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CHAPTER

1Introduction and How to Use
This Book

INTRODUCTION
The last thing many designers and researchers in the field of user experience think of is statistics. In
fact, we know many practitioners who find the field appealing because it largely avoids those
impersonal numbers. The thinking goes that if usability and design are qualitative activities, it’s
safe to skip the formulas and numbers.

Although design and several usability activities are certainly qualitative, the impact of good and
bad designs can be easily quantified in conversions, completion rates, completion times, perceived
satisfaction, recommendations, and sales. Increasingly, usability practitioners and user researchers
are expected to quantify the benefits of their efforts. If they don’t, someone else will—unfortunately
that someone else might not use the right metrics or methods.

THE ORGANIZATION OF THIS BOOK
This book is intended for those who measure the behavior and attitudes of people as they interact
with interfaces. This book is not about abstract mathematical theories for which you may someday
find a partial use. Instead, this book is about working backwards from the most common questions
and problems you’ll encounter as you conduct, analyze, and report on user research projects. In
general, these activities fall into three areas:

1. Summarizing data and computing margins of error (Chapter 3).
2. Determining if there is a statistically significant difference, either in comparison to a benchmark

(Chapter 4) or between groups (Chapter 5).
3. Finding the appropriate sample size for a study (Chapters 6 and 7).

We also provide:

• Background chapters with an overview of common ways to quantify user research (Chapter 2)
and a quick introduction/review of many fundamental statistical concepts (Appendix).

• A comprehensive discussion of standardized usability questionnaires (Chapter 8).
• A discussion of enduring statistical controversies of which user researchers should be aware and

able to articulate in defense of their analyses (Chapter 9).
• A wrap-up chapter with pointers to more information on statistics for user research (Chapter 10).

Each chapter ends with a list of key points and references. Most chapters also include a set of problems
and answers to those problems so you can check your understanding of the content.

Quantifying the User Experience. DOI: 10.1016/B978-0-12-384968-7.00001-1
© 2012 Jeff Sauro and James R. Lewis. Published by Elsevier Inc. All rights reserved.
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HOW TO USE THIS BOOK
Despite there being a significant proportion of user research practitioners with advanced degrees,
about 10% have PhDs (UPA, 2011); for most people in the social sciences, statistics is the only
quantitative course they have to take. For many, statistics is a subject they know they should under-
stand, but it often brings back bad memories of high school math, poor teachers, and an abstract
and difficult topic.

While we’d like to take all the pain out of learning and using statistics, there are still formu-
las, math, and some abstract concepts that we just can’t avoid. Some people want to see how the
statistics work, and for them we provide the math. If you’re not terribly interested in the compu-
tational mechanics, then you can skip over the formulas and focus more on how to apply the
procedures.

Readers who are familiar with many statistical procedures and formulas may find that some of
the formulas we use differ from what you learned in your college statistics courses. Part of this is
from recent advances in statistics (especially for dealing with binary data). Another part is due to
our selecting the best procedures for practical user research, focusing on procedures that work well
for the types of data and sample sizes you’ll likely encounter.

Based on teaching many courses at industry conferences and at companies, we know the statis-
tics background of the readers of this book will vary substantially. Some of you may have never
taken a statistics course whereas others probably took several in graduate school. As much as possi-
ble, we’ve incorporated relevant discussions around the concepts as they appear in each chapter
with plenty of examples using actual data from real user research studies.

In our experience, one of the hardest things to remember in applying statistics is what statistical test
to perform when. To help with this problem, we’ve provided decision maps (see Figures 1.1 to 1.4) to
help you get to the right statistical test and the sections of the book that discuss it.

What Test Should I Use?
The first decision point comes from the type of data you have. See the Appendix for a discussion of
the distinction between discrete and continuous data. In general, for deciding which test to use, you
need to know if your data are discrete-binary (e.g., pass/fail data coded as 1’s and 0’s) or more con-
tinuous (e.g., task-time or rating-scale data).

The next major decision is whether you’re comparing data or just getting an estimate of preci-
sion. To get an estimate of precision you compute a confidence interval around your sample metrics
(e.g., what is the margin of error around a completion rate of 70%; see Chapter 3). By comparing
data we mean comparing data from two or more groups (e.g., task completion times for Products A
and B; see Chapter 5) or comparing your data to a benchmark (e.g., is the completion rate for Pro-
duct A significantly above 70%; see Chapter 4).

If you’re comparing data, the next decision is whether the groups of data come from the same or
different users. Continuing on that path, the final decision depends on whether there are two groups
to compare or more than two groups.

To find the appropriate section in each chapter for the methods depicted in Figures 1.1 and 1.2,
consult Tables 1.1 and 1.2. Note that methods discussed in Chapter 10 are outside the scope of this
book, and receive just a brief description in their sections.
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For example, let’s say you want to know which statistical test to use if you are comparing com-
pletion rates on an older version of a product and a new version where a different set of people par-
ticipated in each test.

1. Because completion rates are discrete-binary data (1 = pass and 0 = fail), we should use the
decision map in Figure 1.2.

2. Start at the first box, “Comparing Data?,” and select “Y” because we are comparing a data set
from an older product with a data set from a new product.

Table 1.1 Chapter Sections for Methods Depicted in Figure 1.1

Method Chapter: Section [Page]

One-Sample t (Log) 4: Comparing a Task Time to a Benchmark [54]
One-Sample t 4: Comparing a Satisfaction Score to a Benchmark [50]
Confidence Interval around Median 3: Confidence Interval around a Median [33]
t (Log) Confidence Interval 3: Confidence Interval for Task-Time Data [29]
t Confidence Interval 3: Confidence Interval for Rating Scales and Other

Continuous Data [26]
Paired t 5: Within-Subjects Comparison (Paired t-Test) [63]
ANOVA or Multiple Paired t 5: Within-Subjects Comparison (Paired t-Test) [63]

9: What If You Need to Run More Than One Test? [256]
10: Getting More Information [269]

Two-Sample t 5: Between-Subjects Comparison (Two-Sample t-Test) [68]
ANOVA or Multiple Two-Sample t 5: Between-Subjects Comparison (Two-Sample t-Test) [68]

9: What If You Need to Run More Than One Test? [256]
10: Getting More Information [269]

Table 1.2 Chapter Sections for Methods Depicted in Figure 1.2

Method Chapter: Section [Page]

One-Sample z-Test 4: Comparing a Completion Rate to a Benchmark
(Large Sample Test) [49]

One-Sample Binomial 4: Comparing a Completion Rate to a Benchmark
(Small Sample Test) [45]

Adjusted Wald Confidence Interval 3: Adjusted-Wald Interval: Add Two Successes and Two
Failures [22]

McNemar Exact Test 5: McNemar Exact Test [84]
Adjusted Wald Confidence Interval for
Difference in Matched Proportions

5: Confidence Interval around the Difference for Matched
Pairs [89]

N − 1 Two-Proportion Test and Fisher
Exact Test

5: N − 1 Two-Proportion Test [79]; Fisher Exact Test [78]

Adjusted Wald Difference in Proportion 5: Confidence for the Difference between Proportions [81]
Chi-Square 10: Getting More Information [269]
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3. This takes us to the “Different Users in Each Group” box—we have different users in each
group so we select “Y.”

4. Now we’re at the “3 or More Groups” box—we have only two groups of users (before and
after) so we select “N.”

5. We stop at the “N − 1 Two-Proportion Test and Fisher Exact Test” (Chapter 5).

What Sample Size Do I Need?
Often the first collision a user researcher has with statistics is in planning sample sizes. Although
there are many “rules of thumb” on how many users you should test or how many customer
responses you need to achieve your goals, there really are precise ways of finding the answer. The
first step is to identify the type of test for which you’re collecting data. In general, there are three
ways of determining your sample size:

1. Estimating a parameter with a specified precision (e.g., if your goal is to estimate completion
rates with a margin of error of no more than 5%, or completion times with a margin of error of
no more than 15 seconds).

2. Comparing two or more groups or comparing one group to a benchmark.
3. Problem discovery, specifically the number of users you need in a usability test to find a

specified percentage of usability problems with a specified probability of occurrence.

To find the appropriate section in each chapter for the methods depicted in Figures 1.3 and 1.4,
consult Table 1.3.

For example, let’s say you want to compute the appropriate sample size if the same users will
rate the usability of two products using a standardized questionnaire that provides a mean score.

1. Because the goal is to compare data, start with the sample size decision map in Figure 1.3.
2. At the “Comparing Groups?” box, select “Y” because there will be two groups of data, one for

each product.

Table 1.3 Chapter Sections for Methods Depicted in Figures 1.3 and 1.4

Method Chapter: Section [Page]

2 Proportions 6: Sample Size Estimation for Chi-Square Tests (Independent
Proportions) [128]

2 Means 6: Comparing Values—Example 6 [116]
Paired Proportions 6: Sample Size Estimation for McNemar Exact Tests (Matched

Proportions) [131]
Paired Means 6: Comparing Values—Example 5 [115]
Proportion to Criterion 6: Sample Size for Comparison with a Benchmark Proportion [125]
Mean to Criterion 6: Comparing Values—Example 4 [115]
Margin of Error Proportion 6: Sample Size Estimation for Binomial Confidence Intervals [121]
Margin of Error Mean 6: Estimating Values—Examples 1–3 [112]
Problem Discovery Sample Size 7: Using a Probabilistic Model of Problem Discovery to Estimate

Sample Sizes for Formative User Research [143]
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3. At the “Different Users in Each Group?” box, select “N” because each group will have the same users.
4. Because rating-scale data are not binary, select “N” at the “Binary Data?” box.
5. We stop at the “Paired Means” procedure (Chapter 6).

You Don’t Have to Do the Computations by Hand
We’ve provided sufficient detail in the formulas and examples that you should be able to do all
computations in Microsoft Excel. If you have an existing statistical package like SPSS, Minitab, or
SAS, you may find some of the results will differ (e.g., confidence intervals and sample size com-
putations) or they don’t include some of the statistical tests we recommend, so be sure to check the
notes associated with the procedures.

We’ve created an Excel calculator that performs all the computations covered in this book. It
includes both standard statistical output (p-values and confidence intervals) and some more user-
friendly output that, for example, reminds you how to interpret that ubiquitous p-value and that you
can paste right into reports. It is available for purchase online at www.measuringusability.com/
products/expandedStats. For detailed information on how to use the Excel calculator (or a custom
set of functions written in the R statistical programming language) to solve the over 100 quantita-
tive examples and exercises that appear in this book, see Lewis and Sauro (2012).

KEY POINTS FROM THE CHAPTER
• The primary purpose of this book is to provide a statistical resource for those who measure the

behavior and attitudes of people as they interact with interfaces.
• Our focus is on methods applicable to practical user research, based on our experience,

investigations, and reviews of the latest statistical literature.
• As an aid to the persistent problem of remembering what method to use under what

circumstances, this chapter contains four decision maps to guide researchers to the appropriate
method and its chapter in this book.

CHAPTER REVIEW QUESTIONS
1. Suppose you need to analyze a sample of task-time data against a specified benchmark. For

example, you want to know if the average task time is less than two minutes. What procedure
should you use?

2. Suppose you have some conversion-rate data and you just want to understand how precise the
estimate is. For example, in examining the server log data you see 10,000 page views and 55
clicks on a registration button. What procedure should you use?

3. Suppose you’re planning to conduct a study in which the primary goal is to compare task
completion times for two products, with two independent groups of participants providing the
times. Which sample size estimation method should you use?

4. Suppose you’re planning to run a formative usability study—one where you’re going to watch
people use the product you’re developing and see what problems they encounter. Which sample
size estimation method should you use?
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Answers
1. Task-time data are continuous (not binary-discrete), so start with the decision map in Figure 1.1.

Because you’re testing against a benchmark rather than comparing groups of data, follow the “N”
path from “Comparing Data?” At “Testing Against a Benchmark?,” select the “Y” path. Finally, at
“Task Time?,” take the “Y” path, which leads you to “1-Sample t (Log).” As shown in Table 1.1,
you’ll find that method discussed in Chapter 4 in the “Comparing a Task Time to a Benchmark”
section on p. 54.

2. Conversion-rate data are binary-discrete, so start with the decision map in Figure 1.2. You’re just
estimating the rate rather than comparing a set of rates, so at “Comparing Data?,” take the “N”
path. At “Testing Against a Benchmark?,” also take the “N” path. This leads you to “Adjusted
Wald Confidence Interval,” which, according to Table 1.2, is discussed in Chapter 3 in the
“Adjusted-Wald Interval: Add Two Successes and Two Failures” section on p. 22.

3. Because you’re planning a comparison of two independent sets of task times, start with the decision
map in Figure 1.3. At “Comparing Groups?,” select the “Y” path. At “Different Users in Each
Group?,” select the “Y” path. At “Binary Data?,” select the “N” path. This takes you to “2 Means,”
which, according to Table 1.3, is discussed in Chapter 6 in the “Comparing Values” section. See
Example 6 on p. 116.

4. For this type of problem discovery evaluation, you’re not planning any type of comparison, so start
with the decision map in Figure 1.4. You’re not planning to estimate any parameters, such as task
times or problem occurrence rates, so at “Estimating a Parameter?,” take the “N” path. This leads
you to “Problem Discovery Sample Size,” which, according to Table 1.3, is discussed in Chapter 7
in the “Using a Probabilistic Model of Problem Discovery to Estimate Sample Sizes for Formative
User Research” section on p. 143.
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CHAPTER

2Quantifying User Research

WHAT IS USER RESEARCH?
For a topic with only two words, “user research” implies different things to different people.
Regarding “user” in user research, Edward Tufte (Bisbort, 1999) famously said: “Only two industries
refer to their customers as ‘users’: computer design and drug dealing.”

This book focuses on the first of those two types of customers. This user can be a paying customer,
internal employee, physician, call-center operator, automobile driver, cell phone owner, or any person
attempting to accomplish some goal—typically with some type of software, website, or machine.

The “research” in user research is both broad and nebulous—a reflection of the amalgamation of
methods and professionals that fall under its auspices. Schumacher (2010, p. 6) offers one definition:

User research is the systematic study of the goals, needs, and capabilities of users so as to specify
design, construction, or improvement of tools to benefit how users work and live.

Our concern is less with defining the term and what it covers than with quantifying the behavior
of users, which is in the purview of usability professionals, designers, product managers, marketers,
and developers.

DATA FROM USER RESEARCH
Although the term user research may eventually fall out of favor, the data that come from user
research won’t. Throughout this book we will use examples from usability testing, customer surveys,
A/B testing, and site visits, with an emphasis on usability testing. There are three reasons for our
emphasis on usability testing data:

1. Usability testing remains a central way of determining whether users are accomplishing their goals.
2. Both authors have conducted and written extensively about usability testing.
3. Usability testing uses many of the same metrics as other user research techniques (e.g.,

completion rates can be found just about everywhere).

USABILITY TESTING
Usability has an international standard definition in ISO 9241 pt. 11 (ISO, 1998), which defined usability
as the extent to which a product can be used by specified users to achieve specified goals with effective-
ness, efficiency, and satisfaction in a specified context of use. Although there are no specific guidelines
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on how to measure effectiveness, efficiency, and satisfaction, a large survey of almost 100 summative
usability tests (Sauro and Lewis, 2009) reveals what practitioners typically collect. Most tests contain
some combination of completion rates, errors, task times, task-level satisfaction, test-level satisfaction,
help access, and lists of usability problems (typically including frequency and severity).

There are generally two types of usability tests: finding and fixing usability problems (formative
tests) and describing the usability of an application using metrics (summative tests). The terms for-
mative and summative come from education (Scriven, 1967) where they are used in a similar way
to describe tests of student learning (formative—providing immediate feedback to improve learning,
versus summative—evaluating what was learned).

The bulk of usability testing is formative. It is often a small-sample qualitative activity where
the data take the form of problem descriptions and design recommendations. Just because the goal
is to find and fix as many problems as you can does not mean there is no opportunity for quantifi-
cation. You can quantify the problems in terms of frequency and severity, track which users
encountered which problems, measure how long it took them to complete tasks, and determine
whether they completed the tasks successfully.

There are typically two types of summative tests: benchmark and comparative. The goal of a
benchmark usability test is to describe how usable an application is relative to a set of benchmark
goals. Benchmark tests provide input on what to fix in an interface and also provide an essential
baseline for the comparison of postdesign changes.

A comparative usability test, as the name suggests, involves more than one application. This can
be a comparison of a current with a prior version of a product or comparison of competing
products. In comparative tests, the same users can attempt tasks on all products (within-subjects
design) or different sets of users can work with each product (between-subjects design).

Sample Sizes
There is an incorrect perception that sample sizes must be large (typically above 30) to use statistics
and interpret quantitative data. We discuss sample sizes extensively in Chapters 6 and 7, and
throughout this book show how to reach valid statistical conclusions with sample sizes less than 10.
Don’t let the size of your sample (even if you have as few as 2–5 users) preclude you from using
statistics to quantify your data and inform your design decisions.

Representativeness and Randomness
Somewhat related to the issue of sample sizes is that of the makeup of the sample. Often the con-
cern with a small sample size is that the sample isn’t “representative” of the parent population.
Sample size and representativeness are actually different concepts. You can have a sample size of 5
that is representative of the population and you can have a sample size of 1,000 that is not represen-
tative. One of the more famous examples of this distinction comes from the 1936 Literary Digest
Presidential Poll. The magazine polled its readers on who they intended to vote for and received
2.4 million responses but incorrectly predicted the winner of the presidential election. The problem
was not one of sample size but of representativeness. The people who responded tended to be indi-
viduals with higher incomes and education levels—not representative of the ultimate voters (see
http://en.wikipedia.org/wiki/The_Literary_Digest).
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The most important thing in user research, whether the data are qualitative or quantitative, is that
the sample of users you measure represents the population about which you intend to make state-
ments. Otherwise, you have no logical basis for generalizing your results from the sample to the
population. No amount of statistical manipulation can correct for making inferences about one
population if you observe a sample from a different population. Taken to the extreme, it doesn’t
matter how many men are in your sample if you want to make statements about female education
levels or salaries. If you want to gain insight into how to improve the design of snowshoes, it’s bet-
ter to have a sample of 5 Arctic explorers than a sample of 1,000 surfers. In practice, this means if
you intend to draw conclusions about different types of users (e.g., new versus experienced, older
versus younger) you should plan on having all groups represented in your sample.

One reason for the confusion between sample size and representativeness is that if your popula-
tion is composed of, say, 10 distinct groups and you have a sample of 5, then there aren’t enough
people in the sample to have a representative from all 10 groups. You would deal with this by
developing a sampling plan that ensures drawing a representative sample from every group that you
need to study—a method known as stratified sampling. For example, consider sampling from differ-
ent groups if you have reason to believe:

• There are potential and important differences among groups on key measures (Dickens, 1987).
• There are potential interactions as a function of a group (Aykin and Aykin, 1991).
• The variability of key measures differs as a function of a group.
• The cost of sampling differs significantly from group to group.

Gordon and Langmaid (1988) recommended the following approach to defining groups:

1. Write down all the important variables.
2. If necessary, prioritize the list.
3. Design an ideal sample.
4. Apply common sense to combine groups.

For example, suppose you start with 24 groups, based on the combination of six demographic loca-
tions, two levels of experience, and the two levels of gender. You might plan to (1) include equal
numbers of males and females over and under 40 years of age in each group, (2) have separate
groups for novice and experienced users, and (3) drop intermediate users from the test. The result-
ing plan requires sampling for 2 groups. A plan that did not combine genders and ages would
require sampling 8 groups.

Ideally, your sample is also selected randomly from the parent population. In practice this can be
very difficult. Unless you force your users to participate in a study you will likely suffer from at
least some form of nonrandomness. In usability studies and surveys, people decide to participate
and this group can have different characteristics than people who choose not to participate. This
problem isn’t unique to user research. Even in clinical trials in which life and death decisions are
made about drugs and medical procedures, people have to participate or have a condition (like can-
cer or diabetes). Many of the principles of human behavior that fill psychology textbooks dispropor-
tionally come from college undergrads—a potential problem of both randomness and
representativeness.

It’s always important to understand the biases in your data and how that limits your conclusions.
In applied research we are constrained by budgets and user participation, but products still must
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ship, so we make the best decisions we can given the data we are able to collect. Where possible
seek to minimize systematic bias in your sample but remember that representativeness is more
important than randomness. In other words, you’ll make better decisions if you have a less-than-
perfectly random sample from the right population than if you have a perfectly random sample
from the wrong population.

Data Collection
Usability data can be collected in a traditional lab-based moderated session where a moderator
observes and interacts with users as they attempt tasks. Such test setups can be expensive and time
consuming and require collocation of users and observers (which can prohibit international testing).
These types of studies often require the use of small-sample statistical procedures because the cost
of each sample is high.

More recently, remote moderated and unmoderated sessions have become popular. In moderated
remote sessions, users attempt tasks on their own computer and software from their location while a
moderator observes and records their behavior using screen-sharing software. In unmoderated
remote sessions, users attempt tasks (usually on websites), while software records their clicks, page
views, and time. For an extensive discussion of remote methods, see Beyond the Usability Lab
(Albert et al., 2010).

For a comprehensive discussion of usability testing, see the chapter “Usability Testing” in the
Handbook of Human Factors and Ergonomics (Lewis, 2012). For practical tips on collecting metrics
in usability tests, see A Practical Guide to Measuring Usability (Sauro, 2010) and Measuring the
User Experience (Tullis and Albert, 2008).

In our experience, although the reasons for human behavior are difficult to quantify, the out-
come of the behavior is easy to observe, measure, and manage. Following are descriptions of the
more common metrics collected in user research, inside and outside of usability tests. We will use
these terms extensively throughout the book.

Completion Rates
Completion rates, also called success rates, are the most fundamental of usability metrics (Nielsen,
2001). They are typically collected as a binary measure of task success (coded as 1) or task failure
(coded as 0). You report completion rates on a task by dividing the number of users who success-
fully complete the task by the total number who attempted it. For example, if 8 out of 10 users
complete a task successfully, the completion rate is 0.8 and usually reported as 80%. You can also
subtract the completion rate from 100% and report a failure rate of 20%.

It is possible to define criteria for partial task success, but we prefer the simpler binary measure
because it lends itself better for statistical analysis. When we refer to completion rates in this book,
we will be referring to binary completion rates.

The other nice thing about a binary rate is that they are used throughout the scientific and statis-
tics literature. Essentially, the presence or absence of anything can be coded as 1’s and 0’s and then
reported as a proportion or percentage. Whether this is the number of users completing tasks on
software, patients cured from an ailment, number of fish recaptured in a lake, or customers purchas-
ing a product, they can all be treated as binary rates.
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Usability Problems
If a user encounters a problem while attempting a task and it can be associated with the interface,
it’s a user interface problem (UI problem). UI problems, typically organized into lists, have names,
a description, and often a severity rating that takes into account the observed problem frequency
and its impact on the user.

The usual method for measuring the frequency of occurrence of a problem is to divide the num-
ber of occurrences within participants by the number of participants. A common technique (Rubin,
1994; Dumas and Redish, 1999) for assessing the impact of a problem is to assign impact scores
according to whether the problem (1) prevents task completion, (2) causes a significant delay or
frustration, (3) has a relatively minor effect on task performance, or (4) is a suggestion.

When considering multiple types of data in a prioritization process, it is necessary to combine
the data in some way. One approach is to combine the data arithmetically. Rubin (1994) described
a procedure for combining four levels of impact (using the criteria previously described with 4
assigned to the most serious level) with four levels of frequency (4: frequency ≥ 90%; 3: 51–89%;
2: 11–50%; 1: ≤ 10%) by adding the scores. For example, if a problem had an observed frequency
of occurrence of 80% and had a minor effect on performance, its priority would be 5 (a frequency
rating of 3 plus an impact rating of 2). With this approach, priority scores can range from a low of
2 to a high of 8.

A similar strategy is to multiply the observed percentage frequency of occurrence by the impact
score (Lewis, 2012). The range of priorities depends on the values assigned to each impact level.
Assigning 10 to the most serious impact level leads to a maximum priority (severity) score of 1,000
(which can optionally be divided by 10 to create a scale that ranges from 1 to 100). Appropriate
values for the remaining three impact categories depend on practitioner judgment, but a reasonable
set is 5, 3, and 1. Using those values, the problem with an observed frequency of occurrence of
80% and a minor effect on performance would have a priority of 24 (80 × 3/10).

From an analytical perspective, a useful way to organize UI problems is to associate them with
the users who encountered them, as shown in Table 2.1.

Knowing the probability with which users will encounter a problem at each phase of development
can become a key metric for measuring usability activity impact and return on investment (ROI).
Knowing which user encountered which problem allows you to better estimate sample sizes, problem
discovery rates, and the number of undiscovered problems (as described in detail in Chapter 7).

Table 2.1 Example of a UI Problem Matrix

User 1 User 2 User 3 User 4 User 5 User 6 Total Proportion

Problem 1 X X X X 4 0.67
Problem 2 X 1 0.167
Problem 3 X X X X X X 6 1
Problem 4 X X 2 0.33
Problem 5 X 1 0.167
Total 3 2 1 2 4 2 14 p = 0.47

Note: The X’s represent users who encountered a problem. For example, user 4 encountered problems 3 and 4.
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Task Time
Task time is how long a user spends on an activity. It is most often the amount of time it takes
users to successfully complete a predefined task scenario, but it can be total time on a web page or
call length. It can be measured in milliseconds, seconds, minutes, hours, days, or years, and is typi-
cally reported as an average (see Chapter 3 for a discussion on handling task-time data). There are
several ways of measuring and analyzing task duration:

1. Task completion time: Time of users who completed the task successfully.
2. Time until failure: Time on task until users give up or complete the task incorrectly.
3. Total time on task: The total duration of time users spend on a task.

Errors
Errors are any unintended action, slip, mistake, or omission a user makes while attempting a task.
Error counts can go from 0 (no errors) to technically infinity (although it is rare to record more
than 20 or so in one task in a usability test). Errors provide excellent diagnostic information on
why users are failing tasks and, where possible, are mapped to UI problems. Errors can also be ana-
lyzed as binary measures: the user either encountered an error (1 = yes) or did not (0 = no).

Satisfaction Ratings
Questionnaires that measure the perception of the ease of use of a system can be completed imme-
diately after a task (post-task questionnaires), at the end of a usability session (post-test question-
naires), or outside of a usability test. Although you can write your own questions for assessing
perceived ease of use, your results will likely be more reliable if you use one of the currently avail-
able standardized questionnaires (Sauro and Lewis, 2009). See Chapter 8 for a detailed discussion
of standardized usability questionnaires.

Combined Scores
Although usability metrics significantly correlate (Sauro and Lewis, 2009), they don’t correlate
strongly enough that one metric can replace another. In general, users who complete more tasks
tend to rate tasks as easier and to complete them more quickly. Some users, however, fail tasks and
still rate them as being easy, or others complete tasks quickly and report finding them difficult.
Collecting multiple metrics in a usability test is advantageous because this provides a better picture
of the overall user experience than any single measure can. However, analyzing and reporting on
multiple metrics can be cumbersome, so it can be easier to combine metrics into a single score.
A combined usability metric can be treated just like any other metric and can be used advantageously
as a component of executive dashboards or for determining statistical significance between products
(see Chapter 5). For more information on combining usability metrics into single scores, see Sauro
and Kindlund (2005), Sauro and Lewis (2009), and the “Can You Combine Usability Metrics into
Single Scores?” section in Chapter 9.
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A/B TESTING
A/B testing, also called split-half testing, is a popular method for comparing alternate designs on web
pages. In this type of testing, popularized by Amazon, users randomly work with one of two deployed
design alternatives. The difference in design can be as subtle as different words on a button or a dif-
ferent product image, or can involve entirely different page layouts and product information.

Clicks, Page Views, and Conversion Rates
For websites and web applications, it is typical practice to automatically collect clicks and page
views, and in many cases these are the only data you have access to without conducting your own
study. Both these measures are useful for determining conversion rates, purchase rates, or feature
usage, and are used extensively in A/B testing, typically analyzed like completion rates.

To determine which design is superior, you count the number of users who were presented with
each design and the number of users who clicked through. For example, if 1,000 users experienced
Design A and 20 clicked on “Sign-Up,” and 1,050 users saw Design B and 48 clicked on “Sign-
Up,” the conversion rates are 2% and 4.5%, respectively. To learn how to determine if there is a
statistical difference between designs, see Chapter 5.

SURVEY DATA
Surveys are one of the easiest ways to collect attitudinal data from customers. Surveys typically
contain some combination of open-ended comments, binary yes/no responses, and Likert-type rating
scale data.

Rating Scales
Rating scale items are characterized by closed-ended response options. Typically, respondents are
asked to agree or disagree to a statement (often referred to as Likert-type items). For numerical
analysis, the classic five-choice Likert response options can be converted into numbers from 1 to 5
(as shown in Table 2.2).

Once you’ve converted the responses to numbers you can compute the mean and standard devia-
tion and generate confidence intervals (see Chapter 3) or compare responses to different products
(see Chapter 5). See Chapter 8 for a detailed discussion of questionnaires and rating scales specific
to usability, and the “Is It Okay to Average Data from Multipoint Scales?” section in Chapter 9 for
a discussion of the arguments for and against computing means and conducting standard statistical
tests with this type of data.

Table 2.2 Mapping of the Five Classic Likert Response Options to Numbers

This → Strongly Disagree Disagree Neutral Agree Strongly Agree

Becomes This → 1 2 3 4 5
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Net Promoter Scores®

Even though questions about customer loyalty and future purchasing behavior have been around for
a long time, a recent innovation is the net promoter question and scoring method used by many
companies and in some usability tests (Reichheld, 2003, 2006). The popular net promoter score
(NPS) is based on a single question about customer loyalty: How likely is it that you’ll recommend
this product to a friend or colleague? The response options range from 0 to 10 and are grouped into
three segments:

Promoters: Responses from 9 to 10
Passives: Responses from 7 to 8
Detractors: Responses from 0 to 6

By subtracting the percentage of detractor responses from the percentage of promoter responses you
get the net promoter score, which ranges from −100% to 100%, with higher numbers indicating a
better loyalty score (more promoters than detractors). Although the likelihood-to-recommend item
can be analyzed just like any other rating scale item (using the mean and standard deviation), the
segmentation scoring of the NPS requires slightly different statistical treatments (see Chapter 5).

Note: Net Promoter, NPS, and Net Promoter Score are trademarks of Satmetrix Systems, Inc., Bain &
Company, and Fred Reichheld.

Comments and Open-ended Data
Analyzing and prioritizing comments is a common task for a user researcher. Open-ended com-
ments take all sorts of forms, such as:

• Reasons why customers are promoters or detractors for a product.
• Customer insights from field studies.
• Product complaints to calls to customer service.
• Why a task was difficult to complete.

Just as usability problems can be counted, comments and most open-ended data can be turned
into categories, quantified and subjected to statistical analysis (Sauro, 2011). You can then further
analyze the data by generating a confidence interval to understand what percent of all users likely
feel this way (see Chapter 3).

REQUIREMENTS GATHERING
Another key function of user research is to identify features and functions of a product. While it’s
rarely as easy as asking customers what they want, there are methods of analyzing customer beha-
viors that reveal unmet needs. As shown in Table 2.3, these behaviors can be observed at home or
the workplace and then quantified in the same way as UI problems. Each behavior gets a name and
description, and then you record which users exhibited the particular behavior in a grid like the one
shown in the table.

You can easily report on the percentage of customers who exhibited a behavior and generate
confidence intervals around the percentage in the same way you do for binary completion rates
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(see Chapter 3). You can also apply statistical models of discovery to estimate required sample
sizes, requirement discovery rates, and the number of undiscovered requirements (see Chapter 7).

KEY POINTS FROM THE CHAPTER
• User research is a broad term that encompasses many methodologies that generate quantifiable

outcomes, including usability testing, surveys, questionnaires, and site visits.
• Usability testing is a central activity in user research and typically generates the metrics of

completion rates, task times, errors, satisfaction data, and user interface problems.
• Binary completion rates are both a fundamental usability metric and a metric applied to all areas

of scientific research.
• You can quantify data from small sample sizes and use statistics to draw conclusions.
• Even open-ended comments and problem descriptions can be categorized and quantified.
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CHAPTER

3How Precise Are Our Estimates?
Confidence Intervals

INTRODUCTION
In usability testing, like most applied research settings, we almost never have access to the entire
user population. Instead we have to rely on taking samples to estimate the unknown population
values. If we want to know how long it will take users to complete a task or what percent will com-
plete a task on the first attempt, we need to estimate from a sample. The sample means and sample
proportions (called statistics) are estimates of the values we really want—the population parameters.

When we don’t have access to the entire population, even our best estimate from a sample will
be close but not exactly right, and the smaller the sample size, the less accurate it will be. We need
a way to know how good (precise) our estimates are.

To do so, we construct a range of values that we think will have a specified chance of contain-
ing the unknown population parameter. These ranges are called confidence intervals. For example,
what is the average time it takes you to commute to work? Assuming you don’t telecommute, even
your best guess (say, 25 minutes) will be wrong by a few minutes or seconds. It would be more
correct to provide an interval. For example, you might say on most days it takes between 20 and
30 minutes.

Confidence Interval = Twice the Margin of Error
If you’ve seen the results of a poll reported on TV along with a margin of error, then you are already
familiar with confidence intervals. Confidence intervals are used just like margins of errors. In fact, a
confidence interval is twice the margin of error. If you hear that 57% of likely voters approve of pro-
posed legislation (95% margin of error ±3%) then the confidence interval is six percentage points wide,
falling between 54% and 60% (57% − 3% and 57% + 3%).

In the previous example, the question was about approval, with voters giving only a binary
“approve” or “not approve” response. It is coded just like a task completion rate (0’s and 1’s) and
we calculate the margins of errors and confidence intervals in the same way.

Confidence Intervals Provide Precision and Location
A confidence interval provides both a measure of location and precision. That is, we can see that the
average approval rating is around 57%. We can also see that this estimate is reasonably precise. If we
want to know whether the majority of voters approve the legislation we can see that it is very unlikely
(less than a 2.5% chance) that fewer than half the voters approve. Precision, of course, is relative. If
another poll has a margin of error of ±2%, it would be more precise (and have a narrower confidence
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interval), whereas a poll with a margin of error of 10% would be less precise (and have a wider
confidence interval). Few user researchers will find themselves taking surveys about attitudes toward
government. The concept and math performed on these surveys, however, is exactly the same as
when we construct confidence intervals around completion rates.

Three Components of a Confidence Interval
Three things affect the width of a confidence interval: the confidence level, the variability of the
sample, and the sample size.

Confidence Level
The confidence level is the “advertised coverage” of a confidence interval—the “95%” in a 95%
confidence interval. This part is often left off of margin of error reports in television polls. A confi-
dence level of 95% (the typical value) means that if you were to sample from the same population
100 times, you’d expect the interval to contain the actual mean or proportion 95 times. In reality,
the actual coverage of a confidence interval dips above and below the nominal confidence level
(discussed later). Although a researcher can choose a confidence level of any value between 0%
and 100%, it is usually set to 95% or 90%.

Variability
If there is more variation in a population, each sample taken will fluctuate more and therefore create
a wider confidence interval. The variability of the population is estimated using the standard devia-
tion from the sample.

Sample Size
Without lowering the confidence level, the sample size is the only thing a researcher can control in
affecting the width of a confidence interval. The confidence interval width and sample size have an
inverse square root relationship. This means if you want to cut your margin of error in half, you
need to quadruple your sample size. For example, if your margin of error is ±20% at a sample size
of 20, you’d need a sample size of approximately 80 to have a margin of error of ±10%.

CONFIDENCE INTERVAL FOR A COMPLETION RATE
One of the most fundamental of usability metrics is whether a user can complete a task. It is usually
coded as a binary response: 1 for a successful attempt and 0 for an unsuccessful attempt. We saw
how this has the same form as many surveys and polls that have only yes or no responses. When
we watch 10 users attempt a task and 8 of them are able to successfully complete it, we have
a sample completion rate of 0.8 (called a proportion) or, expressed as a percent, 80%.

If we were somehow able to measure all our users, or even just a few thousand of them, it is ex-
tremely unlikely that exactly 80% of all users would be able to complete the task. To know the likely
range of the actual unknown population completion rate, we need to compute a binomial confidence
interval around the sample proportion. There is strong agreement on the importance of using confi-
dence intervals in research. Until recently, however, there wasn’t a terribly good way of computing
binomial confidence intervals for small sample sizes.
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Confidence Interval History
It isn’t necessary to go through the history of a statistic to use it, but we’ll spend some time on the
history of the binomial confidence interval for three reasons:

1. They are used very frequently in applied research.
2. They are covered in every statistics text (and you might even recall one formula).
3. There have been some new developments in the statistics literature.

As we go through some of the different ways to compute binomial confidence intervals, keep in
mind that statistical confidence means confidence in the method of constructing the interval—not
confidence in a specific interval (see sidebar “On the Strict Interpretation of Confidence Intervals”).
To bypass the history and get right to the method we recommend, skip to the section “Adjusted-
Wald Interval: Add Two Successes and Two Failures.”

One of the first uses of confidence intervals was to estimate binary success rates (like the one
used for completion rates). It was proposed by Simon Laplace 200 years ago (Laplace, 1812) and is
still commonly taught in introductory statistics textbooks. It takes the following form:

p̂± z�
1−

α

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1− p̂Þ

n

r

where

p̂ is the sample proportion
n is the sample size
z 1− α

2ð Þ is the critical value from the normal distribution for the level of confidence (1.96 for 95%

confidence)

For example, if we observe 7 out of 10 users completing a task, we get the following 95% confi-
dence interval around our sample completion rate of 70% (7/10):

0:7± 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:7ð1− 0:7Þ

10

r
= 0:7± 1:96

ffiffiffiffiffiffiffiffiffiffiffi
0:021

p
= 0:7± 0:28

According to this formula we can be 95% confident the actual population completion rate is somewhere
between 42% and 98%. Despite Laplace’s original use, it has come to be known as the Wald interval,
named after the 20th-century statistician Abraham Wald.

Wald Interval: Terribly Inaccurate for Small Samples
The problem with the Wald interval is that it is terribly inaccurate at small sample sizes (less than
about 100) or when the proportion is close to 0 or 1—conditions that are very common with small-
sample usability data and in applied research. Instead of containing the actual proportion 95 times
out of 100, it contains it far less, often as low as 50–60% of the time (Agresti and Coull, 1998).
In other words, when you think you’re reporting a 95% confidence interval using the Wald method,
it is more likely a 70% confidence interval. Because this problem is greatest with small sample
sizes and when the proportion is far from 0.5, most introductory texts recommend large sample
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sizes to compute this confidence interval (usually at least 30). This recommendation also contributes
to the widely held but incorrect notion that you need large sample sizes to use inferential statistics.
As usability practitioners, we know that we often do not have the luxury of large sample sizes.

Exact Confidence Interval
Over the years there have been proposals to make confidence interval formulas more precise for all
sample sizes and all ranges of the proportion. A class of confidence intervals known as exact intervals
work well for even small sample sizes (Clopper and Pearson, 1934) and have been discussed in the
usability literature (Lewis, 1996; Sauro, 2004). Exact intervals have two drawbacks: they tend to be
overly conservative and are computationally intense, as shown in the Clopper-Pearson formula:

1+ n− x+ 1
xF2x,2ðn−x+ 1Þ,1−α/2

� �−1
< p< 1+ n− x

ðx+ 1ÞF2ðx+1Þ,2ðn−xÞ,α/2

� �−1
For the same 7 out of 10 completion rate, an exact 95% confidence interval ranges from 35% to 93%.

As was seen with the Wald interval, a stated confidence level of, say, 95% is no guarantee of an
interval actually containing the proportion 95% of the time. Exact intervals are constructed in a way
that guarantees that the confidence interval provides at least 95% coverage. To achieve that goal,
however, exact intervals tend to be overly conservative, containing the population proportion closer
to 99 times out of 100 (as opposed to the nominal 95 times out of 100). In other words, when you
think you’re reporting a 95% confidence interval using an exact method, it is more likely a 99%
interval. The result is an unnecessarily wide interval. This is especially the case when sample sizes
are small, as they are in most usability tests.

Adjusted-Wald Interval: Add Two Successes and Two Failures
Another approach to computing confidence intervals, known as the score or Wilson interval, tends
to strike a good balance between the exact and Wald in terms of actual coverage (Wilson, 1927).
Its major drawback is it is rather tedious to compute and is not terribly well known, so it is thus
often left out of introductory statistics texts. Recently, a simple alternative based on the work origi-
nally reported by Wilson, named the adjusted-Wald method by Agresti and Coull (1998), simply
requires, for 95% confidence intervals, the addition of two successes and two failures to the
observed number of successes and failures, and then uses the well-known Wald formula to compute
the 95% binomial confidence interval.

Research (Agresti and Coull, 1998; Sauro and Lewis, 2005) has shown that the adjusted-Wald method
has coverage as good as the score method for most values of the sample completion rate (denoted p̂), and
is usually better when the completion rate approaches 0 or 1. The “add two successes and two failures”
(or adding 2 to the numerator and 4 to the denominator) is derived from the critical value of the normal
distribution for 95% intervals (1.96, which is approximately 2 and, when squared, is about 4):

p̂adj =
x+ z2

2
n+ z2

=
x+ 1:962

2
n+ 1:962

= x+ 1:92
n+ 3:84

≈ x+ 2
n+ 4
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where

x is the number who successfully completed the task
n is the number who attempted the task (the sample size)

We find it easier to think of and explain this adjustment by rounding up to the whole numbers
(two successes and two failures), but since we almost always use software to compute confidence inter-
vals, we use the more precise 1.96 in the subsequent examples. Unless you’re doing the computations
on the back of a napkin (see Figure 3.1), we recommend using 1.96—it will also make the transition
easier when you need to use a different level of confidence than 95% (e.g., a 90% confidence level uses
1.64 and a 99% confidence level uses 2.57).

The standard Wald formula is updated with the new adjusted values of p̂adj and nadj:

p̂adj ± z�
1−

α

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂adjð1− p̂adjÞ

nadj

s

For example, if we compute a 95% adjusted-Wald interval for 7 out of 10 users completing a task,
we first compute the adjusted proportion ( p̂adj):

p̂adj=
7+ 1:962

2
10+ 1:962

=
7+ 1:962

2
10+ 1:962

= 7+ 1:92
10+ 3:84

= 8:92
13:84

= 0:645

Then substitute the adjusted proportion, p̂adj, and the adjusted sample size, nadj, into the Wald equation:

0:645± 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:645 ð1− 0:645Þ

13:84

r
= 0:645± 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0165

p
= 0:645± 0:25

If 7 out of 10 users complete a task we can be 95% confident the actual completion rate is between 39%
and 90% (pretty close to the back-of-napkin estimate in Figure 3.1). Table 3.1 shows the intervals for all
three methods.

FIGURE 3.1

Back-of-napkin adjusted-Wald binomial confidence interval.
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ON THE STRICT INTERPRETATION OF CONFIDENCE INTERVALS
What You Need to Know When Discussing Confidence Intervals with Statisticians
We love confidence intervals. You should use them whenever you can. When you do, you should watch out for
some conceptual hurdles. In general, you should know that a confidence interval will tell you the most likely
range of the unknown population mean or proportion. For example, if 7 out of 10 users complete a task, the
95% confidence interval is 39% to 90%. If we were able to measure everyone in the user population, this is
our best guess as to the percent of users who can complete the task.

It is incorrect to say, “There is a 95% probability the population completion rate is between 39% and 90%.”
While we (Jeff and Jim) will understand what you mean, others may be quick to point out the problem with that
statement.

We are 95% confident in the method of generating confidence intervals and not in any given interval. The
confidence interval we generated from the sample data either does or does not contain the population completion rate.
If we run 100 tests each with 10 users from the same population and compute confidence intervals each time, on
average 95 of those 100 confidence intervals will contain the unknown population completion rate. We don’t know if
the one sample of 10 we had is one of those 5 that doesn’t contain the completion rate. So it’s best to avoid using
“probability” or “chance” when describing a confidence interval, and remember that we’re 95% or 99% confident in the
process of generating confidence intervals and not any given interval. Another way to interpret a confidence interval is to
use Smithson’s (2003, p. 177) plausibility terminology: “Any value inside the interval could be said to be a plausible
value; those outside the interval could be called implausible.”

Because it provides the most accurate confidence intervals over time, we recommend the adjusted-
Wald interval for binomial confidence intervals for all sample sizes. At small sample sizes the adjust-
ment makes a major improvement in accuracy. For larger sample sizes the effect of the adjustments has
little impact but does no harm. For example, at a sample size of 500, adding two successes and two
failures has much less of an impact on the calculation than when the sample size is 5.

There is one exception in our recommendation. If you absolutely must guarantee that your interval
will contain the population completion rate no less than 95% of the time then use the exact method.

Best Point Estimates for a Completion Rate
With small sample sizes in usability testing it is a common occurrence to have either all participants
complete a task or all participants fail (100% and 0% completion rates). Although it is possible that
every single user will complete a task or every user will fail it, it is less likely when the estimate
comes from a small sample size. In our experience, such claims of absolute task success also tend
to make stakeholders dubious of the small sample size. While the sample proportion is often the
best estimate of the population completion rate, we have found some conditions where other

Table 3.1 Comparison of Three Methods for Computing Binomial Confidence Intervals

CI Method Low % High % Interval Width Comment

Wald 42 98 57% Inaccurate
Exact 35 93 59% Too wide
Adjusted-Wald 39 90 50% Just right

Note: All computations performed at www.measuringusability.com/wald.htm.

24 CHAPTER 3 How Precise Are Our Estimates? Confidence Intervals

http://www.measuringusability.com/wald.htm


estimates tend to be slightly better (Lewis and Sauro, 2006). Two other noteworthy estimates of the
completion rate are:

• Laplace method: Add one success and one failure.
• Wilson method: add two successes and two failures (used as part of the adjusted-Wald interval).

Guidelines on Reporting the Best Completion Rate Estimate
If you find yourself needing the best possible point estimate of the population completion rate,
consider the following rules on what to report (in addition to the confidence interval).

If you conduct usability tests in which your task completion rates typically take a wide range of
values, uniformly distributed between 0% and 100%, then you should use the Laplace method. The
smaller your sample size and the farther your initial estimate of the population completion rate is
from 50%, the more you will improve your estimate of the actual completion rate.

If you conduct usability tests in which your task completion rates are roughly restricted to the
range of 50% to 100% (the more common situation in usability testing), then the best estimation
method depends on the value of the sample completion rate. If the sample completion rate is:

1. Less than or equal to 50%: Use the Wilson method (which you get as part of the process of
computing an adjusted-Wald binomial confidence interval).

2. Between 50% and 90%: Stick with reporting the sample proportion. Any attempt to improve on
it is as likely to decrease as to increase the estimate’s accuracy.

3. Greater than 90% but less than 100%: Apply the Laplace method. Do not use Wilson in this
range to estimate the population completion rate, even if you have computed a 95% adjusted-
Wald confidence interval!

4. Equal to 100%: Use the Laplace method.

Always use an adjustment when sample sizes are small (n < 20). It does no harm to use an
adjustment when sample sizes are larger. Keep in mind that even these guidelines will only slightly
improve the accuracy of your estimate of the completion rate, so this is no substitution for comput-
ing and reporting confidence intervals.

How Accurate Are Point Estimates from Small Samples?
Even the best point estimate from a sample will differ by some amount from the actual population
completion rate. To get an idea of the typical amount of error, we created a Monte Carlo simulator.
The simulator compared thousands of small-sample estimates to an actual population completion
rate. At a sample size of five, on average, the completion rate differed by around 11 percentage
points from the population completion rate; 75% of the time the completion differed by less than
21 percentage points (see www.measuringusability.com/blog/memory-math.php).

The results of this simulation tell us that even a very small-sample completion rate isn’t useless even
though the width of the 95% confidence interval is rather wide (typically 30+ percentage points). But
given any single sample, you can’t know ahead of time how accurate your estimate is. The confidence
interval will provide a definitive range of plausible values. From a practical perspective, keep in mind
that the values in the middle of the interval are more likely than those near the edges. If 95 percent
confidence intervals are too wide to support decision making, then it may be appropriate to lower the
confidence level to 90% or 80%. See Chapter 6 for a discussion of appropriate statistical criteria for
industrial decision making.
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Confidence Interval for a Problem Occurrence
The adjusted-Wald binomial confidence interval is one of the researcher’s most useful tools. Any
measure that can be coded as binary can benefit from this confidence interval. In addition to a comple-
tion rate, another common measure of usability is the number of users likely to encounter a problem.

Even in primarily qualitative formative usability tests, simple counts of user-interface problems
are taken. For example, three out of five users might experience the same problem with a design.
Understanding the actual percent of users affected by the problem can guide the prioritization of
problems and reduce some of the skepticism that comes with small sample sizes.

Using the adjusted-Wald formula, if three out five users experience a problem with a design, we
can be 95% confident between 23% and 88% of all users are likely to experience the same problem.
Although there is more uncertainty with small samples (the interval in this example is 65 percentage
points wide), the confidence interval is still very informative. Specifically, it tells us we can be
fairly certain that, if left uncorrected, one-fifth or more of all users would encounter the problem.

CONFIDENCE INTERVAL FOR RATING SCALES AND OTHER
CONTINUOUS DATA
The best approach for constructing a confidence interval around numeric rating scales is to compute the
mean and standard deviation of the responses and then use the t-distribution. If you’re used to treating rat-
ing scale responses as discrete frequencies, see Chapter 9 (“Is it OK to average data from multipoint
scales”). The t-distribution is like the normal distribution (also called the z-distribution) except that it takes
the sample size into account. With smaller sample sizes, our estimate of the population variance is rather
crude and will fluctuate more from sample to sample. The t-distribution adjusts for how good our estimate
is by making the intervals wider as the sample sizes get smaller. As the sample size increases (especially
at or above a sample size of 30), the t-confidence interval converges on the normal z-confidence interval.
After a sample size exceeds 100 or so, the difference between confidence intervals using the z and t is
only a fraction of a point. In other words, the t-distribution will provide the best interval regardless of
your sample size, so we recommend using it for all sample sizes.

The t-confidence interval takes the following form:

x± t
1−

α

2

� � sffiffiffi
n

p

where

x is the sample mean
n is the sample size
s is the sample standard deviation
t 1− α

2ð Þ is the critical value from the t-distribution for n−1 degrees of freedom and the specified

level of confidence

The confidence interval formula can appear intimidating. A simplified way of thinking about it
is to think of the confidence interval as two margins of error around the mean. The margin of error
is approximately two standard errors, and the standard error is how much we expect sample means
to fluctuate given the sample size (see Figure 3.2).
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To construct the interval, we need the mean, standard error, sample size, and critical value from
the t-distribution, using the appropriate value of t for our sample size and desired confidence level.
We can obtain the mean and standard deviation from our sample data.

Example 1
For example, let’s use the following scores from the System Usability Scale (SUS), collected when users
rated the usability of a CRM application.

90, 77:5,72:5, 95, 62:5, 57:5, 100, 95, 95, 80, 82:5, 87:5

From these data we can generate the three basic ingredients needed to generate the t-confidence
interval:

Mean: 82.9
Standard deviation: 13.5
Sample size: 12

The standard error is our estimate of how much the average sample means will fluctuate around the
true population mean. It is the standard deviation divided by the square root of the sample size:

Standard error = sffiffiffi
n

p = 13:5ffiffiffiffiffiffi
12

p = 3:9
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FIGURE 3.2

Diagram of confidence interval.
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In a normal distribution, we’d expect 95% of sample means to fall within 1.96 standard errors of the mean
(see the “Crash Course” in the Appendix for a refresher on this relationship). The standard error is the
same thing as the standard deviation of the sampling distribution of means. It is called the standard error
to differentiate it from the standard deviation of the raw data and remind us that every sample mean has
some error in estimating the population mean.

Because our sample size is fairly small, 95% of sample means will actually fluctuate more than
two standard errors. The exact number depends on our sample size, found by looking up values from the
t-distribution in a statistics textbook, the Excel function =TINV(0.05,11), or the online calculator at www
.usablestats.com/calcs/tinv.

To find the t-critical value, we need alpha and the degrees of freedom. Alpha is the Greek symbol for
the level of significance used in the study, typically 0.05. It is also one minus the confidence level, which
is typically 95% (1 − 0.95 = 0.05).

The degrees of freedom (df) for this type of confidence interval is the sample size minus 1 (12 − 1 = 11).
Table 3.2 is an abbreviated t-table similar to ones you would find in a textbook. We first find 11 df and move
to the right in the table until we reach our desired significance level (0.05).

We find the critical value of 2.2. Such a result is typically written as (t0.05, 11) = 2.2. It tells us that at
a sample size of 12 we can expect 95% of sample means to fall within 2.2 standard deviations of the
population mean. We then express this as the margin of error:

Margin of error = 2:2 sffiffiffi
n

p = 2:2×3:9 = 8:6

Table 3.2 Abbreviated t-Table

Level of Significance

df 0.2 0.1 0.05 0.01 0.001
1 3.08 6.31 12.71 63.66 636.62
2 1.89 2.92 4.3 9.92 31.6
3 1.64 2.35 3.18 5.84 12.92
4 1.53 2.13 2.78 4.6 8.61
5 1.48 2.02 2.57 4.03 6.87
6 1.44 1.94 2.45 3.71 5.96
7 1.41 1.89 2.36 3.5 5.41
8 1.4 1.86 2.31 3.36 5.04
9 1.38 1.83 2.26 3.25 4.78

10 1.37 1.81 2.23 3.17 4.59
11 1.36 1.8 2.2 3.11 4.44
12 1.36 1.78 2.18 3.05 4.32
13 1.35 1.77 2.16 3.01 4.22
14 1.35 1.76 2.14 2.98 4.14
15 1.34 1.75 2.13 2.95 4.07
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The confidence interval is twice the margin of error, with upper and lower bounds computed by adding it
to and subtracting it from our sample mean:

Confidence interval = 82:9− 8:6 to 82:9+8:6
= 74:3 to 91:5

Thus, we can be 95% confident that the true score is between 74.3 and 91.5.

Example 2
Fifteen users were asked to find information about a mutual fund on a financial services company website.
After attempting the task, users answered a single seven-point Likert question about how difficult the task
was. A rating of 1 corresponds to the response “Very Difficult” and a 7 corresponds to “Very Easy.”

The responses were:

3, 5, 3, 7, 1, 6,2, 5, 1, 1, 3,2, 6, 2, 2

From these data we can generate the three basic ingredients we need to generate the t-confidence
interval.

Mean: 3.27
Standard deviation: 2.02
Sample size: 15

The critical value from the t-distribution is (t0.05, 14) = 2.14. Plugging the values in the formula we get:

x ± t
1−

α

2

� � sffiffiffi
n

p = 3:27± 2:14 2:02ffiffiffiffiffiffi
15

p = 3:27±1:1

Thus, we can be 95% confident that the population rating on this question is between 2.2 and 4.4.

Confidence Interval for Task-time Data
Measuring time on task is a good way to assess task performance. Although it is an ideal continuous
metric because it can be measured at very small increments, there is a complication with task time.
Users cannot take any less than a fraction of a second to complete a typical usability task, but can take
many minutes or hours, so task-time data have a tendency to be positively skewed (see Figure 3.3).

Confidence intervals, like many statistical procedures, assume the underlying data have at least
an approximately symmetrical distribution. Figure 3.3 shows a nonsymmetrical distribution, so the
mean is no longer a good measure of the center of the distribution. A few long task times have a
strong pull on the mean, and for positively skewed data, the mean will always be higher than the
center. Before we consider computing the best confidence interval around task-time averages, we
need to discuss the best average time.
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Mean or Median Task Time?
Up to this point we’ve been using the arithmetic mean as the measure of central tendency for rating
scale data and referring to it as the average. The confidence intervals are providing the most likely
boundary of the population mean. For many positively skewed datasets like home prices or employee
salaries, the median is a better measure of the center. By definition, the median provides the center
point of the data—the point at which half the values are above the point and half are below. We suspect
this is what most practitioners are trying to get at when they report an “average” task time.

For example, the task times of 100, 101, 102, 103, and 104 have a mean and median of 102. Adding
an additional task time of 200 skews the distribution, making the mean 118.33 and the median 102.5.

It would seem that using the median would be the obvious choice for reporting the average task
time, and this is indeed what many textbooks teach and what many practitioners do. There are,
however, two major drawbacks to the median: variability and bias.

Variability
The strength of the median in resisting the influence of extreme values is also its weakness. The median
doesn’t use all the information available in a sample. For odd samples, the median is the central value;
for even samples, it’s the average of the two central values. Consequently, the medians of samples
drawn from a continuous distribution are more variable than their means (Blalock, 1972). The increased
variability of the median relative to the mean is amplified when sample sizes are small, because with
the introduction of each new value, the median can jump around a lot. Even though the underlying
distribution is continuous, the sample values are not—they are essentially discrete.

Bias
One of the desirable properties of the sample mean is that it is unbiased. That is, any sample mean is
just as likely to overestimate or underestimate the population mean. The median doesn’t share this
property. At small samples, the sample median of completion times tends to consistently overestimate
the population median—meaning it is a biased statistic (Cordes, 1993).

2940 42 84

MeanMedian

126 168 210 252

FIGURE 3.3

Positively skewed task-time data. Note: Sample task from an unattended usability test with 192 users who
completed the task. The median is 71 and the arithmetic mean is 84.
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Although the sample mean generally has better properties than the sample median, we know that
due to the skewness of the distributions of usability task times, the population mean will be larger than
the center value of the distribution (the population median). The “right” measure of central tendency
depends on the research question, but for many usability situations, practitioners want to estimate the
center of the distribution.

Geometric Mean
To find the best estimate of the middle task time for small-sample usability data, we conducted an
analysis of several alternatives for average task times (e.g., the arithmetic mean, median, geometric
mean, and trimmed means). We used a large set of usability tasks and found the geometric mean to
be a better estimate of the center than any of the other types of averages we assessed, including the
sample median (Sauro and Lewis, 2010). For sample sizes less than 25, the geometric mean has
less error and bias than the median or mean (see Figure 3.4). Because this average is not familiar to
most usability practitioners, we explain it in more detail below.

Computing the Geometric Mean
To find the geometric mean, first convert raw task times using a log transformation, find the mean of
the transformed values, and then convert back to the original scale by exponentiating. The log transfor-
mation can be done using the Excel function =LN(), using the ln button on most hand calculators or
using the web calculator at www.measuringusability.com/time_intervals.php.

For example, the following 10 raw task times—94, 95, 96, 113, 121, 132, 190, 193, 255, 298—get
transformed into the respective log values 4.54, 4.55, 4.56, 4.73, 4.8, 4.88, 5.25, 5.26, 5.54, 5.7. The
arithmetic mean of these log values is 4.98. We can then exponentiate this value using the Excel
function =EXP() or the ex button on a calculator to get the geometric mean of 146 seconds.
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FIGURE 3.4

Comparison of central tendency of mean, median, and geometric mean for task-time data as a function of
sample size.
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The raw times have an arithmetic mean of 159 seconds and median of 127 seconds. Over
time the geometric mean will be the better estimate of the center for sample sizes less than
around 25. For larger sample sizes, the sample median will be a better estimate of the population
median. When possible, we recommend that practitioners use the geometric mean with small
samples along with the confidence intervals around this average, computing the upper and lower
bounds using the transformed data, and then exponentiating those bounds to get back to the origi-
nal time scale.

Log-transforming Confidence Intervals for Task-time Data
We can also generate the confidence intervals for task times using the log values. Once the data
have been converted to their logs, we use the same procedure we did for confidence intervals
around rating scale data, and then transform the data back to the original scale:

xlog ± t
1−

α

2

� �slogffiffiffi
n

p

Example 1
Here are raw completion times and the same times expressed as their natural log:

Raw times: 94, 95, 96, 113, 121, 132, 190, 193, 255, 298
Log times: 4.54, 4.55, 4.56, 4.73, 4.8, 4.88, 5.25, 5.26, 5.54, 5.7

Next we follow the same steps to find the standard error and critical value from the t-distribution to
generate the margin of error:

Mean of the logs: 4.98
Standard deviation of logs: 0.426
Sample size: 10

We use the standard deviation and sample size to generate the standard error of the mean (our estimate of
how much sample means will vary at this sample size):

Standard error = sffiffiffi
n

p = 0:426ffiffiffiffiffiffi
10

p = 0:135

We look up the critical value from the t-distribution for 9 degrees of freedom (10 − 1) and get (t0.05, 9) = 2.26.
Next we plug in our values to get the margin of error:

Margin of error = 2:26 sffiffiffi
n

p = 2:26× 0:135 = 0:305

The confidence interval is twice the margin of error and is expressed by adding and subtracting it from the
log mean:

Log confidence interval = 4:98− 0:305 to 4:98+0:305

= 4:68 to 5:29
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The final step is to convert this log confidence interval back to the original scale by exponentiating the
values:

Confidence interval = eð4:68Þ to eð5:29Þ

= 108 to 198 seconds

We can then be 95% confident the population median task time is between 108 and 198 seconds.

Example 2
The following 11 task times come from users who completed a task in a contact-manager software
program:

Raw times: 40, 36, 53, 56, 110, 48, 34, 44, 30, 40, 80
Log times: 3.689, 3.584, 3.970, 4.025, 4.7, 3.871, 3.526, 3.784, 3.401, 3.689, 4.382
Mean of the logs: 3.87
Standard deviation of logs: 0.384
Sample size: 11

The critical value from the t-distribution is (t0.05, 10) = 2.23.

x log ± t�
1−

α

2

�slogffiffiffi
n

p = 3:87± 2:23 0:384ffiffiffiffiffiffi
11

p = 3:87± 0:258

Log confidence interval = 3:87− 0:258 to 3:87+ 0:258

= 3:62 to 4:13

= eð3:62Þ to eð4:13Þ

= 37 to 62 seconds

We can then be 95% confident the population median task time is between 37 and 62 seconds.

Confidence Interval for Large Sample Task Times
As the sample size gets larger (especially above 25) the sample median does a better job of estimating
the population median and should be used as the best average task (see Figure 3.4). For large-sample
task times it also makes sense to compute a confidence interval around the median. The procedure for
doing this is explained in the following section.

Confidence Interval Around a Median
Certain types of data (e.g., task times, reaction times, or salary data) tend to be skewed and the median
tends to be a better estimate of the middle value than the mean. For small-sample task-time data the
geometric mean estimates the population median better than the sample median. As the sample sizes get
larger (especially above 25) the median tends to be the best estimate of the middle value.
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When providing the median as the estimate of the average you should also include confidence
intervals. The computations for a confidence interval around the median involve more than just
inserting the median in place of the mean.

As with all confidence interval formulas there are a number of ways to compute them. Following
is a method that uses the binomial distribution to estimate the intervals and should work well for most
large-sample situations.

The median is the point where 50% of values are above a value and 50% are below it. We can
think of it as being at the 50th percentile. The point where 25% of the value falls below a point is
called the 25th percentile (also the 1st quartile) and the 75th percentile is higher than 75% of all
values (the 3rd quartile).

The following formula constructs a confidence interval around any percentile. The median (0.5)
would be the most common but it could also be used to find any percentile such as 0.05, 0.97, or 0.25:

np± z
1−

α

2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1− pÞ

p
where

n is the sample size
p is the percentile expressed as a proportion (0.5 for the median)
z 1− α

2ð Þ is the critical value from the normal distribution (1.96 for a 95% confidence level)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1− pÞp

is the standard error

The results of the equation are rounded up to the next integer and the boundary of the confidence
interval is between the two values in the ordered data set.

Example 1
The following task times come from 30 users who successfully completed a task in a desktop accounting package:

167 158 136
124 77 317
85 65 120
136 80 186
110 95 109
330 96 116
76 100 248
57 122 96
173 115 137
76 152 149

The median task time is 118 seconds. The 95% confidence interval around the median is

np ±Z
1−

α

2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1−pÞp

= 30ð0:5Þ± 1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
30×0:5ð1− 0:5Þp

= 15± 1:96× 2:74

= 15± 5:36 = 9:63 and 20:37 = 10 to 21
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So we need to find the 10th and 21st value in our ordered data set:

57 100 137
65 109 149
76 110 152
76 115 158
77 116 167
80 120 173
85 122 186
95 124 248
96 136 317
96 136 330

The 95% confidence interval around the median of 118 seconds is between 96 and 137 seconds.

Example 2
The following task times come from 27 users who successfully completed a task in a desktop accounting
package. Arranged from the shortest to longest times, they are:

82 118 141
96 118 150
100 127 161
104 132 178
105 133 201
110 134 201
111 134 211
117 139 223
118 141 256

The median task time for these 27 users is 133 seconds.

np ± z
1−

α

2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1−pÞp

= 27ð:5Þ±1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27× 0:5ð1− 0:5Þp

= 13:5±1:96× 2:6

= 13:5±5:1 = 8:4 and 18:6 = the 9th and 19th times

The 95% confidence interval around the median of 133 seconds ranges from 118 to 141 seconds.
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KEY POINTS FROM THE CHAPTER
• Due to sampling error, even the best point estimate from a sample will usually be wrong.
• You should use confidence intervals around all point estimates to understand the most likely

range of the unknown population mean or proportion.
• Computing a confidence interval requires four things: an estimate of the mean, an estimate of

the variability (derived from the sample standard deviation), the desired confidence level
(typically 95%), and the sample size.

• Use the adjusted-Wald binomial confidence interval for completion rates. For rough estimates of
95% adjusted-Wald binomial confidence intervals, add two successes and two failures to the
observed completion rate.

• For satisfaction data using rating scales, use the t-confidence interval (which takes the sample
size into account).

• The geometric mean is the best estimate of the middle task time from small sample sizes (<25).
• Task-time data are positively skewed and should be log-transformed prior to using the t-confidence

interval.
• For large sample task-time data (>25) the median is the best point estimate of the middle task time,

so you should compute a confidence interval around the median using the binomial distribution
method.

• Table 3.3 provides a list of formulas used in this chapter.

Table 3.3 List of Chapter 3 Formulas

Type of Evaluation Formula Notes

Wald binomial confidence
interval p̂± z�

1− α
2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1− p̂Þ

n

r
Commonly taught, but not recommended
for small sample sizes—use z for desired
level of confidence.

Adjusted-Wald binomial
confidence interval p̂adj ± z�

1− α
2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂adjð1− p̂adjÞ

nadj

r
Relatively new procedure, recommended
for all sample sizes—see below for
formulas for padj and nadj.

Adjustment of p for adjusted-
Wald binomial confidence
interval

p̂adj =
x + z2

2
n+z2

Need to compute this to use in formula
for adjusted-Wald binomial confidence
interval.

Adjustment of n for adjusted-
Wald binomial confidence
interval

nadj = n+ z2 Need to compute this to use in formula
for adjusted-Wald binomial confidence
interval.

Confidence interval for
continuous data

x± t 1− α
2ð Þ sffiffiffi

n
p Use t for the appropriate degrees of

freedom and confidence level.
Confidence interval around a
percentile

np± z 1− α
2ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1−pÞp

For large sample sizes only—to use as
confidence interval around the median,
set p = 0.5.
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CHAPTER REVIEW QUESTIONS
1. Find the 95% confidence interval around the completion rate from a sample of 12 users where

10 completed the task successfully.
2. What is the 95% confidence interval around the median time for the following 12 task times:

198, 220, 136, 162, 143, 130, 199, 99, 136, 188, 199

3. What is the 90% confidence interval around the median time for the following 32 task times:

251 21 60
108 43 34
27 47 48
18 15 219

195 37 338
82 46 78

222 107 117
38 19 62
81 178 40

181 95 52
140 130

4. Find the 95% confidence interval around the average SUS score for the following 15 scores
from a test of an automotive website:

70, 50, 67:5, 35, 27:5, 50, 30, 37:5, 65, 45, 82:5, 80, 47:5, 32:5, 65

5. With 90% confidence, if two out of eight users experience a problem with a registration element
in a web form, what percent of all users could plausibly encounter the problem should it go
uncorrected?

Answers
1. Use the adjusted-Wald binomial confidence interval. The adjustment is 11.9/15.84 = 0.752:

p̂adj ± z 1−α2ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂adjð1− p̂adjÞ

nadj

s
= 0:752± 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:752ð1− 0:752Þ

15:84

r
= 0:752± 0:212 = 95%CI between 54:0% and 96:4%

2. The log times are: 5.288, 5.394, 4.913, 5.088, 4.963, 4.868, 5.293, 4.595, 4.913, 5.236, and
5.293, which makes the geometric mean = e(5.08) = 160.24 seconds. The 95% CI is:

xlog ± t 1−α2ð Þ
slogffiffiffi
n

p = 5:08± 2:23 0:246ffiffiffiffiffi
11

p = 5:08± 0:166

= eð4:91Þ to eð5:24Þ = 136 to 189 seconds
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3. The sample median is 70 seconds. The critical value from the normal distribution is 1.64 for a
90% level of confidence.

np± z 1−α2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1− pÞp

= 32ð0:5Þ± 1:64
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið32Þð0:5Þð1− 0:5Þp

= 16± 1:64ð2:83Þ
= 16± 4:64 = 11:36 and 20:64 = the 12th and 21st times

= 90%CI between 47 and 107 seconds

4. A t-confidence interval should be constructed using a critical value of (t0.05, 14) = 2.14. The
mean and standard deviation are 52.3 and 18.2, respectively:

x± t 1−α2ð Þ
sffiffiffi
n

p = 52:3± 2:14 18:2ffiffiffiffiffi
15

p = 52:3± 10:1

The 95% confidence interval for the average SUS score of 52.3 is between 42.2 and 62.4.

5. Compute a 90% adjusted-Wald binomial confidence interval. For 90% confidence, the value of z
is 1.64. The adjusted proportion is 3.35/10.71 = 0.313.

p̂adj ± z 1−α2ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂adjð1− p̂adjÞ

nadj

s
= 0:313± 1:64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:313ð1− 0:313Þ

10:71

r
= 0:313± 0:233

We can be 90% confident between 8% and 54.6% of all users will encounter this problem if two
out of eight encountered it in the lab.
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CHAPTER

4Did We Meet or Exceed Our Goal?

INTRODUCTION
Confidence intervals are an excellent way for showing both the location and precision of an estimate.
All other things being equal, estimates based on larger sample sizes will have a more precise estimate
of the unknown population mean or proportion.

Once you get used to using confidence intervals with small sample sizes you may start to notice
that the boundaries of the interval can be rather wide. For example, if eight out of nine users complete
a task, we can be 95% confident that actual population completion rate is between 54.3% and 99.9%.
While this interval is informative (e.g., there’s a very small chance the completion rate will be less
than 50%) there is still a lot of uncertainty. In fact, the interval is almost 50 percentage points wide,
which reflects a margin of error of plus or minus 23%. Many people familiar with televised poll
results with margins of error of less than 5% may believe a margin of error close to 25% is rather
unhelpful.

ERRATA SHEET EFFECTIVENESS: A RISK ASSESSMENT
When Arguing for Change, the Width of the Interval Doesn’t Matter as Much as the Specific Endpoints
From the files of Jim Lewis

In the early 1990s, my lab received a request to test a critical change to the documentation of a new computer.
Because it would have been expensive to update the content of the installation guide at the time of the discovery
of the need to change the instructions (many copies had already been printed), our assignment was to assess the
effectiveness of inserting an errata sheet at the top of the packaging where customers would see it first upon opening
the box. The words “DO THIS FIRST” appeared at the top of the sheet in 24-point bold type (see Figure 4.1). Despite
its location and prominent heading, six of eight participants installing the computer ignored the errata sheet, setting it
aside without attempting to use its instructions. Because we ran this test before the development of the adjusted-Wald
binomial confidence interval, we reported the exact binomial confidence interval. The observed failure rate was 75%,
with a 95% exact confidence interval ranging from 35% to 97%. Although we wound up with a very wide confidence
interval (spanning 62 percentage points) due to the small sample size and had not established a criterion before
running the test, we argued that the lower limit of the confidence interval indicated that it was very unlikely that the
true failure rate in the population would be less than 35%. Development was unwilling to accept that level of risk,
and spent the money needed to update the documentation rather than relying on the errata sheet.

(Continued )

Quantifying the User Experience. DOI: 10.1016/B978-0-12-384968-7.00004-7
© 2012 Jeff Sauro and James R. Lewis. Published by Elsevier Inc. All rights reserved.
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(Continued )

Your system programs must be updated to avoid a system
malfunction.

Important installation information

DO THIS FIRST!

If you have an IBM* Personal System/2* Model XX, immediately place
this sheet in your Quick Reference between pages 18 and 19, and
perform the following instructions before starting step 22 on page 19.

If you have an IBM* Personal System/2* Model YY, immediately place
this sheet in your Quick Reference between pages 10 and 11, and
perform the following instructions before starting step 8 on page 10.

FIGURE 4.1

Test errata sheet.

Such high margins of error are the consequences of small-sample studies. All is not lost however;
often with statistics it is a matter of reframing the results. One of the best ways to reframe the results
is to compare them to a specific benchmark or goal. For example, as stated earlier, we can be at least
95% confident more than half the users will complete the task. We are able to make that statement
because the lower boundary of the confidence interval does not dip below 54%, and therefore any-
thing below 54% becomes an improbable result (having less than a 2.5% chance of occurring over
the long run—see Figure 4.2).
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FIGURE 4.2

50% is an improbable result.
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Using the boundaries of the confidence interval is a simple way to determine whether you’ve
met or exceeded a goal. If you wanted to be sure at least half the users can complete the task before
you move to the next design iteration (or release the software) then you have statistically significant
evidence from just nine users.

Perhaps 50% is too low of a bar. Can we be sure at least 60% of users can complete the same
task? Because the confidence interval boundary goes below 60% we can’t be 95% confident at least
60% of users can complete the task (see Figure 4.3).

Instead of just eye balling the boundaries of confidence intervals to determine whether we’ve
exceeded a benchmark there are statistical ways to get more precise answers. As we’ve seen with
the confidence interval computations, the method we use will depend on the type of data (discrete-
binary versus continuous) as well as the sample size. We will first cover the methods for comparing
completion rates then proceed to the continuous measures of satisfaction scores and task times.

WHERE DO CRITERIA COME FROM?
There Are a Variety of Sources of Varying Quality
Some approaches to the development of criteria are:

1. Base criteria on historical data obtained from previous tests that included the task.
2. Base criteria on findings reported in published scientific or marketing research.
3. Use task modeling such as GOMS or KLM to estimate expert task-time performance (Sauro, 2009).
4. Negotiate criteria with the stakeholders who are responsible for the product.

Ideally, the goals should have an objective basis and shared acceptance among stakeholders such as marketing
and development (Lewis, 1982). The best objective basis for measurement goals are data from previous usability
studies of predecessor or competitive products. For maximum generalizability, the source of historical data should be
studies of similar types of participants completing the same tasks under the same conditions (Chapanis, 1988). If
this type of information is not available (or really, even if it is), it is important for test designers to recommend
objective goals and to negotiate with the other stakeholders for the final set of shared goals.

(Continued )
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FIGURE 4.3

60% is a plausible result.
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(Continued )
Whatever approach you take, don’t let analysis paralysis prevent you from specifying goals. “Defining usability

objectives (and standards) isn’t easy, especially when you’re beginning a usability program. However, you’re not
restricted to the first objective you set. The important thing is to establish some specific objectives immediately,
so that you can measure improvement. If the objectives turn out to be unrealistic or inappropriate, you can revise
them” (Rosenbaum, 1989, p. 211). If you find yourself needing to make these types of revisions, try to make
them in the early stages of gaining experience and taking initial measurements with a product. Do not change
reasonable goals to accommodate an unusable product.

ONE-TAILED AND TWO-TAILED TESTS
In Chapter 3 we used confidence intervals to describe the most likely range of an unknown population
parameter (a completion rate or average task time). For that purpose, the usual practice is to build the
interval so the sum of the probabilities of greater and smaller values is equal to one minus the level of
confidence. For example, if it’s a symmetrical 95% confidence interval, then the probability of values
below the lower limit is 2.5% and the probability of values above the upper limit is also 2.5%. In
addition to providing information about the most likely range of the parameter, this confidence inter-
val implies a two-sided test with alpha equal to 0.05. It’s a two-sided test because you care about
both sides of the confidence interval. Anytime you care about outcomes that can be either signifi-
cantly higher than a criterion or might just as well be significantly lower (e.g., when testing one pro-
duct against another without any preconception of which is better), you’d use a two-sided test.

The topic of this chapter, however, is on testing against a benchmark. When testing against a
benchmark, you usually only care about one side of the outcome. For example, if you’ve estab-
lished a maximum defect rate, then you have reached your benchmark only if the observed defect
rate is significantly lower than the target. The same is true for task times—you’ve beat the bench-
mark if the times you measure are significantly faster than the target time. For percent of successful
completions, you’ve achieved your goal only when the success rate you measure is significantly
greater than the benchmark (see Figure 4.4, “One-tailed test”).

As we go through the methods and examples in this chapter, we’ll cover two ways to conduct
one-sided tests of significance for assessing an observed outcome against a preestablished bench-
mark. The traditional way is to estimate the likelihood of having obtained the observed result if the
benchmark is true. Another way is to construct a confidence interval and then to compare, as

0.025

z: −1.96 0

Two-tailed test (α = 0.05) One-tailed test (α = 0.05)

1.96 z: 0 1.65

0.050.025

FIGURE 4.4

One- and two-sided rejection regions.
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appropriate, the upper or lower limit of the interval with the benchmark. For successful completions
you would compare the lower limit with the benchmark—if the lower limit is higher than the
benchmark, then the result indicates statistical significance. For completion times you’d compare
the upper limit with the benchmark—if the upper limit is lower than the benchmark, then you have
evidence of a statistically significant outcome.

There is, however, a trick to doing one-sided testing with confidence intervals. You no longer
care about what happens on one side of the interval, so you need to put all of the rejection area on
one side of the confidence interval. You do that by doubling the value of alpha that you’re going to
use for the test, then subtract that from 100% to determine the confidence level you should use for
the confidence interval. For example, if you’re going to set alpha to 0.05 (5%), then you need to
build a 90% confidence interval. If you’re going to use a more liberal value for alpha, say, 10%,
then you’d need to construct an 80% confidence interval. If this seems a little confusing right now,
don’t worry, there will be plenty of examples showing how to do this.

COMPARING A COMPLETION RATE TO A BENCHMARK
To determine whether there is sufficient evidence that more than a set percent of users can complete a
task we perform one of two statistical tests depending on whether we have a small or large sample size.
In this case, small sample sizes are a function of both the number of users tested and the observed com-
pletion rate and failure rate. The closer the observed completion rate and failure rates are to 50%, the
larger the sample size needed to achieve a set level of precision and confidence. As a general rule
(Agresti and Franklin, 2007), the sample size is “small” when the number of users tested times the pro-
portion (p) or times one minus the proportion (q) is less than 15 (np< 15 or nq< 15). Put another way,
you need at least 15 failures and 15 successes for the sample to be considered “large.” For example, if
eight out of nine users complete a task (p = 0.89), the small-sample method would be used since the
value of np = 9(0.89) = 8 (and there aren’t at least 15 successes and 15 failures). In practice, you should
plan on using the small-sample method if the total number of users tested is less than 30. In lab-based
testing it is unusual to have a sample size much larger than this so we’ll cover it first.

Small-Sample Test
For small sample sizes we use the exact probabilities from the binomial distribution to determine
whether a sample completion rate exceeds a particular benchmark. The formula for the binomial
distribution is

pðxÞ= n!
x!ðn− xÞ! p

xð1− pÞðn−xÞ

where

x is the number of users who successfully completed the task
n is the sample size

The computations are rather tedious to do by hand, but are easily computed using the Excel
function BINOMDIST() or the online calculator available at www.measuringusability.com/onep.php.
The term n! is pronounced “n factorial” and is n× ðn− 1Þ× ðn− 2Þ× � � � × 2× 1.
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Example 1
During an early stage design test eight out of nine users successfully completed a task. Is there sufficient
evidence to conclude that at least 70% of all users would be able to complete the same task?

We have an observed completion rate of 8/9 = 88.9%. Using the exact probabilities from the binomial
we can find the probability of obtaining eight or more successes out of nine trials if the population comple-
tion rate is 70%. To do so we find the probability of getting exactly eight successes and the probability of
getting exactly nine successes:

pð8Þ= 9!
8!ð9−8Þ! 0:7

8ð1−0:7Þð9−8Þ = 9!
8!ð1!Þ 0:0576ð0:3Þ

ð1Þ= 9ð0:01729Þ=0:1556

pð9Þ= 9!
9!ð9−9Þ! 0:7

9ð1− 0:7Þð9−9Þ = 9!
9!ð1Þ 0:04035ð0:3Þ

ð0Þ= 0:04035ð1Þ=0:04035

In Excel:

=BINOMDISTð8,9,0:7,FALSEÞ= 0:1556
=BINOMDISTð9,9,0:7,FALSEÞ= 0:04035

So the probability of eight or nine successes out of nine attempts is 0.1556 + 0.04035 = 0.1960. In
other words, there is an 80.4% chance the completion rate exceeds 70%. Whether this is sufficient
evidence largely depends on the context of the test and the consequences of being wrong. This result is
not suitable for publication. For many early design tests, however, this is sufficient evidence that efforts are
better spent on improving other functions.

The probability we computed here is called an “exact” probability—“exact” not because our answer is
exactly correct but because the probabilities are calculated exactly, rather than approximated as they are
with many statistical tests such as the t-test. Exact probabilities with small sample sizes tend to be conser-
vative—meaning they overstate the long-term probability and therefore understate the actual chances of
having met the completion-rate goal.

Mid-probability
One reason for the conservativeness of exact methods with small sample sizes is that the probabil-
ities have a finite number of possible values instead of taking on any number of values (such as
with the t-test). One way to compensate for this discreteness is to simulate a continuous result by
using a point in between the exact probabilities—called a mid-probability.

In the previous example we’d only use half the probability associated with the observed number
of successes plus the entire probability of all values above what we observed. The probability of
observing eight out of nine successes given a population probability of 70% is 0.1556. Instead of
using 0.1556 we’d use 1

2ð0:1556Þ= 0:07782. We add this half-probability to the probability of nine
out of nine successes (0.07782 + 0.04035), which gets us a mid-p-value of 0.1182. We would now
state that there is an 88.2% chance the completion rate exceeds 70%. Compare this result to the
exact p-value of 0.1960 (an 80.4% chance the completion rate exceeds 70%). Due to its method of
computation, the mid-p will always look better than the exact-p result.
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Although mid-p-values tend to work well in practice they are not without controversy (as are
many techniques in applied statistics). Statistical mathematicians don’t think much of the mid-
p-value because taking half a probability doesn’t appear to have a good mathematical foundation—
even though it tends to provide better results. Rest assured that its use is not just some fudge-factor
that tends to work. Its use is justified as a way of correcting for the discreteness in the data like
other continuity corrections in statistics. For more discussion on continuity corrections see Gonick
and Smith (1993, pp. 82–87).

A balanced recommendation is to compute both the exact-p and mid-p-values but emphasize the
mid-p (Armitage et al., 2002). When you need just one p-value in applied user research settings, we
recommend using the less conservative mid-p-value unless you must guarantee that the reported
p-value is greater than or equal to the actual long-term probability. This is the same recommenda-
tion we gave when computing binomial confidence intervals (see Chapter 3)—use an exact method
when you need to be absolutely sure you’ve not understated the actual probability (and just know
you’re probably overstating it). For almost all applications in usability testing or user research,
using just the mid-p-value will suffice. Online calculators often provide the values for both methods
(e.g., www.measuringusability.com/onep.php; see Figure 4.5).

Example 2
The results of a benchmarking test showed that 18 out of 20 users were able to complete the task
successfully. Is it reasonable to report that at least 70% of users can complete the task?

We have an observed completion rate of 18/20 = 90%. Using the exact probabilities from the
binomial we can find the probability of obtaining 18 or more successes out of 20 trials if the population

FIGURE 4.5

p and mid-p results for eight successes out of nine attempts compared to criterion of 70% success.
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completion rate is 70%. To do so we find the probability of getting exactly 18, 19, and 20 successes,
as follows:

pð18Þ= 20!
18!ð20− 18Þ! 0:7

18ð1−0:7Þð20−18Þ =0:02785

pð19Þ= 20!
19!ð20− 19Þ! 0:7

19ð1−0:7Þð20−19Þ =0:00684

pð20Þ= 20!
20!ð20− 20Þ! 0:7

20ð1−0:7Þð20−20Þ =0:000798

The exact p-value is 0.02785 + 0.00684 + 0.000798 = 0.0355.
The mid-p-value is 0.5(0.02785) + 0.00684 + 0.000798 = 0.0216.

Both p-values are below the common alpha threshold of 0.05 and so both provide compelling
evidence that at least 70% of users can complete the task. It’s also a result that’s suitable for
publication.

It is generally a good idea to compute a confidence interval with every statistical test because the
confidence interval will give you an idea about the precision of your metrics in addition to statistical signifi-
cance. To compute the confidence interval for a one-sided test, set the confidence level to 90% (because
you only care about one tail, this is a one-sided test with alpha equal to 0.05) and compute the interval;
if the interval lies above 0.7, then you’ve provided compelling evidence that at least 70% of users can
complete the task. As shown in Figure 4.6, using the adjusted-Wald confidence interval we get a 90%
confidence interval between 73% and 97.5%.

FIGURE 4.6

90% confidence intervals for 18 of 20 successful task completions.
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Large-Sample Test
The large-sample test is based on the normal approximation to the binomial and uses a z-score to
generate a p-value. It is only appropriate when there are at least 15 successes and 15 failures in the
sample. For example, if 24 out of 41 users complete a task successfully there are 24 successes and
16 failures, making the large-sample test the appropriate choice.

While many of the assumptions that come with statistical tests are flexible, such as violating
the normality assumption with a t-test, when tests use only one-tailed p-values they tend to
be particularly vulnerable to inaccuracies. Because we use a one-sided test when we want to
know whether a completion rate exceeds a benchmark (and therefore one-tailed p-values), it is
important to use the small-sample binomial test unless there are at least 15 successes and 15
failures.

The large-sample test statistic takes the following form:

z=
p̂− pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1− pÞ

n

r
where

p̂ is the observed completion rate expressed as a proportion (e.g., 0.9 indicates a 90%
completion rate)
p is the benchmark (e.g., 0.7)
n is the number of users tested

Example 1
The results from a remote-unmoderated test of a website task found that 85 out of 100 users were able to
successfully locate a specific product and add it to their shopping cart. Is there enough evidence to con-
clude that at least 75% of all users can complete this task successfully?

There are at least 15 successes and 15 failures, so using the large-sample method is appropriate. Fill-
ing in the values we get:

z = p̂ − pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1−pÞ

n

r = 0:85−0:75ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:75ð1−0:75Þ

100

r = 0:1
0:0433

=2:309

We look up the obtained z-score of 2.309 using a normal table of values or use the Excel function =
NORMSDIST(2.309) to get the cumulative distribution of z up to 2.309 (which is 0.9895), and then sub-
tract that from 1 to get the one-tailed p-value of 0.0105. This means that there is around a 1% chance of
seeing an 85% completion rate from a sample of 100 users if the actual completion rate is less than 75%.
Put more succinctly we can say there is around a 99% chance at least 75% of users can complete the
task. The 95% adjusted-Wald confidence interval is between 76.6% and 90.8%.
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Example 2
If 233 out of 250 users were able to complete a task in an unmoderated usability test, is there enough
evidence to conclude at least 90% of all users can complete the task?

There are at least 15 successes and 15 failures, so using the large-sample method is appropriate:

z = p̂ − pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1− pÞ

n

r = 0:932− 0:9ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:9ð1−0:9Þ

250

r = 0:032
0:019

=1:687

We look up the obtained z-score of 1.687 using a normal table of values or use the Excel function = NORMS-
DIST(1.687) = 0.9541 and subtract that from 1 to get the one-tailed p-value of 0.0459, which indicates a
statistically significant result. We can be 95.4% sure at least 90% of users can complete the task given that
233 out of 250 did. The 90% adjusted-Wald confidence interval is between 90.1% and 95.4%.

COMPARING A SATISFACTION SCORE TO A BENCHMARK
Post-test questionnaires like the System Usability Scale (SUS) are popular for both lab-based and
unmoderated usability tests as they provide some idea about what users think about the usability of
the product or website tested. For practical statistical evaluation, questionnaire data can be treated
as continuous data so we can use one one-sample t-test for both small and large sample sizes (see
Chapter 9 for a discussion of the controversy of using parametric statistics on questionnaire data).

A SUS score, like most questionnaire data, is hard to interpret without some meaningful compar-
ison. Bangor et al. (2008) and Lewis and Sauro (2009) have published some benchmarks for the
SUS across different products. For example, an average SUS score for cell phones is around 67.
We can use this value to determine whether a current cell phone usability test exceeds this bench-
mark. To test the benchmark we will use the one-sample t-test. The t-distribution is also used when
constructing confidence intervals (see Chapter 3) and comparing two means for satisfaction data
(see Chapter 5). The test statistic looks like the following:

t=
x̂− μ
sffiffiffi
n

p

where

x̂ is the sample mean
μ is the benchmark being tested
s is the sample standard deviation
n is the sample size

The fraction sffiffiffi
n

p is called the standard error of the mean (SEM). The result of the equation will
tell us how many standard errors there are between our sample mean and the benchmark. The more
standard errors there are the more evidence we will have that our sample exceeds the benchmark.
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Example 1
Twenty users were asked to complete some common tasks (dialing, adding contacts, and texting) on a
new cell phone design. At the end of the test the users responded to the 10-item SUS questionnaire. The
mean SUS score was 73 and the standard deviation was 19. Is there enough evidence to conclude that
the perceived usability of this cell phone is better than the industry average of 67 as reported by Bangor
et al. (2008)?

t =
x̂ − μ
sffiffiffi
n

p
= 73−67

19ffiffiffiffiffiffi
20

p
= 6

4:24
=1:41

The observed difference of six SUS points is 1.41 standard errors from the benchmark. To know how
likely this difference is from a sample size of 20 we look up the one-tailed probability value in a t-table
(the degrees of freedom for this type of t-test is n − 1, in this case, 19), use the online calculator available
at www.usablestats.com/calcs/tdist, or use the Excel function =TDIST(1.41,19,1).

USING THE EXCEL TDIST FUNCTION WHEN T IS NEGATIVE
Working Around a Puzzling Limitation
From the files of Jeff Sauro

For some reason, the Excel TDIST function does not work with negative values of t. There are a couple of
ways to work around this limitation. You can either reverse the observed value and the benchmark in the
numerator, or you can use the absolute value function inside TDIST, for example, =TDIST(ABS(−0.66),10,1)
when the value of t is −0.66, there are 10 degrees of freedom, and you’re running a one-sided test. It took
me a while to figure out why Excel sometimes wasn’t producing p-values—it happened when t was negative.

The parameters are the test statistic (1.41), the degrees of freedom (19), and a one-tailed test (1).
We get the probability of 0.0874, meaning we can be around 91% confident this cell phone has an
average score greater than the industry average of 67. For most development environments this is
sufficient evidence to conclude the cell phone is above average.

We can generate a two-sided 80% confidence interval around our sample mean with the data we
have here (the 80% confidence interval would correspond to a one-tailed test at an alpha of 0.1).
The only additional information we need is the critical value from the t-distribution for a confidence
level of 0.8 and 19 degrees of freedom. Using the Excel function =TINV(0.2,19), the critical value
of t is 1.33:

x̂± t
1−

α

2

� � sffiffiffi
n

p = 73± 1:33 19ffiffiffiffiffi
20

p = 73± 5:6

The margin of error is 5.6 points, so we can be 80% confident the population’s true SUS score
is between 67.4 and 78.6. The lower boundary of the 80% confidence interval does not dip
below 67.
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Example 2
In a recent unmoderated usability test 172 users attempted tasks on a rental car website and then
answered the SUS questionnaire. The mean response was 80 and the standard deviation was 23. Can we
conclude that the average SUS score for the population is greater than 75?

t =
x̂ − μ
sffiffiffi
n

p
= 80−75

23ffiffiffiffiffiffiffiffi
172

p
= 5

1:75
= 2:85

The observed difference of five SUS points is 2.85 standard errors from the benchmark. Finding the
probability associated with this difference we get a p-value of 0.002 (=TDIST(2.85,171,1)). There is less
than a 1% chance that a mean of 80 for a sample size of 172 would come from a population with a mean
less than 75. In other words, we can be more than 99% confident that the average score for all users of
this website exceeds 75.

The 90% confidence interval around the average SUS score is:

x̂ ± t
1−

α

2

� � sffiffiffi
n

p = 80±1:65 23ffiffiffiffiffiffiffiffi
172

p = 80±2:9

The two-sided 90% confidence interval is between the SUS scores of 77.1 and 82.9.

Do at Least 75% Agree? Converting Continuous Ratings to Discrete
As is the case with any continuous measure like satisfaction ratings you can always “downgrade”
the results into discrete-binary responses. This is what happens when managers look at “top-box” or
“top-two-box” scores. For example, on a five-point rating scale you can report the number of users
who “agreed” by converting 4’s and 5’s into 1’s and 1–3 into 0’s. You could then answer the question,
“Do at least 70% of users ‘agree’ with the statement ‘I feel confident conducting business with this
website’?” You would then analyze the data using the binary completion-rate method (for both large
and small sample sizes) instead of the continuous method.

For example, below are the responses from 12 users who completed two tasks on the Walmart
website and responded to the item “I feel confident conducting business with this website” at the
end of the test. A 1 is Strongly Disagree and a 5 is Strongly Agree. Can we conclude at least 75%
of users feel confident conducting business on Walmart.com (ratings of 4 or 5)?

4, 4, 5, 5, 5, 5, 3, 5, 1, 5, 5, 5

Converting these responses to binary we get:

1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1

We have 10 out of 12 users who agreed with the statement. The small-sample binomial mid-p-value
is 0.275, which indicates a 72.5% chance that 75% of all users agree with the statement. For most
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applications that is not a high level of certainty so it would be difficult to confidently conclude that at
least 75% of all users agree with the statement “I feel confident conducting business with this website.”
The 80% adjusted-Wald confidence interval around the percentage of users who agree is between 65.3%
and 93.4%. The interval contains the benchmark of 75%, which isn’t even near the lower limit of
65.3%, reinforcing the point that we don’t have convincing evidence that at least 75% of users agree.

Disadvantages of Converting Continuous Ratings to Discrete
When you convert continuous ratings to discrete data you lose information. During the process both a
4 and a 5 become a 1. You no longer have as precise a measure of the intensity of agreement or dis-
agreement. The disadvantage of losing the intensity of agreement is that it becomes harder to measure
improvements. It will take a larger sample size to detect improvements and achieve benchmarks. For
example, using the same 12 ratings from the Walmart.com website the average response is a 4.33
(standard deviation = 1.23). Instead of testing whether a certain percentage of “agree” responses (top-
2-box) exceeds a benchmark, you could use 4 as the lower boundary of “agree” and compute a one-
sample t-test to answer the same question, this time taking into account the intensity of the agreement.

t=
x̂− μ
sffiffiffi
n

p
= 4:33− 4

1:23ffiffiffiffiffi
12

p
= 0:33

0:355
= 0:929

The value of t for this one-tailed test is 0.929 with 11 degrees of freedom (p = 0.186), so there
is an 81.4% chance that the mean for all users exceeds 4. Although we generally recommend using
the original raw continuous data when testing claims, there are many times when reporting on com-
pany dashboards requires conforming to a top-box or top-2-box approach with specific criteria such
as 90% must “agree.”

Net Promoter Score*
Another common example of converting continuous rating scale data into discrete top-2-box scoring
is the popular Net Promoter Score (NPS; www.netpromoter.com/np/calculate.jsp). The NPS is a
measure of loyalty that uses only a single question—“How likely are you to recommend this product
to a friend?”—and is measured on an 11-point scale (0 = not at all likely to 10 = extremely likely).
Promoters are those who rate a 9 or 10 (top-2-box), detractors are those who rate 0 to 6, and passive
responders are those who rate a 7 or 8. The “Net” in Net Promoter Score comes from the scoring pro-
cess whereby you subtract the percent of detractors from the percent of promoters. In fact, usability
explains a lot of the variability in the NPS (Sauro, 2010).

For example, 15 users attempted to make travel arrangements on the website expedia.com. At the
end of the usability test they were asked the NPS question. Here are their responses:

10, 7, 6, 9, 10, 8, 10, 10, 9, 8, 7, 5, 8, 0, 9

When we convert these responses to detractors (0–6), passive (7–8), and promoters (9–10), we have
seven promoters and three detractors generating an NPS of 4/15 = 26.7%.

*Net Promoter, NPS, and Net Promoter Score are trademarks of Satmetrix Systems, Inc., Bain & Company, and Fred
Reichheld.
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WHAT IS A GOOD NET PROMOTER SCORE?
Evidence from 17 Consumer and Productivity Software Products
From the files of Jeff Sauro

The appeal of top-box scoring approaches like the Net Promoter Score is that they appear easier to interpret
than a mean. Many executives are comfortable working with percentages. So knowing there is a higher per-
centage of customers likely to recommend your product than dissuade others from using it may be more helpful
than just knowing the mean response is a 7.5.

Despite this appeal, one still needs to know what a “good” score is beyond a negative versus positive
proportion. A leading competitor, the industry average, and historical data for the same product are all helpful—
but all usually difficult to obtain. One of the first adopters of the Net Promoter Score was Intuit, the software
company that makes QuickBooks and TurboTax. It’s not surprising that many software companies now use the
NPS as a key corporate metric. I commissioned a study in March 2011 to survey the sentiments of customers of
17 consumer and productivity software products. I found the average NPS score was a 21% with a range of
−26% to 56%—with the best showing coming for customers of TurboTax. For more details on the study see
www.measuringusability.com/software-benchmarks.php. The average and high NPSs for your industry can be
used as valid benchmarks if the comparisons are meaningful for your product.

COMPARING A TASK TIME TO A BENCHMARK
Task-time data are a continuous metric like satisfaction data. However, as was explored in Chapter 3,
task-time data tend to be positively skewed (having a long right tail). One of the assumptions
underlying most statistical procedures is that the data are approximately symmetrical and bell-
shaped (e.g., t-confidence intervals in Chapter 3, two-sample t-tests in Chapter 5). Fortunately
many statistical tests are “robust” to violations of this normality assumption. Unfortunately, a
one-sided, one-sample t-test is particularly vulnerable to this violation (Agresti and Franklin,
2007). To remedy this problem we will use the same procedure we used in Chapter 3. We first
convert the raw task times to log times and perform the same one-sample t-test we used for the
questionnaire data.

t=
lnðμÞ− x̂ln

slnffiffiffi
n

p

where

x̂ ln is the mean of the log values
sln is the standard deviation of the log values

One slight difference in this formula is that we subtract the observed time from the benchmark
(in the expectation that our sample mean is less than the benchmark we want to test). This is not
always the case as we’ll see in the first example taken from an actual scenario.
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HOW LONG SHOULD A TASK TAKE?
It Depends on the Context of the Task
From the files of Jeff Sauro

As soon as you start collecting time on task in a usability test you will want to know what an acceptable
time is. Task times are highly dependent on the context of the task. Even slight variations in the same task
scenario can substantially change task times and make finding a comparison difficult. For example, a common
task in customer relationship management (CRM) software is adding a sales contact to the database. An
acceptable time will differ if the required information is just an email address versus an email, phone, street
address, and sales notes. There isn’t a single solution to this issue. In my experience, I’ve had the most luck
having the same participants attempt the same tasks on the older version of the interface (the products are
presented in alternating orders). This provides both a benchmark on the old interface, using the exact same
task, and immediately tells you if the users can perform the task faster (or at least as fast) on the new inter-
face. See Chapter 5 for more information on comparing task times for a within-subjects design. For more infor-
mation see www.measuringusability.com/blog/task-times.php.

Another common method for determining ideal task times is to identify the expert or fastest task time and set
the unacceptable time to 1.5 times (or another multiple) this time for each task. However, it’s unclear what a
good multiple should be (Sauro and Kindlund, 2005). More research is needed to make this approach more
meaningful, so use it as a last resort.

Example 1
As shown in Figure 4.7, the rental car website Budget.com has posted the slogan “Rent a car in just
60 seconds.”

Twelve users in a lab-based usability test were all able to successfully rent a car from Boston’s Logan
International Airport.

Task times: 215, 131, 260, 171, 187, 147, 74, 170, 131, 165, 347, 90
Geometric mean task time: 160 seconds

Is there evidence to suggest that the average task time is less than 60 seconds?
First, we log-transformed the values using the Excel function =LN().

Log-transformed times: 5.37, 4.88, 5.56, 5.14, 5.23, 4.99, 4.3, 5.14, 4.88, 5.11, 5.85, 4.5
Mean of log times: 5.08
Standard deviation of log times: 0.423
Log of benchmark: 4.09

t =
logðμÞ− logðx̂Þ

logðsÞffiffiffi
n

p
= 4:09–5:08

0:423ffiffiffiffiffiffi
12

p
= −0:98

0:122
= −8:057

The test statistic is negative because our sample geometric mean (see Chapter 3) is 160 seconds.
When the sample average takes longer than the benchmark you know right away that there’s less than a
50% chance that we can claim that the average task time is less than the benchmark. In this example the
average time was almost three times the benchmark! When we look up the probability associated with this
t-statistic we get the p-value of 0.9999965. In other words, there’s far less than a 1% chance of obtaining
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an average time of 160 seconds if the population average time is less than 60 seconds. The 95% confidence
interval (t-critical value = 2.2) for the average task time is:

x log ± t
1−
α
2

� � slogffiffiffi
n

p = 5:08±2:2 0:423ffiffiffiffiffiffi
12

p = 5:08± 0:269

Confidence interval= eð4:81Þ to eð5:35Þ

=123 to 210 seconds

Using the geometric mean as a proxy for the median (given a sample size of 12), we can be about
95% confident the median task time is between 123 and 210 seconds (Sauro and Lewis, 2010).

Even though we knew right away that we have little evidence that the average time to rent a car is less than
60 seconds (because the average time was greater than the benchmark) it is sometimes useful to go through
the motions of computing the statistics. The reason is that some might wrongly have the perception that an
average time from only 12 users is not meaningful. The statistical result tells us in fact that we have strong evi-
dence that the average user time will exceed 60 seconds. If someone was concerned about the small sample
size used to test this benchmark and was considering increasing the sample size, these data tell us there’s
less than one chance in a million the average time could be less than 60 seconds—even if the sample size is
10 times as large! This is a reoccurring theme in usability testing with small samples—you can determine an
interface is unusable very easily with a small sample size, but to show statistically that an interface is usable,
you need a large sample size (see Chapter 6 on failure rates and Chapter 7 on problem discovery rates).

If you are wondering how Budget.com can still have this claim on their website, the reason is that it is
referring to users who are part of their loyalty program and have their information prepopulated, and most

FIGURE 4.7

Rent a car in just 60 seconds.
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importantly the claim doesn’t mention anything about an “average time.” It could be referring to the fastest
possible completion time. Whether casual users appreciate this subtlety is a different question and is why
it made for a good test case at the Comparative Usability Evaluation-8 at the 2009 UPA Conference
(Molich et al., 2009).

MY FAVORITE MEANINGLESS CLAIM
Up to 98% Accuracy—or More!
From the files of Jim Lewis

Not surprisingly, marketing claims generally have looser guidelines than peer-reviewed publications. My favor-
ite claim came from an off-the-shelf dictation package, advertising “Up to 98% accuracy—or more!”—which is a
claim that actually says the accuracy is somewhere between 0 and 100%. I’m sure the next year, it said, “Up to
99% accuracy—or more!” Even if the product hadn’t changed, it would still be true.

Example 2
Eleven users completed a common task in a financial application (a journal entry). Can we be at least 90%
sure users can enter this journal entry in less than 100 seconds?

Raw task times: 90, 59, 54, 55, 171, 86, 107, 53, 79, 72, 157
Geometric mean: 82.3 seconds
Log times: 4.5, 4.08, 3.99, 4.01, 5.14, 4.45, 4.67, 3.97, 4.37, 4.28, 5.06
Mean of log times: 4.41
Standard deviation of log times: 0.411
Log of benchmark: 4.61

t =
logðμÞ− logðx̂Þ

logðsÞffiffiffi
n

p
= 4:61− 4:41

0:411ffiffiffiffiffiffi
11

p
= 0:19

0:124
=1:53

We look up the probability of this t-statistic on 10 degrees of freedom for a one-tailed test =
TDIST(1.53,10,1) = 0.0785. The probability of seeing an average time of 82.3 seconds if the actual popula-
tion time is greater than 100 seconds is around 7.85%. In other words, we can be about 92.15%
confident users can complete this task in less than 100 seconds.

The 80% confidence interval (t-critical value = 1.37) for the average task time is:

x log ± t
1−

α

2

� �slogffiffiffi
n

p =4:41± 1:37 0:411ffiffiffiffiffiffi
11

p = 4:41±0:17

Confidence interval= eð4:24Þ to eð4:58Þ

= 69 to 98 seconds

If we were able to test all users on this task and application, we can be about 80% confident the median
task time will be between 69 and 98 seconds (using the geometric mean as a proxy for the median). As
discussed earlier in the chapter we report the two-tailed 80% confidence interval because we’re interested
in a one-tailed test with an alpha of 0.1.
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KEY POINTS FROM THE CHAPTER
• The statistical test you use for completion rates depends on the sample size: A sample size is

considered small unless you have more than 15 successes and 15 failures.
• For determining whether a certain percentage of users can complete a task for small sample sizes

use the mid-probability from the binomial distribution.
• For determining whether a certain percentage of users can complete a task for large sample sizes

use the normal approximation to the binomial.
• You can always convert continuous rating scale data into discrete-binary data and test a

percentage that agrees with a statement, but in so doing, you lose information.
• For comparing a set of satisfaction scores from a survey or questionnaire with a benchmark, use

the one-sample t-test for all sample sizes.
• For determining whether a task time falls below a benchmark, log-transform the times and then

perform a one-sample t-test for all sample sizes.
• Table 4.1 provides a list of formulas used in this chapter.

CHAPTER REVIEW QUESTIONS
1. Twenty-five out of 26 users were able to create an expense report in a financial application.

Is there enough evidence to conclude that at least 90% of all users can complete the same task?
2. In an unmoderated usability test of an automotive website, 150 out of 180 participants correctly

answered a qualifying question at the end of a task to demonstrate they’d successfully completed
the task. Can at least 75% of users complete the task?

3. An “average” score for websites using the System Usability Scale is 70 (Bangor et al., 2008).
After completing two tasks on the Travelocity.com website, the average SUS score from 15
users was a 74.7 (sd = 12.9). Is this website’s usability significantly above average?

4. Twelve users attempted to locate a toy on the toysrus.com website and rated the difficulty of the
task an average of 5.6 (sd = 1.4) on a seven-point scale (where a 7 means very easy). Is there
evidence that the average rating is greater than 5?

Table 4.1 List of Chapter 4 Formulas

Type of Evaluation Formula Notes

Binomial probability formula pðxÞ= n!
x!ðn− xÞ! p

xð1−pÞðn−xÞ Used in exact and mid-p binomial
tests (small sample).

Normal approximation to the
binomial (Wald)

z= bp −pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1− pÞ

n

r Used for large-sample binomial tests
(large sample if at least 15 successes
and 15 failures).

One-sample t-test t= bx −μ
sffiffiffi
n

p
Used to test continuous data (e.g.,
satisfaction scores, completion times).

t-based confidence interval
around the mean

x± t 1− α
2ð Þ sffiffiffinp Used to construct confidence interval

as alternative test against a criterion
for continuous data.
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5. Six participants called an interactive voice response system to find out the appropriate replacement
head for an electric shaver and the nearest location to pick one up. All participants completed the
task successfully, with the following task completion times (in minutes): 3.4, 3.5, 1.7, 2.9, 2.5,
and 3.2. Do the data support the claim that callers, on average, can complete this task in less than
3 minutes?

Answers
1. Twenty-five out of 26 users successfully completed the task. There are fewer than 15 successes

and 15 failures, so this is a small sample. Using the Excel =BINOMDIST function to compute
the exact probably for getting 25/26 successes and 26/26 successes and adding them together to
get the probability of the observed or greater number of successes, we get:

=BINOMDISTð26,26,0:9,FALSEÞ= 0:065
=BINOMDISTð25,26,0:9,FALSEÞ= 0:187

Pð25 or 26 successes j 26 trials and p= 0:9Þ= 0:065+ 0:187= 0:2513

So, the likelihood of getting 25 or 26 successes if the true success rate is 90% is about 0.25, which
is not terribly compelling. Taking 1− 0.25 = 0.75, there is a 75% likelihood that the completion rate
exceeds 90%.

Things look a little better if you use the recommended mid-p approach, using half of the
probability for P(25), which is 0.093, for a combined probability (P(25, 26)) of 0.158, indicating
an 84% likelihood that the completion rate exceeds 90%—better, but still not compelling.

A third approach to answering this question is to use the calculator at www.measuringusability
.com/wald.htm to compute an 80% adjusted-Wald binomial confidence interval, using 80% confi-
dence to achieve a one-sided test with alpha set to 0.1—a reasonable set of criteria for a single-
shot industrial test (see Chapter 6), as shown in Figure 4.8.

FIGURE 4.8

Results of adjusted-Wald confidence interval for question 1.
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The confidence interval approach provides a conclusion consistent with the exact- and mid-p
methods. Because the adjusted-Wald interval contains the benchmark of 0.9, there is insufficient
evidence to conclude that in the tested population at least 90% of users could successfully com-
plete the task. An advantage of computing the confidence interval is that you get an idea about
what benchmarks the data in hand would support. For example, because the lower limit of the
interval is 87.36%, the data would support the claim that at least 85% of users could successfully
complete the task.

2. For this test, 150 out of 180 participants completed the task successfully, and the question is
whether this provides compelling evidence that at least 75% of users from the tested population
would also successfully complete the task. Because there are more than 15 successes and more
than 15 failures, it is okay to use the large sample method—the normal approximation to the
binomial—to answer the question. The observed success rate is 150/180 = 0.833, the sample
size is 180, and the benchmark is 0.75, so:

z=
p̂− pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1− pÞ

n

r = 0:833− 0:75ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:75ð1− 0:75Þ

180

r = 0:083
0:0323

= 2:582

If the success rate in the population is actually equal to 0.75, then the probability of getting a
z-score of 2.582 is 0.0049:

=NORMSDISTð2:582Þ= 0:9951
p= 1− 0:9951= 0:0049

To get a better mental picture of what this means, use the calculator at www.measuringusability
.com/wald.htm to compute a 98% adjusted-Wald binomial confidence interval, using 98% confi-
dence to achieve a one-sided test with alpha set to 0.01. As shown in Figure 4.9, the lower limit
of the adjusted-Wald confidence interval exceeds the benchmark, which provides compelling
evidence of having met the benchmark.

FIGURE 4.9

Results of adjusted-Wald confidence interval for question 2.
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3. Here we need to determine if the observed SUS mean of 74.7, given a sample size of 15 (so
there are 14 degrees of freedom) and standard deviation of 12.9, is significantly greater than the
benchmark of 70. Applying the formula for a one-sided, one-sample t-test:

t=
x̂ − μ
sffiffiffi
n

p
= 74:7− 70

12:9ffiffiffiffiffi
15

p
= 4:7

3:33
= 1:41

The result of this test is t(14) = 1.41, p = 0.09:

=TDISTð1:41,14,1Þ= p= 0:09

To run the statistical test using a confidence interval, use confidence of 80% to set the one-sided
alpha to 0.1. The critical value of t for 80% confidence and 14 degrees of freedom is 1.345. The
standard error of the mean, as shown in the previous equation, is 3.33. The critical difference for
the confidence interval, therefore, is 1.345 × 3.33, or about 4.5, so the confidence interval ranges
from 70.2 to 79.2. Because the lower limit of the confidence interval barely exceeds the bench-
mark, there is reasonable, though not overwhelming, evidence of having met the benchmark.

4. In this problem we need to determine if the observed mean of 5.6, given a sample size of 12 (so
there are 11 degrees of freedom) and standard deviation of 1.4, is significantly greater than the
benchmark of 5. Applying the formula for a one-sided, one-sample t-test:

t=
x̂ − μ
sffiffiffi
n

p
= 5:6− 5

1:4ffiffiffiffiffi
12

p
= 0:6

0:404
= 1:48

The result of this test is t(11) = 1.48, p = 0.08.

=TDISTð1:48,11,1Þ= p= 0:08

Just like question 3, to run the statistical test using a confidence interval, use confidence of 80%
to set the one-sided alpha to 0.1. The critical value of t for 80% confidence and 11 degrees of
freedom is 1.363. The standard error of the mean, as shown in the previous equation, is 0.404.
The critical difference for the confidence interval, therefore, is 1.363 × 0.404, or about 0.55, so
the confidence interval ranges from 5.05 to 6.15. Again, as in question 3, the lower limit of the
confidence interval barely exceeds the benchmark, so there is reasonable, but not overwhelming,
evidence of having met the benchmark.

5. The data in this problem are task times, so it’s a good idea to start by calculating their natural
log values (in Excel, =LN()), which are 1.22, 1.25, 0.53, 1.06, 0.92, and 1.16. For these six
values, the mean is 1.025, the standard deviation is 0.271, the standard error of the mean is
0.111, and the criterion is 1.1 (LN(3) = 1.1). Using these values to compute t:

t=
μ− x̂
sffiffiffi
n

p
= 1:10− 1:025

0:271ffiffiffi
6

p
= 0:075

0:111
= 0:676

For this test t(5) = 0.676, p = 0.26. This is far from compelling evidence of having beaten the
benchmark.
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To run the statistical test using a confidence interval, set the confidence to 80% for a one-sided
alpha of 0.1. The critical value of t for 80% confidence and 5 degrees of freedom is 1.476. The stan-
dard error of the mean, as shown in the previous equation, is 0.111. The critical difference for the
confidence interval, therefore, is 1.476(0.111), or about 0.164, so the confidence interval of the log
values ranges from 0.861 to 1.189. Using the EXP function to convert these natural log values back
to times in minutes, the confidence interval ranges from 2.4 to 3.3 minutes. The upper bound of the
confidence limit exceeds the criterion of 3 minutes, so the results do not support the claim that most
callers would complete the task in less than 3 minutes. The confidence interval does suggest that,
given the data in hand, most callers would complete the task in less than 3.5 minutes.
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CHAPTER

5Is There a Statistical Difference
between Designs?

INTRODUCTION
Many researchers first realize the need for statistics when they have to compare two designs or products
in an A/B test or competitive analysis. When stakes are high (or subject to scrutiny), just providing
descriptive statistics and declaring one design better is insufficient. What is needed is to determine
whether the difference between designs (e.g., among conversion rates, task times, or ratings) is greater
than what we’d expect from chance. This chapter is all about determining whether a difference is
statistically significant and how large or small of a difference likely exists in the untested population.

COMPARING TWO MEANS (RATING SCALES AND TASK TIMES)
A central theme in this book is to understand the role of chance in our calculations. When we can’t
measure every user to compute a mean likelihood to recommend or a median task time, we have to
estimate these averages from a sample.

Just because a sample of users from Product A has a higher average System Usability Scale
(SUS) score than a sample from Product B does not mean the average SUS score for all users is
higher on Product A than Product B (see Sauro, 2011a for more information on using the SUS for
comparing interface usability). Chance plays a role in every sample selection and we need to
account for that when comparing means.

To determine whether SUS scores, Net Promoter Scores, task times, or any two means from
continuous variables are significantly different (such as comparing different versions of the same
product over time or against a competitive product), you first need to identify whether the same
users were used in each test (within-subjects design) or whether there was a different set of users
tested on each product (between-subjects design).

Within-subjects Comparison (Paired t-test)
When the same users are in each test group you have removed a major source of variation between
your sets of data. In such tests you should alternate which product users encounter first to minimize
carryover effects. If all users first encounter Product A, this runs the risk of unfairly biasing users,
either for or against Product A. The advantages are that you can attribute differences in measure-
ments to differences between products, and you can detect smaller differences with the same
sample size.

63Quantifying the User Experience. DOI: 10.1016/B978-0-12-384968-7.00005-9
© 2012 Jeff Sauro and James R. Lewis. Published by Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-384968-7.00005-9


To determine whether there is a significant difference between means of continuous or rating-scale
measurements, use the following formula:

t= D̂
sDffiffiffi
n

p

where

D̂ is the mean of the difference scores
sD is the standard deviation of the difference scores
n is the sample size (the total number of pairs of users)
t is the test statistic (look-up using the t-distribution based on the sample size for two-sided area)

See Technical Note 1 below.

Example 1: Comparing Two SUS Means
For example, in a test between two expense-reporting applications, 26 users worked (in random order)
with two web applications (A and B). They performed several tasks on both systems and then completed
the 10-item SUS questionnaire, with the results shown in Table 5.1 (subtracting the score for B from the
score from A to get the difference score).

Product A had a mean SUS score of 82.2 and Product B had a mean SUS score of 52.7. The mean of
the difference scores was 29.5 with a standard deviation of 14.125. Plugging these values in the formula,
we get

t = 29:5
14:125ffiffiffiffiffiffi

26
p

t =10:649

We have a test statistic (t) equal to 10.649. To determine whether this is significant, we need to look up
the p-value using a t-table, the Excel function =TDIST(), or the calculator available at http://www.usablestats
.com/calcs/tdist.

The degrees of freedom for this type of test are equal to n − 1, so we have 25 degrees of freedom (26 − 1).
Because this is a two-sided test (see Technical Note 1), the p-value is =TDIST(10.649,25,2) = 0.0000000001.
Because this value is so small, we can conclude that there’s less than a one in a billion chance that the
population mean SUS scores are equal to each other. Put another way, we can be over 99.999% sure
Products A and B have different SUS scores. Product A’s SUS score of 82.2 is statistically significantly higher
than Product B’s of 52.7, so we can conclude users perceive Product A as easier to use.

Technical Note 1: We’re using the two-sided area (instead of the one-sided area that was used in
comparing a mean to a benchmark in Chapter 4) because we want to see whether the difference
between SUS means is equal to 0, which is a two-sided research question. It is tempting to look at the
results and see that Product A had a higher mean and then use just a one-sided test. Although it
wouldn’t matter in this example, it can happen that the one-sided test generates a significant p-value
but the corresponding two-sided p-value is not significant. Waiting until after the test has been
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conducted to determine whether to use a one- or two-sided test improperly capitalizes on chance. We
strongly recommend sticking with the two-sided area for comparing two means (also see Chapter 9,
“Should You Always Conduct a Two-Tailed Test?”).

Confidence Interval around the Difference
With any comparison we also want to know the size of the difference (often referred to as the effect
size). The p-value we get from conducting the paired t-test tells us only that the difference is significant.
A significant difference could mean just a one-point difference in SUS scores, which would not be of
much practical importance. As sample sizes get large (above 100), as is common in remote unmoderated
testing, it becomes more likely to see a statistically significant difference when the actual effect size is

Table 5.1 Pairs of SUS Scores and Their Differences for Example 1

User A B Difference

1 77.5 60 17.5
2 90 62.5 27.5
3 80 45 35
4 77.5 20 57.5
5 100 80 20
6 95 42.5 52.5
7 82.5 32.5 50
8 97.5 80 17.5
9 80 52.5 27.5

10 87.5 60 27.5
11 77.5 42.5 35
12 87.5 87.5 0
13 82.5 52.5 30
14 50 10 40
15 77.5 67.5 10
16 82.5 40 42.5
17 80 57.5 22.5
18 65 32.5 32.5
19 72.5 67.5 5
20 85 47.5 37.5
21 80 45 35
22 100 62.5 37.5
23 80 40 40
24 57.5 45 12.5
25 97.5 65 32.5
26 95 72.5 22.5

Mean 82.2 52.7 29.5
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not practically significant. The confidence interval around the difference helps us distinguish between tri-
vial (albeit statistically significant) differences and differences users would likely notice.

To generate a confidence interval around the difference scores to understand the likely range of
the true difference between products, use the following formula

D ± ta
sDffiffiffi
n

p

where

D is the mean of the difference scores (as was used in computing the test statistic)
n is the sample size (the total number of users)
sD is the standard deviation of the difference scores (also used in computing the test statistic)
ta is the critical value from the t-distribution for n− 1 degrees of freedom and the specified level
of confidence. For a 95% confidence interval and sample size of 26 (25 degrees of freedom), the
critical value is 2.06. See http://www.usablestats.com/calcs/tdist to obtain critical values from the
t-distribution, or in Excel use =TINV(0.05,25).

Plugging in the values we get

29:5± 2:06 14:125ffiffiffiffiffi
26

p
29:5± 5:705

We can be 95% confident the actual difference between product SUS scores is between 23.8 and 35.2.

Practical Significance
The difference is statistically significant, but is it practically significant? The answer to this question
depends on how we interpret the lowest and highest plausible differences. Even the lowest estimate of the
difference of 23.8 points puts Product A at 45% higher than Product B. It also helps to know something
about SUS scores. A difference of 23.8 points crosses a substantial range of products and places Product
A’s perceived usability much higher than Product B’s relative to hundreds of other product scores (Sauro,
2011a). Given this information it seems reasonable to conclude that users would notice the difference in
the usability and it suggests that the difference is both statistically and practically meaningful.

Technical Note 2: For the confidence interval formula we use the convention that ta represents
a two-sided confidence level. Many, but not all, statistics books use the convention t 1− α

2ð Þ, which
is based on a table of values that is one sided. We find this approach more confusing in this
chapter because in most cases you’ll be working with two-sided rather than one-sided confidence
intervals. It is also inconsistent with the Excel TINV function, which is a very convenient way to
get desired values of t when computing confidence intervals.

Comparing Task Times
In earlier chapters we saw how task times have a strong positive skew from some users taking a long
time to complete a task. This skew makes confidence intervals (see Chapter 3) and tests against
benchmarks (see Chapter 4) less accurate. In those situations we applied a log transformation to the
raw times to improve the accuracy of the results. When analyzing difference scores, however,
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the two-tailed paired t-test is widely considered robust to violations of normality, especially when the
skew in the data takes the same shape in both samples (Agresti and Franklin, 2007; Box, 1953;
Howell, 2002). Although sample mean task times will differ from their population median, we can
still accurately tell whether the difference between means is greater than what we’d expect from
chance alone using the paired t-test, so there is no need to complicate this test with a transformation.

Example 2: Comparing Two Task Times
In the same test of two accounting systems used in Example 1, task times were also collected. One task
asked users to create an expense report. Of the 26 users who attempted the task, 21 completed it suc-
cessfully on both products. These 21 task times and their difference scores appear in Table 5.2. Failed
task attempts are indicated with a minus sign and not included in the calculation.

Table 5.2 Pairs of Completion Times and Their Differences for Example 2

User A B Difference

1 223 —
2 140 —
3 178 184 −6
4 145 195 −50
5 256 —
6 148 210 −62
7 222 299 −77
8 141 148 −7
9 149 184 −35

10 150 —
11 133 229 −96
12 160 —
13 117 200 −83
14 292 549 −257
15 127 235 −108
16 151 210 −59
17 127 218 −91
18 211 196 15
19 106 162 −56
20 121 176 −55
21 146 269 −123
22 135 336 −201
23 111 167 −56
24 116 203 −87
25 187 247 −60
26 120 174 −54

Mean 158 228 −77
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The mean difference score is −77 seconds and the standard deviation of the difference scores is
61 seconds. Plugging these values in the formula we get

t = D̂
sDffiffiffi
n

p

t = −77
61ffiffiffiffiffiffi
21

p

t = −5:78

We have a test statistic (t ) equal to −5.78 with 20 (n − 1) degrees of freedom and the decision prior to run-
ning the study to conduct a two-sided test. To determine whether this is significant we need to look up the
p-value using a t-table, the Excel function =TDIST(), or the calculator available at http://www.usablestats
.com/calcs/tdist. Using =TDIST(5.78,20,2), we find p = 0.00001, so there is strong evidence to conclude
that users take less time to complete an expense report on Product A. If you follow the steps from the previous
example, you’ll find that the 95% confidence interval for this difference ranged from about 49–104 seconds—
a difference that users are likely to notice.

In this example, the test statistic is negative because we subtracted the typically longer task time (from
Product B) from the shorter task time (Product A). We would get the same p-value if we subtracted the smaller
time from the larger time, changing the sign of the test statistic. When using the Excel TDIST function, keep in
mind that it only works with positive values of t.

Normality Assumption of the Paired t-test
As we’ve seen with the paired t-test formula, the computations are performed on the difference
scores. We therefore are only working with one sample of data, which means the paired t-test is
really just the one-sample t-test from Chapter 4 with a different name.

The paired t-test therefore has the same normality assumption as the one-sample t-test. For large
sample sizes (above 30), normality isn’t a concern because the sampling distribution of the mean is
normally distributed (see Chapter 9). For smaller sample sizes (less than 30) and for two-tailed
tests, the one-sample t-test/paired t-test is considered robust against violations of the normality
assumption. That is, data can be non-normal (as with task-time data) but still generate accurate
p-values (Box, 1953). For this reason, we recommend sticking with the two-sided test when using
the paired t-test.

Between-subjects Comparison (Two-sample t-test)
When a different set of users is tested on each product there is variation both between users and
between designs. Any difference between the means (e.g., questionnaire data, task times) must be
tested to see whether it is greater than the variation between the different users.
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To determine whether there is a significant difference between means of independent samples of
users, we use the two-sample t-test (also called t-test on independent means). It uses the following
formula:

t=
x̂1 − x̂2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
n1

+
s22
n2

s

where

x̂1 and x̂2 are the means from samples 1 and 2
s1 and s2 are the standard deviations from samples 1 and 2
n1 and n2 are the sample sizes from samples 1 and 2
t is the test statistic (look-up using the t-distribution based on the sample size for the two-
sided area)

Example 1: Comparing Two SUS Scores
For example, in a test between two CRM applications, the following SUS scores were obtained after 11 users
attempted tasks on Product A and 12 users attempted the same tasks on Product B, for a total of 23 different
users tested (see Table 5.3).

Table 5.3 Data for Comparison of SUS
Scores from Independent Groups

A B

50 50
45 52.5
57.5 52.5
47.5 50
52.5 52.5
57.5 47.5
52.5 50
50 50
52.5 50
55 40
47.5 42.5

57.5

51.6 49.6
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Product A had a mean SUS score of 51.6 (sd = 4.07) and Product B had a mean SUS score of 49.6
(sd = 4.63). Plugging these values in the formula we get

t = 51:6−49:6ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4:072

11
+ 4:632

12

r
t = 1:102

The observed difference in SUS scores generates a test statistic (t) equal to 1.102. To determine
whether this is significant, we need to look up the p-value using a t-table, the Excel function =TDIST, or
the calculator available at http://www.usablestats.com/calcs/tdist.

We have 20 degrees of freedom (see the next sidebar on “Degrees of Freedom for the Two-sample
t-test”) and want the two-sided area, so the p-value is =TDIST(1.102,20,2) = 0.2835. Because this value
is rather large (and well above 0.05 or 0.1) we can’t conclude that the difference is greater than chance.
A p-value of 0.2835 tells us the probability that this difference of two points is due to chance is 28.35%.
Put another way, we can be only about 71.65% sure that Products A and B have different SUS scores—a
level of certainty that is better than 50/50 but that falls well below the usual criterion for claiming a signifi-
cant difference. Product A’s SUS score of 51.6, while higher, is not statistically distinguishable from
Product B’s score of 49.6 at this sample size.

If we had to pick one product, there’s more evidence that Product A has a higher SUS score, but in
reality it could be that the two are indistinguishable in the minds of users or, less likely, that users
think Product B is more usable. In most applied research settings, having only 71.65% confidence that
the products are different is not sufficient evidence for a critical decision.

With time and budget to collect more data, you can use the estimates of the standard deviation and the
observed difference to compute the sample size needed to detect a two-point difference in SUS scores (see
Chapter 6). Given a sample standard deviation of 4.1 and a difference of two points (95% confidence and
80% power), you’d need a sample size of 136 (68 in each group) to reliably detect a difference this small.

DEGREES OF FREEDOM FOR THE TWO-SAMPLE T-TEST
It’s a Little More Complicated Than the One-sample Test, but That’s What Computers Are for
It’s simple to calculate the degrees of freedom for a one-sample t-test—just subtract 1 from the sample size (n − 1).
There’s also a simple formula for computing degrees of freedom for a two-sample t-test, which appears in many
statistics books—add the independent sample sizes together and subtract 2 (n1 + n2 − 2).

Instead of using that simple method for the two-sample t-test, in this book we use a modification called the
Welch-Satterthwaite procedure (Satterthwaite, 1946; Welch, 1938). It provides accurate results even if the
variances are unequal (one of the assumptions of the two-sample t-test) by adjusting the number of degrees of
freedom using the following formula:

df ′=

s12

n1
+

s22

n2

	 
2
s12

n1

	 

n1 −1

2

+

s22

n2

	 
2
n2 −1
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where s1 and s2 are the standard deviations of the two groups, and n1 and n2 are the group’s sample sizes. For
fractional results, round the degrees of freedom (df ′) down to the nearest integer. For the data in Table 5.3, the
computation of the degrees of freedom is

df ′=

4:072

11
+ 4:632

12

	 
2
4:072

11

	 

11−1

2

+

4:632

12

	 
2
12−1

= 10:8
0:52

=20:8, which rounds down to20

The computations are a bit tedious to do by hand, but most software packages compute it automatically, and
it’s fairly easy to set up in Excel. If, for some reason, you don’t have access to a computer and the variances are
approximately equal, you can use the simpler formula (n1 + n2 − 2). If the variances are markedly different (e.g.,
the ratio of the standard deviations is greater than 2), as a conservative shortcut you can subtract 2 from the
smaller of the two sample sizes.

Confidence Interval around the Difference
With any comparison, we also want to know the size of the difference (the effect size). The p-value
we get from conducting the two-sample t-test only tells us that a significant difference exists. For
example, a significant difference could mean just a one-point difference in SUS scores (which
would not be of much practical importance) or a 20-point difference, which would be meaningful.

There are several ways to report an effect size, but for practical work, the most compelling and
easiest to understand is the confidence interval. We can use the following formula to generate a
confidence interval around the difference scores to understand the likely range of the true difference
between products:

ðx̂1 − x̂2Þ± ta

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
n1

+
s22
n2

s

where

x̂1 and x̂2 are the means from samples 1 and 2
s1 and s2 are the standard deviations from samples 1 and 2
n1 and n2 are the sample sizes from samples 1 and 2
ta is the critical value from the t-distribution for a specified level of confidence and degrees of
freedom. For a 95% confidence interval and 20 degrees of freedom, the critical value is 2.086.
See http://www.usablestats/calcs/tdist for obtaining critical values from the t-distribution.

Plugging in the values we get

51:6− 49:6± 2:086

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4:072

11
+ 4:632

12

r
2± 3:8

So, we can be 95% confident that the actual difference between product SUS scores is between
−1.8 and 5.8. Because the interval crosses zero, we can’t be 95% sure that a difference exists; as
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previously stated, we’re only 71.8% sure. Although Product A appears to be a little better than
Product B, the confidence interval tells us that there is still a modest chance that Product B has a
higher SUS score (by as much as 1.8 points).

Example 2: Comparing Two Task Times
Twenty users were asked to add a contact to a CRM application. Eleven users completed the task on the
existing version and nine different users completed the same task on the new enhanced version. Is there
compelling evidence to conclude that there has been a reduction in the mean time to complete the task?
The raw values (in seconds) appear in Table 5.4.

The mean task time for the 11 users of the old version was 37 seconds with a standard deviation of
22.4 seconds. The mean task time for the 9 users of the new version was 18 seconds with a standard
deviation of 13.4 seconds. Plugging in the values we get

t = x̂1 − x̂2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
n1

+
s22
n2

s

t = 37−18ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22:42

11
+ 13:42

9

r
t = 2:33

The observed difference in mean times generates a test statistic (t ) equal to 2.33. To determine whether
this is significant we need to find the p-value using a t-table, the Excel function =TDIST, or the calculator
available at http://www.usablestats.com/calcs/tdist.

Table 5.4 Data for Comparison of Task
Times from Independent Groups

Old New

18 12
44 35
35 21
78 9
38 2
18 10
16 5
22 38
40 30
77
20
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We have 16 degrees of freedom (see the sidebar on “Degrees of Freedom for the Two-sample t-test”)
and want the two-sided area, so the p-value is =TDIST(2.33,16,2) = 0.033. Because this value is rather
small (less than 0.05) there is reasonable evidence that the two task times are different. We can conclude
users take less time with the new design. From this sample we can estimate the likely range of the difference
between mean times by generating a confidence interval. For a 95% confidence interval with 16 degrees of
freedom, the critical value of t is 2.12. See http://www.usablestats.com/calcs/tdist for obtaining critical values
from the t-distribution.

Plugging the values into the formula we get

ðx̂1 − x̂2Þ± ta

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
n1

+
s22
n2

s

37−18±2:12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22:42

11
+ 13:42

9

r
19±17:2

We can be 95% confident the difference in mean times is between about 2 and 36 seconds.

Assumptions of the t-tests
The two-sample t-test has four assumptions:

1. Both samples are representative of their parent populations (representativeness).
2. The two samples are unrelated to each other (independence).
3. Both samples are approximately normally distributed (normality).
4. The variances in both groups are approximately equal (homogeneity of variances).

As with all statistical procedures, the first assumption is the most important. The p-values, confi-
dence intervals, and conclusions are only valid if the sample of users is representative of the population
about which you are making inferences. In user research this means having the right users attempt the
right tasks on the right interface.

Meeting the second assumption is usually not a problem in user research as the values from one
participant are unlikely to affect the responses of another. The latter two assumptions, however, can
cause some consternation and are worth discussing.

Normality
Like the one-sample t-test, paired t-test, and most parametric statistical tests, there is an underlying
assumption of normality. Specifically, this test assumes that the sampling distribution of the mean
differences (not the distribution of the raw scores) is approximately normally distributed. When this
distribution of mean differences is not normal, the p-values can be off by some amount. For large
samples (above 30 for all but the most extreme distributions) the normality assumption isn’t an
issue because the sampling distribution of the mean is normally distributed according to the Central
Limit Theorem (see Chapter 9).

Comparing Two Means (Rating Scales and Task Times) 73

http://www.usablestats.com/calcs/tdist


Fortunately, even for small sample sizes (less than 30), the t-test generates reliable results when
the data are not normally distributed. For example, Box (1953) showed that a typical amount of
error is a manageable 2%. For example, if you generate a p-value of 0.02, the long-term actual
probability might be 0.04. This is especially the case when the sample sizes in both groups are
equal, so, if possible, you should plan for equal sample sizes in each group, even though you might
end up with uneven sample sizes.

Equality of Variances
The third assumption is that the variances (and equivalently the standard deviations) are approxi-
mately equal in both groups. As a general rule, you should only be concerned about unequal var-
iances when the ratio between the two standard deviations is greater than 2 (e.g., a standard deviation
of 4 in one sample and 12 in the other is a ratio of 3) (Agresti and Franklin, 2007). The robustness of
the two-sample t-test also extends to violations of this assumption, especially when the sample sizes
are roughly equal (Agresti and Franklin, 2007; Box, 1953; Howell, 2002). For a method of adjusting
degrees of freedom to help compensate for unequal variances, see the sidebar “Degrees of Freedom
for the Two-sample t-test.”

Don’t Worry Too Much about Violating Assumptions (Except Representativeness)
Now that we’ve covered the assumptions for the two-sample t-test, we want to reassure you that
you shouldn’t concern yourself with them too much for most practical work—except of course
representativeness. No amount of statistical manipulation can overcome the problem of measuring
the wrong users performing the wrong tasks.

We’ve provided the detail on the other assumptions here so you can be aware that they exist. You
might have encountered warnings about non-normal data and heterogeneous variances in statistics
books, or from colleagues critical of the use of t-tests with typical continuous or rating-scale usability
metrics. It is our opinion that the two-sample t-test, especially when used with two-sided probabilities
and (near) equal sample sizes, is a workhorse that will generate accurate results for statistical compari-
sons in user research. It is, however, always a good idea to examine your data, ideally graphically to
look for outliers or unusual observations that could have arisen from coding errors or errors users
made while responding. These types of data-quality errors can have a real effect on your results—an
effect that properly conducted statistics cannot fix.

COMPARING COMPLETION RATES, CONVERSION RATES, AND A/B TESTING
A binary response variable takes on only two values: yes/no, convert/didn’t convert, purchased/didn’t
purchase, completed the task/failed the task, and so on. These are coded into values of 1 and 0,
respectively. Even continuous measures can be degraded into binary measures, for example, a propor-
tion of users taking less than a minute to complete a task, or a proportion of responses scoring 9 or 10
on an 11-point scale. These types of binary measures appear extensively in user research.

As with the continuous method for comparing task times and satisfaction scores, we need to con-
sider whether the two samples being compared have different users in each group (between-subjects)
or use the same people (within-subjects).
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Between-subjects
Comparing the two outcomes of binary variables for two independent groups happens to be one of the
most frequently computed procedures in applied statistics. Surprisingly, there is little agreement on
the best statistical test for this situation. For large sample sizes, the chi-square test is typically recom-
mended. For small sample sizes, the Fisher exact test (also called the Fisher–Irwin test) is typically
recommended. However, there is disagreement on what constitutes a “small” or “large” sample size
and what version of these tests to use. A recent survey of medical and general statistics textbooks by
Campbell (2007) found that only 2 of 14 books agreed on what procedure to recommend for compar-
ing two independent binary outcomes.

The latest research suggests that a slight adjustment to the standard chi-square test, and equivalently
to the two-proportion test, generates the best results for almost all sample sizes. The adjustment is sim-
ply subtracting 1 from the total sample size and using it in the standard chi-square or two-proportion
test formulas (shown later in this chapter). Because there is so much debate on this topic we spend the
next few pages describing the alternatives that you are likely to encounter (or were taught) and then pre-
sent the recommended N − 1 chi-square test and N − 1 two-proportion test. You can skip to the “N − 1
Chi-square Tests” section if you have no interest in understanding the alternative formulas and their
drawbacks.

Chi-square Test of Independence
One of the oldest methods and the one typically taught in introductory statistics books is the
chi-square test. Karl Pearson, who also developed the most widely used correlation coefficient,
proposed the chi-square test in 1900 (Pearson, 1900).

It uses an intuitive concept of comparing the observed counts in each group with what you
would expect from chance. The chi-square test makes no assumptions about the parent population
in each group, so it is a distribution-free, nonparametric test. It uses a 2 × 2 (pronounced two by
two) table with the nomenclature shown in Table 5.5.

To conduct a chi-square test, compare the result of the following formula to the chi-square
distribution with one degree of freedom.

χ2 =
ðad− bcÞ2N

mnrs

Table 5.5 Nomenclature for Chi-square Tests of Independence

Pass Fail Total

Design A a b m
Design B c d n
Total r s N
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DEGREES OF FREEDOM FOR CHI-SQUARE TESTS
For a 2 × 2 Table, It’s Always One
The general formula for calculating the degrees of freedom for a chi-square test of independence is to multiply
one less than the number of rows by one less than the number of columns:

df = ðr −1Þðc−1Þ
In a 2 × 2 table, there are two rows and two columns, so all chi-square tests conducted on these types of tables
have one degree of freedom.

For example, if 40 out of 60 (67%) users complete a task on Design A, can we conclude it is
statistically different from Design B where 15 out of 35 (43%) users passed? Setting this up in
Table 5.6 we have the following.

Filling in the values in the formula, we get

χ2 =
ð40× 20− 20× 15Þ2 × 95

60× 35× 55× 40
χ2 = 5:1406

We use a table of chi-square values or the Excel function =CHIDIST(5.1406, 1), and get the p-value of
0.0234. Because this value is low, we conclude the completion rates are statistically different. Design A
has the higher completion rate and so it is statistically higher than B’s.

Small Sample Sizes
The chi-square test tends to generate accurate results for large sample sizes, but is not recommended
when sample sizes are small. As mentioned earlier, both what constitutes a small sample size and
what alternative procedure to use are the subjects of continued research and debate.

The most common sample size guideline is to use the chi-square test when the expected cell
counts are greater than 5 (Cochran, 1952, 1954). This rule appears in most introductory statistics texts
despite being somewhat arbitrary (Campbell, 2007). The expected counts are different than the actual
cell counts, computed by multiplying the row and column totals for each cell and then dividing by
the total sample size. From the previous example, this generates the following expected cell counts:

ðr ×mÞ
N

=
ð55× 60Þ

95
= 34:74

ðs×mÞ
N

=
ð40× 60Þ

95
= 25:26

Table 5.6 Data for Chi-square Test of Independence

Pass Fail Total

Design A 40 20 60
Design B 15 20 35
Total 55 40 95
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ðr × nÞ
N

=
ð55× 35Þ

95
= 20:26

ðs× nÞ
N

=
ð40× 35Þ

95
= 14:74

The minimum expected cell count for the data in the example is 14.74, which is greater than 5, and
so, according to the common sample size guideline, the normal chi-square test is appropriate.

Here is another example comparing conversion rates on two designs with a total sample size of 22
and some expected cell counts less than 5. The cell nomenclature appears in parenthesis in Table 5.7.
Eleven out of 12 users (92%) completed the task on Design A; 5 out of 10 (50%) completed it on
Design B.

Filling in these values we get

χ2 =
ðad− bcÞ2N

mnrs

χ2 =
ð11× 5− 1× 5Þ2 × 22

12× 10× 16× 6
χ2 = 4:7743

Looking up this value in a chi-square table or using the Excel function =CHIDIST(4.7743, 1)
we get the p-value of 0.0288, so we conclude there is a statistically significant difference between
conversion rates for these designs.

However, in examining the expected cell frequencies we see that two of them are less than 5.

ðr ×mÞ
N

=
ð16× 12Þ

22
= 8:73

ðs×mÞ
N

=
ð6× 12Þ

22
= 3:27

ðr × nÞ
N

=
ð16× 10Þ

22
= 7:27

ðs× nÞ
N

=
ð6× 10Þ

22
= 2:73

With low expected cell counts, most statistics textbooks warn against using the chi-square test
and instead recommend either the Fisher exact test (a.k.a. Fisher–Irwin test) or the chi-square test
with Yates correction. Before covering those alternative methods, however, we should mention the
two-proportion test.

Table 5.7 Conversion Rates for Two Designs

Pass Fail Total

Design A 11 (a) 1 (b) 12 (m)
Design B 5 (c) 5 (d) 10 (n)
Total 16 (r) 6 (s) 22 (N)
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Two-proportion Test
Another common way for comparing two proportions is the two-proportion test. It is mathemati-
cally equivalent to the chi-square test. Agresti and Franklin (2007) have suggested a rule of thumb
for its minimum sample size that there should be at least 10 successes and 10 failures in each
sample.

It generates a test statistic that is looked up using the normal (z) distribution to find the p-values.
It uses the following formula and will be further discussed in a subsequent section (“N − 1 Two-
proportion Test”).

z=
ðp̂1 − p̂2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PQ× 1
n1

+ 1
n2

	 
s

Fisher Exact Test
The Fisher exact test uses exact probabilities instead of approximations as is done with the chi-
square distribution and t-distributions. As with the exact binomial confidence interval method
used in Chapter 4, exact methods tend to be conservative and generate p-values that are higher
than they should be and therefore require larger differences between groups to achieve statistical
significance.

The Fisher exact test computes the p-values by finding the probabilities of all possible combina-
tions of 2 × 2 tables that have the same marginal totals (the values in cells m, n, r, and s) that are
equal to or more extreme that the ones observed. These values are computed for each 2 × 2 table
using the following formula:

p= m!n!r!s!
a!b!c!d!N!

The computations are very tedious to do by hand and, because they involve factorials, can gener-
ate extremely large numbers. Software is used in computing the p-values because there are typically
dozens of tables that have the same marginal or more extreme marginal totals (m, n, r, and s) even for
modest sample sizes. An online Fisher exact test calculator is available at www.measuringusability
.com/fisher.php.

The two-tailed p-value generated from the calculator is 0.0557. Using 0.05 as our threshold for
significance, strictly speaking, we would conclude there is not a statistically significant difference
between designs using the Fisher exact test. In applied use, we’d likely come to the same conclusion
if we have 94.4% confidence or 95% confidence—namely, that it’s unlikely that the difference is due
to chance.

Yates Correction
The Yates correction attempts to approximate the p-values from the Fisher exact test with a simple
adjustment to the original chi-square formula:

χ2yates =

�
jad− bcj− N

2

�2
N

mnrs
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Using the same example from before, we get the Yates chi-square test statistic of

χ2yates =
j11× 5− 1× 5j− 22

2

� �2
× 22

12× 10× 16× 6

χ2yates = 2:905

Looking up this value in a chi-square table or using the Excel function =CHIDIST(2.905, 1) we
get the p-value of 0.0883. Using 0.05 as our threshold for significance, we would conclude there is
not a statistically significant difference between designs using the Yates correction (although, as
with the Fisher exact test, this outcome would probably draw our attention to the possibility of a
significant difference).

For this example, the p-value for the Yates correction is higher than the Fisher exact test, which
is a typical result. In general, the Yates correction tends to generate p-values higher than the Fisher
exact test and is therefore even more conservative, overstating the true long-term probability of a
difference. For this reason and because most software programs can easily calculate the Fisher exact
test, we do not recommend the use of the chi-square test with the Yates correction.

N − 1 Chi-square Test
Pearson also proposed an alternate form of the chi-square test in his original work (Campbell, 2007;
Pearson, 1900). The numerator, instead of being multiplied by N (the total sample size), is multiplied
by N − 1:

χ2 =
ðad− bcÞ2ðN − 1Þ

mnrs

Campbell (2007) has shown this simple adjustment to perform better than the standard chi-square,
Yates variant, and Fisher exact tests for almost all sample sizes. It tends not to work well when the
minimum expected cell count is less than one. Fortunately, having such low expected cell counts
doesn’t happen a lot in user research, and when it does, the Fisher exact test is an appropriate substitute.
Using the N − 1 chi-square test, we get the following p-value from the example data used before:

χ2 =
ð11× 5− 1× 5Þ2 × 21

12× 10× 16× 6

χ2 = 4:557

Looking up this value in a chi-square table or using the Excel function =CHIDIST(4.557, 1) we
get the p-value of 0.0328. Using 0.05 as our threshold for significance, we would conclude there is
a statistically significant difference between designs.

N − 1 Two-proportion Test
An alternative way of analyzing a 2 × 2 table is to compare the differences in proportions. Similar
to the two-sample t-test where the difference between the means was compared to the t-distribution,
the N − 1 chi-square test is equivalent to an N − 1 two-proportion test. Instead of using the chi-square
distribution to generate the p-values, we use the normal (z) distribution.
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Many readers may find this approach more intuitive for three reasons:

1. It is often easier to think in terms of completion rates or conversion rates (measured as proportions)
rather than the number of users who pass or fail.

2. We use the more familiar and readily available normal distribution as the reference distribution
for finding p-values and don’t need to worry about degrees of freedom.

3. The confidence interval formula uses the difference between the two proportions and makes for
an easier transition in computation and understanding.

The N − 1 two-proportion test uses the standard large sample two-proportion formula (as shown

in the previous section) except that it is adjusted by a factor of
ffiffiffiffiffiffiffiffi
N − 1
N

q
. This adjustment is algebrai-

cally equivalent to the N − 1 chi-square adjustment. The resulting formula is

z=
ðp̂1 − p̂2Þ

ffiffiffiffiffiffiffiffiffiffiffi
N − 1
N

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PQ× 1

n1
+ 1

n2

	 
s

where

p̂1 and p̂2 are the sample proportions

P =
� x1 + x2
n1 + n2

�
, where x1 and x2 are the numbers completing or converting, and n1 and n2 are the

numbers attempting
Q= 1−P

N is the total sample size in both groups

Using the example data we have 11 out of 12 (91.7%) completing on Design A and 5 out of 10
(50%) completing on Design B, for a total sample size of 22.

First we compute the values for P and Q and substitute them in the larger equation:

P= 11+ 5
12+ 10

	 

= 0:727 and Q= 1− 0:727= 0:273

z=
ð0:917− 0:5Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
22− 1
22

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:727× 0:272× 1

12
+ 1

10

� �r
z= 2:135

We can use a normal (z) table to look up the two-sided p-value, or the Excel function
=(1-NORMSDIST(2.135))*2, which generates a two-sided p-value of 0.0328—the same p-value we
got from the N − 1 chi-square test, demonstrating their mathematical equivalence.

Table 5.8 summarizes the p-values generated from the sample data for all approaches and our
recommended strategy.
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Confidence for the Difference between Proportions
As with all tests of statistical comparisons, in addition to knowing whether the difference is signifi-
cant, we also want to know how large of a difference likely exists. To do so for this type of com-
parison, we generate a confidence interval around the difference between two proportions. The
recommended formula is an adjusted-Wald confidence interval similar to the one used in Chapter 4,
except that it is for a difference between proportions (Agresti and Caffo, 2000) instead of around a
single proportion (Agresti and Coull, 1998).

The adjustment is to add a quarter of a squared z-critical value to the numerator and half a squared
z-critical value to the denominator when computing each proportion. For a 95% confidence level the
two-sided z-critical value is 1.96. This is like adding two pseudo observations to each sample—one
success and one failure—as shown in the following:

p̂adj =
x+ z2

4

n+ z2

2

=
x+ 1:962

4

n+ 1:962

2

= x+ 0:9604
n+ 1:92

≈ x+ 1
n+ 2

This adjustment is then inserted into the more familiar (to some) Wald confidence interval formula:

ðp̂adj1 − p̂adj2Þ± zα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂adj1ð1− p̂adj1Þ

nadj1
+

p̂adj2ð1− p̂adj2Þ
nadj2

s

where

zα is the two-sided critical value for the level of confidence (e.g., 1.96 for a 95% confidence
interval). With the same example data we’ve used so far, we will compute a 95% confidence
interval. First we compute the adjustments.

For Design A, 11 out of 12 users completed the task, and these become our x and n, respectively:

p̂adj1 =
x+ z2

4

n+ z2

2

=
11+ 1:962

4

12+ 1:962

2

= 11+ 0:9604
12+ 1:92

= 11:96
13:92

= 0:859

Table 5.8 Summary of p-values Generated from Sample Data for Chi-square and Fisher Tests

Method p-value Notes

N − 1 Chi-Square/N − 1
Two-Proportion Test

0.0328 Recommended: when expected cell counts are all >1

Chi-Square/Two-Proportion Test 0.0288 Not recommended: understates true probability for small
sample sizes

Chi-Square with Yates Correction 0.0883 Not recommended: overstates true probability for all
sample sizes

Fisher Exact Test 0.0557 Recommended: when any expected cell count is <1
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For Design B, 5 out of 10 users completed the task, and these become our x and n, respectively:

p̂adj2 =
x+ z2

4

n+ z2

2

=
5+ 1:962

4

10+ 1:962

2

= 5+ 0:9604
10+ 1:92

= 5:96
11:92

= 0:5

Note: When the sample proportion is 0.5, the adjusted p will also be 0.5, as seen in this example.
Plugging these adjustments into the main formula we get

ð0:859− 0:5Þ± 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:859ð1− 0:859Þ

13:92
+

0:5ð1− 0:5Þ
11:92

r
0:359± 0:338

By adding and subtracting 0.338 to the difference between proportions of 0.359, we get a 95%
confidence interval that ranges from 0.022 to 0.697. That is, we can be 95% confident that the
actual difference between design completion rates is between 2% and 70%.

Example 1: Comparing Two Completion Rates
A new version of a CRM software application was created to improve the process of adding contacts to a
distribution list. Four out of nine users (44.4%) completed the task on the old version and 11 out of 12
(91.7%) completed it on the new version. Is there enough evidence to conclude the new design improves
completion rates? We will use the N − 1 two-proportion test:

z =
ðp̂1 − p̂2Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
N −1
N

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PQ × 1

n1
+ 1

n2

	 
s

P =
x1 + x2
n1 +n2

	 

Filling in the values we get

P = 4+11
9+12

	 

=0:714 and Q =1−0:714=0:286

z =
ð0:917− 0:444Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
21−1
21

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:714× 0:286× 1

9
+ 1

12

� �r
z =2:313

We can use a normal (z) table to look up the two-sided p-value or the Excel function NORMSDIST for the
test statistic of 2.313. To use NORMSDIST, you need to copy the formula = (1-NORMSDIST(2.313))*2,
which generates a p-value of 0.0207. Because this value is low, we have reasonable evidence to conclude
the completion rate on the new CRM design has improved. To estimate the actual improvement in the
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completion rate for the entire user population, we now generate a 95% confidence interval around the
difference in proportions using the adjusted-Wald procedure:

p̂adj1 =
x + z2

4

n+ z2

2

=
4+ 1:962

4

9+ 1:962

2

= 4+0:96
9+1:92

= 4:96
10:92

= 0:454

p̂adj2 =
x + z2

4

n+ z2

2

=
11+ 1:962

4

12+ 1:962

2

= 11+ 0:96
12+ 1:92

= 11:96
13:92

=0:859

The critical value of z for a 95% confidence level is 1.96:

ð0:859− 0:454Þ±1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:859ð1−0:859Þ

13:92
+

0:454ð1− 0:454Þ
10:92

r
0:405± 0:347

The 95% confidence interval is 0.058 to 0.752; that is, we can be 95% confident the actual improvement in
completion rates on the new task design is between 6% and 75%.

Example 2: A/B Testing
An A/B test was conducted live on an e-commerce website for two weeks to determine which product page
converted more users to purchase a product. Concept A was presented to 455 users and 37 (8.13%) pur-
chased the product. Concept B was presented to 438 users and 22 (5.02%) purchased the product. Is there
evidence that one concept is statistically better than the other? Using the N − 1 two-proportion test we get

P = 37+ 22
455+ 438

	 

= 0:066 andQ = 1− 0:066= 0:934

z =
ð0:813− 0:502Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
893−1
893

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:066×0:934× 1

455
+ 1

438

� �r
Z =1:87

Looking up the test statistic 1.87 in a normal table, we get a two-sided p-value of 0.06. The probability
the two concepts have the same conversion rate is around 6%. That is, there is about a 94% probability
the completion rates are different. The 90% confidence interval around the difference in conversion rates
(which uses the critical value of 1.64) is

p̂adj1 =
x + z2

4

n+ z2

2

=
37+ 1:642

4

455+ 1:642

2

= 37+ 0:68
455+1:35

= 37:68
456:35

= 0:083

p̂adj1 =
x + z2

4

n+ z2

2

=
22+ 1:642

4

438+ 1:642

2

= 22+ 0:68
438+1:35

= 22:68
439:35

= 0:052
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ð0:083−0:052Þ± 1:64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:083ð1− 0:083Þ

456:35
+

0:052ð1−0:052Þ
439:35

r
0:031±0:027

The 90% confidence interval around the observed difference of 0.031 ranges from 0.004 to 0.058.
That is, if Concept A was used on all users (assuming the two-week period was representative) we could
expect it to convert between 0.4% and 6% more users than Concept B. As with any confidence interval,
the actual long-term conversion rate is more likely to be closer to the middle value of 3.1% than to either
of the extreme endpoints. For many large-volume e-commerce websites however, even the small estimated
lower limit of 0.4% for Concept A could translate into a lot more revenue.

Within-subjects
When the same users are used in each group the test design is within-subjects (also called matched
pairs). As with the continuous within-subjects test (the paired t-test) the variation between users has
been removed and you have a better chance of detecting differences (higher power) with the same
sample size as a between-subjects design.

To determine whether there is a significant difference between completion rates, conversion
rates, or any dichotomous variable we use the McNemar exact test and generate p-values by testing
whether the proportion of discordant pairs is greater than 0.5 (called the sign test) for all sample
sizes.

McNemar Exact Test
The McNemar exact test uses a 2 × 2 table similar to those in the between-subjects section, but the
primary test metric is the number of participants who switch from pass to fail or fail to pass—the
discordant pairs (McNemar, 1969).

Unlike the between-subjects chi-square test, we cannot set up our 2 × 2 table just from the sum-
mary data of the participants who passed and failed. We need to know the number who had a dif-
ferent outcome on each design—the discordant pairs of responses. Table 5.9 shows the
nomenclature used to represent the cells of the 2 × 2 table for this type of analysis.

We want to know if the proportion of discordant pairs (cells b and c) is greater than what we’d
expect to see from chance alone. For this type of analysis, we set chance to 0.5. If the proportion
of pairs that are discordant is different from 0.5 (higher or lower), than we have evidence that there
is a difference between designs.

Table 5.9 Nomenclature for McNemar Exact Test

Design B Pass Design B Fail Total

Design A a b m
Design B c d n
Total r s N
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To test the observed proportion against the hypothesized proportion of 0.5, we use the nonpara-
metric binomial test. This is the same approach we took for small samples in Chapter 4 in the sec-
tion “Comparing a Completion Rate to a Benchmark.” When the proportion tested is 0.5, the
binomial test goes by the special name the “sign test.”

The sign test uses the following binomial probability formula:

pðxÞ= n!
x!ðn− xÞ! p

xð1− pÞðn−xÞ

where

x is the number of positive or negative discordant pairs (cell c or cell b, whichever is smaller)
n is the total number of discordant pairs (cell b + cell c)
p = 0.5

Note: The term n! is pronounced “n factorial” and is n× ðn− 1Þ× ðn− 2Þ×…× 2× 1.
As discussed in Chapter 4, we will again use mid-probabilities as a less-conservative alternative to

exact probabilities, which tend to overstate the value of p, especially when sample sizes are small.

Example 1: Completion Rates
For example, 15 users attempted the same task on two different designs. The completion rate on Design A
was 87% and on Design B was 53%. Table 5.10 shows how each user performed, with 0’s representing
failed task attempts and 1’s for passing attempts.

Next we total the number of concordant and discordant responses in a 2 × 2 table (see Table 5.11).

Table 5.10 Sample Data for McNemar Exact Test

User Design A Design B

1 1 0
2 1 1
3 1 1
4 1 0
5 1 0
6 1 1
7 1 1
8 0 1
9 1 0

10 1 1
11 0 0
12 1 1
13 1 0
14 1 1
15 1 0
Comp Rate 87% 53%
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Concordant Pairs
• Seven users completed the task on both designs (cell a).
• One user failed on Design A and failed on Design B (cell d).

Discordant Pairs
• Six users passed on Design A but failed on Design B (cell b).
• One user failed on Design A and passed on Design B (cell c).

Table 5.12 shows the discordant users along with a sign (positive or negative) to indicate
whether they performed better (+ sign) or worse (− sign) on Design B. By the way, this is where
this procedure gets its name the “sign test”—we’re testing whether the proportion of pluses to
minuses is significantly different from 0.5.

In total, there were seven discordant pairs (cell b + cell c). Most users who performed differently
performed better on Design A (six out of seven). We will use the smaller of the discordant cells to
simplify the computation, which is the one person in cell c who failed on Design A and passed on
Design B. (Note that you will get the same result if you used the larger of the discordant cells, but
it would be more work.) Plugging these values in the formula, we get

pð0Þ= 7!
0!ð7− 0Þ! 0:5

0ð1− 0:5Þð7−0Þ = 0:0078

pð1Þ= 7!
1!ð7− 1Þ! 0:5

1ð1− 0:5Þð7−1Þ = 0:0547

The one-tailed exact p-value is these two probabilities added together, 0.0078 + 0.0547 = 0.0625,
so the two-tailed probability is double this (0.125). The mid-probability is equal to half the exact
probability for the value observed plus the cumulative probability of all values less than the one
observed. In this case, the probability of all values less than the one observed is just the probability of
zero discordant pairs, which is 0.0078:

Mid-p= 1
2
0:0547+ 0:0078

Mid-p= 0:0352

The one-tailed mid-p-value is 0.0352, so the two-tailed mid-p-value is double this (0.0704).
Thus, the probability of seeing one out of seven users perform better on Design A than B if there
really was no difference is 0.0704. Put another way, we can be about 93% sure Design A has
a better completion rate than Design B.

Table 5.11 Concordant and Discordant Responses for Example 1

Design B Pass Design B Fail Total

Design A Pass 7 (a) 6 (b) 13 (m)
Design A Fail 1 (c) 1 (d) 2 (n)
Total 8 (r) 7 (s) 15 (N)
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The computations for this two-sided mid-p value are rather tedious to do by hand, but are fairly easy
to get using the Excel function = 2*(BINOMDIST(0,7,0.5,FALSE)+0.5*BINOMDIST(1,7,0.5,FALSE)).

If you need to guarantee that the reported p-value is greater than or equal to the actual long-term
probability, then you should use the exact p-values instead of the mid-p-values. This is similar to the
recommendation we gave when comparing the completion rate to a benchmark (Chapter 4) and when
computing binomial confidence intervals (Chapter 3). For most applications in user research, the
mid-p-value will work better (lead to more correct decisions) over the long run (Agresti and Coull, 1998).

Alternate Approaches
As with the between-subjects chi-square test, there isn’t much agreement among statistics texts (or
statisticians) on the best way to compute the within-subjects p-value. This section provides informa-
tion about additional approaches you might have encountered. You may safely skip this section if
you trust our recommendation (or if you’re not interested in more geeky technical details).

Chi-Square Statistic
The most common recommendation in statistics textbooks for large-sample within-subject comparisons is
to use the chi-square statistic. It is typically called the McNemar chi-square test (McNemar, 1969), as
opposed to the McNemar exact test, which we presented in an earlier section. It uses the following formula:

χ2 =
ðc− bÞ2
c+ b

You will notice that the formula only uses the discordant cells (b and c). You can look up the test
statistic in a chi-square table with one degree of freedom to generate the p-value, or use the Excel func-
tion CHIDIST. Using the data from Example 1 with seven discordant pairs we get a test statistic of

χ2 =
ð1− 6Þ2

7
= 3:571

Using the Excel function =CHIDIST(3.571,1), we get the p-value of 0.0587, which, for this example, is
reasonably close to our mid-p-value of 0.0704.

However, to use this approach, the sample size needs to be reasonably large to have accurate
results. As a general guide, it is a large enough sample if the number of discordant pairs (b + c) is
greater than 30 (Agresti and Franklin, 2007).

Table 5.12 Discordant Performance
from Example 1

User Relative Performance on B

1 −
4 −
5 −
8 +
9 −

13 −
15 −
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You can equivalently use the z-statistic and corresponding normal table of values to generate a
p-value instead of the chi-square statistic, by simply taking the square root of the entire equation:

Z = c− bffiffiffiffiffiffiffiffiffiffi
c+ b

p

Z = 6− 1ffiffiffiffiffiffiffiffiffiffi
6+ 1

p = 5ffiffiffi
7

p = 1:89

Using the Excel function NORMSDIST(=2*NORMSDIST(1.89)), we get p = 0.0587, demonstrating
the mathematical equivalence of the methods.

Yates Correction to the Chi-square Statistic
To further complicate matters, some texts recommend using a Yates-corrected chi-square for all
sample sizes (Bland, 2000). As shown in the following, the Yates correction is

χ2 =
ðjc− bj− 1Þ2

b+ c

Using the data from Example 1 with seven discordant pairs we get

χ2 =
ðj1− 6j− 1Þ2

7
= 2:29

We look up this value in a chi-square table of values with one degree of freedom or use the
Excel function =CHIDIST(2.29,1) to get the p-value of 0.1306. For this example, this value is even
higher than the exact p-value from the sign test, which we expect to overstate the magnitude of p.
A major criticism of the Yates correction is that it will likely exceed the p-value from the sign test.
Recall that this overcorrection also occurs with the Yates correction of the between-subjects
chi-square test. For this reason, we do not recommend the use of the Yates correction.

Table 5.13 provides a summary of the p-values generated from the different approaches and our
recommendations.

Table 5.13 Summary of p-values Generated from Sample Data for McNemar Tests

Method p-value Notes

McNemar Exact Test
using Mid-probabilities

0.0704 Recommended: for all sample sizes will provide best average
long-term probability, but some individual tests may understate
actual probability

McNemar Exact Test
using Exact Probabilities

0.125 Recommended: for all sample sizes when you need to guarantee
the long-term probability is greater than or equal to the p-value
(a conservative approach)

McNemar Chi-Square
Test/z-Test

0.0587 Not recommended: understates true probability for sample sizes
and is unclear about what constitutes a large sample size

McNemar Chi-Square Test
with Yates Correction

0.1306 Not recommended: overstates true probability for all sample sizes
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Confidence Interval around the Difference for Matched Pairs
To estimate the likely magnitude of the difference between matched pairs of binary responses, we
recommend the appropriate adjusted-Wald confidence interval (Agresti and Min, 2005). As
described in Chapter 3 for confidence intervals around a single proportion, this adjustment uses the
same concept as that for the between-subjects confidence interval around two proportions.

When applied to a 2 × 2 table for a within-subjects setup (as shown in Table 5.14), the adjust-
ment is to add one-eighth of a squared critical value from the normal distribution for the specified
level of confidence to each cell in the 2 × 2 table. For a 95% level of confidence, this has the effect
of adding two pseudo observations to the total number of trials (N).

Using the same notation from the 2 × 2 table with the “adj” meaning to add
z2α
8 to each cell, we

have the formula

ðp̂2adj − p̂1adjÞ± zα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp̂12adj + p̂21adjÞ− ðp̂21adj − p̂12adjÞ2

Nadj

s
where

p̂1adj =
madj

Nadj

p̂2adj =
radj
Nadj

p̂12adj =
badj
Nadj

p̂21adj =
cadj
Nadj

zα is the two-sided z critical value for the level of confidence (e.g., 1.96 for a 95% confidence level)
z2α
8 is the adjustment added to each cell (e.g., for a 95% confidence level this is 1:962

8 = 0.48)

The formula is similar to the confidence interval around two independent proportions. The key
difference here is how we generate the proportions from the 2 × 2 table.

Table 5.15 shows the results from Example 1 (so you don’t need to flip back to the original
page). Table 5.16 shows the adjustment of 0.5 added to each cell.

Table 5.14 Framework for Adjusted-Wald Confidence Interval

Design B Pass Design B Fail Total

Design A Pass aadj badj madj

Design A Fail cadj dadj nadj
Total radj sadj Nadj

Table 5.15 Results from Example 1

Design B Pass Design B Fail Total

Design A Pass 7 (a) 6 (b) 13 (m)
Design A Fail 1 (c) 1 (d) 2 (n)
Total 8 (r) 7 (s) 15 (N)
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You can see that the adjustment has the effect of adding two pseudo users to the sample as we
go from a total of 15 to 17. Filling in these values to the formula for a 95% confidence interval
(which has a critical z-value of 1.96) we get

p̂1adj =
14
17

= 0:825

p̂2adj =
9
17

= 0:529

p̂12adj =
6:5
17

= 0:383

p̂21adj =
1:5
17

= 0:087

ðp̂2adj − p̂1adjÞ± zα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp̂12adj + p̂21adjÞ− ðp̂21adj − p̂12adjÞ2

Nadj

s

ð0:529− 0:825Þ± 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:383+ 0:087Þ− ð0:087− 0:383Þ2

17

r
− 0:296± 0:295

The 95% confidence interval around the difference in completion rates between designs is −59.1%
to −0.1%. The confidence interval goes from negative to positive because we subtracted the design
with the better completion rate from the one with the worse completion rate.

There’s nothing sacred about the order in which you subtract the proportions. We can just as
easily subtract Design B from Design A, which would generate a confidence interval of 0.1%
to 59.1%. Neither confidence interval quite crosses 0, so we can be about 95% confident there is a
difference. It is typically easier to subtract the smaller proportion from the larger when reporting
confidence intervals, so we will do that through the remainder of this section.

The mid-p-value from the McNemar exact test was 0.0704, which gave us around 93% confi-
dence that there was a difference—just short of the 95% confidence indicated by the adjusted-Wald
confidence interval (which is based on a somewhat different statistical procedure), but likely confi-
dent enough for many early-stage designs to move on to the next research question (or make any
indicated improvements to the current design and move on to testing the next design).

Table 5.16 Adjusted Values for Computing Confidence Interval

Design B Pass Design B Fail Total

Design A Pass 7.5 (dadj) 6.5 (badj) 14 (madj)
Design A Fail 1.5 (cadj) 1.5 (dadj) 3 (nadj)
Total 9 (radj) 8 (sadj) 17 (Nadj)
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In most applied settings, the difference between 94% confidence and 95% confidence shouldn’t
lead to different decisions. If you are using a rigid cutoff of 0.05, such as for a publication, then
use the p-value to decide whether to reject the null hypothesis. Keep in mind that most statistical
calculations approximate the role of chance. Both the approximation and the choice of the method
used can result in p-values that fluctuate by a few percentage points (as we saw in Table 5.13), so
don’t get too hung up on what the “right” p-value is. If you are testing in an environment where
you need to guarantee a certain p-value (medical device testing comes to mind), then increasing
your confidence level to 99% and using the exact p-values instead of the mid-p-values will signifi-
cantly reduce the probability of identifying a chance difference as significant.

Example 2: Completion Rates
In a comparative usability test, 14 users attempted to rent the same type of car in the same city on two dif-
ferent websites (Avis.com and Enterprise.com). All 14 users completed the task on Avis.com but only 10 of
14 completed it on Enterprise.com. The users and their task results appear in Tables 5.17 and 5.18.

Table 5.17 Completion Data from CUE-8 Task

User Avis.com Enterprise.com

1 1 1
2 1 1
3 1 0
4 1 0
5 1 1
6 1 1
7 1 1
8 1 0
9 1 1

10 1 1
11 1 1
12 1 0
13 1 1
14 1 1
Comp Rate 100% 71%

Table 5.18 Organization of Concordant and Discordant Pairs from CUE-8 Task

Enterprise.com Pass Enterprise.com Fail Total

Avis.com Pass 10 (a) 4 (b) 14 (m)
Avis.com Fail 0 (c) 0 (d) 0 (n)
Total 10 (r) 4 (s) 14 (N)
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Is there sufficient evidence that more users could complete the task on Avis.com than on Enterprise.com
(as designed at the time of this study)?

In total there were four discordant users (cell b + cell c), all of whom performed better on Avis.com.
Table 5.19 shows the improvement performance difference for the four users on Enterprise.com.

Plugging the appropriate values in the formula we get

pðxÞ= n!
x !ðn− xÞ! p

x ð1−pÞðn−xÞ

pð0Þ= 4!
0!ð4−0Þ! :5

0ð1− 0:5Þð4−0Þ =0:0625

The one-tailed exact p-value is 0.0625, so the two-tailed probability is double this (0.125). The mid-
probability is equal to half the exact probability for the value observed plus the cumulative probability of all
values less than the one observed. Because there are no values less than 0, the one-tailed mid-probability
is equal to half of 0.0625:

Mid-p = 1
2
ð0:0625Þ

Mid-p =0:0313

The one-tailed mid-p-value is 0.0313, so the two-tailed mid-p-value is double this (0.0625). Thus, the
probability of seeing zero out of four users perform worse on Enterprise.com if there really was no differ-
ence is 0.0625. Put another way, we can be around 94% sure Avis.com had a better completion rate than
Enterprise.com on this rental car task at the time of this study.

COMPARING RENTAL CAR WEBSITES
Why Enterprise.com Had a Worse Completion Rate
From the files of Jeff Sauro

In case you were wondering why Enterprise.com had a worse completion rate, the task required users to add
a GPS system to the rental car reservation. On Enterprise.com, this option only appeared after you entered your
personal information. It thus led four users to spend a lot of time hunting for that option and either giving up or
saying they would call customer service. Allowing users to add that feature (which changes the total rental price)
would likely increase the completion rate (and rental rate) for Enterprise.com.

The 95% confidence interval around the difference is found by first adjusting the values in each

interior cell of the 2 × 2 table by 0:5
�1:962

8 = 0:48≈ 0:5
�
, as shown in Table 5.20.

Table 5.19 Discordant Performance from CUE-8 Task

User Relative Performance on Enterprise.com

3 −
4 −
8 −

12 −
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Finding the component parts of the formula and entering the values we get

ð p̂2adj − p̂1adjÞ± zα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð p̂12adj + p̂21adjÞ− ð p̂21adj − p̂12adjÞ2

Nadj

s

p̂1adj =
madj

Nadj
= 15

16
= 0:938

p̂2adj =
radj
Nadj

= 11
16

= 0:688

p̂12adj =
badj
Nadj

= 4:5
16

= 0:281

p̂21adj =
cadj
Nadj

= 0:5
16

= 0:03

ð0:938− 0:688Þ± 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:281+ 0:03Þ− ð0:03− 0:281Þ2

16

s
0:250± 0:245

We can be 95% confident the difference between proportions is between 0.5% and 49.5%. This
interval does not cross zero, which tells us we can be 95% confident the difference is greater than
zero. It is another example of a significant difference seen with the confidence interval but not with
the p-value. We didn’t plan on both examples having p-values so close to 0.05. They are a conse-
quence of using data from actual usability tests. Fortunately, you are more likely to see p-values
and confidence intervals point to the same conclusion.

KEY POINTS FROM THE CHAPTER
• When comparing two designs or products, you need to account for chance differences between

sample data by generating a p-value from the appropriate statistical test.
• To understand the likely range of the difference between designs or products, you should

compute a confidence interval around the difference.
• To determine which statistical test you need to use, you need to identify whether your outcome

measure is binary or continuous and whether you have the same users in each group (within-
subjects) or a different set of users (between-subjects).

Table 5.20 Adjusted Counts for CUE-8 Task

Design B Pass Design B Fail Total

Design A Pass 10.5 (aadj) 4.5 (badj) 15 (madj)
Design A Fail 0.5 (cadj) 0.5 (dadj) 1 (nadj)
Total 11 (radj) 5 (sadj) 16 (Nadj)
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Table 5.21 Formulas Used in This Chapter

Name of Formula Formula Notes

Paired t-test (dependent
means) t= D̂

sDffiffiffi
n

p
Used for all sample sizes when the same users are
used in both groups.

Confidence interval
around the difference
between paired means

D± ta
sDffiffiffi
n

p Used for all sample sizes.

Two-sample t-test
(independent means) t=

x̂1 − x̂2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
n1

+
s22
n2

s Used for all sample sizes when different users are in
each sample. It is robust to violations of normality
and unequal variances especially when using the
Welch–Satterthwaite procedure to adjust the
degrees of freedom.

Welch–Satterthwaite
procedure adjustment to
degrees of freedom df ′=

s1
2

n1
+

s2
2

n2

	 
2
s1

2

n1

	 

n1 − 1

2

+

s2
2

n2

	 
2
n2 − 1

Adjusts the degrees of freedom used in a two-
sample t-test, which makes the test more robust
to violations of normality and unequal variances.

Confidence interval
around two independent
means

ðx̂1 − x̂2Þ ± ta

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
n1

+
s22
n2

s Used for all sample sizes.

N − 1 chi-square test
for comparing two
independent proportions
(equal to the N − 1
two-proportion test)

χ2 =
ðad−bcÞ2ðN− 1Þ

mnrs

The test is the same as the standard chi-square test
except it is adjusted by multiplying the numerator
by N − 1. The test is algebraically equivalent to the
N − 1 two-proportion test. It works well as long as the
expected cell counts are greater than 1 (otherwise use
the Fisher exact test).

N − 1 two-proportion test
for comparing two
independent proportions z=

ðp̂1 − p̂2Þ
ffiffiffiffiffiffiffiffiffiffiffi
N− 1
N

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PQ× 1

n1
+ 1

n2

	 
s
The test is the same as the standard two-proportion
test except it is adjusted by multiplying the numerator

by

ffiffiffiffiffiffiffiffi
N−1
N

q
. The test is algebraically equivalent to the

N − 1 chi-square test. It works well as long as the
expected cell counts are greater than 1 (otherwise
use the Fisher exact test).
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Fisher exact test on two
independent proportions

p= m!n!r!s!
a!b!c!d!N!

Only recommended when expected cell counts are
less than 1 (which doesn’t happen a lot). Software
computes the p-values by finding all possible
combinations of tables equal to or more extreme
than the marginal totals observed.

Adjusted-Wald
confidence interval for the
difference between
independent proportions

ðp̂adj1 − p̂adj2Þ± zα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂adj1ð1− p̂adj1Þ

nadj1
+

p̂adj2ð1− p̂adj2Þ
nadj2

s
The adjustment is to add a quarter of a squared
z-critical value to the numerator and half a squared
z-critical value to the denominator when computing
each proportion.

McNemar exact test for
matched proportions

pðxÞ= n!
x!ðn− xÞ!p

xð1−pÞðn− xÞ This is the binomial probability formula, which is
used on the proportion of discordant pairs. See the
chapter for the process of using this and the
mid-p-value.

Adjusted-Wald
confidence interval for
difference between
matched proportions

ðp̂2adj − p̂1adjÞ± zα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp̂12adj + p̂21adjÞ− ðp̂21adj − p̂12adjÞ2

Nadj

s
The interval is adjusted by adding z2α

8 to each cell. For
a 95% confidence level this is about 0.5.
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• For comparing data from two continuous means such as questionnaire data or task times:
• For between-subjects: Use the two-sample t-test if different users are in each sample. The

procedure can handle non-normal data and unequal variances. Compute a t-confidence
interval around the difference between means.

• For within-subjects: Use the paired t-test if the same users are in each sample. The procedure can
handle non-normal data. Compute a t-confidence interval around the difference between means.

• There is surprisingly little agreement in the statistics literature on the best statistical approach for
comparing binary measures. Our recommendations appear the most promising given the current
research.

• For comparing a binary outcome measure such as a task completion rate or conversion rate
(as used in A/B testing):
• For between-subjects: Use the N− 1 two-proportion test if different users are in each sample

and compute an adjusted-Wald confidence interval around the difference in the proportions.
• For within-subjects: Use the McNemar exact test (using the mid-probability variant) if the

same users are in each sample. Compute an adjusted-Wald confidence interval around the
difference in the matched proportions.

• Table 5.21 provides a list of the formulas used in this chapter.

CHAPTER REVIEW QUESTIONS
1. Ten users completed the task to find the best priced nonstop roundtrip ticket on JetBlue.com. A

different set of 14 users attempted the same task on AmericanAirlines.com. After each task
attempt, the users answered the seven-point Single Ease Question (SEQ; see Sauro, 2011b).
Higher responses indicate an easier task. The mean response on JetBlue was 6.1 (sd = 0.88) and
the mean response on American Airlines was 4.86 (sd = 1.61). Is there enough evidence from
the sample to conclude that users think booking a flight on American Airlines is more difficult
than on JetBlue? What is the likely range of the difference between mean ratings using a 90%
level of confidence?

2. Two designs were tested on a website to see which would convert more users to register for a
webinar. Is there enough evidence to conclude one design is better?
Design A: 4 out of 109 converted
Design B: 0 out of 88 converted
Compute a 90% confidence interval around the difference.

3. A competitive analysis of travel websites was conducted. One set of 31 users completed tasks on
Expedia.com and another set of 25 users completed the same tasks on Kayak.com. Users rated
how likely they would be to recommend the website to a friend on an 11-point scale (0 to 10,
with 10 being extremely likely). The mean score on Expedia.com was 7.32 (sd = 1.87) and the
mean score on Kayak.com was 5.72 (sd = 2.99). Is there evidence that more people would
likely recommend Expedia.com over Kayak.com? What is the likely range for the difference
between means using a 95% confidence level?

4. Using the same set of data from question 3, the responses were segmented into promoters,
passive, and detractors as shown in Table 5.22. This process degrades a more continuous
measure into a discrete-binary one (which is the typical approach when computing the Net
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Promoter Score). Is there evidence to conclude that there is a difference in the proportion of
promoters (the top-2-box scores) between websites?

5. The same 14 users attempted to rent a car on two rental car websites: Budget.com and
Enterprise.com. The order of presentation of the websites was counterbalanced, so half of the
users worked with Budget first, and the other half with Enterprise. Table 5.23 shows which
users were successful on which website. Is there enough evidence to conclude that the websites
have different completion rates? How much of a difference, if any, likely exists between the
completion rates (use a 90% level of confidence)?

6. After completing five tasks on both Budget.com and Enterprise.com, the 14 users from question
5 completed the System Usability Scale (see Table 5.24). The mean SUS scores were 80.4 (sd =
11) for Budget.com and 63.5 (sd = 15) for Enterprise.com. Is there enough evidence to conclude
that the SUS scores are different? How large of a difference likely exists in the entire user
population using a 95% confidence interval?

Table 5.22 Data for Question 4

Website Segment Response Range No. of Responses

Expedia.com Promoters 9–10 7
Passive 7–8 14
Detractors 0–6 10

Kayak.com Promoters 9–10 5
Passive 7–8 8
Detractors 0–6 12

Table 5.23 Data for Question 5

User Budget.com Enterprise.com

1 1 1
2 1 1
3 1 0
4 1 0
5 0 1
6 1 1
7 1 1
8 0 0
9 1 1

10 1 1
11 1 1
12 1 0
13 1 1
14 1 1
Comp Rate 86% 71%
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Answers
1. A two-sample t-test should be conducted using the following formula:

t=
x̂1 − x̂2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
n1

+
s22
n2

s = 6:1− 4:86ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:882

10
+ 1:612

14

r = 2:42

The degrees of freedom for this test are:

df ′=

0:882

10
+ 1:612

14

	 
2
0:882

10

	 
2
10− 1

+

1:612

14

	 
2
14− 1

= 0:068954
0:003303

= 20:9,which rounds down to 20

Looking up the test statistic in a t-table with 20 degrees of freedom we get a p-value of 0.025.
There is sufficient evidence for us to conclude that users find completing the task on American
Airlines more difficult. For a 90% level of confidence with 20 degrees of freedom, the t-critical
value is 1.72 and the formula is

ðx̂1 − x̂2Þ± ta

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
n1

+
s22
n2

s
= 1:24+ 1:72

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:882

10
+ 1:612

14

r
= 1:24± 0:88

Table 5.24 Data for Question 6

User Budget.com Enterprise.com Difference

1 90 65 25
2 85 82.5 2.5
3 80 55 25
4 92.5 67.5 25
5 82.5 82.5 0
6 80 37.5 42.5
7 62.5 77.5 −15
8 87.5 67.5 20
9 67.5 35 32.5
10 92.5 62.5 30
11 65 57.5 7.5
12 70 85 −15
13 75 55 20
14 95 60 35

Mean (sd) 80 (11) 64 (15) 16.8 (18)
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So we can be 90% confident the difference between mean ratings is 0.36 to 2.12 between the
two airline websites.

2. Conduct an N – 1 two-proportion test:

P=
x1 + x2
n1 + n2

	 

= 4+ 0

109+ 88

	 

= 0:02

z=
ð p̂1 − p̂2Þ

ffiffiffiffiffiffiffiffiffiffiffi
N − 1
N

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PQ× 1

n1
+ 1

n2

	 
s =
ð0:367− 0Þ×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
197− 1
197

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:02× 0:98× 1

109
+ 1

88

� �r = 1:81

Looking up the test statistic 1.81 in a normal table we get a two-tailed p-value of 0.07. This
means there is about a 93% chance the designs are different, which is probably strong enough
evidence for almost all circumstances. The 90% confidence interval around the difference is
computed using the adjusted-Wald formula. First compute the adjustment for each proportion.
The critical value of z for a 90% level of confidence is 1.64.

p̂adj1 =
x+ z2

4

n+ z2

2

=
4+ 1:642

4

109+ 1:642

2

= 4+ 0:68
109+ 1:35

= 4:68
110:35

= 0:0423

p̂adj2 =
x+ z2

4

n+ z2

2

=
0+ 1:642

4

88+ 1:642

2

= 0+ 0:68
88+ 1:35

= 0:68
89:35

= 0:0075

Then insert this adjustment into the confidence interval formula:

ð0:0423− 0:0075Þ± 1:64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0423ð1− 0:0423Þ

110:35
+

0:0075ð1− 0:0075Þ
89:35

r
The 90% interval is 0 to 0.07, which means we can be 90% confident the difference between
conversion rates favors Design A somewhere between 0% and 7%.

3. Use a two-sample t-test because we have independent samples and a continuous response
variable. Using the two-sample t-test formula we get:

t=
x̂1 − x̂2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
n1

+
s22
n2

s = 7:32− 5:72ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:872

31
+ 2:992

25

r = 2:33
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With the following degrees of freedom:

df ′=

1:872

31
+ 2:992

25

	 
2
1:872

31

	 
2
31− 1

+

2:992

25

	 
2
25− 1

= 0:221283
0:005753

= 38:5, which rounds down to 38

Looking up the test statistic 2.33 using a t-table with 38 degrees of freedom shows a p-value of
0.025. Thus, there is only a 2.5% probability that the difference between means is due to
chance. Put another way, there is a 97.5% probability that the mean score on Expedia.com is
higher than on Kayak.com. The t-critical value for a 95% confidence level with 38 degrees of
freedom (http://www.usablestats.com/calcs/tinv) is 2.02.

ðx̂1 − x̂2Þ± ta

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
n1

+
s22
n2

s
= ð7:32− 5:72Þ± 2:02

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:872

31
+ 2:992

25

r
= 1:6± 1:4

We can be 95% confident the difference between mean scores on the likelihood-to-recommend
question is between 0.2 and 3 in favor of the Expedia.com website.

4. We have two independent proportions, so we use the N – 1 two-proportion test.

P=
x1 + x2
n1 + n2

	 

= 7+ 5

31+ 25

	 

= 0:214

z=
ð p̂1 − p̂2Þ

ffiffiffiffiffiffiffiffiffiffiffi
N − 1
N

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PQ× 1

n1
+ 1

n2

	 
s =
ð0:226− 0:2Þ×

ffiffiffiffiffiffiffiffiffiffiffiffiffi
56− 1
56

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:214× 0:786× 1

31
+ 1

25

� �r = 0:232

Looking up the test statistic of 0.232 in a normal (z) table, we get a two-sided p-value of 0.817.
Given this sample there is only an 18.3% chance that the proportion of promoters is different
between Expedia.com and Kayak.com. Note how the evidence for a difference has dropped
when examining top-2-box scores compared to the difference between means in question 3.
When we compared the means in question 3 we found a statistical difference. This illustrates
that when you reduce a continuous measure to a binary outcome measure, you lose information.
The result in this case is little evidence for a difference in top-2-box scores, an example of the
loss of sensitivity due to the reduction of multipoint scale data to binary.

5. We need to conduct a McNemar exact test. First set up the 2 × 2 table, as shown in Table 5.25.
We can see that four users had different outcomes (discordant pairs) between websites (from
cells b and c). The minus signs in Table 5.26 indicate worse performance on Enterprise.com—
three users performed worse on Enterprise.com and one performed better. To find the
probability of having one out of four discordant pairs if the probability is really 0.5, we use the
binomial probability formula to find the mid-p-value. In Excel, the formula is =2*(BINOMDIST
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(0,4,0.5,FALSE)+0.5*BINOMDIST(1,4,0.5,FALSE)), which generates a two-tailed mid-p-value
of 0.375. That is, there’s only a 62.5% chance the completion rates are different given the data
from this sample. Although the observed completion rates are different, they aren’t different
enough for us to conclude that Budget.com’s completion rate on this task is significantly
different from Enterprise.com’s.

To compute the 90% confidence interval around the difference between proportions, we use
the adjusted-Wald procedure. The critical value of z for a 90% level of confidence is 1.64, mak-
ing the adjustment 1:642

8 = 0:34.
We update the 2 × 2 table with the 0.34 adjustment to each cell (see Table 5.27). Finding the

component parts of the formula and entering the values, we get

ð p̂2adj − p̂1adjÞ± zα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð p̂12adj + p̂21adjÞ− ð p̂21adj − p̂12adjÞ2

Nadj

s

p̂1adj =
madj

Nadj
= 11:7

15:4
= 0:826

p̂2adj =
radj
Nadj

= 10:7
15:4

= 0:695

Table 5.27 Adjusted Data for Question 5

Enterprise.com Pass Enterprise.com Fail Total

Budget.com Pass 9.34 (aadj) 3.34 (badj) 12.7 (madj)
Budget.com Fail 1.34 (cadj) 1.34 (dadj) 2.7 (nadj)
Total 10.7 (radj) 4.7 (sadj) 15.4 (Nadj)

Table 5.26 Discordant Data for Question 5

User + or − Difference

3 −
4 −
5 −
6 +

Table 5.25 Arrangement of Concordant and Discordant Data for Question 5

Enterprise.com Pass Enterprise.com Fail Total

Budget.com Pass 9 (a) 3 (b) 12 (m)
Budget.com Fail 1 (c) 1 (d ) 2 (n)
Total 10 (r) 5 (s) 14 (N )
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p̂12adj =
badj
Nadj

= 3:34
15:4

= 0:217

p̂21adj =
cadj
Nadj

= 1:34
15:4

= 0:087

ð0:826− 0:695Þ± 1:64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:217+ 0:087Þ− ð0:087− 0:217Þ2

15:4

s
0:131± 0:225

The 90% confidence interval is −9.5% to 35.5%. Because the interval crosses 0, this also tells
us there’s less than a 90% chance that the completion rates are different.

6. We perform a paired t-test because the same users worked with each website. The test statistic is

t= D̂
sDffiffiffi
n

p
= 16:8

18ffiffiffiffiffi
14

p
= 3:48

Looking up the test statistic of 3.48 in a t-table with 13 degrees of freedom or using the Excel
function =TDIST(3.48,13,2), we get the two-sided p-value of 0.004. We have strong evidence to
conclude that users think the Budget.com website is easier to use as measured by the SUS. The
t-critical value with 13 degrees of freedom for a 95% level of confidence is 2.16, so the result-
ing 95% confidence interval is

D+ ta
sDffiffiffi
n

p

= 16:8± 2:16 18ffiffiffiffiffi
14

p

= 16:8± 10:4

We can be 95% confident the mean difference for the entire user population is between 6.4 and 27.2.
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CHAPTER

6What Sample Sizes Do We Need?
Part 1: Summative Studies

INTRODUCTION
Why Do We Care?
Before tackling the question of determining the sample sizes needed by usability practitioners, we
should address the question of “Why do we care?” The primary motive behind sample size estima-
tion, as illustrated in Figure 6.1, is economics.

If additional samples didn’t cost anything—didn’t take any additional time or cost any additional
money—then we’d always conduct studies with very large samples. That is the case with some
types of user research (e.g., Internet surveys delivered via email or conducted using Internet services
such as Mechanical Turk, which has a low incremental cost typically ranging from $0.25 to $1.00
per participant). The reason that survey samples rarely contain fewer than several hundred respon-
dents is due to the cost structure of surveys (Alreck and Settle, 1985). The fixed costs of the survey
include activities such as determining information requirements, identifying survey topics, selecting a
data collection method, writing questions, choosing scales, composing the questionnaire, and so on.
For this type of research, the additional or marginal cost of including hundreds of additional respon-
dents can be very small relative to the fixed costs.

This, however, is not the case for most moderated usability testing. Imagine the cost of adding
participants to a usability study:

• In which there might be as little as a week or two between the availability of testable software
and the deadline for providing recommendations for improvement.

• When resources allow the observation of only one participant at a time.
• With a set of tasks that takes two days to complete.

Usability researchers have devoted considerable attention to sample size estimation due to the
typically high cost of observing participants in moderated testing (and this is not unique to usability—
medical studies involving functional magnetic resonance imaging (fMRI) are very expensive, with
a substantial incremental cost for additional subjects).

The Type of Usability Study Matters
There are two major conceptions of usability: summative and formative (Lewis, 2012), based on
methodological distinctions for assessment originally developed in the field of education (Scriven,
1967). The summative conception is that the primary focus of usability should be on measurements
related to the accomplishment of global task goals (measurement-based evaluation). The formative
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conception is that practitioners should focus on the detection and elimination of usability problems
(diagnostic evaluation). The different conceptions imply differences in the appropriate statistical
models to use for sample size estimation.

Usability testing emerged from the experimental methods of psychology (in particular, cognitive
and applied psychology) and human factors engineering (Dumas and Salzman, 2006). Experimenters
conducting traditional experiments develop a careful plan of study that includes the exact number of
participants to expose to the different experimental treatments. The more formative (diagnostic,
focused on problem discovery) the focus of a usability test, the less it is like a traditional experiment.
The more summative (focused on measurement) a usability test is, the more it should resemble the
mechanics of a traditional experiment.

The focus of this chapter is on sample size estimation for summative usability studies. We will
cover sample size estimation for formative usability studies in Chapter 7.

Basic Principles of Summative Sample Size Estimation
Sometimes you might just want to estimate the value of a measure. For example, how satisfied are
users with the usability of a given website? At other times you might want to compare a measure
with a specific goal, or to compare alternatives. For example, can users complete a given task in less
than two minutes; or can they complete the task more quickly with a new version of a program than
they could with a competitor’s version? Figure 6.2 illustrates these three questions.

In Chapters 3, 4, and 5, we’ve covered methods for conducting statistical tests to answer these
questions. The purpose of this section is to show how to estimate the number of participants you
will need to achieve specific measurement goals.

Traditional sample size estimation requires estimates of the variance of the measure of interest
and a judgment of how precise the measurement must be, where precision includes the magnitude

E = mc2... oh,
and
n = $

FIGURE 6.1

You don’t have to be Einstein to figure out the relationship between sample size and economics.
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of the critical difference and the desired statistical confidence level (Walpole, 1976). Once you have
that information, the rest is mathematical mechanics.

Estimates of variance can come from previous studies that used the same method (same or simi-
lar tasks and measures). If no historical estimate is available and it isn’t possible to conduct a pilot
study, another approach is to define the critical difference as a fraction of the standard deviation
(Diamond, 1981), specifying the critical difference in standard units—in other words, as a critical
effect size—rather than directly in units of the target measure.

All other things being equal, precise measurement is preferable to imprecise measurement. The
more precise a measurement is, however, the more it will cost, which gets us back to the basic

I wonder ...
How long does it
usually take me
to get to work?

Would it be
faster if  I took
the interstate?

Does it usually
take less than 15

minutes?

FIGURE 6.2

Illustration of three traditional statistical questions.
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motivation for sample size estimation that running more participants than necessary is wasteful of
resources (Kraemer and Thiemann, 1987).

In addition to the economic incentive to estimate sample size, the process of carrying out sample size
estimation can also lead to a realistic determination of how much precision is required to make the neces-
sary decision(s) (Alreck and Settle, 1985). Consider using a “what if” approach to help stakeholders
determine their required precision. Start by asking what would happen if the average value from the
study was off the true value by 1%—usually a difference this small won’t affect the final decision. If that
amount of discrepancy doesn’t matter, what if the measurement was off by 5%? If that level of impreci-
sion is acceptable, continue until the stakeholders indicate that the measurement would be too imprecise
to guide their decision making. Then start the process again, this time addressing the required level of
statistical confidence. Note that statistically unsophisticated decision makers are likely to start out by
expecting 100% confidence, which is possible only if you can sample every unit in the population, in
which case you wouldn’t need to use statistics to guide decision making. Presenting stakeholders with
the sample sizes needed to achieve different levels of precision and confidence can help them achieve a
realistic data collection plan, collecting just enough data to answer the question(s) at hand.

ESTIMATING VALUES
“Before the middle of the eighteenth century there is little indication … of a willingness of astronomers
to combine observations; indeed … there was sometimes an outright refusal to combine them … the
idea that accuracy could be increased by combining measurements made under different conditions was
slow to come. They feared that errors in one observation would contaminate others, that errors would
multiply, not compensate” (Stigler, 1986, p. 4).

TRUE SCORE THEORY AND THE CENTRAL LIMIT THEOREM
Why Averaging Scores Leads to Greater Accuracy as You Increase the Sample Size
The fundamental theorem of true score theory is that every observed score (x) has two components: the true score (t)
and some error (e), mathematically, xi= t+ ei. Given unbiased measurement, the value of t will be consistent, but the
value of e will vary randomly, that is, will sometimes add to t and other times will subtract from it. As you increase
the sample size and take the average, the true value will emerge because the randomly varying errors will cancel out.
The roots of this argument reach back to 1755, when Thomas Simpson published a treatise entitled An Attempt to
Show the Advantage Arising by Taking the Mean of a Number of Observations in Practical Astronomy. Simpson laid
some of the foundations for the estimation of confidence intervals when he argued that positive and negative errors
should be equally probable and that there were assignable limits within which errors would typically fall (Cowles, 1989).

The Central Limit Theorem also has a rich history, first proved by Simon Laplace in 1810, but with historical roots
that go back to James Bernoulli’s publication of Ars Conjectandi in 1713 (Cowles, 1989). The Central Limit Theorem
states that as n approaches infinity, the cumulative distribution of the standardized sample mean (the distribution of z)
approaches the cumulative standardized normal distribution (Bradley, 1976). In other words, for any actual distribu-
tion (normal or not), as the sample size increases, the sampling distribution of the mean becomes more and more
normal, with the mean at the center of the sampling distribution and 95% of sample means within ± two standard
errors of the true mean. It is important to remember that this does not apply to the location of the true mean in the
distribution of individual scores. If the true distribution is skewed, as is often the case for completion times, the mean
will not be the best indicator of the center of the distribution. What the Central Limit Theorem does indicate is that as
the sample size increases, the accuracy of the estimation of the mean will improve, that is, that the errors in multiple
observations compensate rather than multiplying.
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From true score theory and the Central Limit Theorem, we now know that combining observa-
tions sharpens rather than contaminates our estimates. For many of the situations encountered by
usability practitioners, manipulating the one-sample t-test provides a path to determining how many
observations it will take to achieve a desired accuracy for the estimate. It would be simpler to use
the one-sample z-test, but for practical moderated usability testing, the sample sizes will almost
always be too small to justify the use of z instead of t.

Just a quick reminder before we continue—many of the sample size estimation procedures
described in this chapter are new, so it’s important for us to document how we got from the for-
mula for the test statistic to the sample size formula. If you don’t care about the math, that’s fine—
just skip over the equations and go right to the examples. Now, back to the math.

The formula for computing t is

t= d
sem

where d is an observed difference and sem is the standard error of the mean, which in turn is the
standard deviation divided by the square root of the sample size, or

sem= sffiffiffi
n

p

Knowing this, we can use algebra to get n on the left side of the equation:

t= d
s=

ffiffiffi
n

p

sffiffiffi
n

p = d
tffiffiffi

n
p
s

= t
dffiffiffi

n
p

=
tðsÞ
d

n= t2s2

d2

To calculate n, therefore, we need values for s2, t, and d.
For s2, we need an estimate of the variance (the square of the sample standard deviation) as pre-

viously described—typically from a similar experiment (either a previous usability test or a pilot
test). If no estimate of the variance is available, it is possible to define d as some proportion of s
(see the “Example 3: No Estimate of Variability” section) or, for certain kinds of measurements, to
use a rule of thumb to estimate the variance (see the “Rules of Thumb for Estimating Unknown
Variance” sidebar).

d is the critical difference for the experiment—the smallest difference between the obtained and
true value that you need to be able to detect. There is no mathematical approach to determining the
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appropriate value of d. This is a matter of judgment, either based on the experimenter’s knowledge
of the domain or using the “what if” approach previously described.

t is the critical value of t for the desired level of statistical confidence. Again, the level of statis-
tical confidence to use is a matter of judgment, but is often set between 80% and 99%, most often
to either 90% or 95%. For more information on the considerations that affect this decision, see the
“What Are Reasonable Test Criteria?” sidebar.

Using t in this process, though, introduces a complication. Unlike z, the value of t depends on
its degrees of freedom (df ), which in turn depends on the sample size, which is what we’re trying
to compute. For a one-sample t-test,

df = n− 1

Diamond (1981) described a way to get around this difficulty by using iteration. Returning to
Figure 6.2, assume that the person in the first panel, let’s call him Bob, has timed his drive to work
for one week. The times (in minutes) for Monday through Friday were 12, 14, 12, 20, and 16 (to
keep this example simple, we’ll ignore the possibility of systematically different traffic patterns as a
function of the day of the week). The variance (s2) for these five measurements is 11.2. Bob has
always felt like it takes him about 15 minutes to get to work, so he decides that he will set his critical
difference to 10% of the expected time, or 1.5 minutes (a completely arbitrary but reasonable deci-
sion). He also decides to set the statistical confidence to 95% (again, arbitrary but reasonable). In
other words, using reasoning similar to that used for the construction of t-based confidence intervals,
he wants to collect enough data to ensure that he can be 95% confident that the resulting estimate of
his drive time will be within 1.5 minutes of his actual drive time. Bob now has all of the elements he
needs to calculate the required sample size: the variability is 11.2 (s = 3.35), the confidence level is
95%, and the critical difference is 1.5.

The steps are:

1. Start with the z-score for the desired level of confidence in place of t. For 95% confidence, this is 1.96.
2. Compute n = (z2s2)/d2, which for this example is n = (1.962)(11.2)/1.52, which equals 19.1.

Because you should round sample size estimates up to the next whole number, the initial
estimate is n = 20.

3. Next, adjust the estimate by replacing the z-score with the t-score for a sample size of 20. For
this estimate, use n − 1 (19 in this case) to compute the degrees of freedom (df ) to use to find
the value for t in the next iteration (which is 2.093). Note that the value of z will always be
smaller than the appropriate value of t, making the initial estimate smaller than it should be.

4. Recalculate n using 2.093 in place of 1.96 to get 21.8, which rounds up to 22.
5. Because the appropriate value of t is now a little smaller than 2.093 (because the estimated

sample size is now larger, with 22− 1, or 21, degrees of freedom), recalculate n again, this time
using a t of 2.08. The new estimate of n is 21.5, which rounds up to 22.

6. Stop iterating when you get the same estimate of n on two iterations or you begin cycling
between two values for n, in which case you should average the values (and, if necessary, round
up). See Table 6.1 for the full set of iterations for this example. For Bob to achieve his goals,
he will need to measure the duration of his drive to work 22 times.
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Diamond (1981) points out that sometimes all you need is the initial estimate and one iteration, as
long as you don’t mind having a sample size that’s a little larger than necessary. If the cost of each
sample is very high, though, it makes sense to iterate until reaching one of the stopping criteria. Note
that the initial estimate establishes the lower bound for the sample size (20 in this example), and the
first iteration establishes the upper bound (22 in this example).

SHOULD BOB HAVE USED THE GEOMETRIC MEAN?
Yes, but There’s an Important Trick …
In Chapter 3 we recommended using the geometric mean for estimates of typical completion times when the sample
size is less than 25. Bob’s driving times are a type of completion time, so should he have done his sample size calcu-
lations using the geometric mean, with natural logs of the driving times rather than their actual values? The natural
logs of his driving times are 2.48490665, 2.63905733, 2.48490665, 2.995732274, and 2.772588722. The
average of these log times is 2.675438325 with a variance of 0.046488657, so the geometric mean is 14.5 minutes
(as expected, slightly less than the arithmetic mean of 14.8 minutes) and its standard deviation is about 1.24 minutes
(less than half of the regular standard deviation of 3.35). But what should he use for d ?

You might think that you should just take the natural log of the critical difference (for 1.5 the natural log is
0.405), but due to the nature of logarithms, that wouldn’t work. Instead, you need to add the critical difference
to the arithmetic mean, take the natural logarithm of that, then subtract the natural logarithm of the arithmetic
mean (Lynda Finn, personal communication, April 28, 2011). Expressed mathematically:

dln = ln ðx + dÞ− ln ðxÞ

For Bob’s driving times, this would be

dln = ln ð14:8+1:5Þ− ln ð14:8Þ= ln ð16:3Þ− ln ð14:8Þ=2:791165−2:694627=0:096538

If you use 0.046488657 for the variance and 0.096538 for the critical difference in place of the values
shown in Table 6.1, it turns out that you arrive at the same conclusion—to achieve this measurement goal you’ll
need a total sample size of 22. Note, however, that these data are only slightly skewed. The more skewed the
time data are, the greater the difference in the estimated sample sizes. Because the log-transform applied to

(Continued )

Table 6.1 Sample Size Iteration Procedure for t-tests

Initial 1 2

t 1.96 2.093 2.08
t2 3.84 4.38 4.33
s2 11.2 11.2 11.2
d 1.5 1.5 1.5
d2 2.25 2.25 2.25

df 19 21 21
Unrounded 19.1 21.8 21.5

Rounded up 20 22 22
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(Continued )
completion time data almost always reduces the estimate of the variance, it is often the case that you’ll
determine that you need a smaller sample size than you would if you used the raw (untransformed) data.
If the cost of additional samples is low, then this won’t matter much, but if it’s high, then this could reduce the
cost of the experiment without sacrificing any of the measurement goals. If you know you’re going to use the
log-transform on your data, then you definitely want to do your sample size estimation with this in mind.

Example 1: A Realistic Usability Testing Example Given Estimate of Variability
This example illustrates the computation of a sample size requirement for the estimation of a value given an
existing estimate of variability and realistic criteria. For speech recognition, it is important to track the recog-
nizer’s accuracy due to the usability problems that misrecognitions can cause. For this example, suppose:

• Recognition variability (variance) from a previous similar evaluation is 5.5 (s = 2.345).
• Critical difference (d ) is 1.5%.
• Desired level of confidence is 90% (so the initial value of z = 1.645).

Table 6.2 shows the iterative steps that lead to the final sample size estimation for this example. After three
iterations, the process settles on a sample size of 9.

Example 2: An Unrealistic Usability Testing Example
Suppose a stakeholder wasn’t satisfied with the criteria used in Example 1, and wanted a higher level of
confidence and a smaller critical difference, such as:

• Recognition variability (variance) from a previous similar evaluation is 5.5 (s = 2.345).
• Critical difference (d ) is 0.5%.
• Desired level of confidence is 99% (so the initial value of z = 2.576).

The results appear in Table 6.3.

Table 6.2 Iterations for Example 1

Initial 1 2 3

t 1.645 1.943 1.833 1.86
t2 2.71 3.78 3.36 3.46
s2 5.5 5.5 5.5 5.5
d 1.5 1.5 1.5 1.5
d2 2.25 2.25 2.25 2.25

df 6 9 8 8
Unrounded 6.6 9.2 8.2 8.5

Rounded up 7 10 9 9
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The initial estimate is 146, which goes up to 150 with the first iteration, and then stays there. There
might be some settings in which usability investigators would consider 146–150 participants a reasonable
and practical sample size, but they are rare. Confronted with these results, the hypothetical stakeholder
would very likely want to reconsider the criteria.

Example 3: No Estimate of Variability
Examples 1 and 2 had estimates of variance, either from a previous study or a quick pilot study. Suppose
you don’t have any idea what the measurement variability is, however, and it isn’t possible to run a pilot
study to get an initial estimate (no time or too expensive). Diamond (1981) provided a method for getting
around this problem but, to apply it, you need to give up the definition of the critical difference (d ) in terms
of the variable of interest and replace it with a definition in terms of a fraction of the standard deviation—in
other words, to define d as an effect size.

The typical use of an effect size is as a standardized measure of the magnitude of an outcome, com-
puted by dividing the difference (d ) between the observed and hypothesized values of a parameter by the
standard deviation. The motivation behind the development of the effect size was to have a measure of
effect that, unlike the observed significance level (p), is independent of the sample size (Minium et al.,
1993). Cohen (1988) suggested using 0.2, 0.5, and 0.8 as rule-of-thumb values for small, medium, and
large effects.

Assume that with 80% confidence, you want to be able to detect a fairly small effect; specifically, you
want to be able to detect effects that are equal to or greater than one-third of a standard deviation. In the
previous examples, we used d as the symbol for the critical difference, so in this example we’ll use e as
the symbol for the effect size, which leads to

e = d
s

d = eðsÞ

Table 6.3 Iterations for Example 2

Initial 1 2

t 2.576 2.61 2.609
t2 6.64 6.81 6.81
s2 5.5 5.5 5.5
d 0.5 0.5 0.5
d2 0.25 0.25 0.25

df 145 149 149
Unrounded 146 149.9 149.8

Rounded up 146 150 150
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The measurement criteria are:

• Recognition variability from a previous similar evaluation is N/A.
• Critical difference (d ) is 0.33s.
• Desired level of confidence is 80% (so the initial value of z = 1.282).

The initial sample size estimate is

n= z2s2

d2
=

1:2822ðs2Þ
ð0:33sÞ2

=
1:2822ðs2Þ
0:332ðs2Þ

= 1:64
0:11

=14:9

which rounds up to 15. The result of the first iteration, replacing 1.282 with t for 14 degrees of freedom
and 80% confidence (1.345), results in a sample size estimation of 16.5, which rounds up to 17. Thus,
the appropriate sample size is somewhere between 15 and 17. The next iteration confirms a final esti-
mate of 17.

If you prefer an alternative approach when the variance is completely unknown, there are rules of
thumb for the typical variability encountered for certain types of data. See the sidebar “Rules of Thumb for
Estimating Unknown Variance.”

RULES OF THUMB FOR ESTIMATING UNKNOWN VARIANCE
Strategies for When You Don’t Have Any Other Estimates of Variance
If you have an idea about the largest and smallest values for a population of measurements but don’t have all the
data values that you would need to actually estimate the variability, you can estimate the standard deviation (s)
by dividing the difference between the largest and smallest values by 6. This technique assumes that the
population distribution is normal and then takes advantage of the fact that 99% of a normal distribution will
lie in the range of plus or minus three standard deviations of the mean (Parasuraman, 1986).

Nielsen (1997) surveyed 36 published usability studies and found that the mean standard deviation for
measures of expert performance was 33% of the mean value of the usability measure (i.e., if the mean comple-
tion time was 100 seconds, the mean standard deviation was about 33 seconds). For novice user learning (across
12 studies), the mean standard deviation was 46% of the measure of interest. For error rates (across 13 studies),
it was 59%.

Churchill (1991) provided a list of typical variances for data obtained from rating-scale items (such as those
used in the System Usability Scale). Because the number of points in a scale item affects the possible variance
(more points increase reliability, but also allow for more variance), you need to take the number of scale points
into account. For 5-point scales, the typical variance is 1.2 to 2; for 7-point scales it is 2.4 to 4; and for
10-point scales it is 3 to 7. Because rating-scale data tend to have a more uniform rather than normal distribution,
Churchill suggested using a number nearer the high end of the listed range when estimating sample sizes.

COMPARING VALUES
Sometimes you need to do more than just estimate a value. You might also need to compare one
value with another. That comparison could be an estimated value against a static benchmark, or it
could be one estimated value against another. The following examples illustrate how to perform
such comparisons with continuous data using confidence intervals based on t-scores.
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Example 4: Comparison with a Benchmark
For an example comparing a measurement to a benchmark, suppose that you have a product requirement
that the SUS score for installation should be at least 75. In a preliminary evaluation, the mean SUS score
was 65. Development has fixed a number of usability problems found in that preliminary study, so you’re
ready to measure the SUS for installation again, using the following measurement criteria:

• Variability from the previous evaluation is 5 (s = 2.236).
• Critical difference (d ) is 1 point.
• Desired level of confidence is 95% (so the initial value of z equals 1.645).

The interpretation of these measurement criteria is that you want to be 95% confident that you can
detect a difference as small as one point between the mean of the data gathered in the test and the
benchmark you’re trying to beat. In other words, the installation will pass if the observed mean SUS is
76 or higher, because the sample size should guarantee a lower limit to the confidence interval that is
no less than one point above the mean (as long as the observed variance is less than or equal to
the initial estimate of the variance). As discussed in Chapter 4, this is a one-sided test, so the initial
value of z given 95% confidence should be 1.645, not 1.96. Otherwise, the procedure for determining
the sample size in this situation is the same as that of Example 1, with the computations shown
in Table 6.4. The outcome of these iterations is an initial sample size estimation of 14, ending with an
estimate of 16.

Example 5: Within-subjects Comparison of an Alternative
As discussed in Chapter 4, when you obtain two comparable measurements from each participant in a test
(a within-subjects design), you can use a paired t-test to assess the results. Another name for this is a dif-
ference scores t-test because you work with the mean and standard deviation of the difference scores
rather than the raw scores. Suppose that you plan to obtain recognition accuracy scores from participants

Table 6.4 Iterations for Example 4

Initial 1 2

t 1.645 1.771 1.753
t2 2.71 3.14 3.07
s2 5 5 5
d 1 1 1
d2 1 1 1

df 13 15 15
Unrounded 13.5 15.7 15.4

Rounded up 14 16 16
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who have dictated test texts into your product under development and a competitor’s current product
using the following criteria:

• Difference score variability from a previous evaluation is 10 (s = 3.162).
• Critical difference (d ) is 2.5%.
• Desired level of confidence is 99% (so the initial value of z equals 2.576).

This situation is similar to that of the previous example because the goal of a difference scores t-test is
to determine if the average difference between scores is significantly different from 0. So, one way to think
about this test is that the usability criterion is 0 and you want to be 99% confident that if the true differ-
ence between system accuracies is 2% or more, you will be able to detect it because the confidence inter-
val around the mean difference will not contain 0. This example differs, however, in that you’re conducting
a two-tailed test with 99% confidence because you’re making no prior assumption about which system is
better, so the initial value of z should be 2.576, not 2.236. Table 6.5 shows the iterations for this example,
leading to n = 15.

Example 6: Between-subjects Comparison of an Alternative
So far, the examples have involved one group of scores, making them amenable to similar treatment. If
you need to compare scores from two independent groups, however, things get a little more complicated.
For example, you could have different sample sizes for each group. If you are dealing with that complex of
a situation, or dealing with even more complex sample size estimation for multifactor or multivariable
experiments typically analyzed with analysis of variance or other more advanced linear modeling, you will
need to consult more advanced references such as Brown (1980), Kraemer and Thiemann (1987), or
Winer et al. (1991).

To simplify things for this example (which should be fairly common in usability testing), assume that
the groups are essentially equal (especially with regard to performance variability), which should be the
case if the groups contain participants from a single population who have received random assignment to
treatment conditions. In this case it is reasonable to believe that the variances (and thus the sample sizes)

Table 6.5 Iterations for Example 5

Initial 1 2 3 4

t 2.576 3.169 2.921 3.012 2.977
t2 6.64 10.04 8.53 9.07 8.86
s2 10 10 10 10 10
d 2.5 2.5 2.5 2.5 2.5
d2 6.25 6.25 6.25 6.25 6.25

df 10 16 13 14 14
Unrounded 10.6 16.1 13.6 14.5 14.2

Rounded up 11 17 14 15 15
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for both groups should be about equal. For this specific simplified situation, the formula for the initial esti-
mate of the sample size for each group is

n= 2z2s2

d2

Note the similarity to the formula presented in Example 1, but with the numerator multiplied by 2. For
example, suppose that you need to conduct the experiment described in Example 5 with independent
groups of participants, keeping the measurement criteria the same:

• Difference score variability from a previous evaluation is 10 (s = 3.162).
• Critical difference (d ) is 2.5%.
• Desired level of confidence is 99% (so the initial value of z equals 2.576).

As shown in Table 6.6, the iterations converge on a sample size of 26 participants per group, for a total
sample size of 52. There is a well-known efficiency advantage for within-subjects designs over these types
of between-subjects designs, illustrated in this example. Because participants act as their own controls in
within-subjects experiments, their difference scores eliminate a substantial amount of variability relative to
the raw scores, which leads to lower sample size requirements. For the same measurement precision, the
estimated sample size for Example 5 was 15 participants, about 29% of the sample size requirement
estimated for this example.

Example 7: Where’s the Power?
The power of a test refers to its ability to detect a difference between observed measurements and
hypothesized values if one exists. The power of a test is not an issue when you’re just estimating the value
of a parameter, but it is an issue when testing a hypothesis (as in Examples 4–6)—either comparing a
result to a benchmark or comparing alternatives. In traditional hypothesis testing, there is a null (H0) and
an alternative (Ha) hypothesis. The typical null hypothesis is that there is no difference between groups.
The typical alternative hypothesis is that the difference is something greater than zero. When the

Table 6.6 Iterations for Example 6

Initial 1 2 3

t 2.576 2.831 2.787 2.797
t2 6.64 8.02 7.77 7.82
s2 10 10 10 10
d 2.5 2.5 2.5 2.5
d2 6.25 6.25 6.25 6.25

df 21 25 24 25
Unrounded 21.2 25.7 24.9 25

Rounded up 22 26 25 26
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alternative hypothesis is that the difference is nonzero, the test is two-tailed because you can reject the
null hypothesis with either a sufficiently positive or a sufficiently negative result. As discussed in Chapter 4,
if the only meaningful outcome is in one direction (e.g., when comparing a result against a benchmark),
you can (and should) use a one-tailed test. Figure 6.3 shows the possible outcomes of a hypothesis test
and shows the relationships among those outcomes and the concepts of confidence, power, and the
acceptable probabilities of Type I and Type II errors (also, see the Appendix, “Errors in Statistics”).

In hypothesis testing, there are two ways to be right and two ways to be wrong. The two ways to be right
are (1) to fail to reject the null hypothesis (H0) when it is true, or (2) to reject the null hypothesis when it is
false. The two ways to be wrong are (1) to reject the null hypothesis when it is true (Type I error—a false
alarm), or (2) to fail to reject the null hypothesis when it is false (Type II error—a miss). Strictly speaking, you
never accept the null hypothesis, because the failure to acquire sufficient evidence to reject the null hypoth-
esis could be due to (1) no significant difference between groups, or (2) a sample size too small to detect an
existing difference. So, rather than saying that you accept the null hypothesis, you say that you have failed to
reject it. Regardless of rejecting or failing to reject the null hypothesis based on the value of p, you should
also report either the effect size or, even better, provide a confidence interval.

The formula used in Example 5 for the initial sample size estimate was

n= z2s2

d2

In the example, the z-score was set for 99% confidence (which means that α = 0.01). To take power into
account in this formula, we need to add another z-score to the formula—the z-score associated with the
desired power of the test (as illustrated in Figure 6.3). Thus, the formula becomes

n=
ðzα + zβÞ2s2

d2

Reality

Correctly failed to
reject H0

Confidence: 1 – α

Decision

Evidence
not strong
enough to
reject H0
(p > α)

Made type I
error

Acceptable
probability: α

Made type II
error

Acceptable
probability: β

Correctly rejected
H0

Power: 1 – β

H0 is true H0 is false

Evidence
is strong
enough to
reject H0
(p < α)

FIGURE 6.3

The possible outcomes of a hypothesis test.
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and for each iteration, you need to add together the values for the appropriate tα and tβ depending on the
different test criteria set for the desired levels of confidence and power.

You might wonder where the value for power was in Example 5. When beta (β) equals 0.5 (i.e., when
the power is 50%), the one-sided value of zβ is 0, so zβ disappears from the formula. Note that when
using this method for sample size estimation, the z and t values for β should always be one sided, regard-
less of whether the test itself will be one or two sided (Diamond, 1981).

So, in Example 5 the implicit power was 50%. Suppose you want to increase the power of the test to
80% (reducing β to 0.2). What happens to the recommended sample size?

• Difference score variability from a previous evaluation is 10 (s = 3.162).
• Critical difference (d ) is 2.5.
• Desired level of confidence is 99% (so the initial value of zα is 2.576).
• Desired power is 80% (so the initial one-sided value of zβ is 0.842—you could use =ABS(NORMSINV

(0.2)) to find this value in Excel)
• Sum of desired confidence and power is zα + zβ = 3.418.

With this change, as shown in Table 6.7 the iterations converge on a sample size of 22 (compared to
the previously estimated sample size of 15 when the target power was 50%). The sample size is larger,
but this is the price paid to increase the power of the test without affecting its level of protection against
Type I errors (false alarms).

Note that if this sample size turned out to be too large for the available testing resources, then you can
get to a smaller sample size by making any or all of the following three changes to the criteria as part of
the process of planning the test:

• Increase the value of the critical difference.
• Reduce the power of the test.
• Reduce the confidence level.

Table 6.7 Iterations for Example 7

Initial 1 2 3

tα 2.576 2.878 2.819 2.831
tβ 0.842 0.862 0.858 0.859
tα+β 3.418 3.740 3.677 3.690
tα+β
2 11.68 13.99 13.52 13.62
s2 10 10 10 10
d 2.5 2.5 2.5 2.5
d2 6.25 6.25 6.25 6.25

df 18 22 21 21
Unrounded 18.7 22.4 21.6 21.8

Rounded up 19 23 22 22
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WHAT ARE REASONABLE TEST CRITERIA?
It Depends …
In scientific publishing, the primary criterion for statistical significance is to set the permissible Type I error (α)
equal to 0.05. Based on writings by Karl Pearson, “Student” (Gosset), and Wood and Stratton, this convention
was apparently in use starting in the first decade of the 20th century (Cowles, 1989). In 1925, Sir Ronald Fisher
was the first to explicitly cite 0.05 as a convenient limit for judging significance, “in the context of examples of
how often deviations of a particular size occur in a given number of trials—that twice the standard deviation is
exceeded about one in 22 trials, and so on” (Cowles, 1989, p. 175).

This practice is equivalent to having 95% confidence that the effect is real rather than random and has a
strong focus on controlling the Type I error. There is no corresponding typical practice for the Type II error (β),
although some suggest setting it to 0.2 (Diamond, 1981), and others have recommended making it equal to α
(Kirakowski, 2005). The rationale behind the emphasis on controlling the Type I error in scientific publication is
the belief that it is better to delay the introduction of good information into the scientific database (a Type II
error) than to let in erroneous information (a Type I error).

In industrial evaluation, the appropriate values for Type I and II errors depend on the demands of the
situation; specifically, whether the cost of a Type I or II error would be more damaging to the organization.
Because usability practitioners are often resource-constrained, especially with regard to making timely decisions
while competing in dynamic marketplaces, we’ve included examples that use 80% or 90% confidence rather
than 95% and fairly large values for d—examples that illustrate a greater balance between Type I and II errors
than is typical in work intended for scientific publication. As Nielsen (1997, p. 1544) suggested, “a confidence
level of 95% is often used for research studies, but for practical development purposes, it may be enough to aim
for an 80% level of confidence.” For an excellent discussion of this topic for usability researchers, see Wickens
(1998), and for other technical issues and perspectives, see Landauer (1997).

Another way to look at the issue is to ask the question, “Am I typically interested in small high-variability
effects or large low-variability effects?” In usability testing, the customary emphasis is on the detection of large
low-variability effects (either large performance effects or frequently occurring problems). You can prove the exis-
tence of large low-variability effects with fairly small sample sizes. Although it can be tempting to equate sample
size with population coverage, that just isn’t true. A small sample size drawn from the right population provides
better evidence than a large sample size drawn from the wrong population. Furthermore, the statistics involved
in computing t-based confidence intervals from small samples compensate for the potentially underestimated
variance in the small sample by forcing the confidence interval to be wider than that for a larger sample
(specifically, the value of t is greater when samples are smaller).

WHAT CAN I DO TO CONTROL VARIABILITY?
When you design a study, you have full control over many of the variables. You can set the level of
confidence (or alternatively, the value of α), the power of the study (or alternatively, the value of β),
the magnitude of the critical difference (d ), and the final sample size (n). The element in the equation
over which you have the least control is the variability of a measurement (s2). There are, however,
some things you can do to keep measurement variance as small as possible, including:

• Make sure that your participants understand what they are supposed to do. Unless potential
participant confusion is part of the evaluation (and it could be), it will only add to measurement
variance.

• If appropriate, let participants get familiar with the testing situation by having them complete
practice trials, but be careful that you do not unduly reveal study-relevant information.
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• If appropriate, use expert rather than novice participants. By definition, expertise implies reduced
performance variability (Mayer, 1997).

• If you need to include both expert and novice users, you should be able to get equal measurement
precision for both groups with unequal sample sizes (fewer experts needed than novices, which is
good because experts are usually harder to recruit as participants than novices).

• If appropriate, study simple rather than complex tasks.
• Use data transformations for measurements that tend to exhibit correlations between means and

variances or standard deviations. For example, frequency counts often have proportional means
and variances (treated with the square-root transformation), and time scores often have
proportional means and standard deviations (treated with the logarithmic transformation) (Myers,
1979; Sauro and Lewis, 2010).

• For comparative studies, if possible, use within-subjects designs rather than between-subjects designs.
• Keep user groups as homogeneous as possible (but note that although this reduces variability, it

can threaten a study’s external validity if the test group is more homogenous than the
population under study) (Campbell and Stanley, 1963).

IMPORTANT! Apply these tips only when they do not adversely affect the validity and general-
izability of your study. Having a study that is valid and generalizable is far more important than
reducing variance. That said, however, the smaller your variance, the more precise your measure-
ment, and the smaller will be the required sample size for a target level of precision.

SAMPLE SIZE ESTIMATION FOR BINOMIAL CONFIDENCE INTERVALS
The methods for proportions are similar to those for t-tests. Rather than needing an estimate of the var-
iance of the mean (s2), you need an estimate of the expected proportion ( p), where p = x/n (the number
of successes over the number of binomial trials). This is because the variance of a binomial measure-
ment is p(1− p). If you do not have any prior expectation of the value of p (e.g., from a previous test),
then the safest thing to do is to assume p = 0.5 because that’s the value of p that has the largest variance
(which will push you toward a relatively larger sample size). For example, when p is 0.5, p(1− p) is
0.5(0.5) = 0.25; when p is 0.25, p(1− p) is 0.25(0.75) = 0.1875, 75% of the maximum variance of 0.25.

Binomial Sample Size Estimation for Large Samples
The conditions that require a large sample size for a binomial test are the same as those that require
a large sample size for a t-test: high confidence, high power, large variance, and a small critical dif-
ference. As presented in Chapter 3, the critical difference for the Wald (large sample) interval is

d= z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1− p̂Þ

n

r
The value of z depends on

• The desired confidence level.
• The desired level of power.
• Whether the test is one or two sided.
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Following essentially the same algebraic steps as those shown earlier in the chapter to isolate n
on the left side of the equation for the critical difference of a confidence interval based on a t-test,
you get

n=
z2ðp̂Þð1− p̂Þ

d2

Note the similarity to

n= z2s2

d2

They are identical, with the exception of substituting ðp̂Þð1− p̂Þ—the estimate of binomial variance—
for s2.

For example, assume you want to estimate the success rate of users logging into a website using
a new login procedure, using the following criteria:

• Success rate from a previous evaluation is not available, so use p = 0.5.
• Critical difference (d ) is 0.05.
• Desired level of confidence is 95% (so the value of z equals 1.96).

Then the required sample size will be ((1.962)(0.5)(0.5))/0.052, which is 385 (384.1 rounded up).
Consider another example, with everything the same except the estimate of p. Assume that you’ve

collected login success data with your current login procedure and currently 90% ( p = 0.9) of users suc-
cessfully authenticate. You’ve made changes that you believe are very likely to improve the success
rate to 95% ( p = 0.95) and want to collect data to estimate the success rate. Under those conditions,
your estimated sample size would be ((1.962)(0.95)(0.05))/0.052 = 72.99, which rounds up to 73.

This illustrates a fact that user researchers must accept. Even with fairly modest goals—95%
confidence (z = 1.96), 50% power (z = 0), and a critical difference of ±0.05—the required sample
size will be larger than is common practice in moderated usability studies, although not out of line
with the sample sizes typical in unmoderated user research. If you must work with small samples
and you collect binomial data such as success rates, you must be prepared to deal with large bino-
mial confidence intervals and to use interpretive strategies such as those discussed in Chapters 3
and 4 to make those intervals useful despite their large size (see the sidebar “User Assessment of
the Value of a Disk Drive In-use Indicator for Floor-standing Personal Computers”).

USER ASSESSMENT OF THE VALUE OF A DISK DRIVE IN-USE INDICATOR FOR
FLOOR-STANDING PERSONAL COMPUTERS
Out of Sight, Out of Mind?
From the files of Jim Lewis

In the late 1980s, my lab received word of a plan to remove the disk drive in-use indicator from the next
version of our floor-standing personal computers. The designers had reasoned that because the unit was on the
floor, typically under a desk, they could save a little money on each unit by eliminating the LED that flashed
when the disk drive was in use. To test this hypothesis we randomly selected 20 users of floor-standing compu-
ters at our site and got their permission to cover their existing in-use indicators with aluminum tape. We checked
back with those users a week later, and found that seven of them (35%) had removed the tape because they
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found the absence of the in-use indicator so disturbing. This was well before the development of the adjusted-
Wald binomial confidence interval (Agresti and Coull, 1998), so we assessed the result with a 95% exact bino-
mial confidence interval, which ranged from 15–59%. From this result we argued that the best case was that
about one out of every six users would have a strong negative reaction to the absence of the disk drive in-use
indicator, and the worst case was that the proportion of disaffected users would be three out of five. The evi-
dence from this user study did not support the designers’ intuition. In this case, our discovery of the issue and
consequent presentation of the results was too late to affect the design, but based on our study, there was an
effort to monitor user reaction in the field—user reaction that was consistent with our results. For these reasons,
the disk drive in-use indicator came back in all following floor-standing models in that product line.

Binomial Sample Size Estimation for Small Samples
In previous chapters, we’ve recommended using the adjusted-Wald binomial confidence interval rather
than the standard Wald, especially with small samples (n < 100). From a historical perspective, the
adjusted-Wald interval is fairly new, published by Agresti and Coull in 1998. We do not know of any
published work describing sample size estimation for this type of binomial confidence interval, but due
to its similarity with the standard Wald interval, we can provide some practical guidance.

We start with a review of how to adjust the Wald formula to get to the adjusted-Wald. After you
decide on the required confidence level, you look up its corresponding value of z. For a given x and n
(where p̂= x=n), you add z2/2 to x (to get xadj) and z2 to n (to get nadj). Thus, the adjusted value of p̂ is

p̂adj =
x+ z2

2
n+ z2

=
xadj
nadj

From this equation, we can see three things:

1. To get from the adjusted value of n used in the adjusted-Wald formula to the actual value of n,
it’s necessary to subtract z2 from nadj.

2. With one exception ðp̂= 0:5Þ, the adjusted value of p̂ will always be less than the value of p̂, so
the binomial variance will increase, with a corresponding increase in the width of the confidence
interval. When p̂= 0:5, the adjusted value of p̂ remains 0.5.

3. As the values of x and n increase, the effect of the adjustment on the value of p̂ decreases, so
this adjustment is more important for smaller than for larger sample sizes.

HOW DOES BINOMIAL VARIANCE WORK?
The More Extreme the Value of p, the Lower the Variance
At first it might seem a bit counterintuitive, but more moderate values of p correspond to higher variability in
outcomes. The highest possible binomial variability occurs when p = 0.5—the statistical equivalent of a coin toss.
When you toss a fair coin, you really have no idea on any given toss whether the outcome will be heads or tails.
On the other hand, imagine a 10-sided die with nine gray faces and one white (Figure 6.4). You can be pretty
sure that most tosses of that die will result in a gray face up; in fact, the probability of getting gray is 0.9. For
the fair coin, the variability is 0.5(0.5) = 0.25; for the 10-sided die, the variability is 0.9(0.1) = 0.09—much less
than 0.25.

(Continued )
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(Continued )

p = 0.5 p = 0.9

FIGURE 6.4

Examples of moderate and extreme values of p.

Using the formula for sample size estimation for the standard Wald interval as a model, the
formula for the adjusted-Wald is

nadj =
z2ðp̂adjÞð1− p̂adjÞ

d2

Substituting np̂ for x, the formula for p̂adj is

p̂adj =
np̂+ z2

2
n+ z2

Because nadj = n+ z2, then n= nadj − z2, so the final estimate of n is

n=
z2ðp̂adjÞð1− p̂adjÞ

d2
− z2

We know the values of z and d because we select them. The value of p̂ comes from a previous
evaluation or, if unknown, gets set to 0.5 to maximize the variance and the resulting sample size
estimate. The value of n, however, is unknown because that’s what we’re trying to estimate. To
deal with that, we recommend a three-step process:

1. Get an initial estimate of n using the standard Wald formula from the previous section:

n=
z2ðp̂Þð1− p̂Þ

d2

2. Use that initial estimate to calculate p̂adj using p̂adj =
np̂+ z2

2
n+ z2

3. Then use p̂adj in n=
z2ðp̂adjÞð1− p̂adjÞ

d2 − z2 to get the final estimate of n.

For example, suppose you have reason to believe that the current success rate for a particular task is
0.75, and want to see if that’s correct. You know you won’t be able to conduct a large-scale study; in
fact, you probably won’t be able to test more than 20 people. For this reason, you realistically set your
target precision to 0.20, and balance that by setting your confidence to 95% (so z = 1.96). To recap:

• Success rate from a previous evaluation ( p) is 0.75.
• Critical difference (d ) is 0.20.
• Desired level of confidence is 95% (so the value of z equals 1.96).
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First, compute the initial sample size estimate using the standard Wald formula:

n=
z2ðp̂Þð1− p̂Þ

d2
=

1:962ð0:75Þð1− 0:75Þ
0:22

= 18:01

Rounded up, the initial estimate of n is 19.
Next, use that initial estimate of n to compute the adjusted value of p:

p̂adj =
np̂+ z2

2
n+ z2

=
19ð:75Þ+ 1:962

2
19+ 1:962

= 0:708

And use that adjusted value of p to compute the final estimate of n:

n=
z2ðp̂adjÞð1− p̂adjÞ

d2
− z2 =

1:962ð0:708Þð1− 0:708Þ
0:22

− 1:962 = 16:02

Rounded up, the final estimate of n is 17.
If n is going to equal 17 and the expected value of p is 0.75, then the expected value of x is np,

which is 17(0.75) = 12.75, which rounds to 13. We have to round the estimate up because x can
only be a whole number. For this reason, the value of the resulting x/n will not usually equal the
expected value of p, but it can get close—in this case it’s 13/17 = 0.7647. If we put these values of
x and n in the online calculator at www.measuringusability.com/wald.htm, we find that the observed
value of d is 0.1936, just 0.0064 less than the target value of 0.20 (see Figure 6.5).

Sample Size for Comparison with a Benchmark Proportion
The general strategies for comparing a result with a benchmark target are the same for any test,
whether based on continuous data and using t-tests or on count data and using binomial tests. To
compute the required sample size, you need to:

• Determine the value of the benchmark.
• Set the desired levels of confidence and power assuming a one-tailed test.
• Decide on the required level of precision.

FIGURE 6.5

Result of sample size estimation example for adjusted-Wald binomial confidence interval.
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For example, suppose a first design of the installation process for a new dictation program had a
success rate of 55%, so for the next version you want to show that you’ve improved the success
rate to at least 65%. You decide to use the standard levels of 95% confidence and 80% power,
which have corresponding one-sided z-scores of 1.645 and 0.8416 (and which sum to 2.4866), and
to set the required level of precision to 20%. With a benchmark of at least 65% and precision of
20%, the target value of p to use for sample size estimation is 0.85 (0.65 + 0.20). Basically, you
want to set up a test in which you can show beyond a reasonable doubt that you have achieved
your goal for successful installation (if that is indeed the case), so you need to set your actual target
to the benchmark plus the planned level of precision. To compute the recommended sample size for
this scenario, use the following procedure based on the adjusted-Wald formula.

First, compute the initial sample size estimate using the standard Wald formula (for this
scenario, with 95% confidence for a one-tailed test and 80% power, use z = 2.4866):

n=
z2ðp̂Þð1− p̂Þ

d2
=

2:48662ð0:85Þð1− 0:85Þ
0:22

= 19:7

Rounded up, the initial estimate of n is 20. The initial estimate will always be too small, but it
gives us a place to start our search for the right sample size.

The next step is to compute the equivalent confidence for the nominal levels of confidence and
power for a one-tailed test (because this will be the sample size for a comparison against a bench-
mark). The one-tailed equivalent confidence when z = 2.4866 is 0.99355 (99.355% confidence; see
the sidebar “Equivalent Confidence”).

EQUIVALENT CONFIDENCE
Taking Power into Account for Confidence Intervals
After you combine the z-scores for desired levels of confidence and power, the resulting sum could have come
from any pair of component z-scores that add up to that number (see Chapter 9, Table 9.2). To take power into
account when constructing confidence intervals, you can act as if the entire composite z-score was for confi-
dence, implicitly adjusting power to 50% (for which zβ = 0). The value of the equivalent confidence depends on
whether the resulting confidence interval is one- or two-tailed. For most uses, it should be two-tailed. For confi-
dence intervals associated with benchmark tests, it should be one-tailed. For two-tailed equivalent confidence
you can insert the z-score into the Excel function =1-2*(1-NORMSDIST(Z)). For one-tailed equivalent confidence
you can use =NORMSDIST(Z).

For example, suppose you decided to set confidence to 95% and power to 80% for a two-tailed test. The z
for confidence (two-tailed) would be 1.96 and for power (always one-tailed) would be 0.84, for a total z of 2.8.
Using this value of z in =1-2*(1-NORMSDIST(2.8)) returns 0.9949, or 99.49% equivalent confidence. For the
corresponding one-tailed situation, the z for 95% confidence would be 1.645 and for 80% power would be
0.84, for a total z of 2.4866. Using that z in =NORMSDIST(2.4866) returns 0.99355, or 99.355% equivalent
confidence.

You normally won’t need to worry about equivalent confidence, but it is useful when working out sample size
estimates for testing rates against benchmarks. For a specified set of conditions, the confidence interval using
equivalent confidence and the minimum acceptable sample size should just barely exclude the benchmark.

The last step is to set up a table of one-tailed adjusted-Wald confidence intervals starting with
n = 20 and continuing until the lower bound of the confidence interval is higher than the criterion
of 0.65. For x, multiply n by the target value of p (0.85 in this example) and round it to the nearest
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whole number. As shown in Table 6.8, when n = 36 the lower bound is just over 0.65 (although it
is very close when n = 35), with x = 31.

As a check, what would happen if we got exactly 31 successes out of 36 attempts and applied
the small-sample method from Chapter 4 for testing a rate against a benchmark? The mid-p likeli-
hood of that outcome by chance is about 0.003 (for exact and large-sample tests it’s about 0.004),
so we would conclude that the evidence strongly supports an actual rate significantly higher than
the criterion of 0.65. The strength of the result relative to setting α = 0.05 is due to setting the
power of the test to 80%. With a sample size of 36 and one-tailed α = 0.05, you could tolerate up
to seven failures and still have reasonably compelling evidence of an actual rate significantly higher
than 0.65. For a small-sample test with n = 36, x = 29, and a true rate of 0.65, the likelihood of that
result by chance would be 0.023. The likelihood of eight failures would be 0.053, just missing the
pre-established cutoff of 0.05.

If you do not need the lower limit of the confidence interval to exceed the benchmark, you can
use a more standard formula to compute an adequate sample size for a hypothesis test. Using Excel
functions, that formula (Cohen, 1988) is:

=CEILING(2*((za + zB) / (SQRT(2)*ABS(2*ASIN(SQRT(p)) − 2*ASIN(SQRT(b)))))^2,1)

where b is the benchmark and p is the sum of the benchmark and the required level of precision.
Due to its less stringent requirements, the estimated sample size using this formula will always be

Table 6.8 Estimating the Sample Size for Assessing a Rate against a Benchmark of 0.65 and
Critical Difference of 0.20 with 95% Confidence and 80% Power

If n = x p xadj nadj padj dadj Lower Bound

20 17 0.8500 20.0913 26.1826 0.7674 0.2053 0.5620
21 18 0.8571 21.0913 27.1826 0.7759 0.1989 0.5770
22 19 0.8636 22.0913 28.1826 0.7839 0.1928 0.5911
23 20 0.8696 23.0913 29.1826 0.7913 0.1871 0.6042
24 20 0.8333 23.0913 30.1826 0.7651 0.1919 0.5732
25 21 0.8400 24.0913 31.1826 0.7726 0.1866 0.5859
26 22 0.8462 25.0913 32.1826 0.7797 0.1817 0.5980
27 23 0.8519 26.0913 33.1826 0.7863 0.1769 0.6094
28 24 0.8571 27.0913 34.1826 0.7925 0.1724 0.6201
29 25 0.8621 28.0913 35.1826 0.7984 0.1682 0.6303
30 26 0.8667 29.0913 36.1826 0.8040 0.1641 0.6399
31 26 0.8387 29.0913 37.1826 0.7824 0.1683 0.6141
32 27 0.8438 30.0913 38.1826 0.7881 0.1644 0.6236
33 28 0.8485 31.0913 39.1826 0.7935 0.1608 0.6327
34 29 0.8529 32.0913 40.1826 0.7986 0.1573 0.6413
35 30 0.8571 33.0913 41.1826 0.8035 0.1539 0.6496
36 31 0.8611 34.0913 42.1826 0.8082 0.1507 0.6574
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less than the equivalent confidence method. For this example, the estimated sample size using this
formula is 28:

=CEILING(2*((2.486)/(SQRT(2)*ABS(2*ASIN(SQRT(0.85)) − 2*ASIN(SQRT(0.65)))))^2,1) = 28

SAMPLE SIZE ESTIMATION FOR CHI-SQUARE TESTS
(INDEPENDENT PROPORTIONS)
In Chapter 5, we discussed the implications of the recent research by Campbell (2007) regarding
when to use Fisher or chi-square tests for small-sample studies and, if using chi-square, which type to
use. This research indicated that you should only use the Fisher test (specifically, the Fisher–Irwin
test with two-sided tests carried out by Irwin’s rule) if you have at least one cell in the 2 × 2 table
where the expected (not the observed) value is 0, which will not typically be the case in user research.
In most cases, user researchers comparing two proportions using a 2 × 2 table should use the N – 1
chi-square test (the standard chi-square test, but with N replaced by N – 1).

The formula for computing chi-square for a 2 × 2 table does not lend itself to easy conversion
to a formula for computing the estimated sample size. Fortunately, Campbell pointed out that it is
equivalent to the chi-square test “to test the value of Z from the ratio of the difference in two pro-
portions to the standard error of the difference” (2007, p. 3672), modifying the standard formula for
z by the factor {(N – 1)/N}1/2. This equivalence allows us to use a fairly direct approach to sample
size estimation for N – 1 chi-square tests of 2 × 2 tables—one that is similar to the approach taken
throughout this chapter.

To keep the computations manageable and for conceptual simplification, we’re going to assume an
equal sample size for each group. This is under the control of the investigator when conducting a
designed experiment such as a usability study, but is not always under control for other types of user
research. If you have no idea what your final sample sizes will be, it is reasonable to assume they will
be the same. If you have some prior knowledge of how the sample sizes will be different, you can use
online calculators such as the one at www.statpages.org/proppowr.html to get the estimate, but bear in
mind that at the time of writing this chapter, these calculators compute the sample size for a standard
chi-square test of 2 × 2 tables, not the currently recommended N – 1 chi-square test.

The formula for a standard z-test of the difference in two proportions assuming equal group
sizes is

z= dffiffiffiffiffiffiffiffi
2pq
n

r
where

d is the difference between the two proportions, p1 and p2
p1 = x1/n and p2 = x2/n, where n is the sample size of each group and xn represents the number of
events of interest, for example, the number of successful task completions
q is 1 – p
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To adjust this standard z-test to the one that is the same as the recommended N – 1, multiply the
previous formula by ffiffiffiffiffiffiffiffiffiffiffiffiffi

2n− 1
2n

r
We use 2n instead of N because the N in a chi-square test is the total sample size for both groups.
Under the assumption of equal group sizes, N is equal to 2n. When we do this, we get

z=
d

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2n− 1
2n

r
ffiffiffiffiffiffiffiffi
2pq
n

r
To convert this from a z-test to an equation for estimating sample size, we need to use algebra to
get n on the left side of the equation. The steps are:

z

ffiffiffiffiffiffiffiffi
2pq
n

r
= d

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2n− 1
2n

r
z2
2pq
n

= d2 2n− 1
2n

z2ð2pqÞ= d2ð2n− 1Þ
2

2z2ð2pqÞ= d2ð2n− 1Þ
ð4z2pqÞ

d2
= ð2n− 1Þ

2n=
ð4z2pqÞ

d2

	 

+ 1

n=
4z2pq
2d2

+ 1
2

n=
2z2pð1− pÞ

d2
+ 1

2

So, to compute the estimated sample size for an N – 1 chi-square test, we need values for:

• z: The sum of the two-tailed z-value for confidence and the one-tailed value for power; for
example, 90% confidence and 80% power would correspond to respective z-values of 1.645 and
0.842, which sum to 2.487.

• p: The average of the expected values of p1 and p2 (determined from previous experiments, pilot
studies, or stakeholder consensus).

• d: The minimum practical difference that you need to detect, which is the difference between p1
and p2 (note that the closer these values are, the smaller d will be, which can dramatically
increase the sample size required to discriminate between them with statistical significance).

Suppose you’ve recently run a test comparing successful completion rates for the installation of
the current version of a product and a new version in which you’ve made changes to improve the
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ease of installation. In that previous study, the successful completion rate for the current version
was 0.7 and for the new version was 0.8. You’ve made some additional changes that should elimi-
nate some of the problems participants had with the new version—enough that you think you
should get a successful completion rate of at least 0.9 (90% success). With this background infor-
mation, you decide to see what sample size you would need given:

• z: For 90% confidence and 80% power you get z-values of 1.645 and 0.842, which sum to 2.487.
• p: The expected average of p1 and p2, which is 0.8 (the average of 0.7 and 0.9).
• d: The difference between p1 and p2 is 0.2.

Plugging these values into the equation, you get

n=
2ð2:487Þ2ð0:8Þð0:2Þ

0:22
+ 1

2

n= 49:98

For these levels of confidence, power, and precision, you’d need 50 participants in each group (100
in total). Assume that you don’t have the time or money to run 100 participants, so you decide to
relax your level of confidence to 80%. With 80% confidence and 80% power you get z-values of
1.282 and 0.842, which sum to 2.124. Everything else stays the same.

Now you get:

n=
2ð2:124Þ2ð0:8Þð0:2Þ

0:22
+ 1

2
n= 36:6

A group size of 37 is a little better, but a total sample size of 74 still stretches the resources of most
moderated usability studies. So you try one more time, this time setting power to 50% (so its corre-
sponding z-score is 0), and you get

n=
2ð1:282Þ2ð0:8Þð0:2Þ

0:22
+ 1

2
n= 13:6

For these levels of confidence, power, and precision, you’ll need 14 participants per group (28 in total).
Although some statisticians frown upon ever reusing data, you do already have data for the current

version of the product. As long as your sample size from that previous study is equal to or greater
than 14 and you can reasonably assume that you’re drawing the old and new samples from the same
population (i.e., that the test conditions are essentially equivalent despite the passage of time), you
have data from which you could draw (if needed) a random selection of 14 participants. If you have
fewer than 14 participants, you could run the difference to get your sample size up to 14. Regardless,
you will need to run about 14 participants with the latest version of the product in development. With
data from 28 participants (half using the current version, half using the most recent version), you can
conduct your N− 1 chi-square test (or, equivalently, an N− 1 two-proportion test).
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On the other hand, if you determine that these levels of confidence, power, and precision are
inadequate for your needs, you can cancel the study and use your resources for some other user
research project that might be more likely to be productive. The point is that you are making this
decision with a clear understanding of the potential risks and benefits of conducting the study with
the estimated sample size.

SAMPLE SIZE ESTIMATION FOR MCNEMAR EXACT TESTS
(MATCHED PROPORTIONS)
As discussed in Chapter 5, when you run a within-subjects study, the most appropriate test to use to
assess differences in proportions (such as success rates) is the McNemar exact test. Like the chi-
square test, the McNemar exact test does not lend itself to easy conversion to a formula for comput-
ing the estimated sample size. Again, like the chi-square test, there is an alternative approach using
confidence intervals based on the direct comparison of proportions (Agresti and Min, 2005) that we
can use to derive a formula for estimating the sample size requirement for this type of test. The
standard Wald version of that confidence interval formula is

ðp̂21 − p̂12Þ± z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðp̂12 + p̂21Þ− ðp̂21 − p̂12Þ2�=n

q
This is a bit more complicated than the confidence interval formula for estimating a single value
of p. Table 6.9 provides the definitions of the various probabilities used in this confidence interval
formula.

The various proportions in Table 6.9 are the cell counts divided by the number of participants.
For example, the proportion associated with the discordant pairs in which participants succeed with
Design A but fail with Design B is p̂12 = b=n. The other proportion of discordant pairs, where parti-
cipants succeed with Design B but fail with Design A, is p̂12 = c=n. The success rate for Design A
ðp̂1Þ is (a + b)/n, and the success rate for Design B ðp̂2Þ is (a + c)/n.

Note that the difference between proportions that appear in the confidence interval formula is
ðp̂21 − p̂12Þ, even though the most likely difference of interest is that between the success rates
ðp̂2 − p̂1Þ. It’s okay, though, because in this type of test the difference between the success rates for
the two designs is equal to the difference between the proportions of discordant pairs.

d= p̂1 − p̂2 =
ða+ cÞ

n
−

ða+ bÞ
n

=
ða+ c− a− bÞ

n
=

ðc− bÞ
n

= c
n
− b

n
= p̂21 − p̂12

Table 6.9 Definitions for Test of Matched Proportions (McNemar Exact Test)

Pass Design B Fail Design B Total

Pass Design A aðp̂11Þ bðp̂12Þ a+bðp̂1Þ
Fail Design A cðp̂21Þ dðp̂22Þ c+dð1− p̂2Þ
Total a+ cðp̂2Þ b+dð1− p̂2Þ n (1.0)
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To derive a sample size formula from the standard Wald confidence interval formula, we need to
set the critical difference (the part to the right of the ± sign) to d, then solve for n.

ðp̂21 − p̂12Þ± z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðp̂12 + p̂21Þ− ðp̂21 − p̂12Þ2�=n

q
d= z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðp̂12 + p̂21Þ− ðp̂21 − p̂12Þ2�=n

q
d2 =

z2½ðp̂12 + p̂21Þ− ðp̂21 − p̂12Þ2�
n

nd2 = z2½ðp̂12 + p̂21Þ− ðp̂21 − p̂12Þ2�

n=
z2½ðp̂12 + p̂21Þ− ðp̂21 − p̂12Þ2�

d2

n=
z2½ðp̂12 + p̂21Þ− ðdÞ2�

d2

n=
z2ðp̂12 + p̂21Þ

d2
−

z2ðd2Þ
d2

n=
z2ðp̂12 + p̂21Þ

d2
− z2

The previous formula comes from the standard Wald formula for a binomial confidence interval
for matched proportions. Agresti and Min (2005) explored a number of adjustment methods and
showed that making an adjustment similar to the adjusted-Wald for a single proportion (Agresti
and Coull, 1998) leads to more accurate estimation in the long run. Based on their results, we
recommend adding the value of z2/8 to each of the interior cells of the layout shown in Table 6.9.
For a 95% confidence interval, the value of z is 1.96, so the value of z2 is 3.8416 and the value of
z2/8 is 0.48—just about 0.5. Another way of conceptualizing this adjustment for a back-of-the-
envelope 95% confidence interval is that you’re adding one success and one failure to the actually
obtained counts, distributing them evenly across the four cells. Multiplying z2/8 by 4, the value of
nadj = n + z2/2.

Next, you can calculate adjusted values for the discordant proportions (p̂12, p̂21, keeping in mind
that b= p̂12n and c= p̂21n):

p̂adj12 =
p̂12n+

z2

8

n+ z2

2

p̂adj21 =
p̂21n+

z2

8

n+ z2

2

dadj = p̂adj21 − p̂adj12
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Plugging these adjusted values into the standard Wald sample size formula, we get

nadj =
z2ðp̂adj12 + p̂adj21Þ

d2adj
− z2

Because the adjusted value of n for this method is nadj = n + z2/2, then n = nadj – z2/2; therefore,

n=
z2ðp̂adj12 + p̂adj21Þ

d2adj
− z2 − z2=2

n=
z2ðp̂adj12 + p̂adj21Þ

d2adj
− 1:5z2

Using a strategy similar to what we used for sample size estimation for a single proportion, sample
size estimation for this type of test will have three steps:

1. Use the sample size formula derived from the standard Wald confidence interval for matched
proportions to get an initial estimate of the required sample size. To do this, you will need to
make decisions about the amount of confidence and power for the test and the minimum size of
the difference that you need to be able to detect (d), and you will need estimates of the
discordant proportions p̂12 and p̂21. If you don’t have any idea about the expected values of p̂12
and, p̂21, then subtract d/2 from 0.5 for your estimate of p̂12 and add d/2 to 0.5 for your estimate
of p̂21. Doing this will maximize the binomial variability for the selected value of d, which will
in turn maximize the sample size estimate, ensuring an adequate sample size, but at the potential
cost of running more participants than necessary.

2. Use the sample size estimate from step 1 to get the adjusted values: p̂adj12, p̂adj21, and dadj.
3. Use the sample size formula derived from the adjusted-Wald confidence interval for matched

proportions to compute the final estimate of n (the number of participants required for the test).

For example, suppose you recently ran a pilot study in which you had 10 participants attempt
to complete a car reservation with two websites using counterbalanced orders of presentation,
with the overall success rates for Websites A and B equal to 0.8 and 0.9, respectively. In that
study, one participant was successful with Website A but was unsuccessful with Website B
( p̂12 = 0:10) and two were successful with Website B but not with Website A ( p̂21 = 0:20), so the
difference in the proportions was 0.1. If these results remained stable, how many participants
would you need to run to achieve statistical significance with 95% confidence (α = 0.05) and 50%
power (β = 0.5)? For this confidence and power, the value of z is 1.96 (1.96 for 95% confidence
and 0 for 50% power).

First, use the standard Wald formula for matched proportions to get an initial estimate of n:

n=
z2ðp̂12 + p̂21Þ

d2
− z2

n=
1:962ð0:1+ 0:2Þ

0:12
− 1:962 = 111:4
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Rounded up, the initial estimate of n is 112. Using that estimate to adjust the discordant proportions
and their difference, we get

p̂adj12 =
p̂12n+

z2

8

n+ z2

2

=
:1ð112Þ+ 1:962

8

112+ 1:962

2

= 0:102529

p̂adj21 =
p̂21n+

z2

8

n+ z2

2

=
0:2ð112Þ+ 1:962

8

112+ 1:962

2

= 0:200843

dadj = 0:200843− 0:102529= 0:098314

Finally, use the adjusted-Wald formula for matched proportions to get the final estimate of n:

n=
z2ðp̂adj12 + p̂adj21Þ

d2adj
− 1:5z2

n=
1:962ð0:102529+ 0:200843Þ

0:0983142
− 1:5ð1:96Þ2 = 114:8

Rounded up, the final sample size estimate is 115 participants. As a practical matter, if you estimate
an odd number of participants, you should add one more so you can evenly counterbalance the order
in which participants use the two products, so the final planned sample size should be 116.

As a check, let’s compute the resulting adjusted-Wald confidence interval. If one of the end-
points of the interval is close to 0 given this pattern of results, then the estimated sample size is
appropriate. For p̂1 = 0:8, p̂2 = 0:9, p̂12 = 0:1, and p̂21 = 0:2 with a sample size of 116, the resulting
95% adjusted-Wald confidence interval ranges from −0.005 to 0.192, with the lower limit just
below 0. Rounding to the nearest percentage, the interval for the difference in proportions ranges
from 0% to 19%, confirming the adequacy of the estimated sample size for the given conditions.

THE IMPORTANCE OF SAMPLE SIZE ESTIMATION
The book The Lady Tasting Tea: How Statistics Revolutionized Science in the Twentieth Century (Salsburg, 2001)
chronicles the personal and professional stories of the most influential statisticians of the 20th century. Salsburg,
himself a practicing biostatistician who had met many of the subjects of his book, occasionally reveals insights
from his own work, including this rationale for the importance of sample size estimation before conducting a study
(p. 265):

A careful examination of resources available often produces the conclusion that it is not possible to answer
that question with those resources. I think that some of my major contributions as a statistician were when I
discouraged others from attempting an experiment that was doomed to failure for lack of adequate resources.
For instance, in clinical research, when the medical question posed will require a study involving hundreds of
thousands of patients, it is time to reconsider whether that question is worth answering.
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KEY POINTS FROM THE CHAPTER
• Sample size estimation is an important part of planning a user study, especially when the cost of

a sample is high.
• Different types of studies require different methods for sample size estimation. This chapter

covers methods for user studies (e.g., summative usability studies) that use measurements that
are continuous (e.g., time on task), multipoint scale (e.g., usability questionnaires), or discrete
(e.g., successful task completions).

• Different research goals (e.g., estimation of a value, comparison with a benchmark, or
comparison among alternatives) require different methods for sample size estimation.

• To obtain a sample size estimation formula, take the formula for the appropriate test and solve for n.
• Sample size formulas for estimation of a value or comparison with benchmarks or alternatives

require (1) an estimate of the expected measurement variance, (2) a decision about the required
level of confidence, (3) a decision about the required power of the test, and (4) a decision about
the smallest difference that it is important for the test to be able to detect. Table 6.10 provides a
list of the sample size formulas discussed in this chapter.

CHAPTER REVIEW QUESTIONS
1. Assume you’ve been using a single 100-point item as a post-task measure of ease of use in past

usability tests. One of the tasks you routinely conduct is installation. For the most recent usability
study of the current version of the software package, the variability of this measurement (s2) was
25 (s = 5). You’re planning your first usability study with a new version of the software, and all
you want to do is get an estimate of this measure with 90% confidence and to be within ±2.5
points of the true value. How many participants do you need to run in the study?

2. Continuing with the data in question 1, what if your research goal is to compare your result with a
benchmark of having a result greater than 75? Also, assume that for this comparison you want a
test with 80% power and want to be able to detect differences that are at least 2.5 points above
the benchmark. The estimated variability of measurement is still 25 (s = 5) and desired confidence
is still 90%. How many participants do you need to run in the study?

3. What if you have improved the installation procedures for the new version, and want to test it
against the previous version in a study where each participant performs the installation task with
both the current and new versions, with the ability to detect a difference of at least 2.5 points?
Assume that power and confidence remain at 80% and 90%, respectively, and that the estimated
variability is still 25 (s = 5). How many participants do you need to run in the study?

4. Next, assume that the installation procedure is so time consuming that you cannot get participants
to perform installation with both products, so you’ll have to have the installations done by
independent groups of participants. How many participants do you need to run in the study?
Assume that nothing else changes—power and confidence remain at 80% and 90%, respectively,
variance is still 25, and the critical difference is still 2.5.

5. Continuing with the situation described in question 4, suppose your resources (time and money)
will only allow you to run a total of 20 participants to compare the alternative installation
procedures. What can you do to reduce the estimated sample size?
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Table 6.10 List of Sample Size Formulas for Summative Testing

Type of Evaluation Formula Notes

Estimation (nonbinary data)
n= t2s2

d2

Start by using the appropriate two-sided z-score in place of
t for the desired level of confidence, then iterate to the final
solution, as described in the text.

Comparison with a benchmark
(nonbinary data) n=

ðtα + tβÞ2s2Þ
d2

Start by using the appropriate one-sided values of z for the
values of t for the desired levels of confidence (α) and power
( β), then iterate to the final solution, as described in the text.

Comparison of alternatives
(nonbinary data within-subjects) n=

ðtα + tβÞ2s2Þ
d2

Start by using the appropriate values of z for the values of t for
the desired levels of confidence (two-sided α) and power (one-
sided β), then iterate as described in the text.

Comparison of alternatives
(nonbinary data between-subjects,
assuming equal group sizes)

n=
2ðtα + tβÞ2s2Þ

d2

Start by using the appropriate values of z for the values of t for
the desired levels of confidence (two-sided α) and power (one-
sided β), then iterate to the final solution, as described in the text,
to get the estimated sample size requirement for each group.

Estimation (binary data, large
sample) n=

z2ðp̂Þð1− p̂Þ
d2

Use for large sample studies, or as the first step in the process
for small sample studies. For this and the rest of the equations
below, z2 is the sum of zα and zβ (confidence plus power).

Estimation (binary data, small
sample)

p̂adj =
np̂+ z2

2
n+ z2

Use for the second step in the process for small sample
studies to get the adjusted estimate of p.

Estimation (binary data, small
sample) nadj =

z2ðp̂adjÞð1− p̂adjÞ
d2

− z2
Use for the third step in the process for small sample studies
to get the adjusted estimate of n.

Comparison of alternatives (binary
data, between-subjects) n=

2z2pð1−pÞ
d2

+ 1
2

Use to estimate group sizes for N – 1 chi-square tests
(independent proportions).

Comparison of alternatives (binary
data, within-subjects) n=

z2ðp̂12 + p̂21Þ
d2

− z2
Use for the initial estimate of n for a McNemar exact test
(matched proportions).

Comparison of alternatives (binary
data, within-subjects)

p̂adj12 =
p12n+

z2

8

n+ z2

2

, p̂adj21 =
p21n+ z2

8
n+ z2

2

Use for the second step in the process of estimating n for a
McNemar exact test (matched proportions).

Comparison of alternatives (binary
data, within-subjects) n=

z2ðp̂adj12 + p̂adj21Þ
d2
adj

− 1:5z2
Use for the third step in the process of estimating n for a
McNemar exact test (matched proportions).
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6. Suppose that in addition to your subjective assessment of ease of use, you have also been
measuring installation successes and failures using small-sample moderated usability studies. For
the most recent usability study, the installation success rate was 65%. Using this as your best
estimate of future success rates, what sample size do you need if you want to estimate with
90% confidence the new success rate within ±15 percentage points of the true value?

7. You’re pretty confident that your new installation process will be much more successful than the
current process—in fact, you think you should have about 85% correct installation, which is much
better than the current success rate of 65%. The current installation process is lengthy, typically
taking two to three days to complete with verification of correct installation, so each participant
will perform just one installation. You want to be able to detect the expected difference of 20
percentage points between the success rates with 80% confidence and 80% power, and are
planning to run the same number of participants with the current and new installation procedures.
How many participants (total including both groups) do you need to run?

8. For another product (Product B for “Before”), the current installation procedure is fairly short
(about a half-hour), but that current process has numerous usability issues that have led to an
estimated 50% failure rate on first attempts. You’ve tracked down the most serious usability
issues and now have a prototype of an improved product (Product A for “After”). In a pilot
study with 10 participants, 4 participants succeeded with both products, 1 failed with both,
4 were successful with Product A but not Product B, and 1 was successful with Product B but
not Product A. What are the resulting estimates for p1, p2, p12, and p21? If you want to run a
larger-scale test with 95% confidence and 80% power, how many participants should you plan
to run if you expect this pattern of results to stay roughly the same?

Answers
1. The research problem in this exercise is to estimate a value without comparison to a benchmark

or alternative. From the problem statement, the variability (s2) is 25 (s = 5) and the critical
difference (d) is 2.5. This situation requires iteration to get to the final sample size estimate,
starting with the z-score associated with two-sided testing and 90% confidence, which is 1.645.
As shown in Table 6.11, the final sample size estimate for this study is 13 participants.

Table 6.11 Iterations for Question 1

Initial 1 2 3

t 1.645 1.812 1.771 1.782
t2 2.71 3.29 3.14 3.18
s2 25 25 25 25
d 2.5 2.5 2.5 2.5
d2 6.25 6.25 6.25 6.25

df 10 13 12 12
Unrounded 10.8 13.1 12.5 12.7

Rounded up 11 14 13 13
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2. Relative to question 1, we’re moving from a simple estimation problem to a comparison with a
benchmark, which means that we now need to consider the power of the test and, because we’re
testing against a benchmark, will use a one-sided rather than a two-sided test. Like the previous
exercise, this will require iteration, starting with the sum of the one-sided z-scores for 90%
confidence and 80% power, which are, respectively, 1.282 and 0.842. As shown in Table 6.12,
the final sample size estimate for this study is 20 participants.

3. Relative to question 2, we’re moving from a comparison with a fixed benchmark to a within-
subjects comparison between alternative designs, so the test should be two sided rather than one
sided. The two-sided z-score for 90% confidence and one-sided z-score for 80% power are,
respectively, 1.645 and 0.842. Table 6.13 shows the process of iterating for this situation, with a
final sample size estimate of 27 participants.

Table 6.12 Iterations for Question 2

Initial 1 2

tα 1.282 1.33 1.328
tβ 0.842 0.862 0.861
tα+β 2.123 2.192 2.189
tα+β2 4.51 4.81 4.79
s2 25 25 25
d 2.5 2.5 2.5
d2 6.25 6.25 6.25

df 18 19 19
Unrounded 18 19.2 19.2

Rounded up 19 20 20

Table 6.13 Iterations for Question 3

Initial 1 2

tα 1.645 1.711 1.706
tβ 0.842 0.857 0.856
tα+β 2.487 2.568 2.561
tα+β2 6.18 6.59 6.56
s2 25 25 25
d 2.5 2.5 2.5
d2 6.25 6.25 6.25

df 24 26 26
Unrounded 24.7 26.4 26.2

Rounded up 25 27 27
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4. Relative to question 3, we’re moving from a within-subjects experimental design to one that is
between-subjects. That means that the formula for starting the iterative process starts with n = 2z2s2/d2

rather than n = z2s2/d2 (where z is the sum of the z-scores for confidence and power, zα and zβ)—
essentially doubling the required sample size at that point in the process. Furthermore, the estimation is
for the size of one group, so we’ll need to double it again to get the estimated sample size for the entire
study. Table 6.14 shows the process of iterating for this situation, with a final sample size estimate of
51 participants per group, and a total sample size estimate of 102 participants.

5. Keeping many of the conditions of the situations the same, over the course of the first four review
questions, we’ve gone from needing a sample size of 13 to simply estimate the ease-of-use score
within a specified level of precision, to 20 to compare it against a benchmark, to 27 to perform a
within-subjects usability test, to 102 to perform a between-subjects usability test. Clearly, the change
that led to the greatest increase in the sample size estimate was the shift from a within-subjects to a
between-subjects comparison of alternatives. Therefore one way to reduce the estimated sample size
is to strive to run within-subjects studies rather than between-subjects when you must compare
alternatives. The other aspects of experimental design that you can control are the choices for
confidence level, power, and critical difference. Let’s assume that you were able to change your
plan to a within-subjects study. Furthermore, you have worked with your stakeholders to relax the
requirement for the critical difference (d) from 2.5 to 3.5. As shown in Table 6.15, these two
changes—switching from a between-subjects to a within-subjects design and increasing the critical
difference by just one point—lead to a study design for which you should only need 15 participants.
Note that if the critical difference were relaxed to 5 points, the required sample size would be just 8
participants. Also note that this is only one of many ways to reduce the sample size requirement—
for example, you could have reduced the levels of confidence and power.

6. For this question, the variable of interest is a binomial pass/fail measurement, so the appropriate
approach is the sample size method based on the adjusted-Wald binomial confidence interval. We
have the three pieces of information that we need to proceed: the success rate from the previous
evaluation (p) is 0.65, the critical difference (d ) is 0.15, and the desired level of confidence is 90% (so
the two-sided value of z is 1.645). We first compute an initial sample size formula using the standard

Table 6.14 Iterations for Question 4

Initial 1 2 3

tα 1.645 1.677 1.675 1.676
tβ 0.842 0.849 0.849 0.849
tα+β 2.487 2.526 2.524 2.525
tα+β2 6.18 6.38 6.37 6.37
s2 25 25 25 25
d 2.5 2.5 2.5 2.5
d2 6.25 6.25 6.25 6.25

df 49 51 50 50
Unrounded 49.5 51 51 51

Rounded up 50 52 51 51
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Wald formula (n = z2p(1− p)/d2), which for this problem is n = (1.645)2(0.65)(0.35)/0.152 = 27.4,
which rounds up to 28. Next, we use that initial estimate of n to compute the adjusted value of
p(padj = (np + z2/2)/(n + z2)), which for this problem is padj = ((28)(0.65) + 1.6452/2)/(28 + 1.6452) =
0.6368. We next use the adjusted value of p and the initial estimate of n to compute the adjusted
estimate of n (nadj = (z2(padj)(1− padj)/d

2)− z2), which for this problem is ((1.645)2(0.6368)(0.3632)/
0.152)− 1.6452 = 25.11, which rounds up to 26. As a check, we could set the expected number of
successes (x) to 0.65(26), which rounds to 17. A 90% adjusted-Wald binomial confidence interval for
17/26 has an observed p of 0.654, an adjusted p of 0.639, and a margin of error of 0.147, just a little
more precise than the target precision of 0.15.

7. Because in this problem you’re planning to compare success rates between independent groups,
the appropriate test is the N − 1 chi-square test. From the conditions of the problem, we have
information needed to do the sample size estimation: the expected values of p1 and p2 (0.65 and
0.85, respectively, for an average p = 0.75 and difference d = 0.20) and the sum of the z-scores
for 80% confidence (two-sided z = 1.282) and 80% power (one-sided z = 0.842) of 2.124.
Plugging these values into the appropriate sample size estimation formula, we get n = (2(2.1242)
(0.75)(0.25))/0.22 + 0.5 = 42.8, which rounds up to 43 participants per group, for a total of 86
participants. This is outside the scope of most moderated usability tests. Relaxing the power to
50% (so its associated z-score would be 0, making the total value of z = 1.282) would reduce
the estimate of n per group to 16 (total sample size of 32).

8. The appropriate statistical test for this type of study is the McNemar exact test (or, equivalently,
a confidence interval using the adjusted-Wald method for matched proportions). From the pilot
study, the estimates for the different key proportions are p1 = 0.8, p2 = 0.5, p12 = 0.4, and p21 =
0.1, so d = 0.3. Using the three-step process, first compute an initial estimate of n with the
standard Wald formula, using z = 2.8 (the sum of 1.96 for two-tailed 95% confidence and 0.84
for one-tailed 80% power).

n=
2:82ð0:1+ 0:4Þ

0:32
− 2:82 = 35:7

Table 6.15 Iterations for Question 5

Initial 1 2

tα 1.645 1.782 1.761
tβ 0.842 0.873 0.868
tα+β 2.487 2.655 2.629
tα+β2 6.18 7.05 6.91
s2 25 25 25
d 3.5 3.5 3.5
d2 12.25 12.25 12.25

df 12 14 14
Unrounded 12.6 14.4 14.1

Rounded up 13 15 15
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Rounded up, this initial estimate is 36. Next, compute the adjustments:

p̂adj12 =
0:1ð36Þ+ 2:82

8

36+ 2:82

2

= 0:114729

p̂adj21 =
0:4ð36Þ+ 2:82

8

36+ 2:82

2

= 0:385271

dadj = 0:385271− 0:114729= 0:270541

Then compute the final sample size estimate, which, after rounding up, is 42:

n=
2:82ð0:114729+ 0:385271Þ

0:2705412
− 1:5ð2:8Þ2 = 41:8

You can check this estimate by computing a confidence interval to see if it includes or excludes 0.
Because the power of the test is 80%, you need to compute an equivalent confidence to use that
combines the nominal power and confidence of the test (see the sidebar on “Equivalent Confi-
dence”). The composite z for this problem is 2.8, so the equivalent confidence to use for a two-sided
confidence interval is 99.4915%. The closest integer values for a, b, c, and d are, respectively, 17,
17, 4, and 4, for the following values:

p1: 34=42= 0:81

p2: 21=42= 0:5

p12: 17=42= 0:405

p21: 4=42= 0:095

The resulting confidence interval ranges from −0.55 to −0.015—close to but not including 0.
Using an n of 40, the expected values of p1, p2, p12, and p21 are exactly 0.8, 0.5, 0.4, and 0.1,
respectively, and the confidence interval ranges from −0.549 to 0.0025, just barely including 0.
The bounds of these confidence intervals support the sample size estimate of 42, but if samples
were expensive, 40 would probably be adequate.
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CHAPTER

7What Sample Sizes Do We Need?
Part 2: Formative Studies

INTRODUCTION
Sample size estimation for summative usability studies (the topic of Chapter 6) draws upon techniques
that are either the same as or closely related to methods taught in introductory statistics classes at the
university level, with application to any user research in which the goal is to obtain measurements. In con-
trast to the measurements taken during summative user research, the goal of a formative usability study is
to discover and enumerate the problems that users have when performing tasks with a product. It is possi-
ble, though, using methods not routinely taught in introductory statistics classes, to statistically model the
discovery process and to use that model to inform sample size estimation for formative usability studies.
These statistical methods for modeling the discovery of problems also have applicability for other types
of user research, such as the discovery of requirements or interview themes (Guest et al., 2006).

USING A PROBABILISTIC MODEL OF PROBLEM DISCOVERY TO ESTIMATE
SAMPLE SIZES FOR FORMATIVE USER RESEARCH
The Famous Equation: P (x ≥1) = 1− (1− p)n

The most commonly used formula to model the discovery of usability problems as a function of
sample size is

Pðx≥ 1Þ = 1− ð1− pÞn

In this formula, p is the probability of an event (e.g., the probability of tossing a coin and getting
heads, as opposed to the use of the symbol p in previous chapters to represent the observed signifi-
cance level of a test or a proportion), n is the number of opportunities for the event to occur (e.g., the
number of coin tosses), and P(x≥1) is the probability of the event occurring at least once in n tries.

For example, the probability of having heads come up at least once in five coin tosses (where x
is the number of heads) is

Pðx≥ 1Þ = 1− ð1− 0:5Þ5 = 0:969

Even though the probability of heads is only 0.5, by the time you toss a coin five times you’re
almost certain to have seen at least one of the tosses come up heads; in fact, out of a series of
tosses of five coins, you should see at least one head about 96.9% of the time. Figure 7.1 shows
how the value of 1− (1− p)n changes as a function of sample size and value of p.
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THE PROBABILITY OF AT LEAST ONE EQUALS ONE MINUS THE PROBABILITY OF NONE
A Lesson from James V. Bradley
From the files of Jim Lewis

There are several ways to derive 1− (1− p)n. For example, Nielsen and Landauer (1993) derived it from a
Poisson probability process. I first encountered it in college in a statistics class I had with James V. Bradley in
the late 1970s at New Mexico State University.

Dr. Bradley was an interesting professor, the author of numerous statistical papers and two books: Probability;
Decision; Statistics and Distribution-Free Statistical Tests. He would leave the campus by 4:00 PM every after-
noon to get to his trailer in the desert because if he didn’t, he told me his neighbors would “steal everything that
wasn’t nailed down.” He would teach t-tests, but would not teach analysis of variance because he didn’t believe
psychological data ever met their assumptions (a view not held by the authors of this book). I had to go to the
College of Agriculture’s stats classes to learn about ANOVA.

Despite these (and other) eccentricities, he was a remarkable and gifted teacher. When we were studying the
binomial probability formula, one of the problems he posed to us was to figure out the probability of occurrence of at
least one event of probability p given n trials. To work this out, you need to start with the binomial probability formula
(Bradley, 1976), where P (x) is the probability that an event with probability p will happen x times in n trials:

PðxÞ = n!
ðx !Þðn− xÞ! p

x ð1−pÞn−x

The trick to solving Bradley’s problem is the realization that the probability of an event happening at least
once is one minus the probability that it won’t happen at all (in other words 1− P (x = 0), which leads to

Pðx ≥1Þ = 1− n!
ð0!Þðn−0Þ!p

0ð1−pÞn−0
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Probability of discovery as a function of n and p.
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Because the value of 0! is 1 and any number taken to the 0th power also equals 1, we get

Pðx ≥1Þ = 1− n!
1ðnÞ!1ð1− pÞn

	 

Pðx ≥1Þ = 1− ð1−pÞn

So, starting from the binomial probability formula and solving for the probability of an event occurring at
least once, we derive 1− (1− p)n. I first applied this as a model of problem discovery to estimate sample size
requirements for formative usability studies in the early 1980s (Lewis, 1982), and have always been grateful to
Dr. Bradley for giving us that problem to solve.

Deriving a Sample Size Estimation Equation from 1− (1− p)n

To convert P(x≥ 1) = 1− (1− p)n to a sample size formula, we need to solve for n. Because n is an
exponent, it’s necessary to take logs, which leads to

ð1− pÞn = 1−Pðx≥ 1Þ
nðlnð1− pÞÞ = lnð1− pðx≥ 1ÞÞ

n =
lnð1− pðx≥ 1ÞÞ

lnð1− pÞ
For these equations, we used natural logarithms (ln) to avoid having to specify the base, which

simplifies the formulas. Excel provides functions for both the natural logarithm (LN) and for logarithms
of specified base (LOG). When working with logarithms in Excel, use whichever function you prefer.

To use this equation to compute n, we need to have values for p and P(x≥ 1). The most practi-
cal approach is to set p to the lowest value that you realistically expect to be able to find with the
available resources (especially the time and money required to run participants in the formative
usability study). Set P(x≥ 1) to the desired goal of the study with respect to p.

For example, suppose you decide to run a formative usability study and, for the tasks you use
and the types of participants you observe, you want to have an 80% chance of observing, at least
once, problems that have a probability of occurrence of 0.15. To accomplish this goal, you’d need
to run 10 participants.

n =
lnð1− 0:8Þ
lnð1− 0:15Þ

n =
lnð0:2Þ
lnð0:85Þ

n = 9:9

Note that if you run 10 participants, then you will have a slightly better than 80% chance of
observing (at least once) problems that have probabilities of occurrence greater than 0.15. In fact,
using this formula, it’s easy to set up tables to use when planning these types of studies that show
this effect at a glance. Table 7.1 shows the sample size requirements as a function of the selected
values of p (problem occurrence probability) and P(x ≥ 1) (likelihood of detecting the problem at
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least once). Table 7.1 also shows in parentheses the likelihood of detecting the problem at least
twice. It isn’t possible to derive a simple equation to compute the sample size for detecting a
problem at least twice, but it is possible to use linear programming with the Excel Solver function
to estimate the required sample sizes that appear in Table 7.1.

Table 7.2 shows similar information, but organized by sample size for n = 1 through 20 and for
various values of p, with cells showing the likelihood of discovery—in other words, of occurring at
least once in the study.

Using the Tables to Plan Sample Sizes for Formative User Research
Tables 7.1 and 7.2 are useful when planning formative user research. For example, suppose you
want to conduct a formative usability study that has the following characteristics:

• Lowest probability of problem occurrence of interest is 0.25.
• Minimum number of detections required is 1.
• Cumulative likelihood of discovery (goal) is 90%.

For this study, Table 7.1 indicates that the appropriate sample size is nine participants.
If you kept the same criteria except you decided you would only pay attention to problems that

occurred more than once, then you’d need 15 participants. As an extreme example, suppose your
test criteria were:

• Lowest probability of problem occurrence of interest is 0.01.
• Minimum number of detections required is 1.
• Cumulative likelihood of discovery (goal) is 99%.

For this study, the estimated sample size requirement is 459 participants—an unrealistic require-
ment for most moderated test settings. This type of exercise can help test planners and other stake-
holders make the necessary adjustments to their expectations before running the study. Also, keep
in mind that there is no requirement to run the entire planned sample through the usability study
before reporting clear problems to development and getting those problems fixed before continuing.

Table 7.1 Sample Size Requirements for Formative User Research

p
P(x ≥ 1) =
0.5

P(x ≥ 1) =
0.75

P(x ≥ 1) =
0.85

P(x ≥ 1) =
0.9

P(x ≥ 1) =
0.95

P(x ≥ 1) =
0.99

0.01 69 (168) 138 (269) 189 (337) 230 (388) 299 (473) 459 (662)
0.05 14 (34) 28 (53) 37 (67) 45 (77) 59 (93) 90 (130)
0.1 7 (17) 14 (27) 19 (33) 22 (38) 29 (46) 44 (64)
0.15 5 (11) 9 (18) 12 (22) 15 (25) 19 (30) 29 (42)
0.25 3 (7) 5 (10) 7 (13) 9 (15) 11 (18) 17 (24)
0.5 1 (3) 2 (5) 3 (6) 4 (7) 5 (8) 7 (11)
0.9 1 (2) 1 (2) 1 (3) 1 (3) 2 (3) 2 (4)

Note: The first number in each cell is the sample size required to detect the event of interest at least once; numbers in
parentheses are the sample sizes required to observe the event of interest at least twice.
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These sample size requirements are typically for total sample sizes, not sample sizes per iteration
(Lewis, 2012).

Once you’ve settled on a sample size for the study, Table 7.2 is helpful for forming an idea
about what you can expect to get from the sample size for a variety of problem probabilities. Con-
tinuing the first example in this section, suppose you’ve decided that you’ll run nine participants in

Table 7.2 Likelihood of Discovery for Various Sample Sizes

p n = 1 n = 2 n = 3 n = 4 n = 5

0.01 0.01 0.02 0.03 0.04 0.05
0.05 0.05 0.1 0.14 0.19 0.23
0.1 0.1 0.19 0.27 0.34 0.41
0.15 0.15 0.28 0.39 0.48 0.56
0.25 0.25 0.44 0.58 0.68 0.76
0.5 0.5 0.75 0.88 0.94 0.97
0.9 0.9 0.99 1 1 1

p n = 6 n = 7 n = 8 n = 9 n = 10

0.01 0.06 0.07 0.08 0.09 0.1
0.05 0.26 0.3 0.34 0.37 0.4
0.1 0.47 0.52 0.57 0.61 0.65
0.15 0.62 0.68 0.73 0.77 0.8
0.25 0.82 0.87 0.9 0.92 0.94
0.5 0.98 0.99 1 1 1
0.9 1 1 1 1 1

p n = 11 n = 12 n = 13 n = 14 n = 15

0.01 0.1 0.11 0.12 0.13 0.14
0.05 0.43 0.46 0.49 0.51 0.54
0.1 0.69 0.72 0.75 0.77 0.79
0.15 0.83 0.86 0.88 0.9 0.91
0.25 0.96 0.97 0.98 0.98 0.99
0.5 1 1 1 1 1
0.9 1 1 1 1 1

p n = 16 n = 17 n = 18 n = 19 n = 20

0.01 0.15 0.16 0.17 0.17 0.18
0.05 0.56 0.58 0.6 0.62 0.64
0.1 0.81 0.83 0.85 0.86 0.88
0.15 0.93 0.94 0.95 0.95 0.96
0.25 0.99 0.99 0.99 1 1
0.5 1 1 1 1 1
0.9 1 1 1 1 1
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your study to ensure at least a 90% likelihood of detecting at least once problems that have a prob-
ability of occurrence of 0.25. From Table 7.2, what you can expect with nine participants is:

• For p = 0.01, P (at least one occurrence given n = 9): 9%
• For p = 0.05, P (at least one occurrence given n = 9): 37%
• For p = 0.1, P (at least one occurrence given n = 9): 61%
• For p = 0.15, P (at least one occurrence given n = 9): 77%
• For p = 0.25, P (at least one occurrence given n = 9): 92%
• For p = 0.5, P (at least one occurrence given n = 9): 100%
• For p = 0.9, P (at least one occurrence given n = 9): 100%

This means that with nine participants you can be reasonably confident that the study, within the
limits of its tasks and population of participants (which establish what problems are available for
discovery), is almost certain to reveal problems for which p≥ 0.5. As planned, the likelihood of dis-
covery of problems for which p = 0.25 is 92% (> 90%). For problems with p< 0.25, the rate of dis-
covery will be lower, but will not be 0. For example, the expectation is that you will find 77% of
problems for which p = 0.15, 61% of problems for which p = 0.1, and 37% ( just over one-third) of
the problems available for discovery of which p = 0.05. You would even expect to detect 9% of the
problems with p = 0.01. If you need estimates that the tables don’t cover, you can use the general
formula (where ln means to take the natural logarithm):

n =
ln
�
1−Pðx≥ 1Þ

�
lnð1− pÞ

ASSUMPTIONS OF THE BINOMIAL PROBABILITY MODEL
The preceding section provides a straightforward method for sample size estimation for formative
user research that stays within the bounds of the assumptions of the binomial probability formula.
Those assumptions are (Bradley, 1976):

• Random sampling.
• The outcomes of individual observations are independent.
• Every observation belongs to one of two mutually exclusive and exhaustive categories, for

example, a coin toss is either heads or tails.
• Observations come from an infinite population or from a finite population with replacement (so

sampling does not deplete the population).

In formative user research, observations are the critical incidents of interest, for example, a
usability problem observed in a usability test, a usability problem recorded during a heuristic
evaluation, or a design requirement picked up during a user interview. In general, the occurrences of
these incidents are consistent with the assumptions of the binomial probability model (Lewis, 1994).

• Ideally, usability practitioners should attempt to select participants randomly from the target
population to ensure a representative sample. Although circumstances rarely allow true random
sampling in user research, practitioners do not usually exert any influence on precisely who
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participates in a study, typically relying on employment agencies to draw from their pools to
obtain participants who are consistent with the target population.

• Observations among participants are independent because the events of interest experienced by
one participant cannot have an effect on those experienced by another participant. Note that the
model does not require independence among the different types of events that can occur in the
study.

• The two mutually exclusive and exhaustive event categories are (1) the event occurred during a
session with a participant or (2) the event did not occur during the session.

• Finally, the sampled observations in a usability study do not deplete the source.

Another assumption of the model is that the value of p is constant from trial to trial (Ennis and Bi,
1998). It seems likely that this assumption does not strictly hold in user research due to differences
in users’ capabilities and experiences (Caulton, 2001; Woolrych and Cockton, 2001; Schmettow,
2008). The extent to which this can affect the use of the binomial formula in modeling problem
discovery is an ongoing topic of research (Briand et al., 2000; Kanis, 2011; Lewis, 2001; Schmettow,
2008, 2009)—a topic to which we will return later in this chapter. But note that the procedures
provided earlier in this chapter are not affected by this assumption because they take as given (not as
estimated) a specific value of p.

ADDITIONAL APPLICATIONS OF THE MODEL
There are other interesting, although somewhat controversial, things you can do with this model.

Estimating the Composite Value of p for Multiple Problems or Other Events
An alternative to selecting the lowest value of p for events that you want to have a good chance of
discovering is to estimate a composite value of p, averaged across observed problems and study
participants. For example, consider the hypothetical results shown in Table 7.3.

For this hypothetical usability study, the composite estimate of p is 0.5. There are a number of
ways to compute the composite, all of which arrive at the same value. You can take the average of
the proportions, either by problems or by participants, or you can divide the total number of cells in
the table (100 − 10 participants by 10 discovered problems) by the number of cells filled with an
“x” (50).

Adjusting Small Sample Composite Estimates of p
Composite estimates of p are the average likelihood of problem occurrence or, alternatively, the esti-
mated problem discovery rate. This estimate can come from previous studies using the same method
and similar system under evaluation or can come from a pilot study. For standard scenario-based
usability studies, the literature contains large sample examples that show p ranging from 0.03 to 0.46
(Hwang and Salvendy, 2007, 2009, 2010; Lewis, 1994, 2001, 2012). For heuristic evaluations, the
reported value of p from large sample studies ranges from 0.08 to 0.6 (Hwang and Salvendy, 2007,
2009, 2010; Nielsen and Molich, 1990). The well-known (and often misused and maligned) guideline
that five participants are enough to discover 85% of problems in a user interface is true only when
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p equals 0.315. As the reported ranges of p indicate, there will be many studies for which this guide-
line (or any similar guideline, regardless of its specific recommended sample size) will not apply,
making it important for usability practitioners to obtain estimates of p for their usability studies.

If, however, estimates of p are not accurate, then other estimates based on p (e.g., sample size
requirements or estimates of the number of undiscovered events) will not be accurate. This is very
important when estimating p from a small sample because small sample estimates of p (from fewer than
20 participants) have a bias that can result in substantial overestimation of its value (Hertzum and Jacob-
sen, 2001). Fortunately, a series of Monte Carlo experiments (Lewis, 2001; see the sidebar “What Is a
Monte Carlo Experiment?”) demonstrated the efficacy of a formula that provides a reasonably accurate
adjustment of initial estimates of p ( pest), even when the sample size for that initial estimate has as few
as two participants (preferably four participants, though, because the variability of estimates of p is
greater for smaller samples; Lewis, 2001; Faulkner, 2003). This formula for the adjustment of p is

padj =
1
2

pest −
1
n

� �
1− 1

n

� �h i
+ 1

2
pest

ð1+GTadjÞ
� �

where GTadj is the Good–Turing adjustment to probability space (which is the proportion of the number
of problems that occurred once divided by the total number of different discovered problems; see the
sidebar “Discounting Observed Probabilities with Good–Turing”). The pest/(1 +GTadj) component in
the equation produces the Good–Turing adjusted estimate of p by dividing the observed, unadjusted
estimate of p (pest) by the Good–Turing adjustment to probability space—a well-known discounting
method (Jelinek, 1997). The (pest− 1/n)(1− 1/n) component in the equation produces the deflated esti-
mate of p from the observed, unadjusted estimate of p and n (the number of participants used to

Table 7.3 Hypothetical Results for a Formative Usability Study

Problem

Participant 1 2 3 4 5 6 7 8 9 10 Count Proportion

1 x x x x x x 6 0.6

2 x x x x x 5 0.5

3 x x x x x 5 0.5

4 x x x x 4 0.4

5 x x x x x x 6 0.6

6 x x x x 4 0.4

7 x x x x 4 0.4

8 x x x x x 5 0.5

9 x x x x x 5 0.5

10 x x x x x x 6 0.6

Count 10 8 6 5 5 4 5 3 3 1 50

Proportion 1 0.8 0.6 0.5 0.5 0.4 0.5 0.3 0.3 0.1 0.5

Note: x = specified participant experienced specified problem.
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estimate p). The rationale for averaging these two different estimates (one based on the number of dif-
ferent discovered problems or other events of interest and the other based on the number of participants)
is that the Good–Turing estimator tends to overestimate the true value (or at least the large sample esti-
mate) of p, but the deflation procedure tends to underestimate it. The combined estimate is more accu-
rate than either component alone (Lewis, 2001).

WHAT IS A MONTE CARLO EXPERIMENT?
It’s Really Not Gambling
Monte Carlo, part of the principality of Monaco, is home to one of the most famous casinos in the world. In
statistics, a Monte Carlo experiment refers to a brute-force method of estimating population parameters (e.g.,
means, medians, and proportions) by repeatedly drawing random samples of cases from a larger database of
cases. With the advent of cheap computing, Monte Carlo and other types of resampling methods (e.g., jackknif-
ing and bootstrapping) are becoming more accessible and popular. Although the Monte Carlo method uses ran-
dom sampling, because there are typically a large number of iterations (the default in some statistical packages
is 1,000), it can provide very accurate estimates.

One of the earliest uses of the Monte Carlo method in usability engineering was in Virzi’s (1990, 1992) inves-
tigations of sample size requirements for usability evaluations. He reported three experiments in which he mea-
sured the rate at which trained usability experts identified problems as a function of the number of naive
participants they had observed. For each experiment, he ran a Monte Carlo simulation to randomly create 500
different arrangements of the cases, where each case was the set of usability problems observed for each partici-
pant (similar to the data shown in Table 7.3). With the results of these Monte Carlo experiments, he measured
the cumulative percentage of problems discovered for each sample size and determined empirically that the
results matched the expected results for the cumulative binomial probability formula ((P (x≥ 1) = 1− (1− p)n).

DISCOUNTING OBSERVED PROBABILITIES WITH GOOD–TURING
A Way to Reduce Overestimated Values of p
The Good–Turing adjustment is a discounting procedure. The goal of a discounting procedure is to attempt to
allocate some amount of probability space to unseen events. The application of discounting is widely used in the
field of statistical natural language processing, especially in the construction of language models (Manning and
Schütze, 1999).

The oldest discounting method is LaPlace’s law of succession (Jelinek, 1997; Lewis and Sauro, 2006;
Wilson, 1927), sometimes referred to as the “add one” method because you add one to the count for each
observation. Most statisticians do not use it for this purpose, however, because it has a tendency to assign too
much probability to unseen events, underestimating the true value of p.

Because it is more accurate than the law of succession, the Good–Turing (GT) estimate is more common.
There are many ways to derive the GT estimator, but the end result is that the total probability mass reserved for
unseen events is E(N1)/N, where E(N1) is the expected number of events that happen exactly once and N is the
total number of events. For a given sample, the value used for E(N1) is the observed number of events that
happened exactly once. In the context of a formative user study, the events are whatever the subject of the
study is (e.g., in a usability study, they are the observed usability problems).

For example, consider the hypothetical data for the first four participants from Table 7.3, shown
in Table 7.4. The average value of p shown in Table 7.4 for these four participants, like that of the
entire matrix shown in Table 7.3, is 0.5 (four participants by 10 problems yields 40 cells, with
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20 filled). However, after having run the first four participants, Problems 3, 9, and 10 have yet to
be discovered. Removing the columns for those problems yields the matrix shown in Table 7.5.

In Table 7.5, there are still 20 filled cells, but only a total of 28 cells (four participants by seven
problems). From that data, the estimated value of p is 0.71—much higher than the value of 0.5
from the table with data from 10 participants. To adjust this initial small sample estimate of p, you
need the following information from Table 7.5:

• Initial estimate of p (pest): 0.71
• Number of participants (n): 4
• Number of known problems (N): 7
• Number of known problems that have occurred only once (Nonce): 1

Table 7.4 Hypothetical Results for a Formative Usability Study: First Four Participants and All
Problems

Problem

Participant 1 2 3 4 5 6 7 8 9 10 Count Proportion

1 x x x x x x 6 0.75
2 x x x x x 5 0.625
3 x x x x x 5 0.625
4 x x x x 4 0.5

Count 4 4 0 4 1 3 2 2 0 0 20
Proportion 1 1 0 1 0.25 0.75 0.5 0.5 0 0 0.5

Note: x = specified participant experienced specified problem.

Table 7.5 Hypothetical Results for a Formative Usability Study: First Four Participants and Only
Problems Observed with Those Participants

Problem

Participant 1 2 4 5 6 7 8 Count Proportion

1 x x x x x x 6 0.86
2 x x x x x 5 0.71
3 x x x x x 5 0.71
4 x x x x 4 0.57

Count 4 4 4 1 3 2 2 20
Proportion 1 1 1 0.25 0.75 0.5 0.5 0.71

Note: x = specified participant experienced specified problem.
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This first step is to compute the deflated adjustment:

pdef = pest −
1
n

� �
1− 1

n

� �h i
pdef = 0:71− 1

4

� �
1− 1

4

� �h i
pdef = ½ð0:71− 0:25Þð1− 0:25Þ�
pdef = ð0:46Þð0:75Þ
pdef = 0:345

The second step is to compute the Good–Turing adjustment (where GTadj is the number of known
problems that occurred only once (Nonce) divided by the number of known problems (N)—in this
example, 1/7, or 0.143):

pGT =
pest

1+
Nonce

N

� �
pGT = 0:71

1+ 1
7

� �
pGT = 0:71

1:143

pGT = 0:621

Finally, average the two adjustments to get the final adjusted estimate of p:

padj =
0:345+ 0:621

2
padj = 0:48

With adjustment, the small sample estimate of p in this hypothetical example turned out to be
very close to (and to slightly underestimate) the value of p in the table with 10 participants. As is
typical for small samples, the deflation adjustment was too conservative and the Good–Turing
adjustment was too liberal, but their average was close to the value from the larger sample size. In
a detailed study of the accuracy of this adjustment for four usability studies, where accuracy is the
extent to which the procedure brought the unadjusted small sample estimate of p closer to the value
obtained with the full sample size, Lewis (2001) found:

• The overestimation of p from small samples is a real problem.
• It is possible to use the combination of deflation and Good–Turing adjustments to compensate

for this overestimation bias.
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• Practitioners can obtain accurate sample size estimates for discovery goals ranging from 70% to
95% (the range investigated by Lewis, 2001) by making an initial adjustment of the required
sample size after running two participants, then adjusting the estimate after obtaining data from
four participants.

Figures 7.2 and 7.3 show accuracy and variability results for this procedure from Lewis (2000,
2001). The accuracy results (Figure 7.2) show, averaged across 1,000 Monte Carlo iterations for each
of the four usability problem discovery databases at each sample size, that the adjustment procedure
greatly reduces deviations from the specified discovery goal of 90% or 95%. For sample sizes from 2
through 10 participants, the mean deviation from the specified discovery goal was between −0.03
and +0.02, on average just missing the goal for sample sizes of two or three, and slightly overreaching
the goal for sample sizes from 5 to 10, but all within a range of 0.05 around the goal.

Figure 7.3 illustrates the variability of estimates of p, showing both the 50% range (commonly
called the interquartile range) and the 90% range, where the ranges are the distances between the
estimated values of p that contain, respectively, the central 50% or central 90% of the estimates
from the Monte Carlo iterations. More variable estimates have greater ranges. As the sample size
increases, the size of the ranges decreases—an expected outcome because, in general, increasing
sample size leads to a decrease in the variability of an estimate.

A surprising result in Figure 7.3 was that the variability of the deviation of adjusted estimates of
p from small samples was fairly low. At the smallest possible sample size (n = 2), the central 50%
of the distribution of adjusted values of p had a range of just ±0.05 around the median (a width of
0.1); the central 90% were within 0.12 of the median. Increasing n to 6 led to about a 50% decrease
in these measures of variability—±0.025 for the interquartile range and ±0.05 for the 90% range,
and relatively little additional decline in variability as n increased to 10.

In Lewis (2001) the sample sizes of the tested usability problem databases ranged from 15 to 76,
with large sample estimates of p ranging from 0.16 to 0.38 for two usability tests and two heuristic
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Accuracy of adjustment procedure.
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evaluations. Given this variation among the tested databases, these results stand a good chance of
generalizing to other problem discovery (or similar types of) databases (Chapanis, 1988).

Estimating the Number of Problems Available for Discovery and the Number of
Undiscovered Problems
Once you have an adjusted estimate of p from the first few participants of a usability test, you can
use it to estimate the number of problems available for discovery, and from that, the number of
undiscovered problems in the problem space of the study (defined by the participants, tasks, and
environments included in the study). The steps are:

1. Use the adjusted estimate of p to estimate the proportion of problems discovered so far.
2. Divide the number of problems discovered so far by that proportion to estimate the number of

problems available for discovery.
3. Subtract the number of problems discovered so far from the estimate of the number of problems

available for discovery to estimate the number of undiscovered problems.

For example, let’s return to the hypothetical data given in Table 7.5. Recall that the observed
(initial) estimate of p was 0.71, with an adjusted estimate of 0.48. Having run four participants, use
1 − (1 − p)n to estimate the proportion of problems discovered so far, using the adjusted estimate
for p and the number of participants in the sample for n:

Pðdiscovery so farÞ = 1− ð1− pÞn
Pðdiscovery so farÞ = 1− ð1− 0:48Þ4
Pðdiscovery so farÞ = 0:927
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Given this estimate of having discovered 92.7% of the problems available for discovery and
seven problems discovered with the first four participants, the estimated number of problems avail-
able for discovery is

Nðproblems available for discoveryÞ = 7
0:927

= 7:6

As with sample size estimation, it’s best to round up, so the estimated number of problems avail-
able for discovery is eight, which means that, based on the available data, there is one undiscovered
problem. There were actually 10 problems in the full hypothetical database (see Table 7.4), so the
estimate in this example is a bit off. Remember that these methods are probabilistic, not deterministic,
so there is always the possibility of a certain amount of error. From a practical perspective, the esti-
mate of eight problems isn’t too bad, especially given the small sample size used to estimate the
adjusted value of p. The point of using statistical models is not to eliminate error, but to control risk,
attempting to minimize error while still working within practical constraints, improving decisions in
the long run while accepting the possibility of a mistake in any specific estimate.

Also, note the use of the phrase “problems available for discovery” in the title of this section. It
is important to always keep in mind that a given set of tasks and participants (or heuristic evalua-
tors) defines a pool of potentially discoverable usability problems from the set of all possible usabil-
ity problems. Even within that restricted pool there will always be uncertainty regarding the “true”
number of usability problems and the “true” value of p (Hornbæk, 2010; Kanis, 2011). The tech-
nique described in this section is a way to estimate, not to guarantee, the probable number of dis-
coverable problems or, in the more general case of formative user studies, the probable number of
discoverable events of interest.

TWO CASE STUDIES
Applying These Methods in the Real World
From the files of Jim Lewis

In 2006, I published two case studies describing the application of these methods to data from formative
usability studies (Lewis, 2006a). The first study was of five tasks using a prototype speech recognition application
with weather, news, and email/calendar functions. Participant 1 experienced no usability problems; Participant 2
had one problem in each of Tasks 2, 4, and 5; and Participant 3 had the same problem as Participant 2 in Task 2,
and different problems in Tasks 1, 4, and 5. Thus, there were a total of 6 different problems in a problem-by-
participant matrix with 18 cells (3 participants times 6 problems), for an initial estimate of p = 7/18 = 0.39. All but
one of the problems occurred just once, so the adjusted estimate of p was 0.125 (less than half of the initial esti-
mate). Solving for 1− (1− p)n with p = 0.125 and n = 3 gives an estimated proportion of problem discovery of
about 0.33. Dividing the number of different problems by this proportion (6/0.33) provided an estimate that there
were about 19 problems available for discovery, so it would be reasonable to continue testing in this space (these
types of participants and these tasks) for a while longer—there are still about 13 problems left to find.

A second round of usability testing of seven participants with a revised prototype with the same functions but
an expanded set of tasks revealed 33 different usability problems. The initial estimate of p was 0.27, with an
adjusted estimate of 0.15. Given these values, a sample size of seven should have uncovered about 68% of the
problems available for discovery. With 33 observed problems, this suggests that for this set of testing conditions
there were about 49 problems available for discovery, with 16 as yet undiscovered.

To practice with data from a third case study (Lewis, 2008), see Chapter Review Questions 4–6 at the end of
this chapter.
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WHAT AFFECTS THE VALUE OF p?
Because p is such an important factor in sample size estimation for formative user studies, it is impor-
tant to understand the study variables that can affect its value. In general, to obtain higher values of p:

• Use highly skilled observers for usability studies.
• Use multiple observers rather than a single observer (Hertzum and Jacobsen, 2001).
• Focus evaluation on new products with newly designed interfaces rather than older, more refined

interfaces.
• Study less-skilled participants in usability studies (as long as they are appropriate participants).
• Make the user sample as homogeneous as possible, within the bounds of the population to which

you plan to generalize the results (to ensure a representative sample). Note that this will increase
the value of p for the study, but will likely decrease the number of problems discovered, so if you
have an interest in multiple user groups, you will need to test each group to ensure adequate
problem discovery.

• Make the task sample as heterogeneous as possible, and include both simple and complex tasks
(Lewis, 1994; Lewis et al., 1990; Lindgaard and Chattratichart, 2007).

• For heuristic evaluations, use examiners with usability and application-domain expertise (double
experts) (Nielsen, 1992).

• For heuristic evaluations, if you must make a trade-off between having a single evaluator spend a
lot of time examining an interface versus having more examiners spend less time each examining
an interface, choose the latter option (Dumas et al., 1995; Virzi, 1997).

Note that some (but not all) of the tips for increasing p are the opposite of those that reduce mea-
surement variability (see Chapter 6).

WHAT IS A REASONABLE PROBLEM DISCOVERY GOAL?
For historical reasons, it is common to set the cumulative problem discovery goal to 80–85%. In
one of the earliest empirical studies of using 1 − (1 − p)n to model the discovery of usability
problems, Virzi (1990, 1992) observed that for the data from three usability studies “80% of the
usability problems are detected with four or five subjects” (Virzi, 1992, p. 457). Similarly, Nielsen’s
“Magic Number 5” comes from his observation that when p = 0.31 (averaged over a set of usability
studies and heuristic evaluations), a usability study with five participants should usually find 85%
of the problems available for discovery (Nielsen, 2000; Nielsen and Landauer, 1993).

As part of an effort to replicate the findings of Virzi (1990, 1992), Lewis (1994), in addition to
studying problem discovery for an independent usability study, also collected data from economic simu-
lations to estimate the return on investment (ROI) under a variety of settings. The analysis addressed the
costs associated with running additional participants, fixing problems, and failing to discover problems.
The simulation manipulated six variables (shown in Table 7.6) to determine their influence on:

• The sample size at maximum ROI.
• The magnitude of maximum ROI.
• The percentage of problems discovered at the maximum ROI.
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The definition of ROI was savings/costs, where:

• Savings was the cost of the discovered problems had they remained undiscovered minus the cost
of fixing the discovered problems.

• Costs was the sum of the daily cost to run a usability study plus the costs associated with
problems remaining undiscovered.

The simulations included problem discovery modeling for sample sizes from 1 to 20, for three
values of p covering a range of likely values (0.1, 0.25, and 0.5), and for a range of likely numbers
of problems available for discovery (30, 150, 300), estimating for each combination of variables the

Table 7.6 Variables and Results of the Lewis (1994) ROI Simulations

Independent Variable Value
Sample Size at
Maximum ROI

Magnitude of
Maximum ROI

Percentage of
Problems
Discovered at
Maximum ROI

Average likelihood of
problem discovery (p)

0.1 19 3.1 86
0.25 14.6 22.7 97
0.5 7.7 52.9 99
Range: 11.3 49.8 13

Number of problems
available for discovery

30 11.5 7 91
150 14.4 26 95
300 15.4 45.6 95
Range: 3.9 38.6 4

Daily cost to run a study 500 14.3 33.4 94
1000 13.2 19 93
Range: 1.1 14.4 1

Cost to fix a discovered
problem

100 11.9 7 92
1000 15.6 45.4 96
Range: 3.7 38.4 4

Cost of an undiscovered
problem (low set)

200 10.2 1.9 89
500 12 6.4 93
1000 13.5 12.6 94
Range: 3.3 10.7 5

Cost of an undiscovered
problem (high set)

2000 14.7 12.3 95
5000 15.7 41.7 96
10000 16.4 82.3 96
Range: 1.7 70 1

158 CHAPTER 7 What Sample Sizes Do We Need? Part 2



number of expected discovered and undiscovered problems. These estimates were crossed with a
low set of costs ($100 to fix a discovered problem; $200, $500, and $1,000 costs of undiscovered
problems) and a high set of costs ($1,000 to fix a discovered problem; $2,000, $5,000, and $10,000
costs of undiscovered problems) to calculate the ROIs. The ratios of the costs to fix discovered
problems to the costs of undiscovered problems were congruent with software engineering indexes
reported by Boehm (1981). Table 7.6 shows the average value of each dependent variable (last
three columns) for each level of all the independent variables, and the range of the average values
for each independent variable. Across the independent variables, the average percentage of discov-
ered problems at the maximum ROI was 94%.

Although all of the independent variables influenced the sample size at the maximum ROI, the
variable with the broadest influence (as indicated by the range) was the average likelihood of pro-
blem discovery (p), which also had the strongest influence on the percentage of problems discov-
ered at the maximum ROI. This lends additional weight to the importance of estimating the
parameter when conducting formative usability studies due to its influence on the determination of
an appropriate sample size. According to the results of this simulation:

• If the expected value of p is small (e.g., 0.1), practitioners should plan to discover about 86% of
the problems available for discovery.

• If the expected value of p is greater (e.g., 0.25 or 0.5), practitioners should set a goal of
discovering about 98% of the problems available for discovery.

• For expected values of p between 0.1 and 0.25, practitioners should interpolate to estimate the
appropriate discovery goal.

An unexpected result of the simulation was that variation in the cost of an undiscovered problem
had a minor effect on the sample size at maximum ROI (although, like the other independent vari-
ables, it had a strong effect on the magnitude of the maximum ROI). Although the various costs
associated with ROI are important to know when estimating the ROI of a study, it is not necessary
to know these costs when planning sample sizes.

Note that the sample sizes associated with these levels of problem discovery are the total sam-
ple sizes. For studies that will involve multiple iterations, one simple way to determine the sam-
ple size per iteration is to divide the total sample size by the number of planned iterations.
Although there is no research on how to systematically devise nonequal sample sizes for itera-
tions, it seems logical to start with smaller samples, and then move to larger ones. The rationale
is that early iterations should reveal the very high-probability problems, so it’s important to find
and fix them quickly. Larger samples in later iterations can then pick up the lower-probability
problems.

For example, suppose you want to be able to find 90% of the problems that have a probability of
0.15. Using Table 7.2, it would take 14 participants to achieve this goal. Also, assume that the devel-
opment plan allows three iterations, so you decide to allocate 3 participants to the first iteration, 4 to
the second, and 7 to the third. Again referring to Table 7.2, the first iteration (n = 3) should detect
about 39% of problems with p = 0.15—a far cry from the ultimate goal of 90%. This first iteration
should, however, detect 58% of problems with p = 0.25, 88% of problems with p = 0.50, and 100% of
problems with p = 0.9, and fixing those problems should make life easier for the next iteration. At the
end of the second iteration (n = 4), the total sample size is up to 7, so the expectation is the discovery
of 68% of problems with p = 0.15 (and 87% of problems with p = 0.25). At the end of the third
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iteration (n = 7), the total sample size is 14, and the expectation is the target discovery of 90% of
problems with p = 0.15 (and even discovery of 77% of problems with p = 0.1).

RECONCILING THE “MAGIC NUMBER 5” WITH “EIGHT IS NOT ENOUGH”
Some usability practitioners use the “Magic Number 5” as a rule of thumb for sample sizes for for-
mative usability tests (Barnum et al., 2003; Nielsen, 2000), believing that this sample size will
usually reveal about 85% of the problems available for discovery. Others (Perfetti and Landesman,
2001; Spool and Schroeder, 2001) have argued that “Eight Is Not Enough”; in fact, their experience
showed that it could take over 50 participants to achieve this goal. Is there any way to reconcile
these apparently opposing points of view?

Some History: The 1980s
Although strongly associated with Jakob Nielsen (see, for example, Nielsen, 2000), the idea of run-
ning formative user studies with small sample iterations goes back much further—to one of the
fathers of modern human factors engineering, Alphonse Chapanis. In an award-winning paper for
the IEEE Transactions on Professional Communication about developing tutorials for first-time
computer users, Al-Awar et al. (1981, p. 34) wrote:

Having collected data from a few test subjects—and initially a few are all you need—you are
ready for a revision of the text. Revisions may involve nothing more than changing a word or a
punctuation mark. On the other hand, they may require the insertion of new examples and the
rewriting, or reformatting, of an entire frame. This cycle of test, evaluate, rewrite is repeated as
often as is necessary.

Any iterative method must include a stopping rule to prevent infinite iterations. In the real
world, resource constraints and deadlines often dictate the stopping rule. In the study by Al-Awar
et al. (1981), their stopping rule was an iteration in which 95% of participants completed the tutorial
without any serious problems.

Al-Awar et al. (1981) did not specify their sample sizes, but did refer to collecting data from “a
few test subjects.” The usual definition of “few” is a number that is greater than one, but indefi-
nitely small. When there are two objects of interest, the typical expression is “a couple.” When
there are six, it’s common to refer to “a half dozen.” From this, it’s reasonable to infer that the
per-iteration sample sizes of Al-Awar et al. (1981) were in the range of three to five—at least, not
dramatically larger than that.

The publication and promotion of this method by Chapanis and his students had an almost
immediate influence on product development practices at IBM (Kennedy, 1982; Lewis, 1982) and
other companies, notably Xerox (Smith et al., 1982) and Apple (Williams, 1983). Shortly thereafter,
John Gould and his associates at the IBM T. J. Watson Research Center began publishing influen-
tial papers on usability testing and iterative design (Gould, 1988; Gould and Boies, 1983; Gould
et al., 1987; Gould and Lewis, 1984), as did Whiteside et al. (1988) at DEC (Baecker, 2008;
Dumas, 2007; Lewis, 2012).
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Some More History: The 1990s
The 1990s began with three important Monte Carlo studies of usability problem discovery from
databases with (fairly) large sample sizes. Nielsen and Molich (1990) collected data from four heu-
ristic evaluations that had independent evaluations from 34 to 77 evaluators (p ranged from 0.2 to
0.51, averaging 0.34). Inspired by Nielsen and Molich, Virzi (1990) presented the first Monte Carlo
evaluation of problem discovery using data from a formative usability study (n = 20; later expanded
into a Human Factors paper in 1992 in which p ranged from 0.32 to 0.42, averaging 0.37). In a
discussion of cost-effective usability evaluation, Wright and Monk (1991) published the first graph
showing the problem discovery curves for 1 − (1 − p)n for different values of p and n (similar to
Figure 7.1). In 1993, Nielsen and Landauer used Monte Carlo simulations to analyze problem detec-
tion for 11 studies (6 heuristic evaluations and 5 formative usability tests) to see how well the
results matched problem discovery prediction using 1 − (1 − p)n (p ranged from 0.12 to 0.58, aver-
aging 0.31). The conclusions drawn from the Monte Carlo simulations were:

The number of usability results found by aggregates of evaluators grows rapidly in the interval
from one to five evaluators but reaches the point of diminishing returns around the point of ten
evaluators. We recommend that heuristic evaluation is done with between three and five evalua-
tors and that any additional resources are spent on alternative methods of evaluation (Nielsen and
Molich, 1990, p. 255).

The basic findings are that (a) 80% of the usability problems are detected with four or five subjects,
(b) additional subjects are less and less likely to reveal new information, and (c) the most severe
usability problems are likely to have been detected in the first few subjects (Virzi, 1992, p. 457).

The benefits are much larger than the costs both for user testing and for heuristic evaluation. The
highest ratio of benefits to costs is achieved for 3.2 test users and for 4.4 heuristic evaluators. These
numbers can be taken as one rough estimate of the effort to be expended for usability evaluation for
each version of a user interface subjected to iterative design (Nielsen and Landauer, 1993).

Lewis (1994) attempted to replicate Virzi (1990, 1992) using data from a different formative
usability study (n = 15, p = 0.16). The key conclusions from this study were:

Problem discovery shows diminishing returns as a function of sample size. Observing four to five par-
ticipants will uncover about 80% of a product’s usability problems as long as the average likelihood
of problem detection ranges between 0.32 and 0.42, as in Virzi. If the average likelihood of problem
detection is lower, then a practitioner will need to observe more than five participants to discover 80%
of the problems. Using behavioral categories for problem severity (or impact), these data showed no
correlation between problem severity (impact) and rate of discovery (Lewis, 1994, p. 368).

One of the key differences between the findings of Virzi (1992) and Lewis (1994) was whether
severe problems are likely to occur with the first few participants. Certainly, there is nothing in 1 −
(1 − p)n that would account for anything other than the probable frequency of occurrence as influenc-
ing early appearance of an event of interest in a user study. In a study similar to those of Virzi (1992)
and Lewis (1994), Law and Hvannberg (2004) reported no significant correlation between problem
severity and problem detection rate. This makes the count of studies two to one against the early
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detection of severe problems ( just because they are severe rather than because they are severe and
frequent)—but it’s still only three studies. The safest strategy is for practitioners to assume indepen-
dence of frequency and impact (severity) until further research adequately resolves the discrepancy
between the outcomes of these studies.

The Derivation of the “Magic Number 5”
These studies of the early 1990s are the soil (or perhaps, euphemistically speaking, the fertilizer) that
produced the “Magic Number 5” guideline for formative usability assessments (heuristic evaluations
or usability studies). The average value of p from Nielsen and Landauer (1993) was 0.31. If you set n
to 5 and compute the probability of seeing a problem at least once during a study, you get

Pðx≥ 1Þ = 1− ð1− pÞn
Pðx≥ 1Þ = 1− ð1− 0:31Þ5
Pðx≥ 1Þ = 0:8436

In other words, considering the average results from published formative usability evaluations (but
ignoring the variability), the first five participants should usually reveal about 85% of the problems
available for discovery in that iteration (assuming a multiple-iteration study). Over time, in the
minds of many usability practitioners, the guideline became:

The Magic Number 5: “All you need to do is watch five people to find 85% of a product’s usabil-
ity problems.”

In 2000, Jakob Nielsen, in his influential Alert Box blog, published an article entitled “Why
You Only Need to Test with 5 Users” (www.useit.com/alertbox/20000319.html). Citing the analysis
from Nielsen and Landauer (1993), he wrote:

The curve [1 − (1 − 0.31)n] clearly shows that you need to test with at least 15 users to discover
all the usability problems in the design. So why do I recommend testing with a much smaller
number of users? The main reason is that it is better to distribute your budget for user testing
across many small tests instead of blowing everything on a single, elaborate study. Let us say that
you do have the funding to recruit 15 representative customers and have them test your design.
Great. Spend this budget on three tests with 5 users each. You want to run multiple tests because
the real goal of usability engineering is to improve the design and not just to document its weak-
nesses. After the first study with 5 users has found 85% of the usability problems, you will want
to fix these problems in a redesign. After creating the new design, you need to test again.

GOING FISHING WITH JAKOB NIELSEN
It’s All about Iteration and Changing Test Conditions
From the files of Jim Lewis

In 2002 I was part of a UPA panel discussion on sample sizes for formative usability studies. The other mem-
bers of the panel were Carl Turner and Jakob Nielsen (for a write-up of the conclusions of the panel, see Turner
et al., 2006). During his presentation, Nielsen provided additional explanation about his recommendation
(Nielsen, 2000) to test with only five users, using the analogy of fishing (see Figure 7.4).
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I think l’ve got most of
the fish out of  Pond A...
probably time to start
fishing in Pond B...

Pond A

Pond B

FIGURE 7.4

Imaginary fishing with Jakob Nielsen.

Suppose you have several ponds in which you can fish. Some fish are easier to catch than others, so if you
had 10 hours to spend fishing, would you spend all 10 fishing in one pond, or would you spend the first 5 in one
pond and the second 5 in the other? To maximize your capture of fish, you should spend some time in both
ponds to get the easy fish from each.

Applying that analogy to formative usability studies, Nielsen said that he never intended his recommendation
of five participants to mean that practitioners should test with just five and then stop altogether. His recommen-
dation of five participants is contingent on an iterative usability testing strategy with changes in the test condi-
tions for each of the iterations (e.g., changes in tasks or the user group in addition to changes in design intended
to fix the problems observed in the previous iteration). When you change the tasks or user groups and retest with
the revised system, you are essentially fishing in a new pond, with a new set of (hopefully) easy fish to catch
(usability problems to discover).
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Eight Is Not Enough: A Reconciliation
In 2001, Spool and Schroeder published the results of a large-scale usability evaluation from which they
concluded that the “Magic Number 5” did not work when evaluating websites. In their study, five par-
ticipants did not even get close to the discovery of 85% of the usability problems they found in the web-
sites they were evaluating. Perfetti and Landesman (2001), discussing related research, stated:

When we tested the site with 18 users, we identified 247 total obstacles-to-purchase. Contrary to
our expectations, we saw new usability problems throughout the testing sessions. In fact, we saw
more than five new obstacles for each user we tested. Equally important, we found many serious
problems for the first time with some of our later users. What was even more surprising to us was
that repeat usability problems did not increase as testing progressed. These findings clearly under-
mine the belief that five users will be enough to catch nearly 85 percent of the usability problems
on a Web site. In our tests, we found only 35 percent of all usability problems after the first five
users. We estimated over 600 total problems on this particular online music site. Based on this
estimate, it would have taken us 90 tests to discover them all!

From this description, it’s clear that the value of p for this study was very low. Given the estimate
of 600 problems available for discovery using this study’s method, then the percentage discovered
with 18 users was 41%. Solving for p in the equation 1− (1− p)18 = 0.41 yields p = 0.029. Given this
estimate of p, the percentage of problem discovery expected when n = 5 is 1 − (1 − 0.41)5 = 0.137
(13.7%). Furthermore, 13.7% of 600 is 82 problems, which is about 35% of the total number of
problems discovered in this study with 18 participants (35% of 247 is 86)—a finding consistent with
the data reported by Perfetti and Landesman (2001). Their discovery of serious problems with later
users is consistent with the findings of Lewis (1994) and Law and Hvannberg (2004), in which the
discovery rate of serious problems was the same as that for other problems.

For this low rate of problem discovery and large number of problems, it is unsurprising to con-
tinue to find more than five new problems with each participant. As shown in Table 7.7, you
wouldn’t expect the number of new problems per participant to consistently fall below five until
after the 47th participant. The low volume of repeat usability problems is also consistent with a low
value of p. A high incidence of repeat problems is more likely with evaluations of early designs
than those of more mature designs. Usability testing of products that have already had the common,
easy-to-find problems removed is more likely to reveal problems that are relatively idiosyncratic.
Also, as the authors reported, the tasks given to participants were relatively unstructured, which is
likely to have increased the number of problems available for discovery by allowing a greater vari-
ety of paths from the participants’ starting point to the task goal.

Even with a value of p this low (0.029), the expected percentage of discovery with 8 partici-
pants is about 21%, which is better than not having run any participants at all. When p is this
small, it would take 65 participants to reveal (at least once) 85% of the problems available for dis-
covery, and 155 to discover almost all (99%) of the problems. Is this low value of p typical of web-
site evaluation? Perhaps, but it could also be due to the type of testing (e.g., relatively unstructured
tasks or the level of description of usability problems). In the initial publication of this analysis,
Lewis (2006b, p. 33) concluded:

There will, of course, continue to be discussions about sample sizes for problem-discovery usability
tests, but I hope they will be informed discussions. If a practitioner says that five participants are all
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Table 7.7 Expected Problem Discovery When p = 0.029 and There Are 600 Problems

Sample Size
Percent
Discovered

Total Number
Discovered New Problems

1 2.9% 17 17
2 5.7% 34 17
3 8.5% 51 17
4 11.1% 67 16
5 13.7% 82 15
6 16.2% 97 15
7 18.6% 112 15
8 21% 126 14
9 23.3% 140 14

10 25.5% 153 13
11 27.7% 166 13
12 29.8% 179 13
13 31.8% 191 12
14 33.8% 203 12
15 35.7% 214 11
16 37.6% 225 11
17 39.4% 236 11
18 41.1% 247 11
19 42.8% 257 10
20 44.5% 267 10
21 46.1% 277 10
22 47.7% 286 9
23 49.2% 295 9
24 50.7% 304 9
25 52.1% 313 9
26 53.5% 321 8
27 54.8% 329 8
28 56.1% 337 8
29 57.4% 344 7
30 58.6% 352 8
31 59.8% 359 7
32 61% 366 7
33 62.1% 373 7
34 63.2% 379 6
35 64.3% 386 7
36 65.3% 392 6
37 66.3% 398 6
38 67.3% 404 6
39 68.3% 410 6

(Continued )
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you need to discover most of the problems that will occur in a usability test, it’s likely that this
practitioner is typically working in contexts that have a fairly high value of p and fairly low problem
discovery goals. If another practitioner says that he’s been running a study for three months, has
observed 50 participants, and is continuing to discover new problems every few participants, then
it’s likely that he has a somewhat lower value of p, a higher problem discovery goal, and lots of
cash (or a low-cost audience of participants). Neither practitioner is necessarily wrong—they’re just

Table 7.7 Expected Problem Discovery When p = 0.029 and There Are 600 Problems—cont’d

Sample Size
Percent
Discovered

Total Number
Discovered New Problems

40 69.2% 415 5
41 70.1% 420 5
42 70.9% 426 6
43 71.8% 431 5
44 72.6% 436 5
45 73.4% 440 4
46 74.2% 445 5
47 74.9% 450 5
48 75.6% 454 4
49 76.4% 458 4
50 77% 462 4
51 77.7% 466 4
52 78.4% 470 4
53 79% 474 4
54 79.6% 478 4
55 80.2% 481 3
56 80.8% 485 4
57 81.3% 488 3
58 81.9% 491 3
59 82.4% 494 3
60 82.9% 497 3
61 83.4% 500 3
62 83.9% 503 3
63 84.3% 506 3
64 84.8% 509 3
65 85.2% 511 2
66 85.7% 514 3
67 86.1% 516 2
68 86.5% 519 3
69 86.9% 521 2
70 87.3% 524 3
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working in different usability testing spaces. The formulas developed over the past 25 years provide
a principled way to understand the relationship between those spaces, and a better way for practi-
tioners to routinely estimate sample-size requirements for these types of tests.

HOW COMMON ARE USABILITY PROBLEMS?
Websites Appear to Have Fewer Usability Problems Than Business or Consumer Software
From the files of Jeff Sauro

Just how common are usability problems in websites and software? Surprisingly there is very little out there
on the frequency of usability problems. Part of the reason is that most usability testing happens early in the
development phase and is at best documented for an internal audience. Furthermore, once a website is launched
or product released, what little usability testing is done is typically more on benchmarking than on finding and
fixing problems.

I recently reviewed usability publications and a collection of usability reports from various companies. I only
included tests on completed applications and live websites, excluding those that were in the design phase and
didn’t have current users at the time of testing. My investigation turned up a wide range of products and web-
sites from 24 usability tests. Examples included rental car websites, business applications (financial and HR),
and consumer productivity software (calendars, spreadsheets, and word processors). I didn’t include data from
heuristic evaluations or cognitive walk-throughs because I wanted to focus just on problems that users actually
experienced.

After adjusting the values of p for the various studies, I had data from 11 usability studies of business appli-
cations, 7 of consumer software, and 6 from websites. The mean values of p (and their 95% confidence inter-
vals) for the three types were:

• Business applications: 0.37 (95% confidence interval ranged from 0.25 to 0.5).
• Consumer software: 0.23 (95% confidence interval ranged from 0.13 to 0.33).
• Websites: 0.04 (95% confidence interval ranged from 0.025 to 0.06).

The confidence intervals for business applications and consumer software overlapped, but not for websites,
which showed substantially lower problem discovery rates than the other types. It is important to keep in mind
that these applications and websites were not randomly drawn from the populations of all applications and
websites, so these findings might not generalize. Despite that possibility, the results are reasonable.

Business applications are typically customized to integrate into enterprise systems, with users often receiving
some training or having specialized skills. Business software typically contains a lot of complex functionality, so
it makes sense that there are more things that can impede a good user experience.

Websites, on the other hand, are typically self-service and have a fraction of the functionality of large-scale
business applications. Furthermore, switching costs for websites are low, so there is little tolerance for a poor
user-experience. If users can’t walk up and use a website, they’re gone.

For more details, see www.measuringusability.com/problem-frequency.php.

MORE ABOUT THE BINOMIAL PROBABILITY FORMULA AND ITS SMALL
SAMPLE ADJUSTMENT
Origin of the Binomial Probability Formula
Many of the early studies of probability have their roots in the desire of gamblers to increase their odds
of winning when playing games of chance, with much of this work taking place in the 17th century
with contributions from Newton, Pascal, Fermat, Huygens, and Jacques Bernoulli (Cowles, 1989).
Consider the simple game of betting on the outcome of tossing two coins and guessing how many
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heads will appear. An unsophisticated player might reason that there can be zero, one, or two heads
appearing, so each of these outcomes has a 1/3 (33.3%) chance of happening. There are, however, four
different outcomes rather than three. Using T for tails and H for heads, they are:

• TT (0 heads)
• TH (1 head)
• HT (1 head)
• HH (2 heads)

Each of these outcomes has the same chance of 1/4 (25%), so the probability of getting zero
heads is 0.25, of getting two heads is 0.25, and of getting one head is 0.5. The reason each outcome
has the same likelihood is because, given a fair coin, the probability of a head is the same as that of
a tail—both equal to 0.5. When you have independent events like the tossing of two coins, you can
compute the likelihood of a given pair by multiplying the probabilities of the events. In this case,
0.5 × 0.5 = 0.25 for each outcome.

It’s easy to list the outcomes when there are just two coin tosses, but as the number of tosses
goes up, it gets very cumbersome to list them all. Fortunately, there are well-known formulas for
computing the number of permutations or combinations of n things taken x at a time (Bradley,
1976). The difference between permutations and combinations is when counting permutations, you
care about the order in which the events occur (TH is different from HT), but when counting com-
binations, the order doesn’t matter (you only care that you got one head, but you don’t care whether
it happened first or second). The formula for permutations is

nPx =
n!

ðn− xÞ!

The number of combinations for a given set of n things taken x at a time will always be equal to
or less than the number of permutations. In fact, the number of combinations is the number of per-
mutations divided by x!, so when x is 0 or 1, the number of combinations will equal the number of
permutations. The formula for combinations is

nCx =
n!

x!ðn− xÞ!

For the problem of tossing two coins (n = 2), the number of combinations for the number of
heads (x) being zero, one, or two is

2C0 =
2!

0!ð2− 0Þ! =
2!
0!2!

= 1

2C1 =
2!

1!ð2− 1Þ! =
2!
1!1!

= 2

2C2 =
2!

2!ð2− 2Þ! =
2!
2!0!

= 1
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Having established the number of different ways to get zero, one, or two heads, the next step is to
compute the likelihood of the combination given the probability of tossing a head or tail. As mentioned
before, the likelihood for any combination of two tosses of a fair coin is 0.5 × 0.5 = 0.25. Expressed
more generally, the likelihood is

pxð1− pÞn−x

So, for the problem of tossing two coins where you’re counting the number of heads (x) and the
probability of a head is p = 0.5, the probabilities for x = 0, 1, or 2 are

0:50ð1− 0:5Þ2−0 = 0:52 = 0:25

0:51ð1− 0:5Þ2−1 = 0:5ð0:5Þ = 0:52 = 0:25

0:52ð1− 0:5Þ2−2 = 0:52 = 0:25

As previously noted, however, there are two ways to get one head (HT or TH) but only one way
to get HH or TT, so the formula for the probability of an outcome needs to include both the joint
probabilities and the number of combinations of events that can lead to that outcome, which leads
to the binomial probability formula:

PðxÞ = n!
ðx!Þðn− xÞ! p

xð1− pÞn−x

Applying this formula to the problem of tossing two coins, where x is the number of heads:

Pð0Þ = 2!
ð0!Þð2− 0Þ! 0:5

0ð1− 0:5Þ2−0 = 1ð0:52Þ = 0:25

Pð1Þ = 2!
ð1!Þð2− 1Þ! 0:5

1ð1− 0:5Þ2−1 = 2ð0:52Þ = 0:5

Pð2Þ = 2!
ð2!Þð2− 2Þ! 0:5

2ð1− 0:5Þ2−2 = 1ð0:52Þ = 0:25

How Does the Deflation Adjustment Work?
The first researchers to identify a systematic bias in the estimation of p due to a small sample of
participants were Hertzum and Jacobsen (2001; corrected paper published 2003). Specifically, they
pointed out that, as expected, the largest possible value of p is 1, but the smallest possible value of
p from a usability study is not 0—instead, it is 1/n. As shown in Table 7.8, p equals 1 only when
all participants encounter all observed problems (Outcome A); p equals 1/n when each observed
problem occurs with only one participant (Outcome B). These are both very unlikely outcomes, but
establish clear upper and lower boundaries on the values of p when calculated from this type of
matrix. As the sample size increases, the magnitude of 1/n decreases, and as n approaches infinity,
its magnitude approaches 0.

Having a lower boundary substantially greater than 0 strongly contributes to the overestimation
of p that happens when estimating it from small sample problem discovery studies (Lewis, 2001).
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The deflation procedure reduces the overestimated value of p in two steps: (1) subtracting 1/n from
the observed value of p, and then (2) multiplying that result by (1 − 1/n). The result is usually
lower than the corresponding larger sample estimate of p, but this works out well in practice as a
counterbalance to the generally overoptimistic estimate obtained with the Good–Turing adjustment.

A FORTUITOUS MISTAKE
Unintentionally Computing Double Deflation Rather Than Normalization
From the files of Jim Lewis

As described in Lewis (2001), when I first approached a solution to the problem posed by Hertzum and
Jacobsen (2001), I wanted to normalize the initial estimate of p, so the lowest possible value (Outcome B in
Table 7.8) would have a value of 0 and the highest possible value (Outcome A in Table 7.8) would stay at 1.
To do this, the first step is to subtract 1/n from the observed value of p in the matrix. The second step for
normalization would be to divide, not multiply, the result of the first step by (1− 1/n). The result of applying
this procedure would change the estimate of p for Outcome B from 0.33 to 0.

pnorm =
p − 1

n

1− 1
n

pnorm =

1
3
− 1

3

1− 1
3

= 0

Table 7.8 Two Extreme Patterns of Three Participants Encountering Problems

Outcome A Problems

Participant 1 2 3 Count Proportion

1 x x x 3 1
2 x x x 3 1
3 x x x 3 1

Count 3 3 3 9
Proportion 1 1 1 1

Outcome B Problems

Participant 1 2 3 Count Proportion

1 x 1 0.33
2 x 1 0.33
3 x 1 0.33

Count 1 1 1 3
Proportion 0.33 0.33 0.33 0.33
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And it would maintain the estimate of p = 1 for Outcome A.

pnorm =
1− 1

3

1− 1
3

= 1

Like normalization, the deflation equation reduces the estimate of p for Outcome B from 0.33 to 0.

pdef = p − 1
n

� �
1− 1

n

� �
pdef =

1
3
− 1

3

� �
1− 1

3

� �
= 0

But for Outcome A, both elements of the procedure reduce the estimate of p:

pdef = 1− 1
3

� �
1− 1

3

� �
= 2

3

� �
2
3

� �
= 4

9
= 0:444

At some point, very early when I was working with this equation, I must have forgotten to write the division sym-
bol between the two elements. Had I included it, the combination of normalization and Good–Turing adjustments
would not have worked well as an adjustment method. Neither I nor any of the reviewers noticed this during the
publication process of Lewis (2001), or in any of the following publications in which I have described the formula.
It was only while I was working through this chapter, 10 years after the publication of Lewis (2001), that I discov-
ered this. For this reason, in this chapter, I’ve described that part of the equation as a deflation adjustment rather
than using my original term, normalization. I believe I would have realized this error during the preparation of Lewis
(2001) except for one thing: it worked so well that it escaped my attention until now. In practice, multiplication of
these elements (which results in double deflation rather than normalization) appears to provide the necessary mag-
nitude of deflation of p to achieve the desired adjustment accuracy when used in association with the Good–Turing
adjustment. This is not the formula I had originally intended, but it was a fortuitous mistake.

WHAT IF YOU DON’T HAVE THE PROBLEM-BY-PARTICIPANT MATRIX?
A Quick Way to Approximate the Adjustment of p
From the files of Jeff Sauro

To avoid the tedious computations of deflating the estimate of p, I wondered how good a regression equation
might work to predict adjusted values of p from their initial estimates. I used data from 19 usability studies for
which I had initial estimates of p and the problem discovery matrix to compute adjusted estimates of p, and got
the following formula for predicting padj from p:

padj = 0:9p −0:046

As shown in Figure 7.5, the fit of this equation to the data was very good, explaining 98.4% of the variability
in padj.

So, if you have an estimate of p for a completed usability study but don’t have access to the problem-by-
participant problem discovery matrix, you can use this regression equation to get a quick estimate of padj. Keep
in mind, though, that it is just an estimate, and if the study conditions are outside the bounds of the studies
used to create this model, that quick estimate could be off by an unknown amount. The parameters of the
equation came from usability studies that had:

• A mean p of 0.33 (ranging from 0.05 to 0.79).
• A mean of about 13 participants (ranging from 6 to 26).
• A mean of about 27 problems (ranging from 6 to 145).

(Continued )
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FIGURE 7.5

Fit of regression equation for predicting padj from p.

OTHER STATISTICAL MODELS FOR PROBLEM DISCOVERY
Criticisms of the Binomial Model for Problem Discovery
In the early 2000s, there were a number of published criticisms of the use of the binomial model for
problem discovery. For example, Woolrych and Cockton (2001) pointed out that a simple point esti-
mate of p might not be sufficient for estimating the sample size required for the discovery of a
specified percentage of usability problems in an interface. They criticized the formula 1 − (1 − p)n

for failing to take into account individual differences among participants in problem discoverability
and claimed that the typical values used for p (0.3) derived from Nielsen and Landauer (1993)
tended to be too optimistic. Without citing a specific alternative distribution, they recommended the
development of a formula that would replace a single value of p with a probability density function.

In the same year, Caulton (2001) also criticized simple estimates of p as only applying given a
strict homogeneity assumption: that all types of users have the same probability of encountering all
usability problems. To address this, Caulton added to the standard cumulative binomial probability
formula a parameter for the number of heterogeneous groups. He also introduced and modeled the
concept of problems that heterogeneous groups share and those that are unique to a particular sub-
group. His primary claims were (1) the more subgroups, the lower will be the expected value of p;
and (2) the more distinct the subgroups are, the lower will be the expected value of p.

Kanis (2011) recently evaluated four methods for estimating the number of usability problems
from the results of initial participants in formative user research (usability studies and heuristic
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evaluations). The study did not include the combination deflation-discounting adjustment of Lewis
(2001), but did include a Turing estimate related to the Good–Turing component of the combination
adjustment. The key findings of the study were:

• The “Magic Number 5” was an inadequate stopping rule for finding 80–85% of usability problems.
• Of the studied methods, the Turing estimate was the most accurate.
• The Turing estimate sometimes underestimated the number of remaining problems (consistent with

the finding of Lewis (2001) that the Good–Turing adjustment of p tended to be higher than the full-
sample estimates), so Kanis proposed using the maximum value from two different estimates of the
number of remaining problems (Turing and a “frequency of frequency” estimators) to overcome this
tendency.

Expanded Binomial Models
Schmettow (2008) also brought up the possibility of heterogeneity invalidating the usefulness of
1 − (1 − p)n. He investigated an alternative statistical model for problem discovery: the beta-
binomial. The potential problem with using a simple binomial model is that the unmodeled variabil-
ity of p can lead to a phenomenon known as overdispersion (Ennis and Bi, 1998). In user research,
for example, overdispersion can lead to overly optimistic estimates of problem discovery—you
think you’re done, but you’re not. The beta-binomial model addresses this by explicitly modeling
the variability of p. According to Ennis and Bi (1998, p. 391–392):

The beta-binomial distribution is a compound distribution of the beta and the binomial distribu-
tions. It is a natural extension of the binomial model. It is obtained when the parameter p in the
binomial distribution is assumed to follow a beta distribution with parameters a and b. … It is
convenient to reparameterize to μ = a/(a + b), θ = 1/(a + b) because parameters μ and θ are more
meaningful. μ is the mean of the binomial parameter p. θ is a scale parameter which measures the
variation of p.

Schmettow (2008) conducted Monte Carlo studies to examine the relative effectiveness of the
beta-binomial and the small sample adjustment procedure of Lewis (2001), referred to by Schmettow
as the p̂GT−Norm procedure, for five problem discovery databases. The results of the Monte Carlo simu-
lations were mixed. For three of the five cases, the beta-binomial had a better fit to the empirical
Monte Carlo problem discovery curves (with the binomial overestimating the percentage of problem
discovery), but in the other two cases the p̂GT−Norm provided a slightly better fit. Schmettow (2008)
concluded:

• For small studies or at the beginning of a larger study (n< 6) use the p̂GT−Norm procedure.
• When the sample size reaches 10 or more, switch to the beta-binomial method.
• Due to possible unmodeled heterogeneity or other variability, have a generous safety margin

when usability is mission-critical.

Schmettow (2009) has also studied the use of the logit-normal binomial model for problem dis-
covery. Like the beta-binomial, the logit-normal binomial has parameters both for the mean value of
p and its variability. Also like the beta-binomial, the logit-normal binomial (zero-truncated to account
for unseen events) appeared to perform well for estimating the number of remaining defects.
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Capture–recapture Models
Capture–recapture models have their origin in biology for the task of estimating the size of
unknown populations of animals (Dorazio and Royle, 2003; Walia et al., 2008). As the name
implies, animals captured during a first (capture) phase are marked and released, then during a sec-
ond (recapture) phase the percentage of marked animals is used to estimate the size of the popula-
tion. One of the earliest examples is from Schnabel (1938), who described a method to estimate the
total fish population of a lake (but only claiming an order of magnitude of precision). Similar to the
concerns of usability researchers about the heterogeneity of the probability of individual usability
problems, an area of ongoing research in biological capture–recapture analyses is to model heterogene-
ity among individual animals (not all animals are equally easy to capture) and among sampling occa-
sions or locations (Agresti, 1994; Burnham and Overton, 1979; Coull and Agresti, 1999; Dorazio,
2009; Dorazio and Royle, 2003).

During the time that usability engineers were investigating the statistical properties of usability
problem discovery, software engineers, confronted with the similar problem of determining when to
stop searching for software defects (Dalal and Mallows, 1990), were borrowing capture–recapture
methods from biology (Briand et al., 2000; Eick et al., 1993; Walia and Carver, 2008; Walia et al.,
2008). It may be that some version of a capture–recapture model, like the beta-binomial and logit-
normal binomial models studied by Schmettow (2008, 2009), may provide highly accurate, though
complex, methods for estimating the number of remaining usability problems following a formative
usability study (or, more generally, the number of remaining events of interest following a forma-
tive user study).

Why Not Use One of These Other Models When Planning Formative User Research?
To answer this question for analyses that use the average value of p across problems or participants,
we need to know how robust the binomial model is with regard to the violation of the assumption
of homogeneity. In statistical hypothesis testing, the concept of robustness comes up when compar-
ing the actual probability of a Type I error with its nominal (target) value (Bradley, 1978). Whether
t-tests and analyses of variance are robust against violations of their assumptions has been an
ongoing debate among statisticians for over 50 years, and shows no signs of abating. As discussed
in other chapters, we have found the t-test to be very useful for the analysis of continuous and rat-
ing-scale data. Part of the reason for the continuing debate is the lack of a quantitative definition of
robustness and the great variety of distributions that statisticians have studied. We can probably
anticipate similar discussions with regard to the various methods available for modeling discovery
in formative user research.

The combination adjustment method of Lewis (2001) is reasonably accurate for reducing values
of p estimated from small samples to match those obtained with larger samples. This does not, how-
ever, shed light on how well the binomial model performs relative to Monte Carlo simulations of
problem discovery based on larger sample studies. Virzi (1992) noted the tendency of the binomial
model to be overly optimistic when sample sizes are small—a phenomenon also noted by critics of
its use (Caulton, 2001; Kanis, 2011; Schmettow, 2008, 2009; Woolrych and Cockton, 2001). But
just how misleading is this tendency?

Figure 7.6 and Table 7.9 show comparisons of Monte Carlo simulations (1,000 iterations)
and binomial model projections of problem discovery for five user studies (using the program
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FIGURE 7.6

Monte Carlo and binomial problem discovery curves for five usability evaluations.

Other Statistical Models for Problem Discovery 175



from Lewis, 1994). Lewis (2001) contains descriptions of four of the studies (MACERR, VIRZI90,
SAVINGS, and MANTEL). KANIS appeared in Kanis (2011).

Table 7.9 shows, for this set of studies, the mean maximum deviation of the binomial from the
Monte Carlo curve was 0.102 (10.2%, with 90% confidence interval ranging from 3.4% to 17%). Given
the total number of problems discovered in the usability evaluations, the mean deviation of expected
(binomial) versus observed (Monte Carlo) was 4.81 problems (with 90% confidence interval ranging
from 2.3 to 7.4). The sample size at which the maximum deviation occurred (“At n =”) was, on average,
5.4 (with 90% confidence interval ranging from 4 to 6.8, about 4 to 7). There was a strong relationship
between the magnitude of the maximum deviation and the sample size of the study (r = 0.97, 90% con-
fidence interval ranging from 0.73 to 1, t(3) = 6.9, p = 0.006). The key findings are:

• The binomial model tends to overestimate the magnitude of problem discovery early in an
evaluation, especially for relatively large sample studies.

• The average sample size at which the maximum deviation occurs (i.e., the typical point of
maximum overoptimism) is at the “Magic Number 5.”

• On average, however, that overestimation appears not to lead to very large discrepancies
between the expected and observed numbers of problems.

To summarize, the data suggest that although violations of the assumptions of the binomial
distribution do affect binomial problem discovery models, the conclusions drawn from binomial

Table 7.9 Analyses of Maximum Differences between Monte Carlo and Binomial Models for Five
Usability Evaluations

Database/Type of
Evaluation

Total
Sample
Size

Total
Number of
Problems
Discovered

Max
Difference
(Proportion)

Max
Difference
(Number of
Problems) At n = p

KANIS (usability test) 8 22 0.03 0.7 3 0.35
MACERR (usability
test)

15 145 0.05 7.3 6 0.16

VIRZI90 (usability
test)

20 40 0.09 3.6 5 0.36

SAVINGS (heuristic
evaluation)

34 48 0.13 6.2 7 0.26

MANTEL (heuristic
evaluation)

76 30 0.21 6.3 6 0.38

Mean 30.6 57 0.102 4.8 5.4 0.302
Standard deviation 27.1 50.2 0.072 2.7 1.5 0.092
N studies 5 5 5 5 5 5
sem 12.1 22.4 0.032 1.2 0.7 0.041
df 4 4 4 4 4 4
t-crit-90 2.13 2.13 2.13 2.13 2.13 2.13
d-crit-90 25.8 47.8 0.068 2.6 1.4 0.087
90% CI upper limit 56.4 104.8 0.170 7.4 6.8 0.389
90% CI lower imit 4.8 9.2 0.034 2.3 4.0 0.215
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models tend to be robust against those violations. Practitioners need to exercise care not to claim
too much accuracy when using these methods, but, based on the available data, can use them with
reasonable confidence.

It would be helpful to the field of usability engineering, however, to have more large sample
databases of usability problem discovery to include in analyses of problem discovery. The best
model to use likely depends on different characteristics of the problem discovery databases (e.g.,
large or small sample size, user test or heuristic evaluation, etc.). To conduct generalizable usability
research on this topic, we need more examples. Usability practitioners who have large sample pro-
blem discovery databases should include these matrices in their reports (using a format similar to
those of Virzi, 1990; Lewis, 2001; or Kanis, 2011), and should seek opportunities for external publi-
cation in venues such as the Journal of Usability Studies. Usability researchers should include any
new problem discovery databases as appendices in their journal articles.

This type of research is interesting and important (at least, we think so), but it is also important
not to lose sight of the practical aspects of formative user research, which is based on rapid iteration
with small samples (Barnum et al., 2003; Lewis, 2012; Nielsen, 2000). This practical consideration
lies at the heart of iterative test and redesign, for example, as expressed by Medlock et al. (2005,
p. 489) in their discussion of the Rapid Iterative Test and Evaluation (RITE) method:

Pretend you are running a business. It is a high-risk business and you need to succeed. Now imagine
two people come to your office:

• The first person says, “I’ve identified all problems we might possibly have.”
• The second person says, “I’ve identified the most likely problems and have fixed many

of them. The system is measurably better than it was.”

Which one would you reward? Which one would you want on your next project? In our experience,
businesses are far more interested in getting solutions than in uncovering issues.

The beta-binomial, logit-normal binomial, and capture–recapture models may turn out to provide
more accurate models than the simple binomial for the discovery of events of interest in user
research. This is an ongoing research topic in usability engineering, as well as in biology and soft-
ware engineering. Time (and more Monte Carlo studies) will tell. For now, however, the most prac-
tical approach is to use the simple method taught at the beginning of this chapter unless it is
mission-critical to have a very precise estimate of the number of events available for discovery and
the number of undiscovered events, in which case the usability testing team should include a statis-
tician with a background in advanced discovery modeling.

Most usability practitioners do not need this level of precision in their day-to-day work. In fact,
using the basic method (see the “Using a Probabilistic Model of Problem Discovery to Estimate
Sample Sizes for Formative User Research” section at the beginning of this chapter), there is no
need to attempt to compute any composite estimate of p or the number of undiscovered problems,
thus avoiding the more complex issues discussed in the remainder of the chapter. This is analogous
to the observation of Dorazio and Royle (2003) in their discussion of estimating the size of closed
populations of animals (p. 357):

Generally, we expect the MLE [maximum likelihood estimate] to perform better as the proportion
of the population that is observed in a sample increases. The probability that a single individual
detected with probability p is observed at least once in T capture occasions is 1 − (1 − p)T.
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Therefore, it is clear that increasing T is expected to increase the proportion of the population that is
observed, even in situations where individual capture rates p are relatively small. In many practical
problems T may be the only controllable feature of the survey, so it is important to consider the
impact of T on the MLE’s performance.

KEY POINTS FROM THE CHAPTER
• The purpose of formative user research is to discover and enumerate the events of interest in the

study (e.g., the problems that participants experience during a formative usability study).
• The most commonly used discovery model in user research is P(x ≥ 1) = 1 − (1 − p)n, derived

from the binomial probability formula.
• The sample size formula based on this equation is n = ln(1 − P(x > 1))/ln(1 − p), where P(x > 1)

is the discovery goal, p is the target probability of the events of interest under study (e.g., the
probability of a usability problem occurring during a formative usability test), and ln means to
take the natural logarithm.

• Tables 7.1 and 7.2 are useful for planning formative user research.
• To avoid issues associated with estimates of p averaged across a set of problems or participants

(which violates the homogeneity assumption of the binomial model), set p equal to the
smallest level that you want to be able to discover (so you are setting rather than estimating
the value of p).

• If you are willing to take some risk of overestimating the effectiveness of your research when n
is small (especially in the range of n = 4 to 7), you can estimate p by averaging across a set of
observed problems and participants.

• If this estimate comes from a small sample study, then it is important to adjust the initial
estimate of p (using the third formula in Table 7.10).

• For small values of p (around 0.1), a reasonable discovery goal is about 86%; for p between
0.25 and 0.5, the goal should be about 98%; for p between 0.1 and 0.25, interpolate.

• Note that the sample sizes for these goals are total sample sizes—the target sample size per
iteration should be roughly equal to the total sample size divided by the planned number of
iterations; if not equal, then use smaller sample sizes at the beginning of the study for more
rapid iteration in the face of discovery of higher-probability events.

• You can use this adjusted estimate of p to roughly estimate the number of events of interest
available for discovery and the number of undiscovered events.

• The limited data available indicates that even with the overestimation problem, the discrepancies
between observed and expected numbers of problems are not large.

• Alternative models may provide more accurate estimation of problem discovery based on
averages across problems or participants, but requires more complex modeling, so if a mission-
critical study requires very high precision of these estimates, the team should include a
statistician with a background in discovery modeling.

• Table 7.10 provides a list of the key formulas discussed in this chapter.
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Table 7.10 List of Sample Size Formulas for Formative Research

Name of Formula Formula Notes

The famous equation:
1 − (1 − p)n

P (x ≥ 1) = 1 − (1 − p)n Computes the likelihood of seeing events of
probability p at least once with a sample size of
n—derived by subtracting the probability of 0
occurrences (binomial probability formula) from 1.

Sample size for formative
research

n =
ln
�
1−Pðx≥ 1Þ

�
lnð1−pÞ

The equation above, solved for n—to use, set
P(x > 1) to a discovery goal (e.g., 0.85 for 85%)
and p to the smallest probability of an event that
you are interested in detecting in the study; ln
stands for “natural logarithm.”

Combined adjustment for
small sample estimates of p padj =

1
2

pest −
1
n

� �
1− 1

n

� �h i
+ 1

2
pest

ð1+GTadjÞ
� � From Lewis (2001)—two-component adjustment

combining deflation and Good–Turing discounting:
pest is the estimate of p from the observed data;
GTadj is the number of problem types observed only
once divided by the total number of problem types.

Quick adjustment formula padj = 0.9 (p) − 0.04 Regression equation to use to estimate padj when
problem-by-participant matrix not available.

Binomial probability formula
PðxÞ = n!

ðx!Þðn− xÞ!p
xð1−pÞn−x Probability of seeing exactly x events of probability

p with n trials.
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CHAPTER REVIEW QUESTIONS
1. Assume you need to conduct a single-shot (not iterative) formative usability study that can detect

about 85% of the problems that have a probability of occurrence of 0.25 for the specific participants
and tasks used in the study (in other words, not 85% of all possible usability problems, but 85% of the
problems discoverable with your specific method). How many participants should you plan to run?

2. Suppose you decide that you will maintain your goal of 85% discovery, but need to set the
target value of p to 0.2. Now how many participants do you need?

3. You just ran a formative usability study with four participants. What percentage of the problems
of p = 0.5 are you likely to have discovered? What about p = 0.01, p = 0.9, or p = 0.25?

4. Table 7.11 shows the results of a formative usability evaluation of an interactive voice response
application (Lewis, 2008) in which six participants completed four tasks, with the discovery of
12 distinct usability problems. For this matrix, what is the observed value of p across these
problems and participants?

5. Continuing with the data in Table 7.11, what is the adjusted value of p?
6. Using the adjusted value of p, what is the estimated total number of the problems available for

discovery with these tasks and types of participants? What is the estimated number of undiscovered
problems? How confident should you be in this estimate? Should you run more participants, or is it
reasonable to stop?

Answers
1. From Table 7.1, when p = 0.25, you need to run seven participants to achieve the discovery goal

of 85% (P(x ≥ 1) = 0.85). Alternatively, you could search the row in Table 7.2 for p = 0.25 until
you find the sample size at which the value in the cell first exceeds 0.85, which is at n = 7.

2. Tables 7.1 and 7.2 do not have entries for p = 0.2, so you need to use the following formula,
which indicates a sample size requirement of 9 (8.5 rounded up).

n =
ln
�
1− pðx≥ 1Þ

�
lnð1− pÞ =

lnð1− 0:85Þ
lnð1− 0:20Þ =

lnð0:15Þ
lnð0:80Þ = −1:897

−0:223
= 8:5

3. Table 7.2 shows that the expected percentage of discovery when n = 4 and p = 0.5 is 94%. For
p = 0.01, it’s 4% expected discovery; for p = 0.9, it’s 100%; for p = 0.25, it’s 68%.

4. For the results shown in Table 7.11, the observed average value of p is 0.28. You can get this
by averaging the average values across the six participants (shown in the table) or the average
values across the 12 problems (not shown in the table), or dividing the number of filled cells by
the total number of cells (20/(6 × 12) = 20/72 = 0.28).

5. To compute the adjusted value of p, use the following formula. The deflation component is
(0.28 − 1/6)(1 − 1/6) = 0.11(0.83) = 0.09. Because there were 12 distinct problems, 8 of which
occurred once, the Good-Turing component is 0.28/(1 + 8/12) = 0.28/1.67 = 0.17. The average
of these two components—the adjusted value of p—is 0.13.

padj =
1
2

pest −
1
n

� �
1− 1

n

� �h i
+ 1

2
pest

ð1+GTadjÞ
� �
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6. The adjusted estimate of p (from question 5) is 0.13. We know from Table 7.11 that there were
12 problems discovered with six participants. To estimate the percentage of discovery so far, use
1 − (1 − p)n. Putting in the values of n and p, you get 1 − (1 − 0.13)6 = 0.57 (57% estimated
discovery). If 57% discovery equals 12 problems, then the estimated number of problems available
for discovery is 12/0.57 = 21.05 (rounds up to 22), so the estimated number of undiscovered
problems is about 10. Because a sample size of 6 is in the range of overoptimism when using the
binomial model, there are probably more than 10 problems remaining for discovery. Given the
results shown in Table 7.9, it’s reasonable to believe that there could be an additional 2–7
undiscovered problems, so it’s unlikely that there are more than 17 undiscovered problems. This
low rate of problem discovery (padj = 0.13) is indicative of an interface in which there are few high-
frequency problems to find. If there are resources to continue testing, it might be more productive to
change the tasks in an attempt to create the conditions for discovering a different set of problems
and, possibly, more frequently occurring problems.
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CHAPTER

8Standardized Usability
Questionnaires

INTRODUCTION
What Is a Standardized Questionnaire?
A questionnaire is a form designed to obtain information from respondents. The items in a question-
naire can be open-ended questions, but are more typically multiple choice, with respondents selecting
from a set of alternatives (e.g., “Please select the type of car you usually drive”) or points on a rating
scale (e.g., “On a scale of 1 to 5, how satisfied were you with your recent stay at our hotel?”). This
chapter does not provide comprehensive coverage of the techniques for designing ad-hoc or special-
purpose questionnaires. For information about those techniques, see references such as Parasuraman
(1986), Kuniavsky (2003), Courage and Baxter (2005), Brace (2008), Tullis and Albert (2008), or
Azzara (2010).

The primary focus of this chapter is to describe current standardized questionnaires designed to
assess participants’ satisfaction with the perceived usability of products or systems during or immedi-
ately after usability testing. A standardized questionnaire is a questionnaire designed for repeated use,
typically with a specific set of questions presented in a specified order using a specified format, with
specific rules for producing metrics based on the answers of respondents. As part of the development
of standardized questionnaires, it is customary for the developer to report measurements of its reliabil-
ity, validity, and sensitivity—in other words, for the questionnaire to have undergone psychometric
qualification (Nunnally, 1978).

Advantages of Standardized Usability Questionnaires
Standardized measures offer many advantages to practitioners, specifically (Nunnally, 1978):

• Objectivity: A standardized measurement supports objectivity because it allows usability practi-
tioners to independently verify the measurement statements of other practitioners.

• Replicability: It is easier to replicate the studies of others, or even one’s own studies, when
using standardized methods. For example, research on usability measurement has consistently
shown that standardized usability questionnaires are more reliable than nonstandardized (ad-hoc,
homegrown) usability questionnaires (Hornbæk, 2006; Hornbæk and Law, 2007; Sauro and
Lewis, 2009).

• Quantification: Standardized measurements allow practitioners to report results in finer detail than
they could using only personal judgment. Standardization also permits practitioners to use
powerful methods of mathematics and statistics to better understand their results (Nunnally,
1978). Although the application of statistical methods such as t-tests to multipoint scale data has a
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history of controversy (for details, see Chapter 9), our research and practice indicates that these
methods work well with multipoint scale data.

• Economy: Developing standardized measures requires a substantial amount of work. However,
once developed, they are very economical to reuse.

• Communication: It is easier for practitioners to communicate effectively when standardized
measures are available. Inadequate efficiency and fidelity of communication in any field
impedes progress.

• Scientific generalization: Scientific generalization is at the heart of scientific work. Standardiza-
tion is essential for assessing the generalization of results.

What Standardized Usability Questionnaires Are Available?
The earliest standardized questionnaires in this area focused on the measurement of computer satisfac-
tion (e.g., the Gallagher Value of MIS Reports Scale and the Hatcher and Diebert Computer Acceptance
Scale), but were not designed for the assessment of usability following participation in scenario-based
usability tests (see LaLomia and Sidowski [1990] for a review of computer satisfaction questionnaires
published between 1974 and 1988). The first standardized usability questionnaires appropriate for
usability testing appeared in the late 1980s (Chin et al., 1988; Kirakowski and Dillon, 1988; Lewis,
1990a, 1990b). Some standardized usability questionnaires are for administration at the end of a study.
Others are for a quick, more contextual assessment at the end of each task or scenario.

Currently, the most widely used standardized usability questionnaires for assessment of the per-
ception of usability at the end of a study (after completing a set of test scenarios) and those cited in
national and international standards (ANSI, 2001; ISO, 1998) are the:

• Questionnaire for User Interaction Satisfaction (QUIS) (Chin et al., 1988)
• Software Usability Measurement Inventory (SUMI) (Kirakowski and Corbett, 1993;

McSweeney, 1992)
• Post-Study System Usability Questionnaire (PSSUQ) (Lewis, 1990a, 1992, 1995, 2002)
• Software Usability Scale (SUS) (Brooke, 1996)

Questionnaires intended for administration immediately following the completion of a usability
test scenario include the:

• After-Scenario Questionnaire (ASQ) (Lewis, 1990b, 1991, 1995)
• Expectation ratings (ER) (Albert and Dixon, 2003)
• Usability Magnitude Estimation (UME) (McGee, 2003, 2004)
• Single Ease Question (SEQ) (Sauro, 2010b; Tedesco and Tullis, 2006)
• Subjective Mental Effort Question (SMEQ) (Sauro and Dumas, 2009)

RECOMMENDED QUESTIONNAIRES
For Poststudy, Try the SUS; for Post-task, the SEQ or SMEQ
If you’ve come to this chapter looking for a recommendation about what standardized usability questionnaires to
use, here it is. For the reasons detailed in the body of the chapter, the SUS, originally developed to be a “quick-
and-dirty” measure of satisfaction with usability, has become one of the most popular poststudy standardized
questionnaires with practitioners, and recent research indicates that although it is quick, it is far from “dirty.”
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Recent studies of post-task questionnaires generally support the use of single items, and the two best of
those are the SEQ and the SMEQ. For pure simplicity and decent psychometric qualification, it’s hard to beat the
SEQ (e.g., “Overall, this task was Very Easy/Very Difficult”). If using the SEQ, however, we recommend using
seven rather than five scale steps to increase its reliability of measurement (Lewis, 1993; Nunnally, 1978; Sauro
and Dumas, 2009). For online questionnaires, consider using the SMEQ to take advantage of its slightly better
sensitivity.

Keep in mind, however, that these are general recommendations. All of the standardized usability questionnaires
have their strengths and weaknesses, and you might find that one of the others is a better fit for your specific
situation.

Assessing the Quality of Standardized Questionnaires:
Reliability, Validity, and Sensitivity
The primary measures of standardized questionnaire quality are reliability (consistency of measurement)
and validity (measurement of the intended attribute) (Nunnally, 1978). There are several ways to assess
reliability, including test–retest and split-half reliability. The most common method for the assessment
of reliability is coefficient alpha (also known as Cronbach’s alpha), a measurement of internal consis-
tency (Cortina, 1993; Nunnally, 1978). Coefficient alpha can range from 0 (no reliability) to 1 (perfect
reliability). Measures that can affect a person’s future, such as IQ tests or college entrance exams,
should have a minimum reliability of 0.9 (Nunnally, 1978). For other research or evaluation, measure-
ment reliability in the range of 0.7 to 0.8 is acceptable (Landauer, 1997).

A questionnaire’s validity is the extent to which it measures what it claims to measure. Research-
ers commonly use the Pearson correlation coefficient to assess criterion-related validity (the relation-
ship between the measure of interest and a different concurrent or predictive measure). These
correlations do not have to be large to provide evidence of validity. For example, personnel selection
instruments with validities as low as 0.3 or 0.4 can be large enough to justify their use (Nunnally,
1978). Another approach to validity is content validity, typically assessed through the use of factor
analysis (a statistical method that also helps questionnaire developers discover or confirm clusters of
related items that can form reasonable subscales).

If a questionnaire is reliable and valid, then it should also be sensitive to experimental manipulation.
For example, responses from participants who experience difficulties working with Product A but find
Product B easy to use should reflect Product B’s relatively better usability through statistically signifi-
cant differences. There is no direct measurement of sensitivity similar to those for reliability and valid-
ity. An indirect measure of sensitivity is the minimum sample size needed to achieve statistical
significance when comparing products. The more sensitive a questionnaire, the smaller is the minimum
required sample size.

Number of Scale Steps
The question of the “right” number of scale steps often comes up when discussing questionnaire
design. In general, more scale steps are better than fewer scale steps in standardized questionnaires,
but with rapidly diminishing returns. For mathematical reasons (and confirmed by empirical studies),
the reliability of individual items increases as a function of the number of steps (Nunnally, 1978).
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As the number of scale steps increases from 2 to 20, the increase in reliability is very rapid at first and
tends to level off at about 7, and after 11 steps there is little gain in reliability from increasing the
number. The number of steps in an item is very important for measurements based on a single item
(thus our recommendation to use a seven-step version of the SEQ) but is less important when comput-
ing measurements over a number of items (as in the computation of an overall or subscale score from
a multi-item questionnaire).

A question related to the number of scale steps is whether to provide an even or odd number of
steps (and the related issue of whether to offer a Not Applicable, or NA, choice off the scale). An odd
number of steps provides a neutral point for respondents who honestly have no definite attitude with
regard to the content of the item. An even number of steps forces respondents to either express a posi-
tive or negative attitude (although they always have the choice to refuse to respond to the item). For
questionnaire design in general, there is no simple recommendation for an odd versus an even number
of steps. As Parasuraman (1986, p. 399) put it, “the choice between a forced or nonforced format must
be made after carefully considering the characteristics unique to the situation.” The designers of most
standardized usability questionnaires with items containing a relatively small number of steps have cho-
sen an odd number of steps, implicitly indicating a belief that it is possible, perhaps even common, for
respondents to have a neutral attitude when completing a usability questionnaire (the exception is earlier
versions of the QUIS, which had 10 steps ranging from 0 to 9—the current Version 7 has nine steps
ranging from 1 to 9, with an NA choice; see http://lap.umd.edu/quis/). Given that the most common use
of these types of questionnaires is to compare relative usability, it doesn’t much matter whether there is
an odd or even number of steps.

POSTSTUDY QUESTIONNAIRES
Table 8.1 lists key characteristics of the four best-known poststudy questionnaires.

ONLINE VERSIONS OF POSTSTUDY USABILITY QUESTIONNAIRES
Thanks to Gary Perlman

Gary Perlman has created a website (www.acm.org/perlman/question.html) at which you can view or even use
a variety of online versions of poststudy usability questionnaires, including the QUIS, the CSUQ (a variant of the
PSSUQ), and the SUS. See his website for details.

QUIS (Questionnaire for User Interaction Satisfaction)
Description of the QUIS
The QUIS was the first published of these four questionnaires (Chin et al., 1988). According to the
QUIS website (http://lap.umd.edu/QUIS/), a multidisciplinary team of researchers in the Human–
Computer Interaction Lab (HCIL) at the University of Maryland at College Park created the QUIS
to assess users’ subjective satisfaction with specific aspects of the human–computer interface.

The current version of the QUIS (7) contains “a demographic questionnaire, a measure of overall
system satisfaction along six scales, and hierarchically organized measures of nine specific interface
factors (screen factors, terminology and system feedback, learning factors, system capabilities,
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technical manuals, online tutorials, multimedia, teleconferencing, and software installation)” (http://
lap.umd.edu/QUIS/about.html, downloaded March 17, 2011). QUIS 7 is available in five languages
(English, German, Italian, Brazilian Portuguese, and Spanish) and two lengths, short (41 items) and
long (122 items), using nine-point bipolar scales for each item (see Figure 8.1). According to the
QUIS website, most people use the short version, and only the sections that are applicable to the
system or product.

To use the QUIS, it’s necessary to license it from the University of Maryland’s Office of Tech-
nology Commercialization. The current fees are $50 for a student license, $200 for an academic or
other nonprofit license, and $750 for a commercial license.

Psychometric Evaluation of the QUIS
The primary source for information on the psychometric evaluation of the QUIS is Chin et al. (1988),
which reported research on the QUIS Versions 3 through 5. The first long version of the QUIS had
90 items (5 for overall reaction to the system and 85 component-related questions organized into
20 groups, in which each group had one main and several related subcomponent questions), using

Table 8.1 Key Characteristics of Four Poststudy Questionnaires

Questionnaire
Requires
License Fee

Number
of Items

Number of
Subscales

Global
Reliability Validity Notes

QUIS Yes ($50–750) 27 5 0.94 Construct validity;
evidence of
sensitivity

SUMI Yes (€0–1,000) 50 5 0.92 Construct validity;
evidence of
sensitivity;
availability of norms

PSSUQ No 16 3 0.94 Construct validity;
concurrent validity;
evidence of
sensitivity; some
normative
information

SUS No 10 2 0.92 Construct validity;
evidence of
sensitivity; some
normative
information

1 2 3 4 5 6 7 8 9 NA

ClearConfusing

5.4 Messages which appear on screen:

FIGURE 8.1

Sample QUIS item.
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10-step bipolar scales numbered from 0 to 9 and all scales aligned with the negative response on the
left and an off-scale NA response.

The psychometric evaluation reported by Chin et al. (1988) was for a short form of Version 5
(27 items covering overall reactions to the software, screen, terminology and system information,
learning, and system capabilities). Data from 127 participants who completed four QUIS question-
naires each (one for a liked system, one for disliked, one for an MS-DOS command-line applica-
tion, and one for any of several contemporary menu-driven applications) indicated an overall
reliability of 0.94 (no information provided for the subscales). A factor analysis (n = 96) of the cor-
relations among the items was, for the most part, consistent with expectation (an indication of con-
struct validity), but with some notable exceptions; for example, the items hypothesized to be in a
screen factor did not group as expected. Comparison of ratings for liked and disliked systems
showed means for liked systems were higher (better) than those for disliked systems with 13 of the
comparisons statistically significant (three with p < 0.05; five with p < 0.01; four with p < 0.001),
providing evidence of sensitivity.

Slaughter et al. (1994) compared responses from paper and online formats of the QUIS Version
5.5, completed by 20 participants following use of a word processor (with questionnaires completed
in counterbalanced order and one week between completions). Consistent with the findings of most
research comparing paper and online questionnaire formats, there was no significant difference in
user ratings.

SUMI (Software Usability Measurement Inventory)
Description of the SUMI
The SUMI is a product of the Human Factors Research Group (HFRG) at University College Cork in
Ireland, led by Jurek Kirakowski. Their first standardized questionnaire was the Computer Usability
Satisfaction Inventory (CUSI; Kirakowski and Dillon, 1988). The CUSI was a 22-item questionnaire
(overall reliability: 0.94) with two subscales, one for Affect (reliability of 0.91) and the other for
Competence (reliability of 0.89).

In the early 1990s, the HFRG replaced the CUSI with the SUMI (Kirakowski, 1996). The SUMI
is a 50-item questionnaire with a Global scale based on 25 of the items and five subscales for Effi-
ciency, Affect, Helpfulness, Control, and Learnability (10 items each). As shown in the example in
Figure 8.2 (the first item of the SUMI), the items have three scale steps (Agree, Undecided, Disagree).
The SUMI contains a mixture of positive and negative statements (e.g., “The instructions and prompts
are helpful”; “I sometimes don’t know what to do next with this system”). To view the entire SUMI,
see http://sumi.ucc.ie/en/.

The SUMI is currently available in 12 languages (Dutch, English, Finnish, French, German,
Greek, Italian, Norwegian, Polish, Portuguese, Swedish, and Spanish). The use of the SUMI
requires a license from the HFRG. The HFRG offers three services with differing fees: offline

Agree Undecided DisagreeStatements 1−10 of 50.

This software responds too slowly to inputs.

FIGURE 8.2

Sample SUMI item.
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(€1,000), online (€500), and online student (no charge). For descriptions of the services and their
requirements, see http://sumi.ucc.ie/pricing.html.

Psychometric Evaluation of the SUMI
During its development, the SUMI underwent a considerable amount of psychometric development
and evaluation (Kirakowski, 1996). The initial pool of SUMI items was 150. After content analysis
by a group of 10 HCI experts and software engineers, the remaining pool contained 75 items.
A factor analysis of responses to these 75 items by 139 end users plus detailed item analysis led to
the final 50 items and a decision to use a three-step agreement scale for the items. Factor analysis
of an independent sample of 143 users who completed the 50-item version of the SUMI revealed
five subscales:

• Efficiency: The degree to which the software helps users complete their work.
• Affect: The general emotional reaction to the software.
• Helpfulness: The degree to which the software is self-explanatory, plus the adequacy of help

facilities and documentation.
• Control: The extent to which the user feels in control of the software.
• Learnability: The speed and facility with which users feel they mastered the system or learned to

use new features.

In addition to these subscales, there is a Global scale based on the 25 items that loaded most
strongly on a general usability factor. After making a few minor changes to get to the final version of
the SUMI, the researchers at HFRG collected over 1,000 completed questionnaires from 150 systems,
confirmed the preliminary factor structure, and used coefficient alpha to calculate the reliability of the
SUMI scales. This large sample was also the start of one of the most powerful features of the SUMI:
a normative database with which practitioners can compare their results to those of similar products
and tasks, keeping in mind that variation in products and tasks can weaken the generalizability of
norms (Cavallin et al., 2007). Table 8.2 shows the scales and their reliabilities.

Other psychometric features of the SUMI are scale standardization and sufficient data for item-
level analysis. When analyzing raw SUMI scores (obtained by adding the responses for each item),
HFRG uses proprietary formulas to convert raw scores to standard scores with a mean of 50 and
standard deviation of 10. From the properties of the normal distribution, this means that about 68%
of SUMI standard scores will fall between 40 and 60 and, by definition, those below 40 are below
average and those above 60 are above average. Item-level analysis uses the standardization database
to identify items that fall far away from the expected distribution of Agree, Undecided, and Dis-
agree responses, which can sometimes provide more precise diagnostic information to use when
interpreting the results.

Table 8.2 Reliabilities of the SUMI Scales

SUMI Scale Reliability SUMI Scale Reliability

Global 0.92 Helpfulness 0.83
Efficiency 0.81 Control 0.71
Affect 0.85 Learnability 0.82
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The factor analyses conducted during the development and evaluation of the SUMI provide
evidence of construct validity. There appear to be no published data on predictive or concurrent
validity. A number of evaluations have demonstrated the sensitivity of the SUMI. For example,
analysis of SUMI scores obtained from 94 users of word-processing systems showed significant
differences in SUMI scale scores as a function of the system participants were using. There was
also a significant interaction between the systems used and the different SUMI scale scores, which
indicates that the various scales measured different aspects of user satisfaction with their systems
(Kirakowski, 1996).

PSSUQ (Post-study System Usability Questionnaire)
Description of the PSSUQ
The PSSUQ is a questionnaire designed to assess users’ perceived satisfaction with computer systems or
applications. The origin of the PSSUQ was an internal IBM project called SUMS (System Usability
MetricS), headed by Suzanne Henry. The SUMS researchers created a large pool of items based on the
contextual usability work of Whiteside et al. (1988). After content analysis by that group of human
factors engineers and usability specialists, 18 items remained for the first version of the PSSUQ (Lewis,
1990a, 1992).

An independent IBM investigation into customer perception of usability of several different user
groups indicated a common set of five usability characteristics (Doug Antonelli, personal communica-
tion, January 5, 1991). The 18-item version of the PSSUQ addressed four of those characteristics
(quick completion of work, ease of learning, high-quality documentation and online information, and
functional adequacy), but did not cover the fifth (rapid acquisition of productivity). The inclusion of
an item to address this characteristic led to the second version of the PSSUQ, containing 19 items
(Lewis, 1995). After several years’ use of the PSSUQ Version 2, item analysis indicated that three
questions in that version (3, 5, and 13) contributed relatively little to the reliability of the PSSUQ,
resulting in a third version with 16 items (Lewis, 2002, 2012b) after removing them (see Figure 8.3).

The instructions provided to participants in moderated usability tests before completing the
PSSUQ are (Lewis, 1995, p. 77):

This questionnaire gives you an opportunity to tell us your reactions to the system you used. Your
responses will help us understand what aspects of the system you are particularly concerned about
and the aspects that satisfy you. To as great an extent as possible, think about all the tasks that
you have done with the system while you answer these questions. Please read each statement and
indicate how strongly you agree or disagree with the statement. If a statement does not apply to
you, circle NA. Please write comments to elaborate on your answers. After you have completed
this questionnaire, I’ll go over your answers with you to make sure I understand all of your
responses. Thank you!

The PSSUQ items produce four scores—one overall and three subscales. The rules for comput-
ing them are:

• Overall: Average the responses for Items 1 through 16 (all the items)
• System Quality (SysQual): Average Items 1 through 6
• Information Quality (InfoQual): Average Items 7 through 12
• Interface Quality (IntQual): Average Items 13 through 15
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The resulting scores can take values between 1 and 7, with lower scores indicating a higher
degree of satisfaction. Note that some practitioners prefer higher scores to indicate higher satisfac-
tion, and switch the labels for “Strongly Agree” and “Strongly Disagree” (e.g., see Tullis and
Albert, 2008, p. 140). From a strict interpretation of standardization, it’s best to avoid this type of
manipulation unless there is evidence that it does not affect the factor structure of the items. On the
other hand, the various psychometric evaluations of the PSSUQ since its initial publication suggest
that it should be robust against these types of minor manipulations (Lewis, 2002). If comparing
across published studies, however, it is critical to know which item alignment was in use and, if
necessary, to adjust one of the sets of scores. To reverse a seven-point PSSUQ score, subtract it
from 7 and add 1. For example, that would change a 1 to a 7 and a 7 to a 1, and would leave a 4
unchanged.

The Post-Study Usability Questionnaire

Version 3

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Overall, I am satisfied with how easy it is to use this
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It was simple to use this system.

I was able to complete the tasks and scenarios quickly
using this system.

I felt comfortable using this system.

It was easy to learn to use this system.

I believe I could become productive quickly using this
system.

The system gave error messages that clearly told me
how to fix problems.

Whenever I made a mistake using the system, I could
recover easily and quickly.

The information (such as online help, on-screen
messages and other documentation) provided with
this system was clear.

It was easy to find the information I needed.

The information was effective in helping me complete
the tasks and scenarios.

The organization of information on the system
screens was clear.

The interface* of this system was pleasant.

I liked using the interface of this system.

This system has all the functions and capabilities I
expect it to have.

Overall, I am satisfied with this system.

*The “interface” includes those items that you use to interact with the system. For example, some components of  the
interface are the keyboard, the mouse, the microphone, and the screens (including their graphics and language).

Strongly

agree

Strongly

disagree

FIGURE 8.3

The PSSUQ Version 3.
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The PSSUQ does not require any license fee (Lewis, 2012b, p. 1303). Researchers who use it
should cite their source (if using Version 3, please cite this book), and should make clear in their
method sections how they aligned the items. Our experience has been that practitioners can add
items to the questionnaires if there is a need, or, to a limited extent, can remove items that do not
make sense in a specific context. Using the PSSUQ as the foundation for a special-purpose ques-
tionnaire, however, ensures that practitioners can score the overall PSSUQ scale and subscales,
maintaining the advantages of standardized measurement.

Psychometric Evaluation of the PSSUQ
The earliest versions of the PSSUQ showed very high scale and subscale reliability. For Version 3,
the reliabilities are (Lewis, 2002, 2012b):

• Overall: 0.94
• SysQual: 0.9
• InfoQual: 0.91
• IntQual: 0.83

All of the reliabilities exceed 0.8, indicating sufficient reliability to be useful as standardized usabil-
ity measurements (Anastasi, 1976; Landauer, 1997; Nunnally, 1978).

Factor analyses have been consistent across the various versions of the PSSUQ, indicating sub-
stantial construct validity (Lewis, 1990a, 1992, 1995, 2002). In addition to construct validity, the
PSSUQ has shown evidence of concurrent validity. For a sample of 22 participants who completed
all PSSUQ (Version 1) and ASQ items in a usability study (Lewis et al., 1990), the overall PSSUQ
score correlated highly with the sum of the ASQ ratings that participants gave after completing
each scenario (r(20) = 0.8, p = 0.0001). The overall PSSUQ score correlated significantly with the
percentage of successful scenario completions (r(29) = −0.4, p = 0.026). SysUse (r(36) = −0.4,
p = 0.006) and IntQual (r(35) = −0.29, p = 0.08) also correlated with the percentage of successful
scenario completions.

The PSSUQ has also proved to be sensitive to manipulation of variables that should affect it, and
insensitive to other variables (Lewis, 1995, 2002). In the office applications study described by Lewis
et al. (1990), three different user groups (secretaries without mouse experience, business professionals
without mouse experience, and business professionals with mouse experience) completed a set of
tasks with three different office systems in a between-subjects design. The overall scale and all three
subscales indicated significant differences among the user groups, and InfoQual showed a significant
system effect.

Analyses of variance conducted to investigate the sensitivity of PSSUQ measures using data collected
from usability studies over five years (Lewis, 2002) indicated that the following variables significantly
affected PSSUQ scores (as indicated by a main effect, an interaction with PSSUQ subscales, or both):

• Study (21 levels—the study during which the participant completed the PSSUQ)
• Developer (4 levels—the company that developed the product under evaluation)
• Stage of development (2 levels—product under development or available for purchase)
• Type of product (5 levels—discrete dictation, continuous dictation, game, personal communica-

tor, or pen product)
• Type of evaluation (2 levels—speech dictation study or standard usability evaluation)

194 CHAPTER 8 Standardized Usability Questionnaires



The following variables did not significantly affect PSSUQ scores:

• Gender (2 levels—male or female)
• Completeness of responses to questionnaire (2 levels—complete or incomplete)

For gender, neither the main effect nor the interaction was significant. The difference between
the female and male questionnaire means for each of the PSSUQ scales was only 0.1. Although
evidence of gender differences would not affect the usefulness of the PSSUQ, it’s notable that the
instrument does not appear to have an inherent gender bias.

Analysis of the distribution of incomplete questionnaires in the Lewis (2002) database showed that of
210 total questionnaires, 124 (59%) were complete and 86 (41%) were incomplete. Across the incom-
plete questionnaires, the completion rate for SysUse and IntQual items were, respectively, 95% and
97%; but the average completion rate for InfoQual items was only 60%. Thus, it appears that the primary
cause of incomplete questionnaires was the failure to answer one or more InfoQual items. In most cases
(78%), these incomplete questionnaires came from studies of speech dictation, which did not typically
include documentation, or standard usability studies conducted on prototypes without documentation.

Unlike most attitude questionnaires with scales produced by summing the item scores, an early
decision in the design of the PSSUQ was to average rather than sum item scores (Lewis, 1990a,
1992). The results of the analysis of completeness support this decision. As shown in Figure 8.4,
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FIGURE 8.4

The PSSUQ completeness by factor interaction.
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the completeness of responses to the questionnaire had neither a significant main effect nor a signif-
icant interaction. The difference between the complete and incomplete questionnaire means for each
of the PSSUQ scales was only 0.1, and the changes cancelled out for the Overall score (means of
2.7 for both complete and incomplete questionnaires). This finding is important because it supports
the practice of including rather than discarding partially completed PSSUQ questionnaires when
averaging items to compute scale scores. The data do not provide information concerning how
many items a participant might ignore and still produce reliable scores, but they do suggest that, in
practice, participants typically complete enough items.

PSSUQ Norms and Interpretation of Normative Patterns
PSSUQ item and scale norms correlate highly across versions. Table 8.3 shows the best available
norms for Version 3 (means and 99% confidence intervals), using the original alignment such that
lower scores are better than higher scores. Note that the means of all items and scales fall below the
scale midpoint of 4 and, with the exception of Item 7 (“The system gave error messages that clearly
told me how to fix problems”), the upper limits of the 99% confidence intervals are also below the
scale midpoint. This demonstrates why for the PSSUQ (and probably for all similar questionnaires),
practitioners should not use the scale midpoint exclusively as a reference from which to judge partici-
pants’ perceptions of usability. The best reference is one’s own data from similar evaluations with
similar products, tasks, and users. If such data are not available, then the next best reference is the
PSSUQ norms.

There are probably very few cases in which you could use these norms for direct assessment of
a product under evaluation. These data came from a variety of sources that included different types
of products at different stages of development and the performance of different types of tasks using
systems that were available from the mid-1990s through the early 2000s. Despite this, there are
some interesting and potentially useful patterns in the data, which have been consistent across the
different versions of the questionnaire.

Ever since the introduction of the PSSUQ, the item that has received the poorest rating—
averaging from 0.45 to 0.49 scale steps poorer than the next poorest rating—is Item 7 (e.g., “The
system gave error messages that clearly told me how to fix problems”). Also, the mean ratings of
InfoQual tend to be poorer than mean ratings of IntQual, with differences for the various versions
ranging from 0.5 to 1.1.

The consistently poor ratings for Item 7 suggest:

• If this happens in your data, it shouldn’t surprise you.
• It really is difficult to provide usable error messages throughout a product.
• It will probably be worth the effort to focus on providing usable error messages.
• If you find the mean for this item to be equal to or less than the mean of the other items in

InfoQual, you have probably achieved better-than-average error messages.

The consistent pattern of poor ratings for InfoQual relative to IntQual indicates that if you find
this pattern in your data, you shouldn’t conclude that you have terrible documentation or a great
interface. If, however, this pattern appeared in the data for a first iteration of a usability study and
the redesign focused on improving the quality of information, then any significant decline in the
difference between InfoQual and IntQual would be suggestive of a successful intervention.
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Table 8.3 PSSUQ Version 3 Norms (Means and 99% Confidence Intervals)

Item Item Text Lower Limit Mean Upper Limit

1 Overall, I am satisfied with how easy
it is to use this system.

2.6 2.85 3.09

2 It was simple to use this system. 2.45 2.69 2.93
3 I was able to complete the tasks

and scenarios quickly using this
system.

2.86 3.16 3.45

4 I felt comfortable using this system. 2.4 2.66 2.91
5 It was easy to learn to use this

system.
2.07 2.27 2.48

6 I believe I could become productive
quickly using this system.

2.54 2.86 3.17

7 The system gave error messages
that clearly told me how to fix
problems.

3.36 3.7 4.05

8 Whenever I made a mistake using the
system, I could recover easily and
quickly.

2.93 3.21 3.49

9 The information (e.g., online help,
on-screen messages, and other
documentation) provided with this
system was clear.

2.65 2.96 3.27

10 It was easy to find the information I
needed.

2.79 3.09 3.38

11 The information was effective in
helping me complete the tasks and
scenarios.

2.46 2.74 3.01

12 The organization of information on the
system screens was clear.

2.41 2.66 2.92

13 The interface of this system was
pleasant.

2.06 2.28 2.49

14 I liked using the interface of this
system.

2.18 2.42 2.66

15 This system has all the functions and
capabilities I expect it to have.

2.51 2.79 3.07

16 Overall, I am satisfied with this
system.

2.55 2.82 3.09

Scale Scale Scoring Rule
SysUse Average Items 1–6. 2.57 2.8 3.02
InfoQual Average Items 7–12. 2.79 3.02 3.24
IntQual Average Items 13–15. 2.28 2.49 2.71
Overall Average Items 1–16. 2.62 2.82 3.02

Note: These data are from 21 studies and 210 participants, analyzed at the participant level.

Poststudy Questionnaires 197



SUS (Software Usability Scale)
Description of the SUS
Despite being a self-described “quick-and-dirty” usability scale, the SUS (Brooke, 1996), developed
in the mid-1980s, has become a popular questionnaire for end-of-test subjective assessments of
usability (Lewis, 2012b; Zviran et al., 2006). The SUS accounted for 43% of post-test questionnaire
usage in a recent study of a collection of unpublished usability studies (Sauro and Lewis, 2009).
Research conducted on the SUS (described below) has shown that although it is fairly quick, it is
probably not all that dirty. The SUS (shown in Figure 8.5) is a questionnaire with 10 items, each with
five scale steps. The odd-numbered items have a positive tone; the tone of the even-numbered items
is negative.

According to Brooke (1996), participants should complete the SUS after having used the system
under evaluation but before any debriefing or other discussion. Instructions to the participants should
include asking them to record their immediate response to each item rather than thinking too much
about them. The SUS scoring method requires participants to provide a response to all 10 items. If for
some reason participants can’t respond to an item, they should select the center point of the scale.

The first step in scoring a SUS is to determine each item’s score contribution, which will range
from 0 to 4. For positively worded items (odd numbers), the score contribution is the scale position
minus 1 (xi – 1). For negatively worded items (even numbers), the score contribution is 5 minus the
scale position (5 – xi). To get the overall SUS score, multiply the sum of the item score contributions
by 2.5. Thus, overall SUS scores range from 0 to 100 in 2.5-point increments.

1 I think that I would like to use this system.

The System Usability Scale

Standard Version

Strongly

disagree

1 2 3 4 5

Strongly

agree

I found the system unnecessarily complex.

I thought the system was easy to use.

I think that I would need the support of a technical
person to be able to use this system.

I found the various functions in the system were
well integrated.

I thought there was too much inconsistency in this
system.

I would imagine that most people would learn to
use this system very quickly.

I found the system very cumbersome to use.

I felt very confident using the system.

I needed to learn a lot of things before I could get
going with this system.

2
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7

8

9

10

FIGURE 8.5

The standard version of the SUS.
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The SUS does not require any license fee. “The only prerequisite for its use is that any
published report should acknowledge the source of the measure” (Brooke, 1996, p. 194). See the
References section of this chapter for the information needed to acknowledge Brooke (1996) as the
source of the SUS.

Since its initial publication, some researchers have proposed minor changes to the wording of the
items. For example, Finstad (2006) and Bangor et al. (2008) recommend replacing “cumbersome” with
“awkward” in Item 8. The original SUS items refer to “system,” but substituting the word “website” or
“product,” or using the actual website or product name seems to have no effect on the resulting scores
(Lewis and Sauro, 2009). Of course, any of these types of minor substitutions should be consistent
across the items.

Psychometric Evaluation of the SUS
The 10 SUS items were selected from a pool of 50 potential items, based on the responses of 20
people who used the full set of items to rate two software systems, one that was relatively easy to
use, and one that was relatively difficult to use. The items selected for the SUS were those that pro-
vided the strongest discrimination between the systems. In his original paper, Brooke (1996)
reported strong correlations among the selected items (absolute values of r ranging from 0.7 to 0.9),
but he did not report any measures of reliability or validity, referring to the SUS as a “quick-and-
dirty” usability scale. For these reasons, he cautioned against assuming that the SUS was any more
than a unidimensional measure of usability (p. 193): “SUS yields a single number representing a
composite measure of the overall usability of the system being studied. Note that scores for indi-
vidual items are not meaningful on their own.” Given data from only 20 participants, this caution
was appropriate.

An early assessment (using coefficient alpha) of the SUS indicated a reliability of 0.85 (Lucey,
1991). More recent estimates using larger samples have found its reliability to be just over 0.9
(0.91 from Bangor et al., 2008, using 2,324 cases; 0.92 from Lewis and Sauro, 2009, using 324
cases).

Recent studies have also provided evidence of the validity and sensitivity of the SUS. Bangor et al.
(2008) found the SUS to be sensitive to differences among types of interfaces and changes made to a
product. They also found significant concurrent validity with a single seven-point rating of user friendli-
ness (r = 0.806). Lewis and Sauro (2009) reported that the SUS was sensitive to the differences in a set
of 19 usability tests.

In the most ambitious investigation of the psychometric properties of the SUS to date, Bangor et al.
(2008) conducted a factor analysis of their 2,324 SUS questionnaires and concluded there was only one
significant factor, consistent with prevailing practitioner belief and practice. The method applied by
Bangor et al., however, did not exclude the possibility of additional structure. Lewis and Sauro (2009)
reanalyzed the data from Bangor et al. and an independent set of SUS cases from Sauro and Lewis
(2009), and discovered that the factor structures of the two data sets converged at a two-factor solution.
Later in the same year, Borsci et al. (2009), using a different measurement model and an independent
set of data (196 Italian cases), arrived at the same conclusion: a two-factor solution with Items 1, 2, 3,
5, 6, 7, 8, and 9 on one factor and Items 4 and 10 on the other.

Based on the content of the items, Lewis and Sauro (2009) named the eight-item subscale
“Usable” and the two-item subscale “Learnable.” Using the data from Sauro and Lewis (2009), the
subscale reliabilities (coefficient alpha) were 0.91 for Usable and 0.7 for Learnable. An analysis of
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variance on the data showed a significant study by scale interaction—evidence of scale sensitivity.
To make the Usable and Learnable scores comparable with the Overall SUS score so they also
range from 0 to 100, just multiply their summed score contributions by 3.125 for Usable and 12.5
for Learnable.

The results of our research into the factor structure of the SUS show that it would be possible to
use the new Usable subscale in place of the Overall SUS. The Overall scale and Usable subscale
had an extremely high correlation (r = 0.985), and the reduction in reliability in moving from the
10-item Overall SUS to the eight-item Usable scale was negligible (coefficient alpha went from
0.92 to 0.91). The time saved by dropping Items 4 and 10, however, would be of relatively little
benefit compared to the advantage of getting an estimate of perceived learnability, a cleaner esti-
mate of perceived usability, and an Overall SUS score comparable with the rest of the industry. For
these reasons, we encourage practitioners who use the SUS to continue doing so, but to recognize
that in addition to working with the standard Overall SUS score, they can easily compute its Usable
and Learnable subscales, extracting additional information from their SUS data with very little addi-
tional effort.

WHERE DID THE 3.125 AND 12.5 MULTIPLIERS COME FROM?
Getting SUS Subscales to Range from 0 to 100
The standard SUS raw score contributions can range from 0 to 40 (10 items with five scale steps ranging from
0 to 4). To get the multiplier needed to increase the apparent range of the summed scale to 100, divide 100 by
the maximum sum of 40, which equals 2.5. Because the Usable subscale has eight items, its range for summed
score contributions is 0 to 32, so its multiplier needs to be 100 divided by 32, which is 3.125. Following the
same process for the Learnable subscale, you get a multiplier of 12.5 (100 divided by 8). You can use the same
method to compute the multipliers needed to estimate overall scores from incomplete SUS questionnaires.

SUS Norms
The recent research on the psychometric properties of the SUS has also provided some normative
data. For example, Table 8.4 shows some basic statistical information about the SUS from the data
reported by Bangor et al. (2008) and Lewis and Sauro (2009).

Of particular interest is that the central tendencies of the Bangor et al. (2008) and the Lewis and
Sauro (2009) Overall SUS distributions were not identical, with a mean difference of 8. The mean
of the Bangor et al. distribution of Overall SUS scores was 70.1, with a 99.9% confidence interval
ranging from 68.7 to 71.5. The mean of our Overall SUS data was 62.1, with a 99.9% confidence
interval ranging from 58.3 to 65.9. Because the confidence intervals did not overlap, this difference
in central tendency as measured by the mean was statistically significant ( p < 0.001). There were
similar differences (with the Bangor et al. scores consistently higher) for the first quartile (10 points),
median (10 points), and third quartile (12.5 points). The distributions’ measures of dispersion
(variance, standard deviation, and interquartile range) were close in value. The difference in central
tendency between the data sets is most likely due to the different types of users, products, and tasks
included in the data sets.

As expected, the statistics and distributions of the Overall SUS and Usable scores from the current
data set were very similar. In contrast, the distributions of the Usable and Learnable scores were
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distinct. The distribution of Usable, although somewhat skewed, had lower values at the tails than in
the center. By contrast, Learnable was strongly skewed to the right, with 29% of its scores having the
maximum value of 100. Their 99.9% confidence intervals did not overlap, indicating a statistically
significant difference ( p < 0.001).

Sauro (2011a) analyzed data from 3,187 completed SUS questionnaires. Figure 8.6 shows the
distribution of the scores.

The individual responses have a clear negative skew. There are also peaks in scores at 50, around
75 and 90, and at 100. There are two important things to keep in mind when looking at this fre-
quency distribution. First, although there are a finite number of possible responses, the combination of
average SUS scores for a study is virtually infinite. For example, the frequency distribution in Figure
8.6 has data from 112 different studies. Of these, only five pairs of studies, 10 total (9%), have the
same average SUS score. Note that due to the discrete nature of multipoint scale measures, the med-
ian is restricted to about 80 values, which is one of the key reasons to assess the central tendency of
multipoint scale scores with the mean rather than the median (Lewis, 1993).

Second, the skew doesn’t hurt the accuracy of statistical calculations or the computation of the
mean. As discussed in previous chapters, even though the distribution of individual responses is

Table 8.4 SUS Statistics from Bangor et al. (2008) and Lewis and Sauro (2009)

Bangor et al. (2008) Lewis and Sauro (2009)

Statistic Overall Overall Usable Learnable

N 2,324 324 324 324
Minimum 0 7.5 0 0
Maximum 100 100 100 100
Mean 70.14 62.1 59.44 72.72
Variance 471.32 494.38 531.54 674.47
Standard deviation 21.71 22.24 23.06 25.97
Standard error of the mean 0.45 1.24 1.28 1.44
Skewness NA −0.43 −0.38 −0.8
Kurtosis NA −0.61 −0.6 −0.17
First quartile 55 45 40.63 50
Median 75 65 62.5 75
Third quartile 87.5 75 78.13 100
Interquartile range 32.5 30 37.5 50
Critical z (99.9%) 3.09 3.09 3.09 3.09
Critical d (99.9%) 1.39 3.82 3.96 4.46
99.9% confidence interval
upper limit

71.53 65.92 63.4 77.18

99.9% confidence interval
lower limit

68.75 58.28 55.48 68.27

Note: Add and subtract critical d (computed by multiplying the critical z and the standard error) from the mean to get the
upper and lower bounds of the 99.9% confidence interval.
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skewed and not normally distributed, we typically base our statistical calculations on the distribution
of the study means, not the individual scores. Normality does become an issue when we want to
convert raw SUS scores into percentile ranks, but fortunately, a transformation procedure is avail-
able that adjusts SUS scores to a normal distribution (see the sidebar “Getting Normal”).

GETTING NORMAL
Converting SUS Scores to Percentile Ranks
From the files of Jeff Sauro

Using data from 446 studies and over 5,000 individual SUS responses, I’ve found the overall mean score
of the SUS is 68 with a standard deviation of 12.5. To get a better sense of how to use that information to
interpret a raw SUS score, you can use Table 8.5 to convert the raw score into a percentile rank. In essence, this
percentile rank tells you how usable your application is relative to the other products in the total database. The
distribution of SUS data is slightly negatively skewed, so the table entries were transformed prior to conversion
(specifically, a logarithmic transformation on reflected scores; see Sauro, 2011a for details). To use the table,
start in the “Raw SUS Score” column and find the score closest to the one for your study, and then examine the
percentile rank column to find the percentage of products that fall below your score. For example, a SUS score
of 66 has a percentile rank of 44%. This means that a score of 66 is considered more usable than 44% of the
products in the Sauro (2011a) database (and less usable than 56%). Anything with a percentile below 50% is,
by definition, below average, and anything above 50% is above average.
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Distribution of 3,187 SUS scores.
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With the advent of large sample data sets of SUS scores, there have been a few attempts to pro-
vide a “grading scale” for their interpretation. For example, Bangor et al. (2009) added a seven-point
scale user-friendliness item as an eleventh question to nearly a thousand SUS questionnaires (“Overall,
I would rate the user-friendliness of this product as:” (from left to right) “Worst Imaginable; Awful;
Poor; OK; Good; Excellent; Best Imaginable”). They developed a grading scale in which SUS scores
below 60 were an “F,” between 60 and 69 were a “D,” between 70 and 79 were a “C,” between 80
and 89 were a “B,” and 90 and above were an “A.”

In the spirit of the relative (as opposed to an absolute) measurement of usability, we prefer to
grade on a curve in which a SUS score of 68 is at the center of the range for a “C”—after all, from
the data we have, that’s the exact average, but in the Bangor et al. (2009) grading scheme, it’s a
“D.” It’s also virtually impossible to get an “A” following the grade assignment suggested by
Bangor et al., reminding us of those feared college professors who never gave an “A.” Although it
does happen that individual participants give SUS scores of 100, in a review of 241 studies (Sauro,
2011a), only two—less than 1%—had mean SUS scores above 90. To provide a fairer grading
assignment, we used percentiles like those calculated for Table 8.5 to develop the curved grading
scale shown in Table 8.6 for mean SUS scores computed from a set of individual SUS scores for a
study (keeping in mind the importance of computing confidence intervals to establish the range of
likely mean SUS scores for any given sample of individual SUS scores—such a confidence interval
might indicate a grade range rather than a single grade).

To get to a finer grain of analysis, Sauro (2011a) organized SUS data by the type of interface. To
generate a global benchmark for SUS, he combined the Bangor et al. (2008), Sauro (2011a), and Tullis
and Albert (2008) data sets. The Tullis data included 129 SUS surveys from the companion website for

Table 8.5 Percentile Ranks for Raw SUS Scores

Raw SUS Score Percentile Rank Raw SUS Score Percentile Rank

5 0.3% 69 53%
10 0.4% 70 56%
15 0.7% 71 60%
20 1% 72 63%
25 1.5% 73 67%
30 2% 74 70%
35 4% 75 73%
40 6% 76 77%
45 8% 77 80%
50 13% 78 83%
55 19% 79 86%
60 29% 80 88%
65 41% 85 97%
66 44% 90 99.8%
67 47% 95 99.9999%
68 50% 100 100%

Poststudy Questionnaires 203



Tullis and Albert (2008), www.MeasuringUserExperience.com (which in turn was obtained from
reviewing studies in the ACM portal and other publications for SUS). The means by interface type for
the Bangor et al. data were provided by Philip Kortum (personal communication, 1/12/2011).

In total, this analysis included data from 446 surveys/usability studies. A survey/study has multi-
ple respondents (most have been between 10 and 30 respondents and some have more than 300).
Table 8.7 is a summary table of benchmarks by interface type created by weighting the means and
standard deviations based on the sample size. As shown in the row labeled “Global,” the weighted
mean from all three sources was an average of 68 with a standard deviation of 12.5.

Does It Hurt to Be Positive? Evidence from an Alternate Form of the SUS
Consider the following statement (Travis, 2008):

There are many issues to consider when designing a good questionnaire, and few usability ques-
tionnaires are up to scratch. For example, we’ve known for over 60 years that you need to avoid
the “acquiescence bias”: the fact that people are more likely to agree with a statement than dis-
agree with it (Cronbach, 1946). This means that you need to balance positively-phrased statements
(e.g., ““I found this interface easy to use”“) with negative ones (e.g., ““I found this interface diffi-
cult to navigate”“). So it’s surprising that two commonly used questionnaires in the field of
usability—the Usefulness, Satisfaction, and Ease of use (USE) questionnaire and the Computer
System Usability Questionnaire (CSUQ)—suffer from just this problem: every question in both of
these questionnaires is positively phrased, which means the results from them are biased towards
positive responding.

Travis (2008) isn’t alone in his criticism of usability questionnaires that have items with consis-
tent positive tone—in other words, questionnaires that have all items express a positive thought
with which respondents are to agree or disagree. However, the decision to vary or not to vary item
tone is not simple. There are factors other than response biases that developers of standardized
usability questionnaires must take into account.

Table 8.6 Curved Grading Scale Interpretation of
SUS Scores

SUS Score Range Grade Percentile Range

84.1–100 A+ 96–100
80.8–84 A 90–95
78.9–80.7 A− 85–89
77.2–78.8 B+ 80–84
74.1–77.1 B 70–79
72.6–74 B− 65–69
71.1–72.5 C+ 60–64
65–71 C 41–59
62.7–64.9 C− 35–40
51.7–62.6 D 15–34
0–51.7 F 0–14
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Table 8.7 SUS Benchmarks by Interface Type

Category Description Mean SD N

99% Confidence Interval

Lower Limit Upper Limit

Global Data from the entire set of 446 surveys/studies 68 12.5 446 66.5 69.5
B2B Enterprise software application such as

accounting, HR, CRM, and order-management
systems

67.6 9.2 30 63 72.2

B2C Public facing mass-market consumer software
such as office applications, graphics
applications, and personal finance software

74 7.1 19 69.3 78.7

Web Public facing large-scale websites (airlines,
rental cars, retailers, financial service) and
intranets

67 13.4 174 64.4 69.6

Cell Cell phone equipment 64.7 9.8 20 58.4 71
HW Hardware such as phones, modems, and

Ethernet cards
71.3 11.1 26 65.2 77.4

Internal SW Internal productivity software such as customer
service and network operations applications

76.7 8.8 21 71.2 82.2

IVR Interactive voice response (IVR) systems, both
phone and speech based

79.9 7.6 22 75.3 84.5

Web/IVR A combination of Web-based and interactive
voice response systems

59.2 5.5 4 43.1 75.3
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THE DECISION TO USE A CONSISTENTLY POSITIVE TONE IN THE IBM QUESTIONNAIRES
Why Not Systematically Vary the Tone of Items in Usability Questionnaires?
From the files of Jim Lewis

When I was working with the team that produced the PSSUQ and ASQ in 1988, we had quite a bit of discus-
sion regarding whether to use a varied or consistent item tone. Ultimately, we decided to be consistently positive,
even though that was not the prevailing practice in questionnaire development. In 1999, I wrote the following in
response to criticisms of that decision (Lewis, 1999, pp. 1025–1026):

Probably the most common criticism I’ve seen of the IBM questionnaires is that they do not use the standard
control for potential response bias. Our rationale in consistently aligning the items was to make it as easy as
possible for participants to complete the questionnaire. With consistent item alignment, the proper way to
mark responses on the scales is clearer and requires less interpretive effort on the part of the participant.
Even if this results in some response bias, the typical use of usability questionnaires is to compare systems
or experimental conditions. In this context of use, any systematic response bias will cancel out across
comparisons.

I have seen the caution expressed that a frustrated or lazy participant will simply choose one end point
or the other and mark all items the same way. With all items aligned in the same way, this could lead
to the erroneous conclusion that the participant held a strong belief (either positive or negative) regard-
ing the usability of the system. With items constructed in the standard way, such a set of responses
would indicate a neutral opinion. Although this characteristic of the standard approach is appealing, I
have seen no evidence of such participant behavior, at least not in the hundreds of PSSUQs that I have
personally scored. I am sure it is a valid concern in other areas of psychology—especially some areas of
clinical or counseling psychology, where the emphasis is on the individual rather than group compari-
sons. It is possible that constructing a usability assessment questionnaire in the standard way could
lead to more item-marking errors on the part of sincere participants than the approach of consistently
aligning items (although I know of no research in this area).

Our primary concern was that varying the tone would make the questionnaires more difficult for users to com-
plete, and as a consequence might increase the frequency of user error in marking items (Lewis, 1999, 2002).
Until Jeff and I conducted our study of the all-positive version of the SUS (Sauro and Lewis, 2011), however,
that was just a hypothesis—a hypothesis now confirmed 12 years after Lewis (1999) and over 20 years since the
development of the PSSUQ, ASQ, and CSUQ.

On one hand, there are potential advantages to alternating the tone of questionnaire items. The
major impetus for alternating item tone is to control response biases such as acquiescence (the ten-
dency of respondents to agree with items) and extreme responses (the rare tendency of some
respondents to provide the maximum or minimum response for all items). On the other hand, there
are three major potential disadvantages of this practice (the three “M’s”):

1. Misinterpret: Users may respond differently to negatively worded items such that reversing
responses from negative to positive doesn’t account for the difference. For example, problems
with misinterpreting negative items can include the creation of artificial two-factor structures and
lowering internal reliability, especially in cross-cultural contexts (Barnette, 2000; Cheung and
Rensvold, 2000; Davis, 1989; Grimm and Church, 1999; Ibrahim, 2001; Nunnally, 1978; Quilty
et al., 2006; van de Vijver and Leung, 2001).

2. Mistake: Users might not intend to respond differently, but may forget to reverse their score,
accidently agreeing with a negative statement when they meant to disagree. We have been with
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participants who acknowledged either forgetting to reverse their score or commenting that they
had to correct some scores because they realized they had responded in the opposite of their
intention.

3. Miscode: Researchers might forget to reverse the scales when scoring, and would consequently
report incorrect data. Despite there being software to easily record user input, researchers still
have to remember to reverse the scales. Forgetting to reverse the scales is not an obvious error.
The improperly scaled scores are still acceptable values, especially when the system being tested
is of moderate usability (in which case many responses will be neutral or close to neutral).

Regarding the prevalence of miscoding, there are two sources of data available. First, in 2009, 8 of
15 teams used the SUS as part of the Comparative Usability Evaluation-8 (CUE-8) workshop at the
Usability Professionals Association annual conference (Molich et al., 2009). Of the 8 teams, 1 team
improperly coded their SUS results. Second, as part of an earlier analysis of SUS, Sauro and Lewis
(2009) examined 19 contributed SUS data sets; 2 were improperly coded and needed to be recoded
prior to inclusion in the larger-scale analysis. Thus, 3 out of 27 SUS data sets (11.1%) had negative
items that practitioners had failed to reverse, leading to incorrect SUS scores. Assuming this to be a
reasonably representative selection of the larger population of SUS questionnaires, the associated
95% confidence interval suggests that miscoding affects somewhere between 3% and 28% of SUS
data sets (most likely closer to 10%).

Despite published concerns about acquiescence bias, there is little evidence that the practice of
including both positively and negatively worded items solves the problem. To our knowledge there
is no research documenting the magnitude of acquiescence bias in general, or whether it specifically
affects the measurement of attitudes toward usability. For that reason, in Sauro and Lewis (2011)
we explored three questions:

1. Is there an acquiescence bias in responses to the SUS, and if so, how large is it?
2. Does the alternating wording of the SUS provide protection against acquiescence and extreme

response biases?
3. Further, does its alternating item wording outweigh the negatives of misinterpreting, mistaking,

and miscoding?

To explore these questions, we created an all-positive version of the SUS. As shown in Figure 8.7,
the even-numbered items, originally written in a negative tone, maintain a similar content but are positive
in this version. The odd-numbered items are the same as in the standard version. Given the planned
tasks, both versions had the minor substitution of “website” for “system.” Note that to get overall scores
from 0 to 100, it is still necessary to recode responses, but the recoding rule is the same for all items—
subtract 1 from the raw item score to get the recoded score, sum them, and then multiply by 2.5.

In August and September 2010, 213 users (recruited using Amazon’s Mechanical Turk micro-
tasking service, all from the United States) performed two representative tasks on one of seven web-
sites (third-party automotive or primary financial services websites: Cars.com, Autotrader.com,
Edmunds.com, KBB.com, Vanguard.com, Fidelity.com, or TDAmeritrade.com). At the end of the
study users completed either the standard or the positive version of the SUS. The assignment of
questionnaires to participants was random. Between 15 and 17 users completed each version for
each website.
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Coefficient alpha was high for both versions, with 0.92 for the standard version and 0.96 for the
positive version. There was no significant difference between the questionnaires for overall SUS
score (t(206) = 0.85, p > 0.39), the average of the even items (t(210) = 1.09, p > 0.27), or the aver-
age of the odd items (t(206) = 0.6, p > 0.54). There was a difference in the means of the odd- and
even-numbered items (standard: t(210) = 3.09, p < 0.01; positive: t(209) = 2.32, p < 0.03), but that
difference was consistent across the versions of the questionnaire, as indicated by the nonsignificant
interaction (F(1, 211) = 0.770, p > 0.38), shown in Figure 8.8.

In other words, carefully rewording the negative items to a positive tone appeared to have no sig-
nificant effect on the resulting scores. Note that the means for the even- and odd-numbered items are
the means after appropriate recoding for the items to shift the item scores from their raw form to a
scale that runs from 0 to 4 for each item, where a 0 is a poor rating and 4 is the most favorable. Thus,
the recoding rule for the even items in the positive version is different from the rule for even items in
the standard version due to their difference in tone.

The measure of acquiescence bias was the number of agreement responses (4 or 5) to the odd-
numbered (consistently positively worded) items in both questionnaires. The mean number of agree-
ment responses was 1.64 per questionnaire for the standard SUS (SD = 1.86, n = 107) and 1.66 for
the positive version (SD = 1.87, n = 106)—no significant difference (t(210) = −0.06, p > 0.95).

The measure of extreme response bias was the number of times respondents provided either the
highest or lowest response option (1 or 5) for both questionnaire types for all items. The mean num-
ber of extreme responses was 1.68 for the standard SUS (SD = 2.37, n = 107) and 1.36 for the
positive version (SD = 2.23, n = 106)—again, no significant difference (t(210) = 1.03, p > 0.3).

1
I think that I would like to use the website
frequently.

The System Usability Scale

Positive Version

Strongly

disagree

1 2 3 4 5

Strongly

agree

I found the website to be simple.

I thought the website was easy to use.

I think that I could use the website without the
support of a technical person.

I found the various functions in the website were
well integrated.

I thought there was a lot of consistency in the
website.

I would imagine that most people would learn to
use the website very quickly.

I found the website very intuitive.

I felt very confident using the website.

I could use the website without having to learn
anything new.

2
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5
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7

8

9

10

FIGURE 8.7

The positive version of the SUS.
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There were two potential indicators of mistakes, both based on consistency of response. One indica-
tor was if there were at least three responses indicating agreement to positively and negatively worded
items or three responses with disagreement to positively and negatively worded items. The second
approach was to examine responses to the most highly correlated negative and positive item that,
according to the large data set of Bangor et al. (2008), were items 2 and 3 (r = 0.593). Examination of
the responses to the standard SUS questionnaire found that 18 of the 107 original SUS questionnaires
contained at least three internal inconsistencies (16.8%, 95% confidence interval ranged from 10.8% to
25.1%) and 53 questionnaires had inconsistent responses for items 2 and 3 (49.5%, 95% confidence
interval ranged from 40.2% to 58.9%).

The final comparison was to use factor analysis to compare the two-factor structures of the data for
the standard and positive versions of the SUS with the large-sample structure reported in Lewis and
Sauro (2009). In that prior factor analytic work, the SUS items clustered into two factors, with one fac-
tor (Usable) containing items 1, 2, 3, 5, 6, 7, 8, and 9, and the other factor (Learnable) containing items
4 and 10. Neither of the resulting alignments of items with factors exactly duplicated the findings with
the large samples of the SUS, and neither were they exactly consistent with each other, with discrepan-
cies occurring on items 6, 8, and 9. Both the original and positive versions were consistent with the
large sample finding of including items 4 and 10 in the second factor. The original deviated slightly
more than the positive from the large sample factor structure (original items 6 and 8 aligned with the
second rather than the first factor; positive item 9 aligned with the second rather than the first factor).
The difference in the structure observed for this sample of standard SUS responses and the structure
reported by Lewis and Sauro (2009) (and replicated by Borsci et al., 2009) could be due to its relatively
small sample size. There is a need for further research to see if this pattern remains stable.

The major conclusions drawn from this study were:

• There is little evidence that the purported advantages of including negative and positive items in
usability questionnaires outweigh the disadvantages.

• Researchers interested in designing new questionnaires for use in usability evaluations should
avoid the inclusion of negative items.
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Nonsignificant interaction between odd and even items of standard and positive versions of the SUS.

Poststudy Questionnaires 209



• Researchers who use the standard SUS have no need to change to the all-positive version
provided that they verify the proper coding of scores. In moderated testing, researchers should
include procedural steps (e.g., during debriefing) to ensure error-free completion.

• In unmoderated testing, it is more difficult to correct the mistakes respondents make, although
these data suggest that the effect is unlikely to have a major impact on overall SUS scores.

• Researchers who do not have a current investment in the standard SUS can use the all-positive
version with confidence because respondents are less likely to make mistakes when responding,
researchers are less likely to make coding errors, and the scores will be similar to the standard SUS.

GOING TO EXTREMES
Is It Possible to Create Versions of the SUS So Extreme That They Affect Measurement?
From the files of Jeff Sauro

In 2008 I was part of a panel at the annual Usability Professionals Association conference entitled “Subjective
Ratings of Usability: Reliable or Ridiculous?” (Karn et al., 2008). Notably, the panel included two of the origina-
tors of two of the questionnaires discussed in this chapter: Kent Norman (QUIS) and Jurek Kirakowski (SUMI). As
part of the panel presentation, we conducted an experiment on the effects of item wording on SUS scores to inves-
tigate two variables: item intensity and item direction (Sauro, 2010c). For example, the extreme negative version of
the SUS Item 4 was “I think that I would need a permanent hotline to the help desk to be able to use the website.”

Participants were volunteers who reviewed the UPA website. After the review, they completed one of five SUS
questionnaires: an all-positive extreme, all-negative extreme, one of two versions of an extreme mix (half-positive
and half-negative extreme), or the standard SUS questionnaire (as a baseline). Sixty-two people participated in
this between-subjects design, providing between 10 and 14 responses per questionnaire. Even with this relatively
small sample size, the extreme positive and extreme negative items were significantly different from the original
SUS (F(4,57) = 6.9, p < 0.001).

The results were consistent with prior research showing that people tend to agree with statements that are
close to their attitude and to disagree with all other statements (Spector et al., 1997; Thurstone, 1928). By
rephrasing items to extremes, only respondents who passionately favored the usability of the UPA website tended
to agree with the extremely phrased positive statements—resulting in a significantly lower average score. Like-
wise, only respondents who passionately disfavored the usability agreed with the extremely negatively phrased
questions—resulting in a significant higher average score. Because intensity can affect item responses toward
attitudes of usability, designers of usability questionnaires should avoid such extreme items.

Experimental Comparison of Poststudy Usability Questionnaires
There are few direct comparisons of the various standardized usability questionnaires (making this a
promising area of research for motivated graduate students). In addition to the traditional psycho-
metric measures of reliability and validity, usability practitioners have a practical need for question-
naires that are sensitive to changes in usability. Going beyond the simple definition of sensitivity as
the capability of a standardized usability questionnaire to indicate significant differences between
systems, Tullis and Stetson (2004) examined differences in the sensitivity of five methods used to
assess satisfaction with usability.

The five methods investigated by Tullis and Stetson (2004) were:

• SUS: The standard version of the SUS, as described earlier in this chapter.
• QUIS: A variant of the 27-item version of the QUIS described earlier in this chapter that used

10-point scales, with three items dropped that were not appropriate for assessing websites (e.g.,
“Remembering names and use of commands”), the term “system” replaced by “website,” and
the term “screen” generally replaced by “web page.”
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• CSUQ: As described later in this chapter, the CSUQ is a variant of the PSSUQ (previously
described) with very similar psychometric properties—this study used the 19-item Version 2
(Lewis, 1995), replacing the term “system” with “website,” and for consistency with the other
methods, labeling the lower end of the scale with “Disagree” and the upper end with “Agree” so
larger values indicate more satisfaction with usability.

• Words: Tullis and Stetson (2004) based this method on the 118 words used in Microsoft’s
Product Reaction Cards (Benedek and Miner, 2002)—participants chose the words that best
described their interaction with the website, and were free to choose as many or as few words
as they wished; satisfaction scores were the ratio of positive to total words selected.

• Fidelity questionnaire: Used at Fidelity for several years in usability tests of websites, composed
of nine statements (e.g., “This website is visually appealing”) to which users respond on a seven-
point scale from “Strongly Disagree” to “Strongly Agree” with scale steps numbered −3, −2, −1,
0, 1, 2, 3 (obvious neutral point at 0).

A total of 123 Fidelity employees participated in the study, randomly assigned to one of the meth-
ods, which they used to evaluate their satisfaction after completing two tasks at two financial websites.
The tasks were (a) find the highest price in the past year for a share of a specified company, and (b)
find the mutual fund with the highest three-year return. The order in which participants visited the sites
was random.

Analysis of the overall results for all methods showed a significant preference for Site 1 over Site
2. In the more interesting analysis, Tullis and Stetson (2004) randomly selected subsamples of the
data at sample sizes of 6, 8, 10, 12, and 14 for each method. They then investigated which methods
most quickly converged on the “correct” conclusion regarding the usability of two websites as a func-
tion of sample size (a variable of practical importance to usability practitioners), where correct meant
a significant t-test consistent with the decision reached using the total sample size—that Site 1 was
more usable than Site 2.

As shown in Figure 8.9, of the five methods assessed by Tullis and Stetson (2004), the SUS was the
fastest to converge on the final (correct) conclusion, reaching 75% agreement at a sample size of
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Relative sensitivities of five methods for assessing satisfaction with usability.
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8 and 100% agreement when n = 12. The CSUQ (a variant of the PSSUQ, discussed later in this
chapter) was the second fastest, reaching 75% agreement at a sample size of 10 and 90% agreement
when n = 12. In contrast, even when n = 14, the other methods were in the low to mid-70% of agree-
ment with the correct decision. This is compelling evidence that practitioners should prefer the SUS
as a method of assessing satisfaction with usability, especially when facing limited resources for sam-
ple size and having no need for multidimensional measurement. For studies that would benefit from
multidimensional assessment of usability, practitioners should consider the CSUQ (or PSSUQ).

ITEM RESPONSE THEORY AND STANDARDIZED USABILITY QUESTIONNAIRES
Why Apply CTT Rather Than IRT?
For most of the previous century, the basis for psychometric test development was a set of techniques collec-
tively known as classical test theory (CTT). Most of the psychometric training that psychologists have received is
in the techniques of CTT (Zickar, 1998). For a comprehensive treatment of basic CTT, see Nunnally (1978).
Starting in the last quarter of the 20th century (and accelerating in the last two decades) is an alternative
approach to psychometrics known as item response theory (IRT) (Embretson and Reise, 2000; Reise et al.,
2005). IRT has had a major impact on educational testing, affecting, for example, the development and adminis-
tration of the Scholastic Aptitude Test, Graduate Record Exam, and Armed Services Vocational Aptitude Battery.
Given its success in these areas, some researchers have speculated that the application of IRT might improve the
measurement of usability (Hollemans, 1999; Schmettow and Vietze, 2008).

It is beyond the scope of this chapter to go through all the differences between CTT and IRT (for details,
refer to a source such as Embretson and Reise, 2000). One of the key differences is that CTT focuses on scale-
level measurement, but IRT focuses on modeling item characteristics. This property of IRT makes it ideal for
adaptive computerized testing (Zickar, 1998), which is one of the reasons it has become so popular in large-
scale educational testing. On the other hand, obtaining reliable estimates of the parameters of item response
models requires data collection from a very large sample of respondents (Embretson and Reise, 2000), which
can make IRT unattractive to researchers with limited resources.

Furthermore, current IRT modeling procedures do not handle multidimensional measures very well (Embret-
son and Reise, 2000; Zickar, 1998). This is an issue for usability questionnaires because the typical conception
of the construct of usability is that it is an emergent property that depends on user, system, task, and environ-
mental variables (the same variables that make it so difficult to develop usability norms). There are no existing
IRT models that can account for all of these variables, and IRT is better suited for the measurement of latent
rather than emergent variables (Embretson and Reise, 2000).

When the development of the standardized usability questionnaires began, IRT was virtually unknown in standard
psychological psychometrics. IRT has made impressive gains in its relatively short history, but still does not appear to
be adequate to model a construct as intricate as usability. Even if it were adequate, it is not clear that the additional
effort involved would be worthwhile. Embretson and Reise (2000) observed that raw (CTT) scores and trait level (IRT)
scores based on the same data correlate highly, and “no one has shown that in real data a single psychological find-
ing would be different if IRT scores were used rather than raw scale scores” (p. 324). For these reasons, development
of future standardized usability questionnaires will likely involve CTT rather than IRT.

POST-TASK QUESTIONNAIRES
Poststudy questionnaires are important instruments in the usability practitioner’s toolbox, but they assess
satisfaction at a relatively high level. This can be a strength when comparing general satisfaction with
competitors or different versions of a product, but is a weakness when seeking more detailed diagnoses
of problem areas in a user interface. To address this weakness, many practitioners perform a quick
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assessment of perceived usability immediately after participants complete each task or scenario in a
usability study. Research has shown a substantial and significant correlation between poststudy and
post-task assessments of perceived usability (Sauro and Lewis, 2009), with r = 0.64 ( p < 0.0001; R2 =
41%), showing that they tap into a common underlying construct, but do not perfectly align. In other
words, they are similar but not identical, so it makes sense to take both types of measurements when
conducting studies. This section of the chapter describes a variety of commonly used post-task
questionnaires.

ASQ (After-scenario Questionnaire)
Description of the ASQ
The development of the ASQ (shown in Figure 8.10) took place at the same time as the PSSUQ,
described earlier in this chapter. It is a three-item questionnaire that uses the same format as the
PSSUQ, probing overall ease of task completion, satisfaction with completion time, and satisfaction
with support information. The overall ASQ score is the average of the responses to these items.
Like the PSSUQ, the ASQ is available for free use by practitioners and researchers, but anyone
using it should cite the source (e.g., Lewis, 1995, 2012b; or this book).

Psychometric Evaluation of the ASQ
Measurements of ASQ reliability have ranged from 0.9 to 0.96 (Lewis, 1990b, 1991, 1995). Use of
the ASQ in Lewis et al. (1990, analysis reported in Lewis, 1995) showed a significant correlation
between ASQ scores and successful scenario completion (r(46) = −0.4, p< 0.01)—evidence of con-
current validity. A factor analysis of the ASQ scores from the eight tasks investigated in Lewis
et al. (1990) showed a clear association of ASQ factors with associated tasks, with the eight factors
explaining almost all (94%) of the total variance (Lewis, 1991). Of the 48 participants in Lewis
et al. (1990), 27 completed all items on all ASQs. An analysis of variance on that data indicated
a significant main effect of scenario (F(7,126) = 8.92, p < 0.0001) and a significant scenario by
system interaction (F(14,126) = 1.75, p = 0.05), providing evidence of the sensitivity of the ASQ.

The After-Scenario Questionnaire

Version 1

Overall, I am satisfied with the ease of  completing
the tasks in this scenario.

Overall, I am satisfied with the amount of  time it took
to complete the tasks in this scenario.

Overall, I am satisfied with the support information
(online help, messages, documentation) when
completing the tasks. 

Strongly

agree

Strongly

disagree

O

1

1

2
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FIGURE 8.10

The ASQ.
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SEQ (Single Ease Question)
Description of the SEQ
As shown in Figure 8.11, the SEQ simply asks participants to assess the overall ease of completing a
task, similar to the ASQ Item 1. Some practitioners use a five-point version of this scale. Given research
on the relative reliability of and user preference for five- and seven-point scales (Finstad, 2010a; Lewis,
1993; Nunnally, 1978; Preston and Colman, 2000), we recommend using the seven-point version.

Psychometric Evaluation of the SEQ
Two studies have shown evidence of concurrent validity for the SEQ. Tedesco and Tullis (2006),
using a five-point version of the SEQ, reported a significant correlation with a metric (performance
efficiency) that combined task completion rates and times. Sauro and Dumas (2009) reported signifi-
cant correlations of the SEQ (seven-point version anchored on the left with “Very easy” and on the
right with “Very difficult”) with the SMEQ and the UME (r > 0.94) and with the SUS (r = −0.6, p <
0.01). (Note that as shown in Figure 8.11, a higher number on the standard SEQ corresponds to an
easier task—the scale was reversed for this study to make it consistent with the direction of the
SMEQ and UME metrics.) They also reported significant correlations with completion times (r =
−0.9) and number of errors (r = 0.84).

SMEQ (Subjective Mental Effort Question)
Description of the SMEQ
Zijlstra and van Doorn (1985) developed the SMEQ (also known as the Rating Scale for Mental
Effort, or RSME). The SMEQ (Figure 8.12) is a single-item questionnaire with a rating scale from
0 to 150 with nine verbal labels ranging from “Not at all hard to do” ( just above 0) to “Tremen-
dously hard to do” ( just above 110).

In the paper version of the SMEQ, participants draw a line through the scale (which is 150 mm in
length) to indicate the perceived mental effort of completing a task, with the SMEQ score the number
of millimeters the participant marked above the baseline of 0. In the online version developed by
Sauro and Dumas (2009), participants use a slider control to indicate their ratings. The originators of
the SMEQ claimed that it is reliable and easy to use, and that they placed the verbal labels (originally
in Dutch) by calibrating them psychometrically against tasks (Sauro and Dumas, 2009).

Psychometric Evaluation of the SMEQ
In Sauro and Dumas (2009), the SMEQ correlated significantly with the SEQ (r = 0.94, p < 0.01)
and UME (r = 0.845, p < 0.01). Like the SEQ, the SMEQ had a significant correlation with SUS
scores (r = −0.6, p < 0.01) as well as with completion time (r = −0.82), completion rates (r = 0.88),
and errors (r = −0.72) collected during the experiment—all evidence of concurrent validity.

Overall, this task was:

Very difficult Very easy

FIGURE 8.11

The standard SEQ.

214 CHAPTER 8 Standardized Usability Questionnaires



ER (Expectation Ratings)
Description of ER
Albert and Dixon (2003) described the use of expectation ratings in usability testing. Basically,
expectation ratings address the relationship between how easy or difficult a participant found a task
to be after performing it relative to how they perceived it before beginning the task. The expectation
rating procedure uses a variation of the SEQ, getting participants to rate the expected difficulty of
all of the tasks planned for a usability study before doing any of the tasks (the expectation ratings),
then collecting the post-task rating in the usual way after the completion of each task (the experi-
ence rating). For example, Tedesco and Tullis (2006) used the following two questions:

• Before doing all tasks (expectation rating): “How difficult or easy do you expect this task to be?”
• After doing each task (experience rating): “How difficult or easy did you find this task to be?”

In the original study (Albert and Dixon, 2003), the rating scales for the two questions included
seven steps with endpoints of “Very Easy” (1) and “Very Difficult” (7). Tedesco and Tullis (2006)
used five-point scales. As noted previously, given research on the relative reliability of and user
preference for five- and seven-point scales (Finstad, 2010a; Lewis, 1993; Nunnally, 1978; Preston
and Colman, 2000), we recommend using seven points.
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FIGURE 8.12

The SMEQ.

Post-task Questionnaires 215



One advantage of having the before and after ratings is that practitioners can graph a scatterplot
of the results and map them onto four quadrants (Tullis and Albert, 2008):

• Upper left (“Promote it”): These are tasks that participants thought would be difficult but turned
out to be easier than expected, so they are features that an enterprise might reasonably promote.

• Lower left (“Big opportunity”): Participants perceived these tasks as difficult before and after
performing them. There were no surprises, but these tasks represent potential opportunities for
improvement, which would move them up to the “Promote it” category.

• Upper right (“Don’t touch it”): This quadrant contains the tasks perceived as easy before and
after task performance, so it’s reasonable to just leave them alone.

• Lower right (“Fix it fast”): These are the tasks that participants thought would be easy but
turned out to be difficult—a potential source of user dissatisfaction—making this the quadrant
of primary focus for improvement.

Psychometric Evaluation of Expectation Ratings
Tedesco and Tullis (2006) reported evidence of concurrent validity for the “after” question of an
expectation rating. Specifically, they found a significant correlation (r = 0.46, n = 227, p < 0.0001)
between a combined measure of completion rates and times (performance efficiency) and the “after”
rating for a set of six tasks.

HOW WELL CAN USERS PREDICT TASK-LEVEL USABILITY?
As It Turns Out, Pretty Well
From the files of Jeff Sauro

When you ask a user to attempt a task, it seems reasonable that they quickly interpret what they’re asked to
do and have some idea about how difficult it will be. For example, if I were to ask you to compute your adjusted
gross income after accounting for deductions using some IRS forms and tax tables, you’d probably expect that to
be more difficult than finding the hours of a local department store online. I wondered how much of the actual
difficulty is revealed in the description of the task scenario. How accurate would ratings be if I just asked users
how difficult they think a task is without actually testing them?

To find out, I had one group of users rate how difficult they’d think a set of tasks would be. I then had
another set of users actually attempt the tasks and then rate how difficult they thought they were. Using separate
groups eliminates the possibility that users might have a bias to keep their before and after ratings consistent.
I picked a mix of eight tasks with a range of difficulty and used some well-known websites (Craigslist.com, Apple
.com, Amazon.com, eBay.com, and CrateandBarrel.com). I had between 30 and 40 people rate how difficult they
thought each task would be, and then I had separate groups of users (between 11 and 16 per task) attempt the
tasks on the website. For example, one task expected to be fairly easy was to find out if a Crate and Barrel store
in Denver (zip code 80210) is open on Sunday; a relatively difficult task was to estimate how much it would cost
in commissions and fees to sell your iPhone 3GS on eBay.

In general, users tended (on seven out of eight tasks) to overpredict how difficult tasks would be. The one
task that was more difficult than expected was the “eBay Seller fees” task. While I think most people expected
to pay fees to sell something on eBay, I think they expected the fee structure to be more straightforward. Part
of the difficulty in the task is because there are multiple variables (e.g., total sale price, shipping costs, and
the type of merchandise). The most notable miss was where users overpredicted the difficulty of the “Craigslist
Find apt” task by 50%. For some reason people thought this would be rather difficult. I wondered if it had to do
with people being less familiar with the San Francisco rental market. In looking at the data, people outside of
California did rate the task as more difficult, but even California residents thought finding an apartment on
Craigslist would be more difficult than it was.
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To understand how much the predicted score could explain the actual score, I conducted a simple linear
regression at the task level. Half of the variation in task difficulty can be explained by how difficult a different set
of users thinks the task will be (adjusted R2 = 50.8%). The scatterplot in Figure 8.13 shows this strong associa-
tion, with the Craigslist “find apartment” and eBay “fees” tasks highlighted to show their departure from the
trend-line (for more information on this study, see www.measuringusability.com/predicted-usability.php).
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Relationship between predicted task ease and actual task ease.

UME (Usability Magnitude Estimation)
Description of UME
Magnitude estimation has a rich history in psychophysics, the branch of psychology that attempts to
develop mathematical relationships between the physical dimensions of a stimulus and its percep-
tion. Psychophysics had its start in the early to mid-19th century with the work of Weber (on just
noticeable differences) and Fechner (sensory thresholds), culminating in Fechner’s Law (Massaro,
1975): S = k(log10I )—that there is a logarithmic relationship between the intensity of a physical
stimulus (I ) and its perceived sensation (S), replaced in most psychophysics work about 100 years
later by Stevens’ Power Law: S = kI n, which provided a better fit for most relationships (Mussen
et al., 1977). In his work, Fechner developed a variety of experimental methods, one of which was
magnitude estimation. In magnitude estimation, participants judge the intensity of a stimulus against
a baseline stimulus (e.g., how bright a stimulus light is as a ratio of the perceived brightness of a
reference light—five times as bright, half as bright, etc.).

In a usability testing context, the goal of UME is to get a measurement of usability that enables
ratio measurement, so a task (or product) with a perceived difficulty of 100 is perceived as twice as
difficult as a task (or product) with a perceived difficulty of 50. There have been a few published
attempts to apply magnitude estimation methods to the study of the perception of usability. Cordes
(1984a, 1984b) had participants draw lines to represent the relative ease of completing tasks in a
usability study. About 20 years later, McGee (2003, 2004) published favorable papers describing
his applications of UME to the measurement of usability.
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It is customary to train participants in the magnitude estimation process before attempting to
apply it to the evaluation of tasks in a usability study. The training stimuli are usually simple
stimuli, such as judging the length of lines or the areas of circles against reference objects (McGee,
2003). One common approach to UME is to have participants experience and evaluate a baseline
task, usually one that is very easy, before tackling the target tasks (Cordes, 1984a, 1984b), although
it is also possible to get estimates from an additional baseline, typically, a task that is relatively dif-
ficult, as in McGee (2004). After collecting all the data from a participant, the first step in analysis
is to use log transformation to convert the data to a consistent ratio scale (based on geometric
averages) for comparison purposes (McGee, 2003).

For example, in Sauro and Dumas (2009), the participants’ baseline task was to select the Search
icon from a set of five clearly labeled icons (assigned a baseline difficulty of 10). After completing
each target task of the usability study, participants answered an open-ended question about relative
difficulty of use that referenced the baseline (see Figure 8.14).

Researchers who promote UME believe it overcomes serious deficiencies of other measurements
of perceived usability. For example, the format of a multipoint scale item has fixed endpoints that
might overly restrict responses (ceiling or floor effects), and multipoint scales do not typically pro-
duce proven interval-level measurement. The UME process, in contrast, places no restrictions on
the ratings that participants provide.

There are, however, some thorny practical problems with applying UME in usability testing. The
claimed advantage of UME over other types of measurement of perceived usability is mired in a
controversy that has gone on since the late 1940s. We won’t cover it in this chapter, but you’ll find
a discussion of the controversy regarding levels of measurement (e.g., nominal, ordinal, interval,
and ratio) and their interpretation in Chapter 9.

Another problem with UME is that both practitioners and participants often find it difficult to
do, especially in unmoderated testing. Tedesco and Tullis (2006) had planned to include it in their
comparison of post-task subjective ratings, but were unable to do so (Tullis and Albert, 2008,
pp. 133–134):

This condition was originally based on Usability Magnitude Estimation but was significantly modified
through iterations in the study planning. In pilot testing using a more traditional version of Usability
Magnitude Estimation, they found that participants had a very difficult time understanding the con-
cepts and using the technique appropriately. As a result, they modified it to this simpler technique
[using a 100-point bipolar scale]. This may mean that Usability Magnitude Estimation is better suited
to use in a lab setting, or at least a moderated usability study, than in an online, unmoderated usability
study.

How difficult was the task you just completed compared to the Search Icon Task?

The Search Icon Task had a difficulty rating of  10

(Higher Numbers Indicate a More Difficult Task.)

Search

FIGURE 8.14

Sample UME item.
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In Sauro and Dumas (2009), participant training in UME was also an issue. “We found that users
had some difficulty, especially early in the sessions, in grasping the ratio judgments” (p. 1601). “Con-
cepts such as ‘twice as difficult’ and ‘one half as difficult’ take training and feedback to understand”
(p. 1602). Given these issues in the usability of UME, it is likely to play a relatively minor role in
the practical toolbox of most usability practitioners.

Psychometric Evaluation of UME
There is no question regarding the effectiveness of magnitude scaling in psychophysics (Mussen
et al., 1977). A variety of studies have provided evidence of the validity and sensitivity of UME.
Cordes (1984a) reported significant improvements in his UME measurements across an iteration
in the development of a complex software product in which developers fixed numerous usability
problems between the two evaluations. He also fitted the relationship between perceived diffi-
culty and task-completion time with a power function of which the exponent (0.5) indicated that
for every 100-fold increase in task-completion time there was a tenfold increase in perceived
difficulty.

McGee (2003) found significant correlation between UME and task completion time (r = −0.244,
p < 0.001), number of clicks (r = −0.387, p < 0.0001), errors (r = −0.195, p < 0.011), and assists
(r = −0.193, p < 0.012). Sauro and Dumas (2009) had 26 participants complete five travel expense
reporting tasks with two products. UME had strong correlations with task completion time (r = −0.91,
p < 0.01), the SMEQ (r = 0.845, p < 0.01), and the average of the first two items of the ASQ
(r = 0.955, p < 0.01), and also correlated significantly with overall SUS scores (r = 0.316, p < 0.01).

Experimental Comparisons of Post-task Questionnaires
The psychometric data support the use of all five post-task questionnaires: ASQ, SEQ, SMEQ, ER,
and UME. Even though they all have acceptable psychometric properties, it would be useful for
practitioners to know which tends to be the most sensitive—specifically, the one that most rapidly
converges on large sample results when samples are small. Within the past five years, there have
been two attempts to investigate this.

Tedesco and Tullis (2006) collected a set of data for five methods for eliciting post-task subjec-
tive ratings in usability testing, with 1,131 Fidelity employees completing six tasks using an internal
website. The methods tested were:

• SEQ-V1 (n = 210): A five-point item from 1 (Very Difficult) to 5 (Very Easy), with the word-
ing “Overall, this task was:.”

• SEQ-V2 (n = 230): A five-point item from 1 (Very Difficult) to 5 (Very Easy), with the word-
ing “Please rate the usability of the site for this task:.”

• ASQ (n = 244): The average of the first two items of the ASQ, using five- rather than seven-
point scales.

• ER (n = 227): These were five-point versions of the expectation rating questions of Albert and
Dixon (2003). Most analyses used only the second item, making it essentially another variant of
the SEQ (“How difficult or easy did you find this task to be?”).

• SEQ-V3 (n = 221): This was a 100-point scale from 1 (Not at all supportive and completely
unusable) to 100 (Perfect, requiring absolutely no improvement), with the wording “Please
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assign a number between 1 and 100 to represent how well the website supported you for this
task.” The original intention was to do UME for this condition, but in the end, the item was
more similar to a version of the SEQ with additional instructions to try to get participants to do
a ratio-level rating.

Using a strategy similar to that of Tullis and Stetson (2004), Tedesco and Tullis (2006) con-
ducted a subsampling analysis, taking 1,000 random samples from the full data set with subsample
sizes ranging from 3 to 29 in increments of 2, then computing the correlation between the average
ratings for the six tasks at that sample size and the average ratings found with the full data set.
They found that all five methods worked well at the larger sample sizes, with all correlations
exceeding 0.95 when n ≥ 23. Even when n = 3 the correlations were reasonably high, ranging from
about 0.72 for the ASQ to about 0.83 for the SEQ-V1. Across all the sample sizes from 3 to 29,
the SEQ-V1 was consistently more sensitive, with its greatest advantage at the smaller sample sizes.

Sauro and Dumas (2009) compared the sensitivity of three post-task questionnaires:

• SEQ: The standard SEQ, as shown in Figure 8.11, similar to the SEQ-V1 of Tedesco and Tullis
(2006), but using a seven-point rather than a five-point scale.

• SMEQ: An online version of the SMEQ, similar to that shown in Figure 8.12, with a slider
control for setting its value that started slightly above the top of the scale.

• UME: An online version of the UME, similar to Figure 8.14.

In the study, 26 participants completed five travel expense reporting tasks using two released
versions of a similar application. Half of the participants started with each application, and the
assignment of rating types across tasks and products was also counterbalanced. To the extent that
time allowed, participants attempted each task up to three times, for a maximum of up to 30 tasks
per participant. In addition to completing the tasks and post-task ratings, participants also completed
the standard SUS for both products.

The SUS scores for the two products indicated a significant difference in perceived usability,
with no overlap between the products’ 95% confidence intervals (one with a mean of just over 50,
the other with a mean exceeding 75). Analyses at the task level indicated similar outcomes for SEQ
and SMEQ, both of which picked up significant differences for four out of five tasks. In contrast,
UME indicated significant differences between the products for only two of the five tasks. The
results of a resampling exercise were consistent with these task-level results. Figure 8.15 shows, for
1,000 samples with replacement at sample sizes of 3, 5, 8, 10, 12, 15, 17, 19, and 20, the percen-
tage of significant t-tests (p < 0.05) consistent with the findings from the entire sample.

At very small sample sizes, there was little difference between the methods, all of which were
insensitive (about 16% significant t-tests when n = 3; about 36% when n = 5). When n = 8 the meth-
ods began to diverge, with UME falling behind SEQ and SMEQ. As the sample size increased,
UME continued to fall behind, never achieving higher than about 65% significant t-tests. For all
sample sizes greater than 5, SMEQ had a higher percentage of significant t-tests than SEQ, but not
significantly greater.

In both comparative studies (Sauro and Dumas, 2009; Tedesco and Tullis, 2006), UME fared
poorly in comparison to the other post-task methods. Overall, the results support the use of the stan-
dard SEQ (as shown in Figure 8.11) or, for online data collection, the SMEQ (see Figure 8.12) for
practical post-task assessment of perceived task difficulty.
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QUESTIONNAIRES FOR ASSESSING PERCEIVED USABILITY OF WEBSITES
The initial development of the major standardized usability questionnaires took place in the mid- to
late 1980s, with publication in the early to mid-1990s—before the widespread adoption of the Web.
In fact, in 1988, during the studies that provided the initial data for the PSSUQ (Lewis et al.,
1990), it was necessary to train many of the novice participants in how to use a mouse before they
could start the key tasks of the studies. After the Web began to achieve its popularity as a means
for conveying information and conducting commerce, questionnaires designed more specifically for
the assessment of the perceived usability of websites appeared.

USING NON-WEB QUESTIONNAIRES TO ASSESS WEBSITE USABILITY
What’s So Special about the Web?
Because websites share many properties with other types of software, it is possible to evaluate some aspects of
their usability with non-Web standardized usability questionnaires. This is especially true to the extent that the
evaluation focuses on traditional usability attributes of effectiveness, efficiency, and satisfaction. There are,
however, ways in which websites differ from other types of software. One way in which websites differ from other
software is in the importance of effective browsing. Another is its emerging focus on commercial self-service, repla-
cing tasks formerly performed by customer service agents or interactive voice response applications (Lewis, 2011).

When you use software provided by your company as part of your job, trust doesn’t play a major role in your
decision to use it. On the other hand, when you visit a website, there are many elements of trust in play, such as
whether you trust the information provided or trust the company behind the website to act in good faith with regard to
purchases you might make or their treatment of your personal and financial data. There have been efforts to develop
psychometrically qualified trust scales (Safar and Turner, 2005). Those are not part of the leading four poststudy
usability questionnaires (QUIS, SUMI, PSSUQ, and SUS). Usability practitioners evaluating websites could add the
trust scales to one of the post-website questionnaires, or they could explore the use of questionnaires specifically
developed for the evaluation of the perceived usability of websites (Aladwani and Palvia, 2002; Bargas-Avila et al.,
2009; Kirakowski and Cierlik, 1998; Lascu and Clow, 2008; Sauro, 2011b; Wang and Senecal, 2007).
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WAMMI (Website Analysis and Measurement Inventory)
Description of the WAMMI
One of the first research groups to recognize the need for an instrument specialized for the assessment
of websites was the Human Factors Research Group (HFRG) at University College Cork in Ireland
(Kirakowski and Cierlik, 1998). In association with Nomos Management AB of Stockholm, they cre-
ated the WAMMI. The source for its items were statements of opinion collected from a large number of
designers, users, and web masters about positive and negative experiences associated with websites.
After content and factor analysis, the resulting questionnaire had the same factor structure as the SUMI,
with 12 items for each of the factors (a total of 60 items). The current version of the WAMMI has a set
of 20 five-point items, still covering five subscales (Attractiveness, Controllability, Efficiency, Helpful-
ness, and Learnability) and a global measure (www.wammi.com). Figure 8.16 shows a sample WAMMI
item. The entire questionnaire is available for review at www.wammi.com/samples/index.html (or see
Figure 6.17 of Tullis and Albert, 2008, p. 152).

Like the SUMI, standardized global WAMMI scores have a mean of 50 and a standard devia-
tion of 10. Also like the SUMI, the instrument is available free of charge for educational use after
receiving a letter of permission. There is a cost for commercial use, but the WAMMI website lists
contact information rather than specific fees. The WAMMI is available in Danish, Dutch, English,
Finnish, French, German, Italian, Norwegian, Polish, Portuguese (European), Spanish, and Swedish.
Again using the SUMI strategy, one of the strengths of the WAMMI is the possibility of comparing
a given set of results against a proprietary database of WAMMI scores: “The uniqueness of
WAMMI is that visitor-satisfaction for the site being evaluated is compared with values from our
reference database, which now contains data from over 300 surveys” (www.wammi.com/whatis.html,
visited April 3, 2011).

Psychometric Evaluation of the WAMMI
Kirakowski and Cierlik (1998) reported the first version of the WAMMI to be reliable, valid, and sensi-
tive. Coefficient alpha ranged from 0.7 to 0.9 for the subscales, and was 0.96 overall. A comparison of
two websites showed correspondence between WAMMI scores and task-level measurements of SMEQ
and RUE (relative user efficiency—the time on task of a test user divided by the time on task of an
expert user); unfortunately, there were no data provided of statistical tests of validity or sensitivity.

In changing from 60 items in the original WAMMI to 20 items in the current version, you’d expect
some decline in reliability. According to the WAMMI website (www.wammi.com/reliability.html), the
current reliabilities (coefficient alpha) for the WAMMI global measurement and subscales are:

• Attractiveness: 0.64
• Controllability: 0.69
• Efficiency: 0.63

This web site has much that is of  interest to me.

Statements 1−10 of 20
Strongly

agree

Strongly

disagree

FIGURE 8.16

Sample WAMMI item.
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• Helpfulness: 0.7
• Learnability: 0.74
• Global: 0.9

With about four items per subscale, these values are a bit on the low side, but still indicative of
a reasonable level of reliability, especially for large-sample studies. The WAMMI developers may
well have decided to trade off some reliability to dramatically reduce the length of the questionnaire
and the time required to complete it.

SUPR-Q (Standardized Universal Percentile Rank Questionnaire)
Description of the SUPR-Q
The SUPR-Q (Sauro, 2011b) is a rating scale designed to measure perceptions of usability, credibility/
trust, appearance, and loyalty for websites. Like the WAMMI, the SUPR-Q provides relative rankings
expressed as percentages, so a SUPR-Q percentile score of 50 is average (roughly half the websites
evaluated in the past with the SUPR-Q have received better scores and half received worse). In addi-
tion to this global comparison, the SUPR-Q normative database (with data from over 200 websites
and over 5000 users) allows comparison of scores with a subset of 100 other websites and 18 indus-
tries. The price of a commercial license for the SUPR-Q is $499 for the limited license and $1999 for
access to scores from 100 websites from the normative database. As shown in Figure 8.17, the
SUPR-Q has 13 items (derived from an initial pool of 75 items), with 12 five-point items (1 =
strongly disagree to 5 = strongly agree) and one 11-point item, Likelihood to Recommend (identical
to the item used in the Net Promoter Score, described later in this chapter).

To score the SUPR-Q, add the responses for the first 12 questions plus half the score for the thir-
teenth item (likelihood to recommend). These raw SUPR-Q scores can range from a low of 12 to a high
of 65. Comparison of raw SUPR-Q scores with the SUPR-Q database allows conversion to percentile
ranks for the global score, the four subscales, and each of the 13 questions. For example, a global
SUPR-Q score of 75% means the global score for the tested website was higher than 75% of all web-
sites in the SUPR-Q database.

Psychometric Evaluation of the SUPR-Q
The reliability of SUPR-Q global and subscale scores is:

• Usability (Items 1, 2, 3, 5): 0.94
• Credibility/Trust (Items 4, 6, 8, 10, 11): 0.89
• Appearance (Items 7, 9): 0.82
• Loyalty (Items 12, 13): 0.72
• Global (all items): 0.94

All SUPR-Q scale reliabilities exceed 0.7—even those with only two items. A high correlation
between the SUPR-Q Usability scale and the SUS (r = 0.96, p < 0.001) provides evidence of con-
current validity (explaining 93% of the variability of the SUS when administered in a web study).
The SUPR-Q Global score also correlates highly with concurrently administered SUS scores (r =
0.96, p < 0.001). When 108 users across eight different websites completed both the SUPR-Q and
the WAMMI questionnaire, the correlations between the SUPR-Q Usability and Global scores cor-
related highly with mean WAMMI scores (r > 0.8, p < 0.01). With regard to its sensitivity, the
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SUPR-Q was able to discriminate well against websites that have been known to have poor usabil-
ity, trust, loyalty, and appearance against others that score highly on those attributes.

Other Questionnaires for Assessing Websites
Since the beginning of the 21st century, there have been a number of other publications of question-
naires designed for the assessment of websites. The focus of this research has ranged from assess-
ment of perceived quality and satisfaction to perceived usability. None of these questionnaires are
as well known in the user research community as the WAMMI and SUPR-Q, but they may be of
interest to practitioners specializing in the assessment of websites.

Aladwani and Palvia (2002) developed a questionnaire to capture key characteristics of web qual-
ity from the user’s perspective. Starting with a pool of 102 representative items, their 25-item ques-
tionnaire (seven-point items from 1 = strongly disagree to 7 = strongly agree, all positive tone)
measured four dimensions of web quality, all of which had coefficient alphas exceeding 0.85: specific
content (0.94), content quality (0.88), appearance (0.88), and technical adequacy (0.92). The reliabil-
ity of the overall scale was 0.91. A multitrait, multimethod matrix indicated significant convergent
and divergent validity, and concurrent evaluation with a three-point rating of overall web quality

1 This website is easy to use.

The SUPR-Q Strongly

disagree

Not at all

likely

0 1 2 3 4 5 6 7 8 9 10

Neutral Extremely

likely

1 2 3 4 5

Strongly

agree

3 I enjoy using the website.

4 I feel comfortable purchasing from this website.

5 I am able to find what I need quickly on this website.
6 I can count on the information I get on this website.

7 I found the website to be attractive.
8 I feel confident conducting business with this website.

9 The website has a clean and simple presentation.

10 The information on this website is valuable.

11 The website keeps the promises it makes to me.

12

13

I will likely return to this website in the future.

How likely are you to recommend
this website to a friend or
colleague?

2 It is easy to navigate within the website.

FIGURE 8.17

The SUPR-Q.
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resulted in significant correlations with their overall scale (r = 0.73, p < 0.01) and the subscales
(r ranging from 0.3 to 0.73, all p < 0.01). For the 25-item user-perceived web quality instrument, see
their Table 5 (Aladwani and Palvia, 2002, p. 474).

Wang and Senecal (2007) sought to develop a short, reliable, and valid questionnaire for the
assessment of perceived usability of a website for comparative benchmarking purposes. Based on
their literature review, they conceptualized website usability as having three factors: ease of naviga-
tion, speed, and interactivity. From an initial pool of 12 items drawn from previous questionnaires,
their final questionnaire contained eight items (three for navigation, three for speed, and two for
interactivity, with coefficient alphas of 0.85, 0.91, and 0.77, respectively). A confirmatory factor
analysis indicated an excellent fit of the data to their three-factor model. An assessment of concur-
rent validity showed a significant correlation between their overall usability scores and a measure-
ment of user attitude toward the tested website (r = 0.73, p < 0.001).

Lascu and Clow (2008) developed and validated a questionnaire for the assessment of website inter-
action satisfaction, drawing on the market research literature on satisfaction and service quality and the
information systems literature on user information satisfaction. From an initial pool of 132 items, the
final questionnaire contained 15 items identified as important characteristics of excellent websites (see
their Table 3, Lascu and Clow, 2008, p. 373). Each item had a positive tone, with five scale steps start-
ing with 5 (strongly agree with the statement) on the left and ending with 1 (strongly disagree with the
statement). Factor analysis indicated support for four subscales, all with coefficient alpha exceeding 0.6:
customer centeredness (0.92), transaction reliability (0.8), problem-solving ability (0.77), and ease of
navigation (0.6). Coefficient alpha for the overall scale was 0.898. The results of a confirmatory factor
analysis and evaluation of discriminant validity supported the four-factor model.

Bargas-Avila et al. (2009) developed a questionnaire to measure user satisfaction with company
intranets, the Intranet Satisfaction Questionnaire (ISQ). After the initial evaluation of items, 18 items
made the cut into the first large sample evaluation of the intranet of an insurance company (n = 881).
Item analysis from the initial data set led to the deletion of 5 items, leaving 13 six-point items (all
positive tone, 1 = “I strongly disagree” to 6 = “I strongly agree”) in the second version of the ques-
tionnaire (see their Table 6, p. 1247). The results of a second large sample evaluation (n = 1,350)
revealed a mean ISQ score (averaging over items) of 4.5 (SD = 0.78). The overall coefficient alpha
(based on items 1–12) was 0.89. An exploratory factor analysis indicated two factors: content quality
and intranet usability, which explained about 57% of the variability in ISQ scores. The analyses used
the original German version of the ISQ, which is also available in English, Chinese, French, Italian,
Japanese, Portuguese, Russian, Spanish, and Slovenian. “In November 2006, the ISQ was offered via
www.Intranetsatisfaction.com in various languages for free on the Internet. Since then, over 500 com-
panies from around the world have downloaded the tool and dozens have already made use of it. This
clearly confirms the need for such an instrument” (Bargas-Avila et al., 2009, p. 1250).

OTHER QUESTIONNAIRES OF INTEREST
CSUQ (Computer System Usability Questionnaire)
The CSUQ is a variant of the PSSUQ (Lewis, 1995), developed to permit the collection of a large
number of completed questionnaires and to see if the factor structure found for the PSSUQ in a
usability testing setting would stay the same in a mailed survey. The emergence of the same factors
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would demonstrate the potential usefulness of the questionnaire across different user groups and
research settings. The CSUQ is identical to the PSSUQ, with slight changes to the wording due to the
change to nonlab research. For example, Item 3 of the PSSUQ Version 3 states, “I was able to com-
plete the tasks and scenarios quickly using this system,” but Item 3 of the CSUQ Version 3 states,
“I am able to complete my work quickly using this system.” The computation of CSUQ scores is the
same as that for PSSUQ scores (discussed earlier in this chapter). Figure 8.18 shows the current
version of the CSUQ (with items removed to match the current Version 3 of the PSSUQ).

Out of 825 randomly selected IBM employees in the early 1990s, 325 returned the questionnaire
(CSUQ Version 2, which had 19 items). A maximum likelihood confirmatory factor analysis

1
Overall, I am satisfied with how easy it is to use this
system.

The Computer System Usability Questionnaire

Version 3

Strongly

agree

Strongly

disagree

1 2 3 4 5 6 7 NA

2 It is simple to use this system.

4 I feel comfortable using this system.

5 It was easy to learn to use this system.

6
I belive I became productive quickly using this
system.

7
The system gives error messages that clearly tell me
how to fix problems.

8
Whenever I make a mistake using the system, I
recover easily and quickly.

9

The information (such as online help, on-screen
messages and other documentation) provided with
this system is clear.

10 It is easy to find the information I needed.

11
The information provided with the system is effective
in helping me complete my work.

12
The organization of information on the system
screens is clear.

13 The interface* of this system is pleasant.
14 I like using the interface of this system.

15
This system has all the functions and capabilities I
expect it to have.

16

*The “interface” includes those items that you use to interact with the system. For example, some components of
the interface are the keyboard, the mouse, the microphone, and the screens (including thier graphics and language).

Overall, I am satisfied with this system.

3
I am able to complete my work quickly using this
system.

FIGURE 8.18

The CSUQ.
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indicated that the factor structure of the CSUQ was virtually identical to that of Version 1 of the
PSSUQ (which had 18 items; see Lewis, 1992, 1995), with a coefficient alpha of 0.95 for the Over-
all score, 0.93 for SysUse, 0.91 for InfoQual, and 0.89 for IntQual. The values of coefficient alpha
for the CSUQ scales were within 0.03 of those for the earlier evaluation of PSSUQ scales (Lewis,
1992). The CSUQ was sensitive to differences in a number of variables, including:

• Number of years of experience with the computer system (Overall: F(4,294) = 3.12, p = 0.02;
InfoQual: F(4,311) = 2.59, p = 0.04; IntQual: F(4,322) = 2.47, p = 0.04)

• Type of computer used (InfoQual: F(5,311) = 2.14, p = 0.06)
• Range of experience with different computers (Overall: F(3,322) = 2.77, p = 0.04; InfoQual:

F(3,311) = 2.6, p = 0.05)

These results demonstrated that the factor structure of the PSSUQ remained the same in a non-
usability lab setting, so the CSUQ scales are comparable to their corresponding PSSUQ scales. The
results also show (as noted for the SUS in Sauro and Lewis, 2011) that minor changes in the word-
ing of items for these standardized usability questionnaires do not appear to dramatically change the
factor structure.

USE (Usefulness, Satisfaction, and Ease of Use)
Lund (1998, 2001) published a preliminary report on the USE, a 30-item questionnaire designed to
capture information about Usefulness, Ease of Use, Ease of Learning, and Satisfaction. The USE is
available at Gary Perlman’s website (http://hcibib.org/perlman/question.cgi?form=USE, or see
http://usesurvey.com/ExampleQuestionnaire.html). All items have a positive tone, with scale steps
that go from 1 (strongly disagree) to 7 (strongly agree). Lund used standard psychometric methods
in the development of the USE (large initial item pool, factor analysis, computation of coefficient
alpha, iterative development), but to date the psychometric details have not been published.

UMUX (Usability Metric for User Experience)
The UMUX (Finstad, 2010b) is a new addition to the set of standardized usability questionnaires.
The primary goal of the UMUX was to get a measurement of perceived usability consistent with
the SUS but using fewer items that more closely conformed to the ISO definition of usability (effec-
tive, efficient, satisfying). UMUX items vary in tone and have seven scale steps from 1 (strongly
disagree) to 7 (strongly agree). Starting with an initial pool of 12 items, the final UMUX had four
items that included a general question similar to the SEQ (“[This system] is easy to use”) and the
best candidate item from each of the item sets associated with efficiency, effectiveness, and satisfac-
tion, where “best” means the item with the highest correlation to the concurrently collected overall
SUS score. Those three items were:

• [This system’s] capabilities meet my requirements.
• Using [this system] is a frustrating experience.
• I have to spend too much time correcting things with [this system].

To validate the UMUX, users of two systems, one with a reputation for poor usability (Sys-
tem 1, n = 273) and the other perceived as having good usability (System 2, n = 285), completed
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the UMUX and the SUS. Using a scheme similar to the SUS (recoding raw item scores to a 0–6
scale where 0 is poor and 6 is good) a UMUX score can range from 0 to 100 (sum the four
items, divide by 24, then multiply by 100). As expected, the reliability of the SUS was high,
with a coefficient alpha of 0.97. The reliability of the UMUX was also high, with a coefficient
alpha equaling 0.94. The high correlation between the SUS and UMUX scores (r = 0.96, p <
0.001) provided evidence of concurrent validity. The UMUX scores for the two systems were signif-
icantly different (t(533) = 39.04, p < 0.01) with System 2 getting better scores than System 1, which
is evidence of sensitivity.

HQ (Hedonic Quality)
To support research into non-task-related aspects of user experience, Hassenzahl et al. (2000) developed
a questionnaire for assessing hedonic quality (HQ). The HQ has seven seven-point bipolar items.
Originally in German, then translated into English, the HQ bipolar scale anchors are (Hassenzahl, 2001;
Hassenzahl et al., 2000):

• HQ1: interesting—boring
• HQ2: costly—cheap
• HQ3: exciting—dull
• HQ4: exclusive—standard
• HQ5: impressive—nondescript
• HQ6: original—ordinary
• HQ7: innovative—conservative

The study of Hassenzahl et al. (2000) included questionnaires for assessing ergonomic quality
(EQ, attributes of standard definitions of usability, such as simple/complex and clear/confusing) and
judgment of a product’s appeal (APPEAL, attributes such as pleasant/unpleasant and desirable/unde-
sirable). Twenty participants used seven software prototypes of varying design to complete a task
(switching off a pump in a hypothetical industrial plant). Factor analysis of the resulting data
showed distinct groupings for the hypothesized HQ and EQ items into separate factors. Regression
analysis showed about equal contribution of HQ and EQ to the prediction of APPEAL.

In a replication and elaboration of the previous study, Hassenzahl (2001) had 15 users rate their
experience using three different types of displays (CRT, LCD, and VS—a virtual screen projected
on the user’s desk) using HQ, EQ, APPEAL, and the SMEQ (a measure of mental effort, described
earlier in this chapter). The factor structure discriminating HQ and EQ was reasonably stable, and
again, regression analysis showed about equal impact of HQ and EQ on the prediction of APPEAL.
As evidence of discriminant validity, EQ correlated significantly with SMEQ (r = −0.61, p < 0.01),
but did not correlate with HQ (r = 0.01).

Hassenzahl has continued to develop related instruments exploring the measurement of hedonics.
For example, Hassenzahl (2004) distinguished among stimulation (novelty, challenge), identification
(self-expression), and evocation (memory-provoking) hedonics, and has differentiated between EQ
and pragmatic quality (PQ) as different aspects of standard usability (efficiency and effectiveness).
The reliabilities of these various questionnaires tend to be high, usually exceeding a coefficient
alpha of 0.85, with reasonable patterns of relationship among them and assessments of perceived
beauty and goodness.
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ACSI (American Customer Satisfaction Index)
Claes Fornell of the Stephen M. Ross Business School at the University of Michigan developed the
ACSI. Based on annual national satisfaction surveys, ACSI uses a 0–100 scale for its indexes for
10 economic sectors, 45 industries, over 225 companies, and over 200 federal or local government
services (www.theasci.org). The ACSI model includes perceived quality, perceived value, and cus-
tomer expectations driving customer satisfaction, which in turn affects customer loyalty and com-
plaints. The ACSI is particularly popular for its assessments of U.S. government and commercial
websites (Tullis and Albert, 2008). Their questionnaire for websites (see Tullis and Albert, 2008,
Figure 6.19, p. 154) has a core set of 14–20 questions using 10-point scales and covering attributes
such as quality of information, freshness of information, clarity of site organization, overall satisfac-
tion, and loyalty (likelihood to return and/or recommend to others). We do not know of any pub-
lished data on the psychometric properties of the ACSI, but it is a commonly used industrial metric
for tracking changes in customer satisfaction.

NPS (Net Promoter Score)
Introduced in 2003 by Fred Reichheld, the NPS® has become a popular metric of customer loyalty in
industry (Reichheld, 2003, 2006—see www.netpromoter.com). The NPS uses a single Likelihood to
Recommend question (“How likely is it that you would recommend our company to a friend or col-
league?”) with 11 scale steps from 0 (not at all likely) to 10 (extremely likely) (see Figure 8.17,
Item 13). In NPS terminology, respondents who select a 9 or 10 are “Promoters,” those selecting 0
through 6 are “Detractors,” and all others are “Passives.” The NPS from a survey is the percentage of
Promoters minus the percentage of Detractors, making the NPS a type of top-box-minus-bottom-box
metric (actually, top two minus bottom seven boxes), thus, the “net” in Net Promoter. The developers
of the NPS hold that this metric is easy for managers to understand and to use to track improvements
over time, and that improvements in NPS have a strong relationship to company growth.

Since its introduction, the NPS has generated controversy. For example, Keiningham et al. (2007)
challenged the claim of a strong relationship between NPS and company growth. In general, top-box
and top-box-minus-bottom-box metrics lose information during the process of collapsing measure-
ments from a multipoint scale to percentages of a smaller number of categories (Sauro, 2010d), and
thus lose sensitivity (although increasing sample sizes can make up for lack of sensitivity in a metric).

RELATIONSHIP BETWEEN THE SUS AND NPS
Perceived Usability Significantly Affects Customer Loyalty
From the files of Jeff Sauro

Even practitioners and researchers who promote the use of the NPS point out that the metric, by itself, is of
limited value. You also need to understand why respondents provide the rating they do. We all want higher cus-
tomer loyalty, so knowing what “levers” move the loyalty-needle is important. If you can make changes that will
increase loyalty, then increased revenue should follow. So, do improvements in usability increase customer loyalty?

To find out, we performed regression analyses of SUS against Net Promoter scores (Lewis, 2012a; Sauro,
2010a)—more specifically, against responses to the NPS Likelihood to Recommend (LTR) question. In total, we
examined LTR data from 2201 users from over 80 products such as rental car companies, financial applications,
and websites like Amazon.com. The data came from both lab-based usability tests and surveys of recent product

(Continued )
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(Continued )
purchases where the same users answered both the SUS and the LTR questions. Responses to the LTR and
SUS had a strong positive correlation of 0.623, meaning SUS scores explained about 39% of the variability in
responses to the LTR question. A simplified yet effective regression equation for predicting likelihood to recommend
from SUS scores is LTR = SUS/10, so a SUS score of 70 predicts an approximate response to the LTR question of
about 7. A slightly more accurate (but harder to remember) regression equation is LTR = 1.33 + 0.08(SUS).

Another way to look at the data is to see what the SUS scores are for Promoters and Detractors. As shown
in Figure 8.19, Promoters have an average SUS score of 81 while Detractors have an average score of 52.5
(p < 0.001). If you’re looking for a benchmark SUS score based on these data, it looks like anything above
an 80 will usually put you in the Promoter range.

Detractors

Promoters

SUS score

50 60 70 80 90

FIGURE 8.19

Mean and 99.9% confidence intervals for SUS scores for NPS Detractors and Promoters.

CxPi (Forrester Customer Experience Index)
Forrester (www.forrester.com) is a market research company with considerable focus on customer
experience. Since 2007 they have produced an annual Customer Experience Index report. For their
2011 report (using data collected in the fourth quarter of 2010), they asked over 7,000 U.S. con-
sumers about their interactions with airlines, banks, credit card providers, health insurance plans,
hotels, insurance providers, ISPs, investment firms, parcel shipping firms, PC manufacturers, retailers,
TV service providers, and wireless service providers.

For each of these industries and companies within industries, they provide a Customer Experience
(CxPi) score. The CxPi uses responses to three questions designed to address perceived usefulness,
usability, and enjoyability (e.g., “Thinking of your interactions with these firms over the past 90
days: (1) how well did they meet your needs?, (2) how easy were they to do business with?, (3) how
enjoyable were they to do business with?”). For each question, respondents make choices along a
five-point scale (1 = a very negative experience to 5 = a very positive experience). Similar to the

230 CHAPTER 8 Standardized Usability Questionnaires

http://www.forrester.com


NPS, the score for each of the three indexes is a top-box-minus-bottom-box net percentage score
(actually, top two minus bottom two). The CxPi is the average of the three index scores. We do not
know of any published data on the psychometric properties of the CxPi, but it is a commonly used
industrial metric for tracking annual changes in customer experience.

TAM (Technology Acceptance Model)
At roughly the same time that usability researchers were producing the first standardized usability
questionnaires, market researchers were tackling similar issues. Of these, one of the most influential
has been the Technology Acceptance Model, or TAM (Davis, 1989). According to the TAM, the
primary factors that affect a user’s intention to use a technology are its perceived usefulness and
perceived ease of use. Actual use of technologies is affected by the intention to use, which is itself
affected by the perceived usefulness and usability of the technology. In the TAM, perceived useful-
ness is the extent to which a person believes a technology will enhance job performance, and per-
ceived ease of use is the extent to which a person believes that using the technology will be
effortless. A number of studies support the validity of the TAM and its satisfactory explanation of
end-user system usage (Wu et al., 2007).

There are two six-item questionnaires used in the TAM, one for Perceived Usefulness and one
for Perceived Ease of Use (starting from initial pools of 14 items for each construct—mixed posi-
tive and negative tone). As shown in Figure 8.20, the items for these questionnaires have seven
steps from “likely” to “unlikely,” each with a verbal rather than numeric label.

An initial study with 112 participants provided the data needed to refine the scales (Davis, 1989).
The results of this initial study indicated that mixing the tone of the items was causing problems in
the factor structure for the intended constructs. “These ‘reversed’ items tended to correlate more with
the same item used to measure a different trait than they did with other items of the same trait, sug-
gesting the presence of common method variance. This is ironic, since reversed scales are typically
used in an effort to reduce common method variance” (Davis, 1989, p. 327). Consequently, Davis
eliminated the items with negative tone, converting a few of them to positive tone to ensure enough
items in the scales for high reliability, and ending with six items per construct. The final versions of
the Perceived Usefulness and Perceived Ease of Use items appear in Table 8.8.

Davis (1989) conducted a lab study in which 40 participants evaluated (in counterbalanced
order) two graphics applications with different user interfaces. Coefficient alpha was 0.98 for
Perceived Usefulness and 0.94 for Perceived Ease of Use, and multitrait–multimethod analyses indi-
cated appropriate convergent and divergent validity. A factor analysis of the data had the expected
pattern of association of items with factors. Both Perceived Usefulness and Perceived Ease of Use
(pooled data) correlated significantly with self-predictions of likelihood of use if the product was
available at the participants’ place of work (respectively, r = 0.85 and 0.59, both p < 0.001).

Using [this product] in my job would enable me to accomplish tasks more quickly.  

Likely
Extremely Quite Slightly Neither Slightly Quite Extremely

Unlikely

FIGURE 8.20

Sample item from TAM questionnaires.
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KEY POINTS FROM THE CHAPTER
• This chapter contains descriptions of 24 standardized questionnaires designed to assess

perceptions of usability or related constructs (e.g., satisfaction or usefulness).
• Those questionnaires fall into four broad categories: poststudy, post-task, website, and other.
• Standardized poststudy questionnaires include the QUIS, SUMI, PSSUQ, SUS, USE, and UMUX.
• Standardized post-task questionnaires include the ASQ, ER, SEQ, SMEQ, and UME.
• All of these poststudy and post-task questionnaires are of potential value to usability practitioners

due to psychometric qualification indicating significant reliability, validity, and sensitivity.
• Head-to-head comparisons of the methods indicate that the most sensitive poststudy

questionnaire is the SUS, followed by the PSSUQ; the most sensitive post-task questionnaire is
the SMEQ, followed by the SEQ.

• Due to their growing use for commercial transactions, standardized usability questionnaires for
websites include items focused on the assessment of attributes such as trust and service quality.

• Recent research indicates that the common practice of mixing the tone (positive and negative) of
items in standardized usability questionnaires is more likely to harm rather than benefit the
quality of measurement.

• Recent research also indicates that minor adjustments to the wording of items in standardized
usability questionnaires does not appear to have an effect on the resulting scores (but extreme
changes can affect the resulting metrics).

• The scores from standardized usability measurements do not have any inherent meaning, but
they are useful for comparisons, either between products or conditions in usability studies or
against normative databases.

• Commercial usability questionnaires that provide comparison with normative databases are the
SUMI, WAMMI, and SUPR-Q.

• For noncommercial usability questionnaires, some normative information in the public domain is
available for the PSSUQ and CSUQ (Lewis, 2002) and researchers have recently published
norms for the SUS (Bangor et al., 2008, 2009; Sauro, 2011a).

Table 8.8 TAM Perceived Usefulness and Perceived Ease-of-use Items

Perceived Usefulness Perceived Ease of Use

Using [this product] in my job would enable me to
accomplish tasks more quickly.

Learning to operate [this product] would be easy
for me.

Using [this product] would improve my job
performance.

I would find it easy to get [this product] to do what I
want it to do.

Using [this product] in my job would increase my
productivity.

My interaction with [this product] would be clear
and understandable.

Using [this product] would enhance my effectiveness
on the job.

I would find [this product] to be flexible to interact
with.

Using [this product] would make it easier to do my
job.

It would be easy for me to become skillful at using
[this product].

I would find [this product] useful in my job. I would find [this product] easy to use.
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• Questionnaires from the market research literature that may be of interest to usability
practitioners are the ASCI, NPS, CxPi, and TAM scales (Perceived Usefulness and Perceived
Ease of Use).

CHAPTER REVIEW QUESTIONS
1. You’ve run a study using the PSSUQ (standard Version 3), with the results shown in Table 8.9.

What are each participant’s overall and subscale scores, and what are the mean overall and
subscale scores for the study?

2. Given the published information about normative patterns in responses to the PSSUQ, are you
surprised by the mean score of Item 7 relative to the other items for the data in Table 8.9? What
about the relative values of InfoQual and IntQual? Based on the typical values for the PSSUQ,
does this product seem to be above or below average in perceived usability?

3. Suppose you’ve run a study using the standard version of the SUS, with the results shown in
Table 8.10. What are the SUS scores for each participant and their average for the product?

4. Given the published information about typical SUS scores, is the average SUS for the data in
Table 8.10 generally above or below average? What grade would it receive using the Sauro–Lewis
SUS grading curve? If you computed a 90% confidence interval, what would the grade range be? If
these participants also responded to the NPS likelihood to recommend item, are any of them likely to
be promoters? Using those estimated likelihood to recommend ratings, what is the estimated NPS?

Table 8.9 Sample PSSUQ Data for Question 1

Participant

1 2 3 4 5 6

Item 1 1 2 2 2 5 1
Item 2 1 2 2 1 5 1
Item 3 1 2 3 1 4 1
Item 4 1 1 2 1 4 1
Item 5 1 1 2 1 5 1
Item 6 1 1 4 1 4 3
Item 7 1 2 — 1 6 1
Item 8 3 1 — 1 6 1
Item 9 3 1 1 1 5 1
Item 10 1 3 2 1 4 1
Item 11 2 2 2 1 4 1
Item 12 1 1 2 1 4 1
Item 13 1 1 2 2 4 1
Item 14 1 1 2 3 4 1
Item 15 1 1 3 1 4 1
Item 16 1 1 2 1 4 1
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Answers
1. Table 8.11 shows the overall and subscale PSSUQ scores for each participant and the mean

overall and subscale scores for the study (averaged across participants). Even though there is some
missing data, only two cells in the table are empty, so it’s okay to just average the available data.

2. To answer these questions, refer to Table 8.3 (PSSUQ Version 3 norms). Regarding Item 7,
generally, its scores tend to be higher (poorer) than those for other items, but in this set of data, the
mean item scores are fairly uniform, ranging from 1.67 to 2.4, with 2.2 for Item 7, making it one of
the higher-scoring items but not as high as is usual, which is a bit surprising. The same is true for
the relative pattern of the subscales. Typically, InfoQual is about half a point higher than IntQual,
but for these data the difference is only about 0.15. Based on the typical values for the PSSUQ, the
mean overall score is usually about 2.82, so with an overall score of 1.98, this product seems to be
above average in perceived usability—at least, in reference to the products evaluated to produce the
norms in Table 8.3. To determine if it is significantly better than average, you’d need to compute a
confidence interval on the data from the study to see if the interval included or excluded the
benchmark. It turns out that the 95% confidence interval for overall ranges from 0.622 to 3.33—a
fairly wide interval due to the small sample size and relatively high variability—so even though the
mean is lower than the norm, the interval is consistent with the norm. This overall score is not
statistically significantly different from the norm of 2.82.

3. Table 8.12 shows the recoded item values and SUS scores for each participant and the mean
SUS score for the study averaged across participants.

4. Based on the data collected by Sauro (2011), the mean SUS score across a large number of
usability studies is 68, so the mean of 82 from this study is above average. On the Sauro–Lewis
SUS grading curve, scores between 80.8 and 84 get an A (see Table 8.6). A 90% confidence
interval on these data ranges from about 71 to 93, so the corresponding grade range is from C
to A+ (at least you know it’s probably not a D), and because the confidence interval does not
include 68, the result is significantly above average ( p < 0.1). If these participants also
responded to the NPS likelihood to recommend item, only one of them is likely to be a
promoter (responding with a 9 or 10 to the likelihood to recommend question). The simplified

Table 8.10 Sample SUS Data for Question 3

Participant

1 2 3 4 5

Item 1 3 2 5 4 5
Item 2 1 1 2 2 1
Item 3 4 4 4 5 5
Item 4 1 3 1 1 1
Item 5 3 4 4 4 5
Item 6 1 2 2 2 1
Item 7 4 3 4 3 5
Item 8 1 2 1 1 1
Item 9 4 4 5 3 5
Item 10 2 1 2 3 1
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Table 8.11 Answers for Question 1

Participant

1 2 3 4 5 6 Mean

Item 1 1 2 2 2 5 1 2.17
Item 2 1 2 2 1 5 1 2
Item 3 1 2 3 1 4 1 2
Item 4 1 1 2 1 4 1 1.67
Item 5 1 1 2 1 5 1 1.83
Item 6 1 1 4 1 4 3 2.33
Item 7 1 2 — 1 6 1 2.2
Item 8 3 1 — 1 6 1 2.4
Item 9 3 1 1 1 5 1 2
Item 10 1 3 2 1 4 1 2
Item 11 2 2 2 1 4 1 2
Item 12 1 1 2 1 4 1 1.67
Item 13 1 1 2 2 4 1 1.83
Item 14 1 1 2 3 4 1 2
Item 15 1 1 3 1 4 1 1.83
Item 16 1 1 2 1 4 1 1.67

Overall 1.31 1.44 2.21 1.25 4.5 1.13 1.97
SysUse 1 1.5 2.5 1.17 4.5 1.33 2
InfoQual 1.83 1.67 1.75 1 4.83 1 2.01
IntQual 1 1 2.33 2 4 1 1.89

Table 8.12 Answers for Question 3

Participant

1 2 3 4 5

Item 1 2 1 4 3 4
Item 2 4 4 3 3 4
Item 3 3 3 3 4 4
Item 4 4 2 4 4 4
Item 5 2 3 3 3 4
Item 6 4 3 3 3 4
Item 7 3 2 3 2 4
Item 8 4 3 4 4 4
Item 9 3 3 4 2 4
Item 10 3 4 3 2 4

Mean
Overall 80 70 85 75 100 82
Pred-LTR 8 7 8 7 10 Grade: A
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regression equation for estimating likelihood to recommend from SUS is LTR = SUS/10, so the
predicted likelihood to recommend responses for these five participants are, respectively, 8, 7,
8, 7, and 10. Given these LTR scores, there are 0% detractors and 20% (1/5) promoters, for an
estimated NPS of 20% (% promoters minus % detractors).
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CHAPTER

9Six Enduring Controversies in
Measurement and Statistics

INTRODUCTION

“There is, of course, nothing strange or scandalous about divisions of opinion among scientists.
This is a condition for scientific progress” (Grove, 1989, p. 133).

“Criticism is the mother of methodology” (Abelson’s 8th law, 1995, p. xv).

Controversy is one of the engines of scientific progress. Proponents of one point of view debate
those who hold a different point of view, ideally using empirical (data-based) and rational (logic-
based) arguments. When there is no clear winner, these debates can carry on over decades, or even
centuries. The fields of measurement and statistics are no strangers to such debates (Abelson, 1995;
Cowles, 1989; Stigler, 1986, 1999).

Because many usability practitioners deeply depend on the use of measurement and statistics to
guide their design recommendations, they inherit these controversies. In earlier chapters of this
book, we’ve already addressed a number of controversies, including:

• Can you use statistical analysis when samples are small? (See Chapters 3–7 for numerous
examples of using statistics with small sample sizes.)

• What is the best average to report when estimating task completion times? (See Chapter 3, “The
Geometric Mean.”)

• What is the best choice for estimating binomial confidence intervals? (See Chapter 3, “Adjusted-
Wald: Add Two Successes and Two Failures.”)

• Is it legitimate to use mid-probabilities rather than exact tests? (See Chapter 4, “Mid-
probabilities.”)

• When are t-tests robust (insensitive) to violations of the assumptions of normality and equal
variance? (See Chapter 5, “Normality Aassumption of the Paired t-test” and “Assumptions of
the t-tests.”)

• What is the best choice for analyzing 2 × 2 contingency tables? (See Chapter 5, “Comparing
Completion Rates, Conversion Rates, and A/B Testing.”)

• Does observing five users enable the discovery of 85% of usability problems? (See Chapter 7,
“Reconciling the ‘Magic Number Five’ with ‘Eight Is Not Enough.’”)

• Is it possible to estimate the total number of problems available for discovery (and thus the
number of still undiscovered problems) in a formative usability study? (See Chapter 7,
“Estimating the Number of Problems Available for Discovery and the Number of Undiscovered
Problems.”)
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• Should usability practitioners use methods based on the binomial probability formula when
planning and analyzing the results of formative user research? (See Chapter 7, “Other Statistical
Models for Problem Discovery.”)

• How many scale steps should there be in the items used in standardized usability questionnaires?
(See Chapter 8, “Number of Scale Steps.”)

• Is it necessary to balance positive and negative tone of the items in standardized usability
questionnaires? (See Chapter 8, “Does It Hurt to Be Positive? Evidence from an Alternate Form
of the SUS.”)

In this chapter we discuss in a little more detail six enduring controversies, summarizing both
sides of each issue and what we, as pragmatic user researchers, recommend. Whether you ultimately
agree or disagree with our analyses and recommendations, always keep in mind Abelson’s 3rd law
(Abelson, 1995, xv): “Never flout a convention just once.” In other words, within a single study or
group of related studies, you should consistently apply whatever decision you’ve made, controver-
sial or not. Ideally, you should make and document these decisions before collecting any data to
reduce the temptation to pick and choose among the alternatives to make the findings favorable to
your point of view (capitalizing on chance effects). The main goal of this chapter is to provide the
information needed to make those decisions. Several of the controversies involve discussions of
Type I and Type II errors, so if you don’t remember what they are, be sure to review Chapter 6
(“Example 7: Where’s the Power?,” especially Figure 6.3) and the Appendix (“Errors in Statistics”).

IS IT OKAY TO AVERAGE DATA FROM MULTIPOINT SCALES?
On One Hand
In 1946, S. S. Stevens declared that all numbers are not created equal. Specifically, he defined the
following four levels of measurement:

• Nominal: Numbers that are simply labels, such as the numbering of football players or model
numbers.

• Ordinal: Numbers that have an order, but where the differences between numbers do not
necessarily correspond to the differences in the underlying attribute, such as levels of multipoint
rating scales or rank order of baseball teams based on percentage of wins.

• Interval: Numbers that are not only ordinal, but for which equal differences in the numbers
correspond to equal differences in the underlying attribute, such as Fahrenheit or Celsius temperature
scales.

• Ratio: Numbers that are not only interval, but for which there is a true 0 point so equal ratios in
the numbers correspond to equal ratios in the underlying attribute, such as time intervals (e.g.,
reaction times or task-completion times) or the Kelvin temperature scale.

From these four classes of measurements, Stevens developed a rational argument that certain
types of arithmetic operations were not reasonable to apply to certain types of data. Based on his
“principle of invariance,” he argued against doing anything more than counting nominal and ordinal
data, and restricted addition, subtraction, multiplication, and division to interval and ratio data.
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For example, because you need to add and divide data to compute an arithmetic mean, he stated
(Stevens, 1959, pp. 26–28):

Depending upon what type of scale we have constructed, some statistics are appropriate, others
not. … The criterion for the appropriateness of a statistic is invariance under the transformations
permitted by the scale. … Thus, the mean is appropriate to an interval scale and also to a ratio
scale (but not, of course, to an ordinal or a nominal scale).

From this perspective, strictly speaking, the multipoint scales commonly used for rating attitudes
are ordinal measurements, so it would not be permissible to even compute their arithmetic means. If
it’s illogical to compute means of rating-scale data, then it follows that it is incorrect when analyz-
ing ordinal or nominal data to use statistical procedures such as t-tests that depend on computing
the mean. Stevens’ levels of measurement have been very influential, appearing in numerous statis-
tics textbooks and used to guide recommendations given to users of some statistical analysis
programs (Velleman and Wilkinson, 1993).

On the Other Hand
After the publication of Stevens’ levels of measurement, arguments against their relationship to per-
missible arithmetic operations and associated statistical procedures appeared. For example:

That I do not accept Stevens’ position on the relationship between strength of measurement and
“permissible” statistical procedures should be evident from the kinds of data used as examples
throughout this Primer: level of agreement with a questionnaire item, as measured on a five-point
scale having attached verbal labels. … This is not to say, however, that the researcher may simply
ignore the level of measurement provided by his or her data. It is indeed crucial for the investiga-
tor to take this factor into account in considering the kinds of theoretical statements and generali-
zations he or she makes on the basis of significance tests (Harris, 1985, pp. 326–328).

Even if one believes that there is a “real” scale for each attribute, which is either mirrored directly in a
particular measure or mirrored as some monotonic transformation, an important question is, “What
difference does it make if the measure does not have the same zero point or proportionally equal inter-
vals as the ‘real’ scale?” If the scientist assumes, for example, that the scale is an interval scale when it
“really” is not, something should go wrong in the daily work of the scientist. What would really go
wrong? All that could go wrong would be that the scientist would make misstatements about the spe-
cific form of the relationship between the attribute and other variables. … How seriously are such mis-
assumptions about scale properties likely to influence the reported results of scientific experiments? In
psychology at the present time, the answer in most cases is “very little” (Nunnally, 1978, p. 28).

For analyzing ordinal data, some researchers have recommended the use of statistical methods
that are similar to the well-known t- and F-tests, but which replace the original data with ranks
before analysis (Bradley, 1976). These methods (e.g., the Mann-Whitney U-test, the Friedman test,
or the Kruskal-Wallis test), however, involve taking the means and standard deviations of the ranks,
which are ordinal—not interval or ratio—data. Despite these violations of permissible manipulation
of the data from Stevens’ point of view, those methods work perfectly well.
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Probably the most famous counterargument was by Lord (1953) with his parable of a retired
professor who had a machine used to randomly assign football numbers to the jerseys of freshmen
and sophomore football players at his university—a clear use of numbers as labels (nominal data).
After assigning numbers, the freshmen complained that the assignment wasn’t random—they
claimed to have received generally smaller numbers than the sophomores, and that the sophomores
must have tampered with the machine. “The sophomore team was laughing at them because they
had such low numbers [see Figure 9.1]. The freshmen were all for routing the sophomores out of
their beds one by one and throwing them in the river” (pp. 750–751).

In a panic and to avoid the impending violence, the professor consulted with a statistician to
investigate how likely it was that the freshmen got their low numbers by chance. Over the profes-
sor’s objections, the statistician determined the population mean and standard deviation of the foot-
ball numbers—54.3 and 16.0, respectively. He found that the mean of the freshmen’s numbers was
too low to have happened by chance, strongly indicating that the sophomores had tampered with
the football number machine to get larger numbers. The famous fictional dialog between the profes-
sor and the statistician was (Lord, 1953, p. 751):

“But these numbers are not cardinal numbers,” the professor expostulated. “You can’t add them.”

“Oh, can’t I?” said the statistician. “I just did. Furthermore, after squaring each number, adding
the squares, and proceeding in the usual fashion, I find the population standard deviation to be
exactly 16.0.”

“But you can’t multiply ‘football numbers,’” the professor wailed. “Why, they aren’t even ordinal
numbers, like test scores.”

FIGURE 9.1

Example of assignment of football numbers.
(Source: Gabe Clogston (2009), used with permission.)
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“The numbers don’t know that,” said the statistician. “Since the numbers don’t remember where
they came from, they always behave just the same way, regardless.”

And so it went on for decades, with measurement theorists generally supporting the idea that levels of
measurement should influence the choice of statistical analysis methods and applied statisticians arguing
against the practice. In their recap of the controversy, Velleman and Wilkinson (1993, p. 68) wrote, “At
times, the debate has been less than cordial. Gaito (1980) aimed sarcastic barbs at the measurement the-
ory camp and Townsend and Ashby (1984) fired back. Unfortunately, as Mitchell (1986) noted, they
often shot past each other.” The debate continues into the 21st century (Scholten and Borsboom, 2009).

In Stevens’ original paper (1946, p. 679), he actually took a more moderate stance on this topic
than most people realize.

On the other hand, for this “illegal” statisticizing there can be invoked a kind of pragmatic sanc-
tion: In numerous instances it leads to fruitful results. While the outlawing of this procedure
would probably serve no good purpose, it is proper to point out that means and standard devia-
tions computed on an ordinal scale are in error to the extent that the successive intervals on the
scale are unequal in size. When only the rank-order of data is known, we should proceed cau-
tiously with our statistics, and especially with the conclusions we draw from them.

Responding to criticisms of the implications of his 1953 paper, Lord (1954, pp. 264–265) stated,
“nominal and ordinal numbers (including test scores) may be treated by the usual arithmetic operations
so as to obtain means, standard deviations, and other similar statistics from which (in certain restricted
situations) correct conclusions may usefully be deduced with complete logical rigor.” He then suggested
that critics of his logic agree to participate in a game based on the “football numbers” story, with the
statistician paying the critic $1 every time the statistician incorrectly designates a sample as being
drawn from one of two populations of nominal two-digit numbers and the critic paying the statistician
$1 when he is right. As far as we know, no critic ever took Lord up on his offer to play this game.

Our Recommendation
So, which is it: all numbers are not equal (Stevens, 1946), or the numbers don’t remember where
they came from (Lord, 1953)? Given our backgrounds in applied statistics (and personal experiences
attempting to act in accordance with Stevens’ reasoning that didn’t work out very well—see the
sidebar), we fall firmly in the camp that supports the use of statistical techniques (e.g., the t-test,
analysis of variance, and factor analysis) on ordinal data such as multipoint rating scales. However,
you can’t just ignore the level of measurement of your data.

When you make claims about the meaning of the outcomes of your statistical tests, you do have
to be careful not to act as if rating-scale data are interval rather than ordinal data. An average rating
of 4 might be better than an average rating of 2, and a t-test might indicate that across a group of
participants, the difference is consistent enough to be statistically significant. Even so, you can’t
claim that it is twice as good (a ratio claim), nor can you claim that the difference between 4 and 2
is equal to the difference between 4 and 6 (an interval claim). You can only claim that there is a
consistent difference. Fortunately, even if you made the mistake of thinking one product is twice as
good as another when the scale doesn’t justify it, it would be a mistake that often would not affect
the practical decision of which product is better. You would still have identified the better of the
two products even if the actual difference in satisfaction was more modest.
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MEANS WORK BETTER THAN MEDIANS WHEN ANALYZING ORDINAL MULTIPOINT DATA
How Acting in Accordance with Stevens’ Levels of Measurement Nearly Tripped Me Up
From the files of Jim Lewis

In the late 1980s I was involved in a high-profile project at IBM in which we were comparing performance and
satisfaction across a set of common tasks for three competitive office application suites (Lewis et al., 1990). Based
on what I had learned in my college statistics classes about Stevens’ levels of measurement, I pronounced that the
multipoint rating-scale data we were dealing with did not meet the assumptions required to take the mean of the
data for the rating scales because they were ordinal rather than interval or ratio, so we should present their central
tendencies using medians rather than means. I also advised against the use of t-tests for individual comparisons of
the rating-scale results, promoting instead its nonparametric analog, the Mann-Whitney U-test.

The folks who started running the statistics and putting the presentation together (which would have been
given to a group that included high-level IBM executives) called me in a panic after they started following my
advice. In the analyses, there were cases where the medians were identical, but the U-test detected a statistically
significant difference. It turns out that the U-test is sensitive not only to central tendency, but also to the shape
of the distribution, and in these cases the distributions had opposite skew but overlapping medians. As a follow-
up, I systematically investigated the relationship among mean and median differences for multipoint scales and
the observed significance levels of t- and U-tests conducted on the same data, all taken from our fairly large-
scale usability test. It turned out that the mean difference correlated more than the median difference with the
observed significance levels (both parametric and nonparametric) for discrete multipoint scale data.

Consequently, I no longer promote the concepts of Steven’s levels of measurement with regard to permissible
statistical analysis, although I believe this distinction is critical when interpreting and applying results. It appears
that t-tests have sufficient robustness for most usability work, especially when you can create a set of difference
scores to use for the analysis. For details, see Lewis (1993).

DO YOU NEED TO TEST AT LEAST 30 USERS?
On One Hand
Probably most of us who have taken an introductory statistics class (or know someone who took such
a class) have heard the rule of thumb that to estimate or compare means, your sample size should be
at least 30. According to the Central Limit Theorem, as the sample size increases, the distribution of
the mean becomes more and more normal, regardless of the normality of the underlying distribution.
Some simulation studies have shown that for a wide variety of distributions (but not all—see Bradley,
1978), the distribution of the mean becomes near normal when n = 30.

Another consideration is that it is slightly simpler to use z-scores rather than t-scores because
z-scores do not require the use of degrees of freedom. As shown in Table 9.1 and Figure 9.2, by
the time you have about 30 degrees of freedom, the value of t gets pretty close to the value of z.

Table 9.1 Comparison of t with 30 Degrees of Freedom to z

α = 0.10 α = 0.05 α = 0.01

t(30) 1.697 2.042 2.750
z 1.645 1.960 2.576
Difference 0.052 0.082 0.174
Percent 3.2% 4.2% 6.8%

246 CHAPTER 9 Six Enduring Controversies in Measurement and Statistics



Consequently, there can be a feeling that you don’t have to deal with small samples that require
small-sample statistics (Cohen, 1990).

On the Other Hand
When the cost of a sample is expensive, as it typically is in many types of user research (e.g.,
moderated usability testing), it is important to estimate the needed sample size as accurately as
possible, with the understanding that it is an estimate. The likelihood that 30 is exactly the right
sample for a given set of circumstances is very low. As shown in our chapters on sample size esti-
mation, a more appropriate approach is to take the formulas for computing the significance levels
of a statistical test and, using algebra to solve for n, convert them to sample size estimation formu-
las. Those formulas then provide specific guidance on what you have to know or estimate for a
given situation to estimate the required sample size.

The idea that even with the t-distribution (as opposed to the z-distribution) you need to have a
sample size of at least 30 is inconsistent with the history of the development of the distribution.
In 1899, William S. Gossett, a recent graduate of New College in Oxford with degrees in chemistry
and mathematics, became one of the first scientists to join the Guinness brewery. “Compared with the
giants of his day, he published very little, but his contribution is of critical importance. … The nature
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of the process of brewing, with its variability in temperature and ingredients, means that it is not
possible to take large samples over a long run” (Cowles, 1989, pp. 108–109).

This meant that Gossett could not use z-scores in his work—they just don’t work well with
small samples. After analyzing the deficiencies of the z-distribution for statistical tests with small
samples, he worked out the necessary adjustments as a function of degrees of freedom to produce
his t tables, published under the pseudonym “Student” due to the policies of Guinness prohibiting
publication by employees (Salsburg, 2001). In the work that led to the publication of the tables,
Gossett performed an early version of Monte Carlo simulations (Stigler, 1999). He prepared 3,000
cards labeled with physical measurements taken on criminals, shuffled them, then dealt them out
into 750 groups of size 4—a sample size much smaller than 30.

Our Recommendation
This controversy is similar to the “five is enough” versus “eight is not enough” argument covered in
Chapter 7, but applied to summative rather than formative research. For any research, the number of
users to test depends on the purpose of the test and the type of data you plan to collect. The “magic
number” 30 has some empirical rationale, but in our opinion, it’s very weak. As you can see from
the numerous examples in this book that have sample sizes not equal to 30 (sometimes less, some-
times more), we do not hold this rule of thumb in very high regard. As described in Chapter 6, for
summative research the appropriate sample size for a study depends on the type of distribution, the
expected variability of the data, the desired levels of confidence and power, and the minimum size
of the effect that you need to be able to reliably detect.

As illustrated in Figure 9.2, when using the t-distribution with very small samples (e.g., with
degrees of freedom less than 5), the very large values of t compensate for small sample sizes with
regard to the control of Type I errors (claiming a difference is significant when it really is not).
With sample sizes this small, your confidence intervals will be much wider than what you would
get with larger samples. But once you’re dealing with more than 5 degrees of freedom, there is
very little absolute difference between the value of z and the value of t. From the perspective of the
approach of t to z, there is very little gain past 10 degrees of freedom.

It isn’t much more complicated to use the t-distribution than the z-distribution (you just need to be
sure to use the right value for the degrees of freedom), and the reason for the development of the
t-distribution was to enable the analysis of small samples. This is just one of the less obvious ways in
which usability practitioners benefit from the science and practice of beer brewing. Historians of sta-
tistics widely regard Gossett’s publication of Student’s t-test as a landmark event (Box, 1984; Cowles,
1989; Stigler, 1999). In a letter to Ronald A. Fisher (one of the fathers of modern statistics) containing
an early copy of the t tables, Gossett wrote, “You are the only man that’s ever likely to use them”

(Box, 1978, p. 116). Gossett got a lot of things right, but he certainly got that wrong.

SHOULD YOU ALWAYS CONDUCT A TWO-TAILED TEST?
On One Hand
The controversy over the legitimate use of one-tailed tests began in the early 1950s (Cowles, 1989).
Before then, the standard practice was to run two-tailed tests with equal rejection regions in each
tail. For example, a researcher setting α to 0.05 would use z ± 1.96 as the critical value for a z-test,

248 CHAPTER 9 Six Enduring Controversies in Measurement and Statistics



which corresponds to a rejection region of 0.025 in each tail (see Figure 9.3a). The rationale for
two-sided tests was that in advance of data collection, the researcher could not be sure of the direc-
tion the results would take, so the unbiased approach was to put an equal amount of rejection
region in each tail (where the rejection region is the set of test outcomes that indicate sufficient evi-
dence to reject the null hypothesis).

The controversy began with the realization that many experimental hypotheses are not pure null
hypotheses of no difference. Instead, there can be a directional component to the hypothesis, for
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example, after having fixed a number of usability problems in an early version of a product, participants
should do better with the next version: higher completion rate, faster completion times, and greater
satisfaction. For that test context, it seems reasonable to put all of the rejection probability in the same
tail: a one-tailed test (see Figure 9.3b).

On the Other Hand
One concern over using one-tailed tests is dealing with the temptation to convert what started as a
two-tailed test to a one-tailed test after the fact. Suppose you’re really not sure which product will
better support users’ tasks, so you decide to run a two-tailed test with 0.025 in each tail (α = 0.05).
Also, suppose your sample size is large enough that you can use a z-test, and the value of z that
you get is 1.8. If you had run a one-tailed test in the right direction, you’d have a statistically sig-
nificant result. If, after having run the test, you decide to treat the result like a one-tailed test, then
instead of it really being a one-tailed test with α = 0.05, it’s a one-and-a-half-tailed test with α =
0.075 (Abelson, 1995); you can’t make the 0.025 in the left tail disappear just by wishing it gone
after data collection (see Figure 9.3c).

Another of the concerns with the one-tailed test is what a researcher should do if, against all
expectation, the test result is strongly in the other direction. Suppose you originally set up a one-
tailed test so any value of z greater than 1.65 would indicate a significant result but the result you
actually get is z = −2.12. If, after having run the test, you decide to change it to a two-tailed test,
you actually have another case of a one-and-a-half-tailed test with a rejection region that turns out
to be 0.075 instead of the planned 0.05. Note that we’re not saying that there’s anything wrong
with deciding to set α = 0.075 or even higher before running the test. The problem is that changing
your mind after you’ve got the data in hand capitalizes on chance (which is not a good thing),
inflating the actual value of α by 50% compared to the planned α.

A few statisticians have suggested a test strategy for directional hypotheses in which just a lit-
tle bit of rejection region gets assigned to the unexpected direction: the lopsided test (Abelson,
1995) or split-tailed test (Braver, 1975; Harris, 1997). Figure 9.3d shows the Abelson lopsided
test, with a rejection region of 0.05 in the expected direction and 0.005 in the unexpected direc-
tion, for a total α = 0.055. By the way, if you really wanted to keep the total α = 0.05, you could
adjust the rejection region on the right to 0.045 (z = 1.7 instead of 1.65, a relatively minor
adjustment).

Our Recommendation
For user researchers, the typical practice should be to use two-tailed tests, with equal distribution of
the probability of rejection to both tails unless there is a compelling a priori reason to use an
unequal distribution (the lopsided or split-tailed test). The exception to this is when you’re making
a comparison with a benchmark. For example, if you need to prove that it’s very likely that the
completion rate for a task exceeds 85% and you fail to reach that goal with a one-sided test, it
doesn’t matter if the completion rate is significantly less than 85%. Significant or not, you’ve still
got work to do, so the one-tailed test is appropriate for this situation (which is more of a usability
engineering than a usability research context).
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CAN YOU REJECT THE NULL HYPOTHESIS WHEN p > 0.05?
On One Hand
Setting α = 0.05 provides significant control over the likelihood of a Type I error (rejecting the null
hypothesis when there is actually no difference). With this test criterion, any result with p< 0.05 is,
by definition, statistically significant; all others are not. Over the long run, you should only make a
Type I error once out of every 20 tests.

In the late 19th century, Francis Edgeworth, one of the first statisticians to routinely conduct
tests of significance, used a very conservative α = 0.005 (Stigler, 1999). The first formal statement
of judging significance with p < 0.05 dates back to Fisher in the early 20th century, although there
is evidence that it had been conventional for some time (Cowles, 1989).

On the Other Hand
“Surely, God loves the 0.06 nearly as much as the 0.05” (Rosnow and Rosenthal, 1989, p. 1277).

“Use common sense to extract the meaning from your data. Let the science of human
factors and psychology drive the statistics; do not let statistics drive the science” (Wickens,
1998, p. 22).

The history of setting α = 0.05 shows that it is a convention that has some empirical basis, but is
still just a convention, not the result of some law of nature. The problem with a narrow focus on
just the Type I error is that it takes attention away from the Type II error, emphasizing confidence
over power (Baguley, 2004). For scientific publication, the p< 0.05 convention and an emphasis on
the Type I error is reasonable because it’s generally less damaging to commit a Type II error
(delaying the introduction of a real effect into the scientific database due to low power) than to
commit a Type I error (introducing false findings into the scientific discourse). This might also be
true for certain kinds of user research, but for other kinds of user research, it is possible that Type
II errors might be more damaging than Type I errors, which would indicate using a different strat-
egy for balancing the two types of errors.

Wickens (1998) discussed the importance of balancing Type I and Type II errors in system
development. Suppose you’ve conducted a usability study of two systems (one old, the other new),
with the null hypothesis being that the new system is no better than the old. If you make a Type I
error, the likely decision will be to adopt the new system when it’s really no better than the old
(but also very likely no worse). If you make a Type II error, the likely decision will be to keep the
old system when the new one is really better. Wickens (1998, p. 19) concluded:

From this viewpoint, the cost of each type of error to user performance and possibly to user
safety should be regarded as equivalent, and not as in the classical statistics of the 0.05 level,
weighted heavily to avoiding Type I errors (a 1-in-20 chance of observing the effect, given that
there is no difference between the old and new system). Indeed, it seems irresponsible to do
otherwise than treat the two errors equivalently. Thus, there seems no possible reason why the
decision criterion should be locked at 0.05 when, with applied studies that often are destined to
have relatively low statistical power, the probability of a Type II error may be considerably
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higher than 0.05. Instead, designers should be at the liberty to adjust their own decision criteria
(trading off between the two types of statistical errors) based on the consequences of the errors to
user performance.

As discussed in Chapter 6, when you’re planning a study you should have some idea of what
sample size you’re going to need to provide adequate control over Type I and Type II errors for
your specific situation. To estimate the sample size for a within-subjects t-test, for example, you
start with the formula

n =
ðzα + zβÞ2s2

d2

The zα and zβ in the numerator correspond to the planned values for the Type I and Type II
errors, respectively; s is the expected standard deviation, and d is the minimum size of the effect
that you want to be able to detect in the study. The value for zα depends on the desired level of
confidence and whether the test will be one- or two-tailed. The value for zβ depends on the desired
amount of power, and is always one-tailed (Diamond, 1981). Once you add zα and zβ together,
though, to paraphrase Lord (1953), that sum doesn’t remember where it came from.

For example, suppose you take Wicken’s (1998) advice and decide to relax the Type I error to α =
0.10 and to also set the Type II error to β = 0.10 (so you have 90% confidence and 90% power). For
z-scores corresponding to 0.10, the two-tailed z is about 1.65 (zα) and the one-tailed z is about 1.28 (zβ),
so (zα + zβ) equals 2.93. Table 9.2 shows some of the possible combinations of zα and zβ (in addition to
1.65 + 1.28) that equal 2.93.

The same z of 2.93 could mean that you’ve set α to 0.003, so you’re almost certain not to make
a Type I error—in the long run, only about 3/1,000 tests conducted when the null hypothesis is true
would produce a false alarm. Unfortunately, you only have a 50/50 chance of proving that real

Table 9.2 Different Combinations of zα and zβ
Summing to 2.93

zα zβ α β

2.93 0.00 0.003 0.500
2.68 0.25 0.007 0.401
2.43 0.50 0.015 0.309
2.18 0.75 0.029 0.227
1.93 1.00 0.054 0.159
1.65 1.28 0.100 0.100
1.25 1.68 0.211 0.046
1.00 1.93 0.317 0.027
0.75 2.18 0.453 0.015
0.50 2.43 0.617 0.008
0.25 2.68 0.803 0.004
0.00 2.93 1.000 0.002

Note: Bold indicates the values for which alpha = beta.
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differences exist because when α = 0.003 and β = 0.50. If you take the opposite approach of setting
α to 1.0 and β to 0.002, then you’ll almost never make a Type II error (missing a real effect only
2/1,000 times), but you’re guaranteed to make many, many Type I errors (false alarms). If you set
α to 0.054 and β to 0.159, then you will have results that are close to the convention of setting α to
0.05 and β to 0.20 (95% confidence and 80% power—more precisely for the z-scores of 1.93 and
1.00, 94.6% confidence and 84.1% power).

Our Recommendation
Unless you’re planning to submit your results to an academic journal for publication, we recom-
mend not worrying excessively about trying to control your Type I error to 0.05. The goal of statis-
tics is not to make the correct decision every time—that just isn’t possible. The purpose of using
statistics is to help you make better decisions in the long run. In an industrial setting, that could
well mean setting α to 0.10 or, in some cases, even to 0.20 (in which case you’ll make a Type I
error in about one out of every five tests).

The important thing is to make these decisions before you run the test. Spend some time think-
ing about the relative consequences of making Type I and Type II errors in your specific context,
carefully choosing appropriate criteria for α and β. Then use your analysis along with the expected
standard deviation (s) and critical difference (d) to estimate the sample size you’ll need to achieve
the statistical goals of your study. If the sample size turns out to be unfeasible, then revisit your
decisions about α, β, and d until you find a combination that will work for you (as discussed in
more detail in Chapter 6).

FISHER ON THE CONVENTION OF USING α = 0.05
How Fisher Recommended Using p-Values
When Karl Pearson was the grand old man of statistics and Ronald Fisher was a relative newcomer, Pearson,
apparently threatened by Fisher’s ideas and mathematical ability, used his influence to prevent Fisher from pub-
lishing in the major statistical journals of the time, Biometrika and the Journal of the Royal Statistical Society.
Consequently, Fisher published his ideas in a variety of other venues such as agricultural and meteorological
journals, including several papers for the Proceedings of the Society for Psychical Research. It was in one of the
papers for this latter journal that he mentioned the convention of setting what we now call the acceptable Type I
error (alpha) to 0.05 (Fisher, 1929, p. 191) and, critically, also mentioned the importance of reproducibility
when encountering an unexpected significant result.

An observation is judged to be significant, if it would rarely have been produced, in the absence of a
real cause of the kind we are seeking. It is a common practice to judge a result significant, if it is of
such a magnitude that it would have been produced by chance not more frequently than once in
twenty trials. This is an arbitrary, but convenient, level of significance for the practical investigator, but
it does not mean that he allows himself to be deceived once in every twenty experiments. The test of
significance only tells him what to ignore, namely, all experiments in which significant results are not
obtained. He should only claim that a phenomenon is experimentally demonstrable when he knows
how to design an experiment so that it will rarely fail to give a significant result. Consequently, isolated
significant results which he does not know how to reproduce are left in suspense pending further
investigation.
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CAN YOU COMBINE USABILITY METRICS INTO SINGLE SCORES?
On One Hand
Throughout the history of statistics, there has been an initial reluctance to combine measurements in
any way, typically followed by empirical and theoretical work that supports the combination. For
example, before the mid-17th century, astronomers would not average their observations—“the idea
that accuracy could be increased by combining measurements made under different conditions was
slow to come” (Stigler, 1986, p. 4).

We are now so used to the arithmetic mean that we often don’t give a second thought to com-
puting it (and in some situations we really should). But what about combining similar measurements
from different sources into a composite metric? That’s exactly what we do when we compute a
stock index such as the Dow-Jones Industrial Average. We are comfortable with this type of com-
bined score, especially given its successful use for over 100 years, but that level of comfort was not
always in place. When William Stanley Jevons published analyses in which he combined the prices
of different commodities into an index to study the global variation in the price of gold in the mid-
19th century, he met with significant criticism (Stigler, 1986, 1999).

Stock and commodity indices at least have the common metric of price. What about the combi-
nation of different metrics, for example, the standard usability metrics of successful completion
rates, completion times, and satisfaction? The statistical methods for accomplishing this task, based
on the concepts of correlation and regression, appeared in the early 20th century and underwent an
explosion of development in its first half (Cowles, 1989), producing principal components analysis,
factor analysis, discriminant analysis, and multivariate analysis of variance (MANOVA).

Lewis (1991) used nonparametric rank-based methods to combine and analyze time-on-task, number
of errors, and task-level satisfaction in summative usability tests. Conversion to ranks puts the different
usability metrics on a common ordinal scale, allowing their combination through rank averaging. An
important limitation of a rank-based approach is that it can only represent a relative comparison between
like-products with similar tasks—it does not result in a measure of usability comparable across products
or different sets of tasks. More recently, Sauro and Kindlund (2005) described methods for converting
different usability metrics (task completion, error counts, task times, and satisfaction scores) to z-scores—
another way to get different metrics to a common scale (their Single Usability Metric, or SUM).

Sauro and Kindlund (2005) reported significant correlations among the metrics they studied.
Advanced analysis (specifically, a principal components analysis) indicated that the four usability
metrics contributed about equally to the composite SUM score. In 2009, Sauro and Lewis also
found substantial correlations among prototypical usability metrics such as task times, completion
rates, errors, post-task satisfaction, and poststudy satisfaction collected during the performance of a
large number of unpublished summative usability tests. According to psychometric theory, an
advantage of any composite score is an increase in the reliability of measurement, with the magni-
tude of the increase depending on correlations among the component scores (Nunnally, 1978).

SUM: THE SINGLE USABILITY METRIC
Calculating SUM Scores
From the files of Jeff Sauro

SUM is a standardized, summated, and single usability metric, developed to represent the majority of varia-
tion in four common usability metrics used in summative usability tests: task completion rates, task time, error
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counts, and satisfaction. To standardize each of the usability metrics, Erika Kindlund and I created a z-score-
type value or z-equivalent. For the continuous data (time and average satisfaction), we subtracted the mean value
from a specification limit and divided by the standard deviation. For discrete data (completion rates and errors)
we divided the unacceptable conditions (defects) by all opportunities for defects—a method of standardization
adapted from the process sigma metric used in Six Sigma. For more details on how to standardize and combine
these scores, see Sauro and Kindlund (2005).

To make it easier to work with SUM, I’ve provided free Web (Usability Scorecard) and Excel (SUM Calculator)
tools (see www.measuringusability.com/sum). The Usability Scorecard application takes raw usability metrics
(completion, time, satisfaction, errors, and clicks) and automatically calculates confidence intervals and graphs.
You can also work with any combination of the metrics into a two-, three- or four-measure score. The SUM calcu-
lator takes raw usability metrics and converts them into a SUM score with confidence intervals.

You need to provide the raw metrics on a task-by-task basis and know the opportunity for errors. SUM will
automatically calculate the maximum acceptable task time, or you can provide it. This calculator is an Excel-
based version of the Usability Scorecard, with the limitation that it can only combine four (time, errors, sat, and
completion) or three (time, sat, and completion) measures rather than any combination. Once you have a set
of SUM scores, you can treat them statistically as you would any raw score, computing confidence intervals,
comparing them against benchmarks, or comparing SUM scores from different products or tasks.

On the Other Hand
If the component scores do not correlate, the reliability of the composite score will not increase
relative to the component scores. Hornbæk and Law (2007), based on correlational analyses of a
wide range of metrics and tasks gathered from published human–computer interaction (HCI) litera-
ture, argued that attempts to reduce usability to one measure are bound to lose important informa-
tion because there is no strong correlation among usability aspects (a finding that appears to be true
for the broad range of HCI metrics studied by Hornbæk and Law, but not for prototypical usability
metrics; see Sauro and Lewis, 2009). Indeed, loss of information occurs whenever you combine
measurements. This is one of the reasons that it is important to provide additional information such
as the standard deviation or a confidence interval when reporting a mean.

The combination of data can be particularly misleading if you blindly use statistical procedures
such as MANOVA or discriminant analysis to combine different types of dependent measures.
These methods automatically determine how to weight the different component metrics into a com-
bined measure in a way that maximizes the differences between levels of independent variables.
This increases the likelihood of getting a statistically significant result, but runs the risk of creating
composite measures that are uninterpretable with regard to any real-world attribute such as usability
(Lewis, 1991). More generally in psychological experimentation, Abelson has warned against the
blind use of these methods (1995, pp. 127–128).

In such cases [multiple dependent variables] the investigator faces a choice of whether to present
the results for each variable separately, to aggregate them in some way before analysis, or to use
multivariate analysis of variance. … One of these alternatives—MANOVA—stands at the bottom
of my list of options. … Technical discussion of MANOVA would carry us too far afield, but my
experience with the method is that it is effortful to articulate the results. … Furthermore, when
MANOVA comes out with simple results, there is almost always a way to present the same out-
come with one of the simpler analytical alternatives. Manova mania is my name for the urge to
use this technique.
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As true as this might be for psychological research, it is even truer for usability research intended
to affect the design of products or systems. If you run a test with a composite measure and find a
significant difference between products, then what do you really know? You will have to follow up
that test with separate tests of the component metrics, so one could reasonably argue against running
the test with the composite metric, instead starting with the tests of the component metrics.

Our Recommendation
Both of us, at various times in our careers, have worked on methods for combining different usabil-
ity metrics into single scores (Lewis, 1991; Sauro and Kindlund, 2005)—clearly, we are on the side
of combining usability metrics when it is appropriate, but using a method that produces an inter-
pretable composite such as SUM rather than MANOVA. There are situations in the real world in
which practitioners must choose only one product from a summative competitive usability test of
multiple products and, in so doing, must either rely on a single measurement (a very limiting
approach), must try to rationally justify some priority of the dependent measures, or must use a
composite score. Composite usability scores can also be useful on executive management dash-
boards. Even without an increase in reliability it can still be advantageous to combine the scores for
these situations, but the factor analysis of Sauro and Lewis (2009) lends statistical support to the
practice of combining component usability metrics into a single score.

Any summary score (median, mean, index, or other composite) must lose important information
( just as an abstract does not contain all of the information in a full paper)—it is the price paid for
summarizing data. It is certainly not appropriate to rely exclusively on summary data, but it is
important to keep in mind that the data that contribute to a summary score remain available as com-
ponent scores for any analyses and decisions that require more detailed information (such as provid-
ing guidance about how a product or system should change in a subsequent design iteration). You
don’t lose anything permanently when you combine scores—you just gain an additional view.

WHAT IF YOU NEED TO RUN MORE THAN ONE TEST?

“In 1972 Maurice Kendall commented on how regrettable it was that during the 1940s mathe-
matics had begun to ‘spoil’ statistics. Nowhere is this shift in emphasis from practice, with its
room for intuition and pragmatism, to theory and abstraction, more evident than in the area of
multiple comparison procedures. The rules for making such comparisons have been discussed ad
nauseam and they continue to be discussed” (Cowles, 1989, p. 171).

On One Hand
When the null hypothesis of no difference is true, you can think of a single test with α = 0.05 as the
flip of a single coin that has a 95% chance of heads (correctly failing to reject the null hypothesis)
and a 5% chance of tails (falsely concluding there is a difference when there really isn’t one—a false
alarm, a Type I error). These are the probabilities for a single toss of the coin (a single test), but what
if you run more than one test? Statisticians sometimes make a distinction between the error rate per
comparison (EC) and the error rate per family (EF, or family-wise error rate) (Myers, 1979).

256 CHAPTER 9 Six Enduring Controversies in Measurement and Statistics



For example, if you ran 20 t-tests after collecting data in a usability study and there was really
no difference in the tested products, you’d expect one Type I error, falsely concluding that there
was a difference when that outcome happened just by chance. Unfortunately, other possible out-
comes, such as seeing two or three Type I errors, also have a reasonable likelihood of happening
by chance. The technical term for this is alpha inflation. For this series of tests, the actual value
of α (defining α as the likelihood of getting one or more Type I errors) is much higher than 0.05.
Table 9.3 shows, as expected, that the most likely number of Type I errors in a set of 20 indepen-
dent tests with α = 0.05 is one, with a point probability of 0.37735. The likelihood of at least
one Type I error, however, is higher—as shown in Table 9.3, it’s 0.64151. So, rather than having
a 5% chance of encountering a Type I error when there is no real difference, α has inflated to
about 64%.

A quick way to compute the inflation of α (defining inflation as the probability of one or more
Type I errors) is to use the same formula we used in Chapter 7 to model the discovery of problems
in formative user research:

p ðat least one Type I errorÞ = 1− ð1− αÞn

Table 9.3 Illustration of Alpha Inflation for
20 Tests Conducted with α = 0.05

x p(x) p(At Least x)

0 0.35849 1.00000
1 0.37735 0.64151
2 0.18868 0.26416
3 0.05958 0.07548
4 0.01333 0.01590
5 0.00224 0.00257
6 0.00030 0.00033
7 0.00003 0.00003
8 0.00000 0.00000
9 0.00000 0.00000

10 0.00000 0.00000
11 0.00000 0.00000
12 0.00000 0.00000
13 0.00000 0.00000
14 0.00000 0.00000
15 0.00000 0.00000
16 0.00000 0.00000
17 0.00000 0.00000
18 0.00000 0.00000
19 0.00000 0.00000
20 0.00000 0.00000
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where n is the number of independent tests (Winer et al., 1991). For the previous example (20 tests
conducted with α = 0.05), that would be

p ðat least one Type I errorÞ = 1− ð1− 0:05Þ20 = 1− 0:9520 = 1− 0:35849 = 0:64151

In other words, the probability of at least one Type I error equals one minus the probability of none
(see the entries for p(0) and p(at least 1) in Table 9.3).

Since the middle of the 20th century, there have been many strategies and techniques published
to guide the analysis of multiple comparisons (Abelson, 1995; Cliff, 1987; Myers, 1979; Winer
et al., 1991), such as omnibus tests (e.g., ANOVA and MANOVA) and procedures for the compari-
son of pairs of means (e.g., Tukey’s WSD and HSD procedures, the Student-Newman-Keuls test,
Dunnett’s test, the Duncan procedure, and the Scheffé procedure). A detailed discussion of these
techniques is beyond the scope of this book. The purpose of all of them is to reduce the effect of
alpha inflation on statistical decision making.

A popular and conceptually simple approach to controlling alpha inflation is the Bonferroni adjust-
ment (Cliff, 1987; Myers, 1979; Winer et al., 1991). To apply the Bonferroni adjustment, divide the
desired overall level of alpha by the number of tests you plan to run. For example, to run 10 tests for
a family-wise error rate of 0.05, you would set α = 0.005 for each individual test. For 20 tests, it
would be 0.0025 (0.05/20). Setting α = 0.0025 and running 20 independent tests would result in the
alpha inflation bringing the family-wise error rate to just under 0.05:

p ðat least one Type I errorÞ = 1− ð1− 0:0025Þ20 = 1− 0:997520 = 1− 0:9512 = 0:0488

Problem solved—or is it?

On the Other Hand
Applying techniques such as Bonferroni adjustments can lead to a potentially dramatic increase in
the number of Type II errors—the failure to detect differences that are really there (misses as
opposed to the false alarms of Type I errors), if the null hypothesis is not true (Abelson, 1995;
Myers, 1979; Perneger, 1998; Winer et al., 1991). As illustrated in Table 9.2, an overemphasis on
the prevention of Type I errors leads to the proliferation of Type II errors. Unless, for your situa-
tion, the cost of a Type I error is much greater than the cost of a Type II error, you should avoid
applying any of the techniques designed to suppress alpha inflation, including Bonferroni adjust-
ments. “Simply describing what tests of significance have been performed, and why, is generally
the best way of dealing with multiple comparisons” (Perneger, 1998, p. 1236).

Our Recommendation
“When there are multiple tests within the same study or series of studies, a stylistic issue is
unavoidable. As Diaconis (1985) put it, ‘Multiplicity is one of the most prominent difficulties
with data-analytic procedures. Roughly speaking, if enough different statistics are computed, some
of them will be sure to show structure’ (p. 9). In other words, random patterns will seem to con-
tain something systematic when scrutinized in many particular ways. If you look at enough
boulders, there is bound to be one that looks like a sculpted human face. Knowing this, if you
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apply extremely strict criteria for what is to be recognized as an intentionally carved face, you
might miss the whole show on Easter Island” (Abelson, 1995, p. 70).

ABELSON’S STYLES OF RHETORIC
Brash, Stuffy, Liberal, and Conservative Styles
In Chapter 4 of his highly regarded book Statistics as Principled Argument, Robert Abelson (1995) noted that
researchers using statistics to support their claims can adopt different styles of rhetoric, of which he defined
four:

• Brash (unreasonable): Overstates every statistical result, specifically, always uses one-tailed tests; runs
different statistical tests on the same data and selects the one that produces the most significant result;
when running multiple comparisons, focuses on the significant results without regard to the number of
comparisons; and states actual value of p but talks around it to include results not quite significant
according to preselected value of alpha.

• Stuffy (unreasonable): Determined to never be brash under any circumstances—excessively cautious.
• Liberal (reasonable): Less extreme version of brash—willing to explore and speculate about data.
• Conservative (reasonable): Less extreme version of stuffy—more codified and cautious approach to data

analysis than the liberal style.

From our experience, we encourage a liberal style for most user research, but we acknowledge Abelson
(1995, p. 57): “Debatable cases arise when null hypotheses are rejected according to liberal test procedures,
but accepted by conservative tests. In these circumstances, reasonable people may disagree. The investigator
faces an apparent dilemma: ‘Should I pronounce my results significant according to liberal criteria, risking
skepticism by critical readers, or should I play it safe with conservative procedures and have nothing much to
say?’” Throughout this chapter, we’ve tried to provide guidance to help user researchers resolve this apparent
dilemma logically and pragmatically for their specific research situations.

As discussed throughout this chapter, user researchers need to balance confidence and power in
their studies, avoiding excessive attention to Type I errors over Type II errors unless the relative
cost of a Type I error (thinking an effect is real when it isn’t) is much greater than that of a Type II
error (failing to find and act upon real effects). This general strategy applies to the treatment of mul-
tiple comparisons just as it did in the previous discussions of one- versus two-tailed testing and the
legitimacy of setting α > 0.05.

For most situations, we encourage user researchers to follow Perneger’s (1998) advice to run
multiple comparisons at the designated level of alpha, making sure to report what tests have been
done and why. For example, in summative usability tests, most practitioners use a fairly small set
of well-defined and conventional measurements (success rates, completion times, user satisfaction)
collected in a carefully constructed set of test scenarios, either for purposes of estimation or compar-
ison with benchmarks or a fairly small and carefully selected set of products/systems. This practice
helps to legitimize multiple testing at a specified and not overly conservative level of alpha because
the researchers have clear a priori hypotheses under test.

Researchers engaging in this practice should, however, keep in mind the likely number of Type
I errors for the number of tests they conduct. For example, Table 9.4 shows the likelihoods of dif-
ferent numbers of Type I errors when the null hypothesis is true and α = 0.05. When n = 10, the
most likely number of Type I errors is 0 ( p = 0.60), the likelihood of getting at least one Type I
error is 0.40, and the likelihood of getting two Type I errors is less than 10% ( p = 0.086). When
n = 100, the most likely number of Type I errors is 5 ( p = 0.18), the likelihood of getting at least
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one Type I error is 0.994 (virtually certain), and the likelihood of getting nine Type I errors is less
than 10% (p = 0.06).

So, if you ran 100 tests (e.g., tests of your product against five competitive products with five
tasks and four measurements per task) and had only five statistically significant results with
p< 0.05, then you’re seeing exactly the number of expected Type I errors. You could go ahead and
consider what those findings mean for your product, but you should be relatively cautious in their
interpretation. On the other hand, if you had 10 statistically significant results, the likelihood of that
happening if there really was no difference is just 2.8%, so you could be stronger in your interpreta-
tion of those results and what they mean for your product.

This alleviates a potential problem with the Bonferroni adjustment strategy, which addresses
the likelihood of getting one or more Type I errors when the null hypothesis is true. A researcher
who conducts 100 tests (e.g., from a summative usability study with multiple products, measures,
and tasks) and who has set α = 0.05 is not expecting one Type I error; if the null hypothesis is
true, the expectation is five Type I errors. Adjusting the error rate per comparison to hold the
expected number of Type I errors to one in this situation does not seem like a logically consis-
tent strategy.

Using the method illustrated in Table 9.4, but covering a broader range of number of tests and values
of alpha, Table 9.5 shows for α = 0.05 and α = 0.10 how many Type I errors would be unexpected
(less than or equal to a 10% cumulative likelihood for that number or more) given the number of tests if
the null hypothesis of no difference is true.

For example, suppose you’ve conducted 25 tests of significance using α = 0.10, and got four sig-
nificant results. For α = 0.10 and 25 tests, the critical value of x is 5. Because four is less than five,
you should be relatively cautious in how you interpret and act upon the significant findings. Alter-
natively, suppose you had found seven significant results. Because this is greater than the critical
value of 5, you can act upon these results with more confidence.

Table 9.4 Likelihoods of Number of Type I Errors When the Null Hypothesis Is True Given Sample
Sizes of 10, 20, and 100 when α = 0.05

n = 10 n = 20 n = 100

x p(x) p(At Least x) p(x) p(At Least x) p(x) p(At Least x)

0 0.59874 1.00000 0.35849 1.00000 0.00592 1.00000
1 0.31512 0.40126 0.37735 0.64151 0.03116 0.99408
2 0.07463 0.08614 0.18868 0.26416 0.08118 0.96292
3 0.01048 0.01150 0.05958 0.07548 0.13958 0.88174
4 0.00096 0.00103 0.01333 0.01590 0.17814 0.74216
5 0.00006 0.00006 0.00224 0.00257 0.18002 0.56402
6 0.00000 0.00000 0.00030 0.00033 0.15001 0.38400
7 0.00000 0.00000 0.00003 0.00003 0.10603 0.23399
8 0.00000 0.00000 0.00000 0.00000 0.06487 0.12796
9 0.00000 0.00000 0.00000 0.00000 0.03490 0.06309

10 0.00000 0.00000 0.00000 0.00000 0.01672 0.02819
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One quick note: These computations assume that the multiple tests are independent, which will
rarely be the case, especially when conducting within-subjects studies or doing multiple compari-
sons of all pairs of products in a multiproduct study. Fortunately, according to Winer et al. (1991),
dependence among tests reduces the extent of alpha inflation as a function of the degree of depen-
dence. This means that acting as if the data are independent even when they are not is consistent
with a relatively conservative approach to this aspect of data analysis. The potential complexities of
accounting for dependencies among data are beyond the scope of this book, and are not necessary
for most practical user research.

MULTIPLE COMPARISONS IN THE REAL WORLD
A Test of Multiple Medical Devices
From the files of Jeff Sauro

I recently assisted in the comparison of four competing medical devices. A company wanted to know if they
could claim that their product was easier to use than the competition. They conducted a usability test in which
over 90 people used each device in a counterbalanced order, then ranked the products from most to least pre-
ferred and answered multiple questions to assess the perceived ease of use and learning. Was there any evidence
that their product was better?

There were three competing products requiring three within-subjects t-tests (see Chapter 5) for each of the
three measures of interest, for a total of nine comparisons. Although I tend to be cautious when assessing medi-
cal devices, I recommended against using a Bonferroni or other adjustment strategy because the comparisons
were both planned and sensible. The company’s only interest was in how their product’s scores compared to the

(Continued )

Table 9.5 Critical Values of Number of Type I Errors (x) Given 5 to 100 Tests Conducted with
α = 0.05 or 0.10

α = 0.05 α = 0.10

Number of Tests
Critical x
(p(x or More) ≤ 0.10) Number of Tests

Critical x
(p(x or More) ≤ 0.10)

5 to 11 2 5 2
12 to 22 3 6 to 11 3
23 to 36 4 12 to 18 4
37 to 50 5 19 to 25 5
51 to 64 6 26 to 32 6
65 to 79 7 33 to 40 7
80 to 95 8 41 to 48 8
96 to 111 9 49 to 56 9

57 to 64 10
65 to 72 11
73 to 80 12
81 to 88 13
89 to 97 14
98 to 105 15
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(Continued )
competition, and they really didn’t care if competitor B was better than competitor C. What’s more, the metrics
were all correlated (in general, products that are more usable are also more learnable and preferred).

The company commissioning the study paid a lot of money to have the test done. Had we included an
adjustment to correct for alpha inflation we’d have increased the chance of a Type II error, concluding there
was no difference in the products when there really was. In the end there were five significant differences
using α = 0.05. One of the differences showed the product of interest was the most difficult to learn—good
thing we used two-tailed tests! The other four significant findings showed the product was easier to use and
ranked more highly than some of the competitors. Using Table 9.5 for α = 0.05 the critical value of x for nine
tests is 2, making it very likely that the five observed significant differences were due to real differences rather
than alpha inflation.

KEY POINTS FROM THE CHAPTER
• There are quite a few enduring controversies in measurement and statistics that can affect user

researchers and usability practitioners. They endure because there is at least a grain of truth on
each side, so there is no absolute right or wrong position to take on these controversies.

• It’s okay to average data from multipoint scales, but be sure to take into account their ordinal
level of measurement when interpreting the results.

• Rather than relying on a rule of thumb to set the sample size for a study, take the time to use
the methods described in this book to determine the appropriate sample size. “Magic numbers,”
whether for formative (“five is enough”) or summative (“you need at least 30”) research, are
rarely going to be exactly right for a given study.

• You should use two-tailed testing for most user research. The exception is when testing against
a benchmark, in which case you should use a one-tailed test.

• Just like other aspects of statistical testing, there is nothing magic about setting your Type I
error (α) to 0.05 unless you plan to publish your results. For many industrial testing contexts, it
will be just as important (if not more so) to control the Type II error. Before you run a study,
give careful thought to the relative costs of Type I and Type II errors for that specific study,
and then make decisions about confidence and power accordingly. Use the methods described in
this book to estimate the necessary sample size and, if the sample size turns out to be
unfeasible, continue trying different combinations of α, β, and d until you find one that will
accomplish your goals without exceeding your resources.

• Single-score (combined) usability metrics can be useful for executive dashboards or when con-
sidering multiple dependent measurements simultaneously to make a high-level go/no-go deci-
sion. They tend to be ineffective when providing specific direction about how to improve a
product or system. Fortunately, the act of combining components into a single score does not
result in the loss of the components—they are still available for analysis if necessary.

• When running more than one test on a set of data, go ahead and conduct multiple tests with α
set to whatever value you’ve deemed appropriate given your criteria for Type II errors and your
sample size. If the number of significant tests is close to what you’d expect for the number of
false alarms (Type I errors) when the null hypothesis is true, then proceed with caution in
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interpreting the findings. Otherwise, if the number of significant tests is greater than the
expected number of false alarms under the null hypothesis, you can take a stronger stand, inter-
preting the findings as indicating real differences and using them to guide your decisions.

• The proper use of statistics is to guide your judgment, not to replace it.

CHAPTER REVIEW QUESTIONS
1. Refer back to Figure 9.1. Assume the coach of that football team has decided to assign numbers

in sequence to players as a function of chest width to ensure that players with smaller chests get
single-digit numbers. The smallest player (chest width of 275 mm) got the number 1; the next
smallest (chest width 287 mm) got 2; the next (chest width 288 mm) got 3; and so on. What is
the level of measurement of those football numbers: nominal, ordinal, interval, or ratio?

2. Suppose you’re planning a within-subjects comparison of the accuracy of two dictation products,
with the following criteria (similar to Example 5 in Chapter 6):
• Difference score variability from a previous evaluation = 10.
• Critical difference (d ) = 3.
• Desired level of confidence (two-tailed): 90% (so the initial value of zα is 1.65).
• Desired power (two-tailed): 90% (so the initial value of zβ is 1.28).
• Sum of desired confidence and power: zα + zβ = 2.93.
What sample size should you plan for the test? If it turns out to be less than 30 (and it will), what
should you say to someone who criticizes your plan by claiming “you have to have a sample size
of at least 30 to be statistically significant”?

3. For the planned study in question 2, would it be okay to run that as a one-tailed rather than a
two-tailed test? Why?

4. Once more referring to the study described in question 2, how would you respond to the criticism
that you have to set α = 0.05 (95% confidence) to be able to claim statistical significance?

5. If you use SUM to combine a set of usability measurements that include successful completion
rates, successful completion times, and task-level satisfaction, will that SUM score be less
reliable, more reliable, or have the same reliability as its component scores?

6. Suppose you’ve run a formative usability study comparing your product against five competitive
products with four measures and five tasks, for a total of 100 tests, using α = 0.05, with the
results shown in Table 9.6 (an asterisk indicates a significant result). Are you likely to have
seen this many significant results out of 100 tests by chance if the null hypothesis were true?
How would you interpret the findings by product?

Answers
1. This is an ordinal assignment of numbers to football players. The player with the smallest chest

will have the lowest number and the player with the largest chest will have the highest number,
but there is no guarantee that the difference in chest size between the smallest and next-to-smallest
player will be the same as the difference in chest size between the largest and next-to-largest
player, and so on.
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2. As shown in Table 9.7, you should plan for a sample size of 12. If challenged because this is less
than 30, your response should acknowledge the general rule of thumb (no need to get into a
fight), but point out that you’ve used a statistical process to get a more accurate estimate based on
the needs of the study, the details of which you’d be happy to share with the critic. After all, no
matter how good a rule of thumb might (or might not) be, when it states a single specific number,
it’s very unlikely to be exactly right.

3. You can do anything that you want to do, but we would advise against a one-tailed test when
you’re comparing competitive products because you really do not know in advance which one
(if either) will be better. For most user research, the only time you’d use a one-tailed test is
when you’re making a comparison to a benchmark.

4. You could respond to the criticism by pointing out that you’ve determined that the relative costs
of Type I and Type II errors to your company are about equal, and you have no plans to
publish the results in a scientific journal. Consequently, you’ve made the Type I and Type II
errors equal rather than focusing primarily on the Type I error. The result is that you can be
90% confident that you will not claim a difference where one does not exist, and the test will
also have 90% power to detect differences of at least 3% in the accuracy of the two products.

Table 9.6 Significant Findings for 100 Tests Conducted with α = 0.05

Task Measure Product A Product B Product C Product D Product E

1 1 * * * * *
1 2
1 3
1 4 * *
2 1 * * *
2 2
2 3
2 4 * *
3 1 * *
3 2
3 3
3 4 *
4 1 * *
4 2 *
4 3
4 4
5 1 * *
5 2
5 3
5 4 *

# Sig. 1 2 3 6 9
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If you hold the sample size to 12 and change α to 0.05 (increasing confidence to 95%), then the
power of the test will drop from 90% to about 84% (see Table 9.2).

5. It should be more reliable. Based on data we published a few years ago (Sauro and Lewis,
2009), these data are usually correlated in industrial usability studies. Composite metrics derived
from correlated components, according to psychometric theory, will be more reliable than the
components.

6. For the full set of 100 tests, there were 21 significant results (α = 0.05). From Table 9.5, the
critical value of x (number of significant tests) for 100 tests if the null hypothesis is true is 9, so
it seems very unlikely that the overall null hypothesis is true (in fact, the probability is just
0.00000002). For a study like this, the main purpose is usually to understand where a control
product is in its competitive usability space, so the focus is on differences in products rather
than differences in measures or tasks. For the subsets of 20 tests by product, the critical value of
x is 3, so you should be relatively cautious in how you use the significant results for products A
and B, but can make stronger claims with regard to the statistically significant differences
between the control product and products C, D, and E (slightly stronger for C, much stronger
for D and E). Table 9.8 shows the probabilities for these hypothetical product results.

Table 9.8 Probabilities for Number of Significant
Results Given 20 Tests and α = 0.05

Product x (# Sig.) P (x or more)

A 1 0.642
B 2 0.264
C 3 0.075
D 6 0.0003
E 9 0.0000002

Table 9.7 Sample Size Estimation for Question 2

Initial 1 2

tα 1.65 1.83 1.8
tβ 1.28 1.38 1.36
tα+β 2.93 3.22 3.16
tα+β2 8.58 10.34 9.98
s2 10 10 10
d 3 3 3
d2 9 9 9

df 9 11 11
Unrounded 9.5 11.5 11.1

Rounded up 10 12 12
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CHAPTER

10Wrapping Up

INTRODUCTION
“One of science’s defining characteristics is that new ideas are developed and that both new and old
ideas are tested empirically. … Just like any other science, what you want to know about any statis-
tical technique is the degree to which it might give you a wrong answer and whether there are other
methods around that give you a better chance of getting things right. There aren’t rules, laws and
commandments about this, you just have to know the latest research data” (Vickers, 2010, p. 140).

In this book we’ve shared decades of research in what we believe to be the best statistical
approaches to solving the most common issues that arise in user research, including modifications
to our current practices based on recent published research in binomial confidence intervals and the
analysis of 2 × 2 contingency tables. We’ve covered the three major statistical questions: the preci-
sion of estimates (confidence intervals), tests against benchmarks, and comparison of products. The
chapters on sample size estimation include classic statistical methods and new sample size formulas
derived from recently published research, some presented for the first time in this book. We’ve pro-
vided a comprehensive review of standardized usability questionnaires, and a discussion of enduring
controversies in measurement and statistics that affect usability practitioners and researchers. In the
Appendix, we have a crash course in fundamental statistical concepts, based on years of teaching
short courses at professional conferences that cover a semester of introductory statistics in about a
half hour.

GETTING MORE INFORMATION
We believe we’ve addressed the major issues that most usability practitioners and researchers
encounter, but we have not covered more advanced and specialized topics, such as:

• Analysis of variance: This is an extension of the t-test for use when investigating multiple
independent variables and their interactions, for example, analyzing data from the use of three
cell phones by novice and expert men and women.

• Analysis of many-way contingency tables: For this book, we restricted our analyses to 2 × 2
contingency tables. For larger, more complex contingency tables, the most common analytical
method is the chi-squared test, which extends easily from 2 × 2 tables. Another approach is to
use an advanced method called log-linear analysis.

• Correlation and linear regression: Correlation is the measurement of shared variance of two
variables, and linear regression is the extension of that to a predictive model. For example, there
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is a relationship between people’s height and weight, which you can express as a correlation or
as a formula to predict a person’s height from their weight or vice versa.

• Nonparametric data analysis: These are tests that make fewer initial assumptions about the
underlying data than z- or t-tests, often by converting raw data to ranks or through resampling
methods (e.g., jackknife or bootstrapping). Although we did not cover rank- or resampling-based
procedures (for which the jury is still out as to whether they are advantageous when applied to
typical user research data), the following procedures included in this book are generally considered
nonparametric:
• Binomial test (Chapter 4)
• Chi-square test and N − 1 chi-square test (Chapter 5)
• Two-proportion test and N − 1 two-proportion test (Chapter 5)
• Fisher exact test (Chapter 5)
• McNemar exact test (Chapter 5)

• Card-sorting and analysis: Card-sorting is a user research method used to develop models of
mental organization of information, applied to the design of menu structures and information
architectures. Methods used to analyze the data from a card-sorting study include cluster
analysis, multidimensional scaling, factor analysis and path analysis.

• Analysis of eye-tracking data: The use of eye-tracking has become more common in user
research as the equipment has become less expensive and more reliable. Common analyses of
eye-tracking data include heat maps, look-zones, and scan paths.

For information on analysis of variance, correlation, regression, and nonparametric data analysis, you
can consult standard statistics textbooks. The first three topics are based on a technique called general
linear modeling. It is possible to spend a lifetime learning advanced methods in general linear modeling
and nonparametric statistics, but for practical user research, there is rarely a need. For a quick introduc-
tion to card-sorting and analysis of eye-tracking data, we recommend Measuring the User Experience
(Tullis and Albert, 2008), which also includes valuable information on collecting and presenting a wide
variety of user research data (including brief descriptions of correlation and analysis of variance).

If you’re new to the measurement of usability, in addition to the Tullis and Albert book, we
recommend A Practical Guide to Measuring Usability (Sauro, 2010), which addresses the most
commonly asked questions about quantifying usability. For a comprehensive review of the System
Usability Scale, including discussions of other standardized usability questionnaires, we recommend
A Practical Guide to the System Usability Scale (Sauro, 2011). Finally, if you expect to use these
statistical methods frequently in your day-to-day work, we recommend Lewis and Sauro (2012),
which contains detailed information on how to use the Excel calculator (or a custom set of func-
tions written in the R statistical programming language) to solve the over 100 quantitative examples
and exercises that appear in this book.

Any book must eventually come to an end (publishers insist on this), but research on statistical
methods for user research will continue. For late-breaking developments in usability research and
practice, there are a number of annual conferences that have usability evaluation as a significant
portion of their content, including occasional papers on statistical methods for user research pub-
lished in their proceedings. These major conferences are:

• ACM Special-Interest Group in Computer–Human Interaction (CHI) (www.acm.org/sigchi/ )
• Human Factors and Ergonomics Society (www.hfes.org/ )
• Usability Professionals Association (www.upassoc.org/ )

270 CHAPTER 10 Wrapping Up

http://www.acm.org/sigchi/
http://www.hfes.org/
http://www.upassoc.org/


• Human–Computer Interaction International (www.hci-international.org/ )
• INTERACT (held every two years; e.g., see www.interact2011.org/ )

You can also get information on statistical methods for user research from the magazines and journals
produced by professional organizations such as ACM (Interactions), HFES (Ergonomics in Design),
and UPA (User Experience). For example, you will find references in this book to the following:

• Ergonomics in Design (www.hfes.org/publications/ProductDetail.aspx?ProductId=36 )
• Interactions (interactions.acm.org)
• Journal of Usability Studies (www.upassoc.org/upa_publications/jus/jus_home.html )
• Human Factors (www.hfes.org/Publications/ProductDetail.aspx?ProductID=1)
• International Journal of Human–Computer Interaction (www.tandf.co.uk/10447318)
• IEEE Transactions on Professional Communication (ewh.ieee.org/soc/pcs/?q=node/24 )
• Behaviour & Information Technology (www.tandf.co.uk/journals/tf/0144929X.html )
• Behavior Research Methods (www.springer.com/psychology/cognitive+psychology/journal/13428)
• Communications of the ACM (www.cacm.acm.org)
• Applied Ergonomics (www.elsevier.com/wps/find/journaldescription.cws_home/30389/

description)
• Computers in Human Behavior (www.elsevier.com/wps/find/journaldescription.cws_home/759/

description)
• Interacting with Computers (www.elsevier.com/wps/find/journaldescription.cws_home/525445/

description)
• International Journal of Human–Computer Studies (www.elsevier.com/wps/find/journaldescription

.cws_home/622846/description)

The following journals provide more technical coverage of statistical issues that occasionally
relate to methods for user research:

• The American Statistician (www.amstat.org/publications/tas.cfm)
• Journal of the American Statistical Association (www.amstat.org/publications/jasa.cfm)
• The American Psychologist (www.apa.org/pubs/journals/amp/index.aspx)
• Psychological Bulletin (www.apa.org/pubs/journals/bul/index.aspx)
• Psychological Science (www.psychologicalscience.org/index.php/publications/journals/

psychological_science)
• Current Directions in Psychological Science (www.psychologicalscience.org/index.php/

publications/journals/current_directions)
• ACTA Psychologica (www.elsevier.com/wps/find/journaldescription.cws_home/505579/

description)
• Educational and Psychological Measurement (epm.sagepub.com/ )
• Journal of Experimental Psychology (www.apa.org/pubs/journals/xge/index.aspx)
• Statistics in Medicine (onlinelibrary.wiley.com/journal/10.1002/(ISSN)1097-0258)
• Biometrics (www.biometrics.tibs.org)
• Biometrika (www.biomet.oxfordjournals.org)
• Technometrics (www.amstat.org/publications/tech.cfm)
• Journal of Mathematical Psychology (www.elsevier.com/wps/find/journaldescription.cws_home/

622887/description)
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STAY TUNED FOR FUTURE RESEARCH
How to Sign Up for the www.measuringusability.com Newsletter
We plan to continue investigating and publishing our findings on statistical methods for user research. Probably
the best source for updates on our research is the website www.measuringusability.com.

The easiest way to stay informed is to subscribe to the newsletter by clicking the “Email Updates” link in the
upper right corner of the home page. The website also contains online tutorials and courses that cover many of
the concepts in this book using visualizations and interactive demonstrations.

GOOD LUCK!
We wish you the best of luck as you collect and analyze user data in support of the goal of making
products easier to use and, as a consequence, making life better for your users. As you do your
research, keep in mind that statistics provides “the world’s most specific way of saying maybe”
(Searles, 1978, p. 110). The use of statistical methods does not guarantee 100% correct decisions,
but it doesn’t have to be perfect to be effective. It is important, however, to understand its strengths,
limitations, and leading practices when applied to user research to ensure its most effective use. It is
our sincere hope that this book has helped in the development of that understanding.

KEY POINTS FROM THE CHAPTER
• This book includes discussion of the most common issues that arise in user research.
• Topics not covered in this book are more advanced or specialized subjects, such as analysis of

variance, correlation, linear regression, nonparametric data analysis, card-sorting, and eye-tracking.
• A good resource for an introduction to the topics not covered here is Measuring the User

Experience by Tom Tullis and Bill Albert (2008).
• Sources for monitoring future developments in statistical methods for user research include the

proceedings of major conferences and a variety of scientific publications.
• For up-to-date information on our future research, visit www.measuringusability.com and sign up

for the newsletter.

References
Lewis, J.R., Sauro, J., 2012. Excel and R Companion to “Quantifying the User Experience: Practical Statistics

for User Research”: Rapid Answers to over 100 Examples and Exercises. Create Space Publishers, Denver.
Sauro, J., 2010. A Practical Guide to Measuring Usability. Create Space Publishers, Denver.
Sauro, J., 2011. A Practical Guide to the System Usability Scale. Create Space Publishers, Denver.
Searles, D., 1978. PSI burn: A study of physiological deterioration in parapsychological experimentation. Omni

Mag. 1 (3), 108–110. [A satire with amusing definitions of statistical terms.]
Tullis, T., Albert, B., 2008. Measuring the User Experience: Collecting, Analyzing, and Presenting Usability

Metrics. Morgan Kaufmann, Boston.
Vickers, A., 2010. What Is a p-Value Anyway? Addison-Wesley, Boston.

272 CHAPTER 10 Wrapping Up

http://www.measuringusability.com
http://www.measuringusability.com
http://www.measuringusability.com


Appendix: A Crash Course in Fundamental
Statistical Concepts

INTRODUCTION
Throughout the book we’ve attempted to provide as much statistical background as possible without
letting it get too overwhelming. In this appendix we review some fundamental statistical concepts
and provide pointers to chapters where the concepts are covered in greater detail. If you’ve never
had an introductory statistics class or don’t remember basic concepts such as measuring central
tendency and variability, then you can use this appendix for a quick review.

TYPES OF DATA
The first step in using statistics to make better decisions is to obtain measurements. There are two
major types of measurements: quantitative and categorical. Task time, number of usability problems,
and rating-scale data are quantitative. Things like gender, operating system, and usability problem
type are categorical variables.

Quantitative data fall on a spectrum from continuous to discrete-binary, as shown in Figure A.1.
Note that the extreme discrete end of this spectrum includes binary categorical measurements such
as pass/fail and yes/no. The more discrete the data, the larger the required sample size for the same
level of precision as a continuous measure. Also, you’ll usually use different statistical tests for con-
tinuous versus discrete data (see Chapters 3–6).

Discrete data have finite values, or buckets. You can count them. Continuous data technically
have an infinite number of steps, which form a continuum. The number of usability problems
would be discrete—there are a finite and countable number of observed usability problems. Time to
complete a task is continuous since it could take any value from 0 to infinity, for example,
178.8977687 seconds.

You can tell the difference between discrete and continuous data because discrete data can
usually be preceded by the phrase “number of …”—for example, number of errors or number of
calls to the help desk.

You can convert categorical data into discrete quantitative data. For example, task passes and
failures can be converted to 0 for fail and 1 for pass. Discrete data don’t lend themselves well to
subdividing (you can’t have half an error) but we’re often able to analyze them more like continu-
ous data because they can potentially range from 0 to infinity. Questionnaire data that use closed-
ended rating scales (e.g., values from 1 to 7) do have discrete values, but because the mean rating
can take an infinite number of values, we can analyze it like continuous data.

There are other ways of classifying measurements, such as the famous and controversial hierar-
chy of nominal, ordinal, interval, and ratio data discussed in Chapter 9. For most applied user
research, the major useful distinctions are between categorical and quantitative data and, within
quantitative data, between continuous and discrete.
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POPULATIONS AND SAMPLES
We rarely have access to the entire population of users. Instead we rely on a subset of the popula-
tion to use as a proxy for the population. When we ask a sample of users to attempt tasks and we
measure the average task time, we’re using this sample to estimate the average task time for the
entire user population. Means, standard deviations, medians, and other summary values from samples
are called statistics. Sample statistics estimate unknown population parameters. Population para-
meters (like the mean task time and standard deviation) are denoted with Greek symbols (μ for
mean and σ for standard deviation) and sample statistics are denoted with Latin characters (x for
mean and s for standard deviation).

Sampling
The most important thing in drawing conclusions from data, whether in user research, psychology,
or medicine, is that the sample of users you measure represents the population about which you
intend to make statements. No amount of statistical manipulation can correct for making inferences
about one population if you observe a sample from a different population.

Ideally, you should select your sample randomly from the parent population. In practice, this can be
very difficult due to (a) issues in establishing a truly random selection scheme or (b) problems getting
the selected users to participate. It’s always important to understand the potential biases in your data
and how that limits your conclusions. In applied research we are constrained by budgets and the avail-
ability of users but products still must ship, so we make the best decisions we can given the data we
have. Where possible, seek to minimize systematic bias in your sample but remember that representa-
tiveness is more important than randomness. In other words, you’ll make better decisions if you have a
less-than-perfectly random sample from the right population than if you have a perfectly random sample
from the wrong population. See Chapter 2 for more discussion on randomness and representativeness.

MEASURING CENTRAL TENDENCY
Mean
One of the first and easiest things to do with a data set set is to find the average. The average is
a measure of central tendency, meaning it is a way of summarizing the middle value (where the
center of the data tends to be). For a data set set that is roughly symmetrical, the arithmetic mean
provides a good center value. To calculate the mean, add up each value and divide by the total

Questionnaire data

Task time Errors

User assistance

Completion rate &
conversion rate

FIGURE A.1

Spectrum of quantitative data.
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number in the group. For example, here are 10 SUS scores from a recent usability test (see Chapter 8
for more on SUS):

90:6, 34:4, 34:4, 87:5, 75, 62:5, 100, 65:6, 71:9, 53:1, 34:4, 37:5, 75, 87:5, 12:5, 46:9

The mean SUS score is 60.55. You can use the Excel function =AVERAGE() to find the arithmetic mean.

Median
When the data you’re analyzing aren’t symmetrical, like task times, the mean can be heavily influ-
enced by a few extreme data points and thus becomes a poor measure of the middle value. In such
cases the median provides a better idea of the most typical value. For odd samples, the median is
the central value; for even samples, it’s the average of the two central values. Here is an example
of task-time data from a usability test, arranged from fastest to slowest:

84, 85, 86, 103, 111, 122, 180, 183, 235, 278

For these data, the median is 116.5 (the mean of 111 and 122). In Excel, you can find the median
with the function =MEDIAN().

Geometric Mean
The median is by definition the center value. In a small sample of data (less than 25 or so), the sample
median tends to do a poor job of estimating the population median. For task-time data we’ve found that
another average called the geometric mean tends to provide a better estimate of the population’s middle
value than the sample median (see Chapter 3 for more discussion on using the geometric mean with
task times). To find the geometric mean, transform the raw times to log times (using the Excel
function =LN()), find the arithmetic mean of these log times, then convert this mean of the logs back
into the original scale (using the Excel function =EXP()). The geometric mean for the task times pre-
viously shown is 133.8 seconds. You can also use the Excel function =GEOMEAN() on the raw task
times. Figure A.2 shows the various “average” times for this example.

Geometric
mean

Median Mean

80 117 134 147 160 200 240 280

FIGURE A.2

Difference in “average” point estimates.
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STANDARD DEVIATION AND VARIANCE
In addition to describing the center or most typical value in a data set, we also need a measure of
the spread of the data around the average. The most common way to do this is using a metric called
the standard deviation. The standard deviation provides an estimate of the average difference of
each value from the mean.

If, however, you just subtract each value from the mean and take an average, you’ll always get
0 because the differences cancel out. To avoid this problem, after subtracting each value from
the mean, square the values then take the average of the squared values. This gets you the average
squared difference from the mean, a statistic called the variance. It is used a lot in statistical
methods, but it’s hard to think in terms of squared differences. The solution is to take the square
root of the variance to get the standard deviation—an intuitive (and the most common) way to
describe the spread of data. A narrated visualization of the standard deviation is available online at
http://www.usablestats.com/tutorials/StandardDeviation.

THE NORMAL DISTRIBUTION
Many measures when graphed tend to look like a bell-shaped curve. For example, heights, weights,
and IQ scores are some of the more famous bell-shaped distributions. Figure A.3 shows a graph of
500 North American men’s heights in inches. The average height is 5 feet 10 inches (178 cm) with
a standard deviation of 3 inches (7.6 cm).

Over the past century, researchers have found that the bulk of the values in a population cluster
around the “head” of the bell-curve. In general, they’ve found that 68% of values fall within one
standard deviation of the mean, 95% fall within two standard deviations, and 99.7% fall within
three standard deviations. In other words, for a population that follows a normal distribution, almost
all the values will fall within three standard deviations above and below the mean—a property

5'1 5'4 5'7 6'1 6'4 6'75'10

FIGURE A.3

Distribution of North American men’s heights in inches.
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known as the Empirical Rule (see Figure A.4). As you can see in Figure A.4, the bulk of the
heights fall close to the mean with only a few further than two standard deviations from the mean.

As another example, Figure A.5 shows the weights of 2,000 Euro coins, which have an average
weight of 7.53 grams and a standard deviation of 0.035 grams. Almost all coins fall within three
standard deviations of the mean weight.

5'1

2.15% 2.15%13.6% 13.6%

99.7%

95.4%

68.2%

5'4 5'7 6'1 6'4 6'75'10

−3sd −2sd −1sd 1sd 2sd 3sdMean

FIGURE A.4

Illustration of the Empirical Rule.
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68.2%

7.46 7.49 7.53 7.56 7.60 7.63

−3sd −2sd −1sd 1sd 2sd 3sdMean

FIGURE A.5

Weights of 2,000 Euro coins.
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If we can establish that our population follows a normal distribution and we have a good idea
about the mean and standard deviation, then we have some idea about how unusual values are—
whether they are heights, weights, average satisfaction scores, or average task times.

z-scores
For example, if you had a friend who had a height of 6 feet 10 inches, intuitively you’d think he
was tall. In fact, you probably haven’t met many people who are as tall as or taller than him. If we
think of this person as one point in the population of adult men, we can get an idea about how
unusual this height is. All we need to know is the mean and standard deviation of the population.

Using the mean and standard deviation from the North American population (5 feet 10 inches
and 3 inches, respectively), someone who is 6 feet 10 inches is 12 inches higher than the mean. By
dividing this difference by the standard deviation of three, we get four, which tells us how many
standard deviations this point is from the mean. The number of standard deviations is a unitless
measure that has the same meaning regardless of the data set. In this case, our friend is four stan-
dard deviations above the mean. When used this way, the number of standard deviations also goes
by the name z-score or normal score.

Based on the Empirical Rule, we know that most data points in a normal distribution fall within
three standard deviations of the mean, so a person who is four standard deviations above the mean
is very tall indeed (taller than at least 99% of the population). If we know that a toddler’s height is
four standard deviations above the mean, knowing nothing else, you know that he is very tall for
his age. If a student’s IQ score is four standard deviations above the mean, you know that her score
is well above average. If you know a company’s loyalty ratings are four standard deviations above
the mean, this is compelling evidence that their scores are among the highest (and they have a very
loyal following).

We can use the properties of the normal curve to be more precise about just how tall, smart, or
loyal someone is. Just like the Empirical Rule gives us the percent of values within one, two, and
three standard deviations, we can use the same principle to find the percent we’d expect to fall
between any two points and how extreme a point is.

We already have the number of standard deviations (that’s what the z-score tells us), so all we
have to do is find the area under the normal curve for the given z-score(s).

AREA UNDER THE NORMAL CURVE
If the normal curve was a rectangle it would be easy to find the area by multiplying the length
times the width, but it’s not, or it would be called the normal rectangle. The area of curved shapes
is essentially found by adding up small rectangles that approximate the curves, with this process
smoothed through the use of calculus. Fortunately, we can use software or tabled values to spare us
all the tedious calculus.

One of the most important things to remember about using the normal curve as a reference dis-
tribution is that the total area under the curve adds up to one, or 100% (see Figure A.6).

You can think of it like a big pie chart—you can have as many slices as you want but they all
need to add up to 100%. The same principle applies to the normal curve. Unlike a pie chart though,
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the normal curve theoretically goes on to both positive and negative infinity, but the area gets
infinitesimally small as you go beyond four standard deviations from the mean.

If you have access to Excel, you can find the percent of area up to a point in the normal curve by
using the function =NORMSDIST(z), where z is the number of standard deviations (the z-score). For
example, a z-score of 1.28 provides the area from negative infinity to 1.28 standard deviations above
the mean and accounts for about 90% of the area. The shaded region in Figure A.7 shows you 90%
of the area from negative infinity to 1.28 standard deviations above the mean. We can use the area
under the curve as a percentile rank to describe how typical or unusual a value is.

A person who is four standard deviations above the mean would be in the =NORMSDIST(4) or
99.997 percentile in height (very unusual!). Most statistics books include a table of normal values. To
find the percentile rank from the table, you find the z-score that’s closest to yours and find the area.
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Like a pie chart, the area under the normal curve adds up to 100%.
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Illustration of an area under the normal curve.
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For example, Table A.1 is a section from a normal table. There isn’t an entry for 1.28 but we can see
it falls somewhere between 88.49% and 90.32% (closer to 90.32%).

Because the total area must add up to 100% under the curve, we can express a z-score of 1.28
as being higher than 90% of values or less than 10% of values (100% minus 90%).

APPLYING THE NORMAL CURVE TO USER RESEARCH DATA
The examples so far have been mostly about height, weight, and IQ scores—metrics that nicely
follow a normal distribution. In our experience, user researchers rarely use these metrics, more typi-
cally using measurements such as averages from rating scales and completion rates. Graphs of the
distributions of these types of data are usually far from normal. For example, Figure A.8 shows 15 SUS
scores from a usability test of the Budget.com website. It is hardly bell-shaped or even symmetrical.

The average SUS score from this sample of 15 users is 80 with a standard deviation of 24. It’s
understandable to be a bit concerned about how much faith to put into this mean as a measure of
central tendency because the data aren’t symmetric. It is certainly even more of a concern about
how we can use the normal curve to make inferences about this sort of data.

It turns out this sample of 15 comes from a larger sample of 311 users, with all the values shown
in Figure A.9. The mean SUS score of these data is 78.

Again, the shape of this distribution makes you wonder if the normal curve is even relevant.
However, if we take 1,000 random samples of 15 users from this large population of 311, then graph
the 1,000 means, we get the graph shown in Figure A.10. Although the large sample of 311 SUS scores
is not normal, the distribution of the random means shown in Figure A.10 does follow a normal distri-
bution. The same principle applies if the population we draw randomly from is 311 or 311 million.

CENTRAL LIMIT THEOREM
Figure A.10 illustrates one of the most fundamental and important statistical concepts—the Central
Limit Theorem. In short, this theorem states that as the sample size approaches infinity, the distribu-
tion of sample means will follow a normal distribution regardless of what the parent population

Table A.1 Partial z-Scores to Percentile Rank Table

z-Score Percentile

1 84.13
1.1 86.43
1.2 88.49
1.3 90.32
1.4 91.92
1.5 93.32
1.6 94.52
1.7 95.54
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FIGURE A.8

Graph of 15 SUS scores.
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FIGURE A.9

Graph of 311 SUS scores.
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FIGURE A.10

Graph of 1,000 means of random samples of 15 SUS scores.
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looks like. Even for some very non-normal populations, at a sample size of around 30 or higher, the
distribution of the sample means becomes normal. The mean of this distribution of sample means
will also be equal to the mean of the parent population.

For many other populations, like rating-scale data, the distribution becomes normal at much
smaller sample sizes (we used 15 in Figure A.10). To illustrate this point with binary data, which
have a drastically non-normal distribution, Figure A.11 shows 1,000 random samples taken from a
large sample of completion-rate data with a population completion rate of 57%. The data are
discrete-binary because the only possible values are fail (0) and pass (1).

The black dots show each of the 1,000 sample completion rates at a sample size of 50. Again
we can see the bell-shaped normal distribution take shape. The mean of the sampling distribution of
completion rates is 57%, the same as the population from which it was drawn. For reasonably large
sample sizes, we can use the normal distribution to approximate the shape of the distribution of
average completion rates. The best approaches for working with this type of data are discussed in
Chapters 3–6.

STANDARD ERROR OF THE MEAN
We will use the properties of the normal curve to describe how unusual a sample mean is for things
like rating-scale data and task times. When we speak in terms of the standard deviation of the distri-
bution of sample means, this special standard deviation goes by the name “standard error” to
remind us that that each sample mean we obtain differs by some amount from the true unknown

0 0.20

0 1

0.40

n = 50

0.60

Completion rate

0.80 1

57% Completion rate

FIGURE A.11

Illustration of distribution of binary means approaching normality.
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population mean. Because it describes the mean of multiple members of a population, the standard
error is always smaller than the standard deviation. The larger our sample size, the smaller we
would expect the standard error to be and the less we’d expect our sample mean to differ from the
population mean. Our standard error needs to take into account the sample size. In fact, based on
the sample size, there is a direct relationship between the standard deviation and the standard error.
We use the sample standard deviation and the square root of the sample size to estimate the stan-
dard error—how much sample means fluctuate from the population mean:

sffiffiffi
n

p

From our initial sample of 15 users (see Figure A.8) we had a standard deviation of 24. This gener-
ates a standard error (technically the estimate of the standard error) of 6.2:

sffiffiffi
n

p = 24ffiffiffiffiffi
15

p = 6:2

MARGIN OF ERROR
We can use this standard error just like we use the standard deviation to describe how unusual values
are from certain points. Using the Empirical Rule and the standard error of 6.2 from this sample,
we’d expect around 95% of sample means to fall within two standard errors or about 12.4 points on
either side of the mean population score. This 12.4-point spread is called the margin of error. If we
add and subtract the margin of error to the sample mean of 80, we have a 95% confidence interval
that ranges from 67.6 to 92.4, which, as expected, contains the population mean of 78 (see Chapter 3
for more detail on generating confidence intervals). However, we don’t know the population mean or
standard deviation. Instead, we’re estimating it from our sample of 15 so there is some additional
error we need to account for. Our solution, interestingly enough, comes from beer.

t-DISTRIBUTION
Using the Empirical Rule and z-scores to find the percent of area only works when we know the
population mean and standard deviation. We rarely do in applied research. Fortunately, a solution
was provided over 100 years ago by an applied researcher named William Gossett who faced the
same problem at Guinness Brewing (for more information, see Chapter 9).

He compensated for flawed estimates of the population mean and standard deviation by account-
ing for the sample size to modify the z-distribution into the t-distribution. Essentially, at smaller
sample sizes, sample means fluctuate more around the population mean, creating a bell-curve that is
a bit fatter in the tails than the normal distribution. Instead of 95% of values falling with 1.96 stan-
dard deviations of the mean, at a sample size of 15, they fall within 2.14 standard deviations.

For most small-sample research, we use these t-scores instead of z-scores to account for how
much we expect the sample mean to fluctuate. Statistics textbooks include t-tables or, if you have
access to Excel, you can use the formula =TINV(0.05,14) to find how many standard deviations
account for 95% of the area (called a critical value). The two parameters in the formula are alpha
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(1 minus the level of confidence (1 − 0.95 = 0.05)) and the degrees of freedom (sample size minus
1 for a one-sample t), for which t = 2.14.

Therefore, a more accurate confidence interval would be 2.14 standard errors, which generates the
slightly wider margin of error of 13.3 (6.2 × 2.14). This would provide us with a 95% confidence
interval around the sample mean of 80 ranging from 66.7 to 93.3. Confidence intervals based on
t-scores will always be larger than those based on z-scores (reflecting the slightly higher variability
associated with small sample estimates), but will be more likely to contain the population mean at the
specified level of confidence. Chapter 3 provides more detail on computing confidence intervals for a
variety of data.

SIGNIFICANCE TESTING AND p-VALUES
The concept of the number of standard errors that sample means differ from population means
applies to both confidence intervals and significance tests. If we want to know if a new design actu-
ally improves task-completion times but can’t measure everyone, we need to estimate the difference
from sample data. Sampling error then plays a role in our decision. For example, Figure A.12
shows the times from 14 users who attempted to add a contact in a CRM application. The average
sample completion time is 33 seconds with a standard deviation of 22 seconds.

A new version of the data entry screen was developed and a different set of 13 users attempted
the same task (see Figure A.13). This time the mean completion time was 18 seconds with a stan-
dard deviation of 10 seconds.

So, our best estimate is that the new version is 15 seconds faster than the older version. A nat-
ural question to ask is whether the difference is statistically significant. That is, it could be that
there is really no difference in task-completion times between versions. It could be that our sam-
pling error from our relatively modest sample sizes is just leading us to believe there is a difference.
We could just be taking two random samples from the same population with a mean of 26 seconds.
How can we be sure and convince others that at this sample size we can be confident the difference
isn’t due to chance alone?
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FIGURE A.12

Task-completion times from 14 users.
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FIGURE A.13

Task-completion times from 13 other users.

284 Appendix: A Crash Course in Fundamental Statistical Concepts



How much do Sample Means Fluctuate?
Figure A.14 shows the graph of a large data set of completion times with a mean of 26 seconds and
a standard deviation of 13 seconds.

Imagine you randomly selected two samples—one containing 14 task times and the other
13 times—found the mean for each group, computed the difference between the two means, and
graphed it. Figure A.15 shows what the distribution of the difference between the sample means
would look like after 1,000 samples. Again we see the shape of the normal curve.

We can see in Figure A.15 that a difference of 15 seconds is possible if the samples came from
the same population (because there are dots that appear at and above 15 seconds and −15 seconds).
This value does, however, fall in the upper-tail of the distribution of 1,000 mean differences—the
vast majority cluster around 0. Just how likely is it to get a 15-second difference between these
sample means if there really is no difference? To find out, we again count the number of standard
errors that the observed mean difference is from the expected population mean of 0 if there really is
no difference. As a reminder, this simulation is showing us that when there is no difference between
means (we took two samples from the same data set) we will still see differences just by chance.
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FIGURE A.14

Large dataset of completion times.
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FIGURE A.15

Result of 1,000 random comparisons.
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For this two-sample t-test, there is a slight modification to the standard error portion of the
formula because we have two estimates of the standard error—one from each sample. As shown in
the following formula for the two-sample t, we combine these estimates using a weighted average
of the variances (see Chapter 5 for more detail):

t =
x̂1 − x̂2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
n1

+
s22
n2

s

where

x̂1 and x̂2 are the means from sample 1 (33 seconds) and sample 2 (18 seconds)
s1 and s2 are the standard deviations from sample 1 (22) and sample 2 (10 seconds)
n1 and n2 are the sample sizes from sample 1 (14) and sample 2 (13)
t is the test statistic (look up using the t-distribution based on the sample size for two-sided area)

Filling in the values, we get a standard error of 6.5 seconds, and find that a difference of 15 seconds
is 2.3 standard errors from the mean:

t =
x̂1 − x̂2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
n1

+
s22
n2

s = 33− 18ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
222

14
+ 102

13

r = 15
6:5

= 2:3

To find out how likely this difference is if there were really no difference, we look up 2.3 in a
t-table to find out what percent of the area falls above and below 2.3 standard deviations from the
mean. The only other ingredient we need to use in the t-table is the degrees of freedom, which is
approximately two less than the smaller of the two sample sizes (13 − 2 = 11) (for a more specific
way to compute the degrees of freedom for this type of test, see Chapter 5). Using the Excel
function =TDIST(2.3,11,2) we get 0.04, which is called the p-value. A p-value is just a percentile
rank or point in the t-distribution. It’s the same concept as the percent of area under the normal
curve used with z-scores. A p-value of 0.04 means that only 4% of differences would be greater
than 15 seconds if there really was no difference. Put another way, 2.3 standard errors account for
96% of the area under the t-distribution (1 − 0.04). In other words, we expect to see a difference
this large by chance only around 4 in 100 times. It’s certainly possible that there is no difference in
the populations from which the two samples came (that the true mean difference is 0), but it is
more likely that the difference between means is something more like 5, 10, or 15 seconds. By con-
vention, when the p-value falls below 0.05 there is sufficient evidence to conclude the difference
isn’t due to chance. In other words, we would conclude that the difference between the two versions
of the CRM application indicates a real difference (see Chapter 9 for more discussion on using the
p-value cutoff of 0.05).

Keep in mind that although the statistical decision is that one design is faster, we have not absolutely
proven that it is faster. We’re just saying that it’s unlikely enough that the observed mean differences
come from populations with a mean difference of 0 (with the observed difference of 15 seconds due to
chance). As we saw with the previous resampling exercise, we occasionally obtained a difference of 15
seconds even though we were taking random samples from the same population. Statistics is not about
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ensuring 100% accuracy—instead it’s more about risk management. Using these methods we’ll be right
most of the time, but at a 95% level of confidence, in the long run we will incorrectly conclude 5 out of
100 times (1 out of 20) that a difference is statistically significant when there is really no difference.
Note that this error rate only applies to situations in which there is really no difference.

THE LOGIC OF HYPOTHESIS TESTING
The p-value we obtain after testing two means tells us the probability that the difference between
means is really 0. The hypothesis of no difference is referred to as the null hypothesis. The p-value
speaks to the credibility of the null hypothesis. A low p-value means the null hypothesis is less cred-
ible and unlikely to be true. If the null hypothesis is unlikely to be true, then it suggests our research
hypothesis is true—specifically, there is a difference. In the two CRM designs, the difference between
mean task times was 15 seconds. We’ve estimated that a difference this large would only happen by
chance around 4% of the time, so the probability the null hypothesis is true is 4%. It seems much
more likely that the alternate hypothesis—namely, that our designs really did make a difference—
is true.

Rejecting the opposite of what we’re interested in seems like a lot of hoops to jump through.
Why not just test the hypothesis that there is a difference between versions? The reason for this
approach is at the heart of the scientific process of falsification.

It’s very difficult to prove something scientifically. For example, the statement, “Every software
program has usability problems,” would be very difficult to prove or disprove. You would need
to examine every program ever made and to be made for usability problems. However, another
statement—“Software programs never have usability problems”—would be much easier to disprove.
All it takes is one software program to have usability problems and the statement has been falsified.

With null hypothesis testing, all it takes is sufficient evidence (instead of definitive proof) that a
0 difference between means isn’t likely and you can operate as if at least some difference is true.
The size of the difference, of course, also matters. For any significance test, you should also gener-
ate the confidence interval around the difference to provide an idea of practical significance. The
mechanics of computing a confidence interval around the difference between means appears in
Chapter 5. In this case, the 95% confidence interval is 1.3 to 28.7 seconds. In other words, we can
be 95% confident the difference is at least 1.3 seconds, which is to say the reduction in task time is
probably somewhere between a modest 4% reduction (1.3/33) or a more noticeable 87% reduction
(28.7/33).

As a pragmatic matter, it’s more common to test the hypothesis of 0 difference than some other
hypothetical difference. It is, in fact, so common that we often leave off the difference in the test
statistic (as was done in Chapter 5). In the formula used to test for a difference, the difference
between means is placed in the numerator. When the difference we’re testing is 0, it’s left out of
the equation because it makes no difference:

t =
x̂1 − x̂2 − 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s21
n1

+
s22
n2

s =
x̂1 − x̂2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
n1

+
s22
n2

s
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In the CRM example, we could have asked the question, is there at least a 10-second difference
between versions? We would update the formula for testing a 10-second difference between means
and would have obtained a test statistic of 0.769, as shown in the following formula:

t =
x̂1 − x̂2 − 10ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s21
n1

+
s22
n2

s = 33− 18− 10ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
222

14
+ 102

13

r = 5
6:5

= 0:769

Looking this up using the Excel function =TDIST(0.769,11,2) we get a p-value of 0.458.
A p-value of 0.458 would tell us there’s about a 46% chance of obtaining a difference of 15

seconds if the difference was really exactly 10 seconds. We could then update our formula and test
for a 5-second difference and get a p-value of 0.152. As you can see, the more efficient approach is
to test for a 0 difference, and if the p-value is sufficiently small (by convention less than 0.05, but
see Chapter 9), then we can conclude there is at least some difference and look to the confidence
interval to show us the range of plausible differences.

ERRORS IN STATISTICS
Because we can never be 100% sure of anything in statistics, there is always a chance we’re wrong—
there’s a “probably” in probability, not “certainty.” There are two types of errors we can make. We
can say there is a difference when one doesn’t really exist (called a Type I error), or we can conclude
no difference exists when one in fact does exist (called a Type II error). Figure A.16 provides a visua-
lization of the ways we can be wrong and right in hypothesis testing, using α = 0.05 as the criterion
for rejecting the null hypothesis.

The p-value tells us the probability we’re making a Type I error. When we see a p-value of
0.05, we interpret this to mean that the probability of obtaining a difference this large or larger if
the difference is really 0 is about 5%. So over the long run of our statistical careers, if we only con-
clude designs are different if the p-value is less than 0.05, we can expect to be wrong no more than
about 5% of the time, and that’s only if the null hypothesis is always true when we test.

Not reported in the p-value is our chance of failing to say there is a difference when one exists.
So for all those times when we get p-values of, say, 0.15 and we conclude there is no difference in
designs, we can also be making an error. A difference could exist, but because our sample size was

Hypothesis testing errors
Reality

Type II

Type I

Your decision

p > 0.05 don’t reject null

Null is true Null is false

p < 0.05 reject null

FIGURE A.16

Statistical decision making: two ways to be right; two ways to be wrong.
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too small or the difference was too modest, we didn’t observe a statistically significant difference in
our test. Chapters 6 and 7 contain a thorough discussion of power and computing sample sizes to
control Type II errors. A discussion about the importance of balancing Type I and Type II errors
for applied research appears in Chapter 9.

If you need more background and exposure to statistics, we’ve put together interactive lessons
with many visualizations and examples on the www.measuringusability.com website.

KEY POINTS FROM THE APPENDIX
• Pay attention to the type of data you’re collecting. This can affect the statistical procedures you

use and your interpretation of the results.
• You almost never know the characteristics of the populations of interesting data, so you must

infer the population characteristics from the statistics you calculate from a sample of data.
• Two of the most important types of statistics are measures of central tendency (e.g., the mean,

median, and geometric mean) and variation (e.g., the variance, standard deviation, and standard
error).

• Many metrics tend to be normally distributed. Normal distributions follow the Empirical Rule—
that 68% of values fall within one standard deviation, 95% within two, and 99.7% within three.

• As predicted by the Central Limit Theorem, even for distributions that are not normally
distributed, the sampling distribution of the mean approaches normality as the sample size
increases.

• To compute the number of standard deviations that a specific score is from the mean, divide the
difference between that specific score and the mean by the standard deviation to convert it to a
standard score, also known as a z-score.

• To compute the number of standard deviations that a sample mean is from a hypothesized mean,
divide the difference between the sample mean and the hypothesized mean by the standard error
of the mean (which is the standard deviation divided by the square root of the sample size),
which is also interpreted as a z-score.

• Use the area under the normal curve to estimate the probability of a z-score. For example, the
probability of getting a z-score of 1.28 or higher by chance is 10%. The probability of getting a
z-score of 1.96 or higher by chance is 2.5%.

• For small samples of continuous data, use t-scores rather than z-scores, making sure to use the
correct degrees of freedom (based on the sample size).

• You can use t-scores to compute confidence intervals or to conduct tests of significance—the
best strategy is to do both. The significance test provides an estimate of how likely an observed
result is if there is really is no effect of interest. The confidence interval provides an estimate of
the size of the effect, combining statistical with practical significance.

• In significance testing, keep in mind that there are two ways to be wrong and two ways to be
right. If you conclude that there is a real difference when there isn’t, you’ve made a Type I
error. If you conclude that you have insufficient evidence to claim a difference exists when it
really does, you’ve made a Type II error. In practical user research (as opposed to scientific
publication), it is important to seek the appropriate balance between the two types of error—a
topic covered from several perspectives in Chapter 9.
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Matched proportions, 131–134
Maximum likelihood estimation (MLE), 177–178
McNemar chi-square test, 87
McNemar exact tests, 84–87, 131–134
Mean, 274–275

of sampling distribution, 282
and standard deviation, 278
standard error of, 282–283
task time, 30–31

Measuring the User Experience (Tullis and Albert), 270
Median, 275

confidence interval around, 33–35
task time, 30–31

Mid-probability, 46–48
Mid-p-value, 47
Miscode, 207
Misinterpret, 206
Mistake, 206
Monte Carlo experiment, 151
Multiple comparisons, 261–262
Multiple medical devices, 261–262
Multipoint scales, 242–246
Multivariate analysis of variance (MANOVA), 255–256
Mutually exclusive event, 149
Mutually exhaustive event, 149

N
N – 1 chi-square test, 79
N – 1 two-proportion test, 79–80
Natural logarithms, 145
Net promoter scores (NPS), 16, 53–54, 229–230, 229–230
Nominal, 242
Nonparametric data analysis, 270
Non-web questionnaires, assess website usability, 221
Normal approximation, 49
Normal distribution, 276–278
Normality assumption, paired t-test, 68
Normalization, 170–171
NPS, see Net promoter scores
Null hypothesis, 251–253

O
Objectivity, 185
One-and-a-half-tailed test, 249, 250
One-sample t-test, 50, 53–54
One-sided test, 44, 44, 49, 115
One-tailed tests, 248, 250

and two-tailed tests, 44–45
Open-ended data, 16
Ordinal, 242

P
Page views, 15
Paired t-test, 63–66

normality assumption of, 68
Perceived ease-of-use, TAM, 232
Perceived usefulness, TAM, 231, 232
Permutation formula, 168
Pie chart, 279
Populations, 274
Poststudy questionnaires, 188–212, 189
Post-study system usability questionnaire (PSSUQ), 192–194,

193, 195, 197
experimental comparison of, 210–212
norms and interpretation, normative patterns, 196

Post-task questionnaires, 212–220
experimental comparisons of, 219–220

Power, 117–119, 259
Precision, 19–20
Predict task-level usability, 216–217
Probability, 144–145

discounting observed, Good–Turing, 151
Problem discovery, 165–166

binomial model for, 172–173, 175–176
goal, 157–160
problem-by-participant matrix, 171–172
using probabilistic model of, 143–148

Problems available for discovery, estimating, 155–156
PSSUQ, see Post-study system usability questionnaire
Psychometric evaluation

ASQ, 213
ER, 216–217
PSSUQ, 194–196
QUIS, 189–190
SEQ, 214
SUMI, 191–192
SUS, 199–200
UME, 219
WAMMI, 222–223

p-values, 65, 71, 73, 81, 284–287
affects, 157
estimating composite, 149–155
and hypothesis test, 287
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Q
Quantification, 185
Quantitative data, 273, 274
Questionnaire for User Interaction Satisfaction (QUIS),

188–189, 210
Questionnaires

for assessing websites, 221–225
data, 273

Quick-and-dirty usability scale, 198–199
QUIS, see Questionnaire for User Interaction Satisfaction

R
Randomness, 10–12
Rating scales, 15, 26, 63–74
Ratio, 242
Realistic usability testing, 112
Rejection regions, 248, 249
Reliability, 187

ASQ, measurements of, 213
of SUMI scales, 191

Replicability, 185
Representativeness, 10–12
Return on investment (ROI), 158, 158
Robustness, quantitative definition of, 174
Rules of thumb, 6

for estimating unknown variance, 114

S
Sample means, fluctuation, 285–287
Sample sizes, 6–7, 10, 20

estimation
basic principles of, 106–108
for binomial confidence intervals, 121–128
for chi-square tests, 128–131
deriving equation from 1 − (1 − p)n, 145–146
for discovery goals, 154
importance of, 134
for McNemar exact tests, 131–134
result of, 125

Sampling, 274
Satisfaction ratings, 14
Scale steps, number of, 187–188
Scientific generalization, 186
Sensitivity, 187
SEQ, see Single Ease Question
Sign test, 84–86
Significance testing, 284–287
Single Ease Question (SEQ), 186–187, 214
Small samples

for binomial sample size estimation, 123–125
test, 45–48

SMEQ, see Subjective Mental Effort Question

Software Usability Measurement Inventory (SUMI), 190–191
Software, usability problems in, 167
Software Usability Scale (SUS), 186–187, 198–210

alternate form of, 204–210
norms, 200–204
and NPS, 229–230

Split-tailed test, 250
Standard deviation, 276

and mean, 278
Standard error of the mean (SEM), 50, 282–283
Standard Wald

formula, 126, 132–133
interval, 124

Standardized questionnaires, 185
assessing quality of, 187

Standardized Universal Percentile Rank Questionnaire
(SUPR-Q), 223–224

Standardized usability questionnaires, 185–187
Statistical decision making, 288
Statistical test, 5, 93
Statistics, 19
Stevens’ Power Law, 217
Stevens, S.S., 242–243, 246
Stratified sampling, 11
Subjective Mental Effort Question (SMEQ), 186–187, 214,

215
SUMI, see Software Usability Measurement Inventory
Summative conception, 105
Summative test, 10
SUMS, see System Usability MetricS
SUPR-Q, see Standardized Universal Percentile Rank

Questionnaire
Survey data, 15–16
SUS, see Software Usability Scale; System usability scale
System Usability MetricS (SUMS), 192
System usability scale (SUS), 50

score, 63, 65
data, comparison of, 69

version of
creation, 210
positive, 208
standard, 198

T
TAM, see Technology Acceptance Model
Task times, 14, 63–74

comparing, 66–68
data
comparison of, 72
confidence interval for, 29
log-transforming confidence intervals for, 32–33

Task-completion times, 284
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t-distribution, 247, 283–284
Technology Acceptance Model (TAM), 231, 232
Traditional sample size estimation, 106, 107
True score theory, 108
t-tests

assumptions of, 73–74
sample size iteration procedure for, 111

Two-proportion test, 78
Two-sample t-test, 68–73

assumptions of, 73–74
Two-sided test, 44, 44, 128
Two-tailed test, 248–250

one-tailed tests and, 44–45
Type I error, 251–253, 288
Type II error, 251–253, 288

U
UME, see Usability Magnitude Estimation
UMUX, see Usability Metric for User Experience
Undiscovered problems, estimating number of, 155–156
Unrealistic usability testing, 112–113
Usability

data, 12
predict task-level, 216–217
problems, 13
discovery goal, 157
equation for, 143–145
Magic Number 5, 160, 162–163
in websites and software, 167

questionnaires, tone of items in, 206
test scenario, 186
testing, 9–14
type of, 105–106

Usability Magnitude Estimation (UME), 217–219
Usability Metric for User Experience (UMUX), 227–228
USE, see Usefulness, Satisfaction, and Ease of Use
Usefulness, Satisfaction, and Ease of Use (USE), 227

User research
data, 9
applying normal curve to, 280

definition, 9
projects, 1

U-test, 246

V
Validity, 187
Values

comparing, 114–120
estimating, 108–114

Variability, 20, 30
Variance, 276

equality of, 74

W
Wald formula, 22–23
Wald interval, 21–22
Wald method, 21, 25
WAMMI, see Website Analysis and Measurement Inventory
Website Analysis and Measurement Inventory (WAMMI), 222
Websites

questionnaires for assessing, 221–225, 221
usability problems in, 167

Welch-Satterthwaite procedure, 70
Within-subjects, 84–93, 115–116

comparison, 63–66

Y
Yates correction, 78–79

to chi-square statistic, 88

Z
z-distribution, 248
z-scores, 246, 246–247, 278, 283
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