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Preface

The applications of DSP are numerous and include multimedia technology, audio signal
processing, video signal processing, cellular mobile communication, adaptive network
management, radar systems, pattern analysis, pattern recognition, medical signal processing,
financial data forecasting, artificial intelligence, decision making systems, control systems
and information search engines.

The theory and application of signal processing is concerned with the identification,
modelling and utilisation of patterns and structures in a signal process. The observation
signals are often distorted, incomplete and noisy. Hence, noise reduction and the removal of
channel distortion and interference are important parts of a signal processing system.

Since the publication of the first edition of this book in 1996, digital signal processing
(DSP) in general and noise reduction in particular, have become even more central to the
research and development of efficient, adaptive and intelligent mobile communication and
information processing systems. The third edition of this book has been revised extensively
and improved in several ways to take account of the recent advances in theory and application
of digital signal processing. The existing chapters have been updated with new materials
added. Two new chapters have been introduced; one for speech enhancement in mobile
noisy conditions and the other for modelling and combating noise and fading in wireless
communication systems.

The aim of this book is to provide a coherent and structured presentation of the theory and
applications of statistical signal processing and noise reduction methods and is organised in
17 chapters.

Chapter 1 begins with an introduction to signal processing, and provides a brief review
of signal processing methodologies and applications. The basic operations of sampling and
quantisation are reviewed in this chapter.

Chapter 2 provides an introduction to noise and distortion. Several different types of
noise, including thermal noise, shot noise, acoustic noise, electromagnetic noise and channel
distortions, are considered. The chapter concludes with an introduction to the modelling of
noise processes.

Chapter 3 provides an introduction to the theory and applications of probability models
and stochastic signal processing. The chapter begins with an introduction to random signals,
stochastic processes, probabilistic models and statistical measures. The concepts of stationary,
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nonstationary and ergodic processes are introduced in this chapter, and some important
classes of random processes, such as Gaussian, mixture Gaussian, Markov chains and
Poisson processes, are considered. The effects of transformation of a signal on its statistical
distribution are considered.

Chapter 4 is on Bayesian estimation and classification. In this chapter the estimation
problem is formulated within the general framework of Bayesian inference. The chapter
includes Bayesian theory, classical estimators, the estimate—-maximise method, the Cramer—
Rao bound on the minimum-variance estimate, Bayesian classification, and the modelling
of the space of a random signal. This chapter provides a number of examples on Bayesian
estimation of signals observed in noise.

Chapter 5 considers hidden Markov models (HMMs) for nonstationary signals. The chapter
begins with an introduction to the modelling of nonstationary signals and then concentrates
on the theory and applications of hidden Markov models. The hidden Markov model is
introduced as a Bayesian model, and methods of training HMMs and using them for decoding
and classification are considered. The chapter also includes the application of HMMs in
noise reduction.

Chapter 6 considers Wiener filters. The least square error filter is formulated first through
minimisation of the expectation of the squared error function over the space of the error
signal. Then a block-signal formulation of Wiener filters and a vector space interpretation
of Wiener filters are considered. The frequency response of the Wiener filter is derived
through minimisation of mean square error in the frequency domain. Some applications of
the Wiener filter are considered, and a case study of the Wiener filter for removal of additive
noise provides useful insight into the operation of the filter.

Chapter 7 considers adaptive filters. The chapter begins with the state-space equation for
Kalman filters. The optimal filter coefficients are derived using the principle of orthogonality
of the innovation signal. The recursive least square (RLS) filter, which is an exact sample-
adaptive implementation of the Wiener filter, is derived in this chapter. Then the steepest-
descent search method for the optimal filter is introduced. The chapter concludes with a
study of the LMS adaptive filters.

Chapter 8 considers linear prediction and sub-band linear prediction models. Forward
prediction, backward prediction and lattice predictors are studied. This chapter introduces
a modified predictor for the modelling of the short-term and the pitch period correlation
structures. A maximum a posteriori (MAP) estimate of a predictor model that includes the
prior probability density function of the predictor is introduced. This chapter concludes with
the application of linear prediction in signal restoration.

Chapter 9 considers frequency analysis and power spectrum estimation. The chapter
begins with an introduction to the Fourier transform, and the role of the power spectrum
in identification of patterns and structures in a signal process. The chapter considers
nonparametric spectral estimation, model-based spectral estimation, the maximum entropy
method, and high-resolution spectral estimation based on eigenanalysis.

Chapter 10 considers interpolation of a sequence of unknown samples. This chapter begins
with a study of the ideal interpolation of a band-limited signal, a simple model for the
effects of a number of missing samples, and the factors that affect interpolation. Interpolators
are divided into two categories: polynomial and statistical interpolators. A general form of
polynomial interpolation as well as its special forms (Lagrange, Newton, Hermite and cubic
spline interpolators) is considered. Statistical interpolators in this chapter include maximum



PREFACE Xix

a posteriori interpolation, least square error interpolation based on an autoregressive model,
time—frequency interpolation, and interpolation through the search of an adaptive codebook
for the best signal.

Chapter 11 considers spectral subtraction. A general form of spectral subtraction is
formulated and the processing distortions that result from spectral subtraction are considered.
The effects of processing distortions on the distribution of a signal are illustrated. The chapter
considers methods for removal of the distortions and also nonlinear methods of spectral
subtraction. This chapter concludes with an implementation of spectral subtraction for signal
restoration.

Chapters 12 and 13 cover the modelling, detection and removal of impulsive noise
and transient noise pulses. In Chapter 12, impulsive noise is modelled as a binary-state
nonstationary process and several stochastic models for impulsive noise are considered. For
removal of impulsive noise, median filters and a method based on a linear prediction model
of the signal process are considered. The materials in Chapter 13 closely follow Chapter 12.
In Chapter 13, a template-based method, an HMM-based method and an AR model-based
method for removal of transient noise are considered.

Chapter 14 covers echo cancellation. The chapter begins with an introduction to telephone
line echoes, and considers line echo suppression and adaptive line echo cancellation. Then the
problem of acoustic echoes and acoustic coupling between loudspeaker and microphone systems
is considered. The chapter concludes with a study of a sub-band echo cancellation system.

Chapter 15 covers blind deconvolution and channel equalisation. This chapter begins with
an introduction to channel distortion models and the ideal channel equaliser. Then the Wiener
equaliser, blind equalisation using the channel input power spectrum, blind deconvolution
based on linear predictive models, Bayesian channel equalisation and blind equalisation for
digital communication channels are considered. The chapter concludes with equalisation of
maximum phase channels using higher-order statistics.

Chapter 16 covers speech enhancement methods. Speech enhancement in noisy
environments improves the quality and intelligibility of speech for human communication and
increases the accuracy of automatic speech recognition systems. Noise reduction systems are
increasingly important in a range of applications such as mobile phones, hands-free phones,
teleconferencing systems and in-car cabin communication systems. This chapter provides an
overview of the main methods for single-input and multiple-input speech enhancement in
noise.

Chapter 17 covers the issue of noise in wireless communication. Noise, fading and
limited radio bandwidth are the main factors that constrain the capacity and the speed
of communication on wireless channels. Research and development of communications
systems aim to increase the spectral efficiency, defined as the data bits per second per
Hertz bandwidth of a communication channel. For improved efficiency, modern mobile
communications systems rely on signal processing methods at almost every stage from source
coding to the allocation of time bandwidth and space resources. In this chapter we consider
how communications signal processing methods are employed for improving the speed and
capacity of communications systems.

As an additional resource, this book is supported by a companion website on which
lecturers and instructors can find electronic versions of the figures. Please go to
ftp://ftp.wiley.co.uk/pub/books/vaseghi3e.

SAEED V. VASEGHI
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Signal processing provides the basic analysis, modelling and synthesis tools for a diverse
area of technological fields, including telecommunication, artificial intelligence, biological
computation and system identification. Signal processing is concerned with the modelling,
detection, identification and utilisation of patterns and structures in a signal process.
Applications of signal processing methods include audio hi-fi, digital TV and radio, cellular
mobile phones, voice recognition, vision, radar, sonar, geophysical exploration, medical
electronics, bio-signal processing and in general any system that is concerned with the
communication or processing and retrieval of information. Signal processing theory plays a
central role in the development of digital telecommunication and automation systems, and
in the efficient transmission, reception and decoding of information.

This chapter begins with a definition of signals, and a brief introduction to various signal
processing methodologies. We consider several key applications of digital signal processing
in adaptive noise reduction, channel equalisation, pattern classification/recognition, audio
signal coding, signal detection, spatial processing for directional reception of signals, Dolby
noise reduction and radar.

1.1 SIGNALS AND INFORMATION

A signal is the variation of a quantity by which information is conveyed regarding the state,
the characteristics, the composition, the trajectory, the evolution, the course of action or the

Advanced Digital Signal Processing and Noise Reduction Third Edition Saeed V. Vaseghi
© 2006 John Wiley & Sons, Ltd



2 INTRODUCTION

intention of the information source. A signal is a means of conveying information regarding
the state(s) of a variable.

The information conveyed in a signal may be used by humans or machines for
communication, forecasting, decision-making, control, geophysical exploration, medical
diagnosis, forensics, etc. The types of signals that signal processing deals with include textual
data, audio, ultrasonic, subsonic, image, electromagnetic, medical, biological, financial and
seismic signals.

Figure 1.1 illustrates a communication system composed of an information source, I(¢),
followed by a system, T'[-], for transformation of the information into variation of a signal,
x(¢), a communication channel, k[-], for propagation of the signal from the transmitter to
the receiver, additive channel noise, n(f), and a signal processing unit at the receiver for
extraction of the information from the received signal.

In general, there is a mapping operation that maps the output, I(¢), of an information
source to the signal, x(7), that carries the information; this mapping operator may be denoted
as T[] and expressed as

x(n) =T[I(1)] (1.1)

The information source I(¢) is normally discrete-valued, whereas the signal x(¢) that carries
the information to a receiver may be continuous or discrete. For example, in multimedia
communication the information from a computer, or any other digital communication device,
is in the form of a sequence of binary numbers (ones and zeros), which would need to be
transformed into voltage or current variations and modulated to the appropriate form for
transmission in a communication channel over a physical link.

As a further example, in human speech communication the voice-generating mechanism
provides a means for the speaker to map each discrete word into a distinct pattern of
modulation of the acoustic vibrations of air that can propagate to the listener. To communicate
a word, w, the speaker generates an acoustic signal realisation of the word, x(¢); this acoustic
signal may be contaminated by ambient noise and/or distorted by a communication channel,
or impaired by the speaking abnormalities of the talker, and received as the noisy, distorted
and/or incomplete signal y(¢), modelled as

y(2) = hlx(D)] + n(t) (1.2)

In addition to conveying the spoken word, the acoustic speech signal has the capacity to
convey information on the prosody (i.e. pitch, intonation and stress patterns in pronunciation)
of speech and the speaking characteristics, accent and emotional state of the talker. The
listener extracts this information by processing the signal y(z).

Noise n(r)

Noisy .
signal Signal and

( ) Digital signal information
hx()] 0 processor 50 ?(t)

Information

source 1(f) Information to | Signal
©—| signal mapping | Channel

T[] x(1) hl]

Figure 1.1 Tllustration of a communication and signal processing system.
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In the past few decades, the theory and applications of digital signal processing have
evolved to play a central role in the development of modern telecommunication and
information technology systems.

Signal processing methods are central to efficient communication, and to the development
of intelligent man—machine interfaces in areas such as speech and visual pattern recognition
for multimedia systems. In general, digital signal processing is concerned with two broad
areas of information theory:

(1) efficient and reliable coding, transmission, reception, storage and representation of
signals in communication systems; and

(2) extraction of information from noisy signals for pattern recognition, detection,
forecasting, decision-making, signal enhancement, control, automation, etc.

In the next section we consider four broad approaches to signal processing.

1.2 SIGNAL PROCESSING METHODS

Signal processing methods have evolved in algorithmic complexity, aiming for optimal
utilisation of the information in order to achieve the best performance. In general the
computational requirement of signal processing methods increases, often exponentially, with
the algorithmic complexity. However, the implementation cost of advanced signal processing
methods has been offset and made affordable by the consistent trend in recent years of a
continuing increase in the performance, coupled with a simultaneous decrease in the cost, of
signal processing hardware.

Depending on the method used, digital signal processing algorithms can be categorised into
one or a combination of four broad categories. These are transform-based signal processing,
model-based signal processing, Bayesian statistical signal processing and neural networks,
as illustrated in Figure 1.2. These methods are briefly described below.

1.2.1 TRANSFORM-BASED SIGNAL PROCESSING

The purpose of a transform is to describe a signal or a system in terms of a combination
of a set of elementary simple signals (such as sinusoidal signals) that lend themselves to

| Digital signal processing methods |

=

| Transform-based analysis/synthesis | | Model-based methods | | Bayesian estimation methods | | Neural networks |

\

Layered networks of
‘neuron’ elements

Hidden Markov
models

Kalman
filter

Wavelet
transform

Linear
prediction

Adaptive
filters

Fourier
transform

Laplace
transform

Probabilistic
estimation

Transform

Figure 1.2 A broad categorisation of some of the most commonly used signal processing methods.
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relatively easy analysis, interpretation and manipulation. Transform-based signal processing
methods include Fourier transform, Laplace transform, z-transform and wavelet transforms.
The most widely applied signal transform is the Fourier transform, which is effectively a
form of vibration analysis, in that a signal is expressed in terms of a combination of the
sinusoidal vibrations that make up the signal. Fourier transform is employed in a wide range
of applications, including popular music coders, noise reduction and feature extraction for
pattern recognition. The Laplace transform, and its discrete-time version the z-transform, are
generalisations of the Fourier transform and describe a signal or a system in terms of a set
of sinusoids with exponential amplitude envelopes.

In Fourier, Laplace and z-transform, the different sinusoidal basis functions of the
transforms all have the same duration and differ in terms of their frequency of vibrations
and amplitude envelopes. In contrast, the wavelets are multi-resolution transforms in which
a signal is described in terms of a combination of elementary waves of different durations.
The set of basis functions in a wavelet is composed of contractions and dilations of a single
elementary wave. This allows non-stationary events of various durations in a signal to be
identified and analysed.

1.2.2 MODEL-BASED SIGNAL PROCESSING

Model-based signal processing methods utilise a parametric model of the signal generation
process. The parametric model normally describes the predictable structures and the expected
patterns in the signal process, and can be used to forecast the future values of a signal from
its past trajectory. Model-based methods normally outperform nonparametric methods, since
they utilise more information in the form of a model of the signal process. However, they
can be sensitive to the deviations of a signal from the class of signals characterised by the
model. The most widely used parametric model is the linear prediction model, described
in Chapter 8. Linear prediction models have facilitated the development of advanced signal
processing methods for a wide range of applications such as low-bit-rate speech coding in
cellular mobile telephony, digital video coding, high-resolution spectral analysis, radar signal
processing and speech recognition.

1.2.3 BAYESIAN SIGNAL PROCESSING

The fluctuations of a purely random signal, or the distribution of a class of random signals in
the signal space, cannot be modelled by a predictive equation, but can be described in terms
of the statistical average values, and modelled by a probability distribution function in a
multidimensional signal space. For example, as described in Chapter 10, a linear prediction
model driven by a random signal can provide a source-filter model of the acoustic realisation
of a spoken word. However, the random input signal of the linear prediction model, or the
variations in the characteristics of different acoustic realisations of the same word across the
speaking population, can only be described in statistical terms and in terms of probability
functions.

The Bayesian inference theory provides a generalised framework for statistical processing
of random signals, and for formulating and solving estimation and decision-making problems.
Chapter 4 describes the Bayesian inference methodology and the estimation of random
processes observed in noise.
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1.2.4 NEURAL NETWORKS

Neural networks are combinations of relatively simple nonlinear adaptive processing units,
arranged to have a structural resemblance to the transmission and processing of signals in
biological neurons. In a neural network several layers of parallel processing elements are
interconnected by a hierarchically structured connection network. The connection weights
are trained to perform a signal processing function such as prediction or classification.
Neural networks are particularly useful in nonlinear partitioning of a signal space, in feature
extraction and pattern recognition and in decision-making systems. In some hybrid pattern
recognition systems neural networks are used to complement Bayesian inference methods.
Since the main objective of this book is to provide a coherent presentation of the theory and
applications of statistical signal processing, neural networks are not discussed in this book

1.3 APPLICATIONS OF DIGITAL SIGNAL PROCESSING

In recent years, the development and commercial availability of increasingly powerful and
affordable digital computers has been accompanied by the development of advanced digital
signal processing algorithms for a wide variety of applications such as noise reduction,
telecommunications, radar, sonar, video and audio signal processing, pattern recognition,
geophysics explorations, data forecasting, and the processing of large databases for the
identification, extraction and organisation of unknown underlying structures and patterns.
Figure 1.3 shows a broad categorisation of some digital signal processing (DSP) applications.
This section provides a review of several key applications of DSP methods.

1.3.1 ADAPTIVE NOISE CANCELLATION

In speech communication from a noisy acoustic environment such as a moving car or train,
or over a noisy telephone channel, the speech signal is observed in an additive random noise.

| DSP applications |
| Signal transmission/storage/retrieval | | Information extraction |
i Channel equalisation A .
Source C"d‘“g and ¢ ed . Model estimation Pattern recognition
channel coding multi-path fading
Speech coding, music coding, Voice and data Spectral analysis, radar Speech recognition, image
image/video coding, data compression, communication on and sonar signal processing, and character recognition,
communication over noisy channels mobile channels signal enhancement, geophysics  bio-signal processing
exploration

Figure 1.3 A classification of the applications of digital signal processing.
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In signal measurement systems the information-bearing signal is often contaminated by noise
from its surrounding environment. The noisy observation, y(m), can be modelled as

y(m) = x(m) +n(m) (1.3)

where x(m) and n(m) are the signal and the noise, and m is the discrete-time index. In
some situations, for example when using a mobile telephone in a moving car, or when using
a radio communication device in an aircraft cockpit, it may be possible to measure and
estimate the instantaneous amplitude of the ambient noise using a directional microphone.
The signal, x(m), may then be recovered by subtraction of an estimate of the noise from the
noisy signal.

Figure 1.4 shows a two-input adaptive noise cancellation system for enhancement of noisy
speech. In this system a directional microphone takes as input the noisy signal x(m) + n(m),
and a second directional microphone, positioned some distance away, measures the noise
an(m+ 7). The attenuation factor, , and the time delay, 7, provide a rather over-simplified
model of the effects of propagation of the noise to different positions in the space where
the microphones are placed. The noise from the second microphone is processed by an
adaptive digital filter to make it equal to the noise contaminating the speech signal, and then
subtracted from the noisy signal to cancel out the noise. The adaptive noise canceller is more
effective in cancelling out the low-frequency part of the noise, but generally suffers from the
nonstationary character of the signals, and from the over-simplified assumption that a linear
filter can model the diffusion and propagation of the noise sound in the space.

1.3.2 ADAPTIVE NOISE REDUCTION

In many applications, for example at the receiver of a telecommunication system, there is
no access to the instantaneous value of the contaminating noise, and only the noisy signal
is available. In such cases the noise cannot be cancelled out, but it may be reduced, in an

Noisy signal

~ 3(m) = x(m) + n(m)

Noise

an(m+71)_ Signal
Adaptation _>
algorithm

Noise estimate, 1(1m)

Noise estimation filter

Figure 1.4 Configuration of a two-microphone adaptive noise canceller.
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Figure 1.5 A frequency-domain Wiener filter for reducing additive noise.

average sense, using the statistics of the signal and the noise process. Figure 1.5 shows a
bank of Wiener filters for reducing additive noise when only the noisy signal is available.
The filter bank coefficients attenuate each noisy signal frequency in inverse proportion to
the signal-to-noise ratio at that frequency. The Wiener filter bank coefficients, derived in
Chapter 6, are calculated from estimates of the power spectra of the signal and the noise
processes.

1.3.3 BLIND CHANNEL EQUALISATION

Channel equalisation is the recovery of a signal distorted in transmission through a
communication channel with a nonflat magnitude or a nonlinear phase response. When the
channel response is unknown, the process of signal recovery is called ‘blind equalisation’.
Blind equalisation has a wide range of applications, for example in digital telecommunications
for removal of inter-symbol interference due to nonideal channel and multipath propagation,
in speech recognition for removal of the effects of the microphones and communication
channels, in correction of distorted images, in analysis of seismic data and in de-reverberation
of acoustic gramophone recordings.

In practice, blind equalisation is feasible only if some useful statistics of the channel
input are available. The success of a blind equalisation method depends on how much is
known about the characteristics of the input signal and how useful this knowledge can be in
the channel identification and equalisation process. Figure 1.6 illustrates the configuration
of a decision-directed equaliser. This blind channel equaliser is composed of two distinct
sections: an adaptive equaliser that removes a large part of the channel distortion, followed
by a nonlinear decision device for an improved estimate of the channel input. The output of
the decision device is the final estimate of the channel input, and it is used as the desired
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Channel noise

n(m)
.. y(m) - / Decision device
x(m) Channel distortion _ Equaliser i)
nv
@——{H(p) ~ + H (f)[ - ——
7 7 —
@
Adaptation Error signal
algorithm
Blind decision-directed equaliser

Figure 1.6 Configuration of a decision-directed blind channel equaliser.

signal fo direct the equaliser adaptation process. Blind equalisation is covered in detail in
Chapter 15.

1.3.4 SIGNAL CLASSIFICATION AND PATTERN RECOGNITION

Signal classification is used in detection, pattern recognition and decision-making systems.
For example, a simple binary-state classifier can act as the detector of the presence, or the
absence, of a known waveform in noise. In signal classification, the aim is to design a
minimum-error system for labelling a signal with one of a number of likely classes of signal.

To design a classifier, a set of models is trained for the classes of signals that are of
interest in the application. The simplest form that the models can assume is a bank, or
code book, of waveforms, each representing the prototype for one class of signals. A more
complete model for each class of signals takes the form of a probability distribution function.
In the classification phase, a signal is labelled with the nearest or the most likely class.
For example, in communication of a binary bit stream over a band-pass channel, the binary
phase-shift keying (BPSK) scheme signals the bit ‘1’ using the waveform A, sin @ ¢ and the
bit ‘0’ using —A sin w_ 1.

At the receiver, the decoder has the task of classifying and labelling the received noisy
signal as a ‘1’ or a ‘0’. Figure 1.7 illustrates a correlation receiver for a BPSK signalling

Decision
Correlator for symbol ‘1’ device
Corel(1) § §
o W
Received noisy symbol ~Nv |
O—— oo
e
\/\ CorelO)) S5
R
=
Correlator for symbol ‘0’

Figure 1.7 A block diagram illustration of the classifier in a binary phase-shift keying demodulation.
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Figure 1.8 Configuration of a speech recognition system; f(Y|M;) is the likelihood of the model M;
given an observation sequence Y.

scheme. The receiver has two correlators, each programmed with one of the two symbols
representing the binary states for the bit ‘1’ and the bit ‘0’. The decoder correlates the
unlabelled input signal with each of the two candidate symbols and selects the candidate that
has a higher correlation with the input.

Figure 1.8 illustrates the use of a classifier in a limited-vocabulary, isolated-word speech
recognition system. Assume there are V words in the vocabulary. For each word a model is
trained, on many different examples of the spoken word, to capture the average characteristics
and the statistical variations of the word. The classifier has access to a bank of V 4 1 models,
one for each word in the vocabulary and an additional model for the silence periods. In
the speech-recognition phase, the task is to decode and label an acoustic speech feature
sequence, representing an unlabelled spoken word, as one of the V likely words or silence.
For each candidate word the classifier calculates a probability score and selects the word
with the highest score.

1.3.5 LINEAR PREDICTION MODELLING OF SPEECH

Linear predictive models are widely used in speech processing applications such as low-
bit-rate speech coding in cellular telephony, speech enhancement and speech recognition.
Speech is generated by inhaling air into the lungs, and then exhaling it through the vibrating
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Pitch period
MMk | Glottal (pitch) MMN Vocal tract M“J\/J\{“
Random model model [,
source | Excitation P(2) H(z) Speech

Figure 1.9 Linear predictive model of speech.

glottis cords and the vocal tract. The random, noise-like, air flow from the lungs is spectrally
shaped and amplified by the vibrations of the glottal cords and the resonance of the vocal
tract. The effect of the vibrations of the glottal cords and the vocal tract is to introduce a
measure of correlation and predictability to the random variations of the air from the lungs.
Figure 1.9 illustrates a source-filter model for speech production. The source models the
lung and emits a random excitation signal which is filtered, first by a pitch filter model of
the glottal cords and then by a model of the vocal tract.

The main source of correlation in speech is the vocal tract modelled by a linear predictor.
A linear predictor forecasts the amplitude of the signal at time m, x(m), using a linear

combination of P previous samples [x(m —1),---, x(m — P)] as
P
x(m)=>"ax(m—k) (1.4)
k=1
where X(m) is the prediction of the signal x(m), and the vector a® = [a,, ..., ap] is the

coefficients vector of a predictor of order P. The prediction error e(m), i.e. the difference
between the actual sample, x(m), and its predicted value, x(m), is defined as

e(m) =x(m)—>_ a,x(m—k) (1.5)

k=1

The prediction error e(m) may also be interpreted as the random excitation or the so-called
innovation content of x(m). From Equation (1.5) a signal generated by a linear predictor can
be synthesised as

x(m) =" ax(m—k)+ e(m) (1.6)

k=1

1.3.6 DIGITAL CODING OF AUDIO SIGNALS

In digital audio, the memory required to record a signal, the bandwidth required for signal
transmission and the signal-to-quantisation noise ratio are all directly proportional to the
number of bits per sample. The objective in the design of a coder is to achieve high fidelity
with as few bits per sample as possible, at an affordable implementation cost. Audio signal
coding schemes utilise the statistical structures of the signal and a model of the signal
generation, together with information on the psychoacoustics and the masking effects of
hearing. In general, there are two main categories of audio coders: model-based coders, used
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Figure 1.10 Block diagram configuration of a model-based speech (a) coder and (b) decoder.

for low-bit-rate speech coding in applications such as cellular telephony, and transform-based
coders used in high-quality coding of speech and digital hi-fi audio.

Figure 1.10 shows a simplified block diagram configuration of a speech coder-decoder of
the type used in digital cellular telephones. The speech signal is modelled as the output of
a filter excited by a random signal. The random excitation models the air exhaled through
the lung, and the filter models the vibrations of the glottal cords and the vocal tract. At
the transmitter, speech is segmented into blocks about 30 ms long, during which speech
parameters can be assumed to be stationary. Each block of speech samples is analysed to
extract and transmit a set of excitation and filter parameters that can be used to synthesise
the speech. At the receiver, the model parameters and the excitation are used to reconstruct
the speech.

A transform-based coder is shown in Figure 1.11. The aim of transformation is to convert
the signal into a form that lends itself to more convenient and useful interpretation and
manipulation. In Figure 1.11 the input signal is transformed to the frequency domain using

Input signal Binary coded signal Reconstructed
signal
X0 n0 bps X(0) .
x(0) © x(0)
X nl bps X | 7 .
(1) @ T i
2 ¢ 5
E| x» | & n2 bps 5| x0 < R
x(2) S 3 3 g5 —xQ2)
izl —
5 3 A
= Z
(3]
>
. . . E
X(N—1) ny_, bps X(N-1)
XN-1) X(N-1)

Figure 1.11 [Illustration of a transform-based coder.
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a filter bank, or a discrete Fourier transform, or a discrete cosine transform. The three main
advantages of coding a signal in the frequency domain are:

(1) The frequency spectrum of a signal has a relatively well-defined structure, for example
most of the signal power is usually concentrated in the lower regions of the spectrum.

(2) A relatively low-amplitude frequency would be masked in the near vicinity of a
large-amplitude frequency and can therefore be coarsely encoded without any audible
degradation.

(3) The frequency samples are orthogonal and can be coded independently with different
precisions.

The number of bits assigned to each frequency of a signal is a variable that reflects the
contribution of that frequency to the reproduction of a perceptually high-quality signal. In
an adaptive coder, the allocation of bits to different frequencies is made to vary with the
time variations of the power spectrum of the signal.

1.3.7 DETECTION OF SIGNALS IN NOISE

In the detection of signals in noise, the aim is to determine if the observation consists of
noise alone, or if it contains a signal. The noisy observation, y(m), can be modelled as

y(m) = b(m)x(m) +n(m) (1.7)

where x(m) is the signal to be detected, n(m) is the noise and b(m) is a binary-valued
state indicator sequence such that b(m) = 1 indicates the presence of the signal, x(m), and
b(m) = 0 indicates that the signal is absent. If the signal, x(m), has a known shape, then
a correlator or a matched filter can be used to detect the signal, as shown in Figure 1.12.
The impulse response h(m) of the matched filter for detection of a signal, x(m), is the
time-reversed version of x(m) given by

h(m) =x(N—1—m) 0<m<N-1 (1.8)

where N is the length of x(m). The output of the matched filter is given by

N—1
z(m) =Y h(m—k)y(m) (1.9)
m=0
Y(m) =x(m) + nim) Matched filter z(m) Threshold b(m)
h(m)=x(N—-1-m) comparator

Figure 1.12 Configuration of a matched filter followed by a threshold comparator for detection of
signals in noise.
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Table 1.1 Four possible outcomes in a signal detection problem.

b(m) b(m) Detector decision

0 0 Signal absent Correct
0 1 Signal absent (Missed)
1 0 Signal present (False alarm)
1 1 Signal present Correct

The matched filter output is compared with a threshold and a binary decision is made as

1 ifz(m) > Threshold

b(m) = .
0 otherwise

(1.10)

where l;(m) is an estimate of the binary state indicator sequence b(m), and may be erroneous,
particularly if the signal-to-noise ratio is low. Table 1.1 lists four possible outcomes that,
together, b(m) and its estimate, l;(m) can assume. The choice of the threshold level affects the
sensitivity of the detector. The higher the threshold, the lower the likelihood that noise would
be classified as signal is, so the false alarm rate falls, but the probability of misclassification
of signal as noise increases. The risk in choosing a threshold value 6 can be expressed as

R (ThreShOId = 0) = PFalse Alarm(o) + PMiss(G) (11 1)

The choice of the threshold reflects a trade-off between the misclassification rate Py (6)
and the false alarm rate Pry ajarm (60)-

1.3.8 DIRECTIONAL RECEPTION OF WAVES: BEAM-FORMING

Beam-forming is the spatial processing of plane waves received by an array of sensors such
that the waves’ incidents at a particular spatial angle are passed through, whereas those
arriving from other directions are attenuated. Beam-forming is used in radar and sonar signal
processing (Figure 1.13) to steer the reception of signals towards a desired direction, and in
speech processing to reduce the effects of ambient noise.

To explain the process of beam-forming, consider a uniform linear array of sensors as
illustrated in Figure 1.14. The term linear array implies that the array of sensors is spatially
arranged in a straight line and with equal spacing, d, between the sensors. Consider a
sinusoidal far-field plane wave with a frequency F|, propagating towards the sensors at an
incidence angle of 0, as illustrated in Figure 1.14. The array of sensors samples the incoming
wave as it propagates in space. The time delay for the wave to travel a distance of d between
two adjacent sensors is given by

_ dsin®

T=

(1.12)
C
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Figure 1.13 Sonar: detection of objects using the intensity and time delay of reflected sound waves.

Array of sensors Array of filters

+ Output

Figure 1.14 Illustration of a beam-former, for directional reception of signals.

where ¢ is the speed of propagation of the wave in the medium. The phase difference
corresponding to a delay of 7 is given by

dsin 6

¢=2le=2wF0 (1.13)

0
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where Tj, is the period of the sine wave. By inserting appropriate corrective time delays in
the path of the samples at each sensor, and then averaging the outputs of the sensors, the
signals arriving from direction 6 will be time-aligned and coherently combined, whereas
those arriving from other directions will suffer cancellations and attenuations. Figure 1.14
illustrates a beam-former as an array of digital filters arranged in space. The filter array acts
as a two-dimensional space-time signal processing system. The space filtering allows the
beam-former to be steered in a desired direction, for example in the direction along which
the incoming signal has the maximum intensity. The phase of each filter controls the time
delay, and can be adjusted to coherently combine the signals. The magnitude frequency
response of each filter can be used to remove the out-of-band noise.

1.3.9 DOLBY NOISE REDUCTION

Dolby noise-reduction systems work by boosting the energy and the signal-to-noise ratio
of the high-frequency spectrum of audio signals. The energy of audio signals is mostly
concentrated in the low-frequency part of the spectrum (below 2 kHz). The higher frequencies
that convey quality and sensation have relatively low energy, and can be degraded by even a
small amount of noise. For example, when a signal is recorded on a magnetic tape, the tape
‘hiss’ noise affects the quality of the recorded signal. On playback, the higher-frequency
parts of an audio signal recorded on a tape have a smaller signal-to-noise ratio than the low-
frequency parts. Therefore noise at high frequencies is more audible and less masked by the
signal energy. Dolby noise reduction systems broadly work on the principle of emphasising
and boosting the low energy of the high-frequency signal components prior to recording
the signal. When a signal is recorded, it is processed and encoded using a combination of
a pre-emphasis filter and dynamic range compression. At playback, the signal is recovered
using a decoder based on a combination of a de-emphasis filter and a decompression circuit.
The encoder and decoder must be well matched and cancel each other out in order to avoid
processing distortion.

Dolby developed a number of noise-reduction systems designated Dolby A, Dolby B and
Dolby C. These differ mainly in the number of bands and the pre-emphasis strategy that that
they employ. Dolby A, developed for professional use, divides the signal spectrum into four
frequency bands: band 1 is low-pass and covers 0 to 80 Hz; band 2 is band-pass and covers
80Hz to 3kHz; band 3 is high-pass and covers above 3kHz; and band 4 is also high-pass
and covers above 9 kHz. At the encoder the gain in each band is adaptively adjusted to boost
low-energy signal components. Dolby A provides a maximum gain of 10-15dB in each
band if the signal level falls 45 dB below the maximum recording level. The Dolby B and
Dolby C systems are designed for consumer audio systems, and use two bands instead of
the four bands used in Dolby A. Dolby B provides a boost of up to 10dB when the signal
level is low (less than 45 dB below the maximum reference) and Dolby C provides a boost
of up to 20dB, as illustrated in Figure 1.15.

1.3.10 RADAR SIGNAL PROCESSING: DOPPLER FREQUENCY SHIFT

Figure 1.16 shows a simple diagram of a radar system that can be used to estimate the range
and speed of an object such as a moving car or aeroplane. A radar system consists of a
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Figure 1.15 Illustration of the pre-emphasis response of Dolby C: up to 20dB boost is provided
when the signal falls 45 dB below maximum recording level.
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Figure 1.16 Illustration of a radar system.

transceiver (transmitter/receiver) that generates and transmits sinusoidal pulses at microwave
frequencies. The signal travels with the speed of light and is reflected back from any object
in its path. The analysis of the echo received provides information such as range, speed and
acceleration. The received signal has the form

x(t) = A(t) cos{wy[t —2r(t) /c]} (1.14)

where A(t), the time-varying amplitude of the reflected wave, depends on the position and
characteristics of the target, r(¢) is the time-varying distance of the object from the radar
and c is the velocity of light. The time-varying distance of the object can be expanded in a
Taylor series as

1 ..
r(t)=r0+i-t+5?t2+§rt3+-” (1.15)
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where r, is the distance, 7 the velocity, 7 the acceleration, etc. Approximating r(z) with the
first two terms of the Taylor series expansion, we have

r(t) =~ ry+ it (1.16)
Substituting Equation (1.15) in Equation (1.13) yields
x(1) = A(t) cos[(wy — 27w,/ c)t — 2wy 1/ C] (1.17)
Note that the frequency of reflected wave is shifted by an amount
wyg =2irw,/c (1.13)

This shift in frequency is known as the Doppler frequency. If the object is moving towards
the radar then the distance #(7) is decreasing with time, 7 is negative, and an increase in the
frequency is observed. Conversely, if the object is moving away from the radar, then the
distance r(t) is increasing, i is positive, and a decrease in the frequency is observed. Thus
the frequency analysis of the reflected signal can reveal information on the direction and
speed of the object. The distance r, is given by

ro=05Txc (1.19)

where T is the round-trip time for the signal to hit the object and arrive back at the radar
and c is the velocity of light.

1.4 SAMPLING AND ANALOGUE-TO-DIGITAL CONVERSION

A digital signal is a sequence of real-valued or complex-valued numbers, representing the
fluctuations of an information-bearing quantity with time, space or some other variable. The
basic elementary discrete-time signal is the unit-sample signal, 6(m), defined as

5(m) = (1) Z;g (1.20)

where m is the discrete time index. A digital signal, x(m), can be expressed as the sum of a
number of amplitude-scaled and time-shifted unit samples as

oo

x(m)= Y x(k)d(m—k) (1.21)

k=—o0

Figure 1.17 illustrates a discrete-time signal. Many random processes, such as speech, music,
radar and sonar, generate signals that are continuous in time and continuous in amplitude.
Continuous signals are termed ‘analogue’ because their fluctuations with time are analogous
to the variations of the signal source. For digital processing, analogue signals are sampled,
and each sample is converted into an n-bit digit. The digitisation process should be performed
such that the original signal can be recovered from its digital version with no loss of
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Figure 1.17 A discrete-time signal and its envelope of variation with time.

Analogue input

y‘C(-D‘t) LPF and |Ya(") ADC Yom) | Digital signal |X(7) | 1\ ~ [Xa(m) LPF _xg)
S/H processor

Figure 1.18 Configuration of a digital signal processing system.

information, and with as high a fidelity as is required in an application. Figure 1.18 illustrates
a block diagram configuration of a digital signal processor with an analogue input. The low-
pass filter (LPF) removes out-of-band signal frequencies above a pre-selected range. The
sample-and-hold (S/H) unit periodically samples the signal to convert the continuous-time
signal into a discrete-time signal.

The analogue-to-digital converter (ADC) maps each continuous amplitude sample into an
n-bit digit. After processing, the digital output of the processor can be converted back into
an analogue signal using a digital-to-analogue converter (DAC) and a low-pass filter, as
illustrated in Figure 1.18.

1.4.1 SAMPLING AND RECONSTRUCTION OF ANALOGUE SIGNALS

The conversion of an analogue signal to a sequence of n-bit digits consists of two basic steps
of sampling and quantisation. The sampling process, when performed with sufficiently high
speed, can capture the fastest fluctuations of the signal, and can be a loss-less operation in
that the analogue signal can be recovered through interpolation of the sampled sequence, as
described in Chapter 10. The quantisation of each sample into an n-bit digit involves some
irrevocable error and possible loss of information. However, in practice the quantisation
error can be made negligible by using an appropriately high number of bits as in a digital
audio hi-fi. A sampled signal can be modelled as the product of a continuous-time signal,
x(?), and a periodic impulse train, p(¢), as

xsampled (t) = )C(l)p([)

= Y x(t)8(t—mT,) (1.22)

m=—oo
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where T, is the sampling interval and the sampling function, p(t), is defined as

p)= Y 8(t—mT) (123)

m=—o00o

The spectrum, P(f), of the sampling function, p(t), is also a periodic impulse train given by

P(f)= Y 8(f —kF) (1.24)

k=—o00

where F, = 1/T, is the sampling frequency. Since multiplication of two time-domain signals
is equivalent to the convolution of their frequency spectra, we have

Xoampiea (f) = FT[x(1).p(t)] = X(f)*P(f) = i o(f —kF) (1.25)

k=—o00

where the operator FT|[.] denotes the Fourier transform. In Equation (1.25) the convolution
of a signal spectrum X(f) with each impulse, 6(f — kF,), shifts X(f) and centres it on kF.
Hence, as expressed in Equation (1.25), the sampling of a signal x(t) results in a periodic
repetition of its spectrum X(f) centred on frequencies 0, +F,, £2F,, . . .

When the sampling frequency, F,, is higher than twice the maximum frequency content
of the signal, BH, (i.e. F, > 2B), then the repetitions of the signal spectra are separated,
as shown in Figure 1.19. In this case, the analogue signal can be recovered by passing the
sampled signal through an analogue low-pass filter with a cut-off frequency of just above
BH,. If the sampling frequency is less than 2B (i.e. F, < 2B), then the adjacent repetitions
of the spectrum overlap and the original spectrum cannot be recovered. The distortion, due
to an insufficiently high sampling rate, is irrevocable and is known as aliasing.

This observation is the basis of the Nyquist sampling theorem, which states: a band-
limited continuous-time signal, with a highest frequency content (bandwidth) of B Hz, can
be recovered from its samples provided that the sampling frequency F, > 2B samples per
second.

In practice, sampling is achieved using an electronic switch that allows a capacitor to
charge up or down to the level of the input voltage once every T, seconds, as illustrated in
Figure 1.20. As illustrated in Figure 1.19, the staircase shape of a sample-and-hold signal
can be obtained by filtering the idealised impulse-train sampled signal through a filter with
a rectangular impulse response.

1.4.2 QUANTISATION

For digital signal processing, continuous-amplitude samples from the sample-and-hold are
quantised and mapped into n-bit binary digits. For quantisation to n bits, the amplitude range
of the signal is divided into 2" discrete levels, and each sample is quantised to the nearest
quantisation level, and then mapped to the binary code assigned to that level. Figure 1.21
illustrates the quantisation of a signal into four discrete levels. Quantisation is a many-to-one
mapping, in that all the values that fall within the continuum of a quantisation band are
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Figure 1.19 Sample-and-hold signal modelled as impulse-train sampling followed by convolution
with a rectangular pulse.
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Figure 1.20 A simplified sample-and-hold circuit diagram.
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mapped to the centre of the band. The mapping between an analogue sample, x,(m), and its
quantised value, x(m), can be expressed as

x(m) = Q[x,(m)] (1.26)

where Q[-] is the quantising function.
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Figure 1.21 Tllustration of offset-binary scalar quantisation.

The performance of a quantiser is measured by signal-to-quantisation noise ratio, SQNR,
per bit. The quantisation noise is defined as

e(m) = x(m) — x,(m) (1.27)

Now consider an n-bit quantiser with an amplitude range of =V volts. The quantisation step
size is A =2V/2". Assuming that the quantisation noise is a zero-mean uniform process with
an amplitude range of +A/2, we can express the noise power as

A2 A/2
e[ = [ feletmle(mdetm) =% [ &m)de(m)
—A2 —A2 (1.28)
B AZ B V22—2n
T2 3

where fi[e(m)] = 1/A is the uniform probability density function of the noise. Using
Equation (1.27), the signal-to-quantisation noise ratio is given by

2 P
2

(1.29)

=10log,,3 —10log, ( ) + 10log,, 2*"

Signal

=4.77T—a+6n

where P, is the mean signal power and « is the ratio in decibels of the peak signal power,
V2, to the mean signal power, Pga1- Therefore, from Equation (1.28), every additional bit in
an analogue-to-digital converter results in 6 dB improvement in signal-to-quantisation noise
ratio.
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Noise can be defined as an unwanted signal that interferes with the communication or
measurement of another signal. A noise itself is a signal that conveys information regarding
the source of the noise. For example, the noise from a car engine conveys information
regarding the state of the engine and how smoothly it is running. The sources of noise are
many and varied and include thermal noise intrinsic to electric conductors, shot noise inherent
in electric current flows, audio-frequency acoustic noise emanating from moving, vibrating
or colliding sources such as revolving machines, moving vehicles, computer fans, keyboard
clicks, wind, rain, etc. and radio-frequency electromagnetic noise that can interfere with
the transmission and reception of voice, image and data over the radio-frequency spectrum.
Signal distortion is the term often used to describe a systematic undesirable change in a signal
and refers to changes in a signal due to the nonideal characteristics of the communication
channel, reverberations, echo, multipath reflections and missing samples.

Noise and distortion are the main factors limiting the capacity of data transmission in
telecommunications and accuracy in signal measurement systems. Therefore the modelling
and removal of the effects of noise and distortions have been at the core of the theory and
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practice of communications and signal processing. Noise reduction and distortion removal
are important problems in applications such as cellular mobile communications, speech
recognition, image processing, medical signal processing, radar and sonar, and in any
application where the signals cannot be isolated from noise and distortion. In this chapter,
we study the characteristics and modelling of several different forms of noise.

2.1 INTRODUCTION

Noise may be defined as any unwanted signal that interferes with the communication,
measurement, perception or processing of an information-bearing signal. Noise is present
in various degrees in almost all environments. For example, in a digital cellular
mobile telephone system, there may be several varieties of noise that could degrade
the quality of communication, such as acoustic background noise, thermal noise, shot
noise, electromagnetic radio-frequency noise, co-channel radio interference, radio-channel
distortion, acoustic and line echoes, multipath reflection, fading and signal processing noise.

Noise can cause transmission errors and may even disrupt a communication process; hence
noise processing is an important and integral part of modern telecommunications and signal
processing systems. The success of a noise processing method depends on its ability to
characterise and model the noise process, and to use the noise characteristics advantageously
to differentiate the signal from the noise.

Depending on its source, a noise can be classified into a number of categories, indicating
the broad physical nature of the noise, as follows:

(1) Acoustic noise — emanates from moving, vibrating or colliding sources and is the most
familiar type of noise present to various degrees in everyday environments. Acoustic
noise is generated by such sources as moving cars, air-conditioners, computer fans,
traffic, people talking in the background, wind, rain, etc.

(2) Thermal noise and shot noise — thermal noise is generated by the random movements of
thermally energised particles in an electric conductor. Thermal noise is intrinsic to all
conductors and is present without any applied voltage. Shot noise consists of random
fluctuations of the electric current in an electrical conductor and is intrinsic to current
flow. Shot noise is caused by the fact that the current is carried by discrete charges (i.e.
electrons) with random fluctuations and random arrival times.

(3) Electromagnetic noise — present at all frequencies and in particular at the radio frequency
range (kHz to GHz range) where telecommunications take place. All electric devices,
such as radio and television transmitters and receivers, generate electromagnetic noise.

(4) Electrostatic noise — generated by the presence of a voltage with or without current flow.
Fluorescent lighting is one of the more common sources of electrostatic noise.

(5) Channel distortions, echo and fading — due to nonideal characteristics of communication
channels. Radio channels, such as those at GHz frequencies used by cellular mobile phone
operators, are particularly sensitive to the propagation characteristics of the channel
environment and fading of signals.

(6) Processing noise — the noise that results from the digital-to-analogue processing of
signals, e.g. quantisation noise in digital coding of speech or image signals, or lost data
packets in digital data communication systems.
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Depending on its frequency spectrum or time characteristics, a noise process can be further
classified into one of several categories as follows:

(1) White noise — purely random noise that has a flat power spectrum. White noise
theoretically contains all frequencies in equal intensity.

(2) Band-limited white noise — a noise with a flat spectrum and a limited bandwidth that
usually covers the limited spectrum of the device or the signal of interest.

(3) Narrowband noise — a noise process with a narrow bandwidth such as a 50-60 Hz ‘hum’
from the electricity supply.

(4) Coloured noise — nonwhite noise or any wideband noise whose spectrum has a nonflat
shape; examples are pink noise, brown noise and autoregressive noise.

(5) Impulsive noise — consists of short-duration pulses of random amplitude and random
duration.

(6) Transient noise pulses — consists of relatively long duration noise pulses.

2.2 WHITE NOISE

White noise is defined as an uncorrelated random noise process with equal power at all
frequencies (Figure 2.1). A random noise that has the same power at all frequencies in
the range of £oo would necessarily need to have infinite power, and is therefore only a
theoretical concept. However a band-limited noise process, with a flat spectrum covering the
frequency range of a band-limited communication system, is to all intents and purposes from
the point of view of the system a white noise process. For example, for an audio system
with a bandwidth of 10kHz, any flat-spectrum audio noise with a bandwidth of equal to or
greater than 10 kHz looks like white noise.

The autocorrelation function of a continuous-time zero-mean white noise process with a
variance of ¢? is a delta function [Figure 2.1(b)] given by

ra(7) = E[N(ON(t +7)] = 028(7) @2.1)
2 T (0 Pay(0)
1 !
of !
O
-2 ‘ ] | ) )
0 50 100 150 200 250 300 | k f
m

(a) (b) (©)

Figure 2.1 (a) Illustration of white noise. (b) Its autocorrelation function is a delta function. (c) Its
power spectrum is constant.
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The power spectrum of a white noise, obtained by taking the Fourier transform of
Equation (2.1), is given by

Py (f) = [ nw(f)e ™ dr=o? (2.2)

—o0

Equation (2.2) and Figure 2.1(c) show that a white noise has a constant power spectrum.

2.2.1 BAND-LIMITED WHITE NOISE

Pure white noise is a theoretical concept, since it would need to have infinite power to cover
an infinite range of frequencies. Furthermore, a discrete-time signal by necessity has to be
band-limited, with its highest frequency less than half the sampling rate. A more practical
concept is band-limited white noise, defined as a noise with a flat spectrum in a limited
bandwidth. The spectrum of band-limited white noise with a bandwidth of B Hz is given by

o, |fI<B

0, otherwise

PNN(f) = (2-3)

Thus the total power of a band-limited white noise process is 2Bo?. The autocorrelation
function of a discrete-time band-limited white noise process has the shape of a sinc function
and is given by

Bo? sin(27BT,k)
0' —

Tk =2
P (TK) 27BT.k

(2.4)
where T, is the sampling period. For convenience of notation, 7, is usually assumed to be
unity. For the case when 7, = 1/2B, i.e. when the sampling rate is equal to the Nyquist rate,
Equation (2.4) becomes

in(k
o (TK) = 2302% — 2Bo?8(k) (2.5)

In Equation (2.5) the autocorrelation function is a delta function.

2.3 COLOURED NOISE

Although the concept of white noise provides a reasonably realistic and mathematically
convenient and useful approximation to some predominant noise processes encountered in
telecommunications systems, many other noise processes are nonwhite. The term ‘coloured
noise’ refers to any broadband noise with a nonwhite spectrum. For example most audio-
frequency noise, such as the noise from moving cars, noise from computer fans, electric drill
noise and people talking in the background, has a nonwhite predominantly low-frequency
spectrum. Also, a white noise passing through a channel is ‘coloured’ by the shape of the
frequency response of the channel. Two classic varieties of coloured noise are so-called
‘pink noise’ and ‘brown noise’, shown in Figures 2.2 and 2.3.
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Figure 2.2 (a) A pink noise signal and (b) its magnitude spectrum.
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Figure 2.3 (a) A brown noise signal and (b) its magnitude spectrum.

2.4 IMPULSIVE NOISE

Impulsive noise consists of random short-duration ‘on/off’ noise pulses, caused by a variety of
sources, such as switching noise, electromagnetic interference, adverse channel environment
in a communication system, drop-outs or surface degradation of audio recordings, clicks
from computer keyboards, etc.

Figure 2.4(a) shows an ideal impulse and its frequency spectrum. In communication
systems, a real impulsive-type noise has a duration that is normally more than one sample
long. For example, in the context of audio signals, short-duration, sharp pulses, of up to 3 ms
(60 samples at a 20kHz sampling rate) may be considered as impulsive noise. Figure 2.4(b)
and (c) illustrates two examples of short-duration pulses and their respective spectra.

In a communications system, an impulsive noise originates at some point in time and
space, and then propagates through the channel to the receiver. The received noise is time-
dispersed and shaped by the channel, and can be considered as the channel impulse response.
In general, the characteristics of a communication channel may be linear or nonlinear,
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Figure 2.4 Time and frequency sketches of: (a) an ideal impulse; (b) and (c) short-duration pulses.
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Figure 2.5 [llustration of variations of the impulse response of a nonlinear system with increasing
amplitude of the impulse.

stationary or time-varying. Furthermore, many communications systems exhibit a nonlinear
characteristic in response to a large-amplitude impulse.

Figure 2.5 illustrates some examples of impulsive noise, typical of that observed on an old
gramophone recording. In this case, the communication channel is the playback system, and
may be assumed to be time-invariant. The figure also shows some variations of the channel
characteristics with the amplitude of impulsive noise. For example, in Figure 2.5(c) a large
impulse excitation has generated a decaying transient pulse with time-varying period. These
variations may be attributed to the nonlinear characteristics of the playback mechanism.
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2.5 TRANSIENT NOISE PULSES

Transient noise pulses, observed in most communications systems, are caused by interference.
Transient noise pulses often consist of a relatively short, sharp initial pulse followed by
decaying low-frequency oscillations, as shown in Figure 2.6. The initial pulse is usually due
to some external or internal impulsive interference, whereas the oscillations are often due
to the resonance of the communication channel excited by the initial pulse, and may be
considered as the response of the channel to the initial pulse. In a telecommunications system,
a noise pulse originates at some point in time and space, and then propagates through the
channel to the receiver. The noise pulse is shaped by the channel characteristics, and may
be considered as the channel pulse response. Thus, we should be able to characterize the
transient noise pulses with a similar degree of consistency as in characterizing the channels
through which the pulses propagate.

As an illustration of the shape of a transient noise pulse, consider the scratch pulses from
a damaged gramophone record shown in Figure 2.6(a) and (b). Scratch noise pulses are
acoustic manifestations of the response of the stylus and the associated electromechanical
playback system to a sharp physical discontinuity on the recording medium. Since scratches
are essentially the impulse response of the playback mechanism, it is expected that, for a given
system, various scratch pulses exhibit similar characteristics. As shown in Figure 2.6(b), a
typical scratch pulse waveform often exhibits two distinct regions:

(1) the initial high-amplitude pulse response of the playback system to the physical
discontinuity on the record medium; followed by

(2) decaying oscillations that cause additive distortion; the initial pulse is relatively short
and has a duration on the order of 1-5ms, whereas the oscillatory tail has a longer
duration and may last up to 50 ms or more.

Note in Figure 2.6(b) that the frequency of the decaying oscillations decreases with time.
This behaviour may be attributed to the nonlinear modes of response of the electromechanical
playback system excited by the physical scratch discontinuity. Observations of many scratch
waveforms from damaged gramophone records reveals that they have a well-defined profile,
and can be characterised by a relatively small number of typical templates. Scratch pulse
modelling and removal is considered in detail in Chapter 13.

n(m)

(a) (b)

Figure 2.6 (a) A scratch pulse and music from a gramophone record. (b) The averaged profile of a
gramophone record scratch pulse.
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2.6 THERMAL NOISE

Thermal noise, also referred to as Johnson noise (after its discoverer, J.B. Johnson), is
generated by the random movements of thermally energised (agitated) particles inside an
electric conductor. Thermal noise is intrinsic to all resistors and is not a sign of poor design
or manufacture, although some resistors may also have excess noise. Thermal noise cannot
be circumvented by good shielding or grounding.

Note that thermal noise happens at equilibrium without the application of a voltage. The
application of a voltage and the movement of current in a conductor cause an additional
random fluctuation known as shot noise, as described in the next section.

The concept of thermal noise has its roots in thermodynamics and is associated with
the temperature-dependent random movements of free particles such as gas molecules in a
container or electrons in a conductor. Although these random particle movements average
to zero, the fluctuations about the average constitute the thermal noise. For example, the
random movements and collisions of gas molecules in a confined space produce random
fluctuations about the average pressure. As the temperature increases, the kinetic energy of
the molecules and the thermal noise increase.

Similarly, an electrical conductor contains a very large number of free electrons, together
with ions that vibrate randomly about their equilibrium positions and resist the movement of
the electrons. The free movement of electrons constitutes random spontaneous currents, or
thermal noise, that average to zero since, in the absent of a voltage, electrons move in different
directions. As the temperature of a conductor, from heat provided by its surroundings,
increases, the electrons move to higher-energy states and the random current flow increases.
For a metallic resistor, the mean square value of the instantaneous voltage due to the thermal
noise is given by

V2 = 4kTRB (2.6)

where k = 1.38 x 1072 J/k is the Boltzmann constant, T is the absolute temperature in
degrees Kelvin, R is the resistance in ohms and B is the bandwidth. From Equation (2.6)
and the preceding argument, a metallic resistor sitting on a table can be considered as a
generator of thermal noise power, with a mean square voltage v?> and an internal resistance R.
From circuit theory, the maximum available power delivered by a ‘thermal noise generator’,
dissipated in a matched load of resistance R, is given by

= Vs \ 2
j2 Z-Rz(ﬁ>
N 2R

2

R=—=kTB (W 2.7
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where v, is the root mean square voltage. The spectral density of thermal noise is given by
kT

Py(f) = 5 (W/H2) 3)

From Equation (2.8), the thermal noise spectral density has a flat shape, i.e. thermal noise is
a white noise. Equation (2.8) holds well up to very high radio-frequencies of 10" Hz.
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2.7 SHOT NOISE

Shot noise consists of random fluctuations of the electric current in a conductor. Shot noise
is caused by the fact that a current is carried by discrete electronic charges (i.e. electrons)
with random arrival times. The strength of this noise increases with the increasing average
current flowing through the conductor.

The term shot noise arose from the analysis of random variations in the emission of
electrons from the cathode of a vacuum tube. Discrete electron particles in a current flow
arrive at random times, and therefore there will be fluctuations about the average particle
flow. The fluctuations in the rate of particle flow constitute the shot noise. Other instances
of shot noise arise in the flow of photons in a laser beam, the flow and recombination of
electrons and holes in semiconductors, and the flow of photoelectrons emitted in photodiodes.

Note that shot noise is different from thermal noise, described in Section 2.6. Thermal
noise is due to ‘unforced’ random fluctuations of current (movement of particles) related to
temperature and happens without any applied voltage or average current flowing. Shot noise,
however, happens when there is a voltage difference and a current flow. Shot noise cannot be
eliminated as it is an intrinsic part of the movement of charges that constitutes a current. In
contrast, thermal noise can be reduced by reducing the operating temperature of the device.

The concept of randomness of the rate of emission or arrival of particles implies that the
random variations of shot noise can be modelled by a Poisson probability distribution (see
Chapter 3). The most basic statistics of shot noise, namely the mean and variance of the
noise, were reported by Campbell in 1909. Rice provided an analysis of shot noise when
the underlying Poisson process has a constant intensity and showed that, as the intensity of
the current tends to infinity, i.e. when the average number of arrivals of charges during the
observing time is large, the probability distribution of the shot noise tends to a Gaussian
distribution.

Now consider an electric current as the flow of discrete electric charges. As explained,
the flow of electrons is not smooth and there will be random fluctuations in the form of shot
of noise. If the charges act independently of each other, it can be shown that noise current
is given by

Inoie (rms) = (2eIB)'/? (2.9)

where e = 1.6 x 10712 C is the electron charge, I is the current and B is the measurement
bandwidth. For example, a ‘steady’ current / of 1 A in a bandwidth 1 MHz has an rms
fluctuation of 0.57 wA. Equation (2.9) assumes that the charge carriers making up the current
act independently. That is the case for charges crossing a barrier, such as, for example, the
current in a junction diode, where the charges move by diffusion; however, it is not true for
metallic conductors, where there are long-range correlations between charge carriers.

2.8 ELECTROMAGNETIC NOISE

Electromagnetic waves present in the environment constitute a level of background noise
that can interfere with the operation of communication and signal processing systems.
Electromagnetic waves may emanate from man-made devices or natural sources. The primary
natural source of electromagnetic waves is the Sun. In the order of decreasing wavelength
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and increasing frequency, various types of electromagnetic radiation include: electric motors
(kHz), radio waves (kHz to GHz), microwaves (10!! Hz), infrared radiation (10'* Hz), visible
light (10'Hz), ultraviolet radiation (10> Hz), X-rays (10* Hz) and 7y-radiation (10?* Hz).

Virtually every electrical device that generates, consumes or transmits power is a source
of pollution of radio spectrum and a potential source of electromagnetic noise interference
for other systems. In general, the higher the voltage or the current level, and the closer the
proximity of electrical circuits/devices, the greater will be the induced noise. The common
sources of electromagnetic noise are transformers, radio and television transmitters, mobile
phones, microwave transmitters, a.c. power lines, motors and motor starters, generators,
relays, oscillators, fluorescent lamps and electrical storms.

Electrical noise from these sources can be categorized into two basic types: electrostatic
and magnetic. These two types of noise are fundamentally different, and thus require different
noise-shielding measures. Unfortunately, most of the common noise sources listed above
produce combinations of the two noise types, which can complicate the noise reduction
problem.

Electrostatic fields are generated by the presence of voltage, with or without current flow.
Fluorescent lighting is one of the more common sources of electrostatic noise. Magnetic
fields are created either by the flow of electric current or by the presence of permanent
magnetism. Motors and transformers are examples of the former, and the Earth’s magnetic
field is an instance of the latter. In order for noise voltage to be developed in a conductor,
magnetic lines of flux must be cut by the conductor. Electric (and noise) generators function
on this basic principle. In the presence of an alternating field, such as that surrounding a
50-60 Hz power line, voltage will be induced into any stationary conductor as the magnetic
field expands and collapses. Similarly, a conductor moving through the Earth’s magnetic
field has a noise voltage generated in it as it cuts the lines of flux.

The main sources of electromagnetic interference in mobile communications systems
are the radiations from the antennas of other mobile phones and base stations. The
electromagnetic interference by mobile users and base stations can be reduced by the use of
narrow-beam adaptive antennas, the so-called ‘smart antennas’, as described in Chapter 17.

2.9 CHANNEL DISTORTIONS

On propagating through a channel, signals are shaped, delayed and distorted by the frequency
response and the attenuating (fading) characteristics of the channel. There are two main
manifestations of channel distortions: magnitude distortion and phase distortion. In addition,
in radio communication, we have the multipath effect, in which the transmitted signal may
take several different routes to the receiver, with the effect that multiple versions of the
signal with different delay and attenuation arrive at the receiver. Channel distortions can
degrade or even severely disrupt a communication process, and hence channel modelling and
equalization are essential components of modern digital communications systems. Channel
equalization is particularly important in modern cellular communications systems, since the
variations of channel characteristics and propagation attenuation in cellular radio systems
are far greater than those of the landline systems.

Figure 2.7 illustrates the frequency response of a channel with one invertible and two non-
invertible regions. In the noninvertible regions, the signal frequencies are heavily attenuated
and lost to the channel noise. In the invertible region, the signal is distorted but recoverable.
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Figure 2.7 Tllustration of channel distortion: (a) the input signal spectrum; (b) the channel frequency
response; (c) the channel output.

This example illustrates that the channel inverse filter must be implemented with care in
order to avoid undesirable results such as noise amplification at frequencies with a low
signal-to-noise ratio. Channel equalization is covered in detail in Chapter 15.

2.10 ECHO AND MULTIPATH REFLECTIONS

Multipath and echo are distortions due to reflections of signals from points where the physical
characteristics of the medium through which the signals propagates change. Multipath and
echo happen for both acoustic and electromagnetic signals.

Echo implies that part of the signal is returned to the source. Telephone line echoes are
due to the reflection of the electric signals at the point of mismatch where the two-wire
subscriber line is converted to the four-wire trunk lines. Acoustic echoes are due to feedback
between the speakers and microphones. Cancellation of line and acoustic echoes remain
important issues in modern communications systems and are discussed in Chapter 14.

Multipath implies that the transmitted signal arrives at the destination after reflections
from several different points or surfaces and through a number of different paths. In room
acoustics, multipath propagation of sound waves causes reverberation of sounds. In cellular
mobile communications environments, multipath propagation can cause severe distortion of
the signals if it is not modelled and compensated for. Chapter 17 provides an introduction
to multipath effects in mobile communications systems.

2.11 MODELLING NOISE

The objective of modelling is to characterise the structures and the patterns in a signal or
a noise process. To model a noise accurately, we need a structure for modelling both the
temporal and the spectral characteristics of the noise. Accurate modelling of noise statistics
is the key to high-quality noisy signal classification and enhancement. Even the seemingly
simple task of signal/noise classification is crucially dependent on the availability of good
signal and noise models, and on the use of these models within a Bayesian framework. Hidden
Markov models (described in Chapter 5) are a good structure for modelling signals or noise.
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Figure 2.8 Illustration of: (a) the time-waveform of a drill noise, and (b) the frequency spectrum of
the drill noise.

One of the most useful and indispensable tools for gaining insight into the structure of a
noise process is the use of Fourier transform for frequency analysis. Figure 2.8 illustrates the
noise from an electric drill, which, as expected, has a periodic structure. The spectrum of the
drilling noise shown in Figure 2.8(a) reveals that most of the noise energy is concentrated
in the lower-frequency part of the spectrum. In fact, it is true of most audio signals and
noise that they have a predominantly low-frequency spectrum. However, it must be noted
that the relatively lower-energy high-frequency part of audio signals plays an important part
in conveying sensation and quality. Figures 2.9(a) and (b) show examples of the spectra
of car noise recorded from a BMW and a Volvo. The noise in a car is nonstationary and
varied, and may include as sources quasiperiodic noise from the car engine and the revolving
mechanical parts of the car:

(1) noise from the surface contact of wheels and the road surface;
(2) noise from the air flow into the car through the air ducts, windows, sunroof, etc.;
(3) noise from passing/overtaking vehicles.

The characteristic of car noise varies with speed, road surface conditions, weather and the
environment within the car.

The simplest method for noise modelling, often used in current practice, is to estimate
the noise statistics from the signal-inactive periods. In optimal Bayesian signal processing
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Figure 2.9 Power spectra of car noise: (a) a BMW at 70 mph and (b) a Volvo at 70 mph.
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methods, a set of probability models, such as hidden Markov models (HMMs) or Gaussian
mixture models (GMMs), is trained for the signal and the noise processes. The models are
then used for the decoding of the underlying states of the signal and noise, and for noisy
signal recognition and enhancement. Indeed, modelling noise is not, in principle, different
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Figure 2.10 TIllustration of the mean (left) and standard deviation (right) of the magnitude spectra of:
(a) car noise; (b) train noise; and (c) street noise.
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from modelling speech and the Bayesian inference method described in Chapter 4 and HMMs
described in Chapter 5 can be applied to estimation of noise models.

Figure 2.10 illustrates the variations of the envelopes of the spectra of car noise, train
noise and street noise. The spectral envelopes were obtained as the magnitude frequency
responses of linear prediction models of the noise. Also shown are the mean values and the
variance of the envelopes.

2.11.1 ADDITIVE WHITE GAUSSIAN NOISE MODEL

In classical communication theory, it is often assumed that the noise is a stationary additive
white Gaussian (AWGN) process. Although for some problems this is a valid assumption
and leads to mathematically convenient and useful solutions, in practice the noise is often
time-varying, correlated and non-Gaussian. This is particularly true for impulsive-type noise
and for acoustic noise, which are nonstationary and non-Gaussian and hence cannot be
modelled using the AWGN assumption. Nonstationary and non-Gaussian noise processes
can be modelled by a Markovian chain of stationary subprocesses as described briefly in the
next section and in detail in Chapter 5.

2.11.2 HIDDEN MARKOV MODEL FOR NOISE

Most noise processes are nonstationary; that is the statistical parameters of the noise, such
as its mean, variance and power spectrum, vary with time. Nonstationary processes may be
modelled using the HMMs described in detail in Chapter 5. An HMM is essentially a finite-
state Markov chain of stationary subprocesses. The implicit assumption in using HMMs
for noise is that the noise statistics can be modelled by a Markovian chain of stationary
subprocesses. Note that a stationary noise process can be modelled by a single-state HMM.
For a nonstationary noise, a multistate HMM can model the time variations of the noise
process with a finite number of stationary states. For non-Gaussian noise, a mixture Gaussian
density model can be used to model the space of the noise within each state. In general, the
number of states per model and number of mixtures per state required to accurately model
a noise process depends on the nonstationary character of the noise.

An example of a nonstationary noise is the impulsive noise of Figure 2.11(a). Figure 2.11(b)
shows a two-state HMM of the impulsive noise sequence: the state S, models the ‘impulse-
off” periods between the impulses, and state S; models an impulse. In those cases where

L

Figure 2.11 (a) An impulsive noise sequence. (b) A binary-state model of impulsive noise.
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each impulse has a well-defined temporal structure, it may be beneficial to use a multi-state
HMM to model the pulse itself. HMMs are used in Chapter 12 for modelling impulsive
noise, and in Chapter 15 for channel equalisation.
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Information is knowledge or data about the states of a random variable. Information theory
allows prediction and estimation through modelling the history of the dependencies of the
state sequence of a random process. For example, the history of fluctuations of random
variables, such as weather, the demand on a cellular mobile system or stock market prices
may be used to obtain a finite-state model of these random variables. In communication
signal processing, an information model is essentially a probability model of the transitions
between the states of a random process and the distribution of the variable within each state
of the process.

Probability models form the foundation of information theory. Information is quantified
in units of ‘bits’ in terms of a logarithmic function of probability. Probability models are
used in communications and signal processing systems to characterise and predict random
signals in a diverse areas of applications such as: speech/image recognition, audio/video
coding, bioengineering, weather forecasting, financial data modelling, noise reduction,
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communication networks and prediction of the call demand on a service facility such as a
mobile phone network.

This chapter introduces the concept of random process and probability models and explores
the relationship between probability and information. The concept of entropy is introduced
as a measure for quantification of information, and its application in Huffman coding is
presented. Finally, several different forms of probability models and their applications in
communication signal processing are considered.

3.1 INTRODUCTION

Probability models form the foundation of information theory. As shown in Figure 3.1,
many applications of information theory, such as data and signal compression, pattern
recognition, decision-making, search engines and artificial intelligence, are based on the use
of probability models. As shown later in this chapter, information is measured and quantified
in units of ‘bits’ in terms of a logarithmic function of probability. It would be impossible
to develop advanced communication systems without the use of probability and information
theory.

Information theory deals with signals that are random such as text, speech, image, noise
and time series. Indeed, a signal cannot convey information without being random in the
sense that a predictable signal has no information and conversely the future values of an
information-bearing signal are not predictable from the past values.

The modelling, quantification and ranking of information in communication systems
require appropriate mathematical tools to model the randomness of information-bearing
signals, and the main tools for modelling randomness in a signal are those offered by statistics
and probability theory.

In communication signal processing, an information model is essentially a probability
model that models the transitions between the states of a random variable and the distribution
of the variable and noise within each state of the process.

| Probability models |

t

Information theory

/\

Information L Pattern
. Communication
analysis models
Information Entropy Pattern
management data compression classification and
search engines coding and modulation recognition

Figure 3.1 A tree-structure illustration of probability models leading to information theory and
applications in information management, entropy coding and pattern recognition.
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This chapter begins with a study of random processes and probability models. Probability
models are used in communications and signal processing systems to characterise and
predict random signals in diverse areas of applications such as speech/image recognition,
audio/video coding, bioengineering, weather forecasting, financial data modelling, noise
reduction, communication networks and prediction of the call demand on a service facility
such as a mobile phone network.

The concepts of randomness, information and entropy are introduced and their close
relationships explored. A random process can be completely described in terms of a
probability model, but may also be characterised with relatively simple statistics, such as the
mean, the correlation and the power spectrum. We study stationary, nonstationary and finite-
state processes. We consider some widely used classes of random processes, and study the
effect of filtering or transformation of a signal on its probability distribution. Finally, several
applications of probability models in communication signal processing are considered.

3.2 RANDOM SIGNALS

Signals, in terms of one of their most fundamental characteristics, can be classified into two
broad categories:

(1) deterministic signals such as sine waves that on their own have no information content
but can be modulated by a random information-bearing signal,
(2) Random signals, such as speech and image, that have information.

In each class, a signal may be continuous or discrete in time, may have continuous-valued
or discrete-valued amplitudes and may be one-dimensional or multidimensional.

A deterministic signal has a predetermined trajectory in time and/or space. The exact

fluctuations of a deterministic signal can be described in terms of a function of time, and its
exact value at any time is predictable from the functional description and the past history
of the signal. For example, a sine wave x(#) can be modelled, and accurately predicted
either by a second-order linear predictive model or by the more familiar equation x(t) =
Asin(2mft + ¢). Note that a deterministic signal carries no information other than its own
shape and parameters. Deterministic signals are a theoretical concept.
Random signals have unpredictable fluctuations; hence it is not possible to formulate an
equation that can predict the exact future value of a random signal. Most signals of interest
such as speech, music and noise are at least partly random. The concept of randomness is
closely associated with the concepts of information, bandwidth and noise. For a signal to
have a capacity to convey information, it must have a degree of randomness: a predictable
signal conveys no information. Therefore the random part of a signal is either the information
content of the signal, or noise, or a mixture of information and noise. In telecommunications
it is a waste of resources such as time, power and bandwidth to retransmit the predictable
part of a signal. Hence signals are randomised (de-correlated) before transmission.

Although a random signal is not predictable, it often exhibits a set of well-defined statistical
values such as maximum, minimum, mean, median, variance, power spectrum and higher-
order statistics. A random process is described in terms of its statistics, and most completely
in terms of a probability model from which its statistics can be calculated.
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Figure 3.2 Tllustration of deterministic and random signal models: (a) a deterministic signal model;
(b) a random signal model.
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Example 3.1: A Deterministic Signal Model

Figure 3.2(a) shows a model of a deterministic discrete-time signal. The model generates an
output signal, x(m), from P past samples as

x(m)=h,[x(im—1),x(m—=2),...,x(m—P)]+6(m) (3.1)

where the function 4, may be a linear or a nonlinear model and 6(m) is a delta function
that acts as an initial ‘kick-start’ impulse input. Note that there is no sustained input. A
functional description of the model %, together with the P initial sample values, is all that
is required to generate or predict the future values of the signal x(m). For example for a
digital sinusoidal signal generator (i.e. a digital oscillator), Equation (3.1) becomes

x(m)=a;x(m—1)4a,x(m—2)+ é(m) (3.2)

where the parameter a, = 2cos(27F;,/F,) determines the oscillation frequency F, of the
sinusoid at a sampling frequency of F.

Example 3.2: A Random Signal Model
Figure 3.2(b) is a model for a random signal given by
x(m) =hy[x(m—1),x(m—2),...,x(m—P)]+e(m) (3.3)

where the random input e(m) models the part of the signal x(m) that is unpredictable, and
the function /, models the part of the signal that is correlated with and predictable from
the past samples. For example, a narrowband, second-order autoregressive process can be
modelled as

x(m)=a;x(m—1)+ayx(m—2)+ e(m) (3.4)

where the choice of the model parameters a, and a, will determine the centre frequency and
the bandwidth of the process.
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3.2.1 RANDOM AND STOCHASTIC PROCESSES

A random process generates random signals. The term ‘stochastic process’ is broadly used
to describe a random process that generates sequential random signals such as sequence of
speech samples, a video sequence, a sequence of noise samples, a sequence of stock market
fluctuations or a DNA sequence. In signal processing terminology, a random or stochastic
process is also a probability model of a class of random signals, e.g. Gaussian process,
Markov process, Poisson process, binomial process or multinomial process.

In this chapter, we are mainly concerned with discrete-time random processes that may
occur naturally or may be obtained by sampling a continuous-time band-limited random
process. The term ‘discrete-time stochastic process’ refers to a class of discrete-time random
signals, X(m), characterised by a probabilistic model. Each realisation of a discrete-time
stochastic process, X(m), may be indexed in time and space as x(m, s), where m is the
discrete time index, and s is an integer variable that designates a space index to each
realisation of the process.

3.2.2 THE SPACE OF A RANDOM PROCESS

The collection of all realisations of a random process is known as the space, or the ensemble,
of the process. For an illustration, consider a random noise process over a communications
network, as shown in Figure 3.3. The noise on each telephone line fluctuates randomly with
time, and may be denoted n(m, s), where m is the discrete-time index and s denotes the line
index. The collection of noise on different lines forms the space of the noise process, denoted
N(m) = {n(m, s)}, where n(m, s) denotes a realisation of the noise process N(m) on the line s.

The ‘true’ statistics of a random process are obtained from the averages taken over the
space of many different realisations of the process. However, in many practical cases, only
one or a finite number of realisations of a process are available. In Sections 3.6.8-3.6.10, we
consider the ergodic processes in which time-averaged statistics, from a single realisation of
a process, may be used instead of the ensemble-averaged statistics.

Figure 3.3 Tllustration of three different realisations in the space of a random noise process, N(m).
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3.2.2.1 Notation

In this chapter X(m), in capitals, denotes a random process, the signal x(m, s) is a particular
realisation of the process X (m), the signal x(m) is any realisation of X(m), and the collection
of all realisations of X(m), denoted {x(m,s)}, forms the ensemble or the space of the
process X(m).

3.3 PROBABILITY MODELS

Probability models, initially devised to calculate the odds for the random outcomes in a chance
game, provide a complete mathematical description of the distribution of a random process.
In its simplest form, a probability model provides a numerical value, between 0 and 1, for
the likelihood of a discrete-valued random variable assuming a particular state or value. The
probability of an outcome of a variable should reflect the fraction of times that the outcome
is observed to occur. It is common to quantify belief in the probability of the outcome of a
process in terms of a number between 0 and 1, or in terms of its equivalent percentage.

The choice of 0 for the probability of occurance of an infinitely improbable state or event is
necessary it the laws of probability are to hold. The choice of 1, for the probability of a state
or event that happens with certainty, is arbitrary, but it is a convenient and established choice.

Probability models enable the estimation of the likely values of a process from noisy
or incomplete observations. As illustrated in Figure 3.4, probability models can describe
random processes that are discrete-valued, continuous- valued or finite-state continuous-
valued. Figure 3.4 lists the most commonly used probability models. Probability models
are often functions of the statistical parameters of the random process, such as exponential
functions of the mean value and covariance of the process.

At this point it is useful to define the difference between a random variable and a random
process. A random variable is a variable that assumes random values such as the outcomes
of a chance game or the values of a speech sample or an image pixel or the outcome of
a sport match. A random process, such as a Markov process, generates random variables,
usually as functions of time and space. Also a time or space series, such as a sequence of
speech or an image, is often called a random process.

Consider a random process that generates a time-sequence of numbers, x(m). Let {x(m, s)}
denote a collection of different sequences generated by the same process, where m denotes

Probability models
. . Discrete-continuous
Discrete models Continuous models
models
Befnoulh, b1n0m1?1 Gaussua}n, gamma, Hidden Markov models
Poisson, geometric Laplacian, Rician

Figure 3.4 A categorisation of different classes and forms of probability models.
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time and s is the sequence index. For a given time instant, m, the sample realisations of a
random process {x(m, s)} is a random variable that takes on various values across the space,
s, of the process. The main difference between a random variable and a random process is
that the latter generates random time/space series. Therefore the probability models used for
random variables are also applied to random processes. We continue this section with the
definitions of the probability functions for a random variable.

3.3.1 PROBABILITY AND RANDOM VARIABLES

Classical examples of random variables are the random outcomes in a chance process, or
gambling game, such as the outcomes of throwing a coin or a pair of dice, or dealing cards
in a game.

The space of a random variable is the collection of all the values, or outcomes, that the
variable can assume. The space of a random variable can be partitioned, according to some
criteria, into a number of subspaces. A subspace is a collection of signal values with a
common attribute, such as a cluster of closely spaced samples, or the collection of samples
with their values within a given band of values, for example the percentage of students
attaining a certain grade in examinations.

NA

i
All events i

Each subspace is called an event, and the probability of an event A, P(A), is the ratio of
the number of observed outcomes from the space of A, N,, divided by the total number of
observations:

From Equation (3.5), it is evident that the sum of the probabilities of all likely events in an
experiment is 1:

Y PA) =1 (3.6)

All events A

Example 3.3

The space of two discrete numbers obtained as outcomes of throwing a pair of dice is shown
in Figure 3.5. This space can be partitioned in different ways; for example, the two subspaces
A and B shown in Figure 3.5 are associated with the pair of numbers that in the case of
subspace A add up to a value of greater than 8, and in the case of subspace B add up to
value of less than or equal to 8. In this example, assuming that the dice are not loaded,
all numbers are equally likely and the probability of each event is proportional to the total
number of outcomes in the space of the event, as shown in the figure.

3.3.2 PROBABILITY MASS FUNCTION

For a discrete random variable X that can assume values from a finite set of N numbers
or symbols {x,, x,, ..., xy}, each outcome, x;, may be considered an event and assigned a
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@ Outcome from event A: die 1 + die 2>8

@ Outcome from event B: die 1 + die 2<8

Die 2

10 26
PA)=—  P(B)=—
(4) %6 (B) i

Figure 3.5 A two-dimensional representation of the outcomes of two dice, and the subspaces
associated with the events corresponding to the sum of the dice being greater than 8, or less than or
equal to 8. P(A)+ P(B) = 1.

probability of occurrence. For example, if the variable is the outcome of tossing a coin, then
the outcomes are heads (H) and tails (7), hence X = {H, T} and P(X = H)=P(X=T) =0.5.

The probability that a discrete-valued random variable X takes on a value of x;, P(X = x;),
is called the probability mass function (pmf). For two such random variables X and Y, the
probability of an outcome in which X takes on a value of x; and Y takes on a value of
y;» P(X =x;, Y =y,), is called the joint probability mass function.

The joint pmf can be described in terms of the conditional and the marginal probability
mass functions as

PX,Y(xi’ )’j) = PY|X(yj|xi)PX(xi)

3.7
= X|Y(xi|yj)PY(yj) G7)

where Py x(y;]x;) is the conditional probability of the random variable Y taking on a value
of y; conditioned on the variable X having taken a value of x;, and the so-called marginal
pmf of X is obtained as

Py(x;) = ZPX,Y(xi’ y]')
o (3.8)

=Y Py x|y Py (v))

j=1

where M is the number of values, or outcomes, in the space of the discrete random variable Y.

3.3.2.1 Bayes’s Rule

Assume we wish to find the probability that a random variable, X, takes a value of x; given
that a related variable, Y, has taken a value of y;. From Equations (3.7) and (3.8), we have
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Bayes’s rule, for the conditional probability mass function, given by

1
PX|Y(xi|yj) = WPY|X(yj|xi)PX(xi)
PY\X(yjlxi)PX(xi) (3.9)

é PY\X()’j|xi)Px(xi)

Bayes’s rule forms the foundation of probabilistic estimation and classification theory,
introduced in Chapter 4.

Example 3.4: Probability of the Sum of Two Random Variables

Figure 3.6(a) shows the pmf of a die. Now, let the variables (x, y) represent the outcomes
of throwing a pair of dice. The probability that the sum of the outcomes of throwing two
dice is equal to A, is given by

6
P(x+y=A)=) P(x=i)P(y=A—)i) (3.10)

i=1

The pmf of the sum of two dice is plotted in Figure 3.6(b). Note from Equation (3.10) that
the probability of the sum of two random variables is the convolution sum of the probability
functions of the individual variables.

3.3.3 PROBABILITY DENSITY FUNCTION

A continuous-valued random variable can assume an infinite number of values, in even a
very small range of values, and hence the probability that it takes on any given value is
infinitely small and vanishes to zero.

P(x) P(x+y)

il

R 10 11 12
X xX+y

(@ (b)

=

A=

}
N —_——
W ¢
Ar— 9
[
oNfp———@
w—=e

Figure 3.6 The probability mass function (pmf) of (a) a die, and (b) the sum of a pair of dice.
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For a continuous-valued random variable X the cumulative distribution function (cdf) is
defined as the probability that the outcome is less than x:

Fy(x) =Prob (X < x) (3.11)

where Prob(-) denotes probability. The probability that a random variable X takes on a value
within a range of values A centred on x can be expressed as

%Prob(x— A2<X<x+A/2)= %[Prob(X <x+A/2)—Prob(X <x—A/2)]
= %[Fx(x—i—A/Z)—FX(x—A/Z)] (3.12)

Note that both sides of Equation (3.12) are divided by A. As the interval A tends to zero,
we obtain the probability density function (pdf) as

IFy(x)

1
fX(x)=lig})K[FX(x—i—A/Z)—FX(x—A/%]= ax

(3.13)

Since Fy(x) increases with x, the pdf of x is a non- negative-valued function, i.e. fy(x) > 0.
The integral of the pdf of a random variable X in the range oo is unity:

/ fe(x)dx=1 (3.14)

The conditional and marginal probability functions and the Bayes’ rule of Equations (3.7)—
(3.9) also apply to pdfs of continuous-valued variables.

3.3.4 PROBABILITY DENSITY FUNCTIONS OF RANDOM
PROCESSES

The probability models obtained for random variables can be applied to random processes
such as time series, speech and images. For a continuous-valued random process, X(m),
the simplest probabilistic model is the univariate pdf f,,(x), which is the pdf of a sample
from the random process X(m) taking on a value of x. A bi-variate pdf, fy(u)x(nsn) (¥15X2)s
describes the pdf of two samples of the process X at time instants m and m + n taking on
the values x, and x,, respectively.

In general, an M-variate pdf, fy(u)x(m,)-x(my)(X1> X25 - -+ » Xy), describes the pdf of a
vector of M samples of a random process taking on specific values at specific time instants.
For an M-variate pdf, we can write

/ fX(ml)-»-X(mM)('xh s Xy dxy = fX(ml)wX(mM,l)('xl’ Cees Xyy) (3.15)
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and the sum of the pdfs of all realisations of a random process is unity, i.e.

/.../fX(ml)mX(mM)(xl,...,xM)dxl...dxMz1 (3.16)

The probability of the value of a random process at a specified time instant may be
conditioned on the value of the process at some other time instant, and expressed as a
conditional probability density function as

fX(n)\X(m) (xn |xm ) fX(m) (xm)
fx(n) (x,)

Equation (3.17) is the Bayes’ rule. If the outcome of a random process at any time is
independent of its outcomes at other time instants, then the random process is uncorrelated.
For an uncorrelated process a multivariate pdf can be written in terms of the products of
univariate pdfs as

fX(m)|X(n) (X, 1x,) = (3.17)

M
iy ixon )y 1 s+« s Xy X5 %0, ) = T Fxny () (3.18)
i=1

Discrete-valued random processes can only assume values from a finite set of allowable
numbers, [x;,x,,...,x,]. An example is the output of a binary digital communication
system that generates a sequence of 1s and 0s. Discrete-time, discrete-valued, stochastic
processes are characterised by multivariate probability mass functions (pmf) denoted

P[x(n1|)~~~x(mM)] [x(m;) = x;, . x(my) = x;] (3.19)

The probability that a discrete random process X(m) takes on a value of x,, at a time instant
m can be conditioned on the process taking on a value x, at some other time instant n, and
expressed in the form of a conditional pmf as

PX(n)\X(m) (‘xn |xm ) PX(m) (xm)

PX m)|X(n (‘xm |'xn) = (320)
(m)|X(n) PX(n)('xn)
and for a statistically independent process we have
M
Pt X Xy e-XCny)] (B = s Xy [ X5+« o3 Xy ) = [T Py [X(mp) = 5, ] (3:21)

i=1

3.3.4.1 Histogram

A histogram is a graph that shows the number of times the value of a random variable
occurs in each uniform interval in a given set of observations of the variables. Given a set of
observations of a random variable, the range of values of the variable is divided into N equal
width bins and the number of times that the variable falls within each bin is calculated. A
histogram shows the form of the probability distribution of a variable as indicated by a set of
observations. Figure 3.7 shows the histogram and the probability model of Gaussian signal.
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Figure 3.7 Histogram (dashed line) and probability model of a Gaussian signal.

Figure 3.8 The scatter plot of a two-dimensional Gaussian distribution.

Figure 3.8 shows the scatter plot of a two-dimensional Gaussian process superimposed on
an ellipse which represents the standard deviation contour.

3.4 INFORMATION MODELS

Information is knowledge regarding the states of a random variable. Information is discrete
in nature and can be represented in a binary format in terms M of states of a variable.
The states of an information-bearing variable may be arranged in a binary tree structure, as
shown later in Example 3.10.
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We shall show in this section that information is measured in terms of units of bits. One
bit of information is equivalent to two equal-probability states. Note that the observation
from which information is obtained may be continuous-valued or discrete-valued.

The information conveyed by a random process is associated with its state sequence.
Examples are the states of weather, health, emotion, market share price indices,
communication symbols and DNA or protein sequences.

The concepts of information, randomness and probability models are closely related. For
a signal to have information it must satisfy two conditions:

(1) it must posses two or more states or values;
(2) it must move between the states in a random manner.

For example, the outcome of tossing a coin is an unpredictable binary state (heads/tails)
event, a digital communications system with N-bit codewords has 2" states and the outcome
of a weather forecast can be one or more of the following states: {sun, cloud, cold, warm,
hot, rain, snow, storm, etc.}.

Random processes are modelled with probability functions. It is therefore natural that
information is modelled as a function of probability. The expected (average) information
content of a state x; of a random variable is quantified as

I(x;) = —Py(x;) log Py (x;) bits (3.22)

where the base of logarithm is 2. For a binary source the information conveyed by the two
states [x;, x,] can be described as

H(X) = I(x,) +1(x,)

(3.23)
= —P(x;) log P(x;) — P(x,) log P(x,)
Alternatively H(X) in Equation (3.23) can be written as
H(X) = —P(x;)log P(x;) — [1 — P(x;)]log[1 — P(x;)] i=1lor2 (3.24)

Note from Figure 3.9 that the information content of a variable has a value of O for an event
whose probability is O, i.e. an impossible event, and its value is also O for an event that
happens with probability of 1.

3.4.1 ENTROPY

Entropy gives a measure of the quantity of the information content of a random variable in
terms of the minimum number of bits per symbol required to encode the variable. Entropy can
be used to calculate the theoretical minimum capacity or bandwidth required for the storage
or transmission of an information source such as text, image, music, etc. In his pioneering
work: ‘A mathematical theory of communication’ (Bell Syst. Tech. J., 27: 379423, 623-656),
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Figure 3.9 Tllustration of I(x;) vs P(x;); for a binary source the maximum information content is one
bit, when the two states have equal probability of 0.5. Note: P(x,) = P, and P(x,) = P,.

C.E. Shannon derived the entropy measure, H, as a function that satisfies the following
conditions:

(1) entropy H should be a continuous function of P;;

(2) for P, =1/M, H should be a monotonically increasing function of M;

(3) if the communication symbols are broken into two (or more) sets the entropy of the
original set should be equal to the probability-weighted sum of the entropy of the subsets.

H(X)=— % P(x;)log P(x;) bits (3.25)

i=1

Consider a random variable X with M states [x;,X,,...,x,] and state probabilities
[p1> Pas - -+ » Pyl Where Py(x;) = p;; the entropy of X is defined as where the base of the
logarithm is 2. The log function has several useful properties. Log 1 is 0, which is a useful
mapping, as an event with probability of 1 has O information. Furthermore, with the use
of logarithm, the addition of a binary state to M existing binary states doubles the number
of choices from 2™ to 2M*! but increases the logarithm of the number of states by one.
Hence 1 bit of information corresponds to two equal probability states, 2 bits correspond to
four states, and so on. The base 2 of the logarithm reflects the binary nature of information.
Information is discrete and can be represented as a set of binary symbols.
Entropy is measured in units of bits. It is bounded as

0<H(X) <log, M (3.26)

where H(X) = 0 if one symbol, x;, has a probability of 1 and all other symbols have
probabilities of 0, and M denotes the number of symbols in the set X. The entropy of a set
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attains a maximum value of log,M bits for a uniformly distributed M-valued variable with
each outcome having a probability of 1/M.

Entropy gives the minimum number of bits per symbol required for binary coding of
different values of a random variable X. This theoretical minimum is usually approached
by encoding N samples of the process simultaneously with K bits where the number of bits
per sample K/N > H(X). As N becomes large, for an efficient coder the number of bits per
sample K/N approaches the entropy H(X) of X (see Huffman code in Section 3.4.3).

3.4.1.1 Shannon’s Source Coding Theorem

N independent identically distributed (IID) random variables each with entropy H can be
compressed into more than NH bits with negligible loss of quality as N — oo.

Example 3.5: Entropy of the English Alphabet

Calculate the entropy of the set of the English alphabet [A, B, C, D, ..., Z], assuming
that all letters are equally likely. Hence, calculate the theoretical minimum number of bits
required to code a text file of 2000 words with an average of five letters per word.

For the English alphabet the number of symbols N = 26, and, assuming that all symbols
are equally likely, the probability of each symbol becomes p; = 1/26. Using Equation (3.25)
we have

26

1 1
H(X)=—Y" — log, — = 4.7bits (3.27)
~26 226

The total number of bits for encoding 2000 words = 4.7 x 2000 x 5 = 47 kbits. Note that
different letter type cases (upper case, lower case, etc.) and symbols (!, ?, etc) are not taken
into account and also note that the actual distribution of the letters is non-uniform, resulting
in an entropy of less than 4.7 bits/symbol.

Example 3.6: Entropy of the English Alphabet Using Estimates of
Probabilities of Letters of the Alpahabet

Use the set of probabilities of alphabet shown in Figure 3.10: P(A) = 0.0856, P(B) = 0.0139,
P(C) = 0.0279, P(D) = 0.0378, P(E) = 0.1304, P(F) = 0.0289, P(G) = 0.0199, P(H) =
0.0528, P(I) = 0.0627, P(J) = 0.0013, P(K) = 0.0042, P(L) = 0.0339, P(M) = 0.0249,
P(N) = 0.0707, P(0) = 0.0797, P(P) = 0.0199, P(Q) = 0.0012, P(R) = 0.0677, P(S) =
0.0607, P(T) = 0.1045, P(U) = 0.0249, P(V) = 0.0092, P(W) = 0.0149, P(X) = 0.0017,
P(Y) =0.0199, P(Z) = 0.0008.

The entropy of this set is given by

2
H(X)=—)_ P;log, P, = 4.13bits/symbol (3.28)

i=1
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Figure 3.10 The probability of the English alphabet, A—Z.

Example 3.7: Entropy of the English Phonemes

Spoken English is constructed from about 40 basic acoustic symbols, known as phonemes
(or phonetic units), and these are used to construct words, sentences, etc. For example the
word ‘signal’ is transcribed in phonemic form as ‘s iy g n aa I’. Assuming that all phonemes
are equiprobable, the average speaking rate is 120 words per minute and the average word
has four phonemes, calculate the minimum number of bits per second required to encode
speech at the average speaking rate.

For speech, N =40, assume P, = 1/40. The entropy of phonemes is given by

1 1
H(X)=— ; 0 log, 0" 5.3 bits/symbol (3.29)
Number of bits/s = (120/60 words per second) x (4 phonemes per word)
x (5.3bits per phoneme) = 43.4 bps
Note that the actual distribution of phonemes is non-uniform, resulting in an entropy of
less than 5.3 bits. Furthermore, the above calculation ignores the information (and the hence

entropy) in speech, due to contextual variations of phonemes, speaker identity, accent, pitch
intonation and emotion signals.

3.4.2 MUTUAL INFORMATION

Consider two correlated random variables X and Y; the conditional entropy of X given Y is
defined as

M, M,

H(X|Y) = =3_3 P(x;, y;) log P(x;y)) (3.30)

i=1 j=1
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H(X|Y) is equal to H(X) if Y is uncorrelated with X and is equal to O if ¥ has the same
information as X. The information that the variable Y contains about the variable X is
given by

1(X; Y) = H(X) — H(X|Y) (3.31)

Substituting Equation (3.30) in Equation (3.31) and also using the relation

MM

H(X) = — 3" P(x) log P(x) = — 33 P(x;, y;) log P(x,) (3.32)

i=1 i=1 j=1

yields

I(X: Y) = ZZP(xl,y]) 0g FLY)) (3.33)

i=1 j=1 P( )P(yj)

Note from Equation (3.33) that I(X; Y) = I(Y; X), that is the information that ¥ has about X is
the same as that X has about Y, hence I(X; Y) is mutual information. As shown next, mutual
information has a minimum of 0, I(X; Y) = 0, for independent variables and a maximum of
I(X;Y) = H(X) = H(Y) when X and Y have identical information.

Example 3.8: Upper and Lower Bounds on Mutual Information

Obtain the bounds on mutual information of two random variables X and Y. The upper bound
is given when X and Y contain identical information; in this case, substituting P(x;, y;) =
P(x;) and P(y;) = P(x;) in Equation (3.33) and assuming that each x; has a mutual relation
with only one y;, we have

P(x;)

I(X;Y) = ZP(x)logP( PG

= H(X) (3.34)

The lower bound is given by the case when X and Y are independent:

u & P(x)P(y;))
1(X;Y) = ;]ZIP(X)P()’])I WZO (3.35)

Example 3.9

Show that the mutual entropy of two independent variables X and Y is additive. Assume
X and Y are M-valued and N-valued variables, respectively. The entropy of two random
variables is given by

H(X,Y) = ZZPX(XH y)log m———

(3.36)
i=1 j=1 Pyy(x ny])
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Substituting P(x;, y;) = P(y;)P(y;) in Equation (3.34) yields

M N
1

H(X,Y)= Py(x;, y;) log 0——

gg * ! PXY(xi’yj)

= =22 Px(x)Py(y;)log Py(x;) = 33 Px(x;)Py(y;) log Py (y;)

i=1 j=1 i=1 j=1

= _ZPX(xi) log Py (x;) _ZPY(Y_;')lOgPY(yj)

i=1 j=1

= H(X) + H(Y) (3.37)

where we have used the following relations

ZPY(yj)PX(xi)log Py (x;) = Py(x;) log Py(x;) ZPY()’_/) = Py(x;)log Px(x;) (3.38)

j=1 j=1

and for two independent variables

log[1/Pyy (x;, )’j)] = —log Py (x;) —log PY(yj) (3.39)

3.4.3 ENTROPY CODING

Entropy gives the minimum number of bits required to encode an information source. This
theoretical minimum may be approached by encoding N samples of a signal simultaneously
with K bits where K/N > H(X). As N becomes large, for an efficient coder K/N approaches
the entropy H(X) of X. The efficiency of a coding scheme in terms of its entropy is defined
as H(X)/N. When N = H(X) then the entropy coding efficiency of the code is H(X)/N =1
or 100%.

The average number of bits per symbol, also known as the ‘average code length’, CL, can
be expressed as

CL= f: P(x;)L(x;) (3.40)

i=1

where L(x;) is the length of the binary codeword used to encode symbol x; and P(x;) is the
probability of x;. A comparison of Equation (3.40) with the entropy Equation (3.25) shows
that, for an optimal code, L(x;) is —log,(x;). The aim of the design of minimum length code
is that the average code length should approach the entropy.

The simplest method to encode an M-valued variable is to use a fixed-length code that
assigns N binary digits to each of the M values with N = Nint(log, M), where Nint denotes
the nearest integer round-up function. When the source symbols are not equally probable, a
more efficient method is entropy encoding.

Entropy coding is a variable-length coding method which assigns codewords of variable
lengths to communication alphabet symbols [x, ] such that the more probable symbols, which
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occur more frequently, are assigned shorter codewords and the less probable symbols, which
happen less frequently, are assigned longer code words. An example of such a code is Morse
Code, which dates back to the nineteenth century. Entropy coding can be applied to the
coding of music, speech, image, text and other forms of communication symbols. If the
entropy coding is ideal, the bit rate at the output of a uniform M-level quantiser can be
reduced by an amount of log, M — H(X) compared with fixed-length coding.

3.4.3.1 Huffman Code

A simple and efficient form of entropy coding is the Huffiman code, which creates a set of
prefix codes (no code is part of the beginning of another code) for a given text. Huffman
devised his code while he was a student at Massachusetts Institute of Technology. The ease
with which Huffman codes can be created and used makes this code a popular tool for data
compression. In one form of Huffman tree code, illustrated in Figure 3.11, the symbols are
arranged in decreasing order of probabilities in a column. The two symbols with the lowest
probabilities are combined by drawing a straight line to connect them. This combination is
combined with the next symbol and the procedure is repeated to cover all symbols. Binary
codewords are assigned by moving from the root of the tree at the right-hand side to the left
in the tree and assigning a 1 to the lower branch and a O to the upper branch where all pairs
of symbols have been combined.

Symbol, Probability Code tree Symbol, Code
X, 04 0 X, 0
0 |10 10
x5, 02 06 Xy,
(a) X3, 0.2 0 . X3, 110
E 0 04 1 1110
x4 0.1 0.2 X4
1
Xs, 0.1 1 x5, 1111
1

[x]~/X25-x3’x4ax5]

(b)

1111

Figure 3.11 (a) Ilustration of Huffman coding tree; the source entropy is 2.1219 bits/sample and
Huffman code gives 2.2 bits/sample. (b) Alternative illustration of the Huffman tree.
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Example 3.10

Given five symbols, x,, x,, . .., x5, with probabilities of P(x,) = 0.4, P(x,) = P(x;) =0.2
and P(x,) = P(x5) = 0.1, design a binary variable length code for this source.

The entropy of X is H(X) = 2.122bits/symbol. Figure 3.11 illustrates the design of a
Huffman code for this source. For this tree we have:

The average codeword length=1x0.4+42x0.2+4x0.1+4x0.14+3x0.2
= 2.2 bits/symbol

The average codeword length of 2.2 bits/symbol is close to the entropy of 2.1219 bits/symbol.
We can get closer to the minimum average codeword length by encoding pairs of symbols
or blocks of more than two symbols at a time (with added complexity). The Huffman code
has a useful prefix condition property whereby no codeword is a prefix or an initial part of
another codeword. Thus codewords can be readily concatenated (in a comma-free fashion)
and be uniquely (unambiguously) decoded.

Figure 3.12 illustrates an alternative Huffman code tree created by a series of successive
binary division of the symbols into two sets with as near set probabilities as possible. At
each node the set splitting process is repeated until the leaf node containing a single symbol
is reached. Binary bits of O and 1 are assigned to tree branches as shown. Each end-node
with a single symbol represents a leaf node and is assigned a binary code which is read from
the top (root) node to the leaf node.

Example 3.11

Given four symbols, x,, x,, x; and x,, with probabilities of P(x,) = 0.4, P(x,) = 0.3,
P(x;) =0.2 and P(x,) = 0.1, design a variable length coder to encode two symbols at a
time.

[Xl »X9,X3 ,x4aX5]

Symbol,
Probability ] 0 L [xgg,xs]
x;, 04

Xy, 0.2
Xy 02 9 ! 0 1 -
X4 0.1 @ Tt
x5, 0.1

00 o 1o 0 1

110 111

Figure 3.12 A binary Huffman coding tree. From the top node at each stage the set of symbols is
divided into two sets with as near set probability (maximum entropy) as possible. Each end-node with
a single symbol represents a leaf and is assigned a binary code which is read from the top node to the
leaf node.
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The entropy of the four symbols is obtained from Equation (3.25) as 1.8464 bits/symbol.
Assuming the symbols are independent, the probability of 16 pairs of symbols can be written
as in the following matrix:

P(x,, x;) =0.16, P(x,, x,) = 0.12, P(x,, x;) = 0.08, P(x,, x,) = 0.04

P(x,, x;) =0.12, P(x,, x,) = 0.09, PP(x,, x;) = 0.06, P(x,, x,) = 0.03
P(x;, x;) =0.08, P(x;, x,) = 0.06, PP(x5, x;) = 0.04, P(x;, x,) =0.02
P(x,, x;) =0.04, P(x4, x,) = 0.03, PP(x,, x;) = 0.02, P(x,, x,) = 0.01

The 16 pairs of symbols and their probabilities can be used in a Huffman tree code similar
to those illustrated in Figures 3.11 and 3.12.

3.5 STATIONARY AND NONSTATIONARY RANDOM
PROCESSES

Although the amplitude of a signal fluctuates with time m, the parameters of the process
that generates the signal may be time-invariant (stationary) or time-varying (nonstationary).
Examples of nonstationary processes are speech and music, whose loudness and spectral
composition change continuously as the speaker and/or instrument generate various
sounds.

A process is stationary if the parameters of the probability model of the process are time-
invariant; otherwise it is nonstationary (Figure 3.13). The stationary property implies that all
the statistical parameters, such as the mean, the variance, the power spectral composition and
the higher-order moments of the process, are constant. In practice, there are various degrees
of stationarity: it may be that one set of the statistics of a process is stationary whereas
another set is time-varying. For example, a random process may have a time-invariant mean,

but a time-varying power.

Figure 3.13 Examples of a quasistationary voiced speech (above) and a nonstationary speech
composed of unvoiced and voiced segments.
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Example 3.12

In this example we consider the time-averaged values of the mean and the power of:
(a) a stationary signal, A sin wt, and (b) a transient exponential signal, Ae~*'. The mean and
power of the sinusoid, integrated over one period, are

1
Mean (A sin wt) = T / Asinwrdr =0, constant (3.41)
T

. 1 2 .2 A?
Power (A sin wt) = T / A“sin” wtdt = - constant (3.42)
T

where T is the period of the sine wave. The mean and the power of the transient signal are
given by:

+T
1 A
Mean(Ae ™) = T / Ae™*dT = —T(l —e “M)e ™,  time-varying (3.43)
a
t

t+T

1 2
Power (Ae™"") = 7 / Al dr =
t

2aT

(1—e?T)e™, time-varying (3.44)

In Equations (3.43) and (3.44), the signal mean and power are exponentially decaying
functions of the time variable ¢.

Example 3.13: A Binary State Nonstationary Random Process

Consider a nonstationary signal, y(m), generated by a binary-state random process described
by the following equation:

y(m) =5(m)xo(m) + s(m)x, (m) (3.45)

where s(m) is a binary-valued state-indicator variable and 5(m) is the binary complement of
s(m). From Equation (3.45), we have

y(m) = ixo(m) ifs(m) =0

x,(m) ifs(m) =1 (3.46)

Let u, and P, denote the mean and the power of the signal xy(m), and u, and P, the
mean and the power of x,(m) respectively. The expectation of y(m), given the state s(m),

is obtained as
E[y(m)|s(m) ] = 5(m)E[xo(m)]+ s(m)E[x, (m)]
_ (3.47)
= S, +s(m)p,,

In Equation (3.47), the mean of y(m) is expressed as a function of the state of the process
at time m. The power of y(m) is given by

[y (m)|s(m) | = 5(m)E[x5(m)] + s(m) E[ 6 (m) ]

_ (3.48)
=5(m)P,, +s(m)P,,
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Although most signals are nonstationary, the concept of a stationary process plays an
important role in the development of signal processing methods. Furthermore, most
nonstationary signals such as speech can be considered as approximately stationary for a
short period of time. In signal processing theory, two classes of stationary processes are
defined: (a) strict-sense stationary processes; and (b) wide-sense stationary processes, which
is a less strict form of stationarity, in that it only requires that the first-order and second-order
statistics of the process should be time-invariant.

3.5.1 STRICT-SENSE STATIONARY PROCESSES

A random process X(m) is said to be strict-sense stationary if all its distributions and
statistics are time-invariant. Strict-sense stationarity implies that the nth order distribution is
translation-invariant for all n =1,2,3,...:

Prob[x(m,) < x, x(m,) < x,,...,x(m,) <x,] (3.49)
=Prob[x(m, +7) <x;, x(my+7) <x,,...,x(m,+7) <x,] .

where 7 is any arbitrary shift along the time axis. From Equation (3.49) the statistics of a
strict-sense stationary process are time-invariant. In general we have

f[xk] (my), xkz(ml +7)s s X (m;+7)]= f[xk' (m,), xkz(mz +7) e XZLHL (my+ ;)]
(3.50)
where k, . . ., k, are arbitrary powers. For a strict- sense stationary process, all the moments

of a signal are time-invariant. The first-order moment, i.e. the mean, and the second order
moments, i.e. the correlation and power spectrum, of a stationary process are given by

E[x(m)] =, (3.51)
E[x(m)x(m+k)] =r, (k) (3.52)

and
Z[|X(f, m)IP] = E[IX(f)P"] = Pyx(f) (3.53)

where w,, r,,. (k) and Py, (f) are the mean value, the autocorrelation and the power spectrum
of the signal x(m), respectively, and X(f, m) denotes the frequency-time spectrum of x(m).

3.5.2 WIDE-SENSE STATIONARY PROCESSES

The strict-sense stationarity condition requires that all statistics of the process should be time-
invariant. A less restrictive form of a stationary process is called ‘wide-sense stationarity’.
A process is said to be wide-sense stationary if the mean and the autocorrelation functions
(first- and second-order statistics) of the process are time-invariant:

E[x(m)] =, (3.54)
E[x(m)x(m+k)] = r (k) (3.55)



62 PROBABILITY AND INFORMATION MODELS
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Figure 3.14 Two models for non-stationary processes: (a) a stationary process drives the parameters
of a continuously time-varying model; (b) a finite-state model with each state having a different set of
statistics.

From the definitions of strict-sense and wide-sense stationary processes, it is clear that
a strict-sense stationary process is also wide-sense stationary, whereas the reverse is not
necessarily true.

3.5.3 NONSTATIONARY PROCESSES

A random process is said to be a nonstationary process if its statistics vary with time.
Most stochastic processes such as video and audio signals, financial data, meteorological
data and biomedical signals are nonstationary, as they are generated by systems whose
contents, environments and parameters vary or evolve over time. For example, speech is a
nonstationary process generated by a time-varying articulatory system. The loudness and the
frequency composition of speech change over time.

Time-varying processes may be modelled by some combination of stationary random
models as illustrated in Figure 3.14. In Figure 3.14(a) a nonstationary process is modelled as
the output of a time-varying system whose parameters are controlled by a stationary process.
In Figure 3.14(b) a time-varying process is modelled by a Markov chain of time-invariant
states, with each state having a different set of statistics or probability distributions. Finite-
state statistical models for time-varying processes are discussed in detail in Chapter 5.

3.6 STATISTICS (EXPECTED VALUES) OF A RANDOM
PROCESS

The expected values of a random process, also known as its statistics, are the mean, variance,
correlation, power spectrum and the higher-order statistics of the process. Expected values
play an indispensable role in signal processing. Furthermore, the probability models of a
random process are usually expressed as functions of the expected values. For example, a
Gaussian pdf is defined as an exponential function centred about the mean and with width
and orientation determined by the covariance of the process, and a Poisson pdf is defined in
terms of the mean of the process.

In signal processing applications, we often have a suitable statistical model of the process,
e.g. a Gaussian pdf, and to complete the model we need the values of the expected parameters.
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Furthermore, for many algorithms, such as noise reduction filters or linear prediction, what
we essentially need is an estimate of the mean or the correlation function of the process.

The expected value of a function i(X) of random process X, h[X(m,), X(m,),
..., X(m,,)], is defined as

Z{h[X(ml),...,X(mM)]}zf / (X1 - - %) Pty (15 - - X)X, s doxyg

(3.56)
The most important, and widely used, expected values are the first-order moment, namely
the mean value, and the second-order moments, namely the correlation, the covariance and
the power spectrum.

3.6.1 THE MEAN VALUE

The mean value of a process plays an important part in signal processing and parameter
estimation from noisy observations. For example, the optimal linear estimate of a signal from
a noisy observation is a weighted interpolation between the mean value and the observed
value of the noisy signal. The mean value of a vector process [X(m,), ..., X(m,,)] is its
average value across the space of the process, defined as

E[X(my), . . ., X(m,)] = / . / (e ) Frmny ooy (1o« - > Xy )y, dy
- (3.57)
For a segment of N samples of a signal x(m), an estimate of the mean value is obtained as
1 N—-1
o= X x(m) (3.58)
m=0

Note that the estimate of the mean £, in Equation (3.58), from a finite number of N samples,
is itself a random variable with its own mean value, variance and probability distribution.

3.6.2 AUTOCORRELATION

The correlation function and its Fourier transform, the power spectral density, are extensively
used in modelling and identification of patterns and structures in a signal process. Correlators
play a central role in signal processing and telecommunication systems, including digital
decoders, predictive coders, digital equalisers, delay estimators, classifiers and signal
restoration systems.

The autocorrelation function of a random process X(m), denoted by r . (m,, m,), is
defined as

o (my, my) = E[x(m,)x(m,)]

= [ [ 20m)x0m2) Fr xmy Ly, x(my) ] dx(om () (3.59)

—00 —00
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The autocorrelation function r , (m,, m,) is a measure of the similarity, or the mutual relation,
of the outcomes of the process X at time instants m, and m,. If the outcome of a random
process at time m, bears no relation to that at time m,, then X(m,) and X(m,) are said to
be independent or uncorrelated and r, (m,, m,) = 0.

For a wide-sense stationary process, the autocorrelation function is time-invariant and
depends on the time difference m = m, —m,:

rxx(ml +7, m, + T) = rxx(ml’ mZ) = rxx(ml - m2) = rxx(m) (360)

The autocorrelation function of a real-valued wide-sense stationary process is a symmetric
function with the following properties:

rxx(_m) = rxx(m) (361)
r(m) <1 (0) (3.62)

For a segment of N samples of signal x(m), the autocorrelation function is obtained as

N—1-m

r..(m) = % > x(k)x(k+m) (3.63)

k=0

Note that for a zero-mean signal, r,,(0) is the signal power. Autocorrelation of a signal can
be obtained as the inverse Fourier transform of the magnitude spectrum as

N—-1

1 ,
ra(m) = = 3 [X(H e (3.64)
k=0

Example 3.14: Autocorrelation of a Periodic Signal — Estimation of Period

Autocorrelation can be used to calculate the repetition period T of a periodic signal such
as the heart beat pulses shown in Figure 3.15(a). Figure 3.15(b) and (c) shows the estimate
of the periods and the autocorrelation function, respectively, of the signal in Figure 3.15(a).
Note that largest peak of the autocorrelation function occurs at a lag of zero at r,,(0) and the
second largest peak ocurrs at a lag of T at r, (7). Hence the difference of the time indices of
the first and second peaks of the autocorrelation function provides an estimate of the period
of a signal.

Example 3.15

Autocorrelation of the output of a linear time-invariant (LTI) system. Let x(m), y(m) and
h(m) denote the input, the output and the impulse response of an LTI system, respectively.
The input—output relation is given by

y(m) = Z h(i)x(m —i) (3.65)
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Figure 3.15 (a) Heart beat signal, electrocardiograph (ECG); (b) variation of period with time; (c)
autocorrelation function of ECG.

The autocorrelation function of the output signal y(m) can be related to the autocorrelation
of the input signal, x(m), by

1y (k) =E[y(m)y(m + k)]

=Zi:%:h(i)h(j)$[X(m—i)X(m+k—j)] (3.66)

=Y > h@h()ro(k+i—j)
i
When the input x(m) is an uncorrelated zero-mean random signal with a unit variance, its

autocorrelation is given by

1 I=0
=1, 20 (3.67)

then r, (k+i—j) =1 when j = k+i and Equation (3.66) becomes
ry (k) =" h(i)h(k+1i) (3.68)
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3.6.3 AUTOCOVARIANCE

The autocovariance function c,, (m,, m,) of a random process X(m) is measure of the scatter,
or the dispersion, of the process about the mean value, and is defined as

Co(my, my) = E{[x(m)) — . (m))][x(m) = p (m5)]}

(3.69)
= rxx(ml ’ m2) - /‘Lx(ml)l"(‘x(m2)
where w (m) is the mean of X(m). Note that for a zero- mean process, the autocorrelation
and the autocovariance functions are identical. Note also that ¢ (m,, m,) is the variance
of the process. For a stationary process the autocovariance function of Equation (3.69)
becomes

Cxx(ml > m2) = Cxx(ml - mZ) = rxx(ml - m2) - :U*i (370)

3.6.4 POWER SPECTRAL DENSITY

The power spectral density (PSD) function, also called the power spectrum, of a process
gives the spectrum of the distribution of power at different frequencies of vibrations along
the frequency axis. It can be shown that the power spectrum of a wide-sense stationary
process, X(m), is the Fourier transform of the autocorrelation function:

Pyx(f) = E[X(NHX"(N]

o ‘ 3.71
= 3 rulpe .

m=—o00o

where r, (m) and Py (f) are the autocorrelation and power spectrum of x(m), respectively,
and f is the frequency variable. For a real-valued stationary process, the autocorrelation is
symmetric, and the power spectrum may be written as

Py (f) = rea(0) + 3 21, (m) cos(2mfim) (3.72)

m=1

The power spectral density is a real-valued non-negative function, expressed in units of watts
per hertz. From Equation (3.71), the autocorrelation sequence of a random process may be
obtained as the inverse Fourier transform of the power spectrum as

172

ro(m)= [ Pu(ne”™df (3.73)

—1/2

Note that the autocorrelation and the power spectrum represent the second-order statistics of
a process in time and frequency domains, respectively.
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Figure 3.16 Autocorrelation and power spectrum of white noise.

Example 3.16

Power spectrum and autocorrelation of white noise (Figure 3.16). A noise process with
uncorrelated independent samples is called a ‘white noise process’. The autocorrelation of a
stationary white noise n(m) is defined as:

Noise power k=0

r.(k) = E[n(m)n(m+k)] = 0 k#0

(3.74)

Equation (3.74) is a mathematical statement of the definition of an uncorrelated white noise
process. The equivalent description in the frequency domain is derived by taking the Fourier
transform of r,, (k):

Pww(H = > rn(k)e ™ =r, (0) = noise power (3.75)

k=—o00

From Equation (3.75), the power spectrum of a stationary white noise process is spread
equally across all time instances and across all frequency bins. White noise is one of the
most difficult types of noise to remove, because it does not have a localised structure in
either the time domain or the frequency domain.

Example 3.17

Power spectrum and autocorrelation of a discrete-time impulse. The autocorrelation of a
discrete-time impulse with amplitude A, A8(m), is defined as:

ros (k) = E[A28(m)S(m + k)] = ?2 i;g (3.76)

The power spectrum of the impulse is the obtained by taking the Fourier transform of

rss(k) as:

Pas(= 3 rys(k)e 2 = A2 (3.77)

k=—o0

Example 3.18

Autocorrelation and power spectrum of impulsive noise. Impulsive noise is a random, binary-
state (‘on/off”) sequence of impulses of random amplitudes and random time of occurrence.
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A random impulsive noise sequence, n;(m), can be modelled as an amplitude-modulated
random binary sequence as

n;(m) = n(m)b(m) (3.78)

where b(m) is a binary-state random sequence that indicates the presence or absence of
an impulse, and n(m) is a random noise process. Assuming that impulsive noise is an
uncorrelated process, the autocorrelation of impulsive noise can be defined as a binary-state
process as

Fon (ky m) = E[m;(m)n; (m + k)] = 078 (k) b(m) (3.79)

where o is the noise variance. Note that, in Equation (3.79), the autocorrelation is expressed
as a binary-state function that depends on the on/off state of impulsive noise at time m. The
power spectrum of an impulsive noise sequence is obtained by taking the Fourier transform
of the autocorrelation function as

Py (f, m) = o7 b(m) (3.80)

3.6.5 JOINT STATISTICAL AVERAGES OF TWO RANDOM
PROCESSES

In many signal processing problems, for example in processing the outputs of an array of
sensors, we have more than one random process. Joint statistics and joint distributions are
used to describe the statistical inter-relationship between two or more random processes. For
two discrete-time random processes, x(m) and y(m), the joint pdf is denoted by

fX(ml)...X(mM),Y(n])...Y(nN)(xl’ cees X Vs e YN) (3.81)

When two random processes, X(m) and Y(m), are uncorrelated, the joint pdf can be expressed
as product of the pdfs of each process as

fX(ml)...X(mM),Y(nl)...Y(nN)('xl’ e Xy Vi e V)

(3.82)
:fX(ml)...X(mM)('xl’ e ’xM)fY(n])...Y(nN)(yl’ ceesIy)

3.6.6 CROSS-CORRELATION AND CROSS-COVARIANCE
The cross-correlation of two random process x(m) and y(m) is defined as

rxy(ml’ m,) = E[x(m,)y(m,)]

=)

= [ [ 20m)50m2) Fy iy [0, ()] dxmy ) dy(my) - (3.83)
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For wide-sense stationary processes, the cross-correlation function r,,(m,, m,) depends only
on the time difference m = m; —m,:

ro(my+7,my+1) =71,(m, my) =r, (m; —my) =r,(m) (3.84)
The cross-covariance function is defined as
Cyy(my, my) =E{[x(m) — . (m))] [y(my) — py ()]} (3.85)
Zer(ml s 1My) — ,va(ml),uvy(mz)

Note that for zero-mean processes, the cross-correlation and the cross-covariance functions
are identical. For a wide-sense stationary process the cross-covariance function of
Equation (3.85) becomes

cxy(ml’ m2) = ny(ml - m2) = rxy(ml - m2) - lu‘x/"(’y (386)

Example 3.19: Time-delay Estimation

Consider two signals, y,(m) and y,(m), each composed of an information bearing signal,
x(m), and an additive noise, given by

yi(m) = x(m) +n,(m) (3.87)
Y2(m) = Ax(m — D) +ny(m) (3.88)

where A is an amplitude factor and D is a time delay variable. The cross-correlation of the
signals, y,(m) and y,(m), yields

Iy, (K) =E[y (m)y,(m+ k)]
= E{[x(m) +n,(m)][Ax(m — D+ k) + n,(m+k)]} (3.89)
= Arxx(k_D) +rxn2(k) +Arxnl (k_D)+rnln2(k)

Assuming that the signal and noise are uncorrelated, we have r, | (k) = Ar, (k — D). As
shown in Figure 3.17, the cross-correlation function has its maximum at the lag D.

o m)

D Correlation lag, m

Figure 3.17 The peak of the cross-correlation of two delayed signals can be used to estimate the
time delay, D.
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3.6.7 CROSS-POWER SPECTRAL DENSITY AND COHERENCE

The cross-power spectral density of two random processes, X(m) and Y(m), is defined as
the Fourier transform of their cross-correlation function:

Pyy (f) = EIX(H)Y* ()]

I @

m=—oo

Cross-power spectral density of two processes is a measure of the similarity, or coherence,
of their power spectra. The coherence, or spectral coherence, of two random processes is a
normalised form of the cross-power spectral density, defined as

Py (f)
V Pxx () Pyy (f)

The coherence function is used in applications such as time-delay estimation and signal-to-
noise ratio measurements.

Cxy(f) = (3.91)

3.6.8 ERGODIC PROCESSES AND TIME-AVERAGED STATISTICS

In many signal processing problems, there is only a single realisation of a random process
from which its statistical parameters, such as the mean, the correlation and the power
spectrum, can be estimated. In these cases, time-averaged statistics, obtained from averages
along the time dimension of a single realisation of the process, are used instead of the
ensemble averages obtained across the space of different realisations of the process. This
section considers ergodic random processes for which time- averages can be used instead of
ensemble averages.

A stationary stochastic process is said to be ergodic if it exhibits the same statistical
characteristics along the time dimension of a single realisation as across the space (or
ensemble) of different realisations of the process. Over a very long time, a single realisation
of an ergodic process takes on all the values, the characteristics and the configurations
exhibited across the entire space of the process. For an ergodic process {x(m, s)}, we have

Statistical averages [x(m, s)] = Statistical averages [x(m, s)] (3.92)
alongtime m acrossspace §

where the statistical averages [-] function refers to any statistical operation such as the mean,
the variance, the power spectrum, etc.

3.6.9 MEAN-ERGODIC PROCESSES

The time-averaged estimate of the mean of a signal x(m) obtained from N samples is
given by

1

N Ni:] x(m) (3.93)

m=0

llxz
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A stationary process is mean-ergodic if the time-averaged value of an infinitely long
realisation of the process is the same as the ensemble-mean taken across the space of the
process. Therefore, for a mean-ergodic process, we have

Al,l_lgof[ﬂx] Mx (3.94)
Al/lm var[fiy] =0 (3.95)

where u, is the ensemble average of the process. The time- averaged estimate of the mean
of a signal, obtained from a random realisation of the process, is itself a random variable,
with it is own mean, variance and probability density function. If the number of observation
samples, N, is relatively large, then, from the central limit theorem, the probability density
function of the estimate [, is Gaussian. The expectation of fi, is given by

£l =T [% )3 x<m>} = Z E[x(m)] = Z po=n,  (396)
m=0

From Equation (3.96), the time-averaged estimate of the mean is unbiased. The variance of
Ly is given by

Var[f,] = £[47] - £°[4]

(3.97)
= Ei3] - p:

Now the term £[/2] in Equation (3.97) may be expressed as

2] = H% by x(m)} [% > x(k)”

T (I

m=—(N-1)

(3.98)

Substitution of Equation (3.98) in Equation (3.97) yields

|m|

N—-1 <
Z 1__) rxx(m)_lu’f‘
m=—(N-1) N

N

m=—(N—

Var[fi;] =

X

Z| =

(3.99)

The condition for a process to be mean-ergodic in the mean square error sense is

) 1 N-1 |m|
lim — ) 1——)c, (m)=0 (3.100)
N—ooo N m=—(N—1) N
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3.6.10 CORRELATION-ERGODIC PROCESSES

The time-averaged estimate of the autocorrelation of a random process, estimated from a
segment of N samples, is given by

N—1

Foe(m) = % > x(k)x(k+m) (3.101)

k=0

The estimate of autocorrelation 7 (m) is itself a random variable with its own mean,

variance and probability distribution. A process is correlation-ergodic, in the mean square
error sense, if

lim 7, (m)] = r,,(m) (3.102)

Aim Var|r, (m)]=0 (3.103)

where r, (m) is the ensemble-averaged autocorrelation. Taking the expectation of 7, (m)
shows that it is an unbiased estimate, since

£l ()] = % [1 ¥ (e + m)} = LS @k ml = G104
N k=0 N k=0

The variance of 7, (m) is given by

ar[?, (m)] = [, (m)] — r} (m) (3.105)

The term £[72 (m)] in Equation (3.105) may be expressed as

£[#7,(m)] = Z E[x(k)x(k +m)x(j)x(j+m)]

>
Z Z E[z(k, m)z(j, m)] (3.106)

:% i <1_%> rzz(k’m)

k=—N+1

where z(i, m) = x(i)x(i + m). The condition for correlation ergodicity, in the mean square
error sense, is given by

1 N—-1 |k|
lim | — ) (1——>ru(k,m)—rf,x(m) =0 (3.107)
N9°°|:Nk—N+1 N
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3.7 SOME USEFUL CLASSES OF RANDOM PROCESSES

In this section, we consider some important classes of random processes that are extensively
used in communication signal processing for such applications as decoding, channel
equalisation, modelling of noise and fading and pattern recognition.

3.7.1 GAUSSIAN (NORMAL) PROCESS

The Gaussian process, also called the normal process, is the most widely applied of all
probability models. Some advantages of Gaussian probability models are the following:

(1) Gaussian pdfs can model the distribution of many processes, including some important
classes of signals and noise;

(2) non-Gaussian processes can be approximated by a weighted combination (i.e. a mixture)
of a number of Gaussian pdfs of appropriate means and variances;

(3) optimal estimation methods based on Gaussian models often result in linear and
mathematically tractable solutions;

(4) the sum of many independent random processes has a Gaussian distribution; this is
known as the central limit theorem.

A scalar-valued Gaussian random variable is described by the following probability density
function:

fx(x) =

exp [—M] (3.108)

1
V2mo, 20?2
where u, and o2 are the mean and the variance of the random variable x. Note that the
argument of the exponennal of a Gaussian function, (x —.,)*/202, is a variance-normalised
distance. The Gaussian process of Equation (3.108) is also denoted by N(x, 4y, 02). The
maximum of a Gaussian pdf occurs at the mean u,, and is given by

fX(Iu’x) =

1
i (3.109)

From Equation (3.108), the Gaussian pdf of x decreases exponentially with the distance x
from the mean value w,. The cumulative distribution function F(x) is given by

o (58

Figure 3.18 shows the bell-shaped pdf and the cdf of a Gaussian model. The most probable
values of a Gaussian process happen around the mean, and the probability of a value
decreases exponentially with increasing distance from the mean value. The total area under
the pdf curve is 1. Note that the area under the pdf curve one standard deviation on each
side of the mean value (u =+ o) is 0.682, the area two standard deviations on each side the
mean value (u20) is 0.955 and the area three standard deviations on each side the mean
value (u=+30) is 0.997.

(3.110)
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Figure 3.18 Gaussian probability density and cumulative density functions.

3.7.2 MULTIVARIATE GAUSSIAN PROCESS

Multivariate densities model vector-valued processes. Consider a P-variate Gaussian vector
process, x = [x(m,), x(m,), ..., x(mp_,)]%, with mean vector w,, and covariance matrix
3 .- The multivariate Gaussian pdf of x is given by

1 1 T
= —=(x— 3 M x— 3.111
Fe) = e <y S|
where the mean vector w, is defined as
E[x(my)]
E[x(m;)]
M= ) (3.112)
E[x(mp_,)]
and the covariance matrix X, is given by
cxx(mO’ m()) Cxx(mO’ ml) e Cxx(mO’ mP—l)
Cxx(ml’mO) Cxx(m17ml) Cxx(ml’mP—l)
2= ) ) . . (3.113)

Cor(mp_y, mg) ¢y (mp_y,my) - ¢ (mp_y, mp_y)

The Gaussian process of Equation (3.111) is also denoted by N (x, m,, %, ). If the elements
of a vector process are uncorrelated then the covariance matrix is a diagonal matrix with
zeros in the off-diagonal elements. In this case the multivariate pdf may be described as the
product of the pdfs of the individual elements of the vector:

P—1 1

) . () — P
I {x = [x(mg), ..., x(mp_,)] } = ,1:([) mgﬂ CXP{ 20_; }

(3.114)
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Example 3.20

Conditional multivariate Gaussian probability density function. Consider two vector
realisations x(m) and y(m) from two vector-valued correlated stationary Gaussian processes,
N(x, py, 2,,) and N (y, u,, 2,,). The joint probability density function of x(m) and y(m)
is a multivariate Gaussian density, N{[x(m),y(mk)], (. ,)> (., }, With mean vector and
covariance matrix given by

12
=[x 3.115
"'(x,y) |:M“y:| ( )
DINND
Ty = [2;; ﬂ (3.116)

The conditional density of x(m) given y(mk) is given from Bayes’ rule as

Sxylx(m),y(m)]
fyly(m)]

It can be shown that the conditional density is also a multivariate Gaussian with its mean
vector and covariance matrix given by

Sy [x(m) ly(m) ] = (3.117)

Mlyy = E[x(m) |y(m) ]

-1 (3.118)
= My + 2xys'yy ()’ - M’y)
By = T — T 2 2 (3.119)

3.7.3 MIXTURE GAUSSIAN PROCESS

The probability density functions of many random processes, such as speech, are non-
Gaussian. A non-Gaussian pdf may be approximated by a weighted sum (i.e. a mixture)
of a number of Gaussian densities of appropriate mean vectors and covariance matrices.
A mixture Gaussian density with M components is defined as

M
fx(0) =2 PN(x, s 2 (3.120)

i=1

where N;(x, u, , %, ) is a multivariate Gaussian density with mean vector w, and covariance
matrix Exx,-v and P; are the mixing coefficients. The parameter P; is the prior probability of
the ith component of the mixture, given by

N.
p=_1 (3.121)

1

'Ma
=

1

-
Il

where N, is the number of observations, of the process, associated with the mixture i.
Figure 3.19 shows a non-Gaussian pdf modelled as a mixture of five Gaussian pdfs.
Algorithms developed for Gaussian processes can be extended to mixture Gaussian densities.
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Figure 3.19 A Gaussian mixture model (GMM) pdf.

3.7.4 A BINARY-STATE GAUSSIAN PROCESS

A simple example of a binary-state process is the observations at the output of communication
system with the input signal consisting of a binary sequence (‘0’ and ‘1”) process.
Consider a random process, x(m), with two states, s, and s,, such that in the state s, the
process has a Gaussian pdf with mean . , and variance o7, and in the state s, the process
is also Gaussian with mean u, ; and variance a{fyo. The state-dependent pdf of x(m) can be
expressed as

Fis Le(m)ls] = [x(m) —m,,-F}, i=0.1 (3.122)

1 1
V27o,; { 207,

The joint probability distribution of the binary-valued state s; and the continuous-valued
signal x(m) can be expressed as

fxs[x(m), ;] = fx\s [x(m) [s;] Ps (s;)
(3.123)

1 1
= —expi—
V2mo, ; p{ 20?,1'

where Py (s;) is the state probability. For a multistate process we have the following
probabilistic relations between the joint and marginal probabilities:

[x(m) — ux,i]z} Py (s,)

2 Srsx(m), si] = fi [x(m)] (3.124)
N
[ frestxmy, 5] dx =Py (s) (3.125)
and
2 / frs[x(m), sl dx =1 (3.126)

Note that, in a multistate model, the statistical parameters of the process switch between a
number of different states, whereas in a single-state mixture pdf, a weighted combination of
a number of pdfs models the process. In Chapter 5 on hidden Markov models we consider
multistate models with a mixture Gaussian pdf per state.
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3.7.5 POISSON PROCESS

The Poisson process is a continuous-time integer-valued counting process, used for modelling
the occurrences of a random discrete event in various time intervals. An important area of
application of the Poisson process is in the queuing theory for the analysis and modelling
of the distributions of demand on a service facility such as a telephone network, a computer
network, a financial service, a transport network, a petrol station, etc. Other applications of
the Poisson distribution include the counting of the number of particles emitted in particle
physics, the number of times that a component may fail in a system, and the modelling of
radar clutter, shot noise and impulsive noise.

Consider an event-counting process, X(¢), in which the probability of occurrence of the
event is governed by a rate function A(¢), such that the probability that an event occurs in a
small time interval At is

Prob [1occurrence in the interval(z, t + At)] = A(¢) At (3.127)

Assuming that, in the small interval A¢, no more than one occurrence of the event is possible,
the probability of no occurrence of the event in a time interval Az is given by

Prob [0 occurrence in the interval(z, 1+ Af)] = 1 — A(¢) At (3.128)

When the parameter A(z) is independent of time, A(f) = A, the process is called a
‘homogeneous Poisson process’. Now, for a homogeneous Poisson process, consider the
probability of k occurrences of an event in a time interval ¢+ Az, denoted by P[k, (0, 1+ Ar)]:

Plk,(0,t+Af]=Plk, (0,0)] P[0, (t, t +A)]+P[k—1, (0, 0)] P[1, (¢, t+ At)]
=PJ[k,(0,)] (1 —AAf)+P[k—1, (0, )] LAt (3.129)
Rearranging Equation (3.129), and letting Az tend to zero, we obtain the following linear
differential equation:
Plk(0, 1+ An)]— P[k(0,1)]  dP(k,1)
At T
where P(k, t) = P[k, (0, t)]. The solution of this differential equation is given by

= —AP(k.0)+ AP(k—1,1)  (3.130)

hmAt%O

t
Pk, 1) = /\e-“f Pk—1,7)eM dr (3.131)
0

Equation (3.131) can be solved recursively: starting with P(0, t) =e~* and P(1, t) = Ate ™,
we obtain the Poisson density

(An*

P(k,t) = I

e ™M (3.132)

From Equation (3.132), it is easy to show that, for a homogenous Poisson process, the
probability of k occurrences of an event in a time interval (¢, t,) is given by

[)‘(tz — tl)]k e~ Mn—n)

Plk. (11, 1)] = “=2

(3.133)
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A Poisson counting process X(¢) is incremented by one every time the event occurs. From
Equation (3.132), the mean and variance of a Poisson counting process X(¢) are

E[X(1)] = At (3.134)
ryx(t 1) = E[X(t))X(t,)] = A’t,t, + Amin(z,, t,) (3.135)
Var[X(1)] = E| X*(1)| — B2 [X(1)] = At (3.136)

Note that the variance of a Poisson process is equal to its mean value.

3.7.6 SHOT NOISE

Shot noise results from randomness in directional flow of particles, for example in the flow
of electrons from the cathode to the anode of a cathode ray tube, the flow of photons in a laser
beam, the flow and recombination of electrons and holes in semiconductors, and the flow of
photoelectrons emitted in photodiodes. Shot noise has the form of a random pulse sequence
that may be modelled as the response of a linear filter excited by a Poisson-distributed binary
impulse sequence (Figure 3.20).

Consider a Poisson-distributed binary-valued impulse process, x(¢). Divide the time axis
into uniform short intervals, Af, such that only one occurrence of an impulse is possible
within each time interval. Let x(mAt) be ‘1’ if an impulse is present in the interval mAt to
(m+1)At, and ‘0’ otherwise. For x(mAr), we obtain the mean and correlation functions as

E|x(mAt)| =1 x P[x(mAf) =1]40 x P[x(mAt) = 0] = AAt (3.137)
and

1 x P[x(mAr) = 1] = Mg, m=n

, (3.138)
1 x P[x(mAt) = 1] x P[x(nAt) =1]=(AA1)", m#n

E[x(mAf)x(nAr)] = :

A shot noise process y(m) is modelled as the output of a linear system with an impulse
response h(t), excited by a Poisson-distributed binary impulse input x(t):

=)

(0 = [ K(D)h(i—m)dr
= (3.139)

= i x(mAt)h(t — mAr)

k=—o00

tt t J&M[\

Figure 3.20 Shot noise is modelled as the output of a filter excited with a process.
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where the binary signal x(mAf) can assume a value of O or 1. In Equation (3.139) it is
assumed that the impulses happen at the beginning of each interval. This assumption becomes
more valid as Az becomes smaller. The expectation of y(¢) is obtained as

Ely()] = i E[x(mAr)] h(t — mAr)
k=—o0

(3.140)

= Y MAth(t—mAr)

k=—o0

and

(s 1) = E[y(6)y(1)]
= i 3 E[x(mA)x(nAf)] h(t, — nAt)h(t, — mAfr) (3.141)

m=—00 n=—00

Using Equation (3.138) in Equation (3.141), the autocorrelation of y(¢) can be obtained as

ry(t, ) = i (AA) (1, — mAL)h(t, — mAf)

n=—oo

+ i i (AAD)h(t, — mAn)h(r, — nAr) (3.142)

I —
=700 yim

3.7.7 POISSON-GAUSSIAN MODEL FOR CLUTTERS AND
IMPULSIVE NOISE

An impulsive noise process consists of a sequence of short-duration pulses of random
amplitude and random time of occurrence whose shape and duration depends on the
characteristics of the channel through which the impulse propagates. A Poisson process can
be used to model the random time of occurrence of impulsive noise, and a Gaussian process
can model the random amplitude of the impulses. Finally, the finite duration character of
real impulsive noise may be modelled by the impulse response of linear filter. The Poisson—
Gaussian impulsive noise model is given by

x(m) = i Ah(m—1,) (3.143)

k=—o00

where h(m) is the response of a linear filter that models the shape of impulsive noise, A,
is a zero-mean Gaussian process of variance a2 and 7, denotes the instances of occurrences
of impulses modelled by a Poisson process. The output of a filter excited by a Poisson-
distributed sequence of Gaussian amplitude impulses can also be used to model clutters in
radar. Clutters are due to reflection of radar pulses from a multitude of background surfaces
and objects other than the intended radar target.
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3.7.8 MARKOV PROCESSES

Markov processes are used to model the trajectory of a random process and to describe the
dependency of the outcome of a process at any given time on the past outcomes of the
process. Applications of Markov models include modelling the trajectory of a process in
signal estimation and pattern recognition for speech, image and biomedical signal processing.

A first-order discrete-time Markov process is defined as one in which the state or the value
of the process at time m depends only on its state or value at time m — 1 and is independent
of the states or values of the process before time m — 1. In probabilistic terms, a first-order
Markov process can be defined as

fX [x(m) = xm|x(m— 1) = X1 e+ ,x(m—N) =xmfN]

(3.144)
= fx [x(m) = x,,[x(m = 1) = x,,_,]

The marginal density of a Markov process at time m can be obtained by integrating the
conditional density over all values of x(m — 1):

=)

fxlx(m) =x,]= / fxlx(m) = x,, |[x(m—=1) =x,_) ] fx [x(m—1) =x,_,] dx,,_,

(3.145)
A process in which the present state of the system depends on the past n states may be
described in terms of n first-order Markov processes and is known as an nth-order Markov
process. The term ‘Markov process’ usually refers to a first-order process.

Example 3.21
A simple example of a Markov process is a first-order autoregressive process (Figure 3.21)
defined as

x(m) =ax(m—1)+e(m) (3.146)

In Equation (3.146), x(m) depends on the previous value x(m — 1) and the input e(m). The
conditional pdf of x(m) given the previous sample value can be expressed as

Sxx(m) [x(m=1), ..., x(m = N) | = fx[x(m) |x(m —1)]

(3.147)
= fr[e(m) = x(m) — ax(m —1)]

Wl o e(m) /;\ x(m) /\,\/\/\M

<

Figure 3.21 A first-order autoregressive (Markov) process.
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where fi[e(m)] is the pdf of the input signal. Assuming that input e(m) is a zero-mean
Gaussian process with variance o2, we have

Tx [x(m) [x(m =1). ..., x(m = N) | = fx [x(m)|x(m —1) ]
= [ [x(m) —ax(m—1)]

= \/%0' exp {—%2 [x(m) — ax(m — 1)]2}(3.148)

When the input to a Markov model is a Gaussian process the output is known as a Gauss—
Markov process.

3.7.9 MARKOV CHAIN PROCESSES

A discrete-time Markov process, x(m), with N allowable states may be modelled by a
Markov chain of N states (Figure 3.22). Each state can be associated with one of the N
values that x(m) may assume. In a Markov chain, the Markovian property is modelled by a
set of state transition probabilities defined as

a;j(m—1, m) = Prob[x(m) = j|x(m—1) =] (3.149)

where a;;(m — 1, m) is the probability that at time m — 1 the process is in the state i and then
at time m it moves to state j. In Equation (3.144), the transition probability is expressed in a
general time-dependent form. The marginal probability that a Markov process is in the state
J at time m, P;(m), can be expressed as

P;(m) = iPi(m —Da;;(m—1,m) (3.150)

Figure 3.22 A Markov chain model of a four-state discrete-time Markov process.
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A Markov chain is defined by the following set of parameters:

e number of states N;
® state probability vector

p'(m)=[p(m), py(m), ..., py(m)]

e the state transition matrix

ay(m—=1,m) a,(m—1,m) ... ajy(m—1,m)

ay(m—1,m) ayp(m—1,m) --- a,y(m—1,m)
A(m—1,m)=

ay(m—1,m)ay,(m—1,m)... ayy(m—1, m)

3.7.9.1 Homogenous and Inhomogeneous Markov Chains

A Markov chain with time-invariant state transition probabilities is known as a homogenous
Markov chain. For a homogenous Markov process, the probability of a transition from state
i to state j of the process is independent of the time of the transition m, as expressed in the
following equation:

Prob[x(m) = jlx(m—1)=i] =a;(m—1,m) = a; (3.151)

Homogeneous Markov chains have time-dependent transition probabilities. In most
applications of Markov chains, homogenous models are used because they usually provide
an adequate model of the signal process, and because homogenous Markov models are easier
to train and use. Markov models are considered in Chapter 5.

3.7.10 GAMMA PROBABILITY DISTRIBUTION
The gamma pdf is defined as

1 a—1,—x/b f > 0
gamma(x, a, b) = {Sal"(a)x e or x > (3152)

otherwise

where a and b are both greater than zero and I'(a) is defined as

o)

I(a) = / Xl  dx (3.153)
0

Gamma pdf is sometimes used in modelling speech and image signals.
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3.7.11 RAYLEIGH PROBABILITY DISTRIBUTION
The Rayleigh pdf is defined as

X = >0
p(x) = "ZCXP( 2"“) t= (3.154)
0 x<0

Rayleigh pdf is often employed to describe the amplitude spectrum of signals. In mobile
communication the channel fading is usually modelled with a Rayleigh distribution.

3.7.12 LAPLACIAN PROBABILITY DISTRIBUTION
A Laplacian pdf is defined as

1
p(x) = 5—exp (—M) (3.155)
20 (o
where o is the standard deviation. Speech signal samples in time domain have a distribution
that can approximated by a Laplacian pdf. Laplacian pdf is also used for modelling image
signals.

3.8 TRANSFORMATION OF A RANDOM PROCESS

In this section we consider the effect of filtering or transformation of a random process on
its probability density function. Figure 3.23 shows a generalised mapping operator %(-) that
transforms a random input process X into an output process Y. The input and output signals
x(m) and y(m) are realisations of the random processes X and Y, respectively. If x(m) and

y(m) are both discrete-valued such that x(m) € {x,,...,xy} and y(m) € {y,, ..., ¥y} then
we have
Py[y(m)=y;]= > Py[x(m)=x] (3.156)
Xi—>Yj

where the summation is taken over all values of x(m) that map to y(m) = y;. Now consider
the transformation of a discrete- time, continuous-valued, process. The probability that the
output process Y has a value in the range y(m) < Y < y(m)+ Ay is

Prob[y(m) < Y < y(m)+ Ay] = /x(m)\y(m)<Y<y(m)+Av fx [x(m)]dx(m) (3.157)

where the integration is taken over all the values of x(m) that yield an output in the range
y(m) to y(m)+Ay.

x(m) y(m)
hlx(m)] >

Figure 3.23 Transformation of a random process x(m) to an output process y(m).
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Ay

/

Figure 3.24 An example of a monotonic one-to-one mapping.

3.8.1 MONOTONIC TRANSFORMATION OF RANDOM PROCESSES

Now for a monotonic one-to-one transformation, y(m) = h[x(m)] (as in Figure 3.24),
Equation (3.157) becomes

Prob[y(m) < Y < y(m)+ Ay] = Prob [x(m) < X < x(m) + Ax] (3.158)
or, in terms of the cumulative distribution functions,
Fy [y(m) +Ay] = Fy [y(m)] = Fy [x(m) + Ax] — Fy [x(m)] (3.159)

Multiplication of the left-hand side of Equation (3.159) by Ay/Ay and the right-hand side
by Ax/Ax and re-arrangement of the terms yields

Fy [y(m) +Ay] = Fy [y(m)] _ Ax Fy [x(m) + Ax] — Fy [x(m)]

3.160
Ay Ay Ax ( )
Now as the intervals Ax and Ay tend to zero, Equation (3.160) becomes
dx(m)
Ty y(m)] = | === fx [x(m)] (3.161)
dy(m)

where fy,[y(m)] is the probability density function. In Equation (3.161), substitution of
x(m) = h~![y(m)] yields

o~ [y(m)]

ayomy | {nt ym)l} (3.162)

fry(m)] = '

Equation (3.163) gives the pdf of the output signal in terms of the pdf of the input signal
and the transformation.
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Example 3.22: Probability Density of Frequency Spectrum — Cartesian to
Polar Transformation

Consider the kth spectral component of the discrete Fourier transform of a discrete-time
Gaussian distributed variable

X(k) = Xg (k) + X, (k) = r(k)e’*® (3.163)
The Fourier transform is a linear operation, hence if the input is Gaussian it follows that

the real part of the spectrum, X (f), and the imaginary part of the spectrum, X;(f), are also
Gaussian.

P (Xg, Xp) = p(Xg) p(Xy)
1 Xz > 1 ( X? )
= exp| —= exp| — 3.164
T (305) 72, (2 (169
1 Xg+ X7
T 27a? eXp 202

Now the relation between transforming differential areas in Cartesian and polar co-ordinates
is obtained as

dXRrdX; = rdr de (3.165)

Hence from Equation (3.161) we have

dXRdX;
drde

p(r.e)= p (X, Xy) = rp (Xg, Xy) (3.166)

From Equations (3.164) and (3.166) we have
(r,¢) = >~ - (3.167)
re)=——exp|— .
P @ 270 p 202
The probability of the phase ¢ can be obtained from

. 1 [ or r? 1
P(‘P)=O/P(r, ‘P)dr=ﬁof 52 &XP (ﬁ) dr= . (3.168)

Hence ¢ has a uniform distribution pdf with a probability of 1/27 and the pdf of r is
Rayleigh distributed as

r<0

= — >0
p(r) = {6’ exP( 2") = (3.169)
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Jx(x)

Figure 3.25 A log—normal probability density function.

Example 3.23

Transformation of a Gaussian process to a log—normal process. Log—normal pdfs are used for
modelling positive-valued processes such as power spectra. If a random variable x(m) has
a Gaussian pdf, then the non-negative valued variable y(m) = exp[x(m)] has a log—normal
distribution (Figure 3.25) obtained from Equation (3.161) as

L ) [y -]
V2mo, y(m) 207
Conversely, if the input y to a logarithmic function has a log—normal distribution, then the

output x = Iny is Gaussian. The mapping functions for translating the mean and variance of
a log—normal distribution to a normal distribution can be derived as

fr(y) = (3.170)

1
MX:lnMy—Eln(qu/Mi) (3.171)
a’f:ln(l—i—ayz/ui) (3.172)

(u,» 07) and (w,, O'yz) are the mean and variance of x and y, respectively. The inverse
mapping relations for the translation of mean and variances of normal to log—normal variables
are

t, =exp(u, +07/2) (3.173)
o; = wexp(o}) —1] (3.174)

3.8.2 MANY-TO-ONE MAPPING OF RANDOM SIGNALS

Now consider the case when the transform %(-) is a nonmonotonic function such as that
shown in Figure 3.26. Assuming that the equation y(m) = h[x(m)] has K roots, there are K
different values of x(m) that map to the same y(m). The probability that a realisation of the
output process Y has a value in the range y(m) to y(m)+ Ay is given by

Prob[y(m) < Y < y(m)+Ay] = iProb [x,(m) < X < x,(m)+ Ax, ] (3.175)

k=1
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‘ry =h(x)

ol

b=

Figure 3.26 Illustration of a many-to-one transformation.

where x, is the kth root of y(m) = h[x(m)]. Similar to the development in Section 3.7.1,
Equation (3.175) can be written as

Frbm £ 01 = Fy byl 5 Falsm £ Ax] = Felw(ml, g o0

Ay Ax,

Equation (3.176) can be rearranged as

Fy [y(m) + Ay] = Fy [y(m)] _ -~ Ax; Fy [x,(m) + Ax,] — Fy [x, ()]
Ay ](ZZ] A_ Ax, (3.177)
Now as the intervals Ax and Ay tend to zero, Equation (3.177) becomes
Sy Dom)] = 2|5 o)
B (3.178)
=) Jx b (m)]

it [P [ (m)]]

where i'[x,(m)] = dh[x,(m)]/dx,(m). Note that, for a monotonic function, K = 1 and
Equation (3.178) becomes the same as Equation (3.161). Equation (3.178) can be expressed
as

fry(m)] = Z I [ (m)] ™ f [x(m)] (3.179)

where J[x,(m)] = h'[x,(m)] is called the Jacobian of the transformation. For a multivariate
transformation of a vector-valued process such as

y(m) = H[x(m)] (3.180)
the pdf of the output y(m) is given by

K

Jy y(m)] :Z e (m)]1 ™" fi [ (m)] (3.181)
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where |J(x)|, the Jacobian of the transformation H(-), is the determinant of a matrix of
derivatives:

W
a'xl 0xy ﬁxp
@)= - (3.182)
De oy Dp
ax, 2 dxp

For a monotonic linear vector transformation such as
y=Hx (3.183)
the pdf of y becomes

Hr =" fx (Hy) (3.184)

where |J| is the Jacobian of the transformation.

Example 3.24

The input—output relation of a P x P linear transformation matrix H is given by
y=Hx (3.185)

The Jacobian of the linear transformation H is |H|. Assume that the input x is a zero-mean
Gaussian P-variate process with a covariance matrix of 3, and a probability density function
given by:

fx(x) = - %xTE;;x] (3.186)

1
@mmmamﬁ%

From Equations (3.168)—(3.169), the pdf of the output y is given by

| T -
fr) = —y'H "I H 'J’> H|™

1
@mmmamﬂdiz

1 1 e
BN T <_ 2 y)

where 3, = H3., H". Note that a linear transformation of a Gaussian process yields another
Gaussian process.

(3.187)

3.8.2.1 Probabilistic Ranking: Web Page Citation Ranking and Indexing

Internet search engines sort and index the text information in many billions of web pages on
the world wide web. A good set of search keywords will focus the search on the documents
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and websites that contain the input keywords. However, the problem remains that the contents
of many websites are not of the required quality. Furthermore, there are misleading websites
containing popular keywords just to attract visitors and thus increase hit rates and advertising
revenues.

For efficient information management, the websites and their information content need to
be rank ordered using an objective quality measure. A well-established objective measure of
quality of published information in any medium is citation ranking, which for a long time
has been used as a ranking method in academic research. A map of hyperlinks and pointers
to websites on the world wide web allows rapid calculation of a web page’s rank in terms
of citation. Page rank based on citation is a good way to organise the order of presentation
of the results of an internet search.

3.8.2.2 Citation Ranking in Web Page Rank Calculation

Search engines usually find many web pages that contain the search keywords. The problem
is how to present the web links containing the search keywords in a rank-ordered form,
such that the rank of a page represents a measure of the quality of information on the page.
The relevance of a web page, containing the search text string, can be determined from the
following analysis of the web page:

(1) the page title containing the search words is an indicator of the relevance of the topic of
the page, but not of its quality;

(2) the number of times the search words are mentioned in the web page is also an indicator;

(3) the number of citation of the web page from other web pages is an objective indicator
of the quality as perceived by web users;

(4) each citation to a web page can be weighted by its importance, which itself is a weighted
citation of the citation.

The simplest way to rank a web page is to count the total number of citation links pointing
to that page and then divide this by the total number of citation links on the web. This
method would rank a web page using a simple probability measure defined as the frequency
of citation links. However, as with the tradition of academic research, a citation itself needs
to be weighted by the quality of the citation source, i.e. by the citation ranking of the source
itself. A weighted citation gives some approximation of a page’s importance or quality,
where each source of citation is weighted by its own citation ranking.

Let PR(A) define the page rank for a web page A. Assume that page A has pages
T,,...,T, pointing to it. The page rank of A can be defined as

PR(A)=(1—d)+d[PR(T,)/C(T))+... +PR(T,)/C(T,)]

where C(T) is defined as the number of links going out of page T. The parameter d is a
damping factor which can be set between O and 1; usually d is set to 0.85. Note that the
page ranks form a probability distribution over web pages, so the sum of all web pages’ page
ranks will be 1. Page rank, PR(A), can be calculated using a simple iterative algorithm, and
corresponds to the principal eigenvector of the normalized link matrix of the web.
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3.9 SUMMARY

The theory of statistical processes is central to development of signal processing and
communications systems. We began this chapter with some basic definitions of deterministic
signals, random signals and random processes. A random process generates random signals,
and the collection of all signals that can be generated by a random process is the space of
the process. Probabilistic models and statistical measures, originally developed for random
variables, were extended to model random signals. Although random signals are completely
described in terms of probabilistic models, for many applications it may be sufficient to
characterise a process in terms of a set of relatively simple statistics such as the mean, the
autocorrelation function, the covariance and the power spectrum. Much of the theory and
application of signal processing is concerned with the identification, extraction and utilisation
of structures and patterns in a signal process. The correlation and its Fourier transform the
power spectrum are particularly important because they can be used to identify the patterns
in a stochastic process.

We considered the concepts of stationary, ergodic-stationary and nonstationary processes.
The concept of a stationary process is central to the theory of linear time-invariant systems,
and furthermore even nonstationary processes can be modelled by a chain of stationary
sub-processes as described in Chapter 5 on hidden Markov models. For signal processing
applications, a number of useful pdfs, including the Gaussian, the mixture Gaussian, the
Markov and the Poisson process, were considered. These pdf models are extensively
employed in the remainder of this book. Signal processing normally involves the filtering
or transformation of an input signal to an output signal. We derived general expressions
for the pdf of the output of a system in terms of the pdf of the input. We also considered
some applications of stochastic processes for modelling random noise such as white noise,
clutters, shot noise and impulsive noise.
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Bayesian estimation is the general framework for formulation of statistical inference
problems. Inference is the act of deriving conclusions from evidence. In statistical estimation
the value of a signal, or a parameter, is inferred from observations. In the prediction or
estimation of a random process from a related signal, the Bayesian philosophy is based on
combining the evidence contained in the signal with the prior knowledge of the probability
distribution of the process.

Bayesian methodology includes the classical estimators such as maximum a posteriori
(MAP), maximum-likelihood (ML), minimum mean square error (MMSE) and minimum
mean absolute value of error (MAVE) as special cases. The hidden Markov model, widely
used in pattern recognition, is an example of a Bayesian model. Bayesian inference is based
on minimisation of the so-called Bayes’ risk function, which includes a posterior model of
the unknown parameters given the observation and a cost-of-error function.

This chapter begins with an introduction to the basic concepts of the estimation theory, and
considers the statistical measures that are used to quantify the performance of an estimator.

Advanced Digital Signal Processing and Noise Reduction Third Edition Saeed V. Vaseghi
© 2006 John Wiley & Sons, Ltd
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We study Bayesian estimation methods and consider the effect of using a prior model on
the mean and the variance of an estimate. The estimate—maximise (EM) method for the
estimation of a set of unknown parameters from an incomplete observation is studied, and
applied to the mixture Gaussian modelling of the space of a continuous random variable.
This chapter concludes with Bayesian classification of discrete or finite-state signals, and
the K-means clustering method.

4.1 BAYESIAN ESTIMATION THEORY: BASIC DEFINITIONS

Estimation theory is concerned with the determination of the best estimate of an unknown
parameter vector from an observation signal, or the recovery of a clean signal degraded
by noise and distortion. For example, given a noisy sine wave, we may be interested in
estimating its basic parameters (i.e. amplitude, frequency and phase), or we may wish to
recover the signal itself.

An estimator takes as input a set of noisy or incomplete observations, and, using a dynamic
model (e.g. a linear predictive model) and/or a probabilistic model (e.g. Gaussian model)
of the process, estimates the unknown parameters. The estimation accuracy depends on the
available information and on the efficiency of the estimator. In this chapter, the Bayesian
estimation of stationary parameters is studied. The modelling and estimation of nonstationary
finite-state processes is covered in the next chapter.

Bayesian theory is a general inference framework. In the estimation or prediction of
the state of a process, the Bayesian method employs both the evidence contained in
the observation signal and prior knowledge of the probability distribution of the process.
Figure 4.1 illustrates that the Bayesian method is the general framework for the derivation
of the main statistical estimation methods.

Consider the estimation of the value of a random parameter vector €, given a related
observation vector y. From Bayes’ rule the posterior pdf of the parameter vector 6 given

‘ Bayesian inference ’

{

‘ Minimise cost function ’

f Error cost X prior X likelihood

|
' ! ' !

Squared error Absolute value of error Delta cost function
cost function cost function uniform prior

Figure 4.1 Bayesian inference involves a cost function, a prior function and a likelihood function.
Other estimation methods can be considered as special cases of Bayesian estimation.

‘ Delta cost function
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¥, oy (Bly), can be expressed as

frie10)fo(0)
fr)

where for a given observation, fy(y) is a constant and has only a normalising effect. Thus
there are two variable terms in Equation (4.1): one term fy(y|0) is the likelihood that the
observation signal y was generated by the parameter vector @ and the second term is the
prior probability of the parameter vector having a value of 0. Hence

f@|y(0|J’) = (4.1

Posterior probability « likelihood x prior

The relative influence of the likelihood pdf fy e (y|@#) and the prior pdf f(8) on the posterior
pdf fgy(Bly) depends on the shape of these functions, i.e. on how relatively peaked each
pdf is. In general, the more peaked a pdf is, the more it will influence the outcome of the
estimation process. Conversely, a uniform prior pdf will have no influence.

The remainder of this chapter is concerned with different forms of Bayesian estimation
and its applications. First, in this section, some basic concepts of estimation theory are
introduced.

4.1.1 DYNAMIC AND PROBABILITY MODELS IN ESTIMATION

Optimal estimation algorithms utilise dynamic and probabilistic models of the observation
signals. A dynamic predictive model captures the correlation structure of a signal, and models
the dependence of the present and future values of the signal on its past trajectory and
the input stimulus. Examples of estimation methods employing dynamic models are linear
prediction model and Kalman filters.

A statistical probability model characterises the space of random fluctuations of a signal
in terms of its statistics, such as the mean and the covariance, and most completely in terms
of a probability model. Conditional probability models, in addition to modelling the random
fluctuations of a signal, can also model the dependence of the signal on its past values or on
some other related process.

Dynamic and probability models can be combined; for example a finite-state model may
be constructed from a combination of hidden Markov models (HMMs) and Kalman filters.

As an illustration, consider the estimation of a P-dimensional parameter vector
0 =1[6,,6,,...,0,_,] from a noisy observation vector y = [y(0), y(1),...,y(N —1)]
modelled as

y=x+n=h(0,e)+n (4.2)

where, as illustrated in Figure 4.2, it is assumed that the clean signal, x, is the output
of a predictive model, h(-), with a random input e and parameter vector 0, and n is an
additive random noise process. In Figure 4.2, the distributions of the random noise, n, the
random input, e, and the parameter vector, 0, are modelled by probability density functions,
fv(n), fr(e) and £ (@), respectively. The pdf model most often used is the Gaussian model.
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Parameter process Noise process
Je(6) I(m)
0 n
— y=x+n
Excitation process | e Predictive model x
fele) hef6, €) I\

Figure 4.2 A random process y is described in terms of a predictive model 4(-), and statistical models

fe()s fo(-) and fy(-).

Predictive and statistical models of a process guide the estimator towards the set of values
of the unknown parameters that is most consistent with both the prior distribution of the
model parameters and the observation. In general, the more modelling information is used
in an estimation process, the better the results, provided that the models are an accurate
characterisation of the observation and the parameter process. The drawback is that, if the
models are not accurate, more harm than good may result.

4.1.2 PARAMETER SPACE AND SIGNAL SPACE

Consider a random process with a parameter vector #. For example, each instance of 0
could be the parameter vector for a dynamic model of a speech sound or a musical note. The
parameter space of a process @ is the collection of all the values that the parameter vector
0 can assume.

The parameters of a random process determine the ‘characteristics’ (i.e. the mean, the
variance, the power spectrum, etc.) of the signals generated by the process. As the process
parameters change, so do the characteristics of the signals generated by the process. Each
value of the parameter vector @ of a process has an associated signal space Y; this is the
collection of all the signal realisations of the process with the parameter value 6.

For example, consider a three-dimensional vector-valued Gaussian process with parameter
vector @ = [, 3], where p is the mean vector and 3, is the covariance matrix of the Gaussian
process. Figure 4.3 illustrates three mean vectors in a three-dimensional parameter space.

Parameter space Signal space

o . N1
TSR IR

Mapping N (y, ,2
. (¥, by M3 . . i

Mapping ~ N(y, p3| X3)

. > -
B>

Ko 2

Figure 4.3 Illustration of three points in the parameter space of a Gaussian process and the associated
signal spaces; for simplicity the variances are not shown in parameter space.
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Also shown is the signal space associated with each parameter. As shown, the signal space
of each parameter vector of a Gaussian process contains an infinite number of points, centred
on the mean vector m, and with a spatial volume and orientation that is determined by the
covariance matrix ¥. For simplicity, the variances are not shown in the parameter space,
although they are evident in the shape of the Gaussian signal clusters in the signal space.

4.1.3 PARAMETER ESTIMATION AND SIGNAL RESTORATION

Parameter estimation and signal restoration are closely related problems. The main difference
is due to the rapid fluctuations of most signals in comparison with the relatively slow
variations of most parameters. For example, speech sounds fluctuate at speeds of up to
20kHz, whereas the underlying vocal tract and pitch parameters vary at a relatively lower
rate of less than 100 Hz. This observation implies that normally more averaging can be done
in parameter estimation than in signal restoration.

As a simple example, consider a signal observed in a zero-mean random noise process.
Assume we wish to estimate (a) the average of the clean signal and (b) the clean signal itself.
As the observation length increases, the estimate of the signal mean approaches the mean
value of the clean signal, whereas the estimate of the clean signal samples depends on the
correlation structure of the signal and the signal-to-noise ratio as well as on the estimation
method used.

As a further example, consider the interpolation of a sequence of lost samples of a signal
given N recorded samples, as illustrated in Figure 4.4. Assume that an autoregressive (AR)
process is used to model the signal as

y=X0+e+n (4.3)

where y is the observation signal, X is the signal matrix, @ is the AR parameter vector, e
is the random input of the AR model and n is the random noise. Using Equation (4.3), the
signal restoration process involves the estimation of both the model parameter vector 6 and
the random input e for the lost samples. Assuming the parameter vector @ is time-invariant,
the estimate of @ can be averaged over the entire N observation samples and, as N becomes
infinitely large, a consistent estimate should approach the true parameter value. The difficulty
in signal interpolation is that the underlying excitation e of the signal x is purely random
and, unlike 0, it cannot be estimated through an averaging operation.

NN o A AN

o samples Signal estimator
Input signal y (interpolator)

>
>

Restored signal x

4

Parameter
estimator

Figure 4.4 [Illustration of signal restoration using a parametric model of the signal.
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4.1.4 PERFORMANCE MEASURES AND DESIRABLE PROPERTIES
OF ESTIMATORS

In estimation of a parameter vector @ from N observation samples y, a set of performance
measures is used to quantify and compare the characteristics of different estimators. In
general, an estimate of a parameter vector is a function of the observation vector y, the length
of the observation N and the process model M. This dependence may be expressed as

0= f(y, N, M) (4.4)

Different parameter estimators produce different results depending on the estimation method,
utilisation of the observation and the influence of the prior information. Owing to the
randomness of the observations, even the same estimator would produce different results
with different observations from the same process. Therefore an estimate is itself a random
variable, it has a mean and a variance, and it may be described by a pdf. However, for most
cases, it is sufficient to characterise an estimator in terms of the mean and the variance of
the estimation error. The most commonly used performance measures for an estimator are
the following:

(1) Expected value of estimate — [9];
(2) Bias of estimate — [0 0] = £[0] -
(3) Covariance of estimate — Cov[@] = [( £[0])(6 — £[0])"].

Optimal estimators aim for zero bias and minimum estimation error covariance. The desirable
properties of an estimator can be listed as follows:

(1) Unbiased estimator — an estimator of @ is unbiased if the expectation of the estimate is
equal to the true parameter value,

£[0] =0 (4.5)

An estimator is asymptotically unbiased if, for increasing length of observations N, we
have

lim Z£[0] =0 (4.6)

(2) Efficient estimator — an unbiased estimator of € is an efficient estimator if it has the
smallest covariance matrix compared with all other unbiased estimates of 0,

COV[éEfﬁcient] = COV[é] 4.7)

where 0 is any other estimate of 6.

(3) Consistentestimator —an estimator is consistent if the estimate improves with the increasing
length of the observation N, such that the estimate @ converges probabilistically to the true
value @ as N becomesinfinitely large:

lim P[|60—6| > ] =0 (4.8)

N—oo

where ¢ is arbitrary small.
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Example 4.1
Consider the bias in the time-averaged estimates of the mean u, and the variance 0'3, of N
observation samples [y(0), ..., y(N —1)], of an ergodic random process, given as
1 N—-1
iy = X y(m) (49)
m=0
5 1 N—1 )
oy = N Z [y(m) _My] (4.10)
m=0

It is easy to show that i, is an unbiased estimate, since

£[a,]= % Z:,; E [y(m)] = p, @.11)

The expectation of the estimate of the variance can be expressed as

2
LS [vom -2 5w
f[ﬁ'z]:’E — ym)y—= >y
Y Nm:O Nk:O
2 1
_ 2 2 2
— 0 2ol 0 (4.12)
1,
:U\—NUy

From Equation (4.12), the bias in the estimate of the variance is inversely proportional to
the signal length N, and vanishes as N tends to infinity; hence the estimate is asymptotically
unbiased. In general, the bias and the variance of an estimate decrease with increasing
number of observation samples, N, and with improved modelling. Figure 4.5 illustrates the
general dependence of the distribution and the bias and the variance of an asymptotically
unbiased estimator on the number of observation samples, N.

Joly@ly)

>

Figure 4.5 Illustration of the decrease in the bias and variance of an asymptotically unbiased estimate
of the parameter 6 with increasing length of observation.
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4.1.5 PRIOR AND POSTERIOR SPACES AND DISTRIBUTIONS

The Bayesian inference method weights the likelihood that a value of parameter 6 underlies
an observation y, f(y|@), with the prior probability of the value of the parameters f(8).
We may say that there is some similarity between Bayesian inference and human cognitive
inference in that we often weight evidence with prior experience or disposition.

The prior space of a signal or a parameter vector is the collection of all possible values
that the signal or the parameter vector can assume. Within the prior space, all the values
of a parameter vector may have the same probability, in which case the prior space would
have a uniform probability distribution, or the probability of the parameter vectors may have
a nonuniform distribution. If the prior distribution is nonuniform (e.g. Gaussian, gamma,
etc.), then the nonuniform prior can be used to weight the inference drawn from the
observation; this would given more weight to the values that have a higher prior probability
of occurrence.

The evidence of the value of a signal x, or a parameter vector 0, is contained in the
observation signal y, which is used in a likelihood or cost function from which the signal
or the parameter vector is estimated. For example a noisy speech signal, y, may be used to
obtain an estimate of the clean speech x and/or the parameter vector @ of a linear prediction
of model of speech.

The posterior signal or parameter space is the subspace of all the likely values of a signal
x, or a parameter vector @, that are consistent with both the prior information on signal x (or
parameter @) and the evidence contained in the observation y. The significance of posterior
probability is that the likelihood, fy e (y|@), of each value of a parameter 6 is weighted with
the prior probability of that value, fg ().

For example, the likelihood that a variable such as tomorrow’s weather, 6, takes a
particular value/state given some meteorological observations y, can be weighted with the
prior likelihood of the weather states (irrespective of the observation), which itself could be
obtained from previous years’ weather data and would be also conditional on the time of
the year.

Consider a random process with a parameter space @, observation space Y and a joint
pdf, fy ¢ (v, 0). From the Bayes’ rule the posterior pdf of the parameter vector, @, given an
observation vector y, fgy(01y), can be expressed as

fY|(~) (¥10) fo(0)
fy»)

where, for a given observation vector y, the pdf fy (y) is a constant and has only a normalizing
effect. From Equation (4.13), the posterior pdf is proportional to the weighted likelihood;
that is the product of the likelihood fy(y|@) that the observation y was generated by the
parameter vector 6, and the prior pdf fg(8). The prior pdf gives the unconditional parameter
distribution averaged over the entire observation space as

Toy (Bly) = (4.13)

fo(®) = [ fr.00.0) dy (4.14)

For most applications, it is relatively convenient to obtain the likelihood function, fy e (y|0).
The prior pdf influences the inference drawn from the likelihood function by weighting it
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10. ) )

Figure 4.6 Illustration of joint distribution of signal y and parameter 6 and the posterior distribution
of 6 given y.

with fg(0). The influence of the prior is particularly important for short-length and/or noisy
observations, where the confidence in the estimate is limited by the lack of a sufficiently
long observation and by the noise. The influence of the prior on the bias and the variance of
an estimate are considered in Section 4.4.1.

A prior knowledge of the signal distribution can be used to confine the estimate to the
prior signal space. The observation then guides the estimator to focus on the posterior space,
that is, the subspace consistent with both the prior belief and the evidence contained in the
observation. Figure 4.6 illustrates the joint pdf of a scalar signal y(m) and a scalar parameter
6. As shown, an observation y cuts a posterior pdf fgy(6|y) through the joint distribution.

Example 4.2

A noisy signal vector of length N samples is modelled as
y(m) = x(m) +n(m) (4.15)

Assume that the signal x(m) is Gaussian with mean vector m, and covariance matrix 3, and
that the noise n(m) is also Gaussian with mean vector p, and covariance matrix %,,. The
signal and noise pdfs model the prior spaces of the signal and the noise, respectively. Given
an observation vector y(m), the underlying signal x(m) would have a likelihood distribution
with a mean vector of y(m) — u, and a covariance matrix %,,, as shown in Figure 4.7. The
likelihood function is given by

nn>

Frix P(m)x(m)] = fy [y(m) —x(m)]
1
CemM2|E,,"”

exp | =3 (30~ ] =) 2, (0m) — ] -x(m) | (416
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A noisy
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space /‘

Likelihood space

Figure 4.7 Sketch of a two-dimensional signal and noise spaces, and the likelihood and posterior
spaces of a noisy observation, y.

where the terms in the exponential function have been rearranged to emphasize the illustration
of the likelihood space in Figure 4.7. Hence the posterior pdf can be expressed as

Fu bCmly(m)] = 22 Mm}"‘[i'a]){ f(m)]

1 1
Fr ] QN 12,17 2]

xexp [ =5 { (0m) = pi,] )" 5, (m) — ] —x(m)

Likelihood

+ [x(m) — p " 2 e (m) — ] (4.17)

Prior

For a two-dimensional signal and noise process, the prior spaces of the signal, the noise
and the noisy signal are illustrated in Figure 4.7. The likelihood and the posterior spaces
for a noisy observation vector, y, are also illustrated in Figure 4.7. Note that the centre of
the posterior space is obtained by subtracting the noise mean vector from the noisy signal
vector. The clean signal is then somewhere within a subspace determined by the noise
variance.

4.2 BAYESIAN ESTIMATION

The Bayesian estimation of a parameter vector, , is based on minimisation of a Bayesian
risk function defined as an average cost-of-error function:
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R(0) = £[C(, 0)]
= /,,/YC(@’, 0)fy.e(v,0)dydo (4.18)
= [ [ €®.0)7110010)o(0)aya0

where the cost-of-error function, C (9, 0), allows the appropriate weighting of the various
outcomes to achieve desirable objective or subjective properties. The cost function can
be chosen to associate a high cost with outcomes that are undesirable or disastrous. In
Equation (4.19) the risk function is averaged over the space of all values of the parameter 0
and the observation y.

For a given observation vector y, fy(y) is a constant and has no effect on the risk-
minimisation process. Hence Equation (4.18) may be written as a conditional risk function:

R(Bly) = [ C(0.0)foy (0ly) a0 (4.19)

The Bayesian estimate obtained as the minimum-risk parameter vector is given by
Onn = a2 inR(Dly) = ez min | [ CO.0)fop (000  (@20)
Using Bayes’s rule, Equation (4.20) can be written as
By = argmin [ [ €0.0)10010)0(0) cw] (421)

Assuming that the risk function is differentiable, and has a well-defined minimum, the
Bayesian estimate can be obtained as

. IR(0)y) [ 9 . }
05, cqian = Arg ZEeTO —— =argzero| — | C(0,0 0 0)do 4.22
by grero—> gzero| |, €@.0)10010)f0(0) (4.22)

4.2.1 MAXIMUM A POSTERIORI ESTIMATION

The MAP estimate, 9MAP, is obtained as the parameter vector that maximises the posterior
pdf, fey(0ly). The MAP estimate corresponds to a Bayesian estimate with a so-called
uniform cost function (in fact, as shown in Figure 4.8, the cost function is notch-shaped),
defined as

C(0,0)=1-5(0-0) (4.23)

where 8(@, 0) is the Kronecker delta function. Substitution of the cost function in the
Bayesian risk equation yields

R (Bly) = [ [1-5(0—0)) /oy (Oly) a0

= 1— fo(Bly)

(4.24)
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Figure 4.8 Illustration of the Bayesian cost function for the MAP estimate.

From Equation (4.24), the minimum Bayesian risk estimate corresponds to the parameter
value where the posterior function attains a maximum. Hence the MAP estimate of the
parameter vector, @, is obtained from a minimisation of the risk Equation (4.24) or
equivalently maximisation of the posterior function:

éMAP = arg (r)naxf@‘y(0|y)

(4.25)
= argmax{ fy(710) o(0)]

4.2.2 MAXIMUM-LIKELIHOOD ESTIMATION

The ML estimate @ML is obtained as the parameter vector that maximises the likelihood
function, fye(y|@). The ML estimator corresponds to a Bayesian estimator with a notch-
shaped cost function and a uniform-parameter prior pdf:

R (0) = [ [1-3(0—0)] fr0(410) fo(0) d0

cost function likelihood prior (426)
— const.[1 — fy e (710)]

where the prior function fg(0) = const.

From a Bayesian perspective the main difference between the ML and MAP estimators is
that the ML estimator assumes that the prior pdf of 0 is uniform. Note that a uniform prior,
in addition to modelling genuinely uniform pdfs, is also used when the parameter prior pdf
is unknown, or when the parameter is an unknown constant.

From Equation (4.26), it is evident that minimisation of the risk function is achieved by
maximisation of the likelihood function:

Oy = arg ;naxfy‘@(yW) (4.27)
In practice it is convenient to maximise the log-likelihood function instead of the likelihood:

O\, = argmax log fy4(Y|0) (4.28)
0
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The log-likelihood is usually chosen in practice because of the following properties:

(1) the logarithm is a monotonic function, and hence the log-likelihood has the same turning
points as the likelihood function;

(2) the joint log-likelihood of a set of independent variables is the sum of the log-likelihood
of individual variables; and

(3) unlike the likelihood function, the log-likelihood has a dynamic range that does not
cause computational under-flow.

Example 4.3: ML Estimation of the Mean and Variance of a Gaussian
Process

Consider the problem of maximum likelihood estimation of the mean vector p, and the
covariance matrix X, of a P-dimensional Gaussian vector process from N observation
vectors [y(0),y(1),...,y(N —1)]. Assuming the observation vectors are uncorrelated, the
pdf of the observation sequence is given by

N-1 1 1 T
ﬂb@w~JW—ULJLE;;EJWW4—§MW—MJ%me—m”
(4.29)
and the log-likelihood equation is given by
Rl B & 1
Infy [y(0),....y(N—1)]= {—Eln(27'r) —5In 1=,
m=0

—% (m) —m,] =, [p(m) —m,] } (4.30)

Taking the derivative of the log-likelihood equation with respect to the mean vector p,
yields

8lnfy [,Y(O)’aM . ’y(N_ 1)] — Ni:l [22};1”y _ZEy_ny(m)] =0 (431)
'y m=0

From Equation (4.31), we have
1 N—1
ity =5 X y(m) (432)

To obtain the ML estimate of the covariance matrix we take the derivative of the log-
likelihood equation with respect to Ey_yl:

dlnf, [y(0),....y(N=D] (1 1 .

FySa = ZO 33— 5 b -] yom) —m ] =0 (433)
Yy m=

From Equation (4.31), we have an estimate of the covariance matrix as

N—-1

3, = % > m) — i) [y(m) — i, ] (4.34)
m=0



106 BAYESIAN INFERENCE

Example 4.4: ML and MAP Estimation of a Gaussian Random Parameters

Consider the estimation of a P-dimensional random parameter vector, 6, from an
N-dimensional observation vector, y. Assume that the relation between the signal vector y
and the parameter vector @ is described by a linear model as

y=GO+e (4.35)
where e is a random excitation input signal. The pdf of the parameter vector, 6, given an
observation vector, y, can be described, using Bayes’s rule, as

1
fr»)

Assuming that the matrix G in Equation (4.35) is known, the likelihood of the signal y given
the parameter vector @ is the pdf of the random vector e:

fre|0) = fr(e =y —G0) (4.37)

Now assume the input e is a zero-mean, Gaussian-distributed, random process with a diagonal
covariance matrix, and the parameter vector @ is also a Gaussian process with mean u, and
covariance matrix 2. Therefore, the likelihood function, Equation (4.37), can be written as

for (Bly) = fre10)f6(0) (4.36)

o 010) = fie) = 0-G0Tr-6o)| @3

1
2mo?)Ni? exp |:

and

fol®) = 50— k) 01| (439)

1
—exp[
Q)P | gy

The ML estimate obtained from maximisation of the log-likelihood function In [ le@(y|0)]
with respect to @ is given by

0. ) = (G'G) "' Gy (4.40)

To obtain the MAP estimate we first form the posterior distribution by substituting
Equations (4.38) and (4.39) in Equation (4.36)

1 1
Sy ) QEa)™? 2m)P2 2"

xexp| <55 0= GO 0= GO) ~ 30y Z} 0 - mp) | (41

for (Bly) =

The MAP parameter estimate is obtained by differentiating the log-likelihood function,
In fgy(@y), and setting the derivative to zero:

Ovrr 0) = (G'G+02240) " (GTy+ 07250 o) (4.42)

Note that, as the covariance of the Gaussian-distributed parameter increases, or equivalently
as X, — 0, the Gaussian prior tends to a uniform prior and the MAP solution
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[Equation (4.42)] tends to the ML solution given by Equation (4.40). Conversely as the pdf
of the parameter vector 6 becomes peaked, i.e. as 249 — 0, the estimate tends towards p,,
the mean of the prior pdf.

4.2.3 MINIMUM MEAN SQUARE ERROR ESTIMATION

The Bayesian MMSE estimate is obtained as the parameter vector that minimises a mean
square error cost function (Figure 4.9), defined as

Rnise (B) = =[ (0 0)* | |

N 4.43
= [ (- 6)*/y(6]y)a0 4
0

In the following, it is shown that the Bayesian MMSE estimate is the conditional mean of
the posterior pdf. Assuming that the mean square error risk function is differentiable and
has a well-defined minimum, the MMSE solution can be obtained by setting the gradient of
the mean square error risk function to zero:

a‘%MMSE(é [y)

e =20 / for (Oly)d0 —2 / 0/0y(0]y)d0 (4.44)

Since the first integral on the right-hand side of Equation (4.44) is equal to 1, we have

aRMMSE(éLy)

=20-2 [ 0fqy(d0]y)d6 4.45
> |, 07oa0ly) (4.45)

The MMSE solution is obtained by setting Equation (4.45) to zero:

Bunis ) = [ 01 (6]y)d0 (4.46)
]

Jo @) n
c(6.6)

GMMSE

Figure 4.9 Illustration of the mean square error cost function and estimate.
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For cases where we do not have pdf models of the parameter process 0 and the signal y,
the minimum mean square error (known as the least square error, LSE) estimate is obtained
through minimisation of a mean square error function E[e*(0]y)]:

0, = argmin Z[e*(0]y)] (4.47)
0

where e(@|y) is an error signal. Least squared error estimation is considered in some depth
in Chapter 6 on Wiener filters, in Chapter 7 on adaptive filters and in Chapter 8 on linear
prediction. For a process with a Gaussian likelihood and a uniform parameter prior, the
MMSE estimate is the same as the LSE estimate. The LSE estimation of Equation (4.47)
does not use any prior knowledge of the distribution of the signals and the parameters. This
can be considered as a strength of the LSE method in situations where the prior pdfs are
unknown, but it can also be considered as a weakness in cases where fairly accurate models
of the priors are available but not utilised. In the following example it is shown that the least
squared error solution of Equation (4.47) is equivalent to ML solution when the signal has
a Gaussian distribution.

Example 4.5

Consider the LSE estimation of the parameter vector @ of a linear signal model from an
observation signal vector y given as

y=GO+te (4.48)

where G is a matrix. The LSE estimate is obtained as the parameter vector at which the
gradient of the mean squared error, eTe, with respect to @ is zero:
de'e 9

0 = 70 0"y —-20"G"y +0'G"Go)| =0 (4.49)

OLse

From Equation (4.49) the LSE parameter estimate is given by
0. =[G"G]"'G"y (4.50)

Note that for a Gaussian likelihood function, the LSE solution is the same as the ML solution
of Equation (4.40).

4.2.4 MINIMUM MEAN ABSOLUTE VALUE OF ERROR ESTIMATION

The minimum MAVE estimate (Figure 4.10) is obtained through minimisation of a Bayesian
risk function defined as

Rrave (B) = £[ 10— 0ly] = [ 10— 017(8ly) a0 *51)
]

In the following it is shown that the minimum MAVE estimate is the median of the parameter
process. Equation (4.51) can be expressed as

R N o n
Ranve (@) = [ (00170 (01)d0+ [ [0-01fop(0h)d0  (452)
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Foyw @) cbe)

oMAVE 6

Figure 4.10 Illustration of mean absolute value of error cost function. Note that the MAVE estimate
coincides with the conditional median of the posterior function.

Taking the derivative of the risk function with respect to 0 yields

BRMAVE(éLy)

a o]
0 [ Fon(®1)a0— [ foy(0ly)a0 (4.53)

The minimum absolute value of error is obtained by setting Equation (4.53) to zero:

éMAVF. 0
[ Sow(®b)a0= | foy(8ly)a6 (4.54)

0MAVE

From Equation (4.54) we note the MAVE estimate is the median of the posterior density.

4.2.5 EQUIVALENCE OF THE MAP, ML, MMSE AND MAVE FOR
GAUSSIAN PROCESSES WITH UNIFORM DISTRIBUTED
PARAMETERS

Example 4.5 shows that, for a Gaussian-distributed process, the LSE estimate and the ML
estimate are identical. Furthermore, Equation (4.42) for the MAP estimate of a Gaussian-
distributed parameter shows that, as the parameter variance increases, or equivalently as the
parameter prior pdf tends to a uniform distribution, the MAP estimate tends to the ML and
LSE estimates. In general, for any symmetric distribution, centred round the maximum, the
mode, the mean and the median are identical. Hence, for a process with a symmetric pdf,
if the prior distribution of the parameter is uniform then the MAP, the ML, the MMSE and
the MAVE parameter estimates are identical. Figure 4.11 illustrates a symmetric pdf, an
asymmetric pdf and the relative positions of various estimates.

4.2.6 THE INFLUENCE OF THE PRIOR ON ESTIMATION BIAS AND
VARIANCE

The use of a prior pdf introduces a bias in the estimate towards the range of parameter
values with relatively high values of prior pdf, and reduces the variance of the estimate. To
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Figure 4.11 Illustration of a symmetric and an asymmetric pdf and their respective mode, mean and
median and the relations to MAP, MAVE and MMSE estimates.

illustrate the effects of the prior pdf on the bias and the variance of an estimate, we consider
the following examples in which the bias and the variance of the ML and the MAP estimates
of the mean of a process are compared.

Example 4.6

Consider the ML estimation of a random scalar parameter 6, observed in a zero-mean additive
white Gaussian noise (AWGN), n(m), and expressed as

y(m)=0+n(m), m=0,...,N—1 (4.55)

It is assumed that, for each realisation of the parameter #, N observation samples are
available. Note that, since the noise is assumed to be a zero-mean process, this problem is
equivalent to estimation of the mean of the process y(m). The likelihood of an observation
vector y = [y(0), y(1),...,¥(N —1)] and a parameter value of 6 is given by

N—1 1 1 N—1 )
Trie(|0) = VEOfN [y(m) — 0] = Qo) exp {_Tt,% E) [y(m) — 6] (4.56)
From Equation (4.56) the log-likelihood function is given by
N 1 V!
In fy0(316) = = n2m0) = 5— 3~ [y(m) -6 (457)
n m=0

The ML estimate of 6, obtained by setting the derivative of In fy ¢ (y|6) to zero, is given by

R 1 N—1 _
O = ﬁ Z y(m) =y (4.58)
m=0

where y denotes the time average of y(m). From Equation (4.56), we note that the ML
solution is an unbiased estimate

E[h] =T [% mz:o y(m)j| s H Z_:[O—i-n(m)]} _9 (4.59)

m=0



BAYESIAN ESTIMATION 111

and the variance of the ML estimate is given by

q
8]

m=0

2
R R 1 N—-1
Var[by ] = E[(fyr. —0)’] = £ |:N > y(m)— 9:| = Wn (4.60)
Note that the variance of the ML estimate decreases with increasing length of observation.

Example 4.7: Estimation of a Uniformly Distributed Parameter Observed in
AWGN

Consider the effects of using a uniform parameter prior on the mean and the variance of the
estimate in Example 4.6. Assume that the prior for the parameter 0 is given by

1/(0max - Omin) Omin = 6 = emax

. (4.61)
0 otherwise

f®(0) = {

as illustrated in Figure 4.12. From Bayes’ rule, the posterior pdf of uniformly distributed is
given by

1
f(~)|Y(9|)’) = mfy|(~)()’|0)f(~)(9)
Y
N-1 (4.62)
— %Wexp{_é Zo[y(m)_e]z}’ Ominfeiemax
0, otherwise

The MAP estimate is obtained by maximising the posterior pdf:

Hmin if éML (y) < emin
0MAP(y) = GML(y) if ?min = OML (y) = Hmax (463)
amax lf HML(y) > Gmax

Note that the MAP estimate is constrained to the range 0,;, — 0, This constraint is desirable
and moderates the estimates that, due to say low signal-to-noise ratio, fall outside the range

Trie(¥[6) £o(0) Tor(0ly)

Likelihood Prior Posterior

Figure 4.12 [Illustration of the effects of a uniform prior on the estimate of a parameter observed in
AWGN.
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of possible values of 6. It is easy to see that the variance of an estimate constrained to a range
of 0, — 0, 15 less than the variance of the ML estimate in which there is no constraint on
the range of the parameter estimate:

Omax
A

Varlfuspl = [ Bune — 01 frio010dy < VarlBy ] = [ By — 07 frio010)dy  (4.64)
0,

min ™

Example 4.8: Estimation of a Gaussian-distributed Parameter Observed in
AWGN

In this example, Figure 4.13, we consider the effect of a Gaussian prior on the mean and the
variance of the MAP estimate. Assume that the parameter 6 is Gaussian-distributed with a
mean p, and a variance o; as

fol6) = Cal.), ]

1
—_— —_— 4.65
Gray P [ 207 (469

From Bayes rule the posterior pdf is given as the product of the likelihood and the prior pdfs
as:

1

So(Oly) = mfy‘@(yw) fo(0)
_ 1 1 1 N—1 ; R 1 . .
L)) Qma2)N2(2ma])!/? P _E ,,,X::O [y(m) =0T = 27,5( — o)

(4.66)

The maximum posterior solution is obtained by setting the derivative of the log-posterior
function, fgy(6ly), with respect to 6 to zero:

A o? o?/N
0 = 7 . 4.67
Mar () a'g—i—af/Ny 0_5_’_03/1\,#9 ( )
To O fy (»)
Frev19) fo(0) !
Likelihood Prior : Posterior
I
! 1 |
' X ' = '
! 1 1
! ] 1
! | 1
/ i i I
On 0 Ormax = Hg 0 Omap o

Figure 4.13 Tllustration of the posterior pdf as product of the likelihood and the prior.
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Figure 4.14 Illustration of the effect of increasing length of observation on the varianced an estimator.

where
N—-1
y=_ y(m)/N
m=0

Note that the MAP estimate is an interpolation between the ML estimate y and the mean of
the prior pdf u,, as shown in Figure 4.14. Also note that in Equation (4.67) the interpolation
weights are dependent on signal-to-noise ratio and the length of the observation. As the
variance (i.e. power) of noise decreases relative to the variance of the parameter and/or as
the number of observations increases, the influence of the prior decreases, conversely, as the
variance (i.e. power) of noise increases and/or as the number of observation decreases, the
influence of the prior increases.

The expectation of the MAP estimate is obtained by noting that the only random variable
on the right-hand side of Equation (4.67) is the term y, and that £[y] =0

R o2 o?/N
£[6 = 6 n 4.68
[Opar ()] o2 +02/N O'g—i—oﬁ/NMe ( )
and the variance of the MAP estimate is given as
A o2 o?/N
Var[6 = —5—"— xVar[y] = —2—— 4.69
ar[Oyap ()] o2+ 02N x Var[y] 1+ 02/No2 ( )
Substitution of Equation (4.60) in Equation (4.69) yields
5 Var{fy ()]
Var[Oyap ()] = I - (4.70)
1+ Var[by, )]/ 0y

Note that, as 0'3, the variance of the parameter 6, increases, the influence of the prior
decreases, and the variance of the MAP estimate tends towards the variance of the ML
estimate.



114 BAYESIAN INFERENCE

4.2.7 THE RELATIVE IMPORTANCE OF THE PRIOR AND THE
OBSERVATION

A fundamental issue in the Bayesian inference method is the relative influence of the
observation signal and the prior pdf on the outcome. The importance of the observation
depends on the confidence in the observation, and the confidence in turn depends on the
length of the observation and on the signal-to-noise ratio (SNR). In general, as the number
of observation samples and the SNR increase, the variance of the estimate and the influence
of the prior decrease. From Equation (4.67), for the estimation of a Gaussian distributed
parameter observed in AWGN, as the length of the observation N increases, the importance
of the prior decreases, and the MAP estimate tends to the ML estimate:

o} o?/N R
l1m1t0 = 11m1t o y+ 2 =y=280 4.71
ap(¥) = <0_ i 2/N 0'§+0'§/NM0> y ML ( )
As illustrated in Figure 4.14, as the length of the observation N tends to infinity, then both
the MAP and the ML estimates of the parameter should tend to its true value, 6.

Example 4.9: MAP Estimation of a Signal in Additive Noise

Consider the estimation of a scalar-valued Gaussian signal x(m), observed in an additive
Gaussian white noise n(m), and modelled as

y(m) = x(m) + n(m) (4.72)

The posterior pdf of the signal x(m) is given by

Fxy [e(m) [y(m) ] = ————= fyx [y(m) [x(m) ] fx[x(m)]

frly ( )] @73)

i [y( T Togy] v ) = x(m)] fylx(m)

where fy[x(m)] = N [x(m), u,, 0?] and fy[n(m)] = N [n(m), u,, 0] are the Gaussian

X

pdfs of the signal and noise, respectively. Substitution of the signal and noise pdfs in
Equation (4.73) yields

o 1 [y(m) = x(m) — ,]°
Txpy [x(m)|y(m)] = 7 D01 Voo exp {— 207 }
_ 2
T exp{ —W} (4.74)

This equation can be rewritten as
1
X
fyry(m)] 2mo, 0,

a2 y(m) —x(m) — p, " + 02 [x(m) — ]’
°xp 20202

Fxy [x(m)ly(m)] =

} (4.75)
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To obtain the MAP estimate we set the derivative of the log-likelihood function
In fyy [x(m)|y(m)] with respect to x(m) to zero as

d{In fyyy [x(m)|y(m)]} =207 [y(m) — x(m) — p,] +20; [x(m) — ]
- - _ =0 (4.76)
dx(m) 202072
From Equation (4.76) the MAP signal estimate is given by
. o? a?

Note that the estimate x(m) is a weighted linear interpolation between the unconditional
mean of x(m), u,, and the observed value [y(m)—u,]. At a very poor SNR, i.e. when
0% < a2, we have X(m) ~ p,; on the other hand, for a noise-free signal o2 =0 and u, =0,
and we have x(m) = y(m).

Example 4.10: MAP Estimate of a Gaussian—AR Process Observed in AWGN

Consider a vector, x, of N samples from an AR process observed in an additive Gaussian
noise, and modelled as

y=x+n (4.78)

From Chapter 8, a vector x from an AR process may be expressed as
e =Ax 4.79)
where A is a matrix of the AR model coefficients, and the vector e is the input signal of

the AR model. Assuming that the signal x is Gaussian, and that the P initial samples x, are
known, the pdf of the signal x is given by

1 1
Fx(xlxo) = frle) = Gro) exp <—T‘2xTATAx) (4.80)

where it is assumed that the input signal e of the AR model is a zero-mean uncorrelated

process with variance o>. The pdf of a zero-mean Gaussian noise vector n, with covariance
matrix %, is given by

1 1 B
fN (n) = W eXp <_ EnTzn"ln) (481)
From Bayes’ rule, the pdf of the signal given the noisy observation is

fY|X Olx) fx(x) _ 1
fry) fr(y)

fx|y(x|.)’) = vy —x) fx(x) (4.82)
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Substitution of the pdfs of the signal and noise in Equation (4.82) yields

1 1 T xTATAx
leY(x|y)=fy(y)(Zw)NUﬁv/z|2nn|1/zeXp{_§ [(y—x) S o (y—x)+ = “ (4.83)

The MAP estimate corresponds to the minimum of the argument of the exponential function
in Equation (4.83). Assuming that the argument of the exponential function is differentiable,
and has a well-defined minimum, we can obtain the MAP estimate from

xTATAx} } (.59

R 0

fanely) = argzero | |72 00+ 2
x ax O'e

The MAP estimate is

1 -1
Xvap(y) = <I+ EznnATA> Yy (4.85)

e

where I is the identity matrix.

4.3 THE ESTIMATE-MAXIMISE METHOD

The EM algorithm is an iterative likelihood maximisation method with applications in
blind de-convolution, clustering, training of hidden Markov models, model-based signal
interpolation, spectral estimation from noisy observations, signal restoration and estimation
of a set of model parameters from a training data set.

The EM is a framework for solving problems where it is difficult to obtain a direct ML
estimate, either because the data is incomplete (Figure 4.15), e.g. when there are missing
samples or missing labels, or because the problem is difficult. For example, in clustering
applications usually the raw data do not have a cluster label attached to them and hence
an iterative EM process is employed consisting of (a) labelling of data (expectation) and
(b) calculation of means and variances of clusters.

To define the term incomplete data, consider a signal x from a random process X with
an unknown parameter vector, 0, and a pdf fy.o(x; @). The notation fy.q(x; 0) expresses
the dependence of the pdf of X on the value of the unknown parameter 6. The signal x is
the so-called complete data and the ML estimate of the parameter vector @ may be obtained
from fy.g(x; @). Now assume that the signal x goes through a many-to-one noninvertible
transformation (e.g. when a number of samples of the vector x are lost) and is observed as
y. The observation y is the so-called ‘incomplete data’.

‘Complete data’ ‘Incomplete data’
Slgnzglipglocess x Noninvertable y
parameter 6 fro(x:0) transformation Tre(r:0)

Figure 4.15 Tllustration of transformation of complete data to incomplete data.
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Maximisation of the likelihood of the incomplete data, fy.o(y; @), with respect to the
parameter vector, @, is often a difficult task, whereas maximisation of the likelihood of the
complete data, fy.g(x; ), is relatively easy. Since the complete data is unavailable, the
parameter estimate is obtained through maximisation of the conditional expectation of the
log-likelihood of the complete data defined as

% [In fr.o(: O] = [ fuyo (1y: 0)1n fr.o(x: 0) dv (4.86)
X

In Equation (4.86), the computation of the term fy,y.o(x|y; @) requires an estimate of the
unknown parameter vector, 0. For this reason, the expectation of the likelihood function
is maximised iteratively starting with an initial estimate of €, and updating the estimate as
described below. Note that the right-hand side of Equation (4.86) is similar to an entropy
function.

EM Algorithm

Step I: initialisation — select an initial parameter estimate 6, and for i =0, 1,...
until convergence:
Step 2: expectation — compute

U8, 0,) = E[In fy.o(x; 0)|y; 8,)

= / Fxiv.oxly; l;,v)lnfx;@(x; 0) dx (4.87)
X

Step 3: maximisation — select

(A?,-H = argmaxU(0, (A),) (4.88)
0

Step 4: convergence test — if not converged then go to Step 2.

4.3.1 CONVERGENCE OF THE EM ALGORITHM

In this section, it is shown that the EM algorithm converges to a maximum of the likelihood
of the incomplete data, fy.o(y; #). The likelihood of the complete data can be written as

fxv.o(x,y;0)= fx|y;@(x|y§ 0)fyv.o0y; 0) (4.89)

where fy y.g(x,y; 0) is the likelihood of x and y with @ as a parameter. From Equation (4.89),
the log-likelihood of the incomplete data is obtained as

In fy.o(y; 0) =In fy y.0(x,y; 0) _lnfxw;@(xb’; 0) (4.90)
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Using an estimate, 9,, of the parameter vector, 0, and taking the expectation of Equation (4.90)
over the space of the complete signal x, we obtain

In fy,o(v; 0) = U(0; 6)) — V(6; 0)) (4.91)

where for a given y, E[In fy.o(y; 0)] = In fy.o(y; @)], and the function U(0; (A?) is the
conditional expectation of In fy y.o(x,y; 6):

U0, 8,) = [In fy y.o(x,y; 0)ly: 6,)

n 4.92
= [ Fumiotely: 0)In fyox: 0) dx (492
X
The function V(6, 9) is the conditional expectation of In fyy.(x]y; 6):
V(0.0) = [In fyy.o(x]y: 0)|y: 0, |
(4.93)

= [ Furo®ly: 0)In fyy.o(xly; 0) dx
X

Now, from Equation (4.91), the log-likelihood of the incomplete data y with parameter
estimate @, at iteration i is

In fy.o(v: ;) = U(B;: 8,) ~ V(8,: 6, (4.94)
It can be shown (see Dempster et al., 1977) that the function V satisfies the inequality
V(B;.1: ) < V(8:: 6) (4.95)

and in the maximisation step of EM we choose éi +1 such that

A

U(B,: 6,) = U(B;: b)) (4.96)
From Equation (4.94) and the inequalities (4.95) and (4.96), it follows that

In fy.0(y; ém) > In fy.o(y; él) (4.97)

Therefore at every iteration of the EM algorithm, the conditional likelihood of the estimate
increases until the estimate converges to a local maximum of the log-likelihood function,
In fy.e(y: 0).

The EM algorithm is applied to the solution of a number of problems in this book. In
Section 4.5, the estimation of the parameters of a mixture Gaussian model for the signal
space of a recorded process is formulated in an EM framework. In Chapter 5, the EM is
used for estimation of the parameters of a hidden Markov model.
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4.4 CRAMER-RAO BOUND ON THE MINIMUM ESTIMATOR
VARIANCE

An important measure of the performance of an estimator is the variance of the estimate with
the varying values of the observation signal, y, and the parameter vector, . The minimum
estimation variance depends on the distributions of the parameter vector, 8, and on the
observation signal, y. In this section, we first consider the lower bound on the variance of
the estimates of a constant parameter, and then extend the results to random parameters.

The Cramer—Rao lower bound on the variance of estimate of the ith coefficient, 6,, of a
parameter vector, 0, is given as

2
(142

dln fy10(10) \ 2
e[ ()]

An estimator that achieves the lower bound on the variance is called the minimum variance,
or the most efficient, estimator.

Var[6,(y)] = (4.98)

Proof The bias in the estimate é,(y) of the ith coefficient of the parameter vector 0,
averaged over the observation space Y, is defined as

£0,0) = 0] = [ 10,0) ~ 61f6010)dy = b, (4.99)

Differentiation of Equation (4.99) with respect to 6, yields

R T (4.100)
For a probability density function we have
f Frie010)dy =1 (4.101)
Therefore Equation (4.100) can be written as
roOl0) | P

=1+ (4.102)

f[o@) o]0

—o0

z 891
Now, since the derivative of the integral of a pdf is zero, taking the derivative of
Equation (4.101) and multiplying the result by 6y, yields

[ fre10)
, Nl i
0B1as / 90. y

1

=0 (4.103)

—00
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Substituting

3fy\(~)0’|0)/59i = fY|@(y|0)alan\(9(.)’|0)/80i

into Equation (4.102), and using Equation (4.103), we obtain

‘91an|0()’| 0)
a0,

20
frie@|0)dy =1+ a‘; (4.104)

1 1

/m [6:0) — Oiss — 61]

Now squaring both sides of Equation (4.104), we obtain

0Bas ?
frie(y|0)dy <1+ ) (4.105)

[ 15:6) .~ 01 %

\— 00

l

( v fY|@(v|0)

For the left-hand side of Equation (4.105) application of the following Schwartz inequality

2

oo

[ 1metay | = [ OIF dyx [ [s0)F dy (4.106)

—00

yields

2

[ (100t 01s30100) (2220 1))

=)

= [ (0.0) = 0= 0 Sri0010)) @y | £ 1 [ <L@W>> frio(16) dy

90,
(4.107)
From Equations (4.105) and (4.107), we have
R d1n fy0(y|0)\’ 90
Var[0.(y)] x E [(%'—;’(y')> } (1+ a];) (4.108)

The Cramer—Rao inequality (4.98) results directly from the inequality (4.108).

4.4.1 CRAMER-RAO BOUND FOR RANDOM PARAMETERS

For random parameters the Cramer—Rao bound may be obtained using the same procedure
as above, with the difference that, in Equation (4.98), instead of the likelihood fy e (y|@) we
use the joint pdf, fy ¢(y, @), and we also use the logarithmic relation

31ny,(~)(y, 0) _ 51nfy|(~)(y|0) n dln f(0)
40, a6, 90,

1

(4.109)
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The Cramer—Rao bound for random parameters is obtained as
2
96, ias
(1+55)
‘E dln fy|e(y|60) 2 + dln fo(0) 2
a6; 96;

where the second term in the denominator of Equation (4.110) describes the effect of the
prior pdf of 0. As expected, the use of the prior, f,(#), can result in a decrease in the
variance of the estimate. An alternative form of the minimum bound on estimation variance
can be obtained using the likelihood relation

Var[6,(y)] > (4.110)

- (alnfy,@@ﬁ))z __E[aszy,@(v,a)] @110
2, - 26? '
as
<1+%>2
Varlb, )] > - %, (“.112)
321nfy\(~)()’|0) & 1n fo(0)
T T e

4.4.2 CRAMER-RAO BOUND FOR A VECTOR PARAMETER

For real-valued P-dimensional vector parameters, the Cramer—Rao bound for the covariance
matrix of an unbiased estimator of 6 is given by

Cov[8] > J7'(0) (4.113)

where J is the P x P Fisher information matrix, with elements given by

& 1n fy 0oy, 0)
0)),=—F| ———— 4.114
O e @114)
The lower bound on the variance of the ith element of the vector @ is given by
n 1
Var() = [J7'(0)]; = (@.115)
#Infy o(y. 0)
£l ————m—m—
o0

where [J71(0),] is the ith diagonal element of the inverse of the Fisher matrix.

4.5 DESIGN OF GAUSSIAN MIXTURE MODELS

A practical method for modelling the probability density function of an arbitrary signal space
is to fit (or ‘tile’) the space with a mixture of a number of Gaussian probability density



122 BAYESIAN INFERENCE

X1

X2

Figure 4.16 Illustration of probabilistic modelling of a two-dimensional signal space with a mixture
of five bivariate Gaussian densities.

functions. The Gaussian functions hence act as elementary pdfs from which other pfds can
be constructed.

Figure 4.16 illustrates the cluster modelling of a two-dimensional signal space with
a number of circular and elliptically shaped Gaussian processes. Note that the Gaussian
densities can be overlapping, with the result that, in an area of overlap, a data point can be
associated with different components of the Gaussian mixture.

A main advantage of the use of a mixture Gaussian model is that it results in mathematically
tractable signal processing solutions. A mixture Gaussian pdf model for a process X is
defined as

fx(x)ZZPka(X; My 2p) (4.116)

k=1

where N, (x; u,, 2,) denotes the kth component of the mixture Gaussian pdf, with mean
vector m, and covariance matrix 2,. The parameter P, is the prior probability of the kth
mixture, and it can be interpreted as the expected fraction of the number of vectors from the
process X associated with the kth mixture.

In general, there are an infinite number of different K-mixture Gaussian densities that can
be used to ‘tile up’ a signal space. Hence the modelling of a signal space with a K-mixture
pdf space can be regarded as a many-to-one mapping, and the EM method can be applied
for the estimation of the parameters of the Gaussian pdf models.

4.5.1 EM ESTIMATION OF GAUSSIAN MIXTURE MODEL

The EM algorithm, discussed in Section 4.4, is an iterative ML estimation method, and can
be employed to calculate the parameters of a K-mixture Gaussian pdf model for a given data
set. To apply the EM method we first need to define the so-called complete and incomplete
data sets. As usual, the observation vectors [y(m)m =0, ..., N — 1] form the incomplete
data. The complete data may be viewed as the observation vectors with a label attached to
each vector y(m) to indicate the component of the mixture Gaussian model that generated
the vector. Note that, if each signal vector y(m) had a mixture component label attached,
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then the computation of the mean vector and the covariance matrix of each component of
the mixture would be a relatively simple exercise. Therefore the complete and incomplete
data can be defined as follows:

The incomplete data y(m),m=0,...,N—1

The complete data x(m)=[y(m), k] =y,(m),m=0,..., N—1l,ke(l,...,K)
The probability of the complete data is the probability that an observation vector y(m) has
a label k associating it with the kth component of the mixture density. The main step in

application of the EM method is to define the expectation of the complete data, given the
observations and a current estimate of the parameter vector, as

U(®,0,) = £[In fy x.ely(m), k; Olly(m); 6]

3y a1 (4.117)
B ~ In fy . Lk, @
"’X::‘)/; friely(m)|©;] nfr.cely(m) ]

where @ = {0, = [P, m;, 2],k =1,..., K}, are the parameters of the Gaussian mixture
as in Equation (4.116). Now the joint pdf of y(m) and the kth Gaussian component of the
mixture density can be written as

fro |

ai] = Pk,fk [.Y(m)lak]

A (4.118)
= Pk,j\fk [y(m); i"k,-’ Ek,]

where N, [y(m); My Ek] is a Gaussian density with mean vector m, and covariance matrix

DI

Ny m): %] = e {3 bm - m = b ]| @119

1

The pdf of y(m) as a mixture of K Gaussian densities is given by

Tyie [y(m)’bl]zN[ é,]

K ~
= Z i)k,-Nk [J’(m)§ ﬁki’ Eki:I
k=1

(4.120)

Substitution of the Gaussian densities of Equation (4.118) and Equation (4.120) in
Equation (4.117) yields

. PPN i Pka[y(m) (% Ek,] m
[ %2y, Gy 2P0 = B 32 2= S Py () . )
& | P Nely(m); ”“k’zk]
= InP,
ZZ{ Nymlo]

i)k,-Nk[y(m); ﬁ’k,-’ 2k,-]
Ny(m)|©,]

In Ny(m); p, Ek]} (4.121)
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Equation (4.121) is maximised with respect to the parameter P, using the constrained
optimisation method. This involves subtracting the constant term %P, = 1 from the right-
hand side of Equation (4.121) and then setting the derivative of this equation with respect
to P, to zero; this yields

1 N1 i)k,.Nk [y(m); f‘k,.’ ik,:l
N.Z  N(m)e,)

~

by, =argmaxU [ (u; 3, P), (e, 2. P) | =
Py

(4.122)

The parameters p, and 3, that maximise the function U are obtained by setting the derivative
of the function with respect to these parameters to zero:

i, = argmaxU| (m: . P). (. 3., P
I

N-1 iJk,M [y(m); ﬂk,’ ﬁk,:l
n=0 Nly(m)|,]
N-1 i’k[M [J’(m)Z ﬁ’k;’ ik;]
n=0 Ny(m)|@)]

y(m) (4.123)

and

zk,-_H = argfnaxUL(p,; 2, P), (i, Ei’ﬁi”
2

et P [y(my: g 3 |
_=0 Nlym)|&)]
wt PNy omys g 3
n=0 Nly(m)|@)]

[y(m) — iy [y (m) — i, ] (4.124)

Equations (4.122)—(4.124) are the estimates of the parameters of a mixture Gaussian pdf
model. These equations can be used in further iterations of the EM method until the parameter
estimates converge.

4.6 BAYESIAN CLASSIFICATION

Classification is the process of labelling of an observation sequence {y(m)} with one of M
classes of signals {C;; k= 1,..., M} that could have generated the observation. Classifiers
are present in all modern digital communication systems and in applications such as the
decoding of discrete-valued symbols in digital communication receivers, speech compression,
video compression, speech recognition, image recognition, character recognition, signal/noise
classification and detectors.

For example, in an M-symbol digital communication system, the channel output signal
is classified as one of the M signalling symbols; in speech recognition, segments of speech
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fxx)

M Onesh M2 X

Figure 4.17 Illustration of the overlap of the distribution of two classes of signals.

signals are labelled with one of about 40 elementary phonemes sounds; and in speech or
video compression, a segment of speech samples or a block of image pixels is quantised
and labelled with one of a number of prototype signal vectors in a codebook. In the design
of a classifier, the aim is to reduce the classification error given the constraints on the
signal-to-noise ratio, available training data, bandwidth and the computational resources.

Classification errors are due to overlap of the distributions of different classes of signals.
This is illustrated in Figure 4.17 for a binary classification problem with two Gaussian
distributed signal classes C, and C,. In the shaded region, where the signal distributions
overlap, a sample x could belong to either of the two classes. The shaded area gives a measure
of the classification error. The obvious solution suggested by Figure 4.17 for reducing the
classification error is to reduce the overlap of the distributions. The overlap can be reduced
in two ways: (a) by increasing the distance between the mean values of different classes;
and (b) by reducing the variance of each class. In telecommunications systems the overlap
between the signal classes is reduced using a combination of several methods including
increasing the signal-to-noise ratio, increasing the distance between signal patterns by adding
redundant error control coding bits, and signal shaping and post-filtering operations. In
pattern recognition, where it is not possible to control the signal generation process (as in
speech and image recognition), the choice of the pattern features and models affects the
classification error. The design of an efficient classification for pattern recognition depends
on a number of factors, which can be listed as follows:

(1) Extraction and transformation of a set of discriminative features from the signal that can
aid the classification process. The features need to adequately characterise each class
and emphasise the differences between various classes.

(2) Statistical modelling of the observation features for each class. For Bayesian
classification, a posterior probability model for each class should be obtained.

(3) Labelling of an unlabelled signal with one of the N classes.

4.6.1 BINARY CLASSIFICATION

The simplest form of classification is the labelling of an observation with one of two classes
of signals. Figures 4.18(a) and (b) illustrate two examples of a simple binary classification
problem in a two-dimensional signal space. In each case, the observation is the result of a
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Figure 4.18 Illustration of binary classification: (a) the source and observation spaces are well
separated; (b) the observation spaces overlap.

random mapping (e.g. signal plus noise) from the binary source to the continuous observation
space. In Figure 4.18(a), the binary sources and the observation space associated with each
source are well separated, and it is possible to make an error-free classification of each
observation. In Figure 4.18(b) there is less distance between the mean of the sources, and the
observation signals have a greater spread. These result in some overlap of the signal spaces
and classification error can occur.

In binary classification, a signal x is labelled with the class that scores the higher a posterior
probability:

o
Peix (Cylx) 2 Py (G |x) (4.125)

G

Note the above notation means that a signal x is classified as C, if Pejy (C; |x) > Py (G, [x),
otherwise it is classified as C,. Using Bayes’ rule, Equation (4.125) can be rewritten as

C

P (Cl)fX\C (x[C, )Cch (G) fX|c (x1Cy) (4.126)

Letting P-(C,) = P, and P.(C,) = P,, Equation (4.126) is often written in terms of a
likelihood ratio test as

fxic ®|Cy) gl P,

_2 4.127
Txie (x|C2)52P1 ( )
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Taking the likelihood ratio yields the following discriminant function:

G
P
h(x) = =In fyc ®|C)) =In fyc (x]C;) 2 (4.128)
> 2
Now assume that the signal in each class has a Gaussian distribution with a probability
distribution function given by

1 1
fric (x|c;) = ——ex |:——x—pL,- TE,.lx—pL,->,i=1,2 4.129
xjc (*le;) N p| =5 ) 2 ) (4.129)
From Equations (4.128) and (4.129), the discriminant function A(x) becomes
P
) = =5 = )T ) ) 2 ) I : 2t (4130)
C l
Example 4.11

For two Gaussian-distributed classes of scalar-valued signals with distributions given by
N[x(m), u,, 0*] and N[x(m), u,, 0*], and equal class probability, P, = P, = 0.5, the
discrimination function of Equation (4.130) becomes

c
1 2 G

x(m)+ = el >0 (4.131)
2 o2 c,

hlx(m)] = 225

Hence the rule for signal classification becomes

(o
< M1 T M) Py A+ pn)

G

x(m)s (4.132)

The signal is labelled with class C, if x(m) < (u; +m,)/2 and as class C, otherwise.

4.6.2 CLASSIFICATION ERROR

Classification errors are due to the overlap of the distributions of different classes of signals.
This is illustrated in Figure 4.17 for the binary classification of a scalar-valued signal and
in Figure 4.18 for the binary classification of a two-dimensional signal. In each figure
the overlapped area gives a measure of the classification error. The obvious solution for
reducing the classification error is to reduce the overlap of the distributions. This may
be achieved by increasing the distance between the mean values of various classes or by
reducing the variance of each class. In the binary classification of a scalar-valued variable
x, the probability of classification error is given by

P (Error |x) = P(C,) P(x > Thrsh|x € C,) + P (C,) P(x < Thrsh|x € C,) (4.133)
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For two Gaussian-distributed classes of scalar-valued signals with pdfs,
N[x(m),p, 07] and N [x(m),u,, 07 ]

Equation (4.133) becomes

P (Error |x) =P (C,) [ \/%U exp [_(x—m)z} N

207
Thrsh

(4.134)
Thrsh 1 (x _u )2
_ 2
+P(C)) 4 T [ = } dx
where the parameter Thrsh is the classification threshold.
4.6.3 BAYESIAN CLASSIFICATION OF DISCRETE-VALUED
PARAMETERS

Lettheset @ ={0@,,i=1,. .., M} denote the values that a discrete P-dimensional parameter

vector @ can assume. In general, the observation space Y associated with a discrete parameter
space ®@ may be a discrete-valued space or a continuous-valued space; an example of the
latter is a discrete-valued parameter observed in continuous-valued noise.

Assuming the observation space is continuous, the pdf of the parameter vector, 6,, given
observation y, may be expressed using Bayes’s rule as

frie10:)Po(0;)
fr)

For the case when the observation space Y is discrete-valued, the probability density functions
are replaced by the appropriate probability mass functions. The Bayesian risk in selecting
the parameter vector @, given the observation y is defined as

Poiy(0;ly) = (4.135)

R(O;ly) =3 C(6:10,)Po)y(0;]y) (4.136)

j=1

where C(6,]0)) is the cost of selecting the parameter 6, when the true parameter is ;. The
Bayesian classification, Equation (4.136), can be employed to obtain the MAP, ML and
MMSE classifiers as described next.

4.6.4 MAXIMUM A POSTERIORI CLASSIFICATION

MAP classification corresponds to Bayesian classification with a uniform cost function
defined as

C(0,10)=1-5(0,,0,) (4.137)
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where 8(-) is the delta function. Substitution of this cost function in the Bayesian risk
function yields

Ruiar(6; 1-5(6,,0,)1Poy,(8;
(O,ly) = ,Zl[ (0:,0,)1Po,,(0;1y) (@.138)
=1—Pgy,(Bily)

Note that the MAP risk in selecting 6, is the classification error probability, that is the sum
of the probabilities of all other candidates. From Equation (4.138), minimisation of the MAP
risk function is achieved by maximisation of the posterior pmf:

aMAP(.Y) = arg;naXPely(Oi ly)
' (4.139)
= arg;naxp@(ai)fﬂ@(y|0i)

4.6.5 MAXIMUM-LIKELIHOOD CLASSIFICATION

The ML classification corresponds to Bayesian classification when the parameter € has a
uniform prior pmf and the cost function is also uniform:

R (0;]y) = Z[l —5(0,,0))]

=t J f(y)fY\@(yW) Po(0))

(4.140)

= f (y)fy\o(.YW) ¢}

where Pg is the uniform pmf of 6. Minimisation of the ML risk function, Equation (4.140),
is equivalent to maximisation of the likelihood fye(y|0,),

O () = arg;naXfm(vlﬁ’,-) (4.141)

4.6.6 MINIMUM MEAN SQUARE ERROR CLASSIFICATION

The Bayesian minimum mean square error classification results from minimisation of the
following risk function:

M
2
Rmse (0;]y) = Z |0i - 0j| P@\Y(ajb’) (4.142)

j=1

For the case when P g, (0]y) is not available, the MMSE classifier is given by
Ovinise (v) = argmin [0, — 0(y)[* (4.143)
0,

where 0(y) is an estimate based on the observation y.
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4.6.7 BAYESIAN CLASSIFICATION OF FINITE STATE PROCESSES

In this section, the classification problem is formulated within the framework of a finite state
random process. A finite state process is composed of a probabilistic chain of a number
of different random processes. Finite state processes are used for modelling non-stationary
signals such as speech, image, background acoustic noise, and impulsive noise as discussed
in Chapter 5.

Consider a process with a set of M states denoted S = {s,, s, . . ., 5),}, where each state
has some distinct statistical property. In its simplest form, a state is just a single vector, and
the finite state process is equivalent to a discrete-valued random process with M outcomes.
In this case the Bayesian state estimation is identical to the Bayesian classification of a signal
into one of M discrete-valued vectors. More generally, a state generates continuous-valued or
discrete-valued vectors from a pdf or a pmf, associated with the state. Figure 4.19 illustrates
an M-state process, where the output of the ith state is expressed as

x(m)=h;[0;,e(m)], i=1,....M (4.144)

where in each state the signal x(m) is modelled as the output of a state-dependent function
h;(+) with parameter 0,, input e(m) and an input pdf f,;[e(m)]. Each state may be a model
of a segment of speech or image. The prior probability of each state is given by

P (s) = E[N(s)]/E [% N(sj)] (4.145)

where E[N(s;)] is the expected number of observations from state s;. The pdf of the output
of a finite state process is a weighted combination of the pdf of each state and is given by

fx[x(m)] = ; PS(si)fX\S(xlsi) (4.146)

In Figure 4.19, the noisy observation y(m) is the sum of the process output x(m) and an
additive noise n(m). From Bayes’ rule, the posterior probability of the state s; given the

x =hy(0, e)
ec fy (e)

x=h6 e)
ec fi(e)

x=hy(6, e)
e€ fy(e)

x
Noise—">
y

Figure 4.19 Illustration of a random process generated by a finite state system.
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observation y(m) can be expressed as
PS\Y [s, ly(m)] = Mfy\s [y(m)[s;] Ps(s;) (4.147)
_Zl fy|s [J’(m)|sj] Ps(sj)
=

In MAP classification, the state with the maximum posterior probability is selected as

Smap [y(m)] = arg maXPsw [s:ly(m)] (4.148)

SI

The Bayesian state classifier assigns a misclassification cost function C(s;|s;) to the action of
selecting the state s; when the true state is s;. The risk function for the Bayesian classification
is given by

R[s;ly(m)] = z: C(si|sj)PS|Y[sj|y(m)] (4.149)

4.6.8 BAYESIAN ESTIMATION OF THE MOST LIKELY STATE

SEQUENCE
Consider the estimation of the most likely state sequence, s = [s; ,s; ..., s; ], of a finite
state process, given a sequence of T observation vectors, Y = [y, ¥, ...,¥7_1]- A state

sequence, s, of length T, is itself a random integer-valued vector process with N7 possible
values. From the Bayes rule, the posterior pmf of a state sequence s, given an observation
sequence Y, can be expressed as

fy\s(.)’o’ SRR & |Si0’ s Sip )PS(SiO’ s SiH)

Py (Sigs -+ Sip Wos oo ¥71) =

FyWos -2 ¥7-1)

(4.150)
where Pg(s) is the pmf of the state sequence s, and for a given observation sequence the
denominator f,(y,,...,yy_;) is a constant. The Bayesian risk in selecting a state sequence
s; is expressed as

NT
‘%(sil.)}):zc(si |sj)PS\Y(sj v) (4.151)
j=1

For a statistically independent process, the state of the process at any time is independent
of the previous states, and hence the conditional probability of a state sequence can be
written as

-1
Pyy(sips oo Sty Wos o2 ¥ro1) = [1 TrisOk |Sik )Ps(s;,) (4.152)
k=0

where s;, denotes states; at time instant k. A particular case of a finite state process is the
Markov chain, Figure 4.20, where the state transition is governed by a Markovian process
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Figure 4.20 A three-state Markov process.

such that the probability of the state i at time m depends on the state of the process at time
m — 1. The conditional pmf of a Markov state sequence can be expressed as

-1
Py (Sis - -5 Sip Voo - -5 ¥7-1) = I1 ai i S (si,ve) (4.153)
k=0

where a; _,; is the probability that the process moves from state S; | to state s; Finite state
random processes and computationally efficient methods of state sequence estimation are
described in detail in Chapter 5.

4.7 MODELLING THE SPACE OF A RANDOM PROCESS

In this section, we consider the training of statistical models for a database of P-dimensional
vectors of a random process. The vectors in the database can be visualised as forming a
number of clusters in a P-dimensional space. The statistical modelling method consists of
two steps: (a) the partitioning of the database into a number of regions, or clusters, and
(b) the estimation of the parameters of a statistical model for each cluster. A simple method
for modelling the space of a random signal is to use a set of prototype vectors that represent
the centroids of the signal space. This method effectively quantises the space of a random
process into a relatively small number of typical vectors, and is known as vector quantisation
(VQ). In the following, we first consider a VQ model of a random process, and then extend
this model to a pdf model, based on a mixture of Gaussian densities.

4.7.1 VECTOR QUANTISATION OF A RANDOM PROCESS

Vector quantisations are used in signal compression and pattern recognition, such as in the
coding or recognition of speech, music or image signals.

In vector quantisation, the space of the training data, from a random vector process X, is
partitioned into K clusters or regions [X,, X,, ..., X,] and each cluster, X,, is represented



MODELLING THE SPACE OF A RANDOM PROCESS 133

by a cluster centroid, ¢;. The set of centroid vectors [¢;,¢,, . .., ck] form a VQ codebook
model the process X.

The VQ codebook can then be used to classify an unlabelled vector, x, with the nearest
centroid. The codebook is searched to find the centroid vector with the minimum distance
from x, then x is labelled with the index of the minimum distance centroid as

Label(x) = argmin d(x, ¢;) (4.154)

where d(x, ¢;) is a measure of distance between the vectors x and ¢;. The most commonly
used distance measure is the mean squared distance.

4.7.2 VECTOR QUANTISATION USING GAUSSIAN MODELS

In vector quantisation, instead of using only the centre of each cluster, a Gaussian pdf model
of each cluster comprising of the centre of the cluster, its covariance matrix and its probability
may be used. In this way, the space of the training data, from a random vector process X, is
partitioned into K clusters or regions [X,, X,, ..., X,] and each cluster, X;, is represented
by a cluster centroid, c;, the cluster covariance matrix, 3, and the cluster probability, p;, as
[NV (ci, %), p;]- The setof VQ pdfs {[N(c), 1), pi]. [N (2. 25), pol, - - -, [V (eks 2k), Pic}
forms a VQ codebook to model the process X. The VQ codebook can then be used to classify
an unlabelled vector x with the nearest pdf. The codebook is searched to find the VQ pdf
with the maximum probability of membership for x, then x is labelled with the index of the
pdf as

Label(x) = arg max p;N (x, ¢;, ¥;) (4.155)

where the weighted Gaussian pdf distance p, NV (x,¢;, %;), is a measure of membership of
the input vector, x, and the VQ class, i.

4.7.3 DESIGN OF A VECTOR QUANTISER: K-MEANS CLUSTERING

The K-means algorithm, illustrated in Figure 4.21, is an iterative method for the design of
a VQ codebook. Each iteration consists of two basic steps: (a) partition the training signal
space into K regions or clusters and (b) compute the centroid of each region. The steps in
K-Means method are as follows:

Step 1: initialisation — use a suitable method to choose a set of K initial centroids [c;].
Form=1,2,...

Step 2: classification — classify the training vectors {x} into K clusters {[x,],[x,].
... [x]} using the so-called ‘nearest-neighbour rule’ [Equation (4.154)].

Step 3: centroid computation — use the vectors [x;] associated with the ith cluster to
compute an updated cluster centroid, c;, and calculate the cluster distortion
defined as

Dym) = = 3 d[x,(j) )] (4,156

i j=1
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Select initial centroids and
form cluster partitions Update cluster centroids

Update cluster partitions Update cluster centroids

Figure 4.21 Illustration of the K-means clustering method.

where it is assumed that a set of N; vectors [x;(j)j =0, ..., N;] are associated

1
with cluster i. The total distortion is given by

K
D(m)=>_D,(m) (4.157)
i=1

Step 4: convergence test:

if

D(m — 1) — D(m) > threshold, stop,
else
goto Step 2.

A vector quantiser models the regions, or the clusters, of the signal space with a set of cluster
centroids. A more complete description of the signal space can be achieved by modelling
each cluster with a Gaussian density as described in Chapter 5.

4.8 SUMMARY

This chapter began with an introduction to the basic concepts in estimation theory; such
as the signal space and the parameter space, the prior and posterior spaces, and the
statistical measures that are used to quantify the performance of an estimator. The Bayesian
inference method, with its ability to include as much information as is available, provides
a general framework for statistical signal processing problems. The minimum mean square
error, the maximum-likelihood, the maximum a posteriori and the minimum absolute value
of error methods were derived from the Bayesian formulation. Further examples of the
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applications of Bayesian type models in this book include the hidden Markov models for
nonstationary processes studied in Chapter 5, and blind equalisation of distorted signals
studied in Chapter 15.

We considered a number of examples of the estimation of a signal observed in noise, and
derived the expressions for the effects of using prior pdfs on the mean and the variance of the
estimates. The choice of the prior pdf is an important consideration in Bayesian estimation.
Many processes, for example speech or the response of a telecommunications channel, are
not uniformly distributed in space, but are constrained to a particular region of signal or
parameter space. The use of a prior pdf can guide the estimator to focus on the posterior
space that is the subspace consistent with both the likelihood and the prior pdfs. The choice
of the prior, depending on how well it fits the process, can have a significant influence on
the solutions.

The iterative EM method, studied in Section 4.3, provides a practical framework for
solving many statistical signal processing problems, such as the modelling of a signal space
with a mixture Gaussian densities, and the training of hidden Markov models in Chapter 5.
In Section 4.4 the Cramer—Rao lower bound on the variance of an estimator was derived,
and it was shown that the use of a prior pdf can reduce the minimum estimator variance.

Finally we considered the modelling of a data space with a mixture Gaussian process,
and used the EM method to derive a solution for the parameters of the mixture Gaussian
model.
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Hidden Markov models are used for the statistical modelling of nonstationary signal processes
such as speech signals, image sequences and time-varying noise. The Markov process,
developed by Anderi Markov, is a process whose state or value at any time, ¢, depends on
its previous state and values at time # — 1, and is independent of the history of the process
before t — 1. An HMM is a double-layered process with a ‘hidden” Markov layer controlling
the state of an observable layer.

An HMM models the time variations (and/or the space variations) of the statistics of
a random process with a Markovian chain of state-dependent stationary subprocesses. An
HMM is essentially a Bayesian finite state process, with a Markovian prior for modelling the
transitions between the states, and a set of state probability density functions for modelling
the random variations of the signal process within each state. This chapter begins with a brief
introduction to continuous and finite state nonstationary models, before concentrating on the
theory and applications of hidden Markov models. We study the various HMM structures, the
Baum—Welch method for the maximum-likelihood training of the parameters of an HMM,
and the use of HMMs and the Viterbi decoding algorithm for the classification and decoding
of an unlabelled observation signal sequence. Finally, applications of the HMMs for the
enhancement of noisy signals are considered.
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5.1 STATISTICAL MODELS FOR NONSTATIONARY
PROCESSES

A nonstationary process can be defined as one whose statistical parameters vary over time.
Most ‘naturally generated’ signals, such as audio signals, video signals, biomedical signals
and seismic signals, are nonstationary, in that the parameters of the systems that generate
the signals, and the environments in which the signals propagate, change with time and/or
space.

A nonstationary process can be modelled as a double-layered stochastic process, with a
hidden process that controls the time variations of the statistics of an observable process,
as illustrated in Figure 5.1. In general, nonstationary processes can be classified into one of
two broad categories:

(1) continuously variable state processes; and
(2) finite state processes.

A continuously variable state process is defined as one whose underlying statistics vary
continuously with time. Examples of this class of random processes are some audio signals
such as speech, whose power and spectral composition, within a phonetic segment, vary
continuously with time. A finite state process is one whose statistical characteristics can
switch between a finite number of stationary or nonstationary states. For example, impulsive
noise is a binary-state process and across different phonetic segments speech is a finite state
process. Continuously variable processes can be approximated by an appropriate finite state
process.

Figure 5.2(a) illustrates a nonstationary first-order AR process. This process is modelled as
the combination of a hidden stationary AR model of the signal parameters and an observable
time-varying AR model of the signal. The hidden model controls the time variations of the
parameters of the nonstationary AR model. For this model, the observation signal equation
and the hidden parameter state equation can be expressed as

x(m)=a(m)x(m—1)+e(m) observation equation (5.1

a(m) = Ba(m—1)+e(m) hidden state equation (5.2)

where a(m) is the time-varying coefficient of the observable AR process and 8 is the
coefficient of the hidden state-control process.

Excitation Signal
—

Observable process
model

Process
parameters

Hidden state-control
model

Figure 5.1 [Illustration of a two-layered model of a nonstationary process.
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Signal excitation
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O + x(m)
Parameter
excitation
(a) e(m)
O
é(m) Hy(2) Folm) Stochastic
switch s(m)
(b) ——x(m)
eq(m) H,) x(m)

Figure 5.2 (a) A continuously variable state AR process. (b) A binary-state AR process.

A simple example of a finite state nonstationary model is the binary-state AR process
illustrated in Figure 5.2(b), where at each time instant a random switch selects one of the
two AR models for connection to the output terminal. For this model, the output signal,
x(m), can be expressed as

x(m) =5(m)xo(m) +s(m)x, (m) (5.3)

where the binary switch, s(m), selects the state of the process at time m, and s(m) denotes
the Boolean complement of s(m1).

5.2 HIDDEN MARKOV MODELS
5.2.1 COMPARISON OF MARKOV AND HIDDEN MARKOV MODELS

A Markov process is defined as stochastic process whose probability of being in a given
state at time m depends on the pervious state of the system at time m — 1 and is independent
of the states of the process before m — 1.

Consider a simple example of the two-state Markov process illustrated in Figure 5.3(a),
which shows two containers (states): in state 1 the process outputs black balls and in
state 2 the process outputs white balls. Assume that at successive time intervals a random
selection process selects one of the two containers to release a ball. The state selection
process is probabilistic such that in state 1 the probability of staying in state 1 at time m
is p(sy,,181..—1) = 0.8, whereas the probability of moving to state 2 is p(s, ,|$; ,,_;) = 0.2,
where s; ,, denotes state i at time m. In state 2 the probability of staying in state 2 is
P(Sy. |85 1) = 0.6, whereas the probability moving from state 2 to state 1is p(s, , |5, ,,_1) =
0.4. Note that the Markov process output sequence is the same as the state sequence.
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Figure 5.3 (a) A Markov model: each state is identified by the output. (b) A hidden Markov model:
states are ‘hidden’ as both states can produce the same output with different probability. (c) The
assumed transition matrix for (a) and (b). (d) A state diagram for Markov model and HMM.

A HMM is a double-layered finite state process, with a hidden Markovian process that
controls the selection of the states of an observable process. As a simple illustration of
a binary-state Markovian process, consider Figure 5.3(b), which shows two containers of
different mixtures of black and white balls. The probability of the black and the white balls in
each container, denoted Py and Py, is as shown in Figure 5.3(b). Assume that at successive
time intervals a hidden selection process selects one of the two containers to release a ball.
The balls released are replaced so that the mixture density of black and white balls in each
container remains unaffected. Each container can be considered as an underlying state of
the output process. Now, as an example assume that the hidden container-selection process
is governed by the following rule: at any time, if the output from the currently selected
container is a white ball then the same container is selected to output the next ball, otherwise
the other container is selected. This is an example of a Markovian process because the next
state of the process depends on the current state, as shown in the binary state model of
Figure 5.3(d). Note that in this example the observable outcome does not unambiguously
indicate the underlying hidden state, because both states are capable of releasing black and
white balls.

In general, a hidden Markov model has N sates, with each state trained to model a
distinct segment of a signal process. A hidden Markov model can be used to model
a time-varying random process as a probabilistic Markovian chain of N stationary, or
quasistationary, elementary subprocesses. A general form of a three-state HMM is shown
in Figure 5.4. This structure is known as an ergodic HMM. In the context of an HMM, the
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Figure 5.4 A three-state ergodic HMM structure.
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Figure 5.5 A five-state left-right HMM speech model.

term ‘ergodic’ implies that there are no structural constraints for connecting any state to any
other state.

A more constrained form of an HMM is the left-right model of Figure 5.5, so-called
because the allowed state transitions are those from a left state to a right state and the
self-loop transitions. The left-right constraint is useful for the characterisation of temporal
or sequential structures of stochastic signals such as speech and musical signals, because
time may be visualised as having a direction from left to right.

5.2.2 A PHYSICAL INTERPRETATION: HMMs OF SPEECH

For a physical interpretation of the use of HMMs in modelling a signal process, consider the
illustration of Figure 5.5 which shows a left-right HMM of a spoken letter ‘C’, phonetically
transcribed ‘s-iy’, together with a plot of the speech signal waveform for ‘C’. In general,
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there are two main types of variation in speech and other stochastic signals: variations in
the spectral composition, and variations in the time-scale or the articulation rate. In a hidden
Markov model, these variations are modelled by the state observation and the state transition
probabilities.

A useful way of interpreting and using HMMs is to consider each state of an HMM as a
model of a segment of a stochastic process. For example, in Figure 5.5, state S; models the
first segment of the spoken letter ‘C’, state S, models the second segment, and so on. Each
state must have a mechanism to accommodate the random variations in different realisations
of the segments that it models. The state transition probabilities provide a mechanism for
connection of various states, and for modelling the variations in the duration and time-scales
of the signals in each state. For example, if a segment of a speech utterance is elongated,
owing, say, to slow articulation, then this can be accommodated by more self-loop transitions
into the state that models the segment. Conversely, if a segment of a word is omitted,
owing, say, to fast speaking, then the skip-next-state connection accommodates that situation.
The state observation pdfs model the space of the probability distributions of the spectral
composition of the signal segments associated with each state.

5.2.3 HIDDEN MARKOV MODEL AS A BAYESIAN MODEL

A hidden Markov model, M, is a Bayesian structure with a Markovian state transition
probability and a state observation likelihood that can be either a discrete pmf or a
continuous pdf.

The posterior probability of a state sequence, s, of a model, M, given a sequence of
observation vectors, X = [x(0),x(1),...,x(T —1)], can be expressed using Bayes’s rule
as the product of the prior probability of the state sequence, s, and the likelihood of the
observation, X, as

Py ar (s|X, M) = — Poar (S|M)fx|sm(X |s, M) (54)

State prior Observation likelihood

Jx (X)

where the observation sequence, X, is modelled by a probability density function
Py 5. (X]s, M).

The posterior probability that an observation signal sequence, X, was generated by the
model, M, is summed over all likely state sequences, and may also be weighted by the
model prior, Py, (M):

PM|X(M|X)_ PM(M)ZPS\M(slM)fX\SM(X|S M) (5.5)

Model Prior State Prior  Observation Likelihood

1
fx X) ——

The Markovian state transition prior can be used to model the time variations and the
sequential dependence of most nonstationary processes. However, for many applications,
such as speech recognition, the state observation likelihood has far more influence on the
posterior probability than the state transition prior.
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5.2.4 PARAMETERS OF A HIDDEN MARKOV MODEL

A hidden Markov model has the following parameters:

® Number of states N — this is usually set to the total number of distinct, or elementary,
stochastic events in a signal process. For example, in modelling a binary-state process
such as impulsive noise, N is set to 2, and in phoneme-based speech modelling, N, the
number of states for each phoneme, is set between 3 and 5.

® State transition-probability matrix A = {a,;, i, j=1, ... N} — this provides a Markovian
connection network between the states, and models the variations in the duration of the
signals associated with each state. For a left-right HMM (see Figure 5.5), a;; =0 for i > j,
and hence the transition matrix A is upper-triangular.

e State observation vectors {;, s+ - > M- = 1,..., N} — for each state a set of M
prototype vectors models the centroids of the signal space associated with that state.

e State observation vector probability model — this can be either a discrete model composed
of M prototype vectors and their associated probability P = {P;(-);i=1,...,N,

j=1,...M}, or it may be a continuous (usually Gaussian) pdf model
F={f;();i=1,....N,j=1,..., M}.
e [nitial state probability vector m = [, Wy, ..., Ty]-

5.2.5 STATE OBSERVATION PROBABILITY MODELS

Depending on whether a signal process is discrete-valued or continuous-valued, the state
observation model for the process can be either a discrete-valued probability mass function
(pmf), or a continuous-valued probability density function (pdf). The discrete models can
also be used for the modelling of the space of a continuous-valued process quantised into a
number of discrete points.

First, consider a discrete state observation density model. Assume that associated with
the ith state of an HMM there are M discrete centroid vectors [m;;, . . . , My, ] With a pmf
[Py, ..., Pyl These centroid vectors and their probabilities are normally obtained through
clustering of a set of training signals associated with each state.

For the modelling of a continuous-valued process, the signal space associated with each
state is partitioned into a number of clusters, as in Figure 5.6. If the signals within each
cluster are modelled by a uniform distribution, then each cluster is described by the centroid
vector and the cluster probability, and the state observation model consists of M cluster
centroids and the associated pmf {p;, Py;i=1,..., N, k=1,..., M}. Ineffect, this results
in a discrete observation HMM for a continuous-valued process.

Figure 5.6(a) shows a partitioning, and quantisation, of a signal space into a number of
centroids. Now if each cluster of the state observation space is modelled by a continuous
pdf, such as a Gaussian pdf, then a continuous-density HMM results. The most widely used
state observation pdf for an HMM is the Gaussian mixture density, defined as

M
Ixis (x|s=1i)= ZPikN (e, P ) (5.6)
k=1

where NV (x, pm;., %) is a Gaussian density with mean vector g, and covariance matrix 3,
and P, is a mixture weighting factor for the kth Gaussian pdf of the state i. Note that P, is
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Figure 5.6 Modelling a random signal space using (a) a discrete-valued pmf and (b) a continuous-
valued mixture Gaussian density.
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Figure 5.7 A mixture Gaussian probability density function.

the prior probability of the kth mode of the pdf mixture for the state i. Figure 5.6(b) shows
the space of a Gaussian mixture model of an observation signal space. A five-mode Gaussian
mixture pdf is shown in Figure 5.7.

5.2.6 STATE TRANSITION PROBABILITIES

The first-order Markovian property of an HMM entails that the transition probability to any
state, s(¢), at time ¢ depends only on the state of the process at time ¢ — 1, s(¢ — 1), and is
independent of the previous states of the HMM. This can be expressed as

Prob[s(¢) = jls(t—1) =i, s(t—2)=k,...,s(t—N) =1]

5.7
=Prob[s(r) = jls(t—1) =i] =q; 7

where s(¢) denotes the state of HMM at time 7. The transition probabilities provide a
probabilistic mechanism for connecting the states of an HMM, and for modelling the
variations in the duration of the signals associated with each state. The probability of
occupancy of a state i for d consecutive time units, P;(d), can be expressed in terms of the
state self-loop transition probabilities a;; as

P;(d)= a;‘i’il (1—-ay) (5.8)
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Figure 5.8 (a) A four-state left-right HMM, and (b) its state—time trellis diagram.

From Equation (5.8), using the geometric series conversion formula, the mean occupancy
duration for each state of an HMM can be derived as

> 1
Mean occupancy of state i = Y dP;(d) = T—a (5.9)
—a

d=0 ii

5.2.7 STATE-TIME TRELLIS DIAGRAM

A state—time trellis diagram shows the HMM states together with all the different paths that
can be taken through various states as time unfolds. Figure 5.8 illustrates a four-state HMM
and its state—time diagram. Since the number of states and the state parameters of an HMM
are time-invariant, a state—time diagram is a repetitive and regular trellis structure. Note
that in Figure 5.8, for a left-right HMM, the state—time trellis has to diverge from the first
state and converge into the last state. In general, there are many different state sequences
that start from the initial state and end in the final state. Each state sequence has a prior
probability that can be obtained by multiplication of the state transition probabilities of the
sequence. For example, the probability of the state sequence s = [S,, S}, S,, S,, S5, S5, 4] is
P(s) = m,a,,a,,0,0,3a+3d5,. Since each state has a different set of prototype observation
vectors, different state sequences model different observation sequences. In general, over T
time units, an N-state HMM can reproduce N7 different realisations of the random process
of length 7.

5.3 TRAINING HIDDEN MARKOV MODELS

The first step in training the parameters of an HMM is to collect a training database of
a sufficiently large number of different examples of the random process to be modelled.
Assume that the examples in a training database consist of L vector-valued sequences,
[X]=[X;;k=0,...,L—1], with each sequence X, = [x(¢);t=0,...,T,— 1] having a
variable number of T} vectors. The objective is to train the parameters of an HMM to model
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the statistics of the signals in the training data set. In a probabilistic sense, the fitness of
a model is measured by the posterior probability P yx(M|X) of the model M given the
training data X. The training process aims to maximise the posterior probability of the model
M and the training data [X], expressed using Bayes’s rule as

Pa (M1X) = ﬁfm (X|M) Py (M) (5.10)

where the denominator fy(X) on the right-hand side of Equation (5.10) has only a normalising
effect and P,,(M) is the prior probability of the model M. For a given training data set
[X] and a given model M, maximising Equation (5.10) is equivalent to maximising the
likelihood function Py (X|A). The likelihood of an observation vector sequence, X, given
a model M can be expressed as

Sxine (X|M):ZfX\S,M (X|S,M)Ps\m (s|M) (5.11)

where fy5 ¢ (X(7)[s(2), M), the pdf of the signal sequence X along the state sequence
s =[5(0), s(1),...,s(T —1)] of the model M, is given by

Txis.oc (X8, M) = fs [x(0)[s(0)] fys [e(DIs(D]. - - frps (T =DIs(T=1D]  (5.12)

where s(7), the state at time #, can be one of N states, and fys[X(#)|s(?)], a shorthand for
Fxis.0c[X(0)|s(2), M], is the pdf of x(7) given the state s(7) of the model M. The Markovian
probability of the state sequence, s, is given by

PS|M (s|M) = 5(0)A5(0)s(1) As(1)s(2) + + As(T—2)s(T—1) (5.13)

Substituting Equations (5.12) and (5.13) in Equation (5.11) yields
fX\M(X|M) = fo|s,m (Xls, 21) Psw(sm/[)
S

= Z 7Ts(0)fx\s [x(0)[s(0)] as(())s(l)fx\s [x(D]s(D]--- as(T—Z)s(T—l)fX|S
x [x(T —1)|s(T —1)] (5.14)

where the summation is taken over all state sequences s. In the training process, the transition
probabilities and the parameters of the observation pdfs are estimated to maximise the model
likelihood of Equation (5.14). Direct maximisation of Equation (5.14) with respect to the
model parameters is a nontrivial task. Furthermore, for an observation sequence of length
T vectors, the computational load of Equation (5.14) is O(NT). This is an impractically
large load, even for such modest values as N =6 and 7 = 30. However, the repetitive
structure of the trellis state—time diagram of an HMM implies that there is a large amount
of repeated, redundant, computation in Equation (5.14) that can be avoided in an efficient
implementation. In the next section we consider the forward—backward method of model
likelihood calculation, and then proceed to describe an iterative maximum-likelihood model
optimisation method.
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5.3.1 FORWARD-BACKWARD PROBABILITY COMPUTATION

An efficient recursive algorithm for the computation of the likelihood function fy, (X |M)
is the forward-backward algorithm. The forward-backward computation method exploits
the highly regular and repetitive structure of the state—time trellis diagram of Figure 5.8.

In this method, a forward probability variable «,(i) is defined as the joint probability of
the partial observation sequence X = [x(0),x(1),...,x(¢)] and the state i at time ¢, of the
model M:

@, (i) = fx.spc [%(0), x(1), . .., x(2), () = i| M] (5.15)

The forward probability variable, «,(7), of Equation (5.15) can be expressed in a recursive
form in terms of the forward probabilities at time 7 — 1, a,_,(i):

@, (i) = fx,s0¢ [¥(0), x(1), . .., x(1), 5(1) = i[ M]

= {fo,sm [x(0), x(1), ..., x(r = 1), s(t—1) = jIM]a; { fxis o [x(D)]s(t) =i, M]

j=1

ZZ[at—l(j)aji]fx\s,M [x(D)]s(r) =i, M] (5.16)

Jj=1
Figure 5.9 illustrates a network for computation of the forward probabilities for the four-
state left-right HMM of Figure 5.8. The likelihood of an observation sequence, X =

[x(0),x(1),...,x(T —1)], given a model M can be expressed in terms of the forward
probabilities as

Fxae [x(0), x(1), ... (T = DIM] =3 i gpe [¥(0),x(1), ..., x(T = 1), (T — 1) = i| M]

N
= ar (i) (5.17)
i=1
TxsTx@)]s() =] Txpsle(@+ Dst+ 1) =i
{ai,’}
"
8 ) 1 (D)
3 =
.—» ®—>

Time (7)

Figure 5.9 A network for computation of forward probabilities for a left—right HMM.
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Similar to the definition of the forward probability concept, a backward probability is defined
as the probability of the state i at time ¢ followed by the partial observation sequence
[x(t+1),x(t+2),...,x(T—1)] as

B.(0) = fxsipe [$() = 1, x(t+ 1), x(t+2), ..., x(T — 1)|M]

= Zaiij,SW [st+1)=j,x(t+2),x(t+3),...,x(T—1)]

j=1

(5.18)
X fyis (2 + D]s(t+1) = j|M]

= Zaijﬁrﬂ(j)f)(\s,m [x(t+1D)[s(t+1) = j|M]

j=1

In the next section, forward and backward probabilities are used to develop a method for the
training of HMM parameters.

5.3.2 BAUM-WELCH MODEL RE-ESTIMATION

The HMM training problem is the estimation of the model parameters M = (77, A, F) for a
given data set, X. These parameters are the initial state probabilities 77, the state transition
probability matrix A and the continuous (or discrete) density state observation pdfs. The
HMM parameters are estimated from a set of training examples {X = [x(0), ..., x(T —1)]},
with the objective of maximising fy 5 (X|M), the likelihood of the model and the training
data. The Baum—Welch method of training HMMs is an iterative likelihood maximisation
method based on the forward—backward probabilities defined in the preceding section. The
Baum—Welch method is an instance of the EM algorithm described in Chapter 4. For an
HMM M, the posterior probability of a transition at time ¢ from state i to state j of the
model M, given an observation sequence X, can be expressed as

Y, (i, ) = Psix o [s(t) = i, s(t+ 1) = jIX, M]
_ Fsxpe [s(0) =i, s(t+1) = j, X|M]

_ a,(D)a;; fxs.oc [x(t+ Vst +1) = j, M] B, ()
éarq(i)

where fg x5 [s(t) =i, s(t+ 1) = j, X|M] is the joint pdf of the states s(#) and s(z+ 1) and
the observation sequence X, and fys [x(¢+ 1)[s(+1) = i] is the state observation pdf for
the state i. Note that, for a discrete observation density HMM, the state observation pdf in
Equation (5.19) is replaced by the discrete state observation pmf, Pys [x(t + 1)[s(t+ 1) = i].
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The posterior probability of state i at time ¢ given the model, M, and the observation, X, is

Y, (0) = Pgyx ¢ [s(1) = i|X, M]
_ Ts.xpe [5(0) = i, X|M]
Fxipe (X|0)

(5.20)

_ a4 (HB,()

=~ .

> a1 ()

Jj=1
Now the state transition probability a,; can be interpreted as
expected number of transitions from state i to state j

a; = (5.21)

expected number of transitions from state i
From Equations (5.19)—(5.21), the state transition probability can be re-estimated as the ratio
T2

> (@)
t=0

(5.22)

ij =

T-2
> (D)
=0

Note that, for an observation sequence [x(0),...,x(7T — 1)] of length T, the last transition
occurs at time 7 — 2, as indicated in the upper limits of the summations in Equation (5.22).
The initial-state probabilities are estimated as

7T = Yo(i) (5.23)

5.3.3 TRAINING HMMs WITH DISCRETE DENSITY OBSERVATION

MODELS
In a discrete density HMM, the observation signal space for each state is modelled by
a set of discrete symbols or vectors. Assume that a set of M vectors [, Bins - - - » Mips]

model the space of the signal associated with the ith state. These vectors may be obtained
from a clustering process as the centroids of the clusters of the training signals associated
with each state. The objective in training discrete density HMMs is to compute the
state transition probabilities and the state observation probabilities. The forward—backward
equations for discrete density HMMs are the same as those for continuous density HMM:s,
derived in the previous sections, with the difference that the probability density functions
such as fys [x(?) |s(t) = i] are substituted by probability mass functions Pys [x(7) [s(7) = i]
defined as

Pys [x(1) s(t) = i] = Pys {Qlx(1)] |s(1) = i} (5.24)

where the function Q[x(¢)] vector quantises the observation vector x(¢) to the nearest discrete
vector in the set [, Mj>, - - - » iy, |- For discrete density HMMs, the probability of a state
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vector m,;, can be defined as the ratio of the number of occurrences of m,; (or vectors
quantised to m;;) in the state i, divided by the total number of occurrences of all other vectors
in the state i:

expected number of times in state i and observing u;;

P.(m,)= . :
(i) expected number of times in state i

T-1
X @)
ok (5.25)
2 7))
t=0
In Equation (5.25) the summation in the numerator is taken over those time instants t where
the kth symbol u;, is observed in the state i.

For statistically reliable results, an HMM must be trained on a large data set, X, consisting
of a sufficient number of independent realisations of the process to be modelled. Assume
that the training data set consists of L realisations, X = [X(0), X(1),...,X(L —1)], where
X (k) = [x(0),x(1),...,x(T, — 1)]. The re-estimation formula can be averaged over the
entire data set as

=— Z o (i) (5.26)

L—1T—

> Z ACY)
fy =" (5.27)

4 L—-1T,—

> Z ¥: ()

=0 =0

and

- T—

S Y1 (D)

1=0 tex(t)—py
L—1T,—1

> 2 i@

=0 t=0

Pipy) = (5.28)

The parameter estimates of Equations (5.26)—(5.28) can be used in further iterations of the
estimation process until the model converges.

5.3.4 HMMs WITH CONTINUOUS DENSITY OBSERVATION MODELS

In continuous density HMMs, continuous pdfs are used to model the space of the observation
signals associated with each state. Baum et al. generalised the parameter re-estimation method
to HMMs with concave continuous pdfs such as a Gaussian pdf. A continuous P-variate
Gaussian pdf for the state i of an HMM can be defined as

Fs () |s() = 1] = exp{lx() -] S k() -]} (529)

1
@m)"? %"
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where u; and 3, are the mean vector and the covariance matrix associated with the state i.
The re-estimation formula for the mean vector of the state Gaussian pdf can be derived as

T-1
> Y, (D)x(2)
f— 1=\
= (5.30)
2 7.
t=0
Similarly, the covariance matrix is estimated as
T-1 X _ T
_ @O0 —m] () -]
3 == (5.31)

T—1
> (D)
=0

The proof that the Baum—Welch re-estimation algorithm leads to maximisation of the
likelihood function fy,,(X|M) can be found in Baum.

5.3.5 HMMs WITH GAUSSIAN MIXTURE PDFS

The modelling of the space of a signal process with a mixture of Gaussian pdfs is considered
in Section 4.5. In HMMs with a Gaussian mixture pdf for a state observation model, the signal
space associated with the ith state is modelled with a mixture of M Gaussian densities as

Fas (@) Is(t) = i] =30 PuN [x(1), pig, 2] (5.32)

k=1

where P, is the prior probability of the kth component of the mixture. The posterior
probability of state i at time ¢ and state j at time ¢+ 1 of the model, M, given an observation
sequence X = [x(0),...,x(T —1)], can be expressed as

V{0, J) = Py, ac [$(0) = 1, (1 +1) = jIX, M]

o (i, { S PV (i 1), . 5] } B
= =l - (5.33)

> ar_ (i)

i=1

and the posterior probability of state i at time ¢ given the model, M, and the observation,
X, is given by
Y, (i) = Pgx ¢ [5(1) = i | X, M ]
_ aB()

~ (5.34)
gl ar_;(j)
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Now we define the joint posterior probability of the state i and the kth Gaussian mixture
component pdf model of the state i at time ¢ as

$i(, k) = Pg gy o [5() = i, m(1) =k |X, M |

5 @ (D PN [x(0), s ] B,00)
= . (5.35)
> ar ()

where m(t) is the Gaussian mixture component at time 7. Equations (5.33)—(5.35) are used
to derive the re-estimation formula for the mixture coefficients, the mean vectors and the
covariance matrices of the state mixture Gaussian pdfs as

— expected number of times in state i and observing mixture k
ik =

expected number of times in state i

T-1 .
> &(i, k)
1=l
> ()
t=0
and
T—1 .
2 &, k)x(1)
—_ 1=l
P =———— (5.37)
& (i, k)
t=0
Similarly the covariance matrix is estimated as
T—1 . _ T
. > & k) [xe(0) — ] [x (1) — ]
3= (5.38)

z £, k)

5.4 DECODING OF SIGNALS USING HIDDEN MARKOV
MODELS

Hidden Markov models are used in applications such as speech recognition, image recognition
and signal restoration, and for the decoding of the underlying states of a signal. For example,
in speech recognition, HMMs are trained to model the statistical variations of the acoustic
realisations of the words in a vocabulary of, say, size V words. In the word recognition
phase, an utterance is classified and labelled with the most likely of the V + 1 candidate
HMMs (including an HMM for silence), as illustrated in Figure 5.10. In Chapter 12 on
the modelling and detection of impulsive noise, a binary-state HMM is used to model the
impulsive noise process.
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Figure 5.10 Illustration of the use of HMMs in speech recognition.

Consider the decoding of an unlabelled sequence of 7 signal vector, X =
[x(0),x(1),...,X(T —1)], given a set of V candidate HMMs [M,,...,M,]. The
probability score for the observation vector sequence, X, and the model, M, can be calculated
as the likelihood:

fxw X |My) = Z 77'5(0)fx\s [x(0) |S(O)]as(0)s(l)fX|S [x(1) |s(1)]---

as(T—z)s(T—l)fx\s [x(T=1)[s(T—1)] (5.39)

where the likelihood of the observation sequence, X, is summed over all possible state
sequences of the model M. Equation (5.39) can be efficiently calculated using the forward—
backward method described in Section 5.3.1. The observation sequence X is labelled with
the HMM that scores the highest likelihood as

Label(X):argmax[fX‘M(X|Mk)], k=1,...,V+1 (5.40)
k

In decoding applications often the likelihood of an observation sequence, X, and a model,
M,, is obtained along the single most likely state sequence of model M, instead of being
summed over all sequences, so Equation (5.40) becomes

Label (X) = arg max [maxfxys‘m X,s|Mm, )] (5.41)
k s
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In Section 5.5, on the use of HMMs for noise reduction, the most likely state sequence is used
to obtain the maximum-likelihood estimate of the underlying statistics of the signal process.

5.4.1 VITERBI DECODING ALGORITHM

In this section, we consider the decoding of a signal to obtain the MAP estimate of the
underlying state sequence. The MAP state sequence sMA? of a model, M, given an observation
signal sequence, X = [x(0), ... ,x(T —1)], is obtained as

sMAP — argmax fy g5 (X,s|M)

= arggnax [fx|s,7vr X|s, M) Psw (s |M)] (5.42)

The MAP state sequence estimate is used in such applications as the calculation of a similarity
score between a signal sequence, X, and an HMM, M, segmentation of a nonstationary
signal into a number of distinct quasistationary segments, and implementation of state-based
Wiener filters for restoration of noisy signals, as described in the next section.

For an N-state HMM and an observation sequence of length T, there are altogether N7
state sequences. Even for moderate values of N and T (say N =6 and T = 30), an exhaustive
search of the state—time trellis for the best state sequence is a computationally prohibitive
exercise. The Viterbi algorithm is an efficient method for the estimation of the most likely
state sequence of an HMM. In a state—time trellis diagram, such as Figure 5.8, the number
of paths diverging from each state of a trellis can grow exponentially by a factor of N at
successive time instants. The Viterbi method prunes the trellis by selecting the most likely
path to each state. At each time instant ¢, for each state i, the algorithm selects the most
probable path to state i and prunes out the less likely branches. This procedure ensures that,
at any time instant, only a single path survives into each state of the trellis.

For each time instant ¢ and for each state i, the algorithm keeps a record of the state j
from which the maximum-likelihood path branched into i, and also records the cumulative
probability of the most likely path into state i at time ¢. The Viterbi algorithm is given on
the next page, and Figure 5.11 gives a network illustration of the algorithm.

The backtracking routine retrieves the most likely state sequence of the model M.
Note that the variable Prob which is the probability of the observation sequence

max?

Fyslx@)s =il Fxjsbe(+ Dlst + 1) =i]
{aij} b~ {aij}

States i

Time ¢

Figure 5.11 A network illustration of the Viterbi algorithm.
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=[x(0),...,x(T —1)] and the most likely state sequence of the model M, can be used
as the probability score for the model M and the observation X. For example, in speech
recognition, for each candidate word model the probability of the observation and the most
likely state sequence are calculated, and then the observation is labelled with the word that
achieves the highest probability score.

5.5 HMMs IN DNA AND PROTEIN SEQUENCE MODELLING

A major application of hidden Markov models is in biosignal processing and computational
molecular biology in applications including multiple alignment and functional classification
of proteins, prediction of protein folding, recognition of genes in bacterial and human
genomes, analysis and prediction of DNA functional sites and identification of nucleosomal
DNA periodical patterns.

Hidden Markov models are powerful probabilistic models for detecting homology among
evolutionarily related sequences. Homology is concerned with likeness in structures between
parts of different organisms due to evolutionary differentiation from the same or a
corresponding part of a remote ancestor.

HMMs are statistical models that consider all possible combinations of matches,
mismatches and gaps to generate an alignment of a set of sequences. Figure 5.12 shows a
simple example of statistical modeling of DNA observations. In this case the observations are
nucleotides and the aim of modelling is to align and estimate the sequential probabilities of
observation sequences composed of DNA labels ACGT. Each row shows a DNA sequences.
Each column is a state for which the probabilities of occurance of ACTG are calculated as
the normalized number of occurences of each letter in the column.

Figure 5.13 shows a widely used profile-HMM structure for DNA and protein sequencing.
HMMs that represent a sequence profile of a group of related proteins or DNAs are profile

A|lC||A|[A - - [|A||T||G

Al C||Al|- - - ||G||G|lA

C||G||G||- - - ||C||T||A
C||[C||G - —||C
(1R
Azzzzn 0.4
Cm().z
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Tzmo2
n.
0.6
Amus o A oz 06 A mzzno4 A ozzzn 04
Czmo2 Cmoé‘ Como2 04 | C zzzzm 0.4 C o2
G ' Gazz 04 [P |Gamoz |G o2 ' Gmoz 0.4 I G ;o2
Tozo2 T T T T zzzrn Tzz@ 0.2

Figure 5.12 A Markov model for a dataset of DNA sequences. The discrete probabilities are
histograms of occurrence of each symbol in a column.
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T T

Begin End

Figure 5.13 A DNA profile HMM: squares represent base states, diamonds are insertion states and
circles are deletion states.

HMMs. Again, squares represent main states, diamonds are insertion states and circles are
deletion states. There are three possible ‘states’ for each amino acid position in a particular
sequence alignment: a ‘main’ state where an amino acid can match or mismatch, an ‘insert’
state where a new amino acid can be added to one of the sequences to generate an alignment,
or a ‘delete’ state where an amino acid can be deleted from one of the sequences to generate
the alignment. Probabilities are assigned to each of these states based on the number of each
of these events encountered in the sequence alignment. An arrow in the model represents a
transition from one state to another and is also associated with a transition probability. The
greater the number and diversity of sequences included in the training alignment, the better
the model will be at identifying related sequences.

An adequately ‘trained’ profile HMM has many uses. It can align a group of related
sequences, search databases for distantly related sequences, and identify subfamily-specific
signatures within large protein or DNA superfamilies.

5.6 HMMs FOR MODELLING SPEECH AND NOISE
5.6.1 MODELLING SPEECH WITH HMMs

HMMs are the main statistical modelling framework for speech recognition. Normally a
three-to-five-states HMM, with 10-20 Gaussian mixture pdfs per state, is used to model
the statistical variations of the spectral and temporal features of a phonemic unit of speech.
Each state of an HMM of a phoneme models a sub-phonemic segment with the first state
modelling the first segment of the phoneme and the second state modelling the second
segment and so on. Speech recognition is described in Chapter 11. For implementation of
HMMs of speech, the hidden Markov model toolkit (HTK) provides a good platform.

5.6.2 HMM-BASED ESTIMATION OF SIGNALS IN NOISE

In this section, and the following two sections, we consider the use of HMM:s for estimation
of a signal x(7) observed in an additive noise n(r), and modelled as

y(t) =x(1) +n(r) (5.43)
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From Bayes’s rule, the posterior pdf of the signal x(7), given the noisy observation y(¢), is
defined as

Jrx @O (D)] fx[x(0)]
fxy [x()ly (D] =
HDO] (54
fy[y(t)]fN (@) —x (O] fx [x(1)]
For a given observation, fy[y(#)] is a constant, and the MAP estimate is obtained as
VAP (1) = arg (ItI)IaXfN (@) —x(®)] fx [x(1)] (5.45)

The computation of the posterior pdf, Equation (5.44), or the MAP estimate Equation (5.45),
requires the pdf models of the signal and the noise processes. Stationary, continuous-value
processes are often modelled by a Gaussian or a mixture Gaussian pdf that is equivalent to a
single-state HMM. For a nonstationary process an N-state HMM can model the time-varying
pdf of the process as a Markovian chain of N stationary Gaussian subprocesses. Now assume
that we have an N;-state HMM M for the signal, and another N,-state HMM 7 for the noise.
For signal estimation, we need estimates of the underlying state sequences of the signal and
the noise processes. For an observation sequence of length 7', there are N possible signal
state sequences and N possible noise state sequences that could have generated the noisy
signal. Since it is assumed that the signal and noise are uncorrelated, each signal state may
be observed in any noisy state; therefore the number of noisy signal states is on the order of
NI'x NT.

Given an observation sequence Y = [y(0),y(1),...,y(T —1)], the most probable state
sequences of the signal and the noise HMMs may be expressed as

MAP
s51gnal - arg max ( max fY ( Slgndl s nmse | M 77) (546)
sslgm] snoxse i
and
MAP
snoise = arg max ?’IaX fY ( slgnal ’ nonse | M 7]) (547)
Snoise signal a

Given the state sequence estimates for the signal and the noise models, the MAP estimation,
Equation (5.45), becomes

FMAP(1) = arginax {fN\S,n [y(t) —x(t)|snM0ﬁZ, n] fxis.e [x(t)|sl:f§;, M]} (5.48)

Implementation of Equations (5.46)—(5.48) is computationally prohibitive. In Sections 5.6.4
and 5.6.5, we consider some practical methods for the estimation of signal in noise.

Example 5.1

Assume a signal, modelled by a binary-state HMM, is observed in an additive stationary
Gaussian noise. Let the noisy observation be modelled as

y(1) = 5(0)xo (1) +s()x, (1) +-n (1) (5:49)
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where s() is a hidden binary-state process such that: s(¢) = 0 indicates that the signal is from
the state S, with a Gaussian pdf of N[x(?), m,,, %, ., |, and s(¢) = 1 indicates that the signal
is from the state S; with a Gaussian pdf of N[x(7), p, , %,  ]. Assume that a stationary
Gaussian process, N[n(t), m,,, 2,,], equivalent to a single-state HMM, can model the noise.
Using the Viterbi algorithm, the MAP state sequence of the signal model can be estimated as

Suigna = argmax [ fyjs ar (Y15, M) Pyjae (s]10)] (5.50)
For a Gaussian-distributed signal and additive Gaussian noise, the observation pdf of the

noisy signal is also Gaussian. Hence, the state observation pdfs of the signal model can be
modified to account for the additive noise as

Friy D@s] = N [Y(0), (P, + 1) Gy, + Zn) ] (5.51)

and

fY\sl [y(t)|sl] =N [y(t)’ (Mx, +M’n)’ (Ex]x] +Enn)] (552’)

where N [y(7), p, 2] denotes a Gaussian pdf with mean vector p and covariance matrix ..
The MAP signal estimate, given a state sequence estimate sMA?, is obtained from

VA (1) = arg max {fxisar [@OIS™, M fy [y (1) —x (0]} (5.53)

Substitution of the Gaussian pdf of the signal from the most likely state sequence, and the
pdf of noise, in Equation (5.53), results in the following MAP estimate:

'QMAP(I) = (Exx,s(t) + 2:nn)i1 2’)c)c,s(t) [y(t) - M‘n] + (Exx,s([) + znn)7l 2nn”‘x,s(t) (554)

where p, ) and %, ) are the mean vector and covariance matrix of the signal x() obtained
from the most likely state sequence, [s(¢)].

5.6.3 SIGNAL AND NOISE MODEL COMBINATION AND
DECOMPOSITION

For Bayesian estimation of a signal observed in additive noise, we need to have an estimate
of the underlying statistical state sequences of the signal and the noise processes. Figure 5.14
illustrates the outline of an HMM-based noisy speech recognition and enhancement system.
The system performs the following functions:

(1) combination of the speech and noise HMMs to form the noisy speech HMMs;

(2) estimation of the best combined noisy speech model given the current noisy speech
input;

(3) state decomposition, i.e. the separation of speech and noise states given noisy speech
states;

(4) state-based Wiener filtering using the estimates of speech and noise states.
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Figure 5.14 Outline configuration of HMM-based noisy speech recognition and enhancement.

5.6.4 HIDDEN MARKOV MODEL COMBINATION

The performance of HMMs trained on clean signals deteriorates rapidly in the presence
of noise, since noise causes a mismatch between the clean HMMs and the noisy signals.
The noise-induced mismatch can be reduced, either by filtering the noise from the signal
(for example using the Wiener filtering and the spectral subtraction methods described in
Chapters 6 and 11) or by combining the noise and the signal models to model the noisy signal.

The model combination method, illustrated in Figure 5.15, was developed by Gales and
Young. In this method HMMs of speech are combined with an HMM of noise to form

ap

Noisy speech model

Figure 5.15 Outline configuration of HMM-based noisy speech recognition and enhancement. S;; is

a combination of the state i of speech with the state j of noise.
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HMMs of noisy speech signals. In the power-spectral domain, the mean vector and the
covariance matrix of the noisy speech can be approximated by adding the mean vectors and
the covariance matrices of speech and noise models:

My = p,+8M, (5.55)
2yy = 2'xx + gzznn (556)

Model combination also requires an estimate of the current signal-to-noise ratio for
calculation of the scaling factor g in Equations (5.55) and (5.56). In cases such as speech
recognition, where the models are trained on cepstral features, the model parameters are
first transformed from cepstral features into power spectral features before using the additive
linear combination Equations (5.55) and (5.56). Figure 5.15 illustrates the combination of
a four-state left-right HMM of a speech signal with a two-state ergodic HMM of noise.
Assuming that speech and noise are independent processes, each speech state must be
combined with every possible noise state to give the noisy speech model. It is assumed that
the noise process only affects the mean vectors and the covariance matrices of the speech
model; hence the transition probabilities of the speech model are not modified.

5.6.5 DECOMPOSITION OF STATE SEQUENCES OF SIGNAL AND
NOISE

The HMM-based state decomposition problem can be stated as follows: given a noisy signal
and the HMMs of the signal and the noise processes, estimate the underlying states of the
signal and the noise. HMM state decomposition can be obtained using the following method:

(1) given the noisy signal and a set of combined signal and noise models, estimate the
maximum-likelihood (ML) combined noisy HMM for the noisy signal;

(2) obtain the ML state sequence of from the ML combined model,

(3) extract the signal and noise states from the ML state sequence of the ML combined
noisy signal model.

The ML state sequences provide the probability density functions for the signal and noise
processes. The ML estimates of the speech and noise pdfs may then be used in Equation (5.45)
to obtain a MAP estimate of the speech signal. Alternatively the mean spectral vectors of
the speech and noise from the ML state sequences can be used to program a state-dependent
Wiener filter, as described in the next section.

5.6.6 HMM-BASED WIENER FILTERS

The least mean square error Wiener filter is derived in Chapter 6. For a stationary signal
x(m), observed in an additive noise n(m), the Wiener filter equations in the time and the
frequency domains are derived as:

w= (Rxx+Rnn)71rxx (557)
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Figure 5.16 Illustrations of HMMs with state-dependent Wiener filters.

and
Pyx (/)
W(f) = —22 (5.58)
Pyx (f) + Pyy (/)
where R,.,r,. and Py, (f) denote the autocorrelation matrix, the autocorrelation vector

and the power-spectral functions, respectively. The implementation of the Wiener filter,
Equation (5.58), requires the signal and the noise power spectra. The power-spectral variables
may be obtained from the ML states of the HMMs trained to model the power spectra of
the signal and the noise. Figure 5.16 illustrates an implementation of HMM-based state-
dependent Wiener filters. To implement the state-dependent Wiener filter, we need an
estimate of the state sequences for the signal and the noise. In practice, for signals such as
speech there are a number of HMMs; one HMM per word, phoneme or any other elementary
unit of the signal. In such cases it is necessary to classify the signal, so that the state-based
Wiener filters are derived from the most likely HMM. Furthermore the noise process can
also be modelled by an HMM. Assuming that there are V HMMs {M, ..., M, } for the
signal process, and one HMM for the noise, the state-based Wiener filter can be implemented
as follows:

Step I: combine the signal and noise models to form the noisy signal models.

Step 2: given the noisy signal, and the set of combined noisy signal models, obtain the
ML combined noisy signal model.

Step 3: from the ML combined model, obtain the ML state sequence of speech and noise.

Step 4: use the ML estimate of the power spectra of the signal and the noise to program
the Wiener filter, Equation (5.56).

Step 5: use the state-dependent Wiener filters to filter the signal.
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Figure 5.17 Impulsive noise.

ap=o

ap =i-a

a=1-a

Figure 5.18 A binary-state model of an impulsive noise process.

5.6.7 MODELLING NOISE CHARACTERISTICS

The implicit assumption in using an HMM for noise is that noise statistics can be modelled
by a Markovian chain of N different stationary processes. A stationary noise process can be
modelled by a single-state HMM. For a nonstationary noise, a multistate HMM can model the
time variations of the noise process with a finite number of quasistationary states. In general,
the number of states required to accurately model the noise depends on the nonstationary
character of the noise.

An example of a nonstationary noise process is the impulsive noise of Figure 5.17.
Figure 5.18 shows a two-state HMM of the impulsive noise sequence where the state S,
models the ‘off” periods between the impulses and the state S; models an impulse. In cases
where each impulse has a well-defined temporal structure, it may be beneficial to use a
multistate HMM to model the pulse itself. HMMs are used in Chapter 12 for modelling
impulsive noise, and in Chapter 15 for channel equalisation.

5.7 SUMMARY

HMMs provide a powerful method for the modelling of nonstationary processes such as
speech, noise and time-varying channels. An HMM is a Bayesian finite-state process, with
a Markovian state prior, and a state likelihood function that can be either a discrete density
model or a continuous Gaussian pdf model. The Markovian prior models the time evolution
of a nonstationary process with a chain of stationary subprocesses. The state observation
likelihood models the space of the process within each state of the HMM.

In Section 5.3, we studied the Baum—Welch method for the training of the parameters of
an HMM to model a given data set, and derived the forward—backward method for efficient
calculation of the likelihood of an HMM given an observation signal. In Section 5.4, we
considered the use of HMMs in signal classification and in the decoding of the underlying
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state sequence of a signal. The Viterbi algorithm is a computationally efficient method for
estimation of the most likely sequence of an HMM. Given an unlabelled observation signal,
the decoding of the underlying state sequence and the labelling of the observation with one
of number of candidate HMMs are accomplished using the Viterbi method. In Section 5.5,
we considered the use of HMMs for MAP estimation of a signal observed in noise, and
considered the use of HMMs in implementation of the state-based Wiener filter sequence.
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Least square error filter theory, formulated by Norbert Wiener and Andrei Kolmogorov in
the 1940s, forms the foundation of data-dependent linear filters. Least square error filters
play a central role in a wide range of applications such as linear prediction, echo cancellation,
signal restoration, channel equalisation, radar and system identification.

The coefficients of a least square error filter are calculated to minimise the average squared
distance between the filter output and a desired or target signal. In its basic form, the least
square error filter theory assumes that the signals are stationary processes. However, if the
filter coefficients are periodically recalculated and updated for every block of N signal
samples, then the filter adapts itself to the average characteristics of the signals within the
blocks and becomes block-adaptive. A block-adaptive (or segment-adaptive) filter can be
used for signals such as speech and image that may be considered as almost stationary over a
relatively small block of samples. In this chapter, we study the least square error filter theory,
and consider alternative methods of formulation of the filtering problem. We consider the
application of the least square error filters in channel equalisation, time-delay estimation and
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additive noise reduction. A case study of the frequency response of the least square error
filter, for additive noise reduction, provides useful insight into the operation of the filter. We
also deal with some implementation issues of filters.

6.1 LEAST SQUARE ERROR ESTIMATION: WIENER FILTERS

Norbert Wiener, and independently Andrei N. Kolmogorov, formulated the continuous-time
least-mean-square error estimation problem of smoothing, interpolation and prediction of
signals. Wiener’s work is described in his classic work on interpolation, extrapolation and
smoothing of time series (Wiener 1949). The extension of the Wiener filter theory from
continuous time to discrete time is simple, and of more practical use for implementation on
digital signal processors.

The typical scenario in which a Wiener filter is used is in the context of estimation or
prediction of a signal observed in noise. The Wiener filter can be used for signal enhancement
to remove the effect of linear distortions such as the de-blurring of distorted or unfocussed
images or equlisation of the distortion of a telecommunications channel, or noise reduction.
A Wiener filter can also be used to predict the trajectory of a projectile; a problem during the
Second World War on which Wiener worked. Predicting the fluctuations of a signal from
its past values has a wide range of applications from speech and video coding to economic
data analysis. The Wiener filter formulation is the basis of least square error applications
such as linear prediction and adaptive filters.

A Wiener filter can be an infinite-duration impulse response (IIR) or a finite-duration
impulse response (FIR) filter. In this chapter, we consider FIR Wiener filters, since they are
relatively simple to compute, inherently stable and more practical. The main drawback of
FIR filters compared with IIR filters is that they may need a large number of coefficients to
approximate a desired response.

Figure 6.1 illustrates a Wiener filter represented by the filter’s coefficient vector, w. The
filter takes as the input a signal y(m), usually a distorted version of a desired signal x(m),

Input y(m) -1 -2
s Fly(m 1_||Z_’1, y(m )...

K

w=R'r 1—
Xy
FIR Wiener filter
o - J
Desired signal x(m)

x(m)

Figure 6.1 Illustration of a Wiener filter structure.
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and produces an output signal x(m), where x(m) is the least-mean-square error estimate of
the desired or target signal, x(m). The filter input—output relation is given by

%(m) = Y- wey(m—k)

o (6.1)

= wTy
where m is the discrete-time index, vector yT = [y(m), y(m—1),...,y(m—P —1)] is the
filter input signal, X(m) is the filter output and the parameter vector w = [wy, w;, . . . , wp_;]

is the Wiener filter coefficient vector. In Equation (6.1), the filtering operation is expressed
in two alternative and equivalent representations of a convolutional sum and an inner vector
product.

The Wiener filter error signal, e(m), is defined as the difference between the desired (or
target) signal, x(m), and the filter output, x(m):

e(m) = x(m) — x(m) 62)
= x(m) —w'y

where, as expressed in Equation (6.1), x(m) is the convolution of the input signal vector, y,
and Wiener filter, w. In Equation (6.2), for a given input signal, y(m), and a desired signal,
x(m), the filter error, e(m), depends on the filter coefficient vector, w. The Wiener filter is
the best filter in the sense of minimising the mean-squared error signal.

To explore the relation between the filter coefficient vector, w, and the error signal, e(m),
we write Equation (6.2) N times in a matrix for a segment of N samples of the signals
[x(0), x(1), ..., x(N—1)] and signals [y(0), y(1),...,y(N—1)] as

«(0) x(0) WO) D) (=2 o y1=P)\ [ wy
(1) x(1) W) 0 D o ye-p) || w
e2) |=| x2 -] »®? y(1) y©0) ... y3-P) w,
«w-1) Lv-n) Lov-n -2 yv=3) ... yv=p) \w,

6.3)

In a compact vector notation this matrix equation may be written as
e=x—Yw (6.4)

where e is the error vector, x is the desired signal vector, Y is the input signal matrix and
Yw =X is the Wiener filter output signal vector. It is assumed that the P initial input signal
samples [y(—1), ..., y(—P—1)] are either known or set to zero.

At this point we explore the dependency of the solution of Equation (6.3) on the number
of available samples N, which is also the number of linear equations in Equation (6.3). In
Equation (6.3), if the number of given signal samples is equal to the number of unknown
filter coefficients, N = P, then we have a square matrix equation, with as many equations as
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there are unknowns, and theoretically there is a unique filter solution w, with a zero estimate
on error e = 0, such that x = Yw =x.

If N < P then the number of signal samples N, and hence the number of linear equations,
is insufficient to obtain a unique solution for the filter coefficients, in this case there are an
infinite number of solutions with zero estimation error, and the matrix equation is said to be
underdetermined.

In practice, there are two issues: (i) the target signal x(m) is not available; and (ii) the
number of signal samples is larger than the filter length. When N > P the matrix equation
is said to be overdetermined and has a unique solution, usually with a nonzero error. When
N > P, the filter coefficients are calculated to minimise an average error cost function, such
as the mean square error E[e?(m)], or the average absolute value of error E[|e(m)|], where
E[.] is the expectation (averaging) operator. The choice of the error function affects the
optimality and the computational complexity of the solution.

In Wiener theory, the objective criterion is the least mean square error (LSE) between the
filter output and the desired signal. The least square error criterion is optimal for Gaussian
distributed signals. As shown in the following, for FIR filters the LSE criterion leads to
linear and closed-form solutions. The Wiener filter coefficients are obtained by minimising
an average squared error function, E[e?(m)], with respect to the filter coefficient vector, w,
where Z is expectation or average. From Equation (6.2), the mean square estimation error is
given by

£[e*(m)] = E{[x(m) —w'y]’}
= E[x*(m)] - 2w  E[yx(m)] +w E[yy" |w (6.5)
T T
=r,(0)—2w ry+w R, w
where R, = E[y(m)y"(m)] is the autocorrelation matrix of the input signal and r,, =

E[x(m)y(m)] is the cross-correlation vector of the input and the desired signals. An expanded
form of Equation (6.5) can be obtained as

[ (m)] = 1 (0) —2 X wr, () + Y w, Y wyr, (k= J) (6.6)
k=0 k=0 j=0

where r, (k) and r, (k) are the elements of the autocorrelation matrix R/, and the cross-
correlation vector r,,, respectively.

From Equation (6.5), the mean square error for an FIR filter is a quadratic function of the
filter coefficient vector w and has a single minimum point. For example, for a filter with two
coefficients (w,, w;), the mean square error function is a bowl-shaped surface, with a single
minimum point, as illustrated in Figure 6.2. The least mean square error point corresponds
to the minimum error power. At this operating point the mean square error surface has zero
gradient. From Equation (6.5), the gradient of the mean square error function with respect
to the filter coefficient vector is given by

%f[ez(m)] = —2E[x(m)y(m)]+2w" E[y(m)y" (m)]

T
=-2r,+2w R,

(6.7)
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Fle?]

Figure 6.2 Mean square error surface for a two-tap FIR filter.
where the gradient vector is defined as

a a a4 49 a 1"
T = 5 ) PICIERENE) (6‘8)
ow dw, dw, Jw, owp_,

The minimum mean square error Wiener filter is obtained by setting Equation (6.7) to zero:

R, w=r, (6.9)
or, equivalently,
w=Rr, (6.10)

In an expanded form, the Wiener filter solution, Equation (6.10), can be written as

1

w, r,,(0) r,(1) r,,(2) oo (P=1) B 7,x(0)

w; ryy(l) ryy(o) r)’y(l) e ryy(P_z) rvvc(l)

w, | — r,y(2) r,,(1) r,,(0) oo 1, (P=3) ,.(2)
wl;,l Ty (P -1 ryy(P. -2) ry).(P. -3) .. ryy'(O) Ty (P -1

(6.11)

From Equation (6.11), the calculation of the Wiener filter coefficients requires the
autocorrelation matrix of the input signal and the cross-correlation vector of the input and
the desired signals.

In statistical signal processing theory, the correlation values of a random process are
obtained as the averages taken across the ensemble of different realisations of the process,
as described in Chapter 3. However in many practical situations there are only one or
two finite-duration realisations of the signals x(m) and y(m). Furthermore most signals are
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nonstationary and need to be segmented in quasistationary short segments. In such cases,
assuming the signals are correlation-ergodic, we can use time averages instead of ensemble
averages. For a signal record of length N samples, the time-averaged correlation values are
computed as

oK) = = X ¥(m) ym+8) (6.12)
m=0

Note from Equation (6.11) that the autocorrelation matrix R, has a highly regular Toeplitz
structure. A Toeplitz matrix has identical elements along the left-right diagonals of the matrix.
Furthermore, the correlation matrix is also symmetric about the main diagonal elements.
There are a number of efficient methods for solving the linear matrix Equation (6.11),
including the Cholesky decomposition, the singular value decomposition and the QR
decomposition (Section 6.2.1) methods.

6.2 BLOCK-DATA FORMULATION OF THE WIENER FILTER

In this section we consider an alternative formulation of a Wiener filter for a segment
of N samples of the input signal [y(0),y(1),...,y(N —1)] and the desired signal

[x(0), x(1),...,x(N—1)]. The set of N linear equations describing the Wiener filter input—
output relation can be written in matrix form as
x(0) yO0)  y=1)  y-=2) - y2-P) y(1—P) wy
(1) y(1) y0  y=1) - y3-P) y(2-P) w,
X2 | | Y@ y(1) y©0) - y(4-P) y(3—-P) W)
sv-2) | [y =2) =3 yv-a) =P N —1-P) | | wps
X(N-1) YN=1) y(N=2) y(N=3) --- y(N+1-P) y(N—P) Wp_
(6.13)

Equation (6.13) can be rewritten in compact matrix notation as
x=Yw (6.14)

The Wiener filter error is the difference between the desired signal and the filter output
defined as

e=x—Xx 6.15)
6.15
=x—Yw

The energy of the error vector, that is the sum of the squared elements of the error vector,
is given by the inner vector product as

ele=(x—Yw) (x —Yw) 6.16)
6.16
=xTx —xTYw—wTYTx +wTYTYW
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The gradient of the squared error function with respect to the Wiener filter coefficients is
obtained by differentiating Equation (6.16) w.r.t. w as:

deTe

=-2%"Y+2w'YTY (6.17)
ow

The Wiener filter coefficients are obtained by setting the gradient of the squared error
function of Equation (6.17) to zero; this yields

(YTY) w=Y"x (6.18)

or

1

w= (YTY)_ Y'x (6.19)
Note that the matrix YTY is a time-averaged estimate of the autocorrelation matrix of
the filter input signal R,,, and that the vector YTx is a time-averaged estimate of r,,, the
cross-correlation vector of the input and the desired signals. Since the least square error
method described in this section requires a block of N samples of the input and the desired
signals, it is also referred to as the block least square (BLS) error estimation method. The
block estimation method is appropriate for processing signals that can be considered as
time-invariant over the duration of the block.

Theoretically, the Wiener filter is obtained from minimisation of the squared error across
the ensemble of different realisations of a process, as described in the previous section. For a
correlation-ergodic process, as the signal length Napproaches infinity, the block-data Wiener
filter of Equation (6.19) approaches the Wiener filter of Equation (6.10):

lim [w=(Y"y)" ¥'x| =R,'r (6.20)

N—oo Yoy

6.2.1 QR DECOMPOSITION OF THE LEAST SQUARE ERROR
EQUATION

An efficient and robust method for solving the least square error Equation (6.19) is the
QR decomposition (QRD) method. In this method, the N x P signal matrix Y [shown in
Equation (6.13)] is decomposed into the product of an N x N orthonormal matrix @ and a
P x P upper-triangular matrix R as

oY = (ff) 6.21)

where 0 is the (N — P) x P null matrix, Q is an orthonormal matrix

0'0=00" =1 (6.22)
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and the upper-triangular matrix X is of the form

oo Tor Toz Yoz - Top-i
0 ry rp nz - rpoy
2 0 0 1y ry oo rpy 623
=10 0 0 ry -+ 1y (6.23)
0 0 0 0 - rp_y1py

From Equations (6.21) and (6.22) we have

Yy=0" <ff> (6.24)

Substitution of Equation (6.24) in Equation (6.18) yields

3 oo ()3 o

From Equation (6.25) we have

(i’f) w=0x (6.26)
From Equation (6.26) we have
Rw = xQ (627)

where the vector x, on the right-hand side of Equation (6.27) is composed of the first P
elements of the product Qx. Since the matrix R is upper-triangular, the coefficients of the
least square error filter can be obtained easily through a process of back substitution from
Equation (6.27), starting with the coefficient wp_; = x,(P—1)/7p_p_;.

The main computational steps in the QR decomposition are the determination of the
orthonormal matrix, @, and the upper triangular matrix, R. The decomposition of a matrix
into QR matrices can be achieved using a number of methods, including the Gram—Schmidt
orthogonalisation method, the Householder method and the Givens rotation method.

6.3 INTERPRETATION OF WIENER FILTERS AS
PROJECTIONS IN VECTOR SPACE

In this section, we consider an alternative formulation of Wiener filters where the least square
error estimate is visualized as the perpendicular minimum distance projection of the desired
signal vector onto the vector space of the input signal. A vector space is the collection of
an infinite number of vectors that can be obtained from linear combinations of a number of
independent vectors.
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In order to develop a vector space interpretation of the least square error estimation
problem, we rewrite the matrix Equation (6.11) and express the filter output signal vector X
as a linear weighted combination of the column vectors of the input signal matrix as

x(0) ¥(0) y(=1) y(1—P)
x(1) y(1) ¥(0) y(2—P)
x(2) ¥(2) y(1) y3—P)
. = w() . +w1 . + '+wp_1 . (628)
AN -2) V(N —2) (N =3) YN—1-P)
X(N-1) y(N—1) y(N=2) y(N = P)
In compact notation, Equation (6.28) may be written as
X =weyo+wy +- o+ Wp_y Ypy (6.29)
In Equation (6.29) the Wiener filter output X is expressed as a linear combination of P
basis vectors [yq, ¥, - - -,¥p_;], and hence it can be said that the estimate x is in the vector
subspace formed by the input signal vectors [yy, ¥, - .. ,¥p_1]-
In general, the N-dimensional input signal vectors [y,,y,,-..,Yp_;] in Equation (6.29)

define the basis vectors for a subspace in an N-dimensional signal space. If the number
of basis vectors P is equal to the vector dimension N, then the subspace encompasses the
entire N-dimensional signal space and includes the desired signal vector x. In this case, the
signal estimate X = x and the estimation error is zero. However, in practice, N > P, and the
signal space defined by the P input signal vectors of Equation (6.29) is only a subspace of
the N-dimensional signal space. In this case, the estimation error is zero only if the desired
signal x happens to be in the subspace of the input signal, otherwise the best estimate of
x is the perpendicular projection of the vector x onto the vector space of the input signal
[Yo> Y15« - - ¥p_1], as explained in the following example.

Example 6.1

Figure 6.3 illustrates a vector space interpretation of a simple least square error estimation
problem, where y* = [y(m), y(m — 1), y(m —2), y(m — 3)] is the input observation signal,
xT =[x(m), x(m—1), x(m—2)] is the desired signal and w™ = [w,, w, ] is the filter coefficient
vector. As in Equation (6.26), the filter output can be written as

X(m) y(m) y(m—1)
x(m=1D)=wy | yim=1) | +w, | y(m—2) (6.30)
X(m—2) y(m—2) y(m—3)

In Equation (6.28), the filter input signal vectors y| = [y(m), y(m —1), y(m —2)] and y] =
[y(m—1), y(m —2), y(m —3)] are three-dimensional vectors. The subspace defined by the
linear combinations of the two input vectors [y,,y,] is a two-dimensional plane in a three-
dimensional space. The filter output is a linear combination of y, and y,, and hence it is
confined to the plane containing these two vectors. The least square error estimate of x is the
orthogonal projection of x on the plane of [y,,y,], as shown by the shaded vector x. If the
desired vector happens to be in the plane defined by the vectors y, and y,, then the estimation
error will be zero, otherwise the estimation error will be the perpendicular distance of x from
the plane containing y, and y,.
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Error
signal  [e(m) Noisy
Clean e=|e(m-1) signal
A signal e(m-2)

y(m)
x(m) y,=[y(m—-1)
Ym-2)

Noisy
signal

y(m-1)
y1=|y(m=2)
y(m-3)

Figure 6.3 The least square error projection of a desired signal vector x onto a plane containing the
input signal vectors y; and y, is the perpendicular projection of x, shown as the shaded vector.

6.4 ANALYSIS OF THE LEAST MEAN SQUARE ERROR
SIGNAL

The optimality criterion in the formulation of the Wiener filter is the least mean square
distance between the filter output and the desired signal. In this section, the variance of
the filter error signal is analysed. Substituting the Wiener equation R,,w =r,, in the mean

squared error Equation (6.5) gives the least mean square error:
Z[e*(m)] = 1,,(0) —w'r,,
> (6.31)
=7 (0)—w'R,w

Now, for zero-mean signals, it is easy to show that the term wTRyyw in Equation (6.31) is
the variance of the Wiener filter output x(m):

of = E[#(m)] =w'R,,w (6.32)
Therefore Equation (6.31) may be written as
o, =0 - 03 (6.33)

where o7 = E[x*(m)] = r,,(0), o7 = E[**(m)] and o = E[e*(m)] are the variances of the
desired signal, the filter output, i.e. the estimate of the desired signal, and the error signal,
respectively. In general, the filter input, y(m), is composed of a signal component, x_(m),
and a random noise, n(m):

y(m) = x.(m) +n(m) (6.34)
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where the signal x_(m) is that part of the observation y(m) that is correlated with the desired
signal x(m), and it is this part of the input signal that may be transformable through a Wiener
filter to the desired signal. Using Equation (6.34) the Wiener filter error may be decomposed
into two distinct components:

e(m) = x(m) — 2 wey(m — k)

; , (6.35)
= |:x(m) - g wx.(m— k):| - ; wyn(m—k)
or
e(m) = e,(m)+e,(m) (6.36)

where e, (m) is the difference between the desired signal x(m) and the output of the filter in
response to the input signal component x_(m), i.e.

e.(m)=x(m)— Pi:l wex,(m—k) (6.37)
k=0

and e,(m) is the error in the filter output due to the presence of noise n(m) in the input
signal:

en(m) = — 3 wen(m—k) (6.38)
k=0

The variance of filter error can be rewritten as
o, =0, +o, (6.39)

Note that in Equation (6.36), e,(m) is that part of the signal that cannot be recovered by
the Wiener filter, and represents part of the distortion in the filter output signal, and e, (m)
is that part of the noise that cannot be blocked by the Wiener filter. Ideally, e, (m) = 0 and
e,(m) =0, but this ideal situation is possible only if the following conditions are satisfied:

(1) the spectra of the signal and the noise are separable by a linear filter;

(2) the signal component of the input, that is x (m), is linearly transformable to x(m);

(3) the filter length, P, is sufficiently large. The issue of signal and noise separability is
addressed in Section 6.6.

6.5 FORMULATION OF WIENER FILTERS IN THE
FREQUENCY DOMAIN

In the frequency domain, the Wiener filter output, X (f), is the product of the input signal,
Y(f), and the filter frequency response, W(f):

X =wHr) (6.40)



176 LEAST SQUARE ERROR FILTERS

The estimation error signal E(f) is defined as the difference between the desired signal X(f)
and the filter output X (f) as

E(f)=X(f) = X(f)

(6.41)
= X(f) = WHY(S)
and the mean square error at a frequency f is given by
£ [IENP | =2 {[X() - WO YD) [X() = W) YD1} (642)

where Z[-] is the expectation function, and the symbol * denotes the complex conjugate.
Note from Parseval’s theorem the mean square error in time and frequency domains are
related by

N—1 1/2
Y em= [ |ENFdf (643)
m=0 ~12

To obtain the least mean square error filter we set the complex derivative of Equation (6.40)
with respect to filter W(f) to zero

IZ[IE(N]

W =2W(f)Pyy (f) —2Pxy (/) =0 (6.44)

where Py, (f) = E[Y()Y*(f)] and Py, (f) = E[X()Y*(f)] are the power spectrum of Y(f),
and the cross-power spectrum of Y(f) and X(f), respectively. From Equation (6.44), the
least mean square error Wiener filter in the frequency domain is given as

Pyy(f)
Py (/)

Alternatively, the frequency Wiener filter Equation (6.45) can be obtained from the Fourier
transform of the time-domain Wiener Equation (6.9):

W(f) =

(6.45)

35wy (m— k) e o = 3 p, (m) e o (6.46)

m k=0

From the Wiener—Khinchine relation, correlation and power-spectral functions are Fourier
transform pairs. Using this relation, and the Fourier transform property that convolution in
time is equivalent to multiplication in frequency, Equation (6.46) can be transformed into
frequency as

W(f)PYY (f = Pyy (f) (6-47)

Re-arrangement of Equation (6.47) gives Equation (6.45).
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6.6 SOME APPLICATIONS OF WIENER FILTERS

In this section, we consider some applications of the Wiener filter in reducing broadband
additive noise, in time-alignment of signals in multichannel or multisensor systems, and in
communication channel equalisation.

6.6.1 WIENER FILTERS FOR ADDITIVE NOISE REDUCTION

Consider a signal x(m) observed in a broadband additive noise n(m), and model as
y(m) = x(m) + n(m) (6.48)

Assuming that the signal and the noise are uncorrelated, i.e. r,,(m) = 0, it follows that the
autocorrelation matrix of the noisy signal is the sum of the autocorrelation matrix of the
signal x(m) and the noise n(m):

R, =R, +R,, (6.49)
and we can also write

rxy=rxx

(6.50)

where R,,, R, and R, are the autocorrelation matrices of the noisy signal, the noise-free
signal and the noise, respectively, and r,, is the cross-correlation vector of the noisy signal
and the noise-free signal. Substitution of Equations (6.49) and (6.50) in the Wiener filter,

Equation (6.10), yields
w=R,+R,) "1y (6.51)

Equation (6.51) is the optimal linear filter for the removal of additive noise. In the following,
a study of the frequency response of the Wiener filter provides useful insight into the
operation of the Wiener filter. In the frequency domain, the noisy signal Y(f) is given by

Y(f) = X(f) +N(f) (6.52)

where X(f) and N(f) are the signal and noise spectra. For a signal observed in additive
random noise, the frequency Wiener filter is obtained as

Pyx(f)
Pyx (f) + Pan(f)

where Pyy(f) and Py (f) are the signal and noise power spectra. Dividing the numerator
and the denominator of Equation (6.53) by the noise power spectra Py (f) and substituting
the variable SNR(f) = Pyy(f)/Pxn(f) yields

W(f) = (6.53)

SNR(f)

Wi = SNR(f) + 1

(6.54)
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where SNR is a signal-to-noise ratio measure. Note that the variable SNR(f) is expressed
in terms of the power-spectral ratio, and not in the more usual terms of log power ratio.
Therefore SNR(f) = 0 corresponds to zero signal content or —oodB.

From Equation (6.54), the following interpretation of the Wiener filter frequency response,
W(f), in terms of the signal-to-noise ratio can be deduced. For additive noise, the Wiener
filter frequency response is a real positive number in the range 0 < W(f) < 1. Now consider
the two limiting cases of (a) a noise-free signal SNR(f) = oo and (b) an extremely noisy
signal SNR(f) = 0. At very high SNR, W(f) = 1, and the filter applies little or no attenuation
to the noise-free frequency component. At the other extreme, when SNR(f) =0, W(f) = 0.
Therefore, for additive noise, the Wiener filter attenuates each frequency component in
proportion to an estimate of the signal to noise ratio. Figure 6.4 shows the variation of the
Wiener filter response, W(f), with the signal-to-noise ratio, SNR(f).

An alternative illustration of the variations of the Wiener filter frequency response
with SNR(f) is shown in Figure 6.5. It illustrates the similarity between the Wiener
filter frequency response and the signal spectrum for the case of an additive white noise
disturbance. Note that, at a spectral peak of the signal spectrum, where the SNR(f) is
relatively high, the Wiener filter frequency response is also high, and the filter applies little
attenuation. At a signal trough, the signal-to-noise ratio is low, and so is the Wiener filter
response. Hence, for additive white noise, the Wiener filter response broadly follows the
signal spectrum.

6.6.2 WIENER FILTERS AND SEPARABILITY OF SIGNAL AND NOISE

A signal is completely recoverable from noise if the spectra of the signal and the noise
do not overlap. An example of a noisy signal with separable signal and noise spectra is
shown in Figure 6.6(a). In this case, the signal and the noise occupy different parts of the
frequency spectrum, and can be separated with a low-pass, or a high-pass, filter. Figure 6.6(b)
illustrates a more common example of a signal and noise process with overlapping spectra.
For this case, it is not possible to completely separate the signal from the noise. However,
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Figure 6.4 Variation of the gain of Wiener filter frequency response with SNR.
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Figure 6.5 Illustration of the variation of Wiener frequency response with signal spectrum for additive
white noise. The Wiener filter response broadly follows the signal spectrum.
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Figure 6.6 Illustration of separability: (a) the signal and noise spectra do not overlap, and the signal
can be recovered by a low-pass filter; (b) the signal and noise spectra overlap, and the noise can be
reduced but not completely removed.

the effects of the noise can be reduced by using a Wiener filter that attenuates each noisy
signal frequency in proportion to an estimate of the signal-to-noise ratio, as described by
Equation (6.54).

6.6.3 THE SQUARE-ROOT WIENER FILTER

In the frequency domain, the Wiener filter output, X (f), is the product of the input frequency,
Y(f), and the filter response, W(f), as expressed in Equation (6.40). Taking the expectation
of the squared magnitude of both sides of Equation (6.40) yields the power spectrum of the
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filtered signal as

E[X()P1= 1WA E[Y(HF]

5 (6.55)
=W Py (f)
Substitution of W(f) from Equation (6.45) in Equation (6.55) yields
N P2.(f
£(1%()P) = ) (656)
Py (f)
Now, for a signal observed in an uncorrelated additive noise, we have
PYY(f):PXX(f)+PNN(f) (6-57)
and
ny(f) = Pxx(f) (658)
Substitution of Equations (6.57) and (6.58) in Equation (6.56) yields
N P2 (f
X)) = ) (6:59)
Pyx(f) + Pan(f)

Now, in Equation (6.40) if instead of the Wiener filter, the square root of the Wiener filter
magnitude frequency response is used, the result is

X() =W v(f) (6.60)
and the power spectrum of the signal, filtered by the square-root Wiener filter, is given by
. 2 Pyy(f)
EIX(NP = [IWHI"| 20N = 252 P () = Pa() (661)
Py (f)
Now, for uncorrelated signal and noise Equation (6.58) becomes
E[|IX ()] = Py (/) (6.62)

Thus, for additive noise the power spectrum of the output of the square-root Wiener filter is
the same as the power spectrum of the desired signal.

6.6.4 WIENER CHANNEL EQUALISER

The distortions in a communication channel may be modelled by a combination of a linear
filter and an additive random noise source, as shown in Figure 6.7. The input—output signals
of a linear time-invariant channel can be modelled as

P-1

y(m) =Y hx(m—k)+n(m) (6.63)

k=0
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Figure 6.7 Illustration of a channel model followed by an equaliser.

where x(m) and y(m) are the transmitted and received signals, [A,] is the impulse response
of a linear filter model of the channel, and n(m) models the channel noise. In the frequency
domain Equation (6.63) becomes

Y(f) = X(HH(f) + N(f) (6.64)

where X(f), Y(f), H(f) and N(f) are the signal, noisy signal, channel and noise spectra,
respectively. To remove the channel distortions, the receiver is followed by an equaliser.
The equaliser’s input is the distorted signal at the channel output, and the desired signal
is the clean signal at the channel input. Using Equation (6.45), it is easy to show that the
frequency domain Wiener equaliser is given by

Wi = P D)
PN HPP + Pan(f)

(6.65)

where it is assumed that the signal and the channel noise are uncorrelated. In the absence
of channel noise, Py (f) =0, and the Wiener filter is simply the inverse of the channel
distortion model W(f) = H~'(f). The equalisation problem is treated in detail in Chapter 15.

6.6.5 TIME-ALIGNMENT OF SIGNALS IN
MULTICHANNEL/MULTISENSOR SYSTEMS

In multichannel/multisensor signal processing there is an array of noisy and distorted versions
of a signal x(m), and the objective is to use all the observations in estimating x(m), as
illustrated in Figure 6.8, where the phase and frequency characteristics of each channel are
modelled by a linear filter 2(m).

As a simple example, consider the problem of time-alignment of two noisy records of a
signal given as

yi(m) = x(m) +n,(m) (6.66)
v,(m) = Ax(m — D) + n,(m) (6.67)
where y,(m) and y,(m) are the noisy observations from channels 1 and 2, n,(m) and n,(m)

are uncorrelated noise in each channel, D is the relative time delay of arrival of the two
signals, and A is an amplitude scaling factor. Now assume that y,(m) is used as the input
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Figure 6.8 Illustration of a multichannel system where Wiener filters are used to time-align the
signals from different channels.

to a Wiener filter and that, in the absence of the signal x(m), y,(m) is used as the ‘desired’
signal. The error signal is given by

e(m) = yo(m) — Y wey, (m)

k=0

o - (6.68)
= |:Ax(m -D)— Z wkx(m):| + |:Z Wy 1y (m)i| +ny(m)
k=0 k=0

The Wiener filter strives to minimise the terms shown inside the square brackets in
Equation (6.68). Using the Wiener filter Equation (6.10), we have

_ p-1
_R}Hylryu’z

= (Rxx +Rn1n1)7l Arxx(D)

w
(6.69)

where r,.(D) = E[x(m — D)x(m)]. The frequency-domain equivalent of Equation (6.69) can
be derived as

Pyx(f)

Ae /@D 6.70
o) + Pun (D€ (6.70)

W(f) =

Note that in the absence of noise, the Wiener filter becomes a pure phase (or a pure delay)
filter, W(f) = Ae™/*P, with a flat magnitude response.

6.7 IMPLEMENTATION OF WIENER FILTERS

The implementation of a Wiener filter for additive noise reduction, using Equations (6.51)
or (6.53), requires the autocorrelation functions, or equivalently the power spectra, of the
signal and noise. In speech recognition the power spectra, or autocorrelation functions of
signal and noise, can be obtained from speech and noise models (see Chapters 5 and 16).
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When statistical models of speech and noise are not available, the noise power spectrum
can be obtained from the signal-inactive, noise-only, periods. The assumption is that the
noise is quasistationary, and that its power spectra remain relatively stationary between the
update periods. This is a reasonable assumption for many noisy environments, such as the
noise inside a car emanating from the engine and wind, aircraft noise or office noise from
computer machines.

The main practical problem in the implementation of a Wiener filter is that the desired
signal is often observed in noise, and that the autocorrelation or power spectra of the desired
signal are not readily available. Figure 6.9 illustrates the block-diagram configuration of a
system for implementation of a Wiener filter for additive noise reduction. The implementation
of this filter requires estimates of the spectral signal-to-noise ratio, SNR(f).

The estimate of spectral signal-to-noise ratio is obtained from the estimates of the power
spectra of the signal and noise. The noise estimate is obtained from speech inactive periods.
An estimate of the clean signal power spectra may be obtained by subtracting an estimate
of the noise spectra from that of the noisy signal.

A filter bank implementation of the Wiener filter is shown in Figure 6.10, where the
incoming signal is divided into N sub-bands. A first-order integrator, placed at the output of
each band-pass filter, gives an estimate of the power spectra of the noisy signal. The power
spectrum of the original signal is obtained by subtracting an estimate of the noise power
spectrum from the noisy signal.

In a Bayesian implementation of the Wiener filter, prior models of speech and noise, such
as hidden Markov models, are used to obtain the power spectra of speech and noise required
for calculation of the filter coefficients.

6.7.1 THE CHOICE OF WIENER FILTER ORDER

The choice of Wiener filter order affects:

(1) the ability of the filter to model and remove distortions and reduce the noise;

(2) the computational complexity of the filter;

(3) the numerical stability of the of the Wiener solution — a large filter may produce an
ill-conditioned large-dimensional correlation matrix in Equation (6.10).

Noisy l
signal .
& Noisy signal Spectral W(f)= SNR(f)
spectrum estimator SNR Estimator SNR(f)+1 Wi il
iener filter
coefficient
Signal vector
activity
detector
‘J\‘ Noise.spectrum
estimator

Figure 6.9 Configuration of a system for estimation of frequency Wiener filter.
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Figure 6.10 A filter-bank implementation of a Wiener filter for additive noise reduction.

The choice of the filter length also depends on the application and the method of
implementation of the Wiener filter. For example, in a filter-bank implementation of the
Wiener filter for additive noise reduction, Figure 6.10, the number of filter coefficients is
equal to the number of filter banks, and typically the number of filter banks is between 16
to 64. On the other hand, for many applications a direct implementation of the time-domain
Wiener filter requires a larger filter length, say between 64 and 256 taps.

A reduction in the required length of a time-domain Wiener filter can be achieved by
dividing the time domain signal into N sub-band signals. Each sub-band signal can then be
down-sampled by a factor of N. The down-sampling results in a reduction, by a factor of
N, in the required length of each sub-band Wiener filter. In Chapter 14, a sub-band echo
canceller is described.

6.7.2 IMPROVEMENTS TO WIENER FILTERS

The performance of Wiener filter can be limited by the following factors:

(1) the signal-to-noise ratio — generally the Wiener filter performance deteriorates with
decreasing SNR;

(2) the signal nonstationarity — the Wiener filter theory assumes that the signal processes are
stationary and any deviations from the assumption of stationarity will affect the ability
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of the filter to estimate and track the correlation or power spectrum functions needed
for computation of the filter coefficients;

(3) the Wiener filter is a linear filter and the presence of significant nonlinear distortion in
the input will affect the filter performance.

The performance of the Wiener filter can be improved by the use of a spectral-time
tracking and smoothing process employed to track and smooth the variations of the spectral
components of the signals over time. For example, in noisy speech processing, the evolution
over time of the significant spectral components of the signal and noise may be tracked
in order to remove the fluctuations and errors in estimation of the correlation or spectral
functions needed to compute Wiener filter coefficients.

6.8 SUMMARY

A Wiener filter is formulated to transform an input signal to an output that is as close to a
desired signal as possible. This chapter began with the derivation of the least square error
Wiener filter. In Section 6.2, we derived the block-data least square error Wiener filter for
applications where only finite-length realisations of the input and the desired signals are
available. In such cases, the filter is obtained by minimising a time-averaged squared error
function. In Section 6.3, we considered a vector space interpretation of the Wiener filters as
the perpendicular projection of the desired signal onto the space of the input signal.

In Section 6.4, the least mean square error signal was analysed. The mean square error is
zero only if the input signal is related to the desired signal through a linear and invertible
filter. For most cases, owing to noise and/or nonlinear distortions of the input signal, the
minimum mean square error would be nonzero. In Section 6.5, we derived the Wiener filter
in the frequency domain, and considered the issue of separability of signal and noise using
a linear filter. Finally, in Section 6.6, we considered some applications of Wiener filters in
noise reduction, time-delay estimation and channel equalisation.
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Adaptive filters work on the principle of minimizing the mean squared difference (or error)
between the filter output and a target (or desired) signal. Adaptive filters are used for
estimation of nonstationary signals and systems, or in applications where a sample-by-
sample adaptation of a process and/or a low processing delay is required. Applications of
adaptive filters include multichannel noise reduction, radar/sonar signal processing, channel
equalisation for cellular mobile phones, echo cancellation and low-delay speech coding.

This chapter begins with a study of the theory of state-space Kalman filter. In Kalman
filter theory a state equation models the dynamics of the signal generation process, and an
observation equation models the channel distortion and additive noise.

We study recursive least square (RLS) error adaptive filters. The RLS filter is a sample-
adaptive formulation of the Wiener filter, and for stationary signals should converge to the
same solution as the Wiener filter. In least square error filtering, an alternative to using
a Wiener-type closed-form solution is an iterative gradient-based search for the optimal
filter coefficients. The steepest-descent search is a gradient-based method for searching the
least square error performance curve for the minimum error filter coefficients. We study the
steepest-descent method, and then consider the computationally inexpensive LMS gradient
search method.
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7.1 INTRODUCTION

Adaptive filters are used in applications that involve a combination of three broad signal
processing problems:

(1) de-noising and channel equalization — filtering a time-varying noisy signal to remove
the effect of noise and channel distortions;

(2) trajectory estimation — tracking and prediction of the trajectory of a nonstationary signal
or parameter observed in noise;

(3) system identification — adaptive estimation of the parameters of a time-varying system
from a related observation.

Adaptive linear filters work on the principle that the desired signal or parameters can be
extracted from the input through a filtering or estimation operation. The adaptation of the
filter parameters is based on minimizing the mean squared error between the filter output
and a target (or desired) signal. The use of the LSE criterion is equivalent to the principal of
orthogonality in which at any discrete time m the estimator is expected to use all the available
information such that any estimation error at time m is orthogonal to all the information
available up to time m.
An adaptive filter can be a combination of the following types of filters:

® single-input or multi-input filters;
e linear or nonlinear filters;
e finite impulse response FIR or infinite impulse response IIR filters.

In this chapter we are mainly concerned with linear FIR filters which, because of their
stability and relative ease of adaptation, are the most widely used type of adaptive filter.
The adaptation algorithm can be based on a variant of one of the three most commonly used
adaptive estimation methods, namely

e Kalman filters;
o RLS filters;
o LMS filters.

The different types of adaptation algorithms differ mainly in terms of the prior or estimated
knowledge of system function and covariance matrices of signal and noise and also in terms
of the complexity of the solutions.

7.2 STATE-SPACE KALMAN FILTERS

Kalman filter, as illustrated in Figure 7.1, is a recursive least square error method for
estimation of a signal distorted in transmission through a channel and observed in noise.
Kalman filters can be used with time-varying as well as time-invariant processes.

Kalman filter theory is based on a state-space approach in which a state equation models
the dynamics of the signal generation process and an observation equation models the noisy
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e(m) x(m) y(m)
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Figure 7.1 [Illustration of signal and observation models in Kalman filter theory.

and distorted observation signal. For a signal x(m) and noisy observation y(m), equations
describing the state process model and the observation model are defined as

x(m) = Ax(m—1)+e(m) (7.1)
y(m) = Hx(m) +n(m) (7.2)

where x(m) is the P-dimensional signal, or the state parameter, vector at time m; A is a
P x P dimensional state transition matrix that relates the states of the process at times m — 1
and m; e(m) is the P-dimensional uncorrelated input excitation vector of the state equation —
e(m) is a normal (Gaussian) process, p[e(m)] ~ N(0, Q); Q is the P x P covariance matrix
of e(m); y(m) is the M-dimensional noisy and distorted observation vector; H is the M x P
dimensional channel distortion matrix; n(m) is an M-dimensional noise vector, also known
as measurement noise — r(m) is a normal (Gaussian) process, p[rn(m)] ~ N(0, R); and R is
the M x M dimensional covariance matrix of n(m).

Kalman Filter Algorithm

Input: observation vectors {y(m)}
Output: state or signal vectors {x(m)}

Initial conditions:
prediction error covariance matrix

P(O|—1) =20l (7.3)
prediction
x(0]—-1)=0 (7.4)

form=0,1,...

Time-Update (Prediction) Equations
State prediction equation:

x(mlm—1)=Ax(m—1) (7.5)
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(Continued)

Covariance matrix of prediction error:

P(mlm—1)=AP(m—1)A"+Q (7.6)

Measurement-update (estimate) equations
Kalman gain vector:

K(m) = P(m|m— 1)H" [HP(m|m — )H" +R] "' (7.7)
State update:

X(m) =X(m|m —1)+K(m) [y(m) — Hx(m|m —1)] (7.8)
Covariance matrix of estimation error:

P(m)=[I—KH]P(m|m—1) (7.9)

7.2.1 DERIVATION OF THE KALMAN FILTER ALGORITHM

The Kalman filter can be derived as a recursive minimum mean square error estimator of a
signal, x(m), from a noisy observation, y(m). The derivation of Kalman filter assumes that
the state transition matrix, A, the channel distortion matrix, H, the covariance matrix, Q, of
the input e(m) of the state equation and the covariance matrix, R, of the additive noise n(m)
are given.

The derivation of Kalman filter, described next, is based on the following methodology:

(1) prediction (update) step — the signal state is predicted from the previous observations
and a prediction error covariance matrix is obtained, Equations (7.5)—(7.6);

(2) estimation (measurement) step — the prediction from step 1 and the innovation (innovation
is the difference between the prediction and noise observations) are used to make
an estimate of the signal. At this stage the Kalman gain vector and estimation error
covariance matrix are calculated, Equations (7.7)—(7.9).

In this chapter, we use the notation y(m|m — i) to denote a prediction of y(m) based on
the observation samples up to the time m — i. Assume that X(m|m — 1) is the least square
error prediction of x(m) based on the observations [y(0), . ..,y(m — 1)]. Define a prediction
equation as

x(mim—1)=Ax(m—1) (7.10)
An innovation signal composed of prediction error plus noise may be defined as

v(m) =y(m)—Hx(m|m—1) (7.11)
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where X(m|m — 1) denotes the least square error prediction of the signal x(m). The innovation
signal vector, v(m), is the part of y(m) that is unpredictable from past observations; it
includes both the noise and the unpredictable part of the signal x(m).

For an optimal linear least mean square error estimate, the innovation signal must be an
uncorrelated process orthogonal to the past observation vectors; hence we have

E[v(m)y"(m—k)]=0 k>0 (7.12)
and
E[v(mp (k)] =0 m#k (7.13)

The concept of innovations is central to the derivation of the Kalman filter. The least square
error criterion is satisfied if the estimation error is orthogonal to the past samples.

In the following derivation of the Kalman filter, the orthogonality condition of
Equation (7.12) is used as the starting point to derive an optimal linear filter whose
innovations v(m) are orthogonal to the past observations y(im).

Substituting the observation Equation (7.2) in Equation (7.11) and using the relationship

y(mm —1) = E[y(m)|x (m|m —1)]

(7.14)
=Hx (m|lm—1)
yields

v(m) =H x(m)+n(m)—H X (m|m—1)

- (7.15)
=H x(m|m—1)+n(m)

where X(m|m — 1) is the signal prediction error vector defined as

X(mlm—1) =x(m) —x (mlm—1) (7.16)

From Equation (7.15) the covariance matrix of the innovation signal v(m) is given by
f[v(m)vT(m)] =H P(mlm—1)H" +R (7.17)

where P(m|m— 1) is the covariance matrix of the prediction error X(m|m — 1). The estimation
of x(m), based on the samples available up to time m, can be expressed recursively as a
linear combination of the prediction of x(m) based on the samples available up to time
m — 1, and the innovation signal at time m as

x(m) =x(m|m—1)+K(m)v(m) (7.18)

where the P x M matrix K(m) is the Kalman gain matrix. Now, from Equation (7.1), we
have

x(mm—1)=Ax(m—1) (7.19)
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Substitution of Equation (7.19) in Equation (7.18) gives
x(m) =Ax(m—1)+K(m)v(m) (7.20)
To obtain a recursive relation for the computation and update of the Kalman gain matrix,
multiply both sides of Equation (7.18) by vT(m) and take the expectation of the results to
yield
E[x(m)v" (m)] = E[x(m|m — 1)y (m)] + K(m)E[v(m)v" (m)] (7.21)

Owing to the required orthogonality of the innovation sequence v(m) to the past samples,
we have

E[% (m|lm—1)v"(m)] =0 (7.22)
Hence, from Equations (7.21) and (7.22), the Kalman gain matrix is given by
K(m) = £[& (m)v"(m)] £[v (m)»"(m)] "' (7.23)
The first term on the right-hand side of Equation (7.23) can be expressed as

E[x (m)v" (m)] = £[[x (m) =% (m)]v" (m)]
E[[% (m|m—1) +% (m|m — 1) =% (m)]v" (m)]
E[x (m|m—1)v" (m)]

(7.24)

f[fc (m|m — 1) [Hx (m) +n (m) — H& (m|m — 1)]T]
=[x (m|m—1)x" (m|m—1)]H"
=P(mm—1)H"

In developing the successive lines of Equation (7.24), we have used the following relations:

x(m)=x(mm—1)+x(mlm—1) (7.25)
E£[x (m)v"(m)] =0 (7.26)
E[% (m|lm—1)v"(m)] =0 (7.27)
‘Z[fc(m|m— l)nT(m)] =0 (7.28)

Substitution of Equations (7.17) and (7.24) in Equation (7.23) yields the following equation
for the Kalman gain matrix:

K (m) =P (m|m—1)H"[HP (m|m—1)H" +R]"' (7.29)
where P(m|m — 1) is the covariance matrix of the signal prediction error X¥(m|m — 1). Note

that the Kalman gain vector can be interpreted as a function of signal-to-noise ratio of the
innovation signal.
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A recursive relation for calculation of P(m|m — 1), the covariance matrix of prediction
error X (m|m — 1) is derived as follows

X(mm—1)=x(m)—x(mlm—1) (7.30)

Substitution of Equation (7.1) and (7.19) in Equation (7.30) and rearrangement of the terms
yields

X(mm—1)=[Ax(m—1)+e(m)] —[Ax (m—1)]
— A% (m—1)+e(m) (7.31)

The covariance matrix of ¥ (m|m — 1) is obtained as
Z[x (m|m—1)& (m|m — 1)T] —AE[F(m—1)F(m—1)T]A"+Q (1.32)
or
P(mlm—1)=AP(m—1)A"+Q (7.33)
where P(m|m — 1) and P(m) are the covariance matrices of the prediction error X (m|m —1)
and estimation error ¥ (m), respectively. A recursive relation for the covariance matrix of
the signal estimation error vector, X (m), can be derived as follows. Subtracting both sides
of Equation (7.18) from ¥ (/m) we have
X(m)=x(m|lm—1)—K(m)v(m) (7.34)
From Equation (7.34) the covariance matrix of the estimation error vector can be expressed as
E[% ()% (m)"] = % (nlm — 1) F (mlm — )| = K (m) £[y (m)» (m)"] K ()"
+2E[% (m|lm—1)v (m)" | K (m)" (7.35)
From Equation (7.23) we have
K (m) E[v (m)v (m)"] =P (m|m—1)H" (7.36)
From Equation (7.24) we have
E[% (mlm—1)v(m)" ] =P (m|m—1)H" (7.37)
Substitution of Equations (7.36) and (7.37) in Equation (7.35) and rearranging yields

P (m) = [I —KH]P (m|m—1) (7.38)
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Example 7.1: Recursive Estimation of a Constant Signal Observed in Noise

Consider the estimation of a constant signal observed in a random noise. The state and
observation equations for this problem are given by

x(m)=x(m—-1)=x (7.39)
y(m) = x+n(m) (7.40)

Note that a = 1, state excitation e(m) = 0, the variance of excitation Q = 0 and the variance
of noise R = o2
Using the Kalman algorithm, we have the following recursive solutions:

Initial conditions:

P(=1)=06 (7.41)
x(0-1)=0 (7.42)
form=0,1,...
Time-update equations
Signal prediction equation:
x(mm—1)=x(m—1) (7.43)
Covariance matrix of prediction error:
P(mlm—1)=P(m—1) (7.44)
Measurement-update equations
Kalman gain vector:
K(m) = P(m|m—1) [P(m|m —1)+02] "' (7.45)
Signal estimation equation:
x(m) = x(m|m— 1)+ K(m) [y(m) —x(m|m — 1)] (7.46)
Covariance matrix of estimation error:
P(m)=[1—-K(m)]P(m|m—1) (7.47)

Example 7.2: Estimation of an AR Signal Observed in Noise

Consider the Kalman filtering of a Pth order AR process x(m) observed in an additive white
Gaussian noise, n(m). Assume that the signal generation and the observation equations are
given as

x(m) = XP: ayx(m —k) + e(m) (7.48)

k=1

y(m) = x(m) + n(m) (7.49)
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Let 02(m) and o(m) denote the variances of the excitation signal e(m) and the noise n(m),
respectively. Substituting A =a =[a,, a,, . .., ap] and H = 1 in the Kalman filter equations
yields the following Kalman filter algorithm:

Initial conditions:

P(-1)=46 (7.50)
x(0]-1)=0 (7.51)
form=0,1,...
Time-update equations
Signal prediction equation:
P
X(mm—1)=>a,x(m—k) (7.52)
k=1
Covariance matrix of prediction error
P(m|m—1) =aP(m—1)a" + o? (7.53)
Measurement-update equations
Kalman gain vector:
K(m) = P(m|lm—1) [P(mlm—l)—i—(f‘fT1 (7.54)
Signal estimation equation:
x(m) = x(m|m— 1)+ K(m) [y(m) — x(m|m —1)] (7.55)
Covariance matrix of estimation error:
P(m) =[1—K(m)] P(m|m—1) (7.56)

7.3 SAMPLE-ADAPTIVE FILTERS

Adaptive filters, namely the RLS, the steepest descent and the LMS, are recursive
formulations of the least square error Wiener filter. Sample-adaptive filters have a number
of advantages over the block-adaptive filters of Chapter 6, including lower processing
delay and better tracking of the trajectory of nonstationary signals. These are essential
characteristics in applications such as echo cancellation, adaptive delay estimation, low-delay
predictive coding, noise cancellation, radar and channel equalization in mobile telephony,
where low delay and fast tracking of time-varying processes and time-varying environments
are important objectives.

Figure 7.2 illustrates the configuration of a least square error adaptive filter. At
each sampling time, an adaptation algorithm adjusts the P filter coefficients w(m) =
[wo(m), w,(m), ..., wp_,(m)] to minimise the difference between the filter output and
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‘Desired’ or ‘target’
signal x(rm)

O

Input y(m) -1 -2 -P-1

_| Adaptation |_e(m) /™
algorithm

Transversal filter

Q £(m)

Figure 7.2 [Illustration of the configuration of an adaptive filter.

a desired, or target, signal. An adaptive filter starts at some initial state, then the filter
coefficients are periodically updated, usually on a sample-by-sample basis, to minimise the
difference between the filter output and a desired or target signal. The adaptation formula
has the general recursive form:

Next parameter estimate = Previous parameter estimate 4+ Update (error)

where the update term is a function of the error signal. In adaptive filtering several decisions
have to be made concerning the filter model and the adaptation algorithm:

(1) Filter type — this can be an FIR filter, or an IIR filter. In this chapter we only consider
FIR filters, since they have good stability and convergence properties and for these
reasons are the type often used in practice.

(2) Filter order — often the correct number of filter taps is unknown. The filter order is
either set using a priori knowledge of the input and the desired signals, or obtained by
monitoring the changes in the error signal as a function of the increasing filter order.

(3) Adaptation algorithm — the two commonly used adaptation algorithms are the RLS
error and the LMS methods. The factors that influence the choice of the adaptation
algorithm are the computational complexity, the speed of convergence to optimal
operating condition, the minimum error at convergence, the numerical stability and the
robustness of the algorithm to initial parameter states.

7.4 RECURSIVE LEAST SQUARE ADAPTIVE FILTERS

The recursive least square error filter is a sample-adaptive, time-update, version of the
Wiener filter studied in Chapter 6. For stationary signals, the RLS filter converges to the
same optimal filter coefficients as the Wiener filter. For nonstationary signals, the RLS
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filter tracks the time variations of the process. The RLS filter has a relatively fast rate of
convergence to the optimal filter coefficients. This is useful in applications such as speech
enhancement, channel equalization, echo cancellation and radar where the filter should be
able to track relatively fast changes in the signal process.

In the recursive least square algorithm, the adaptation starts with some initial filter
state, and successive samples of the input signals are used to adapt the filter coefficients.
Figure 7.2 illustrates the configuration of an adaptive filter where y(m), x(m) and w(m) =
[we(m), w,(m), . .., wp_,(m)] denote the filter input, the desired (target) signal and the filter
coefficient vector, respectively. The filter output can be expressed as

&(m) =w' (m)y(m) (7.57)

where Xx(m) is an estimate of the desired signal x(m). The filter error signal is defined as
the difference between the filter output and the target signal as

e(m) = x(m) — x(m) (7.58)
= x(m) —w" (m)y(m)

The adaptation process is based on the minimization of the mean square error criterion
defined as

£le(m)] =% { [x(m) = wT (m)y(m)]' |

= E[x*(m)] = 2w" (m)E[y(m)x(m)] +w" (m) E[y(m)y" (m)]w(m)
=7 (0)—2w" (m)r,,(m) + wT (m)R,, (m)w(m) (7.59)

where r,(0) is the autocorrelation at lag zero of the target signal x(m),R,, is the
autocorrelation matrix of the input signal vector y(m) and r, is the cross-correlation vector
of the input and the target signals.

The Wiener filter is obtained by minimising the mean square error with respect to the
filter coefficients. For stationary signals, the result of this minimisation is given in Chapter 6,
Equation (6.10), as
w= Ry’y'ryx (7.60)
In the following, we formulate a recursive, time-update, adaptive formulation of
Equation (7.60). From Section 6.2, for a block of N sample vectors, the correlation matrix
can be written as

N—-1
R,=Y'Y=">"y(m)y"(m) (7.61)
m=0
where y(m) = [y(m), . .., y(m—P—1)]T. Now, the sum of vector product in Equation (7.61)

can be expressed in recursive fashion as

R,,(m) =R,,(m—1) +y(m)y" (m) (7.62)
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To introduce adaptability to the time variations of the signal statistics, the autocorrelation
estimate in Equation (7.61) can be windowed by an exponentially decaying window:

Ry, (m) = AR, (m — 1) +y(m)y" (m) (7.63)

where A is the so-called ‘adaptation’, or ‘forgetting’ factor, and is in the range 0 > A > 1.
Similarly, the cross-correlation vector is given by

ry= Y y(m)x(m) (7.64)

m=0

The sum of products in Equation (7.64) can be calculated in recursive form as
1y (m) =ry (m—1) +y(m)x(m) (7.65)
Equation (7.65) can be made adaptive using an exponentially decaying forgetting factor A:
ry (m) = Ar, (m—1) +y(m)x(m) (7.66)

For a recursive solution of the least square error Equation (7.66), we need to obtain a
recursive time-update formula for the inverse matrix in the form

R, (m) =R, (m— 1)+ Update(m) (7.67)

A recursive relation for the matrix inversion is obtained using the following lemma.

7.4.1 THE MATRIX INVERSION LEMMA
Let A and B be two positive-definite P x P matrices related by
A=B'+CD7'C" (7.68)

where D is a positive-definite N x N matrix and C is a P x N matrix. The matrix inversion
lemma states that the inverse of the matrix A can be expressed as

A"'=B-BC(D+C"BC) ' C'B (7.69)

This lemma can be proved by multiplying Equation (7.68) and Equation (7.69). The left- and
right-hand sides of the results of multiplication are the identity matrix. The matrix inversion
lemma can be used to obtain a recursive implementation for the inverse of the correlation
matrix, R, ' (m). Let

R, (m)=A (7.70)
AR, (m—1)=B (7.71)
y(m)=C (7.72)

D = identity matrix (7.73)
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Substituting Equations (7.63) and (7.64) in Equation (7.62), we obtain

AR, (m = Dy(m)y" (m)R,, (m — 1)
L+ A7yT(m)R}! (m — 1)y(m)

-1 _ y—lp-l
R (m)=A"R (m—1)—

Now define the variables ®@(m) and k(m) as

@, (m) = Ry_y1 (m)

and
) — AR (m —1)y(m)
") = T m Ry m — Ty(m)
or
A, (m—1)y(m
k(m) = ( )y (m)

T ATy (m) by, (m — D)y(m)

(7.74)

(7.75)

(1.76)

(7.77)

Using Equations (7.75) and (7.76), the recursive equation (7.67) for computing the inverse

matrix can be written as
-1 -1 T
@, (m) =A"" @, (m—1)— A" k(m)y (m)@,,(m—1)
From Equations (7.77) and (7.78), we have

k(m) = [/\_ld>yy(m -1)— )\_lk(m)yT(m)d>yy(m - 1)]y(m)
= &,,(m)y(m)

(7.78)

(7.79)

Now Equations (7.78) and (7.79) are used in the following to derive the RLS adaptation

algorithm.

7.4.2 RECURSIVE TIME-UPDATE OF FILTER COEFFICIENTS

The least square error filter coefficients are

w(m) =R, (m)r,,(m)
= @), (m)ry,(m)

Substituting the recursive form of the correlation vector in Equation (7.80) yields

w(m) = (I)yy(m) [Aryx(m - 1) +y(m)'x(m)]
= /\d)yy(m)ryx(m - 1) + q)yy(m)y(m)x(m)

(7.80)

(7.81)
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Now substitution of the recursive form of the matrix @, ,(m) from Equation (7.78) and
k(m) = @(m)y(m) from Equation (7.79) in the right-hand side of Equation (7.81) yields

wm) = [Ny, (= 1) = A~k (m)y" (m) by, (m — )] Arye(m = 1) +K(m)x(m)  (7.82)
or
w(m) = @ (m— Dy, (m = 1) = k(m)y" (m)d,, (m = Dry (m = 1) +k(m)x(m) — (7.83)
Substitution of w(m — 1) = @(m — 1)r,,(m — 1) in Equation (7.83) yields
wm) =w(m— 1) +k(m) [x(m) =y (mw(m—1)] (7.84)
This equation can be rewritten in the following form
w(m) = w(m—1) —k(m)e(m) (7.85)

Equation (7.85) is a recursive time-update implementation of the least square error Wiener
filter.

RLS Adaptation Algorithm

Input signals: y(m) and x(m)
Initial values:

®,,(m) = 81

w(0) =w,

Form=1,2,...
Filter gain vector update:

AT D, (m—1)y(m)

KO = Ay m)yy m— Dy(m) (759
Error signal equation:
e(m) = x(m) —w" (m —1)y(m) (7.87)
Filter coefficients adaptation:
w(m) =w(m—1)+k(m)e(m) (7.88)

Inverse correlation matrix update:

D, (m) = )Flcbyy(m —1)— /\’lk(m)yT(m)d)yy(m -1 (7.89)
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7.5 THE STEEPEST-DESCENT METHOD

The surface of the mean square output error of an adaptive FIR filter, with respect to the
filter coefficients, is a quadratic bowl-shaped curve, with a single global minimum that
corresponds to the LSE filter coefficients.

Figure 7.3 illustrates the mean square error curve for a single coefficient filter. This figure
also illustrates the steepest-descent search for the minimum mean square error coefficient.
The search is based on taking a number of successive downward steps in the direction
of negative gradient of the error surface. Starting with a set of initial values, the filter
coefficients are successively updated in the downward direction, until the minimum point,
at which the gradient is zero, is reached. The steepest-descent adaptation method can be
expressed as

M] (7.90)

wm+ 1) =W(m)+M[— e

where w is the adaptation step size.
From Equation (7.59), the gradient of the mean square error function is given by

%zr(nn)c)] = —2r, +2R,,w(m) (7.91)
Substituting Equation (7.91) in Equation (7.90) yields

w(m+1) =w(m)+u[r,, —R,w(m)] (7.92)
where the factor of 2 in Equation (7.91) has been absorbed in the adaptation step size .
Let w, denote the optimal LSE filter coefficient vector; we define a filter coefficients error

vector w(m) as

w(m)=w(m)—w, (7.93)

Ee2(m)]

Woplimul W(l) W(i— 1 ) w(i— 2) w

Figure 7.3 Illustration of gradient search of the mean square error surface for the minimum error
point.
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For a stationary process, the optimal LSE filter w, is obtained from the Wiener filter,
Equation (5.10), as

w,=R'r (7.94)

Subtracting w, from both sides of Equation (7.92), and then substituting R, w, for r,, and
using Equation (7.93) yields

w(m+1) =[I—uR,,|w(m) (7.95)

It is desirable that the filter error vector, w(m), vanishes as rapidly as possible. The parameter
M, the adaptation step size, controls the stability and the rate of convergence of the adaptive
filter. Too large a value for u causes instability; too small a value gives a low convergence
rate. The stability of the parameter estimation method depends on the choice of the adaptation
parameter, w, and the autocorrelation matrix.

From Equation (7.95), a recursive equation for the error in each individual filter coefficient
can be obtained as follows. The correlation matrix can be expressed in terms of the matrices
of eigenvectors and eigenvalues as

_ T
R, =0AQ (7.96)
where @ is an orthonormal matrix of the eigenvectors of R, and A is a diagonal matrix
with its diagonal elements corresponding to the eigenvalues of R,. Substituting R,, from
Equation (7.96) in Equation (7.95) yields
w(m+1) =[I—unQAQ"|w(m) (7.97)

Multiplying both sides of Equation (7.97) by Q" and using the relation Q"Q = QQ" =1
yields

Q"w(m+1) = [1—uA]Q" W (m) (7.98)
Let
v(m) = Q"Ww(m) (7.99)
Then
y(m+1) = [I— wA]v(m) (7.100)

As A and I are both diagonal matrices, Equation (7.92) can be expressed in terms of the
equations for the individual elements of the error vector, v(m), as

ve(m+1) = [1=pA ] v (m) (7.101)
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+vk(m) » — v (m+ 1)

71
L

Figure 7.4 A feedback model of the variation of coefficient error with time.

where A, is the kth eigenvalue of the autocorrelation matrix of the filter input, y(m).
Figure 7.4 is a feedback network model of the time variations of the error vector. From
Equation (7.101), the condition for the stability of the adaptation process and the decay of
the coefficient error vector is

—1<l—pA, <1 (7.102)

Let A, denote the maximum eigenvalue of the autocorrelation matrix of y(m) then, from
Equation (7.102), the limits on u for stable adaptation are given by

O<p< (7.103)

7.5.1 CONVERGENCE RATE

The convergence rate of the filter coefficients depends on the choice of the adaptation step
size u, where 0 < u < 2/A,,,.. When the eigenvalues of the correlation matrix are unevenly
spread, the filter coefficients converge at different speeds: the smaller the kth eigenvalue,
the slower the speed of convergence of the kth coefficients. The filter coefficients with

maximum and minimum eigenvalues, A,,, and A ;,, converge according to the following
equations:
Umax(m + 1) = (1 - I‘L/\max) Umax (m) (7104)
vmin(m + 1) = (1 - lu‘/\min) vmin (m) (7 105)

The ratio of the maximum to the minimum eigenvalue of a correlation matrix is called the
eigenvalue spread of the correlation matrix:

A
eigenvalue spread = % (7.106)

Note that the spread in the speed of convergence of filter coefficients is proportional to the
spread in eigenvalue of the autocorrelation matrix of the input signal.
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Example 7.3
Assuming that the maximum eigenvalue of a signal is 2 and the minimum eigenvalue is 0.2,

calculate:

(1) the eigenvalue spread;

(2) the bounds on adaptation step size;

(3) the decay factor of the error equations for the fastest and the slowest converging
coefficients of the filter, assuming that the adaptation step size is 0.4.

Answer:

(1) eigenvalue spread =

>

max — ]O

>

(2) the bounds on adaptation step size,

O<pu< =1

AIﬂﬂ){
(3) the fastest decay factor = (1 — uA,,,) 1 —0.4x2=0.2, and the slowest decay factor
=(1—-pA,,) =1-04x0.2=0.92.

7.5.2 VECTOR-VALUED ADAPTATION STEP SIZE

Instead of using a single scalar-valued adaptation step size, u, we can use a vector-valued
adaptation step size, = [fg, Mos - - - » Mp_; ], With each filter coefficient, wy, having its own
adaptation step size, u,. This is useful when the input signal has an eigenvalue spread of
greater than one, in which case, as shown in the preceding example, the use of a single step
adaptation size would cause an uneven rate of convergence of coefficients. With the use of a
vector-valued step size, the kth adaptation step size can be adjusted using the kth eigenvalue
of the autocorrelation matrix of the input signal to the filter to ensure a more even rate of
convergence of different filter coefficients.

7.6 THE LMS FILTER

In its search for the least square error filter coefficients, the steepest-descent method employs
the gradient of the averaged squared error. A computationally simpler version of the gradient
search method is the LMS filter, in which the gradient of the mean square error is substituted
with the gradient of the instantaneous squared error function. The LMS adaptation method
is defined as

Hez(m)] (7.107)

wm 1) = w(m) + o [— o
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where the error signal e(m) is the difference between the adaptive filter output and the target
(desired) signal x(m), given by

e(m) = x(m) —w" (m)y(m) (7.108)
The instantaneous gradient of the squared error can be re-expressed as

de*(m) 9 T
) S Lal) Wy )

= —2y(m)[x(m) —w" (m)y(m)]
= —2y(m)e(m)

(7.109)

Substituting Equation (7.109) into the recursion filter update Equation (7.107) yields the
LMS adaptation equation:

w(m+1) =w(m)+uly(m)e(m)] (7.110)

It can be seen that the filter update equation is very simple. The LMS filter is widely used
in adaptive filter applications such as adaptive equalisation, echo cancellation, radar, etc.
The main advantage of the LMS algorithm is its simplicity both in terms of the memory
requirement and the computational complexity, which is O(P), where P is the filter length.

7.6.1 LEAKY LMS ALGORITHM

The stability and the adaptability of the recursive LMS adaptation Equation (7.86) can be
improved by introducing a so-called leakage factor a as

wm+1)=aw(m)+ uy(m)e(m)] (7.111)

Note that, as illustrated in Figure 7.5, the feedback equation for the time update of the
filter coefficients is essentially a recursive (infinite impulse response) system with input
py(m)e(m) and its poles at . When the parameter « < 1, the effect is to introduce more
stability and accelerate the filter adaptation to the changes in input signal characteristics.

y(m) e(m)
O— + wi(m +1)

aw(m)

@ Z—l

Figure 7.5 Illustration of leaky LMS adaptation of a filter coefficient.
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7.6.2 NORMALISED LMS ALGORITHM

The normalised LMS adaptation equation is given by

w(m+1) = w(m)+ ——

a+ 3 y*(m—k)
k=0

y(m)e(m) (7.112)

where Z,’(":O y*(m — k) is the input signal energy, w controls adaptation step size and a is a
small constant employed to avoid the denominator of the update term becoming zero when
the input signal y(m) is zero.

7.6.2.1 Derivation of the Normalised LMS Algorithm

In normalised LMS, instead of using the LMS criterion of minimising the difference between
the filter output and the desired output, the criterion of miminising the Euclidean norm of
incremental change, dw(m + 1), in successive updates of the filter coefficient vector is used:

P-1
18w (m+ D)l = 3 [w,(m+1) = wy ()]’ (7.113)
k=0
Subject to the constraint that
w(m+1)y(m) = x(m) (7.114)

The solution that satisfies the above criterion and the constraint can be obtained by the
Lagrange multipliers method.

In the Lagrange method we define an optimization criterion J(-) as a combination of the
criterion expressed in Equation (7.113) and the constraint expressed in Equation (7.114) as

Jw(m+1), A] = [|8w (m + D)[| + ALx(m) —w" (m + Dy (m)]

= 3" [wgm+ 1) = w, ()] = ALx(m)
P-1
— 2 wi(m+1)y(m —k)] (7.115)
k=0

To obtain the minimum of the criterion J{w(m + 1), A], set the derivative of J with respect
to each coefficient w;(m + 1) to zero as

aJw(m—+1), A

o)~ 2wl D= 2um —Aym=i) =0 i=0,....P=1  (7.116)

From Equation (7.116) we have

wi(m—i—l):wi(m)—%y(m—i) (7.117)
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From Equations (7.117) and (7.114) we have

2 w, (m)y(m — i) — % g Y(m—i)? = x(m) (7.118)

Hence the Lagrange parameter A is given by

. 20x(m) = 32 w,(m)y(m=1)] _ 2e(m)

o == (7.119)
2y (m—1) 2y (m—i)

Substitution for A from Equation (7.119) in Equation (7.117) yields the normalised LMS
(NLMS) equation

w,.(m+1)=wi(m)—H&y(m—i) (7.120)

> yH(m—k)
k=0

The NLMS Equation (7.112) is obtained from Equation (7.120) by introducing a variable
M to control the step size and a variable a to prevent the denominator of the update term,
Equation (7.120), becoming zero when the input signal vector, y, has zero values.

7.6.2.2 Steady-state Error in LMS

The optimal LSE, E,, , is achieved when the filter coefficients approach the optimum value
defined by the block least square error equation w, = Ry‘y‘ryx, derived in Chapter 6. The
steepest-decent method employs the average gradient of the error surface for incremental
updates of the filter coefficients towards the optimal value. Hence, when the filter coefficients
reach the minimum point of the mean square error curve, the averaged gradient is zero
and will remain zero so long as the error surface is stationary. In contrast, examination of
the LMS equation shows that, for applications in which the LSE is nonzero, such as noise
reduction, the incremental update term, pe(m)y(m), would remain nonzero even when the
optimal point was reached. Thus, at the convergence, the LMS filter will randomly vary
about the LSE point, with the result that the LSE for the LMS will be in excess of the
LSE for Wiener or steepest-descent methods. Note that at, or near, convergence, a gradual
decrease in u would decrease the excess LSE at the expense of some loss of adaptability to
changes in the signal characteristics.

7.7 SUMMARY

This chapter began with an introduction to Kalman filter theory. The Kalman filter was
derived using the orthogonality principle: for the optimal filter, the innovation sequence
must be an uncorrelated process and orthogonal to the past observations. Note that the
same principle can also be used to derive the Wiener filter coefficients. Although, like the
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Wiener filter, the derivation of the Kalman filter is based on the LSE criterion, the Kalman
filter differs from the Wiener filter in two respects. First, the Kalman filter can be applied
to nonstationary processes and, second, the Kalman theory employs a model of the signal
generation process in the form of the state equation. This is an important advantage in the
sense that the Kalman filter can be used to explicitly model the dynamics of the signal
process.

For many practical applications, such as echo cancellation, channel equalisation, adaptive
noise cancellation and time-delay estimation, the RLS and LMS filters provide a suitable
alternative to the Kalman filter. The RLS filter is a recursive implementation of the Wiener
filter and, for stationary processes, it should converge to the same solution as the Wiener
filter. The main advantage of the LMS filter is the relative simplicity of the algorithm.
However, for signals with a large spectral dynamic range, or equivalently a large eigenvalue
spread, the LMS has an uneven and slow rate of convergence. If, in addition to having
a large eigenvalue spread, a signal is also nonstationary (e.g. speech and audio signals),
then the LMS can be an unsuitable adaptation method, and the RLS method, with its better
convergence rate and lower sensitivity to the eigenvalue spread, becomes a more attractive
alternative.
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Linear prediction (LP) model predicts the future value of a signal from a linear combination
of its past values. LP models are used in a diverse applications, such as data forecasting,
speech coding, video coding, speech recognition, model-based spectral analysis, model-
based signal interpolation, signal restoration, noise reduction, impulse detection and change
detection. In the statistical literature, linear prediction models are often referred to as
autoregressive (AR) processes. In this chapter, we introduce the theory of linear prediction
models and consider efficient methods for the computation of predictor coefficients. We
study the forward, backward and lattice predictors, and consider various methods for the
formulation and calculation of predictor coefficients, including the least square error and
maximum a posteriori methods. For modelling quasi-periodic signals, such as voiced speech,
an extended linear predictor that simultaneously utilizes the short- and long-term correlation
structures is introduced. We study sub-band linear predictors that are particularly useful
for sub-band coding and processing of noisy signals. Finally, the application of linear
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prediction models in signal coding, enhancement, pattern recognition and watermarking is
considered.

8.1 LINEAR PREDICTION CODING

In terms of usefulness and application as a signal processing tool, linear prediction models
rank almost alongside the Fourier transform. Indeed, modern digital mobile phones employ
voice coders based on linear prediction modelling of speech for efficient coding.

There are two main motivations for the use of predictors in signal processing applications:

(1) to predict the trajectory of a signal,

(2) to remove the predictable part of a signal in order to avoid retransmitting parts of a
signal that can be predicted at the receiver and thereby save storage, bandwidth, time
and power.

The accuracy with which a signal can be predicted from its past samples depends on the
autocorrelation function, or equivalently the bandwidth and the power spectrum, of the
signal. As illustrated in Figure 8.1, in the time domain a predictable signal has a smooth
and correlated fluctuation, and in the frequency domain the energy of a predictable signal
is concentrated in narrow band(s) of frequencies. In contrast, the energy of an unpredictable
signal, such as a white noise, is spread over a wide band of frequencies.

For a signal to have a capacity to convey information it must have a degree of randomness.
Most signals, such as speech, music and video signals, are partially predictable and partially
random. These signals can be modelled as the output of a linear filter excited by an
uncorrelated random input. The random input models the unpredictable part of the signal,
whereas the filter models the predictable structure of the signal. The aim of linear prediction
is to model the mechanism that introduces the correlation in a signal.

Linear prediction models are extensively used in speech processing applications such as in
low bit-rate speech coders, speech enhancement and speech recognition. Speech is generated
by inhaling air and then exhaling it through the glottis and the vocal tract. The noise-like air,
from the lung, is modulated and shaped by vibrations of the glottal cords and the resonance

P
) xx(f)

(a) /\ t
VU f

x(t) Pxx(f)

(d)

Figure 8.1 The concentration or spread of power in frequency indicates the predictable or random
character of a signal: (a) a predictable signal; (b) a random signal.
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Pitch period

Random My | Glottal (pitch) W’V‘N Vocal tract W

) — model model [———
source | Excitation P(2) H(z) Speech

Figure 8.2 A source-Filter model of speech production. The filter is usually modelled with a linear
prediction model.

of the vocal tract. Figure 8.2 illustrates a source-filter model of speech. The source models
the lung, and emits a random input excitation signal that is filtered by a pitch filter. The pitch
filter models the vibrations of the glottal cords, and generates a sequence of quasiperiodic
excitation pulses for voiced sounds as shown in Figure 8.2. The pitch filter model is also
termed the ‘long-term predictor’ since it models the correlation of each sample with the
samples a pitch period away. The main source of correlation and power amplification in
speech is the vocal tract. The vocal tract is modelled by a linear predictor model, which is
also termed the ‘short-term predictor’, as it models the correlation of each sample with the
few (typically eight to 20) preceding samples. In this section, we study the short-term linear
prediction model. In Section 8.3, the predictor model is extended to include long-term pitch
period correlations.

A linear predictor model, Figures 8.3 and 8.4, forecasts the amplitude of a signal
at time m, x(m), using a linearly weighted combination of P past samples [x(m—1),
x(m—=2),...,x(m—P)] as

x(m) = gakx(m—k) (8.1)

where the integer variable m is the discrete-time index, X(m) is the prediction of x(m), and
a, are the predictor coefficients. A block diagram implementation of the predictor equation
[Equation (8.1)] is illustrated in Figure 8.4.

x(m) ?

SN /
’ AW
x(m—P) to x(m—1)

are used to predict x(1m) ,
Y

Figure 8.3 [Illustration of prediction of a sample from past samples.
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. - 7~ )
nput x(m x(m—1) x(m-2)
 ~
ay
a—R;;r FT——— ———
\Linear predictor )

x(m)

Figure 8.4 Block-diagram illustration of a linear predictor.

The prediction error e(m), defined as the difference between the actual sample value x(m)
and its predicted value X(m), is given by

e(m) = x(m) — x(m)

=x(m) =) a,x(m—k) (8.2)
k=1

For information-bearing signals, the prediction error e(m) may be regarded as the
information, or the innovation (i.e. ‘new’), content of the sample x(m). From Equation (8.2)
a signal generated, or modelled, by a linear predictor can be described by the following
feedback equation:

x(m) =) ax(m—k)+e(m) (8.3)

Figure 8.5 illustrates a linear predictor model of a signal x(m). In this model, the random
input excitation (i.e. the prediction error) is e(m) = Gu(m), where u(m) is a zero-mean,

O u(m) e(m) " x(m)=
(NN

Wt
J -1

z
x(m—P) x(m-2) x(m—1)

Figure 8.5 [Illustration of a signal generated by a linear predictive model.
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unit-variance random signal, and G, a gain term, is the square root of the variance (i.e.
power) of e(m):

G = {E[e*(m)]}"? (8.4)

where E[-] is an averaging, or expectation, operator.

8.1.1 FREQUENCY RESPONSE OF LP MODELS

The z-transform of the LP Equation (8.3) shows that the LP model is an all-pole digital filter
with transfer function

Ho=X& G g ] : (8.5)

P N M
1= az* [T(1=rz") [T(1=2rcos@z~" +riz?)
k=1 k=1 k=1

In Equation (8.5) it is assumed there are M complex pole pairs and N real poles with
P=N+2M and r, and ¢, the radius and angle of the kth pole. The frequency response of
an LP model is given by

G 1 1
H(f) = — =G —
1= ae 2™/ [T(1—r e 2™) I (1 —2r, cos ¢, e~ 27/ + rf e~J47l)
k=1 k=1 k=1

(8.6)

Figure 8.6 illustrates the relation between the poles and the magnitude frequency response
of an all-pole filter. The main features of the spectral resonance at a pole are the frequency,
bandwidth and magnitude of the resonance. The roots of a complex pair of poles can be
written in terms of the radius r, and the angle ¢, of the pole as

=T eij‘” (87)

The resonance frequency of a complex pair of poles is

FS
Flep) = ﬁwk (8.8)
H(f)
pole—zero
ag
x X
N3
f

Figure 8.6 The pole—zero position and frequency response of a linear predictor.
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Where F, is the sampling frequency. The bandwidth of a pole is related to its radius r, as

By = (—logr)(F,/m) (8.9)

The magnitude of the spectral resonance at the pole is given by H(¢).

8.1.2 CALCULATION OF PREDICTOR COEFFICIENTS

Linear predictor coefficients are obtained by minimising the mean square prediction error as
» 2
E[e*(m)] = E1 | x(m) —>_ a,x(m —k)
k=1

= E[x*(m)] - ZZak [x(m)x(m — k)]-l—ZakZafx(m k)x(m— j)]

k=1 j=1

=r.(0)—2rla+a'R.a (8.10)

. = E[xxT] is the autocorrelation matrix of the input vector xT = [x(m —1),
x(m=2),...,x(m—P)],r, =E[x(m)x] is the autocorrelation vector and a' =
[a,, ay, ..., ap] is the predictor coefficient vector. From Equation (8.10), the gradient of the
mean square prediction error with respect to the predictor coefficient vector a is given by

where R

—E[e*(m)] = —2r] +2a"R,, (8.11)

where the gradient vector is defined as

a o 9 a\"
=, = = (8.12)
da, Oa, dap

The least mean square error solution, obtained by setting Equation (8.11) to zero, is given by
R.a=r, (8.13)
From Equation (8.13) the predictor coefficient vector is given by
a=R_]r, (8.14)

Equation (8.14) may also be written in an expanded form as

a, re0) () @) g (P=1\ T [ra(D)
a, re() @ () P=2) | [ @
as | = rxx(z) rxx(l) rxx(o) rxx(P_3) rxx(3) (815)

o) o) =2 -y O ro(P)
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An alternative formulation of the least square error problem is as follows. For a signal
segment of N samples [x(0), ..., x(N—1)], we can write a set of N linear prediction error
equations as

e(0) x(0) x(=1)  x(=2) x(=3) -+ x(=P) a
e(1) x(1) x(0) x(-1)  x(=2) -+ x(1-P) a,
e(2) _ x(2) _ x(1) x(0) x(=1) -~ x(2-P) a,
ev—1) \ev=n) \sv=2) xv=3) xv=4) . xv—P-1)) \a,
(8.16)
where xT = [x(—1), ..., x(—P)] is the initial vector. In a compact vector/matrix notation

Equation (8.16) can be written as
e=x—Xa (8.17)

Using Equation (8.17), the sum of squared prediction errors over a block of N samples can
be expressed as

ele=x"x—2x"Xa+a"X"Xa (8.18)

The least squared error predictor is obtained by setting the derivative of Equation (8.14) with
respect to the parameter vector a to zero:
deTe
da

=-2%"X+2a"X"X =0 (8.19)
From Equation (8.19), the least square error predictor is given by
a=X"X)"(X"x) (8.20)

A comparison of Equations (8.15) and (8.20) shows that in Equation (8.20) the autocorrelation
matrix and vector of Equation (8.15) are replaced by the time-averaged estimates as

N—1

P (m) = % 3 x(k)x(k —m) (8.21)

k=0

Equations (8.15) or (8.20) may be solved efficiently by utilising the regular Toeplitz structure
of the correlation matrix, R,,. In a Toeplitz matrix, all the elements on a left-right diagonal
are equal. The correlation matrix is also cross-diagonal symmetric. Note that altogether there
are only P+ 1 unique elements [r,,(0), ., (1), ..., r. (P)] in the correlation matrix and the
cross-correlation vector. An efficient method for solution of Equation (8.15) or (8.20) is the
Levinson—Durbin algorithm, introduced in Section 8.2.2.
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8.1.3 EFFECT OF ESTIMATION OF CORRELATION FUNCTION ON
LP MODEL SOLUTION

Note that the term 7, (m) in Equation (8.21) is only an estimate of the correlation function,
obtained from a segment of N samples, and as such 7, (m) is a random variable with its own
mean, variance and probability distribution function. Indeed different segments of an even
stationary signal will yield different values of 7 (m). The goodness of an estimate depends
on the number of samples N used in the estimation of the correlation function and on the
signal to noise ratio.

8.1.4 THE INVERSE FILTER: SPECTRAL WHITENING

The all-pole linear predictor model, in Figure 8.5, shapes the spectrum of the input signal by
transforming an uncorrelated excitation signal, u(m), to a correlated output signal, x(m). In
the frequency domain the input—output relation of the all-pole filter of Figure 8.5 is given by

xSV ED

A - — (8.22)
1—3Y a e 72k
k=1
where X(f), E(f) and U(f) are the spectra of x(m), e(m) and u(m), respectively, G is
the input gain factor, and A(f) is the frequency response of the inverse predictor. As the
excitation signal e(m) is assumed to have a flat spectrum, it follows that the shape of the
signal spectrum, X(f), is due to the frequency response, 1/A(f), of the all-pole predictor
model. The inverse linear predictor, as the name implies, transforms a correlated signal x(m)
back to an uncorrelated flat-spectrum signal e(m). The inverse filter, Figure 8.7, also known
as the prediction error filter, is an all-zero finite impulse response filter defined as

e(m) = x(m) — x(m)
=x(m) — XP: a,x(m—k) (8.23)
k=1

— (ainv)Tx

Input x(m)

,—|x(m -1 ,—lx(m -2) x(m—P)
© [l e Sl e El—l
ol ‘ 7

Figure 8.7 Illustration of the inverse (or whitening) filter.
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where the inverse filter (a™)" =[1,—ay,...,—ap] =[1,—a], and xT = [x(m),...,

x(m — P)]. The z-transfer function of the inverse predictor model is given by

A(z)=1— i a7 " (8.24)

k=1

A linear predictor model is an all-pole filter, where the poles model the resonance of the
signal spectrum. The inverse of an all-pole filter is an all-zero filter, with the zeros situated
at the same positions in the pole—zero plot as the poles of the all-pole filter, as illustrated in
Figure 8.8. Consequently, the zeros of the inverse filter introduce anti-resonance that cancels
out the resonance of the poles of the predictor. The inverse filter has the effect of flattening
the spectrum of the input signal, and is also known as a spectral whitening, or de-correlation,
filter.

8.1.5 THE PREDICTION ERROR SIGNAL

In general, the prediction error signal is composed of three components:

(1) the input signal, also called the excitation signal,
(2) the errors due to the modelling inaccuracies;
(3) the noise.

The mean square prediction error becomes zero only if the following three conditions are
satisfied: (1) the signal is deterministic; (2) the signal is correctly modelled by a predictor
of order P; and (3) the signal is noise-free. For example, a mixture of P/2 sine waves can
be modelled by a predictor of order P, with zero prediction error. However, in practice,
the prediction error is nonzero because information-bearing signals are random, often only
approximately modelled by a linear system, and usually observed in noise. The least mean
square prediction error, obtained from substitution of Equation (8.13) in Equation (8.10), is

P

E(P) = E[62(’/’1)] = rxx(o) - Z aerx(k) (825)
k=1

Pole X .

Zero O Inverse filter A(f)

2
N

Figure 8.8 Illustration of the pole—zero diagram, and the frequency responses of an all-pole predictor
and its all-zero inverse filter.

Predictor 1/A(f)

Magnitude response

f
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where E®) denotes the prediction error for a predictor of order P. The prediction error
decreases, initially rapidly and then slowly, with the increasing predictor order up to the
correct model order. For the correct model order, the signal e(m) is an uncorrelated zero-mean
random process with an autocorrelation function defined as

2=G* ifm=k

Ele(m)e(m—R)] =1 if m#k

(8.26)

where o2 is the variance of e(m).
Figure 8.9 shows an example of linear prediction analysis of a segment of speech.
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Figure 8.9 (a) A speech segment; (b) FFT spectrum and LP frequency response of speech
superimposed; (c) inverse filter output; (d) the poles of LP model, prediction order P = 12. Speech
sampling rate = 16kHz.
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8.2 FORWARD, BACKWARD AND LATTICE PREDICTORS

The forward predictor model of Equation (8.1) predicts a sample x(m) from a linear
combination of P past samples x(m — 1), x(m —2), ..., x(m — P). Similarly, as shown in
Figure 8.10, we can define a backward predictor, that predicts a sample x(m — P) from P
future samples x(m —P+1), ..., x(m) as

x(m—P)= ickx(m—k—}- 1) (8.27)

k=1
The backward prediction error is defined as the difference between the actual sample and its

predicted value:

b(m) =x(m—P)—x(m— P)

=x(m—P)—=) cx(m—k+1) (8.28)

k=1
From Equation (8.28), a signal generated by a backward predictor is given by
P
x(m—P) =Y c,x(m—k+1)+b(m) (8.29)
k=1

The coefficients of the least square error backward predictor, obtained using a similar method
to that of the forward predictor in Section 8.1.1, are given by

rxx(o) rxx(l) rxx(z) rxx(P_ 1) 91 rxx(P)

rxx(l) rxx(o) rxx(l) rxx(P_z) G rxx(P_l)

rx,\:(z) rxx(l) rxx(o) rxx(P_3) G| = rxx(P_z) (830)
rxx(P'_l) rxx(P_z) rxx(P-_?’) rvcx(o) C:P rxx.(l)

Note that the main difference between Equations (8.30) and (8.15) is that the correlation
vector on the right-hand side of the backward predictor, Equation (8.30), is upside-down

Forward prediction

X(m—P) to x(m—1) are used to predict x(m)

/.v.\ /.\
\// u N4 m
:x(m) to x(m—P + 1) are used to predict x(m—P)

Backward prediction

Figure 8.10 Illustration of forward and backward predictors.
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compared with the forward predictor, Equation (8.15). Since the correlation matrix is Toeplitz
and symmetric, Equation (8.15) for the forward predictor may be rearranged and rewritten
in the following form:

rxx(o) rxx(l) rxx(z) rxx(P_l) ap rxx(P)

rxx(l) rxx(o) rxx(l) rxx(P_2) ap_| rxx(P_l)

rxx(z) rx.x(l) rxx(o) rxx(P_3) ap 5 | = rxx(P_z) (831)
rP=1) 1 (P=2) ro(P=3) - 0 )\ @ ()

Comparison of Equations (8.31) and (8.30) shows that the coefficients of the backward
predictor are the time-reversed version of the forward predictor

Cy dp
Cy ap_

Cc = C3 = aP—Z :aB (832)
Cp a;

where the vector a® is the reversed version of the vector a. The relation between the backward
and forward predictors is employed in the Levinson—Durbin algorithm to derive an efficient
method for calculation of the predictor coefficients, as described in Section 8.2.2.

8.2.1 AUGMENTED EQUATIONS FOR FORWARD AND BACKWARD
PREDICTORS

The inverse forward predictor coefficient vector is [1,—a,,...,—ap] = [1,—aT].
Equations (8.15) and (8.26) may be combined to yield a matrix equation for the inverse
forward predictor coefficients:

<rr(:c) I’:x) (—1a) - (E(()P)> (8.33)

Equation (8.33) is called the ‘augmented forward predictor equation’. Similarly, for the
inverse backward predictor, we can define an augmented backward predictor equation as

(f,‘?? r%)) <_fB> = (E?m) (8.34)

where rT = [r..(1),---,r(P)] and r®T = [r . (P), -+, r.(1)]. Note that the superscript
BT denotes backward and transposed. The augmented forward and backward matrix
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Equations (8.33) and (8.34) are used to derive an order-update solution for the linear predictor
coefficients as follows.

8.2.2 LEVINSON-DURBIN RECURSIVE SOLUTION

The Levinson—Durbin algorithm was developed by N. Levinson in 1947 and modified by
J. Durbin in 1959. The Levinson—Durbin algorithm is a recursive order-update method for
calculation of linear predictor coefficients. A forward-prediction error filter of order i can
be described in terms of the forward and backward prediction error filters of order i—1 as

1 1 0
(i) i—1 i—1
—a —ay™" —a"
: = : +k; : (8.35)
(i) i—1 i—1
~a, ,(71) —aD
—a¥ 0 1

or in a more compact vector notation as

| 1 0
0 1

where k; is the reflection coefficient. The proof of Equation (8.36) and the derivation of
the value of the reflection coefficient for k; follow shortly. Similarly, a backward prediction
error filter of order i is described in terms of the forward and backward prediction error
filters of order i — 1 as

. 0 1

_ ,(—1)B X .

(al )Z —a 8 | 4k, [ —at0 (8.37)
1 0

To prove the order-update Equation (8.36), [or alternatively Equation (8. 37)L we multiply

both sides of the equation by the (i+ 1) x (i + 1) augmented matrix R and use the
equality
@) (OB ()T
RU = (Ifng ™ ) = (r”&o ) r*fo) (838)
Fxx Vix (O) Fxx Rxx
to obtain

() (OB () (B 1 )T 0
(If)ng i ) <_tll(,-)) = <I($X§T T ) —aD +k; ( 5)0) T (,)) —al—DB (8.39)
Fxx Fyx (0) Fxx Tx (0) 0 Fix Rxx 1
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where in Equations (8.38) and (8.39) & = [ (1), (D], and AT =
[r (i), -, r.(1)] is the reversed version of riy . Matrix—vector multiplication of both sides
of Equation (8.39) and the use of Equations (8.33) and (8.34) yields

E(i) E(ifl) A(i—l)
(om): 00 ) 4k, | 06D (8.40)
AG=D EG-1D

where

XX

AGD — [1 _a(f—n]Tr(oB

o (8.41)
= rxx(i) - Z al(<17 )rxx(i - k)
k=1

If Equation (8.40) is true, it follows that Equation (8.36) must also be true. The conditions
for Equation (8.40) to be true are

E® = E0-D 4k, AGD (8.42)
and
0=A0Y 4 k,ED (8.43)
From Equation (8.43),
AGD

Substitution of A“~Y from Equation (8.44) into Equation (8.42) yields
ED =EFD(1 -k

=E@ﬁa—@) (8.45)

j=1

Note that it can be shown that A® is the cross-correlation of the forward and backward
prediction errors:

AGD = £[5TD (1 — 1) (m)] (8.46)

The parameter AC is known as the partial correlation.

Levinson-Durbin Algorithm

The Durbin algorithm starts with a predictor of order zero for which E© = r_(0). The
algorithm then computes the coefficients of a predictor of order i, using the coefficients of a
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predictor of order i — 1. In the process of solving for the coefficients of a predictor of order
P, the solutions for the predictor coefficients of all orders less than P are also obtained:

EO =r_(0) (8.47)
Fori=1,...,P
. -1
AFD = (i)=Y al " (i—k) (848)
k=1
AGD

k= ~ (8.49)
a® = —k, (8.50)
aj.’) :aﬁi’l)+kia§i_}l) l<j<i—1 (8.51)
E(i) — (1 _ k%)E(i_l) (852)

8.2.3 LATTICE PREDICTORS

The lattice structure, shown in Figure 8.11, is a cascade connection of similar units, with each
unit specified by a single parameter k;, known as the reflection coefficient. A major attraction
of a lattice structure is its modular form and the relative ease with which the model order can

Qjo(m) x(m)

Z_I
by(m) bo(m)

(b) eg(m) e (m) ep_y(m) o~ ePim)

%

. =y (P
bl(m) by (m) ] = bp(m)

x(m)

by(m)

Figure 8.11 (a) A lattice predictor and (b) the inverse lattice predictor.
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be extended. A further advantage is that, for a stable model, the magnitude of %; is bounded
by unity (|k;| < 1), and therefore it is relatively easy to check a lattice structure for stability.
The lattice structure is derived from the forward and backward prediction errors as follows.
An order-update recursive equation can be obtained for the forward prediction error by
multiplying both sides of Equation (8.32) by the input vector [x(m), x(m—1), ..., x(m—1i)]:

e (m) = e~ m) — kb (m — 1) (8.53)

Similarly, we can obtain an order-update recursive equation for the backward prediction
error by multiplying both sides of Equation (8.37) by the input vector [x(m — i), x(m —i+
1),...,x(m)] as

b (m) = bV (m—1) —k,e" D (m) (8.54)

Equations (8.53) and (8.54) are interrelated and may be implemented by a lattice network, as
shown in Figure 8.11. Minimisation of the squared forward prediction error of Equation (8.53)
over N samples yields

N-—1
3 e (m)b D (m—1)
k= "= (8.55)

T (et ()]

Note that a similar relation for k; can be obtained through minimisation of the squared
backward prediction error of Equation (8.54) over N samples. The reflection coefficients are
also known as the normalised partial correlation (PARCOR) coefficients.

8.2.4 ALTERNATIVE FORMULATIONS OF LEAST SQUARE ERROR
PREDICTION

The methods described above for derivation of the predictor coefficients are based on
minimisation of either the forward or the backward prediction error. In this section, we
consider alternative methods based on the minimisation of the sum of the forward and
backward prediction errors.

Burg’s Method

Burg’s method is based on minimisation of the sum of the forward and backward squared
prediction errors. The squared error function is defined as

EY = i Heo)(m)]z n [b<">(m)]2} (8.56)

Substitution of Equations (8.53) and (8.54) in Equation (8.56) yields

EY = Ni {[e<f—1>(m) — kb (m = D] 4 [ (m— 1) — kie(i_l)(m)]z} (8.57)

m=0
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Minimisation of Eg) with respect to the reflection coefficients k; yields

N—-1
2y D (m)b I (m—1)
k= — m=0 (8.58)

> {le=0omP + (560 on— 1T}

m=0

Simultaneous Minimisation of the Backward and Forward Prediction Errors

From Equation (8.32), the backward predictor coefficient vector is the reversed version of the
forward predictor coefficient vector. Hence a predictor of order P can be obtained through
simultaneous minimisation of the sum of the squared backward and forward prediction errors
defined by the following equation:

EP =¥ {[e<f’>(m)]2+[b“’>(m)]2}

m=0

N—1 P 2 P 2
TS S L P —

m=0 k=1 k=1
= (x—Xa)" (x — Xa) + (x" —XBa)T (x® —X"a) (8.59)

where X and x are the signal matrix and vector defined by Equations (8.16) and (8.17), and
similarly X® and x® are the signal matrix and vector for the backward predictor. Using an
approach similar to that used in derivation of Equation (8.20), the minimisation of the mean
squared error function of Equation (8.59) yields

a=(X"X+X""X%)"" (X"x+XP"xP) (8.60)

Note that, for an ergodic signal, as the signal length N increases Equation (8.60) converges
to the so-called ‘normal’ Equation (8.14).

8.2.5 PREDICTOR MODEL ORDER SELECTION

One procedure for the determination of the correct model order is to increment the model
order, and monitor the differential change in the error power, until the change levels off.
The incremental change in error power with the increasing model order from i —1 to i is
defined as

AEY = E=D _ g® (8.61)
Figure 8.12 illustrates the decrease in the normalised mean square prediction error with the

increasing predictor length for a speech signal. The order P beyond which the decrease in
the error power AE") becomes less than a threshold is taken as the model order.
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0.8 +

0.6 +

04

Normalised mean squared prediction error

Figure 8.12 Illustration of the decrease in the normalised mean squared prediction error with the
increasing predictor length for a speech signal.

In linear prediction two coefficients are required for modelling each spectral peak of the
signal spectrum, for example, the modelling of a signal with K dominant resonance in the
spectrum needs P = 2K coefficients. Hence a procedure for model selection is to examine
the power spectrum of the signal process, and to set the model order to twice the number of
significant spectral peaks in the spectrum.

When the model order is less than the correct order, the signal is undermodelled. In
this case the prediction error is not well de-correlated and will be more than the optimal
minimum. A further consequence of undermodelling is a decrease in the spectral resolution
of the model: adjacent spectral peaks of the signal could be merged and appear as a single
spectral peak when the model order is too small. When the model order is larger than the
correct order, the signal is overmodelled. An overmodelled problem can result in an ill-
conditioned matrix equation, unreliable numerical solutions and the appearance of spurious
spectral peaks in the model.

8.3 SHORT- AND LONG-TERM PREDICTORS

For quasiperiodic signals, such as voiced speech, there are two types of correlation structures
that can be utilised for a more accurate prediction. These are:

(1) the short-term correlation, which is the correlation of each sample with the P immediate
past samples — x(m—1), ..., x(m— P);

(2) the long-term correlation, which is the correlation of a sample x(m) with, say, 20+ 1
similar samples a pitch period T away — x(m—T+Q),...,x(m—T — Q).

Figure 8.13 is an illustration of the short-term relation of a sample with the P immediate
past samples and its long-term relation with the samples a pitch period away. The short-term



SHORT- AND LONG-TERM PREDICTORS 227

20 + 1 samples a P past samples
pitch period away

Figure 8.13 [Illustration of the short-term relation of a sample with the P immediate past samples
and the long-term relation with the samples a pitch period away.

correlation of a signal may be modelled by the linear prediction equation [Equation (8.3)].
The remaining correlation, in the prediction error signal e(m), is called the ‘long-term
correlation’. The long-term correlation in the prediction error signal may be modelled by a
pitch predictor, defined as

Q
e(my= Y pe(m—T—k) (8.62)
k=—0

where p, are the coefficients of a long-term predictor of order 2Q + 1. The pitch period T
can be obtained from the autocorrelation function of x(m) or that of e(m): it is the first
nonzero time-lag where the autocorrelation function attains a maximum. Assuming that the
long-term correlation is correctly modelled, the prediction error of the long-term filter is a
completely random signal with a white spectrum, and is given by

e(m) = e(m) —e(m)

Q (8.63)
= e(m)— Y. peelm—T—k)
k=—0
Minimisation of E[e?(m)] results in the following solution for the pitch predictor:

p—Q rxx(o) rxx(l) rxx(z) rxx(zQ) - rxx(T_Q)

p—Q-H rxx(l) rxx(o) rxx(l) rxx(zQ_l) rxx(T_Q+1)
. = rxx(z) rxx(l) rxx(o) rxx(ZQ_Z) .
Po-i : : : ; r(T+0—-1)
pQ rxx(zQ) rxx(zQ_l) rxx(zQ_z) rxx(o) rxx(T+Q)

(8.64)
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An alternative to the separate, cascade, modelling of the short- and long-term correlations is
to combine the short- and long-term predictors into a single model described as

P 0
x(m)= Y ax(m—k) + Y px(m—k—T)+e(m) (8.65)
k=1 k=0

short-term prediction  long-term prediction

In Equation (8.65), each sample is expressed as a linear combination of P immediate past
samples and 2Q + 1 samples a pitch period away. Minimisation of £[e?(m)] results in the
following solution for the pitch predictor:

a, r(0) r(1) r(P—1) (T+0-1) r(T+ Q) - H(T—0-1)
a, r(1) r(0) r(P—2) nr+0-2) nT+0-1) - r(T+Q0-2)
a r(2) r(1) r(P—3) r(T+0-3) H(T+Q-2) - r(T+0-3)
a.P = r(P;l) r(P;2) r(O) r(T«I».QfP) r(T+Q;P+l) r(T+.Q7P)
P-o (T+Q0-1) (T+0-2) --- H(T+Q—-P) r(0) r(1) r(20)
P_oni (T+Q) rT+Q-1) - n(T+Q—-P+1) (1) r(0) o r(20-1)
Pro WT=Q-1) HT=0Q-2) - WT-0-P)  r20)  r20-1) -  r0)
(1)
r(2)
r(3)
x| > (8.66)
HT+Q)
(T+0-1)
HT-0)

In Equation (8.66), for simplicity the subscript xx of r, (k) has been omitted. In Chapter 10,
the predictor model of Equation (8.65) is used for interpolation of a sequence of missing
samples

8.4 MAP ESTIMATION OF PREDICTOR COEFFICIENTS

The posterior probability density function of a predictor coefficient vector a, given a signal
x and the initial samples x;, can be expressed, using Bayes’s rule, as

fX|A,XI (x|a, xI)fA|XI (alx;)

fX\X, (x|xp)

Faxx (alx,x) = (8.67)

In Equation (8.67), the pdfs are conditioned on P initial signal samples, x; = [x(—P),
x(=P+1),...,x(=1)]. Note that, for a given set of samples [x, x;], fxx, (x|x;) is a constant,
and it is reasonable to assume that fyx (alx;) = f,(a).
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8.4.1 PROBABILITY DENSITY FUNCTION OF PREDICTOR OUTPUT

The pdf fya x1(x|a, x;) of the signal x, given the predictor coefficient vector & and the initial
samples x|, is equal to the pdf of the input signal e:

fxax, (xla, xy) = fp(x — Xa) (8.68)
where the input signal vector is given by
e=—Xa (8.69)

and fg(e) is the pdf of e. Equation (8.64) can be expanded as

e(0) x(0) (=) x(=2)  x(=3) - x(=P) a,

e(1) x(1) x(0) x(=1)  x(=2) -+ x(1-P) a,

e(2) _ x(2) _ x(1) x(0) x(=1) -+ x(2-—P) a,

v—1) Lw-n) \wwv—2 xwv=3) xv—a . xv—pr-1) \a,
(8.70)

Assuming that the input excitation signal e(m) is a zero-mean, uncorrelated, Gaussian process
with a variance of ¢, the likelihood function in Equation (8.68) becomes

Fxiax (xla, x;) = fr(x — Xa)

= mexp [%(x—Xa)T(x—Xa)] (8.71)

An alternative form of Equation (8.71) can be obtained by rewriting Equation (8.70) in the
following form:

€ —ap -+ —a, —a; 1 0 0 0 0 O X_p
e, 0 —ap -+ —a, —a, 1 0 0 0 O] x_pn
e, 0 0 —ap -+ —a, —a, 1 0 0 O ]x_pe
e, |=1 0 0o 0 -qa —ay —a; 10 0f|x,n| @72
en_i 0 0 0 0 0 —ap —a, —a; 1 Xy_1
In a compact notation Equation (8.72) can be written as
e =Ax (8.73)

Using Equation (8.73), and assuming that the excitation signal, e(m), is a zero-mean,
uncorrelated process with variance o2, the likelihood function of Equation (8.71) can be
written as

1 1
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8.4.2 USING THE PRIOR PDF OF THE PREDICTOR COEFFICIENTS

The prior pdf of the predictor coefficient vector is assumed to have a Gaussian distribution
with a mean vector u, and a covariance matrix 3,

1 1 Tool
fala) = Qs exp [_E(a o (e /"La)i| (8.75)

Substituting Equations (8.72) and (8.76) in Equation (8.67), the posterior pdf of the predictor
coefficient vector f,y y, (alx,x;) can be expressed as

1 1
fX|X[ (x|x1) (277)(N+P)/20-(5V |2aa|1/2

X exp {—% [%(x —Xa)"(x —Xa) + (a—p,)"' 3, (a— /.La)j| } (8.76)

fA|X,x, (alx,x;) =

The maximum a posteriori estimate is obtained by maximising the log-likelihood function:

g [%(x—Xa)T(x—Xa) +(a—p,)'S,, (a—;m] =0 (877)

d
o [lan\X,XI (a|x,x1)] = 9a

da
This yields
M = (3, XX 4+ 021) 7 3, X"x 4 07 (3, XX+ 021) ' i, (8.78)

Note that, as the Gaussian prior tends to a uniform prior, the determinant covariance matrix
3., Of the Gaussian prior increases, and the MAP solution tends to the least square error
solution:

a*s = (X"X) "' (X"x) (8.79)

Similarly, as the observation length N increases, the signal matrix term XTX becomes more
significant than 3, and again the MAP solution tends to a least square error solution.

8.5 FORMANT-TRACKING LP MODELS

Formants are the resonance frequencies of speech. In the application of linear prediction
to speech, the poles of linear prediction model the resonance at formants of speech. The
z-transfer function of the linear prediction model of speech can be expressed in a cascade
form as

X(z) =G(2)V(z)L(z) (8.80)

where G(z), V(z) and L(z) are the z-transforms of glottal pulse, vocal tract and lip radiation.
The vocal tract can be modelled by formant-tracking LP models, which may be expressed as

V(z, m) = G(m) ﬁ 1 ! (8.81)
k

_11—2r¢, (m)z~'+ rl%(m)z_z
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where ¢,(m), r,(m) and G(m) are the time-varying angular frequency and radii of the
poles and the gain of a second-order section of the linear prediction model. There is not
a one-to-one relationship between poles of linear prediction models and formants. In fact,
depending on the model order, the linear prediction model may associate more than one pole
with a formant or, conversely, more than one formant with a pole. The poles of the linear
prediction model are the formant candidates — the raw data from which the formants and
their models are estimated.

The spectral resonance at formant can be characterized by a parameter vector comprising
the frequency (F}), bandwidth (B,) and magnitude of the resonance (M,), and their temporal
slope of variation as

F,=[F. B, M, AF,,AB,AM,] k=1,.... M (8.82)

where A denotes the slope of the trajectory of a feature vector over time, e.g. AF,(¢) for the
kth formant at frame ¢ is obtained as

5> m{Fy(t+m) — Fy(1 = m)]
AF, (1) = "=, - k=1,....M (8.83)
> 2m?

There are three issues in modelling formants: (1) the modelling of the distribution of formants
using a probability model; (2) tracking of the trajectory of each formant using a classifier;
and (3) smoothing the trajectory of formants. Formant tracking methods are the subject of
current research.

Using the formant tracks a formant-tracking LP model can be constructed. Formant
tracking models provide a framework for modelling the inter-correlation of LP models across
successive frames speech. Formant-tracking LP models can be used for speech synthesis and
for speech enhancement through de-noising the parameters of LP model of speech.

Figure 8.14 illustrates the spectrogram of the frequency response of linear prediction
model of a segment of speech with the estimates of the formant tracks superimposed.

Figure 8.14 An example of formant tracks superimposed on an LP spectrogram. Light areas on the
spectrogram correspond to high energy.
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8.6 SUB-BAND LINEAR PREDICTION MODEL

The poles of a linear predictor equation model the signal spectrum over its full bandwidth.
The distribution of the poles of the LP model over the signal spectrum depends on the
signal correlation and spectral structure. Generally, the poles redistribute themselves over
the spectrum to minimize the mean square prediction error criterion. An alternative to a
conventional LP model is to divide the signal into a number of sub-bands and to model the
signal within each band with a linear prediction model, as shown in Figure 8.15.

The advantages of using a sub-band LP model are as follows:

(1) sub-band linear prediction allows the designer to allocate different numbers of parameters
to different bands;

(2) the solution of a full-band linear predictor Equation (8.10) or (8.16) requires the inversion
of a relatively large correlation matrix, whereas the solution of the sub-band LP models
requires the inversion of a number of smaller correlation matrices with better numerical
stability properties, e.g. a predictor of order 18 requires the inversion of an 18 x 18
matrix, whereas three sub-band predictors of order 6 require the inversion of three 6 x 6
matrices;

(3) sub-band linear prediction is useful for applications such as noise reduction where a
sub-band approach can offer more flexibility and better performance.

In sub-band linear prediction, the signal x(m) is passed through a bank of N band-pass
filters, and is split into N sub-band signals, x,(m),k=1,..., N. The kth sub-band signal
is modelled using a low-order linear prediction model as

Py
x(m) =3 a (i)x,(m— i)+ gee (m) (8.84)
i=1
-~ _,| Down - LP LP
. sampler model parameters
Down LP
Input i sampler model
signal
_ Down ‘ LP
| sampler model
_ Down - LP
i sampler model

Figure 8.15 Configuration of a sub-band linear prediction model.
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where [a,, g,] are the coefficients and the gain of the predictor model for the kth sub-band.
The choice of the model order P, depends on the width of the sub-band and on the signal
correlation structure within each sub-band. The power spectrum of the input excitation of an
ideal LP model for the kth sub-band signal can be expressed as

fk,starl < f < fk,end

P k) =
e (/2 6) 0 otherwise

(8.85)

where  f; > fr.ena are the start and end frequencies of the kth sub-band signal. The
autocorrelation function of the excitation function in each sub-band is a sinc function given by

roo(m) = Bysinc[m(B, — fi0)/2] (8.86)

where B, and f;, are the bandwidth and the centre frequency of the kth sub-band, respectively.
To ensure that each sub-band LP parameters only model the signal within that sub-band, the
sub-band signals are down-sampled, as shown in Figure 8.15.

Note that a problem with sub-band linear prediction is that the pole frequencies may happen
at or near the cut-off frequency of sub-bands. To avoid this problem formant trajectory
estimation described in the previous section may be used to track the frequencies of the
poles of the signal. The centre frequency of the sub-bands follows the formant tracks.

8.7 SIGNAL RESTORATION USING LINEAR PREDICTION
MODELS

Linear prediction models are extensively used in speech and audio signal restoration. For a
noisy signal, linear prediction analysis models the combined spectra of the signal and the
noise processes. For example, the frequency spectrum of a linear prediction model of speech,
observed in additive white noise, would be flatter than the spectrum of the noise-free speech,
owing to the influence of the flat spectrum of white noise. In this section we consider the
estimation of the coefficients of a predictor model from noisy observations, and the use of
linear prediction models in signal restoration. The noisy signal y(m) is modelled as

y(m) = x(m) +n(m)

P (8.87)
=Y ayx(m—k)+ e(m)+n(m)

k=1

where the signal x(m) is modelled by a linear prediction model with coefficients a, and
random input e(m), and it is assumed that the noise n(m) is additive. The least square error
predictor model of the noisy signal y(m) is given by

Rya=r, (8.88)

where R, and r,, are the autocorrelation matrix and vector of the noisy signal y(m). For an
additive noise model, Equation (8.88) can be written as

Ry + R, (@ +a) = (rc +1,) (8.89)
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where a is the error in the predictor coefficients vector due to the noise. A simple method
for removing the effects of noise is to subtract an estimate of the autocorrelation of the
noise from that of the noisy signal. The drawback of this approach is that, owing to random
variations of noise, correlation subtraction can cause numerical instability in Equation (8.88)
and result in spurious solutions. In the following, we formulate the pdf of the noisy signal and
describe an iterative signal-restoration/parameter-estimation procedure developed by Lee and
Oppenheim.

From Bayes’s rule, the MAP estimate of the predictor coefficient vector a, given an
observation signal vector, y =[y(0), y(1), ..., y(N —1)], and the initial samples vector xy, is

fY\A,Xl O0la, xI)fA,X, (a,x;)
fY,XI(y’ xy)

Consider the variance of the signal y in the argument of the term fy, y (yla,x;) in
Equation (8.90). The innovation (i.e. prediction error) of y(m) can be defined as

Sayx, (aly,x;) = (8.90)

e(m) = y(m) =3 a,y(m—k)
= . (8.91)
= e(m)+&(m)+n(m)—>_ an(m—k)

k=1

The variance of y(m), given the previous P samples and the coefficient vector a; is the
variance of the innovation signal given by

P
Var [y(m)|y(m—1),...,y(m—=P),a)l = o>+ o’ +o.— 0. > & (8.92)
=1

where o2, 0 and o are the variance of the excitation signal, the error in innovation due to
noise and the noise, respectively. From Equation (8.92), the variance of [y(m)|y(m—1),...,
y(m—P),a] is a function of the coefficient vector a. Consequently, maximisation of
fylA, XI(y|a, x;) with respect to the vector & is a nonlinear and nontrivial exercise.

Lim and Oppenheim proposed the following iterative process where an estimate & of the
predictor coefficient vector is used to make an estimate X of the signal vector, and the signal
estimate X is then used to improve the estimate of the parameter vector @, and the process
is iterated until convergence. The posterior pdf of the noise-free signal x, given the noisy
signal y and an estimate of the parameter vector &, is given by

friax Ola,x) Sxia (x|a)

Txay (xla,y) = ~ (8.93)
wr Fru Ola)
Consider the likelihood term fy, x(y|a@,x). Since the noise is additive, we have
fY\A,X 0la,x) = fy (y —x)
(8.94)

1 1 .
et [—27“2@ o —x)]
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Assuming that the input of the predictor model is a zero-mean Gaussian process with variance
o2, the pdf of the signal x given an estimate of the predictor coefficient vector a is

f (x|a) —1 ——1 !
a) = ex
Jyiax @ 3)1\//2 p > Ze e
(8.95)

1 1 TATA
= Wexp <—2T._€2x A Ax)
where e = Ax as in Equation (8.73). Substitution of Equations (8.94) and (8.95) in

Equation (8.93) yields

1 1
fyia 0l@) 27a,

. 1 | A
fxay (xla,y) = Y exp [—273 —x)"(y—x)— T'ZxTATAx:| (8.96)

In Equation (8.92), for a given signal y and coefficient vector @, fy,(y|@) is a constant.
From Equation (8.92), the ML signal estimate is obtained by maximising the log-likelihood
function as

~ d 1 TARTH 1 T
g[lnfxmy (x|a,y)] = E |:—2T‘_62x A Ax—r._r% —X) (y—X):| =0 (897)
which gives
A —1
g=02(0?ATA+02) (8.98)

The signal estimate of Equation (8.98) can be used to obtain an updated estimate of the
predictor parameter. Assuming that the signal is a zero-mean Gaussian process, the estimate
of the predictor parameter vector a is given by

a@®) = (#"%) " (&%) (8.99)

Equations (8.98) and (8.99) form the basis for an iterative signal restoration/parameter
estimation method.

8.7.1 FREQUENCY-DOMAIN SIGNAL RESTORATION USING
PREDICTION MODELS

The following algorithm is a frequency-domain implementation of the linear prediction

model-based restoration of a signal observed in additive white noise.

Initialisation: set the initial signal estimate to noisy signal X, =y,
For iterations i =0, 1, ...

Step 1: estimate the predictor parameter vector a;:

&i('%i) = (’A‘,'T-’Aci)il (A‘T-’z'i) (8'100)

1
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Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

calculate an estimate of the model gain G using Parseval’s theorem:
1 V-l G2
v >

f=0 1_

N-1
> =Y y(m)—No; (8.101)

ay e i2mkIN m=0

M~

k=1

where &, ; are the coefficient estimates at iteration i, and N&; is the energy of
white noise over N samples.
calculate an estimate of the power spectrum of speech model,

Pyx,(f) = > 5 (8.102)
1— Y a, e 2mfkiN

calculate the Wiener filter frequency response,

X Py,
Wi(f) = ) (8.103)
Py, (f) + Py, (f)
where f’N[ N ()= 42 is an estimate of the noise power spectrum.
filter the magnitude spectrum of the noisy speech as
Xin(5) = W(HY(N) (8.104)

Restore the time domain signal X;,; by combining X ++1(f) with the phase of noisy
signal and the complex signal-to-time domain.
goto step 1 and repeat until convergence, or for a specified number of iterations.

Figure 8.16 illustrates a block diagram configuration of a Wiener filter using a linear
prediction estimate of the signal spectrum. Figure 8.17 illustrates the result of an iterative
restoration of the spectrum of a noisy speech signal.

y(m) = x(m) + n(m) Linear prediction

analysis

d:

Wiener filter

W(f)
S h
it I T Py (f)

X(m)

activity

detector

Noise estimator

Figure 8.16 Iterative signal restoration based on linear prediction model of speech.
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Original noise-free Original noisy

Restored: 2 iterations Restored: 4 iterations

Figure 8.17 Illustration of restoration of a noisy signal with iterative linear prediction-based method.

8.7.2 IMPLEMENTATION OF SUB-BAND LINEAR PREDICTION
WIENER FILTERS

Assuming that the noise is additive, the noisy signal in each sub-band is modelled as
Ve(m) = x,(m) + n,(m) (8.105)

The Wiener filter in the frequency domain can be expressed in terms of the power spectra,
or in terms of LP model frequency responses, of the signal and noise process as

Py (f)

Py (f)

_ g?(,k |AY,k(f)|2
A (D] 8

where Py, (f) and Py, (f) are the power spectra of the clean signal and the noisy signal
for the kth subband, respectively. From Equation (8.112) the square-root Wiener filter is
given by

Wi (f) =
(8.106)

8x.k ’AYk(f)’
|Ax,k(f)| 8v.k

The linear prediction Wiener filter of Equation (8.107) can be implemented in the time
domain with a cascade of a linear predictor of the clean signal, followed by an inverse
predictor filter of the noisy signal as expressed by the following relations (see Figure 8.18):

WA (f) =

(8.107)

zwm=zwwmmh»+§mw> (8.108)

i=1

R (m) =3 ay(i)z(m—1i) (8.109)

i=0
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Noisy i A Restored
signal A(f) s signal
O — .

P P
2(m) =;, asa(Dzm—i) +y,(m) 2m)= ;), ay () m—i)

Figure 8.18 A cascade implementation of the LP square-root Wiener filter.

where X, (m) is the restored estimate of the clear speed signal x,(m), z, (m) is an intermediate
signal, a, (i) are the coefficients of the linear predictor model of the noisy signal for the kth
sub-band and a,,(i) is an estimate of the coefficients of the linear prediction model of the
kth sub-band of clean speech.

8.8 SUMMARY

Linear prediction models are used in a wide range of signal processing applications from low-
bit-rate speech/video coding to model-based spectral analysis. We began this chapter with an
introduction to linear prediction theory, and considered different methods of formulation of
the prediction problem and derivations of the predictor coefficients. The main attraction of
the linear prediction method is the closed-form solution of the predictor coefficients, and the
availability of a number of efficient and relatively robust methods for solving the prediction
equation, such as the Levinson—Durbin method.

In Section 8.2, we considered the forward, backward and lattice predictors. Although
the direct-form implementation of the linear predictor is the most convenient method, for
many applications, such as transmission of the predictor coefficients in speech coding, it is
advantageous to use the lattice form of the predictor. This is because the lattice form can be
conveniently checked for stability, and furthermore a perturbation of the parameter of any
section of the lattice structure has a limited and more localised effect. In Section 8.3, we
considered a modified form of linear prediction that models the short-term and long-term
correlations of the signal. This method can be used for the modelling of signals with a
quasiperiodic structure such as voiced speech. In Section 8.4, we considered MAP estimation
and the use of a prior pdf for derivation of the predictor coefficients. In Section 8.5, the
sub-band linear prediction method was formulated. Finally in Section 8.6, a linear prediction
model was applied to the restoration of a signal observed in additive noise.
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The power spectrum reveals the existence, or the absence, of repetitive patterns and
correlation structures in a signal process. These structural patterns are important in a wide
range of applications such as data forecasting, signal coding, signal detection, radar, pattern
recognition and decision-making systems. The most common method of spectral estimation
is based on the fast Fourier transform (FFT). For many applications, FFT-based methods
produce sufficiently good results. However, more advanced methods of spectral estimation
can offer better frequency resolution, and less variance.

This chapter begins with an introduction to the Fourier series and transform and the basic
principles of spectral estimation. The classical methods for power spectrum estimation are
based on periodograms. Various methods of averaging periodograms, and their effects on
the variance of spectral estimates, are considered. We then study the maximum entropy
and the model-based spectral estimation methods. We also consider several high-resolution
spectral estimation methods, based on eigenanalysis, for the estimation of sinusoids observed
in additive white noise.
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9.1 POWER SPECTRUM AND CORRELATION

The power spectrum and correlation functions are Fourier transform pairs and hence they
contain exactly the same information presented in different domains: the correlation is a
function of time domain and the power spectrum is a function of frequency domain. The
correlation and the power spectrum are widely used in communication signal processing
systems in such applications as system analysis, feature extraction, modelling, signal
detection and decoders.

The power spectrum of a signal gives the distribution of the signal power among various
frequencies and shows the existence, and also the relative power, of repetitive patterns and/or
random structures in a signal.

Correlation is a measure of self-similarity of a signal with its delayed version. Like the
power spectrum, the correlation function reveals information on the periodic or random
structure of the signal.

The strength of the Fourier transform in signal analysis and pattern recognition is its ability
to reveal spectral structures that may be used to characterize a signal. This is illustrated in
Figure 9.1 for the two extreme cases of a sine wave and a purely random signal. For a periodic
signal, the power is concentrated in extremely narrow bands of frequencies, indicating the
existence of structure and the predictable character of the signal. In the case of a pure sine
wave, as shown in Figure 9.1(a), the signal power is concentrated in one frequency. For a
purely random signal, as shown in Figure 9.1(b), the signal power is spread equally in the
frequency domain, indicating the lack of structure in the signal.

In general, the more correlated or predictable a signal is, the more concentrated its
power spectrum and, conversely, the more random or unpredictable a signal, the wider the
spread of its power spectrum. Therefore the power spectrum of a signal can be used to
deduce the existence of repetitive structures or correlated patterns in the signal process. Such
information is crucial in detection, decision-making and estimation problems, and in systems
analysis.

x(1) Pyx(f)

/\ f
VARV f

x(1) Pxx(f)

(b)

Figure 9.1 The concentration/spread of power in frequency indicates the correlated or random
character of a signal: (a) a predictable signal, (b) a random signal.
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9.2 FOURIER SERIES: REPRESENTATION OF PERIODIC
SIGNALS

The following three sinusoidal functions form the basis functions for the Fourier analysis:

X, (1) = cos wyt 9.1)
X, (1) = sin wgyt 9.2)
x5 (1) = cos wyt + j sin w,t = e/’ (9.3)

where w, =27 f,. A cosine function is an even function about time # = 0 and a sine function
is an odd function. A weighted combination of a sine and cosine at angular frequency w, can
model any phase of a sinusoidal signal component of x(7) at that frequency. Figure 9.2(a)
shows the sine and cosine components of the complex exponential (cisoidal) signal of
Equation (9.3), and Figure 9.2(b) shows a vector representation of the complex exponential in
a complex plane with real (Re) and imaginary (Im) dimensions. The Fourier basis functions
are periodic with an angular frequency of w,rad/s and a period of T, =2m/w, = 1/Fs,
where Fj, is the frequency in Hz. The following properties make the sinusoids an ideal choice
as the elementary building block basis functions for signal analysis and synthesis:

(1) Orthogonality — two sinusoidal functions of different frequencies have the following
orthogonal property:

/sin(wlt)sin(wzt)dtz—zfcos(a)l—i—wz)tdt—i—i/cos(a)l—wz)tdt:O (9.4)

For sinusoids the integration interval can be taken over one period [i.e T =27/ (w; + w,)

and T =27/(w, — w,)]. Similar equations can be derived for the product of cosines, or
sine and cosine, of different frequencies. Orthogonality implies that the sinusoidal basis

Im
sin(kwpt) cos(kwpt) o jkaot
A
kwot
Re
! t
i
TO

(a) (b)

Figure 9.2 Fourier basis functions: (a) real and imaginary signals of a complex sinusoid; (b) vector
representation of a complex exponential.
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functions are independent and can be processed independently. For example, in a graphic
equaliser we can change the relative amplitudes of one set of frequencies, such as the
bass, without affecting other frequencies, and in music coding the signals in different
frequency bands are coded independently and allocated different numbers of bits.

(2) The sine and cosine components of e~/“' have only a relative phase difference of /2
or equivalently a relative time delay of a quarter of one period, i.e. T;,/4. This allows
decomposition of a signal in terms of orthogonal cosine and sine components.

(3) Sinusoidal functions are infinitely differentiable. This is a useful property, as most signal
analysis, synthesis and processing methods require the signals to be differentiable.

(4) A useful consequence of transforms, such as the Fourier and the Laplace transforms is
that differential analysis on the time domain signal becomes simple algebraic operations
on the transformed signal.

Associated with the complex exponential function e/“’ is a set of harmonically related
complex exponentials of the form

Ll’ eijwot’ eiijot, eiﬂw“t, . J (9.5)

The set of exponential signals in Equation (9.5) is periodic with a fundamental frequency
w, =2m/T, =2wF, where T is the period and F; is the fundamental frequency. These
signals form the set of basis functions for the Fourier analysis. Any linear combination of
these signals of the form

x(r) = i c et (9.6)

k=—o0

is also a periodic signal with a period of T,,. Conversely any periodic signal x(¢) can be
synthesized from a linear combination of harmonically related exponentials.

The Fourier series representation of a periodic signal is given by the following synthesis
and analysis equations:

Analysis equation

To/2

1 .
= [ ae A k= 1,01, ©.7)
0102
Synthesis equation
()= Y e k=...—1,0,1,--- 98)
k=—00

The complex-valued coefficient ¢, conveys the amplitude (a measure of the strength) and the
phase of the frequency content of the signal at kw, Hz. Note from the analysis, Equation (9.8),
that the coefficient ¢, may be interpreted as a measure of the correlation of the signal x(7)
and the complex exponential e /@0’

The representation of a signal in the form of Equation (9.7) as the sum of its constituent
harmonics is referred to as the ‘complex Fourier series’ representation. The set of complex
coefficients . .. c_;, ¢y, ¢y, ... is known as the frequency spectrum of the signal.
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Equation (9.7) can be used as a synthesizer (as in a music synthesizers) to generate a
signal as a weighted combination of its elementary frequencies. Note from Equations (9.7)
and (9.8) that the complex exponentials that form a periodic signal occur only at discrete
frequencies which are integer-multiple harmonics of the fundamental frequency F,. Therefore
the spectrum of a periodic signal, with a period of 7}, is discrete in frequency with discrete
spectral lines spaced at integer multiples of F, =1/T,.

9.3 FOURIER TRANSFORM: REPRESENTATION OF
APERIODIC SIGNALS

The Fourier representation of nonperiodic signals can be obtained by considering a
nonperiodic signal as a special case of a periodic signal with an infinite period. If the period
of a signal is infinite, then the signal does not repeat itself and is nonperiodic.

The Fourier series representation of periodic signals consists of harmonically related
sinusoidal signals with discrete spectra, where the spectral lines are spaced at integer multiples
of the fundamental frequency. Now consider the discrete spectra of a periodic signal with
a period of T, as shown in Figure 9.3(a). As the period 7, increases, the fundamental
frequency F, = 1/T, decreases, and successive spectral lines become more closely spaced.
In the limit, as the period tends to infinity (i.e. as the signal becomes nonperiodic) the
discrete spectral lines merge and form a continuous spectrum [Figure 9.3(b)]. Therefore, the
Fourier equations for a nonperiodic signal (known as the Fourier transform) must reflect
the fact that the frequency spectrum of a non-periodic signal is continuous. Hence, to obtain
the Fourier transform relations the discrete-frequency variables and the discrete summation

(1) A &
=T «
on , \
(a) / \
P m N AT,
— Tofp <— ! \J_J./ *1?* \l_J/ k
TO = Ton + Toff 0
A
o X(f)
(b)
Topp= o0 . N\ SN,
t \_/ \/ f

Figure 9.3 (a) A periodic pulse train and its line spectrum. (b) A single pulse from the periodic train
in (a) with an imagined ‘off’ duration of infinity; its spectrum is the envelope of the spectrum of the
periodic signal in (a).
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operations in the Fourier series, Equations (9.7) and (9.8) are replaced by their continuous-
frequency counterparts. That is, the discrete summation sign, 3, is replaced by the continuous
summation integral sign, [, the discrete harmonic of the fundamental frequency, kF,, is
replaced by the continuous frequency variable, f, and the discrete frequency spectrum, c;,
is replaced by a continuous frequency spectrum, say X(f).

The Fourier synthesis and analysis equations for nonperiodic signals, known as the ‘Fourier
transform pair’, are given by

Fourier transform (analysis) equation
X(f) = / x(H)e 2™ dr (9.9)

Inverse Fourier transform (synthesis) equation

oo

(1) = / X(fe ™ df (9.10)

—o0

Note from Equation (9.9) that X(f) may be interpreted as a measure of the correlation of
the signal x(¢) and the complex sinusoid e /2™,

The condition for the existence (i.e. computability) of the Fourier transform integral of a
signal x(¢) is that the signal must have finite energy, that is

Signal energy = f |x(1)|* dt < oo (9.11)

—o0

9.3.1 DISCRETE FOURIER TRANSFORM

Discrete Fourier transform, Figure 9.4, is the Fourier transform adopted for discrete-time
signals. DFT is a method of sampling the spectrum of a signal. When a nonperiodic signal is
sampled, its Fourier transform becomes a periodic but continuous function of frequency, as
shown in Equation (9.9). The discrete Fourier transform is derived from sampling the Fourier
transform of a discrete-time signal. For a finite-duration discrete-time signal, x(m), of length N
samples, the discrete Fourier transform (DFT)is defined as N uniformly spaced spectral samples:

Discrete Fourier transform

N—1
X(k) =Y x(m)e CTNm k=0, ,N—1 (9.12)

m=0

Inverse discrete fourier transform

l N—1 )
x(m) = — > X(k)e/FmMmk i =0,...,N—1 (9.13)
NS
Note that the basis functions of a DFT are: 1, e /@7/N e=it4n/N) o =IlN=D7/N| The DFT

equation can be written in the form of a linear system transformation, X = Wx, as the
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O—» L
x(0) Discrete Fourier (0)
x(1) O——— transform X
x(2) O——— W
N-1 )
) X(k) = 3, X(m) e :
m=0
A — > X(N-2)
A — X(N-1

Figure 9.4 [Illustration of the DFT as a parallel-input, parallel-output processor.

transformation of an input vector x = [x(0), x(1)...x(N —1)] to an output vector X =
[X(0)X(1)...X(N—1)], or as

x@©) 1 1 1 1 1 1
x(1) 1 e-iemN) e I@TN) L em2-2)m/N) e—i2(N=1)m/N]
X(2) 1 e-itm/N) e BTN L e AN-2)m/N] M4 -2)m/N]
X(N —2) | e RN-Dm/N o JUN-Dm/N] .. o 2N-2P/N o JN-2)(N-Dm/N]
X(N=1) | |1 e RWV-DmTN o UN-DmN L e RN-D2mN gD |
x(0)
x(1)
x(2)
x _ (9.14)
x(N —=2)
| X(N—1) ]

where the elements of the transformation matrix are wy,, = e /"M " The DFT spectrum
consists of N uniformly spaced samples taken from one period (27r) of the continuous
spectrum of the discrete time signal x(m). At a sampling rate of F, the discrete-frequency
index k corresponds to kF,/N Hz.

A periodic signal has a discrete spectrum. Conversely any discrete frequency spectrum
belongs to a periodic signal. Hence the implicit assumption in the DFT theory is that the
input signal, x(m), is periodic with a period equal to the observation window length of N
samples. Note that DFT is equivalent to the Fourier series.

9.3.2 TIME/FREQUENCY RESOLUTIONS, THE UNCERTAINTY
PRINCIPLE

Signals such as speech, music or image are composed of nonstationary — i.e. time-varying
and/or space varying — events. For example, speech is composed of a string of short-duration
sounds called phonemes, and an image is composed of various objects. When using the DFT
it is desirable to have a high enough time and space resolution in order to obtain the spectral
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characteristics of each individual elementary event or object in the input signal. However,
there is a fundamental trade-off between the length, i.e. the time or space resolution, of the
input signal and the frequency resolution of the output spectrum. The DFT takes as the input a
window of N uniformly spaced discrete-time samples [x(0), x(1), ..., x(N —1)] with a total
duration of AT = N - T, and outputs N spectral samples [X(0), X(1), ..., X(N —1)] spaced
uniformly between 0Hz and the sampling frequency F, = 1/7,Hz. Hence the frequency
resolution of the DFT spectrum Af, i.e. the frequency space between successive frequency
samples, is given by

1 1 F
Af=—=— =22 9.15
f =357 NT, N ©.13)

Note that the frequency resolution, A f, and the time resolution, AT, are inversely proportional
in that they cannot both be simultaneously increased, in fact ATAf = 1. This is known as
the uncertainty principle.

9.3.3 ENERGY-SPECTRAL DENSITY AND POWER-SPECTRAL
DENSITY

Energy, or power, spectrum analysis is concerned with the distribution of the signal energy or
power in the frequency domain. For a deterministic discrete-time signal, the energy-spectral
density is defined as

0 2

E(N=IX(HP=| X x(m)e > (9.16)

m=—oo

The energy spectrum of x(m) may be expressed as the Fourier transform of the autocorrelation
function of x(m):

E(f) = X(HI> =X(NX* ()
> . (9.17)
= > ru(mye 2™

where the variable r, (m) is the autocorrelation function of x(m).

Theoretically, the Fourier transform exists only for finite-energy signals. An important
theoretical class of signals is that of stationary stochastic signals, which, as a consequence
of the stationarity condition, are infinitely long and have infinite energy, and therefore
do not possess a Fourier transform. For stochastic signals, the quantity of interest is the
power-spectral density, defined as the Fourier transform of the autocorrelation function:

PoN= 3 ru(mye s 9.18)

m=—oo

where the autocorrelation function r,,(m) is defined as

r..(m) = E|x(m) x(m+k)| (9.19)
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In practice, the autocorrelation function, a measure of self-similarity of a signal with its
delayed version, is estimated from a signal record of length N samples as

1 N—|m|—1
7. (m) = N ] > x(k)x(k+m),k=0,...,N—1 (9.20)
- k=0

As the correlation lag m approaches the record length N, the estimate of 7, (m) is obtained
from the average of fewer samples and has a higher variance. A triangular window may be
used to ‘down-weight’ the correlation estimates for larger values of lag m. The triangular
window has the form

1= m<N-1

= N 9.21
w(m) 0, otherwise ( )
Multiplication of Equation (9.20) by the window of Equation (9.21) yields
N—|m|—1
Fo(m)=— > x(k)x(k+m) (9.22)
N 5
The expectation of the windowed correlation estimate 7., (m) is given by
1 N—|m|—1
Ll (m] == > E[x(k)x(k+m)]
k=0 (9.23)
<1 _ u> (m)
In Jenkins and Watts (1968), it is shown that the variance of 7 (m) is given by
1 o]
Var [?xx (m)] ~ N Z [rfx(k) + Fyx (k - m)rxx(k + m)] (924)
k=—o0

From Equations (9.23) and (9.24), 7..(m) is an asymptotically unbiased and consistent
estimate.

9.4 NONPARAMETRIC POWER SPECTRUM ESTIMATION

The classic method for estimation of the power spectral density of an N-sample record is
the periodogram introduced by Sir Arthur Schuster in 1899. The periodogram is defined as

2
N-1

Z x(m)eijﬂ'fm

m=0

= XOP

The power-spectral density function, or power spectrum for short, defined in Equation (9.25)
is the basis of nonparametric methods of spectral estimation. Owing to the finite length and
the random nature of most signals, the spectra obtained from different records of a signal
vary randomly about an average spectrum. A number of methods have been developed to
reduce the variance of the periodogram.

N 1
PXX(f) ZN

(9.25)
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9.4.1 THE MEAN AND VARIANCE OF PERIODOGRAMS

The mean of the periodogram is obtained by taking the expectation of Equation (9.25):

P (N =1 [ IX(DI’]

zl- ==

m=0 n=0

E [Z x(m)e2mm i x(n)e”*™" } (9.26)

N—-1
= x> (-5 e
1 N

m=—(N—

As the number of signal samples N increases, we have

oo

lim HPox(Hl= Y ra(me ™" = Py (f) (9.27)

m=—oo

For a Gaussian random sequence, the variance of the periodogram can be obtained as

Var[Pey (/)] = P2 () [1 + (%) ] ©9.28)

As the length of a signal record N increases, the expectation of the periodogram converges
to the power spectrum Py, (f) and the variance of Pyy(f) converges to P, (f). Hence the
periodogram is an unbiased but not a consistent estimate.

The periodograms can be calculated from a DFT of the signal x(m), or from a DFT of
the autocorrelation estimates, 7, (m). In addition, the signal from which the periodogram, or
the autocorrelation samples, is obtained can be segmented into overlapping blocks to result
in a larger number of periodograms, which can then be averaged. These methods and their

effects on the variance of periodograms are considered in the following.

9.4.2 AVERAGING PERIODOGRAMS (BARTLETT METHOD)

In this method, several periodograms, from different segments of a signal, are averaged in
order to reduce the variance of the periodogram. The Bartlett periodogram is obtained as the
average of K periodograms as

K

() = o L PR 929)

i=1
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where f’;& (f) is the periodogram of the ith segment of the signal. The expectation of the
Bartlett periodogram Pg, (f) is given by

[P (] =E P (f)]

N-1
= > (-5 e
m=—(N—-1) (930)
L inm(f~n)NT
sina(f —v
:ﬁ_é PXX(V)|: sinm(f —v) i| v

where (sin fN/ sin 7f)* /N is the frequency response of the triangular window 1 — |m|/N.
From Equation (9.30), the Bartlett periodogram is asymptotically unbiased. The variance of
P2, (f) is 1/K of the variance of the periodogram, and is given by

Var [ (0] = Pia [1 + (;"Z—ZZ)} 931)

9.4.3 WELCH METHOD: AVERAGING PERIODOGRAMS FROM
OVERLAPPED AND WINDOWED SEGMENTS

In this method, a signal x(m), of length M samples, is divided into K overlapping segments
of length N, and each segment is windowed prior to computing the periodogram. The ith
segment is defined as

x;(m)=x(m+iD), m=0,...,N—1, i=0,...,K—1 (9.32)

where D is the overlap. For half-overlap D = N/2, while D = N corresponds to no overlap.
For the ith windowed segment, the periodogram is given by

2

Pa(n= % 3 wlmys(mye P (9:33)

where w(m) is the window function and U is the power in the window function, given by

U= %Nil w? (m) (9.34)

m=0

The spectrum of a finite-length signal typically exhibits side-lobes due to discontinuities at
the endpoints. The window function, w(m), alleviates the discontinuities and reduces the
spread of the spectral energy into the side-lobes of the spectrum. The Welch power spectrum
is the average of K periodograms obtained from overlapped and windowed segments of a
signal:

K—-1

> P (N (9.35)

i=0

N 1
P;yx(f)zf
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Using Equations (9.33) and (9.35), the expectation of i’}?’x (f) can be obtained as

[PV (N] = EPEY ()]
1 N—-1N-1

=— > > w(n)w(m)Elx;(m)x;(n)]e" 27"
NU n=0 m=0
1 N—1N-1 )
=0 ,,2:(:) mXZ% w(n)w(m)r, (n—m)e > =m
1/2
- / Py (W)W — f) dv (9.36)
—-1/2
where
N-1 ‘ 2
W(f) = U m%%) w(m)e 2" (9.37)
and the variance of the Welch estimate is given by
2 LS5 [0 (p0 5 ’
VarlPY (D] = 25 & X 2| PR(0Ph(n] - {£[ P} (9.38)
i=0 j=0
Welch has shown that, for the case when there is no overlap, D = N,
Var[ Py P
Var[P)\?/X(f)] — ar[ XX(f)] ~ XX(f) (939)
Kl Kl
and for half-overlap, D = N/2,
BW 9 m
Var[Pyy ()] = o Pxx (/)] (9.40)
8K,

9.4.4 BLACKMAN-TUKEY METHOD

In this method, an estimate of a signal power spectrum is obtained from the Fourier transform
of the windowed estimate of the autocorrelation function as

N—1

PR(H= > w(m)r,(m)e 2™ (9.41)

m=—(N—1)

For a signal of N samples, the number of samples available for estimation of the
autocorrelation value at the lag m, 7, (m), decreases as m approaches N. Therefore, for large
m, the variance of the autocorrelation estimate increases, and the estimate becomes less
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reliable. The window w(m) has the effect of down-weighting the high variance coefficients
at and around the end-points. The mean of the Blackman—Tukey power spectrum estimate is

N—1

HPR(N= X Hr(m)]wm)e 27" (9.42)

m=—(N-1)

Now E[r. (m)] = r,,(m)wg(m), where wg(m) is the Bartlett, or triangular, window.
Equation (9.42) may be written as

N—1

ZPRNI= Y ru(mw(me ™" (9.43)

m=—(N-1)
where w,(m) = wg(m)w(m). The right-hand side of Equation (9.43) can be written in terms
of the Fourier transform of the autocorrelation and the window functions as
1/2
AP (NI = [ Pr@W(f —v)dv (9.44)
—1/2

where W,(f) is the Fourier transform of w,(m). The variance of the Blackman-Tukey
estimate is given by

Varl PR (0]~ 3 P 045)

where U is the energy of the window w,(m).

9.4.5 POWER SPECTRUM ESTIMATION FROM AUTOCORRELATION
OF OVERLAPPED SEGMENTS

In the Blackman-Tukey method, in calculating a correlation sequence of length N from a
signal record of length N, progressively fewer samples are admitted in estimation of 7, (m)
as the lag, m, approaches the signal length, N. Hence, the variance of 7  (m), increases
with the lag, m. This problem can be solved by using a signal of length 2N samples for
calculation of N correlation values. In a generalization of this method, the signal record
x(m), of length M samples, is divided into a number K of overlapping segments of length
2N. The ith segment is defined as

x;(m)=x(m+iD), m=0,1,...,2N—1 (9.46)
i=0,1,...,K—1
where D is the overlap. For each segment of length 2N, the correlation function in the range
of 0 > m > N is given by

1 N-—1
?Xx(m)zﬁ > x(k)x,(k+m), m=0,1,...,N——1 (9.47)
k=0
In Equation (9.47), the estimate of each correlation value is obtained as the averaged sum
of N products.
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9.5 MODEL-BASED POWER SPECTRUM ESTIMATION

In nonparametric power spectrum estimation, the autocorrelation function is assumed to be
zero for lags |m| > N, beyond which no estimates are available. In parametric or model-based
methods, a model of the signal process is used to extrapolate the autocorrelation function
beyond the range |m| < N for which data is available. Model-based spectral estimators
have a better resolution than the periodograms, mainly because they do not assume that the
correlation sequence is zero-valued for the range of lags for which no measurements are
available.

In linear model-based spectral estimation, it is assumed that the signal x(m) can be
modelled as the output of a linear time-invariant system excited with a random, flat-spectrum,
excitation. The assumption that the input has a flat spectrum implies that the power spectrum
of the model output is shaped entirely by the frequency response of the model. The input—
output relation of a generalized discrete linear time-invariant model is given by

P Q
x(m) =Y ax(m—k)+)_ be(m—k) (9.48)

k=1 k=0

where x(m) is the model output, e(m) is the input, and the @, and b, are the parameters of
the model. Equation (9.48) is known as an autoregressive—-moving-average (ARMA) model.
The system function H(z) of the discrete linear time-invariant model of Equation (9.48) is
given by

[Y
> bzt
H(z) = f; 8 == : (9.49)
1— k; a,z7*

where 1/A(z) and B(z) are the autoregressive and moving-average parts of H(z),
respectively. The power spectrum of the signal x(m) is given as the product of the power
spectrum of the input signal and the squared magnitude frequency response of the model:

PXX(f) = PEE(f) |H(f)|2 (9.50)

where H(f) is the frequency response of the model and P (f) is the input power spectrum.
Assuming that the input is a white noise process with unit variance, i.e. Py (f) =1,
Equation (9.50) becomes

Py () =H(NI (9.51)

Thus the power spectrum of the model output is the squared magnitude of the frequency
response of the model. An important aspect of model-based spectral estimation is the choice
of the model. The model may be an autoregressive (all-pole), a moving-average (all-zero)
or an ARMA (pole—zero) model.
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9.5.1 MAXIMUM-ENTROPY SPECTRAL ESTIMATION

The power spectrum of a stationary signal is defined as the Fourier transform of the
autocorrelation sequence:

PN = 3 re(m) e 27" 9.52)

n=—oo

Equation (9.52) requires the autocorrelation r  (m) for the lag m in the range +oo. In
practice, an estimate of the autocorrelation r  (m) is available only for the values of m in
a finite range of, say, +P. In general, there are an infinite number of different correlation
sequences that have the same values in the range |m| < P| as the measured values. The
particular estimate used in the nonparametric methods assumes the correlation values are
zero for the lags beyond £ P, for which no estimates are available. This arbitrary assumption
results in spectral leakage and loss of frequency resolution. The maximum-entropy estimate
is based on the principle that the estimate of the autocorrelation sequence must correspond
to the most random signal whose correlation values in the range |m| < P coincide with the
measured values.

The maximum-entropy principle is appealing because it assumes no more structure in the
correlation sequence than that indicated by the measured data. The randomness or entropy
of a signal is defined as

1/2
H[Pyw(N]= [ Py () df (9.53)

—1/2

To obtain the maximum-entropy correlation estimate, we differentiate Equation (9.53) with
respect to the unknown values of the correlation coefficients, and set the derivative to zero:

1/

IHIPy ()] _ /2 a0 Py (/)

df =0 f P 9.54
ar(m) aro(my =0 forlml> ©-34)

Now, from Equation (9.18), the derivative of the power spectrum with respect to the
autocorrelation values is given by

aI)XX (f) — ef_/'Zanm

ar. (m) (9.55)

From Equation (9.55), for the derivative of the logarithm of the power spectrum, we have

dln Pyyx (f) 4 s
—===P jamfm 9.56
arxx (m) XX (f) € ( )
Substitution of Equation (9.56) in Equation (9.53) gives

172
[ Pap e dr =0
—1/2

for|m| > P (9.57)
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Assuming that Py () is integrable, it may be associated with an autocorrelation sequence
c(m) as

P;)l((f)z Z c(m) e /2™ (9.58)
where
12
cmy= [ Pui(f) e df 9.59)
—1/2

From Equations (9.57) and (9.59), we have c¢(m) = 0 for |m| > P. Hence, from
Equation (9.58), the inverse of the maximum-entropy power spectrum may be obtained from
the Fourier transform of a finite-length autocorrelation sequence as

Pix(N= Y c(m) e ™™ (9.60)

m=—P
and the maximum-entropy power spectrum is given by

A 1
PYE(H) = —; (9.61)
Z c(m) e—jZﬂ'fm
m=—P

Since the denominator polynomial in Equation (9.61) is symmetric, it follows that, for every
zero of this polynomial situated at a radius r, there is a zero at radius 1/r. Hence this
symmetric polynomial can be factorised and expressed as

P

Y. cm)z™" = %A(Z)A(z”) (9.62)

m=—P

where 1/ is a gain term, and A(z) is a polynomial of order P defined as
A(z)=14a;z" —I—~~~|—apz_P (9.63)

From Equations (9.61) and (9.62), the maximum-entropy power spectrum may be expressed
as

0.2

PE(f)= ———— 9.64

XX (f) A(Z)A(Zil) ( )
Equation (9.64) shows that the maximum-entropy power spectrum estimate is the power
spectrum of an autoregressive model. Equation (9.64) was obtained by maximising the
entropy of the power spectrum with respect to the unknown autocorrelation values. The
known values of the autocorrelation function can be used to obtain the coefficients of the

AR model of Equation (9.64), as discussed in the next section.
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9.5.2 AUTOREGRESSIVE POWER SPECTRUM ESTIMATION

In the preceding section, it was shown that the maximum-entropy spectrum is equivalent to
the spectrum of an autoregressive model of the signal. An autoregressive, or linear prediction
model, described in detail in Chapter 8, is defined as

x(m) = i ax(m—k)+e(m) (9.65)

k=1
where e(m) is a random signal of variance o?. The power spectrum of an autoregressive
process is given by

0.2

Pyx(f) = - (9.66)

P 2
‘1 — Y a, e

k=1

An AR model extrapolates the correlation sequence beyond the range for which estimates are
available. The relation between the autocorrelation values and the AR model parameters is
obtained by multiplying both sides of Equation (9.65) by x(m — j) and taking the expectation:

Elx(m)x(m— j)] = a, Elx(m—k)x(m — j)]+ Ele(m)x(m — j)] (9.67)

Now for the optimal model coefficients the random input e(m) is orthogonal to the past
samples, and Equation (9.67) becomes

P
rxx(j) = Zaerx(j_k)s ,]= 13 27 . e (968)
k=1

Given P+ 1 correlation values, Equation (9.68) can be solved to obtain the AR coefficients
a,. Equation (9.68) can also be used to extrapolate the correlation sequence. The methods
of solving the AR model coefficients are discussed in Chapter 8.

9.5.3 MOVING-AVERAGE POWER SPECTRUM ESTIMATION

A moving-average model is also known as an all-zero or a finite impulse response filter. A
signal x(m), modelled as a moving-average process, is described as

[
x(m) = g bye(m—k) (9.69)

where e(m) is a zero-mean random input and Q is the model order. The cross-correlation of
the input and output of a moving average process is given by

re(m) = E[x(j)e(j —m)]

2
=0, bm

0
=z [Z bye(j—k)e(j—m)

k=0

} (9.70)
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and the autocorrelation function of a moving average process is

0—ni
2 b.b <
ro(my =17 Z, bbion: Iml =0 (9.71)

0, |m| > Q

From Equation (9.71), the power spectrum obtained from the Fourier transform of the
autocorrelation sequence is the same as the power spectrum of a moving average model of
the signal. Hence the power spectrum of a moving-average process may be obtained directly
from the Fourier transform of the autocorrelation function as

9]
Pt =Y ru(m) e ™" (9.72)
m=—0

Note that the moving-average spectral estimation is identical to the Blackman—Tukey method
of estimating periodograms from the autocorrelation sequence.

9.5.4 AUTOREGRESSIVE MOVING-AVERAGE POWER SPECTRUM
ESTIMATION

The ARMA, or pole-zero, model is described by Equation (9.48). The relationship between
the ARMA parameters and the autocorrelation sequence can be obtained by multiplying both
sides of Equation (9.48) by x(m — j) and taking the expectation:

P 0
rxx(j) = _Zakr,rx(j_k)+zbere(j_k) (973)
k=1 k=0

The moving-average part of Equation (9.73) influences the autocorrelation values only up to
the lag of Q. Hence, for the autoregressive part of Equation (9.73), we have

ro(m) ==Y a,r,(m—k)form > Q (9.74)
=1

Hence Equation (9.74) can be used to obtain the coefficients a,, which may then be substituted
in Equation (9.73) for solving the coefficients b,. Once the coefficients of an ARMA model
are identified, the spectral estimate is given by

2

Q
Z bk e—j27rfk
k=0

P (N =07 (9.75)

P 2

14 Y a, e
k=1

where ¢ is the variance of the input of the ARMA model. In general, the poles model
the resonances of the signal spectrum, whereas the zeros model the antiresonances of the
spectrum.
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9.6 HIGH-RESOLUTION SPECTRAL ESTIMATION BASED ON
SUBSPACE EIGENANALYSIS

The eigen-based methods considered in this section are primarily used for estimation of the
parameters of sinusoidal signals observed in an additive white noise. Eigenanalysis is used
for partitioning the eigenvectors and the eigenvalues of the autocorrelation matrix of a noisy
signal into two subspaces:

(1) the signal subspace composed of the principle eigenvectors associated with the largest
eigenvalues;
(2) the noise subspace represented by the smallest eigenvalues.

The decomposition of a noisy signal into a signal subspace and a noise subspace forms the
basis of the eigenanalysis methods considered in this section.

9.6.1 PISARENKO HARMONIC DECOMPOSITION

A real-valued sine wave can be modelled by a second-order autoregressive model, with its
poles on the unit circle at the angular frequency of the sinusoid, as shown in Figure 9.5. The
AR model for a sinusoid of frequency F; at a sampling rate of F is given by

x(m) =2cosQmF;/F)x(m—1) —x(m—2)+ Ad(m — t,) (9.76)

where Ad(m — t,)) is the initial impulse for a sine wave of amplitude A. In general, a signal
composed of P real sinusoids can be modelled by an AR model of order 2P as

x(m) = %akx(m—k)—}—AS(m—tO) (9.77)

k=1
The transfer function of the AR model is given by

H(z) = 4 = A (9.78)

2P P
1—-Y az* [1(1 = e-227Fiz=1)(1 — e+27Fiz—1)
k=1 k=1

—|— Pole

X(f)

Figure 9.5 A second-order all-pole model of a sinusoidal signal.
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where the angular positions of the poles on the unit circle, e*/2™%, correspond to the angular
frequencies of the sinusoids. For P real sinusoids observed in an additive white noise, we
can write

y(m) = x(m) +n(m)

2P (9.79)
=Y ayx(m—k)+n(m)
k=1
Substituting [y(m — k) — n(m — k)] for x(m — k) in Equation (9.79) yields
y(m)=> a,y(m—k) =n(m) =Y an(m—k) (9.80)
k=1 k=1

From Equation (9.80), the noisy sinusoidal signal y(m) can be modelled by an ARMA
process in which the AR and the MA sections are identical, and the input is the noise process.
Equation (9.80) can also be expressed in a vector notation as

ya=n"a (9.81)
where yT' =[y(m),...,y(m—2P)],a" =[1,a,,...,ay] and n" = [n(m), ..., n(m—2P)].
To obtain the parameter vector @, we multiply both sides of Equation (9.81) by the vector y
and take the expectation:

Hyy'la = Hyn"la (9.82)

or

R,a=R,a (9.83)

where Z[yy'] =R,,, and Zlyn"] =R, can be written as

R, = H(x+n)n"]

(9.84)
= Enn"]|=R,, = 0.1
where o7 is the noise variance. Using Equation (9.84), Equation (9.83) becomes
R,a=o0.a (9.85)

Equation (9.85) is in the form of an eigenequation. If the dimension of the matrix R, is
greater than 2P x 2P, then the largest 2P eigenvalues are associated with the eigenvectors
of the noisy sinusoids and the minimum eigenvalue corresponds to the noise variance o?2.
The parameter vector a is obtained as the eigenvector of R, with its first element unity and
associated with the minimum eigenvalue. From the AR parameter vector @, we can obtain

the frequencies of the sinusoids by first calculating the roots of the polynomial

l+az ' vaz + - +az P a7 -7 =0 (9.86)
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Note that for sinusoids, the AR parameters form a symmetric polynomial, that is a, = a,p_;.
The frequencies F), of the sinusoids can be obtained from the roots, z,, of Equation (9.86)
using the relation

7 = /2™ (9.87)

The powers of the sinusoids are calculated as follows. For P sinusoids observed in additive
white noise, the autocorrelation function is given by

P
ryy (k) =Y P;cos 2kmF; + o7 8(k) (9.88)
i=1
where P; = A?/2 is the power of the sinusoid A, sin(27F;), and white noise affects only the
correlation at lag zero r,,(0). Hence Equation (9.88) for the correlation lags k =1,..., P
can be written as

cos2wF, cos2wF, ... cos2mF, P, 1y (1)

cosdmwF, cos4wF, ... cosdwF, P, r,,(2)
= ) (9.89)

cos2PmF, cos2PwF, ... cos2PwFp) \Pp 7,y (P)

Given an estimate of the frequencies F; from Equations (9.86) and (9.87), and an estimate
of the autocorrelation function 7,,(k), Equation (9.89) can be solved to obtain the powers of
the sinusoids P;. The noise variance can then be obtained from Equation (9.88) as

P
oy =r,(0)=> P, (9.90)
i=1

9.6.2 MULTIPLE SIGNAL CLASSIFICATION SPECTRAL ESTIMATION

The multiple signal classification (MUSIC) algorithm is an eigen-based subspace
decomposition method for estimation of the frequencies of complex sinusoids observed in
additive white noise. Consider a signal y(m) modelled as

P
y(m) =" A, e T 4on(m) (9.91)
k=1
An N-sample vector y = [y(m), ..., y(m+ N — 1)] of the noisy signal can be written as
y=x+n
(9.92)
=Sa+n

where the signal vector x = Sa is defined as

x(m) ejZ'ITF]m ej277F2m . ej27TFpm Alej277¢1
x(m+ 1) ej27TF1 (m+1) ejZaTFz(m+l) . e_/’277'Fp(m—0—l) AzejZWsz
x(m+N _ 1) ej2‘n'F|(m+Nfl) ejZﬂFz(m+N71) . ej2‘n'FP(m+N71) APejZm;SP

(9.93)
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The matrix S and the vector a are defined on the right-hand side of Equation (9.93). The
autocorrelation matrix of the noisy signal y can be written as the sum of the autocorrelation
matrices of the signal x and the noise as

Ryy = Rxx +R""

(9.94)
=SPS" + 01

where R, = SPS" and R,, = 021 are the autocorrelation matrices of the signal and noise
processes, the exponent H denotes the Hermitian transpose, and the diagonal matrix P defines
the power of the sinusoids as

P =aa" = diag[P,, P,, ..., P}] (9.95)

where P, = A? is the power of the complex sinusoid e~>™"i. The correlation matrix of the
signal can also be expressed in the form

P
R, =) Psis; (9.96)
k=1

where sf! = [1,e”2™%, ... 2™ N=DF] Now consider an eigendecomposition of the N x N
correlation matrix R,

N

H

Rxx = Z Akvkvk
k=1

(9.97)

M~

H
Ay

k

1

where A, and v, are the eigenvalues and eigenvectors of the matrix R, respectively. We
have also used the fact that the autocorrelation matrix, R, ., of P complex sinusoids has only
P nonzero eigenvalues, Ap, | = Ap,,,..., Ay =0. Since the sum of the cross-products of
the eigenvectors forms an identity matrix, we can also express the diagonal autocorrelation
matrix of the noise in terms of the eigenvectors of R, as

N
R, =c1=0> vl (9.98)
k=1

The correlation matrix of the noisy signal may be expressed in terms of its eigenvectors and
the associated eigenvalues of the noisy signal as

N
H 2 H
AVive + 07 Y vy,
k=1

M=~

R, =

~
Il

N (9.99)
()\k + 0}?) Vkka + 0}? Z Vk"?

k=P+1

I
M=~

~
I
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Eigenvalues
/\1 + oy
)\2 + o,
2
)\3 + oy
2
A pt oy 5
Api1=Apa=Ap = Ay=o,
\ /o , index
Principal eigenvalues Noise eigenvalues

Figure 9.6 Decomposition of the eigenvalues of a noisy signal into the principal eigenvalues and
noise eigenvalues.

From Equation (9.99), the eigenvectors and the eigenvalues of the correlation matrix of
the noisy signal can be partitioned into two disjoint subsets (see Figure 9.6). The set
of eigenvectors {v,,...,vp} associated with the P largest eigenvalues spans the ‘signal
subspace’ and they are called the ‘principal eigenvectors’. The signal vectors §; can be
expressed as linear combinations of the principal eigenvectors. The second subset of
eigenvectors {vp., ..., vy} spans the ‘noise subspace’ and they have o2 as their eigenvalues.
Since the signal and noise eigenvectors are orthogonal, it follows that the signal subspace
and the noise subspace are orthogonal. Hence the sinusoidal signal vectors, s;, which are in
the signal subspace, are orthogonal to the noise subspace, and we have
N—1
s;(fve= > y(me ™" =0 i=1,...,P k=P+1,...,N (9.100)

m=0
Equation (9.100) implies that the frequencies of the P sinusoids can be obtained by solving

for the zeros of the following polynomial function of the frequency variable, f:

N

> sty (9.101)

k=P+1

In the MUSIC algorithm, the power spectrum estimate is defined as

N
2
Pyx(N= 2 |s"(Hw] (9.102)
k=P+1
where s(f) = [1,e™, ..., e2™¥=Df] is the complex sinusoidal vector, and {vp,,, ..., vy}
are the eigenvectors in the noise subspace. From Equations (9.100) and (9.102) we have that
Py (f)=0, i=1,...,P (9.103)

Since Pyy(f) has its zeros at the frequencies of the sinusoids, it follows that the reciprocal
of Pyx(f) has its poles at these frequencies. The MUSIC spectrum is defined as

1 1
~SHOVOVEDs()

() = —

> sl

k=P+1

(9.104)
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where V = [vp,,...,vy] is the matrix of eigenvectors of the noise subspace. Pyygc(f) is
sharply peaked at the frequencies of the sinusoidal components of the signal, and hence the
frequencies of its peaks are taken as the MUSIC estimates.

9.6.3 ESTIMATION OF SIGNAL PARAMETERS VIA ROTATIONAL
INVARIANCE TECHNIQUES

The estimation of signal parameters via rotational invariance techniques (ESPIRIT) algorithm
is an eigendecomposition approach for estimating the frequencies of a number of complex
sinusoids observed in additive white noise. Consider a signal, y(m), composed of P complex-
valued sinusoids and additive white noise:

P
y(m) =" AeCTmTEd 4 p(m) (9.105)

k=1

The ESPIRIT algorithm exploits the deterministic relation between sinusoidal component
of the signal vector, y(m) = [y(m), ..., y(m+ N —1]T, and that of the time-shifted vector,
y(m+1)=[y(m+1),...,y(m+N)]'. The signal component of the noisy vector y(m) may
be expressed as

x(m) = Sa (9.106)

where S is the complex sinusoidal matrix and a is the vector containing the amplitude and
phase of the sinusoids as in Equations (9.92) and (9.93). A complex sinusoid e/*™" can
be time-shifted by one sample through multiplication by a phase term, e/>™i. Hence the
time-shifted sinusoidal signal vector, x(m+ 1), may be obtained from x(m) by phase-shifting
each complex sinusoidal component of x(m) as

x(m+1)=SPa (9.107)
where @ is a P x P phase matrix defined as
& = diag[e/*™, 2™, ... e27Fr] (9.108)

The diagonal elements of & are the relative phases between the adjacent samples of the
sinusoids. The matrix & is a unitary matrix and is known as a ‘rotation matrix’ since it
relates the time-shifted vectors x(m) and x(m + 1). The autocorrelation matrix of the noisy
signal vector y(m) can be written as

Ry(yom =SPS" + 071 (9.109)

where the matrix P is diagonal, and its diagonal elements are the powers of the complex
sinusoids, P = diag[A?, ..., A2] = aa". The cross-covariance matrix of the vectors y(m)
and y(m+1) is

— H ¢oH
Ry yyimity = SPPS" 4R, )01 1) (9.110)
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where the autocovariance matrices Ry, ,yonr1) a0d R,y (n+1) are defined as

ry(1) ry(2) ry(3) ()
r,,(0) r,,(1) ry(2) e (N=1)
Rypmin=| I @ n ey (N=2) 0.111)
rw(N=2) r, (N=3) r,(N—=4) -- r, (1)
and
0 0 0 0
g 0 0 0
2
Rn(m)n(m+1) = 0 0'-" 0 0 (91 12)
0 0 -+ 020
The correlation matrix of the signal vector x(m) can be estimated as
H
Remyxn) = Ryanyyon) = Ruguynny = SPS (9.113)

and the cross-correlation matrix of the signal vector x(m) with its time-shifted version
x(m+1) is obtained as

H oH
Rx(m)x(m+l) = Ry(m)y(m+l) _Rn(m)n(m+l) =SPP"S (91 14)
Subtraction of a fraction A; = e /> of Equation (9.112) from Equation (9.113) yields

R

x(m)x(m) )\in(m)x(m+l) = SP(I - )\id)H)SH (91 15)
From Equations (9.108) and (9.115), the frequencies of the sinusoids can be estimated as
the roots of Equation (9.115).

9.7 SUMMARY

Power spectrum estimation is perhaps the most widely used method of signal analysis. The
main objective of any transformation is to express a signal in a form that lends itself to
more convenient analysis and manipulation. The power spectrum is related to the correlation
function through the Fourier transform. The power spectrum reveals the repetitive and
correlated patterns of a signal, which are important in detection, estimation, data forecasting
and decision-making systems. We began this chapter with Section 9.1 on basic definitions
of the Fourier series/transform, energy spectrum and power spectrum. In Section 9.2, we
considered nonparametric DFT-based methods of spectral analysis. These methods do not
offer the high resolution of parametric and eigen-based methods. However, they are attractive
in that they are computationally less expensive than model-based methods and are relatively
robust. In Section 9.3, we considered the maximum-entropy and the model-based spectral
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estimation methods. These methods can extrapolate the correlation values beyond the range
for which data is available, and hence can offer higher resolution and fewer side-lobes.
In Section 9.4, we considered the eigen-based spectral estimation of noisy signals. These
methods decompose the eigenvariables of the noisy signal into a signal subspace and a
noise subspace. The orthogonality of the signal and noise subspaces is used to estimate the
signal and noise parameters. In the next chapter, we use DFT-based spectral estimation for
restoration of signals observed in noise.
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Interpolation is the estimation of the unknown, or the lost, samples of a signal using a
weighted average of a number of known samples at the neighbourhood points. Interpolators
are used in various forms in most communications signal processing and decision-making
systems. Applications of interpolators include conversion of a discrete-time signal to a
continuous-time signal, sampling rate conversion in multirate communications systems, low-
bit-rate speech coding, up-sampling of a signal for improved graphical representation and
restoration of a sequence of samples irrevocably distorted by transmission errors, packet
loss, impulsive noise, dropouts, etc.

This chapter begins with a study of the basic concepts of ideal interpolation of a band-
limited signal, a simple model for the effects of a number of missing samples and the factors
that affect the interpolation process. The classical approach to interpolation is to construct
a polynomial that passes through the known samples. In Section 10.2, a general form of
polynomial interpolation and its special forms, Lagrange, Newton, Hermite and cubic spline
interpolators, are considered.

Optimal interpolators utilise predictive models of signal trajectory and statistical models of
the distribution of the signal process. In Section 10.3, a number of model-based interpolation
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268 INTERPOLATION

methods are considered. These methods include maximum a posteriori interpolation and
least square error interpolation based on an autoregressive model. Finally, we consider time—
frequency interpolation, and interpolation through searching an adaptive signal codebook for
the best-matching signal.

10.1 INTRODUCTION

The objective of interpolation is to obtain a high-fidelity reconstruction of the unknown or
the missing samples of a signal. The emphasis in this chapter is on the interpolation of a
sequence of lost samples. However, first in this section, the basic theory of ideal interpolation
of a band-limited signal is introduced, and its applications in conversion of a discrete-time
signal to a continuous-time signal and in conversion of the sampling rate of a digital signal
are considered. Then a simple distortion model is used to gain insight into the effects of a
sequence of lost samples and the methods of recovery of the lost samples. The factors that
affect interpolation error are also considered in this section.

10.1.1 INTERPOLATION OF A SAMPLED SIGNAL

A common application of interpolation is the reconstruction of a continuous-time signal, x(t),
from a discrete-time signal, x(m). The condition for the recovery of a continuous-time signal
from its samples is given by the Nyquist sampling theorem. The Nyquist theorem states
that a band-limited signal, with a highest frequency content of F, (Hz), can be reconstructed
from its samples if the sampling speed is greater than 2F, samples per second. Consider a
band-limited continuous-time signal x(f), sampled at a rate of F, samples per second. The
discrete-time signal, x(m), may be expressed as the following product:

=)

x(m)=x()p(t) = Y x()8(t—mT,) (10.1)

m=—oo

where p(t) = 26(t — mT,) is the sampling function and 7, = 1/F, is the sampling interval.
Taking the Fourier transform of Equation (10.1), it can be shown that the spectrum of the
sampled signal is given by

X(f) = XU P(F) = 3 X(F+kf) (10.2)

k=—o0

where X(f) and P(f) are the spectra of the signal x(¢) and the sampling function p(t),
respectively, and * denotes the convolution operation.

Equation (10.2), illustrated in Figure 10.1, states that the spectrum of a sampled signal is
composed of the original base-band spectrum X(f) and the repetitions or images of X(f)
spaced uniformly at frequency intervals of F, = 1/T,. When the sampling frequency is above
the Nyquist rate, the base-band spectrum, X(f), is not overlapped by its images, X(f £ kF,),
and the original signal can be recovered by a low-pass filter, as shown in Figure 10.1. Hence
the ideal interpolator of a band-limited discrete-time signal is an ideal low-pass filter with a
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Figure 10.1 Reconstruction of a continuous-time signal from its discrete-time samples. In the
frequency domain interpolation is equivalent to low-pass filtering.

sinc impulse response. The recovery of a continuous-time signal through sinc interpolation
can be expressed as

)

x()= Y x(m)T fsinc[mf.(t —mT,)] (10.3)

m=—oo

In practice, the sampling rate F, should be sufficiently greater than 2F,, say 2.5F,, in order
to accommodate the transition bandwidth of the interpolating low-pass filter.

10.1.2 DIGITAL INTERPOLATION BY A FACTOR OF 1

Applications of digital interpolators include sampling rate conversion in multirate
communication systems and up-sampling for improved graphical representation. To change
a sampling rate by a factor of V = I/D (where I and D are integers), the signal is first
interpolated by a factor of /, and then the interpolated signal is decimated by a factor of D.

Consider a band-limited discrete-time signal, x(m), with a base-band spectrum, X(f),
as shown in Figure 10.2. The sampling rate can be increased by a factor of I through
interpolation of 7 — 1 samples between every two samples of x(m). In the following it is
shown that digital interpolation by a factor of I can be achieved through a two-stage process
of (a) insertion of 7 — 1 zeros in between every two samples and (b) low-pass filtering of the

Original signal Zero inserted signal Interpolated signal

Time Time Time

Figure 10.2 Illustration of up-sampling by a factor of 3 using a two-stage process of zero-insertion
and digital low-pass filtering.
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Figure 10.3 (a) Original signal; (b) zero-inserted signal; (c) spectrum of original signal; (d) spectrum
of zero-inserted signal; (e) interpolated signal.
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zero-inserted signal by a filter with a cutoff frequency of F,/21, where F; is the sampling
rate. Consider the zero-inserted signal x, (m) obtained by inserting 7 — 1 zeros between every
two samples of x(m) and expressed as

x(%), m=0,=xIl, £21,...

. (10.4)
0, otherwise

x,(m) = i

The spectrum of the zero-inserted signal is related to the spectrum of the original discrete-time
signal by

oo

X.(f)= 3 x(mye "
— i x(m)eijﬂ'fml (105)
— X(Lf)

Equation (10.5) states that the spectrum of the zero-inserted signal X_( f) is a frequency-scaled
version of the spectrum of the original signal X(f).

The process of interpolation of a signal through zero-insertion and low pass filtering is
illustrated in Figure 10.3. A segment of speech and its zero-inserted version are shown in
Figures 10.3(a) and 10.3(b) respectively. Figures 10.3(c) and (d) show the base-band spectra
of the original and the zero-inserted speech respectively. Note that spectrum of the zero-
inserted signal is composed of I (in this case I = 5) repetitions of the based band spectrum
of the original signal. Interpolation of the zero-inserted signal is achieved by filtering out
the repetitions of X(f) in the base band of X_(f). The interpolated signal is shown in Figure
10.3(e). Note that during the playback, to maintain the real-time duration of the signal, the
sampling rate of the interpolated signal x_(m) needs to be increased by a factor of I.

10.1.3 INTERPOLATION OF A SEQUENCE OF LOST SAMPLES

In this section, we introduce the problem of interpolation of a sequence of M missing samples
of a signal given a number of samples on both sides of the gap, as illustrated in Figure 10.4.
Perfect interpolation, with zero error, is only possible if the missing samples are redundant, in
the sense that they carry no more information than that conveyed by the known neighbouring
samples. This will be the case if the signal is a perfectly predictable signal such as a sine wave,

y(m) x(m) d(m)

Figure 10.4 TIllustration of a distortion model for a signal with a sequence of missing samples.
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or in the case of a band-limited random signal if the sampling rate is greater than M times
the Nyquist rate. However, in many practical cases, the signal is a realisation of a random
process, and the sampling rate is only marginally above the Nyquist rate. In such cases, the
lost samples cannot be perfectly recovered, and some interpolation error is inevitable.

A simple distortion model for a signal y(m) with M missing samples, illustrated in
Figure 10.4, is given by

y(m) = x(m)d(m)

(10.6)
= x(m)[1 = r(m)]
where the distortion operator d(m) is defined as
d(m)=1—r(m) (10.7)

and r(m) is a rectangular pulse of duration M samples starting at the sampling time k:

1, k<m<k+M-1
r(m) = == * (10.8)
0, otherwise

In the frequency domain, Equation (10.6) becomes

Y(f) = X(f)"D(f)
= X(f)[6(f) = R(NI (10.9)
= X(f) = X(f)"R(f)

where D(f) is the spectrum of the distortion d(m), 6(f) is the Kronecker delta function,
and R(f), the frequency spectrum of the rectangular pulse r(m), is given by

ke (u—1/2) S0 (M)

— o 27f]
R(f)=e sin (77f)

(10.10)

In general, the distortion d(m) is a noninvertible, many-to-one transformation, and perfect
interpolation with zero error is not possible. However, as discussed in Section 10.3, the
interpolation error can be minimised through optimal utilisation of the signal models and the
information contained in the neighbouring samples.

Example 10.1: Interpolation of Missing Samples of a Sinusoidal Signal

Consider a cosine waveform of amplitude A and frequency F, with M missing samples,
modelled as

y(m) = x(m)d(m)

(10.11)
= A(cos2mfym)[1 —r(m)b]
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where r(m) is the rectangular pulse defined in Equation (10.8). In the frequency domain, the
distorted signal can be expressed as

[8(f = fo) +8(f + SO [6() = R(f)]

=15

(10.12)

= Z10 — 1) 450 + /) = R(F— fo) = R(F + )]
where R(f) is the spectrum of the pulse r(m), as in Equation (10.9).

From Equation (10.12), it is evident that, for a cosine signal of frequency F;, the distortion
in the frequency domain due to the missing samples is manifested in the appearance of sinc
functions centred at £F;. The distortion can be removed by filtering the signal with a very
narrow band-pass filter. Note that, for a cosine signal, perfect restoration is possible only
because the signal has infinitely narrow bandwidth, or equivalently because the signal is
completely predictable. In fact, for this example, the distortion can also be removed using
a linear prediction model, which, for a cosine signal, can be regarded as a data-adaptive
narrow-bandpass filter.

10.1.4 THE FACTORS THAT AFFECT INTERPOLATION ACCURACY

The interpolation accuracy is affected by a number of factors, the most important of which
are as follows:

(1) The predictability, or correlation structure, of the signal — as the correlation of successive
samples increases, the predictability of a sample from the neighbouring samples
increases. In general, interpolation improves with increasing correlation structure, or
equivalently decreasing bandwidth, of a signal.

(2) The sampling rate — as the sampling rate increases, adjacent samples become more
correlated, the redundant information increases, and interpolation improves.

(3) Nonstationary characteristics of the signal — for time-varying signals the available
samples some distance in time away from the missing samples may not be relevant
because the signal characteristics may have completely changed. This is particularly
important in interpolation of a large sequence of samples.

(4) The length of the missing samples — in general, interpolation quality decreases with
increasing length of the missing samples.

(5) Finally, interpolation depends on the optimal use of the data and the efficiency of the
interpolator.

The classical approach to interpolation is to construct a polynomial interpolator function that
passes through the known samples. We continue this chapter with a study of the general
form of polynomial interpolation, and consider Lagrange, Newton, Hermite and cubic spline
interpolators. Polynomial interpolators are not optimal or well suited to making efficient use
of a relatively large number of known samples, or interpolating a relatively large segment
of missing samples.

In Section 10.3, we study several statistical digital signal processing methods for
interpolation of a sequence of missing samples. These include model-based methods, which
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are well suited for interpolation of small to medium-sized gaps of missing samples. We
also consider frequency—time interpolation methods, and interpolation through waveform
substitution, which have the ability to replace relatively large gaps of missing samples.

10.2 POLYNOMIAL INTERPOLATION

The classical approach to interpolation is to construct a polynomial interpolator that passes
through the known samples. Polynomial interpolators may be formulated in various forms,
such as power series, Lagrange interpolation and Newton interpolation. These various forms
are mathematically equivalent and can be transformed from one into another. Suppose the
data consists of N 41 samples {x(z,), x(t,), . .., x(¢y)}, where x(¢,) denotes the amplitude
of the signal x(¢) at time #,. The polynomial of order N that passes through the N + 1 known
samples is unique (Figure 10.5) and may be written in power series form as

() = py(t) = ag+ a,t + ayt* +a;* + -+ ayt” (10.13)

where Py (?) is a polynomial of order N, and the a, are the polynomial coefficients. From
Equation (10.13), and a set of N + 1 known samples, a system of N + 1 linear equations
with N + 1 unknown coefficients can be formulated as

x(ty) = ag+a,ty+ art5 +azty+- -+ ayty

x(t) = ag+a,t, +art; +ast) -+ ayty

(10.14)
x(ty) = ag+aty +apty +azty +- - +ayty
From Equation (10.14) the polynomial coefficients are given by
a, 1oty 2 8 - i\ [x(1)
a, Lo 8 86 - x(t))
al=|! o 5 6 8 x(1p) (10.15)
ay 1ty 6 1 t,l\\f x(ty)

x(1)

P(1) =x(1)

fo 1y b B t

Figure 10.5 Illustration of an interpolation curve through a number of samples.
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The matrix in Equation (10.15) is called a Vandermonde matrix. For a large number of
samples, N, the Vandermonde matrix becomes large and ill-conditioned. An ill-conditioned
matrix is sensitive to small computational errors, such as quantisation errors, and can
easily produce inaccurate results. There are alternative methods of implementation of the
polynomial interpolator that are simpler to program and/or better structured, such as Lagrange
and Newton methods. However, it must be noted that these variants of the polynomial
interpolation also become ill-conditioned for a large number of samples, N.

10.2.1 LAGRANGE POLYNOMIAL INTERPOLATION

To introduce the Lagrange interpolation, consider a line interpolator passing through two
points x(7,) and x(¢,):

(t— 1) (10.16)

&(1) = py (1) = x(t0) + %

—
Line slope

The line Equation (10.16) may be rearranged and expressed as

1 (1) (10.17)
Iy

mm=z_“um+

t
to— 1 t—

Equation (10.17) is in the form of a Lagrange polynomial. Note that the Lagrange form of
a line interpolator is composed of the weighted combination of two lines, as illustrated in
Figure 10.6.

In general, the Lagrange polynomial, of order N, passing through N + 1 samples
{x(2y), x(t,), ... x(ty)} is given by the polynomial equation

Py (1) = Lo()x(to) + Ly ()x(2)) +- - - + Ly () x(1y) (10.18)
where each Lagrange coefficient Ly (¢) is itself a polynomial of degree N given by

=)=t )=t =1 i,
S (—tg) (= 1) (14— tigr) - (L —ty) B n=0 li ~ Iy

L0 (10.19)

Figure 10.6 The Lagrange line interpolator passing through x(#,) and x(¢,) described in terms of the
combination of two lines: one passing through [x(#,), #,] and the other through [x(#,), #,].
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Note that the ith Lagrange polynomial coefficient L,(f) becomes unity at the ith known
sample point [i.e. L,(t;) = 1], and zero at every other known sample [i.e. L,(t;) =0, i # j].
Therefore Py(t;) = L;(2;)x(t;) = x(z;), and the polynomial passes through the known data
points as required.

The main drawbacks of the Lagrange interpolation method are as follows:

(1) the computational complexity is large.

(2) the coefficients of a polynomial of order N cannot be used in the calculations of the
coefficients of a higher-order polynomial;

(3) the evaluation of the interpolation error is difficult.

The Newton polynomial, introduced in the next section, overcomes some of these difficulties.

10.2.2 NEWTON POLYNOMIAL INTERPOLATION

Newton polynomials have a recursive structure, such that a polynomial of order N can be
constructed by extension of a polynomial of order N — 1 as follows:

po(t) = aq (d.c. value)
pi(1) = ag+a,(t—1,) (ramp)
= po(1) +a,(t — 1)
p2(t) = ag+a, (1 —1y) +a, (1 — 1) (1 — 1)
—_— (quadratic)

= pi() +a(t—1)(t—1)
ps(t) = ag+a (1 —ty) +ay(t —1,)(t — 1)) +az(t —1,) (t — 1) (1 — 1)

(cubic) (10.20)
= p(1) tay(t—1)(t—1,)(t—1,)

and in general the recursive, order update, form of a Newton polynomial can be formulated as
() =py (O +ay(t—t)(t—1) - (t—1y_,) (10.21)

For a sequence of N + 1 samples {x(#,), x(t,), ... x(¢y)}, the polynomial coefficients are
obtained using the constraint p, (¢;) = x(¢;) as follows: to solve for the coefficient a,, equate
the polynomial Equation (10.21) at ¢ = ¢, to x(¢,):

p(to) = po(ty) = x(1y) = a, (10.22)

To solve for the coefficient a,, the first-order polynomial p,(¢) is evaluated at ¢ = ¢,:

pi(t) = x(t)) = ag+a,(t; —ty) = x(ty) +a,(t; — t,) (10.23)
from which

a, = x(t) = x(ty) (10.24)
=1t
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Note that the coefficient a, is the slope of the line passing through the points [x(#,), x(#,)].
To solve for the coefficient a,, the second-order polynomial p,(¢) is evaluated at t = 1,:

Pa(ty) = x(ty) = ag+a,(t, — tg) + ay(t, — o) (5, — 1,) (10.25)
Substituting a, and a, from Equations (10.22) and (10.24) in Equation (10.25), we obtain

a, = I:x(tz) —x(t) _ x(t,) — x(1y)

L—f L —1

]/(tz—w (1026)

Each term in the square brackets of Equation (10.26) is a slope term, and the coefficient a,
is the slope of the slope. To formulate a solution for the higher-order coefficients, we need
to introduce the concept of divided differences. Each of the two ratios in the square brackets
of Equation (10.26) is a so-called ‘divided difference’. The divided difference between two
points ¢; and ¢,_, is defined as

di(ti, 1) =

)= st0c) (1027)

ti*l

The divided difference between two points may be interpreted as the average difference
or the slope of the line passing through the two points. The second-order divided difference
(i.e. the divided difference of the divided difference) over three points, ¢,_,,#,_, and t,, is
given by

di(ti_y,t;)—d(ti5, ;)

dy(tin, 1;) = (10.28)
L=t
and the third-order divided difference is
d,(t,_»,t;)—d,(t;_5,t,_
d3(l‘i73, tl) — 2( i—2 1) 2( i—32 % l) (1029)

Li—1 3

and so on. In general, the jth order divided difference can be formulated in terms of the
divided differences of order j — 1, in an order-update equation given as

di (i t)—d; ()

dy(t, 1) = (10.30)

Note that a, = d,(ty, t,), a, = d,(ty, t,) and a; = d;(t,, t;), and in general the Newton
polynomial coefficients are obtained from the divided differences using the relation

a;=d;(ty, t,) (10.31)

A main advantage of the Newton polynomial is its computational efficiency, in that a
polynomial of order N — 1 can be easily extended to a higher-order polynomial of order
N. This is a useful property in the selection of the best polynomial order for a given set
of data.
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10.2.3 HERMITE POLYNOMIAL INTERPOLATION

Hermite polynomials are formulated to fit not only to the signal samples, but also to the
derivatives of the signal as well. Suppose the data consists of N + 1 samples and assume that
all the derivatives up to the Mth order derivative are available. Let the data set, i.e. the signal
samples and the derivatives, be denoted as [x(t,), X'(t;), x"(t,), ..., x*™(¢,),i=0,...,N].
There are altogether K = (N + 1)(M + 1) data points and a polynomial of order K — 1 can
be fitted to the data as

p(t) =ag+ayt+a,r* +ast’ + -+ ag 15! (10.32)

To obtain the polynomial coefficients, we substitute the given samples in the polynomial
and its M derivatives as

p(t;) = x(t)
p'(t) =x(t;)

pl() =x"(1) (10.33)

pPM(t)=xM(), i=0,1,...,N

In all, there are K = (M + 1)(N + 1) equations in Equation (10.33), and these can be used to
calculate the coefficients of the polynomial Equation (10.32). In theory, the constraint that
the polynomial must also fit the derivatives should result in a better interpolating polynomial
that passes through the sampled points and is also consistent with the known underlying
dynamics (i.e. the derivatives) of the curve. However, even for moderate values of N and
M, Equation (10.33) becomes too large for most practical purposes.

10.2.4 CUBIC SPLINE INTERPOLATION

A polynomial interpolator of order N is constrained to pass through N + 1 known samples,
and can have N — 1 maxima and minima. In general, the interpolation error increases rapidly
with the increasing polynomial order, as the interpolating curve has to wiggle through the
N +1 samples. When a large number of samples are to be fitted with a smooth curve, it
may be better to divide the signal into a number of smaller intervals, and to fit a low-
order interpolating polynomial to each small interval. Care must be taken to ensure that
the polynomial curves are continuous at the endpoints of each interval. In cubic spline
interpolation, a cubic polynomial is fitted to each interval between two samples. A cubic
polynomial has the form

p(1) = ag+ a1+ a,r* + a;° (10.34)

A cubic polynomial has four coefficients, and needs four conditions for the determination
of a unique set of coefficients. For each interval, two conditions are set by the samples
at the endpoints of the interval. Two further conditions are met by the constraints that the
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first derivatives of the polynomial should be continuous across each of the two endpoints.
Consider an interval ¢, <t <t,, of length T, = t,,; —t;, as shown in Figure 10.7. Using a
local coordinate 7 =t — t,, the cubic polynomial becomes

p(1)=ay+a,7+a, 7 +ayT (10.35)
At 7 =0, we obtain the first coefficient a, as
ay = p(7=0) =x(1,) (10.36)
The second derivative of p(7) is given by
p" (1) =2a,+6a,7 (10.37)
Evaluation of the second derivative at 7 =0 (i.e. r =t,) gives the coefficient a,

pi(r=0) _p}

a = = —

? 2 2

Similarly, evaluating the second derivative at the point 7,,, (i.e. 7=T,) yields the fourth
coefficient,

(10.38)

Pivi — P;
= "t 10.39
as 6T, ( )
Now to obtain the coefficient a,, we evaluate p(7) at 7 =T}
p(1=T)=ay+a,T,+a, T} +a;T; = x(1;,) (10.40)

and substitute a,, a, and a; from Equations (10.36), (10.38) and (10.39) in (10.40) to obtain
a0 = x(ty) —x(5) Pl +2p!

T, 10.41
1 T, 6 i ( )
The cubic polynomial can now be written as
x(tiy) —x(1) Pl +2p7 Pl 5 PP
= x(t, - T, - —_ 10.42
p(®) x(,>+[ 2 o h|TH TR 04)

x(t)

1
1
1
1
1
1
1
1
|
1
1
:
t

liv1 t

Figure 10.7 Illustration of cubic spline interpolation.
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To determine the coefficients of the polynomial in Equation (10.42), we need the second
derivatives p; and p ,. These are obtained from the constraint that the first derivatives of
the curves at the endpoints of each interval must be continuous. From Equation (10.42), the
first derivatives of p(7) evaluated at the endpoints #; and ¢, | are

T, 1
pi=p(r=0=-=2 [Pl +2p]]+ T [x(ti1) = x(1)] (10.43)
T, 1
P =P (1 =T)) = 2 [2p} + ]+ 7 [x(t:) = x(1)] (10.44)

1

Similarly, for the preceding interval, t,_, < ¢ < t,, the first derivative of the cubic spline
curve evaluated at 7 = ¢, is given by

/ / T‘I* /! 1/ l
pPi=r (T=t)= TI [2175 +p,«,1] + T_ [x(2;) —x(t,_p)] (10.45)
i—1

For continuity of the first derivative at ¢,, p! at the end of the interval (¢,_,, ;) must be equal to

the p; at the start of the interval (¢;, #,, ;). Equating the right-hand sides of Equations (10.43)
and (10.45) and repeating this exercise yields

/7 /7 1/ 1 1 l l
T p +2(T,_,+T)p; +T,p;,, =6 I:Hx(til) - (H + F) x(t;) + Fx(ti+1):|

1 1

i=1,2,....,N—1 (10.46)

In Equation (10.46), there are N — 1 equations in N + 1 unknowns, p. For a unique solution
we need to specify the second derivatives at the points #, and t,. This can be done in two
ways: (a) setting the second derivatives at the endpoints #, and 7, (i.e. py and p}), to zero;
or (b) extrapolating the derivatives from the inside data.

10.3 MODEL-BASED INTERPOLATION

The statistical signal processing approach to interpolation of a sequence of lost samples is
based on the utilisation of a predictive and/or a probabilistic model of the signal. In this
section, we study the maximum a posteriori interpolation, an autoregressive model-based
interpolation, a frequency—time interpolation method and interpolation through searching a
signal record for the best replacement.

Figures 10.8 and 10.9 illustrate the problem of interpolation of a sequence of lost samples.
It is assumed that we have a signal record of N samples, and that within this record a segment
of M samples, starting at time k, x,, = {x(k), x(k+1), ..., x(k+ M — 1)}, is missing. The
objective is to make an optimal estimate of the missing segment xy;, using the remaining
N —k samples x,, and a model of the signal process. An N-sample signal vector x, composed
of M unknown samples and N — M known samples, can be written as

xKnl xKnl 0
x=|xy, |=] 0 |+ |xu | =Kxg,+Uxy (10.47)
xan xan 0
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W A

o amples Signal estimator
Input signal y (interpolator) Restored signal x
4
Parameter
estimator

Figure 10.8 Illustration of a model-based iterative signal interpolation system.

- xK“l — - Xy —————— xKn2 —_—

7.7
Time
M missing

-+

samples

P samples before P samples after

Figure 10.9 A signal with M missing samples and N — M known samples. On each side of the
missing segment, P samples are used to interpolate the segment.

where the vector Xy, = [, Xk ]’ is composed of the known samples, and the vector xy;, is
composed of the unknown samples, as illustrated in Figure 10.8. The matrices K and U in
Equation (10.47) are rearrangement matrices that assemble the vector x from x, and xy.

10.3.1 MAXIMUM A POSTERIORI INTERPOLATION

The posterior pdf of an unknown signal segment, x,, given a number of neighbouring
samples, xy,, can be expressed using Bayes’s rule as

Jx (egns Xu)

Jx*kn)
_ Jfx(x =Kxyg, + Uxyy)
B Tx (k)

In Equation (10.48), for a given sequence of samples xy,, fy(Xx,) is a constant. Therefore
the estimate that maximises the posterior pdf, i.e. the MAP estimate, is given by

fx Geyy ko) =
(10.48)

FUAP = arg max fy (Kxy, + Uxy,) (10.49)

Yuk



282 INTERPOLATION

Example 10.2: MAP Interpolation of a Gaussian Signal

Assume that an observation signal x = Kxy, 4+ Uxy;,, from a zero-mean Gaussian process, is
composed of a sequence of M missing samples x;,, and N — M known neighbouring samples
as in Equation (10.47). The pdf of the signal x is given by

fx(x) = —leE;,}x> (10.50)

1
@mV2 Sy exp( 2

where 2, is the covariance matrix of the Gaussian vector process x. Substitution of
Equation (10.50) in Equation (10.48) yields the conditional pdf of the unknown signal x;,
given a number of samples xy,:

1 1
 fxg) QmN2|s, |2

FxCeyy X )
(10.51)

1
X exp I:_z (K xg, +U xUk)T E;xl (K xg, +U xuk)i|

The MAP signal estimate, obtained by setting the derivative of the log-likelihood function
In fy(x|xg,) of Equation (10.51) with respect to xy; to zero, is given by

xo=—(UTSU) T UTS K xi, (10.52)

An example of MAP interpolation is shown in Figure 10.10.

10.3.2 LEAST SQUARE ERROR AUTOREGRESSIVE INTERPOLATION

In this section, we describe interpolation based on an autoregressive model of the signal
process. The term ‘autoregressive model’ is an alternative terminology for the linear
predictive models considered in Chapter 8. In this section, the terms ‘linear predictive model’
and ‘autoregressive model’ are used interchangeably. The AR interpolation algorithm is
a two-stage process: in the first stage, the AR model coefficients are estimated from the
incomplete signal, and in the second stage the estimates of the model coefficients are used

x(1)

AN N
VAR A

Figure 10.10 Illustration of MAP interpolation of a segment of 20 samples.
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to interpolate the missing samples. For high-quality interpolation, the estimation algorithm
should utilise all the correlation structures of the signal process, including periodic or pitch
period structures. In Section 10.3.4, the AR interpolation method is extended to include
pitch—period correlations.

10.3.3 INTERPOLATION BASED ON A SHORT-TERM PREDICTION
MODEL

An autoregressive, or linear predictive, signal x(m) is described as

x(m) =" ayx(m—k)+ e(m) (10.53)

k=1

where x(m) is the AR signal, a, are the model coefficients and e(m) is a zero mean excitation
signal. The excitation may be a random signal, a quasiperiodic impulse train, or a mixture of
the two. The AR coefficients, a,, model the correlation structure or equivalently the spectral
patterns of the signal.

Assume that we have a signal record of N samples and that within this record a segment
of M samples, starting from the sample k, xy, = {x(k), ..., x(k+ M — 1)}, is missing. The
objective is to estimate the missing samples xy;,, using the remaining N — k samples and
an AR model of the signal. Figure 10.8 illustrates the interpolation problem. For this signal
record of N samples, the AR Equation (10.53) can be expanded to form the following matrix
equation:

e(P) x(P) x(P—1) x(P-2) .. x(0)
e(P+1) x(P+1) x(P) x(P—1) x(1)
e(k;l) x(k.—l) x(k;Z) x(k.—3) x(k—.P—l)
e(k) xy (k) x(k—1) x(k—2) ce. x(k—P)
e(k+1) xu(k+1) xui (K) x(k—=1) ... x(k—P+1) 4
e(k+2) X (k+2) X (k1) Xy (K) . x(k—P+2) ZZ
= . - . . . 3
e(k+MV+P—2) x(k+M.+P—2) x(k+M‘+P—3) x(k+MV+P—4) xUk(k-l-'M—Z)
e(k+M+P—1) x(k+M+P—-1) x(k+M+P—=2) x(k+M+P=3) ... xyu(k+M—1) @
e(k+M+P) x(k+M+P) x(k+M+P—-1) x(k+M+P=2) ... x(k+M)
e(k+M+P+1) x(k+M+P+1) x(k+M+P) x(k+M+P—1) ... x(k+M+1)
e(N=1) X(N=1) *(N—2) *(N=3) . x(N_P—1)
(10.54)

where the subscript Uk denotes the unknown samples. Equation (10.54) can be rewritten in
compact vector notation as

e(xy.,a)=x—Xa (10.55)
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where the error vector e(xy,, a) is expressed as a function of the unknown samples and the
unknown model coefficient vector. In this section, the optimality criterion for the estimation
of the model coefficient vector, a, and the missing samples, xy,, is the minimum mean
square error given by the inner vector product

e'e(xy,a) =x"x+a"X"Xa—2a"X"x (10.56)

The squared error function in Equation (10.56) involves nonlinear unknown terms of fourth
order, a’X"Xa, and cubic order, a’XTx. The least square error formulation, obtained by
differentiating eTe(xy,, a), with respect to the vectors a or xy,, results in a set of nonlinear
equations of cubic order whose solution is nontrivial. A suboptimal, but practical and
mathematically tractable, approach is to solve for the missing samples and the unknown
model coefficients in two separate stages. This is an instance of the general estimate—
maximise algorithm, and is similar to the linear-predictive model-based restoration considered
in Section 6.7. In the first stage of the solution, Equation (10.54) is linearised by either
assuming that the missing samples have zero values or discarding the set of equations in
Equation (10.54), between the two dashed lines, that involve the unknown signal samples.
The linearised equations are used to solve for the AR model coefficient vector a by forming
the equation

= (X X)) (Xitin) (10.57)

where the vector is an estimate of the model coefficients, obtained from the available signal
samples.

The second stage of the solution involves the estimation of the unknown signal samples,
xy,- For an AR model of order P, and an unknown signal segment of length M, there
are 2M + P nonlinear equations in Equation (10.54) that involve the unknown samples;
these are

e(k) xy (k) x(k—1) x(k—2) S x(k—p)
e(k+1) xu(k+1) xu (k) x(k—1) oo x(k—p+1)
e(k+2) xy (k+2) xyu(k+1) xy (k) . x(k—p+2)

e(k+MA+P72) x(k+M.+P72) x(k+M.+P73) xUk(k+A/.I+P74) xUk(k+4M72)
e(k+M+P—1) x(k+M+P—-1) x(k+M+P-2) xuk+M+P-3) ... xyu(k+M—1)
a,
a
a;
| (10.58)
ap_)
ap

The estimate of the predictor coefficient vector, obtained from the first stage of the solution,
is substituted in Equation (10.58), so that the only remaining unknowns in Equation (10.58)
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are the missing signal samples. Equation (10.58) may be partitioned and rearranged in vector
notation in the following form:

e(k) 1 0 0 0
e(k+1) —a, 1 0 0 0
e(k+2) —-a, —a 1 0 0
e(k+3) —a; —a, —a, 1 0 o (k)
e(k+4) —a, —a; —a, —a 0 Xy (k4 1)
: : : : : .o xy (k+2)
e(k+P—1) = —ap —ap_, —ap_5 —Ap_3... 0 *up(k+3)
e(k+P) 0 —ap —ap_y—ap_,... O :
e(k+P+1) 0 0 —ap —ap_,... O o (k+M—1)
e(k+m+P—2) 0 0 0 0 ...—ap,
e(k+m+P—1) 0 0 0 0 ... —ap
—ap —ap_, —ap_, @ 0... 0 0 0 0 x(k—P)
0 —ap — —a, 0 0o 0 0 0 x(k—P+1)
ap —ap_, a, 0.. k—Pi2)
0 0 —a —a;0... 0 0 0 0 x(
0 0 0 —a,0... 0 0 0 ...0 x(ko_l)
+ 0 0 0 0 0.. 0 0 0 .. 0
0 0 0 0 0.. 1 0 0 .. 0 :
0 0 0 0ol e o-a 1 of| xem
0 0 0 0 0" T T4 o 0 x(k+M+1)
cee —ay —a, —a; ... ©(k+M+2)
P S ) :
0 0 0 ... 0 O0... —ap_; —ap_, —ap_5...1 x(k+M+P—1)

(10.59)

In Equation (10.59), the unknown and known samples are rearranged and grouped into two
separate vectors. In a compact vector—matrix notation, Equation (10.58) can be written in
the form

e =A xy +Ax, (10.60)

where e is the error vector, A, is the first coefficient matrix, x, is the unknown signal
vector being estimated, A, is the second coefficient matrix and the vector xy, consists of
the known samples in the signal matrix and vectors of Equation (10.58). The total squared
error is given by

e'e = (Axy +Ax,)" (Axy +Ax,) (10.61)

The least square AR (LSAR) interpolation is obtained by minimisation of the squared error
function with respect to the unknown signal samples xy;:

deTe

Xy

=2ATA xy, +24TA,x, =0 (10.62)
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From Equation (10.62) we have

. -1

M =—(41A)) (A1A,)xg, (10.63)
The solution in Equation (10.62) gives the Xi}*® vector, which is the least square error
estimate of the unknown data vector.

10.3.4 INTERPOLATION BASED ON LONG- AND SHORT-TERM
CORRELATIONS

For the best results, a model-based interpolation algorithm should utilise all the correlation
structures of the signal process, including any periodic structures. For example, the main
correlation structures in a voiced speech signal are the short-term correlation due to the
resonance of the vocal tract and the long-term correlation due to the quasiperiodic excitation
pulses of the glottal cords. For voiced speech, interpolation based on the short-term correlation
does not perform well if the missing samples coincide with an underlying quasiperiodic
excitation pulse.

In this section, the AR interpolation is extended to include both long- and short-term
correlations. For most audio signals, the short-term correlation of each sample with the
immediately preceding samples decays exponentially with time, and can usually be modelled
with an AR model of order 10-20. In order to include the pitch periodicities in the AR
model of Equation (10.53), the model order must be greater than the pitch period. For speech
signals, the pitch period is normally in the range 4-20 ms, equivalent to 40-200 samples at
a sampling rate of 10kHz. Implementation of an AR model of this order is not practical
owing to stability problems and computational complexity.

A more practical AR model that includes the effects of the long-term correlations is
illustrated in Figure 10.11. This modified AR model may be expressed by the following
equation:

P Q
x(m) =Y ax(m—k)+ > px(m—T —k)+e(m) (10.64)
k=1 k=—0

The AR model of Equation (10.64) is composed of a short-term predictor Za,x(m — k)
that models the contribution of the P immediate past samples, and a long-term predictor
3. px(m—T — k) that models the contribution of 2Q + 1 samples a pitch period away. The
parameter T is the pitch period; it can be estimated from the autocorrelation function of x(m)
as the time difference between the peak of the autocorrelation, which is at the correlation
lag zero, and the second largest peak, which should happen a pitch period away from the
lag zero.

The AR model of Equation (10.64) is specified by the parameter vector ¢ =
[a,....ap,p_p,....pp] and the pitch period 7. Note that in Figure 10.11 the sample
marked ‘?” coincides with the onset of an excitation pulse. This sample is not very predictable
from the P past samples, because they do not include a pulse event. The sample is more
predictable from the 2Q 41 samples a pitch period away, since they include the effects of
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. \/\/’“v?

20 + 1 samples a P past samples
pitch period away

Figure 10.11 A quasiperiodic waveform. The sample marked ‘?” is predicted using P immediate past
samples and 2Q + 1 samples a pitch period away.

a similar excitation pulse. The predictor coefficients are estimated (see Chapter 7) using the
so-called normal equations:

c=R_]r (10.65)

xXx ' XxXx

where R, is the autocorrelation matrix of signal x and r,, is the correlation vector. In
expanded form, Equation (10.65) can be written as

a, r(0) r(1) r(P—1) nT+Q0-1) T+ Q) .. (T—-0-1)
a, r(1) r(0) r(P—2) (T+Q0-2) r(T+Q0-1) ... (T+0Q0-2)
as r(2) r(1) r(P-13) (T+0-3) n(T+Q0-2) ... r(T+Q0-3)
ab,, = r(P.—l) r(P.—Z) r(O) r(T+.Q—P)r(T+Q'—P+l)..:r(T+Q—P)
P_o r+0-1)r(T+Q-2)... (T+Q—-P) r(0) r(1) r(2Q)
P_pii r(T+Q) HT+Q—1)... (T+Q—P+1) r(1) r(0) oo r20-1)
pJ.rQ r(Tthfl)r(Tf.Q72),.. r(Tf.QfP) r(2Q) r(2Q.71) r(O)
(1)
"(2)
r(3)
x| e (10.66)
T+ Q)
(T+0-1)
HT-0)

The modified AR model can be used for interpolation in the same way as the conventional
AR model described in the previous section. Again, it is assumed that, within a data window
of N speech samples, a segment of M samples commencing from the sample point &, x;, =
{x(k), x(k+1),...,x(k+M — 1)} is missing. Figure 10.12 illustrates the interpolation
problem. The missing samples are estimated using P samples in the immediate vicinity and
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*Kn, Xy —* XKn, ——>
2.2
M missing
- -~ samples -~ -
20+1 P samples P samples 20+1
samples before after samples

Figure 10.12 A signal with M missing samples. P immediate samples each side of the gap and
20+ 1 samples a pitch period away are used for interpolation.

20+ 1 samples a pitch period away on each side of the missing signal. For the signal record
of N samples, the modified AR equation (10.64) can be written in matrix form as

e(T+0)
e(T+0+1)

e(k—1)
e(k)
e(k+1)
e(k+2)

e(k+M+P—2)

e(k+M+P—1)
e(k+ M+ P)

e(k+M+P+1)

e(NA— 1)

x(T+0-1)
x(T+0Q)

x(k;2)
x(k—1)

xu (k)
xu(k+1)

x(k+M+P)

x(N; 2)

x(k+M+P-3) ...
x(k+M+P-2) ...
x(k+M+P—1) .

x(T+0Q)
X(T+0+1)

x(k _ 1)
xu (k)
Xy (k+1)
xu(k+2)

x(k+M+P—2)

x(k+M+P—1)
x(k+M+P)

x(k+M+P+1)

x(N.— 1)

x(T+Q-P)

x(T+Q—-P+1)

x(k—P—1)
x(k—P)

x(k—P+1)

x(k—P+2)

xu(k+M—2)

xu(k+M—1)
x(k+ M)

x(k+M+1)

x(N ,.p, 1)

x(20)
x20+1)

x(k—T+0-1)
x(k—T+0Q)

x(k—T+0Q+1)

Ak—T+0+2)

x(k+M+P-T+0Q-2) ...
x(k+M+P-T+0-1) ...

x(k+M+P—T+Q)

x(k+M+P-T+0Q+1) ...

x(NfT.+Q71)

x(0)
x(1)

x(k=T—0—1)
(k—T-0)

x(k—=T—-0+1)

x(k—T—0+2)

x(k+M+P—-T—Q—2)

x(k+M+P-T—-0Q—1)
x(k+M+P—T—Q)

x(k+M+P—-T—Q+1)

x(NfT;Qfl)

a;
a
as

ap
P-o

(10.67)
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where the subscript Uk denotes the unknown samples. In compact matrix notation, this set
of equation can be written in the form

e(xy,c) =x+Xc (10.68)
As in Section 10.3.2, the interpolation problem is solved in two stages:

(1) in the first stage, the known samples on both sides of the missing signal are used to
estimate the AR coefficient vector, c;

(2) in the second stage, the AR coefficient estimates are substituted in Equation (10.68) so
that the only unknowns are the data samples.

The solution follows the same steps as those described in Section 10.3.2.

10.3.5 LSAR INTERPOLATION ERROR

In this section, we discuss the effects of the signal characteristics, the model parameters and
the number of unknown samples on the interpolation error. The interpolation error v(m),
defined as the difference between the original sample x(m) and the interpolated sample
x(m), is given by

v(m) = x(m) — x(m) (10.69)

A common measure of signal distortion is the mean square error distance, defined as

D(c, M) = %‘Z Ail[x(k—l-m) —x(k+m)]? (10.70)

m=0

where k is the beginning of an M-samples-long segment of missing signal, and Z[.] is the
expectation operator. In Equation (10.70), the average distortion D is expressed as a function
of the number of the unknown samples M, and also the model coefficient vector c. In general,
the quality of interpolation depends on the following factors:

(1) The signal correlation structure — for deterministic signals such as sine waves, the
theoretical interpolation error is zero. However information-bearing signals have a
degree of randomness that makes perfect interpolation with zero error an impossible
objective.

(2) The length of the missing segment — the amount of information lost, and hence the
interpolation error, increases with the number of missing samples. Within a sequence of
missing samples the error is usually largest for the samples in the middle of the gap.
The interpolation Equation (10.63) becomes increasingly ill-conditioned as the length of
the missing samples increases.

(3) The nature of the excitation underlying the missing samples — the LSAR interpolation
cannot account for any random excitation underlying the missing samples. In particular,
the interpolation quality suffers when the missing samples coincide with the onset of
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an excitation pulse. In general, the least square error criterion causes the interpolator to
underestimate the energy of the underlying excitation signal. The inclusion of long-term
prediction and the use of quasiperiodic structure of signals improves the ability of the
interpolator to restore the missing samples.

(4) AR model order and the method used for estimation of the AR coefficients — the
interpolation error depends on the AR model order. Usually a model order of two to
three times the length of missing data sequence achieves good result.

The interpolation error also depends on how well the AR parameters can be estimated
from the incomplete data. In Equation (10.54), in the first stage of the solution, where
the AR coefficients are estimated, two different approaches may be employed to linearise
the system of equations. In the first approach, all equations between the dashed lines that
involve nonlinear terms are discarded. This approach has the advantage that no assumption
is made about the missing samples. In fact, from a signal-ensemble point of view, the effect
of discarding some equations is equivalent to that of having a smaller signal record. In the
second method, starting from an initial estimate of the unknown vector (such as x, = 0),
Equation (10.54) is solved to obtain the AR parameters. The AR coefficients are then used
in the second stage of the algorithm to estimate the unknown samples. These estimates may
be improved in further iterations of the algorithm. The algorithm usually converges after one
or two iterations.

Figures 10.13 and 10.14 show the results of application of the least square error AR
interpolation method to speech signals. The interpolated speech segments were chosen to
coincide with the onset of an excitation pulse. In these experimental cases the original
signals are available for comparison. Each signal was interpolated by the AR model of
Equation (10.53) and also by the extended AR model of Equation (10.64). The length
of the conventional linear predictor model was set to 20. The modified linear AR model
of Equation (10.64) has a prediction order of (20,7); that is, the short-term predictor has
20 coefficients and the long-term predictor has seven coefficients. The figures clearly
demonstrate that the modified AR model that includes the long-term as well as the short-term
correlation structures outperforms the conventional AR model.

10.3.6 INTERPOLATION IN FREQUENCY-TIME DOMAIN

Time-domain, AR model-based interpolation methods are effective for the interpolation of
a relatively short length of samples (say less than 100 samples at a 20 kHz sampling rate),
but suffer severe performance degradations when used for interpolation of large sequence
of samples. This is partly due to the numerical problems associated with the inversion of
a large matrix, involved in the time-domain interpolation of a large number of samples,
Equation (10.58).

Spectral-time representation provides a useful form for the interpolation of a large gap
of missing samples. For example, through discrete Fourier transformation and spectral-time
representation of a signal, the problem of interpolation of a gap of N samples in the time
domain can be converted into the problem of interpolation of a gap of one sample, along the
time, in each of N discrete frequency bins, as explained next.
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Figure 10.13 (a) A section of speech showing interpolation of 60 samples starting from the sample
point 100. (b) Interpolation using short- and long-term correlations. Interpolated samples are shown
by the dotted line.
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Figure 10.14 (a) A section of speech showing interpolation of 50 samples starting from the sample
point 175. (b) Interpolation using short- and long-term correlations. Interpolated samples are shown
by the dotted line.
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10.3.6.1 Spectral-Time Representation with STFT

A relatively simple and practical method for spectral-time representation of a signal is the
short-time Fourier transform (STFT) method. To construct a two-dimensional STFT from
a one-dimensional function of time, x(m), the input signal is segmented into overlapping
blocks of N samples, as illustrated in Figure 10.15. Each block is windowed, prior to discrete
Fourier transformation, to reduce the spectral leakage due to the effects of discontinuities
at the edges of the block. The frequency spectrum of the mth signal block is given by the
discrete Fourier transform as
N-1
X(k,m) = > w(i)x[m(N — D) +i]e /®"N* f=0,...,N—1 (10.71)

i=0

where X(k, m) is a spectral-time representation with discrete frame index m and discrete
frequency index k, N is the number of samples in each block and D is the block overlap.
In STFT, it is assumed that the signal frequency composition is time-invariant within the
duration of each block, but it may vary across the blocks. In general, the kth spectral
component of a signal has a time-varying character, i.e. it is ‘born’, evolves for some
time, disappears, and then reappears with a different intensity and a different characteristics.
Figure 10.16 illustrates a spectral-time signal with a missing block of samples. The aim of

Missing
- —
~—Block length— samples

Block
- -
overlap

Figure 10.15 TIllustration of segmentation of a signal (with a gap of missing samples) for spectral-time
representation.

IV.invavany.nyaw Supsn g
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& |/ &
S/ VAV AVAY |

Time (blocks)

Figure 10.16 Spectral-time representation of a signal with a gap of missing samples.
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interpolation is to fill in the signal gap such that, at the beginning and at the end of the
gap, the continuity of both the magnitude and the phase of each frequency component of the
signal is maintained. For most time-varying signals (such as speech), a low-order polynomial
interpolator of the magnitude and the phase of the DFT components of the signal, making
use of the few adjacent blocks on either side of the gap, would produce satisfactory results.

10.3.7 INTERPOLATION USING ADAPTIVE CODEBOOKS

In the LSAR interpolation method, described in Section 10.3.2, the signals are modelled
as the output of an AR model excited by a random input. Given enough samples, the AR
coefficients can be estimated with reasonable accuracy. However, the instantaneous values
of the random excitation during the periods when the signal is missing cannot be recovered.
This leads to a consistent underestimation of the amplitude and the energy of the interpolated
samples. One solution to this problem is to use a zero-input signal model. Zero-input models
are feedback oscillator systems that produce an output signal without requiring an input as
illustrated in Figure 10.17.

The general form of the equation describing a digital nonlinear oscillator can be expressed
as

x(m)=gi[x(m—1),x(m—2),...,x(m—P)] (10.72)

The mapping function g,(-) may be a parametric or a nonparametric mapping. The model
in Equation (10.72) can be considered as a nonlinear predictor, and the subscript f denotes
forward prediction based on the past samples.

A parametric model of a nonlinear oscillator can be formulated using a Volterra
filter model. However, in this section, we consider a nonparametric method for its ease
of formulation and stable characteristics. Kubin and Kleijin (1994) have described a
nonparametric oscillator based on a codebook model of the signal process.

In this method, each entry in the code book has P+ 1 samples where the (P + 1)th sample
is intended as an output. Given P input samples, x = [x(m —1), . .., x(m — P)], the codebook
output is the (P + 1)th sample of the vector in the codebook whose first P samples have
a minimum distance from the input signal x. For a signal record of length N samples, a
codebook of size N — P vectors can be constructed by dividing the signal into overlapping
segments of P+ 1 samples with the successive segments having an overlap of P samples.
Similarly a backward oscillator can be expressed as

x,(m) = g, [x(m+1), x(m+2), -, x(m+ P)] (10.73)

| 8()

[ x(m)=glx(m-1), ..., x(m—P)]

G

Figure 10.17 Configuration of a digital oscillator.
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As in the case of a forward oscillator, the backward oscillator can be designed using a
nonparametric method based on an adaptive codebook of the signal process. In this case
each entry in the codebook has P+ 1 samples where the first sample is intended as an output
sample. Given P input samples, x = [x(m), ..., x(m+ P —1)], the codebook output is the
first sample of the codebook vector whose next P samples have a minimum distance from
the input signal x.

For interpolation of M missing samples, the outputs of the forward and backward nonlinear
oscillators may be combined as

R(k+m) = (MA;—I__I’"> %f(k—l-m)—i-(%)?cb(k—i—m) (10.74)

where it is assumed that the missing samples start at k.

10.3.8 INTERPOLATION THROUGH SIGNAL SUBSTITUTION

Audio signals often have a time-varying but quasiperiodic repetitive structure. Therefore
most acoustic events in a signal record reoccur with some variations. This observation forms
the basis for interpolation through pattern matching, where a missing segment of a signal is
substituted by the best match from a signal record. Consider a relatively long signal record
of N samples, with a gap of M missing samples at its centre. A section of the signal with the
gap in the middle can be used to search for the best-match segment in the record. The missing
samples are then substituted by the corresponding section of the best-match signal. This
interpolation method is particularly useful when the length of the missing signal segment is
large. For a given class of signals, we may be able to construct a library of patterns for use
in waveform substitution (Bogner and Li, 1989).

10.4 SUMMARY

Interpolators, in their various forms, are used in most signal processing applications. The
obvious example is the estimation of a sequence of missing samples. However, the use of
an interpolator covers a much wider range of applications, from low-bit-rate speech coding
to pattern recognition and decision-making systems. We started this chapter with a study of
the ideal interpolation of a band-limited signal, and its applications in digital-to-analogue
conversion and in multirate signal processing. In this chapter, various interpolation methods
were categorised and studied in two different sections: one on polynomial interpolation,
which is the more traditional numerical computing approach, and the other on statistical
interpolation, which is the digital signal processing approach.

The general form of the polynomial interpolator was formulated and its special forms,
Lagrange, Newton, Hermite and cubic spline interpolators, were considered. The polynomial
methods are not equipped to make optimal use of the predictive and statistical structures
of the signal, and are impractical for interpolation of a relatively large number of samples.
A number of useful statistical interpolators were studied. These include maximum a
posteriori interpolation, least square error AR interpolation, frequency—time interpolation,
and an adaptive codebook interpolator. Model-based interpolation method based on an
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autoregressive model is satisfactory for most audio applications so long as the length of the
missing samples is not too large. For interpolation of a relatively large number of samples the
time—frequency interpolation method and the adaptive code book method are more suitable.
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Spectral amplitude estimation forms the basis of most signal restoration systems, such as
for speech de-noising, where the phase distortion can be ignored. The simplest form of
spectral amplitude estimation is spectral subtraction. This is a method for restoration of the
power spectrum or the magnitude spectrum of a signal observed in additive noise, through
subtraction of an estimate of the average noise spectrum from the noisy signal spectrum.
The noise spectrum is usually estimated, and updated, from the periods when the signal is
absent. For restoration of time-domain signals, an estimate of the instantaneous magnitude
spectrum is combined with the phase of the noisy signal, and then transformed via an
inverse discrete Fourier transform to the time domain. In terms of computational complexity,
spectral subtraction is inexpensive. However, owing to random variations of noise, spectral
subtraction can result in negative estimates of the short-time magnitude or power spectrum.
The magnitude and power spectrum are non-negative variables, and any negative estimates
of these variables should be mapped into non-negative values. This nonlinear rectification
process distorts the distribution of the restored signal.

Bayesian spectral amplitude estimation methods offer substantial performance
improvements on spectral subtraction by utilising the probability density functions of the
signal and noise process. In particular, we consider the Bayesian spectral amplitude estimation
using a minimum mean squared error cost function, as this method has received much
attention in the quest for development of improved signal restoration algorithms.

Advanced Digital Signal Processing and Noise Reduction Third Edition Saeed V. Vaseghi
© 2006 John Wiley & Sons, Ltd



298 SPECTRAL AMPLITUDE ESTIMATION

11.1 INTRODUCTION

In multiple input signal restoration applications where, in addition to the noisy signal, the
noise is accessible on a separate channel, it may be possible to retrieve the signal by
subtracting an estimate of the noise from the noisy signal. For example, the adaptive noise
canceller of Section 1.3.1 takes as the inputs the noise and the noisy signal, and as the
outputs an estimate of the clean signal. However, in many applications, such as at the
receiver of a noisy mobile phone, the only signal that is available is the noisy signal. In
these single input applications, it is not possible to cancel out the random noise, but it
may be possible to reduce the average effects of the noise on the spectral amplitude of the
signal. The effect of additive noise on the spectral amplitude of a signal is an increase in
the mean and the variance of the spectrum of the signal, as illustrated in Figure 11.1. The
increase in the variance of the signal spectrum results from the random fluctuations of the
noise.

Spectral amplitude estimation methods use a model of the distributions of the signal and
the noise to provide an estimate of the amplitude spectrum of the clean signal. The effect
of distortions of the phase of the signal spectrum is ignored. In its simplest form a spectral
amplitude estimation method subtracts an estimate of the noise from the noisy signal. In
more advanced forms, a Bayesian inference framework employs probability distributions of
signal and noise to obtain more optimal results.
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Figure 11.1 Illustrations of the effect of noise on a signal in the time and the frequency domains:
(a) clean signal; (b) noisy signal; (c) spectrum of the clean signal; and (d) spectrum of the noisy signal.
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11.1.1 SPECTRAL REPRESENTATION OF NOISY SIGNALS

Assuming that the noisy signal, y(m), is modelled as the sum of the clean signal, x(m), and
the noise, n(m), we have

y(m) = x(m) +n(m) (11.1)

where the integer variable m is the discrete-time index. It is generally assumed that the signal
and noise are uncorrelated. This is a reasonable assumption for most practical cases where
the signal and noise are generated by independent sources.

To transform a signal into the frequency domain, the signal samples are divided into
overlapping frames with a frame size of N samples. The frame size is limited by the maximum
allowable delay of the communication system and by the assumption in the Fourier transform
that the signal is stationary. Usually, for audio signals a frame length of about 25 ms is
chosen, although in some systems the frame length is varied with the speed of changes in the
signal characteristics; shorter length frames are chosen for fast changing signals and longer
length frames for more steady signals.

In the frequency domain, the noisy signal equation, Equation (11.1), can be represented as

Y(k) = X(k) + N(k) k=0,...N—1 (11.2)

where the complex variables X(k), N(k) and Y(k) are the short time discrete Fourier
transforms of speech, noise and noisy speech, respectively, and the integer index k represents
the discrete frequency variable; it corresponds to an actual frequency of 2kw/N rad/s or
kF,/N Hz where F; is the sampling frequency in Hz.

Equation (11.2), which is in complex Cartesian form, can be rewritten in the complex
polar form in terms of the magnitude and the phase of the signal and noise at a discrete
frequency k as

Ye/' = X, e/ + N/ k=0,...N—1 (11.3)

where Y, = |Y(k)| and 6, = tan~! {Im [Y(k)] /Re[Y(k)]} are the magnitude and phase of
the frequency spectrum, respectively. Note that the Fourier transform models the correlation
of speech samples with sinusoidal basis functions. The sinusoidal functions can then be
processed individually or in groups of frequencies, taking into account the psychoacoustics
of hearing.

11.1.2 VECTOR REPRESENTATION OF THE SPECTRUM OF NOISY
SIGNALS

The spectrum of a noisy signal, Y(k), is the vector sum of the spectra of the clean signal,
X(k), and noise, N(k). The squared spectral amplitude of the noisy signal is given by

Y2 = X; +N;+2X,N,cos(8) k=0,...N—1 (11.4)

where 6 is the angle between the complex spectral vectors of speech, X(k), and noise, N(k).
Unless the cross product term, 2X, N, cos(0), in equation (11.3) is modelled in the spectral
amplitude estimation process, it contributes to an estimation error.



300 SPECTRAL AMPLITUDE ESTIMATION
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Figure 11.2 (a) Complex spectral vectors of signal, noise and the resultant noisy signal; (b) assuming
signal and noise spectral vectors are in phase; (c) assuming signal and noise spectral vectors have a
phase difference of /2.

Figure 11.2(a) shows the relation between the complex spectral vectors of the signal noisy
signal Y(k), the signal X(k) and noise N(k). Figure 11.2(b) shows that the assumption that
amplitude spectrum of the noisy signal is the sum of the amplitude spectra of signal and noise
is equivalent to assuming that the angle between speech and noise spectral vectors 6, = 0;
this assumption leads to an overestimation of noise or equivalently an underestimation of the
signal. Similarly, Figure 11.2(c) shows that the assumption that squared amplitude spectrum
(i.e. the instantaneous power spectra) of the noisy signal is the sum of the squared amplitude
spectra of signal and noise is equivalent to assuming that the angle between speech and noise
spectral vectors is 6, = 90. This assumption can lead to an underestimation (if 6, < 90) or
overestimation (if 8, > 90) of the noise.

11.2 SPECTRAL SUBTRACTION

In this spectral subtraction an estimate of the spectral amplitude of the signal is obtained
by subtracting an estimate of the spectral amplitude of noise from that of the noisy signal.
Figure 11.3 illustrates a block diagram configuration of the spectral subtraction method.

In spectral subtraction, the incoming signal, x(m), is divided into frames of N sample
length. Each frame is windowed, using a window (i.e. Hann) and then transformed via
discrete Fourier transform to N spectral samples. The windows alleviate the effects of the
discontinuities at the endpoints of each segment. The windowed signal is given by

Yo (m) = w(m)y(m)
=w(m)[x(m) +n(m)] (11.5)
= x,,(m)+n,(m)
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Figure 11.3 Block diagram illustration of an FFT-based spectral subtraction system for de-noising
speech.

The windowing operation can be expressed in the frequency domain as
Y (f) = W) Y(f)
=X, (f)+N.(f)

where the * denotes convolution operation. Throughout this chapter, it is assumed that the
signals are windowed, and hence for simplicity we drop the use of the subscript w for
windowed signals.

The equation describing spectral subtraction may be expressed as

(11.6)

X =Y’ —a(k)N} (11.7)

where X 7 is an estimate of the signal magnitude spectrum to the power of b and N is the
time-averaged magnitude of noise spectra to the power b. It is assumed that the noise is
a stationary random process. For magnitude spectral subtraction, the exponent b = 1, and
for power spectral subtraction, b = 2. The parameter «(k) in Equation (11.7) controls the
amount of noise subtracted from the noisy signal. For full noise subtraction, a(k) = 1 and for
over-subtraction a(k) > 1. The time-averaged noise spectrum is obtained from the periods
when the signal is absent and only the noise is present as

Ny =— ZN;J (11.8)

In Equation (11.8), N, ; is the spectrum of the ith noise frame at discrete frequency k, and it is
assumed that there are M frames in a noise-only period, where M is a variable. Alternatively,
the averaged noise amplitude spectrum can be obtained as the output of a first-order digital
low-pass filter as

NP, =aN}_ +(1—a)N?, (11.9)

where the low-pass filter coefficient, a, is typically set between 0.85 and 0.99. For restoration
of a time-domain signal, the amplitude spectrum estimate 5(k is combined with the phase of
the noisy signal, and then transformed into the time domain via the inverse discrete Fourier
transform as
N—1
fm) =3 (Xkeff’vk) L S | (11.10)
k=0
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where 6 is the phase of the noisy signal frequency, Y(k). The signal restoration equation,
Equation (11.10), is based on the assumption that the audible noise is mainly due to the
distortion of the magnitude spectrum, and that the phase distortion is largely inaudible.
Evaluations of the perceptual effects of simulated phase distortions validate this assumption.

Owing to the variations of the noise spectrum, spectral subtraction may result in negative
estimates of the power or the amplitude spectrum. This outcome is more probable as
the signal-to-noise ratio decreases. To avoid negative magnitude estimates, the spectral
subtraction output is post-processed using a mapping function T[-] of the form

T[f(]: X, if X, > B, (11.11)
¢ fn[Y,] otherwise ’

For example, we may chose a rule such that if the estimate 5(k > 0.01Y, (in magnitude
spectrum 0.01 is equivalent to —40dB) then Xk should be set to some function of the noisy
signal fn[Y,]. In its simplest form, fn[Y,] = noise floor, where the noise floor is a positive
constant. An alternative choice is fn[Y,] = BY,. In this case,

. X, if X, >BY,
T[Xk] _ X i Xe>BY (11.12)
BY, otherwise

Spectral subtraction may be implemented in the power or the magnitude spectral domains.
The two methods are similar, although theoretically they result in somewhat different
expected performance.

11.2.1 POWER SPECTRUM SUBTRACTION

The power spectrum subtraction, or squared-magnitude spectrum subtraction, is defined by
the following equation:

X=y>-N? (11.13)

where it is assumed that «(k), the subtraction factor in Equation (11.7), is 1. Note that
Equation (11.13) can be deduced from Equation (11.4) if we assume that the signal and
noise spectral vectors are perpendicular, as illustrated in Figure (11.2.c). .

We denote the power spectrum by Z[X?], the time-averaged power spectrum by X7 and
the instantaneous power spectrum by X7. By expanding the instantaneous power spectrum of
the noisy signal Y72, and grouping the appropriate terms, Equation (11.13) may be rewritten
as

2= X2+ (N2 = N?) + XN+ XN (11.14)
-— ~———

. o Cross products
Noise variations P

Taking the expectations of both sides of Equation (11.14), and assuming that the signal and
the noise processes are uncorrelated ergodic processes, we have

E[X?] = £[X?] (11.15)



SPECTRAL SUBTRACTION 303

From Equation (11.15), the average of the estimate of the instantaneous power spectrum
converges to the power spectrum of the noise-free signal. However, it must be noted that,
for restoration of nonstationary signals, such as speech, the objective is to recover the
instantaneous or the short-time spectrum, and only a relatively small amount of averaging
can be applied. Too much averaging will smear and obscure the temporal evolution of the
spectral events. Note that, in deriving Equation (11.15), we have not considered nonlinear
rectification of the negative estimates of the squared magnitude spectrum.

11.2.2 MAGNITUDE SPECTRUM SUBTRACTION

The magnitude spectrum subtraction is defined as
X, =Y,—N, (11.16)

where N, is the time-averaged magnitude spectrum of the noise. Note that Equation (11.16)
can be deduced from Equation (11.4) if we assume that the signal and noise spectral vectors
are in phase as illustrated in Figure 11.2(b). Taking the expectation of Equation (11.16), we
have

)A(k =E[Y]— £[ﬁl\]
= E[|X(k) + N(k)|] = E[IN,]] (11.17)
~ E[X,]

For signal restoration the magnitude estimate is combined with the phase of the noisy signal
and then transformed into the time domain using Equation (11.10).

11.2.3 SPECTRAL SUBTRACTION FILTER: RELATION TO WIENER
FILTERS

The spectral subtraction equation can be expressed as the product of the noisy signal spectrum
and the frequency response of a spectral subtraction filter as

A

X=Y)—N!=H\Y} (11.18)

where H,, the frequency response of the spectral subtraction filter, at discrete frequency k,
is defined as

¥ _n-

H =1——-*=
TR Tw

(11.19)

The spectral subtraction filter, H,, is a zero-phase filter, with its magnitude response in
the range 0 > H, > 1. The filter acts as an SNR-dependent attenuator. The attenuation
at each frequency increases with the decreasing SNR, and conversely decreases with the
increasing SNR.
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The least mean square error linear filter for noise removal is the Wiener filter, covered in
Chapter 6. Implementation of a Wiener filter requires the power spectra (or equivalently the
correlation functions) of the signal and the noise process, as discussed in Chapter 6. Spectral
subtraction is used as a substitute for the Wiener filter when the signal power spectrum is
not available. In this section, we discuss the close relation between the Wiener filter and
spectral subtraction. For restoration of a signal observed in uncorrelated additive noise, the
equation describing the frequency response of the Wiener filter was derived in Chapter 6 as

2 2
it _f[Nk] (11.20)
E[Y(]
A comparison of W, and H,, from Equations (11.20) and (11.19), shows that the Wiener filter
is based on the ensemble-average spectra of the signal and the noise, whereas the spectral
subtraction filter uses the instantaneous spectra of the noisy signal and the time-averaged
spectra of the noise. In spectral subtraction, we only have access to a single realisation of
the signal process. However, assuming that the signal and noise are wide-sense stationary
ergodic processes, we may replace the instantaneous noisy signal spectrum, Y7, in the spectral

subtraction equation [Equation (11.20)] with the time-averaged spectrum, Y2, to obtain
Y -N}
H =+t _—*% (11.21)
6

For an ergodic process, as the length of the time over which the signals are averaged increases,
the time-averaged spectrum approaches the ensemble-averaged spectrum and, in the limit,
the spectral subtraction filter of Equation (11.21) approaches the Wiener filter equation,
Equation (11.20). In practice, many signals, such as speech and music, are nonstationary,

and only a limited degree of beneficial time-averaging of the spectral parameters can be
expected.

11.2.4 PROCESSING DISTORTIONS

The main problem in spectral subtraction is the nonlinear processing distortions caused by
the random variations of the noise spectrum. From Equation (11.12) and the constraint that
the magnitude spectrum must have a non-negative value, we may identify three sources of
distortions of the instantaneous estimate of the magnitude or power spectrum as:

(1) the variations of the instantaneous noise power spectrum about the mean;
(2) the signal and noise cross-product terms;
(3) the nonlinear mapping of the spectral estimates that fall below a threshold.

The same sources of distortion appear in both the magnitude and the power spectrum
subtraction methods. Of the three sources of distortion listed above, the dominant distortion
is often due to the nonlinear mapping of the negative, or small-valued, spectral estimates.
This distortion produces a metallic sounding noise, known as ‘musical tone noise’ due to its
narrow-band spectrum and the tin-like sound. The success of spectral subtraction depends
on the ability of the algorithm to reduce the noise variations and to remove the processing
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distortions. In its worst, and not uncommon, case the residual noise can have the following
two forms:

(1) a sharp trough or peak in the signal spectra;
(2) isolated narrow bands of frequencies.

In the vicinity of a high amplitude signal frequency, the noise-induced trough or peak is
often masked, and made inaudible, by the high signal energy. The main cause of audible
degradations is the isolated frequency components also known as ‘musical tones’ or ‘musical
noise’, illustrated in Figure 11.4. The musical noise is characterised as short-lived narrow
bands of frequencies surrounded by relatively low-level frequency components. In audio
signal restoration, the distortion caused by spectral subtraction can result in a significant
deterioration of the signal quality. This is particularly true at low signal-to-noise ratios. The
effects of a bad implementation of subtraction algorithm can result in a signal that is of a
lower perceived quality, and lower information content, than the original noisy signal.

11.2.5 EFFECT OF SPECTRAL SUBTRACTION ON SIGNAL
DISTRIBUTION

Figure 11.5 is an illustration of the distorting effect of spectral subtraction on the distribution
of the magnitude spectrum of a signal. In this figure, we have considered the simple case
where the spectrum of a signal is divided into two parts: a low-frequency band, f;, and a
high-frequency band, f;. Each point in Figure 11.5 is a plot of the high-frequency spectrum
vs the low-frequency spectrum, in a two-dimensional signal space. Figure 11.5(a) shows an
assumed distribution of the spectral samples of a signal in the two-dimensional magnitude—
frequency space. The effect of the random noise, shown in Figure 11.5(b), is an increase
in the mean and the variance of the spectrum, by an amount that depends on the mean
and the variance of the magnitude spectrum of the noise. The increase in the variance
constitutes an irrevocable distortion. The increase in the mean of the magnitude spectrum
can be removed through spectral subtraction. Figure 11.5(c) illustrates the distorting effect

[y(H)]

Distortion in the Distortions in the
form of a sharp form of isolated
trough in signal ‘musical’ noise
spectra

/ /\/\/ LA

Figure 11.4 TIllustration of distortions that may result from spectral subtraction.
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Figure 11.5 Illustration of the distorting effect of spectral subtraction on the space of the magnitude
spectrum of a signal.

of spectral subtraction on the distribution of the signal spectrum. As shown, owing to the
noise-induced increase in the variance of the signal spectrum, after subtraction of the average
noise spectrum, a proportion of the signal population, particularly that with a low SNR,
becomes negative and has to be mapped to non-negative values. As shown, this process
distorts the distribution of the low-SNR part of the signal spectrum.

11.2.6 REDUCING THE NOISE VARIANCE

The distortions that result from spectral subtraction are due to the variations in the noise
spectrum. In Section 9.4 we considered the mean and variance of the estimate of a power
spectrum. For a white noise process with variance o2, it can be shown that the variance of
the DFT spectrum of the noise N, is given by

Var [N} | ~ Piy (k) = o) (11.22)
and the variance of the running average of K independent spectral components is

1 5] 1 1
Var [E > Nk%,.] A §P§N(k) A ?of (11.23)
i=0

From Equation (11.23), the noise variations can be reduced by time-averaging of the noisy
signal frequency components. The fundamental limitation is that the averaging process, in
addition to reducing the noise variance, also has the undesirable effect of smearing and
blurring the time variations of the signal spectrum. Therefore an averaging process should
reflect a compromise between the conflicting requirements of reducing the noise variance
and of retaining the time resolution of the nonstationary spectral events. This is important
because time resolution plays an important part in both the quality and the intelligibility of
audio signals.
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In spectral subtraction, the noisy signal, y(m), is segmented into frames of N samples.
Each signal frame is then transformed via a DFT into N spectral samples, Y(k). Successive
frames of spectral samples form a two-dimensional frequency—time matrix denoted by Y(k, i)
where the integer variable, i, is the frame index and denotes the time dimension. The signal
Y(k,i) can be considered as a band-pass channel, k, that contains a time-varying signal
X(k, i) plus a random noise component N(k, i). One method for reducing the noise variations
is to low-pass filter the magnitude spectrum at each frequency. A simple recursive first-order
digital low-pass filter is given by

Yei=pYei+(1=p)Yy, (11.24)

where the K is the output of the low-pass filter, and the smoothing coefficient p controls
the bandwidth and the time constant of the low-pass filter.

11.2.7 FILTERING OUT THE PROCESSING DISTORTIONS

Audio signals, such as speech and music, are composed of sequences of nonstationary
acoustic events. The acoustic events are ‘born’, have a varying lifetime, disappear, and then
reappear with a different intensities and spectral composition. The time- varying nature of
audio signals plays an important role in conveying information, sensation and quality. The
musical tone noise, introduced as an undesirable by-product of spectral subtraction, is also
time-varying. However, there are significant differences between the characteristics of most
audio signals and so-called ‘musical noise’. The characteristic differences may be used to
identify and remove some of the more annoying distortions. Identification of musical noise
may be achieved by examining the variations of the signal in the time and frequency domains.
The main characteristics of musical noise are that it tends to be relatively short-lived random
isolated bursts of narrow band signals, with relatively small amplitudes.

Using a DFT block size of 128 samples, at a sampling rate of 20 kHz, experiments indicate
that the great majority of musical noise tends to last no more than three frames, whereas
genuine signal frequencies have a considerably longer duration. This observation was used
as the basis of an effective ‘musical noise’ suppression system. Figure 11.6 demonstrates a

Spectral magnitude

Threshold level

x: Deleted
Window length ~ Sliding window /: Survived

Figure 11.6 Illustration of a method for identification and filtering of ‘musical noise’.
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method for the identification of musical noise. Each DFT channel is examined to identify
short-lived frequency events. If a frequency component has a duration shorter than a pre-
selected time window, and an amplitude smaller than a threshold, and is not masked by
signal components in the adjacent frequency bins, then it is classified as distortion and
deleted.

11.2.8 NONLINEAR SPECTRAL SUBTRACTION

The use of spectral subtraction in its basic form of Equation (11.7) may cause deterioration in
the quality and the information content of a signal. For example, in audio signal restoration,
the musical noise can cause degradation in the perceived quality of the signal, and in
speech recognition the basic spectral subtraction can result in deterioration of the recognition
accuracy. In the literature, there are many variants of spectral subtraction that aim to
provide consistent performance improvement across a range of SNRs. These methods differ
in their approach to estimation of the noise spectrum, in their method of averaging the
noisy signal spectrum, and in their post-processing method for the removal of processing
distortions.

Nonlinear spectral subtraction methods are heuristic methods that utilise estimates of the
local SNR and the observation that, at a low SNR, oversubtraction can produce improved
results. For an explanation of the improvement that can result from oversubtraction, consider
the following expression of the basic spectral subtraction equation:

Xk = Yk_ﬁk
~X,+N,—N, (11.25)
~ X, + W (k)

where V| (k) is the zero-mean random component of the noise spectrum. If Vy (k) is well
above the signal, X,, then the signal may be considered as lost to noise. In this case,
oversubtraction, followed by nonlinear processing of the negative estimates, results in a
higher overall attenuation of the noise. This argument explains why subtracting more than
the noise average can sometimes produce better results. The nonlinear variants of spectral
subtraction may be described by the following equation:

X, =Y, —a[SNR(K)]N, (11.26)

where a[SNR(k)] is an SNR-dependent subtraction factor and N, is an estimate of the
spectral amplitude of noise. The spectral amplitude estimate is further processed to avoid
negative estimates as

. X, ifX Y,
% = v if X > BY,

= 11.27
k BY, otherwise ( )
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One form of an SNR-dependent subtraction factor for Equation (11.26) is given by

«[SNR(K)] = 1+ Sd;/_N") (11.28)

k

where the function sd(N,) is the standard deviation of the noise at discrete frequency k. For
white noise, sd(N,) = o,, where o7 is the noise variance. Substitution of Equation (11.28)
in Equation (11.26) yields

S(kzyk—[1+— N, (11.29)
In Equation (11.29) the subtraction factor depends on the mean and the variance of the
noise. Note that the amount oversubtracted is the standard deviation of the noise. This
heuristic formula is appealing because, at one extreme for deterministic noise with a zero
variance, such as a sine wave, a [SNR(f)] = 1, and, at the other extreme for white noise,
a[SNR(f)] = 2. In application of spectral subtraction to speech recognition, it is found that
the best subtraction factor is usually between 1 and 2.

In the nonlinear spectral subtraction method of Lockwood and Boudy (1992), the spectral
subtraction filter is obtained from

_ Y2-NL(N)

H, —
v

(11.30)

Lockwood and Boudy suggested the following function as a nonlinear estimator of the noise
spectrum:

NL (N_k2> - (I) [over%ag(rames (Nkz)’ SNR(k)’ N_kz] (1 131)
The estimate of the noise spectrum is a function of the maximum value of noise spectrum
over M frames, and the signal-to-noise ratio. One form for the nonlinear function &(-) is
given by the following equation:

e s ()
<p[ Nz,SNRk]zw 11.32
e DX, (), SNR (£) 1+ SNR(k) (1132)

where 7y is a design parameter. From Equation (11.32), as the SNR decreases, the output of
the nonlinear estimator &(-) approaches max(N}) and, as the SNR increases, it approaches
zero. For oversubtraction, the noise estimate is forced to be an overestimation by using the
following limiting function:

N2 < <1>[ max _(N?), SNR(k), N_,f] <3N? (11.33)
The maximum attenuation of the spectral subtraction filter is limited to H, > 3, where usually
the lower bound 3 > 0.01. Figure 11.7 illustrates the effects of nonlinear spectral subtraction
and smoothing in restoration of the spectrum of a speech signal.
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Figure 11.7 Tllustration of the effects of nonlinear spectral subtraction. (a) Original clean speech;
(b) noisy speech at 12dB; (c) nonlinear spectral subtraction; (d) nonlinear spectral subtraction with
smoothing.

11.2.9 IMPLEMENTATION OF SPECTRAL SUBTRACTION

Figure 11.8 is a block diagram illustration of a spectral subtraction system. It includes the
following subsystems:

(1) a silence detector for detection of the periods of signal inactivity — the noise spectra is
updated during these periods;

(2) a discrete Fourier transformer for transforming the time domain signal to the frequency
domain — the DFT is followed by a magnitude operator;

(3) a lowpass filter for reducing the noise variance — the purpose of the LPF is to reduce
the processing distortions due to noise variations;

(4) a post-processor for removing the processing distortions introduced by spectral
subtraction;

(5) an inverse discrete Fourier transform (IDFT) for transforming the processed signal to
the time domain;

(6) an attenuator, 7y, for attenuation of the noise during silent periods.

The DFT-based spectral subtraction is a block processing algorithm. The incoming audio
signal is buffered and divided into overlapping blocks of N samples, as shown in Figure 11.8.
Each block is windowed, and then transformed via a DFT to the frequency domain. After
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Figure 11.8 Block diagram configuration of a spectral subtraction system. PSP = post-spectral-
subtraction processing.

N(f)

spectral subtraction, the magnitude spectrum is combined with the phase of the noisy signal,
and transformed back to the time domain. Each signal block is then overlapped and added
to the preceding and succeeding blocks to form the final output.

The choice of the block length for spectral analysis is a compromise between the conflicting
requirements of the time resolution and the spectral resolution. Typically a block length of
5-50ms is used. At a sampling rate of, say, 20kHz, this translates to a value for N in the
range 100-1000 samples. The frequency resolution of the spectrum is directly proportional
to the number of samples, N. A larger value of N produces a better estimate of the spectrum.
This is particularly true for the lower part of the frequency spectrum, since low-frequency
components vary slowly with time, and require a larger window for a stable estimate.
The conflicting requirement is that, owing to the nonstationary nature of audio signals, the
window length should not be too large, so that short-duration events are not obscured.

The main function of the window and the overlap operations (Figure 11.9) is to alleviate
discontinuities at the endpoints of each output block. Although there are a number of
useful windows with different frequency/time characteristics, in most implementations of

‘glb.Mm

Figure 11.9 Illustration of the window and overlap process in spectral subtraction.
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the spectral subtraction, a Hanning window is used. In removing distortions introduced by
spectral subtraction, the post-processor algorithm makes use of such information as the
correlation of each frequency channel from one block to the next, and the durations of the
signal events and the distortions. The correlation of the signal spectral components, along
the time dimension, can be partially controlled by the choice of the window length and
the overlap. The correlation of spectral components along the time domain increases with
decreasing window length and increasing overlap. However, increasing the overlap can also
increase the correlation of noise frequencies along the time dimension.

11.3 BAYESIAN MMSE SPECTRAL AMPLITUDE ESTIMATION

Bayesian estimation, covered in Chapter 4, employs the probability density functions of
the signal and noise and minimises a cost of error function. The probabilistic minimum
mean squared error estimation of the short-time spectral amplitude (STSA) is an example of
Bayesian estimation method with a mean squared error cost function.

The noisy signal model in time and frequency is expressed in Equations (11.2-11.4).
Assume each frame of N samples of noisy speech signal y(m) is converted into N complex
spectral samples, Y(k) = Y, e/” via DFT. The MMSE estimation of the short-time spectral
amplitude of clean speech, )A(k, is derived from the minimization of a mean squared error
cost function integral as

X, =Min [ X=X, [X(0)| V(K] dX (k) (11.34)

where X, — Xk is the spectral amplitude estimation error and p [X(k)|Y(k)] is the posterior
probability density function of the spectrum of clean speech X(k) given the spectrum of
noisy observation Y(k).

Setting the derivative w.r.t. 5(1( of the integral of the mean squared error cost function in
Equation (11.34) to zero (see Chapter 4), we obtain the MMSE STSA estimate as

f(sz[Xk|Y(k)]=/ka[X(k)|Y(k)] dX(k) k=0,1...,N—1 (11.35)

—o00

where E[-] is the expectation or averaging operator. Note that the MMSE estimate of a
variable is the mean or expectation of the variable.

Using Bayes’s rule, p [X(k)|Y(k)] = p[Y(k)|X(k)] p[X (k)] /p[Y(k)] in Equation (11.35),
we obtain

T Xop LY X ()] p [X (k)] dX (k)
X =" (11.36)
T 0 Ix @ ax )
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Now in Equation (11.36) the probability of each spectral component X(k) of the clean signal
can be written in terms of the probability of its magnitude, X,, and phase, 6y, , p[X(k)] =

p (Xk, GXk), as

. f Xp [Y(K)| X, Ox] p (Xk’ exk) dexk dX;
X, == (11.37)

oo 21

i fp[Y(k)|Xk,0Xk] doy, dX,
— 0

The MMSE Equation (11.37) requires the likelihood of the noisy speech p [Y(k)|Xk, GXk]
and the prior probability density function of the clean speech, p (Xk, Bxk)~

Assuming that the magnitude and phase of speech spectrum X(k) are independent, and
that the phase of the speech spectrum has a uniform distribution with a probability of
p(0y) = 5=, we have

P (X 0) = p(6:) P (X0 = 5-p (X)) (11.39)

Assuming that the complex spectrum of the clean signal, X(k), has a Gaussian distribution
in the Cartesian complex domain defined as

_ {Re[X(K)])* + {Im [x<k>]}2)

202

1
plX(k)]=—=exp ( (11.39)
o
where Re and Im denote the real and imaginary parts of a complex variable, then it can be
shown (see Chapter 4) that X, the magnitude of X(k), has a Rayleigh distribution defined as

X, X?
P (X)) = —exp (-27’_‘2> (11.40)
where o7 is the variance of X,. As already explained, the phase of X(k) is assumed to have
a uniform distribution.

Ephraim and Malah derived an MMSE spectral amplitude estimation algorithm using a
Rayleigh distribution for the magnitude spectrum of clean speech, a uniform distribution for
the phase of the clean speech and a complex Gaussian distribution for noisy speech. The
resulting estimator is of the form

- v

% =109 exp (<) [ 400 (<2) +ut (-2)] v (1a)
Y 2 2 2

where I'(-) is the gamma function, 7,(-) is Bessel function of order n and v, and 7, are
defined as

%= i(gk) Ye (11.42)
_ ox(k)

&= 2 () (11.43)

Yo = () (11.44)

ox (k)
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where (k) and o (k) are the variance of speech and noise spectra, &, is known as the
prior signal-to-noise ratio and vy, is known as the posterior signal to noise ratio. For high
SNR, Equation (11.44) tends to the Wiener solution.

The minimum mean squared estimate of spectral amplitude can be expressed as

X = Gyse (0 Y, (11.45)

where the spectral gain factor Gyyss(k) is given by

Guwse (k) = F(l‘s)\i’_v_k exp <_%> [(1 +v)ly (—%) +ud, (_%):I (11.46)

k
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Figure 11.10 (a) A noisy signal; (b) restored signal after spectral subtraction; (c) noise estimate
obtained by subtracting (b) from (a).
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Figure 11.11 The effect of spectral subtraction in improving speech recognition (for a spoken digit
data base) in the presence of helicopter noise.

11.4 APPLICATION TO SPEECH RESTORATION AND
RECOGNITION

In speech restoration, the objective is to estimate the instantaneous signal spectrum, X(f).
The restored magnitude spectrum is combined with the phase of the noisy signal to form
the restored speech signal. In contrast, speech recognition systems are more concerned with
the restoration of the envelope of the short-time spectrum than the detailed structure of the
spectrum. Averaged values, such as the envelope of a spectrum, can often be estimated
with more accuracy than the instantaneous values. However, in speech recognition, as in
signal restoration, the processing distortion due to the negative spectral estimates can cause
substantial deterioration in performance. A careful implementation of spectral subtraction
can result in a significant improvement in the recognition performance.

Figure 11.10 illustrates the effects of spectral subtraction in restoring a section of a speech
signal contaminated with white noise. Figure 11.11 illustrates the improvement that can be
obtained from application of spectral subtraction to recognition of noisy speech contaminated
by helicopter noise. The recognition results were obtained for a hidden Markov model-based
spoken digit recognition.

11.5 SUMMARY

This chapter began with an introduction to spectral subtraction and its relation to Wiener
filters. The main attraction of spectral subtraction is its relative simplicity, in that it only
requires an estimate of the noise power spectrum. However, this can also be viewed as
a fundamental limitation in that spectral subtraction does not utilise the statistics and the
distributions of the signal process. The main problem in spectral subtraction is the presence
of processing distortions caused by the random variations of the noise. The estimates of the
magnitude and power spectral variables that, owing to noise variations, are negative have to
be mapped into non-negative values. In Section 11.2 we considered the processing distortions,



316 SPECTRAL AMPLITUDE ESTIMATION

and illustrated the effects of rectification of negative estimates on the distribution of the
signal spectrum. In Section 11.3 a number of nonlinear variants of the spectral subtraction
method were considered. In signal restoration and in applications of spectral subtraction
to speech recognition, it is found that oversubtraction, which is subtracting more than the
average noise value, can lead to improved results; if a frequency component is immersed in
noise, then oversubtraction can cause further attenuation of the noise. A formula is proposed
in which the oversubtraction factor is made dependent on the noise variance. As mentioned
earlier, the fundamental problem with spectral subtraction is that it employs relatively too
little prior information, and for this reason it is outperformed by Wiener filters and Bayesian
statistical restoration methods.
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Impulsive noise consists of relatively short duration ‘on/off” noise pulses, caused by a variety
of sources, such as switching noise, adverse channel environments in a communication
system, dropouts or surface degradation of audio recordings, clicks from computer keyboards,
etc. An impulsive noise filter can be used for enhancing the quality and intelligibility of noisy
signals, and for achieving robustness in pattern recognition and adaptive control systems.
This chapter begins with a study of the frequency—time characteristics of impulsive noise,
and then proceeds to consider several methods for statistical modelling of an impulsive noise
process. The classical method for removal of impulsive noise is the median filter. However,
the median filter often results in some signal degradation. For optimal performance, an
impulsive noise removal system should utilise (a) the distinct features of the noise and the
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320 IMPULSIVE NOISE

signal in the time and/or frequency domains, (b) the statistics of the signal and the noise
processes and (c) a model of the physiology of the signal and noise generation. We describe
a model-based system that detects each impulsive noise and then proceeds to replace the
samples obliterated by an impulse. We also consider some methods for introducing robustness
to impulsive noise in parameter estimation.

12.1 IMPULSIVE NOISE

In this section, first the mathematical concepts of an analogue and a digital impulse are
introduced, and then the various forms of real impulsive noise in communication systems
are considered.

The mathematical concept of an analogue impulse is illustrated in Figure 12.1. Consider
the unit-area pulse, p(7), shown in Figure 12.1(a). As the pulse width, A, tends to zero, the
pulse tends to an impulse. The impulse function shown in Figure 12.1(b) is defined as a
pulse with an infinitesimal time width as

- 1/A, || <A/2
o() = limitp(r) = 12.1
(1) = limitp(7) {0’ ] = A2 (12.1)
The integral of the impulse function is given by
¢ 1
/ S(f)dr=Ax 1 =1 (12.2)
The Fourier transform of the impulse function is obtained as
A(f) = / S(1)e ™ dr = = 1 (12.3)

where f is the frequency variable. The impulse function is used as a test function to obtain
the impulse response of a system. This is because, as shown in Figure 12.1(c), an impulse
is a spectrally rich signal containing all frequencies in equal amounts.

10 &) A(f)

1/A
As A—=0
—_—

() (b) ()

Figure 12.1 (a) A unit-area pulse; (b) the pulse becomes an impulse as A — 0; (c) the spectrum of
the impulse function.
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Figure 12.2 Time and frequency sketches of (a) an ideal impulse, and (b) and (c) short-duration
pulses.

A digital impulse, §(m), shown Figure 12.2(a), is defined as a signal with an ‘on’ duration
of one sample, and is expressed as

1, m=0
8(m) = 0 Z;ﬁO (12.4)

where the variable m designates the discrete-time index. Using the Fourier transform relation,
the frequency spectrum of a digital impulse is given by

A(f) = i S(m)e™ ™M =1.0—-00 < f< o0 (12.5)

m=—oo

In communication systems, real impulsive-type noise has a duration that is normally more
than one sample long. For example, in the context of audio signals, short-duration, sharp
pulses, of up to 3 ms (60 samples at a 20 kHz sampling rate) may be considered as impulsive-
type noise. Figure 12.2(b) and (c) illustrates two examples of short-duration pulses and their
respective spectra.

In a communication system, an impulsive noise originates at some point in time and
space, and then propagates through the channel to the receiver. The received noise is
shaped by the channel, and can be considered as the channel impulse response. In general,
the characteristics of a communication channel may be linear or nonlinear, stationary or
time-varying. Furthermore, many communication systems, in response to a large-amplitude
impulse, exhibit a nonlinear character.

Figure 12.3 illustrates some examples of impulsive noise, typical of those observed on
an old gramophone recording. In this case, the communication channel is the playback
system, and may be assumed to be time-invariant. The figure also shows some variations of
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Figure 12.3 Illustration of variations of the impulse response of a nonlinear system with increasing
amplitude of the impulse.

the channel characteristics with the amplitude of impulsive noise. These variations may be
attributed to the nonlinear characteristics of the playback mechanism.

An important consideration in the development of a noise processing system is the choice
of an appropriate domain (time or the frequency) for signal representation. The choice
should depend on the specific objective of the system. In signal restoration, the objective
is to separate the noise from the signal, and the representation domain must be the one
that emphasizes the distinguishing features of the signal and the noise. Impulsive noise is
normally more distinct and detectable in the time domain than in the frequency domain, and
it is appropriate to use time-domain signal processing for noise detection and removal. In
signal classification and parameter estimation, the objective may be to compensate for the
average effects of the noise over a number of samples, and in some cases, it may be more
appropriate to process the impulsive noise in the frequency domain where the effect of noise
is a change in the mean of the power spectrum of the signal.

12.1.1 AUTOCORRELATION AND POWER SPECTRUM OF
IMPULSIVE NOISE

Impulsive noise is a nonstationary, binary-state sequence of impulses with random amplitudes
and random positions of occurrence. The nonstationary nature of impulsive noise can be seen
by considering the power spectrum of a noise process with a few impulses per second: when
the noise is absent the process has zero power, and when an impulse is present the noise power
is the power of the impulse. Therefore the power spectrum and hence the autocorrelation of
an impulsive noise is a binary state, time-varying process. An impulsive noise sequence can
be modelled as an amplitude-modulated binary-state sequence, and expressed as

n;(m) = n(m)b(m) (12.6)

where b(m) is a binary-state random sequence of ones and zeros, and n(m) is a random noise
process. Assuming that impulsive noise is an uncorrelated random process, the autocorrelation
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of impulsive noise may be defined as a binary-state process:
Fan (ks m) = E[n;(m)n;(m + k)] = 078(k)b(m) (12.7)

where 6(k) is the Kronecker delta function. Since it is assumed that the noise is an
uncorrelated process, the autocorrelation is zero for k # 0, therefore Equation (12.7) may be
written as

1 (0, m) = ofb(m) (12.8)

Note that for a zero-mean noise process, r,,(0, m) is the time-varying binary-state noise
power. The power spectrum of an impulsive noise sequence is obtained by taking the Fourier
transform of the autocorrelation function Equation (12.8), as

Pyn, (fym) = a'fb(m) (12.9)

In Equations (12.8) and (12.9), the autocorrelation and power spectrum are expressed as
binary state functions that depend on the ‘on/off’ state of impulsive noise at time m.

12.2 STATISTICAL MODELS FOR IMPULSIVE NOISE

In this section, we study a number of statistical models for the characterisation of an impulsive
noise process. An impulsive noise sequence, n;(m), consists of short duration pulses of a
random amplitude, duration and time of occurrence, and may be modelled as the output of
a filter excited by an amplitude-modulated random binary sequence as

n;(m) =1§hkn(m—k)b(m—k) (12.10)

k=0

Figure 12.4 illustrates the impulsive noise model of Equation (12.10). In Equation (12.10),
b(m) is a binary-valued random sequence model of the time of occurrence of impulsive

Amplitude modulated

) binary sequence
Binary sequence b(m) n(m) b(m)

J_|_|—|_ | | Impulsive noise
I [

sequence 7;(1m)

h(m)

/\ AN /\ ~ N
Amplitude modulating D(( Vv \/
sequence n(m)

Impulse shaping
filter

Figure 12.4 Illustration of an impulsive noise model as the output of a filter excited by an amplitude-
modulated binary sequence.
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noise, n(m) is a continuous-valued random process model of impulse amplitude and h(m)
is the impulse response of a filter that models the duration and shape of each impulse. Two
important statistical processes for modelling impulsive noise as an amplitude-modulated
binary sequence are the Bernoulli-Gaussian process and the Poisson—Gaussian process,
which are discussed next.

12.2.1 BERNOULLI-GAUSSIAN MODEL OF IMPULSIVE NOISE

In a Bernoulli-Gaussian model of an impulsive noise process, the random time of occurrence
of the impulses is modelled by a binary Bernoulli process, b(m), and the amplitude of the
impulses is modelled by a Gaussian process, n(m). A Bernoulli process, b(m), is a binary-
valued process that takes a value of ‘1’ with a probability of a and a value of ‘0’ with a
probability of 1 — «. The probability mass function of a Bernoulli process is given by

=1, e,
A Bernoulli process has a mean,
wy=E[b(m)]=a (12.12)
and a variance
o= {[b(m)—/wb]z} —a(l—a) (12.13)

A zero-mean Gaussian pdf model of the random amplitudes of impulsive noise is given by

exp [— "2(’")] (12.14)

2
20}

1
fxln(m)] = NS

where o7 is the variance of the noise amplitude. In a Bernoulli-Gaussian model the
probability density function of an impulsive noise, n;(m), is given by

FRE Im(m)] = (1= )8 [n,(m)] + e fy; [ (m)] (12.15)

where 8[n;(m)] is the Kronecker delta function. Note that the function f£¢[n;(m)] is a
mixture of a discrete probability mass function 6 [r;(m)] and a continuous probability density
function fy [n;(m)].

An alternative model for impulsive noise is a binary-state Gaussian process (Section 2.5.4),
with a low-variance state modelling the absence of impulses and a relatively high-variance
state modelling the amplitude of impulsive noise.

12.2.2 POISSON-GAUSSIAN MODEL OF IMPULSIVE NOISE

In a Poisson—Gaussian model the probability of occurrence of an impulsive noise event is
modelled by a Poisson process, and the distribution of the random amplitude of impulsive
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noise is modelled by a Gaussian process. The Poisson process, described in Chapter 2, is
a random event-counting process. In a Poisson model, the probability of occurrence of k
impulsive noise in a time interval 7 is given by

A k
P, T) = kT,) e (12.16)
where A is a rate function with the following properties:
Prob (one impulse in a small time interval Azr) = AA¢
(12.17)

Prob (zero impulse in a small time interval A7) = 1 — AA¢

It is assumed that no more than one impulsive noise can occur in a time interval Az. In a
Poisson—Gaussian model, the pdf of an impulsive noise, n;(m), in a small time interval At
is given by

FEE [m(m)] = (1= AANS [ (m)] + AAtfy [my(m)] (12.18)

where fy [n;(m)] is the Gaussian pdf of Equation (12.14).

12.2.3 A BINARY-STATE MODEL OF IMPULSIVE NOISE

An impulsive noise process may be modelled by a binary-state model, as shown in
Figure 12.5. In this binary model, the state S, corresponds to the ‘off’ condition when
impulsive noise is absent; in this state, the model emits zero-valued samples. The state S,
corresponds to the ‘on’ condition; in this state the model emits short-duration pulses of
random amplitude and duration. The probability of a transition from state S; to state S; is
denoted by q;;. In its simplest form, as shown in Figure 12.5, the model is memoryless, and
the probability of a transition to state S; is independent of the current state of the model. In
this case, the probability that at time 7+ 1 the signal is in the state S, is independent of the
state at time ¢, and is given by

Pls(t+1)=Sy|s(t) =Sy =P[s(t+1)=S|s(r) =S| =1—«a (12.19)

where s, denotes the state at time ¢. Likewise, the probability that at time £+ 1 the model is
in state S, is given by

Pls(t+1)=S8,|s(t) =S, =P[s(t+1) = S,|s(t) = S,] =« (12.20)

Figure 12.5 A binary-state model of an impulsive noise generator.



326 IMPULSIVE NOISE

In a more general form of the binary-state model, a Markovian state-transition can model
the dependencies in the noise process. The model then becomes a two-state hidden Markov
model, as considered in Chapter 5.

In one of its simplest forms, the state S, emits samples from a zero-mean Gaussian
random process. The impulsive noise model in state S; can be configured to accommodate
a variety of impulsive noise of different shapes, durations and pdfs. A practical method for
modelling a variety of impulsive noise is to use a codebook of M prototype impulsive noises,
and their associated probabilities [(n;;, p;;), (12, Pi2) - - - » (iy> Pigg) ], Where p; denotes the
probability of impulsive noise of the type n;. The impulsive noise code book may be
designed by classification of a large number of ‘training’ impulsive noises into a relatively
small number of clusters. For each cluster, the average impulsive noise is chosen as the
representative of the cluster. The number of impulses in the cluster of type j divided by the
total number of impulses in all clusters gives p;, the probability of an impulse of type j.

Figure 12.6 shows a three-state model of the impulsive noise and the decaying oscillations
that might follow the noise. In this model, the state S, models the absence of impulsive
noise, the state S; models the impulsive noise and the state S, models any oscillations that
may follow a noise pulse.

12.2.4 SIGNAL-TO-IMPULSIVE-NOISE RATIO

For impulsive noise the average signal-to-impulsive-noise ratio, averaged over an entire
noise sequence including the time instances when the impulses are absent, depends on two
parameters: (a) the average power of each impulsive noise; and (b) the rate of occurrence of
impulsive noise. Let P, denote the average power of each impulse, and Py, the signal
power. We may define a ‘local’ time-varying signal-to-impulsive-noise ratio as

Prignalm)_
Pimpulseb(m)

SINR (m) = (12.21)

Figure 12.6 A three-state model of impulsive noise and the decaying oscillations that often follow
the impulses.
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The average signal-to-impulsive-noise ratio, assuming that the parameter « is the fraction of
signal samples contaminated by impulsive noise, can be defined as

Pgione
SINR = —>&ml (12.22)

a Impulse

Note that from Equation (12.22), for a given signal power, there are many pair of values of
a and P, that can yield the same average SINR.

impulse

12.3 MEDIAN FILTERS

The classical approach to removal of impulsive noise is the median filter. The median of a
set of samples {x(m)} is a member of the set x,,.4(m) such that half the population of the set
is larger than x,.,(m) and half is smaller than x,.,(m). Hence the median of a set of samples
is obtained by sorting the samples in ascending or descending order, and then selecting the
mid-value. In median filtering, a window of predetermined length slides sequentially over the
signal, and the mid-sample within the window is replaced by the median of all the samples
that are inside the window, as illustrated in Figure 12.7.

The output x(m) of a median filter with input y(m) and a median window of length 2K + 1
samples is given by

%(m) = Ymed (m)

(12.23)
=median [y(m — K), ..., y(m),...,y(m+K)]

The median of a set of numbers is a nonlinear statistic of the set, with the useful property
that it is insensitive to the presence of a sample with an unusually large value, an ‘outlier’,

i

~——_ Sliding window of
length 3 samples

T | ! ‘ I L
O Impulsive noise removed

® Noise-free samples distorted by the median filter

Figure 12.7 Input and output of a median filter. Note that, in addition to suppressing the impulsive
outlier, the filter also distorts some genuine signal components.
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in the set. In contrast, the mean, and, in particular, the variance of a set of numbers
are sensitive to the presence of impulsive-type noise. An important property of median
filters, particularly useful in image processing, is that they preserve edges or stepwise
discontinuities in the signal. Median filters can be used for removing impulses in an image
without smearing the edge information; this is of significant importance in image processing.
However, experiments with median filters for removal of impulsive noise from audio signals
demonstrate that median filters are unable to produce high-quality audio restoration. The
median filters cannot deal with ‘real’ impulsive noise, which is often more than one or two
samples long. Furthermore, median filters introduce a great deal of processing distortion by
modifying genuine signal samples that are mistaken for impulsive noise. The performance
of median filters may be improved by employing an adaptive threshold, so that a sample is
replaced by the median only if the difference between the sample and the median is above
the threshold:

x(m) =
(m) Vinea (M) otherwise

(12.24)

where 6(m) is an adaptive threshold that may be related to a robust estimate of the average
of |y(m) — ynea(m)|, and k is a tuning parameter. Median filters are not optimal, because
they do not make efficient use of prior knowledge of the physiology of signal generation, or
a model of the signal and noise statistical distributions. In the following section we describe
a autoregressive model-based impulsive removal system, capable of producing high-quality
audio restoration.

12.4 IMPULSIVE NOISE REMOVAL USING LINEAR
PREDICTION MODELS

In this section, we study a model-based impulsive noise removal system. Impulsive
disturbances usually contaminate a relatively small fraction a of the total samples. Since a
large fraction, 1 — a, of samples remains unaffected by impulsive noise, it is advantageous to
locate individual noise pulses, and correct only those samples that are distorted. This strategy
avoids the unnecessary processing and compromise in the quality of the relatively large
fraction of samples that is not disturbed by impulsive noise. The impulsive noise removal
system shown in Figure 12.8 consists of two subsystems: a detector and an interpolator. The
detector locates the position of each noise pulse, and the interpolator replaces the distorted
samples using the samples on both sides of the impulsive noise. The detector is composed
of a linear prediction analysis system, a matched filter and a threshold detector. The output
of the detector is a binary switch and controls the interpolator. A detector output of ‘0’
signals the absence of impulsive noise and the interpolator is bypassed. A detector output of
‘1’ signals the presence of impulsive noise, and the interpolator is activated to replace the
samples obliterated by noise.

12.4.1 IMPULSIVE NOISE DETECTION

A simple method for detection of impulsive noise is to employ an amplitude threshold
and classify those samples with amplitudes above the threshold, as noise. This method
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Signal + impulsive noise

Signal
@ Interpolator ——
Linear
predlctlpn 1: Impulse present
analysis ) ]
Predictor coefficients 0: Noiseless signal
4 N
Ll »| Inverse filter Matched filter — Threshold
detector
Noisy | excitation T
L Detector subsystem Robust power estimator

Figure 12.8 Configuration of an impulsive noise-removal system incorporating a detector and
interpolator subsystems.

works fairly well for relatively large-amplitude impulses, but fails when the noise amplitude
falls below the signal. Detection can be improved by utilising the characteristic differences
between the impulsive noise and the signal. An impulsive noise, or a short-duration pulse,
introduces uncharacteristic discontinuity in a correlated signal. The discontinuity becomes
more detectable when the signal is differentiated. The differentiation (or, for digital signals,
the differencing) operation is equivalent to decorrelation or spectral whitening. In this section,
we describe a model-based decorrelation method for improving impulsive noise detectability.
The correlation structure of the signal is modelled by a linear predictor, and the process
of decorrelation is achieved by inverse filtering. Linear prediction and inverse filtering are
covered in Chapter 8. Figure 12.9 shows a model for a noisy signal. The noise-free signal,
x(m), is described by a linear prediction model as

P
x(m) =Y ayx(m—k)+ e(m) (12.25)
k=1
E)icite}tion ny(m) = n(m)b(m)
White noise [—Selection
\ Speech Noisy speech

x(m) Y(m) = x(m) +n(m)

Periodic impulse o Linear prediction T
train T T filter U
/ ’—f Coefficients

‘Hidden” model
control

Mixture M

Figure 12.9 Noisy speech model. The signal is modelled by a linear predictor. Impulsive noise is
modelled as an amplitude-modulated binary-state process.
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where @ = [a,, a,, . . ., ap|" is the coefficient vector of a linear predictor of order P, and

the excitation e(m) is either a noise-like signal or a mixture of a random noise and a
quasiperiodic train of pulses, as illustrated in Figure 12.9. The impulsive noise detector is
based on the observation that linear predictors are a good model of the correlated signals but
not the uncorrelated binary-state impulsive-type noise. Transforming the noisy signal, y(m),
to the excitation signal of the predictor has the following effects:

(1) The scale of the signal amplitude is reduced to almost that of the original excitation
signal, whereas the scale of the noise amplitude remains unchanged or increases.

(2) The signal is decorrelated, whereas the impulsive noise is smeared and transformed to a
scaled version of the impulse response of the inverse filter.

Both effects improve noise delectability. Speech or music is composed of random excitations
spectrally shaped and amplified by the resonances of the vocal tract or the musical
instruments. The excitation is more random than the speech, and often has a much smaller
amplitude range. The improvement in noise pulse detectability obtained by inverse filtering
can be substantial and depends on the time-varying correlation structure of the signal. Note
that this method effectively reduces the impulsive noise detection to the problem of separation
of outliers from a random noise excitation signal using some optimal thresholding device.

12.4.2 ANALYSIS OF IMPROVEMENT IN NOISE DETECTABILITY

In the following, the improvement in noise detectability that results from inverse filtering is
analysed. Using Equation (12.25), we can rewrite a noisy signal model as

y(m) = x(m) + n;(m)
= iakx(m_k)"i_e(m)‘i‘ni(m) (12.26)

k=1

where y(m), x(m) and n;(m) are the noisy signal, the signal and the noise respectively.
Using an estimate a of the predictor coefficient vector a, the noisy signal, y(m), can be
inverse-filtered and transformed to the noisy excitation signal, v(m), as

v(m) = y(m) = a,y(m—k)
= (12.27)

P

= x(m) +n,(m) = 3 _(a, — @) [x(m — k) +n,(m — k)]

k=1

where a, is the error in the estimate of the predictor coefficient. Using Equation (12.25),
Equation (12.27) can be rewritten in the following form:

v(m) = e(m) + n,(m) + XP: ax(m—k)— XP: agn;(m—k) (12.28)
k=1 k=1
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From Equation (12.28) there are essentially three terms that contribute to the noise in the
excitation sequence:

(1) the impulsive disturbance n;(m), which is usually the dominant term;

(2) the effect of the past P noise samples, smeared to the present time by the action of the
inverse filtering, Y a,n,(m —k);

(3) the increase in the variance of the excitation signal, caused by the error in the parameter
vector estimate, and expressed by the term Y a,x(m — k).

The improvement resulting from the inverse filter can be formulated as follows. The
impulsive noise to signal ratio for the noisy signal is given by

impulsive noise power E[ni(m)]

= 12.29
signal power E[x2(m)] ( )
where ‘E[-] is the expectation operator. Note that, in impulsive noise detection, the signal
of interest is the impulsive noise to be detected from the accompanying signal. Assuming
that the dominant noise term in the noisy excitation signal, v(m), is the impulse n;(m), the
impulsive noise-to-excitation-signal ratio is given by

impulsive noise power  E[n](m)]

= 12.30
excitation power E[e?(m)] ( )
The overall gain in impulsive-noise-to-signal ratio is obtained by dividing Equations (12.29)
and (12.30), as

= gain (12.31)

This simple analysis demonstrates that the improvement in impulsive noise detectability
depends on the power amplification characteristics, due to resonances, of the linear predictor
model. For speech signals, the scale of the amplitude of the noiseless speech excitation is
on the order of 10~! to 10~ that of the speech itself; therefore substantial improvement in
impulsive noise detectability can be expected through inverse filtering of the noisy speech
signals.

Figure 12.10 illustrates the effect of inverse filtering in improving the detectability of
impulsive noise. The inverse filtering has the effect that the signal x(m) is transformed to
an uncorrelated excitation signal, e(m), whereas the impulsive noise is smeared to a scaled
version of the inverse filter impulse response [1, —ay, ..., —ap], as indicated by the term
> a,n;(m—k) in Equation (12.28). Assuming that the excitation is a white noise Gaussian
signal, a filter matched to the inverse filter coefficients may enhance the delectability of the
smeared impulsive noise from the excitation signal.

12.4.3 TWO-SIDED PREDICTOR FOR IMPULSIVE NOISE
DETECTION

In the previous section, it was shown that impulsive noise detectability can be improved by
decorrelating the speech signal. The process of decorrelation can be taken further by the use
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(a)

(b)

© L}}A}!#}&l L ek

Figure 12.10 Illustration of the effects of inverse filtering on detectability of impulsive noise:
(a) impulsive noise contaminated speech with 5% impulse contamination at an average SINR of 10 dB;
(b) speech excitation of impulse contaminated speech; and (c) speech excitation of impulse-free speech.

of a two-sided linear prediction model. The two-sided linear prediction of a sample x(m) is
based on the P past samples and the P future samples, and is defined by the equation

x(m) =" ax(m—k)+)_ ar px(m+k)+e(m) (12.32)

k=1 k=1

where a, is the two-sided predictor coefficient and e(m) is the excitation signal. All the
analysis used for the case of a one-sided linear predictor can be extended to the two-sided
model. However, the variance of the excitation input of a two-sided model is less than that of
the one-sided predictor because in Equation (12.32) the correlations of each sample with the
future, as well as the past, samples are modelled. Although Equation (12.32) is a noncausal
filter, its inverse, required in the detection subsystem, is causal. The use of a two-sided
predictor can result in further improvement in noise detectability.

12.4.4 INTERPOLATION OF DISCARDED SAMPLES

Samples irrevocably distorted by an impulsive noise are discarded and the gap thus left is
interpolated. For interpolation imperfections to remain inaudible, a high-fidelity interpolator
is required. A number of interpolators for replacement of a sequence of missing samples were
introduced in Chapter 10. The least square autoregressive (LSAR) interpolation algorithm
of Section 10.3.2 produces high-quality results for a relatively small number of missing
samples left by an impulsive noise. The LSAR interpolation method is a two-stage process.
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In the first stage, the available samples on both sides of the noise pulse are used to estimate
the parameters of a linear prediction model of the signal. In the second stage, the estimated
model parameters and the samples on both sides of the gap are used to interpolate the missing
samples. The use of this interpolator in replacement of audio signals distorted by impulsive
noise has produced high-quality results.

12.5 ROBUST PARAMETER ESTIMATION

In Figure 12.8, the threshold used for detection of impulsive noise from the excitation signal
is derived from a nonlinear robust estimate of the excitation power. In this section, we
consider the robust estimation of a parameter, such as the signal power, in the presence of
impulsive noise.

A robust estimator is one that is not oversensitive to deviations of the input signal from the
assumed distribution. In a robust estimator, an input sample with unusually large amplitude
has only a limited effect on the estimation results. Most signal processing algorithms
developed for adaptive filtering, speech recognition, speech coding, etc., are based on the
assumption that the signal and the noise are Gaussian-distributed, and employ a mean square
distance measure as the optimality criterion. The mean square error criterion is sensitive
to non-Gaussian events such as impulsive noise. A large impulsive noise in a signal can
substantially overshadow the influence of noise-free samples.

Figure 12.11 illustrates the variations of several cost-of-error functions with a parameter 6.
Figure 12.11(a) shows a least square error cost function and its influence function. The
influence function is the derivative of the cost function and, as the name implies, it has
a direct influence on the estimation results. It can be seen from the influence function of
Figure 12.11(a) that an unbounded sample has an unbounded influence on the estimation
results.

A method for introducing robustness is to use a nonlinear function and limit the influence
of any one sample on the overall estimation results. The absolute value of error is a robust
cost function, as shown by the influence function in Figure 12.11(b). One disadvantage of
this function is that it is not continuous at the origin. A further drawback is that it does not
allow for the fact that, in practice, a large proportion of the samples is not contaminated
with impulsive noise, and may well be modelled with Gaussian densities.

Many processes may be regarded as Gaussian for the sample values that cluster about
the mean. For such processes, it is desirable to have an influence function that limits the
influence of outliers and at the same time is linear and optimal for the large number of
relatively small-amplitude samples that may be regarded as Gaussian-distributed. One such
function is Huber’s function, defined as

et(m), ifle(m)| <k

. (12.33)
k|e(m)| otherwise

Ple(m)] = i

Huber’s function, shown in Figure 12.11(c), is a hybrid of the least mean square and the
absolute value of error functions. Tukey’s bi-weight function, which is a redescending robust
objective function, is defined as

(1=[1—m)P}/6 if]e(m)] <1

. (12.34)
1/6 otherwise

Ple(m)] = {
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Figure 12.11 [llustration of a number of cost-of-error functions and the corresponding influence
functions.

As shown in Figure 12.11(d), the influence function is linear for small signal values but
introduces attenuation as the signal value exceeds some threshold. The threshold may be
obtained from a robust median estimate of the signal power.

12.6 RESTORATION OF ARCHIVED GRAMOPHONE RECORDS

This section describes the application of the impulsive noise removal system of Figure 12.8
to the restoration of archived audio records. As the bandwidth of archived recordings is
limited to 7-8 kHz, a low-pass, anti-aliasing filter with a cutoff frequency of 8 kHz is used
to remove the out-of-band noise. Played back signals were sampled at a rate of 20 kHz,
and digitised to 16 bits. Figure 12.12(a) shows a 25 ms segment of noisy music and song
from an old 78 rpm gramophone record. The impulsive interferences are due to faults in the
record stamping process, granularities of the record material or physical damage. This signal
is modelled by a predictor of order 20. The excitation signals obtained from the inverse
filter and the matched filter output are shown in Figure 12.12(b) and (c), respectively. Close
examination of these figures shows that some of the ambiguities between the noise pulses
and the genuine signal excitation pulses are resolved after matched filtering.
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Figure 12.12 (a) A noisy audio signal from a 78 rpm record; (b) noisy excitation signal; (c) matched
filter output; (d) restored signal.

The amplitude threshold for detection of impulsive noise from the excitation signal is
adapted on a block basis, and is set to kof, where o-f is a robust estimate of the excitation
power. The robust estimate is obtained by passing the noisy excitation signal through a soft
nonlinearity that rejects outliers. The scalar & is a tuning parameter; the choice of k reflects
a trade-off between the hit rate and the false-alarm rate of the detector. As k decreases,
smaller noise pulses are detected but the false detection rate also increases. When an impulse
is detected, a few samples are discarded and replaced by the LSAR interpolation algorithm
described in Chapter 10. Figure 12.12(d) shows the signal with the impulses removed.
The impulsive noise removal system of Figure 12.8 was successfully applied to restoration
of numerous examples of archived gramophone records. The system is also effective in
suppressing impulsive noise in examples of noisy telephone conversations.

12.7 SUMMARY

The classic linear time-invariant theory on which many signal processing methods are based
is not suitable for dealing with the nonstationary impulsive noise problem. In this chapter, we
considered impulsive noise as a random on/off process and studied several stochastic models
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for impulsive noise, including the Bernoulli-Gaussian, the Poisson—Gaussian and the hidden
Markov models. The HMM provides a particularly interesting framework, because the theory
of HMM studied in Chapter 5 is well developed, and also because the state sequence of an
HMM of noise can be used to provide an estimate of the presence or the absence of the
noise. By definition, an impulsive noise is a short and sharp event uncharacteristic of the
signal that it contaminates. In general, differencing enhances the detectibility of impulsive
noise. Based on this observation, in Section 12.4 we considered an algorithm based on a
linear prediction model of the signal for detection of impulsive noise.

In the next chapter we expand the materials we considered here for the modelling, detection
and removal of transient noise pulses.
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Transient noise pulses differ from the short-duration impulsive noise studied in the previous
chapter, in that they have a longer duration and a relatively higher proportion of low-
frequency energy content, and usually occur less frequently than impulsive noise. The sources
of transient noise pulses are varied, and may be electromagnetic, acoustic or due to physical
defects in the recording medium. Examples of transient noise pulses include switching noise
in telephony, noise pulses due to adverse radio transmission environments, noise pulses due
to on/off switching of nearby electric devices, scratches and defects on damaged records,
click sounds from a computer keyboard, etc. The noise pulse removal methods considered
in this chapter are based on the observation that transient noise pulses can be regarded as
the response of the communication channel, or the playback system, to an impulse. In this
chapter, we study the characteristics of transient noise pulses and consider a template-based
method, a linear predictive model and a hidden Markov model for the modelling and removal
of transient noise pulses. The subject of this chapter closely follows that of Chapter 12 on
impulsive noise.

13.1 TRANSIENT NOISE WAVEFORMS

Transient noise pulses often consist of a relatively short sharp initial pulse followed by
decaying low-frequency oscillations, as shown in Figure 13.1. The initial pulse is usually
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n(m)

~

Figure 13.1 The profile of a transient noise pulse from a scratched gramophone record.

due to some external or internal impulsive interference, whereas the oscillations are often
due to the resonance of the communication channel excited by the initial pulse, and may
be considered as the response of the channel to the initial pulse. In a telecommunications
system, a noise pulse originates at some point in time and space, and then propagates through
the channel to the receiver. The noise pulse is shaped by the channel characteristics, and
may be considered as the channel pulse response. Thus we expect to be able to characterize
the transient noise pulses with a similar degree of consistency to that of the channels through
which the pulses propagate.

As an illustration of the distribution of a transient noise pulse in time and frequency,
consider the scratch pulses from a damaged gramophone record shown in Figures 13.1 and
13.2. Scratch noise pulses are acoustic manifestations of the response of the stylus and
the associated electromechanical playback system to a sharp physical discontinuity on the
recording medium. Since scratches are essentially the impulse response of the playback
mechanism, it is expected that, for a given system, various scratch pulses exhibit a similar
characteristics. As shown in Figure 13.1, a typical scratch waveform often exhibits two
distinct regions:

(1) the initial high-amplitude pulse response of the playback system to the physical
discontinuity on the record medium; this is followed by
(2) decaying oscillations that cause additive distortion.

The initial pulse is relatively short and has a duration on the order of 1-5ms, whereas the
oscillatory tail has a longer duration and may last up to 50 ms. Note in Figure 13.1 that the
frequency of the decaying oscillations decreases with time. This behaviour may be attributed
to the nonlinear modes of response of the electromechanical playback system excited by
the physical scratch discontinuity. Observations of many scratch waveforms from damaged
gramophone records reveal that they have a well-defined profile, and can be characterised
by a relatively small number of typical templates.

A similar argument can be used to describe the transient noise pulses in other systems as
the response of the system to an impulsive noise. Figure 13.2(a) and (b) shows the time-
domain waveform and the spectrogram of a section of music and song with scratch-type
noise. Note that, as the scratch defect on the record was radial, the scratch pulses occur
periodically with a period of 78 pulses per scratch per minute. As can be seen, there were
in fact two scratches on the record.
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(b)

Figure 13.2 An example of (a) the time-domain waveform and (b) the spectrogram of transient noise
scratch pulses in a damaged gramophone record.

The observation that transient noise pulses exhibit certain distinct, definable and consistent
characteristics can be used for the modelling, detection and removal of transient noise pulses.

13.2 TRANSIENT NOISE PULSE MODELS

To a first approximation, a transient noise pulse, n(m), can be modelled as the impulse
response of a linear time-invariant filter model of the channel as

n(m)=>_ h,A8(m—k)= Ah,, (13.1)

where A is the amplitude of the driving impulse and £, is the channel impulse response. A
burst of overlapping, or closely spaced, noise pulses can be modelled as the response of a
channel to a sequence of impulses as

n(m)=3 h Y A8[(m—T) k] =3 Ah,_r, (13.2)
k j J

where it is assumed that the jth transient pulse is due to an impulse of amplitude A; at
time Tj. In practice, a noise model should be able to deal with the statistical variations of a
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variety of noise and channel types. In this section, we consider three methods for modelling
the temporal, spectral and durational characteristics of a transient noise pulse process:

(1) a template-based model,
(2) a linear-predictive model;
(3) a hidden Markov model.

13.2.1 NOISE PULSE TEMPLATES

A widely used method for modelling the space of a random process is to model the process
as a collection of signal clusters, and to design a codebook of templates containing the
‘centroids’ of the clusters. The centroids represent various typical forms of the process. To
obtain the centroids, the signal space is partitioned into a number of regions or clusters,
and the ‘centre’ of the space within each cluster is taken as a centroid of the signal
process.

Similarly, a codebook of transient noise pulses can be designed by collecting a large
number of training examples of the noise, and then using a clustering technique to group,
or partition, the noise database into a number of clusters of noise pulses. The centre of each
cluster is taken as a centroid of the noise space. Clustering techniques can be used to obtain a
number of prototype templates for the characterisation of a set of transient noise pulses. The
clustering of a noise process is based on a set of noise features that best characterise the noise.
Features derived from the magnitude spectrum are commonly used for the characterisation
of many random processes. For transient noise pulses, the most important features are the
pulse shape, the temporal—spectral characteristics of the pulse, the pulse duration and the
pulse energy profile. Figure 13.3 shows a number of typical noise pulses. The design of a
codebook of signal templates is described in Chapter 4.

b n(m)  n(m)

n(m) n(m)

N\
\/‘/ m m

Figure 13.3 A number of prototype transient pulses.
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13.2.2 AUTOREGRESSIVE MODEL OF TRANSIENT NOISE PULSES

Model-based methods have the advantage over template-based methods that overlapped noise
pulses can be modelled as the response of the model to a number of closely spaced impulsive
inputs. In this section, we consider an autoregressive model of transient noise pulses. The
AR model for a single noise pulse n(m) can be described as

n(m) = XP:ckn(m—k)+A8(m) (13.3)

k=1

where ¢, is the AR model coefficient, and the excitation is an impulse function, 6(m), of
amplitude A. A number of closely spaced and overlapping transient noise pulses can be
modelled as the response of the AR model to a sequence of impulses:

n(m) :ickn(m—k)+§:Aj6(m—Tj) (13.4)
k=1 j

where it is assumed that T} is the start of the jth pulse in a burst of M excitation pulses.

An improved AR model for transient noise, proposed by Godsill, is driven by a two-
state excitation: in the state S,, the excitation is a zero-mean Gaussian process of small
variance o, and in the state S,, the excitation is a zero-mean Gaussian process of relatively
larger variance, o7 > 0. In the state S, a short-duration, and relatively large-amplitude,
excitation generates a linear model of the transient noise pulse. In the state S, the model
generates a low-amplitude excitation that partially models the inaccuracies of approximating
a transient noise pulse by a linear predictive model. The binary-state excitation signal can
be expressed as

e,(m) =[ob(m) + GOE(m)] u(m) (13.5)

where u(m) is an uncorrelated zero-mean unit-variance Gaussian process and b(m) indicates
the state of the excitation signal: b(m) = 1 indicates that the excitation has a variance of o7,
and b(m) = 0 [or its binary complement b(m) = 1] indicates the excitation has a smaller
variance of o¢. The time-varying variance of e,(m) can be expressed as

ofn (m) = atb(m) + ogb(m) (13.6)

Assuming that the excitation pattern b(m) is given, and that the excitation amplitude is
Gaussian, the pdf of an N-sample long noise pulse, n, is given by

1 1 _
fy(m) = W exp <—§nTCTAenL"Cn) (13.7)
. eqe,

where C is a matrix of coefficients of the AR model of the noise (as described in Section 8.4),
and A, , is the diagonal covariance matrix of the input to the noise model. The diagonal
elements of A, , are given by Equation (13.6).
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Figure 13.4 A three-state model of a transient noise pulse process.

13.2.3 HIDDEN MARKOV MODEL OF A NOISE PULSE PROCESS

A hidden Markov model, described in Chapter 5, is a finite state statistical model for
nonstationary random processes such as speech or transient noise pulses. In general, we may
identify three distinct states for a transient noise pulse process:

(1) the periods during which there are no noise pulses;
(2) the initial, and often short and sharp, pulse of a transient noise;
(3) the decaying oscillatory tail of a transient pulse.

Figure 13.4 illustrates a three-state HMM of transient noise pulses. The state S, models the
periods when the noise pulses are absent. In this state, the noise process may be zero-valued.
This state can also be used to model a different noise process such as a white noise process.
The state S, models the relatively sharp pulse that forms the initial part of many transient
noise pulses. The state S, models the decaying oscillatory part of a noise pulse that usually
follows the initial pulse of a transient noise. A codebook of waveforms in states S, and S,
can model a variety of different noise pulses. Note that, in the HMM model of Figure 13.4,
the self-loop transition provides a mechanism for the modelling of the variations in the
duration of each noise pulse segment. The skip-state transitions provide a mechanism for the
modelling of those noise pulses that do not exhibit either the initial nonlinear pulse or the
decaying oscillatory part.

A hidden Markov model of noise can be employed for both the detection and the removal
of transient noise pulses. As described in Section 13.3.3, the maximum-likelihood state-
sequence of the noise HMM provides an estimate of the state of the noise at each time instant.
The estimates of the states of the signal and the noise can be used for the implementation of
an optimal state-dependent signal restoration algorithm.

13.3 DETECTION OF NOISE PULSES

For the detection of a pulse process, n(m), observed in an additive signal, x(m), the signal
and the pulse can be modelled as

y(m) = b(m)n(m) + x(m) (13.8)
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where b(m) is a binary ‘indicator’ process that signals the presence or absence of a noise
pulse. Using the model of Equation (13.8), the detection of a noise pulse process can be
considered as the estimation of the underlying binary-state noise-indicator process, b(m).
In this section, we consider three different methods for detection of transient noise pulses,
using the noise template model within a matched filter, the linear predictive model of noise,
and the hidden Markov model described in Section 13.2.

13.3.1 MATCHED FILTER FOR NOISE PULSE DETECTION

The inner product of two signal vectors provides a measure of the similarity of the signals.
Since filtering is basically an inner product operation, it follows that the output of a filter
should provide a measure of similarity of the filter input and the filter impulse response.
The classical method for detection of a signal is to use a filter whose impulse response is
matched to the shape of the signal to be detected. The derivation of a matched filter for the
detection of a pulse, n(m), is based on maximisation of the amplitude of the filter output
when the input contains the pulse n(m). The matched filter for the detection of a pulse,
n(m), observed in a ‘background’ signal, x(m), is defined as

N*(f)
Pyx (/)

where Py, (f) is the power spectrum of x(m) and N*(f) is the complex conjugate of the
spectrum of the noise pulse. When the ‘background’ signal process, x(m), is a zero mean
uncorrelated signal with variance o, the matched filter for detection of the transient noise
pulse, n(m), becomes

H() =K

(13.9)

H() = ZN*() (13.10)

The impulse response of the matched filter corresponding to Equation (13.10) is given by
h(m) = Cn(—m) (13.11)

where the scaling factor C is given by C = K/o2. Let z(m) denote the output of the matched
filter. In response to an input noise pulse, the filter output is given by the convolution relation

z(m) = Cn(—m)*n(m) (13.12)
where the asterisk * denotes convolution. In the frequency domain Equation (13.12) becomes

Z(f) = N(HH(f) = CIN(f)|* (13.13)

The matched filter output z(m) is passed through a nonlinearity and a decision is made on
the presence or the absence of a noise pulse as

1 if |z(m)| > threshold

b(m) = .
0 otherwise

(13.14)
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Figure 13.5 A bank of matched filters for detection of transient noise pulses.

In Equation (13.14), when the matched filter output exceeds a threshold, the detector flags
the presence of the signal at the input. Figure 13.5 shows a noise pulse detector composed
of a bank of M different matched filters. The detector signals the presence or the absence of
a noise pulse. If a pulse is present then additional information provides the type of the pulse,
the maximum cross-correlation of the input and the noise pulse template, and a time delay
that can be used to align the input noise and the noise template. This information can be
used for subtraction of the noise pulse from the noisy signal, as described in Section 13.4.1.

13.3.2 NOISE DETECTION BASED ON INVERSE FILTERING

The initial part of a transient noise pulse is often a relatively short and sharp impulsive-type
event, which can be used as a distinctive feature for the detection of the noise pulses. The
detectibility of a sharp noise pulse, n(m), observed in a correlated ‘background’ signal,
y(m), can often be improved by using a differencing operation, which has the effect of
enhancing the relative amplitude of the impulsive-type noise. The differencing operation can
be accomplished by an inverse linear predictor model of the background signal, y(m). An
alternative interpretation is that the inverse filtering is equivalent to a spectral whitening
operation: it affects the energy of the signal spectrum, whereas the theoretically flat spectrum
of the impulsive noise is largely unaffected. The use of an inverse linear predictor for the
detection of an impulsive-type event was considered in detail in Section 12.4. Note that
the inverse filtering operation reduces the detection problem to that of detecting a pulse in
additive white noise.

13.3.3 NOISE DETECTION BASED ON HMM

In the three-state hidden Markov model of a transient noise pulse process described in
Section 13.2.3, the states S,,, S; and S, correspond to the noise-absent state, the initial noise
pulse state and the decaying oscillatory noise state, respectively. As described in Chapter 5,
an HMM, denoted by M, is defined by a set of Markovian state transition probabilities and
Gaussian state observation pdfs. The statistical parameters of the HMM of a noise pulse
process can be obtained from a sufficiently large number of training examples of the process.
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Given an observation vector, y = [y(0), y(1), ..., y(N —1)], the maximum likelihood
state sequence s = [5(0), s(1), ..., s(N —1)], of the HMM M is obtained as

Sy, = argmax fys (vls, M) (13.15)

where, for a hidden Markov model, the likelihood of an observation sequence, fys(yls, A),
can be expressed as

Tys[(0), y(1), ..., y(N = 1)[s(0), s(1), ..., s(N —1)]
= s(O)fs(O) [y(0)] 'as(O),s(l)fs(l) ()] as(Nfz),s(N—l)fs(N—l) [Y(N-1)] (13.16)

where ;) is the initial state probability, a, . is the probability of a transition from state
s(i) to state s(j), and f; [y(7)] is the state observation pdf for the state s(i). The maximum-
likelihood state sequence, s,; , derived using the Viterbi algorithm, is an estimate of the
underlying states of the noise pulse process, and can be used as a detector of the presence
or absence of a noise pulse.

13.4 REMOVAL OF NOISE PULSE DISTORTIONS

In this section, we consider two methods for the removal of transient noise pulses: (a) an
adaptive noise subtraction method; and (b) an autoregressive model-based restoration method.
The noise removal methods assume that a detector signals the presence or the absence of a
noise pulse, and provides additional information on the timing and the underlying states of
the noise pulse.

13.4.1 ADAPTIVE SUBTRACTION OF NOISE PULSES

The transient noise removal system shown in Figure 13.6 is composed of a matched filter
for detection of noise pulses, a linear adaptive noise subtractor for cancellation of the linear
transitory part of a noise pulse, and an interpolator for the replacement of samples irrevocably

Signal + noise pulse Signal estimate

y(m) = x(m) + n(m) £(m)
15, > @—» Interpolator |——

A

1: Noise pulse present
0: Noise pulse absent

Matched filter
detector

Noise pulse
template

@— | Delay

Y

Figure 13.6 Transient noise pulse removal system.
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distorted by the initial part of each pulse. Let x(m), n(m) and y(m) denote the signal, the
noise pulse and the noisy signal, respectively; the noisy signal model is

y(m) = x(m) + b(m) n(m) (13.17)

where the binary indicator sequence, b(m), indicates the presence or the absence of a noise
pulse. Assume that each noise pulse, n(m), can be modelled as the amplitude-scaled and
time-shifted version of the noise pulse template 72(m), so that

n(m) =~ wn(m — D) (13.18)

where w is an amplitude scalar and the integer D denotes the relative delay (time shift)
between the noise pulse template and the detected noise. From Equations (13.17) and (13.18)
the noisy signal can be modelled:

y(m) =~ x(m) + wn(m — D) (13.19)

From Equation (13.19) an estimate of the signal, x(m), can be obtained by subtracting an
estimate of the noise pulse from that of the noisy signal:

x(m) = y(m) —wn(m — D) (13.20)

where the time delay D required for time-alignment of the noisy signal, y(m), and the noise
template, 7(m), is obtained from the cross-correlation function CCF as

D = argmax {CCF [y(m), n(m — k)]} (13.21)

When a noise pulse is detected, the time lag corresponding to the maximum of the cross-
correlation function is used to delay and time-align the noise pulse template with the noise
pulse. The template energy is adaptively matched to that of the noise pulse by an adaptive
scaling coefficient, w. The scaled and time-aligned noise template is subtracted from the
noisy signal to remove linear additive distortions. The adaptive scaling coefficient, w, is
estimated as follows. The correlation of the noisy signal y(m) with the delayed noise pulse
template 72(m — D) gives

S y(m)ii(m—D) = 3" [x(m) + wit(m — D) ii(m — D)
"0 Zi) . (13.22)
=Y x(m)i(m—D)+w »_ n(m— D)n(m— D)
m=0 m=0

where N is the pulse template length. Since the signal x(m) and the noise n(m) are
uncorrelated, the term 2x(m)n(m — D) on the right-hand side of Equation (13.22) is small,
and we have

2 y(m)a(m — D)
S (13.23)
X (m—D)
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Note that, when a false detection of a noise pulse occurs, the cross-correlation term and hence
the adaptation coefficient, w, could be small. This will keep the signal distortion resulting
from false detections to a minimum.

Samples that are irrevocably distorted by the initial scratch pulse are discarded and replaced
by one of the signal interpolators introduced in Chapter 10. When there is no noise pulse,
the coefficient w is zero, the interpolator is bypassed and the input signal is passed through
unmodified. Figure 13.7(b) shows the result of processing the noisy signal of Figure 13.7(a).
The linear oscillatory noise is completely removed by the adaptive subtraction method. For
this signal 80 samples irrevocably distorted by the initial scratch pulse were discarded and
interpolated.

13.4.2 AR-BASED RESTORATION OF SIGNALS DISTORTED BY
NOISE PULSES

A model-based approach to noise detection/removal provides a more compact method for
characterisation of transient noise pulses, and has the advantage that closely spaced pulses
can be modelled as the response of the model to a number of closely spaced input impulses.
The signal x(m) is modelled as the output of an AR model of order P, as

x(m) = iakx(m—k)—i—e(m) (13.24)

il M WL L VAR ) l||ﬂ I
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Figure 13.7 (a) A signal from an old gramophone record with a scratch noise pulse. (b) The restored
signal.
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Assuming that e(m) is a zero-mean uncorrelated Gaussian process with variance o, the pdf
of a vector, x, of N successive signal samples of an autoregressive process with parameter
vector, a, is given by

1 1
fX(x) = W exXp (—EXTATA.X) (1325)

where the elements of the matrix A are composed of the coefficients a, of the linear predictor
model, as described in Section 8.4. In Equation (13.25), it is assumed that the P, initial
samples are known. The AR model for a single noise pulse waveform n(m) can be written as

n(m) = %ckn(m—k)+A5(m) (13.26)

k=1

where c, is the model coefficient, P, is the model order, and the excitation is assumed to be
an impulse of amplitude A. A number of closely spaced and overlapping noise pulses can
be modelled as

n(m) = ia,\,n(m—k)—l—ZAjS(m— T)) (13.27)

where it is assumed that 7, is the start of the kth excitation pulse in a burst of M pulses.
A linear predictor model proposed by Godsill is driven by a binary-state excitation. The
excitation waveform has two states: in state ‘0’, the excitation is a zero-mean Gaussian
process of variance Ug, and in state ‘1°, the excitation is a zero-mean Gaussian process
of variance o7 >> of. In state ‘1’, the model generates a short-duration large amplitude
excitation that largely models the transient pulse. In state ‘0’, the model generates a low
excitation that partially models the inaccuracies of approximating a nonlinear system by an
AR model. The composite excitation signal can be written as

e,(m) = [b(m)o, +Z(m)0'0] u(m) (13.28)

where u(m) is an uncorrelated zero-mean Gaussian process of unit variance, b(m) is a binary
sequence that indicates the state of the excitation, and b(m) is the binary complement of
b(m). When b(m) = 1 the excitation variance is o7 and when b(m) = 0, the excitation
variance is o7. The binary-state variance of e,(m) can be expressed as

0'62“ (m) = b(m)o? +b(m)o? (13.29)
Assuming that the excitation pattern b = [b(m)] is given, the pdf of an N sample noise pulse
xis

1 1 _
fN(nlb) = W exp (_ E"TCTAe"le“Cn> (1330)
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where the elements of the matrix C are composed of the coefficients, c,, of the linear
predictor model, as described in Section 8.4. The posterior pdf of the signal x given the
noisy observation y, fyy(x|y), can be expressed, using Bayes’s rule, as

1
fX|Y(x|y): _fY|X(y|x)fX(x)
lecy) (13.31)
= mfzv(y—x)fx(x)

For a given observation, fy(y) is a constant. Substitution of Equations (13.30) and (13.25)
in Equation (13.31) yields

1 1
Iy @mo,)¥ |Ae"en | 2

fX|Y (xly) =
(13.32)
1 1
xexp|—=@—x)" C'AL C(y—x)— —x"A"Ax
2 nén 20?2

The MAP solution obtained by maximisation of the log posterior function with respect to
the undistorted signal x is given by

PP = (ATA /02 +CTA;L €)' CTALL Cy (13.33)

where £MAP is the MAP interpolation.

13.5 SUMMARY

In this chapter, we considered the modelling, detection and removal of transient noise pulses.
Transient noise pulses are nonstationary events similar to impulsive noise, but usually occur
less frequently and have a longer duration than impulsive noise. An important observation
in the modelling of transient noise is that the noise can be regarded as the impulse response
of a communication channel, and hence may be modelled by one of a number of statistical
methods used in the of modelling communication channels. In Section 13.2, we considered
several transient noise pulse models including a template-based method, an AR model-based
method and a hidden Markov model. In Sections 13.2 and 13.3, these models were applied
to the detection and removal of noise pulses.
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Echo is the repetition of a waveform due to reflections from points where the characteristics
of the medium through which the wave propagates change. In telecommunications, echo can
degrade the quality of service, and echo cancellation is an essential part of communications
systems. The development of echo reduction began in the late 1950s, and continues today
as new integration of landline, wireless cellular networks, internet, multi-input multi-output
communication devices and teleconferencing systems place additional requirements on the
performance of echo cancellers.

There are two types of echo in communication systems: acoustic echo and telephone
line echo. Acoustic echo results from a feedback path set up between the loudspeaker and
the microphone in a mobile phone, hands-free phone, teleconference or hearing aid system.
Acoustic echo may be reflected from a multitude of different surfaces, such as walls, ceilings
and floors, and travels through multiple paths.

Telephone line echoes result from an impedance mismatch at the telephone exchange
hybrids where the subscriber’s two-wire line is connected to a four-wire line. The perceptual
effects of an echo depend on the time delay between the incident and reflected waves,
the strength of the reflected waves and the number of paths through which the waves are
reflected. Telephone line echoes, and acoustic feedback echoes in teleconference and hearing
aid systems, are undesirable and annoying and can be severely disruptive. In this chapter we
study some methods for removing line echo from telephone and data telecommunications
systems, and acoustic feedback echoes from microphone—loudspeaker systems.

Advanced Digital Signal Processing and Noise Reduction Third Edition Saeed V. Vaseghi
© 2006 John Wiley & Sons, Ltd
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14.1 INTRODUCTION: ACOUSTIC AND HYBRID ECHOES

Echo is the reflection of a signal from the points or surfaces where the characteristics of the
medium through which the signal propagates change. Echo is usefully employed for detection,
exploration and navigation purposes in electronic detection and imaging instruments such as
in sonar, ultrasonic imaging, infrared imaging and radar, and by some animals such as bats
and dolphins.

In telecommunications, echo can severely affect the quality and intelligibility of voice
conversation in telephone, teleconference or cabin communication systems. The perceived
effect of an echo depends on its amplitude and time delay. In general, echoes with appreciable
amplitudes and a delay of more than 1 ms can be noticeable. Provided the round-trip delay of
the echo signal is of the order of a few milliseconds, echo gives a telephone call a perceived
sense of ‘liveliness’. However, echoes become increasingly annoying and objectionable with
increasing round-trip delay and amplitude, in particular for delays of more than 20 ms. Above
a delay of 200 ms, echoes can be disruptive for voice communication

Echo cancellation is an important aspect of the design of modern telecommunications
systems such as conventional wire-line telephones, hands-free phones, cellular mobile
(wireless) phones, teleconference systems and in-car cabin communication systems. There
are two types of echo in a telephone system (Figure 14.1):

(1) acoustic echo due to acoustic coupling between the speaker and the microphone in
hands-free phones, mobile phones and teleconference systems;

(2) electrical line echo due to mismatch at the hybrid circuit connecting a two-wire subscriber
line to a four-wire truck line in the public switched telephone network.

In telephone landlines echoes are mostly due to the impedance mismatch at the point
of connection of the two-wire local line to the four-wire trunk line. In the early days of
expansion of telephone networks, the cost of running a four-wire line from the local exchange
to subscribers’ premises was considered uneconomical. Hence, at the exchange the four-wire
trunk lines are converted to two-wire subscribers’ local lines using a two/four-wire hybrid
bridge circuit. At the receiver, owing to any imbalance between the four/two-wire bridge
circuit, some of the signal energy of the four-wire circuit is bounced back towards the
transmitter, constituting an echo signal. If the echo is more than a few milliseconds long
then it becomes noticeable, and can be annoying and disruptive.

S — &
-!--

Echo cancellers

Hybrid echo Mobile switching Acoustic echo
centre

Figure 14.1 [Illustration of sources of echo in a mobile-to-landline system.
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In digital mobile phone systems, the echo is often due to the acoustic feedback coupling
between the speaker and the microphone on the handset. In mobile phones the voice signals
are processed at two points in the network: first, at the voice coder on the hand sets, the
speech signals are digitised, divided into frames, compressed, coded and modulated; then the
signal is processed at the radio frequency interface of the network. The total delay introduced
by the various stages of digital signal processing range from 80 to 100 ms, resulting in a
total round-trip delay of 160-200 ms for any echo. A delay of this magnitude will make any
significant echo disruptive to the communication process. Owing to the inherent processing
delay in digital mobile communication systems, it is essential and mandatory to employ echo
cancellers in mobile phone switching centres.

14.2 TELEPHONE LINE HYBRID ECHO

Hybrid echo is the main source of echo generated from the public-switched telephone
network (PSTN). Echoes on a telephone line are due to the reflection of speech signals at
the points of impedance mismatch on the connecting circuits. Conventionally, telephones in
a given geographical area are connected to an exchange by a two-wire twisted line, called
the subscriber’s line, which serves to receive and transmit signals. Both transmit and receive
signals are present on the two-wire lines of the subscriber loop. In a conventional system a
local call is set up by establishing a direct connection, at the telephone exchange, between
two subscribers’ loops. For a local call, there is usually no noticeable echo, either because
there is no significant impedance mismatch on the connecting two-wire local lines or because
the distances are relatively small and the resulting low-delay echoes (less than 30 ms) are
perceived as a slight amplification and ‘livening’ effect. For long-distance communication
between two exchanges, it is necessary to use repeaters to amplify the speech signals;
therefore a separate two-wire telephone line is required for each direction of transmission.
To establish a long-distance call, at each end, a two-wire subscriber’s line must be
connected to a four-wire line at the exchange, as illustrated in Figure 14.2. The device that
connects the two-wire subscriber’s loop to the four-wire line is called a hybrid, and is shown
in Figure 14.3. As shown, the hybrid is basically a three-port bridge circuit that separates
the transmit and receive signals into two separate pairs of wires. If the hybrid bridge circuit
were perfectly balanced, then there would be no reflection of signal or echo. However, each

Voice of A

> .
Hybrid A Echo of B Hybrid B

. . 2 wire 4 wire
2 wire 4 wire

% >

Echo of A
e I

Speaker A

Speaker B

Voice of B

Figure 14.2 Illustration of a telephone call set up by connection of two-wire subscriber’s phone lines
via hybrids to four-wire lines at the exchange.
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Figure 14.3 A two-wire to four-wire hybrid connection circuit.

hybrid circuit serves a number of subscribers’ lines. The subscribers’ lines do not all have
the same length and impedance characteristics; therefore it is not possible to achieve perfect
balance for all subscribers at the hybrids. When the bridge is not perfectly balanced, some
of the signal energy on the receiving four-wire lines becomes coupled back onto itself and
produces an echo.

14.2.1 ECHO: THE SOURCES OF DELAY IN TELEPHONE
NETWORKS

The delay of an echo is the round trip time taken for the signal to arrive back at the source.
End-to-end propagation delay is the sum of delays required for the voice of one speaker to
propagate through different network devices and network links to reach the listener. Round-
trip delay of an echo is the propagation time from the transmitter to the receiver and then
back to transmitter.

For example when a long-distance call is made via a mobile phone and a satellite, the
round-trip echo delay can be as long as, or sometimes even more than, 600 ms, and echoes can
become disruptive. For this reason the employment of echo cancellers in mobile switching
centres and satellite networks is mandatory.

The sources of delay in PSTN telephone network are as follows:

speech coder delay, 2.5-40 ms;

inter-process hand-offs delay, about 10 ms at each end;

transmission line delay, about 1 ms per 100 miles of cable;

satellite links delay, 250-300 ms — multiple hops can yield longer delays;
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® packet delay, from 0.5 ms for a 128 K packet on a 2 Mbps line, to 128.6 ms for a 1024 K
packet on a 64 kbps line;

e voice-over IP (VoIP) gateway node, 50—-100 ms;

e decompression delay, typically 10 ms or less.

Acoustic echo can be longer than line echo. The duration of acoustic echo depends on the
dimensions of the room and the number of reflections off the walls that the echo goes
through. For example, sound travels at a speed of 340 m/s at a room temperature of 25°C.
Hence the time taken for sound to travel 1 m will be about 1/340 &~ 2.94ms. A trip of 10m
from speaker to microphone will take about 29.4 ms and then to this must be added the delay
for coding and transmission through the communication network as described above.

14.2.2 ECHO RETURN LOSS

The intensity of echo is measured in terms the echo return loss (ERL), defined as the power
ratio, in dB, of the transmitted signal to that of the returned echo as

transmitted signal power

ERL = 10log,, ( ) (dB) (14.1)

echo return signal power

The higher the echo return loss is, the lower will be the power of the echo. The echo return
loss enhancement (ERLE) is the difference in ERL before and after application of the echo
cancellation.

14.3 HYBRID ECHO SUPPRESSION

The development of echo reduction began in the late 1950s with the advent of echo
suppression systems. Echo suppressors were first employed to manage the echo generated
primarily in satellite circuits. An echo suppresser (Figure 14.4) is primarily a switch that
lets the speech signal through during the speech-active periods and attenuates the line echo

Echo/speech
classifier

- Speaker B
o o

Echo suppressor

Figure 14.4 Block diagram illustration of an echo suppression system.
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during the speech-inactive periods. A line echo suppresser is controlled by a speech/echo
detection device. The echo detector monitors the signal levels on the incoming and outgoing
lines, and decides if the signal on a line from, say, speaker B to speaker A is the speech from
the speaker B to the speaker A, or the echo of speaker A. If the echo detector decides that
the signal is an echo then the signal is heavily attenuated. There is a similar echo suppression
unit from speaker A to speaker B.

The performance of an echo suppresser depends on the accuracy of the echo/speech
classification subsystem. Echo of speech often has a smaller amplitude than the speech
signal, but otherwise it has mainly the same spectral characteristics and statistics as those
of the speech. Therefore the only basis for discrimination of speech from echo is the signal
level. As a result, the speech/echo classifier may wrongly classify and let through high-
level echoes as speech, or attenuate low-level speech as echo. For terrestrial circuits, echo
suppressers have been well designed, with an acceptable level of false decisions and a good
performance. The performance of an echo suppresser depends on the time delay of the echo.
In general, echo suppressers perform well when the round-trip delay of the echo is less
than 100 ms. For a conversation routed via a geostationary satellite, the round-trip delay
may be as much as 600 ms. Such long delays can change the pattern of conversation and
result in a significant increase in speech/echo classification errors. When the delay is long,
echo suppressers fail to perform satisfactorily, and this results in choppy first syllables and
artificial volume adjustment. A system that is effective with both short and long time delays
is the adaptive echo canceller, introduced next.

14.4 ADAPTIVE ECHO CANCELLATION

Echo cancellation was developed in the early 1960s by AT&T Bell Laboratories and
later by COMSAT TeleSystems. The first echo cancellation systems were experimentally
implemented across satellite communication networks to demonstrate network performance
for long-distance calls.

Figure 14.5 illustrates the operation of an adaptive line echo canceller. The speech signal
on the line from speaker A to speaker B is input to the four/two-wire hybrid B and to the
echo canceller. The echo canceller monitors the signal on line from B to A and attempts to
model the echo path and synthesise a replica of the echo of speaker A. This replica is used to

From speaker A

XA(m) /
Adaptive 2 wire 4 wire
filter >
,%ZCho(m)
To speaker A | Ve Speaker B

U+ xg(m)+ ccho (m)

XA

Echo canceller

Figure 14.5 Block diagram illustration of an adaptive echo cancellation system.
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subtract and cancel out the echo of speaker A on the line from B to A. The echo canceller is
basically an adaptive linear filter. The coefficients of the filter are adapted so that the energy
of the signal on the line is minimised. The echo canceller can be an infinite impulse response
or a finite impulse response filter. The main advantage of an IIR filter is that a long-delay
echo can be synthesised by a relatively small number of filter coefficients. In practice, echo
cancellers are based on FIR filters. This is mainly due to the practical difficulties associated
with the adaptation and stable operation of adaptive IIR filters.

Assuming that the signal on the line from speaker B to speaker A, yg(m), is composed of
the speech of speaker B, x;(m), plus the echo of speaker A, x$"°(m), we have

yg (m) = g (m) + x5 (m) (14.2)

In practice, speech and echo signals are not simultaneously present on a phone line unless
both speakers are speaking simultaneously. This, as pointed out below, can be used to
simplify the adaptation process. Assuming that the truncated impulse response of the echo
path is modelled by an FIR filter, the output estimate of the synthesised echo signal can be
expressed as

3" (m) = XP: hy (m)x,(m — k) (14.3)

k=0

where h,(m) are the time-varying coefficients of an adaptive FIR filter model of the echo
path and X§"°(m) is an estimate of the echo of speaker A on the line from speaker B to
speaker A. The residual echo signal, or the error signal, after echo subtraction is given by

e(m) = yg(m) — X5 (m)

P (14.4)
= xp(m) + x5 (m) = 3~ by (m)x, (m — k)

k=0

For those time instants when speaker A is talking and speaker B is listening and silent, and
only echo is present from line B to A, we have

e(m) = T (m) = £ (m) = 5 (m)

= xX°(m) — i Iy (m)xp (m — k) (14

k=0

where X" (m) is the residual echo. An echo canceller using an adaptive FIR filter is
illustrated in Figure 14.6. The magnitude of the residual echo depends on the ability of the
echo canceller to synthesise a replica of the echo, and this in turn depends on the adaptation
algorithm discussed next.

14.4.1 ECHO CANCELLER ADAPTATION METHODS

The echo canceller coefficients, &, (m), are adapted to minimise the energy of the echo
signal on a telephone line, say from speaker B to speaker A. Assuming that the speech
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Figure 14.6 Illustration of an echo canceller using an adaptive FIR filter and incorporating an
echo/speech classifier.

signals x, (m) and xg(m) are uncorrelated, the energy on the telephone line from B to A
is minimised when the echo canceller output, ¥$"°(m), is equal to the echo, x$"°(m), on
the line. The echo canceller coefficients may be adapted using one of the variants of the
recursive least square error or the least mean squared error adaptation methods. One of the
most widely used algorithms for adaptation of the coefficients of an echo canceller is the
normalised least mean square error (NLMS) method. The time-update equation describing

the adaptation of the filter coefficient vector is

_ e(m)
h(m)=h(m—1) +MWXA(WZ) (14.6)
where x,(m) = [x,(m), ..., xs(m— P)] and h(m) = [hy(m), ..., hp_,(m)] are the input

signal vector and the coefficient vector of the echo canceller, and e(m) is the error signal that
is the difference between the signal on the echo line and the output of the echo synthesiser.
Note that the normalising quantity x(m)}x,(m) is the energy of the input speech to the
adaptive filter. The scalar u is the adaptation step size, and controls the speed of convergence,
the steady-state error and the stability of the adaptation process.

14.4.2 CONVERGENCE OF LINE ECHO CANCELLER

For satisfactory performance, the echo canceller should have a fast convergence rate, so that
it can adequately track changes in the communication link and the signal characteristics. The
convergence of an echo canceller is affected by the following factors:

(1) Nonstationary characteristics of telephone line and speech — the echo characteristics
depend on the impedance mismatch between the subscribers’ loop and the hybrids. Any
changes in the connecting paths affect the echo characteristics and the convergence
process. Also, as explained in Chapter 7, the nonstationary character and the eigenvalue
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spread of the input speech signal of an LMS adaptive filter affect the convergence rates
of the filter coefficients.

(2) Simultaneous conversations — double talks. In a telephone conversation, usually the
talkers do not speak simultaneously, and hence speech and echo are seldom present on
a line at the same time. This observation simplifies the echo cancellation problem and
substantially aids the correct functioning of adaptive echo cancellers. Problems arise
during the periods when both speakers talk at the same time. This is because speech and
its echo have similar characteristics and occupy basically the same bandwidth. When the
reference signal contains both echo and speech, the adaptation process can lose track,
and the echo cancellation process can attempt to cancel out and distort the speech signal.
One method of avoiding this problem is to use a voice activity detector (VAD), and
freeze the adaptation process during periods when speech and echo are simultaneously
present on a line, as shown in Figure 14.6. In this system, the effect of a speech/echo
misclassification is that the echo may not be optimally cancelled out. This is more
acceptable than is the case in echo suppressors, where the effect of a misclassification
is the suppression and loss of part of the speech.

(3) The adaptation algorithm — most echo cancellers use variants of the LMS adaptation
algorithm. The attractions of the LMS are its relatively low memory and computational
requirements and its ease of implementation and monitoring. The main drawback of
LMS is that it can be sensitive to the eigenvalue spread of the input signal and is
not particularly fast in its convergence rate. However, in practice, LMS adaptation
has produced effective line echo cancellation systems. The RLS error methods have a
faster convergence rate and a better minimum mean square error performance. With the
increasing availability of low-cost high-speed dedicated digital signal processing (DSP)
processors, implementation of higher-performance and computationally intensive echo
cancellers based on RLS are now feasible.

14.4.3 ECHO CANCELLATION FOR DIGITAL DATA TRANSMISSION

Echo cancellation becomes more complex with the increasing integration of wireline
telephone systems and mobile cellular systems, and the use of digital transmission methods
such as asynchronous transfer mode (ATM) for integrated transmission of data, image and
voice. For example, in ATM based systems, the voice transmission delay varies depending
on the route taken by the cells that carry the voice signals. This variable delay added to the
delay inherent in digital voice coding complicates the echo cancellation process.

The 2-wire subscriber telephone lines that were originally intended to carry relatively
low-bandwidth voice signals are now used to provide telephone users with high-speed digital
data links and digital services such as video-on-demand and internet services using digital
transmission methods such as the asynchronous digital subscriber line (ADSL). Traditionally,
the bandwidth of the subscribers line is limited by low-pass filters at the core network
to 3.4kHz. Within this bandwidth, voice-band modems can provide data rates of around
30 kbps. However the copper wire itself has a much higher usable bandwidth extending into
megahertz regions, although attenuation and interference increase with both the frequency
and the length of the wire. Advanced signal processing and modulation scheme methods
such as ADSL can achieve a 10 Mbps data rate over the 240 MHz bandwidth of subscriber’s
twisted-wire line.
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Figure 14.7 Echo cancellation in digital modems using 2-wire subscriber’s loop.

Figure 14.7 shows a system for providing a full-duplex digital service over a two-wire
subscriber’s loop. To provide simultaneous transmission of data in both directions within the
same bandwidth over the subscriber’s line, echo cancellation is needed. The echoes on a line
consist of the near-end echo, which loops back at the first or the near hybrid, and the far-end
echo, which is the signal that loops back at a hybrid some distance away. The main purpose
of the echo canceller is to cancel the near-end echo. Since the digital signal coming from a
far end may be attenuated by 40-50 dB, the near echo on a high-speed data transmission line
can be as much as 40-50 dB above the desired signal level. For reliable data communication
the echo canceller must provide 50-60dB attenuation of the echo signal so that the signal
power remains at 10 dB above the echo.

14.5 ACOUSTIC ECHO

Acoustic echo results from a feedback path set up between the speaker and the microphone
in a mobile phone, hands-free phone, teleconference or hearing aid system. Acoustic echo
is reflected from a multitude of different surfaces, such as walls, ceilings and floors, and
travels through different paths. If the time delay is not too long, then the acoustic echo may
be perceived as a soft reverberation, and may add to the artistic quality of the sound; concert
halls and church halls with desirable reverberation characteristics can enhance the quality
of a musical performance. However, acoustic echo is a well-known problem with hands-
free telephones, teleconference systems, public address systems, mobile phones and hearing
aids, and is due to acoustic feedback coupling of sound waves between the loudspeakers
and microphones. Acoustic echo can result from a combination of direct acoustic coupling
and multipath effect where the sound wave is reflected from various surfaces and then
picked up by the microphone. In its worst case, acoustic feedback can result in howling if a
significant proportion of the sound energy transmitted by the loudspeaker is received back
at the microphone and circulated in the feedback loop. The overall round gain of an acoustic
feedback loop depends on the frequency responses of the electrical and the acoustic signal
paths. The undesirable effects of the electrical sections on the acoustic feedback can be
reduced by designing systems that have a flat frequency response. The main problem is in the
acoustic feedback path and the reverberating characteristics of the room. If the microphone—
speaker—room system is excited at a frequency whose loop gain is greater than unity, then
the signal is amplified each time it circulates round the loop, and feedback howling results.
In practice, the howling is limited by the nonlinearity of the electronic system.
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There are a number of methods for removing acoustic feedback. One method for alleviating
the effects of acoustic feedback and room reverberations is to place a frequency shifter (or
a phase shifter) in the electrical path of the feedback loop. Each time a signal travels round
the feedback loop it is shifted by a few hertz before being re-transmitted by the loudspeaker.
This method has some effect in reducing the howling, but it is not effective for removal
of the overall echo of the acoustic feedback. Another approach is to reduce the feedback
loop-gain at those frequencies where the acoustic feedback energy is concentrated. This may
be achieved using adaptive notch filters to reduce the system gain at frequencies where
acoustic oscillations occur. The drawback of this method is that, in addition to reducing the
feedback, the notch filters also result in distortion of the desired signal frequencies.

The most effective method of acoustic feedback removal is the use of an adaptive feedback
cancellation system. Figure 14.8 illustrates a model of an acoustic feedback environment,
comprising a microphone, a loudspeaker and the reverberating space of a room. The z-transfer
function of a linear model of the acoustic feedback environment may be expressed as

G(2)

HG) =1 G(2)A(®)

(14.7)

where G(z) is the z-transfer function model for the microphone-loudspeaker system and
A(z) is the z-transfer function model of reverberations and multipath reflections of a room
environment. Assuming that the microphone—loudspeaker combination has a flat frequency
response with a gain G, Equation (14.7) can be simplified to

G

HO = 1-6am

(14.8)

Note that in Equations (14.6)—(14.7), owing to the reverberating character of the room, the
acoustic feedback path A(z) is itself a feedback system. The reverberating characteristics
of the acoustic environment may be modelled by an all-pole linear predictive model, or
alternatively a relatively long FIR model.

The equivalent time-domain input/output relation for the linear filter model of
Equation (14.8) is given by the following difference equation:

y(m) = 3 a(m)y(m— k) + Gx(m) (14.9)

k=0

Acoustic feedback
loudspeaker-room—
microphone path, A(z)

yi(m)
x(m) Microphone-loudspeaker y(m)

© () G()

Figure 14.8 Configuration of a feedback model for a microphone—loudspeaker—-room system.
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Figure 14.9 Illustration of adaptive acoustic feedback cancellation in a conference room environment.

where a,(m) is the coefficient of an all-pole linear feedback model of the reverberating room
environment, G is the microphone-loudspeaker amplitude gain factor, and x(m) and y(m)
are the time domain input and output signals of the microphone—loudspeaker system.

Figure 14.9 is an illustration of an acoustic feedback cancellation system. In an acoustic
feedback environment, the total input signal to the microphone is given as the sum of any
new input to the microphone x(m) plus the unwanted acoustic feedback signal y,(m):

y(m) = x(m) + y(m) (14.10)

The most successful acoustic feedback control systems are based on adaptive estimation
and cancellation of the feedback signal. As in a line echo canceller, an adaptive acoustic
feedback canceller attempts to synthesise a replica of the acoustic feedback at its output as

$:(m) =3 a,(m)y(m—k) (14.11)

k=0

The filter coefficients are adapted to minimise the energy of an error signal, defined as

e(m) = x(m)+y;(m) — y;(m) (14.12)

The adaptation criterion is usually the minimum mean square error criterion and the
adaptation algorithm is a variant of the LMS or the RLS method. The problem of acoustic
echo cancellation is more complex than line echo cancellation for a number of reasons. First,
acoustic echo is usually much longer (up to a second) than terrestrial telephone line echoes.
In fact, the delay of an acoustic echo is similar to or more than a line echo routed via a
geostationary satellite system.

The large delay of an acoustic echo path implies that impractically large filters on the
order of a few thousand coefficients may be required. The stable and speedy adaptation of
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Figure 14.10 Configuration of an acoustic feedback canceller incorporated in a hearing aid system.

filters of such length presents a difficult problem. Secondly, the characteristics of an acoustic
echo path is more nonstationary compared with that of a telephone line echo. For example,
the opening or closing of a door, or people moving in or out of a room, can suddenly change
the acoustic character of a conference room. Thirdly, acoustic echoes are due to signals
reflected back from a multitude of different paths, off the walls, the floor, the ceiling, the
windows, etc. Finally, the propagation and diffusion characteristics of the acoustic space of a
room are nonlinear, and are not well approximated by a lumped FIR (or IIR) linear filter. In
comparison, it is more reasonable to model the characteristics of a telephone line echo with
a linear filter. In any case, for acoustic echo cancellation, the filter must have a large impulse
response and should be able to quickly track fast changes in echo path characteristics.

An important application of acoustic feedback cancellation is in hearing aid systems.
A hearing aid system can be modelled as a feedback system, as shown in Figure 14.10. The
maximum usable gain of a hearing aid system is limited by the acoustic feedback between
the microphone and the speaker. Figure 14.10 illustrates the configuration of a feedback
canceller in a hearing aid system. The acoustic feedback synthesiser has the same input as the
acoustic feedback path. An adaptation algorithm adjusts the coefficients of the synthesiser to
cancel out the feedback signals picked up by the microphone, before the microphone output
is fed into the speaker.

14.6 SUB-BAND ACOUSTIC ECHO CANCELLATION

In addition to the complex and varying nature of room acoustics, there are two main problems
in acoustic echo cancellation. First, the echo delay is relatively long, and therefore the FIR
echo synthesiser must have a large number of coefficients, say 2000 or more. Secondly, the
long impulse response of the FIR filter and the large eigenvalue spread of the speech signals
result in a slow, and uneven, rate of convergence of the adaptation process.

A sub-band-based echo canceller alleviates the problems associated with the required filter
length and the speed of convergence. The sub-band-based system is shown in Figure 14.11.
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Figure 14.11 Configuration of a sub-band acoustic echo cancellation system.

The sub-band analyser splits the input signal into N sub-bands. Assuming that the sub-bands
have equal bandwidth, each sub-band occupies only 1/N of the baseband frequency, and can
therefore be decimated (down-sampled) without loss of information. For simplicity, assume
that all sub-bands are down-sampled by the same factor, R. The main advantages of a sub-
band echo canceller are a reduction in filter length and a gain in the speed of convergence
as explained below:

)

@

®)

Reduction in filter length — assuming that the impulse response of each sub-band filter
has the same duration as the impulse response of the full-band FIR filter, the length of
the FIR filter for each down-sampled sub-band is 1/R of the full band filter.

Reduction in computational complexity — the computational complexity of an LMS-type
adaptive filter depends directly on the product of the filter length and the sampling rate.
As for each sub-band, the number of samples per second and the filter length decrease
with 1/R, it follows that the computational complexity of each sub-band filter is 1/R?
of that of the full band filter. Hence the overall gain in computational complexity of a
sub-band system is R?/N of the full band system.

Speed of convergence — the speed of convergence depends on both the filter length
and the eigenvalue spread of the signal. The speed of convergence increases with the
decrease in the length of the FIR filter for each sub-band. A more important factor
affecting the convergence of adaptive filter is the eigenvalue spread of the autocorrelation
matrix of the input signal. As the spectrum of a signal becomes flatter, the spread of its
eigenvalues decreases, and the speed of convergence of the adaptive filter increases. In
general, the signal within each sub-band is expected to have a flatter spectrum than the
full band signal. This aids the speed of convergence. However, it must be noted that the
attenuation of sub-band filters at the edges of the spectrum of each band creates some
very small eigenvalues.
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14.7 MULTIPLE-INPUT MULTIPLE-OUTPUT (MIMO) ECHO
CANCELLATION

Multiple-input multiple-output (MIMO) echo-cancellation systems have applications in car
cabin communications systems, stereophonic teleconferencing systems and conference halls.
Stereophonic echo cancellation systems have been developed relatively recently and MIMO
systems are still the subject of ongoing research and development.

In a typical MIMO system there are P speakers and Q microphones in the room. As there
is an acoustic feedback path set up between each speaker and each microphone, there are
altogether P x Q such acoustic feedback paths that need to be modelled and estimated. The
truncated impulse response of each acoustic path from loudspeaker i to microphone j is
modelled by an FIR filter k;;. The truncated impulse response of each acoustic path from a
human speaker i to microphone j is modelled by an FIR filter, g,;.

For a large number of speakers and microphones, the modelling and identification of
the numerous acoustic channels becomes a major problem due to the correlations of the
echo signals, from a common number of sources, propagating through different channels, as
discussed below.

14.7.1 STEREOPHONIC ECHO CANCELLATION SYSTEMS

Figure 14.12 shows the configuration of the echo cancellation for a stereophonic
communication system. There are two microphones and two loudspeakers at each end of
the communication link. Each microphone receives the feedback echo from two different
speakers through two different paths. In addition there are usually multipath reflections of
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Figure 14.12 Illustration of the feedback signals and adaptive cancellation of acoustic feedbacks in
a stereophonic echo-cancellation system.
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sounds from walls. Let the speech signal s(m) after reaching the right and left microphones
be denoted as x,(m) and x,(m) respectively. We may write

x,(m) =g (m)s(m)

and

x,(m) =g (m)s(m) (14.13)

where g, and g, are the truncated room impulse responses from the source speaker to the
right and left microphones respectively.

In Figure 14.12, the truncated impulse responses of the acoustic feedback paths from the
right and left loudspeakers to the right microphone are denoted as to h,(m) and h, (m)
respectively, and combined as h,(m) = [h, (m)h,.(m)]. The signals from the right and left
loudspeakers, x,(m) and x,(m), may be combined as x(m) = [x,(m)x,(m)]. There exist
similar paths from loudspeakers to each microphone which are not shown here in order to
avoid overcrowding the figure. The synthesised replication of the echo signal in the right
microphone is given by

~ pT pT pT
xecho,r(m) = hrr(m_ 1)xr(m) + hlr(m_ l)xl(m) =hr (m_ 1)x(m) (1414)
—_— —_—
Synthesised echo from right Synthesised echo from left
loudspeaker to right microphone loudspeaker to right microphone

The error signal composed of speech and the residue echo is given by

er(m) = y(m) - %echo,r(m) (1415)
The NLMS adaptation method for FIR model of stereophonic echo paths is
A 3 e(m)
h.(m)=h.(m—1)+p——m——x(m) (14.16)
x(m)'x(m)

Similar equations describing the echo and adaptive echo cancellation can be written for the
right microphones.

14.7.1.1 Nonuniqueness Problem in MIMO Echo Channel Identification

A problem in MIMO echo cancellation systems is that the speech signals from different
loudspeakers reaching a microphone are highly correlated. For the stereo echo cancellation,
the loudspeakers’ signals are x(m) = [x,(m)x,;(m)] and the channels to be identified
for example from right and left loudspeakers to say the right microphone are h,(m) =
[k, (m)h,,(m)]. The Wiener solution to this echo path estimation problem is given by

h.=Rr (14.17)

where R, is the autocorrelation matrix of x(m) = [x,(m)x,(m)]. The problem is that due to
the high correlation of x,(m) and x,(m) the autocorrelation matrix R,, is not of full rank
matrix and hence the solution is not unique.
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The nonuniqueness problem can also be explained in the frequency domain by considering
the sum of the feedbacks from the loudspeakers into say the right microphone X, . (f):

Xecho,r(f) = le(f) Gl(f)S(.f) + Hrr (f) Gr (f)S(f)
= [Hi(NG\() + H(NG.(NIS() (14.18)

Where G,(f), G,.(f) are the frequency responses of the paths from the source to the transmitter
microphones and H,.(f) and H,,.(f) are the frequency responses of the loudspeakers feedback
paths to the receiver’s right microphone. Note there are many combinations of different values
of G\(f), G,.(f), H,(f) and H,(f) that would satisfy equation (14.18). A solution to this
problem is to decorrelate the stereo signals. The problem of stereophonic echo cancellation
is the subject of ongoing research. A good paper on the problems of stereophonic echo
cancellation is by Benesty J. (1998).

14.7.1.2 MIMO in Cabin Communication Systems

MIMO systems have application for in-car cabin communication systems (CCS) for
multipurpose and large vehicles. The problems in CCS systems are background noise
reduction and acoustic feedback cancellation. Figure 14.13 illustrates the block diagram
configuration of a two-loudspeaker two-microphone system and the configurations of the FIR
adaptive filters used for modelling the truncated impulse response of the acoustic feedback
path from each loudspeaker via the cabin to each microphone. The synthesised feedback is
subtracted from the signal received by each microphone in order to cancel feedback echo
signals.
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Figure 14.13 A block diagram illustration of a MIMO echo-cancellation in a car cabin communication
system.
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An interesting system solution to mitigate the effect of feedback in MIMO systems is
to combine beam-forming microphone arrays with echo cancellation. Microphone arrays
introduced in Chapters 1 and 15 form a beam where any signal arriving from directions
outside the beam is attenuated. This would help reduce the feedback and can be used in
combination with echo cancellers.

14.8 SUMMARY

Telephone line echo and acoustic feedback echo affect the functioning of telecommunications
and teleconferencing systems. In general, line echo cancellation is a relatively less complex
problem than acoustic echo cancellation because acoustic cancellers need to model the more
complex environment of the space of a room.

We began this chapter with a study of the telephone line echoes arising from the mismatch
at the two/four-wire hybrid bridge. In Section 14.2, line echo suppression and adaptive line
echo cancellation were considered. For adaptation of an echo canceller, the LMS or the RLS
adaptation methods can be used. The RLS methods provides a faster convergence rate and
better overall performance at the cost of higher computational complexity.

In Section 14.3 we considered the acoustic coupling between a loudspeaker and a
microphone system. Acoustic feedback echo can result in howling, and can disrupt the
performance of teleconference, hands-free telephones and hearing aid systems. The main
problems in implementation of acoustic echo cancellation systems are the requirement for a
large filter to model the relatively long echo, and the adaptation problems associated with
the eigenvalue spread of the signal. The sub-band echo canceller introduced in Section 14.4
alleviates these problems.

For stereophonic and MIMO systems the problem of acoustic echo cancellation remains
an important and challenging research issue.
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Blind deconvolution is the process of unravelling two unknown signals that have been
convolved. An important application of blind deconvolution is in blind equalisation for
restoration of a signal distorted in transmission through a communication channel. Blind
equalisation has a wide range of applications, for example in digital telecommunications for
removal of inter-symbol interference, in speech recognition for removal of the effects of
microphones and channels, in deblurring of distorted images, in dereverberation of acoustic
recordings and in seismic data analysis.

In practice, blind equalisation is only feasible if some useful statistics of the channel input,
and perhaps also of the channel itself, are available. The success of a blind equalisation
method depends on how much is known about the statistics of the channel input, and how
useful this knowledge is in the channel identification and equalisation process. This chapter
begins with an introduction to the basic ideas of deconvolution and channel equalisation. We
study blind equalisation based on the channel input power spectrum, equalisation through
separation of the input signal and channel response models, Bayesian equalisation, nonlinear
adaptive equalisation for digital communication channels and equalisation of maximum-
phase channels using higher-order statistics.
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Figure 15.1 Illustration of a channel distortion model followed by an equaliser.

15.1 INTRODUCTION

In this chapter we consider the recovery of a signal distorted, in transmission through a
channel, by a convolutional process and observed in additive noise. The process of recovery
of a signal convolved with the impulse response of a communication channel, or a recording
medium, is known as deconvolution or equalization. Figure 15.1 illustrates a typical model
for a distorted and noisy signal, followed by an equaliser. Let x(m), n(m) and y(m) denote
the channel input, the channel noise and the observed channel output, respectively. The
channel input/output relation can be expressed as

y(m) = hlx(m)] +n(m) (15.1)

where the function A[-] is the channel distortion. In general, the channel response may be
time-varying and nonlinear. In this chapter, it is assumed that the effects of a channel can be
modelled using a stationary, or a slowly time-varying, linear transversal filter. For a linear
transversal filter model of the channel, Equation (15.1) becomes

P-1

y(m) = 2 hy(m)x(m — k) +n(m) (15.2)

where i, (m) is the coefficient of a Pth-order linear FIR filter model of the channel. For a
time-invariant channel model, i, (m) = h,.
In the frequency domain, Equation (15.2) becomes

Y(f) = X(NHH(f)+ N(f) (15.3)
where Y(f), X(f), H(f) and N(f) are the frequency spectra of the channel output, the

channel input, the channel response and the additive noise, respectively. Ignoring the noise
term and taking the logarithm of Equation (15.3) yields

In|Y(f)| =In|X(F)[+In |H(f)] (15.4)

From Equation (15.4), in the log-frequency domain the effect of channel distortion is the
addition of a ‘tilt’ term, In |H(f)|, to the signal spectrum.
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15.1.1 THE IDEAL INVERSE CHANNEL FILTER

The ideal inverse-channel filter, or the ideal equaliser, recovers the original input from
the channel output signal. In the frequency domain, the ideal inverse channel filter can be
expressed as

H()H™(f) =1 (15.5)

In Equation (15.5) H™(f) is used to denote the inverse channel filter. For the ideal
equaliser we have H™(f) = H !(f), or, expressed in the log-frequency domain,
In H™(f) = —In H(f). The general form of Equation (15.5) is given by the z-transform
relation

HG)H™ () =z7" (15.6)

for some value of the delay N that makes the channel inversion process causal. Taking
the inverse Fourier transform of Equation (15.5), we have the following convolutional
relation between the impulse responses of the channel {4,} and the ideal inverse channel
response {Ai™}:

> hhi = 8(i) (15.7)

where 0(i) is the Kronecker delta function. Assuming the channel output is noise-free and
the channel is invertible, the ideal inverse channel filter can be used to reproduce the channel
input signal with zero error, as follows. The inverse filter output, X(m), with the distorted
signal, y(m), as the input, is given as

&(m) =Y M y(m—k)
k
=B hx(m—k— j) (15.8)
k J
=Y "x(m—i)Y_ h™h_,
i k

The last line of Equation (15.8) is derived by a change of variables i = k4 j in the second
line and rearrangement of the terms. For the ideal inverse channel filter, substitution of
Equation (15.7) in Equation (15.8) yields

x(m) = Zﬁ(i)x(m —i) =x(m) (15.9)

which is the desired result. In practice, it is not advisable to implement H'™ (f) simply as
H~'(f) because, in general, a channel response may be noninvertible. Even for invertible
channels, a straightforward implementation of the inverse channel filter, H~'(f), can cause
problems. For example, at frequencies where H(f) is small, its inverse, H~!(f), is large,
and this can lead to noise amplification if the signal-to-noise ratio is low.
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15.1.2 EQUALISATION ERROR, CONVOLUTIONAL NOISE

The equalisation error signal, also called the convolutional noise, is defined as the difference
between the channel equaliser output and the desired signal:

v(m) = x(m) — x(m)

= (15.10)
= x(m) = " y(m—k)
k=0

where iz}c“v is an estimate of the inverse channel filter. Assuming that there is an ideal
equaliser, A", that can recover the channel input signal x(m) from the channel output y(im),
we have

x(m) :Pi:lh}:”y(m—k) (15.11)
k=0

Substitution of Equation (15.11) in Equation (15.10) yields

P—1 P—1
v(m) =Y my(m—k) =3 i y(m—k)
k=0 k=0
o (15.12)
=D W y(m—k)
k=0

where AI™ = hi™ — ji"_ The equalisation error signal, v(im), may be viewed as the output
of an error filter, izik“v, in response to the input y(m — k), hence the name ‘convolutional
noise’ for v(m). When the equalisation process is proceeding well, such that x(m) is a good
estimate of the channel input, x(m), then the convolutional noise is relatively small and
decorrelated and can be modelled as a zero mean Gaussian random process.

15.1.3 BLIND EQUALISATION

The equalisation problem is relatively simple when the channel response is known and
invertible, and when the channel output is not noisy. However, in most practical cases,
the channel response is unknown, time-varying, nonlinear, and may also be noninvertible.
Furthermore, the channel output is often observed in additive noise.

Digital communication systems provide equaliser-training periods, during which a training
pseudo-noise (PN) sequence, also available at the receiver, is transmitted. A synchronised
version of the PN sequence is generated at the receiver, where the channel input and output
signals are used for the identification of the channel equaliser, as illustrated in Figure 15.2(a).
The obvious drawback of using training periods for channel equalization is that power, time
and bandwidth are consumed for the equalisation process.

It is preferable to have a ‘blind’ equalisation scheme that can operate without access to
the channel input, as illustrated in Figure 15.2(b). Furthermore, in some applications, such as
the restoration of acoustic recordings, or blurred images, all that is available is the distorted
signal and the only restoration method applicable is blind equalisation.
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Figure 15.2 A comparative illustration of (a) a conventional equaliser with access to channel input
and output, and (b) a blind equaliser.

Blind equalisation is feasible only if some statistical knowledge of the channel input, and
perhaps that of the channel, is available. Blind equalisation involves two stages of channel
identification, and deconvolution of the input signal and the channel response, as follows.

Channel identification — the general form of a channel estimator can be expressed as

h=(y, M,, M,) (15.13)

where ¢ is the channel estimator, the vector h is an estimate of the channel response, y is the
channel output, and M, and M, are statistical models of the channel input and the channel
response, respectively.

Channel identification methods rely on utilisation of a knowledge of the following
characteristics of the input signal and the channel:

(1) The distribution of the channel input signal — for example, in decision-directed channel
equalisation, described in Section 15.5, the knowledge that the input is a binary signal
is used in a binary decision device to estimate the channel input and to ‘direct’ the
equalizer adaptation process.

(2) The relative durations of the channel input and the channel impulse response — the
duration of a channel impulse response is usually orders of magnitude smaller than that
of the channel input. This observation is used in Section 15.3.1 to estimate a stationary
channel from the long-time averages of the channel output.

(3) The stationary, or time-varying characteristics of the input signal process and the
channel — in Section 15.3.1, a method is described for the recovery of a nonstationary
signal convolved with the impulse response of a stationary channel.
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Channel equalisation — assuming that the channel is invertible, the channel input signal,
x(m), can be recovered using an inverse channel filter as

P—1

&(m) =Y h™y(m —k) (15.14)

k=0

In the frequency domain, Equation (15.14) becomes

X(f) = H™(H)¥(f) (15.15)

In practice, perfect recovery of the channel input may not be possible, either because
the channel is noninvertible or because the output is observed in noise. A channel is
noninvertible if:

(1) The channel transfer function is maximum-phase — the transfer function of a maximum-
phase channel has zeros outside the unit circle, and hence the inverse channel has
unstable poles. Maximum-phase channels are considered in the next section.

(2) The channel transfer function maps many inputs to the same output — in these situations,
a stable closed-form equation for the inverse channel does not exist, and instead an
iterative deconvolution method is used. Figure 15.3 illustrates the frequency response
of a channel that has one invertible and two noninvertible regions. In the noninvertible
regions, the signal frequencies are heavily attenuated and lost to channel noise. In the
invertible region, the signal is distorted but recoverable. This example illustrates that the
inverse filter must be implemented with care in order to avoid undesirable results, such
as noise amplification at frequencies with low SNR.

15.1.4 MINIMUM- AND MAXIMUM-PHASE CHANNELS

For stability, all the poles of the transfer function of a channel must lie inside the unit circle.
If all the zeros of the transfer function are also inside the unit circle then the channel is said
to be a minimum-phase channel. If some of the zeros are outside the unit circle then the

Input Channel distortion Output
X H(f) Y(f) =X(HH(S)
Non- I Gibl Non-
invertible "o """ invertible
Channel
noise '/
f f f

Figure 15.3 Illustration of the invertible and noninvertible regions of a channel.
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Figure 15.4 [Illustration of the zero diagram and impulse response of fourth-order maximum-phase
and minimum-phase FIR filters.

channel is said to be a maximum-phase channel. The inverse of a minimum-phase channel
has all its poles inside the unit circle, and is therefore stable. The inverse of a maximum-
phase channel has some of its poles outside the unit circle; therefore it has an exponentially
growing impulse response and is unstable. However, a stable approximation of the inverse of
a maximum-phase channel may be obtained by truncating the impulse response of the inverse
filter. Figure 15.4 illustrates examples of maximum-phase and minimum-phase fourth-order
FIR filters.

When both the channel input and output signals are available, in the correct synchrony, it
is possible to estimate the channel magnitude and phase response using the conventional least
square error criterion. In blind deconvolution, there is no access to the exact instantaneous
value or the timing of the channel input signal. The only information available is the channel
output and some statistics of the channel input. The second-order statistics of a signal (i.e.
the correlation or the power spectrum) do not include the phase information; hence it is
not possible to estimate the channel phase from the second-order statistics. Furthermore,
the channel phase cannot be recovered if the input signal is Gaussian, because a Gaussian
process of known mean is entirely specified by the autocovariance matrix, and autocovariance
matrices do not include any phase information. For estimation of the phase of a channel, we
can either use a nonlinear estimate of the desired signal to direct the adaptation of a channel
equaliser as in Section 15.5, or we can use the higher-order statistics as in Section 15.6.

15.1.5 WIENER EQUALISER

In this section, we consider the least square error Wiener equalisation. Note that, in its
conventional form, Wiener equalisation is not a form of blind equalisation, because the
implementation of a Wiener equaliser requires the cross-correlation of the channel input and
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output signals, which are not available in a blind equalisation application. The Wiener filter
estimate of the channel input signal is given by

i(m) = Pf/};:vy(m—k) (15.16)
k=0

where fz}(“v is an FIR Wiener filter estimate of the inverse channel impulse response. The
equalisation error signal, v(m), is defined as

v(m) = x(m) — 3 W™ y(m — k) (15.17)
k=0

The Wiener equaliser with input y(m) and desired output x(m) is obtained from
Equation (6.10) as

™ =R 'r (15.18)

Yy Xy

where R,, is the P x P autocorrelation matrix of the channel output, and r,, is the
P-dimensional cross-correlation vector of the channel input and output signals. A more
expressive form of Equation (15.18) can be obtained by writing the noisy channel output

signal in vector equation form as
y=Hx+n (15.19)

where y is an N-sample channel output vector, x is an N + P-sample channel input vector
including the P initial samples, H is an N x (N + P) channel distortion matrix whose
elements are composed of the coefficients of the channel filter, and n is a noise vector. The
autocorrelation matrix of the channel output can be obtained from Equation (15.19) as

T T
R, =£[y"|=HR H +R, (15.20)

where E[-] is the expectation operator. The cross-correlation vector r,, of the channel input
and output signals becomes

r., = E[xy] =Hr,, (15.21)
Substitution of Equations (15.20) and (15.21) in Equation (15.18) yields the Wiener

equaliser as

h™ = (HR H" +R,,)” Hr

xx

(15.22)

The derivation of the Wiener equaliser in the frequency domain is as follows. The Fourier
transform of the equaliser output is given by

X(f) = H™(f)¥(f) (15.23)
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where Y(f) is the channel output and H™(f) is the frequency response of the Wiener
equaliser. The error signal, V(f), is defined as

V(f) = X(f)—X(f)

R (15.24)
=X(f) = H™(H)Y(f)

As in Section 6.5, minimisation of the expectation of the squared magnitude of V(f) results
in the frequency Wiener equaliser given by

_Pulh)
Py (/)

_ PuDE)
Pac(F) IHP + P ()

where Py, (f) is the channel input power spectrum, Pyy(f) is the noise power spectrum,
Py, (f) is the cross-power spectrum of the channel input and output signals, and H(f) is the
frequency response of the channel. Note that, in the absence of noise, Pyy(f) = 0 and the
Wiener inverse filter becomes H™ (f) = H~'(f).

I’_‘Iinv (f)
(15.25)

15.2 BLIND EQUALISATION USING THE CHANNEL INPUT
POWER SPECTRUM

One of the early papers on blind deconvolution was by Stockham et al. (1975) on
dereverberation of old acoustic recordings. Acoustic recorders, as illustrated in Figure 15.5,
had a bandwidth of about 200 Hz to 4 kHz. However, the limited bandwidth, or even the
additive noise or scratch noise pulses, are not considered the major causes of distortions of
acoustic recordings. The main distortion on acoustic recordings is due to reverberations of
the recording horn instrument. An acoustic recording can be modelled as the convolution

Figure 15.5 [Illustration of the early acoustic recording process on a wax disc. Acoustic recordings
were made by focusing the sound energy through a horn, via a sound box, diaphragm and stylus
mechanism, onto a wax disc. The sound was distorted by reverberations of the horn.
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of the input audio signal, x(m), and the impulse response of a linear filter model of the
recording instrument, {#,}, as in Equation (15.2), reproduced here for convenience

m) = 3 hyx(m— k) +n(m) (15.26)
k=0
or in the frequency domain as
Y(f) = X(NHH(f) + N(f) (15.27)

where H(f) is the frequency response of a linear time-invariant model of the
acoustic recording instrument, and N(f) is an additive noise. Multiplying both sides of
Equation (15.27) by their complex conjugates, and taking the expectation, we obtain

E[Y(HY* (N = E{[X(NHH) +NOIXAHS) + NI} (15.28)

Assuming the signal X(f) and the noise N(f) are uncorrelated, Equation (15.28) becomes

PYY(f)=PXX(f)|H(f)|2+PNN(f) (15.29)

where Py, (f), Pyyx(f) and Py (f) are the power spectra of the distorted signal, the original
signal and the noise, respectively. From Equation (15.29), an estimate of the spectrum of the
channel response can be obtained as

Py (f) — Pan(f)
Pyx(f)

In practice, Equation (15.30) is implemented using time-averaged estimates of the of the
power spectra.

|H(f)I* = (15.30)

15.2.1 HOMOMORPHIC EQUALISATION

In homomorphic equalisation, the convolutional distortion is transformed, first into a
multiplicative distortion through a Fourier transform of the distorted signal, and then into an
additive distortion by taking the logarithm of the spectrum of the distorted signal. A further
inverse Fourier transform operation converts the log-frequency variables into cepstral
variables, as illustrated in Figure 15.6. Through homomorphic transformation convolution
becomes addition, and equalisation becomes subtraction.

X(HH(f) In[X(f)] + In|X(f)|

¥(m) = x(m) * h(m) ) he
Fourier In-| Inverse Fourier Xelm) + hem)

transform transform

Homomorphic analysis

Figure 15.6 Illustration of homomorphic analysis in deconvolution.
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Ignoring the additive noise term and transforming both sides of Equation (15.27) into
log-spectral variables yields

InY(f) =In X(f) +1n H(f) (15.31)

Note that in the log-frequency domain, the effect of channel distortion is the addition of a
tilt to the spectrum of the channel input. Taking the expectation of Equation (15.31) yields

£[In Y(f)] = E[In X(f)] +In H(f) (15.32)

In Equation (15.32), it is assumed that the channel is time-invariant; hence E[In H(f)] =
In H(f). Using the relation Inz = In |z| 4+ jZz, the term E[In X(f)] can be expressed as

Z[In X(f)] = E[In [ X(H]+JE[LX ()] (15.33)

The first term on the right-hand side of Equation (15.33), E[In|X(f)]|], is nonzero, and
represents the frequency distribution of the signal power in decibels, whereas the second
term, E[£X(f)], is the expectation of the phase, and can be assumed to be zero. From
Equation (15.32), the log-frequency spectrum of the channel can be estimated as

In H(f) = £[In Y(f)] — E[In X(f)] (15.34)

In practice, when only a single record of a signal is available, the signal is divided into
a number of segments, and the average signal spectrum is obtained over time across the
segments. Assuming that the length of each segment is long compared with the duration of
the channel impulse response, we can write an approximate convolutional relation for the
ith signal segment as

yi(m) = x;(m) x h,(m) (15.35)

The segments are windowed, using a Hamming or a Hanning window, to reduce the spectral
leakage due to end effects at the edges of the segment. Taking the complex logarithm of the
Fourier transform of Equation (15.35) yields

InY,(f) = n X,(f) +In H,(f) (15.36)

Taking the time averages over N segments of the distorted signal record yields
1 N—1 1 N—-1 1 N—1
— Y InY (/) == ) mX,(f)+— > InH, 15.37
y L) =5 LX)+ 5 D) (1537)

Estimation of the channel response from Equation (15.37) requires the average log spectrum
of the undistorted signal X(f). In Stockham’s method for restoration of acoustic records, the
expectation of the signal spectrum is obtained from a modern recording of the same musical
material as the acoustic recording. From Equation (15.37), the estimate of the logarithm of
the channel is given by

N-1 N—1
() =2 S k() -+ S x) (1538)
i=0 i=0
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where X™(f) is the spectrum of a modern recording. The equaliser can then be defined as

—InH(f), 200Hz < f <4000Hz

ln Hinv —
) —40dB otherwise

(15.39)

In Equation (15.39), the inverse acoustic channel is implemented in the range 200-4000 Hz,
where the channel is assumed to be invertible. Outside this range, the signal is dominated
by noise, and the inverse filter is designed to attenuate the noisy signal.

15.2.2 HOMOMORPHIC EQUALISATION USING A BANK OF
HIGH-PASS FILTERS

In the log-frequency domain, channel distortion may be eliminated using a bank of high-pass
filters. Consider a time sequence of log-spectra of the output of a channel described as

InY,(f) =InX,(f)+InH,(f) (15.40)

where Y,(f) and X,(f) are the channel input and output derived from a Fourier transform of
the rth signal segment. From Equation (15.40), the effect of a time-invariant channel is to
add a constant term, In H(f), to each frequency component of the channel input X,(f), and
the overall result is a time-invariant tilt of the log-frequency spectrum of the original signal.
This observation suggests the use of a bank of narrow-band high-pass notch filters for the
removal of the additive distortion term In H(f). A simple first-order recursive digital filter
with its notch at zero frequency is given by

InX,(f) =alnX,_,(f)+InY,(f) —InY,_,(f) (15.41)

where the parameter « controls the bandwidth of the notch at zero frequency. Note that the
filter bank also removes any d.c. component of the signal In X(f); for some applications,
such as speech recognition, this is acceptable.

15.3 EQUALISATION BASED ON LINEAR PREDICTION
MODELS

Linear prediction models, described in Chapter 8, are routinely used in applications such
as seismic signal analysis and speech processing, for the modelling and identification of a
minimum-phase channel. Linear prediction theory is based on two basic assumptions: that
the channel is minimum-phase and that the channel input is a random signal. Standard linear
prediction analysis can be viewed as a blind deconvolution method, because both the channel
response and the channel input are unknown, and the only information is the channel output
and the assumption that the channel input is random and hence has a flat power spectrum. In
this section, we consider blind deconvolution using linear predictive models for the channel
and its input. The channel input signal is modelled as

X(z) = E(2)A(z) (15.42)
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where X(z) is the z-transform of the channel input signal, A(z) is the z-transfer function
of a linear predictive model of the channel input and E(z) is the z-transform of a random
excitation signal. Similarly, the channel output can be modelled by a linear predictive model
H(z) with input X(z) and output Y(z) as

Y(z) = X(2)H(z) (15.43)

Figure 15.7 illustrates a cascade linear prediction model for a channel input process X(z)

and a channel response H(z). The channel output can be expressed as
Y(z) = E(2)A(z)H(z)
(15.44)
=E(z)D(z)

where
D(z) = A(2)H(z) (15.45)

The z-transfer function of the linear prediction models of the channel input signal and the
channel can be expanded as

G G
A(z) = ! == ' (15.46)
=Y gz [T0-az)
k=1 k=1
H(z) = 5 L= &k (15.47)

1= bzt 19[ (1=Bzh)
k=1 k=1

where {a,, @, } and {b,, B,} are the coefficients and the poles of the linear prediction models
for the channel, input signal and the channel, respectively. Substitution of Equations (15.46)
and (15.47) in Equation (15.45) yields the combined input-channel model as

G G

P+0 ~ P+0

1= diz* [1 (1=yz")
k=1 k=1

D(z) = (15.48)

The total number of poles of the combined model for the input signal and the channel is the
sum of the poles of the input signal model and the channel model.

_em) Channel input Xm) | Channel model y(m)
: signal model H(z)
A(z) '

D(z)=A(z)H(z)

Figure 15.7 A distorted signal modelled as cascade of a signal model and a channel model.



384 CHANNEL EQUALISATION AND BLIND DECONVOLUTION

15.3.1 BLIND EQUALISATION THROUGH MODEL FACTORISATION

A model-based approach to blind equalisation is to factorise the channel output model
D(z) = A(z)H(z) into a channel input signal model, A(z), and a channel model, H(z). If the
channel input model, A(z), and the channel model, H(z), are nonfactorable then the only
factors of D(z) are A(z) and H(z). However, z-transfer functions are factorable into the roots,
the so-called ‘poles and zeros’, of the models. One approach to model-based deconvolution
is to factorise the model for the convolved signal into its poles and zeros, and classify the
poles and zeros as either belonging to the signal or belonging to the channel.

Spencer and Rayner (1990) developed a method for blind deconvolution through
factorisation of linear prediction models, based on the assumption that the channel is
stationary with time-invariant poles whereas the input signal is nonstationary with time-
varying poles. As an application, they considered the restoration of old acoustic recordings
where a time-varying audio signal is distorted by the time-invariant frequency response of
the recording equipment. For a simple example, consider the case when the signal and the
channel are each modelled by a second-order linear predictive model. Let the time-varying
second-order linear predictive model for the channel input signal x(m) be

x(m) =a,(m)x(m—1)+a,(m)x(m—2)+ G,(m)e(m) (15.49)

where a,(m) and a,(m) are the time-varying coefficients of the linear predictor model,
G, (m) is the input gain factor and e(m) is a zero-mean, unit variance, random signal. Now let
a,(m) and a,(m) denote the time-varying poles of the predictor model of Equation (15.49);
these poles are the roots of the polynomial

1—a,(m)z”' —a,(m)z > =[1—z""ay(m)] [1 =2 ay(m)] =0 (15.50)

Similarly, assume that the channel can be modelled by a second-order stationary linear
predictive model as

y(m) = h;y(m—1)+ h,y(m —2) + G,x(m) (15.51)

where h, and h, are the time-invariant predictor coefficients and G, is the channel gain. Let
B, and 3, denote the poles of the channel model; these are the roots of the polynomial

l—hz ' —hyz?2=(1-z"'8)1-2z"8,)=0 (15.52)

The combined cascade of the two second-order models of Equations (15.49) and (15.51) can
be written as a fourth-order linear predictive model with input e(m) and output y(m):

y(m) =d (m)y(m—1)+d,(m)y(m —2) + ds(m)y(m —3) + d,(m)y(m — 4) + Ge(m)
(15.53)

where the combined gain G = G;G,. The poles of the fourth-order predictor model of
Equation (15.53) are the roots of the following polynomial:

- dl(m)z_l - dz(m)z_z - d3(m)z_3 - d4(m)z_4 =

15.54
(-] [- a1 - g -l =0
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In Equation (15.54) the poles of the fourth-order predictor are «,(m), a,(m), B, and f3,.
The above argument on factorisation of the poles of time-varying and stationary models can
be generalised to a signal model of order P and a channel model of order Q.

In Spencer and Rayner, the separation of the stationary poles of the channel from the
time-varying poles of the channel input is achieved through a clustering process. The signal
record is divided into N segments and each segment is modelled by an all-pole model of
order P+ Q where P and Q are the assumed to be model orders for the channel input and the
channel, respectively. In all, there are N(P 4+ Q) values which are clustered to form P+ Q
clusters. Even if both the signal and the channel were stationary, the poles extracted from
different segments would have variations due to the random character of the signals from
which the poles are extracted. Assuming that the variances of the estimates of the stationary
poles are small compared with the variations of the time-varying poles, it is expected that,
for each stationary pole of the channel, the N values extracted from N segments will form an
N-point cluster of a relatively small variance. These clusters can be identified and the centre
of each cluster taken as a pole of the channel model This method assumes that the poles
of the time-varying signal are well separated in space from the poles of the time-invariant
signal.

15.4 BAYESIAN BLIND DECONVOLUTION AND
EQUALISATION

The Bayesian inference method, described in Chapter 4, provides a general framework for
inclusion of statistical models of the channel input and the channel response. In this section
we consider the Bayesian equalisation method, and study the case where the channel input
is modelled by a set of hidden Markov models. The Bayesian risk for a channel estimate h
is defined as

R = [ [ Clr,h) iy (e, B ly) dx b

H X

(15.55)

— [ Ol oy O ) i () 0

fr)
H
where C (iz, h) is the cost of estimating the channel & as h, fx.my (x,h]y) is the joint posterior
density of the channel & and the channel input x, fy (y |k ) is the observation likelihood and
fu(h) is the prior pdf of the channel. The Bayesian estimate is obtained by minimisation of
the risk function, R(h|y). There are a variety of Bayesian-type solutions depending on the
choice of the cost function and the prior knowledge, as described in Chapter 4.

In this section, it is assumed that the convolutional channel distortion is transformed
into an additive distortion through transformation of the channel output into log-spectral or
cepstral variables. Ignoring the channel noise, the relation between the cepstra of the channel
input and output signals is given by

y(m)=x(m)+h (15.56)

where the cepstral vectors x(m),y(m) and h are the channel input, the channel output and
the channel, respectively.
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15.4.1 CONDITIONAL MEAN CHANNEL ESTIMATION

A commonly used cost function in the Bayesian risk of Equation (15.55) is the mean square
error, C(h —h) = |h — h|?, which results in the conditional mean (CM) estimate defined as

hOM — / hfyy (Rly) dh (15.57)
H

The posterior density of the channel input signal may be conditioned on an estimate of the
channel vector, k, and expressed as fy|y g (x|y, k). The conditional mean of the channel input

signal given the channel output y and an estimate of the channel his
FM = £[xly, k]

= [ *fupulxly. i) ax (15.58)
X

Equations (15.57) and (15.58) suggest a two-stage iterative method for channel estimation
and the recovery of the channel input signal.

15.4.2 MAXIMUM-LIKELIHOOD CHANNEL ESTIMATION

The ML channel estimate is equivalent to the case when the Bayes cost function and
the channel prior are uniform. Assuming that the channel input signal has a Gaussian
distribution with mean vector w, and covariance matrix 3, the likelihood of a sequence of
NP-dimensional channel output vectors {y(m)} given a channel input vector A is

N—-1

Sy y©).....y(N=1)h] = [ fx[y(m)—h]

N—1 1
= ,L[o (277_)1)/2 |2xx|1/2
xexp{ly(m) —h—p 'S y(m) —h -]} (15.59)

To obtain the ML estimate of the channel k, the derivative of the log likelihood function In
fy(y|k) with respect to k is set to zero to yield

ﬁm=%§b@%m] (15.60)

m=0

15.4.3 MAXIMUM A POSTERIORI CHANNEL ESTIMATION

The MAP estimate, like the ML estimate, is equivalent to a Bayesian estimator with a
uniform cost function. However, the MAP estimate includes the prior pdf of the channel.
The prior pdf can be used to confine the channel estimate within a desired subspace of the
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parameter space. Assuming that the channel input vectors are statistically independent, the
posterior pdf of the channel given the observation sequence ¥ = {y(0),...,y(N —1)}is

N—1 1
Ty [Rly(0), ... .y(N-1)]= ,,!_[ofy[y( )]fY|H[y(m)|h]fH(h)
(15.61)
N—-1 l
I m )]fx[v(m) h] fu(h)

Assuming that the channel input, x(m), is Gaussian, fy [x(m)] = N (x, u,, 2,,), with mean
vector u, and covariance matrix 3., and that the channel £ is also Gaussian, fy(h) =
N (h, wy, 2p,), With mean vector w, and covariance matrix ,,,, the logarithm of the posterior
pdf is

N-1

In fapy [Aly(0). . ...y(N = 1)] = = 3" In f[y(m)] — NP In(2m) —%ln(lzml DY)

m=0

{y(m) —h— )" S [y(m) —h — ]+ (h — ;) Sy (h— )} (15.62)

N =

N-1

m=0
The MAP channel estimate, obtained by setting the derivative of the log posterior function
In fiy(hly) to zero, is

RMAP = e+ Z) " 2 = )+ Coe + Z) ™ Sty (15.63)

where
] N-1
y = v Zy(m) (15.64)
m=0

is the time-averaged estimate of the mean of the observation vector. Note that, for a Gaussian
process, the MAP and conditional mean estimates are identical.

15.4.4 CHANNEL EQUALISATION BASED ON HIDDEN MARKOV
MODELS

This section considers blind deconvolution in applications where the statistics of the channel
input are modelled by a set of hidden Markov models. An application of this method,
illustrated in Figure 15.8, is in recognition of speech distorted by a communication channel
or a microphone. A hidden Markov model is a finite-state Bayesian model, with a Markovian
state prior and a Gaussian observation likelihood (see Chapter 5). An N-state HMM can
be used to model a nonstationary process, such as speech, as a chain of N stationary states
connected by a set of Markovian state transitions. The likelihood of an HMM M, and
a sequence of NP-dimensional channel input vectors, X = [x(0),...,x(N —1)], can be
expressed in terms of the state transition and the observation pdfs of M, as

fX|M(X|Mi) = ZfX\M,S(X|Mi’ S)PS\M(S|Mi) (15.65)
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HMMs of the channel input

ap (&) aANN

- N Channel + Y Bayesian
an ax Ann h N estimator
% ap % & My

Figure 15.8 Illustration of a channel with the input modelled by a set of HMMs.

where fy 5 s(X|M;,s) is the likelihood that the sequence X = [x(0),...,x(N —1)] was
generated by the state sequence s = [5(0), ..., s(N —1)] of the model M;, and P, (s|M;)
is the Markovian prior pmf of the state sequence s. The Markovian prior entails that the
probability of a transition to the state i at time m depends only on the state at time m — 1
and is independent of the previous states. The transition probability of a Markov process is
defined as

a;;=P[s(m)=jls(m—1)=i] (15.66)

where a;; is the probability of making a transition from state i to state j. The HMM state
observation probability is often modelled by a multivariate Gaussian pdf as

Fxpes®| M, ) = ]szx',s[x—ux,s]} (15.67)

1 1
amPPE 7 P {_5[" ~Hs

where p,, and % are the mean vector and the covariance matrix of the Gaussian
observation pdf of the HMM state s of the model M.

The HMM-based channel equalization problem can be stated as follows: given a sequence
of NP-dimensional channel output vectors ¥ = [y(0), . .. ,y(N —1)], and the prior knowledge
that the channel input sequence is drawn from a set of V HMMs M = {M;i=1,...,V},
estimate the channel response and the channel input.

The joint posterior pdf of an input word M, and the channel vector & can be expressed as

fM,H\Y(Mi’ h|Y) = PM\H,Y(Mi|h’ Y)fH|Y(h|Y) (15.68)

Simultaneous joint estimation of the channel vector £ and classification of the unknown input
word M is a nontrivial exercise. The problem is usually approached iteratively by making an
estimate of the channel response, and then using this estimate to obtain the channel input as
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follows. From Bayes’s rule, the posterior pdf of the channel & conditioned on the assumption
that the input model is M; and given the observation sequence Y can be expressed as

fH\]V[,Y(h|Mi7 Y) = fY|]V[,H(Y|Mi’h)fH\M(h|Mi) (1569)

1
Fyiae (Y| M)
The likelihood of the observation sequence, given the channel and the input word model,
can be expressed as

fY\M,H(Y|Mi’h) :fX|M(Y_h|Mi) (15~70)

where it is assumed that the channel output is transformed into cepstral variables so that
the channel distortion is additive. For a given input model M, and state sequence s =
[s(0), s(1),...,s(N —1)], the pdf of a sequence of N independent observation vectors

Y =[y(0),y(1),....y(N=1D)]is

N—-1
fY\H,S,M(Y|h’ s, M;) = H fX|s,M [y (m) —hls (m), M;]
m=0
N-1 PR
U 2_ |2xx s(m)| 12 (Y {__ [y(m) h— My s(m)] ;xl,,g(m)

Taking the derivative of the log-likelihood of Equation (15.71) with respect to the channel
vector h yields a maximum likelihood channel estimate as

N—-1

-1
ilML(Y’ S) Z (Z Exx s(k)) E;J,s(m) [y(m) - "’x,x(m)] (1572)

m=0

Note that, when all the state observation covariance matrices are identical, the channel
estimate becomes

N—-1

Y8 = = 3 [0) — ) (15.73)

m=0

The ML estimate of Equation (15.73) is based on the ML state sequence, s, of M;. In the
following section we consider the conditional mean estimate over all state sequences of a
model.

15.4.5 MAP CHANNEL ESTIMATE BASED ON HMMS

The conditional pdf of a channel & averaged over all HMMSs can be expressed as

fH|Y(h|Y) = Z mey,s,m (h|Y,s, M;) PS|M,- (S[M) Py (D)) (15.74)

i=1 s
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where P, (M;) is the prior pmf of the input words. Given a sequence of NP-dimensional
observation vectors, ¥ = [y(0), . ..,y(N — 1)], the posterior pdf of the channel & along a
state sequence s of an HMM M is defined as

1
fY\H,s,M (h|Y,s, M;) = melH,S,M (Y|h,s, M;) fu (h)

| R 1
(V) ,Eo QmF |z

1/2

Sl

xx,s(m) |

1
X eXp {_5 [y(m) —h— M’x,s(m)]T E;XI,S(M) [y(m) —h— M’x,s(m)] }
1
xexp | = (- m)" 35 - )| (1575)

where it is assumed that each state of the HMM has a Gaussian distribution with mean vector
M, sy and covariance matrix 3., (., and that the channel & is also Gaussian-distributed,
with mean vector m, and covariance matrix X,,. The MAP estimate along state s, on the
left-hand side of Equation (15.75), can be obtained as

—1
N—1| N—1
R (Y5, M) =3 [Z (Zohw+ 2;;)} 2 e o Y01 = B i ]

m=0 | k=0

k=0

-1
N-1

+ [Z (oo + 2 )} X M (15.76)

The MAP estimate of the channel over all state sequences of all HMMs can be obtained as

A v A
h(Y) =3 3 (Y, s, M) Py (5| M) Py (M) (15.77)

i=1 S

15.4.6 IMPLEMENTATIONS OF HMM-BASED DECONVOLUTION

In this section, we consider three implementation methods for HMM-based channel
equalization.

Method I: Use of the Statistical Averages Taken Over All HMMs

A simple approach to blind equalisation, similar to that proposed by Stockham, is to use
as the channel input statistics the average of the mean vectors and the covariance matrices,
taken over all the states of all the HMMs, as

1 YN 1 VN
AT 2 2P B = e 200 X (15.78)

s i=1 j=1 s i=1 j=1

B =
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where p,, ; and X, ; are the mean and the covariance of the jth state of the ith HMM, and
V and N, denote the number of models and number of states per model, respectively. The
maximum likelihood estimate of the channel, AM, is defined as

M = (5—p,) (15.79)
where y is the time-averaged channel output. The estimate of the channel input is
2(m) =y(m) — ™M™ (15.80)

Using the averages over all states and models, the MAP channel estimate becomes

N—-1

RMAR(Y) = D (Xt )" Y (m) — ]+ B+ Z) ' Bty (15.81)

m=0

Method II: Hypothesised-input HMM Equalisation

In this method, for each candidate HMM in the input vocabulary, a channel estimate is
obtained and then used to equalise the channel output, prior to the computation of a likelihood
score for the HMM. Thus a channel estimate ﬁw is based on the hypothesis that the input
word is w. It is expected that a better channel estimate is obtained from the correctly
hypothesised HMM, and a poorer estimate from an incorrectly hypothesised HMM. The
hypothesised-input HMM algorithm is as follows (Figure 15.9):

for i = 1 to number of words V{

Step 1: using each HMM, M, makq an estimate of the channel, ﬁi; .
Step 2: using the channel estimate, h;, estimate the channel input X(m) =y(m) —h;;
Step 3: compute a probability score for model M, given the estimate [x(m)].}

Select the channel estimate associated with the most probable word.
Figure 15.10 shows the ML channel estimates of two channels using unweighted average
and hypothesised-input methods.

y=x+h
Channel

estimate/M;

N Probability | p( Miy)
+ — score for —
u x;=y-hi M,

Figure 15.9 Hypothesised channel estimation procedure.
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Frequency (kHz)

0.0 8.0
| | | |

—— Actual channel distortion
- - —- Channel estimate using statistical averages over all models

—— Channel estimate using the statistics of the most likely models
dB

7
—— Actual channel distortion

- - - Channel estimate using statistical averages over all models
dB

—— Channel estimate using the statistics of the most likely models

Figure 15.10 Illustration of actual and estimated channel response for two channels.

Method III: Decision-directed Equalisation

Blind adaptive equalisers are often composed of two distinct sections: an adaptive linear
equaliser followed by a nonlinear estimator to improve the equaliser output. The output of
the nonlinear estimator is the final estimate of the channel input, and is used as the desired
signal fo direct the equaliser adaptation. The use of the output of the nonlinear estimator
as the desired signal assumes that the linear equalisation filter removes a large part of the
channel distortion, thereby enabling the nonlinear estimator to produce an accurate estimate
of the channel input. A method of ensuring that the equaliser locks into, and cancels, a large
part of the channel distortion is to use a startup, equaliser training period during which a
known signal is transmitted.

Figure 15.11 illustrates a blind equaliser incorporating an adaptive linear filter followed
by an HMM classifier/estimator. The HMM classifies the output of the filter as one of a

Y(m) | Equalisation filter 2(m) =x(m) + v(m) HMM )
hinv classifier/estimator
- +
()=
LMS adaptation | €(™) error signal j’/
algorithm

Figure 15.11 A decision-directed equaliser.
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number of likely signals and provides an enhanced output, which is also used for adaptation
of the linear filter. The output of the equaliser, z(m), is expressed as the sum of the input to
the channel, x(m), and a so-called ‘convolutional noise term’, v(m) as

z(m) = x(m) + v(m) (15.82)

The HMM may incorporate state-based Wiener filters for suppression of the convolutional
noise, v(m), as described in Section 5.5. Assuming that the LMS adaptation method is
employed, the adaptation of the equaliser coefficient vector is governed by the following
recursive equation:

™ (m) = B™ (m — 1) + we(m)y(m) (15.83)

where iz“”(m) is an estimate of the optimal inverse channel filter, w is an adaptation step
size and the error signal e(m) is defined as

e(m) = ™M (m) — z(m) (15.84)

where ™M (1) is the output of the HMM-based estimator and is used as the correct estimate
of the desired signal to direct the adaptation process.

15.5 BLIND EQUALISATION FOR DIGITAL
COMMUNICATIONS CHANNELS

High-speed transmission of digital data over analogue channels, such as telephone lines or
a radio channel, requires adaptive equalisation to reduce decoding errors caused by channel
distortions. In telephone lines, the channel distortions are due to the nonideal magnitude
response and the nonlinear phase response of the lines. In radio channel environments,
the distortions are due to nonideal channel response as well as the effects of multipath
propagation of the radio waves via a multitude of different routes with different attenuations
and delays. In general, the main types of distortions suffered by transmitted symbols are
amplitude distortion, time dispersion and fading. Of these, time dispersion is perhaps the
most important, and has received a great deal of attention. Time dispersion has the effect
of smearing and elongating the duration of each symbol. In high-speed communication
systems, where the data symbols closely follow each other, time dispersion results in an
overlap of successive symbols, an effect known as inter-symbol interference (ISI), illustrated
in Figure 15.12.

In a digital communications system, the transmitter modem takes N bits of binary data at
a time, and encodes them into one of 2" analogue symbols for transmission, at the signalling
rate, over an analogue channel. At the receiver the analogue signal is sampled and decoded
into the required digital format. Most digital modems are based on multilevel phase-shift
keying, or combined amplitude and phase-shift keying schemes. In this section we consider
multilevel pulse amplitude modulation (M-ary PAM) as a convenient scheme for the study
of adaptive channel equalisation.
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Transmitted waveform Received waveform

1 1 0 1 0 1

Time Time

Figure 15.12 Illustration of intersymbol interference in a binary pulse amplitude modulation system.

Assume that at the transmitter modem, the kth set of N binary digits, is mapped into a
pulse of duration T, seconds and an amplitude a(k). Thus the modulator output signal, which
is the input to the communication channel, is given as

x(t) = ¥ a(k)r(t —kT,) (15.85)

k

where r(f) is a pulse of duration 7, and with an amplitude a(k) that can assume one of
M =2V distinct levels. Assuming that the channel is linear, the channel output can be

modelled as the convolution of the input signal and channel response:

y(1) = / h(r)x(t — 7)d7 (15.86)
where h(t) is the channel impulse response. The sampled version of the channel output is
given by the following discrete-time equation:

y(m) =" hx(m—k) (15.87)

To remove the channel distortion, the sampled channel output y(m) is passed to an equaliser
with an impulse response A;". The equaliser output z(m) is given as

2(m) =Y H™y(m—k)
k

N (15.88)
=2 x(m—j) 3 h"h;
j k
where Equation (15.87) is used to obtain the second line of Equation (15.88). The ideal
equaliser output is z(m) = x(m — D) = a(m — D) for some delay D that depends on the
channel response and the length of the equaliser. From Equation (15.88), the channel
distortion would be cancelled if

K = h,, % h™ = &(m — D) (15.89)

where £, is the combined impulse response of the cascade of the channel and the equaliser.
A particular form of channel equaliser, for the elimination of ISI, is the Nyquist zero-forcing
filter, where the impulse response of the combined channel and equaliser is defined as

1, k=0

WK +D) =1 k20 (15.90)
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Note that, in Equation (15.90), at the sampling instants the channel distortion is cancelled,
and hence there is no IST at the sampling instants. A function that satisfies Equation (15.90)
is the sinc function, h°(¢r) = sin(wf,t)/7ft, where f, = 1/T,. Zero-forcing methods are
sensitive to deviations of /4°(f) from the requirement of Equation (15.90), and also to jitters
in the synchronisation and the sampling process.

15.5.1 LMS BLIND EQUALISATION

In this section, we consider the more general form of the LMS-based adaptive equaliser
followed by a nonlinear estimator. In a conventional sample-adaptive filter, the filter
coefficients are adjusted to minimise the mean squared distance between the filter output and
the desired signal. In blind equalisation, the desired signal (which is the channel input) is not
available. The use of an adaptive filter for blind equalisation requires an internally generated
desired signal, as illustrated in Figure 15.13. Digital blind equalisers are composed of two
distinct sections: an adaptive equaliser that removes a large part of the channel distortion,
followed by a nonlinear estimator for an improved estimate of the channel input. The output
of the nonlinear estimator is the final estimate of the channel input, and is used as the desired
signal to direct the equalizer adaptation. A method of ensuring that the equalizer removes
a large part of the channel distortion is to use a start-up, equaliser-training period during
which a known signal is transmitted.

Assuming that the LMS adaptation method is employed, the adaptation of the equaliser
coefficient vector is governed by the following recursive equation:

™ (m) = h™ (m — 1) + we(m)y(m) (15.91)

where izi“(m) is an estimate of the optimal inverse channel filter A'™, the scalar w is the
adaptation step size, and the error signal e(m) is defined as

e(m) = ?[Z(m)] —z(m) (15.92)
= x(m) —z(m)

where x(m) = {y [z(m)] is a nonlinear estimate of the channel input. For example, in a binary
communication system with an input alphabet {£a}, we can use a signum nonlinearity such

Y(m) | Equalisation filter | (") =X(m)+v(m) Decision device | X"
hinv M-level quantiser
s
LMS adaptation | ¢(") error signal \r
algorithm

Figure 15.13 Configuration of an adaptive channel equaliser with an estimate of the channel input
used as an ‘internally’ generated desired signal.
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that Xx(m) = a.sgn[z(m)], where the function sgn(-) gives the sign of the argument. In the
following, we use a Bayesian framework to formulate the nonlinear estimator, ().

Assuming that the channel input is an uncorrelated process and the equaliser removes a
large part of the channel distortion, the equaliser output can be expressed as the sum of the
desired signal (the channel input) plus an uncorrelated additive noise term:

z(m) = x(m) + v(m) (15.93)
where v(m) is the so-called convolutional noise defined as

v(m) = x(m) = Y_ h{™y(m — k)
. (15.94)
=2 (" = h)y(m—k)
k

In the following, we assume that the nonlinear estimates of the channel input are correct,
and hence the error signals e(m) and v(m) are identical. Owing to the averaging effect of the
channel and the equalizer, each sample of convolutional noise is affected by many samples
of the input process. From the central limit theorem, the convolutional noise, e(m), can be
modelled by a zero-mean Gaussian process as

2
exp ( ¢ (m)> (15.95)

- 2
207

fele(m)] =

1
V2mo,
where ¢, the noise variance, can be estimated using the recursive time-update equation

a2(m) = paZ(m—1)+(1—p)e*(m) (15.96)

where p < 1 is the adaptation factor. The Bayesian estimate of the channel input given the
equaliser output can be expressed in a general form as
i(m) = argmin/ C[x(m), x(m)] fxz [x(m)|z(m)] dx(m) (15.97)
x(m) ¥
where C[x(m), X(m)] is a cost function and fy,[x(m)|z(m)] is the posterior pdf of the
channel input signal. The choice of the cost function determines the type of the estimator, as

described in Chapter 4. Using a uniform cost function in Equation (15.97) yields the MAP
estimate:

AP (m) = arg(rr;aXfX\z [x(m)[z(m)]

(15.98)
= argmax fy [z(m) — x(m)] Py [x(m)]

x(m)

Now, as an example consider an M-ary pulse amplitude modulation system, and let {q; i =
1,..., M} denote the set of M pulse amplitudes with a probability mass function

Py [x(m)] = }_P;8[x(m) —a;] (15.99)

i=1
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The pdf of the equaliser output, z(m), can be expressed as the mixture pdf:

Sz [Z(m)] :ZpifE [x(m)_ai] (15~100)
i=1
The posterior density of the channel input is
1
PX\Z [x(m) = a;|z(m)] = ———= [ [2(m) — a;] P [x(m) = a,] (15.101)
fz[2(m)]
and the MAP estimate is obtained from
YA (m) = arg max {f; [2(m) — a;] Py [x(m) = a,]} (15.102)

al

Note that the classification of the continuous-valued equaliser output, z(m), into one of M
discrete channel input symbols is basically a nonlinear process. Substitution of the zero-mean
Gaussian model for the convolutional noise, e(m), in Equation (102) yields

i

AMAP (m) = arg max (PX [x(m) = a;]exp [—M }) (15.103)

a 207

Note that, when the symbols are equiprobable, the MAP estimate reduces to a simple
threshold decision device. Figure 15.13 shows a channel equaliser followed by an M-level
quantiser. In this system, the output of the equaliser filter is passed to an M-ary decision
circuit. The decision device, which is essentially an M-level quantiser, classifies the channel
output into one of M valid symbols. The output of the decision device is taken as an internally
generated desired signal to direct the equaliser adaptation.

15.5.2 EQUALISATION OF A BINARY DIGITAL CHANNEL

Consider a binary PAM communication system with an input symbol alphabet {a,, a,} and
symbol probabilities P(a,) = P, and P(a,) = P, = 1 — P,. The pmf of the amplitude of the
channel input signal can be expressed as

P[x(m)] = Py6 [x(m) — ay]+ P,6 [x(m) —a,] (15.104)

Assume that, at the output of the linear adaptive equaliser in Figure 15.13, the convolutional
noise v(m) is a zero-mean Gaussian process with variance o?2. Therefore the pdf of the
equalizer output, z(m) = x(m) + v(m), is a mixture of two Gaussian pdfs and can be
described as

Py [z(m) — “0]2 P, [z(m) — al]z
z(m)] = exp 1y — + expy ——————— 15.105
The MAP estimate of the channel input signal is
ay i exp {_ L) —ao)® } <P exp {_ [e0m)—a,]* }
imy=14 " Vo 207 Vamo, 207 (15.106)

a, otherwise
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Figure 15.14 Comparison of the error functions produced by the hard nonlinearity of a signun
function, Equation (15.107), and the soft nonlinearity of Equation (15.108).

For the case when the channel alphabet consists of a, = —a, a, = a and P, = P, the MAP
estimator is identical to the signum function sgn [x(m)], and the error signal is given by

e(m) = z(m) —sgn[z(m)]a (15.107)

Figure 15.14 shows the error signal as a function of z(m). An undesirable property of a
hard nonlinearity, such as the sgn(-) function is that it produces a large error signal at those
instances when z(m) is around zero, and a decision based on the sign of z(m) is most likely
to be incorrect.

A large error signal based on an incorrect decision would have an unsettling effect on
the convergence of the adaptive equaliser. It is desirable to have an error function that
produces small error signals when z(m) is around zero. Nowlan and Hinton proposed a soft
nonlinearity of the following form

eZaz(m)/tr2 -1

e(m) =z(m) — (15.108)

eZaz(m)/o’2 +1 a
The error, e(m), is small when the magnitude of z(m) is small and large when magnitude
of z(m) is large.

15.6 EQUALISATION BASED ON HIGHER-ORDER STATISTICS

The second-order statistics of a random process, namely the autocorrelation or its Fourier
transform the power spectrum, are central to the development the linear estimation theory,
and form the basis of most statistical signal processing methods, such as Wiener filters and
linear predictive models. An attraction of the correlation function is that a Gaussian process,
of a known mean vector, can be completely described in terms of the covariance matrix, and
many random processes can be well characterised by Gaussian or mixture Gaussian models.
A shortcoming of second-order statistics is that they do not include the phase characteristics
of the process. Therefore, given the channel output, it is not possible to estimate the channel
phase from the second-order statistics. Furthermore, as a Gaussian process of known mean
depends entirely on the autocovariance function, it follows that blind deconvolution, based
on a Gaussian model of the channel input, cannot estimate the channel phase.
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Higher-order statistics, and the probability models based on them, can model both the
magnitude and the phase characteristics of a random process. In this section, we consider
blind deconvolution based on higher-order statistics and their Fourier transforms, known as
the higher-order spectra. The prime motivation in using higher-order statistics is their ability
to model the phase characteristics. Further motivations are their potential to model channel
nonlinearities, and to estimate a non-Gaussian signal in a high level of Gaussian noise.

15.6.1 HIGHER-ORDER MOMENTS, CUMULANTS AND SPECTRA

The kth order moment of a random variable X is defined as

m, = E[x"]
= (=) 8“;’;@ » (15.109)
where @, (w) is the characteristic function of the random variable X defined as
b, (w) = E[exp(jowx)] (15.110)

From Equations (15.109) and (15.110), the first moment of X is m; = E[x], the second
moment of X is m, = E[x?], and so on. The joint kth-order moment (k = k, +k,) of two
random variables X, and X, is defined as

aklakzcbxlxz(wl, w,)

ki K
dw,' dwy’

E[x)xp] = (=)t (15.111)

W =w=0
and in general the joint kth order moment of N random variables is defined as

m, = E[x\' x5 X

(15.112)

W :wZ:...:wN:O

where k =k, +k,+... +ky and the joint characteristic function is
D(wy, 0y, ..., 0y) = E[exp (jo,x; + 0y, + -+ @pyxy)] (15.113)

Now the higher-order moments can be applied for characterization of discrete-time random
processes. The kth-order moment of a random process x(m) is defined as

m (T, Tay o ooy Tx_y) = E[x(m), x(m+7)x(m+7,) - x(m+7,_,)] (15.114)

Note that the second-order moment E[x(m)x(m + 7)] is the autocorrelation function.
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15.6.1.1 Cumulants

Cumulants are similar to moments; the difference is that the moments of a random process are
derived from the characteristic function @, (w), whereas the cumulant generating function,
Cy(w), is defined as the logarithm of the characteristic function as

Cy(w) =InPy(w) =InE[exp(jowx)] (15.115)

Using a Taylor series expansion of the term Z[exp(jwx)] in Equation (15.115), the cumulant
generating function can be expanded as

Cy(w) =1n (1 +m,(jo)+ %(jw)2+ %(jwf—i—m-i-%(jw)" +) (15.116)

where m, = E[x*] is the kth moment of the random variable x. The kth-order cumulant of
a random variable is defined as

¢ = (—j)"% B (15.117)
From Equations (15.116) and (15.117), we have

¢, =m, (15.118)

Cy =my—m] (15.119)

c3 =my—3mym,+2m’ (15.120)

and so on. The general form of the kth-order (k =k, +k,+- - -+ k) joint cumulant generating
function is

Jkittkn In P ety
Copoy = (= PR (15.121)
awl o awN 0)=wy==wy=0
The cumulants of a zero mean random process x(m) are given as
¢, = E[x(k)]=m,=0 (mean) (15.122)
¢, (k) = E[x(m)x(m+ k)] — E[x(m)]’
=m (k) —m> =m,(k) (covariance) (15.123)
c(ky ky) = m(Ky. ko) = m [m, (ky) +my (ky) + m, (ky = k)] +2 ()’
=m,(k, k,) (skewness) (15.124)
co(ky, ky, k3) = m(ky, ky, k3) —m. (ky)m, (ks — k;)
—m(ky)m, (ks — ky) = m, (ky)m, (ks — ;) (15.125)

and so on. Note that m (k, k,, ..., ky) = E[x(m)x(m+k,), x(m+ky),...,x(m+ky)].
The general formulation of the kth-order cumulant of a random process x(m) (Rosenblatt)
is defined as

ek koo k) =mo(ky Ky oo k) —mE(ky Ky, .. k) forn=3,4,... (15.126)
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where mS(k,, k,, . .., k,) is the kth-order moment of a Gaussian process having the same
mean and autocorrelation as the random process x(m). From Equation (15.126), it follows
that, for a Gaussian process, the cumulants of order greater than 2 are identically zero.

15.6.1.2 Higher-order Spectra

The kth-order spectrum of a signal x(m) is defined as the (k — 1)-dimensional Fourier
transform of the kth-order cumulant sequence as

1 = > —j(w T+ Fwi_ T
Cylw,,...,0_,) = Wn;w. . THX::_OOCX(TI, e Ty e o)
(15.127)
For the case k = 2, the second-order spectrum is the power spectrum, given as
Cy(w) = — Z c (m)e " (15.128)
The bi-spectrum is defined as
Cy(w;, ) = Y Y alm,m)e” Hormterm) (15.129)

(272
(2 M) e
and the tri-spectrum is
Cy(w;, 0y, w3) = (277)* Yo Y cmy, Ty, T rmteantesn) (15.130)
| =—00 TH)=—00 T3=—00

Since the term e/’ is periodic with a period of 24, it follows that higher-order spectra are
periodic in each w, with a period of 2.

15.6.2 HIGHER-ORDER SPECTRA OF LINEAR TIME-INVARIANT
SYSTEMS

Consider a linear time-invariant system with an impulse response sequence {4, }, input signal
x(m) and output signal y(m). The relation between the kth-order cumulant spectra of the
input and output signals is given by

Cy(wy, ... o) =H(w) - Ho ) H (0,4 + o, )Cx(o, ..., 0,) (15.131)

where H(w) is the frequency response of the linear system {%,}. The magnitude of the
kth-order spectrum of the output signal is given as

[Cy(@y, ..., )| = [H(w)| - [H(op )| [H(w; + -+ @) |[Cx (@, . .., o)
(15.132)
and the phase of the kth-order spectrum is
Oy (@, ..., 0 1) =Py(w))+- +Py(w;_) = Py + -+ ) + Py(wy, ..., 0py)
(15.133)
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15.6.3 BLIND EQUALISATION BASED ON HIGHER-ORDER CEPSTRA

In this section, we consider blind equalisation of a maximum-phase channel, based on higher-
order cepstra. Assume that the channel can be modelled by an all-zero filter, and that its
z-transfer function, H(z), can be expressed as the product of a maximum-phase polynomial
factor and a minimum-phase factor as

H(z) = GH,,,(2)H,,,,(z )z " (15.134)
H,,(2) = lﬂl(l—a,-fl), lo;| < 1 (15.135)
Howe ) =TI~ B, 1B <1 (15.136)

i=1

where G is a gain factor, H,;,(z) is a minimum-phase polynomial with all its zeros inside
the unit circle, H,,,,(z™!) is a maximum-phase polynomial with all its zeros outside the unit
circle and z~? inserts D unit delays in order to make Equation (15.134) causal. The complex
cepstrum of H(z) is defined as

h.(m)=Z"[InH(z)] (15.137)

where Z~! denotes the inverse z-transform. At z = e/°, the z-transform is the discrete Fourier
transform, and the cepstrum of a signal is obtained by taking the inverse DFT of the logarithm
of the signal spectrum. In the following we consider cepstra based on the power spectrum
and the higher-order spectra, and show that the higher-order cepstra have the ability to
retain maximum-phase information. Assuming that the channel input, x(m), is a zero-mean
uncorrelated process with variance o2, the power spectrum of the channel output can be
expressed as

0_2

Py(w) = ﬁH((u)H*(a)) (15.138)

The cepstrum of the power spectrum of y(m) is defined as

¥(m) = IDFT[In Py (w)]
=IDFT [In (07G?/27) +In Hyp (0) 4+ Hpp (— o)
+1n HYyy (@) + Hi (—0)] (15.139)
where IDFT is the inverse discrete Fourier transform. Substituting Equations (15.135) and
(15.36) in Equation (15.139), the cepstrum can be expressed as
In (G*a2/2) m=0

ye(m)={—(A™+B™)/m, m=>0 (15.140)
(A(*’") —i—B(*’")) /m, m<0
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where A and B™ are defined as

Py

A =3 (15.141)
i=1
Py

B =%"p" (15.142)

i=1

Note from Equation (15.140) that, along the index m, the maximum-phase information, B,
and the minimum-phase information, A™, overlap and cannot be separated.

15.6.3.1 Bi-cepstrum

The bi-cepstrum of a signal is defined as the inverse Fourier transform of the logarithm of
the bi-spectrum:

v.(m,, m,) =1IDFT,[log Cy(®w,, w,)] (15.143)

where IDFT,[.] denotes the two-dimensional inverse discrete Fourier transform. The
relationship between the bi-spectra of the input and output of a linear system is

Cy(w, w,) = H(w)H(w,) H (0, + 0,) Cy (0, ) (15.144)
Assuming that the input, x(m), of the linear time-invariant system, {%,}, is an uncorrelated
non-Gaussian process, the bi-spectrum of the output can be written as
)((3)G3
CY(wl’ (1)2) :—2Hmin(wl)Hmax(_wl)Hmin(wZ)Hmax(_wZ)
(2m)
x Hi (0, + o)) Hy (-0, — w,)

(15.145)

where y®) /(27)? is the third-order cumulant of the uncorrelated random input process, x(m1).
Taking the logarithm of Equation (15.145) yields

In Cy(wl ’ (1)2) =In |A| +1nHmin(wl) +In Hmax(_wl) +1nHmin(w2) +1n Hmax(_wZ)
InH, (0, +w,)+InH; (-0, —v,) (15.146)

min

where A = y®G3/(2m)?. The bi-cepstrum is obtained through the inverse DFT of
Equation (15.146) as

In|A], my=m, =0
—A™ /m,, m;>0,my,=0
—A™) /m,, my>0,m, =0

—BC™) /my, m; <0,my,=0

(m;,m,) = 15.147
Ye(rmy, ma) BC™) /m,, my, <0,m; =0 ( )
—B™)/m,,  m;=m, >0
A" /m,, my=m, <0

0, otherwise
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Note from Equation (15.147) that the maximum-phase information, B", and the minimum-
phase information, A", are separated and appear in different regions of the bi-cepstrum
indices, m, and m,.

The higher-order cepstral coefficients can be obtained either from the IDFT of higher-
order spectra, as in Equation (15.147), or using parametric methods, as follows. In general,
the cepstral and cumulant coefficients can be related by a convolutional equation. Pan and
Nikias (1988) have shown that the recursive relation between the bi-cepstrum coefficients
and the third-order cumulants of a random process is

Ye(my, my) * [_ml c,(my, mz)] = —myc,(my, my) (15.148)

Substituting Equation (15.147) in Equation (15.148) yields

ZA(i)[Cx(m] —i,my) —c (my +i,my+i)] +B(i)[cx(ml —i,my—1i) —c,(m +1i,m,)]
i=1
=—mc,(m;, m,) (15.149)

The truncation of the infinite summation in Equation (15.149) provides an approximate
equation as

P
ZA(i)[Cx(ml —i,my) —c (my +i,my+i)]
= (15.150)

9
+ZB(’)[cx(m1 —i,my—i) —c,(m; +i,my) |~ —mc,(m, m,)
i1

Equation (15.150) can be used to solve for the cepstral parameters A”™ and B™.

15.6.3.2 Tri-cepstrum

The tri-cepstrum of a signal y(m) is defined as the inverse Fourier transform of the tri-
spectrum:

y.(my, my, my) = IDFT;[In Cy(w,, w,, w3)] (15.151)

where IDFT;[-] denotes the three-dimensional inverse discrete Fourier transform. The tri-
spectra of the input and output of the linear system are related as

Cy(@), 0y, 03) = H(w,)H(w,) H(w;) H (0, + 0, + 03) Cy (@, 05, ©3) (15.152)

Assuming that the channel input x(m) is uncorrelated, Equation (15.152) becomes

@ G4

Cy(w, ,, w3) = (;—;H(wl)H(wz)H(a},ﬁ)H*(wl +w, + ) (15.153)
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where Y% /(27)? is the fourth-order cumulant of the input signal. Taking the logarithm of
the tri-spectrum gives

(4)(;
lnCY(w17w2’w3) (2 )3 —i_lnl-lmm(wl)_i_ln max( w1)+11’1 mln(w2)+1n max( w2)

+In Hmm(w3) +In Hmdx( (1)3) +In mm(wl + w, + (1)3) +In max( W) — Wy — a@ﬁ154)
From Equations (15.151) and (15.154), we have

InA, my=my,=my;=0

—A™) my, omy>0,my=my;=0
—A™) /my my, > 0,m; =my;=0
—A") fmy, my>0,my =my =0

BC /my, my <0,my=my=0 (15.155)

,mvm’m =
Ye(my, my, my) BE™) my, my < 0,my =my =0

BC™) /my,  my<0,m =my,=0
—B™) /my, my=my=m;>0

AU /m,, m;y=m,=my <0

0 otherwise

where A =y G*/(2m)3. Note from Equation (15.155) that the maximum-phase information,
B and the minimum-phase information, A", are separated and appear in different regions
of the tri-cepstrum indices, m,, m, and m;.

15.6.3.3 Calculation of Equaliser Coefficients from the Tri-cepstrum

Assuming that the channel z-transfer function can be described by Equation (15.134), the
inverse channel can be written as

. 1 1
H™(z) = Ho () Hya (27) (15.156)
HE)  Hpn(@Hp ()
where it is assumed that the channel gain G is unity. In the time domain Equation (15.156)
becomes

R™(m) = h™ (m) x k™ (m) (15.157)
Pan and Nikias (1988) describe an iterative algorithm for estimation of the truncated impulse
response of the maximum-phase and the minimum-phase factors of the inverse channel
transfer function. Let 2™ (i, m), i'™ (i, m) denote the estimates of the mth coefficients of

the maximum-phase and minimum-phase parts of the inverse channel at the ith iteration.
The Pan and Nikias algorithm is the following:

(1) initialisation

™ (i,0) = h™ (i,0) =1 (15.158)

min max
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(2) calculation of the minimum-phase polynomial

m+1

A (iym) = — 3 ACDRE™ Gom—k4+1) i=1,...,P (15.159)
k=2

1
m
(3) calculation of the maximum-phase polynomia

0

A~ 1 ~ ~
B (i,m)y=— > BUMAM™ (i,m—k+1) i=—1,...,—P, (15.160)

max max
k=m+1

The maximum-phase and minimum-phase components of the inverse channel response are
combined in Equation (15.157) to give the inverse channel equaliser.

15.7 SUMMARY

In this chapter, we considered a number of different approaches to channel equalisation. The
chapter began with an introduction to models for channel distortions, the definition of an
ideal channel equaliser, and the problems that arise in channel equalisation due to noise and
possible noninvertibility of the channel. In some problems, such as speech recognition or
restoration of distorted audio signals, we are mainly interested in restoring the magnitude
spectrum of the signal, and phase restoration is not a primary objective. In other applications,
such as digital telecommunications, the restoration of both the amplitude and the timing of
the transmitted symbols is of interest, and hence we need to equalise for both the magnitude
and the phase distortions.

In Section 15.1, we considered the least square error Wiener equaliser. The Wiener
equaliser can only be used if we have access to the channel input or the cross-correlation of
the channel input and output signals.

For cases where a training signal cannot be employed to identify the channel response,
the channel input is recovered through a blind equalisation method. Blind equalisation is
feasible only if some statistics of the channel input signal are available. In Section 15.2,
we considered blind equalisation using the power spectrum of the input signal. This method
was introduced by Stockham for restoration of the magnitude spectrum of distorted acoustic
recordings. In Section 15.3, we considered a blind deconvolution method based on the
factorisation of a linear predictive model of the convolved signals.

Bayesian inference provides a framework for inclusion of the statistics of the channel
input and perhaps also those of the channel environment. In Section 15.4, we considered
Bayesian equalisation methods, and studied the case where the channel input is modelled by
a set of hidden Markov models. Section 15.5 introduced channel equalisation methods for
removal of intersymbol interference in digital telecommunications systems, and finally, in
Section 15.6, we considered the use of higher-order spectra for equalisation of nonminimum-
phase channels.
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Speech enhancement in noisy environments, such as in cars, trains, streets and at noisy
public venues, improves the quality and intelligibility of speech. Noise reduction benefits
a wide range of applications, such as mobile phones, hands-free phones, teleconferencing,
in-car cabin communication systems and automated speech recognition services. This chapter
provides an overview of the main methods for single-input and multiple-input speech
enhancement in noise.

The classical noise reduction method is the Wiener filter, which modifies the magnitude
frequency spectrum of the noisy input signal in proportion to an estimate of the signal-to-
noise ratio at each frequency. The Wiener filter requires estimates of the power spectra,
or equivalently the correlation matrices, of speech and noise. The simplest form of noise
reduction is based on subtraction of an estimate of the magnitude spectrum of the noise
from that of the noisy signal. Spectral subtraction only requires an estimate of the average
noise spectrum, usually obtained from the speech inactive noise-only periods, but introduces
some distortions. High-performance speech enhancement methods are based on Bayesian
estimation and include Kalman filters, minimum mean squared error estimation and,
ultimately, the signal restoration methods that are based on hidden Markov models of speech
and noise. Multiple-input noise reduction methods are particularly useful for teleconferencing
and in-car communication and include beam forming arrays, adaptive noise cancellation and
stereophonic echo cancellation.

Advanced Digital Signal Processing and Noise Reduction Third Edition Saeed V. Vaseghi
© 2006 John Wiley & Sons, Ltd
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16.1 INTRODUCTION

De-noising speech improves the quality and the intelligibility of voice communication in
noisy environments and reduces communication fatigue. Noise reduction benefits the users
of hands-free phones, mobile phones and voice-controlled automated services used in noisy
moving environments such as cars, trains, streets, conference halls and other public venues.

Figure 16.1 illustrates a classification of the main signal processing methods for
enhancement of noisy speech into two broad types:

(1) Single-input speech enhancement systems, where the only available signal is the noise-
contaminated speech picked up by a single microphone. Single input systems do not
cancel noise, rather they suppress the noise using estimates of the signal-to-noise ratio
of the frequency spectrum of the input signal. Single-input systems rely on the statistical
models of speech and noise, which may be estimated from the speech-inactive periods
or decoded from a set of pre-trained models of speech and noise. An example of a
useful application of a single-input enhancement system is a mobile phone system used
in noisy environments.

(2) Multiple-input speech enhancement systems, where a number of signals containing
speech and noise are picked up by several microphones. Examples of multiple-
inputs systems are adaptive noise cancellation, adaptive beam-forming microphone
arrays and multiple-input multiple-output (MIMO) acoustic echo cancellation systems.
In multiple-input systems the microphones can be designed, spatially arranged and
adapted for optimum performance. Multiple-input noise-reduction systems are useful for
teleconferencing systems and for in-car cabin communication systems.

Figure 16.1 illustrates a categorization of the main noise reduction methods used for single-
input and multiple-input scenarios. In order to achieve the best noise-reduction performance,
where possible, the advantages of the signal processing methods developed for single-input
noise suppression and multiple-inputs noise cancellation systems are combined.

Speech enhancement methods

Multiple-sensor methods T T Single-sensor methods
Y
. . L Spectral Restoration
Adaptive Beam—formmg Mult.lple-mput Wiener Kalman pectr: via model-based
noise noise multiple-ouput . X estimation L
. . filter filter (MAP, MMSE) analysis
cancellation suppression systems s synthesis

i i ! T

| Decoders supply statistical models of signal and noise |

Figure 16.1 A categorization of speech enhancement methods. Note that statistical models can
optionally provide single-input noise reduction methods with the additional information needed for
improved performance.
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16.2 SINGLE-INPUT SPEECH-ENHANCEMENT METHODS

In single-input systems the only available signal is the noisy speech; however, in applications
where speech enhancement and recognition are performed on the same system, the results
of speech recognition can provide the speech enhancement method with such information as
the statistics of the power spectra or correlation matrices obtained from decoding the most-
likely speech and noise models. Single-input noise-reduction methods include Wiener filter,
spectral subtraction, Kalman filter, MMSE method and speech restoration via model-based
analysis and synthesis methods, as described in this section.

16.2.1 AN OVERVIEW OF A SPEECH-ENHANCEMENT SYSTEM

Assuming that the speech signal, x(m), and the noise, n(m), are additive, the noisy speech,
y(m), is modelled as

y(m) = x(m) + n(m) (16.1)

where the integer variable m denotes the discrete-time index. It is generally assumed that
the speech is not correlated with noise; this is a reasonable assumption in most cases when
the signal and noise are generated by independent sources.

The general form of a typical speech-enhancement method is shown in Figure 16.2. The
speech-enhancement system is composed of a combination of the following modules:

(1) speech segmentation into a sequence of overlapping frames (of about 20-30 ms) followed
by windowing of each segment with a popular window such as the Hann window;

(2) discrete Fourier transformation of the speech samples within each frame to a set of
short-time spectral samples;

(3) estimation of the spectral amplitudes of clean speech — this involves a modification of
the magnitude spectrum of noisy speech according to an estimate of the signal to noise
ratio at each frequency;

(4) an inter-frame signal smoothing method to utilise the temporal correlations of the spectral
values across successive frames of speech;

(5) speech and noise models, and a speech and noise decoder, to supply the speech estimator
with the required statistics (power spectra, correlation matrices, etc.) of speech and
noise;

(6) voice activity detection, used to estimated and adapt noise models from the noise-only
periods and also for applying extra attenuation to noise-only periods.

In the following, the elements of a speech-enhancement system are described in more detail.

16.2.1.1 Segmentation and Windowing of Speech

Speech processing systems divide the sampled speech signal into overlapping frames of
about 20-30ms duration. The N speech samples within each frame are processed and
represented by a set of spectral features or by a linear prediction model of speech production.
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Figure 16.2 Block diagram illustration of a speech-enhancement system.

The signal within each frame is assumed to be a stationary process. The choice of the length
of speech frames (typically set to between 20 and 30 ms) is constrained by the stationarity
assumption of linear time-invariant signal processing methods such as Fourier transform or
linear prediction model, and by the maximum allowable delay for real-time communication
systems such as voice coders.

16.2.1.2 Spectral Representation of Speech and Noise

Speech is segmented into overlapping frames of N samples and transformed to frequency
domain via discrete Fourier transform. In the frequency domain, the noisy speech can be
represented as

Y(k) = X(k) + N(k) k=0,...N—1 (16.2)

where X(k), N(k) and Y(k) are the short-time discrete Fourier transforms of speech, noise
and noisy speech, respectively. The integer k represents the discrete frequency variable; it
corresponds to an actual frequency of 2k7/N (rad/s) or kF,/N (Hz) where F is the sampling
frequency.

Equation (16.2) can be written in the complex polar form in terms of the magnitudes and
the phases of the signal and noise at discrete frequency k as

Y/’ = X, e/ + N/ k=0,...N—1 (16.3)

where Y, = |Y(k)| and 6, =tan~'{Im[Y(k)]/Re[Y(k)]} are the magnitude and phase of
the frequency spectrum, respectively. Note that the Fourier transform models the correlation
of speech samples with sinusoidal basis functions. The DFT bins can then be processed
individually or in groups of frequencies, taking into account the psychoacoustics of
hearing.
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16.2.1.3 Linear Prediction Model Representation of Speech and Noise

The correlation of speech (or noise) samples can be modelled with a linear prediction (aka
autoregressive) model, introduced in Chapter 8. Using a linear prediction model of speech
and noise, the noisy speech is expressed as

y(m) = Zakx(m—k)+e(m)+Zbkn(m—k)+v(m) (16.4)

k=1 k=1

Speech model Noise model

where a, and b, are the coefficients of linear prediction models of speech and noise,
respectively. Linear prediction models can be used in a variety of speech enhancement
methods, including Wiener filters, Kalman filters and speech restoration via decomposition
and re-synthesis.

16.2.1.4 Interframe and Intraframe Correlations

The two main issues in modelling noisy speech are:

(1) modelling and utilization of the probability distributions and the intraframe correlations
of speech and noise samples within each noisy speech frame;

(2) modelling and utilization of the probability distributions and the interframe correlations
of speech and noise features across successive frames of noisy speech.

Most speech-enhancement systems are based on estimates of the short-time amplitude
spectrum or the linear prediction model of speech. The phase distortion of speech is ignored.
In the case of DFT-based features, each spectral sample, X(k), at a discrete frequency k
is the correlation of speech samples, x(m), with a sinusoidal basis function e=/2™"/N The
intraframe spectral correlation, that is the correlation of spectral samples within a frame of
speech, is often ignored, as is the inter-frame temporal correlation of spectral samples across
successive speech frames.

In the case of linear prediction models, the poles model the spectral correlations within
each frame. However, the denoising of linear prediction model poles, or coefficients, is
achieved through denoising the frequency response of clean speech and that ignores the
correlation of spectral samples. The optimal utilization of the interframe and intraframe
correlations of speech samples is a continuing research issue.

16.2.1.5 Speech Estimation Module

At the heart of a speech-enhancement system is the speech-estimation module. For speech
enhancement, usually the spectral amplitude, or a linear prediction model, of speech is
estimated and this estimate is subsequently used to reconstruct speech samples.

A variety of methods have been proposed for the estimation of clean speech, including
the Wiener filter, spectral subtraction, Kalman filters, the minimum mean squared error and
the maximum a posteriori method. For proper functioning of the speech estimation module
a knowledge of the statistics of speech and noise is required and this can be estimated from
the noisy speech or it can be obtained from pre-trained models of speech and noise.
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16.2.1.6 Probability Models of Speech and Noise

The implementation of a noise-reduction method such as the Wiener filter, Kalman filter,
spectral subtraction or a Bayesian estimation method requires estimates of the statistics (and
in particular the power spectra or equivalently the correlation matrices) of the speech and
noise. An estimate of the noise statistics can be obtained from speech-inactive periods;
however, for best results the speech and noise statistics are obtained from a network of
probability models of speech and noise, and this essentially implies that in an optimal speech
processing system speech recognition and speech enhancement would need to be integrated.

The most commonly used probability models for speech are hidden Markov models.
Hidden Markov models, or alternatively Gaussian mixture models, can also be used for
modelling nonstationary noise. To model different types of noise, a number of HMMs need
to be trained, one HMM for each type of noise. Alternatively, one can use a GMM of noise
with a large number of components, with each component effectively modelling a different
type of noise.

16.2.2 WIENER FILTER FOR DE-NOISING SPEECH

The Wiener filter theory, introduced in Chapter 6, forms the foundation of speech de-noising
systems. The output of a Wiener filter is given by

P

i(m) = Y w(i)y(m—i) (16.5)

i=0

where w(k) is the filter coefficient for de-noising the input speech y(m) and X(m)
is the estimate of clean speech x(m). The Wiener filter coefficient vector, w =
[w(0), w(1), .. w(P)]T, was derived in Chapter 6 as

-1
w=Rr, (16.6)
where R,, is the autocorrelation matrix of the noisy speech signal, y, and r,, is the cross
correlation vector of the clean speech, x, and noisy speech, y.

For uncorrelated speech and noise, the Wiener filter Equation (16.6) can be written as

w= [Rxx +Rnn]7l rxx (16'7)

where R, and R, are the autocorrelation matrices of the speech and noise, respectively, and
r,, is the autocorrelation vector of the speech. In the frequency domain, for additive noise
uncorrelated with speech, the Wiener filter equation was derived in Chapter 6 as

Pyx (k)

W= b0 + Pen(h)

(16.8)

where W(k) is the frequency response of the Wiener filter, Py (k) and Pyy(k) are the power
spectra of speech and noise, respectively, and k is the discrete frequency variable. Figure 16.3
outlines a block diagram implementation of a frequency domain Wiener filter.
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Figure 16.3 Block diagram overview of implementation of a Wiener filter for a speech-enhancement
system.

By dividing the numerator and the denominator of Equation (16.8) by Py (k), the Wiener
filter can be expressed in terms of the signal-to-noise ratio as

SNR (k)

wik) = SNR(k) + 1

(16.9)
This equation reveals an important aspect of the general workings of the signal-input noise
reduction system: noise suppression methods effectively use a function of the estimates of
the signal-to-noise ratios to modify the spectral amplitudes of the noisy signal.

16.2.2.1 Wiener Filter Based on Linear Prediction Models

Wiener filters employing linear prediction models of speech and noise may be used for
speech enhancement. The frequency response of Wiener filter can be expressed in terms of
the ratio of power spectra of autoregressive (i.e. linear prediction) models of speech and
noise as

Pull) _ GY/A) _ Gy ()
Py(f)  Gi/AVW(H Gy AX(D
where Gy (f)/Ax(f) and G,(f)/A,(f) are the frequency responses of linear prediction

models of speech and noisy speech, respectively. In the time domain a square root version
of Wiener filter equation (16.10) can be implemented as

W(f) = (16.10)

x(m) = Zp:ax(k)fc(m—k)+%Xq:ay(k)y(m—k) (16.11)

k=1 Y k=0

where a, (k) and a (k) are the coefficients of autoregressive models of clean speech and
noisy speech, respectively.

16.2.2.2 HMM-based Wiener Filters

The key to the successful implementation of a Wiener filter is the accurate estimation of the
power spectra of speech and noise, Pyy (k) and Pyy(k), for the frequency domain Wiener
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Figure 16.4 Block diagram illustration of a speech-enhancement system based on Wiener filters and
hidden Markov models.

filter of Equation (16.8) or equivalently the estimation of the correlation matrices of speech
and noise, R, and R, for the time domain Wiener filter of Equation (16.7). This is not a
trivial task as speech and most noise processes are nonstationary.

Given the noisy speech signal, the time-varying power spectra of speech and noise may
be estimated from a set of pre-trained hidden Markov models, or Gaussian mixture models,
of speech and noise using a Viterbi decoder (Figure 16.4). An HMM state-based Wiener
filter involves the following signal processing steps:

(1) Speech and noise decomposition — this involves the estimation of the most likely
combination of speech and noise HMMs given the noisy speech signal. Using Viterbi
state decoders, the most likely combination of speech and noise states yield the pdfs of
the spectra of the most likely estimates of the clean speech and noise.

(2) The speech and noise power spectra from (1) are used to implement state-based Wiener
filters.

In HMM-based Wiener filtering, the choice of the speech features for training HMMs needs
to be appropriate for both speech recognition and enhancement. Linear prediction-based
cepstrum features provide a suitable choice as the cepstrum coefficients obtained from HMM
states can be mapped to the linear prediction model coefficients and thereafter to the linear
prediction model spectrum for use in the implementation of the Wiener filter.

Assuming that for a noisy speech signal spectrum, Y(k), the Viterbi decoder returns M
different most likely state sequences, and that in each state the probability density function
of the speech spectrum is represented by a mixture of L Gaussian pdfs, the Wiener filter is
given by

X(k) = [Z > p(B. v)WB,y(m] Y(k) (16.12)
B=1v=1

where p(B, ) is the estimated probability of speech and noise spectra from mixture y of
HMM state B and W, (K) is the state Wiener filter.
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Figure 16.5 Block diagram illustration of an FFT-based spectral subtraction system for de-noising
speech.

16.2.3 SPECTRAL SUBTRACTION OF NOISE

A simple and widely studied speech enhancement method is the spectral subtraction method
described in Chapter 11 (Figure 16.5). In spectral subtraction an estimate of the average
magnitude spectrum of the noise is subtracted from the magnitude spectrum of noisy speech.
As explained in Chapter 11, the spectral subtraction filter can be expressed as the product
of the noisy speech spectrum, Y(k), and a spectral gain function, Wgg(k)

X (k) = Wes (k) Y(k) (16.13)

where the frequency response of the spectral subtraction filter, Wgy(k), is

Wes(k) = fn [1—%} (16.14)

where N (k) is an estimate of the noise average amplitude spectrum, a(k) is a frequency-
dependent subtraction factor and the function fn(-) is chosen to avoid negative values of
Wqs(k) and provide a smoother frequency response when the signal-to-noise ratio drops to
relatively lower values. The form of the function fn(-) can be chosen as

1— a(k)N(k)/Y(k) if SNR(k) < SNRyyeqn

yexp {—B[SNR .., —SNR(K)]} else (16.15)

Wss (k) = {

where SNR(k) is an estimate of the signal-to-noise ratio at the discrete frequency k and
SNR ppesn 18 @ threshold SNR below which spectral subtraction switches to a form of
exponential attenuation, 7y is a parameter that provides continuity at the switching point and
B is an attenuation control factor.

The problem with spectral subtraction is that it often distorts the speech and results in
the appearance of annoying short bursts of noise. The shortcomings of spectral subtraction
method can be summarized as follows:

(1) The only statistics used in spectral subtraction is the mean of the magnitude spectrum of
the noise. The mean and variance of the clean speech and the variance of the noise are
not employed in the estimation process. Consequently noise variations about the mean
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are not suppressed and this results in more distortions than would be the case if the
variance information were also used.

(2) A hard decision needs to be employed to avoid the values of the estimates of the
magnitude spectrum after subtraction going negative or below a noise floor value.

(3) The spectral subtraction method is not speech-specific; the spectral trajectories of speech
across time are not modelled and used in the de-noising process.

16.2.3.1 Spectral Subtraction Using the LP Model Frequency Response

Spectral subtraction can be applied either on the short-time spectral amplitude of noisy speech
obtained from DFT or on the magnitude of the frequency response of a linear prediction
model of noisy speech, as illustrated in Figure 16.6.

For LP-based spectral subtraction (LPSS), the filter response W, pss(k) is obtained from
equations similar to Equations (16.14) and (16.15) with the main difference that, instead
of the DFT-based magnitude spectrum, the LP-based magnitude spectrum of noisy speech
and the average LP power spectrum of noise are used. LP spectral subtraction involves the
following steps:

(1) Obtain the coefficient vectors of the LP models of noisy speech and noise, and hence the
magnitude frequency responses of the LP models of noisy speech, Y, (k), and noise, N (k).

(2) Using the magnitude frequency responses of the LP models of speech and noise, obtain
the frequency response of the spectral subtraction filter, W, pss (k) from Equation (16.14).

(3) Restore the speech signal through application of the smoothed LP spectral subtraction
filter to the noisy speech.

16.2.4 BAYESIAN MMSE SPEECH ENHANCEMENT

The probabilistic minimum mean squared error estimation of the short-time spectral
amplitude of speech is a Bayesian estimation method with a mean squared error cost function.
The Bayesian estimation of spectral amplitude was obtained in Chapter 11 as

oo 27
f f Xep [Y(K)| Xy, Ox] P (Xk’ exk) d@xA dX;
3 —o0 0
X, = — (16.16)
f f p [Y(k)|Xk’ axk] dexk dX,
—0 0
Noisyh | Li Enhanced
speec . Linear y speech
Segmentqtlon > prediction Frequency L+ Magnitude ‘Spectrgl i~ W}ener
windowing response subtraction filter
model
* Adaptive
noise
VAD template

Figure 16.6 Block diagram illustration of LP-based spectral subtraction system for de-noising speech.
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where p[X(k)|Y(k)] is the posterior probability of clean speech, X(k), given noisy
observation Y(k). The MMSE Equation (16.16) requires the likelihood of the noisy speech,
p[Y(k)|X,. 0y, ]. and the prior probability density function of the clean speech, p (X, 6y, ).

As described in Chapter 11, Ephraim and Malah derived an MMSE spectral amplitude
estimation algorithm using a Rayleigh distribution for the magnitude spectrum of clean
speech, a uniform distribution for the phase of the clean speech and a complex Gaussian
distribution for noisy speech. The resulting estimator is of the form:

X = Wynss (K) ¥, (16.17)

where the gain factor, Wyse(k), is given by
_ VOn v, v, v,
Waase (k) = T(1.5) = exp (—3) [(1 +ul, (—3) ., (—5)] (16.18)

where I7(-) is the gamma function, /,(-) is Bessel function of order n and v, and v, are
defined as

&(k)

_ olk) Yk
)

a2 () T (k)

Yir &k = (16.19)

where (k) and o (k) are the variance of speech and noise spectra, &, is known as the
prior signal-to-noise ratio and vy, is known as the posterior signal-to-noise ratio.

Figure 16.7 shows a comparison of the performance of spectral subtraction based on LPSS
and the MMSE method for de-noising of speech, observed in train noise.

16.2.5 KALMAN FILTER

The Kalman filter, described in Chapter 7, differs from the Wiener filter in several ways,
the most important being that Kalman formulation permits explicit inclusion of time-varying
equations for speech and noise processes. For de-noising speech, the Kalman filter can be

implemented in the time or frequency domain. The conventional method is the time-domain
Kalman filter.

1 |[—+—Less - /I
/M
2 10 |—=—MMsE v 16
g s = z /
Z 6 / E 12 -
5 [=}
E ) — < . /./ /
) =
2 5 v ___ i — /
5 =
ool " S
g, o /
~— N N N 0 X
_11.61 768 376 0.16 4.09 -5 0 5 10 15
Input segment SNR (dB) Input global SNR

Figure 16.7 Performance comparison of LPSS and MMSE: output SNR vs input SNR.
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16.2.5.1 Kalman State—Space Equations of Signal and Noise Models

The speech signal, x(m), and the noise, n(m), are modelled by autoregressive processes as

x(m) = i ayx(m—k)+e(m) (16.20)

k=1

n(m):i:bkn(m—k)—i—v(m) (16.21)

k=1

where a, and b, are the coefficients of autoregressive model of speech and noise, respectively.
Equations (16.20) and (16.21) can be expressed in a state—space form for Kalman filtering as

x(m)=Ax(m—1)+g e(m) (16.22)
x(m) =h,x(m) (16.23)
n(m)=A,n(m—1)+g,v(m) (16.24)
n(m) =h,n(m) (16.25)

where the AR model coefficient matrices are defined as

a, a, ap_; ap by by --- b,y b,
1 0 0 0 1 0 0 0
A, = 1 0 0} 4,=(0 1 - 0 0 (16.26)
0 0 0 1 O 0 0 0 1 0
The signal and noise vectors are x(m) = [x(m),x(m —1),...,x(m — p)]|',n(m) =

[n(m),n(m—1),...,n(m—¢q)]",h, =g =[1,0,...,0]"and h, =g, =[1,0,...,0]". The
signal and noise processes can be combined into a state—space equation as

oAl ] e

In compact notation, the state equation can be written as

z(m) =Az(m—1)+Gw(m) (16.28)

16.2.5.2 Noisy Observation (Measurement) Equation

The noisy observation may be expressed as

y(m) =h"z(m) = x(m) + n(m) (16.29)
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where
hf
h = [h ] (16.30)

Note that, in this formulation of the Kalman filter, the signal and noise form parts of the
state vector in Equation (16.27) and the noisy observation given by Equation (16.29) is a
linear transformation of the state vector that simply produces addition of signal and noise.
The Kalman filter equations given in Chapter 7 and adapted here are as follows:
o the state vector prediction equation (the state vector is composed of speech and noise)
Zmm—1)=A(m—-1)z(m—1) (16.31)
® the covariance matrix of prediction error
P(mlm—1)=A(m—1)P(m—1)A"(m—1)+GV(m—1)G (16.32)
® the Kalman gain vector
K(m) = P(m|m— D)k [R"P(m|m — 1)k] " (16.33)
® the state update equation

Z(m) =Z(m|m — 1)+ K(m) [y(m) —h"zZ(m|m —1)] (16.34)

Note that the innovation signal y(m) —hTz(m|m — 1) is a mixture of the unpredictable parts
of the signal and the noise. The covariance matrix of estimation error is

P (m)= (I —Kh")P (m|m—1) (16.35)
The application of Kalman filter requires estimates of the AR models of speech and noise,

a=]lay,a,,...,a,] and b =[b;,b,,...,b,] (Figure 16.8). These are obtained from an

Initial speech ~ Initial noise
AR modela, AR model b,

L

Noisy speech Enhanced speech
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a,b

Speech and noise
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estimation

Figure 16.8 Illustration of the Kalman filter method of enhancement of noisy speech.
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application of the estimate—maximize algorithm, which effectively yields the following
normal equation (the Yule—Walker equation):

& ZR'Q}lrﬁ (16.36)
b=R;\re (16.37)

where the autocorrelation matrices of speech and noise are obtained from Kalman estimates as

Ry, =E{[x(m), ..., x(m—p)]"[x(m), ..., X(m—p)]} (16.38)
Ry =E{[a(m),....a(m—q)]"[a(m),. .., a(m—q)]} (16.39)

Figure 16.8 is an outline illustration of Kalman filter method of enhancement of noisy
speech.

16.2.6 SPEECH ENHANCEMENT VIA LP MODEL RECONSTRUCTION

Speech can be enhanced through a process of decomposition, de-noising and then
reconstruction of the source-filter parameters of a linear prediction model of speech. An LP
model of speech, described in detail in Chapter 8, may be expressed as

X(z) = E(2)V(2) (16.40)

where E(z) is the z-transform of the excitation signal and V(z) is the z-transfer function of
a combined model of the vocal tract, glottal pulse and lip radiation; V(z) can be expressed
by a cascade combination of a set of second-order resonators and a first-order model as

1 N 1
[1

Lt ro(m)z=t ;5 1 =2n(m)cos(@(m)z™ + rg(m)z

WV(z, m) = G(m) (16.41)

where ¢, (m) and r,(m) are the time-varying radii and the angular frequencies of the poles of
the LP model, respectively, and G (m) is the overall gain of the LP model. In Equation (16.41)
the second-order sections model the resonance of speech spectrum and the first-order section
models the slope of the spectrum of speech.

Formants are the resonances of speech. The poles of the LP model are the formant
candidates, the raw data from which formants and their models are estimated. The spectral
resonance at a formant is characterized by a parameter vector comprising the frequency
F,, bandwidth B, and magnitude of the resonance M, and their temporal slope of variation
(velocity), as

F,=[F,. B, M, AF,AB,,AM,] k=1,....M (16.42)
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Figure 16.9 Overview of the speech-enhancement system.

where A denotes the slope of the trajectory of a feature vector over time, e.g. AF,(¢)
representing the velocity of the kth formant at frame ¢ is obtained as

S m{Fy(t+m) — Fy(t — m)]
AF, (1) = 2= - k=1,....M (16.43)
> 2m?
m=1

Equations (16.41)—(16.43) lead to the concept of formant-tracking LP models for speech
restoration. Format-synthesisers are well established in speech technology, many being
developments of the Klatt synthesiser.

16.2.6.1 Formant-tracking Speech Restoration System

The formant-tracking speech restoration system, illustrated in Figure 16.9, consists of the
following sections:

(1) an LP model analysis module for estimation of the LP model parameters and the
excitation parameters of noisy speech;

(2) a noise detection—estimation module for estimation of the time-varying parameters of
noise model;

(3) a speech pre-cleaning module based either on the spectral subtraction or on the MMSE
spectral amplitude estimation;

(4) a formant tracking method for tracking the formant parameters of pre-cleaned speech
across successive speech frames;

(5) an excitation model for estimating the excitation parameters and providing an estimate
of the cleaned excitation;

(6) speech enhancement via synthesis using an estimate of the LP model of speech combined
with excitation.

The input to the LP pole analysis is the noisy speech spectrum with the mean of the LP
spectrum of noise removed through spectral subtraction. An LP model is fitted to the speech
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Figure 16.10 Average percentage error of formant tracks of speech in train noise and cleaned speech
using LPSS, MMSE and Kalman filters; the results were averaged over five male speakers.
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Figure 16.11 Comparison of LP spectrograms from: (a) speech in train noise; (b) pre-cleaned speech;
(c) formant synthesized speech; and (d) clean speech.

spectrum and the poles of the model are obtained through a polynomial rooting function.
Figure 16.10 shows the reduction in formant tracking error from application of different noise
reduction methods. Figure 16.11 shows a comparative illustration of the LP spectrograms of
clean speech, noisy speech and speech restored with the spectral subtraction method and the
formant synthesis method.
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Figure 16.12 A harmonic plus noise model of speech excitation observed in background noise.

16.2.6.2 De-noising of Speech Excitation Signal

The noisy speech excitation can be modeled, Figure 16.12, as a combination of the harmonic
and the fricative noise content of the excitation and the residual background noise remaining
after the inverse LP filtering as

e(m) =g, i [a, sin @k Fy(m)) + b, cos Q@K Fy(m))] + g, v(m) + n,(m) (16.44)

k=1

where Fj(m) is the time-varying fundamental frequency of speech excitation, a, and b, are
the amplitude of each excitation harmonic, v(m) is the noise-like excitation, g, and g, are
the mixture weights and n,(m) is the background noise after inverse LP filtering.

16.3 MULTIPLE-INPUT SPEECH-ENHANCEMENT METHODS

In multiple-input noise-reduction systems several noisy input signals, picked up by a array
of microphones, are filtered and combined to reduce noise, echo, interfering speech, room
reverberations and distortions.

Multiple-input speech-enhancement systems include adaptive beam forming, adaptive
noise cancellation, MIMO teleconferencing systems, stereophonic echo cancellation and
in-car cabin communication systems.

In a typical multiple-input system, Figure 16.13, there are several microphones. The output
of each microphone is a mixture of the speech signal, feedback from loudspeakers, speech
reflections from walls and noise.

Assuming that there are M microphones and N sets of signal and noise sources, then there
are N x M different acoustic channels between the sources of signals and the microphones.
We can write a system of linear equations to describe the relationship between the signals
emitted from different sources, x;(m), and the signals picked up by the microphones y;(m) as

y;(m) = iihij(k)x,(m—k) j=1....M (16.45)
i=1 k=0

where h;;(k) denotes the response of the channel from the source i to the microphone j
modelled by a finite impulse response filter. Note that, for simplicity, each source of signal,
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Figure 16.13 Illustration of different sounds and noise arriving at microphones, via direct line of
sight paths and via reflections from walls/ceiling/floor.

noise or interference is denoted with same letter x and different index, as x;(m), m being the
discrete-time index.

In the simplest MIMO model, the response of an acoustic channel from a sound source
i to a microphone j via a direct or reflected path can be represented by two parameters: an
attenuation factor, @;;(m), and a propagation time delay, 7;;(m), as

h;;(m) = a;;(m)d [m - Tij(m)] (16.46)

Note that each source of sound may reach a microphone via a direct path and via a number
of indirect paths after reflections, in which case the response from a source i to a microphone
J needs to be expressed as

hi.i(m) = Z i (m)é [m — Tijk (m)] (16.47)

where a;; (m) and 7,;(m) are the attenuation factor and the propagation time delay along
the kth path from source i to microphone j.

MIMO speech enhancement systems are subjects of much continuing research. In general,
the main issues in MIMO noisy speech processing systems are as follows:

(1) identification of the channel responses or the room transfer functions, {4;;(m)}, from
the speech and/or noise sources to microphones;
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(2) the problem of nonuniqueness of the solutions for room channel responses, when the
noise sources are correlated; this is explained in the stereo acoustic echo cancellation in
Chapter 14;

(3) the speed of convergence of adaptation of the filters coefficients at the output of each
microphone to achieve cancellation of noise and acoustic feedback echo;

(4) estimation of the time-varying speech and noise characteristics for noise suppression.

There are many different ways in which the outputs of the MIMO systems can be processed.
One of the most promising applications of the MIMO system is the beam-forming microphone
array, described next.

16.3.1 BEAM-FORMING WITH MICROPHONE ARRAYS

Beam-forming is a noise reduction, or noise screening, method in which an array of
microphones and adaptive filters is employed to selectively seek a ‘beam’ of signal from a
particular direction (usually the direction towards a desired source and where the signal from
that source is strongest) and suppress noise, reverberations and acoustic feedback coming
from other directions.

Beam-forming uses temporal and spatial filtering to create directional spatial selectivity.
In this way it is possible to adaptively adjust the filters to selectively pick up a sound wave
from the direction of the source where the sound energy is strongest and screen out noise,
feedback and reflections of sounds from other directions. Beam-forming has applications
in hands-free communications, such as in-car communications, personal computer voice
communication, teleconferencing and robust speech recognition. Beam-forming can also be
combined with acoustic feedback cancellation.

16.3.1.1 Principles of Microphone Array Beam-forming

Beam-forming relies on use of delays (or equivalently phase) for constructive and destructive
combination of the incoming signals arriving at the microphones from different directions.
Figure 16.14(a) shows the sound field of an omnidirectional microphone that picks up sound
equally from all directions. The combined output of several microphones placed in an array
exhibits directional selectivity, as shown in Figure 16.14(b).

The principle of beam-forming can be illustrated by considering a linear microphone array
in the far field of sound source, as illustrated in Figure 16.15. The assumption that the

() (W)

Figure 16.14 Tllustration of the reception fields (aperture) of (a) an omnidirectional microphone and
(b) an array of microphones.
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Figure 16.15 Illustration of beam-forming. The array of filters can be adjusted to change the ‘looking’
direction of the beam.

microphone is in the far field of the sound source has the useful implication that the sound
waves reaching the microphone array are planar (as opposed to spherical).

Sound waves arriving at the microphone array, at an incident angle of 6, reach successive
microphones at different times due to the different distances that the waves have to travel
to reach different microphones. The additional distance that a wave has travelled to reach
an adjacent microphone is d sin(6). Note that, if 6 is zero, then the wave is perpendicular to
the microphone array and in that case all microphones receive each plane wave at the same
time.

Sound propagates at a speed of v =342 m/s at a room temperature of 25° C. The additional
time taken for sound to travel a distance of dsin(f) to reach an adjacent microphone is
given by

d sin(6)
T=—-
v

(16.48)



MULTIPLE-INPUT SPEECH-ENHANCEMENT METHODS 429

For a sine wave it is easy to see that, if the distance between two microphones and the
angle of incidence of the wave, 6, result in a time delay of the arrival of sound between
the two adjacent microphones of say half a wavelength, then the sum of the outputs of the
microphones will cancel out. Note that this illustration is oversimplified and in practice a
combination of temporal and spatial filtering provides spatial selectivity. In general, signals
arriving at a microphone array at the same time (in phase) add up, whereas signals arriving
at microphone array at different times cancel out partially or completely.

()

(a)

(© (d

Figure 16.16 Illustration of the beam of a microphone array in a response to a frequency of 2kHz
with the microphones spaced at d = 10cm. (a) Two, (b) four, (c) six and (d) eight microphones.
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The combined output of N microphones can be expressed as

N—1

y(m)=>Y " x(m—r,) (16.49)

i=0

where for simplicity we assume the channel attenuation factors «; = 1. The response of the
microphone array to a frequency f and direction of arrival of signal 6 can be expressed as

N—-1
H(f, 0) = 3 e mi
= (16.50)
= 3 e Afnldsin®)/1

m=0

Equation (16.50) is used to plot the response of a microphone array for a selected frequency
and varying direction of arrival (Figure 16.16). The angle of arrival can be changed or
adapted using the adaptive filters shown in Figure 16.15.

Note that the bandwidth of the beam decreases with the increasing number of microphones,
but it is also a function of the distance between microphones and the frequency of the sound.

16.4 SPEECH DISTORTION MEASUREMENTS

The most commonly used measure for quality of speech is signal-to-noise ratio. An average
SNR measure is defined as

_ PSignal
SNR = 10log,, [ —2' ) 4B (16.51)

Noise

where Pg;p,, and Py are the power of signal and noise, respectively.
The segmental SNR is defined as

1
SNR,,, = —
K

m=0 m=0

3" 10*log,, { S 2(m)/ Y [ (m) — xk(m)]z} dB (16.52)
k=0

where x,(m) and x,,(m) are the clean signal and restored signal at frame m, N is the total
number of frames and K is the number of samples in each frame. The segmental SNR of
speech signals can fluctuate widely, as illustrated in Figure 16.15, which shows the variation
of segmental SNR at average SNRs of 0, 5 and 10 dB.

The signal-to-noise ratio is not the best measure of speech quality as it does not take into
account the structure of the speech or the psychoacoustics of hearing.

The Itakura—Saito distance (ISD) measure is defined as

> [a,()) = ax(DIR (D@, (j) — a, (/)]

1
ISD,, = — - - .
2UN j=1 a,(HR(Na, ()"

(16.53)

where a,(j) and a,(j) are the linear predication model coefficient vector calculated from
clean and transformed speech at frame j and R, (j) is an autocorrelation matrix derived from
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the clean speech. Owing to the asymmetry of the ISD measure (i.e. ISD,, # ISD,,), the
following segmental ISD measure is used:

ISD,,, = (ISDy, +1SD,,)/2 (16.54)

The ISD criterion is a more balanced measure of the distance between an original clean
speech signal and a distorted speech signal as speech frames with relatively large SNRs do
not dominate the overall distance measure to the same extent as in the more conventional
SNR measures of Equations (16.51)—(16.52).
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Noise, fading and limited radio bandwidth are the main factors that limit the capacity
and speed of communication on wireless channels. Much of the research and development
in the design of new generations of mobile communications systems aim to increase the
spectral efficiency, defined as the number of bits per second per Hertz of the bandwidth of
a communications channel.

For improved efficiency, modern mobile communications systems rely on digital signal
processing methods at almost every stage from source coding (e.g. code-excited linear
prediction speech coders, MP3 music coders) to the allocation of time and bandwidth
resources (e.g. code division multiple access systems). Furthermore, the capacity and
performance of mobile communications systems is noise-limited and the use of signal
processing algorithms in noise reduction, channel equalisation, echo cancellation, error
control coding and more recently in space—time signal processing using smart beam-forming
antennas, is playing an increasingly pivotal role in the development of efficient and intelligent
communications systems. In this chapter we consider how communications signal processing
methods are used to improve the speed and capacity of communications systems.

Advanced Digital Signal Processing and Noise Reduction Third Edition Saeed V. Vaseghi
© 2006 John Wiley & Sons, Ltd
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17.1 INTRODUCTION TO CELLULAR COMMUNICATIONS

The age of radio communications began in the 1860s with James Clark Maxwell’s
development of the electromagnetic wave theory. Maxwell predicted the existence of
electromagnetic radio waves with various frequencies propagating with the speed of light
and concluded that light itself was an electromagnetic wave.

In 1884 Heinrich Rudolf Hertz reformulated Maxwell’s equations. Then between 1885 and
1888, in series of experiments, Hertz demonstrated that a rapidly oscillating electric current
could be launched into space as an electromagnetic wave and detected. For generating and
transmitting radio waves Hertz used a high-voltage induction coil, a capacitor, a rod with
a gap in the middle and a spark sphere attached to the rod on each side of the gap. This
device created oscillatory sparks as the spheres charged and discharged with opposite-polarity
electric charges.

To detect the electromagnetic radiation, Hertz used a copper wire bent into a loop, with a
small brass sphere connected to one end while the other end of the wire loop that pointed
to the sphere had a screw mechanism so that the point could be adjusted and moved closer
to the sphere. The presence of an oscillating charge in the receiver caused sparks across the
very small gap between the end points of the wire loop. Hertz also demonstrated that radio
waves had all the well-known properties of light waves — reflection, refraction, interference
and polarization. It is said that, in response to questions from the students who witnessed
his classroom experiments on generation and reception of electromagnetic waves, Hertz said
that he saw no practical use for electromagnetic waves.

In 1895 Guglielmo Marconi, the inventor of the radiotelegraph, was inspired by Hertz’s
experiments and demonstrated the feasibility of radio communication by transmitting and
receiving the first radio signal in Italy. By 1899 Marconi had telegraphed the first wireless
signal across the English Channel and in 1901 he sent the first transatlantic radiotelegraph
message from England to Newfoundland. Note, however, that in 1943 the US Supreme Court
overturned Marconi’s patent in favour of Nicola Tesla, who is now credited with invention
of the radio. Another scientist who is also credited with the invention of radio is Jagadis
Chandra Bose, who demonstrated his radio in 1896.

From the beginning of the radio age, the quality of radio transmission and robustness to
noise and fading have been the major challenges in the design of wireless communications
systems. High-quality radio transmission was made possible by Edwin Howard Armstrong’s
invention of the wideband frequency modulation (FM) in 1933. The FM method can trade
off more bandwidth for more robustness to noise and provide transparent broadcast quality.
The FM modulation remained the main method for high-quality civilian radio transmission
until the recent deployment of digital radio communications.

The era of mobile cellular communication began in 1970s when AT&T proposed the
first high-capacity analogue telephone system, called the advanced mobile phone service
(AMPS). This system was later extended to a cellular mobile system. Over the past three
decades cellular mobile phone technology has developed rapidly through the advent of
digital mobile phone standards such as the European Global Mobile System (GSM) standard
and the American IS-95 and IS-96 standards. In the late 1990s, the increasing demand
for mobile phone and multimedia services led to the development of 3G and UMTS
standards.

The main limited resources in modern mobile communications systems are bandwidth and
on-board battery power. The available radio bandwidth is limited by the need to share the
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Figure 17.1 A cellular system increases capacity by dividing a geographical area into clusters of
cells and reusing the radio spectrum in nonadjacent cells. Each set of radio channel frequencies used
in a cell is shown by a different number.

finite radio frequency channels among many different mobile users and for many different
applications and purposes. The available power is limited by the capacity, size and weight of
the on-board batteries. In a mobile communications system the radio frequency bandwidth
needs to be used efficiently in order to maximize the capacity.

Figure 17.1 depicts the geometric topology of a cellular mobile radio system. In cellular
systems a city or a town is divided into a number of geographical cells. The cells are
thought of as having a hexagonal shape. A key aspect of the cellular mobile communications
technology is the very large increase in spectral efficiency achieved through the arrangements
of cells in clusters and the reuse of the radio frequency channels in nonadjacent cells; this
is possible because the cell phones and base stations operate on low-power transmitters
whose electromagnetic wave energy fades before it reaches nonadjacent cells. In the cellular
configuration of Figure 17.1, each cell within each cluster of seven cells uses a set of
different frequencies (each set of radio channel frequencies used in a cell is shown by a
different number). Different clusters reuse the same sets of frequencies, as shown by the
number codes in each cluster of cells.

Each cell has a base station that accommodates the transmitter/receiver antennas, the
switching networks and the routing equipment of the base station. Figure 17.2 shows the basic
network architecture of a GSM cellular mobile phone system. It consists of the following
subsystems.

e BTS - the base transceiver station is composed of transmitter/receiver antennas;

e BSC - the base station controller is responsible for allocation of the radio channels,
terrestrial channel management, mapping of the radio channels onto wired channels and
execution of the hand-over function as mobile users move across different cells;

e MSC - the mobile switching centre is responsible for the switching/routing of calls;

e HLR - the home location register is a database that holds general information about
subscribers;

e VLR - the visitor location register is a temporary database that holds visiting subscribers’
general information during their visit; it also holds location area identities of roaming
users;
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Figure 17.2 Tllustration of a basic GSM mobile phone network.

¢ EIR - the equipment and identity register is a database that holds user equipment identities;
® OMC - the operation and maintenance centre is a database that holds relevant information
about the overall operation and maintenance of the network.

17.2 NOISE, CAPACITY AND SPECTRAL EFFICIENCY

A principal challenge in the development of mobile communication systems stems from
the limitations on data transmission due to finite bandwidth and the physical properties of
the communications channels, which can include signal dispersion, fading, impulsive noise,
co-channel/multiple-access interference as well as other phenomena such as the multipath
effect.

The rate at which binary data bits (i.e. sequences of ones and zeros) can be transmitted on
a communications channel is limited by (a) the available bandwidth and (b) the noise and
interference.

Binary data are signalled using communication symbols. In its simplest form a
communication symbol may be a pulse that takes two different amplitude levels for signalling
a binary data bit. The maximum rate at which communication symbols can be transmitted is
limited by the bandwidth. The symbol rate, r,, that is the number of symbols per second of
transmission, is about half the bandwidth.

However, each communication symbol may carry M bits provided that there are 2
resolvable patterns of variation of the symbol such as the amplitude, phase or time delay
(position) or frequency of the symbol. Assuming that each symbol carries M bits, the bit
rate is M times the symbol rate, i.e. r,, = Mr,. The maximum number of bits that can be
signalled by each symbol is limited by noise and acceptable delay.

In practice the number of bits that each symbol can carry in an M-ary signalling
scheme is limited by noise, interference, the multipath effect, channel distortions, echo
and fading. The constraints imposed on the channel capacity due to noise and bandwidth
limit the rate at which information can be transferred, even when multilevel encoding
techniques are used. This is because noise obliterates the fine differences that distinguish the
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various signal levels, limiting in practice the number of detection levels we can use in the
decoder.

Therefore, from the above argument, the capacity of a communication link, that is the rate
at which data can be transmitted, is proportional to the available bandwidth and the signal-
to-noise ratio, the limit of which, in additive white Gaussian noise (AWGN), is expressed
by the Shannon—Hartley theorem as

S
C =Bl 1+— 17.1
ng( +N> ( )

where C is the channel capacity in bps, B is the channel bandwidth in Hz, and S/N is
the signal-to-noise ratio expressed as a linear (as opposed to logarithmic) power ratio.
The theorem, proved by Claude Shannon in 1948, describes the maximum capacity of a
communication channel with error-correcting methods vs the levels of noise and interference.
Equation (17.1) gives the theoretical limit that the best possible coding and modulation
method may achieve. Figure 17.3 shows a plot of the bit rate per Hz vs signal-to-noise ratio.
Note that, at an SNR of 0dB, the maximum theoretical bit rate is 1 bit/Hz, at 15dB it is
5bits/Hz and this approaches a theoretical rate of 13 bits/Hz at 40 dB SNR.

The challenge in communications signal processing is to increase the capacity in bps/Hz of
bandwidth through reducing noise, interference and multipath distortion. Signal processing
methods play the central role in removing or compensating for noise and thereby improving
capacity.

The signal processing methods that are used to improve the capacity of mobile
communications systems include source coding, channel coding, channel equalisation,
echo cancellation, multipath models and multiple access methods, including space—time
signal processing via beam-forming antenna arrays. The use of multiple receiving and
transmitting antennas combined with multiple access and noise-reduction methods opens
myriad possibilities in the use of signal processing for enhanced mobile communications.

Capacity (bps/Hz)

O t 1 1 1 [l 1
0 5 10 15 20 25 30 35 40

Signal-to-noise ratio SNR (dB)

Figure 17.3 Illustration of the variation of the maximum capacity (bps/Hz) of a communication
channel with the SNR (dB).
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17.3 COMMUNICATIONS SIGNAL PROCESSING IN MOBILE
SYSTEMS

The radio frequency bandwidth available to each operator of a cellular communication service
is usually limited to a range of about several hundred kHz to several MHz centred between
1 and 2 GHz. The very large number of subscribers using mobile communications devices
and the ever-increasing demand on the bandwidth is accommodated through the efficient
use of communications resources that results in a large increase in the capacity per Hz also
known as the spectral efficiency, defined as the data rate in bps/Hz unit of bandwidth:

spectral efficiency = channel throughput/channel bandwidth

Depending on the efficiency of the communications systems and the signal-to-noise ratio,
the actual spectral efficiency may vary from 0.1 to 4 bps/Hz.

Modern mobile communications systems rely on advanced signal processing methods for
fast, efficient, reliable and low-cost communications. The signal processing functions in a
mobile communications system include the following modules:

(1) Source coder/decoder — source coders compress signals at the transmitter by removing
the correlation and redundancies from the signals; source decoders decompress and
reconstruct the signals at the receiver. Source coding involves the use of signal transforms
such as discrete Fourier transform and cosine transform, signal generation models such
as linear prediction models and signal probability models such as entropy models, for the
compression of the source data, which may include voice, image, video and text. Source
coding methods, such as Huffman coders, MPEG music coders and CELP voice coders,
can greatly reduce (often by a factor of 10-20) the required bit rate and bandwidth and
hence increase the capacity and speed of transmission of audio, image, text and other
data.

(2) Channel coder/decoder — The purpose of channel coding is to reduce transmission errors
due to noise, fading and loss of data packets. Channel coding involves the use of
convolution and block coders for the addition of error-control bits to the source data
in order to increase the distance between the sequences of transmitted data and hence
improve the error detection and error correction capability of communication systems.

(3) Multiple access signalling — this, as the name implies, provides simultaneous access to
multiple users on the same shared bandwidth resource. Multiple access systems are based
on division of time, frequency, code or space among different users, leading to time
division multiple access (TDMA), frequency division multiple access (FDMA), code
division multiple access (CDMA) and space division multiple access (SDMA) methods,
respectively.

(4) Cell-handover — the determination of the geographical location of a mobile phone user
and the issue of which cell (or antenna) at any given time should serve a mobile user,
as the user roams across different cells, is accomplished from processing the strengths
of the radio signals from a mobile user received by different base stations. Usually the
base station that has the strongest signal serves the mobile user. The signals from a
mobile device received by different base stations can be used to locate the user within
a resolution of a few meters or less, depending on the cell size.
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(5) Rake correlators — in a broadband mobile environment, the reflections of an
electromagnetic signal, from different surfaces and through different paths, arrive at
different times as several distorted replicas of the signal. Rake receivers advantageously
use the effect of the multipath propagation by combining the reflections of a signal
received from different propagation paths. This can reduce fading and add to the strength
of the received signal.

(6) Channel equalisation is used to remove the distortions and time-dispersion of signals that
result from the nonideal characteristics of radio channels. Channel equalisation reduces
the symbol overlaps (ISI) and bit error rate at the receiver. It is described in Chapter 15.

(7) Echo cancellation is used to reduce both acoustic feedback echo between the speaker and
microphone of a mobile and the telephone exchange hybrid line echo. Echo cancellation
is necessary for voice and data communications systems. It is described in detail in
Chapter 14.

(8) Smart antennas are used for a variety of purposes from increasing the signal-to-noise
ratio to space division multiple access. Smart antennas are arrays of phased antennas
whose beam direction and gain are controlled by adaptive signal processing methods so
that the transmitted electromagnetic power is more efficiently beamed and selectively
directed towards the mobile users.

The main method currently used to increase the capacity of radio channels is based on
frequency reuse. As explained above, this involves the reuse of the same frequencies in
nonadjacent cells where the power of the transmitted electromagnetic wave from a cell fades
to insignificance by the time it reaches the nonadjacent cells using the same radio channels. In
congested urban areas, the frequency reuse factor can be increased through a reduction of the
cell size and transmission power at the expense of more base station infrastructures. In order
to minimize the interference among nonadjacent cells, which reuse the same frequencies,
the base-stations and the mobile phones operate on low-power transmitters and receivers.
Low-power transmitters/receivers have the following advantages:

(1) low co-channel interference — owing to the low power of the transmissions from base-
stations and mobile phones, the electromagnetic waves from each cell fade away before
they reach nonadjacent cells that reuse the same frequencies;

(2) with all mobile devices and base stations operating on low power, the signal-to-noise
ratios at the receivers of base stations and mobile phones improve;

(3) with low transmission power, the power consumption of the cell phones is relatively
low — low power consumption implies small batteries with longer talk time and also less
exposure to possibly harmful radiations.

17.4 NOISE AND DISTORTION IN MOBILE
COMMUNICATIONS SYSTEMS

In classical communications theory it is assumed that the received signal is corrupted by
additive white Gaussian noise and the signal distortions due to the channel response are
modelled by intersymbol interference. In reality there are many different sources of noise
and interference that may limit the performance of a communications system. The most
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common sources of distortion and noise in a mobile environment include receiver antenna
thermal noise, interference from electromagnetic devices, radiation noise, background noise,
echo and, most importantly, multipath and fading, which are described next.

17.4.1 MULTIPATH PROPAGATION OF ELECTROMAGNETIC
SIGNALS

There are three main mechanisms that impact the propagation of a radio frequency (RF)
electromagnetic wave in the mobile communications environment:

(1) Reflection occurs when an electromagnetic wave impinges on a smooth surface with
much larger dimensions than the wavelength, A, of the radio frequency electromagnetic
signal (at the speed of light, ¢ = 0.3 x 10° m/s, a radio frequency wave with a frequency
f = 1 GHz has a wavelength of A = ¢/f = 30cm).

(2) Diffraction occurs when an electromagnetic wave is obstructed by a dense object
with dimensions larger than the wavelength, A, of the RF electromagnetic signal. The
wave then bends and appears as secondary waves from behind the obstructing object.
Diffraction and reflection phenomena account for the propagation of electromagnetic
waves in cases where there is no line-of-sight radio connection between the transmitter
and the receiver

(3) Scattering occurs when a wave impinges on rough objects with large dimensions or from
any object with dimensions comparable to or smaller that the wavelength, A, of the RF
electromagnetic signal, causing the wave to scatter in all directions.

In a wireless communications environment the transmitted electromagnetic wave usually
encounters a number of different obstacles and reflectors in its propagation path. Hence
the transmitted signal and its reflections arrive at the receiver from several different
directions over a multiplicity of different paths with each path having a different length
and characteristic in terms of fading, phase and time of arrival. This phenomenon is the
multipath effect. For mobile systems the communications environments change with time,
space and the speed of movement of the mobile user and this results in a time-varying
multipath channel effect.

A simple illustration of multipath effects in wireless connections is shown in Figure 17.4.
The multipath effect is usually described by:

e the line-of-sight path — this is the direct path between the transmitter and the receiver;
e nonline-of-sight paths — the paths arriving after refraction and reflections from various
objects and surfaces.

A multipath propagation effect can be modelled as the impulse response of a linear channel as

L
h(t) =) a,8(t—T) (17.2)
I=1
where L is the number of different propagation paths. The multipath Equation (17.2) has
two parameters for each propagation path /; these are the time delay, 7;, and the amplitude
fading factor, «;.
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Figure 17.4 A simple illustration of multipath propagation effect in a mobile phone environment.

The multipath effect results in amplitude and phase fluctuations and time delay in the
received signals, and this can reduce the capacity and in severe cases create signal outage
and loss of connection. The multipath effect is described by the following characteristics:

® Multipath fading characteristics — when the reflected waves arriving from different
propagation paths are out of phase, a reduction of the signal strength, or fading, at the
receiver can occur. There are two types of fading, slow fading due to movements of a
mobile user over large areas and fast fading due to movements over smaller distances
comparable to the wavelength.

® Multipath delay spread — as the multiple reflections of the transmitted signal may arrive
at the receiver at different times, this can result in inter-symbol interference and time-
dispersion and broadening of the signal. This time dispersion of the channel is called
multipath delay spread, which is an important parameter for assessment of the performance
of wireless systems.

A common measure of multipath delay spread is the root mean square (rms) delay spread. For
reliable communications without using adaptive equalisation or other multipath modelling
techniques, the transmitted data rate should be much smaller than the inverse of the rms
delay spread, which is called the ‘coherence bandwidth’. When the transmitted data rate is
much smaller than the coherent bandwidth, the wireless channel is referred to as the ‘flat
channel’ or ‘narrowband channel’. When the transmitted data is closely equal to or larger
than the coherent bandwidth, the wireless channel is called the ‘frequency-selective channel’
or ‘wideband channel’.

17.4.2 RAKE RECEIVERS FOR MULTIPATH SIGNALS

The actual form of the signal distortion due to multipath reflections depends on the signal
bandwidth, the durations of reflected signals and on the time delays incurred in propagation
of a signal via different paths.

The duration of a signal is inversely proportional to its bandwidth. For very wide-band
short-duration signals, multipath reflections do not result in intersymbol interference, rather
in the appearance of multiple distorted replicas of the transmitted pulses. For example, at a
bandwidth of 10 MHz the duration of a pulse is roughly about 0.1 us. Now the distance an
electromagnetic wave travels in 0.1 us is only 30 m. Hence, any two reflections of pulses
travelling distances with differences of more than 30 m would appear as distinct pulses
arriving at different times.
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Assuming that the noise and fading in different propagation paths are independent, the
different versions of a pulse arriving from different paths can be combined, in a Rake
receiver, to improve the signal-to-noise ratio. A Rake receiver uses several correlators to
individually process several multipath components of a signal. The correlators’ outputs are
combined to achieve improved SNR and communications reliability and performance. This
is a type of so-called ‘space diversity gain’, i.e. combining the same information arriving
from different spatial routes.

Each correlator in a Rake receiver is called a Rake-receiver finger. There are two primary
methods used to combine the Rake-receiver finger outputs. One method weights each output
equally. The second method uses the data to estimate weights which maximize the SNR of
the combined output.

17.4.3 SIGNAL FADING IN MOBILE COMMUNICATIONS SYSTEMS

Modelling the propagation and fading of electromagnetic wave energy in space is important
for the calculation of the required transmitter power in mobile communication. In the
idealized model of the propagation of an electromagnetic wave in a free space there are no
obstacles or particles and hence no reflection or loss of energy occurs. The electromagnetic
energy radiated by an isotropic source of radio frequency fades in the free space with the
square of the distance d as

Lﬁ»:@?ﬂa=0tﬁy (17.3)

where L, is the free space path loss (or power loss) and A = ¢/f is the wavelength of an
electromagnetic wave with frequency f Hz and speed ¢ = 0.3 x 10° m/s, which is the speed
of light. The fading of the signal strength in a free space is not due to loss of energy, as
there is no energy lost in propagation of a signal through a free space, but to the dilution of
the energy of the wave, as the same amount of wave energy spreads in propagation through
an increasingly larger surface area of a sphere which expands with increasing distance
(radius) d.

There are two types of signal fading in mobile communications systems, large-scale slow
fading due to the movements of the mobile users over large areas and small-scale fast
fading due to the movements of the mobile users over small distances of the order of the
wavelength, A, of the signal (the wavelength of a mobile carrier at 1 GHz frequency is about
A=c/f=0.3x10°/10° =30cm).

In a mobile system, the received signal, r(¢), can be modelled as the convolution of the
transmitted signal, s(¢), and the impulse response of the radio channel 4 (¢) as

r(1) = s()* (1) (17.4)

where * denotes convolution. For mobile phone systems the received signal, r(¢), can be
further expressed as the product of a slow-fading term, m(¢), and a fast-fading term, r,(¢), as

r(t) = m(t) x ry(1) (17.5)
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Figure 17.5 Illustration of large-scale and small-scale fading.

Figure 17.5 illustrates the variations of large-scale slow-fading and small-scale fast-fading
signals.

17.4.4 LARGE-SCALE SIGNAL FADING

The large-scale path loss due to the movement of a mobile phone user, over a distance d,
is obtained from experimental measurements in urban/rural environments. The experimental
results for path loss can be modelled with an nth power of distance d as

Lp(d) x (di)n (17.6)

0

where d, is a reference distance which is typically about 1km for large cells, 100 m for
micro cells and 1 m for indoor radio channels. The propagation path loss can be written in
terms of a logarithmic dB measure as

d
10log L,(d) = 10log L (d,) + 10nlog <d_> +X,dB (17.7)
0

where L (d,) is the free space loss for the reference distance d,), 10nlog(d/d,) is the average
path loss in dB as a function of the distance d and X, is a random variable that models the
random fluctuations of large-scale fading due to random changes in different terrains and
environments between the base-stations and mobile users.

The path loss exponent n depends on the propagation environment. In the free space n = 2.
In some urban street environments with large buildings where a strong waveguide effect
may take effect and contain the wave, n can be less then 2 (i.e. less propagation loss than
the free space). Generally, where there are obstructions to propagation of the energy of an
electromagnetic wave, n is greater than 2.
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17.4.5 SMALL-SCALE FAST SIGNAL FADING

Small-scale fading is due to the movements of mobile users over small distances. When
a radio wave signal is made from multiple reflective rays and a nonfaded line-of-sight
component, then the fluctuations of the amplitude of the signal due to small-scale fading
have a distribution that can be modelled by a Rician probability density function, and hence
it is known as ‘Rician fading’.

In the absence of a line-of-sight component, the distribution of the amplitude fluctuations
of a radio signal caused by small-scale fading has a Rayleigh pdf expressed as

p(r) = {vz exp(~4z) 720 (17.8)
0 r<0
where r is the envelope of the amplitude of the received signal and o? is related to its
variance. Often in mobile communications it is assumed that the received signal has a
Rayleigh distribution.
The main effects of small-scale fading are:

(1) Time spreading of the signal pulses — this can result in the received signal having a longer
or shorter time span than the transmitted signal. This effect is similar to inter-symbol
interference. When the time span of the received signal is greater than the transmitted
signal, and there are multiple reflections, the effect can be mitigated by the use of a Rake
receiver, as explained earlier. The effect of time spreading can also be mitigated by the
use of error control coding and through adding redundancy via diversity gain methods.

(2) Time-varying behaviour of the communications channel due to spatial movements of the
mobile user’s antenna. Relative movement of transmitter and receiver antennas causes a
time-varying change in the received amplitude and phase of the signal due to the extra
distance that the signal has to travel. Hence, whenever there is spatial movement of the
mobile user, the channel becomes time-variant.

17.5 SMART ANTENNAS

Development of more efficient and intelligent antennas is central to the efforts to improve the
capacity and reliability of mobile communications systems. An antenna is essentially a wire-
to-air impedance-matching device. An antenna transmitter converts an alternating RF electric
current signal propagating in a cable or wire to an electromagnetic wave propagating in
space, and an antenna receiver has the reverse function. The manner in which electromagnetic
energy is distributed onto and collected from the surrounding space has a profound influence
on the quality of the reception of radio signals and on the efficient use of the available radio
bandwidth and battery power.

Figure 17.6 shows an illustration of the radiation patterns of an omnidirectional antenna
and a directional antenna. Omnidirectional antennas radiate electromagnetic energy equally
in all directions. Although this is desirable for radio/TV broadcast applications, for personal
mobile communications applications it is inefficient and wasteful of power and spectrum
because at any given time the mobile user is present at only one place in space and is
receiving only a very small fraction of the total radiated power. Furthermore, each user
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Figure 17.6 Illustration of the radiation pattern of (a) an omnidirectional dipole antenna and
(b) a directional antenna.

of a mobile system with an omnidirectional antenna contributes to interference with the
communications of other users of mobile systems, who may otherwise be accommodated on
the same frequency.

To reduce the inefficiency of omnidirectional antennas, existing mobile base stations
divide each cell into a number of fixed sectors with each sector covered by a directional
antenna. The conventional practice is to divide each cell into three sectors with each sector
covered by an antenna with a 120° beam width.

Instead of using a single antenna for the transmission and reception of signals in a cell or
a sector, an array of antennas, and an adaptive signal processing method, can be employed
to selectively direct a beam of electromagnetic energy to the mobile user in order to improve
the quality of reception and the spectral efficiency.

In general, an array of N antennas can be used in several different ways:

(1) The output of the transmitter antennas can be adaptively filtered and combined to form
a narrow electromagnetic beam directed towards and centred on the mobile user. This
arrangement is known as smart antennas and in addition to improving reception and
power utilisation it allows a higher level of frequency reuse and hence better spectral
efficiency.

(2) The outputs of the receiver antennas can be added to improve the SNR. Assuming that
N antennas receive the same signal with different uncorrelated noise and fading, the
output SNR is improved by a factor of N.

(3) The output of the antenna with the maximum SNR can be used. In its simplest form,
with two antennas separated by a half-wavelength, the selection of the output of the
antenna with the higher SNR can improve the SNR by more than 10dB.

Smart beam-forming antennas in their basic form are effectively adaptive phased array
antennas with an adaptive signal processing unit that adjusts the phase of the signals that
are fed into (or received by) each element of an antenna array in order to achieve a desired
beam width and direction. A similar methodology is also used at audio frequency to form
adaptive beam-forming directional microphones for speech processing in noise, as explained
in Chapter 16.
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Figure 17.7 Illustration of a switched antenna where the beam is selected from a number of pre-
programmed options.

17.5.1 SWITCHED AND ADAPTIVE SMART ANTENNAS

Smart antennas combine inputs from multiple antennas to improve power efficiency and
directivity, reduce interference and increase spectral efficiency. There are mainly two forms
of smart beam-forming antennas, namely switched antenna array and adaptive antenna array.

As illustrated in Figure 17.7 switched antenna array use a number of pre-selected and
programmed RF beams. Switched beam systems combine the outputs of multiple antennas
in such a way as to form finely sectorized beams. At any time the signal processing unit
estimates the location of the mobile user from its signal strength and then switches the
transmitter antenna beam to the one that provides the best signal coverage for the mobile
receiver.

Adaptive smart antennas use adaptive signal processing algorithms to continuously adapt
the antenna’s direction, beam width and gain to follow the movements of the mobile receiver
system and to provide optimal reception as the radio environment of the mobile user changes.

17.5.2 SPACE-TIME SIGNAL PROCESSING — DIVERSITY SCHEMES

Space—time signal processing refers to the signal processing methods that utilise the
transmission and/or reception of several signals across time and space using multiple
transmitter/receiver antennas. The use of MIMO transmitter/receiver antennas together with
adaptive signal processing schemes opens up myriad possibilities in the area of space—time
signal processing. There are many different ways in which signals from different sources
can be arranged, combined and processed for optimal transmission and reception in MIMO
mobile systems.

There are three main areas of research and development in the application of antenna
arrays to MIMO mobile communications systems:

(1) the design of the physical antennas as an electromagnetic radiator — this is mainly
concerned with such antenna characteristics as the radiation pattern, the main-lobe
beamwidth, sidelobe levels and power efficiencys;

(2) the estimation of direction of arrival of the electromagnetic pattern in beam forming
antennas using such methods as signal processing methods like MUSIC and ESPIRIT,
discussed in Chapter 9;
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(3) development of signal processing methods and MIMO coders/decoders for antenna arrays
in order to improve spectral efficiency and hence the capacity of radio channels.

An interesting application of space—time processing is the so-called diversity schemes used
for robust and efficient transmission in mobile environments.

Diversity schemes deal with the transmission/reception of the replicas of a signal, or a
combination of several signals, transmitted via several independent routes, namely time slots,
frequency channels, multipath reflections, spatial directions or polarizations. In a diversity
scheme all signal routes carry the same combination of messages; however the channel
characteristics, noise and fading are independent and uncorrelated. Hence the replicas of the
messages from different routes can be processed and combined to increase the SNR. The
success of diversity schemes depends on the degree to which the noise and fading on the
different diversity branches are uncorrelated and how the information from different routes
and channels is processed and combined. Diversity schemes can help to overcome noise and
fading in wireless communications channels and increase the channel capacity.

There are a number of diversity schemes described in the literature, and we will briefly
consider some basic diversity schemes here:

® Space diversity — if the receiver has multiple antennas, the distance between the receiving
antennas may be made large enough to ensure independent fading. This arrangement is a
form of space diversity. Space separation of half of the wavelength is sufficient to obtain
two signals with uncorrelated noise and fading.

® Polarization diversity — antennas can transmit either a horizontally polarized wave or
a vertically polarized wave. When both waves are transmitted simultaneously, received
signals will exhibit uncorrelated fading statistics. This scheme can be considered as a
special case of space diversity because separate antennas are used. However, only two
diversity branches are available, since there are only two orthogonal polarizations.

e Angle diversity — since the received signal arrives at the antenna via several paths, each
with a different angle of arrival, directional antennas can isolate the signal component.
Each directional antenna will receive a different angular component. Hence, the noise
and fading received by different directional antennas pointing at different angles may be
uncorrelated.

® Frequency diversity — signals with different carrier frequencies far apart from each other
could have independent noise and fading. The carrier frequencies must be separated enough
so that the fading associated with the different frequencies is uncorrelated. For frequency
separations of more than several times the coherence bandwidth, the signal fading would
be essentially uncorrelated.

® Time diversity — when the same data are sent over the channels at different time instants,
the noise and distortions can be uncorrelated if the time separations are large enough and
the channels are different. For moving mobile devices time diversity implies that fading
and distortions would be uncorrelated as the characteristics of the moving channel change.

17.6 SUMMARY

The reduction of noise, interference, channel distortion and multipath effects is the most
important challenge in mobile communications. Cellular architecture and the use of smart
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antennas are the main methods for improving the capacity and spectral efficiency in mobile
communications systems. This chapter provided an overview of some of the main issues in
modelling and reduction of noise and interference in wireless communications systems.

As the demand for multimedia communications on the relatively limited radio spectrum
grows, digital array signal processing will play a central part in the development of smart
antennas and array noise reduction methods that will take advantage of the opportunities
presented by time—space diversity schemes.
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