ sin (bn)u(n) 2 Deicos (b T o 2] > e
—an z[z — e7“ cos ()] »
14 e~ cos (bn)u(n) 2 e icos (D) + o |z| > e
" Az A*z
15 2|A||P|" cos(nb + p)u(n) P~ P+z— P

where P and A are
complex constants
defined by P = |P|/0,4 = |A|/$

138

5 THE Z-TRANSFORM

Example 5.3.

Find the z-transform for each of the following sequences:

a. x(n) = 10u(n)
b. x(n) = 10sin (0.25mn)u(n)
c. x(n) = (0.5)"u(n)
d. x(n) = (0.5)" sin (0.257n)u(n)
e. x(n) = e " cos (0.257n)u(n)
Solution:
a. From Line 3 in Table 5.1, we get
10
X(2) = Z(10u(w) = - _Zl .
b. Line 9 in Table 5.1 leads to
X(z) = 10Z(sin (0.27n)u(n))
B 10sin (0.257)z B 7.07z
22 -2zcos(0.25m) +1 22— 1414z +1°
c. From Line 6 in Table 5.1, we yield
z
X(z) = Z((0.5)" =)
(2) = Z((0.5/utn) = —
d. From Line 11 in Table 5.1, it follows that
. 0.5 x sin (0.257)z
X(z) = Z((0.5)" 0.25 =
(2) = Z((0-5)"sin (025mm)u(n)) = =45 (025m)2 1 0.5

B 0.3536z

22— 1.4142240.25°
e. From Line 14 in Table 5.1, it follows that

2(z — e %1 cos (0.257))

X(z) = Z (e cos (0.25mmu(n)) = 22— 2e701¢cos (0.257)z 4 €02

_ 2(z—0.6397)
T 2212794z + 0.8187°

5.2 Properties of the z-Transform 139

5.2 Properties of the z-Transform

In this section, we study some important properties of the z-transform. These
properties are widely used in deriving the z-transform functions of difference
equations and solving the system output responses of linear digital systems with
constant system coefficients, which will be discussed in the next chapter.
Linearity: The z-transform is a linear transformation, which implies

Z(axy(n) 4+ bxy(n)) = aZ(x1(n)) + bZ(x2(n)), (5.2)

where x;(n) and x,(n) denote the sampled sequences, while @« and b are the
arbitrary constants.

Example 5.4.
a. Find the z-transform of the sequence defined by
x(n) = u(n) — (0.5)"u(n).
Solution:
a. Applying the linearity of the z-transform previously discussed, we have
X(2) = Z(x(m) = Z(u(w)) — Z(0.5"(n)).
Using Table 5.1 yields
z
Z(u(n)) = —

z
z—0.5
Substituting these results into X(z) leads to the final solution,

and Z(0.5"u(n)) =

z z
z—1 z-0.5"
Shift theorem: Given X(z), the z-transform of a sequence x(n), the z-transform of
x(n — m), the time-shifted sequence, is given by

Z(x(n —m)) = z7"X(z2). (5.3)

Note that if m=0, then x(n —m) is obtained by right shifting x(n) by m
samples. Since the shift theorem plays a very important role in developing
the transfer function from a difference equation, we verify the shift theorem
for the causal sequence. Note that the shift thoerem also works for the
noncausal sequence.

Verification: Applying the z-transform to the shifted causal signal x(n — m)
leads to

X(2) =

140 S5 THE Z-TRANSFORM

Z(x(n —m)) = i x(n —m)z™"

n=0
=x(—mz %+ . +x(= Dz 4 x0)z"" + x(Dz" " ...

Since x(n) is assumed to be a causal sequence, this means that
x(—m=x(—m+1)=...=x(-1)=0.
Then we achieve
Z(x(n —m)) = x(0)z7" + x()z" ' + x(2)z"" 2+ (5.4)

Factoring z=” from Equation (5.4) and applying the definition of z-transform of
X(z), we get

Z(x(n —m)) =z (x(0) + x()z " +x2)z 2 +...) = 27" X(2).

Example 5.5.

a. Determine the z-transform of the following sequence:

) = (0.5)"-u(n - 5),
where u(n — 5) =1forn > 5 and u(n — 5) = 0 for n < 5.
Solution:

a. We first use the shift theorem to have
Y(z) = Z[(O.S)"ﬁsu(n — 5)] = 27°7[(0.5)"u(n)].

Using Table 5.1 leads to

z 274

205 z-05"

Convolution: Given two sequences xj(n) and x,(n), their convolution can be
determined as follows:

Y(z) =z

x(m) = xi(n)exs(n) = x1(n — k)xa(k), (5.5)
k=0

where * designates the linear convolution. In z-transform domain, we have
X(z) = Xi(29)X2(2). (5.6)
Here, X(z) = Z(x(n)), Xi(2) = Z(x1(n)), and X>(z) = Z(x2(n)).

5.2 Properties of the z-Transform 141

Example 5.6.
a. Verify Equation (5.5) using causal sequences x{(n) and x,(n).
Solution:

a. Taking the z-transform of Equation (5.5) leads to

X(2)=> x(mz" =Y xi(n— k)xxk)z".
n=0 n=0 k=0

This expression can be further modified to

X(z) = i i x2(k)z % x1(n — k)z=" P,

n=0 k=0

Now interchanging the order of the previous summation gives
X(2) =Y xk)z™*> xin = k=",
k=0 n=0
Now, let m =n — k:

X(z) = Z x2(k)z7F Z x1(m)z".
k=0

m=0
By the definition of Equation (5.1), it follows that
X(2) = X2(2)X1(2) = Xi(2)Xa(2).

Example 5.7.
Given two sequences,

x1(n) = 36(n) + 26(n — 1)
x(n) =28(n) —é(n— 1),

a. Find the z-transform of their convolution:
X(2) = Z(x1(n)xx2(n)).

b. Determine the convolution sum using the z-transform:

x(n) = 31 (xa(n) = 3 x1(paln — k).
k=0

142 5 THE Z-TRANSFORM

Solution:

a. Applying z-transform to x;(n) and x;(n), respectively, it follows that
Xi(z)=3+2z"!
Xo(z)=2—-z"1.
Using the convolution property, we have

X)) =X0X(2)=3+2"H2 -z
=6+z ' —2:2

b. Applying the inverse z-transform and using the shift theorem and line 1 of
Table 5.1 leads to

x(n)=Z"(64+z7"—227%) = 68(n) +8(n — 1) — 28(n — 2).
The properties of the z-transform discussed in this section are listed in Table 5.2.
5.3 Inverse z-Transform

The z-transform of the sequence x(n) and the inverse z-transform of the function
X(z) are defined as, respectively,

X(2) = Z(x(n)) (5.7)
and x(n) = Z (X (2)), (5.8)
where Z() is the z-transform operator, while Z~!() is the inverse z-transform

operator.
The inverse z-transform may be obtained by at least three methods:

1. Partial fraction expansion and look-up table
2. Power series expansion

3. Residue method.

TABLE 5.2 Properties of z-transform.

Property Time Domain z-Transform
Linearity axy(n) + bxy(n) aZ(x1(n)) + bZ(x2(n))
Shift theorem x(n —m) ~ z7"X(2)

Linear convolution x1(n)xxa(n) = > x1(n — k)xa(k) X1(2)X3(2)

k=0

5.3 Inverse z-Transform 143

The first method is widely utilized, and it is assumed that the reader is well
familiar with the partial fraction expansion method in learning Laplace trans-
form. Therefore, we concentrate on the first method in this book. As for the
power series expansion and residue methods, the interested reader is referred to
the textbook by Oppenheim and Schafer (1975). The key idea of the partial
fraction expansion is that if X(z) is a proper rational function of z, we can
expand it to a sum of the first-order factors or higher-order factors using the
partial fraction expansion that could be inverted by inspecting the z-transform
table. The partial fraction expansion method is illustrated via the following
examples. (For simple z-transform functions, we can directly find the inverse z-
transform using Table 5.1.)

Example 5.8.

Find the inverse z-transform for each of the following functions:

4z z
a. X(Z)72+Z—1_Z_05
2
b. X(z) = > 7 - 2
10z
CX@)=m——
¢ (Z) 22—Z+1
_4 =3
— z —6 :
d X@=_—7+7"+ 43
Solution:
_ oyl) -z (=
a. x(n)=27Z"(1) +4Z (2_1) z <z—0.5>'

From Table 5.1, we have
x(n) = 28(n) + 4u(n) — (0.5)"u(n).

_ -1 5z —1 2z _ —1 z 2 -1 0.5z
b x(n) =2 ((z—lf) -z ((z—0.5>2> =57 ((z—lf) i ((z—o.S)Z)‘

Then x(n) = 5nu(n) — 4n(0.5)"u(n).

c. Since X(z) = - 10z < 10) sin (a)z
z

241 sin(a)) z2 —2zcos(a) + 1
by coefficient matching, we have
—2cos(a) = —1.

Hence, cos (@) = 0.5, and a = 60°. Substituting ¢ = 60° into the sine func-
tion leads to

144 5 THE Z-TRANSFORM

sin (@) = sin (60°) = 0.866.

Finally, we have

0o __ sin (a)z . 0
_ 7 1 — .
X0 = G <22 —2zcos(a) + 1) 0.866 (7 60)
= 11.547 sin (n - 60°).
d. Since
_ 1. -5 Z —1(.—6 1 -4 2
x(n) =272 (Z —Z_1>+Z (Z 1)+Z (2 z+0.5>’

using Table 5.1 and the shift property, we get
x(n) = u(n — 5) + 8(n — 6) + (— 0.5)" *u(n — 4).

Now, we are ready to deal with the inverse z-transform using the partial fraction
expansion and look-up table. The general procedure is as follows:

1. Eliminate the negative powers of z for the z-transform function X(z).

2. Determine the rational function X(z)/z (assuming it is proper), and apply
the partial fraction expansion to the determined rational function X(z)/z
using the formula in Table 5.3.

3. Multiply the expanded function X(z)/z by z on both sides of the equation
to obtain X(z).

4. Apply the inverse z-transform using Table 5.1.
The partial fraction format and the formula for calculating the constants are
listed in Table 5.3.

TABLE 5.3 Partial fraction(s) and formulas for constant(s).

Partial fraction with the first-order real pole:

R X(2)
R=(z~-p)
zZ—p z =
Partial fraction with the first-order complex poles:
A A* X
F 2 A=(- P~
(z—P) (z—P zZ |,_p

P* = complex conjugate of P
A* = complex conjugate of 4
Partial fraction with mth-order real poles:
R Ry R 1 d!
m m 12 . 1 _ R, = .
C—p (-p) c—p) (k—Dldz

(- ™)

z=p

5.3 Inverse z-Transform 145

Example 5.9 considers the situation of the z-transform function having first-
order poles.

Example 5.9.

a. Find the inverse of the following z-transform:

1

YO =g a0

Solution:

a. Eliminating the negative power of z by multiplying the numerator and
denominator by z? yields
2

zZ
YO = a0 ha o051
72
T - DE-03)
Dividing both sides by z leads to
X(@) z

2z (z—=D(z-05)
Again, we write
X(2) _ A n B .
z z—-1) (z-0.5)

Then A and B are constants found using the formula in Table 5.3, that is,

B X@@)| z B
A=C-D z |, (z—-0.5) 221_2’
X(2) z
B=(z-0.5 = =—1.
(Z) Z =05 (Z - 1) z=0.5
Thus
Xz 2 -1

z (z- 1)+(z—0.5)‘
Multiplying z on both sides gives
2z -z
(z— 1)+(z—0.5)'
Using Table 5.1 of the z-transform pairs, it follows that

X(z) =

146 S5 THE Z-TRANSFORM

TABLE 5.4 Determined sequence in Example 5.9.

n 0 1 2 3 4 9
x(n) 1.0 1.5 1.75 1.875 1.9375 .. 2.0

x(n) = 2u(n) — (0.5)"u(n).

Tabulating this solution in terms of integer values of n, we obtain the
results in Table 5.4.

The following example considers the case where X(z) has first-order complex
poles.
Example 5.10.
a. Find y(n) if Y(z) =

Solution:

2(z+1)
(z—D(2-z+0.5)

a. Dividing Y(z) by z, we have

Y(z) zZ(z+1)
2 (z—=1)2=2z4+0.5)

Applying the partial fraction expansion leads to

Yo _ B, A . A
z z—1 (z—=05-/05 (z—05+,0.5)

We first find B:

o zz+ D)
., (2—z+0.5)

CIx(1+1)
, (12=1+05)

Notice that 4 and 4* form a complex conjugate pair. We determine A4 as

follows:
Y(2) z(z+1)

2:0.5+j0,5_ (z—=1)(z—-0.54,0.5) 05405

A=(z—0.5—0.5)

B (0.5 4 j0.5)(0.5 + j0.5 + 1) ~(0.5+70.5)(1.5 +0.5)
~(0.540.5—-1)(0.54,0.5—-0.54+,0.5) (—0.5+,0.5)

Using the polar form, we get

_ (0.707/45°)(1.58114/18.43°)
- (0.707/135°)(1/90°)
A" = A=1.58114/161.57°.

= 1.58114/—161.57°

5.3 Inverse z-Transform 147

Assume that a first-order complex pole has the form
P=0.5+0.5 =|P|/6 =0.707/45° and P* = |P|/— 6 = 0.707/ — 45°.
We have

4z n Az i A*z
z—1 (z—P) (z— P’

Applying the inverse z-transform from line 15 in Table 5.1 leads to

m(Z o Az A*z
W) =42 <z— 1) Tz <(Z—P)+(Z—P*)>'

Y(2) =

Using the previous formula, the inversion and subsequent simplification
yield

y(n) = 4u(n) + 2|A|(|P|)" cos (nf + d)u(n)
= 4u(n) + 3.1623(0.7071)" cos (45°n — 161.57%)u(n)”

The situation dealing with the real repeated poles is presented in Example 5.11.

Example 5.11.
a. Find x(n) if X(z) =

Solution:

2

(z— 1)z —0.5%

a. Dividing both sides of the previous z-transform by z yields
X(2) z A B C
= 5= + + 5,
z z—1D(E—-05" z—1 z-05 (z-0.5)

X(2)

o z
—1 (z—-0.5)

Using the formulas for mth-order real poles in Table 5.3, where m = 2 and
p = 0.5, to determine B and C yields

S LY R e R(C)
B=R=5y dz{(z 0.5 }20'5

d _
T dz (Zi 1) ‘:0.5: (z —11)2‘;0.5: -

where 4 = (z — 1)

z=1

148 5 THE Z-TRANSFORM

1—1) d=0
— ~ 1.
z— 1l:=05
4 4 ~1
Then X(z) = —— + — = : (5.9)

z—1 z—0.5+(z_o,5)2'

The inverse z-transform for each term on the right-hand side of Equation
(5.9) can be achieved by the result listed in Table 5.1, that is,

z" {Zi 1} = un),

2 gs) = 03w

Z_l{(z—z()S)z} = 2n(0.5)"u(n).

From these results, it follows that
x(n) = 4u(n) — 4(0.5)"u(n) — 2n(0.5)"u(n).
5.3.1 Partial Fraction Expansion Using MATLAB

The MATLAB function residue() can be applied to perform the partial fraction
expansion of a z-transform function X(z)/z. The syntax is given as

[R,P,K] = residue(B,A).

Here, B and A are the vectors consisting of coefficients for the numerator and
denominator polynomials, B(z) and A4(z), respectively. Notice that B(z) and A(z)
are the polynomials with increasing positive powers of z.

B(2) B b()ZM + bleil + szMiz + ...+ by
A(z) N4 azN- V4 az 2+ +ay

The function returns the residues in vector R, corresponding poles in vector P,
and polynomial coefficients (if any) in vector K. The expansion format is
shown as

B(z) n Vz

= ot kot kizT 4
10 - i, T TRtk

5.3 Inverse z-Transform 149

For a pole p; of multiplicity m, the partial fraction includes the following terms:

B(z r; I
() -+ J + Jj+1 .
AG) 2P (z-py)

Vitn, _
S 44kt ki
(z—p)

+ ...+

Example 5.12.

Find the partial expansion for each of the following z-transform functions:

vior 1
a. X(z)= (1—z (1 —0.5z1)
B 2z +1)
b. Y(Z) - (Z _])(22 —z+ 05)
72
c. X(2)= (z — 1)(z — 0.5)
Solution:

a. From MATLAB, we can show the denominator polynomial as
> conv([1 —1], [1 —0.5])
D pu—
1.0000 —1.5000 0.5000

This leads to

1 B 1 B z?
(1—zH)1-05z1) 1-1514052 22-15:4+0.5
X z

z 22152405

From MATLAB, we have
> |R,P,K] = residue(|1 0], [1 —1.5 0.5])

X(z) =

and

150 5 THE Z-TRANSFORM

Then the expansion is written as

2z z

z—1 z-05

X(z) =

b. From the MATLAB
> N = conv([1 0 0], [1 1])
N =
1100
> D = conv([1 —1], [1 —1 0.5])
D=
1.0000 —2.0000 1.5000 —0.5000
we get

2(z+1) B 2+ 22
=12 —-2z+05) z3-22241.52-0.5
Y(z) 224z

z 3 -2224152-05"

Using the MATLAB residue function yields
> [R,P,K] = residue(]1 1 0], [1 -2 1.5 —0.5])
R =
4.0000

—1.5000 — 0.5000i

—1.5000 + 0.5000i
P=

1.0000

0.5000 + 0.5000i

0.5000 — 0.5000i
K =

Il

Y(2) =

and

>

Then the expansion is shown as:

Bz Az Az
|

X(z) = + >
Zz—=p1 Z—p Z-—Pp
where B = 4,
p1=1,
A=-15-0.5j,
p=0.54+0.5j,

A" =—-1.5+0.5j, and
p=0.5-0.5.

C.

5.4 Solution of Difference Equations Using the z-Transform 151

Similarly,

> D = conv(conv([1 —1],[1 —0.5]),[1 —0.5)
D=
1.0000 — 2.0000 1.2500 — 0.2500

z? z2

then X (z) =

(z—1)(z—057 2 —222+1252—025
() _ z
—2224+1.25z—-0.25

From MATLAB, we obtain
> [R,P,K] = residue([1 0], [1 —2 1.25 — 0.25])
R =

we yield

4.0000
—4.0000
—1.0000

P=
1.0000
0.5000
0.5000

K =
Il

>

Using the previous results leads to

4z 4z z

X(Z)ZZ—I_Z—O.S_(Z_Oj)Z'

and

5.4 Solution of Difference Equations

Using the z-Transform

Z(y(n—1)) = Zy(n ~ Dz

=y(— D+ p0)z" +p()z7 +

=y(— D +z'(0) +p(D)z" + 32z +

To solve a difference equation with initial conditions, we have to deal with time-
shifted sequences such as y(n — 1), y(n —2), ...
examine the z-transform of these terms. Using the definition of the z-transform,
we have

, y(n —m), and so on. Let us

)

152 5 THE Z-TRANSFORM

It holds that

Z(yn—1) =y(— D+ z1Y(2). (5.10)

Similarly, we can have
Z(y(n—2) = Zy(n —2)z"

=p(=2)+y(— Dz + 30z + p()z 7 +
=p(=2)+y(— Dz +z2(0O0) + p(Dz + (222 + L)

Zyn—2) =p(=2)+y(— Dz ' +272Y(2) (5.11)
Zyn—m)) =p(—m)+y(—m+ Dz + .+ y(— Dz "D
+z"Y(2), (5.12)

where y(—m), y(—m+1),..., y(— 1) are the initial conditions. If all initial
conditions are considered to be zero, that is,

W—-—my=y(—m+1)=...9(—1)=0, (5.13)
then Equation (5.12) becomes
Z(y(n—m)) =z"Y(2), (5.14)

which is the same as the shift theorem in Equation (5.3).
The following two examples serve as illustrations of applying the z-transform
to find the solutions of the difference equations. The procedure is:

1. Apply z-transform to the difference equation.

2. Substitute the initial conditions.

3. Solve for the difference equation in z-transform domain.
4

. Find the solution in time domain by applying the inverse z-transform.

Example 5.13.
A digital signal processing (DSP) system is described by the difference equation
y(n) —0.5p(n — 1) = 5(0.2)"u (n).
a. Determine the solution when the initial condition is given by y(— 1) = 1.

Solution:

a. Applying the z-transform on both sides of the difference equation and
using Equation (5.12), we have

5.4 Solution of Difference Equations Using the z-Transform 153

Y(2) = 0.5(0(— D)+ z7'Y(2)) = 5Z(0.2"u(n)).
Substituting the initial condition and Z(0.2"u(n)) = z/(z — 0.2), we achieve
Y(2) - 0.5(1+z7'Y(2) = 5z/(z — 0.2).
Simplification yields
Y(z) — 0.5z7'Y(2) = 0.5+ 5z/(z — 0.2).

Factoring out Y(z) and combining the right-hand side of the equation, it
follows that

Y(z)(1 —0.5271) = (5.52 = 0.1)/(z — 0.2).
Then we obtain
(5.5z-0.1) z(5.5z = 0.1)
Y(2) = = .
(1-05z"1Hz-02) (z—-0.5((z-0.2)
Using the partial fraction expansion method leads to

Y(z) 5.5z —-0.1 A L+ B
z (z—05)(z-02) z—-05 z-02’

where
Y(2) 5.52—0.1 5.5%0.5—0.1
A=(z-05 T 22t T T 88333
E=09= T2 |, 05-02 ’
Y(2) 55— 0.1 55%02-0.1
B=(z—02 =T S e T T 33333,
=097 =03 ‘20.2 02-105
Thus

8.8333z n —3.3333z
(z—0.5) (z—-0.2)°

Y(2) =

which gives the solution as

1(n) = 8.3333(0.5)"u(n) — 3.3333(0.2)"u(n).

Example 5.14.

A relaxed (zero initial conditions) DSP system is described by the difference
equation

y(m)+0.1y(n —1) — 0.2y(n — 2) = x(n) + x(n — 1).

154

5 THE Z-TRANSFORM

Determine the impulse response p(n) due to the impulse sequence
x(n) = 6(n)

Determine system response y(n) due to the unit step function excitation,
where u(n) = 1 for n=0.

Solution:

a. Applying the z-transform on both sides of the difference equations and

using Equation (5.3) or Equation (5.14), we yield
Y()+0.1Y(2)z ' —02Y()z 2 = X(2) + X(2)z . (5.15)

Factoring out Y(z) on the left side and substituting X (z) = Z(6(n)) = 1 to
the right side in Equation (5.15) achieves

Y(2)(1 401z =022 = 1(1 4+ z71).
Then Y(z) can be expressed as

1 +z7!
1+01z71-0.2z2"
To obtain the impulse response, which is the inverse z-transform of the

transfer function, we multiply the numerator and denominator by z.
Thus

Y(2)=

22+z z(z+1)

YO = 0102 " G- 04G+05)

Using the partial fraction expansion method leads to
Y(z) z+41 ! n B
z (z—04)(z+05 z-04 z4+05’

Y 1 0.4+ 1
where 4 — (z — 0423 _ + ‘ At 5556
ou ZH05|._, 04+05
Y(2) Z41 0.5+ 1
B= : = = 2T 0.5556.
s . 0.4'2__0_5 —05-04
Thus

15556z ~0.5556
(z—04) (z+05)°

which gives the impulse response:

y(n) = 1.5556(0.4)"u(n) — 0.5556(— 0.5)"u(n).

Y(2)=

5.5 Summary 155

b. To obtain the response due to a unit step function, the input sequence is

set to be
x(n) = u(n)
and the corresponding z-transform is given by
X(@)=——.
z—1

and notice that
Y(2)4+01Y(2)z ' —02Y(2)z% = X(2) + X(2)z .

Then the z-transform of the output sequence y(n) can be yielded as

_(z 14z} B 2(iz+1)
Y() = (z — 1) <1 +0.1z71 - 0.22—2> (2= —=04)(z+0.5)

Using the partial fraction expansion method as before gives
22222z —1.0370z —0.1852z

z—1 + z—04 + z+0.5 7
and the system response is found by using Table 5.1:

y(n) = 2.2222u(n) — 1.0370(0.4)"u(n) — 0.1852(— 0.5)"u(n).

Y(z) =

5.5 Summary

1.

The one-sided (unilateral) z-transform was defined, which can be used to
transform any causal sequence to the z-transform domain.

The look-up table of the z-transform determines the z-transform for a
simple causal sequence, or the causal sequence from a simple z-transform
function.

The important properties of the z-transform, such as linearity, shift the-
orem, and convolution, were introduced. The shift theorem can be used to
solve a difference equation. The z-transform of a digital convolution of
two digital sequences is equal to the product of their z-transforms.

The method of the inverse z-transform, such as the partial fraction expan-
sion, inverses the complicated z-transform function, which can have first-
order real poles, multiple-order real poles, and first-order complex poles
assuming that the z-transform function is proper. The MATLARB tool was
introduced.

156 5

5.

5.6

5.1

5.2.

5.3.

5.4.

THE Z-TRANSFORM

The application of the z-transform solves linear difference equations
with nonzero initial conditions and zero initial conditions.

Problems

Find the z-transform for each of the following sequences:
x(n) = 4u(n)

b. x(n) = (—0.7)"u(n)

c. x(n) = 4e *"u(n)

d. x(n) = 4(0.8)" cos (0.17n)u(n)

x(n) = 4e=¥ sin (0.17n)u(n).

o

o

Using the properties of the z-transform, find the z-transform for each
of the following sequences:

a. x(n) = u(n) + (0.5)"u(n)

b. x(n) = e 3" cos (0.17(n — 4))u(n — 4),
where u(n — 4) = 1 for n=4 while u(n — 4) = 0 for n < 4.

Given two sequences,
x1(n) = 56(n) — 26(n — 2) and
x2(n) = 36(n — 3),

a. determine the z-transform of convolution of the two sequences using
the convolution property of z-transform

X(z) = X1(2)Xz2(2);

b. determine convolution by the inverse z-transform from the result
in (a)
xX(n) = 271 (X1(2)X2(2)).-

Using Table 5.1 and z-transform properties, find the inverse z-transform
for each of the following functions:

10z z
& X@=4-"—-705
-5z 10z 2z

b. X(z) =

(z— 1)+(z— 1)2+(z—0.8)2

5.5.

5.6.

5.7.

5.8.

5.6 Problems 157

z
X)) =——mor-o-o——
c. X@) 22412241
474 z1 z73
. X)) = -3
d. X@) z—1+(2_1)2+z +z—0.5

Using the partial fraction expansion method, find the inverse of the
following z-transforms:

1
& X@) = 5532004
A
b XO =109
zZ
¢ XO =@ 503
d X() = z(z 4+ 0.5)

(z —0.1)*(z - 0.6)
A system is described by the difference equation
y(n) + 0.5p(n — 1) = 2(0.8)"u(n).

Determine the solution when the initial condition is y(— 1) = 2.

A system is described by the difference equation
y(n) — 0.5p(n — 1) + 0.06y(n — 2) = (0.4)" 'u(n — 1).

Determine the solution when the initial conditions are y(— 1) = 1 and
W(=2)=2.

Given the following difference equation with the input-output relation-
ship of a certain initially relaxed system (all initial conditions are zero),

y(n) —0.7y(n — 1)+ 0.1p(n — 2) = x(n) + x(n — 1),

a. find the impulse response sequence y(n) due to the impulse sequence
8(n);

b. find the output response of the system when the unit step function
u(n) is applied.

158 5 THE Z-TRANSFORM

5.9. Given the following difference equation with the input-output relation-
ship of a certain initially relaxed DSP system (all initial conditions are
Zer0),

y(n) —04y(n — 1)+ 0.29y(n — 2) = x(n) + 0.5x(n — 1),

a. find the impulse response sequence y(n) due to an impulse sequence
6(n);

b. find the output response of the system when a unit step function u(r)
is applied.
Reference

Oppenheim, A. V., and Schafer, R. W. (1975). Discrete-Time Signal Processing. Englewood
Cliffs, NJ: Prentice Hall.

Digital Signal Processing Systems,
Basic Filtering Types, and Digital
Filter Realizations

Objectives:

This chapter illustrates digital filtering operations for a given input sequence;
derives transfer functions from the difference equations; analyzes stability of the
linear systems using the z-plane pole-zero plot; and calculates the frequency
responses of digital filters. Then the chapter further investigates realizations of
the digital filters and examines spectral effects by filtering speech data using the
digital filters.

6.1 The Difference Equation and Digital
Filtering

In this chapter, we begin with developing the filtering concept of digital signal
processing (DSP) systems. With the knowledge acquired in Chapter 5, dealing
with the z-transform, we will learn how to describe and analyze linear time-
invariant systems. We also will become familiar with digital filtering types and
their realization structures. A DSP system (digital filter) is described in Figure 6.1.

Let x(n) and y(n) be a DSP system’s input and output, respectively. We can
express the relationship between the input and the output of a DSP system by
the following difference equation:

y(n) =box(n) + byx(n — 1) + - - + by x(n — M) ©.1)
—ajy(n—1)—--- —ayy(n—N) ’ '

160 6 DIGITAL SIGNAL PROCESSING SYSTEMS

Digital input Digital output
X(n) Digital filter)

(digital filtering)

FIGURE 6.1 DSP system with input and output.

where b;, 0 <i < M and a;, 1 <j < N, represent the coefficients of the system
and # is the time index. Equation (6.1) can also be written as

M N
y) =Y bix(n—i) = ajy(n—)). (6.2)
i=0 J=1

From Equations (6.1) and (6.2), we observe that the DSP system output is the
weighted summation of the current input value x(n) and its past values:
x(n—1), ..., x(n— M), and past output sequence: y(n—1), ..., y(n — N).
The system can be verified as linear, time invariant, and causal. If the initial
conditions are specified, we can compute system output (time response) y(7)
recursively. This process is referred to as digital filtering. We will illustrate
filtering operations by Examples 6.1 and 6.2.

Example 6.1.
Compute the system output
y(n)=05y(mn—2)+x(n—1)
for the first four samples using the following initial conditions:
a. initial conditions: y(—2)=1, y(—1)=0, x(—1)=—1, and input
x(n) = (0.5)"u(n).

b. zero initial conditions: y(—2) =0, y(—1)=0, x(— 1) =0, and input
x(n) = (0.5)" u(n).

Solution:
According to Equation (6.1), we identify the system coefficients as
N:2,le,a1:O,a2:—0.5,b0:0,andb1:1.
a. Setting n = 0, and using initial conditions, we obtain the input and output
as
x(0) = (0.5)°u(0) = 1
y0)=05y(-2)+x(—1)=05-14+(—1)=-0.5.

6.1 The Difference Equation and Digital Filtering

Setting n = 1 and using the initial condition y(— 1) = 0, we achieve
x(1) = (0.5)" w(1)=0.5
1) =05p(—1)+x(0)=05-0+1=1.0.
Similarly, using the past output y(0) = —0.5, we get
x(2) = (0.5)% u(2) = 0.25
y(2) =0.59(0)+ x(1) =0.5- (= 0.5)+0.5=0.25
and with y(1)=1.0, we yield
x(3) = (0.5)° u(3) = 0.125
y3)=0.5y(1)+x2)=0.5-1+0.25=0.75

Clearly, y(n) can be recursively computed for n > 3.

. Setting n = 0, we obtain
x(0) = (0.5)° w(0) = 1
1(0)=0.59(—2)+x(—1)=0-1+0=0.
Setting n = 1, we achieve
x(1) = (0.5)" u(1) = 0.5
y)=05p(-1)+x0)=0-0+1=1
Similarly, with the past output y(0) = 0, we determine
x(2) = (0.5)% u(2) = 0.25
1(2) = 0.59(0) + x(1) = 0.5- 0+ 0.5 = 0.5
and with y(1) = 1, we obtain
x(3) = (0.5) u(3) = 0.125
3(3) = 0.59(1) + x(2) = 0.5 - 1 + 0.25 = 0.75

Clearly, y(n) can be recursively computed for n > 3.

Example 6.2.
Given the DSP system

y(n) =2x(n) —4x(n— 1) — 0.5y(n — 1) — y(n — 2)

161

162 6 DIGITAL SIGNAL PROCESSING SYSTEMS

with initial conditions y(—2)=1, y(—1)=0, x(—1)=—1, and the input
x(n) = (0.8)" u(n),

a. Compute the system response y(n) for 20 samples using MATLAB.

Solution:

a. Program 6.1 on the next page lists the MATLAB program for computing
the system response y(n). The top plot in Figure 6.2 shows the input
sequence. The middle plot displays the filtered output using the initial
conditions, and the bottom plot shows the filtered output for zero initial
conditions. As we can see, both system outputs are different at the
beginning portion, while they approach the same value later.

MATLAB function filter(), developed using a direct-form II realization (which
will be discussed in a later section), can be used to operate digital filtering, and
the syntax is

P — I T —
= ‘ | | | | | | | |
= : : ! : : ! : :
‘30'5 T TT ””” L N b
5 : ‘ : : ! :
- T??‘P‘P‘P@@ommmmmm
0 2 4 6 8 10 12 14 16 18 20
Sample number
10 T T T T T T T T T
< : : : : : : : : :
> | | ‘ | i | | | |
] 0-ffCLffa‘r9~¢~ar‘?f@~¢f@f«?f@@**@*@*G**@fef@"@f-
3 | | | | | | | | |
© 0 a a a a a a a a a
0 2 4 6 8 10 12 14 16 18 20
Number of samples, n; part (a)
T 1 N R R S B H
’E‘ : : | : | | | | |
Sop iy oegooooosososod
3 J) <I> | ! | | : : :
Q ! I} [} ! ! 1, ! ! [}
S *2 "1~ " v~ ~"~"~"" v~~~ 77 I O H I e [
o | | | | | | | | |
4 ; ; ; ; ; ; ; ; ;
0 2 4 6 8 10 12 14 16 18 20

Number of samples, n; part (b)

Part (a): response with initial conditions;

Part (b): response with zero initial conditions.

FIGURE 6.2 Plots of the input and system outputs y(n) for Example 6.2.

6.1 The Difference Equation and Digital Filtering

Program 6.1. MATLAB program for Example 6.2.

163

Example 6.2
Compute y(n) =2x(n) —4x(n—1) —0.5y(n—1) — 0.5y (n—2)

%$Nonzero initial conditions:

o
°
I
o

Sy(—2)=1,y(—1) =0, x(—1) =—1, andx(n) = (0.8)n*u(n)

y = zeros (1,20); %Set up a vector to store y(n)

v=[10vyl]; %$Set initial conditions of y(—2) andy(—1)

n=20:1:19; $Compute time indexes

x = (0.8)."n; %Compute 20 input samples of x (n)

x=1[0-1x]; %$Set initial conditionsof x(—2) =0andx(—1) =1
forn=1:20

y(n+2) =2"x(n+2) —4"x(n+1) — 0.5y (n+1) — 0.5y (n) ; $Compute 20 outputs
end

n=0:1:19

subplot (3,1,1);stem(n,x(3:22)) ;grid;ylabel ('Input x(n)’) ;
xlabel (‘Sample number’) ;

subplot(3,1,2); stem(n,y(3:22)),9rid;

xlabel ('Number of samples, n; part (a)’);ylabel (‘Output y(n)’);
y(3:22) %output y(n)

N o~

%Zero- initial conditions:

$y(=2) =0, y(-1) =0, x(=1) =0, andx(n) =1/(n+1)

y = zeros (1,20); %Set up a vector to store y (n)

yv=[00vy]; %$Set zero initial conditions of y(—2) and y(—1)
n=0:1:19; %$Compute time indexes

x = (0.8)."n; $Compute 20 input samples of x (n)

x=[00x]; %$Set zero initial conditionsof x(—2) =0andx(—1) =0
forn=1:20

y(n4+2) =2"x(n+2) —4*x(n+1) — 0.5y (n+1) — 0.5"y (n) ; $Compute 20 outputs
end

n=20:1:19

subplot (3,1,3);stem(n,y(3:22)),grid;
xlabel ('Number of samples, n; part (b)’);ylabel ('Output y(n)’);
y(3:22)%0utput y (n)

164 6 DIGITAL SIGNAL PROCESSING SYSTEMS

Zi = filtic(B, A,Yi, Xi)
y = filter(B, A, x, Zi),

where B and A are vectors for the coefficients b; and a;, whose formats are
A:[l ai az---aN]andB:[bo b1 bz bM],

and x and y are the input data vector and the output data vector, respectively.

Note that the filter function filtic() is a MATLAB function used to obtain
initial states required by the MATLAB filter function filter() (requirement by
a direct-form II realization) from initial conditions in the difference equation.
Hence, Z; contains initial states required for operating MATLAB function
filter(), that is,

Zi=[w(=Dw(=2)---],

which can be recovered by the MATLAB function, filtic(). X; and Y; are initial
conditions with a length of the greater of M or N, given by

Xi=[x(=Dx(=2) - Jand Vi =[p(=D y(=2) ---]
Especially for zero initial conditions, the syntax is reduced to
y = filter(B, A, x).

Let us verify the filter operation results in Example 6.1 using the MATLAB
functions. The MATLAB codes and results for Example 6.1 (a) with the non-
zero initial conditions are listed as

>B=[0 1;A=[l 0 —0.5]

>x=[l 05 025 0.125];

>Xi=[—-1 0 Yi=[0 1]

> Zi = filtie(B, A, Yi, Xi);

>y = filter(B, A, x, Zi)

y =
—0.5000 1.0000 0.2500 0.7500
>

For the case of zero initial conditions in Example 6.1(b), the MATLAB codes
and results are

6.2 Difference Equation and Transter Function 165

>B=[01A=[10 —0.5];
> x=[10.50.250.125];
>y = filter(B, A, x)

y =

0 1.0000 0.5000 0.7500
>

As we expected, the filter outputs match those in Example 6.1.

6.2 Difference Equation and Transfer
Function

To proceed in this section, Equation (6.1) is rewritten as
y(n) = box(n) + bix(n — 1) + - - - 4 by x(n — M)
—aiy(n—1) —---—ayy(n — N).

With an assumption that all initial conditions of this system are zero, and with
X(z) and Y(z) denoting the z-transforms of x(n) and y(n), respectively, taking the
z-transform of Equation (6.1) yields

Y(2) =boX(@) + b1 X@z ' + -+ by X ()2

6.3
—aq Y@z ' = —ayY(@)z N 6:3)
Rearranging Equation (6.3), we yield
Y Sl ST -M p
Hiey = 2@ _bothz +tbuz T BE) (6.4)

Xz l+az'+-+ayz ¥ A’

where H(z) is defined as the transfer function with its numerator and denomin-
ator polynomials defined below:

B(z)=bo+biz"" + -+ byzM (6.5)
A =14a;z '+ +ayz". (6.6)
Clearly the z-transfer function is defined as

z-transform of the output

ratio = - .
z-transform of the input

In DSP applications, given the difference equation, we can develop the
z-transfer function and represent the digital filter in the z-domain as shown in

166 6 DIGITAL SIGNAL PROCESSING SYSTEMS

z-transform input z-transform output
X(2) o . Y(2)
Digital filter transfer function
H(2)

FIGURE 6.3 Digital filter transfer function.

Figure 6.3. Then the stability and frequency response can be examined based on
the developed transfer function.

Example 6.3.
A DSP system is described by the following difference equation:
y(n) = x(n) —x(n—2)—13y(n—1) — 0.36y(n — 2).
a. Find the transfer function H(z), the denominator polynomial A(z), and the
numerator polynomial B(z).
Solution:

a. Taking the z-transform on both sides of the previous difference equation,
we achieve

Y(2)=X(2)— X2z 2 —-13Y()z' —0.36Y(z)z 2.

Moving the last two terms to the left side of the difference equation and
factoring Y(z) on the left side and X(z) on the right side, we obtain

Y(2)(1+ 13271 +0.36272) = (1 — z) X(2).

Therefore, the transfer function, which is the ratio of Y(z) to X(z), can be
found to be

Y(z) 1—z72
X2 1413214036272

From the derived transfer function H(z), we can obtain the denominator
polynomial and numerator polynomial as

A(z)=1+13z"140.36z"2 and
B(z)=1-2z"2

H(z) =

The difference equation and its transfer function, as well as the stability
issue of the linear time-invariant system, will be discussed in the following
sections.

6.2 Difference Equation and Transter Function 167

Example 6.4.
A digital system is described by the following difference equation:
y(n) = x(n) — 0.5x(n — 1) + 0.36x(n — 2).
a. Find the transfer function H(z), the denominator polynomial A(z), and
the numerator polynomial B(z).
Solution:

a. Taking the z-transform on both sides of the previous difference equation,
we achieve

Y(z) = X(2) — 0.5X(2)z2 + 0.36 X (2)z 2.

Therefore, the transfer function, that is, the ratio of ¥(z) to X(z), can be

found as
_ Y@@ _ -1)
H(z) = Y0 1 -0.5z7"40.36z"".
From the derived transfer function H(z), it follows that
A(z) =1

B(z)=1-0.5z""+0.362"2

In DSP applications, the given transfer function of a digital system can be
converted into a difference equation for DSP implementation. The following
example illustrates the procedure.

Example 6.5.

Convert each of the following transfer functions into its difference equation.

a. H(z) = 2 — |
T 324036
z2 —0.52+0.36
b. H(z) = -
Solution:

a. Dividing the numerator and the denominator by z> to obtain the transfer
function whose numerator and denominator polynomials have the nega-
tive power of z, it follows that

(2 -1)/z? 1—z2

H(z) = = .
@ (22 +1.324+0.36)/z22 1+ 1.3z 1 +0.36z 2

168

6 DIGITAL SIGNAL PROCESSING SYSTEMS

We write the transfer function using the ratio of ¥(z) to X(z):
Y(z) 1 —z72
Xz 1413271403622

Then we have
Y(2)(1+1.3271 +0.36272) = X(2)(1 — z72).
By distributing ¥(z) and X(z), we yield
Y(2)+ 1.3z7'Y(2) + 0.36z72Y(2) = X(2) — 22X (2).

Applying the inverse z-transform and using the shift property in
Equation (5.3) of Chapter 5, we get

yn)+1.3y(m — 1)+ 0.36y(n — 2) = x(n) — x(n — 2).
Writing the output y(n) in terms of inputs and past outputs leads to
y(n) = x(n) —x(n—2) —13y(n— 1) — 0.36y(n — 2).

. Similarly, dividing the numerator and denominator by z2, we obtain

Y2 (2 —0.5240.36)/*
X(2) z2/z2

Thus, Y(z) = X(z)(1 — 0.5z7" +0.36z72).

By distributing X(z), we yield

Y(2) = X(2) — 0.5z ' X(2) + 0.36272 X (2).

H(z) =1-0.5z""+0.36z2

Applying the inverse z-transform while using the shift property in Equa-
tion (5.3), we obtain

y(n) = x(n) — 0.5x(n — 1) + 0.36x(n — 2).
The transfer function H(z) can be factored into the pole-zero form:
_boz—z)(z—2)--- (2 = zm)
(z=p)z—p2)(z—pn)

where the zeros z; can be found by solving for the roots of the numerator
polynomial, while the poles p; can be solved for the roots of the denom-
inator polynomial.

H(2)

(6.7)

Example 6.6.

Given the following transfer function,

1 —z72

H(z) —
S e B T

6.2 Difference Equation and Transter Function 169

a. Convert it into the pole-zero form.
Solution:

a. We first multiply the numerator and denominator polynomials by z> to
achieve its advanced form in which both numerator and denominator
polynomials have positive powers of z, that is,

(1 —z2)z2 B 2 -1
(1+1.3z714036z72)z2 2241324036

H(z) =

Letting z2 — 1 =0, we get z= 1 and z = —1. Setting z> + 1.3z 4+ 0.36 = 0

leads to z = —0.4 and z = —0.9. We then can write numerator and de-
nominator polynomials in the factored form to obtain the pole-zero form:
-1 1
He - = DED

T 104z +009)

6.2.1 Impulse Response, Step Response, and
System Response

The impulse response /(7) of the DSP system H(z) can be obtained by solving its
difference equation using a unit impulse input 6(n). With the help of the z-
transform and noticing that X(z) = Z{6(n)} = 1, we yield

h(n) = Z'{H(2)X(2)} = Z ' {H(9)}. (6.8)

Similarly, for a step input, we can determine step response assuming the zero
initial conditions. Letting

z
XG) = Z[un)] = ——,
z—1
the step response can be found as
_ -1 z
) =2Z {H(Z)Z = 1}. (6.9)

Furthermore, the z-transform of the general system response is given by
Y(z) = H2)X(2). (6.10)

If we know the transfer function H(z) and the z-transform of the input X(z), we
are able to determine the system response y(n) by finding the inverse z-transform
of the output Y(z):

W) =Z Y ()} (6.11)

1770 6 DIGITAL SIGNAL PROCESSING SYSTEMS

Example 6.7.

Given a transfer function depicting a DSP system

H(z) = ,
Determine =05

a. the impulse response /(n),
b. the step response y(n), and
c. the system response y(n) if the input is given as x(n) = (0.25)" u(n).

Solution:

a. The transfer function can be rewritten as

Hz z+1 A4 B

z z(z—-05) z+z—0.5’

z+1 z+1

where A =———| = -2, and B= =3.
(z=0.5)]._ Z =05
Thus we have
H -2 3
() _-2, o

z z z—0.5
2 3 3z
HE@ = <_Z+z—o.5>z__2+z—0.5'

By taking the inverse z-transform as shown in Equation (6.8), we yield the
impulse response

h(n) = —26(n) + 3(0.5)" u(n).

. . z
b. For the step input x(n) = u(n) and its z-transform X(z) = T we can
determine the z-transform of the step response as =7

z+1 z
Y(2) = H(2)X(2) = o05:_1
Applying the partial fraction expansion leads to
Y(z) z4+1 4 n B
z (z-05z-1) z-05 z-1’
where
A= g =2l g

z—1|._s z—0.5]._,

C.

6.3 The z-Plane Pole-Zero Plot and Stability 171

The z-transform step response is therefore
-3z L 4z
z—05 z—-1°
Applying the inverse z-transform yields the step response as

y(n) = =3(0.5)" u(n) + 4 u(n).

Y(2)=

To determine the system output response, we first find the z-transform
of the input x(n),

z
then Y(z) can be yielded via Equation (6.10), that is,
z+1 z zZ(z+1)

Y(2) = H(2)X(z) =

205 2-025 (z—0.5)(z—025)
Using the partial fraction expansion, we have

Y(z) (z+1) B A B
z (z—05)(z—-025) (Z -0.5 + z— 0.25>

6z -5z
Y@ = (z ~05 Tz o 0.25>‘

Using Equation (6.11) and Table 5.1 in Chapter 5, we finally yield
y(n) = Z Y Y(2)} = 6(0.5)" u(n) — 5(0.25)" u(n).

The impulse response for (a), the step response for (b), and the system response
for (c) are each plotted in Figure 6.4.

6.3 The z-Plane Pole-Zero Plot and

Stability

A very useful tool to analyze digital systems is the z-plane pole-zero plot. This
graphical technique allows us to investigate characteristics of the digital system
shown in Figure 6.1, including the system stability. In general, a digital transfer
function can be written in the pole-zero form as shown in Equation (6.7), and we
can plot the poles and zeros on the z-plane. The z-plane is depicted in Figure 6.5
and has the following features:

. The horizontal axis is the real part of the variable z, and the vertical axis

represents the imaginary part of the variable z.

172 6 DIGITAL SIGNAL PROCESSING SYSTEMS

[0]

g 2 T T T T T T T T T

9 ; | | | | | | | |

% I I I I I I I I

m I I I I I I I I

S Q- P TAm i P ity

g Ny

2 RS S S G b

£

£ 0 1 2 3 4 5 6 7 8 9 10
A Sample number

8 4 : T ,)

< |

a

g 2r——A 1T

5]

oo
0 1 2 3 4 5 6 7 8 9 10
B Sample number

System response
-
A\~

& 4
8 9 10
ample number

0
0
C

FIGURE 6.4 Impulse, step, and system responses in Example 6.7.

2. The z-plane is divided into two parts by a unit circle.

3. Each pole is marked on the z-plane using the cross symbol x, while each
zero is plotted using the small circle symbol o.

Let’s investigate the z-plane pole-zero plot of a digital filter system via the
following example.

Example 6.8.
Given the digital transfer function

71— 0.5272
1+ 12271 +0.452-2°

H(z) =

a. Plot poles and zeros.
Solution:

a. Converting the transfer function to its advanced form by multiplying z*
to both numerator and denominator, it follows that

6.3 The z-Plane Pole-Zero Plot and Stability 173

Im(z)

Qutside of unit circle

X - pole

Inside of |unit circle
Re(z)

\ Unit circle

O - zero

FIGURE 6.5 z-plane and pole-zero plot.

HE) = (z7!' —0.5272)22 B z—0.5
T U121 10452922 24 1221045

By setting z> + 1.2z 4+ 0.45 = 0 and z — 0.5 = 0, we obtain two poles
p1=—0.6+,0.3
p»=p; =-0.6—-,0.3
and a zero z; = 0.5, which are plotted on the z-plane shown in Figure 6.6.
According to the form of Equation (6.7), we also yield the pole-zero form as
271 —0.5272 (z—10.5)
H(z) = = - , .
1+ 122714045272 (z+ 0.6 —j0.3)(z + 0.6 +0.3)

Im(z)

Re(z)

FIGURE 6.6 The z-plane pole-zero plot of Example 6.8.

174 6 DIGITAL SIGNAL PROCESSING SYSTEMS

Having zeros and poles plotted on the z-plane, we are able to study the
system stability. We first establish the relationship between the s-plane in
Laplace domain and the z-plane in z-transform domain, as illustrated in
Figure 6.7.

As shown in Figure 6.7, the sampled signal, which is not quantized, with a
sampling period of T is written as

o0

x()) =Y x(nT)s(t — nT)
n=0
= x(0)6(¢) + x(T)o(t — T) + x(2T)6(¢t — 2T) + (6.12)
Taking the Laplace transform and using the Laplace shift property as
L(8(t — nT)) = eI (6.13)
leads to
Xy(9) = > x(nT)e™™ = x(0)e™ " + x(T)e ™ + x2T)e " +.... (6.14)
n=0

Comparing Equation (6.14) with the definition of a one-sided z-transform of the
data sequence x(n) from analog-to-digital conversion (ADC):

o0

X(2) = Z(x(n)) = Z x(m)z " =x(0)z "+ x(Dz '+ x(2)z2+.... (6.15)
n=0

Clearly, we see the relationship of the sampled system in Laplace domain and its
digital system in z-transform domain by the following mapping:

z=e¢'T. (6.16)

x(t)
\QT f
»|Sampler M) O Xs)=3 x(nT)e-nsT
x(n) n=0
R —esT
v fTIT- . n t °=e
-L" o
Coding Z() X(2) :;)X(”)an

FIGURE 6.7 Relationship between Laplace transform and z-transform.

6.3 The z-Plane Pole-Zero Plot and Stability 175

Substituting s = —a =+ jw into Equation (6.16), it follows that z = e~*7*/*T In
the polar form, we have

z=e“T/+wT. (6.17)

Equations (6.16) and (6.17) give the following important conclusions.

If @ > 0, this means |z| = ¢7*T < 1. Then the left-hand half plane (LHHP) of
the s-plane is mapped to the inside of the unit circle of the z-plane. When « = 0,
this causes |z| = e=*T = 1. Thus the jw axis of the s-plane is mapped on the unit
circle of the z-plane, as shown in Figure 6.8. Obviously, the right-hand half
plane (RHHP) of the s-plane is mapped to the outside of the unit circle in the z-
plane. A stable system means that for a given bounded input, the system output
must be bounded. Similar to the analog system, the digital system requires that
all poles plotted on the z-plane must be inside the unit circle. We summarize the
rules for determining the stability of a DSP system as follows:

1. If the outermost pole(s) of the z-transfer function H(z) describing the DSP
system is(are) inside the unit circle on the z-plane pole-zero plot, then the
system is stable.

2. If the outermost pole(s) of the z-transfer function H(z) is(are) outside the
unit circle on the z-plane pole-zero plot, the system is unstable.

3. If the outermost pole(s) is(are) first-order pole(s) of the z-transfer function
H(z) and on the unit circle on the z-plane pole-zero plot, then the system is
marginally stable.

4. If the outermost pole(s) is(are) multiple-order pole(s) of the z-transfer
function H(z) and on the unit circle on the z-plane pole-zero plot, then
the system is unstable.

5. The zeros do not affect the system stability.

Jjo Im(2)

FIGURE 6.8 Mapping between s-plane and z-plane.

176 6 DIGITAL SIGNAL PROCESSING SYSTEMS

Notice that the following facts apply to a stable system (bounded-in/bounded-
out [BIBO] stability discussed in Chapter 3):

1. If the input to the system is bounded, then the output of the system will
also be bounded, or the impulse response of the system will go to zero in a
finite number of steps.

2. An unstable system is one in which the output of the system will grow
without bound due to any bounded input, initial condition, or noise, or its
impulse response will grow without bound.

3. The impulse response of a marginally stable system stays at a constant
level or oscillates between two finite values.

Examples illustrating these rules are shown in Figure 6.9.

Example 6.9.

The following transfer functions describe digital systems.

z+0.5
CHG) =
& HO = 05272509
22 40.25
CHGz) =
b HE) = =05 13- 7 29)
z+0.5
¢ HO =052 14142+ 1)
2
d. H() z=+z4+0.5

T G— 12+ Dz —06)

For each, sketch the z-plane pole-zero plot and determine the stability
status for the digital system.
Solution:

a. A zero is found to be z = —0.5.

Poles:z = 0.5, |z] =0.5 < 1;z=—-0.5+,0.5,

2| = \/(—0.5)2+(i0.5)2 =0.707 < 1.

The plot of poles and a zero is shown in Figure 6.10. Since the outermost
poles are inside the unit circle, the system is stable.

6.3 The z-Plane Pole-Zero Plot and Stability 177

Im(z) Z — h(m)=(0.5)"
Hz)= =55 y(n)=h(n)=(0.5)"u(n)
” Re(2)
y(n)=x(n)+0.5y(n-1) 1
0.5

x(n)=5(n) & 1 x(n) | Stable | | y(n) 0.25 0,125
e PFos
1 n L n
|01 2 ‘01 2 38 4
Im(z2) H(z) = —Z
R @)=7"75 y(n)=h(n)=(1.5)"u(n)
y(n)y=x(n)+1.5y(n-1) 3.375
2.25
x(n)=5(n) ¢ 1 x(n) _y| Unstable | y(n) 415 ¢ | -
[y Losen Ll
|01 2 101 2 3 4
Im(2) z
HZ2)=—= y(n)=h(n)=u(n)
Re(2) z
! y(n)=x(m) +y(n ~1) D111
x(n)=5(n) $ 1 x(n) _,| Marginally _by(n)T I I I
T o stable system .
1 n T T 1 n
|01 2 |01 2 3 4
|
m(2) Hiz)= Z
Re(2) Z1 ym=h(n)= 1))

y(n=x(n)-y(n-1) 1 1
y(n)
| |

X(n)=a(n) 9 1 x(n) | Marginally |,
------ stable system

HE)= 5y

Re(2) y(n)=h(n)=nu(n)
y(n)=x(n-1)+2y(n-1)-y(n-2) , 4
st f e |33]
L — n | I B
o1 2 lo1 234 "

FIGURE 6.9 Stability illustrations.

178 6 DIGITAL SIGNAL PROCESSING SYSTEMS

Im(z) Im(z)
AR

O Re(2) Re(z)
&j ’ W
A B

Im(z) Im(z)
@ Re(z) %g Re(z)
C D

FIGURE 6.10 Pole-zero plots for Example 6.9.
b. Zeros are z = + j0.5.
Poles:z=0.5, |z|=0.5<1; z=—1.5+ 0.5,
2] =1/ (1.5)*+(£0.5)> = 1.5811 > 1.

The plot of poles and zeros is shown in Figure 6.10. Since we have
two poles at z = —1.5 £+ 0.5, which are outside the unit circle, the
system is unstable.

c. A zero is found to be z = —0.5.

Poles:z = 0.5, |z| = 0.5 < 1; z = —0.707 £ j0.707,

2] = 1/ (0.707)+(£0.707)° = 1.

The zero and poles are plotted in Figure 6.10. Since the outermost
poles are first order at z = —0.707 + j0.707 and are on the unit circle,
the system is marginally stable.

d. Zeros are z = —0.5+ j0.5.

Poles:z=1, |z|=1;z=1, |z|=1;z=—-1, |z|=1;z=0.6,
|z| =0.6 < 1.

6.4 Digital Filter Frequency Response 179

The zeros and poles are plotted in Figure 6.10. Since the outermost pole is
multiple order (second order) at z =1 and is on the unit circle, the system
is unstable.

6.4 Digital Filter Frequency Response

From the Laplace transfer function, we can achieve the analog filter steady-state
frequency response H(jw) by substituting s = jw into the transfer function H(s).
That is,

H(s)|s—j,= H(jo).

s=jo

Then we can study the magnitude frequency response |H(jw)| and phase re-
sponse /H(jw). Similarly, in a DSP system, using the mapping Equation (6.16),
we substitute z = e*”| _ = ¢/*T into the z-transfer function H(z) to acquire the
digital frequency response, which is converted into the magnitude frequency

response |H(e/°T)| and phase response /|H(e/*T)|. That is,

H(2)|,_por= H(e/T) = \H(ef“’T)| (H(e'T). (6.18)
Let us introduce a normalized digital frequency in radians in digital domain
O =owT. (6.19)
Then the digital frequency response in Equation (6.18) would become
H(e'Y) = H(z)|,_ 0= |H(™)|/H (™). (6.20)

The formal derivation for Equation (6.20) can be found in Appendix D.
Now we verify the frequency response via the following simple digital filter.
Consider a digital filter with a sinusoidal input of the amplitude K (Fig. 6.11):

x(n) = K sin(nQ)u(n) y(n) = y(n) + Yes(N)
—PH(2=05+05z"1—""">

FIGURE 6.11 System transient and steady-state frequency responses.

We can determine the system output y(n), which consists of the transient
response y;(n) and the steady-state response yg(n). We find the z-transform

output as
0.5z4+0.5 Kzsin Q)
Y@ = < z) z2—2zcosQ+1° 6:21)

180 6 DIGITAL SIGNAL PROCESSING SYSTEMS

To perform the inverse z-transform to find the system output, we further rewrite
Equation (6.21) as

Y(z) (0.52+0.5 KsnQ 4 B B
N (z—e)(z—e)z z—e z eI’

z z

where A, B, and the complex conjugate B* are the constants for the partial
fractions. Applying the partial fraction expansion leads to

A =0.5Ksin)
p=02E 0 K iy prmen K
z el 2] %

Notice that the first part of constant B is a complex function, which is obtained
by substituting z = ¢/? into the filter z-transfer function. We can also express
the complex function in terms of the polar form:

0.5z4+0.5

z z=e/

=0.5+0.5z" ’z:e./ﬂ: H(Z)|._ 0= H(e!? = |H(e-/'Q)’e-fZH(‘-”m)’

where H(e/?) = 0.5+ 0.5¢ 7, and we call this complex function the steady-
state frequency response. Based on the complex conjugate property, we get
another residue as

B = |H(e/)| i K
)
The z-transform system output is then given by
Bz Bz

Y(2) =

_ejﬂ Z_efjﬂ

Taking the inverse z-transform, we achieve the following system transient and
steady-state responses:

J J K
y(n)= 05Ks1n98(n)+]H(efﬂ)]e“H(eﬂ) e’”Qu(n)+‘H(eJQ)| ~JHE) 5 ().
Uy ——
Yir(n) v
Vss(n)

Simplifying the response yields the form

Q- H (e u(n) — o —Q—j/H () u(n)

¥(n) = 0.5K sin Q8(n) + |H(e'™)|K 72

6.4 Digital Filter Frequency Response 181

We can further combine the last term using Euler’s formula to express the
system response as

y(n) = 0.5K sin Q8(n) +|H(™™)|K sin(nQ + /H (™)) u(n) .
|
vy Will decay to zero after the first sample Vss(n)

Finally, the steady-state response is identified as
yss(n) = K‘H(ejﬂ)‘ sin (nQ + ZH(ejQ)) u(n).

For this particular filter, the transient response exists for only the first sample in
the system response. By substituting » =0 into y(n) and after simplifying
algebra, we achieve the response for the first output sample:

1(0) = y,(0) + y5(0) = 0.5K sin () — 0.5K sin (Q) = 0.

Note that the first output sample of the transient response cancels the first
output sample of the steady-state response, so the combined first output sample
has a value of zero for this particular filter. The system response reaches
the steady-state response after the first output sample. At this point, we can
conclude:

Steady-state magnitude frequency response
Peak amplitude of steady-state response at ()
~ " Peak amplitude of sinusoidal input at)
|H(e/h)| K
T K
Steady-state phase frequency response = Phase difference = /H(e/®).

= [H(e™)|

Figure 6.12 shows the system responses with sinusoidal inputs at
Q =0.25m, Q=0.5m, and Q = 0.75w, respectively.

Next, we examine the properties of the filter frequency response H(e/?).
From Euler’s identity and trigonometric identity, we know that

=cos O +/sinQ = e/,

where £ is an integer taking values of k =0, +1, =42,...,. Then the frequency
response has the following property (assuming that all input sequences are real):

182 6 DIGITAL SIGNAL PROCESSING SYSTEMS

E‘ 2 —~)| Steady -state response | ' ' ' '
N | | | | |
% 0 (f(f@ :@@W@@ @@W@@: @@ﬁ@@ " oifo S
4 RV B VRV
Oo_ t i i i i i i ; ;
2 0 5 10 15 20 25 30 35 40 45 50
— 2
E% —_)l Steady state response | ' ! ! '
‘ﬁo@WWWWWWWWWWW@
5 OP 56,38 36 56 36 55 &6 &6 b6 &b 56 &b
<70 | S T U IR TS N S
o 5 10 15 20 25 30 35 40 45 50
s 2 T T T T
IIQ _‘_)| Steady state response | | | | |
% o 00 0 @ oh® ®on® 000 0 0nl® Qo @
g UUd) cbwcb d)wd> cbwcb cbwd> d)UUd><b
2 0 5 10 15 20 25 30 35 40 45 50

Sample number

FIGURE 6.12 The digital filter responses to different input sinusoids.

1. Periodicity
a. Frequency response: H(e/?) = H(e/(+k2m)
b. Magnitude frequency response: |H(e/?)| = |H(e/ 42|
c. Phase response: /H(e/) = /H(e/42m)

The second property is given without proof (see proof in Appendix D) as shown:

2. Symmetry
a. Magnitude frequency response: |H(e 7%)| = |H(e/")|
b. Phase response: /H(e 7*) = —/H(e/)

Since the maximum frequency in a DSP system is the folding frequency, f;/2,
where f; = 1/T and T designates the sampling period, the corresponding max-
imum normalized frequency can be calculated as

O =owT = 2#% x T = 7 radians. (6.22)

6.4 Digital Filter Frequency Response 183

The frequency response H(e/?) for |Q)| > 7 consists of the image replicas of
H(e™) for |Q|=m and will be removed via the reconstruction filter later. Hence,
we need to evaluate H(e/?) for only the positive normalized frequency range
from Q) = 0 to Q) = 7 radians. The frequency, in Hz, can be determined by

QO
f=5"ts (6.23)
T
The magnitude frequency response is often expressed in decibels, defined as
|H(e™)| 5= 2010gy, (|H (™)) (6.24)

The DSP system stability, magnitude response, and phase response are investi-
gated via the following examples.

Example 6.10.

Given the following digital system with a sampling rate of 8,000 Hz,
y(n) = 0.5x(n) + 0.5x(n — 1),

1. Determine the frequency response.
Solution:
1. Taking the z-transform on both sides of the difference equation leads to
Y(z) = 0.5X(2) + 0.5z 1 X (2).
Then the transfer function describing the system is easily found to be
H(z) = % =0.540.5z7".
Substituting z = ¢/, we have the frequency response as
H(™) = 0.5+ 0.5¢ 7
=0.540.5cos () — jO.5sin (€}).
Therefore, the magnitude frequency response and phase response are
given by

|H('™)| = \/ (0.5 + 0.5 cos (2))* + (0.5 sin (Q))>

and

JH(e®) = tan”! (—0.5sin () >

0.5+ 0.5cos ()

184 6 DIGITAL SIGNAL PROCESSING SYSTEMS

Several points for the magnitude response and phase response are calcu-
lated and shown in Table 6.1.

According to data, we plot the magnitude frequency response and phase
response of the DSP system as shown in Figure 6.13.
It is observed that when the frequency increases, the magnitude response
decreases. The DSP system acts like a digital lowpass filter, and its phase
response is linear.

TABLE 6.1 Frequency response calculations in Example 6.10.
Q (radians) f=4f(Hz) |H(e)| |H()| /H(e)
0 0 1.000 0 dB 0°
0.257 1000 0.924 —0.687dB —22.5°
0.507 2000 0.707 —3.012dB —45.00°
0.757 3000 0.383 —8.336dB —67.50°
1.007 4000 0.000 —00 —90°

% 07 777777 F---------< F--—------=< 4: 7777777777 | ———— ——4]

2 B 1o R e T S T bt BT e VNI PP R

8

8 20| ---mrmmme e EGREnC RECTEEEEEN SECPERER NS

! :

T 7777777777777777777777777777777777 -

g s

~4% 0.5 1 15 2 25 3

Frequency (rad)

-50

Phase response (degrees)

-100

FIGURE 6.13

Frequency (rad)

Frequency responses of the digital filter in Example 6.10.

6.4 Digital Filter Frequency Response 185

We can also verify the periodicity for |H(e/*)| and /H(e/*) when
QO =0257 + 27

|H (/02T H2m)| = \/ (0.5 + 0.5 cos (0.257 + 2)) + (0.5 sin (0.257 + 277))°
=0.924 = |H(/2)]

—0.5sin (0.257 + 27)
0.5+ 0.5cos(0.257 + 27)

ZH(ej(O'25W+27T)) — tan_l <) _ _2250 — ZH(ejO'ZSﬂ-).

For Q) = —0.257, we can verify the symmetry property as

|H(e %) = \/ (0.5 4 0.5cos (— 0.257))* + (0.5sin (— 0.257))>
= 0.924 = |H(/*PT)|

—0.5sin(— 0.257)
0.5+ 0.5cos(— 0.257)

/H(e"*™) = tan™" (> =22.5" = —/H(e/*P™).

The properties can be observed in Figure 6.14, where the frequency range
is chosen from = —27 to) =47 radians. As shown in the figure, the
magnitude and phase responses are periodic with a period of 27r. For a period

Magnitude response

; ;
2 4
Frequency (rad)

Phase response (degrees)

FIGURE 6.14 Periodicity of the magnitude response and phase response in Example
6.10.

186 6 DIGITAL SIGNAL PROCESSING SYSTEMS

between () = —a to) = 77, the magnitude responses for the portion () = —7 to
) = 0 and the portion) = 0 to {) = 7 are the same, while the phase responses
are opposite. The magnitude and phase responses calculated for the range from
Q=0 to Q) = carry all the frequency response information, hence are re-
quired for generating only the frequency response plots.

Again, note that the phase plot shows a sawtooth shape instead of a linear
straight line for this particular filter. This is due to the phase wrapping at
Q = 27 radians, since ¢/@k2™ — ¢/Q i5 ysed in the calculation. However, the
phase plot shows that the phase is linear in the useful information range from
Q =0 to) = 7 radians.

Example 6.11.
Given a digital system with a sampling rate of 8,000 Hz,
y(n) = x(n) = 0.5y(n — 1),
1. Determine the frequency response.
Solution:
1. Taking the z-transform on both sides of the difference equation leads to
Y(z) = X(2) — 0.5z Y (2).
Then the transfer function describing the system is easily found to be
Y(z) 1 oz
X(z) 14051 z+05
Substituting z = ¢/?, we have the frequency response as

1
1 +0.5¢ 7%

H(z) =

H(e™) =
1
T 1+0.5¢c08(Q) —j0.5sin(Q)
Therefore, the magnitude frequency response and phase response are

given by
H()| = !
V/(1+ 0.5 cos () + (0.5 sin ()
and
; _ —0.5sin (£2) .
J 1
[H(e’™) tan <—1 T 05008(Q))’ respectively.

Several points for the magnitude response and phase response are calcu-
lated and shown in Table 6.2.

6.4 Digital Filter Frequency Response 187

TABLE 6.2 Frequency response calculations in Example 6.11.

Q (radians) f=4%f(Hz) |H()| |H()| 5 /H(Y)
0 0 0.670 —3.479dB 0°
0.257 1000 0.715 —2.914dB 14.64°
0.507 2000 0.894 —0.973dB 26.57°
0.757 3000 1.357 2.652 dB 28.68°
1.007 4000 2.000 6.021 dB 0°

According to the achieved data, the magnitude response and phase response
of the DSP system are roughly plotted in Figure 6.15.

From Table 6.2 and Figure 6.15, we can see that when the frequency
increases, the magnitude response increases. The DSP system actually performs
digital highpass filtering.

Notice that if all the coefficients a; for i =0, 1,..., M in Equation (6.1) are
zeros, Equation (6.2) is reduced to

M
Y = > bix(n — i)
i=0

= box(n) + bix(n — 1)+ - - + bxgx(n — M).

(6.25)

Magnitude response (dB)

Phase response (degrees)

Frequency (rad)

FIGURE 6.15 Frequency responses of the digital filter in Example 6.11.

18 6 DIGITAL SIGNAL PROCESSING SYSTEMS

Notice that b; is the ith impulse response coefficient. Also, since M is a finite
positive integer, b; in this particular case is a finite set, H(z) = B(z); note that the
denominator A(z) = 1. Such systems are called finite impulse response (FIR)
systems. If not all ¢; in Equation (6.1) are zeros, the impulse response /(i) will
consist of an infinite number of coefficients. Such systems are called infinite
impulse response (IIR) systems. The z-transform of the IIR 4(i), in general, is

given by H(z) = 43, where A(z) # 1.

6.5 Basic Types of Filtering

The basic filter types can be classified into four categories: lowpass, highpass,
bandpass, and bandstop. Each of them finds a specific application in digital
signal processing. One of the objectives in applications may involve the design
of digital filters. In general, the filter is designed based on specifications primarily
for the passband, stopband, and transition band of the filter frequency response.
The filter passband is the frequency range with the amplitude gain of the filter
response being approximately unity. The filter stopband is defined as the fre-
quency range over which the filter magnitude response is attenuated to eliminate
the input signal whose frequency components are within that range. The transi-
tion band denotes the frequency range between the passband and the stopband.

The design specifications of the lowpass filter are illustrated in Figure 6.16,
where the low-frequency components are passed through the filter while the
high-frequency components are attenuated. As shown in Figure 6.16, €}, and ()
are the passband cutoff frequency and the stopband cutoff frequency, respect-
ively; 6, 1s the design parameter to specify the ripple (fluctuation) of the
frequency response in the passband, while 8, specifies the ripple of the frequency
response in the stopband.

1+3,
1.0
1-3,
Passband . Trahsition Stopband
8 Q
0 Qp Qs T

FIGURE 6.16 Magnitude response of the normalized lowpass filter.

6.5 Basic Types of Filtering 189

Stopband : Transition Passband

0 Q
0 Qg Q, b1

FIGURE 6.17 Magnitude response of the normalized highpass filter.

The highpass filter, remains high-frequency components and rejects low-
frequency components. The magnitude frequency response for the highpass
filter is demonstrated in Figure 6.17.

The bandpass filter attenuates both low- and high-frequency components
while remaining the middle-frequency component, as shown in Figure 6.18.

As illustrated in Figure 6.18, €),; and () are the lower passband cutoff
frequency and the lower stopband cutoff frequency, respectively.)5 and {y
are the upper passband cutoff frequency and the upper stopband cutoff fre-
quency, respectively. 6, is the design parameter to specify the ripple of the
frequency response in the passband, while 6, specifies the ripple of the frequency
response in the stopbands.

Finally, the bandstop (band reject or notch) filter, shown in Figure 6.19,
rejects the middle-frequency components and accepts both the low- and the
high-frequency component.

As a matter of fact, all kinds of digital filters are implemented using FIR and
IIR systems. Furthermore, the FIR and IIR systems can each be realized by

1+ 6p
1.0+
1-8,
Passband
Transition Transition
'Y Ir's
Stopband Stopband
8
5 Q
0 Qg Qpp Qpr Qo T

FIGURE 6.18 Magnitude response of the normalized bandpass filter.

190 6 DIGITAL SIGNAL PROCESSING SYSTEMS

1+ Sp
1-8

P Passband Passband

Transition Transition
'Y r's
Stopband
d
0 Q
0 QpL QsL QsH QpH T

FIGURE 6.19 Magnitude of the normalized bandstop filter.

various filter configurations, such as direct forms, cascade forms, and parallel
forms. Such topics will be included in the next section.

Given a transfer function, the MATLAB function freqz() can be used to
determine the frequency response. The syntax is given by

[h, w] = freqz(B, A, N),
whose parameters are defined as:

h = an output vector containing frequency response

w = an output vector containing normalized frequency values distributed
in the range from 0 to 7r radians.

B = an input vector for numerator coefficients

A = an input vector for denominator coefficients

N = the number of normalized frequency points used for calculating the

frequency response

Let’s consider Example 6.12.

Example 6.12.

Given each of the following digital transfer functions,

z
a. H(z) = -
b. Hz)=1-05z"

0.522 —0.32
¢ HE) = z2 —0.52+0.25

_ -1)
d. H(z) = 1-09z7"4+0.81z

1 -0.6z1 4036z

6.5 Basic Types of Filtering 191

. Plot the poles and zeros on the z-plane.

Use MATLAB function freqz() to plot the magnitude frequency response
and phase response for each transfer function.

Identify the corresponding filter type, such as lowpass, highpass, band-
pass, or bandstop.

Solution:

l.

The pole-zero plot for each transfer function is demonstrated in Figure
6.20. The transfer functions of (a) and (c) need to be converted into the
standard form (delay form) required by the MATLARB function freqz(), in
which both numerator and denominator polynomials have negative
powers of z. Hence, we obtain

z 1
H = =
@)= 05" T-05
0.5 — 0.32 0.5— 03222

H — =
)= 3 035-7025 1-05-1 50252

while the transfer functions of (b) and (d) are already in their standard
forms (delay forms).

The MATLAB program for plotting the magnitude frequency response
and the phase response for each case is listed in Program 6.2.

Im(z) Im(z)
<> Re(z) <> Re(z)
A B
Im(z) Im(z)
60° | Rez) 60°) Rew)

dh
i

S

D

FIGURE 6.20 Pole-zero plots of Example 6.12.

192 6 DIGITAL SIGNAL PROCESSING SYSTEMS

Program 6.2. MATLAB program for Example 6.12.

% Example 6.12

o

s Plot the magnitude frequency response and phase response

% Case a

figure (1)

[h w] = freqgz([1] [1 —0.5] 1024); % Calculate the frequency response
phi = 180*unwrap (angle (h)) /pi;

subplot(2,1,1), plot(w,abs (h)),grid; xlabel ('Frequency (radians)’),
ylabel (‘Magnitude’)

subplot(2,1,2), plot(w,phi),grid;xlabel ('Frequency (radians)’),
ylabel ('Phase (degrees)’)

% Caseb

figure (2)

[h w] = freqgz ([1 —0.5] [1] 1024) ; %$Calculate the frequency response
phi = 180*unwrap (angle (h)) /pi;

subplot(2,1,1), plot(w,abs (h)),grid;xlabel ('Frequency (radians)’),
ylabel ('Magnitude’)

subplot (2,1,2), plot(w,phi),grid;xlabel ('Frequency (radians)’),
ylabel ('Phase (degrees)’)

% Case c

figure (3)

[h w] = freqz ([0.50-0.32],[1-0.50.25],1024) ;%$Calculate the frequency response
phi = 180*unwrap (angle (h)) /pi;

subplot (2,1,1), plot(w,abs (h)),grid;xlabel ('Frequency (radians)’),
ylabel (‘Magnitude’)

subplot (2,1,2), plot(w,phi),grid;xlabel ('Frequency (radians)’),
ylabel (‘Phase (degrees)’)

% Case d

figure (4)

[h w] = freqz ([1-0.90.81]1,[1-0.60.36],1024) ;%Calculate the frequency response
phi = 180*unwrap (angle (h)) /pi;

subplot(2,1,1), plot(w,abs (h)),grid; xlabel ('Frequency (radians)’),
ylabel (‘Magnitude’)

subplot(2,1,2), plot(w,phi),grid;xlabel ('Frequency (radians)’),
ylabel ('Phase (degrees)’)

o

o

193

6.5 Basic Types of Filtering

apnuubepy

Frequency (rad)

Frequency (rad)

(sea1b0p) aseyd <

Plots of frequency responses for Example 6.12 for (a).

FIGURE 6.21A

d L

1.5

1 F--------

apnuubepy

3.5

25

1.5

0.5

Frequency (rad)

Frequency (rad)

(sea1bap) aseyd m

Plots of frequency responses for Example 6.12 for (b).

FIGURE 6.21B

DIGITAL SIGNAL PROCESSING SYSTEMS

6

194

apnuubepy

Frequency (rad)

Frequency (rad)

Plots of frequency responses for Example 6.12 for (c).

FIGURE 6.21C

apnyubepy

Frequency (rad)

-40

I
(sea1bop) aseyd

Frequency (rad)

Plots of frequency responses for Example 6.12 for (d).

FIGURE 6.21D

6.6 Realization of Digital Filters 195

3. From the plots in Figures 6.21a-6.21d of magnitude frequency responses for
all cases, we can conclude that case (a) is a lowpass filter, (b) is a highpass
filter, (c) is a bandpass filter, and (d) is a bandstop (band reject) filter.

6.6 Realization of Digital Filters

In this section, basic realization methods for digital filters are discussed. Digital
filters described by the transfer function H(z) may be generally realized in the
following forms:

m Direct form I
m Direct form II
m Cascade
m Parallel.
(The reader can explore various lattice realizations in the textbook by Stearns
and Hush [1990].)
6.6.1 Direct-Form |l Realization
As we know, a digital filter transfer function, H(z), is given by

B(z) bo+biz7' + -+ byzM
Az) l4aiz '+ +ayz N~

H(z) = (6.26)

Let x(n) and y(n) be the digital filter input and output, respectively. We can
express the relationship in z-transform domain as
Y(z) = H(2)X(2), (6.27)

where X(z) and Y(z) are the z-transforms of x(n) and y(n), respectively. If we
substitute Equation (6.26) into H(z) in Equation (6.27), we have

bo+biz7 o+ byz M
l+az7' 4+ +ayzV

Y(2) = (

Taking the inverse of the z-transform of Equation (6.28), we yield the relation-
ship between input x(7) and output y(n) in time domain, as follows:

) X(2). (6.28)

y(n) =box(n) + byx(n — 1)+ -+ byx(n — M) 6.29)
—aiy(n—1) —ayn —2) —--- —ayy(n — N). '

This difference equation thus can be implemented by a direct-form I realiza-
tion shown in Figure 6.22(a). Figure 6.22(b) illustrates the realization of the
second-order IIR filter (M = N = 2). Note that the notation used in Figures

196 6 DIGITAL SIGNAL PROCESSING SYSTEMS

xn) (2 b x(n)

This denotes that the output is the product
of the weight b; and input x(n); that is, b; - x(n)

x(n) x(n—-1)

-

This denotes a unit delay element, which
implies that the output of this stage is x(n—1)

C

FIGURE 6.22 (a) Direct-form | realization. (b) Direct-form | realization with M = 2.
(c) Notation.

6.22(a) and (b) are defined in Figure 6.22(c) and will be applied for discussion of
other realizations.

Also, notice that any of the a; and b; can be zero, thus all the paths are not
required to exist for the realization.

6.6.2 Direct-Form Il Realization

Considering Equations (6.26) and (6.27) with N = M, we can express

_ _B©) _ X(2)
Y(2) = H(2)X(z) = MX(Z) = B(2) (A(z))
- 4 Y X(2) (6.30)
=(bo+biz '+ +byz ><1+a121+---+aMzM>'
W(z)
Also, defining a new z-transform function as
W(z) = G (6.31)

L+aizt 4 ayz™°

6.6 Realization of Digital Filters 197

we have
Y(z) = (bo+biz '+ + byz MY W(2). (6.32)

The corresponding difference equations for Equations (6.31) and (6.32), respect-
ively, become

wn)=x(n) —awn—1)—awn —2)— - —aywn — M) (6.33)
and
y(n) = bow(n) + bywm — 1) + ... + bywn — M). (6.34)

Realization of Equations (6.33) and (6.34) becomes another direct-form II
realization, which is demonstrated in Figure 6.23(a). Again, the corresponding
realization of the second-order IIR filter is described in Figure 6.23(b). Note
that in Figure 6.23(a), the variables w(n), win — 1), win —2), ..., win— M)
are different from the filter inputs x(n — 1), x(n —2), ..., x(n — M).

6.6.3 Cascade (Series) Realization

An alternate way to filter realization is to cascade the factorized H(z) in the
following form:

H(z) = H\(2) - Hx(2) - - - Hi(2), (6.35)

where Hj(z) is chosen to be the first- or second-order transfer function (section),
which is defined by

bio + brrz !
1+ agz7!

Hy(2) =

(6.36)

B w(n-2)

FIGURE 6.23 (A) Direct-form Il realization. (B) Direct-form Il realization with M = 2,

198 6 DIGITAL SIGNAL PROCESSING SYSTEMS

FIGURE 6.24 Cascade realization.

or

_bro+ bz bz ?
1+ apz™' + agpz™?

(6.37)

respectively. The block diagram of the cascade, or series, realization is depicted
in Figure 6.24.

6.6.4 Parallel Realization
Now we convert H(z) into the following form:

H(z) = Hi(2) + Hy(2) + - - + Hi(2), (6.38)

where Hj(z) is defined as the first- or second-order transfer function (section)
given by

b
H&) = T (6.39)
or
bro + bz~
Hi(z) = — k0 Oniz (6.40)

1 +apz7! + agpz2’

respectively. The resulting parallel realization is illustrated in the block diagram
in Figure 6.25.

Example 6.13.

Given a second-order transfer function

HE) 0.5(1 — z°2)

T 141321403622

x(n)

FIGURE 6.25 Parallel realization.

6.6 Realization of Digital Filters 199

a. Perform the filter realizations and write the difference equations using the
following realizations:

1. direct form I and direct form II

2. cascade form via the first-order sections

3. parallel form via the first-order sections.
Solution:

a. 1. To perform the filter realizations using the direct form I and direct
form II, we rewrite the given second-order transfer function as

0.5—0.5z72
14+1.3z7140.36z2

H(z) =

and identify that
a) = 1.3, ay = 0.36, b() = 0.5, b1 = O, and b2 = —-0.5.

Based on realizations in Figure 6.22, we sketch the direct-form I
realization as Figure 6.26.
The difference equation for the direct-form I realization is given by

y(n) = 0.5x(n) — 0.5x(n — 2) — 1.3y(n — 1) — 0.36y(n — 2).

Using the direct-form II realization shown in Figure 6.23, we have the
realization in Figure 6.27.

FIGURE 6.26 Direct-form | realization for Example 6.13.

FIGURE 6.27 Direct-form Il realization for Example 6.13.

200 6 DIGITAL SIGNAL PROCESSING SYSTEMS

The difference equations for the direct-form II realization are ex-
pressed as
w(n) = x(n) — 1.3wm — 1) — 0.36w(n — 2)
y(n) = 0.5w(n) — 0.5w(n — 2).
2. To achieve the cascade (series) form realization, we factor H(z) into
two first-order sections to yield
0.5(1 —z72) 05— 0.5z70 147!

H(z) = _
O = T 13- 770362 17047 15091

where Hy(z) and H»(z) are chosen to be

0.5—-0.5z7!

Hi() =027
1 4+z71

G =101

Notice that the obtained H;(z) and H,(z) are not unique selections for
realization. For example, there is another way of choosing

H(z) = %= 0095~, and H(z) = 1% 4, A2 to yield the same H(z). Using

the Hy(z) and H;(z) we have obtained, and with the direct-form II
realization, we achieve the cascade form depicted in Figure 6.28.

The difference equations for the direct-form II realization have two
cascaded sections, expressed as

Section 1:
wi(n) = x(n) — 0.4w(n — 1)
yi1(n) =0.5wi(n) — 0.5wi(n — 1)
Section 2:
wa(n) = y1(n) — 0.9wa(n — 1)
y(n) = wa(n) + wa(n — 1)
x(r) w;(n) §-5 7N wy(n) oY)
\ 0.4 05 \ -0.9 é 1/
> < >

FIGURE 6.28 Cascade realization for Example 6.13.

6.6 Realization of Digital Filters 201

3. In order to yield the parallel form of realization, we need to make use of
the partial fraction expansion, and will first let
H(z) 0.5z> - 1) _é+ B n C
z zZz4+04)(z+09) z z+04 409’

where
(05— >’ 05— 1) .
T 04109/, Gr0aE 09,
0.5(2 — 1)) 0.5(2 — 1)
B—(s404 _E =D g0
@+)<z(z 04 109)) | gy 2 109) |y,
0.5(2 — 1)) 0.5(2 — 1)
C— (=409 _ =D oo
(z+)<z(z 08 109)) | e 2GH0A) |y,
Therefore
21z 021z 2.1 —021
H(z) = -1.39+ z+04 + z+09 —1.39+ 140.4z! + 14+0.9z-1°

Again, using the direct form II for each section, we obtain the parallel
realization in Figure 6.29.

The difference equations for the direct-form II realization have three
parallel sections, expressed as

yi(n) = —1.39x(n)

wy(n) = x(n) — 0.4wy(n — 1)
Pa(n) = 2.1ws(n)

wi(n) = x(n) — 0.9w3(n — 1)
y3(n) = —0.21ws(n)

() = y1(n) + y2(n) + y3(n).

139 yi(n)
1=l
n
X0 o w,(n) l’>2.1 @.Vz() - y(n)
04

<

wy(n)=0-21 5(n)

09

<]

FIGURE 6.29 Parallel realization for Example 6.13.

202 6 DIGITAL SIGNAL PROCESSING SYSTEMS

In practice, the second-order filter module using the direct-form I or direct-
form II is used. The high-order filter can be factored in the cascade form
with the first- or second-order sections. In case the first-order filter is
required, we can still modify the second-order filter module by setting the
corresponding filter coefficients to be zero.

6.7 Application: Speech Enhancement
and Filtering

This section investigates applications of speech enhancement using a pre-
emphasis filter and speech filtering using a bandpass filter.

6.7.1 Pre-Emphasis of Speech

A speech signal may have frequency components that fall off at high frequen-
cies. In some applications such as speech coding, to avoid overlooking the
high frequencies, the high-frequency components are compensated using
pre-emphasis filtering. A simple digital filter used for such compensation is
given as:

y(n) = x(n) — ax(n — 1), (6.41)

where « is the positive parameter to control the degree of pre-emphasis filtering
and usually is chosen to be less than 1. The filter described in Equation (6.41) is
essentially a highpass filter. Applying z-transform on both sides of Equation
(6.41) and solving for the transfer function, we have

Hz)=1—-az\. (6.42)

The magnitude and phase responses adopting the pre-emphasis parameter
a = 0.9 and the sampling rate f; = 8, 000 Hz are plotted in Figure 6.30a using
MATLAB.

Figure 6.30b compares the original speech waveform and the pre-emphasized
speech using the filter in Equation (6.42). Again, we apply the fast Fourier
transform (FFT) to estimate the spectrum of the original speech and the
spectrum of the pre-emphasized speech. The plots are displayed in Figure 6.31.

From Figure 6.31, we can conclude that the filter does its job to boost the
high-frequency components and attenuate the low-frequency components. We
can also try this filter with different values of @ to examine the degree of the pre-
emphasis filtering of the digitally recorded speech. The MATLAB list is in
Program 6.3.

203

6.7 Application: Speech Enhancement and Filtering

m o
T T o T T T m
| | < | | | <
I I I I I
| | 8 | | | S
“““ U9 Y A
I I ™0 I | | ™
I I I I I
| | 8 | | , =
“““ [Ty = i Il /i Ko
| | (e | | | ()
| | | | |
I I I I I
| | o | | | o
S Y N [o I S S S | o
T T w0] T i 5
| | N T | | | NS
| | sy | | | T
| | 8 & | | 8)
wwwwww [A) C Sy A i e c
| | [} | | | (0]
| I 2 > I I I 2 >
| | g | | | g
I I m_lv I I I Qrv
| | =] w | | | = L
“““ il At B+ SRTaY Sty Ittty K71
| - | | | -
I I I I
I I I I I
| | o | | | o
““““ F\----t-----1 8 e e e e =}
| | - | | | -
I I I I I
I I I I I
| | o | | | o
\\\\\\\ FomeNt-—--- 1 O e]
I ! w0 I I I wn
| | , | |
I I I I I
| | | | |
, , o , , i o
o o o o o o o o o
— ‘_I n1 o] © < 3V
(gp) e@suodsai apnyubepy (seaibop) aseyd <

Frequency responses of the pre-emphasis filter.

FIGURE 6.30A

Speech: We lost the golden chain.

X 104

2
1p------

il

U I
‘
pim

o

sajdwes yosadg

T S
2

1.4 1.6 1.8

1.2

0.4 0.6 0.8

0.2

X 104

Pre-emphasized speech

X 104

. .

bl

so|dwes paJsyi4

0.4 0.6 0.8 1.2 1.4 1.6 1.8
Number of samples

0.2

om

X 104

Original speech and pre-emphasized speech waveforms.

FIGURE 6.30B

204 6 DIGITAL SIGNAL PROCESSING SYSTEMS

Original speech
200

150 f------qf---------------—p----—-— oo

100 fF------f+ - oo

50 P - Hth - Foomeeee

Amplitude spectrum Ak

00 2000 2500 3000 3500 4000

x 60 : : : : : ;

< : : : : : :

I | | | | | |

3 ! ! ! ! ! !

B A0 . A R T . HE——
[0] | | | | | |

Q. 1 | | | | |

%) | | | | |

o) : : : : :

3 20 1 S 1T s s PR
£ : : : : :

£ ‘ ‘ ‘ : :

< 0 !

0 500 1000 1500 2000 2500 3000 3500 4000

Frequency (Hz)

FIGURE 6.31 Amplitude spectral plots for the original speech and pre-emphasized
speech.

Program 6.3. MATLAB program for pre-emphasis of speech.

% Matlab program for Figures 6.30 and 6.31
close all;clear all

fs =8000; % Sampling rate
alpha =0.9; % Degree of pre-emphasis

figure(l);

fregz([l-alpha]l,1l,512,fs); % Calculateanddisplay frequency responses
load speech.dat

figure (2);

y=filter([l-alphal,l,speech); % Filtering speech

subplot (2,1,1),plot (speech,’k’) ;grid;

ylabel (‘Speech samples’)

title ('Speech: We lost the golden chain.’)

subplot(2,1,2),plot (y,'k’) ;grid

6.7 Application: Speech Enhancement and Filtering 205

ylabel ('Filtered samples’)
xlabel ('Number of samples’) ;

title ('Pre-emphasized speech.’)

figure (3);
N = length (speech) ; % Length of speech
Axk = abs (fft (speech.*hamming (N)’)) /N; % Two-sided spectrumof speech

Ayk = abs (fft (y.* hamming (N)')) /N; $ Two-sided spectrumof pre-emphasized speech
f=[0:N/2]*fs/N;

Axk (2:N) =2*Axk (2:N) ; % Get one-sided spectrum of speech

Ayk (2:N)=2*Ayk (2:N) ; % Get one-sided spectrum of filtered speech
subplot(2,1,1),plot (f,Axk (1:N/2+1),'k") ;grid

ylabel ('Amplitude spectrum Ak’)

title ('Original speech’);

subplot(2,1,2),plot (f,Ayk(1:N/2+1),'k") ;grid

ylabel ('Amplitude spectrum Ak')

xlabel ('Frequency (Hz)');

title ('Preemphasized speech’);

o

°

6.7.2 Bandpass Filtering of Speech

Bandpass filtering plays an important role in DSP applications. It can be used to
pass the signals according to the specified frequency passband and reject the
frequency other than the passband specification. Then the filtered signal can be
further used for the signal feature extraction. Filtering can also be applied to
perform applications such as noise reduction, frequency boosting, digital audio
equalizing, and digital crossover, among others.

Let us consider the following digital fourth-order bandpass Butterworth
filter with a lower cutoff frequency of 1,000 Hz, an upper cutoff frequency of
1,400 Hz (that is, the bandwidth is 400 Hz), and a sampling rate of 8,000 Hz:

0.0201 — 0.0402z72 4 0.0201z~4
— 21192271 +2.6952z-2 — 1.6924z73 4 0.6414z—4"

H() =+ (6.43)

Converting the z-transfer function into the DSP difference equation yields
y(n) = 0.0201x(n) — 0.0402x(n — 2) 4+ 0.0201x(n — 4)

+2.1192p(n — 1) — 2.6952p(n — 2) + 1.6924y(n — 3) — 0.6414y(n — 4).
(6.44)

DIGITAL SIGNAL PROCESSING SYSTEMS

6

206

[P A

0
R 1) S
20
30t------
0

(gp) esuodsal spnyubep

1500 2000 2500 3000 3500 4000

1000

Frequency (Hz)

200

I
(sea1bop) aseyd

1500 2000 2500 3000 3500 4000

1000

Frequency (Hz)

Frequency responses of the designed bandpass filter.

FIGURE 6.32A

Speech: We lost the golden chain.

1.8

sa|dwes |euibluQ

104

X

Bandpass filtered speech

4000

sojdwes paJalji4 m

X 104

Number of Samples

Plots of the original speech and filtered speech.

FIGURE 6.32B

6.7 Application: Speech Enhancement and Filtering 207

Original speech

200

150 [~ i

100

50

Amplitude spectrum Ak

0 500 1000 1500 2000 2500 3000 3500 4000

Bandpass filtered speech

0 500 1000 1500 2000 2500 3000 3500 4000
Frequency (Hz)

O Amplitude spectrum Ak

FIGURE 6.32C Amplitude spectra of the original speech and bandpass filtered
speech.

The filter frequency responses are computed and plotted in Figure 6.32(a) with
MATLAB. Figure 6.32(b) shows the original speech and filtered speech, while
Figure 6.32(c) displays the spectral plots for the original speech and filtered
speech.

As shown in Figure 6.32(c), the designed bandpass filter significantly reduces
low-frequency components, which are less than 1,000 Hz, and high-frequency
components, above 1,400 Hz, while letting the signals with the frequencies

Program 6.4. MATLAB program for bandpass filtering of speech.

£s=8000; % Sampling rate
freqz[(0.02010.00—-0.040200.0201],[1—-2.11922.6952—-1.69240.6414]1,512,fs);
axis ([0 fs/2—401]) ;% Frequency responses of the bandpass filter
load speech.dat
y=filter ([0.02010.00—0.04020.0201],[1—-2.11922.6952 —1.6924 0.6414], speech) ;
subplot (2,1,1),plot (speech) ;grid; % Filtering speech
ylabel ('Origibal Samples’)

(Continued)

208 6 DIGITAL SIGNAL PROCESSING SYSTEMS

title ('Speech: We lost the golden chain.’)

subplot(2,1,2),plot(y);grid

xlabel ('Number of Samples’) ;ylabel (‘Filtered Samples’)

title ('Bandpass filtered speech.’)

figure

N=length (speech) ;

Axk=abs (fft (speech.*hamming (N)’)) /N; % One-sided spectrum of speech
Ayk=abs (fft (y.*hamming (N)')) /N; % One-sided spectrumof filtered speech
f=[0:N/2]*fs/N;

AxK (2:N) = 2*Axk (2:N) ;Ayk (2:N) = 2*Ayk (2:N) ; % One-sided spectra
subplot(2,1,1),plot (f,Axk(1:N/2+1));grid

ylabel ('Amplitude spectrum Ak')

title ('Original speech’);

subplot(2,1,2),plot (f,Ayk(1:N/2+1),'w') ;grid

ylabel ('Amplitude spectrum Ak’) ; xlabel ('Frequency (Hz)') ;

title ('Bandpass filtered speech’);

ranging from 1,000 to 1,400 Hz pass through the filter. Similarly, we can design
and implement other types of filters, such as lowpass, highpass, and band reject
to filter the signals and examine the performances of their designs. MATLAB
implementation detail is given in Program 6.4.

6.8 Summary

1. The digital filter (DSP system) is represented by a difference equation,
which is linear and time invariant.

2. The filter output depends on the filter current input, past input(s), and
past output(s) in general. Given arbitrary inputs and nonzero or zero
initial conditions, operating the difference equation can generate the filter
output recursively.

3. System responses such as the impulse response and step response can be
determined analytically using the z-transform.

4. The transfer function can be obtained by applying the z-transform to the
difference equation to determine the ratio of the output z-transform over
the input z-transform. A digital filter (DSP system) can be represented by
its transfer function.

6.9 Problems 209

5. System stability can be studied using a very useful tool, a z-plane pole-zero
plot.

6. The frequency responses of the DSP system were developed and illustrated
to investigate magnitude and phase frequency responses. In addition, the
FIR (finite impulse response) and IIR (infinite impulse response) systems
were defined.

7. Digital filters and their specifications, such as lowpass, highpass, band-
pass, and bandstop, were reviewed.

8. A digital filter can be realized using standard realization methods such as
the direct form I; direct form II; cascade, or series form; and parallel form.

9. Digital processing of speech using the pre-emphasis filter and bandpass
filter was investigated to study spectral effects of the processed digital
speech. The pre-emphasis filter boosts the high-frequency components,
while bandpass filtering keeps the midband frequency components and
rejects other lower- and upper-band frequency components.

6.9 Problems

6.1. Given the difference equation
y(n)=x(n—1)—0.75p(n — 1) — 0.125y(n — 2),

a. calculate the system response y(n) for n =20, 1, 2,..., 4 with the
input x(n) = (0.5)" u(n) and initial conditions: x(—1)= —1,
(=2)=2,and y(—- 1) =1;

b. calculate the system response y(n) for n =0, 1, 2,..., 4 with the
input x(n) = (0.5)" u(n) and zero initial conditions: x(—1) =0,
y(—2)=0,and y(—1) =0.

6.2. Given the following difference equation,
y(n) = 0.5x(n) + 0.5x(n — 1),

a. find the H(z);
b. determine the impulse response y(n) if the input is x(n) = 46(n);

c¢. determine the step response y(n) if the input is x(n) = 10 u(n).

210

6

6.3.

6.4.

6.5.

6.6.

6.7.

6.8.

6.9.

DIGITAL SIGNAL PROCESSING SYSTEMS

Given the following difference equation,

y(n) = x(n) — 0.5p(n — 1),
a. find the H(z);

b. determine the impulse response y(n) if the input is x(n) = 8(n);
c. determine the step response y(n) if the input is x(n) = u(n).
A digital system is described by the following difference equation:
y(n) = x(n) — 0.25x(n — 2) — 1.1y(n — 1) — 0.28y(n — 2).
a. Find the transfer function H(z), the denominator polynomial A4(z),
and the numerator polynomial B(z).
A digital system is described by the following difference equation:
y(n) = x(n) — 0.3x(n — 1) + 0.28x(n — 2).

a. Find the transfer function H(z), the denominator polynomial A4(z),
and the numerator polynomial B(z).

Convert each of the following transfer functions into its difference
equation:

22 -0.25
& HE = S 1,008
2 _
b, H(z) = z O.l3z—|—0.3
A

Convert the following transfer function into its pole-zero form:
1 —-0.16z72
1+0.7z71+0.1z2
A transfer function depicting a digital system is given by
10(z + 1
H(z) = ﬁ
a. Determine the impulse response /(7)) and step response.

a. H(z) =

b. Determine the system response y(n) if the input is x(n) = (0.25)" u(n).

Given each of the following transfer functions that describe digital
system transfer functions, sketch the z-plane pole-zero plot and deter-
mine the stability for each digital system.

z—0.5
(z+0.25)(z2 +z+0.8)

a. H(z) =

6.9 Problems 211

24025
b HO = 5@ 4257 7)
z+0.95
. H(z) =
¢ HO = oy @ 141421 1)
2
d. HE) z=+z4+0.25

T (z= Dz +)Xz - 0.36)

6.10. Given the following digital system with a sampling rate of 8,000 Hz,
y(n) = 0.5x(n) + 0.5x(n — 2),

a. determine the frequency response;
b. calculate and plot the magnitude and phase frequency responses;
c. determine the filter type, based on the magnitude frequency response.

6.11. For the following digital system with a sampling rate of 8,000 Hz,

y(n) = x(n) — 0.5p(n - 2),

a. determine the frequency response;
b. calculate and plot the magnitude and phase frequency responses;
c. determine the filter type based on the magnitude frequency response.

6.12. Given the following difference equation,

y(n) = x(n) — 2 - cos (a)x(n — 1) + x(n — 2) + 2y - cos (a) — y*,

where vy = 0.8 and a = 60°,

a. find the transfer function H(z);
b. plot the poles and zeros on the z-plane with the unit circle;
c. determine the stability of the system from the pole-zero plot;
d. calculate the amplitude (magnitude) response of H(z);
e. calculate the phase response of H(z).

6.13. For each of the following difference equations,

a. y(n) =0.5x(n) + 0.5x(n — 1)

212 6

6.14.

6.15.

6.16.

6.17.

DIGITAL SIGNAL PROCESSING SYSTEMS

b. y(n) = 0.5x(n) — 0.5x(n — 1)
c. y(n) =0.5x(n) + 0.5x(n — 2)
d. y(n) =0.5x(n) — 0.5x(n — 2),
1. find H(z);
2. calculate the magnitude response;
3. specify the filter type based on the calculated magnitude response.

An IIR system is expressed as
y(n) =0.5x(n) + 0.2y(mn — 1), y(—1)=0.

a. Find H(z).
b. Find the system response y(n) due to the input x(n) = (0.5)" u(n).

Given the following IIR system with zero initial conditions:
y(n) = 0.5x(n) — 0.7y(n — 1) — 0.1y(n — 2),

a. find H(z);

b. find the unit step response.

Given the first-order IR system

142271
HO =105

realize H(z) and develop the difference equations using the following
forms:

a. direct-form I

b. direct-form II

Given the filter
1-09z1-0.1z72

H(z) =
@) =TT 037 0042

realize H(z) and develop the difference equations using the following
form:

a. direct-form 1

b. direct-form II

6.9 Problems

c. cascade (series) form via the first-order sections

d. parallel form via the first-order sections

6.18. Given the following pre-emphasis filters:

H(z)=1-05z"
H(z)=1-0.7z"
H(z)=1-09",

a. write the difference equation for each;

b. determine which emphasizes high frequency components most.

MATLAB Problems
6.19. Given a filter

1422714272
—0.5z71 4025272’

H(z) =]

a. use MATLAB to plot
1. its magnitude frequency response;

2. its phase response.

6.20. Given the difference equation

6.21.

y(n)=x(m—1)—0.75y(n — 1) — 0.125y(n — 2),

213

a. use the MATLAB functions filter() and filtic() to calculate the system

response y(n) for n=0,1,2,3, ...,4 with the input

of

x(n) = (0.5)" u(n) and initial conditions: x(— 1) = —1, y(—2) =2,

andy(—1) =1;

b. use the MATLAB function filter() to calculate the system response
y(n) for n =0, 1,2, 3, ..., 4 with the input of x(n) = (0.5)" u(n)

and zero initial conditions: x(—1)=0, y(—2)=0,
W(—1)=0.
Given a filter

1—z 14272
— 09z +0.81z72°

H(z) = I

and

214 6 DIGITAL SIGNAL PROCESSING SYSTEMS

a. plot the magnitude frequency response and phase response using
MATLAB;

b. specify the type of filtering;
c. find the difference equation;

d. perform filtering, that is, calculate y(n) for the first 1,000 samples
for each of the following inputs and plot the filter outputs using
MATLAB, assuming that all initial conditions are zeros and the
sampling rate is 8,000 Hz:

1. x(n) = cos(m - 103)
2. x(n) = cos(3a - 10° 155)
3. x(n) = cos(67 - 10°)

e. repeat (d) using the MATLAB function filter().

Stearns, S. D., and Hush, D. R. (1990). Digital Signal Analysis, 2nd ed. Englewood Cliffs,
NIJ: Prentice Hall.

Objectives:

This chapter introduces principles of the finite impulse response (FIR) filter
design and investigates the design methods such as the Fourier transform
method, window method, frequency sampling method design, and optimal
design method. Then the chapter illustrates how to apply the designed FIR
filters to solve real-world problems such as noise reduction and digital crossover
for audio applications. The major topics discussed in this chapter are included in
the following outline.

7.1 Finite Impulse Response Filter Format
In this chapter, we describe techniques of designing finite impulse response (FIR)

filters. An FIR filter is completely specified by the following input-output
relationship:

K
Y =S bix(n — i)
i=0

= by x(n) + byx(n — 1) + box(n —2) + - - - + bxx(n — K)

(7.1)

where b; represents FIR filter coefficients and K 4+ 1 denotes the FIR filter
length. Applying the z-transform on both sides of Equation (7.1) leads to

Y(2) = boX(z) + biz ' X(2) + - - + bz K X(2). (7.2)

216 7 FINITE IMPULSE RESPONSE FILTER DESIGN

Factoring out X(z) on the right-hand side of Equation (7.2) and then dividing
X(z) on both sides, we have the transfer function, which depicts the FIR filter, as

Y@
X()

The following example serves to illustrate the notations used in Equations (7.1)
and (7.3) numerically.

H(z) = = by + bz} 4 bgz K (7.3)

Example 7.1.
Given the following FIR filter:
y(n) = 0.1x(n) + 0.25x(n — 1) + 0.2x(n — 2),

a. Determine the transfer function, filter length, nonzero coefficients, and
impulse response.

Solution:
a. Applying z-transform on both sides of the difference equation yields
Y(z) = 0.1X(2) + 0.25X(z)z ! + 0.2X(2)z 2
Then the transfer function is found to be

Y(2)
X(2)
The filter length is K 4+ 1 = 3, and the identified coefficients are

by =0.1 by =0.25 and b, = 0.2.
Taking the inverse z-transform of the transfer function, we have
h(n) = 0.18(n) + 0.256(n — 1) + 0.26(n — 2).

H(z) = =0.1+025""402:72.

This FIR filter impulse response has only three terms.

The foregoing example is to help us understand the FIR filter format. We
can conclude that

1. The transfer function in Equation (7.3) has a constant term, all the other
terms each have a negative power of z, and all the poles are at the origin
on the z-plane. Hence, the stability of filter is guaranteed. Its impulse
response has only a finite number of terms.

2. The FIR filter operations involve only multiplying the filter inputs by
their corresponding coefficients and accumulating them; the implemen-
tation of this filter type in real time is straightforward.

7.2 Fourier Transtorm Design 217

From the FIR filter format, the design objective can be to obtain the FIR filter
b; coefficients such that the magnitude frequency response of the FIR filter H(z)
will approximate the desired magnitude frequency response, such as that of a
lowpass, highpass, bandpass, or bandstop filter. The following sections will
introduce design methods to calculate the FIR filter coefficients.

7.2 Fourier Transform Design

We begin with an ideal lowpass filter with a normalized cutoff frequency (1.,
whose magnitude frequency response in terms of the normalized digital
frequency () is plotted in Figure 7.1 and is characterized by

: 1, 0<]0/<Q,
JOy > = > &5
Hie)_{0’ 0 <100 < o (7.4)

Since the frequency response is periodic with a period of {) = 27 radians, as we
discussed in Chapter 6, we can extend the frequency response of the ideal filter
H(e/?), as shown in Figure 7.2.

The periodic frequency response can be approximated using a complex
Fourier series expansion (see this topic in Appendix B) in terms of the normal-
ized digital frequency (), that is,

He™ = > e, (7.5)

n=—o0

and the Fourier coefficients are given by
1 m . .
Cn =5 / H(e™e/™dQ) for — 0o < n < 0. (7.6)
w —1T
Notice that we obtain Equations (7.5) and (7.6) simply by treating the Fourier

series expansion in time domain with the time variable ¢ replaced by the normal-
ized digital frequency variable (). The fundamental frequency is easily found to be

wy = 21 /(period of waveform) = 2w /27 = 1. (7.7)

H(ejQ)

i + Q
-t Qg Q. 7«

FIGURE 7.1 Frequency response of an ideal lowpass filter.

218 7 FINITE IMPULSE RESPONSE FILTER DESIGN

H (e/'£2)

- v

2r-Q, 21+Q, -Q, Q, 21-Q,:271+Q,
-2r 2r

FIGURE 7.2 Periodicity of the ideal lowpass frequency response.

Substituting wy = 1 into Equation (7.6) and introducing A(n) = ¢,, called the
desired impulse response of the ideal filter, we obtain the Fourier transform
design as

o
) = 5 / H(e®)e/dQ) for — 00 < 1 < o. (7.8)

Now, let us look at the possible z-transfer function. If we substitute ¢/ = z and
wo = 1 back into Equation (7.5), we yield a z-transfer function in the following
format:

= h(n)z™"
H(z) :Zoc (n)z 79)

co e B(=22+ h(— Dz RO0) + H(Dz F hQ2)z 7 -

This is a noncausal FIR filter. We will deal with this later in this section. Using
the Fourier transform design shown in Equation (7.8), the desired impulse
response approximation of the ideal lowpass filter is solved as

h(n):% / H(e’e 0430

Forn=0
Q.
_ T2t
2w J_q, ™
1 ™ Qs iQn 1 o iQn
o) = [HE@d0=— [d0
7) 2w J_q,
Forn #0
e]”Q \Q(; 1 ejnﬂf _ e—j}’lﬂu Sln (an)
277-]71 _q, mn 2.] mn

7.2 Fourier Transtorm Design 219

h(n)

|

FIGURE 7.3 Impulse response of an ideal digital lowpass filter.

\ !

n

It i
o T

The desired impulse response /4(n) is plotted versus the sample number 7 in
Figure 7.3.

Theoretically, /(n) in Equation (7.10) exists for —oo <n < oo and is
symmetrical about n = 0; that is, i(n) = h(— n). The amplitude of the impulse
response sequence /(n) becomes smaller when 7 increases in both directions. The
FIR filter design must first be completed by truncating the infinite-length
sequence /(n) to achieve the 2M + 1 dominant coefficients using the coefficient
symmetry, that is,

H(z) = h(M)zM + -+ h(1)z" + h(0) + h(1)z™" + - + h(M)z™M.

The obtained filter is a noncausal z-transfer function of the FIR filter, since the
filter transfer function contains terms with positive powers of z, which in turn
means that the filter output depends on the future filter inputs. To remedy the
noncausal z-transfer function, we delay the truncated impulse response /(n) by
M samples to yield the following causal FIR filter:

H(z)=by+biz " + -+ by QM)z"M (7.11)
where the delay operation is given by
b,=hn— M) forn=0,1,...,2M. (7.12)

Similarly, we can obtain the design equations for other types of FIR filters, such
as highpass, bandpass, and bandstop, using their ideal frequency responses and
Equation (7.8). The derivations are omitted here. Table 7.1 gives a summary of
all the formulas for FIR filter coefficient calculations.

The following example illustrates the coefficient calculation for the lowpass
FIR filter.

220 7 FINITE IMPULSE RESPONSE FILTER DESIGN

TABLE 7.1 Summary of ideal impulse responses for standard FIR filters.

Ideal Impulse Response

Filter Type h(n) (noncausal FIR coefficients)
L T =90
owpass: n=2-<"7
P —Smlgg"”) forn#0 —-M<n<M

3
I
o

77—,
Highpass: h(n) = { _7@ forn£0 —M<n<M

&lyfﬂfl_ n—= 0
Bandpass: hn)=1q . 7 .
snlhun) _ S0EWD forp £0 —M<n<M

nw

T—Qu+Q; n= O
. _ T
Bandstop. h(n) =\ _sin@un) i sin Q1) for n ?é 0 M<n<M
nir nm ="=

Causal FIR filter coefficients: shifting /() to the right by M samples.
Transfer function:

H(z)=bo+ bz ! + bz 2+ bypz™ M
where b, = h(n — M), n=0,1,---,2M

Example 7.2.

a. Calculate the filter coefficients for a 3-tap FIR lowpass filter with a cutoff
frequency of 800 Hz and a sampling rate of 8,000 Hz using the Fourier
transform method.

b. Determine the transfer function and difference equation of the designed
FIR system.

c. Compute and plot the magnitude frequency response for =0, 7/4,
/2, 37/4, and = radians.

Solution:
a. Calculating the normalized cutoff frequency leads to
O, =27 f. T, =27 x 800/8000 = 0.27 radians.

Since 2M + 1 = 3 in this case, using the equation in Table 7.1 results in
Q.
h0)=— forn=20
a

sin(Q.n) sin(0.27rn)
nwo nm

h(n) =

for n # 1.

7.2 Fourier Transtorm Design 221

The computed filter coefficients via the previous expression are listed as:

027 B

h(0) = 0.2

sin[0.27 x 1]

=0.1871.
1 xa

h(l) =
Using the symmetry leads to
h(—1) = h(1) = 0.1871.
Thus delaying h(n) by M = 1 sample using Equation (7.12) gives
bp=h(0—1)=h(—-1)=0.1871
by =h(1—1)=h0)=0.2
and b, = h(2 —1) = k(1) = 0.1871.

. The transfer function is achieved as

H(z) =0.1871 4+ 0.2z7' +0.1871z2.
Using the technique described in Chapter 6, we have

Y(2)
X(2)

Multiplying X(z) leads to
Y(z) = 0.1871X(2) + 0.2z7' X (2) + 0.1871z72 X (2).

= H(z) =0.1871 + 0.2z ! +0.1817z72.

Applying the inverse z-transform on both sides, the difference equation is
yielded as

y(n) = 0.1871x(n) + 0.2x(n — 1) + 0.1871x(n — 2).

. The magnitude frequency response and phase response can be obtained
using the technique introduced in Chapter 6. Substituting z = ¢/ into
H(z), it follows that

H(e’) = 0.1871 + 0.2¢7 +0.1871e /2.

Factoring the term e/ and using the Euler formula /¥ 4+ ¢ = 2 cos (x),

we achieve
H(e™®) = ¢72(0.1871¢/% + 0.2+ 0.1871¢ /%)
— ¢79(0.2 + 0.3742 cos (12) '

222 7 FINITE IMPULSE RESPONSE FILTER DESIGN

Then the magnitude frequency response and phase response are found
to be

|H(e™™)| = 10.2 + 0.3472 cos Q|

—Q if 0.2+ 0.3472cos) >0

and /H(e/Y) =
Q47 1 0.240.3472cos Q) < 0.

Details of the magnitude calculations for several typical normalized
frequencies are listed in Table 7.2.

Due to the symmetry of the coefficients, the obtained FIR filter has a linear phase
response as shown in Figure 7.4. The sawtooth shape is produced by the
contribution of the negative sign of the real magnitude term 0.2 4+ 0.3742 cos ()
in the 3-tap filter frequency response, that is,

H(e’™) = e72(0.2 4 0.3742cos Q).

In general, the FIR filter with symmetrical coefficients has a linear phase
response (linear function of () as follows:

/H(e’Y) = —MQ + possible phase of 180°. (7.13)

Next, we see that the 3-tap FIR filter does not give an acceptable magnitude

frequency response. To explore this response further, Figure 7.5 displays the

magnitude and phase responses of 3-tap (M = 1) and 17-tap (M =8) FIR

lowpass filters with a normalized cutoff frequency of (), = 0.27 radian. The

calculated coefficients for the 17-tap FIR lowpass filter are listed in Table 7.3.
We can make the following observations at this point:

1. The oscillations (ripples) exhibited in the passband (main lobe) and
stopband (side lobes) of the magnitude frequency response constitute
the Gibbs effect. Gibbs oscillatory behavior originates from the abrupt

TABLE 7.2 Frequency response calculation in Example 7.2.

Q /H(e’®)
radians [= Of; 2m) Hz 024 0.3742cosQ |H(e/?)| |H(e/)| , dB degree
0 0 0.5742 0.5742 —4.82 0
/4 1000 0.4646 0.4646 —6.66 —45
/2 2000 0.2 0.2 —-14.0 -90
3m/4 3000 —0.0646 0.0646 —23.8 45

T 4000 —0.1742 0.1742 —-15.2 0

223

7.2 Fourier Transtorm Design

(gp) esuodsal spnyubely

Frequency (Hz)

1000 1500 2000 2500 3000 3500 4000

500

(se@a1bop) asuodsal aseyd

Frequency (Hz)

Magnitude frequency response in Example 7.2.

FIGURE 7.4

Ripples on stopband
(side lobes)

Ripples on passband L

25 3.5

1.5
Frequency (rad)

asuodsay apnyubepy

(seaibap) aseyd

)

Frequency (rad

Magnitude and phase frequency responses of the lowpass FIR filters with

3 coefficients (dash-dotted line) and 17 coefficients (solid line).

FIGURE 7.5

224 7 FINITE IMPULSE RESPONSE FILTER DESIGN

TABLE 7.3 17-tap FIR lowpass filter coefficients in Example 7.2 (M = 8).

by = bjg = —0.0378 by = b5 = —0.0432

by = b1g = —0.0312 b3 = b3 = 0.0000

by = b1 = 0.0468 bs = by; = 0.1009

bs = b1p =0.1514 b7 = by = 0.1871 bg = 0.2000

truncation of the infinite impulse response in Equation (7.11). To remedy
this problem, window functions will be used and will be discussed in the
next section.

2. Using a larger number of the filter coefficients will produce the sharp roll-
off characteristic of the transition band but may cause increased time
delay and increased computational complexity for implementing the
designed FIR filter.

3. The phase response is linear in the passband. This is consistent with
Equation (7.13), which means that all frequency components of the filter
input within the passband are subjected to the same amount of time delay
at the filter output. This is a requirement for applications in audio and
speech filtering, where phase distortion needs to be avoided. Note that
we impose the following linear phase requirement, that is, the FIR
coefficients are symmetrical about the middle coefficient, and the
FIR filter order is an odd number. If the design method cannot produce
the symmetric coefficients or can generate anti-symmetric coefficients, the
resultant FIR filter does not have the linear phase property. (Linear
phase even-order FIR filters and FIR filters using the anti-symmetry of
coefficients are discussed in Proakis and Manolakis [1996].)

To further probe the linear phase property, we consider a sinusoidal sequence
x(n) = Asin (n{)) as the FIR filter input, with the output expected to be

y(n) = A|H|sin (nQ) + ¢),
where ¢ = —M (). Substituting ¢ = —M () into y(n) leads to
y(n) = A|H|sin[Q(n — M)].

This clearly indicates that within the passband, all frequency components pass-
ing through the FIR filter will have the same constant delay at the output, which
equals M samples. Hence, phase distortion is avoided.

Figure 7.6 verifies the linear phase property using the FIR filter with 17 taps.
Two sinusoids of the normalized digital frequencies 0.057 and 0.157 radian,
respectively, are used as inputs. These two input signals are within passband,
so their magnitudes are not changed. As shown in Figure 7.6, the output

7.2 Fourier Transtorm Design 225

B

2
§
§
|
%

£ 20 5 10 15 20 25 30 35 40 45 50
x 2 T T \ T T T T
§ 0 ceeae @Q@%ﬁm mﬁ%@@@%} | | ,J
- —?—> | Matching x1(n) | %&&&
£ 20 5 10 15 20 25 35 40 45 50
o 2 J T T T
S oot ??ﬂ’?@@ | smp e
S ol 0 ‘ 77@@ ‘@ ik
£ 0 EBG (5 i [0} (5(‘fD (D&
1o m» ety
% 5 10 15 20 30 35 40 45 50
x 2 T T T T T T
—~ |<—> | | 1 |
KIC’ 0 ceaa.ﬁee Dﬁm RO) m(?@ ! @?(m? @&g&é
- —ﬁk Matching x2(n) 3

25 5 10 15 20 25 30 35 50

n

FIGURE 7.6 lllustration of FIR filter linear phase property (constant delay of 8
samples).

beginning the 9th sample matches the input, which is delayed by 8 samples
for each case.

What would happen if the filter phase were nonlinear? This can be illustrated
using the following combined sinusoids as the filter input:

. 1 .
x(n) = x1(n) + x2(n) = sin(0.057n)u(n) — 3 sin(0.157n)u(n).
The original x(n) is the top plot shown in Figure 7.7. If the linear phase response
of a filter is considered, such as ¢ = —M)y, where M = 8 in our illustration, we
have the filtered output as

y1(n) = sin[0.057(n — 8)] — % sin[0.15m(n — 8))].

The linear phase effect is shown in the middle plot of Figure 7.7. We see that
y1(n) is the 8-sample delayed version of x(n). However, considering a unit gain
filter with a phase delay of 90 degrees for all the frequency components, we have
the filtered output as

1
ya(n) = sin(0.057n — 7 /2) — 3 sin(0.157n — /2),

226 7 FINITE IMPULSE RESPONSE FILTER DESIGN

2 \ T T [

o } ‘ Combined two } }

=+ } sinusoidal input |

:l_;, 0 M??TTTTTIT (E 3 H% (gillll (L(ga@@@@@@@@@dﬁﬁﬁ

§_20 g 110 1}5 2}0 ‘ 4}0 4}5 50
2 i T T

-, < i > ; (P(ETTTTIT EPQ‘ Linear F:Bhase filter out;a))ut

= T ST
_20 ’:") 1‘0 15 20 25 éO 3‘5 4 4‘5 50

Output waveform shape is

|
(i?m ?r different from the onﬁeﬁof x(n)
! | 90 degree phase shlft Géé&&&wgp

i for x1(n) and x2(n) ‘

|
| e |
l l l l l
0 5 10 15 20 25 30 35 40 45 50
n

y2(n)
o
é
[CS]
€]

“E’e

-2

FIGURE 7.7 Comparison of linear and nonlinear phase responses.

where the first term has a phase shift of 10 samples (see sin[0.057(n — 10)]),
While the second term has a phase shift of 10/3 samples (see
1sin[0.157(n —)]). Certainly, we do not have the linear phase feature. The
signal y,(n) plotted in Figure 7.7 shows that the waveform shape is different
from that of the original signal x(n), hence has significant phase distortion. This
phase distortion is audible for audio applications and can be avoided by using
the FIR filter, which has the linear phase feature.

We now have finished discussing the coefficient calculation for the FIR
lowpass filter, which has a good linear phase property. To explain the calcula-
tion of filter coefficients for the other types of filters and examine the Gibbs
effect, we look at another simple example.

Example 7.3.

a. Calculate the filter coefficients for a 5-tap FIR bandpass filter with a
lower cutoft frequency of 2,000 Hz and an upper cutoft frequency of
2,400 Hz at a sampling rate of 8,000 Hz.

b. Determine the transfer function and plot the frequency responses with
MATLAB.

7.2 Fourier Transtorm Design 227

Solution:

a. Calculating the normalized cutoff frequencies leads to

Oy =2mufr [fs = 2w x 2000/8000 = 0.57r radians
QOp =27fy/fs = 27 x 2400/8000 = 0.67 radians.

Since 2M + 1 = 5 in this case, using the equation in Table 7.1 yields

QH;QL n=0
h(n) = 7.14
(n) sin (QHn) _ sin (QL}’I) n # O _2 S n S 2 ()

Calculations for noncausal FIR coefficients are listed as

h(0) = 0.1.

QH - QL - 0.6 — 0.57 o
o™ N T N

The other computed filter coefficients via Equation (7.14) are

sin [0.67 x 1] B sin [0.57 x 1]

= —0.01558
1 xa I xm

(1) =

sin[0.67 x 2] B sin[0.57 x 2]

e T —0.09355.

h(2) =

Using the symmetry leads to
h(—1)=h(1) = —0.01558
h(—2) = h(2) = —0.09355.
Thus, delaying A(n) by M = 2 samples gives
by = by = —0.09355,
by = b3 = —0.01558, and b, = 0.1.
b. The transfer function is achieved as
H(z) = —0.09355 — 0.01558z"" +0.1z72 — 0.01558z% — 0.093552~*.

To complete Example 7.3, the magnitude frequency response plotted in
terms of }H(ejﬂ)‘dB: 201og;, ‘H(efﬂ)| using the MATLAB program 7.1
is displayed in Figure 7.8.

228 7 FINITE IMPULSE RESPONSE FILTER DESIGN

Program 7.1. MATLAB program for Example 7.3.

% Example 7.3

% MATLAB program to plot frequency responses
[hz, w] = freqgz ([—0.09355—-0.015580.1 —0.01558 —=0.09355], [1], 512);
phi= 180*unwrap (angle (hz)) /pi;

subplot(2,1,1), plot(w,20"1ogl0 (abs (hz))),grid;

xlabel ('Frequency (radians)’);

ylabel ('Magnitude Response (dB)’)

subplot(2,1,2), plot(w, phi);grid;

xlabel ('Frequency (radians)’);

ylabel ('Phase (degrees)’);

As a summary of Example 7.3, the magnitude frequency response demon-
strates the Gibbs oscillatory behavior existing in the passband and stopband.
The peak of the main lobe in the passband is dropped from 0 dB to
approximately —10 dB, while for the stopband, the lower side lobe in the
magnitude response plot swings approximately between —18dB and —70dB,
and the upper side lobe swings between —25dB and —68 dB. As we have pointed
out, this is due to the abrupt truncation of the infinite impulse sequence A(n).

o
)
(0]
(]
c
o
Qo
7]
©
()
el
2
c
(o))
[]
=
300
n
(0]
2 200
(o))
(5]
S
?
@ 100
K
o
0

Frequency (rad)

FIGURE 7.8 Frequency responses for Example 7.3.

7.3 Window Method 229

The oscillations can be reduced by increasing the number of coefficients and
using a window function, which will be studied next.

7.3 Window Method

In this section, the window method (Fourier transform design with window func-
tions) is developed to remedy the undesirable Gibbs oscillations in the passband
and stopband of the designed FIR filter. Recall that Gibbs oscillations originate
from the abrupt truncation of the infinite-length coefficient sequence. Then it is
natural to seek a window function, which is symmetrical and can gradually weight
the designed FIR coefficients down to zeros at both ends for the range of
—M <n < M. Applying the window sequence to the filter coefficients gives

hy(n) = h(n) - w(n),

where w(n) designates the window function. Common window functions used in
the FIR filter design are as follows:

1. Rectangular window:

W) =1, —M <n<M. (7.15)
2. Triangular (Bartlett) window:
n
v =1 M << (716
3. Hanning window:
nir
Whan(11) = 0.5 + 0.5 cos (ﬁ> _M<n<M. (7.17)
4. Hamming window:
Wham(1) = 0.54 + 0.46 cos (’;‘M—”) _M<n<M. (7.18)

5. Blackman window:
2
Whtaek () = 0.42 + 0.5 cos(%) +0.08 cos (%) _M<n<M. (119

In addition, there is another popular window function, called the Kaiser win-
dow (its detailed information can be found in Oppenheim, Schafer, and Buck
[1999]). As we expected, the rectangular window function has a constant value
of 1 within the window, hence does only truncation. As a comparison, shapes
of the other window functions from Equations (7.16) to (7.19) are plotted in
Figure 7.9 for the case of 2M + 1 = 81.

230 7 FINITE IMPULSE RESPONSE FILTER DESIGN

Magnitude

Number of samples

FIGURE 7.9 Shapes of window functions for the case of 2M + 1 = 81. O line,
Triangular window; + line, Hanning window; Solid line, Hamming
window; dashed line, Blackman window.

We apply the Hamming window function in Example 7.4.

Example 7.4.
Given the calculated filter coefficients

h(0) = 0.25, h(— 1) = h(1) = 0.22508, h(— 2) = h(2) = 0.15915, h(— 3) = h(3)
— 0.07503,

a. Apply the Hamming window function to obtain windowed coefficients
hw(”)
b. Plot the impulse response /#(n) and windowed impulse response /4,,(n).

Solutions:

a. Since M = 3, applying Equation (7.18) leads to the window sequence

-3
Wham(— 3) = 0.54 4+ 0.46 cos< 3X W) —=0.08

-2
Wham(—2) = 0.54 + 0.46 cos(3X W) =0.31

7.3 Window Method

1WMA—1):OS4+046um<_1;ﬂ>::077
Wham(0) = 0.54 + 0.46 cos <O é ”) —1
WMAD:OM+O%umC§W>:OW
Wham(2) = 0.54 + 0.46 cos <2 é ”) —0.31
WMA$2054+QMkm<3§W>:00&

231

Applying the Hamming window function and its symmetrical property to

the filter coefficients, we get
ny(0) = h(0) - when(0) = 0.25 x 1 =0.25
hy(1) = (1) - whem(1) = 0.22508 x 0.77 = 0.17331 = h,,(— 1)
ny(2) = M2) - Wham(2) = 0.15915 x 0.31 = 0.04934 = h,,(— 2)
hy(3) = h(3) - wham(3) = 0.07503 x 0.08 = 0.00600 = A,,(— 3).

b. Noncausal impulse responses /(n) and 4,,(n) are plotted in Figure 7.10.

I T T T T T T

| | | | | | |

1 1 | o) | 1 1

| | | |

e 1 |

= | |
O1p———r—————— |
-4 -3 -2 -1 0 1 2 3 4

Sample number n

\ I \ \ \ \ \

| | | | | | |

1 1 1 o 1 1 1

| | | | | |

G L o

z 1 1 1 1

£ I I I I
i i i B H et R R

| | | |

9 T

0 Q Q
_4 -3 -2 -1 0 1 2 3 4

Sample number n

FIGURE 7.10 Plots of FIR non-causal coefficients and windowed FIR coefficients in

Example 7.4.

232 7 FINITE IMPULSE RESPONSE FILTER DESIGN

We observe that the Hamming window does its job to weight the FIR filter
coefficients to zero gradually at both ends. Hence, we can expect a reduced
Gibbs effect in the magnitude frequency response.

Now the lowpass FIR filter design via the window method can be therefore
achieved. The design procedure includes three steps. The first step is to obtain
the truncated impulse response /(n), where —M < n < M; then we multiply the
obtained sequence /i(n) by the selected window data sequence to yield the
windowed noncausal FIR filter coefficients /%,,(n); and the final step is to delay
the windowed noncausal sequence /,,(n) by M samples to achieve the causal FIR
filter coefficients, b, = h,,(n — M). The design procedure of the FIR filter via
windowing is summarized as follows:

1. Obtain the FIR filter coefficients A(n) via the Fourier transform method

(Table 7.1).
2. Multiply the generated FIR filter coefficients by the selected window
sequence
hy(n) = h(mywn), n=-M,...0,1,..., M, (7.20)

where w(n) is chosen to be one of the window functions listed in Equa-
tions (7.15) to (7.19).

3. Delay the windowed impulse sequence A, (n) by M samples to get the
windowed FIR filter coefficients:

by = hy(n— M), forn=0,1,...,2M. (7.21)

Let us study the following design examples.

Example 7.5.

a. Design a 3-tap FIR lowpass filter with a cutoff frequency of 800 Hz and a
sampling rate of 8,000 Hz using the Hamming window function.

b. Determine the transfer function and difference equation of the designed
FIR system.

c. Compute and plot the magnitude frequency response for) =0, 7/4,
/2, 37w /4, and 7 radians.

Solution:
a. The normalized cutoff frequency is calculated as

Q. =27f, Ty = 2 x 800/8000 = 0.27 radian.

7.3 Window Method 233

Since 2M + 1 = 3 in this case, FIR coefficients obtained by using the
equation in Table 7.1 are listed as

h(0) = 0.2 and h(— 1) = k(1) = 0.1871

(see Example 7.2). Applying the Hamming window function defined in
Equation (7.18), we have

Wham(0) = 0.54 + 0.46 cos <0T77> =1

I
Wham(1) = 0.54 + 0.46 cos(T “) — 0.08.

Using the symmetry of the window function gives
Wham(— 1) = Wpam(1) = 0.08.
The windowed impulse response is calculated as
h(0) = h(0)wpem(0) = 0.2 x 1 =0.2
hy(1) = h(1)wpam(1) = 0.1871 x 0.08 = 0.01497
hy(— 1) = h(— Dwpgm(— 1) = 0.1871 x 0.08 = 0.01497.
Thus, delaying /,,(n) by M = 1 sample gives
by = b, = 0.01496 and b; = 0.2.
. The transfer function is achieved as
H(z) = 0.01497 + 0.2z 4 0.01497z2.
Using the technique described in Chapter 6, we have
Y(2)
X(2)
Multiplying X(z) leads to
Y(z) = 0.01497X(z) + 0.2z 1 X (2) 4+ 0.01497z272 X (2).

= H(z) = 0.01497 +0.2z7' 4+ 0.01497z2.

Applying the inverse z-transform on both sides, the difference equation is
yielded as

y(n) =0.01497x(n) + 0.2x(n — 1) + 0.01497x(n — 2).

. The magnitude frequency response and phase response can be obtained
using the technique introduced in Chapter 6. Substituting z = ¢/ into
H(z), it follows that

H(e'™) = 0.01497 4 0.2¢7® 4 0.01497¢ 22
— ¢72(0.01497¢/® + 0.2+ 0.01497¢7%).

234 7 FINITE IMPULSE RESPONSE FILTER DESIGN

Using Euler’s formula leads to
H(e’) = e72(0.2 4 0.02994 cos Q).
Then the magnitude frequency response and phase response are found to be
|H(e™)| = 0.2+ 0.2994 cos Q|

- if 0.2+ 0.02994cos) >0
—Q+7 if 0.2+0.02994cos () < 0.
The calculation details of the magnitude response for several normalized fre-

quency values are listed in Table 7.4. Figure 7.11 shows the plots of the
frequency responses.

and /H(/*) = {

TABLE 7.4 Frequency response calculation in Example 7.5.

Q /H(e/?Y)
radians /= Qf;/Q2m) Hz 0.2+ 0.0299%4cos Q) |H(e/*)| |H(e/)|,, dB degree
0 0 0.2299 0.2299 —12.77 0
/4 1000 0.1564 0.2212 —13.11 —45
/2 2000 0.2000 0.2000 —13.98 -90
3m/4 3000 0.1788 0.1788 —14.95 —135
™ 4000 0.1701 0.1701 —15.39 —180

Magnitude response (dB)
o X

|
|
l
1 1 1 1 1
500 1000 1500 2000 2500 3000 3500 4000
Frequency (Hz)

50

0+
-50
-100
-150

Phase response (degrees)

—200

|

| L

1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000
Frequency (Hz)

FIGURE 7.11 The frequency responses in Example 7.5.

7.3 Window Method 235

Example 7.6.

a. Design a 5-tap FIR band reject filter with a lower cutoff frequency of
2,000 Hz, an upper cutoff frequency of 2,400 Hz, and a sampling rate
of 8,000 Hz using the Hamming window method.

b. Determine the transfer function.
Solution:
a. Calculating the normalized cutoff frequencies leads to

QO =2mf;. T = 27 x 2000/8000 = 0.57 radians
Qp =27fyT =27 x 2400/8000 = 0.67 radians.

Since 2M + 1 = 5 in this case, using the equation in Table 7.1 yields

a7—Qy+Qr n=0
h(n) = . siriTEQHn) + sin (Qzn) n # 0] <n< 2.
nmT nmw

When n = 0, we have

-0 Q - 0.6 0.5
poy= Tt T OOm U g
T T
The other computed filter coefficients via the previous expression are
listed as
in [0. 1 in [0. 1
h(l):sm[Owa]_sm[0677><]:0.01558
I x 1 xa
in[0.5 2 in[0.6 2
h(z):sm[T X]_sm[T X]:0'09355‘
2xar 2x

Using the symmetry leads to
h(—1) = h(1) = 0.01558
h(—2) = h(2) = 0.09355.

Applying the Hamming window function in Equation (7.18), we have

Wham(0) = 0.54 4 0.46 cos (0 ; 7T> =1.0

7’) —0.54

2
Wham(2) = 0.54 + 0.46 cos(; “) — 0.08.

|
Wiam(1) = 0.54 + 0.46 cos(s

Using the symmetry of the window function gives

236 7 FINITE IMPULSE RESPONSE FILTER DESIGN

Wham(— 1) = Wham(1) = 0.54
Wham(— 2) = Wham(2) = 0.08.
The windowed impulse response is calculated as
hy(0) = h(0)wpen(0) = 0.9 x 1 =0.9
hy(1) = h(1)wpam(1) = 0.01558 x 0.54 = 0.00841
hy(2) = h2)wpam(2) = 0.09355 x 0.08 = 0.00748
h(— 1) = h(— Dwpgm(— 1) = 0.00841
(= 2) = h(— 2)Wpam(— 2) = 0.00748.
Thus, delaying A,,(n) by M = 2 samples gives
by = by = 0.00748, by = b3 = 0.00841, and b, = 0.9.
b. The transfer function is achieved as
H(z) = 0.00748 + 0.00841z7! 4+ 0.9272 + 0.00841z3 + 0.00748z .

The following design examples are demonstrated using MATLAB programs.
The MATLAB function firwd(N, Ftype, WnL, WnH, Wtype) is listed in the
“MATLAB Programs” section at the end of this chapter. Table 7.5 lists com-
ments to show the usage.

TABLE 7.5 lllustration of the MATLAB function for FIR filter design using the window
methods.

function B = firwd (N, Ftype, WnL, WnH, Wtype)

% B = firwd(N, Ftype, WnL, WnH, Wtype)

% FIR filter design using the window function method.

% Input parameters:

% N: the number of the FIR filter taps.

% Note: It must be an odd number.

% Ftype: the filter type

% 1. Lowpass filter;

% 2. Highpass filter;

% 3. Bandpass filter;

% 4. Band reject filter;

% WnL: lower cutoff frequency in radians. Set WnL = 0 for the highpass filter.
% WnH: upper cutoff frequency in radians. Set WnH = 0 for the lowpass filter.
% Wtypw: window function type

% 1. Rectangular window;

% 2. Triangular window;

% 3. Hanning window;

% 4. Hamming window;

% 5. Blackman window;

7.3 Window Method 237

Example 7.7.

a. Design a lowpass FIR filter with 25 taps using the MATLAB program
listed in the “MATLAB Programs” section at the end of this chapter. The
cutoff frequency of the filter is 2,000 Hz, assuming a sampling frequency
of 8,000 Hz. The rectangular window and Hamming window functions
are used for each design.

b. Plot the frequency responses along with those obtained using the
rectangular window and Hamming window for comparison.

c. List FIR filter coefficients for each window design method.
Solution:

a. With a given sampling rate of 8,000 Hz, the normalized cutoff frequency
can be found as

2000 x 27
e = 8000
Now we are ready to design FIR filters via the MATLAB program. The
program, firwd(N,Ftype,WnL,WnH,Wtype), listed in the “MATLAB
Programs™ section at the end of this chapter, has five input parameters,
which are described as follows:

= 0.57 radians.

m “N” is the number of specified filter coefficients (the number of filter
taps).

m “Ftype” denotes the filter type, that is, input “1” for the lowpass filter
design, input “2” for the highpass filter design, input “3” for the
bandpass filter design, and input “4” for the band reject filter design.

B “WnL” and “WnH” are the lower and upper cutoff frequency inputs,
respectively. Note that WnH = 0 when specifying WnL for the lowpass
filter design, while WnL = 0 when specifying WnH for the highpass
filter design.

m “Wtype” specifies the window data sequence to be used in the
design, that is, input “1” for the rectangular window, input 27
for the triangular window, input “3” for the Hanning window, input
“4” for the Hamming window, and input “5” for the Blackman
window.

b. The following application program (Program 7.2) is used to generate FIR
filter coefficients using the rectangular window. Its frequency responses
will be plotted together with that obtained using the Hamming window
for comparison, as shown in Program 7.3.

238 7 FINITE IMPULSE RESPONSE FILTER DESIGN

Program 7.2. MATLAB program for Example 7.7.

Example 7.7
MATLAB program to generate FIR coefficients
using the rectangular window.

o o° P o

N=25; Ftype=1; WnL= 0.5"pi; WnH=0; Wtype=1;
B=firwd (N, Ftype, WnL, WnH, Wtype) ;

Results of the FIR filter design using the Hamming window are illus-
trated in Program 7.3.

Program 7.3. MATLAB program for Example 7.7.

Figure 7.12
MATLAB program to create Figure 7.12

o o oo

N=25;Ftype=1;WnL= 0.5"pi;WnH=0;Wtype=1; £s=8000;

%Design using the rectangular window;

Brec=firwd (N, Ftype, WnL, WnH, Wtype) ;

N=25;Ftype=1;WnL= 0.5"pi;WnH=0;Wtype=4;

%Design using the Hamming window;

Bham=firwd (N, Ftype, WnL, WnH, Wtype) ;

[hrec, f]=freqz (Brec,1,512,fs);

[hham, f]=freqgz (Bham,1,512, fs);

prec= 180*unwrap (angle (hrec)) /pi;

pham= 180*unwrap (angle (hham)) /pi

subplot(2,1,1);

plot (f,20%*10ogl0 (abs (hrec)),’-.’, £,20*10gl0 (abs (hham))) ;grid
axis ([0 4000 —10010]);

xlabel ('Frequency (Hz)’) ;ylabel ('Magnitude Response (dB)’) ;
subplot (2,1,2);

plot (f,prec,’-.’, f,pham) ;grid

xlabel ('Frequency (Hz)') ;ylabel (‘'Phase (degrees)’);

As a comparison, the frequency responses achieved from the rectangu-
lar window and the Hamming window are plotted in Figure 7.12, where
the dash-dotted line indicates the frequency response via the rectangular
window, while the solid line indicates the frequency response via the
Hamming window.

c. The FIR filter coefficients for both methods are listed in Table 7.6.

7.3 Window Method

|

|

1

|

|

l

|
2000 2500 3000 3500 4000
Frequency (Hz)

T
|

|

|

| |

| |

| |

| s -——-—~d-5=--
|

|

|

|

|

|

m
Z
(0]
@
c
o
Q.
@
e
(0] |
° |
2 |
Z |
2 |
E |
0 500 1000
0
2 00| -1
o |
I |
S 1000 ---- 4
o 1
@ |
c -1500 - ---q5----~- e
o | |
| |
—2000 : ‘
0 500 1000

I 1
l l l
| | |
1500 2000 2500 3000 3500 4000
Frequency (Hz)

239

FIGURE 7.12 Frequency responses using the rectangular and Hamming windows.

TABLE 7.6 FIR filter coefficients in Example 7.7 (rectangular and

Hamming windows).

B: FIR Filter Coefficients

(rectangular window)

Bham: FIR Filter Coefficients
(Hamming window)

by = b4 = 0.000000
by = by3 = —0.028937
by = by = 0.000000
b3 = by =0.035368
by = byy = 0.000000
bs = bjg = —0.045473
bs = b1z = 0.000000
b7 = b7 = 0.063662
bg = b1 = 0.000000
by = b;s = —0.106103
bio = b14 = 0.000000
b1 = b13 = 0.318310
b12 = 0.500000

by = b4 = 0.000000
by = by = —0.002769
by = by = 0.000000
b3 = by = 0.007595
by = by = 0.000000
bs = bjg = —0.019142
bs = b1z = 0.000000
b7 = b7 = 0.041957
bs = b1 = 0.000000
by = bys = —0.091808
b0 = b4 = 0.000000
by1 = b3 = 0.313321
b1, = 0.500000

240 7 FINITE IMPULSE RESPONSE FILTER DESIGN

20 T T T T T T T

Hanning window
Peak of 1st side lobe

80 Hamming window
Peak of 1st side lobe

Magnitude frequency responses
I
[e2]
o

-100

Blackman window
Peak of 1st side lobe

-120

_1 40 1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000

Frequency (Hz)

FIGURE 7.13 Comparisons of magnitude frequency responses for the Hanning,
Hamming, and Blackman windows.

For comparison with other window functions, Figure 7.13 shows the magnitude
frequency responses using the Hanning, Hamming, and Blackman windows, with
25 taps and a cutoff frequency of 2,000 Hz. The Blackman window offers the
lowest side lobe, but with an increased width of the main lobe. The Hamming
window and Hanning window have a similar narrow width of the main lobe,
but the Hamming window accommodates a lower side lobe than the Hanning
window. Next, we will study how to choose a window in practice.

Applying the window to remedy the Gibbs effect will change the character-
istics of the magnitude frequency response of the FIR filter, where the width of
the main lobe becomes wider, while more attenuation of side lobes is achieved.

Next, we illustrate the design for customer specifications in practice. Given
the required stopband attenuation and passband ripple specifications shown in
Figure 7.14, where the lowpass filter specifications are given for illustrative
purposes, the appropriate window can be selected based on performances of
the window functions listed in Table 7.7. For example, the Hamming window
offers the passband ripple of 0.0194 dB and stopband attenuation of 53 dB.
With the selected Hamming window and the calculated normalized transition
band defined in Table 7.7,

Af = V:vtop _fpass‘/f:w (722)

7.3 Window Method 241

146,
1.0
1-8p
Passband Transition Stopband
)
s 1
0 fpass fc fstop fs/2

FIGURE 7.14 Lowpass filter frequency domain specifications.

the filter length using the Hamming window can be determined by

3.3
= —. 2
N Y; (7.23)
Note that the passband ripple is defined as
8, dB =20 "log), (1+8,). (7.24)

while the stopband attenuation is defined as
8y dB = —201log,, (8;). (7.25)

The cutoff frequency used for the design will be chosen at the middle of the
transition band, as illustrated for the lowpass filter shown in Figure 7.14.
As a rule of thumb, the cutoff frequency used for design is determined by

Je = (Foass + fsiop) /2. (7.26)

TABLE 7.7 FIR filter length estimation using window functions (normalized transition
width Af = [fsop — fpass|/fs)-

Stopband
Window Window Window Passband Attenuation
Type Function w(n), — M=n=M Length, N Ripple (dB) (dB)
Rectangular 1 N =0.9/Af 0.7416 21
Hanning 0.5+ 0.5cos(7¥) N =3.1/Af 0.0546 44
Hamming 0.54 + 0.46 cos (%) N = 3.3/Af 0.0194 53

Blackman ~ 0.42 + 0.5cos(%7) + 0.08 cos(%7) N = 5.5/Af 0.0017 74

242 7 FINITE IMPULSE RESPONSE FILTER DESIGN

Note that Equation (7.23) and formulas for other window lengths in Table 7.7
are empirically derived based on the normalized spectral transition width of
each window function. The spectrum of each window function appears to be
a shape like the lowpass filter magnitude frequency response with ripples in
the passband and side lobes in the stopband. The passband frequency edge
of the spectrum is the frequency where the magnitude just begins to drop
below the passband ripple and where the stop frequency edge is at the peak of
the first side lobe in the spectrum. With the passband ripple and stopband
attenuation specified for a particular window, the normalized transition width
of the window is in inverse proportion to the window length N multiplied by a
constant. For example, the normalized spectral transition Af for the Hamming
window is 3.3/N. Hence, matching the FIR filter transition width with the
transition width of the window spectrum gives the filter length estimation listed
in Table 7.7.

The following examples illustrate the determination of each filter length and
cutoff frequency/frequencies for the design of lowpass, highpass, bandpass, and
bandstop filters. Application of each designed filter to the processing of speech
data is included, along with an illustration of filtering effects in both time
domain and frequency domain.

Example 7.8.
A lowpass FIR filter has the following specifications:

Passband = 0 — 1,850 Hz
Stopband = 2,150 — 4,000 Hz
Stopband attenuation = 20dB
Passband ripple = 1 dB
Sampling rate = 8,000 Hz

a. Determine the FIR filter length and the cutoff frequency to be used in the
design equation.

Solution:

a. The normalized transition band as defined in Equation (7.22) and
Table 7.7 is given by

Af = |2150 — 1850| /8000 = 0.0375.

Again, based on Table 7.7, selecting the rectangular window will result
in a passband ripple of 0.74 dB and a stopband attenuation of 21 dB.
Thus, this window selection would satisfy the design requirement for the

7.3 Window Method 243

passband ripple of 1 dB and stopband attenuation of 20 dB. Next, we
determine the length of the filter as

N = 0.9/Af = 0.9/0.0375 = 24.

We choose the odd number N = 25. The cutoff frequency is determined
by (1850 +2150)/2 =2000Hz. Such a filter has been designed in
Example 7.7, its filter coefficients are listed in Table 7.6, and its fre-
quency responses can be found in Figure 7.12 (dashed lines).

Now we look at the time domain and frequency domain results from filtering
a speech signal by using the lowpass filter we have just designed. Figure 7.15a
shows the original speech and lowpass filtered speech. The spectral comparison
is given in Figure 7.15b, where, as we can see, the frequency components beyond
2 kHz are filtered. The lowpass filtered speech would sound muftled.

We will continue to illustrate the determination of the filter length and cutoff
frequency for other types of filters via the following examples.

Speech

0 200 400 600 800 1000 1200 1400 1600 1800 2000

l‘_l hm. D0t Lo i o
(A LA

Lowpassed speech
o

"0 200 400 600 800 1000 1200 1400 1600 1800 2000
A Sample number

FIGURE 7.15A Original speech and processed speech using the lowpass filter.

244 7 FINITE IMPULSE RESPONSE FILTER DESIGN

800
Z 600 [AU SN S S SN N _—
x | | | | |
g 400 e e A o T
2 : : : : : : :
S L N B S
0 | | |]
0 500 1000 1500 2000 2500 3000 3500 4000
Frequency (Hz)
800
S 600 r T T STt CTTTTTTT
= | | |
[0) | | | | | | |
S 400 B R A o B
< 200 PP Tt H I T T .
0 | | | | | !
0 500 1000 1500 2000 2500 3000 3500 4000
B Frequency (Hz)

FIGURE 7.15B Speciral plots of the original speech and processed speech by the
lowpass filter.

Example 7.9.
a. Design a highpass FIR filter with the following specifications:

Stopband = 0-1,500 Hz
Passband = 2,500—4,000 Hz
Stopband attenuation = 40 dB
Passband ripple = 0.1 dB
Sampling rate = 8,000 Hz

Solution:

a. Based on the specifications, the Hanning window will do the job, since it
has a passband ripple of 0.0546 dB and a stopband attenuation of 44 dB.
Then

Af = [1500 — 2500| /8000 = 0.125
N =3.1/Af =24.2. Choose N = 25.

7.3 Window Method 245

Hence, we choose 25 filter coefficients using the Hanning window
method. The cutoff frequency is (1500 + 2500)/2 = 2000 Hz. The normal-
ized cutoff frequency can be easily found as

2000 x 27 .
Q. = 3000~ 0.57 radians.

And notice that 2M + 1 = 25. The application program and design re-
sults are listed in Program 7.4 and Table 7.8.

The corresponding frequency responses of the designed highpass FIR
filter are displayed in Figure 7.16.

TABLE 7.8 FIR filter coefficients in Example 7.9 (Hanning window).

Bhan: FIR Filter Coefficients (Hanning window)

by = by = 0.000000 by = byz = 0.000493
by = by = 0.000000 b3 = by = —0.005179
by = byy = 0.000000 bs = b1g = 0.016852
bs = b1 = 0.000000 b7 = b7 = —0.040069
bg = b1 = 0.0000000 by = b1s = 0.090565
b1o = b4 = 0.000000 by = b1z = —0.312887
b12 = 0.500000
g
[0
2
2
o 50
3
2
& —100
g 1l 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000
Frequency (Hz)
500
R
o
3
o -500
-1000
o |
|
71 500 1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000

Frequency (Hz)

FIGURE 7.16 Frequency responses of the designed highpass filter using the Hanning
window.

246

FINITE

IMPULSE RESPONSE FILTER DESIGN

Program 7.4. MATLAB program for Example 7.9.

o\°

Figure 7.16 (Example 7.9)

% MATLAB program to create Figure 7.16

e

N=25;Ftype =2;WnL =0;WnH = 0.5"pi;Wtype = 3; fs = 8000;
Bhan=firwd (N, Ftype, WnL, WnH, Wtype) ;

freqgz (Bhan, 1,512, fs);

axis ([0 fs/2 —120 101);

Comparisons are given in Figure 7.17(a), where the original speech and
processed speech using the highpass filter are plotted. The high-frequency com-
ponents of speech generally contain small amounts of energy. Figure 7.17(b)
displays the spectral plots, where clearly the frequency components lower than

1.5 kHz are filtered. The processed speech would sound crisp.

x 104
		\ \					
] R AR R o o R							
K		I [
2 L Dl L) a	f						
[0 A HA.	1A v f\						
(%_ 0 :	: l{”“'l i Ik '1H' H						
T3 S B B R AL S I R (S I							
' l l l l l l l l l							
_1							
0 200 400 600 800 1000 1200 1400 1600 1800 2000							
x 104							
5 l l l l l l l l l							
L e e e e IO R							
)							
o X 1 X et P T							
§ 0 ! ! ! ‘ L e LR g							
©							
Q.							
%_0'57777T777T777T777T777T""T"T""T"T""							
_1 | | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

A

FIGUREZ7.17A

Sample number

Original speech and processed speech using the highpass filter.

7.3 Window Method

247

800 ‘ ‘ ‘
| | |
= 600 e
x | | |
© I I I
8 400 f R,
5 I I I
£ 200 e
| | |
0 ; b
0 500 1000 1500 2000 2500 3000 3500 4000
Frequency (Hz)
30 ; ; ; ; ; ; ;
| | | | | | |
| | | | | | |
E | | | | | | |
o
(0] | | | ‘ | | |
8 I I I 1 I I I
= | | | ‘ } [| 1
[=% 10,,,,,,‘ ,,,,, B I _ L L (0 [
£ [\ [“ \ w ” !l H“U
< | | |
| | | | |
| | | | | |
0 4 + | | | |
0 500 1000 1500 2000 2500 3000 3500 4000
B Frequency (Hz)
FIGURE 7.17B Spectral comparison of the original speech and processed speech

using the highpass filter.

Example 7.10.

a. Design a bandpass FIR filter with the following specifications:

Lower stopband = 0-500 Hz
Passband = 1,600-2,300 Hz
Upper stopband = 3,500-4,000 Hz
Stopband attenuation = 50 dB
Passband ripple = 0.05 dB
Sampling rate = 8,000 Hz

Solution:

a. Af; = [1600 — 500|/8000 = 0.1375 and Af; = |3500 — 2300|/8000 = 0.15
N; =3.3/0.1375 =24 and N, =3.3/0.15 =22

Choosing N =25 filter coefficients using the Hamming window

method:

£ = (1600 + 500)/2 = 1050 Hz and f> = (3500 + 2300)/2 = 2900 Hz.

248 7 FINITE IMPULSE RESPONSE FILTER DESIGN

The normalized lower and upper cutoff frequencies are calculated as:

1050 x 27 .

QO = — 3000 0.26257r radians and
2900 x 27 .

Qp = 2000 0.7257r radians,

and N =2M + 1 = 25. Using the MATLAB program, design results are
achieved as shown in Program 7.5.

Figure 7.18 depicts the frequency responses of the designed bandpass FIR
filter. Table 7.9 lists the designed FIR filter coefficients.

Program 7.5. MATLAB program for Example 7.10.

oe

Figure 7.18 (Example 7.10)
MATLAB program to create Figure 7.18

oo

oe

N =25;Ftype = 3;WnL = 0.2625%p1;WnH = 0.725%pi;Wtype = 4; £s = 8000;
Bham=firwd (N, Ftype, WnL, WnH, Wtype) ;

freqz (Bham, 1,512, fs) ;

axis ([0 £fs/2 —13010]) ;

~
I Y

0 500 1000 1500 2000 2500 3000 3500 4000
Frequency (Hz)

Magnitude response (dB)

500

-500

-1000

Phase (degrees)

~1500 e

-2000

0 500 1000 1500 2000 2500 3000 3500 4000
Frequency (Hz)

FIGURE 7.18 Frequency responses of the designed bandpass filter using the
Hamming window.

TABLE 7.9

7.3 Window Method

FIR filter coefficients in Example 7.10 (Hamming window).

Bham: FIR Filter Coefficients (Hamming window)

by = b4 = 0.002680
by = by = —0.007353
by = by = —0.011063
bs = b1z = 0.053382
bg = b1 = 0.028520
bio = b1a = —0.296394

by = b3 = —0.001175
b3 = by = 0.000674
bs = b9 = 0.004884
b7 = b7 = —0.003877
by = b5 = —0.008868
b1 = b13 = 0.008172

b1, = 0.462500

For comparison, the original speech and bandpass filtered speech are
plotted in Figure 7.19a, where the bandpass frequency components contain
a small portion of speech energy. Figure 7.19b shows a comparison indicating
that the low frequency and high frequency are removed by the bandpass
filter.

X 104
0.5
N
§ 0) ﬂ‘nﬂhﬁﬂmﬁﬂn hmwﬂv'\h vﬁﬂ ﬂﬂ
a WWWWWWY VT
-0.5
-1
0 200 400 600 800 1000 1200 1400 1600 1800 2000
X 104
N
3
Q 0.5
"
ge)
§ 0 WWWWWW%W
®©
o
T 0.5
3]
m
-1
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Sample number

>

FIGURE 7.19A Original speech and processed speech using the bandpass filter.

250 7 FINITE IMPULSE RESPONSE FILTER DESIGN

800

600

Amplitude IX(f)!
N
o
o

N
o
o

500 1000 1500 2000 2500 3000 3500 4000
Frequency (Hz)

o

o

50

= 40
H\
[

Amplitude IY(f

30 A

20 L | »m])

10 Mjm. AHJW ”,M Mi lﬂl]
A o

0 500 1000 1500 2000 2500 3000 3500 4000

B Frequency (Hz)

FIGURE 7.19B Spectral comparison of the original speech and processed speech
using the bandpass filter.

Example 7.11.
a. Design a bandstop FIR filter with the following specifications:

Lower cutoff frequency = 1,250 Hz
Lower transition width = 1,500 Hz
Upper cutoff frequency = 2,850 Hz
Upper transition width = 1,300 Hz
Stopband attenuation = 60 dB
Passband ripple = 0.02dB
Sampling rate = 8,000 Hz

Solution:
a. We can directly compute the normalized transition widths:
Afi = 1500/8000 = 0.1875, and Af, = 1300/8000 = 0.1625.
The filter lengths are determined using the Blackman window as:

N; =5.5/0.1875 = 29.33, and N, = 5.5/0.1625 = 33.8.

7.4 Applications: Noise Reduction and Two-Band Digital Crossover 251

We choose an odd number N = 35. The normalized lower and upper
cutoff frequencies are calculated as:

2 x 1250 .

Q) = 3000~ 0.31257 radian and
27 x 2850 .

Qp = 3000 0.71257 radians,

and N = 2M + 1 = 35. Using MATLAB, the design results are demon-
strated in Program 7.6.

Program 7.6. MATLAB program for Example 7.11.

% Figure 7.20 (Example 7.11)
% MATLAB program to create Figure 7.20

o

N =35;Ftype = 4;WnL = 0.3125"pi;WnH = 0.7125%pi;Wtype = 5; fs = 8000;
Bblack = firwd (N, Ftype, WnL, WnH, Wtype) ;

freqgz (Bblack,1,512,fs);

axis ([0 £fs/2 —12010]);

Figure 7.20 shows the plot of the frequency responses of the designed band-
stop filter. The designed filter coefficients are listed in Table 7.10.

Comparisons of filtering effects are illustrated in Figures 7.21a and 7.21b. In
Figure 7.21a, the original speech and the processed speech by the bandstop filter
are plotted. The processed speech contains most of the energy of the original
speech because most of the energy of the speech signal exists in the low-frequency
band. Figure 7.21b verifies the filtering frequency effects. The frequency com-
ponents ranging from 2,000 to 2,200 Hz have been completely removed.

TABLE 7.10 FIR filter coefficients in Example 7.11 (Blackman window).

Black: FIR Filter Coefficients (Blackman window)

by = b4 = 0.000000 by = by3 = 0.000059
by = by, = 0.000000 by = by = 0.000696
by = by = 0.001317 bs = by = —0.004351
be = by = —0.002121 b7 = by, = 0.000000
bg = bayg = —0.004249 bo = bys = 0.027891
bio = by = 0.011476 bi1 = by = —0.036062
b1z = by = 0.000000 bi3 = by = —0.073630
bia = byy = —0.020893 bis = by = 0.285306

b1 = b1z = 0.014486 b17 = 0.600000

252 7 FINITE IMPULSE RESPONSE FILTER DESIGN

g
° \ /
2 \
S
Q.
g -50
()
2 \
:“;:'
§ -100 Hi-{

0 500 1000 1500 2000 2500 3000 3500 4000

Frequency (Hz)

0
’2,”? -500
o
2 -1000 P
g <
O
g 1500 L ~~
©
& 2000
—2500

0 500 1000 1500 2000 2500 3000 3500 4000
Frequency (Hz)

FIGURE 7.20 Frequency responses of the designed bandstop filter using the
Blackman window.

X 104
1 T T T T T T T T T
I I I I I I I I I
I I I I I I I I I
- I I | | [I I
§ 0 ‘ ‘ J'Nl.knl J.”] |]l|h'TJ["’r"ll"' '
5 IR | 1 1| AR AL WU
e, — —,——-
I I I I I I I I I
I I I I I I I I I
_1 | | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000
X 104
5 1 I I I I I I I I I
g l l l l l l l l l
8 0-5777777777\7777\777777 B T T O
g I I I I \ \ I I I
gLl b b e g g
3 | i r'HIH N P Y
S I : I : I I I : I
- 05F---7--""1———-1--- il s e A e
< I I I I I I I I I
g I I I I I I I I I
_1 | | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000
A Sample number

FIGURE 7.21A Original speech and processed speech using the bandstop filter.

7.4 Applications: Noise Reduction and Two-Band Digital Crossover 253

800 T
I I I I I I I
_ I I I I I I I
T L T Rt S CEEE
= I I I I I I
8 400l i R S AR S A S
2 400 | | | | | |
o I I I I I I
£ a0l {IfH4----- e
O S
0 500 1000 1500 2000 2500 3000 3500 4000
Frequency (Hz)
600 T T T T
I I I I
= l l l l
] I EEEE s e
) I I I I
B I I I I
= I I I I
a 200) S [e e
£ l l l l
I I I I
. N S B
0 500 1000 1500 2000 2500 3000 3500 4000

B Frequency (Hz)

FIGURE 7.21B Spectral comparison of the original speech and the processed speech
using the bandstop filter.

7.4 Applications: Noise Reduction and
Two-Band Digital Crossover

In this section, we will investigate noise reduction and digital crossover design
using the FIR filters.

7.4.1 Noise Reduction

One of the key digital signal processing (DSP) applications is noise reduction.
In this application, a digital FIR filter removes noise in the signal that is
contaminated by noise existing in the broad frequency range. For example,
such noise often appears during the data acquisition process. In real-world
applications, the desired signal usually occupies a certain frequency range. We
can design a digital filter to remove frequency components other than the
desired frequency range.

In a data acquisition system, we record a 500 Hz sine wave at a sampling rate
of 8,000 Hz. The signal is corrupted by broadband noise v(n):

x(n) = 1.4141 - sin 21 - 5001/8000) + v(n).

254 7 FINITE IMPULSE RESPONSE FILTER DESIGN

The 500 Hz signal with noise and its spectrum are plotted in Figure 7.22, from
which it is obvious that the digital sine wave contains noise. The spectrum is also
displayed to give better understanding of the noise frequency level. We can see
that noise is broadband, existing from 0 Hz to the folding frequency of
4,000 Hz. Assuming that the desired signal has a frequency range of only 0 to
800 Hz, we can filter noise from 800 Hz and beyond. A lowpass filter would
complete such a task. Then we develop the filter specifications:

Passband frequency range: 0 Hz to 800 Hz with passband ripple less than
0.02 dB.
Stopband frequency range: 1 kHz to 4 kHz with 50 dB attenuation.

As we will see, lowpass filtering will remove the noise ranging from 1,000 to
4,000 Hz, and hence the signal-to-noise power ratio will be improved.

Based on the specifications, we design the FIR filter with a Hamming
window, a cutoff frequency of 900 Hz, and an estimated filter length of 133
taps. The enhanced signal is depicted in Figure 7.23, where the clean signal can
be observed. The amplitude spectrum for the enhanced signal is also plotted. As
shown in the spectral plot, the noise level is almost neglected between 1 and
4 kHz. Notice that since we use the higher-order FIR filter, the signal experi-
ences a linear phase delay of 66 samples, as is expected. We also see some
transient response effects. However, the transient response effects will be

4
(]
=)
©
>
o
Q.
S
©
(%)
4 H H H H
0 50 100 150 200 250
Number of samples
1.5 :
§ 1r-------f------- Fommmmm- Te=————- B e
® i
el
2
g. 05F------q4H-------#---mmm e
<
0 H : ‘ h ‘ T ;
0 500 1000 1500 2000 2500 3000 3500 4000

Frequency (Hz)

FIGURE 7.22 Signal with noise and its spectrum.

7.4 Applications: Noise Reduction and Two-Band Digital Crossover 255

()
=)
©
>
K9]
Q.
IS
©
()
4 H H H H
0 50 100 150 200 250
Number of samples
1.5
>
(0]
kel
2
=
S
<

0 500 1000 1500 2000 2500 3000 3500 4000
Frequency (Hz)

FIGURE 7.23 The noise-removed clean signal and spectrum.

ended totally after the first 132 samples due to the length of the FIR filter.
MATLAB implementation is given in Program 7.7.

7.4.2 Speech Noise Reduction

In a speech recording system, we digitally record speech in a noisy environment
at a sampling rate of 8,000 Hz. Assuming that the recorded speech contains
information within 1,800 Hz, we can design a lowpass filter to remove the noise
between 1,800 Hz and the Nyquist limit (the folding frequency of 4,000 Hz).
Therefore, we have the following filter specifications:

Filter type = lowpass FIR

Passband frequency range = 0-1,800 Hz
Passband ripple = 0.02 dB

Stopband frequency range = 2,000-4,000 Hz
Stopband attenuation = 50 dB.

According to these specifications, we can determine the following parameters
for filter design:

Window type = Hamming window
Number of filter taps = 133
Lowpass cutoff frequency = 1,900 Hz.

256 7 FINITE IMPULSE RESPONSE FILTER DESIGN

Program 7.7. MATLAB program for the application of noise filtering.

close all; clear all

fs =8000; % Sampling rate

T=1/fs; % Sampling period

v=sqgrt (0.1)*randn (1, 250) ; % Generate the Gaussian random noise
n=20:1:249; % Indexes

x = sqgrt (2)*sin (2*pi*500*n*T) + v; %$ Generate the 500-Hz sinusoidplus noise
subplot(2,1,1);plot(t,x);

xlabel ('Number of samples’) ; ylabel (‘Sample value') ;grid;

N=length (x) ;

f=[0:N/2]*fs/N;

Axk= 2*abs (fft (x)) /N;Axk (1)=Axk (1) /2; % Calculate the single-sided spectrum
subplot(2,1,2);plot (f,Axk(1:N/2+4+1));

xlabel ('Frequency (Hz)') ;ylabel (‘Amplitude (f)|’) ;grid;

figure

Wnc= 2*pi*900/fs; % Determine the normalized digital cutoff frequency
B=firwd(133,1,Wnc,0,4); % Design the FIR filter
y=filter(B,1,x); % Performdigital filtering

Ayk= 2*abs (fft (y)) /N;Ayk (1) =Ayk (1) /2;% Single-sided spectrumof the filtered data
subplot(2,1,1);plot(t,vy):

xlabel ('Number of samples’) ; ylabel (‘Sample value') ;grid;
subplot(2,1,2);plot(f,Ayk(1:N/2+4+1));axis ([0 fs/201.5]);

xlabel ('Frequency (Hz)') ;ylabel (‘(Amplitude |[Y (f)]|’) ;grid;

Figure 7.24(a) shows the plots of the recorded noisy speech and its spectrum. As
we can see in the noisy spectrum, the noise level is high and broadband. After
applying the designed lowpass filter, we plot the filtered speech and its spectrum
shown in Figure 7.24(b), where the clean speech is clearly identified, while the
spectrum shows that the noise components above 2 kHz have been completely
removed.

7.4.3 Two-Band Digital Crossover

In audio systems, there is often a situation where the application requires the
entire audible range of frequencies, but this is beyond the capability of any
single speaker driver. So, we combine several drivers, such as the speaker cones
and horns, each covering different frequency range, to reproduce the full audio
frequency range.

A typical two-band digital crossover can be designed as shown in Figure 7.25.
There are two speaker drivers. The woofer responds to low frequencies, and the

257

7.4 Applications: Noise Reduction and Two-Band Digital Crossover

anjeA s|dwes

0.25

0.2

0.1

Number of samples

500

800
600 [~~~
200f

=

13X epnudwy

1500 2000 2500 3000 3500 4000

1000

Frequency (Hz)

Noisy speech and its spectrum.

FIGURE 7.24A

1><104

anjea s|dwes

0.25

0.2

0.1

Number of samples

800
600 [~~~
400 [

€}

=

Al epnyjdwy

1000 1500 2000 2500 3000 3500 4000

500

Frequency (Hz)

Enhanced speech and its spectrum.

FIGURE 7.24B

258 7 FINITE IMPULSE RESPONSE FILTER DESIGN

Highpass filter Tweeter:
MQ_> O The crossover passes

Digital f high frequencies

audio x(n)

Lowpass filter Gain_L Woofer:
yL(n) The crossover passes
‘l ’ () ' low frequencies

FIGURE 7.25 Two-band digital crossover.

tweeter responds to high frequencies. The incoming digital audio signal is split
into two bands by using a lowpass filter and a highpass filter in parallel. We then
amplify the separated audio signals and send them to their respective corre-
sponding speaker drivers. Hence, the objective is to design the lowpass filter and
the highpass filter so that their combined frequency response is flat, while
keeping transition as sharp as possible to prevent audio signal distortion in
the transition frequency range. Although traditional crossover systems are
designed using active circuits (analog systems) or passive circuits, the digital
crossover system provides a cost-effective solution with programmable ability,
flexibility, and high quality.
A crossover system has the following specifications:

Sampling rate = 44,100 Hz

Crossover frequency = 1,000 Hz (cutoff frequency)

Transition band = 600 to 1,400 Hz

Lowpass filter = passband frequency range from 0 to 600 Hz with a ripple of
0.02 dB and stopband edge at 1,400 Hz with attenuation of 50 dB.
Highpeass filter = passband frequency range from 1.4 to 44.1 kHz with ripple
of 0.02 dB and stopband edge at 600 Hz with attenuation of 50 dB.

In the design of this crossover system, one possibility is to use an FIR filter,
since it provides a linear phase for the audio system. However, an infinite
impulse response (IIR) filter (which will be discussed in the next chapter) can
be an alternative. Based on the transition band of 800 Hz and the passband
ripple and stopband attenuation requirements, the Hamming window is chosen
for both lowpass and highpass filters. We can determine the number of filter
taps as 183, each with a cutoff frequency of 1,000 Hz.

The frequency responses for the designed lowpass filter and highpass filter
are given in Figure 7.26(a), and for the lowpass filter, highpass filter, and
combined responses in Figure 7.26(b). As we can see, the crossover frequency

259

7.4 Applications: Noise Reduction and Two-Band Digital Crossover

|

T

|

|

|
I

|

|

|

|

PR

-50
~100 -

(gp) asuodsal apnyubepy

Frequency (Hz)

<
o
—
®
o
—
~N
<
>
o
c
(3]
=
o O
=)
Tw
o
—
i i , i
I i I I
e i
| | | |
| | | |
| I | | o
1 1 1 1 >
o o o o o
Yol o 0 o
| 4ﬂ — [aY]

(gp) esuodsal spnyubepy <<

Magnitude frequency responses for lowpass filter and highpass filter.

FIGURE 7.26A

|
|
|
|
T
|
|
|
L_
[
|
|
|
PR

|

20
0

—20---

40| ---

(gp) asuodsa. spnyubepy

Frequency (Hz)

Magnitude frequency responses for both lowpass filter and highpass

FIGURE 7.26B

filter, and the combined magnitude frequency response for the digital

audio crossover system.

260 7 FINITE IMPULSE RESPONSE FILTER DESIGN

o
o
=)

o
o
g

o

Impulse response of LPF
o
o
N

|
o
o
(S

Impulse response of HPF

-0.5
0

(@)

FIGURE 7.26C Impulse responses of both the FIR lowpass filter and the FIR highpass
filter for the digital audio crossover system.

for both filters is at 1,000 Hz, and the combined frequency response is perfectly
flat. The impulse responses (filter coefficients) for lowpass and highpass filters
are plotted in Figure 7.26(c).

7.5 Frequency Sampling Design Method

In addition to methods of Fourier transform design and Fourier transform with
windowing discussed in the previous section, frequency sampling is another
alternative. The key feature of frequency sampling is that the filter coeffi-
cients can be calculated based on the specified magnitudes of the desired filter
frequency response uniformly in frequency domain. Hence, it has design
flexibility.

To begin with development, we let Ai(n), for n=0,1,..., N —1, be the
causal impulse response (FIR filter coefficients) that approximates the FIR
filter, and we let H(k), for k=0, 1,..., N — 1, represent the corresponding
discrete Fourier transform (DFT) coefficients. We obtain H(k) by sampling

7.5 Frequency Sampling Design Method 261

the desired frequency filter response H(k) = H(e/?) at equally spaced instants in
frequency domain, as shown in Figure 7.27.
Then, according to the definition of the inverse DFT (IDFT), we can

calculate the FIR coefficients:

2

1 —Kn
h(n) = N;H(k)WNk, forn=0,1,..., N—1,

where
> (7.27)

21 2 2
Wy = e/% = cos (%)]sm(]z; .

We assume that the FIR filter has linear phase and the number of taps
N =2M + 1. Equation (7.27) can be significantly simplified as

1 M 27k(n — M)
= Hy+2) H, = -
2M+1{ 0Tl kcos(2M + 1) : (7.28)

forn=0,1,...,2M,

h(n)

where Hy, for k =0, 1,..., 2M, represents the magnitude values specifying the

desired filter frequency response sampled at Qy = (yztﬂfl) The derivation is

‘H(efﬂ)‘ Desired filter frequency response
A
T » Q
0 4 2
H(el? Desired filter frequency response
Hi=)| ¢----¢--¥ ‘ \ ----------
| T o } o [! » Kk
01 2 3 4 5 6 7 8
| | | | | | | | | » Q
I I I I I I I I I 1 e k
Qo 2 Q2 Q5 Q4 Q5 Q5 0, Qg 2n

FIGURE 7.27 Desired filter frequency response and sampled frequency response.

262 7 FINITE IMPULSE RESPONSE FILTER DESIGN

detailed in Appendix E. The design procedure is therefore simply summarized as
follows:

1. Given the filter length of 2M + 1, specify the magnitude frequency
response for the normalized frequency range from 0 to m:

27k
H, Qp=——— f =0,1,..., M. 2
o at Oy oM D) ork=0,1,..., (7.29)
2. Calculate FIR filter coefficients:
1 M 2ak(n — M)
= Hy+2 H, _
i) 2M+1{ 0t ,; kcos(oM + 1)} (7.30)

forn=0,1,..., M.

3. Use the symmetry (linear phase requirement) to determine the rest of the
coefficients:

h(n) = hQM —n) forn=M +1,..., 2M. (7.31)

Example 7.12 illustrates the design procedure.

Example 7.12.

a. Design a linear phase lowpass FIR filter with 7 taps and a cutoff fre-
quency of). = 0.37r radian using the frequency sampling method.

Solution:

a. Since N =2M + 1 =7 and M = 3, the sampled frequencies are given by
2
Q= TWk radians, k =0, 1, 2, 3.

Next we specify the magnitude values Hj at the specified frequencies as
follows:

for)y = 0 radians, Hy = 1.0

2 .

for ()} = 777 radians, H; =1.0
4 .

for (), = ?77 radians, H, = 0.0

for Q3 = gﬂ- radians, Hz = 0.0.

Figure 7.28 shows the specifications.

7.5 Frequency Sampling Design Method 263

0 0.57 T

FIGURE 7.28 Sampled values of the frequency response in Example 7.12.

Using Equation (7.30), we achieve

3
h(n) = %{1 +22Hk cos [2mk(n — 3)/7]}
k=1 ,n=0,1,...,3.

= %{l + 2cos[2m(n — 3)/7]}
Thus, computing the FIR filter coefficients yields
h(0) = %{1 +2cos(—6m/7)} = —0.11456
h(l) = %{1 +2cos(—4m/7)} =0.07928
h(2) = %{1 +2cos(—2m/7)} = 0.32100
h(3) = %{1 +2cos(—0x m/7)} = 0.42857.

By the symmetry, we obtain the rest of the coefficients as follows:

h(4) = h(2) = 0.32100
h(5) = h(1) = 0.07928
h(6) = h(0) = —0.11456.

The following two examples are devoted to illustrating the FIR filter design
using the frequency sampling method. A MATLAB program, firfs(N, HKk), is
provided in the “MATLAB Programs” section at the end of this chapter (see its
usage in Table 7.11) to implement the design in Equation (7.30) with input
parameters of N =2M + 1 (number of taps) and a vector Hj containing the
specified magnitude values Hy, kK =0, 1,..., M. Finally, the MATLAB func-
tion will return the calculated FIR filter coefficients.

264

FINITE IMPULSE RESPONSE FILTER DESIGN

TABLE 7.11 lllustrative usage for MATLAB function firfs(N, Hk).

function B=firfs(N, Hk)

% B=firls(N, Hk)

% FIR filter design using the frequency sampling method.

% Input parameters:

% N: the number of filter coefficients.

% Note: N must be an odd number.

% Hk: sampled frequency response fork =0, 1, 2,..., M= (N —1)/2.
% Output:

% B: FIR filter coefficients.

Example 7.13.

a.

b.

C.

Design a linear phase lowpass FIR filter with 25 coefficients using the
frequency sampling method. Let the cutoff frequency be 2,000 Hz and
assume a sampling frequency of 8,000 Hz.

Plot the frequency responses.

List the FIR filter coefficients.

Solution:

a.

C.

The normalized cutoff frequency for the Jlowpass filter is
O =w T =272000/8000 = 0.57 radians, N =2M + 1 =25, and the
specified values of the sampled magnitude frequency response are chosen
to be

H,=[1111111000000].
MATLAB Program 7.8 produces the design results.

The magnitude frequency response plotted using the dash-dotted line is
displayed in Figure 7.29, where it is observed that oscillations (shown as
the dash-dotted line) occur in the passband and stopband of the designed
FIR filter. This is due to the abrupt change of the specification in the
transition band (between the passband and the stopband). To reduce this
ripple effect, the modified specification with a smooth transition band,
Hi, k=0,1,..., 13, is used:

H,=[11111110500000].

Therefore the improved magnitude frequency response is shown in Figure
7.29 via the solid line.

The calculated FIR coefficients for both filters are listed in Table 7.12.

7.5 Frequency Sampling Design Method 265

Program 7.8. MATLAB program for Example 7.13.

oe

Figure 7.29 (Example 7.13)
% MATLAB program to create Figure 7.29

fs =8000; % Sampling frequency

H1=1011111110000001]; % Magnitude specifications
Bl=firfs (25,H1); % Design the filter

[hl,f]l=freqgz (B1,1,512,fs); % Calculate themagnitude frequency response
H2=10111111105000001]; % Magnitude specifications
B2=firfs (25,H2); % Design the filter

[h2,f]=freqz(B2,1,512,fs); $%$Calculatethemagnitude frequencyresponse
pl = 180*unwrap (angle (hl)) /pi;

p2 = 180*unwrap (angle (h2)) /pi

subplot (2,1,1) ;plot (f,20%*1ogl0 (abs (hl)), ‘-.’,f,20"10gl10 (abs (h2)));grid
axis ([0 fs/2 —80 101]);

xlabel ('Frequency (Hz)') ; ylabel ('Magnitude Response (dB)’) ;
subplot(2,1,2);plot(f,pl, '-.",£f,p2);grid

xlabel ('Frequency (Hz)') ;ylabel ('Phase (degrees)’);

o
S

[0]

(%)

c

o

o

%]

o

(0]
e)
E;
=

()]

T -80 : ‘ ‘ ‘ ‘ ‘ ‘
= 500 1000 1500 2000 2500 3000 3500 4000

Frequency (Hz)
0 ; ; ; ; ; ;

= ! ! ! ! ! !

0 ! ! ! ! ! !

©® _500f-------------® r------- Te=————- EEEEEEEE j= == - === = —————=- —————-- -
=4 : ‘ ! ! ! !

® ! ! ! ! ! !
ke ! ! ! ! !

% 1000 N o SN S N N
8 : : N AR NN IR
o ! ! ! : ! !

1500 ! ! ! ! ! !

0 500 1000 1500 2000 2500 3000 3500 4000

Frequency (Hz)

FIGURE 7.29 Frequency responses using the frequency sampling method in Example
7.13.

266

FINITE IMPULSE RESPONSE FILTER DESIGN

TABLE 7.12 FIR filter coefficients in Example 7.13 (frequency sampling method).

B1: FIR Filter Coefficients B2: FIR Filter Coefficients
by = by = 0.027436 by = bys = 0.001939

by = by; = —0.031376 by = by; = 0.003676
by, = by, = —0.024721 by, = by = —0.012361
b3 = by; = 0.037326 b3 = by; = —0.002359
by = byy = 0.022823 by = byy = 0.025335
bs = bjg = —0.046973 bs = bjg = —0.008229
bs = b1g = —0.021511 be = b1g = —0.038542
b7 = b7 = 0.064721 b7 = b17 = 0.032361

bg = b1g = 0.020649 bg = b1g = 0.049808
by = b;5 = —0.106734 by = b5 = —0.085301
b1 = b4 = —0.020159 bio = b1a = —0.057350
b1 = bz = 0.318519 by = b3 =0.311024
b1» = 0.520000 b1» = 0.560000

Example 7.14.

a.

b.

C.

Design a linear phase bandpass FIR filter with 25 coefficients using the
frequency sampling method. Let the lower and upper cutoff frequencies
be 1,000 Hz and 3,000 Hz, respectively, and assume a sampling frequency
of 8,000 Hz.

List the FIR filter coefficients.

Plot the frequency responses.

Solution:

a.

First we calculate the normalized lower and upper cutoff frequencies
for the bandpass filter; that is, 0y = 27 x 1000/8000 = 0.257 radian
and Qy = 27 x 3000/8000 = 0.757 radians, respectively. The sampled
values of the bandpass frequency response are specified by the following
vector:

H,=[0000111110000].

As a comparison, the second specification of H; with a smooth transition
band is used; that is,

H,=[00005111110.5000].

The MATLAB list is shown in Program 7.9. The generated FIR coefti-
cients are listed in Table 7.13.

7.5 Frequency Sampling Design Method 267

Program 7.9. MATLAB program for Example 7.14.

% Figure 7.30 (Example 7.14)
% MATLAB program to create Figure 7.30

o

°

fs=8000

HI=[00001111100007; % Magnitude specifications
Bl=firfs (25,H1); % Design the filter

[hl,f]=freqz(B1l,1,512,fs); %$Calculatethemagnitude frequencyresponse
H2=[0000051111050007; % Magnitude spectrum

B2=firfs (25,H2); % Design the filter

[h2, f]=freqz(B2,1,512,fs); % Calculate the magnitude frequency response

pl = 180*unwrap (angle (h1)’) /pi;

p2 = 180*unwrap (angle (h2)’) /pi

subplot (2,1,1);plot (f,20*1ogl0 (abs (hl)),’-.’, £,20*1ogl0 (abs (h2))) ;grid
axis ([0 fs/2 —100 10]) ;

xlabel (‘Frequency (Hz)’);ylabel (‘Magnitude Response (dB)’);
subplot(2,1,2); plot(f,pl,’-.", £,p2) ;grid

xlabel (‘Frequency (Hz)’);ylabel (‘Phase (degrees)’);

c. Similar to the preceding example, Figure 7.30 shows the frequency
responses. Focusing on the magnitude frequency responses depicted in
Figure 7.30, the dash-dotted line indicates the magnitude frequency
response obtained without specifying the smooth transition band, while
the solid line indicates the magnitude frequency response achieved with
the specification of the smooth transition band, hence resulting in the
reduced ripple effect.

TABLE 7.13 FIR filter coefficients in Example 7.14 (frequency sampling method).

B1: FIR Filter Coefficients B2: FIR Filter Coefficients

bo = by = 0.055573
by = by; = —0.030514
by = by = 0.000000
by = by = —0.027846
by = by = —0.078966
bs = b9 = 0.042044
bs = b1z = 0.063868
b7 = by7 = 0.000000
bs = b1 = 0.094541
by = b5 = —0.038728
bio = b14 = —0.303529
b1 = b3 = 0.023558
b1> = 0.400000

by = by = 0.001351
by = by3 = —0.008802
by = by = —0.020000
b3 = by = 0.009718
by = byy = —0.011064
bs = b9 =0.023792
bs = b1z = 0.077806
b7 = b7 = —0.020000
bs = b1 = 0.017665
by = b5 = —0.029173
bio = b1a = —0.308513
b1 = b3 =0.027220
b1 = 0.480000

268 7 FINITE IMPULSE RESPONSE FILTER DESIGN

-850 FA-N--F-4----dt-------F-------4-------1

Magnitude Response (dB)

500 1000 1500 2000 2500 3000 3500 4000
Frequency (Hz)

—-100
0

500

-500

Phase (degrees)

-1000

-1500

0 500 1000 1500 2000 2500 3000 3500 4000
Frequency (Hz)

FIGURE 7.30 Frequency responses using the frequency sampling method in Example
7.14.

Observations can be made from examining Examples 7.13 and 7.14. First, the
oscillations (Gibbs behavior) in the passband and stopband can be reduced at
the expense of increasing the width of the main lobe. Second, we can modify the
specification of the magnitude frequency response with a smooth transition
band to reduce the oscillations and hence improve the performance of the FIR
filter. Third, the magnitude values Hy, k=0, 1,..., M, in general can be
arbitrarily specified. This indicates that the frequency sampling method is
more flexible and can be used to design the FIR filter with an arbitrary
specification of the magnitude frequency response.

7.6 Optimal Design Method

This section introduces Parks-McClellan algorithm, which is a most popular
optimal design method used in industry due to its efficiency and flexibility. The
FIR filter design using the Parks-McClellan algorithm is developed based on the
idea of minimizing the maximum approximation error in a Chebyshev polyno-
mial approximation to the desired filter magnitude frequency response. The

7.6 Optimal Design Method 269

details of this design development are beyond the scope of this text and can be
found in Ambardar (1999) and Porat (1997). We will outline the design criteria
and notation and then focus on the design procedure.

Given an ideal frequency response Hy(e/“T), the approximation error E(w) is
defined as

E(w) = W(@)[HE*T) — Hy(e*"), (732)

where H(e/“T) is the frequency response of the linear phase FIR filter to be
designed, and W(w) is the weight function for emphasizing certain frequency
bands over others during the optimization process. This process is designed to
minimize the error shown in Equation (7.33):

min (max|E(w)|) (7.33)

over the set of FIR coefficients. With the help of Remez exchange algorithm,
which is also beyond the scope of this book, we can obtain the best FIR filter
whose magnitude response has an equiripple approximation to the ideal
magnitude response. The achieved filters are optimal in the sense that the
algorithms minimize the maximum error between the desired frequency
response and the actual frequency response. These are often called minimax
filters.

Next, we establish notations that will be used in the design procedure.
Figure 7.31 shows the characteristics of the designed FIR filter by Parks-
McClellan and Remez exchange algorithms. As illustrated in the top graph of
Figure 7.31, the passband frequency response and stopband frequency response
have equiripples. 8, is used to specify the magnitude ripple in the passband,
while §; specifies the stopband magnitude attenuation. In terms of dB value
specification, we have 6, dB = 20 x log;, (1 4+ 6,) and 6; dB = —20 x log;, d;.

The middle graph in Figure 7.31 describes the error between the ideal
frequency response and the actual frequency response. In general, the error
magnitudes in the passband and stopband are different. This makes optimiza-
tion unbalanced, since the optimization process involves an entire band. When
the error magnitude in a band dominates the other(s), the optimization process
may de-emphasize the contribution due to a small magnitude error. To make the
error magnitudes balanced, a weight function can be introduced. The idea is to
weight the band with the bigger magnitude error with a small weight factor and
to weight the band with the smaller magnitude error with a big weight factor.
We use a weight factor W, for weighting the passband error and W, for
weighting the stopband error. The bottom graph in Figure 7.31 shows the
weighted error, and clearly, the error magnitudes on both bands are at
the same level. Selection of the weighting factors is further illustrated in the
following design procedure.

270

FINITE IMPULSE RESPONSE FILTER DESIGN

A H(eleT)
R ANAW Al
1-6,
Og fooorreeeeeen--- AT AT AT A A A A
s e \VARV S0 V45 v v VA VAR WU g

.) 0 Passband “jp“}s Stopband
H(e}aIT) —_ Hd(e/‘”T)“

5,
S
5, 0 5 ¢
-8, - Vo W
P Error weight
Error weight on stopband
on passband
E(o) o
0 a

FIGURE 7.31 (Top) Magnitude frequency responses of an ideal lowpass filter and a

typical lowpass filter designed using Parks-McClellan algorithm.
(Middle) Error between the ideal and practical responses. (Bottom)
Weighted error between the ideal and practical responses.

Optimal FIR Filter Design Procedure for Parks-McClellan Algorithm

1.

Specify the band edge frequencies such as the passband and stopband
frequencies, passband ripple, stopband attenuation, filter order, and
sampling frequency of the DSP system.

Normalize band edge frequencies to the Nyquist limit (folding
frequency = f;/2) and specify the ideal magnitudes.

Calculate absolute values of the passband ripple and stopband attenu-
ation if they are given in terms of dB values:

(Sp rIB)
8, =10V2/ —1 (7.34)
85, = 1057, (7.35)
Then calculate the ratio and put it into a fraction form:
S t W
2 — fraction form = numerator _ s (7.36)

S denominator w,

7.6 Optimal Design Method 271

Next, set the error weight factors for passband and stopband, respectively:

W, = denominator
(7.37)
W, = numerator

4. Apply the Remez algorithm to calculate filter coefficients.

5. If the specifications are not met, increase the filter order and repeat steps
1 to 4.

The following examples are given to illustrate the design procedure.

Example 7.15.
a. Design a lowpass filter with the following specifications:

DSP system sampling rate = 8,000 Hz
Passband = 0-800 Hz

Stopband = 1,000-4,000 Hz
Passband ripple = 1 dB

Stopband attenuation = 40 dB

Filter order = 53

Solution:

a. From the specifications, we have two bands: a lowpass band and a
stopband. We perform normalization and specify ideal magnitudes as
follows:

Folding frequency: f;/2 = 8000/2 = 4000 Hz
For 0 Hz: 0/4000 = 0, magnitude: 1

For 800 Hz: 800/4000 = 0.2, magnitude: 1
For 1,000 Hz: 1000/4000 = 0.25, magnitude: 0
For 4,000 Hz: 4000/4000 = 1, magnitude: 0

Next, we determine the weights:

8, = 10(5) — 1 =10.1220
8, = 10(3) = 0.01.
Then, applying Equation (7.36) gives

5, 12 W,
P22 =t
8 1w,

272 7 FINITE IMPULSE RESPONSE FILTER DESIGN

Hence, we have
Wy=12and W, = 1.

Applying remez() routine provided by MATLAB, we list MATLAB
codes in Program 7.10. The filter coefficients are listed in Table 7.14.

Program 7.10. MATLAB program for Example 7.15.

% Figure 7.32 (Example 7.15)
% MATLAB program to create Figure 7.32

o

°

fs =8000;
f=100.20.25171; % Edge frequencies
m=[1100]; % Ideal magnitudes

w=1[112]1; % Error weight factors

b=remez (53,f,m,w); % (53 +1)Parks-McClellanalgorithmandRemez exchange
format long

freqgz(b,1,512,fs) % Plot the frequency responses

axis ([0 £fs/2 —80 10]) ;

Figure 7.32 shows the frequency responses.
Clearly, the stopband attenuation is satisfied. We plot the details for the filter
passband in Figure 7.33.

TABLE 7.14 FIR filter coefficients in Example 7.15.

B: FIR Filter Coefficients (optimal design method)

by = bs3 = —0.006075 by = bs; = —0.00197

by =bs; = 0.001277 b3y = bsp = 0.006937
by = by = 0.013488 bs = bsg = 0.018457
be = by = 0.019347 b7 =bss = 0.014812
bg = bys = 0.005568 by = by = —0.005438
bio = bgz = —0.013893 b11 = bgp = —0.015887
b1, = by = —0.009723 bi3 = bgyy = 0.002789
b1y = bz = 0.016564 bis = bz = 0.024947
big = b3 = 0.022523 bi7 = bss = 0.007886
big = bzs = —0.014825 b9 = b3y = —0.036522
by = b3z = —0.045964 by = b3y = —0.033866
by = by = 0.003120 bys = b3 = 0.060244
boy = by = 0.125252 bys = byg = 0.181826

by = by = 0.214670

273

7.6 Optimal Design Method

(gp) esuodsai spnyubep

3000

4000

3500

1500 2000 2500

1000

Frequency (Hz)

D A

~500 -~
~1000 [==~~~

(seaibop) aseyd

-1500

1500 2000 2500 3000 3500 4000

1000

Frequency (Hz)

Frequency and phase responses for Example 7.15.

FIGURE 7.32

(gp) e@suodsai spnyubepy

2000 2500 3000 3500 4000

1500

Frequency (Hz)

Fomm = -+

0 3500 4000

00

2000 2500

1500

1000

=500 [===~
~1000 f -~~~

(s@a1bap) aseyd

—1500

Frequency (Hz)

Frequency response details for passband in Example 7.15.

FIGURE 7.33

274 7 FINITE IMPULSE RESPONSE FILTER DESIGN

As shown in Figure 7.33, the ripples in the passband are between —1 and
1 dB. Hence, all the specifications are met. Note that if a specification is not
satisfied, we will increase the order until the stopband attenuation and passband
ripple are met.

Example 7.16.
This example illustrates the bandpass filter design.

a. Design a bandpass filter with the following specifications:

DSP system sampling rate = 8,000 Hz
Passband = 1,000—1,600 Hz

Stopband = 0—600 Hz and 2,000-4,000 Hz
Passband ripple = 1 dB

Stopband attenuation = 30dB

Filter order = 25

Solution:

a. From the specifications, we have three bands: a passband, a lower stop-
band, and an upper stopband. We perform normalization and specify
ideal magnitudes as follows:

Folding frequency: f;/2 = 8000/2 = 4000 Hz
For 0 Hz: 0/4000 = 0, magnitude: 0

For 600 Hz: 600/4000 = 0.15, magnitude: 0
For 1,000 Hz: 1000/4000 = 0.25, magnitude: 1
For 1,600 Hz: 1600/4000 = 0.4, magnitude: 1
For 2,000 Hz: 2000/4000 = 0.5, magnitude: 0
For 4,000 Hz: 4000/4000 = 1, magnitude: 0

Next, let us determine the weights:
8, = 10(0) — 1 =0.1220
8, = 103) = 0.0316.
Then, applying Equation (7.36), we get
8y 39 W
8_S - 3-86 ~ E —_— Wp .
Hence, we have
W =39 and W, = 10.

Applying the remez() routine provided by MATLAB and checking per-
formance, we have Program 7.11. Table 7.15 lists the filter coefficients.

7.6 Optimal Design Method 275

Program 7.11. MATLAB program for Example 7.16.

% Figure 7.34 (Example 7.16)
% MATLAB program to create Figure 7.34

S
)

fs =8000;

£f=100.150.250.40.51]; % Edge frequencies
m=[0011007]; % Ideal magnitudes
w=1[3910 39]; % Error weight factors

format long

b =remez (25,f,m,w)% (25 + 1) taps Parks-McClellanalgorithmandRemez exchange
freqz(b,1,512,fs); % Plot the frequency responses

axis ([0 £fs/2 —80 10])

TABLE 7.15 FIR filter coefficients in Example 7.16.

B: FIR Filter Coefficients (optimal design method)

by = bys = —0.022715 by = by = —0.012753
by = by3 =0.005310 by = by = 0.009627
by = by = —0.004246 bs = byy = 0.006211
bs = b19 = 0.057515 b7 = b13 =0.076593
bs = b7 = —0.015655 by = b1g = —0.156828
bio = b15s = —0.170369 b1 = b4 = 0.009447

bi» = b3 = 0.211453

The frequency responses are depicted in Figure 7.34.

Clearly, the stopband attenuation is satisfied. We also check the details for
the passband as shown in Figure 7.35.

As shown in Figure 7.35, the ripples in the passband between 1,000 and
1,600 Hz are between —1 and 1 dB. Hence, all specifications are satisfied.

Example 7.17.

Now we show how the Remez exchange algorithm in Equation (7.32) is
processed using a linear phase 3-tap FIR filter as

H(z) = by + b]Z_1 + b()Z_z.

The ideal frequency response specifications are shown in Figure 7.36(a),
where the filter gain increases linearly from the gain of 0.5 at) = 0 radian
to the gain of 1 at () = 7r/4 radian. The band between) = 7/4 radian and

IMPULSE RESPONSE FILTER DESIGN

FINITE

7

276

(gp) esuodsal spnyubepy

4000

3500

2000 2500 3000

1500

1000

Frequency (Hz)

400

(sea1bop) aseyd

2000 2500 3000 3500 4000
Frequency (Hz)

1500

1000

Frequency and phase responses for Example 7.16.

FIGURE 7.34

(gp) esuodsai spnyube

4000

3500

Frequency (Hz)

400
200 - -

(sea1b8p) aseyd

0 3500 4000

00

500

1500 2000

1000

Frequency (Hz)

Frequency response details for passband in Example 7.16.

FIGURE 7.35

7.6 Optimal Design Method 277

[2]
ke} c
T ©
c o
o ©
2 IS
£ (9]
g = : :
3 = Will be selected |\
g = —0.2 }{~| as an extremal [--N------
3 g point !
@ W _0.4 ‘ ‘ :

o 1 2 3 4

A B Normalized frequency

E ‘E Equiripples
S 08—/ g
2] ©
€06 f--rmN IS
IS <t
Q >
o R R e N ()
9] =
° ©
£ 02 o T %
[
@ IR N s
0 1 2 3 4 4
C Normalized frequency D Normalized frequency

FIGURE7.36 Determining the 3-tap FIR filter coefficients using the Remez algorithm in
Example 7.17.

Q) =m/2 radians is a transition band. Finally, the filter gain decreases
linearly from the gain of 0.75 at = w/2 radians to the gain of 0 at
) = 7 radians.

For simplicity, we use all the weight factors as 1, that is, W({}) = 1. Equation
(7.32) is simplified to be

E(Q) = H(e') — Hy(e').
Substituting z = ¢/? to the transfer function H(z) gives
H(ejﬂ) = by + bleijﬂ + boeijzo'.

After simplification using Euler’s identity e/ 4+ ¢ 7? = 2cos (), the filter fre-
quency response is given by

H(e’) = e 7 (b + 2bycos Q).

Regardless of the linear phase shift term e/ for the time being, we have a
Chebyshev real magnitude function (there are a few other types as well) as

H(e’Y) = by + 2bg cos Q.

278 7 FINITE IMPULSE RESPONSE FILTER DESIGN

The alternation theorem (Ambardar, 1999; Porat, 1997) must be used. The
alternation theorem states that given Chebyshev polynomial H(e/??) to approxi-
mate the ideal magnitude response H,(e/?), we can find at least M + 2 (where
M =1 for our case) frequencies g, Q1,..., Qur41, called the extremal frequen-
cies, so that signs of the error at the extremal frequencies alternate and the
absolute error value at each extremal point reaches the maximum absolute
error, that is,

E(Qk) = —E(Qk+1) for Q(), Q], .. .QM+1
and |E(Qx)| = Emax-

But the alternation theorem does not tell us how to do the algorithm. The
Remez exchange algorithm actually is employed to solve this problem.
The equations and steps (Ambardar, 1999; Porat, 1997) are briefly summarized
for our illustrative example:

1. Given the order of N =2M + 1 choose initial extremal frequencies:
0o, Q4, ..., Qyr11 (can be uniformly distributed first).

2. Solve the following equation to satisfy the alternation theorem:
—(= D'E = W(Qu)(Ha(e'™) — H('™)) for Qo, Q... Qurr.

Note that since H(e/*) = by + 2bg cos (), for example, the solution will
include solving for three unknowns: by, by, and E.x.

3. Determine the extremal points including band edges (can be more than
M + 2 points), and retain M + 2 extremal points with the largest error
values Epax.

4. Output the coefficients if the extremal frequencies are not changed;
otherwise, go to step 2 using the new set of extremal frequencies.

Now let us apply the Remez exchange algorithm.

First Iteration:

1. We use uniformly distributed extremal points: Qy =0, Q; =m/2,
), = 7, whose ideal magnitudes are marked by the symbol “0” in
Figure 7.36(a).

2. The alternation theorem requires:
—(— 1Y'E = Hy(e’) — (b + 2bycos Q).

Applying extremal points yields the following three simultaneous equa-
tions with three unknowns, by, by, and E:

7.6 Optimal Design Method 279

—E=0.5-5b —2b
E=0.75-b
—E =0—>by +2bg
We solve these three equations to get

by = 0.125, by = 0.5, E = 0.25, H(e/®) = 0.5 + 0.25cos Q.

3. We then determine the extremal points, including at the band edge, with
their error values from Figure 7.36(b) using the following error function:

E(Q) = Hy(e’™) — 0.5 - 0.25cos Q.

These extremal points are marked by the symbol “o0” and their error
values are listed in Table 7.16.

4. Since the band edge at () = 77/4 has an error larger than others, it must be
chosen as the extremal frequency. After deleting the extremal point at
QO = m/2, a new set of extremal points are found according the largest
error values as

Qy=0
O =m/4.
QZZW

The ideal magnitudes at these three extremal points are given in Figure 7.36(c),
that is, 0.5, 1, 0. Now let us examine the second iteration.

Second Iteration:

Applying the alternation theorem at the new set of extremal points, we have

—E=0.5—-b —2by
E=1-b —1.4142b.
—E=0->b1+42b

Solving these three simultancous equations leads to

by = 0.125, by = 0.537, E = 0.287, and H(e/%) = 0.537 4+ 0.25 cos Q.

TABLE 7.16 Extremal points and band edges with their error values for the first
iteration.

Q 0 /4 /2 T
Emax —-0.25 0.323 0.25 —0.25

280 7 FINITE IMPULSE RESPONSE FILTER DESIGN

TABLE 7.17 Error values at extremal frequencies and band edge.
Q 0 /4 /2 T
Enax —0.287 0.287 0.213 —0.287

The determined extremal points and band edge with their error values are listed
in Table 7.17 and shown in Figure 7.36(d), where the determined extremal
points are marked by the symbol “0.”

Since the extremal points have their same maximum error value of 0.287,
they are found to be () = 0, O = 7/4, and), = 7, which are unchanged. Then
we stop the iteration and output the filter transfer function as

H(z) = 0.125 + 0.537z"" +0.125z272.

As shown in Figure 7.35(d), we achieve the equiripples of error at the extemal
points: Qy =0, O = 7/4,), = ; their signs are alternating, and the max-
imum absolute error of 0.287 is obtained at each point. It takes two iterations
to determine the coefficients for this simplified example.

As we mentioned, the Parks-McClellan algorithm is one of the most popular
filter design methods in industry due to its flexibility and performance. How-
ever, there are two disadvantages. The filter length has to be estimated by the
empirical method. Once the frequency edges, magnitudes, and weighting factors
are specified, applying the Remez exchange algorithm cannot control the actual
ripple obtained from the design. We may often need to try a longer length of
filter or different weight factors to remedy the situations where the ripple is
unacceptable.

7.7 Realization Structures of Finite
Impulse Response Filters

Using the direct form I (discussed in Chapter 6), we will get a special realization
form, called the transversal form. Using the linear phase property will produce a
linear phase realization structure.

7.7.1 Transversal Form
Given the transfer function of the FIR filter in Equation (7.38),
H(z)=by+biz '+ ...+ bgz K, (7.38)

7.7 Realization Structures of Finite Impulse Response Filters 281

y(n)

x(n—K)

FIGURE 7.37 FIR filter realization (transversal form).

we obtain the difference equation as
y(n) = box(n) + byx(n — 1) + box(n — 2) + ... 4+ bxx(n — K).

Realization of such a transfer function is the transversal form, displayed in
Figure 7.37.

Example 7.18.
Given the FIR filter transfer function
H(z)=1+122""403622,
a. Perform the FIR filter realization.
Solution:

a. From the transfer function, we can identify that by =1, b; = 1.2, and
by, = 0.36. Using Figure 7.37, we find the FIR realization to be as follows
(Fig. 7.38):

We determine the DSP equation for implementation as

y(n) = x(n) + 1.2x(n — 1) + 0.36x(n — 2).

y(n)

FIGURE 7.38 FIR filter realization for Example 7.18.

282 7 FINITE IMPULSE RESPONSE FILTER DESIGN

Program 7.12 (below) shows the MATLAB implementation.

Program 7.12. MATLAB program for Example 7.18.

%Sample MATLAB code

sample =1:1:10; $Input test array

x=1[000]; $Input buffer [x(n)x(n—1)...]

y=1[0]; $Output buffer [y(n)y(n—1) ...]

b=11.01.2 0.36]; SFIR filter coefficients [bODbl. . .]

KK = length (b) ;

forn=1:1:1length (sample) % Loop processing
for k=KK:—1:2% Shift the input by one sample
x(k) =x(k—1);

end
x (1) = sample(n); % Get new sample
y(1l) =0; % Perform FIR filtering

for k=1:1:KK

y(1) =y (1) +b(k)*x(k);

end

out (n) =y (1l); %Send the filtered sample to the output array
end

out

7.7.2 Linear Phase Form

We illustrate the linear phase structure using the following simple example.
Considering the transfer function with 5 taps obtained from the design as
follows,

H(z) =by+biz ' + bz 2+ byz73 + bpz ™4, (7.39)

we can see that the coefficients are symmetrical and that the difference
equation is

y(n) = box(n) + bix(n — 1) + box(n — 2) + b1 x(n — 3) + box(n — 4).
This DSP equation can further be combined to be
y(n) = bo(x(n) + x(n — 4)) + by (x(n — 1) + x(n — 3)) + byx(n — 2).

Then we obtain the realization structure in a linear phase form as follows
(Fig. 7.39):

7.8 Coetticient Accuracy Eftects on Finite Impulse Response Filters 283

x(n)
y(n)

N

x(n—1)

N,

x(n-2)

N,

x(n—3)

-

x(n—4) 4

FIGURE 7.39 Linear phase FIR filter realization.

7.8 Coefficient Accuracy Effects on
Finite Impulse Response Filters

In practical applications, the filter coefficients achieved through high-level
software such as MATLAB must be quantized using finite word length. This
may have two effects. First, the locations of zeros are changed; second, due to
the location change of zeros, the filter frequency response will change corres-
pondingly. In practice, there are two types of digital signal (DS) processors:
fixed-point processors and floating-point processors. The fixed-point DS proces-
sor uses integer arithmetic, and the floating-point processor employs floating-
point arithmetic. Such effects of filter coefficient quantization will be covered in
Chapter 9.

In this section, we study effects of FIR filter coefficient quantization in
general, since during practical filter realization, obtaining filter coefficients
with infinite precision is impossible. Filter coefficients are usually truncated or
rounded off for the application. Assume that the FIR filter transfer function
with infinite precision is given by

K
HE) =) bz "=bo+biz ' +... +bgz K, (7.40)
n=0

where each filter coefficient b, has infinite precision. Now let the quantized FIR
filter transfer function be

K
Hiz) =) bz " =by+ bz +.. +bfz K, (7.41)
n=0

284 7 FINITE IMPULSE RESPONSE FILTER DESIGN

where each filter coefficient ¢ is quantized (round-off) using the specified
number of bits. Then the error of the magnitude frequency response can be
bounded as

K
|H(e’®) — HU(e™™)| = (b — bDe ™|
. n=0 (7.42)
< by — bl < (K+1)-275
n=0

where B is the number of bits used to encode each magnitude of the filter
coefficient. Look at Example 7.19.

Example 7.19.

In Example 7.7, a lowpass FIR filter with 25 taps using a Hamming window is
designed, and FIR filter coefficients are listed for comparison in Table 7.18. One
sign bit is used, and 7 bits are used for fractional parts, since all FIR filter
coefficients are less than 1. We would multiply each filter coefficient by a scale
factor of 27 and round off each scaled magnitude to an integer whose magnitude
could be encoded using 7 bits. When the coefficient integer is scaled back,
the coefficient with finite precision (quantized filter coefficient) using 8 bits,
including the sign bit, will be achieved.

TABLE 7.18 FIR filter coefficients and their quantized filter coefficients in Example
7.19 (Hamming window).

Bham: FIR Filter Coefficients

BhamQ: FIR Filter Coefficients

by = b4 = 0.00000000000000
by = by3 = —0.00276854711076
by = by = 0.00000000000000
by = by = 0.00759455135346
by = by = 0.00000000000000
bs = bjg = —0.01914148493949
bs = b1z = 0.00000000000000
b7 = b17 = 0.04195685650042
bs = b1 = 0.00000000000000
by = b15s = —0.09180790496577
b1 = b14 = 0.00000000000000
by1 = b3 = 0.31332065886015
b1, = 0.50000000000000

by = b4 = 0.0000000
b1 = b3 = —0.0000000
by = by = 0.0000000
b3 = by = 0.0078125
bs = by = 0.0000000
bs = bjg = —0.0156250
bs = b1z = 0.0000000
b7 = b7 = 0.0390625
bg = b1 = 0.0000000
by = b15 = —0.0859375
b1o = b14 = 0.0000000
b11 = b13 = 0.3125000
b12 = 0.5000000

7.8 Coetticient Accuracy Eftects on Finite Impulse Response Filters 285

To see quantization, we take a look at one of the infinite precision coeffi-
cients, Bham(3) = 0.00759455135346, for illustration. The quantization using 7
magnitude bits is shown as:

0.00759455135346 x 27 = 0.9721 = 1(rounded up to the integer).

Then the quantized filter coefficient is obtained as
BhamQ(3) = 1/27 = 0.0078125.

Since the poles for both FIR filters always reside at origin, we need to
examine only their zeros. The z-plane zero plots for both FIR filters are
shown in Figure 7.40a, where the circles are zeros from the FIR filter with
infinite precision, while the crosses are zeros from the FIR filter with the
quantized coefficients.

Most importantly, Figure 7.40b shows the difference of the frequency
responses for both filters obtained using Program 7.13. In the figure, the solid
line represents the frequency response with infinite filter coefficient precision,
and the dot-dashed line indicates the frequency response with finite filter
coefficients. It is observed that the stopband performance is degraded due
to the filter coefficient quantization. The degradation in the passband is not
severe.

15 | | | O * |
1fannnmee- o mme T LT B -
S 1 1 ©
O * | | | |

st ! ! ! !
I I I I 1 *
05 - R B R [5
o ! ! a ! !
e ! ! ! !
D : : * : :
o) A . S o--
) ! ! : ! !
- s s d s s
o ! ! ! ! !
_ I SO I, IS S [A= R -
B A | Ty
* o ! ! ! !
| * : : : :
o o | | | fe)
T eI - R L [-
: 1 1 N 1
1.5 : O :
—1 -0.5 0 0.5 1 1.5 2

FIGURE 7.40A The z-plane zero plots for both FIR filters. The circles are zeros for
infinite precision; the crosses are zeros for rounded-off coefficients.

286 7 FINITE IMPULSE RESPONSE FILTER DESIGN

o
=)
(0]
(]
c
o
Qo
(7]
o
()
e
=
c
(o)}
< -100 : : : : : : :
0 500 1000 1500 2000 2500 3000 3500 4000
Frequency (Hz)

O . N e R L L L
[e
9 I I I I I I I
? | | | | | | |
B 1000 [-------f-----mfomoo oo iy "o oo
@ | | | | i i i
% | | | | _ |
s B S S g S

_2000 ! ! ! ! ! !

0 500 1000 1500 2000 2500 3000 3500 4000

B Frequency (Hz)

FIGURE 7.40B Frequency responses. The solid line indicates the FIR filter with infinite
precision; the dashed line indicates the FIR filter with rounded-off
coefficients.

Program 7.13. MATLAB program for Example 7.19.

£s=8000;

[hham, f]=freqgz (Bham, 1,512, fs);

[hhamQ, f]=freqgz (BhamQ, 1,512, fs) ;

p= 180"unwrap (angle (hham)) /pi;

pQ= 180*unwrap (angle (hhamQ)) /pi

subplot (2,1,1) ;plot (£,20*10ogl0 (abs (hham)), £,20*1ogl0 (abs (hhamQ)) ,’:") ; grid
axis ([0 £s/2 —100 10]) ;

xlabel ('Frequency (Hz)') ; ylabel (‘'Magnitude Response (dB)’) ;
subplot(2,1,2); plot(f,p,f,pQ, ‘:’);grid

xlabel (‘Frequency (Hz)’); ylabel ('Phase (degrees)’);

Using Equation (7.42), the error of the magnitude frequency response due to
quantization is bounded by

|H(e!?) — HY(e/™)| < 25/256 = 0.0977.

This can be easily verified at the stopband of the magnitude frequency response
for the worst condition as follows:

7.9 Summary of Finite Impulse Response (FIR)

|H(e’) — Hi(e™)| = [10719/20 — 107302 = 0.032 < 0.0977.

In practical situations, the same procedure can be used to analyze the effects of
filter coefficient quantization to make sure that the designed filter meets the
requirements.

7.9 Summary of Finite Impulse Response
(FIR) Design Procedures and Selection
of FIR Filter Design Methods in Practice

In this section, we first summarize the design procedures of the window design,
frequency sampling design, and optimal design methods, and then discuss the
selection of the particular filter for typical applications.

The window method (Fourier transform design using windows):

1. Given the filter frequency specifications, determine the filter order (odd
number used in this book) and the cutoff frequency/frequencies using
Table 7.7 and Equation (7.26).

2. Compute the impulse sequence /(n) via the Fourier transform method
using the appropriate equations (in Table 7.1).

3. Multiply the generated FIR filter coefficients A(n) in (2) by the selected
window sequence using Equation (7.20) to obtain the windowed impulse
sequence /1,,(n).

4. Delay the windowed impulse sequence /4,,(n) by M samples to get the causal
windowed FIR filter coefficients b, = h,,(n — M) using Equation (7.21).

5. Output the transfer function and plot the frequency responses.

6. If the frequency specifications are satisfied, output the difference equa-
tion. If the frequency specifications are not satisfied, increase the filter
order and repeat beginning with step 2.

The frequency sampling method:

1. Given the filter frequency specifications, choose the filter order (odd
number used in the book), and specify the equally spaced magnitudes of
the frequency response for the normalized frequency range from 0 to 7
using Equation (7.29).

2. Calculate FIR filter coefficients using Equation (7.30).

3. Use the symmetry, in Equation (7.31), linear phase requirement, to
determine the rest of the coefficients.

288

FINITE IMPULSE RESPONSE FILTER DESIGN

Output the transfer function and plot the frequency responses.

If the frequency specifications are satisfied, output the difference equa-
tion. If the frequency specifications are not satisfied, increase the filter
order and repeat beginning with step 2.

The optimal design method (Parks-McClellan algorithm):

1.

Given the band edge frequencies, choose the filter order, normalize each
band edge frequency to the Nyquist limit (folding frequency = f;/2), and
specify the ideal magnitudes.

Calculate absolute values of the passband ripple and stopband attenuation,
if they are given in terms of dB values, using Equations (7.34) and (7.35).

Determine the error weight factors for passband and stopband, respect-
ively, using Equations (7.36) and (7.37).

Apply the Remez algorithm to calculate filter coefficients.
Output the transfer function and check the frequency responses.

If the frequency specifications are satisfied, output the difference equa-
tion. If the frequency specifications are not satisfied, increase the filter
order and repeat beginning with step 4.

Table 7.19 shows the comparisons for the window, frequency sampling, and
optimal methods. The table can be used as a selection guide for each design
method in this book.

Example 7.20 describes the possible selection of the design method by a DSP
engineer to solve a real-world problem.

Example 7.20.

a.

Determine the appropriate FIR filter design method for each of the
following DSP applications.

1. A DSP engineer implements a digital two-band crossover system as
described in the section in this book. He selects the FIR filters to
satisfy the following specifications:

Sampling rate = 44, 100 Hz

Crossover frequency = 1, 000 Hz (cutoff frequency)

Transition band = 600 to 1,400 Hz

Lowpass filter = passband frequency range from 0 to 600 Hz with a
ripple of 0.02 dB and stopband edge at 1,400 Hz with attenuation
of 50 dB.

E7.19 Comparisons of three design methods.

n Method Window Method Frequency Sampling Optimal Design
type 1. Lowpass, highpass, bandpass, 1. Any type filter 1. Any type filter
bandstop.

2. Formulas are not valid for arbitrary
frequency selectivity.

r phase Yes

e and Used for determining the filter order
pband and cutoff frequency/-cies
cifications

ithm Moderate:

nplexity for 1. Impulse sequence calculation
fficients 2. Window function weighting

nal design tool Calculator

2. The formula is valid for

arbitrary frequency selectivity.

Yes
Need to be checked after
each design trial

Simple:
Single equation

Calculator

2. Valid for arbitrary
frequency selectivity

Yes

Used in the algorithm; need
to be checked after each
design trial

Complicated:

1. Parks-McClellan algorithm

2. Remez exchange algorithm

Software

290 7 FINITE IMPULSE RESPONSE FILTER DESIGN

Magnitude
A
2.0 +
1.0
00 | .
T »
0 fs/2=4000 Hz

FIGURE 7.41 Magnitude frequency response in Example 7.20 (b).

Highpass filter = passband frequency range from 1.4 to 44.1 kHz with
ripple of 0.02 dB and stopband edge at 600 Hz with attenuation of
50 dB.

The engineer does not have the software routine for the Remez algorithm.

2. An audio engineer tries to equalize the speech signal sampled at
8,000 Hz using a linear phase FIR filter based on the magnitude
specifications in Figure 7.41. The engineer does not have the software
routine for the Remez algorithm.

Solution:

a. 1. The window design method is the first choice, since the window design
formula is in terms of the cutoff frequency (crossover frequency), the
filter order is based on the transient band, and filter types are standard
lowpass and highpass. The ripple and stopband specifications can be
satisfied by selecting the Hamming window. The optimal design method
will also do the job with a challenge to satisfy the combined unit gains at
the crossover frequency of 1,000 Hz if the remez() algorithm is available.

2. Since the magnitude frequency response is not a standard filter type
of lowpass, highpass, bandpass, or band reject, and the remez()
algorithm is not available, the first choice should be the frequency
sampling method.

7.10 Summary

1. The Fourier transform method is used to compute noncausal FIR filter
coefficients, including those of lowpass, highpass, bandpass, and band-
stop filters.

7.11 MATLAB Programs 291

2. Converting noncausal FIR filter coefficients to causal FIR filter coeffi-
cients introduces only linear phase, which is a good property for audio
applications. The linear phase filter output has the same amount of delay

for all the input signals whose frequency components are within pass-
band.

3. The causal FIR filter designed using the Fourier transform method
generates ripple oscillations (Gibbs effect) in the passband and stopband
in its filter magnitude frequency response due to abrupt truncation of the
FIR filter coefficient sequence.

4. To reduce the oscillation effect, the window method is introduced to tap
down the coefficient values toward both ends. A substantial improvement
of the magnitude frequency response is achieved.

5. Real-life DSP applications such as noise reduction system and two-band
digital audio crossover system were investigated.

6. Frequency sampling design is feasible for the FIR filter with an arbitrary
magnitude response specification.

7. An optimal design method, Parks-McClellan algorithm using Remez
exchange algorithm, offers the flexibility for filter specifications.
The Remez exchange algorithm was explained using a simplified
example.

8. Realization structures of FIR filters have special forms, such as the
transversal form and the linear phase form.

9. The effect of quantizing FIR filter coefficients for implementation
changes zero locations of the FIR filter. More effects on the stopband
in the magnitude and phase responses are observed.

10. Guidelines for selecting an appropriate design method in practice were
summarized considering the filter type, linear phase, ripple and stopband
specifications, algorithm complexity, and design tools.

7.11 MATLAB Programs

Program 7.14 enables one to design FIR filters via the window method using
functions such as the rectangular window, triangular (Bartlett) window, Han-
ning window, Hamming window, and Blackman window. Filter types of the
design include lowpass, highpass, bandpass, and band reject.

292 7 FINITE IMPULSE RESPONSE FILTER

Program 7.14. MATLAB function for FIR filter design
method.

DESIGN

using the window

function B = firwd (N, Ftype, WnL, WnH, Wtype)
B = firwd (N, Ftype, WnL, WnH, Wtype)

FIR filter design using the window function method.
Input parameters:

N: the number of the FIR filter taps.

Note: It must be an odd number.

Ftype: the filter type

%1. Lowpass filter;

%2 . Highpass filter;

%$3. Bandpass filter;

%4 . Band reject filter;

d® 0P od° o° oo oe

% WnL: lower cutoff frequency in radians. Set WnL=0 for the highpass filter.

o

Wtypw: window function type
. Rectangular window;

. Triangular window;

. Hanning window;

. Hamming window;

. Blackman window;

Output:

B: FIR filter coefficients.
M= (N—1)/2;

hH =sin (WnH*[—M:1:—=1])./([—M:1:—1]1%pi) ;
hH (M+ 1) =WnH/pi;
hH(M+2:1:N) =hH(M:—1:1) ;
hL =sin (WnL*[—M:1:—=11)./([—M:1:=1]1%pi) ;
hL (M+ 1) =WnL/pi;
hL(M+2:1:N) =hL (M:—1:1);
if Ftype==1

h(1:N) =hL(1:N);

end

if Ftype ==2

h(1l:N) = —-hH(1:N) ;

h(M+1) =1+hM+1);

end

if Ftype ==

h(1:N) =hH(1:N) —hL(1:N);

g w N

A0 o° d° o° o° o° o° oP

end

if Ftype == 4

h(1:N) =hL(1:N) —hH(1:N);
h(M+1) =1+hM+1);

end

% window functions;

if Wtype ==1
w(l:N)=ones(1,N);

% WnH: upper cutoff frequency in radians. Set WnH=0 for the lowpass filter.

7.11 MATLAB Programs 293

end

if Wtype ==
w=1—abs ([—M:1:M]) /M;

end

if Wtype ==3

w=0.54+0.5"cos ([—M:1:M]*pi/M) ;
end

if Wtype ==

w=0.54+4+0.46"cos ([—M:1:M]*pi/M) ;
end

if Wtype ==5

w=0.42+4 0.5 cos ([—M:1:M]*pi/M) + 0.08* cos (2*[—M:1:M]*pi/M) ;
end

B=h. w

Program 7.15. MATLAB function for FIR filter design using the frequency
sampling method.

function B=firfs (N, Hk)
B=firls (N, Hk)
FIR filter design using the frequency sampling method.
Input parameters:
N: the number of filter coefficients.
note: Nmust be an odd number.
Hk: sampled frequency response for k=0, 1, 2, ..., M= (N—-1)/2.
Output:
B: FIR filter coefficients.
M= (N—1)/2;
for n=1:1:N

B(n) = (1/N)* (Hk (1) +.
2 sum (H (2 1:M+1).

s (2*pi* ([1:1:M]) n—l—M)/N)))

o o d° o° o° o° oo

oe

end

Program 7.15 enables one to design FIR filters using the frequency sampling
method. Note that values of the frequency response, which correspond to the
equally spaced DFT frequency components, must be specified for design.
Besides the lowpass, highpass, bandpass, and band reject filter designs, the
method can be used to design FIR filters with an arbitrarily specified magnitude
frequency response.

294

FINITE IMPULSE RESPONSE FILTER DESIGN

7.12 Problems

7.1.

7.2.

7.3.

7.4.

Design a 3-tap FIR lowpass filter with a cutoff frequency of 1,500 Hz
and a sampling rate of 8,000 Hz using

a. rectangular window function
b. Hamming window function.

Determine the transfer function and difference equation of the designed
FIR system, and compute and plot the magnitude frequency response
for O =0, w/4, 7/2, 37/4, and 7 radians.

Design a 3-tap FIR highpass filter with a cutoff frequency of 1,600 Hz
and a sampling rate of 8,000 Hz using

a. rectangular window function

b. Hamming window function.

Determine the transfer function and difference equation of the designed
FIR system, and compute and plot the magnitude frequency response
for O =0, 7/4, w/2, 37 /4, and 7 radians.

Design a 5-tap FIR bandpass filter with a lower cutoff frequency of
1,600 Hz, an upper cutoff frequency of 1,800 Hz, and a sampling rate
of 8,000 Hz using

a. rectangular window function
b. Hamming window function.

Determine the transfer function and difference equation of the designed
FIR system, and compute and plot the magnitude frequency response
for O =0, 7/4, w/2, 37 /4, and = radians.

Design a 5-tap FIR band reject filter with a lower cutoff frequency of
1,600 Hz, an upper cutoff frequency of 1,800 Hz, and a sampling rate
of 8,000 Hz using

a. rectangular window function
b. Hamming window function.

Determine the transfer function and difference equation of the designed
FIR system, and compute and plot the magnitude frequency response
for O =0, 7/4, w/2, 37 /4, and 7 radians.

7.5.

7.6.

7.7.

7.12 Problems 295

Given an FIR lowpass filter design with the following specifications:

Passband = 0-800 Hz
Stopband = 1,200-4,000 Hz
Passband ripple = 0.1 dB
Stopband attenuation = 40 dB
Sampling rate = 8,000 Hz,

determine the following:

a. window method

b. length of the FIR filter

c. cutoff frequency for the design equation.

Given an FIR highpass filter design with the following specifications:

Passband = 0-1,500 Hz
Stopband = 2,000-4,000 Hz
Passband ripple = 0.02 dB
Stopband attenuation = 60 dB
Sampling rate = 8,000 Hz,

determine the following:

a. window method

b. length of the FIR filter

c. cutoff frequency for the design equation.

Given an FIR bandpass filter design with the following specifications:

Lower cutoff frequency = 1,500 Hz
Lower transition width = 600 Hz
Upper cutoff frequency = 2,300 Hz
Upper transition width = 600 Hz
Passband ripple = 0.1 dB
Stopband attenuation = 50 dB
Sampling rate = 8,000 Hz,

determine the following:
a. window method
b. length of the FIR filter

c. cutoff frequencies for the design equation.

296

7.8.

7.9.

7.10.

7.11.

7.12.

7.13.

FINITE IMPULSE RESPONSE FILTER DESIGN

Given an FIR bandstop filter design with the following specifications:

Lower passband = 0-1,200 Hz
Stopband = 1,600-2,000 Hz
Upper passband = 2,400—4,000 Hz
Passband ripple = 0.05 dB
Stopband attenuation = 60 dB
Sampling rate = 8,000 Hz,

determine the following:
a. window method
b. length of the FIR filter
c. cutoff frequencies for the design equation.
Given an FIR system
H(z)=025-05z"140.25:72,
realize H(z) using each of the following specified methods:

a. transversal form, and write the difference equation for implemen-
tation

b. linear phase form, and write the difference equation for implementa-
tion.

Given an FIR filter transfer function
H(z)=02+0.52"1-032240.5273 +02:7%,

perform the linear phase FIR filter realization, and write the difference
equation for implementation.

Determine the transfer function for a 5-tap FIR lowpass filter with a
lower cutoff frequency of 2,000 Hz and a sampling rate of 8,000 Hz
using the frequency sampling method.

Determine the transfer function for a 5-tap FIR highpass filter with a
lower cutoff frequency of 3,000 Hz and a sampling rate of 8,000 Hz
using the frequency sampling method.

Given the following specifications:
m a 7-tap FIR bandpass filter

m a lower cutoff frequency of 1,500 Hz and an upper cutoff frequency
of 3,000 Hz

7.14.

7.15.

7.16.

7.12 Problems 297

a sampling rate of 8,000 Hz

the frequency sampling design method,

determine the transfer function.

Given the following specifications:

a 7-tap FIR band reject filter

a lower cutoff frequency of 1,500 Hz and an upper cutoff frequency
of 3,000 Hz

a sampling rate of 8,000 Hz

the frequency sampling design method,

determine the transfer function.

In a speech recording system with a sampling rate of 10,000 Hz, the
speech is corrupted by broadband random noise. To remove the
random noise while preserving speech information, the following spe-
cifications are given:

Speech frequency range = 0-3,000 kHz
Stopband range = 4,000-5,000 Hz
Passband ripple = 0.1 dB

Stopband attenuation = 45 dB

FIR filter with Hamming window.

Determine the FIR filter length (number of taps) and the cutoff
frequency; use MATLAB to design the filter; and plot the frequency
response.

Given a speech equalizer shown in Figure 7.42 to compensate mid-
range frequency loss of hearing:

Sampling rate = 8,000 Hz

Bandpass FIR filter with Hamming window
Frequency range to be emphasized = 1,500-2,000 Hz
Lower stopband = 0-1,000 Hz

Upper stopband = 2,500-4,000 Hz

Digital Gain Digital
input x(n) | Bandpass output y(n)
" filter

FIGURE 7.42 Speech equalizer in Problem 7.16.

296 7 FINITE IMPULSE RESPONSE FI

Passband ripple = 0.1 dB
Stopband attenuation = 45 dB,

LTER DESIGN

determine the filter length and the lower and upper cutoff frequencies.

7.17. A digital crossover can be designed as shown in Figure 7.43.

Highpass
filter
Digital

audio x(n)

yH(n) C

Lowpass
filter

—~

Gain_H

O

O

Tweeter:
The crossover passes
high frequencies

Woofer:
The crossover passes
low frequencies

FIGURE 7.43 Two-band digital crossover in Problem 7.17.

Given the following audio specifications:

Sampling rate = 44,100 Hz
Crossover frequency = 2,000 Hz

Transition band range = 1,600 Hz
Passband ripple = 0.1 dB
Stopband attenuation = 50 dB

Filter type = FIR,

determine the following for each filter:

a. window function
b. filter length

c. cutoff frequency.

Use MATLAB to design and plot frequency responses for both

filters.

Computer Problems with MATLAB
Use the MATLAB programs in Section 7.11 to design the following FIR filters.

7.18. Design a 41-tap lowpass FIR filter whose cutoff frequency is 1,600 Hz
using the following window functions. Assume that the sampling

frequency is 8,000 Hz.

7.19.

7.20.

7.21.

7.22.

7.12 Problems 299

rectangular window function

IS

triangular window function
¢. Hanning window function

d. Hamming window function
e. Blackman window function.

List the FIR filter coefficients and plot the frequency responses for
each case.

Design a lowpass FIR filter whose cutoff frequency is 1,000 Hz using
the Hamming window function for the following specified filter
lengths. Assume that the sampling frequency is 8,000 Hz.

a. 21 filter coefficients
b. 31 filter coefficients
c. 41 filter coefficients.

List FIR filter coefficients for each design and compare the magnitude
frequency responses.

Design a 31-tap highpass FIR filter whose cutoff frequency is
2,500 Hz using the following window functions. Assume that the
sampling frequency is 8,000 Hz.

a. Hanning window function
b. Hamming window function
c. Blackman window function.

List the FIR filter coefficients and plot the frequency responses for
each design.

Design a 41-tap bandpass FIR filter with the lower and upper cutoff
frequencies being 2,500 Hz and 3,000 Hz, respectively, using the fol-
lowing window functions. Assume a sampling frequency of 8,000 Hz.

a. Hanning window function
b. Blackman window function.

List the FIR filter coefficients and plot the frequency responses for
each design.

Design a 41-tap band reject FIR filter with frequencies 2,500 Hz and
3,000 Hz, respectively, using the Hamming window function. Assume

300

7.23.

7.24.

7.25.

7.26.

7.27.

FINITE IMPULSE RESPONSE FILTER DESIGN

a sampling frequency of 8,000 Hz. List the FIR filter coefficients and
plot the frequency responses for each design.

Use the frequency sampling method to design a linear phase lowpass
FIR filter with 17 coefficients. Let the cutoff frequency be 2,000 Hz
and assume a sampling frequency of 8,000 Hz. List FIR filter coeffi-
cients and plot the frequency responses.

Use the frequency sampling method to design a linear phase bandpass
FIR filter with 21 coefficients. Let the lower and upper cutoff frequen-
cies be 2,000 Hz and 2,500 Hz, respectively, and assume a sampling
frequency of 8,000 Hz. List the FIR filter coefficients and plot the
frequency responses.

Given an input data sequence:
x(n) = 1.2 - sin(27(1000)72/8000)) — 1.5 - cos(27(2800)r,/8000),

assuming a sampling frequency of 8,000 Hz, use the designed FIR
filter with Hamming window in Problem 7.18 to filter 400 data points
of x(n), and plot the 400 samples of the input and output data.

Design a lowpass FIR filter with the following specifications:

Design method: Parks-McClellan algorithm
Sampling rate: 8000 Hz

Passband: 0 — 1200 Hz

Stopband 1500 — 4000 Hz

Passband ripple: 1 dB

Stopband attenuation: 40 dB

List the filter coefficients and plot the frequency responses.
Design a bandpass FIR filter with the following specifications:

Design method: Parks-McClellan algorithm
Sampling rate: 8000 Hz

Passband: 1200 — 1600 Hz

Lower stopband 0 — 800 Hz

Upper stopband 2000 — 4000 Hz

Passband ripple: 1 dB

Stopband attenuation: 40 dB

List the filter coefficients and plot the frequency responses.

Reterences 301

Ambardar, A. (1999). Analog and Digital Signal Processing, 2nd ed. Pacific Grove, CA:
Brooks/Cole Publishing Company.

Oppenheim, A. V., Schafer, R. W., and Buck, J. R. (1999). Discrete-Time Signal Processing,
2nd ed. Upper Saddle River, NJ: Prentice Hall.

Porat, B. (1997). A Course in Digital Signal Processing. New York: John Wiley & Sons.

Proakis, J. G., and Manolakis, D. G. (1996). Digital Signal Processing: Principles, Algo-
rithms, and Applications, 3rd ed. Upper Saddle River, NJ: Prentice Hall.

This page intentionally left blank

Infinite Impulse Response
Filter Design

Objectives:

This chapter investigates a bilinear transformation method for infinite impulse
response (IIR) filter design and develops a procedure to design digital Butter-
worth and Chebyshev filters. The chapter also investigates other IIR filter
design methods, such as impulse invariant design and pole-zero placement
design. Finally, the chapter illustrates how to apply the designed IIR filters to
solve real-world problems such as digital audio equalization, 60-Hz interference
cancellation in audio and electrocardiography signals, dual-tone multifrequency
tone generation, and detection using the Goertzel algorithm.

In this chapter, we will study several methods for infinite impulse response (IIR)
filter design. An IIR filter is described using the difference equation, as discussed
in Chapter 6:

y(n) = box(n) + byx(n — 1) + - -+ + by x(n — M)
—apy(n—1)—---—ayy(n—N).
Chapter 6 also gives the IIR filter transfer function as

Y(z) bo+ bizV o by ™

H = =
@ Xz l+azl'+---+ayzN

b

304 8 INFINITE IMPULSE RESPONSE FILTER DESIGN

where b; and «; are the (M + 1) numerator and N denominator coefficients,
respectively. Y(z) and X(z) are the z-transform functions of the filter input x(7)
and filter output y(n). To become familiar with the form of the IIR filter, let us
look at the following example.

Example 8.1.
Given the following IIR filter:
y(n) =02x(n) +04x(n— 1)+ 0.5y(n — 1),

a. Determine the transfer function, nonzero coefficients, and impulse re-
sponse.

Solution:

a. Applying the z-transform and solving for a ratio of the z-transform
output over input, we have

Y(z) 02+ 0.4z7!

Xz 1-05z1"

We also identify the nonzero numerator coefficients and denominator
coefficient as

H(z) =

b() = 0.2, bl = 0.4, and a) = —0.5.
To solve the impulse response, we rewrite the transfer function as

0.2 n 0.4z
—05z71 1 —-05z1

Using the inverse z-transform and shift theorem, we obtain the impulse
response as

H(z) = I

h(n) = 0.2(0.5)"u(n) + 0.4(0.5)" 'u(n — 1).

The obtained impulse response has an infinite number of terms, where the
first several terms are calculated as

h(0)=0.2, i(1) = 0.7, h(2) = 0.25,
At this point, we can make the following remarks:

1. The IIR filter output y(n) depends not only on the current input x(n) and
past inputs x(z —1),..., but also on the past output(s) y(n —1),...
(recursive terms). Its transfer function is a ratio of the numerator poly-
nomial over the denominator polynomial, and its impulse response has an
infinite number of terms.

8.2 Bilinear Transformation Design Method 305

2. Since the transfer function has the denominator polynomial, the pole(s)
of a designed IIR filter must be inside the unit circle on the z-plane to
ensure its stability.

3. Compared with the finite impulse response (FIR) filter (see Chapter 7),
the TIR filter offers a much smaller filter size. Hence, the filter operation
requires a fewer number of computations, but the linear phase is not
easily obtained. The IIR filter is thus preferred when a small filter size is
called for but the application does not require a linear phase.

The objective of IIR filter design is to determine the filter numerator and
denominator coefficients to satisfy filter specifications such as passband gain
and stopband attenuation, as well as cutoff frequency/frequencies for the low-
pass, highpass, bandpass, and bandstop filters.

We first focus on the bilinear transformation (BLT) design method. Then we
introduce other design methods such as the impulse invariant design and the
pole-zero placement design.

8.2 Bilinear Transformation Design
Method

Figure 8.1 illustrates a flow chart of the BLT design used in this book. The
design procedure includes the following steps: (1) transforming digital filter
specifications into analog filter specifications, (2) performing analog filter
design, and (3) applying bilinear transformation (which will be introduced in
the next section) and verifying its frequency response.

Digital filter
specifications

i 1. Transformation with frequency warping

| Analog filter specifications |

i 2. Transformation by lowpass prototype filter

| Analog filter transfer function |

3. Bilinear transformation

Digital filter transfer function
and frequency response verification

FIGURE 8.1 General procedure for IIR filter design using bilinear transformation.

306 8 INFINITE IMPULSE RESPONSE FILTER DESIGN

8.2.1 Analog Filters Using Lowpass Prototype
Transformation

Before we begin to develop the BLT design, let us review analog filter design
using lowpass prototype transformation. This method converts the analog low-
pass filter with a cutoff frequency of 1 radian per second, called the lowpass
prototype, into practical analog lowpass, highpass, bandpass, and bandstop
filters with their frequency specifications.

Letting H,(s) be a transfer function of the lowpass prototype, the transform-
ation of the lowpass prototype into a lowpass filter is given in Figure 8.2.

As shown in Figure 8.2, H; p(s) designates the analog lowpass filter with a
cutoff frequency of w. radians/second. The lowpass-prototype to lowpass-filter
transformation substitutes s in the lowpass prototype function Hp(s) with s/w,,
where v is the normalized frequency of the lowpass prototype and w, is the
cutoff frequency of the lowpass filter to be designed. Let us consider the
following first-order lowpass prototype:

1
s+1°

Hp(s) = 8.1

Its frequency response is obtained by substituting s = jv into Equation (8.1),
that is,

1
Ho(iv) = ——
PUM =57

with the magnitude gain given in Equation (8.2):

1

|Hp(jV)| = == (8.2)
1+v
| Hp (V)| |Hyp(jo)]
s=2 I
wC
R
0 1 v 0 a;c 17

Hip(s) = HP(5)|S:5/Q,C

FIGURE 8.2 Analog lowpass prototype transformation into a lowpass filter.

8.2 Bilinear Transformation Design Method 307

We compute the gains at v=10, v=1, v =100, v = 10,000 to obtain 1, 1/\/5,
0.0995, and 0.01, respectively. The cutoff frequency gain at v = 1 equals 1/v/2,
which is equivalent to —3 dB, and the direct-current (DC) gain is 1. The gain
approaches zero when the frequency goes to v = +oco. This verifies that the
lowpass prototype is a normalized lowpass filter with a normalized cutoff
frequency of 1. Applying the prototype transformation s/w, in Figure 8.2, we
get an analog lowpass filter with a cutoff frequency of w, as

(OF

H(s) = = .
() slo.+1 5+ w,

(8.3)

We can obtain the analog frequency response by substituting s = jw into
Equation (8.3), that is,

1
H(jw) =
(o) Jjo/ow.+ 1
The magnitude response is determined by
) 1
|H(jo)| = ————. (84)
I+ (2

Similarly, we verify the gains at w = 0, ® = w., ® = 100w., ® = 10,000w, to be
1, 1/4/2,0.0995, and 0.01, respectively. The filter gain at the cutoff frequency o,
equals 1/+/2, and the DC gain is 1. The gain approaches zero when w = +oo.
We notice that filter gains do not change but that the filter frequency is scaled
up by a factor of w.. This verifies that the prototype transformation converts
the lowpass prototype to the analog lowpass filter with the specified cutoff
frequency of w,. without an effect on the filter gain.

This first-order prototype function is used here for an illustrative purpose.
We will obtain general functions for Butterworth and Chebyshev lowpass
prototypes in a later section.

The highpass, bandpass, and bandstop filters using the specified lowpass
prototype transformation can be easily verified. We review them in Figures
8.3, 8.4, and 8.5, respectively. The transformation from the lowpass prototype
to the highpass filter Hyp(s) with a cutoff frequency w. radians/second is
given in Figure 8.3, where s = w./s in the lowpass prototype transformation.

The transformation of the lowpass prototype function to a bandpass filter
with a center frequency wy, a lower cutoff frequency w;, and an upper cutoff
frequency wy, in the passband is depicted in Figure 8.4, where s = (s> + wo?)/(s W)
is substituted into the lowpass prototype.

308 8 INFINITE IMPULSE RESPONSE FILTER DESIGN

|Hp(jv)|

Hyp(s) = Hp(9)|. o,/s

FIGURE 8.3 Analog lowpass prototype transformation to the highpass filter.

As shown in Figure 8.4, w is the geometric center frequency, which is defined
as wy = /w,wy,, while the passband bandwidth is given by W = w), — ;. Simi-
larly, the transformation from the lowpass prototype to a bandstop (band reject)
filter is illustrated in Figure 8.5, with s = sW /(s> + wy?) substituted into the
lowpass prototype.

Finally, the lowpass prototype transformations are summarized in Table 8.1.

MATLAB function freqs() can be used to plot analog filter frequency
responses for verification with the following syntax:

H = freqs(B, A, W)

B = the vector containing the numerator coefficients

A = the vector containing the denominator coefficients

W = the vector containing the specified analog frequency points (radians
per second)

H = the vector containing the frequency response.

The following example verifies the lowpass prototype transformation.

|Hp(jv)| |Hap(je)| o=+ @ @n
o S2+ab W=ap- o
Y
— >
0 1 v 0 W Oy 0]
Hgp(s)=Hp(s) | g2, up
.

sw

FIGURE 8.4 Analog lowpass prototype transformation to the bandpass filter.

8.2 Bilinear Transformation Design Method 309

[Hp(v)]

Hps () = Hp(s) |

52+m

FIGURE 8.5 Analog lowpass prototype transformation to a bandstop filter.

Example 8.2.

Given a lowpass prototype

Hp(s) = 1

a. Determine each of the following analog filters and plot their magnitude
responses from 0 to 200 radians per second.

1. The highpass filter with a cutoff frequency of 40 radians per second.

2. The bandpass filter with a center frequency of 100 radians per second
and bandwidth of 20 radians per second.

Solution:

a. 1. Applying the lowpass prototype transformation by substituting
s =40/s into the lowpass prototype, we have an analog highpass
filter as

s

N1 s+40°

Hpyp(s) =

TABLE 8.1 Analog lowpass prototype transformations.

Filter Type Prototype Transformation
Lowpass o> We is the cutoff frequency
Highpass 2, w, is the cutoff frequency
Bandpass 'sz;;)g ,) = /o, W = o, —
Bandstop v2+w’ , W = /o, W =0, -

310 8 INFINITE IMPULSE RESPONSE FILTER DESIGN

2. Similarly, substituting the lowpass-to-bandpass transformation
s = (s* + 100)/(20s) into the lowpass prototype leads to
1 20s

Hpgp(s) = 5 =3 :
Zi100 T 2 1205+ 100

The program for plotting the magnitude responses for highpass and bandpass
filters is shown in Program 8.1, and Figure 8.6 displays the magnitude responses
for the highpass filter and bandpass filter, respectively.

Program 8.1. MATLAB program in Example 8.2.

W=0:1:200; %$Analog frequency points for computing the filter gains
Ha = fregs([10],[140],W); % Frequency response for the highpass filter
Hb = fregs ([200],[120100],W) ; $ Frequency response for thebandpass filter
subplot (2,1,1) ;plot (W, abs (Ha),'k’) ;grid $ Filter gainplot for the highpass filter
xlabel ('(a) Frequency (radians per second)’)

ylabel ('Absolute filter gain’);

subplot (2,1, 2) ;plot (W,abs (Hb) ,’k’) ;grid% Filtergainplot for thebandpass filter
xlabel ('(b) Frequency (radians per second)’)

ylabel ('Absolute filter gain’);

Figure 8.6 confirms the lowpass prototype transformation into a highpass
filter and a bandpass filter, respectively. To obtain the transfer function of
an analog filter, we always begin with a lowpass prototype and apply the
corresponding lowpass prototype transformation. To transfer from a lowpass
prototype to a bandpass or bandstop filter, the resultant order of the analog
filter is twice that of the lowpass prototype order.

8.2.2 Bilinear Transformation and Frequency
Warping

In this subsection, we develop the BLT, which converts an analog filter into a
digital filter. We begin by finding the area under a curve using the integration of
calculus and the numerical recursive method. The area under the curve is a
common problem in early calculus courses. As shown in Figure 8.7, the area
under the curve can be determined using the following integration:

W) = /0 o), 8.5)

8.2 Bilinear Transformation Design Method 311

05F---+%- -

Absolute filter gain

1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200

A Frequency (rad/sec)
1 T T
| |
S ! !
] | |
(@) | | |
E | | |
= | | |
© 0571 N | ‘
E | | | | |
[o] | | | | |
<f | | | | |
g | | | | | |
| | | | | 1
O 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200
B Frequency (rad/sec)

FIGURE 8.6 Magnitude responses for the analog highpass filter and bandpass filter in
Example 8.2.

0 (n—=1)TnT

FIGURE 8.7 Digital integration method to calculate the area under the curve.

where y(f) (area under the curve) and x(#) (curve function) are the output and
input of the analog integrator, respectively, and ¢ is the upper limit of the
integration.

Applying Laplace transform on Equation (8.5), we have

Y(s) = =~ (8.6)

and find the Laplace transfer function as

312 8 INFINITE IMPULSE RESPONSE FILTER DESIGN

Y(s) 1
Gls)=—==-. 8.7
©=%0 =5 (8.7)
Now we examine the numerical integration method shown in Figure 8.7 to
approximate the integration of Equation (8.5) using the following difference
equation:

x(n) 4+ x(n—1) T

: , (8.8)

y(n) =yn—1)+
where T denotes the sampling period. y(n) = y(nT) is the output sample that is
the whole area under the curve, while y(n — 1) = y(nT — T') is the previous
output sample from the integrator indicating the previously computed area
under the curve (the shaded area in Figure 8.7). Notice that x(n) = x(nT) and
x(n—1)=x(nT — T), sample amplitudes from the curve, are the current
input sample and the previous input sample in Equation (8.8). Applying the
z-transform on both sides of Equation (8.8) leads to

Y()=z'Y()+ g (X(2)+z7'X(2)).

Solving for the ratio Y(z) / X(z), we achieve the z-transfer function as

B Y(Z)_Tl—l—Z_l

H(z) = =_ : 8.9
@ Xz 21-z1 (8.9)
Next, comparing Equation (8.9) with Equation (8.7), it follows that
1 T1+4+z! Tz+1
Rl g s e (8.10)
Solving for s in Equation (8.10) gives the bilinear transformation
2z-1
=— . A1
s Tz+1 ®-11)

The BLT method is a mapping or transformation of points from the s-plane to

the z-plane. Equation (8.11) can be alternatively written as
14 sT/2

=— 8.12

S) ®.12)

The general mapping properties are summarized as following:

1. The left-half s-plane is mapped onto the inside of the unit circle of the
z-plane.

8.2 Bilinear Transformation Design Method 313

2. The right-half s-plane is mapped onto the outside of the unit circle of the
z-plane.

3. The positive jw axis portion in the s-plane is mapped onto the positive
half circle (the dashed-line arrow in Figure 8.8) on the unit circle, while
the negative jw axis is mapped onto the negative half circle (the dotted-
line arrow in Figure 8.8) on the unit circle.

To verify these features, let us look at the following illustrative example:

Example 8.3.

Assuming that 7 =2 seconds in Equation (8.12), and given the following
points:

1. s = —1+], on the left half of the s-plane
2. s =1 —j, on the right half of the s-plane
3. s =, on the positive jw on the s-plane

4. s = —j, on the negative jw on the s-plane,

a. Convert each of the points in the s-plane to the z-plane, and verify the
mapping properties (1) to (3).

Solution:
a. Substituting 7 = 2 into Equation (8.12) leads to
1+

1—s

N\

FIGURE 8.8 Mapping between the s-plane and the z-plane by the bilinear
transformation.

314 &8 INFINITE IMPULSE RESPONSE FILTER DESIGN

We can carry out mapping for each point as follows:

(=14 1/90°

_ — = = 0.4472/116.57°,
1—(=14)) 2—j /5/-2657°

since |z| = 0.4472 < 1, which is inside the unit circle on the z-plane.

L+ =) 2—j V5/-265T°

=2.2361/—-116.57°,

-0 -j 1/90°
since |z| = 2.2361 > 1, which is outside the unit circle on the z-plane.
3 o LH VAR g
1—j V2/-45
since |z| =1 and 6 = 90°, which is on the positive half circle on the
unit circle on the z-plane.
4, o) _1=j V245 g

z= ~ = .=
1—(=j) 1+4+j 245

since |z| = 1 and 6 = —90°, which is on the negative half circle on the
unit circle on the z-plane.

As shown in Example 8.3, the BLT offers conversion of an analog transfer
function to a digital transfer function. Example 8.4 shows how to perform
the BLT.

Example 8.4.

Given an analog filter whose transfer function is

10

s+10°

a. Convert it to the digital filter transfer function and difference

equation, respectively, when a sampling period is given as 7 = 0.01
second.

H(s) =

Solution:

a. Applying the BLT, we have

10
H(Z) - H(S)|S:%§_1:: s+10[oy

z+1

8.2 Bilinear Transformation Design Method 315

Substituting 7" = 0.01, it follows that

10 0.05 0.05(z+1) 0.052+0.05

DED 70 514005 z-1+005z+1) 1.052—095

H(z) =

Finally, we get

(0.05z +0.05)/(1.052) _ 0.0476 + 0.04762"!
(1.05z — 0.95)/(1.052) 1 —0.9048z"

H(z) =

Applying the technique in Chapter 6, we yield the difference equation as
y(n) = 0.0476x(n) + 0.0476x(n — 1) + 0.9048y(n — 1).

Next, we examine frequency mapping between the s-plane and the z-plane. As
illustrated in Figure 8.9, the analog frequency w, is marked on the jw axis on the
s-plane, whereas w, is the digital frequency labeled on the unit circle in the
z-plane.

We substitute s = jow, and z = ¢/ into the BLT in Equation (8.11) to get

. 2 eJwdl _
Simplifying Equation (8.13) leads to
2 T
w0, =% tan<%>. (8.14)

jo
A
4 T)
7 -
/“’a
> o
0

FIGURE 8.9 Frequency mapping from the analog domain to the digital domain.

316 8 INFINITE IMPULSE RESPONSE FILTER DESIGN

Equation (8.14) explores the relation between the analog frequency on the jow
axis and the corresponding digital frequency w, on the unit circle. We can also
write its inverse as

2 w, T
wd:Ttan”(5 > (8.15)

The range of the digital frequency wy is from 0 radian per second to the folding
frequency w,/2 radians per second, where w, is the sampling frequency in
radians per second. We make a plot of Equation (8.14) in Figure 8.10.

From Figure 8.10 when the digital frequency range 0 < w; < 0.25w; is
mapped to the analog frequency range 0 < w, < 0.32wy, the transformation
appears to be linear; however, when the digital frequency range 0.25w; < wy < 0.5w;
is mapped to the analog frequency range for w, > 0.32w;, the transformation is
nonlinear. The analog frequency range for w, > 0.32w, is compressed into the
digital frequency range 0.25w; < wy < 0.5w,. This nonlinear frequency mapping effect
is called frequency warping. We must incorporate the frequency warping into the
IIR filter design. The following example will illustrate the frequency warping effect
in the BLT.

Example 8.5.

Assume the following analog frequencies:
w, = 10 radians per second
w, = wg/4 = 507 = 157 radians per second
w, = wg/2 = 1007 = 314 radians per second.

a. Find their digital frequencies using the BLT with a sampling period of
0.01 second, given the analog filter in Example 8.4 and the developed
digital filter.

w, (r/s)

0 0.32w4 g

FIGURE 8.10 Frequency warping from bilinear transformation.

8.2 Bilinear Transformation Design Method 317

Solution:

a. From Equation (8.15), we can calculate digital frequency w, as follows:
When o, = 10 radians/sec and 7' = 0.01 second,

2 e\ 2 [10x001\
wd_Ttan (2 >—mtan <f>—9.99rad/sec,

which is close to the analog frequency of 10 radians per second. When
w, = 157rad/sec and T = 0.01 second,

2 <157 x 0.01
w; = —— tan — 5

=001 > = 133.11 rad/sec,

which has an error as compared with the desired value 157. When
w, = 314rad/sec and T = 0.01 second,

2 1 (314 % 0.01
— - —— 2 2.
wy —O. 01 tan <72 > 52.5 rad/ sec,

which gives a bigger error compared with the digital folding frequency of
314 radians per second.

Figure 8.11 shows how to correct the frequency warping error. First, given
the digital frequency specification, we prewarp the digital frequency specifica-
tion to the analog frequency specification by Equation (8.14).

Second, we obtain the analog lowpass filter H(s) using the prewarped analog
frequency w, and the lowpass prototype. For the lowpass analog filter, we have

s
H(s) = Hp(s)| .= Hp (w—> (8.16)
Finally, substituting BLT Equation (8.11) into Equation (8.16) yields the digital

filter as

H(z) = H(s)| (8.17)

This approach can be extended to the other type of filter design similarly.

8.2.3 Bilinear Transformation Design Procedure
Now we can summarize the BLT design procedure.

1. Given the digital filter frequency specifications, prewarp the digital fre-
quency specifications to the analog frequency specifications.

318 &8 INFINITE IMPULSE RESPONSE FILTER DESIGN

wy (r/s)
0.5 g frovrrmrrrme e
g
' Frequency prewarping
— o Zn(8T)
Step 1 G
H(z) : w, (rls)
Digital lowpass filter 0 :
specification H(s)
Step 3
Bilinear transformation
2z-1
S=—
Tz+1
@g
Step 2 Analog lowpass filter specification
s=s/w,
Hp(s)

Analog lowpass prototype

14
1
FIGURE 8.11 Graphical representation of IIR filter design using the bilinear
transformation.

For the lowpass filter and highpass filter:

2 w; T
For the bandpass filter and bandstop filter:
B 2 w;T B 2 wpT
Wy = ? tan (T) y Wah = ? tan (T) . (819)

where
W) = /Wq[Wap, W = wu — 0y

2. Perform the prototype transformation using the lowpass prototype
H,(s).

From lowpass to lowpass: H(s) = Hp(s)|,_. (8.20)

8.2 Bilinear Transformation Design Method

From lowpass to highpass: H(s) = Hp(s)|,_.

From lowpass to bandpass: H(s) = Hp(s)| 2ol

S==w

From lowpass to bandstop: H(s) = Hp(s)|,_ L
5 +u)0

3. Substitute the BLT to obtain the digital filter

H(z) = H(s)|5:%;_ﬂ.

Table 8.2 lists MATLAB functions for the BLT design.

319

(8.21)
(8.22)

(8.23)

(8.24)

We illustrate the lowpass filter design procedure in Example 8.6. Other types
of filter, such as highpass, bandpass, and bandstop, will be illustrated in the next

section.

TABLE 8.2 MATLAB functions for the bilinear transformation design.

Lowpass to lowpass: H(s) = Hp(s)|,_«
>|[B,A] = Ip2lp(Bp,Ap,wa) v
Lowpass to highpass: H(s) = Hp(s)|,_w
>>[B,A] = Ip2hp(Bp,Ap,wa) “
Lowpass to bandpass: H(s) = Hp(s)|, _ s+t
>[B,A] = Ip2bp(Bp,Ap,w0,W)

Lowpass to bandstop: H(s) = Hp(s)|,_ e

>[B,A] = IPZbS(BPsAPaWOaW) T

Bilinear transformation to achieve the digital filter:

>[b, a] = bilinear(B,A,fs)

Plot of the magnitude and phase frequency responses of the digital filter:
>freqz(b,a,512,fs)

Definitions of design parameters:

Bp = vector containing the numerator coefficients of the lowpass prototype.
Ap = vector containing the denominator coefficients of the lowpass prototype.
wa = cutoff frequency for the lowpass or highpass analog filter (rad/sec).
w0 = center frequency for the bandpass or bandstop analog filter (rad/sec).
W = bandwidth for the bandpass or bandstop analog filter (rad/sec).

B = vector containing the numerator coefficients of the analog filter.

A = vector containing the denominator coefficients of the analog filter.

b = vector containing the numerator coefficients of the digital filter.

a = vector containing the denominator coefficients of the digital filter.

fs = sampling rate (samples/sec).

320 8 INFINITE IMPULSE RESPONSE FILTER DESIGN

Example 8.6.

The normalized lowpass filter with a cutoff frequency of 1 rad/sec is given as:

1
HP(S):H—I.

a. Use the given H,(s) and the BLT to design a corresponding digital IIR
lowpass filter with a cutoff frequency of 15 Hz and a sampling rate of
90 Hz.

b. Use MATLAB to plot the magnitude response and phase response of
H(z).

Solution:
a. First, we obtain the digital frequency as
wg = 2mf = 2mw(15) = 307 rad/sec, and T = 1/f; = 1/90sec.
We then follow the design procedure:

1. First calculate the prewarped analog frequency as

2, feT 2 (30m/%
Wa=T 2) T 1/90 2)

that is, w, = 180 x tan (7/6) = 180 x tan (30°) = 103.92 rad/sec.

2. Then perform the prototype transformation (lowpass to lowpass) as

follows:
1 w,
which yields an analog filter:
103.92
) = 103,92

3. Apply the BLT, which yields
103.92
H(z)=—F—— .
()= 10392 e
We simplify the algebra by dividing both the numerator and the
denominator by 180:

103.92 103.92/180 0.5773

180 x =1+ 103.92 ~ =1 +103.92/180 =1 1+ 0.5773

H(z) =

8.2 Bilinear Transformation Design Method 321

Then we multiply both numerator and denominator by (z+ 1) to
obtain

0.5773(z+1) 0.5773z+0.5773
(7*1 + 0.5773)(z 1) @ DH05TBE)

=
057732405773
©1.5773z — 0.4227°

H(z) =

Finally, we divide both numerator and denominator by 1.5773z to get
the transfer function in the standard format:

(0.5773z + 0.5773)/(1.5773z) _ 0.3660 + 0.3660z""
(1.5773z — 0.4227)/(1.5773z) 1 —0.2679z"1

H(z) =

b. The corresponding MATLAB design is listed in Program 8.2. Figure 8.12
shows the magnitude and phase frequency responses.

05F----

Magnitude response

Phase (degrees)

Frequency (Hz)

FIGURE 8.12 Frequency responses of the designed digital filter for Example 8.6.

322 8 INFINITE IMPULSE RESPONSE FILTER DESIGN

Program 8.2. MATLAB program for Example 8.6.

oe

Example 8.6

% Plot the magnitude and phase responses

s =90;% Sampling rate (Hz)

B, A] =1p21p([1],[11],103.92);

b, al] =bilinear (B, A, fs)

b=10.36600.3660] numerator coefficients of thedigital filter from MATLAB
a=[1-0.2679]denominator coefficients of thedigital filter from MATLAB
hz, f] = freqz ([0.36600.3660], [1—-0.2679]1,512, £s) ; $the frequency response
phi = 180*unwrap (angle (hz)) /pi;

subplot(2,1,1), plot(f, abs(hz)),grid;

axis ([0 £s/2017);

xlabel ('Frequency (Hz)'); ylabel ('Magnitude Response’)

subplot(2,1,2), plot(f, phi); grid;

axis ([0 £s/2 =100 017) ;

xlabel ('Frequency (Hz)'); ylabel ('Phase (degrees)’)

8.3 Digital Butterworth and Chebyshev
Filter Designs

In this section, we design various types of digital Butterworth and Chebyshev
filters using the BLT design method developed in the previous section.

8.3.1 Lowpass Prototype Function and Its
Order

As described in the Section 8.2.3 (Bilinear Transformation Design Procedure),
BLT design requires obtaining the analog filter with prewarped frequency
specifications. These analog filter design requirements include the ripple speci-
fication at the passband frequency edge, the attenuation specification at the
stopband frequency edge, and the type of lowpass prototype (which we shall
discuss) and its order.

Table 8.3 lists the Butterworth prototype functions with 3 dB passband
ripple specification. Tables 8.4 and 8.5 contain the Chebyshev prototype func-
tions (type I) with 1 dB and 0.5 dB passband ripple specifications, respectively.
Other lowpass prototypes with different ripple specifications and order can be
computed using the methods described in Appendix C.

In this section, we will focus on the Chebyshev type I filter. The Chebyshev
type II filter design can be found in Proakis and Manolakis (1996) and Porat
(1997).

8.3 Digital Butterworth and Chebyshev Filter Designs 323

TABLE 8.3 3 dB Butterworth lowpass prototype
transfer functions (¢ = 1)

n Hp(s)
1
1 s+1
2 211 41406+1
s2+1.41425+1
1
3 $3+252425+1
4 s4+2.6131‘v3+344142s31+24613ls+1
5 $2+43.23615*+5.236153+5.236152+3.2361s+1
6 1

$0+3.86375+7.46415+9.141653+7.46415>+3.8637s+1

TABLE 8.4 Chebyshev lowpass prototype transfer
functions with 0.5 dB ripple (¢ = 0.3493)

n Hp(s)
1 2.8628
+2.8628
2 14314
FF142565+1.5162
3 0.7157
F1252952+1.53495£0.7157
4 0.3579
119745 11716952+ 1.02535 103791
5 0.1789
ST117255 11937453+ 1.3006527+0.75255+0.1789
6 0.0895

$041.15925%42.17185*+1.58985%+1.1719s%+0.43245+0.0948

TABLE 8.5 Chebyshev lowpass prototype transfer
functions with 1 dB ripple (¢ = 0.5088)

Hp(s)

1.9652
541.9652
0.9826
s2+1.0977s+1.1025
0.4913
53+0.988352+1.2384s5+0.4913
0.2456
54+0.952853+1.453952+0.74265+0.2756
0.1228
5°+0.9368s%+1.688853+0.974452+0.58055+0.1228

S

AN D AW N~

0.0614
$940.928355+1.9308s5%+1.2012153+0.939352+0.30715+0.0689

The magnitude response function of the Butterworth lowpass prototype with
an order of n is shown in Figure 8.13, where the magnitude response |H,(v)|
versus the normalized frequency v is given by Equation (8.25):

1
Val + SZVZn

With the given passband ripple 4, dB at the normalized passband frequency
edge v, = 1, and the stopband attenuation A;dB at the normalized stopband

|Hp(v)| = (8.25)

324 8 INFINITE IMPULSE RESPONSE FILTER DESIGN

) 1
1 — |H (V)| = ———
1 ' | bl) A1+ g2v2n
Vi | k
As > =1
n=3> n=2 v
0 Vp=1 Vs

FIGURE 8.13 Normalized Butterworth magnitude response function.

frequency edge vy, the following two equations must be satisfied to determine the
prototype filter order:

Ap dB = —20 - log,, ((8.26)

1
v1+ 82)
A, dB = 20 - logy <;> (8.27)

VIt

Solving Equations (8.26) and (8.27), we determine the lowpass prototype order
as

g =104 — 1 (8.28)

> A 1 - /N1 b
— [2-logo ()]
where ¢ is the absolute ripple specification.
The magnitude response function of the Chebyshev lowpass prototype with

an order of n is shown in Figure 8.14, where the magnitude response |H,(v)|
versus the normalized frequency v is given by

1

V1+Cv)

(8.29)

|Hp(v)| = (8.30)

|Hp(v)| n (odd) n (even)

|H (V)l - 1
i’ V1 +€2C3(v)
cos[ncos—1 (v)] vei
Cn (V) =
cosh[ncosh—1 (v)] v>1

FIGURE 8.14 Normalized Chebyshev magnitude response function.

8.3 Digital Butterworth and Chebyshev Filter Designs 325

where

Cu(vs) = cosh[ncosh™" (v)] (8.31)

cosh™ (vy) = In (v, + Vvi=1) (8.32)

As shown in Figure 8.14, the magnitude response for the Chebyshev lowpass
prototype with the order of an odd number begins with the filter DC gain of 1.
In the case of a Chebyshev lowpass prototype with the order of an even number,
the magnitude starts at the filter DC gain of 1/v/1 + &2. For both cases, the filter
gain at the normalized cutoff frequency v, = 1 is 1/V'1 + &2

Similarly, Equations (8.33) and (8.34) must be satisfied:

Ap dB = —20-log,, < (8.33)

1
V14 82>
Ay dB = —20 - log,, <;> (8.34)

VI+C(v)

The lowpass prototype order can be solved in Equation (8.35b):

g =101 — | (8.35a)
y 0.5
cosh™! [(7100'15251)]
n> — , (8.35b)
cosh™ (vy)

where cosh™! (x) = In(x + v/x2 — 1), & is the absolute ripple parameter.
The normalized stopband frequency v, can be determined from the frequency
specifications of an analog filter in Table 8.6. Then the order of the lowpass

TABLE 8.6 Conversion from analog filter specifications to lowpass prototype
specifications.
Analog Filter Specifications Lowpass Prototype Specifications
Lowpass: @, wgs vy =1, vy = wug/wap
Highpass: wg, @ v, =1,v = wap/was
. _ — Duh—
Bandpass' Wapl, Waphs Wasl, Wash Vp = Lys = w[,,,:—a)(,pl/
Wy = |/Wap[Waph, W) = /Was/Wash
. _ __ Waph —Wapl
BandStOp- Wepls Waphs Wasls Wash Vp = 1>VS - w(::;/tfw::/

W0 = |/WaplDaph, W0 = /WDas|Dash
g, passband frequency edge; wg, stopband frequency edge; wgy, lower cutoff frequency in

passband; wg,, upper cutoff frequency in passband; w,g, lower cutoff frequency in stopband;
wash, upper cutoff frequency in stopband; w,, geometric center frequency.

326 8 INFINITE IMPULSE RESPONSE FILTER DESIGN

Lowpass filter Bandpass filter wo= /—wapl Oaph
|HLP(ju))| |HBP(j(0)| W = @gpp— @gp

w 0 g Wgp) W WOaph Wasph @

FIGURE 8.15 Specifications for analog lowpass and bandpass filters.

prototype can be determined by Equation (8.29) for the Butterworth function and
Equation (8.35b) for the Chebyshev function. Figure 8.15 gives frequency edge
notations for analog lowpass and bandpass filters. The notations for analog high-
pass and bandstop filters can be defined correspondingly.

8.3.2 Lowpass and Highpass Filter Design
Examples

The following examples illustrate various designs for the Butterworth and
Chebyshev lowpass and highpass filters.

Example 8.7.

a. Design a digital lowpass Butterworth filter with the following
specifications:

1. 3 dB attenuation at the passband frequency of 1.5 kHz
2. 10 dB stopband attenuation at the frequency of 3 kHz
3. Sampling frequency of 8,000 Hz.
b. Use MATLAB to plot the magnitude and phase responses.
Solution:
a. First, we obtain the digital frequencies in radians per second:
wg, = 27 [= 2w(1500) = 30007 rad/sec
wgs = 2 [= 2m(3000) = 60007 rad/sec
T =1/ f; =1/8000sec

8.3 Digital Butterworth and Chebyshev Filter Designs 327

Following the steps of the design procedure,

1.

We apply the warping equation as

2 T
Wqp than (%) =16000 x tan (M) =1.0691 x 10* rad/sec.

waSZ%tan (‘*Lf) —16000x tan <w> —3.8627x 10*rad/sec.

We then find the lowpass prototype specifications using Table 8.6 as
follows:

Vs = Was/wap = 3.8627 x 10*/(1.0691 x 10%)
= 3.6130rad/sec and 4, = 10dB.

The filter order is computed as

82 — 100.1><3 —1=1
logyy (100419~ 1)

- = 0.8553-
2 - log,, (3.6130)

Rounding # up, we choose n =1 for the lowpass prototype. From
Table 8.3, we have

1
s+ 1

Hp(s) =

Applying the prototype transformation (lowpass to lowpass) yields
the analog filter

1 " 1.0691 x 10*
H(s) = Hp(s)| . = =—2 = :
(s) P(S)|@ wip +1 s+ wyp S+ 1.0691 x 10*

Finally, using the BLT, we have

B 1.0691 x 10*
s+ 1.0691 x 10%

H(z)

s:16000(271)/(z+1).
Substituting the BLT leads to

1.0691 x 10*

(1600024 + 10691 x 10+

H(z) =

328 &8 INFINITE IMPULSE RESPONSE FILTER DESIGN

To simplify the algebra, we divide both numerator and denominator
by 16000 to get

0.6682
(H) 406682

z+1

H(z) =

Then multiplying (z + 1) to both numerator and denominator leads to

0.6682(z+1) 0.6682z + 0.6682

H(z) = - .
O = Zo1) 1066820z 1 1) 1.6682z — 0.3318

Dividing both numerator and denominator by (1.6682 - z) leads to

0.4006 + 0.4006z !
1 —0.1989z!

H(z) =

b. Steps 2 and 3 can be carried out using MATLAB Program 8.3, as shown
in the first three lines of the MATLAB codes. Figure 8.16 describes the
filter frequency responses.

Magnitude response (dB)

0 500 1000 1500 2000 2500 3000 3500 4000

Frequency (Hz)

Phase (degrees)

500 1000 1500 2000 2500 3000 3500 4000
Frequency (Hz)

FIGURE 8.16 Frequency responses of the designed digital filter for Example 8.7.

8.3 Digital Butterworth and Chebyshev Filter Designs 329

Program 8.3. MATLAB program for Example 8.7.

$Example 8.7

% Design of the digital lowpass Butterworth filter
format long

fs=8000;%