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PREFACE

I have been teaching a course in introductory statistics for more than 30 years,
first within the Department of Psychology at the University of Washington, and
most recently within the Department of Neuroscience at the University of Pitts-
burgh. This textbook has been the mainstay of the course. Most of my students
have been psychology majors pursuing the Bachelor of Arts degree, but many
have also come from biology, business, education, neuroscience, nursing, health
science, and other fields. Because most of these students have neither high apti-
tude nor strong interest in mathematics and are not well grounded in mathemat-
ical skills, I have used an informal, intuitive approach rather than a strictly math-
ematical one. My approach assumes only high school algebra for background
knowledge, and depends very little on equation derivation. It rests on clarity of
presentation, good visuals, a particularly effective sequencing of the inferential
material, detailed verbal description, interesting illustrative examples, and many
interesting, fully solved practice problems to help students understand the mate-
rial and maintain motivation. I believe this approach communicates well all the
important material for an introductory statistics course.

My statistics course has been quite successful. Students are able to grasp the
material, even the more complicated topics like “power,” and at the same time,
often report they enjoy learning it. Student ratings of this course have been quite
high. Their ratings of the textbook are even higher, saying among other things
that it is very clear; that they like the touches of humor, and that it helps them to
have the material presented in such great detail.

In preparing this ninth edition, a major goal has been to make the textbook
even more student friendly. Toward this end, I have added a new section titled To
The Student; introduced Learning Objectives at the beginning of each chapter,
and inserted Mentoring Tips throughout the textbook. To help students review
relevant algebra in a timely way, I have included in Chapter 2 part of the review
of basic algebra contained in Appendix A. In addition to student-friendly
changes, I have also made several substantive changes. Because the American
Psychological Association’s committee on null-hypothesis testing has requested
more emphasis on effect size, I have added coverage of this topic in conjunction

xvii



with correlation, the single sample t test, and the correlated groups t test. In ad-
dition, I have changed the discussion of size of effect with the independent
groups t test that was contained in the eighth edition to make it consistent with
this new t test material. The textbook already discusses effect size in conjunction
with the sign test, one-way ANOVA, and in the What Is the Truth section titled
Much Ado about Almost Nothing (Chapter 15). For the t test material, the cover-
age focuses on use of the Cohen d statistic to estimate effect size. At our review-
ers’ requests, I have added a section at the end of the binomial distribution chap-
ter that discusses use of the binomial distribution for N’s greater than 20. This
allows students to solve binomial problems for any number of trials. To familiar-
ize students with SPSS, I have included examples of the use of SPSS at the end of
Chapter 4 and Chapter 6. I have also greatly expanded the glossary, revised the
index, and have added one new What is the Truth section at the end of Chapter
6, titled Money Doesn’t Buy Happiness, or Does It? In addition to these changes,
I have made minor wording changes throughout the textbook to increase clarity.

I have also made one major addition in the web material. To help students
learn to solve problems, and to help reduce instructor workload, I have intro-
duced new online material that is available through Enhanced WebAssign. En-
hanced WebAssign is a homework delivery system that offers interactive tutori-
als for end-of-chapter problems from the text, and bonus problems, all authored
by me. Enhanced WebAssign allows several options for instructors to assign. In
one option, Enhanced WebAssign presents assigned end-of-chapter problems
and automatically evaluates the student’s answers. If an answer is wrong, the stu-
dent is informed of the wrong answer and then led through a step-by-step process
to the correct answer.A second option allows randomly generated numbers to be
used with the assigned problem, instead of the numbers given in the textbook
problem. This allows each student to receive a different set of numbers each time
they try the problem, allowing them to practice until they fully understand how
to solve it.A third option offers additional new problems, like the textbook prob-
lems, that present ideal solutions similar to the textbook practice problems. Each
student’s performance is recorded and made available to the instructor so that
the instructor can track student performance, giving credit, assigning grades, pro-
viding individual help, etc., as the instructor desires.

Finally, I have made extensive changes in the Instructor’s Manual. In the
ninth edition, the Instructor’s Manual has the following three main parts: Part
One: To The Instructor; Part Two: Chapter Material; and Part Three: Textbook An-
swers. Part One contains the sections:What’s New in the Ninth Edition,Textbook
Rationale, General Teaching Advice, and To the Student. Part Two presents a
chapter-by-chapter discussion of the relevant chapter material. Each chapter
contains the following sections: Detailed Chapter Outline, Learning Objectives,
Chapter Summary, Teaching Suggestions, Discussion Questions, and Test Ques-
tions and Answers. The test questions are organized into multiple-choice,
true/false, definitions, and additional questions sections. The additional questions
section is made up of computational and short-answer questions. Part Three con-
tains answers to the end-of-chapter problems from the textbook for which an-
swers were deliberately omitted. The sections What’s New in the Ninth Edition,
To the Student, Learning Objectives, Chapter Summary, Teaching Suggestions,
Discussion Questions, and Definitions are entirely new to the ninth edition In-
structor’s Manual. Each of the other sections also includes new material. There
are over 100 new discussion questions, and over 280 new questions in all.
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Textbook Rationale

This is an introductory textbook that covers both descriptive and inferential sta-
tistics. It is intended for students majoring in the behavioral sciences. Statistics is
a subject that elicits much anxiety and is often avoided by students for as long as
possible. I believe it is fair to say that when the usual undergraduate statistics
course is completed, most students have understood the descriptive material but
do not have a good understanding of the inferential material. I think this is in
large part because most textbooks err in one or more of the following ways:
(1) they are not clearly written; (2) they are not sufficiently detailed; (3) they
present the material too mathematically; (4) they present the material at too low
a level; (5) they do not give a sufficient number of fully solved practice problems;
and (6) they begin the discussion of inferential statistics with the z test, which
uses a sampling distribution that is too complicated and theoretical for students
to grasp as their first encounter with sampling distributions.

In this and the previous eight editions, I have tried to correct such deficien-
cies by using an informal writing style that includes humor and uses a clearly
written, detailed, intuitive approach that requires only high-school algebra for
understanding; including many interesting, fully solved practice problems; and by
introducing the inferential statistics material with the sign test, which employs a
much more easily understood sampling distribution than the z test. I have also
tried to emphasize the practical, applied nature of statistics by including What Is
the Truth? sections throughout the textbook.

At the heart of statistical inference lies the concept of “sampling distribu-
tion.” The first sampling distribution discussed by most texts is the sampling dis-
tribution of the mean, used in conjunction with the z test. The problem with this
approach is that the sampling distribution of the mean cannot be generated from
simple probability considerations, which makes it hard for students to under-
stand.This problem is compounded by the fact many texts do not attempt to gen-
erate this sampling distribution in a concrete way. Rather, they define it theoret-
ically as a probability distribution that would result if an infinite number of
random samples of size N were taken from a population and the mean of each
sample were calculated. This definition is far too abstract and its application is
difficult to understand, especially when this is the student’s initial contact with
the concept of sampling distribution. Because of this students fail to grasp the
concept of sampling distribution. When students fail to grasp this concept, they fail
to understand inferential statistics. What appears to happen is that since students
do not understand the material conceptually, they are forced to memorize the
equations and to solve problems by rote. Thus, students are often able to solve
the problems without understanding what they are doing, all because they fail to
understand the concept of sampling distribution.

To impart a basic understanding of sampling distributions, I believe it is far
better to begin with the sign test, a simple inference test for which the binomial
distribution is the appropriate sampling distribution. The binomial distribution is
very easy to understand, and it can be derived from basic probability considera-
tions. The appropriate sequence is to present basic probability first, followed by
the binomial distribution, followed by the sign test. This is the sequence followed
in this textbook (Chapters 8, 9, and 10). Since the binomial distribution, the ini-
tial sampling distribution, is entirely dependent on simple probability considera-
tions, students can easily understand its generation and application. Moreover,
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the binomial distribution can also be generated by the same empirical process
that is used later in the text for generating the sampling distribution of the mean.
It therefore serves as an important bridge to understanding all the sampling dis-
tributions discussed later in the textbook. Introducing inferential statistics with
the sign test has other advantages. All of the important concepts involving hy-
pothesis testing can be illustrated; for example, null hypothesis, alternative hy-
pothesis, alpha level, Type I and Type II errors, size of effect, and power. The sign
test also provides an illustration of the before-after (repeated measures) experi-
mental design, which is a superior way to begin, because the before-after design
is familiar to most students, and is more intuitive and easier to understand than
the single sample design used with the z test.

Chapter 11 discusses power. Many texts do not discuss power at all, or if they
do, they give it abbreviated treatment. Power is a complicated topic. Using the
sign test as the vehicle for a power analysis simplifies matters. Understanding
power is necessary if one is to grasp the methodology of scientific investigation
itself. When students gain insight into power, they can see why we bother dis-
cussing Type II errors. Furthermore, they see for the first time why we conclude
by “retaining H0” as a reasonable explanation of the data rather than by “ac-
cepting H0 as true” (a most important distinction). In this same vein, students also
appreciate the error involved when one concludes that two conditions are equal
from data that are not statistically significant. Thus, power is a topic that brings
the whole hypothesis-testing methodology into sharp focus.

At this state of the exposition, a diligent student can grasp the idea that data
analysis basically involves two steps: (1) calculating the appropriate statistic and
(2) evaluating the statistic based on its sampling distribution. The time is ripe for
a formal discussion of sampling distributions and how they can be generated
(Chapter 12). After this, the sampling distribution of the mean is introduced.
Rather than depending on an abstract theoretical definition of the sampling dis-
tribution of the mean, the text discusses how this sampling distribution can be
generated empirically. This gives a much more concrete understanding of the
sampling distribution of the mean.

Due to previous experience with one easily understood sampling distribu-
tion, the binomial distribution, and using the empirical approach for the sampling
distribution of the mean, most conscientious students have a good grasp of what
sampling distributions are and why they are essential for inferential statistics.
Since the sampling distributions underlying Student’s t test and the analysis of
variance are also explained in terms of their empirical generation, students can
understand the use of these tests rather than just solving problems by rote. With
this background, students can comprehend that all of the concepts of hypothesis
testing are the same as we go from statistic to statistic. What varies from experi-
ment to experiment is the statistic used and its accompanying sampling distribu-
tion. The stage is set for moving through the remaining inference tests.

Chapters 12, 13, 14, and 17 discuss, in a fairly conventional way, the z test and
t test for single samples, the t test for correlated and independent groups, and
nonparametric statistics. However, these chapters differ from those in other text-
books in the clarity of presentation, the number and interest value of fully solved
problems, and the use of empirically derived sampling distributions. In addition,
there are differences that are specific to each test. For example, (1) the t test for
correlated groups is introduced directly after the t test for single samples and is
developed as a special case of the t test for single samples, only this time using dif-
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ference scores rather than raw scores; (2) the sign test and the t test for correlated
groups are compared to illustrate the difference in power that results from using
one or the other; (3) there is a discussion of the factors influencing the power of
experiments using Student’s t test; (4) the correlated and independent groups de-
signs are compared with regard to utility; and (5) I have shown how to evaluate
the effect of the independent variable using a confidence interval approach with
the independent groups t test.

Chapters 15 and 16 deal with the analysis of variance. In these chapters, sin-
gle rather than double subscript notation is deliberately used. The more complex
double subscript notation, used by other texts, can confuse students. In my view,
the single subscript notation and resulting single summations work better for the
undergraduate major in psychology and related fields because they are simpler,
and for this audience, they promote understanding of this rather complicated ma-
terial. In using single subscript notation I have followed in part the notation used
by E. Minium, Statistical Reasoning in Psychology and Education, 2nd edition,
John Wiley & Sons, New York, 1978. I am indebted to Professor Minium for this
contribution.

Other features of this textbook are worth noting. Chapter 8, on probability,
does not delve deeply into probability theory. This is not necessary because the
proper mathematical foundation for all of the inference tests contained in this
textbook can be built by the use of basic probability definitions, in conjunction
with the addition and multiplication rules, as has been done in Chapter 8. Chap-
ter 15, covering both planned and post hoc comparisons, discusses two post hoc
tests, the Tukey HSD test and the Newman–Keuls test. Chapter 16 is a separate
chapter on two-way ANOVA for instructors wishing to cover this topic in depth.
For instructors with insufficient time for in-depth handling of two-way ANOVA,
at the beginning of Chapter 16, I have qualitatively described the two-way
ANOVA technique, emphasizing the concepts of main effects and interactions.
Chapter 18 is a review chapter that brings together all of the inference tests and
provides practice in determining which test to use when analyzing data from dif-
ferent experimental designs and data of different levels of scaling. Students espe-
cially like the tree diagram in this chapter for helping them determine the appro-
priate test. Finally, at various places throughout the text, there are sections titled
What Is the Truth? These sections show students practical applications of statistics.

Some comments about the descriptive statistics part of this book are in or-
der. The descriptive material is written at a level that (1) serves as a foundation
for the inference chapters and (2) enables students to adequately describe the
data for its own sake. For the most part, material on descriptive statistics follows
a traditional format, because this works well. Chapter 1 is an exception. It dis-
cusses approaches for determining truth and established statistics as part of the
scientific method, which is rather unusual for a statistics textbook.

Ninth Edition Changes

Textbook

The following changes have been made in the textbook.

◆ A new section titled “To the Student” has been added.
◆ “Learning Objectives” have been added at the beginning of each Chapter.
◆ “Mentoring Tips” have been added throughout the textbook.
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◆ “Size of effect” material has been expanded. The new material consists of
discussions of size of effect in Chapter 6 (Correlation), Chapter 13 (Stu-
dent’s t Test for Single Samples, and Chapter 14 (Student’s t Test for Cor-
related and Independent Groups). The discussion regarding correlation in-
volves using the coefficient of determination as an estimate of size of
effect. For the t test for single samples, correlated groups and independent
groups, coverage focuses on use of the Cohen d statistic to estimate effect
size.This statistic is relatively easy to understand and very easy to compute.
The discussion in Chapter 14 using v̂2 to estimate size of effect for the in-
dependent groups t test has been eliminated.

◆ A new section in Chapter 9 titled “Using the Normal Approximation” has
been added. This section discusses solving binomial problems for N’s
greater than 20. With the addition of this section, students can solve bino-
mial problems for any number of trials.

◆ Examples of the use of SPSS have been added at the end of Chapter 4 and
Chapter 6. These examples are intended to familiarize students with using
SPSS. A detailed tutorial explaining the use of SPSS, along with problems
and step-by-step SPSS solutions for appropriate textbook chapters is avail-
able via the accompanying web material.

◆ The Glossary has been greatly expanded.
◆ A New What Is the Truth section, titled “Money Doesn’t Buy Happiness,

or Does It?” has been added in Chapter 6. This section, taken from The
New York Times, presents an intriguing example of a complex scatter plot
used in conjunction with a very interesting topic for students. References
have been included for students to pursue the “money and happiness”
topic if desired.

◆ The index has been revised.
◆ Minor wording changes have been made throughout the textbook to in-

crease clarity.

Ancillaries

The following changes have been made in ancillaries.

◆ Student’s Study Guide. The Student’s Study Guide has been updated to in-
clude the changes made in the textbook.

◆ Extensive changes have been made to the Instructor’s Manual. The revised
Instructor’s Manual has three main parts. Part One: To the Instructor con-
tains the sections What’s New in the Ninth Edition, Textbook Rationale,
General Teaching Advice, and To the Student. Part Two: Chapter Material,
is organized by chapter and contains the following sections for each chap-
ter: Detailed Chapter Outline, Learning Objectives, Chapter Summary,
Teaching Suggestions, Discussion Questions, and Test Questions. The test
questions are organized into multiple-choice, true/false, definitions, and ad-
ditional questions sections. Part Three: Answers to Selected Textbook Prob-
lems contains answers to the end-of-chapter textbook problems for which
answers were deliberately omitted. The sections: What’s New in the Ninth
Edition, To the Student, Learning Objectives, Chapter Summary, Teaching
Suggestions, Discussion Questions, and Definitions are entirely new to the
ninth edition Instructor’s Manual. Each of the other sections also includes
new material. There are over 100 new discussion questions, and over 280
new questions in all.
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◆ Enhanced WebAssign: To help students learn to solve problems and to re-
duce instructor workload, I have introduced new online material available
through Enhanced WebAssign. Enhanced WebAssign is a homework de-
livery system that offers interactive tutorials for assigned, end-of-chapter
problems from the text, and bonus problems, all authored by me. In the tu-
torials, students can attempt the problem and when incorrect will be
guided, step-by-step, to the correct solution. The end-of-chapter problems
are automatically graded and offer the option of redoing each problem
with new sets of randomly selected numbers for additional practice. Fi-
nally, I’ve added a new set of problems that present ideal solutions similar
to the textbook practice problems. Enhanced WebAssign offers a conve-
nient set of grade-book features, making it an excellent instructor com-
panion.

◆ Problems Solved Using Excel. This web material, available in the eighth
edition, has been dropped due to lack of demand.

Supplement Package

The supplements consist of the following:

◆ A student’s study guide that is intended for review and consolidation of the
material contained in each chapter of the textbook. Each chapter of the
study guide has a chapter outline, a programmed learning/answers section,
an exercises/answers section, true/false questions/answers, and an end-of-
chapter self-quiz/answers section. Many students have commented on the
helpfulness of this study guide. (0-495-59656-6)

◆ An instructor’s manual with test bank that includes the textbook rationale,
general teaching advice, advice to the student, and, for each chapter, a de-
tailed chapter outline, learning objectives, a chapter summary, teaching
suggestions, discussion questions, and test questions and answers. Test
questions are organized into multiple-choice, true/false, definitions, and ad-
ditional question sections, and answers are also provided. The overall test
bank has over 1700 true/false, multiple-choice, definitions, and additional
questions. The instructor’s manual also includes answers to the end-of-
chapter problems contained in the textbook for which no answers are
given in the textbook. (0-495-59654-X)

◆ Web Material. Extensive online material is available via Enhanced Web-
Assign, the Book Companion Site, and WebTutor.
◆ Enhanced WebAssign. Enhanced WebAssign allows professors to track

student performance and gives students access to a range of problems or
examples for extra practice as well as interactive tutorial problems. (See
the preceding description of Enhanced WebAssign.)

◆ Book Companion Site. This website is available for use by all students
and is accessed by using the URL: www.cengage.com/psychology/pagano.
It contains the following material:
◆ Chapter Outline. This is an outline of each chapter in the textbook; this

material also appears in the student’s study guide.
◆ Know and Be Able to Do. This is a listing of what the student 

should know and be able to do after successfully completing each
chapter.

◆ Flash cards. This is a set of flash cards to help students memorize the
definitions of the important terms of each chapter.
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◆ Symbol Review. This is a table that lists each symbol, its meaning, and
the page on which it first occurs; this table also is displayed at the end
of the textbook.

◆ Glossary. This is a listing of the important terms and their definitions;
this listing also is given near the end of the textbook

◆ Tutorial Quiz. This provides a quiz for each chapter in the textbook for
student practice. Each quiz is made of selected multiple-choice and
true/false questions selected from the test bank contained in the in-
structor’s manual.

◆ Short Essay Questions. This is comprised of some short essay ques-
tions for each chapter, taken from the test bank contained in the in-
structor’s manual.

◆ Final Exam. This provides an end-of-course exam of 34 questions 
randomly chosen from the test bank contained in the instructor’s man-
ual. Each time it is accessed a new random sample of 34 questions is
presented.

◆ Solving Problems with SPSS. This material teaches students to solve
problems using SPSS for selected chapters in the textbook. This mate-
rial also contains SPSS data files for downloading directly into the
SPSS data editor.

◆ Download all SPSS Data files. This allows students to download all the
SPSS data files onto their hard drives for use with the SPSS tutorial.

◆ Demonstration that F � t2. This is appropriate for Chapter 15,
p. 398. It presents a worked problem, demonstrating that F � t2.

◆ Mann–Whitney U Test. This is an enhanced discussion of the Mann–
Whitney U test that was contained in earlier editions of the textbook.

◆ Statistical Workshops. These are online statistical workshops offered
by Cengage Learning (not written by Pagano) that treat various sta-
tistical topics covered in the textbook. These can be useful to reinforce
or help clarify concepts taught in the textbook.

◆ PowerPoint Transparencies. This section contains PowerPoint trans-
parencies of the textbook tables and figures for instructor use.

◆ WebTutor. WebTutor is available through adoption by the instructor.
It is an online course management system for instructors to assign
educational material for students to work on, and communicating the re-
sults back to the instructors. It uses the Blackboard and WebCT plat-
forms. WebTutor contains all the material on the Book Companion Site
plus the following additional sections.
◆ Drag and Drop Game. This is essentially a matching game that aids

students in applying and memorizing equations and in reviewing con-
cepts and other material.

◆ More Practice Problems. This section contains new practice problems
that are ideally solved using computational equations.

The following material is available via WebTutor as well as in the student’s study
guide.

◆ Concept Review. This section is a programmed learning review of the
important concepts for each chapter.

◆ Concept Review Solutions. This section provides the correct “fill-in”
answers to the concept review section for each chapter.
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◆ Exercises. This section presents additional problems for each chapter.
◆ Exercise Solutions. This section provides the correct answers to the 

exercises.
◆ Multiple-Choice Quiz. This section presents multiple choice quizzes

for each chapter.
◆ Multiple-Choice Quiz Solutions. This section provides the correct an-

swers to the multiple choice quizzes.
◆ True/False Quiz. This section presents true/false questions for each

chapter.
◆ True/False Quiz Solutions. This section provides the correct answers to

the true/false quizzes.
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Statistics uses probability, logic, and mathematics as ways of determining whether
or not observations made in the real world or laboratory are due to random hap-
penstance or perhaps due to an orderly effect one variable has on another. Sep-
arating happenstance, or chance, from cause and effect is the task of science, and
statistics is a tool to accomplish that end. Occasionally, data will be so clear that
the use of statistical analysis isn’t necessary. Occasionally, data will be so garbled
that no statistics can meaningfully be applied to it to answer any reasonable ques-
tion. But I will demonstrate that most often statistics is useful in determining
whether it is legitimate to conclude that an orderly effect has occurred. If so, sta-
tistical analysis can also provide an estimate of the size of the effect.

It is useful to try to think of statistics as a means of learning a new set of
problem-solving skills. You will learn new ways to ask questions, new ways to an-
swer them, and a more sophisticated way of interpreting the data you read about
in texts, journals, and the newspapers.

In writing this textbook and creating the web material, I have tried to make
the material as clear, interesting, and easy to understand as I can. I have used a
relaxed style, introduced humor, avoided equation derivation when possible, and
chosen examples and problems that I believe will be interesting to students in the
behavioral sciences. In the ninth edition, I have listed the objectives for each
chapter so that you can see what is in store for you and guide your studying ac-
cordingly. I have also introduced “mentoring tips” throughout the textbook to
help highlight important aspects of the material. While I was teaching at the Uni-
versity of Washington and the University of Pittsburgh, my statistics course was
evaluated by each class of students that I taught. I found the suggestions of stu-
dents invaluable in improving my teaching. Many of these suggestions have been
incorporated into this textbook. I take quite a lot of pride in having been a final-
ist for the University of Washington Outstanding Teaching Award for teaching
this statistics course, and in the fact that students have praised this textbook so
highly. I believe much of my success derives from student feedback and the qual-
ity of this textbook.

TO THE STUDENT
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Study Hints

◆ Memorize symbols. A lot of symbols are used in statistics. Don’t make the
material more difficult than necessary by failing to memorize what the
symbols stand for. Treat them as though they were foreign vocabulary. Be
able to go quickly from the symbol to the term(s), and from the term(s) to
the symbol. There is a section in the accompanying web material that will
help you accomplish this goal.

◆ Learn the definitions for new terms. Many new terms are introduced in this
course. Part of learning statistics is learning the definitions of these new
terms. If you don’t know what the new terms mean, it will be impossible to
do well in this course. Like the symbols, the new terms should be treated
like foreign vocabulary. Be able to instantly associate each new term with
its definition and vice versa. There is a section in the accompanying web
material that will help you accomplish this goal.

◆ Work as many problems as you possibly can. In my experience there is a
direct, positive relationship between working problems and doing well on
this material. Be sure you try to understand the solution. When using cal-
culators and computers, there can be a tendency to press the keys and read
the answer without really understanding the solution. We hope you won’t
fall into this trap. Also, work the problem from beginning to end, rather
than just following someone else’s solution and telling yourself that you
could solve the problem if called upon to do so. Solving a problem from
scratch is very different and often more difficult than “understanding”
someone else’s solution.

◆ Don’t fall behind. The material in this course is cumulative. Do not let
yourself fall behind. If you do, you will not understand the current mater-
ial either.

◆ Study several times each week, rather than just cramming. A lot of re-
search has shown that you will learn better and remember more material
if you space your learning rather than just cramming for the test.

◆ Read the material in the textbook prior to the lecture/discussion covering
it. You can learn a lot just by reading this textbook. Moreover, by reading
the appropriate material just prior to when it is covered in class, you can
determine the parts that you have difficulty with, and ask appropriate
questions when that material is covered by your instructor.

◆ Pay attention and think about the material being covered in class. This ad-
vice may seem obvious, but for whatever reason, it is frequently not fol-
lowed by students. Often times I’ve had to stop my lecture or discussions
to remind students about the importance of paying attention and thinking
in class. I didn’t require students to attend my classes, but if they did, I as-
sumed they were interested in learning the material and of course, atten-
tion and thinking are prerequisites for learning.

◆ Ask the questions you need to ask. Many of us feel our question is a
“dumb” one, and we will be embarrassed because the question will reveal
our ignorance to the instructor and the rest of the class. Almost always, the
“dumb” question helps others sitting in the class because they have the
same question. Even when this is not true, it is very often the case that if
you don’t ask the question, your learning is blocked and stops there, be-
cause the answer is necessary for you to continue learning the material.
Don’t let possible embarrassment hinder your learning. If it doesn’t work
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for you to ask in class, then ask the question via email, or make an ap-
pointment with the instructor and ask then.

◆ One final point—comparing your answers to mine. For most of the prob-
lems we have used a hand calculator or computer to find the solutions. De-
pending on how many decimal places you carry your intermediate calcula-
tions, you may get slightly different answers than we do. In most cases I
have used full calculator or computer accuracy for intermediate calcula-
tions (at least five decimal places). In general, you should carry all inter-
mediate calculations to at least two more decimal places than the number
of decimal places in the rounded final answer. For example, if you intend
to round the final answer to two decimal places, than you should carry all
intermediate calculations to at least 4 decimal places. If you follow this pol-
icy and your answer does not agree with ours, then you have probably
made a calculation error.

I wish you great success in understanding the material contained in this text-
book.

Robert R. Pagano

To the Student xxix
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Statistics and Scientific Method

LEARNING OBJECTIVES

After completing this chapter, you should be able to:
■ Describe the four methods of establishing truth.
■ Contrast observational and experimental research.
■ Contrast descriptive and inferential statistics.
■ Define the following terms: population, sample, variable, independent

variable, dependent variable, constant, data, statistic, and parameter.
■ Identify the population, sample, independent and dependent vari-

ables, data, statistic, and parameter from the description of a research
study.

■ Specify the difference between a statistic and a parameter.
■ Give two reasons why random sampling is important.
■ Understand the illustrative example, do the practice problem, and

understand the solution.

Chapter 1
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INTRODUCTION

Have you ever wondered how we come to know truth? Most college students
would agree that finding out what is true about the world, ourselves, and others
constitutes a very important activity. A little reflection reveals that much of our
time is spent in precisely this way. If we are studying geography, we want to know
what is true about the geography of a particular region. Is the region mountain-
ous or flat, agricultural or industrial? If our interest is in studying human beings,
we want to know what is true about humans. Do we truly possess a spiritual na-
ture, or are we truly reducible solely to atoms and molecules, as the reductionists
would have it? How do humans think? What happens in the body to produce a
sensation or a movement? When I get angry, is it true that there is a unique un-
derlying physiological pattern? What is the pattern? Is my true purpose in life to
become a teacher? Is it true that animals think? We could go on indefinitely with
examples because so much of our lives is spent seeking and acquiring truth.

METHODS OF KNOWING

Historically, humankind has employed four methods to acquire knowledge. They
are authority, rationalism, intuition, and the scientific method.

Authority

When using the method of authority, something is considered true because of tra-
dition or because some person of distinction says it is true. Thus, we may believe
in the theory of evolution because our distinguished professors tell us it is true,
or we may believe that God truly exists because our parents say so.Although this
method of knowing is currently in disfavor and does sometimes lead to error, it
is used a lot in living our daily lives. We frequently accept a large amount of in-
formation on the basis of authority, if for no other reason than we do not have
the time or the expertise to check it out firsthand. For example, I believe, on the
basis of physics authorities, that electrons exist, but I have never seen one; or per-
haps closer to home, if the surgeon general tells me that smoking causes cancer,
I stop smoking because I have faith in the surgeon general and do not have the
time or means to investigate the matter personally.

Rationalism

The method of rationalism uses reasoning alone to arrive at knowledge. It as-
sumes that if the premises are sound and the reasoning is carried out correctly
according to the rules of logic, then the conclusions will yield truth. We are very
familiar with reason because we use it so much. As an example, consider the fol-
lowing syllogism:

All statistics professors are interesting people.
Mr. X is a statistics professor.
Therefore, Mr. X is an interesting person.

Assuming the first statement is true (who could doubt it?), then it follows that if
the second statement is true, the conclusion must be true. Joking aside, hardly
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anyone would question the importance of the reasoning process in yielding truth.
However, there are a great number of situations in which reason alone is inade-
quate in determining the truth.

To illustrate, let’s suppose you notice that John, a friend of yours, has been
depressed for a couple of months. As a psychology major, you know that psycho-
logical problems can produce depression. Therefore, it is reasonable to believe
John may have psychological problems that are producing his depression. On the
other hand, you also know that an inadequate diet can result in depression, and
it is reasonable to believe that this may be at the root of his trouble. In this situ-
ation, there are two reasonable explanations of the phenomenon. Hence, reason
alone is inadequate in distinguishing between them. We must resort to experi-
ence. Is John’s diet in fact deficient? Will improved eating habits correct the situ-
ation? Or does John have serious psychological problems that, when worked
through, will lift the depression? Reason alone, then, may be sufficient to yield
truth in some situations, but it is clearly inadequate in others. As we shall see, the
scientific method also uses reason to arrive at truth, but reasoning alone is only
part of the process.Thus, the scientific method incorporates reason but is not syn-
onymous with it.

Intuition

Knowledge is also acquired through intuition. By intuition, we mean that sudden
insight, the clarifying idea that springs into consciousness all at once as a whole.
It is not arrived at by reason. On the contrary, the idea often seems to occur af-
ter conscious reasoning has failed. Beveridge* gives numerous occurrences taken
from prominent individuals. Here are a couple of examples:

Here is Metchnikoff’s own account of the origin of the idea of phagocytosis:
“One day when the whole family had gone to the circus to see some extraordi-
nary performing apes, I remained alone with my microscope, observing the life
in the mobile cells of a transparent starfish larva, when a new thought suddenly
flashed across my brain. It struck me that similar cells might serve in the defense
of the organism against intruders. Feeling that there was in this something of sur-
passing interest, I felt so excited that I began striding up and down the room and
even went to the seashore to collect my thoughts.”

Hadamard cites an experience of the mathematician Gauss, who wrote concern-
ing a problem he had tried unsuccessfully to prove for years: “Finally two days
ago I succeeded . . . like a sudden flash of lightning the riddle happened to be
solved. I cannot myself say what was the conducting thread which connected
what I previously knew with what made my success possible.”

It is interesting to note that the intuitive idea often occurs after conscious
reasoning has failed and the individual has put the problem aside for a while.
Thus, Beveridge† quotes two scientists as follows:

Freeing my mind of all thoughts of the problem I walked briskly down the street,
when suddenly at a definite spot which I could locate today—as if from the clear
sky above me—an idea popped into my head as emphatically as if a voice had
shouted it.
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*W. I. B. Beveridge, The Art of Scientific Investigation, Vintage Books/Random House, New York,
1957, pp. 94–95.
†Ibid., p. 92.



I decided to abandon the work and all thoughts relative to it, and then, on the
following day, when occupied in work of an entirely different type, an idea came
to my mind as suddenly as a flash of lightning and it was the solution . . . the ut-
ter simplicity made me wonder why I hadn’t thought of it before.

Despite the fact that intuition has probably been used as a source of knowl-
edge for as long as humans have existed, it is still a very mysterious process about
which we have only the most rudimentary understanding.

Scientific Method

Although the scientific method uses both reasoning and intuition for establishing
truth, its reliance on objective assessment is what differentiates this method from
the others.At the heart of science lies the scientific experiment, The method of sci-
ence is rather straightforward. By some means, usually by reasoning deductively
from existing theory or inductively from existing facts or through intuition, the
scientist arrives at a hypothesis about some feature of reality. He or she then de-
signs an experiment to objectively test the hypothesis. The data from the experi-
ment are then analyzed statistically, and the hypothesis is either supported or re-
jected. The feature of overriding importance in this methodology is that no
matter what the scientist believes is true regarding the hypothesis under study,
the experiment provides the basis for an objective evaluation of the hypothesis.
The data from the experiment force a conclusion consonant with reality.Thus, sci-
entific methodology has a built-in safeguard for ensuring that truth assertions of
any sort about reality must conform to what is demonstrated to be objectively
true about the phenomena before the assertions are given the status of scientific
truth.

An important aspect of this methodology is that the experimenter can hold
incorrect hunches, and the data will expose them. The hunches can then be re-
vised in light of the data and retested. This methodology, although sometimes
painstakingly slow, has a self-correcting feature that, over the long run, has a high
probability of yielding truth. Since in this textbook we emphasize statistical
analysis rather than experimental design, we cannot spend a great deal of time
discussing the design of experiments. Nevertheless, some experimental design
will be covered because it is so intertwined with statistical analysis.

DEFINITIONS

In discussing this and other material throughout the book, we shall be using cer-
tain technical terms. The terms and their definitions follow:

◆ Population A population is the complete set of individuals, objects, or
scores that the investigator is interested in studying. In an actual experiment,
the population is the larger group of individuals from which the subjects
run in the experiment have been taken.

◆ Sample A sample is a subset of the population. In an experiment, for eco-
nomical reasons, the investigator usually collects data on a smaller group
of subjects than the entire population. This smaller group is called the
sample.
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◆ Variable A variable is any property or characteristic of some event, object,
or person that may have different values at different times depending on the
conditions. Height, weight, reaction time, and drug dosage are examples of
variables.A variable should be contrasted with a constant, which, of course,
does not have different values at different times. An example is the math-
ematical constant �; it always has the same value (3.14 to two-decimal-
place accuracy).

◆ Independent variable (IV) The independent variable in an experiment is
the variable that is systematically manipulated by the investigator. In most
experiments, the investigator is interested in determining the effect that
one variable, say, variable A, has on one or more other variables. To do so,
the investigator manipulates the levels of variable A and measures the ef-
fect on the other variables. Variable A is called the independent variable
because its levels are controlled by the experimenter, independent of any
change in the other variables. To illustrate, an investigator might be inter-
ested in the effect of alcohol on social behavior. To investigate this, he or
she would probably vary the amount of alcohol consumed by the subjects
and measure its effect on their social behavior. In this example, the exper-
imenter is manipulating the amount of alcohol and measuring its conse-
quences on social behavior.Alcohol amount is the independent variable. In
another experiment, the effect of sleep deprivation on aggressive behavior
is studied. Subjects are deprived of various amounts of sleep, and the con-
sequences on aggressiveness are observed. Here, the amount of sleep de-
privation is being manipulated. Hence, it is the independent variable.

◆ Dependent variable (DV) The dependent variable in an experiment is the
variable that the investigator measures to determine the effect of the inde-
pendent variable. For example, in the experiment studying the effects of al-
cohol on social behavior, the amount of alcohol is the independent vari-
able. The social behavior of the subjects is measured to see whether it is
affected by the amount of alcohol consumed. Thus, social behavior is the
dependent variable. It is called dependent because it may depend on the
amount of alcohol consumed. In the investigation of sleep deprivation and
aggressive behavior, the amount of sleep deprivation is being manipulated
and the subjects’ aggressive behavior is being measured. The amount of
sleep deprivation is the independent variable, and aggressive behavior is
the dependent variable.

◆ Data The measurements that are made on the subjects of an experiment
are called data. Usually data consist of the measurements of the dependent
variable or of other subject characteristics, such as age, gender, number of
subjects, and so on. The data as originally measured are often referred to
as raw or original scores.

◆ Statistic A statistic is a number calculated on sample data that quantifies a
characteristic of the sample. Thus, the average value of a sample set of
scores would be called a statistic.

◆ Parameter A parameter is a number calculated on population data that
quantifies a characteristic of the population. For example, the average value
of a population set of scores is called a parameter. It should be noted that
a statistic and a parameter are very similar concepts. The only difference is
that a statistic is calculated on a sample and a parameter is calculated on a
population.

Definitions 7



e x p e r i m e n t Mode of Presentation and Retention

Let’s now consider an illustrative experiment and apply the previously discussed terms
to it.

An educator conducts an experiment to determine whether the mode of presentation af-
fects how well prose material is remembered. For this experiment, the educator uses sev-
eral prose passages that are presented visually or auditorily. Fifty students are selected
from the undergraduates attending the university at which the educator works. The stu-
dents are divided into two groups of 25 students per group. The first group receives a vi-
sual presentation of the prose passages, and the second group hears the passages through
an auditory presentation. At the end of their respective presentations, the subjects are
asked to write down as much of the material as they can remember. The average number
of words remembered by each group is calculated, and the two group averages are com-
pared to see whether the mode of presentation had an effect.

In this experiment, the independent variable is the mode of presentation of
the prose passages (i.e., auditory or visual). The dependent variable is the num-
ber of words remembered. The sample is the 50 students who participated in the
experiment. The population is the larger group of individuals from which the
sample was taken, namely, the undergraduates attending the university. The data
are the number of words recalled by each student in the sample. The average
number of words recalled by each group is a statistic because it quantifies a char-
acteristic of the sample scores. Since there was no measurement made of any
population characteristic, there was no parameter calculated in this experiment.
However, for illustrative purposes, suppose the entire population had been given
a visual presentation of the passages. If we calculate the average number of words
remembered by the population, the average number would be called a parame-
ter because it quantifies a characteristic of the population scores.

Now, let’s do a problem to practice identifying these terms.
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MENTORING TIP
Very often parameters are un-
specified. Is a parameter speci-
fied in this experiment?

P r a c t i c e  P r o b l e m  1.1

For the experiment described below, specify the following: the independent
variable, the dependent variable(s), the sample, the population, the data,
the statistic(s), and the parameter(s).

A professor of gynecology at a prominent medical school wants to deter-
mine whether an experimental birth control implant has side effects on
body weight and depression. A group of 5000 adult women living in a
nearby city volunteers for the experiment. The gynecologist selects 100 of
these women to participate in the study. Fifty of the women are assigned
to group 1 and the other fifty to group 2 such that the mean body weight
and the mean depression scores of each group are equal at the beginning
of the experiment. Treatment conditions are the same for both groups, ex-
cept that the women in group 1 are surgically implanted with the experi-
mental birth control device, whereas the women in group 2 receive a
placebo implant. Body weight and depressed mood state are measured at

(continued)



SCIENTIFIC RESEARCH AND STATISTICS

Scientific research may be divided into two categories: observational studies and
true experiments. Statistical techniques are important in both kinds of research.

Observational Studies

In this type of research, no variables are actively manipulated by the investiga-
tor, and hence observational studies cannot determine causality. Included within
this category of research are (1) naturalistic observation, (2) parameter estima-
tion, and (3) correlational studies. With naturalistic observation research, a ma-
jor goal is to obtain an accurate description of the situation being studied. Much
anthropological and etiological research is of this type. Parameter estimation re-
search is conducted on samples to estimate the level of one or more population
characteristics (e.g., the population average or percentage). Surveys, public
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the beginning and end of the experiment. A standardized questionnaire
designed to measure degree of depression is used for the mood state mea-
surement. The higher the score on this questionnaire is, the more de-
pressed the individual is. The mean body weight and the mean depression
scores of each group at the end of the experiment are compared to deter-
mine whether the experimental birth control implant had an effect on
these variables. To safeguard the women from unwanted pregnancy, an-
other method of birth control that does not interact with the implant is
used for the duration of the experiment.

S O L U T I O N

Independent variable: The experimental birth control implant versus the
placebo.

Dependent variables: Body weight and depressed mood state.

Sample: 100 women who participated in the experiment.

Population: 5000 women who volunteered for the experiment.

Data: The individual body weight and depression scores of the 100 women
at the beginning and end of the experiment.

Statistics: Mean body weight of group 1 at the beginning of the experiment,
mean body weight of group 1 at the end of the experiment, mean depres-
sion score of group 1 at the beginning of the experiment, mean depression
score of group 1 at the end of the experiment, plus the same four statistics
for group 2.

Parameter: No parameters were given or computed in this experiment. If
the gynecologist had measured the body weights of all 5000 volunteers at
the beginning of the experiment, the mean of these 5000 weights would be
a parameter.



opinion polls, and much market research fall into this category. In correlational
research, the investigator focuses attention on two or more variables to deter-
mine whether they are related. For example, to determine whether obesity and
high blood pressure are related in adults older than 30 years, an investigator
might measure the fat level and blood pressure of individuals in a sample of
adults older than 30. The investigator would then analyze the results to see
whether a relationship exists between these variables; that is, do individuals with
low fat levels also have low blood pressure, do individuals with moderate fat lev-
els have moderate blood pressure, and do individuals with high fat levels have
high blood pressure?

True Experiments

In this type of research, an attempt is made to determine whether changes in one
variable cause* changes in another variable. In a true experiment, an indepen-
dent variable is manipulated and its effect on some dependent variable is stud-
ied. If desired, there can be more than one independent variable and more than
one dependent variable. In the simplest case, there is only one independent and
one dependent variable. One example of this case is the experiment mentioned
previously that investigated the effect of alcohol on social behavior. In this ex-
periment, you will recall, alcohol level was manipulated by the experimenter and
its effect on social behavior was measured.

RANDOM SAMPLING

In all of the research described previously, data are usually collected on a sample
of subjects rather than on the entire population to which the results are intended
to apply. Ideally, of course, the experiment would be performed on the whole
population, but usually it is far too costly, so a sample is taken. Note that not just
any sample will do. The sample should be a random sample. Random sampling is
discussed in Chapter 8. For now, it is sufficient to know that random sampling al-
lows the laws of probability, also discussed in Chapter 8, to apply to the data and
at the same time helps achieve a sample that is representative of the population.
Thus, the results obtained from the sample should also apply to the population.
Once the data are collected, they are statistically analyzed and the appropriate
conclusions about the population are drawn.

DESCRIPTIVE AND INFERENTIAL STATISTICS

Statistical analysis, of course, is the main theme of this textbook. It has been di-
vided into two areas: (1) descriptive statistics and (2) inferential statistics. Both
involve analyzing data. If an analysis is done for the purpose of describing or
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MENTORING TIP
Only true experiments can 
determine causality.

*We recognize that the topic of cause and effect has engendered much philosophical debate. How-
ever, we cannot consider the intricacies of this topic here. When we use the term cause, we mean it
in the common-sense way it is used by nonphilosophers. That is, when we say that A caused B, we
mean that a change in A produced a change in B with all other variables appropriately controlled.



characterizing the data, then we are in the area of descriptive statistics. To illus-
trate, suppose your biology professor has just recorded the scores from an exam
he has recently given you. He hands back the tests and now wants to describe
the scores. He might decide to calculate the average of the distribution to de-
scribe its central tendency. Perhaps he will also determine its range to charac-
terize its variability. He might also plot the scores on a graph to show the shape
of the distribution. Since all of these procedures are for the purpose of describ-
ing or characterizing the data already collected, they fall within the realm of de-
scriptive statistics.

Inferential statistics, on the other hand, is not concerned with just describing
the obtained data. Rather, it embraces techniques that allow one to use obtained
sample data to make inferences or draw conclusions about populations. This is
the more complicated part of statistical analysis. It involves probability and vari-
ous inference tests, such as Student’s t test and the analysis of variance.

To illustrate the difference between descriptive and inferential statistics, sup-
pose we were interested in determining the average IQ of the entire freshman
class at your university. It would be too costly and time-consuming to measure
the IQ of every student in the population, so we would take a random sample of,
say, 200 students and give each an IQ test. We would then have 200 sample IQ
scores, which we want to use to determine the average IQ in the population. Al-
though we can’t determine the exact value of the population average, we can es-
timate it using the sample data in conjunction with an inference test called Stu-
dent’s t test.The results would allow us to make a statement such as,“We are 95%
confident that the interval of 115–120 contains the mean IQ of the population.”
Here, we are not just describing the obtained scores, as was the case with the bi-
ology exam. Rather, we are using the sample scores to infer to a population value.
We are therefore in the domain of inferential statistics. Descriptive and inferen-
tial statistics can be defined as follows:
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d e f i n i t i o n s ■ Descriptive statistics is concerned with techniques that are used to describe
or characterize the obtained data.

■ Inferential statistics involves techniques that use the obtained sample data
to infer to populations.

USING COMPUTERS IN STATISTICS

The use of computers in statistics has increased greatly over the past decade. In
fact, today almost all research data in the behavioral sciences are analyzed using
statistical computer programs rather than by “hand” with a calculator. This is
good news for students, who often like the ideas, concepts, and results of statistics
but hate the drudgery of hand computation. The fact is that researchers hate
computational drudgery too, and therefore almost always use a computer to an-
alyze data sets of any appreciable size. Computers have the advantages of saving
time and labor, minimizing the chances of computational error, allowing easy



graphical display of the data, and providing better management of large data sets.
As useful as computers are, there is often not enough time in a basic statistics
course to include them. Therefore, I have written this edition so that you can
learn the statistical content with or without the computer material.

Several computer programs are available to do statistical analysis. The most
popular are Statistical Package for the Social Sciences (SPSS), Statistical Analy-
sis System (SAS), SYSTAT, MINITAB, and Excel. Versions of SPSS, SAS,
SYSTAT, and MINITAB are available for both mainframes and microcomput-
ers. It is worth taking the extra time to learn one or more of these programs.

As you begin solving problems using computers, I believe you will begin
to experience the fun and power that statistical software can bring to your
study and use of statistics. In fact, once you have used software like SPSS to
analyze data, you will probably wonder, “Why do I have to do any of these
complicated calculations by hand?” Unfortunately, when you are using statis-
tical software to calculate the value of a statistic, it does not help you under-
stand that statistic. Understanding the statistic and its proper use is best
achieved by doing hand calculations or step-by-step calculations using Excel.
Of course, once you have learned everything you can from these calculations,
using statistical software like SPSS to grind out correct values of the statistic
seems eminently reasonable.

STATISTICS AND THE “REAL WORLD”

As I mentioned previously, one major purpose of statistics is to aid in the scien-
tific evaluation of truth assertions. Although you may view this as rather esoteric
and far removed from everyday life, I believe you will be convinced, by the time
you have finished this textbook, that understanding statistics has very important
practical aspects that can contribute to your satisfaction with and success in life.
As you go through this textbook, I hope you will become increasingly aware of
how frequently in ordinary life we are bombarded with “authorities” telling us,
based on “truth assertions,” what we should do, how we should live, what we
should buy, what we should value, and so on. In areas of real importance to you,
I hope you will begin to ask questions such as: “Are these truth assertions sup-
ported by data?” “How good are the data?” “Is chance a reasonable explanation
of the data?” If there are no data presented, or if the data presented are of the
form “My experience is that . . .” rather than from well-controlled experiments, I
hope that you will begin to question how seriously you should take the author-
ity’s advice.

To help develop this aspect of your statistical decision making, I have in-
cluded, at the end of certain chapters, applications taken from everyday life.
These are titled, “What Is the Truth?” To begin, let’s consider the following
material.
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MENTORING TIP
See SPSS examples at the end
of Chapters 4 and 6. An SPSS
tutorial with problems is avail-
able on the web at the Book
Companion Site (see p. 21).
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WHAT IS THE TRUTH? Data, Data, Where Are the Data?

The accompanying
advertisement was
printed in an issue
of Psychology To-
day. From a scien-

tific point of view, what’s missing?

Answer This ad is similar to a
great many that appear these days.
It promises a lot, but offers no ex-
perimental data to back up its
claims. The ad puts forth a truth
assertion: “Think And Be Thin.”
It further claims “Here’s a tape
program that really works . . .
and permanently!” The program
consists of listening to a tape with
subliminal messages that is sup-
posed to program your mind to
produce thinness. The glaring lack
is that there are no controlled ex-
periments, no data offered to sub-
stantiate the claim. This is the kind

of claim that cries out for empirical
verification. Apparently, the authors
of the ad do not believe the read-
ers of Psychology Today are very
sophisticated, statistically. I certainly

hope the readers of this textbook
would ask for the data before they
spend 6 months of their time lis-
tening to a tape, the message of
which they can’t even hear! ■
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WHAT IS THE TRUTH? Authorities Are Nice, but . . .

An advertisement
promoting Anacin-3
appeared in an is-
sue of Cosmopoli-
tan. The heading 

of the advertisement was “3 
Good Reasons to Try Anacin-3.”
The advertisement pictured a 
doctor, a nurse, and a pharmacist
making the following three 
statements:

1. “Doctors are recommending
acetaminophen, the aspirin-free
pain reliever in Anacin-3, more
than any other aspirin-free pain
reliever.”

2. “Hospitals use acetaminophen,
the aspirin-free pain reliever in
Anacin-3, more than any other
aspirin-free pain reliever.”

3. “Pharmacists recommend acet-
aminophen, the aspirin-free
pain reliever in Anacin-3, more
than any other aspirin-free pain
reliever.”

From a scientific point of view, is
anything missing?

Answer This is somewhat better
than the previous ad. At least rele-
vant authorities are invoked in sup-
port of the product. However, the

ad is misleading and again fails to
present the appropriate data. Much
better than the “3 Good Reasons
to Try Anacin-3” given in the ad
would be reason 4, data from well-
conducted experiments showing
that (a) acetaminophen is a better
pain reliever than any other aspirin-
free pain reliever and (b) Anacin-3
relieves pain better than any com-
petitor. Any guesses about why
these data haven’t been pre-
sented? As a budding statistician,
are you satisfied with the case
made by this ad? ■
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In this chapter, I have discussed how truth is estab-
lished. Traditionally, four methods have been used:
authority, reason, intuition, and science. At the heart
of science is the scientific experiment. By reasoning
or through intuition, the scientist forms a hypothesis
about some feature of reality. He or she designs an
experiment to objectively test the hypothesis. The
data from the experiment are then analyzed statisti-
cally, and the hypothesis is either confirmed or re-
jected.

Most scientific research falls into two categories:
observational studies and true experiments. Natural
observation, parameter estimation, and correlational
studies are included within the observational cate-
gory. Their major goal is to give an accurate descrip-
tion of the situation, estimate population parameters,
or determine whether two or more of the variables
are related. Since there is no systematic manipulation
of any variable by the experimenter when doing an

observational study, this type of research cannot de-
termine whether changes in one variable will cause
changes in another variable. Causal relationships can
be determined only from true experiments.

In true experiments, the investigator systemati-
cally manipulates the independent variable and ob-
serves its effect on one or more dependent variables.
Due to practical considerations, data are collected on
only a sample of subjects rather than on the whole
population. It is important that the sample be a ran-
dom sample. The obtained data are then analyzed
statistically.

The statistical analysis may be descriptive or in-
ferential. If the analysis just describes or character-
izes the obtained data, we are in the domain of de-
scriptive statistics. If the analysis uses the obtained
data to infer to populations, we are in the domain of
inferential statistics. Understanding statistical analy-
sis has important practical consequences in life.
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■ SUMMARY

Constant (p. 7)
Correlational studies (p. 10)
Data (p. 7)
Dependent variable (p. 7)
Descriptive statistics (p. 10)
Independent variable (p. 7)
Inferential statistics (p. 10)
Method of authority (p. 4)

Method of intuition (p. 5)
Method of rationalism (p. 4)
Naturalistic observation research

(p. 9)
Observational studies (p. 9)
Parameter (p. 7)
Parameter estimation research

(p. 9)

Population (p. 6)
Sample (p. 6)
Scientific method (p. 6)
SPSS (p. 12)
Statistic (p. 7)
True experiment (p. 10)
Variable (p. 7)

■ IMPORTANT NEW TERMS

Note to the student: You will notice that at the end 
of specific problems in this and all other chapters ex-
cept Chapter 2, I have identified, in color, a specific
area within psychology and related fields where the
problem is applied. For example, Problem 6 part b,
page 19, is a problem in the area of biological psy-
chology. It has been labeled “biological” at the end of
the problem, leaving off “psychology” for brevity.The
specific areas identified are cognitive psychology, so-
cial psychology, developmental psychology, biological
psychology, clinical psychology, industrial/organiza-
tional (I/O) psychology, health psychology, education,
and other.As indicated previously, in the actual label-
ing I have left off “psychology” for brevity. I hope this

labeling will be useful to your instructor in selecting
assigned homework problems and to you in seeing
the broad application of this material as well as in
helping you select additional problems you might en-
joy solving beyond the assigned ones.
1. Define each of the following terms:

Population Dependent variable
Sample Constant
Data Statistic
Variable Parameter
Independent variable

2. What are four methods of acquiring knowledge?
Write a short paragraph describing the essential
characteristics of each.

■ QUESTIONS AND PROBLEMS



3. How does the scientific method differ from each
of the methods listed here?
a. Method of authority
b. Method of rationalism
c. Method of intuition

4. Write a short paragraph comparing naturalistic
observation and true experiments.

5. Distinguish between descriptive and inferential
statistics. Use examples to illustrate the points
you make.

6. In each of the experiments described here, specify
(1) the independent variable, (2) the dependent
variable, (3) the sample, (4) the population, (5) the
data, and (6) the statistic:
a. A health psychologist is interested in whether

fear motivation is effective in reducing the inci-
dence of smoking. Forty adult smokers are se-
lected from individuals residing in the city in
which the psychologist works. Twenty are asked
to smoke a cigarette, after which they see a
gruesome film about how smoking causes can-
cer. Vivid pictures of the diseased lungs and
other internal organs of deceased smokers are
shown in an effort to instill fear of smoking in
these subjects. The other group receives the
same treatment, except they see a neutral film
that is unrelated to smoking. For 2 months after
showing the film, the experimenter keeps
records on the number of cigarettes smoked
daily by the participants.A mean for each group
is then computed of the number of cigarettes
smoked daily since seeing the film, and these
means are compared to determine whether the
fear-inducing film had an effect on smoking.
health

b. A physiologist wants to know whether a par-
ticular region of the brain (the hypothalamus)
is involved in the regulation of eating. An ex-
periment is performed in which 30 rats are se-
lected from the university vivarium and di-
vided into two groups. One of the groups
receives lesions in the hypothalamus, whereas
the other group is lesioned in a neutral area.
After recovery from the operations, all animals
are given free access to food for 2 weeks, and a
record is kept of the daily food intake of each
animal. At the end of the 2-week period, the
mean daily food intake for each group is deter-
mined. Finally, these means are compared to
see whether the lesions in the hypothalamus
have affected the amount eaten. biological

c. A clinical psychologist is interested in evaluat-
ing three methods of treating depression: med-
ication, cognitive restructuring, and exercise.
A fourth treatment condition, a waiting-only
treatment group, is included to provide a base-
line control group. Sixty depressed students are
recruited from the undergraduate student
body at a large state university, and fifteen are
assigned to each treatment method. Treat-
ments are administered for 6 months, after
which each student is given a questionnaire de-
signed to measure the degree of depression.
The questionnaire is scaled from 0 to 100, with
higher scores indicating a higher degree of de-
pression. The mean depression values are then
computed for the four treatments and com-
pared to determine the relative effectiveness of
each treatment. clinical, health

d. A social psychologist is interested in determin-
ing whether individuals who graduate from
high school but get no further education earn
more money than high school dropouts. A na-
tional survey is conducted in a large midwest-
ern city, sampling 100 individuals from each
category and asking each their annual salary.
The results are tabulated, and mean salary val-
ues are calculated for each group. social

e. A cognitive psychologist is interested in how
retention is affected by the spacing of practice
sessions. A sample of 30 seventh graders is se-
lected from a local junior high school and di-
vided into three groups of 10 students in each
group.All students are asked to memorize a list
of 15 words and are given three practice ses-
sions, each 5 minutes long, in which to do so.
Practice sessions for group 1 subjects are
spaced 10 minutes apart; for group 2, 20 min-
utes apart; and for group 3, 30 minutes apart.
All groups are given a retention test 1 hour af-
ter the last practice session. Results are
recorded as the number of words correctly re-
called in the test period. Mean values are com-
puted for each group and compared. cognitive

f. A sport psychologist uses visualization in pro-
moting enhanced performance in college ath-
letes. She is interested in evaluating the rela-
tive effectiveness of visualization alone versus
visualization plus appropriate self-talk. An ex-
periment is conducted with a college basket-
ball team. Ten members of the team are se-
lected. Five are assigned to a visualization
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alone group, and five are assigned to a visual-
ization plus self-talk group. Both techniques
are designed to increase foul shooting accu-
racy. Each group practices its technique for
1 month. The foul shooting accuracy of each
player is measured before and 1 month after
begining practice of the technique. Difference
scores are computed for each player, and the
means of the difference scores for each group
are compared to determine the relative effec-
tiveness of the two techniques. I/O, other

g. A typing teacher believes that a different
arrangement of the typing keys will promote
faster typing. Twenty secretarial trainees, se-
lected from a large business school, participate
in an experiment designed to test this belief.
Ten of the trainees learn to type on the con-
ventional keyboard. The other ten are trained
using the new arrangement of keys. At the end
of the training period, the typing speed in
words per minute of each trainee is measured.
The mean typing speeds are then calculated for
both groups and compared to determine
whether the new arrangement has had an ef-
fect. education

7. Indicate which of the following represent a vari-
able and which a constant:
a. The number of letters in the alphabet
b. The number of hours in a day
c. The time at which you eat dinner
d. The number of students who major in psychol-

ogy at your university each year
e. The number of centimeters in a meter
f. The amount of sleep you get each night
g. The amount you weigh
h. The volume of a liter

8. Indicate which of the following situations involve
descriptive statistics and which involve inferential
statistics:
a. An annual stockholders’ report details the as-

sets of the corporation.
b. A history instructor tells his class the number

of students who received an A on a recent
exam.

c. The mean of a sample set of scores is calcu-
lated to characterize the sample.

d. The sample data from a poll are used to esti-
mate the opinion of the population.

e. A correlational study is conducted on a sample
to determine whether educational level and in-
come in the population are related.

f. A newspaper article reports the average
salaries of federal employees from data col-
lected on all federal employees.

9. For each of the following, identify the sample and
population scores:
a. A social psychologist interested in drinking be-

havior investigates the number of drinks
served in bars in a particular city on a Friday
during “happy hour.” In the city, there are 213
bars. There are too many bars to monitor all of
them, so she selects 20 and records the number
of drinks served in them. The following are the
data:

50 82 47 65

40 76 61 72

35 43 65 76

63 66 83 82

57 72 71 58

social

b. To make a profit from a restaurant that spe-
cializes in low-cost quarter-pound hamburgers,
it is necessary that each hamburger served
weigh very close to 0.25 pound. Accordingly,
the manager of the restaurant is interested in
the variability among the weights of the ham-
burgers served each day. On a particular day,
there are 450 hamburgers served. It would take
too much time to weigh all 450, so the manager
decides instead to weigh just 15. The following
weights in pounds were obtained:

0.25 0.27 0.25

0.26 0.35 0.27

0.22 0.32 0.38

0.29 0.22 0.28

0.27 0.40 0.31

other

c. A machine that cuts steel blanks (used for
making bolts) to their proper length is sus-
pected of being unreliable.The shop supervisor
decides to check the output of the machine. On
the day of checking, the machine is set to pro-
duce 2-centimeter blanks.The acceptable toler-
ance is �0.05 centimeter. It would take too
much time to measure all 600 blanks produced
in 1 day, so a representative group of 25 is 
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selected. The following lengths in centimeters
were obtained:

2.01 1.99 2.05 1.94 2.05

2.01 2.02 2.04 1.93 1.95

2.03 1.97 2.00 1.98 1.96

2.05 1.96 2.00 2.01 1.99

1.98 1.95 1.97 2.04 2.02

I/O

d. A physiological psychologist, working at Tacoma
University, is interested in the resting, diastolic
heart rates of all the female students attending

the university. She randomly samples 30 fe-
males from the student body and records 
the following diastolic heart rates while the
students are lying on a cot. Scores are in
beats/min.

62 85 92 85 88 71

73 82 84 89 93 75

81 72 97 78 90 87

78 74 61 66 83 68

67 83 75 70 86 72

biological
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Basic Mathematical and
Measurement Concepts

LEARNING OBJECTIVES

After completing this chapter, you should be able to:
■ Assign subscripts using the variable to a set of numbers.
■ Do the operations called for by the summation sign for various val-

ues of and .
■ Specify the differences in mathematical operations between 

and and compute each.
■ Define and recognize the four measurement scales, give an example

of each, and state the mathematical operations that are permissible
with each scale.

■ Define continuous and discrete variables and give an example of
each.

■ Define the real limits of a continuous variable and determine the real
limits of values obtained when measuring a continuous variable.

■ Round numbers with decimal remainders.
■ Understand the illustrative examples, do the practice problems, and

understand the solutions.

� X 2
1� X2 2

Ni

X

Chapter 2



STUDY HINTS FOR THE STUDENT

Statistics is not an easy subject. It requires learning difficult concepts as well as
doing mathematics. There is, however, some advice that I would like to pass on,
which I believe will help you greatly in learning this material.This advice is based
on many years of teaching the subject; I hope you will take it seriously.

Most students in the behavioral sciences have a great deal of anxiety about
taking a course on mathematics or statistics. Without minimizing the difficulty of
the subject, a good deal of this anxiety is unnecessary. To learn the material con-
tained in this textbook, you do not have to be a whiz in calculus or differential
equations. I have tried hard to present the material so that nonmathematically in-
clined students can understand it. I cannot, however, totally do away with math-
ematics. To be successful, you must be able to do elementary algebra and a few
other mathematical operations. To help you review, I have included Appendix A,
which covers prerequisite mathematics. You should study that material and be
sure you can do the problems it contains. If you have difficulty with these prob-
lems, it will help to review the topic in a basic textbook on elementary algebra.

Another factor of which you should be aware is that a lot of symbols are used
in statistics. For example, to designate the mean of a sample set of scores, we shall
use the symbol (read “ bar”). Students often make the material more diffi-
cult than necessary by failing to thoroughly learn what the symbols stand for.You
can save yourself much grief by taking the symbols seriously. Treat them as
though they are foreign vocabulary. Memorize them and be able to deal with
them conceptually. For example, if the text says , the concept “the mean of the
sample” should immediately come to mind.

It is also important to realize that the material in statistics is cumulative. Do
not let yourself fall behind. If you do, you will not understand the current mate-
rial either. The situation can then snowball, and before you know it, you may
seem hopelessly behind. Remember, do all you can to keep up with the material.

Finally, my experience indicates that a good deal of the understanding of sta-
tistics comes from working lots of problems. Very often, one problem is worth a
thousand words. Frequently, although the text is clearly worded, the material
won’t come into focus until you have worked the problems associated with the
topic. Therefore, do lots of problems, and afterward, reread the textual material
to be sure you understand it.

In sum, I believe that if you can handle elementary algebra, work diligently
on learning the symbols and studying the text, keep up with the material, and
work lots of problems, you will do quite well. Believe it or not, as you begin to ex-
perience the elegance and fun that are inherent in statistics, you may even come
to enjoy it.

MATHEMATICAL NOTATION

In statistics, we usually deal with group data that result from measuring one or more
variables. The data are most often derived from samples, occasionally from popula-
tions. For mathematical purposes, it is useful to let symbols stand for the variables
measured in the study. Throughout this text, we shall use the Roman capital letter

and sometimes to stand for the variable(s) measured. Thus, if we were mea-
suring the age of subjects, we would let stand for the variable “age.” When thereX

Y,X,

X

XX
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are many values of the variable, it is important to distinguish among them. We do
this by subscripting the symbol This process is illustrated in Table 2.1.

In this example, we are letting the variable “age” be represented by the sym-
bol We shall also let represent the number of scores in the distribution. In
this example, Each of the six scores represents a specific value of We
distinguish among the six scores by assigning a subscript to that corresponds
to the number of the subject that had the specific value. Thus, the score symbol

corresponds to the score value 8, to the score value 10, to the value 7,
to 6, to 10, and to 12. In general, we can refer to a single score in the dis-
tribution as where can take on any value from 1 to depending on which
score we wish to designate. To summarize,

◆ or stands for the variable measured.
◆ stands for the total number of subjects or scores.
◆ is the th score, where can vary from 1 to .

SUMMATION

One of the most frequent operations performed in statistics is to sum all or
part of the scores in the distribution. Since it is awkward to write out “sum of
all the scores” each time this operation is required, particularly in equations, a
symbolic abbreviation is used instead. The capital Greek letter sigma 
indicates the operation of summation. The algebraic phrase employed for
summation is

This is read as “sum of the variable from to .” The notations above and
below the summation sign designate which scores to include in the summation.
The term below the summation sign tells us the first score in the summation, and
the term above the summation sign designates the last score. This phrase, then,
indicates that we are to add the scores, beginning with the first score and end-
ing with the th score. Thus,

summation equation a
N

i�1
 Xi � X1 � X2 � X3 � . . . � XN

N
X

Ni � 1X

a
N

i�1
 Xi

1© 2

NiiXi

N
YX

NiXi ,
XX6X5

X4X3X2X1

X
X.N � 6.

NX.

X.
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t a b l e 2.1 Age of six subjects

Subject Score Score Value,
Number Symbol Age (yr)

1 18

2 10

3 17

4 16

5 10

6 12X6

X5

X4

X3

X2

X1



Applied to the age data of the previous table,

When the summation is over all the scores (from 1 to ), the summation phrase
itself is often abbreviated by omitting the notations above and below the sum-
mation sign and by omitting the subscript Thus,

In the previous example,

This says that the sum of all the scores is 53.
Note that it is not necessary for the summation to be from 1 to For exam-

ple, we might desire to sum only the second, third, fourth, and fifth scores. Re-
member, the notation below the summation sign tells us where to begin the sum-
mation, and the term above the sign tells us where to stop. Thus, to indicate the
operation of summing the second, third, fourth, and fifth scores, we would use the

symbol For the preceding age data,

Let’s do some practice problems in summation.

a
5

i�2
 Xi � X2 � X3 � X4 � X5 � 10 � 7 � 6 � 10 � 33

a
5

i�2
 Xi.

N.
X

© X � 53

a
N

i�1
 Xi is often written as © X.

i.

N

 � 8 � 10 � 7 � 6 � 10 � 12 � 53

 a
N

i�1
 Xi � X1 � X2 � X3 � X4 � X5 � X6
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a. For the following scores, find Xi :

a. X: 6, 8, 13, 15 � X � 6 � 8 � 13 � 15 � 42

a. X: 4, �10, �2, 20, 25, 8 � X � 4 � 10 � 2 � 20 � 25 � 8 � 45

a. X: 1.2, 3.5, 0.8, 4.5, 6.1 � X � 1.2 � 3.5 � 0.8 � 4.5 � 6.1 � 16.1

b. For the following scores, find Xi :

X1 � 10, X2 � 12, X3 � 13, X4 � 18

Xi � 10 � 12 � 13 � 35a
3

i�1

a
3

i�1

a
N

i�1

(continued)



There are two more summations that we shall frequently encounter later in
the textbook. They are and Although they look alike, they are dif-
ferent and generally will yield different answers. The symbol (sum of the
squared scores) indicates that we are first to square the scores and then sum
them. Thus,

Given the scores and 

The symbol (sum of the scores, quantity squared) indicates that we
are first to sum the scores and then square the resulting sum. Thus,

For the previous scores, namely, and 

Note that Confusing and is a common
error made by students, particularly when calculating the standard deviation. We
shall return to this point when we take up the standard deviation in Chapter 4.*

Order of Mathematical Operations

As you no doubt have noticed in understanding the difference between and
, the order in which you perform mathematical operations can make a

great difference in the result. Of course, you should follow the order indicated by
the symbols in the mathematical phrase or equation. This is something that is
taught in elementary algebra. However, since many students either did not learn
this when taking elementary algebra, or have forgotten it in the ensuing years, I
have decided to include a quick review here.

1� X 2 2
� X 2

1� X 2 2� X 2� X 2 � 1� X 2 2 1179 � 6252.

 1©  X 2 2 � 13 � 5 � 8 � 922 � 12522 � 625

X4 � 9,X1 � 3, X2 � 5, X3 � 8,

1©  X 2 2 � 1X1 � X2 � X3 � . . . � XN2
2

X
X1� X 2 2

 ©  X2 � 32 � 52 � 82 � 92 � 179

X4 � 9,X1 � 3, X2 � 5, X3 � 8,

 © X2 � X1
2 � X2

2 � X3
2 � . . . � XN

2

XX
� X 2

1� X 2 2.� X 2
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c. For the following scores, find Xi � 3:

X1 � 20, X2 � 24, X3 � 25, X4 � 28, X5 � 30, X6 � 31

Xi � 3 � (24 � 25 � 28) � 3 � 80

d. For the following scores, find (Xi � 3):

X1 � 20, X2 � 24, X3 � 25, X4 � 28, X5 � 30, X6 � 31

(Xi � 3) � (24 � 3) � (25 � 3) � (28 � 3) � 86a
4

i�2

a
4

i�2

a
4

i�2

a
4

i�2

*See Note 2.1 at the end of this chapter for additional summation rules, if desired.

MENTORING TIP
Caution: be sure you know the
difference between and

, and can compute each.1� X 2 2
� X 2



Mathematical operations should be done in the following order:

1. Always do what is in parentheses first. For example,
indicates that you are to sum the scores first and then square the

result. Another example showing the priority given to parentheses is the
following: 2(5 � 8) � 2(13) � 26

2. If the mathematical operation is summation , do the summation last,
unless parentheses indicate otherwise. For example,

indicates that you should square each value first, and then sum the
squared values.

indicates that you should sum the scores first and then square
the result. This is because of the order imposed by the parentheses.

3. If both multiplication and addition or subtraction are specified, the multi-
plication should be performed first, unless parentheses indicate otherwise.
For example,

4. If both division and addition or subtraction are specified, the division should
be performed first, unless parentheses indicate otherwise. For example,

5. The order in which numbers are added does not change the result. For ex-
ample,

6. The order in which numbers are multiplied does not change the result.
For example,

MEASUREMENT SCALES

Since statistics deals with data and data are the result of measurement, we need 
to spend some time discussing measuring scales. This subject is particularly im-
portant because the type of measuring scale employed in collecting the data
helps determine which statistical inference test is used to analyze the data. Theo-
retically, a measuring scale can have one or more of the following mathematical
attributes: magnitude, an equal interval between adjacent units, and an absolute
zero point. Four types of scales are commonly encountered in the behavioral sci-
ences: nominal, ordinal, interval, and ratio. They differ in the number of mathe-
matical attributes that they possess.

3 � 5 � 8 � 8 � 5 � 3 � 5 � 8 � 3 � 120

6 � 1�32 � 2 � �3 � 6 � 2 � 2 � 6 � 1�32 � 5

6 � 4 � 11 � 4 � 6 � 11 � 11 � 6 � 4 � 21

12 � 14 � 22 � 12 � 2 � 6

12 � 4 � 2 � 3 � 2 � 1

12 � 14 � 22 � 12 � 6 � 2

12 � 4 � 2 � 3 � 2 � 5

6 � 114 � 122 � 3 � 6 � 2 � 3 � 36

6 � 14 � 32 � 2 � 6 � 7 � 2 � 84

4 � 5 � 2 � 20 � 2 � 22

X1� X 2 2

X� X 2

1� 2

X1� X 2 2
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Nominal Scales

A nominal scale is the lowest level of measurement and is most often used with
variables that are qualitative in nature rather than quantitative. Examples of
qualitative variables are brands of jogging shoes, kinds of fruit, types of music,
days of the month, nationality, religious preference, and eye color. When a nom-
inal scale is used, the variable is divided into its several categories. These cate-
gories comprise the “units” of the scale, and objects are “measured” by deter-
mining the category to which they belong. Thus, measurement with a nominal
scale really amounts to classifying the objects and giving them the name (hence,
nominal scale) of the category to which they belong.

To illustrate, if you are a jogger, you are probably interested in the different
brands of jogging shoes available for use, such as Brooks, Nike, Adidas, Saucony,
and New Balance, to name a few. Jogging shoes are important because, in jogging,
each shoe hits the ground about 800 times a mile. In a 5-mile run, that’s 4000
times. If you weigh 125 pounds, you have a total impact of 300 tons on each foot
during a 5-mile jog. That’s quite a pounding. No wonder joggers are extremely
careful about selecting shoes.

The variable “brand of jogging shoes” is a qualitative variable. It is measured
on a nominal scale. The different brands mentioned here represent some of the
possible categories (units) of this scale. If we had a group of jogging shoes and
wished to measure them using this scale, we would take each one and determine
to which brand it belonged. It is important to note that because the units of a
nominal scale are categories, there is no magnitude relationship between the
units of a nominal scale. Thus, there is no quantitative relationship between the
categories of Nike and Brooks. The Nike is no more or less a brand of jogging
shoe than is the Brooks. They are just different brands. The point becomes even
clearer if we were to call the categories jogging shoes 1 and jogging shoes 2 in-
stead of Nike and Brooks. Here, the numbers 1 and 2 are really just names and
bear no magnitude relationship to each other.

A fundamental property of nominal scales is that of equivalence. By this we
mean that all members of a given class are the same from the standpoint of the
classification variable. Thus, all pairs of Nike jogging shoes are considered the
same from the standpoint of “brand of jogging shoes”—this despite the fact that
there may be different types of Nike jogging shoes present.

An operation often performed in conjunction with nominal measurement is
that of counting the instances within each class. For example, if we had a bunch
of jogging shoes and we determined the brand of each shoe, we would be doing
nominal measurement. In addition, we might want to count the number of shoes
in each category. Thus, we might find that there are 20 Nike, 19 Saucony, and 6
New Balance shoes in the bunch. These frequencies allow us to compare the
number of shoes within each category. This quantitative comparison of numbers
within each category should not be confused with the statement made earlier that
there is no magnitude relationship between the units of a nominal scale. We can
compare quantitatively the numbers of Nike with the numbers of Saucony shoes,
but Nike is no more or less a brand of jogging shoe than is Saucony. Thus, a nom-
inal scale does not possess any of the mathematical attributes of magnitude,
equal interval, or absolute zero point. It merely allows categorization of objects
into mutually exclusive categories.

Measurement Scales 31

MENTORING TIP
When using a nominal scale,
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Ordinal Scales

An ordinal scale represents the next higher level of measurement. It possesses a
relatively low level of the property of magnitude. With an ordinal scale, we rank-
order the objects being measured according to whether they possess more, less,
or the same amount of the variable being measured. Thus, an ordinal scale allows
determination of whether or 

An example of an ordinal scale is the rank ordering of the top five contes-
tants in a speech contest according to speaking ability.Among these speakers, the
individual ranked 1 was judged a better speaker than the individual ranked 2,
who in turn was judged better than the individual ranked 3. The individual
ranked 3 was judged a better speaker than the individual ranked 4, who in turn
was judged better than the individual ranked 5. It is important to note that al-
though this scale allows better than, equal to, or less than comparisons, it says
nothing about the magnitude of the difference between adjacent units on the
scale. In the present example, the difference in speaking ability between the in-
dividuals ranked 1 and 2 might be large, and the difference between individuals
ranked 2 and 3 might be small. Thus, an ordinal scale does not have the property
of equal intervals between adjacent units. Furthermore, since all we have is rela-
tive rankings, the scale doesn’t tell the absolute level of the variable. Thus, all five
of the top-ranked speakers could have a very high level of speaking ability or a
low level. This information can’t be obtained from an ordinal scale.

Other examples of ordinal scaling are the ranking of runners in the Boston
Marathon according to their finishing order, the rank ordering of college football
teams according to merit by the Associated Press, the rank ordering of teachers
according to teaching ability, and the rank ordering of students according to mo-
tivation level.

Interval Scales

The interval scale represents a higher level of measurement than the ordinal scale.
It possesses the properties of magnitude and equal interval between adjacent
units but doesn’t have an absolute zero point.Thus, the interval scale possesses the
properties of the ordinal scale and has equal intervals between adjacent units.The
phrase “equal intervals between adjacent units” means that there are equal
amounts of the variable being measured between adjacent units on the scale.

The Celsius scale of temperature measurement is a good example of the in-
terval scale. It has the property of equal intervals between adjacent units but does
not have an absolute zero point. The property of equal intervals is shown by the
fact that a given change of heat will cause the same change in temperature read-
ing on the scale no matter where on the scale the change occurs. Thus, the addi-
tional amount of heat that will cause a temperature reading to change from 2� to
3� Celsius will also cause a reading to change from 51� to 52� or from 105� to 106�
Celsius. This illustrates the fact that equal amounts of heat are indicated between
adjacent units throughout the scale.

Since with an interval scale there are equal amounts of the variable between
adjacent units on the scale, equal differences between the numbers on the scale
represent equal differences in the magnitude of the variable.Thus, we can say the
difference in heat is the same between 78� and 75� Celsius as between 24� and 21�
Celsius. It also follows logically that greater differences between the numbers on
the scale represent greater differences in the magnitude of the variable being

A 6 B.A 7 B, A � B,
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measured, and smaller differences between the numbers on the scale represent
smaller differences in the magnitude of the variable being measured. Thus, the
difference in heat between 80� and 65� Celsius is greater than between 18� and
15� Celsius, and the difference in heat between 93� and 91� Celsius is less than be-
tween 48� and 40� Celsius. In light of the preceding discussion, we can see that in
addition to being able to determine whether or an in-
terval scale allows us to determine whether 
or 

Ratio Scales

The next, and highest, level of measurement is called a ratio scale. It has all the
properties of an interval scale and, in addition, has an absolute zero point. With-
out an absolute zero point, it is not legitimate to compute ratios with the scale
readings. Since the ratio scale has an absolute zero point, ratios are permissible
(hence the name ratio scale).

A good example to illustrate the difference between interval and ratio scales
is to compare the Celsius scale of temperature with the Kelvin scale. Zero on the
Kelvin scale is absolute zero (the complete absence of heat). Zero on the Celsius
scale is the temperature at which water freezes. It is an arbitrary zero point that
actually occurs at 273� Kelvin. The Celsius scale is an interval scale, and the
Kelvin scale is a ratio scale. The difference in heat between 8� and 9� is the same
as between 99� and 100� whether the scale is Celsius or Kelvin. However, we can-
not compute ratios with the Celsius scale. A reading of 20� Celsius is not twice as
hot as 10� Celsius. This can be seen by converting the Celsius readings to the ac-
tual heat they represent. In terms of actual heat, 20� Celsius is really 293� (273� �
20�), and 10� Celsius is really 283� (273� � 10�). It is obvious that 293� is not twice
283�. Since the Kelvin scale has an absolute zero, a reading of 20� on it is twice as
hot as 10�. Thus, ratios are permissible with the Kelvin scale.

Other examples of variables measured with ratio scales include reaction time,
length, weight, age, and frequency of any event, such as the number of Nike shoes
contained in the bunch of jogging shoes discussed previously.With a ratio scale, you
can construct ratios and perform all the other mathematical operations usually as-
sociated with numbers (e.g., addition, subtraction, multiplication, and division).The
four scales of measurement and their characteristics are summarized in Figure 2.1.

MEASUREMENT SCALES IN THE BEHAVIORAL SCIENCES

In the behavioral sciences, many of the scales used are often treated as though they
were of interval scaling without clearly establishing that the scale really does possess
equal intervals between adjacent units.Measurement of IQ,emotional variables such
as anxiety and depression, personality variables (e.g., self-sufficiency, introversion,
extroversion, and dominance), end-of-course proficiency or achievement variables,
attitudinal variables, and so forth fall into this category.With all of these variables, it
is clear that the scales are not ratio. For example, with IQ, if an individual actually
scored a zero on the Wechsler Adult Intelligence Scale (WAIS), we would not say
that he had zero intelligence. Presumably, some questions could be found that he
could answer which would indicate an IQ greater than zero.Thus, the WAIS does not
have an absolute zero point, and ratios are not appropriate. Hence, it is not correct
to say that a person with an IQ of 140 is twice as smart as someone with an IQ of 70.

A � B 6 C � D.
A � B � C � D,  A � B 7 C � D,

A 6 B,A � B,  A 7 B,
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MENTORING TIP
When using an interval scale,
you can do operations of addi-
tion and subtraction. You can-
not do multiplication, division,
or ratios.

MENTORING TIP
When using a ratio scale, you
can perform all mathematical
operations.



On the other hand, it seems that we can do more than just specify a rank or-
dering of individuals. An individual with an IQ of 100 is closer in intelligence to
someone with an IQ of 110 than to someone with an IQ of 60. This appears to be
interval scaling, but it is difficult to establish that the scale actually possesses
equal intervals between adjacent units. Many researchers treat those variables as
though they were measured on interval scales, particularly when the measuring
instrument is well standardized, as is the WAIS. It is more controversial to treat
poorly standardized scales measuring psychological variables as interval scales.
This issue arises particularly in inferential statistics, where the level of scaling can
influence the selection of the test to be used for data analysis. There are two
schools of thought. The first claims that certain tests, such as Student’s test and
the analysis of variance, should be limited in use to data that are interval or ratio
in scaling. The second disagrees, claiming that these tests can also be used with
nominal and ordinal data. The issue, however, is too complex to be treated here.*

t

34 C H A P T E R  2 Basic Mathematical and Measurement Concepts

Nike New Balance Saucony

–273Celsius 0 20 4010 30

0Kelvin 273 293 313
283 303

f i g u r e 2.1 Scales of measurement and their characteristics.

Nominal
Units of the scale are categories. Objects are measured by
determining the category to which they belong. There is no
magnitude relationship between the categories.

Ordinal
Possesses the property of magnitude. Can rank-order the
objects according to whether they possess more, less, or the
same amount of the variable being measured. Thus, can de-
termine whether A 	 B, A � B, A 
 B. Cannot determine
how much greater or less A is than B in the attribute being
measured.

Interval and Ratio
Interval: Possesses the properties of magnitude and equal 
intervals between adjacent units. Can do same determina-
tions as with an ordinal scale, plus can determine whether 
A � B � C � D, A � B 	 C � D, or A � B 
 C � D.
Ratio: Possesses the properties of magnitude, equal interval
between adjacent units, and an absolute zero point. Can do
all the mathematical operations usually associated with
numbers, including ratios.

*The interested reader should consult N. H. Anderson, “Scales and Statistics: Parametric and
Nonparametric,” Psychological Bulletin, 58 (1961), 305–316; F. M. Lord, “On the Statistical
Treatment of Football Numbers,” American Psychologist, 8 (1953), 750–751; W. L. Hays, Statistics 
for the Social Sciences, 2nd ed., Holt, Rinehart and Winston, New York, 1973, pp. 87–90; S. Siegel,
Nonparametric Statistics for the Behavioral Sciences, McGraw-Hill, New York, 1956, pp. 18–20; and
S. S. Stevens, “Mathematics, Measurement, and Psychophysics,” in Handbook of Experimental
Psychology, S. S. Stevens, ed., Wiley, New York, 1951, pp. 23–30.



CONTINUOUS AND DISCRETE VARIABLES

In Chapter 1, we defined a variable as a property or characteristic of something
that can take on more than one value. We also distinguished between indepen-
dent and dependent variables. In addition, variables may be continuous or 
discrete:

Continuous and Discrete Variables 35

d e f i n i t i o n s ■ A continuous variable is one that theoretically can have an infinite number
of values between adjacent units on the scale.

■ A discrete variable is one in which there are no possible values between ad-
jacent units on the scale.

Weight, height, and time are examples of continuous variables. With each of
these variables, there are potentially an infinite number of values between adja-
cent units. If we are measuring time and the smallest unit on the clock that we are
using is 1 second, between 1 and 2 seconds there are an infinite number of possi-
ble values: 1.1 seconds, 1.01 seconds, 1.001 seconds, and so forth. The same argu-
ment could be made for weight and height.

This is not the case with a discrete variable. “Number of children in a family”
is an example of a discrete variable. Here the smallest unit is one child, and there
are no possible values between one or two children, two or three children, and so
on. The characteristic of a discrete variable is that the variable changes in fixed
amounts, with no intermediate values possible. Other examples include “number
of students in your class,” “number of professors at your university,” and “num-
ber of dates you had last month.”

Real Limits of a Continuous Variable

Since a continuous variable may have an infinite number of values between ad-
jacent units on the scale, all measurements made on a continuous variable are
approximate. Let’s use weight to illustrate this point. Suppose you began dieting
yesterday. Assume it is spring, heading into summer, and bathing suit weather is
just around the corner. Anyway, you weighed yourself yesterday morning, and
your weight was shown by the solid needle in Figure 2.2. Assume that the scale
shown in the figure has accuracy only to the nearest pound. The weight you
record is 180 pounds. This morning, when you weighed yourself after a day of star-
vation, the pointer was shown by the dashed needle.What weight do you report this
time? We know as a humanist that you would like to record 179 pounds, but as a
budding scientist, it is truth at all costs. You again record 180 pounds. When would
you be justified in reporting 179 pounds? When the needle is below the halfway
point between 179 and 180 pounds. Similarly, you would still record 180 pounds if
the needle was above 180 but below the halfway point between 180 and 181 pounds.
Thus, any time the weight 180 pounds is recorded, we don’t necessarily mean exactly
180 pounds, but rather that the weight was between pounds. We don’t
know the exact value of the weight, but we are sure it is in the range 179.5 to 180.5.
This range specifies the real limits of the weight 180 pounds.The value 179.5 is called
the lower real limit, and 180.5 is the upper real limit.

180 � 0.5



To illustrate, if the variable is weight, the smallest unit is 1 pound, and we
record 180 pounds, the real limits are above and below 180 pounds by pound.
Thus, the real limits are 179.5 and 180.5 pounds.* If the smallest unit were 
0.1 pound rather than 1 pound and we recorded 180.0 pounds, then the real 
limits would be or 179.95 and 180.05.

Significant Figures

In statistics, we analyze data, and data analysis involves performing mathemati-
cal calculations. Very often, we wind up with a decimal remainder (e.g., after do-
ing a division). When this happens, we need to decide to how many decimal
places we should carry the remainder.

In the physical sciences, we usually follow the practice of carrying the same
number of significant figures as are in the raw data. For example, if we measured
the weights of five subjects to three significant figures (173, 156, 162, 165, and 
175 pounds) and we were calculating the average of these weights, our answer
should also contain only three significant figures. Thus,

X �
© X
N

�
173 � 156 � 162 � 165 � 175

5
�

831
5

� 166.2 � 166

180 � 12 10.12,

1
2
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179

179 180

180
179.5Lower real limit Upper real limit180.5

181

180 181

f i g u r e 2.2 Real limits of a continuous variable.

d e f i n i t i o n ■ The real limits of a continuous variable are those values that are above and
below the recorded value by one-half of the smallest measuring unit of the
scale.

*Actually, the real limits are 179.500000 . . . and 180.499999 . . . , but it is not necessary to be that
accurate here.



The answer of 166.2 would be rounded to three significant figures, giving a final
answer of 166 pounds. For various reasons, this procedure has not been followed
in the behavioral sciences. Instead, a tradition has evolved in which most final val-
ues are reported to two or three decimal places regardless of the number of sig-
nificant figures in the raw data. Since this is a text for use in the behavioral sci-
ences, we have chosen to follow this tradition. Thus, in this text, we shall report
most of our final answers to two decimal places. Occasionally there will be 
exceptions. For example, correlation and regression coefficients have three deci-
mal places, and probability values are often given to four places, as is consistent
with tradition. It is standard practice to carry all intermediate calculations to two or
more decimal places than will be reported in the final answer. Thus, when the final
answer is required to have two decimal places, you should carry intermediate cal-
culations to at least four decimal places and round the final answer to two places.

Rounding

Given that we shall be reporting our final answers to two and sometimes three or
four decimal places, we need to decide how we determine what value the last
digit should have. Happily, the rules to be followed are rather simple and straight-
forward:

1. Divide the number you wish to round into two parts: the potential answer
and the remainder.The potential answer is the original number extending
through the desired number of decimal places. The remainder is the rest
of the number.

2. Place a decimal point in front of the first digit of the remainder, creating
a decimal remainder.

3. If the decimal remainder is greater than add 1 to the last digit of the 
answer.

4. If the decimal remainder is less than leave the last digit of the answer
unchanged.

5. If the decimal remainder is equal to add 1 to the last digit of the answer
if it is an odd digit, but if it is even, leave it unchanged.

Let’s try a few examples. Round the numbers in the left-hand column of
Table 2.2 to two decimal places.

1
2,

1
2,

1
2,
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MENTORING TIP
Caution: students often have
trouble when the remainder 
is . Be sure you can do prob-
lems of this type (see rule 5
and the last two rows of 
Table 2.2).

1
2

t a b l e 2.2 Rounding

Answer; Decimal
Number Remainder Remainder Final Answer Reason

34.01350 34.01;350 .350 34.01 Decimal remainder is
below 

34.01761 34.01;761 .761 34.02 Decimal remainder is
above 

45.04500 45.04;500 .500 45.04 Decimal remainder
equals and last
digit is even.

45.05500 45.05;500 .500 45.06 Decimal remainder
equals and last
digit is odd.

1
2,

1
2,

1
2.

1
2.
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To accomplish the rounding, the number is divided into two parts: the po-
tential answer and the remainder. Since we are rounding to two decimal places,
the potential answer ends at the second decimal place. The rest of the number
constitutes the remainder. For the first number, 34.01350, 34.01 constitutes the
potential answer and .350 the remainder. Since .350 is below the last digit of the
potential answer remains unchanged and the final answer is 34.01. For the second
number, 34.01761, the decimal remainder (.761) is above Therefore, we must
add 1 to the last digit, making the correct answer 34.02. For the next two num-
bers, the decimal remainder equals The number 45.04500 becomes 45.04 be-
cause the last digit in the potential answer is even.The number 45.05500 becomes
45.06 because the last digit is odd.

1
2.

1
2.

1
2,

In this chapter, I have discussed basic mathematical
and measurement concepts. The topics covered were
notation, summation, measuring scales, discrete and
continuous variables, and rounding. In addition, I
pointed out that to do well in statistics, you do not

need to be a mathematical whiz. If you have a sound
knowledge of elementary algebra, do lots of prob-
lems, pay special attention to the symbols, and keep
up, you should achieve a thorough understanding of
the material.

■ SUMMARY

Continuous variable (p. 35)
Discrete variable (p. 35)
Interval scale (p. 32)

Nominal scale (p. 31)
Ordinal scale (p. 32)
Ratio scale (p. 33)

Real limits of a continuous 
variable (p. 35)

Summation (p. 27)

■ IMPORTANT NEW TERMS

1. Define and give an example of each of the terms
in the Important New Terms section.

2. Identify which of the following represent contin-
uous variables and which are discrete variables:
a. Time of day
b. Number of females in your class
c. Number of bar presses by a rat in a Skinner box
d. Age of subjects in an experiment
e. Number of words remembered
f. Weight of food eaten
g. Percentage of students in your class who are

females
h. Speed of runners in a race

3. Identify the scaling of each of the following vari-
ables:
a. Number of bicycles ridden by students in the

freshman class
b. Types of bicycles ridden by students in the

freshman class

c. The IQ of your teachers (assume equal inter-
val scaling)

d. Proficiency in mathematics graded in the cat-
egories of poor, fair, and good

e. Anxiety over public speaking scored on a
scale of 0–100 (Assume the difference in anx-
iety between adjacent units throughout the
scale is not the same.)

f. The weight of a group of dieters
g. The time it takes to react to the sound of a

tone
h. Proficiency in mathematics is scored on a

scale of 0–100. The scale is well standardized
and can be thought of as having equal inter-
vals between adjacent units.

i. Ratings of professors by students on a 50-
point scale. There is an insufficient basis for
assuming equal intervals between adjacent
units.

■ QUESTIONS AND PROBLEMS



4. A student is measuring assertiveness with an in-
terval scale. Is it correct to say that a score of 30
on the scale represents half as much assertive-
ness as a score of 60? Explain.

5. For each of the following sets of scores, find

a. 2, 4, 5, 7
b. 2.1, 3.2, 3.6, 5.0, 7.2
c. 11, 14, 18, 22, 25, 28, 30
d. 110, 112, 115, 120, 133

6. Round the following numbers to two decimal
places:
a. 14.53670
b. 25.26231
c. 37.83500
d. 46.50499
e. 52.46500
f. 25.48501

7. Determine the real limits of the following values:
a. 10 pounds (assume the smallest unit of mea-

surement is 1 pound)
b. 2.5 seconds (assume the smallest unit of mea-

surement is 0.1 second)
c. 100 grams (assume the smallest unit of mea-

surement is 10 grams)
d. 2.01 centimeters (assume the smallest unit of

measurement is 0.01 centimeter)
e. 5.232 seconds (assume the smallest unit of

measurement is 1 millisecond)
8. Find the values of the expressions listed here:

a. Find Xi for the scores X1 � 3, X2 � 5,

X3 � 7, X4 � 10.

b. Find Xi for the scores X1 � 2, X2 � 3,

X3 � 4, X4 � 6, X5 � 9, X6 � 11, X7 � 14.

c. Find Xi for the scores X1 � 10, X2 � 12,

X3 � 13, X4 � 15, X5 � 18.

d. Find Xi for the scores X1 � 22, X2 � 24,

X3 � 28, X4 � 35, X5 � 38, X6 � 40.
9. In an experiment measuring the reaction times

of eight subjects, the following scores in millisec-
onds were obtained:

a
N�1

i�3

a
N

i�2

a
6

i�1

a
4

i�1

a
N

i�1
 Xi 

:

Subject Reaction Time

1 250

2 378

3 451

4 275

5 225

6 430

7 325

8 334

a. If represents the variable of reaction time,
assign each of the scores its appropriate 
symbol.

b. Compute for these data.
10. Represent each of the following with summa-

tion notation. Assume the total number of
scores is 10.
a.
b.
c.
d.

11. Round the following numbers to one decimal
place:
a. 1.423
b. 23.250
c. 100.750
d. 41.652
e. 35.348

12. For each of the sets of scores given in Problems
5b and 5c, show that 

13. Given the scores and
find the values of the following expres-

sions. (This question pertains to Note 2.1.)

a.

b.

c.

d.

14. Round each of the following numbers to one
decimal place and two decimal places.
a. 4.1482 b. 4.1501
c. 4.1650 d. 4.1950

a
N

i�1
 1Xi�42

a
N

i�1
 12Xi2

a
N

i�1
 1Xi � 32

a
N

i�1
 1Xi � 22

X4 � 12,
X1 � 3, X2 � 4, X3 � 7,
� X 2 � 1� X 2 2.

X2˛

2 � X3˛

2 � X4˛

2 � X5˛

2
X2 � X3 � X4

X1 � X2 � X3

X1 � X2 � X3 � X4 � . . . � X10

� X

Xi

X

Questions and Problems 39
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2.1 Many textbooks present a discussion of addi-
tional summation rules, such as the summation of
a variable plus a constant, summation of a vari-
able times a constant, and so forth. Since this
knowledge is not necessary for understanding
any of the material in this textbook, I have not
included it in the main body but have presented
the material here. Knowledge of summation
rules may come in handy as background for sta-
tistics courses taught at the graduate level.

Rule 1 The sum of the values of a variable plus a
constant is equal to the sum of the values of the vari-
able plus N times the constant. In equation form,

The validity of this equation can be seen from the
following simple algebraic proof:

To illustrate the use of this equation, suppose we
wish to find the sum of the following scores with a
constant of 3 added to each score:

4, 6, 8, 9

Rule 2 The sum of the values of a variable minus a
constant is equal to the sum of the values of the vari-
able minus N times the constant. In equation form,

a
N

i�1
 1Xi � a2 � a

N

i�1
 Xi � Na

a
N

i�1
 1Xi � 32 � a

N

i�1
 Xi � Na � 27 � 4132 � 39

X:

 � a
N

i�1
 Xi � Na

 � 1a � a � a � . . . � a2

 � 1X1 � X2 � X3 � . . . � XN2

 � . . . � 1XN � a2

 a
N

i�1 
1Xi � a2 � 1X1 � a2 � 1X2 � a2 � 1X3 � a2 

a
N

i�1
 1Xi � a2 � a

N

i�1
 Xi � Na

The algebraic proof of this equation is as follows:

To illustrate the use of this equation, suppose we
wish to find the sum of the following scores with a
constant of 2 subtracted from each score:

3, 5, 6, 10

Rule 3 The sum of a constant times the value of a
variable is equal to the constant times the sum of the
values of the variable. In equation form,

The validity of this equation is shown here:

To illustrate the use of this equation, suppose we
wish to determine the sum of 4 times each of the 
following scores:

2, 5, 7, 8, 12

a
N

i�1
 4Xi � 4a

N

i�1
 Xi � 41342 � 136

X:

 � aa
N

i�1
 Xi

 � a1X1 � X2 � X3 � . . . � XN2

 a
N

i�1
 aXi � aX1 � aX2 � aX3 � . . . � aXN

a
N

i�1
 aXi � aa

N

i�1
 Xi

a
N

i�1
 1Xi � 22 � a

N

i�1
 Xi � Na � 24 � 4122 � 16

X:

 � a
N

i�1
 Xi � Na

 � 1 � a � a � a � a � . . . � a2

 � 1X1 � X2 � X3 � . . . � XN2

 � . . . � 1XN � a2

 a
N

i�1
 1Xi � a2 � 1X1 � a2 � 1X2 � a2 � 1X3 � a2

■ NOTES



Rule 4 The sum of a constant divided into the values
of a variable is equal to the constant divided into the
sum of the values of the variable. In equation form,

The validity of this equation is shown here:

Again, let’s do an example to illustrate the use of this
equation. Suppose we want to find the sum of 4 di-
vided into the following scores:

3, 4, 7, 10, 11

a
N

i�1
 
Xi

4
�
a
N

i�1
 Xi

4
�

35
4

� 8.75

X:

 �
a
N

i�1
 Xi

a

 �
X1 � X2 � X3 � #

 
#
 
# � XN

a

 a
N

i�1
 
Xi

a
�

X1

a
�

X2

a
�

X3

a
� #  #  # �

XN

a

a
N

i�1
 
Xi

a
�
a
N

i�1
 Xi

a
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The problems for this chapter as well as guided, in-
teractive, problem-solving tutorials may be assigned
online at Enhanced WebAssign.

BOOK COMPANION SITE

To access the material on the book companion site,
go to www.cengage.com/psychology/pagano and click
“Companion Site” in the Student section. The book
companion site contains the following material:

• Chapter Outline
• Know and Be Able to Do
• Flash cards for review of terms
• Tutorial Quiz
• Solving Problems with SPSS
• Statistical Workshops
• And more

www.cengage.com/psychology/pagano
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Frequency Distributions

LEARNING OBJECTIVES

After completing this chapter, you should be able to:
■ Define a frequency distribution, and explain why it is a useful type of

descriptive statistic.
■ Contrast ungrouped and grouped frequency distributions.
■ Construct a frequency distribution of grouped scores.
■ Define and construct relative frequency, cumulative frequency, and

cumulative percentage distributions.
■ Define and compute percentile point and percentile rank.
■ Describe bar graph, histogram, frequency polygon, and cumulative

percentage curve, and recognize instances of each.
■ Define symmetrical curve, skewed curve, and positive and negative

skew, and recognize instances of each.
■ Construct stem and leaf diagrams, and state their advantage over 

histograms.
■ Understand the illustrative examples, do the practice problems, and

understand the solutions.

Chapter 3



INTRODUCTION: UNGROUPED 
FREQUENCY DISTRIBUTIONS

Let’s suppose you have just been handed back your first exam in statistics. you
received an 86. Naturally, you are interested in how well you did relative to the
other students. You have lots of questions: How many other students received an
86? Were there many scores higher than yours? How many scores were lower?
The raw scores from the exam are presented haphazardly in Table 3.1. Although
all the scores are shown, it is difficult to make much sense out of them the way
they are arranged in the table. A more efficient arrangement, and one that con-
veys more meaning, is to list the scores with their frequency of occurrence. This
listing is called a frequency distribution.

Introduction: Ungrouped Frequency Distributions 43

t a b l e 3.1 Scores from statistics exam (N � 70)

95 57 76 93 86 80 89

76 76 63 74 94 96 77

65 79 60 56 72 82 70

67 79 71 77 52 76 68

72 88 84 70 83 93 76

82 96 87 69 89 77 81

87 65 77 72 56 78 78

58 54 82 82 66 73 79

86 81 63 46 62 99 93

82 92 75 76 90 74 67

d e f i n i t i o n ■ A frequency distribution presents the score values and their frequency of
occurrence. When presented in a table, the score values are listed in rank
order, with the lowest score value usually at the bottom of the table.

The scores in Table 3.1 have been arranged into a frequency distribution that
is shown in Table 3.2. The data now are more meaningful. First, it is easy to see
that there are 2 scores of 86. Furthermore, by summing the appropriate frequen-
cies (f ), we can determine the number of scores higher and lower than 86. It turns
out that there are 15 scores higher and 53 scores lower than your score. It is also
quite easy to determine the range of the scores when they are displayed as a fre-
quency distribution. For the statistics test, the scores ranged from 46 to 99. From
this illustration, it can be seen that the major purpose of a frequency distribution
is to present the scores in such a way to facilitate ease of understanding and 
interpretation.



GROUPING SCORES

When there are many scores and the scores range widely, as they do on the sta-
tistics exam we have been considering, listing individual scores results in many
values with a frequency of zero and a display from which it is difficult to visual-
ize the shape of the distribution and its central tendency. Under these conditions,
the individual scores are usually grouped into class intervals and presented as a
frequency distribution of grouped scores. Table 3.3 shows the statistics exam
scores grouped into two frequency distributions, one with each interval being 
2 units wide and the other having intervals 19 units wide.

When you are grouping data, one of the important issues is how wide each
interval should be. Whenever data are grouped, some information is lost. The
wider the interval, the more information lost. For example, consider the distribu-
tion shown in Table 3.3 with intervals 19 units wide. Although an interval this
large does result in a smooth display (there are no zero frequencies), a lot of in-
formation has been lost. For instance, how are the 38 scores distributed in the in-
terval from 76 to 94? Do they fall at 94? Or at 76? Or are they evenly distributed
throughout the interval? The point is that we do not know how they are distrib-
uted in the interval. We have lost that information by the grouping. Note that the
larger the interval, the greater the ambiguity.

It should be obvious that the narrower the interval, the more faithfully the orig-
inal data are preserved. The extreme case is where the interval is reduced to 1 unit
wide and we are back to the individual scores. Unfortunately, when the interval is
made too narrow, we encounter the same problems as with individual scores—
namely, values with zero frequency and an unclear display of the shape of the dis-
tribution and its central tendency. The frequency distribution with intervals 2 units
wide, shown in Table 3.3, is an example in which the intervals are too narrow.
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t a b l e 3.2 Scores from Table 3.1 organized into a frequency distribution

Score f Score f Score f Score f

99 1 85 0 71 1 57 1

98 0 84 1 70 2 56 2

97 0 83 1 69 1 55 0

96 2 82 5 68 1 54 1

95 1 81 2 67 2 53 0

94 1 80 1 66 1 52 1

93 3 79 3 65 2 51 0

92 1 78 2 64 0 50 0

91 0 77 4 63 2 49 0

90 1 76 6 62 1 48 0

89 2 75 1 61 0 47 0

88 1 74 2 60 1 46 1

87 2 73 1 59 0

86 2 72 3 58 1



From the preceding discussion, we can see that in grouping scores there is
a trade-off between losing information and presenting a meaningful visual dis-
play. To have the best of both worlds, we must choose an interval width neither
too wide nor too narrow. In practice, we usually determine interval width by
dividing the distribution into 10 to 20 intervals. Over the years, this range of in-
tervals has been shown to work well with most distributions. Within this range,
the specific number of intervals used depends on the number and range of 
the raw scores. Note that the more intervals used, the narrower each interval
becomes.
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t a b l e 3.3 Scores from Table 3.1 grouped into class intervals of 
different widths

Class Interval Class Interval
(width = 2) f (width = 19) f 

98–99 1 95–113 4

96–97 2 76–941 38

94–95 2 57–751 23

92–93 4 38–561 5

90–91 1

88–89 3

86–87 4

84–85 1

82–83 6

80–81 3

78–79 5

76–77 10

74–75 3

72–73 4

70–71 3

68–69 2

66–67 3

64–65 2

62–63 3

60–61 1

58–59 1

56–57 3

54–55 1

52–53 1

50–51 0

48–49 0

46–47 1

N � 70

N � 70

MENTORING TIP
Using 10 to 20 intervals works
well for most distributions.



Constructing a Frequency Distribution of Grouped Scores

The steps for constructing a frequency distribution of grouped scores are as follows:

1. Find the range of the scores.
2. Determine the width of each class interval (i).
3. List the limits of each class interval, placing the interval containing the

lowest score value at the bottom.
4. Tally the raw scores into the appropriate class intervals.
5. Add the tallies for each interval to obtain the interval frequency.

Let’s apply these steps to the data of Table 3.1.

1. Finding the range.

2. Determining interval width (i). Let’s assume we wish to group the data
into approximately 10 class intervals.

(round to 5)

When i has a decimal remainder, we’ll follow the rule of rounding i to the
same number of decimal places as in the raw scores. Thus, i rounds to 5.

3. Listing the intervals. We begin with the lowest interval. The first step is
to determine the lower limit of this interval. There are two requirements:
a. The lower limit of this interval must be such that the interval contains

the lowest score.
b. It is customary to make the lower limit of this interval evenly divisible

by i.
Given these two requirements, the lower limit is assigned the value of

the lowest score in the distribution if it is evenly divisible by i. If not, then
the lower limit is assigned the next lower value that is evenly divisible by
i. In the present example, the lower limit of the lowest interval begins with
45 because the lowest score (46) is not evenly divisible by 5.

Once the lower limit of the lowest interval has been found, we can list
all of the intervals. Since each interval is 5 units wide, the lowest interval
ranges from 45 to 49. Although it may seem as though this interval is only
4 units wide, it really is 5. If in doubt, count the units (45, 46, 47, 48, 49). In
listing the other intervals, we must be sure that the intervals are continu-
ous and mutually exclusive. By mutually exclusive, we mean that the in-
tervals must be such that no score can be legitimately included in more
than one interval. Following these rules, we wind up with the intervals
shown in Table 3.4. Note that, consistent with our discussion of real limits
in Chapter 2, the class intervals shown in the first column represent ap-
parent limits. The real limits are shown in the second column. The usual
practice is to list just the apparent limits of each interval and omit listing
the real limits. We have followed this practice in the remaining examples.

4. Tallying the scores. Next, the raw scores are tallied into the appropriate
class intervals. Tallying is a procedure whereby one systematically goes
through the distribution and for each raw score enters a tally mark next
to the interval that contains the score. Thus, for 95 (the first score in
Table 3.1), a tally mark is placed in the interval 95–99. This procedure has
been followed for all the scores, and the results are shown in Table 3.4.

i �
Range

Number of class intervals
�

53
10

� 5.3

Range � Highest score minus lowest score � 99 � 46 � 53
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MENTORING TIP
The resulting number of inter-
vals often slightly exceeds the
number of intervals used in
step 2, because the lowest in-
terval and the highest interval
usually extend beyond the
lowest and highest scores.



5. Summing into frequencies. Finally, the tally marks are converted into
frequencies by adding the tallies within each interval. These frequencies
are also shown in Table 3.4.
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t a b l e 3.4 Construction of frequency distribution for grouped scores

Class Interval Real Limits Tally f

95–99 94.5–99.5 (score of 95) → //// 4

90–94 89.5–94.5 //// / 6

85–89 84.5–89.5 //// // 7

80–84 79.5–84.5 //// //// 10

75–79 74.5–79.5 //// //// //// / 16

70–74 69.5–74.5 //// //// 9

65–69 64.5–69.5 //// // 7

60–64 59.5–64.5 //// 4

55–59 54.5–59.5 //// 4

50–54 49.5–54.5 // 2

45–49 44.5–49.5 / 1

N � 70

P r a c t i c e  P r o b l e m  3.1

Let’s try a practice problem. Given the following 90 scores, construct a
frequency distribution of grouped scores having approximately 12 intervals.

112 68 55 33 72 80 35 55 62

102 65 104 51 100 74 45 60 58

92 44 122 73 65 78 49 61 65

83 76 95 55 50 82 51 138 73

83 72 89 37 63 95 109 93 65

75 24 60 43 130 107 72 86 71

128 90 48 22 67 76 57 86 114

33 54 64 82 47 81 28 79 85

42 62 86 94 52 106 30 117 98

58 32 68 77 28 69 46 53 38

S O L U T I O N

1. Find the range. Range � Highest score � Lowest score � 138 � 22 � 116.
2. Determine the interval width (i):

i rounds to 10i �
Range

Number of intervals
�

116
12

� 9.7

(continued)
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3. List the limits of each class interval. Because the lowest score in the dis-
tribution (22) is not evenly divisible by i, the lower limit of the lowest in-
terval is 20. Why 20? Because it is the next lowest scale value evenly di-
visible by 10. The limits of each class interval have been listed in Table 3.5.

4. Tally the raw scores into the appropriate class intervals. This has been
done in Table 3.5.

5. Add the tallies for each interval to obtain the interval frequency. This has
been done in Table 3.5.

t a b l e 3.5 Frequency distribution of grouped scores for Practice
Problem 3.1

Class Interval Tally f Class Interval Tally f

130–139 // 2 70–79 //// //// /// 13

120–129 // 2 60–69 //// //// //// 15

110–119 /// 3 50–59 //// //// // 12

100–109 //// / 6 40–49 //// /// 8

90–99 //// // 7 30–39 //// // 7

80–89 //// //// / 11 20–29 //// 4

N � 90

P r a c t i c e  P r o b l e m  3.2

Given the 130 scores shown here, construct a frequency distribution of
grouped scores having approximately 15 intervals.

1.4 2.9 3.1 3.2 2.8 3.2 3.8 1.9 2.5 4.7

1.8 3.5 2.7 2.9 3.4 1.9 3.2 2.4 1.5 1.6

2.5 3.5 1.8 2.2 4.2 2.4 4.0 1.3 3.9 2.7

2.5 3.1 3.1 4.6 3.4 2.6 4.4 1.7 4.0 3.3

1.9 0.6 1.7 5.0 4.0 1.0 1.5 2.8 3.7 4.2

2.8 1.3 3.6 2.2 3.5 3.5 3.1 3.2 3.5 2.7

3.8 2.9 3.4 0.9 0.8 1.8 2.6 3.7 1.6 4.8

3.5 1.9 2.2 2.8 3.8 3.7 1.8 1.1 2.5 1.4

3.7 3.5 4.0 1.9 3.3 2.2 4.6 2.5 2.1 3.4

1.7 4.6 3.1 2.1 4.2 4.2 1.2 4.7 4.3 3.7

1.6 2.8 2.8 2.8 3.5 3.7 2.9 3.5 1.0 4.1

3.0 3.1 2.7 2.2 3.1 1.4 3.0 4.4 3.3 2.9

3.2 0.8 3.2 3.2 2.9 2.6 2.2 3.6 4.4 2.2

(continued)

MENTORING TIP
Note that if tallying is done
correctly, the sum of the tallies

should equal .N1� f 2
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S O L U T I O N

1. Find the range. Range � Highest score � Lowest score � 5.0 � 0.6 � 4.4.
2. Determine the interval width (i):

i rounds to 0.3

3. List the limits of each class interval. Since the lowest score in the
distribution (0.6) is evenly divisible by i, it becomes the lower limit of the
lowest interval. The limits of each class interval are listed in Table 3.6.

4. Tally the raw scores into the appropriate class intervals. This has been
done in Table 3.6.

5. Add the tallies for each interval to obtain the interval frequency. This
has been done in Table 3.6. Note that since the smallest unit of mea-
surement in the raw scores is 0.1, the real limits for any score
are away from the score. Thus, the real limits for the interval
4.8–5.0 are 4.75–5.05.

�0.05

i �
Range

Number of intervals
�

4.4
15

� 0.29

t a b l e 3.6 Frequency distribution of grouped scores for Practice
Problem 3.2

Class Class
Interval Tally f Interval Tally f

4.8–5.0 // 2 2.4–2.6 //// //// 10

4.5–4.7 //// 5 2.1–2.3 //// //// 9

4.2–4.4 //// /// 8 1.8–2.0 //// //// 9

3.9–4.1 //// / 6 1.5–1.7 //// /// 8

3.6–3.8 //// //// / 11 1.2–1.4 //// / 6

3.3–3.5 //// //// //// / 16 0.9–1.1 //// 4

3.0–3.2 //// //// //// / 16 0.6–0.8 /// 3

2.7–2.9 //// //// //// // 17 N � 130

Relative Frequency, Cumulative Frequency, and Cumulative
Percentage Distributions

It is often desirable to express the data from a frequency distribution as a
relative frequency, a cumulative frequency, or a cumulative percentage distribution.

d e f i n i t i o n s ■ A relative frequency distribution indicates the proportion of the total num-
ber of scores that occur in each interval.

■ A cumulative frequency distribution indicates the number of scores that fall
below the upper real limit of each interval.

■ A cumulative percentage distribution indicates the percentage of scores
that fall below the upper real limit of each interval.



Table 3.7 shows the frequency distribution of statistics exam scores expressed
as relative frequency, cumulative frequency, and cumulative percentage distribu-
tions. To convert a frequency distribution into a relative frequency distribution,
the frequency for each interval is divided by the total number of scores. Thus,

For example, the relative frequency for the interval 45–49 is found by dividing its
frequency (1) by the total number of scores (70). Thus, the relative frequency for
this interval The relative frequency is useful because it tells us the
proportion of scores contained in the interval.

The cumulative frequency for each interval is found by adding the frequency
of that interval to the frequencies of all the class intervals below it. Thus, the cu-
mulative frequency for the interval 60–64 � 4 � 4 � 2 � 1 � 11.

The cumulative percentage for each interval is found by converting cumula-
tive frequencies to cumulative percentages. The equation for doing this is:

cum%

For the interval 60–64,

cum% %

Cumulative frequency and cumulative percentage distributions are especially
useful for finding percentiles and percentile ranks.

PERCENTILES

Percentiles are measures of relative standing. They are used extensively in edu-
cation to compare the performance of an individual to that of a reference group.

�
cum f

N
� 100 �

11
70

� 100 � 15.71

�
cum f

N
� 100

� 1
70 � 0.01.

Relative f �
f

N
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t a b l e 3.7 Relative frequency, cumulative frequency, and cumulative
percentage distributions for the grouped scores in Table 3.4

Class Interval f Relative f Cumulative f Cumulative %

95–99 14 0.06 70 100.29

90–94 16 0.09 66 194.29

85–89 17 0.10 60 185.71

80–84 10 0.14 53 175.71

75–79 16 0.23 43 161.43

70–74 19 0.13 27 138.57

65–69 17 0.10 18 125.71

60–64 14 0.06 11 115.71

55–59 14 0.06 17 110.00

50–54 12 0.03 13 114.29

45–49
1
1

11
1.430.01

1.00
 1
70



Thus, the 60th percentile point is the value on the measurement scale below
which 60% of the scores in the distribution fall.

Computation of Percentile Points

Let’s assume we are interested in computing the 50th percentile point for the sta-
tistics exam scores.The scores have been presented in Table 3.8 as cumulative fre-
quency and cumulative percentage distributions. We shall use the symbol to
stand for the 50th percentile point. What do we mean by the 50th percentile
point? From the definition of percentile point, is the scale value below which
50% of the scores fall. Since there are 70 scores in the distribution, must be
the value below which 35 scores fall (50% of 70 � 35). Looking at the cumulative
frequency column and moving up from the bottom, we see that falls in the in-
terval 75–79. At this stage, however, we do not know what scale value to assign

All we know is that it falls somewhere between the real limits of the interval
75–79, which are 74.5 to 79.5. To find where in the interval falls, we make the
assumption that all the scores in the interval are equally distributed throughout
the interval.

Since 27 of the scores fall below a value of 74.5, we need to move into the in-
terval until we acquire 8 more scores (Figure 3.1). Because there are 16 scores in
the interval and the interval is 5 scale units wide, each score in the interval takes
up of a unit. To acquire 8 more scores, we need to move into the interval

units. Adding 2.5 to the lower limit of 74.5, we arrive at Thus,

P50 � 74.5 � 2.5 � 77.0

P50.
5
16 �  8 �  2.5

5
16

P50

P50.

P50

P50

P50

P50
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d e f i n i t i o n ■ A percentile or percentile point is the value on the measurement scale
below which a specified percentage of the scores in the distribution fall.

t a b l e 3.8 Computation of percentile points for the scores of Table 3.1

Class
Interval f Cum f Cum % Percentile Computation

95–99 14 70 100.29 Percentile point

90–94 16 66 194.29

85–89 17 60 185.71

80–84 10 53 175.71

75–79 16 43 161.43

70–74 19 27 138.57

65–69 17 18 125.71

60–64 14 11 115.71

55–59 14 17 110.00

50–54 12 13 114.29

45–49 11 11 1111.43

P20 � 64.5 � 157 2  114 � 112 � 66.64

P50 � 74.5 � 1 5
16 2  135 � 272 � 77.00

� XL � 1i�fi2  1cum fP � cum fL2

MENTORING TIP
Caution: many students find
this section and the one fol-
lowing on Percentile Rank
more difficult than the other
sections. Be prepared to ex-
pend more effort on these 
sections if needed.



To find any percentile point, follow these steps:

1. Determine the frequency of scores below the percentile point. We will
symbolize this frequency as “cum ”

2. Determine the lower real limit of the interval containing the percentile point.
We will call the real lower limit Knowing the number of scores below
the percentile point, we can locate the interval containing the percentile
point by comparing cum with the cumulative frequency for each inter-
val. Once the interval containing the percentile point is located, we can im-
mediately ascertain its lower real limit, For this example, the interval
containing is 75–79 and its real lower limit,

3. Determine the number of additional scores we must acquire in the interval
to reach the percentile point.

where cum frequency of scores below the lower real limit of the
interval containing the percentile point.

For the preceding example,

4. Determine the number of additional units into the interval we must go to
acquire the additional number of scores.

 � 2.5

 � 1 5
16 2 � 8

 � 1i�fi2 � Number of additional scores

 Additional units � 1Number of units per score2 � Number of additional scores

 � 8

 � 35 � 27

 Number of additional scores � cum fP � cum fL

fL �

Number of additional scores � cum fP � cum fL

XL � 74.5.P50

XL.

fP

XL.

cum fP for P50 � 50% �  N �  10.502 �  70 � 35

cum fP � 1% of scores below the percentile point2 � N

fP .

52 C H A P T E R  3 Frequency Distributions

1

74.5 79.5

2 3

8 additional scores

35 scores below this value
27
scores
below
this
value

4 5 6 7 8 9 10 11 12 13 14 15 16

77.0

2.5 additional units

i = 5 scale units

5—
16

 of a scale unit

P50 = 74.5 + 2.5 = 77.00

f i g u r e 3.1 Determining the scale value of for the statistics exam scores.
From Statistical Reasoning in Psychology and Education by E. W. Minium. Copyright © 1978 John Wiley & 
Sons, Inc. Adapted by permission.

P50



Note that

is the number of scores in the interval and
gives us the number of units per score for the interval

5. Determine the percentile point. This is accomplished by adding the addi-
tional units to the lower real limit of the interval containing the percentile
point.

These steps can be put into equation form. Thus,

* equation for computing
percentile point

where value of the lower real limit of the interval con-
taining the percentile point

cum frequency of scores below the percentile point
cum  frequency of scores below the lower real limit of the

interval containing the percentile point
frequency of the interval containing the percentile
point
width of the interval

Using this equation to calculate we obtain

 � 74.5 � 2.5 � 77.00

 P50 � 74.5 � 1 5
16)135 � 272

 Percentile point � XL � 1i�fi2 1cum fP � cum fL)

P50,

i �

fi �

fL �
fP �

XL �

Percentile point � XL � 1i�fi2 1cum fP � cum fL2

 P50 � 74.5 � 2.5 � 77.00

 Percentile point � XL � Additional units

i�fi

fi
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*I am indebted to LeAnn Wilson for suggesting this form of the equation.

P r a c t i c e  P r o b l e m  3.3

Let’s try another problem. This time we’ll calculate the value below
which 20% of the scores fall.

In terms of cumulative frequency, is the value below which 14 scores
fall (20% of 70 � 14). From Table 3.8 (p. 51), we see that lies in the in-
terval 65–69. Since 11 scores fall below a value of 64.5, we need 3 more
scores. Given there are 7 scores in the interval and the interval is 5 units
wide, we must move units into the interval. Thus,

could also have been found directly by using the equation for per-
centile point. Thus,

 � 64.5 � 2.14 � 66.64

 P20 � 64.5 � 157 2 114 � 112

 Percentile point � XL � 1i�fi2 1cum fP � cum fL2

P20

P20 � 64.5 � 2.14 � 66.64

5
7 � 3 � 2.14

P20

P20

P20,



PERCENTILE RANK

Sometimes we want to know the percentile rank of a raw score. For example,
since your score on the statistics exam was 86, it would be useful to you to know
the percentile rank of 86.
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d e f i n i t i o n ■ The percentile rank of a score is the percentage of scores with values lower
than the score in question.

Computation of Percentile Rank

This situation is just the reverse of calculating a percentile point. Now, we are
given the score and must calculate the percentage of scores below it. Again, we
must assume that the scores within any interval are evenly distributed through-
out the interval. From the class interval column of Table 3.9, we see that the
score of 86 falls in the interval 85–89. There are 53 scores below 84.5, the lower
limit of this interval. Since there are 7 scores in the interval and the interval is
5 scale units wide, there are scores per scale unit. Between a score of 86 and
84.5, there are additional scores. There are, therefore, a to-
tal of 53 � 2.1 � 55.1 scores below 86. Since there are 70 scores in the distrib-
ution, the percentile rank of 

These operations are summarized in the following equation:

equation for computing
percentile rankPercentile rank �

cum fL � 1  fi �i2 1X � XL2

N
� 100

86 � 155.1
70 2 � 100 � 78.71.

175 2 186 � 84.52 � 2.1

7
5

P r a c t i c e  P r o b l e m  3.4

Let’s try one more problem. This time let’s compute is the scale
value below which 75% of the scores fall.

In terms of cumulative frequency, is the scale value below which
52.5 scores fall (cum of 70 � 52.5). From Table 3.8 (p. 51), we see
that falls in the interval 80–84. Since 43 scores fall below this interval’s
lower limit of 79.5, we need to add to 79.5 the number of scale units appro-
priate for 52.5 � 43 � 9.5 more scores. Since there are 10 scores in this 
interval and the interval is 5 units wide, we need to move into the interval

units. Thus,

also could have been found directly by using the equation for per-
centile point. Thus,

 � 84.25
 � 79.5 � 4.75

 P75 � 79.5 � 1 5
10 2 152.5 � 432

 Percentile point � XL � 1i�fi2 1cum fP � cum fL2

P75

P75 � 79.5 � 4.75 � 84.25

5
10 � 9.5 � 4.75

P75

fP � 75%
P75

P75P75.



where cum frequency of scores below the lower real limit of the
interval containing the score 
score whose percentile rank is being determined
scale value of the lower real limit of the interval containing
the score 
interval width
frequency of the interval containing the score 
total number of raw scores 

Using this equation to find the percentile rank of 86, we obtain

 � 78.71

 �
55.1
70

� 100

 �
53 � 2.1

70
� 100

 �
53 � 175 2 186 � 84.52

70
� 100

 Percentile rank �
cum fL � 1fi �i2 1X � XL2

N
� 100

N �
Xfi �

i �
X

XL �
X �

X
fL �
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P r a c t i c e  P r o b l e m  3.5

Let’s do another problem for practice. Find the percentile rank of 59.
The score of 59 falls in the interval 55–59.There are 3 scores below 54.5.

Since there are 4 scores within the interval, there are 
scores within the interval below 59. In all, there are 3 � 3.6 � 6.6 scores be-
low 59. Thus, the percentile rank of 

The solution is presented in equation form in Table 3.9.
59 � 16.6

70 2 � 100 � 9.43.

145 2 159 � 54.52 � 3.6

t a b l e 3.9 Computation of percentile rank for the scores of Table 3.1

Class
Interval f Cum f Cum % Percentile Rank Computation

95–99 4 70 100 Percentile rank � 

90–94 6 66 94.29

85–89 7 60 85.71 Percentile rank of 86 � 

80–84 10 53 75.71 � 78.71

75–79 16 43 61.43

70–74 9 27 38.57

65–69 7 18 25.71

60–64 4 11 15.71

55–59 4 7 10.00 Percentile rank of 59 � 

50–54 2 3 4.29 � 9.43

45–49 1 1 1.43

3 � 145 2 159 � 54.52

70
� 100

53 � 175 2 186 � 84.52

70
� 100

cum fL � 1fi�i2 1X � XL2

N
� 100



GRAPHING FREQUENCY DISTRIBUTIONS

Frequency distributions are often displayed as graphs rather than tables. Since a
graph is based completely on the tabled scores, the graph does not contain any
new information. However, a graph presents the data pictorially, which often
makes it easier to see important features of the data. I have assumed, in writing
this section, that you are already familiar with constructing graphs. Even so, it is
worthwhile to review a few of the important points.

1. A graph has two axes: vertical and horizontal. The vertical axis is called
the ordinate, or axis, and the horizontal axis is the abscissa, or axis.

2. Very often the independent variable is plotted on the axis and the de-
pendent variable on the axis. In graphing a frequency distribution, the
score values are usually plotted on the axis and the frequency of the
score values is plotted on the axis.

3. Suitable units for plotting scores should be chosen along the axes.
4. To avoid distorting the data, it is customary to set the intersection of the

two axes at zero and then choose scales for the axes such that the height
of the graphed data is about three-fourths of the width. Figure 3.2 shows
how violation of this rule can bias the impression conveyed by the graph.
The figure shows two graphs plotted from the same data, namely, enroll-
ment at a large university during the years 1996–2008. Part (a) follows the
rule we have just elaborated. In part (b), the scale on the ordinate does

Y
X

Y
X

XY
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P r a c t i c e  P r o b l e m  3.6

Let’s do one more practice problem. Using the frequency distribution of
grouped scores shown in Table 3.5 (p. 48), determine the percentile rank of
a score of 117.

The score of 117 falls in the interval 110–119. The lower limit of this in-
terval is 109.5. There are 
scores below 109.5. Since there are 3 scores within the interval and the in-
terval is 10 units wide, there are scores within the
interval that are below a score of 117. In all, there are 
scores below a score of 117. Thus, the percentile rank of 

This problem could also have been solved by using the equation for
percentile rank. Thus,

 � 94.72

 �
83 � 1 3

10 2 1117 � 109.52

90
� 100

 Percentile rank �
cum fL � 1fi�i2 1X � XL2

N
� 100

185.25
90 2 � 100 � 94.72.

117 �
83 � 2.25 � 85.25

1 3
10 2 1117 � 109.52 � 2.25

6 � 7 � 11 � 13 � 15 � 12 � 8 � 7 � 4 � 83



Graphing Frequency Distributions 57

20,000

10,000

0

E
nr
ol
lm
en
t

1996 1998 2000 2002 2004 2006
Year
(a)

2008

20,000

19,900

19,800
0

E
nr
ol
lm
en
t

1996 1998 2000 2002 2004 2006
Year
(b)

2008

f i g u r e 3.2 Enrollment at a large university from 1996 to 2008.
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not begin at zero and is greatly expanded from that of part (a). The im-
pressions conveyed by the two graphs are very different. Part (a) gives the
correct impression of a very stable enrollment, whereas part (b) greatly
distorts the data, making them seem as though there were large enroll-
ment fluctuations.

5. Ordinarily, the intersection of the two axes is at zero for both scales.When
it is not, this is indicated by breaking the relevant axis near the intersec-
tion. For example, in Figure 3.4, the horizontal axis is broken to indicate
that a part of the scale has been left off.

6. Each axis should be labeled, and the title of the graph should be both
short and explicit.

Four main types of graphs are used to graph frequency distributions: the bar
graph, the histogram, the frequency polygon, and the cumulative percentage
curve.

The Bar Graph

Frequency distributions of nominal or ordinal data are customarily plotted using
a bar graph.This type of graph is shown in Figure 3.3.A bar is drawn for each cat-
egory, where the height of the bar represents the frequency or number of mem-
bers of that category. Since there is no numerical relationship between the cate-
gories in nominal data, the various groups can be arranged along the horizontal
axis in any order. In Figure 3.3, they are arranged from left to right according to
the magnitude of frequency in each category. Note that the bars for each category
in a bar graph do not touch each other. This further emphasizes the lack of a
quantitative relationship between the categories.

The Histogram

The histogram is used to represent frequency distributions composed of interval
or ratio data. It resembles the bar graph, but with the histogram, a bar is drawn
for each class interval. The class intervals are plotted on the horizontal axis such
that each class bar begins and terminates at the real limits of the interval. The
height of the bar corresponds to the frequency of the class interval. Since the in-
tervals are continuous, the vertical bars must touch each other rather than be
spaced apart as is done with the bar graph. Figure 3.4 shows the statistics exam
scores (Table 3.4, p. 47) displayed as a histogram. Note that it is customary to plot
the midpoint of each class interval on the abscissa.The grouped scores have been
presented again in the figure for your convenience.

The Frequency Polygon

The frequency polygon is also used to represent interval or ratio data. The hori-
zontal axis is identical to that of the histogram. However, for this type of graph,
instead of using bars, a point is plotted over the midpoint of each interval at a
height corresponding to the frequency of the interval. The points are then joined
with straight lines. Finally, the line joining the points is extended to meet the 
horizontal axis at the midpoint of the two class intervals falling immediately be-
yond the end class intervals containing scores. This closing of the line with the
horizontal axis forms a polygon, from which the name of this graph is taken.



Figure 3.5 displays the scores listed in Table 3.4 as a frequency polygon. The 
major difference between a histogram and a frequency polygon is the following:
The histogram displays the scores as though they were equally distributed over
the interval, whereas the frequency polygon displays the scores as though they
were all concentrated at the midpoint of the interval. Some investigators prefer
to use the frequency polygon when they are comparing the shapes of two or
more distributions. The frequency polygon also has the effect of displaying the
scores as though they were continuously distributed, which in many instances is
actually the case.
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The curves shown in Figure 3.7(a), (b), and (c) are symmetrical. The curves
shown in parts (d), (e), and (f) are skewed. If a curve is skewed, it may be posi-
tively or negatively skewed.

The Cumulative Percentage Curve

Cumulative frequency and cumulative percentage distributions may also be pre-
sented in graphical form. We shall illustrate only the latter because the graphs are
basically the same and cumulative percentage distributions are more often en-
countered. You will recall that the cumulative percentage for a class interval indi-
cates the percentage of scores that fall below the upper real limit of the interval.
Thus, the vertical axis for the cumulative percentage curve is plotted in cumulative
percentage units. On the horizontal axis, instead of plotting points at the midpoint
of each class interval, we plot them at the upper real limit of the interval. Figure
3.6 shows the scores of Table 3.7 (p. 50) displayed as a cumulative percentage
curve. It should be obvious that the cumulative frequency curve would have the
same shape, the only difference being that the vertical axis would be plotted in cu-
mulative frequency rather than in cumulative percentage units. Both percentiles
and percentile ranks can be read directly off the cumulative percentage curve.The
cumulative percentage curve is also called an ogive, implying an S shape.

Shapes of Frequency Curves

Frequency distributions can take many different shapes. Some of the more com-
monly encountered shapes are shown in Figure 3.7. Curves are generally classi-
fied as symmetrical or skewed.
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d e f i n i t i o n ■ A curve is symmetrical if when folded in half the two sides coincide. If a
curve is not symmetrical, it is skewed.
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f i g u r e 3.6 Cumulative percentage curve: Statistics exam scores of Table 3.7.
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The curve in part (e) is positively skewed, and the curve in part (f) is negatively
skewed.

Frequency curves are often referred to according to their shape. Thus, the
curves shown in parts (a), (b), (c), and (d) are, respectively, called bell-shaped,
rectangular or uniform, U-shaped, and J-shaped curves.

EXPLORATORY DATA ANALYSIS

Exploratory data analysis is a recently developed procedure. It employs easy-to-
construct diagrams that are quite useful in summarizing and describing sample
data. One of the most popular of these is the stem and leaf diagram.

Stem and Leaf Diagrams

Stem and leaf diagrams were first developed in 1977 by John Tukey, working at
Princeton University.They are a simple alternative to the histogram and are most
useful for summarizing and describing data when the data set includes less than
100 scores. Unlike what happens with a histogram, however, a stem and leaf dia-
gram does not lose any of the original data. A stem and leaf diagram for the sta-
tistics exam scores of Table 3.1 is shown in Figure 3.8.

In constructing a stem and leaf diagram, each score is represented by a stem
and a leaf. The stem is placed to the left of the vertical line and the leaf to the
right. For example, the stems and leafs for the first and last original scores are:

stem leaf stem leaf

9 5 6 7

In a stem and leaf diagram, stems are placed in order vertically down the page,
and the leafs are placed in order horizontally across the page. The leaf for each
score is usually the last digit, and the stem is the remaining digits. Occasionally,
the leaf is the last two digits depending on the range of the scores.

Note that in stem and leaf diagrams, stem values can be repeated. In 
Figure 3.8, the stem values are repeated twice. This has the effect of stretching the
stem—that is, creating more intervals and spreading the scores out.A stem and leaf
diagram for the statistics scores with stem values listed only once is shown here.

4 6

5 2 4 6 6 7 8

6 0 2 3 3 5 5 6 7 7 8 9

7 0 0 1 2 2 2 3 4 4 5 6 6 6 6 6 6 7 7 7 7 8 8 9 9 9

8 0 1 1 2 2 2 2 2 3 4 6 6 7 7 8 9 9

9 0 2 3 3 3 4 5 6 6 9
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d e f i n i t i o n s ■ When a curve is positively skewed, most of the scores occur at the lower val-
ues of the horizontal axis and the curve tails off toward the higher end.
When a curve is negatively skewed, most of the scores occur at the higher
values of the horizontal axis and the curve tails off toward the lower end.



Listing stem values only once results in fewer, wider intervals, with each interval
generally containing more scores. This makes the display appear more crowded.
Whether stem values should be listed once, twice, or even more than twice de-
pends on the range of the scores.

You should observe that rotating the stem and leaf diagram of Figure 3.8
counterclockwise 90�, such that the stems are at the bottom, results in a diagram
very similar to the histogram shown in Figure 3.4. With the histogram, however,
we have lost the original scores; with the stem and leaf diagram, the original
scores are preserved.
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Original Scores

95 57 76 93 86 80 89

76 76 63 74 94 96 77

65 79 60 56 72 82 70

67 79 71 77 52 76 68

72 88 84 70 83 93 76

82 96 87 69 89 77 81

87 65 77 72 56 78 78

58 54 82 82 66 73 79

86 81 63 46 62 99 93

82 92 75 76 90 74 67

Stem and Leaf Diagram

4 6

5 2 4

5 6 6 7 8

6 0 2 3 3

6 5 5 6 7 7 8 9

7 0 0 1 2 2 2 3 4 4

7 5 6 6 6 6 6 6 7 7 7 7 8 8 9 9 9

8 0 1 1 2 2 2 2 2 3 4

8 6 6 7 7 8 9 9

9 0 2 3 3 3 4

9 5 6 6 9

f i g u r e 3.8 Stem and leaf diagram: Statistics exam scores of Table 3.1.
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WHAT IS THE TRUTH? Stretch the Scale, Change the Tale

An article appeared
in the business sec-
tion of a newspaper
discussing the rate
increases of Puget

Power & Light Company. The com-
pany was in poor financial condi-
tion and had proposed still another
rate increase in 1984 to try to help
it get out of trouble. The issue was
particularly sensitive because rate
increases had plagued the region
recently to pay for huge losses in
nuclear power plant construction.
The graph at right appeared in the
article along with the caption
“Puget Power rates have climbed
steadily during the past 14 years.”
Do you notice anything peculiar
about the graph?

Answer Take a close 
look at the X axis. From 
1970 to 1980, the scale 
is calibrated in 2-year 
intervals. After 1980, 
the same distance on 
the X axis represents 1 year rather
than 2 years. Given the data,
stretching this part of the scale
gives the false impression that
costs have risen “steadily.” When
plotted properly, as is done in the
bottom graph, you can see that
rates have not risen steadily, but in-
stead have greatly accelerated over

the last 3 years (including the pro-
posed rate increase). Labeling the
rise as a “steady” rise rather than a
greatly accelerating increase obvi-
ously is in the company’s interest. It

is unclear whether the company
furnished the graph or whether the
newspaper constructed its own. In
any case, when the axes of graphs
are not uniform, reader beware! ■

Puget Power Rate Increases
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In this chapter, I have discussed frequency distribu-
tions and how to present them in tables and graphs.
In descriptive statistics, we are interested in charac-
terizing a set of scores in the most meaningful man-
ner. When faced with a large number of scores, it is
easier to understand, interpret, and discuss the
scores when they are presented as a frequency dis-
tribution. A frequency distribution is a listing of the

score values in rank order along with their fre-
quency of occurrence. If there are many scores ex-
isting over a wide range, the scores are usually
grouped together in equal intervals to allow a more
meaningful interpretation. The scores can be pre-
sented as an ordinary frequency distribution, a rela-
tive frequency distribution, a cumulative frequency
distribution, or a cumulative percentage distribu-

■ SUMMARY



tion. I discussed each of these and how to construct
them. I also presented the concepts of percentile
point and percentile rank and discussed how to com-
pute each.

When frequency distributions are graphed, fre-
quency is plotted on the vertical axis and the score
value on the horizontal axis. Four main types of graphs
are used: the bar graph, the histogram, the frequency
polygon, and the cumulative percentage curve. I dis-

cussed the use of each type and how to construct
them.

Frequency curves can also take on various
shapes. I illustrated some of the common shapes en-
countered (e.g., bell-shaped, U-shaped, and J-shaped)
and discussed the difference between symmetrical
and skewed curves. Finally, I discussed the use of an
exploratory data analysis technique: stem and leaf 
diagrams.

Questions and Problems 65

Bar graph (p. 58)
Bell-shaped curve (p. 62)
Cumulative frequency 

distribution (p. 49)
Cumulative percentage 

distribution (p. 49)
Exploratory data analysis 

(p. 62)
Frequency distribution (p. 43)

Frequency distribution of grouped
scores (p. 44)

Frequency polygon (p. 58)
Histogram (p. 58)
J-shaped curve (p. 62)
Negatively skewed curve (p. 62)
Percentile point (p. 51)
Percentile rank (p. 54)
Positively skewed curve (p. 62)

Relative frequency distribution 
(p. 49)

Skewed curve (p. 60)
Stem and leaf diagrams (p. 62)
Symmetrical curve (p. 60)
U-shaped curve (p. 62)

axis (abscissa) (p. 56)
axis (ordinate) (p. 56)Y

X

■ IMPORTANT NEW TERMS

1. Define each of the terms in the Important New
Terms section.

2. How do bar graphs, histograms, and frequency
polygons differ in construction? What type of
scaling is appropriate for each?

3. The following table gives the 2002 median annual
salaries of various categories of scientists in the
United States holding PhDs. Construct a bar
graph for these data with “Annual Salary” on the

axis and “Category of Scientist” on the axis.
Arrange the categories so that the salaries de-
crease from left to right.

Annual
Category of Scientist Salary ($)

Biological and Health Sciences 70,100

Chemistry 79,100

Computer and Math Sciences 75,000

Psychology 66,700

Sociology and Anthropology 63,100

4. A graduate student has collected data involving
66 scores. Based on these data, he has constructed
two frequency distributions of grouped scores.
These are shown here. Do you see anything wrong
with these distributions? Explain.

XY

a.

Class Interval f

48–63 17

29–47 28

10–28 21

b.

■ QUESTIONS AND PROBLEMS

Class Interval f Class Interval f

62–63 2

60–61 4

58–59 3

56–57 1

54–55 0

52–53 4

50–51 5

48–49 2

46–47 0

44–45 5

42–43 4

40–41 3

38–39 0

36–37 6

34–35 2

32–33 0

30–31 5

28–29 3

26–27 0

24–25 4

22–23 5

20–21 2

18–19 0

16–17 3

14–15 1

12–13 0

10–11 2



5. The following scores were obtained by a college
sophomore class on an English exam:

60 94 75 82 72 57 92 75 85 77 91

72 85 64 78 75 62 49 70 94 72 84

55 90 88 81 64 91 79 66 68 67 74

45 76 73 68 85 73 83 85 71 87 57

82 78 68 70 71 78 69 98 65 61 83

84 69 77 81 87 79 64 72 55 76 68

93 56 67 71 83 72 82 78 62 82 49

63 73 89 78 81 93 72 76 73 90 76

a. Construct a frequency distribution of the un-
grouped scores ( ).

b. Construct a frequency distribution of grouped
scores having approximately 15 intervals. List
both the apparent and real limits of each in-
terval.

c. Construct a histogram of the frequency distri-
bution constructed in part b.

d. Is the distribution skewed or symmetrical? If
it is skewed, is it skewed positively or nega-
tively?

e. Construct a stem and leaf diagram with the
last digit being a leaf and the first digit a stem.
Repeat stem values twice.

f. Which diagram do you like better, the his-
togram of part c or the stem and leaf diagram
of part e? Explain. education

6. Express the grouped frequency distribution of
part b of Problem 5 as a relative frequency, a cu-
mulative frequency, and a cumulative percentage
distribution. education

7. Using the cumulative frequency arrived at in
Problem 6, determine
a.
b. education

8. Again, using the cumulative distribution and
grouped scores arrived at in Problem 6, deter-
mine
a. The percentile rank of a score of 81
b. The percentile rank of a score of 66
c. The percentile rank of a score of 87

education
9. Construct a histogram of the distribution of

grouped English exam scores determined in
Problem 5, part b. education

P40

P75

i � 1

10. The following scores show the amount of weight
lost (in pounds) by each client of a weight con-
trol clinic during the last year:

10 13 22 26 16 23 35 53 17 32

41 35 24 23 27 16 20 60 48 43

52 31 17 20 33 18 23 8 24 15

26 46 30 19 22 13 22 14 21 39

28 43 37 15 20 11 25 9 15 21

21 25 34 10 23 29 28 18 17 24

16 26 7 12 28 20 36 16 14

18 16 57 31 34 28 42 19 26

a. Construct a frequency distribution of grouped
scores with approximately 10 intervals.

b. Construct a histogram of the frequency distri-
bution constructed in part a.

c. Is the distribution skewed or symmetrical? If
it is skewed, is it skewed positively or nega-
tively?

d. Construct a stem and leaf diagram with the
last digit being a leaf and the first digit a stem.
Repeat stem values twice.

e. Which diagram do you like better, the his-
togram of part b or the stem and leaf diagram
of part d? Explain. clinical, health

11. Convert the grouped frequency distribution of
weight losses determined in Problem 10 to a rel-
ative frequency and a cumulative frequency dis-
tribution. clinical, health

12. Using the cumulative frequency distribution ar-
rived at in Problem 11, determine
a.
b. clinical, health

13. Again using the cumulative frequency distribu-
tion of Problem 11, determine
a. The percentile rank of a score of 41
b. The percentile rank of a score of 28 clinical,

health
14. Construct a frequency polygon using the grouped

frequency distribution determined in Problem 10.
Is the curve symmetrical? If not, is it positively or
negatively skewed? clinical, health

15. A small eastern college uses the grading system
of 0–4.0, with 4.0 being the highest possible
grade. The scores shown here are the grade point
averages of the students currently enrolled as
psychology majors at the college.

P25

P50
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2.7 1.9 1.0 3.3 1.3 1.8 2.6 3.7

3.1 2.2 3.0 3.4 3.1 2.2 1.9 3.1

3.4 3.0 3.5 3.0 2.4 3.0 3.4 2.4

2.4 3.2 3.3 2.7 3.5 3.2 3.1 3.3

2.1 1.5 2.7 2.4 3.4 3.3 3.0 3.8

1.4 2.6 2.9 2.1 2.6 1.5 2.8 2.3

3.3 3.1 1.6 2.8 2.3 2.8 3.2 2.8

2.8 3.8 1.4 1.9 3.3 2.9 2.0 3.2

a. Construct a frequency distribution of grouped
scores with approximately 10 intervals.

b. Construct a histogram of the frequency distri-
bution constructed in part a.

c. Is the distribution skewed or symmetrical? If
skewed, is it skewed positively or negatively?

d. Construct a stem and leaf diagram with the
last digit being a leaf and the first digit a stem.
Repeat stem values five times.

e. Which diagram do you like better, the his-
togram of part b or the stem and leaf diagram
of part d? Explain. education

16. For the grouped scores in Problem 15, determine
a.
b. education

17. Sarah’s grade point average is 3.1. Based on 
the frequency distribution of grouped scores
constructed in Problem 15, part a, what is the
percentile rank of Sarah’s grade point aver-
age? education

18. The policy of the school in Problem 15 is that to
graduate with a major in psychology, a student
must have a grade point average of 2.5 or higher.
a. Based on the ungrouped scores shown in

Problem 15, what percentage of current psy-
chology majors needs to raise its grades?

b. Based on the frequency distribution of grouped
scores, what percentage needs to raise its
grades?

c. Explain the difference between the answers
to parts a and b. education

19. Construct a frequency polygon using the distri-
bution of grouped scores constructed in Problem
15. Is the curve symmetrical or positively or neg-
atively skewed?

20. The psychology department of a large university
maintains its own vivarium of rats for research
purposes. A recent sampling of 50 rats from the
vivarium revealed the following rat weights:

P20

P80

320 282 341 324 340 302 336 265 313 317

310 335 353 318 296 309 308 310 277 288

314 298 315 360 275 315 297 330 296 274

250 274 318 287 284 267 292 348 302 297

270 263 269 292 298 343 284 352 345 325

a. Construct a frequency distribution of grouped
scores with approximately 11 intervals.

b. Construct a histogram of the frequency distri-
bution constructed in part a.

c. Is the distribution symmetrical or skewed?
d. Construct a stem and leaf diagram with the

last digit being a leaf and the first two digits a
stem. Do not repeat stem values.

e. Which diagram do you like better, the his-
togram or the stem and leaf diagram? Why?
biological

21. Convert the grouped frequency distribution of
rat weights determined in Problem 20 to a rela-
tive frequency, cumulative frequency, and cumu-
lative percentage distribution. biological

22. Using the cumulative frequency distribution
arrived at in Problem 21, determine
a.
b. biological

23. Again using the cumulative frequency distribu-
tion arrived at in Problem 21, determine
a. The percentile rank of a score of 275
b. The percentile rank of a score of 318 biological

24. A professor is doing research on individual dif-
ferences in the ability of students to become 
hypnotized. As part of the experiment, she ad-
ministers a portion of the Stanford Hypnotic
Susceptibility Scale to 85 students who volun-
teered for the experiment. The results are scored
from 0–12, with 12 indicating the highest degree
of hypnotic susceptibility and 0 the lowest. The
scores are shown here.

9 7 11 4 9 7 8 8 10 6

6 4 3 5 5 4 6 2 6 8

10 8 6 7 3 7 1 6 5 3

2 7 6 2 6 9 4 7 9 6

5 9 5 0 5 6 3 6 7 9

7 5 4 2 9 8 11 7 12 3

8 6 5 4 10 7 4 10 8 7

6 2 7 5 3 4 8 6 4 5

4 6 5 8 7

P75

P50
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a. Construct a frequency distribution of the scores.
b. Construct a histogram of the frequency distri-

bution constructed in part a.
c. Is the distribution symmetrical or skewed?
d. Determine the percentile rank of a score of 5

and a score of 10. clinical, cognitive, health

68 C H A P T E R  3 Frequency Distributions

BOOK COMPANION SITE

To access the material on the book companion site,
go to www.cengage.com/psychology/pagano and click
“Companion Site” in the Student section. The book
companion site contains the following material:

• Chapter Outline
• Know and Be Able to Do
• Flash cards for review of terms
• Tutorial Quiz
• Solving Problems with SPSS
• Statistical Workshops
• And more

The problems for this chapter as well as guided, in-
teractive, problem-solving tutorials may be assigned
online at Enhanced WebAssign.

www.cengage.com/psychology/pagano


CHAPTER OUTLINE

Introduction
Measures of Central Tendency

The Arithmetic Mean
The Overall Mean
The Median
The Mode
Measures of Central Tendency

and Symmetry
Measures of Variability

The Range
The Standard Deviation
The Variance

Summary

Important New Terms

Questions and Problems

Notes

SPSS Illustrative Example

Book Companion Site

69

Measures of Central Tendency
and Variability

LEARNING OBJECTIVES

After completing this chapter, you should be able to:
■ Contrast central tendency and variability.
■ Define arithmetic mean, deviation score, median, mode, overall

mean, range, standard deviation, sum of squares, and variance.
■ Specify how the arithmetic mean, median, and mode differ conceptu-

ally; specify the properties of the mean, median, and mode.
■ Compute the following: arithmetic mean, overall mean, median,

mode, range, deviation scores, sum of squares, standard deviation, and
variance.

■ Specify how the mean, median, and mode are affected by skew in
unimodal distributions.

■ Explain how the standard deviation of a sample, as calculated in the
textbook, differs from the standard deviation of a population, and
why they differ.

■ Understand the illustrative examples, do the practice problems, and
understand the solutions.

Chapter 4



INTRODUCTION

In Chapter 3, we discussed how to organize and present data in meaningful
ways. The frequency distribution and its many derivatives are useful in this re-
gard, but by themselves, they do not allow quantitative statements that charac-
terize the distribution as a whole to be made, nor do they allow quantitative
comparisons to be made between two or more distributions. It is often desir-
able to describe the characteristics of distributions quantitatively. For example,
suppose a psychologist has conducted an experiment to determine whether
men and women differ in mathematical aptitude. She has two sets of scores, one
from the men and one from the women in the experiment. How can she com-
pare the distributions? To do so, she needs to quantify them. This is most often
done by computing the average score for each group and then comparing the
averages. The measure computed is a measure of the central tendency of each
distribution.

A second characteristic of distributions that is very useful to quantify is
the variability of the distribution. Variability specifies the extent to which
scores are different from each other, are dispersed, or are spread out. It is im-
portant for two reasons. First, determining the variability of the data is re-
quired by many of the statistical inference tests that we shall be discussing
later in this book. In addition, the variability of a distribution can be useful in
its own right. For example, suppose you were hired to design and evaluate an
educational program for disadvantaged youngsters. When evaluating the pro-
gram, you would be interested not only in the average value of the end-of-
program scores but also in how variable the scores were. The variability of the
scores is important because you need to know whether the effect of the pro-
gram is uniform or varies over the youngsters. If it varies, as it almost assuredly
will, how large is the variability? Is the program doing a good job with some
students and a poor job with others? If so, the program may need to be re-
designed to do a better job with those youngsters who have not been ade-
quately benefiting from it.

Central tendency and variability are the two characteristics of distributions
that are most often quantified. In this chapter, we shall discuss the most impor-
tant measures of these two characteristics.

MEASURES OF CENTRAL TENDENCY

The three most often used measures of central tendency are the arithmetic mean,
the median, and the mode.

The Arithmetic Mean

You are probably already familiar with the arithmetic mean. It is the value you
ordinarily calculate when you average something. For example, if you wanted to
know the average number of hours you studied per day for the past 5 days, you
would add the hours you studied each day and divide by 5. In so doing, you would
be calculating the arithmetic mean.
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Note that we use two symbols for the mean: X
––

if the scores are sample scores and
� (the Greek letter mu) if the scores are population scores. The computations,
however, are the same regardless of whether the scores are sample or population
scores. We shall use � without any subscript to indicate that this is the mean of a
population of raw scores. Later on in the text, we shall calculate population
means of other kinds of scores for which we shall add the appropriate subscript.

Let’s try a few problems for practice.
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d e f i n i t i o n ■ The arithmetic mean is defined as the sum of the scores divided by the num-
ber of scores. In equation form,

X
––

or

where � raw scores
X
––

� mean of a sample set of scores

� mean of a population set of scores

� summation sign

N � number of scores

� 1read “sigma”2  

m 1read “mew”2

 1read “X bar”2

 X1, . . . , XN 

mean of a population
set of scoresm �

� Xi

N
�

X1 � X2 � X3 � p � XN

N

�
� Xi

N
�

X1 � X2 � X3 � p � XN

N
mean of a sample

P r a c t i c e  P r o b l e m  4.1

Calculate the mean for each of the following sample sets of scores:

a. X: 3, 5, 6, 8, 14 X
––

b. X: 20, 22, 28, 30, 37, 38 X
––

c. X: 2.2, 2.4, 3.1, 3.1 X
––

 �
10.8

4
� 2.70

 �
� Xi

N
�

2.2 � 2.4 � 3.1 � 3.1
4

 �
175
6

� 29.17

 �
� Xi

N
�

20 � 22 � 28 � 30 � 37 � 38
6

 �
36
5

� 7.20

 �
� Xi

N
�

3 � 5 � 6 � 8 � 14
5



Properties of the mean The mean has many important properties or charac-
teristics. First,

The mean is sensitive to the exact value of all the scores in the distribution.

To calculate the mean you have to add all the scores, so a change in any of the
scores will cause a change in the mean.This is not true of the median or the mode.

A second property is the following:

The sum of the deviations about the mean equals zero. Written algebraically, this
property becomes X

––
) � 0.

This property says that if the mean is subtracted from each score, the sum of the
differences will equal zero.The algebraic proof is presented in Note 4.1 at the end
of this chapter. A demonstration of its validity is shown in Table 4.1. This prop-
erty results from the fact that the mean is the balance point of the distribution.
The mean can be thought of as the fulcrum of a seesaw, to use a mechanical anal-
ogy. The analogy is shown in Figure 4.1, using the scores of Table 4.1. When the
scores are distributed along the seesaw according to their values, the mean of the
distribution occupies the position where the scores are in balance.

A third property of the mean also derives from the fact that the mean is the
balance point of the distribution:

The mean is very sensitive to extreme scores.

A glance at Figure 4.1 should convince you that, if we added an extreme score
(one far from the mean), it would greatly disrupt the balance. The mean would
have to shift a considerable distance to reestablish balance. The mean is more
sensitive to extreme scores than is the median or the mode. We shall discuss this
more fully when we take up the median.

� 1Xi �
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t a b l e 4.1 Demonstration that 

X Calculation of X

2 �4
4 �2

6 �0

8 �2

10 �4

X ) � 0� 1Xi �� Xi � 30

� 6.00

Xi �Xi

� 1Xi � X 2 � 0

X �
© Xi

N
�

30
5

62X: 84 10

X = 6.00
–

f i g u r e 4.1 The mean as the balance point in
the distribution.

MENTORING TIP
An extreme score is one that is
far from the mean.



A fourth property of the mean has to do with the variability of the scores
about the mean. This property states the following:

The sum of the squared deviations of all the scores about their mean is a minimum.
Stated algebraically, X

––
)2 is a minimum.

This is an important characteristic used in many areas of statistics, particularly in
regression. Elaborated a little more fully, this property states that although the
sum of the squared deviations about the mean does not usually equal zero, it is
smaller than if the squared deviations were taken about any other value. The va-
lidity of this property is demonstrated in Table 4.2. The scores of the distribution
are given in the first column. Their mean equals 5.00. The fourth column shows
the squared deviations of the scores about their mean The sum of
these squared deviations is 20. The other columns show the squared deviations 
of the scores about values other than the mean. In the third column, the value
is the second column 3, the fifth column 6, and the sixth column 7.
Note that the sum of the squared deviations about each of these values is larger
than the sum of the squared deviations about the mean of the distribution. Not
only is the sum larger, but the farther the value gets from the mean, the larger the
sum becomes. This implies that although we’ve compared only four other values,
it holds true for all other values.Thus, although the sum of the squared deviations
about the mean does not usually equal zero, it is smaller than if the squared de-
viations are taken about any other value.

The last property has to do with the use of the mean for statistical inference.
This property states the following:

Under most circumstances, of the measures used for central tendency, the mean is
least subject to sampling variation.

If we were repeatedly to take samples from a population on a random basis, the
mean would vary from sample to sample.The same is true for the median and the
mode. However, the mean varies less than these other measures of central ten-
dency.This is very important in inferential statistics and is a major reason why the
mean is used in inferential statistics whenever possible.

The Overall Mean

Occasionally, the situation arises in which we know the mean of several groups of
scores and we want to calculate the mean of all the scores combined. Of course,
we could start from the beginning again and just sum all the raw scores and di-
vide by the total number of scores. However, there is a shortcut available if we al-
ready know the mean of the groups and the number of scores in each group. The
equation for this method derives from the basic definition of the mean. Suppose

4 1Xi � 422,
Xi

1Xi � 522.Xi

� 1Xi �
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MENTORING TIP
At this point, just concentrate
on understanding this prop-
erty; don’t worry about its 
application.

t a b l e  4.2 Demonstration that is a minimum

(Xi � X )2 Calculation
Xi (Xi � 3)2 (Xi � 4)2 (Xi � 5)2 (Xi � 6)2 (Xi � 7)2 of X

2 11 14 19 16 25

4 11 10 11 14 19

6 19 14 11 10 11

8 25 16 9 4 1

36 24 20 24 36

� 1Xi � X 22

X

� 5.00

�
20
4

�
� Xi

N



we have several groups of scores that we wish to combine to calculate the over-
all mean. We’ll let equal the number of groups. Then,

X
––

where

Since X
––

(first group)/n1, multiplying by we have (first group) �
n1X

––
1. Similarly, (second group)� n2X

––
2, and (last group) � nkX

––
k, where

X
––

k is the mean of the last group. Substituting these values in the numerator of the
preceding equation, we arrive at

X
––

overall � overall mean of several groups

In words, this equation states that the overall mean is equal to the sum of the
mean of each group times the number of scores in the group, divided by the sum
of the number of scores in each group.

To illustrate how this equation is used, suppose a sociology professor gave a
final exam to two classes. The mean of one of the classes was 90, and the number
of scores was 20. The mean of the other class was 70, and 40 students took the
exam. Calculate the mean of the two classes combined.

The solution is as follows: Given that X
––

and and that X
––

and 

X
––

overall �      

The overall mean is much closer to the average of the class with 40 scores than
the class with 20 scores. In this context, we can see that each of the means is be-
ing weighted by its number of scores. We are counting the mean of 70 forty times
and the mean of 90 only twenty times. Thus, the overall mean really is a weighted
mean, where the weights are the number of scores used in determining each
mean. Let’s do one more problem for practice.

�
20 1902 � 40 1702

20 � 40
� 76.67

n2 � 40,
2 � 70n1 � 201 � 90

� Xi� Xi 

� Xin1,1 � � Xi 

nk � number of scores in the last group
n2 � number of scores in the second group
n1 � number of scores in the first group
N � total number of scores

 �
�  Xi 1first group2 � �  Xi 1second group2 � p � �  Xi 1last group2

n1 � n2 � p � nk

overall �
Sum of all scores

N

k
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n1X
––

1 � n2X
––

2 � ��� � nkX
––

k

n1 � n2 � ��� � nk

n1X
––

1 � n2X
––

2

n1 � n2

MENTORING TIP
The overall mean is often
called the weighted mean.

P r a c t i c e  P r o b l e m  4.2

A researcher conducted an experiment involving three groups of subjects.
The mean of the first group was 75, and there were 50 subjects in the group.
The mean of the second group was 80, and there were 40 subjects. The third
group had a mean of 70 and 25 subjects. Calculate the overall mean of the
three groups combined.

(continued)



The Median

The second most frequently encountered measure of central tendency is the 
median.
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d e f i n i t i o n ■ The median (symbol Mdn) is defined as the scale value below which 50%
of the scores fall. It is therefore the same thing as P50.

In Chapter 3, we discussed how to calculate therefore, you already know how
to calculate the median for grouped scores. For practice, however, Practice Prob-
lem 4.3 contains another problem and its solution. You should try this problem
and be sure you can solve it before going on.

P50 ;

P r a c t i c e  P r o b l e m  4.3

Calculate the median of the grouped scores listed in Table 4.3.

t a b l e 4.3 Calculating the median from grouped scores

Class
Interval f Cum f Cum % Calculation of Median

3.6–4.0 4 52 100.00

3.1–3.5 6 48 92.31

2.6–3.0 8 42 80.77

2.1–2.5 10 34 65.38

1.6–2.0 9 24 46.15

1.1–1.5 7 15 28.85

0.6–1.0 5 8 15.38

0.1–0.5 3 3 5.77

� 2.05 � 0.10 � 2.15

� 2.05 � 10.5/102  126 � 242

� XL � 1ilfi2  1cum fP � cum fL2

Mdn � P50

S O L U T I O N

The solution is as follows: Given that X
––

1 � 75, n1 � 50; X
––

2 � 80,
and X

––
3 � 70, n3 � 25,

 �
8700
115

� 75.65

�
501752 � 401802 � 251702

50 � 40 � 25

n2 � 40;

n1X
––

1 � n2X
––

2 � n3X
––

3

n1 � n2 � n3
X
––

overall � 

(continued)



When dealing with raw (ungrouped) scores, it is quite easy to find the me-
dian. First, arrange the scores in rank order.

The median is the centermost score if the number of scores is odd. If the number is
even, the median is taken as the average of the two centermost scores.

To illustrate, suppose we have the scores 5, 2, 3, 7, and 8 and want to determine
their median. First, we rank-order the scores: 2, 3, 5, 7, 8. Since the number of
scores is odd, the median is the centermost score. In this example, the median is
5. It may seem that 5 is not really for the set of scores. However, consider the
score of 5 to be evenly distributed over the interval 4.5–5.5. Now it becomes ob-
vious that half of the scores fall below 5.0. Thus, 5.0 is 

Let’s try another example, this time with an even number of scores. Given the
scores 2, 8, 6, 4, 12, and 10, determine their median. First, we rank-order the scores:
2, 4, 6, 8, 10, 12. Since the number of scores is even, the median is the average of the
two centermost scores.The median for this example is For additional
practice, Practice Problem 4.4 presents a few problems dealing with raw scores.

16 � 82�2 � 7.

P50.

P50
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S O L U T I O N

The median is the value below which 50% of the scores fall. Since N � 52,
the median is the value below which 26 of the scores fall (50% of 52 � 26).
From Table 4.3, we see that the median lies in the interval 2.1–2.5. Since 24
scores fall below a value of 2.05, we need two more scores to make up the
26. Given there are 10 scores in the interval and the interval is 0.5 unit wide,
we must move unit into the interval. Thus,

The median could also have been found by using the equation for per-
centile point. This solution is shown in Table 4.3.

Median � 2.05 � 0.10 � 2.15

0.5�10 � 2 � 0.10

MENTORING TIP
To help you remember that
the median is the centermost
score, think of the median of a
road (the center line) that di-
vides the road in half.

P r a c t i c e  P r o b l e m  4.4

Calculate the median for the following sets of scores:

a. 8, 10, 4, 3, 1, 15 Rank order: 1, 3, 4, 8, 10, 15 Mdn � (4 � 8)/2 � 6

b. 100, 102, 108, 104, 112 Rank order: 100, 102, 104, 108, 112 Mdn � 104

c. 2.5, 1.8, 1.2, 2.4, 2.0 Rank order: 1.2, 1.8, 2.0, 2.4, 2.5 Mdn � 2.0

d. 10, 11, 14, 14, 16, 14, 12 Rank order: 10, 11, 12, 14, 14, 14, 16 Mdn � 14

In the last set of scores in Practice Problem 4.4, the median occurs at 14, where
there are three scores. Technically, we should consider the three scores equally
spread out over the interval 13.5–14.5. Then we would find the median by using
the equation shown in Table 4.3 (p. 72), with However, when
raw scores are being used, this refinement is often not made. Rather, the median
is taken at 14. We shall follow this procedure. Thus, if the median occurs at a value
where there are tied scores, we shall use the tied score as the median.

1Mdn � 13.672.i � 1



Properties of the median There are two properties of the median worth not-
ing. First,

The median is less sensitive than the mean to extreme scores.

To illustrate this property, consider the scores shown in the first column of Table
4.4. The three distributions shown are the same except for the last score. In the
second distribution, the score of 100 is very different in value from the other
scores. In the third distribution, the score of 1000 is even more extreme. Note what
happens to the mean in the second and third distributions. Since the mean is sen-
sitive to extreme scores, it changes considerably with the extreme scores. How
about the median? Does it change too? As we see from the third column, the an-
swer is no! The median stays the same. Since the median is not responsive to each
individual score but rather divides the distribution in half, it is not as sensitive to
extreme scores as is the mean. For this reason, when the distribution is strongly
skewed, it is probably better to represent the central tendency with the median
rather than the mean. Certainly, in the third distribution of Table 4.4, the median
of 6 does a better job representing most of the scores than does the mean of 204.

The second property of the median involves its sampling stability. It states
that,

Under usual circumstances, the median is more subject to sampling variability than
the mean but less subject to sampling variability than the mode.

Because the median is usually less stable than the mean from sample to sample,
it is not as useful in inferential statistics.

The Mode

The third and last measure of central tendency that we shall discuss is the mode.

Measures of Central Tendency 77

d e f i n i t i o n ■ The mode is defined as the most frequent score in the distribution.*

t a b l e 4.4 Effect of extreme scores
on the mean and median

Scores Mean Median

3, 4, 6, 7, 10 6 6

3, 4, 6, 7, 100 24 6

3, 4, 6, 7, 1000 204 6

*When all the scores in the distribution have the same frequency, it is customary to say that the dis-
tribution has no mode.

Clearly, this is the easiest of the three measures to determine. The mode is found
by inspection of the scores; there isn’t any calculation necessary. For instance, to
find the mode of the data in Table 3.2 (p. 44), all we need to do is search the fre-
quency column. The mode for these data is 76. With grouped scores, the mode is
designated as the midpoint of the interval with the highest frequency. The mode
of the grouped scores in Table 3.4 (p. 47) is 77.



Usually, distributions are unimodal; that is, they have only one mode. How-
ever, it is possible for a distribution to have many modes.When a distribution has
two modes, as is the case with the scores 1, 2, 3, 3, 3, 3, 4, 5, 7, 7, 7, 7, 8, 9, the dis-
tribution is called bimodal. Histograms of a unimodal and bimodal distribution
are shown in Figure 4.2. Although the mode is the easiest measure of central ten-
dency to determine, it is not used very much in the behavioral sciences because
it is not very stable from sample to sample and often there is more than one mode
for a given set of scores.

Measures of Central Tendency and Symmetry

If the distribution is unimodal and symmetrical, the mean, median, and mode will
all be equal. An example of this is the bell-shaped curve mentioned in Chapter 3
and shown in Figure 4.3. When the distribution is skewed, the mean and median
will not be equal. Since the mean is most affected by extreme scores, it will have
a value closer to the extreme scores than will the median. Thus, with a negatively
skewed distribution, the mean will be lower than the median. With a positively
skewed curve, the mean will be larger than the median. Figure 4.3 shows these
relationships.
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f i g u r e 4.3 Symmetry and measures of central tendency.
From Statistical Reasoning in Psychology and Education by E. W. Minium. Copyright © 1978 John Wiley
& Sons, Inc. Adapted by permission of John Wiley & Sons, Inc.
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MEASURES OF VARIABILITY

Previously in this chapter, we pointed out that variability specifies how far apart
the scores are spread. Whereas measures of central tendency are a quantification
of the average value of the distribution, measures of variability quantify the ex-
tent of dispersion. Three measures of variability are commonly used in the be-
havioral sciences: the range, the standard deviation, and the variance.

The Range

We have already used the range when we were constructing frequency distribu-
tions of grouped scores.
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d e f i n i t i o n ■ The range is defined as the difference between the highest and lowest scores
in the distribution. In equation form,

Range � Highest score � Lowest score

The range is easy to calculate but gives us only a relatively crude measure of dis-
persion, because the range really measures the spread of only the extreme scores
and not the spread of any of the scores in between. Although the range is easy to
calculate, we’ve included some problems for you to practice on. Better to be sure
than sorry.

P r a c t i c e  P r o b l e m  4.5

Calculate the range for the following distributions:

a. 2, 3, 5, 8, 10 Range � 10 � 2 � 8
b. 18, 12, 28, 15, 20 Range � 28 � 12 � 16
c. 115, 107, 105, 109, 101 Range � 115 � 101 � 14
d. 1.2, 1.3, 1.5, 1.8, 2.3 Range � 2.3 � 1.2 � 1.1

The Standard Deviation

Before discussing the standard deviation, it is necessary to introduce the concept
of a deviation score.

Deviation scores So far, we’ve been dealing mainly with raw scores. You will
recall that a raw score is the score as originally measured. For example, if we are
interested in IQ and we measure an IQ of 126, then 126 is a raw score.



In equation form, a deviation score is defined as,

X � X
––

deviation score for sample data

As an illustration, consider the sample scores in Table 4.5. The raw scores are
shown in the first column, and their transformed deviation scores are in the second
column. The deviation score tells how far the raw score lies above or below the
mean.Thus, the raw score of lies 4 units below the mean (X � X

––
� �4).

The raw scores and their deviation scores are also shown pictorially in Figure 4.4.
Let’s suppose that you are a budding mathematician (use your imagination if

necessary). You have been assigned the task of deriving a measure of dispersion
that gives the average deviation of the scores about the mean. After some reflec-
tion, you say,“That’s easy. Just calculate the deviation from the mean of each score
and average the deviation scores.”Your logic is impeccable.There is only one stum-
bling block. Consider the scores in Table 4.6. For the sake of this example, we will
assume this is a population set of scores. The first column contains the population
raw scores and the second column the deviation scores. We want to calculate the
average deviation of the raw scores about their mean. According to your method,
we would first compute the deviation scores (second column) and average them by
dividing the sum of the deviation scores by N. The stumbling block is
that Remember this is a general property of the mean.The sum of
the deviations about the mean always equals zero. Thus, if we follow your sugges-
tion, the average of the deviations would always equal zero, no matter how dis-
persed the scores were 

You are momentarily stunned by this unexpected low blow. However, you don’t
give up. You look at the deviation scores and you see that the negative scores are
canceling the positive ones. Suddenly, you have a flash of insight. Why not square
each deviation score? Then all the scores would be positive, and their sum would no
longer be zero. Eureka! You have solved the problem. Now you can divide the sum
of the squared scores by N to get the average value and the aver-
age won’t equal zero. You should note that the numerator of this formula

is called the sum of squares or, more accurately, sum of squared devi-
ations, and is symbolized as .The only trouble at this point is that you have now
calculated the average squared deviation, not the average deviation.What you need
to do is “unsquare” the answer. This is done by taking the square root of SSpop�N.

SSpop

3� 1X � m22 4

3� 1X � m22�N 4 ,

3� 1X � m2�N � 0�N � 0 4 .

� 1X � m2 � 0.
3� 1X � m2 4

2 1X � 22

 X � m  deviation score for population data
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d e f i n i t i o n ■ A deviation score tells how far away the raw score is from the mean of its
distribution.

t a b l e 4.5 Calculating deviation scores

X Calculation of X

12 12 � 6 � �4

14 14 � 6 � �2

16 16 � 6 � 0

18 18 � 6 � �2

10 10 � 6 � �4

� 6.00

X �X

X �
g  X
N

�
30
5



Your reputation as a mathematician is vindicated! You have come up with the
equation for standard deviation used by many statisticians. The symbol for the
standard deviation of population scores is (the lowercase Greek letter sigma)
and for samples is Your derived equation for population scores is as follows:

where

Calculation of the standard deviation of a population set of scores using the de-
viation method is shown in Table 4.6.

Technically, the equation is the same for calculating the standard deviation of
sample scores. However, when we calculate the standard deviation of sample
data, we usually want to use our calculation to estimate the population standard
deviation. It can be shown algebraically that the equation with N in the denomi-
nator gives an estimate that on the average is too small. Dividing by in-
stead of gives a more accurate estimate of Since estimation of the popula-
tion standard deviation is an important use of the sample standard deviation and
since it saves confusion later on in this textbook when we cover Student’s test
and the test, we have chosen to adopt the equation with in the denomi-
nator for calculating the standard deviation of sample scores. Thus,

where � X
––

)2 sum of squares—sample dataSS � � 1X

standard deviation of a
sample set of raw scores—
deviation method

s � Estimated s � B
SS

N � 1
� B

� 1X � X 22

N � 1

N � 1F
t

s.N,
N � 1,

SSpop � � 1X � m22  sum of squares—population data

 s � B
SSpop

N
� B

� 1X � m22

N

s.
s
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2Raw score (X ): 4 6

–2

8 10

–4Deviation score (X – X): –2 0 +2 +4

X
–

–

+2

–4 +4

f i g u r e 4.4 Raw scores and their corresponding deviation scores.

t a b l e 4.6 Calculation of the standard deviation of a population set of scores using the 
deviation method

X � � (X � �)2 Calculation of � and �

3 �2

4 �1

5 0

6 �1

7

© 1X � m22 � 10© 1X � m2 � 0

s � B
SSpop

N
� B

g  1X � m22

N
� B

10
5

� 1.41

X

m �
© X
N

�
25
5

� 5.00

standard deviation of a population set
of raw scores—deviation method

4

1

0

1

4�2

MENTORING TIP
Caution: be sure you under-
stand why we compute s with
N � 1 in the denominator.



In most practical situations, the data are from samples rather than popula-
tions. Calculation of the standard deviation of a sample using the preceding equa-
tion for samples is shown in Table 4.7. Although this equation gives the best con-
ceptual understanding of the standard deviation and it does yield the correct
answer, it is quite cumbersome to use in practice. This is especially true if the
mean is not a whole number. Table 4.8 shows an illustration using the previous
equation with a mean that has a decimal remainder. Note that each deviation
score has a decimal remainder that must be squared to get (X � X

––
)2.A great deal

of rounding is necessary, which may contribute to inaccuracy. In addition, we are
dealing with adding five-digit numbers, which increases the possibility of error.
You can see how cumbersome using this equation becomes when the mean is not
an integer, and in most practical problems, the mean is not an integer!

Calculating the standard deviation of a sample using the raw scores method
It can be shown algebraically that

SS � � X 2 �
1� X 22

N
  sum of squares
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t a b l e 4.7 Calculation of the standard deviation of sample scores using the 
deviation method

X � X (X � X )2 Calculation of X and s

12 �4 16

14 �2 4

16 0 0

18 �2 4

10 �4 16

� 210 � 3.16SS � 40� 1X �    2 � 0

s � B
SS

N � 1
� B

� 1X �    22

N � 1
� B

40
5 � 1

X

�
� X
N

�
30
5

� 6.00

t a b l e 4.8 Calculation of the standard deviation using deviation scores
when the mean is not a whole number

X � X (X � X )2 Calculation of X and s

10 �6.875 47.2656

12 �4.875 23.7656

13 �3.875 15.0156

15 �1.875 33.5156 

18 �1.125 31.2656

20
�

3.125
3
9.7656

22
�

5.125 26.2656

25
�

8.125 66.0156

8 � 5.25N �

� 227.5535
SS � 192.8748� 1X �   2 � 0.000� X � 135

� B
192.8748

7

s � B
SS

N � 1
� B

� 1X �    22

N � 1

�
� X
N

�
135

8
� 16.875

X

X

X

X

X

X

X



The derivation is presented in Note 4.2. Using this equation to find allows us
to use the raw scores without the necessity of calculating deviation scores. This, in
turn, avoids the decimal remainder difficulties described previously. We shall call
this method of computing “the raw score method” to distinguish it from the
“deviation method.” Since the raw score method is generally easier to use and
avoids potential errors, it is the method of choice in computing and will be used
throughout the remainder of this text.When using the raw score method, you must
be sure not to confuse and is read “sum X square,” or “sum of
the squared X scores,” and is read “sum X quantity squared,” or “sum of the
X scores, squared.” To find we square each score and then sum the squares.
To find we sum the scores and then square the sum. The result is different
for the two procedures. In addition, must be positive. If your calculation turns
out negative, you have probably confused and 

Table 4.9 shows the calculation of the standard deviation, using the raw score
method, of the data presented in Table 4.8. When using this method, we first cal-
culate from the raw score equation and then substitute the obtained value in
the equation for the standard deviation.

Properties of the standard deviation The standard deviation has many im-
portant characteristics. First, the standard deviation gives us a measure of disper-
sion relative to the mean. This differs from the range, which gives us an absolute
measure of the spread between the two most extreme scores. Second, the stan-
dard deviation is sensitive to each score in the distribution. If a score is moved
closer to the mean, then the standard deviation will become smaller. Conversely,
if a score shifts away from the mean, then the standard deviation will increase.
Third, like the mean, the standard deviation is stable with regard to sampling fluc-
tuations. If samples were taken repeatedly from populations of the type usually
encountered in the behavioral sciences, the standard deviation of the samples
would vary much less from sample to sample than the range. This property is one
of the main reasons why the standard deviation is used so much more often than
the range for reporting variability. Finally, both the mean and the standard devi-
ation can be manipulated algebraically. This allows mathematics to be done with
them for use in inferential statistics.

Now let’s do Practice Problems 4.6 and 4.7.

SS

1� X 2 2.� X 2
SS

1� X 2 2,
� X 2,
1� X 2 2

� X 21� X 2 2.� X 2

SS

SS

SS
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t a b l e 4.9 Calculation of the standard deviation using the raw score method

Calculation of SS Calculation of s

10 100

12 144

13 169

15 225

18 324

20 400

22 484

25 625

8N �

� X 2 � 2471� X � 135

� 5.25� 192.875

� 227.5536� 2471 � 2278.125

� B
192.875

7
� 2471 �

113522

8

s � B
SS

N � 1
SS � � X 2 �

1� X 2 2

N

X 2X



P r a c t i c e  P r o b l e m  4.6

Calculate the standard deviation of the scores contained in the first column
of the following table:

Calculation of SS Calculation of s

25 625

28 784

35 1,225

37 1,369

38 1,444

40 1,600

42 1,764

45 2,025

47 2,209

50 2,500

10N �

� X 2 � 15,545� X � 387

 � 7.94 � 568.1

 � 263.1222 � 15,545 � 14,976.9

 � B
568.1

9
 � 15,545 �

13872 2

10

s � B
SS

N � 1
 SS � � X 2 �

1� X 2 2

N
    

X 2X

P r a c t i c e  P r o b l e m  4.7

Calculate the standard deviation of the scores contained in the first column
of the following table:

Calculation of SS Calculation of s

1.2 1.44

1.4 1.96

1.5 2.25

1.7 2.89

1.9 3.61

2.0 4.00

2.2 4.84

2.4 5.76

2.5 6.25

2.8 7.84

3.0 9.00

3.3 10.89

N � 12

� X 2 � 60.73� X � 25.9

� 0.66� 4.8292

� 20.4390� 60.73 � 55.9008

� B
4.8292

11
� 60.73 �

125.92 2

12

s � B
SS

N � 1
SS � � X 2 �

1� X 2 2

N

X 2X

84
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The Variance

The variance of a set of scores is just the square of the standard deviation. For
sample scores, the variance equals

For population scores, the variance equals

The variance is not used much in descriptive statistics because it gives us squared
units of measurement. However, it is used quite frequently in inferential statistics.

s2 �
SSpop

N
    variance of a population

s2 � Estimated s2 �
SS

N � 1
    variance of a sample

In this chapter, I have discussed the central tendency
and variability of distributions. The most common
measures of central tendency are the arithmetic 
mean, the median, and the mode.The arithmetic mean
gives the average of the scores and is computed by
summing the scores and dividing by N. The median di-
vides the distribution in half and, hence, is the scale
value that is at the 50th percentile point of the distrib-
ution. The mode is the most frequent score in the dis-
tribution. The mean possesses special properties that
make it by far the most commonly used measure of
central tendency. However, if the distribution is quite
skewed, the median should be used instead of the
mean because it is less affected by extreme scores. In
addition to presenting these measures, I showed how
to calculate each and elaborated their most important

properties. I also showed how to obtain the overall
mean when the average of several means is desired. Fi-
nally, we discussed the relationship between the mean,
median, and mode of a distribution and its symmetry.

The most common measures of variability are the
range, the standard deviation, and the variance. The
range is a crude measure that tells the dispersion be-
tween the two most extreme scores. The standard de-
viation is the most frequently encountered measure
of variability. It gives the average dispersion about
the mean of the distribution. The variance is just the
square of the standard deviation. As with the mea-
sures of central tendency, our discussion of variability
included how to calculate each measure. Finally, since
the standard deviation is the most important measure
of variability, I also presented its properties.

■ SUMMARY

Arithmetic mean (p. 70)
Central tendency (p. 70)
Deviation score (p. 79)
Dispersion (p. 79)

Median (p. 75)
Mode (p. 77)
Overall mean (p. 73)
Range (p. 79)

Standard deviation (p. 79)
Sum of squares (p. 81)
Variability (p. 70)
Variance (p. 85)

■ IMPORTANT NEW TERMS

1. Define or identify the terms in the Important New
Terms section.

2. State four properties of the mean and illustrate
each with an example.

3. Under what condition might you prefer to use the
median rather than the mean as the best measure
of central tendency? Explain why.

4. Why is the mode not used very much as a measure
of central tendency?

5. The overall mean (X
––

overall ) is a weighted mean. Is
this statement correct? Explain.

6. Discuss the relationship between the mean and
median for distributions that are symmetrical and
skewed.

■ QUESTIONS AND PROBLEMS



7. Why is the range not as useful a measure of dis-
persion as the standard deviation?

8. The standard deviation is a relative measure of
average dispersion. Is this statement correct? 
Explain.

9. Why do we use in the denominator for
computing s but use N in the denominator for
determining 

10. What is the raw score equation for SS? When is
it useful?

11. Give three properties of the standard deviation.
12. How are the variance and standard deviation re-

lated?
13. If what must be true about the scores in the

distribution? Verify your answer using an example.
14. Can the value of the range, standard deviation,

or variance of a set of scores be negative? Ex-
plain.

15. Give the symbol for each of the following:
a. Mean of a sample
b. Mean of a population
c. Standard deviation of a sample
d. Standard deviation of a population
e. A raw score
f. Variance of a sample
g. Variance of a population

16. Calculate the mean, median, and mode for the
following scores:
a. 5, 2, 8, 2, 3, 2, 4, 0, 6
b. 30, 20, 17, 12, 30, 30, 14, 29
c. 1.5, 4.5, 3.2, 1.8, 5.0, 2.2

17. Calculate the mean of the following set of sam-
ple scores: 1, 3, 4, 6, 6.
a. Add a constant of 2 to each score. Calculate

the mean for the new values. Generalize to
answer the question, “What is the effect on
the mean of adding a constant to each score?”

b. Subtract a constant of 2 from each score. Cal-
culate the mean for the new values. General-
ize to answer the question, “What is the effect
on the mean of subtracting a constant from
each score?”

c. Multiply each score by a constant of 2. Calcu-
late the mean for the new values. Generalize
to answer the question, “What is the effect on
the mean of multiplying each score by a con-
stant?”

d. Divide each score by a constant of 2. Calculate
the mean for the new values. Generalize to an-
swer the question, “What is the effect on the
mean of dividing each score by a constant?”

s � 0,

s?

N � 1

18. The following scores resulted from a biology
exam:

Scores Scores

95–99 3 65–69 7

90–94 3 60–64 6

85–89 5 55–59 5

80–84 6 50–54 3

75–79 6 45–49 2

70–74 8

a. What is the median for this exam?
b. What is the mode? education

19. Using the scores shown in Table 3.5 (p. 48),
a. Determine the median.
b. Determine the mode.

20. Using the scores shown in Table 3.6 (p. 49),
a. Determine the median.
b. Determine the mode.

21. For the following distributions, state whether you
would use the mean or the median to represent
the central tendency of the distribution. Explain
why.
a. 2, 3, 8, 5, 7, 8
b. 10, 12, 15, 13, 19, 22
c. 1.2, 0.8, 1.1, 0.6, 25

22. Given the following values of central tendency
for each distribution, determine whether the dis-
tribution is symmetrical, positively skewed, or
negatively skewed:
a. Mean � 14, median � 12, mode � 10
b. Mean � 14, median � 16, mode � 18
c. Mean � 14, median � 14, mode � 14

23. A student kept track of the number of hours she
studied each day for a 2-week period. The fol-
lowing daily scores were recorded (scores are in
hours): 2.5, 3.2, 3.8, 1.3, 1.4, 0, 0, 2.6, 5.2, 4.8, 0, 4.6,
2.8, 3.3. Calculate
a. The mean number of hours studied per day
b. The median number of hours studied per 

day
c. The modal number of hours studied per day

education
24. Two salesmen working for the same company are

having an argument. Each claims that the aver-
age number of items he sold, averaged over the
last month, was the highest in the company. Can
they both be right? Explain. I/O, other

ff
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25. An ornithologist studying the glaucous-winged
gull on Puget Sound counts the number of agres-
sive interactions per minute among a group of
sea gulls during 9 consecutive minutes. The fol-
lowing scores resulted: 24, 9, 12, 15, 10, 13, 22, 20,
14. Calculate
a. The mean number of aggressive interactions

per minute
b. The median number of aggressive interac-

tions per minute
c. The modal number of aggressive interactions

per minute biological
26. A reading specialist tests the reading speed of

children in four ninth-grade English classes.
There are 42 students in class A, 35 in class B,
33 in class C, and 39 in class D. The mean reading
speed in words per minute for the classes were as
follows: class A, 220; class B, 185; class C, 212; and
class D, 172. What is the mean reading speed for
all classes combined? education

27. For the following sample sets of scores, calculate
the range, the standard deviation, and the variance:
a. 6, 2, 8, 5, 4, 4, 7
b. 24, 32, 27, 45, 48
c. 2.1, 2.5, 6.6, 0.2, 7.8, 9.3

28. In a particular statistics course, three exams were
given. Each student’s grade was based on a
weighted average of his or her exam scores. The
first test had a weight of 1, the second test had a
weight of 2, and the third test had a weight of 2.
The exam scores for one student are listed here.
What was the student’s overall average?

Exam 1 2 3

Score 83 97 92

education
29. The timekeeper for a particular mile race uses a

stopwatch to determine the finishing times of the
racers. He then calculates that the mean time for
the first three finishers was 4.25 minutes. After
checking his stopwatch, he notices to his horror
that the stopwatch begins timing at 15 seconds
rather than at 0, resulting in scores each of which
is 15 seconds too long. What is the correct mean
time for the first three finishers? I/O, other

30. The manufacturer of brand A jogging shoes
wants to determine how long the shoes last be-
fore resoling is necessary. She randomly samples
from users in Chicago, New York, and Seattle. In
Chicago, the sample size was 28, and the mean
duration before resoling was 7.2 months. In New

York, the sample size was 35, and the mean du-
ration before resoling was 6.3 months. In Seattle,
the sample size was 22, and the mean duration
before resoling was 8.5 months. What is the over-
all mean duration before resoling is necessary for
brand A jogging shoes? I/O, other

31. Calculate the standard deviation of the following
set of sample scores: 1, 3, 4, 6, 6.
a. Add a constant of 2 to each score. Calculate

the standard deviation for the new values.
Generalize to answer the question, “What is
the effect on the standard deviation of adding
a constant to each score?”

b. Subtract a constant of 2 from each score. Cal-
culate the standard deviation for the new val-
ues. Generalize to answer the question,“What
is the effect on the standard deviation of sub-
tracting a constant from each score?”

c. Multiply each score by a constant of 2. Calcu-
late the standard deviation for the new values.
Generalize to answer the question, “What is
the effect on the standard deviation of multi-
plying each score by a constant?”

d. Divide each score by a constant of 2. Calcu-
late the standard deviation for the new values.
Generalize to answer the question, “What is
the effect on the standard deviation of divid-
ing each score by a constant?”

32. An industrial psychologist observed eight drill-
press operators for 3 working days. She recorded
the number of times each operator pressed the
“faster” button instead of the “stop” button to
determine whether the design of the control
panel was contributing to the high rate of acci-
dents in the plant. Given the scores 4, 7, 0, 2, 7, 3,
6, 7, compute the following:
a. Mean
b. Median
c. Mode
d. Range
e. Standard deviation
f. Variance I/O

33. Without actually calculating the variability, study
the following sample distributions:
Distribution a: 21, 24, 28, 22, 20
Distribution b: 21, 32, 38, 15, 11
Distribution c: 22, 22, 22, 22, 22
a. Rank-order them according to your best

guess of their relative variability.
b. Calculate the standard deviation of each to

verify your rank ordering.
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34. Compute the standard deviation for the follow-
ing sample scores. Why is s so high in part b, rel-
ative to part a?
a. 6, 8, 7, 3, 6, 4
b. 6, 8, 7, 3, 6, 35

35. A social psychologist interested in the dating
habits of college undergraduates samples 10 stu-
dents and determines the number of dates they
have had in the last month. Given the scores 1, 8,
12, 3, 8, 14, 4, 5, 8, 16, compute the following:
a. Mean b. Median
c. Mode d. Range
e. Standard deviation f. Variance social

36. A cognitive psychologist measures the reaction
times of 6 subjects to emotionally laden words.
The following scores in milliseconds are re-
corded: 250, 310, 360, 470, 425, 270. Compute the
following:
a. Mean b. Median
c. Mode d. Range
e. Standard deviation f. Variance cognitive

37. A biological psychologist records the number of
cells in a particular brain region of cats that re-
spond to a tactile stimulus. Nine cats are used.
The following cell counts/animal are recorded:
15, 28, 33, 19, 24, 17, 21, 34, 12. Compute the
following:
a. Mean b. Median
c. Mode d. Range
e. Standard deviation f. Variance biological

38. What happens to the mean of a set of scores if
a. A constant a is added to each score in the set?
b. A constant a is subtracted from each score in

the set?

c. Each score is multiplied by a constant a?
d. Each score is divided by a constant a?
Illustrate each of these with a numerical example.

39. What happens to the standard deviation of a set
of scores if
a. A constant a is added to each score in the set?
b. A constant a is subtracted from each score in

the set?
c. Each score is multiplied by a constant a?
d. Each score is divided by a constant a?
Illustrate each of these with a numerical example.

40. Suppose that, as is done in some lotteries, we
sample balls from a big vessel. The vessel con-
tains a large number of balls, each labeled with a
single number, 0–9. There are an equal number
of balls for each number, and the balls are con-
tinually being mixed. For this example, let’s col-
lect 10 samples of three balls each. Each sample
is formed by selecting balls one at a time and re-
placing each ball back in the vessel before select-
ing the next ball. The selection process used en-
sures that every ball in the vessel has an equal
chance of being chosen on each selection. As-
sume the following samples are collected.

1, 3, 4 2, 2, 6 3, 8, 8 1, 6, 7 5, 6, 9
3, 4, 7 1, 2, 6 2, 3, 7 6, 8, 9 4, 7, 9

a. Calculate the mean of each sample.
b. Calculate the median of each sample.
c. Based on the properties of the mean and me-

dian discussed previously in the chapter, do you
expect more variability in the means or medi-
ans? Verify this by calculating the standard de-
viation of the means and medians. other
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4.1 To show that 

 � 0
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 � � Xi � N a
� Xi

N
b

 � � Xi � N

� 1Xi �    2 � � Xi � �

� 1Xi �    2 � 0, 4.2 To show that 

 � � X 2 �
1� X22

N

 � � X 2 �
2 1� X22

N
�
1� X22
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 � � X2 � 2 a
� X
N
b � X �

N 1� X22
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 � � X 2 � 2     � X � N    2
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SS � �  1X �    22
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We will assume that you are in the SPSS
Data Editor with a blank table on screen,
and that the screen is displaying the Data
View. This is shown on the right. The cursor
is located in row 1 of the leftmost variable
column. SPSS is ready for you to input your
data into that column.

To enter the scores,

Type 78, then Press Enter.
Type 65, then Press Enter.
Type 47, then Press Enter.
Type 38, then Press Enter.
Type 86, then Press Enter.
Type 57, then Press Enter.
Type 88, then Press Enter.
Type 66, then Press Enter.
Type 43, then Press Enter.
Type 95, then Press Enter.
Type 73, then Press Enter.
Type 82, then Press Enter.
Type 61, then Press Enter. The data are now entered in the Data Editor, under the variable

named VAR00001 (see the following page).

SPSS Illustrative Example 89

This example has been taken from the SPSS material on the web. If you actually
do the web material, it assumes you are seated at your computer, running SPSS.
However, we don’t expect you to be doing that now. Instead, we have included
this SPSS example here in the textbook so that you can get a feel for what it
would be like to use SPSS, even though you are not actually running it.

e x a m p l e Use SPSS to compute the mean, standard deviation, variance, and range for
the following set of mathematics exam scores:

Mathexam: 78, 65, 47, 38, 86, 57, 88, 66, 43, 95, 73, 82, 61

S O L U T I O N

STEP 1: Enter and Name the Data.

■ SPSS ILLUSTRATIVE EXAMPLE
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Let’s now change the name of the variable
from VAR00001 to Mathexam.

Click the Variable View tab in the lower
left corner.

This displays the Variable View on screen with the cell
containing the name VAR00001 highlighted.

Type Mathexam in the highlighted cell,
then Press Enter.

Mathexam is entered as the variable name, replacing VAR00001
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Next, let’s return to the Data View.

Click the Data View tab in the lower left
corner.

The screen now displays the Data View. Notice the variable
name VAR00001 has been changed to Mathexam. The data have
now been entered and named.
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Click Analyze on the menu
bar at the top of the screen.

Select Descriptive Statistics.

Click Descriptives . . . .

STEP 2: Compute the Mean, Standard Deviation, Variance, and Range of the Scores. To
compute these statistics for the scores entered in the Data Editor,

This produces a drop-down menu.

This produces another drop-down menu.

This produces the Descriptives dialog box shown below, with
Mathexam highlighted.

Click the � button in the middle of the
dialog box.

Click the Options button at the bottom
right of the dialog box.

This moves Mathexam from the large box on the left into the
Variable(s): box on the right. SPSS does its computations on
variables entered into this box.

This produces the Descriptives: Options dialog box shown here.
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SPSS will compute the statistics that have
checked boxes. Therefore,

Click on Minimum and Maximum.

Click in the box to the left of Variance.

Click in the box to the left of Range.

Click Continue.

This removes the default � entries for these procedures.

This produces a � in the Variance box.

This produces a � in the Range box. The boxes for Mean, Std.
deviation, Variance, and Range are now checked. SPSS will
compute these checked statistics when given the OK.

This returns you to the Descriptives dialog box with the OK
button enabled.

Click OK. SPSS then analyzes the Mathexam data and displays the 
following results.

This sure beats computing these statistics by hand. You enter the
data, click a few menu and dialog box items, click OK, and
voila—the correct values of the desired statistics appear. While
this is wonderful, there is a serious limitation for a student
learning statistics. You learn nothing about the statistics them-
selves when using SPSS. It is very important that you do hand
calculations to understand the statistics themselves.
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BOOK COMPANION SITE

To access the material on the book companion site,
go to www.cengage.com/psychology/pagano and click
“Companion Site” in the Student section. The book
companion site contains the following material:

• Chapter Outline
• Know and Be Able to Do
• Flash cards for review of terms
• Tutorial Quiz
• Solving Problems with SPSS
• Statistical Workshops
• And more

The problems for this chapter as well as guided, in-
teractive, problem-solving tutorials may be assigned
online at Enhanced WebAssign.

www.cengage.com/psychology/pagano
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Summary

Important New Terms

Questions and Problems
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The Normal Curve 
and Standard Scores

LEARNING OBJECTIVES

After completing this chapter, you should be able to:
■ Describe the typical characteristics of a normal curve.
■ Define a z score.
■ Compute the z score for a raw score, given the raw score, the mean,

and standard deviation of the distribution.
■ Compute the z score for a raw score, given the raw score and the 

distribution of raw scores.
■ Explain the three main features of z distributions.
■ Use z scores with a normal curve to find: (a) the percentage of scores

falling below any raw score in the distribution, (b) the percentage 
of scores falling above any raw score in the distribution, and (c) the
percentage of scores falling between any two raw scores in the dis-
tribution.

■ Understand the illustrative examples, do the practice problems, and
understand the solutions.

Chapter 5



INTRODUCTION

The normal curve is a very important distribution in the behavioral sciences.
There are three principal reasons why. First, many of the variables measured in
behavioral science research have distributions that quite closely approximate the
normal curve. Height, weight, intelligence, and achievement are a few examples.
Second, many of the inference tests used in analyzing experiments have sampling
distributions that become normally distributed with increasing sample size. The
sign test and Mann–Whitney test are two such tests, which we shall cover later
in the text. Finally, many inference tests require sampling distributions that are
normally distributed (we shall discuss sampling distributions in Chapter 12). The

test, Student’s test, and the test are examples of inference tests that depend
on this point. Thus, much of the importance of the normal curve occurs in con-
junction with inferential statistics.

THE NORMAL CURVE

The normal curve is a theoretical distribution of population scores. It is a bell-
shaped curve that is described by the following equation:

where Y � frequency of a given value of X*
X � any score in the distribution
� � mean of the distribution
� � standard deviation of the distribution
N � total frequency of the distribution
� � a constant of 3.1416
e � a constant of 2.7183

Most of us will never need to know the exact equation for the normal curve. It
has been given here primarily to make the point that the normal curve is a theo-
retical curve that is mathematically generated. An example of the normal curve
is shown in Figure 5.1.

Note that the curve has two inflection points, one on each side of the mean.
Inflection points are located where the curvature changes direction. In Figure 5.1,
the inflection points are located where the curve changes from being convex
downward to being convex upward. If the bell-shaped curve is a normal curve,
the inflection points are at 1 standard deviation from the mean and

Note also that as the curve approaches the horizontal axis, it is slowly
changing its value. Theoretically, the curve never quite reaches the axis. It ap-
proaches the horizontal axis and gets closer and closer to it, but it never quite
touches it. The curve is said to be asymptotic to the horizontal axis.

Y
m � 1 s2.

1m � 1 s

Y �
N

22p s
 e�1X�m22/2 s2

  equation of the normal curve

Ftz

U
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*The labeling of Y as “frequency” is a slight simplification. I believe this simplification aids consid-
erably in understanding and applying the material that follows. Strictly speaking, it is the area under
the curve, between any two X values, that is properly referred to as “frequency.” For a discussion of
this point, see E. Minium and B. King, Statistical Reasoning in Psychology and Education, 4th ed.,
John Wiley and Sons, New York, 2008, p. 119.

MENTORING TIP
Note that the normal curve is
a theoretical curve and is only
approximated by real data.



Area Contained Under the Normal Curve

In distributions that are normally shaped, there is a special relationship between
the mean and the standard deviation with regard to the area contained under the
curve. When a set of scores is normally distributed, 34.13% of the area under
the curve is contained between the mean and a score that is equal to

of the area is contained between a score equal to and
a score of of the area is contained between scores of and

and 0.13% of the area exists beyond This accounts for 50% of
the area. Since the curve is symmetrical, the same percentages hold for scores be-
low the mean. These relationships are shown in Figure 5.2. Since frequency is
plotted on the vertical axis, these percentages represent the percentage of scores
contained within the area.

To illustrate, suppose we have a population of 10,000 IQ scores. The distribu-
tion is normally shaped, with � � 100 and � � 16. Since the scores are normally
distributed, 34.13% of the scores are contained between scores of 100 and 116 (� �
1� = 100 � 16 � 116), 13.59% between 116 and 132 (� � 2� � 100 � 32 � 132),
2.15% between 132 and 148, and 0.13% above 148. Similarly, 34.13% of the
scores fall between 84 and 100, 13.59% between 68 and 84, 2.15% between 52
and 68, and 0.13% below 52. These relationships are also shown in Figure 5.2.

m � 3 s.m � 3 s;
m � 2 sm � 2 s; 2.15%
m � 1 sm � 1 s; 13.59%

1m2
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f i g u r e 5.1 Normal curve.

0.13% 0.13%
2.15% 2.15%

13.59% 13.59%
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qu
en

cy

f i g u r e 5.2 Areas under the normal curve for selected scores.



To calculate the number of scores in each area, all we must do is multiply 
the relevant percentage by the total number of scores. Thus, there are 34.13% �
10,000 � 3413 scores between 100 and 116, 13.59% � 10,000 = 1359 scores be-
tween 116 and 132, and 215 scores between 132 and 148; 13 scores are greater
than 148. For the other half of the distribution, there are 3413 scores between 84
and 100, 1359 scores between 68 and 84, and 215 scores between 52 and 68; there
are 13 scores below 52. Note that these frequencies would be true only if the dis-
tribution is exactly normally distributed. In actual practice, the frequencies
would vary slightly depending on how close the distribution is to this theoreti-
cal model.

STANDARD SCORES (z SCORES)

Suppose someone told you your IQ was 132. Would you be happy or sad? In the
absence of additional information, it is difficult to say. An IQ of 132 is meaning-
less unless you have a reference group to compare against. Without such a
group, you can’t tell whether the score is high, average, or low. For the sake of
this illustration, let’s assume your score is one of the 10,000 scores of the distri-
bution just described. Now we can begin to give your IQ score of 132 some
meaning. For example, we can determine the percentage of scores in the distri-
bution that are lower than 132. You will recognize this as determining the per-
centile rank of the score of 132. (As you no doubt recall, the percentile rank of
a score is defined as the percentage of scores that is below the score in question.)
Referring to Figure 5.2, we can see that 132 is 2 standard deviations above the
mean. In a normal curve, there are of the scores be-
tween the mean and a score that is 2 standard deviations above the mean.To find
the percentile rank of 132, we need to add to this percentage the 50.00% that lie
below the mean. Thus, 97.72% (47.72 � 50.00) of the scores fall below your IQ
score of 132. You should be quite happy to be so intelligent. The solution is
shown in Figure 5.3.

To solve this problem, we had to determine how many standard deviations
the raw score of 132 was above or below the mean. In so doing, we transformed
the raw score into a standard score, also called a z score.

34.13 � 13.59 � 47.72%
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X:

47.72%

Percentile rank of 132: 50.00 + 47.72 = 97.72%

50.00%

100
µ

σ

132
µ      σ+ 2

= 16

f i g u r e 5.3 Percentile rank of an IQ of 132.



In equation form,

For the previous example,

The process by which the raw score is altered is called a score transformation.
We shall see later that the z transformation results in a distribution having a
mean of 0 and a standard deviation of 1. The reason z scores are called standard
scores is that they are expressed relative to a distribution mean of 0 and a stan-
dard deviation of 1.

In conjunction with a normal curve, z scores allow us to determine the num-
ber or percentage of scores that fall above or below any score in the distribution.
In addition, z scores allow comparison between scores in different distributions,
even when the units of the distributions are different. To illustrate this point, let’s
consider another population set of scores that are normally distributed. Suppose
that the weights of all the rats housed in a university vivarium are normally dis-
tributed, with and grams. What is the percentile rank of a rat
weighing 340 grams?

The solution is shown in Figure 5.4. First, we need to convert the raw score
of 340 grams to its corresponding z score:

z �
X � m
s

�
340 � 300

20
� 2.00

s � 20m � 300

z �
X � m
s

�
132 � 100

16
� 2.00

z �
X � X

s
  z score for sample data

z �
X � m
s

  z score for population data
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d e f i n i t i o n  ■ A z score is a transformed score that designates how many standard devia-
tion units the corresponding raw score is above or below the mean.

X:
z:

Percentile rank of 340: 50.00 + 47.72 = 97.72%

300 340
20

47.72%50.00%

f i g u r e  5.4  Percentile rank of a rat weighing 340 grams.



Since the scores are normally distributed, of the scores
are between the score and the mean. Adding the remaining 50.00% that lie 
below the mean, we arrive at a percentile rank of 
for the weight of 340 grams. Thus, the IQ score of 132 and the rat’s weight 
of 340 grams have something in common. They both occupy the same rela-
tive position in their respective distributions. The rat is as heavy as you are
smart.

This example, although somewhat facetious, illustrates an important use of z
scores—namely, to compare scores that are not otherwise directly comparable.
Ordinarily, we would not be able to compare intelligence and weight. They are
measured on different scales and have different units. But by converting the
scores to their z-transformed scores, we eliminate the original units and replace
them with a universal unit, the standard deviation. Thus, your score of 132 IQ
units becomes a score of 2 standard deviation units above the mean, and the rat’s
weight of 340 grams also becomes a score of 2 standard deviation units above the
mean. In this way, it is possible to compare “anything with anything” as long as
the measuring scales allow computation of the mean and standard deviation. The
ability to compare scores that are measured on different scales is of fundamental
importance to the topic of correlation. We shall discuss this in more detail when
we take up that topic in Chapter 6.

So far, the examples we’ve been considering have dealt with populations. It
might be useful to practice computing z scores using sample data. Let’s do this in
the next practice problem.

47.72 � 50.00 � 97.72%

34.13 � 13.59 � 47.72%
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P r a c t i c e  P r o b l e m  5.1

For the set of sample raw scores determine the z score for
each raw score.

STEP 1: Determine the mean of the raw scores.

STEP 2: Determine the standard deviation of the scores.

 � 2.7386          � 30

 � B
30
4
           � 155 �

12522

5

 s � B
SS

N � 1
   SS � gX 2 �

1 gX22

N

 �
gXi

N
�

25
5

� 5.00

X � 1, 4, 5, 7, 8,

(continued)

X



Characteristics of z Scores

There are three characteristics of z scores worth noting. First, the z scores have
the same shape as the set of raw scores. Transforming the raw scores into their cor-
responding z scores does not change the shape of the distribution. Nor do the
scores change their relative positions.All that is changed are the score values. Fig-
ure 5.5 illustrates this point by showing the IQ scores and their corresponding z
scores. You should note that although we have used z scores in conjunction with
the normal distribution, all z distributions are not normally shaped. If we use the
z equation given previously, z scores can be calculated for distributions of any
shape. The resulting z scores will take on the shape of the raw scores.

Second, the mean of the z scores always equals zero This follows from
the observation that the scores located at the mean of the raw scores will also be
at the mean of the z scores (see Figure 5.5).The z value for raw scores at the mean
equals zero. For example, the z transformation for a score at the mean of the IQ
distribution is given by Thus, the mean ofz � 1X � m2/s � 1100 � 1002/16 � 0.

1mz � 02.
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STEP 3: Compute the z score for each raw score.

1

4

5

7

8 z �
X �

s
�

8 � 5
2.7386

� 1.10

z �
X �

s
�

7 � 5
2.7386

� 0.73

z �
X �

s
�

5 � 5
2.7386

� 0.00

z �
X �

s
�

4 � 5
2.7386

� �0.37

z �
X �

s
�

1 � 5
2.7386

� � 1.46

zX

X

X

X

X

X

0.13% 0.13%
2.15% 2.15%

13.59% 13.59%

34.13% 34.13%

IQ:
z:

52 68 84 100 116 132 148
–3 –2 –1 0 +1 +2 +3

Score

F
re

qu
en

cy

f i g u r e 5.5 Raw IQ scores and corresponding z scores.



the z distribution equals zero.The last characteristic of importance is that the stan-
dard deviation of z scores always equals 1 This follows because a raw
score that is 1 standard deviation above the mean has a z score of �1:

Finding the Area Given the Raw Score

In the previous examples with IQ and weight, the z score was carefully chosen so
that the solution could be found from Figure 5.2. However, suppose instead of an
IQ of 132, we desire to find the percentile rank of an IQ of 142. Assume the same
population parameters. The solution is shown in Figure 5.6. First, draw a curve
showing the population and locate the relevant area by entering the score 142 on
the horizontal axis. Then shade in the area desired. Next, calculate z:

Since neither Figure 5.2 nor Figure 5.5 shows a percentage corresponding to a z
score of 2.62, we cannot use these figures to solve the problem. Fortunately, the
areas under the normal curve for various z scores have been computed, and the
resulting values are shown in Table A of Appendix D.

The first column of the table (column A) contains the z score. Column B lists the
proportion of the total area between a given z score and the mean. Column C lists
the proportion of the total area that exists beyond the z score.

We can use Table A to find the percentile rank of 142. First, we locate the z score of
2.62 in column A. Next, we determine from column B the proportion of the total
area between the z score and the mean. For a z score of 2.62, this area equals 0.4956.
To this value we must add 0.5000 to take into account the scores lying below the
mean (the picture helps remind us to do this).Thus, the proportion of scores that lie
below an IQ of 142 is To convert this proportion to a
percentage, we must multiply by 100.Thus, the percentile rank of 142 is 99.56.Table
A can be used to find the area for any z score provided the scores are normally dis-
tributed. When using Table A, it is usually sufficient to round z values to two-
decimal-place accuracy. Let’s do a few more illustrative problems for practice.

0.4956 � 0.5000 � 0.9956.

z �
X � m

s
�

142 � 100
16

�
42
16

� 2.62

z �
1m � 1 s2 � m

s
� 1

1sz � 12.
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X:
z:

Percentile rank of 142: (0.5000 + 0.4956) × 100 = 99.56%

100 142
2.620

0.49560.5000

f i g u r e 5.6 Percentile rank of an IQ of 142 in a normal
distribution with � � 100 and � � 16.
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P r a c t i c e  P r o b l e m  5.2

The scores on a nationwide mathematics aptitude exam are normally distrib-
uted, with and What is the percentile rank of a score of 84?

S O L U T I O N

In solving problems involving areas under the normal curve, it is wise, at the
outset, to draw a picture of the curve and locate the relevant areas on it. The
accompanying figure shows such a picture. The shaded area contains all the
scores lower than 84. To find the percentile rank of 84, we must first convert
84 to its corresponding z score:

To find the area between the mean and a z score of 0.33, we enter Table A,
locate the z value in column A, and read off the corresponding entry in col-
umn B. This value is 0.1293. Thus, the proportion of the total area between
the mean and a z score of 0.33 is 0.1293. From the accompanying figure, we
can see that the remaining scores below the mean occupy 0.5000 propor-
tion of the total area. If we add these two areas together, we shall have the
proportion of scores lower than 84. Thus, the proportion of scores lower
than 84 is The percentile rank of 84 is then
0.6293 � 100 � 62.93.

0.1293 � 0.5000 � 0.6293.

z �
X � m

s
�

84 � 80
12

�
4
12

� 0.33

s � 12.m � 80

MENTORING TIP
Always draw the picture first.

X:
z:

0.1293

Percentile rank of 84: (0.5000 + 0.1293) × 100 = 62.93%

0.5000

80 84
0.330
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P r a c t i c e  P r o b l e m  5.3

What percentage of aptitude scores are below a score of 66?

S O L U T I O N

Again, the first step is to draw the appropriate diagram.This is shown in the
accompanying figure. From this diagram, we can see that the relevant area
(shaded) lies beyond the score of 66. To find the percentage of scores con-
tained in this area, we must first convert 66 to its corresponding z score.
Thus,

From Table A, column C, we find that the area beyond a z score of 1.17
is 0.1210. Thus, the percentage of scores below 66 is 0.1210 �

Table A does not show any negative z scores. However,
this does not cause a problem because the normal curve is symmetrical
and negative z scores have the same proportion of area as positive z
scores of the same magnitude. Thus, the proportion of total area lying be-
yond a z score of is the same as the proportion lying beyond a z
score of �1.17.

�1.17

100 � 12.10%.

z �
X � m

s
�

66 � 80
12

�
�14
12

� �1.17

X:
z:

Percentage below 66 = 12.10%

0.1210

66 80
0–1.17
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P r a c t i c e  P r o b l e m  5.4

Using the same population as in Practice Problem 5.3, what percentage of
scores fall between 64 and 90?

S O L U T I O N

The relevant diagram is shown at the end of the practice problem. This time,
the shaded areas are on either side of the mean. To solve this problem, we
must find the area between 64 and 80 and add it to the area between 80 and
90. As before, to determine area, we must calculate the appropriate z score.
This time, however, we must compute two z scores. For the area to the left of
the mean,

For the area to the right of the mean,

Since the areas we want to determine are between the mean and the z
score, we shall use column B of Table A.The area corresponding to a z score
of is 0.4082, and the area corresponding to a z score of 0.83 is 0.2967.
The total area equals the sum of these two areas. Thus, the proportion of
scores falling between 64 and 90 is The percent-
age of scores between 64 and 90 is Note that in this
problem we cannot just subtract 64 from 90 and divide by 12. The areas in
Table A are designated with the mean as a reference point. Therefore, to
solve this problem, we must relate the scores of 64 and 90 to the mean of
the distribution. You should also note that you cannot just subtract one z
value from the other because the curve is not rectangular; rather, it has dif-
fering amounts of area under various points of the curve.

0.7049 � 100 � 70.49%.
0.4082 � 0.2967 � 0.7049.

�1.33

z �
90 � 80

12
�

10
12

� 0.83

z �
64 � 80

12
�

�16
12

� �1.33

X:
z:

0.2967

Percentage between 64 and 90: (0.4082 + 0.2967) × 100 = 70.49%

0.4082

80 90
0.830

64
–1.33
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P r a c t i c e  P r o b l e m  5.5

Another type of problem arises when we want to determine the area be-
tween two scores and both scores are either above or below the mean. Let’s
try a problem of this sort. Find the percentage of aptitude scores falling be-
tween the scores of 95 and 110.

S O L U T I O N

The accompanying figure shows the distribution and the relevant area. As
in Practice Problem 5.4, we can’t just subtract 95 from 110 and divide by 12
to find the appropriate z score. Rather we must use the mean as our refer-
ence point. In this problem, we must find (1) the area between 110 and the
mean and (2) the area between 95 and the mean. By subtracting these two
areas, we shall arrive at the area between 95 and 110. As before, we must
calculate two z scores:

From column B of Table A,

and

Thus, the proportion of scores falling between 95 and 110 is 0.4938 �
0.3944 � 0.0994. The percentage of scores is 0.0994 � 100 � 9.94%.

Area 1z � 1.252 � 0.3944

Area 1z � 2.502 � 0.4938

z �
95 � 80

12
�

15
12

� 1.25  z transformation of 95

z �
110 � 80

12
�

30
12

� 2.50    z transformation of 110

X:
z:

Percentage between 95 and 110: (0.4938 – 0.3944) × 100 = 9.94%

80 110
2.500

95
1.25

0.0994



Finding the Raw Score Given the Area

Sometimes we know the area and want to determine the corresponding score.
The following problem is of this kind. Find the raw score that divides the distri-
bution of aptitude scores such that 70% of the scores are below it.

This problem is just the reverse of the previous one. Here, we are given the
area and need to determine the score. Figure 5.7 shows the appropriate diagram.
Although we don’t know what the raw score value is, we can determine its cor-
responding z score from Table A. Once we know the z score, we can solve for the
raw score using the z equation. If 70% of the scores lie below the raw score, then
30% must lie above it. We can find the z score by searching in Table A, column
C, until we locate the area closest to 0.3000 (30%) and then noting that the z
score corresponding to this area is 0.52. To find the raw score, all we need to do
is substitute the relevant values in the z equation and solve for X. Thus,

Substituting and solving for 

 X � 80 � 1210.522 � 86.24

 0.52 �
X � 80

12

X,

z �
X � m

s
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f i g u r e 5.7 Determining the score below which 70% of the distri-
bution falls in a normal distribution with � � 80 and � � 12.

X = µ + σz = 80 + 12(0.52) = 86.24

X:
z:

30%70%

80 ?
0.520
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P r a c t i c e  P r o b l e m  5.6

Let’s try another problem of this type.What is the score that divides the dis-
tribution such that 99% of the area is below it?

S O L U T I O N

The diagram is shown below. If 99% of the area is below the score, 1% must
be above it. To solve this problem, we locate the area in column C of Table
A that is closest to 0.0100 (1%) and note that We convert the z
score to its corresponding raw score by substituting the relevant values in
the z equation and solving for X. Thus,

 X � 80 � 1212.332 � 107.96

 2.33 �
X � 80

12

 z �
X � m

s

z � 2.33.

X:
z:

X =  + z = 80 + 12(2.33) = 107.96

99%

80 ?
2.330

µ     σ
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P r a c t i c e  P r o b l e m  5.7

Let’s do one more problem. What are the scores that bound the middle
95% of the distribution?

S O L U T I O N

The diagram is shown below. There is an area of 2.5% above and below the
middle 95%.To determine the scores that bound the middle 95% of the dis-
tribution, we must first find the z values and then convert these values to
raw scores.The z scores are found in Table A by locating the area in column
C closest to 0.0250 (2.5%) and reading the associated z score in column A.
In this case, z � �1.96. The raw scores are found by substituting the rele-
vant values in the z equation and solving for X. Thus,

 � 103.52 � 56.48

 X � 80 � 12 11.962 X � 80 � 12 1�1.962

 �1.96 �
X � 80

12
 �1.96 �

X � 80
12

 z �
X � m

s

X:
z:

95%

2.5%

80 ?

2.5%

+1.96
?

–1.96 0
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In this chapter, I have discussed the normal curve
and standard scores. I pointed out that the normal
curve is a bell-shaped curve and gave the equation
describing it. Next, I discussed the area contained un-
der the normal curve and its relation to z scores. A z
score is a transformation of a raw score. It designates
how many standard deviation units the correspond-
ing raw score is above or below the mean. A z distri-
bution has the following characteristics: (1) The z

scores have the same shape as the set of raw scores,
(2) the mean of z scores always equals 0, and (3) the
standard deviation of z scores always equals 1. Fi-
nally, I showed how to use z scores in conjunction
with a normal distribution to find (1) the percentage
or frequency of scores corresponding to any raw
score in the distribution and (2) the raw score corre-
sponding to any frequency or percentage of scores in
the distribution.

■ SUMMARY

Asymptotic (p. 96) Normal curve (p. 96) Standard scores (z scores) (p. 98)

■ IMPORTANT NEW TERMS

1. Define
a. Asymptotic
b. The normal curve
c. z scores
d. Standard scores

2. What is a score transformation? Provide an ex-
ample.

3. What are the values of the mean and standard
deviation of the z distribution?

4. Must the shape of a z distribution be normal?
Explain.

5. Are all bell-shaped distributions normal distri-
butions? Explain.

6. If a set of scores is normally distributed, what
information does the area under the curve give
us?

7. What proportion of scores in a normal distribu-
tion will have values lower than z = 0? What pro-
portion will have values greater than z = 0?

8. Given the set of sample raw scores 10, 12, 16, 18,
19, 21,
a. Convert each raw score to its z-transformed

value.
b. Compute the mean and standard deviation of

the z scores.
9. Assume the raw scores in Problem 8 are popula-

tion scores and perform the calculations called
for in parts a and b.

10. A population of raw scores is normally distrib-
uted with and Determine the zs � 14.m � 60

scores for the following raw scores taken from
that population:
a. 76 b. 48
c. 86 d. 60
e. 74 f. 46

11. For the following z scores, determine the per-
centage of scores that lie beyond z:
a. 0 b. 1
c. 1.54 d.
e. 3.21 f.

12. For the following z scores, determine the per-
centage of scores that lie between the mean and
the z score:
a. 1 b.
c. 2.34 d.
e. 0 f. 0.68
g.

13. For each of the following, determine the z score
that divides the distribution such that the given
percentage of scores lies above the z score
(round to two decimal places):
a. 50% b. 2.50%
c. 5% d. 30%
e. 80% f. 90%

14. Given that a population of scores is normally dis-
tributed with and determine the
following:
a. The percentile rank of a score of 120
b. The percentage of scores that are below a

score of 99

s � 8,m � 110

�0.73

�3.01
�1

�0.45
�2.05

■ QUESTIONS AND PROBLEMS



c. The percentage of scores that are between a
score of 101 and 122

d. The percentage of scores that are between a
score of 114 and 124

e. The score in the population above which 5%
of the scores lie

15. At the end of a particular quarter, Carol took
four final exams. The mean and standard devia-
tion for each exam along with Carol’s grade on
each exam are listed here. Assume that the
grades on each exam are normally distributed.

Standard Carol’s
Exam Mean Deviation Grade

French 75.4 6.3 78.2

History 85.6 4.1 83.4

Psychology 88.2 3.5 89.2

Statistics 70.4 8.6 82.5

a. On which exam did Carol do best relative to
the other students taking the exam?

b. What was her percentile rank on this exam?
education

16. A hospital in a large city records the weight of
every infant born at the hospital.The distribution
of weights is normally shaped, has a mean

kilograms, and has a standard deviation
Determine the following:

a. The percentage of infants who weighed less
than 2.1 kilograms

b. The percentile rank of a weight of 4.2 kilo-
grams

c. The percentage of infants who weighed be-
tween 1.8 and 4.0 kilograms

d. The percentage of infants who weighed be-
tween 3.4 and 4.1 kilograms

e. The weight that divides the distribution such
that 1% of the weights are above it

f. Beyond what weights do the most extreme
5% of the scores lie?

g. If 15,000 infants have been born at the hospi-
tal, how many weighed less than 3.5 kilo-
grams? health, I/O

17. A statistician studied the records of monthly
rainfall for a particular geographic locale. She
found that the average monthly rainfall was nor-
mally distributed with a mean centime-
ters and a standard deviation What is
the percentile rank of the following scores?
a. 12.4 b. 14.3

s � 2.4.
m � 8.2

s � 0.45.
m � 2.9

c. 5.8 d. 4.1
e. 8.2 I/O, other

18. Using the same population parameters as in
Problem 17, what percentage of scores are above
the following scores?
a. 10.5 b. 13.8
c. 7.6 d. 3.5
e. 8.2 I/O, other

19. Using the same population parameters as in
Problem 17, what percentage of scores are be-
tween the following scores?
a. 6.8 and 10.2
b. 5.4 and 8.0
c. 8.8 and 10.5 I/O, other

20. A jogging enthusiast keeps track of how many
miles he jogs each week.The following scores are
sampled from his year 2007 records:

Week Distance* Week Distance

15 32 30 36

18 35 32 38

10 30 38 35

14 38 43 31

15 37 48 33

19 36 49 34

24 38 52 37

*Scores are miles run.

a. Determine the z scores for the distances
shown in the table. Note that the distances are
sample scores.

b. Plot a frequency polygon for the raw scores.
c. On the same graph, plot a frequency polygon

for the z scores.
d. Is the z distribution normally shaped? If not,

explain why.
e. Compute the mean and standard deviation of

the z distribution. I/O, other
21. A stock market analyst has kept records for the

past several years of the daily selling price of a
particular blue-chip stock. The resulting distribu-
tion of scores is normally shaped with a mean

and a standard deviation 
a. Determine the percentage of selling prices

that were below a price of $95.00.
b. What percentage of selling prices were be-

tween $76.00 and $88.00?
c. What percentage of selling prices were above

$70.00?

s � $7.62.m � $84.10
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d. What selling price divides the distribution
such that 2.5% of the scores are above it? I/O

22. Anthony is deciding whether to go to graduate
school in business or law. He has taken nationally
administered aptitude tests for both fields.
Anthony’s scores along with the national norms
are shown here. Based solely on Anthony’s rela-
tive standing on these tests, which field should he
enter? Assume that the scores on both tests are
normally distributed.

23. On which of the following exams did Rebecca do
better? How about Maurice? Assume the scores
on each exam are normally distributed.

Rebecca’s Maurice’s
� � Scores Scores

Exam 1 120 6.8 130 132

Exam 2 50 2.4 56 52

education

24. A psychologist interested in the intelligence of
children develops a standardized test for select-
ing “gifted” children. The test scores are nor-
mally distributed, with and As-
sume a gifted child is defined as one who scores
in the upper 1% of the distribution. What is the
minimum score needed to be selected as gifted?
cognitive, developmental

s � 8.m � 75
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National Norms
Anthony’s

Field � � Scores

Business 68 4.2 80.4

Law 85 3.6 89.8

education
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Correlation

LEARNING OBJECTIVES

After completing this chapter, you should be able to:
■ Define, recognize graphs of, and distinguish between the following:

linear and curvilinear relationships, positive and negative relation-
ships, direct and inverse relationships, and perfect and imperfect 
relationships.

■ Specify the equation of a straight line and understand the concepts of
slope and intercept.

■ Define scatter plot, correlation coefficient, and Pearson r.
■ Compute the value of Pearson r, and state the assumptions under-

lying Pearson r.
■ Define the coefficient of determination (r2); specify and explain an

important use of r2.
■ List three correlation coefficients other than Pearson r and specify

the factors that determine which correlation coefficient to use; spec-
ify the effects on correlation of range and of an extreme score.

■ Compute the value of Spearman rho (rs) and specify the scaling of
the variables appropriate for its use.

■ Explain why correlation does not imply causation.
■ Understand the illustrative examples, do the practice problems, and

understand the solutions.

Chapter 6



INTRODUCTION

In the previous chapters, we were mainly concerned with single distributions and
how to best characterize them. In addition to describing individual distributions,
it is often desirable to determine whether the scores of one distribution are re-
lated to the scores of another distribution. For example, the person in charge of
hiring employees for a large corporation might be very interested in knowing
whether there was a relationship between the college grades that were earned by
their employees and their success in the company. If a strong relationship
between these two variables did exist, college grades could be used to predict
success in the company and hence would be very useful in screening prospective
employees.

Aside from the practical utility of using a relationship for prediction, why
would anyone be interested in determining whether two variables are related?
One important reason is that if the variables are related, it is possible that one of
them is the cause of the other. As we shall see later in this chapter, the fact that
two variables are related is not sufficient basis for proving causality. Nevertheless,
because correlational studies are among the easiest to carry out, showing that a
correlation exists between the variables is often the first step toward proving that
they are causally related. Conversely, if a correlation does not exist between the
two variables, a causal relationship can be ruled out.

Another very important use of correlation is to assess the “test–retest relia-
bility” of testing instruments. Test–retest reliability means consistency in scores
over repeated administrations of the test. For example, assuming an individual’s
IQ is stable from month to month, we would expect a good test of IQ to show a
strong relationship between the scores of two administrations of the test 1 month
apart to the same people. Correlational techniques allow us to measure the rela-
tionship between the scores derived on the two administrations and, hence, to
measure the test–retest reliability of the instrument.

Correlation and regression are very much related. They both involve the re-
lationship between two or more variables. Correlation is primarily concerned
with finding out whether a relationship exists and with determining its magnitude
and direction, whereas regression is primarily concerned with using the relation-
ship for prediction. In this chapter, we discuss correlation, and in Chapter 7, we
will take up the topic of linear regression.

RELATIONSHIPS

Correlation is a topic that deals primarily with the magnitude and direction of re-
lationships. Before delving into these special aspects of relationships, we will dis-
cuss some general features of relationships. With these in hand, we can better un-
derstand the material specific to correlation.

Linear Relationships

To begin our discussion of relationships, let’s illustrate a linear relationship be-
tween two variables. Table 6.1 shows one month’s salary for five salespeople and
the dollar value of the merchandise each sold that month.

114 C H A P T E R  6 Correlation



The relationship between these variables can best be seen by plotting a graph
using the paired X and Y values for each salesman as the points on the graph.
Such a graph is called a scatter plot.
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d e f i n i t i o n ■ A scatter plot is a graph of paired X and Y values.

t a b l e 6.1 Salary and merchandise sold

X Variable Y Variable 
Salesperson Merchandise Sold ($) Salary ($)

1 1110 1500

2 1000 1900

3 2000 1300

4 3000 1700

5 4000 2100

The scatter plot for the salesperson data is shown in Figure 6.1. Referring to this
figure, we see that all of the points fall on a straight line. When a straight line de-
scribes the relationship between two variables, the relationship is called linear.

d e f i n i t i o n ■ A linear relationship between two variables is one in which the relationship
can be most accurately represented by a straight line.

Note that not all relationships are linear. Some relationships are curvilinear. In
these cases, when a scatter plot of the X and Y variables is drawn, a curved line
fits the points better than a straight line.

Deriving the equation of the straight line The relationship between “salary”
and “merchandise sold” shown in Figure 6.1 can be described with an equation.
Of course, this equation is the equation of the line joining all of the points. The
general form of the equation is given by

where a � Y intercept (value of Y when X � 0)
b � slope of the line

Finding the Y intercept a The Y intercept is the value of Y where the line in-
tersects the Y axis. Thus, it is the Y value when X � 0. In this problem, we can see
from Figure 6.1 that

a � Y intercept � 500

Y � bX � a  equation of a straight line



Finding the slope b The slope of a line is a measure of its rate of change. It
tells us how much the Y score changes for each unit change in the X score. In
equation form,

Since we are dealing with a straight line, its slope is constant. This means it
doesn’t matter what values we pick for X2 and X1; the corresponding Y2 and Y1

scores will yield the same value of slope. To calculate the slope, let’s vary X from
2000 to 3000. If X1 � 2000, then Y1 � 1300. If X2 � 3000, then Y2 � 1700. Sub-
stituting these values into the slope equation,

Thus, the slope is 0.40. This means that the Y value increases 0.40 unit for every 
1-unit increase in X. The slope and Y intercept determinations are also shown in
Figure 6.2. Note that the same slope would occur if we had chosen other values for
X1 and X2. For example, if X1 � 1000 and X2 � 4000, then Y1 � 900 and Y2 � 2100.
Solving for the slope,

Again, the slope is 0.40.
The full equation for the linear relationship that exists between salary and

merchandise sold can now be written:

Substituting for a and b,

Y � 0.40X � 500

Y � bX � a

b � slope �
¢Y
¢X

�
Y2 � Y1

X2 � X1
�

2100 � 900
4000 � 1000

�
1200
3000

� 0.40

b � slope �
¢Y
¢X

�
Y2 � Y1

X2 � X1
�

1700 � 1300

3000 � 2000
�

400

1000
� 0.40

b � slope �
¢Y
¢X

�
Y2 � Y1

X2 � X1
  slope of a straight line
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The equation Y � 0.40X � 500 describes the relationship between the Y
variable (salary) and the X variable (merchandise sold). It tells us that Y in-
creases by 1 unit for every 0.40 increase in X. Moreover, as long as the relation-
ship holds, this equation lets us compute an appropriate value for Y, given any
value of X. That makes the equation very useful for prediction.

Predicting Y given X When used for prediction, the equation becomes

With this equation, we can predict any Y value just by knowing the corre-
sponding X value. For example, if X � 1500 as in our previous problem, then

Thus, if a salesperson sells $1500 worth of merchandise, his or her salary would
equal $1100.

Of course, prediction could also have been done graphically, as shown in
Figure 6.1. By vertically projecting the X value of $1500 until it intersects with the
straight line, we can read the predicted Y value from the Y axis. The predicted
value is $1100, which is the same value we arrived at using the equation.

Positive and Negative Relationships

In addition to being linear or curvilinear, the relationship between two variables
may be positive or negative.

 � 1100

 � 600 � 500

 � 0.40 115002 � 500

 Y¿ � 0.40X � 500

where  Y¿ � the predicted value of the Y variable

 Y¿ � 0.40X � 500
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The slope of the line tells us whether the relationship is positive or negative.
When the relationship is positive, the slope is positive. The previous example had
a positive slope; that is, higher values of X were associated with higher values of
Y, and lower values of X were associated with lower values of Y. When the slope
is positive, the line runs upward from left to right, indicating that as X increases,
Y increases. Thus, a direct relationship exists between the two variables.

When the relationship is negative, there is an inverse relationship between
the variables, making the slope negative. An example of a negative relationship
is shown in Figure 6.3. Note that with a negative slope, the curve runs downward
from left to right. Low values of X are associated with high values of Y, and high
values of X are associated with low values of Y. Another way of saying this is that
as X increases, Y decreases.

Perfect and Imperfect Relationships

In the relationships we have graphed so far, all of the points have fallen on the
straight line. When this is the case, the relationship is a perfect one (see definition
on p. 119). Unfortunately, in the behavioral sciences, perfect relationships are
rare. It is much more common to find imperfect relationships.

As an example, Table 6.2 shows the IQ scores and grade point averages of a
sample of 12 college students. Suppose we wanted to determine the relationship
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d e f i n i t i o n s ■ A positive relationship indicates that there is a direct relationship between
the variables. A negative relationship indicates that there is an inverse rela-
tionship between X and Y.

5
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b = slope =        =             =              = –0.25

a = Y intercept = 15

Y = –0.25X + 15

∆Y—–
∆X

Y2 – Y1—––––
X2 – X1

10 – 13—–––––
20 – 8

f i g u r e 6.3 Example of a negative relationship.



between these hypothetical data.The scatter plot is shown in Figure 6.4. From the
scatter plot, it is obvious that the relationship between IQ and college grades is
imperfect. The imperfect relationship is positive because lower values of IQ are
associated with lower values of grade point average, and higher values of IQ are
associated with higher values of grade point average. In addition, the relationship
appears linear.

To describe this relationship with a straight line, the best we can do is to draw
the line that best fits the data. Another way of saying this is that, when the rela-
tionship is imperfect, we cannot draw a single straight line through all of the
points. We can, however, construct a straight line that most accurately fits the
data. This line has been drawn in Figure 6.4. This best-fitting line is often used for
prediction; when so used, it is called a regression line.*

A USA Today article reported that there is an inverse relationship between
the amount of television watched by primary school students and their reading
skills. Suppose the sixth-grade data for the article appeared as shown in Figure
6.5. This is an example of a negative, imperfect, linear relationship. The relation-
ship is negative because higher values of television watching are associated with
lower values of reading skill, and lower values of television watching are associ-
ated with higher values of reading skill. The linear relationship is imperfect be-
cause not all of the points fall on a single straight line. The regression line for
these data is also shown in Figure 6.5.

Having completed our background discussion of relationships, we can now
move on to the topic of correlation.
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d e f i n i t i o n s ■ A perfect relationship is one in which a positive or negative relationship ex-
ists and all of the points fall on the line. An imperfect relationship is one in
which a relationship exists, but all of the points do not fall on the line.

t a b l e 6.2 IQ and grade point average of 12 
college students

Student No. IQ Grade Point Average

1 110 1.0

2 112 1.6

3 118 1.2

4 119 2.1

5 122 2.6

6 125 1.8

7 127 2.6

8 130 2.0

9 132 3.2

10 134 2.6

11 136 3.0

12 138 3.6

*The details on how to construct this line will be discussed in Chapter 7.
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CORRELATION

Correlation is a topic that focuses on the direction and degree of the relationship.
The direction of the relationship refers to whether the relationship is positive or
negative.The degree of relationship refers to the magnitude or strength of the re-
lationship.The degree of relationship can vary from nonexistent to perfect.When
the relationship is perfect, correlation is at its highest and we can exactly predict
from one variable to the other. In this situation, as X changes, so does Y. More-
over, the same value of X always leads to the same value of Y. Alternatively, the
same value of Y always leads to the same value of X. The points all fall on a
straight line, assuming the relationship is linear. When the relationship is nonex-
istent, correlation is at its lowest and knowing the value of one of the variables
doesn’t help at all in predicting the other. Imperfect relationships have interme-
diate levels of correlation, and prediction is approximate. Here, the same value of
X doesn’t always lead to the same value of Y. Nevertheless, on the average, Y
changes systematically with X, and we can do a better job of predicting Y with
knowledge of X than without it.

Although it suffices for some purposes to talk rather loosely about “high”
or “low” correlations, it is much more often desirable to know the exact mag-
nitude and direction of the correlation. A correlation coefficient gives us this 
information.
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d e f i n i t i o n ■ A correlation coefficient expresses quantitatively the magnitude and direc-
tion of the relationship.

A correlation coefficient can vary from �1 to �1. The sign of the coefficient
tells us whether the relationship is positive or negative. The numerical part of
the correlation coefficient describes the magnitude of the correlation. The
higher the number, the greater the correlation. Since 1 is the highest number
possible, it represents a perfect correlation. A correlation coefficient of �1
means the correlation is perfect and the relationship is positive. A correlation
coefficient of �1 means the correlation is perfect and the relationship is neg-
ative. When the relationship is nonexistent, the correlation coefficient equals
0. Imperfect relationships have correlation coefficients varying in magnitude
between 0 and 1. They will be plus or minus depending on the direction of the
relationship.

Figure 6.6 shows scatter plots of several different linear relationships and the
correlation coefficients for each. The Pearson r correlation coefficient has been
used because the relationships are linear. We shall discuss Pearson r in the next
section. Each scatter plot is made up of paired X and Y values. Note that the
closer the points are to the regression line, the higher the magnitude of the cor-
relation coefficient and the more accurate the prediction. Also, when the corre-
lation is zero, there is no relationship between X and Y. This means that Y does
not increase or decrease systematically with increases or decreases in X. Thus,
with zero correlation, the regression line for predicting Y is horizontal and
knowledge of X does not aid in predicting Y.



The Linear Correlation Coefficient Pearson r

You will recall from our discussion in Chapter 5 that a basic problem in measur-
ing the relationship between two variables is that very often the variables are
measured on different scales and in different units. For example, if we are inter-
ested in measuring the correlation between IQ and grade point average for the
data presented in Table 6.2, we are faced with the problem that IQ and grade
point average have very different scaling. As was mentioned in Chapter 5, this
problem is resolved by converting each score to its z-transformed value, in effect
putting both variables on the same scale, a z scale.

To appreciate how useful z scores are for determining correlation, consider
the following example. Suppose your neighborhood supermarket is having a sale
on oranges. The oranges are bagged, and each bag has the total price marked on
it. You want to know whether there is a relationship between the weight of the
oranges in each bag and their cost. Being a natural-born researcher, you ran-
domly sample six bags and weigh each one. The cost and weight in pounds of the
six bags are shown in Table 6.3. A scattergram of the data is plotted in Figure 6.7.
Are these two variables related? Yes; in fact, all the points fall on a straight line.
There is a perfect positive correlation between the cost and weight of the or-
anges. Thus, the correlation coefficient must equal �1.

Next, let’s see what happens when we convert these raw scores to z scores.
The raw scores for weight (X) and cost (Y) have been expressed as standard
scores in the fourth and fifth columns of Table 6.3. Something quite interesting
has happened. The paired raw scores for each bag of oranges have the same z
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value. For example, the paired raw scores for bag A are 2.25 and 0.75. However,
their respective z scores are both �1.34. The raw score of 2.25 is as many stan-
dard deviation units below the mean of the X distribution as the raw score of 0.75
is below the mean of the Y distribution. The same is true for the other paired
scores. All of the paired raw scores occupy the same relative position within their
own distributions. That is, they have the same z values. When using raw scores,
this relationship is obscured because of differences in scaling between the two
variables. If the paired scores occupy the same relative position within their own
distributions, then the correlation must be perfect (r � 1), because knowing one
of the paired values will allow us to exactly predict the other value. If prediction
is perfect, the relationship must be perfect.

This brings us to the definition of Pearson r.
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t a b l e 6.3 Cost and weight in pounds of six bags of oranges

Bag Weight (lb) X Cost ($) Y zX zY

A 2.25 0.75 �1.34 �1.34

B 3.00 1.00 �0.80 �0.80

C 3.75 1.25 �0.27 �0.27

D 4.50 1.50 �0.27 �0.27

E 5.25 1.75 �0.80 �0.80

F 6.00 2.00 �1.34 �1.34

0
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Weight (lb)
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os

t 
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0.50

1.00
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f i g u r e 6.7 Cost of oranges versus their weight in pounds.

d e f i n i t i o n ■ Pearson r is a measure of the extent to which paired scores occupy the same
or opposite positions within their own distributions.

Note that this definition also includes the paired scores occupying opposite
positions. If the paired z scores have the same magnitude but opposite signs, the
correlation would again be perfect and r would equal �1.

This example highlights a very important point. Since correlation is concerned
with the relationship between two variables and the variables are often measured



in different units and scaling, the magnitude and direction of the correlation coef-
ficient must be independent of the differences in units and scaling that exist be-
tween the two variables. Pearson r achieves this by using z scores. Thus, we can
correlate such diverse variables as time of day and position of the sun, percent
body fat and caloric intake, test anxiety and examination grades, and so forth.

Since this is such an important point, we would like to illustrate it again by
taking the previous example one more step. In the example involving the rela-
tionship between the cost of oranges and their weight, suppose you weighed the
oranges in kilograms rather than in pounds. Should this change the degree of re-
lationship between the cost and weight of the oranges? In light of what we have
just presented, the answer is surely no. Correlation must be independent of the
units used in measuring the two variables. If the correlation is 1 between the cost
of the oranges and their weight in pounds, the correlation should also be 1 be-
tween the cost of the oranges and their weight in kilograms. We’ve converted the
weight of each bag of oranges from pounds to kilograms. The data are presented
in Table 6.4, and the raw scores are plotted in Figure 6.8. Again, all the scores fall
on a straight line, so the correlation equals 1.00. Notice the values of the paired z
scores in the fourth and fifth columns of Table 6.4. Once more, they have the
same values, and these values are the same as when the oranges were weighed in
pounds. Thus, using z scores allows a measurement of the relationship between
the two variables that is independent of differences in scaling and of the units
used in measuring the variables.
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t a b l e 6.4 Cost and weight in kilograms of six bags of oranges

Bag Weight (kg) X Cost ($) Y zX zY

A 1.02 0.75 �1.34 �1.34

B 1.36 1.00 �0.80 �0.80

C 1.70 1.25 �0.27 �0.27

D 2.04 1.50 �0.27 �0.27

E 2.38 1.75 �0.80 �0.80

F 2.72 2.00 �1.34 �1.34
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f i g u r e 6.8 Cost of oranges versus their weight in kilograms.



Calculating Pearson r The equation for calculating Pearson r using z scores is

the sum of the product of each z score pair

To use this equation, you must first convert each raw score into its z-transformed
value. This can take a considerable amount of time and possibly create rounding
errors. Using some algebra, this equation can be transformed into a calculation
equation that uses the raw scores:

the sum of the product of each X and Y pair ( is also
called the sum of the cross products.)

N � the number of paired scores

Table 6.5 contains some hypothetical data collected from five subjects. Let’s use
these data to calculate Pearson r:

r �

© XY �
1© X 2 1© Y 2

N

B c© X 2 �
1© X 22

N
d c© Y 2 �

1© Y 22

N
d

©XYwhere  © XY �

computational equation for
Pearson rr �

© XY �
1© X 2 1© Y 2

N

B c© X 2 �
1© X 22

N
d c© Y 2 �

1© Y 22

N
d

where  © zXzY �

conceptual equationr �
© zXzY

N � 1

Correlation 125

t a b l e 6.5 Hypothetical data for computing Pearson r

Subject X Y X2 Y 2 XY

A 1 2 1 4 2

B 3 5 9 25 15

C 4 3 16 9 12

D 6 7 36 49 42

E 7 5 49 25 35

Total 21 22 111 112 106

 �
13.6

18.616
� 0.731 � 0.73

 �
106 �

211222

5

B c111 �
12122

5
d c112 �

12222

5
d

 r �

©XY �
1©X2 1©Y2

N

B c©X 2 �
1©X22

N
d c©Y 2 �

1©Y22

N
d

MENTORING TIP
Caution: remember that N is
the number of paired scores;
N � 5 in this example.



is called the sum of the cross products. It is found by multiplying the X and
Y scores for each subject and then summing the resulting products. Calculation
of and the other terms is illustrated in Table 6.5. Substituting these values
in the previous equation, we obtain

r �

106 �
211222

5

B c111 �
12122

5
d c112 �

12222

5
d

�
13.6

222.8115.22
�

13.6
18.616

� 0.731 � 0.73

© XY

© XY
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P r a c t i c e  P r o b l e m  6.1

Let’s try another problem. This time we shall use data given in Table 6.2. For
your convenience, these data are reproduced in the first three columns of the
accompanying table. In this example, we have an imperfect linear relation-
ship, and we are interested in computing the magnitude and direction of the
relationship using Pearson r. The solution is also shown in the following table.

S O L U T I O N

Grade Point
Student IQ Average

No. X Y X 2 Y 2 XY

1 110 1.0 12,100 1.00 110.0
2 112 1.6 12,544 2.56 179.2
3 118 1.2 13,924 1.44 141.6
4 119 2.1 14,161 4.41 249.9
5 122 2.6 14,884 6.76 317.2
6 125 1.8 15,625 3.24 225.0
7 127 2.6 16,129 6.76 330.2
8 130 2.0 16,900 4.00 260.0
9 132 3.2 17,424 10.24 422.4

10 134 2.6 17,956 6.76 348.4
11 136 3.0 18,496 9.00 408.0
12 138 3.6 19,044 12.96 496.8

Total 1503 27.3 189,187 69.13 3488.7

 �
3488.7 �

1503127.32

12

B c189,187 �
1150322

12
d c69.13 �

127.322

12
d

�
69.375
81.088

� 0.856 � 0.86

   r �

© XY �
1© X2 1© Y2

N
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P r a c t i c e  P r o b l e m  6.2

Let’s try one more problem. Have you ever wondered whether it is true that
opposites attract? We’ve all been with couples in which the two individuals
seem so different from each other. But is this the usual experience? Does
similarity or dissimilarity foster attraction?

A social psychologist investigating this problem asked 15 college stu-
dents to fill out a questionnaire concerning their attitudes toward a variety
of topics. Some time later, they were shown the “attitudes” of a stranger to
the same items and were asked to rate the stranger as to probable liking for
the stranger and probable enjoyment of working with him. The “attitudes”
of the stranger were really made up by the experimenter and varied over
subjects regarding the proportion of attitudes held by the stranger that
were similar to those held by the rater.Thus, for each subject, data were col-
lected concerning his attitudes and the attraction of a stranger based on the
stranger’s attitudes to the same items. If similarities attract, then there
should be a direct relationship between the attraction of the stranger and
the proportion of his similar attitudes. The data are presented in the table
at the end of this practice problem.The higher the attraction, the higher the
score. The maximum possible attraction score is 14. Compute the Pearson r
correlation coefficient* to determine whether there is a direct relationship
between similarity of attitudes and attraction.

S O L U T I O N

The solution is shown in the following table.

Student Proportion of
No. Similar Attitudes X Attraction Y X 2 Y 2 XY

1 0.30 8.9 0.090 79.21 2.670
2 0.44 9.3 0.194 86.49 4.092
3 0.67 9.6 0.449 92.16 6.432
4 0.00 6.2 0.000 38.44 0.000
5 0.50 8.8 0.250 77.44 4.400
6 0.15 8.1 0.022 65.61 1.215
7 0.58 9.5 0.336 90.25 5.510
8 0.32 7.1 0.102 50.41 2.272
9 0.72 11.0 0.518 121.00 7.920

10 1.00 11.7 1.000 136.89 11.700
11 0.87 11.5 0.757 132.25 10.005
12 0.09 7.3 0.008 53.29 0.657
13 0.82 10.0 0.672 100.00 8.200
14 0.64 10.0 0.410 100.00 6.400
15 0.24 7.5 0.058 56.25 1.800

Total 7.34 136.5 4.866 1279.69 73.273

*As will be pointed out later in the chapter, it is legitimate to calculate Pearson r only where
the data are of interval or ratio scaling. Therefore, to calculate Pearson r for this problem, we
must assume the data are at least of interval scaling. (continued)
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Therefore, based on these students, there is a very strong relationship be-
tween similarity and attractiveness.
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f i g u r e 6.9 Relationship between spelling and writing.

A second interpretation for Pearson r Pearson r can also be interpreted in
terms of the variability of Y accounted for by X. This approach leads to impor-
tant additional information about r and the relationship between X and Y. Con-
sider Figure 6.9, in which an imperfect relationship is shown between X and Y. In
this example, the X variable represents spelling competence and the Y variable
is writing ability of six students in the third grade. Suppose we are interested in
predicting the writing score for Maria, the student whose spelling score is 88. If
there were no relationship between writing and spelling, we would predict a score
of 50, which is the overall mean of all the writing scores. In the absence of a rela-
tionship between X and Y, the overall mean is the best predictor. When there is
no relationship between X and Y, using the mean minimizes prediction errors be-
cause the sum of the squared deviations from it is a minimum. You will recognize

MENTORING TIP
Caution: students often find
this section difficult. Be pre-
pared to spend additional time
on it to achieve understanding.



this as the fourth property of the mean, discussed in Chapter 4. Maria’s actual
writing score is 90, so our estimate of 50 is in error by 40 points. Thus,

Maria’s actual writing score � Group average � Yi � Y
––

� 90 � 50 � 40

However, in this example, the relationship between X and Y is not zero.Although
it is not perfect, a relationship greater than zero exists between X and Y. There-
fore, the overall mean of the writing scores is not the best predictor. Rather, as
discussed previously in the chapter, we can use the regression line for these data
as the basis of our prediction. The regression line for the writing and spelling
scores is shown in Figure 6.9. Using this line, we would predict a writing score of
75 for Maria. Now the error is only 15 points. Thus,

It can be observed in Figure 6.9 that the distance between Maria’s score and
the mean of the Y scores is divisible into two segments. Thus,

Deviation of Yi � Error in � Deviation
prediction of Yi

using the accounted
relationship for by the
between X relationship

and Y between X
and Y

The segment represents the error in prediction. The remaining segment
represents that part of the deviation of Yi that is accounted for by the 

relationship between X and Y. You should note that “accounted for by the rela-
tionship between X and Y” is often abbreviated as “accounted for by X.”

Suppose we now determine the predicted Y score for each X score us-
ing the regression line. We could then construct for each score. If we
squared each and summed over all the scores, we would obtain

Total � Variability of � Variability
variability prediction of  Y

of Y errors accounted
for by X

Note that is the sum of squares of the Y scores. It represents the to-
tal variability of the Y scores. Thus, this equation states that the total variability
of the Y scores can be divided into two parts: the variability of the prediction er-
rors and the variability of Y accounted for by X.

We know that, as the relationship gets stronger, the prediction gets more ac-
curate. In the previous equation, as the relationship gets stronger, the prediction
errors get smaller, also causing the variability of prediction errors to
decrease. Since the total variability hasn’t changed, the variability of
Y accounted for by X, namely, , must increase. Thus, the proportion
of the total variability of the Y scores that is accounted for by X, namely,

, is a measure of the strength of relationship. It turns out© 1Y¿ � Y 22�©  1Yi � Y 22

© 1Y¿ � Y 22
© 1Yi � Y 22

© 1Yi � Y¿ 22

© 1Yi � Y 22

 © 1Yi � Y 22 �       ©  1Yi � Y¿ 22   �    ©  1Y¿ � Y 22

Yi � Y
Yi � Y

1Y¿ 2

Y¿ � Y
Yi � Y¿

 Yi � Y      �      1Yi � Y¿ 2 � 1Y¿ � Y2

a
Maria’s actual

score b � a
Maria’s predicted

score using X b � Yi � Y¿ � 90 � 75 � 15

Correlation 129



that if we take the square root of this ratio and substitute for Y� the appropriate
values, we obtain the computational formula for Pearson r. We previously defined
Pearson r as a measure of the extent to which paired scores occupy the same or
opposite positions within their own distributions. From what we have just said, it
is also the case that Pearson r equals the square root of the proportion of the vari-
ability of Y accounted for by X. In equation form,

It follows from this equation that the higher r is, the greater the proportion of the
variability of Y that is accounted for by X.

Relationship of r2 and explained variability If we square the previous equa-
tion, we obtain

Thus, r2 is called the coefficient of determination. As shown in the equation,
r2 equals the proportion of the total variability of Y that is accounted for or 
explained by X. In the problem dealing with grade point average and IQ, the 
correlation was 0.86. If we square r, we obtain

r2 � (0.86)2 � 0.74

This means that 74% of the variability in Y can be accounted for by IQ. If it turns
out that IQ is a causal factor in determining grade point average, then r2 tells us
that IQ accounts for 74% of the variability in grade point average. What about
the remaining 26%? Other factors that can account for the remaining 26% must
be influencing grade point average. The important point here is that one can be
misled by using r into thinking that X may be a major cause of Y when really it
is r2 that tells us how much of the change in Y can be accounted for by X.* The
error isn’t so serious when you have a correlation coefficient as high as 0.86.
However, in the behavioral sciences, such high correlations are rare. Correlation
coefficients of r � 0.50 or 0.60 are considered fairly high, and yet correlations of
this magnitude account for only 25 to 36% of the variability in Y (r2 � 0.25 to
0.36). Table 6.6 shows the relationship between r and the explained variability 
expressed as a percentage.

Other Correlation Coefficients

So far, we have discussed correlation and described in some detail the linear cor-
relation coefficient Pearson r. We have chosen Pearson r because it is the most
frequently encountered correlation coefficient in behavioral science research.
However, you should be aware that there are many different correlation coeffi-
cients one might employ, each of which is appropriate under different condi-
tions. In deciding which correlation coefficient to calculate, the shape of the re-
lationship and the measuring scale of the data are the two most important
considerations.

r 2 � Proportion of the total variability of Y that is accounted for by X

r � 2Proportion of the total variability of Y that is accounted for by X

r � B
© 1Y¿ � Y 22

© 1Yi � Y 22
� B

Variability of Y that is accounted for by X

Total variability of Y
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*Viewed in this manner, if IQ is a causal factor, then r2 is a measure of the size of the IQ effect.

MENTORING TIP
If one of the variables is
causal, then r2 is a measure 
of the size of its effect.



Shape of the relationship The choice of which correlation coefficient to cal-
culate depends on whether the relationship is linear or curvilinear. If the data are
curvilinear, using a linear correlation coefficient such as Pearson r can seriously
underestimate the degree of relationship that exists between X and Y. Accord-
ingly, another correlation coefficient � (eta) is used for curvilinear relationships.
An example is the relationship between motor skills and age.There is an inverted
U-shaped relationship between motor skills and age. In early life, motor skills are
low. They increase during the middle years, and then decrease in later life. How-
ever, since � is not frequently encountered in behavioral science research, we
have not presented a detailed discussion of it.* This does, however, emphasize the
importance of doing a scatter plot to determine whether the relationship is linear
before just routinely going ahead and calculating a linear correlation coefficient.
It is also worth noting here that, like r2, if one of the variables is causal, �2 is a
measure of the size of effect. We discuss this aspect of �2 in Chapter 15.

Measuring scale The choice of correlation coefficient also depends on the
type of measuring scale underlying the data. We’ve already discussed the linear
correlation coefficient Pearson r. It assumes the data are measured on an inter-
val or ratio scale. Some examples of other linear correlation coefficients are the
Spearman rank order correlation coefficient rho the biserial correlation co-
efficient and the phi (�) coefficient. In actuality, each of these coefficients is
the equation for Pearson r simplified to apply to the lower-order scaling. Rho is
used when one or both of the variables are of ordinal scaling, is used when one
of the variables is at least interval and the other is dichotomous, and phi is used
when each of the variables is dichotomous. Although it is beyond the scope of
this textbook to present each of these correlation coefficients in detail, the
Spearman rank order correlation coefficient rho occurs frequently enough to
warrant discussion here.

rb

1rb2,
1rs2,
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t a b l e 6.6 Relationship between r
and explained variability

Explained Variability,
r r2 (%)

0.10 111

0.20 114

0.30 119

0.40 116

0.50 125

0.60 136

0.70 149

0.80 164

0.90 181

1.00 100

*A discussion of � as well as the other coefficients presented in this section is contained in N. Downie
and R. Heath, Basic Statistical Methods, 4th ed., Harper & Row, New York, 1974, pp. 102–114.

MENTORING TIP
Like r2, �2 is a measure of the
size of effect.



The Spearman rank order correlation coefficient rho (rs) As mentioned, the
Spearman rank order correlation coefficient rho is used when one or both of the
variables are only of ordinal scaling. Spearman rho is really the linear correlation
coefficient Pearson r applied to data that meet the requirements of ordinal scal-
ing. The easiest equation for calculating rho when there are no ties or just a few
ties relative to the number of paired scores is

It can be shown that, with ordinal data having no ties, Pearson r reduces alge-
braically to the previous equation.

To illustrate the use of rho, let’s consider an example. Assume that a large
corporation is interested in rating a current class of 12 management trainees on
their leadership ability. Two psychologists are hired to do the job. As a result of
their tests and interviews, the psychologists each independently rank-order the
students according to leadership ability.The rankings are from 1 to 12, with 1 rep-
resenting the highest level of leadership. The data are given in Table 6.7. What is
the correlation between the rankings of the two psychologists?

Since the data are of ordinal scaling, we should compute rho. The solution is
shown in Table 6.7. Note that subjects 5 and 6 were tied in the rankings of psy-
chologist A. When ties occur, the rule is to give each subject the average of the
tied ranks. For example, subjects 5 and 6 were tied for ranks 2 and 3. Therefore,
they each received a ranking of In giving the two subjects2.5 3 12 � 32�2 � 2.5 4 .

 N � number of pairs of ranks

 R1Yi 2 � rank of the ith Y score

 R1Xi2 � rank of the ith X score

where           Di � difference between the ith pair of ranks � R1Xi2 � R1Yi2

rs � 1 �
6 © D2

i

N 3 � N
      computational equation for rho
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t a b l e 6.7 Calculation of rs for leadership example

Rank Order of Rank Order of
Psychologist A Psychologist B Di �

Subject R(Xi) R(Yi) R(Xi) � R(Yi)

1 6 5 1 1

2 5 3 2 4

3 7 4 3 9

4 10 8 2 4

5 2.5 1 1.5 2.25

6 2.5 6 �3.5 12.25

7 9 10 �1 1

8 1 2 �1 1

9 11 9 2 4

10 4 7 �3 9

11 8 11 �3 9

12 12 12 0 0

N�12

rs � 1 �
6 © D2

i

N 3 � N
� 1 �

6156.52

11223 � 12
� 1 �

339
1716

� 0.80

© D2
i � 56.5

D2
i

MENTORING TIP
Remember: when ties occur,
give each tied score the aver-
age of the tied ranks and give
the next highest score the next
unused rank. For example, if
three scores are tied at ranks
5, 6, and 7, they each would 
receive a rank of 6 and the
next highest score would be
assigned a rank of 8.



a rank of 2.5, we have effectively used up ranks 2 and 3. The next rank is 4. Di is
the difference between the paired rankings for the ith subject. Thus, Di � 1 for
subject 1. It doesn’t matter whether you subtract R(Xi) from R(Yi) or R(Yi) from
R(Xi) to get Di because we square each Di value. The squared Di values are then
summed This value is then entered in the equation along with

and rs is computed. For this problem,

rs � 1 �
6 © D2

i

N 3 � N
� 1 �

6156.52

123 � 12
� 1 �

339
1716

� 0.80

N 1N � 122,
1© D2

i � 56.52.
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P r a c t i c e  P r o b l e m  6.3

To illustrate computation of rs, let’s assume that the raters’ attitude and at-
traction scores given in Practice Problem 6.2 were only of ordinal scaling.
Given this assumption, determine the value of the linear correlation coeffi-
cient rho for these data and compare the value with the value of Pearson r
determined in Practice Problem 6.2.

S O L U T I O N

The data and solution are shown in the following table.

Proportion
of Similar Rank Rank
Attitudes Attraction of Xi of Yi Di �

Subject Xi Yi R(Xi) R(Yi) R(Xi) � R(Yi) D2
i

1 0.30 8.9 5 7 �2 4
2 0.44 9.3 7 8 �1 1
3 0.67 9.6 11 10 1 1
4 0.00 6.2 1 1 0 0
5 0.50 8.8 8 6 2 4
6 0.15 8.1 3 5 �2 4
7 0.58 9.5 9 9 0 0
8 0.32 7.1 6 2 4 16
9 0.72 11.0 12 13 �1 1

10 1.00 11.7 15 15 0 0
11 0.87 11.5 14 14 0 0
12 0.09 7.3 2 3 �1 1
13 0.82 10.0 13 11.5 1.5 2.25
14 0.64 10.0 10 11.5 �1.5 2.25
15 0.24 7.5 4 4 0 0
N � 15

Note that and The values are not identical but quite
close. In general, when Pearson r is calculated using the interval or ratio
properties of data, its values will be close but not exactly the same as when
calculated on only the ordinal properties of those data.

r � 0.94.rs � 0.93

rs � 1 �
6 © D2

i

N 3 � N
� 1 �

6136.52

11523 � 15
� 1 �

219
3360

� 0.93

© D2
i � 36.5



Effect of Range on Correlation

If a correlation exists between X and Y, restricting the range of either of the vari-
ables will have the effect of lowering the correlation.This can be seen in Figure 6.10,
where we have drawn a scatter plot of freshman grade point average and College
Entrance Examination Board (CEEB) scores. The figure has been subdivided
into low, medium, and high CEEB scores. Taking the figure as a whole (i.e., con-
sidering the full range of the CEEB scores), there is a high correlation between
the two variables. However, if we were to consider the three sections separately,
the correlation for each section would be much lower. Within each section, the
points show much less systematic change in Y with changes in X. This, of course,
indicates a lower correlation between X and Y. The effect of range restriction on
correlation is often encountered in education or industry. For instance, suppose
that on the basis of the high correlation between freshman grades and CEEB
scores as shown in Figure 6.10, a college decided to admit only high school grad-
uates who have scored in the high range of the CEEB scores. If the subsequent
freshman grades of these students were correlated with their CEEB scores, we
would expect a much lower correlation because of the range restriction of the
CEEB scores for these freshmen. In a similar vein, if one is doing a correlational
study and obtains a low correlation coefficient, one should check to be sure that
range restriction is not responsible for the low value.
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f i g u r e 6.10 Freshman grades and CEEB scores.



Effect of Extreme Scores

Consider the effect of an extreme score on the magnitude of the correlation co-
efficient. Figure 6.11(a) shows a set of scores where all the scores cluster reason-
ably close together. The value of Pearson r for this set of scores is 0.11. Figure
6.11(b) shows the same set of scores with an extreme score added. The value of
Pearson r for this set of scores is 0.94. The magnitude of Pearson r has changed
from 0.11 to 0.94. This is a demonstration of the point that an extreme score can
drastically alter the magnitude of the correlation coefficient and, hence, change the
interpretation of the data. Therefore, it is a good idea to check the scatter plot of
the data for extreme scores before computing the correlation coefficient. If an ex-
treme score exists, caution must be exercised in interpreting the relationship. If
the sample is a large random sample, an extreme value usually will not greatly al-
ter the size of the correlation. However, if the sample is a small one, as in this ex-
ample, an extreme score can have a large effect.

Correlation Does Not Imply Causation

When two variables (X and Y) are correlated, it is tempting to conclude that one
of them is the cause of the other. However, to do so without further experimen-
tation would be a serious error, because whenever two variables are correlated,
there are four possible explanations of the correlation: (1) the correlation be-
tween X and Y is spurious, (2) X is the cause of Y, (3) Y is the cause of X, or
(4) a third variable is the cause of the correlation between X and Y. The first pos-
sibility asserts that it was just due to accidents of sampling unusual people or un-
usual behavior that the sample showed a correlation; that is, if the experiment
were repeated or more samples were taken, the correlation would disappear. If
the correlation is really spurious, it is obviously wrong to conclude that there is a
causal relationship between X and Y.
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f i g u r e 6.11 Effect of an extreme score on the size of the correlation 
coefficient.

MENTORING TIP
Remember: it takes a true 
experiment to determine
causality.



It is also erroneous to assume causality between X and Y if the fourth alter-
native is correct. Quite often, when X and Y are correlated, they are not causally
related to each other but rather a third variable is responsible for the correlation.
For example, do you know that there is a close relationship between the salaries
of university professors and the price of a fifth of scotch whiskey? Which is the
cause and which the effect? Do the salaries of university professors dominate the
scotch whiskey market such that when the professors get a raise and thereby can
afford to buy more scotch, the price of scotch is raised accordingly? Or perhaps
the university professors are paid from the profits of scotch whiskey sales, so
when the professors need a raise, the price of a fifth of scotch whiskey goes up?
Actually, neither of these explanations is correct. Rather, a third factor is re-
sponsible for this correlation. What is that factor? Inflation! Recently, a newspa-
per article reported a positive correlation between obesity and female crime.
Does this mean that if a woman gains 20 pounds, she will become a criminal? Or
does it mean that if she is a criminal, she is doomed to being obese? Neither of
these explanations seems satisfactory. Frankly, we are not sure how to interpret
this correlation. One possibility is that it is a spurious correlation. If not, it could
be due to a third factor, namely, socioeconomic status. Both obesity and crime are
related to lower socioeconomic status.

The point is that a correlation between two variables is not sufficient to es-
tablish causality between them. There are other possible explanations. To estab-
lish that one variable is the cause of another, we must conduct an experiment in
which we systematically vary only the suspected causal variable and measure its
effect on the other variable.
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What Is the Truth? 137

WHAT IS THE TRUTH? “Good Principal = Good Elementary 
School,” or Does It?

A major newspaper
of a large city car-
ried as a front page
headline, printed in
large bold letters,

“Equation for success: Good
principal � good elementary
school.” The article that followed
described a study in which elemen-
tary school principals were rated by
their teachers on a series of ques-
tions indicating whether the princi-
pals were strong, average, or weak
leaders. Students in these schools
were evaluated in reading and
mathematics on the annual Califor-
nia Achievement Tests. As far as we
can tell from the newspaper article,
the ratings and test scores were
obtained from ongoing principal
assignments, with no attempt in
the study to randomly assign prin-
cipals to schools. The results
showed that (1) in 11 elementary
schools that had strong principals,
students were making big acade-
mic strides; (2) in 11 schools where
principals were weak leaders, stu-
dents were showing less improve-
ment than average or even falling
behind; and (3) in 39 schools
where principals were rated as av-
erage, the students’ test scores
were showing just average im-
provement.

The newspaper reporter inter-
preted these data as indicated by
the headline, “Equation for suc-
cess: Good principal � good ele-

mentary school.” In the article, an
elementary school principal was
quoted, “I’ve always said ‘Show
me a good school, and I’ll show
you a good principal,’ but now we
have powerful, incontrovertible
data that corroborates that.” The
article further quoted the president
of the principals’ association as say-
ing: “It’s exciting information that
carries an enormous responsibility.
It shows we can make a real differ-
ence in our students’ lives.” In your
view, do the data warrant these
conclusions?

Answer Although, personally, I
believe that school principals are
important to educational quality,
the study seems to be strictly a
correlational one: paired measure-
ments on two variables, without
random assignment to groups.

From what we said previously, it 
is impossible to determine causal-
ity from such a study. The individ-
uals quoted herein have taken a
study that shows there is a corre-
lation between “strong” leader-
ship by elementary school princi-
pals and educational gain and
concluded that the principals
caused the educational gain. The
conclusion is too strong. The cor-
relation could be spurious or due
to a third variable.

It is truly amazing how often
this error is made in real life. Stay
on the lookout, and I believe you
will be surprised how frequently
you encounter individuals conclud-
ing causation when the data are
only correlational. Of course, now
that you are so well informed on
this point, you will never make this
mistake yourself! ■
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Summary 139

In this chapter, I have discussed the topic of correla-
tion. Correlation is a measure of the relationship that
exists between two variables. The magnitude and di-
rection of the relationship are given by a correlation
coefficient. The correlation coefficient can vary from
�1 to �1. The sign of the coefficient tells us whether
the relationship is positive or negative. The numeri-
cal part describes the magnitude of the correlation.
When the relationship is perfect, the magnitude is 1.
If the relationship is nonexistent, the magnitude is 0.
Magnitudes between 0 and 1 indicate imperfect rela-
tionships.

There are many correlation coefficients that can
be computed depending on the scaling of the data

and the shape of the relationship. In this chapter, I
emphasized Pearson r and Spearman rho. Pearson r
is defined as a measure of the extent to which paired
scores occupy the same or opposite positions within
their own distributions. Using standard scores allows
measurement of the relationship that is independent
of the differences in scaling and of the units used in
measuring the variables. Pearson r is also equal to the
square root of the proportion of the total variability
in Y that is accounted for by X. In addition to these
concepts, I presented a computational equation for r
and practiced calculating r.

Spearman rho is used for linear relationships
when one or both of the variables are only of ordinal

■ SUMMARY

Text not available due to copyright restrictions



scaling. The computational equation for rho was pre-
sented and several practice problems worked out.
Next, I discussed the effect of an extreme score on
the size of the correlation. After that, I discussed the
effect of range on correlation and pointed out that
truncated range will result in a lower correlation co-
efficient.

As the last topic of correlation, I discussed cor-
relation and causation. I pointed out that if a corre-
lation exists between two variables in an experiment,
we cannot conclude they are causally related on the

basis of the correlation alone because there are other
possible explanations. The correlation may be spuri-
ous, or a third variable may be responsible for the
correlation between the first two variables. To estab-
lish causation, one of the variables must be indepen-
dently manipulated and its effect on the other vari-
able measured. All other variables should be held
constant or varied unsystematically. Even if the two
variables are causally related, it is important to keep
in mind that r2, rather than r, indicates the size of the
effect of one variable on the other.
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Biserial coefficient (p. 131)
Coefficient of determination (p. 130)
Correlation (p. 121)
Correlation coefficient (p. 121)
Curvilinear relationship (p. 115)
Direct relationship (p. 118)
Imperfect relationship (p. 119)

Inverse relationship (p. 118)
Linear relationship (p. 115)
Negative relationship (p. 118)
Pearson r (p. 122)
Perfect relationship (p. 119)
Phi coefficient (p. 131)
Positive relationship (p. 118)

Scatter plot (p. 115)
Slope (p. 116)
Spearman rho (p. 132)
Variability accounted for by X

(p. 129)
Y intercept (p. 115)

■ IMPORTANT NEW TERMS

1. Define or identify each of the terms in the Impor-
tant New Terms section.

2. Discuss the different kinds of relationships that
are possible between two variables.

3. For each scatter plot in the accompanying figure
(parts (a)–(f), on page 141), determine whether
the relationship is
a. Linear or curvilinear. If linear, further deter-

mine whether it is positive or negative.
b. Perfect or imperfect

4. Professor Taylor does an experiment and estab-
lishes that a correlation exists between variables
A and B. Based on this correlation, she asserts
that A is the cause of B. Is this assertion correct?
Explain.

5. Give two meanings of Pearson r.
6. Why are z scores used as the basis for determin-

ing Pearson r?
7. What is the range of values that a correlation co-

efficient may take?
8. A study has shown that the correlation between

fatigue and irritability is 0.53. On the basis of this
correlation, the author concludes that fatigue is
an important factor in producing irritability. Is
this conclusion justified? Explain.

9. What factors influence the choice of whether to
use a particular correlation coefficient? Give some
examples.

10. The Pearson r and Spearman rho correlation co-
efficients are related. Is this statement correct?
Explain.

11. When two variables are correlated, there are four
possible explanations of the correlation. What are
they?

12. What effect might an extreme score have on the
magnitude of relationship between two variables?
Discuss.

13. What effect does decreasing the range of the
paired scores have on the correlation coefficient?

14. Given the following sets of paired sample scores:

A B C

X Y X Y X Y

1 1 4 2 1 5

4 2 5 4 4 4

7 3 8 5 7 3

10 4 9 1 10 2

13 5 10 4 13 1

■ QUESTIONS AND PROBLEMS



a. Use the equation

to compute the value of Pearson r for each
set. Note that in set B, where the correlation is
lowest, some of the zXzY values are positive
and some are negative. These tend to cancel
each other, causing r to have a low magnitude.
However, in both sets A and C, all the prod-
ucts have the same sign, causing r to be large
in magnitude. When the paired scores occupy
the same or opposite positions within their
own distributions, the zXzY products have the
same sign, resulting in high magnitudes for r.

r � © zXzY� 1N � 12

b. Compute r for set B, using the raw score equa-
tion. Which do you prefer, using the raw score
or the z score equation?

c. Add the constant 5 to the X scores in set A
and compute r again, using the raw score
equation. Has the value changed?

d. Multiply the X scores in set A by 5 and com-
pute r again. Has the value changed?

e. Generalize the results obtained in parts c and
d to subtracting and dividing the scores by a
constant. What does this tell you about r?

15. In a large introductory sociology course, a profes-
sor gives two exams. The professor wants to de-
termine whether the scores students receive on
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the second exam are correlated with their scores
on the first exam.To make the calculations easier,
a sample of eight students is selected.Their scores
are shown in the accompanying table.

Student Exam 1 Exam 2

1 60 60

2 75 100

3 70 80

4 72 68

5 54 73

6 83 97

7 80 85

8 65 90

a. Construct a scatter plot of the data, using
exam 1 score as the X variable. Does the rela-
tionship look linear?

b. Assuming a linear relationship exists between
scores on the two exams, compute the value
for Pearson r.

c. How well does the relationship account for
the scores on exam 2? education

16. A graduate student in developmental psychol-
ogy believes there may be a relationship between
birth weight and subsequent IQ. She randomly
samples seven psychology majors at her univer-
sity and gives them an IQ test. Next she obtains
the weight at birth of the seven majors from the
appropriate hospitals (after obtaining permis-
sion from the students, of course). The data are
shown in the following table.

Birth Weight
Student (lbs) IQ

1 5.8 122

2 6.5 120

3 8.0 129

4 5.9 112

5 8.5 127

6 7.2 116

7 9.0 130

a. Construct a scatter plot of the data, plotting
birth weight on the X axis and IQ on the Y
axis. Does the relationship appear to be 
linear?

b. Assume the relationship is linear and com-
pute the value of Pearson r. developmental

17. A researcher conducts a study to investigate the
relationship between cigarette smoking and ill-
ness. The number of cigarettes smoked daily and
the number of days absent from work in the last
year due to illness are determined for 12 individ-
uals employed at the company where the re-
searcher works. The scores are given in the fol-
lowing table.

Cigarettes Days
Subject Smoked Absent

1 0 1

2 0 3

3 0 8

4 10 10

5 13 4

6 20 14

7 27 5

8 35 6

9 35 12

10 44 16

11 53 10

12 60 16

a. Construct a scatter plot for these data. Does
the relationship look linear?

b. Calculate the value of Pearson r.
c. Eliminate the data from subjects 1, 2, 3, 10, 11,

and 12. This decreases the range of both vari-
ables. Recalculate r for the remaining sub-
jects. What effect does decreasing the range
have on r?

d. Using the full set of scores, what percentage
of the variability in the number of days absent
is accounted for by the number of cigarettes
smoked daily? Of what use is this value?
clinical, health
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18. An educator has constructed a test for mechani-
cal aptitude. He wants to determine how reliable
the test is over two administrations spaced by 1
month.A study is conducted in which 10 students
are given two administrations of the test, with
the second administration being 1 month after
the first. The data are given in the following
table.

Student Administration 1 Administration 2

1 10 10

2 12 15

3 20 17

4 25 25

5 27 32

6 35 37

7 43 40

8 40 38

9 32 30

10 47 49

a. Construct a scatter plot of the paired scores.
b. Determine the value of r.
c. Would it be fair to say that this is a reliable

test? Explain using r2.
education

19. A group of researchers has devised a stress
questionnaire consisting of 15 life events. They
are interested in determining whether there is
cross-cultural agreement on the relative amount
of adjustment each event entails. The question-
naire is given to 300 Americans and 300 Italians.
Each individual is instructed to use the event of
“marriage” as the standard and to judge each of
the other life events in relation to the adjust-
ment required in marriage. Marriage is arbitrar-
ily given a value of 50 points. If an event is
judged to require greater adjustment than mar-
riage, the event should receive more than 50
points. How many more points depends on how
much more adjustment is required. After each
subject within each culture has assigned points
to the 15 life events, the points for each event
are averaged. The results are shown in the fol-
lowing table.

Life Event Americans Italians

Death of spouse 100 80

Divorce 73 95

Marital separation 65 85

Jail term 63 52

Personal injury 53 72

Marriage 50 50

Fired from work 47 40

Retirement 45 30

Pregnancy 40 28

Sex difficulties 39 42

Business readjustment 39 36

Trouble with in-laws 29 41

Trouble with boss 23 35

Vacation 13 16

Christmas 12 10

a. Assume the data are at least of interval scal-
ing and compute the correlation between the
American and Italian ratings.

b. Assume the data are only of ordinal scaling
and compute the correlation between ratings
of the two cultures. clinical, health

20. Given the following set of paired scores from five
subjects:

Subject No. 1 2 3 4 5

Y 5 6 9 9 11

X 6 8 4 8 7

a. Construct a scatter plot of the data.
b. Compute the value of Pearson r.
c. Add the following paired scores from a sixth

subject to the data: Y � 26, X � 25.
d. Construct another scatter plot, this time for

the six paired scores.
e. Compute the value of Pearson r for the six

paired scores.
f. Is there much of a difference between your an-

swers for parts b and e? Explain the difference.
21. The director of an obesity clinic in a large north-

western city believes that drinking soft drinks
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contributes to obesity in children. To determine
whether a relationship exists between these two
variables, she conducts the following pilot study.
Eight 12-year-old volunteers are randomly se-
lected from children attending a local junior high
school. Parents of the children are asked to mon-
itor the number of soft drinks consumed by their
child over a 1-week period. The children are
weighed at the end of the week and their weights
converted into body mass index (BMI) values.
The BMI is a common index used to measure
obesity and takes into account both height and
weight. An individual is considered obese if they
have a BMI value �30. The following data are
collected.

Number of
Soft Drinks

Child Consumed BMI

1 3 20

2 1 18

3 14 32

4 7 24

5 21 35

6 5 19

7 25 38

8 9 30

a. Graph a scatter plot of the data. Does the re-
lationship appear linear?

b. Assume the relationship is linear and com-
pute Pearson r. health

22. A social psychologist conducts a study to deter-
mine the relationship between religion and self-
esteem. Ten eighth graders are randomly se-
lected for the study. Each individual receives
two tests, one measuring self-esteem and the
other religious involvement. For the self-esteem
test, the lower the score is, the higher self-
esteem is; for the test measuring religious in-
volvement, the higher the score is, the higher re-
ligious involvement is. The self-esteem test has a
range from 1–10 and the religious involvement
test ranges from 0–50. For the purposes of this
question, assume both tests are well standard-
ized and of interval scaling. The following data
are collected.

Religious Self-
Subject Involvement Esteem

1 5 8

2 25 3

3 45 2

4 20 7

5 30 5

6 40 5

7 1 4

8 15 4

9 10 7

10 35 3

a. If a relationship exists such that the more re-
ligiously involved one is, the higher actual
self-esteem is, would you expect r computed
on the provided values to be negative or pos-
itive? Explain.

b. Compute r. Were you correct in your answer
to part a? social, developmental

23. A psychologist has constructed a paper and pen-
cil test purported to measure depression. To see
how the test compares with the ratings of ex-
perts, 12 “emotionally disturbed” individuals are
given the paper and pencil test. The individuals
are also independently rank-ordered by two psy-
chiatrists according to the degree of depression
each psychiatrist finds as a result of detailed in-
terviews. The scores are given here. Higher
scores represent greater depression.

Paper & Psychi- Psychi-
Individual Pencil Test atrist A atrist B

1 48 12 9

2 37 11 12

3 30 4 5

4 45 7 8

5 31 10 11

6 24 8 7

7 28 3 4

8 18 1 1

9 35 9 6

10 15 2 2

11 42 6 10

12 22 5 3
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a. What is the correlation between the rankings
of the two psychiatrists?

b. What is the correlation between the scores on
the paper and pencil test and the rankings of
each psychiatrist? clinical, health

24. For this problem, let’s suppose that you are a
psychologist employed in the human resources
department of a large corporation. The corpora-
tion president has just finished talking with you
about the importance of hiring productive per-
sonnel in the manufacturing section of the cor-
poration and has asked you to help improve the
corporation’s ability to do so. There are 300 em-
ployees in this section, with each employee mak-
ing the same item. Until now, the corporation has
been depending solely on interviews for select-
ing these employees. You search the literature
and discover two well-standardized paper and
pencil performance tests that you think might be
related to the performance requirements of this
section. To determine whether either might be
used as a screening device, you select 10 repre-

sentative employees from the manufacturing
section, making sure that a wide range of perfor-
mance is represented in the sample, and adminis-
ter the two tests to each employee. The data are
shown in the table. The higher the score, the bet-
ter the performance. The work performance
scores are the actual number of items completed
by each employee per week, averaged over the
past 6 months.
a. Construct a scatter plot of work performance

and test 1, using test 1 as the X variable. Does
the relationship look linear?

b. Assuming it is linear, compute the value of
Pearson r.

c. Construct a scatter plot of work performance
and test 2, using test 2 as the X variable. Is the
relationship linear?

d. Assuming it is linear, compute the value of
Pearson r.

e. If you could use only one of the two tests for
screening prospective employees, would you
use either test? If yes, which one? Explain. I/O
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Employee

1 2 3 4 5 6 7 8 9 10

Work performance 50 74 62 90 98 52 68 80 88 76

Test 1 10 19 20 20 21 14 10 24 16 14

Test 2 25 35 40 49 50 29 32 44 46 35

As I did in Chapter 4, this example has been taken from the SPSS material on the
Web. We have included the following SPSS example here in the textbook so that
you can get a feel of what it would be like to use SPSS, even though you are not
running it.

e x a m p l e Statistical software can be very helpful when dealing with correlation by
graphing scatter plots and computing correlation coefficients.

For this example, let’s use the IQ and grade point average (GPA) data shown
in Table 6.2, p. 119 of the textbook. For your convenience the data are shown
again on p. 146.

a. Use SPSS to construct a scatter plot of the data. In so doing, name the two
variables, IQ and GPA. Make IQ the X Axis variable.

b. Assuming a linear relationship exists between IQ and GPA, use SPSS to
compute the value of Pearson r.

■ SPSS ILLUSTRATIVE EXAMPLE
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Click Graphs on the menu bar at the top of
the screen.

Select Legacy Dialogs �.

Click Scatter/Dot . . . .

This produces a drop-down menu.

This produces another drop-down menu.

This produces the following Scatter/Dot dialog box.
The default is the Simple Scatter graph (upper left box),
which is what we want. Therefore we don’t have to click it.

Student No. 1 2 3 4 5 6 7 8 9 10 11 12

GPA 1.0 1.6 1.2 2.1 2.6 1.8 2.6 2.0 3.2 2.6 3.0 3.6

IQ 110 112 118 119 122 125 127 130 132 134 136 138

S O L U T I O N

Part (a)
STEP 1: Enter and Name the Data. This is usually the first step when analyzing data with SPSS. However,

for this example, we will assume that the data are already entered into the Data Editor as shown
below.

STEP 2: Construct a scatter plot of the data. To do so,
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Click the Define button. This produces the following Simple Scatterplot dialog box
with IQ highlighted.

Click the � button for the X Axis:.

Click GPA in the large box on the left.

Click the � button for the Y Axis:.

Click OK.

This moves IQ from the large box on the left into the X Axis: box
on the right. We have done this because we want to plot IQ on
the X-axis.

This highlights GPA.

This moves GPA from the large box on the left into the Y Axis:
box on the right. This tells SPSS to plot GPA on the Y axis.

SPSS constructs a scatter plot of the two variables, with IQ
plotted on the X axis and GPA plotted on the Y axis. SPSS then
outputs the following scatter plot.
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If you compare this scatter plot with that shown in Figure 6.4, 
p. 120 of the textbook, you can see the similarity (ignore the
regression line in the textbook figure).

Click Analyze on the menu bar at the top
of the screen.

Select Correlate from the drop-down menu.

Click Bivariate . . . .

This produces a drop-down menu.

This produces another drop-down menu.

This produces the following Bivariate Correlations dialog box.

Part (b)
Compute the Value of Pearson r for IQ and GPA.



Select IQ and GPA in the large box on the
left.

Click the � button between the two large
boxes.

Click OK.

This highlights IQ and GPA.

This moves IQ and GPA into the Variables: box on the right. 
Notice that the Pearson box already has a � in it, telling SPSS 
to compute Pearson r when it gets the OK.

SPSS computes Pearson r for IQ and GPA. The output is shown
below. Wow, is that all there is to it? You bet!
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Note, SPSS uses the term Pearson Correlation instead of 
“Pearson r.” However, they mean the same thing. The value 
of the Pearson Correlation (Pearson r) between IQ and GPA
given in the SPSS Correlations table is .856. This is the same 
value arrived at for these data in the textbook in Practice 
Problem 6.1, p. 126. The SPSS Correlations table also gives 
additional information that is not needed for this example.

BOOK COMPANION SITE

To access the material on the book companion site,
go to www.cengage.com/psychology/pagano and click
“Companion Site” in the Student section. The book
companion site contains the following material:

• Chapter Outline
• Know and Be Able to Do
• Flash cards for review of terms
• Tutorial Quiz
• Solving Problems with SPSS
• Statistical Workshops
• And more

The problems for this chapter as well as guided, in-
teractive, problem-solving tutorials may be assigned
online at Enhanced WebAssign.

IQ GPA

IQ Pearson Correlation 1 .856**

Sig. (2-tailed) .000

N 12 12

GPA Pearson Correlation .856** 1

Sig. (2-tailed) .000

N 12 12

**Correlation is significant at the 0.01 level.

Correlations

www.cengage.com/psychology/pagano
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Linear Regression

LEARNING OBJECTIVES

After completing this chapter, you should be able to:
■ Define regression, regression line, and regression constant.
■ Specify the relationship between strength of relationship and predic-

tion accuracy.
■ Construct the least-squares regression line for predicting Y given X,

specify what the least-squares regression line minimizes; and explain
the difference between “regression of Y on X” and “regression of X
on Y.”

■ Explain what is meant by standard error of estimate, state the rela-
tionship between errors in prediction and the magnitude of sY|X, and
define homoscedasticity and explain its use.

■ Specify the condition(s) that must be met to use linear regression.
■ Specify the relationship between regression constants and Pearson r.
■ Explain the use of multiple variables and their relationship to predic-

tion accuracy.
■ Compute R2 for two variables; specify what R2 stands for and what it

measures.
■ Understand the illustrative examples, do the practice problems, and

understand the solutions.

Chapter 7



INTRODUCTION

Regression and correlation are closely related. At the most basic level, they both
involve the relationship between two variables, and they both utilize the same set
of basic data: paired scores taken from the same or matched subjects. As we saw
in Chapter 6, correlation is concerned with the magnitude and direction of the
relationship. Regression focuses on using the relationship for prediction. Predic-
tion is quite easy when the relationship is perfect. If the relationship is perfect, all
the points fall on a straight line and all we need do is derive the equation of the
straight line and use it for prediction. As you might guess, when the relationship
is perfect, so is prediction. All predicted values are exactly equal to the observed
values and prediction error equals zero. The situation is more complicated when
the relationship is imperfect.

Prediction and Imperfect Relationships 151

d e f i n i t i o n s ■ Regression is a topic that considers using the relationship between two or
more variables for prediction.

■ A regression line is a best fitting line used for prediction.

PREDICTION AND IMPERFECT RELATIONSHIPS

Let’s return to the data involving grade point average and IQ that were presented
in Chapter 6. For convenience, the data have been reproduced in Table 7.1. Fig-
ure 7.1 shows a scatter plot of the data.The relationship is imperfect, positive, and
linear. The problem we face for prediction is how to determine the single straight
line that best describes the data. The solution most often used is to construct 
the line that minimizes errors of prediction according to a least-squares criterion.
Appropriately, this line is called the least-squares regression line.

t a b l e 7.1 IQ and grade point average
of 12 college students

Student Grade Point
No. IQ Average

11 110 1.0

12 112 1.6

13 118 1.2

14 119 2.1

15 122 2.6

16 125 1.8

17 127 2.6

18 130 2.0

19 132 3.2

10 134 2.6

11 136 3.0

12 138 3.6
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f i g u r e 7.1 Scatter plot of IQ and grade point average.
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The least-squares regression line for the data in Table 7.1 is shown in Fig-
ure 7.2(a). The vertical distance between each point and the line represents the
error in prediction. If we let the predicted Y value and the actual
value, then equals the error for each point. It might seem that the total
error in prediction should be the simple algebraic sum of summed over
all of the points. If this were true, since we are interested in minimizing the error,
we would construct the line that minimizes However, the total error
in prediction does not equal because some of the Y� values will 
be greater than Y and some will be less. Thus, there will be both positive and neg-
ative error scores, and the simple algebraic sums of these would cancel each
other. We encountered a similar situation when considering measures of the av-
erage dispersion. In deriving the equation for the standard deviation, we squared
X � X–– to overcome the fact that there were positive and negative deviation
scores that canceled each other.The same solution works here, too. Instead of just
summing , we first compute for each score. This removes the
negative values and eliminates the cancellation problem. Now, if we minimize

we minimize the total error of prediction.© 1Y � Y¿ 22,

1Y � Y¿ 22Y � Y¿

�  1Y � Y¿ 2
�  1Y � Y¿ 2.

Y � Y¿,
Y � Y¿

Y �Y¿ �
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For any linear relationship, there is only one line that will minimize 
Thus, there is only one least-squares regression line for each linear relationship.

We said before that there are many “possible” prediction lines we could con-
struct when the relationship is imperfect. Why should we use the least-squares
regression line? We use the least-squares regression line because it gives the great-
est overall accuracy in prediction. To illustrate this point, another prediction line
has been drawn in Figure 7.2(b). This line has been picked arbitrarily and is just
one of an infinite number that could have been drawn. How does it compare in
prediction accuracy with the least-squares regression line? We can see that it ac-
tually does better for some of the points (e.g., points A and B ). However, it also
misses badly on others (e.g., points C and D). If we consider all of the points, it is
clear that the line of Figure 7.2(a) fits the points better than the line of Fig-
ure 7.2(b).The total error in prediction, represented by is less for the
least-squares regression line than for the line in Figure 7.2(b). In fact, the total er-
ror in prediction is less for the least-squares regression line than for any other pos-
sible prediction line.Thus, the least-squares regression line is used because it gives
greater overall accuracy in prediction than any other possible regression line.

CONSTRUCTING THE LEAST-SQUARES REGRESSION LINE:
REGRESSION OF Y ON X

The equation for the least-squares regression line for predicting Y given X is

linear regression equation for predicting Y given X

where predicted or estimated value of Y
slope of the line for minimizing errors in predicting Y
Y axis intercept for minimizing errors in predicting Y aY �

 bY �
 Y¿ �

Y¿ � bYX � aY

© 1Y � Y¿ 22,

© 1Y � Y¿ 22.

d e f i n i t i o n ■ The least-squares regression line is the prediction line that minimizes the to-
tal error of prediction, according to the least-squares criterion of  � 1Y � Y¿ 22.



This is, of course, the general equation for a straight line that we have been using
all along. In this context, however, and are called regression constants. This
line is called the regression line of Y on X, or simply the regression of Y on X, be-
cause we are predicting Y given X.

The regression constant is equal to

where sum of squares of X scores
N � number of paired scores

sum of the product of each X and Y pair (also called the sum
of the cross products)

The equation for computing from the raw scores is

The regression constant is given by

aY � Y
––

� bYX
–– computational equation for determining the a regression con-

stant for predicting Y given X

Since we need the constant to determine the constant, the procedure is to
first find and then Once both are found, they are substituted into the re-
gression equation. Let’s construct the least-squares regression line for the IQ and
grade point data presented previously. For convenience, the data have been pre-
sented again in Table 7.2.

aY � Y
––

� bYX
––

and

The full solution is also shown in Table 7.2. The regression line has been plotted
in Figure 7.3. The equation for can now be used to predict the grade point av-
erage knowing only the student’s IQ score. For example, suppose a student’s IQ

Y¿

Y¿ � 0.074X � 7.006

 � �7.006
 � 2.275 � 0.07411125.252

 �
69.375
936.25

� 0.0741 � 0.074

 �
3488.7 �

1503127.32

12

189,187 �
1150322

12

 bY �

©  XY �
1©  X 2 1©  Y 2

N

©  X 2 �
1©  X 2 2

N

aY.bY

aYbY

aY

computational equation for determining the b
regression constant for predicting Y given X

bY �

©  XY �
1©  X 2 1©  Y 2

N

©  X 2 �
1©  X 22

N

bY

© X Y �

� © X 2 �
1©  X 2 2

N
SSX �

bY �

© XY �
1©  X 2 1©  Y 2

N
SSX

bY

bYaY

154 C H A P T E R  7 Linear Regression



Constructing the Least-Squares Regression Line: Regression of Y on X 155

t a b l e 7.2 IQ and grade point average of 12 college students: 
predicting Y from X

Grade Point
Student IQ Average

No.

11 110 1.0 110.0 12,100

12 112 1.6 179.2 12,544

13 118 1.2 141.6 13,924

14 119 2.1 249.9 14,161

15 122 2.6 317.2 14,884

16 125 1.8 225.0 15,625

17 127 2.6 330.2 16,129

18 130 2.0 260.0 16,900

19 132 3.2 422.4 17,424

10 134 2.6 348.4 17,956

11 136 3.0 408.0 18,496

12 138 3.6 496.8 19,044

Total 1503 27.3 3488.7 189,187

 Y¿ � bYX � aY � 0.074X � 7.006

 aY � Y � bYX � 2.275 � 0.07411125.252 � �7.006

 �
69.375
936.25

� 0.0741 � 0.074

 bY �

©  XY �
1©  X 2 1©  Y 2

N

©  X 2 �
1©  X 22

N

�

3488.7 �
1503127.32

12

189,187 �
1150322

12

X 2XYYX

MENTORING TIP
Remember: N is the number
of paired scores, not the total
number of scores. In this 
example, N � 12.
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f i g u r e 7.3 Regression line for grade point average and IQ.

MENTORING TIP
When plotting the regression
line, a good procedure is to se-
lect the lowest and highest X
values in the sample data, and
compute for these X values.
Then locate these X, Y coordi-
nates on the graph and draw
the straight line between
them.

Y¿



score is 124; using this regression line, what is the student’s predicted grade point
average?

Let’s try a couple of practice problems.

 � 2.17
 � 0.07411242 � 7.006

Y¿ � 0.074X � 7.006
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P r a c t i c e  P r o b l e m  7.1

A developmental psychologist is interested in determining whether it is
possible to use the heights of young boys to predict their eventual height at
maturity. To answer this question, she collects the data shown in the follow-
ing table.
a. Draw a scatter plot of the data.
b. If the data are linearly related, derive the least-squares regression line.
c. Based on these data, what height would you predict for a 20-year-old if

at 3 years his height were 42 inches?

Height at Height at
Individual Age 3 Age 20 

No. X (in.) Y (in.) XY X 2

1 30 59 1,770 900
2 30 63 1,890 900
3 32 62 1,984 1,024
4 33 67 2,211 1,089
5 34 65 2,210 1,156
6 35 61 2,135 1,225
7 36 69 2,484 1,296
8 38 66 2,508 1,444
9 40 68 2,720 1,600

10 41 65 2,665 1,681
11 41 73 2,993 1,681
12 43 68 2,924 1,849
13 45 71 3,195 2,025
14 45 74 3,330 2,025
15 47 71 3,337 2,209
16 48 75 3,600 2,304

Total 618 1077 41,956 24,408

aY � Y
––

� bYX
––

� 67.3125 � 0.6636(38.625) � 41.679

 Y¿ � bYX � aY � 0.664X � 41.679

 bY �

©  XY �
1©  X 2 1©  Y 2

N

©  X 2 �
1©  X 22

N

�

41,956 �
618110772

16

24,408 �
161822

16

� 0.6636 � 0.664



S O L U T I O N

a. The scatter plot is shown in the following figure. It is clear that an im-
perfect relationship that is linear and positive exists between the heights
at ages 3 and 20.

b. Derive the least-squares regression line.

aY � Y
––

� bYX
––

� 67.3125 � 0.6636(38.625)

Therefore,

This solution is also shown in the previous table. The least-squares re-
gression line is shown on the scatter plot below.

Y¿ � bYX � aY � 0.664X � 41.679

 � 41.679

 � 0.6636 � 0.664

 bY �

©  XY �
1©  X 2 1©  Y 2

N

©  X2 �
1©  X 2 2

N

�

41,956 �
618110772

16

24,408 �
161822

16

  Y¿ � bYX � aY

c. Predicted height for the 3-year-old of 42 inches:

inches� 69.55
 � 0.6641422 � 41.679

Y¿ � 0.664X � 41.679
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P r a c t i c e  P r o b l e m  7.2

A neuroscientist suspects that low levels of the brain neurotransmitter
serotonin may be causally related to aggressive behavior. As a first step in
investigating this hunch, she decides to do a correlative study involving nine
rhesus monkeys. The monkeys are observed daily for 6 months, and the
number of aggressive acts are recorded. Serotonin levels in the striatum (a
brain region associated with aggressive behavior) are also measured once
per day for each animal.The resulting data are shown in the following table.
The number of aggressive acts for each animal is the average for the 6
months, given on a per-day basis. Serotonin levels are also average values
over the 6-month period.
a. Draw a scatter plot of the data.
b. If the data are linearly related, derive the least-squares regression line

for predicting the number of aggressive acts from serotonin level.
c. On the basis of these data, what is the number of aggressive acts per day

you would predict if a rhesus monkey had a serotonin level of 0.46
microgm/gm?

Subject Serotonin Level Number of Aggressive
No. (microgm/gm) X Acts/day Y XY X 2

1 0.32 6.0 1.920 0.1024

2 0.35 3.8 1.330 0.1225

3 0.38 3.0 1.140 0.1444

4 0.41 5.1 2.091 0.1681

5 0.43 3.0 1.290 0.1849

6 0.51 3.8 1.938 0.2601

7 0.53 2.4 1.272 0.2809

8 0.60 3.5 2.100 0.3600

9 0.63 2.2 1.386 0.3969

Total 4.16 32.8 14.467 2.0202

aY � Y
––

� bYX
––

� 3.6444 � (�7.1274)(0.4622) � 6.939

Y¿ � bYX � aY � �7.127X � 6.939

bY �

©  XY �
1©  X 2 1©  Y 2

N

©  X 2 �
1©  X 22

N

�

14.467 �
14.162 132.82

9

2.0202 �
14.1622

9

� �7.127



REGRESSION OF X ON Y

So far we have been concerned with predicting Y scores from the X scores. To do
so, we derived a regression line that enabled us to predict Y given X. As men-
tioned before, this is sometimes referred to as the regression line of Y on X. It is
also possible to predict X given Y. However, to predict X given Y, we must derive
a new regression line. We cannot use the regression equation for predicting Y
given X. For example, in the problem involving IQ (X) and grade point average
(Y), we derived the following regression line:

Y¿ � 0.074X � 7.006

Regression of X on Y 159

S O L U T I O N

a. The scatter plot follows. It is clear that an imperfect, linear, negative re-
lationship exists between the two variables.

b. Derive the least-squares regression line. The solution is shown at the
bottom of the previous table and the regression line has been plotted on
the scatter plot above.

c. Predicted number of aggressive acts:

aggressive acts per day � 3.7

 � �7.12710.462 � 6.939

Y¿ � �7.127X � 6.939
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This line was appropriate for predicting grade point average given IQ (i.e., for pre-
dicting Y given X). However, if we want to predict IQ (X) given grade point average
(Y), we cannot use this regression line.We must derive new regression constants be-
cause the old regression line was derived to minimize errors in the Y variable.The er-
rors we minimized were represented by vertical lines parallel to the Y axis [see Fig-
ure 7.2(a) on p. 152]. Now we want to minimize errors in the X variable.These errors
would be represented by horizontal lines parallel to the X axis.An example is shown
in Figure 7.2(a) by the dashed line connecting point E to the regression line.

In general, minimizing errors and minimizing errors will not lead to the
same regression lines. The exception occurs when the relationship is perfect
rather than imperfect. In that case, both regression lines coincide, forming the sin-
gle line that hits all of the points. The regression line for predicting X from Y is
sometimes called the regression line of X on Y or simply the regression of X on Y.
To illustrate the computation of the line, let us use the IQ and grade point data
again. This time we shall predict IQ (X) from the grade point average (Y). For 
convenience, the data are shown in Table 7.3. The linear regression equation for
predicting X given Y is

linear regression equation for predicting X given YX¿ � bXY � aX

X¿Y¿
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t a b l e 7.3 IQ and grade point average of 12 students: Predicting X from Y

Grade Point
Student IQ Average

No. X Y XY Y 2

11 2110 21.0 2110.0 21.00

22 2112 21.6 2179.2 22.56

23 2118 21.2 2141.6 21.44

24 2119 22.1 2249.9 24.41

25 2122 22.6 2317.2 26.76

26 2125 21.8 2225.0 23.24

27 2127 22.6 2330.2 26.76

28 2130 22.0 2260.0 24.00

29 2132 23.2 2422.4 10.24

10 2134 22.6 2348.4 26.76

11 2136 23.0 2408.0 29.00

12 2138 23.6 2496.8 12.96

Total 1503 27.3 3488.7 69.13

aX � X
––

� bXY
––

� 125.25 � 9.8790(2.275) � 102.775

 X¿ � bXY � aX � 9.879Y � 102.775

 �
69.375
7.0225

� 9.879

 bX �

©  XY �
1©  X 2 1©  Y 2

N

©Y 2 �
1©  Y 22

N

�

3488.7 �
1503127.32

12

69.13 �
127.322

12

MENTORING TIP
Remember: in general, the 
regression of X on Y and the
regression of Y on X yield 
different regression lines.



where predicted value of X
slope of the line for minimizing errors

X intercept for minimizing errors

The equations for and are

where sum of squares of Y scores

aX � X
––

� bXY
––

a regression constant for predicting X given Y

Solving for and 

 bX �

3488.7 �
1503127.32

12

69.13 �
127.322

12

�
69.375
7.0225

� 9.879

 bX �

� XY �
1� X 2 1� Y 2

N

� Y 2 �
1� Y 22

N

aX,bX

 � � Y 2 �
1� Y22

N

SSY �  

b regression constant
for predicting X given
Y—computational
equation

bX �

© XY �
1© X 2 1© Y 2

N
SSY

�

1© XY2 �
1© X 2 1© Y 2

N

© Y 2 �
1© Y 22

N

aXbX

X¿aX  �
X¿bX  �

X¿ �
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f i g u r e 7.4 Regression of X on Y and regression of Y on X.



aX � X
––

� bXY
––

The linear regression equation for predicting X given Y is

This line, along with the line predicting Y given X, is shown in Figure 7.4. Note
that the two lines are different, as would be expected when the relationship is im-
perfect. The solution is summarized in Table 7.3.

Although different equations do exist for computing the second regression line,
they are seldom used. Instead, it is common practice to designate the predicted vari-
able as Y� and the given variable as X. Thus, if we wanted to predict IQ from grade
point average, we would designate IQ as the Y� variable and grade point average
as the X variable and then use the regression equation for predicting Y given X.

MEASURING PREDICTION ERRORS: 
THE STANDARD ERROR OF ESTIMATE

The regression line represents our best estimate of the Y scores given their cor-
responding X values. However, unless the relationship between X and Y is per-
fect, most of the actual Y values will not fall on the regression line. Thus, when
the relationship is imperfect, there will necessarily be prediction errors. It is use-
ful to know the magnitude of the errors. For example, it sounds nice to say that,
on the basis of the relationship between IQ and grade point average given pre-
viously, we predict that John’s grade point average will be 3.2 when he is a senior.
However, since the relationship is imperfect, it is unlikely that our prediction is
exactly correct. Well, if it is not exactly correct, then how far off is it? If it is likely
to be very far off, we can’t put much reliance on the prediction. However, if the
error is likely to be small, the prediction can be taken seriously and decisions
made accordingly.

Quantifying prediction errors involves computing the standard error of esti-
mate. The standard error of estimate is much like the standard deviation.You will
recall that the standard deviation gave us a measure of the average deviation
about the mean. The standard error of estimate gives us a measure of the aver-
age deviation of the prediction errors about the regression line. In this context,
the regression line can be considered an estimate of the mean of the Y values for
each of the X values. It is like a “floating” mean of the Y values, which changes
with the X values. With the standard deviation, the sum of the deviations,

equaled 0. We had to square the deviations to obtain a meaningful
average. The situation is the same with the standard error of estimate. Since the
sum of the prediction errors, equals 0, we must square them also. The
average is then obtained by summing the squared values, dividing by and
taking the square root of the quotient (very much like with the standard devia-
tion). The equation for the standard error of estimate for predicting Y given X is

standard error of estimate when predicting Y given XsY|X � B
� 1Y � Y¿ 22

N � 2

N � 2,
� 1Y � Y¿ 2,

� 1X � 2,

 � 9.879Y � 102.775

X¿ � bXY � aX

 � 102.775

 � 125.25 � 9.879012.2752
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X



Note that we have divided by rather than as was done with the
sample standard deviation.* The calculations involved in using this equation are
quite laborious. The computational equation, which is given here, is much easier
to use. In determining the regression coefficient, we have already calculated
the values for and 

To illustrate the use of these equations, let’s calculate the standard error 
of estimate for the grade point and IQ data shown in Tables 7.1 and 7.2. As 
before, we shall let grade point average be the Y variable and IQ the X variable,
and we shall calculate the standard error of estimate for predicting grade point
average given IQ. As computed in the tables,

and Substituting these values in the
equation for the standard error of estimate for predicting Y given X, we obtain

Thus, the standard error of estimate � 0.43.This measure has been computed over
all the Y scores. For it to be meaningful, we must assume that the variability of Y
remains constant as we go from one X score to the next. This assumption is called
the assumption of homoscedasticity. Figure 7.5(a) shows an illustration where the
homoscedasticity assumption is met. Figure 7.5(b) shows an illustration where the

 � 20.188 � 0.43

 �R
7.022 �

169.37522

936.25
12 � 2

sY |X �R
SSY �

3©  XY � 1©  X 2 1©  Y2�N 4 2

SSX

N � 2

N � 12.�X Y � 1©X2 1©Y2�N � 69.375,
SSY � 7.022,SSX � 936.25,

computational equation:
standard error of estimate
when predicting Y given XsY |X �R

SSY �
3� XY � 1� X 2 1� Y 2�N 4 2

SSX

N � 2

SSY.SSX

bY

N � 1,N � 2
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*We divide by N � 2 because calculation of the standard error of estimate involves fitting the data to a
straight line. To do so requires estimation of two parameters, slope and intercept, leaving the deviations
about the line with N � 2 degrees of freedom. We shall discuss degrees of freedom in Chapter 13.

X
(a)

Y

X
(b)

Y

f i g u r e 7.5 Scatter plots showing the variability of Y as a
function of X.
From E. W. Minium, Statistical Reasoning in Psychology and Education. Copyright © 1978 by
John Wiley & Sons, Inc. Adapted with permission of John Wiley & Sons, Inc.



assumption is violated.The homoscedasticity assumption implies that if we divided
the X scores into columns, the variability of Y would not change from column to
column. We can see how this is true for Figure 7.5(a) but not for 7.5(b).

What meaning does the standard error of estimate have? Certainly, it is a
quantification of the errors of prediction.The larger its value, the less confidence
we have in the prediction. Conversely, the smaller its value, the more likely the
prediction will be accurate. We can still be more quantitative. We can assume the
points are normally distributed about the regression line (Figure 7.6). If the as-
sumption is valid and we were to construct two lines parallel to the regression
line at distances of and we would find that approxi-
mately 68% of the scores fall between the lines at approximately 95%
lie between and approximately 99% lie between To illustrate this
point, in Figure 7.7, we have drawn two dashed lines parallel to the regression

�3sY |X.�2sY |X,
�1sY |X,

�3sY |X,�2sY | X,�1sY | X,
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X0

Y

Distribution of Y

Regression line

f i g u r e 7.6 Normal distribution of Y scores about the regression line.
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line for the grade point and IQ data at a distance of We have also en-
tered the scores in the figure. According to what we said previously, approxi-
mately 68% of the scores should lie between these lines. There are 12 points, so
we would expect 0.68(12) � 8 of the scores to be contained within the lines. In
fact, there are 8. The agreement isn’t always this good, particularly when there
are only 12 scores in the sample. As N increases, the agreement usually increases
as well.

CONSIDERATIONS IN USING LINEAR 
REGRESSION FOR PREDICTION

The procedures we have described are appropriate for predicting scores based
on presumption of a linear relationship existing between the X and Y variables.
If the relationship is nonlinear, the prediction will not be very accurate. It fol-
lows, then, that the first assumption for successful use of this technique is that
the relationship between X and Y must be linear. Second, we are not ordinarily
interested in using the regression line to predict scores of the individuals who
were in the group used for calculating the regression line. After all, why predict
their scores when we already know them? Generally, a regression line is deter-
mined for use with subjects where one of the variables is unknown. For instance,
in the IQ and grade point average problem, a university admissions officer
might want to use the regression line to predict the grade point averages of
prospective students, knowing their IQ scores. It doesn’t make any sense to pre-
dict the grade point averages of the 12 students whose data were used in the
problem. He already knows their grade point averages. If we are going to use
data collected on one group to predict scores of another group, it is important

�1sY |X.
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that the basic computation group be representative of the prediction group. Of-
ten this requirement is handled by randomly sampling from the prediction pop-
ulation and using the sample for deriving the regression equation. Random
sampling is discussed in Chapter 8. Finally, the linear regression equation is
properly used just for the range of the variable on which it is based. For exam-
ple, when we were predicting grade point average from IQ, we should have lim-
ited our predictions to IQ scores ranging from 110 to 138. Since we do not have
any data beyond this range, we do not know whether the relationship continues
to be linear for more extreme values of IQ.

To illustrate this point, consider Figure 7.8, where we have extended the re-
gression line to include IQ values up to 165. At the university from which these
data were sampled, the highest possible grade point average is 4.0. If we used the
extended regression line to predict the grade point average for an IQ of 165, we
would predict a grade point average of 5.2, a value that is obviously wrong. Pre-
diction for IQs greater than 165 would be even worse. Looking at Figure 7.8, we
can see that if the relationship does extend beyond an IQ of 138, it can’t extend
beyond an IQ of about 149 (the IQ value where the regression line meets a grade
point average of 4.0). Of course, there is no reason to believe the relationship ex-
ists beyond the base data point of and hence predictions using this re-
lationship should not be made for IQ values greater than 138.

RELATION BETWEEN REGRESSION CONSTANTS
AND PEARSON r

Although we haven’t presented this aspect of Pearson r before, it can be shown
that Pearson r is the slope of the least-squares regression line when the scores are
plotted as z scores. As an example, let’s use the data given in Table 6.3 on the
weight and cost of six bags of oranges. For convenience, the data have been re-
produced in Table 7.4. Figure 7.9(a) shows the scatter plot of the raw scores and
the least-squares regression line for these raw scores. This is a perfect, linear re-
lationship, so r � 1.00. Figure 7.9(b) shows the scatter plot of the paired z scores
and the least-squares regression line for these z scores. The slope of the regres-
sion line for the raw scores is b, and the slope of the regression line for the z
scores is r. Note that the slope of this latter regression line is 1.00, as it should be
because r � 1.00.

IQ � 138,
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t a b l e 7.4 Cost and weight in pounds of six bags of oranges

Weight Cost
(lb) ($)

Bag X Y zX zY

A 2.25 0.75 �1.34 �1.34

B 3.00 1.00 �0.80 �0.80

C 3.75 1.25 �0.27 �0.27

D 4.50 1.50 �0.27 �0.27

E 5.25 1.75 �0.80 �0.80

F 6.00 2.00 �1.34 �1.34



Since Pearson r is a slope, it is related to and It can be shown alge-
braically that

and

These equations are useful if we have already calculated , and and want to
determine the least-squares regression line. For example, in the problem involv-
ing IQ and grade point average, and Sup-
pose we want to find and having already calculated , and The sim-
plest way is to use the equation

Note that this is the same value arrived at previously in the chapter on p. 154.
Having found we would calculate in the usual way.

MULTIPLE REGRESSION

Thus far, we have discussed regression and correlation using examples that have
involved only two variables. When we were discussing the relationship between
grade point average and IQ, we determined that and that the equation
of the regression line for predicting grade point average from IQ was

where predicted value of grade point average
IQ scoreX �

Y¿ �

Y¿ � 0.74X � 7.006

r � 0.856

aYbY,

bY � r 
sY

sX
� 0.8556 a

0.7990
9.2257

b � 0.074

sX.r, sYaY,bY

sX � 9.2257.r � 0.8556, sY � 0.7990,

sYr, sX

bX � r 
sX

sY

bY � r 
sY

sX

bX.bY
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MENTORING TIP
Note that if the standard 
deviations of the X and Y
scores are the same, then 
bY � bX � r.



This equation gave us a reasonably accurate prediction. Although we didn’t com-
pute it, total prediction error squared was 1.88, and the amount of
variability accounted for was 73.2%. Of course, there are other variables besides
IQ that might affect grade point average.The amount of time that students spend
studying, motivation to achieve high grades, and interest in the courses taken are
a few that come to mind. Even though we have reasonably good prediction ac-
curacy using just IQ alone, we might be able to do better if we also had data re-
lating grade point average to one or more of these other variables.

Multiple regression is an extension of simple regression to situations that in-
volve two or more predictor variables.To illustrate, let’s assume we had data from
the 12 college students that include a second predictor variable called “study
time,” as well as the original grade point average and IQ scores. The data for
these three variables are shown in columns 2, 3, and 4 of Table 7.5. Now we can
derive a regression equation for predicting grade point average using the two
predictor variables, IQ and study time. The general form of the multiple regres-
sion equation for two predictor variables is

where predicted value of Y

coefficient of the first predictor variable

first predictor variable

coefficient of the second predictor variable

second predictor variable

prediction constanta �

 X2 �

b2 �

 X1 �

 b1 �

Y¿ �

 Y¿ � b1X1 � b2X2 � a  

3� 1Y � Y¿ 22 4
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t a b l e 7.5 A comparison of prediction accuracy using one or two predictor variables

Predicted
Study Grade Point Predicted GPA Using Error
Time Average GPA IQ � Study Error Using IQ

Student IQ (hr/wk) (GPA) Using IQ Time Using � Study
No. (X1) (X2) (Y) (Y�) (Y�) Only IQ Time

11 110 8 1.0 1.14 1.13 �0.14 �0.13

12 112 10 1.6 1.29 1.46 �0.31 �0.13

13 118 6 1.2 1.74 1.29 �0.54 �0.09

14 119 13 2.1 1.81 2.16 �0.29 �0.06

15 122 14 2.6 2.03 2.43 �0.57 �0.17

16 125 6 1.8 2.26 1.63 �0.46 �0.17

17 127 13 2.6 2.40 2.56 �0.20 �0.04

18 130 12 2.0 2.63 2.59 �0.63 �0.59

19 132 13 3.2 2.77 2.81 �0.42 �0.39

10 134 11 2.6 2.92 2.67 �0.32 �0.07

11 136 12 3.0 3.07 2.88 �0.07 �0.12

12 138 18 3.6 3.21 3.69 �0.38 �0.09

Total error squared � 0.63� © 1Y � Y¿ 22 � 1.88



This equation is very similar to the one we used in simple regression ex-
cept that we have added another predictor variable and its coefficient. As be-
fore, the coefficient and constant values are determined according to the least-
squares criterion that is a minimum. However, this time the
mathematics are rather formidable and the actual calculations are almost al-
ways done on a computer, using statistical software. For the data of our exam-
ple, the multiple regression equation that minimizes errors in Y is given by

where predicted value of grade point average

0.049

IQ score

0.118

study time score

5.249

To determine whether prediction accuracy is increased by using the multi-
ple regression equation, we have listed in column 5 of Table 7.5 the predicted
grade point average scores using only IQ for prediction, in column 6 the pre-
dicted grade point average scores using both IQ and study time as predictor
variables, and prediction errors from using each in columns 7 and 8, respec-
tively. We have also plotted in Figure 7.10(a) the actual Y value and the two
predicted values for each student. Students have been ordered from left to
right on the X axis according to the increased prediction accuracy that results
for each by using the multiple regression equation. In Figure 7.10(b), we have
plotted the percent improvement in prediction accuracy for each student that
results from using IQ � study time rather than just IQ alone. It is clear from
Table 7.5 and Figure 7.10 that using the multiple regression equation has
greatly improved overall prediction accuracy. For example, prediction accu-
racy was increased in all students except student number 11, and for student
number 3, accuracy was increased by almost 40%. We have also shown

for each regression line at the bottom of Table 7.5. Adding the
second predictor variable reduced the total prediction error squared from 1.88
to 0.63, an improvement of more than 66%.

Since, in the present example, prediction accuracy was increased by using
two predictors rather than one, it follows that the proportion of the variability
of Y accounted for has also increased. In trying to determine this proportion,
you might be tempted, through extension of the concept of from our previ-
ous discussion of correlation, to compute between grade point average and
each predictor and then simply add the resulting values. Table 7.6 shows a
Pearson r correlation matrix involving grade point average, IQ, and study time.
If we followed this procedure, the proportion of variability accounted for
would be greater than which is clearly impos-
sible. One cannot account for more than 100% of the variability. The error oc-
curs because there is overlap in variability accounted for between IQ and
study time. Students with higher IQs also tend to study more. Therefore, part
of the variability in grade point average that is explained by IQ is also ex-
plained by study time. To correct for this, we must take the correlation be-
tween IQ and study time into account.

1.00 3 10.85622 � 10.82922 � 1.42 4 ,

r 2
r 2

© 1Y � Y¿ 22

Y¿

 a �  

 X2 �  

 b2 �  

 X1 �  

 b1 �  

Y¿ �  

Y¿  � 0.049X1 � 0.118X2 � 5.249

� 1Y � Y¿ 22
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f i g u r e 7.10 Comparison of prediction accuracy using one or two
predictor variables.



The correct equation for computing the proportion of variance accounted for
when there are two predictor variables is given by

where the multiple coefficient of determination

the correlation between Y and predictor variable 

the correlation between Y and predictor variable 

the correlation between predictor variables X1 and 

is also often called the squared multiple correlation. Based on the data of the
present study, the correlation between grade point average and IQ �
0.856, the correlation between Y and study time and the
correlation between IQ and study time For these data,

Thus, the proportion of variance accounted for has increased from 0.73 to 0.91 by
using IQ and study time.

Of course, just adding another predictor variable per se will not necessar-
ily increase prediction accuracy or the amount of variance accounted for.
Whether prediction accuracy and the amount of variance accounted for are in-
creased depends on the strength of the relationship between the variable being
predicted and the additional predictor variable and also on the strength of the
relationship between the predictor variables themselves. For example, notice
what happens to when . This topic is taken up in more detail in ad-
vanced textbooks.*

rX1X2
� 0R2

 � 0.910

R2 �
10.85622 � 10.82922 � 210.8562 10.8292 10.5602

1 � 10.56022

� 0.560.
rX1X2

�� 0.829, rYX2
�

rYX1
�

R2

X2rX1X2 �

X2 rYX2
�

X1 rYX1
�

 R2 �

R2 �
rYX1

2
 � r 2

YX2
 � 2rYX1

rYX2
rX1X2

1 � r 2
X1X2
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t a b l e 7.6 Pearson correlation matrix between IQ, study time, and grade
point average

IQ Study Time Grade Point Average
(X1) (X2) (Y)

IQ 1.000

Study time 0.560 1.000

Grade point average (Y) 0.856 0.829 1.000 

1X22

1X12

*For a more advanced treatment of multiple regression, see D. C. Howell, Statistical Methods for
Psychology, 6th ed., Thomson Wadsworth, Belmont, CA, 2007, pp. 493–553.
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In this chapter, I have discussed how to use the rela-
tionship between two variables for prediction. When
the line that best fits the points is used for prediction,
it is called a regression line. The regression line most
used for linear imperfect relationships fits the points
according to a least-squares criterion. Next, I pre-
sented the equations for determining the least-
squares regression line when predicting Y given X
and the regression line when predicting X given Y.
The two lines are not the same unless the relationship
is perfect. I then used these equations to construct re-
gression lines for various sets of data and showed
how to use these lines for prediction. Next, I dis-

cussed how to quantify the errors in prediction by
computing the standard error of estimate. I presented
the conditions under which the use of the linear re-
gression line was appropriate: The relationship must
be linear, the regression line must have been derived
from data representative of the group to which pre-
diction is desired, and prediction must be limited to
the range of the base data. Next, I discussed the rela-
tionship between b and r. Finally, I introduced the
topic of multiple regression and multiple correlation;
discussed the multiple coefficient of determination,

and showed how using two predictor variables
can increase the accuracy of prediction.
R2;

■ SUMMARY

Homoscedasticity (p. 163)
Least-squares regression line (p. 153)
Multiple coefficient of determination

(p. 171)

Multiple regression (p. 167)
Regression (p. 151)
Regression constant (p. 154)
Regression line (p. 151)

Regression of X on Y (p. 153)
Regression of Y on X (p. 159)
Standard error of estimate (p. 162)

■ IMPORTANT NEW TERMS

1. Define or identify each of the terms in the Impor-
tant New Terms section.

2. List some situations in which it would be useful to
have accurate prediction.

3. The least-squares regression line minimizes
rather than Is this state-

ment correct? Explain.
4. The least-squares regression line is the prediction

line that results in the most direct “hits.” Is this
statement correct? Explain.

5. In general, the regression line of Y on X is not the
same as the regression line of X on Y. Is this state-
ment correct? Explain.

6. Of what value is it to know the standard error of
estimate for a set of paired X and Y scores?

7. Why are there usually two regression lines but
only one correlation coefficient for any set of
paired scores?

8. What is called? Is it true that conceptually 
is analogous to , except that applies to situa-
tions in which there are two or more predictor
variables? Explain. Will using a second predictor
variable always increase the precision of predic-
tion? Explain.

R2r 2
R2R2

© 1Y � Y¿ 2.© 1Y � Y¿ 22

9. Given the set of paired X and Y scores,

X 7 10 9 13 7 11 13

Y 1 2 4 3 3 4 5

a. Construct a scatter plot of the paired scores.
Does the relationship appear linear?

b. Determine the least-squares regression line
for predicting Y given X.

c. Determine the least-squares regression line
for predicting X given Y. Are they the same?
Explain.

d. Draw both regression lines on the scatter plot.
e. Using the relationship between X and Y, what

value would you predict for Y if X � 12
(round to two decimal places)?

10. A clinical psychologist is interested in the rela-
tionship between testosterone level in married
males and the quality of their marital relation-
ship. A study is conducted in which the testos-
terone levels of eight married men are measured.
The eight men also fill out a standardized ques-

■ QUESTIONS AND PROBLEMS



tionnaire assessing quality of marital relation-
ship. The questionnaire scale is 0–25, with higher
numbers indicating better relationships. Testos-
terone scores are in nanomoles/liter of serum.
The data are shown below.

Subject Number 1 2 3 4 5 6 7 8

Relationship Score 24 15 15 10 19 11 20 19

Testosterone Level 12 13 19 25 9 16 15 21

a. On a piece of graph paper, construct a scatter
plot of the data. Use testosterone level as the
X variable.

b. Describe the relationship shown on the graph.
c. Compute the value of Pearson r.
d. Determine the least-squares regression line

for predicting relationship score from testos-
terone level. Should bY be positive or nega-
tive? Why?

e. Draw the least-squares regression line of part
d on the scatter plot of part a.

f. Based on the data of the eight men, what rela-
tionship score would you predict for a male who
has a testosterone level of 23 nanomoles/liter 
of serum? clinical, health, biological

11. A popular attraction at a carnival recently ar-
rived in town is the booth where Mr. Clairvoyant
(a bright statistics student of somewhat question-
able moral character) claims that he can guess the
weight of females to within 1 kilogram by merely
studying the lines in their hands and fingers. He
offers a standing bet that if he guesses incorrectly
the woman can pick out any stuffed animal in the
booth. However, if he guesses correctly, as a re-
ward for his special powers, she must pay him $2.
Unknown to the women who make bets, Mr.
Clairvoyant is able to surreptitiously measure the
length of their left index fingers while “studying”
their hands. Also unknown to the bettors, but
known to Mr. Clairvoyant, is the following rela-
tionship between the weight of females and the
length of their left index fingers:

Length of Left Index
Finger (cm)

5.6 6.2 6.0 5.4

Weight (kg) 79.0 83.5 82.0 77.5

a. If you were a prospective bettor, having all
this information before you, would you make
the bet with Mr. Clairvoyant? Explain.

b. Using the data in the accompanying table,
what is the least-squares regression line for
predicting a woman’s weight, given the length
of her index finger?

c. Using the least-squares regression line deter-
mined in part b, if a woman’s index finger 
is 5.7 centimeters, what would be her pre-
dicted weight (round to two decimal places)?
cognitive

12. A statistics professor conducts a study to investi-
gate the relationship between the performance
of his students on exams and their anxiety. Ten
students from his class are selected for the ex-
periment. Just before taking the final exam, the
10 students are given an anxiety questionnaire.
Here are final exam and anxiety scores for the 
10 students:

Anxiety 28 41 35 39 31 42 50 46 45 37

Final Exam 82 58 63 89 92 64 55 70 51 72

a. On a piece of graph paper, construct a scatter
plot of the paired scores. Use anxiety as the X
variable.

b. Describe the relationship shown in the graph.
c. Assuming the relationship is linear, compute

the value of Pearson r.
d. Determine the least-squares regression line

for predicting the final exam score given the
anxiety level. Should be positive or nega-
tive? Why?

e. Draw the least-squares regression line of part
d on the scatter plot of part a.

f. Based on the data of the 10 students, if a stu-
dent has an anxiety score of 38, what value
would you predict for her final exam score
(round to two decimal places)?

g. Calculate the standard error of estimate for
predicting final exam scores from anxiety
scores. clinical, health, education

13. The sales manager of a large sporting goods
store has recently started a national advertising
campaign. He has kept a record of the monthly
costs of the advertising and the monthly profits.
These are shown here. The entries are in thou-
sands of dollars.

Month Jan. Feb. Mar. Apr. May Jun. Jul.

Monthly
Advertising 10.0 14.0 11.4 15.6 16.8 11.2 13.2
Cost

Monthly
125 200 160 150 210 110 125Profit

bY
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a. Assuming a linear relationship exists, derive 
the least-squares regression line for predicting
monthly profits from monthly advertising costs.

b. In August, the manager plans to spend $17,000
on advertising. Based on the data, how much
profit should he expect that month (round to
the nearest $1000)?

c. Given the relationship shown by the paired
scores, can you think of a reason why the
manager doesn’t spend a lot more money on
advertising? I/O

14. A newspaper article reported that “there is a
strong correlation between continuity and suc-
cess when it comes to NBA coaches.” The article
was based on the following data:

Tenure as 1996–1997 
Coach with Record
Same Team (% games 

Coach, Team (yr) won)

Jerry Sloan, Utah 9 79

Phil Jackson, Chicago 8 84

Rudy Tomjanovich, 6 70
Houston

George Karl, Seattle 6 70

Lenny Wilkens, Atlanta 4 68

Mike Fratello, Cleveland 4 51

Larry Brown, Indiana 4 48

a. Is the article correct in claiming that there is a
strong correlation between continuity and
success when it comes to NBA coaches?

b. Derive the least-squares regression line for 
predicting success (% games won) from tenure.

c. Based on your answer to part b, what “%
games won” would you predict for an NBA
coach who had 7 years’ “tenure” with the same
team? I/O, other

15. During inflationary times, Mr. Chevez has be-
come budget conscious. Since his house is 
heated electrically, he has kept a record for the
past year of his monthly electric bills and of 
the average monthly outdoor temperature. The
data are shown in the following table. Tempera-
ture is in degrees Celsius, and the electric bills
are in dollars.
a. Assuming there is a linear relationship be-

tween the average monthly temperature and
the monthly electric bill, determine the least-
squares regression line for predicting the

monthly electric bill from the average monthly
temperature.

b. Based on the almanac forecast for this year,
Mr. Chevez expects a colder winter. If Febru-
ary is 8 degrees colder this year, how much
should Mr. Chevez allow in his budget for Feb-
ruary’s electric bill? In calculating your answer,
assume that the costs of electricity will rise
10% from last year’s costs because of inflation.

c. Calculate the standard error of estimate for
predicting the monthly electric bill from aver-
age monthly temperature.

Month Average Temp. Elec. Bill

Jan. 10 120
Feb. 18 90
Mar. 35 118
Apr. 39 60
May 50 81
Jun. 65 64
Jul. 75 26
Aug. 84 38
Sep. 52 50
Oct. 40 80
Nov. 25 100
Dec. 21 124

other

16. In Chapter 6, Problem 16, data were presented
on the relationship between birth weight and the
subsequent IQ of seven randomly selected psy-
chology majors from a particular university. The
data are again presented below.

Birth Weight
Student (lbs) IQ

1 5.8 122

2 6.5 120

3 8.0 129

4 5.9 112

5 8.5 127

6 7.2 116

7 9.0 130

a. Assuming there is a linear relationship, use
these data and determine the least-squares re-
gression line for predicting IQ given birth
weight.
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b. Using this regression line, what IQ would you
predict for a birth weight of 7.5?
developmental

17. In Chapter 6, Problem 21, data were given on the
relationship between the number of soft drinks
consumed in a week by eight 12-year-olds and
their body mass index (BMI). The 12-year-olds
were randomly selected from a junior high school
in a large northwestern city. The data are again
presented below.

Number of
Soft Drinks

Child Consumed BMI

1 3 20

2 1 18

3 14 32

4 7 24

5 21 35

6 5 19

7 25 38

8 9 30

a. Assuming the data show a linear relationship,
derive the least-squares regression line for
predicting BMI given the number of soft
drinks consumed.

b. Using this regression line, what BMI would you
predict for a 12-year-old from this school who
consumes a weekly average of 17 soft drinks?
health

18. In Chapter 6, Problem 22, data were presented
from a study conducted to determine the rela-
tionship between religious involvement and self-
esteem. The data are again presented below.

Religious Self-
Subject Involvement Esteem

1 5 8

2 25 3

3 45 2

4 20 7

5 30 5

6 40 5

7 1 4

8 15 4

9 10 7

10 35 3

a. Assuming a linear relationship, derive the
least-squares regression line for predicting
self-esteem from religious involvement.

b. Using this regression line, what value of self-
esteem would you predict for an eighth grader
who had value of religious involvement of 43?
social, developmental

19. In Chapter 6, Problem 24, data were shown on the
relationship between the work performance of 10
workers randomly chosen from the manufacturing
section of a large corporation and two possible
screening tests. The data are again shown below.

In that problem you were asked to recom-
mend which of the two tests should be used as a
screening device for prospective employees for
that section of the company. Based on the data
presented, you recommended using test 2. Now
the question is: Would it be better to use both
test 1 and test 2, rather than just test 2 alone? Ex-
plain your answer, using and r2. Use a com-
puter and statistical software to solve this prob-
lem if you have access to them. I/O

R2
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Employee

1 2 3 4 5 6 7 8 9 10

Work performance 50 74 62 90 98 52 68 80 88 76

Test 1 10 19 20 20 21 14 10 24 16 14

Test 2 25 35 40 49 50 29 32 44 46 35
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BOOK COMPANION SITE

To access the material on the book companion site,
go to www.cengage.com/psychology/pagano and click
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• Chapter Outline
• Know and Be Able to Do
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• Tutorial Quiz
• Solving Problems with SPSS
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• And more

The problems for this chapter as well as guided, in-
teractive, problem-solving tutorials may be assigned
online at Enhanced WebAssign.
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Random Sampling 
and Probability

LEARNING OBJECTIVES

After completing this chapter, you should be able to:
■ Define a random sample; specify why the sample used in a

study should be a random sample, and explain two methods of
obtaining a random sample.

■ Define sampling with replacement, sampling without replace-
ment, a priori and a posteriori probability.

■ List three basic points concerning probability values.
■ Define the addition and multiplication rules, and solve prob-

lems involving their use.
■ Define independent, mutually exclusive, and mutually exhaus-

tive events.
■ Define probability in conjunction with a continuous variable

and solve problems when the variable is continuous and nor-
mally distributed.

■ Understand the illustrative examples, do the practice prob-
lems, and understand the solutions.

Chapter 8



INTRODUCTION

We have now completed our discussion of descriptive statistics and are ready to
begin considering the fascinating area of inferential statistics. With descriptive
statistics, we were concerned primarily with presenting and describing sets of
scores in the most meaningful and efficient way. With inferential statistics, we go
beyond mere description of the scores. A basic aim of inferential statistics is to
use the sample scores to make a statement about a characteristic of the popula-
tion. There are two kinds of statements made. One has to do with hypothesis test-
ing and the other with parameter estimation.

In hypothesis testing, the experimenter is collecting data in an experiment on
a sample set of subjects in an attempt to validate some hypothesis involving a
population. For example, suppose an educational psychologist believes a new
method of teaching mathematics to the third graders in her school district (pop-
ulation) is superior to the usual way of teaching the subject. In her experiment,
she employs two samples of third graders, one of which is taught using the new
teaching method and the other the old one. Each group is tested on the same fi-
nal exam. In doing this experiment, the psychologist is not satisfied with just re-
porting that the mean of the group that received the new method was higher than
the mean of the other group. She wants to make a statement such as, “The im-
provement in final exam scores was due to the new teaching method and not
chance factors. Furthermore, the improvement does not apply just to the partic-
ular sample tested. Rather, the improvement would be found in the whole popu-
lation of third graders if they were taught by the new method.” The techniques
used in inferential statistics make these statements possible.

In parameter estimation experiments, the experimenter is interested in de-
termining the magnitude of a population characteristic. For example, an econo-
mist might be interested in determining the average monthly amount of money
spent last year on food by single college students. Using sample data, with the
techniques of inferential statistics, he can estimate the mean amount spent by the
population. He would conclude with a statement such as, “The probability is 0.95
that the interval of $250–$300 contains the population mean.”

The topics of random sampling and probability are central to the methodol-
ogy of inferential statistics. In the next section, we shall consider random sam-
pling. In the remainder of the chapter, we shall be concerned with presenting the
basic principles of probability.

RANDOM SAMPLING

To generalize validly from the sample to the population, both in hypothesis test-
ing and parameter estimation experiments, the sample cannot be just any subset
of the population. Rather, it is crucial that the sample is a random sample.
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d e f i n i t i o n ■ A random sample is defined as a sample selected from the population by a
process that ensures that (1) each possible sample of a given size has an
equal chance of being selected and (2) all the members of the population
have an equal chance of being selected into the sample.*

*See Note 8.1, p. 214.



To illustrate, consider the situation in which we have a population compris-
ing the scores 2, 3, 4, 5, and 6 and we want to randomly draw a sample of size 
2 from the population. Note that normally the population would have a great
many more scores in it. We’ve restricted the population to five scores for ease in
understanding the points we wish to make. Let’s assume we shall be sampling
from the population one score at a time and then placing it back into the popu-
lation before drawing again. This is called sampling with replacement and is dis-
cussed later in this chapter. The following comprise all the samples of size 2 we
could get from the population using this method of sampling:

2, 2 3, 2 4, 2 5, 2 6, 2
2, 3 3, 3 4, 3 5, 3 6, 3
2, 4 3, 4 4, 4 5, 4 6, 4
2, 5 3, 5 4, 5 5, 5 6, 5
2, 6 3, 6 4, 6 5, 6 6, 6

There are 25 samples of size 2 we might get when sampling one score at a time
with replacement. To achieve random sampling, the process must be such that 
(1) all of the 25 possible samples have an equally likely chance of being selected
and (2) all of the population scores (2, 3, 4, 5, and 6) have an equal chance of be-
ing selected into the sample.

The sample should be a random sample for two reasons. First, to general-
ize from a sample to a population, it is necessary to apply the laws of probabil-
ity to the sample. If the sample has not been generated by a process ensuring
that each possible sample of that size has an equal chance of being selected, we
can’t apply the laws of probability to the sample. The importance of this aspect
of randomness and of probability to statistical inference will become apparent
when we have covered the chapters on hypothesis testing and sampling distri-
butions (see Chapters 10 and 12, respectively).

The second reason for random sampling is that, to generalize from a sample
to a population, it is necessary that the sample be representative of the popula-
tion. One way to achieve representativeness is to choose the sample by a process
that ensures that all the members of the population have an equal chance of be-
ing selected into the sample. Thus, requiring the sample to be random allows the
laws of probability to be used on the sample and at the same time results in a
sample that should be representative of the population.

It is tempting to think that we can achieve representativeness by using meth-
ods other than random sampling. Very often, however, the selected procedure re-
sults in a biased (unrepresentative) sample. An example of this was the famous
Literary Digest presidential poll of 1936, which predicted a landslide victory for
Landon (57% to 43%). In fact, Roosevelt won, gaining 62% of the ballots. The
Literary Digest prediction was grossly in error. Why? Later analysis showed that
the error occurred because the sample was not representative of the voting pop-
ulation. It was a biased sample. The individuals selected were chosen from
sources like the telephone book, club lists, and lists of registered automobile own-
ers. These lists systematically excluded the poor, who were unlikely to have tele-
phones or automobiles. It turned out that the poor voted overwhelmingly for
Roosevelt. Even if other methods of sampling do on occasion result in a repre-
sentative sample, the methods would not be useful for inference because we
could not apply the laws of probability necessary to go from the sample to the
population.
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Techniques for Random Sampling

It is beyond the scope of this textbook to delve deeply into the ways of generat-
ing random samples. This topic can be complex, particularly when dealing with
surveys. We shall, however, present a few of the more commonly used techniques
in conjunction with some simple situations so that you can get a feel for what is
involved. Suppose we have a population of 100 people and wish to randomly
sample 20 for an experiment. One way to do this would be to number the indi-
viduals in the population from 1 to 100, then take 100 slips of paper and write one
of the numbers on each slip, and put the slips into a hat, shake them around a lot,
and pick out one. We would repeat the shaking and pick out another. Then we
would continue this process until 20 slips have been picked. The numbers con-
tained on the slips of paper would identify the individuals to be used in the sam-
ple. With this method of random sampling, it is crucial that the population be
thoroughly mixed to ensure randomness.

A common way to produce random samples is to use a table of random num-
bers, such as Table J in Appendix D. These tables are most often constructed by
a computer using a program that guarantees that all the digits (0–9) have an
equal chance of occurring each time a digit is printed.

The table may be used as successive single digits, as successive two-digit num-
bers, as successive three-digit numbers, and so forth. For example, in Table J,
p. 574, if we begin at row 1 and move horizontally across the page, the random or-
der of single digits would be 3, 2, 9, 4, 2, . . . . If we wish to use two-digit numbers,
the random order would be 32, 94, 29, 54, 16, . . . .

Since the digits in the table are random, they may be used vertically in both
directions and horizontally in both directions. The direction to be used should be
specified before entering the table. To use the table properly, it should be entered
randomly. One way would be to make cards with row and column numbers and
place the cards in a box, mix them up, and then pick a row number and a column
number.The intersection of the row and column would be the location of the first
random number. The remaining numbers would be located by moving from the
first number in the direction specified prior to entering the table. To illustrate,
suppose we wanted to form a random sample of 3 subjects from a population of
10 subjects.* For this example, we have decided to move horizontally to the right
in the table. To choose the sample, we would first assign each individual in the
population a number from 0 to 9. Next, the table would be entered randomly to
locate the first number. Let’s assume the entry turns out to be the first number of
row 7, p. 574, which is 3. This number designates the first subject in the sample.
Thus, the first subject in the sample would be the subject bearing the number 3.
We have already decided to move to the right in the table, so the next two num-
bers are 5 and 6. Thus, the individuals bearing the numbers 5 and 6 would com-
plete the sample.

Next, let’s do a problem in which there are more individuals in the popula-
tion. For purposes of illustration, we shall assume that a random sample of 15
subjects is desired from a population of 100. To vary things a bit, we have de-
cided to move vertically down in the table for this problem, rather than hori-
zontally to the right. As before, we need to assign a number to each member of
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*Of course, in real experiments, the number of elements in the population is much greater than 10.
We are using 10 in the first example to help understand how to use the table.



the population. This time, the numbers assigned are from 00 to 99 instead of
from 0 to 9. Again the table is entered randomly. This time, let’s assume the en-
try occurs at the intersection of the first two-digit number of column 3 with row
12. The two-digit number located at this intersection is 70. Thus, the first subject
in the sample is the individual bearing the number 70. The next subject would
be located by moving vertically down from 70. Thus, the second subject in the
sample would be the individual bearing the number 33. This process would be
continued until 15 subjects have been selected. The complete set of subject
numbers would be 70, 33, 82, 22, 96, 35, 14, 12, 13, 59, 97, 37, 54, 42, and 89. In ar-
riving at this set of numbers, the number 82 appeared twice in the table. Since
the same individual cannot be in the sample more than once, the repeated num-
ber was not included.

Sampling With or Without Replacement

So far, we have defined a random sample, discussed the importance of random
sampling, and presented some techniques for producing random samples. To
complete our discussion, we need to distinguish between sampling with re-
placement and sampling without replacement. To illustrate the difference be-
tween these two methods of sampling, let’s assume we wish to form a sample of
two scores from a population composed of the scores 4, 5, 8, and 10. One way
would be to randomly draw one score from the population, record its value, and
then place it back in the population before drawing the second score. Thus, the
first score would be eligible for selection again on the second draw. This method
of sampling is called sampling with replacement. A second method would be to
randomly draw one score from the population and not replace it before draw-
ing the second one. Thus, the same member of the population could appear in
the sample only once. This method of sampling is called sampling without re-
placement.
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d e f i n i t i o n s ■ Sampling with replacement is defined as a method of sampling in which
each member of the population selected for the sample is returned to the
population before the next member is selected.

■ Sampling without replacement is defined as a method of sampling in which
the members of the sample are not returned to the population before subse-
quent members are selected.

When subjects are being selected to participate in an experiment, sampling with-
out replacement must be used because the same individual can’t be in the sam-
ple more than once. You will probably recognize this as the method we used in
the preceding section. Sampling with replacement forms the mathematical basis
for many of the inference tests discussed later in the textbook. Although the two
methods do not yield identical results, when sample size is small relative to pop-
ulation size, the differences are negligible and “with-replacement” techniques are
much easier to use in providing the mathematical basis for inference. Let’s now
move on to the topic of probability.



PROBABILITY

Probability may be approached in two ways: (1) from an a priori, or classical,
viewpoint and (2) from an a posteriori, or empirical, viewpoint. A priori means
that which can be deduced from reason alone, without experience. From the a
priori, or classical, viewpoint, probability is defined as

The symbol p(A) is read “the probability of occurrence of event A.”Thus, the equa-
tion states that the probability of occurrence of event A is equal to the number of
events classifiable as A divided by the number of possible events. To illustrate how
this equation is used, let’s look at an example involving dice. Figure 8.1 shows a pair
of dice. Each die (the singular of dice is die) has six sides with a different num-
ber of spots painted on each side. The spots vary from one to six. These innocent-
looking cubes are used for gambling in a game called craps. They have been the 
basis of many tears and much happiness depending on the “luck” of the gambler.

Returning to a priori probability, suppose we are going to roll a die once.
What is the probability it will come to rest with a 2 (the side with two spots on it)
facing upward? Since there are six possible numbers that might occur and only
one of these is 2, the probability of a 2 in one roll of one die is

Let’s try one more problem using the a priori approach. What is the proba-
bility of getting a number greater than 4 in one roll of one die? This time there
are two events classifiable as A (rolling 5 or 6). Thus,

Note that the previous two problems were solved by reason alone, without re-
course to any data collection. This approach is to be contrasted with the a poste-
riori, or empirical, approach to probability. A posteriori means “after the fact,”
and in the context of probability, it means after some data have been collected.
From the a posteriori, or empirical, viewpoint, probability is defined as

To determine the probability of a 2 in one roll of one die using the empirical
approach, we would have to take the actual die, roll it many times, and count

p 1A2 �
Number of times A has occurred

Total number of occurrences
    a posteriori probability

p 1A2 � p 15 or 62 �
Number of events classifiable as 5 or 6

Total number of possible events
�

2
6

� 0.3333

p 1A2 � p 122 �
Number of events classifiable as 2
Total number of possible events

�
1
6

� 0.1667*

p 1A2 �
Number of events classifiable as A

Total number of possible events
    a priori probability
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*In this and all other problems involving dice, we shall assume that the dice will not come to rest on
any of their edges.

f i g u r e 8.1 A pair of dice.

MENTORING TIP
Because of tradition, probabil-
ity values in this chapter have
been rounded to 4-decimal-
place accuracy. Unless you are
told otherwise, your answers
to end-of-chapter problems for
this chapter should also be
rounded to 4 decimal places.



the number of times a 2 has occurred. The more times we roll the die, the bet-
ter. Let’s assume for this problem that we roll the die 100,000 times and that a
2 occurs 16,000 times. The probability of a 2 occurring in one roll of the die is
found by

Note that, with this approach, it is necessary to have the actual die and to col-
lect some data before determining the probability. The interesting thing is that
if the die is evenly balanced (spoken of as a fair die), when we roll the die many,
many times, the a posteriori probability approaches the a priori probability. If
we roll an infinite number of times, the two probabilities will equal each other.
Note also that, if the die is loaded (weighted so that one side comes up more
often than the others), the a posteriori probability will differ from the a priori
determination. For example, if the die is heavily weighted for a 6 to come up, a
2 might never appear. We can see now that the a priori equation assumes that
each possible outcome has an equal chance of occurrence. For most of the
problems in this chapter and the next, we shall use the a priori approach to
probability.

Some Basic Points Concerning Probability Values

Since probability is fundamentally a proportion, it ranges in value from 0.00 to
1.00. If the probability of an event occurring equals 1.00, then the event is certain
to occur. If the probability equals 0.00, then the event is certain not to occur. For
example, an ordinary die does not have a side with 7 dots on it. Therefore, the
probability of rolling a 7 with a single die equals 0.00. Rolling a 7 is certain not to
occur. On the other hand, the probability that a number from 1 to 6 will occur
equals 1.00. It is certain that one of the numbers 1, 2, 3, 4, 5, or 6 will occur.

The probability of occurrence of an event is expressed as a fraction or a 
decimal number. For example, the probability of randomly picking the ace of
spades in one draw from a deck of ordinary playing cards is , or 0.0192.* The 
answer may be left as a fraction but usually is converted to its decimal equiv-
alent (0.0192).

Sometimes probability is expressed as “chances in 100.” For example, some-
one might say the probability that event A will occur is 5 chances in 100. What he
really means is p(A) � 0.05. Occasionally, probability is also expressed as the
odds for or against an event occurring. For example, a betting person might say
that the odds are 3 to 1 favoring Fred to win the race. In probability terms,

If the odds were 3 to 1 against Fred’s winning,

Computing Probability

Determining the probability of events can be complex. In fact, whole courses are
devoted to this topic, and they are quite difficult. Fortunately, for our purposes,
there are only two major probability rules we need to learn: the addition rule and
the multiplication rule. These rules provide the foundation necessary for under-
standing the statistical inference tests that follow in this textbook.

p 1Fred’s winning2 � 1
4 � 0.25.

p 1Fred’s winning2 � 3
4 � 0.75.

1 1
52 2

1
52

p 122 �
Number of times 2 has occurred

Total number of occurrences
�

16,000
100,000

� 0.1600
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*For the uninitiated, a deck of ordinary playing cards is composed of 52 cards; 4 suits (spades, hearts,
diamonds, and clubs), and 13 cards in each suit (Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, and King).



The Addition Rule

The addition rule is concerned with determining the probability of occurrence of
any one of several possible events. To begin our discussion, let’s assume there are
only two possible events, A and B. When there are two events, the addition rule
states:
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d e f i n i t i o n ■ The probability of occurrence of A or B is equal to the probability of oc-
currence of A plus the probability of occurrence of B minus the probability
of occurrence of both A and B.

d e f i n i t i o n ■ Two events are mutually exclusive if both cannot occur together. Another
way of saying this is that two events are mutually exclusive if the occurrence
of one precludes the occurrence of the other.

In equation form, the addition rule states:

Let’s illustrate how this rule is used. Suppose we want to determine the prob-
ability of picking an ace or a club in one draw from a deck of ordinary playing
cards. The problem has been solved in two ways in Figure 8.2. Refer to the figure
as you read this paragraph. The first way is by enumerating all the events classi-
fiable as an ace or a club and using the basic equation for probability. There are
16 ways to get an ace or a club, so the probability of getting an ace or a
club The second method uses the addition rule. The probability of
getting an ace , and the probability of getting a club The probability of
getting both ace and a club By the addition rule, the probability of getting 
an ace or a club Why do we need to subtract the
probability of getting both an ace and a club? Because we have already counted
the ace of clubs twice. Without subtracting it, we would be misled into thinking
there are 17 favorable events rather than just 16.

In this course, we shall be using the addition rule almost entirely in situations
where the events are mutually exclusive.

� 4
52 � 13

52 � 1
52 � 16

52 � 0.3077.
� 1

52.
� 13

52.� 4
52

� 16
52 � 0.3077.

addition rule for two events—
general equationp 1A or B2 � p 1A2 � p 1B2 � p 1A and B2

The events of rolling a 1 and of rolling a 2 in one roll of a die are mutually ex-
clusive. If the roll ends with a 1, it cannot also be a 2. The events of picking an
ace and a king in one draw from a deck of ordinary playing cards are mutually
exclusive. If the card is an ace, it precludes the card also being a king. This can be
contrasted with the events of picking an ace and a club in one draw from the
deck. These events are not mutually exclusive because there is a card that is both
an ace and a club (the ace of clubs).

When the events are mutually exclusive, the probability of both events oc-
curring together is zero. Thus, when A and B are mutually exclu-
sive. Under these conditions, the addition rule simplifies to:

addition rule when A and B
are mutually exclusivep1A or B2 � p1A2 � p1B2

p1A and B2 � 0



Let’s practice solving some problems involving situations in which A and B are
mutually exclusive.
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Events favorable to A

where A = drawing an ace or a club

16

where A = drawing an ace
B = drawing a club

p(A or B) = p(A) + p(B) – p(A and B) 

p(A) = 

Ace or club

(a) By enumeration using the basic
definition of probability

= = 0.307716––
52

Number of events favorable to A————————————–—
Total number of possible events

Events favorable to B

Events favorable to A and B

Events favorable to A(b) By the addition rule

=      +       –4––
52

13––
52

1––
52

= = 0.307716––
52

f i g u r e 8.2 Determining the probability of randomly picking an ace or a club in one draw from a deck
of ordinary playing cards.
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P r a c t i c e  P r o b l e m  8.1

What is the probability of randomly picking a 10 or a 4 in one draw from a
deck of ordinary playing cards?

S O L U T I O N

The solution is shown in the following figure. Since we want either a 10 or
a 4 and these two events are mutually exclusive, the addition rule with mu-
tually exclusive events is appropriate. Thus,

There are four 10s, four 4s, and 52 cards, so Thus,

p110 or 42 � 4
52 � 4

52 � 8
52 � 0.1538.

p1102 � 4
52 and p142 � 4

52.

p110 or 42 � p1102 � p142.

Events favorable to A

Events favorable to Bwhere A = drawing a 10
B = drawing a 4

= p(A) + p(B) 

10 or 4
=      +4––

52
4––
52

= = 0.15388––
52

p(A or B) 

= p(10) + p(4) p(a 10 or a 4) 

P r a c t i c e  P r o b l e m  8.2

In rolling a fair die once, what is the probability of rolling a 1 or an even
number?

S O L U T I O N

The solution is shown in the accompanying figure. Since the events are mu-
tually exclusive and the problem asks for either a 1 or an even number, the
addition rule with mutually exclusive events applies. Thus, p(1 or an even 
number) � p(1) � p(an even number). There is one way to roll a 1, three
ways to roll an even number (2, 4, 6), and six possible outcomes. Thus,
p(1) � , p(an even number) � , and p(1 or an even number) �
0.6667

� 1
6 � 3

6 � 4
6

3
6

1
6
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P r a c t i c e  P r o b l e m  8.3

Suppose you are going to randomly sample 1 individual from a population
of 130 people. In the population, there are 40 children younger than 12, 60
teenagers, and 30 adults. What is the probability the individual you select
will be a teenager or an adult?

S O L U T I O N

The solution is shown in the accompanying figure. Since the events are 
mutually exclusive and we want a teenager or an adult, the addition rule 
with mutually exclusive events is appropriate. Thus, p(teenager or adult) �
p(teenager) � p(adult). Since there are 60 teenagers, 30 adults, and 
130 people in the population, p(teenager) � Thus,
p(teenager or adult) � 60

130 � 30
130 � 90

130 � 0.6923.

60
130 and p 1adult2 � 30

130.

where A = a teenager
B = an adult

p(A or B) p(A) + p(B)=

p(a teenager or an adult) p(a teenager) + p(an adult)

Teenager

40
children
younger
than 12

60  
teenagers

30
adults

or Adult

Population

=

=        +60–––
130

= 90–––
130

30–––
130

= 0.6923

where A � rolling a 1
B � rolling an even number

 � 0.6667

 �
1
6

�
3
6

�
4
6

 p11 or an even number2 � p112 � p 1an even number2

 p 1A or B 2 � p  1A2 � p 1B2

Events favorable to A

Events favorable to B



The addition rule may also be used when there are more than two events.
This is accomplished by a simple extension of the equation used for two events.
Thus, when there are more than two events and the events are mutually exclu-
sive, the probability of occurrence of any one of the events is equal to the sum of
the probability of each event. In equation form,

addition rule with more than
two mutually exclusive events

where Z � the last event

Very often we shall encounter situations in which the events are not only mu-
tually exclusive but also exhaustive. We have already defined mutually exclusive
but not exhaustive.

p 1A or B or C . . . or Z2 � p 1A2 � p 1B2 � p 1C2 � . . . � p 1Z2
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d e f i n i t i o n ■ A set of events is exhaustive if the set includes all of the possible events.

For example, in rolling a die once, the set of events of getting a 1, 2, 3, 4, 5, or 6 is
exhaustive because the set includes all of the possible events. When a set of
events is both exhaustive and mutually exclusive, a very useful relationship exists.
Under these conditions, the sum of the individual probabilities of each event in
the set must equal 1. Thus,

where A, B, C, . . . , Z � the events

To illustrate this relationship, let’s consider the set of events of getting a 1, 2,
3, 4, 5, or 6 in rolling a fair die once. Since the events are exhaustive and mutually
exclusive, the sum of their probabilities must equal 1. We can see this is true be-
cause Thus,

When there are only two events and the events are mutually exclusive, it
is customary to assign the symbol P to the probability of occurrence of one of
the events and Q to the probability of occurrence of the other event. For ex-
ample, if I were flipping a penny and only allowed it to come up heads or tails,
this would be a situation in which there are only two possible events (a head
or a tail) with each flip, and the events are mutually exclusive (if it is a head,
it can’t be a tail and vice versa). It is customary to let P equal the probability
of occurrence of one of the events, say, a head, and Q equal the probability of
occurrence of the other event, a tail. In this case, if the coin were a fair coin,

and Since the events are exhaustive and mutually exclusive, their
probabilities must equal 1. Thus,

We shall be using the symbols P and Q extensively in Chapter 9 in conjunction
with the binomial distribution.

P � Q � 1.00    when two events are exhaustive and mutually exclusive

Q � 1
2.P � 1

2

 16   �    16    �     
1
6    �     16    �    16    �     

1
6   � 1.00  

 p 112 � p 122 � p 132 � p 142 � p 152 � p 162 � 1.00

p 112 � 1
6, p 122 � 1

6, p 132 � 1
6, p 142 � 1

6, p 152 � 1
6, and p 162 � 1

6.

when events are exhaustive
and mutually exclusivep 1A2 � p 1B2 � p 1C2 � p � p 1Z2 � 1.00

MENTORING TIP
A fair, or unbiased, coin is one
where if flipped once, the
probability of a head � the
probability of a tail � 0.50. If
the coin is biased, the proba-
bility of a head � probability
of a tail � 0.50.



The Multiplication Rule

Whereas the addition rule gives the probability of occurrence of any one of sev-
eral events, the multiplication rule is concerned with the joint or successive oc-
currence of several events. Note that the multiplication rule often deals with what
happens on more than one roll or draw, whereas the addition rule covers just one
roll or one draw. If we are interested in the joint or successive occurrence of two
events A and B, the multiplication rule states the following:
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d e f i n i t i o n ■ The probability of occurrence of both A and B is equal to the probability
of occurrence of A times the probability of occurrence of B given A has oc-
curred.

In equation form, the multiplication rule is

Note that the symbol is read “probability of occurrence of B given A has
occurred.” It does not mean B divided by A. Note also that the multiplication rule
is concerned with the occurrence of both A and B, whereas the addition rule ap-
plies to the occurrence of either A or B.

In discussing the multiplication rule, it is useful to distinguish among three
conditions: when the events are mutually exclusive, when the events are inde-
pendent, and when the events are dependent.

Multiplication rule: mutually exclusive events We have already discussed
the joint occurrence of A and B when A and B are mutually exclusive. You will
recall that if A and B are mutually exclusive,

because when events are mutually exclusive, the occurrence of one precludes the
occurrence of the other. The probability of their joint occurrence is zero.

Multiplication rule: independent events To understand how the multiplica-
tion rule applies in this situation, we must first define independent.

p 1A and B2 � 0  multiplication rule with mutually exclusive events

p 1B 0  A2

multiplication rule with two
events—general equationp 1A and B2 � p 1A2  p 1B 0  A2

d e f i n i t i o n ■ Two events are independent if the occurrence of one has no effect on the
probability of occurrence of the other.

Sampling with replacement illustrates this condition well. For example, suppose
we are going to draw two cards, one at a time, with replacement, from a deck of
ordinary playing cards. We can let A be the card drawn first and B be the card
drawn second. Since A is replaced before drawing B, the occurrence of A on the
first draw has no effect on the probability of occurrence of B. For instance, if A
were an ace, because it is replaced in the deck before picking the second card, the



occurrence of an ace on the first draw has no effect on the probability of occur-
rence of the card picked on the second draw. If A and B are independent, then
the probability of B occurring is unaffected by A. Therefore,
Under this condition, the multiplication rule becomes

Let’s see how to use this equation. Suppose we are going to randomly draw two
cards, one at a time, with replacement, from a deck of ordinary playing cards.
What is the probability both cards will be aces?

The solution is shown in Figure 8.3. Since the problem requires an ace on the
first draw and an ace on the second draw, the multiplication rule is appropriate.
We can let A be an ace on the first draw and B be an ace on the second draw.
Since sampling is with replacement, A and B are independent. Thus, p(an ace on
first draw and an ace on second draw) � p(an ace on first draw)p(an ace on sec-
ond draw). There are four aces possible on the first draw, four aces possible on
the second draw (sampling is with replacement), and 52 cards in the deck, so p(an
ace on first draw) and p(an ace on second draw) Thus, p(an ace on first
draw and an ace on second draw)

Let’s do a few more problems for practice.
� 4

52 1 4
52 2 � 16

2704 � 0.0059.
� 4

52.� 4
52

multiplication rule with
independent eventsp 1A and B2 � p 1A2  p 1B 0A2 � p 1A2  p 1B2

p 1B 0A2 � p 1B2.
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f i g u r e 8.3 Determining the probability of randomly sampling two aces in
two draws from a deck of ordinary playing cards. Sampling is one at a time
with replacement: multiplication rule with independent events.

Ace Ace

Events favorable to A

Events favorable to B

where A � an ace on 1st draw
B � an ace on 2nd draw

 � 
16

2704
� 0.0059

 � a
4

52
b a

4
52
b

 c
p1an ace on 1st draw and

    an ace on 2nd draw2 d � p1an ace on 1st draw2p1an ace on 2nd draw2

 p1A and B2 � p1A2p1B2
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P r a c t i c e  P r o b l e m  8.4

Suppose we roll a pair of fair dice once. What is the probability of obtain-
ing a 2 on die 1 and a 4 on die 2?

S O L U T I O N

The solution is shown in the following figure. Since there is independence
between the dice and the problem asks for a 2 and a 4, the multiplication
rule with independent events applies. Thus, p(a 2 on die 1 and a 4 on die 
2) � p(a 2 on die 1)p(a 4 on die 2). There is one way to get a 2 on die 1, one
way to get a 4 on die 2, and six possible outcomes with each die. Therefore,
p(2 on die 1) � p(4 on die 2) � and p(2 on die 1 and 4 on die 2) �

where A � a 2 on die 1
B � a 4 on die 2

 � a
1
6
b a

1
6
b �

1
36

� 0.0278

 p 12 on die 1 and 4 on die 22 � p 12 on die 12  p 14 on die 22

1
6  
116 2 � 1

36 � 0.0278.

1
6 ,1

6 ,

Events favorable to A
Die 1

Events favorable to B
Die 2

P r a c t i c e  P r o b l e m  8.5

If two pennies are flipped once, what is the probability both pennies will
turn up heads? Assume that the pennies are fair coins and that a head or
tail is the only possible outcome with each coin.

S O L U T I O N

The solution is shown in the accompanying figure. Since the outcome with
the first coin has no effect on the outcome of the second coin, there is in-
dependence between events.The problem requires a head with the first coin
and a head with the second coin, so the multiplication rule with indepen-
dent events is appropriate. Thus, p(a head with the first penny and a head
with the second penny) � p(a head with first penny)p(a head with second

(continued)



194 C H A P T E R  8 Random Sampling and Probability

penny). Since there is only one way to get a head with each coin and two
possibilities with each coin (a head or a tail), p(a head with first penny)
and p(a head with second penny) Thus, p(head with first penny and
head with second penny) � 1

2 112 2 � 1
4 � 0.2500.
� 1

2.
� 1

2

p(A and B) = p(A)p(B)

p(a head with 1st penny and
a head with 2nd penny)  = p(a head with 1st penny)p(a head with 2nd penny)

= ( )1–
2 ( )1–

2
= 0.2500

Events favorable to A
First penny

where A = a head with 1st penny
B = a head with 2nd penny

Events favorable to B
Second penny

P r a c t i c e  P r o b l e m  8.6

Suppose you are randomly sampling from a bag of fruit. The bag contains
four apples, six oranges, and five peaches. If you sample two fruits, one at a
time, with replacement, what is the probability you will get an orange and
an apple in that order?

S O L U T I O N

The solution is shown in the accompanying figure. Since there is indepen-
dence between draws (sampling is with replacement) and we want an
orange and an apple, the multiplication rule with independent events ap-
plies. Thus, p(an orange on first draw and an apple on second draw) � p(an
orange on first draw)p(an apple on second draw). Since there are 6 oranges
and 15 pieces of fruit in the bag, p(an orange on first draw) Because
the fruit selected on the first draw is replaced before the second draw, it has
no effect on the fruit picked on the second draw. There are 4 apples and

� 6
15.
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15 pieces of fruit, so p(an apple on second draw) Therefore, p(an 
orange on first draw and an apple on second draw)

c
p(an orange on 1st draw and

d
� p(an orange on 1st draw)p(an apple on 2nd draw)

an apple on 2nd draw)

where A � an orange on 1st draw
B � an apple on 2nd draw

�
24

225
� 0.1067

� a
6

15
b a

4
15
b

 p 1A and B2 � p 1A2  p 1B2

� 6
15 1 4

15 
2 � 0.1067.

� 4
15.

Orange Apple

Events favorable to A
Oranges

Events favorable to B
Apples

P r a c t i c e  P r o b l e m  8.7

Suppose you are randomly sampling 2 individuals from a population of 110
men and women. There are 50 men and 60 women in the population. Sam-
pling is one at a time, with replacement. What is the probability the sample
will contain all women?

S O L U T I O N

The solution is shown in the accompanying figure. Since the problem re-
quires a woman on the first draw and a woman on the second draw and
there is independence between these two events (sampling is with replace-
ment), the multiplication rule with independent events is appropriate.

(continued)



The multiplication rule with independent events also applies to situations in
which there are more than two events. In such cases, the probability of the joint
occurrence of the events is equal to the product of the individual probabilities of
each event. In equation form,

p(A and B and C and . . . and Z) � p(A)p(B)p(C) . . . p(Z)
multiplication rule with more than
two independent events

To illustrate the use of this equation, let’s suppose that instead of sampling 2
individuals from the population in Practice Problem 8.7, you are going to sample
4 persons. Otherwise the problem is the same. The population is composed of 50
men and 60 women. As before, sampling is one at a time, with replacement. What
is the probability you will pick 3 women and 1 man in that order? The solution is
shown in Figure 8.4. Since the problem requires a woman on the first and second
and third draws and a man on the fourth draw and sampling is with replacement,
the multiplication rule with more than two independent events is appropriate.
This rule is just like the multiplication rule with two independent events except
there are more terms to multiply. Thus, p(a woman on first draw and a woman on
second draw and a woman on third draw and a man on fourth draw) � p(a
woman on first draw)p(a woman on second draw)p(a woman on third draw)p(a
man on fourth draw). There are 60 women, 50 men, and 110 people in the popu-
lation. Since sampling is with replacement, p(a woman on first draw) � p(a
woman on second draw) � p(a woman on third draw) � and p(a man on60

110,
60
110,

60
110,
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Thus, p(a woman on first draw and a woman on second draw) � p(a woman
on first draw)p(a woman on second draw). There are 60 women and 110
people in the population, so p(a woman on first draw) and p(a
woman on second draw) Therefore, p(a woman on first draw and a
woman on second draw) .

c
p(a woman on 1st draw and

d
� p(a woman on 1st draw)p(a woman on 2nd draw)

a woman on 2nd draw)

where A � a woman on 1st draw
B � a woman on 2nd draw

�
3600

12,100
� 0.2975

� a
60

110
b a

60
110
b

� 60
110 1 60

110 2 � 3600
12,100 � 0.2975

� 60
110.

� 60
110,

60 women
50 men

Population



fourth draw) � Thus, p(a woman on first draw and a woman on second draw
and a woman on third draw and a man on fourth draw) �

.

Multiplication rule: dependent events When A and B are dependent, the
probability of occurrence of B is affected by the occurrence of A. In this case, we
cannot simplify the equation for the probability of A and B. We must use it in its
original form. Thus, if A and B are dependent,

Sampling without replacement provides a good illustration for dependent
events. Suppose you are going to draw two cards, one at a time, without replacement,
from a deck of ordinary playing cards.What is the probability both cards will be aces?

The solution is shown in Figure 8.5. We can let A be an ace on the first draw
and B be an ace on the second draw. Since sampling is without replacement
(whatever card is picked the first time is kept out of the deck), the occurrence of
A does affect the probability of B. A and B are dependent. Since the problem 
asks for an ace on the first and an ace on the second draw, and these events are
dependent, the multiplication rule with dependent events is appropriate. Thus,
p(an ace on first draw and an ace on second draw) � p(an ace on first draw)p(an
ace on second draw, given an ace was obtained on first draw). For the first draw,

p 1A and B2 � p 1A2  p 1B 0A2  multiplication rule with dependent events

1080�14,641 � 0.0738

60
110 1

60
110 2 1

60
110 2 1

50
110 2 �

50
110.
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60 women
50 men

Population

f i g u r e 8.4 Determining the probability of randomly sampling 3 women
and 1 man, in that order, in four draws from a population of 50 men and 
60 women. Sampling is one at a time with replacement: multiplication rule
with several independent events.

p(A and B and C and D) � p(A)p(B)p(C)p(D)

p(a woman on 1st draw and a woman 
s on 2nd draw and a woman on t

3rd draw and a man on 4th draw)

where A � a woman on 1st draw
B � a woman on 2nd draw
C � a woman on 3rd draw
D � a man on 4th draw

� 0.0738

�
1080

14,641

� a
60

110
ba

60
110
ba

60
110
ba

50
110
b



there are 4 aces and 52 cards. Therefore, p(an ace on first draw) � 4
52.
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AceAce

Events favorable to A

Events favorable to B

f i g u r e 8.5 Determining the probability of randomly picking two aces in
two draws from a deck of ordinary playing cards. Sampling is one at a time
without replacement: multiplication rule with dependent events.

where A � drawing an ace on 1st draw
B � drawing an ace on 2nd draw

�
12

2652
� 0.0045

� a
4

52
ba

3
51
b

 c
p1an ace on 1st draw and
  an ace on 2nd draw2 d � c

p1an ace on 1st draw2p1an ace on 2nd
   draw given an ace on 1st draw2 d

 p 1A and B2 � p 1A2  p 1B|A2

P r a c t i c e  P r o b l e m  8.8

Suppose you are randomly sampling two fruits, one at a time, from the bag
of fruit in Practice Problem 8.6. As before, the bag contains four apples, six 
oranges, and five peaches. However, this time you are sampling without re-
placement. What is the probability you will get an orange and an apple in
that order?

S O L U T I O N

The solution is shown in the accompanying figure. Since the problem re-
quires an orange and an apple and sampling is without replacement, the
multiplication rule with dependent events applies.Thus, p(an orange on first
draw and an apple on second draw) � p(an orange on first draw)p(an ap-
ple on second draw given an orange was obtained on first draw). On the first
draw, there are 6 oranges and 15 fruits. Therefore, p(an orange on first

Since sampling is without replacement, p(an ace on second draw given an ace on
first draw) Thus, p(an ace on first draw and an ace on second draw) �
4
52 1 3

51 2 � 12
2652 � 0.0045.

� 3
51.
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draw) Since sampling is without replacement, p(an apple on second
draw given an orange on first draw) Therefore, p(an orange on first

draw and an apple on second draw)

where A � an orange on 1st draw
B � an apple on 2nd draw

�
24

210
� 0.1143

� a
6

15
b a

4
14
b

c
p(an orange on 1st draw and

d � c
p(an orange on 1st draw)p(an apple on

dan apple on 2nd draw) 2nd draw given an orange on 1st draw)

p 1A and B2 � p 1A2  p 1B 0  A2

� 6
15 1 4

14 2 � 24
210 � 0.1143.

� 4
14.

� 6
15.

P r a c t i c e  P r o b l e m  8.9

In a particular college class, there are 15 music majors, 24 history majors,
and 46 psychology majors. If you randomly sample 2 students from the
class, what is the probability they will both be history majors? Sampling is
one at a time, without replacement.

S O L U T I O N

The solution is shown in the accompanying figure. Since the problem re-
quires a history major on the first draw and a history major on the second
draw and sampling is without replacement, the multiplication rule with de-
pendent events is appropriate. Thus, p(a history major on first draw and a
history major on second draw) � p(a history major on first draw)p(a history
major on second draw given a history major was obtained on first draw). On 

Orange Apple

Events favorable to A
Oranges

Events favorable to B
Apples

(continued)



Like the multiplication rule with independent events, the multiplication rule
with dependent events also applies to situations in which there are more than two
events. In such cases, the equation becomes

multiplication rule with more
than two dependent events

where p(A) � probability of A

and all other events
have occurred

To illustrate how to use this equation, let’s do a problem that involves more
than two dependent events. Suppose you are going to sample 4 students from the
college class given in Practice Problem 8.9. In that class, there were 15 music ma-
jors, 24 history majors, and 46 psychology majors. If sampling is one at a time,
without replacement, what is the probability you will obtain 4 history majors?

The solution is shown in Figure 8.6. Since the problem requires a history ma-
jor on the first and second and third and fourth draws and sampling is without
replacement, the multiplication rule with more than two dependent events is

p 1Z 0ABC . . . 2 � probability of Z given A, B, C, 
p 1C 0AB2 � probability of C given A and B have occurred

p 1B 0A2 � probability of B given A has occurred

� p 1A2  p 1B 0A2  p 1C 0AB2 . . . p 1Z 0ABC . . . 2p 1A and B and C and . . . and Z2
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the first draw, there were 24 history majors and 85 people in the population.
Therefore, p(a history major on first draw) � Since sampling is without
replacement, p(a history major on second draw given a history major on
first draw) � Therefore, p(a history major on first draw and a history ma-
jor on second draw)

where A � a history major on 1st draw
B � a history major on 2nd draw

� 
552

7140
� 0.0773

� a
24
85
b a

23
84
b

£

p(a history major on 1st draw and)p(a history
§major on 2nd draw given a history major 

on 1st draw) 

p 1A and B 2 � p 1A 2  p 1B | A 2

� 24
85(

23
84) � 552

7140 � 0.0773.

23
84.

24
85.

c
p(a history major on 1st draw and

d
a history major on 2nd draw) 

�

History majors 

24
history
majors 

46
psychology

majors

15
music
majors

Population



appropriate. This rule is very much like the multiplication rule with two depen-
dent events, except more multiplying is required. Thus, for this problem, p(a his-
tory major on first draw and a history major on second draw and a history major
on third draw and a history major on fourth draw) � p(a history major on first
draw)p(a history major on second draw given a history major on first draw)p(a
history major on third draw given a history major on first and second draws)p(a
history major on fourth draw given a history major on first, second, and third
draws). On the first draw, there are 24 history majors and 85 individuals in the
population. Thus, p(a history major on first draw) Since sampling is without
replacement, p(a history major on second draw given a history major on first
draw) p(a history major on third draw given a history major on first and sec-
ond draws) and p(a history major on fourth draw given a history major on
first, second, and third draws) Therefore, p(a history major on first draw and
a history major on second draw and a history major on third draw and a history
major on fourth draw)

Multiplication and Addition Rules

Some situations require that we use both the multiplication and addition rules for
their solutions. For example, suppose that I am going to roll two fair dice once.
What is the probability the sum of the numbers showing on the dice will equal
11? The solution is shown in Figure 8.7. There are two possible outcomes that

� 24
85 123

84 2  1
22
83 2  1

21
82 2 � 255,024�48,594,840 � 0.0052.

� 21
82.

� 22
83,

� 23
84,

� 24
85.
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f i g u r e 8.6 Determining the probability of randomly sampling 4 history
majors on four draws from a population of 15 music majors, 24 history majors,
and 46 psychology majors. Sampling is one at a time without replacement:
multiplication rule with several dependent events.

where A � a history major on 1st draw
B � a history major on 2nd draw
C � a history major on 3rd draw
D � a history major on 4th draw

 �
255,024

48,594,840
� 0.0052

 � a
24
85
b a

23
84
b a

22
83
b a

21
82
b

 p 1A and B and C and D2 � p 1A2  p 1B|A2  p 1C|AB2  p 1D|ABC2

Population

History majors

24
history
majors

15
music
majors

46
psychology

majors



yield a sum of 11 (die 1 � 5 and die 2 � 6, which we shall call outcome A; and 
die 1 � 6 and die 2 � 5, which we shall call outcome B). Since the dice are 
independent, we can use the multiplication rule with independent events to 
find the probability of each outcome. By using this rule, and

Since either of the outcomes yields a sum of 11, p(sum of 11) 
� p(A or B). These outcomes are mutually exclusive, so we can use the addi-
tion rule with mutually exclusive events to find p(A or B). Thus, p(sum of 11) �
p(A or B) � p(A) � p(B)

Let’s try one more problem that involves both the multiplication and
addition rules.

� 1
36 � 1

36 � 2
36 � 0.0556.

p 1B2 � 1
6 116) � 1

36.
p 1A2 � 1

6 116 2 � 1
36,
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f i g u r e 8.7 Determining the probability of rolling a sum of 11 in one roll of
two fair dice: multiplication and addition rules.

 �
1
36

�
1

36
�

2
36

� 0.0556

 p 1sum of 112 � p 1A or B2 � p 1A2 � p 1B2

 � a
1
6
b a

1
6
b �

1
36

 � p 16 on die 12  p 15 on die 22

 p 1B2 � p 16 on die 1 and 5 on die 22

 � a
1
6
b a

1
6
b �

1
36

 � p 15 on die 12  p 16 on die 22
 p 1A2 � p 15 on die 1 and 6 on die 22

Possible outcomes
yielding a sum of 11

Die 1 Die 2

A

B

P r a c t i c e  P r o b l e m  8.10

Suppose you have arrived in Las Vegas and you are going to try your “luck”
on a one-armed bandit (slot machine). In case you are not familiar with slot
machines, basically a slot machine has three wheels that rotate indepen-
dently. Each wheel contains pictures of different objects. Let’s assume the
one you are playing has seven different fruits on wheel 1: a lemon, a plum,
an apple, an orange, a pear, some cherries, and a banana. Wheels 2 and 3
have the same fruits as wheel 1. When the lever is pulled down, the three
wheels rotate independently and then come to rest. On the slot machine,
there is a window in front of each wheel. The pictures of the fruits pass un-
der the window during rotation. When the wheel stops, one of the fruits
from each wheel will be in view. We shall assume that each fruit on a wheel
has an equal probability of appearing under the window at the end of rota-
tion.You insert your silver dollar and pull down the lever.What is the prob-
ability that two lemons and a pear will appear? Order is not important; all
you care about is getting two lemons and a pear, in any order.
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S O L U T I O N

The solution is shown in the accompanying figure. There are three possible
orders of two lemons and a pear: lemon, lemon, pear; lemon, pear, lemon;
and pear, lemon, lemon. Since the wheels rotate independently, we can use
the multiplication rule with independent events to determine the probabil-
ity of each order. Since each fruit is equally likely, p(lemon and lemon and
pear) � p(lemon)p(lemon)p(pear) The same probability
also applies to the other two orders. Since the three orders give two lemons
and a pear, p(two lemons and a pear) � p(order 1, 2, or 3). By using the ad-
dition rule with independent events,
Thus, the probability of getting two lemons and a pear, without regard to or-
der, equals 0.0087.

p(order 1) � p(lemon on wheel 1 and lemon on wheel 2 and pear on wheel 3)

� p(lemon on wheel 1)p(lemon on wheel 2)p(pear on wheel 3)

p(order 2) � p(lemon on wheel 1 and pear on wheel 2 and lemon on wheel 3)

� p(lemon on wheel 1)p(pear on wheel 2)p(lemon on wheel 3)

p(order 3) � p(pear on wheel 1 and lemon on wheel 2 and lemon on wheel 3)

� p(pear on wheel 1)p(lemon on wheel 2)p(lemon on wheel 3)

� a
1
7
b a

1
7
b a

1
7
b �

1
343

� a
1
7
b a

1
7
b a

1
7
b �

1
343

� a1
7
b a

1
7
b a

1
7
b �

1
343

p (order 1, 2, or 3) � 3
343 � 0.0087.

� 1
7  
(1

7)(1
7) � 1

343.

Order 1

Wheel

Order 2

Order 3

L

1

L

P

L

2

P

L

P

3

L

L

(continued)



Probability and Continuous Variables

So far in our discussion of probability, we have considered variables that have
been discrete, such as sampling from a deck of cards or rolling a pair of dice.
However, many of the dependent variables that are evaluated in experiments are
continuous, not discrete. When a variable is continuous

probability of A with a
continuous variable

Often (although not always) these variables are normally distributed, so we shall
concentrate our discussion on normally distributed continuous variables.

To illustrate the use of probability with continuous variables that are nor-
mally distributed, suppose we have measured the weights of all the sophomore
women at your college. Let’s assume this is a population set of scores that is nor-
mally distributed, with a mean of 120 pounds and a standard deviation of 8
pounds. If we randomly sampled one score from the population, what is the prob-
ability it would be equal to or greater than a score of 134?

The population is drawn in Figure 8.8. The mean of 120 and the score of 134
are located on the X axis.The shaded area represents all the scores that are equal
to or greater than 134. Since sampling is random, each score has an equal chance
of being selected. Thus, the probability of obtaining a score equal to or greater
than 134 can be found by determining the proportion of the total scores that are
contained in the shaded area. The scores are normally distributed, so we can find

p1A2 �  
Area under the curve corresponding to A

Total area under the curve
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� �

�
1

343
�

1
343

�
1

343
�

3
343

� 0.0087

p(order 1) � p(order 2) � p(order 3)p(order 1 or 2 or 3)q
p(2 lemons

rand a pear)

f i g u r e 8.8 Probability of obtaining X � 134 if randomly
sampling one score from a normal population, with � � 120
and � 8.s

X:
z:

120
0

134

0.0401

p(X � 134) � 0.0401

z � x – µ
σ

1.75

� � 1.75134 – 120————–
8

——–



this proportion by converting the raw score to its z-transformed value and then
looking up the area in Table A in Appendix D. Thus,

From Table A, column C,

We are sure you will recognize that this type of problem is quite similar to those
presented in Chapter 5 when dealing with standard scores. The main difference
is that, in this chapter, the problem has been cast in terms of probability rather
than asking for the proportion or percentage of scores as was done in Chapter
5. Since you are already familiar with this kind of problem, we don’t think it nec-
essary to give a lot of practice problems. However, let’s try a couple just to be
sure.

p 1X � 1342 � 0.0401

z �
X � m

s
�

134 � 120
8

�
14
8

� 1.75
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P r a c t i c e  P r o b l e m  8 . 1 1

Consider the same population of sophomore women just discussed in the
text. If one score is randomly sampled from the population, what is the
probability it will be equal to or less than 110?

S O L U T I O N

The solution is presented in the accompanying figure. The shaded area rep-
resents all the scores that are equal to or less than 110. Since sampling is
random, each score has an equal chance of being selected. To find

first we must transform the raw score of 110 to its z score.
Then we can find the proportion of the total scores that are contained in the
shaded area by using Table A. Thus,

p 1X � 110),

X: 110
�1.25

120
0z:

0.1056

z �

p(X  �  110) � 0.1056

� � �1.25
X –   ——– 110 – 120————

8
µ

σ

MENTORING TIP
Remember: draw the picture
first, as you did in Chapter 5.
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P r a c t i c e  P r o b l e m  8.12

Considering the same population again, what is the probability of randomly
sampling a score that is as far or farther from the mean than a score of 138?

S O L U T I O N

The solution is shown in the accompanying figure. The score of 138 is 18
units above the mean. Since the problem asks for scores as far or farther
from the mean, we must also consider scores that are 18 units or more be-
low the mean.The shaded areas contain all of the scores that are 18 units or
more away from the mean. Since sampling is random, each score has an
equal chance of being selected. To find first we
must transform the raw scores of 102 and 138 to their z scores. Then we can
find the proportion of the total scores that are contained in the shaded ar-
eas by using Table A. equals this proportion. Thus,

� �2.25 � 2.25

From Table A, column C,

p 1X � 102 or X � 1382 � 0.0122 � 0.0122 � 0.0244

z �
X � m

s
�

102 � 120
8

� �
18
8
  z �

X � m

s
�

138 � 120
8

�
18
8

p(X � 102 or X � 138)

p(X � 102 or X � 138),

X: 102
–2.25

138
2.25

120
0z:

0.0122 0.0122
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WHAT IS THE TRUTH? “Not Guilty, I’m a Victim of Coincidence”:
Gutsy Plea or Truth?

Despite a tradition
of qualitatively
rather than quanti-
tatively based deci-
sion making, the 

legal field is increasingly using sta-
tistics as a basis for decisions. The
following case from Sweden is an
example.

In a Swedish trial, the defen-
dant was contesting a charge of
overtime parking. An officer had
marked the position of the valves
of the front and rear tires of the
accused driver’s car, according to a
clock representation (e.g., front
valve to one o’clock and rear valve
to six o’clock), in both cases to the
nearest hour (see diagram). After
the allowed time had elapsed, the
car was still there, with the two
valves pointing to one and six 
o’clock as before. The accused 
was given a parking ticket.

In court, however, he pleaded
innocent, claiming that he had left
the parking spot in time, but re-
turned to it later, and the valves
had just happened to come to rest
in the same position as before. The
judge, not having taken a basic
course in statistics, called in a sta-
tistician to evaluate the defen-
dant’s claim of coincidence. Is the
defendant’s claim reasonable? As-
sume you are the statistician. What
would you tell the judge? In formu-
lating your answer, assume inde-
pendence between the wheels, as
did the statistician who advised the
judge.

Answer As a statistician, your job
is to determine how reasonable the
plea of coincidence really is. If we
assume the defendant’s story is true
about leaving and coming back to
the parking spot, what is the prob-
ability of the two valves returning
to their one and six o’clock posi-
tions? Since there are 12 possible
positions for each valve, assuming
independence between the wheels,
using the multiplication rule,

Thus, if coincidence (or chance
alone) is at work, the probability 
of the valves returning to their
original positions is about 7 times
in 1000. What do you think the
judge did when given this infor-
mation? Believe it or not, the 

 � 0.0069
 p1one and six2 � 1 112 2  1

1
12 2 � 1

144

judge acquitted the defendant, 
saying that if all four wheels had
been checked and found to point
in the same directions as before

0.00005), then the coincidence
claim would have been rejected as
too improbable and the defendant
convicted. Thus, the judge consid-
ered the coincidence explanation as
too probable to reject, even though
the results would be obtained only
1 out of 144 times if coincidence
was at work. Actually, because the 
wheels do not rotate indepen-
dently, the formulas used most
likely understate somewhat the
probability of a chance return to
the original position. (How did you
do? Can we call on you in the fu-
ture as a statistical expert to help
mete out justice?) ■

p � 1
12 � 1

12 � 1
12 � 1

12 � 1
20736 �
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WHAT IS THE TRUTH? Sperm Count Decline—Male 
or Sampling Inadequacy?

The headline of an
article that appeared
in 1995 in a leading
metropolitan news-
paper read, “20-

year study shows sperm count de-
cline among fertile men.” Excerpts
from the article are reproduced here.

A new study has found a marked
decline in sperm counts among fer-
tile men over the past 20 years. . . .

The paper, published today in
The New England Journal of Medi-
cine, was based on data collected
over a 20-year period at a Paris
sperm bank. Some experts in the
United States took strong excep-
tion to the findings. . . .

The new study, by Dr. Pierre
Jouannet of the Center for the

Study of the Conservation of 
Human Eggs and Sperm in Paris,
examined semen collected by a
sperm bank in Paris beginning in
1973. They report that sperm
counts fell by an average of 2.1
percent a year, going from 89 mil-
lion sperm per milliliter in 1973 to
an average of 60 million per milli-
liter in 1992. At the same time
they found the percentages of
sperm that moved normally and
were properly formed declined by
0.5 to 0.6 of 1 percent a year.

The paper is accompanied by an
invited editorial by an expert on
male infertility, Dr. Richard Sherins,
director of the division of androl-
ogy at the Genetics and IVF Insti-
tute in Fairfax, Va., who said the
current studies and several preced-

ing it suffered from methodological
flaws that made their data uninter-
pretable.

Sherins said that the studies did
not look at sperm from randomly
selected men and that sperm
counts and sperm quality vary so
much from week to week that it is
hazardous to rely on single samples
to measure sperm quality, as these
studies did.

What do you think? Why might
it be important to use samples
from randomly selected men rather
than from men who deposit their
sperm at a sperm bank? Why
might large week-to-week variabil-
ity in sperm counts and sperm
quality complicate interpretation of
the data? ■
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In this chapter, I have discussed the topics of random
sampling and probability. A random sample is defined
as a sample that has been selected from a population
by a process that ensures that (1) each possible sample
of a given size has an equal chance of being selected
and (2) all members of the population have an equal
chance of being selected into the sample. After defin-
ing and discussing the importance of random sampling,
I described various methods for obtaining a random

sample. In the last section on random sampling, I dis-
cussed sampling with and without replacement.

In presenting probability, I pointed out that
probability may be approached from two viewpoints:
a priori and a posteriori. According to the a priori
view, p(A) is defined as

p 1A2 �
Number of events classifiable as A

Total number of possible events

■ SUMMARY

Text not available due to copyright restrictions



From an a posteriori standpoint, p(A) is defined as

Since probability is fundamentally a proportion, it
ranges from 0.00 to 1.00. Next, I presented two prob-
ability rules necessary for understanding inferential
statistics: the addition rule and the multiplication
rule. Assuming there are two events (A and B), the
addition rule gives the probability of A or B, whereas
the multiplication rule gives the probability of A and
B. The addition rule states the following:

If the events are mutually exclusive,

If the events are mutually exclusive and exhaustive,

The multiplication rule states the following:

p 1A and B2 � p 1A2  p 1B | A2

p 1A2 � p 1B2 � 1.00

p 1A or B2 � p 1A2 � p 1B2

p 1A or B2 � p 1A2 � p 1B2 � p 1A and B2

p 1A2 �
Number of times A has occurred

Total number of occurrences

If the events are mutually exclusive,

If the events are independent,

If the events are dependent, we must use the general
equation

In addition, I discussed (1) the generalization of
these equations to situations in which there were
more than two events and (2) situations that re-
quired both the addition and multiplication rules for
their solution. Finally, I discussed the probability of
A with continuous variables and described how to
find p(A) when the variable was both normally dis-
tributed and continuous. The equation for determin-
ing the probability of A when the variable is contin-
uous is

p 1A2 �
Area under the curve corresponding to A

Total area under the curve

p 1A and B2 � p 1A2  p 1B|A2

p 1A and B2 � p 1A2  p 1B2

p 1A and B2 � 0
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Addition rule (p. 186)
A posteriori probability (p. 184)
A priori probability (p. 184)
Exhaustive set of events (p. 190)
Independence of two events

(p. 191)

Multiplication rule (p. 191)
Mutually exclusive events

(p. 186)
Probability (p. 184)
Probability of occurrence of A or B

(p. 186)

Probability of occurrence of both A
and B (p. 191)

Random sample (p. 180)
Sampling with replacement (p. 183)
Sampling without replacement

(p. 183)

■ IMPORTANT NEW TERMS

1. Define or identify each term in the Important New
Terms section.

2. What two purposes does random sampling
serve?

3. Assume you want to form a random sample of 20
subjects from a population of 400 individuals.
Sampling will be without replacement, and you
plan to use Table J in Appendix D to accomplish
the randomization. Explain how you would use
the table to select the sample.

4. A developmental psychologist is interested in
assessing the “emotional intelligence” of college
students.The experimental design calls for admin-
istering a questionnaire that measures emotional

intelligence to a sample of 100 undergraduate stu-
dent volunteers who are enrolled in an introduc-
tory psychology course currently being taught at
her university. Assume this is the only sample be-
ing used for this study and discuss the adequacy of
the sample.

5. What is the difference between a priori and a pos-
teriori probability?

6. The addition rule gives the probability of occur-
rence of any one of several events, whereas the
multiplication rule gives the probability of the
joint or successive occurrence of several events. Is
this statement correct? Explain, using examples
to illustrate your explanation.

■ QUESTIONS AND PROBLEMS



7. When solving problems involving the multiplica-
tion rule, is it useful to distinguish among three
conditions? What are these conditions? Why is it
useful to distinguish among them?

8. What is the definition of probability when the
variable is continuous?

9. Which of the following are examples of indepen-
dent events?
a. Obtaining a 3 and a 4 in one roll of two fair

dice
b. Obtaining an ace and a king in that order by

drawing twice without replacement from a
deck of cards

c. Obtaining an ace and a king in that order by
drawing twice with replacement from a deck
of cards

d. A cloudy sky followed by rain
e. A full moon and eating a hamburger

10. Which of the following are examples of mutually
exclusive events?
a. Obtaining a 4 and a 7 in one draw from a deck

of ordinary playing cards
b. Obtaining a 3 and a 4 in one roll of two fair

dice
c. Being male and becoming pregnant
d. Obtaining a 1 and an even number in one roll

of a fair die
e. Getting married and remaining a bachelor

11. Which of the following are examples of exhaus-
tive events?
a. Flipping a coin and obtaining a head or a tail

(edge not allowed)
b. Rolling a die and obtaining a 2
c. Taking an exam and either passing or failing
d. Going out on a date and having a good time

12. At the beginning of the baseball season in a par-
ticular year, the odds that the New York Yankees
will win the American League pennant are 3 to 2.
a. What are the odds that the Yankees will lose

the pennant?
b. What is the probability that the Yankees will

win the pennant? Express your answer as a
decimal.

c. What is the probability that the Yankees will
lose the pennant? Express your answer as a
decimal. other

13. If you draw a single card once from a deck of or-
dinary playing cards, what is the probability that
it will be
a. The ace of diamonds?
b. A 10?

c. A queen or a heart?
d. A 3 or a black card? other

14. If you roll two fair dice once, what is the proba-
bility that you will obtain
a. A 2 on die 1 and a 5 on die 2?
b. A 2 and a 5 without regard to which die has

the 2 or 5?
c. At least one 2 or one 5?
d. A sum of 7? other

15. If you are randomly sampling one at a time with
replacement from a bag that contains eight blue
marbles, seven red marbles, and five green mar-
bles, what is the probability of obtaining
a. A blue marble in one draw from the bag?
b. Three blue marbles in three draws from the

bag?
c. A red, a green, and a blue marble in that or-

der in three draws from the bag?
d. At least two red marbles in three draws from

the bag? other
16. Answer the same questions as in Problem 15, ex-

cept sampling is one at a time without replace-
ment. other

17. You are playing the one-armed bandit (slot ma-
chine) described in Practice Problem 8.10, p. 202.
There are three wheels, and on each wheel there
is a picture of a lemon, a plum, an apple, an or-
ange, a pear, cherries, and a banana (seven dif-
ferent pictures). You insert your silver dollar and
pull down the lever. What is the probability that
a. Three oranges will appear?
b. Two oranges and a banana will appear, with-

out regard to order?
c. At least two oranges will appear? other

18. You want to call a friend on the telephone. You
remember the first three digits of her phone num-
ber, but you have forgotten the last four digits.
What is the probability that you will get the cor-
rect number merely by guessing once? other

19. You are planning to make a “killing” at the race
track. In a particular race, there are seven horses
entered. If the horses are all equally matched,
what is the probability of your correctly picking
the winner and runner-up? other

20. A gumball dispenser has 38 orange gumballs, 30
purple ones, and 18 yellow ones. The dispenser
operates such that one quarter delivers 1 gum-
ball.
a. Using three quarters, what is the probability

of obtaining 3 gumballs in the order orange,
purple, orange?
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b. Using one quarter, what is the probability of
obtaining 1 gumball that is either purple or
yellow?

c. Using three quarters, what is the probability
that of the 3 gumballs obtained, exactly 1 will
be purple and 1 will be yellow? other

21. If two cards are randomly drawn from a deck of
ordinary playing cards, one at a time, with re-
placement, what is the probability of obtaining at
least one ace? other

22. A state lottery is paying $1 million to the holder
of the ticket with the correct eight-digit number.
Tickets cost $1 apiece. If you buy one ticket, what
is the probability you will win? Assume there is
only one ticket for each possible eight-digit num-
ber and the winning number is chosen by a ran-
dom process (round to eight decimal places).
other

23. Given a population comprised of 30 bats, 15
gloves, and 60 balls, if sampling is random and
one at a time without replacement,
a. What is the probability of obtaining a glove if

one object is sampled from the population?
b. What is the probability of obtaining a bat and

a ball in that order if two objects are sampled
from the population?

c. What is the probability of obtaining a bat, a
glove, and a bat in that order if three objects
are sampled from the population? other

24. A distribution of scores is normally distributed
with a mean and a standard deviation

If one score is randomly sampled from
the distribution, what is the probability that it
will be
a. Greater than 96?
b. Between 90 and 97?
c. Less than 88? other

25. Assume the IQ scores of the students at your
university are normally distributed, with 
and If you randomly sample one score
from this distribution, what is the probability it
will be
a. Higher than 130?
b. Between 110 and 125?
c. Lower than 100? cognitive

26. A standardized test measuring mathematics pro-
ficiency in sixth graders is administered nation-
ally. The results show a normal distribution of
scores, with and If one score is
randomly sampled from this population, what is
the probability it will be

s � 5.8.m � 50

s � 8.
m � 115

s � 4.6.
m � 85

a. Higher than 62?
b. Between 40 and 65?
c. Lower than 45? education

27. Assume we are still dealing with the population
of Problem 24. If, instead of randomly sampling
from the population, the single score was sam-
pled, using a nonrandom process, would that af-
fect any of the answers to Problem 24 part a, b,
or c? Explain. other

28. An ethologist is interested in how long it takes a
certain species of water shrew to catch its prey.
On 20 occasions each day, he lets a dragonfly
loose inside the cage of a shrew and times how
long it takes until the shrew catches the dragon-
fly. After months of research, the ethologist con-
cludes that the mean prey-catching time was
30 seconds, the standard deviation was 5.5 sec-
onds, and the scores were normally distributed.
Based on the shrew’s past record, what is the
probability
a. It will catch a dragonfly in less than 18 seconds?
b. It will catch a dragonfly in between 22 and 45

seconds?
c. It will take longer than 40 seconds to catch a

dragonfly? biological
29. An instructor at the U.S. Navy’s underwater dem-

olition school believes he has developed a new
technique for staying under water longer. The
school commandant gives him permission to try
his technique with a student who has been ran-
domly selected from the current class. As part of
their qualifying exam, all students are tested to
see how long they can stay under water without
an air tank. Past records show that the scores are
normally distributed with a mean sec-
onds and a standard deviation seconds. If
the new technique has no additional effect, what
is the probability that the randomly selected stu-
dent will stay under water for
a. More than 150 seconds?
b. Between 115 and 135 seconds?
c. Less than 90 seconds? education

30. If you are randomly sampling two scores one at
a time with replacement from a population com-
prised of the scores 2, 3, 4, 5, and 6, what is the
probability that
a. The mean of the sample will equal 6.0?
b.
c
Hint: All of the possible samples of size 2 are
listed on p. 181. other

X � 2.0?
X � 5.5?

1X 2

s � 14
m � 130
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8.1 I realize that if the process ensures that each pos-
sible sample of a given size has an equal chance
of being selected, then it also ensures that all the
members of the population have an equal chance

of being selected into the sample. I included the
latter statement in the definition because I be-
lieved it is sufficiently important to deserve this
special emphasis.

■ NOTES
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Binomial Distribution

LEARNING OBJECTIVES

After completing this chapter, you should be able to:
■ Specify the five conditions that should be met to result in a binomial

distribution.
■ Describe the relationship between binomial distribution and bino-

mial expansion, and explain how the binominal table relates to the
binomial expansion.

■ Specify what each term in the expanded binomial expansion stands
for in terms of P and Q events.

■ Specify for what P and Q values the binomial distribution is symmet-
rical, for what values it is skewed, and specify what happens to the
shape of the binomial distribution as N increases.

■ Solve binomial problems for N � 20, using the binomial table.
■ Solve binomial problems for N � 20, using the normal approximation.
■ Understand the illustrative examples, do the practice problems, and

understand the solutions.

Chapter 9



INTRODUCTION

In Chapter 10, we’ll discuss the topic of hypothesis testing. This topic is a very
important one. It forms the basis for most of the material taken up in the re-
mainder of the textbook. For reasons explained in Chapter 10, we’ve chosen to
introduce the concepts of hypothesis testing by using a simple inference test
called the sign test. However, to understand and use the sign test, we must first
discuss a probability distribution called the binomial distribution.

DEFINITION AND ILLUSTRATION OF THE 
BINOMIAL DISTRIBUTION

The binomial distribution may be defined as follows:
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d e f i n i t i o n ■ The binomial distribution is a probability distribution that results when the
following five conditions are met: (1) There is a series of N trials; (2) on each
trial, there are only two possible outcomes; (3) on each trial, the two possi-
ble outcomes are mutually exclusive; (4) there is independence between the
outcomes of each trial; and (5) the probability of each possible outcome on
any trial stays the same from trial to trial. When these requirements are met,
the binomial distribution tells us each possible outcome of the N trials and
the probability of getting each of these outcomes.

Let’s use coin flipping as an illustration for generating the binomial distribu-
tion. Suppose we flip a fair, or unbiased, penny once. Suppose further that we re-
strict the possible outcomes at the end of the flip to either a head or a tail. You
will recall from Chapter 8 that a fair coin means the probability of a head with
the coin equals the probability of a tail. Since there are only two possible out-
comes in one flip,

Now suppose we flip two pennies that are unbiased. The flip of each penny
is considered a trial. Thus, with two pennies, there are two trials ( ). The
possible outcomes of flipping two pennies are given in Table 9.1. There are
four possible outcomes: one in which there are 2 heads (row 1), two in which
there are 1 head and 1 tail (rows 2 and 3), and one in which there are 2 tails
(row 4).

N � 2

   �
1
2

� 0.5000

 p1tail2 � p1T 2  �
Number of outcomes classifiable as tails

Total number of outcomes

  �
1
2

� 0.5000

 p1head2 � p1H 2 �
Number of outcomes classifiable as heads

Total number of outcomes
MENTORING TIP
Again, probability values have
been given to four-decimal-
place accuracy. Answers to
end-of-chapter problems
should also be given to four
decimal places, unless you are
told otherwise.



Next, let’s determine the probability of getting each of these outcomes due
to chance. If chance alone is operating, then each of the outcomes is equally
likely. Thus,

You should note that we could have also found these probabilities from the
multiplication and addition rules. For example, p(1 head) could have been found
from a combination of the addition and multiplication rules as follows:

Using the multiplication rule, we obtain

Using the addition rule, we obtain

 � 1
4 � 1

4 � 2
4 � 0.5000

 � p1HT2 � p1TH2

 p11 head2 � p1HT or TH2

 � 1
2   
112 2 � 1

4

 � p1tail on coin 12p1head on coin 22

 p1TH2 � p1tail on coin 1˛and head on coin 22

 � 1
2   
112 2 � 1

4

 � p1head on coin 12p1tail on coin 22

 p1HT2 � p1head on coin 1 and tail on coin 22

p11 head2 � p1HT or TH2

 �
1
4

� 0.2500

 p10˛ head2 � p1TT 2 �
Number of outcomes classifiable as 0 heads

Total number of outcomes

 �
2
4

� 0.5000

 p11 head2 � p1HT or TH 2 �
Number of outcomes classifiable as 1 head

Total number of outcomes

 �
1
4

� 0.2500

 p12 heads2 � p1HH 2 �
Number of outcomes classifiable as 2 heads

Total number of outcomes
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t a b l e 9.1 All possible outcomes of flipping two
coins once

Row Penny Penny No. of
No. 1 2 Outcomes

1 H H 1

2 H T

3 T H
2

4 T T 1

Total outcomes 4



Next, suppose we increase from 2 to 3. The possible outcomes of flipping
three unbiased pennies once are shown in Table 9.2.This time there are eight pos-
sible outcomes: one way to get 3 heads (row 1), three ways to get 2 heads and 1
tail (rows 2, 3, and 4), three ways to get 1 head and 2 tails (rows 5, 6, and 7), and
one way to get 0 heads (row 8). Since each outcome is equally likely,

 p10 heads2 � 1
8 � 0.1250

 p11 head2 � 3
8 � 0.3750

 p12 heads2 � 3
8 � 0.3750

 p13 heads2 � 1
8 � 0.1250

N
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t a b l e 9.2 All possible outcomes of flipping three pennies once

Row Penny Penny Penny No. of
No. 1 2 3 Outcomes

1 H H H 1

2 H H T

3 H T H 3

4 T H H

5 T T H

6 T H T 3

7 H T T

8 T T T 1

Total outcomes 8

t a b l e 9.3 Binomial distribution for
coin flipping when the number of
coins equals 1, 2, or 3

Possible
N Outcomes Probability

1 1 H 0.5000
0 H 0.5000

2 2 H 0.2500
1 H 0.5000
0 H 0.2500

3 3 H 0.1250
2 H 0.3750
1 H 0.3750
0 H 0.1250

The distributions resulting from flipping one, two, or three fair pennies are
shown in Table 9.3. These are binomial distributions because they are probability
distributions that have been generated by a situation in which there is a series of



trials where on each trial there are only two possible outcomes
(head or tail), on each trial the possible outcomes are mutually exclusive (if it’s a
head, it cannot be a tail), there is independence between trials (there is indepen-
dence between the outcomes of each coin), and the probability of a head or tail
on any trial stays the same from trial to trial. Note that each distribution gives
two pieces of information: (1) all possible outcomes of the trials and (2) the
probability of getting each of the outcomes.

GENERATING THE BINOMIAL DISTRIBUTION 
FROM THE BINOMIAL EXPANSION

We could continue this enumeration process for larger values of N, but it be-
comes too laborious. It would indeed be a dismal prospect if we had to use enu-
meration for every value of Think about what happens when gets to 15.
With 15 pennies, there are different ways that the 15 coins could
fall. Fortunately, there is a mathematical expression that allows us to generate in
a simple way everything we’ve been considering. The expression is called the 
binomial expansion. The binomial expansion is given by

where probability of one of the two possible outcomes on a trial

probability of the other possible outcome

number of trials

To generate the possible outcomes and associated probabilities we arrived at
in the previous coin-flipping experiments, all we need to do is expand the ex-
pression for the number of coins in the experiment and evaluate each
term in the expansion. For example, if there are two coins, and

The terms and represent all the possible outcomes of flipping two
coins once.

The letters of each term (P or PQ or Q) tell us the kinds of events that comprise
the outcome, the exponent of each letter tells us how many of that kind of event
there are in the outcome, and the coefficient of each term tells us how many ways
there are of obtaining the outcome.

Thus,

1. indicates that one possible outcome is composed of two events. The
alone tells us this outcome is composed entirely of events. The expo-

nent 2 indicates there are two of this kind of event. If we associate with
heads, tells us one possible outcome is two heads.

2. indicates that another possible outcome is one and one event,
or one head and one tail. The coefficient 2 tells us there are two ways to
obtain one and one event.

3. represents an outcome of two events, or two tails (zero heads).QQ2
QP

QP2P1Q1
P2

P
PP

PP2

Q2P2, 2P1Q1,

1P � Q2N � 1P � Q22 � P2 � 2 P1
 Q1 � Q2

2 P events 1 P and 1 Q event 2 Q events

N � 2
1P � Q2N

N �

Q �

P �

1P � Q2N  binomial expansion

12215 � 32,768
NN.

N

1N � 1, 2, or 32,
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The probability of getting each of these possible outcomes is found by evaluating
their respective terms using the numerical values of and If the coins are fair,
then Thus,

p(1 head) � 2P1Q1 � 2(0.50)(0.50) � 0.5000
p(0 heads) � Q2 � (0.50)2 � 0.2500

These results are the same as those obtained by enumeration. Note that in using
the binomial expansion to find the probability of each possible outcome, we do
not add the terms but use them separately. At this point, it probably seems much
easier to use enumeration than the binomial expansion. However, the situation
reverses itself quickly as gets larger.

Let’s do one more example, this time with As before, we need to expand
and evaluate each term in the expansion using * Thus,

(P � Q)N � (P � Q)3 � P3 � 3P2Q � 3PQ2 � Q3

The terms and represent all of the possible outcomes of flip-
ping three pennies once. tells us there are three events, or 3 heads. The term

indicates that this outcome has two events and one event, or 2 heads
and 1 tail.The term represents one event and two events, or 1 head and
2 tails. Finally, the term designates three events and zero events, or 3 tails
and 0 heads. We can find the probability of each of these outcomes by evaluation
of their respective terms. Since each coin is a fair coin, Thus,

p(1 head) � 3PQ2 � 3(0.50)(0.50)2 � 0.3750 

These are the same results we derived previously by enumeration.
The binomial distribution may be generated for any N, P, and Q by using the

binomial expansion. We have graphed the binomial distributions for N � 3, 8,
and 15 in Figure 9.1. for each of these distributions.

Note that (1) with P � 0.50, the binomial distribution is symmetrical; (2) it
has two tails (i.e., it tails off as we go from the center toward either end); (3) it in-
volves a discrete variable (e.g., we can’t have heads); and (4) as increases,
the binomial distribution gets closer to the shape of a normal curve.

USING THE BINOMIAL TABLE

Although in principle any problem involving binomial data can be answered by
directly substituting into the binomial expansion, mathematicians have saved us
the work. They have solved the binomial expansion for many values of and re-
ported the results in tables. One such table is Table B in Appendix D. This table
gives the binomial distribution for values of up to 20. Glancing at Table B
(p. 557), you observe that (the number of trials) is given in the first column and
the possible outcomes are given in the second column, which is headed by “No.
of or Events.” The rest of the columns contain probability entries for various
values of or The values of or are given at the top of each column. Thus,QPQ.P

QP

N
N

N

N2 
1
2

P � Q � 0.50

p10 heads2 � Q3 � 10.5023 � 0.1250

p12 heads2 � 3P 2Q � 310.502210.502 � 0.3750
p13 heads2 � P3 � 10.5023 � 0.1250

P � Q � 0.50.

PQQ3
QP3PQ2

QP3P2Q
PP3

Q3P3, 3P2Q, 3PQ2,

P � Q � 0.50.1P � Q2N
N � 3.

N

 p12 heads2 � P2 � 10.5022 � 0.2500

P � Q � 0.50.
Q.P
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*See Note 9.1 for the general equation to expand 1P � Q2N.

MENTORING TIP
Caution: if P � 0.50, the 
binomial distribution is not
symmetrical. This is important
for some applications in 
Chapter 11.



the second column contains probability values for or and the last col-
umn has the values for or In practice, any problem involving bino-
mial data can be solved by looking up the appropriate probability in this table.
This, of course, applies only for and the or values given in the table.

The reader should note that Table B can be used to solve problems in terms
of or Thus, with the exception of the first column, the column headings are
given in terms of or To emphasize which we are using ( or ) in a given
problem, if we are entering the table under and the number of events, we shall
refer to the second column as “number of events” and the remaining column
headings as “ ” probability values. If we are entering Table B under and theQP

P
PP

QPQ.P
Q.P

QPN � 20

Q � 0.50.P
Q � 0.10P
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0.20

0.15

0.10

0.05

0

P
ro

ba
bi

lit
y

0 1
Number of heads

2 3 4 5

N
P

6

Number of heads
0 1 2 3

7 8 9 10 11 12 13 14 15

� 15
� 0.50

N
P

� 3
� 0.50

0.5

0.4

0.3

0.2

0.1

0

P
ro

ba
bi

lit
y

Number of heads
0 1 2 3 4 5 6 7 8

N
P

� 8
� 0.50

0.3

0.2

0.1

0

P
ro

ba
bi

lit
y

f i g u r e 9.1 Binomial distribution for N � 3, N � 8, and N � 15; P � 0.50.



number of events, we shall refer to the second column heading as “number of
events” and the rest of the column headings as “ ” probability values. Let’s

now see how to use this table to solve problems involving binomial situations.

e x a m p l e If I flip three unbiased coins once, what is the probability of getting 2 heads and 1 tail?
Assume each coin can only be a head or tail.

S O L U T I O N

In this problem, N is the number of coins, which equals 3. We can let P equal the proba-
bility of a head in one flip of any coin.The coins are unbiased, so Since we want
to determine the probability of getting 2 heads, the number of P events equals 2. Having
determined the foregoing, all we need do is enter Table B under Next, we locate
the 2 in the number of P events column. The answer is found where the row containing
the 2 intersects the column headed by This is shown in Table 9.4. Thus,P � 0.50.

N � 3.

P � 0.50.

QQ
Q
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t a b l e 9.4 Table B entry

No. of P P
N Events 0.50

3 2 0.3750 

p(2 heads and 1 tail) � 0.3750

Note that this is the same answer we arrived at before. In fact, if you look at the
remaining entries in that column for and 3, you will see that
they are the same as we arrived at earlier using the binomial expansion—and
they ought to be because the table entries are taken from the binomial expan-
sion. Let’s try some practice problems using this table.

N � 21P � 0.502

P r a c t i c e  P r o b l e m  9.1

If six unbiased coins are flipped once, what is the probability of getting
a. Exactly 6 heads?
b. 4, 5, or 6 heads?

S O L U T I O N

a. Given there are six coins, Again, we can let the probability
of a head in one flip of any coin. The coins are unbiased, so 
Since we want to know the probability of getting exactly 6 heads, the
number of P events � 6. Entering Table B under N � 6, number of P
events � 6, and P � 0.50, we find

P � 0.50.
P �N � 6.

Table B entry

No. of P P
N Events 0.50

6 6 0.0156 

p(exactly 6 heads) � 0.0156
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b. Again, We can find the probability of 4, 5, and 6
heads by entering Table B under number of P events � 4, 5, and 6, re-
spectively. Thus,

N � 6 and P � 0.50.

From the addition rule with mutually exclusive events,

(4, 5, or 6 heads) � p(4) � p(5) � p(6)

� 0.3438
� 0.2344 � 0.0938 � 0.0156

p

Table B entry

No. of P P
N Events 0.50

6 4 0.2344

5 0.0938

6 0.0156 

(4 heads) � 0.2344

(5 heads)

(6 heads) � 0.0156p

� 0.0938p

p

P r a c t i c e  P r o b l e m  9.2

If 10 unbiased coins are flipped once, what is the probability of getting a 
result as extreme or more extreme than 9 heads?

S O L U T I O N

There are 10 coins, so As before, we shall let the probability of
getting a head in one flip of any coin.The coins are unbiased, so 
The phrase “as extreme or more extreme than” means “as far from the center
of the distribution or farther from the center of the distribution than.”Thus,“as
extreme or more extreme than 9 heads” means results that are as far from the
center of the distribution or farther from the center of the distribution than 
9 heads.Thus, the number of events � 0, 1, 9, or 10. In Table B under 
number of events � 0, 1, 9, or 10, and we find

p°
as extreme or
more extreme
than 9 heads

¢  

P � 0.50,P
N � 10,P

P � Q � 0.50.
P �N � 10.

Table B entry

No. of P P
N Events 0.50

10 0 0.0010

1 0.0098

9 0.0098

10 0.0010

� p(0, 1, 9, or 10)

� p(0) � p(1) � p(9) � p(10)

� 0.0010 � 0.0098 � 0.0098

� 0.0010

� 0.0216

The binomial expansion is very general. It is not limited to values where
Thus, Table B also lists probabilities for values of other than 0.50.

Let’s try some problems where is not equal to 0.50.P
PP � 0.50.
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P r a c t i c e  P r o b l e m  9.3

Assume you have eight biased coins. You will recall from Chapter 8 that a
biased coin is one where P � Q. Each coin is weighted such that the prob-
ability of a head with it is 0.30. If the eight biased coins are flipped once,
what is the probability of getting
a. 7 heads?
b. 7 or 8 heads?
c. The probability found in part a comes from evaluating which of the

term(s) in the following binomial expansion?

d. With your calculator, evaluate the term(s) selected in part c using
Compare your answer with the answer in part a. Explain.

S O L U T I O N

a. Given there are eight coins, Let P � the probability of getting a
head in one flip of any coin. Since the coins are biased such that the prob-
ability of a head on any coin is 0.30, Since we want to determine
the probability of getting exactly 7 heads, the number of P events � 7. In
Table B under N � 8, number of P events � 7, and P � 0.30, we find the
following:

P � 0.30.

N � 8.

P � 0.30.

� 8P1Q7 � Q8P8 � 8P7Q1 � 28P6Q2 � 56P5Q3 � 70P4Q4 � 56P3Q5 � 28P2Q6

b. Again, and We can find the probability of 7 and 8 heads
in Table B under number of events � 7 and 8, respectively. Thus,P

P � 0.30.N � 8

From the addition rule with mutually exclusive events,

p(7 or 8 heads) � p(7) � p(8)

� 0.0012 � 0.0001

� 0.0013

c.
d. As expected, the answers are the same.

The table entry was computed using with and Q � 0.70.P � 0.308P7Q1
8P7Q1 � 810.302710.72 � 0.0012.
8P7Q1

Table B entry

No. of P P
N Events 0.30

8 7 0.0012 

p1exactly 7 heads2 � 0.0012

Table B entry

No. of P P
N Events 0.30

8 7 0.0012

8 0.0001 

p18 heads2 � 0.0001

p17 heads2 � 0.0012
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Thus, using Table B when is less than 0.50 is very similar to using it when
We just look in the table under the new value rather than under

Table B can also be used when To illustrate, consider the following
example.

e x a m p l e (P � 0.50)

If five biased coins are flipped once, what is the probability of getting (a) 5 heads and
(b) 4 or 5 heads? Each coin is weighted such that the probability of a head on any coin
is 0.75.

S O L U T I O N

a. 5 heads. There are five coins, so Again, let P � the probability of getting a
head in one flip of any coin. Since the bias is such that the probability of a head on
any coin is 0.75, Since we want to determine the probability of getting 5
heads, the number of P events equals 5. Following our usual procedure, we would
enter Table B under N � 5, number of P events � 5, and However, Table
B does not have a column headed by 0.75. All of the column headings are equal to
or less than 0.50. Nevertheless, we can use Table B to solve this problem.

When P � 0.50, all we need do is solve the problem in terms of Q and the num-
ber of Q events, rather than P and the number of P events. Since the probability val-
ues given in Table B are for either P or Q, once the problem is put in terms of Q, we
can refer to Table B using Q rather than P. Translating the problem into Q terms in-
volves two steps: determining Q and determining the number of Q events. Let’s fol-
low these steps using the present example:

1. Determining Q.

2. Determining the number of Q events.

Thus, to solve this example, we refer to Table B under , number of Q
events � 0, and The Table B entry is shown in Table 9.5. Thus,Q � 0.25.

N � 5

Number of Q events � N � Number of P events � 5 � 5 � 0

Q � 1 � P � 1 � 0.75 � 0.25

P � 0.75.

P � 0.75.

N � 5.

P 7 0.50.
P � 0.50.

PP � 0.50.
P

t a b l e 9.5 Table B entry

No. of Q Q
N Events 0.25

5 0 0.2373  

p(5 heads) � p(0 tails) � 0.2373

b. 4 or 5 heads. Again, and This time, the number of Q events � 0 or
1. The Table B entry is shown in Table 9.6. Thus,

Q � 0.25.N � 5

t a b l e 9.6 Table B entry

No. of Q Q
N Events 0.25

5 0 0.2373

1 0.3955 

p(4 or 5 heads) � p(0 or 1 tail)

� 0.2373 � 0.3955

� 0.6328

We are now ready to try a practice problem.



So far, we have dealt exclusively with coin flipping. However, the binomial
distribution is not just limited to coin flipping. It applies to all situations involv-
ing a series of trials where on each trial there are only two possible outcomes, the
possible outcomes on each trial are mutually exclusive, there is independence be-
tween the outcomes of each trial, and the probability of each possible outcome
on any trial stays the same from trial to trial. There are many situations that fit
these requirements. To illustrate, let’s do a couple of practice problems.
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P r a c t i c e  P r o b l e m  9.4

If 12 biased coins are flipped once, what is the probability of getting
a. Exactly 10 heads?
b. 10 or more heads?
The coins are biased such that the probability of a head with any coin equals
0.65.

S O L U T I O N

a. Given there are 12 coins, N Let the probability of a head in
one flip of any coin. Since the probability of a head with any coin equals
0.65, Since we shall enter Table B with Q rather than
P. If there are 10 P events, there must be 2 Q events If

then Using Q in Table B, we obtainQ � 0.35.P � 0.65,
1N � 122.

P 7 0.50,P � 0.65.

P �� 12.

b. Again, and This time, the number of P events equals
10, 11, or 12. Since , we must use Q in Table B rather than P.
With N � 12, the number of Q events equals 0, 1, or 2 and 
Using Q in Table B, we obtain

Q � 0.35.
P 7 0.50
P � 0.65.N � 12

Table B entry

No. of Q Q
N Events 0.35

12 2 0.1088 

p(10 heads) � 0.1088

Table B entry

No. of Q Q
N Events 0.35

12 0 0.0057

1 0.0368

2 0.1088  

� 0.1513

� 0.0057

 p110, 11, or 12 heads) � 0.1088 � 0.0368
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P r a c t i c e  P r o b l e m  9.5

A student is taking a multiple-choice exam with 15 questions. Each ques-
tion has five choices. If the student guesses on each question, what is the
probability of passing the test? The lowest passing score is 60% of the ques-
tions answered correctly. Assume that the choices for each question are
equally likely.

S O L U T I O N

This problem fits the binomial requirements.There is a series of trials (ques-
tions). On each trial, there are only two possible outcomes. The student is
either right or wrong. The possible outcomes are mutually exclusive. If she
is right on a question, she can’t be wrong. There is independence between
the outcomes of each trial. If she is right on question 1, it has no effect on
the outcome of question 2. Finally, if we assume the student guesses on each
trial, then the probability of being right and the probability of being wrong
on any trial stay the same from trial to trial. Thus, the binomial distribution
and Table B apply.

We can consider each question a trial (no pun intended). Given there
are 15 questions, We can let the probability that she will guess
correctly on any question. Since there are five choices that are equally likely
on each question, A passing grade equals 60% correct answers 
or more. Therefore, a student will pass if she gets 9 or more answers correct
(60% of 15 is 9). Thus, the number of P events equals 9, 10, 11, 12, 13, 14,
and 15. Looking in Table B under N � 15, number of P events � 9, 10, 11,
12, 13, 14, and 15, and P � 0.20, we obtain

P � 0.20.

P �N � 15.

Table B entry

No. of P P
N Events 0.20

15 9 0.0007

10 0.0001

11 0.0000

12 0.0000

13 0.0000

14 0.0000

15 0.0000

p(9, 10, 11, 12, 13, 14,
or 15 correct guesses)

� 0.0008

� 0.0007 � 0.0001



P r a c t i c e  P r o b l e m  9.6

Your friend claims to be a coffee connoisseur. He always drinks Starbucks
and claims no other coffee even comes close to tasting so good.You suspect
he is being a little grandiose. In fact, you wonder whether he can even taste
the difference between Starbucks and the local roaster’s coffee.Your friend
agrees to the following experiment. While blindfolded, he is given six op-
portunities to taste from two cups of coffee and tell you which of the two
cups contains Starbucks. The cups are identical and contain the same type
of coffee except that one contains coffee made from beans supplied and
roasted by Starbucks and the other by the local roaster. After each tasting
of the two cups, you remove any telltale signs and randomize which of the
two cups he is given first for the next trial. Believe it or not, your friend cor-
rectly identifies Starbucks on all six trials! What do you conclude? Can you
think of a way to increase your confidence in the conclusion?

S O L U T I O N

The logic of our analysis is as follows. We will assume that your friend re-
ally can’t tell the difference between the two coffees. He must then be
guessing on each trial. We will compute the probability of getting six out of
six correct, assuming guessing on each trial. If this probability is very low,
we will reject guessing as a reasonable explanation and conclude that your
friend can really taste the difference.

This experiment fits the requirements for the binomial distribution.
Each comparison of the two coffees can be considered a trial (again, no pun
intended). On each trial, there are only two possible outcomes. Your friend
is either right or wrong. The outcomes are mutually exclusive. There is in-
dependence between trials. If your friend is correct on trial 1, it has no ef-
fect on the outcome of trial 2. Finally, if we assume your friend guesses on
any trial, then the probability of being correct and the probability of being
wrong stay the same from trial to trial.

Given each comparison of coffees is a trial, We can let P � the
probability your friend will guess correctly on any trial. There are only two
coffees, so Your friend was correct on all six trials. Therefore, the
number of P events � 6. Thus,

P � 0.50.

N � 6.

Assuming your friend is guessing, the probability of him getting six out of
six correct is 0.0156. Since this is a fairly low value, you would probably re-
ject guessing because it is an unreasonable explanation and conclude that
your friend can really taste the difference. To increase your confidence in
rejecting guessing, you could include more brands of coffee on each trial, or
you could increase the number of trials. For example, even with only two
coffees, the probability of guessing correctly on 12 out of 12 trials is 0.0002.

Table B entry

No. of P P
N Events 0.50

6 6 0.0156

p(6 correct guesses) � 0.0156
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USING THE NORMAL APPROXIMATION

A limitation of using the binomial table is that when N gets large, the table gets
huge. Imagine how big the table would be if it went up to N � 200, rather than to
N � 20 as it does in this textbook. Not only that, but imagine solving the prob-
lem of determining the probability of getting 150 or more heads if we were flip-
ping a fair coin 200 times. Not only would the table have to be very large, but we
would wind up having to add 51 four-digit probability values to get our answer!
Even statistics professors are not that sadistic. Not to worry!

Remember, I pointed out earlier that as N increases, the binomial distribu-
tion becomes more normally shaped. When the binomial distribution approxi-
mates the normal distribution closely enough, we can solve binomial problems
using z scores and the normal curve, as we did in Chapter 8, rather than having
to look up many discrete values in a table. I call this approach the normal ap-
proximation approach.

How close the binomial distribution is to the normal distribution depends on
N, P, and Q. As N increases, the binomial distribution gets more normally shaped.
As P and Q deviate from 0.50, the binomial distribution gets less normally
shaped. A criterion that is commonly used, and one that we shall adopt, is that if
NP � 10 and NQ � 10, then the binomial distribution is close enough to the nor-
mal distribution to use the normal approximation approach without unduly sac-
rificing accuracy. Table 9.7 shows the minimum value of N for several values of P
and Q necessary to meet this criterion. Notice that as P and Q get further from
0.50, N must get larger to meet the criterion.
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The normal distribution that the binomial approximates has the following
parameters.

1. The mean of the distribution equals NP. Thus,

m � NP

2. The standard deviation of the distribution equals . Thus,

s �

To use the normal approximation approach, we first compute the z score
of the frequency given in the problem. Next we determine the appropri-
ate probability by entering column B or C of Table A, using the computed
z score. Table A, as you probably remember, gives us areas under the nor-
mal curve. Let’s try an example to see how this works. For the first exam-
ple, let’s do one of the sort we are used to.

Standard deviation of the normal distribution
approximated by the binomial distribution

2NPQ

2NPQ

Mean of the normal distribution approximated
by the binomial distribution

t a b l e 9.7 Minimum value of N for
several values of P and Q

P Q N

0.50 0.50 20

0.30 0.70 34

0.10 0.90 100 



e x a m p l e If I flip 20 unbiased coins once, what is the probability of getting 18 or more heads?

S O L U T I O N

To solve this example, let’s follow these steps.

1. Determine if the criterion is met for normal approximation approach.

Since the coins are unbiased, P � Q � 0.50, N � 20.

Since NP � 10 and NQ � 10, the criterion that both NP � 10 and NQ � 10 is
met. Therefore we can assume the binomial distribution is close enough to a nor-
mal distribution to solve the example using the normal approximation, rather
than the binomial table. Note that both the NP and the NQ criterion must be met
to use the normal approximation approach.

2. Determine the parameters of the approximated normal curve

3. Draw the picture and locate the important information on it.

Next, let’s draw the picture of the distribution and locate the important infor-
mation on it as we did in Chapter 8. This is shown in Figure 9.2. The figure shows
the normal distribution with m� 10, X � 18. The shaded area corresponds to the
probability of getting 18 or more heads. We can determine this probability by
computing the z value of 18 and looking up the probability in Table A.

4. Determining the probability of 18 or more heads

The z value of 18 is given by,

Entering Table A, Column C, using the z score of 3.58, we obtain,

Thus, if I flip 20 unbiased coins once, the probability of getting 18 or more heads
is 0.0002.

p118 or more heads2 � p1X � 182 � 0.0002

z �
X � m

s
�

18 � 10
2.24

� 3.58

 s � 2NPQ � 22010.502 10.502 � 25.00 � 2.24

 m � NP � 2010.502 � 10

 NQ � 2010.502 � 10

 NP � 2010.502 � 10
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f i g u r e 9.2 Determining the probability
of 18 or more heads using the normal 
approximation approach



You might be wondering how close this value is to that which we would have ob-
tained using the binomial table. Let’s check it out. Looking in Table B, under N
� 20, P � 0.50 and number of P events � 18, 19, and 20, we obtain,

p(18, 19, or 20 heads) � 0.0002 � 0.0000 � 0.0000 � 0.0002

Not too shabby! The normal approximation yielded exactly the same value (four-
decimal-place accuracy) as the value given by the actual binomial distribution.
Of course, the values given by the normal approximation are not always this ac-
curate, but the accuracy is usually close enough for most statistical purposes.This
is especially true if N is large and P is close to 0.50.*

Next, let’s do an example in which P � Q.

e x a m p l e Over the past 10 years, the football program at a large university graduated 70% of its
varsity athletes. If the same probability applies to this year’s group of 65 varsity foot-
ball players,

a. What is the probability that 50 or more players of the group will graduate?
b. What is the probability that 48 or fewer players of the group will graduate?

S O L U T I O N

a. Probability that 50 or more players will graduate. For the solution, let’s follow these
steps:

1. Determine if the criterion is met for normal approximation approach.

Let P � the probability any player in the group will graduate � 0.70.
Let Q � the probability any player in the group will not graduate � 0.30

Since NP � 45.5 and NQ � 19.5, the criterion that both NP � 10 and NQ � 10
is met. Therefore, we can use the normal approximation approach.

2. Determine the parameters of the approximated normal curve

3. Draw the picture and locate the important information on it.

This is shown in Figure 9.3. The figure shows the normal distribution with m �
45.5, X � 50. The shaded area corresponds to the probability that 50 or more
players of the group will graduate. We can determine this probability by com-
puting the z value of 50 and looking up the probability in Table A, Column C.

4. Determining the probability that 50 or more players will graduate

The z value of 50 is given by,

z �
X � m

s
�

50 � 45.5
3.69

� 1.22

 s � 2NPQ � 26510.702 10.302 � 213.65 � 3.69

 m � NP � 6510.702 � 45.5

 NQ � 6510.302 � 19.5

 NP � 6510.702 � 45.5
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*There is a correction for continuity procedure available that increases accuracy. However, for the
intended readers of this textbook, it introduces unnecessary complexity and so it has not been in-
cluded. For a discussion of this correction, see D. S. Moore and G. P. McCabe, Introduction to the
Practice of Statistics, W. H. Freeman and Company, New York, 1989, pp. 402–403.



Entering Table A, Column C, using the z score of 1.22, we obtain,

Thus, the probability that 50 or more players of the group will graduate is 0.1112.

b. Probability that 48 or fewer players will graduate.

Since we have already completed steps 1 and 2 in part a, we will begin with step 3.

3. Draw the picture and locate the important information on it.

This is shown in Figure 9.4. The figure shows the normal distribution with m �
45.5, X � 48. The shaded area corresponds to the probability that 48 or fewer
players will graduate.

4. Determining the probability that 48 or fewer players will graduate

The probability that 48 or fewer players will graduate is found by computing the
z value of 48, consulting Table A, Column B for the probability of between 48
and 45.5 graduates, and then adding 0.5000 for the probability of graduates be-
low 45.5. The z value of 48 is given by

Entering Table A, Column B, using the z score of 0.68, we obtain,

p1graduates between 48 and 45.52 � 0.2517

z �
X � m

s
�

48 � 45.5
3.69

� 0.68

p150 or more graduates2 � p1X � 502 � 0.1112
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X: 45.5 50

f i g u r e 9.3 Determining the probability
that 50 or more players will graduate, using
the normal approximation approach.

X: 45.5 48

f i g u r e 9.4 Determining the probability
that 48 or fewer players will graduate, using
the normal approximation approach.



Next, we need to add 0.5000 to include the graduates below 45.5, making the total
probability � 0.2517 � 0.5000 � 0.7517.Thus, the probability of 48 or fewer football
players graduating is 0.7517.

Next, let’s do a practice problem.
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P r a c t i c e  P r o b l e m  9.7

A local union has 10,000 members, of which 20% are Hispanic. The union
selects 150 representatives to vote in the coming national election for union
president. Sixteen of the 150 selected representatives are Hispanics. Al-
though you have been told that the selection was random and that there
was no ethnic bias involved in the selection, you are not sure since the num-
ber of Hispanics seems low.
a. If the selection were really random, what is the probability that there

would be 16 or fewer Hispanics selected as representatives? In answer-
ing, assume that P and Q do not change from selection to selection.

b. Given the answer obtained in part a, what is your tentative conclusion
about random selection and possible ethnic bias?

S O L U T I O N

a. Probability of getting 16 or fewer Hispanic representatives. Let’s follow
these steps to solve this problem.

STEP 1. Determine if criterion is met to use the normal approximation.

Let P � probability of getting a Hispanic on any selection.
Therefore, P � 0.20.

Let Q � probability of getting not getting a Hispanic on any
selection. Therefore, Q � 0.80.

Since NP � 30 and NQ � 120, the criterion that both NP � 10
and NQ � 10 is met. It’s reasonable to use the normal approxi-
mation to solve the problem.

STEP 2. Determine the parameters of the approximated normal curve.

STEP 3. Draw the picture and locate the important information on it.

The picture is drawn in Figure 9.5. It shows the normal distribu-
tion with m � 30 and X � 16. The shaded area corresponds to
the probability of getting 16 or fewer Hispanics as representa-
tives.

 s � 2NPQ � 215010.202 10.802 � 224.00 � 4.90

 m � NP � 15010.202 � 30

 NQ � 15010.802 � 120

 NP � 15010.202 � 30

(continued)
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STEP 4. Determining the probability of 16 or fewer Hispanics.

We can determine this probability by computing the z value of
16 and looking up the probability in Table A, Column C. The z
value of 16 is given by,

Entering Table A, Column C, using the z score of 2.86, we obtain,

Thus, if sampling is random, the probability of getting 16 or
fewer Hispanic representatives is 0.0021.

b. Tentative conclusion, given the probability pbtained in Part a:

While random selection might have actually been the case, the proba-
bility obtained in part a is quite low and doesn’t inspire much confi-
dence in this possibly. A more reasonable explanation is that something
systematic was going on in the selection process that resulted in fewer
Hispanic representatives than would be expected via random selection.
Of course, there may be reasons other than ethnic bias that could ex-
plain the data.

p116 or fewer Hispanics2 � p1X � 162 � 0.0021

z �
X � m

s
�

16 � 30
4.90

� �2.86

X: 3016

f i g u r e 9.5 Determining the probability
of getting 16 or fewer Hispanics as repre-
sentatives

In this chapter, I have discussed the binomial distrib-
ution. The binomial distribution is a probability dis-
tribution that results when the following conditions
are met: (1) There is a series of N trials; (2) on each
trial, there are only two possible outcomes; (3) the
outcomes are mutually exclusive; (4) there is inde-
pendence between trials; and (5) the probability of
each possible outcome on any trial stays the same
from trial to trial.When these conditions are met, the

binomial distribution tells us each possible outcome
of the N trials and the probability of getting each of
these outcomes.

I illustrated the binomial distribution through
coin-flipping experiments and then showed how the
binomial distribution could be generated through
the binomial expansion. The binomial expansion is
given by where P � the probability of oc-
currence of one of the events and Q � the proba-

1P � Q2N,

■ SUMMARY



bility of occurrence of the other event. Next, I
showed how to use the binomial table (Table B in
Appendix D) to solve problems where N � 20. Fi-
nally, I showed how to use the normal approxima-

tion to solve problems where N � 20. The binomial
distribution is appropriate whenever the five condi-
tions listed at the beginning of this summary are
met.
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Biased coins (p. 224)
Binomial distribution (p. 216)
Binomial expansion (p. 219)

Binomial table (p. 220)
Fair coins (p. 216)
Normal approximation (p. 229)

Number of events (p. 219)
Number of events (p. 219)Q

P

■ IMPORTANT NEW TERMS

1. Briefly define or explain each of the terms in the
Important New Terms section.

2. What are the five conditions necessary for the bi-
nomial distribution to be appropriate?

3. In a binomial situation, if P � 0.10, Q � .
4. Using Table B, if and P � 0.40,

a. The probability of getting exactly five events
� .

b. This probability comes from evaluating which
of the terms in the following equation?

c. Evaluate the term(s) of your answer in part b
using and compare your answer with
part a.

5. Using Table B, if and ,
a. What is the probability of getting exactly 10 P

events?
b. What is the probability of getting 11 or 12 P

events?
c. What is the probability of getting at least 10 P

events?
d. What is the probability of getting a result as ex-

treme as or more extreme than 10 events?
6. Using Table B, if and 

a. What is the probability of getting exactly 13 
events?

b. What is the probability of getting at least 13 
events?

c. What is the probability of getting a result as 
extreme as or more extreme than 13 events?

7. Using Table B, if and 
a. What is the probability of getting exactly two 

events?
P

P � 0.20,N � 20
P

P

P
P � 0.70,N � 14

P

P � 0.50N � 12

P � 0.40

 � 15P2Q4 � 6PQ5 � Q6
 P 6 � 6 P 5Q � 15 P 4Q2 � 20P 3Q3

P
N � 6

b. What is the probability of getting two or
fewer events?

c. What is the probability of getting a result as 
extreme as or more extreme than two P
events?

8. An individual flips nine fair coins. If she allows
only a head or a tail with each coin,
a. What is the probability they all will fall heads?
b. What is the probability there will be seven or

more heads?
c. What is the probability there will be a result as

extreme as or more extreme than seven heads?
9. Someone flips 15 biased coins once.The coins are

weighted such that the probability of a head with
any coin is 0.85.
a. What is the probability of getting exactly 14

heads?
b. What is the probability of getting at least 14

heads?
c. What is the probability of getting exactly 3

tails?
10. Thirty biased coins are flipped once. The coins

are weighted so that the probability of a head
with any coin is 0.40. What is the probability of
getting at least 16 heads?

11. A key shop advertises that the keys made there
have a P � 0.90 of working effectively. If you
bought 10 keys from the shop, what is the proba-
bility that all of the keys would work effectively?

12. A student is taking a true/false exam with 15
questions. If he guesses on each question, what is
the probability he will get at least 13 questions
correct? education

13. A student is taking a multiple-choice exam with
16 questions. Each question has five alternatives.

P

■ QUESTIONS AND PROBLEMS



If the student guesses on 12 of the questions,
what is the probability she will guess at least 8
correct? Assume all of the alternatives are
equally likely for each question on which the stu-
dent guesses. education

14. You are interested in determining whether a par-
ticular child can discriminate the color green
from blue. Therefore, you show the child five
wooden blocks. The blocks are identical except
that two are green and three are blue. You ran-
domly arrange the blocks in a row and ask him to
pick out a green block. After a block is picked,
you replace it and randomize the order of the
blocks once more. Then you again ask him to
pick out a green block. This procedure is re-
peated until the child has made 14 selections. If
he really can’t discriminate green from blue,
what is the probability he will pick a green block
at least 11 times? cognitive

15. Let’s assume you are an avid horse race fan.
You are at the track and there are eight races.
On this day, the horses and their riders are so
evenly matched that chance alone determines
the finishing order for each race. There are 10
horses in every race. If, on each race, you bet on
one horse to show (to finish third, second, or
first),
a. What is the probability that you will win your

bet in all eight races?
b. What is the probability that you will win in at

least six of the races? other
16. A manufacturer of valves admits that its quality

control has gone radically “downhill” such that
currently the probability of producing a defec-
tive valve is 0.50. If it manufactures 1 million
valves in a month and you randomly sample
from these valves 10,000 samples, each com-
posed of 15 valves,
a. In how many samples would you expect to

find exactly 13 good valves?
b. In how many samples would you expect to

find at least 13 good valves? I/O
17. Assume that 15% of the population is left-

handed and the remainder is right-handed (there
are no ambidextrous individuals). If you stop the
next five people you meet, what is the probabil-
ity that
a. All will be left-handed?
b. All will be right-handed?
c. Exactly two will be left-handed?
d. At least one will be left-handed?

For the purposes of this problem, assume inde-
pendence in the selection of the five individuals.
other

18. In your voting district, 25% of the voters are
against a particular bill and the rest favor it. If
you randomly poll four voters from your district,
what is the probability that
a. None will favor the bill?
b. All will favor the bill?
c. At least one will be against the bill? I/O

19. At your university, 30% of the undergraduates
are from out of state. If you randomly select
eight of the undergraduates, what is the proba-
bility that
a. All are from within the state?
b. All are from out of state?
c. Exactly two are from within the state?
d. At least five are from within the state?

education
20. Twenty students living in a college dormitory

participated in a taste contest between the two
leading colas.
a. If there really is no preference, what is the

probability that all 20 would prefer Brand X
to Brand Y?

b. If there really is no preference, what is the
probability that at least 17 would prefer
Brand X to Brand Y?

c. How many of the 20 students would have to
prefer Brand X before you would be willing
to conclude that there really is a preference
for Brand X? other

21. In your town, the number of individuals voting in
the next election is 800. Of those voting, 600 are
Republicans. If you randomly sample 60 individ-
uals, one at a time, from the voting population,
what is the probability there will be 42 or more
Republicans in the sample? Assume the proba-
bility of getting a Republican on each sampling
stays the same. social

22. A large bowl contains 1 million marbles. Half of
the marbles have a plus (�) painted on them and
the other half has a minus (�).
a. If you randomly sample 10 marbles, one at a

time with replacement from the bowl, what is
the probability you will select 9 marbles with
pluses and 1 with a minus?

b. If you take 1000 random samples of 10 mar-
bles, one at a time with replacement, how
many of the samples would you expect to be
all pluses? other
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9.1 The equation for expanding is

� . . . � QN

 �
N1N � 12 1N � 22

1122 132
 PN�3Q3

 1P � Q2N � PN �
N
1

PN�1Q �
N1N � 12

1122
 PN�2

 Q2

1P � Q2N
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Introduction to Hypothesis
Testing Using the Sign Test

LEARNING OBJECTIVES

After completing this chapter, you should be able to:
■ Specify the essential features of the repeated measures design.
■ Define the alternative (H1) and null hypotheses (H0), and explain the

relationship between them. Include a discussion of directional and
nondirectional H1s and the H0s that go with them.

■ Define alpha level, explain the purpose of the alpha level, and specify
the decision rule for determining when to reject or retain the null hy-
pothesis.

■ Explain the difference between significant and important.
■ Explain the process of evaluating the null hypothesis, beginning with

H1 and H0, and ending with the possibility of making a Type I or
Type II error.

■ Explain why we evaluate H0 first and then H1 indirectly, rather than
directly evaluate H1; explain why we evaluate the tail result and not
the exact result itself.

■ Explain when it is appropriate to do one- and two-tailed evaluations.
■ Define Type I and Type II error and explain why it is important to

discuss these possible errors; specify the relationship between Type I
and Type II errors, and between the alpha level and Type I and Type
II errors.

■ Formulate H1 and H0 for the sign test and solve problems using the
sign test.

■ Understand the illustrative example, do the practice problems, and
understand the solutions.

Chapter 10



INTRODUCTION

We pointed out previously that inferential statistics has two main purposes:
(1) hypothesis testing and (2) parameter estimation. By far, most of the applica-
tions of inferential statistics are in the area of hypothesis testing. As discussed in
Chapter 1, scientific methodology depends on this application of inferential
statistics. Without objective verification, science would cease to exist, and objec-
tive verification is often impossible without inferential statistics. You will recall
that at the heart of scientific methodology is an experiment. Usually, the experi-
ment has been designed to test a hypothesis, and the resulting data must be ana-
lyzed. Occasionally, the results are so clear-cut that statistical inference is not nec-
essary. However, such experiments are rare. Because of the variability that is
inherent from subject to subject in the variable being measured, it is often difficult
to detect the effect of the independent variable without the help of inferential sta-
tistics. In this chapter, we shall begin the fascinating journey into how experimen-
tal design, in conjunction with mathematical analysis, can be used to verify truth
assertions or hypotheses, as we have been calling them. We urge you to apply
yourself to this chapter with special rigor. The material it contains applies to all of
the inference tests we shall take up (which constitutes most of the remaining text).

LOGIC OF HYPOTHESIS TESTING

e x p e r i m e n t Marijuana and the Treatment of AIDS Patients

We begin with an experiment. Let’s assume that you are a social scientist working in a
metropolitan hospital that serves a very large population of AIDS patients. You are
very concerned about the pain and suffering that afflict these patients. In particular, al-
though you are not yet convinced, you think there may be an ethically proper place for
using marijuana in the treatment of these patients, particularly in the more advanced
stages of the illness. Of course, before seriously considering the other issues involved in
advocating the use of marijuana for this purpose, you must be convinced that it does
have important positive effects. Thus far, although there have been many anecdotal re-
ports from AIDS patients that using marijuana decreases their nausea, increases their
appetite, and increases their desire to socialize, there have not been any scientific ex-
periments to shore up these reports.

As a scientist, you realize that although personal reports are suggestive, they are
not conclusive. Experiments must be done before one can properly assess cause and ef-
fect—in this case, the effects claimed for marijuana. This is very important to you, so
you decide to embark on a research program directed to this end. The first experiment
you plan is to investigate the effect of marijuana on appetite in AIDS patients. Of
course, if marijuana actually decreases appetite rather than increases it, you want to be
able to detect this as well because it has important practical consequences. Therefore,
this will be a basic fact-finding experiment in which you attempt to determine whether
marijuana has any effect at all, either to increase or to decrease appetite. The first ex-
periment will be a modest one. You plan to randomly sample 10 individuals from the
population of AIDS patients who are being treated at your hospital. You realize that
the generalization will be limited to this population, but for many reasons, you are will-
ing to accept this limitation for this initial experiment. After getting permission from
the appropriate authorities, you conduct the following experiment.

A random sample of 10 AIDS patients who agree to participate in the exper-
iment is selected from a rather large population of AIDS patients being
treated on an outpatient basis at your hospital. None of the patients in this
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population are being treated with marijuana. Each patient is admitted to the
hospital for a week to participate in the experiment. The first 2 days are used
to allow each patient to get used to the hospital. On the third day, half of the
patients receive a pill containing a synthetic form of marijuana’s active ingre-
dient, THC, prior to eating each meal, and on the sixth day, they receive a
placebo pill before each meal. The other half of the patients are treated the
same as in the experimental condition, except that they receive the pills in the
reverse order, that is, the placebo pills on the third day and the THC pills on
the sixth day. The dependent variable is the amount of food eaten by each pa-
tient on day 3 and day 6.

In this experiment, each subject is tested under two conditions: an experimental
condition and a control condition. We have labeled the condition in which the subject
receives the THC pills as the experimental condition and the condition in which the
subject receives the placebo pills as the control condition.Thus, there are two scores for
each subject: the amount of food eaten (calories) in the experimental condition and the
amount of food eaten in the control condition. If marijuana really does affect appetite,
we would expect different scores for the two conditions. For example, if marijuana in-
creases appetite, then more food should be eaten in the experimental condition. If the
control score for each subject is subtracted from the experimental score, we would ex-
pect a predominance of positive difference scores. The results of the experiment are
given in Table 10.1.

These data could be analyzed with several different statistical inference tests
such as the sign test, Wilcoxon matched-pairs signed ranks test, and Student’s t
test for correlated groups.The choice of which test to use in an actual experiment
is an important one. It depends on the sensitivity of the test and on whether the
data of the experiment meet the assumptions of the test. We shall discuss each of
these points in subsequent chapters. In this chapter, we shall analyze the data of
your experiment with the sign test. We have chosen the sign test because (1) it is
easy to understand and (2) all of the major concepts concerning hypothesis test-
ing can be illustrated clearly and simply.

The sign test ignores the magnitude of the difference scores and considers
only their direction or sign. This omits a lot of information, which makes the test
rather insensitive (but much easier to understand). If we consider only the signs
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t a b l e 10.1 Results of the marijuana experiment

Experimental Condition Control Condition Difference
Patient THC Pill Placebo Pill Score

No. Food Eaten (calories) Food Eaten (calories) (calories)

1 1325 1012 �313

2 1350 1275 � 75

3 1248 950 �298

4 1087 840 �247

5 1047 942 �105

6 943 860 � 83

7 1118 1154 � 36

8 908 763 �145

9 1084 920 �164

10 1088 876 �212 



of the difference scores, then your experiment produced 9 out of 10 pluses. The
amount of food eaten in the experimental condition was greater after taking the
THC pill in all but one of the patients. Are we therefore justified in concluding
that marijuana produces an increase in appetite? Not necessarily.

Suppose that marijuana has absolutely no effect on appetite. Isn’t it still pos-
sible to have obtained 9 out of 10 pluses in your experiment? Yes, it is. If mari-
juana has no effect on appetite, then each subject would have received two con-
ditions that were identical except for chance factors. Perhaps when subject 1 was
run in the THC condition, he had slept better the night before and his appetite
was higher than when run in the control condition before any pills were taken. If
so, we would expect him to eat more food in the THC condition even if THC has
no effect on appetite. Perhaps subject 2 had a cold when run in the placebo con-
dition, which blunted her appetite relative to when run in the experimental con-
dition. Again we would expect more food to be eaten in the experimental condi-
tion even if THC has no effect.

We could go on giving examples for the other subjects.The point is that these
explanations of the greater amount eaten in the THC condition are chance fac-
tors. They are different factors, independent of one another, and they could just
as easily have occurred on either of the two test days. It seems unlikely to get 9
out of 10 pluses simply as a result of chance factors. The crucial question really is,
“How unlikely is it?” Suppose we know that if chance alone is responsible, we
shall get 9 out of 10 pluses only 1 time in 1 billion. This is such a rare occurrence,
we would no doubt reject chance and, with it, the explanation that marijuana has
no effect on appetite. We would then conclude by accepting the hypothesis that
marijuana affects appetite because it is the only other possible explanation. Since
the sample was a random one, we can assume it was representative of the AIDS
patients being treated at your hospital, and we therefore would generalize the re-
sults to that population.

Suppose, however, that the probability of getting 9 out of 10 pluses due to
chance alone is really 1 in 3, not 1 in 1 billion. Can we reject chance as a cause of
the data? The decision is not as clear-cut this time. What we need is a rule for de-
termining when the obtained probability is small enough to reject chance as an
underlying cause. We shall see that this involves setting a critical probability level
(called the alpha level) against which to compare the results.

Let’s formalize some of the concepts we’ve been presenting.

Repeated Measures Design

The experimental design that we have been using is called the repeated mea-
sures, replicated measures, or correlated groups design. The essential features are
that there are paired scores in the conditions and the differences between the
paired scores are analyzed. In the marijuana experiment, we used the same sub-
jects in each condition. Thus, the subjects served as their own controls. Their
scores were paired, and the differences between these pairs were analyzed. In-
stead of the same subjects, we could have used identical twins or subjects who
were matched in some other way. In animal experimentation, littermates have
often been used for pairing. The most basic form of this design employs just two
conditions: an experimental and a control condition. The two conditions are
kept as identical as possible except for values of the independent variable,
which, of course, are intentionally made different. In our example, marijuana is
the independent variable.
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Alternative Hypothesis (H1)

In any experiment, there are two hypotheses that compete for explaining the re-
sults: the alternative hypothesis and the null hypothesis. The alternative hypothe-
sis is the one that claims the difference in results between conditions is due to the
independent variable. In this case, it is the hypothesis that claims “marijuana af-
fects appetite.” The alternative hypothesis can be directional or nondirectional.
The hypothesis “marijuana affects appetite” is nondirectional because it does not
specify the direction of the effect. If the hypothesis specifies the direction of the
effect, it is a directional hypothesis. “Marijuana increases appetite” is an example
of a directional alternative hypothesis.

Null Hypothesis (H0)

The null hypothesis is set up to be the logical counterpart of the alternative hy-
pothesis such that if the null hypothesis is false, the alternative hypothesis must
be true. Therefore, these two hypotheses must be mutually exclusive and ex-
haustive. If the alternative hypothesis is nondirectional, it specifies that the
independent variable has an effect on the dependent variable. For this nondirec-
tional alternative hypothesis, the null hypothesis asserts that the independent
variable has no effect on the dependent variable. In the present example, since
the alternative hypothesis is nondirectional, the null hypothesis specifies that
“marijuana does not affect appetite.” We pointed out previously that the alterna-
tive hypothesis specifies “marijuana affects appetite.” You can see that these two
hypotheses are mutually exclusive and exhaustive. If the null hypothesis is false,
then the alternative hypothesis must be true. As you will see, we always first eval-
uate the null hypothesis and try to show that it is false. If we can show it to be
false, then the alternative hypothesis must be true.*

If the alternative hypothesis is directional, the null hypothesis asserts that the
independent variable does not have an effect in the direction specified by the al-
ternative hypothesis; it either has no effect or an effect in the direction opposite
to H1.

† For example, for the alternative hypothesis “marijuana increases ap-
petite,” the null hypothesis asserts that “marijuana does not increase appetite.”
Again, note that the two hypotheses are mutually exclusive and exhaustive. If the
null hypothesis is false, the alternative hypothesis must be true.

Decision Rule (A Level)

We always evaluate the results of an experiment by assessing the null hypothesis.
The reason we directly assess the null hypothesis instead of the alternative hy-
pothesis is that we can calculate the probability of chance events, but there is no
way to calculate the probability of the alternative hypothesis. We evaluate the
null hypothesis by assuming it is true and testing the reasonableness of this as-
sumption by calculating the probability of getting the results if chance alone is
operating. If the obtained probability turns out to be equal to or less than a crit-
ical probability level called the alpha (a) level, we reject the null hypothesis. Re-
jecting the null hypothesis allows us, then, to accept indirectly the alternative 
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*See Note 10.1.
†See Note 10.2.

MENTORING TIP
Be sure you understand that
for a directional H1, the null
hypothesis doesn’t just predict,
“no effect.” It predicts, “no 
effect or a real effect in the 
direction opposite to the 
direction predicted by H1.”



hypothesis because, if the experiment is done properly, it is the only other possi-
ble explanation. When we reject we say the results are significant or reliable.
If the obtained probability is greater than the alpha level, we conclude by failing
to reject H0. Since the experiment does not allow rejection of we retain as
a reasonable explanation of the data. Throughout the text, we shall use the ex-
pressions “failure to reject ” and “retain ” interchangeably. When we retain

we say the results are not significant or reliable. Of course, when the results
are not significant, we cannot accept the alternative hypothesis.Thus, the decision
rule states:

If the obtained probability reject 
If the obtained probability fail to reject retain 

The alpha level is set at the beginning of the experiment. Commonly used alpha
levels are and Later in this chapter, we shall discuss the ratio-
nale underlying the use of these levels.

For now let’s assume for the marijuana data. Thus, to evaluate the
results of the marijuana experiment, we need to (1) determine the probability of
getting 9 out of 10 pluses if chance alone is responsible and (2) compare this
probability with alpha.

Evaluating the Marijuana Experiment

The data of this experiment fit the requirements for the binomial distribution.The
experiment consists of a series of trials (the exposure of each patient to the ex-
perimental and control conditions is a trial). On each trial, there are only two pos-
sible outcomes: a plus and a minus. Note that this model does not allow ties. If any
ties occur, they must be discarded and the N reduced accordingly. The outcomes
are mutually exclusive (a plus and a minus cannot occur simultaneously), there is
independence between trials (the score of patient 1 in no way influences the score
of patient 2, etc.), and the probability of a plus and the probability of a minus stay
the same from trial to trial. Since the binomial distribution is appropriate, we can
use Table B in Appendix D (Table 10.2) to determine the probability of getting 
9 pluses out of 10 trials when chance alone is responsible. We solve this problem
in the same way we did with the coin-flipping problems in Chapter 9.

Given there are 10 patients, We can let P � the probability of get-
ting a plus with any patient.* If chance alone is operating, the probability of a
plus is equal to the probability of a minus. There are only two equally likely al-
ternatives, so Since we want to determine the probability of 9 pluses,
the number of P events � 9. In Table B under number of P events � 9,
and we obtainP � 0.50,

N � 10,
P � 0.50.

N � 10.

a � 0.05

a � 0.01.a � 0.05

H0.H0,7 a,
H0.� a,

H0,
H0H0

H0H0 ,

H0 ,
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MENTORING TIP
Caution: if the obtained prob-
ability � a, it is incorrect to
conclude by “accepting H0.”
The correct conclusion is 
“retain H0” or “fail to reject
H0.” You will learn why in
Chapter 11.

*Throughout this chapter and the next, whenever using the sign test, we shall always let P � the prob-
ability of a plus with any subject. This is arbitrary; we could have chosen Q. However, using the same
letter (P or Q) to designate the probability of a plus for all problems does avoid unnecessary confusion.

t a b l e 10.2 Table B entry

No. of P P
N Events 0.50

10 9 0.0098

p19 pluses2 � 0.0098



Alpha has been set at 0.05. The analysis shows that only 98 times in 10,000
would we get 9 pluses if chance alone is the cause. Since 0.0098 is lower than al-
pha, we reject the null hypothesis.* It does not seem to be a reasonable explana-
tion of the data. Therefore, we conclude by accepting the alternative hypothesis
that marijuana affects appetite. It appears to increase it. Since the sample was
randomly selected, we assume the sample is representative of the population.
Therefore, it is legitimate to assume that this conclusion applies to the population
of AIDS patients being treated at your hospital.

It is worth noting that very often in practice the results of an experiment are
generalized to groups that were not part of the population from which the sam-
ple was taken. For instance, on the basis of this experiment, we might be tempted
to claim that marijuana would increase the appetites of AIDS patients being
treated at other hospitals. Strictly speaking, the results of an experiment apply
only to the population from which the sample was randomly selected. Therefore,
generalization to other groups should be made with caution. This caution is nec-
essary because the other groups may differ from the subjects in the original pop-
ulation in some way that would cause a different result. Of course, as the experi-
ment is replicated in different hospitals with different patients, the legitimate
generalization becomes much broader.

TYPE I AND TYPE II ERRORS

When making decisions regarding the null hypothesis, it is possible to make er-
rors of two kinds. These are called Type I and Type II errors.
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*This is really a simplification made here for clarity. In actual practice, we evaluate the probability of
getting the obtained result or any more extreme. The point is discussed in detail later in this chapter
in the section titled “Evaluating the Tail of the Distribution.”

d e f i n i t i o n s ■ A Type I error is defined as a decision to reject the null hypothesis when the
null hypothesis is true. A Type II error is defined as a decision to retain the
null hypothesis when the null hypothesis is false.

To illustrate these concepts, let’s return to the marijuana example. Recall the
logic of the decision process. First, we assume is true and evaluate the proba-
bility of getting the obtained score differences between conditions if chance
alone is responsible. If the obtained probability we reject If the obtained
probability we retain In the marijuana experiment, the obtained prob-
ability [p(9 pluses)] � 0.0098. Since this was lower than alpha, we rejected and
concluded that marijuana was responsible for the results. Can we be certain that
we made the correct decision? How do we know that chance wasn’t really re-
sponsible? Perhaps the null hypothesis is really true. Isn’t it possible that this was
one of those 98 times in 10,000 we would get 9 pluses and 1 minus if chance alone
was operating? The answer is that we never know for sure that chance wasn’t re-
sponsible. It is possible that the 9 pluses and 1 minus were really due to chance.
If so, then we made an error by rejecting This is a Type I error—a rejection
of the null hypothesis when it is true.

H0.

H0

H0.7  a,
H0.�  a,

H0



A Type II error occurs when we retain and it is false. Suppose that in the
marijuana experiment instead of 0.0098. In this case,

so we would retain If is false, we have made a Type II error,
that is, retaining when it is false.

To help clarify the relationship between the decision process and possible er-
ror, we’ve summarized the possibilities in Table 10.3. The column heading is State
of Reality. This means the correct state of affairs regarding the null hypothesis.
There are only two possibilities. Either H0 is true or it is false. The row heading is
the decision made when analyzing the data. Again, there are only two possibili-
ties. Either we reject H0 or we retain H0. If we retain H0 and H0 is true, we’ve
made a correct decision (see the first cell in the table). If we reject H0 and H0 is
true, we’ve made a Type I error. This is shown in cell 3. If we retain and is
false, we’ve made a Type II error (cell 2). Finally, if we reject H0 and H0 is false,
we’ve made a correct decision (cell 4). Note that when we reject the only pos-
sible error is a Type I error. If we retain the only error we may make is a Type
II error.

H0,
H0,

H0H0

H0

H0H0.0.2300 7  a,
p19 pluses2 � 0.2300

H0
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You may wonder why we’ve gone to the trouble of analyzing all the logical
possibilities. We’ve done so because it is very important to know the possible er-
rors we may be making when we draw conclusions from an experiment. From the
preceding analysis, we know there are only two such possibilities, a Type I error
or a Type II error. Knowing these are possible, we can design experiments before
conducting them to help minimize the probability of making a Type I or a Type
II error. By minimizing the probability of making these errors, we maximize the
probability of concluding correctly, regardless of whether the null hypothesis is
true or false. We shall see in the next section that alpha limits the probability of
making a Type I error. Therefore, by controlling the alpha level we can minimize
the probability of making a Type I error. Beta (read “bayta”) is defined as the
probability of making a Type II error. We shall discuss ways to minimize beta in
the next chapter.

ALPHA LEVEL AND THE DECISION PROCESS

It should be clear that whenever we are using sample data to evaluate a hypoth-
esis, we are never certain of our conclusion. When we reject we don’t know
for sure that it is false. We take the risk that we may be making a Type I error. Of
course, the less reasonable it is that chance is the cause of the results, the more

H0,

t a b l e 10.3 Possible conclusions and the state of reality

State of Reality

Decision H0 is true H0 is false

Retain H0
1Correct decision 2Type II error

Reject H0
3Type I error 4Correct decision 



confident we are that we haven’t made an error by rejecting the null hypothesis.
For example, when the probability of getting the results is 1 in 1 million

under the assumption of chance, we are more confident that the
null hypothesis is false than when the probability is 1 in 10 1 p � 0.102.
1p � 0.0000012
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d e f i n i t i o n ■ The alpha level that the scientist sets at the beginning of the experiment 
is the level to which he or she wishes to limit the probability of making a
Type I error.

Thus, when a scientist sets he is in effect saying that when he collects
the data he will reject the null hypothesis if, under the assumption that chance
alone is responsible, the obtained probability is equal to or less than 5 times in
100. In so doing, he is saying that he is willing to limit the probability of rejecting
the null hypothesis when it is true to 5 times in 100. Thus, he limits the probabil-
ity of making a Type I error to 0.05.

There is no magical formula that tells us what the alpha level should be to ar-
rive at truth in each experiment. To determine a reasonable alpha level for an ex-
periment, we must consider the consequences of making an error. In science, the
effects of rejecting the null hypothesis when it is true (Type I error) are costly.
When a scientist publishes an experiment in which he rejects the null hypothesis,
other scientists either attempt to replicate the results or accept the conclusion as
valid and design experiments based on the scientist having made a correct deci-
sion. Since many work-hours and dollars go into these follow-up experiments, sci-
entists would like to minimize the possibility that they are pursuing a false path.
Thus, they set rather conservative alpha levels: and are com-
monly used. You might ask, “Why not set even more stringent criteria, such as

?” Unfortunately, when alpha is made more stringent, the probability
of making a Type II error increases.

We can see this by considering an example. This example is best understood
in conjunction with Table 10.4. Suppose we do an experiment and set 
(top row of Table 10.4). We evaluate chance and get an obtained probability of
0.02. We reject If is true, we have made a Type I error (cell 1). Suppose,
however, that alpha had been set at instead of 0.05 (bottom row of
Table 10.4). In this case, we would retain and no longer would be making a
Type I error (cell 3). Thus, the more stringent the alpha level, the lower the prob-
ability of making a Type I error.

On the other hand, what happens if is really false (last column of the
table)? With and the obtained probability � 0.02, we would reject H0a � 0.05

H0

H0

a � 0.01
H0H0.

a � 0.05

a � 0.001

a � 0.01a � 0.05

a � 0.05,

t a b l e 10.4 Effect on beta of making alpha more stringent

State of Reality
Alpha Obtained
Level Probability Decision H0 is true H0 is false

0.05 0.02 Reject H0
1Type I error 2Correct decision

0.01 0.02 Retain H0
3Correct decision 4Type II error 



and thereby make a correct decision (cell 2). However, if we changed alpha to
we would retain and we would make a Type II error (cell 4). Thus,

making alpha more stringent decreases the probability of making a Type I error
but increases the probability of making a Type II error. Because of this interac-
tion between alpha and beta, the alpha level chosen for an experiment depends
on the intended use of the experimental results. As mentioned previously, if the
results are to communicate a new fact to the scientific community, the conse-
quences of a Type I error are great, and therefore stringent alpha levels are used
(0.05 and 0.01). If, however, the experiment is exploratory in nature and the re-
sults are to guide the researcher in deciding whether to do a full-fledged experi-
ment, it would be foolish to use such stringent levels. In such cases, alpha levels
as high as 0.10 or 0.20 are often used.

Let’s consider one more example. Imagine you are the president of a drug
company. One of your leading biochemists rushes into your office and tells you
that she has discovered a drug that increases memory. You are of course elated,
but you still ask to see the experimental results. Let’s assume it will require a
$30 million outlay to install the apparatus to manufacture the drug. This is quite
an expense, but if the drug really does increase memory, the potential benefits
and profits are well worth it. In this case, you would want to be very sure that
the results are not due to chance. The consequences of a Type I error are great.
You stand to lose $30 million. You will probably want to use an extremely strin-
gent alpha level before deciding to reject and risk the $30 million.

We hasten to reassure you that truth is not dependent on the alpha level used
in an experiment. Either marijuana affects appetite or it doesn’t. Either the drug
increases memory or it doesn’t. Setting a stringent alpha level merely diminishes
the possibility that we shall conclude for the alternative hypothesis when the null
hypothesis is really true.

Since we never know for sure what the real truth is as a result of a single ex-
periment, replication is a necessary and essential part of the scientific process. Be-
fore an “alleged fact” is accepted into the body of scientific knowledge, it must be
demonstrated independently in several laboratories. The probability of making a
Type I error decreases greatly with independent replication.

EVALUATING THE TAIL OF THE DISTRIBUTION

In the previous discussion, the obtained probability was found by using just the
specific outcomes of the experiment (i.e., 9 pluses and 1 minus). However, we
did that to keep things simple for clarity when presenting the other major con-
cepts. In fact, it is incorrect to use just the specific outcome when evaluating the
results of an experiment. Instead, we must determine the probability of getting
the obtained outcome or any outcome even more extreme. It is this probability
that we compare with alpha to assess the reasonableness of the null hypothesis.
In other words, we evaluate the tail of the distribution, beginning with the ob-
tained result, rather than just the obtained result itself. If the alternative hy-
pothesis is nondirectional, we evaluate the obtained result or any even more
extreme in both directions (both tails). If the alternative hypothesis is direc-
tional, we evaluate only the tail of the distribution that is in the direction spec-
ified by H1.

H0

H0a � 0.01,
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To illustrate, let’s again evaluate the data in the present experiment, this time
evaluating the tails rather than just the specific outcome. Figure 10.1 shows the
binomial distribution for and The distribution has two tails, one
containing few pluses and one containing many pluses. The alternative hypothe-
sis is nondirectional, so to calculate the obtained probability, we must determine
the probability of getting the obtained result or a result even more extreme in
both directions. Since the obtained result was 9 pluses, we must include outcomes
as extreme as or more extreme than 9 pluses. From Figure 10.1, we can see that
the outcome of 10 pluses is more extreme in one direction and the outcomes of
1 plus and 0 pluses are as extreme or more extreme in the other direction. Thus,
the obtained probability is as follows:

It is this probability (0.0216, not 0.0098) that we compare with alpha to reject or
retain the null hypothesis. This probability is called a two-tailed probability value
because the outcomes we evaluate occur under both tails of the distribution.
Thus, alternative hypotheses that are nondirectional are evaluated with two-
tailed probability values. If the alternative hypothesis is nondirectional, the alpha
level must also be two-tailed. If this means that the two-tailed ob-
tained probability value must be equal to or less than 0.05 to reject In this ex-
ample, 0.0216 is less than 0.05, so we reject and conclude as we did before that
marijuana affects appetite.

If the alternative hypothesis is directional, we evaluate the tail of the dis-
tribution that is in the direction predicted by To illustrate this point, sup-
pose the alternative hypothesis was that “marijuana increases appetite” and the
obtained result was 9 pluses and 1 minus. Since specifies that marijuana in-
creases appetite, we evaluate the tail with the higher number of pluses. Re-
member that a plus means more food eaten in the marijuana condition. Thus,
if marijuana increases appetite, we expect mostly pluses. The outcome of 

H1

H1.

H0

H0.
a � 0.052 tail,

 � 0.0216

 � 0.0010 � 0.0098 � 0.0098 � 0.0010

p10, 1, 9, or 10 pluses2 � p 102 � p 112 � p 192 � p 1102

P � 0.50.N � 10
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10 pluses is the only possible result in this direction more extreme than 9 pluses.
The obtained probability is

This probability is called a one-tailed probability because all of the outcomes we
are evaluating are under one tail of the distribution. Thus, alternative hypotheses
that are directional are evaluated with one-tailed probabilities. If the alternative
hypothesis is directional, the alpha level must be one-tailed. Thus, directional al-
ternative hypotheses are evaluated against one-tailed alpha levels. In this exam-
ple, if we would reject because 0.0108 is less than 0.05.

The reason we evaluate the tail has to do with the alpha level set at the
beginning of the experiment. In the example we have been using, suppose the
hypothesis is that “marijuana increases appetite.” This is a directional hypoth-
esis, so a one-tailed evaluation is appropriate. Assume N � 10 and 
By setting at the beginning of the experiment, the researcher desires
to limit the probability of a Type I error to 5 in 100. Suppose the results of the
experiment turn out to be 8 pluses and 2 minuses. Is this a result that allows re-
jection of consistent with the alpha level? Your first impulse is no doubt to
answer “yes” because However, if we reject with 8
pluses, we must also reject it if the results are 9 or 10 pluses. Why? Because
these outcomes are even more favorable to than 8 pluses and 2 minuses.
Certainly, if marijuana really does increase appetite, obtaining 10 pluses and 0
minuses is better evidence than 8 pluses and 2 minuses, and similarly for 9
pluses and 1 minus. Thus, if we reject with 8 pluses, we must also reject with 9
and 10 pluses. But what is the probability of getting 8, 9, or 10 pluses if chance
alone is operating?

The probability is greater than alpha. Therefore, we can’t allow 8 pluses to be a
result for which we could reject the probability of falsely rejecting would
be greater than the alpha level. Note that this is true even though the probability
of 8 pluses itself is less than alpha. Therefore, we don’t evaluate the exact out-
come, but rather we evaluate the tail so as to limit the probability of a Type I er-
ror to the alpha level set at the beginning of the experiment. The reason we use
a two-tailed evaluation with a nondirectional alternative hypothesis is that results
at both ends of the distribution are legitimate candidates for rejecting the null
hypothesis.

ONE- AND TWO-TAILED PROBABILITY EVALUATIONS

When setting the alpha level, we must decide whether the probability evaluation
should be one- or two-tailed. When making this decision, use the following rule:

The evaluation should always be two-tailed unless the experimenter will retain 
when results are extreme in the direction opposite to the predicted direction.

H0

H0H0;

 � 0.0547

 � 0.0439 � 0.0098 � 0.0010

p 18, 9, or 10 pluses2 � p 182 � p 192 � p 1102

H1

H0p 18 pluses2 � 0.0439.
H0

a � 0.05
a � 0.051 tail.

H0a � 0.051 tail,

 � 0.0108

p 19 or 10 pluses2 � 0.0098 � 0.0010
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In following this rule, there are two situations commonly encountered that warrant
directional hypotheses. First, when it makes no practical difference if the results
turn out to be in the opposite direction, it is legitimate to use a directional hypoth-
esis and a one-tailed evaluation. For example, if a manufacturer of automobile tires
is testing a new type of tire that is supposed to last longer, a one-tailed evaluation
is legitimate because it doesn’t make any practical difference if the experimental
results turn out in the opposite direction. The conclusion will be to retain and
the manufacturer will continue to use the old tires. Another situation in which it
seems permissible to use a one-tailed evaluation is when there are good theoreti-
cal reasons, as well as strong supporting data, to justify the predicted direction. In
this case, if the experimental results turn out to be in the opposite direction, the ex-
perimenter again will conclude by retaining (at least until the experiment is
replicated) because the results fly in the face of previous data and theory.

In situations in which the experimenter will reject if the results of the ex-
periment are extreme in the direction opposite to the prediction direction, a two-
tailed evaluation should be used. To understand why, let’s assume the researcher
goes ahead and uses a directional prediction, setting and the results
turn out to be extreme in the opposite direction. If he is unwilling to conclude by
retaining what he will probably do is shift, after seeing the data, to using a
nondirectional hypothesis employing (0.025 under each tail) to be
able to reject In the long run, following this procedure will result in a Type I
error probability of 0.075 (0.05 under the tail in the predicted direction and 0.025
under the other tail). Thus, switching alternative hypotheses after seeing the data
produces an inflated Type I error probability. It is of course even worse if, after
seeing that the data are in the direction opposite to that predicted, the experi-
menter switches to in the direction of the outcome so as to reject 
In this case, the probability of a Type I error, in the long run, would be 0.10 (0.05
under each tail). For example, an experimenter following this procedure for 100
experiments, assuming all involved true null hypotheses, would be expected to
falsely reject the null hypothesis 10 times. Since each of these rejections would be
a Type I error, following this procedure leads to the probability of a Type I error
of 0.10 Therefore, to maintain the Type I error probability at the
desired level, it is important to decide at the beginning of the experiment whether

should be directional or nondirectional and to set the alpha level accordingly.
If a directional is used, the predicted direction must be adhered to, even if the
results of the experiment turn out to be extreme in the opposite direction. Con-
sequently, must be retained in such cases.

For solving the problems and examples contained in this textbook, we shall
indicate whether a one- or two-tailed evaluation is appropriate; we would like
you to practice both. Be careful when solving these problems. When a scientist
conducts an experiment, he or she is often following a hunch that predicts a di-
rectional effect.The problems in this textbook are often stated in terms of the sci-
entist’s directional hunch. Nonetheless, unless the scientist will conclude by re-
taining if the results turn out to be extreme in the opposite direction, he or she
should use a nondirectional and a two-tailed evaluation, even though his or
her hunch is directional. Each textbook problem will tell you whether you should
use a nondirectional or directional when it asks for the alternative hypothe-
sis. If you are asked for a nondirectional you should assume that the appro-
priate criterion for a directional alternative hypothesis has not been met, regard-
less of whether the scientist’s hunch in the problem is directional. If you are

H1,
H1

H1

H0

H0

H1

H1

110�100 � 0.102.

H0.a � 0.051 tail

H0.
a � 0.052 tail

H0,

a � 0.051 tail,

H0

H0

H0,
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MENTORING TIP
Caution: when answering any
of the end-of-chapter prob-
lems, use the direction speci-
fied by the H1 or alpha level
given in the problem to deter-
mine if the evaluation is to be
one-tailed or two-tailed.



asked for a directional assume that the appropriate criterion has been met
and it is proper to use a directional 

We are now ready to do a complete problem in exactly the same way any sci-
entist would if he or she were using the sign test to evaluate the data.

H1.
H1,
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P r a c t i c e  P r o b l e m  10.1

Assume we have conducted an experiment to test the hypothesis that mar-
ijuana affects the appetites of AIDS patients. The procedure and popula-
tion are the same as we described previously, except this time we have 
sampled 12 AIDS patients. The results are shown here (the scores are in
calories):

Patient

Condition 1 2 3 4 5 6 7 8 9 10 11 12

THC 1051 1066 963 1179 1144 912 1093 1113 985 1271 978 951

Placebo 872 943 912 1213 1034 854 1125 1042 922 1136 886 902

a. What is the nondirectional alternative hypothesis?
b. What is the null hypothesis?
c. Using what do you conclude?
d. What error may you be making by your conclusion in part c?
e. To what population does your conclusion apply?

The solution follows.

S O L U T I O N

a. Nondirectional alternative hypothesis: Marijuana affects appetites of
AIDS patients who are being treated at your hospital.

b. Null hypothesis: Marijuana has no effect on appetites of AIDS patients
who are being treated at your hospital.

c. Conclusion, using 

STEP 1: Calculate the number of pluses and minuses. The first step is to
calculate the number of pluses and minuses in the sample. We
have subtracted the “placebo” scores from the corresponding
“THC” scores. The reverse could also have been done. There are
10 pluses and 2 minuses.

STEP 2: Evaluate the number of pluses and minuses. Once we have
calculated the obtained number of pluses and minuses, we
must determine the probability of getting this outcome or any 

a � 0.052 tail:

a � 0.052 tail,

(continued)
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even more extreme in both directions because this is a two-
tailed evaluation. The binomial distribution is appropriate for
this determination. N � the number of difference scores
(pluses and minuses) � 12. We can let P � the probability of a
plus with any subject. If marijuana has no effect on appetite,
chance alone accounts for whether any subject scores a plus or
a minus. Therefore, The obtained result was 10
pluses and 2 minuses, so the number of P events � 10. The
probability of getting an outcome as extreme as or more ex-
treme than 10 pluses (two-tailed) equals the probability of 0,
1, 2, 10, 11, or 12 pluses. Since the distribution is symmetrical,
p(0, 1, 2, 10, 11, or 12 pluses) equals p(10, 11, or 12 pluses) � 2.
Thus, from Table B:

The same value would have been obtained if we had added the six prob-
abilities together rather than finding the one-tailed probability and mul-
tiplying by 2. Since 0.0384 � 0.05, we reject the null hypothesis. It is not
a reasonable explanation of the results.Therefore, we conclude that mar-
ijuana affects appetite. It appears to increase it.

d. Possible error: By rejecting the null hypothesis, you might be making 
a Type I error. In reality, the null hypothesis may be true and you have
rejected it.

e. Population: These results apply to the population of AIDS patients
from which the sample was taken.

P � 0.50.

Table B entry

No. of P P
N Events 0.50

12 10 0.0161

11 0.0029

12 0.0002
� 0.0384

� 10.0161 � 0.0029 � 0.00022 � 2

� 3p 1102 � p 1112 � p 1122 4 � 2

� p 110, 11, or 12 pluses2 � 2
p10, 1, 2, 10, 11 or 12 pluses2

P r a c t i c e  P r o b l e m  10.2

You have good reason to believe a particular TV program is causing in-
creased violence in teenagers. To test this hypothesis, you conduct an ex-
periment in which 15 individuals are randomly sampled from the teenagers
attending your neighborhood high school. Each subject is run in an experi-
mental and a control condition. In the experimental condition, the
teenagers watch the TV program for 3 months, during which you record the
number of violent acts committed. The control condition also lasts for 



One- and Two-Tailed Probability Evaluations 253

3 months, but the teenagers are not allowed to watch the program during
this period. At the end of each 3-month period, you total the number of
violent acts committed. The results are given here:

Subject

Condition 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Viewing 25 35 10 8 24 40 44 18 16 25 32 27 33 28 26
the program

Not viewing 18 22 7 11 13 35 28 12 20 18 38 24 27 21 22
the program

a. What is the directional alternative hypothesis?
b. What is the null hypothesis?
c. Using , what do you conclude?
d. What error may you be making by your conclusion in part c?
e. To what population does your conclusion apply?

The solution follows.

S O L U T I O N

a. Directional alternative hypothesis: Watching the TV program causes
increased violence in teenagers.

b. Null hypothesis: Watching the TV program does not cause increased
violence in teenagers.

c. Conclusion, using 

STEP 1: Calculate the number of pluses and minuses. The first step is to
calculate the number of pluses and minuses in the sample from
the data.We have subtracted the scores in the “not viewing” con-
dition from the scores in the “viewing” condition. The obtained
result is 12 pluses and 3 minuses.

STEP 2: Evaluate the number of pluses and minuses. Next, we must
determine the probability of getting this outcome or any even
more extreme in the direction of the alternative hypothesis.
This is a one-tailed evaluation because the alternative hypoth-
esis is directional. The binomial distribution is appropriate.
N � the number of difference scores � 15. Let P � the prob-
ability of a plus with any subject. We can evaluate the null hy-
pothesis by assuming chance alone accounts for whether any
subject scores a plus or minus. Therefore, The ob-
tained result was 12 pluses and 3 minuses, so the number of P
events � 12. The probability of 12 pluses or more equals the
probability of 12, 13, 14, or 15 pluses. This can be found from
Table B. Thus,

(continued)

P � 0.50.

a � 0.011 tail:

a � 0.011 tail



254 C H A P T E R  10 Introduction to Hypothesis Testing Using the Sign Test

Since 0.0176 � 0.01, we fail to reject the null hypothesis. Therefore, we
retain and cannot conclude that the TV program causes increased vi-
olence in teenagers.

d. Possible error: By retaining the null hypothesis, you might be making
a Type II error. The TV program may actually cause increased violence
in teenagers.

e. Population: These results apply to the population of teenagers attend-
ing your neighborhood school.

H0

 � 0.0176

 � 0.0139 � 0.0032 � 0.0005 � 0.0000

� p 1122 � p 1132 � p 1142 � p 1152

p 112, 13, 14, or 15 pluses2

Table B entry

No. of P P
N Events 0.50

15 12 0.0139

13 0.0032

14 0.0005

15 0.0000 

P r a c t i c e  P r o b l e m  10.3

A corporation psychologist believes that exercise affects self-image. To in-
vestigate this possibility, 14 employees of the corporation are randomly se-
lected to participate in a jogging program. Before beginning the program,
they are given a questionnaire that measures self-image. Then they begin
the jogging program. The program consists of jogging at a moderately tax-
ing rate for 20 minutes a day, 4 days a week. Each employee’s self-image is
measured again after 2 months on the program. The results are shown here
(the higher the score, the higher the self-image); a score of 20 is the highest
score possible.

Before After Before After
Subject Jogging Jogging Subject Jogging Jogging

1 14 20 8 16 13

2 13 16 9 10 16

3 8 15 10 14 18

4 14 12 11 6 14

5 12 15 12 15 17

6 7 13 13 12 18

7 10 12 14 9 15



One- and Two-Tailed Probability Evaluations 255

a. What is the alternative hypothesis? Use a nondirectional hypothesis.
b. What is the null hypothesis?
c. Using what do you conclude?
d. What error may you be making by your conclusion in part c?
e. To what population does your conclusion apply?

The solution follows.

S O L U T I O N

a. Nondirectional alternative hypothesis: Jogging affects self-image.
b. Null hypothesis: Jogging has no effect on self-image.
c. Conclusion, using :

STEP 1: Calculate the number of pluses and minuses. We have sub-
tracted the “before jogging” from the “after jogging” scores.
There are 12 pluses and 2 minuses.

STEP 2: Evaluate the number of pluses and minuses. Because is
nondirectional, we must determine the probability of getting a
result as extreme as or more extreme than 12 pluses (two-tailed),
assuming chance alone accounts for the differences. The bino-
mial distribution is appropriate. and number
of P events � 0, 1, 2, 12, 13, or 14. Thus, from Table B:

The same value would have been obtained if we had found the one-tailed
probability and multiplied by 2. Since 0.0132 � 0.05, we reject the null hy-
pothesis. It appears that jogging improves self-image.
d. Possible error: By rejecting the null hypothesis, you might be making a

Type I error. The null hypothesis may be true, and it was rejected.
e. Population: These results apply to all the employees of the corporation

who were employed at the time of the experiment.

 � 0.0132
� 0.0056 � 0.0009 � 0.0001

 � 0.0001 � 0.0009 � 0.0056
� p 1132 � p 1142

p 10, 1, 2, 12, 13, or 14 pluses2 � p 102 � p 112 � p 122 � p 1122

N � 14, P � 0.50,

H1

a � 0.052 tail

a � 0.052 tail,

Table B entry

No. of P P
N Events 0.50

14 0 0.0001

1 0.0009

2 0.0056

12 0.0056

13 0.0009

14 0.0001



SIZE OF EFFECT: SIGNIFICANT VERSUS IMPORTANT

The procedure we have been following in assessing the results of an experiment
is first to evaluate directly the null hypothesis and then to conclude indirectly
with regard to the alternative hypothesis. If we are able to reject the null hy-
pothesis, we say the results are significant. What we really mean by “significant”
is “statistically significant.” That is, the results are probably not due to chance,
the independent variable has had a real effect, and if we repeat the experiment,
we would again get results that would allow us to reject the null hypothesis. It
might have been better to use the term reliable to convey this meaning rather
than significant. However, the usage of significant is well established, so we will
have to live with it. The point is that we must not confuse statistically significant
with practically or theoretically “important.” A statistically significant effect
says little about whether the effect is an important one. For example, suppose
the real effect of marijuana is to increase appetite by only 10 calories. Using
careful experimental design and a large enough sample, it is possible that we
would be able to detect even this small an effect. If so, we would conclude that
the result is significant (reliable), but then we still need to ask, “How important
is this real effect?” For most purposes, except possibly theoretical ones, the im-
portance of an effect increases directly with the size of the effect. For further
discussion of this point, see “What Is the Truth? Much Ado About Almost Noth-
ing,” in Chapter 15.
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MENTORING TIP
The importance of an effect
generally depends on the size
of the effect.

WHAT IS THE TRUTH? Chance or Real Effect?—1

An article appeared
in Time magazine
concerning the
“Pepsi Challenge
Taste Test.” A Pepsi

ad, shown on the facing page, ap-
peared in the article. Taste Test par-
ticipants were Coke drinkers from
Michigan who were asked to drink
from a glass of Pepsi and another
glass of Coke and say which they
preferred. To avoid obvious bias,
the glasses were not labeled
“Coke” or “Pepsi.” Instead, to fa-
cilitate a “blind” administration of
the drinks, the Coke glass was

marked with a “Q” and the Pepsi
glass with an “M.” The results as
stated in the ad are, “More than
half the Coca-Cola drinkers tested
in Michigan preferred Pepsi.” Aside

from a possible real preference for
Pepsi in the population of Michigan
Coke drinkers, can you think of any
other possible explanation of these
sample results?
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Answer The most obvious alter-
native explanation of these results
is that they are due to chance
alone; that in the population, the
preference for Pepsi and Coke is
equal (P � 0.50). You, of course,
recognize this as the null hypothe-
sis explanation. This explanation
could and, in our opinion, should
have been ruled out (within the
limits of Type I error) by analyzing
the sample data with the appropri-
ate inference test. If the results re-
ally are significant, it doesn’t take
much space in an ad to say so. This
ad is like many that state sample
results favoring their product with-
out evaluating chance as a reason-
able explanation.

As an aside, Coke did not cry
“chance alone,” but instead claimed
the study was invalid because peo-
ple like the letter “M” better than
“Q.” Coke conducted a study to
test its contention by putting Coke
in both the “M” and “Q” glasses.
Sure enough, more people preferred
the drink in the “M” glass, even
though it was Coke in both glasses.
Pepsi responded by doing another
Pepsi Challenge round, only this
time revising the letters to “S” and
“L,” with Pepsi always in the “L”
glass. The sample results again fa-
vored Pepsi. Predictably, Coke execu-
tives again cried foul, claiming an
“L” preference. A noted motiva-
tional authority was then consulted
and he reported that he knew of no
studies showing a bias in favor of
the letter “L.” As a budding statisti-
cian, how might you design an ex-
periment to determine whether
there is a preference for Pepsi or
Coke in the population and at the
same time eliminate glass-preference
as a possible explanation? ■

© PepsiCo, Inc. 1976. Reproduced with permission.
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WHAT IS THE TRUTH? “No Product Is Better Than Our Product”

Often we see ad-
vertisements that
present no data
and make the as-
sertion, “No prod-

uct is better in doing X than our
product.” An ad regarding Ex-
cedrin, which was published in a
national magazine, is an example
of this kind of advertisement. The
ad showed a large picture of a bot-
tle of Excedrin tablets along with
the statements,

“Nothing you can buy is stronger.”
“Nothing you can buy works

harder.”
“Nothing gives you bigger relief.”

The question is, “How do we inter-
pret these claims?” Do we rush out
and buy Excedrin because it is
stronger, works harder, and gives
bigger relief than any other
headache remedy available? If
there are experimental data that
form the basis of this ad’s claims,
we wonder what the results really
are. What is your guess?

Answer Of course, we really
don’t know in every case, and
therefore we don’t intend our re-
marks to be directed at any specific
ad. We have just chosen the Ex-
cedrin ad as an illustration of many
such ads. However, we can’t help
but be suspicious that in most, if
not all, cases where sample data
exist, the actual data show that
there is no significant difference in

doing X between the advertiser’s
product and the other products
tested.

For the sake of discussion, let’s
call the advertiser’s product “A.” If
the data had shown that “A” was
better than the competing prod-
ucts, it seems reasonable that the
advertiser would directly claim su-
periority for its product, rather than
implying this indirectly through the
weaker statement that no other
product is better than theirs.

Why, then, would the advertiser
make this weaker statement? Prob-
ably because the actual data do
not show product “A” to be supe-
rior at all. Most likely, the sample
data show product “A” to be ei-
ther equal to or inferior to the oth-
ers, and the inference test shows
no significant difference between
the products. Given such data,

rather than saying that the research
shows our product to be inferior
or, at best, equal to the other prod-
ucts at doing X (which clearly
would not sell a whole bunch of
product “A”), the results are stated
in this more positive, albeit, in our
opinion, misleading way. Saying
“No other product is better than
ours in doing X” will obviously sell
more products than “All products
tested were equal in doing X.” And
after all, if you read the weaker
statement closely, it does not really
say that product “A” is superior to
the others.

Thus, in the absence of reported
data to the contrary, we believe the
most accurate interpretation of the
claim “No other competitor’s prod-
uct is superior to ours at doing X”
is that the products are equal at
doing X. ■
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In this chapter, I have discussed the topic of hypo-
thesis testing, using the sign test as our vehicle. The
sign test is used in conjunction with the repeated mea-
sures design. The essential features of the repeated
measures design are that there are paired scores be-
tween conditions and difference scores are analyzed.

In any hypothesis-testing experiment, there are
always two hypotheses that compete to explain the
results: the alternative hypothesis and the null hy-
pothesis. The alternative hypothesis specifies that the
independent variable is responsible for the differ-
ences in score values between the conditions. The al-
ternative hypothesis may be directional or nondirec-
tional. It is legitimate to use a directional hypothesis
when there is a good theoretical basis and good sup-
porting evidence in the literature. If the experiment
is a basic fact-finding experiment, ordinarily a nondi-
rectional hypothesis should be used. A directional al-
ternative hypothesis is evaluated with a one-tailed

probability value and a nondirectional hypothesis
with a two-tailed probability value.

The null hypothesis is the logical counterpart to
the alternative hypothesis such that if the null hy-
pothesis is false, the alternative hypothesis must be
true. If the alternative hypothesis is nondirectional,
the null hypothesis specifies that the independent
variable has no effect on the dependent variable. If
the alternative hypothesis is directional, the null hy-
pothesis states that the independent variable has no
effect in the direction specified.

In evaluating the data from an experiment, we
never directly evaluate the alternative hypothesis.
We always first evaluate the null hypothesis. The null
hypothesis is evaluated by assuming chance alone is
responsible for the differences in scores between
conditions. In doing this evaluation, we calculate the
probability of getting the obtained result or a result
even more extreme if chance alone is responsible. If

■ SUMMARY
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this obtained probability is equal to or lower than the
alpha level, we consider the null hypothesis expla-
nation unreasonable and reject the null hypothesis.
We conclude by accepting the alternative hypothesis
because it is the only other explanation. If the ob-
tained probability is greater than the alpha level, we
retain the null hypothesis. It is still considered a rea-
sonable explanation of the data. Of course, if the null
hypothesis is not rejected, the alternative hypothesis
cannot be accepted. The conclusion applies legiti-
mately only to the population from which the sample
was randomly drawn. We must be careful to distin-
guish “statistically significant” from practically or
theoretically “important.”

The alpha level is usually set at 0.05 or 0.01 to
minimize the probability of making a Type I error. A
Type I error occurs when the null hypothesis is re-
jected and it is actually true.The alpha level limits the
probability of making a Type I error. It is also possi-
ble to make a Type II error. This occurs when we re-
tain the null hypothesis and it is false. Beta is defined
as the probability of making a Type II error.When al-
pha is made more stringent, beta increases. By mini-

mizing alpha and beta, it is possible to have a high
probability of correctly concluding from an experi-
ment regardless of whether H0 or H1 is true. A sig-
nificant result really says that it is a reliable result but
gives little information about the size of the effect.
The larger the effect, the more likely it is to be an im-
portant effect.

In analyzing the data of an experiment with the
sign test, we ignore the magnitude of difference
scores and just consider their direction. There are
only two possible scores for each subject: a plus or a
minus. We sum the pluses and minuses for all sub-
jects, and the obtained result is the total number of
pluses and minuses. To test the null hypothesis, we
calculate the probability of getting the total number
of pluses or a number of pluses even more extreme
if chance alone is responsible. The binomial distrib-
ution with P(the probability of a plus) � 0.50 and 
N � the number of difference scores is appropriate
for making this determination. An illustrative prob-
lem and several practice problems were given to
show how to evaluate the null hypothesis using the
binomial distribution.
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Alpha (a) level (p. 242, 245)
Alternative hypothesis (H1) (p. 242)
Beta (b) (p. 245)
Correct decision (p. 246)
Correlated groups design (p. 241)
Directional hypothesis (p. 242)
Fail to reject null hypothesis (p. 243)
Importance of an effect (p. 256)

Nondirectional hypothesis (p. 242)
Null hypothesis (H0) (p. 242)
One-tailed probability (p. 249)
Reject null hypothesis (p. 244)
Repeated measures design (p. 241)
Replicated measures design (p. 241)
Retain null hypothesis (p. 242)

Sign test (p. 240)
Significant (p. 243, 256)
Size of effect (p. 256)
State of reality (p. 245)
Two-tailed probability (p. 248)
Type I error (p. 244)
Type II error (p. 244)

■ IMPORTANT NEW TERMS

1. Briefly define or explain each of the terms in the
Important New Terms section.

2. Briefly describe the process involved in hypothe-
sis testing. Be sure to include the alternative hy-
pothesis, the null hypothesis, the decision rule, the
possible type of error, and the population to
which the results can be generalized.

3. Explain in your own words why it is important to
know the possible errors we might make when re-
jecting or failing to reject the null hypothesis.

4. Does the null hypothesis for a nondirectional H1

differ from the null hypothesis for a directional
H1? Explain.

5. Under what conditions is it legitimate to use a di-
rectional H1? Why is it not legitimate to use a di-
rectional H1 just because the experimenter has a
“hunch” about the direction?

6. If the obtained probability in an experiment
equals 0.0200, does this mean that the probability
that H0 is true equals 0.0200? Explain.

■ QUESTIONS AND PROBLEMS



7. Discuss the difference between “significant”
and “important.” Include “effect size” in your 
discussion.

8. What considerations go into determining the
best alpha level to use? Discuss.

9. A primatologist believes that rhesus monkeys
possess curiosity. She reasons that, if this is true,
then they should prefer novel stimulation to
repetitive stimulation. An experiment is con-
ducted in which 12 rhesus monkeys are randomly
selected from the university colony and taught to
press two bars. Pressing bar 1 always produces
the same sound, whereas bar 2 produces a novel
sound each time it is pressed. After learning to
press the bars, the monkeys are tested for 15
minutes, during which they have free access to
both bars. The number of presses on each bar
during the 15 minutes is recorded. The resulting
data are as follows:

Subject Bar 1 Bar 2

1 20 40

2 18 25

3 24 38

4 14 27

5 5 31

6 26 21

7 15 32

8 29 38

9 15 25

10 9 18

11 25 32

12 31 28

a. What is the alternative hypothesis? In this
case, assume a nondirectional hypothesis is ap-
propriate because there is insufficient empiri-
cal basis to warrant a directional hypothesis.

b. What is the null hypothesis?
c. Using what is your conclusion?
d. What error may you be making by your con-

clusion in part c?
e. To what population does your conclusion 

apply? cognitive, biological
10. A school principal is interested in a new method

for teaching eighth-grade social studies, which he

a � 0.052 tail,

believes will increase the amount of material
learned. To test this method, the principal con-
ducts the following experiment. The eighth-
grade students in the school district are grouped
into pairs based on matching their IQs and past
grades. Twenty matched pairs are randomly se-
lected for the experiment. One member of each
pair is randomly assigned to a group that re-
ceives the new method, and the other member of
each pair to a group that receives the standard
instruction. At the end of the course, all students
take a common final exam. The following are the
results:

New Standard 
Pair No. Method Instruction

1 95 83

2 75 68

3 73 80

4 85 82

5 78 84

6 86 78

7 93 85

8 88 82

9 75 84

10 84 68

11 72 81

12 84 91

13 75 72

14 87 81

15 94 83

16 82 87

17 70 65

18 84 76

19 72 63

20 83 80

a. What is the alternative hypothesis? Use a di-
rectional hypothesis.

b. What is the null hypothesis?
c. Using what is your conclusion?
d. What error may you be making by your con-

clusion in part c?
e. To what population does your conclusion

apply? education

a � 0.051 tail,
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11. A physiologist believes that the hormone an-
giotensin II is important in regulating thirst. To
investigate this belief, she randomly samples 16
rats from the vivarium of the drug company
where she works and places them in individual
cages with free access to food and water. After
they have grown acclimated to their new
“homes,” the experimenter measures the
amount of water each rat drinks in a 20-minute
period. Then she injects each animal intra-
venously with a known concentration (100 mi-
crograms per kilogram) of angiotensin II. The
rats are then put back into their home cages, and
the amount each drinks for another 20-minute
period is measured. The results are shown in the
following table. Scores are in milliliters drunk
per 20 minutes.

Before After 
Subject Injection Injection

1 1.2 11.3

2 0.8 10.7

3 0.5 10.3

4 1.3 11.5

5 0.6 9.6

6 3.5 3.3

7 0.7 10.5

8 0.4 11.4

9 1.1 12.0

10 0.3 12.8

11 0.6 11.4

12 0.3 9.8

13 0.5 10.6

14 4.1 3.2

15 0.4 12.1

16 1.0 11.2

a. What is the nondirectional alternative hy-
pothesis?

b. What is the null hypothesis?
c. Using what is your conclusion?

Assume the injection itself had no effect on
drinking behavior.

d. What error may you be making by your con-
clusion in part c?

a � 0.052 tail,

e. To what population does your conclusion
apply? biological

12. A leading toothpaste manufacturer advertises
that, in a recent medical study, 70% of the people
tested had brighter teeth after using its tooth-
paste (called Very Bright) as compared to using
the leading competitor’s brand (called Brand X).
The advertisement continues, “Therefore, use
Very Bright and get brighter teeth.” In point of
fact, the data upon which these statements were
based were collected from a random sample of
10 employees from the manufacturer’s Pasadena
plant. In the experiment, each employee used
both toothpastes. Half of the employees used
Brand X for 3 weeks, followed by Very Bright for
the same time period. The other half used Very
Bright first, followed by Brand X. A brightness
test was given at the end of each 3-week period.
Thus, there were two scores for each employee,
one from the brightness test following the use of
Brand X and one following the use of Very
Bright. The following table shows the scores (the
higher, the brighter):

Subject Very Bright Brand X

1 5 4

2 4 3

3 4 2

4 2 3

5 3 1

6 4 1

7 1 3

8 3 4

9 6 5

10 6 4

a. What is the alternative hypothesis? Use a di-
rectional hypothesis.

b. What is the null hypothesis?
c. Using what do you conclude?
d. What error may you be making by your con-

clusion in part c?
e. To what population does your conclusion 

apply?
f. Does the advertising seem misleading? I/O

a � 0.051 tail,
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e. To what population does your conclusion 
apply?

Subject Acupuncture Placebo

1 4 6

2 2 5

3 1 5

4 5 3

5 3 6

6 2 4

7 3 7

8 2 6

9 1 8

10 4 3

11 3 7

12 4 8

13 5 3

14 2 5

15 1 4

cognitive, health

13. A researcher is interested in determining
whether acupuncture affects pain tolerance. An
experiment is performed in which 15 students
are randomly chosen from a large pool of uni-
versity undergraduate volunteers. Each subject
serves in two conditions. In both conditions, each
subject receives a short-duration electric shock
to the pulp of a tooth. The shock intensity is set
to produce a moderate level of pain to the
unanesthetized subject. After the shock is termi-
nated, each subject rates the perceived level of
pain on a scale of 0–10, with 10 being the highest
level. In the experimental condition, each subject
receives the appropriate acupuncture treatment
prior to receiving the shock. The control condi-
tion is made as similar to the experimental con-
dition as possible, except a placebo treatment is
given instead of acupuncture. The two conditions
are run on separate days at the same time of day.
The pain ratings in the accompanying table are
obtained.
a. What is the alternative hypothesis? Assume a

nondirectional hypothesis is appropriate.
b. What is the null hypothesis?
c. Using what is your conclusion?
d. What error may you be making by your con-

clusion in part c?

a � 0.052 tail,
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10.1 If the null hypothesis is false, then chance does
not account for the results. Strictly speaking,
this means that something systematic differs
between the two groups. Ideally, the only sys-
tematic difference is due to the independent
variable. Thus, we say that if the null hypothe-
sis is false, the alternative hypothesis must be
true. Practically speaking, however, the reader
should be aware that it is hard to do the per-
fect experiment. Consequently, in addition to
the alternative hypothesis, there are often ad-
ditional possible explanations of the system-
atic difference. Therefore, when we say “we ac-
cept H1,” you should be aware that there may
be additional explanations of the systematic
difference.

10.2 If the alternative hypothesis is directional, the
null hypothesis asserts that the independent
variable does not have an effect in the direction
specified by the alternative hypothesis. This is
true in the overwhelming number of experi-
ments conducted. Occasionally, an experiment
is conducted in which the alternative hypothesis
specifies not only the direction but also the
magnitude of the effect. For example, in con-
nection with the marijuana experiment, an al-
ternative hypothesis of this type might be “Mar-
ijuana increases appetite so as to increase
average daily eating by more than 200 calories.”
The null hypothesis for this alternative hypoth-
esis is “Marijuana increases appetite so as to in-
crease daily eating by 200 or fewer calories.”

■ NOTES
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The problems for this chapter as well as guided, in-
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Power

LEARNING OBJECTIVES

After completing this chapter, you should be able to:
■ Define power, in terms of both H1 and H0.
■ Define Pnull and Preal, and specify what Preal measures.
■ Specify the effect that N, size of real effect, and alpha level

have on power.
■ Explain the relationship between power and beta.
■ Explain why we never “accept” H0, but instead “fail to 

reject,” or “retain” it.
■ Calculate power using the sign test.
■ Understand the illustrative examples, do the practice prob-

lems, and understand the solutions.

Chapter 11



INTRODUCTION

We have seen in Chapter 10 that there are two errors we might make when test-
ing hypotheses. We have called them Type I and Type II errors. We have further
pointed out that the alpha level limits the probability of making a Type I error.
By setting alpha to 0.05 or 0.01, experimenters can limit the probability that they
will falsely reject the null hypothesis to these low levels. But what about Type II
errors? We defined beta as the probability of making a Type II error. We shall
see later in this chapter that power. By maximizing power, we minimize
beta, which means we minimize the probability of making a Type II error. Thus,
power is a very important topic.

WHAT IS POWER?

Conceptually, the power of an experiment is a measure of the sensitivity of the
experiment to detect a real effect of the independent variable. By “a real effect of
the independent variable,” we mean an effect that produces a change in the depen-
dent variable. If the independent variable does not produce a change in the de-
pendent variable, it has no effect and we say that the independent variable does
not have a real effect.

In analyzing the data from an experiment, we “detect” a real effect of the in-
dependent variable by rejecting the null hypothesis. Thus, power is defined in
terms of rejecting H0.

b � 1 �
1b2
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MENTORING TIP
Caution: many students find
this is a difficult chapter. You
may need to give it some extra
time.

d e f i n i t i o n ■ Mathematically, the power of an experiment is defined as the probability
that the results of an experiment will allow rejection of the null hypothesis if
the independent variable has a real effect.

Another way of stating the definition is that the power of an experiment is
the probability that the results of an experiment will allow rejection of the null
hypothesis if the null hypothesis is false.

Since power is a probability, its value can vary from 0.00 to 1.00. The higher
the power, the more sensitive the experiment to detect a real effect of the inde-
pendent variable. Experiments with power as high as 0.80 or higher are very de-
sirable but rarely seen in the behavioral sciences. Values of 0.40 to 0.60 are much
more common. It is especially useful to determine the power of an experiment
when (1) initially designing the experiment and (2) interpreting the results of ex-
periments that fail to detect any real effects of the independent variable (i.e., ex-
periments that retain H0).

Pnull AND Preal

When computing the power of an experiment using the sign test, it is useful to
distinguish between Pnull and Preal.



Pnull always equals 0.50. For experiments where H1 is nondirectional, Preal equals
any one of the other possible values of P (i.e., any value of P that does not equal
0.50).

Preal: A Measure of the Real Effect

The actual value of Preal will depend on the size and direction of the real effect.
To illustrate, let’s use the marijuana experiment of Chapter 10. (Refer to Fig-
ure 11.1 for the rest of this discussion.) Let us for the moment assume that the
marijuana experiment was conducted on the entire population of 10,000 AIDS
patients being treated at your hospital, not just on the sample of 10. If the effect

Pnull and Preal 269

d e f i n i t i o n s ■ Pnull is the probability of getting a plus with any subject in the sample of the
experiment when the independent variable has no effect.

■ Preal is the probability of getting a plus with any subject in the sample of the
experiment when the independent variable has a real effect.

f i g u r e 11.1 Relationship among null hypothesis, size of marijuana effect, and P values for a 
nondirectional H1.

H0 is true;
IV has no effect.

Marijuana has no effect.
Pnull � 0.50

H0 is false;
IV has real effect.

Marijuana decreases appetite.
Preal � 0.50

H0 is false;
IV has real effect.

Marijuana increases appetite.
Preal � 0.50

Size of
effect increases

Size of
effect increases
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of marijuana is to increase appetite and the size of the real effect is large enough
to overcome all the variables that might be acting to decrease appetite, we would
get pluses from all 10,000 patients. Accordingly, there would be 10,000 pluses and
0 minuses in the population. Thus, for this size and direction of marijuana effect,
Preal � 1.00. This is because there are all pluses in the population and the scores
of the 10 subjects in the actual experiment would have to be a random sample
from this population of scores. We can now elaborate further on the definition of
Preal.
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d e f i n i t i o n ■ As we defined it earlier, Preal is the probability of a plus with any subject in
the sample of the experiment if the independent variable has a real effect.
However, it is also the proportion of pluses in the population if the experi-
ment were done on the entire population and the independent variable has
a real effect.

Of course, the value Preal is the same whether defined in terms of the population
proportion of pluses or the probability of a plus with any subject in the sample.
Let us return now to our discussion of Preal and the size of the effect of the inde-
pendent variable.

If marijuana increases appetite less strongly than to produce all pluses—
say, to produce 9 pluses for every 1 minus—in the population, there would be
9000 pluses and 1000 minuses and Preal � 0.90.* If the increasing effect of mar-
ijuana were of even smaller size—say, 7 pluses for every 3 minuses—the popu-
lation would have 7000 pluses and 3000 minuses. In this case, Preal � 0.70. Fi-
nally, if marijuana had no effect on appetite, then there would be 5000 pluses 
and 5000 minuses, and Pnull � 0.50. Of course, this is the chance alone predic-
tion.

On the other hand, if marijuana decreases appetite, we would expect fewer
pluses than minuses. Here, Preal � 0.50. To illustrate, if the decreasing effect on
appetite is large enough, there would be all minuses (10,000 minuses and 
0 pluses) in the population and Preal � 0.00. A decreasing effect of smaller size,
such that there were 1000 pluses and 9000 minuses, would yield Preal � 0.10. A
still weaker decreasing effect on appetite—say, 3 pluses for every 7 minuses—
would yield Preal � 0.30. As the decreasing effect on appetite weakens still fur-
ther, we finally return to the null hypothesis specification of Pnull � 0.50 (mari-
juana has no effect).

From the previous discussion, we can see that Preal is a measure of the
size and direction of the independent variable’s real effect. The further Preal is
from 0.50, the greater is the size of the real effect. It turns out that the power 
of the experiment varies with the size of the real effect. Thus, when doing a 
power analysis with the sign test, we must consider all Preal values of possible 
interest.

*The reader should note that, even though there are minuses in the population, we assume that 
the effect of marijuana is the same on all subjects (namely, it increases appetite in all subjects). The
minuses are assumed to have occurred due to randomly occurring variables that decrease appetite.

MENTORING TIP
The further Preal is from 0.50,
the greater is the size of the
effect.



POWER ANALYSIS OF THE AIDS EXPERIMENT

Suppose you are planning an experiment to test the hypothesis that “marijuana
affects appetite in AIDS patients.” You plan to randomly select five AIDS pa-
tients from your hospital AIDS population and conduct the experiment as previ-
ously described. Since you want to limit the probability of falsely rejecting the
null hypothesis to a low level, you set a � 0.052tail. Given this stringent alpha
level, if you reject H0, you can be reasonably confident your results are due to
marijuana and not to chance. But what is the probability that you will reject the
null hypothesis as a result of doing this experiment? To answer this question, we
must first determine what sample results, if any, will allow H0 to be rejected. The
results most favorable for rejecting the null hypothesis are all pluses or all mi-
nuses. Suppose you got the strongest possible result—all pluses in the sample.
Could you reject H0? Since H1 is nondirectional, a two-tailed evaluation is ap-
propriate. With N � 5 and Pnull � 0.50, from Table B in Appendix D,

p(5 pluses or 5 minuses) � p(5 pluses or 0 pluses)

Since 0.0624 is greater than alpha, if we obtained these results in the experiment,
we must conclude by retaining H0. Thus, even if the results were the most favor-
able possible for rejecting H0, we still can’t reject it!

Let’s look at the situation a little more closely. Suppose, in fact, that marijuana
has a very large effect on appetite and that it increases appetite so much that, if
the experiment were conducted on the entire population, there would be all
pluses. For example, if the population were 10,000 patients, there would be 10,000
pluses. The five scores in the sample would be a random sample from this popula-
tion of scores, and the sample would have all pluses. But we’ve just determined
that, even with five pluses in the sample, we would be unable to reject the null hy-
pothesis. Thus, no matter how large the marijuana effect really is, we would not be
able to reject H0.With N � 5 and a� 0.052 tail, there is no sample result that would
allow H0 to be rejected.This is the most insensitive experiment possible. Power has
been defined as the probability of rejecting the null hypothesis if the independent
variable has a real effect. In this experiment, the probability of rejecting the null
hypothesis is zero, no matter how large the independent variable effect really is.
Thus, the power of this experiment is zero for all Preal values. We can place very lit-
tle value on results from such an insensitive experiment.

Effect of N and Size of Real Effect

Next, suppose N is increased to 10. Are there now any sample results that will 
allow us to reject the null hypothesis? The solution is shown in Table 11.1. If 
the sample outcome is 0 pluses, from Table B, with N � 10 and using Pnull � 0.50,

 � 0.0624

 � 0.0312 � 0.0312
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Table B entry

No. of P P
N Events 0.50

5 0 0.0312

5 0.0312



p(0 or 10 pluses) � 0.0020. Note we included 10 pluses because the alternative
hypothesis is nondirectional, requiring a two-tailed evaluation. Since 0.0020 is
less than alpha, we would reject H0 if we got this sample outcome. Since the two-
tailed probability for 10 pluses is also 0.0020, we would also reject H0 with this
outcome. From Table B, we can see that, if the sample outcome were 1 plus or 9
pluses, we would also reject H0 ( p � 0.0216). However, if the sample outcome
were 2 pluses or 8 pluses, the two-tailed probability value (0.1094) would be
greater than alpha. Hence, we would retain H0 with 2 or 8 pluses. If we can’t re-
ject H0 with 2 or 8 pluses, we certainly can’t reject H0 if we get an outcome less
extreme, such as 3, 4, 5, 6, or 7 pluses. Thus, the only outcomes that will allow us
to reject H0 are 0, 1, 9, or 10 pluses. Note that, in making this determination, since
we were evaluating the null hypothesis, we used Pnull � 0.50 (which assumes no
effect) and began at the extremes, working in toward the center of the distribu-
tion until we reached the first outcome for which the two-tailed probability
exceeded alpha. The outcomes allowing rejection of H0 are the ones more
extreme than this first outcome for which we retain H0.

How can we use these outcomes to determine power? Power equals the
probability of rejecting H0 if the independent variable has a real effect.We’ve just
determined that the only way we shall reject H0 is if we obtain a sample outcome
of 0, 1, 9, or 10 pluses. Therefore, power equals the probability of getting 0, 1, 9,
or 10 pluses in our sample if the independent variable has a real effect. Thus,

Power � probability of rejecting H0 if the independent variable (IV) has a
real effect

� p(0, 1, 9, or 10 pluses) if IV has a real effect

But the probability of getting 0, 1, 9, or 10 pluses depends on the size of mari-
juana’s real effect on appetite. Therefore, power differs for different sizes of ef-
fect. To illustrate this point, we shall calculate power for several possible sizes of
real effect. Using Preal as our measure of the magnitude and direction of the mar-
ijuana effect, we will calculate power for Preal � 1.00, 0.90, 0.70, 0.30, 0.10, and
0.00.These values have been chosen to span the full range of possible real effects.
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t a b l e 11.1 Determining the sample outcomes that will allow rejection of
the null hypothesis with N � 10, Pnull � 0.50, and a � 0.052 tail

Sample
Outcome Probability Decision

0 pluses p(0 or 10 pluses) � 2(0.0010) Reject H0

� 0.0020

10 pluses p(0 or 10 pluses) � 2(0.0010) Reject H0

� 0.0020

1 plus p(0, 1, 9, or 10 pluses) � 2(0.0010 � 0.0098) Reject H0

� 0.0216

9 pluses p(0, 1, 9, or 10 pluses) � 2(0.0010 � 0.0098) Reject H0

� 0.0216

2 pluses p(0, 1, 2, 8, 9, or 10 pluses) � 2(0.0010 � 0.0098 � 0.0439) Retain H0

� 0.1094

8 pluses p(0, 1, 2, 8, 9, or 10 pluses) � 2(0.0010 � 0.0098 � 0.0439) Retain H0

� 0.1094



First, let’s assume marijuana has such a large increasing effect on appetite
that, if it were given to the entire population, it would produce all pluses. In this
case, Preal � 1.00. Determining power for Preal � 1.00 is as follows:

Power � probability of rejecting H0 if IV has a real effect
� p(0, 1, 9, or 10 pluses) as the sample outcome if Preal � 1.00

If Preal � 1.00, the only possible scores are pluses. Therefore, the sample of 10
scores must be all pluses. Thus, p(0 pluses) � p(1 plus) � p(9 pluses) � 0.0000,
and p(10 pluses) � 1.0000. Thus, by the addition rule, power � 1.0000. The prob-
ability of rejecting the null hypothesis when it is false such that Preal � 1.00 is
equal to 1.0000. It is certain that if the effect of marijuana is as large as described,
the experiment with 10 subjects will detect its effect. H0 will be rejected with
certainty.

Suppose, however, that the effect of marijuana on appetite is not quite as
large as has been described—that is, if it were given to the population, there
would still be many more pluses than minuses, but this time there would be 9
pluses on the average for every 1 minus. In this case, Preal � 0.90. The power for
this somewhat lower magnitude of real effect is found from Table B, using P �
0.90 (Q � 0.10). Thus,

Power � probability of rejecting H0 if IV has a real effect
� p(0, 1, 9, or 10 pluses) as the sample outcome if Preal � 0.90

 � 0.7361

 � 0.0000 � 0.0000 � 0.3874 � 0.3487

 � p102 � p112 � p192 � p1102  if Preal � 0.90

 � 1.0000

 � 0.0000 � 0.0000 � 0.0000 � 1.0000

 � p102 � p112 � p192 � p1102  if Preal � 1.00
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The power of this experiment to detect an effect represented by Preal � 0.90 is
0.7361. Thus, the power of the experiment has decreased. Note that in determin-
ing the power for Preal � 0.90, the sample outcomes for rejecting H0 haven’t
changed.As before, they are 0, 1, 9, or 10 pluses. Since these are the outcomes that
will allow rejection of H0, they are dependent on only N and a. Remember that
we find these outcomes for the given N and a level by assuming chance alone is
at work (Pnull � 0.50) and determining the sample outcomes for which the ob-
tained probability is equal to or less than a using Pnull.

Table B entry

No. of Q Q
N Events 0.10

10 0 0.3487

1 0.3874

9 0.0000

10 0.0000



What happens to the power of the experiment if the marijuana has only a
medium effect such that Preal � 0.70?

Power � probability of rejecting H0 if IV has a real effect
� p(0, 1, 9, or 10 pluses) as the sample outcome if Preal � 0.70

 � 0.1494

 � 0.0000 � 0.0001 � 0.1211 � 0.0282

 � p102 � p112 � p192 � p1102  if Preal � 0.70
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Power has decreased to 0.1494. Power calculations have also been made for ef-
fect sizes represented by Preal � 0.30, Preal � 0.10, and Preal � 0.00.The results are
summarized in Table 11.2.

At this point, several generalizations are possible. First, as N increases, power
goes up. Second, for a particular N, say N � 10, power varies directly with the size
of the real effect. As the size decreases, the power of the experiment decreases.
When the size of the effect approaches that predicted by the null hypothesis,
power gets very low. This relationship is shown in Figure 11.2.

t a b l e 11.2 Calculation of power and beta

Sample Size of
N H0 � Outcomes* Marijuana Effect Power �

5 Pnull � 0.50 0.052 tail None For all Preal 0.0000 1.0000
values

10 Pnull � 0.50 0.052 tail 0, 1, 9, or Preal � 1.00 1.0000 0.0000
10 pluses Preal � 0.90 0.7361 0.2639

Preal � 0.70 0.1494 0.8506
Pnull � 0.50 †

Preal � 0.30 0.1494 0.8506
Preal � 0.10 0.7361 0.2639
Preal � 0.00 1.0000 0.0000

20 Pnull � 0.50 0.052 tail 0–5 or Preal � 0.30 0.4163 0.5837
15–20
pluses

20 Pnull � 0.50 0.012 tail 0–3 or Preal � 0.30 0.1070 0.8930
17–20
pluses

*Sample outcomes that would result in rejecting H0.
†See Note 11.1.

Table B entry

No. of Q Q
N Events 0.30

10 0 0.0282

1 0.1211

9 0.0001

10 0.0000

MENTORING TIP
Power varies directly with N,
and directly with size of real
effect.



Power and Beta (B)

As the power of an experiment increases, the probability of making a Type II er-
ror decreases. This can be shown as follows.

When we draw a conclusion from an experiment, there are only two possi-
bilities: We either reject H0 or retain H0. These possibilities are also mutually ex-
clusive. Therefore, the sum of their probabilities must equal 1. Assuming H0 is
false,

p(rejecting H0 if it is false) � p(retaining H0 if it is false) � 1

but

Power � p(rejecting H0 if it is false)

Beta � p(retaining H0 if it is false)

Thus,

Power � Beta � 1

or

Beta � 1 � Power

Thus, as power increases, beta decreases. The appropriate beta values are shown
in the last column of Table 11.2.

You will note that Table 11.2 has some additional entries. When N � 20, the
power for this experiment to detect an effect of Preal � 0.30 is equal to 0.4163.
When N � 10, the power is only 0.1494. This is another demonstration that as N
increases, power increases.
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f i g u r e 11.2 Power of sign test with N � 10 and a � 0.052 tail.
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Power and Alpha (A)

The last row of Table 11.2 demonstrates the fact that, by making alpha more
stringent, power goes down and beta is increased. With N � 20, Preal � 0.30,
and a � 0.012 tail:

By making alpha more stringent, the possible sample outcomes for rejecting H0

are decreased. Thus, for a� 0.012tail, only 0–3 or 17–20 pluses will allow rejection
of H0, whereas for a � 0.052 tail, 0–5 or 15–20 pluses will result in rejection of H0.
This naturally reduces the probability of rejecting the null hypothesis. The de-
crease in power results in an increase in beta.

Let’s summarize a little.

1. The power of an experiment is the probability that the experiment will re-
sult in rejecting the null hypothesis if the independent variable has a real
effect.

2. Power � 1 – Beta. Therefore, the higher the power is, the lower beta is.
3. Power varies directly with N. Increasing N increases power.
4. Power varies directly with the size of the real effect of the independent

variable.
5. Power varies directly with alpha level. Power decreases with more strin-

gent alpha levels.

The reader should be aware that the experimenter never knows how large the ef-
fect of the independent variable actually is before doing the experiment. Other-
wise, why do the experiment? In practice, we estimate its size from pilot work or
other research and then design an experiment that has high power to detect that
size of effect. For example, if a medium effect (Preal � 0.70) is expected, by se-
lecting the appropriate N we can arrive at a decent sensitivity (e.g., power �
0.8000 or higher). How high should power be? What size of effect should be ex-
pected? These are questions that must be answered by the researcher based on
experience and available resources. It should be pointed out that by designing the
experiment to have a power � 0.8000 for Preal � 0.70, the power of the experi-
ment will be even higher if the effect of the independent variable is larger than
expected. Thus, the strategy is to design the experiment for the maximum power
that resources will allow for the minimum size of real effect expected.

� 0.8930

� 1 � 0.1070

b � 1 � Power

� 0.1070

Power � p 10–3 or 17–20 pluses2
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Table B entry

No. of P P
N Events 0.30

20 0 0.0008

1 0.0068

2 0.0278

3 0.0716

17 0.0000

18 0.0000

19 0.0000

20 0.0000

MENTORING TIP
Summary: Power varies 
directly with N, size of 
real effect, and alpha level.



ALPHA–BETA AND REALITY

When one does an experiment, there are only two possibilities: Either H0 is re-
ally true or it is false. By minimizing alpha and beta, we maximize the likelihood
that our conclusions will be correct. For example, if H0 is really true, the proba-
bility of correctly concluding from the experiment is

p(correctly concluding) � p(retaining H0) � 1 � a

If alpha is at a stringent level (say, 0.05), then p(correctly concluding) is

p(correctly concluding) � 1 � a � 1 � 0.05 � 0.95

On the other hand, if H0 is really false, the probability of correctly concluding is

p(correctly concluding) � p(rejecting H0) � power � 1 � b

If beta is low (say, equal to 0.10 for the minimum real effect of interest), then

p(correctly concluding) � 1 � b � 1 � 0.10 � 0.90

Thus, whichever is the true state of affairs (H0 is true or H0 is false), there is a high
probability of correctly concluding when a is set at a stringent level and b is low.
One way of achieving a low beta level when a is set at a stringent level is to have
a large N. Another way is to use the statistical inference test that is the most pow-
erful for the data. A third way is to control the external conditions of the exper-
iment such that the variability of the data is reduced. We shall discuss the latter
two methods when we cover Student’s t test in Chapters 13 and 14.

INTERPRETING NONSIGNIFICANT RESULTS

Although power aids in designing an experiment, it is much more often used
when interpreting the results of an experiment that has already been conducted
and that has yielded nonsignificant results. Failure to reject H0 may occur be-
cause (1) H0 is in fact true or (2) H0 is false, but the experiment was of low
power. It is due to the second possible reason that we can never accept H0 as be-
ing correct when an experiment fails to yield significance. Instead, we say the ex-
periment has failed to allow the null hypothesis to be rejected. It is possible that
H0 is indeed false, but the experiment was insensitive; that is, it didn’t give H0

much of a chance to be rejected. A case in point is the example we presented be-
fore with N � 5. In that experiment, whatever results we obtained, they would
not reach significance. We could not reject H0 no matter how large the real ef-
fect actually was. It would be a gross error to accept H0 as a result of doing that
experiment. The experiment did not give H0 any chance of being rejected. From
this viewpoint, we can see that every experiment exists to give H0 a chance to be
rejected. The higher the power, the more the experiment allows H0 to be rejected if
it is false.

Perhaps an analogy will help in understanding this point. We can liken the
power of an experiment to the use of a microscope. Physiological psychologists
have long been interested in what happens in the brain to allow the memory of
an event to be recorded. One hypothesis states that a group of neurons fires
together as a result of the stimulus presentation. With repeated firings (trials),
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MENTORING TIP
Caution: it is not valid to 
conclude by accepting H0

when the results fail to reach
significance.



there is growth across the synapses of the cells, so after a while, they become ac-
tivated together whenever the stimulus is presented. This “cell assembly” then
becomes the physiological engram of the stimuli (i.e., it is the memory trace).

To test this hypothesis, an experiment is done involving visual recognition.
After some animals have practiced a task, the appropriate brain cells from
each are prepared on slides so as to look for growth across the synapses. H0

predicts no growth; H1 predicts growth. First, the slides are examined with the
naked eye; no growth is seen. Can we therefore accept H0? No, because the
eye is not powerful enough to see growth even if it were there. The same holds
true for a low-power experiment. If the results are not significant, we cannot
conclude by accepting H0 because even if H0 is false, the low power makes it
unlikely that we would reject the null hypothesis. So next, a light microscope
is used, and still there is no growth seen between synapses. Even though this
is a more powerful experiment, can we conclude that H0 is true? No, because
a light microscope doesn’t have enough power to see the synapses clearly. So
finally, an electron microscope is used, producing a very powerful experiment
in which all but the most minute structures at the synapse can be seen clearly.
If H0 is false (that is, if there is growth across the synapse), this powerful ex-
periment has a higher probability of detecting it. Thus, the higher the power
of an experiment is, the more the experiment allows H0 to be rejected if it is
false.

In light of the foregoing discussion, whenever an experiment fails to yield
significant results, we must be careful in our interpretation. Certainly, we can’t
assert that the null hypothesis is correct. However, if the power of the experi-
ment is high, we can say a little more than just that the experiment has failed to
allow rejection of H0. For example, if power is 1.0000 for an effect represented
by Preal � 1.00 and we fail to reject H0, we can at least conclude that the inde-
pendent variable does not have that large an effect. If the power is, say, 0.8000
for a medium effect (Preal � 0.70), we can be reasonably confident the indepen-
dent variable is not that effective. On the other hand, if power is low, nonsignif-
icant results tell us little about the true state of reality. Thus, a power analysis
tells us how much confidence to place in experiments that fail to reject the null
hypothesis. When we fail to reject the null hypothesis, the higher the power to
detect a given real effect, the more confident we are that the effect of the inde-
pendent variable is not that large. However, note that as the real effect of the in-
dependent variable gets very small, the power of the experiment to detect it gets
very low (see Figure 11.2). Thus, it is impossible to ever prove that the null hy-
pothesis is true because the power to detect very small but real effects of the inde-
pendent variable is always low.

CALCULATION OF POWER

Calculation of power involves a two-step process for each level of Preal:

STEP 1: Assume the null hypothesis is true. Using Pnull � 0.50, determine the pos-
sible sample outcomes in the experiment that allow H0 to be rejected.

STEP 2: For the level of Preal under consideration (e.g., Preal � 0.30), determine
the probability of getting any of the sample outcomes arrived at in
Step 1. This probability is the power of the experiment to detect this
level of real effect.
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P r a c t i c e  P r o b l e m  11.1

You are interested in determining whether word recall is better when (1)
the words are just directly memorized or (2) a story that includes all the
words is made up by the subjects. In the second method, the story, from
which the words could be recaptured, would be recalled. You plan to run 14
subjects in a repeated measures experiment and analyze the data with the
sign test. Each subject will use both methods with equivalent sets of words.
The number of words remembered in each condition will be the dependent
variable; a � 0.052tail.

a. What is the power of the experiment to detect this large* effect of 
Preal � 0.80 or 0.20?

b. What is the probability of a Type II error?

The solution follows. From the solution, we see that the power to detect
a large difference (Preal � 0.80 or 0.20) in the effect on word recall between
memorizing the words and making up a story including the words is 0.4480.
This means that we have about a 45% chance of rejecting H0 if the effect is
as large as Preal � 0.80 or 0.20 and a 55% chance of making a Type II error.
If the effect is smaller than Preal � 0.80 or 0.20, then the probability of mak-
ing a Type II error is even higher. Of course, increasing N in the experiment
will increase the probability of rejecting H0 and decrease the probability of
making a Type II error.

S O L U T I O N

a. Calculation of power: Calculation of power involves a two-step process:

STEP 1: Assume the null hypothesis is true (Pnull � 0.50) and determine the
possible sample outcomes in the experiment that will allow H0 to be
rejected. a � 0.052 tail. With N � 14 and P � 0.50, from Table B,

p(0 pluses) � 0.0001 p(0 pluses) � 0.0001

p(1 plus) � 0.0009 p(1 plus) � 0.0009

p(2 pluses) � 0.0056 p(2 pluses) � 0.0056

p(12 pluses) � 0.0056 p(3 pluses) � 0.0222

p(13 pluses) � 0.0009 p(11 pluses) � 0.0222

p(14 pluses) � 0.0001 p(12 pluses) � 0.0056

p(0, 1, 2, 12, 13, or 14) � 0.0132 p(13 pluses) � 0.0009

p(14 pluses) � 0.0001

p(0, 1, 2, 3, 11, 12, 13, or 14) � 0.0576

*Following Cohen (1988), we have divided the size of effect range into the following three 
intervals: for a large effect Preal � 0.00–0.25 or 0.75–1.00; a medium effect, Preal � 0.26–0.35 
or 0.65–0.74; and a small effect, Preal � 0.36–0.49 or 0.51–0.64. For reference, see footnote in
Chapter 13, p. 329.

MENTORING TIP
Remember: for Step 1,
P � 0.50. For Step 2, P
is a value other than 0.50.
For this example, in Step 2,
P � 0.80 or P � 0.20

(continued)
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Beginning at the extremes and moving toward the middle of the
distribution, we find that we can reject H0 if we obtain 2 or 12 pluses
(p � 0.0132), but we fail to reject H0 if we obtain 3 or 11 pluses
(p � 0.0576) in the sample. Therefore, the outcomes that will allow
rejection of H0 are 0, 1, 2, 12, 13, or 14 pluses.

STEP 2: For Preal � 0.20, determine the probability of getting any of the
aforementioned sample outcomes. This probability is the power of
the experiment to detect this hypothesized real effect. With N � 14
and Preal � 0.20, from Table B,

Power � probability of rejecting H0 if IV has a real effect

� p(0, 1, 2, 12, 13, or 14 pluses) as sample outcomes if Preal � 0.20

Note that the same answer would result for Preal � 0.80.
b. Calculation of beta:

� 0.5520

� 1 � 0.4480

b � 1 � Power

� 0.4480

� 0.0440 � 0.1539 � 0.2501 � 0.0000 � 0.0000 � 0.0000

Table B entry

No. of P P
N Events 0.20

14 0 0.0440

1 0.1539

2 0.2501

12 0.0000

13 0.0000

14 0.0000 

P r a c t i c e  P r o b l e m  11.2

Assume you are planning an experiment to evaluate a drug.The alternative
hypothesis is directional, in the direction to produce mostly pluses. You will
use the sign test to analyze the data; a� 0.051tail.You want to be able to de-
tect a small effect of Preal � 0.60 in the same direction as the alternative hy-
pothesis. There will be 16 subjects in the experiment.

a. What is power of the experiment to detect this small effect?
b. What is the probability of making a Type II error?
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S O L U T I O N

a. Calculation of power: There are two steps involved in calculating power:

STEP 1: Assume the null hypothesis is true (Pnull � 0.50) and determine the
possible sample outcomes in the experiment that will allow H0 to be
rejected. a � 0.051tail. With N � 16 and P � 0.50, from Table B,

p(12 pluses) � 0.0278 p(11 pluses) � 0.0667

p(13 pluses) � 0.0085 p(12 pluses) � 0.0278

p(14 pluses) � 0.0018 p(13 pluses) � 0.0085

p(15 pluses) � 0.0002 p(14 pluses) � 0.0018

p(16 pluses) � 0.0000 p(15 pluses) � 0.0002

p(12, 13, 14, 15, or 16) � 0.0383 p(16 pluses) � 0.0000

p(11, 12, 13, 14, 15, or 16) � 0.1050

Since the alternative hypothesis is in the direction of mostly pluses,
outcomes for rejecting H0 are found under the tail with the higher
numbers of pluses. Beginning with 16 pluses and moving toward the
middle of the distribution, we find that we shall reject H0 if we ob-
tain 12 pluses ( p � 0.0383), but we shall fail to reject H0 if we obtain
11 pluses ( p � 0.1050) in the sample. Therefore, the outcomes that
will allow rejection of H0 are 12, 13, 14, 15, or 16 pluses.

STEP 2: For Preal � 0.60, determine the probability of getting any of the
aforementioned sample outcomes. This probability is the power of
the experiment to detect this hypothesized real effect. With N � 16
and Preal � 0.60 (Q � 0.40), from Table B,

b. Calculation of beta:

� 0.8335

� 1 � 0.1665

b � 1 � Power

� 0.1665

� 0.1014 � 0.0468 � 0.0150 � 0.0030 � 0.0003

� p 112, 13, 14, 15, or 16 pluses2 as sample outcomes if Preal � 0.60

Power � probability of rejecting H0 if IV has a real effect

Table B entry

No. of Q Q
N Events 0.40

16 0 0.0003

1 0.0030

2 0.0150

3 0.0468

4 0.1014

(continued)
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This experiment is very insensitive to a small drug effect of Preal � 0.60.The
probability of a Type II error is too high. The N should be made larger to
increase the power of the experiment to detect the small drug effect.

P r a c t i c e  P r o b l e m  11.3

In Practice Problem 10.2 (p. 252), you conducted an experiment testing the
directional alternative hypothesis that watching a particular TV program
caused increased violence in teenagers. The experiment included 15 sub-
jects, and The data were analyzed with the sign test, and we re-
tained H0.
a. In that experiment, what was the power to detect a medium effect of

Preal � 0.70 in the direction of the alternative hypothesis?
b. What was the probability of a Type II error?

S O L U T I O N

a. Calculation of power: There are two steps involved in calculating
power:

STEP 1: Assume the null hypothesis is true (Pnull � 0.50) and determine the
possible sample outcomes in the experiment that will allow H0 to be
rejected. a � 0.011tail. With N � 15 and P � 0.50, from Table B,

p(13 pluses) � 0.0032 p(12 pluses) � 0.0139

p(14 pluses) � 0.0005 p(13 pluses) � 0.0032

p(15 pluses) � 0.0000 p(14 pluses) � 0.0005

p(13, 14, or 15) � 0.0037 p(15 pluses) � 0.0000

p(12, 13, 14, or 15) � 0.0176

Since the alternative hypothesis is in the direction of mostly pluses,
outcomes for rejecting H0 are found under the tail with the higher
numbers of pluses. Beginning with 15 pluses and moving toward the
middle of the distribution, we find that we shall reject H0 if we obtain
13 pluses (p � 0.0037), but we shall retain H0 if we obtain 12 pluses
(p � 0.0176) in the sample. Therefore, the outcomes that will allow
rejection of H0 are 13, 14, or 15 pluses.

a � 0.011tail.
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STEP 2: For Preal � 0.70, determine the probability of getting any of the
aforementioned sample outcomes. This probability is the power of
the experiment to detect this hypothesized real effect. With N � 15
and Preal � 0.70, from Table B,

Power � probability of rejecting H0 if IV has a real effect

b. Calculation of beta:

Note that since the power to detect a medium effect of Preal � 0.70 is very
low, even though we retained H0 in the experiment, we can’t conclude that
the program does not affect violence. The experiment should be redone with
increased power to allow a better evaluation of the program’s effect on
violence.

� 0.8732

� 1 � 0.1268

b � 1 � Power

� 0.1268

� 0.0916 � 0.0305 � 0.0047

� p113, 14, or 15 pluses2 as sample outcomes if Preal � 0.70

Table B entry

No of Q Q
N Events 0.30

15 0 0.0047

1 0.0305

2 0.0916

WHAT IS THE TRUTH? Astrology and Science

A newspaper article
appeared in a re-
cent issue of the
Pittsburgh Post-
Gazette with the

headline, “When Clinical Studies
Mislead.” Excerpts from the article
are reproduced here:

Shock waves rolled through the
medical community two weeks ago
when researchers announced that

a frequently prescribed triad of
drugs previously shown to be help-
ful after a heart attack had proved
useless in new studies. . . .

“People are constantly dazzled
by numbers, but they don’t know
what lies behind the numbers,” said
Alvan R. Feinstein, a professor of
medicine and epidemiology at the
Yale University School of Medicine.
“Even scientists and physicians have
been brainwashed into thinking that

the magic phrase ‘statistical signifi-
cance’ is the answer to everything.”

The recent heart-drug studies
belie that myth. Clinical trials in-
volving thousands of patients over
a period of several years had
shown previously that nitrate-con-
taining drugs such as nitroglycer-
ine, the enzyme inhibitor captopril
and magnesium all helped save
lives when administered after a
heart attack.

(continued)
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WHAT IS THE TRUTH? (continued)

Comparing the life spans of
those who took the medicines with
those who didn’t, researchers
found the difference to be statisti-
cally significant, and the drugs be-
came part of the standard medical
practice. In the United States, more
than 80 percent of heart attack pa-
tients are given nitrate drugs.

But in a new study involving
more than 50,000 patients, re-
searchers found no benefit from 
nitrates or magnesium and capto-
pril’s usefulness was marginal. 
Oxford epidemiologist Richard
Peto, who oversaw the latest study,
said the positive results from the
previous trial must have been due
to “the play of chance.” . . . Faulty
number crunching, Peto said, can
be a matter of life and death.

He and his colleagues drove
that point home in 1988 when
they submitted a paper to the
British medical journal The Lancet.
Their landmark report showed that
heart attack victims had a better
chance of surviving if they were
given aspirin within a few hours af-
ter their attacks. As Peto tells the
story, the journal’s editors wanted
the researchers to break down the
data into various subsets, to see
whether certain kinds of patients
who differed from each other by
age or other characteristics were
more or less likely to benefit from
aspirin.

Peto objected, arguing that a
study’s validity could be compro-
mised by breaking it into too many
pieces. If you compare enough
subgroups, he said, you’re bound
to get some kind of correlation by
chance alone. When the editors in-
sisted, Peto capitulated, but among

other things he divided his patients
by zodiac birth signs and de-
manded that his findings be in-
cluded in the published paper. To-
day, like a warning sign to the
statistically uninitiated, the wacky
numbers are there for all to see:
Aspirin is useless for Gemini and Li-
bra heart attack victims but is a
lifesaver for people born under any
other sign. . . .

Studies like these exemplify two
of the more common statistical of-
fenses committed by scientists—
making too many comparisons and
paying too little attention to
whether something makes sense—
said James L. Mills, chief of the pe-
diatric epidemiology section of the
National Institute of Child Health
and Human Development.

“People search through their re-
sults for the most exciting and pos-
itive things,” he said. “But you also

have to look at the biological plau-
sibility. A lot of findings that don’t
withstand the test of time didn’t
really make any sense in the first
place. . . .”

In the past few years, many sci-
entists have embraced larger and
larger clinical trials to minimize the
chances of being deceived by a
fluke.

What do you think? If you were
a physician, would you continue to
prescribe nitrates to heart attack
patients? Is it really true that the
early clinical trials are an example
of Type I error, as suggested by Dr.
Peto? Will larger and larger clinical
trials minimize the chances of be-
ing deceived by a fluke? Finally, is
aspirin really useless for Gemini
and Libra heart attack victims but a
lifesaver for people born under any
other sign? ■
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In this chapter, I discussed the topic of power. Power
is defined as the probability of rejecting the null hy-
pothesis when the independent variable has a real ef-
fect. Since power varies with the size of the real ef-
fect, it should be calculated for the smallest real
effect of interest. The power will be even higher for
larger effects. Calculation of power involves two
steps. In the first step, the null hypothesis is assumed
true (Pnull � 0.50), and all the possible sample out-
comes in the experiment that would allow the null
hypothesis to be rejected are determined. Next, for
the real effect under consideration (e.g., the effect
represented by Preal � 0.30), the probability of get-
ting any of these sample outcomes is calculated. This
probability is the power of the experiment to detect
this effect (Preal � 0.30).

Other factors held constant, power increases
with increases in N and with increases in the size of
the real effect of the independent variable. Power de-
creases as the alpha level is made more stringent.
Power equals 1 � beta, so maximizing power mini-

mizes the probability of a Type II error.Thus, by min-
imizing alpha and beta, we maximize the probability
of correctly determining the true effect of the inde-
pendent variable, no matter what the state of reality.

A power analysis is useful when (1) initially de-
signing an experiment and (2) interpreting the re-
sults of experiments that retain the null hypothesis.
When an experiment is conducted and the results are
not significant, it may be because the null hypothesis
is true or because the experiment has low power. It is
for this reason that, when the results are not signifi-
cant, we do not conclude by accepting the null hy-
pothesis but rather by failing to reject it. The null hy-
pothesis actually may be false, but the experiment
did not have high enough power to detect it. Every
experiment exists to give the null hypothesis a
chance to be rejected. The more powerful the exper-
iment, the higher the probability the null hypothesis
will be rejected if it is false. Since power gets low as
the real effect of the independent variable decreases,
it is impossible to prove that H0 is true.

■ SUMMARY

Pnull (p. 269)
Preal (p. 269)

Power (p. 266) Real effect (p. 268)

■ IMPORTANT NEW TERMS

1. What is power? How is it defined?
2. In what two situations is a power analysis espe-

cially useful? Explain.
3. In hypothesis testing experiments, why is the con-

clusion “We retain H0” preferable to “We accept
H0 as true”?

4. In hypothesis-testing experiments, is it ever cor-
rect to conclude that the independent variable has
had no effect? Explain.

5. In computing power, why do we always compute
the sample outcomes that will allow rejection of
H0?

6. Using a and b, explain how we can maximize the
probability of correctly concluding from an ex-
periment, regardless of whether H0 is true or
false. As part of your explanation, choose values

for a and b and determine the probability of cor-
rectly concluding when H0 is true and when H0 is
false.

7. You are considering testing a new drug that is
supposed to facilitate learning in mentally re-
tarded children. Because there is relatively little
known about the drug, you plan to use a nondi-
rectional alternative hypothesis. Your resources
are limited, so you can test only 15 subjects. The
subjects will be run in a repeated measures de-
sign and the data analyzed with the sign test using
a � 0.052tail. If the drug has a medium effect on
learning such that Preal � 0.70, what is the proba-
bility you will detect it when doing your experi-
ment? What is the probability of a Type II error?
cognitive

■ QUESTIONS AND PROBLEMS



8. In Chapter 10, Problem 10 (p. 263), a new teach-
ing method was evaluated. Twenty pairs of sub-
jects were run in a repeated measures design.
The results were in favor of the new method but
did not reach significance (H0 was not rejected)
using the sign test with a � 0.051 tail. In trying to
interpret why the results were not significant,
you reason that there are two possibilities: either
(1) the two teaching methods are really equal in
effectiveness (H0 is true) or (2) the new method
is better, but the experiment was insensitive. To
evaluate the latter possibility, you conduct an
analysis to determine the power of the experi-
ment to detect a large difference favoring the
new method such that Preal � 0.80. What is the
power of the experiment to detect this effect?
What is beta? education

9. A researcher is going to conduct an experiment
to determine whether one night’s sleep loss af-
fects performance. Assume the requirements are
met for a directional alternative hypothesis.
Fourteen subjects will be run in a repeated mea-
sures design. The data will be analyzed with the
sign test, using a � 0.051 tail. Each subject will re-
ceive two conditions: condition 1, where the per-
formance of the subject is measured after a good
night’s sleep, and condition 2, where perfor-
mance is measured after one night’s sleep depri-
vation. The better the performance, the higher
the score. When the data are analyzed, the scores
of condition 2 will be subtracted from those of
condition 1. If one night’s loss of sleep has a large
detrimental effect on performance such that Preal

� 0.90, what is the power of the experiment to
detect this effect? What is the probability of a
Type II error? cognitive

10. In Chapter 10, Problem 12 (p. 263), what is the
power of the experiment to detect a medium ef-
fect such that Preal � 0.70? I/O

11. A psychiatrist is planning an experiment to deter-
mine whether stimulus isolation affects depres-
sion. Eighteen subjects will be run in a repeated
measures design. The data will be analyzed with
the sign test, using a � 0.052 tail. Each subject will
receive two conditions: condition 1, one week of
living in an environment with a normal amount of
external stimulation, and condition 2, one week in
an environment where external stimulation has
been radically curtailed. A questionnaire measur-
ing depression will be administered after each
condition. The higher the score on the question-
naire, the greater the subject’s depression. In ana-
lyzing the data, the scores of condition 1 will be
subtracted from the scores of condition 2. If one
week of stimulus isolation has an effect on depres-
sion such that Preal � 0.60, what is the power of the
experiment to detect this small effect? What is
beta? If the results of the experiment are not sig-
nificant, is it legitimate for the psychiatrist to con-
clude that stimulus isolation has no effect on de-
pression? Why? cognitive, clinical, health

12. In Chapter 10, Practice Problem 10.2, an experi-
ment was conducted to determine whether
watching a particular TV program resulted in in-
creased violence in teenagers. In that experi-
ment, 15 subjects were run with each subject
serving in an experimental and control condi-
tion. The sign test was used to analyze the data,
with � � 0.011 tail. Suppose the TV program does
increase violence and that the effect size is
medium (Preal � 0.70). Before running the ex-
periment, what is the probability that the experi-
ment will detect at least this level of real effect?
What is the probability of a Type II error? The
data collected in this experiment failed to allow
rejection of H0.Are we therefore justified in con-
cluding that the TV program has no effect on vi-
olence in teenagers? Explain. social
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11.1 This probability is not equal to power because
when P � 0.50, H0 is true. Power is calculated
when H0 is false. The probability of rejecting H0

when H0 is true is defined as the probability of
making a Type I error. For this example:

� 0.0216

� 0.0010 � 0.0098 � 0.0098 � 0.0010

� p102 � p112 � p192 � p1102

p 1reject H0 when P �  0.502 � p1Type I error2

Note that the probability of making a Type I error
(0.0216) is not equal to the a level (0.05) because the
number of pluses is a discrete variable rather than a
continuous variable. To have p(Type I error) equal
alpha, we would need an outcome between 8 and 9
pluses. Of course, this is impossible because the num-
ber of pluses can only be 8 or 9 (discrete values). The
probability of making a Type I error is equal to alpha
when the variable is continuous.

■ NOTES
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The problems for this chapter as well as guided, in-
teractive, problem-solving tutorials may be assigned
online at Enhanced WebAssign.

BOOK COMPANION SITE

To access the material on the book companion site,
go to www.cengage.com/psychology/pagano and click
“Companion Site” in the Student section. The book
companion site contains the following material:

• Chapter Outline
• Know and Be Able to Do
• Flash cards for review of terms
• Tutorial Quiz
• Statistical Workshops
• And more

www.cengage.com/psychology/pagano
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Sampling Distributions, Sampling
Distribution of the Mean, the

Normal Deviate (z) Test
LEARNING OBJECTIVES

After completing this chapter, you should be able to:
■ Specify the two basic steps involved in analyzing data.
■ Define null-hypothesis population, and explain how to generate sam-

pling distributions empirically.
■ Define the sampling distribution of a statistic, define the sampling

distribution of the mean and specify its characteristics, and state the
Central Limit Theorem.

■ Define critical region, critical value(s) of a statistic, critical value(s) of
, and critical value(s) of z.

■ Solve inference problems using the z test and specify the conditions
under which the z test is appropriate.

■ Define mnull and mreal.
■ Compute power using the z test.
■ Specify the relationship between power and the following: N, size of

real effect, and alpha level.
■ Understand the illustrative examples, do the practice problems, and

understand the solutions.

X

Chapter 12
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INTRODUCTION

In Chapters 10 and 11, we have seen how to use the scientific method to investi-
gate hypotheses. We have introduced the replicated measures and the indepen-
dent groups designs and discussed how to analyze the resulting data.At the heart
of the analysis is the ability to answer the question, What is the probability of
getting the obtained result or results even more extreme if chance alone is respon-
sible for the differences between the experimental and control scores?

Although it hasn’t been emphasized, the answer to this question involves two
steps: (1) calculating the appropriate statistic and (2) evaluating the statistic based
on its sampling distribution. In this chapter, we shall more formally discuss the
topic of a statistic and its sampling distribution. Then we shall begin our analysis
of single sample experiments, using the mean of the sample as a statistic. This in-
volves the sampling distribution of the mean and the normal deviate (z) test.

SAMPLING DISTRIBUTIONS

What is a sampling distribution?

d e f i n i t i o n ■ The sampling distribution of a statistic gives (1) all the values that the sta-
tistic can take and (2) the probability of getting each value under the as-
sumption that it resulted from chance alone.

In the replicated measures design, we used the sign test to analyze the data.
The statistic calculated was the number of pluses in the sample of N difference
scores. In one version of the “marijuana and appetite” experiment, we obtained
nine pluses and one minus. This result was evaluated by using the binomial dis-
tribution. The binomial distribution with lists all the possible values of
the statistic, the number of pluses, along with the probability of getting each value
under the assumption that chance alone produced it. The binomial distribution
with is the sampling distribution of the statistic used in the sign test. Note
that there is a different sampling distribution for each sample size (N).

Generalizing from this example, it can be seen that data analysis basically in-
volves two steps:

1. Calculating the appropriate statistic—for example, number of pluses and
minuses for the sign test

2. Evaluating the statistic based on its sampling distribution

If the probability of getting the obtained value of the statistic or any value
more extreme is equal to or less than the alpha level, we reject and accept 
If not, we retain If we reject and it is true, we’ve made a Type I error. If we
retain and it’s false, we’ve made a Type II error. This process applies to all ex-
periments involving hypothesis testing. What changes from experiment to experi-
ment is the statistic used and its accompanying sampling distribution. Once you un-
derstand this concept, you can appreciate that a large part of teaching inferential
statistics is devoted to presenting the most often used statistics, their sampling dis-
tributions, and the conditions under which each statistic is appropriately used.

H0

H0H0.
H1.H0

P � 0.50

P � 0.50

MENTORING TIP
This is the essential process
underlying all of hypothesis
testing, no matter what infer-
ence test is used. I suggest you
spend a little extra time here
to be sure you understand it.



Generating Sampling Distributions

We have defined a sampling distribution as a probability distribution of all the
possible values of a statistic under the assumption that chance alone is operating.
One way of deriving sampling distributions is from basic probability considera-
tions. We used this approach in generating the binomial distribution. Sampling
distributions can also be derived from an empirical sampling approach. In this
approach, we have an actual or theoretical set of population scores that exists if
the independent variable has no effect.We derive the sampling distribution of the
statistic by

1. Determining all the possible different samples of size N that can be
formed from the population of scores

2. Calculating the statistic for each of the samples
3. Calculating the probability of getting each value of the statistic if chance

alone is operating

To illustrate the sampling approach, let’s suppose we are conducting an ex-
periment with a sample size , using the sign test for analysis. We can imag-
ine a theoretical set of scores that would result if the experiment were done on
the entire population and the independent variable had no effect. This popula-
tion set of scores is called the null-hypothesis population.

N � 2
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d e f i n i t i o n ■ The null-hypothesis population is an actual or theoretical set of population
scores that would result if the experiment were done on the entire popula-
tion and the independent variable had no effect. It is called the null-
hypothesis population because it is used to test the validity of the null
hypothesis.

In the case of the sign test, if the independent variable had no effect, the null-
hypothesis population would have an equal number of pluses and minuses

For computational ease in generating the sampling distribution, let’s assume
there are only six scores in the population: three pluses and three minuses. To de-
rive the sampling distribution of “the number of pluses” with , we must
first determine all the different samples of size N that can be formed from the
population. Sampling is one at a time, with replacement. Figure 12.1 shows the
population and, schematically, the different samples of size 2 that can be drawn
from it. It turns out that there are 36 different samples of size 2 possible. These
are listed in the table of Figure 12.1, column 2. Next, we must calculate the value
of the statistic for each sample. This information is presented in the table of
Figure 12.1, columns 3 and 4. Note that of the 36 different samples possible, 9
have two pluses, 18 have one plus, and 9 have no pluses. The last step is to calcu-
late the probability of getting each value of the statistic. If chance alone is oper-
ating, each sample is equally likely. Thus,

p(2 pluses) � � 0.2500

p(1 plus) � � 0.5000

p(0 pluses) � � 0.25009
36

18
36

9
36

N �  2

1P � Q � 0.502.
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f i g u r e 12.1 All of the possible samples of size 2 that can be drawn from a 
population of three pluses and three minuses. Sampling is one at a time, with 
replacement.

Sample Composition

Statistic,
Sample Element Actual no. of
number numbers scores pluses

(1) (2) (3) (4)

1 1, 1 �� 2�

2 1, 2 �� 2�

3 1, 3 �� 2�

4 1, 4 �� 1�

5 1, 5 �� 1�

6 1, 6 �� 1�

7 2, 1 �� 2�

8 2, 2 �� 2�

9 2, 3 �� 2�

10 2, 4 �� 1�

11 2, 5 �� 1�

12 2, 6 �� 1�

13 3, 1 �� 2�

14 3, 2 �� 2�

15 3, 3 �� 2�

16 3, 4 �� 1�

17 3, 5 �� 1�

18 3, 6 �� 1�

Sample Composition

Statistic,
Sample Element Actual no. of
number numbers scores pluses

(1) (2) (3) (4)

19 4, 1 �� 1�

20 4, 2 �� 1�

21 4, 3 �� 1�

22 4, 4 �� 0�

23 4, 5 �� 0�

24 4, 6 �� 0�

25 5, 1 �� 1�

26 5, 2 �� 1�

27 5, 3 �� 1�

28 5, 4 �� 0�

29 5, 5 �� 0�

30 5, 6 �� 0�

31 6, 1 �� 1�

32 6, 2 �� 1�

33 6, 3 �� 1�

34 6, 4 �� 0�

35 6, 5 �� 0�

36 6, 6 �� 0�

Sample 1
1

1

�

�

1
�

Sample 2
1

�
2

�

Sample 3
1

2

�3

�

4

�
5

�

6

�

�
3

�

Sample 36
6

�
6

�

Population
of raw scores



We have now derived the sampling distribution for of the statistic “number
of pluses.” The distribution is plotted in Figure 12.2. In this example, we used a
population in which there were only six scores.The identical sampling distribution
would have resulted (even though there would be many more “different” sam-
ples) had we used a larger population as long as the number of pluses equaled the
number of minuses and the sample size equaled 2. Note that this is the same sam-
pling distribution we arrived at through basic probability considerations when we
were discussing the binomial distribution with (see Figure 12.3 for a com-
parison).This time, however, we generated it by sampling from the null-hypothesis
population.The sampling distribution of a statistic is often defined in terms of this
process. Viewed in this manner, we obtain the following definition.

N � 2

N � 2
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f i g u r e 12.2 Sampling distribution of “number 
of pluses” with N � 2 and P � 0.50.

Empirical Sampling Approach

Draw Draw Number
1 2 of ways

� � 9

� � 18� �

� � 9

p10 � 2 �
9
36

� 0.2500

p11 � 2 �
18
36

� 0.5000

p12 � 2 �
9
36

� 0.2500

36

A Priori Approach

Coin Coin Number
1 2 of ways

H H 1

2

T T 1

p10H2 �
1
4

� 0.2500

p11H2 �
2
4

� 0.5000

p12H2 �
1
4

� 0.2500

4

T
H

H
T

f i g u r e 12.3 Comparison of empirical sampling approach and a priori approach
for generating sampling distributions.
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THE NORMAL DEVIATE (z) TEST

Although much of the foregoing has been abstract and seemingly impractical, it
is necessary to understand the sampling distributions underlying many of the sta-
tistical tests that follow. One such test, the normal deviate (z) test, is a test that is
used when we know the parameters of the null-hypothesis population. The z test
uses the mean of the sample as a basic statistic. Let’s consider an experiment
where the z test is appropriate.

e x p e r i m e n t Evaluating a School Reading Program

Assume you are superintendent of public schools for the city in which you live.
Recently, local citizens have been concerned that the reading program in the public
schools may be an inferior one. Since this is a serious issue, you decide to conduct
an experiment to investigate the matter. You set for making your 
decision. You begin by comparing the reading level of current high school seniors
with established norms. The norms are based on scores from a reading proficiency
test administered nationally to a large number of high school seniors. The scores 
of this population are normally distributed with and For your ex-
periment, you administer the reading test to 100 randomly selected high school 
seniors in your city. The obtained mean of the sample ( What is your con-
clusion?

There is no doubt that the sample mean of 72 is lower than the national pop-
ulation mean of 75. Is it significantly lower, however? If chance alone is at work,
then we can consider the 100 sample scores to be a random sample from a pop-
ulation with The null hypothesis for this experiment asserts that such is
the case. What is the probability of getting a mean score as low as or even lower
than 72 if the 100 scores are a random sample from a normally distributed
population having a mean of 75 and standard deviation of 16? If the probability
is equal to or lower than alpha, we reject and accept If not, we retain 
It is clear that the statistic we are using is the mean of the sample. To determine
the appropriate probability, we must know the sampling distribution of the
mean.

In the following section, we shall discuss the sampling distribution of the
mean. For the time being, set aside the “Super” and his problem. We shall return
to him soon enough. For now, it is sufficient to realize that we are going to use the
mean of a sample to evaluate , and to do that, we must know the sampling dis-
tribution of the mean.

Sampling Distribution of the Mean

Applying the definition of the sampling distribution of a statistic to the mean, we
obtain the following:

H0

H0.H1.H0

m � 75.

Xobt2 � 72.

s � 16.m � 75

a � 0.051 tail
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d e f i n i t i o n ■ A sampling distribution gives all the values a statistic can take, along with
the probability of getting each value if sampling is random from the null-
hypothesis population.

MENTORING TIP
Remember: to evaluate a 
statistic, we must know its
sampling distribution.



The sampling distribution of the mean can be determined empirically and theo-
retically, the latter through use of the Central Limit Theorem. The theoretical de-
rivation is complex and beyond the level of this textbook. Therefore, for peda-
gogical reasons, we prefer to present the empirical approach.When we follow this
approach, we can determine the sampling distribution of the mean by actually
taking a specific population of raw scores having a mean m and standard devia-
tion and (1) drawing all possible different samples of a fixed size N, (2) calcu-
lating the mean of each sample, and (3) calculating the probability of getting each
mean value if chance alone were operating. This process is shown in Figure 12.4.
After performing these three steps, we would have derived the sampling distrib-

s
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d e f i n i t i o n ■ The sampling distribution of the mean gives all the values the mean can
take, along with the probability of getting each value if sampling is random
from the null-hypothesis population.

Sample 1
of size N,

X1

Sample 2
of size N,

X2

Sample 3
of size N,

X3

Last
sample

of size N,
Xlast

Raw-score population ( )µ, σ

Sampling distribution of the mean for samples of size N

�X–

–

– – – –

   —–
N

Xs

σ
µ

�X–σ

µ

Xs

f i g u r e 12.4 Generating the sampling distribution of the mean for 
samples of size N taken from a population of raw scores.



ution of the mean for samples of size N taken from a specific population with
mean m and standard deviation s. This sampling distribution of the mean would
give all the values that the mean could take for samples of size N, along with the
probability of getting each value if sampling is random from the specified popu-
lation. By repeating the three-step process for populations of different score val-
ues and by systematically varying N, we can determine that the sampling distrib-
ution of the mean has the following general characteristics. For samples of any
size N, the sampling distribution of the mean

1. Is a distribution of scores, each score of which is a sample mean of N
scores. This distribution has a mean and a standard deviation. The distri-
bution is shown in the bottom part of Figure 12.4. You should note that
this is a population set of scores even though the scores are based on sam-
ples, because the distribution contains the complete set of sample means.
We shall symbolize the mean of the distribution as and the standard
deviation as . Thus,

is also called the standard error of the mean because each sample mean
can be considered an estimate of the mean of the raw-score population.
Variability between sample means then occurs due to errors in estima-
tion—hence the phrase standard error of the mean for 

2. Has a mean equal to the mean of the raw-score population. In equation
form,

3. Has a standard deviation equal to the standard deviation of the raw-score
population divided by . In equation form,

4. Is normally shaped, depending on the shape of the raw-score population
and on the sample size, N.

The first characteristic is rather obvious. It merely states that the sampling
distribution of the mean is made up of sample mean scores. As such, it, too, must
have a mean and a standard deviation. The second characteristic says that the
mean of the sampling distribution of the mean is equal to the mean of the raw
scores ( ). We can gain some insight into this relationship by recognizing
that each sample mean is an estimate of the mean of the raw-score population.
Each will differ from the mean of the raw-score population due to chance. Some-
times the sample mean will be greater than the population mean, and sometimes
it will be smaller because of chance factors. As we take more sample means, the
average of these sample means will get closer to the mean of the raw-score pop-
ulation because the chance factors will cancel. Finally, when we have all of the
possible different sample means, their average will equal the mean of the raw-
score population ( ).

The third characteristic says that the standard deviation of the sampling 
distribution of the mean is equal to the standard deviation of the raw-score 

mX � m

mX � m

sX �
s

1N

1N

mX � m

sX .

sX

 � standard error of the mean

 sX � standard deviation of the sampling distribution of the mean
 mX

� mean of the sampling distribution of the mean

sX

�X
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MENTORING TIP
Caution: N � the size of each
sample, not the number of
samples.



population divided by ( � s/ ). This says that the standard deviation
of the sampling distribution of the mean varies directly with the standard devi-
ation of the raw-score population and inversely with . It is fairly obvious
why should vary directly with If the scores in the population are more
variable, s goes up and so does the variability between the means based on
these scores. Understanding why varies inversely with is a little more
difficult. Recognizing that each sample mean is an estimate of the mean of the
raw-score population is the key.As N (the number of scores in each sample) goes
up, each sample mean becomes a more accurate estimate of Since the sample
means are more accurate, they will vary less from sample to sample, causing the
variance ( ) of the sample means to decrease. Thus, varies inversely withs 2

Xs 2
X

m.

1NsX

s.sX

1N

1NsX1N
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N. Since , then varies inversely with . We would like to further
point out that, since the standard deviation of the sampling distribution of the
mean ( ) changes with sample size, there is a different sampling distribution of
the mean for each different sample size. This seems reasonable, because if the
sample size changes, then the scores in each sample change and, consequently, so
do the sample means. Thus, the sampling distribution of the mean for samples of
size 10 should be different from the sampling distribution of the mean for sam-
ples of size 20 and so forth.

Regarding the fourth point, there are two factors that determine the shape of
the sampling distribution of the mean: (1) the shape of the population raw scores
and (2) the sample size (N). Concerning the first factor, if the population of raw
scores is normally distributed, the sampling distribution of the mean will also be
normally distributed, regardless of sample size. However, if the population of raw
scores is not normally distributed, the shape of the sampling distribution depends
on the sample size.The Central Limit Theorem tells us that, regardless of the shape
of the population of raw scores, the sampling distribution of the mean approaches
a normal distribution as sample size N increases. If N is sufficiently large, the sam-
pling distribution of the mean is approximately normal. How large must N be for
the sampling distribution of the mean to be considered normal? This depends on
the shape of the raw-score population. The further the raw scores deviate from
normality, the larger the sample size must be for the sampling distribution of the
mean to be normally shaped. If , the shape of the population of raw
scores is no longer important.With this size N, regardless of the shape of the raw-
score population, the sampling distribution of the mean will deviate so little from
normality that, for statistical calculations, we can consider it normally distributed.
Since most populations encountered in the behavioral sciences do not differ
greatly from normality, if , it is usually assumed that the sampling distri-
bution of the mean will be normally shaped.*

Although it is beyond the scope of this text to prove these characteristics, we
can demonstrate them, as well as gain more understanding about the sampling
distribution of the mean, by considering a population and deriving the sampling
distribution of the mean for samples taken from it. To simplify computation, let’s
use a population with a small number of scores. For the purposes of this illustra-
tion, assume the population raw scores are 2, 3, 4, 5, and 6. The mean of the pop-
ulation equals 4.00, and the standard deviation equals 1.41.We want to de-
rive the sampling distribution of the mean for samples of size 2 taken from this
population. Again, assume sampling is one score at a time, with replacement. The

1s21m2

N � 30

N � 300

sX

1NsXsX � 2s 2
X

*There are some notable exceptions to this rule, such as reaction-time scores.



first step is to draw all possible different samples of size 2 from the population.
Figure 12.5 shows the population raw scores and, schematically, the different
samples of size 2 that can be drawn from it. There are 25 different samples of size
2 possible. These are listed in the table of Figure 12.5, column 2. Next, we must
calculate the mean of each sample. The results are shown in column 3 of this
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2 2

3
2

5

6

4

Population
of raw scores

X
N

�
�

2.0
2

–
2 3

X
N

�
�

2.5
2

–
2 4

X
N

�
�

3.0
2

–
6 6

X
N

�
�

6.0
2

�
�

µ
σ

4.00
1.41

–

Sample 1 Sample 2 Sample 3 Sample 25

Sample Number Sample Scores
(1) (2) (3)

1 2, 2 2.0

2 2, 3 2.5

3 2, 4 3.0

4 2, 5 3.5

5 2, 6 4.0

6 3, 2 2.5

7 3, 3 3.0

8 3, 4 3.5

9 3, 5 4.0

10 3, 6 4.5

11 4, 2 3.0

12 4, 3 3.5

13 4, 4 4.0

X Sample Number Sample Scores
(1) (2) (3)

14 4, 5 4.5

15 4, 6 5.0

16 5, 2 3.5

17 5, 3 4.0

18 5, 4 4.5

19 5, 5 5.0

20 5, 6 5.5

21 6, 2 4.0

22 6, 3 4.5

23 6, 4 5.0

24 6, 5 5.5

25 6, 6 6.0

X

f i g u r e 12.5 All of the possible samples of size 2 that can be drawn from a pop-
ulation comprising the raw scores 2, 3, 4, 5, and 6. Sampling is one at a time, with 
replacement.



table. It is now a simple matter to calculate the probability of getting each mean
value. Thus,

We have now derived the sampling distribution of the mean for samples of
taken from a population comprising the raw scores 2, 3, 4, 5, and 6. We

have determined all the mean values possible from sampling two scores from the
given population, along with the probability of obtaining each mean value if sam-
pling is random from the population. The complete sampling distribution is
shown in Table 12.1.

Suppose, for some reason, we wanted to know the probability of obtaining an 
due to randomly sampling two scores, one at a time, with replacement,

from the raw-score population. We can determine the answer by consulting the
sampling distribution of the mean for Why? Because this distribution con-
tains all of the possible sample mean values and their probability under the as-
sumption of random sampling. Thus,

Now, let’s consider the characteristics of this distribution: first, its shape. The
original population of raw scores and the sampling distribution have been plot-
ted in Figure 12.6(a) and (b). In part (c), we have plotted the sampling distribu-
tion of the mean with Note that the shape of the two sampling distribu-
tions differs greatly from the population of raw scores. Even with an N as small
as 3 and a very nonnormal population of raw scores, the sampling distribution of
the mean has a shape that approaches normality. This is an illustration of what the
Central Limit Theorem is telling us—namely, that as N increases, the shape of the
sampling distribution of the mean approaches that of a normal distribution. Of
course, if the shape of the raw-score population were normal, the shape of the
sampling distribution of the mean would be too.

Next, let’s demonstrate that 

Thus,

mX � m

� 100
25 � 4.00� 20

5 � 4.00

mX �
©X

Number of mean scores
m �

©X
Number of raw scores

mX � m:

N � 3.

p1X � 5.52 � 0.08 � 0.04 � 0.12

N � 2.

X � 5.5

N � 2

p1X � 6.02 � 1
25 � 0.04

p1X � 5.52 � 2
25 � 0.08

p1X � 5.02 � 3
25 � 0.12

p1X � 4.52 � 4
25 � 0.16

p1X � 4.02 � 5
25 � 0.20

p1X � 3.52 � 4
25 � 0.16

p1X � 3.02 � 3
25 � 0.12

p1X � 2.52 � 2
25 � 0.08

p1X � 2.02 �
Number of possible Xs of 2.0

Total number of Xs
�

1
25

� 0.04
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t a b l e 12.1 Sampling
distribution of the
mean with N � 2 and
population scores of 2,
3, 4, 5, and 6

p( )

2.0 0.04

2.5 0.08

3.0 0.12

3.5 0.16

4.0 0.20

4.5 0.16

5.0 0.12

5.5 0.08

6.0 0.04

XX



The mean of the raw scores is found by dividing the sum of the raw scores by the
number of raw scores: The mean of the sampling distribution of the
mean is found by dividing the sum of the sample mean scores by the number of
mean scores: Thus,

Finally, we need to show that can be calculated in two ways:
(1) from the equation and (2) directly from the sample mean scoressX � s�1N

sXsX � s�1N.
mX � m.mX � 4.00.

m � 4.00.
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(a) Population of raw scores

(b) Sampling distribution of X with N � 2

(c) Sampling distribution of X with N � 3
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f i g u r e 12.6 Population scores and the sampling distribution of the mean
for samples of size N � 2 and N � 3.



themselves. Our demonstration will involve calculating in both ways, show-
ing that they lead to the same value. The calculations are shown in Table 12.2.
Since both methods yield the same value , we have demonstrated
that

Note that N in the previous equation is the number of scores in each sample.
Thus, we have demonstrated that

1. mX � m

sX
�
s

1N

1sX � 1.002

sX
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2.
3. The sampling distribution of the mean takes on a shape similar to normal

even if the raw scores are nonnormal.

The Reading Proficiency Experiment Revisited

We are now in a position to return to the “Super” and evaluate the data from the
experiment evaluating reading proficiency. Let’s restate the experiment.

You are superintendent of public schools and have conducted an experiment to
investigate whether the reading proficiency of high school seniors living in your
city is deficient. A random sample of 100 high school seniors from this popula-
tion had a mean reading score of 72 National norms of reading pro-
ficiency for high school seniors show a normal distribution of scores with a mean
of and a standard deviation of Is it reasonable to con-
sider the 100 scores a random sample from a normally distributed population of
reading scores where and Use 

If we take all possible samples of size 100 from the population of normally
distributed reading scores, we can determine the sampling distribution of the
mean samples with From what has been said before, this distribution
(1) is normally shaped, (2) has a mean , and (3) has a standard 
deviation The two distributions are shown in
Figure 12.7. Note that the sampling distribution of the mean contains all the pos-
sible mean scores from samples of size 100 drawn from the null-hypothesis pop-
ulation For the sake of clarity in the following exposition, we
have redrawn the sampling distribution of the mean alone in Figure 12.8.

1m � 75, s � 162.

sX � s�1N � 16�1100 � 1.6.
mX � m � 75

N � 100.

a � 0.051 tail.s � 16?m � 75

16 1s � 162.75 1m � 752

1Xobt � 722.

sX � s�1N

t a b l e 12.2 Demonstration that 

Using Using the Sample Mean Scores

 � B
25
25

� 1.00 � 1.00

 � B
12.0 � 4.022 � 12.5 � 4.022 � . . . � 16.0 � 4.022

25
 �

1.41
12

sX � B © 1X � mX 2
2

Number of mean scores
sX �

s

1N

SX � S/1N

sX �
s

1N
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Sample 1
N = 100,

X1

Sample 2
N = 100,

X2

Sample 3
N = 100,

X3

Last sample
N = 100,

Xlast

Population of raw scores ( = 75, = 16)� �

Sampling distribution of the mean for samples with N = 100

=X–

–

– – – –

   —–
N

Xs

σ
µ

=
 16  —–
100

=X–σ

µ

Xs

= 1.6

= 75

X:
z:

p(Xobt � 72) = 0.0301

0.0301

72 75
0–1.88

zobt =

=

= –1.88

72 – 75———
1.6

–

–

–

–

µ
σ

Xobt –   ———–
X

Xs–

f i g u r e 12.7 Sampling distribution of the mean for samples of
size N � 100 drawn from a population of raw scores with m � 75
and s � 16.

f i g u r e 12.8 Evaluation of reading proficiency data
comparing the obtained probability with the alpha level.



The shaded area of Figure 12.8 contains all the mean values of samples of
that are as low as or lower than The proportion of shaded

area to total area will tell us the probability of obtaining a sample mean equal to
or less than 72 if chance alone is at work (another way of saying this is, “if the
sample is a random sample from the null-hypothesis population”). Since the sam-
pling distribution of the mean is normally shaped, we can find the proportion of
the shaded area by (1) calculating the z transform for and (2) de-
termining the appropriate area from Table A, Appendix D, using 

The equation for zobt is very similar to the z equation in Chapter 5, but in-
stead of dealing with raw scores, we are dealing with mean values. The two equa-
tions are shown in Table 12.3.

zobt.
Xobt � 721zobt2

Xobt � 72.N � 100
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Since , the equation for sample means simplifies to

z transformation for

Calculating for the present experiment, we obtain

From Table A, column C, in Appendix D,

Since , we reject and conclude that it is unreasonable to assume
that the 100 scores are a random sample from a population where The
reading proficiency of high school seniors in your city appears deficient.

Alternative Solution Using zobt and zcrit

The results of this experiment can be analyzed in another way. This method is actu-
ally the preferred method because it is simpler and it sets the pattern for the infer-
ence tests to follow. However, it builds upon the previous method and therefore
couldn’t be presented until now.To use this method, we must first define some terms.

m � 75.
H00.0301 6 0.05

p1Xobt � 722 � 0.0301

 � �1.88  for  Xobt � 72

 �
72 � 75

1.6

zobt �
Xobt � m

sX

zobt

Xobtzobt �
Xobt � m

sX

zobtmX � m

t a b l e 12.3 z equations

Raw Scores Mean Scores

zobt �
Xobt � mX

sX

z �
X � m

s

MENTORING TIP
This is the preferred method.

d e f i n i t i o n s ■ The critical region for rejection of the null hypothesis is the area under the
curve that contains all the values of the statistic that allow rejection of the
null hypothesis.

■ The critical value of a statistic is the value of the statistic that bounds the
critical region.



To analyze the data using the alternative method, all we need do is calculate ,
determine the critical value of z and assess whether falls within the crit-
ical region for rejection of We already know how to calculate .

The critical region for rejection of is determined by the alpha level. For
example, if in the direction predicting a negative value, as in the
previous example, then the critical region for rejection of is the area under the
left tail of the curve that equals 0.0500. We find for this area by using Table A
in a reverse manner. Referring to Table A and skimming column C until we lo-
cate 0.0500, we can determine the z value that corresponds to 0.0500. It turns out
that 0.0500 falls midway between the z scores of 1.64 and 1.65. Therefore, the z
value corresponding to 0.0500 is 1.645. Since we are dealing with the left tail of
the distribution,

This score defines the critical region for rejection of and, hence, is called .
If falls in the critical region for rejection, we will reject These relation-
ships are shown in Figure 12.9(a). If in the direction predicting a pos-
itive value, then

This is shown in Figure 12.9(b). If , then the combined area under the
two tails of the curve must equal 0.0500.Thus, the area under each tail must equal
0.0250, as in Figure 12.9(c). For this area,

To reject , the obtained sample mean must have a z-transformed value
that falls within the critical region for rejection.

Let’s now use these concepts to analyze the reading data. First, we calculate
:

The next step is to determine zcrit. Since �� 0.051 tail, the area under the left
tail equals 0.0500. For this area, from Table A we obtain

Finally, we must determine whether falls within the critical region. If it does,
we reject the null hypothesis. If it doesn’t, we retain the null hypothesis. The de-
cision rule states the following:

If reject the null hypothesis. If not, retain the null hypothesis.

Note that this equation is just a shorthand way of specifying that, if is positive,
it must be equal to or greater than to fall within the critical region. If is
negative, it must be equal to or less than to fall within the critical region.

In the present example, since we reject the null hypothesis.The
complete solution using this method is shown in Figure 12.10. We would like 
to point out that, in using this method, we are following the two-step procedure

�zobt� 7 1.645,
�zcrit

zobt�zcrit

zobt

0zobt 0  � 0zcrit 0 ,

zobt

zcrit � �1.645

 � �1.88

 �
72 � 75

1.6
�

�3

1.6

zobt �
Xobt � m

sX

zobt

1zobt2
1Xobt2H0

zcrit � �1.96

a � 0.052 tail

zcrit � 1.645

zobt

a � 0.051 tail

H0.zobt

zcritH0

zcrit � �1.645

zcrit

H0

zobta � 0.051 tail

H0

zobtH0.
zobt1zcrit2,

zobt
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outlined previously in this chapter for analyzing data: (1) calculating the appro-
priate statistic and (2) evaluating the statistic based on its sampling distribution.
Actually, the experimenter calculates two statistics: and . The final one
evaluated is . If the sampling distribution of is normally shaped, then the z
distribution will also be normal and the appropriate probabilities will be given by

Xzobt

zobtXobt
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–3

= 0.052 tail zcrit = +1.96

z: –1–2

Critical region (0.025)
Reject H0

Critical region (0.025)
Reject H0

0 1 2 3

zcrit = –1.96(c) α

–3

= 0.051 tail, positive zobt

z: –1–2

Retain H0

Critical region (0.05)
Reject H0

0 1 2 3

(b) α

–3

= 0.051 tail, negative zobt

z: –1–2 0 1 2 3

zcrit = –1.645

zcrit = 1.645

(a) α

Retain H0

Retain H0

Critical region (0.05)
Reject H0

f i g u r e 12.9 Critical region of rejection for H0 for (a) a � 0.051tail, 
zobt negative; (b) a � 0.051tail, zobt positive; and (c) a � 0.052 tail.
Adapted from Fundamental Statistics for Behavioral Sciences by Robert B. McCall, © 1998 by Brooks/Cole.

MENTORING TIP
With a 1-tailed test, the entire
5% is under one tail.

MENTORING TIP
With a 2-tailed test, half of the
5% (2.5%) is under each tail.



Table A. Of course, the z distribution has a mean of 0 and a standard deviation
of 1, as discussed in Chapter 5.

Let’s try another problem using this approach.
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STEP 1: Calculate the appropriate statistic:

STEP 2: Evaluate the statistic based on its sampling distribution. The decision rule is
as follows: If , reject Since , from Table A,

Since , it falls within the critical region for rejection of 
Therefore, we reject H0.

H0.0zobt 0 7 1.645

zcrit � �1.645

a� 0.051 tailH0.0zobt 0  � 0zcrit 0

zobt �
Xobt � m

sX

�
72 � 75

1.6
� �1.88

f i g u r e 12.10 Solution to reading proficiency experiment using zobt and the
critical region.

z: –1.645–1.88
72

0
75X:

zcrit

zobt or Xobt

=X–

–

–

   —–
N

σ
µ

=
 16  —–
100

=X–σ

µ

= 1.6

= 75

P r a c t i c e  P r o b l e m  1 2 . 1

A university president believes that, over the past few years, the average
age of students attending his university has changed. To test this hypothe-
sis, an experiment is conducted in which the age of 150 students who have
been randomly sampled from the student body is measured. The mean age
is 23.5 years. A complete census taken at the university a few years before
the experiment showed a mean age of 22.4 years, with a standard deviation
of 7.6.

a. What is the nondirectional alternative hypothesis?
b. What is the null hypothesis?
c. Using what is the conclusion?a � 0.052 tail, (continued)
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S O L U T I O N

a. Nondirectional alternative hypothesis: Over the past few years, the av-
erage age of students at the university has changed. Therefore, the sam-
ple with is a random sample from a population where

b. Null hypothesis: The null hypothesis asserts that it is reasonable to
consider the sample with a random sample from a popula-
tion with 

c. Conclusion, using :

STEP 1: Calculate the appropriate statistic. The data are given in the
problem.

STEP 2: Evaluate the statistic based on its sampling distribution. The
decision rule is as follows: If , reject If not, retain

Since from Table A,

Since , it does not fall within the critical region for rejection of
Therefore, we retain We cannot conclude that the average age of

students attending the university has changed.
H0.H0.

�zobt� 6   1.96

zcrit ��1.96

a � 0.052 tail,H0.
H0.�zobt� � �zcrit�

 �
1.1

0.6205
� 1.77

 �
Xobt � m

s�1N
�

23.5 � 22.4
7.6�1150

 zobt �
Xobt � m

sX

a � 0.052 tail

m � 22.4.
Xobt � 23.5

m 	 22.4.
Xobt � 23.5

P r a c t i c e  P r o b l e m  1 2 . 2

A gasoline manufacturer believes a new additive will result in more miles
per gallon. A large number of mileage measurements on the gasoline
without the additive have been made by the company under rigorously
controlled conditions. The results show a mean of 24.7 miles per gallon
and a standard deviation of 4.8. Tests are conducted on a sample of 75 cars
using the gasoline plus the additive. The sample mean equals 26.5 miles
per gallon.

a. Let’s assume there is adequate basis for a one-tailed test. What is the di-
rectional alternative hypothesis?

b. What is the null hypothesis?
c. What is the conclusion? Use a � 0.051 tail.



Conditions Under Which the z Test Is Appropriate

The z test is appropriate when the experiment involves a single sample mean
and the parameters of the null-hypothesis population are known (i.e.,

when and are known). In addition, to use this test, the sampling distribution
of the mean should be normally distributed.This, of course, requires that 
or that the null-hypothesis population itself be normally distributed.* This nor-
mality requirement is spoken of as “the mathematical assumption underlying
the z test.”

Power and the z Test

In Chapter 11, we discussed power in conjunction with the sign test. Let’s review
some of the main points made in that chapter.

1. Conceptually, power is the sensitivity of the experiment to detect a real
effect of the independent variable, if there is one.

N � 30
sm

1Xobt2
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S O L U T I O N

a. Directional alternative hypothesis: The new additive increases the
number of miles per gallon. Therefore, the sample with is a
random sample from a population where 

b. Null hypothesis : The sample with is a random sample
from a population with  

c. Conclusion, using :

STEP 1: Calculate the appropriate statistic. The data are given in the
problem.

STEP 2: Evaluate the statistic based on its sampling distribution. The
decision rule is as follows: If , reject If not, retain

Since from Table A,

Since , it falls within the critical region for rejection of 
Therefore, we reject the null hypothesis and conclude that the gasoline ad-
ditive does increase miles per gallon.

H0.�zobt� 7 1.645

zcrit � 1.645

a � 0.051 tail,H0.
H0.�zobt� � �zcrit�

 � 3.25

 �
26.5 � 24.7

4.8�175
�

1.8
0.5543

zobt �
Xobt � m

s�1N

a � 0.051 tail

m � 24.7.
Xobt � 26.5H0

m 7 24.7.
Xobt � 26.5

MENTORING TIP
This is a difficult section.
Please be prepared to spend
more time on it.

*Many authors would limit the use of the z test to data that are of interval or ratio scaling. Please
see the footnote in Chapter 2, p. 34, for references discussing this point.



2. Power is defined mathematically as the probability that the experiment
will result in rejecting the null hypothesis if the independent variable has
a real effect.

3. Power � Beta � 1. Thus, power varies inversely with beta.
4. Power varies directly with N. Increasing N increases power.
5. Power varies directly with the size of the real effect of the independent

variable. The power of an experiment is greater for large effects than for
small effects.

6. Power varies directly with alpha level. If alpha is made more stringent,
power decreases.

These points about power are true regardless of the inference test. In this sec-
tion, we will again illustrate these conclusions, only this time in conjunction with
the normal deviate test. We will begin with a discussion of power and sample
size.

e x a m p l e Power and Sample Size (N)

Let’s return to the illustrative experiment at the beginning of this chapter.We’ll assume
you are again wearing the hat of superintendent of public schools. This time, however,
you are just designing the experiment. It has not yet been conducted. You want to de-
termine whether the reading program for high school seniors in your city is deficient.
As described previously, the national norms of reading proficiency of high school se-
niors is a normal distribution of population scores with and You plan
to test a random sample of high school seniors from your city, and you are trying to de-
termine how large the sample size should be. You will use in evaluating
the data when collected. You want to be able to detect proficiency deficiencies in your
program of 3 or more mean points from the national norms. That is, if the mean read-
ing proficiency of the population of high school seniors in your city is lower than the
national norms by 3 or more points, you want your experiment to have a high proba-
bility to detect it.

a. If you decide to use a sample size of 25 , what is the power of your experi-
ment to detect a population deficiency in reading proficiency of 3 mean points from
the national norms?

b. If you increase the sample size to , what is the power now to detect a pop-
ulation deficiency in reading proficiency of 3 mean points?

c. What size N should you use for the power to be approximately 0.9000 to detect a
population deficiency in reading proficiency of 3 mean points?

S O L U T I O N

a. Power with 
As discussed in Chapter 11, power is the probability of rejecting if the inde-

pendent variable has a real effect. In computing the power to detect a hypothesized
real effect, we must first determine the sample outcomes that will allow rejection of

Then, we must determine the probability of getting any of these sample out-
comes if the independent variable has the hypothesized real effect. The resulting
probability is the power to detect the hypothesized real effect. Thus, there are two
steps in computing power:

STEP 1: Determine the possible sample mean outcomes in the experiment that
would allow to be rejected. With the z test, this means determining the
critical region for rejection of , using X as the statistic.H0

H0

H0.

H0

N � 25.

N � 100

1N � 252

a � 0.051 tail

s � 16.m � 75
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STEP 2: Assuming the hypothesized real effect of the independent variable is the
true state of affairs, determine the probability of getting a sample mean in
the critical region for rejection of 

Let’s now compute the power to detect a population deficiency in reading profi-
ciency of 3 mean points from the national norms, using 

STEP 1: Determine the possible sample mean outcomes in the experiment that
would allow to be rejected. With the z test, this means determining the
critical region for rejection of using X as the statistic.

When evaluating with the z test, we assume the sample is a random sample from
the null-hypothesis population. We will symbolize the mean of the null-hypothesis
population as mnull. In the present example, the null-hypothesis population is the set
of scores established by national testing, that is, a normal population of scores with

With a � 0.051 tail, To determine the critical value of X,
we can use the z equation solved for :

Substituting the data with ,

Thus, with N � 25, we will reject if, when we conduct the experiment, the mean
of the sample See Figure 12.11 for a pictorial representation of these
relationships.

STEP 2: Assuming the hypothesized real effect of the independent variable is the
true state of affairs, determine the probability of getting a sample mean in
the critical region for rejection of H0.

1Xobt2 � 69.74.
H0

 � 69.74

 � 75 � 5.264

sX �
s

1N
�

16
125

� 3.2Xcrit � 75 � 3.21�1.6452

N � 25

Xcrit � mnull � sX 1zcrit2

zcrit  �
Xcrit � mnull

sX

Xcrit

 zcrit � �1.645.mnull � 75.

H0

H0,
H0

N � 25.

H0.
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X:

z:

Real effect No effect

72

real null

69.74

Power = 0.2389

Critical region = 0.05

–0.71

75

µµ

Xcrit and
–

–

zobt

Xobt
–

f i g u r e 12.11 Power for N � 25.



If the independent variable has the hypothesized real effect, then the sample
scores in your experiment are not a random sample from the null-hypothesis popu-
lation. Instead, they are a random sample from a population having a mean as spec-
ified by the hypothesized real effect. We shall symbolize this mean as Thus, if
the reading proficiency of the population of seniors in your city is 3 mean points
lower than the national norms, then the sample in your experiment is a random sam-
ple from a population where The probability of your sample mean falling
in the critical region if the sample is actually a random sample from a population
where is found by obtaining the z transform for and looking
up its corresponding area in Table A. Thus,

From Table A,

Thus,

Thus, the power to detect a deficiency of 3 mean points with is 0.2389 and
beta � 0.7611.

Since the probability of a Type II error is too high, you decide not to go ahead
and run the experiment with Let’s now see what happens to power and beta
if N is increased to 100.

b. If , what is the power to detect a population difference in reading profi-
ciency of 3 mean points?

STEP 1: Determine the possible sample mean outcomes in the experiment that
would allow to be rejected. With the z test, this means determining the
critical region for rejection of , using X as the statistic:

STEP 2: Assuming the hypothesized real effect of the independent variable is the
true state of affairs, determine the probability of getting a sample mean in
the critical region for rejection of 

 � 0.23

 �
72.37 � 72

1.6

sX �
s

1N
�

16
1100

� 1.6zobt �
Xobt � mreal

sX

H0.

 � 72.37

 � 75 � 2.632

 � 75 � 1.61�1.6452

sX �
s

1N
�

16
1100

� 1.6Xcrit � mnull � sX 1zcrit2

H0

H0

N � 100

N � 25.

N � 25

 Beta � 1 � Power � 1 � 0.2389 � 0.7611

 Power � 0.2389

p1Xobt � 69.742 � p1zobt � �0.712 � 0.2389

 � �0.71

 �
69.74 � 72

3.2

sX �
s

1N
�

16
125

� 3.2zobt �
Xobt � mreal

sX

Xobt � 69.74mreal � 72

mreal � 72.

mreal.
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From Table A,

Thus,

Thus, by increasing N from 25 to 100, the power to detect a deficiency of 3 mean
points has increased from 0.2389 to 0.5910. Beta has decreased from 0.7611 to
0.4090. This is a demonstration that power varies directly with N and beta varies in-
versely with N. Thus, increasing N causes an increase in power and a decrease in
beta. Figure 12.12 summarizes the relationships for this problem.

c. What size N should you use for the power to be approximately 0.9000?

For the power to be 0.9000 to detect a population deficiency of 3 mean points, the
probability that will fall in the critical region must be equal to 0.9000. As shown
in Figure 12.13, this dictates that the area between and . From
Table A, (Note that we have taken the closest table reading rather than
interpolating. This will result in a power close to 0.9000, but not exactly equal to
0.9000.) By solving the equation for and setting equal to , we can de-
termine N. Thus,

Setting , we have,

Solving for N,

 mreal � mnull �
s

1N
1zcrit � zobt2

 mreal � mnull � sX 1zcrit � zobt2

 mreal � mnull � sX 1zcrit2 � sX 1zobt2

mreal � sX 1zobt2 � mnull � sX 1zcrit2

Xobt � Xcrit

Xcrit � mnull � sX 1zcrit2

Xobt � mreal � sX 1zobt2

XcritXobtXobtzobt

zobt � 1.28.
mreal � 0.4000zobt

Xobt

 Beta � 1 � Power � 1 � 0.5910 � 0.4090

Power � 0.5910

p1Xobt � 72.372 � 0.5000 � 0.0910 � 0.5910
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X:
z:

Real effect No effect

72 72.37

Power = 0.5910

Critical region = 0.05

0.23
75

zobt

–

Xcrit and
–

Xobt
–

f i g u r e 12.12 Power for N � 100.



Thus, to determine N, the equation we use is

equation for determining N

Applying this equation to the problem we have been considering, we get

Thus, if you increase N to 243 subjects, the power will be approximately 0.9000
(power � 0.8997) to detect a population deficiency in reading proficiency of 3 mean
points. I suggest you confirm this power calculation yourself using N � 243 as a prac-
tice exercise.

Power and alpha level Next, let’s take a look at the relationship between
power and alpha. Suppose you had set instead of What
happens to the resulting power? (We’ll assume in this question.)

S O L U T I O N

STEP 1: Determine the possible sample mean outcomes in the experiment that
would allow to be rejected. With the z test, this means determining
the critical region for rejection of , using X as the statistic:H0

H0

N � 100
0.051 tail.a � 0.011 tail

 � 243

 � c
161�1.645 � 1.282

72 � 75
d

2

N � c
s1zcrit � zobt2

mreal � mnull
d

2

N � c
s1zcrit � zobt2

mreal � mnull
d

2

N � c
s1zcrit � zobt2

mreal � mnull
d

2

1N 1mreal � mnull2 � s1zcrit � zobt2
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X:

z:

Real effect No effect

72

Power = 0.9000

0.40000.5000

Critical region = 0.05

1.28

75

zobt (nearest table entry)

–

Xcrit and
–

Xobt
–

f i g u r e 12.13 Determining N for power � 0.9000.



STEP 2: Assuming the hypothesized real effect of the independent variable is
the true state of affairs, determine the probability of getting a sample
mean in the critical region for rejection of 

From Table A,

Thus,

Thus, by making alpha more stringent (changing it from to ),
power has decreased from 0.5910 to 0.3228. Beta has increased from 0.4090 to
0.6772.This demonstrates that there is a direct relationship between alpha and
power and an inverse relationship between alpha and beta. Figure 12.14 shows
the relationships for this problem.

Relationship between size of real effect and power Next, let’s investi-
gate the relationship between the size of the real effect and power. To do this,
let’s calculate the power to detect a population deficiency in reading profi-
ciency of 5 mean points from the national norms. We’ll assume and

Figure 12.15 shows the relationships for this problem.a � 0.051 tail.
N � 100

0.011 tail0.051 tail

 Beta � 1 � Power � 0.6772

 Power � 0.3228

p1Xobt � 71.272 � 0.3228

 � �0.46

 �
71.27 � 72

1.6

sX �
s

1N
�

16
100

� 1.6zobt �
Xobt � mreal

sX

H0.

 � 71.27

zcrit � �2.33 � 75 � 1.61�2.332

sX �
s

1N
�

16
100

� 1.6Xcrit � mnull � sX 1zcrit2
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X:

z:

Real effect No effect

7271.27

Power = 0.3228

Critical region = 0.01

–0.46

75
–

Xcrit and
–

zobt

Xobt
–

f i g u r e 12.14 Power for N � 100 and a � 0.011 tail.



S O L U T I O N

STEP 1: Determine the possible sample mean outcomes in the experiment that
would allow to be rejected. With the z test, this means determining
the critical region for rejection of , using X as the statistic:

STEP 2: Assuming the hypothesized real effect of the independent variable is
the true state of affairs, determine the probability of getting a sample
mean in the critical region for rejection of :

From Table A,

Thus,

Thus, by increasing the size of the real effect from 3 to 5 mean points, power
has increased from 0.5910 to 0.9306. Beta has decreased from 0.4090 to 0.0694.
This demonstrates that there is a direct relationship between the size of the
real effect and the power to detect it.

 Beta � 1 � Power � 1 � 0.9306 � 0.0694

 Power � 0.9306

p1Xobt � 72.372 � 0.5000 � 0.4306 � 0.9306

 � 1.48

 �
72.37 � 70

1.6

sX �
s

1N
�

16
100

� 1.6zobt �
Xobt � mreal

sX

H0

� 72.37

� 75 � 1.61�1.6452

 sX �
s

1N
�

16
100

� 1.6 Xcrit � mnull � sX 1zcrit2

H0

H0
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X:
z:

Real effect No effect

70 72.37

Power = 0.9306

Critical region = 0.05

1.48
75

zobt

–

Xcrit and
–

Xobt
–

f i g u r e 12.15 Power for N � 100 and mreal � 70.



Questions and Problems 315

In this chapter, I discussed the topics of the sampling
distribution of a statistic, how to generate sampling
distributions from an empirical sampling approach,
the sampling distribution of the mean, and how to an-
alyze single sample experiments with the z test. I
pointed out that the procedure for analyzing data in
most hypothesis-testing experiments is to calculate the
appropriate statistic and then evaluate the statistic
based on its sampling distribution. The sampling dis-
tribution of a statistic gives all the values that the sta-
tistic can take, along with the probability of getting
each value if sampling is random from the null-
hypothesis population. The sampling distribution can
be generated theoretically with the Central Limit The-
orem or empirically by (1) determining all the possible
different samples of size N that can be formed from
the raw-score population, (2) calculating the statistic
for each of the samples, and (3) calculating the proba-
bility of getting each value of the statistic if sampling
is random from the null-hypothesis population.

The sampling distribution of the mean is a distri-
bution of sample mean values having a mean
equal to and a standard deviation equal to1sX2m

1mX2

. It is normally distributed if the raw-score
population is normally distributed or if ,
assuming the raw-score population is not radically
different from normality.The z test is appropriate for
analyzing single sample experiments, where and 
are known and the sample mean is used as the basic
statistic. When this test is used, is calculated and
then evaluated to determine whether it falls in the
critical region for rejecting the null hypothesis.To use
the z test, the sampling distribution of the mean must
be normally distributed.This in turn requires that the
null-hypothesis population be normally distributed
or that 

Finally, I discussed power in conjunction with the z
test. Power is the probability of rejecting if the 
independent variable has a real effect. To calculate
power, we followed a two-step procedure: determining
the possible sample means that allowed rejection of 
and finding the probability of getting any of these sam-
ple means, assuming the hypothesized real effect of the
independent variable is true. Power varies directly with
N, alpha, and the size of the real effect of the indepen-
dent variable. Power varies inversely with beta.

H0

H0

N � 30.

zobt

sm

N � 30
s�1N

■ SUMMARY

Critical region (p. 302)
Critical value of a statistic

(p. 302)
Critical value of X (p. 309)
Critical value of z (p. 303)

Mean of the sampling distribution
of the mean (p. 295)

Null-hypothesis population (p. 290)
Sampling distribution of a statistic

(p. 289)

Sampling distribution of the mean
(p. 293)

Standard error of the mean (p. 295)
(p. 309)
(p. 310)mreal

mnull

■ IMPORTANT NEW TERMS

1. Define each of the terms in the Important New
Terms section.

2. Why is the sampling distribution of a statistic im-
portant to be able to use the statistic in hypothe-
sis testing? Explain in a short paragraph.

3. How are sampling distributions generated using
the empirical sampling approach?

4. What are the two basic steps used when analyzing
data?

5. What are the assumptions underlying the use of
the z test?

6. What are the characteristics of the sampling dis-
tribution of the mean?

7. Explain why the standard deviation of the sam-
pling distribution of the mean is sometimes re-
ferred to as the “standard error of the mean.”

8. How do each of the following differ?
a. s and b. and 
c. and d. and 

9. Explain why should vary directly with and
inversely with N.

10. Why should ?
11. Is the shape of the sampling distribution of the

mean always the same as the shape of the null-
hypothesis population? Explain.

mX � m

ssX

sXsmXm

s2s2sX

■ QUESTIONS AND PROBLEMS



12. When using the z test, why is it important that
the sampling distribution of the mean be nor-
mally distributed?

13. If the assumptions underlying the z test are met,
what are the characteristics of the sampling dis-
tribution of z?

14. Define power, both conceptually and mathemat-
ically.

15. Explain what happens to the power of the z test
when each of the following variables increases.
a. N
b. Alpha level
c. Size of real effect of the independent variable
d.

16. How does increasing the N of an experiment af-
fect the following?
a. Power
b. Beta
c. Alpha
d. Size of real effect

17. Given the population set of scores 3, 4, 5, 6, 7,
a. Determine the sampling distribution of the

mean for sample sizes of 2. Assume sampling
is one at a time, with replacement.

b. Demonstrate that .
c. Demonstrate that .

18. If a population of raw scores is normally distrib-
uted and has a mean and a standard de-
viation , determine the parameters (
and ) of the sampling distribution of the mean
for the following sample sizes.
a. N � 16
b. N � 35
c. N � 50
d. Explain what happens as N gets larger. other

19. Is it reasonable to consider a sample of 40 scores
with to be a random sample from a
population of scores that is normally distributed,
with and Use in
making your decision. other

20. A set of sample scores from an experiment has
an and an 
a. Can we reject the null hypothesis that the

sample is a random sample from a normal
population with and Use

Assume the sample mean is in
the correct direction.

b. What is the power of the experiment to detect
a real effect such that 

c. What is the power to detect a if N is
increased to 100?

mreal � 20
mreal � 20?

a � 0.011 tail.
s � 8?m � 22

Xobt � 19.N � 30

a �  0.052 tails � 10?m � 60

Xobt � 65

sX

mXs � 8
m � 80

sX � s�1N
mX � m

s

d. What value does N have to equal to achieve a
power of 0.8000 to detect a Use
the nearest table value for . other

21. On the basis of her newly developed technique, a
student believes she can reduce the amount of
time schizophrenics spend in an institution. As
director of training at a nearby institution, you
agree to let her try her method on 20 schizo-
phrenics, randomly sampled from your institu-
tion. The mean duration that schizophrenics stay
at your institution is 85 weeks, with a standard
deviation of 15 weeks. The scores are normally
distributed. The results of the experiment show
that the patients treated by the student stay a
mean duration of 78 weeks, with a standard devi-
ation of 20 weeks.
a. What is the alternative hypothesis? In this

case, assume a nondirectional hypothesis is 
appropriate because there are insufficient the-
oretical and empirical bases to warrant a di-
rectional hypothesis.

b. What is the null hypothesis?
c. What do you conclude about the student’s

technique? Use clinical, health
22. A professor has been teaching statistics for many

years. His records show that the overall mean for
final exam scores is 82, with a standard deviation
of 10. The professor believes that this year’s class
is superior to his previous ones. The mean for fi-
nal exam scores for this year’s class of 65 students
is 87. What do you conclude? Use a � 0.051 tail.
education

23. An automotive engineer believes that her newly
designed engine will be a great gas saver. A large
number of tests on engines of the old design
yielded a mean gasoline consumption of 27.5
miles per gallon, with a standard deviation of 5.2.
Fifteen new engines are tested. The mean gaso-
line consumption is 29.6 miles per gallon.What is
your conclusion? Use a � 0.051 tail. other

24. In Practice Problem 12.2, we presented data
testing a new gasoline additive. A large number
of mileage measurements on the gasoline with-
out the additive showed a mean of 24.7 miles per
gallon and a standard deviation of 4.8. An ex-
periment was performed in which 75 cars were
tested using the gasoline plus the additive. The
results showed a sample mean of 26.5 miles per
gallon. To evaluate these data, a directional test
with a � 0.051 tail was used. Suppose that before
doing the experiment, the manufacturer wants 

a � 0.052 tail.

zobt

mreal � 20?

316 C H A P T E R  12 Sampling Distributions, Sampling Distribution of the Mean, the Normal Deviate (z) Test



to determine the probability that he will be able
to detect a real mean increase of 2.0 miles per
gallon with the additive if the additive is at least
that effective.
a. If he tests 20 cars, what is the power to detect

a mean increase of 2.0 miles per gallon?
b. If he increases the N to 75 cars, what is the

power to detect a mean increase of 2.0 miles
per gallon?

c. How many cars should he use if he wants to
have a 99% chance of detecting a mean in-
crease of 2.0 miles per gallon? I/O

25. A physical education professor believes that ex-
ercise can slow the aging process. For the past 10
years, he has been conducting an exercise class
for 14 individuals who are currently 50 years old.
Normally, as one ages, maximum oxygen con-
sumption decreases. The national norm for max-
imum oxygen consumption in 50-year-old indi-
viduals is 30 milliliters per kilogram per minute,
with a standard deviation of 8.6. The mean of the
14 individuals is 40 milliliters per kilogram per
minute.What do you conclude? Use 
biological, health

a � 0.051 tail.
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Student’s t Test 
for Single Samples

LEARNING OBJECTIVES

After completing this chapter, you should be able to:
■ Contrast the t test and the z test for single samples.
■ Define degrees of freedom.
■ Define the sampling distribution of t, and state its character-

istics.
■ Compare the t and z distributions.
■ Solve problems using the t test for single samples and specify

the conditions under which the t test for single samples is ap-
propriate.

■ Compute size of effect using Cohen’s d.
■ Contrast point and interval estimation.
■ Define confidence interval and confidence limits.
■ Define and construct the 95% and 99% confidence limits for

the population mean.
■ Determine for the significance of Pearson r using two 

methods.
■ Understand the illustrative examples, do the practice prob-

lems, and understand the solutions.

Chapter 13



INTRODUCTION

In Chapter 12, we discussed the z test and determined that it was appropriate in
situations in which both the mean and the standard deviation of the null-
hypothesis population were known. However, these situations are relatively rare.
It is more common to encounter situations in which the mean of the null-
hypothesis population can be specified and the standard deviation is unknown. In
these cases, the z test cannot be used. Instead, another test, called Student’s t test,
is employed. The t test is very similar to the z test. It was developed by W. S.
Gosset, writing under the pen name of “Student.” Student’s t test is a practical,
quite powerful test widely used in the behavioral sciences. In this chapter, we
shall discuss the t test in conjunction with experiments involving a single sample.
In Chapter 14, we shall discuss the t test as it applies to experiments using two
samples or conditions.

COMPARISON OF THE z AND t TESTS

The z and t tests for single sample experiments are quite alike. The equations for
each are shown in Table 13.1.

In comparing these equations, we can see that the only difference is that the
z test uses the standard deviation of the null-hypothesis population , whereas
the t test uses the standard deviation of the sample (s). When is unknown, we
estimate it using the estimate given by s, and the resulting statistic is called t.
Thus, the denominator of the t test is rather than The symbol 
replaces where

estimated standard error of the mean

We are ready now to consider an experiment using the t test to analyze the data.

s
X

�
s

1N

sX

sXs�1N.s�1N

s

1s2

Comparison of the z and t Tests 319

MENTORING TIP
The t test is like the z test,
except it uses s instead of s.

t a b l e 13.1 Comparison of equations
for the z and t tests

z Test t Test

where s � estimate of 
estimate of sXsX �

s

�
Xobt � m

sX
�

Xobt � m

sX

tobt �
Xobt � m

s�2N
zobt �

Xobt � m

s�1N



e x p e r i m e n t Increasing Early Speaking in Children
Suppose you have a technique that you believe will affect the age at which children 
begin speaking. In your locale, the average age of first word utterances is 13.0 months.
The standard deviation is unknown. You apply your technique to a random sample of
15 children. The results show that the sample mean age of first word utterances is 11.0
months, with a standard deviation of 3.34.

1. What is the nondirectional alternative hypothesis?
2. What is the null hypothesis?
3. Did the technique work? Use 

S O L U T I O N

1. Alternative hypothesis:The technique affects the age at which children begin speak-
ing. Therefore, the sample with Xobt � 11.0 is a random sample from a population
where 

2. Null hypothesis: : The sample with Xobt � 11.0 is a random sample from a popu-
lation with 

3. Conclusion using 

STEP 1: Calculate the appropriate statistic. Since is unknown, it is impossible to
determine However, s is known, so we can calculate Thus,

The next step ordinarily would be to evaluate using the sampling distribution of t.
However, because this distribution is not yet familiar, we need to discuss it before we
can proceed with the evaluation.

THE SAMPLING DISTRIBUTION OF t

Using the definition of sampling distribution developed in Chapter 12, we note
the following.

tobt

 � �2.32

 �
�2

0.862

 �
11.0 � 13.0

3.34 �215

tobt �
Xobt � m

s�1N

tobt.zobt.
s

a � 0.052 tail:
m � 13.0.

H0

m � 13.0.

a � 0.052 tail.
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d e f i n i t i o n ■ The sampling distribution of t is a probability distribution of the t values
that would occur if all possible different samples of a fixed size N were
drawn from the null-hypothesis population. It gives (1) all the possible dif-
ferent t values for samples of size N and (2) the probability of getting each
value if sampling is random from the null-hypothesis population.

As with the sampling distribution of the mean, the sampling distribution of t can
be determined theoretically or empirically.Again, for pedagogical reasons, we pre-
fer the empirical approach. The sampling distribution of t can be derived empiri-
cally by taking a specific population of raw scores, drawing all possible different
samples of a fixed size N, and then calculating the t value for each sample. Once
all the possible t values are obtained, it is a simple matter to calculate the proba-



bility of getting each different t value under the assumption of random sampling
from the population. By varying N and the population scores, one can derive sam-
pling distributions for various populations and sample sizes. Empirically or theo-
retically, it turns out that, if the null-hypothesis population is normally shaped, or
if , the t distribution looks very much like the z distribution except that
there is a family of t curves that vary with sample size. You will recall that the z
distribution has only one curve for all sample sizes (the values represented in
Table A in Appendix D). On the other hand, the t distribution, like the sampling
distribution of the mean, has many curves depending on sample size. Since we are
estimating by using s in the t equation and the size of the sample influences the
accuracy of the estimate, it makes sense that there should be a different sampling
distribution of t for different sample sizes.

Degrees of Freedom

Although the t distribution varies with sample size, Gosset found that it varies
uniquely with the degrees of freedom associated with t, rather than simply with
sample size. Why this is so will not be apparent until Chapter 14. For now, let’s
just pursue the concept of degrees of freedom.

s

N � 30
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d e f i n i t i o n ■ The degrees of freedom (df) for any statistic is the number of scores that
are free to vary in calculating that statistic.

For example, there are N degrees of freedom associated with the mean. How
do we know this? For any set of scores, N is given. If there are three scores and
we know the first two scores, the last score can take on any value. It has no re-
strictions.There is no way to tell what it must be by knowing the other two scores.
The same is true for the first two scores. Thus, all three scores are free to vary
when calculating the mean. Thus, there are N degrees of freedom.

Contrast this with calculating the standard deviation:

Since the sum of deviations about the mean must equal zero, only of the
deviation scores are free to take on any value. Thus, there are degrees of
freedom associated with s. Why is this so? Consider the raw scores 4, 8, and 12.
The mean is 8. Table 13.2 shows what happens when calculating s.

Since the mean is 8, the deviation score for the raw score of 4 is �4 and for
the raw score of 8 is 0. Since , the last deviation is fixed by the
other deviations. It must be �4 (see the “?” in Table 13.2). It cannot take on any
value; instead it is fixed at �4 by the other two deviation scores. Therefore, only

©  1X � X 2 � 0

N � 1
N � 1

s � B
©  1X � X 22

N � 1

t a b l e 13.2 Number of 
deviation scores free to vary

X X �

4 8 �4

8 8 0

12 8 ? 

 X X



two of the three deviation scores are free to vary. Whatever value these take, the
third is fixed. In calculating s, only deviation scores are free to vary. Thus,
there are degrees of freedom associated with the standard deviation.

In calculating t for single samples, we must first calculate s. We lose 1 degree
of freedom in calculating s, so there are degrees of freedom associated
with t. Thus, for the t test,

degrees of freedom for t test (single sample)

t AND z DISTRIBUTIONS COMPARED

Figure 13.1 shows the t distribution for various degrees of freedom. The t distri-
bution is symmetrical about zero and becomes closer to the normally distributed
z distribution with increasing df. Notice how quickly it approaches the normal
curve. Even with df as small as 20, the t distribution rather closely approximates
the normal curve. Theoretically, when ,* the t distribution is identical to
the z distribution. This makes sense because as the df increases, sample size in-
creases and the estimate s gets closer to At any df other than , the t distri-
bution has more extreme t values than the z distribution, since there is more vari-
ability in t because we used s to estimate Another way of saying this is that the
tails of the t distribution are elevated relative to the z distribution. Thus, for a

s.

qs.

qdf �

df � N � 1

N � 1

N � 1
N � 1
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f i g u r e 13.1 t distribution for various degrees of freedom.

*As df approaches infinity, the t distribution approaches the normal curve.



given alpha level, the critical value of t is higher than for z, making the t test less
powerful than the z test. That is, for any alpha level, must be higher than 
to reject the null hypothesis. Table 13.3 shows the critical values of z and t at the
0.05 and 0.01 alpha levels. As the df increases, the critical value of t approaches
that of z. The critical z value, of course, doesn’t change with sample size. Critical
values of t for various alpha levels and df are contained in Table D of Appendix
D. These values have been obtained from the sampling distribution of t for each
df. The table may be used for evaluating for any experiment. We are now
ready to return to the illustrative example.

EARLY SPEAKING EXPERIMENT REVISITED

You are investigating a technique purported to affect the age at which children
begin speaking: months; is unknown; the sample of 15 children using
your technique has a mean for first word utterances of 11.0 months and a stan-
dard deviation of 3.34.

1. What is the nondirectional alternative hypothesis?
2. What is the null hypothesis?
3. Did the technique work? Use 

S O L U T I O N

1. Alternative hypothesis: The technique affects the age at which children
begin speaking. Therefore, the sample with Xobt � 11.0 is a random sam-
ple from a population where 

2. Null hypothesis: :The sample with Xobt � 11.0 is a random sample from
a population with 

3. Conclusion using 

STEP 1: Calculate the appropriate statistic. Since this is a single sample
experiment with unknown is appropriate:

 � �2.32

 �
11.0 � 13.0

3.34�215

tobt �
Xobt � m

s�1N

s, tobt

a � 0.052 tail:
m � 13.0.

H0

m � 13.0.

a � 0.052 tail.

sm � 13.0

tobt

zobttobt

Early Speaking Experiment Revisited 323

t a b l e 13.3 Critical values of z and t at the 0.05 and 0.01
alpha levels, one-tailed

df z0.05 t0.05 z0.01 t0.01

5 1.645 2.015 2.326 3.365

30 1.645 1.697 2.326 2.457

60 1.645 1.671 2.326 2.390

1.645 1.645 2.326 2.326q

MENTORING TIP
The t test is less powerful than
the z test.



STEP 2: Evaluate the statistic based on its sampling distribution. Just as
with the z test, if

then it falls within the critical region for rejection of the null hy-
pothesis. is found in Table D under the appropriate alpha
level and df. For this example, with and

from Table D,

tcrit � �2.145

Since we reject and conclude that the technique
does affect the age at which children in your locale first begin
speaking. It appears to increase early speaking. The solution is
shown in Figure 13.2.

CALCULATING tobt FROM ORIGINAL SCORES

If in a given situation the original scores are available, t can be calculated directly
without first having to calculate s. The appropriate equation is given here:*

H00 tobt 0 7 2.145,

df � N � 1 � 15 � 1 � 14 ,
a � 0.052 tail

tcrit

0 tobt 0 � 0 tcrit 0
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f i g u r e 13.2 Solution to the first word utterance experiment using 
Student’s t test.

STEP 1: Calculate the appropriate statistic. Since is unknown, is appro-
priate.

STEP 2: Evaluate the statistic. If reject H0. Since � 0.052 tail and
df � N � 1 � 15 � 1 � 14, from Table D,

tcrit � �2.145

Since it falls within the critical region. Therefore, we re-
ject H0.

0 tobt 0 7 2.145,

a0 tobt 0 � 0 tcrit 0 ,

tobt �
Xobt � m

s�2N
�

11.0 � 13.0

3.34�215
� �2.32

tobts

�3
tobt = �2.32

tcrit = �2.145 tcrit = �2.145

t: �1�2

Critical region Critical region

0 1 2 3

*The derivation is presented in Note 13.1.



equation for computing from raw scores

where

e x a m p l e Suppose the original data in the previous problem were as shown in Table 13.4. Let’s
calculate directly from these raw scores.

S O L U T I O N

 �
�2

0.862
� �2.32

 �
11.0 � 13.0

B
156

151142

tobt �
Xobt � m

B
SS

N1N � 12

tobt

SS � �1X � X�  22 � � X 
2 �
1� X 22

N

tobttobt �
Xobt � m

B
SS

N1N � 12
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 � 156

 � 1971 �
116522

15

 SS � � X 2 �
1� X 22

N

t a b l e 13.4 Raw scores for
first word utterances example

Age
(months) Computation

X of X 2

8 64

9 81

10 100

15 225

18 324

17 289

12 144

11 121

7 49

8 64

10 100

11 121

8 64

9 81

12 144
165 1971

Xobt � 165
15 � 11.0N � 15



This is the same value arrived at previously. Note that it is all right to first calculate s
and then use the original tobt equation. However, the answer is more subject to round-
ing error.

Let’s try another problem.
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P r a c t i c e  P r o b l e m  13.1

A researcher believes that in recent years women have been getting taller.
She knows that 10 years ago the average height of young adult women liv-
ing in her city was 63 inches. The standard deviation is unknown. She 
randomly samples eight young adult women currently residing in her city
and measures their heights. The following data are obtained:

Height (in.) Calculation
X of X2

64 4,096

66 4,356

68 4,624

60 3,600

62 3,844

65 4,225

66 4,356

63 3,969

514 33,070

a. What is the alternative hypothesis? In evaluating this experiment, as-
sume a nondirectional hypothesis is appropriate because there are in-
sufficient theoretical and empirical bases to warrant a directional hy-
pothesis.

b. What is the null hypothesis?
c. What is your conclusion? Use 

S O L U T I O N

a. Nondirectional alternative hypothesis: In recent years, the height of
women has been changing. Therefore, the sample with is a
random sample from a population where 

b. Null hypothesis: The null hypothesis asserts that it is reasonable to con-
sider the sample with a random sample from a population
with 

c. Conclusion, using a � 0.012  tail:
m � 63.

Xobt � 64.25

m � 63.
Xobt � 64.25

a � 0.012 tail.

Xobt � 514
8 � 64.25N � 8
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STEP 1: Calculate the appropriate statistic. The data were given previ-
ously. Since is unknown, is appropriate.There are two ways to
find (1) by calculating s first and then and (2) by calculating

directly from the raw scores. Both methods are shown here:

s first and then tobt:

directly from the raw scores:

STEP 2: Evaluate the statistic. If reject If not, retain 
With and from Table D,

tcrit � �3.499

Since it doesn’t fall in the critical region.Therefore,
we retain We cannot conclude that young adult women in the
researcher’s city have been changing in height in recent years.

H0.
0 tobt 0 6 3.499,

df � N � 1 � 8 � 1 � 7,a � 0.012 tail

H0.H0.0 tobt 0 � 0 tcrit 0 ,

 �
1.25

20.812
� 1.39

tobt �
Xobt � m

B
SS

N1N � 12

�
64.25 � 63

B
45.5
8172

 �
1.25
0.902

� 1.39

 tobt �
Xobt � m

s�2N
�

64.25 � 63

2.550�28

 � 33,070 � 33,024.5 � 45.5 � 26.5 � 2.550

 SS � � X2 �
1� X 22

N
� 33,070 �

151422

8
s �  B

SS
N � 1

�B
45.5

7

tobt

tobttobt:
tobts

P r a c t i c e  P r o b l e m  13.2

A friend of yours has been “playing” the stock market. He claims he has
spent years doing research in this area and has devised an empirically suc-
cessful method for investing. Since you are not averse to becoming a little
richer, you are considering giving him some money to invest for you. How-
ever, before you do, you decide to evaluate his method. He agrees to a “dry
run” during which he will use his method, but instead of actually buying and
selling, you will just monitor the stocks he recommends to see whether his

(continued)

 � 33,070 � 33,024.5 � 45.5

 � 33,070 �
151422

8

SS � � X 2 �
1� X 22

N
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method really works. During the trial time period, the recommended stocks
showed the following price changes (a plus score means an increase in
price, and a minus indicates a decrease):

Price Change ($) Calculation of
Stock X X2

A �4.52 20.430

B �5.15 26.522

C �3.28 10.758

D �4.75 22.562

E �6.03 36.361

F �4.09 16.728

G �3.82 14.592

31.64 147.953

During the same time period, the average price change of the stock market
as a whole was �$3.25. Since you want to know whether the method does
better or worse than chance, you decide to use a two-tailed evaluation.

a. What is the nondirectional alternative hypothesis?
b. What is the null hypothesis?
c. What is your conclusion? Use 

S O L U T I O N

a. Nondirectional alternative hypothesis: Your friend’s method results in a
choice of stocks whose change in price differs from that expected due to
random sampling from the stock market in general. Thus, the sample
with cannot be considered a random sample from a popu-
lation where 

b. Null hypothesis: Your friend’s method results in a choice of stocks whose
change in price doesn’t differ from that expected due to random sampling
from the stock market in general. Therefore, the sample with 
can be considered a random sample from a population where 

c. Conclusion, using 

STEP 1: Calculate the appropriate statistic. The data are given in the
previous table. Since is unknown, is appropriate.

 �
1.27
0.343

� 3.70

 �
4.52 � 3.25

B
4.940
7162

tobt �
Xobt � m

B
SS

N1N � 12

tobts

a � 0.052 tail:
m � $3.25.

Xobt � $4.52

m � $3.25.
Xobt � $4.52

a � 0.052 tail.

Xobt � 4.52N � 7

 � 4.940

 � 147.953 �
131.6422

7

SS  � � X 2 �
1� X 22

N



CONDITIONS UNDER WHICH THE t TEST IS APPROPRIATE

The t test (single sample) is appropriate when the experiment has only one sam-
ple, is specified, is unknown, and the mean of the sample is used as the basic
statistic. Like the z test, the t test requires that the sampling distribution of be
normal. For the sampling distribution of to be normal, N must be � 30 or the
population of raw scores must be normal.*

SIZE OF EFFECT USING COHEN’S d

Thus far, we have discussed the t test for single samples and shown how to use it
to determine whether the independent variable has a real effect on the depen-
dent variable being measured. To determine whether the data show a real effect,
we calculate tobt; if tobt is significant, we conclude there is a real effect. Of course,
this gives us very important information. It allows us to support and further de-
lineate theories involving the independent and dependent variables as well as
provide information that may have important practical consequences.

In addition to determining whether there is a real effect, it is often desirable
to determine the size of the effect. For example, in the experiment dealing with
early speaking (p. 319), tobt was significant and we were able to conclude that the
technique had a real effect.Although we might be content with finding that there
is a real effect, we might also be interested in determining the magnitude of the
effect. Is it so small as to have negligible practical consequences, or is it a large
and important discovery?

Cohen (1988)† has provided a simple method for determining the magnitude
of real effect. Used with the t test, the method relies on the fact that there is a di-
rect relationship between the size of real effect and the size of the mean difference.
With the t test for single samples, the mean difference of interest is Xobt � m.As the
size of the real effect gets greater, so does the difference between Xobt and m. Since
size of real effect is the variable of interest, not direction of real effect, the statistic
measuring size of real effect is given a positive value by taking the absolute value
of the mean difference. We have symbolized this by “ ”. The �mean difference�

X
X

sm
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STEP 2: Evaluate the statistic. With and df � N � 1 � 
7 � 1 � 6, from Table D,

Since we reject Your friend appears to be a
winner. His method does seem to work! However, before invest-
ing heavily, we suggest you run the experiment at least one more
time to guard against Type I error. Remember that replication is
essential before accepting a result as factual. Better to be safe
than poor.

H0.0 tobt 0 7 2.447,

tcrit � �2.447

a � 0.052 tail

*Many authors would limit the use of the t test to data that are of interval or ratio scaling. Please
see the footnote in Chapter 2, p. 34, for references discussing this point.
†J. Cohen, Statistical Power Analysis for the Behavioral Sciences, 2nd ed., Lawrence Erlbaum Associ-
ates, Hillsdale, NJ, 1988.



statistic used is labeled d, and is a standardized measure of . Stan-
dardization is achieved by dividing by the population standard
deviation, similar to what was done with the z score in Chapter 5.Thus, d has a pos-
itive value that indicates the size (magnitude) of the mean difference in standard
deviation units. For example, for the t test for single samples, a value of d � 0.42
tells us that the sample mean differs from the population mean by 0.42 standard
deviation units.

In its generalized form, the equation for d is given by

general equation for size of effect

The general equation for d is the same whether we are considering the t test for
single samples, the t test for correlated groups or the t test for independent groups
(Chapter 14).What differs from test to test is the mean difference and population
standard deviation used in each test. For the t test for single samples, d is given
by the following conceptual equation:

Taking the absolute value of Xobt � m in the previous equation keeps d positive
regardless of whether Xobt � m or Xobt 	 m. Of course in situations in which we
use the t test for single samples, we don’t know s, so we estimate it with s. The re-
sulting equation yields an estimate of d that is given by

This is the computational equation for computing size of effect for the single
samples t test. Please note that when applying this equation, if H1 is directional,
Xobt must be in the direction predicted by H1. If it is not in the predicted direc-
tion, when analyzing the data of the experiment, the conclusion would be to re-
tain H0 and, ordinarily, it would make no sense to inquire about the size of the
real effect. The larger is , the greater the size of effect. How large should be
for a small, medium, or large effect? Cohen has provided criteria for answering
this question. These criteria are presented in Table 13.5 below.

d̂d̂

 s � the sample standard deviation

 m � the population mean

 Xobt � the sample mean

where  d̂ � estimated d

computational equation for size of
effect, single sample t testd̂ �

�Xobt � m�
s

conceptual equation for size of effect,
single sample t testd �

�Xobt � m�
s

d �
�mean difference�

population standard deviation

�mean difference�
�mean difference�
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e x a m p l e Early Speaking Experiment

Let’s now apply this theoretical discussion to some data. We will use the experiment
evaluating the technique for affecting early speaking (p. 319). You will recall when we
evaluated the data, we obtained a significant t value; we rejected H0 and concluded that
the technique had a real effect. Now the question is, “What is the size of the effect?”

To answer this question, we compute . Xobt � 11.0, m � 13.0, and s � 3.34. Sub-d̂
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stituting these values in the equation for , we obtain

The obtained value of is 0.60. This falls in the range of 0.21–0.79 of Table 13.5 and
therefore indicates a medium effect. Although there is a fair amount of theory to get
through to understand , computation and interpretation of are quite easy!

CONFIDENCE INTERVALS FOR THE POPULATION MEAN

Sometimes it is desirable to know the value of a population mean. Since it is very
uneconomical to measure everyone in the population, a random sample is taken
and the sample mean is used as an estimate of the population mean. To illustrate,
suppose a university administrator is interested in the average IQ of professors
at her university. A random sample is taken, and � 135. The estimate, then,
would be 135. The value 135 is called a point estimate because it uses only one
value for the estimate. However, if we asked the administrator whether she
thought the population mean was exactly 135, her answer would almost certainly
be “no.” Well, then, how close is 135 to the population mean?

The usual way to answer this question is to give a range of values for which
one is reasonably confident that the range includes the population mean. This is
called interval estimation. For example, the administrator might have some con-
fidence that the population mean lies within the range 130–140. Certainly, she
would have more confidence in the range of 130–140 than in the single value of
135. How about the range 110–160? Clearly, there would be more confidence in
this range than in the range 130–140. Thus, the wider the range, the greater the
confidence that it contains the population mean.

X

d̂d̂

d̂

d̂ �
�Xobt � m�

s
�

�11.0 � 13.0�
3.34

�
2

3.34
� 0.60

d̂

d e f i n i t i o n s ■ A confidence interval is a range of values that probably contains the popu-
lation value.

■ Confidence limits are the values that bound the confidence interval.

It is possible to be more quantitative about the degree of confidence we have
that the interval contains the population mean. In fact, we can construct confi-
dence intervals about which there are specified degrees of confidence. For exam-
ple, we could construct the 95% confidence interval:

The 95% confidence interval is an interval such that the probability is 0.95 that the
interval contains the population value.

Although there are many different intervals we could construct, in practice the
95% and 99% confidence intervals are most often used. Let’s consider how to
construct these intervals.



Construction of the 95% Confidence Interval

Suppose we have randomly sampled a set of N scores from a population of raw
scores having a mean and have calculated Assuming the assumptions of
t are met, we see that the probability is 0.95 that the following inequality is true:

is the critical value of t for and All this inequality
says is that if we randomly sample N scores from a population of raw scores hav-
ing a mean of and calculate , the probability is 0.95 that will lie between

and The truth of this statement can be understood best by referring
to Figure 13.3. This figure shows the t distribution for degrees of freedom.
We’ve located and on the distribution. Remember that these values
are the critical values of t for By definition, 2.5% of the t values
must lie under each tail, and 95% of the values must lie between and

It follows, then, that the probability is 0.95 that will lie between 
and 

We can use the previously given inequality to derive an equation for esti-
mating the value of an unknown Thus,

but

Therefore,

Solving this inequality for we obtain*

Xobt � sX t0.025 
 m 
 Xobt � sX t0.025

m,

�t0.025 

Xobt � m

sX


 t0.025

tobt �
Xobt � m

s
X

�t0.025 
 tobt 
 t0.025

m.

�t0.025.
�t0.025tobt�t0.025.

�t0.025

a � 0.0251 tail.
�t0.025�t0.025

N � 1
�t0.025.�t0.025

tobttobtm

df � N � 1.a � 0.0251 tailt0.025

�t0.025 
 tobt 
 �t0.025

tobt.� m
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�t0.025 �t0.025

0.0250 0.0250

0

95% of t scores2.5% 2.5%

f i g u r e 13.3 Percentage of t scores between �tcrit for 
a � 0.052 tail and df � N � 1.

*See Note 13.2 for the intermediate steps in this derivation.



This states that the chances are 95 in 100 that the interval Xobt � sX
 t0.025
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contains the population mean. Thus, the interval is the 95% con-
fidence interval. The lower and upper confidence limits are given by

lower limit for 95% confidence interval

upper limit for 95% confidence interval

We are now ready to do an example. Let’s return to the university administrator.

e x p e r i m e n t Estimating the Mean IQ of Professors

Suppose a university administrator is interested in determining the average IQ of pro-
fessors at her university. It is too costly to test all of the professors, so a random sam-
ple of 20 is drawn from the population. Each professor is given an IQ test, and the re-
sults show a sample mean of 135 and a sample standard deviation of 8. Construct the
95% confidence interval for the population mean.

S O L U T I O N

The 95% confidence interval for the population mean can be found by solving the
equations for the upper and lower confidence limits. Thus,

Solving for 

From Table D, with and df � N � 1 � 20 � 1 � 19,

Substituting the values for and in the confidence limit equations, we obtain

and

lower limit upper limit

Thus, the 95% confidence interval � 131.26–138.74.

What precisely does it mean to say that the 95% confidence interval equals a
certain range? In the case of the previous sample, the range is 131.26–138.74.
A second sample would yield a different Xobt and a different range, perhaps 
Xobt � 138 and a range of 133.80–142.20. If we took all of the different possible
samples of from the population, we would have derived the sampling dis-
tribution of the 95% confidence interval for samples of size 20. The important
point here is that 95%of these intervals will contain the population mean; 5% of the
intervals will not. Thus, when we say “the 95% confidence interval is 131.26–
138.74,” we mean the probability is 0.95 that the interval contains the population
mean. Note that the probability value applies to the interval and not to the popu-
lation mean.The population mean is constant.What varies from sample to sample
is the interval.Thus, it is not technically proper to state “the probability is 0.95 that
the population mean lies within the interval.” Rather, the proper statement is “the
probability is 0.95 that the interval contains the population mean.”

N � 20

 � 138.74   � 131.26  
 � 135 � 3.744 � 135 � 3.744

 � 135 � 1.78912.0932 � 135 � 1.78912.0932

mupper � Xobt � sX t0.025mlower � Xobt � sX t0.025

t0.025sX

t0.025 � 2.093

a � 0.0251 tail

sX �
s

2N
�

8

220
� 1.789

sX
,

mlower � Xobt � sX t0.025  and  mupper � Xobt � sX t0.025

 mupper � Xobt � s
X

 t0.025

 mlower � Xobt � s
X

 t0.025

Xobt � sX
 t0.025



General Equations for Any Confidence Interval

The equations we have presented thus far deal only with the 95% confidence 
interval. However, they are easily extended to form general equations for any
confidence interval. Thus,

general equation for lower confidence limit

general equation for upper confidence limit

where the critical one-tailed value of t corresponding to the desired confi-
dence interval.

Thus, if we were interested in the 99% confidence interval, the
critical value of t for To illustrate, let’s solve the previous problem
for the 99% confidence interval.

S O L U T I O N

From Table D, with and 

From the previous solution, Substituting these values into the
equations for confidence limits, we have

and

an d

Thus, the 99% confidence interval � 129.88–140.12.
Note that this interval is larger than the 95% confidence interval

(131.26–138.74). As discussed previously, the larger the interval, the more confi-
dence we have that it contains the population mean.

Let’s try a practice problem.

 � 140.12  upper limit � 129.88  lower limit

 � 135 � 5.118 � 135 � 5.118

 � 135 � 1.78912.8612 � 135 � 1.78912.8612

 � Xobt � sX t0.005 � Xobt � sX t0.005

mupper � Xobt � s
X

tcritmlower � Xobt � s
X

tcrit

sX � 1.789.

t0.005 � 2.861

a � 0.0051 tail,df � 19

a � 0.0051 tail.
tcrit � t0.005 �

tcrit �

mupper � Xobt � sX tcrit

mlower � Xobt � s
X tcrit
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MENTORING TIP
Remember: the larger the in-
terval, the more confidence we
have that the interval contains
the population mean.

P r a c t i c e  P r o b l e m  13.3

An ethologist is interested in determining the average weight of adult
Olympic marmots (found only on the Olympic Peninsula in Washington). It
would be expensive and impractical to trap and measure the whole popu-
lation, so a random sample of 15 adults is trapped and weighed. The sample
has a mean of 7.2 kilograms and a standard deviation of 0.48. Construct the
95% confidence interval for the population mean.

S O L U T I O N

The data are given in the problem. The 95% confidence interval for the
population mean is found by determining the upper and lower confidence
limits. Thus,

and mupper � Xobt � sX t0.025mlower � Xobt � sX t0.025
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P r a c t i c e  P r o b l e m  1 3 . 4

To estimate the average life of their 100-watt light bulbs, the manufacturer
randomly samples 200 light bulbs and keeps them lit until they burn out.
The sample has a mean life of 215 hours and a standard deviation of 8
hours. Construct the 99% confidence limits for the population mean. In
solving this problem, use the closest table value for degrees of freedom.

S O L U T I O N

The data are given in the problem.

and

From Table D, with and

Note that this is the closest table value available from Table D. Substituting
the values for and in the confidence limit equations, we obtain

and

� 213.52 lower limit

Thus, the 99% confidence interval � 213.52–216.48 hours.

 � 216.48  upper limit

 � 215 � 0.56712.6172 � 215 � 0.56712.6172

mupper � Xobt � s
X

 t0.005mlower � Xobt � s
X

 t0.005

t0.005s
X

t0.005 � 2.617

df � N � 1 � 200 � 1 � 199,a � 0.0051 tail

s
X �

s

2N
�

8

2200
� 0.567

mupper � Xobt � s
X

 t0.005mlower � Xobt � s
X

 t0.005

Solving for ,

From Table D, with and 

Substituting the values for and in the confidence limit equations, we
obtain

and

Thus, the 95% confidence interval � 6.93–7.47 kilograms.

 � 7.47  upper limit � 6.93  lower limit

 � 7.2 � 0.266 � 7.2 � 0.266

 � 7.2 � 0.12412.1452 � 7.2 � 0.12412.1452

 mupper � Xobt � sX t0.025mlower � Xobt � sX t0.025

t0.025s
X

t0.025 � 2.145

df � N � 1 � 15 � 1 � 14,a � 0.0251 tail

s
X

�
s

2N
�

0.48

215
� 0.124

s
X



TESTING THE SIGNIFICANCE OF PEARSON r

When a correlational study is conducted, it is rare for the whole population to be
involved. Rather, the usual procedure is to randomly sample from the population
and calculate the correlation coefficient on the sample data. To determine
whether a correlation exists in the population, we must test the significance of the
obtained Of course, this is the same procedure we have used all along for
testing hypotheses. The population correlation coefficient is symbolized by the
Greek letter (rho). A nondirectional alternative hypothesis asserts that 
A directional alternative hypothesis asserts that is positive or negative de-
pending on the predicted direction of the relationship. The null hypothesis is
tested by assuming that the sample set of X and Y scores having a correlation
equal to is a random sample from a population where The sampling
distribution of r can be generated empirically by taking all samples of size N from
a population in which � 0 and calculating r for each sample. By systematically
varying the population scores and N, the sampling distribution of r is generated.

The significance of r can be evaluated using the t test. Thus,

t test for testing the significance of r

where robt � correlation obtained on a sample of N subjects
r � population correlation coefficient
sr � estimate of the standard deviation of the sampling distribution of r

Note that this is very similar to the t equation used when dealing with the mean
of a single sample. The only difference is that the statistic we are dealing with is
r rather than 

where

Let’s use this equation to test the significance of the correlation obtained in
the “IQ and grade point average” problem presented in Chapter 6, p. 126. As-
sume that the 12 students were a random sample from a population of university
undergraduates and that we want to determine whether there is a correlation in
the population. We’ll use in making our decision.

Ordinarily, the first step in a problem of this sort is to calculate However,
we have already done this and found that Substituting this value into
the t equation, we obtain

From Table D, with and ,

tcrit � �2.228

Since , we reject and conclude that there is a significant positive
correlation in the population.

H0�tobt� 7 2.228

a � 0.052 taildf � N � 2 � 10

tobt �
robt

B
1 � robt

2

N � 2

�
0.856

B
1 � 10.85622

10

�
0.856
0.163

� 5.252 � 5.25

robt � 0.856.
robt.

a � 0.052 tail

df � N � 2

sr � 211 � r  
2

obt 2� 1N � 22

r � 0

tobt �
robt � r

sr
�

robt

B
1 � r obt

2

N � 2

X.

tobt �
robt � r

sr

r

r � 0.robt

r

r � 0.r

r 1robt2.
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Although the foregoing method works, there is an even easier way to solve
this problem. By substituting into the t equation, can be determined for
any df and any level. Once is known, all we need do is compare with 
The decision rule is

If reject 

Statisticians have already calculated for various df and levels. These are
shown in Table E in Appendix D. This table is used in the same way as the t table
(Table D) except the entries list rather than 

Applying the method to the present problem, we would first calculate 
and then determine from Table E. Finally, we would compare with us-
ing the decision rule. In the present example, we have already determined that

From Table E, with df � 10 and ,

rcrit � �0.5760

Since we reject as before. This solution is preferred because
it is shorter and easier than the solution that involves comparing with 

Let’s try some problems for practice.
tcrit.tobt

H0 
,0 robt 0 7 0.5760,

a � 0.052 tailrobt � 0.856.

rcritrobtrcrit

robtrcrit

tcrit.rcrit

arcrit

H0.0 robt 0 � 0 rcrit 0  ,

rcrit.robtrcrita

rcrittcrit
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P r a c t i c e  P r o b l e m  13.5

Folklore has it that there is an inverse correlation between mathematical
and artistic ability. A psychologist decides to determine whether there is
anything to this notion. She randomly samples 15 undergraduates and gives
them tests measuring these two abilities. The resulting data are shown here.
Is there a correlation in the population between mathematical ability and
artistic ability? Use 

Math Artistic 
Subject Ability, Ability,

No. X Y X2 Y 2 XY

1 15 19 225 361 285
2 30 22 900 484 660
3 35 17 1,225 289 595
4 10 25 100 625 250
5 28 23 784 529 644
6 40 21 1,600 441 840
7 45 14 2,025 196 630
8 24 10 576 100 240
9 21 18 441 324 378

10 25 19 625 361 475
11 18 30 324 900 540
12 13 32 169 1,024 416
13 9 16 81 256 144
14 30 28 900 784 840
15 23 24 529 576 552

Total 366 318 10,504 7,250 7,489

a � 0.012  tail.

(continued)
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S O L U T I O N

STEP 1: Calculate the appropriate statistic:

STEP 2: Evaluate the statistic. From Table E, with 15 � 2 � 13
and 

rcrit � �0.6411

Since we conclude by retaining H0.�robt� 6 0.6411,

a � 0.012 tail 
,

df � N � 2 �

 � �0.30

 � �0.302

 �
�270.2
894.437

 �
7489 �

36613182

15

B c10,504 �
136622

15
d c7,250 �

131822

15
d

 robt �

g  XY �
1g   X 2 1g   Y 2

N

B cg   X 2 �
1g   X  22

N
d cg   Y 2 �

1g   Y22

N
d

P r a c t i c e  P r o b l e m  1 3 . 6

In Chapter 6, Practice Problem 6.2, we calculated the Pearson r for the re-
lationship between similarity of attitudes and attraction in a sample of 15
college students. In that example, Using , let’s now
determine whether this is a significant value for 

S O L U T I O N

From Table E, with and ,

rcrit � �0.5139

Since we reject and conclude there is a significant corre-
lation in the population.

H0�robt� 7 0.5139,

a � 0.052 taildf � N � 2 � 13

robt.
a � 0.052 tailrobt � 0.94.
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In this chapter, I discussed the use of Student’s t test
for (1) testing hypotheses involving single sample ex-
periments, (2) estimating the population mean by
constructing confidence intervals, and (3) testing the
significance of Pearson r.

In testing hypotheses involving single sample ex-
periments, the t test is appropriate when the mean of
the null-hypothesis population is known and the
standard deviation is unknown. In this situation, we
estimate by using the sample standard deviation.
The equation for calculating is very similar to zobt,
but we use s instead of The sampling distribution
of t is a family of curves that varies with the degrees
of freedom associated with calculating t. There are

degrees of freedom associated with the t test
for single samples. The sampling distribution curves
are symmetrical, bell-shaped curves having a mean
equal to 0. However, these are elevated at the tails
relative to the normal distribution. In using the t test,

is computed and then evaluated to determine
whether it falls within the critical region. The t test is
appropriate when the sampling distribution of X is
normal. For the sampling distribution of X to be nor-
mal, the population of raw scores must be normally
distributed, or 

After discussing how to evaluate tobt to deter-
mine if there is a real effect, I discussed how to com-
pute the size of the effect, using Cohen’s d statistic.
Cohen’s d, for the single samples t test, is a standard-

N � 30.

tobt

N � 1

s.
tobt

s

ized measure of the absolute difference between Xobt

and m, with standardization being achieved by divid-
ing this difference by s. Since we don’t know s when
using the t test, we estimate it using s and, hence,
compute , instead of d. The larger is, the greater
the real effect. Criteria were also given for determin-
ing if the obtained value of represents a small,
medium, or large effect.

Next I discussed constructing confidence inter-
vals for the population mean. A confidence interval
was defined as a range of values that probably con-
tains the population value. Confidence limits are the 
values that bound the confidence interval. In dis-
cussing this topic, we showed how to construct confi-
dence intervals about which we have a specified de-
gree of confidence that the interval contains the
population mean. Illustrative and practice problems
were given for constructing the 95% and 99% confi-
dence intervals.

The last topic involved testing the significance of
Pearson r. I pointed out that, because most correla-
tive data are collected on samples, we must evaluate
the sample r value to see whether there is a cor-
relation in the population. The evaluation involves
the t test. However, by substituting into the t
equation, we can determine for any df and any al-
pha level. The value of is evaluated by comparing
it with for the given df and alpha level. Several
problems were given for practice in evaluating robt.

rcrit

robt

rcrit

tcrit

1robt2

d̂

d̂d̂

■ SUMMARY

Cohen’s d (p. 329)
Confidence interval (p. 331)
Confidence limits (p. 331)

Critical value of r (p. 336)
Critical value of t (p. 332)

Degrees of freedom (p. 321)
Sampling distribution of t (p. 320)

■ IMPORTANT NEW TERMS

1. Define each of the terms in the Important New
Terms section.

2. Assuming the assumptions underlying the t test
are met, what are the characteristics of the sam-
pling distribution of t?

3. Elaborate on what is meant by degrees of free-
dom. Use an example.

4. What are the assumptions underlying the proper
use of the t test?

5. Discuss the similarities and differences between
the z and t tests.

6. Explain in a short paragraph why the z test is
more powerful than the t test.

7. Which of the following two statements is techni-
cally more correct? (1) We are 95% confident that
the population mean lies in the interval 80–90, or
(2) We are 95% confident that the interval 80–90
contains the population mean. Explain.

■ QUESTIONS AND PROBLEMS



8. Explain why when the t test is used
with single samples.

9. If the sample correlation coefficient has a value
different from zero (e.g., r � 0.45), this automat-
ically means that the correlation in the popula-
tion is also different from zero. Is this statement
correct? Explain.

10. For the same set of sample scores, is the 99%
confidence interval for the population mean
greater or smaller than the 95% confidence in-
terval? Does this make sense? Explain.

11. A sample set of 30 scores has a mean equal to 82
and a standard deviation of 12. Can we reject the
hypothesis that this sample is a random sample
from a normal population with Use

in making your decision. other
12. A sample set of 29 scores has a mean of 76 and a

standard deviation of 7. Can we accept the hy-
pothesis that the sample is a random sample
from a population with a mean greater than 72?
Use in making your decision. other

13. Is it reasonable to consider a sample with
and to be a random

sample from a normal population with 
Use in making your decision. As-
sume is in the right direction. other

14. Using each of the following random samples, de-
termine the 95% and 99% confidence intervals
for the population mean:
a.
b.
c.
d. Redo part a with What happens to

the confidence interval as N increases? other
15. In Problem 21 of Chapter 12, a student conducted

an experiment on 25 schizophrenic patients to test
the effect of a new technique on the amount of
time schizophrenics need to stay institutionalized.
The results showed that under the new treatment,
the 25 schizophrenic patients stayed a mean dura-
tion of 78 weeks, with a standard deviation of 20
weeks. Previously collected data on a large num-
ber of schizophrenic patients showed a normal dis-
tribution of scores, with a mean of 85 weeks and a
standard deviation of 15 weeks. These data were
evaluated using .The results showed a
significant effect. For the present problem, assume
that the standard deviation of the population is
unknown. Again, using , what do you
conclude about the new technique? Explain the
difference in conclusion between Problem 21 and
this one. clinical, health

a � 0.052 tail

a � 0.052 tail

N � 30.
Xobt � 30.6, s � 5.5, N � 24
Xobt � 120, s � 8, N � 30
Xobt � 25, s � 6, N � 15

Xobt

a � 0.051 tail

m � 38?
s � 9N � 22, Xobt � 42,

a � 0.011 tail

a � 0.012  tail

m � 85?

df � N � 1 16. As the principal of a private high school, you are
interested in finding out how the training in
mathematics at your school compares with that
of the public schools in your area. For the last 5
years, the public schools have given all graduat-
ing seniors a mathematics proficiency test. The
distribution has a mean of 78. You give all the
graduating seniors in your school the same math-
ematics proficiency test. The results show a dis-
tribution of 41 scores, with a mean of 83 and a
standard deviation of 12.2.
a. What is the alternative hypothesis? Use a

nondirectional hypothesis.
b. What is the null hypothesis?
c. Using , what do you conclude?

education
17. A college counselor wants to determine the av-

erage amount of time first-year students spend
studying. He randomly samples 61 students from
the freshman class and asks them how many
hours a week they study. The mean of the result-
ing scores is 20 hours, and the standard deviation
is 6.5 hours.
a. Construct the 95% confidence interval for the

population mean.
b. Construct the 99% confidence interval for the

population mean. education
18. A professor in the women’s studies program be-

lieves that the amount of smoking by women has
increased in recent years. A complete census
taken 2 years ago of women living in a neighbor-
ing city showed that the mean number of ciga-
rettes smoked daily by the women was 5.4 with a
standard deviation of 2.5.To assess her belief, the
professor determined the daily smoking rate of a
random sample of 200 women currently living in
that city. The data show that the number of ciga-
rettes smoked daily by the 200 women has a
mean of 6.1 and a standard deviation of 2.7.
a. Is the professor’s belief correct? Assume a di-

rectional H1 is appropriate and use a� 0.051 tail

in making your decision. Be sure that the most
sensitive test is used to analyze the data.

b. Assume the population mean is unknown and
reanalyze the data using the same alpha level.
What is your conclusion this time?

c. Explain any differences between part a and
part b.

d. Determine the size of the effect found in 
part b. social

19. A cognitive psychologist believes that a particu-
lar drug improves short-term memory. The drug

a � 0.052 tail
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is safe, with no side effects.An experiment is con-
ducted in which 8 randomly selected subjects are
given the drug and then given a short time to
memorize a list of 10 words. The subjects are
then tested for retention 15 minutes after the
memorization period. The number of words cor-
rectly recalled by each subject is as follows: 8, 9,
10, 6, 8, 7, 9, 7. Over the past few years, the psy-
chologist has collected a lot of data using this
task with similar subjects. Although he has lost
the original data, he remembers that the mean
was 6 words correctly recalled and that the data
were normally distributed.
a. On the basis of these data, what can we con-

clude about the effect of the drug on short-
term memory? Use a � 0.052 tail in making
your decision.

b. Determine the size of the effect. cognitive
20. A physician employed by a large corporation

believes that due to an increase in sedentary
life in the past decade, middle-age men have
become fatter. In 1995, the corporation mea-
sured the percentage of fat in their employees.
For the middle-age men, the scores were nor-
mally distributed, with a mean of 22%. To test
her hypothesis, the physician measures the fat
percentage in a random sample of 12 middle-
age men currently employed by the corpora-
tion. The fat percentages found were as follows:
24, 40, 29, 32, 33, 25, 15, 22, 18, 25, 16, 27. On the
basis of these data, can we conclude that mid-
dle-age men employed by the corporation have
become fatter? Assume a directional H1 is le-
gitimate and use in making your
decision. health

21. A local business school claims that their gradu-
ating seniors get higher-paying jobs than the na-
tional average for business school graduates.
Last year’s figures for salaries paid to all busi-
ness school graduates on their first job showed
a mean of $10.20 per hour. A random sample of
10 graduates from last year’s class of the local
business school showed the following hourly
salaries for their first job: $9.40, $10.30, $11.20,
$10.80, $10.40, $9.70, $9.80, $10.60, $10.70,
$10.90. You are skeptical of the business school
claim and decide to evaluate the salary of the
business school graduates using 
education

22. You wanted to estimate the mean number of
vehicles crossing a busy bridge in your neigh-
borhood each morning during rush hour for the

a � 0.052 tail.

a � 0.051 tail

past year. To accomplish this, you stationed
yourself and a few assistants at one end of the
bridge on 18 randomly selected mornings dur-
ing the year and counted the number of vehi-
cles crossing the bridge in a 10-minute period
during rush hour. You found the mean to be
125 vehicles per minute, with a standard devia-
tion of 32.
a. Construct the 95% confidence limits for the

population mean (vehicles per minute).
b. Construct the 99% confidence limits for 

the population mean (vehicles per minute).
other

23. In Chapter 6, Problem 17, data were presented
from a study conducted to investigate the rela-
tionship between cigarette smoking and illness.
The number of cigarettes smoked daily and the
number of days absent from work in the last
year due to illness were determined for 12 indi-
viduals employed at the company where the re-
searcher worked. The data are shown again
here.

Cigarettes Days
Subject Smoked Absent

1 0 1

2 0 3

3 0 8

4 10 10

5 13 4

6 20 14

7 27 5

8 35 6

9 35 12

10 44 16

11 53 10

12 60 16

a. Construct a scatter plot for these data.
b. Calculate the value of Pearson r.
c. Is the correlation between cigarettes smoked

and days absent significant? Use .
health

24. In Chapter 6, Problem 18, an educator evalu-
ated the reliability of a test for mechanical apti-
tude that she had constructed. Two administra-
tions of the test, spaced 1 month apart, were

a � 0.052 tail
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given to 10 students. The data are again shown
here.

Student Administration 1 Administration 2

1 10 10

2 12 15

3 20 17

4 25 25

5 27 32

6 35 37

7 43 40

8 40 38

9 32 30

10 47 49

a. Calculate the value of Pearson r for the two
administrations of the mechanical aptitude
test.

b. Is the correlation significant? Use 
I/O

25. In Chapter 6, Problem 15, a sociology professor
gave two exams to 8 students. The results are
again shown here.

a � 0.052 tail.

Student Exam 1 Exam 2

1 60 60

2 75 100

3 70 80

4 72 68

5 54 73

6 83 97

7 80 85

8 65 90

a. Calculate the value of Pearson r for the two
exams.

b. Using determine whether the
correlation is significant. If not, does this
mean that Explain.

c. Assume you increased the number of stu-
dents to 20, and now Using the
same alpha level as in part b, what do you
conclude this time? Explain. education

26. A developmental psychologist is interested in
whether tense parents tend to have tense chil-
dren. A study is done involving one parent for
each of 15 families and the oldest child in each
family, measuring tension in each pair. Pearson

Using is the relationship
significant? developmental, clinical

a � 0.052 tail,r � 0.582.

r � 0.653.

r � 0?

a � 0.052 tail,
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13.1 Given

Substituting for s

Taking the square root of both sides of the equationtobt �
Xobt � m

B
SS

N1N � 12

1tobt2
2 �

1Xobt � m22

a
SS

N � 1
b a

1

N
b

�
1Xobt � m22

SS
N1N � 12

B
SS

N � 1
 �

Xobt � m

B
SS

N � 1^
1N

tobt �
Xobt � m

s�1N

■ NOTES

Squaring both sides of the equation
and rearranging terms



13.2 Given

Multiplying by

Subtracting

Multiplying by �1

Rearranging termsXobt � sX
 t0.025 
 m 
 Xobt � sX t0.025

Xobt � sX t0.025 � m � Xobt � sX t0.025

Xobt�Xobt � sX t0.025 
 �m 
 �Xobt � sX t0.025

sX�sX t0.025 
 Xobt � m 
 sX t0.025

�t 0.025 

Xobt � m

sX


 t0.025
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BOOK COMPANION SITE

To access the material on the book companion site,
go to www.cengage.com/psychology/pagano and click
“Companion Site” in the Student section. The book
companion site contains the following material:

• Chapter Outline
• Know and Be Able to Do
• Flash cards for review of terms
• Tutorial Quiz
• Solving Problems with SPSS
• Statistical Workshops
• And more
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Student’s t Test for Correlated
and Independent Groups

LEARNING OBJECTIVES

After completing this chapter, you should be able to:
■ Contrast the single sample and correlated groups t tests.
■ Solve problems involving the t test for correlated groups.
■ Compute size of effect using Cohen’s d, with the t test

for correlated groups.
■ Specify which test is generally more powerful, the t test

for correlated groups or the sign test, and justify your 
answer.

■ Compare the repeated measures and the independent
groups designs.

■ Specify H0 and H1 in terms of m1 and m2 for the indepen-
dent groups design.

■ Define and specify the characteristics of the sampling
distribution of the difference between sample means.

■ Understand the derivation of sw
2, and explain why 

df � N � 2 for the independent groups t test.
■ Solve problems using the t test for independent groups,

state the assumptions underlying this test, and state the
effect on the test of violations of its assumptions.

■ Compute size of effect using Cohen’s d with the inde-
pendent groups t test.

■ Determine the relationship between power and N, size
of real effect, and sample variability, using t equations.

■ Compare the correlated groups and independent groups
t tests regarding their relative power.

■ Explain the difference between the null hypothesis ap-
proach and the confidence interval approach, and specify
an advantage of the confidence interval approach.

■ Construct the 95% and 99% confidence interval for 
m1 � m2 for data from the two group independent groups
design, and interpret these results.

■ Understand the illustrative examples, do the practice
problems, and understand the solutions.

Chapter 14



INTRODUCTION

In Chapters 12 and 13, we have seen that hypothesis testing basically involves two
steps: (1) calculating the appropriate statistic and (2) evaluating the statistic us-
ing its sampling distribution. We further discussed how to use the z and t tests to
evaluate hypotheses that have been investigated with single sample experiments.
In this chapter, we shall present the t test in conjunction with experiments in-
volving two conditions or two samples.

We have already encountered the two-condition experiment when using the
sign test. The two-condition experiment, whether of the correlated groups or in-
dependent groups design, has great advantages over the single sample experi-
ment previously discussed. A major limitation of the single sample experiment is
the requirement that at least one population parameter must be specified. In
the great majority of cases, this information is not available. As will be shown
later in this chapter, the two-treatment experiment completely eliminates the
need to measure population parameters when testing hypotheses. This has obvi-
ous widespread practical utility.

A second major advantage of the two-condition experiment has to do with
interpreting the results of the study. Correct scientific methodology does not of-
ten allow an investigator to use previously acquired population data when con-
ducting an experiment. For example, in the illustrative problem involving early
speaking in children (p. 319), we used a population mean value of 13.0 months.
How do we really know the mean is 13.0 months? Suppose the figures were col-
lected 3 to 5 years before performing the experiment. How do we know that in-
fants haven’t changed over those years? And what about the conditions under
which the population data were collected? Were they the same as in the experi-
ment? Isn’t it possible that the people collecting the population data were not as
motivated as the experimenter and, hence, were not as careful in collecting the
data? Just how were the data collected? By being on hand at the moment that the
child spoke the first word? Quite unlikely. The data probably were collected by
asking parents when their children first spoke. How accurate, then, is the popula-
tion mean?

Even if the foregoing problems didn’t exist, there are others having to do
with the experimental method itself. For example, assuming 13.0 months is accu-
rate and applies properly to the sample of 15 infants, how can we be sure it was
the experimenter’s technique that produced the early utterances? Couldn’t they
have been due to the extra attention or handling or stimulation given the chil-
dren in conjunction with the method rather than the method itself?

Many of these problems can be overcome by the use of the two-condition ex-
periment. By using two groups of infants (arrived at by matched pairs [correlated
groups design] or random assignment [independent groups design]), giving each
group the same treatment except for the experimenter’s particular technique
(same in attention, handling, etc.), running both groups concurrently, using the
same people to collect the data from both groups, and so forth, most alternative
explanations of results can be ruled out. In the discussion that follows, we shall
first consider the t test for the correlated groups design and then for the inde-
pendent groups design.

1m2
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STUDENT’S t TEST FOR CORRELATED GROUPS*

You will recall that, in the repeated measures or correlated groups design, each
subject gets two or more treatments: A difference score is calculated for each
subject, and the resulting difference scores are analyzed.The simplest experiment
of this type uses two conditions, often called control and experimental, or before
and after. In a variant of this design, instead of the same subject being used in
both conditions, pairs of subjects that are matched on one or more characteristics
serve in the two conditions. Thus, pairs might be matched on IQ, age, gender, and
so forth. The difference scores between the matched pairs are then analyzed in
the same manner as when the same subject serves in both conditions. This design
is also referred to as a correlated groups design because the subjects in the groups
are not independently assigned; that is, the pairs share specifically matched com-
mon characteristics. In the independent groups design, which is discussed later in
this chapter, there is no pairing.

We first encountered the correlated groups design when using the sign test.
However, the sign test had low power because it ignored the magnitude of the
difference scores. We used the sign test because of its simplicity. In the analysis of
actual experiments, another test, such as the t test, would probably be used. The t
test for correlated groups allows utilization of both the magnitude and direction
of the difference scores. Essentially, it treats the difference scores as though they
were raw scores and tests the assumption that the difference scores are a random
sample from a population of difference scores having a mean of zero. This can
best be seen through an example.

e x p e r i m e n t Brain Stimulation and Eating

To illustrate, suppose a neuroscientist believes that a brain region called the lateral hy-
pothalamus is involved in eating behavior. One way to test this belief is to use a group
of animals (e.g., rats) and electrically stimulate the lateral hypothalamus through a
chronically indwelling electrode. If the lateral hypothalamus is involved in eating be-
havior, electrical stimulation of the lateral hypothalamus might alter the amount of
food eaten. To control for the effect of brain stimulation per se, another electrode
would be implanted in each animal in a neutral brain area. Each area would be stimu-
lated for a fixed period of time, and the amount of food eaten would be recorded. A
difference score for each animal would then be calculated.

Let’s assume there is insufficient supporting evidence to warrant a direc-
tional alternative hypothesis. Therefore, a two-tailed evaluation is planned. The
alternative hypothesis states that electrical stimulation of the lateral hypothala-
mus affects the amount of food eaten. The null hypothesis specifies that electri-
cal stimulation of the lateral hypothalamus does not affect the amount of food
eaten. If is true, the difference score for each rat would be due to chance fac-
tors. Sometimes it would be positive, and other times it would be negative; some-
times it would be large in magnitude and other times small. If the experiment
were done on a large number of rats, say, the entire population, the mean of the
difference scores would equal zero.† Figure 14.1 shows such a distribution. Note,

H0
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MENTORING TIP
Remember: analysis is done
on the difference scores.

*See Note 14.1.
†See Note 14.2.



carefully, that the mean of this population is known and that the
standard deviation is unknown The chance explanation assumes that
the difference scores of the sample in the experiment are a random sample from
this population of difference scores. Thus, we have a situation in which there is
one set of scores (e.g., the sample difference scores), and we are interested in de-
termining whether it is reasonable to consider these scores a random sample
from a population of difference scores having a known mean and un-
known standard deviation.

Comparison Between Single Sample 
and Correlated Groups t Tests

The situation just described is almost identical to those we have previously con-
sidered regarding the t test with single samples.The only change is that in the cor-
related groups experiment we are analyzing difference scores rather than raw
scores. It follows, then, that the equations for each should be quite similar. These
equations are presented in Table 14.1.

1mD � 02

1sD � ?2.
1mD � 02
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D: D

D

= 0µ 
= ?σ 

Difference scores (Ds)

f i g u r e 14.1 Null-hypothesis population of difference scores.

t a b l e 14.1 t Test for single samples and correlated groups

t Test for Single Samples t Test for Correlated Groups

where difference score
mean of the sample difference scores
mean of the population of difference scores
standard deviation of the sample difference scores
number of difference scores
sum of squares of sample difference scoresSSD � g 1D � D22 �

N �

sD �

mD �

Dobt �

D �

SSD � ©D2 �
1©D22

N
 SS � ©X 2 �

1©X22

N

tobt �
Dobt � mD

B
SSD

N1N � 12

 tobt �
Xobt � m

B
SS

N1N � 12

tobt �
Dobt � mD

sD�2N
 tobt �

Xobt � m

s�2N



It is obvious that the two sets of equations are identical except that, in the
single sample case, we are dealing with raw scores, whereas in the correlated
groups experiment, we are analyzing difference scores. Let’s now add some num-
bers to the brain stimulation experiment and see how to use the t test for corre-
lated groups.

Brain Stimulation Experiment Revisited and Analyzed

A neuroscientist believes that the lateral hypothalamus is involved in eating be-
havior. If so, then electrical stimulation of that area might affect the amount
eaten. To test this possibility, chronic indwelling electrodes are implanted in 10
rats. Each rat has two electrodes: one implanted in the lateral hypothalamus and
the other in an area where electrical stimulation is known to have no effect. Af-
ter the animals have recovered from surgery, they each receive 30 minutes of
electrical stimulation to each brain area, and the amount of food eaten during the
stimulation is measured.The amount of food in grams that was eaten during stim-
ulation is shown in Table 14.2.

1. What is the alternative hypothesis? Assume a nondirectional hypothesis
is appropriate.

2. What is the null hypothesis?
3. What is the conclusion? Use 

S O L U T I O N

1. Alternative hypothesis: The alternative hypothesis specifies that electrical
stimulation of the lateral hypothalamus affects the amount of food eaten.

a � 0.052 tail.
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t a b l e 14.2 Data from brain stimulation experiment

Food Eaten

Lateral Neutral Difference
hypothalamus area

Subject (g) (g) D D2

1 10 6 � 4 16

2 18 8 �10 100

3 16 11 � 5 25

4 22 14 � 8 64

5 14 10 � 4 16

6 25 20 � 5 25

7 17 10 � 7 49

8 22 18 � 4 16

9 12 14 �2 4

10 21 13 � 8 64

�53 379

N � 10    Dobt �
©D
N

�
53
10

� 5.3



The sample difference scores having a mean are a random
sample from a population of difference scores having a mean 

2. Null hypothesis: The null hypothesis states that electrical stimulation of
the lateral hypothalamus has no effect on the amount of food eaten. The
sample difference scores having a mean are a random sample
from a population of difference scores having a mean 

3. Conclusion, using 

STEP 1: Calculate the appropriate statistic. Since this is a correlated groups
design, we are interested in the difference between the paired scores
rather than the scores in each condition per se.The difference scores
are shown in Table 14.2. Of the tests covered so far, both the sign test
and the t test are possible choices.We want to use the test that is most
powerful, so the t test has been chosen. From the data table,
and The calculation of is as follows:

STEP 2: Evaluate the statistic. As with the t test for single samples, if 
falls within the critical region for rejection of the conclusion is
to reject Thus, the same decision rule applies, namely,

The degrees of freedom are equal to the number of difference scores
minus 1.Thus, From Table D in Appen-
dix D, with and 

Since we reject and conclude that electrical stim-
ulation of the lateral hypothalamus affects eating behavior. It ap-
pears to increase the amount eaten.

H00 tobt 0 7 2.262,

tcrit � �2.262

df � 9,a � 0.052 tail

df � N � 1 � 10 � 1 � 9.

If 0 tobt 0 � 0 tcrit 0 , reject H0.

H0.
H0,

tobt

 � 5.08

 �
5.3

21.09

 �
5.3 � 0

B
98.1
10192

 SSD � g  D 
2 �
1� D22

N
 tobt �

Dobt � mD

B
SSD

N1N � 12

tobtDobt � 5.3.
N � 10

a � 0.052 tail:
mD � 0.

Dobt � 5.3

mD � 0.
Dobt � 5.3
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P r a c t i c e  P r o b l e m  14.1

To motivate citizens to conserve gasoline, the government is considering
mounting a nationwide conservation campaign. However, before doing so
on a national level, it decides to conduct an experiment to evaluate the ef-
fectiveness of the campaign. For the experiment, the conservation campaign

(continued)

 � 98.1

 � 379 �
15322

10



350 C H A P T E R  14 Student’s t Test for Correlated and Independent Groups

is conducted in a small but representative geographical area.Twelve families
are randomly selected from the area, and the amount of gasoline they use is
monitored for 1 month before the advertising campaign and for 1 month af-
ter the campaign. The following data are collected:

Before the After the Difference
Campaign Campaign

Family (gal/mo.) (gal/mo.) D D2

A 55 48 7 49

B 43 38 5 25

C 51 53 �2 4

D 62 58 4 16

E 35 36 �1 1

F 48 42 6 36

G 58 55 3 9

H 45 40 5 25

I 48 49 �1 1

J 54 50 4 16

K 56 58 �2 4

L 32 25 7 49
35 235

a. What is the alternative hypothesis? Use a nondirectional hypothesis.
b. What is the null hypothesis?
c. What is the conclusion? Use 

S O L U T I O N

a. Alternative hypothesis: The conservation campaign affects the amount
of gasoline used.The sample with is a random sample from
a population of difference scores where 

b. Null hypothesis:The conservation campaign has no effect on the amount
of gasoline used.The sample with is a random sample from
a population of difference scores where 

c. Conclusion, using 

STEP 1: Calculate the appropriate statistic. The difference scores are in-
cluded in the previous table. We have subtracted the “after”
scores from the “before” scores. Assuming the assumptions of 
t are met, the appropriate statistic is From the data table,

and .Dobt � 2.917N � 12
tobt.

a � 0.052 tail:
mD � 0.

Dobt � 2.917

mD � 0.
Dobt � 2.917

a � 0.052 tail.

N � 12  Dobt �
©D
N

�
35
12

� 2.917



Size of Effect Using Cohen’s d

As we pointed out in the discussion of size of effect in conjunction with the t test
for single samples, in addition to determining whether there is a real effect, it is
often desirable to determine the size of the effect. For example, in the experiment
investigating the involvement of the lateral hypothalamus in eating behavior
(p. 348), tobt was significant and we were able to conclude that electrical stimula-
tion of the lateral hypothalamus had a real effect on eating behavior. It seems
reasonable that we would also like to know the size of the effect.

To evaluate the size of effect we will again use Cohen’s method involving the
statistic d.* For convenience, we have repeated below the general equation for d,
given in Chapter 13, p. 330.

General equation for size of effect

In the correlated groups design, it is the magnitude of the mean of the difference
scores ( ) that varies directly with the size of effect, and the standard deviation
of the population difference scores ( ) that are of interest. Thus, for this design,

Taking the absolute value of in the previous equation keeps d positive re-
gardless of whether the convention used in subtracting the two scores for each
subject produces a positive or negative . Please note that when applying this
equation, if H1 is directional, must be in the direction predicted by H1. If it is
not in the predicted direction, when analyzing the data of the experiment, the
conclusion would be to retain H0 and ordinarily, as with the single sample t test,
it would make no sense to inquire about the size of the real effect.

Dobt

Dobt

Dobt

Conceptual equation for size of
effect, correlated groups t testd �

�Dobt�
sD

sD

D

d �
�mean difference�

populuation standard deviation
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STEP 2: Evaluate the statistic. Degrees of freedom
From Table D, with and 11 df,

Since , we reject The conservation campaign
affects the amount of gasoline used. It appears to decrease gaso-
line consumption.

H0.0 tobt 0 7 2.201

tcrit � �2.201

a � 0.052 tail1 � 11.
�  N � 1 � 12 �

 � 2.91

 �
2.917 � 0

B
132.917
121112

 SSD � ©D2 �
1©D22

N
 tobt �

Dobt � mD

B
SSD

N1N � 12

 � 132.917

 � 235 �
13522

12

*For reference, see footnote in Chapter 13, p. 329.



Since we don’t know sD, as usual, we estimate it with sD, the standard devi-
ation of the sample difference scores. The resulting equation is given by

where

e x a m p l e Lateral Hypothalamus and Eating Behavior Experiment

Let’s now apply this theory to some data. For the experiment investigating the effect of
electrical stimulation of the lateral hypothalamus on eating behavior (p. 348), we con-
cluded that the electrical stimulation had a real effect. Now, let’s determine the size of
the effect. In that experiment,

Substituting these values in the equation for , we obtain

To interpret the value, we use the same criterion of Cohen that was presented in
Table 13.5 on p. 330. For convenience we have reproduced the table again here.

d̂

d̂ �
Dobt

sD
�

5.3
3.30

� 1.61

d̂

Dobt � 5.3 and sD � B
SSD

N � 1
� B

98.1
10 � 1

� 3.30

 sD � the standard deviation of the sample difference scores

 �Dobt� � the absolute value of the mean of the sample difference scores

 d̂ � estimated d

Computational equation for size
of effect, correlated groups t testd̂ �

�Dobt�
sD
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t a b l e 14.3 Cohen’s criteria for interpreting
the value of 

Value of Interpretation of 

0.00–0.20 Small effect

0.21–0.79 Medium effect

�0.80 Large effect 

d̂d̂

d̂

*See Chapter 13 footnote on p. 330 for a reference discussing some cautions in using Cohen’s 
criteria.

Since the value of 1.61 is higher than 0.80, we conclude that the electrical stimulation
of the lateral hypothesis had a large effect on eating behavior.

t Test for Correlated Groups and Sign Test Compared

It would have been possible to solve either of the previous two problems using the
sign test. We chose the t test because it is more powerful. To illustrate this point,
let’s use the sign test to solve the problem dealing with gasoline conservation.

S O L U T I O N  U S I N G  S I G N  T E S T

STEP 1: Calculate the statistic. There are 8 pluses in the sample.

STEP 2: Evalute the statistic. With and 

p18 or more pluses2 � p182 � p192 � p1102 � p1112 � p1122

a � 0.052 tail,N � 12, P � 0.50,

d̂



From Table B in Appendix D,

Since the alpha level is two-tailed,

Since we conclude by retaining 

We are unable to reject with the sign test, but we were able to reject
with the t test. Does this mean the campaign is effective if we analyze the

data with the t test and ineffective if we use the sign test? Obviously not. With
the low power of the sign test, there is a high chance of making a Type II error
(i.e., retaining when it is false). The t test is usually more powerful than the
sign test. The additional power gives a better chance to be rejected if it is
false. In this case, the additional power resulted in rejection of When sev-
eral tests are appropriate for analyzing the data, it is a general rule of statisti-
cal analysis to use the most powerful one, because this gives the highest prob-
ability of rejecting when it is false.

Assumptions Underlying the t Test for Correlated Groups

The assumptions are very similar to those underlying the t test for single samples.
The t test for correlated groups requires that the sampling distribution of be
normally distributed. This means that N should be � 30, assuming the population
shape doesn’t differ greatly from normality, or the population scores themselves
should be normally distributed.*

z AND t TESTS FOR INDEPENDENT GROUPS

Independent Groups Design

Two basic experimental designs are used most frequently in studying behavior.
The first was introduced when discussing the sign test and the t test for correlated
groups. This design is called the repeated or replicated measures design. The sim-
plest form of the design uses two conditions: an experimental and a control con-
dition. The essential feature of the design is that there are paired scores between
conditions, and difference scores from each score pair are analyzed to determine
whether chance alone can reasonably explain them.

The other type of design is called the independent groups design. Like the
correlated groups design, the independent groups design involves experiments
using two or more conditions. Each condition uses a different level of the
independent variable. The most basic experiment has only two conditions: an ex-
perimental and a control condition. In this chapter, we shall consider this basic
experiment involving only two conditions. More complicated experiments will be
considered in Chapter 15.

D

H0

H0.
H0

H0

H0

H0

H0.0.3874 7 0.05,

 � 0.3874

 � 2 10.1937 2

 p 1outcome at least as extreme as 8 pluses 2 � 2 3 18 or more pluses 2 4

 � 0.1937

 p 18 or more pluses 2 � 0.1208 � 0.0537 � 0.0161 � 0.0029 � 0.0002
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*Many authors limit the use of the t test to data that are of interval or ratio scaling. Please see the
footnote in Chapter 2, p. 34, for references discussing this point.

MENTORING TIP
When analyzing real data, al-
ways use the most powerful
test that the data and assump-
tions of the test allow.



In the independent groups design, subjects are randomly selected from the
subject population and then randomly assigned to either the experimental or the
control condition. There is no basis for pairing of subjects, and each subject is
tested only once. All of the subjects in the experimental condition receive the
level of the independent variable appropriate for the experimental condition,
and the subjects themselves are referred to as the “experimental group.” All of
the subjects in the control condition receive the level of the independent vari-
able appropriate for the control condition and are referred to as the “control
group.”

When analyzing the data, since subjects are randomly assigned to conditions,
there is no basis for pairing scores between the conditions. Rather, a statistic is
computed for each group separately, and the two group statistics are compared to
determine whether chance alone is a reasonable explanation of the differences
between the group statistics. The statistic that is computed on each group de-
pends on the inference test being used. The t test for independent groups com-
putes the mean of each group and then analyzes the difference between these
two group means to determine whether chance alone is a reasonable explanation
of the difference between the two means.

H1 and H0 The sample scores in one of the conditions (say, condition 1) can be
considered a random sample from a normally distributed population of scores
that would result if all the individuals in the population received that condition
(condition 1). Let’s call the mean of this hypothetical population and the
standard deviation Similarly, the sample scores in condition 2 can be con-
sidered a random sample from a normally distributed population of scores that
would result if all the individuals in the population were given condition 2. We
can call the mean of this second population and the standard deviation 
Thus,

mean of the population that receives condition 1

standard deviation of the population that receives condition 1

mean of the population that receives condition 2

standard deviation of the population that receives condition 2

Changing the level of the independent variable is assumed to affect the mean of
the distribution but not the standard deviation or variance Thus,
under this assumption, if the independent variable has a real effect, the means of
the populations will differ but their variances will stay the same. Hence, is as-
sumed equal to One way in which this assumption would be met is if the in-
dependent variable has an equal effect on each individual. A directional alterna-
tive hypothesis would predict that the samples are random samples from
populations where or depending on the direction of the effect.
A nondirectional alternative hypothesis would predict If the indepen-
dent variable has no effect, the samples would be random samples from popula-
tions where * and chance alone would account for the differences be-
tween the sample means.

m1 � m2

m1 � m2.
m1 6 m2,m1 7 m2

s2
2.

s1
2

1s2
22.1s221m22,

s2  �

m2  �

s1  �

m1  �

s2.m2

s1.
m1
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MENTORING TIP
Remember: for the indepen-
dent groups design, the sam-
ples (groups) are separate;
there is no basis for pairing 
of scores, and the raw scores
within each group are ana-
lyzed separately.

*In this case, there would be two null-hypothesis populations: one with a mean and a standard de-
viation of and the other with a mean and a standard deviation However, since and

the populations would be identical.s1 � s2,
m1 � m2s2.m2s1

m1

MENTORING TIP
Remember: for a directional
H1: m1 � m2 or m1 	 m2.
for a nondirectional H1: m1 �

m2.



z TEST FOR INDEPENDENT GROUPS

Before discussing the t test for independent groups, we shall present the z test. In
the two-group situation, the z test is almost never used because it requires that

or be known. However, it provides an important conceptual foundation
for understanding the t test. After presenting the z test, we shall move to the t
test.

Let’s begin with an experiment.

e x p e r i m e n t Hormone X and Sexual Behavior

A physiologist has the hypothesis that hormone X is important in producing sexual be-
havior. To investigate this hypothesis, 20 male rats were randomly sampled and then
randomly assigned to two groups. The animals in group 1 were injected with hormone
X and then were placed in individual housing with a sexually receptive female. The
animals in group 2 were given similar treatment except they were injected with a
placebo solution. The number of matings were counted over a 20-minute period. The
results are shown in Table 14.4.

As shown in Table 14.4, the mean of group 1 is higher than the mean of group 2.The
difference between the means of the two samples is 2.8 and is in the direction that in-
dicates a positive effect. Is it legitimate to conclude that hormone X was responsible
for the difference in means? The answer, of course, is no. Before drawing this conclu-
sion, we must evaluate the null-hypothesis explanation. The statistic we are using for
this evaluation is the difference between the means of the two samples. As with all
other statistics, we must know its sampling distribution before we can evaluate the null
hypothesis.

The Sampling Distribution of the Difference 
Between Sample Means (X–1 � X–2)

Like the sampling distribution of the mean, this sampling distribution can be de-
termined theoretically or empirically. Again, for pedagogical purposes, we prefer
the empirical approach. To empirically derive the sampling distribution of

all possible different samples of size would be drawn from a popu-
lation with a mean of and variance of Likewise, all possible samples of
size would be drawn from another population with a mean and variance 

The values of and would then be calculated for each sample. Next,
would be calculated for all possible pairings of samples of size and 

The resulting distribution would contain all the possible different 
scores that could be obtained from the populations when sample sizes are and

Once this distribution has been obtained, it is a simple matter to calculate the
probability of obtaining each mean difference score assuming sam-
pling is random of and scores from their respective populations. This then
would be the sampling distribution of the difference between sample means for
samples of and taken from the specified populations.This process would be
repeated for different sample sizes and population scores. Whether determined
theoretically or empirically, the sampling distribution of the difference between
sample means has the following characteristics:

1. If the populations from which the samples are taken are normal, then the
sampling distribution of the difference between sample means is also normal.

n2n1

n2n1

1X1 � X22,
n2.

n1

X1 � X2n2.
n1X1 � X2

X2X1s 2
2 .

m2n2

s 2
1 .m1

n1X1 � X2,

s2
2s 2

1

z Test for Independent Groups 355

t a b l e 14.4 Data from
hormone X and sexual
behavior experiment

Hormone X, Placebo,
Group 1 Group 2

8 5

10 6

12 3

6 4

6 7

7 8

9 6

8 5

7 4

11 8

84 56

X1 � X2 � 2.8

X2 � 5.6X1 � 8.4

n2 � 10n1 � 10



2.

where the mean of the sampling distribution of the difference
between sample means

3.

where standard deviation of the sampling distribution of
the difference between sample means; alternatively,
standard error of the difference between sample
means

variance of the sampling distribution of the mean for
samples of size taken from the first population

variance of the sampling distribution of the mean for
samples of taken from the second population

If, as mentioned previously, we assume that the variances of the two populations
are equal then the equation for can be simplified as follows:

where

The distribution is shown in Figure 14.2. Now let’s return to the illustrative
example.

s2 � s 2
1 � s 2

2 � the variance of each population

 � Bs2 a
1
n1

�
1
n 2
b

 � B
s 2

1

n1
�
s 2

2

n 2

 sX1�X2
� 2sX1

2 � sX2

2

sX1�X2
1s 2

1 � s 2
2 2,

n2

 sX 2

2 �

n1

 sX 1

2 �

sX1�X2
�

sX1�X2
� 2sX1

2 � sX 2

2

mX1�X2
�

mX1�X2
� m1 � m2
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f i g u r e 14.2 Sampling distribution of the difference 
between sample mean scores.

X1 – X2: X1–X2

X1–X2

= –µ 

= +σ σ 

1µ 2µ 

Scores of the difference
between sample means

[(X1 – X2)s]

1–
n1

2 1–
n2

– –

– –

– –

– –

( )

e x p e r i m e n t Hormone X Experiment Revisited

The results of the experiment showed that 10 rats injected with hormone X had a mean
of 8.4 matings, whereas the mean of the 10 rats injected with a placebo was 5.6. Is the
mean difference significant? Use a � 0.052 tail.1X1 � X2 � 2.82



S O L U T I O N

The sampling distribution of is shown in Figure 14.3. The shaded area con-
tains all the mean difference scores of �2.8 or more. Assuming the sampling distribu-
tion of is normal, if the sample mean difference (2.8) can be converted to its
z value, we can use the z test to solve the problem. The equation for is similar to
the other z equations we have already considered. However, here the value we are con-
verting is Thus,

If hormone X had no effect on mating behavior, then both samples are random sam-
ples from populations where and Thus,

Note that the variance of the populations must be known before can be cal-
culated. Since is almost never known, this limitation severely restricts the practical
use of the z test in this design. However, as you might guess, can be estimated from
the sample data. When this is done, we have the t test for independent groups.

s2
s2

zobt1s22

zobt �
1X1 � X22 � 0

Bs2a
1
n1

�
1
n 2
b

�
2.8

Bs2a
1

10
�

1

10
b

mX1�X2
� m1 � m2 � 0.m1 � m2

zobt �
1X1 � X22 � mX1�X2

sX1�X2

  equation for zobt, independent groups design

X1 � X2.

zobt

X1 � X2

X1 � X2
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STUDENT’S t TEST FOR INDEPENDENT GROUPS

Comparing the Equations for zobt and tobt

The equations for the z and t test are shown in Table 14.5. The z and t equations
are identical except that the t equation uses to estimate the population
variance This situation is analogous to the t test for single samples. You will
recall in that situation we used the sample standard deviation(s) to estimate 
However, in the t test for independent groups, there are two samples, and we wish
to estimate Since s is an accurate estimate of is an accurate estimate ofs, s2s2.

s.
1s22.

s 2
W

f i g u r e 14.3 Sampling distribution of the difference 
between sample mean scores for the hormone problem.

X1 – X2: 0 2.8

X1–X2

X1–X2

= 0µ 

=σ 

–

–

–

–

–

–

+σ 1–
n1

2( )1–
n2

= +1–
n1

? ( )1–
n2



There are two samples, and either could be used to estimate but we can
get a more precise estimate by using both. It turns out the most precise estimate
of is obtained by using a weighted average of the sample variances and 
Weighting is done using degrees of freedom as the weights. Thus,

Substituting for in the t equation, we arrive at the computational equation for
Thus,

computational equation for tobt,
independent groups design

To evaluate the null hypothesis, we assume both samples are random samples
from populations having the same mean value Therefore, *
The previous equation reduces to

computational equation for tobt,
assuming mX1 � X2 � 0

We could go ahead and calculate for the hormone X example, but to evalu-
ate we must know the sampling distribution of t. It turns out that, when one de-tobt,

tobt

tobt �
X1 � X2

Ba
SS1 � SS2

n1 � n2 � 2
b a

1
n1

�
1
n2
b

mX1�X2
� 0.1m1 � m22.

tobt �
1X1 � X22 � mX1�X2

BsW
2  a

1
n1

�
1
n2
b

�  
1X1 � X22 � mX1�X2

Ba
SS1 � SS2

n1 � n2 � 2
b a

1
n1

�
1
n2
b

tobt.
s 2

W

 SS2 � sum of squares of the second sample
 SS1 � sum of squares of the first sample
 s 2

2 � variance of the second sample
 s 2

1 � variance of the first sample
 where  s 2

W � weighted estimate of s2

s 2
W �

df1s
2

1 � df2s
2

2

df1 � df2
�

1n1 � 12  a
SS1

n1 � 1
b � 1n2 � 12  a

SS2

n2 � 1
b

1n1 � 12 � 1n2 � 12
�

SS1 � SS2

n1 � n2 � 2

s 2
2 .s 2

1s2

s2,s2.
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MENTORING TIP
The t test is used instead of the
z test because the value of s2

is almost never known.

t a b l e 14.5 z and t equations compared

z Test t Test

where
estimate of estimated standard error
of the difference between sample means

sX1�X2
�sX1�X2

�

sW
2 � weighted estimate of s 2

 �
1X1 � X22 � mX1�X2

Bs 2
W      a

1
n1

�
1
n2
b

 �
1X1 � X22 � mX1�X2

Bs2  a
1
n1

�
1
n2
b

 tobt �
1X1 � X22 � mX1�X2

sX1�X2

 zobt �
1X1 � X22 � mX1�X2

sX1�X2

*See Note 14.3.



rives the sampling distribution of t for independent groups, the same family of curves
is obtained as with the sampling distribution of t for single samples, except that there
is a different number of degrees of freedom.You will recall that 1 degree of freedom
is lost each time a standard deviation is calculated. Since we calculate and for
the two-sample case, we lose 2 degrees of freedom, one from each sample.Thus,

Table D, then, can be used in the same manner as with the t test for single
samples, except in the two-sample case, we enter the table with df. Thus,
the t distribution varies both with N and degrees of freedom, but it varies
uniquely only with degrees of freedom. That is, the t distribution corresponding
to 13 df is the same whether it is derived from the single sample situation with

or the two-sample situation with 

Analyzing the Hormone X Experiment

At long last, we are ready to evaluate the hormone data. The problem and data
are restated for convenience.

A physiologist has conducted an experiment to evaluate the effect of
hormone X on sexual behavior. Ten rats were injected with hormone X, and 10
other rats received a placebo injection. The number of matings were counted
over a 20-minute period.

The results are shown in Table 14.6.

1. What is the alternative hypothesis? Use a nondirectional hypothesis.
2. What is the null hypothesis?
3. What do you conclude? Use a � 0.052 tail.

N � 15.N � 14

N � 2

where  N � n1 � n2

df � 1n1 � 12 � 1n2 � 12 � n1 � n2 � 2 � N � 2

s 2
2s 2

1
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t a b l e 14.6 Data from hormone X experiment

Group 1 Group 2
Hormone X Placebo

8 64 5 25

10 100 6 36

12 144 3 9

6 36 4 16

6 36 7 49

7 49 8 64

9 81 6 36

8 64 5 25

7 49 4 16

11 121 8 64
84 744 56 340

X1 � X2 � 2.8

X2 � 5.6X1 � 8.4

n2 � 10n1 � 10

X 2
2X2X 2

1X1

MENTORING TIP
Remember: the t distribution
varies uniquely with df, not
with N.



S O L U T I O N

1. Alternative hypothesis: The alternative hypothesis specifies that hormone
X affects sexual behavior. The sample mean difference of 2.8 is due to
random sampling from populations where 

2. Null hypothesis: The null hypothesis states that hormone X is not related
to sexual behavior. The sample mean difference of 2.8 is due to random
sampling from populations where 

3. Conclusion, using 

STEP 1: Calculate the appropriate statistic. For now, assume t is appropri-
ate. We shall discuss the assumptions of t in a later section. From
Table 14.6, and Solving for

and 

Substituting these values in the equation for we have

STEP 2: Evaluate the statistic. As with the previous t tests, if falls in the
critical region for rejection of we reject Thus,

The number of degrees of freedom is 
From Table D, with and 

Since we conclude by rejecting 

Calculating tobt When n1 � n2

When the sample sizes are equal, the equation for can be simplified. Thus,

but Substituting n for and in the equation for 

Thus,

tobt �
X1 � X2

B
SS1 � SS2

n1n � 12

  equation for calculating tobt when n1 � n2

tobt �
X1 � X2

Ba
SS1 � SS2

n � n � 2
b a

1
n

�
1
n
b

�
X1 � X2

Ba
SS1 � SS2

21n � 12
b a

2
n
b

�
X1 � X2

Ba
SS1 � SS2

n1n � 12
b

tobt,n2n1n1 � n2 � n.

tobt �
X1 � X2

Ba
SS1 � SS2

n1 � n2 � 2
b a

1
n1

�
1
n2
b

tobt

H0.0 tobt 0 7 2.101,

tcrit � �2.101

df � 18,a � 0.052 tail

df � N � 2 � 20 � 2 � 18.

If not, retain H0.
If 0 tobt 0 � 0 tcrit 0 , reject H0.

H0.H0 ,
tobt

tobt �
X1 � X2

Ba
SS1 � SS2

n1 � n2 � 2
b a

1
n1

�
1
n2
b

�
8.4 � 5.6

Ba
38.4 � 26.4
10 � 10 � 2

b a
1

10
�

1
10
b

� 3.30

tobt,

 � 26.4 � 38.4

 � 340 �
15622

10
 � 744 �

18422

10

 SS2 � ©X 2
2 �
1©X22

2

n2
 SS1 � ©X 1

2 �
1©X12

2

n1

SS2,SS1

X2 � 5.6.n1 � 10, n2 � 10, X1 � 8.4,

a � 0.052 tail:
m1 � m2.

m1 � m2.
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Since in the previous problem, we can use the simplified equation to
calculate Thus,

This is the same value for that we obtained when using the more complicated
equation. Whenever it’s easier to use the simplified equation. When

the more complicated equation must be used.
Let’s do one more problem for practice.

n1 � n2,
n1 � n2,

tobt

tobt �
X1 � X2

B
SS1 � SS2

n1n � 12

�
8.4 � 5.6

B
38.4 � 26.4

10192

� 3.30

tobt.
n1 � n2
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P r a c t i c e  P r o b l e m  14.2

A neurosurgeon believes that lesions in a particular area of the brain, called
the thalamus, will decrease pain perception. If so, this could be important in
the treatment of terminal illness that is accompanied by intense pain.As a first
attempt to test this hypothesis, he conducts an experiment in which 16 rats are
randomly divided into two groups of eight each. Animals in the experimental
group receive a small lesion in the part of the thalamus thought to be involved
with pain perception. Animals in the control group receive a comparable le-
sion in a brain area believed to be unrelated to pain.Two weeks after surgery,
each animal is given a brief electrical shock to the paws.The shock is adminis-
tered in an ascending series, beginning with a very low intensity level and in-
creasing until the animal first flinches. In this manner, the pain threshold to
electric shock is determined for each rat. The following data are obtained.
Each score represents the current level (milli-amperes) at which flinching is
first observed. The higher the current level is, the higher is the pain threshold.
Note that one animal died during surgery and was not replaced.

Neutral Area Thalamic Lesions
Lesions Experimental

Control Group Group
Group 1 Group 2

0.8 0.64 1.9 3.61

0.7 0.49 1.8 3.24

1.2 1.44 1.6 2.56

0.5 0.25 1.2 1.44

0.4 0.16 1.0 1.00

0.9 0.81 0.9 0.81

1.4 1.96 1.7 2.89

1.1 1.21 10.1 15.55
7.0 6.96

X1 � X2 � �0.568

 X2 � 1.443 X1 � 0.875

 n2 � 7 n1 � 8

X 2
2X2X 2

1X1

(continued)



Assumptions Underlying the t Test

The assumptions underlying the t test for independent groups are as follows:

1. The sampling distribution of is normally distributed. This means
the populations from which the samples were taken should be normally
distributed.

2. There is homogeneity of variance. You will recall that, at the beginning of
our discussion concerning the t test for independent groups, we pointed

X1 � X2
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a. What is the alternative hypothesis? In this problem, assume there is suf-
ficient theoretical and experimental basis to use a directional hypothesis.

b. What is the null hypothesis?
c. What do you conclude? Use 

S O L U T I O N

a. Alternative hypothesis:The alternative hypothesis states that lesions of the
thalamus decrease pain perception. The difference between sample means
of �0.568 is due to random sampling from populations where 

b. Null hypothesis: The null hypothesis states that lesions of the thalamus
either have no effect or they increase pain perception.The difference be-
tween sample means of �0.568 is due to random sampling from popula-
tions where 

c. Conclusion, using 

STEP 1: Calculate the appropriate statistic. Assuming the assumptions
of t are met, is the appropriate statistic. From the data table,

Solving for and
we obtain

Substituting these values into the general equation for we have

STEP 2: Evaluate the statistic. Degrees of freedom � N � 2 � 15 � 2 � 13.
From Table D, with and df � 13,

Since we reject and conclude that lesions of the
thalamus decrease pain perception.

H00 tobt 0  7 1.771,

tcrit � �1.771

a � 0.051 tail

 �
0.875 � 1.443

Ba
0.835 � 0.977

8 � 7 � 2
b a

1
8

�
1
7
b

� �2.94

 tobt �
X1 � X2

Ba
SS1 � SS2

n1 � n2 � 2
b a

1
n1

�
1
n2
b

tobt,

 � 0.977 � 0.835

 � 15.550 �
110.12 2

7
 � 6.960 �

172 2

8

SS2 � ©  X 2
2 �

1©  X22
2

n2
SS1 � ©  X 2

1  �
1©  X12

2

n1

SS2,
SS1n1 � 8, n2 � 7, X1 � 0.875, and X2 � 1.443.

tobt

a � 0.051 tail:
m1 � m2.

m1 6 m2.

a � 0.051 tail.



out that the t test assumes that the independent variable affects the means
of the populations but not their standard deviations Since the
variance is just the square of the standard deviation, the t test for inde-
pendent groups also assumes that the variances of the two populations
are equal; that is, This is spoken of as the homogeneity of vari-
ance assumption. If the variances of the samples in the experiment

are very different (e.g., if one variance is more than 4 times
larger than the other), the two samples probably are not random samples
from populations where If this is true, the homogeneity of vari-
ance assumption is violated *

Violation of the Assumptions of the t Test

Experiments have been conducted to determine the effect on the t test for inde-
pendent groups of violating the assumptions of normality of the raw-score pop-
ulations and homogeneity of variance. Fortunately, it turns out that the t test is a
robust test. A test is said to be robust if it is relatively insensitive to violations of its
underlying mathematical assumptions. The t test is relatively insensitive to viola-
tions of normality and homogeneity of variance, depending on sample size and
the type and magnitude of the violation.† If and the size of each sample
is equal to or greater than 30, the t test for independent groups may be used with-
out appreciable error despite moderate violation of the normality and/or the ho-
mogeneity of variance assumptions. If there are extreme violations of these as-
sumptions, then an alternative test such as the Mann–Whitney U test should be
used. This test is discussed in Chapter 17.

Before leaving this topic, it is worth noting that, when the two samples show
large differences in their variances, it may indicate that the independent variable
is not having an equal effect on all the subjects within a condition. This can be an
important finding in its own right, leading to further experimentation into how
the independent variable varies in its effects on different types of subjects.

Size of Effect Using Cohen’s d

As has been previously discussed, in addition to determining whether there is a
real effect, it is often desirable to determine the size of the effect. For example,
in the experiment investigating the role of the thalamus in pain perception
(p. 361), tobt was significant and we were able to conclude that lesions of the thal-
amus decrease pain perception. But surely, it would also be desirable to know
how large a role the thalamus plays. Does the thalamus totally control pain per-
ception such that if the relevant thalamic nuclei were completely destroyed, the
subject would no longer feel pain? On the other hand, is the effect so small that
for any practical purposes, it can be ignored? After all, even small effects are
likely to be significant if N is large enough. Determining the size of the thalamic

n1 � n2

1s 2
1 � s 2

2 2.
s 2

1 � s 2
2 .

1s 2
1  and s 2

2 2

s 2
1 � s 2

2 .

1s1 � s22.
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*There are many inference tests to determine whether the data meet homogeneity of variance 
assumptions. However, this topic is beyond the scope of this textbook. See R. E. Kirk, Experimental
Design, 3rd ed., Brooks/Cole, Pacific Grove, CA, 1995, pp. 100–103.

Some statisticians also require that the data be of interval or ratio scaling to use the z test, Stu-
dent’s t test, and the analysis of variance (covered in Chapter 15). For a discussion of this point, see
the references contained in the Chapter 2 footnote on p. 34.
†For a review of this topic, see C. A. Boneau, “The Effects of Violations of Assumptions Underlying
the t Test,” Psychological Bulletin, 57 (1960), 49–64.



effect would be particularly important for the neurosurgeon doing this research
in hope of developing a treatment for reducing the intense pain felt by some ter-
minal patients.

To evaluate the size of effect we will again use Cohen’s method involving the
statistic d.* With the t test for independent groups, it is the magnitude of the dif-
ference between the two sample means (X1 � X2) that varies directly with the
size of effect. Thus, for this design,

Taking the absolute value of X1 � X2 in the previous equation keeps d positive
regardless of whether the convention used in assigning treatments to condition 1
and condition 2 results in a positive or negative value for X1 � X2. Again, please
note that when applying this equation, if H1 is directional, X1 � X2 must be in
the direction predicted by H1. If it is not in the predicted direction, when ana-
lyzing the data of the experiment, the conclusion would be to retain H0 and, as
with the other t tests, it would make no sense to inquire about the size of the real
effect.

Since we don’t know we estimate it with . The resulting equation is
given by

where

e x a m p l e Thalamus and Pain Perception Experiment

Let’s now apply this theory to some data. For the experiment investigating whether
thalamic lesions decrease pain perception (Practice Problem 14.2, p. 361),

and

Substituting these values into the equation for , we obtain

To interpret the value, we again use the same criterion of Cohen that was presented
in Table 13.5 on p. 330. For convenience we have reproduced the table here.

d̂

d̂ �
�X1 � X2�

2sW
2

�
0.568
10.139

� 1.52

d̂

sW
2 �

SS1 � SS2

n1 � n2 � 2
�

0.835 � 0.977
8 � 7 � 2

� 0.139

�X1 � X2� � �0.875 � 1.443� � 0.568

 2sW
2 � weighted estimate of s

 between the two sample means
 �X1 � X2� � the absolute value of the difference

 d̂ � estimated d

Computational equation for size of
effect, independent groups t testd̂ �

�X1 � X2�

2sW
2

2sW
2s,

Conceptual equation for size of
effect, independent groups t testd �

0X1 � X2 0

s
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*See Chapter 13 footnote, p. 329 for reference.



Since the value of 1.52 is higher than 0.80, we conclude that the thalamic lesions had
a large effect on pain perception.

POWER OF THE t TEST

The three equations for are as follows:

Single sample Correlated groups Independent groups

It seems fairly obvious that the larger is, the more likely will be rejected.
Hence, anything that increases the likelihood of obtaining high values of will
result in a more powerful t test. This can occur in several ways. First, the larger
the real effect of the independent variable is, the more likely 

will be large. Since these difference scores are in the numerator
of the t equation, it follows that the greater the effect of the independent variable,
the higher the power of the t test (other factors held constant). Of course, we don’t
know before doing the experiment what the actual effect of the independent
variable is. If we did, then why do the experiment? Nevertheless, this analysis is
useful because it suggests that, when designing an experiment, it is desirable to
use the level of independent variable that the experimenter believes is the most
effective to maximize the chances of detecting its effect.This analysis further sug-
gests that, given meager resources for conducting an experiment, the experiment
may still be powerful enough to detect the effect if the independent variable has
a large effect.

The denominator of the t equation varies as a function of sample size 
and sample variability. As sample size increases, the denominator decreases.
Therefore,

decrease, causing to increase. Thus, increasing sample size increases the power
of the t test.

tobt

B
SS

N1N � 12
, B

SSD

N1N � 12
, and B

SS1 � SS2

n1n � 12

or 1X1 � X22 � 0
Xobt � m, Dobt � 0,

tobt

H0tobt

tobt �
1X1 � X22 � 0

B
SS1 � SS2

n1n � 12

tobt �
Dobt � 0

B
SSD

N1N � 12

tobt �
Xobt � m

B
SS

N1N � 12

tobt

d̂
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t a b l e 14.7 Cohen’s criteria for interpreting
the value of *

Value of Interpretation of 

0.00–0.20 Small effect

0.21–0.79 Medium effect

�0.80 Large effect 

d̂d̂

d̂

*See Chapter 13 footnote on p. 330 for a reference discussing some cautions in using Cohen’s 
criteria.



The denominator also varies as a function of sample variability. In the single
sample case, SS is the measure of variability. in the correlated groups exper-
iments and in the independent groups experiments reflect the vari-
ability. As the variability increases, the denominator in each case also increases,
causing to decrease. Thus, high sample variability decreases power. Therefore,
it is desirable to decrease variability as much as possible. One way to decrease
variability is to carefully control the experimental conditions. For example, in a
reaction-time experiment, the experimenter might use a warning signal that
directly precedes the stimulus to which the subject must respond. In this way,
variability due to attention lapses could be eliminated. Another way is to use the
appropriate experimental design. For example, in certain situations, using a cor-
related groups design rather than an independent groups design will decrease
variability.

CORRELATED GROUPS AND INDEPENDENT GROUPS 
DESIGNS COMPARED

You are probably aware that many of the hypotheses presented in illustrative ex-
amples could have been investigated with either the correlated groups or the in-
dependent groups design. For instance, in Practice Problem 14.1, we presented an
experiment that was conducted to evaluate the effect of a conservation campaign
on gasoline consumption. The experiment used a correlated groups design, and
the data were analyzed with the t test for correlated groups. For convenience, the
data and analysis are provided again in Table 14.8.

The conservation campaign could also have been evaluated using the inde-
pendent groups design. Instead of using the same subjects in each condition,
there would be two groups of subjects. One group would be monitored before the
campaign and the other group monitored after the campaign.To evaluate the null
hypothesis, each sample would be treated as an independent sample randomly
selected from populations where The basic statistic calculated would be

For the sake of comparison, let’s analyze the conservation campaign
data as though they were collected by using an independent groups design.*
Assume there are two different groups.The families in group 1 (before) are mon-
itored for 1 month with respect to the amount of gasoline used before the con-
servation campaign is conducted, whereas the families in group 2 are monitored
for 1 month after the campaign has been conducted.

Since we can use the equation for equal n. In this experiment,
Solving for we obtain

 � 1104 � 902.917

 � 26,496 �
155222

12
 � 29,617 �

158722

12

 SS2 � ©X 2
2 �

1©X22
2

n2
 SS1 � ©X 2

1 �
1©X12

2

n1

 X2 �
©X2

n2
�

552
12

� 46.000 X1 �
©X1

n1
�

587
12

� 48.917

X1, X2, SS1, and SS2,n1 � n2 � 12.
tobtn1 � n2,

X1 � X2.
m1 � m2.

tobt

SS1 � SS2

SSD
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MENTORING TIP
Remember: power varies 
directly with N and size of 
effect, and inversely with 
sample variability.

*Of course you can’t do this with actual data. Once the data has been collected according to a par-
ticular experimental design, you must use inference tests appropriate to that design.



Substituting these values into the equation for with equal n, we obtain

From Table D, with df � N � 2 � 24 � 2 � 22 and 

Since we retain H0.0 tobt 0 6 2.074,

tcrit � �2.074

a � 0.052 tail,

tobt �
X1 � X2

B
SS1 � SS2

n1n � 12

�
48.917 � 46.000

B
902.917 � 1104

121112

� 0.748 � 0.75

tobt
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 � 132.917

 � 235 �
13522

12

t a b l e 14.8 Data and analysis from conservation campaign experiment

Before the After the 
Campaign Campaign Difference

(gal) (gal)
Family (1) (2) D

A 55 48 7 49

B 43 38 5 25

C 51 53 �2 4

D 62 58 4 16

E 35 36 �1 1

F 48 42 6 36

G 58 55 3 9

H 45 40 5 25

I 48 49 �1 1

J 54 50 4 16

K 56 58 �2 4

L 32 25 7 49

35 235

Dobt �
©  D
N

�
35
12

� 2.917N � 12

D2

From Table D, with df � 11 and 

Since we rejected and concluded that the conservation campaign does
indeed affect gasoline consumption. It significantly lowered the amount of gasoline used.

H00 tobt 0 7 2.201,

tcrit � �2.201

a � 0.052 tail,

 � 2.91

 � 2.907

 �
2.917 � 0

B
132.917
121112

 SSD � ©
  
D2 �

1©  D22

N
 tobt �

Dobt � mD

B
SSD

N1N � 12



Something seems strange here. When the data were collected with a corre-
lated groups design, we were able to reject However, with an independent
groups design, we were unable to reject even though the data were identical.
Why? The correlated groups design allows us to use the subjects as their own
control. This maximizes the possibility that there will be a high correlation be-
tween the scores in the two conditions. In the present illustration, Pearson r for
the correlation between the paired before and after scores equals 0.938. When
the correlation is high,* the difference scores will be much less variable than the
original scores. For example, consider the scores of families A and L. Family A
uses quite a lot of gasoline (55 gallons), whereas family L uses much less (32 gal-
lons). As a result of the conservation campaign, the scores of both families de-
crease by 7 gallons. Their difference scores are identical (7). There is no variabil-
ity between the difference scores for these families, whereas there is great
variability between their raw scores. It is the potential for a high correlation and,
hence, decreased variability that causes the correlated groups design to be po-
tentially more powerful than the independent groups design. The decreased vari-
ability in the present illustration can be seen most clearly by viewing the two so-
lutions side by side. This is shown in Table 14.9.

The two equations yield the same values except for in the correlated
groups design and in the independent groups design. is a measure
of the variability of the difference scores. are measures of the vari-
ability of the raw scores. whereas is
much smaller than It is this decreased variability that causes to be
greater in the correlated groups analysis.

If the correlated groups design is potentially more powerful, why not always
use this design? First, the independent groups design is much more efficient from
a df per measurement analysis. The degrees of freedom are important because the
higher the df, the lower In the present illustration, for the correlated groups de-
sign, there were 24 measurements taken, but only 11 df resulted. For the indepen-
dent groups design, there were 24 measurements and 22 df. Thus, the independent
groups design results in twice the df for the same number of measurements.

Second, many experiments preclude using the same subject in both condi-
tions. For example, suppose we are interested in investigating whether men and
women differ in aggressiveness. Obviously, the same subject could not be used in
both conditions. Sometimes the effect of the first condition persists too long over
time. If the experiment calls for the two conditions to be administered closely in
time, it may not be possible to run the same subject in both conditions with-
out the first condition affecting performance in the second condition. Often,
when the subject is run in the first condition, he or she is “used up” or can’t be
run in the second condition. This is particularly true in learning experiments. For
example, if we are interested in the effects of exercise on learning how to ski, we
know that once the subjects have learned to ski, they can’t be used in the second
condition because they already know how to ski. When the same subject can’t be
used in the two conditions, then it is still possible to match subjects. However,
matching is time-consuming and costly. Furthermore, it is often true that the ex-
perimenter doesn’t know which are the important variables for matching so as to
produce a higher correlation. For all these reasons, the independent groups de-
sign is used more often than the correlated groups design.

tcrit.

tobtSS1 � SS2.
SS1 � SS2 � 2006.917; SSDSSD � 132.917,

SS1 � SS2

SSDSS1 � SS2

SSD

H0,
H0.
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*See Note 14.4 for a direct comparison between the two t equations that involve Pearson r.



ALTERNATIVE ANALYSIS USING CONFIDENCE INTERVALS

Thus far in the inferential statistics part of the textbook, we have been evaluat-
ing the effect of the independent variable by determining if it is reasonable to re-
ject the null hypothesis, given the data of the experiment. If it is reasonable to 
reject H0, then we can conclude by affirming that the independent variable has a
real effect.We will call this the null-hypothesis approach. A limitation of the null-
hypothesis approach is that by itself it does not tell us anything about the size or
the effect.

An alternative approach also allows us to determine if it is reasonable to af-
firm that the independent variable has a real effect and at the same time gives us
an estimate of the size of the real effect. This method uses confidence intervals.
Not surprisingly, we will call this method the confidence-interval approach. We
will illustrate this confidence-interval approach using the two-group, indepen-
dent groups design.

You will recall that in Chapter 13, when we were discussing the t test for sin-
gle samples, we showed how to construct confidence intervals for the population
mean m. Typically, we constructed the 95% or the 99% confidence interval for m.
Of course in that chapter, we were discussing single sample experiments. In the
two-group, independent groups design, we have not one but two samples,
and each sample is considered to be a random sample from its own population.
We have designated the population mean of sample 1 as m1 and the population
mean of sample 2 as m2. The difference m1 � m2 is a measure of the real effect of
the independent variable. If there is no real effect, then m1 � m2 and m1 � m2 �
0. By constructing the 95% or 99% confidence interval for the difference m1 � m2,
we can determine if it is reasonable to affirm that there is a real effect, and if so,
we can estimate its size.

Constructing the 95% Confidence Interval for M1 � M2

Constructing the 95% or 99% confidence interval for m1 � m2 is very much like
constructing these intervals for m. We will illustrate by comparing the equations
for both used to construct the 95% confidence interval. These equations are
shown in Table 14.10.

As you can see from the table, the equations for constructing the 95% confi-
dence interval for m and for m1 � m2 are identical, except that in the two-sample
experiment, (X�1 � X�2) is used instead of X�obt and sX�1

� sX�2
is used instead of sX�.

Alternative Analysis Using Confidence Intervals 369

t a b l e 14.9 Solutions for correlated and independent groups designs

Correlated Groups Independent Groups

 � 0.75 � 2.91

 �
2.917

B
902.917 � 1104

121112

 �
2.917

B
132.917
121112

 tobt �
X1 � X2

B
SS1 � SS2

n1n � 12

 tobt �
D

B
SSD

N1N � 12



So far, we have been rather theoretical. Let’s now try an example. Let’s as-
sume we are interested in analyzing the data from hormone X experiment using
the confidence-interval approach. For your convenience, we have repeated the
experiment below.

A physiologist has conducted an experiment to evaluate the effect of hor-
mone X on sexual behavior. Ten male rats were injected with hormone X, and 
10 other male rats received a placebo injection. The animals were then placed in
individual housing with a sexually receptive female. The number of matings were
counted over a 20-minute period.

The results are shown in Table 14.11
Evaluate the data of this experiment by constructing the 95% confidence 

interval for m1 � m2. What is your conclusion?
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t a b l e 14.10 Comparison of equations for constructing the 95% confidence 
interval for m and m1 � m2

Single Sample Experiment Two Sample Experiment

95% Confidence Interval for M 95% Confidence Interval for M1 � M2

mlower � XXobt � sX� t0.025 mlower � (XX1 � XX2) � sX�1�X�2
t0.025

mupper � XXobt � sX� t0.025 mupper � (XX1 � XX2) � sX�1�X�2
t0.025

where sX� � where sX�1�X�2
�Ba

SS1 � SS2

n1 � n2 � 2
ba

1
n1

�
1
n2
b

s

1n

t a b l e 14.11 Results from 
hormone X experiment

Group 1, Group 2,
Hormone X Placebo

8 5

10 6

12 3

6 4

6 7

7 8

9 6

8 5

7 4

11 8
84 744

n1 � 10 n2 � 10

∑X1 � 84 ∑X2 � 56

X�1 � 84 X�2 � 84

∑X1
2 � 744 ∑X2

2 � 340

X2X1



The equations used to construct the 95% confidence interval are

mlower � (XX1 � XX2) � sX�1�X�2
t0.025 and mupper � (X1 � XX2) � sX�1�X�2

t0.025

Solving first for SS1 and SS2,

Solving next for sX�1�sX�2
,

sX�1�X�2
�

�

The last value we need to compute mlower and mupper is the value of t0.025. From
Table D, with 
 � 0.0251 tail and df � N � 2 � 20 � 2 � 18,

t0.025 � 2.101

We now have all the values we need to compute mlower and mupper. For 
convenience, we’ve listed them again here. X1 � 8.4, X2 � 5.6, sX�1�X�2

� 0.849, and
t0.025 � 2.101.

Substituting these values in the equations for mlower and mupper, we obtain

mlower � (XX1 � X2) � sX1�X2
t0.025 mupper � (XX1 � X2) � sX1�X2

t0.025

� (8.4 � 5.6) � 0.849(2.101) � (8.4 � 5.6) � 0.849(2.101)

� 1.02 � 4.58

Thus, the 95% confidence interval for m1 � m2 � 1.02 � 4.58.

Conclusion Based on the Obtained Confidence Interval

Having computed the 95% confidence interval for m1 � m2, we can both come
to a conclusion with regard to the null hypothesis and also give an estimate of
the size of the real effect of hormone X. The 95% confidence interval corre-
sponds to a� 0.052 tail (0.025 under each tail; see Figure 13.3, p. 332). The nondi-
rectional null hypothesis predicts that m1 � m2 � 0. Since the obtained 95%
confidence interval does not include a value of 0, we can reject the null hy-
pothesis and affirm that hormone X appears to have a real effect. This is the
conclusion we reached when we analyzed the data using the null-hypothesis ap-
proach with a � 0.052 tail.

In addition, we have an estimate of the size of the real effect. We are 95%
confident that the range of 1.02–4.58 contains the real effect of hormone X. If
so, then the real effect of hormone X is to cause 1.0–4.58 more matings than
the placebo. Note that if the interval contained the value 0, we would not be
able to reject H0, in which case we couldn’t affirm that hormone X has a real
effect.

Ba
38.4 � 26.4
10 � 10 � 2

ba
1
10

�
1
10
b � 0.849

Ba
SS1 � SS2

n1 � n2 � 2
ba

1
n1

�
1
n2
b

� 26.4� 38.4

� 340 �
15622

10
� 744 �

18422

10

SS2 � �X2
  2 �

1�X22
2

n2
SS1 � �X1

  2 �
1�X12

2

n1
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Constructing the 99% Confidence Interval for M1 � M2

Constructing the 99% confidence interval for m1 � m2 is very much like con-
structing the 95% confidence interval.The one difference is that for the 99% con-
fidence interval we use t0.005 in the equations for the mlower and mupper instead of
t0.025. This corresponds to a � 0.012 tail. The equations used to compute the 99%
confidence interval are shown here.

mlower � (X�1 � X�2) � sX�1�X�2
t0.005 and mupper � (X�1 � X�2) � sX�1�X�2

t0.005

For the hormone X experiment, X�1 � 8.4, X�2 � 5.6, and sX�1�X�2
� 0.849. From

Table D, with a � 0.0051 tail and df � N � 2 � 20 � 2 � 18,

t0.005 � 2.878

Using these equations with the data of the hormone X experiment, we obtain

mlower � (X�1 � X�2) � sX�1�X�2
t0.005 mupper � (X�1 � X�2) � sX�1�X�2

t0.005

� (8.4 � 5.6) � 0.849(2.878) � (8.4 � 5.6) � 0.849(2.878)
� 0.36 � 5.24

Thus, the 99% confidence interval for the data of the hormone X experiment
is 0.36–5.24. Since the obtained 99% confidence interval does not contain the value
0, we can reject H0 at a � 0.012 tail. In addition, we are 99% confident that the size
of the real effect of hormone X falls in the interval of 0.36–5.24. If this 
interval does contain the real effect, then the real effect is somewhere between 0.36
and 5.24 more matings than the placebo. As was true for the 95% confidence in-
terval, if the 99% confidence interval did contain the value 0, we would not be able
to reject H0, and therefore we couldn’t affirm H1. Notice also that the 99% confi-
dence interval (0.36–5.24) is larger than the 95% confidence interval (1.02–4.58).
This is what we would expect from our discussion in Chapter 13, because the larger
the interval, the more confidence we have that it contains the population value be-
ing estimated.

In this chapter, I have discussed the t test for corre-
lated and independent groups. I pointed out that the
t test for correlated groups was really just a special
case of the t test for single samples. In the correlated
groups design, the differences between paired scores
are analyzed. If the independent variable has no ef-
fect and chance alone is responsible for the differ-
ence scores, then they can be considered a random
sample from a population of difference scores where

and is unknown. But these are the exact
conditions in which the t test for single samples ap-
plies. The only change is that, in the correlated
groups design, we analyze difference scores, whereas
in the single sample design, we analyze raw scores.
After presenting some illustrative and practice
problems, I discussed computing size of effect. Using

sDmD � 0

Cohen’s method with the t test for correlated
groups, we again estimate d using . With the corre-
lated groups t test, the magnitude of real effect
varies directly with the size of . The statistic 
gives a standardized value, achieved by dividing

by sD; the greater , the greater the real effect.
In addition to explaining Cohen’s method for deter-
mining size of real effect, criteria were given for as-
sessing whether the obtained value of represents a
small, medium, or large effect. After discussing size
of effect, I concluded our discussion of the t test for
correlated groups by comparing it with the sign test.
I showed that although both are appropriate for the
correlated groups design, as long as its assumptions
are met, the t test should be used because it is more
sensitive.

d̂

d̂0Dobt 0

d̂Dobt

d̂

■ SUMMARY



The t test for independent groups is used when
there are two independent groups in the experiment.
The statistic that is analyzed is the difference be-
tween the means of the two samples The
scores of sample 1 can be considered a random sam-
ple from a population having a mean and a stan-
dard deviation The scores of sample 2 are a ran-
dom sample from a population having a mean and
a standard deviation 

If the independent variable has a real effect, then
the difference between sample means is due to ran-
dom sampling from populations where 
Changing the level of the independent variable is as-
sumed to affect the means of the populations but not
their standard deviations or variances. If the inde-
pendent variable has no effect and chance alone is
responsible for the differences between the two sam-
ples, then the difference between sample means is
due to random sampling from populations where

Under these conditions, the sampling distri-
bution of has a mean of zero and a standard
deviation whose value depends on knowing the vari-
ance of the populations from which the samples were
taken. Since this value is never known, the z test can-
not be used. However, we can estimate the variance
using a weighted estimate taken from both samples.
When this is done, the resulting statistic  is 

The t statistic, then, is also used for analyzing 
the data from the two-sample, independent groups
experiment. The sampling distribution of t for this 
design is the same as for the single sample design,
except the degrees of freedom are different. In the
independent groups design, After pre-
senting some illustrative and practice problems, I dis-
cussed the assumptions underlying the t test for in-
dependent groups. I pointed out that this test
requires that (1) the raw-score populations be nor-

df � N � 2.

tobt.

X1 � X2

m1 � m2.

m1 � m2.

s2.
m2

s1.
m1

1X1 � X22.

mally distributed and (2) there be homogeneity of
variance. I also pointed out that the t test is robust
with regard to violations of the population normality
and homogeneity of variance assumptions. In addi-
tion to determining whether there is a significant ef-
fect, it is also important to determine the size of the
effect. In an independent groups experiment, the size
of effect of the independent variable may be found
by estimating Cohen’s d with . The statistic gives a
standardized value, achieved by dividing 0X1 � X2 0

d̂d̂
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Confidence-interval approach (p. 369)
Degrees of freedom (p. 359)
Estimated standard error of the

difference between sample means
(p. 358)

Homogeneity of variance (p. 362)
Independent groups design (p. 353)
Mean of the population of difference

scores (p. 347)

Mean of the sampling distribution of
the difference between sample
means (p. 356)

Null-hypothesis approach (p. 369)
Sampling distribution of the

difference between sample means
(p. 355)

Size of effect (p. 363)
Standard deviation of the sampling

distribution of the difference
between sample means (p. 356)

t test for correlated groups (p. 346)
t test for independent groups 

(p. 353, 357)

■ IMPORTANT NEW TERMS

by the weighted estimate of s, . The greater 
, the greater the real effect. Again, criteria were

given for assessing whether the obtained value of 
represents a small, medium, or large effect.

Next, I discussed the power of the t test. I showed
that its power varies directly with the size of the real
effect of the independent variable and the N of the
experiment but varies inversely with the variability
of the sample scores.

Then, I compared the correlated groups and in-
dependent groups designs. When the correlation be-
tween paired scores is high, the correlated groups de-
sign is more sensitive than the independent groups
design. However, it is easier and more efficient re-
garding degrees of freedom to conduct an indepen-
dent groups experiment. In addition, there are many
situations in which the correlated groups design is
inappropriate.

Finally, I showed how to evaluate the effect of
the independent variable using a confidence-interval
approach in experiments employing the two-group,
independent groups design. This approach is more
complicated than the basic hypothesis testing ap-
proach used throughout the inference part of this
textbook but has the advantage that it allows both
the evaluation of H0 and an estimation of the size of 
effect of the independent variable.

d̂
d̂

2sW
2
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1. Identify or define the terms in the Important
New Terms section.

2. Discuss the advantages of the two-condition ex-
periment compared with the advantages of the
single sample experiment.

3. The t test for correlated groups can be thought of
as a special case of the t test for single samples,
discussed in the previous chapter. Explain.

4. What is the main advantage of using the t test for
correlated groups over using the sign test to ana-
lyze data from a correlated groups experiment?

5. What are the characteristics of the sampling dis-
tribution of the difference between sample
means?

6. Why is the z test for independent groups never
used?

7. What is estimated in the t test for independent
groups? How is the estimate obtained?

8. It is said that the variance of the sample data has
an important bearing on the power of the t test.
Is this statement true? Explain.

9. What are the advantages and disadvantages of
using a correlated groups design as compared
with using an independent groups design?

10. What are the assumptions underlying the t test
for independent groups?

11. Having just made what you believe to be a Type
II error, using an independent groups design and
a t test analysis, name all the things you might do
in the next experiment to reduce the probability
of a Type II error.

12. Is the size of effect of the independent variable
important? Explain.

13. If the effect of the independent variable is signif-
icant, does that necessarily mean the effect is a
large one? Explain.

For each of the following problems, unless otherwise
told, assume normality in the population.
14. You are interested in determining whether an

experimental birth control pill has the side effect
of changing blood pressure. You randomly sam-
ple ten women from the city in which you live.
You give five of them a placebo for a month and
then measure their diastolic blood pressure.
Then you switch them to the birth control pill for
a month and again measure their blood pressure.

The other five women receive the same treat-
ment except they are given the birth control pill
first for a month, followed by the placebo for a
month. The blood pressure readings are shown
here. Note that to safeguard the women from un-
wanted pregnancy, another means of birth con-
trol that does not interact with the pill was used
for the duration of the experiment.

Diastolic Blood Pressure

Subject Birth control
No. pill Placebo

1 108 102

2 76 68

3 69 66

4 78 71

5 74 76

6 85 80

7 79 82

8 78 79

9 80 78

10 81 85

a. What is the alternative hypothesis? Assume a
nondirectional hypothesis is appropriate.

b. What is the null hypothesis?
c. What do you conclude? Use 

social, biological, health
15. Based on previous research and sound theoreti-

cal considerations, a cognitive psychologist be-
lieves that memory for pictures is superior to
memory for words. To test this hypothesis, the
psychologist performs an experiment in which
students from an introductory psychology class
are used as subjects. Eight randomly selected stu-
dents view 30 slides with nouns printed on them,
and another group of eight randomly selected
students views 30 slides with pictures of the same
nouns. Each slide contains either one noun or
one picture and is viewed for 4 seconds. After
viewing the slides, subjects are given a recall test,
and the number of correctly remembered items
is measured. The data follow:

a � 0.012 tail.

■ QUESTIONS AND PROBLEMS



No. of Pictures No. of Nouns
Recalled Recalled

18 12

21 9

14 21

25 17

23 16

19 10

26 19

15 22

a. What is the alternative hypothesis? Assume
that a directional hypothesis is warranted.

b. What is the null hypothesis?
c. Using what is your conclusion?
d. Estimate the size of the real effect. cognitive

16. A nurse was hired by a governmental ecology
agency to investigate the impact of a lead smelter
on the level of lead in the blood of children living
near the smelter. Ten children were chosen at ran-
dom from those living near the smelter. A com-
parison group of seven children was randomly se-
lected from those living in an area relatively free
from possible lead pollution. Blood samples were
taken from the children and lead levels deter-
mined. The following are the results (scores are in
micrograms of lead per 100 milliliters of blood):

Lead Levels

Children living Children living in
near smelter unpolluted area

18 9

16 13

21 8

14 15

17 17

19 12

22 11

24

15

18

a. Using what do you conclude?
b. Estimate the size of the real effect. health

a � 0.011 tail,

a � 0.051 tail,

17. The manager of the cosmetics section of a large
department store wants to determine whether
newspaper advertising really does affect sales.
For her experiment, she randomly selects 15
items currently in stock and proceeds to establish
a baseline. The 15 items are priced at their usual
competitive values, and the quantity of each item
sold for a 1-week period is recorded. Then, with-
out changing their price, she places a large ad in
the newspaper, advertising the 15 items. Again,
she records the quantity sold for a 1-week pe-
riod. The results follow.

No. Sold No. Sold
Item Before Ad After Ad

1 25 32

2 18 24

3 3 7

4 42 40

5 16 19

6 20 25

7 23 23

8 32 35

9 60 65

10 40 43

11 27 28

12 7 11

13 13 12

14 23 32

15 16 28

a. Using what do you conclude?
b. What is the size of the effect? I/O

18. Since muscle tension in the head region has been
associated with tension headaches, you reason
that if the muscle tension could be reduced, per-
haps the headaches would decrease or go away
altogether. You design an experiment in which
nine subjects with tension headaches participate.
The subjects keep daily logs of the number of
headaches they experience during a 2-week
baseline period. Then you train them to lower
their muscle tension in the head region, using a
biofeedback device. For this experiment, the
biofeedback device is connected to the frontalis

a � 0.052 tail,
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muscle, a muscle in the forehead region. The de-
vice tells the subject the amount of tension in the
muscle to which it is attached (in this case,
frontalis) and helps them achieve low tension
levels.After 6 weeks of training, during which the
subjects have become successful at maintaining
low frontalis muscle tension, they again keep a 
2-week log of the number of headaches experi-
enced. The following are the number of head-
aches recorded during each 2-week period.

No. of Headaches

Subject No. Baseline After training

1 17 3

2 13 7

3 6 2

4 5 3

5 5 6

6 10 2

7 8 1

8 6 0

9 7 2

a. Using what do you conclude?
Assume the sampling distribution of the
mean of the difference scores is normally
distributed. Assume a nondirectional hypoth-
esis is appropriate because there is insuffi-
cient empirical basis to warrant a directional
hypothesis.

b. If the sampling distribution of is not nor-
mally distributed, what other test could you
use to analyze the data? What would your
conclusion be? clinical, health

19. There is an interpretation difficulty with Prob-
lem 18. It is clear that the headaches decreased
significantly. However, it is possible that the de-
crease was not due to the biofeedback training
but rather to some other aspect of the situation,
such as the attention shown to the subjects.What
is really needed is a group to control for this pos-
sibility. Assume another group of nine headache
patients was run at the same time as the group in
Problem 18. This group was treated in the same
way except the subjects did not receive any
training involving biofeedback. They just talked
with you about their headaches each week for
6 weeks, and you showed them lots of warmth,
loving care, and attention. The number of head-

D

1D2

a � 0.052 tail,

aches for the baseline and 2-week follow-up pe-
riod for the control group were as follows:

No. of Headaches

Subject No. Baseline Follow-up

1 5 4

2 8 9

3 14 12

4 16 15

5 6 4

6 5 3

7 8 7

8 10 6

9 9 7

Evaluate the effect of these other factors, such as
attention, on the incidence of headaches. Use

clinical, health
20. Since the control group in Problem 19 also showed

significant reductions in headaches, the interpreta-
tion of the results in Problem 18 is in doubt. Did
relaxation training contribute to the headache de-
crease, or was the decrease due solely to other fac-
tors, such as attention? To answer this question, we
can compare the change scores between the two
groups. These scores are shown here:

Headache Change Scores

Relaxation
training group Control group

14 1

6 �1

4 2

2 1

�1 2

8 2

7 1

6 4

5 2

What is your conclusion? Use 
clinical, health

21. The director of human resources at a large com-
pany is considering hiring part-time employees to
fill jobs previously staffed with full-time workers.

a � 0.052 tail.

a � 0.052 tail.
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However, he wonders if doing so will affect pro-
ductivity. Therefore, he conducts an experiment to
evaluate the idea before implementing it factory-
wide. Six full-time job openings, from the parts
manufacturing division of the company, are each
filled with two employees hired to work half-time.
The output of these six half-time pairs is compared
with the output of a randomly selected sample of
six full-time employees from the same division.
Note that all employees in the experiment are en-
gaged in manufacturing the same parts. The aver-
age number of parts produced per day by the half-
time pairs and full-time workers is shown here:

Parts Produced per Day

Half-time pairs Full-time workers

24 20

26 28

46 40

32 36

30 24

36 30

Does the hiring of part-time workers affect pro-
ductivity? Use in making your deci-
sion. I/O

22. On the basis of her experience with clients, a
clinical psychologist thinks that depression may
affect sleep. She decides to test this idea. The
sleep of nine depressed patients and eight nor-
mal controls is monitored for three successive
nights. The average number of hours slept by
each subject during the last two nights is shown
in the following table:

Hours of Sleep

Depressed patients Normal controls

7.1 8.2

6.8 7.5

6.7 7.7

7.3 7.8

7.5 8.0

6.2 7.4

6.9 7.3

6.5 6.5

7.2

a � 0.052 tail

a. Is the clinician correct? Use in
making your decision.

b. If the effect is significant, estimate the size of
the effect. Using Cohen’s criterion, is the 
effect a large one? clinical, health

23. An educator wants to determine whether early
exposure to school will affect IQ. He enlists the
aid of the parents of 12 pairs of preschool-age
identical twins who agree to let their twins par-
ticipate in this experiment. One member of
each twin pair is enrolled in preschool for 2
years while the other member of each pair re-
mains at home. At the end of the 2 years, the
IQs of all the children are measured. The results
follow.

IQ

Twins at Twins at
Pair preschool home

1 110 114

2 121 118

3 107 103

4 117 112

5 115 117

6 112 106

7 130 125

8 116 113

9 111 109

10 120 122

11 117 116

12 106 104

Does early exposure to school affect IQ? Use

cognitive, developmental, education
24. Researchers at a leading university were inter-

ested in the effect of sleep on memory consoli-
dation. Twenty-four student volunteers from an
introductory psychology course were randomly
assigned to either a “Sleep” or “No-Sleep”
group, such that there were 12 students in each
group. On the first day, all students were flashed
pictures of 15 different objects, for 200 millisec-
onds each, on a computer screen and asked to
remember as many of the objects as possible.
That night, the “Sleep” group got an ordinary
night’s sleep. The “No-Sleep” group was kept 

a � 0.052 tail.

a � 0.052 tail
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awake until the second night. All subjects got an
ordinary night’s sleep on the second and third
nights. On the fourth day, all subjects were
tested to see how many of the original 15 objects
they remembered.The following are the number
of objects remembered by each subject on the
test:

Sleep Group No-Sleep Group

14 8

13 9

8 6

9 13

11 7

10 9

9 10

13 12

12 8

11 11

14 9

13 12

a. Using what do you conclude?
b. Using the confidence-interval approach, con-

struct the 95% confidence interval for m1 �
m2. What do you conclude regarding H0?
What is your estimate of the size of the ef-
fect?

c. Using the confidence-interval approach, con-
struct the 99% confidence interval for m1 �
m2. What do you conclude regarding H0?What
is your estimate of the size of the effect?
cognitive

25. Developmental psychologists at a prominent
California university conducted a longitudinal
study investigating the effect of high levels of
curiosity in early childhood on intelligence. The
local population of 3-year-olds was screened via
a test battery assessing curiosity. Twelve of the
3-year-olds scoring in the upper 90% of this
variable were given an IQ test at age 3 and
again at age 11. The following IQ scores were
obtained.

a � 0.052 tail,

Subject
Number IQ (Age 3) IQ (Age 11)

1 100 114
2 105 116
3 125 139
4 140 151
5 108 106
6 122 119
7 117 131
8 112 136
9 135 148

10 128 139
11 104 122
12 98 113

a. Using what do you conclude? In
drawing your conclusion, assume that it is
well established that IQ stays relatively con-
stant over these years for individuals with
average or below-average levels of curiosity.

b. What is the size of the effect? cognitive,
developmental

26. Noting that women seem more interested in
emotions than men, a researcher in the field of
women’s studies wondered if women recall emo-
tional events better than men. She decides to
gather some data on the matter. An experiment
is conducted in which eight randomly selected
men and women are shown 20 highly emotional
photographs and then asked to recall them 1
week after the showing.The following recall data
are obtained. Scores are percent correct; one
man failed to show up for the recall test.

Men Women

75 85
85 92
67 78
77 80
83 88
88 94
86 90

89

Using a � 0.052 tail what do you conclude?
cognitive, social

a � 0.012 tail,
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27. Since the results of the experiment in Problem 26
were very close to being significant, the re-
searcher decides to replicate that experiment,
only this time increasing the power by increasing
N. This study included 10 men and 10 women.
The following results are obtained.

Men Women

74 87

87 90

64 80

76 77

85 91

86 95

84 89

78 92

77 90

80 94

Using what do you conclude this
time? cognitive, social

28. A physics instructor believes that natural light-
ing in classrooms improves student learning. He
conducts an experiment in which he teaches the

a � 0.052 tail,

same physics unit to two groups of seven ran-
domly assigned students in each group. Every-
thing is similar for the groups, except that one of
the groups receives the instruction in a classroom
that admits a lot of natural light in addition to
the incandescent lighting while the other uses a
classroom with only incandescent lighting.At the
end of the unit, both groups are given the same
end-of-unit exam. There are 20 possible points
on the exam; the higher the score, the better the
performance. The following scores are obtained.

Natural Plus Incandescent
Incandescent Lighting Lighting Only

16 17

18 13

14 12

17 14

16 13

19 15

17 14

Using what do you conclude?
education

a � 0.052 tail,
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14.1 Most textbooks present two methods for find-
ing for the correlated groups design: (1) the
direct-difference method and (2) a method that
requires calculations of the degree of relation-
ship (the correlation coefficient) existing be-
tween the two sets of raw scores. We have omit-
ted the latter method because it is rarely used in
practice and, in our opinion, confuses many stu-
dents. The direct-difference method flows natu-
rally and logically from the discussion of the 
t test for single samples. It is much easier to 
use and much more frequently employed in
practice.

14.2 Occasionally, in a repeated measures experi-
ment in which the alternative hypothesis is di-
rectional, the researcher may want to test
whether the independent variable has an ef-

tobt

fect greater than some specified value other
than 0. For example, assuming a directional hy-
pothesis was justified in the present experi-
ment, the researcher might want to test
whether the average reward value of area A
was greater than five bar presses per minute
more than area B. In this case, the null hypoth-
esis would be that the reward value of area A
is not greater than five bar presses per minute
more than area B. In this case, rather
than 0.

14.3 Occasionally, in an experiment involving in-
dependent groups, the alternative hypothesis
is directional and specifies that the indepen-
dent variable has an effect greater than some
specified value other than 0. For example, in
the “hormone X” experiment, assuming a

mD � 5

■ NOTES



directional hypothesis was legitimate, the
physiologist might want to test whether 
hormone X has an average effect of over
three matings more than the placebo. In this
case, the null hypothesis would be that the 
average effect of the hormone X is � three
matings more than the placebo. We would test
this hypothesis by assuming that the sample
which received hormone X was a random
sample from a population having a mean 3
units more than the population from which
the placebo sample was taken. In this case,

and

14.4 Although we haven’t previously presented the t
equations in this form, the following can be
shown:

tobt �
1X1 � X22 � 3

Ba
SS1 � SS2

n1 � n2 � 2
b a

1
n1

�
1
n2
b

mX1�X2
� 3,

t Test for t Test for
Independent Correlated

Groups Groups

Since is equal to the equations for in-
dependent groups and correlated groups are identi-
cal except for the term in the denominator
of the correlated groups equation. Thus, the higher
power of the correlated groups design depends on
the magnitude of r. The higher the value of r is, the
more powerful the correlated groups design will be
relative to the independent groups design. Using the
data of the conservation film experiment to illustrate
the use of these equations, we obtain the following:

�2rsX1
sX2

tobtD,X1 � X2

 �
D

2sX1
2 � sX2

2 � 2rsX1sX2

 �
X1 � X2

2sX1
2 � sX2

2

 tobt �
D
sD

 tobt �
X1 � X2

sX1�X2
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Independent Groups Correlated Groups

Thus,

Note that these are the same values obtained previously.

 � 0.75

 tobt �
48.917 � 46.000

26.840 � 8.364
�

2.917

215.204
� 0.748

 � 2.91

 �
2.917

21.017
and sX 2

2 �
s 2

2

n2
�

100.364
12

� 8.364

 �
2.917

26.840 � 8.364 � 210.9382 12.6152 12.8922
where sX 1

2 �
s 2

1

n1
�

82.083
12

� 6.840

 tobt �
D

2sX 1

2 � sX2

2 � 2rsX1
sX2

tobt �
X1 � X2

2sX1

2 � sX2

2
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Analysis of Variance

LEARNING OBJECTIVES

After completing this chapter, you should be able to:
■ Define the sampling distribution of F and specify its charac-

teristics.
■ Specify the H0 and H1 for one-way, independent groups

ANOVA.
■ Solve problems using one-way ANOVA; understand the de-

rivation of sW
2 and sB

2 and explain why sB
2 is always put in

the numerator; explain why sB
2 is sensitive to the real effects

of the IV and sW
2 is not; and specify the assumptions under-

lying one-way ANOVA.
■ Explain why H1 in one-way ANOVA is always nondirec-

tional and why we evaluate it with a one-tailed evaluation.
■ Calculate the size of effect for a one-way ANOVA using 2

and h2, and explain the difference between the values ob-
tained by each.

■ Specify how power using one-way ANOVA varies with
changes in N, size of the real effect, and sample variability.

■ Specify the difference between planned and post hoc com-
parisons; specify which is more powerful and explain why.

■ Do multiple comparisons using planned comparisons and
explain why sW

2 from the ANOVA is used.
■ Contrast experiment-wise error rate and comparison-wise

error rate.
■ Do multiple comparisons using the HSD and the Newman-

Keuls (NK) tests.
■ Rank order planned comparisons, the HSD and the NK

tests with regard to power.
■ Understand the illustrative examples, do the practice prob-

lems, and understand the solutions.

v̂
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INTRODUCTION: THE F DISTRIBUTION

In Chapters 12, 13, and 14, we have been using the mean as the basic statistic for
evaluating the null hypothesis. It’s also possible to use the variance of the data for
hypothesis testing. One of the most important tests that does this is called the F
test, after R. A. Fisher, the statistician who developed it. In using this test, we cal-
culate the statistic Fobt, which fundamentally is the ratio of two independent vari-
ance estimates of the same population variance s 2. In equation form,

The sampling distribution of F can be generated empirically by (1) taking all pos-
sible samples of size n1 and n2 from the same population, (2) estimating the pop-
ulation variance s 2 from each of the samples using s1

2 and s2
2, (3) calculating Fobt

for all possible combinations of s1
2 and s2

2, and then (4) calculating p (F ) for each
different value of Fobt. The resulting distribution is the sampling distribution of F.
Thus, as with all sampling distributions,

Fobt �
Variance estimate 1 of s2

Variance estimate 2 of s2
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Like the t distribution, the F distribution varies with degrees of freedom. How-
ever, the F distribution has two values for degrees of freedom, one for the nu-
merator and one for the denominator. As you might guess, we lose 1 degree of
freedom for each calculation of variance. Thus,

df for the numerator � df1 � n1 � 1

df for the denominator � df2 � n2 � 1

Figure 15.1 shows an F distribution with 3 df in the numerator and 16 df in the
denominator. Several features are apparent. First, since F is a ratio of variance es-
timates, it never has a negative value (s1

2 and s2
2 will always be positive). Second,

the F distribution is positively skewed. Finally, the median F value is approxi-
mately equal to 1.

Like the t test, there is a family of F curves. With the F test, however, there is
a different curve for each combination of df1 and df2. Table F in Appendix D
gives the critical values of F for various combinations of df1 and df2. There are
two entries for every cell. The light entry gives the critical F value for the 0.05
level. The dark entry gives the critical F value for the 0.01 level. Note that these
are one-tailed values for the right-hand tail of the F distribution. To illustrate,
Figure 15.2 shows the F distribution for 4 df in the numerator and 20 df in the de-
nominator. From Table F, Fcrit at the 0.05 level equals 2.87. This means that 5% of
the F values are equal to or greater than 2.87. The area containing these values is
shown shaded in Figure 15.2.

d e f i n i t i o n ■ The sampling distribution of F gives all the possible F values along with the
p(F) for each value, assuming sampling is random from the population.



F TEST AND THE ANALYSIS OF VARIANCE (ANOVA)

The F test is appropriate in any experiment in which the scores can be used to
form two independent estimates of the population variance. One quite frequent
situation in the behavioral sciences for which the F test is appropriate occurs
when analyzing the data from experiments that use more than two groups or
conditions.

Thus far in the text, we have discussed the most fundamental experiment: the
two-group study involving a control group and an experimental group. Although
this design is still used frequently, it is more common to encounter experiments
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f i g u r e 15.1 F distribution with 3 degrees of freedom
in the numerator and 16 degrees of freedom in the de-
nominator.
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f i g u r e 15.2 Illustration showing that Fcrit in Table F is one-tailed
for the right-hand tail.
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that involve three or more groups. A major limitation of the two-group study is
that often two groups are not sufficient to allow a clear interpretation of the find-
ings. For example, the “thalamus and pain perception” experiment (p. 361) in-
cluded two groups. One received lesions in the thalamus and the other in an area
“believed” to be unrelated to pain. The results showed a significantly higher pain
threshold for the rats with thalamic lesions. Our conclusion was that lesions of the
thalamus increased pain threshold. However, the difference between the two
groups could just as well have been due to a lowering of pain threshold as a re-
sult of the other lesion rather than a raising of threshold because of the thalamic
damage. This ambiguity could have been dispelled if three groups had been run
rather than two. The third group would be an unlesioned control group. Com-
paring the pain threshold of the two lesioned groups with the unlesioned group
would help resolve the issue.

Another class of experiments requiring more than two groups involves ex-
periments in which the independent variable is varied as a factor; that is, a prede-
termined range of the independent variable is selected, and several values span-
ning the range are used in the experiment. For example, in the “hormone X and
sexual behavior” problem, rather than arbitrarily picking one value of the hor-
mone, the experimenter would probably pick several levels across the range of
possible effective values. Each level would be administered to a different group of
subjects, randomly sampled from the population. There would be as many groups
in the experiment as there are levels of the hormone. This type of experiment has
the advantage of allowing the experimenter to determine how the dependent vari-
able changes with several different levels of the independent variable. In this ex-
ample, the experimenter would find out how mating behavior varies in frequency
with different levels of hormone X. Not only does using several levels allow a law-
ful relationship to emerge if one exists, but when the experimenter is unsure of
what single level might be effective, using several levels increases the possibility of
a positive result occurring from the experiment.

Given that it is frequently desirable to do experiments with more than two
groups, you may wonder why these experiments aren’t analyzed in the usual way.
For example, if the experiment used four independent groups, why not simply
compare the group means two at a time using the t test for independent groups?
That is, why not just calculate t values comparing group 1 with 2, 3, and 4; 2 with
3 and 4; and 3 with 4?

The answer involves considerations of Type I error.You will recall that, when
we set alpha at the 0.05 level, we are in effect saying that we are willing to risk
being wrong 5% of the time when we reject H0. In an experiment with two
groups, there would be just one t calculation, and we would compare tobt with
tcrit to see whether tobt fell in the critical region for rejecting H0. Let’s assume
alpha � 0.05. The critical value of t at the 0.05 level was originally determined by
taking the sampling distribution of t for the appropriate df and locating the t
value such that the proportion of the total number of t values that were equal to
or more extreme than it equaled 0.05. That is, if we were randomly sampling one
t score from the t distribution, the probability it would be � tcrit is 0.05.

Now what happens when we do an experiment involving many t compar-
isons, say, 20 of them? We are no longer just sampling one t value from the t dis-
tribution but 20. The probability of getting t values equal to or greater than tcrit

obviously goes up. It is no longer equal to 0.05. The probability of making a Type
I error has increased as a result of doing an experiment with many groups and
analyzing the data with more than one comparison.
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OVERVIEW OF ONE-WAY ANOVA

The analysis of variance is a statistical technique used to analyze multigroup ex-
periments. Using the F test allows us to make one overall comparison that tells
whether there is a significant difference between the means of the groups. Thus,
it avoids the problem of an increased probability of Type I error that occurs when
assessing many t values. The analysis of variance, or ANOVA as it is frequently
called, is used in both independent groups and repeated measures designs. It is
also used when one or more factors (variables) are investigated in the same ex-
periment. In this section, we shall consider the simplest of these designs: the sim-
ple randomized-group design. This design is also often referred to as the one-way
analysis of variance, independent groups design. A third designation often used
is the single factor experiment, independent groups design.* According to this de-
sign, subjects are randomly sampled from the population and then randomly as-
signed to the conditions, preferably such that there are an equal number of sub-
jects in each condition. There are as many independent groups as there are
conditions. If the study is investigating the effect of an independent variable as a
factor, then the conditions would be the different levels of the independent vari-
able used. Each group would receive a different level of the independent variable
(e.g., a different concentration of hormone X). Thus, in this design, scores from
several independent groups are analyzed.

The alternative hypothesis used in the analysis of variance is nondirectional.
It states that one or more of the conditions have different effects from at least
one of the others on the dependent variable. The null hypothesis states that the
different conditions are all equally effective, in which case the scores in each
group are random samples from populations having the same mean value. If
there are k groups, then the null hypothesis specifies that

m1 � m2 � m3 � · · · � mk

where m1 � mean of the population from which group 1 is taken
m2 � mean of the population from which group 2 is taken
m3 � mean of the population from which group 3 is taken
mk � mean of the population from which group k is taken

Like the t test, the analysis of variance assumes that only the mean of the scores
is affected by the independent variable, not the variance. Therefore, the analysis
of variance assumes that

where s1
2 � variance of the population from which group 1 is taken

s2
2 � variance of the population from which group 2 is taken

s3
2 � variance of the population from which group 3 is taken

sk
2 � variance of the population from which group k is taken

Essentially, the analysis of variance partitions the total variability of the data
(SST) into two sources: the variability that exists within each group, called the
within-groups sum of squares (SSW), and the variability that exists between the

s1
2 � s2

2 � s3
2 � . . . � sk

2
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groups, called the between-groups sum of squares (SSB) (Figure 15.3). Each sum
of squares is used to form an independent estimate of the H0 population vari-
ance. The estimate based on the within-groups variability is called the within-
groups variance estimate (sW

2), and the estimate based on the between-groups
variability is called the between-groups variance estimate (sB

2). Finally, an F ra-
tio is calculated where

This process is shown in Figure 15.3. The between-groups variance estimate in-
creases with the magnitude of the independent variable’s effect, whereas the
within-groups variance estimate is unaffected. Thus, the larger the F ratio is, the
more unreasonable the null hypothesis becomes. As with the other statistics, we
evaluate by comparing it with Fcrit. If is equal to or exceeds Fcrit, we re-
ject H0. Thus, the decision rule states the following:

Within-Groups Variance Estimate, sW
2

One estimate of the H0 population variance, is based on the variability within
each group. It is symbolized as sW

2 and is determined in precisely the same man-
ner as the weighted estimate sW

2 used in the t test for independent groups.We call
it the within-groups variance estimate in the analysis of variance to distinguish it
from the between-groups variance estimate discussed in the next section.You will
recall that in the t test for independent groups,

� weighted estimate of H0 population variance, s2

� weighted average of and 

�
SS1 � SS2

N � 2

�
SS1 � SS2

1n1 � 1) � 1n2 � 1)

s2
2s1

2

sW
2

s2,

If Fobt � Fcrit, retain H0.

If Fobt � Fcrit, reject H0.

FobtFobt

F obt �
Between-groups variance estimate 1sB

22

Within-groups variance estimate 1sW
22
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MENTORING TIP
Note: sB

2 is often symbolized
MSB and referred to as mean
square between; and sW

2 is 
often symbolized MSW and 
referred to as mean square
within or mean square error.

SST

Total
variability

SSB

Between-groups
sum of squares

F ratio

Fobt =
sB

2
—–
sW

2

SSW

Within-groups
sum of squares

sB
2

Between-groups
variance estimate

Within-groups
variance estimate

sW
2

f i g u r e 15.3 Overview of the analysis of variance technique,
simple randomized-groups design.



The analysis of variance utilizes exactly the same estimate, except ordinarily we
are dealing with three or more groups. Thus, for the analysis of variance,

� within-groups variance estimate

� weighted estimate of H0 population variance, s2

� weighted average of , . . . , and 

where k � number of groups

nk � number of subjects in group k

SSk � sum of squares of group k

This equation can be simplified to

where

The numerator of this equation is called the within-groups sum of squares. It is
symbolized by SSW. The denominator equals the degrees of freedom for the
within-groups variance estimate. Since we lose 1 degree of freedom for each sam-
ple variance calculated and there are k variances, there are degrees of
freedom. Thus,

within-groups variance estimate

where

dfW � N � k within-groups degrees of freedom

This equation for SSW is fine conceptually, but when actually computing SSW,
it is better to use another equation. This equation is the algebraic equivalent of
the conceptual equation, but it is easier to use and leads to fewer rounding errors.
The computational equation is given here and will be discussed subsequently
when we analyze the data from an experiment:

computational equation for SSW

Between-Groups Variance Estimate, sB
2

The second estimate of the variance of the null-hypothesis populations, is
based on the variability between the groups. It is symbolized by sB

2. The null hy-
pothesis states that each group is a random sample from populations where

If the null hypothesis is correct, then we can use the
variability between the means of the samples to estimate the variance of these
populations,

We know from Chapter 12 that, if we take all possible samples of size n from
a population and calculate their mean values, the resulting sampling distribution

s2.

m1 � m2 � m3 � . . . � mk.

s2,

SSW � a
scores

all

X 2 � c
1� X12

2

n1
�
1� X22

2

n2
�
1� X32

2

n3
� . . . �

1� Xk2
2

nk
d

within-groups sum of
squaresSSW � SS1 � SS2 � SS3 � . . . � SSk

sW
2 �

SSW

dfW

N � k

N � n1 � n2 � n3 � . . . � nk

conceptual equation for within-
groups variance estimatesW

2 �
SS1 � SS2 � SS3 � . . . � SSk

N � k

�
SS1 � SS2 � SS3 � . . . � SSk

1n1 � 1) � 1n2 � 1) � 1n3 � 1) � . . . � 1nk � 1)

sk
2s1

2, s2
2, s3

2

sW
2
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of means has a variance of Solving for we arrive at .s2 � nsX
2s2,sX

2 � s2�n.

Overview of One-Way ANOVA 389

If can be estimated, we can substitute the estimate in the previous equationsX
2

to arrive at an independent estimate of s 2. In the actual experiment there 
are several sample means, so we can use the variance of these mean scores to es-
timate the variance of the full set of sample means, Since there are k sam-
ple means, we divide by k � 1, just as when we have N raw scores we divide by
N � 1. Thus,

estimate of 

where grand mean (overall mean of all the scores combined)

k � number of groups

Using for our estimate of we arrive at the second independent esti-
mate of s 2. This estimate is called the between-groups variance estimate and is
symbolized by sB

2. Since ,

sB
2 � Estimate of 

Substituting for ,

Expanding the summation, we arrive at

conceptual equation for the 
between-groups variance estimate

The numerator of this equation is called the between-groups sum of squares.
It is symbolized by SSB. The denominator is the degrees of freedom for the
between-groups variance estimate. It is symbolized by dfB. Thus,

between-groups variance estimate

where

] between-groups sum of squares

between-groups degrees of freedom

It should be clear that, as the effect of the independent variable increases,
the differences between the sample means increase. This causes (X1 � XG)2,
(X2 � XG)2, . . . , (Xk � XG)2 to increase, which in turn produces an increase in
SSB. Since SSB is in the numerator, increases in it produce increases in sB

2. Thus,
the between-groups variance estimate (sB

2) increases with the effect of the inde-
pendent variable.

This equation for SSB is fine conceptually, but when actually computing 
SSB, it is better to use another equation. As with SSW, there is a computational
equation for SSB that is the algebraic equivalent of the conceptual equation but

dfB � k �  1

� 1Xk � XG)2

SSB � n[(X1 � XG)2 � (X2 � XG)2 � (X3 � XG)2 � . . .

sB
2 �

SSB

dfB

sB
2 �

n [(X1 � XG)2 � (X2 � XG)2 � (X3 � XG)2 � . . . � (Xk � XG)2 4

k � 1

sB
2 �

n � 1X � XG)2

k � 1

sX
2

s2 � nsX
2

s2 � nsX
2

sX
2,sX

2

XG �

sX
2sX

2 �
©  1X � XG)2

k � 1

sX
2.

MENTORING TIP
Caution: this equation can
only be used when there is 
the same number of subjects
in each group.



is easier to use and leads to fewer rounding errors. The computational equation
is given here and will be discussed shortly when we analyze the data from an
experiment:

computational equation for SSB

The F Ratio

We noted earlier that sB
2 increases with the effect of the independent variable.

However, since an assumption of the analysis of variance is that the independent
variable affects only the mean and not the variance of each group, the within-
groups variance estimate does not change with the effect of the independent vari-
able. Since F � sB

2 /sW
2, F increases with the effect of the independent variable.

Thus, the larger the F ratio is, the more reasonable it is that the independent
variable has had a real effect. Another way of saying this is that sB

2 is really an
estimate of s 2 plus the effects of the independent variable, whereas sW

2 is just an
estimate of s 2. Thus,

The larger becomes, the more reasonable it is that the independent variable
has had a real effect. Of course, must be equal to or exceed Fcrit before H0

can be rejected. If Fobt is less than 1, we don’t even need to compare it with Fcrit.

It is obvious the treatment has not had a significant effect, and we can immedi-
ately conclude by retaining H0.

ANALYZING DATA WITH THE ANOVA TECHNIQUE

So far, we have been quite theoretical. Now let’s do a problem to illustrate the
analysis of variance technique.

e x p e r i m e n t Different Situations and Stress

Suppose you are interested in determining whether certain situations produce differ-
ing amounts of stress. You know the amount of the hormone corticosterone circulating
in the blood is a good measure of how stressed a person is. You randomly assign 15 stu-
dents into three groups of 5 each.The students in group 1 have their corticosterone lev-
els measured immediately after returning from vacations (low stress). The students in
group 2 have their corticosterone levels measured after they have been in class for a
week (moderate stress). The students in group 3 are measured immediately before fi-
nal exam week (high stress). All measurements are taken at the same time of day. You
record the data shown in Table 15.1. Scores are in milligrams of corticosterone per 100
milliliters of blood.

1. What is the alternative hypothesis?
2. What is the null hypothesis?
3. What is the conclusion? Use a � 0.05.

Fobt

Fobt

Fobt �
sB

2

sW
2 �
s2 � independent variable effects

s2

 � 

a
a

scores
all

Xb
2

N

SSB � c
1� X1)

2

n1
�
1� X2)

2

n2
�
1� X3)

2

n3
� . . . �

1� Xk)2

nk
d
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S O L U T I O N

1. Alternative hypothesis: The alternative hypothesis states that at least one of the sit-
uations affects stress differently than at least one of the remaining situations. There-
fore, at least one of the means (m1, m2, or m3) differs from at least one of the others.

2. Null hypothesis: The null hypothesis states that the different situations affect stress
equally. Therefore, the three sample sets of scores are random samples from popu-
lations where 

3. Conclusion, using a � 0.05: The conclusion is reached in the same general way as
with the other inference tests. First, we calculate the appropriate statistic, in this case

, and then we evaluate based on its sampling distribution.

A. Calculate .

STEP 1: Calculate the between-groups sum of squares, SSB. To calculate SSB,
we shall use the following computational equation:

computational equation for SSB

In this problem, since k � 3, this equation reduces to

where

Substituting the appropriate values from Table 15.1 into this equation, we
obtain

� 203.333

SSB � c
(2022

5
�

(4022

5
�

(6522

5
d�

(12522

15
� 80 � 320 � 845 � 1041.667

a
scores

all

 X � sum of all the scores

SSB � c
1� X12

2

n1
�
1� X22

2

n2
�
1� X32

2

n3
d �

a
a

scores
all

Xb
2

N

 � 

a
a

scores
all

Xb
2

N
SSB � c

1� X12
2

n1
�
1� X22

2

n2
�
1� X32

2

n3
� . . . �

1� Xk2
2

nk
d

Fobt

FobtFobt

m1 � m2 � m3.
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t a b l e 15.1 Stress experiment data

Group 1, Group 2, Group 3,
Vacation Class Final Exam

X1 X1
2 X2 X2

2 X3 X3
2

2 4 10 100 10 100

3 9 8 64 13 169

7 49 7 49 14 196

2 4 5 25 13 169

6 36 10 100 15 225

20 102 40 338 65 859

N � 15

XG �
a

scores
all

 
X

N
� 8.333a

scores
all

 X 2 � 1299a
scores

all

 X � 125

X3 � 13.00X2 � 8.00X1 � 4.00

n3 � 5n2 � 5n1 � 5



STEP 2: Calculate the within-groups sum of squares, SSW. The computational
equation for SSW is as follows:

computational equation for SSW

where sum of all the squared scores

Since k � 3, for this problem the equation reduces to

Substituting the appropriate values into this equation, we obtain

STEP 3: Calculate the total sum of squares, SST. This step is just a check to be
sure the calculations in steps 1 and 2 are correct. You will recall that at
the beginning of the analysis of variance section, p. 386, we said this
technique partitions the total variability into two parts: the within vari-
ability and the between variability. The measure of total variability is
SST, the measure of within variability is SSW, and the measure of be-
tween variability is SSB. Thus,

SST � SSW � SSB

By independently calculating SST, we can check to see whether this re-
lationship holds true for the calculations in steps 1 and 2:

You will recognize that this equation is quite similar to the sum of
squares with each sample, except here we are using the scores of all the
samples as a single group. Calculating SST, we obtain

 � 257.333

 � 1299 �
112522

15

SST � a
scores

all

 X 2 �

a
a

scores
all

 Xb
2

N

SST � a
scores

all

 X 2 �

a
a

scores
all

Xb
2

N

 � 54

 � 1299 � c
12022

5
�
14022

5
�
16522

5
d

SSW � a
scores

all

 X 2 � c
1� X12

2

n1
�
1� X22

2

n2
�
1� X32

2

n3
d

SSW � a
scores

all

 X 2 � c
1� X12

2

n1
�
1� X22

2

n2
�
1� X32

2

n3
d

a
scores

all

 X 2 �

�
1© Xk2

2

nk
dSSW � a

scores
all

 X 2 � c
1� X12

2

n1
�
1� X22

2

n2
�
1� X32

2

n3
� . . .
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MENTORING TIP
Step 3 is just a check on calcu-
lations in steps 1 and 2; it does
not have to be done, but prob-
ably is a good idea before 
going on to step 4.



Substituting the values of SST, SSW, and SSB into the equation, we 
obtain

Note that, if the within sum of squares plus the between sum of squares
does not equal the total sum of squares, you’ve made a calculation 
error. Go back and check steps 1, 2, and 3 until the equation balances
(within rounding error).

STEP 4: Calculate the degrees of freedom for each estimate:

STEP 5: Calculate the between-groups variance estimate, sB
2. The variance

estimates are just the sums of squares divided by their degrees of free-
dom. Thus,

STEP 6: Calculate the within-groups variance estimate, sW
2:

STEP 7: Calculate Fobt. We have calculated two independent estimates of :
the between-variance estimate and the within-variance estimate. The F
value is the ratio of sB

2 to sW
2 . Thus,

Note that sB
2 is always put in the numerator and sW

2 in the denomi-
nator.

B. Evaluate . Since sB
2 is a measure of the effect of the independent variable as

well as an estimate of , it should be larger than sW
2, unless chance alone is 

at work. If � 1, it is clear that the independent variable has not had a 
significant effect and we conclude by retaining H0 without even bothering to
compare with Fcrit. If � 1, we must compare it with Fcrit . If � Fcrit,
we reject H0. From Table F in Appendix D, with a � 0.05, dfnumerator � 2, and 
dfdenominator � 12,

Fcrit � 3.88

Note that, in looking up Fcrit in Table F, it is important to keep the df for the nu-
merator and denominator straight. If by mistake you had entered the table with
2 df for the denominator and 12 df for the numerator, Fcrit would equal 19.41,
which is quite different from 3.88. Since � 3.88, we reject H0. The three sit-
uations are not all the same in the stress levels they produce. A summary of the
solution is shown in Table 15.2.

Fobt

FobtFobtFobt

Fobt

s2
Fobt

Fobt �
sB

2

sW
2 �

101.667
4.5

� 22.59

s2

sW
2 �

SSW

dfW
�

54
12

� 4.5

sB
2 �

SSB

dfB
�

203.333
2

� 101.667

dfT � N � 1 � 15 � 1 � 14

dfW � N � k � 15 � 3 � 12

dfB � k � 1 � 3 � 1 � 2

257.333 � 257.333

257.333 � 54 � 203.333

SST � SSW � SSB
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LOGIC UNDERLYING THE ONE-WAY ANOVA

Now that we have worked through the calculations of an illustrative example,
we would like to discuss in more detail the logic underlying the one-way
ANOVA. Earlier, we pointed out that the one-way ANOVA partitions the total
variability (SST) into two parts: the within-groups sum of squares (SSW) and 
the between-groups sum of squares (SSB). We can gain some insight into this
partitioning by recognizing that it is based on the simple idea that the devia-
tion of each score from the grand mean is made up of two parts: the deviation 
of the score from its own group mean and the deviation of that group mean 
from the grand mean. Applying this idea to the first score in group 1, we 
obtain

Deviation of Deviation of the Deviation of that
each score from the � score from its own � group mean from

grand mean group mean the grand mean

Note that the term on the left (X � XG) when squared and summed over all the
scores becomes SST. Thus,

The term in the middle when squared and summed for all the scores (of
course, we must subtract the appropriate group mean from each score) becomes
SSW. Thus,

It is important to note that, since the subjects within each group receive the same
level of the independent variable, variability among the scores within each group

 � �1X � X12
2 � �1X � X22

2 � �1X � X32
2

 SSW � SS1 � SS2 � SS3

1X � X12

SST � a
scores

all

 1X � XG2
2

4.00 � 8.33
X1 � XG

T
SSB

�

�

�

2 � 4.00
X � X1

T
SSW

�

�

�

2 � 8.33
X � XG

T
SST
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t a b l e 15.2 Summary table for ANOVA problem involving stress

Source SS df s2 Fobt

Between groups 203.333 2 101.667 22.59*

Within groups 54.000 12 4.500

Total 257.333 14

*With a � 0.05, Fcrit � 3.88. Therefore, H0 is rejected.



cannot be due to differences in the effect of the independent variable. Thus, the
within-groups sum of squares (SSW) is not a measure of the effect of the inde-
pendent variable. Since SSW�dfW � sW

2, this means that the within-groups vari-
ance estimate (sW

2) also is not a measure of the real effect of the independent
variable. Rather, it provides us with an estimate of the inherent variability of the
scores themselves. Thus, sW

2 is an estimate of s2 that is unaffected by treatment
differences.

The last term in the equation partitioning the variability of score 2 from the
grand mean is When this term is squared and summed for all the
scores, it becomes SSB. Thus,

As discussed previously, SSB is sensitive to the effect of the independent 
variable, because the greater the effect of the independent variable, the more 
the means of each group will differ from each other and, hence, will differ 
from XG. Since SSB�dfB = sB

2, this means that the between-groups variance esti-
mate (sB

2) is also sensitive to the real effect of the independent variable.
Thus, sB

2 gives us an estimate of s 2 plus the effects of the independent vari-
able. Since

the larger Fobt is, the less reasonable the null-hypothesis explanation is. If the in-
dependent variable has no effect, then both sB

2 and sW
2 are independent esti-

mates of s2 and their ratio is distributed as F with df � dfB (numerator) and dfW

(denominator). We evaluate the null hypothesis by comparing with Fcrit. If
� Fcrit, we reject H0.
Let’s try one more problem for practice.

Fobt

Fobt

Fobt �
sB

2

sW
2 �
s2 � effects of the independent variable

s2

SSB � n1X1 � XG2
2 � n1X2 � XG2

2 � n1X3 � XG2
2

X1 � XG.
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MENTORING TIP
sB

2 is sensitive to the effects of
the independent variable; sW

2

is not.

P r a c t i c e  P r o b l e m  15.1

A college professor wants to determine the best way to present an impor-
tant topic to his class. He has the following three choices: (1) he can lecture,
(2) he can lecture and assign supplementary reading, or (3) he can show a
film and assign supplementary reading. He decides to do an experiment to
evaluate the three options. He solicits 27 volunteers from his class and ran-
domly assigns 9 to each of three conditions. In condition 1, he lectures to the
students. In condition 2, he lectures plus assigns supplementary reading. In
condition 3, the students see a film on the topic plus receive the same sup-
plementary reading as the students in condition 2. The students are subse-
quently tested on the material. The following scores (percentage correct)
were obtained:

(continued)
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Lecture �
Lecture, Reading, Film � Reading,

Condition 1 Condition 2 Condition 3

X1 X1
2 X2 X2

2 X3 X3
2

92 8,464 86 7,396 81 6,561

86 7,396 93 8,649 80 6,400

87 7,569 97 9,409 72 5,184

76 5,776 81 6,561 82 6,724

80 6,400 94 8,836 83 6,889

87 7,569 89 7,921 89 7,921

92 8,464 98 9,604 76 5,776

83 6,889 90 8,100 88 7,744

84 7,056 91 8,281 83 6,889

767 65,583 819 74,757 734 60,088

a. What is the overall null hypothesis?
b. What is the conclusion? Use a � 0.05.

S O L U T I O N

a. Null hypothesis: The null hypothesis states that the different methods of
presenting the material are equally effective. Therefore,

b. Conclusion, using a� 0.05: To assess H0, we must calculate and then
evaluate it based on its sampling distribution.

A. Calculate .

STEP 1: Calculate SSB:

 � 408.074

 � c
176722

9
�
181922

9
�
173422

9
d �
1232022

27

SSB � c
1� X12

2

n1
�
1� X22

2

n2
�
1� X32

2

n3
d �

a
a

scores
all

 Xb
2

N

Fobt

Fobt

m1 � m2 � m3.

N � 27

XG �
a

scores
all

 X

N
� 85.926a

scores
all

 X 2 � 200,428a
scores

all

 X � 2320

X3 � 81.556X2 � 91X1 � 85.222

n3 � 9n2 � 9n1 � 9
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STEP 2: Calculate SSW :

STEP 3: Calculate SST :

This step is a check to see whether SSB and SSW were cor-
rectly calculated. If so, then SST � SSB � SSW. This check is
shown here:

STEP 4: Calculate df:

STEP 5: Calculate sB
2 :

STEP 6: Calculate sW
2 :

STEP 7: Calculate :

B. Evaluate . With a � 0.05, dfnumerator � 2, and dfdenominator � 24,
from Table F,

Fcrit � 3.40

Fobt

Fobt �
sB

2

sW
2 �

204.037
27.991

� 7.29

Fobt

sW
2 �

SSW

dfW
�

671.778
24

� 27.991

sB
2 �

SSB

dfB
�

408.074
2

� 204.037

dfT � N � 1 � 27 � 1 � 26

dfW � N � k � 27 � 3 � 24

dfB � k � 1 � 3 � 1 � 2

 1079.852 � 1079.852

 1079.852 � 408.074 � 671.778

 SST � SSB � SSW

 � 1079.852

 � 200,428 �
1232022

27

SST � a
scores

all

 X 2 �

a
a

scores
all

 Xb
2

N

 � 671.778

 � 200,428 � c
176722

9
�
181922

9
�
173422

9
d

SSW � a
scores

all

 X 2 � c
1� X12

2

n1
�
1� X22

2

n2
�
1� X32

2

n3
d

(continued)



RELATIONSHIP BETWEEN ANOVA AND THE t TEST

When a study involves just two independent groups and we are testing the null
hypothesis that we can use either the t test for independent groups 
or the analysis of variance. In such situations, it can be shown algebraically that 
t2 � F. For a demonstration of this point, go online to the Book Companion
Website.

ASSUMPTIONS UNDERLYING THE ANALYSIS 
OF VARIANCE

The assumptions underlying the analysis of variance are similar to those of the 
t test for independent groups:

1. The populations from which the samples were taken are normally dis-
tributed.

2. The samples are drawn from populations of equal variances. As pointed
out in Chapter 14 in connection with the t test for independent groups,
this is called the homogeneity of variance assumption. The analysis of
variance also assumes homogeneity of variance.*

Like the t test, the analysis of variance is a robust test. It is minimally affected by
violations of population normality. It is also relatively insensitive to violations of
homogeneity of variance provided the samples are of equal size.†

m1 � m2,
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Since � 3.40, we reject H0. The methods of presentation are not
equally effective. The solution is summarized in Table 15.3.

t a b l e 15.3 Summary ANOVA table for methods of presentation 
experiment

Source SS df s2 Fobt

Between groups 408.074 2 204.037 7.29*

Within groups 671.778 24 27.991

Total 1079.852 26

*With a � 0.05, Fcrit � 3.40. Therefore, H0 is rejected.

Fobt

*See Chapter 14 footnote * on p. 363. Some statisticians would also limit the use of ANOVA to data
that are interval or ratio in scaling. For a discussion of this point, see the references in the Chapter 2
footnote on p. 34.
†For an extended discussion of these points, see G. V. Glass, P. D. Peckham, and J. R. Sanders, “Con-
sequences of Failure to Meet the Assumptions Underlying the Use of Analysis of Variance and Co-
variance,” Review of Educational Research, 42 (1972), 237–288.



SIZE OF EFFECT USING 2 OR H2

Omega Squared, 2

We have already discussed the size of the effect of the X variable on the Y vari-
able in conjunction with correlational research when we discussed the coefficient
of determination (r2) in Chapter 6, p. 130. You will recall that r2 is a measure of
the proportion of the total variability of Y accounted for by X and hence is a
measure of the strength of the relationship between X and Y. If the X variable is
causal with regard to the Y variable, the coefficient of determination is also a
measure of the size of the effect of X on Y.

The situation is very similar when we are dealing with the one-way, inde-
pendent groups ANOVA. In this situation, the independent variable is the X
variable and the dependent variable is the Y variable. One of the statistics
computed to measure size of effect in the one-way, independent groups
ANOVA is omega squared ( ). The other is eta squared (h2), which we discuss
in the next section. Conceptually, and h2 are like r2 in that each provides an
estimate of the proportion of the total variability of Y that is accounted for by
X. is a relatively unbiased estimate of this proportion in the population,
whereas the estimate provided by h2 is more biased. The conceptual equation
for is given by

Conceptual equation

Since we do not know the values of these population variances, we estimate them
from the sample data. The resulting equation is

Computational equation

Cohen (1988) suggests the criteria shown in Table 15.4 for interpreting 
or h2.

v̂2

v̂2 �
SSB � 1k � 12sW

2

SST � sW
2

v̂2 �
sB

2

sB
2 � sW

2

v̂2

v̂2

v̂2
v̂2

V̂

V̂

Size of Effect Using 2 or h2 399v̂

* See Chapter 13 footnote on p. 330 for a reference discussing some cautions in using Cohen’s 
criteria.

t a b l e 15.4 Cohen’s Criteria for interpreting the
value of 2 or h2*

or H2 (Proportion of
Variance Accounted for) Interpretation

0.01–0.05 Small effect

0.06–0.13 Medium effect

�0.14 Large effect 

V̂2

v̂



e x a m p l e Stress Experiment

Let’s compute the size of effect using for the stress experiment, p. 390. For this ex-
periment, SSB � 203.333, SST � 257.333, sW

2 � 4.500, and k � 3. The size of effect for
these data, using is

Thus, the estimate provided by tells us that the stress situations account for 0.742 or
74.2% of the variance in corticosterone levels. Referring to Table 15.4, since the value
of is greater than 0.14, this is considered a large effect.

Eta Squared, H2

Eta squared is an alternative measure for determining size of effect in one-way,
independent groups ANOVA experiments. It also provides an estimate of the
proportion of the total variability of Y that is accounted for by X, and is very
similar to . However, it gives a more biased estimate than , and the biased
estimate is usually larger than the true size of the effect. Nevertheless, it is quite
easy to calculate, has been around longer than , and is still commonly used.
Hence, we have included a discussion of it here. The equation for computing h2

is given by

e x a m p l e Stress Experiment

This time, let’s compute h2 for the data of the stress experiment. As previously men-
tioned, SSB � 203.333, and SST � 257.333. Computing the value of h2 for these data, we
obtain

Based on h2, the stress situations account for 0.790 or 79.0% of the variance in corti-
costerone levels. According to Cohen’s criteria (see Table 15.4), this value of h2 also in-
dicates a large effect. Note, however, that the value of h2 is larger than the value ob-
tained for , even though both were calculated on the same data. Because provides
a more accurate estimate of the size of effect, we recommend its use over h2.

POWER OF THE ANALYSIS OF VARIANCE

The power of the analysis of variance is affected by the same variables and in the
same manner as was the case with the t test for independent groups. You will re-
call that for the t test for independence groups, power is affected as follows:

1. Power varies directly with N. Increasing N increases power.
2. Power varies directly with the size of the real effect of the independent

variable. The power of the t test to detect a real effect is greater for large
effects than for smaller ones.

3. Power varies inversely with sample variability. The greater the sample
variability is, the lower the power to detect a real effect is.

v̂2v̂2

h2 �
SSB

SST
�

203.333
257.333

� 0.790

Conceptual and
computational equation

h2 �
SSB

SST

v̂2

v̂2v̂2

v̂2

v̂2

v̂2 �
203.333 � 13 � 124.500

257.333 � 4.500
� 0.742

v̂2

v̂2
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MENTORING TIP
Caution: compute to 
3-decimal-place accuracy,
since this proportion is often
converted to a percentage.

v̂2

MENTORING TIP
Caution: compute h2 to 
3-decimal-place accuracy,
since this proportion is often
converted to a percentage.



Let’s now look at each of these variables and how they affect the analysis of
variance. This discussion is most easily understood by referring to the following
equation for Fobt, for an experiment involving three groups.

Power and N

Obviously, anything that increases Fobt also increases power.As N, the total num-
ber of subjects in the experiment, increases, so must n, the number of subjects in
each group. Increases in each of these variables results in an increase in Fobt. This
can be seen as follows. Referring to the Fobt equation, as N increases, since it is in
the denominator of the within variance estimate sW

2, sW
2 decreases. Since sW

2 is
in the denominator of the Fobt equation, Fobt increases. Regarding n, since n is in
the numerator of the Fobt equation and is a multiplier of positive values, increases
in n result in an increase in the between variance estimate sB

2. Since sB
2 is in the 

numerator of the Fobt equation, increases in sB
2 cause an increase in Fobt. As

stated earlier, anything that increases Fobt also increases power. Thus, increases 
in N and n result in increased power.

Power and the Real Effect of the Independent Variable

The larger the real effect of the independent variable is, the larger will be the 
values of and Increases in these values 
produce an increase in sB

2. Since sB
2 is in the numerator of the Fobt equation, in-

creases in sB
2 result in an increase in Fobt. Thus, the larger the real effect of the in-

dependent variable is, the higher is the power.

Power and Sample Variability

SS1 (the sum of squares of group 1), SS2 (the sum of squares of group 2), and SS3

(the sum of squares of group 3) are measures of the variability within each
group. Increases in SS1, SS2, and SS3 result in an increase in the within variance
estimate sW

2. Since sW
2 is in the denominator of the Fobt equation, increases in

sW
2 result in a decrease in Fobt. Thus, increases in variability result in decreases in

power.

MULTIPLE COMPARISONS

In one-way ANOVA, a significant F value indicates that all the conditions do not
have the same effect on the dependent variable. For example, in the illustrative
experiment presented earlier in the chapter that investigated the amount of
stress produced by three situations, a significant F value was obtained and we
concluded that the three situations were not the same in the stress levels they
produced. For pedagogical reasons, we stopped the analysis at this conclusion.
However, in actual practice, the analysis does not ordinarily end at this point.
Usually, we are also interested in determining which of the conditions differ from
each other. A significant F value tells us that at least one condition differs from

(X3 � XG)2.(X1 � XG)2, (X2 � XG)2,

Fobt �
sB

  2

sW  
   2 �

n�1X1 � XG2
2 � 1X2 � XG2

2 � 1X3 � XG2
2�/2

1SS1 � SS2 � SS32/ 1N � 32
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MENTORING TIP
Summary: power varies 
directly with N and real effect
of independent variable, and
inversely with within group
variability.



at least one of the others. It is also possible that they are all different or any com-
bination in between may be true. To determine which conditions differ, multiple
comparisons between pairs of group means are usually made. In the remainder
of this chapter, we shall discuss two types of comparisons that may be made: a pri-
ori comparisons and a posteriori comparisons.

A Priori, or Planned, Comparisons

A priori comparisons are planned in advance of the experiment and often arise
from predictions based on theory and prior research. With a priori comparisons,
we do not correct for the higher probability of a Type I error that arises due to
multiple comparisons, as is done with the a posteriori methods. This correction,
which we shall cover in the next section, in effect makes it harder for the null hy-
pothesis to be rejected. When doing a priori comparisons, statisticians do not
agree on whether the comparisons must be orthogonal (i.e., independent).* We
have followed the position taken by Keppel and Winer that planned comparisons
need not be orthogonal as long as they flow meaningfully and logically from the
experimental design and are few in number.†

In doing planned comparisons, the t test for independent groups is used. We
could calculate tobt in the usual way. For example, in comparing conditions 1 and
2, we could use the equation

However, remembering that is an estimate of based
on the within variance of the two groups, we can use a better estimate since we
have three or more groups in the experiment. Instead of 

we can use the within variance estimate , which is based on all
of the groups. Thus,

With n1 � n2 � n,

Let’s apply this to the stress example presented earlier in the chapter. For
convenience, we have shown the data and ANOVA solution in Table 15.5.

Suppose we have the a priori hypothesis based on theoretical grounds that
the effect of condition 3 will be different from the effect of both conditions 1 and

t equation for a priori, or planned, comparisons with
equal n in the two groupstobt �

X1 � X2

22sW
2�n

t equation for a priori, or planned, comparisons,
general equation

tobt �
X1 � X2

Bs 2
W   a

1
n1

�
1
n2
b

s 2
W1n1 � n2 � 2),

1SS1 � SS2)�

s21SS1 � SS2)� 1n1 � n2 � 2)

tobt �
X1 � X2

Ba
SS1 � SS2

n1 � n2 � 2
b a

1
n1

�
1
n2
b
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*For a discussion of this point, see G. Keppel, Design and Analysis, Prentice Hall, Upper Saddle
River, NJ, 1973, pp. 92–93.
†See Note 15.1 for a discussion of orthogonal comparisons.

MENTORING TIP
This equation is just like the 
t equation for independent
groups, except the value of 
sW

2 is taken from the ANOVA
analysis.



2. Therefore, prior to collecting any data, we have planned to compare the scores
of group 3 with those of group 1 and group 2. To perform the planned compar-
isons, we first calculate the appropriate tobt values and then compare them with
tcrit. The calculations are as follows:

Group 1 and Group 3:

Group 2 and Group 3:

Are any of these t values significant? The value of tcrit is found from Table D in
Appendix D, using the degrees of freedom for . Thus, with df � N � k � 12
and a � 0.052 tail,

tcrit � �2.18

Both of the obtained t scores have absolute values greater than 2.18, so we con-
clude that condition 3 differs significantly from conditions 1 and 2.

s 2
W

tobt �
X2 � X3

22sW
2�n

�
8.00 � 13.00

2214.502�5
� �3.73

tobt �
X1 � X3

22sW
2�n

�
4.00 � 13.00

2214.502�5
� �6.71
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t a b l e 15.5 Stress experiment data

Group 1 Group 2 Group 3
Vacation Class Final Exam

X1 X2 X3

2 4 10 100 10 100

3 9 8 64 13 169

7 49 7 49 14 196

2 4 5 25 13 169

6 36 10 100 15 225

20 102 40 338 65 859

n1 � 5 n2 � 5 n3 � 5

Source SS df s2 Fobt

Between groups 203.333 12 101.667 22.59*

Within groups 154 12 114.5

Total 257.333 14

*With a � 0.05, Fcrit � 3.88. Therefore, H0 is rejected.

N � 15

XG �
a

scores
all

X

N
� 8.333a

scores
all

X 2 � 1299a
scores

all

X � 125

X3 � 13.00X2 � 8.00X1 � 4.00

X 2
3X 2

2X 2
1



A Posteriori, or Post Hoc, Comparisons

When the comparisons are not planned in advance, we must use an a posteriori
test. These comparisons usually arise after the experimenter sees the data and
picks groups with mean scores that are far apart, or else they arise from doing all
the comparisons possible with no theoretical a priori basis. Since these compar-
isons were not planned before the experiment, we must correct for the inflated
probability values that occur when doing multiple comparisons, as mentioned in
the previous section.

Many methods are available for achieving this correction.* The topic is fairly
complex, and it is beyond the scope of this text to present all of the methods.
However, we shall present two of the most commonly accepted methods: a
method devised by Tukey called the HSD (Honestly Significant Difference) test
and the Newman–Keuls test. Both of these tests are post hoc multiple compari-
son tests. They maintain the Type I error rate at a while making all possible com-
parisons between pairs of sample means.

You will recall that the problem with doing multiple t test comparisons is that
the critical values of t were derived under the assumption that there are only two
samples whose means are to be compared. This would be accomplished by per-
forming one t test. When there are many samples and hence more than one com-
parison, the sampling distribution of t is no longer appropriate. In fact, if it were
to be used, the actual probability of making a Type I error would greatly exceed
alpha, particularly if many comparisons were made. Both the Tukey and
Newman–Keuls methods avoid this difficulty by using sampling distributions
based on comparing the means of many samples rather than just two. These dis-
tributions, called the Q or Studentized range distributions, were developed by
randomly taking k samples of equal n from the same population (rather than just
two, as with the t test) and determining the difference between the highest and
lowest sample means. The differences were then divided by producing
distributions that were like the t distributions except that these provide the basis
for making multiple comparisons, not just a single comparison as in the t test.The
95th and 99th percentile points for the Q distribution are given in Table G in Ap-
pendix D.These values are the critical values of Q for the 0.05 and 0.01 alpha lev-
els. As you might guess, the critical values depend on the number of sample
means and the degrees of freedom associated with .

In discussing the HSD and Newman–Keuls tests, it is useful to distinguish 
between two aspects of Type I errors: the experiment-wise error rate and the 
comparison-wise error rate.

s 2
W

2sW
2�n,
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*For a detailed discussion of these methods, see R. E. Kirk, Experimental Design, 3rd ed.,
Brooks/Cole, Pacific Grove, CA, 1995, pp. 144–159.

d e f i n i t i o n s ■ The experiment-wise error rate is the probability of making one or more
Type I errors for the full set of possible comparisons in an experiment.

■ The comparison-wise error rate is the probability of making a Type I error
for any of the possible comparisons.

As we shall see in the following sections, the HSD test and the Newman–Keuls
test differ in which of these rates they maintain equal to alpha.



The Tukey Honestly Significant Difference (HSD) Test

The Tukey Honestly Significant Difference test is designed to compare all possible
pairs of means while maintaining the Type I error for making the complete set of
comparisons at a. Thus, the HSD test maintains the experiment-wise Type I error
rate at a. The statistic calculated for this test is Q. It is defined by the following
equation:

where larger of the two means being compared
smaller of the two means being compared

� within-groups variance estimate
n � number of subjects in each group

Note that in calculating Qobt, the smaller mean is always subtracted from the
larger mean. This always makes Qobt positive. Otherwise, the Q statistic is very
much like the t statistic, except it uses the Q distributions rather than the t distri-
butions. To use the statistic, we calculate Qobt for the desired comparisons and
compare Qobt with Qcrit, determined from Table G. The decision rule states that if
Qobt � Qcrit, reject H0. If not, then retain H0.

To illustrate the use of the HSD test, we shall apply it to the data of the stress
experiment. For the sake of illustration, we shall assume that all three compar-
isons are desired. There are two steps in using the HSD test. First, we must cal-
culate the Qobt value for each comparison and then compare each value with
Qcrit. The calculations for Qobt are as follows:

Group 2 and Group 1:

Group 3 and Group 1:

Group 3 and Group 2:

The next step is to compare the Qobt values with Qcrit.The value of Qcrit is de-
termined from Table G.To locate the appropriate value, we must know the df, the
alpha level, and k. The df are the degrees of freedom associated with . In this
experiment, df � 12. As mentioned earlier, k stands for the number of groups in
the experiment. In the present experiment, k � 3. For this experiment, alpha was
set at 0.05. From Table G, with df � 12, k � 3, and a � 0.05, we obtain

Qcrit � 3.77

Since Qobt � 3.77 for each comparison, we reject H0 in each case and conclude
that m1 	 m2 	 m3. All three conditions differ in stress-inducing value. The solu-
tion is summarized in Table 15.6.

s 2
W

Qobt �
X3 � X2

2sW
2�n

�
13.00 � 8.00

24.50�5
�

5.00
0.949

� 5.27

Qobt �
X3 � X1

2sW
2�n

�
13.00 � 4.00

24.50�5
�

9.00
0.949

� 9.48

Qobt �
X2 � X1

2sW
2�n

�
8.00 � 4.00

24.50�5
�

4.00
0.949

� 4.21

s 2
W

Xj �

Xi �

Qobt �
Xi � Xj

2sW
2�n
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Keuls tests use Q distributions
instead of t distributions.



The Newman–Keuls Test

The Newman–Keuls test is also a post hoc test that allows us to make all possi-
ble pairwise comparisons among the sample means. It is like the HSD test in that
Qobt is calculated for each comparison and compared with Qcrit to evaluate the
null hypothesis. It differs from the HSD test in that it maintains the Type I error
rate at a for each comparison, rather than for the entire set of comparisons.
Thus:

The Newman–Keuls test maintains the comparison-wise error rate at a, whereas
the HSD test maintains the experiment-wise error rate at a.

To keep the comparison-wise error rate at a, the Newman–Keuls method
varies the value of Qcrit for each comparison. The value of Qcrit used for any com-
parison is given by the sampling distribution of Q for the number of groups
having means encompassed by and after all the means have been rank-
ordered. This number is symbolized by r to distinguish it from k, which symbol-
izes the total number of groups in the experiment.

To illustrate the Newman–Keuls method, we shall use it to analyze the
data from the stress experiment. The first step is to rank-order the means. This
has been done in Table 15.7. Next, Qobt is calculated for each comparison. The
calculations and Qobt values are also shown in Table 15.7. The next step is to
determine the values of Qcrit. Note that to keep the Type I error rate for each
comparison at a, there is a different critical value for each comparison, de-
pending on r. Recall that r for any comparison equals the number of groups
having means that are encompassed by and , after the means have been
rank-ordered. Thus, for the comparison between groups 3 and 1, and

. When the means are rank-ordered, there are three groups (groups 1,
2, and 3) whose means are encompassed by and . Thus, r � 3 for this com-
parison. For the comparison between groups 3 and 2, and Af-Xj � X2.Xi � X3

X1X3

Xj � X1

Xi � X3

XjXi

XjXi

406 C H A P T E R  15 Introduction to the Analysis of Variance

t a b l e 15.6 Post hoc individual comparisons analysis of the stress experi-
ment using Tukey’s HSD test

Group

1 2 3 Calculation

4.00 8.00 13.00

4.00 9.00

5.00

Qobt 4.21* 9.48*

5.27*

Qcrit 3.77 3.77

df � 12 3.77
k � 3
a � 0.05

*Reject H0.

Xi � Xj

X Groups 2 and 1:

Groups 3 and 1:

Groups 3 and 2:

Qobt �
X3 � X2

2sW
2�n

�
13.00 � 8.00

24.50�5
� 5.27

Qobt �
X3 � X1

2sW
2�n

�
13.00 � 4.00

24.50�5
� 9.48

Qobt �
X2 � X1

2s 2
W �n

�
8.00 � 4.00

24.50�5
� 4.21

MENTORING TIP
Note that Qcrit is the same for
all comparisons.



ter rank-ordering all the means, and are directly adjacent, so there are
only two means encompassed by and namely, and Thus, r � 2 for
this comparison. The same holds true for the comparison between groups 
2 and 1. For this comparison, and r � 2 (the two encom-
passed means are and ).

We are now ready to determine Qcrit for each comparison. The value of Qcrit

is found is Table G, using the appropriate values for df, r, and a. The degrees of
freedom are the df for , which equal 12, and we shall use the same a level.Thus,
a � 0.05. For the comparison between groups 1 and 3, with df � 12, r � 3, and 
a � 0.05, Qcrit � 3.77. For the comparisons between groups 1 and 2 and groups 2
and 3, with df � 12, r � 2, and a � 0.05, Qcrit � 3.08. These values are also shown
in Table 15.7.

The final step is to compare Qobt with Qcrit. In making these comparisons, we
follow the rule that we begin with the largest Qobt value in the table (the upper
right-hand corner of the Qobt values) and compare it with the appropriate Qcrit.
If it is significant, we proceed to the left one step and compare the next Qobt with
the corresponding Qcrit.We continue in this manner until we finish the row or un-
til we reach a nonsignificant Qobt. In the latter case, all the remaining Qobt values
left of this first nonsignificant Qobt are considered nonsignificant. When the row
is finished or when a nonsignificant Qobt is reached, we drop to the next row and
begin again at the rightmost Qobt value. We continue in this manner until all the
Qobt values have been evaluated.

In the present example, we begin with 9.48 and compare it with 3.77. It is sig-
nificant. Next, 4.21 is compared with 3.08. It is also significant. Since that com-
parison ends the row, we drop a row and compare 5.27 and 3.08. Again, the Qobt

value is significant. Thus, we are able to reject H0 in each comparison. Therefore,
we end the analysis by concluding that m1 	 m2 	 m3. The solution is summarized
in Table 15.7.

Now let’s do a practice problem.

s 2
W

X1X2

Xi � X2, Xj � X1,

X3.X2X2,X3

X2X3
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MENTORING TIP
Note that Qcrit varies depend-
ing on the comparison.

t a b l e 15.7 Post hoc individual comparisons analysis of the stress experi-
ment using the Newman–Keuls test

Group

1 2 3 Calculation

4.00 8.00 13.00

4.00 9.00

5.00

4.21* 9.48*

5.27*

Qcrit 3.08 3.77

df � 12 3.08
r � 2, 3
a � 0.05

*Reject H0.

Qobt

Xi � Xj

X Groups 3 and 1:

Groups 3 and 2:

Groups 2 and 1:

Qobt �
X2 � X1

2sW
2�n

�
8.00 � 4.00

24.50�5
� 4.21

Qobt �
X3 � X2

2sW
2�n

�
13.00 � 8.00

24.50�5
� 5.27

Qobt �
X3 � X1

2sW
2�n

�
13.00 � 4.00

24.50�5
� 9.48
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P r a c t i c e  P r o b l e m  15.2

Using the data of Practice Problem 15.1 (p. 396),
a. Test the planned comparisons that (1) lecture � reading and lecture

have different effects and (2) that lecture � reading and film � reading
have different effects. Use a � 0.052 tail.

b. Make all possible post hoc comparisons using the HSD test. Use 
a � 0.05.

c. Make all possible post hoc comparisons using the Newman–Keuls test.
Use a � 0.05.

S O L U T I O N

For convenience, the data and the ANOVA solution are shown again.

Condition 2
Condition 1 Lecture � Condition 3

Lecture Reading Film � Reading

X1 X2 X3

92 8,464 86 7,396 81 6,561

86 7,396 93 8,649 80 6,400

87 7,569 97 9,409 72 5,184

76 5,776 81 6,561 82 6,724

80 6,400 94 8,836 83 6,889

87 7,569 89 7,921 89 7,921

92 8,464 98 9,604 76 5,776

83 6,889 90 8,100 88 7,744

84 7,056 91 8,281 83 6,889

767 65,583 819 74,757 734 60,088

n1 � 9 n2 � 9 n3 � 9

N � 27
� 85.926

Source SS df s2 Fobt

Between groups 408.074 2 204.037 7.29*

Within groups 671.778 24 27.991

Total 1079.852 26

*With a = 0.05, Fcrit � 3.40. Therefore, H0 is rejected.

XG �
a

scores
all

X

Na
scores

all

X 2 � 200,428a
scores

all

X � 2320

X3 � 81.556X2 � 91X1 � 85.222

X 2
3X 2

2X 2
1
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a. Planned comparisons: The comparisons are as follows:
Lecture � reading and Lecture (condition 2 and condition 1):

Lecture � reading and Film � reading (condition 2 and condition 3):

To evaluate these values of tobt, we must determine tcrit. From Table D,
with a � 0.052 tail and df � 24,

tcrit � �2.064

Since in both comparisons, we reject H0 in each case and
conclude that m1 	 m2 and m2 	 m3. By using a priori tests, lecture � read-
ing appears to be the most effective method.

b. Post hoc comparisons using the HSD test: With the HSD test, Qobt is de-
termined for each comparison and then evaluated against Qcrit. The
value of Qcrit is the same for each comparison and is such that the
experiment-wise error rate is maintained at a. Although it is not neces-
sary for this test, we have first rank-ordered the means for comparison
purposes with the Newman–Keuls test. They are shown in the following
table. The calculations for Qobt are as follows:

Lecture (1) and Film � reading (3):

Lecture � reading (2) and Film � reading (3):

Lecture � reading (2) and Lecture (1):

Next, we must determine Qcrit. From Table G, with df � 24, k � 3, and
a � 0.05, we obtain

Qcrit � 3.53

Comparing the three values of Qobt with Qcrit, we find that only the com-
parison between film � reading and lecture � reading is significant. (For
this comparison Qobt � 3.53, whereas for the others Qobt 
 3.53.) Thus,
on the basis of the HSD test, we may reject H0 for the lecture � reading
and film � reading comparison (conditions 2 and 3). Lecture � reading

Qobt �
X2 � X1

2s 2
W �n

�
91 � 85.222

227.991�9
�

5.778
1.764

� 3.28

Qobt �
X2 � X3

2sW
2�n

�
91 � 81.556

227.991�9
�

9.444
1.764

� 5.35

Qobt �
X1 � X3

2s 2
W �n

�
85.222 � 81.556

227.991�9
�

3.666
1.764

� 2.08

�tobt� 7 2.064

tobt �
X2 � X3

22s 2
W �n

�
91 � 81.556

22127.9912�9
� 3.79

tobt �
X2 � X1

22s 2
W �n

�
91 � 85.222

22127.9912�9
� 2.32

(continued)
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appears to be more effective than film � reading. However, we cannot
reject H0 with regard to the other comparisons. The results are summa-
rized in the following table.

Condition

3 1 2 Calculation

81.556 85.222 91

3.666 9.444

5.778

Qobt 2.08 5.35*

3.28

Qcrit � 3.53 3.53 3.53
df � 24 3.53
k � 3
a � 0.05

*Reject H0.

c. Post hoc comparisons using the Newman–Keuls test: As with the HSD
test, Qobt is calculated for each comparison and then evaluated against
Qcrit. However, with the Newman–Keuls test, the value of Qcrit changes
with each comparison so as to keep the comparison-wise error rate at
a. First, the means are rank-ordered from lowest to highest. This is
shown in the table that follows. Then, Qobt is calculated for each com-
parison. These calculations, as well as the Qobt values, have been en-
tered in the table. Next, Qcrit for each comparison is determined from
Table G.The values of Qcrit depend on a, df for , and r, where r equals
the number of groups having means that are encompassed by and 
after the means have been rank-ordered. Thus, for the comparison be-
tween and , r � 2; between and r � 3; and between and

, r � 2. For this experiment, df � 24 and a � 0.05. The values of Qcrit

for each comparison have been entered in the table. Comparing Qobt

with Qcrit, starting with the highest Qobt value in the first row and pro-
ceeding to the left, we find that we can reject H0 for the comparison be-
tween conditions 2 and 3 but not for the comparison between conditions
1 and 3. Dropping down to the next row, since 3.28 � 2.92, we can also
reject H0 for the comparison between conditions 2 and 1. Thus, based on
the Newman–Keuls test, it appears that lecture � reading is superior to
both lecture alone and film � reading. The results are summarized in the
following table.

X3

X1X3,X2X1X2

XjXi

s 2
W

Xi � Xj

X Conditions 1 and 3:

Conditions 2 and 3:

Conditions 2 and 1:

Qobt �
X2 � X1

2sW
2�n

�
91 � 85.222

227.991�9
� 3.28

Qobt �
X2 � X3

2sW
2�n

�
91 � 81.556

227.991�9
� 5.35

Qobt �
X1 � X3

2sW
2�n

�
85.222 � 81.556

227.991�9
� 2.08



HSD and Newman–Keuls Tests with Unequal n

As pointed out previously, both the HSD and the Newman–Keuls tests are ap-
propriate when there are an equal number of subjects in each group. If the ns are
unequal, these tests still can be used, provided the ns do not differ greatly. To use
the HSD or the Newman–Keuls tests with unequal n, we calculate the harmonic
mean (ñ) of the various ns and use it in the denominator of the Q equation. The
equation for ñ is

harmonic mean

where k � number of groups
nk � number of subjects in the kth group

Suppose in the stress experiment that n1 � 5, n2 � 7, and n3 � 8. Then

Comparison Between Planned Comparisons, Tukey’s HSD,
and the Newman–Keuls Tests

Since planned comparisons do not correct for an increased probability of making 
a Type I error, they are more powerful than either of the post hoc tests we have
discussed. This is the method of choice when applicable. It is important to note,
however, that planned comparisons should be relatively few in number and
should flow meaningfully and logically from the experimental design.

Deciding between Tukey’s HSD and the Newman–Keuls tests really depends
on one’s philosophy. Since the HSD test keeps the Type I error rate at a for the
entire set of comparisons, whereas the Newman–Keuls test maintains the Type I

n
'

�
k

11�n12 � 11�n22 � 11�n32
�

3
1
5 � 1

7 � 1
8

� 6.41

n
'

�
k

11�n12 � 11�n22 � 11�n32 � .  .  . � 11�nk2
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Condition

3 1 2 Calculation

81.556 85.222 91

3.666 9.444

5.778

2.08 5.35*

3.28*

2.92 3.53
df � 24 2.92

r � 2, 3
a � 0.05

*Reject H0.

Qcrit

Qobt

Xi � Xj

X Conditions 1 and 3:

Conditions 2 and 3:

Conditions 2 and 1:

Qobt �
X2 � X1

2sW
2�n

�
91 � 85.222

227.991�9
� 3.28

Qobt �
X2 � X3

2sW
2�n

�
91 � 81.556

227.991�9
� 5.35

Qobt �
X1 � X3

2sW
2�n

�
85.222 � 81.556

227.991�9
� 2.08

MENTORING TIP
Planned comparisons are the
most powerful of the multiple
comparison tests.



error rate at a for each comparison, the Newman–Keuls test has a somewhat
higher experiment-wise Type I error rate than the HSD test (although still con-
siderably lower than when making no adjustment at all). Because it uses a less
stringent experiment-wise a level than the HSD test, the Newman–Keuls test is
more powerful. An example of this occurred in the last experiment we analyzed.
With Newman–Keuls, we were able to reject H0 for the comparisons between
conditions 2 and 3 and between conditions 2 and 1. With the HSD test, we re-
jected H0 only for the comparison between conditions 2 and 3. Thus, there is a
trade-off. Newman–Keuls has a higher experiment-wise Type I error rate but a
lower Type II error rate. A conservative experimenter would probably choose
Tukey’s HSD test, whereas a more liberal researcher would probably prefer the
Newman–Keuls test. Of course, if the consequences of making a Type I error
were much greater than making a Type II error, or vice versa, the researcher
would choose the test that minimized the appropriate error rate.
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WHAT IS THE TRUTH? Much Ado About Almost Nothing

In a magazine ad-
vertisement placed
by Rawlings Golf
Company, Rawlings
claims to have de-

veloped a new golf ball that travels
a greater distance. The ball is called
Tony Penna DB (DB stands for dis-
tance ball). To its credit, Rawlings
not only offered terms such as high
rebound core, Surlyn cover, centrifu-
gal action, and so forth to explain
why it is reasonable to believe that
its ball would travel farther but also
hired a consumer testing institute to
conduct an experiment to determine
whether, in fact, the Tony Penna DB
ball does travel farther. In this experi-
ment, six different brands of balls
were evaluated. Fifty-one golfers

each hit 18 new balls (3 of each
brand) off a driving tee with a driver.
The mean distance traveled for each
ball was reported as follows:

1. Tony Penna DB 254.57 yd
2. Titleist Pro Trajectory 252.50 yd
3. Wilson Pro Staff 249.24 yd
4. Titleist DT 249.16 yd
5. Spalding Top-Flite 247.12 yd
6. Dunlop Blue Max 244.22 yd

Although no inference testing was
reported, the ad concludes, “as you
can see, while we can’t promise you
250 yards off the tee, we can offer
you a competitive edge, if only a
yard or two. But an edge is an
edge.” Since you are by now thor-
oughly grounded in inferential statis-
tics, how do you respond to this ad?

Answer First, I think you should
commend the company on con-
ducting evaluative research that
compares its product with competi-
tors’ on a very important depen-
dent variable. It is to be further
commended in engaging an impar-
tial organization to conduct the re-
search. Finally, it is to be com-
mended for reporting the results
and calling readers’ attention to
the fact that the differences be-
tween balls are quite small (al-
though, admittedly, the wording of
the ad tries to achieve a somewhat
different result).

A major criticism of this ad (and
an old friend by now) is that we
have not been told whether these
results are statistically significant.
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Without establishing this point, the
most reasonable explanation of the
differences may be “chance.” Of
course, if chance is the correct ex-
planation, then using the Tony
Penna DB ball won’t even give you
a yard or two advantage! Before
we can take the superiority claim
seriously, the manufacturer must
report that the differences were
statistically significant. Without this
statement, as a general rule, I be-
lieve we should assume the differ-
ences were tested and were not
significant, in which case chance
alone remains a reasonable expla-
nation of the data. (By the way,
what inference test would you
have used? Did you answer
ANOVA? Nice going!)

For the sake of my second
point, let’s say the appropriate in-
ference testing has been done, and
the data are statistically significant.
We still need to ask: “So what?
Even if the results are statistically
significant, is the size of the effect
worth bothering about?” Regard-
ing the difference in yardage be-
tween the first two brands, I think
the answer is “no.” Even if I were
an avid golfer, I fail to see how a
yard or two would make any prac-
tical difference in my golf game. In
all likelihood, my 18-hole score
would not change by even one
stroke, regardless of which ball I
used. On the other hand, if I had
been using a Dunlop Blue Max ball,
these results would cause me to try

one of the top two brands. Regard-
ing the third-, fourth-, and fifth-
place brands, a reasonable person
could go either way. If there were
no difference in cost, I think I
would switch to one of the first
two brands, on a trial basis.

In summary, there are two
points I have tried to make. The
first is that product claims of supe-
riority based on sample data should
report whether the results are sta-
tistically significant. The second is
that “statistical significance” and
“importance” are different issues.
Once statistical significance has
been established, we must look at
the size of the effect to see if it is
large enough to warrant changing
our behavior. ■

In this chapter, I discussed the F test and the analy-
sis of variance. The F test is fundamentally the ratio
of two independent variance estimates of the same
population variance, s 2. The F distribution is a fam-
ily of curves that varies with degrees of freedom.
Since Fobt is a ratio, there are two values for degrees
of freedom: one for the numerator and one for the
denominator. The F distribution (1) is positively
skewed, (2) has no negative values, and (3) has a
median approximately equal to 1 depending on the
ns of the estimates.

The analysis of variance technique is used in
conjunction with experiments involving more than
two independent groups. Basically, it allows the
means of the various groups to be compared in one
overall evaluation, thus avoiding the inflated proba-
bility of making a Type I error when doing many t
tests. In the one-way analysis of variance, the total
variability of the data (SST) is partitioned into two
parts: the variability that exists within each group,
called the within-groups sum of squares (SSW), and
the variability that exists between the groups, called
the between-groups sum of squares (SSB). Each sum
of squares is used to form an independent estimate

of the variance of the null-hypothesis populations.
Finally, an F ratio is calculated, where the between-
groups variance estimate (sB

2) is in the numerator
and the within-groups variance estimate (sW

2) is in
the denominator. Since the between-groups vari-
ance estimate increases with the effect of the inde-
pendent variable and the within-groups variance es-
timate remains constant, the larger the F ratio, the
more unreasonable the null hypothesis becomes. We
evaluate Fobt by comparing it with Fcrit. If Fobt � Fcrit,
we reject the null hypothesis and conclude that at
least one of the conditions differs significantly from
at least one of the other conditions.

Next, I discussed the assumptions underlying
the analysis of variance. There are two assumptions:
(1) The populations from which the samples are
drawn should be normal, and (2) there should be ho-
mogeneity of variance. The F test is robust with
regard to violations of normality and homogeneity
of variance.

After discussing assumptions, I presented two
methods for estimating the size of effect of the inde-
pendent variable. One of the statistics computed to
measure size of effect in the one-way, independent

■ SUMMARY



groups ANOVA is omega squared ( ). The other is
eta squared (h2). Conceptually, and h2 are like r2

in that each provides an estimate of the proportion
of the total variability of Y that is accounted for by
X. The larger the proportion, the larger is the size of
the effect. gives a relatively unbiased estimate of
this proportion in the population, whereas the esti-
mate provided by h2 is more biased. In addition to
explaining how to compute and h2, criteria were
given to determine if the computed size of effect was
small, medium, or large.

Next, I presented a section on the power of the
analysis of variance. As with the t test, power of the
ANOVA varies directly with N and the size of the real
effect and varies inversely with the sample variability.

Finally, I presented a section on multiple com-
parisons. In experiments using the ANOVA tech-
nique, a significant F value indicates that the condi-
tions are not all equal in their effects. To determine
which conditions differ from each other, multiple
comparisons between pairs of group means are usu-
ally performed. There are two approaches to doing
multiple comparisons: a priori, or planned, compar-
isons and a posteriori, or post hoc, comparisons.

In the a priori approach, there are between-
groups comparisons that have been planned in ad-
vance of collecting the data. These may be done in
the usual way, regardless of whether the obtained F
value is significant, by calculating tobt for the two
groups and evaluating tobt by comparing it with tcrit.

�̂2

�̂2

�̂2
�̂2 In conducting the analysis, we use the within-groups

variance estimate calculated in doing the analysis of
variance. Since this estimate is based on more groups
than the two-group estimate used in the ordinary t
test, it is more accurate. There is no correction neces-
sary for multiple comparisons. However, statisticians
do not agree on whether the comparisons should be
orthogonal. We have followed the view that a priori
comparisons need not be orthogonal as long as they
flow meaningfully and logically from the experimen-
tal design and are few in number.

A posteriori, or post hoc, comparisons were not
planned before conducting the experiment and arise
after looking at the data.As a result, we must be very
careful about Type I error considerations. Post hoc
comparisons must be made with a method that cor-
rects for the inflated Type I error probability. Many
methods do this.

For post hoc comparisons, I described Tukey’s
HSD test and the Newman–Keuls test. Both of these
tests maintain the Type I error rate at a while mak-
ing all possible comparisons between pairs of sample
means. The HSD test keeps the experiment-wise er-
ror rate at a, whereas the Newman–Keuls test keeps
the comparison-wise error rate at a. Both tests use
the Q or Studentized range statistic. As with the t
test, Qobt is calculated for each comparison and eval-
uated against Qcrit determined from the sampling
distribution of Q. If Qobt � Qcrit, the null hypothesis
is rejected.
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A posteriori comparisons (p. 404)
A priori comparisons (p. 402)
Analysis of variance (p. 386)
Between-groups sum of squares

(SSB) (p. 387, 389)
Between-groups variance estimate

(sB
2) (p. 387, 388)

Comparison-wise error rate (p. 404)
Experiment-wise error rate (p. 404)
Eta squared (h2) (p. 400)
F test (p. 383)

Fcrit (p. 383)
Grand mean ( ) (p. 389)
Newman–Keuls test (p. 406)
Omega squared (v̂2) (p. 399)
One-way analysis of variance,

independent groups design (p. 386)
Planned comparisons (p. 402)
Post hoc comparisons (p. 404)
Qcrit (p. 405)
Qobt (p. 405)
Sampling distribution of F (p. 383)

XG

Simple randomized-group design 
(p. 386)

Single factor experiment,
independent groups design (p. 386)

Total variability (SST) (p. 386, 392)
Tukey’s HSD test (p. 405)
Within groups sum of squares (SSW)

(p. 387, 388)
Within groups variance estimate

(sW
2) (p. 387)

■ IMPORTANT NEW TERMS

1. Identify or define the terms in the Important New
Terms section.

2. What are the characteristics of the F distribution?
3. What advantages are there in doing experiments

with more than two groups or conditions?

4. When doing an experiment with many groups,
what is the problem with doing t tests between 
all possible groups without any correction? Why
does use of the analysis of variance avoid that
problem?

■ QUESTIONS AND PROBLEMS



5. The analysis of variance technique analyzes the
variability of the data. Yet a significant F value
indicates that there is at least one significant
mean difference between the conditions. How
does analyzing the variability of the data allow
conclusions about the means of the conditions?

6. What are the steps in forming an F ratio in using
the one-way analysis of variance technique?

7. In the analysis of variance, if Fobt is less than 1,
we don’t even need to compare it with Fcrit. It is
obvious that the independent variable has not
had a significant effect. Why is this so?

8. What are the assumptions underlying the analy-
sis of variance?

9. The analysis of variance is a nondirectional tech-
nique, yet it uses a one-tailed evaluation. Is this
statement correct? Explain.

10. Find Fcrit for the following situations:
a. df(numerator) � 2, df(denominator) � 16,
a � 0.05

b. df(numerator) � 3, df(denominator) � 36,
a � 0.05

c. df(numerator) � 3, df(denominator) � 36,
a � 0.01

What happens to Fcrit as the degrees of freedom
increase and alpha is held constant? What hap-
pens to Fcrit when the degrees of freedom are
held constant and alpha is made more stringent?

11. In Chapter 14, Practice Problem 14.2, an inde-
pendent groups experiment was conducted to in-
vestigate whether lesions of the thalamus de-
crease pain perception. a � 0.051 tail was used in
the analysis. The data are again presented here.
Scores are pain threshold (milliamps) to electric
shock. Higher scores indicate decreased pain
perception.

Neutral Area Lesions Thalamic Lesions

0.8 1.9

0.7 1.8

1.2 1.6

0.5 1.2

0.4 1.0

0.9 0.9

1.4 1.7

1.1

Using these data, verify that F � t2 when there
are just two groups in the independent groups
experiment.

12. What are the variables that affect the power of
the one-way analysis of variance technique?

13. For each of the variables identified in Question
12, state how power is affected if the variable is
increased. Use the equation for on p. 401 to
justify your answer.

14. Explain why we must correct for doing multiple
comparisons when doing post hoc comparisons.

15. How do planned comparisons, post hoc compar-
isons using the HSD test, and post hoc compar-
isons using the Newman–Keuls test differ with
regard to
a. Power? Explain.
b. The probability of making a Type I error? Ex-

plain.
16. What are the Q or Studentized range distribu-

tions? How do they avoid the problem of inflated
Type I errors that result from doing multiple
comparisons with the t distribution?

17. In doing planned comparisons, it is better to use
from the ANOVA rather than the weighted

variance estimate from the two groups being
compared. Is this statement correct? Why?

18. The accompanying table is a one-way, indepen-
dent groups ANOVA summary table with part of
the material missing.

Source SS df s2 Fobt

Between groups 1253.68 3

Within groups

Total 5016.40 39

a. Fill in the missing values.
b. How many groups are there in the experi-

ment?
c. Assuming an equal number of subjects in

each group, how many subjects are there in
each group?

d. What is the value of Fcrit, using a � 0.05?
e. Is there a significant effect?

19. Assume you are a nutritionist who has been
asked to determine whether there is a difference
in sugar content among the three leading brands
of breakfast cereal (brands A, B, and C). To as-
sess the amount of sugar in the cereals, you ran-
domly sample six packages of each brand and
chemically determine their sugar content. The
following grams of sugar were found:

s 2
W

Fobt
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Breakfast Cereal

A B C

1 7 5

4 5 4

3 3 4

3 6 5

2 4 7

5 7 8

a. Using the conceptual equations of the one-
way ANOVA, determine whether any of the
brands differ in sugar content. Use a � 0.05.

b. Same as part a, except use the computational
equations. Which do you prefer? Why?

c. Do a post hoc analysis on each pair of means
using the Tukey HSD test with a� 0.05 to de-
termine which cereals are different in sugar
content.

d. Same as part c, but use the Newman–Keuls
test. health

20. A sleep researcher conducts an experiment to
determine whether sleep loss affects the ability
to maintain sustained attention. Fifteen individu-
als are randomly divided into the following three
groups of five subjects each: group 1, which gets
the normal amount of sleep (7–8 hours); group 2,
which is sleep-deprived for 24 hours; and group
3, which is sleep-deprived for 48 hours. All three
groups are tested on the same auditory vigilance
task. Subjects are presented with half-second
tones spaced at irregular intervals over a 1-hour
duration. Occasionally, one of the tones is
slightly shorter than the rest. The subject’s task is
to detect the shorter tones. The following per-
centages of correct detections were observed:

Normal Sleep-Deprived Sleep-Deprived 
Sleep for 24 Hours for 48 Hours

85 60 60

83 58 48

76 76 38

64 52 47

75 63 50

a. Determine whether there is an overall effect
for sleep deprivation, using the conceptual

equations of the one-way ANOVA. Use 
a � 0.05.

b. Same as part a, except use the computational
equations.

c. Which do you prefer? Why?
d. Determine the size of effect, using .
e. Determine the size of effect, using h2.
f. Explain the difference in answers between

part d and part e.
g. Do a planned comparison between the means

of the 48-hour sleep-deprived group and the
normal sleep group to see whether these con-
ditions differ in their effect on the ability to
maintain sustained attention. Use a� 0.052 tail.
What do you conclude?

h. Do post hoc comparisons, comparing each
pair of means using the Newman–Keuls test
and a � 0.052tail. What do you conclude?

i. Same as part h, but use the HSD test. Com-
pare your answers to parts h and i. Explain
any difference. cognitive

21. To test whether memory changes with age, a re-
searcher conducts an experiment in which there
are four groups of six subjects each. The groups
differ according to the age of subjects. In group 1,
the subjects are each 30 years old; group 2, 40
years old; group 3, 50 years old; and group 4, 60
years old. Assume that the subjects are all in
good health and that the groups are matched on
other important variables such as years of educa-
tion, IQ, gender, motivation, and so on. Each sub-
ject is shown a series of nonsense syllables (a
meaningless combination of three letters such as
DAF or FUM) at a rate of one syllable every 4
seconds. The series is shown twice, after which
the subjects are asked to write down as many of
the syllables as they can remember. The number
of syllables remembered by each subject is
shown here:

30 Years 40 Years 50 Years 60 Years
Old Old Old Old

14 12 17 13

13 15 14 10

15 16 14 7

17 11 9 8

12 12 13 6

10 18 15 9

�̂2
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a. Use the analysis of variance with a � 0.05 to
determine whether age has an effect on
memory.

b. If there is a significant effect in part a, deter-
mine the size of effect, using .

c. Determine the size of effect, using h2.
d. Explain the difference in answers between

part b and part c.
e. Using planned comparisons with a� 0.052 tail,

compare the means of the 60-year-old and the
30-year-old groups. What do you conclude?

f. Use the Newman–Keuls test with a� 0.052 tail

to compare all possible pairs of means. What
do you conclude? cognitive

22. Assume you are employed by a consumer-
products rating service and your assignment is to
assess car batteries. For this part of your investi-
gation, you want to determine whether there is a
difference in useful life among the top-of-the-
line car batteries produced by three manufactur-
ers (A, B, and C). To provide the database for
your assessment, you randomly sample four bat-
teries from each manufacturer and run them
through laboratory tests that allow you to deter-
mine the useful life of each battery.The following
are the results given in months of useful battery
life:

Battery Manufacturer

A B C

56 46 44

57 52 53

55 51 50

59 50 51

a. Use the analysis of variance with a � 0.05 
to determine whether there is a difference
among these three brands of batteries.

b. Suppose you are asked to make a recommen-
dation regarding the batteries based on useful
life. Use the HSD test with a � 0.052 tail to
help you with your decision. I/O

23. In Chapter 14, an illustrative experiment in-
volved investigating the effect of hormone X on
sexual behavior. Although we presented only
two concentrations in that problem, let’s assume
the experiment actually involved four different
concentrations of the hormone. The full data 
are shown here, where the concentrations are

�̂2

arranged in ascending order; that is, 0 concentra-
tion is where there is zero amount of hormone X
(this is the placebo group), and concentration 3
represents the highest amount of the hormone:

Concentration of Hormone X

0 1 2 3

5 4 8 13

6 5 10 10

3 6 12 9

4 4 6 12

7 5 6 12

8 7 7 14

6 7 9 9

5 8 8 13

4 4 7 10

8 8 11 12

a. Using the analysis of variance with a � 0.05,
determine whether hormone X affects sexual
behavior.

b. If there is a real effect, estimate the size of the
effect using .

c. Using planned comparisons with a� 0.052 tail,
compare the mean of concentration 3 with
that of concentration 0. What do you con-
clude?

d. Using the Newman–Keuls test with a �
0.052 tail, compare all possible pairs of means.
What do you conclude?

e. Same as part d, except use the HSD test.
biological

24. A clinical psychologist is interested in evaluating
the effectiveness of the following three tech-
niques for treating mild depression: cognitive 
restructuring, assertiveness training, and an 
exercise/nutrition program. Forty undergraduate
students suffering from mild depression are ran-
domly sampled from the university counseling
center’s waiting list and randomly assigned ten
each to the three techniques previously men-
tioned, and the remaining ten to a placebo con-
trol group. Treatment is conducted for 10 weeks,
after which depression is measured using the
Beck Depression Inventory. The posttreatment
depression scores are given here. Higher scores
indicate greater depression.

�̂2
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Treatment

Cognitive Assertiveness Exercise/
Placebo restructuring training nutrition

27 10 16 26

16 8 18 24

18 14 12 17

26 16 15 23

18 18 9 25

28 8 13 22

25 12 17 16

20 14 20 15

24 9 21 18

26 7 19 23

a. What is the overall null hypothesis?
b. Using a � 0.05, what do you conclude?
c. Do post hoc comparisons, using the Tukey

HSD test, with a� 0.052 tail. What do you con-
clude? clinical, health

25. A university researcher knowledgeable in Chi-
nese medicine conducted a study to determine
whether acupuncture can help reduce cocaine
addiction. In this experiment, 18 cocaine ad-
dicts were randomly assigned to one of three
groups of 6 addicts per group. One group re-
ceived 10 weeks of acupuncture treatment in
which the acupuncture needles were inserted
into points on the outer ear where stimulation
is believed to be effective. Another group, a
placebo group, had acupuncture needles in-
serted into points on the ear believed not to be
effective. The third group received no acupunc-
ture treatment; instead, addicts in this group re-
ceived relaxation therapy. All groups also re-
ceived counseling over the 10-week treatment
period. The dependent variable was craving 
for cocaine as measured by the number of co-
caine urges experienced by each addict in the
last week of treatment. The following are the
results.

Acupuncture � Placebo � Relaxation Therapy �
Counseling Counseling Counseling

4 8 12

7 12 7

6 11 9

5 8 6

2 10 11

3 7 6

a. Using a � 0.05, what do you conclude?
b. If there is a significant effect, estimate the size

of effect, using v̂2.
c. This time estimate the size of the effect,

using h2.
d. Explain the difference in answers between

part b and part c. clinical, health
26. An instructor is teaching three sections of Intro-

ductory Psychology, each section covering the
same material. She has made up a different final
exam for each section, but she suspects that one of
the versions is more difficult than the other two.
She decides to conduct an experiment to evaluate
the difficulty of the exams. During the review pe-
riod, just before finals, she randomly selects five
volunteers from each class. Class 1 volunteers are
given version 1 of the exam; class 2 volunteers get
version 2, and class 3 volunteers receive version 3.
Of course, all volunteers are sworn not to reveal
any of the exam questions, and also, of course, all
of the volunteers will receive a different final
exam from the one they took in the experiment.
The following are the results.

Exam Version 1 Exam Version 2 Exam Version 3

70 95 88

92 75 76

85 81 84

83 83 93

78 72 77

Using a� 0.05, what do you conclude? education
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15.1 Orthogonal comparisons. When making com-
parisons between the means of the groups, we
can represent any comparison as a weighted
sum of the means. For example, if there are four
means, we can represent the comparison be-
tween any of the groups as the weighted 
sum of and Thus, if we are 
evaluating the weighted sum would be
(1) where 1,
�1, 0, and 0 are the weights. If we are evaluat-

X2 � 1�12X2 � 102X3 � 102X4,
X1 � X2,

X4.X1, X2, X3,

ing the weighted sum would be
where 0, 0, 1,

and �1 are the weights. In general, two com-
parisons are said to be orthogonal if the sum of
the products of the two weights for each mean
equals zero. Using this information, let’s now
determine whether the foregoing two compar-
isons are orthogonal. The appropriate paired
weights have been multiplied and summed, as
follows:

1�12X4,10)X1 � 10)X2 � 11)X3 �
X3 � X4,

■ NOTES

Comparison Weighted Sum Weights

1, �1, 0, 0

0, 0, 1, �1

(1)(0) � (�1)(0) � (0)(1) � (0)(�1) � 0

102X1 � 102X2 � 112X3 � 1�12X4X3 � X4

112X1 � 1�12X2 � 102X3 � 102X4X1 � X2

15.1 Since the sum of the products of the two 
weights for each mean equals zero, these two
comparisons are orthogonal (i.e., independent).

In general, if there are k groups in an experi-
ment, there are k – 1 independent comparisons
possible.*

*For a more detailed discussion of orthogonal comparisons, see
R. E. Kirk, Experimental Design, 3rd ed., Brooks/Cole, Pacific
Grove, CA, 1995, pp. 115–118.
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LEARNING OBJECTIVES

After completing this chapter, you should be able to:
■ Define factorial experiment, main effect, and interaction 

effect.
■ Correctly label graphs showing no effect and various combi-

nations of main and interaction effects.
■ Understand the partitioning of SST into its 4 components, the

formation of variance estimates, and the formation of the
three F ratios.

■ Understand the derivation of the row, column, row � col-
umn, and the within-cells variance estimates.

■ Solve problems involving two-way ANOVA and specify the
assumptions underlying this technique.

■ Understand the illustrative example, do the practice prob-
lems, and understand the solutions.

Chapter 16



INTRODUCTION TO TWO-WAY ANOVA—
QUALITATIVE PRESENTATION

In Chapter 15, we discussed the most elementary analysis of variance design. We
called it the simple randomized-groups design, the one-way analysis of variance,
independent groups design, or the single factor experiment, independent groups
design. The characteristics of this design are that there is only one independent
variable (one factor) that is being investigated, there are several levels of the in-
dependent variable (several conditions) represented, and subjects are randomly
assigned to each condition.

Actually, the analysis of variance design is not limited to single factor exper-
iments. In fact, the effect of many different factors may be investigated at the
same time in one experiment. Such experiments are called factorial experiments.
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d e f i n i t i o n ■ A factorial experiment is one in which the effects of two or more factors are
assessed in one experiment. In a factorial experiment, the treatments used
are combinations of the levels of the factors.

The two-way analysis of variance is a bit more complicated than the one-way
design. However, we get a lot more information from the two-way design.

Basically, the two-way analysis of variance allows us in one experiment to evalu-
ate the effect of two independent variables and the interaction between them.

To illustrate this design, suppose a professor in physical education conducts an
experiment to compare the effects on nighttime sleep of different intensities of
exercise and the time of day when the exercise is done. For this example, let’s as-
sume that there are two levels of exercise (light and heavy) and two times of day
(morning and evening). The experiment is depicted diagrammatically in Fig-
ure 16.1. From this figure, we can see that there are two factors (or independent
variables): factor A, which is time of day, and factor B, which is exercise intensity.
Each factor has two levels. Thus, this design is referred to as a 2 � 2 (read “two by
two”) design where each number stands for a factor and the magnitude of the
number designates the number of levels within the factor. For example, if factor A
had three levels, then the experiment would be called a 3 � 2 design. In a 2 � 4 � 3
design, there would be three factors having two, four, and three levels, respectively.
In the present example, there are two factors each having two levels. This results
in four cells or conditions: a1b1 (morning–light exercise), a1b2 (morning–heavy 
exercise), a2b1 (evening–light exercise), and a2b2 (evening–heavy exercise). Since
this is an independent groups design, subjects would be randomly assigned to each
of the cells so that a different group of subjects occupies each cell. Since the lev-
els of each factor were systematically chosen by the experimenter rather than be-
ing randomly chosen, this is called a fixed effects design.

There are three analyses done in this design. First, we want to determine
whether factor A has a significant effect, disregarding the effect of factor B. In
this illustration, we are interested in determining whether “time of day” makes a
difference in the effect of exercise on sleep, disregarding the effect of “exercise
intensity.” Second, we want to determine whether factor B has a significant effect,
without considering the effect of factor A. For this experiment, we are interested



in determining whether the intensity of exercise makes a difference in sleep ac-
tivity, disregarding the effect of time of day. Finally, we want to determine
whether there is an interaction between factors A and B. In the present experi-
ment, we want to determine whether there is an interaction between time of day
and intensity of exercise in their effect on sleep.

Figure 16.2 shows some possible outcomes of this experiment. In part 
(a), there are no significant effects. In part (b), there is a significant main effect
for time of day but no effect for intensity of exercise and no interaction.Thus, the
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b1, light

Factor B, exercise intensity

Factor A,
time of day

a1,
morning

  sleep scores of
subjects who do
light exercise in
the morning

a1b1:   sleep scores of
subjects who do
heavy exercise in
the morning

a1b2:

  sleep scores of
subjects who do
light exercise in
the evening

a2b1:   sleep scores of
subjects who do
heavy exercise in
the evening

a2b2:
a2,

evening

b2, heavy

f i g u r e 16.1 Schematic diagram of two-way analysis of variance
example involving exercise intensity and time of day.

d e f i n i t i o n s ■ The effect of factor A (averaged over the levels of factor B) and the effect of
factor B (averaged over the levels of factor A) are called main effects. An
interaction effect occurs when the effect of one factor is not the same at all
levels of the other factor.

subjects get significantly more sleep if the exercise is done in the morning rather
than in the evening. However, it doesn’t seem to matter if the exercise is light or
heavy. In part (c), there is a significant main effect for intensity of exercise but no
effect for time of day and no interaction. In this example, heavy exercise results
in significantly more sleep than light exercise, and it doesn’t matter whether the
exercise is done in the morning or evening—the effect appears to be the same.
Part (d) shows a significant main effect for intensity of exercise and time of day,
with no interaction effect.

Both parts (e) and (f) show significant interaction effects. As stated previ-
ously, the essence of an interaction is that the effect of one factor is not the same
at all levels of the other factor. This means that, when an interaction occurs be-
tween factors A and B, the differences in the dependent variable due to changes
in one factor are not the same for each level of the other factor. In part (e), there
is a significant interaction effect between intensity of exercise and time of day.The



effect of different intensities of exercise is not the same for all levels of time of
day. Thus, if the exercise is done in the evening, light exercise results in signifi-
cantly more sleep than heavy exercise. On the other hand, if the exercise is done
in the morning, light exercise results in significantly less sleep than heavy exercise.
In part (f), there is a significant main effect for time of day and a significant in-
teraction effect. Thus, when the exercise is done in the morning, it results in sig-
nificantly more sleep than when done in the evening, regardless of whether it is
light or heavy exercise. In addition to this main effect, there is an interaction be-
tween the intensity of exercise and the time of day. Thus, there is no difference in
the effect of the two intensities when the exercise is done in the evening, but when
done in the morning, heavy exercise results in more sleep than light exercise.
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f i g u r e 16.2 Some possible outcomes of the experiment in-
vestigating the effects of intensity of exercise and time of day.
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(a) No significant effects

Heavy
Intensity of exercise
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p
Light

(b) Significant time of day effect;
      no other effects

Heavy
Intensity of exercise
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Heavy
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(d) Significant intensity of
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      effects; no interaction effect

Heavy
Intensity of exercise
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p
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(e) Significant interaction effect;
      no other effect

Heavy
Intensity of exercise
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ee

p

Light

(f) Significant time of day and
     interaction effects; no other
     effects

Heavy
Intensity of exercise
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In analyzing the data from a two-way analysis of variance design, we deter-
mine four variance estimates: sW

2, sR
2, sC

2, and sRC
2. The estimate sW

2 is the
within-cells variance estimate and corresponds to the within-groups variance esti-
mate used in the one-way ANOVA. It becomes the standard against which each
of the other estimates is compared. The other estimates are sensitive to the ef-
fects of the independent variables. The estimate sR

2 is called the row variance 
estimate. It is based on the variability of the row means (see Figure 16.1) and,
hence, is sensitive to the effects of variable A. The estimate sC

2 is called the col-
umn variance estimate. It is based on the variability of the column means and,
hence, is sensitive to the effects of variable B. The estimate sRC

2 is the row �
column (read “row by column”) variance estimate. It is based on the variability of
the cell means and, hence, is sensitive to the interaction effects of variables A and
B. If variable A has no effect, sR

2 is an independent estimate of s2. If variable B
has no effect, then sC

2 is an independent estimate of s2. Finally, if there is no in-
teraction between variables A and B, sRC

2 is also an independent estimate of s2.
Thus, the estimates sR

2, sC
2, and sRC

2 are analogous to the between-groups variance
estimate of the one-way design. To test for significance, three F ratios are formed:

For variable A,

For variable B,

Each value is evaluated against Fcrit as in the one-way analysis. For the rows
comparison, if � Fcrit, there is a significant main effect for factor A. If �
Fcrit for the columns comparison, there is a significant main effect for factor B.
Finally, if � Fcrit for the row � column comparison, there is a significant
interaction effect. Thus, there are many similarities between the one-way and
two-way designs. The biggest difference is that, with a two-way design, we can do
essentially two one-way experiments plus we are able to evaluate the interaction
between the two independent variables.

Thus far, the two-way analysis of variance, independent groups, fixed effects
design has been discussed in a qualitative way. In the remainder of this chapter,
we shall present a more detailed quantitative discussion of the data analysis for
this design.

QUANTITATIVE PRESENTATION OF TWO-WAY ANOVA

In the one-way analysis of variance, the total sum of squares is partitioned into
two components: the within-groups sum of squares and the between-groups sum
of squares.These two components are divided by the appropriate degrees of free-
dom to form two variance estimates: the within-groups variance estimate ( )
and the between-groups variance estimate ( ). If the null hypothesis is correct,
then both estimates are estimates of the null-hypothesis population variance ( )
and the ratio will be distributed as F. If the independent variable has a real
effect, then will tend to be larger than otherwise and so will the F ratio. Thus,
the larger the F ratio is, the more unreasonable the null hypothesis becomes.

s 2
B

s 2
B /s 2

W

s2
s 2
B

s 2
W

Fobt

FobtFobt

Fobt

Fobt �
sRC

2

sW
2

For the interaction
between A and B,

Fobt �
sC

2

sW
2

Fobt �
sR

2

sW
2
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When Fobt � Fcrit, we reject H0 as being too unreasonable to entertain as an ex-
planation of the data.

The situation is quite similar in the two-way analysis of variance. However,
in the two-way analysis of variance, we partition the total sum of squares (SST)
into four components: the within-cells sum of squares (SSW), the row sum 
of squares (SSR), the column sum of squares (SSC), and the row � column sum of
squares (SSRC). This partitioning is shown in Figure 16.3. When these sums 
of squares are divided by the appropriate degrees of freedom, they form four
variance estimates. These estimates are the within-cells variance estimate ( ),
the row variance estimate ( ), the column variance estimate ( ), and the row
� column variance estimate ( ). In discussing each of these variance estimates,
it will be useful to refer to Figure 16.4, which shows the notation and general
layout of data for a two-way analysis of variance, independent groups design. We
have assumed in the following discussion that the number of subjects in each cell
is the same.

Within-Cells Variance Estimate (sW
2)

This estimate is derived from the variability of the scores within each cell. Since
all the subjects within each cell receive the same level of variables A and B, the
variability of their scores cannot be due to treatment differences.The within-cells
variance estimate is analogous to the within-groups variance estimate used in the
one-way analysis of variance. It is a measure of the inherent variability of the
scores and, hence, gives us an estimate of the null-hypothesis population variance

s 2
RC

s 2
Cs 2

R

s 2
W

Quantitative Presentation of Two-Way ANOVA 425

F ratio
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2
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2
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Interaction
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Sum of
squares
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2
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Variance
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Factor B

Factor A

Interaction
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f i g u r e 16.3 Overview of two-way analysis of variance technique, 
independent groups design.
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f i g u r e 16.4 Notation and general layout of data for a two-way analysis 
of variance design.
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where a1 � first level of factor A
ar � last level of factor A
b1 � first level of factor B
bc � last level of factor B

sum of scores for row 1

sum of scores for row r

sum of scores for column 1

sum of scores for column c

r � number of rows
c � number of columns
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ncell � number of scores in each cell
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ncol. � number of scores in each column
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( ). It is the yardstick against which we compare each of the other variance es-
timates. In equation form,

equation for within-cells variance estimate

where SSW � within-cells sum of squares
dfW � within-cells degrees of freedom

The within-cells sum of squares (SSW) is just the sum of squares within each
cell added together. Conceptually,

where SS11 � sum of squares for the scores in the cell defined by the inter-
section of row 1 and column 1

SS12 � sum of squares for the scores in the cell defined by the inter-
section of row 1 and column 2

SSrc � sum of squares for the scores in the cell defined by the inter-
section of row r and column c; this is the last cell in the matrix

As has been the case so often previously, the conceptual equation is not the best
equation to use for computational purposes.The computational equation is given
here:

computational equation for the
within-cells sum of squares

Note the similarity of these equations to the comparable equations for the
within-groups variance estimate used in the one-way ANOVA. The only differ-
ence is that in the two-way ANOVA, summation is with regard to the cells,
whereas in the one-way ANOVA, summation is with regard to the groups.

In computing SSW, there are n deviation scores for each cell. Therefore, there
are n � 1 degrees of freedom contributed by each cell. Since we sum over all cells
in calculating SSW, the within-cells degrees of freedom equal n � 1 times the num-
ber of cells. If we let r equal the number of rows and c equal the number of
columns, then rc equals the number of cells.Therefore, the within-cells degrees of
freedom equal rc(n � 1). Thus,

dfW � rc(n � 1) within-cells degrees of freedom

where r � number of rows
c � number of columns

Row Variance Estimate (sR
2)

This estimate is based on the differences among the row means. It is analogous to
the between-groups variance estimate ( ) in the one-way ANOVA.You will recall
that is an estimate of plus the effect of the independent variable. Similarly, the
row variance estimate ( ) in the two-way ANOVA is an estimate of plus the ef-
fect of factor A. If factor A has no effect, then the population row means are equal

s2s 2
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s2s 2
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£ aa
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12
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conceptual equation for the within-cells
sum of squares

SSW � SS11 � SS12 � p � SSrc
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and the differences among sample row means will just be
due to random sampling from identical populations. In this case, becomes an es-
timate of just s2 alone. If factor A has an effect, then the differences among the row
means, and hence , will tend to be larger than otherwise. In equation form,

equation for the row variance estimate

where SSR � row sum of squares
dfR � row degrees of freedom

The row sum of squares is very similar to the between-groups sum of squares
in the one-way ANOVA. The only difference is that with the row sum of squares
we use the row means, whereas the between-groups sum of squares used the
group means. The conceptual equation for SSR follows. Note that in computing
row means, all the scores in a given row are combined and averaged. This is re-
ferred to as computing the row means “averaged over the columns” (see Figure
16.4). Thus, the row means are arrived at by averaging over the columns:

conceptual equation for the
row sum of squares

where

grand mean

From the conceptual equation, it is easy to see that SSR increases with the ef-
fect of variable A. As the effect of variable A increases, the row means become
more widely separated, which in turn causes 
(Xrow r � XG)2 to increase. Since these terms are in the numerator, SSR increases.
Of course, if SSR increases, so does .

In calculating SSR, there are r deviation scores. Thus, the row degrees of free-
dom equal r � 1. In equation form,

dfR � r � 1 row degrees of freedom

Recall that the between-groups degrees of freedom (dfB) � k � 1 for the one-
way ANOVA. The row degrees of freedom are quite similar except we are using
rows rather than groups.

Again, the conceptual equation turns out not to be the best equation to use
for computing SSR. The computational equation is given here:

computational equation for
the row sum of squares
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Column Variance Estimate (sC
2)

This estimate is based on the differences among the column means. It is exactly the
same as , except that it uses the column means rather than the row means. Since
factor B affects the column means, the column variance estimate ( ) is an esti-
mate of plus the effects of factor B. If the levels of factor B have no differential
effect, then the population column means are equal �
and the differences among the sample column means are due to random sampling
from identical populations. In this case, will be an estimate of alone. If factor
B has an effect, then the differences among the column means, and hence , will
tend to be larger than otherwise.

The equation for is

column variance estimate

where SSC � column sum of squares
dfC � column degrees of freedom

The column sum of squares is also very similar to the row sum of squares. The only
difference is that we use the column means in calculating the column sum of squares
rather than the row means. The conceptual equation for SSC is shown here. Note
that, in computing the column means, all the scores in a given column are combined
and averaged. Thus, the column means are arrived at by averaging over the rows.

conceptual equation for the
column sum of squares

where
w

Again, we can see from the conceptual equation that SSC increases with the
effect of variable B. As the effect of variable B increases, the column means be-
come more widely spaced, which in turn causes 

to increase. Since these terms are in the numerator of the
equation for SSC, the result is an increase in SSC. Of course, an increase in SSC re-
sults in an increase in .

Since there are c deviation scores used in calculating SSC, the column degrees
of freedom equal c � 1. Thus,

dfC � c � 1 column degrees of freedom

The computational equation for SSC is

computational equation for
the column sum of squares
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Row � Column Variance Estimate (sRC
2)

Earlier in this chapter, we pointed out that an interaction exists when the effect
of one of the variables is not the same at all levels of the other variable. An-
other way of saying this is that an interaction exists when the effect of the com-
bined action of the variables is different from that which would be predicted by
the individual effects of the variables. To illustrate this point, consider Figure
16.2(f), p. 423, where there is an interaction between the time of day and the in-
tensity of exercise. An interaction exists because the sleep score for heavy ex-
ercise done in the morning is higher than would be predicted based on the in-
dividual effects of the time of day and intensity of exercise variables. If there
were no interaction, then we would expect the lines to be parallel. The intensity
of exercise variable would have the same effect when done in the evening as
when done in the morning.

The row � column variance estimate ( ) is used to evaluate the interac-
tion of variables A and B. As such, it is based on the differences among the cell
means beyond that which is predicted by the individual effects of the two vari-
ables. The row � column variance estimate is an estimate of plus the interac-
tion of A and B. If there is no interaction and any main effects are removed, then
the population cell means are equal and differences
among cell means must be due to random sampling from identical populations.
In this case, will be an estimate of alone. If there is an interaction between
factors A and B, then the differences among the cell means and, hence , will
tend to be higher than otherwise.

The equation for is

row � column variance estimate

where SSRC � row � column sum of squares
dfRC � row � column degrees of freedom

The row � column sum of squares is equal to the variability of the cell means
when the variability due to the individual effects of factors A and B has been re-
moved. Both the conceptual and computational equations are given here:

conceptual equation for the 
row � column sum of squares

computational equation for the
row � column sum of squares

The degrees of freedom for the row � column variance estimate equal 
(r � 1)(c � 1). Thus,
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MENTORING TIP
Caution: you can’t use this
equation unless ncell is the
same for all cells.



Computing F Ratios

Once the variance estimates have been determined, they are used in conjunction
with to form F ratios (see Figure 16.3, p 425) to test the main effects of the
variables and their interaction. The following three F ratios are computed:

To test the main effect of variable A (row effect):

To test the main effect of variable B (column effect):

To test the interaction of variables A and B (row � column effect):

The ratio is used to test the main effect of variable A. If variable A
has no main effect, is an independent estimate of and is distributed
as F with degrees of freedom equal to dfR and dfW. If variable A has a main ef-
fect, will be larger than otherwise and the Fobt value for rows will increase.

The ratio is used to test the main effect of variable B. If this variable
has no main effect, then is an independent estimate of and is dis-
tributed as F with degrees of freedom equal to dfC and dfW. If variable B has a
main effect, will be larger than otherwise, causing an increase in the Fobt value
for columns.

The interaction between A and B is tested using the ratio . If there is
no interaction, is an independent estimate of and is distributed as
F with degrees of freedom equal to dfRC and dfW. If there is an interaction,
will be larger than otherwise, causing an increase in the Fobt value for interaction.

The main effect of each variable and their interaction are tested by compar-
ing the appropriate Fobt value with Fcrit. Fcrit is found in Table F in Appendix D,
using and the degrees of freedom of the F value being evaluated. The decision
rule is the same as with the one-way ANOVA, namely,

If Fobt � Fcrit , reject H0. decision rule for evaluating H0 in two-way ANOVA

ANALYZING AN EXPERIMENT WITH TWO-WAY ANOVA

We are now ready to analyze the data from an illustrative example.

e x p e r i m e n t Effect of Exercise on Sleep

Let’s assume a professor in physical education conducts an experiment to compare the
effects on nighttime sleep of different amounts of exercise and of the time of day when
the exercise is done. The experiment uses a fixed effects, 3 � 2 factorial design with in-
dependent groups. There are three levels of exercise (light, moderate, and heavy) and
two times of day (morning and evening). Thirty-six college students in good physical
condition are randomly assigned to the six cells such that there are six subjects per cell.
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The subjects who do heavy exercise jog for 3 miles, the subjects who do moderate ex-
ercise jog for 1 mile, and the subjects in the light exercise condition jog for only mile.
Morning exercise is done at 7:30 A.M., whereas evening exercise is done at 7:00 P.M.
Each subject exercises once, and the number of hours slept that night is recorded. The
data are shown in Table 16.1.

1. What are the null hypotheses for this experiment?
2. Using a � 0.05, what do you conclude?

S O L U T I O N

1. Null hypotheses:
1. a. For the A variable (main effect): The time of day when exercise is done does not

affect nighttime sleep. The population row means for morning and evening exer-
cise averaged over the different levels of exercise are equal 

1. b. For the B variable (main effect): The different levels of exercise have the same ef-
fect on nighttime sleep. The population column means for light, medium, and
heavy exercise averaged over time of day conditions are equal 

1. c. For the interaction between A and B: There is no interaction between time of day and
level of exercise. With any main effects removed, the population cell means are
equal 

2. Conclusion, using a � 0.05:
2. a. Calculate Fobt for each hypothesis:

STEP 1: Calculate the row sum of squares, SSR:

 � 9.000

 � c
1129.222 � 1147.222
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t a b l e 16.1 Data from exercise experiment

Time
Exercise

of Day    Light Moderate Heavy

Morning 6.5 7.4 7.4 7.3 8.0 7.6
7.3 7.2 6.8 7.6 7.7 6.6
6.6 6.8 6.7 7.4 7.1 7.2 n � 18

Evening 7.1 7.7 7.4 8.0 8.2 8.7
7.9 7.5 8.1 7.6 8.5 9.6
8.2 7.6 8.2 8.0 9.5 9.4 n � 18

n � 12 n � 12 n � 12 N � 36
X � 8.18X � 7.54X � 7.32

gX 2 � 2143.18gX 2 � 812.81gX 2 � 685.07gX 2 � 645.30
gX � 276.40gX � 98.10gX � 90.50gX � 87.80

X � 8.18X � 8.98X � 7.88X � 7.67

gX 2 � 1212.68
gX � 147.20

X � 7.18X � 7.37X � 7.20X � 6.97

gX 2 � 930.50
gX � 129.20



STEP 2: Calculate the column sum of squares, SSC:

STEP 3: Calculate the row � column sum of squares, SSRC:

STEP 4: Calculate the within-cells sum of squares, SSW:

STEP 5: Calculate the total sum of squares, SST : This step is a check to be sure the pre-
vious calculations are correct. Once we calculate SST , we can use the following
equation to check the other calculations:

First, we must calculate SST :
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MENTORING TIP
Again, this step is a check on
the previous calculations. It is
not necessary to do this step
for the analysis.



Substituting the obtained values of SST, SSR, SSC, SSRC, and SSW into the par-
titioning equation for SST, we obtain

The equation checks within rounding accuracy. Therefore, we can assume our
calculations up to this point are correct.

STEP 6: Calculate the degrees of freedom for each variance estimate:

Note that

STEP 7: Calculate the variance estimates and Each variance esti-
mate is equal to the sum of squares divided by the appropriate degrees of free-
dom. Thus,

STEP 8: Calculate the F ratios: For the row effect,

For the column effect,

For the row � column interaction effect,

Fobt �
sRC

2

sW
2 �

0.856
0.186

� 4.60
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2
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2 �
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2

sW
2 �
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SSW
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�
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30
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2 �

SSRC
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�
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2
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SSC
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2
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 Row variance estimate � sR
2 �

SSR
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�

9.000
1

� 9.000

s 2
W :s 2

R , s 2
C , s 2

RC ,

 35 � 35

 35 � 1 � 2 � 2 � 30

 dfT � dfR � dfC � dfRC � dfW

 dfT � N � 1 � 35

 dfW � rc1ncell � 12 � 2132 152 � 30

 dfRC � 1r � 12 1c � 12 � 1122 � 2

 dfC � c � 1 � 3 � 1 � 2

 dfR � r � 1 � 2 � 1 � 1

 21.042 � 21.043
 21.042 � 9.000 � 4.754 � 1.712 � 5.577

 SST � SSR � SSC � SSRC � SSW
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b. Evaluate the Fobt values:

For the row effect: From Table F, with a � 0.05, dfnumerator � dfR � 1,
and dfdenominator � dfW � 30, Fcrit � 4.17. Since Fobt (48.42) � 4.17, we
reject H0 with respect to the A variable, which in this experiment is
time of day. There is a significant effect for time of day.

For the column effect: From Table F, with a � 0.05, dfnumerator � dfC � 2,
and dfdenominator � dfW � 30, Fcrit � 3.32. Since Fobt (12.78) � 3.32, we re-
ject H0 with respect to the B variable, which in this experiment is amount
of exercise. There is a significant main effect for amount of exercise.

For the row � column interaction effect: From Table F, with a � 0.05,
dfnumerator � dfRC � 2, and dfdenominator � dfW � 30, Fcrit � 3.32. Since
Fobt (4.60) � 3.32, we reject H0 regarding the interaction of variables A
and B.There is a significant interaction between the amount of exercise
and the time of day when the exercise is done.

The analysis is summarized in Table 16.2.
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Interpreting the Results

In the preceding analysis, we have rejected the null hypothesis for both the
row and column effects. A significant effect for rows indicates that variable A
has had a significant main effect. The differences between the row means, av-
eraged over the columns, were too great to attribute to random sampling from
populations where In the present experiment, the significant row ef-
fect indicates that there was a significant main effect for the time of day fac-
tor. The differences between the means for the time of day conditions
averaged over the amount of exercise conditions were too great to attribute to
chance. We have plotted the mean of each cell in Figure 16.5. From this figure,
it can be seen that evening exercise resulted in greater sleep than morning ex-
ercise.

A significant effect for columns indicates that variable B has had a significant
main effect—that the differences among the column means, computed by aver-
aging over the rows, were too great to attribute to random sampling from the
null-hypothesis population. In the present experiment, the significant effect for
columns tells us that the differences between the means of the three exercise con-
ditions computed by averaging over the time of day conditions were too great to
attribute to random sampling fluctuations. From Figure 16.5, it can be seen that
the effect of increasing the amount of exercise averaged over the time of day con-
ditions was to increase the amount of sleep.

ma1
� ma2

.

t a b l e 16.2 Summary ANOVA table for exercise and time of day experiment

Source SS df s2 Fobt Fcrit

Rows (time of day) 9.000 1 9.000 48.42* 4.17

Columns (exercise) 4.754 2 2.377 12.79* 3.32

Rows � columns 1.712 2 0.856 4.60* 3.32

Within cells 5.577 30 0.186

Total 21.042 35

*Since Fobt � Fcrit, H0 is rejected.



The results of this experiment also showed a significant row � column in-
teraction effect. As discussed previously, a significant interaction effect indi-
cates that the effects of one of the factors on the dependent variable are not
the same at all the levels of the other factor. Plotting the mean for each cell is
particularly helpful for interpreting an interaction effect. From Figure 16.5, we
can see that the increase in the amount of sleep is about the same in going
from light to moderate exercise whether the exercise is done in the morning or
evening. However, the difference in the amount of sleep in going from moder-
ate to heavy exercise varies depending on whether the exercise is done in the
morning or evening. Heavy exercise results in a much greater increase in the
amount of sleep when the exercise is done in the evening than when done in
the morning.

Let’s do another problem for practice.
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f i g u r e 16.5 Cell means from the exercise and sleep experiment.

MENTORING TIP
Spoken of as an amount of 
exercise by time of day inter-
action.

P r a c t i c e  P r o b l e m  16.1

A statistics professor conducts an experiment to compare the effectiveness
of two methods of teaching his course. Method I is the usual way he teaches
the course: lectures, homework assignments, and a final exam. Method II is
the same as method I, except that students receiving method II get 1
additional hour per week in which they solve illustrative problems under
the guidance of the professor. The professor is also interested in how the
methods affect students of differing mathematical abilities, so volunteers
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for the experiment are subdivided according to mathematical ability into
superior, average, and poor groups. Five students from each group are
randomly assigned to method I and 5 students from each group to method
II. At the end of the course, all 30 students take the same final exam. The
following final exam scores resulted:

Teaching Method

Method I Method II
Mathematical Ability (1) (2)

Superior 39* 41 49 47
(1) 48 42 47 48

44 43

Average 43 36 38 46
(2) 40 35 45 44

42 42

Poor 30 33 37 41
(3) 29 36 34 33

37 40

*Scores are the number of points received out of a total of 50 possible points.

a. What are the null hypotheses for this experiment?
b. Using a � 0.05, what do you conclude?

S O L U T I O N

a. Null hypotheses:
1. For the A variable (main effect): The three levels of mathematical

ability do not differentially affect final exam scores in this course.The
population row means for the three levels of mathematical ability
averaged over teaching methods are equal 

2. For the B variable (main effect): Teaching methods I and II are equal
in their effects on final exam scores in this course. The population
column means for teaching methods I and II averaged over the three
levels of mathematical ability are equal 

3. For the interaction between variables A and B:There is no interaction effect
between variables A and B.With any main effects removed,the population
cell means are equal 

b. Conclusion, using 
1. Calculating Fobt:

STEP 1: Calculate SSR:
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STEP 2: Calculate SSC :

STEP 3: Calculate SSRC :

STEP 4: Calculate SSW :

STEP 5: Calculate SST: This step is to check the previous calculations:
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Since the partitioning equation checks, we can assume our cal-
culations thus far are correct.

STEP 6: Calculate df:

STEP 7: Calculate and 

STEP 8: Calculate Fobt: For the row effect,

For the column effect,

For the row � column effect,

2. Evaluate the Fobt values:

For the row effect: From Table F, with a � 0.05, dfnumerator � dfR � 2,
and dfdenominator � dfW � 24, Fcrit � 3.40. Since Fobt (22.75) � 3.40, we
reject H0 with respect to the A variable. There is a significant effect
for mathematical ability.

For the column effect: From Table F, with a � 0.05, dfnumerator �
dfC � 1, and dfdenominator � dfW � 24, Fcrit � 4.26. Since Fobt (10.78) �
4.26, we reject H0 with respect to the B variable. There is a significant
main effect for teaching methods.

For the row � column interaction effect: Since Fobt (0.00) � 1, we
retain H0 and conclude that the data do not support the hypothesis
that there is an interaction between mathematical ability and
teaching methods.
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(continued)



Interpreting the results of Practice Problem 16.1 In the preceding analysis,
we rejected the null hypothesis for both the row and column effects. Rejecting H0

for rows means that there was a significant main effect for variable A, mathe-
matical ability. The differences among the means for the different levels of math-
ematical ability averaged over teaching methods were too great to attribute to
chance. The mean of each cell has been plotted in Figure 16.6. From this figure, it
can be seen that increasing the level of mathematical ability results in increased
final exam scores.

Rejecting H0 for columns indicates that there was a significant main effect
for the B variable, teaching methods. The difference between the means for
teaching method I and teaching method II averaged over mathematical ability
was too great to attribute to random sampling fluctuations. From Figure 16.6, we
can see that method II was superior to method I.
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The solution to this problem is summarized in Table 16.3

t a b l e 16.3 Summary ANOVA table for teaching method and 
mathematical ability experiment

Source SS df s2 Fobt Fcrit

Rows (mathematical ability) 489.800 2 244.900 22.75* 3.40

Columns (teaching method) 116.033 1 116.033 10.78* 4.26

Rows � columns 0.067 2 0.034 0.00 3.40

Within cells 258.400 24 10.767

Total 864.300 29

*Since Fobt � Fcrit, H0 is rejected.

f i g u r e 16.6 Cell means from the teaching method and mathematical 
ability experiment.
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In this experiment, there was no significant interaction effect. This means
that, within the limits of sensitivity of this experiment, the effect of each variable
was the same over all levels of the other variable. This can be most clearly seen
by viewing Figure 16.6 with regard to variable A. The lack of a significant inter-
action effect indicates that the effect of different levels of mathematical ability on
final exam scores was the same for teaching methods I and II. This results in par-
allel lines when the means of the cells are plotted (see Figure 16.6). In fact, it is a
general rule that, when the lines are parallel in a graph of the individual cell means,
you can be sure there is no interaction effect. For there to be an interaction effect,
the lines must deviate significantly from parallel. In this regard, it will be useful
to review Figure 16.2 to see whether you can determine which graphs show in-
teraction effects.*
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*Of course, you can’t really be sure if the interaction is significant without doing a statistical 
analysis.

P r a c t i c e  P r o b l e m  16.2

A clinical psychologist is interested in the effect that anxiety has on the
ability of individuals to learn new material. She is also interested in
whether the effect of anxiety depends on the difficulty of the new mate-
rial. An experiment is conducted in which there are three levels of anxiety
(high, medium, and low) and three levels of difficulty (high, medium, and
low) for the material which is to be learned. Out of a pool of volunteers,
15 low-anxious, 15 medium-anxious, and 15 high-anxious subjects are se-
lected and randomly assigned 5 each to the three difficulty levels. Each
subject is given 30 minutes to learn the new material, after which the sub-
jects are tested to determine the amount learned.

The following data are collected:

Anxiety*

Difficulty of Material Low Medium High

Low 18 17 18 18 18 17
20 16 19 15 16 18
17 17 19

Medium 18 14 18 17 14 15
17 16 18 15 17 12
14 14 16

High 11 6 15 12 9 8
10 10 13 11 7 8
8 12 5

*Each score is the total points obtained out of a possible 20 points.

a. What are the null hypotheses?
b. Using a � 0.05, what do you conclude? (continued)
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S O L U T I O N

a. Null hypotheses:
1. For variable A (main effect): The null hypothesis states that the dif-

ficulty of the material has no effect on the amount learned. The pop-
ulation row means for low, medium, and high difficulty levels aver-
aged over anxiety levels are equal 

2. For variable B (main effect): The null hypothesis states that anxiety
level has no effect on the amount learned. The population column
means for low, medium, and high anxiety levels averaged over diffi-
culty levels are equal 

3. For the interaction between variables A and B: The null hypothesis
states that there is no interaction between difficulty of material and
anxiety. With any main effects removed, the population cell means
are equal 

b. Conclusion, using a � 0.05:
1. Calculate Fobt:

STEP 1: Calculate SSR:

STEP 2: Calculate SSC :

STEP 3: Calculate SSRC :
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STEP 4: Calculate SSW :

STEP 5: Calculate SST: This step is a check on the previous calcula-
tions:

Since the partitioning equation checks, we can assume our cal-
culations thus far are correct.

STEP 6: Calculate df:

STEP 7: Calculate and 

STEP 8: Calculate Fobt: For the row effect,

Fobt �
sR

2

sW
2 �

253.422
2.744

� 92.34

 sW
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�
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 s 2
R �

SSR

dfR
�

506.844
2

� 253.422
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2 , sRC

2 ,
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 dfRC � 1r � 12  1c � 12 � 2 122 � 4
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Interpreting the results of Practice Problem 16.2 In the preceding analysis,
there was a significant main effect for both difficulty of material and anxiety
level. The significant main effect for difficulty of material indicates that the dif-
ferences among the means for the three difficulty levels averaged over anxiety
levels were too great to attribute to chance. The cell means have been plotted in
Figure 16.7. From this figure, it can be seen that increasing the difficulty of the
material results in lower mean values when the scores are averaged over anxiety
levels.

The significant main effect for anxiety level is more difficult to interpret. Of
course, at the operational level, this main effect tells us that the differences
among the means for the three levels of anxiety when averaged over difficulty
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For the column effect,

For the row � column interaction effect,

2. Evaluate Fobt:

For the row effect: With a � 0.05, dfnumerator � dfR � 2, and dfdenominator

� dfW � 36, from Table F, Fcrit � 3.26. Since Fobt (92.34) � 3.26, we re-
ject H0 for the A variable.There is a significant main effect for difficulty
of material.

For the column effect: With a � 0.05, dfnumerator � dfC � 2, and
dfdenominator � dfW � 36, from Table F, Fcrit � 3.26. Since Fobt (6.72) �
3.26, H0 is rejected for the B variable. There is a significant main ef-
fect for anxiety level.

For the row � column effect: With a � 0.05, dfnumerator � dfRC � 4,
and dfdenominator � dfW � 36, from Table F, Fcrit � 2.63. Since Fobt

(3.71) � 2.63, H0 is rejected. There is a significant interaction be-
tween difficulty of material and anxiety level.

The solution is summarized in Table 16.4.

t a b l e 16.4 Summary ANOVA table for anxiety level and difficulty of
material experiment

Source SS df s2 Fobt Fcrit

Rows (difficulty of material) 506.844 2 253.244 92.35* 3.26

Columns (anxiety level) 36.844 2 18.442 6.71* 3.26

Rows � columns 40.756 4 10.189 3.71* 2.63

Within cells 98.800 36 2.744

Total 683.244 44

*Since Fobt � Fcrit, H0 is rejected.

Fobt �
sRC

2

sW
2 �

10.189
2.744

� 3.71

Fobt �
s 2

C

s 2
W

�
18.442
2.744

� 6.71



levels were too great to attribute to chance. However, beyond this, the interpre-
tation is not clear because of the interaction between the two variables. From Fig-
ure 16.7, we can see that the effect of different anxiety levels depends on the dif-
ficulty of the material. At the low level of difficulty, differences in anxiety level
seem to have no effect on the test scores. However, for the other two difficulty
levels, differences in anxiety levels do affect performance. The interaction is a
complicated one such that both low and high levels of anxiety seem to interfere
with performance when compared with moderate anxiety. This is an example of
the inverted U-shaped curve that occurs frequently in psychology when relating
performance and arousal levels.

MULTIPLE COMPARISONS

In the three examples we have just analyzed, we have ended the analyses by evalu-
ating the Fobt values. In actual practice, the analysis is usually carried further by
doing multiple comparisons on the appropriate pairs of means. For example, in
Practice Problem 16.2, there was a significant Fobt value for difficulty of material.
The next step ordinarily is to determine which difficulty levels are significantly dif-
ferent from each other. Conceptually, this topic is very similar to that which we pre-
sented in Chapter 15 when discussing multiple comparisons in conjunction with the
one-way ANOVA. One main difference is that in the two-way ANOVA we are of-
ten evaluating pairs of row means or column means rather than pairs of group
means. Further exposition of this topic is beyond the scope of this textbook.*
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f i g u r e 16.7 Cell means from the difficulty of material and anxiety 
level experiment.
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*The interested reader should consult B. J. Winer et al., Statistical Principles in Experimental Design,
3rd ed., McGraw-Hill, New York, 1991.
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ASSUMPTIONS UNDERLYING TWO-WAY ANOVA

The assumptions underlying the two-way ANOVA are the same as those for the
one-way ANOVA:

1. The populations from which the samples were taken are normally dis-
tributed.

2. The population variances for each of the cells are equal. This is the 
homogeneity of variance assumption.

As with the one-way ANOVA, the two-way ANOVA is robust with regard to 
violations of these assumptions, provided the samples are of equal size.*

First, I presented a qualitative discussion of the two-
way analysis of variance, independent groups de-
sign. Like the one-way design, in the two-way 
design, subjects are randomly assigned to the condi-
tions. However, the two-way design allows us to in-
vestigate two independent variables and the inter-
action between them in one experiment. The effect
of either independent variable (averaged over the
levels of the other variable) is called a main effect.
An interaction occurs when the effect of one of the
variables is not the same at each level of the other
variable.

The two-way analysis of variance is very similar
to the one-way ANOVA. However, in the two-way
ANOVA, the total sum of squares (SST) is parti-
tioned into four components: the within-cells sum of
squares (SSW), the row sum of squares (SSR), the col-
umn sum of squares (SSC), and the row � column
sum of squares (SSRC). When these sums of squares
are divided by the appropriate degrees of freedom,
they form four variance estimates: the within-cells
variance estimate the row variance estimate

the column variance estimate and the row
� column variance estimate ( ).

The within-cells variance estimate is the
yardstick against which the other variance esti-
mates are compared. Since all the subjects within
each cell receive the same level of variables A and

1sW
22

s 2
RC

1sC
22,1sR

22,
1sW

22,

B, the within-cells variability cannot be due to
treatment differences. Rather, it is a measure of the
inherent variability of the scores and, hence, gives
us an estimate of the null-hypothesis population
variance ( ). The row variance estimate is
based on the differences among the row means. It is
an estimate of plus the effect of factor A and is
used to evaluate the main effect of variable A. The
column variance estimate is based on the dif-
ferences among the column means. It is an estimate
of plus the effect of factor B and is used to eval-
uate the main effect of variable B. The row � col-
umn variance estimate ( ) is based on the differ-
ences among the cell means beyond that which is
predicted by the individual effects of the two vari-
ables. It is an estimate of plus the interaction of
A and B. As such, it is used to evaluate the interac-
tion of variables A and B.

In addition to presenting the conceptual basis for
the two-way ANOVA, equations for computing each
of the four variance estimates were developed, and
several illustrative examples were given for practice
in using the two-way ANOVA technique. It was fur-
ther pointed out that multiple comparison tech-
niques similar to those used with the one-way
ANOVA are used with the two-way ANOVA.
Finally, the assumptions underlying the two-way
ANOVA were presented.

s2

s 2
RC

s2

1sC
22

s2

1sR
22s2

■ SUMMARY

*Some statisticians also require the data to be interval or ratio in scaling. For a discussion of this point, see the footnoted references in
Chapter 2, p. 34.
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Column degrees of freedom (dfC)
(p. 429)

Column sum of squares (SSC)
(p. 429)

Column variance estimate 
(p. 424, 429)

Factorial experiment (p. 421)
Interaction effect (p. 422)
Main effect (p. 422)
Row degrees of freedom (dfR) (p. 428)

1sC
22

Row sum of squares (SSR) (p. 428)
Row � column degrees of freedom

(dfRC) (p. 430)
Row � column sum of squares

(SSRC) (p. 430)
Row � column variance estimate

(p. 424, 430)
Row variance estimate (p. 424,

427)
1sR

22
1sRC

22

Two-way analysis of variance 
(p. 421, 424)

Within-cells degrees of freedom
(dfW) (p. 427)

Within-cells sum of squares (SSW)
(p. 427)

Within-cells variance estimate 
(p. 424, 425)

1sW
22

■ IMPORTANT NEW TERMS

1. Define or identify each of the terms in the Im-
portant New Terms section.

2. What are the advantages of the two-way
ANOVA compared with the one-way ANOVA?

3. What is a factorial experiment?
4. In the two-way ANOVA, what is a main effect?

What is an interaction? Is it possible to have a
main effect without an interaction? An interac-
tion without a main effect? Explain.

5. In the two-way ANOVA, the total sum of
squares is partitioned into four components.
What are the four components?

6. Why is the within-cells variance estimate used as
the yardstick against which the other variance es-
timates are compared?

7. The four variance estimates ( and
) are also referred to as mean squares. Can

you explain why?
8. If the A variable’s effect increased, what do you

expect would happen to the differences among the
row means? What would happen to ? Explain.
Assuming there is no interaction, what would hap-
pen to the differences among the column means?

9. If the B variable’s effect increased, what would
happen to the differences among the column
means? What would happen to ? Explain. As-
suming there is no interaction, what would hap-
pen to the differences among the row means?

10. What are the assumptions underlying the two-
way ANOVA, independent groups design?

11. It is theorized that repetition aids recall and that
the learning of new material can interfere with the
recall of previously learned material. A professor
interested in human learning and memory con-

s 2
C

sR
2

sW
2

sR
2, sC

2, sRC
2,

ducts a 2 � 3 factorial experiment to investigate
the effects of these two variables on recall. The
material to be recalled consists of a list of 16 non-
sense syllable pairs.The pairs are presented one at
a time, for 4 seconds, cycling through the entire list,
before the first pair is shown again.There are three
levels of repetition: level 1, in which each pair is
shown 4 times; level 2, in which each pair is shown
8 times; and level 3, in which each pair is shown 12
times. After being presented the list the requisite
number of times and prior to testing for recall,
each subject is required to learn some intervening
material. The intervening material is of two types:
type 1, which consists of number pairs, and type 2,
which consists of nonsense syllable pairs.After the
intervening material has been presented, the sub-
jects are tested for recall of the original list of 16
nonsense syllable pairs. Thirty-six college fresh-
men serve as subjects.They are randomly assigned
so that there are six per cell. The following scores
are recorded; each is the number of syllable pairs
from the original list correctly recalled.

Number of Repetitions

Intervening 4 8 12
Material times times times

Number pairs 10 11 16 12 16 14
12 15 11 15 16 13
14 10 13 14 15 16

Nonsense 8 7 11 13 14 12
syllable pairs 4 5 9 10 16 15

5 6 8 9 12 13

■ QUESTIONS AND PROBLEMS



a. What are the null hypotheses for this experi-
ment?

b. Using a � 0.05, what do you conclude? Plot a
graph of the cell means to help you interpret
the results. cognitive

12. Assume you have just accepted a position as
chief scientist for a leading agricultural company.
Your first assignment is to make a recommenda-
tion concerning the best type of grass to grow in
the Pacific Northwest and the best fertilizer for
it. To provide the database for your recommen-
dation, having just graduated summa cum laude
in statistics, you decide to conduct an experiment
involving a factorial independent groups design.
Since there are three types of grass and two fer-
tilizers under active consideration, the experi-
ment you conduct is 2 � 3 factorial, where the A
variable is the type of fertilizer and the B vari-
able is the type of grass. In your field station, you
duplicate the soil and the climate of the Pacific
Northwest.Then you divide the soil into 30 equal
areas and randomly set aside 5 for each combi-
nation of treatments. Next, you fertilize the areas
with the appropriate fertilizer and plant in each
area the appropriate grass seed. Thereafter, all
areas are treated alike.When the grass has grown
sufficiently, you determine the number of grass
blades per square inch in each area. Your recom-
mendation is based on this dependent variable.
The “denser” the grass is, the better. The follow-
ing scores are obtained:

Number of Grass Blades 
per Square Inch

Red Kentucky Green
Fertilizer fescue blue velvet

Type 1 14 15 15 17 20 19
16 17 12 18 15 22
10 11 25

Type 2 11 7 10 6 15 11
11 8 8 13 18 10
14 12 19

a. What are the null hypotheses for this experi-
ment?

b. Using a � 0.05, what are your conclusions?
Draw a graph of the cell means to help you
interpret the results. I/O

13. A sleep researcher conducts an experiment to
determine whether a hypnotic drug called
Drowson, which is advertised as a remedy for in-
somnia, actually does promote sleep. In addi-
tion, the researcher is interested in whether a
tolerance to the drug develops with chronic use.
The design of the experiment is a 2 � 2 factorial
independent groups design. One of the variables
is the concentration of Drowson. There are two
levels: (1) zero concentration (placebo) and (2)
the manufacturer’s minimum recommended
dosage. The other variable concerns the previ-
ous use of Drowson. Again there are two levels:
(1) subjects with no previous use and (2) chronic
users. Sixteen individuals with sleep-onset in-
somnia (difficulty in falling asleep) who have
had no previous use of Drowson are randomly
assigned to the two concentration conditions
such that there are eight subjects in each condi-
tion. Sixteen chronic users of Drowson are also
assigned randomly to the two conditions, eight
subjects per condition. All subjects take their
prescribed “medication” for 3 consecutive nights,
and the time to fall asleep is recorded. The
scores shown in the following table are the mean
times in minutes to fall asleep for each subject,
averaged over the 3 days:

Concentration of Drowson

Minimum
recommended

Previous Use Placebo dosage

No previous use 45 53 30 47
48 58 33 35
62 55 40 31
70 64 50 39

Chronic users 47 68 52 46
52 64 60 49
55 58 58 50
62 59 68 55

a. What are the null hypotheses for this experi-
ment?

b. Using a � 0.05, what do you conclude? Plot a
graph of the cell means to help you interpret
the results. clinical, health
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Chi-Square and Other
Nonparametric Tests

LEARNING OBJECTIVES

After completing this chapter, you should be able to:
■ Specify the distinction between parametric and nonparametric

tests, when to use each, and give an example of each.
■ Specify the level of variable scaling that chi-square requires for its

use; understand that chi-square uses sample frequencies and pre-
dicts to population proportions.

■ Define a contingency table; specify the H1 and H0 for chi-square
analyses.

■ Understand that chi-square basically computes the difference be-
tween fe and fo, and the larger this difference, the more likely we
can reject H0.

■ Solve problems using chi-square, and specify the assumptions un-
derlying this test.

The following objective applies to the Wilcoxon matched-pairs
signed ranks test, the Mann–Whitney U test, and the Kruskal–Wallis
test.

■ Specify the parametric test that each substitutes for, solve prob-
lems using each test, and specify the assumptions underlying each
test.

■ Rank-order the sign test, the Wilcoxon match-pairs signed ranks
test, and the t test for correlated groups with regard to power.

■ Understand the illustrative examples, do the practice problems,
and understand the solutions.

Chapter 17



INTRODUCTION: DISTINCTION BETWEEN 
PARAMETRIC AND NONPARAMETRIC TESTS

Statistical inference tests are often classified as to whether they are parametric or
nonparametric. You will recall from our discussion in Chapter 1 that a parameter
is a characteristic of a population.A parametric inference test is one that depends
considerably on population characteristics, or parameters, for its use. The z test, t
test, and F test are examples of parametric tests. The z test, for instance, requires
that we specify the mean and standard deviation of the null-hypothesis popula-
tion, as well as requiring that the population scores must be normally distributed
for small Ns. The t test for single samples has the same requirements, except that
we don’t specify s. The t tests for two samples or conditions (correlated t or in-
dependent t) both require that the population scores be normally distributed
when the samples are small. The independent t test further requires that the pop-
ulation variances be equal. The analysis of variance has requirements quite simi-
lar to those for the independent t test.

Although all inference tests depend on population characteristics to some
extent, the requirements of nonparametric tests are minimal. For example, the
sign test is a nonparametric test. To use the sign test, it is not necessary to know
the mean, variance, or shape of the population scores. Because nonparametric
tests depend little on knowing population distributions, they are often referred to
as distribution-free tests.

Since nonparametric inference tests have fewer requirements or assumptions
about population characteristics, the question arises as to why we don’t use them
all the time and forget about parametric tests. The answer is twofold. First, many
of the parametric inference tests are robust with regard to violations of underly-
ing assumptions. You will recall that a test is robust if violations in the assump-
tions do not greatly disturb the sampling distribution of its statistic. Thus, the 
t test is robust regarding the violation of normality in the population. Even
though, theoretically, normality in the population is required with small samples,
it turns out empirically that unless the departures from normality are substantial,
the sampling distribution of t remains essentially the same. Thus, the t test can be
used with data even though the data violate the assumptions of normality.

The mean reasons for preferring parametric to nonparametric tests are that,
in general, they are more powerful and more versatile than nonparametric tests.
We saw an example of the higher power of parametric tests when we compared
the t test with the sign test for correlated groups. The factorial design discussed in
Chapter 16 provides a good example of the versatility of parametric statistics.
With this design, we can test two, three, four, or more variables and their interac-
tions. No comparable technique exists with nonparametric statistics.

As a general rule, investigators use parametric tests whenever possible. How-
ever, when there is an extreme violation of an assumption of the parametric test
or if the investigator believes the scaling of the data makes the parametric test in-
appropriate, a nonparametric inference test will be employed. We have already
presented one nonparametric test: the sign test. In the remaining sections of this
chapter, we shall present four more: chi-square, the Wilcoxon matched-pairs
signed ranks test, the Mann–Whitney U test, and the Kruskal–Wallis test.*
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MENTORING TIP
Parametric tests are more
powerful than nonparametric
tests. When analyzing real
data, always use a parametric
over a nonparametric test if
the data meet the assumptions
of the parametric test.

*Although we cover several nonparametric tests, there are many more. The interested reader should
consult S. Siegel and N. Castellan, Jr., Nonparametric Statistics for the Behavioral Sciences, McGraw-
Hill, New York, 1988, or W. Daniel, Applied Nonparametric Statistics, 2nd ed., PWS-Kent, Boston, 1990.



CHI-SQUARE (X2)

Single-Variable Experiments
Thus far, we have presented inference tests used primarily in conjunction with or-
dinal, interval, or ratio data. But what about nominal data? Experiments involv-
ing nominal data occur fairly often, particularly in social psychology. You will re-
call that with this type of data, observations are grouped into several discrete,
mutually exclusive categories, and one counts the frequency of occurrence in
each category. The inference test most often used with nominal data is a non-
parametric test called chi-square (x2).As has been our procedure throughout the
text, we shall begin our discussion of chi-square with an experiment.

e x p e r i m e n t Preference for Different Brands of Light Beer

Suppose you are interested in determining whether there is a difference among beer
drinkers living in the Puget Sound area in their preference for different brands of light
beer. You decide to conduct an experiment in which you randomly sample 150 beer
drinkers and let them taste the three leading brands. Assume all the precautions of
good experimental design are followed, such as not disclosing the names of the brands
to the subjects and so forth. The resulting data are presented in Table 17.1.
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t a b l e 17.1 Preference for brands of light beer

Brand A Brand B Brand C Total

1 45 2 40 3 65 150

S O L U T I O N

The entries in each cell are the number or frequency of subjects appropriate to that
cell. Thus, 45 subjects preferred brand A (cell 1); 40, brand B (cell 2); and 65, brand C
(cell 3). Can we conclude from these data that there is a difference in preference in the
population? The null hypothesis for this experiment states that there is no difference
in preference among the brands in the population. More specifically, in the population,
the proportion of individuals favoring brand A is equal to the proportion favoring
brand B, which is equal to the proportion favoring brand C. Referring to the table, it is
clear that in the sample the number of individuals preferring each brand is different.
However, it doesn’t necessarily follow that there is a difference in the population. Isn’t
it possible that these scores could be due to random sampling from a population of
beer drinkers in which the proportion of individuals favoring each brand is equal? Of
course, the answer is “yes.” Chi-square allows us to evaluate this possibility.

Computation of To calculate , we must first determine the frequency
we would expect to get in each cell if sampling is random from the null-hypothesis
population. These frequencies are called expected frequencies and are symbolized
by fe . The frequencies actually obtained in the experiment are called observed fre-
quencies and are symbolized by fo. Thus,

fo � observed frequency in the sample

is random from the null-hypothesis population
fe � expected frequency under the assumption sampling

x2
obtx2

obt



It should be clear that the closer the observed frequency of each cell is to the ex-
pected frequency for that cell, the more reasonable is H0. On the other hand, the
greater the difference between fo and fe is, the more reasonable H1 becomes.

After determining fe for each cell, we obtain the difference between fo and fe,
square the difference, and divide by fe. In symbolic form, ( fo � fe)

2�fe is computed
for each cell. Finally, we sum the resultant values from each of the cells. In equa-
tion form,

where

From this equation, you can see that x2 is basically a measure of how different
the observed frequencies are from the expected frequencies.

To calculate the value of for the present experiment, we must determine
fe for each cell.The values of fo are given in the table. If the null hypothesis is true,
then the proportion of beer drinkers in the population that prefers brand A is
equal to the proportion that prefers brand B, which in turn is equal to the pro-
portion that prefers brand C. This means that one-third of the population must
prefer brand A; one-third, brand B; and one-third, brand C. Therefore, if the null
hypothesis is true, we would expect one-third of the individuals in the population
and, hence, in the sample to prefer brand A, one-third to prefer brand B, and one-
third to prefer brand C. Since there are 150 subjects in the sample, fe for each
cell We have redrawn the data table and entered the fe values in
parentheses:

� 1
3 11502 � 50.

x2
obt

 fe � expected frequency in the cell, and © is over all the cells
 fo � observed frequency in the cell

x 2
obt � �  

1  fo � fe2
2

fe

  equation for calculating x2
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Now that we have determined the value of fe for each cell, we can calculate .
All we need do is sum the values of ( fo � fe)

2�fe for each cell. Thus,

Evaluation of The theoretical sampling distribution of x2 is shown in
Figure 17.1. The x2 distribution consists of a family of curves that, like the t dis-
tribution, varies with degrees of freedom. For the lower degrees of freedom, the
curves are positively skewed. The degrees of freedom are determined by the
number of fo scores that are free to vary. In the present experiment, two of 
the fo scores are free to vary. Once two of the fo scores are known, the third fo

score is fixed, since the sum of the three fo scores must equal N. Therefore, df �
2. In general, with experiments involving just one variable, there are k �1 degrees
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Brand A Brand B Brand C Total

45 40 65 (150
(50) (50) (50) (150)

MENTORING TIP
Because (fo � fe) is squared,
x2 is always positive.



of freedom, where k equals the number of groups or categories.When we take up
the use of x2 with contingency tables, there will be another equation for deter-
mining degrees of freedom. We shall discuss it when the topic arises.

Table H in Appendix D gives the critical values of x2 for different alpha lev-
els. Since x2 is basically a measure of the overall discrepancy between fo and fe,
it follows that the larger the discrepancy between the observed and expected fre-
quencies is, the larger the value of will be. Therefore, the larger the value of

is, the more unreasonable the null hypothesis is. As with the t and F tests, if
falls within the critical region for rejection, then we reject the null hypothe-

sis. The decision rule states the following:

It should be noted that in calculating it doesn’t matter whether fo is greater
or less than fe. The difference is squared, divided by fe, and added to the other
cells to obtain . Since the direction of the difference is immaterial, the x2 test
is a nondirectional test.* Furthermore, since each difference adds to the value of
x2, the critical region for rejection always lies under the right-hand tail of the x2

distribution.
In the present experiment, we determined that � 7.00. To evaluate it, we

must determine to see if falls into the critical region for rejection of H0.
From Table H, with df � 2 and a � 0.05,

x 2
crit � 5.991
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From Design and Analysis of Experiments in Psychology and Education by E. F. Lindquist. Copyright
© 1953 Houghton Mifflin Company. Reproduced by permission.

f i g u r e 17.1 Distribution of x2 for various degrees of freedom.
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Figure 17.2 shows the x2 distribution with df � 2 and the critical region for a �
0.05. Since � 5.991, it falls within the critical region and we reject H0. There
is a difference in the population regarding preference for the three brands of
light beer tested. It appears as though brand C is the favored brand.

Let’s try one more problem for practice.

x2
obt
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f i g u r e 17.2 Evaluation of xobt
2 for the light beer drinking

problem, df = 2 and a � 0.05.
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MENTORING TIP
Caution: remember, for ,
the cell entries must be fre-
quencies.

x2

P r a c t i c e  P r o b l e m  17.1

A political scientist believes that, in recent years, the ethnic composition of
the city in which he lives has changed. The most current figures (collected a
few years ago) show that the inhabitants were 53% Norwegian, 32%
Swedish, 8% Irish, 5% Hispanic, and 2% Italian. (Note that nationalities
with percentages under 2% have not been included.) To test his belief, a
random sample of 750 inhabitants is taken; the results are shown in the fol-
lowing table:

Norwegian Swedish Irish Hispanic Italian Total

1 399 2 193 3 63 4 82 5 13 750

(continued)



Test of Independence Between Two Variables

One of the main uses of x2 is in determining whether two categorical vari-
ables are independent or are related. To illustrate, let’s consider the following 
example.
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a. What is the null hypothesis?
b. What do you conclude? Use a � 0.05.

S O L U T I O N

a. Null hypothesis: The ethnic composition of the city has not changed.
Therefore, the sample of 750 individuals is a random sample from a pop-
ulation in which 53% are Norwegian, 32% Swedish, 8% Irish, 5% His-
panic, and 2% Italian.

b. Conclusion, using a � 0.05:

STEP 1: Calculate the appropriate statistic. The appropriate statistic is
. The calculations are shown here:

Cell No. fo fe

1 399 0.53(750) � 397.5

2 193 0.32(750) � 240.0

3 63 0.08(750) � 60.0

4 82 0.05(750) � 37.5

5 13 0.02(750) � 15.0

STEP 2: Evaluate the statistic. Degrees of freedom � 5 � 1 � 4. With
df � 4 and a � 0.05, from Table H,

Since � 9.488, we reject H0. The ethnic composition of the
city appears to have changed. There has been an increase in the
proportion of Hispanics and a decrease in the Swedish.
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e x p e r i m e n t Political Affiliation and Attitude

Suppose a bill that proposes to lower the legal age for drinking to 18 is pending be-
fore the state legislature. A political scientist living in the state is interested in de-
termining whether there is a relationship between political affiliation and attitude
toward the bill. A random sample of 200 registered Republicans and 200 registered
Democrats is sent letters explaining the scientist’s interest and asking the recipients
whether they are in favor of the bill, are undecided, or are against the bill. Strict con-
fidentiality is assured. A self-addressed envelope is included to facilitate responding.
Answers are received from all 400 Republicans and Democrats. The results are
shown in Table 17.2.
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The entries in each cell are the frequency of subjects appropriate to the cell. For
example, with the Republicans, 68 are for the bill, 22 are undecided, and 110 are
against. With the Democrats, 92 are for the bill, 18 are undecided, and 90 are
against. This type of table is called a contingency table.

d e f i n i t i o n ■ A contingency table is a two-way table showing the contingency between
two variables where the variables have been classified into mutually exclu-
sive categories and the cell entries are frequencies.

Note that in constructing a contingency table, it is essential that the categories
be mutually exclusive. Thus, if an entry is appropriate for one of the cells, the
categories must be such that it cannot appropriately be entered in any other
cell.

This contingency table contains the data bearing on the contingency between
political affiliation and attitude toward the bill. The null hypothesis states that
there is no contingency between the variables in the population. For this exam-
ple, H0 states that, in the population, attitude toward the bill and political affilia-
tion are independent. If this is true, then both the Republicans and Democrats in
the population should have the same proportion of individuals “for,” “unde-
cided,” and “against” the bill. It is clear that in the contingency table, the fre-
quencies in these three columns are different for Republicans and Democrats.
The null hypothesis states that these frequencies are due to random sampling
from a population in which the proportion of Republicans is equal to the pro-

t a b l e 17.2 Political affiliation and attitude data

Attitude

Row
For Undecided Against Marginal

Republican 68 22 110 200

Democrat 92 18 90 200

Column 160 40 200 400
Marginal



portion of Democrats in each of the categories. The alternative hypothesis is that
Republicans and Democrats do differ in their attitudes toward the bill. If so, then
in the population, the proportions would be different.

Computation of Xobt
2 To test the null hypothesis, we must calculate and

compare it with . With experiments involving two variables, the most difficult
part of the process is in determining fe for each cell. As discussed, the null hy-
pothesis states that, in the population, the proportion of Republicans for each
category is the same as the proportion of Democrats. If we knew these propor-
tions, we could just multiply them by the number of Republicans or Democrats
in the sample to find fe for each cell. For example, suppose that, if H0 is true, the
proportion of Republicans in the population against the bill equals 0.50. To find
fe for that cell, all we would have to do is multiply 0.50 by the number of Repub-
licans in the sample. Thus, for the “Republican-against” cell, fe would equal
0.50(200) � 100.

Since we do not know the population proportions, we estimate them from
the sample. In the present experiment, 160 Republicans and Democrats out of
400 were for the bill, 40 out of 400 were undecided, and 200 out of 400 were
against the bill. Since the null hypothesis assumes independence between politi-
cal party and attitude, we can use these sample proportions as our estimates of
the null-hypothesis population proportions. Then, we can use these estimates to
calculate the expected frequencies. Our estimates for the null-hypothesis popu-
lation proportions are as follows:

Estimated H0 population
proportion against
the bill

Using these estimates to calculate the expected frequencies, we obtain the fol-
lowing values for fe:

For the Republican-for cell (cell 1 in the table on p. 459):

For the Republican-undecided cell (cell 2):

For the Republican-against cell (cell 3):

fe � °
Estimated H0 population

proportion against
the bill

¢  a
Total number of

Republicans
b �

200
400

 12002 � 100

fe � a
Estimated H0 population

proportion undecided
b a

Total number of
Republicans

b �
40
400

 12002 � 20

fe � a
Estimated H0 population

proportion for the bill
b a

Total number of
Republicans

b �
160
400

 12002 � 80

�
Number of subjects against the bill

Total number of subjects
�

200
400

 
Estimated H0 population
proportion undecided

�
Number of subjects undecided

Total number of subjects
�

40
400

 
Estimated H0 population
proportion for the bill

�
Number of subjects for the bill

Total number of subjects
�

160
400

x2
crit

x2
obt
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For the Democrat-for cell (cell 4):

For the Democrat-undecided cell (cell 5):

For the Democrat-against cell (cell 6):

For convenience, the 2 � 3 contingency table has been redrawn here, and the fe

values entered within parentheses in the appropriate cells:

Attitude
Row

For Undecided Against Marginal

Republican 1 68 2 22 3 110 200
(80) (20) (100)

Democrat 4 92 5 18 6 90 200
(80) (20) (100)

Column 160 40 200 400
Marginal

The same values for fe can also be found directly by multiplying the mar-
ginals for that cell and dividing by N. The marginals are the row and column to-
tals lying outside the table. For example, the marginals for cell 1 are 160 (column
total) and 200 (row total). Let’s use this method to find fe for each cell. Multiply-
ing the marginals and dividing by N, we obtain

 fe1cell 62 �
20012002

400
� 100

 fe1cell 52 �
4012002

400
� 20

 fe1cell 42 �
16012002

400
� 80

 fe1cell 32 �
20012002

400
� 100

 fe1cell 22 �
4012002

400
� 20

 fe1cell 12 �
16012002

400
� 80

fe � °
Estimated H0 population

proportion against
the bill

¢a
Total number of

Democrats
b �

200
400

 12002 � 100

fe � a
Estimated H0 population

proportion undecided
b a

Total number of
Democrats

b �
40
400

 12002 � 20

fe � a
Estimated H0 population

proportion for the bill
b a

Total number of
Democrats

b �
160
400

 12002 � 80
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These values are, of course, the same ones we arrived at previously. Although us-
ing the marginals doesn’t give much insight into why fe should be that value, from
a practical standpoint it is the best way to calculate fe for the various cells. You
should note that a good check to make sure your calculations of fe are correct is to
see whether the row and column totals of fe equal the row and column marginals.

Once fe for each cell has been determined, the next step is to calculate .
As before, this is done by summing ( fo � fe)

2�fe for each cell. Thus, for the pres-
ent experiment,

Evaluation of Xobt
2 To evaluate , we must compare it with for the ap-

propriate df. As discussed previously, the degrees of freedom are equal to the
number of fo scores that are free to vary while keeping the totals constant. In the
two-variable experiment, we must keep both the column and row marginals at
the same values. Thus, the degrees of freedom for experiments involving a con-
tingency between two variables are equal to the number of fo scores that are free
to vary while at the same time keeping the column and row marginals the same.
In the case of a 2 � 3 table, there are only 2 degrees of freedom. Only two fo

scores are free to vary, and all the remaining fo and fe scores are fixed.
To illustrate, consider the 2 � 3 table shown here:

x2
critx2

obt

� 1.80 � 0.20 � 1.00 � 1.80 � 0.20 � 1.00 � 6.00

�
118 � 2022

20
�
190 � 10022

100

 �
168 � 8022

80
�
122 � 2022
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�
1110 � 10022

100
�
192 � 8022

80

 x2
obt � © 

1  fo � fe2
2

fe

x2
obt
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If we fill in any two fo scores, all the remaining fo scores are fully determined, pro-
vided the marginals are kept at the same values. For example, in the table, we
have filled in the fo scores for cells 1 and 2. Note that all the other scores are fixed
in value once two fo scores are given; for example, the fo score for cell 3 must be
110 [200 � (68 � 22)].

There is also an equation to calculate the df for contingency tables. It states

where

Applying the equation to the present experiment, we obtain

The x2 test is not limited to 2 � 3 tables. It can be used with contingency tables
containing any number of rows and columns. This equation is perfectly general

df � 1r � 12 1c � 12 � 12 � 12 13 � 12 � 2

c � number of columns
r � number of rows

df � 1r � 12 1c � 12

1 168 2 22 3 200

4 5 6
200

160 40 200 400



and applies to all contingency tables. Thus, if we did an experiment involving two
variables and had four rows and six columns in the table, df � (r � 1)(c � 1) �
(4 � 1)(6 � 1) � 15.

Returning to the evaluation of the present experiment, let’s assume a� 0.05.
With df � 2 and a � 0.05, from Table H,

Since � 5.991, we reject H0. Political affiliation is related to attitude toward
the bill. The Democrats appear to be more favorably disposed toward the bill
than the Republicans. The complete solution is shown in Table 17.3.

Let’s try a problem for practice.

x2
obt

x 2
crit � 5.991
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t a b l e 17.3 Solution to political affiliation and attitude problem

a. Null hypothesis: Political affiliation and attitude toward the bill are independent.
The frequency obtained in each cell is due to random sampling from a popula-
tion where the proportions of Republicans and Democrats that are for, unde-
cided about, and against the bill are equal.

b. Conclusion, using a � 0.05:

STEP 1: Calculate the appropriate statistic. The appropriate statistic is
. The data are shown on p. 457. The calculations are shown here.

STEP 2: Evaluate the statistic. Degrees of freedom 
With df � 2 and a � 0.05, from Table H,

xcrit
2 � 5.991

Since � 5.991, we reject H0. Political affiliation and attitude toward
the bill are related. Democrats appear to favor the bill more than Re-
publicans.
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P r a c t i c e  P r o b l e m  17.2

A university is considering implementing one of the following three grad-
ing systems: (1) All grades are pass–fail, (2) all grades are on the 4.0 system,
and (3) 90% of the grades are on the 4.0 system and 10% are pass–fail. A
survey is taken to determine whether there is a relationship between un-
dergraduate major and grading system preference.A random sample of 200
students with engineering majors, 200 students with arts and sciences ma-
jors, and 100 students with fine arts majors is selected. Each student is asked
which of the three grading systems he or she prefers. The results are shown
in the following 3 � 3 contingency table:

Grading System

4.0 and Row
Pass–fail Pass–fail 4.0 Marginal

Fine arts 1 26 2 55 3 19 100

Arts and sciences 4 24 5 118 6 58 200

Engineering 7 20 8 112 9 68 200

Column 70 285 145 500
Marginal

a. What is the null hypothesis?
b. What do you conclude? Use a � 0.05.

S O L U T I O N

a. Null hypothesis: Undergraduate major and grading system preference are
independent.The frequency obtained in each cell is due to random sampling
from a population where the proportions of fine arts, arts and sciences, and
engineering majors who prefer each grading system are the same.

b. Conclusion, using a � 0.05:

STEP 1: Calculate the appropriate statistic. The data are shown in the fol-
lowing table. The appropriate statistic is . Before calculating

, we must first calculate fe for each cell. The values of fe were
found using the marginals.

Cell No.

1 26

2 55
155 � 5722

57
� 0.070

28511002

500
� 57

126 � 1422

14
� 10.286

7011002

500
� 14

1   fo � fe2
2

fefefo
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In trying to determine what the differences in preference were between the
groups (since the number of subjects differ considerably for the fine arts majors),
it is necessary to convert the frequency entries into proportions. These propor-
tions are shown in Table 17.4.
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Cell No.

3 19

4 24

5 118

6 58

7 20

8 112

9 68

STEP 2: Evaluate the statistic. Degrees of freedom � (r � 1) (c � 1) �
(3 � 1)(3 � 1) � 4. With df � 4 and a � 0.05, from Table H,

Since � 9.488, we reject H0. Undergraduate major and grad-
ing system preference are related.

x2
obt

x 2
crit � 9.488

� 18.56

xobt
2 � © 

1  fo � fe2
2

fe
� 18.561

168 � 5822

58
� 1.724

14512002

500
� 58

1112 � 11422

114
� 0.035

28512002

500
� 114

120 � 2822

28
� 2.286

7012002

500
� 28

158 � 5822

58
� 0.000

14512002

500
� 58

1118 � 11422

114
� 0.140

28512002

500
� 114

124 � 2822

28
� 0.571

7012002

500
� 28

119 � 2922

29
� 3.448

14511002

500
� 29

1   fo � fe2
2

fefefo

t a b l e 17.4 Preferences for grading systems 
expressed as proportions

4.0 and
Pass–fail Pass–fail 4.0

Fine arts 0.26 0.55 0.19

Arts and sciences 0.12 0.59 0.29

Engineering 0.10 0.56 0.34



From this table, it appears that the differences between groups are in their
preferences for the all pass–fail or all 4.0 grading systems. The fine arts students
show a higher proportion favoring the pass–fail system rather than the all 4.0 sys-
tem, whereas the arts and sciences and engineering students show the reverse
pattern. All groups show about the same proportions favoring the system advo-
cating a combination of 4.0 and pass–fail grades.

Let’s try one more problem for practice.
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P r a c t i c e  P r o b l e m  17.3

A social psychologist is interested in determining whether there is a relation-
ship between the education level of parents and the number of children they
have. Accordingly, a survey is taken, and the following results are obtained:

No. of Children

Two or More than Row
less two Marginal

1 2

College 53 22 75
education

High school 3 4

education 37 38 75
only

Column 
90 60 150Marginal

a. What is the null hypothesis?
b. What is the conclusion? Use a � 0.05.

S O L U T I O N

a. Null hypothesis: The educational level of parents and the number 
of children they have are independent. The frequency obtained in each
cell is due to random sampling from a population where the 
proportions of college-educated and only high-school-educated parents
that have (1) two or fewer and (2) more than two children are equal.

b. Conclusion, using a � 0.05:

STEP 1: Calculate the appropriate statistic. The data are shown in the
following table. The appropriate statistic is . The calculations
follow.

x2
obt



Assumptions Underlying X2

A basic assumption in using x2 is that there is independence between each ob-
servation recorded in the contingency table. This means that each subject can
have only one entry in the table. It is not permissible to take several measure-
ments on the same subject and enter them as separate frequencies in the same or
different cells. This error would produce a larger N than there are independent
observations.

A second assumption is that the sample size must be large enough that the
expected frequency in each cell is at least 5 for tables where r or c is greater than
2. If the table is a 1 � 2 or 2 � 2 table, then each expected frequency should be
at least 10. If the sample size is small enough to result in expected frequencies
that violate these requirements, then the actual sampling distribution of x2 de-
viates considerably from the theoretical one and the probability values given in
Table H do not apply. If the experiment involves a 2 � 2 contingency table and
the data violate this assumption, Fisher’s exact probability test should be used.*

Although x2 is used frequently when the data are only of nominal scaling, it
is not limited to nominal data. Chi-square can be used with ordinal, interval, and
ratio data. However, regardless of the actual scaling, the data must be reduced to
mutually exclusive categories and appropriate frequencies before x2 can be
employed.
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Cell No.

1 53

2 22

3 37

4 38

STEP 2: Evaluate the statistic. Degrees of freedom � (r � 1)(c � 1) �
(2 � 1)(2 � 1) � 1. With df � 1 and a � 0.05, from Table H,

Since � 3.841, we reject H0. The educational level of parents
and the number of children they have are related.

x2
obt

x 2
crit � 3.841

xobt
2 � © 

1  fo � fe2
2

fe
� 7.110

138 � 3022

30
� 2.133

601752

150
� 30

137 � 4522

45
� 1.422

901752

150
� 45

122 � 3022

30
� 2.133

601752

150
� 30

153 � 4522

45
� 1.422

901752

150
� 45

1  fo � fe2
2

fefefo

*This test is discussed in S. Siegel and N. Castellan, Jr., Nonparametric Statistics for the Behavioral Sci-
ences, 2nd ed., McGraw-Hill, New York, 1988, pp. 103–111. It is also discussed in W. Daniel, Applied
Nonparametric Statistics, 2nd ed., PWS-Kent, Boston, 1990, pp. 150–162.



THE WILCOXON MATCHED-PAIRS SIGNED RANKS TEST

The Wilcoxon matched-pairs signed ranks test is used in conjunction with the cor-
related groups design with data that are at least ordinal in scaling. It is a relatively
powerful test sometimes used in place of the t test for correlated groups when
there is an extreme violation of the normality assumption or when the data are
not of appropriate scaling. The Wilcoxon signed ranks test considers both the
magnitude of the difference scores and their direction, which makes it more pow-
erful than the sign test. It is, however, less powerful than the t test for correlated
groups. To illustrate this test, let’s consider the following experiment.

e x p e r i m e n t Changing Attitudes Toward Wildlife Conservation

A prominent ecological group is planning to mount an active campaign to increase
wildlife conservation in their country. As part of the campaign, they plan to show a film
designed to promote more favorable attitudes toward wildlife conservation. Before
showing the film to the public at large, they want to evaluate its effects. A group of 10
subjects are randomly sampled and given a questionnaire that measures an individual’s
attitude toward wildlife conservation. Next, they are shown the film, after which they
are again given the attitude questionnaire. The questionnaire has 50 possible points,
and the higher the score is, the more favorable is the attitude toward wildlife conser-
vation. The results are shown in Table 17.5.

1. What is the alternative hypothesis? Use a nondirectional hypothesis.
2. What is the null hypothesis?
3. What do you conclude? Use a � 0.052 tail.

S O L U T I O N

1. The alternative hypothesis is usually stated without specifying any population para-
meters. For this example, it states that the film affects attitudes toward wildlife con-
servation.

2. The null hypothesis is also usually stated without specifying any population para-
meters. For this example, it states that the film has no effect on attitudes toward
wildlife conservation.

3. Conclusion, using a � 0.052 tail: As with all the other inference tests, the first step is
to calculate the appropriate statistic. The data have been obtained from question-
naires, so they are at least of ordinal scaling. To illustrate use of the Wilcoxon signed
ranks test, we shall assume that the data meet the assumptions of this test (these will
be discussed shortly). The statistic calculated by the Wilcoxon signed ranks test is
Tobt. Determining Tobt involves four steps:
a. Calculate the difference between each pair of scores.
b. Rank the absolute values of the difference scores from the smallest to the largest.
c. Assign to the resulting ranks the sign of the difference score whose absolute

value yielded that rank.
d. Compute the sum of the ranks separately for the positive and negative signed

ranks. The lower sum is Tobt.

These four steps have been done with the data from the attitude questionnaire, and the re-
sultant values have been entered in Table 17.5. Thus, the difference scores have been cal-
culated and are shown in the fourth column of Table 17.5.The ranks of the absolute values
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of the difference scores are shown in the fifth column. Note that, as a check on whether the
ranking has been done correctly, the sum of the unsigned ranks should equal n(n � 1)�2.
In the present example, this sum should equal 55 [10(11)�2 � 55], which it does. Step c asks
us to give each rank the sign of the difference score whose absolute value yielded that rank.
This has been done in the sixth column.Thus, the ranks of 1 and 3 are assigned minus signs,
and the rest are positive.The ranks of 1 and 3 received minus signs because their associated
difference scores are negative. is determined by computing the sum of the positive
ranks and the sum of the negative ranks. is the lower of the two sums. In this example,
the sum of the positive ranks equals 51, and the sum of the negative ranks equals 4.Thus,

Note that often it is not necessary to compute both sums. Usually it is apparent by in-
spection which sum will be lower. The final step is to evaluate . Table I in Appen-
dix D contains the critical values of T for various values of N. With N � 10 and a �
0.052 tail, from Table I,

With the Wilcoxon signed ranks test, the decision rule is

Note that this is opposite to the rule we have been using for most of the other tests.
Since � 8, we reject H0 and conclude that the film does affect attitudes toward
wildlife conservation. It appears to promote more favorable attitudes.

Tobt

If Tobt � Tcrit, reject H0.

Tcrit � 8

Tobt

Tobt � 4

Tobt

Tobt
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t a b l e 17.5 Data and solution for wildlife conservation problem

Signed Sum of Sum of
Rank of Rank of Positive Negative

Subject Before After Difference �Difference� Difference Ranks Ranks

1 40 44 4 4 4 4

2 33 40 7 6 6 6

3 36 49 13 10 10 10

4 34 36 2 2 2 2

5 40 39 �1 1 �1 1

6 31 40 9 8 8 8

7 30 27 �3 3 �3 3

8 36 42 6 5 5 5

9 24 35 11 9 9 9

10 20 28 8 7 7 7
55 51 4

From Table I, with N � 10 and a � 0.052 tail,

Since Tobt � 8, H0 is rejected. The film appears to promote more favorable attitudes
toward wildlife conservation.

Tcrit � 8

Tobt � 4n1n � 12

2
�

101112

2
� 55

Attitude



It is easy to see why the Wilcoxon signed ranks test is more powerful than
the sign test but not as powerful as the t test for correlated groups. The
Wilcoxon signed ranks test takes into account the magnitude of the difference
scores, which makes it more powerful than the sign test. However, it considers
only the rank order of the difference scores, not their actual magnitude, as does
the t test. Therefore, the Wilcoxon signed ranks test is not as powerful as the 
t test.

Let’s try another problem for practice.
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P r a c t i c e  P r o b l e m  17.4

An investigator is interested in determining whether the difficulty of the ma-
terial to be learned affects the anxiety level of college students. A random
sample of 12 students is each given hard and easy learning tasks. Before doing
each task, they are shown a few sample examples of the material to be learned.
Then their anxiety level is assessed using an anxiety questionnaire. Thus, anx-
iety level is assessed before each learning task. The data are shown in the fol-
lowing table. The higher the score is, the greater is the anxiety level. What is
the conclusion, using the Wilcoxon signed ranks test and a� 0.052 tail?

S O L U T I O N

The solution is shown in the following table. Note that there are ties in some
of the difference scores. Generally, two kinds of ties are possible. First, the
raw scores may be tied, yielding a difference score of 0. If this occurs, these
scores are disregarded and the overall N is reduced by 1 for each 0 differ-
ence score. Ties can also occur in the difference scores, as in the present ex-
ample. When this happens, the ranks of these scores are given a value equal
to the mean of the tied ranks. This is the same procedure we followed for
the Spearman rho correlation coefficient.Thus, in this example, the two tied
difference scores of 3 are assigned ranks of 2.5 [(2 � 3)	2 � 2.5], and the
tied difference scores of 10 receive the rank of 9.5. Otherwise, the solution
is quite similar to that of the previous example.

Anxiety
Signed Sum of Sum of

Student Hard Easy Rank of Rank of Positive Negative
No. tasks tasks Difference 
Difference
 Difference Ranks Ranks

1 48 40 8 7 7 7

2 33 27 6 5 5 5

3 46 34 12 11 11 11

4 42 28 14 12 12 12

5 40 30 10 9.5 9.5 9.5

6 27 24 3 2.5 2.5 2.5



Assumptions of the Wilcoxon Signed Ranks Test

There are two assumptions underlying the Wilcoxon signed ranks test. First, the
scores within each pair must be at least of ordinal measurement. Second, the dif-
ference scores must also have at least ordinal scaling. The second requirement
arises because in computing we rank-order the difference scores. Thus, the
magnitude of the difference scores must be at least ordinal so that they can be
rank-ordered.

THE MANN–WHITNEY U TEST

The Mann–Whitney U test is used in conjunction with the independent groups
design with data that are at least ordinal in scaling. It is a powerful nonpara-
metric test used in place of the t test for independent groups when there is an
extreme violation of the normality assumption or when the data are not of ap-
propriate scaling for the t test.

To illustrate this inference test, let’s consider the following experiment.

e x p e r i m e n t The Effect of a High-Protein Diet on Intellectual Development

A developmental psychologist, with special competence in nutrition, believes that a
high-protein diet eaten during early childhood is important for intellectual develop-
ment.The diet in the geographic area where the psychologist lives is low in protein.The
psychologist believes the low-protein diet eaten during the first few years of child-
hood is detrimental to intellectual development. If she is correct, a high-protein diet

Tobt
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Anxiety
Signed Sum of Sum of

Student Hard Easy Rank of Rank of Positive Negative
No. tasks tasks Difference 
Difference
 Difference Ranks Ranks

7 31 33 �2 1 �1 1

8 42 39 3 2.5 2.5 2.5

9 38 31 7 6 6 6

10 34 39 �5 4 �4 4

11 38 29 9 8 8 8

12 44 34 10 9.5 9.5 9.5
78 73 5

Tobt � 5

From Table I, with N � 12 and a � 0.052 tail,

Since Tobt � 13, we reject H0 and conclude that the difficulty of material does affect
anxiety. It appears that more difficult material produces increased anxiety.

Tcrit � 13

n1n � 12

2
�

121132

2
� 78



should result in higher intelligence. An experiment is conducted in which 18 children
are randomly chosen from the 1-year-old children living in a nearby city. The 18 chil-
dren are then randomly divided into two groups of 9 children each. The control group
is fed the usual low-protein diet for 3 years, whereas the experimental group receives a
diet high in protein for the same duration. At the end of the 3 years, each child is given
an IQ test. The resulting data are shown in Table 17.6. One child in the experimental
group moved to a different city and was not replaced.
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a. What is the directional alternative hypothesis?
b. What is the null hypothesis?
c. What do you conclude? Use a � 0.051 tail.

S O L U T I O N

1. Alternative hypothesis:As with the t test for independent groups, the alternative hy-
pothesis states that a high-protein diet eaten during infancy will increase intellectual
functioning relative to a low-protein diet. In the same manner as with the t test for
independent groups, each sample is considered a random sample from its own pop-
ulation set of scores, with parameters m1, s1

2, and m2, s2
2, respectively. However,

since this is a rank-order test, the Mann–Whitney U test does not evaluate sample
mean differences and, hence, makes no prediction about the relationship of m1 and
m2. Thus, there are no population parameters included in the statement of the alter-
native hypothesis.

2. Null hypothesis: The null hypothesis is also stated without any population param-
eters. It states that the high-protein diet, eaten during infancy, will either have no ef-
fect on intellectual functioning or it will decrease intellectual functioning.

3. Conclusion using a � 0.051 tail: As with the other inference tests, the conclusion in-
volves a two-step process: Compute the appropriate statistic and then evaluate the
statistic using its sampling distribution.

STEP 1: Compute the appropriate statistic. The statistic calculated by the Mann–
Whitney U test is Uobt or U�obt. These statistics measure the degree of separa-

t a b l e 17.6 Data from the protein 
and IQ experiment

IQ Test Scores

Control group, Experimental group,
low protein high protein

1 2

102 110

104 115

105 117

107 122

108 125

111 130

113 135

118 140

120



tion between the two sample sets of scores. As the real effect of the indepen-
dent variable increases, the samples become more separated (the scores of the
two samples overlap less). As the degree of sample separation increases, Uobt

decreases and U�obt increases. When there is complete separation between
samples (no overlap), Uobt � 0. For any experiment, Uobt � U�obt � n1n2. Both
Uobt and U�obt measure the same degree of separation. Hence, in analyzing the
data from any experiment, it is necessary to compute and evaluate only Uobt

or U�obt. Uobt and U�obt are computed as follows:

3. a. Combine the scores from both groups, rank-order them, and assign each a rank
score, using 1 for the lowest score:
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3. b. Sum the ranks for each group; that is, determine R1 and R2, where R1 � sum 
of the ranks for group 1 and R2 � sum of the ranks for group 2.

c. Solve the equations for and U�obt. and U�obt are computed by solving the
following equations:

general equation for finding
Uobt or U�obt

general equation for finding
Uobt or U�obt

Uobt � n1n2 �
n21n2 � 12

2
� R2

Uobt � n1n2 �
n11n1 � 12

2
� R1

UobtUobt

MENTORING TIP
Remember: Uobt � 0 indicates
the greatest degree of separa-
tion possible for any data.

Original Score 102 104 105 107 108 110 111 113 115

Rank 1 2 3 4 5 6 7 8 9

Original Score 117 118 120 122 125 130 135 140

Rank 10 11 12 13 14 15 16 17

Control Group Experimental Group
1 2

Original Original
score Rank score Rank

102 1 110 6

104 2 115 9

105 3 117 10

107 4 122 13

108 5 125 14

111 7 130 15

113 8 135 16

118 11 140

120 R2 � 100

R1 � 53 n2 � 8

n1 � 9

12

17



where n1 � number of scores in group 1
n2 � number of scores in group 2
R1 � sum of ranks for scores in group 1
R2 � sum of ranks for scores in group 2

In solving these equations, we identify one of the samples as group 1 and the
other as group 2. Then, we just go ahead and solve the equations. One of the
equations will yield a number lower than the number from the other equation.
Arbitrarily, the lower of the two numbers is assigned as and the higher of
the two numbers as U�obt. It doesn’t matter which sample is labeled group 1 and
which is labeled group 2. If we reversed the labels, we would still obtain the
same numbers from the equations. What does change with labeling is which
equation yields the higher number and which yields the lower number. Since
this depends on which group is labeled group 1 and which group 2, these equa-
tions are both written initially in terms of . In an actual analysis, the equa-
tion that yields the lower number is the equation; the one that yields the
higher number is the U�obt equation. For the data in the present example,

Uobt

Uobt

Uobt
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Therefore,

U¿obt � 64

Uobt � 8

 � 8 � 64

 � 72 � 36 � 100 � 72 � 45 � 53

� 9182 �
8192

2
� 100 � 9182 �

91102

2
� 53

Uobt � n1n2 �
n11n1 � 12

2
� R1  Uobt � n1n2 �

n21n2 � 12

2
� R2

STEP 2: Evaluate Uobt or U�obt. Tables C.1–C.4 in Appendix D give the criti-
cal values of U and U�. For each cell, there are two entries. The upper
entry is the highest value of for various n1 and n2 combina-
tions that will allow rejection of H0. The lower entry is the lowest value
of that will allow rejection of H0. The decision rule is as 
follows:

Since both and measure the same degree of separation, we
shall evaluate only . Each of the Tables C.1–C.4 is for a different al-
pha level. For the data of the present experiment, Table C.4 is appropri-
ate. With n1 � 9 and n2 � 8, Ucrit � 18 and U�crit � 54. Evaluating ,
since � 18, we reject H0 and affirm H1. A high-protein diet eaten
during infancy appears to increase intellectual functioning relative to a
low-protein diet.

Uobt

Uobt

Uobt

U¿obtUobt

If U¿obt � U¿crit, reject H0 and affirm H1.

If Uobt � Ucrit, reject H0 and affirm H1.

U¿obt

Uobt



Tied Ranks
We’ve already shown how to rank-order tied scores when we discussed the
Spearman rho correlation coefficient (p. 132) and the Wilcoxon signed ranks test
(p. 468). To review, tied scores are handled by assigning them the average of the
tied ranks. For example, consider the two sets of scores presented in Table 17.7.
To rank-order the combined scores, we proceed as follows. First, the scores are
arranged in ascending order. Thus,

Raw Score 11 12 12 14 15 16 17 17 17 18 20

Rank 1 2.5 2.5 4 5 6 8 8 8 10 11

Next, we assign each raw score its rank, beginning with 1 for the lowest score.This
has been shown previously. Note that the two raw scores of 12 are tied at the
ranks of 2 and 3. They are assigned the average of these tied ranks. Thus, they
each get a rank of 2.5 [(2 � 3)�2 � 2.5]. We have already used the ranks of 2 and
3, so the next score gets a rank of 4. The raw scores of 17 are tied at the ranks of
7, 8, and 9. Therefore, they receive the rank of 8, which is the average of 7, 8, and
9 [(7 � 8 � 9)�3 � 8]. Note that the next rank is 10 (not 9) because we’ve already
used ranks 7, 8, and 9 in computing the average. If the ranking is done correctly,
unless there are tied ranks at the end, the last raw score should have a rank equal
to N. In this case, N � 11 and so does the rank of the last score. Once the ranks
have been assigned, Uobt and U�obt are calculated in the usual way.

Let’s do the following problem for practice.
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t a b l e 17.7 Data to 
illustrate ranking tied
scores

Group 1 Group 2

12 11

14 12

15 16

17 17

18 17

20

P r a c t i c e  P r o b l e m  17.5

Someone has told you that men are better in abstract reasoning than
women. You are skeptical, so you decide to test this idea using a nondirec-
tional hypothesis. You randomly select eight men and eight women from
the freshman class at your university and administer an abstract reasoning
test. A higher score reflects better abstract reasoning abilities. You obtain
the following scores:

Men Women

70 82

86 80

60 50

92 95

82 93

65 85

74 90

94 75 (continued)
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a. What is the alternative hypothesis? Assume a nondirectional hypothesis
is appropriate.

b. What is the null hypothesis?
c. Using a � 0.052 tail, what do you conclude?

S O L U T I O N

a. Nondirectional alternative hypothesis: Men and women differ in ab-
stract reasoning ability.

b. Null hypothesis: Men and women are equal in abstract reasoning ability.
c. Conclusion, using a � 0.052 tail:

STEP 1: Calculate Uobt for the data:
a. Combine the scores, rank-order them, and assign each a

rank, using 1 for the lowest score:

Original Score 50 60 65 70 74 75 80 82

Rank 1 2 3 4 5 6 7 8.5

Original Score 82 85 86 90 92 93 94 95

Rank 8.5 10 11 12 13 14 15 16

b. Sum the ranks for each group; that is, determine R1 and R2.

Men Women
1 2

Original score Rank Original score Rank

60 2 50 1

65 3 75 6

70 4 80 7

74 5 82 8.5

82 8.5 85 10

86 11 90 12

92 13 93 14

94 95

R1 � 61.5 R2 � 74.5

n1 � 8 n2 � 8

c. Solve the equations for and :

� 64 � 36 � 74.5 � 25.5� 64 � 36 � 61.5 � 38.5

� 8182 �
8192

2
� 74.5� 8182 �

8192

2
� 61.5

Uobt � n1n2 �
n11n1 � 12

2
� R1  Uobt � n1n2 �

n2 1n2 � 12

2
� R2

U¿obtUobt

16   15   



Assumptions Underlying the Mann–Whitney U Test

Since we must be able to rank-order the data to compute Uobt or , the
Mann–Whitney U test requires that the data be at least ordinal in scaling. It does
not depend on the population scores being of any particular shape (e.g., normal
distributions), as does the t test for independent groups.Thus, the Mann–Whitney
U test can be used instead of the t test for independent groups when there is a se-
rious violation of the normality assumption or when the data are not of interval
or ratio scaling. The Mann–Whitney U test is a powerful test. However, since it
uses only the ordinal property of the scores, it is not as powerful as the t test for
independent groups, which uses the interval property of the scores.

THE KRUSKAL–WALLIS TEST

The Kruskal–Wallis test is a nonparametric test that is used with an independent
groups design employing k samples. It is used as a substitute for the parametric
one-way ANOVA discussed in Chapter 15, when the assumptions of that test are
seriously violated. The Kruskal–Wallis test does not assume population normal-
ity nor homogeneity of variance, as does parametric ANOVA, and requires only
ordinal scaling of the dependent variable. It is used when violations of population
normality and/or homogeneity of variance are extreme or when interval or ratio
scaling are required and not met by the data. To understand this test, let’s begin
with an experiment.

e x p e r i m e n t Evaluating Two Weight Reduction Programs

A health psychologist, employed by a large corporation, is interested in evaluating
two weight reduction programs she is considering using with employees of her cor-
poration. She conducts an experiment in which 18 obese employees are randomly
assigned to three conditions, with 6 subjects per condition. The subjects in condition
1 are placed on a diet that reduces their daily caloric intake by 500 calories. The sub-
jects in condition 2 receive the same restricted diet, but in addition are required to
walk 2 miles each day. Condition 3 is a control condition, in which the subjects are
asked to maintain their usual eating and exercise habits. The data presented in Table
17.8 are the number of pounds lost by each subject over a 6-month period. A posi-
tive number indicates weight loss and a negative number is weight gain. Assume the
data show that there is a strong violation of population normality such that the psy-

U¿obt
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Thus,

STEP 2: Evaluate Uobt. With a � 0.052 tail, Table C.3 is appropriate. With
n1 � n2 � 8, Ucrit � 13 and U�crit � 51. Since Uobt � 13, we fail
to reject H0, and hence, we can’t affirm H1. These data do not
support the hypothesis that men and women differ in abstract
reasoning ability.

 U¿obt � 38.5

 Uobt � 25.5



chologist decides to analyze the data with the Kruskal–Wallis test, rather than using
parametric ANOVA.

a. What is the alternative hypothesis?
b. What is the null hypothesis?
c. What is the conclusion? Use a � 0.05.

S O L U T I O N

a. Alternative hypothesis: As with parametric ANOVA, the alternative hypothesis
states that at least one of the conditions affects weight loss differently than at least
one of the other conditions. In the same manner as parametric ANOVA, each sam-
ple is considered a random sample from its own population set of scores. If there
are k samples, there are k populations. In this example, k � 3. However, since this
is a nonparametric test, Kruskal–Wallis makes no prediction about the population
means m1, m2, or m3. It merely asserts that at least one of the population distribu-
tions is different from at least one of the other population distributions.

b. Null hypothesis: The samples are random samples from the same or identical popu-
lation distributions. There is no prediction specifically regarding m1, m2, or m3.

c. Conclusion, using a � 0.05: As usual, in evaluating H0, we follow the two-step
process: Compute the appropriate statistic and then evaluate the statistic using its
sampling distribution.

STEP 1: Compute the appropriate statistic. The statistic we compute for the
Kruskal–Wallis test is Hobt.The procedure is very much like computing Uobt

for the Mann–Whitney U test. All of the scores are grouped together and
rank-ordered, assigning the rank of 1 to the lowest score, 2 to the next to
lowest, and N to the highest. When this is done, the ranks for each condi-
tion or sample are summed.These procedures have been carried out for the
data of the present example and entered in Table 17.8.

The sums of ranks for each group have been symbolized as R1, R2, and
R3, respectively. For these data, R1 � 58, R2 � 88, and R3 � 25. The
Kruskal–Wallis test assesses whether these sums of ranks differ so much that
it is unreasonable to consider that they come from samples that were ran-
domly selected from the same population. The larger the differences be-
tween the sums of the ranks of each sample is, the less likely it is that the
samples are from the same population.
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t a b l e 17.8 Data from weight reduction experiment

1 2 3
Diet Diet � Exercise Control

Pounds Pounds Pounds
lost Rank lost Rank lost Rank

2 5 12 12 8 9

15 14 9 10 3 6

7 8 20 16 �1 4

6 7 17 15 �3 2

10 11 28 17 �2 3

14 13 30 18 �8 1

n1 � 6 R1 � 58 n2 � 6 R2 � 88 n3 � 6 R3 � 25



The equation for computing Hobt is as follows:

where

tells us to square the sum of ranks for each sample,
divide each squared value by the number of scores
in the sample, and sum over samples

Substituting the appropriate values from the table into this equation, we
obtain

STEP 2: Evaluate the statistic. It can be shown that, if the number of scores in 
each sample is 5 or more, the sampling distribution of the statistic H is 
approximately the same as chi-square with df � k � 1. In the present 
experiment, df � k � 1 � 3 � 1 � 2. From Table H, with a � 0.05, and 
df � 2,

As with parametric ANOVA, the Kruskal–Wallis test is a nondirectional test. The
decision rule states that

Since Hobt � 5.991, we reject H0. It appears that the conditions are not equal with
regard to weight loss.

If Hobt 6 Hcrit, retain H0.

If Hobt � Hcrit, reject H0.

Hcrit � 5.991

 � 11.61

 � 68.61 � 57

 � c
12

18118 � 12
d c
15822

6
�
18822

6
�
12522

6
d � 3118 � 12

 Hobt � c
12

N 1N � 12
d  c
1R12

2

n1
�
1R22

2

n2
�
1R32

2

n3
d � 3 1N � 12

 Rk � sum of the ranks for sample k

 R3 � sum of the ranks for sample 3

 R2 � sum of the ranks for sample 2

 R1 � sum of the ranks for sample 1

 Ri � sum of the ranks for the ith sample

 N � number of scores in all samples combined

 nk � number of scores in sample k

 n3 � number of scores in sample 3

 n2 � number of scores in sample 2

 n1 � number of scores in sample 1

 ni � number of scores in the ith sample

 k � number of samples or groups

g 
k

i�1

1Ri2
2

ni

 � c
12

N 1N � 12
d c

R1
2

n1
�

R2
2

n2
�

R3
2

n3
� p �

Rk
2

nk
d � 3 1N � 12

 Hobt � c
12

N1N � 12
d c g

k

i�1

1Ri2
2

ni
d � 31N � 12
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P r a c t i c e  P r o b l e m  17.6

A business consultant is doing research in the area of management training.
There are two effective managerial styles: One is people-oriented and a
second is task-oriented. Well-defined, static jobs are better served by the
people-oriented managers and changing, newly created jobs by the task-
oriented managers.The experiment being conducted investigates whether it
is better to try to train managers to have both styles or whether it is better
to match managers to jobs with no attempt to train in a second style. The
managers for this experiment are 24 army officers, randomly selected from
a large army base.The experiment involves three conditions. In condition 1,
the subjects receive training in both managerial styles. After training is
completed, these subjects are randomly assigned to new jobs without
matching style and job. In condition 2, the subjects receive no additional
training but are assigned to jobs according to a match between their single
managerial style and the job requirements. Condition 3 is a control condi-
tion in which subjects receive no additional training and are assigned to
new jobs, like those in condition 1, without matching. After they are in their
new job assignments for 6 months, a performance rating is obtained on each
officer.The data follow.The higher the score, the better the performance.At
the beginning of the experiment, there were eight subjects in each condi-
tion. However, one of the subjects in condition 2 dropped out midway into
the experiment and was not replaced. Assume the data do not meet the as-
sumptions for the parametric one-way ANOVA.

Condition 1 Condition 2 Condition 3
Training Matching Control

Score Rank Score Rank Score Rank

65 8 90 21 55 3

84 16 83 15 82 14

87 19.5 76 12 71 10

53 2 87 19.5 60 6

70 9 92 22 52 1

85 17 86 18 81 13

56 4 93 23 73 11

63 7 57 5

n1 � 8 R1 � 82.5 n2 � 7 R2 � 130.5 n3 � 8 R3 � 63

a. What is the alternative hypothesis?
b. What is the null hypothesis?
c. What is the conclusion? Use a � 0.05.



Assumptions Underlying the Kruskal–Wallis Test

To use the Kruskal–Wallis test, the data must be of at least ordinal scaling. In ad-
dition, there must be at least five scores in each sample to use the probabilities
given in the table of chi-square.*
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S O L U T I O N

a. Alternative hypothesis: At least one of the conditions has a different ef-
fect on job performance than at least one of the other conditions. There-
fore, at least one of the population distributions is different from one of
the others.

b. Null hypothesis: The conditions have the same effect on job perfor-
mance. Therefore, the samples are random samples from the same or
identical population distributions.

c. Conclusion, using a � 0.05:

STEP 1: Compute the appropriate statistic.

STEP 2: Evaluate the statistic. In the present experiment, df � k � 1 � 3
� 1 � 2. From Table H, with a � 0.05, and df � 2,

Since Hobt � 5.991, we reject H0. It appears that the conditions
are not equal with regard to their effect on job performance.

Hcrit � 5.991

 � 10.17

 � 82.17 � 72

 � c
12

23 123 � 12
d  c
182.522

8
�
1130.522

7
�
16322

8
d � 3 123 � 12

 Hobt � c
12

N 1N � 12
d  c
1R12

2

n1
�
1R22

2

n2
�
1R32

2

n3
d � 3 1N � 12

*To analyze data with fewer than five scores in a sample, see S. Siegel and N. Castellan, Jr., Nonpara-
metric Statistics for the Behavioral Sciences, 2nd ed., McGraw-Hill, New York, 1988, pp. 206–212.
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In this chapter, I discussed nonparametric statistics.
Nonparametric inference tests depend considerably
less on population characteristics than do parametric
tests. The z, t, and F tests are examples of parametric
tests; the sign test and the Mann–Whitney U test are
examples of nonparametric tests. Parametric tests are
used when possible because they are more powerful
and versatile. However, when the assumptions of the
parametric tests are violated, nonparametric tests are
frequently used.

One of the most frequently used inference tests
for analyzing nominal data is the nonparametric test
called chi-square (x2). It is appropriate for analyzing
frequency data dealing with one or two variables.
Chi-square essentially measures the discrepancy be-
tween the observed frequency ( fo) and the expected
frequency ( fe) for each of the cells in a one-way or
two-way table. In equation form,
where the summation is over all the cells. In single-
variable situations, the data are presented in a one-
way table and the various expected frequency values
are determined on an a priori basis. In two-variable
situations, the frequency data are presented in a con-
tingency table and we are interested in determining
whether there is a relationship between the two vari-
ables. The null hypothesis states that there is no rela-
tionship—that the two variables are independent.
The alternative hypothesis states that the two vari-
ables are related. The expected frequency for each
cell is the frequency that would be expected if sam-
pling is random from a population where the pro-
portions for each category on one variable are equal
for each category on the other variable. Since the
population proportions are unknown, their expected
values under the null hypothesis are estimated from
the sample data, and the expected frequencies are
calculated using these estimates.

The obtained value of x2 is evaluated by com-
paring it with xcrit

2 . If � xcrit
2 , we reject the null

hypothesis. The critical value of x2 is determined by
the sampling distribution of x2 and the alpha level.
The sampling distribution of x2 is a family of curves
that varies with the degrees of freedom. In the one-
variable experiment, df � k � 1. In the two-variable
situation, df � (r � 1)(c � 1). A basic assumption of
x2 is that each subject can have only one entry in the
table. A second assumption is that the expected fre-
quency in each cell must be of a certain minimum
size. The use of x2 is not limited to nominal data, but
regardless of the scaling, the data must finally be di-

x2
obt

x2
obt � © 1 fo � fe2

2	fe,

vided into mutually exclusive categories and the cell
entries must be frequencies.

The Wilcoxon matched-pairs signed ranks test is
a nonparametric test that is used with a correlated
groups design. The statistic calculated is . Deter-
mination of involves four steps: (1) finding the
difference between each pair of scores, (2) ranking
the absolute values of the difference scores, (3) as-
signing the appropriate sign to the ranks, and (4) sep-
arately summing the positive and negative ranks.
is the lower sum. It is evaluated by comparison with
Tcrit. If � Tcrit, we reject H0. The Wilcoxon signed
ranks test requires that (1) the within-pair scores be
at least of ordinal scaling and (2) the difference
scores also be at least of ordinal scaling. This test
serves as an alternative to the t test for correlated
groups when the assumptions of the t test have not
been met. It is more powerful than the sign test, but
not as powerful as the t test.

The Mann–Whitney U test analyzes the degree
of separation between the samples in a two-group,
independent groups experiment. The less the sepa-
ration, the more reasonable chance is as the under-
lying explanation. For any analysis, two statistics are
computed. Both indicate the same degree of separa-
tion. The lower value is arbitrarily called , and
the higher value is called . Tables C.1–C.4 give
the critical values of U and U�. If � Ucrit, reject
H0 and affirm H1. If � U�crit, reject H0 and affirm
H1. Otherwise, we retain H0. The Mann–Whitney U
test is appropriate for an independent groups design
where the data are at least ordinal in scaling. It is a
powerful test, often used in place of Student’s t test
when the data do not meet the assumptions of the t
test.

The Kruskal–Wallis test is used as a substitute
for one-way parametric ANOVA. It uses the inde-
pendent groups design with k samples. The null hy-
pothesis asserts that the k samples are random
samples from the same or identical population dis-
tributions. No attempt is made to specifically test for
population mean differences, as is the case with
parametric ANOVA. The statistic computed is .
If the number of scores in each sample is five or
more, the sampling distribution of is close
enough to that of chi-square to use the latter in de-
termining Hcrit. If � Hcrit, H0 is rejected.To com-
pute , the scores of the k samples are combined
and rank-ordered, assigning 1 to the lowest score.
The ranks are then summed for each sample.

Hobt

Hobt

Hobt

Hobt

U¿obt

Uobt

U¿obt

Uobt

Tobt

Tobt

Tobt

Tobt

■ SUMMARY



Kruskal–Wallis tests whether it is reasonable to con-
sider the summed ranks for each sample to be due to
random sampling from a single population set of
scores. The greater the differences between the sum
of ranks for each sample are, the less tenable is the

null hypothesis.This test assumes that the dependent
variable is measured on a scale that is of at least or-
dinal scaling. There must also be five or more scores
in each sample to validly use the chi-square sam-
pling distribution.

Questions and Problems 483

Chi-square (x2) (p. 452)
Contingency table (p. 457)
Degree of separation (p. 470)
Expected frequency ( fe) (p. 452)

Kruskal–Wallis test (H) (p. 475)
Mann–Whitney U test (U or U�) 

(p. 469)
Marginals (p. 459)

Observed frequency ( fo) (p. 452)
Wilcoxon matched-pairs signed

ranks test (T) (p. 466)

■ IMPORTANT NEW TERMS

1. Briefly identify or define the terms in the Impor-
tant New Terms section.

2. What is the underlying rationale for the determi-
nation of fe in the two-variable experiment?

3. What are the assumptions underlying chi-square?
4. In situations involving more than 1 degree of

freedom, the x2 test is nondirectional. Is this
statement correct? Explain.

5. What distinguishes parametric from nonpara-
metric tests? Explain, giving some examples.

6. Are parametric tests preferable to nonparamet-
ric tests? Explain.

7. When might we use a nonparametric test? Give
an example.

8. Under what conditions might one use the Wil-
coxon signed ranks test?

9. Compare the Wilcoxon signed ranks test with the
sign test and the t test for correlated groups with
regard to power. Explain any differences.

10. What are the assumptions of the Wilcoxon signed
ranks test?

11. In a two-condition, independent groups experi-
ment, how is the degree of separation between
samples affected by the size of real effect?

12. Under what conditions might one use the Mann–
Whitney U test?

13. What are the assumptions underlying the Mann–
Whitney U test?

14. Compare the power of Student’s t test and the
Mann–Whitney U test.

15. What are the assumptions underlying the Kruskal–
Wallis test?

16. A researcher is interested in whether there really
is a prevailing view that overweight people are

more jolly. A random sample of 80 individuals
was asked the question, “Do you believe fat peo-
ple are more jolly?” The following results were
obtained:

Yes No

44 36 80

Using a � 0.05, what is your conclusion? social
17. A study was conducted to determine whether

big-city and small-town dwellers differed in their
helpfulness to strangers. In this study, the investi-
gators rang the doorbells of strangers living in
New York City or small towns in the vicinity.They
explained they had misplaced the address of a
friend living in the neighborhood and asked to
use the phone. The following data show the num-
ber of individuals who admitted or did not admit
the strangers (the investigators) into their homes:

Helpfulness to Strangers

Admitted Did not admit
strangers into strangers into

their home their home

Big-city
60 90 150dweller

Small-town 70 30 100
dweller

130 120 250

Do big-city dwellers differ in their helpfulness to
strangers? Use a� 0.05 in making your decision.
social

■ QUESTIONS AND PROBLEMS



18. Because of rampant inflation, the government is
considering imposing wage and price controls. A
government economist, interested in determin-
ing whether there is a relationship between oc-
cupation and attitude toward wage and price
controls, collects the following data. The data
show for each occupation the number of individ-
uals in the sample who were for or against the
controls:

Attitude Toward
Wage and Price

Controls

For Against

Labor 90 60 150

Business 100 150 250

Professions 110 90 200

300 300 600

Do these occupations differ regarding attitudes
toward wage and price controls? Use a � 0.01 in
making your decision. I/O

19. The head of the marketing division of a leading
soap manufacturer must decide among four dif-
ferently styled wrappings for the soap. To pro-
vide a database for the decision, he has the
soap placed in the different wrapping styles
and distributed to five supermarkets. At the
end of 2 weeks, he finds that the following
amounts of soap were sold:

Wrapping A Wrapping B Wrapping C Wrapping D

90 98 130 82 400

Is there sufficient basis for making a decision
among wrappings? If so, which should he pick?
Use a � 0.05. I/O

20. A researcher believes that individuals in dif-
ferent occupations will show differences in their
ability to be hypnotized. Six lawyers, six physi-
cians, and six professional dancers are randomly
selected for the experiment. A test of hypnotic
susceptibility is administered to each. The results
are shown in the next column. The higher the
score, the higher the hypnotizability. Assume the
data violate the assumptions required for use of
the F test, but are at least of ordinal scaling. Us-
ing a � 0.05, what is your conclusion?

Condition 1 Condition 2 Condition 3
Lawyers Physicians Dancers

26 14 30

17 19 21

27 28 35

32 22 29

20 25 37

25 15 34

cognitive, social

21. A professor of religious studies is interested in
finding out whether there is a relationship be-
tween church attendance and educational level.
Data are collected on a sample of individuals
who completed only high school and on another
sample who received a college education. The
following are the resultant frequency data:

Church Attendance

Do not attend
Attend regularly regularly

High school 188 112 200

College 156 104 160

144 216 360

What is your conclusion? Use a � 0.05. social
22. A coffee manufacturer advertises that, in a re-

cent experiment in which their brand (brand A)
was compared with the other four leading brands
of coffee, more people preferred their brand to
the other four. The data from the experiment are
given here:

Coffee Brand

A B C D E

60 45 52 43 50 250

Do you believe the ad to be misleading? Use 
a � 0.05 in making your decision. I/O

23. A study was conducted to determine whether
there is a relationship between the amount of
contact white housewives have with blacks and
changes in their attitudes toward blacks. In this
study, the changes in attitude toward blacks were
measured for white housewives who had moved
into segregated public housing projects where
there was little daily contact with blacks and for
white housewives who had moved into fully inte-
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grated public housing projects where there was a
great deal of contact. The following frequency
data were recorded:

Attitude Toward Blacks

Less No More
favorable change favorable

Segregated 1
9 42 24 75housing proj.

Integrated 17 46 72 125
housing proj.

16 88 96 200

Based on these data, what is your conclusion?
Use a � 0.05. social

24. A psychologist investigates the hypothesis that
birth order affects assertiveness. Her subjects
are 20 young adults between 20 and 25 years of
age. There are seven first-born, six second-born,
and seven third-born subjects. Each subject is
given an assertiveness test, with the following
results. High scores indicate greater assertive-
ness. Assume the data are so far from normally
distributed that the F test can’t be used, but the
data are at least of ordinal scaling. Use a� 0.01
to evaluate the data. What is your conclusion?

Condition 1 Condition 2 Condition 3
First-Born Second-Born Third-Born

18 18 7

8 12 19

4 3 2

21 24 30

28 22 18

32 1 5

10 14

social

25. An investigator believes that students who rank
high in certain kinds of motives will behave dif-
ferently in gambling situations. To investigate
this hypothesis, the investigator randomly sam-
ples 50 students high in affiliation motivation, 50
students high in achievement motivation, and 50
students high in power motivation. The students
are asked to play the game of roulette, and a
record is kept of the bets they make.The data are
then grouped into the number of subjects with
each kind of motivation who make bets involving
low, medium, and high risk. Low risk means they

make bets involving low odds (even money or
less), medium risk involves bets of medium odds
(from 2 to 1 to 5 to 1), and high risk involves
playing long shots (from 17 to 1 to 35 to 1). The
following data are obtained:

Kind of Motive

Affiliation Achievement Power

Low risk 26 13 9 48

Med. risk 16 27 14 57

High risk 8 10 27 45

50 50 50 150

Using a � 0.05, is there a relationship between
these different kinds of motives and gambling
behavior? How do the groups differ? social

26. A major oil company conducts an experiment to
assess whether a film designed to tell the truth
about, and also promote more favorable atti-
tudes toward, large oil companies really does re-
sult in more favorable attitudes. Twelve individu-
als are run in a replicated measures design. In the
“before” condition, each subject fills out a ques-
tionnaire designed to assess attitudes toward
large oil companies. In the “after” condition, the
subjects see the film, after which they fill out the
questionnaire. The following scores were ob-
tained. High scores indicate more favorable atti-
tudes toward large oil companies.

Before After

43 45

48 60

25 22

24 33

15 7

18 22

35 41

28 21

41 55

28 33

34 44

12 23

Analyze the data using the Wilcoxon signed ranks
test with a� 0.051 tail. What do you conclude? I/O
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27. In Chapter 14, Problem 18, p. 375, an experiment
was conducted to evaluate the effect of decreases
in frontalis muscle tension on headaches. The
number of headaches experienced in a 2-week
baseline period was recorded in nine subjects
who had been experiencing tension headaches.
Then the subjects were trained to lower frontalis
muscle tension using biofeedback, after which the
number of headaches in another 2-week period
was again recorded. The data are again shown
here.

No. of Headaches

Subject No. Baseline After training

1 17 3

2 13 7

3 6 2

4 5 3

5 5 6

6 10 2

7 8 1

8 6 0

9 7 2

In that problem, the sampling distribution of D�
was assumed to be normally distributed, and the
analysis was conducted using the t test. For this
problem assume the t test cannot be used because
of an extreme violation of its normality assump-
tion. Use the Wilcoxon signed ranks test to ana-
lyze the data. What do you conclude, using a �
0.052 tail? clinical, health

28. In Chapter 14, Problem 14, p. 374, an experi-
ment was conducted to determine if an 
experimental birth control pill has the side ef-
fect of changing blood pressure. Ten women
were randomly sampled from the city in which
you live. Five of them were given a placebo for
a month and then their diastolic blood pressure
was measured. Then they were switched to the
birth control pill for a month and again blood
pressure was measured. The other five women
were given the birth control pill first for a
month, followed by the placebo for a month.

The blood pressure readings are again shown
here.

Diastolic Blood Pressure

Subject Birth control
No. pill Placebo

1 108 102

2 76 68

3 69 66

4 78 71

5 74 76

6 85 80

7 79 82

8 78 79

9 80 78

10 81 85

In that problem, the sampling distribution of D�
was assumed to be normally distributed, and the
analysis was conducted using the t test for corre-
lated groups. For this problem, assume the data
are so far from normally distributed as to invali-
date use of the t test for correlated groups. Ana-
lyze the data with the Wilcoxon signed ranks 
test. What do you conclude, using a � 0.012 tail?
biological, health, social

29. A social scientist believes that university theol-
ogy professors are more conservative in political
orientation than their colleagues in psychology.
A random sample of 8 professors from the theol-
ogy department and 12 professors from the psy-
chology department at a local university are
given a 50-point questionnaire that measures the
degree of political conservatism. The following
scores were obtained. Higher scores indicate
greater conservatism.
a. What is the alternative hypothesis? In this

case, assume a nondirectional hypothesis is
appropriate because there are insufficient
theoretical and empirical bases to warrant a
directional hypothesis.

b. What is the null hypothesis?
c. What is your conclusion? Use the Mann–

Whitney U test and a� 0.052 tail.
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Theology Psychology
Professors Professors

36 13

42 25

22 40

48 29

31 10

35 26

47 43

38 17

12

32

27

32

social

30. An ornithologist thinks that injections of follicle-
stimulating hormone (FSH) increase the singing
rate of his captive male cotingas (birds). To test
this hypothesis, he randomly selects 20 singing
cotingas and divides them into two groups of 10
birds each. The first group receives injections of
FSH and the second gets injections of saline so-
lution, as a control for the trauma of receiving an
injection. He then records the singing rate (in
songs per hour) for both groups. The results are
given in the following table. Note that two of the
FSH birds escaped during injection and were not
replaced.

Saline FSH

17 10

31 29

14 37

12 41

29 16

23 45

7 34

19 57

28

3

a. What is the alternative hypothesis? Use a di-
rectional alternative hypothesis.

b. What is the null hypothesis?
c. Using the Mann–Whitney U test and a �

0.051 tail, what is your conclusion? biological
31. A psychologist is interested in determining

whether left-handed and right-handed people
differ in spatial ability. She randomly selects 10
left-handers and 10 right-handers from the stu-
dents enrolled in the university where she
works and administers a test that measures spa-
tial ability. The following are the scores (a
higher score indicates better spatial ability).
Note that one of the subjects did not show up
for the testing.

Left-Handers Right-Handers

87 47

94 68

56 92

74 73

98 71

83 82

92 55

84 61

76 75

85

a. What is the alternative hypothesis? Use a
nondirectional hypothesis.

b. What is the null hypothesis?
c. Using the Mann–Whitney U test and a �

0.052 tail, what do you conclude? cognitive
32. A university counselor believes that hypnosis is

more effective than the standard treatment given
to students who have high test anxiety.To test his
belief, he randomly divides 22 students with high
test anxiety into two groups. One of the groups
receives the hypnosis treatment, and the other
group receives the standard treatment. When the
treatments are concluded, each student is given a
test anxiety questionnaire. High scores on the
questionnaire indicate high anxiety. Following
are the results:
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Hypnosis Treatment Standard Treatment

20 42

21 35

33 30

40 53

24 57

43 26

48 37

31 30

22 51

44 62

30 59

a. What is the alternative hypothesis? Assume
there is sufficient basis for a directional hy-
pothesis.

b. What is the null hypothesis?
c. Using the Mann–Whitney U test and a �

0.051 tail, what do you conclude? clinical,
health

33. In Chapter 15, Problem 20, p. 416, an experiment
was conducted to determine whether sleep loss af-
fects the ability to maintain sustained attention.
Fifteen individuals were randomly divided into
the following three groups of five subjects each:
group 1, which got the normal amount of sleep
(7–8 hours); group 2, which was sleep-deprived for
24 hours; and group 3, which was sleep-deprived
for 48 hours. All three groups were tested on the
same auditory vigilance task. Half-second tones
spaced at irregular intervals were presented over
a 1-hour duration. Occasionally, one of the tones
was slightly shorter than the rest. The subject’s
task was to detect the shorter tones.The following
percentages of correct detections were observed:

Normal Sleep-Deprived Sleep-Deprived 
Sleep for 24 Hours for 48 Hours

85 60 60

83 58 48

76 76 38

64 52 47

75 63 50

In that problem, the normality assumption was
assumed met, and the analysis was conducted us-

ing the F test. For this problem, assume the F test
cannot be used because of an extreme violation
of the normality assumption. Analyze the data
with the Kruskal–Wallis test, using a � 0.05.
cognitive

34. A social psychologist is interested in whether
there is a relationship between cohabitation be-
fore marriage and divorce. A random sample of
150 couples that were married in the past 10
years in a midwestern city were asked if they
lived together before getting married and if their
marriage was still intact. The following results
were obtained.

Divorced Still married

Cohabited before 58 42 100
marriage

Did not cohabit 18 32 50
before marriage

76 74 150

Using a � 0.05, what do you conclude? social
35. A political scientist conducts a study to deter-

mine whether there is a relationship between
gender and attitude regarding government in-
volvement in citizen affairs. A questionnaire is
sent to a random sample of 1000 adult men and
women, asking the question,“As a general policy,
do you prefer the government to have a large,
moderate, or small involvement in citizen af-
fairs?” The following results were obtained.

Attitude Regarding Federal
Government Involvement

Large Moderate Small

Women 240 30 230 500

Men 180 20 300 500

420 50 530 1000

Using a � 0.05, what do you conclude?
I/O, social

36. Medical experts have long noticed that blacks do
not receive the latest high-tech treatments. To
determine whether physician bias contributed to
this phenomenon, social psychologists analyzed
Medicare records of 150 black and 150 white
randomly selected heart attack patients who
were treated either by a black or white physician.
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A different physician was required for each pa-
tient record used. The variable of interest is
whether the patients received an angiogram. The
following data were collected.

Patients Receiving
Angiograms

Physician White Black

White 72 48 120

Black 52 28 80

124 86 200

Using a � 0.05, what do you conclude? health,
social

37. A family therapist living in a large midwestern
city is concerned that the proportion of single-
father homes is increasing. The therapist finds
that two relevant studies have been conducted.
Both studies randomly surveyed 1000 families
living in the city and gave information regarding
single-father homes. The first was conducted in
1996; it reported there were 50 single-father
homes. The second was conducted in 2002; it re-
ported 76 such homes. If you were the therapist,
what would you conclude? Use a� 0.05 in  mak-
ing your decision. clinical, social

38. A public health researcher believes that smoking
affects the gender of offspring. He records the
gender of newborns that are delivered in local
hospitals over a 1-year period. He also interviews
the parents of the newborns to determine their
degree of cigarette smoking. The following data
are collected.

Offspring

Cigarette Smoking Boys Girls

Neither parent smokes 60 40 100
at least a pack-a-day

One parent smokes 57 43 100
at least a pack-a-day

Both parents smoke 18 32 50
at least a pack-a-day

135 115 250

What is the conclusion? Use a � 0.05. health,
social

39. The director of the athletic department of a ma-
jor state university is considering adding an-
other women’s varsity team. She is trying to de-
cide between volleyball, soccer, and softball. A
survey of 750 undergraduate women revealed
the following first-choice preferences.

Volleyball Soccer Softball

250 350 150 750

Does the survey reveal a reliable preference?
Use a � 0.05 in making your decision. I/O

40a. The Jones survey company conducted a national
survey to see if religious sentiment in the United
States changed after the terrorist attacks on the
Twin Towers in New York City and the Penta-
gon in Washington, DC, on September 11, 2001.
The survey of 1100 Americans was conducted 2
weeks after the attack; the question asked was,
“Did you attend church in the past week?” For-
tunately for comparison purposes, 6 months be-
fore the attack, the company had conducted a
similar survey of 900 Americans, asking the
same question. The data follow.

Yes No

6-Months Preattack 360 540 900

2-Weeks Postattack 660 440 1100

1020 980 2000

Using a � 0.05, what do you conclude? I/O,
social

40b. One year after the attacks, the Jones company
conducted another national survey of 1100
Americans to determine whether the increase
in religious sentiment following the attacks was
still evident. To make this determination, the
company used the data from their 6-month
preattack and 1-year postattack surveys. The
data follow.

Yes No

6-Month Preattack 360 540 900

1-Year Postattack 420 680 1100

Using a � 0.05, what do you conclude this
time? I/O, social
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17.1 When df � 1, directional alternative hypotheses
can be tested with x2. With df � 1, �
Therefore, we can convert to and eval-
uate using zcrit for the appropriate one-zobt

zobtx2
obt

2x 2
obt.zobt

tailed alpha level. Of course, the difference be-
tween fo and fe must be in the predicted direc-
tion to perform this test.
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Review of Inferential Statistics

LEARNING OBJECTIVES

After completing this review chapter, you should be able to:
■ Understand the big picture in regard to hypothesis testing

and inferential statistics utilizing the tools learned in the
textbook.

■ Select and use the appropriate inference test depending on
scaling of data, experiment design, number of groups, and
whether assumptions have been violated.

■ Use this chapter to review important aspects of the inference
tests covered in the textbook.
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INTRODUCTION

We have covered a lot of material since we began our discussion of hypothe-
sis testing with the sign test. I shall begin our review of this material with the
most important terms and concepts pertaining to the general process of hy-
pothesis testing. Then we shall discuss the general process itself. From there, we
shall summarize the experimental designs and the inference tests used with
each design. Since this material is very logical and interconnected, I hope this
review will help bring closure and greater insight to the topic of inferential sta-
tistics.

TERMS AND CONCEPTS

Alternative hypothesis (H1) The alternative hypothesis states that the differ-
ences in scores between conditions are due to the action of the independent vari-
able. The alternative hypothesis may be nondirectional or directional. A nondi-
rectional hypothesis states that the independent variable has an effect on the
dependent variable but doesn’t specify the direction of the effect. A directional
hypothesis states the direction of the expected effect.

Null hypothesis (H0) The null hypothesis is set up as the logical counterpart to
the alternative hypothesis such that if the null hypothesis is false, the alternative
hypothesis must be true. Conversely, if the null hypothesis is true, the alternative
hypothesis must be false. The null hypothesis for a nondirectional alternative hy-
pothesis is that the independent variable has no effect on the dependent variable.
For a directional alternative hypothesis, the null hypothesis states that the inde-
pendent variable does not have an effect in the direction specified.

Null-hypothesis population(s) The null-hypothesis population(s) is the set or
sets of scores that would result if the experiment were done on the entire popu-
lation and the independent variable had no effect. In a single sample design, it is
the population with known m. In a replicated measures design, it is the popula-
tion of difference scores with mD � 0 or P � 0.50. In an independent groups de-
sign, there are as many populations as there are groups and the samples are ran-
dom samples from populations where m1 � m2 � m3 � mk.

Sampling distribution The sampling distribution of a statistic gives all the val-
ues the statistic can take, along with the probability of getting that value if chance
alone is responsible or if sampling is random from the null-hypothesis popula-
tion(s). This distribution can be derived theoretically from basic probability, as
we did with the sign test, or empirically, as with the z, t, and F tests. Three steps
are involved in constructing the sampling distribution of a statistic using the em-
pirical approach. First, all possible different samples of size N that can be formed
from the population are determined. Second, the statistic for each of the samples
is calculated. Finally, the probability of getting each value of the statistic is calcu-
lated under the assumption that sampling is random from the null-hypothesis
population(s).
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Critical region for rejection of H0 The critical region for rejection of H0 is the
area under the curve that contains all the values of the statistic that will allow re-
jection of the null hypothesis. The critical value of a statistic is that value of the
statistic that bounds the critical region. It is determined by the alpha level.

Alpha level (A) The alpha level is the threshold probability level against which
the obtained probability is compared to determine the reasonableness of the null
hypothesis. It also determines the critical region for rejection of the null hypoth-
esis. Alpha is usually set at 0.05 or 0.01. The alpha level is set at the beginning of
an experiment and limits the probability of making a Type I error.

Type I error A Type I error occurs when the null hypothesis is rejected and it
is true.

Type II error A Type II error occurs when the null hypothesis is retained and it
is false. Beta is equal to the probability of making a Type II error.

Power The power of an experiment is equal to the probability of rejecting the
null hypothesis if the independent variable has a real effect. It is useful to know
the power of an experiment when designing the experiment and when inter-
preting nonsignificant results from an experiment that has already been con-
ducted. Calculation of power involves two steps: (1) determining the sample out-
comes that will allow rejection of the null hypothesis and (2) determining the
probability of getting these outcomes under the assumed real effect of the inde-
pendent variable. Power � 1 � b. Thus, as power increases, beta decreases.
Power can be increased by increasing the number of subjects in the experiment,
by increasing the size of real effect of the independent variable, by decreasing
the variability of the data through careful experimental control and proper ex-
perimental design, and by using the most sensitive inference test possible for the
design and data.

PROCESS OF HYPOTHESIS TESTING

We have seen that in every experiment involving hypothesis testing there are two
hypotheses that attempt to explain the data. They are the alternative hypothesis
and the null hypothesis. In analyzing the data, we always evaluate the null hy-
pothesis and indirectly conclude with regard to the alternative hypothesis. If H0

can be rejected, then H1 is accepted. If H0 is not rejected, then H1 is not accepted.
Two steps are involved in assessing the null hypothesis. First, we calculate

the appropriate statistic, and second, we evaluate the statistic. To evaluate the
statistic, we assume that the independent variable has no effect and that chance
alone is responsible for the score differences between conditions. Another 
way of saying this is that we assume sampling is random from the null-
hypothesis population(s). Then we calculate the probability of getting the ob-
tained result or any result more extreme under the previous assumption. This
probability is one- or two-tailed depending on whether the alternative hypothe-
sis is directional or nondirectional. To calculate the obtained probability, we must
know the sampling distribution of the statistic. If the obtained probability is equal
to or less than the alpha level, we reject H0. Alternatively, we determine whether
the obtained statistic falls in the critical region for rejecting H0. If it does, we
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reject the null hypothesis. Otherwise, H0 remains a reasonable explanation, and
we retain it.

If we reject H0 and it is true, we have made a Type I error. The alpha level
limits the probability of a Type I error. If we retain H0 and it is false, we have
made a Type II error. The power of the experiment determines the probability of
making a Type II error. We have defined beta as the probability of making a Type
II error.As power increases, beta decreases. By maintaining alpha sufficiently low
and power sufficiently high, we achieve a high probability of making a correct
decision when analyzing the data, no matter whether H0 is true or false.

These statements apply to all experiments involving hypothesis testing.What
varies from experiment to experiment is the inference test used and, conse-
quently, the statistic calculated and evaluated. The inference test used will de-
pend on the experimental design and the data collected.

SINGLE SAMPLE DESIGNS

With single sample experimental designs, one or more of the null-hypothesis
population parameters (the mean and/or standard deviation) must be specified.
Since it is not common to have this information, the single sample experiment oc-
curs rather infrequently. The z and t tests are appropriate for this design. Both
tests evaluate the effect of the independent variable on the mean ( ) of the
sample. For these tests, the nondirectional H1 states that is a random sample
from a population having a mean m that is not equal to the mean of the null-hy-
pothesis population. The corresponding H0 states that the m equals the mean of
the null-hypothesis population. The directional H1 states that is a random
sample from a population where m is greater or less than the mean of the null-
hypothesis population depending on the expected direction of the effect. Let’s
now review the z and t tests for single samples:

z Test for Single Samples

Test Statistic Calculated Decision Rule

z test for single samples If 

General comments The z test is used in situations in which both the mean 
and standard deviation of the null-hypothesis population can be specified.
To evaluate H0, we assume is a random sample from a population hav-
ing a mean m and standard deviation s that are equal to the mean and stan-
dard deviation of the null-hypothesis population. The sampling distribution 
of X gives all the possible values of X for samples of size N and the proba-
bility of getting each value if sampling is random from the population with a
mean m and a standard deviation s. The sampling distribution of X has a mean

has a standard deviation , and is normally shaped if the
population from which the sample was drawn is normal or if N � 30, provided
the population does not differ greatly from normality.

We can assess H0 by (1) converting to its z-transformed value ( ) and
determining the probability of getting a value as extreme as or more extreme
than if chance alone is operating or (2) calculating and comparing it withzobtzobt

zobtXobt

sX � s�2NmX � m
˛

,

Xobt

0zobt 0 � 0zcrit 0 , reject H0.zobt �
Xobt � m

s�2N

Xobt

Xobt

Xobt
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zcrit. It is easier to do the latter. The equation for is given in the preceding
table. The value of is evaluated by comparison with zcrit. The alpha level in
conjunction with the sampling distribution of z determines the value of zcrit. The
sampling distribution of z has a mean of 0 and a standard deviation of 1. If 

is normally distributed, then so is the corresponding z distribution and 
zcrit can be determined from Table A in Appendix D.Thus, the z test requires that
N � 30 or that the population of raw scores be normally distributed.

t Test for Single Samples

Test Statistic Calculated Decision Rule

t test for single samples If 

General comments The t test is used in situations in which the mean of the 
null-hypothesis population can be specified and standard deviation is un-
known. In testing H0, we assume is a random sample from a population
having a mean m equal to the mean of the null-hypothesis population and 
an unknown standard deviation. The t test is very much like the z test, except
that since s is unknown, we estimate it with s. When s is substituted for s in 
the equation for , the first equation given in the table for results. The 
second equation in the table is a computational equation for , using the raw
scores. To evaluate H0, the value of is compared against tcrit, using the deci-
sion rule. The value of tcrit is determined by the alpha level and the sampling 
distribution of t. This distribution is a family of curves, shaped like the z dis-
tribution. The curves vary uniquely with degrees of freedom. The degrees of
freedom for a statistic are equal to the number of scores that are free to vary 
in calculating the statistic. For the t test used with single samples, df � N � 1,
because 1 degree of freedom is lost calculating s. The values of tcrit are found 
in Table D in Appendix D, using df and a. The t test has the same underlying 
assumptions as the z test. The population of raw scores should be normally 
distributed.

t Test for Testing the Significance of Pearson r

Test Statistic Calculated Decision Rule

t test for testing the robt

significance of Pearson r

General comments To determine whether a correlation exists in the popula-
tion, we must test the significance of . This can be done using the t test. The
resulting equation is

tobt �
robt � r

B
1 � r 

2
obt

N � 2

robt

If 0robt 0 � 0rcrit 0 , reject H0.

tobt

tobt

tobtzobt

Xobt

tobt �
Xobt � m

B
SS

N1N � 12

0 tobt 0 � 0 tcrit 0 , reject H0.tobt �
Xobt � m

s�2N

Xobt

zobt

zobt
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By substituting tcrit for in this equation, rcrit can be determined for any df and
a level. Once rcrit is known, all we need to do is compare with rcrit. The deci-
sion rule is given in the preceding table. The values of rcrit are found in Table E in
Appendix D, using df and a. Degrees of freedom equal N � 2.

CORRELATED GROUPS DESIGN: 
TWO GROUPS

The essential feature of this design is that there are paired scores between the
conditions, and the differences between the paired scores are analyzed. The
paired scores can result from using the same subjects in each condition, from us-
ing identical twins, or from using subjects that have been matched in some other
way. The most basic form of the design employs just two conditions: an experi-
mental condition and a control condition. The two conditions are kept as alike as
possible except for values of the independent variable, which are intentionally
made different. We covered three tests for analyzing data from experiments of
this design: the t test for correlated groups, the Wilcoxon matched-pairs signed
ranks test, and the sign test.

t Test for Correlated Groups

Test Statistic Calculated Decision Rule

t test for correlated groups If 

General comments The t test for correlated groups analyzes the effect of the
independent variable on the mean of the sample difference scores If the
independent variable has no effect, then is a random sample from a popula-
tion of difference scores having a mean mD � 0 and unknown sD. This situation
is the same as what we encountered when using the t test for single samples
(specifiable population mean but unknown standard deviation), except that we
are dealing with difference scores rather than raw scores. Thus, the t test for cor-
related groups is identical to the t test for single samples, but it evaluates differ-
ence scores instead of raw scores.

The nondirectional H1 states that the independent variable has an effect,
in which case is due to random sampling from a population of difference
scores where mD � 0.The directional H1 specifies that mD � 0 (for which H0 states
that mD � 0) or mD � 0 (for which H0 states that mD � 0). H0 is tested by assum-
ing is a random sample from a population of difference scores where mD � 0.

The statistic calculated is (see the preceding table), which is evaluated by
comparing it with tcrit. The sampling distribution of t is the same as discussed in
conjunction with the t test for single samples. The degrees of freedom are equal
to N � 1, where N � the number of difference scores. The values of tcrit are
found in Table D, using df and a. The assumptions of this test are the same as
those for the t test for single samples. This test is more sensitive than (1) the t
test for independent groups when the correlation between the paired scores is
high and (2) the Wilcoxon matched-pairs signed ranks test and the sign test,
which are also appropriate for the correlated groups design.

tobt

Dobt

Dobt

Dobt

1Dobt2.

0 tobt 0 � 0 tcrit 0 , reject H0.tobt �
Dobt � mD

B
SSD

N1N � 12

robt

tobt
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Wilcoxon Matched-Pairs Signed Ranks Test

Test Statistic Calculated Decision Rule

Wilcoxon matched- If Tobt � Tcrit, reject H0.
pairs signed ranks test

General comments This is a nonparametric test that takes into account the
magnitude and direction of the difference scores. It is therefore much more pow-
erful than the sign test. Both the alternative and null hypotheses are usually
stated without specifying population parameters. In analyzing the data, is cal-
culated by (1) obtaining the difference score for each pair of scores, (2) rank-
ordering the absolute values of the difference scores, (3) assigning the appropri-
ate signs to the ranks, and (4) separately summing the positive and negative
ranks. is the lower of the sums. is compared with Tcrit. The values of Tcrit

are given in Table I in Appendix D, using N and a. The decision rule is shown in
the preceding table. This test is recommended as an alternative to the t test for
correlated groups when the assumptions of the t test are not met. The Wilcoxon
signed ranks test requires that the within-pair scores be at least of ordinal scaling
and that the difference scores also be at least of ordinal scaling.

Sign Test

Test Statistic Calculated Decision Rule

Sign test Number of P events in If the one- or two-tailed 
a sample of size N p(number of P events) 

� a, reject H0.

General comments We used the sign test to introduce hypothesis testing be-
cause it is a simple test to understand. It is not commonly used in practice be-
cause it ignores the magnitude of the difference scores and considers only their
direction.

In analyzing data with the sign test, we determine the number of pluses in the
sample and evaluate this statistic by using the binomial distribution.The binomial
distribution is the appropriate sampling distribution when (1) there is a series of
N trials, (2) there are only two possible outcomes on each trial, (3) there is inde-
pendence between trials, (4) the outcomes on each trial are mutually exclusive,
and (5) the probability of each possible outcome on any trial stays the same from
trial to trial. The binomial distribution is given by (P 	 Q)N, where P is the prob-
ability of a plus on any trial and Q is the probability of a minus. If the indepen-
dent variable has no effect, then P � Q � 0.50. The nondirectional H1 states that
P � Q � 0.50. The directional H1 specifies P � 0.50 or P � 0.50, depending on
the expected direction of the effect.

H0 is tested by assuming that the number of P events in the sample is due to
random sampling from a population where P � Q � 0.50. The one- or two-tailed
p(number of P events) is compared with the alpha level to evaluate H0. This
probability is found in Table B in Appendix D, using N, number of P events, and
P � 0.50. Alternatively, given alpha, N, and the binomial distribution, we could
have also determined the critical region for rejecting H0 (as we did with the other
statistics), in which case we would compare the obtained number of P events with
the critical number of P events. To use the sign test, the data must be at least
ordinal in scaling and ties must be excluded from the analysis.

TobtTobt

Tobt

Tobt
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INDEPENDENT GROUPS DESIGN: 
TWO GROUPS

This design involves random sampling of subjects from the population and then
random assignment of the subjects to each condition. There can be many condi-
tions. The most basic form of the design uses two conditions, with each condition
employing a different level of the independent variable. This design differs from
the correlated groups design in that there is no basis for pairing scores between
conditions. Analysis is performed separately on the raw scores of each sample,
not on the difference scores. Both the t test and the Mann–Whitney U test are ap-
propriate for this design.

t Test for Independent Groups

Test Statistic Calculated Decision Rule

t test for If 
independent
groups

When n1 � n2,

General comments This test assumes that the independent variable affects the
mean of the scores and not their variance.The mean of each sample is calculated,
and then the difference between sample means is determined. The t
test for independent groups analyzes the effect of the independent variable on

The sample value is due to random sampling from a population hav-
ing a mean m1 and a variance s1

2.The sample value is due to random sampling
from a population having a mean m2 and a variance s2

2. The variance of both
populations is assumed equal (s1

2 � s2
2 � s2).

The sampling distribution of has the following characteristics:
(1) It has a mean (2) it has a standard deviation 

and (3) it is normally shaped if the population from which
the samples have been taken is normal. If the independent variable has no 
effect, then m1 � m2. The nondirectional H1 states that m1 � m2. The directional H1

states that m2 � m1 or m1 � m2, depending on the expected direction of the effect.
To assess H0, we assume that the independent variable has no effect, in which

case and To test H0, we could calculate , but we need tozobtmX1�X2 � 0.m1 � m2

2s2 3 11�n12 	 11�n22 4 ,

sX1�X2 �mX1�X2 � m1 � m2,
X1 � X2

X2

X1X1 � X2.

1X1 � X22

tobt �
1X1 � X22 � mX1�X2

B
SS1 	 SS2

n1n � 12

tobt �
1X1 � X22 � mX1�X2

Ba
SS1 	 SS2

n1 	 n2 � 2
b a

1
n1

	
1
n2
b

0 tobt 0 � 0 tcrit 0 , reject H0.
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know s2 for this calculation. Since s2 is unknown, we estimate it using a
weighted estimate from both samples. The resulting statistic is tobt. Two equa-
tions for calculating tobt are given in the table. The first is a general equation,
and the second can be used when the ns in the two samples are equal. The 
degrees of freedom associated with calculating for the independent groups
design is N � 2. We calculate two variances in determining , and we lose 1 
degree of freedom for each calculation. The sampling distribution of t is as 

tobt

tobt



described earlier. The value of is evaluated by comparing it with tcrit accord-
ing to the decision rule given on p. 498. The values of tcrit are found in Table D,
using df and a.

To use this test, the sampling distribution of must be normally dis-
tributed. This means that the populations from which the samples were taken
should be normally distributed.

In addition, to use the t test for independent groups, there should be homo-
geneity of variance. This test is considered robust with regard to violations of the
normality and homogeneity of variance assumptions, provided n1 � n2 � 30. If
there is a severe violation of an assumption, the Mann–Whitney U test serves as
an alternative to the t test.

Mann–Whitney U Test

Test Statistic Calculated Decision Rule

Mann–Whitney U test or , where If � Ucrit, reject H0.

General comments The Mann–Whitney U test is a nonparametric test that an-
alyzes the degree of separation between the samples. The less the separation, the
more reasonable chance is as the underlying explanation. For any analysis, there
are two values that indicate the degree of separation. They both indicate the
same degree of separation. The lower value is called , and the higher value is
called . The lower the value, the greater the separation.

and can be determined by using the equations given in the preced-
ing table. Since the equations are more general, we have used them most often.
For any analysis, one of the equations will yield U and the other U
. However,
which yields U and which U
 depends on which group is labeled group 1 and
which is group 2. Since both U and U
 are measures of the same degree of sepa-
ration, it is necessary to evaluate only one of them.

To evaluate , it is compared with the critical values of U given in Tables
C.1–C.4. Naturally, these values depend on the sampling distribution of U. The
decision rule for rejecting H0 is given in the preceding table.

The Mann–Whitney U test is appropriate for an independent groups de-
sign in which the data are at least ordinal in scaling. It is a powerful test, often
used in place of Student’s t test when the data do not meet the assumptions of
the t test.

MULTIGROUP EXPERIMENTS

Although a two-group design is used fairly frequently in the behavioral sciences,
it is more common to encounter experiments with three or more groups. Having
more than two groups has two main advantages: (1) Additional groups often
clarify the interpretation of the results, and (2) additional groups allow many
levels of the independent variable to be evaluated in one experiment. There is,

Uobt

U¿obtUobt

UobtU¿obt

Uobt

Uobt � n1n2 	
n21n2 	 12

2
� R2

Uobt � n1n2 	
n11n1 	 12

2
� R1

UobtU¿obtUobt

mX1�X2
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however, one problem with doing multigroup experiments. Since many compar-
isons can be made, we run the risk of an inflated Type I error probability when
analyzing the data. The analysis of variance technique allows us to analyze the
data without incurring this risk.

One-Way Analysis of Variance, F Test

Test Statistic Calculated Decision Rule

Parametric one-way If Fobt � Fcrit, reject H0.
analysis of variance, F test

General comments The parametric analysis of variance uses the F test to eval-
uate the data. In using this test, we calculate Fobt, which is fundamentally the ra-
tio of two independent variance estimates of a population variance s2. The sam-
pling distribution of F is composed of a family of positively skewed curves that
vary with degrees of freedom. There are two values for degrees of freedom: one
for the numerator and one for the denominator. The F distribution (1) is posi-
tively skewed, (2) has no negative values, and (3) has a median approximately
equal to 1.

The parametric analysis of variance technique can be used with both the in-
dependent groups and the correlated groups designs. We have considered only
the one-way ANOVA independent groups design. The technique allows the
means of all the groups to be compared in one overall evaluation, thus avoiding
the inflated Type I error probability that occurs when doing many individual
comparisons. Essentially, the analysis of variance partitions the total variability of
the data into two parts: the variability that exists within each group (the within-
groups sum of squares) and the variability that exists between the groups (the
between-groups sum of squares). Each sum of squares is used to form an inde-
pendent estimate of the variance of the null-hypothesis populations, s2. Finally,
an F ratio is calculated where the between-groups variance estimate is in the nu-
merator and the within-groups variance estimate is in the denominator.

The steps and equations for calculating Fobt are as follows:

STEP 1: Calculate the between-groups sum of squares, SSB :

STEP 2: Calculate the within-groups sum of squares, SSW :

STEP 3: Calculate the total sum of squares, SST; check that SST � SSW � SSB :

SST � a
scores

all

X 
2 �

a
a
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2
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STEP 4: Calculate the degrees of freedom for each estimate:

STEP 5: Calculate the between-groups variance estimate, sB
2 :

STEP 6: Calculate the within-groups variance estimate, sW
2:

STEP 7: Calculate Fobt:

The null hypothesis for the analysis of variance assumes that the indepen-
dent variable has no effect and that the samples are random samples from popu-
lations where m1 � m2 � m3 � mk. Since the between-groups variance estimate in-
creases with the effect of the independent variable and the within-groups
variance estimate remains constant, the larger the F ratio is, the more unreason-
able the null hypothesis becomes. We evaluate by comparing it with Fcrit. If 

� Fcrit, we reject H0 and conclude that at least one of the conditions differs
from at least one of the other conditions. Note that the analysis of variance tech-
nique is nondirectional.

Multiple comparisons To determine which conditions differ from each other,
a priori or a posteriori comparisons between pairs of groups are performed. A
priori comparisons (also called planned comparisons) are appropriate when the
comparisons have been planned in advance. No adjustment for multiple compar-
isons is made. Planned comparisons should be relatively few in number and
should arise from the logic and meaning of the experiment. In doing the planned
comparisons, we usually compare the means of the specified groups using the 
t test for independent groups.The value for is determined in the usual way, ex-
cept we use sW

2 from the analysis of variance in the denominator of the t equa-
tion. The value is compared with tcrit, using dfW and the alpha level and Table
D to determine tcrit. The equations for calculating tobt are given as follows:

If n1 = n2,

A posteriori, or post hoc, comparisons were not planned before conducting
the experiment. They arise either after looking at the data or from assuming the

tobt �
X1 � X2

22 s W
2�n

tobt �
X1 � X2

Bs W 
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1
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SSW
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 dfT � N � 1

 dfW � N � k

 dfB � k � 1
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“shotgun” approach of doing all possible mean comparisons in an attempt to gain
as much information from the experiment as possible. For these reasons, com-
parisons made post hoc must correct for the increase in the probability of a Type
I error that arises due to multiple comparisons. There are many techniques that
do this. We have described Tukey’s Honestly Significant Difference (HSD) test
and the Newman–Keuls test.

Tukey’s HSD test

Test Statistic Calculated Decision Rule

Tukey’s HSD test , where If � Qcrit, reject H0.

The HSD test is designed to compare all possible pairs of means while maintain-
ing the Type I error rate for making the complete set of comparisons at a. The Q
statistic is very much like the t statistic, but it is always positive and uses the Q
distributions rather than the t distributions. The Q (Studentized range) distribu-
tions are derived by randomly taking k samples of equal n from the same popu-
lation rather than just two samples as with the t distributions and determining the
difference between the highest and lowest sample means. To use this test, we cal-
culate for the desired comparisons and compare with Qcrit. The values
of Qcrit are found in Table G in Appendix D, using k, df for sW

2, and a. The deci-
sion rule is given in the preceding table.

Newman–Keuls test

Test Statistic Calculated Decision Rule

Newman–Keuls test , where If � Qcrit, reject H0.

General comments The Newman–Keuls test is also a post hoc test that allows
us to make all possible pairwise comparisons among the sample means. The
Newman–Keuls test is like the HSD test in that is calculated and compared
with Qcrit to evaluate H0. However, it maintains the Type I error rate at a for
each comparison rather than for the entire set of comparisons. It does this by
changing the value of Qcrit for each comparison. The value of Qcrit for any given
comparison is given by the sampling distribution of Q for the number of means
that are encompassed by Xi and Xj after all the means have been rank-ordered.
This number is symbolized by r. The specific values of Qcrit for any analysis are
found in Table G, using r, df for sW

2, and a.
The assumptions underlying the analysis of variance are the same as for the

t test for independent groups. There are two assumptions: (1) The populations
from which the samples were drawn should be normally distributed, and 
(2) there should be homogeneity of variance between the groups. The F test is 
robust with regard to violations of normality and homogeneity of variance,
provided there are an equal number of subjects in each group and n � 30.
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One-Way Analysis of Variance, Kruskal–Wallis Test

Test Statistic Calculated Decision Rule

Nonparametric If � Hcrit, reject H0.
one-way analysis 
of variance,
Kruskal–Wallis test � 3(N 	 1)

General comments The Kruskal–Wallis test is a nonparametric test, appropri-
ate for a k group, independent groups design. It is used as an alternative test to 
one-way parametric ANOVA when the assumptions of that test are seriously vi-
olated. The Kruskal–Wallis test does not assume population normality and re-
quires only ordinal scaling of the dependent variable. All the scores are grouped
together and rank-ordered, assigning the rank of 1 to the lowest score, 2 to the
next to lowest, and N to the highest. The ranks for each condition are then
summed. The Kruskal–Wallis test assesses whether these sums of ranks differ so
much that it is unreasonable to consider that they come from samples that were
randomly selected from the same population.

Two-Way Analysis of Variance, F Test

Test Statistic Calculated Decision Rule

Parametric two-way If 
analysis of variance,
F test

The parametric two-way analysis of variance allows us to evaluate the effects
of two variables and their interaction in one experiment. In the parametric two-
way ANOVA, we partition the total sum of squares (SST) into four components:
the within-cells sum of squares (SSW), the row sum of squares (SSR), the column
sum of squares (SSC), and the row � column sum of squares (SSRC). When these
sums of squares are divided by the appropriate degrees of freedom, they form
four variance estimates: the within-cells variance estimate (sW

2), the row variance
estimate (sR

2), the column variance estimate (sC
2), and the row � column vari-

ance estimate (sRC
2). The effect of each of the variables is determined by com-

puting the appropriate value and comparing it with Fcrit.
The steps and equations for calculating the various values are as follows:

Calculate for the main effects and interaction:

STEP 1: Calculate the row sum of squares, SSR:
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STEP 2: Calculate the column sum of squares, SSC:

STEP 3: Calculate the row � column sum of squares, SSRC:

STEP 4: Calculate the within-cells sum of squares, SSW:

STEP 5: Calculate the total sum of squares, SST, and check that SST � SSR �
SSC � SSRC � SSW:

STEP 6: Calculate the degrees of freedom for each variance estimate:

STEP 7: Calculate the variance estimates:

STEP 8: Calculate the F ratios:

For the row effect,

Fobt �
sR

2

sW
2

 Within-cells variance estimate � s 
2

W �
SSW

dfW

 Row � column variance estimate � s 
2

RC �
SSRC

dfRC

 Column variance estimate � s 
2

C �
SSC

dfC

 Row variance estimate � s R
2 �

SSR

dfR

 dfT � N � 1

 dfW � rc 1ncell � 12

 dfRC � 1r � 12 ˛1c � 12

 dfC � c � 1

 dfR � r � 1

SST � a
scores

all

X 
2 �

a
a

scores
all

Xb
2

N

SSW � a
scores

all

X 
2 �
£
a
a
11

cell

Xb
2

	 a
a
12

cell

Xb
2

	 p 	 a
a
rc

cell

Xb
2

ncell

§

SSRC �
£
a
a
11
cell

Xb
2

	 a
a
12
cell

Xb
2

	 p 	 a
a
rc

cell

Xb
2

ncell

§
�

a
a

scores
all

Xb
2

N
� SSR � SSC

SSC �
£
a
a

1
col.

Xb
2

	 a
a

2
col.

Xb
2

	 p 	 a
a

c
col.

Xb
2

ncol.

§
�

a
a

scores
all

Xb
2

N

504 C H A P T E R  18 Review of Inferential Statistics



For the column effect,

For the row � column interaction effect,

Compare the values with Fcrit and conclude.

ANALYZING NOMINAL DATA

You will recall that with nominal data, observations are grouped into several dis-
crete, mutually exclusive categories, and one counts the frequency of occurrence in
each category. The inference test most often used with nominal data is chi-square.

Chi-Square Test

Test Statistic Calculated Decision Rule

Chi-square If � �crit
2 , reject H0.

General comments This test is appropriate for analyzing frequency data in-
volving one or two variables. In the two-variable situation, the frequency data are
presented in a contingency table and we test to see whether there is a relation-
ship between the two variables. The null hypothesis states that there is no rela-
tionship—that the variables are independent. The alternative hypothesis states
that the two variables are related.

Chi-square measures the discrepancy between the observed frequency ( fo)
and the expected frequency (fe) for each cell in the table and then sums across
cells. The equation for is given in the table. When the data involve two vari-
ables, the expected frequency for each cell is the frequency that would be ex-
pected if sampling is random from a population where the two variables are equal
in proportions for each category. Since the population proportions are unknown,
their expected values under H0 are estimated from the sample data, and the ex-
pected frequencies are calculated using these estimates. The simplest way to
determine fe for each cell is to multiply the marginals for that cell and divide
by N. If the data involve only one variable, the population proportions are de-
termined on some a priori basis (e.g., equal population proportions for each
category).

The obtained value of x2 is evaluated by comparing it with xcrit
2 according to

the decision rule given in the table. The critical value of x2 is determined by the
sampling distribution of x2 and the alpha level. The sampling distribution of x2 is
a family of curves that varies with the degrees of freedom. In the one-variable ex-
periment, df � k � 1. In the two-variable situation, df � (r � 1) (c � 1). The val-
ues of xcrit

2 are found in Table H in Appendix D, using df and a.
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Proper use of this test assumes that (1) each subject has only one entry in the
table (no repeated measures on the same subjects); (2) if r or c is greater than 2,
fe for each cell should be at least 5; and (3) if the table is a 1 � 2 or 2 � 2 table,
each fe should be at least 10.

Chi-square can also be used with ordinal, interval, and ratio data. However,
regardless of the actual scaling, to use x2, the data must be reduced to mutually
exclusive categories and appropriate frequencies.

CHOOSING THE APPROPRIATE TEST

One of the important aspects of statistical inference is choosing which test to use
for any experiment or problem. Up to now, it has been easy. We just used the test
that we were studying for the particular chapter. However, in this review chapter,
the situation is more challenging. Since we have covered many inference tests, we
now have the opportunity to choose among them in deciding which to use. This,
of course, is much more like the situation we face when doing research.

In choosing an inference test, the fundamental rule that we should follow is:

Use the most powerful test possible.

To determine which tests are possible for a given experiment or problem, we
must consider two factors: the measurement scale of the dependent variable and
the design of the experiment. Referring to the flowchart of Figure 18.1, the first
question we ask is, “What is the level of measurement used for the dependent
variable?” If it is nominal, the only inference test we’ve covered that is appropri-
ate for nominal data is x2. Thus, if the data are nominal in scaling and the re-
quirements of x2 (frequency data, large enough N, mutually exclusive categories,
and independent observations) are met, then we should choose the x2 test. If the
assumptions are not met, then we don’t know what test to use, because it hasn’t
been covered in this introductory text. In the flowchart, this regrettable state of
affairs is indicated by a “?”. I hasten to reassure you, however, that the inference
tests we’ve covered are the most commonly encountered ones, with the possible
exception of very complicated experiments involving three or more variables.

If the data are not nominal, they must be ordinal, interval, or ratio in scaling.
Having ruled out nominal data, we should next ask, “What is the experimental
design?” The design used in the experiment limits the inference tests that we can
use to analyze the data. We have covered three basic designs: single-sample, two-
sample or two-condition, and multigroup experiments. If the design used is a 
single-sample design (path 1 in Figure 18.1), the two tests we have covered for
this design are the z test and the t test for single samples. If the data meet the as-
sumptions for these tests, to decide which to use we must ask the question, “Is s
known?” If the answer is “yes,” then the appropriate test is the z test for single
samples. If the answer is “no,” then we must estimate s and use the t test for sin-
gle samples.

If the experimental design is a two-sample or two-condition design (path 2),
we need to determine whether it is a correlated or independent groups design. If
it is correlated groups and the assumptions of t are met, the appropriate test is the
t test for correlated groups. Why? Because, if the assumptions are met, it is the
most powerful test we can use for that design. If the assumptions are seriously vi-
olated, we should use an alternative test such as the Wilcoxon (if its assumptions
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MENTORING TIP
Refer to Figure 18.1 when de-
ciding which tests are candi-
dates for analyzing any given
data set. If more than one test
is possible, always choose the
most powerful one whose as-
sumptions are met by the data.
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are met) or the sign test. If it is an independent groups design and the assump-
tions of t are met, we should use the t test for independent groups. If the as-
sumptions of t are seriously violated, we should use an alternative test such as the
Mann–Whitney U test.

If the experimental design is a multigroup design (path 3), we need to deter-
mine whether it is an independent or correlated groups design. In this text, we
have covered multigroup experiments that use the independent groups design. If
the experiment is multigroup, uses an independent groups design, involves one
variable, and the assumptions of parametric ANOVA are met, the appropriate
test is parametric one-way ANOVA (F test). If the assumptions are seriously vi-
olated, we should use its alternative, the Kruskal–Wallis test. If the design is a
multigroup, independent groups design, involving two variables, and the data
meet the assumptions of parametric two-way ANOVA, we would use parametric
two-way ANOVA (F test) to analyze the data. We have not considered the more
complex designs involving three or more variables.

Note to the student: In the previous chapters cover-
ing inferential statistics, when you were asked to
solve an end-of-chapter problem, there was no ques-
tion about which inference test you would use—you
would use the test covered in the chapter. For exam-
ple, if you were doing a problem in Chapter 13, you
knew you should use the t test for single samples, be-
cause that was the test the chapter covered. Now you 
have reached the elevated position in which you
know so much statistics that when solving a problem,
there may be more than one inference test that could
be used. Often, both a parametric and nonparametric
test may be possible.This is a new challenge.The rule
to follow is to use the most powerful test that the
data will allow. For the problems in this chapter, al-
ways assume that the assumptions underlying the
parametric test are met, unless the problem explicitly
indicates otherwise.

1. Briefly define the following terms:
Alternative hypothesis
Null hypothesis
Null-hypothesis population
Sampling distribution
Critical region for rejection of H0

Alpha level
Type I error
Type II error
Power

2. Briefly describe the process of hypothesis test-
ing. Be sure to include the terms listed in Ques-
tion 1 in your discussion.

3. Why are sampling distributions important in hy-
pothesis testing?

4. An educator conducts an experiment using an in-
dependent groups design to evaluate two meth-
ods of teaching third-grade spelling. The results
are not significant, and the educator concludes
that the two methods are equal. Is this conclu-
sion sound? Assume that the study was properly
designed and conducted; that is, proper controls
were present, sample size was reasonably large,
proper statistics were used, and so forth.

5. Why are parametric tests generally preferred
over nonparametric tests?

6. List the factors that affect the power of an ex-
periment and explain how they can be used to in-
crease power.

7. What factors determine which inference test to
use in analyzing the data of an experiment?

8. List the various experimental designs covered in
this textbook. In addition, list the inference tests
appropriate for each design in the order of their
sensitivity.

9. What are the assumptions underlying each infer-
ence test?

10. What are the two steps followed in analyzing the
data from any study involving hypothesis testing?

■ QUESTIONS AND PROBLEMS



11. A new competitor in the scotch whiskey industry
conducts a study to compare its scotch whiskey
(called McPherson’s Joy) to the other three lead-
ing brands. Two hundred scotch drinkers are ran-
domly sampled from the scotch drinkers living in
New York City. Each individual is asked to taste
the four scotch whiskeys and pick the one they
like the best. Of course, the whiskeys are un-
marked, and the order in which they are tasted is
balanced. The number of subjects that preferred
each brand is shown in the following table:

McPherson’s Brand Brand Brand 
Joy X Y Z

58 52 48 42 200

a. What is the alternative hypothesis? Use a
nondirectional hypothesis.

b. What is the null hypothesis?
c. Using a � 0.05, what do you conclude? I/O

12. A psychologist interested in animal learning con-
ducts an experiment to determine the effect of
adrenocorticotropic hormone (ACTH) on avoid-
ance learning. Twenty 100-day-old male rats are
randomly selected from the university vivarium
for the experiment. Of the 20, 10 randomly cho-
sen rats receive injections of ACTH 30 minutes
before being placed in the avoidance situation.
The other 10 receive placebo injections. The
number of trials for each animal to learn the task
is given here:

ACTH Placebo

58 74

73 92

80 87

78 84

75 72

74 82

79 76

72 90

66 95

77 85

a. What is the nondirectional alternative hy-
pothesis?

b. What is the null hypothesis?
c. Using a � 0.012 tail, what do you conclude?
d. What error may you have made by concluding

as you did in part c?
e. To what population do these results apply?
f. What is the size of the effect? biological

13. A university nutritionist wonders whether the
recent emphasis on eating a healthy diet has af-
fected freshman students at her university.
Consequently, she conducts a study to deter-
mine whether the diet of freshman students
currently enrolled contains less fat than that of
previous freshmen. To determine their percent-
age of daily fat intake, 15 students in this year’s
freshman class keep a record of everything
they eat for 7 days. The results show that for the
15 students, the mean percentage of daily fat
intake is 37%, with a standard deviation of
12%. Records kept on a large number of fresh-
man students from previous years show a mean
percentage of daily fat intake of 40%, a stan-
dard deviation of 10.5%, and a normal distrib-
ution of scores.
a. Based on these data, is the daily fat intake of

currently enrolled freshmen less than that of
previous years? Use a � 0.051 tail.

b. If the actual mean daily fat intake of currently
enrolled freshmen is 35%, what is the power
of the experiment to detect this level of real
effect?

c. If N is increased to 30, what is the power to
detect a real mean daily fat intake of 35%?

d. If the nutritionist wants a power of 0.9000 to
detect a real effect of at least 5 mean points
below the established population norms, what
N should she run? health, I/O

14. A physiologist conducts an experiment designed
to determine the effect of exogenous thyroxin (a
hormone produced by the thyroid gland) on ac-
tivity. Forty male rats are randomly assigned to
four groups such that there are 10 rats per group.
Each of the groups is injected with a different
amount of thyroxin. Group 1 gets no thyroxin
and merely receives saline solution. Group 2 re-
ceives a small amount, group 3 a moderate
amount, and group 4 a high amount of thyroxin.
After the injections, each animal is tested in an
open-field apparatus to measure its activity level.
The open-field apparatus is composed of a fairly
large platform with sides around it to prevent the
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animal from leaving the platform. A grid config-
uration is painted on the surface of the platform
such that the entire surface is covered with
squares. To measure activity, the experimenter
merely counts the number of squares that the an-
imal has crossed during a fixed period of time. In
the present experiment, each rat is tested in the
open-field apparatus for 10 minutes. The results
are shown in the table; the scores are the number
of squares crossed per minute.

Amount of Thyroxin

Zero, Low, Moderate, High,
1 2 3 4

2 4 8 12

3 3 7 10

3 5 9 8

2 5 6 7

5 3 5 9

2 2 8 13

1 4 9 11

3 3 7 8

4 6 8 7

5 4 4 9

a. What is the overall null hypothesis?
b. Using a � 0.05, what do you conclude?
c. What is the size of the effect, using v̂2?
d. Evaluate the a priori hypothesis that a high

amount of exogenous thyroxin produces an
effect on activity different from that of saline.
Use a � 0.052 tail.

e. Use the Tukey HSD test with a � 0.052 tail to
compare all possible pairs of means. What do
you conclude? biological

15. A study is conducted to determine whether di-
eting plus exercise is more effective in produc-
ing weight loss than dieting alone. Twelve pairs
of matched subjects are run in the study. Sub-
jects are matched on initial weight, initial level
of exercise, age, and gender. One member of
each pair is put on a diet for 3 months. The
other member receives the same diet but, in
addition, is put on a moderate exercise regi-
men. The following scores indicate the weight
loss in pounds over the 3-month period for
each subject:

Pair Diet Plus Exercise Diet Alone

1 24 16

2 20 18

3 22 19

4 15 16

5 23 18

6 21 18

7 16 17

8 17 19

9 19 13

10 25 18

11 24 19

12 13 14

In answering the following questions, assume the
data are very nonnormal so as to preclude using
the appropriate parametric test.
a. What is the alternative hypothesis? Use a di-

rectional hypothesis.
b. What is the null hypothesis?
c. Using a � 0.051 tail, what do you conclude?

health
16. a. What other nonparametric test could you

have used to analyze the data presented in
Problem 15?

b. Use this test to analyze the data. What do you
conclude with a � 0.051 tail?

c. Explain the difference between your conclu-
sions for Problems 16b and 15c.

d. Let P equal the probability for each subject
that diet plus exercise will yield greater weight
loss. If Preal � 0.75, using the sign test with a�
0.051 tail, what is the power of the experiment
to detect this level of effect? What is the prob-
ability of making a Type II error? health

17. A researcher in human sexuality is interested
in determining whether there is a relationship
between gender and time-of-day preference for
having intercourse. A survey is conducted, and
the results are shown in the following table; en-
tries are the number of individuals who pre-
ferred morning or evening times:

Intercourse

Gender Morning Evening

Male 36 24 60

Female 28 32 60

64 56 120
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a. What is the null hypothesis?
b. Using a � 0.05, what do you conclude?

social
18. A psychologist is interested in whether the in-

ternal states of individuals affect their percep-
tions. Specifically, the psychologist wants to de-
termine whether hunger influences perception.
To test this hypothesis, she randomly divides 24
subjects into three groups of 8 subjects per
group. The subjects are asked to describe “pic-
tures” that they are shown on a screen. Actually,
there are no pictures, just ambiguous shapes or
forms. Hunger is manipulated through food de-
privation. One group is shown the pictures 1
hour after eating, another group 4 hours after
eating, and the last group 12 hours after eating.
The number of food-related objects reported by
each subject is recorded. The following data are
collected:

Food Deprivation

1 hr, 4 hrs, 12 hrs,
1 2 3

2 6 8
5 7 10
7 6 15
2 10 19
1 15 9
8 12 14
7 7 15
6 6 12

a. What is the overall null hypothesis?
b. What is your conclusion? Use a � 0.05.
c. If there is a significant effect, estimate the size

of the effect, using �̂2.
d. Estimate the size of the effect, using �2.
e. Using the Newman–Keuls test with a �

0.052 tail, do all possible post hoc comparisons
between pairs of means. What is your conclu-
sion? cognitive

19. An engineer working for a leading electronics
firm claims to have invented a process for mak-
ing longer-lasting TV picture tubes. Tests run on
24 picture tubes made with the new process
show a mean life of 1725 hours and a standard
deviation of 85 hours. Tests run over the last 3 

years on a very large number of TV picture
tubes made with the old process show a mean
life of 1538 hours.
a. Is the engineer correct in her claim? Use a �

0.011 tail in making your decision.
b. If the engineer is correct, what is the size of

the effect? I/O
20. In a study to determine the effect of alcohol on

aggressiveness, 17 adult volunteers were ran-
domly assigned to two groups: an experimental
group and a control group. The subjects in the
experimental group drank vodka disguised in
orange juice, and the subjects in the control
group drank only orange juice. After the drinks
were finished, a test of aggressiveness was 
administered. The following scores were ob-
tained. Higher scores indicate greater aggres-
siveness:

Orange Juice Vodka Plus Orange Juice

11 14

9 13

14 19

15 16

7 15

10 17

8 11

10 18

8

a. What is the alternative hypothesis? Use a
nondirectional hypothesis.

b. What is the null hypothesis?
c. Using a � 0.052 tail, what is your conclusion?

social, clinical
21. The dean of admissions at a large university

wonders how strong the relationship is between
high school grades and college grades. During
the 2 years that he has held this position, he has
weighted high school grades heavily when de-
ciding which students to admit to the university,
yet he has never seen any data relating the two
variables. Having a strong experimental back-
ground, he decides to conduct a study and find
out for himself. He randomly samples 15 se-
niors from his university and obtains their high
school and college grades. The following data
are obtained:
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Grades

Subject High school College

1 2.2 1.5
2 2.6 1.7
3 2.5 2.0
4 2.2 2.4
5 3.0 1.7
6 3.0 2.3
7 3.1 3.0
8 2.6 2.7
9 2.8 3.2

10 3.2 3.6
11 3.4 2.5
12 3.5 2.8
13 4.0 3.2
14 3.6 3.9
15 3.8 4.0

a. Compute robt for these data.
b. Is the correlation significant? Use a� 0.052 tail.
c. What proportion of the variability in college

grades is accounted for by the high school
grades?

d. Is the dean justified in weighting high school
grades heavily when determining which stu-
dents to admit to the university? education

22. An experiment is conducted to evaluate the ef-
fect of smoking on heart rate. Ten subjects who
smoke cigarettes are randomly selected for the
experiment. Each subject serves in two condi-
tions. In condition 1, the subject rests for an hour,
after which heart rate is measured. In condition

2, the subject rests for an hour and then smokes
two cigarettes. In condition 2, heart rate is mea-
sured after the subject has finished smoking the
cigarettes. The data follow.
a. What is the nondirectional alternative hy-

pothesis?
b. What is the null hypothesis?
c. Using a � 0.052 tail, what do you conclude?

biological, clinical
d. If your conclusion in part c is to affirm H1,

what is the size of the effect?
23. To meet the current oil crisis, the government

must decide on a course of action to follow.There
are two choices: (1) to allow the price of oil to rise
or (2) to impose gasoline rationing. A survey is
taken among individuals of various occupations
to see whether there is a relationship between the
occupations and the favored course of action.The
results are shown in the following 3 � 2 table; cell
entries are the number of individuals favoring the
course of action that heads the cell:

Course of Action

Oil price Gasoline
Occupation rise rationing

Business 180 120 300

Homemaker 135 165 300

Labor 152 148 300

467 433 900

a. What is the null hypothesis?
b. Using a � 0.05, what do you conclude? I/O

24. You are interested in testing the hypothesis that
adult men and women differ in logical reasoning
ability. To do so, you randomly select 16 adults
from the city in which you live and administer a
logical reasoning test to them. A higher score in-
dicates better logical reasoning ability. The fol-
lowing scores are obtained:

Men Women

70 80

60 50

82 81

65 75

83 95

92 85

85 93

75

90
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Heartbeats Per Minute

No smoking, Smoking,
Subject 1 2

1 72 76

2 80 84

3 68 75

4 74 73

5 80 86

6 85 88

7 86 84

8 78 80

9 68 72

10 67 70 



In answering the following questions, assume
that the data violate the assumptions underlying
the use of the appropriate parametric test and
that you must analyze the data with a nonpara-
metric test.
a. What is the null hypothesis?
b. Using a � 0.052 tail, what is your conclusion?

cognitive, social
25. For her doctoral thesis, a graduate student in

women’s studies investigated the effects of stress
on the menstrual cycle. Forty-two women were
randomly sampled and run in a two-condition
replicated measures design. However, one of the
women dropped out of the study. In the stress
condition, the mean length of menstrual cycle for
the remaining 41 women was 29 days, with a
standard deviation of 14 days. Based on these
data, determine the 95% confidence interval for
the population mean length of menstrual cycle
when under stress. health, social

26. A researcher interested in social justice believes
that Hispanics are underrepresented in high
school teachers in the part of the country in
which she lives. A random sample of 150 high
school teachers is taken from the geographical
local. The results show that there were 15 His-
panic teachers in the sample. The percentage of
Hispanics living in the population of that locale
equals 22%.
a. What is the null hypothesis?
b. Using a � 0.05, what is your conclusion?

social
27. A student believes that physical science profes-

sors are more authoritarian than social science
professors. She conducts an experiment in which
six physics, six psychology, and six sociology pro-
fessors are randomly selected and given a ques-
tionnaire measuring authoritarianism. The re-
sults are shown here. The higher the score is, the
more authoritarian is the individual. Assume the
data seriously violate normality assumptions.
What do you conclude, using a � 0.05?

Professors

Physics Psychology Sociology

75 73 71

82 80 80

80 85 90

97 92 78

94 70 94

76 69 68

social

28. A sleep researcher is interested in determining
whether taking naps can improve performance
and, if so, whether it matters if the naps are taken
in the afternoon or evening. Thirty undergradu-
ates are randomly sampled and assigned to one
of six conditions: napping in the afternoon or
evening, resting in the afternoon or evening, or
engaging in a normal activity control condition,
again in the afternoon or evening. There are five
subjects in each condition. Each subject per-
forms the activity appropriate for his or her as-
signed condition, after which a performance test
is given. The higher the score is, the better is the
performance. The following results were ob-
tained. What is your conclusion? Use a � 0.05
and assume the data are from normally distrib-
uted populations.

Activity

Time of Day Napping Resting Normal

Afternoon 8 9 7 8 3 4

7 5 6 4 5 5

6 5 6

Evening 6 5 5 3 4 2

7 4 4 5 3 4

6 4 3

cognitive
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BOOK COMPANION SITE

To access the material on the book companion site,
go to www.cengage.com/psychology/pagano and click
“Companion Site” in the Student section. The book
companion site contains the following material:
• Know and Be Able to Do
• Tutorial Quiz
• Final Exam
• Statistical Workshops
• And more

The problems for this chapter as well as guided, in-
teractive, problem-solving tutorials may be assigned
online at Enhanced WebAssign.

www.cengage.com/psychology/pagano
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Review of Prerequisite
Mathematics

Introduction
Solving Equations with One Unknown
Linear Interpolation

INTRODUCTION

In this appendix, we shall present a review of some basic mathematical skills that
we believe are important as background for an introductory course in statistics.
This appendix is intended to be a review of material that you have already
learned but that may be a little “rusty” from disuse. For students who have been
away from mathematics for many years and who feel unsure of their mathemat-
ical background, we recommend the following books: H. M. Walker, Mathematics
Essential for Elementary Statistics (rev. ed., Holt, New York, 1951) or A. J. Wash-
ington, Arithmetic and Beginning Algebra (Addison-Wesley, Reading, MA, 1984).

Appendix A
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Algebraic Symbols

Symbol Explanation

X � Is greater than

5 � 4 5 is greater than 4.

X � 10 X is greater than 10.

a � b a is greater than b.

X � Is less than

7 � 9 7 is less than 9.

X � 12 X is less than 12.

a � b a is less than b.

2 � X � 20 X is greater than 2 and less than 20, or the value of X lies
between 2 and 20.

X � 2 or X � 20 X is less than 2 or greater than 20, or the value of X lies outside
the interval of 2 to 20.

X � Is equal to or greater than

X � 3 X is equal to or greater than 3.

a � b a is equal to or greater than b.

X � Is equal to or less than

X � 5 X is equal to or less than 5.

a � b a is equal to or less than b.

X � Is not equal to

3 � 5 3 is not equal to 5.

X � 8 X is not equal to 8.

a � b a is not equal to b.

The absolute value of X; the absolute value of X equals the 
magnitude of X irrespective of its sign.

The absolute value of 7;

The absolute value of �5; 0�5 0 � 5.0�5 0

0�7 0 � 7.0�7 0

0X 0
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Arithmetic Operations

Operation Example

1. Addition of two positive numbers: 2 � 8 � 10
1. To add two positive numbers, sum their
1. absolute values and give the result a
1. plus sign.

2. Addition of two negative numbers: �3 � (�4) � �7
1. To add two negative numbers, sum their
1. absolute values and give the result a
1. minus sign.

3. Addition of two numbers with opposite signs: 16 � (�10) � 6
1. To add two numbers with opposite signs, 3 � (�14) � �11
1. find the difference between their absolute
1. values and give the number the sign of the
1. larger absolute value.

4. Subtraction of one number from another: 16 � 4 � 16 � (�4) � 12
1. To subtract one number from another, 5 � 8 � 5 � (�8) � �3
1. change the sign of the number to be 9 � (�6) � 9 � (�6) � 15
1. subtracted and proceed as in addition �3 � 5 � �3 � (�5) � �8
1. (operations 1, 2, or 3).

5. Multiplying a series of numbers: 2(�5)(�6)(3) � 180
1. a. When multiplying a series of numbers, �3(�7)(�2)(�1) � 42

the result is positive if there are an even �a(�b) � ab
number of negative values in the 
series.

1. b. When multiplying a series of numbers, 4(�5)(2) � �40
the result is negative if there are an odd �8(�2)(�5)(3) � �240
number of negative values in the series. �a(�b)(�c) � �abc

6. Dividing a series of numbers:
1. a. When dividing a series of numbers, the �4

�
1

result is positive if there are an even �8 � 2
number of negative values. �3(�4)(2) � 4

6
�a

�
a

�b � b

1. b. When dividing a series of numbers, the �2 
� �0.40

result is negative if there are an odd 5
number of negative values.

�3(�2)
� �1.5

�4
�a

� �
a

b � 2  b
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Rules Governing the Order of Arithmetic Operations

Rule Example

1. The order in which numbers 6 � 4 � 11 � 4 � 6 � 11 � 11 � 6 � 4 � 21
are added does not change 6 � (�3) � 2 � �3 � 6 � 2 � 2 � 6 � (�3) � 5
the result.

2. The order in which numbers 3 	 5 	 8 � 8 	 5 	 3 � 5 	 8 	 3 � 120
are multiplied does not change
the result.

3. If both multiplication and 4 	 5 � 2 � 20 � 2 � 22
addition or subtraction are 6 	 (14 � 12) 	 3 � 6 	 2 	 3 � 36
specified, the multiplication 6 	 (4 � 3) 	 2 � 6 	 7 	 2 � 84
should be performed first
unless parentheses or brackets
indicate otherwise.

4. If both division and addition or 12 
 4 � 2 � 3 � 2 � 5
subtraction are specified, the 12 
 (4 � 2) � 12 
 6 � 2
division should be performed 12 
 4 � 2 � 3 � 2 � 1
first unless parentheses or 12 
 (4 � 2) � 12 
 2 � 6
brackets indicate otherwise.
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Rules Governing Parentheses and Brackets

Rule Example

1. Parentheses and brackets
indicate that whatever is
shown within them is to be
treated as a single number.

2. Where there are parentheses
contained within brackets,
perform the operations
contained within the
parentheses first.

3. When it is inconvenient to
reduce whatever is contained
within the parentheses to a
single number, the parentheses
may be removed as follows:
a. If a positive sign precedes

the parentheses, remove the
parentheses without
changing the sign of any
number they contained.

b. If a negative sign precedes
the parentheses, remove the
parentheses and change the
signs of the numbers they
contained.

c. If a multiplier exists outside
the parentheses, all the
terms within the parentheses
must be multiplied by the
multiplier.

d. The product of two sums is
found by multiplying each
element of one sum by the
elements of the other sum.

e. If whatever is contained
within the parentheses is
operated on in any way,
always do the operation
first, before combining with
other terms.

(2 � 8)(6 � 3 � 2) � 10(5) � 50

[(4)(6 � 3 � 2) � 6][2] � [(4)(5) � 6][2]
� [20 � 6][2] � [26][2] � 52

1 � (3 � 5 � 2) � 1 � 3 � 5 � 2 � 7

4 � (6 � 2 � 1) � 4 � 6 � 2 � 1 � 1

3(2 � 3 � 4) � 6 � 9 � 12 � 3
a(b � c � d) � ab � ac � ad

(a � b)(c � d) � ac � ad � bc � bd

5 � 4(3 � 1) � 6 � 5 � 4(4) � 6 � 5 � 16
� 6 � 27

4 � (3 � 1)/2 � 4 � 4/2 � 4 � 2 � 6
1 � 13 � 222 � 1 � 1522 � 1 � 25 � 26
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1. Addition of fractions:
To add two fractions, (1) find the least
common denominator, (2) express each
fraction in terms of the least common
denominator, and (3) add the numerators
and divide the sum by the common
denominator.

2. Multiplication of fractions:
To multiply two fractions, multiply the
numerators together and divide by the
product of the denominators.

3. Changing a fraction into its decimal
equivalent:
To convert a fraction into a decimal, perform
the indicated division, rounding to the
required number of digits (two digits in the
example shown).

4. Changing a decimal into a percentage:
To convert a decimal fraction into a
percentage, multiply the decimal fraction
by 100.

5. Multiplying an integer by a fraction:
To multiply an integer by a fraction, multiply
the integer by the numerator of the fraction
and divide the product by the denominator.

6. Cancellation:
When multiplying several fractions together,
identical factors in the numerator and
denominator may be canceled.

0.43 	 100 � 43%

5
1

12
3

 a
4
1

9
3

b a
3
1

10
2

b �
1

18

2
5 142 � 8

5 � 1.60

3
7 � 0.429 � 0.43

a
b

 a
c
d
b �

ac
bd

2
5 1

3
7 2 � 6

35

a
b

�
c
d

�
ad
bd

�
cb
bd

�
ad � cb

bd

1
3 � 1

2 � 2
6 � 3

6 � 5
6

Fractions

Operation Example



Factoring When factoring an algebraic expression, we try to reduce the ex-
pression to the simplest components that when multiplied together yield the orig-
inal expression.

Example Explanation

We factored out a from each item.

We factored out ab from both terms.

This expression can be reduced to a � b
times itself.

SOLVING EQUATIONS WITH ONE UNKNOWN

When solving equations with one unknown, the basic idea is to isolate the un-
known on one side of the equation and reduce the other side to its smallest pos-
sible value. In so doing, we make use of the principle that the equation remains
an equality if whatever we do to one side of the equation, we also do the same to
the other side. Thus, for example, the equation remains an equality if we add the
same number to both sides. In solving the equation, we alter the equation by
adding, subtracting, multiplying dividing, squaring, and so forth, so as to isolate
the unknown. This is permissible as long as we do the same operation to both

a2 � 2ab � b2 � 1a � b22
abc � 2ab � ab1c � 22

ab � ac � ad � a1b � c � d2

Solving Equations with One Unknown 523

1. Multiplying a number by itself 2 times

2. Multiplying a number by itself 3 times

3. Multiplying a number by itself N times

4. Multiplying two exponential quantities having
the same base:
The product of two exponential quantities
having the same base is the base raised to the
sum of the exponents.

5. Dividing two exponential quantities having the
same base:
The quotient of two exponential quantities
having the same base is the base raised to an
exponent equal to the exponent of the quantity
in the numerator minus the exponent of the
quantity in the denominator.

6. Raising a base to a negative exponent:
A base raised to a negative exponent is equal
to 1 divided by the base raised to the positive
value of the exponent. a�N �

1
aN

122�3 �
1
1223

aN

aP � aN�P

1224

1222
� 1222

aNaP � aN�P
12221224 � 1222�4 � 1226

4N � 4142 142 p 142

a3 � aaa

1423 � 4142 142 � 64

a2 � aa
1422 � 4142 � 16

N

Exponents

Operation Example



sides of the equation, thus maintaining the equality. The following examples il-
lustrate many of the operations commonly used to solve equations having one
unknown. In each of the examples, we shall be solving the equation for Y.
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Example Explanation

Y � 5 � 2 To isolate Y, subtract 5 from both sides of the equation.
Y � 2 � 5

� �3

Y � 4 � 6 To isolate Y, add 4 to both sides of the equation.
Y � 6 � 4

� 10

To isolate Y, multiply both sides of the equation by 2.

Y � 8(2)
� 16

3Y � 7 To isolate Y, divide both sides of the equation by 3.

� 2.33

To isolate Y,

12 � Y � 3 (1) multiply both sides by 2 and

3 � 12 � Y (2) add 3 to both sides.

15 � Y

Y � 15

To isolate Y,

3Y � 2 (1) multiply both sides by Y and

(2) divide both sides by 3.

4(Y � 1) � 3 To isolate Y,

(1) divide both sides by 4 and

(2) subtract 1 from both sides.

To isolate Y,

(1) take the reciprocal of both sides,

(2) multiply both sides by 4, and

(3) subtract 2 from both sides.

2Y � 4 � 10 To isolate Y,

2Y � 10 � 4 (1) subtract 4 from both sides and

(2) divide both sides by 2.

� 3

Y �
10 � 4

2

� �11
2

Y � 4
8 � 2

Y � 2 � 4
8

Y � 2
4

�
1
8

4
Y � 2

� 8

� �1
4

Y � 3
4 � 1

Y � 1 � 3
4

Y � 2
3

3 �
2
Y

6 �
Y � 3

2

Y � 7
3

Y
2

� 8



LINEAR INTERPOLATION

Linear interpolation is often necessary when looking up values in a table. For ex-
ample, suppose we wanted to find the square root of 96.5 using a table that only
has the square root of 96 and 97 but not 96.5, as shown here:

Square
Number root

96 9.7980

97 9.8489

Looking in the column headed by Number, we note that there is no value corre-
sponding to 96.5. The closest values are 96 and 97. From the table, we can see
that the square root of 96 is 9.7980 and that the square root of 97 is 9.8489. Ob-
viously, the square root of 96.5 must lie between 9.7980 and 9.8489. Using linear
interpolation, we assume there is a linear relationship between the number and
its square root, and we use this linear relationship to approximate the square root
of numbers not given in the table. Since 96.5 is halfway between 96 and 97, using
linear interpolation, we would expect the square root of 96.5 to lie halfway be-
tween 9.7980 and 9.8489. If we let X equal the square root of 96.5, then

X � 9.7980 � 0.5(9.8489 � 9.7980) � 9.8234

Although it wasn’t made explicit, the computed value for X was the result of set-
ting up the following proportions and solving for X:

96.5 � 96
97 � 96

�
X � 9.7980

9.8489 � 9.7980

Linear Interpolation 525

Number Square Root

96.5 9.7980

96.5 X

97.5 9.8489

The relationship is shown graphically in Figure A.1.
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f i g u r e A.1 Linear interpolation for .296.5

97.00

96.75

96.50

96.25

96.00

9.7980 9.8234 9.8489
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Equations

Appendix B

Listed here are the computational equations used in this textbook. The page
number refers to the page where the equation first appears.

Equation
First

Occurs
Equation Description on Page:

Range � Highest score � Lowest score

X � m

X � X

Mdn � P50 � XL � 1i�fi2  1cum  fP � cum  fL2

Xoverall �
n1X1 � n2X2 � . . . � nkXk

n1 � n2 � . . . � nk

m �
� Xi

N

X �
� Xi

N

Percentile rank �
cum fL � 1 fi�i2  1X � XL2

N
� 100

Percentile point � XL � 1i�fi2 1cum fP � cum fL2

cum % �
cum f

N
� 100

a
N

i�1
 Xi � X1 � X2 � X3 � . . . � XN summation

cumulative percentage

equation for computing percentile
point

equation for computing percentile
rank

mean of a sample

mean of a population of raw scores

overall mean of several groups

median of a distribution

range of a distribution

deviation score for sample data

deviation score for population data

27

50

53

54

71

71

74

75

79

80

80
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Equation
First

Occurs
Equation Description on Page:

Y � bX � a

aY � Y � bYX

bY �

© XY �
1© X2  1© Y2

N

©  X2 �
1©  X22

N

Y¿ � bYX � aY

rs � 1 �
6 © D 2

i

N3 � N

r �

© XY �
1© X2  1© Y2

N

B c©  X2 �
1©  X22

N
d  c©  Y2 �

1©  Y22

N
d

r �
© zXzY

N � 1

b � Slope �
¢Y

¢X
�

Y2 � Y1

X2 � X1

X � m � sz

z �
X � X

s

z �
X � m

s

s2 �
SSpop

N

s2 �
SS

N � 1

SS � ©  X 2 �
1©  X22

N

s � B
SS

N � 1
� B

© 1X � X 22

N � 1

s � B
SSpop

N
� B

© 1X � m22

N

standard deviation of a population
of raw scores

standard deviation of a sample of
raw scores

sum of squares

variance of a sample of raw scores

variance of a population of raw
scores

z score for population data

z score for sample data

equation for finding a population
raw score from its z score

equation of a straight line

slope of a straight line

computational equation for
Pearson r using z scores

computational equation for
Pearson r

computational equation for
Spearman rho

linear regression equation for
predicting Y given X

regression constant b for predicting
Y given X, computational equation
with raw scores

regression constant a for predicting
Y given X

81

81

82

85

85

99

99

108

115

116

125

125

132

153

154

154
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P � Q � 1.00

p(A and B) � 0

p1A and B2 � p1A2p1B2

p1A and B2 � p1A2p1B 0A2

p1A2 � p1B2 � p1C2 � p � p1Z2 � 1.00

p1A or B or C or . . . or Z2 � p1A2 � p1B2 � p1C2 � p � p1Z2

p1A or B2 � p1A2 � p1B2

p1A or B2 � p1A2 � p1B2 � p1A and B2

p1A2 �
Number of times A has occurred

Total number of occurrences

p1A2 �
Number of events classifiable as A

Total number of possible events

R2 �
rYX1

2 � rYX2

2 � 2rYX1
rYX2

rX1X2

1 � rX1X2

2

bX � r 

sX

sY

bY � r 

sY

sX

sY|X �R
SSY �

3©  XY � 1©  X2  1©  Y2/N 4 2

SSX

N � 2

aX � X � bXY

bX �

© XY �
1© X2  1© Y2

N

©  Y2 �
1©  Y22

N

X¿ � bXY � aX
linear regression equation for
predicting X given Y

regression constant b for predicting
X given Y, computational equation
with raw scores

regression constant a for predicting
X given Y

computational equation for the
standard error of estimate when
predicting Y given X

equation relating r to the bY

regression constant

equation relating r to the bX

regression constant

equation for computing the
squared multiple correlation

a priori probability

a posteriori probability

addition rule for two events, general
equation

addition rule when A and B are
mutually exclusive

addition rule with more than two
mutually exclusive events

when events are exhaustive and
mutually exclusive

when two events are exhaustive and
mutually exclusive

multiplication rule with two
events—general equation

multiplication rule with mutually
exclusive events

multiplication rule with
independent events

160

161

161

163

167

167

171

184

184

186

186

190

190

190

191

191

192

Equation
First

Occurs
Equation Description on Page:
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sX �
s

2N

tobt �
Xobt � m

sX

tobt �
Xobt � m

s�2N

N � c
s1zcrit � zobt2

mreal � mnull
d

2

zobt �
Xobt � m

s�2N

zobt �
Xobt � m

sX

sX �
s

2N

mX � m

Beta � 1 � Power

s � 2NPQ

m � NP

Number of Q events � N � Number of P events

1P � Q2N

p1A2 �
Area under curve corresponding to A

Total area under curve

� p1A2p1B�A2p1C�AB2 p p1Z 0ABC p 2
p1A and B and C and p and Z2

p1A and B2 � p1A2p1B 0A2

p1A and B and C and p and Z2 � p1A2p1B2p1C2 p p1Z2 multiplication rule with more than
two independent events

multiplication rule with dependent
events

multiplication rule with more than
two dependent events

probability of A with a continuous
variable

binomial expansion

relationship between number of 
Q events, number of P events,
and N

mean of the normal distribution
approximated by the binomial
distribution

standard deviation of the normal
distribution approximated by the
binomial distribution

relationship between beta and power

mean of the sampling distribution
of the mean

standard deviation of the sampling
distribution of the mean or
standard error of the mean

z transformation for

z transformation for

determining N for a specified
power

equation for calculating the 
t statistic

equation for calculating the 
t statistic

estimated standard error of the
mean

Xobt

Xobt

196

197

200

204

219

225

229

229

275

295

295

302

306

312

319

319

319

Equation
First

Occurs
Equation Description on Page:
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df � N � 1

d �
0Dobt 0

sD

SSD � � D2 �
(� D)2

N

tobt �
Dobt � mD

B
SSD

N1N � 12

tobt �
Dobt � mD

sD�2N

tobt �
robt

B
1 � r 2

obt

N � 2

tobt �
robt � p

sr

mupper � Xobt � sX tcrit

mlower � Xobt � sX tcrit

mupper � Xobt � sX t0.005

mlower � Xobt � sX t0.005

mupper � Xobt � sX t0.025

mlower � Xobt � sX t0.025

d̂ �
0Xobt � m 0

s

d �
0Xobt � m 0

s

d �
0mean difference 0

population standard deviation

tobt �
Xobt � m

B
SS

N1N � 12

degrees of freedom for t test 
(single sample)

equation for calculating the 
t statistic from raw scores

general equation for size of effect

conceptual equation for size of
effect, single sample t test

computational equation for size of
effect, single sample t test

lower limit for the 95% confidence
interval

upper limit for the 95% confidence
interval

lower limit for the 99% confidence
interval

upper limit for the 99% confidence
interval

general equation for the lower limit
of the confidence interval

general equation for the upper limit
of the confidence interval

t test for testing the significance of r

t test for testing the significance of r

t test for correlated groups

t test for correlated groups

sum of squares of the difference
scores

conceptual equation for size of
effect, correlated groups t test

322

325

330

330

330

333

333

334

334

334

334

336

336

347

347

347

351

Equation
First

Occurs
Equation Description on Page:
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�lower � (X1 � X2) � sX�1�X�2
t0.025

�upper � (X�1 � X�2) � sX�1�X�2
t0.025

�lower � (X�1 � X�2) � sX�1�X�2
t0.005

�upper � (X�1 � X�2) � sX�1�X�2
t0.005

MSB � sB
2

F �
Variance estimate 1 of s2

Variance estimate 2 of s2

d̂ �
0X1 � X2 0

2sW
2

d �
0X1 � X2 0

s

tobt �
X1 � X2

B
SS1 � SS2

n(n � 1)

SS2 � � X 2
2 �

(� X2)
2

n2

SS1 � � X 2
1 �

1� X1)
2

n1

tobt �
X1 � X2

Ba
SS1 � SS2

n1 � n2 � 2
b a

1
n1

�
1
n2
b

tobt �
(X1 � X2) � mX1�X2

Ba
SS1 � SS2

n1 � n2 � 2
b a

1
n1

�
1
n2
b

sX1�X2
� Bs2 a

1
n1

�
1
n2
b

mX1�X2
� m1 � m2

d̂ �
0Dobt 0

sD

computational equation for size of
effect, correlated groups t test

mean of the difference between
sample means

standard deviation of the difference
between sample means

computational equation for tobt,
independent groups design

computational equation for tobt

assuming the independent variable
has no effect

sum of squares for group 1

sum of squares for group 2

computational equation for tobt

when 

conceptual equation for size of
effect, independent groups t test

computational equation for size of
effect, independent groups t test

lower limit for the 95% confidence
interval for �X1�X2

upper limit for the 95% confidence
interval for �X1�X2

lower limit for the 99% confidence
interval for �X1�X2

upper limit for the 99% confidence
interval for �X1�X2

basic definition of F

mean square between

n1 � n2

352

356

356

358

358

360

360

360

364

364

370

370

372

372

383

387

Equation
First

Occurs
Equation Description on Page:
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MSW �

dfW � N � k

dfB � k � 1

SST � SSW � SSB

tobt �
X1 � X2

22sW
2�n

tobt �
X1 � X2

BsW
2

 a
1
n1

�
1
n2
b

Fobt �
n 3 1X1 � XG2

2 � 1X2 � XG2
2 � 1X3 � XG2

2 4 /2

1SS1 � SS2 � SS32/ 1N � 32
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2
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�
1� X22

2
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�
1� X32

2

n3

s 2
W �

SSW

N � k

Fobt �
s 2

B

s 2
W

sW
2 mean square within or mean

square error

F equation for the analysis of
variance

within-groups variance estimate

within-groups sum of squares,
computational equation

degrees of freedom for the within-
groups variance estimate

between-groups variance estimate

degrees of freedom for the
between-groups variance estimate

between-groups sum of squares,
computational equation

equation for checking SSW and SSB

equation for calculating the total
variability

computational equation for
estimating 

conceptual and computational
equation for eta squared 

F equation for three-group
experiment

t equation for a priori comparisons,
general equation

t equation for a priori comparisons
with equal n in the two groups

�2

387

387

388

388

388

389

389

390

392

392

399

400
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dfW � rc(n � 1)

dfR � r � 1

dfC � c � 1

dfRC � 1r � 12 1c � 12

�

a
a

scores
all
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2
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�
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a
a
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2

� a
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a
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SSR
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2
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2
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a
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cell

 Xb
2
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§

s 2
W �

SSW

dfW

Qobt �
Xi � Xj

2sW
2�n

equation for calculating Qobt

equation for within-cells variance
estimate

within-cells sum of squares,
computational equation

within-cells degrees of freedom

equation for the row variance
estimate

row degrees of freedom

computational equation for the row
sum of squares

column variance estimate

column degrees of freedom

computational equation for the
column sum of squares

row � column variance estimate

computational equation for the row
� column sum of squares

row � column degrees of freedom
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453

471

471

477

equation for calculating 
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equation for computing Hobt
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Answers to End-of-Chapter
Questions and Problems

Appendix C

CHAPTER 1

6. b. (1) functioning of the hypothalamus; (2) daily
food intake; (3) the 30 rats selected for the ex-
periment; (4) all rats living in the university vi-
varium at the time of the experiment; (5) the
daily food intake of each animal during the 2-
week period after recovery; (6) the mean daily
food intake of each group c. (1) methods of
treating depression; (2) degree or amount of de-
pression; (3) the 60 depressed students; (4) the
undergraduate body at a large university at the
time of the experiment; (5) depression scores of
the 60 depressed students; (6) mean of the de-
pression scores of each treatment d. (1) and
(2) since this is a study and not an experiment,
there is no independent variable and no depen-
dent variable. The two variables studied are the
two levels of education and the annual salaries
for each educational level; (3) the 200 individuals
whose annual salaries were determined; (4) all
individuals living in the city at the time of the ex-
periment, having either of the educational levels;
(5) the 200 annual salaries; (6) the mean annual
salary for each educational level. e. (1) spac-
ing of practice sessions; (2) number of words cor-
rectly recalled; (3) the 30 seventh graders who

participated in the experiment; (4) all seventh
graders enrolled at the local junior high school at
the time of the experiment; (5) the retention test
scores of the 30 subjects; (6) mean values for
each group of the number of words correctly re-
called in the test period f. (1) visualization
versus visualization plus appropriate self-talk;
(2) foul shooting accuracy; (3) the ten players
participating in the experiment; (4) all players on
the college basketball team at the time of the ex-
periment; (5) foul shooting accuracy of the ten
players, before and after 1 month of practicing
the techniques; (6) the mean of the difference
scores of each group g. (1) the arrangement
of typing keys; (2) typing speed; (3) the 20 secre-
tarial trainees who were in the experiment;
(4) all secretarial trainees enrolled in the busi-
ness school at the time of the experiment; (5) the
typing speed scores of each trainee obtained at
the end of training; (6) the mean typing speed of
each group 

7. a. constant b. constant c. variable
d. variable e. constant f. variable
g. variable h. constant
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8. a. descriptive statistics b. descriptive statistics
c. descriptive statistics d. inferential statistics
e. inferential statistics f. descriptive statistics

9. a. The sample scores are the 20 scores given. The
population scores are the 213 scores that would
have resulted if the number of drinks during
“happy hour” were measured from all of the bars.
c. The sample scores are the 25 lengths measured.
The population scores are the 600 lengths that
would be obtained if all 600 blanks were mea-
sured. d. The sample scores are the 30 dias-
tolic heart rates that were recorded.The population
scores are the heart rate scores that would
result from recording resting, diastolic heart rate
from all the female students attending Tacoma
University at the time of the experiment.

CHAPTER 2

2. a. continuous b. discrete c. discrete
d. continuous e. discrete f. continuous
g. continuous h. continuous

3. a. ratio b. nominal c. interval
d. ordinal e. ordinal f. ratio 
g. ratio h. interval i. ordinal

4. No, ratios are not legitimate on an interval scale.
We need an absolute zero point to perform ra-
tios. Since an ordinal scale does not have an ab-
solute zero point, the ratio of the absolute values
represented by 30 and 60 will not be 

5. a. 18 b. 21.1 d. 590

6. a. 14.54 c. 37.84 d. 46.50 e. 52.46 f. 25.49

7. a. 9.5–10.5 b. 2.45–2.55 d. 2.005–2.015
7. e. 5.2315–5.2325

8. a. 25 b. 35 d. 101

9. a. X1 � 250, X2 � 378, X3 � 451, X4 � 275,
X5 � 225, X6 � 430, X7 � 325, X8 � 334 b. 2668

10. a. b. c. d.

11. a. 1.4 b. 23.2 c. 100.8 d. 41.7 e. 35.3

12. For 5b: and 
for 5c: and 

13. a. 34 b. 14 d. 6.5

14. a. 4.1, 4.15 b. 4.2, 4.15 c. 4.2, 4.16 d. 4.2, 4.20

(©  X22 � 21,904©  X 2 � 3434
(©  X22 � 445.21;©  X 2 � 104.45

g
5

i�2
 Xi

2g
4

i�2
 Xig

3

i�1
 Xig

N

i�1
 Xi

1
2.

CHAPTER 3

5. a. Score f Score f Score f Score f

98 1 84 2 70 2 57 2
97 0 83 3 69 2 56 1
96 0 82 4 68 4 55 2
95 0 81 3 67 2 54 0
94 2 80 0 66 1 53 0
93 2 79 2 65 1 52 0
92 1 78 5 64 3 51 0
91 2 77 2 63 1 50 0
90 2 76 4 62 2 49 2
89 1 75 3 61 1 48 0
88 1 74 1 60 1 47 0
87 2 73 4 59 0 46 0
86 0 72 6 58 0 45 1
85 4 71 3

b. Class Interval Real Limits f

96–99 95.5–99.5 1
92–95 91.5–95.5 5
88–91 87.5–91.5 6
84–87 83.5–87.5 8
80–83 79.5–83.5 10
76–79 75.5–79.5 13
72–75 71.5–75.5 14
68–71 67.5–71.5 11
64–67 63.5–67.5 7
60–63 59.5–63.5 5
56–59 55.5–59.5 3
52–55 51.5–55.5 2
48–51 47.5–51.5 2
44–47 43.5–47.5 1

88

6. Class Relative Cumulative Cumulative
Interval f f f %

96–99 11 0.01 88 100.00
92–95 15 0.06 87 198.86
88–91 16 0.07 82 193.18
84–87 18 0.09 76 186.36
80–83 10 0.11 68 177.27
76–79 13 0.15 58 165.91
72–75 14 0.16 45 151.14
68–71 11 0.12 31 135.23
64–67 17 0.08 20 122.73
60–63 15 0.06 13 114.77
56–59 13 0.03 18 119.09
52–55 12 0.02 15 115.68
48–51 12 0.02 13 113.41
44–47 11 0.01 11 111.14

88 1.00



7. a. 82.70 b. 72.70

8. a. 70.17 c. 85.23

10. a. Class Interval f

60–64 1
55–59 1
50–54 2
45–49 2
40–44 4
35–39 5
30–34 7
25–29 12
20–24 17
15–19 16
10–14 8

5–9 3

78

11. Class Interval f Relative f Cumulative f

60–64 1 0.01 78
55–59 1 0.01 77
50–54 2 0.03 76
45–49 2 0.03 74
40–44 4 0.05 72
35–39 5 0.06 68
30–34 7 0.09 63
25–29 12 0.15 56
20–24 17 0.22 44
15–19 16 0.21 27
10–14 8 0.10 11
5–9 3 0.04 3

78 1.00

12. a. 23.03

13. a. 88.72 b. 67.18

16. a. 3.30 b. 2.09

17. 65.62

18. a. 34.38 b. 33.59 c. Some accuracy is
lost when grouping scores because the grouped
scores analysis assumes the scores are evenly dis-
tributed throughout the interval.

20. a. Class Interval f

360–369 1
350–359 2
340–349 5
330–339 3
320–329 3
310–319 9
300–309 4
290–299 8
280–289 5
270–279 5
260–269 4
250–259 1

50

21. Class
Interval f Relative f Cumulative f Cumulative %

360–369 1 0.02 50 100.00
350–359 2 0.04 49 98.00
340–349 5 0.10 47 94.00
330–339 3 0.06 42 84.00
320–329 3 0.06 39 78.00
310–319 9 0.18 36 72.00
300–309 4 0.08 27 54.00
290–299 8 0.16 23 46.00
280–289 5 0.10 15 30.00
270–279 5 0.10 10 20.00
260–269 4 0.08 5 10.00
250–259 1 0.02 1 2.00

50 1.00

22. a. 304.50 b. 324.50

23. a. 15.50 b. 69.30

24. a. Score f

12 1
11 2
10 4
9 7
8 9
7 13
6 15
5 11
4 10
3 6
2 5
1 1
0 1

d. 27.06, 96.47
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CHAPTER 4

13. All the scores must have the same value.

16. a. Mdn � 3, mode � 2
c. Mdn � 2.70, no mode

17. a.
b.
c.
d.

18. a. 72.00 b. 72

19. a. 68.83 b. 64.5

20. a. 2.93 b. 2.8
21. a. the mean, because there are no extreme

scores b. the mean, again because there are
no extreme scores c. the median, because
the distribution contains an extreme score (25)

22. a. positively skewed b. negatively skewed
c. symmetrical

23. a. � 2.54 hours per day
b. Mdn � 2.7 hours per day
c. mode � 0 hours per day

25. a. b. Mdn � 14 c. There is no mode.

26. 197.44

27. a. range � 6, s � 2.04, s2 � 4.14
c. range � 9.1, s � 3.64, s2 � 13.24

29. 4.00 minutes

30. 7.17 months

31. a. sorig. � 2.12, snew � 2.12, snew � sorig.

b. sorig. � 2.12, snew � 2.12, snew � sorig.

c. sorig. � 2.12, snew � 4.24, snew � asorig.

d. sorig. � 2.12, snew � 1.06, snew � sorig. a

32. a. 4.50 b. 5 c. 7 d. 7 e. 2.67 f. 7.14

33. Distribution b is most variable, followed by dis-
tribution a and then distribution c. For distribu-
tion b, s � 11.37; for distribution a, s � 3.16; and
for distribution c, s � 0.

34. a. s � 1.86 b. 11.96, Because the standard
deviation is sensitive to extreme scores and 35 is
an extreme score

35. a. b. 8 c. 8
d. 15 e. 4.89 f. 23.88

36. a. 347.50 b. 335 c. There is no mode.
d. 220 e. 87.28 f. 7617.50

37. a. 22.67 b. 21.50 c. There is no mode.
d. 22 e. 7.80 f. 60.78

38. a. b. c. d. X �aa XX � aX � a

X � 7.90

�

X � 15.44

X

Xorig. � 4.00, Xnew � 2.00, Xnew � Xorig. �a
Xorig. � 4.00, Xnew � 8.00, Xnew � aXorig.

Xorig. � 4.00, Xnew � 2.00, Xnew � Xorig. � a

Xorig. � 4.00, Xnew � 6.00, Xnew � Xorig. � a

X � 3.03,
X � 3.56,

39. a. s stays the same. b. s stays the same.
c. s is multiplied by a. d. s is divided by a.

40. a. 2.67, 3.33, 6.33, 4.67, 6.67, 4.67, 3.00, 4.00,
7.67, 6.67 b. 3.00, 2.00, 8.00, 6.00, 6.00, 4.00,
2.00, 3.00, 8.00, 7.00 c. Expect more variabil-
ity in the medians. d. s(medians) � 2.38,
s(means) � 1.76

CHAPTER 5

8. a. Raw Score z Score

10 �1.41
12 �0.94
16 0.00
18 0.47
19 0.71
21 1.18

b. mean � 0.00, standard deviation � 1.00

9. a. Raw Score z Score

10 �1.55
12 �1.03
16 �0.00
18 �0.52
19 �0.77
21 �1.29

b. mean � 0.00, standard deviation � 1.00

10. a. 1.14 b. �0.86 c. 1.86 d. 0.00
e. 1.00 f. �1.00

11. a. 50.00% b. 15.87% c. 6.18% d. 2.02%
e. 0.07% f. 32.64%

12. a. 34.13% b. 34.13% c. 49.04% d. 49.87%
e. 0.00% f. 25.17% g. 26.73%

13. a. 0.00 b. 1.96 c. 1.64 d. 0.52
e. �0.84 f. �1.28

15. a. statistics b. 92.07

16. a. 3.75% b. 99.81% c. 98.54% d. 12.97%
e. 3.95 kilograms f. 3.64 g. 13,623

17. a. 95.99% b. 99.45% c. 15.87%
d. 4.36% e. 50.00%

18. a. 16.85% b. 0.99% c. 59.87%
d. 97.50% e. 50.00%

19. a. 51.57% b. 34.71% c. 23.28%



14. a. For set A, r � 1.00; for set B, r � 0.11; for set
C, r � �1.00 b. same value as in part a.
c. The r values are the same. d. The r values
remain the same. e. The r values do not
change if a constant is subtracted from the raw
scores or if the raw scores are divided by a con-
stant. The value of r does not change when the
scale is altered by adding or subtracting a con-
stant to it, nor does r change if the scale is trans-
formed by multiplying or dividing by a constant.

16. b. r � 0.79

17. b. r � 0.68 c. 0.03. Decreasing the range
produced a decrease in r. d. r2 � 0.46. If ill-
ness is causally related to smoking, r2 allows us to
evaluate how important a factor smoking is in
producing illness.

18. b. r � 0.98 c. Yes, this is a reliable test because
r2 � 0.95.Almost all of the variability of the scores
on the second administration can be accounted for
by the scores on the first administration.

19. a. r � 0.85 b. rs � 0.86

20. b. r � –0.06 e. r � 0.93

21. b. r � 0.95

22. a. negative b. r � –0.56

23. a. rs � 0.85 b. For the paper and pencil test
and psychiatrist A, rs � 0.73; for the paper and
pencil test and psychiatrist B, rs � 0.79.

24. b. r � 0.59 d. r � 0.91 e. Yes, test 2, because
r2 accounts for 82.4% of the variability in work
performance. Although there are no doubt other
factors operating, this test appears to offer a
good adjunct to the interview. Test 1 does not do
nearly as well.

CHAPTER 7

10. b. The relationship is negative, imperfect, and
linear. c. r � �0.56 d. Y� � �0.513X �
24.964; negative, because the relationship is neg-
ative f. 13.16

11. No. A scatter plot of the paired scores reveals
that there is a perfect relationship between
length of left index finger and weight. Thus,
Mr. Clairvoyant can exactly predict my weight
having measured the length of my left index 
finger.
b. Y� � 7.5X � 37 c. 79.75
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20. a. Distance z Score

30 �1.88
31 �1.50
32 �1.13
33 �0.75
34 �0.38
35 �0.00
36 �0.38
37 �0.75
38 �1.13

b. and c.

d. The z distribution is not normally shaped. The
z distribution takes the same shape as the distri-
bution of raw scores. In this problem, the raw
scores are not normally shaped. Therefore, the z
distribution will not be normally shaped either.
e. mean � 0.00, standard deviation � 1.00

21. a. 92.36% b. 55.04% c. 96.78% d. $99.04

22. business

23. Rebecca did better on exam 2. Maurice did bet-
ter on exam 1.

24. 93.64

CHAPTER 6

3. a. linear, perfect positive b. curvilinear, per-
fect c. linear, imperfect negative d. curvi-
linear, imperfect e. linear, perfect negative
f. linear, imperfect positive

z scores
Raw scores

3

F
re

qu
en

cy 2

1

0
30

Distance (miles)

z score

32 34 36 3831 33 35 37

–1.50 –0.75 0 0.75

–1.88 –1.13 –0.38 0.38 1.13



12. b. The relationship is negative, imperfect, and
linear. c. r � �0.69 d. Y� � �1.429X
� 125.883; negative, because the relationship is
negative f. 71.60 g. 10.87

13. a. Y� � 10.828X � 11.660 b. $196,000
c. Technically, the relationship holds only within
the range of the base data. It may be that if a lot
more money is spent, the relationship would
change such that no additional profit or even loss
is the result. Of course, the manager could ex-
periment by “testing the waters” (e.g., by spend-
ing $25,000 on advertising to see whether the rela-
tionship still holds at that level).

14. a. Yes, r � 0.85 b. % games won �

5.557(tenure) � 34.592 c. 73.49%

15. a. Y� � �1.212X � 131.77 b. $130.96 c. 17.31

16. a. Y� � 4.213X � 91.652 b. 123.25

17. a. Y� � 0.857X � 17.894 b. 32.46

18. a. Y� � �0.075X � 6.489 b. 3.28

19. R2 � 85.3%, r2 � 82.4%; using test 1 doesn’t
seem worth the extra work.

CHAPTER 8

9. a, c, e

10. a, c, d, e

11. a, c

12. a. 2 to 3 b. 0.6000 c. 0.4000

13. a. 0.0192 b. 0.0769 c. 0.3077 d. 0.5385

15. a. 0.4000 b. 0.0640 c. 0.0350 d. 0.2818

16. a. 0.4000 b. 0.0491 c. 0.0409 d. 0.2702

17. a. 0.0029 b. 0.0087 c. 0.0554

18. 0.0001

19. 0.0238

20. a. 0.0687 b. 0.5581 c. 0.2005

21. 0.1479

22. 0.00000001

23. a. 0.1429 b. 0.1648 c. 0.0116

25. a. 0.0301 b. 0.6268 c. 0.0301

26. a. 0.0192 b. 0.9525 c. 0.1949

28. a. 0.0146 b. 0.9233 c. 0.0344

29. a. 0.0764 b. 0.4983 c. 0.0021

30. a. 0.0400 b. 0.1200 c. 0.0400
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CHAPTER 9

3. 0.90

4. a. 0.0369 b. 6P5Q c. 0.0369 (The answers
are the same.)

5. a. 0.0161 b. 0.0031 c. 0.0192 d. 0.0384

6. a. 0.0407 b. 0.0475 c. 0.0475

7. a. 0.1369 b. 0.2060 c. 0.2060

8. a. 0.0020 b. 0.0899 c. 0.1798

10. 0.0681

11. 0.3487

12. 0.0037

14. 0.0039

15. a. 0.0001 b. 0.0113

16. a. 32 b. 37

17. a. 0.0001 b. 0.4437 c. 0.1382 d. 0.5563

18. a. 0.0039 b. 0.3164 c. 0.6836

19. a. 0.0576 b. 0.0001 c. 0.0100 d. 0.8059

20. a. 0.0000 b. 0.0013

21. 0.8133

22. a. 0.0098 b. 1

CHAPTER 10

10. a. The alternative hypothesis states that the new
teaching method increases the amount learned.
b. The null hypothesis states that the two meth-
ods are equal in the amount of material learned
or the old method does better. c. p(14 or more
pluses) � 0.0577. Since 0.0577 � 0.05, you retain
H0. You cannot conclude that the new method is
better. d. You may be making a Type II er-
ror, retaining H0 if it is false. e. The results
apply to the eighth-grade students in the school
district at the time of the experiment.

11. a. The alternative hypothesis states that increases
in the level of angiotensin II will produce change
in thirst level. b. The null hypothesis states
that increases in the level of angiotensin II will
not have any effect on thirst. c. p(0, 1, 2, 14,
15, or 16 pluses) � 0.0040. Since 0.0040 � 0.05,
you reject H0. Increases in the level of an-
giotensin II appear to increase thirst. d. You
may be making a Type I error, rejecting H0 if it is
true. e. The results apply to the rats liv-
ing in the vivarium of the drug company at the
time of the experiment.



CHAPTER 12

17. a. The sampling distribution of the mean is given
here:

(X�) p(X�)

7.0 0.04
6.5 0.08
6.0 0.12
5.5 0.16
5.0 0.20
4.5 0.16
4.0 0.12
3.5 0.08
3.0 0.04

b. From the population raw scores, � � 5.00,
and from the 25 sample means,
Therefore, c. From the 25 sample
means, From the population raw
scores, � � 1.41. Thus,

18. a. The distribution is normally shaped;
b. The distribution is normally

shaped; c. The distribu-
tion is normally shaped;
d. As N increases, stays the same but de-
creases.

19. � 3.16, and zcrit � �1.96. Since � 1.96,
we reject H0. It is not reasonable to consider the
sample a random sample from a population with
� � 60 and � � 10.

20. a. � �2.05, and zcrit � �2.33. Since 
� 2.33, we can’t reject the hypothesis that the
sample is a random sample from a population
with � � 22 and � � 8. b. power � 0.1685
c. power � 0.5675 d. N � 161 (actually
gives a power � 0.7995)

22. � 4.03, and zcrit � 1.645. Since 
� 1.645, reject H0 and conclude that this year’s
class is superior to the previous ones.

23. � 1.56, and zcrit � 1.645. Since � 1.645,
retain H0. We cannot conclude that the new en-
gine saves gas.

24. a. power � 0.5871 b. power � 0.9750 c. N �
91 (rounded to nearest integer)

25. � 4.35, and zcrit � 1.645. Since � 1.645,
reject H0 and conclude that exercise appears to

0zobt 0zobt

0zobt 0zobt

0zobt 0zobt

0zobt 0zobt

0zobt 0zobt

sXmX

mX � 80, sX � 1.13.
mX � 80, sX � 1.35.

 sX � 2.00.
mX � 80, 

� 1.41�1.41 � 1.00.
�12sX � s�1N � 1.41

sX � 1.00.
mX � m.

mX � 5.00.

12. a. The alternative hypothesis states that using
Very Bright toothpaste instead of Brand X re-
sults in brighter teeth. b. The null hypothesis
states that Very Bright and Brand X toothpastes
are equal in their brightening effects or Brand X
is better. c. p(7 or more pluses) � 0.1719.
Since 0.1719 � 0.05, you retain H0. You cannot
conclude that Very Bright is better. d. You
may be making a Type II error, retaining H0 if it
is false. e. The results apply to the employ-
ees of the Pasadena plant at the time of the ex-
periment.

13. a. The alternative hypothesis states that acupunc-
ture affects pain tolerance. b. The null hypothe-
sis states that acupuncture has no effect on pain
tolerance. c. p(0, 1, 2, 3, 12, 13, 14, or 15 pluses)
� 0.0352. Since 0.0352 � 0.05, you reject H0 and
conclude that acupuncture affects pain tolerance.
It appears to increase pain tolerance. d. You
may have made a Type I error, rejecting H0 if it is
true. e. The conclusion applies to the large pool
of university undergraduate volunteers.

CHAPTER 11

8. For Preal � 0.80, power � 0.8042, and beta �
0.1958.

9. power � 0.8417, beta � 0.1583

10. power � 0.1493

11. Power � 0.0955, and beta � 0.9045. No, it is not le-
gitimate to conclude that stimulus isolation had no
effect on depression. That conclusion is the same
thing as concluding that H0 is true. Of course, we
cannot prove H0 is true from the data of an ex-
periment. Particularly, in this case, the preceding
analysis shows that this experiment has a low
probability of detecting a real but small effect
(power � 0.0955). This experiment is insensitive
to small effects, and therefore, we cannot conclude
stimulus isolation has no effect just because the
results of the experiment were not significant.

12. Power � 0.1268, and beta � 0.8732. No, we can-
not conclude that the TV program has no effect
on violence in teenagers. We cannot prove H0 is
true. In this experiment, the power to detect a
medium effect was quite low (0.1268). It could
very well be true that the program really does in-
crease violence, but due to lack of sufficient
power, we failed to detect it.
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slow down the “aging” process, at least as mea-
sured by maximum oxygen consumption.

CHAPTER 13

11. � �1.37, and tcrit with 29 df � �2.756. Since
| | � 2.756, we retain H0. It is reasonable to
consider the sample a random sample from a
population with � � 85.

12. � 3.08, and tcrit with 28 df � 2.467. Since 
� 2.467, we can reject H0, which specifies that the
sample is a random sample from a population
with a mean 	 72. Therefore, we can accept the
hypothesis that the sample is a random sample
from a population with a mean � 72.

13. � 2.08, and tcrit with 21 df � 1.721. Since | |
� 1.721, we reject H0. It is not reasonable to con-
sider the sample a random sample from a normal
population with � � 38.

14. 95% 99%

a. 21.68–28.32 20.39–29.61
c. 28.28–32.92 27.45–33.75
d. 22.76–27.24 21.98–28.02

Increasing N decreases the width of confidence
interval.

15. � �1.57, and tcrit � �2.093. Since � 2.093,
you fail to reject H0 and therefore cannot conclude
that the student’s technique shortens the duration
of stay. The difference in conclusions is due to the
greater sensitivity of the z test.

17. a. 18.34–21.66 b. 17.79–22.21

18. a. � 3.96, and zcrit � 1.645. Since 
� 1.645, we reject H0 and conclude that the
amount of smoking in women appears to have
increased in recent years. The professor was cor-
rect. b. � 3.67, and tcrit � 1.658. Reject H0.
c. Same conclusion as in part a. d. .
This is a medium effect, according to Cohen’s 
criteria.

19. a. � 4.32, and tcrit with 7 df � �2.365. Since
� 2.365, we reject H0 and conclude that the

drug affects short-term memory. It appears to im-
prove it. b. . This is a large effect, ac-
cording to Cohen’s criteria.

d̂ � 1.53

0 tobt 0
tobt

d̂ � 0.26
tobt

0zobt 0zobt

0 tobt 0tobt

tobttobt

tobttobt

tobt

tobt
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20. � 1.65, and tcrit � 1.796. Since � 1.796,
we retain H0. We cannot conclude that middle-
age men employed by the corporation have be-
come fatter.

21. � 0.98, and tcrit � �2.262. Since � 2.262,
we retain H0. From these data, we cannot con-
clude that the graduates of the local business
school get higher salaries for their first jobs than
the national average.

22. a. 109.09–140.91 b. 103.14–146.86
23. b. r � 0.63.

c. Yes, reject H0 since rcrit � 0.5760.
24. a. r � 0.98.

b. Yes, reject H0 since rcrit � 0.6319.
25. a. � 0.630 b. rcrit � 0.7067. Retain H0;

correlation is not significant. No, � may actually
differ from 0, and power may be too low to de-
tect it. c. rcrit � 0.4438. Reject H0; correlation
is significant. Power is greater with N � 20.

26. rcrit � 0.5139. Reject H0; correlation is significant.

CHAPTER 14

15. a. The alternative hypothesis states that memory
for pictures is superior to memory for words. �1

� �2. b. The null hypothesis states that
memory for pictures is not superior to memory
for words. �1 	 �2. c. � 1.86, and tcrit �
1.761. Since � 1.761, you reject H0 and con-
clude that memory for pictures is superior to mem-
ory for words. d. . This is a large ef-
fect, according to Cohen’s criteria.

17. a. � 4.10, and tcrit � �2.145. Since �
2.145, you reject H0 and conclude that newspaper
advertising really does make a difference. It ap-
pears to increase cosmetics sales. b. .
According to Cohen’s criteria, this is a large effect.

18. a. � 4.09, and tcrit � �2.306. Since 
� 2.306, you reject H0 and conclude that biofeed-
back training reduces tension headaches.
b. If the sampling distribution of is not nor-
mally distributed, you cannot use the t test. How-
ever, you can use the sign test, because it does not
assume anything about the shape of the scores. By
using the sign test, p(0, 1, 8, or 9 pluses) � 0.0392.
Since 0.0392 � 0.05, you reject H0, as before.

19. � 3.50, and tcrit � �2.306. Since � 2.306,
we reject H0 and conclude that other factors,
such as attention, have an effect on tension head-
aches. They appear to decrease them.

0 tobt 0tobt

D

0 tobt 0tobt

d̂ � 1.06

0 tobt 0tobt

d̂ � 0.93

0 tobt 0
tobt

robt

0 tobt 0tobt

0 tobt 0tobt



CHAPTER 15

10. a. Fcrit � 3.63 b. Fcrit � 2.86 c. Fcrit � 4.38

11. � 8.64, and tobt from Practice Problem 14.2
� �2.94. Therefore, F � t 2.

18. a. Source SS df s 2 Fobt

Between 1253.68 13 417.89 4.00
Within 3762.72 36 104.52

Total 5016.40 39

b. 4 c. 10 d. 2.86 e. Yes, the effect is
significant.

19. a. and b.

Source SS df s 2 Fobt

Between 23.444 2 11.722 4.77
Within 36.833 15 12.456

Total 60.278 17

Fcrit � 3.68. Since � 3.68, you reject H0 and
conclude that at least one of the cereals differs in
sugar content.

c. Breakfast Cereal

Condition A B C

3.000 5.333 5.500
2.333 2.500

0.167
Qobt 3.65 3.91

0.26

Qcrit � 3.67

Reject H0 for the comparison between cereals A
and C. Cereal A is significantly lower in sugar
content than cereal C. Retain H0 for all other
comparisons.

d. Breakfast Cereal

Condition A B C

3.000 5.333 5.500
2.333 2.500

0.167
Qobt 3.65 3.91

0.26
Qcrit 3.01 3.67

3.01

Xi � Xj

X

Xi � Xj

X

Fobt

Fobt

20. � 2.83, and tcrit � �2.120. Since � 2.120,
you reject H0 and conclude that the decrease ob-
tained with biofeedback training cannot be at-
tributed solely to other factors, such as attention.
The biofeedback training itself has an effect on
tension headaches. It appears to decrease them.

21. � 0.60, and tcrit � �2.228. Since � 2.228,
we retain H0. Based on these data, we cannot
conclude that hiring part-time workers instead of
full-time workers will affect productivity.

22. a. � �2.83, and tcrit � �2.131. Since 
� 2.131, you reject H0 and conclude that the clin-
ician was right. Depression interferes with sleep.
b. .Yes, this is a large effect, according to
Cohen’s criteria.

23. � 2.11 and tcrit � �2.201. Since � 2.201,
you retain H0.You cannot conclude that early ex-
posure to schooling affects IQ.

24. a. � 2.23, and tcrit � �2.074. Since �
2.074, you reject H0 and conclude that sleep has
an effect on memory. It appears to improve it.
b. 95% confidence interval � 0.13–3.70. Reject
H0. Size of effect � 0.13–3.70 more objects. c.
99% confidence interval � �0.51–4.34. We are
99% confident that the interval �0.51–4.34 con-
tains the real effect. Since 0 is one of those values,
we conclude by failing to reject H0. We cannot af-
firm H1.The results of the experiment are not sig-
nificant at � � 0.01. Check it out for yourself, us-
ing the null-hypothesis approach and � � 0.01.

25. a. � 5.36, and tcrit � �3.106. Since �
3.106, you reject H0 and conclude that high levels
of curiosity in childhood appears to effect IQ.
It seems to increase it. b. . This is a
large effect, according to Cohen’s criteria.

26. � 1.98, and tcrit � �2.160. Since � 2.160,
you retain H0 and conclude that the data do not
allow the conclusion that women and men differ
in recalling emotional events. However, you also
note that is very close to tcrit. With only 15
subjects, power is probably low and it may be
premature to give up on H1.

27. � 3.28, and tcrit � �2.101. Since � 2.101,
you reject H0 and conclude that women and men
differ in recalling emotional events. Women ap-
pear to recall emotional events better than men.
Increasing the power of the experiment allowed
H0 to be rejected.

28. � 3.14, and tcrit � �2.179. Since � 2.179,
you reject H0 and conclude that natural lighting
affects student learning. It appears to improve it.

0 tobt 0tobt

0 tobt 0tobt

tobt

0 tobt 0tobt

d̂ � 1.55

0 tobt 0tobt

0 tobt 0tobt

0 tobt 0tobt

d̂ � 1.37

0 tobt 0tobt

0 tobt 0tobt

0 tobt 0tobt
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Reject H0 for the comparison of cereals B and C.
Cereal A is significantly lower in sugar content
than cereals B and C. Retain H0 for the compari-
son between cereals B and C. We cannot con-
clude that they differ in sugar content.

21. a. Source SS df s 2 Fobt

Between 108.333 13 36.111 5.40
Within 133.667 20 16.683

Total 242.000 23

Fcrit � 3.10. Since � 3.10, we reject H0 and
conclude that age affects memory.
b. , accounting for 35.5% of the vari-
ance.
c. �2 � 0.448, accounting for 44.8% of the vari-
ance.
e. � 3.13, and tcrit � �2.086. Reject H0 and
conclude that the 60-year-old group is signifi-
cantly different from the 30-year-old group.

f. Condition 60 yr 30 yr 50 yr 40 yr

X 8.833 13.500 13.667 14.000
Xi � Xj 14.667 14.834 15.167

10.167 10.500
10.333

Qobt 14.42 14.58 14.90
10.16 10.47

10.32
Qcrit 12.95 13.58 13.96

12.95 13.58
12.95

Reject H0 for all comparisons involving the
60-year-old group. This age group is significantly
different from each of the other age groups.
Retain H0 for all other comparisons. It appears
that memory begins to deteriorate somewhere
between the ages of 50 and 60.

22. a. Source SS df s 2 Fobt

Between 100.167 12 50.084 4.87
Within 192.500 19 10.278

Total 192.667 11

Fcrit � 4.26. Since � 4.26, we reject H0 and
conclude that the batteries of at least one manu-
facturer differ regarding useful life.

Fobt

tobt


̂2 � 0.355

Fobt
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b. Battery

Condition C B A

X 49.5 49.75 56.75
Xi � Xj 0.25 7.25

7.00
Qobt 0.17 5.04

4.87
Qcrit � 3.95

Reject H0 for the comparisons between the bat-
teries of manufacturer A and the other two man-
ufacturers. Retain H0 for the comparison
between the batteries of manufacturers B and C.
The batteries of manufacturer A have signifi-
cantly longer life. On this basis, you recommend
them over the batteries made by manufacturers
B and C.

23. a. Source SS df s2 Fobt

Between 221.6 13 73.867 22.77
Within 116.8 36 13.244

Total 338.4 39

Fcrit � 2.86. Since � 2.86, we reject H0 and
conclude that hormone X affects sexual behavior.
b. , accounting for 62.0% of the vari-
ance.

c. � 7.20, and tcrit � �2.029. Reject H0 and
conclude that concentration 3 of hormone X sig-
nificantly increases the number of matings.

d. Concentration of 
Hormone X

Condition 0 1 2 3

X 5.6 5.8 8.4 11.4
Xi � Xj 0.2 2.8 5.8

2.6 5.6
3.0

Qobt 0.35 4.92 10.18
4.56 9.83

5.27
Qcrit 2.87 3.46 3.81

2.87 3.46
2.87

tobt


̂2 � 0.620

Fobt



Reject H0 for cognitive restructuring (2) and as-
sertiveness training (3) versus the placebo con-
trol group (1). Retain H0 for exercise/nutrition
(4) versus the placebo group (1). Reject H0 for
cognitive restructuring (2) and assertiveness
training (3) versus exercise/nutrition (4). Retain
H0 for cognitive restructuring (2) versus as-
sertiveness training (3).

25. a. Source SS df s2 Fobt

Between 80.11 12 40.06 8.54
Within 70.33 15 14.69

Total 150.44 17

Fobt � 8.54, � 3.68, reject H0 and conclude
that acupuncture in combination with counseling
affects cocaine addition. They appear to help re-
duce cocaine addiction.

b. �̂2 � 0.46

c. �2 � 0.53

26. a. Source SS df s2 Fobt

Between 16.53 12 8.27 0.12
Within 795.20 12 66.27

Total 811.73 14

Fobt � 0.12, � 3.88, retain H0 and conclude
that the data do not support the hypothesis that
any of the tests are different in difficulty. Note,
since � 1.00, you could have concluded to re-
tain H0 without determining Fcrit.

CHAPTER 16

11. a. The different types of intervening material
have the same effect on recall. � . The
different amounts of repetition have the same
effect on recall. � � . There is no in-
teraction between the number of repetitions
and the type of intervening material in their ef-
fects on recall. With any main effects removed,

.ma1b1
� ma1b2

� ma1b3
� ma2b1

� ma2b2
� ma2b3

mb3
mb2

mb1

ma2
ma1

Fobt

Fcrit

Fcrit

Reject H0 for all comparisons except between
the placebo and concentration 1.Thus, increasing
the concentration of hormone X increases the
number of matings. The failure to find a signifi-
cant effect for concentration 1 was probably due
to low power to detect a difference for this low
level of concentration. Alternatively, there may
be a threshold that must be exceeded before the
hormone becomes effective.

e. Concentration of
Hormone X

Condition 0 1 2 3

X 5.6 5.8 8.4 11.4
Xi � Xj 0.2 2.8 15.8

2.6 15.6
13.0

Qobt 0.35 4.92 10.18
4.56 19.83

15.27
Qcrit � 3.81

Same conclusion as in part d.

24. a. The treatments are equally effective; �1 �
�2 � �3 � �4

b. Source SS df s 2 Fobt

Between 1762.88 13 254.29 15.92
Within 1574.90 36 115.97

Total 1337.78

� 15.92, Fcrit � 2.86; reject H0, affirm H1.

c. Treatments

Condition 1 2 3 4

X 22.80 11.60 16.00 20.90
Xi � Xj 11.20 16.80 11.90

14.40 19.30
14.90

Qobt 18.86 15.38 11.50
13.48 17.36

13.88
Qcrit � 3.79

Fobt
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b. Source SS df s 2 Fobt Fcrit

Rows (in- 121.000 11 121.000 41.41 4.17
tervening
material)

Columns 176.167 12 188.084 30.14 3.32
(number
of repeti-
tions)

Rows � 135.166 12 117.583 16.02 3.32
columns

Within- 187.667 30 112.922
cells

Total 420.000 35

Since in all cases � Fcrit, H0 is rejected for
both main effects and the interaction effect.
From the pattern of cell means, it is apparent
that (1) increasing the number of repetitions in-
creases recall; (2) using nonsense syllable pairs
for intervening material decreases recall; and
(3) there is an interaction such that the lower
the number of repetitions, the greater the dif-
ference in effect between the two types of
material.

13. a. For the concentrations administered, previous
use of Drowson has no effect on its effectiveness.

� . There is no difference between the
placebo and the minimum recommended dosage
of Drowson in their effects on insomnia. � .
There is no interaction between the previous use
of Drowson and the effect on insomnia of the
two concentrations of Drowson. With any main
effects removed, .

b. Source SS df s 2 Fobt Fcrit

Rows 1639.031 11 639.031 11.63 4.20
(previous
use)

Columns 1979.031 11 979.031 17.82 4.20
(concen-
tration)

Rows � 1472.782 11 472.782 18.61 4.20
columns

Within- 1538.125 28 154.933
cells

Total 3628.969 31

ma1b1
� ma1b2

� ma2b1
� ma2b2

mb2
mb1

ma2
ma1

Fobt
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Since � Fcrit for each comparison, H0 is re-
jected for both main effects and the interaction
effect. From the pattern of cell means, it is ap-
parent that Drowson promotes faster sleep onset
in subjects who have had no previous use of the
drug. However, the effect, if any, is much lower in
chronic users, indicating that a tolerance to
Drowson develops with chronic use.

CHAPTER 17

16. Since we retain H0.
These data do not support the hypothesis that
the prevailing view is fat people are more jolly.

17. Since we reject H0

and conclude that big-city and small-town
dwellers differ in their helpfulness to strangers.
Converting the frequencies to proportions, we
can see that the small-town dwellers were more
helpful.

19. and Since 7.815,
we reject H0 and conclude that the wrappings
differ in their effect on sales.The manager should
choose wrapping C.

20. � 7.34. Since Hcrit � 5.991, we reject H0 and
conclude that at least one of the occupations 
differs from at least one of the others.

21. Since we retain H0.
Based on these data, we cannot conclude that
church attendance and educational level are re-
lated.

22. and Since � 9.488,
we retain H0. Yes, the advertising is misleading
because the data do not show a significant differ-
ence among brands.

23. and Since �
5.991, we reject H0 and conclude that there is a
relationship between the amount of contact
white housewives have with blacks and changes
in their attitudes toward blacks. The contact in
the integrated housing projects appears to have
had a positive effect on the attitude of the white
housewives.

24. � 0.69. Since Hcrit � 9.210, we must retain
H0. We cannot conclude that birth order affects
assertiveness.

25. and Since �
9.488, we reject H0. There is a relationship be-
tween gambling behavior and the different

x2
obtx2

crit � 9.488.x2
obt � 29.57,

Hobt

x2
obtx2

crit � 5.991.x2
obt � 12.73,

x2
obtx2

crit � 9.488.x2
obt � 3.56,

x2
crit � 3.841,x2

obt � 3.00.

Hobt

x2
obt 7x2

crit � 7.815.x2
obt � 13.28,

x2
crit � 3.841,x2

obt � 21.63.

x2
crit � 3.841,x2

obt � 0.80.

Fobt



33. � 10.16, Hcrit � 5.991. Reject H0; affirm H1.
Sleep deprivation has an effect on the ability to
maintain sustained attention.

34. Reject H0; affirm H1.
There is a relationship between cohabitation and
divorce.There is a significantly higher proportion
of divorced couples among those that cohabited
before marriage than among those that did not
cohabit before marriage.

35. Since you reject H0

and conclude that there is a relationship between
gender and attitude regarding government in-
volvement in citizen affairs. Men appear to favor
a small role, whereas women seem to favor a
large one.

36. Since retain H0 and
conclude that even though overall, black patients
received fewer angiograms than white patients,
physician racial bias does not appear to have
contributed to this phenomenon.

37. Since you reject H0 and
conclude that the number of single-father homes
has changed. It appears to have increased.

38. Since reject H0 and
conclude that cigarette smoking affects gender of
offspring. It appears that when both parents
smoke at least one pack of cigarettes a day, their
offspring are more likely to be girls.

39. Since reject H0 and
conclude that the survey does reveal a reliable
preference. Women undergraduates at the uni-
versity seem to prefer soccer.

40. a. Since reject H0 and
conclude that the September 11, 2001, attacks af-
fected religious sentiment. They appeared to in-
crease it. b. Since 
retain H0; the data do not support the hypothesis
that increased religious sentiment was still evi-
dent 1 year after the attacks. It appears that reli-
gious sentiment has returned to preattack levels.

CHAPTER 18

11. a. The alternative hypothesis states that the four
brands of scotch whiskey are not equal in prefer-
ence among the scotch drinkers in New York City.
b. The null hypothesis states that the four brands
of scotch whiskey are equal in preference among
the scotch drinkers in New York City.

x2
crit � 3.841,x2

obt � 0.69.

x2
crit � 3.841,x2

obt � 79.23.

x2
crit � 5.991,x2

obt � 80.00.

x2
crit � 5.991,x2

obt � 8.333.

x2
crit � 3.841,x2

obt � 5.00.

x2
crit � 3.841,x2

obt � 0.51.

x2
crit � 5.991,x2

obt � 19.82.

x2
obt � 6.454, x2

crit � 3.841.

Hobtmotives. Those high in power motivation appear
to take the high risks more often. Most of the
subjects with high power motivation placed high-
risk bets, whereas the majority of those high in
achievement motivation opted for medium-risk
bets and the majority of those high in affiliation
motivation chose the low-risk bets. These results
are consistent with the views that (1) people with
high power motivation will take high risks to
achieve the attention and status that accompany
such risk, (2) people high in achievement moti-
vation will take medium risks to maximize the
probability of having a sense of personal accom-
plishment, and (3) people with high affiliation
motivation will take low risks to avoid competi-
tion and maximize the sense of belongingness.

26. � 15, and Tcrit � 17. Since � 17, you re-
ject H0 and conclude that the film promotes more
favorable attitudes toward major oil companies.

27. � 1, and Tcrit � 5. Since � 5, you reject
H0 and conclude that biofeedback to relax
frontalis muscle affects tension headaches. It ap-
pears to decrease them.

28. � 14, and Tcrit � 3. Since � 3, you retain
H0. You cannot conclude that the pill affects
blood pressure.

30. a. The alternative hypothesis states that FSH
increases the singing rate in captive male cotin-
gas. b. The null hypothesis states that FSH
does not increase the singing rate of captive male
cotingas. c. � 15.5, � 64.5. Since

� 20, you reject H0 and conclude that FSH
appears to increase the singing rate of male
cotingas.

31. a. The alternative hypothesis states that right-
handed and left-handed people differ in spatial
ability. b. The null hypothesis states that
right-handed people and left-handed people are
equal in spatial ability. c. � 20.5, =
69.5. Since � 20, you retain H0. You cannot
conclude that right-handed and left-handed peo-
ple differ in spatial ability.

32. a. The alternative hypothesis states that hypnosis
is more effective than the standard treatment in re-
ducing test anxiety. b. The null hypothesis
states that hypnosis is not more effective than the
standard treatment in reducing test anxiety.
c. � 31, � 90. Since � 34, you reject
H0 and conclude that hypnosis is more effec-
tive than the standard treatment in reducing test
anxiety.

UobtU¿obtUobt

Uobt

U¿obtUobt

Uobt

U¿obtUobt

TobtTobt

TobtTobt

TobtTobt
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c. Since
retain H0. You cannot conclude that the scotch
drinkers in New York City differ in their prefer-
ence for the four brands of scotch whiskey.

12. a. The alternative hypothesis states that ACTH
affects avoidance learning. b. The
null hypothesis states that ACTH has no effect
on avoidance learning. �1 � �2. c. �
�3.24, tcrit � �2.878. Since � 2.878, reject H0

and conclude that ACTH has an effect on avoid-
ance learning. It appears to facilitate avoidance
learning. d. You may be making a Type I
error. The null hypothesis may be true and it
has been rejected. e. These results apply to
the 100-day-old male rats living in the university
vivarium at the time the sample was selected.
f. , large effect.

14. a. Exogenous thyroxin has no effect on activity.
Therefore, �1 � �2 � �3 � �4.

b. Source SS df s 2 Fobt

Between 260.9 3 86.967 33.96
Within 92.2 36 2.561

Total 353.1 39

Fcrit � 2.86. Since � 2.86, you reject H0 and
conclude that exogenous thyroxin affects activity
level. c. , accounting for 71.2% 
of the variability. d. � 8.94, and tcrit �
�2.029. Reject H0 and conclude that there is a
significant difference between high amounts of
exogenous thyroxin and saline on activity level.
Exogenous thyroxin appears to increase activity
level.

e. Amount of Thyroxin

Zero, Low, Moderate, High,
Condition 1 2 3 4

3.0 3.9 7.1 9.4
0.9 4.1 6.4

3.2 5.5
Qobt 1.78 8.10 12.65

6.32 10.87
4.54

Qcrit � 3.81

Xi � Xj

X

tobt


̂2 � 0.712

Fobt

d̂ � 1.45

0 tobt 0
tobt

m1 � m2.

x2
obt 6  7.815,x2

obt � 2.72, x2
crit � 7.815.
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Reject H0 for all comparisons except between
groups 1 and 2. Increases in the amount of ex-
ogenous thyroxin produce significantly higher
levels of activity. The failure to find a significant
difference between groups 1 and 2 is probably
due to low power. Alternatively, there may be a
threshold that must be exceeded before exoge-
nous thyroxin becomes effective.

15. a. The alternative hypothesis states that dieting
plus exercise is more effective in producing
weight loss than dieting alone. b. The null
hypothesis states that dieting plus exercise is not
more effective in producing weight loss than di-
eting alone. c. Since it is not valid to use the
t test for correlated groups, the next most sensi-
tive test is the Wilcoxon signed ranks test. �

10.5, and Tcrit � 17. Since � 17, reject H0 and
conclude that dieting plus exercise is more effec-
tive than dieting alone in producing weight loss.

16. a. Sign test b. p(8, 9, 10, 11, or 12 pluses) �
0.1937. Since the obtained probability is greater
than alpha, you retain H0. c. The Wilcoxon
signed ranks test is more powerful than the sign
test. d. Power � 0.3907, beta � 0.6093

17. a. The null hypothesis states that there is no
relationship between gender and time-of-day pref-
erence for having intercourse. b.

Since retain H0. You
cannot conclude that there is a relationship be-
tween gender and time-of-day preference for
having intercourse.

18. a. The null hypothesis states that food depri-
vation (hunger) has no effect on the number
of food-related objects reported. Therefore,
�1 � �2 � �3.

b. Source SS df s2 Fobt

Between 256.083 2 128.042 11.85
Within 226.875 21 10.804

Total 482.958 23

Fcrit � 3.47. Since � 3.47, reject H0 and con-
clude that food deprivation has an effect on the
number of food-related objects reported.

Fobt

x2
obt 6  3.841,x2

crit � 3.841.
x2

obt � 2.14,

Tobt

Tobt



course of action that is favored. b.
Since � 5.991, reject

H0 and conclude that there is a relationship be-
tween the occupations and the course of action
that is favored. From the proportions shown in
the sample, business is in favor of letting the oil
price rise, the homemakers favor gasoline ra-
tioning, and labor is fairly evenly divided.

24. a. The null hypothesis states that men and women
do not differ in logical reasoning ability.
b. � 25.5, � 37.5, and Ucrit � 12.
Since � 12, retain H0. You cannot con-
clude that men and women differ in logical rea-
soning ability. c. You may be making a
Type II error. The null hypothesis may be false
and you retained it.

25. 24.58–33.42

26. a. The null hypothesis states that Hispanics are
not underrepresented in high school teachers in
the part of the country the researcher lives.
Therefore, the sample is a random sample from a
population of high school teachers where the
percentage of Hispanic teachers equals 22%.
b. 12.59, and Since �
3.841, reject H0. It appears that high school
teachers are underrepresented in the geographi-
cal locale studied.

27. � 1.46. Since Hcrit � 5.991, we must retain
H0.We cannot conclude that physical science pro-
fessors are more authoritarian than social science
professors.

28. Source SS df s 2 Fobt Fcrit

Rows (time) 17.633 11 17.633 11.76* 4.26
Columns 28.800 12 14.400 19.60* 3.40

(activity)
Rows � 10.267 12 10.133 10.09 3.40

columns
Within-cells 36.000 24 11.500

Total 82.700 29

*Since Fobt � Fcrit for the rows and columns effects, we reject
H0 for the main effects. We must retain H0 for the interaction
effect. It appears that performance is affected differently by at
least one of the activity conditions and by the time of day
when it is conducted. It appears that napping and afternoon
produce superior performance.

Hobt

x2
obtx2

crit � 3.841.x2
obt �

Uobt

U¿obtUobt

x2
obt13.79, and x2

crit � 5.991.
x2

obt �c. �̂2 � 0.47

d. �2 � 0.53

e. Food Deprivation

1 hr, 4 hrs, 12 hrs,
Condition 1 2 3

4.750 8.625 12.750
3.875 8.000

4.125
Qobt 3.33 6.88

3.55
Qcrit 2.94 3.57

2.94

Reject H0 for all comparisons. All three condi-
tions differ significantly from each other. In-
creasing the number of hours from eating results
in an increase in the number of food-related ob-
jects reported.

19. a. � 10.78, and tcrit � 2.500. Since �
2.500, reject H0. Yes, the engineer is correct in her
opinion. The new process results in significantly
longer life for TV picture tubes. b. ,
large effect.

20. a. The alternative hypothesis states that alcohol
has an effect on aggressiveness,
b. The null hypothesis states that alcohol has no
effect on aggressiveness. �1 � �2. c. �
�3.93, and tcrit � �2.131. Since � 2.131, re-
ject H0 and conclude that alcohol has an effect
on aggressiveness. It appears to increase
aggressiveness.

21. a. � 0.70. b. rcrit � 0.5139. Since �
0.5139, reject H0. The correlation is significant.
c. r2 � 0.48. d. Yes, although it is clear that
there is still a lot of variability unaccounted for.

22. a. The alternative hypothesis states that smoking
affects heart rate. b. The null hy-
pothesis states that smoking has no effect on heart
rate. �D � 0. c. � �3.40, and tcrit �
�2.262. Since � 2.262, reject H0 and conclude
that smoking affects heart rate. It appears to in-
crease heart rate. d. , large effect.

23. a. The null hypothesis states that there is no
relationship between the occupations and the

d̂ � 1.08

0 tobt 0
tobt

m D � 0.

0robt 0robt

0 tobt 0
tobt

m1 � m2.

d̂ � 2.20

0 tobt 0tobt

Xi � Xj

X
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0.00 .0000 .5000
0.01 .0040 .4960
0.02 .0080 .4920
0.03 .0120 .4880
0.04 .0160 .4840

0.05 .0199 .4801
0.06 .0239 .4761
0.07 .0279 .4721
0.08 .0319 .4681
0.09 .0359 .4641

0.10 .0398 .4602
0.11 .0438 .4562
0.12 .0478 .4522
0.13 .0517 .4483
0.14 .0557 .4443

0.15 .0596 .4404
0.16 .0636 .4364
0.17 .0675 .4325
0.18 .0714 .4286
0.19 .0753 .4247

0.20 .0793 .4207
0.21 .0832 .4168
0.22 .0871 .4129
0.23 .0910 .4090
0.24 .0948 .4052

0.25 .0987 .4013
0.26 .1026 .3974
0.27 .1064 .3936
0.28 .1103 .3897
0.29 .1141 .3859

0.30 .1179 .3821
0.31 .1217 .3783
0.32 .1255 .3745
0.33 .1293 .3707
0.34 .1331 .3669

0.35 .1368 .3632
0.36 .1406 .3594
0.37 .1443 .3557
0.38 .1480 .3520
0.39 .1517 .3483

0.40 .1554 .3446
0.41 .1591 .3409
0.42 .1628 .3372
0.43 .1664 .3336
0.44 .1700 .3300

t a b l e A Areas under the normal curve

Area Area Area Area 
Between Beyond Between Beyond 

z Mean and z z z Mean and z z
A B C A B C

0.45 .1736 .3264
0.46 .1772 .3228
0.47 .1808 .3192
0.48 .1844 .3156
0.49 .1879 .3121

0.50 .1915 .3085
0.51 .1950 .3050
0.52 .1985 .3015
0.53 .2019 .2981
0.54 .2054 .2946

0.55 .2088 .2912
0.56 .2123 .2877
0.57 .2157 .2843
0.58 .2190 .2810
0.59 .2224 .2776

0.60 .2257 .2743
0.61 .2291 .2709
0.62 .2324 .2676
0.63 .2357 .2643
0.64 .2389 .2611

0.65 .2422 .2578
0.66 .2454 .2546
0.67 .2486 .2514
0.68 .2517 .2483
0.69 .2549 .2451

0.70 .2580 .2420
0.71 .2611 .2389
0.72 .2642 .2358
0.73 .2673 .2327
0.74 .2704 .2296

0.75 .2734 .2266
0.76 .2764 .2236
0.77 .2794 .2206
0.78 .2823 .2177
0.79 .2852 .2148

0.80 .2881 .2119
0.81 .2910 .2090
0.82 .2939 .2061
0.83 .2967 .2033
0.84 .2995 .2005

0.85 .3023 .1977
0.86 .3051 .1949
0.87 .3078 .1922
0.88 .3106 .1894
0.89 .3133 .1867

Mean

B

z

Mean

C

z

Column A gives the positive z
score.
Column B gives the area be-
tween the mean and z. Since
the curve is symmetrical, areas
for negative z scores are the
same as for positive ones.
Column C gives the area that is
beyond z.
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(continued)

0.90 .3159 .1841
0.91 .3186 .1814
0.92 .3212 .1788
0.93 .3238 .1762
0.94 .3264 .1736

0.95 .3289 .1711
0.96 .3315 .1685
0.97 .3340 .1660
0.98 .3365 .1635
0.99 .3389 .1611

1.00 .3413 .1587
1.01 .3438 .1562
1.02 .3461 .1539
1.03 .3485 .1515
1.04 .3508 .1492

1.05 .3531 .1469
1.06 .3554 .1446
1.07 .3577 .1423
1.08 .3599 .1401
1.09 .3621 .1379

1.10 .3643 .1357
1.11 .3665 .1335
1.12 .3686 .1314
1.13 .3708 .1292
1.14 .3729 .1271

1.15 .3749 .1251
1.16 .3770 .1230
1.17 .3790 .1210
1.18 .3810 .1190
1.19 .3830 .1170

1.20 .3849 .1151
1.21 .3869 .1131
1.22 .3888 .1112
1.23 .3907 .1093
1.24 .3925 .1075

1.25 .3944 .1056
1.26 .3962 .1038
1.27 .3980 .1020
1.28 .3997 .1003
1.29 .4015 .0985

1.30 .4032 .0968
1.31 .4049 .0951
1.32 .4066 .0934
1.33 .4082 .0918
1.34 .4099 .0901

t a b l e A Areas under the normal curve (continued)

Area Area Area Area 
Between Beyond Between Beyond 

z Mean and z z z Mean and z z
A B C A B C

1.35 .4115 .0885
1.36 .4131 .0869
1.37 .4147 .0853
1.38 .4162 .0838
1.39 .4177 .0823

1.40 .4192 .0808
1.41 .4207 .0793
1.42 .4222 .0778
1.43 .4236 .0764
1.44 .4251 .0749

1.45 .4265 .0735
1.46 .4279 .0721
1.47 .4292 .0708
1.48 .4306 .0694
1.49 .4319 .0681

1.50 .4332 .0668
1.51 .4345 .0655
1.52 .4357 .0643
1.53 .4370 .0630
1.54 .4382 .0618

1.55 .4394 .0606
1.56 .4406 .0594
1.57 .4418 .0582
1.58 .4429 .0571
1.59 .4441 .0559

1.60 .4452 .0548
1.61 .4463 .0537
1.62 .4474 .0526
1.63 .4484 .0516
1.64 .4495 .0505

1.65 .4505 .0495
1.66 .4515 .0485
1.67 .4525 .0475
1.68 .4535 .0465
1.69 .4545 .0455

1.70 .4554 .0446
1.71 .4564 .0436
1.72 .4573 .0427
1.73 .4582 .0418
1.74 .4591 .0409

1.75 .4599 .0401
1.76 .4608 .0392
1.77 .4616 .0384
1.78 .4625 .0375
1.79 .4633 .0367

Column A gives the positive z
score.
Column B gives the area be-
tween the mean and z. Since
the curve is symmetrical, areas
for negative z scores are the
same as for positive ones.
Column C gives the area that is
beyond z.

Mean

B

z

Mean

C

z
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1.80 .4641 .0359
1.81 .4649 .0351
1.82 .4656 .0344
1.83 .4664 .0336
1.84 .4671 .0329

1.85 .4678 .0322
1.86 .4686 .0314
1.87 .4693 .0307
1.88 .4699 .0301
1.89 .4706 .0294

1.90 .4713 .0287
1.91 .4719 .0281
1.92 .4726 .0274
1.93 .4732 .0268
1.94 .4738 .0262

1.95 .4744 .0256
1.96 .4750 .0250
1.97 .4756 .0244
1.98 .4761 .0239
1.99 .4767 .0233

2.00 .4772 .0228
2.01 .4778 .0222
2.02 .4783 .0217
2.03 .4788 .0212
2.04 .4793 .0207

2.05 .4798 .0202
2.06 .4803 .0197
2.07 .4808 .0192
2.08 .4812 .0188
2.09 .4817 .0183

2.10 .4821 .0179
2.11 .4826 .0174
2.12 .4830 .0170
2.13 .4834 .0166
2.14 .4838 .0162

2.15 .4842 .0158
2.16 .4846 .0154
2.17 .4850 .0150
2.18 .4854 .0146
2.19 .4857 .0143

2.20 .4861 .0139
2.21 .4864 .0136
2.22 .4868 .0132
2.23 .4871 .0129
2.24 .4875 .0125

t a b l e A Areas under the normal curve (continued)

Area Area Area Area 
Between Beyond Between Beyond 

z Mean and z z z Mean and z z
A B C A B C

2.25 .4878 .0122
2.26 .4881 .0119
2.27 .4884 .0116
2.28 .4887 .0113
2.29 .4890 .0110

2.30 .4893 .0107
2.31 .4896 .0104
2.32 .4898 .0102
2.33 .4901 .0099
2.34 .4904 .0096

2.35 .4906 .0094
2.36 .4909 .0091
2.37 .4911 .0089
2.38 .4913 .0087
2.39 .4916 .0084

2.40 .4918 .0082
2.41 .4920 .0080
2.42 .4922 .0078
2.43 .4925 .0075
2.44 .4927 .0073

2.45 .4929 .0071
2.46 .4931 .0069
2.47 .4932 .0068
2.48 .4934 .0066
2.49 .4936 .0064

2.50 .4938 .0062
2.51 .4940 .0060
2.52 .4941 .0059
2.53 .4943 .0057
2.54 .4945 .0055

2.55 .4946 .0054
2.56 .4948 .0052
2.57 .4949 .0051
2.58 .4951 .0049
2.59 .4952 .0048

2.60 .4953 .0047
2.61 .4955 .0045
2.62 .4956 .0044
2.63 .4957 .0043
2.64 .4959 .0041

2.65 .4960 .0040
2.66 .4961 .0039
2.67 .4962 .0038
2.68 .4963 .0037
2.69 .4964 .0036

Column A gives the positive z
score.
Column B gives the area be-
tween the mean and z. Since
the curve is symmetrical, areas
for negative z scores are the
same as for positive ones.
Column C gives the area that is
beyond z.

Mean

B

z

Mean

C

z
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2.70 .4965 .0035
2.71 .4966 .0034
2.72 .4967 .0033
2.73 .4968 .0032
2.74 .4969 .0031

2.75 .4970 .0030
2.76 .4971 .0029
2.77 .4972 .0028
2.78 .4973 .0027
2.79 .4974 .0026

2.80 .4974 .0026
2.81 .4975 .0025
2.82 .4976 .0024
2.83 .4977 .0023
2.84 .4977 .0023

2.85 .4978 .0022
2.86 .4979 .0021
2.87 .4979 .0021
2.88 .4980 .0020
2.89 .4981 .0019

2.90 .4981 .0019
2.91 .4982 .0018
2.92 .4982 .0018
2.93 .4983 .0017
2.94 .4984 .0016

2.95 .4984 .0016
2.96 .4985 .0015
2.97 .4985 .0015
2.98 .4986 .0014
2.99 .4986 .0014

t a b l e A Areas under the normal curve (continued)

Area Area Area Area 
Between Beyond Between Beyond 

z Mean and z z z Mean and z z
A B C A B C

3.00 .4987 .0013
3.01 .4987 .0013
3.02 .4987 .0013
3.03 .4988 .0012
3.04 .4988 .0012

3.05 .4989 .0011
3.06 .4989 .0011
3.07 .4989 .0011
3.08 .4990 .0010
3.09 .4990 .0010

3.10 .4990 .0010
3.11 .4991 .0009
3.12 .4991 .0009
3.13 .4991 .0009
3.14 .4992 .0008

3.15 .4992 .0008
3.16 .4992 .0008
3.17 .4992 .0008
3.18 .4993 .0007
3.19 .4993 .0007

3.20 .4993 .0007
3.21 .4993 .0007
3.22 .4994 .0006
3.23 .4994 .0006
3.24 .4994 .0006

3.30 .4995 .0005
3.40 .4997 .0003
3.50 .4998 .0002
3.60 .4998 .0002
3.70 .4999 .0001

Column A gives the positive z
score.
Column B gives the area be-
tween the mean and z. Since
the curve is symmetrical, areas
for negative z scores are the
same as for positive ones.
Column C gives the area that is
beyond z.

Mean

B

z

Mean

C

z
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t a b l e D Critical values of Student’s t distribution

The values listed in the table are the critical values of t for the specified degrees of freedom (left column) and the 
alpha level (column heading). For two-tailed alpha levels, tcrit is both � and �. To be significant,

Level of Significance for One-Tailed Test

df
.10 .05 .025 .01 .005 .0005

Level of Significance for Two-Tailed Test

.20 .10 .05 .02 .01 .001

1 3.078 6.314 12.706 31.821 63.657 636.619
2 1.886 2.920 4.303 6.965 9.925 31.598
3 1.638 2.353 3.182 4.541 5.841 12.941
4 1.533 2.132 2.776 3.747 4.604 8.610
5 1.476 2.015 2.571 3.365 4.032 6.859

6 1.440 1.943 2.447 3.143 3.707 5.959
7 1.415 1.895 2.365 2.998 3.499 5.405
8 1.397 1.860 2.306 2.986 3.355 5.041
9 1.383 1.833 2.262 2.821 3.250 4.781

10 1.372 1.812 2.228 2.764 3.169 4.587

11 1.363 1.796 2.201 2.718 3.106 4.437
12 1.356 1.782 2.179 2.681 3.055 4.318
13 1.350 1.771 2.160 2.650 3.012 4.221
14 1.345 1.761 2.145 2.624 2.977 4.140
15 1.341 1.753 2.131 2.602 2.947 4.073

16 1.337 1.746 2.120 2.583 2.921 4.015
17 1.333 1.740 2.110 2.567 2.898 3.965
18 1.330 1.734 2.101 2.552 2.878 3.922
19 1.328 1.729 2.093 2.539 2.861 3.883
20 1.325 1.725 2.086 2.528 2.845 3.850

21 1.323 1.721 2.080 2.518 2.831 3.819
22 1.321 1.717 2.074 2.508 2.819 3.792
23 1.319 1.714 2.069 2.500 2.807 3.767
24 1.318 1.711 2.064 2.492 2.797 3.745
25 1.316 1.708 2.060 2.485 2.787 3.725

26 1.315 1.706 2.056 2.479 2.779 3.707
27 1.314 1.703 2.052 2.473 2.771 3.690
28 1.313 1.701 2.048 2.467 2.763 3.674
29 1.311 1.699 2.045 2.462 2.756 3.659
30 1.310 1.697 2.042 2.457 2.750 3.646

40 1.303 1.684 2.021 2.423 2.704 3.551
60 1.296 1.671 2.000 2.390 2.660 3.460

120 1.289 1.658 1.980 2.358 2.617 3.373
� 1.282 1.645 1.960 2.326 2.576 3.291

| tobt| � | tcrit|.
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t a b l e E Critical values of Pearson r

The values listed in the table are the critical values of r for the specified degrees of freedom (left column) and the 
alpha level (column heading). For two-tailed alpha levels, rcrit is both � and �. To be significant,

Level of Significance for One-Tailed Test

df � N � 2
.05 .025 .01 .005 .0005

Level of Significance for Two-Tailed Test

.10 .05 .02 .01 .001

1 .9877 .9969 .9995 .9999 1.0000
2 .9000 .9500 .9800 .9900 .9990
3 .8054 .8783 .9343 .9587 .9912
4 .7293 .8114 .8822 .9172 .9741
5 .6694 .7545 .8329 .8745 .9507

6 .6215 .7067 .7887 .8343 .9249
7 .5822 .6664 .7498 .7977 .8982
8 .5494 .6319 .7155 .7646 .8721
9 .5214 .6021 .6851 .7348 .8471

10 .4973 .5760 .6581 .7079 .8233

11 .4762 .5529 .6339 .6835 .8010
12 .4575 .5324 .6120 .6614 .7800
13 .4409 .5139 .5923 .6411 .7603
14 .4259 .4973 .5742 .6226 .7420
15 .4124 .4821 .5577 .6055 .7246

16 .4000 .4683 .5425 .5897 .7084
17 .3887 .4555 .5285 .5751 .6932
18 .3783 .4438 .5155 .5614 .6787
19 .3687 .4329 .5034 .5487 .6652
20 .3598 .4227 .4921 .5368 .6524

25 .3233 .3809 .4451 .4869 .5974
30 .2960 .3494 .4093 .4487 .5541
35 .2746 .3246 .3810 .4182 .5189
40 .2573 .3044 .3578 .3932 .4896
45 .2428 .2875 .3384 .3721 .4648

50 .2306 .2732 .3218 .3541 .4433
60 .2108 .2500 .2948 .3248 .4078
70 .1954 .2319 .2737 .3017 .3799
80 .1829 .2172 .2565 .2830 .3568
90 .1726 .2050 .2422 .2673 .3375

100 .1638 .1946 .2301 .2540 .3211

|robt| � |rcrit|.



Tables 567

Text not available due to copyright restrictions



568 A P P E N I D X  D Tables

Text not available due to copyright restrictions



Tab
les

5
6
9

Degrees of
Freedom: Degrees of Freedom: Numerator

Denominator 1 2 3 4 5 6 7 8 9 10 11 12 14 16 20 24 30 40 50 75 100 200 500 �

36 4.11 3.26 2.86 2.63 2.48 2.36 2.28 2.21 2.15 2.10 2.06 2.03 1.98 1.93 1.87 1.82 1.78 1.72 1.69 1.65 1.62 1.59 1.56 1.55
7.39 5.25 4.38 3.89 3.58 3.35 3.18 3.04 2.94 2.86 2.78 2.72 2.62 2.54 2.43 2.35 2.26 2.17 2.12 2.04 2.00 1.94 1.90 1.87

38 4.10 3.25 2.85 2.62 2.46 2.35 2.26 2.19 2.14 2.09 2.05 2.02 1.96 1.92 1.85 1.80 1.76 1.71 1.67 1.63 1.60 1.57 1.54 1.53
7.35 5.21 4.34 3.86 3.54 3.32 3.15 3.02 2.91 2.82 2.75 2.69 2.59 2.51 2.40 2.32 2.22 2.14 2.08 2.00 1.97 1.90 1.86 1.84

40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.07 2.04 2.00 1.95 1.90 1.84 1.79 1.74 1.69 1.66 1.61 1.59 1.55 1.53 1.51
7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.88 2.80 2.73 2.66 2.56 2.49 2.37 2.29 2.20 2.11 2.05 1.97 1.94 1.88 1.84 1.81

42 4.07 3.22 2.83 2.59 2.44 2.32 2.24 2.17 2.11 2.06 2.02 1.99 1.94 1.89 1.82 1.78 1.73 1.68 1.64 1.60 1.57 1.54 1.51 1.49
7.27 5.15 4.29 3.80 3.49 3.26 3.10 2.96 2.86 2.77 2.70 2.64 2.54 2.46 2.35 2.26 2.17 2.08 2.02 1.94 1.91 1.85 1.80 1.78

44 4.06 3.21 2.82 2.58 2.43 2.31 2.23 2.16 2.10 2.05 2.01 1.98 1.92 1.88 1.81 1.76 1.72 1.66 1.63 1.58 1.56 1.52 1.50 1.48
7.24 5.12 4.26 3.78 3.46 3.24 3.07 2.94 2.84 2.75 2.68 2.62 2.52 2.44 2.32 2.24 2.15 2.06 2.00 1.92 1.88 1.82 1.78 1.75

46 4.05 3.20 2.81 2.57 2.42 2.30 2.22 2.14 2.09 2.04 2.00 1.97 1.91 1.87 1.80 1.75 1.71 1.65 1.62 1.57 1.54 1.51 1.48 1.46
7.21 5.10 4.24 3.76 3.44 3.22 3.05 2.92 2.82 2.73 2.66 2.60 2.50 2.42 2.30 2.22 2.13 2.04 1.98 1.90 1.86 1.80 1.76 1.72

48 4.04 3.19 2.80 2.56 2.41 2.30 2.21 2.14 2.08 2.03 1.99 1.96 1.90 1.86 1.79 1.74 1.70 1.64 1.61 1.56 1.53 1.50 1.47 1.45
7.19 5.08 4.22 3.74 3.42 3.20 3.04 2.90 2.80 2.71 2.64 2.58 2.48 2.40 2.28 2.20 2.11 2.02 1.96 1.88 1.84 1.78 1.73 1.70

50 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.02 1.98 1.95 1.90 1.85 1.78 1.74 1.69 1.63 1.60 1.55 1.52 1.48 1.46 1.44
7.17 5.06 4.20 3.72 3.41 3.18 3.02 2.88 2.78 2.70 2.62 2.56 2.46 2.39 2.26 2.18 2.10 2.00 1.94 1.86 1.82 1.76 1.71 1.68

55 4.02 3.17 2.78 2.54 2.38 2.27 2.18 2.11 2.05 2.00 1.97 1.93 1.88 1.83 1.76 1.72 1.67 1.61 1.58 1.52 1.50 1.46 1.43 1.41
7.12 5.01 4.16 3.68 3.37 3.15 2.98 2.85 2.75 2.66 2.59 2.53 2.43 2.35 2.23 2.15 2.06 1.96 1.90 1.82 1.78 1.71 1.66 1.64

60 4.00 3.15 2.76 2.52 2.37 2.25 2.17 2.10 2.04 1.99 1.95 1.92 1.86 1.81 1.75 1.70 1.65 1.59 1.56 1.50 1.48 1.44 1.41 1.39
7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.56 2.50 2.40 2.32 2.20 2.12 2.03 1.93 1.87 1.79 1.74 1.68 1.63 1.60

65 3.99 3.14 2.75 2.51 2.36 2.24 2.15 2.08 2.02 1.98 1.94 1.90 1.85 1.80 1.73 1.68 1.63 1.57 1.54 1.49 1.46 1.42 1.39 1.37
7.04 4.95 4.10 3.62 3.31 3.09 2.93 2.79 2.70 2.61 2.54 2.47 2.37 2.30 2.18 2.09 2.00 1.90 1.84 1.76 1.71 1.64 1.60 1.56

70 3.98 3.13 2.74 2.50 2.35 2.23 2.14 2.07 2.01 1.97 1.93 1.89 1.84 1.79 1.72 1.67 1.62 1.56 1.53 1.47 1.45 1.40 1.37 1.35
7.01 4.92 4.08 3.60 3.29 3.07 2.91 2.77 2.67 2.59 2.51 2.45 2.35 2.28 2.15 2.07 1.98 1.88 1.82 1.74 1.69 1.62 1.56 1.53

80 3.96 3.11 2.72 2.48 2.33 2.21 2.12 2.05 1.99 1.95 1.91 1.88 1.82 1.77 1.70 1.65 1.60 1.54 1.51 1.45 1.42 1.38 1.35 1.32
6.96 4.88 4.04 3.56 3.25 3.04 2.87 2.74 2.64 2.55 2.48 2.41 2.32 2.24 2.11 2.03 1.94 1.84 1.78 1.70 1.65 1.57 1.52 1.49

100 3.94 3.09 2.70 2.46 2.30 2.19 2.10 2.03 1.97 1.92 1.88 1.85 1.79 1.75 1.68 1.63 1.57 1.51 1.48 1.42 1.39 1.34 1.30 1.28
6.90 4.82 3.98 3.51 3.20 2.99 2.82 2.69 2.59 2.51 2.43 2.36 2.26 2.19 2.06 1.98 1.89 1.79 1.73 1.64 1.59 1.51 1.46 1.43

125 3.92 3.07 2.68 2.44 2.29 2.17 2.08 2.01 1.95 1.90 1.86 1.83 1.77 1.72 1.65 1.60 1.55 1.49 1.45 1.39 1.36 1.31 1.27 1.25
6.84 4.78 3.94 3.47 3.17 2.95 2.79 2.65 2.56 2.47 2.40 2.33 2.23 2.15 2.03 1.94 1.85 1.75 1.68 1.59 1.54 1.46 1.40 1.37

150 3.91 3.06 2.67 2.43 2.27 2.16 2.07 2.00 1.94 1.89 1.85 1.82 1.76 1.71 1.64 1.59 1.54 1.47 1.44 1.37 1.34 1.29 1.25 1.22
6.81 4.75 3.91 3.44 3.14 2.92 2.76 2.62 2.53 2.44 2.37 2.30 2.20 2.12 2.00 1.91 1.83 1.72 1.66 1.56 1.51 1.43 1.37 1.33

200 3.89 3.04 2.65 2.41 2.26 2.14 2.05 1.98 1.92 1.87 1.83 1.80 1.74 1.69 1.62 1.57 1.52 1.45 1.42 1.35 1.32 1.26 1.22 1.19
6.76 4.71 3.88 3.41 3.11 2.90 2.73 2.60 2.50 2.41 2.34 2.28 2.17 2.09 1.97 1.88 1.79 1.69 1.62 1.53 1.48 1.39 1.33 1.28

400 3.86 3.02 2.62 2.39 2.23 2.12 2.03 1.96 1.90 1.85 1.81 1.78 1.72 1.67 1.60 1.54 1.49 1.42 1.38 1.32 1.28 1.22 1.16 1.13
6.70 4.66 3.83 3.36 3.06 2.85 2.69 2.55 2.46 2.37 2.29 2.23 2.12 2.04 1.92 1.84 1.74 1.64 1.57 1.47 1.42 1.32 1.24 1.19

1000 3.85 3.00 2.61 2.38 2.22 2.10 2.02 1.95 1.89 1.84 1.80 1.76 1.70 1.65 1.58 1.53 1.47 1.41 1.36 1.30 1.26 1.19 1.13 1.08
6.66 4.62 3.80 3.34 3.04 2.82 2.66 2.53 2.43 2.34 2.26 2.20 2.09 2.01 1.89 1.81 1.71 1.61 1.54 1.44 1.38 1.28 1.19 1.11

� 3.84 2.99 2.60 2.37 2.21 2.09 2.01 1.94 1.88 1.83 1.79 1.75 1.69 1.64 1.57 1.52 1.46 1.40 1.35 1.28 1.24 1.17 1.11 1.00
6.64 4.60 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32 2.24 2.18 2.07 1.99 1.87 1.79 1.69 1.59 1.52 1.41 1.36 1.25 1.15 1.00
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t a b l e H Chi-square (x2) distribution

The first column (df) locates each �2 distribution. The other columns give the proportion of area under the �2 distribution that
is above the tabled value of �2. The �2 values under the column headings of .05 and .01 are the critical values of �2 for � � 0.05
and 0.01. To be significant, �2

obt � �2
crit.

Degrees
of

Freedom 
df P � .99 .98 .95 .90 .80 .70 .50 .30 .20 .10 .05 .02 .01

11 11.000157 11.000628 11.00393 11.0158 11.0642 11.148 11.455 11.074 11.642 12.706 13.841 15.412 16.635
12 11.0201 11.0404 11.103 11.211 11.446 11.713 11.386 12.408 13.219 14.605 15.991 17.824 19.210
13 11.115 11.185 11.352 11.584 11.005 11.424 12.366 13.665 14.642 16.251 17.815 19.837 11.341
14 11.297 11.429 11.711 11.064 11.649 12.195 13.357 14.878 15.989 17.779 19.488 11.668 13.277
15 11.554 11.752 11.145 11.610 12.343 13.000 14.351 16.064 17.289 19.236 11.070 13.388 15.086

56 11.872 11.134 11.635 12.204 13.070 13.828 15.348 17.231 18.558 10.645 12.592 15.033 16.812
57 11.239 11.564 12.167 12.833 13.822 14.671 16.346 18.383 19.803 12.017 14.067 16.622 18.475
48 11.646 12.032 12.733 13.490 14.594 15.527 17.344 19.524 11.030 13.362 15.507 18.168 20.090
49 12.088 12.532 13.325 14.168 15.380 16.393 18.343 10.656 12.242 14.684 16.919 19.679 21.666
10 12.558 13.059 13.940 14.865 16.179 17.267 19.342 11.781 13.442 15.987 18.307 21.161 23.209

11 13.053 13.609 14.575 15.578 16.989 18.148 10.341 12.899 14.631 17.275 19.675 22.618 24.725
12 13.571 14.178 15.226 16.304 17.807 19.034 11.340 14.011 15.812 18.549 21.026 24.054 26.217
13 14.107 14.765 15.892 17.042 18.634 19.926 12.340 15.119 16.985 19.812 22.362 25.472 27.688
14 14.660 15.368 16.571 17.790 19.467 10.821 13.339 16.222 18.151 21.064 23.685 26.873 29.141
15 15.229 15.985 17.261 18.547 10.307 11.721 14.339 17.322 19.311 22.307 24.996 28.259 30.578

16 15.812 16.614 17.962 19.312 11.152 12.624 15.338 18.418 20.465 23.542 26.296 29.633 32.000
17 16.408 17.255 18.672 10.085 12.002 13.531 16.338 19.511 21.615 24.769 27.587 30.995 33.409
18 17.015 17.906 19.390 10.865 12.857 14.440 17.338 20.601 22.760 25.989 28.869 32.346 34.805
19 17.633 18.567 10.117 11.651 13.716 15.352 18.338 21.689 23.900 27.204 30.144 33.687 36.191
20 18.260 19.237 10.851 12.443 14.578 16.266 19.337 22.775 25.038 28.412 31.410 35.020 37.566

21 18.897 19.915 11.591 13.240 15.445 17.182 20.337 23.858 26.171 29.615 32.671 36.343 38.932
22 19.542 10.600 12.338 14.041 16.314 18.101 21.337 24.939 27.301 30.813 33.924 37.659 40.289
23 10.196 11.293 13.091 14.848 17.187 19.021 22.337 26.018 28.429 32.007 35.172 38.968 41.638
24 10.856 11.992 13.848 15.659 18.062 19.943 23.337 27.096 29.553 33.196 36.415 40.270 42.980
25 11.524 12.697 14.611 16.473 18.940 20.867 24.337 28.172 30.675 34.382 37.652 41.566 44.314

26 12.198 13.409 15.379 17.292 19.820 21.792 25.336 29.246 31.795 35.563 38.885 42.856 45.642
27 12.879 14.125 16.151 18.114 20.703 22.719 26.336 30.319 32.912 36.741 40.113 44.140 46.963
28 13.565 14.847 16.928 18.939 21.588 23.647 27.336 31.391 34.027 37.916 41.337 45.419 48.278
29 14.256 15.574 17.708 19.768 22.475 24.577 28.336 32.461 35.139 39.087 42.557 46.693 49.588
30 14.953 16.306 18.493 20.599 23.364 25.508 29.336 33.530 36.250 40.256 43.773 47.962 50.892

0 2χ

Area
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t a b l e J Random numbers

1 2 3 4 5 6 7 8 9

1 32942 95416 42339 59045 26693 49057 87496 20624 14819
2 07410 99859 83828 21409 29094 65114 36701 25762 12827
3 59981 68155 45673 76210 58219 45738 29550 24736 09574
4 46251 25437 69654 99716 11563 08803 86027 51867 12116
5 65558 51904 93123 27887 53138 21488 09095 78777 71240

6 99187 19258 86421 16401 19397 83297 40111 49326 81686
7 35641 00301 16096 34775 21562 97983 45040 19200 16383
8 14031 00936 81518 48440 02218 04756 19506 60695 88494
9 60677 15076 92554 26042 23472 69869 62877 19584 39576

10 66314 05212 67859 89356 20056 30648 87349 20389 53805

11 20416 87410 75646 64176 82752 63606 37011 57346 69512
12 28701 56992 70423 62415 40807 98086 58850 28968 45297
13 74579 33844 33426 07570 00728 07079 19322 56325 84819
14 62615 52342 82968 75540 80045 53069 20665 21282 07768
15 93945 06293 22879 08161 01442 75071 21427 94842 26210

16 75689 76131 96837 67450 44511 50424 82848 41975 71663
17 02921 16919 35424 93209 52133 87327 95897 65171 20376
18 14295 34969 14216 03191 61647 30296 66667 10101 63203
19 05303 91109 82403 40312 62191 67023 90073 83205 71344
20 57071 90357 12901 08899 91039 67251 28701 03846 94589

21 78471 57741 13599 84390 32146 00871 09354 22745 65806
22 89242 79337 59293 47481 07740 43345 25716 70020 54005
23 14955 59592 97035 80430 87220 06392 79028 57123 52872
24 42446 41880 37415 47472 04513 49494 08860 08038 43624
25 18534 22346 54556 17558 73689 14894 05030 19561 56517

26 39284 33737 42512 86411 23753 29690 26096 81361 93099
27 33922 37329 89911 55876 28379 81031 22058 21487 54613
28 78355 54013 50774 30666 61205 42574 47773 36027 27174
29 08845 99145 94316 88974 29828 97069 90327 61842 29604
30 01769 71825 55957 98271 02784 66731 40311 88495 18821

31 17639 38284 59478 90409 21997 56199 30068 82800 69692
32 05851 58653 99949 63505 40409 85551 90729 64938 52403
33 42396 40112 11469 03476 03328 84238 26570 51790 42122
34 13318 14192 98167 75631 74141 22369 36757 89117 54998
35 60571 54786 26281 01855 30706 66578 32019 65884 58485

36 09531 81853 59334 70929 03544 18510 89541 13555 21168
37 72865 16829 86542 00396 20363 13010 69645 49608 54738
38 56324 31093 77924 28622 83543 28912 15059 80192 83964
39 78192 21626 91399 07235 07104 73652 64425 85149 75409
40 64666 34767 97298 92708 01994 53188 78476 07804 62404

41 82201 75694 02808 65983 74373 66693 13094 74183 73020
42 15360 73776 40914 85190 54278 99054 62944 47351 89098
43 68142 67957 70896 37983 20487 95350 16371 03426 13895
44 19138 31200 30616 14639 44406 44236 57360 81644 94761
45 28155 03521 36415 78452 92359 81091 56513 88321 97910

46 87971 29031 51780 27376 81056 86155 55488 50590 74514
47 58147 68841 53625 02059 75223 16783 19272 61994 71090
48 18875 52809 70594 41649 32935 26430 82096 01605 65846
49 75109 56474 74111 31966 29969 70093 98901 84550 25769
50 35983 03742 76822 12073 59463 84420 15868 99505 11426
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51 12651 61646 11769 75109 86996 97669 25757 32535 07122
52 81769 74436 02630 72310 45049 18029 07469 42341 98173
53 36737 98863 77240 76251 00654 64688 09343 70278 67331
54 82861 54371 76610 94934 72748 44124 05610 53750 95938
55 21325 15732 24127 37431 09723 63529 73977 95218 96074

56 74146 47887 62463 23045 41490 07954 22597 60012 98866
57 90759 64410 54179 66075 61051 75385 51378 08360 95946
58 55683 98078 02238 91540 21219 17720 87817 41705 95785
59 79686 17969 76061 83748 55920 83612 41540 86492 06447
60 70333 00201 86201 69716 78185 62154 77930 67663 29529

61 14042 53536 07779 04157 41172 36473 42123 43929 50533
62 59911 08256 06596 48416 69770 68797 56080 14223 59199
63 62368 62623 62742 14891 39247 52242 98832 69533 91174
64 57529 97751 54976 48957 74599 08759 78494 52785 68526
65 15469 90574 78033 66885 13936 42117 71831 22961 94225

66 18625 23674 53850 32827 81647 80820 00420 63555 74489
67 74626 68394 88562 70745 23701 45630 65891 58220 35442
68 11119 16519 27384 90199 79210 76965 99546 30323 31664
69 41101 17336 48951 53674 17880 45260 08575 49321 36191
70 32123 91576 84221 78902 82010 30847 62329 63898 23268

71 26091 68409 69704 82267 14751 13151 93115 01437 56945
72 67680 79790 48462 59278 44185 29616 76531 19589 83139
73 15184 19260 14073 07026 25264 08388 27182 22557 61501
74 58010 45039 57181 10238 36874 28546 37444 80824 63981
75 56425 53996 86245 32623 78858 08143 60377 42925 42815

76 82630 84066 13592 60642 17904 99718 63432 88642 37858
77 14927 40909 23900 48761 44860 92467 31742 87142 03607
78 23740 22505 07489 85986 74420 21744 97711 36648 35620
79 32990 97446 03711 63824 07953 85965 87089 11687 92414
80 05310 24058 91946 78437 34365 82469 12430 84754 19354

81 21839 39937 27534 88913 49055 19218 47712 67677 51889
82 08833 42549 93981 94051 28382 83725 72643 64233 97252
83 58336 11139 47479 00931 91560 95372 97642 33856 54825
84 62032 91144 75478 47431 52726 30289 42411 91886 51818
85 45171 30557 53116 04118 58301 24375 65609 85810 18620

86 91611 62656 60128 35609 63698 78356 50682 22505 01692
87 55472 63819 86314 49174 93582 73604 78614 78849 23096
88 18573 09729 74091 53994 10970 86557 65661 41854 26037
89 60866 02955 90288 82136 83644 94455 06560 78029 98768
90 45043 55608 82767 60890 74646 79485 13619 98868 40857

91 17831 09737 79473 75945 28394 79334 70577 38048 03607
92 40137 03981 07585 18128 11178 32601 27994 05641 22600
93 77776 31343 14576 97706 16039 47517 43300 59080 80392
94 69605 44104 40103 95635 05635 81673 68657 09559 23510
95 19916 52934 26499 09821 87331 80993 61299 36979 73599

96 02606 58552 07678 56619 65325 30705 99582 53390 46357
97 65183 73160 87131 35530 47946 09854 18080 02321 05809
98 10740 98914 44916 11322 89717 88189 30143 52687 19420
99 98642 89822 71691 51573 83666 61642 46683 33761 47542

100 60139 25601 93663 25547 02654 94829 48672 28736 84994

t a b l e J Random numbers (continued)

1 2 3 4 5 6 7 8 9
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Appendix E

Listed below are the symbols we have used in this textbook. The meaning of each symbol is given to the
right of the symbol. The last column gives the page number where the symbol first appears.

Symbol
First Occurs

Symbol Meaning on Page:

� threshold probability level for rejecting H0; with a continuous
variable, the probability of a Type I error 242

� probability of a Type II error 268

�2 chi-square 452

� correlation coefficient for dichotomous variables 131

� curvilinear correlation coefficient 131

�2 estimate of size of effect 400

� mean of a population 171

�D mean of the population of difference scores 347

�null mean of the null-hypothesis population 309

�real mean of population when there is a real effect 310

�X
–– mean of the sampling distribution of the mean 295

�X
––

1
� X

––
2

mean of the sampling distribution of the difference between
sample means 356

� population linear correlation coefficient 336

� the sum of 027

� standard deviation of a population 081

�2 variance of a population 085

�X
–– standard error of the mean 295

�X
––2 variance of the sampling distribution of the mean 296
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Symbol
First Occurs

Symbol Meaning on Page:

�X
––

1 � X
––

2
standard error of the difference beween sample means 356

	̂2 estimate of size of effect 399

aX X-axis intercept for the least-squares regression line
predicting X given Y 161

aY Y-axis intercept for the least-squares regression line
predicting Y given X 153

bX slope of the least-squares regression line for predicting X
given Y 161

bY slope of the least-squares regression line for predicting Y given X 153

c number of columns in a contingency table 460
number of columns in a two-way ANOVA data table 426

cum f cumulative frequency 050

cum fL frequency of scores below the lower real limit of the
interval containing the percentile point 052

cum fP frequency of scores below the percentile point 052

cum % cumulative percentage 050

d size of effect 330

d̂ estimated size of effect 330

D difference between paired scores 347

D
––

obt mean of the differences between paired scores 347

df degrees of freedom 321

dfB between-group degrees of freedom 389

dfC column degrees of freedom 429

dfR row degrees of freedom 428

dfRC row � column degrees of freedom 430

dfW within-cells degrees of freedom 427
within-groups degrees of freedom 388

F ratio of two variance estimates 383

f frequency 043

fe expected frequency 452

fi frequency of the interval containing the percentile point 053

fo observed frequency 452

H0 null hypothesis 242

H1 alternative hypothesis 242

Hobt statistic calculated with Kruskal–Wallis 477

i width of the interval 046
(continued)
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Symbol
First Occurs

Symbol Meaning on Page:

k number of groups or means 388

Mdn median 075

N total number of scores 027
number of paired scores 154

nk number of scores in the kth group 074

P in a two-event situation, the probability of one of the events 190

p probability 184

p(A) probability of event A 184

p(B⏐A) probability of B, given A has occurred 191

Pnull the proportion of pluses in the population if the
independent variable has no effect 269

Preal the proportion of pluses in the population if the
independent variable has a real effect 269

Q in a two-event situation, the probability of one of the events 190
Studentized range statistic 405

r Pearson product moment correlation coefficient 123
number of means encompassed by X

––
i and X

––
j 406

number of rows in a contingency table 460
number of rows in a two-way ANOVA data table 426

r2 coefficient of determination 130

R2 multiple coefficient of determination 171
squared multiple correlation 171

rb biserial correlation coefficient 131

rs Spearman rank order correlation coefficient, rho 131

s standard deviation of a sample 081
estimate of a population standard deviation 081

sD standard deviation of sample difference scores 347

sX standard deviation of the X variable 167

sY standard deviation of the Y variable 167

sY�X standard error of estimate when predicting Y given X 163

sX
–– estimated standard error of the mean 319

sX
––

1 � X
––

2
estimated standard error of the difference between 
sample means 358

s2 variance of a sample 085

sB
2 between-groups variance estimate 388

sC
2 column variance estimate 424

sR
2 row variance estimate 424
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Symbol
First Occurs

Symbol Meaning on Page:

sRC
2 row � column variance estimate 424

sW
2 weighted estimate of the population variance 358

within-groups variance estimate 388
within-cells variance estimate 424

SS sum of squares of a sample 081

SSB between-groups sum of squares 389

SSC column sum of squares 429

SSD sum of squares of sample difference scores 347

SSpop sum of squares of a population 081

SSR row sum of squares 428

SSRC row � column sum of squares 430

SST total sum of squares 392

SSW within-groups sum of squares 388
within-cells sum of squares 427

SSX sum of squares of the X variable 154

SSY sum of squares of the Y variable 161

T lower sum of the ranks 466

t Student’s statistic 319

U, U� statistics computed in the Mann–Whitney U test 470

X raw scores 027
a variable 027

X� predicted X value 160

Xi ith raw score 027

XL value of the lower real limit of the interval containing the
score X 053

X
––

mean of a sample set of raw scores 071

X
––

overall overall mean of several groups 074

Y raw scores 027
a variable 027

Y� predicted Y value 153

Yi ith raw score 128

Y
––

mean of a sample set of raw scores 154

z number of standard deviation units a score deviates from
the mean 099
statistic calculated for the z test 302
standard score 099
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Alpha level A probability level set by an investigator
at the beginning of an experiment to limit the
probability of making a Type I error. (p. 242, 245)

A posteriori comparisons Comparisons that are not
planned before doing the experiment. They usu-
ally arise after the experimenter sees the data
and chooses groups with mean values that are
far apart, or else they arise from doing all the
possible comparisons with no theoretical a pri-
ori basis. (p. 404)

A priori comparisons Comparisons that are planned
in advance of the experiment. They often arise
from predictions that are based on theory and
prior research. (p. 402)

A posteriori probability Probability determined af-
ter the fact, after some data have been collected.
In equation form,

(p. 184)
A priori probability Probability determined without

collecting any data; deduced from reason alone.
In equation form,

(p. 184)
Addition rule Gives the probability of occurrence of

one of several events. If there are only two
events, A and B, the addition rule gives the prob-
ability of occurrence of A or B. In equation form,

p(A or B) � p(A) � p(B) � p(A and B)

(p. 186)
Alternative hypothesis Symbolized by H1. The hy-

pothesis that claims the differences in results be-
tween conditions is due to the independent vari-
able. (p. 242)

p1A2 �
Number of events classifiable as A

Total number of possible events

p1A2 �
Number of times A has occurred

Total number of occurrences

Analysis of variance Abbreviated ANOVA. Statisti-
cal technique used to analyze multigroup exper-
iments. Uses the F test as the basis of the analy-
sis(es). (p. 386)

Arithmetic mean The sum of the scores divided by
the number of scores. In equation form,

mean of a sample

or

mean of a population set of scores

where X1, . . . , XN � raw scores
X (read “X bar”) � mean of a

sample set of
scores

m (read “mew”) � mean of a popu-
lation set of
scores

g (read “sigma”) � summation sign
N � number of scores

(p. 70)
Asymptotic Approaching a given value as a function

extends to infinity. For the normal curve, it refers
to how the Y value of the normal curve ap-
proaches 0 (the X axis) as X extends to � and �
infinity. Y gets closer and closer to 0, but never
quite reaches it. (p. 96).

Bar graph Graph of nominal or ordinal data, where
a bar is drawn for each category and the height
of the bar represents the frequency or number
of members of that category. (p. 58)

Bell-shaped curve Frequency graph named “bell-
shaped” because it looks like a bell. (p. 62)

Beta The probability of making a Type II error.
(p. 245)

� �
gXi

N
�

X1 � X2 � X3 � . . . � XN

N

X �  
gXi

N
�

X1 � X2 � X3 � . . . � XN

N



Between-groups sum of squares Symbolized by SSB.
Statistic computed in the one-way ANOVA. The
numerator of the equation for the between-
groups variance estimate, sB

2. (p. 387, 389)
Between-groups variance estimate Symbolized by

sB
2. Estimate of the null-hypothesis population

variance that is based on the variability between
the groups. (p. 387, 388)

Biased coins Coins for which p(head) � p(tail) for
any coin when flipped. Expressed in terms of P
and Q, P � Q � 0.50. (p. 224)

Binomial distribution A probability distribution that
results when five preconditions are met: (1) There
is a series of N trials; (2) on each trial there are
only two possible outcomes; (3) on each trial, the
two possible outcomes are mutually exclusive;
(4) there is independence between the outcomes
of each trial; and (5) the probability of each pos-
sible outcome on any trial stays the same from
trial to trial. The binomial distribution gives each
possible outcome of the N trials and the proba-
bility of getting each of these outcomes. (p. 216)

Binomial expansion Mathematical expression used
to generate the binomial distribution. The ex-
pression is given by (P � Q)N. (p. 219)

Binomial table Table that contains binomial distrib-
ution probabilities for many values of N and P.
(p. 220)

Biserial coefficient A correlation coefficient, sym-
bolized by rb. It is used when one of the vari-
ables is at least of interval scaling and the other
is dichotomous. (p. 131)

Central tendency The average, middle, or most fre-
quent value of a set of scores. (p. 70)

Chi-square Nonparametric inference test that is
used with nominal scaling. Statistic computed is
x2. (p. 452)

Coefficient of determination Symbolized by r2. Tells
us the proportion of the total variability that is
accounted for by X. (p. 130)

Cohen’s d Statistic, associated with J. Cohen, that is
used to measure the size of effect. (p. 329)

Column degrees of freedom Symbolized by dfC. Sta-
tistic computed in two-way ANOVA. Degrees of
freedom in forming the column variance esti-
mate, sC

2. (p. 429)
Column sum of squares Symbolized by SSC. Statistic

computed in two-way ANOVA. The numerator
of the equation for computing the column vari-
ance estimate, sC

2. (p. 429)

Column variance estimate Symbolized by sC
2. Esti-

mate of the null-hypothesis population variance
that is based on the between columns variability.
(p. 424, 429)

Comparison-wise error rate The probability of mak-
ing a Type I error for any of the possible com-
parisons in an experiment. (p. 404)

Confidence interval A range of values that probably
contains the population value. (p. 331)

Confidence limits The values that state the bound-
aries of the confidence interval. (p. 331)

Confidence-interval approach Alternative approach
to null-hypothesis approach. Uses confidence in-
tervals as a method that allows conclusions with
regard both to whether there is a real effect and
to the size of the effect. (p. 369)

Constant A quantity whose value doesn’t change. Pi
(p) is an example. It has a value of 3.14159�
that never changes. (p. 7)

Contingency table A two-way table showing the
contingency between two variables where the
variables have been classified into mutually ex-
clusive categories and the cell entries are fre-
quencies. (p. 457)

Continuous variable A variable that theoretically
can have an infinite number of values between
adjacent units on the scale. (p. 35)

Correct decision Rejecting H0 when H0 is false; re-
taining H0 when H0 is true. (p. 246)

Correlated groups design There are paired scores in
the conditions, and the differences between
paired scores are analyzed. (p. 241)

Correlation The association or relationship between
two variables. It focuses on the direction and de-
gree of the relationship. (p. 121)

Correlation coefficient A quantitative expression of
the magnitude and direction of a relationship.
(p. 121)

Critical region Short for “critical region for rejection
of the null hypothesis.” Region that contains val-
ues of the statistic that allow rejection of the null
hypothesis. (p. 302)

Critical region for rejection of the null hypothesis
The area under the curve that contains all the
values of the statistic that allow rejection of the
null hypothesis. (p. 302)

Critical value of a statistic The value of the statistic
that bounds the critical region. (p. 302)

Critical value of r Symbolized by rcrit. The value of r
that bounds the critical region. (p. 337)
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Critical value of t Symbolized by tcrit. The value of t
that bounds the critical region. (p. 332)

Critical value of XX Symbolized by Xcrit. The value of
X that bounds the critical region. (p. 309)

Critical value of z Symbolized by zcrit. The value of z
that bounds the critical region. (p. 303)

Cumulative frequency distribution The number of
scores that fall below the upper real limit of each
interval. (p. 49)

Cumulative percentage distribution The percentage
of scores that fall below the upper real limit of
each interval. (p. 49)

Curvilinear relationship The relationship between
two variables is curved, rather than linear. In this
case, a curved line fits the data better than a
straight line. (p. 115)

Data The measurements that are made on the sub-
jects of an experiment. (p. 7)

Degree of separation Used in conjunction with the
Mann–Whitney U test. Refers to the lack of
overlap between the sample scores of the two
groups. (p. 470)

Degrees of freedom (df) The number of scores that
are free to vary in calculating a statistic. (p. 321)

Dependent variable The variable in an experiment
that an investigator measures to determine the
effect of the independent variable. (p. 7)

Descriptive statistics Techniques that are used to de-
scribe or characterize the obtained sample data.
(p. 10)

Deviation score The distance of the raw score from
the mean of its distribution. (p. 79)

Direct relationship As X increases, Y increases.As X
decreases, Y decreases. The slope of the rela-
tionship is positive. Higher values of X are asso-
ciated with higher values of Y. Lower values of
X are associated with lower values of Y. Also
called a positive relationship. (p. 118)

Directional hypothesis An hypothesis that specifies
the direction of the effect of the independent
variable on the dependent variable. (p. 242)

Discrete variable A variable for which no values are
possible between adjacent units on the scale.
(p. 35)

Dispersion The spread of a set of scores. (p. 79)
Estimated standard error of the difference between

sample means Symbolized by . Estimate
of . (p. 358)

Eta squared Biased estimate of the size of effect of
the independent variable. (p. 400)

sX1�X2

sX1�X2

Exhaustive set of events A set that includes all of the
possible events. (p. 190)

Expected frequency Symbolized by fe. Statistic com-
puted for the chi-square test. The expected fre-
quency under the assumption sampling is random
from the null-hypothesis population. (p. 452)

Experiment-wise error rate The probability of
making one or more Type I errors for the full
set of possible comparisons in an experiment.
(p. 404)

Exploratory data analysis A recently developed
technique that employs easily constructed dia-
grams that are useful in summarizing and de-
scribing sample data. (p. 62)

F test Inference test based on the ratio of two inde-
pendent estimates of the same population vari-
ance, s2. Used in conjunction with the analysis
of variance. (p. 383)

Factorial experiment An experiment in which the
effects of two or more factors are assessed and
the treatments used are combinations of the lev-
els of the factors. (p. 421)

Fail to reject null hypothesis Conclusion when ana-
lyzing the data of an experiment that retains the
null hypothesis as a reasonable explanation of
the data. (p. 243)

Fair coins Coins that when flipped, p(head) � p(tail)
for any coin. Expressed in terms of P and Q,
P � Q � 0.50. (p. 216).

Fcrit The value of F that bounds the critical region.
(p. 383)

Frequency distribution A listing of score values and
their frequency of occurrence. (p. 43)

Frequency polygon Graph that is used with interval
or ratio data. Identical to a histogram, except
that instead of using bars, the midpoints of each
interval are plotted and joined together with
straight lines, and the lines extended to meet the
horizontal axis at the midpoint of the intervals
that are immediately beyond the lowest and
highest intervals. (p. 58)

Grand mean Symbolized XG. Statistic computed in
the analysis of variance. The overall mean of all
the scores combined. (p. 389)

Histogram Similar to a bar graph, except that it is
used with interval or ratio data. Class intervals
are plotted on the horizontal axis, a bar is drawn
over each class interval such that each class bar
begins and ends at the real limits of the interval.
The height of each bar corresponds to the fre-
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quency of the interval and the vertical bars
touch each other rather than spaced apart as
with the bar graph. (p. 58)

Homogeneity of variance Assumption underlying
the independent groups t test and ANOVA. If
there are k groups, the assumption is that the
variances of the populations from which the k
samples are drawn, are equal. In equation form,
s1

2 � s2
2 � % � sk

2. (p. 362)
Homoscedasticity Assumption used in conjunction

with the standard error of estimate.The assump-
tion is that the variability of Y remains constant
for all values of X. (p. 163)

Imperfect relationship A positive or negative rela-
tionship for which all of the points do not fall on
the line. (p. 119)

Importance of an effect A real effect that in addition
to being statistically significant, is of practical or
theoretical importance. (p. 256)

Independence of two events The occurrence of one
event has no effect on the probability of occur-
rence of the other. (p. 191)

Independent groups design Involves experiments
using two or more conditions. Each condition
employs a different level of the independent
variable. The most basic experiment has two
conditions. Subjects are randomly selected
from the subject population and then randomly
assigned to the two conditions. Since subjects
are randomly assigned to the conditions, there
is no basis for pairing of scores between condi-
tions. Rather, a statistic is computed for the
scores of each group separately, and the two
group statistics are compared to determine if
chance alone is a reasonable explanation of the
data. (p. 353)

Independent variable The variable in an experiment
that is systematically manipulated by an investi-
gator. (p. 7)

Inferential statistics Techniques that use the obtained
sample data to infer to populations. (p. 10)

Interaction effect The result observed when the ef-
fect of one factor is not the same at all levels of
the other factor. (p. 422)

Interval scale A measuring scale that possesses the
properties of magnitude and equal interval be-
tween adjacent units on the scale, but doesn’t
have an absolute zero point. Celsius scale of
temperature measurement is a good example of
an interval scale. (p. 32)

Inverse relationship As X increases, Y decreases; as
X decreases, Y increases. The slope of the rela-
tionship is negative. Higher values of X are as-
sociated with lower values of Y. Lower values of
X are associated with higher values of Y. Also
called a negative relationship. (p. 118)

J-shaped curve Frequency graph named J-shaped
because it has the shape of the letter “J.” (p. 62)

Kruskal–Wallis test Nonparametric inference test
used as a substitute for the parametric, one-way,
independent groups ANOVA when the assump-
tions of that test are seriously violated. Statistic
computed is H. (p. 475)

Least-squares regression line The prediction line that
minimizes the total error of prediction according
to the least-squares criterion of g (Y � Y�)2.
(p. 153)

Linear relationship A relationship between two
variables that can be most accurately repre-
sented by a straight line. (p. 115)

Main effect The effect of factor A (averaged over
the levels of factor B) and the effect of factor B
(averaged over the levels of factor A). (p. 422)

Mann–Whitney U test Nonparametric inference test
used as a substitute for the independent groups
t test when the assumptions of that test are seri-
ously violated. Statistics computed are U and U�.
(p. 469)

Marginals Used in conjunction with contingency ta-
bles. Marginals are the row and column totals ly-
ing outside the contingency table. (p. 459)

Mean of the population of difference scores Sym-
bolized by mD. Mean of a hypothetical popula-
tion of difference scores from which the sample
difference scores are assumed to have been
drawn. If the independent variable has no effect,
then mD � 0. (p. 347)

Mean of the sampling distribution of the difference
between sample means Symbolized by .
Mean of the complete population distribution of
(X1 � X2) scores. (p. 356)

Mean of the sampling distribution of the mean Sym-
bolized by mX. This is the mean of the full set of
sample means. Also called the standard error of
the mean. (p. 295)

Median (Mdn) The scale value below which 50% of
the scores fall. (p. 75)

Method of authority Something is considered true
because of tradition or because some person of
distinction says it is true. (p. 4)

mX1�X2
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Method of intuition Sudden insight, or clarifying
idea that springs into consciousness, all at once
as a whole. (p. 5)

Method of rationalism Uses reason alone to arrive
at knowledge. It assumes that if the premises are
sound and the reasoning is carried out correctly
according to the rules of logic, then the conclu-
sions will yield truth. (p. 4)

Mode The most frequent score in the distribution.
(p. 77)

Multiple coefficient of determination Symbolized by
R2. Gives the proportion of the total variance in
Y accounted for by the multiple X variables.
Also called squared multiple correlation. (p. 171)

Multiple regression Technique used for predicting Y
from multiple associated X variables. (p. 167)

Multiplication rule Gives the probability of joint or
successive occurrence of several events. If there
are only two events, the multiplication rule gives
the probability of occurrence of A and B. In
equation form,

p(A and B) � p(A)p(B|A)

(p. 191)
Mutually exclusive events Two events that cannot

occur together; that is, the occurrence of one
precludes the occurrence of the other. (p. 186)

Naturalistic observation research A type of observa-
tional study in which the subjects of interest are
observed in their natural setting. A goal of this
research is to obtain an accurate description of
behaviors of interest occurring in the natural
setting. (p. 9)

Negative relationship An inverse relationship be-
tween two variables. (p. 118)

Negatively skewed curve A curve on which most of
the scores occur at the higher values, and the
curve tails off toward the lower end of the hori-
zontal axis. (p. 62)

Newman–Keuls test Post hoc, multiple comparisons
test that makes all possible pairwise compar-
isons among the sample means. (p. 406)

Nominal scale The scale is composed of categories,
and the object is “measured” by determining to
which category the object belongs. The cate-
gories comprise the units of the scale. An exam-
ple would be brands of MP3 players; the units
would be Apple, Microsoft, Sony, Creative Labs,
etc. (p. 31)

Nondirectional hypothesis An hypothesis that doesn’t
specify the direction of the effect of the inde-

pendent variable on the dependent variable.
(p. 242)

Normal approximation Technique used to solve bi-
nomial problems when N � 20. (p. 229)

Normal curve A symmetrical, bell-shaped curve
with mean, median, and mode equal to each
other, and specified kurtosis. Kurtosis refers to
the sharpness or flatness of a curve as it reaches
its peak. In equation form, the normal curve
equals

where e � a constant of 2.7183
p � a constant of 3.1416

(p. 96)
Null hypothesis Symbolized by H0. Logical counter-

part to the alternative hypothesis. It either spec-
ifies that there is no effect, or that there is a real
effect in the direction opposite to that specified
by the alternative hypothesis. (p. 242)

Null-hypothesis approach Main approach used in
this textbook for analyzing data to determine if
the independent variable has a real effect. In this
approach, we assume that chance alone is re-
sponsible for the difference between the scores
in each group, calculate the obtained probabil-
ity, and determine if the obtained probability is
low enough to rule out chance as a reasonable
explanation of the score differences between
groups. (p. 369)

Null-hypothesis population An actual or theoretical
set of population scores that would result if the ex-
periment were done on the entire population and
the independent variable had no effect; it is used
to test the validity of the null hypothesis. (p. 290)

Number of P events A P event is one of the two pos-
sible outcomes of any trial. The number of P
events is the number of such outcomes. (p. 219)

Number of Q events A Q event is one of the two
possible outcomes of any trial. The number of Q
events is the number of such outcomes. (p. 219)

Observational studies A type of research in which
no variables are actively manipulated. The re-
searcher observes and records the data of inter-
est. (p. 9)

Observed frequency Symbolized by fo. Statistic com-
puted for the chi-square test. Observed fre-
quency in the sample. (p. 452)

Omega squared Unbiased estimate of the size of the
effect of the independent variable. (p. 399)

Y �
N

12ps
 e�1X�m22/ 2s2
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One-tailed probability Probability that results when
all of the outcomes being evaluated are under
one tail of the distribution. (p. 249)

One-way ANOVA, independent groups design Sta-
tistical technique used to analyze multigroup ex-
periments in which the experimental design is
an independent groups design and only one in-
dependent variable is studied. (p. 386)

Ordinal scale This is a rank-ordered scale in which
the objects being measured are rank-ordered ac-
cording to whether they possess more, less, or the
same amount of the variable being measured.An
example is ranking Division I NCAA college
football teams according to which college or uni-
versity football team is considered the best, the
next best, the next next best, and so on. (p. 32)

Overall mean Sometimes called weighted mean. The
average value of several sets or groups of scores.
It takes into account the number of scores in
each group and in effect, weights the mean of
each group by the number of scores in the
group. In equation form,

(p. 73)
Pnull The probability of getting a plus with any sub-

ject in the sample of the experiment when the
independent variable has no effect (appropriate
for sign test). (p. 269)

Preal The probability of getting a plus with any sub-
ject in the sample of the experiment when the
independent variable has a real effect; the pro-
portion of pluses in the population if the exper-
iment were done on the entire population and
the independent variable has a real effect (ap-
propriate for sign test). (p. 269)

Parameter A number calculated on population data
that quantifies a characteristic of the population.
(p. 7)

Parameter estimation research A type of observa-
tional study in which the goal is to determine a
characteristic of a population. An example
might be the mean age of all psychology majors
at your university. (p. 9)

Pearson r A measure of the extent to which paired
scores occupy the same or opposite positions
within their own distributions. (p. 122)

Percentile The value on the measurement scale be-
low which a specified percentage of the scores in
the distribution falls. (p. 51)

Xoverall �
n1X1 � n2X2 � p � nkXk

n1 � n2 � p � nk

Percentile point See Percentile.
Percentile rank (of a score) The percentage of

scores with values lower than the score in ques-
tion (p. 54)

Perfect relationship A positive or negative relation-
ship for which all of the points fall on the line.
(p. 119)

Phi coefficient A correlation coefficient, symbolized
by f. Used when each of the variables is di-
chotomous. (p. 131)

Planned comparisons See a posteriori comparisons.
Population The complete set of individuals, objects,

or scores that an investigator is interested in
studying. (p. 6)

Positive relationship A direct relationship between
two variables. (p. 118)

Positively skewed curve A curve on which most of
the scores occur at the lower values, and the
curve tails off toward the higher end of the hor-
izontal axis. (p. 62)

Post hoc comparisons See a posteriori comparisons.
Power The probability that the results of an experi-

ment will allow rejection of the null hypothesis if
the independent variable has a real effect. (p. 266)

Probability Expressed as a fraction or decimal num-
ber, probability is fundamentally a proportion; it
gives the chances that an event will or will not
occur. (p. 184)

Probability of occurrence of A or B The probability
of occurrence of A plus the probability of occur-
rence of B minus the probability of occurrence
of both A and B. (p. 186)

Probability of occurrence of both A and B The
probability of occurrence of A times the proba-
bility of occurrence of B given that A has oc-
curred. (p. 191)

Qcrit The value of Q that bounds the critical region.
(p. 405)

Qobt The obtained value of Q. (p. 405)
Random sample A sample selected from the popu-

lation by a process that ensures that (1) each
possible sample of a given size has an equal
chance of being selected and (2) all the mem-
bers of the population have an equal chance of
being selected into the sample. (p. 180)

Range The difference between the highest and low-
est scores in the distribution. (p. 79)

Ratio scale A measuring scale that possesses the
properties of magnitude, equal intervals be-
tween adjacent units on the scale, and also pos-
sesses an absolute zero point. The Kelvin scale
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of temperature measurement is an example of a
ratio scale. (p. 33)

Real effect An effect of the independent variable
that produces a change in the dependent vari-
able. (p. 268)

Real limits of a continuous variable Those values
that are above and below the recorded value by
one-half of the smallest measuring unit of the
scale. (p. 35)

Regression A topic that considers using the rela-
tionship between two or more variables for pre-
diction. (p. 151)

Regression constant The aY and bY terms in the
equation, Y� � bYX � aY. (p. 154)

Regression line A best fitting line used for predic-
tion. (p. 151)

Regression of X on Y Technique used to derive the
regression line for predicting X given Y. (p. 153)

Regression of Y on X Technique used to derive the
regression line for predicting Y given X. (p. 159)

Reject null hypothesis Conclusion when analyzing
the data of an experiment that rejects the null
hypothesis as a reasonable explanation of the
data. (p. 244)

Relative frequency distribution The proportion of
the total number of scores that occur in each in-
terval. (p. 49)

Repeated measures design Like the correlated
groups design. There are paired scores in the
conditions, and the differences between paired
scores are analyzed. (p. 241)

Replicated measures design Same as the repeated
measures design. There are paired scores in the
conditions, and the differences between paired
scores are analyzed. (p. 241)

Retain null hypothesis Same as fail to reject null hy-
pothesis. Conclusion when analyzing the data of
an experiment that fails to reject the null hy-
pothesis as a reasonable explanation of the data.
(p. 242)

Row degrees of freedom Symbolized by dfR. Statis-
tic computed in two-way ANOVA. Degrees of
freedom in forming the row variance estimate,
sR

2. (p. 428)
Row sum of squares Symbolized by SSR. Statistic

computed in two-way ANOVA. The numerator
of the equation for computing the row variance
estimate, sR

2. (p. 428)
Row variance estimate Symbolized by sR

2. Estimate
of the null-hypothesis population variance that
is based on the between rows variability. (p. 424)

Row � column degrees of freedom Symbolized by
dfRC. Statistic computed in two-way ANOVA.
Degrees of freedom in forming the row � col-
umn variance estimate, sRC

2. (p. 430)
Row � column sum of squares Symbolized by SSRC.

Statistic computed in two-way ANOVA.The nu-
merator of the equation for computing the row
� column variance estimate, sRC

2. (p. 430)
Row � column variance estimate Symbolized by

sRC
2. Estimate of the null-hypothesis population

variance that is based on the row � column vari-
ability. (p. 430)

Sample A subset of the population. (p. 6)
Sampling distribution of F Gives all the possible F

values along with the p(F) for each value, as-
suming sampling is random from the popula-
tion. (p. 383)

Sampling distribution of a statistic A listing of (1) all
the values that the statistic can take and (2) the
probability of getting each value under the as-
sumption that it results from chance alone, or if
sampling is random from the null-hypothesis
population. (p. 289)

Sampling distribution of t A probability distribution
of the t values that would occur if all possible
different samples of a fixed size N were drawn
from the null-hypothesis population. It gives
(1) all the possible different t values for samples
of size N and (2) the probability of getting each
value if sampling is random from the null-
hypothesis population. (p. 320)

Sampling distribution of the difference between sam-
ple means Hypothetical population distribution
of (X1 � X2) scores obtained from taking all
possible samples of size n1 and n2 from popula-
tions of means m1 and m2, and standard devia-
tions s1 and s2. (p. 355)

Sampling distribution of the mean A listing of all 
the values the mean can take, along with the
probability of getting each value if sampling is
random from the null-hypothesis population.
(p. 293)

Sampling with replacement A method of sampling
in which each member of the population se-
lected for the sample is returned to the popula-
tion before the next member is selected. (p.
183)

Sampling without replacement A method of sam-
pling in which the members of the sample are
not returned to the population before selecting
subsequent members. (p. 183)
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Scatter plot A graph of paired X and Y values.
(p. 115)

Scientific method The scientist has a hypothesis
about some feature of realty that he or she
wishes to test. An objective, observational study
or experiment is carried out. The data is ana-
lyzed statistically, and conclusions are drawn ei-
ther supporting or rejecting the hypothesis. (p. 6)

Sign test Statistical inference test, appropriate for
the repeated measures or correlated groups de-
sign, involving only two groups, that ignores the
magnitude of the difference scores and consid-
ers only their direction or sign. (p. 240)

Significant The result of an experiment that is statis-
tically reliable. (p. 243, 256)

Simple randomized-group design See one-way
ANOVA, independent groups design.

Single factor experiment, independent groups design
See one-way ANOVA, independent groups de-
sign.

Size of effect Magnitude of the real effect of the in-
dependent variable on the dependent variable.
(p. 256, 363)

Skewed curve A curve whose two sides do not coin-
cide if the curve is folded in half; that is, a curve
that is not symmetrical. (p. 60)

Slope Rate of change. For a straight line,

(p. 116)
Spearman rho A correlation coefficient, symbolized

by rs. Used when one or both of the variables are
of ordinal scaling. (p. 132)

Standard deviation A measure of variability that
gives the average deviation of a set of scores
about the mean. In equation form,

standard deviation of a
population set of scores

standard deviation of a
sample set of scores

(p. 79)
Standard deviation of the sampling distribution of the

difference between sample means Symbolized by
. Standard deviation of the complete popu-sX1�X2

 s � B
© 1X � X 22

N � 1

 s � B
© 1X � m22

N

Slope �
¢Y
¢X

�
Y2 � Y1

X2 � X1

Standard error of the mean Symbolized by mX. The
mean of the sampling distribution of the mean.
(p. 295)

Standard score See z score. (p. 585)
State of reality Truth regarding H0 and H1. (p. 245)
Statistic A number calculated on sample data that

quantifies a characteristic of the sample. (p. 7)
Stem-and-leaf diagram An alternative to the his-

togram, which is used in exploratory data analy-
sis. A picture is shown of each score divided into
a stem and leaf, separated by a vertical line. The
leaf for each score is usually the last digit, and
the stem is the remaining digits. Occasionally,
the leaf is the last two digits depending on the
range of the scores. The stem is placed to the left
of the vertical line, and the leaf to the right of
the line. Stems are placed vertically down the
page, and leafs are placed in order horizontally
across the page. (p. 62)

Sum of squares The sum of (X � m)2 or (X � X)2 is
called the sum of squares. It is symbolized by
SSpop for population data or just SS for sample
data. In equation form,

sum of squares for population data

sum of squares for sample data

(p. 81)
Summation Operation very often performed in sta-

tistics in which all or parts of a set (or sets) of
scores are added. (p. 27)

Symmetrical curve A curve whose two sides coin-
cide if the curve is folded in half. (p. 60)

t test for correlated groups Inference test using
Student’s t statistic. Employed with correlated
groups, replicated measures, and repeated
measures designs. (p. 346)

t test for independent groups Inference test using
Student’s t statistic. Employed with independent
groups design. (p. 353, 357)

Total variability Symbolized by SST. Statistic com-
puted in the analysis of variance.The variability of
all the scores about the grand mean. (p. 386, 392)

True experiment In a true experiment, an indepen-
dent variable is manipulated and its effect on
some dependent variable is studied. Has the po-
tential to determine causality. (p. 10)

 SS � © 1X � X22 � ©X2 �
1©X22

N

 SSpop � © 1X � m22 � ©X2 �
1©X22

N
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lation distribution of (X1 � X2) scores. (p. 356)
Standard error of estimate Gives us a measure of

the average deviation of prediction errors about
the regression line. (p. 162)



Tukey HSD test Post hoc, multiple comparisons test
that makes all possible pairwise comparisons
among the sample means. (p. 405)

Two-tailed probability Probability that results when
the outcomes being evaluated are under both
tails of the distribution. (p. 248)

Two-way analysis of variance Statistical technique
for assessing the effects of two variables that are
manipulated in one experiment. (p. 421, 424)

Type I error A decision to reject the null hypothesis
when the null hypothesis is true. (p. 244)

Type II error A decision to retain the null hypothe-
sis when the null hypothesis is false. (p. 244)

U-shaped curve Frequency graph named U-shaped
because it has the shape of the letter “U.” (p. 62)

Variability Refers to the spread of a set of scores.
(p. 70)

Variability accounted for by X The change in Y that
is explained by the change in X. Used in mea-
suring the strength of a relationship. (p. 129)

Variable Any property or characteristic of some
event, object, or person that may have different
values at different times depending on the con-
ditions. (p. 7)

Variance The standard deviation squared. In equa-
tion form,

variance of a population set of
scores

variance of a sample set of
scores

(p. 85)
Wilcoxon matched-pairs signed ranks test Nonpara-

metric inference test used as a substitute for the

 s2 �
© 1X � X22

N � 1

 s �
© 1X � m22

N

correlated groups t test when the assumptions of
that test are seriously violated. Statistic com-
puted is T. (p. 466)

Within-cells degrees of freedom Symbolized by dfW.
Statistic computed in two-way ANOVA. De-
grees of freedom in forming the within-cells
variance estimate, sW

2. (p. 427)
Within-cells sum of squares Symbolized by SSW. Sta-

tistic computed in two-way ANOVA. The nu-
merator of the equation for computing the
within-cells variance estimate, sW

2. (p. 427)
Within-cells variance estimate Symbolized by sW

2.
Estimate of the null-hypothesis population vari-
ance that is based on the within-cells variability.
(p. 424, 425)

Within-groups sum of squares Symbolized by SSW.
Statistic computed in the one-way ANOVA. The
total of the sum of squares for each group.
(p. 387, 388)

Within-groups variance estimate Symbolized by sW
2.

Statistic computed in the one-way ANOVA. Es-
timate of the null-hypothesis population vari-
ance that is based on the within groups variabil-
ity. (p. 387)

X axis The horizontal axis of a graph. (p. 56)
Y axis The vertical axis of a graph. (p. 56)
Y intercept The Y value of a function where the func-

tion intersects the Y axis. For the linear relation-
ship Y � bX � a, a is the Y intercept. (p. 115)

z score A transformed score that designates how
many standard deviation units the correspond-
ing raw score is above or below the mean. (p. 98)

Mnull Mean of the null hypothesis population. (p. 309)
Mreal Mean of the population specified by the hypo-

thesized real effect. (p. 310)
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A posteriori comparisons, 404–412,
501–502

A posteriori probability, 184–185
A priori comparisons, 402–403, 411–

412, 501–502
A priori probability, 184–185
Abscissa (X axis), 56
Absolute zero point on ratio scale,

33
Addition rule for probability

binomial distribution and, 217
definition of, 186–187
equation for, 186–187
with exhaustive and mutually

exclusive events, 190
with more than two mutually

exclusive events, 190
multiplication rule used with,

201–204
with mutually exclusive events,

186–190
Advertisements, 13–14, 257–259,

412–413
AIDS patients and marijuana

experiment, 239–244, 271–276
Algebra. See Mathematical

calculations
Alpha (a) level

decision rule and, 242–243, 245–
247

definition of, 246, 493
and one- or two-tailed

probability, 249–251
power and, 276, 312–313
Type I error and. See Type I error

Alternative hypothesis
and calculation of power, 278–

280
definition of, 242, 492
directional hypothesis, 242, 249–

251

nondirectional hypothesis, 242,
249–251

Anacin-3 ad, 14
Analysis of variance (ANOVA). See

also One-way analysis of
variance; Two-way analysis of
variance

analyzing data with, 390–394
assumptions underlying, 398
between-groups sum of squares

(SSB), 387, 389–390
between-groups variance

estimate (sB
2), 387–390, 393

eta squared (h2), 400–401
F distribution and, 383–384
F ratio and, 387, 390, 500–501,

503–504
F test and, 384–385, 500–501,

503–504
logic underlying one-way

ANOVA, 394–395
multiple comparisons and, 401–

412
omega squared (v̂2), 399–400
one-way analysis of variance

technique, 386–390
power of, 400–401
real-world applications of, 412–413
relationship between t test and,

398
size of effect and, 399–400
stress experiment, 390–394
summary of, 413–414, 499–505
total variability (SST), 387, 392–

393
within-groups sum of squares

(SSW), 386–388, 392
within-groups variance estimate

(sW
2), 386–388, 392

Anecdotal reports versus scientific
research, 260–261

ANOVA. See Analysis of variance
(ANOVA)

Anxiety about mathematics and
statistics, 26

Applied social research, 480–481
Area under normal curve, table of,

553–556
Arithmetic mean

calculation of, 70–71
definition of, 71
overall mean, 73–75
of population set of scores, 71
properties of, 72–73
of sample, 71
sampling variation and, 73
sensitivity of, to exact value of

scores in distribution, 72
sensitivity of, to extreme scores,

72
sum of deviations about the

mean, 72
sum of squared deviations of all

scores about their mean, 73
symbols for, 71
of z scores, 101

Arithmetic operations. See
Mathematical calculations

Astrology and science, 283–284
Asymptotic curve, 96
Authority

as method of knowing, 4
use of, in advertisement, 14

Autism drug, 260–261

Bar graph, 57, 59
Beer brands experiment, 452–455
Bell-shaped curve

central tendency and, 78
frequency distribution and, 61
normal curve, 96–98

Beta (b), 245, 247, 275–276, 280–283
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Between-groups sum of squares
(SSB), 387, 389–390, 391, 500

Between-groups variance estimate
(sB

2), 387, 388–390, 393, 501
Bevereidge, W. I. B., 5
Biased coins, 190, 224–226
Biased sample, 181
Bimodal histogram, 78
Binomial distribution

appropriate conditions for, 497
binomial table used for, 220–228
coffee taste testing for

illustrating, 228
coin flipping for illustrating, 216–

219
definition of, 216
evaluating marijuana experiment

using, 243–244
generating of, from binomial

expansion, 219–220
illustration of, 216–219
multiple-choice exam for

illustrating, 227
normal approximation and, 229–

234
summary of, 234–235, 497
table of, 557–561

Binomial expansion
definition of, 219
equation for, 237n
expansion of, 219
generating binomial distribution

from, 219–220
Binomial table, use of, 220–228,
Biserial correlation coefficient (rb),

131
Brain stimulation and eating

experiment, 346–349

Causation
cause-and-effect relationships, 10
correlation versus, 135–136

Celsius scale, 32–33
Central Limit Theorem, 294, 296
Central tendency

arithmetic mean, 70–75
introduction to, 70
median, 75–77
mode, 77–78
overall mean, 73–75
summary of, 85
symmetry and, 78

Chi-square (x2)
assumptions underlying, 465
beer brands experiment, 452–455
computation of‚ x2

obt, 452–453,
458–460, 505

evaluation of‚ x2
obt, 453–455,

460–461
political affiliation and attitude

experiment, 457–461
single variable experiments, 452–

456
summary of, 482–483, 505–506
table of, 572
test of independence between

variables, 456–465
Coefficient of determination (r2),

130, 364
size of effect and, 130

Cohen’s d statistic. See Size of effect
Coin flipping

fair (or unbiased) coins, 190, 193–
194, 216–223

for illustration of binomial
distribution, 216–219

Coke versus Pepsi taste test, 256–
257

Column degrees of freedom (dfC),
429, 434, 504

Column sum of squares (SSC), 425,
429, 433, 503–504

Column variance estimate (sC
2),

424, 425, 429, 434, 503–504
Comparison-wise error rate, 404
Computer programs

Excel, 12
MINITAB, 12
Statistical Analysis System

(SAS), 12
Statistical Package for the Social

Sciences (SPSS), 12
SYSTAT, 12

Computer use in statistics, 11–12
Confidence intervals

construction of 95% confidence
interval for m, 332–333

construction of 95% confidence
interval for m1 � m2, 369–
371

construction of 99% confidence
interval for m, 334

construction of 99% confidence
interval for m1 � m2, 372

definition of, 331
estimating mean IQ of university

professors, 333–334
general equations for any

confidence interval, 334–335
for population mean and t test

(single sample), 331
Confidence limits, 331
Constant, 7
Contingency table, 457–458

Continuous variables
approximate measurements and,

35–36
definition of, 35
probability and normally

distributed continuous
variables, 204–206

real limits of continuous variable,
35–36

Control condition, 240, 346, 353
Control group, 354
Correct decision on null hypothesis,

244–247, 277–278
Correlated groups design

compared with independent
groups design, 366–369, 379n4

description of, 241
sign test and, 242, 346, 352
t test for, 346–353, 365, 369, 379n

Correlation
causation versus, 135–136
compared with regression, 114,

151
definition of correlation

coefficient, 121
and direction and degree of

relationship, 121
eta correlation coefficient, 131
extreme score and, 135
introduction to, 114
measuring scale and, 131
multiple correlation, 167–171
Pearson r correlation coefficient,

121, 122–130
range and, 134
real-world applications of, 137–

139
scatter plots of correlation

coefficients, 121–122
Spearman rho (rs), 132–133
summary of, 139–140
z scores and, 100, 122–125

Correlation coefficients
biserial correlation coefficient

(rb), 131
definition of, 121
eta correlation coefficient, 131
extreme score and, 135
measuring scale and, 131
negative sign of, 121
Pearson r, 121, 122–130
phi correlation coefficient, 131
positive sign of, 121
scatter plots of, 121–122
shape of relationship and, 131

Correlational studies, 9–10
Craps, 184
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Critical region for rejection of null
hypothesis, 302–307, 493

Critical value of a statistic, 302–307
Critical value of r, 337–338
Critical value of t, 323–324
Critical value of X, 308–314
Critical value of z, 302–307, 323
Cumulative frequency distribution,

49, 50
Cumulative percentage curve, 60
Cumulative percentage distribution,

49, 50
Curves. See Graphs
Curvilinear relationships, 115, 131

Data
definition of, 7
inaccurate, 16
inappropriate generalizations

from, 15
lack of, in advertisements, 13

Decimal remainder, 36–38
Decision rule

alpha level and, 242–243, 245–
247, 493

one-way analysis of variance
and, 387

two-way analysis of variance
and, 431

Degree of separation, 470–471
Degrees of freedom

chi-square and, 453–455, 490n
column degrees of freedom

(dfC), 429, 434, 504
row � column degrees of

freedom (dfRC), 430, 434, 504
row degrees of freedom (dfR),

428, 434, 504
t test (independent groups), 359
t test (single sample), 321–322
within-cells degrees of freedom

(dfW), 427, 434, 504
Dependent events

definition of, 197
multiplication rule with, 197–201
multiplication rule with more than

two dependent events, 200–201
Dependent variable, 7
Depression in women, 258
Descriptive statistics, definition of, 11
Deviation method for standard

deviation, 79–82
Deviation scores

calculation of, 79–80
definition of, 80
for population data, 80
for sample data, 80

Diet and intellectual development
experiment, 469–472

Difference scores, 346–348
Direct relationship, 117–118
Direct-difference method for t test,

346–351, 379n
Directional hypothesis, 242, 265n
Discrete variables, 35
Dispersion, standard deviation as

measure of, 83
Distribution-free tests, 451

Early Speaking experiment, 319–
320, 323–324

Elementary school principals, 137
Equations

list of, 528–535
of straight line, 115–116

Equivalence and nominal scales, 31
Errors

comparison-wise error rate, 404
estimated standard error of the

mean, 319
experiment-wise error rate, 404,

412
mean square error, 387
prediction errors, 162–165
standard error of estimate, 162–

165, 163n
standard error of the mean, 295
Type I error. See Type I error
Type II error. See Type II error

Estimated standard error of the
mean, 319

Eta correlation coefficient, 131
Eta squared (h2), 400
Excedrin ad, 259
Exercise and sleep experiment, 431–

436
Exhaustive events

addition rule with, 190
definition of, 190

Expected frequencies, 452–453
Experimental condition, 240, 346,

354
Experimental group, 350
Experiments. See Scientific

experiments; Scientific
experiments (example)

Experiment-wise error rate, 404, 412
Exploratory data analysis, 62–63
Extreme scores. See Scores

Fcrit, 387, 390, 393, 424, 431, 501,
505

F distribution, 383–384
table on, 568–570

F ratio
for one-way analysis of variance,

387, 390, 393, 500–501
for two-way analysis of variance,

424–425, 431, 434, 435, 503–
504

F test, 384–385, 500–501, 503–504
Factorial experiment, 421
Failure to reject null hypothesis,

243, 277–278, 279, 289
Fair (unbiased) coins, 190, 193–194,

216–219, 221–224
Fisher, R. A., 383
Fisher’s exact probability test, 465
Fixed effects design, 421
Flowchart for choosing appropriate

test, 506–508
Frequency distributions

construction of, for grouped
scores, 44–47

cumulative frequency
distribution, 49, 50

cumulative percentage
distribution, 49, 50

definition of, 43
exploratory data analysis, 62–

63
graphing of, 56–62
of grouped scores, 44–49
percentile rank, 54–56
percentiles, percentile points, 50–

54
real world applications of, 64
relative frequency distribution,

49–50
shapes of frequency curves, 60–

62
stem and leaf diagrams, 62–63
summary of, 64–65
ungrouped frequency

distributions, 43–44
Frequency polygon, 57–60

Gosset, W. S., 319, 321
Grand mean, 389, 394–395
Graphs. See also Normal curve;

Scatter plots
bar graph, 57, 59
central tendency, 78
construction of, generally, 56
cumulative percentage curve, 60
F curves, 384
of frequency distribution, 56–

62
frequency polygon, 57, 59–60
histogram, 57, 78
parallel lines on, 441
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Graphs (continued)
plotting scores on, generally, 56
scatter plot, 115–116
X axis (abscissa) of, 56
Y axis (ordinate) of, 56

Grouped scores, frequency
distribution of, 44–49

Hcrit, 477
Hobt, 476–479
Histogram

bimodal histogram, 78
compared with stem and leaf

diagram, 62
description of, 57
unimodal histogram, 78

Homogeneity of variance
assumption, 362–363, 398, 446

Homoscedasticity, 163
Hormone X and sexual behavior

experiment, 355–357, 359–361
HSD test. See Tukey’s Honestly

Significant Difference (HSD)
test

Hypnosis ad, 13
Hypothesis testing

alternative hypothesis in, 242,
265n, 492

binomial distribution for
evaluating, 243–244

confidence interval approach,
369–372

decision rule and alpha level,
242–243, 245–247, 493

introduction to, 180, 239
marijuana experiment with

AIDS patients as example of,
239–244

null hypothesis in, 242–243, 256,
256n

one-tailed probability and, 248–
250, 252–254

process of, 493–494
real-world application of, 256–261
repeated measures design, 241
with sign test, 240–266, 289, 497–

498
significant results and, 243, 256,

277–278
size of effect, 256
summary of, 261–262, 493–494
terms and concepts in, 492–493
two-tailed probability and, 247–

252, 254–255
Type I and Type II error in. See

Type I and Type II error

Imperfect relationships
definition and description of,

119–120
prediction and, 151–153

Important versus significant results,
256

Independent events
definition of, 191
multiplication rule with, 191–197
multiplication rule with more

than two independent events,
196–197

Independent groups design. See also
Mann-Whitney U test; One-
way analysis of variance; t test
(independent groups)

compared with correlated groups
design, 366–369

description of, 353–354, 498
evaluating effect of independent

variable using confidence
intervals, 369–372

t test for, 353–381,
z test for, 355–357

Independent variable, 7
Inferential statistics. See also

individual tests such as sign
test, t test, ANOVA

choice of appropriate test, 506–
508

definition of, 11
power, 267–287
probability, 184–206
random sampling, 180–183
review of, 491–514
sampling distributions, 289–307

Inflection points of normal curve,
96–97

Intellectual development and diet
experiment, 469–472

Interaction effects, 422–424, 441
Interval estimation, 331
Interval scale

definition and description of, 32
Pearson r and, 131

Intervals in frequency distributions,
44–49

Intuition, 5–6
Inverse relationsip, 117–118
IQ measurement, 33–34
IQ of university professors, 333–334

J-shaped curve, 61–62

k samples, 475–476, 503
Kelvin scale, 33

Keppel, G., 402
Knowledge

authority and, 4
intuition and, 5–6
rationalism and, 4–5
scientific method and, 6

Kruskal-Wallis test, 475–479, 482, 503

Leaf and stem diagrams. See Stem
and leaf diagrams

Least-squares regression line
constructing of, 153–162
definition of, 153
equation for, 153–154
prediction and imperfect

relationships, 151–153
Legal system, 207
Light beer brands experiment, 452–

455
Line. See Linear relationships;

Straight line
Linear regression

considerations in using, for
prediction, 165–166

constructing least-square
regression line, 153–162

equation for least-square
regression line, 153–154

introduction to, 151
least-squares regression line,

151–62
prediction and imperfect

relationships, 151–153
prediction errors and, 162–165
regression of X on Y, 159–162
regression of Y on X, 153–159
relation between regression

constants and Pearson r, 166–
167

standard error of estimate, 162–
165, 163n

summary of, 172
Linear relationships

definition of, 115
equation of a straight line, 115–117
scatter plot, 115
slope (b) of straight line, 116–117
Y intercept of line, 115

Literary Digest presidential poll of
1936, 181

Lower confidence limit, general
equation, 334–335

Lower limit for 95% confidence
interval, 333–334

Lower real limit of continuous
variable, 35–36
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Main effects, 422–424, 435
Mann-Whitney U test

as alternative to t test for
independent groups, 363

assumptions underlying, 475
diet and intellectual
development experiment, 470–

472
summary of, 482, 499
tied ranks and, 473–475
Uobt, equations for, 471

Marginals, 459–460
Marijuana experiment with AIDS

patients, 239–244, 271–276
Mathematical background

arithmetic operations, 519–520
exponents, 523
factoring algebraic expressions,

523
fractions, 522
linear interpolation, 525–526
parentheses and brackets, 521
review of, 517–526
solving equations with one

unknown, 523–524
Mathematical notation, 26–27
Mathematics, anxiety about, 26
Mean

arithmetic mean, 70–72
grand mean, 388–389, 394–395
overall mean, 73–75
of population set of scores, 70–73
properties of, 72–73
of sample, 70–73
of sampling variation and, 73
sensitivity of, to exact value of

scores in distribution, 72
sensitivity of, to extreme score, 72
standard deviation as measure of

dispersion relative to, 83
sum of deviations about the

mean, 72
sum of squared deviations of all

scores about their mean, 73
symbols of, 71
symmetry and, 78
of z scores, 101–102

Mean IQ of university professors,
333–334

Mean of difference scores, 347
Mean of null-hypothesis population

(mnull) 308–314
Mean of the sampling distribution

of the mean, 295
Mean square between, 387
Mean square error, 387

Mean square within, 387
Measurement scales

in behavioral sciences, 33–34
correlation coefficient and, 131
interval scale, 32–33
nominal scale, 31
ordinal scale, 32
ratio scale, 33

Median
calculation of, 75–76
definition of, 75
properties of, 77
sampling variability and, 77
sensitivity of, to extreme scores,

77
symbol for, 75
symmetry and, 78

Method of authority, 4
MINITAB, 12
Mode

calculation of, 77
definition of, 77
sampling variability and, 78
symmetry and, 78

Multiple coefficient of
determination (R2), 171

Multiple comparisons
a posteriori comparisons, 404–

412, 501–502
a priori comparisons, 402–404,

411–412, 501–502
Newman-Keuls test, 406, 408–

412, 502
one-way analysis of variance,

401–411, 503
orthogonal comparisons, 402,

419n
summary of, 413–414
Tukey’s HSD test, 405–406, 411–

412, 502
two-way analysis of variance

and, 445
Multiple regression, 167–168
Multiple rule for probability

addition rule used with, 201–204
binomial distribution and, 218
definition of, 191
with dependent events, 197–201
equation for, 191
with independent events, 191–197
with more than two dependent

events, 200–201
with more than two independent

events, 196–197
with mutually exclusive events,

191

Mutually exclusive events
addition rule with, 186–190
definition of, 186
multiplication rule with, 191

N (sample size)
power and, 271–276, 308–314
symbol of, 27

Naturalistic observation research, 9
Negative relationships, 117–118
Negatively skewed curves

central tendency and, 78
frequency distributions and, 60–

61
Newman-Keuls test, 405–412, 502
95% confidence interval, 332–335,

369–371
99% confidence interval, 334–335,

371
Nominal scale, 31
Nondirectional hypothesis, 242, 251–

252
Nonparametric tests, 450–483. See

also Chi square (x2); Kruskal-
Wallis test: Mann-Whitney U
test; Sign test; Wilcoxon
matched-pairs signed ranks
test

Nonsignificant results, 277–278
Normal curve

area contained under, 97–98
as asymptotic to horizontal axis,

96
equation of, 96
finding the area given the raw

score, 102–106
finding the raw score given the

area, 107–109
importance of, 96
inflection points of, 96
normal approximation and, 229–

234
probability and normally

distributed continuous
variables, 204–206

standard scores (z scores) and,
98–109

summary of, 110
table of area under, 553–556

Normal deviate (z) test
alpha level and power, 312–313
appropriate conditions for, 307,

319–320
compared with t test, 319
critical region for rejection of

null hypothesis, 302–305
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Normal deviate (z) test (continued)
critical value of a statistic, 302–

305
equation for, 319
mathematical assumption

underlying, 307
power and, 307–314
reading proficiency experiment,

293, 300–305, 308–314
sampling distribution of the

mean and, 293–300
size of real effect and power,

313–314
summary of, 315

Null hypothesis (H0)
correct decision on, 244–245, 277
critical region for rejection of

null hypothesis, 302–307, 492
definition and description of,

242–243, 492
failure to reject (or retain), 243,

277–278, 290
mean of null-hypothesis

population (mnull), 309–314
nonsignificant results and, 277–

278
null-hypothesis population, 290,

492
one-way analysis of variance

and, 387, 391
rejection of, 242–244, 256, 265n
state of reality and, 245–247
t test (independent groups), 360
two-way analysis of variance

and, 431
Type I error and. See Type I error
Type II error and. See Type II

error
Null-hypothesis population. See also

Normal deviate (z) test
definition of, 290, 492
mean of (mnull), 309–314

Number of P events, 219–228
Number of Q events, 219–228

Observational studies, 9–10
Observed frequencies, 452–453
Omega squared (v̂2), 399
One-tailed probability, 249–251,

252–254
One-way analysis of variance

analyzing data with, 390–394
assumptions underlying, 398
logic underlying, 394–395
multiple comparisons and, 401–

412, 501–502

overview of technique, 386–390,
500–501

relationship between t test and,
398

size of effect and, 399
summary of, 413–414, 500–502

Ordinal scale
definition and description of, 32
Spearman rho (rs) and, 132–133

Ordinate (Y axis), 56
Original scores, 7. See also Data
Orthogonal comparisons, 402, 419n
Overall mean, 73–75

Pnull, 268–270, 278–283
P events, number of, 219–228
Parameter, definition of, 7,
Parameter estimation research, 9, 180
Parametric tests, 451, 482. See also F

test; t test; z test
Pearson r

calculation of, 125–126, 127n
definition of, 123
regression constants and, 166–

167
relationship of r2 and explained

variability, 130
t test for testing significance of,

336–338, 495–496
table of critical values of, 567
and variability of Y accounted

for by X, 128–130
z scores and, 122–125

Pepsi Challenge Taste Test, 256–257
Percentile rank

computation of, 54–56
definition of, 54
equation for computing, 55

Percentiles, percentile points
computation of, 50–54
definition of, 51
equation for computing, 53

Perfect relationships
definition and description of,

118–119
prediction and, 151

Phi correlation coefficient, 131
Planned comparisons, 402–403, 411–

412, 501–502
Point estimate, 331
Political affiliation and attitude

experiment, 457–461
Polling, 209–210
Population

definition of, 6
deviation scores for, 80

mean of population set of scores,
70–72

null-hypothesis population, 290,
492

standard deviation of, using
deviation method, 81

variance of, 85
z scores for, 98–100

Population mean, confidence
intervals for, 331–335

Positive relationships, 117–118
Positively skewed curves, central

tendency and, 78
frequency distributions, 60–62

Post hoc comparisons, 404–412, 501–
502

Power
AIDS experiment analysis, 271–

276
alpha and, 276, 312–313
of the analysis of variance, 400–

401
beta (b) and, 275
calculation of, 278–283
characteristics of, 307–308
definition of, 268, 307–308, 493
effect of N and size of real effect,

271–275, 365, 401
and interpreting nonsignificant

results, 277–278
measure of size and direction of

real effect, 269–270
Pnull, 268–269
Preal, 268–270
real effect and, 268–275, 278–283,

313–314, 401
real-world application of, 283–284
sample size and, 271–275, 308–

312, 365, 401
and sample variability, 366, 401
of t test, 365–366
z test and, 307–314

Prediction
imperfect relationships and, 151–

153
least-squares regression line,

151–162
linear regression and, 151–167
multiple regression and, 167–171
perfect relationships and, 151
regression line for, 119, 129
standard error of estimate, 162–

165
of Y given X for straight line, 117

Prediction errors, standard error of
estimate, 162–165
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Presidential poll of 1936, 181
Principals of elementary schools,

137
Probability. See also Binomial

distribution; Random
sampling

a posteriori probability, 184–185
a priori probability, 184–185
addition rule for, 186–190, 217
basic points concerning

probability values, 185
computing of, 185–206
fraction or decimal number, as,

185
multiplication and addition rules,

both used for, 201–204
multiplication rule for, 191–201,

217
and normally distributed

continuous variables, 204–206
one-tailed probability, 249–251,

252–254
real-world applications of, 207
summary of, 210
two-tailed probability, 249–252,

254–255
Puget Power & Light Company, 64

Qcrit, 405–414, 502
Qobt, 405–414, 502
Q distribution, table of, 571
Q events, number of, 219–228

R2 (squared multiple correlation),
171

Random numbers table, 182, 574–
575

Random sampling. See also
Probability

definition of, 10, 180
polling and, 181, 209–210
real-world applications of, 207–

208
reasons for, 181
sampling with replacement, 181,

183, 191–192
sampling without replacement,

183
summary of, 210–211
table of random numbers for,

574–575
techniques for, 182–183

Range
calculation of, 79
correlation and, 134
definition of, 79

in frequency distributions, 46, 47,
49

variability measure, as, 79
Ratio scale

absolute zero point of, 33
definition and description of, 33
Pearson r and, 131

Rationalism, 4–5
Raw scores, 7. See also Data
Raw scores method for standard

deviation, 82–84, 88n
Reading proficiency experiment,

293, 300–305, 308–314
Real effect, 268–275, 278–283, 313–

314
Real limits of continuous variable,

35–36
Real world applications of statistics,

13–17, 64, 137, 139, 207–210,
256–261, 283–284, 412–413,
480–481

Reasoning. See Rationalism
Regression

compared with correlation, 114,
151

considerations in using linear
regression for prediction,
165–166

constructing least-squares
regression line, 153–162

definition of, 151
equation for least-squares

regression line, 153–154
least-squares regression line,

151–162
multiple regression, 167–171
prediction and imperfect

relationships, 151–153
prediction errors and, 162–165
regression of X on Y, 159–162
regression of Y on X, 153–159
relation between regression

constants and Pearson r, 166–
167

standard error of estimate, 162–
165

summary of, 172
Regression line

definition of, 151
least-squares regression line,

151–162
Regression of X on Y, 159–162
Regression of Y on X, 153–159
Rejection of null hypothesis, 242–

244, 256, 265n, 289
critical region for, 302–307, 493

Relationships. See also Correlation;
Regression

curvilinear relationships, 115, 131
direct relationship, 117–118
imperfect relationships, 118–

120
linear relationships, 114–117
negative relationships, 117–118
perfect relationships, 118–119
positive relationships, 117–118

Relative frequency distribution, 49–
50

Reliability
significant results and, 243, 256
test-retest reliability, 114

Remainder
decimal remainder, 36–37
rounding, 37–38

Repeated (replicated) measures
design, 241, 346, 496. See also t
test (correlated groups); t test
(independent groups)

Research. See Scientific
experiments; Scientific
experiments (examples);
Scientific research

Retaining null hypothesis, 343, 245
Rho (r) population correlation

coefficient, 336
Rho (rs) correlation coefficient, 131,

243–245,
Robust test, 363
Roosevelt, Franklin D., 181
Rounding, 37–38
Row degrees of freedom (dfR), 428,

434, 504
Row sum of squares (SSR), 425, 428,

432, 503
Row variance estimate(sR

2), 424–
425, 427–428, 434, 503–504

Row � column degrees of freedom
(dfRC), 430, 434, 504

Row � column sum of squares
(SSRC), 425, 430, 433, 503–
504

Row � column variance estimate
(SRC

2), 424, 425, 430, 434, 503–
504

Sample
definition of, 6
deviation scores for, 80
mean of, 70–71
size of, and power. See Power
standard deviation of, using

deviation method, 81–82
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Sample (continued)
standard deviation of, using raw

scores method, 82–83, 88n
variance of, 85
z scores for, 99, 99–100

Sampling. See Probability; Random
sampling

Sampling distribution of a statistic,
289

Sampling distribution of F, 383–
384

Sampling distribution of t, 320–322
Sampling distribution of the

difference between sample
and means, 355–357

Sampling distribution of the mean
characteristics of, 295–300
definition of, 294
empirical derivation of, 294–300
mean of, 295
for reading proficiency, 300–301
shape of, 295–300
standard deviation of, 295–296
summary of, 315
theoretical derivation of, 294

Sampling distributions
definition of, 293, 492
definition of sampling

distribution of a statistic, 289
definition of sampling

distribution of the mean, 294
of difference between sample

means, 355–357
generating, 290–293
introduction to, 289
null-hypothesis population, 290
sampling distribution of F, 383–

384
sampling distribution of t, 320–

322
sampling distribution of the

mean, 293–300
summary of, 315

Sampling variability
mean and, 73
median and, 77
mode and, 78
power and, 398
standard deviation and, 83

Sampling with replacement, 181,
183, 191–192

Sampling without replacement, 183
SAS (Statistical Analysis System),

12
Scales. See Measurement scales

Scatter plots
correlation coefficients and, 121–

122
correlational study, 399
happiness and, 138
imperfect relationships and, 119–

120
linear relationships and, 114–115
prediction and imperfect

relationships, 151–153
School principals, 137
Science and astrology, 283–284
Scientific experiments. See also

Hypothesis testing; Scientific
experiments (examples)

advantages of two-condition
experiments, 345

anecdotal reports versus, 260–
261

definitions of, 6–7
experimental condition in, 240,

346
overview, 6
repeated measures design, 241
summary of, 18

Scientific experiments (examples)
beer brands experiment, 452–455
birth control implant’s side

effects, 8–9
brain stimulation and eating

experiment, 346–349
diet and intellectual

development experiment,
469–472

exercise and sleep experiment,
431–436

hormone X and sexual behavior
experiment, 355–357, 359–361

increasing early speaking
experiment, 319–320, 323–324

marijuana experiment with
AIDS patients, 239–244, 271–
276

memory and mode of
presentation of prose passage,
8

obesity and high blood pressure,
9–10

political affiliation and attitude
experiment, 457–461

reading proficiency experiment,
293, 300–305, 308–314

stress experiment, 390–394
weight reduction experiment,

475–477

wildlife conservation attitudes
experiment, 466–468

Scientific method. See also Scientific
experiments

definition and description of, 6–7
Scientific research. See also

Scientific experiments
anecdotal reports versus, 260–

261
applied social research, 480–481
observational studies, 9–10
true experiments, 10

Score transformation, 99
Scores. See also z scores

correlation and extreme score,
135

deviation scores and, 79–80
Sign test

compared with t test (correlated
groups), 352

correlated groups design and,
241, 346

description of, 240–241, 497–498
for hypothesis testing, 240–256,

289, 497–498
summary of, 261–262, 497

Significance of Pearson r, testing of,
336–338

Significant results of experiments,
243, 256, 277–278

Simple randomized-group design,
386,

Single factor experiment,
independent groups design,
386,

Single sample experiments. See t test
(single sample); z test

Size of effect
analysis of variance (h2) and, 400
analysis of variance (v̂2) and,

399–400
coefficient of determination (r2),

130
Cohen’s d statistic, 329–330, 351–

352, 363–365
estimated d (d̂), 330, 352, 364–

365
interpretation of d̂ , 330, 352,

365
“Much Ado about Almost

Nothing” and, 412–413
power and size of real effect,

271–276, 313–314, 365, 400–
401

significant versus important, 256
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t test (correlated groups) and,
351–352

t test (independent groups) and,
363–365

t test (single samples) and, 329–
330

Skewed curve
central tendency and, 78
of frequency distribution, 60–61

Sleep and exercise experiment, 431–
436

Slope (b)
positive and negative

relationships and, 117–118
of straight line, 115–116

Slot machine, 202–203
Spearman rho (rs), 132–133
Sperm count decline, 208
SPSS (Statistical Package for the

Social Sciences), 12
examples of, 89–93, 145–149
web material and

computing correlation
coefficients, 149

computing mean, median, and
mode, 94

computing standard deviation
and variance, 94

constructing histograms, 68
constructing scatter plots, 149
constructing stem and leaf

diagrams, 68
deriving regression equations,

176
one-way independent groups

ANOVA, 419
t test (correlated groups), 381
t test (independent groups),

381
t test (single sample), 343
tutorial, 12
two-way independent groups

ANOVA, 449
z scores, 112

Squared deviation, 80
Squared multiple correlation (R2),

171
Standard deviation

calculation of, using deviation
method, 81–82

calculation of, using raw scores
method, 82–83, 88n

deviation scores and, 79–80
as measure of dispersion relative

to mean, 83

of population scores using
deviation method, 81

properties of, 83
of sample using deviation

method, 81–82
of sample using raw scores

method, 82–83, 88n
of sampling distribution of the

mean, 293–300
sampling variability and, 83
sensitivity of, to each score in

distribution, 83
symbols for, 81
of z scores, 102

Standard error of estimate, 162–165,
163n

Standard error of the mean
definition of, 295
estimated standard error of the

mean, 319
Standard scores. See z scores
State of reality, 245–247, 277
Statistic, definition of, 7
Statistical Analysis System (SAS),

12
Statistical Package for the Social

Sciences. See SPSS
Statistics. See also specific statistical

techniques
abuses of, 480–481
anxiety about, 26
computer’s use in, 11–12
descriptive statistics, 11
inferential statistics, 11
real-world application of, 13–17,

64, 137, 207–210, 256–261,
283–284, 412–413, 480–481

study hints for, 26
Stem and leaf diagrams, 62–63
Straight line

equation of, 115–116
perfect and imperfect

relationships and, 118–120
predicting Y given X, 117
slope (b) of, 116–117
Y intercept of, 115

Stress experiment, 390–394
Student’s t test. See t test
Study hints for statistics, 26–27
Sum of constant divided into value

of variable, 41n
Sum of constant times value of

variable, 40n
Sum of deviations about the mean, 72
Sum of squared deviations, 80–81

Sum of squared deviations of all
scores about their means, 73

Sum of squares, 80–81
Sum of the squared X scores, �X2, 29
Sum of the X scores squared, (�X)2,

29
Sum of values of variable minus

constant, 40n
Sum of values of variable plus

constant, 40n
Summation

equation for, 27–29
rules of, 40–41n

Sweden, 207
Symbols

study hints for, 26–27
for subjects or scores, 27
for variables, 26–27

Symmetrical curve of frequency
distribution, 60–62

Symmetry
central tendency and, 78
frequency curves and, 60–62

SYSTAT, 12

tobt

calculation of, for correlated
groups, 347–351, 496

calculation of, for single sample,
323–329, 495

calculation of, from original
scores, 324–329, 342n

calculation of, in t test for
independent groups, 357–362,
498–499

calculation of, when n1 � n2, 360–
362

equations for, 319, 325, 347, 358,
360

t distribution
compared with z distribution,

322–323
confidence intervals for

population mean, 331–334
construction of 95% confidence

interval, 332–334
table for, 566

t test (correlated groups)
assumptions underlying, 353
brain stimulation and eating

experiment, 346–349
compared with sign test, 352–353
compared with t test

(independent groups), 366–
368, 379n
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t test (continued)
compared with t test (single

sample), 347–348
direct-difference method for,

346–349, 379n
equation for tobt, 347, 496
power of, 365–366
repeated measures experiment,

346
requirements for, 451
size of effect and, 351–352
summary of, 372–373, 496

t test (independent groups)
a priori or planned comparisons,

402–403, 411–412, 501–502
assumptions underlying, 362–363
calculation of tobt when n1 � n2,

360–362, 498
compared with t test (correlated

groups), 366–369
compared with z test, 357–359
degrees of freedom and, 359
effect of independent variable

using confidence intervals,
369–372

equation for, 357–359, 498–499
equation for tobt, 365–366, 498
and homogeneity of variance

assumption, 362–363
hormone X and sexual behavior

experiment, 355–356, 359–361
independent groups design and,

353–354
power of, 365–366
relationship between analysis of

variance (ANOVA) and, 398
requirements for, 451
as robust test, 363
size of effect and, 363–365
summary of, 372–373, 498–499
violation of assumptions of, 363

t test (single sample)
appropriate conditions for, 329,

451
calculating tobt from original

scores, 324–329, 342n
compared with t test (correlated

groups), 347–348
compared with z test, 319
degrees of freedom and, 321–322
equation for, 319, 325, 495
estimated standard error of the

mean, 319
increasing early speaking

experiment, 319–320, 323–324
power of, 365–366

sampling distribution of t, 320–
322

size of effect and, 329–330
summary of, 339, 495
for testing significance of

Pearson r, 336–338, 495
z distribution compared with t

distribution, 322–323
Tables

area under normal curve, 553–
556

binomial distribution, 557–561
chi-square, 572
F distribution, 568–570
Pearson r critical values, 567
Q distribution, 571
random numbers, 574–575
t distribution, 566
U and U� critical values, 562–565
Wilcoxon signed ranks test, 573

Tail of distribution, evaluation of,
247–249

Test-retest reliability, 114
Tied ranks, 473–475
Total sum of squares (SST), 386,

392–393, 425, 433–434, 503–
504

Total variability/total sum of
squares (SST). See Total sum
of squares

Tukey, John, 62
Tukey’s Honestly Significant

Difference (HSD) test, 405–
406, 411–412, 502

Two-condition experiments, 241,
345, 353, 496. See also t test
(correlated groups); t test
(independent groups)

Two-tailed probability, 248–252,
254–255

Two-way analysis of variance
assumptions underlying, 446

column variance estimate (sC
2),

424, 425, 429, 434
exercise and sleep experiment,

431–436
F ratios for, 424–425, 434, 503,

505
factorial experiment and, 421–

424
homogeneity of variance

assumption and, 446
interaction effects and, 422–424,

441
main effects and, 422–424
multiple comparisons and, 445

notation and general layout of
data for, 426

overview of, 424–425, 426
row variance estimate (sR

2) in,
424–425, 427–428, 434, 503–504

row � column variance estimate
(sRC

2) in, 424–425, 430, 434,
503–504

summary of, 446, 503–505
total variability/total sum of

squares (SST), 392–393, 425,
433–434, 503–504

within-cells variance estimate
(sW

2), 424–425, 427, 434, 503–
504

Type I error
a posteriori comparisons, 404
alpha (a) level and, 245–247, 249,

250, 268, 286n
analysis of variance (ANOVA)

and, 386
comparison-wise error rate and,

404, 406
definition of, 244, 289, 493
experiment-wise error rate and,

404, 406, 411–412
hypothesis testing using sign test,

244–247, 250
Newman-Keuls test and, 411–412
probability of making, 286n
review, 493
Tukey’s HSD test and, 404, 406,

411–412
Type II error

beta (b) and, 245, 247, 268
definition of, 244, 289, 493
hypothesis testing using sign test,

244–247, 250
Newman-Keuls test and, 412
power and, 275, 280, 281, 283, 353
review, 493

U and U�, table of critical values of,
562–565

U test. See Mann-Whitney U test
Unbiased coins, 190, 193–194, 216–

218, 222–223
Uniform (rectangular) curve, 61–62
Unimodal histogram, 77–78
Upper confidence limit, general

equation, 334–335
Upper limit for 95% confidence

interval, 333, 334–335
Upper real limit of continuous

variable, 35–36
U-shaped curve, 61
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Variability
introduction to, 70
Pearson r and, 128–130
range, 79
standard deviation, 79–84
summary of, 85
t test and, 365–366
and t test for independent

groups, 366–369
variance, 85
of Y accounted for by X, 128–130

Variability accounted for by X, 128–
130

Variables
continuous, 35–36, 204–206
definition of, 7, 35
dependent, 7
discrete, 35
independent, 7
symbols for, 26–27

Variance. See also Analysis of
variance (ANOVA)

calculation of, 85
definition of, 85
homogeneity of variance

assumption, 362–363, 446
of population scores, 85
of sample scores, 85

Wechsler Adult Intelligence Scale
(WAIS), 33–34

Weight reduction experiment, 475–
477

Welfare system, 480–481

Wilcoxon matched-pairs signed
ranks test, 466–469, 482, 497

table for, 573
Wildlife conservation attitudes

experiment, 466–468
Winer, 402
Within-cells degrees of freedom

(dfW), 427, 434, 504
Within-cells sum of squares (SSW),

425, 427, 433, 503–504
Within-cells variance estimate (sW

2),
424–425, 427, 434, 503–504

Within-groups sum of squares
(SSW), 386–388, 392

Within-groups variance estimate
(sW

2), 387–388, 393, 501

X axis (abscissa), 56

Y axis (ordinate), 56
Y intercept, 115

z distribution, compared with t
distribution, 322–323

z scores
characteristics of, 101–102
correlation and, 100, 122–125
definition of, 99
equation for, 99
finding the area given the raw

score, 102–105
finding the raw score given the

area, 107–109
introduction to, 98–99

for population data, 98–100
for sample data, 99, 100–101
score transformation, 99
shape of, compared with shape of

raw scores, 101
standard deviation of, 102
summary of, 110
use of, 100

z test
alpha level and power, 312–313
appropriate conditions for, 307,

319–320, 451
compared with t test, 319, 357–

358
critical region for rejection of

null hypothesis, 302–303
critical value of a statistic and,

302–303
equation for, 302, 319, 494
for independent groups, 355–

357
mathematical assumption

underlying, 307
normal approximation and, 229–

234
power and, 307–314
reading proficiency experiment,

293, 300–305, 308–314
sample size and power, 308–312
sampling distribution of the

mean and, 293–300
size of real effect and power,

313–314
summary of, 315, 494–495
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