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Foreword

The microwave region of the electromagnetic spectrum has certain unique
properties, These cnable microwave signals to propagate over long distances
through the atmosphere under all but the most severe weather conditions. Both
civilian and military applications abound, including radar, navigation, and the
latest “hot application”, wireless communications. However the microwave
spectrum is a finite resource which must be divided, cared for, and treated
with respect. And this i1s where microwave filters come in. Although the now
classic book on microwave filters and couplers by Matthaei, Young and Jones,
published 36 years ago, was never revised, it is still widely used as a handbook.
However it needs updating. Dr lan Hunter’s book is therefore a significant event
as it includes filter types and design theories which simply did not exist (either in
concept or practice) 36 years ago. Dr Hunter has himself been active and
enthusiastic in developing and enlarging some of these new technologies. He
has also taught University courses on Microwave filters and his ability to
elucidate and communicate the subject is evident in these pages. This book
will be most uscful to serious students of the subject, as well as to practitioners
of the art and science of microwave filters.

Dr Leo Young






Preface

Microwave filters are vital components in a huge variety of electronic systecms,
including cellular radio, satellite communications and radar. The specifications
on these devices are usually severe, often approaching the limit of what is
theoretically achievable in terms of frequency selectivity and phase linearity.
Consequently an enormous amount of published material on this topic is avail-
able and anyone new to the subject is in danger of being overwhelmed with
information. The design of filters is unusual in that it uses network synthesis,
with which it is possible to apply systematic procedures to work forward from a
specification to a final theoretical design. This is the converse of most engineer-
ing disciplines which tend to use design rules based on analysis. A pre-requisite
to skills in network synthesis is a thorough grounding in the circuit theory of
passive networks, a subject often treated superficially in modern electrical engi-
neering degree courses. However, a knowledge of network synthesis is not the
only tool needed in order to design filters. Synthesis provides the designer with a
prototype network which can then be transformed into a variety of microwave
networks including TEM transmission lines, waveguides and dielectric
resonator realisations. Thus the designer also has to have a reasonable
knowledge of the properties of the electromagnetics of these devices. This
book evolved from a series of lectures on filter design which the author gave
to engineers at Filtronic ple and MSc students at Leeds and Bradford
Universities. The purpose of the book is to provide a single source for filter
design which includes basic circuit theory, network synthesis and the design of a
variety of microwave filter structures. The philosophy throughout the book is to
present design theories, followed by specific examples with numerical simula-
tions of the designs. Wherc possible pictures of real devices have been used to
illustrate the theory.

It is expected that the book will be uscful to final year undergraduate, MSc
and PhD students. It should also form a useful reference for research workers
and engineers who are designing and/or specifying filters for commercial
systems.

I would like to thank Filtronic plc and the University of Leeds, Institute of
Microwaves and Photonics, for allowing me time to write this book. I would



xiv  Preface

also like to thank the following for providing practical and moral support:
Duncan Austin, Christine Blair, Stephen Chandler, Peter Clarricoats, Vanessa
Dassonville, John Dean, Wael Fathelbab, Keith Ferguson, Dharshika
Fernando, Patrick Geraghty, Peter Hardcastle, Eric Hawthorn, Kimmo
Koskiniemm, Ncil McEwan, Chris Mobbs, Marco Morelli, Richard Parry,
Sharon Pickles, Richard Ranson, David Rhodes, Richard Rushton, Philip
Sleigh, Chris Snowden, and Stewart Walker.

lan Hunter, April 2000
Filtronic plc

The Waterfront

Salts Mill Road
Saltaire

West Yorkshire

BDI8 3TT

England



Chapter 1
Introduction

1.1 Applications of RF and microwave filters

Microwave systems have an enormous impact on modern society. Applications
are diverse, from cntertainment via satellite television, to civil and military radar
systems. In the field of communications, cellular radio is becoming as wide-
spread as conventional telephony. Microwave and RF filters are widcely used in
all these systems in order to discriminate between wanted and unwanted signal
frequencies. Cellular radio provides particularly stringent filter requirements
both in the base stations and in mobile handscts. A typical filtering application
is shown in Figure 1.1 which is a block diagram of the RF front end of a cellular
radio base station.

The GSM system uses a time division multiple access tcchnique (TDMA) [1].
Herc the base station is transmitting and recciving simultaneously. Mobile

X . ‘ up-
filter ; ’ converter R
' power
amplifier
antenna
RX . ‘ down-
1 filter T converter RX
low noise
,,,,, o ceee amplifier
TX/RX

diplexer

Figure 1.1 RF front end of a cellular base station
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propagation effects require a system dynamic range in excess of 100dB. The
transmit power amplifier produces out-of-band intermodulation products and
harmonics. These must be filtered to prevent leakage into the receiver and to
satisly regulatory requirements on out-of-band radiation. Therefore the trans-
mit filter must have a high level of attenuation in the receive band. Furthermore,
the transmit filter must have low passband insertion loss, to satisfy power
amplifier lincarity and efficiency requirements. Similarly the receiver must be
protected by a filter with high attenuation in the transmit band to isolate the
high power (30 W) transmitter. This filter must have low passband insertion loss
to preserve system sensitivity. A typical specification for a GSM transmit filter is
given in Table 1.1. Similar specifications are required for the receive band and
for GSM in the 1800 MHz band.

In summary the base station filters must achieve a remarkable performance.
Very low loss in the passband with high rejection at frequencies close to the
passband is required. This high selectivity is illustrated in Figure 1.2.

We shall see in later chapters that the selectivity of a filter increases with the
number of resonant sections. Furthermore, the insertion loss in the passband is
inversely proportional to the filter bandwidth and the resonator Q factor and is
proportional to the number of resonators used. The above specifications require
at least eight resonators with unloaded Q factors of at least 5000. The Q require-
ment dictates a certain physical size, resulting in typical sizes for commercial
coaxial resonator filters of 15cm x 30em x Scm. Considerable research is
under way in order to achieve smaller filters with improved performance.
Some of this research will be described in later chapters although obviously
we first need to understand the basic principles of filter design.

A second example of a base station filter is a requirement for a notch filter for
the US AMPS system. In this case the two operators A and B have been
assigned interleaving spectra as shown in Figure 1.3. In this situation a mobile
which is far from base station A and is thus transmitting maximum power can
cause interference 1o base station B if it is physically close to B. The requirement
is for a notch filter with the specification given in Table 1.2. These extremely

Table 1.1 Specification of a GSM base station filter

Passband 925-960 MHz
Insertion loss 0.8dB (max)
Input and output return loss 20dB (min)
Stopband
Frequency/MHz Attenuation/dB (min)
d.c.—880 50
880-915 80
970-980 20
980-12750 50
Temperature range —-10"C lo +70°C

System impedance 502
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insertion 10—
loss/dB 20

30—
40—

60—
70—

80—
100. //%

T gg
880 915 925 960 970 980

12750

frequency/MHz

Figure 1.2 Frequency response of a GSM transmit filter

narrowband filters require resonators with unloaded Q factors in excess of
25000. This requires the use of dielectric resonators with physical size of the
cavities 9 x 9 x 9cm per resonator. At least four resonators are required per
filter, resulting in physically large devices.

A third application of filters in cellular systems is in microwave links for
communicating between base stations. These links operate at much higher
frequencics; a typical specification for a 38 GHz filter is given in Table 1.3.
These high frequency filters are normally constructed using waveguide
technology.

A completely different filter technology is required in mobile handsets. The
handset is only handling one call at a given time and in GSM does not transmit
and receive simultaneously. In some handsets the transmitter and receiver are

825 835 845 846.5 849

frequency/MHz

Figure 1.3 Advanced Mobile Phone System (AMPS) spectrum allocations
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Table 1.2 Specification of an AMPS base station notch filter

Passband edges 845 and 846.5MHz
Insertion loss 1dB (max)
Stopband 845.2-846.3 MHz
Attenuation 20dB (min)

Table 1.3 Specification of a filter for a microwave link

Passband 38-38.3GHz
Insertion loss 1.5dB (max)
Stopband 39.26-39.56 MHz
Attenuation 70dB (min)

Local oscillator harmonic rejection  10dB (min) at 74-74.6 GHz

isolated by a PIN diode switch and there is a requirement for only a receive filter
(Figure 1.4).

The main purpose of the front end filter is to protect the LNA and mixer in
the down-converter from being over-driven by extrancous signals. For cxample,
this situation may occur if two mobiles are being operated simultancously
within a vehicle. Typical specifications for a 900 MHz GSM receive lilter arc
given in Table 1.4.

Although the electrical specifications on these filters are much less severe than
for base station filters, the miniaturisation required means that they are still an
extremely challenging design problem.

SPDT _ |
RX down-
/. filter \ LNA converter R

|
converter

power
amplifier

Figure 1.4 Typical GSM mobile handset RF front end

Table 1.4 Typical specification for a GSM handset receive filter

Passband 925--960 MHz7

Insertion loss 3.5dB (max)

Stopband 850-905 MHz 20dB (min)
905-915 MHz 12dB (min)

Physical size 10 x 7 x 2mm (typical)
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1.2 Ideal lowpass filters

As we have already seen, filters must achicve a specified selectivity. In
other words the transition from passband to stopband must be achicved within
a certain bandwidth. It is interesting to consider the fundamental limits on
achievable sclectivity by examining an ‘ideal’ lowpass filter. This is defined as
a two-port device with infinite selectivity as in Figure 1.5.

The magnitude of the gain of the lowpass filter is unity in the passband and
immediately drops to zero in the stopband with no transition region. Hence

[H{jw)| =1 |w] < we (1.1)

|H(jw)l =0 |w| > w (1.2)
The phasc response of the filter is assumed Lo be linear in the passband. Hence

P(w) — kw (1.3)
and the group delay through the device is

7, - ~dvts »

Linear phase implies constant group delay, which ensures zero phase distortion
for finite bandwidth signals.

It is instructive to examine the impulse response of the filter. The impulse
response is the time domain output from an infinitely short (delta function)
excitation at the input. It is the inverse Fourier transform of the transfer
function [2]. Now

H(jw) =exp(—jkw)  |w| <w, (1.5)
H(jw)=0 |w] > w, (1.6)
i)
1
—o0
[/in /I\ H(]O.)) ]\[/ﬂlll
R
—W¢ [0
k’»ul
H(](z))= Vin

Figure 1.5 Ideal lowpass filter and its frequency response
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Hence the impulse response is given by

h{(1) :51} J H(jw) exp(jwt) dw

B ] expljw(t — k)] dw
a 2T

_ Isin[(1 — k)wj
o t—k
Ifw, =1

h(t) = 7—11_sinc(t —k)

This function has zeros when
t—k=mn m=41,42,..
That is,

{=mn+k

(1.8)

(1.9)

(1.10)

This is the familiar sinc function with the main peak occurring at & s, which is
the passband group delay of the filter. This is shown in Figure 1.6. Here we can
see that an output occurs for t < 0. In other words the ideal lowpass filter is non-
causal because an output occurs before the input is applicd! The only way to
stop the response existing for # < 0 is to let £ increase to infinity. This infinite
group delay is also physically unrealisable. This is equivalent to telling us
something we know intuitively, that an infinitely selective filter has an infinite
group delay, or an infinite number of filter elements. In order to make the filter

‘} h(t)

Figure 1.6 Impulse response of an ideal lowpass filter
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realisable we can truncate the impulse response by removing the part which
occurs for negative time to give a causal response which is physically realisable.
In other words A(t) is zcro for ¢ less than zero.

Obviously if the delay of the filter is very low then simply removing a part of
thc impulse response results in a considerable distortion of the frequency
response. In fact, it may be shown that this corresponds to reducing the
frequency selectivity of the filter. In reality filter design involves a compromise
between removing too much of the impulse response curve and having too much
delay. Practical filters use transfer functions which approximate to the ideal
response with the minimum amount of delay. This will be dealt with in more
detail in Chapter 3.

1.3 Minimum phase networks

Consider a lumped element filter with the transfer function

N(p)
D(p)

where p is the complex frequency variable. This is defined as a minimum phase
network if there are no poles or zeros in the right half p plane, i.e.

N(p) £0 D(p) £0 Rep >0 (1.12)

which defines N{p) and D( p) as Hurwitz polynomials.

Physical systems where the transmission of energy between input and output
can only take one path are minimum phase. Examples include ladder networks
(Figure 1.7) and coaxial cables.

It may be shown that if a minimum phase network has a transfer function

H(jw) = exp|—a(w) — ji(w)] (1.13)

then the amplitude a(w) and phase ¥(w) characteristics of a minimum phasc

Silp) = (1.11)

o Z R Z o
input Zy Z4 Zpy output
e S B TN o)

Figure 1.7 Ladder network
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1
g
A
f [
0 1
Figure 1.8 Transfer function of a rectangular filter
network are related by a pair of Hilbert transforms [3]:
Plw) == J ab) g, (1.14)
o)yt —w?
ST W)
ofw) = a(0) + — j ———- dy (1.15)
T ) p(y —w)

In other words, if the amplitude characteristic of 2 minimum phase network is
known, then the phase characteristic is uniquely determined and vice versa
within a constant gain «(0).

As an example consider the transfer function in Figure 1.8. Here

|H(jw)] =1 jw| <1
=4 |w| > 1 (1.16)
and
A< (1.17)
Now
[H(jw)| = exp[—a(w)] (1.18)
and
aw) =0 lw| <1 (1.19)

a(w) = —L,A4 |w| > 1 (1.20)
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T, (w)

2L, A

Figure 1.9 Group delay of ideal minimum phase filter

Now

(1.21)

Hence

7)< —di(w) _2L,A ( 1 > (122)

dw s 1 —w?|

The group delay 1s shown in Figure 1.9.

Thus we see that the group delay of the idcal minimum phase filter is inverse
parabolic in the passband rising to infinity at the band-edge. In reality, filters are
not infinitely selective and the amplitude response and group delay response are
as shown in Figure 1.10.

Considerable research in the area of non-minimum phasc filters has resulted
in so-called selective linear phase filters where a similar amplitude response to
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T (w)

Figure 110 Amplitude and group delay response of a real minimum phase filter

Figure 1.10 is obtained but with much reduced group delay variation. These
devices require multiple paths between the input and output of the filter.

1.4 Amplitude approximation

We will now briefly consider theoretical approximations to ideal lowpass filters.
Consider a lowpass ladder filter operating between resistive terminations as

shown in Figure 1.11. Scrutiny of this circuit shows that it has zero gain at
infinite frequency. As the frequency is increased from d.c. the series inductors

L L3 Ly L
arm’! e -2 N

@ CZ Ca CN‘ 1

Figure 1.11  Lowpass ladder network
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oo,

Figure 1.12  Equiripple filter characteristics (N = 6)

become open circuited and the shunt capacitors become short circuited. Each of
these open or short circuits contributes a ‘transmission zero’ to the response of
the network. Thus a ladder nctwork with N circuit elements has N transmission
zeros at infinity. Since all the transmission zeros are at infinity the gain response
must be a rational function with constant numerator. The zeros of transmission
are the zeros of the numerator or the infinities of the denominator.

Hence the power gain is given by

[H(jw)l* = (1.23)

Ay(w?)
where Ay (wz) is a polynomial of degree N in w?.
Now let us assume that | H( jw)|* is equiripple in the filter passband and rolis
off monotonically to zero in the filter stopband as in Figure 1.12. Here we see
that [H(jw)|* ripples the maximum number of times between unity and A.
Now consider a second transfer function which is more selective than the
equiripple transfer function and is at least as flat in the passband. Again we
assume this transfer function arises from a ladder network, so all its trans-
mission zeros are at infinity. This function is shown as the dotted curve in
Figure 1.12. The two curves intercept at least N + 1 times so we can say that

] 1
AN(wz) B BM ((4)2)

=0 at least N + | times (1.24)

and By (w?) — Ay(w?) is at least of degree N + 1. Thus either By (w?) is
identical to Ay(w?) or M is of degree N + 1 or higher.

Hence for this class of ladder networks or ‘all-pole’ transfer function the
equiripple characteristics will always provide the optimum selectivity for a
given degree (number of elements) of filter. Other classes of filter have equiripple
response in the passband and stopband [4] but these are not realisable by ladder
networks.
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1.5 Practical realisations of microwave filters

As we have seen, filters with cquiripple amplitude characteristics achieve
optimum selectivity for a given number of circuit elements. The use of network
synthesis enables lumped clement lowpass prototype networks to be designed as
described in Chapter 3. These lumped prototype networks may be converted
into bandpass filters using the transformations described in Chapter 4.
However, lumped element realisations of microwave filters are not often used
because the wavelength is so short compared with the dimensions of circuit
elements. For this reason a variety of ‘distributed’ element realisations are
used. A distributed circuit element has one or more dimensions which are
comparable with wavelength, and connections of distributed elements may be
described by distributed network theory, which is an extension of the theory of
lumped clement networks. Onc¢ example of a distributed clement is the TEM
transmission line and various types of microwave filters may be designed using
interconnections ol these elements. Onc of the most common TEM flters is the
interdigital filter which consists of an array of coupled TEM lines with coupling
constrained between nearest neighbours. Such devices enable practical realis-
ations of microwave filters with relatively high resonator Q factors (typically
1-5000) enabling quite severe specifications to be achieved. The design theory
for interdigital and other TEM devices is described in Chapter 5.

Onc of the fundamental problems of filter design is that the passband loss is
inversely proportional to the filter bandwidth. Thus for very narrow band
applications it is often the case that very high resonator Q factors must be
used in order to achieve low passband loss. Air-filled waveguide resonators
cnable @ factors from 5 to 20000 to be realised. Further increases in Q, up to
50000, may be achieved by using dielectric resonators as the resonant elements
within filters. The electromagnetic properties of thesc devices and the design
theories for waveguide and dielectric resonator filters are described in Chapters
6 and 7.

1.6 Summary

There are numerous applications for microwave and RF filters in the com-
munications industry requiring many different design approaches. In addition
there are fundamental limits on the achievable performance of clectrical filters,
regardless of the physical construction. No finite device can produce an ‘ideal’
or inlinitely sclective amplitude response. Furthermore, there arc strict relation-
ships between the phase and amplitude characteristics of minimum phase
networks. The remainder of the book is devoted to developing design tech-
niques which cnable filters to approach these theoretical limits as closely as
possible.

Chapter 2 presents the basic linear passive network theory which is required
for a theoretical understanding of filter design. This includes network
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parameters, network analysis and network synthesis. Chapter 3 concentrates on
the design of lumped lowpass prototypes which can be considered as building
blocks for many classes of lumped and distributed filters. Both approximation
theory and network synthesis ol prototypes are included for both amplitude
and phase responses. Chapter 4 includes material on frequency transformations
from lumped lowpass prototypes to highpass, bandpass and bandstop filters. It
also includes the effects of dissipation loss in filters and methods for practical
filter development. In Chapter 5 the design of distributed filters using TEM
transmission lines is covered including the Richards transformation, stepped
impedance and coupled-line filters. Chapter 6 concentrates on the design of
waveguide filters. The basic theory of waveguides is followed by design
techniques for iris-coupled bandpass filters, generalised cross-coupled filters,
extracted pole filters and dual-mode filters. In Chapter 7 the principles of dielec-
tric resonator filters are presented. Starting with the basic theory of dielectric
resonators, design techniques for single, multi-mode and dielectric-loaded struc-
tures are described. Finally in Chapter § techniques for miniaturisation arc
described. These include SAW filters, superconducting filters, active filters
and new system architectures using lossy filters.
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Chapter 2
Basic network theory

2.1 Linear passive time-invariant networks

This book is concerned with the design of passive RF and microwave filters.
These devices arc manufactured using a variety of technologies, e.g. coaxial
resonators, microstrip, waveguide etc. However, they are normally designed
using lowpass prototype networks as a starting point, regardless of the cventual
physical realisation. Lowpass prototype networks are two-port lumped element
networks with an angular cut-off frequency of w = 1, operating from a 152
generator into a 1) load. A typical lowpass prototype network is shown in
Figure 2.1.

The design of lowpass prototype networks is dealt with in detail in Chapter 3.
In this chapter we develop useful techniques for the analysis and synthesis of
such networks. These network methods assume a basic understanding of
Laplace transform theory and of the operation of inductors, capacitors and
resistors, We will restrict ourselves to linear, time-invariant, passive networks,
which are defined as follows.

First we consider a one-port network (Figure 2.2). This one-port network is
excited by a voltage v(¢) producing a current flow (). The Laplace transform of
the voltage is V(p) and the resultant current is 7( p).

L L3
Y\ /Y

142

1Q2

C2 Cy

Figure 2.1 A4 typical lowpass prototype network
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i) 1)
—_— O——>—

v(t) T N e T M)
—_— O——>>—

Figure 2.2 A one-port network and its Laplace transform equivalent

2.1.1 Linearity

If a voltage v, (¢) across the terminals of N produces a current /;(7) then

v (1) = (1) (2.1)
Similarly
vy (1) = i (1) (2.2)

Now if the network is linear then the principle of superposition holds and wc
have

o (1) + Py (1) = ad () + B (1) (2.3)

where o and 4 are constants.

2.1.2 Time invariance
If the network is invariant with time and if

u(t) = i) (2.4)
then

vt—7) =il —7) (2.5)
where 7 is an arbitrary time delay.

If a linear time-invariant network is excited by a voltage v(1) where

v(t)=0forr<0 (2.6)
then the relationship between voltage and current may be expressed as follows:

Vip)=7Z(p)I(p) (2.7)

where V( p) is the Laplace transform of »(7) and 7( p) is the Laplace transform
of i(¢). Here p is the complex frequency variable (sometimes denoted s); Z( p) is
the input impedance of the network, which is independent of v(7) and for a finitc
lumped nctwork is a rational function of p. In this case Z( p) may be expressed
as the ratio of two polynomials:

N(p)
D(p)

Z(p) = (2.8)
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2.1.3 Passivity

If the network is also passive then the amount of energy which may be extracted
from the network up to any point in time may not exceed the energy supplied to
the network up to that point in time. Combining this property with the property
that all physical networks give rise to real responses to real stimuli yields [1] that
Z( p) is a ‘positive real function’, i.e.

Z(p) is real for p real (2.9)

Re Z(p) >0 for Re p >0 (2.10)

Relation (2.9) implies that the coefficients of N(p) and D(p) are all real.
Relation (2.10) implies that Z(p) has no poles or zeros in the right half-
plane, i.e. both N(p) and D(p) are Hurwitz polynomials [2].

2.1.4 The bounded real condition

The input impedance of passive linear time-invariant networks is a positive real
function. In microwave filter design it is often desirable to work with reflection
coefficients rather than input impedances. The reflection coefficient I'( p) of a
network with an input impedance Z( p) is related to Z( p) by

1‘(/7):&;83;1 (2.11)
1’( p) may be shown to be a bounded real function, i.e.
I"(p) is real for p real (2.12)
0<|I(p) <1 for Rep >0 (2.13)
Relation (2.13) may be demonstrated as follows: for Re p > 0, let
Z(p)=R+jX (2.14)
Now since Z( p) is positive rcal then
R>0 (2.15)
(i.e. the real part of the input impedance is always positive). Hence
R+jX—1
r= iﬁ%m (2.16)
TP = (R - l)z +Xj
(R4+1)"4+ X<
=1- ————413_7 (2.17)
(R+1)"+ X°

Thus if R > 0 then |I'] < 1.
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2.2 Lossless networks

Lossless networks consist entirely of reactive elements, i.e. they contain no
resistors. In reality all real microwave filters contain resistive elements but it
is useful in the initial design process to simplify things by working with lossless
networks.

Now for our positive real Z( p)

Z(p)lp_jw = Z(jw) = R(w) + jX (w) (2.18)
where
R(w) = Re Z{jw) (2.19)
X(w) =Im Z(jw) (2.20)
By definition for a lossless network
R(w)=0 (2.21)
Now
m, +n
Z(p) = 2.22
()= 22)

where m) and n; are the even and odd parts of N(p) and m, and n, are the even
and odd parts of D(p).
Z{ p) may be split into an even polynomial plus an odd polynomial, i.e.

Z(p)=EvZ{p)+0dd Z(p) (2.23)
Now even polynomials contain only even powers of p and odd polynomials

contain only odd powers of p. Hence Ev Z( jw) is purely real and Odd Z(jw) is
purely imaginary. Thus for a lossless network R{w) = 0 implies Ev Z{ p) = 0 and

V4 Z(—

EvZ(p) = w =0 (2.24)
Therefore

ny 4+ ny +m] —mo_ 0 (2.25)

1y -+ 4% my — ny
and

mym, — AR

—5——=0 (2.26)

ny — n;

Hence

1 1Zb)

- =% ”

mn Uy (2“7)
Thus for example

ny omy/ny +1 n
Z(p) = —- mi/m + 1 = (2.28)

miy 1+ ny/my  my
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or
mil+n/m  m

Z = fumnd
() m 1l +my/ny  m

(2.29)
Z(p) is thus the ratio of an even polynomial to an odd polynomial or an
odd polynomial to an even polynomial. Z(p) is then known as a ‘rcaclance
function’.

Now since Z( p) is positive real it cannot have any right half-plane poles or
zeros and Z{—p) cannot have any left hall-plane poles or zeros. However

Z(p) = —~Z(~p) (2.30)

Thus Z( p) can have neither right half-plane nor left half-plane zeros. The poles
and zeros of a reactance function must thus lie on the imaginary axis. Further-
more, the poles of Z( p) may be shown to have positive real residues [3], yielding
a general solution for a reactance function of the form

m

Z(p) = 1)+—+Zp“ii_ (2.31)

Furthermore, for p = jw,

Z(jw) =jX(w) (2.32)
where
A“ o 2A,(.L)
X = A w—— —_— 2.33
(@)= A= Y ST (2.33)
and
dX(w) AO = wf + w?
= + ..A —_— 2.34
Therefore
dX(w)
9o >0 (2.35)

The fact that the differential of X (w) is always positive implies that the poles and
zeros of X (w) must be interlaced. Hence a typical plot of a reactance function is
as shown in Figure 2.3,

Now consider the parallel tuned circuit shown in Figure 2.4. The impedance
of this circuit 1s

1 _ P/C

Cp+ (1/Lp)  p*+ (1/LC)
From (2.31)and (2.36) we can see that the general equivalent circuit fora reactance

function is the network shown in Figure 2.5. This process of working backward
from an impedance function to the actual physical circuit is known as ‘synthesis’.

Z(p) =

(2.36)
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X (w)

—> etc.

0 =zero
x = pole

Figure 2.3 A typical reactance function

The particular method shown here is known as Foster synthesis [4], where the
circuit is derived by a partial fraction expansion of the impedance function.

~_/YY\£._

— —0

i

Z(p)

Figure 2.4 Parallel tuned circuit
—

I

I

Z(p)

— Y — Y

Figure 2.5  Foster realisation of Z(p)



Basic network theory 21

2.3 Ladder networks

A common realisation of impedance functions used in filter design is the ladder
network shown in Figure 2.6.

As an example consider the impedance function given in partial fraction form
as

1 2p
Z(p) :2p+;+1)2+1

21)4 + 51)2 +1 5
= W (2.37)

This may be synthesised using a continued fraction expansion. From (2.37) we
see that Z{ p) tends to 2p as p tends to infinity. Thus we first evaluate the residue
at p =, L.e.

=2 (2.38)

Now we remove a series inductor of value L = 2, leaving a remaining impedance
Z,(p) where

Zy(p)=Z(p)—2p

_2174+5p2+1_

2p
3 2
p+p
3p? + 1
_ *11 (2.39)
p+p
Z, Z3 Zy
Za Z4 Zn

O
Z(p)

Figure 2.6 Ladder network
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Again we evaluate the residue at p = oc:
Yi(p)

(2.40)

L] —

P p=oc

So we extract a shunt capacitor of value C, =1/3, lcaving a remaining
admittance Y,(p) where

Yo(p) = Yi(p)—p/3

_ /3 (2.41)
3p7 4+ 1
Now we invert Y,(p) to form an impedance Z,( p) where
2p) = 3’;;)731 (2.42)
Again we evaluate the residue at p = oo, L.e.
2100l (2.43)

Polpese 2

Now we extract a series inductor of value L; = 9/2 leaving an impedance Z3( p)
where

. 4
Z3(p) = Z:(p) ==
3
= (2.44)
2p
Now invert Z3( p) to form an admittance
2p
Yi(p) == (2.45)
which is a capacitor of value
Cy=2/3 (2.46)

The complete synthesis process is shown in Figure 2.7.

2.4 Synthesis of two-port networks — Darlington synthesis

Historically it was first proven by Brune that any positive real function can be
synthesised using a network composed of resistors, capacitors, inductors and
mutual inductances [5]. However, in the practical world of filter design we are
more concerned with two-port networks with a pair of terminals at the input
and a pair of terminals at the output. Darlington [6] proved that any positive
real function can by synthesised as the input impedance of a lossless passive
reciprocal two-port network which 1s terminated in a (load) resistor (Figure 2.8).
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Y
B

Figure 2.7 Synthesis of a ladder network

Oo—
lossless load
reciprocal Rrz20

',—9 two-port
O—

Z(p)

(positive real)

Figure 2.8 Darlington synthesis
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The lossless two-port network may be decomposed into a cascade of first-,
second- and fourth-degree networks depending on the locations of the zeros of
the even part of Z(p). These zeros arc called the transmission zeros of the
network. In other words they are the values of p for which there is zero trans-
mission of power to the load. A zero on the jw axis would correspond to zero
transmission at a ‘real’ sinusoidal frequency (a real frequency transmission
zero). This corresponds to a measured zero in the swept frequency responsc
of the network.

Consider a lossless network driven from a 1 generator and terminaled in a
1 2 load, as shown in Figure 2.9. The input impedance Z;,(p) is

ny + ny

= (with m,,m, even, ny,n, odd) (2.47)
my + 1

Zin ( [7)

The even part of the input impedance which is the real part of Z(jw) is given
by

Z(p)+Z(—p)

Ev Zin(p) = 5
mymy — Ny
= - 2.48
v (2.48)
The input power to the two-port network is given by
Py, = |1m(jw)‘2 Re Zin(jw)
= %Iin(jw>[in(7jw) [Zin(jw) + Zin(fjw)]
V Vi lZin(jw) + Zin(—jw
_ s g{ n(J ) (—J )] (2.49)

[l + Zill(.jw)][l + Zin(‘jw)}
Thus in the complex frequency plane the transmission zeros are the zeros of

Ziu(l’) + Zin(fp)

[1 + Zin(p)]“ + Zin(_p)} (2.50)

10 lossless
N 1Q

I

Zin

Figure 2.9 Doubly terminated lossless byo-port network
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(@]
lossless
2P N 10
fo MU
A ¢2)]

P
g
5
0

Z(P) Ni N3 Nk

Figure 2.10  Realisation of a network N as a cascade of subnetworks

The transmission zeros are thus the zeros of the even part of the input
impedance. In addition, transmission zeros occur at values of p which arc
simultaneously poles of Z;,(p) and Z;,(—p). These poles must occur at d.c.,
infinity or on the imaginary axis. They may be removed as elements of a
reactance function by Foster synthesis. The remaining transmission zeros are
not poles of Z,,(p) and Z,,(—p) and may be removed by second-order or
fourth-order networks. Finite real frequency transmission zeros are extracted
in complex conjugate pairs by a second-order network known as a Brune
section. Transmission zeros on the real axis are removed by extraction of a
second-order Darlington C section. Complex transmission zeros are removed
by a fourth-order Darlington D section.

2.4.1 Cascade synthesis

The purpose of cascade synthesis is to synthesise an input impedance as a
cascade of Brune, C and I sections terminated in a resistor. It is assumed
that any transmission zeros which are simultaneously poles of Z{p) and
Z(—p) have already becn removed. Thus cach of the sections contains transmis-
sion zeros of the entire network and progressive removal of basic sections lowers
the degree of the network until only the positive load resistor remains [7].

The objective i1s shown in Figure 2.10 where

. ny +
V4 e .
() my + ny (2:31)
(where m is even and »n is odd) and the even part of Z(p) is
m iy — mn
EvZ(p) =2 =i (2.52)

2 >
m5 — i3

The zeros of transmission are the zeros of w1 m> — n i, which we shall assume is
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a perfect square. Thus

i 2 r 2 s 2

My — 1y = {H(l +%) H(l - %) H[P4 + 2w — o))p + (Wi + U{_z)zJ}
Py i) i

(2.53)

which gives three types of transmission zeros, an imaginary axis pair, a real axis
pair or a complex quadruplet. Asymmetrically located zeros are dealt with in
Chapter 3.

Now in Figure 2.10 assume a transmission zero at p = py is assigned to Nj.
Then this transmission zero must not be a transmission zero of the remaining
network, N, etc. with impedance Z;( p). The transfer matrix of N, is

7)) :% A B (2.54)
(p)| ¢y D
where F(p) is even and
F(P)lp=p, =0 (2.55)
Then
Zi(p) = %}mljl (2.56)

and

(4D, - B C)[Z(p) + Z(—p)]
2+ 2D = S £ G2 ) (2:37)

where since N, is lossless 4, D| are even, B, C, are odd, and from reciprocity
A\Dy — B,Cy = F(p) (2.58)
Thus

F(p)[Z(p) + Z(-p)]
[4) = C1Z(p)][A4, + C,Z(=p)]

Zi(p)+Zi(-p) =

N F(p)[Z(p) + Z(-p)] (2.59)
Ay = CZ(p){4 - CZ(p)+ C[Z(p)+ Z(-p)]}

Now p; should not be a factor of Z(p)+ Z,(—p). However, since
Zi(p)+Z(—p) contains the factor 1’2([)), then the numerator of
Z\(p) + Z,(—p) contains a factor F*(p). This factor must be cancelled by a
similar factor in the denominator. Thus 4, — C;Z(p) must contain a factor
F*(p). This is the condition on the network N, such that the transmission
zero has been successfully extracted. Hence

Ay —-CZ(p)=0 for F(p)=0 (2.60)
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%[A, —CZ(p)) =0 for  F(p)=0 (2.61)
or
A (p) = C{(p)Z(p) = Ci(p)Z' (1) =0 (2.62)

Equations (2.60)—(2.62) determine the transfer matrix of N, such that the trans-
mission zeros have been successfully extracted. Z;( p) can be found from (2.56)
and the process repeated until we are left with the load resistor.

Three types of section are required for the three types of transmission zero.
The Brune section realises imaginary axis (real frequency) transmission zeros
with the transfer matrix

1 |+ ap? b

71= L+ (p?/wd) tpp | —%—];lpz 26
with

(1+ap’)(1+dp®) = bep® = [1+ (p*fwi)]? (2.64)
The Darlington C section realises real axis transmission zeros with

7= 7 {1 . 4?f492 263
with

(1 4+ ap?)(1 + dp*) = bep” = [1 — (p*/a})]? (2.66)

The Darlington D section realises a complex quadruplet of transmission zeros
with

7] = l Prrap’+a  bp+byp’
(W) F2wr o+t ep+ap pradpttd
(2.67)
with
(' +aip’ +a)(pt + dip® + do) = (bip+ bop’Yeip + e2p?)
= [(07 + @) +2(wf — ol )p” + P (2.68)

As an example consider the maximally flat amplitude and linear phase
filter described in Chapter 3 (see Section 2.6 for a description of scatlering
parameters). Here

9—2p°

S =
L I e e P (2.69)

This has two transmission zeros at infinity and a pair on the real axis at
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p = £3//2 which requires a C section. Now

Si(p)Si(=p) =1 =8n(p)Sia(-—p) (2.70)
Hence
4
Sulp) = g (2.71)

9+ 18p + 16p? + 8p° + 2p*
and
1+ 8(p)
1—S(p)

_ 4])4 +8p7 + 16p” + 18p + 9
8+ 16pP + 18p +9

Z(p)=

(2.72)

First we extract all the transmission zeros which are poles of Z( p) and Z(—p).
Thus we extract a series inductor of value 0.5 and then a shunt capacitor of
value 8/7 from the admittance. The remaining impedance is

49p” +94.5p + 63
4p? + 54p + 63

7Z(p) = (2.73)

Now the remaining transmission zeros are on the real axis requiring a C section.
From (2.60), (2.62) and (2.65) we obtain

1+ ap% —cZ(p)=0 (2.74)

2api — <Z(p1) = epaZ'(p1) = 0 (275)
Thus

= Z(p)+nZ'(p) -

p” [Z(I’l)—l)l "(p1)] (2.76)

o : (2.77)

PHZip) —,mZ'(py))

(with p; = +34/2, Z(3//2) = 2477 and Z'(3//2) = 0.648).
b and d can be obtained from (2.66) giving

l

14+ d +2/0;
h = if—(-/i (2'79)
Thus a = 0.7764, b = 1.5019, ¢ = 0.8552 and d = 0.0636.
The remaining network is a resistor of value I 2. The complete synthesis has

produced the network shown in Figure 2.11.
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| c

8
ﬁU) I section 1Q

Figure 2.11  Synthesis of a linear phase filter

Various physical realisations are available for C sections including resonant
circuits, coupled coils and cross-coupled resonant circuits. These will be
discussed later.

2.4.2 All-pole networks

Certain filtering functions can be met using networks where all the transmission
7eros are at p = oo (see Chapter 3), 1.e.

EVZ(‘I))‘/) e =10 (280)

and
1
. o 2.81
[S12(J )i Dy (jw)Dy(=jw) ( )

In this case the Darlington synthesis yields a lowpass ladder network terminated
in a positive resistor. The synthesis is identical to the continued fraction expan-
sion technique previously described except that the final element is a resistor
(IFigure 2.12).

2.5 Analysis of two-port networks — the 4 BCD matrix

To progress further in the understanding of filter theory it is appropriate to
review some basic network analysis techniques for two-port networks. One of
the most useful tools is the 4 BCD or transfer matrix.

Consider the two-port network shown in Figure 2.13. The network may be

L L3 Ly-y

o [ 4 O { YY\j ,,,,,, r
- R;>0
C2 CT‘T— Cn
— b

Figure 2.12 A typical lowpass ladder network
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.

Figure 2.13 A two-port network

I 1
o> F———0

o [————0

described using the matrix equation

v A B[V,
_ (2.82)
K C D|| L
where
A8y (.8
c D B o

The ABCD or transfer matrix [77] relates the input voltage and current vector to
the output voltage and current vector. One of the main uses of the transfer
matrix is for the analysis of cascaded networks as shown in Figure 2.14.

Now

Vi
l } = [T
I8

V3
= [T1]{T] {
I
V,
= [T][T)[T5] l }
Iy
= [T] { L ] (2.84)
where
[T = [T\][T,][T3] (2.85)
1 12 I3 14
O—>—] N
VT [} TV [T2] TV; [73] TV4
i 2

Figure 2.14  Cascaded two-port networks
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Iy I
O——>>—
T [T] Z T
n V2
Zin

Figure 2.15  Two-port network with termination

Thus [T], the transfer matrix of a cascade ol two-port networks, is equal to the
product of the individual matrices of each of the circuits.

Furthermore the transfer matrix has some interesting properties, depending
on the network. If the network is symmetrical then

A=D (2.86)
If the network is reciprocal then
AD — BC =1 (2.87)

If the network is lossless then, for p = jw, A and D are purely real and B and C
are purely imaginary.

The input impedance of a two-port network terminated in a load impedance
can be readily calculated (Figurc 2.15).

Ziy = %‘ (2.88)
Now
{VIJ _ |4 B VQ} (289)
L C D|| L
Thus
vy A4V, + Bl
I, CVa+ DI
AVy/L + B
= VA /L, + D (2.90)
Now
Vyll, =27, (2.91)
Therelore
_AZ, + B (292)

in CZL n D



32 Theory and design of microwave filters

1 T2
o—>— ——>—0 T

T 4
4

o, 0O

V2

Figure 2.16  Series circuit element

ABCD matrices can be defined for series and shunt connected elements.
Consider the series connected impedance Z in Figure 2.16. Now

v, A B[V,
I, C D|| L
where
Y
A=— =1 (2.94
Volr=o )
|14
B=- =z (2.95)
b |p.—o
1
C=— =0 2.96
Valr—o (2.96)
/
p=-L =1 (2.97)
Lly,—o
Therefore
(7] L 2.98
o 1 (298)

For a shunt clement, consider the shunt connected admittance ¥ in Figure 2.17.

I Iy
o O

AT |

Figure 2.17  Shunt connected circuit element
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Now
PR (2.99)
Voln=o
g1 o (2.100)
Iy [ y,—g
/)
C =L -y 2.101
Valn=o ( :
p=l (2.102)
12 Va0
Hence )
[0 10
4= _ v o1 2.

As an example let us now use transfer matrices to compute the input
impedance of the network shown in Figure 2.18. The transfer matrix of the
total network is the product of the transfer matrices of the individual series
inductors and shunt capacitors, i.c.

) = (1 L]p} { 1 0} [l L3pil { 1 0}
B VR Cyp 110 1 Cyp 1
(1 2p 1 0][1 9p/2 1 0

“lo } |/7/3 1] {0 1 } [2/)/3 1}

(1 +2p%/3 2p []f:‘;/}z 9/7/2}

r/3 1 2p/3 !
(2337 473 (917/2)(1+2P2/3)+2”] (2.104)
L (p/3)(L+3p7) +2p/3 L+ 3/2 i
Ly=2 Ly=9/2

o—M——

Cr=13 | S Ca=23

Figure 2.18  Example network
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Now
AZ + B
n " CZL+ D
In this case there is no termination so Z; = oo. Therefore
7 A
"C

14597 +2p°
p+r

which agrees with the impedance given in (2.37).

2.6 Analysis of two-port networks — the scattering matrix

(2.105)

(2.106)

We shall now introduce a new set of two-port parameters known as scattering

parameters or S parameters.

Consider the two-port network shown in Figure 2.19. This may be described

by the well-known impedance matrix cquation

V] = 1Z][]
where
=) UJH
and
/) - i 2L
| Zy Z»
Now let
ac| _[V]+U]
- o] -1
I 1)
VIT TVZ
© ——0

Figure 2.19 A two-port network

(2.107)

(2.108)

(2.109)

(2.110)
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Jo 0 [lde

Figure 2.20 A resistively terminated two-port nelwork

and
by [V]-U]
Also let
[b] = |S]la]
where

S Si
18] =1
S S
[S] is called the scattering matrix of the two-port network.

Now from (2.110) and (2.111)
(V] = [a] + ]

4] = la] - [p]
Now since

V= [Z]l]
then

la] + [b) = [Z]{[a] — B]]
and substituting (2.112) in (2.117)

(1+[SPla] = [Z](1 = [S])]a]
and

I+ 18]
A=)

(2.111)

(2.112)

(2.113)

(2.114)

(2.115)

(2.116)

(2.117)

(2.118)

(2.119)

Now let the two-port network be terminated in a 1 source and load as
shown in Figure 2.20. From basic circuit analysis the transducer power gain

of this network is given by

|L*
Glw)=4-—"=%
) EJ?

(2.120)
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and from (2.114) and (2.115)

V] :(ll+b| (212])

Vo=ay + b, (2.122)

1] = da Wbl (2123)

12 =y — 1)2 (2124)
and from Figure 2.20

Vy=—-1 (2.129)
Hence

a; =0 (2.126)
and

E:I|+V1_—_2al (2127)
and

L =—-b (2.128)

Hence substituting (2.127) and (2.128) in (2.120)

S}

b,
G(jw) = | "2 (2.129)
ay|
Now since a; = 0, by = 53,4, 50
Glw) = |Sn (jw)|’ (2.130)
For a reciprocal network, since Z,; = Z|,, then
S|22521 (2]3])
Furthermore, we can compute the input impedance at port (1). Since
v l
Zy =t (2.132)
11 ay — hl )
and
by = S (2.133)
SO
» 1+ 5,
i = 2.13
"= g (2.134)

Thus the scattering parameters relate to measured transmission and reflection
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through the nctwork. Since

by _ S Siz a (2.135)
b, Sy Sn | e

then
b
Sll:j =0 (2.136)
Sp = ﬁ = (2.137)
ay n
bs
SH = ah =0 (2.138)
I la
/’)7
Sp=—=| =0 (2.139)
g

S, and S|, are the input and output reflection coefficients. S;, is the reverse
transmission coefficient and 53, is the forward transmission coefficient; b, and
b, can be considered as reflected signals at ports (1) and (2), while ¢ and a; arc
incident signals at ports (1) and (2).

Z( p) is a positive real function, thus S|;{p) is a bounded real function:

ISi(p)l <1 forRep>0 (2.140)

or

S11(p) is analytic for Re p > 0 (2.141)

i.e. Sy (p) contains no poles or zeros in the right half p plane.
Furthermore, from (2.140), using th¢ maximum modulus theorem [§8], we
obtain

[Sn(jw)l <1 (2.142)

This is another way of stating conservation of energy, i.e. a passive device
cannot reflect more energy than is incident upon it.

If the network is unterminated and lossless, i.e. Z( p) 1s a reactance function,
then all incident energy must be reflected from the network, i.e.

|1 (jw)| =1 (2.143)
Furthermore, since |S,3(,/'w)[2 is the transducer power gain, then
0 <|Splw)* <1 (2.144)

Again this is a statement of conservation of cnergy for a passive network.
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Now consider power entering the two-port network at real frequencies.

P=Re (VI + WI5)

— Re [(a; + b1)(ai — b7) + (a2 + by)(a3 — b3)] (2.145)
Now we know that 4, = 0. Hence
P= a,a; — b b — byb5 (2.146)
and
bl = S“a[ ]?2 = Slzal (2147)
Hence
Pi(1|{17(1 —S“ST‘ fSlstz) (2148)

For a lossless network P = 0 and
SuSH + S8 =1 (2.149)
This is known as the unitary condition and states that for a lossless network
1S (w)* + (S (w)F = 1 (2.150)

This condition is extremely important as it relates the input reflection coefficient
and power gain for lossless networks and enables us to synthesise networks.
In general we can state for two-port networks [9]

[SCw)][S" (jw)] = (1] (2.151)
yielding

[Sui) + ISl =1 (2.152)

S ()P + 1S (jw) P = | (2.153)

Sn(Jw)Sia(jw) +S1(jw)Sn(jw) = 0 (2.154)
Now if

_N(p)

Sulp) = Do) (2.155)

then solutions of (2.152)—(2.154) yield
N(—

Su(p) = - D((p’;’ (2.156)
and

. _F(p)

Sipp) = Dip) (2.157)
where

F(p)F(—p) = D(p)D(—=p) — N(p)N(-p) (2.158)



Basic network theory 39

The transfer function Sy;( p) is often expressed in decibels and is called the
insertion loss L, of the network, i.c.

La = ~20logo|S12(jw)|dB (2.159)

The reflection coefficient of Sy,(p) expressed in decibels is known as the
return loss Ly of the network

LR =-20 ]0g|0 |S| | (/u))l dB (2]60)

The insertion loss is a measure of attenuation through the network. The
return loss i1s a measure of how well matched the network is. This is because
it is a measure of reflected signal attenuation. A perfectly matched lossless
network would have zero insertion loss and infinite return loss. A typical
‘good value’ for return loss in a well-matched system is between 15 and 25dB
depending on the application.

As an example of the application of S parameters, consider the following
insertion loss function which is for a degree 3 Butterworth filter.

La = 10log(l +w®)dB (2.161)
That is,

S(w)l = ——— (2.162)

o2l 10 2.

Hence from the unitary condition

6

SnGw)l? = 1= [Sp(jw)]’ = # (2.163)
Let

Sn(p):%% (2.164)
Then

N(PIN(=p)lpej = w° (2.165)
Therefore

N(p) = 4p’ (2.166)
Also

D(p)D(=p)lpmjy = 1 +w° (2.167)
Thus

D(p)D(-p) =1-p°

=(1+2p+2p" +p)(1 = 2p+2p* — p*) (2.168)
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2H
o) YN

¢ 1F |

Figure 2.21  Lowpass ladder network

Therefore taking the left half-plane roots we have

D(p)=1+2p+ 2172 —l—p3

and
+p
S
n(p) = L+2p+2p% +p°
Now
L+ S1(p)
(r) = L -S(p)
_D{p) + N(p)
D(p)— N(p)
and

14+ 2p+2p +2p°
1+ 2p+2p°

Z(p)or Y(p)=

(2.169)

(2.170)

(2.171)

Since all the zeros of |Slz(j¢u)\2 oceur at w = oc then Z( p) can be synthesised
using the Darlington technique as a ladder network terminated in a resistor, as

shown in Figure 2.21.

2.6.1 Relationships between ABCD parameters and S parameters

[t may be shown by analysis that

. A-D+B-C
T AL B+ C+D
g D-A+B-C
TT A+ BFCHD

2
S12 TS
A+B+C+D

Hence

4

1S (w)|* =

|4+ B+ C+D|*

(2.172)

(2.173)

(2.174)

(2.175)
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and the insertion loss L, is given by
La = 10log | Y|4+ B+ C+ DI’ dB (2.176)

Now for a lossless network B and C are purely imaginary, i.c.

B=jB' (2.177)

C=jC’ (2.178)
and for a rcciprocal network

AD+ B'C' =1 (2.179)

Thus for a lossless reciprocal network

La = 10logy {1 +1((4~ D) = (B - C")

°]} dB (2.180)
and for a symmetrical network 4 = D.
Similarly the return loss is given by

4
Ly = 10logy, [1 TR (2.181)

G NG dB
(A-D)y" +(B'-C')

Thesc formulac apply in a 1€ system.

As an example we can analyse the lowpass ladder network given in
Figure 2.21. By multiplication of transfer matrices the overall transfer matrix
of the lossless part of the circuit is

I —2w? 2w
7] = . (2.182)
T w2 2w 1 - 2wt
Hence
A=D B'=2 (' =2w-2° (2.183)
Hence
L/\ = ]OlOgl()[] +%(2w — 2w + 2(,03)2]
= 101ogp(1 + w®) (2.184)

2.7 Even- and odd-mode analysis of symmetrical networks

Given the symmetrical circuit shown in Figure 2.22, it is possible to simplify the
analysis by the usc of even- and odd-mode networks.

An even-mode excitation implics that equal potentials are applied at each
end of the circuit; hence there is an open circuit along the line of symmetry. In



42  Theory and design of microwave filters

I : I,
' [—>—0
VlT TVz
o—— < ——>0
' line of symmetry

Figure 2.22  Symmetrical two-port network

this case

Vo=V, (2.185)
and

L =-1 (2.186)
Now

Vi A BV,

{11 } “l¢ p 12} (2.187)
Hence

Vy=AV, — BI, (2.188)
Rearranging

Y, = A1 (2.189)

B

An odd-mode excitation implies opposite potentials at each end of the circuit.
Hence there is a short circuit along the line of symmetry. In this case

Vy,=—V, (2.190)

L =1 (2.191)
and the odd-mode admittance is given by
1+ 4

Y 2.192
= (2.192)
I'rom (2.189) and (2.192) we obtain
Y.+ 7,
A=-S_"°_D .
Y.~ ¥, (2.193)
2
B=——"— (2.194)

Yo - Yc
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and from reciprocity and symmetry

42 _ BC — | (2.195)
Hence
2
C= YYiY)‘; (2.196)
(6] 4

Thus the transfer matrix of a symmetrical network may be given in terms of the
even- and odd-mode admittances:

Y.+ Y, 2
Yo - Ye Yo - Yc

(T] = (2.197)
2Y.Y, Y. +7,
Y,— Y, Y,-Y.

Now by combining (2.172)-(2.174) with (2.197) we can obtain expressions for
the § parameters in terms of Y, and Y, i.c.

1 -Y,7
S, = o’e =S, 2.198
B AT A 219
Yo_Yc

Sy =Sy = (2.199)

(14 Yo)(1 + Yo)

As an example consider the third-order Butterworth filter shown in
Figure 2.21. Here

Y.=p +}J (2.200)
and
Y,=p (2.201)
Hence
L/p
$elP) = T )
1
T lt2p+2p 2P (2:202)
and
Sp(jw)* = 1 3 (2.203)
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2.8 Analysis by image parameters

The method of image parameters is often overlooked these days. However,
it is a useful technique for analysing simple network structures consisting of
cascades of identical elements.

Thus given a symmetrical two-port network with transfer matrix

Y.+ Y, 2

Yo - Yc Yo - Yc 59
7] = (2.204)

2Y,Y, Yot Y,

Y() - Y(' Yo - Yc

[T] can be expressed as [10]

coshy  Zsinh~y
7] = . (2.205)
Yisinh~  coshy
where
Y.+ Y
v =cosh ' (T%) (2.206)
and
1 ”
Y = (Y. ¥,)'"? (2.207)

:Zl

~ is known as the image propagation function, Z; is the image impedance.
Now consider a cascade of identical sections each with transfer matrix [77].
Then

[TV =[T]"

cosh(N~)  Z sinh(N~)
= (2.208)
Yy sinh(N~v)  cosh(N7)
Here we see the power of the technique in that the problem of computing the
transfer matrix of a cascade of identical sections is reduced to a relatively trivial
result.
The § parameters of the cascade are thus given by

(£ = Y;)sinh(Ny)
— 2cosh(N~) + (Zy + Yp) sinh(N+)

AS'H - Agj_z (2209)

2

- 2cosh(Ny) + (7, + Yy) sinh(N~)

S (2.210)

As an example consider the ladder network shown in Figure 2.23. This
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1Q

ngfyxiw_ mszl
R 1 T

|

Figure 2.23  Ladder network

network is of degree 2N + 1 but it consists of a cascade of N identical
sections (Figure 2.24). The even- and odd-mode admittances of the basic section
are

Y.=p (2.211)
and
l 2
Y,=pt+-=-—17 (2.212)
PP
Hence
Vi = (YY) = (1+p)'7 (2.213)
and
Yo+ Y,
‘h , — ¢ [¢]
cosh v A
=1+2p (2.214)
Now
S Z
S” == Lsinh(N#)
12 2
l

(L)
e

e sinh[N cosh™' (1 + 2p2)}

4-172 . . -1
= — ssinh 2V sinh ™ p
2(1 + pH)/? | ) |

o
S
o
~—

Figure 2.24  Buasic section of the ladder network
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Hence
Sn 2: W sin2[2N sin N(w)] (2.216)
Sl2 4(1 - wz)

2.9 Analysis of distributed circuits

At microwave frequencies the use of distributed circuit elements is widespread.
These differ from zero-dimensional lumped circuits by the fact that one or more
dimensions are a significant fraction of the operating wavelength. There arc
many texts on this subject and all we arc concerned with here is the ability to
analyse circuits containing transmission lines.

For a one-dimensional line (Figure 2.25) it can be shown [11] that the transfer
matrix is given by

lVH]‘ { cosh(y€)  Z,sinh(~0)

. (2.217)
1 Y,sinh(v¢)  cosh(v/¢)

where Z,, is the characteristic impedance of the line. The value of Z, depends on
the physical construction of the line and is the ratio of voltage to current at any
point p along the line. « is the propagation constant of the line and

v=a+j8 (2.218)

where « is the attenuvation constant and 3 is the phase constant.
For a lossless line

y=ifB (2.219)
and the transfer matrix reduces to

cos(/3¢) JZ,sin(32)

=|.. . ) (2.220)
jsin(pey/Z,  cos(B)
Now
32" 2,221
[N )\ ("" )
¢

ll% o . o _9[2

" T

" o— o 12

Figure 2.25  One-dimensional transmission line
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and for any wave propagating at velocity v with wavelength A

v=fA (2.222)
Hence
g=" (2.223)
v
and
wt
gt =—=aw (2.224)
v
where
a="2 (2.225)
v

Thus the section of lossless transmission line has a transfer matrix which is a
function of frequency as follows.

cos(aw)  jZ,sin(aw)

(T]= . (2.226)
JjY, sin(aw) cos(aw)
where
1
Yo=7 2.227
0 Zo ( )

If a transmission line is terminated in a short circuit then the input impedance is
Zin(.jw) =jZ tan(“‘”) (2228)

and if a transmission linc is terminated in an open circuit then the input
impedance is

Zinljw) = —jZ,/ tan{aw) (2.229)

It will be scen in later chapters that sections of transmission line in cascade
or shunt or series connection have useful properties as circuit elements in
microwave filters.

2.10 Summary

In this chapter an attempt has been made to summarise various network
theoretical concepts which are relevant to modern filter design. The book is
concerned entirely with linear passive time-invariant networks and so these
properties have been precisely defined. The concept of the input impedance of
a network in terms of the complex frequency variable has led to the properties of
positive real and bounded real functions. The synthesis of lossless one-port
networks has led on to Darlington synthesis of terminated two-port networks,
with lowpass ladder networks being one particular case.
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Various analysis techniques in terms of A BCD matrices, S parameters, even-

and odd-mode nctworks and image parameters have been discussed. The exten-
sion of these techniques to distributed circuits is introduced at the end of the
chapter. The matcrial in this chapter gives sufficient background for the more
advanced material in Chapter 3.
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Chapter 3
Design of lumped lowpass
prototype networks

3.1 Introduction

A lowpass prototype is a passive, reciprocal, normally lossless two-port network
which is designed to operate from a |  generator into a 1 ¢ load. The network
response has a lowpass characteristic with its band-edge frequency atw = 1. The
amplitude response of the network is designed to at least meet a minimum
specification on passband return loss Ly and stopband insertion loss L. For
example,

Ly > 20dB 0<w<l ( passband) (3.1)
La > 50dB 12<w<x (stopband) (3.2)

Since the network is normally lossless there is no need to specify the passband
insertion loss since this is related to the return loss by the unitary condition.

There may also be a phase linearity or group delay specification on the
passband characteristic of the filter.

The lowpass protolype which may be of lumped or distributed realisation is a
‘building block™ from which real filters may be constructed. Various transfor-
mations may be used to convert it into a bandpass or other filter of arbitrary
centre frequency and bandwidth.

3.2 The maximally flat prototype

The maximally flat or Butterworth approximation is the simplest meaningful
approximation to an ideal lowpass filter. The approximation is defined by [1]

l

1S (jw))? = T2

(3.3)



50 Theory and design of microwave filters

Hence the insertion loss is given by

La — 10logo(1 +w™) (3.4)

Now for w < 1, w>" rapidly becomes very small. For w > 1, w’" rapidly

becomes very large. The 3dB frequency is at w = | and marks the transition
between passband and stopband.
N is the degree of the network. The larger the value of N the more rapid is the
transition from passband to stopband.
More exactly, the behaviour of |S,(jw}
w = oc. Given

2

is maximally flat at w =0 and

Flw)=1+w" (3.5)
then
di;(“’) = 2N =0 at w=0 (3.6)
w
and
AN Ew

In other words the first 2N — 1 derivatives of the inscrtion loss characteristic are
zero at w = 0. This implies a very flat response across the passband. Now
2N

Con2 w
1S12 (Jw)| :m (3-8)

and the first 2N — I derivatives of the insertion loss function are zero at w = co.
The maximally flat behaviour gives rise to an S-shaped frequency response,
shown in Figure 3.1 for various values of N.

It is important to be able to calculate the degree N of the filter in order to meet
a given specification. We require

return loss > Lg for w<w, (3.9)

insertion loss > L, for w > w; (3.10)

Hencee in the stopband

101og (1 +wi™) > L, (3.11)
If Ly > | then wi™ > 1 and
La
N - L S— .
= 20Tog,o(ax) (3-12)
In the passband
|
10logig |=————5| > Lz (3.13)
= ll(./wp)‘
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1.0
091
08t 1
0.7+
0.6t

|siatwi|” 0.5

04} .
03f N increasing
02t
0.1}
Y902 04 06 08 1 12 14 16 18 2
0 —3
Figure 3.1 Maximally flat filter response
Now
ISHGW)P =1 =[S (jw) (3.14)
Therclore
1 +w2N
l()logm( 7/\5’ > LR (315)
wp

Il we define the selectivity S of the filter as being the ratio of stopband to
passband frequencies, 1.e.

S=2>1 (3.16)
Wy
then
S 2N
10logy |1+ (—) ] = Ly (3.17)
wh
and if Ly > 1 then (S/w,)*" > 1
So 20N [logo(S) — logig(ws)] = Ly (3.18)

and from (3.12) and (3.18)
20N logio(S) = La + Ly (3.19)
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That is,
S La+Lg
T 20log(S)
For example, if /., = 50dB, and L =20dB and § = 2,then N > 11.7,i.c. we

nced a twelfth-degree filter to meet the specification.
Synthesis of the maximally flat filter proceeds as follows. Given

(3.20)

|S(w)]* = 1—+I—M—A (3.21)
then
2 wZ}V
SuUl =175 (3.22)
Therefore
) w¥
Sn(jw)Si(=jw) = T3 o2 (3.23)
Hence
, j:pz’/v
Sulp)Si(=p) = mg—\ (3.24)

The numerator of Sy;( p) can be formed by selecting any combination of zeros.
Thus, for example, if

Su(p)% (3.25)
then
N(p)=p" (3.26)

However, Sy (p) contains left half-plane poles and Sy, (—p) contains right half-
plane poles. We must take care to form D( p) from the left hal(-planc poles, i.e.
we need to find the left half-plane zeros of

[+ (=p")" =0 (3.27)
That is,

(=p")" = —1 = expljn(2r - 1)] (3.28)
and

pr = Jjexp{jor) (3.29)
where

g, r-bm

' 2N
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L, La Ly Ly
YN YN { N
162
P - 10 or 10
G G (N even) {N odd) Cy
®
(a) |
Ly Ly Ls Ly Ly

Y YN Y\ f —_ N
1Q

or
— e —— 1Q  (Nodd) 10

Figure 3.2 Ladder realisation of a maximally flat prototype network

Therelore
pr = —sin(f,) + jcos(6,) r=1,....2n (3.31)

These poles lic on a unit circle in the complex plane and the first 7 roots lie in the
left hall-plane. Thus

. +pV
Snulp) = (3.32)

[T [ —jexp(/6,)]

r—1

This prototype may be synthesised by forming the input impedance

_L+S5(p)
Z(p) TS0 (3.33)

and since all the transmission zeros occur at infinity the network can be
synthesised as a lowpass ladder network as in Figure 3.2.

The two realisations in Figure 3.2 are subtly different. Type (a) starts with a
shunt capacitor and type (b) with a scries inductor. The particular type (a) or (b)
depends on the choice of sign used for Sy, (p). Reversing the sign has the effect
of inverting the impedance so the input impedance is either short or open
circuited at w = oc, depending on the sign chosen.
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As an example we will synthesisc a second-order Butterworth filter. Hence

Sii(p) :I:p2
N} = - N . -
W T = exp /AP —j exp (137 /4]
2
SN A (3.34)
P2+l
Now
1 + S,” (17)
Z(p) = — 147 (3.35
(7) 1—S5(p) )
and taking the positive sign numerator
2004+ /2p + 1
V2p+1
=2 — 3.36
Vo + V2p +1 ( )
or
2/)2 +V2p+1
y(p) =2V EL (3.37)

V2p+1

giving the two realisations shown in Figure 3.3.

In the case of the maximally flat lowpass prototype, explicit design formulae
have been developed for the element values shown in Figure 3.4 [2, 3]. The
element values are given by

7 _
g,,:2sin[(lmﬂ} (r=1,...,N) (3.38)
where
g. =1L, r odd
( ) (3.39)
g=0C, (r even)
V2 V2
oY fo) YN
2 —— 10 J2 _—‘: 10
e o
(a) (b)

Figure 3.3 Network realisations of an N = 2 maximally flat lowpass prototype

filter
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Figure 3.4  Maximally flat lowpass prototype ladder network

3.2.1 Impedance inverters

There is an alternative realisation of ladder networks using elements called impe-
dance or admittance inverters. An impedance inverter is a lossless, reciprocal,
frequency-independent, two-port network, defined by its transfer matrix

0 JjK

j/K 0 (340)

7] =

where K is the characteristic impedance or admittance of the inverter.

The main property of an inverter is that of impedance inversion. Consider the
circuit of Figure 3.5 consisting of an impedance inverter which is terminated in a
load Z; . Now

L+ D

 JK K’
JZ /K Z

K —12
RS

Zin(p)

(3.41)

Figure 3.5 Impedance inverier terminated in a load
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V2 V2
T N
l_) =1 iQ
Z(p) Z(p) Zx(p)

Figure 3.6 Second-order maximally flat filter with inverters

Thus the input impedance is proportional to the inverse of the load impedance.
The use of the inverter may be illustrated by the synthesis of the sccond-order
maximally flat filter.

From (3.36)

P 2p

Z(p)=——f—— 3.42
(p) T+ (3.42)
Extracting a series inductor of valuc /2 we obtain
207+ V/2p + 1
Z = /2
1(p) Ty V2p
1
— 3.43
V2p+1 (3.43)

Normally at this stage we invert Z,( p) to form Y, (p). However if we extract a
unity impedance inverter the inverse of Z,( p) is still an impedance. Hence

Zr(p)y=2p+ 1 (3.44)

Thus the network is synthesised entirely with inductors and inverters as shown
in Figure 3.6.

Explicit formulae for the general Nth-degree maximally flat inverter coupled
lowpass prototype shown in Figure 3.7 are given below [3].

G, =L, or(C,

gl

25]“|:T (I——l,...,N) (345)
Ko, =1 (r=1.....N—1) (3.46)

3.3 The Chebyshev prototype

The maximally flat approximation is the simplest meaningful approximation to
the ideal lowpass filter. It is maximally flat at d.c. and infinity, but rolls off to
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L, L, Ly Ly
oM I T h./m__“

K Ko Kyan f 1Q

K = Kz - Kyan

Tcz Cwar

Figure 3.7 Inverter-coupled lowpass prototype maximally flat filter

11
QH
—
e}

3dB at w = 1. [t is thus sometimes called a zero-bandwidth approximation. As
discussed in Chapter 1 a better approximation is one which ripples between two
values in the passband up to the band-edge at w = 1, before rolling off rapidly in
the stopband. This type of approximation is shown in Figure 3.8 for degrees 5

and 6.
I OVYIAY.
N N\ |

0.8

0.7F .
0.6F

[$126] " 0.5

04t
03}
02t
01f
g 0.2 04 06 0.8

w—

Figure 3.8 Chebyshev lowpass approximation
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The insertion loss at ripple level is normally expressed as
IL = 10log(1 + £7) (3.47)

Thus the ripple in the passband can be controlled by the level of <.
To achieve this type of behaviour we let

|

I +e?Ti(w)

1S12(jw)]?

Thus
IL = 10logo[l + £ T3 (w)] (3.49)

Tn(w) is a function which must then obtain the maximum value of 1 at the
maximum number of points in the region |w| < 1. Ty(w) is thus of the form
shown in Figure 3.9.

We need to work out the formula for Ty(w) so that we can calculate
S12(jw)|*. First we see that all points in the region |w| < 1 (except w = +1)
where |Ty(w)| = 1 must be turning points. Thus

dT
47 _ ) when |Ty(w)| =1 (3.50)
dw
except when |w| = 1. Hence
ATy(w) . [ Tw)'"?
= . s 3. l
dw Cw (1 7(‘)2)1/2 (3.51)
Ty(w)
20 .
15

1208 06 04 02 0 02 04 06 08 1

Figure 3.9 Equiripple response
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From Figure 3.9 we see that
| Ty(£D)} =1 (3.52)

Thus | — T3(L1) = 0when (1 —w?)"/? = 0and dTyy(w)/dw s finite at w = +1.
Rewriting (3.51)

d TN ((AJ) dw

— =55 (3.53)
(=T -y

Integrating both sides of (3.53) gives
cos Ty (w)] = Cy cos™ (w) (3.54)

Cy must be determined so that Ty(w) is an nth-degree polynomial in w.
Let cos '(w) be written as w = cos(#). Then

Ty (w) = cos(Cyh) (3.55)
and Ty{w) = 0 when
Cyl = (i’—-zﬂ (r=1,2 ctc.) (3.56)
or
(2r — Dm
=0 3.
V=3¢, (3.57)

For Ty(w) to have N zeros then Cy = N, and
Ty (w) = cos{N cos™ (w)] (3.58)
Thus

1S1(w) = !

| 3.59
I+ g2 cos? [N cos ! (w)] o

Now (3.59) must bc a polynomial in w; otherwise it could not represent
the response of a real network. In fact Ty(w) is known as the Chebyshev
polynomial [4] and is given by the formula [3]

Tyiiw) =2wTy(w) — Ty (w) (3.60)
with initial conditions

Tolw)=1 and T|(w)=w (3.61)
Thus

To(w) = 2ww — 1 =2w* — 1 (3.62)

Ty(w) = 2w(2w? — 1) —w = 40 — 3w (3.63)

Let us now do an cvaluation of the response of a third-order Chebyshev filtcr.
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Say we want 20 dB minimum passband return loss. Then (in the worst case)

insertion loss = 10log,o(1 +£7) = 10log (ﬁ) (3.64)
and

return loss = 1010g< ! ,) =Ly (3.65)

St

Then

Syl =101~ 0.01 (3.66)
and

Sl =1 =[S |7 = 0.99 (3.67)
So

P 1

14 e = s (3.68)
and

e=0.100520.1 (3.69)
Thus

insertion loss = 10log[l +0.01 (4w’ — 3w)?] (3.70)

The insertion loss ripples between zero and 0.043 dB in the region ‘w| < 1 and
then rolls off, rcaching 9 dB at w = 2. It would appear at first that the function is
not as selective as the third-order maximally flat filter. In fact the maximally flat
filter had 3 dB insertion loss at w = 1 so it is not a fair comparison.

The passband insertion loss ripple in the Chebyshev filter is 0.043 dB. The
third-degree maximally flat filter achicved this at w = 0.463. As a comparison
the ratio of stopband to passband frequency is 4.64 for the maximally flat filter
and 3 for the Chebyshev filter. Thus we see that the Chebyshev response is
considerably more selective than the maximally flat response.

A formula to calculate the degree of a Chebyshev filter to meet a specified
response is now given. The proof of this formula is similar to the proof for the
maximally flat response [3]. The formula is

N > La—+Lg+6 i
20l0g[S + (5% — 1)'/?

(3.71)

where L, is the stopband insertion loss, Ly is the passband return loss and S is
the ratio of stopband to passband frequencies.

As an example, for Ly — 50dB, Ly = 20dB, S = 2 then N must be greater
than 6.64, i.e. N = 7. The maximally flat filter required N = 12 to meet this
speciflication. Synthesis of the Chebyshev filter proceeds as follows. Given

Spw)f = ——f

= 372
[+ elT2(w) (3.72)
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the poles occur when

Ti(w) = —1/e’ (3.73)
That is,

cos’[N cos™' (w)] = —1/e” (3.74)
To solve this equation we introduce a new parameter 7, where

1

1 = sinh H sinh ™! (Zﬂ (3.75)
or

1

— = sinh[N sinh™'(1)] (3.76)

€

Hence from (3.74) and (3.76)

cos?|N cos ™' (w)] = — sinh?[N sinh ™' (7))]

= sin’[N sinh ™' (jn) (3.77)
Thercfore
cos ™ (w) — sin™'(jin) + 6, (3.78)
where
9, — (2'2N]-)f (3.79)
and
py = —jcosisin™ (jn) + 6,] = +nsin(0,)+ j(1 + 7)) cos(d,) (3.80)

The left half-plane poles occur when sin(6,) is positive, ie. r=1,...,N.
Therefore

Py =0, + juw, = nsin(6,) + j(1+ ") cos(8,) (3.81)
Thus
2 2
or_wr (3.82)
e s o

The poles thus lie on an ellipse.
It may be shown that

N o sind(r /2
Slz(p)—H{ it sin(rm/ ) } (3.83)

p+ jcos[sin™' (jn) + 6,]

r—1
Now
ISy Gw)” =1~ [S12(jw)

\ 2

e Th(w)
14+ &2TiHw) (3.84)
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The zeros occur when

cos’[Ncos ' (w)] =0 (3.85)
That 1s,

p = —jcos(t,) (3.86)
Now

Si(ec) =1 (3.87)
Then

il p+jcos(d,)
Sulr) = ;1:[1{17 +jeos[sin™ (jn) + 9,.]} (3.88)

The network can then be synthesised as a lowpass ladder network by
formulating Z;,( p).
As an example we will synthesise a degree 3 Chebyshev filter.

For r=1 0, =7/6 cos(0) = /3/2 (3.89)
For r=2 Oy =7/2 cos(é,) =0 (3.90)
For r=3 03=51/6 cos(fy) =—/3/2 (3.91)
Therefore
Si(p) = p(p+iv3/2)(p = jv/3/2)
(p+mp+0/24i(/3/2D0 + ) p +0/2 = i(V3/2)(1 + 7))
3 P +3p/4
T3 2 3 ‘ 3 (3.92)
p A 2npT 4+ (297 4+ 3/Hp + n(n” + 3/4)
Now
207 4+ 20p° + 2007 +3/4)p + (P +3/4)
Zin(p) = >3 5 5 (3.93)
20p* + 2°p +nin* - 3/4)
Removing a series inductor of value 1/ we are left with
Zi(p)=2Z(p) —p/n
2
7"+ 3/4
___ +7/ )(an) (3.94)
2p= + 207p + n(n” + 3/4)
Extracting an inverter of characteristic admittance
2 1/2
, +3/4)"
[(12 = u (395)

N
the remaining impedance is
B 207 + 2np + (7)2 +3/4)

Zy(p) = P+ 1) (3.96)
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Im 2m im
— N /"

10 (n2+ 3" F (r2+3) 10
n [_> n
V4
2 Z1(p) | 2(p) |

Z3(p) Zs(

Figure 3.10  Synthesis of an N = 3 Chebyshev filter

Now extracting a second inductor of value 2/7 we are left with

Z3(p) = Z2(p) = 2p/n

2
3/4
= n+3/4 (3.97)
n(p+n)
Extracting a second admittance inverter of characteristic admittance
2 1/2
3/4
Ky = M (3.98)
n
the remaining impedance is
Za(p) =1+p/n (3.99)

L.e. an inductor of value 1/7 followed by a load resistor of value unity. The
complete synthesis cycle is shown in Figure 3.10.

The synthesised element valucs given here are actually formulae in terms of 7.
These formulae may be generalised to the Nth-degree prototype shown in
Figure 3.11 [3, 5, 6].

[ + sin?(rm/N))'/?

KRAR~H = N = l,..../N* 1 (3]00)

where Kg g,y is the impedance of the inverters.

2 [2r=1)rm
LR:,]sm{(TVL} R=1,....N (3.101)

L, L, Ly

YL
K K Ky-in f 1Q

Figure 3.11  General Nth-degree Chebyshev prototype network
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where
5 = sinh L ginnt (2 (3.102)
N €
¢ is related to the insertion loss ripple and hence the passband return loss. Since
1
Sl =—— 3.103
| I2| |+ E2 ( )
02
Syl = 3.104
11 | 1+ EZ ( )
therclore
Lg = 10log,o(1+1/%) (3.105)
Hence
SZ(IOLR/IO . 1)~I/2 (3106)

Note that the dual of Figure 3.11 would consist of shunt capacitors scparated by
inverters. Formulae (3.100)—-(3.102) still apply but they would then represent
the values of the capacitors and the characteristic admittance of the inverters.

3.4 The elliptic function prototype

The elliptic function approximation is equiripple in both the passband and the
stopband. It thus has the optimum response in terms of selectivity from pass-
band to stopband. A typical elliptic function filter response is shown in Figure
3.12. The transmission zeros of this network are no longer at infinity and thus
the filter cannot be realised with a ladder network. One of the disadvantages of
this filter response is that the transmission zeros are prescribed to be at certain
tfrequencies and there is no flexibility in their location, i.e.

1

(S =+ T (3.107)
where |
Fy(w) = (w? —wi)w’ —wi) ... (3.108)

(W? — wa) 2 (wW? = w}) ...

i.e. all the values w;, wy cle. are specified.

The synthesis procedures for the elliptic function filter are simpler if we work
with a highpass rather than a lowpass prototype. This is shown in Figure 3.13
for N = 6. In this case
213 (w)
l+e2ki(w

[S1(jw)|” = )

(3.109)

[

4
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Figure 3.12  FElliptic function lowpass response

Fy(w) is a rational function as in (3.108). It oscillates between +1 for |w| < |
and|Fy(w)| > m(jl/2 for |w| > m~"2. Fy(w) is shown in Figure 3.14.

Fx{w) can be determined from a differential equation in a similar way to the
Chebyshev filter, as follows. First we define the turning points in the passband
and stopband:

dFN(w)

dw

=0 except when jw| = 1 (3.110)
[Fylw) =1

IS,»;(_/Q))‘Z A

. J

O}

Figure 3.13  Degree 6 highpass elliptic function filter
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Figure 3.14  Fy(w) for the highpass elliptic function filter
dFyiw) =0 except when {w| = m, /2 (3.111)
dw |Iﬂ\v(u)\7nzﬂ'|"’l
Thus
dF/\/'<w) =Cy {“ - F%V("‘"')HI _ mO_F/%/(W)”UZ (2 112)
dw ) [(1—w?)(1 —mwz)]l/2
Rearranging with Fy(w) on the left-hand side we obtain
dFY Cy 1 )
NG S N (3.113)
{1 = FR @] = moFR (@)} [(1 =) (1 = mw?)]"
and after integrating we obtain
cdy 'Fy(w) = Cyed 'w=1u (3.114)
and
Fy(w) = cdyu (3.115)

where the elliptic functions are all dependent on the elliptic parameter m, with
the same notation as in Reference 7.
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Cy Cr
JXq JXr

10 ; K12 Krr Kyr+1

JBy

Figure 3.15  Highpass prototype for elliptic function filters
It may be shown [3, 8] that the polynomial form of Fy(w) is

Blﬁ[{w~cd[ 2r -~ )K/N]}
Fy(w) = (3.116)
H{l —wmed[(2r — YK/N]}

where

1 — med{(2r — 1)K /N]
= H{ 1 —cd[(2r — 1)K /N] } (3.117)

Synthesis of the elliptic function filter cannot be accomplished using a ladder
network as it has finite real frequency transmission zeros. It may be synthesised
using the techniques described for generalised Chebyshev filters later in this
chapter. or by the techniques described for extracted pole waveguide filters in
Chapter 6. It is possible to synthesise the filter using a type of ladder network
using series resonators composed of capacitors in parallel with frequency-
invariant reactances as shown in Figure 3.15.

Explicit formulae have been developed for the element values of the elliptic
function prototype [3, 8]. These are

ds[(2 - 1)K /N]dnl(2r — 1)K/N]

C, = r=1,...,.N 3.118
! 27’](1—[’}’1) ! 3 9 ( )
2r— 1)K
B, = C,eal? =K r=1,....N (3.119)
2(r — HK 2rKl K (2r—1)K

X = - g - sH— | cd — cd ~~——>~t— =1,...,

; nm [sn N + sn N :‘chLd N r=1 , N
(3.120)

KO\ 172
K, (1+nmsn ﬁ> r=1,....N—1 (3.121)

n=sc L,sc_] ! (3.122)
NK, 5
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An approximate equation for calculating the degree of the filter is

o Klm) Lyt Lg + 12

3.123
— K'(m) 13.65 ( )

where L, and Ly arc the stopband insertion loss and passband return loss,
respectively, and K is the quarter period with respect to the clliptic parameter
m. As an example, for Ly =50dB, Lz =20dB and n=2 we obtain
m = 1/17 =0.25. K(m) and K'(m) are obtained from tables of clliptic integrals
in Referencc 7 giving K(m) = 1.68575 and K'(m) = 2.15651. Thus N > 4.69,
i.c. N = 5 compared with N =7 for the Chebyshev filter.

Thc clliptic function highpass prototype can also be used for inversc
Chebyshev filters. In this casc the transfer function is

£ Ty (w)

S (jw)]* = o0
N

(3.124)

The filter is maximally flat in the passband and equiripple in the stopband. In
this case the clement values for the prototype network of Figure 3.15 arc

l
" 2psin[(2r — D)7/2N] (3.125)
. 2r — D
Sl B Y VA 3.12
B] (/) COS{ 2N ( ())
X, =0 5.127)
KI'."+I == l (3‘128)

Onec of the disadvantages of using the elliptic function filter is that the range
of element values required is quite large, up to 10:1. Furthermore, in many
applications we wish to specify the locations of the transmission zeros ourselves.
This is possible by using the generaliscd Chebyshev approximation described in
the next scction.

3.5 The generalised Chebyshev prototype

The generaliscd Chebyshev approximation provides a filter with equiripple pass-
band amplitude characteristics but with arbitrarily placed attenuation poles
(transmission zeros) in the stopband. Because the transmission zeros can be
placed arbitrarily then both symmetric and asymmetric frequency responses
can be generated. Furthermore, the transmission zeros arc not restricted to
being at real frequencies but may also be located in the complex plane. A
particular example of a generalised Chebyshev filter is shown in Figure 3.16.
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Figure 3.16  Generalised Chebyshev lowpass approximation

The genceralised Chebyshev approximation is given by

S (jw)|* = m
with

—l < Fy(w) <+l for —1<w<+l1
and

Fylw,) =0 r=1,..., N

where w, is the frequency of the rth transmission zero.
The normal Chebyshev transter function can be represented by

2 1

Sia( -
‘ l‘_(/w)| l+€2F/%/(UJ)
where

Fy(w) = cos[N cos™" (w))]

= cos(d)
and

§ = Ncos '(w)

0.5 1.0 1.3151.7 2.0

(3.129)

(3.130)

(3.131)

(3.132)

(3.133)

(3.134)
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It can readily be seen that as w varies from —1 to -1 then # performs N
half-period variations from —=n/2 to 4+n/2. Hence Fy(w) has N half-period
variations from —1 to +1. For |w| > 1, # is imaginary and Fy(w) increases
monotonically to infinity at w = cc.

In the case of the generalised Chebyshev filter, some of the transmission
zeros at infinite frequencies can be brought to finite but not necessarily real
frequencics. Let

N

1 .

=3 cos '(_/iﬂ> (3.135)
. Y4 — Dy

where p, is the position of the rth transmission zero in the complex plane. This
preserves the same range of variation of 8 across —1 < w < 1 while producing
attenuation poles (lransmission zeros) at pr. Hence

. ” B 1 +pp,
Fn = cos cos l(/———i> 3.136
v ; L (3.136)
Now given that
cos™ (x) = —log.[x + (x* — 1)!/?] (3.137)

it can be shown that the polynomial form of (3.136) is [9. 10]

Fy=1 ﬁ 14 pp, + [(1+ p) (1 +p))]
N72 P =D,

r=1

+ﬁ{l Lo — (1 4+ P +1)3)]”2}> (3.138)

e p=0n

Multiplying out all the products results in

N )
> ap
= A
=g (3.139)
>.bip!

J=0

where a;, b; are in general complex coefficients.
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Now
1
Spw))? = —————
| 12(](“))‘ 1+€2A2/B‘
B 1
(1 +jeA/B)(1 —jeA/B)
Bz
= 3.140
B+ e A) (B —jed) (3.140)
Furthermore
Su(w)? = 1= 1Sp(w)l* (3.141)
Hence
2 42
A
1511 (jw) - (3.142)

T (B+jeA) (B —jeA)

The transmission and reflection functions can thus be formed from the 4 and B
polynomials with the denominator being formed from the lcft half-plane zeros
of the factorisation of the denominator of | S}, (jw)|*.

There is no simple formula for calculating the degree of the gencralised
Chebyshev filter since the transmission zeros can be placed arbitrarily. The
easiest way is to simulate the transfer function on a computer and choose
the zcro locations as required.

In general the synthesis of such filters can be performed using the cascade
synthesis described in Chapter 2. However, certain specific synthesis techniques
may be used depending on the degree of the network. These will be dealt with
later in this chapter after the group delay and time domain approximations.

3.6 Filters with specified phase and group delay characteristics

The amplitude approximations discussed so far make no attempt to approxi-
mate to a prescribed phase or group delay response. However, in some systems
applications these are of importance. As an example consider a digitally
modulated signal passing through a filter with non-linear phase response. If
the bandwidth of the filter is similar to that of the signal then the signal may
experience severe phase distortion. This can give rise to inter-symbol inter-
ference and hence a degraded bit error rate.

In Chapter | we showed that the amplitude and phase responses of ladder
nctworks are related by Hilbert transforms. It is instructive to look at the phase
and group delay responses of some simple amplitude approximations. In
general, for ladder networks

1

Sia(jw) :m

(3.143)
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(where o is even, B is odd) and the phase response is

B(w
Plw) = — tan”! [aéw?] (3.144)
The group delay 7,(w) is related to the phase by
—dy(w
T, (w) = —S0) (3.145)
s dw
Hence
aB’ — B!
(o' and B’ denote differentiation with respect to w).
For a Butterworth filter
&4 B =1 4w (3.147)
Hence
aB’' — Bd
Ty(w) = NEELE (3.148)
For a degree 2 Butterworth filter
1
S = 3.149
12(p) Pt 2+l ( )
That is,
|
Sp(jw) = ————— 3.150
2l = T (3:150)
a=1-u? (3.151)
B=.2w (3.152)
and
V21 +w?)
Tylw) =" (3.153)
7,(0) = 2 T,(1) = /2 To(o0) =0 (3.154)

The maximum value of 7, (w) occurs when T/ (w) = 0, i.e. at w = 0.6435, with a
value T pay of 1.707.
The ratio of Ty . to the value at d.c. is given by
T

’gmux: 1.207 3.155
7,(0) (3.155)
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For a degree 3 Butterworth filter this ratio increases to 1.35 and it can be shown
that for higher degree Chebyshev filters it increases to nearly 2.

3.6.1 The maximally flat group delay lowpass prototype

In the ideal case we would require the group delay to be constant across
the passband. If we restrict ourselves to ladder realisations then we will look
for @ maximally flat approximation to constant group delay, and since all the
transmission zeros arc at infinity

K

Sia(p) ) +a(p) (3.156)

(m even, n odd). Thus

m( p)n'(p) — n(pym'(p)
T.(p) = AN 3.157
T S

The objective is to choose n1 and # such that the group delay is a maximally flat
approximation to a constant at w = 0. Consider

K
~ cosh(ap) + sinh(up)

S(p) (3.158)

(Note that this is physically unrealisable as the polynomial forms of cosh(ap)
and sinh(ap) require infinite power series in p.) Now

m( p) = cosh(ap) (3.159)

n{ p) = sinh(ap) (3.160)
Hence from (3.157)

Ty(p)=a (3.161)

Hence, (3.161) states that the group delay is a constant independent of
frequency, but this is only true if m and » are of infinite degree. Instead we
restrict n( p)/m( p) to be of degree N and to be some approximation to tanh(ap).
Now

sinh(x)
tanh(x) = -
anh(x) cosh(x) (3.162)
and
3 5
inhix) — v 5 L
sinh(x) = x +?+§ (3.163)
2 4
X° X
cosh(x) =l 4+ =+~ ... (3.164)

204l
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Hence the continued fraction of tanh(ap) is

|
1 l

tanh(ap) =

i (3.165)
2N —1 1
+
ap
To form n/m we truncate (3.165) after N terms and re-multiply. The numerator

is equal to # and the denominator is equal to m.
For example, for N =2

1
tanh(ap) = 1—1—
ap " 3ap
3ap n( p)
=t 3.166
St ap mip) (3-166)
Hence
K
S = 3.167
n(p) 34 3ap + a*p? ( )
For realisability let $;5(0) = 1. Hence K = 3. Hence
3
Spp) =—r——— 3.168
n(p) 34 3ap + a’p? ( )
and from (3.157)
9a — 3a3p2
T, = 31
«(P) 9 3dp + a*p? (3.169)
and
T,(0) = a (3.170)

Thus « is chosen to determine the group delay at d.c. Furthermore, it is readily
shown that the group delay is maximally flat around p = 0.

Examining the amplitude characteristics of S,( p), without loss of generality
we can let ¢ = 1 in (3.168) giving

|

S e —
I2(p) 1+[7+[72/3

(3.171)
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Hence

1
Y
1S12(jw)] ~m—m (3.172)
This has considerably less amplitude selectivity that the normal maximally flat
filter. This is not surprising as we have restricted ourselves to @ minimum phase
realisation. However, this type of characteristic can be useful where group delay
flatness is more important than absolute selectivity.

It can be shown that a general solution for S},(p) [11] is given by

Sp(p) = DNI((ap) (3.173)
where

Dy(ap) = 2N — 1)Dy_(ap) + @’p* Dy _s(ap) (3.174)
where

D =1+ap (3.175)

Dy, =3+ 3ap+ d*p* (3.176)
Hence from (3.173), (3.174) and (3.175)

Dy =15+ 15ap + 6 p* + &’ p? (3.177)
Hence for S;5(0) =1

Salp) . (3.178)

T 15 + 15ap + 6a%p* + @

which is an all-pole transfer function, realisable by a ladder network.

3.6.2 The equidistant linear phase approximation

The equiripple approximation to a linear phase response is a much better
approximation than the maximally flat solution [3]. In fact the equiripple solu-
tion which minimises the maximum deviation from linear phase is the optimum
solution. This solution uses a polynomial which approximates the ideal linear
phase given by

Plw) =w (3.179)
The error function ¢ (w) = w is designed to be zero at equal increments of & in w

and is shown in Figure 3.17.
The equidistant linear phase polynomial is given by

Ay (jwla) = A(w) exp[jih(w)] (3.180)
where
[w — Y (W)]| sy = 0 r=0,1,2,...,N (3.181)

The phase is linear at equidistant frequency increments and is called the
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o-y(o)

a 2a "4 (N-l)at Not o

Figure 3.17  Equidistant linear phase approximation

equidistant linear phase polynomial with the recurrence formula [12]

tan’(a) p° + (aN)’

An 1 (pla) = An(pla) + 2 AN 1 Ay 1 (pla) (3.182)

where « < 7/2. Initial conditions are
td
dg—1 A4 =gl (3.183)
87
and Sy»(p) is given by
]
S = 3.184

Note that with a = 0 the solution degenerates into the maximally flat case
discussed previously.
For example, for N = 3, from (3.182)

tan®(a) p* + o
Az == A1 + £Y 1 —
o 3

Ay

2 b ol
tan(c tan~(a) p~ + o~
Ly tanle) wntle) gt o?

(3.185)

>
v - 3

tan® () p* 4 40’

A :A7
e 15 :
g lan(a)p n tani(a) l)z +a’ i tanz)((x) Pt 4a’ [+ tan(cv) »
o o 3 o 15 o

(3.186)

S12( p) may be synthesised as a ladder network.
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3.6.3 Combined phase and amplitude approximation

As already stated, restricting a prototype realisation to an all-pole or ladder
network means that the amplitude and phase (or delay) characteristics are
related by Hilbert transform pairs. Consequently it is impossible to achieve a
combined good approximation to selective amplitude response and linear phase
(constant group delay) response with this type of realisation. 1t is only possible
to proceed by using non-minimum phase realisations as follows.

A minimum phase transfer function of the form

Sialp) :ggg (3.187)
can be augmented by multiplying by an all-pass function of the form
H(—p)
A(p) = ") (3.188)
That is,
AP =1 (3.189)
Hence

N{p) H(-p)
D(p) H(p)

The magnitude response of S|, is unchanged from S, while the phase response
is modified to

Ship) = (3.190)

: . ~1190w)
h§! 1) — af W) - ‘ ! w .
WS (jw) = S (jw) - 2tan }:F(]w):] (3.191)
(where H(jw) = E(w) + jO(w)) and the group delay is modified to
EOQ' — OE'
T)(w) = T(w) — 22—~ 3.192
f0) = Tyw) 22 (3.192)

The additional term may thus be used to modily the group delay of the original
filter. Note from Chapter 1 that the group delay of an ideal lowpass filter is
infinite near band-edge. Thus although modifications to the delay of a selective
filter are relatively easy to achicve near w = 0, corrections close to band-edge
require A( p} to be of high degree. Typically correction tends to give flat delay
(linear phase) across most of the passband while allowing a peak in delay near
band-edge.

One possible solution in this case is the maximally flat amplitude and maxi-
mally flat linear phase approximation [3]. In the even-degree case this has 2n - |
derivatives of |S},|* equal to zero at the origin. and n/2 + 1 derivatives of group
delay equal to zero at the origin. It has two transmission zeros at infinity, and
the transfer function is given by

EZ/N»Z 14
Sip) = A

DZIH(”) (3]93)
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where
Emez(P) = Qm(P)Qm(_p) + _—p—g mel (p)mel (4}—7) (3194)
(2m-1)
and @,,(p) is given from the recurrence relation
P
in+l(p) = Qm(p)+27Qm—l(p) (3195)
4m- — 1
and
Qy=1 QO =1+p (3.196)
The denominator is given by
2
Dy(p) = O+ —L—5 05, (3.197)
2m—1)
As an example, for N = 4 we have m = 2 and
O:p)=1+p+p'/3 (3.198)
. 9 —2p”
Si(p) (3.199)

T+ 18p + 16p7 + 8p + 2p°

This has two transmission zeros at infinity, realisable as a conventional ladder
network. It also has a pair of [inite real-axis zeros at p = £3/1/2 which requirc a
C section. The network can thus be synthesised by the cascade synthesis meth-
ods discussed in Chapter 2 or by the methods used for generalised Chebyshev
filters, to be discussed later in this chapter. Further examples of filters with
combined selective amplitude and linear phase are given in Reference 13 and
in the section on dual-mode waveguide filters in Chapter 7.

We have observed that one particular solution to combined selective
amplitude and linear phase requires real-axis transmission zeros. However,
the generalised Chebyshev approximation discussed previously allows a
completely arbitrary placement of transmission zeros. Thus it is possible to
generate transfer functions with equiripple passband amplitude characteristics
and with transmission zeros placed to increase both amplitude selectivity and
phase linearity. This is the approach which is now generally adopted. Synthesis
of generalised Chebyshev filters will be discussed later in this chapter.

3.7 Filters with specified time domain characteristics

The impulse response of a filter can be of significance in certain applications.
For example in narrowband channelised electronic warfare receivers a large
pulse will cause ‘ringing’ in the filter for a period of time. If the amplitudes of
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the time domain sidelobes are sufficiently high they can block the ability of the
receiver to detect a second pulse. It is thus desirable to have filter characteristics
where the time domain sidclobes are damped as rapidly as possible. One
particular solution to this problem is the maximally flat impulsc response
approximation [14] where

Sia(1) = Ky exp(—1/2)sin™ ! (e1/2) (3.200)

with zeros at = 27m/e.

For example let N = 1. Then

Sia(t) = Kyexp(—1/2) (3.201)
and letting

Si(pp=0 =1 (3.202)
then

K =1)2 (3.203)
Now S|,(p) is the Laplace transform of S),(7). Hence

Siip) = 2])1+ ] (3.204)
For N =2

S12(1) = Ky exp(—1/2) sin(et/2) (3.205)
Hence

Sia(p) = —2L2 (3.206)

(p+1/2)* +c%/4
Hence for Sy3(p)|p-0 = 1

Kye/2=c?/4+1/4 (3.207)
Therefore
| +¢?
Ky, = 2
2 7% (3.208)

In general, for N even, it can be shown that S,(p) is an all-pole transfer
function (hence is synthesised as a conventional ladder network) given by

1
Silp) =< (3.209)
N2 Ap(L + p)
it | T4 (28 — 1)e?
where
| 42
Ky=—° (3.210)
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and

(3.211)

Kyia L+ (N+1)%°
Ky N(N + 1)e?
The value of ¢ must now be determined. This is done by forcing | S, (jw)|? to

have a first-order maximally flat responsc around w = 0. Now from (3.209)

IS (jw)]” = 1

) 8[1 — (2r — 1)253 2 16w?
I+ 7t
H{ T+ =% Qi+ = 1P

(3.212)

W g

(for N even). For a first-order maximally flat response the coefficients of the w?
term must be zero. Hence

N/j2 2.2

2r—1 -1

Z(' )52 =0 (3.213)
L+ (2r — 1)e?)?
For N odd the coefficient of w? is always positive so the odd-degree solution is
of little value.

r—-1

Forv=2 =1 0 hencec=1 (3.214)
1 4+¢e7)°
g2 -1 9:% — | )
For N =4 55+ ~— =0  hence ¢ =0.84336 (3.215)
1+ (14922
2 2 2
B I L |
For N=6 = 4= —0  hence £ = 0.76591

(I+e2)? (14927 (14252
(3.216)

The attenuation of time domain sidelobes can be computed from the time
domain response:
Si5(1) = Kyexp(—t/2)sin™ '(e1/2) (3.217)

Differentiating to obtain the turning points it can be shown that
2
S{,(1) =0 when (== {rm +tan ' [g(N — 1)]} (3.218)
€

The maximum value of the impulse responsc occurs for » = 1 and the sidelobes
pcak at r > 2. At the peaks the sine function is unity and

Sia(t) = Kyexp(—1/2) (3.219)
The attenuation of the mith sidclobe is thus

A =exp(mn/e)
8.686m.
_ 2SO dB

&
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Figure 3.18  Impulse response of a degree 6 maximally flat impulse response filter

For N = 2 with £ = 1 4 =2794dB (3.221)
For N =4 with ¢ = (.84336 A=3236dB (3.222)
For N = 6 with ¢ = 0.76591 A =3563dB (3.223)

The impulse response of a degree 6 prototype 1s shown in Figure 3.18.

3.8 Synthesis of generalised Chebyshev filters

Generalised Chebyshev filters have equiripple passband amplitude characteris-
tics and arbitrarily placed transmission zeros. They cannot be synthesised by
ladder networks but various synthesis techniques are possible. The type of
synthesis depends on the location of the zeros in the complex plane, whether
or not the zeros are symmetrically located and whether the degree is even or
odd. Three different synthesis techniques will be discussed.

3.8.1 Synthesis of generalised Chebyshev prototypes with
symmetrically located transmission zeros

If the transmission zeros are symmetrically located in the complex plane then
the synthesis procedure can be simplified by using even- and odd-mode
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admittances. From (2.198) and (2.199) we have

Ye - Yo
_ 3.224
Slz(p) (1 i Yc)(l + YO) ( )
I - Yeyo
— 3.225
Sll(p) (1 + YC)(l + Yn) ( )
wherc Y, and Y, are both reactance functions. Now
1S (jw)|* = ] = : (3.226)
o T+2203w) (U jeFy )T —jeFy(W)]
and
2,40
N 2 £ Fy(w)
ISuw)l” =1 |Su(iw)] = T4 22w (3.227)
Now from (3.226) and (3.227)
Sy(jw) .
o oy =JeFyw (3.228)
Si2(Jw) V()
and from (3.224) and (3.225)
Y.Y,—1
jeFy(w) = £ -2~ 3.229
feFy(w) = 4o (3.229)
Thus
1 Y,— Y,
. ~ = S (3.230)
U—jeFn(p/i)  (Ye+ (Yo +1)
and
: Yo — Yo (3.231)

Ut jebn(pli) (Yo + D(Ye+1)

Now since Y, and Y, arc reactance functions the left half-plane zeros of
| — jeFy(p/j) are the zeros of Y.+ 1. Similarly the left half-plane zeros
of 1 —jeFy(p/j) are the zeros of Y, + 1. These two sets of zeros are the poles
of 8, p). Either set can be identified from the poles of S, (p) by taking poles in
alternative order from the largest imaginary part. Y, and Y, can then be formed
from these poles [15].

Two possible network realisations are possible depending on whether
the transfer function is even degree or odd degree. First we will examine the
even-degree case. As an example we will synthesise a degree 4 transfer function
with two transmission zcros at infinity and a pair of transmission zeros at
w==%2,1.e p=+j2.
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Fylw) can be calculated from (3.138) as follows.

ol = 50 _,ﬂﬁ(p P+ (P PP 4T 2p 3+ )

x[1=j2 =31+ )
Flp - (L)' PRI +j2p — i3+ p7)
x [1=j2p+ /301 + pH)'*1}

J
2(p*+4)

{1 +2p(1 +p*)"? + 2p7]

x [144p* +3(1 +p°) +4v3(1 + p)V3

T 2p(1+ )Y 4 2071+ 497 + 300+ p7) — 4/3p(1 + p7)' )

=415+ 8y/3)p7 + (14 + 8v/3)p" (3.232)
p-+4

The poles of S);( p) are thus the zeros of

(44 p*) + (4 +28.88564p" + 27.8504p*)> = 0 (3.233)
For 20dB return loss ¢ = 0.1; hence we find the zeros of

Y4+ 2.07179p° 4+ 1.48914p* + 1.32845p + 2.08253 = 0 (3.234)
The left half-plane zeros are easily found numerically using Matlab and are

p = —0.80347 £ j0.58582 (3.235)
and

p=—0.24621 £+ j1.18275 (3.236)

This transfer function may be synthesised as the cross-coupled ladder network
shown in Figure 3.19.

The even-mode network is shown in Figure 3.20. The frequency-invariant
reactances in Figure 3.20 arise from bisecting the coupling inverters of admit-
tance jK, with an open circuit.

The odd-mode network is thus the complex conjugate of the even-mode
network, 1.e.

Y=Y, (3.237)

We can now formulate Y, by constructing a polynomial P(p) from a pair of the
four roots of Sy, ( p) choosing opposite signs for the imaginary part. Thus

P(p) = (p+0.80347 — j0.58582)(p + 0.24621 + j1.18275)

= p + 1.04968p + j0.59693 + 0.89351 + j0.80606 (3.238)
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Figure 3.19  Cross-coupled prototype network

Now the zeros of P(p) arc the zeros of 1 + Y (p) and

14+ Y.(p)=1 +%%

(3.239)

That is, the zeros of | + Y, (p) are the zeros of N(p) + D(p) where N{p) and

D( p) are complex even and odd polynomials.
Thus we formulate

N(p) = p* +70.59693p + 0.8935]
D(p) = 1.04968p + j0.80606

Hence
N{(p)
Yo(p) = s
(p) Dip)
P +,0.59693p + 0.89351
~ T 1.04968p + j0.80606
Now
Ye(p)

=0.95267

. 1.04968

/

7&K G K G JK:

Figure 3.20  Even-mode network of the cross-coupled prototype

(3.242)

(3.243)

B

Cy Ky
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Figure 3.21  Even-mode network

Thus extracting a shunt capacitor of value C; = 0.95267 we obtain

—j0.17098p + 0.89351

Y =Y(p)—Cwp=
i(p)=Yp)—Cwp 1.04968p + j0.80606

(3.244)

Now
Y, (p)|,,:%: —j0.16288 (3.245)

Thus we extract a frequency-invariant reactance of value jK, where
K; = —0.16288 leaving

Yo(p) = Yi(p) —JjK

I

Y, (p) +/0.16288

0.7622

~ 1.04968p + ;0.80606 (3.246)
Inverting we obtain
Yi(p) = 1.3772p + j1.0575
= Cyp+jKs (3.247)

Y, is shown in Figure 3.21.

‘1 ‘

e}

Figure 3.22  Complete fourth-degree cross-coupled filter
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Now Y, = ¥} and the completc network is shown in Figurc 3.22. The
simulated response is shown in Figure 3.23.

Note that the complete filter is a fourth-degree ladder network with a non-
adjacent coupling between the first and last resonators with opposite sign to the
main couplings. This is necessary for the real frequency (j axis) transmission

zeros. If the zero had been on the real axis the cross-coupling would have been
of the same sign.

S, 0 0 Su
dB dB
~10 -5
-20 -10
=30} - -15
401, o . K e : .20

\\ :
\
§
=50 4 -25
i
!
|
_ i -30
600 5 radfs

Figure 3.23  Simulated response of a fourth-degree cross-coupled filter

3.8.2 Synthesis of generalised Chebyshev prototypes with
ladder-type networks

The previous cross-coupled ladder networks are only available for narrowband
applications as they use inverters. Alternatively symmetrically located rcal
frequency transmission zeros may be realised using the circuit shown in
Figure 3.24, provided N is odd. The seventh-degree case shown has a minimum
of one transmission zero at infinity.

As an example we will consider a degree 3 filter with 20 dB return loss, a single
transmission zero at infinity and a pair of zeros at w = 42. Hence

Pr =00

P2=h (3.248)
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L3y La Lo
—— L L T LT
— G = G — 1S I —
C1 (&] C3 C1
oO— o)

Figure 3.24  Symmetrical generalised Chebyshev filter of degree 7

In this case from (3.138) Fy(p) is given by

J
P +4

{[p+ (1 +p)"21+4p" +3(1 +p°) +4y/3p(1 + p*)']

o= (1P P+ 4p? 4301+ p7) = 4y/3p(1 + p7)' 2]}

:lﬁ[[)(4+4\/3) + 9 (7 +4y3)] (3.249)
The left half-plane roots of Sy, (p) are the left half-plane roots of
1+ Fa(p) =0 (3.250)
These can be solved numerically giving
Py = —1.48368 (3.251)
P2z = —0.38464 £ j1.33334 (3.252)

For N =3, Y, is of degree 2 and Y, of degree 1. The zeros of | + Y, are the
zeros of (p— p2)(p — p3), e

(p+0.38464 — j1.33334)(p + 0.38464 + j1.33334)

= p? +0.76928p + 1.92574

= E(p)+0(p) (3.253)
Now forming
£(p)
Y, = 2
oP) = 55 (3.254)
then
2
P-4 1.92574
Y [ -
o(P) = 576938, (3.255)

The complete network for N = 3 is of the form shown in Figure 3.25 and by
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L

G TG0

G -0

Figure 3.25  Generalised Chebyshev filter, ladder type, N =3

analysis of the circuit

Yo(p) = (€1 +2C)p +o

2P
_ P+ 2/%2((71 + 20y) (3.256)
p/(Cy+2C)
Thus from (3.255) and (3.256)
1.92574 2
0.76928 ~ I, (3:257)
Therefore
L, =0.7989 (3.258)
Now from Figurc 3.25
Yo(p)=Cip (3.259)
and from (3.251)
p .
Yolr) = 1 45363 (3.260)
Hence
C, =0.6739 (3.261)
and from (3.255) and (3.256)
¢, +2C, = 0.761928 (3.262)
Therefore
> =0.3130 (3.263)
As a check the series resonant circuit should be resonant at w, and
LyCy = 1/jwi =4 (3.264)
The clement values of the final circuit are
¢, =0.6739
C, =0.3130 (3.265)

L, = 0.7989
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Say 0 - -——0 St
dB dB
~10 -5
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Figure 3.26  Simulated response of a lumped generalised Chebyshev filter

The simulated response of this circuit is shown in Figure 3.26.

The general synthesis {or filters of this type of degree 5 or above is slightly
more complicated. For example consider a prototype of degree 7 with a single
transmission zero at infinity and three pairs of symmetrically located real
frequency transmission zeros. One possible network realisation is shown in
Figure 3.27. In this case

Eq(p)
Yolp) =
=0
where £, is a fourth-degree even polynomial and Oy is a third-degree odd
polynomial. Also although a pole exists at p = oo this is not completely
removed. First we observe that at the rcsonant frequency w;, of the first
resonator the input admittance is given by

(3.266)

Yoljwi) = jwC, (3.267)
Thus we extract C| by a zcro shifting procedure such that
Yol i
¢, = Do) (3.268)
Jw
Hence
Yi(p)=Yo(p)—Cip (3.269)

and inverting
Z\(p)=1/Y(p) (3.270)
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IR

Yo(p) Vo) " line of symmetry

Figure 3.27 Generalised Chebyshev filter, ladder-type realisation

Now Z, ( p) contains a factor p* + wi in the denominator, corresponding to the
transmission zeros at p = +jw;. Z(p) should be synthesised into the series
connected parallel tuned circuit and a remaining impedance. The procedure
can then be repeated. An example of this procedure is given in Chapter 5.

3.8.3 Asymmetrically located transmission zeros

In many applications it is rcquired that a filter should be more selective on one
side of the passband than the other. For example in cellular communications
(scc Chapter 1) a transmit filter should have high rejection in the reccive band.
This may be elegantly achieved by using a generalised Chebyshev prototype
with asymmetrically located transmission zeros.

As an example we will synthesise a third-degree network with two
transmission zeros at infinity and one at w = 2, with ¢ = 0.1. Hence

—py = (3.271)
and
py=j2 (3.272)
and
Folp) é[/”r(l + PRI 2 a3 )”;Jf/ﬁzﬂ U425 Pli+20— 31 +p)'7
{1 P2pt 22y Dp + (44 2/3)p%)) (3.273)

[7
Hence for p=jw

L= (24 2y/3)w — 2w + (4 +2¢/3)’
w-2

Fi(w)
TR

Fylw) = (3.274)

(3.275)
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Therefore
£2(1 — 5.46410w — 2w? + 7.464100°)°
(w—2)" + (1 — 5.46410w — 2w? + 7.464100°)*

S11(p) can be formed from the left half-plane roots of the denominator of
(3.276), 1.e.

|11 ()P = (3.276)

(p =72 — %[l +2p” +/(5.46410p + 76410p")]* = 0 (3.277)
The roots are

Pra = £0.8609917 — /1.41446 (3.278)

pya = £1.1734578 + j0.4313449 (3.279)

Pse = £0.31246609 + j1.2510504 (3.280)

In this particular case the transfer function may be synthesised by a sym-
metrical network. However, in general when the transmission zeros are placed
asymmetrically this is not necessarily true. Thus although the above transfer
function may be synthesised using even- and odd-mode networks we will usc a
more generally applicable method.

Formulating the denominator of S, {p) from the left half-planc roots we
obtain

D(p) =(p +0.860992 + j1.41446)( p + 1.1734578 — j0.431345)
x (p + 0.312466 — j1.251050) (3.281)

The numerator is formed from e Fy ( p) multiplied by a constant such that .S}, (p)
is equal to unity when p = oo, to ensure zero transmission at infinity. Hence

P j0.267949p 4-0.732051p — j0.133975

Su(p) = S : : .
0P) = 03 34691657 = 702679497 1 3486057y j0.949665p 1 2118199 — /1.624683
N(p)
— 3.282
(r) ( )
Now formulating the input admittance from
L+ Sh(p)
Y(p) = T-5
= Snu(p)
Dipy+ N(p
_D(p)+N(p) (3.283)
D(p) - N(p)
Yo 2p° +2.346916p> — j0.535898” + 4.218108p — /0.949605p + 2.118199 — /1.758658

2.346916p7 1 2.754006p — j0.949605p + 2.118199 — ;1.490708
(3.284)
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Y(p) has a pole at p = co. Thus we can extract a capacitor C; as follows:

o =X _gssas (3.285)

P =
Hence

Yi(p)=Y(p)—Cip

0.273338jp” + 2.413017p + j0.320749p + 2.118199 — j1.758658
T 2.346916p7 + 2.754006p — j0.949605p + 2.118199 — j1.490708
(3.286)

As in the previous case a frequency-invariant reactance may now be extracted.
In this case we must extract an element such that the remaining admittance
possesses a zero at p = j2. Y;(p) is a reactance function; thus if we extract a
susceptance of value equal to Y;(/2) then the remainder must be zero at p = j2.
Thus

Yi(p)=jBi+ Ya(p) (3.287)
where

JBy = Y(j2) = —j0.36758 (3.288)
and

¥2(j2) =0 (3.289)
Hence

(p—Jj2)(jAp+ B+ jC)
2.346916p + 2.754006p — j0.949605 + 2.118199 — j1.490708
(3.290)

Now equating coetficients of powers of p in (3.286) and (3.290)
coefficients of jp” = 0.27338 = —0.36758 x 2.346916 + A4 (3.291)

coefficients of p = 2.413017 = —0.36758 x 0.9499605 + B+ 24 (3.292)

coefficients of jp = 0.320749 = —0.36758 x 2.754006 + C (3.293)
Hence

A =1.136017 B = 0.49002 C =1.333076 (3.294)
The remaining admittance Y,(p) possesscs a zero at p =2, and hence its

impedance possesses a pole at p =2, i.e.

Zip—— 2.346916p% + 2.754006p — 70.949605 + 2.118199 — j1.490708
=Y T (p—j2)(1.136017jp + 0.49002 + j1.333076)

(3.295)

Z,( p) may be synthesised into a series bandstop resonator (to produce the pole)
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and a remaining impedance by using a partial fraction expansion. Hence

K Ep+F+jG

2P) =55 1 136017jp 1 0.49000 1 /1333076 (3.296)
where
K\ = Z/(0)(p =iz (3.297)
Hence
Ky = 3.01358 (3.298)
E, F and G can be evaluated by equating powers of p in (3.295) and (3.296).
coefficients of p* = 2.346916 = E (3.299)
coefficients of p = 2.754006 = 0.49002 + F (3.300)
coefficients of jp = —0.949605 = 1.136017K, —2E + G (3.301)
Hence
E = 2346916 F = 2.754006 G = 0.320749 (3.302)
Thus
Zo(p) = 3.013'58 . 2.3469161). -+ 2.754006 +_/.'0.320749
p—Jj2  L136017/p - 0.49002 + ;1.333076
= ZJO_H,S; + Z3(p) (3.303)

The first term in (3.303) consists of a capacitor C, in parallel with a frequency-
invariant susceptance B,. where
1

= —(.33183
C =30o135 ~ 03318 (3.304)

and

= —0.66366 (3.305)

=

© 3.01358

~ 2.346916p + 2.754006 + j0.320749

Zs(p) =
3(p) 1.136017p + 0.49002 + /1.333076

(3.306)

A frequency-invariant reactance must now be extracted from Z,( p) such that
the remaining impedance has a pole at p = co. (Note that requency-invariant
reactances do not cxist in reality but may be approximated over a narrow
bandwidth by capacitors or inductors.) Thus

Zy(p) = Zs(p) —JX (3.307)
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where

v =AW s 6502 (3.308)

J p=0o

The remaining impedance Z;( p) is

. j1.33309
= 06592 = - 3.309
Zalp) = Z3(p) +/2.06392 = xS G avi0a 17133308 000
Inverting Z4( p) to form its admittance Y4(p) we obtain
Y4(p) =0.852168p — j0.36758 + 1 (3.310)

This is a parallel combination of a capacitor (5, a [requency-independent
susceptance B; and a 1) load resistor. Here the load resistor is not exactly
equal to unity because of numerical errors building up in the synthesis pro-
cedure. Synthesis typically loses one or two significant figures for each cycle of
the process, although this depends on the method used. Thus it is important to
use sufficient significant figures at the start of the process, especially for higher
degree nctworks.

The complete cycle is shown in Figure 3.28. The synthesis process may be
checked by analysing the final circuit. The simulated response is shown in
Figure 3.29.

The final network shown in Figure 3.28 is not necessarily the most useful for
bandpass applications. A bandpass transformation of this circuit would result
in two shunt bandpass resonators shunted by susceptances. These are not a
problem as they can be absorbed into the resonators resulting in a simple change
in resonant frequency. However, the series branch would become a series band-
stop resonator in series with a further reactance which would be difficult to
realisc in any microwave structure other than by using lumped elements.

Itis usually more practical to convert the network into a cross-coupled array as
follows [16]. First the series branch consisting of a bandstop resonator in
series with a reactance may be converted into a parallel connection of a
bandpass resonator and a reactance, as shown in Figure 3.30. Equating the
admittances of the two circuits in Figure 3.30 we obtain, for the series branch

l Cp+jB

Y — = 3.311
1 Lix | - XB+jXCp ( )
Cp+jB
and for the parallel branch
1 1-X'B"+/B'L
Y =jB + = AL (3.312)
Lp +jX Lp +jX
Thus
Cp+jB 1-X'B +B'L,
A 2 2P (3.313)

| - XB+jXCp Lp+jXx'
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€, =0.852182
- e
e h)
Bi=_0.36758
G JB ‘
s
Y HORB )
B
o lrm"“; C3=0.33183
e Eﬁl _Hc_zl B2 = -0.66366
T ~
Y,
@ hp Zp Zy(p)
B2 .
r A X=-2.06592
T e Eﬂh i
[ Teie > >
Y(p) l I | }
h@) 2Z(p) Z(p) Yo(p)

© rm}‘_m T S
g e L e, e
ro Tr F’ [ﬁ P “re

Y
@ N(p Zyp) Zy(p) Ya(p)

Complete synthesis cycle for a generalised Chebyshev filter with

Figure 3.28
N =3, two transmission zeros at infinity and one at p = j2

Equating coefficients of p we obtain

coefficients of p*> = LC = B'LXC (3.314)
Hence

B = -1/X (3.315)

coefficients of jp = BL+ X'C = XC(1 — X'B') + B'L(1 — XB) (3.316)
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asymmetric frequency response
Hence

L=XC

coefficients of p® = BX' = (1 — XB)(1 — X'B")
Hence

X' =XB-X

JX

O

Figure 3.29 Simulated response of a generalised Chebyshev prototype with

3 rad/s

(a) series connection

(b) parallel connection

Figure 3.30  Equivalent of the series branch in a generalised Chebyshev prototype
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JB'
® e L @
L X
— - e
“ jB1 © s

Figure 3.31  Firsi circuit transformation

C = (5 =0.33183

B = B, = —0.66366 (3.320)

X = —-2.06592
and from (3.315), (3.317) and (3.319)

B’ = 0.48404

L = 141625 (3.321)

X' = ~0.76659

The circuit 1s thus transformed into Figure 3.31.

Next we form an admittance inverter between the input and output of
value K = B', as shown in Figurc 3.32. Notc that this involves adding shunt
susceptances at nodes (1) and (2).

Finally we observe that the series inductor and frequency-invariant reactance
can be replaced by a cascade of an inverter, a shunt resonator and an inverter of
opposite sign. as shown in Figure 3.33.

The proof of this equivalence is found by analysis of the transfer matrices of
the two circuits. For the series resonator

(1 Lp+jx
T = | 3.322
=i, (3322)
For the inverter-coupled shunt resonator
o Jo I olro —j
(7= _ _
L/ O] | Lp+jX 1 -5 0
(1 Lp+jX
= (3.323)
L0 1

The final transformed network is shown in Figure 3.34.
Scrutiny of Figure 3.34 shows that the resultant network is a ladder network
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@ )]
X ]
— — 10
Cl ] (B3+B') C3
Figure 3.32  Second circuit transformation
L X
O—— Y IRERND O
O—- ——-o0
1 — -1
o— —o0
=, B=X

Figure 3.33  Equivalence of the series resonator

with a cross-coupling inverter from input to output. This inverter couples across
three nodes. In general coupling around three nodes will produce a single
transmission zero on the imaginary axis. We could change the value of Ky; to
+1 provided we change the sign of K;3. This will not change the response of the
network. Thus we can say that if all the main couplings are positive then a
negative cross-coupling across three nodes will produce a transmission zero
on the high side of the passband. Conversely a positive cross-coupling would
produce a transmission zero on the low side of the passband.

3.9 Summary

The synthesis techniques described in Chapter 2 have been built on so that
lowpass prototype networks may be designed with prescribed amplitude,
phase, or time domain characteristics. These include filters with maximally
flat, Chebyshev and clliptic function amplitude characteristics. Specificd
phase responses included the maximally flat and cquidistant approximations
to linear phase. Filters with combined amplitude/phase and time domain
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1Q

By

C, = Cy=0.852182

B =B,=B,+B'=0.11646

C, = L — 141625

By = X = —0.76659

K> =1 Ky=-1,K3=B =048404

Figure 3.34  Final cross-coupled realisation of an N = 3 generalised Chebyshev
filter

characteristics are also discussed. The generalised Chebyshev prototype is onc
of the most uscful as il enables equiripple amplitude characteristics to be
combined with arbitrary placement of transmission zeros in the complex
plane. The synthesis of various realisations of this prototype is dealt with exten-
sively. The material in this chapter leads naturally into the following chapters on
specific hardware realisations of filters.
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Chapter 4
Circuit transformations on lumped
prototype networks

4.1 Introduction

The lumped lowpass prototype filters discussed so far are restricted to a 12
impedance level and a cut-off frequency of w, = 1rad/s. In reality we would like
to design filters working into arbitrary impedance levels with arbitrary cut-off
frequencies. We may require lowpass, highpass, bandpass or bandstop filters.
Various circuit transformations to achieve this are described in the next section.
Methods of realising impedance inverters and scaling internal circuit impe-
dances to arbitrary levels are also described. In addition the effect of losscs in
real circuit elements and other practical issues are discussed.

4.2 Impedance transformations

The lowpass prototypes normally have a system impedance of 1 {2, i.e. both the
generator impedance Zg and load impedance Z are 50Q (Figure 4.1). Most,
but not all, microwave filters operate in a 50 €2 system. Historically 50 Q was
chosen as a compromise between the losses and power handling capacity of
coaxial cable. To convert from a | €2 impedance level to an impedance level of
Z, §2 we simply scale the impedances of all the circuit elements in the filter by
5082 (see Tigurce 4.2).

Thus for inductors

Z=Lp=ZyLp=(ZyL)p (4.1)
That is,

L= Z,L (4.2)
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L, L,
o—01Fm™ N

1Q
G

o]

o

Figure 4.1 Degree 3 prototype ladder network

Thus the inductances are multiplied by Zj.
For the capacitors

I

L =—= ZQ = !
Cp  Cp C
&)
That is,
C=C/Z,

Thus the capacitances are divided by 7.

For the impedance inverters of characteristic impedance K
K = ZO K

Zy

(@

!
Zy

Zo
< ¢
Zy Zy Zy
(b)

Figure 4.2

Impedance  scaling  of a lowpass prototype:
(h) admittance inverter coupled

(a) ludder;

(4.4)

(4.5)
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4.2.1 Example

Design a degree 3 maximally flat prototype filter to operate in a 50 €2 system.
From Chapter 3

Li=L;=1H (4.6)

C, =2F (4.7)
Hence

Ly, =50H (4.8)

C, = 2/50F (4.9)

4.3 Lowpass to arbitrary cut-off frequency lowpass transformation

The lowpass prototype networks normally have a band-edge or cut-off
frequency of w = 1. We require a transformation to convert this cut-off to an
arbitrary frequency w,, as shown in Figure 4.3.

Given a lowpass transmission characteristic of the form

1

Spljw))f = —o— 4.10
the transformation is
w= wiw, (4.11)
Hence
. 1
1512(.100)\2' (4-12)

:>——___..
I+ Fi(w/w)

Hence F,(w/w,) has the same value at w = w, as Fy(w) has at w = 1.

|S|2|2 |S|2I2

1 1

=

=y
o=1 P

0=0,

Figure 4.3 Lowpass to lowpass transformation
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Applying this transformation to inductors we obtain

2 =1Lp
fw L
Z(jw)y=jwl = ‘/u‘)
[of
That is.
L= Ljw,
Similarly for capacitors
7 |
=G
. —/ —J
7 _—
(jw) =—= /aC
That is,
C = Cluw,

Inverters are frequency independent and are
transformation.

4.3.1 Example

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)
unaffected by this

Transform the previous example into a filter with a band-edge frequency of

100 MHz.

Figure 4.4 Frequency-scaled lowpass prototype: (a) ladder; (b) inverter coupled
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Thus
we =21 x 108 = 6.283 x 10* (4.19)
50
— 79,57 nH 4.20
7 6283 % 10° f (4.20)

(= 63.66pF 421
50 % 6.283 x 10° p (4.21)

4.4 Lowpass to highpass transformation

We require a transformation to convert the lowpass prototype to a highpass
filter with arbitrary band-edge frequency w, (Figure 4.5). Given
1

Spljw)f = ———— 4.22
|Sia(jw)l I+ [“AZ/(W) ( )
the transformation is
- e (4.23)
w
This maps d.c. to infinite frequency and vice versa, giving
5 1
Spljw) = ———— 4.24
Sl = 1o (4.24)
Applying this transformation to inductors we obtain
—jw. L
Z(jw) = jwl =
/(o)
= — W
' w. L
= —jjwC’ (4.25)

[s0l?

el

=1 ax
towpass highpass

Figure 4.5  Lowpass to highpass transformation
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where
|
W, L
Hence the inductors are transformed into capacitors (Figure 4.6). Applying this
transformation to capacitors we obtain

Cwl —

(4.26)

. —/ Jw
Z(jw)) =—==
(Jw)) =—= 0.C
=jwl’ (4.27)
where
1
L = 4.28
o (4.28)

The capacitors are transformed into inductors. Again the inverters are
unaffected by the transformation. Note that the highpass transformation has
the effect of shifting the transmission zeros of the network from w = oo to
w=20.

4.4.1 Example

Design a degree 3 maximally flat filter for 50 €2 system impedance and a highpass
response with 100 MHz cut-off frequency.

1 1
I oLy
[ L
[ i
1Q
1
0.G 3
(a)
1
1 ! OcLy-y
WL, 4’ WL,
1o K K .
b
) I B

Figure 4.6  Arbitrary cut-off frequency highpass: (a) ladder; (b) inverter
coupled
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Starting with the impedance scaled lowpass prototype
Ly=L;=50 (4.29)
C, =2/50 (4.30)
Applying equations (4.26) and (4.28)

1
Cl=Cj=o—
P T 2 x 108 x 50
L= 1
27 2 % 108 x 2/50

— 31.83pF (4.31)

= 39.78 nH (4.32)

4.5 Lowpass to bandpass transformation

We require a transformation to convert the lowpass prototype into a bandpass
filter with arbitrary centre frequency and bandwidth, as shown in Figure 4.7.
The band-edges at w = +1 in the lowpass prototype must map into the band-
edges of the bandpass filter at w; and w,. The transmission zeros at infinity in the
lowpass must now occur at both w = 0 and w = oc. The midband of the lowpass
prototype at w = 0 must map into the centre of the passband in the bandpass
filter.
This can be achieved by the following transformation:

w — a(w — ﬂ) (4.33)
Wo W
Forw= —1 and w = +1 to map to w; and w, then

1= a(“’_l EQ) (4.34)
wWo Wi

+1 =« (ﬂ - ﬂ) (4.35)
%] wh

|S11I2 |Slzlz

. @) 07
lowpass L0 bandpass K=

Figure 4.7 Lowpass to bandpass transformation
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_ 1
L L'= % = alo,
~ N

Figure 4.8  Bandpass transformation of an inductor
Solving (4.34) and (4.35) simultaneously yields

wy = (Wlwz)l/z (4.36)

a=—"0_ (4.37)

Wy — W

wy 18 thus the geometric midband frequency; « is known as the bandwidth
scaling factor.
Applying this transformation to a scrics inductor we obtain

: . Wy
Z=jwlL=joal|——-—

Wy W
al J
— (8 LA 4.38
‘/(w(,)w w(1/aLwy) ( )
The resulting impedance is that of the series connected LC circuit shown in

Figure 4.8.
Applying the transformation to a capacitor of admittance jw C we obtain

Y =jwC :>j(kC<i~/£9>

Wy W
SfaC j
-/ <w_o>“ “w(l/aCwy) (4.39)
L= otCl'u)0
C ~N
{ I e
N
|
|| c=%

Figure 4.9 Bandpass transformation of a capacitor
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L Ly Ly
Y. N | | | A ——
|
1Q 4
— — 1Q
CQT Cy

aly 1 aly 1 oLy 1
Oy oLiog @y | alywg By  alyy
/W\_I oy LT YY\_‘

122 l
- K2 : K33 Knan | =/ 1Q
G G C, Cy -
K33 Kyan 1Q
. ' 1 , oG
(b) inverter coupled L= aCoy ' C1= 5 , etc.

Figure 4.10 Bandpass transformation of a lowpass prototype: (ua) ladder;
(b) inverter coupled

The resulting admittance is that of the parallel connected LC circuit shown in
Figure 4.9.

Again the inverters are invariant under the transformations. The complete
transformation of a lowpass prototype Lo a bandpass filter is shown in
Figure 4.10, where the use of impedance inverters becomes apparent. The band-
pass transformation of the LC ladder results in a bandpass filter with both scrics
and shunt connected resonators. This can be inconvenient when it comes to
practical realisation. When inverters are used there are only shunt or scries
connected resonators, depending on whether the lowpass prototype has shunt
capacitors or series inductors. This leaves the problem of how to realisc the
inverters.

Consider the p1 network shown in Figure 4.11. This network consists of shunt
negative susceptances of value —/B connected by a series positive susceptance of
value +/B. The transfer matrix of this network is given by
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K=—B

[ Jr-se -

Figure 4.11  Realisation of an inverter by a pi network of reactances

1 o)1 /B[ 1 o0
n=l ol V)
1 —i/B1[ 1 0
N /B 0 —jB 1
[0 /B
- _—jB 0 }
- j([)( j/OK (4.40)
where
K=-B (4.41)

Thus the pi network of reactance elements equates exactly to an inverter of
characteristic admittance K = — B [1].

In the real world ideal reactive elements do not exist but we can replace them
by series capacitors for example (Figurc 4.12). Now for a capacitor

Y =jB=jwC (4.42)
C
I = K=-0C
— TC
O -0 =

Figure 4.12  Narrowband upproximation to an inverter
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‘ |l % Il
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Figure 4.13  Capacitively coupled bandpass filter

Hence
K=-wC (4.43)

The value of K is now frequency dependent; however, if the filter is sufficiently
narrowband then K will not vary significantly across the passband. The negative
sign of the capacitive inverter is of no significance, it only affects the phase
response of the filter. Replacing the inverters in Figure 4.10(b) with capacitive
pi sections we obtain the network shown in Figure 4.13. Here the shunt
negative capacitances have been absorbed into the positive capacitances of
the resonators.
The value of the rth shunt inductor is L, where
1

L, = 4.44
T aCwg ( )

The value of the rth shunt capacitor is C,, where

Crr = QCI'/:’L)O - C‘I -y CI rl (445)
and
K' r+ 1
Co,.\=— 4.46
ol wy ( )

It is interesting 1o note the behaviour of the capacitively coupled filter at
frequencies above the passband. As w increases eventually the series capacitors
all short together and the nctwork bchaves like a single shunt capacitor. The
network thus has a single transmission zero at infinity and 2, _; transmission
zeros at d.c. Consequently the filter is slightly more sclective on the low
frequency side of the passband than on the high frequency side.

This asymmectry could be reversed by inductively coupling the resonators.
Also the response can be made symmetrical by allernating inductive and
capacitive coupling. This capacitively coupled type of filter is predominantly
useful for narrowband applications, typically with bandwidths of less then
10 per cent of centre frequency. As the bandwidth is increased the response
becomes progressively more asymmetric.

There may also be problems with this design when extremely narrow
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bandwidths are required. From (4.39) the admittance of the rth shunt resonator
section prior to forming the capacitive inverters is given by

aC, I
PP AV 4.47
Y, (jw) =] K o )w (1/aCpwy)w ( )
wherce
o Z_i (4.48)
Aw = wy —wy e

Hence the inductance of the rth shunt inductor is given by

- (4.50)

aC,wy

i

This inductance is inversely proportional to « and for very narrow bandwidths
may be too small to be physically realisable. To avoid this, the entire admittance
of the filter (including source and load) may be scaled by 1/a. The element
values of the inductors and capacitors then become independent of the filter
bandwidth. An impedance transformer must be inserted between the filter and
its terminations (Figure 4.14).

It is difficult to make the ideal transformers at high [requencies. However, a
narrowband equivalent can be made using the circuit shown in Figure 4.15.
Here

1

Y(jw) =jwC + ————

(o) =jwCi+ e

‘ 1 +j/wCy
= jwC, chiads. 4.51
JwCat | JAC2 (4.51)

The real part of Y (jw) is given by
1

ReY(jw) = (4.52)

b+ 1w CE

a
© .
capacitively
coupled l J
filter

1Q
Y.
Y:’a
A4 T

Figure 4.14  Impedance scaling of a capacitively coupled filter
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T
T

Figure 4.15  Nuarrowband impedance transformer

9]
®

>
1 O
Y(joo) = o

Hence equating to 1/ at w = wy

1+ ,1 & = (¢ (4.53)
wy Cp
Hence
I
Gy (4.54)

~ (e )7

The imaginary part of Y(jw) is given by

A : [ /wCy
ImY(jw) =wl, + ———=— 4.55
1 (Jjw) « T l/w2(..'§ ( )
This must be zero at w = w,. Hence
—1/wyC
iy = s (4.56)
L+ 1/ w5 Cy
(e — Y2
C, = Gl D (4.57)
Wy x

C,, becomes the first and last series capacitor coupling into and out of the
network. The negative C, is absorbed into the capacitance of the first and last
resonators. The element values of the network arc now given by

1
Co=Cyy.y = : 4.58
0l NN~ wo(@_ 1)1/2 ( )
K. .
Cpoyp =t (r=1,...,N—=1) (4.59)
(](L’A)(]
) C '
Ch SN ) S s (4.60)
UJ() LU()(Y
) Cy (a—D"
Cyw =—>— ( ) Cyv v (4.61)
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(_,'”.:'C—C—C,.,l‘,,“C)..,.+1 (/':27...7/\,- l) (462)
o '

L= r=1.....N) (4.63)
CrLLJU

4.5.1 Example

Design a capacitively coupled Chebyshev bandpass filter to meet the following
specification.

Centre frequency (fy) 1 GHz

Passband bandwidth (A F) 50 MHz

Passband return loss > 20dB

Stopband insertion loss > 40dB at fy + 100 MHz
System impedance 509

First we must evaluate the degree of the lowpass prototype. From (3.71)
La+Lg+6

N2> - 4.64
20log[S + (ST — 1) 464
where
La=40and Ly =20 (4.65)
S is the selectivity and is the ratio of stopband to passband bandwidth. Hence
S—mw_y (4.66)
N > 3.682 (4.67)
That is, a degree 4 transfer function at least must be used.
The element values must now be calculated. The ripple level ¢ is
e = (105+/10 — 1712 = 0.1005 (4.68)
Hence
1
1 = sinh {Nsinh '(1/5)]
= 0.8201 (4.69)
and the element values are
L2 [@r—Um
C, == _
= Sm[ SN } (4.70)
2 L i 1/2
7 +sin“(ro/N
LYIES n rn/ )] (4.71)

Ui
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C, =C,=09332
Cvz = C_'; = ')2531

Now

(4.72)
Ky = K3, = 1.3204
Ky = 1.5770
wy = 27fy = 6.2832 x 10° (4.73)
o= AL(} =20 (4.74)
Co = Cys = 36.512pF
C, = Cyy = 10.507 pF
Cyy = 12.549 pF
C)) = Cyq = 103.33pF (4.75)

C'zz = C33 = 335.5 pF
L” = L44 =0.1705nH
Lzz = Lg} = 0.07064 nH

Finally, scaling impedances by 50 £2 we obtain the circuit of Figure 4.16. The
element values are

Co; = Cys = 0.7302 pF
Ciy = Cy4 = 0.210 pF

Cyy = 0.251 pF

Cyy = Cyq = 2.066 pF (4.76)
Cyy = Cy3 = 6.71 pF

Ly, = Ly = 8.525nH

Ly = Ly = 3.53nH

Col Cz Cy Cyq Cas
o—I | [ [ |
H } [ } |1 , |
50Q L1 1 L1
T i T P i oe
Lip | Cny Ly | Ca L33 |Gy Lyg | Cas

Figure 4,16 Fourth-degree Chebyshey capacitively coupled bandpass filter
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Sy OF 0 Sit
dB dB
qol T e e -5
201" -10
-30 -15
-40 120
~50 - =25

R : -30
—60—3 -2 -1 0 I 2 3rad/s

Figure 4.17  Simulated response of a capacitively coupled bandpass filter

The simulated response of this circuit s shown in Figure 4.17; note the
asymmetry in the frequency response. This circuit is perfectly realisable using
lumped element technology. It is worth noting, however, that L,, and L33 arc
slightly too small for a good high @ realisation using wire-wound inductors. It
could also be better from a manufacturing point of view if all the inductors were
madec to have the same value.

4.5.2 Nodal admittance matrix scaling

We can force all the inductors (for example) to have the same value by the
following procedure. Consider the ladder network with N + 2 nodes shown in
Figure 4.18. This has an admittance matrix ¥ where

Y,

rr+i

Yy Y,
N- I,N@ NN+ o

0] Yo Y1z @ Yr—l.r@

1Q

@ 7y 1§) Y, Y

Figure 4.18  Ladder network
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[ Yoo —Yu 0 0 1
-Yu Yu  -Yp 0
0 -Y Y5
0
[Y] = v 7);; 1o v
A B rr B
- Yl'.l'+l
- Y,'\'—I. N
—Yy_in Yyn —Yyni
L —Yywnor Yyiiwnin]
(4.77)
where
Yl'l‘ = Yr + Yr~l.r + Y;:I'Jr] (478)

The internal nodal admittances in the circuit can be scaled without affecting the
terminal characteristics of the network. This is achieved by multiplying the rth
row and column by a constant «,. This operation cannot be performed on
nodes 0 and N + 1 unless the source and loads are appropriately scaled. Hence

Y, — &Y, (4.79)
Yr-l.r - Q, erl.r (480)
Yr,r B e Yr,/‘+l (481)

In this manner by progressive scaling of nodes the impedance level to ground in
each node can be adjusted to any required level. In the case of the previous
cxample all the shunt inductors (or capacitors) could be made to have the same
valuc. As an example consider the third-order Butterworth lowpass prototype
filter shown in Figure 4.19.

The nodal admittance matrix of this network is given by

r -/ 0

[Y]=1|-/ 2p —j (4.82)
0O — p
® @ @

e — Kn=1 — Ky=1 — 1Q
7’71 T2 T 1

Figure 4.19  Third-order Butterworth filter
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Scaling row 2 and column 2 by 1//2 we obtain

p V2 0
YI'=|-i/v2 p  —ilV2 (4.83)
0 —i/\/2 P

All the capacitors are now equal with a value of unity and the inverters have a
value of 1/4/2. This procedure could be performed at any stage in the design.

4.6 Lowpass to bandstop transformation

We require a transformation to convert the lowpass prototype into a
bandstop filter with arbitrary centre frequency and bandwidth as shown in
Figure 4.20. In this case the transmission zeros at infinity in the lowpass
prototype must be mapped to wy, the centre of the stopband of the bandstop
filter. The transformation is

W —— (4.84)
w [
ol = %0
(Wo W)
where
wo = (wiwy)'? (4.85)
Wy wo
= = — 4.86
o Wy — W) A(A) ( )
Hence for capacitors of admittance Y ( jw) = jw( then
— 'C‘
Y(jw) = Lo (4.87)
W W
al 2 20
(wo W>
|Siaff
1
7] Y]
- ' 0> “;0

Figure 4.20  Lowpass to bandstop transformation
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? Ly-1n-1
KN—l.N

Figure 4.21  Bandstop filter

Thus the capacitor is converted into a series combination of an inductor L' and
capacitor € where

, o
- 488
o C (4.88)
c - (4.89)
Xy

Again inverters arc unaffected by the transformation. Thus a shunt capacitor,
inverter coupled prototype is converted into the bandstop filter shown in
Figure 4.21. It is left to the reader to show that the transformation converts
an inductor into a parallel tuned circuit.

The realisation of inverters is somewhat different in the case of a bandstop
filter. Normally we require a broad passband and so a narrowband approxi-
mation to an inverter is of little use. Instead inverters arc usually constructed
from unit elements of transmission line which are one quarter wavelength long
at wy. Since for a length of line the transfer matrix is given by

[ cos(0) jZ,sin(0)
[T] = |/jsin(0) . (4.90)
—Z cos(f)
if @ = x/2 then
[0 JZ)_[0 J/K
Tz, o ]_ L‘K 0 } 4o
where
K=1/Z, (4.92)

This is a relatively broadband approximation to an inverter and of course a
matched transmission line will pass energy at all frequencies.

In the case of Chebyshev bandstop filters it is best to scalc the admittance
matrix so that all the inverters have the same value. They can then be
constructed from a single length of uniform transmission line with minimum
discontinuities.

In narrowband bandstop filter design we take a different approach from that
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-

Figure 4.22  Capacitively coupled resonator

used for bandpass filters. In the bandpass casc we retain realisable element
values for narrow bandwidths by scaling the network so that the couplings
become relatively weak. However, in the bandstop case the impedance inverters
must remain at unity impedance so that the filter has a broad passband. In order
to control the impedance levels we use a capacitively coupled rcsonator as

shown in Figure 4.22.

The approach is to equate the resonant frequency and the differential of the
reactance of the resonator to that of the original resonator [2] which has an

impedance given by
with
dZ(jw) o 1
e A ),
and
dZ(jw)
dw

Now the impedance of the capacitively coupled resonator is

I I
Z(p) =
(7) C|p+(v'zp+1/Lp

B 2
C',, W

w=uwn

L+ LG+ C,)p?
Cyp(1+ LCyp*)

Hence
il — G LC "]
2(ju) = S0 HELE GO
u)C](l —wLC 2)
and
Z(jw) O 2L(Cy + ()

dw w=wy - Cl“ - w(%LCZ)

(4.93)

(4.94)

(4.95)

(4.96)

(4.97)

(4.98)
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with
1
Wy =———"7 (4.99)
’ [L(C, + C))?
Substituting (4.99) into (4.98) and equating with (4.95) yiclds
a  L{(C, + )’
C‘,»Ls)() B Clz

(4.100)

The value of L can be chosen for physical realisability and C, and C, are then
found by solving (4.99) and (4.100) simultaneously.
From (4.99)

1
C1+C2:*7 (4101)
wyl
and from (4.100) and (4.101)
3 (,Y(,vlz l
Co+ )Y = _ : 4.102
( 1+ 2) LC,,LU() wﬁL‘ ( )
Hencee
C. 1/2
= ( p ! ) (4.103)
wy L«
and
1
Cy, = -, 4.104
2y w[% L,- 1 ( )

where C), and C,, are the values of the capacitors in the rth resonator.

It 1s useful to note that this method can also be used with prototypes using
frequency-invariant rcactances, such as the elliptic function filter.
4.6.1 Design example

Design a bandstop filter with the following specification

Centre frequency 900 MHz

Passband bandwidth d.c.—880 MHz, 920 MHz-2 GHz
Passband return loss 20dB

Stopband 890--910 MHz

Stopband insertion loss > 30dB

System impedance 509

The passband bandwidth is 40 MHz and the stopband bandwidth is 20 MHz.
Thus S =2, L, =30dB, Ly =20dB and

N> La+ Ly :l— 6 _
20log S+ (S* - l)l"‘]

> 4.895 (4.105)
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Hence N = 5. Since Ly = 20dB, then n = 0.8201. Now

2 2r—1
C,:Esm[—*( = )ﬂ (4.106)
22 12
P [n” +sin“(r7/N)) (4.107)
rortl "
giving

Ci = Cs =0.7536

Cy = Cy = 1.9730

Cy = 2.4387 (4.108)
K> = K45 = 1.2303

Koy = Kyy = 1.5313

We now scale the rows and columns of the nodal admittance matrix as follows:

la  |B  ia
T Cip —jKp 0 0 0 7
—JKn  Gip —jKy 0 0 —a
[Y]= 0 —JKy  CGip —jKy 0 — B
0 0 —Ku Cip —jKis|—
L 0 0 0  —jKys  Csp |
r Cyp —jak, 0 0 0
—jaK;;  o’Cyp  —jaBKs 0 0
= 0 —jaBKy;, B Cip —jaBKy 0 (4.109)
0 0 —joBKy  o’Cip  —joKys
L 0 0 0 —JxKys Csp |
Hence for unity admittance inverters
akKp; =1 (= v Kys) (4.110)
BaKy, =1 (= «BKyy) (4.111)
Hence
o = 08128 (4.112)
and

B =0.8034 (4.113)
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and the new element valucs are
C,=Cs=0.7536
Cy,=Cy=1.3034

(4.114)
C; = 1.5741
K, , . =1
Now
wo = 5.6548 x 10° (4.115)
and
o =900/40 = 22.5 (4.116)

Choosing all the inductors to have a physically realisable value of 10 nH, then in
alQsystem L=2x10 W Then using (4.103) and (4.104) and scaling to 50
we obtain

C” = 0.6086 pF = C]5

Cy; =0.8797pF

(,‘21 - 25187pF —_ C25
Cyy = 2.2475 pF

The final circuit is shown in Figure 4.23. All the unit elements are quarter
wavelength long at the centre frequency and have a characteristic impedance
of 50Q.

The simulated frequency response of the circuit i1s shown in Figure 4.24.
Scrutiny of the simulated response of the bandstop filter shows a slight
asymmetry in the frequency response with the filter being more selective on
the high frequency side of the stopband. This is explained by examining the
expression for the resonator impedance.

wCi(l —w? LCy)

Z(jw) =

(4.119)

500 CL‘\_ CEL CEL G i]_ J?] 5

UE J— UE UE UE
G . 500 . Ca2 Ca3 CTE—%L Cas,
o T % ? T T a T L

Figure 4.23  Narrowband bandstop filter (UE, unit element )
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-301 -15
~40 -20

N
N,
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“50 4N ey 25
\ // v\\\
\ / AN
\ . . .
-60 ! ! -30
0.85 0.93 0.95GHz
Figure 4.24  Simulated response of the bandstop filter
The impedance has a zero at w, where
! (4.120)
Wy = P Y .
[L(C) + €)'
It has a pole at w = 0 and a second pole at w, where
: (4.121)
Wy = ——— A2
Toey”

This pole occurs at a frequency which 1s higher than, but close to, wy rather than
at w = oo as would be more desirable. Thus the rate of change of reactance of
the resonator is greater on the high frequency side of the passband than the
lower side, explaining the asymmetry. This effect can be compensated for by
slightly altering the phase lengths between the resonators. There is a theoretical
procedure for doing this [3], but in reality it is quite effective to shorten the
phase length by a few degrees until the simulated responsc is symmetrical.

The wideband response of the filter is shown in Figure 4.25. Here we see that
the return loss response deteriorates above 2 GHz. This is a consequence of the
resonators Joading the through line. From (4.119) we have

—j[l = w’L(C, + ()]
wCi (1 —w?LCh)

Z(jw) = (4.122)
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Figure 4.25  Simulated broadband response of a bandstop filter

As w becomes very large
) —J(C + )
Z - 4.123
(jw) .G (4.123)
That is, the inductive part of the resonator becomes open circuited and the

resonator behaves as a pure capacitor. Thus at high frequencies the filter
behaves as a periodically capacitively loaded transmission line; hence the

deterioration in response.

4.7 Effects of losses on bandpass filters

Up to this point design procedures have assumed lossless lowpass proto-

types, thus yielding lossless bandpass and bandstop filters. Real filters,

however, use components with finite resistance which will produce a degra-

dation in performance. The effects of this resistance can be related directly

to the inherent quality or Q factor of individual components used in the
filter design.

The Q factor for a circuit is defined as [4]

27 x maximum energy stored in a cycle 4124

= energy dissipated per cycle (4.124)

For example, an inductor with finite resistance is shown in Figure 4.26. The
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R L

o> MN_~rm g

Figure 4.26  Inductor with finite resistance

maximum energy stored in the inductor is given by
E=1LI] (4.125)

where [ is the peak current. The dissipated power is given by

2
Pp = {Oz—R (4.126)
and the dissipated energy per cycle of period 7 is given by
27 I¢R 27
ED:PDT:PD—W:O——T (4.127)
w 2 w
Hence from (4.124), (4.125) and (4.127)
2 2
o=ty JIiR 27 (4.128)
2 2w
Therefore
wlL .
_wl 4.129
0== (4.129)
For a capacitor with shunt leakage conductance G we have
wC
Oc == (4.130)
G
Hence for the capacitor
wC
G=— (4.131)
Oc
and for the inductor
wlL
R="= 4.132)
oL (

Now consider the effect of finite losses on the third-order bandpass filter
arising from the LC ladder prototype. Applying the bandpass transformation

W_W<KAEQ) (4.133)
Wy w

we obtain the bandpass circuit shown in Figure 4.27.
Now let us assume that the dominant loss mechanism in the series resonant
circuits is from the series resistance associated with the inductors. Similarly we
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Ly
‘,_@__/YY\ T g gu—at
10
- 1Q
-1
o
1
(ll_’l U.LI(DO -—a)—} aC3(1)0
Wo \ l 0
— YN
|
1Q §
- 1Q
aly —— 1
.T() aszo
o o

Figure 4.27  LC ladder prototype and its bandpass equivalent
assume the dominant loss mechanism in the shunt resonators is associated with
the shunt capacitors. Hence for the rth series circuit

_wal,
T Wo Qr

(4.134)

Now assuming uniform dissipation, i.e. all the resonators have the same
unloaded O,

0,=0 r=1,....N (4.135)

and evaluating at the midband frequency wy,

oL,
R, =—~ (4.136)
Q
and similarly for the shunt elements
Q
= 4.
ad, (4.137)

Now at the midband frequency of the filter the reactive parts of the series
resonators become short circuited and the shunt resonators are open circuiled.
The bandpass filter has the equivalent circuit shown in Figure 4.28.
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Figure 4.28  Equivalent circuit of a lossy bandpass filter evaluated at midband
[frequency

The midband insertion loss of the filter can be evaluated from the transfer
matrix of the filter [T].

T R 011 Ry
(1= .
o 14lG, 1]lo o
I+ RGy R+ Ry+ R GyR;
_ (4.138)
Now let
o, =28 (4.139)

0

where g, 1s the value of the rth element in the lowpass prototype. Hence

7= |

l + ey oy + a3 + ayasra
100 1 3 1¢ 3} (4.140)
o 1 4+ 0

and

15122 dB = 101log;,

<A +B+C+ Dﬂ
)

2
(2 + @y + ay +az g+ oo + ()q(yz(x})']

= 10log;q 5

(4.141)

Now for a relatively low loss filter the resonator  must be greater than the
bandwidth scaling lactor, i.c.

Q> o (4.142)
Hence
a, <& 1 (4.143)
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Then we can ignore sccond-order and higher terms in (4.141) and

|S),*dB = 101ogq {(1 P i i azz ~ ”3)_}

~ 101log (1 4+ o + v + z)
= 4343 log, (1 + o) + 2 + a3) (4.144)
Now
log (1 + X) = X [X < 1] (4.145)
Hence the midband insertion loss L is given approximately by
L =4343(cx; + o + 3)

24
4343 0 (g +g 1 g3)

4343,

AJQy

In general the analysis can be extended to an nth-degree filter and it may be
shown that

4343/ ;
=70, Z (4.147)

A slightly different solution is given in Reference 3.
As an cxample consider a third-order maximally flat filter with | GHz centre
frequency and 10 MHz passband bandwidth and a resonator Q of 1000. Hence
4.343 x 1000
—— 241
10 » 1000 +2+1)

~ 1.72dB (4.148)

(g1 1 & +g3) (4.146)

|

This is the midband insertion loss of the filter. The group delay will increasce
near the band-edge causing a further increase in insertion loss. Typically for
Chebyshev filters of degree 8 the insertion loss at band-edge will be
approximately twice the midband value.

Scrutiny of (4.147) shows that the main effects of finite dissipation on
bandpass filters may be summarised as follows:

o The midband insertion loss is inversely proportional to the unloaded @ of the
resonators.

e The midband insertion loss is inversely proportional to the passband
bandwidth.

e The inscrtion loss is approximately proportional to the degree of the filter.

The above analysis is meant as a design guide. A more accurate measurc of
loss is obtained by using a circuit analysis package to analyse the filter with (inite
resonator  factors. Plots of the degree 4 Chebyshev bandpass filter design
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Figure 4.29  Simulation of the bandpass filter with various resonator Q factors

example response with various Q factors are shown in Figure 4.29. We see that
as the Q factor is reduced the midband loss increases, as does the band-edge loss.
The loss variation across the passband increases. If a maximum passband
insertion loss specification must be met then the filter bandwidth may have to
be increased. This means that the degrec of the filter may have to be increased;
hence the losses increase and the process rapidly becomes self-defeating. Usually
it is necessary to increase the Q factor of the resonators if the insertion loss is too
high.

Lossy circuit clements also cause a deterioration in the performance of
bandstop filters. Consider the inverter coupled LC bandstop filter shown in
Figure 4.30. The resonant circuits should produce transmission zeros at the
mid stopband frequency of the filter. The effect of finite losses in the inductors
is to shift the transmission zeros onto the real axis, i.c. the resonant circuits do

LL ———LL
I P
¢ T

R %RZ

Figure 4.30  Lossy bandstop filter

etc.
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not produce perfect short circuits at resonance. This has the effect of reducing
the ultimate stopband insertion loss. It also causes a roll-off of insertion loss
towards the edges of the passband.

4.8 Practical procedures

In the practical development of filters it is useful to have systematic procedures
to obtain the correct couplings between resonators etc. The most important
procedures are measurement of input couplings, measurement of the coupling
between two resonators and measurement of the unloaded Q of a resonator.

4.8.1 Measurement of input coupling

First we will develop a method for measuring the input coupling into a bandpass
resonator using reflected group delay. Consider the bandpass resonator shown
in Figure 4.31. The element values in the resonator are related to the element
values in the lowpass prototype. Assuming that the resonator is the
first resonator in the filter and that the prototype consists of shunt capacitors
separated by inverters, then

vC
c="- (4.149)
o)
]
L= : A5C
aCiwy (4.150)
and
_ Yo
o Au (4.151)

C 1s the first capacitor in the lowpass prototype. If this is considered in isolation
then its admittance is

Y(jw)=jwC (4.152)
with

. [ —jwC 1 —wC] = j2wC

S “Tiioc = 7 Ea 4.153

nlJe) L+ jwC | +w?C} ( )
The phase of Sy, is

2wC
plw) = tan”! (o 4.154
Vlw) = tan (Mcﬁ 1) (4.154)
) 1

. 1

Figure 4.31  Bandpass resonator
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Now in the bandpass resonator

W =a (i - ”°> (4.155)

2w'C
' (w) = tan ! (——%) (4.156)

w/?_C’IZ _
The reflected group delay of the bandpass resonator is thus

—dy'(w)
dw

d e ! 2w'C do’
do' WwiCE—1/] dw

2 w
2 (L + —2’) (4.157)

= 55 &
1+w/2C12 wy  w?

T,(w)=

The reflected delay is a maximum at the resonant frequency when w’ is zero and
w = wyg. Thus

do.C
Tg max — o (4158)
' wo
or
4c,
Tg max — E (4159)

The reflected delay can thus be computed from (4.159) and the actual delay of a
single resonator can be measured using a network analyser. The input coupling
to the first resonator can then be adjusted until the theoretical and measured
couplings agree.

As an example, if C; = | and the filter has 10 MHz bandwidth then

Ty max = 63.66ns (4.160)

From a practical point of view the delay measurement should ideally be made
on a single resonator. The other resonators should be detuned or removed [rom
the filter.

The analysis assumes a lossless resonator; in fact the delay is indepen-
dent of resonator losses provided the unloaded Q is high. A good rule of
thumb is

0y > 10a (4.161)

Thus for a 1 GHz filter with 10 MHz bandwidth the unloaded Q should be
greater than 1000 for the measurement to be valid. This would normally
be the case for a low loss filter. The reflected group delay response for the
cxample is shown in Figure 4.32.
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Figure 4.32

4.8.2 Measurement of inter-resonator coupling

Reflected group delay for a bandpass resonator

A procedure for measuring the couplings between two resonators can also
be developed. Consider a section of lowpass prototype consisting of two
shunt capacitors scparated by an inverter shown in Figure 4.33. The input

impedance of the circuit is
JwC
Ky —w?C (s

The poles of Z( jw) occur when

Z(jw)

) —
Ya, b T

Now applying the bandpass transformation

W Wy
Ww—f — - —
Wi w

I K

.| L
Te | Te

Figure 4.33 A section of a lowpass prototype

(4.162)

(4.163)

(4.164)
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then
: —-K
N <‘*’__i"£) R (4.165)
Wo  @a (C1Cr)
and
(y<ﬁﬂ> S (4.166)
Wy  Wp (C;Cy)'?
Hence
2 K )
Wi —REL i =0 (4.167)
a(CCy)
2 Rawo 2 (4.168)

POy

Solving these two quadratic equations and subtracting the solutions we obtain

Kpw
Wi — w, :% (4.169)
Q(CICZ)
or
K ﬁA )
AC =127 (4.170)

(C1Cy)'7?

A is known as the coupling bandwidth and from (4.170}) it is directly related to
the element values in the lowpass prototype and the bandwidth Aw of the
bandpass filter. The coupling bandwidth can be computed and then measured
for a pair of resonators using a network analyser. Again the other resonators
should be removed or detuned.

4.8.3 Measurement of resonator Q factor

The unloaded @ factor of a resonator can also be measured experimentally.
Consider the lumped bandpass resonator with finite unloaded Q coupled via an
inverter, as shown in Figure 4.34. The unloaded Q of the resonator is

o W()C

Qu=""7 (4.171)

) 1L
T LR T

Figure 4.34  Bandpass resonator with finite Q,
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and the input impedance of the resonator is

_ G +j(wC — 1/wl)

Z(jw) e
%£ +/ (u) C— w___% C)
u w
_ . (4.172)

We now adjust the input coupling K so that the resonator is perfectly matched
(critically coupled) at resonance, i.e. Z;,( jw) is equal to unity. Thus

wpC
K=" (4.173
Oy )
Hence
. . w LUO
) — Y _“e 4.174
Zol ) = 1 +7Qu| 2~ 22 (4174)

Having matched the resonator at w, the 3dB frequencies w, and w, are
measured. The imaginary part of Z is equal to 2 at these frequencies. Thus

0. [ﬂ_ﬂ} _ (4.175)
Wy Wy

O {ﬂ ﬂ} -2 (4.176)
wWo o Wh

Again quadratic equations may be generated and the difference between their
solutions is

ZW()

or
2w
O, = ZE}Q (4]78)

Thus the unloaded Q, of the critically coupled resonator is equal to the centre
frequency divided by half the 3dB bandwidth. From a practical point of view
the level of return loss at resonance should be at least 35dB for an accurate
measurement.

4.9 Summary
Starting from lowpass prototype networks a series of transformations are used

to convert to arbitrary cut-off frequency lowpass, highpass, bandpass and
bandstop filters with arbitrary impedance terminations. Procedures are
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developed for narrowband bandpass and bandstop filters where the inverters
arc approximated by pi sections of capacitors and quarter wave transmission
lines respectively. These procedures are illustrated by design examples which
also introduce the concept of nodal admittance matrix scaling. The effect of
losses in filters is described with particular emphasis on bandpass filters so that
the designer can compute the midband insertion loss of a particular design.
Finally various practical procedures for measuring resonator couplings and Q
factors are described.
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Chapter 5
TEM transmission line filters

5.1 Commensurate distributed circuits

The previous chapters have concentrated on the theory and design of lumped
clement filters. By definition lumped elements are zero-dimensional, i.e. they
have no physical dimensions which are significant with respect to the wave-
length at the operating frequency. One of the great advantages of restricting
oneself to lumped elements is that circuits may be completely described in terms
of one complex frequency variable.

As we increase frequency into the microwave spectrum it is easy to scc that
lumped element theories will not suffice, e.g. the wavelength at 10 GHz is only
3cem and circuit elements may easily have dimensions in excess of a quarter
wavelength. Furthermore, as we have already seen. narrowband filters with
low insertion loss require high @ resonators. This implies physically large
resonators, again meaning that dimensions become significant fractions of a
wavelength. It is thus necessary to have design theorics which are pertinent to
these *distributed’ circuits.

In general, networks consisting of arbitrary connections of distributed circuit
elements do not have a unified design theory. Although analysis of such circuits
may be accomplished by solving Maxwell’s equations using, for example, finite
element analysis. this is not the same as having a design theory. As an example a
circuit consisting of an interconnection of transmission lines of different lengths
would require a theoretical approach using more than onc complex variable.
Work in this area has been extremely limited. To simplify the design theories we
usually restrict ourselves to the case where distributed circuits consist of inter-
connections of transmission lines of equal length, i.e. commensurate distributed
networks. This cnables us to work with a single complex frequency variable,
thus simplifying the design process.

The simplest commensurate distributed networks consist of interconnections
of lossless transmission lines of equal length, each supporting a pure TEM mode
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of propagation. This mode is particularly useful as it is supported in coaxial
cables and has zero cut-off frequency. A basic section of lossless line is called a
‘unit element’ (UE) and has the following transfer matrix:
cos(f3¢)  jZysin(p34)
[T] =

=1 .., . , (5.1
JYosin(3¢€) cos(34)

(sinusoidal excitation is assumed). Here £ is the length of the linc and Z) is its
characteristic impedance. [ is the propagation constant of the line where

8= 27” (5.2)
Alternatively since

36 = % (5.3)
and

v=fA (5.4)
(where v is the velocity of propagation)

Bt = %p (5.5)
or

Bl=aw=240 (5.6)
Thus

1= o) ooy 5)
and for complex frequencies

7= [ cosh(ap) Z, sinh(ap)}

| Yysinh(ap)  cosh{ap)
1 1 Zy
TDE [Yot I 5:8)

where

t = tanh{ap) (5.9)

A circuit consisting of interconnections of commensurate lines can be described
by rational polynomial functions of 7, although multiples of (I — ¢?)"/? may also
occur.

Given that commensurate distributed networks can be described in terms of
the complex frequency variable 1, it is possible to borrow from lumped theory to
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design cerlain classes of filter. This can be achieved by applying the Richards’
transformation {1] as follows:

p — atanh{ap) (5.10)
or
w — atan{aw) (5.11)

Applying (5.10) to a capacitor we obtain

Y(p) = Cp = aCtanh(ap) (5.12)
Therefore

Y(p) = Y,tanh(ap) (5.13)
and

Y(jw) = jYytan(aw) (5.14)
where

Yo =aC (5.15)

The transformation converts a capacitor into an open circuited stub.
Similarly, applying the transformation to an inductor L, we obtain

Z(p) = Lp = aLtanh(ap) (5.16)
Therefore

Z(p) = Zytanh(ap) (5.17)
and

Z(jw) = jZytan(aw) (5.18)
where

Zy =l (5.19)

The transformation converts an inductor into a short circuited stub.
These transformations are shown in Figure 5.1. Note that there is no lumped
element cquivalent to a UE of transmission line.

Yo=aC
C 0
——’ }— = S
p=aunblap Zy=al

- B |
=

Figure 5.1  Richards transformation of lumped elements
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The Richards transformation may be applied to a filter transfer function.
Thus if

1
Sp(jw)f? = ——— 5.20
then
1
S jw)]? = . . 5.21
ljw)] | + Fylatan(aw)] (5:21)
For a Chebyshev lowpass prototype we have
1
|Sia(jw))* = (5.22)

L+ &2 T3 atan(aw))

The transmission zeros which occur at infinite frequency in the original
prototype arc mapped into odd multiples of the quarter wave frequency. The
passband centre at w = 0 in the original prototypc 1s mapped to even multiples
of the half wave frequency. The passband edge at w = 1 is mapped to w; as
tollows:

1 = atan(aw;) (S.

Thus

N
()
[

=

I

=
tan(aw;)

(5.24)

The resultant response is a quasi-lowpass or bandstop response with stopbands
repeating ad infinitum at odd multiples of the quarter wave frequency

sG]
1

0 T T T T T
aw] L723 T-aw] T 3rr/2 an

Figure 5.2 Distributed quasi-lowpass response
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Figure 5.3 Distributed quasi-lowpass transformation

]

(Figure 5.2). The lowpass prototype is transformed into the distributed circuit
shown in Figure 5.3. Again the inverters are invariant under the frequency
transformation.

The distributed quasi-lowpass filter consists of shunt open circuited stubs
separated by inverters. The inverters may be realised as sections of quarter
wave line, i.e. UEs one quarter wave long at w. The circuit is perfectly realisable
for moderate bandwidths but is not suitable for very narrow bandwidths. In
that case as w; approaches wg, tan(aw, ) approaches infinity and « becomes very
small. The impedance of the shunt stubs will then become unrealisably high. In
any case, as we shall see, there are better distributed lowpass filters available to
the designer.

We can also apply the highpass Richards transformation as follows:

1

— 5.25
cvtanh{ap) ( )
or
— (5.26)
N .26
artan(aw)
Applying this to capacitors yields
Y(p)=Cp=>———— 27
(r) P =4 tanh(up) (5.27)
V(jw) = jwC = ——C (5.28)

avtan{aw)

Relation (5.28) converts capacitors C into short circuited stubs of impedance Z,,
where
o

Zy= E (5.29)
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2
lsizo)
1
> elc.
0 T T T >
K7) n 3n, 2n aw

Figure 5.4 Response of a distributed quasi-highpass filter

Similarly inductors are converted into open circuited stubs of admittance

Applying the Richards highpass transformation to a Chebyshev lowpass
prototype we obtain

1
T+ Ti{1/[atan(aw)]}

Ceag2
[S12(jw)] (5.31)
The transmission zeros at infinity in the original prototype are mapped to d.c.
and even multiples of the quarter wave frequency. w = 0 maps into odd multi-
ples of the quarter wave frequency. The resultant response is a quasi-highpass or
bandpass response as shown in Figure 5.4.

UE

’:“ L) —] Ky-rv —1

%c, /oo %y

e,

Figure 5.5  Distributed quasi-highpass filter
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The band-edge frequency in the lowpass prototype at w = 1 maps to w, with

I

— 5.32
“ tan(aw) ( )

The quasi-highpass filter is realisable as shunt short circuited stubs separated by
impedance inverters. These may again be approximated by UEs one quarter
wave long at wy (Figure 5.5). Again, this circuit is not suitable for very narrow-
band applications. However, if the inverters were realised by reactive elements
instead of UEs then the network could be scaled using the procedures developed
in Chapter 4, and a narrowband design could be realised.

A design example for a relatively broadband bandpass filter is now presented.
The specification is as follows:

Prototype Degree 4 Chebyshev
Passband rcturn loss >20dB

Centre frequency 4GHz

System impedance 50 €2

From Chapter 3 we obtain the element values of the lowpass prototype filter:

C, = Cy = 09332

(5.33)
Cy, = (3 =2.2531
Now
W) ™
= 3
aw, oy 2 (5.34)

where wo = 87 x 107 and w, = 47 x 10°, Hence aw; = 7w/4 and o« = 1. Now

z =g (5.35)
and

Z\=27Z4=53270Q (5.36)

Zy =73 =2220Q (5.37)
Realising the inverters as UEs we obtain

Zr1 =50/K, 1 (5.38)
Therefore

7y =734 =37.864) (5.39)

Zy=31.71Q (5.40)

All the transmission lines in the circuit arc commensurate and are one quarter
wave long at 4 GHz, i.c. 1.875¢m long.
The simulated responsc of the circuit is shown in Figure 5.6. Here we see that
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S5 0 0 Sn
dB dB
10 -5
204 -10
~30 ~1-15
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-50 1-25
— -30
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Figure 5.6  Simuluted frequency response of the distributed bandpass filter

the bandwidth is narrower than desired and the return loss is only 16.5dB. This
is because the series UEs are a poor approximation to inverters over broad
bandwidths. An accurate design procedure is available using the method
described for interdigital filters.

5.2 Stepped impedance unit clement prototypes

We have seen in the previous sections that microwave filters can be constructed
using interconnections of stubs and inverters. Over narrow bandwidths the
inverters can be replaced by UEs of transmission line. However, these UEs
are themselves frequency dependent and it is possible to design useful filters
consisting entircly of a cascade of UEs.

The transfer matrix of a UE is given by

M|y, 1] where 1= an (.41
,(11,2)1/2 vl (where ¢ = tanh(ap)) (5.41)

Given a cascade of a pair of UEs of characteristic impedances Z, and Z,, we
obtain

l
1 —¢2

L+ 2, Y217 (2, + Z,)1

7] = /
(Y1+Y3)[ 1+Y|ZQI

(5.42)
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Hence
S12(t) = L (5.43)
ST A+ B2 o
(A and B are constants of no significance). Hence
| S12[/ tan(w)]|?
(1 + tan*(w)]?
1+ (47 - 2B) tan?(w) + B tan*(w)
B 1
1 - sin?(w)]? o (4% = 2B)[1 — sin’(w)] sin’(w) + B2 sin*(w)
]
(5.44)

T 1+ asin(w) + sin*(w)
Thus | S},|* is a polynomial in sinl(w).

In general the cascade of N UEs shown in Figure 5.7 has the properties that
(2, 3]

(1 _ [2)3\"/2
SpHt) =——-+— 5.45
) = (5.45)
where Dy (1) is a Hurwitz polynomial in 1 and | S}, [ j tan(w)j|* < 1. Furthermore.
2 1
Spljtan(W)]f = — 5.46
Sl = e (5.46)
For a maximally flat response 1512|2 must be of the form
1
[Sljtan()]} = ———— (5.47)

1+ sin(w)/a]*¥

where « = sinwy and wy 1s the 3dB frequency. The minimum value of |S1z|z
occurs when w = 7/2, but this is not a transmission zero. Furthermore, the first
2N — | derivatives of (5.47) arc zero at w = 0 but only the first derivative is zero
at w = 7/2.

For a Chebyshev response we have

O !
Spljtan(w))|” = T T sin(w)a] (5.48)

UE UE UE
7 Z> Zy Ky

Figure 5.7 Cascade of N unit elements
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1
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Figure 5.8  Frequency response of a Chebyshev unit element filter

The frequency response 1s shown in Figure 5.8.
Explicit formulae for these ‘stepped impedance’ filters have been developed
and the results for a Chebyshev response are given below [4].

Z, = 1/g, (r odd) (5.49)
Z =g, (r even) (5.50)
Forr=1,...
¢ — A ( s [(2!’;1)71’/2/\/]
a | f +sin’(rr/N) 97 4sin’[(r - Da/N]
"3 {sin[(Qr T1y7/2N] | sin[(2r — 3)7/2N] }) (5:31)

where

_ {n? e si’((r = /N n® + sin’{(r — 4)m/N]) ..
_{772+s1n [( Dr/N|Hn? +sin?[(r — 3)7/N]} .. (5.52)

and with the term 1~ + sin’(0) replaced by 7, i.e.

b (5.53)
n* F sin”(w/N)
R =1 (N odd) (5.54)
I +e)V?—¢
Ry = (1 + 7)1/, : (N even) (5.55)
(1+e=)7" +

, _ - l . _l ]
n = sinh [N sinh (EH (5.56)
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As an example we will design a degree 5, 20 dB return loss Chebyshev filter to
operate in a 50 €2 system. Although the selectivity of the filter response close to
the passband edge is controlled by the degree of the network, the ultlmate
stopband rejection is controlled by «. At w = 7/2 the value of | S),(jw)|” i
given by

1
2T/ )
B 1
1+ e?cosh?[N cosh ™' (1/a)]

|Su(im/2)" =

(5.57)

Choosing the electrical length of the UEs to be 30° at band-edge we obtain
a = sin(wy) = sin(30") = 0.5 (5.58)
From (5.57) and (5.58) we find that the ultimate stopband insertion loss is

31.2dB.
We calculate the element values as {ollows. First

1 . 1
n = sinh [ﬁ sinh™' (E)} (5.59)
For N = 5and ¢ = 0.1005 we obtain
n = 0.635 (5.60)
From (5.52)
1
Ay = = A5 = 1.5748 (5.61)
7
Ay =———"r—— — A4, = 0.8481 5.62
2 n? +sin’(n/5) 4 (5.62)
2 | anl
<4 s /5
S (T/S) g og1sg (5.63)

- n[n? + Sin2(27r/5)]

From (5.51)
g1 = g5 = 0.4947 (5.64)
gy = g4 = 2.3490 (5.65)
gy = 0.3084 (5.66)
and using (5.49) and (5.50), in a 50 €2 system we obtain
Z,=2725=24740Q (5.67)
Zy=Z,= 117450 (5.68)
Zy=1543Q (5.69)

The final circuit is shown in Figure 5.9. The simulated (requency response of the
filter is shown in Figure 5.10. Note that as in the case of LC ladder lowpass
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UE UE UE

< UE UE

24.75Q 117.45Q 1543 Q 117.45 Q) 24.75Q
2o

Figure 5.9 N = 5 Chebyshev stepped impedance lowpass filter

prototype networks the dual prototype network could have been used. In this
case the first element would have been a high impedance rather than a low
impedance line.

It should be noted that the distributed nature of the filter gives rise to
repeating passbands. In this case the electrical length of the UEs was 30" at a
band-edge frequency of 1 GHz. The second passband band-edge occurs at
5GHz. If a broader stopband were required then a shorter electrical length
design could have been used. This means a larger value of « and a more extreme
variation in element values. As the clectrical length at band-edge becomes
shorter the design degenerates into a lumped element design as follows.

The transfer matrix of a UE is given (for sinusoidal excitation) by

cos(#) jifoSiﬂ(9>} (5.70)

T=1 .
' Jsin(8)/7Z,  cos(6)
Sy 0 = = - 0 Sy
dB : \\/ : dB
-5 . . Dt . . -5
SN |
oo
“10] - o \\ -10
oy
!
-5 i -15
i
-20 FOE ot 20
/ \ o~
! \" ,/ \ ‘1
25 / ‘\ . ..’/ ‘\ l’ =25
’/ i II “ i
| Vo i
=30} [ by 30
! 1 1 i
i b h
354 L ph -35
: I
| 11 o
40 W o i - N 40
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Simulated frequency response of the N =5 Chebyshev stepped

Figure 5.10
impedance lowpass filter



and for short electrical lengths

w
F)<<§
Hence
1 JZy0
=[]
i0/zy 1

and for a high impedance line

7] ~ [l _/'Z(,Q}

0 1
where
Hence
7]~ {1 jzoﬁu/u}
0 1
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(5.71)

(5.72)

(5.73)

Thus a short section of high impedance line approximates to a series inductor.
Similarly a short section of low impedance line approximates to a shunt
capacitor. Thus for short electrical lengths the design could be accomplished
by approximating to the LC ladder prototypes presented in Chapter 3 [5]. The
method used in this chapter, however, is more accurate and enables longer

electrical lengths to be used.

5.2.1 Physical realisation of stepped impedance lowpass filters

The stepped impedance lowpass filter is often used to ‘clean up’ harmonics in
amplifier circuits, or as an IF filter in a mixer. Alternatively the filter may be
used to improve the stopband performance of a microwave filter. This is

. =

high impedance section

\/low impedance section

Figure 5.11  Typical microstrip circuit pattern for an N = 5 stepped impedance

lowpass filter
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£ outer conductor
r
inner conductor

Figure 5.12  Coaxial transmission line

particularly important in the case of diclectric resonator filters which have poor
spurious performance. In amplifier and mixer applications the insertion loss of
the filter is not of prime importance and an MIC (usually microstrip) realisation
15 often used. A typical layout for a microstrip stepped impedance filter is shown
in Figure 5.11. Design equations for calculating the widths and lengths of the
microstrip lines are readily available in specialist texts on microstrip [6].
Microstrip circuits have relatively low unloaded Q factors and if a lower loss
lowpass filter is required a coaxial realisation is more suitable. In this case the
stepped impedance line may be realised as a coaxial line with a stepped inner
conductor. Design equations for the coaxial line shown in Figure 5.12 are very
simple.
b

Zy = VZlogc (5) (5.76)

or

g = exp(v/z, Zy/60) (5.77)
Choice of dimension b is determined mainly by the maximum loss allowable in
the lowpass filter. The Q factor of a coaxial line, normalised to ground planc
spacing in centimetres and frequency in gigahertz, is shown as a function of
characteristic impedance in [Figure 5.13.

To choose b we first synthesise the element values of the filter. Second, we
analyse the equivalent circuit Lo determine the minimum Q factor which enables
the maximum insertion loss specification to be met. The minimum ground plane
spacing can then be determined from Figure 5.13. It is important, however, not
to choose too large a value for b in case this gives rise to unwanted waveguide
mode resonances in the coaxial line.

As an example, say we require & minimum @, of 700 at 1 GHz. From (5.77)
assuming €, = 1, for a 117.5Q impedance UE

b 117.5
4= oxp <~L) = 7.087 (5.78)
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Figure 5.13  Q factor of coaxial line
Now from Figure 5.13, for a 117€ line
Q
—— = 1160 5.79
by/f (5.79)
Hence for @ = 700 and f = 1 GHz
b=0.6cm (5.80)

5.3 Broadband TEM filters with generalised Chebyshev
characteristics

In certain applications wideband filters with extreme selectivity are required.
For example in radar warning receivers broadband multiplexers require octave
plus bandwidths with at least 60 dB stopband insertion loss within 10 per cent
of the band-edge frequency. Cellular radio base stations often use low loss
dielectric resonator filters, and the spurious modes of these devices often
occur at frequencies only 25 per cent above the passband. Thus ‘clean-up’
lowpass filters must have high selectivity combined with low loss and small
size. Such severe specifications are not easily achievable using all-pole transfer
functions and more selective gencralised Chebyshev characteristics are often
required.
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Figure 5.14  Generalised Chebyshev lowpass prototype, degree 9

As an example we will design a TEM lowpass filter from a ninth-degree
generalised Chebyshev prototype. The particular prototype will have 20dB
return loss and three transmission zeros at infinity. The remaining transmission
zeros are all at the same frequency wy = 1.32599. The choice of w, was deter-
mined after analysis of the transfer function given in Chapter 3 in order to
achieve a minimum stopband insertion loss of 60dB. The lumped clement

prototype network is shown in Figure 5.14.
The location of the poles of the transfer function are

Py = —0.03033 £,1.02275

Pag = —0.10604 £+ j0.96344

P37 = —0.22511 £ j0.80937
ps = —0.455417

Now we form a polynomial P(p) from alternating poles, i.e.

P(p)=(p—p)(p—po)(p—p3)(p—p)p—ps)
= 0.45541 + 1.3169p + 1.7930p° + 2.72394p° + 1.30779p*
+1.35330p°

(5.85)
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Forming Y.(p) from the cven and odd parts of (5.85),
 1.35330p° +2.72394p" + 1.31690p

Y.(p) = ; 5.86
(P) = 3077907 1 1.7930p° + 0.45541 (5.86)
We extract a capacitor by removing the pole at infinity
Y.
C = Yelp) = 1.03487 (5.87)
P pP=x
The remaining admittance is given by
Yilp)=TYp)—Cip
0.84555p + 0.86842p"
b r (5.88)

T 0.45542 + 1.79300p2 + 1.30779p*

The scrics inductance L, must then be extracted so that the remaining
impedance has a4 zero at wg. Thus

l
Zip)=~—7= 5.89
)=y 58
and
Zi(jw
L, =2U%) a3 (5.90)
S0
Also
Zy(p)=2Z(p)—Lyp
045542 +0.84299p° +0.33210p" (591)
B 0.84555p + 0.86842p° ’
and
Valp) = -
70
3 0.84555p + 0.86842p° (5.92)
©0.45542 + 0.84299p2 + 0.33210p* T
Y>(p) has a pole at p = jw,. Thus
A
Yi(p) == p—w+ Yi(p)
pPowy
Ap B
- ! r (5.93)

N po+1.75825 * 0.3310p7 + 0.25902
Hence

0.33214 + B = 0.86842 (5.94)
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and

0.259024 + 1.75825B = 0.84555 (5.95)
Solving (5.94) and (5.95) simultaneously yields

A =2.0969 B=0.17204 (5.96)

The first term in (5.93) represents the admittance of the resonant circuit
containing Ly and Ca, ie.

5 a0k

17;‘10.32212)5 - Pt f{j‘l:(,ﬂ; (597)
Thus

L, =0.47688 (5.98)
and

3 =1.19263 (5.99)

After extracting this resonant circuit the remaining admittance consists of the
series inductor L, and the resonant circuit containing 2 L5 and C5/2 shown in
Figure 5.14(b). These may be obtained by repeating the procedure and the final
element values for the circuit are

C, = 1.03487
L, =1.12352
Ly = 0.47688
C; = 1.19263 (5.100)
L, = 1.07413
Ls=042818
Cs=1.32834

The prototype network can be converted to a TEM microwave network by
applying the Richards transformation [7]:

p — atanh(up) (5.101)

Applying this to the series resonators of impedance Z( p) where
1
Z =1L —_— 102
(p) Pte, (5.102)
then
1

z Hh ) 4 i ap)
(p) = aLtanh(ap) + aCtanh(ap)

~ «’LCtanh*(ap) + 1
B aCtanh(ap)

(5.103)
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Now
2 tanh(x
tanh(2x) — M) (5.104)
1 + tanh<(x)
and if we let o = wy then
a’LC =1 (5.105)
Thus
2
= — 5.106
Z(r) aCtanh(2ap) ( )
and
16
Y(p) = “Ttanh(zap) (5.107)

Equation (5.107) represents the admittance of an open circuited stub of
characteristic admittance «C/2. The length of the stub is one quarter
wavelength at w, (Figure 5.15).

Now applying the Richards transformation to the series inductors we obtain

Z(p)= Lp = alLtanh(ap) (5.108)

The series inductors become series short circuited stubs of impedance « L.
Similarly the shunt capacitors become shunt open circuited stubs of
admittance o C.

The transformation converts the lumped lowpass prototype circuit into a
distributed circuit of band-edge frequency w,. Thus

| = atan(aw,) (5.109)
and

a:Ltan"l(l/a) (5.110)
Equation (5.110) determines the length of the stubs in the distributed circuit.

Note that the shunt stubs associated with the resonators arc twice the length of
the other stubs. The complete distributed circuit is shown in Figure 5.16.

p—> o tanh@p)

Figure 5.15  Richards transformation of a resonator
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Figure 5.16  Distributed lowpass generalised Chebyshey filter, N =9

At this point one would think that the design of the filter was finished.
However, the realisation of series short circuited stubs is impractical. Instead
we approximate the series stubs by lengths of high impedance transmission line.
From (5.75) we know that an electrically short transmission line is equivalent to
an inductor of value

L==" (5.111)
14

or more accurately

wL:ZOSin(%) (5.112)

124

where ¢ 1s the length of the line. We can equate the impedances of the series short
circuited stubs to be equal to the impedance of the high impedance line at the
band-edge frequency w.. Thus

we b,
Zysin (“’L ) =l tan(aw)  (r=2,4,..) (5.113)
17

Thus choosing a suitably high value for Z we can calculate the length of the
line from

v o [ﬁ_talg(ﬂ_w_q (5.114)

l, = —s
o sin Z
As a design example we will design a distributed filter from the ninth-degree
prototype already discussed. The band-edge frequency is to be 4 GHz and the
system impedance level is 50 €2,
First compute

o =wy = 132599 (5.115)

and

a= itan“' (%) = 2.57096 x 107" (5.116)

We
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The admittance of the first (and last) shunt open circuited stub is
Y =aC) =1.37223 (5.117)

and its impedance in a 502 system is 36.43 ().
The length of the stub is given from

a=- {=uav (5.118)

If the relative permittivity of the medium of propagation is unity then
v =3x 10°m/s and

£=17.713mm (5.119)

The lengths of the resonator stubs are 24, 1.c. 15.425 mm. Their admittances are
C.

Y,.:% (r=3,5,..) (5.120)
Thus

Yy = 0.7907 (5.121)
and

Ys = 0.8806 (5.122)

Their impedances in a 50 €2 system arc 63.23€) and 56.78 .
A reasonable choice for the high impedance series lines is Zy = 120 Q. Thus in
a 1 Q system Z, = 2.4€). The lengths of the series lines are given by

3x 10° tan(aw,
fy = L i 2L tonlae] (5.123)
and from (5.116)
1
ta o) = — A2
an(aw,) - (5.124)
Hence
3x10% L,
£, = sin”! <-—’> (5.125)
W 0
Thus
{7 = 5815mm (5.126)
and
f4 = 5.539 mm (5.127)

The longest line, £,. is quarter wave long at 12.89 GHz, which is electrically
short at the band-edge frequency. The complete circuit is shown in Figure 5.17.
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Figure 5.17  Generalised Chebyshev distributed lowpass filter

The simulated response of the circuit is shown in Figure 5.18. Here we see an
almost exact equiripple passband response. This could easily be optimised to be
perfectly equiripple. A broadband plot of the filter is shown in Figure 5.19.

The stopband of the filter shows spurious responses between the first and
second passbands. These are caused because the series short circuited stubs have
been approximated by high impedance UEs. Unlike the stubs these do not
produce transmission zeros at their quarter wave frequencies. The stopband
performance could be improved by distributing the transmission zero frequen-
cies throughout the stopband of the filter.

One of the best methods for physically realising the filter is to use suspended
substrate stripline. This is a microwave integrated circuit structure consisting of
a thin printed circuit suspended between parallel ground planes (Figure 5.20). In

Sy 0 0 Si
dB dB
—10 -5
20 -10
-30 -15
-40 : -20

VN 1
// N \\

50| A 25

/ \

! "

f \
601t : =30

0 1 8 GHz

Figure 5.18  Simulated response of a generalised Chebyshev distributed lowpass
Silter
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Figure. 5.19  Simulated broadband response of a generalised Chebyshev
distributed lowpuss filter

the suspended stripline configuration the majority of the fields are in the air
cavity and the substrate has little effect on the Q factor or the effective permit-
tivity of the elements. It is relatively straightforward to calculate the dimensions
of the individual circuit elements within the filter.

Consider a single transmission linc of width w and thickness ¢ suspended
between ground planes with spacing b, as shown in Figure 5.21. Note that the
thin dielectric substrate has been ignored because normally these are made from
Teflon with relatively low dielectric constant (¢, < 3) and are very thin, typically
less than 0.25 mm.

printed air < .
conductor conducting

— housing

thin substrate

Figure 5.20  Suspended substrate stripline
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Bz
o T N

< o —> T
Figure 5.21  Single suspended transmission line

The impedance of a TEM transmission line is related to its static capacitance
to ground per unit length by

377
Zoe == (5.128)

C/e
where ¢, is the dielectric constant of the medium and C/¢ is the normalised static
capacitance per unit length of the transmission line. Now from Figure 5.21 we
obtain

C 4¢y

_=2C,+ (5.129)
and

o :(h—};m (5.130)
For b < ¢

E:ﬂ+4c{ (5.131)

€ b €

C¢' is the fringing capacitance to ground which is plotted in Figure 5.22 [8].
For a printed circuit we can assume ¢ is zero and hence from Figure 5.22

C'

= 0.46 (5.132)

(<)

Thus from (5.131)

C 4w
j=%+1.84 (5.133)
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0.0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1.0

Figure 5.22  Fringing capacitance from a rectangular bar
(Source: Getsinger, W.J.: ‘Coupled rectangular bars between parallel
plates’, IEEE Transactions on Microwave Theory and Technigues, 1962,
10 (1), pp. 54-72; © 1962 IEEE)

and from (5.128) and (5.133), assuming &, 18 unity, we obtain

b (377
=2 4 ‘
W= 7, 1.8 (5.134)

Thus for a 120 Q line with b = 2mm

2 (377
=—{——1.84] =0.65 5.135
=111 65mm ( )
for a 36.43) stub w =4.254mm
for a 63.23Q stub w =2.061 mm (5.136)
for a 56.78 2 stub  w = 2.400 mm

In order to compute the exact dimensions of the filter account must be taken of
the reference plane locations associated with the interconnected transmission

lines. Data on these are available in Reference 9.
The layout of the filter is shown in Figure 5.23.
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input output

Figure 5.23  Circuit layout of a suspended substrate lowpass filter

5.3.1 Generalised Chebyshev highpass filters

Highpass generalised Chebyshev filters can also be constructed. In this case the
Richards highpass transformation should be used and the transformed circuit
has series open circuited stubs. These may be approximated by inhomogeneous
coupled lines realised in suspended substrate. A typical seventh-degree lowpass
prototype with a single transmission zero at infinity is shown in Figure 5.24.
After applying the Richards transformation
—1

Rl 5.137
“ atan(aw) ( )

and for the series inductors

-L,
wh, =—F"— =13,... 138
YT tan(aw) (r=13..) (5.138)

That 1s, the inductors L become open circuited stubs with admittances

The resonators in the prototype have an impedance

, . /
Z L == J{ I, L — = 2 4 5
(jw)=jwL, oC (r=2,4,..) (5.140)
L Ly L; 4
o N 222 7YV N o
icz -G ‘]'CZ

Figure 5.24  Seventh-degree generalised Chebyshev lowpass prototype network
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Figure 5.25

Distributed highpass generalised Chebyshev filter

and applying the Richards highpass transformation

—jlL.
Z(jw) = et

Jatan{aw)

atan(aw) C.

r

jle?tan?(aw) - L, C,]
aC, tan{uw)

If

<t

(5.141)

(5.142)

(a)

<z >

(b)

Figure 5.26
section; (b) top view

Inhomaogeneous parallel coupled transmission lines: (a) cross-
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Figure 5.27  Circuit layout for a seventh-degree generalised Chebyshev highpass
Silter

then

jaltan?(aw) — 1]
C, tan(aw)

Z(jw) =

_ —J2a
~ C,tan(2aw)

(5.143)

Figure 5.28 A typical suspended substrate device (photograph courtesy of
Filtronic plc)
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which is the impedance of an open circuited stub of characteristic admittance

Y. :& (r=2,4,...) (5.144)
2

The distributed highpass filter is shown in Figure 5.25.

The scries open circuited stubs in Figure 5.25 cannot be realised directly.
However, they can be approximated by coupled parallel lines. The strength of
the coupling is such that they are best realised by an overlap coupling through a
thin dielectric substrate, as shown in Figure 5.26 [10-12].

A typical circuit layout for a seventh-degrec suspended substrate highpass
filter is shown in Figure 5.27, and a photograph of a typical suspended substrate
device is shown 1n Figure 5.28.

5.4 Parallel coupled transmission lines

In addition to interconnections of stubs and transmission lines it is also possiblc
to construct useful microwave filters with coupled transmission lines. Consider
the network shown in Figure 5.29, consisting of an array of N parallel coupled
commensurate lines and an associated ground plane.

It is assumed that the permittivity of the medium in which the lines arc
supported 1 homogeneous. By assuming that only TEM waves are supported
in the structurc we can assign input and outpult voltages and currents to each
line. The standard incremental approach for analysing a single transmission line
may then be applied to the complete network. It may be shown that the N wire

I Iy
———3® o
Vi Vi
— 1 Je o —
13 ‘ 13
V3 >‘® @ )

V2 V2

VN VN

_L ground

Figure 5.29  Parallel coupled N-wire line
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line can be described by the admittance matrix equation [13]

r7 ] r
I V2
I Vs
Iy| 1 1] —(L =32 | vy (5.145)
R R e R U i
& V2
1 Vs
Iy | Ly
where
t = tanh(ap) (5.146)
and
/¢
o=t (5.147)

[7] is an N x N matrix called the characteristic admittance matrix of the line.
This matrix is related to the static capacitance matrix of the N-wire lin¢ in
a similar way to the relationship between capacitance per unit length and
characteristic admittance of a single line. Thus
Y, -Yp Yy

Yo Yo —Yn

—Yi3 —Yn Y
[n] = _ (5.148)

Yvoanva —Yyawn

—Ynyon Yyn
and

[C

i?] = 7.534[n] (5.149)
(in a 1€ system). [C] is the static capacitance matrix of the line given by
[ Cy ~Cn —Cs |

—Cp O —Cy

_‘ ~Ciy ~Cy Oy
Cl=1 . . (5.150)

Cyainvg —Cnoaw
_( /\/_I\ /v C.’VA’
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where
Ci=Ci+Cph+Cux+... (5.151)
C,=CH+C,+Cy + ... (5.152)
The capacitances Cy, Cs, ..., C, are the capacitances per unit length to ground

for each of the N lines. Cy;, Cy; etc. are the coupling capacitances per unit length
between pairs of lines (Figure 5.30).

Equation (5.145) gives a complete description of the coupled-line structure in
terms of its static capacitance matrix. In general any line may be coupled to each
of its neighbours and the boundary conditions on the ports arc arbitrary. Thus
the most general matrix is rather complex. However, in reality we are interested
in constructing filter networks with a single input port and a single output port.
Also the number of couplings may be considerably restricted. In the next
sections we will examine some specific cases yielding useful filtering devices.

5.5 The interdigital filter

The interdigital filter [14] is a device which may be constructed entirely from an
N-wire coupled line. In this case the couplings are restricted to be between
adjacent lines, i.e. non-adjacent line couplings are assumed to be zero. Thus

Cryit 70 (5.153)
C}'.I'+2’C".I'4-3S"':0 (5154)

Furthermore, the input to the network is on line | and the output on line N.
Thus for an even number of lines the input is at port 1 and the output at port N,
For an odd degree network the output would be at port N.

Finally a short circuit is applied to alternate ends of each line with the other
ends left floating. The N-wire line is shown in Figure 5.31. The characteristic

Ci3
C12 C2 CN-ILN
ol N

T T I T T

Figure 5.30  Static capacitances of an N-wire line
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input 0—[ 1 I H [1
) Hz 2]
3 3 |——‘ I

N-1 ‘ ‘ N—I’Hll

L o output

Figure 5.31  The interdigital filter (N even)

admittance matrix of the interdigital filter is thus given by

[ Yn =Y 0
Y Yy —Yn 0

0 =Yy Yy —Yay
M = 0 0 — Yy Yy
0
Yyaona —Yavoaw
0 =Yy Yy N

Consider the three-wire interdigital line shown in Figure 5.32. Here

Vi=V,=Vi=0

input o—— 1 I'Hh

|IW 2']

output 0——{ 3 3 ]—« l

Figure 5.32  Three-wire interdigital line

(5.155)

(5.156)
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Hence from (5.145), (5.155) and (5.156)

3 o ~Yi 0 — =Py, YRy, 0
I — Y Yay —¥n (1= 2y, (=) 2yy (1-07)7 1y
I 1 0 - Yoy Y 0 (1-13)"yy (i— 1)y
1 i BTG EE TE (YR e {8 0 i -Yi 0
1 (1= Ny, (- Yy (1= )21y -Yn Yn —Ya
1 0 (L= Py (1= 2y 0 Y Yu

v,

0

«| " (5.157)
0
Vi

0

and rearranging (5.157) we obtain

1 1 Yy (1—1%)"7y, 0 Vi
I =7 (1-)'"7y, Yy (1—’2)1/2)'23 Vi
I} 0 (1 - [2>]/2 Y23 Y33 V3

(5.158)

Now the transfer matrix of a single-wire (two-port) transmission line of
admittance Y is

1 ),7
[ { '/ } (5.159)
(=) Ly

Conversion Lo an admittance matrix is given by

¥ = [1)/3 A/B}

(5.160)
—1/B  A/B

where A is the determinant of the transfer matrix. Hence the ¥ matrix of a single
line is given by

l Y —(1 —fZWZY}

, (5.161)
Ll —(1 =)y Y

Now from (5.158) the admittance matrix between nodes 1 and 2’ is given by

Y+ Y, 1Yy,
yi=g| M gE 0 (5.162)
EL(E—=17)77Y) Yo+ Y

The equivalent circuit of (5.162) is shown in Figure 5.33.

Thus from (5.158) the equivalent circuit of the three-wire interdigital line is as
shown in Figure 5.34. The ideal 1:—1 transformers can be transformed to the
output of the network and have no effect on the amplitude response of the filter.
Hence the equivalent circuit of the general Nth-degrec interdigital filter is as
shown in Figure 5.35.
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Yy FE‘ Y12 Y2
-0

Figure 5.33  Equivalent circuit of (5.162)

o 1:-1 @

Figure 5.35

UE UE
Y,y Y, Yot Yaoiw Yy
—o0

Equivalent circuit of an N-wire interdigital line

Having derived the equivalent circuit we can now develop a systematic design
procedure for a bandpass filter. First we can make the UEs quarter wave long

at wy and

they become inverters. The equivalent circuit then consists of

resonant stubs separated by inverters. Richards transformation of the lowpass
prototype would then establish the design procedure. However, this would only
be accurate for very narrow bandwidths. A more accurate procedure for
broader bandwidths can be obtained if we consider the UEs in more detail.
From (5.159) for sinusoidal excitation the transfer matrix of a UE is given by

[ Jsin(#)
(7]~ | 5@ Y (5.163)
| /Ysin(f) cos(f)
and this can be decomposed into
10 0o 5”;,(9) 10
T] = iy 1 iy . Y (5.164)
| tan(6) sin(0) tan(f)
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O 1o
UE
Y
o] —————o
e} =
K
Y = Y
_r
N sin( 9) o

Figure 5.36  Equivalent circuit of a unit element

Equation (5.164) is the matrix of two shunt short circuited stubs of admittance
Y separated by a frequency-dependent admittance inverter, as shown in
Figure 5.36. Thus substituting for the cquivalent circuit of the UEs into
Figure 5.35 we obtain a new equivalent circuit for the interdigital filter
(Figure 5.37).

The inverter coupling the rth to the (r + 1)th stub is then given by

Yiri
K o o=—nr 5.165
rori-l Sll’l(f)) ( )
The frequency dependence of this inverter 1s relatively small as
sin(60”) = 0.8666 and the variation in admittance is small cven over an octave
band.
The rth resonator is now a short circuited stub of admittance

Yr-r - Yr + Yr L. + YI'J‘[] (5]66)
Now we apply the Richards highpass transformation to the lowpass prototype
shown in Figure 5.38. Then

) ! (5.167)
YT tan(aw) P

©. P
K12 Kr1.r Ky, N
Yy N2 vy Yroir i Y
sin(9) sin( ) sin( Q)
o —0

Figure 5.37  New equivalent circuit for an interdigital filter
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1

J— Ky n
Cn—1 —[-CN

Figure 5.38  Lowpass prorotype for an interdigital filter

and
wC, =G (5.168)
atan(aw)
Hence
Y, ;—Q (5.169)
(87
where
I = ! (5.170)

“= tan(aw;) tan(f)
Now from (5.165) assuming 0 = 90° at w, we obtain

Yirn =Ko (5.171)
and from (5.166)

Yr = yrr - Yr =l }/"."‘rl (5172)
Also. from (5.168), (5.169) and (5.172)
C,
Y/‘:XI_I\/I‘ l.(‘_KI‘.i’Il (5173)

Hence the design equations for the Nth-degree interdigital filter are given by

yr.r+] TI\/I:rw—] (l‘: w-":Nf l> (5]74)
¢

YI :(T" KIZ (I': l) (5]75)

C, ) v

V=Ko=K (r=2,....N—1) (5.176)

(@3

Cy

YN ZT_KN*I,N (I': N) (5177)
1

“= tan(6,) (5.178)
90°

0, = (5.179)
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where w; is the lower band-edge frequency. C, and K, .., are the element
values for all-pole lowpass prototype networks given in Chapter 3 and shown
in Figure 5.38.

5.5.1 Design example

As an example we will design a filter with a centre frequency of 2GHz and a
passband bandwidth of 1 GHz. We will use a degree 4 Chebychev prototype
with 20 dB passband return loss. Thus

90" x 1.
0, :%: 67.5° (5.180)
and
1
— —0.4142 .
o @n(@) 0 (5.181)

The lowpass prototype clements values are

Cl - C'4 = 09314

(5.182)
C, = Cy =2.2487
Kipp = K3y = 1.3193
(5.183)
Ky; = 1.5751
and from (5.174)
From (5.175)
Y, =088~ 1.3193 = 0.9293 (5.186)
and since C; = (Cy
Yy =Y, (5.187)
IFrom (5.176)
Y, = Sﬁ‘l‘g — 1.3193 — 1.5751 = 2.5346 (5.188)
Y=Y, (5.189)
Hence in a 50 €2 system
Z, =74 =53.8040Q
Zy, =25 =19.727Q
(5.190)

le = Z34 = 37898 (2
223 - 31744&2
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Figure 5.39  Simulated response of an interdigital filter

Analysis of the equivalent circuit gives the frequency response in Figure 5.39,
showing an almost exact equiripple response. Simulation of the broadband
response is shown in Figure 5.40. Here we sec the passband repeating at three
times the centre frequency.

5.5.2 Narrowband interdigital filters

I'rom (5.176) we see that, as the bandwidth of the interdigital filter becomes
small, v becomes small and the admittances become very large and unrealisable.
We can solve this problem in a similar way to that described for narrowband
bandpass lumped element filters in Chapter 4.

First we introduce a UE with admittance unity at the input and output of the
filter. This does not change the amplitude response of the device. In addition we
scale rows and columns of the admittance matrix so that

Yoo Y, (5.191)
Hence the admittance matrix becomes
! —n (1 —H)Y? 0
v 1| =l = 12)1/2 nf(l ) “nypns(l = ,2)1/2),]2
[ ]_7 0 —)7|,12(] — [2)]/2)/]2 nng (5192)
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Figure 5.40  Simulated broadband response of the interdigital filter

Note that this is cquivalent to introducing an extra interdigital coupled-line
section at the input and output of the network.
Now from (5.169)

Y, =-~ (5.193)

and from (5.171)

Y, =K, (5.194)
Hence
i 1 n (1 — "2 0 ]
m(l—3)'"7 ni(l+C/a) —nyny(1 = 17)'PK ),
[Y]:% 0 - NV 2 Gy
muny(1 —17) 7" K, 1737

(5.195)
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Thus the new element values arc

Yoo = Yyn =1 (5.196)

YO] = YN-'I.N = ny (5197)

Y= Yyy =ni(l +Ci/a) (5.198)
2

y,, =M€ (r=2,....N-1) (5.199)
(8]

Y, i =00, K., (r=1,...,N=1) (5.200)

We can now find the dcsign equation for the admittances to ground Y, and
the coupling admittances Y, ,, ;. First let us choose Y, to be arbitrarily equal to
unity, for physical convenience. Then from (5.198)

1
n =0y =—————— (5.201)
(14 Cy/e)'?

and from (5.199)

n, = (%)]/2 (r=2,...,N—1) (5.202)
Hence from (5.200)

Yo, =nmn, 1 Ky (5.203)
Hencc

Yo=1-—n (5.204)

Yo = n, (5.205)

Yi=Yy=1-n —mnKp, (5.2006)

Yo=1—-n. \nK._,,—nn,_ K. (5.207)

5.5.3 Design example

In this case the design will be identical to the previous example except that the
bandwidth will be 40 MHz, i.e. 2 per cent bandwidth. Thus
90° x 1.98
8 = =" = 80.I° (5.208)

&

and

L e——— (,
o= Ty~ 0017 (5.209)

The element values for the lowpass prototype are given in (5.182) and
(5.183).
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From (5.201) we obtain
n, = ! 77 = 01287 =ny (5.210)
(1 +0.9314/0.0157) "/~

and from (5.202)

ny =1y = <%>l/2_ 0.0835 (5.211)
From (5.203)

Y5 = Yoy = (0.1287)(0.0835)(1.1393) = 1.4177 x 1072 (5.212)

Yy = (0.0835)%(1.5751) = 1.098 % 10 * (5.213)
From (5.204)

Yy =0.8713 (5.214)
and from (5.205)

Yo = 0.1287 (5.215)
From (5.206) and (5.207)

Y, = Y, =0.8571 (5.216)

Y, = Y;=09748 (5.217)

The element values in a 502 system are
Zy=75="51380
Z)—=2Z4=758340Q
Zy =7Z7=5129Q
Zy = 245 = 388.5€)
71y = Z3q = 35269
Zry = 45544

(5.218)

The simulated response of the filter is shown in Figure 5.41. This shows a
highly symmetrical frequency response which is characteristic of an interdigital
filter. The introduction of the UEs at each end of the filter results in an extra
interdigital section as shown in Figure 5.42.

5.5.4 Physical design of the interdigital filter

The physical dimension of the filter can be found from the static capacitances
per unit length between each interdigital line, its nearest neighbours and ground,
where

C 377

—=— (5.219)

£ Zyle) "

T
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Figure 5.41  Simulated frequency response of a narrowband interdigital filter
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Figure 5.42  Narrowband interdigital filter (N = 4)
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Figure 5.43  Static capacitances of interdigital filter
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The various capacitances for our design example are shown in Figure 5.43.
From (5.218) and (5.219) we obtain

S _ S 65702

& £

G gae

£ £

GG 53503

(f gc (5.220)
U= =8 < 6.5702

Co 5 069

g £

Cx _ 0828

We will assume that the filter is to be constructed from an array of rectangular
bars between parallel ground planes as shown in Figure 5.44.

In Figure 5.44 we have two equal width bars of width w and thickness ¢ spaced
apart between parallel ground planes of spacing b. The paraliel plate capaci-
tance between one face of one bar and ground is C;,. The fringing capacitance
from the isolated corner of one bar to ground is C{. This is shown in Figure 5.22
as a function of #/b.

The fringing capacitances from the coupled corners of the bars arc denoted
C/. and Cy, depending on whether an even- or odd-mode excitation is applied.
Thus Cy. is the fringing capacitancc with an open circuit along the line of
symmetry and Cj, is the fringing capacitance with a short circuit along the
line of symmetry. The equivalent circuit of the pair of coupled lines can
be represented as a pi network of capacitance to ground C. and coupling
capacitance AC as shown in Figure 5.45.

By applying a short circuit along the line of symmetry in Figures 5.43 and 5.44

& lc” \/\/Cf - ct T

N/ i
e S/ i

P

Figure 5.44  Coupled rectangular bars between parallel ground planes
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AC
1% I°

Figure 5.45  Equivalent circuit of coupled lines

we obtain
Co =2C, +2Cf +2C{, = C. +2AC (5.221)
and applying an open circuit
C.=2C, +2C{ +2C, (5.222)
Thus
AC= Co 5 Ce
= Cfy — Cte (5.223)

AC and C{, are shown in Figure 5.46 as a function of s/h.

0.7

£
B

Figure 5.46 Even-mode fringing capacitance and coupling capacitance of
coupled rectangular bars

(Source: Getsinger, W.J.. ‘Coupled rectangular bars between parallel
plates’, IEEE Transactions on Microwave Theory and Techniques, 10
(1), pp. 65-72; (1©) 1962 IEEE).
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Thus to calculate the dimensions of the interdigital filter first we calculate the
normalised spacing between the bars. From (5.220) assuming 7/b = 0.4

Cor_Cs _ g 5700 (5.224)
€

£

Therefore from Figure 5.45

Soi _ Sus

200 _ 248 g7 5.225

b =) ( )
Similarly

S Sy

L =1.12 5.226

b b ( )
and

S[j* = 1.17 (5.227)

Now from Figurc 5.46 we can calculate the even-mode fringing capacitances,
giving

Ceqr = Cegs = 0.11 (5.228)
‘f/c 12 — Cf/c 34 — 0.88 (5229)
Cre a3 = 0.89 (5.230)

Now we can calculate the normalised widths for the bars from (5.222), i.e.

4w
Co=2C, +2C 12C}, = b—”[ +2C]+ 20 (5.231)
Thus
b—1/C, ,
w,o= 2! (4 2, - 2Ch ,) (5.232)
4 €

Note that the isolated fringing capacitance is replaced by the even-mode
fringing capacitance for the previous coupled-bar pair except for the first
(and last) bars.

h—t(C
Wo =g (‘_}) —2Cy - 2Ct{()l> (5.233)
Cl =091 (5.234)
Clo=0.11 (5.235)
and
Co

=% = 6.5702 (5.236)
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Thus
wo = b—;—[(6.5702 —0.22 — 1.82)
= 1.132(b - 1) (5.237)
Similarly
wy = 1.121(h— 1) (5.238)
wy = 0.953(b — 1) (5.239)

b must be chosen for physical realisability and to achieve a certain resonator ¢
factor.
From (4.147) the midband insertion loss of the filter is given by

Lr =950/0, (5.240)

Thus in our design, for 0.2 dB midband insertion loss we require a Q,, of 4750.
The Q factor of a rectangular bar as a function of impedance is relatively
constant and may be approximated by

t

_© = 2000 — 7.57, (0.1 <ls 0.5) (5.241)

h(f)'" b

where b is in cm and /in GHz. Thus for our design with a typical Z, of 55Q we

choose b = 2cm giving 1 = 0.8 cm and the actual dimensions of the filter are
wy = ws = 1.36cm
w, = Wy = [.34cm
wy = w3 = l.1dcm

(5.242)

Wy = wys = 0.14cm

Wi, = w3 = 1.76cm

wy; = 1.75¢m

The resonators are one quarter wavelength at 2 GHz, i.c. 3.75cm long.

5.6 The combline filter

The interdigital filter has the advantages of a broad stopband and a highly
symmetrical {requency response. From a physical viewpoint it has certain
disadvantages. First, it is quite large: the resonators are quarter wavelength
long and for narrow bandwidths they are physically well separated. Further-
more, tuning screws for final electrical alignment are on alternate opposite faces
of the filter.

The combline filter [15] shown in Figure 5.47 overcomes these disadvantages
at the expense of a slightly asymmetrical frequency response. It consists of any
array of coupled TEM lines with couplings constrained to be between nearest
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I
'l
'l

|

[

Figure 5.47  The combline filter

neighbours. The lines are all short circuited at the same end. The opposite ends
of the lines are loaded with capacitors which are connected to ground.

The principle of operation of the combline filter is as follows. First, if the
lumped capacitors were removed then the shunt lines would resonate at their
quarter wave frequency. However, the couplings would also resonate at this
frequency, producing an all-stop network. As the capacitors are increased the
shunt lines behave as inductive elements and resonate with the capacitors at a
frequency below the quarter wave frequency. The couplings would then be finite
but relatively weak compared with an interdigital filter with the same resonator
spacing. Thus the combline filter is compact, as the resonators may be signifi-
cantly shorter than one quarter wavelength and arc closer together than in an
interdigital filter with the same bandwidth and ground plane spacing.

The cquivalent circuit of the combline filter will now be derived. First
consider the array of coupled lines all shorted at the same end, shown in
Figure 5.48. The admittance matrix equation is

1 VT
I Vs
I Vs
. ) 1 :
l‘w | Ul m ") Vy
M v (5.243)
/! hW 1] [7] V!
1@ Vs
L7 ] Vi
However, as nodes 1’2", ..., N are all short circuited then

VioVio. . Vy=0 (5.244)
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1 2 3 N-1 N
1 2 3 N-1' N’

Figure 548  An array of coupled short circuited stubs

and the matrix equation reduces to

I [[ —‘ i V] ]
I | Vs
Ly | L Vv
or
R Y —Yp 0 0 Tr v,
I Y Y»n —Yn 0 v,
Lol o 0 =Yy Y —Vy v,

: N !
In-i Yuoin-1 —Ya—in || V¥
L IN 4 L — YN* I.N YNN J L VN J

(5.246)

Scrutiny of (5.246) shows that cach nodal current is only related to its own nodal
voltage and the voltage at the adjacent nodes. The equivalent circuit of the
coupled-line array is thus an array of shunt short circuited stubs coupled via
series short circuited stubs as shown in Figure 5.49.

The equivalent circuit of the combline filter is obtained simply by adding
shunt capacitor C, from the rth node to ground as shown in Figure 5.50. The
equivalent circuit between the rth and (r + 1)th nodes is given in Figure 5.51.
Inspection of the equivalent circuit shows that an inverter can be formed from a
pi scction of the short circuited stubs, as in Figure 5.52. Here we see that an
inverter can be formed in a similar way to that for lumped clement bandpass
filters. The pi network of stubs between the dotted lines has a transfer matrix
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Y12 Y33 Yrr1

S [ SR B

Figure 5.49  Equivalent circuit of an array of coupled short circuited lines

112 Ynan
. [ ] o ] .
) = O = - - I ==
Y, G Y, G Yy Chay ¥y Cy
[ o

Figure 5.50  Equivalent circuit of the combline filter

Yrir Yrrel

Yot rez

[‘—] r l_‘ Hll—[

[ — ] _—
Y

, Cr Yria Cr+1

Figure 5.51  Equivalent circuit of the combline filter between the rth and (r + 1)th

nodes
given by
_ | 0 i ,/;l'cln({)) - 1 0 0 /;m((})
- ﬁi@ﬁ e %%ﬁ% U7 v ;H
tan(6)
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Yr,r+ 1

. [ o
.

s - — =
Y, Cr Yr+] Cr+l
Yr,r+l
r n r+l
,,,,,, Y ¢
— = R R T
Yo Cr “Yra Yoren Vet Crat
Yire . ' Yrr+1
r r+l

— = Krevi ;1 i
Y+ G Y+ Gt

Yrr+i Yrr+1

Figure 5.52  Formulation of inverters in the combline filter

Hence

Yr.r+l
K. ... = 5.248
o+l tan(O) ( )

The admittance of the »th resonator is given by

Yl :iji](Yr_'_ Yr‘ l,r + Yr.r+l)

tan(#)

(5.249)

The equivalent circuit of the filter is shown in Figure 5.53 where Y,, is given by
Y, =Y, + Y., +7Y. (5.250)

It is convenient to scale the admittance of the entire network (including
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—_ T
e b LG | o bt G
] Ky ] T _1‘ Krrel ]

etc.
ot —t L .

Figure 5.53  Equivalent circuit of the combline filter

source and load) by a factor tan(#)/ tan(6,) where 6, is the electrical length of
the resonators at the centre frequency wy of the filter. This removes the
frequency dependence from the inverters; hence

Y,

rorel
o = 5.251
KI.I bl t'dl’l(e[)) ( )
and
Y = — oG tan(0) - ¥,] (5.252)

tan(fy)

We can now derive a frequency transformation from the lowpass prototype
network to the combline resonators. For a shunt capacitor, inverter-coupled
prototype we have

wC, tan(h) Y,,

wCy . — - 5.253
Lr tan(0y) tan(6) ( )

where €, is the rth capacitor in the lowpass prototype; thus

w — affwtan(f) — 1] (5.254)
where

Y,
— 5.

T tan(0y) (5:255)

and
C.
B=—L 5.25
A=+ (5.256)

Since w = 0 in the lowpass prototype maps to wy in the combline filter,
|

T 7 Y 2
wq tan(fy) (5.257)

The band-edges at £1 in the lowpass prototype map into the band-edges at w,
and ws in the combline filter, i.e.
= offw; tan(f,) — 1] (5.258)
5

[
= a[fwtan(d,) — 1] (5.
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Now

Wy = wy —% (5.260)
and

wl:ww%‘i (5.261)
where Aw 1s the passband bandwidth. Hence

—l=a {[J (uo - A-zw—) tan ((90 - C’A_zﬁ) - 1} (5.262)

+l=a {ﬁ(wo +A—2U:> tan (00 + aATw> - l} (5.263)
and for narrow bandwidths

aAw < by (5.264)
Hence

tan (00 4 "";”) - t_‘”gfg;;i‘:é;o) (5.265)

From (5.262), (5.263) and (5.265) we obtain
“l=a [5<’W'0 - A;}> {tan(()o) - aéw [+ 1an2(90)]} - l} (5.266)

Aw A
tl=a [ﬁ(wo +‘A‘T> {tan(()(,) +% [+ tan2(00)]} - 1} (5.267)

Solving (5.266) and (5.267) simultaneously and ignoring terms in (aAu;)2 we
obtain

¥ = 2

T Awp{tan(8y) + 0o[1 + tan>(6,)]}

(5.268)

or

o = 2&)() tan(ﬂ())
 Aw{tan(dy) + Gy[1 + tan’(6y)]}

(5.269)

From (5.269) we sce that for narrow percentage bandwidths « will be large and
from (5.255) we would obtain unrealisably high values for the shunt admit-
tances. We can solve this by scaling the internal nodal admittances of the filter
but before we do that we introduce redundant impedance transtforming
elements at the input and output of the filter. Initially we connect a
frequency-independent phase shifter of unity impedance and phasc length 6,
between the source (and load) and the filter (Figure 5.54).
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O
% G, = 1am(®)
1Q © tan(0p)
o -

Yin(j®)

Figure 5.54  Introduction of a phase shifter at input and output of the filter

The transfer matrix of the phase shifter is

7] = .C(?S(()O) Jsin(0q) (5.270)
Jsin(th)  cos(fy)

Remembering that the source and load admittances have been scaled in order to
remove the frequency variation of the load, then the effective source admittance
after introducing the phase shifter is

Yin(jw) = cos(8y) +jsin(fy) tan(6)/ tan(dy)

B cos‘(@o) tan(6) + jsin“(4y)
~ sin(f,) cos(8)[1 +j tan(8))]

cos(fy) tan(6)/ tan(b,) + j sin(6 )
n(#

_ ‘cos () tan() + jsin? (6,)][1 — j tan(6)]

: : L (5.271)
[sin(26y)/2] 1 + tan=(6)]
The real part of the effective load admittance is
) tan(6)[cos(6,) + sin’(6,)] cos*(6)
Re Y =
e Yijw) sin(26,)/2
sin(26)
2 5.272
sin(26,) ( )
The imaginary part of Y (jw) is
ImY(jw) =/ cos(20) — cos(26) (5.273)

sin(26,)

The real part varies slowly with frequency; for example if 6, is 45° then it varies
by 0.866:1 over an octave. The imaginary part is resonant at 6, and again
varics slowly with frequency. Thus it can be said that introduction of the
ideal phase shifter effectively removes the frequency variation of the coupling
inverters {rom the filter,

The phase shifter may be represented by the introduction of an extra coupled-
line section at the input and output of the filter as shown in Figure 5.55. The
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(7]

1 Y12
e N
7] ] 1
-1 — 1-—— Y G
cos(00) cos(60)
Figure 5.55  Input-output network
transfer matrix of this network is given by
[ ! 0711 rcos(fy) 1 1
=11 1 1 1
-l - — 0 1 -l - —
L1 [ cos(f)(,)} t [ 003(90)}
] cos(6y) Jjtan(f) cos(by)
[ P A cos(fg)
L tan(0){cos(6y) — 1/ cos(0y)}

and after sc

7]

[ cos(tly) jsin(6)

cos(fy)

|

|/ sin(f)

aling the admittance by tan{f)/ tan(f)

which is the matrix of the ideal unity impedance phase shifter.
The admittance matrix of the combline filter is now given by

Y]

r 1

1

- — 0
{ tcos(fp)
1 I Y Y},
- —+C bt
rcos(0y) 1 W (
-Y Y
0 —IE (22 +Cop

etc. J

(5.274)

(5.275)

(5.276)

and after scaling internal rows and columns we obtain the equivalent circuit
shown in Figure 5.56.

The element values can then be obtained as follows. First we choose all the
capacitors C, to be equal of value . We also choose 6y, the electrical length at
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Yor Y,

o [ ] [ ]

] —_— = ] et
Y Y, Y,

G 1 G

Figure 5.56  Equivalent circuit of the combline filter after the introduction of the
input transformers

wy, &.g. 0y = 457, Then calculate o from

2(4)0 tan(()o)

y — 5.277
“ Aw{tan(fy) + Oy[1 + tan?(6,)]} ( )
and

B n,? Y. (5278
“= C, tan(fy) 278)
1 C .

‘ W tan(@)) Y/‘r ( )

Hence
Y,.,- = CLAJU t'dn(eo) (5-280)
C\, tan(0,)]""?
n, = {”—lym} (r=1.....N) (5.281)
K, , . tan(f
Y,.V,,,,:%(O) r=1.....N=1) (5.282)
nny
Y,=Y,=Y._ 1, =Y., (r=2,....N—1) (5.283)
Y= Yy=Y - Yite 1 (r=1and N 5.284
Pooov e P 0 cos(6y) r=1and N) (5.284)
Yo=Yyu =1 S 5.285
L L nycos(by) (5.285)
|

Yo=Yyy.g=——7+— (5.286)

ny cos(fy)
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5.6.1 Design example

We shall design a filter to the same specification as for the narrowband inter-
digital filter, i.e. a degree 4 Chcbyshev filter centred at 2 GHz with 40 MHz
bandwidth. The lowpass prototype element values are

Cy,=Crys=09314
CLZ - CL3 - 22487

Kis = Ky = 1.3193 (5.287)

Koy = 1.5751
Hence

wy = 1.2566 x 10" (5.288)

Aw=25132x 10° (5.289)
Choosing €y = 50°, i.e. 0.8726 radians, we obtain from (5.277)

a = 36.075 (5.290)
From (5.279)

8= Z(]Tln(oo_) =6.678 x 107" (5.291)
Also from (5.279)

Y, = % (5.292)
Choosing Y,, = 1, then

C=03=6678x10 " (5.293)
and from (5.281)

ny =ny = 63275 (5.294)

ny =ny=9.8318 (5.295)
From (5.282)

Yy = Yy = %%@ = 0.0253 (5.296)
and

Yy — Kztan(®) 6104 (5.297)

IZE
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From (5.284)
1 |

— ———————=10.7538
1712 251 COS(Q())

Yi=Y,=1-Yn+

and from (5.283)
Yz == Y3 - l — Y|2 — YZ} = ()9553
From (5.285) and (5.286)

Yo=Ys=1 = 0.7542

a (] COS(Q())

1
Yo = Yys = ——— = 0.2458
0! 5 1y cos(fg)

After scaling to 50 Q the impedances of the clements are as follows:

Zy=Z5=0662950
Z,=7Z,= 66339
Zy=Zy=52340Q
Zo = Zgs = 203420
Z1y=Zy = 197630
7y = 257730

and
C = 1.3356pF

The equivalent circuit of the filter is shown in Figure 5.57.

(5.298)

(5.299)

(5.300)

(5.301)

(5.302)

(5.303)

The length of the resonators is 50° at 2 GHz, i.e. 20.83mm. The filter is
considerably more compact than an interdigital filter with the same ground
plane spacing. The resonators are shorter and also closer together. For example
Z 518 1976 Q in the combline filter and 3526 §2 in the interdigital filter. The value
of S)5/b is 0.88 in the combline filter compared with 1.12 for the interdigital
filter. The simulated frequency response of the combline filter is shown in

Figure 5.58.

_Zo Z12 223 Z12

| I N [
il L

I c 1 T ] lc _I_c ’_L_l :j
Zo Z]T ZZT ZZT T Zy 2o

ligure 5.57  Equivalent circuit of a degree 4 combline filter
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Figure 5.58 Simulated response of the combline filter

5.6.2 Tunable combline filters

The centre frequency of the filter may be altered by synchronously tuning the
capacitors in each resonator {16]. It is worth noting that the frequency depen-
dence of the inverters is relatively small over octave bandwidths; thus the return
logs of the filter will remain fairly constant over this bandwidth. Furthermore,
the bandwidth of the filter is given by

. 20.}0 t'dn(()o)
o {tan(8y) + 6,1 + tan?(6y)1}

Aw (5.304)

This is a maximum when 0, = 52.885°. Aw as a function of 6, is as follows:

Bo 307 40° 507 60° 707
Aw 0237 0288 0314 0.306 0.254

The bandwidth of the filter remains approximately constant over a broad tuning
range.
5.7 The parallel coupled-line filter

The parallel coupled-line filter consists of a cascade of pairs of parallel coupled
open circuited lines [17]. The lines arc quarter wave long at the centre frequency
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A4

]

Figure 5.59  Parallel coupled-line filter of degree 5

of the filter. There are N + 1 coupled-line sections (including input and output
transformers) in an Nth-degree filter (Figure 5.59).

The parallel coupled-line filter is often used m microstrip subassemblies as it is
casy lo fabricate due to the absence of short circuits. A pair of coupled lines and
its equivalent circuit are shown in Figure 5.60. Here we sce that the equivalent

Figure 5.60  Equivalent circuit of a parallel coupled-line pair
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Zoe—Zoo
_.7_._
Zoe—Zoo = Zoe~Zoo
2 2
S B S R N
K
K= Zoe—Zoo
2

Figure 5.61  Equivalent circuit of a unit element

circuit consists of series open circuited stubs separated by a UE. Z . and Z,, are
the even- and odd-mode characteristic impedances of the coupled-line pair.
Now a UE may be decomposed into a pair of open circuited stubs separated
by an inverter as shown in Figure 5.61. Combining this with the equivalent
circuit in Figure 5.60 we obtain a final equivalent circuit consisting of series
open circuit stubs separated by inverters, shown in Figure 5.62. A cascade of
N — 1 coupled-line pairs results in a circuit consisting of N series stubs separated
by inverters (Figure 5.63). The filter can be designed by applying the Richards
highpass transformation to the series inductor/inverter coupled prototype.
Impedance scaling and introduction of redundant transformer elements
can be carried out in a similar way to the methods described for interdigital
and combline filters. Details of this procedure are provided in References 5, 6
and 7.

Zoe + Zoo Zoe + Zo

K= Zoe—Zno

Figure 5.62  Equivalent circuit of a coupled-line pair
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Y, Y, Ynan Yy
— L | | L
Kz K3 Kn-Ly
_____________

Figure 5.63  Equivalent circuit of the parallel coupled-line filter

5.8 Narrowband coaxial resonator filters

In cellular radio base station applications the bandwidths required are
narrow, typically 3.5 per cent, and the low loss specifications require reso-
nator @ factors of up to 5000. Consequently the filters require large ground
plane spacings and combline realisations would result in unacceptably large
inter-resonator spacings. Consequently a coaxial resonator approach is taken
where individual combline resonators are constructed in scparate cavities
with apertures providing the required weak couplings between resonators.
Furthermore, these devices usually require asymmetric generalised Chebyshev
characteristics with real frequency transmission zeros located on one side of

Figure 5.64 A coaxial resonator filter
(photograph courtesy of Filtronic plc)
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Figure 5.65  Measured performance of a coaxial resonator filter
( courtesy of Filtronic plc)

the passband. A single real frequency transmission zero may be realised by
coupling around three resonators as described in Chapter 3. A photograph of
a typical filter is shown in Figure 5.64. Its measured performance is shown in
Figure 5.65.

5.9 Summary

This chapter has been concerned with the theory and design of filters consisting
of interconnections of TEM transmission lines. Initially the use of the Richards
transformation to convert lumped prototype networks into distributed quasi-
lowpass and quasi-highpass filters is described. These filters consist of inter-
connections of open and short circuit stubs separated by inverters which may
be approximated by quarter wave sections of line. Next the design of lowpass
filters consisting entircly of a cascade of commensurate UEs of transmission line
is described. This is illustrated by an example and is followed by the design
of highly selective lowpass and highpass distributed filters with generalised
Chebyshev characteristics. The lowpass design is illustrated by an example.
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Next the thcory of coupled transmission lines is developed in terms of the
admittance matrix for a system of N coupled lines. This is followed by dctailed
design procedurcs of two types of coupled-line filter, the interdigital and the
combline filter. Design examples of both these filters are presented including
information on the physical realisation. The parallel coupled-line filter, which
is convenient to realise in microstrip, is also described. Finally the use of iris-
coupled coaxial resonator filters is described and illustrated with a real
device.

5.10 References

9

10

RICHARDS, P.1.: ‘Resistor transmission line networks’, Proceedings of the
IRE, 1948, 30, pp.217-20

RICHARDS, P.I.: ‘General impedance function theory’, Quarterly of
Applied Mathematics’, 1948, 6, pp. 21-29

BAHER, H.: ‘Synthesis of electrical networks’ (Wiley, New York, 1984)
pp. 133-53

RHODES, J.D.: ‘Theory of electrical filters’ (Wiley, New York, 1976)
pp. 134-49

TRINOGGA, L A., GUO, K., and HUNTER, 1.C.: ‘Practical microstrip
circuit design” (Ellis Horwood, Chichester, 1991) pp. 168-85

EDWARDS, T.: ‘Foundations for microstrip circuit design’ (Wilcy, New
York, 1992, 2nd edn.)

ALSAYAB, S.A.: *A novel class of generalised Chebyshev lowpass
prototypc for suspended substrate stripline filters’, TEEE Transactions on
Microwave Theory and Techniques, 1982, MTT-30 (9), pp. 1341-47
GETSINGER, W.J.: ‘Coupled rectangular bars between parallel plates’,
IEEE Transactions on Microwave Theory and Techniques, 1962, 10 (1),
pp. 65-72

MATTHAEI, G., YOUNG. L., and JONES, E.M.T.: ‘Microwave filters,
impedance matching networks and coupling structures’ (Artech House,
Norwood, MA, 1980) pp. 163 229

DEAN, JE., and RHODES, J.D.. ‘MIC broadband filters and
multiplexers’, Proceedings of the 9th European Microwave Conference,
1979

ZYSMAN, G.I.,, and JOHNSON, A.X.. ‘Coupled transmission linc
networks in an inhomogeneous dielectric mediom’, /EEE Transactions on
Microwave Theory and Technigues, 1969, MTT-17 (10), pp. 753 -59
DEAN, J.E., and RHODES, 1.D.: ‘Design of MIC broadband multiplexers’,
Microwave Theory and Technigues 5, International Microwave Symposium
1980, Digest 80.1, pp. 147-49

SCANLAN, J.O.: ‘Theory of microwave coupled-line networks’,
Proceedings of the IEEE, 1980, 68 (2), pp. 209-31

WENZEL, R.J.: “Exact theory of interdigital bandpass filters and related
coupled structures’, [EEE Transactions on Microwave Theory and
Techniques, 1965, MTT-13 (5), pp. 559-75



200  Theory and design of microwave filters

15 MATTHAEI, G.L.: ‘Comb-line bandpass filters of narrow or moderate
bandwidth’, Microwave Journal, 1963, 1, pp. 82-91

16 HUNTER, 1.C., and RHODES, J.D.: “Electronically tunable microwave
bandpass filters’, TEEE Transactions on Microwave Theory and Techniques,
1982, MTT-30 (9), pp. 1354--60

17 COHN, S.B.: ‘Parallel coupled transmission line resonator filters’, /RE
Transactions on Microwave Theory and Techniques, 1958, 46, pp. 223-33



Chapter 6
Waveguide filters

6.1 Introduction

A waveguide is a structure which directs the propagation of an electro-
magnctic wave in a particular direction by confining the wave energy. Wave-
guides normally consist of hollow metallic pipes with uniform cross-section.
The use of dielectric rods as waveguides is also common and these will be
discussed in Chapter 7. Waveguide resonators are useful elements in filter
design as they gencrally have much higher Q factors than coaxial or other
TEM resonators.

There are distinct differences between waveguides and TEM transmission
lines. A transmission line has a minimum of two conductors and supports the
TEM mode of propagation, which has zero cut-off frequency. There is no
minimum size for the cross-section of a TEM line in order for signal propaga-
tion to occur, other than that determined by dissipation losses. On the other
hand. a waveguide has only one conductor consisting of the boundary of the
pipe. The waveguide has a distinct cut-off frequency above which electro-
magnetic energy will propagate and below which it is attenuated. The cut-off
frequency of the waveguide is determined by its cross-sectional dimensions. For
example, a rectangular cross-section waveguide must have a width at least
greater than one-half of the free spacec wavelength for propagation to occur
at a particular frequency.

Furthermore. propagation in waveguides occurs with distinct field patterns,
or modes. Any wavcguide can support an infinite number of modes each of
which have their own cut-off frequency. Also, both the characteristic impedance
and the propagation constant of a waveguide are functions of frequency.

In this chapter we will examine the design techniques for filters comprising
interconnections of waveguides. Initially the basic theory of rectangular and
circular cross-section waveguides will be described. This is cssential for a
proper understanding of the modal fields, and in order to develop expressions
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for cut-off frequency and the resonant frequency and @ of waveguide
resonators. Design techniques for various waveguide filters will then be
developed.

6.2 Basic theory of waveguides

A waveguide normally consists of a hollow conducting pipe of arbitrary cross-
section (Figure 6.1). In the ideal case both the conductor and the dielectric filling
the waveguide are assumed lossless.

Analysis of the possible field structures within the guide is accomplished by
solution of Maxwells equations, which for sinusoidal excitation are

VXE =—jwuH (6.1)
VXH =jweE (6.2)
(exp( jwt) dependence assumed) and for a source-free region
V.- D=eV-E=0 (6.3)
V- B=uV-H=0 (6.4)
Taking the curl of (6.1) and substituting (6.2) we obtain
VXVXE = w?ucE (6.5)
or
—VE+V(V-E)=w?ucE (6.6)
and from (6.3), for source-free regions, we obtain the Helmholtz equations
VE = —k’E (6.7)
V?H = —k*H (6.8)
where
k? =wue (6.9)
conducting
boundary

Figure 6.1  Uniform waveguide with arbitrary conducting boundary
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If we assume that the direction of propagation is along the z axis then the fields
can be expressed in terms of the propagation constant «:

E(x, y, z) :.f(x’ }’) exp(ffyz) (610)

where for a lossless waveguide v = « implies an exponentially decaying or
cut-off wave and v = j 3 implies 4 propagating wave with sinusoidal variation
along the z axis. The Helmholtz equations can be expressed as

VIE=—-(v*+k)E (6.11)
V2H = —(v* +kH)H (6.12)
where
, 8 9
=4+ 6.13
L ox? +(‘)y2 ( )

The E and H ficlds can be obtained by solving (6.11) and (6.12) with the
appropriate boundary conditions, which in this case are that the tangential £
field should be zero on the surface of the conducting pipe. General expressions
for the fields in waveguides of arbitrary cross-section are difficult to obtain.
Fortunately most practical waveguides have simple rectangular or circular
cross-sections. Initially we will examine the rectangular waveguide shown in
Figurc 6.2. TEM modes cannotl exist in the waveguide and the simplest
modes are those with purely transverse E fields (TE or H modes) or purely
transverse H fields (TM or E modes).

6.2.1 TE modes

For TE modes, E. is equal to zero and H. is finite; the Helmholtz equation is
O*H. O°H.

2
I + 7y =—kiH. (6.14)
where
k& =~% + k* (6.15)

/.

< o —>
N

Figure 6.2 Rectangular waveguide
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Solution of (6.14) by separation of variables yields

H. = [4sin(k . x) + Bcos(k  x)][Csin(k, y) + D cos(k, y)] (6.16)
where
k=ki+k? (6.17)

A, B, C. D, k, and k, can be found by applying the boundary conditions of the
waveguide to the E fields. These may be found from Maxwell’s equations as
follows:

i j ok
. a o d .
E.\' E\' E:
and
i j k
Y2770 AR 6.19
=\ox 2y o = —jwe (6.19)
H, H, H.

By expanding these equations and sctting E. = 0 for TE waves we can express
the other field components as

—jwp OH.
E =212 2
Yoy k? Oy (6.20)
Jwp  OH.
E = —_
L N AT (6.21)
—v  OH.
H,=——"5——=
ey (6.22)
-y  OH.
H, = —_—
L) ,)/2 + /\2 (9},, (623)
Hence substituting for H- in (6.20) and (6.21) we obtain
. _jw/l'kr : .
£, = 5 [ sin(kx) + Beos(k, x)][C cos(k, y) — Dsin(k, y)] (6.24)
C
and

Jwpk, .
/fz LA cos(k,x) — Bsin(k,x))[Csin(k, ) — Deos(k, )] (6.25)

C

£y =
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Now the boundary conditions are that the tangential F field should be zero on
the surface of the conductor. Thus

E.~0[,_,=C=0 (6.26)
E=0], = A4=0 (6:27)
Hence
H. = Hcos(kx)cos(k,y) (6.28)
where H 1s an arbitrary constant. In addition
E = 0‘ vy = kya=mm (6.29)
E, =0, ,=kb=nn (6.30)
and
H. = Hcos(nmx) cos(mry) (6.31)
a b
where m and #n are integers. The other field components are (for v = j3)
=T preon("Y) in("2) (6:32)
—jwpk, . /MmTX nwy
E, = s H sin (#;A) cos (T) (6.33)
Bk H X
H, :j‘d a sin(}m”> cos(nﬂ) (6.34)
k¢ a b
JjBk . H mmxy . (RTWYy
H. =~ 2 cos( p )sxn( 7 ) (6.35)

In these equations m and n are the mode numbers, representing the number of
half wave variations in the field in the x and y directions. There are a doubly
infinite set of modes, depending on the value of m and n. These are called the
TE,,, modes.

Now from (6.15), (6.17), (6.29) and (6.30)

2 2
k2=~ +k? = (ﬂ) +(”—”) (6.36)
a b
where k = w(pe)l/z. For a propagating mode v = j3 and
mm\2  nm2] 2
8= |wine — (U5 - (5] -
, [w € ( P /.7) (6.37)

At the cut-off frequency of the guide 3 = 0 and

mm2  nm2] Y
= b ] o
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From (6.38) we can see that the lower the mode number then the lower the cut-
off frequency. From (6.32) to (6.35) we see that cither m or n can be zero, but not
both, and assuming ¢ > b the lowest cut-off mode is the TEq mode. In this case
the fields are

H.= Hcos(%) (6.39)

E, = _j:“ “ H sin (%X) (6.40)

=1y sin(Lx) (6.41)
w a

(E, and H, are both zero). The cut-off frequency of this mode is given by

iy
we =— (6.42)
where v = 1/(ue)"/? is the velocity of light in the dielectric medium, and since

v = f A then

_Ac

5 (6.43)

a

In other words the a dimension is haif the free space wavelength at the cut-off
frequency.
The £ and H fields for the TE;, mode are shown in Figure 6.3.
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Figure 6.3 Electric and magnetic fields for the TE\y mode in a rectangular
waveguide



Waveguide filters 207

The characteristic impedance of this mode can be defined as the ratio of the

transverse E and H fields, i.c.
I, Wit
Zyg =2 = 6.44

and the propagation constant 3 is given by
,11/2
4= {wzua - (”)} (6.45)
a
and since

=2 (6.46)

g= {1 _ (ii” (6.47)

[ is related to the wavelength of propagation in the guide, the guide wavelength
A, by
E’

g= (6.48)

= 2r = Ao (6.49)

A ;
B = (w/w))'?
Here we see that the propagation constant and guide wavelength are functions
of frequency. As we approach cut-off 3 tends to zero and A, tends to infinity. As
we approach infinite frequency they both tend towards their free space value.
From (6.46) the wave impedance is given by

wie WA, B n

Zop =K - . 6.50
T I (/)] 020
and
n=(u/e)'? (6.51)
where 7 is the characteristic impedance of free space.
Alternatively
A
Zrp =12 (6.52)
Ag

where A 1s the free space wavelength and

Ao :I‘7 (6.53)
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We can compute the group velocity of the waveguide from

1/2

B G ,,[1 _ (&ﬂ (6.54)

¢ dp w

We see that v, approaches zero as w approaches w.. This can causc phase

distortion of modulated waves if the signal frequency approaches too close to
the cut-off frequency.

6.2.2 TM modes

TM modes have zero H. and finite £.. In this case their behaviour is described
by the solution of

2 2
vip, OB OE.

2
=TT Ty~ RE: (6.55)

This equation can be solved in a similar way to the TE wave equation
yielding
E. = Esin (mwx> sin (m) (6.56)
a h
In this case in order for the field to exist neither of the mode numbers can be

zero and the lowest cut-off mode is the TM; mode. The field pattern for this
mode is shown in Figure 6.4.

3
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SN IR 16 O SR U N
E 2 SRR £ Ay M
N\t I
1. Cross-sectional view - — — — — — = current in walls
2. Longitudinal view — ——— = F field
3. Surface view e = H field

Figure 6.4 Electric and magnetic fields for the TM\, mode in a rectangular
waveguide
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6.2.3 Relative cut-off frequencies of modes

The cut-off frequency of any mode in a rectangular waveguide is given by

N (Ce R =

For a typical aspect ratio of ¢ = 2b and ¢ = g, w, 1s given by

we = o (m* + 4/12)1/2 (6.58)

(44

Assuming that the cut-off frequency of the TE,; mode in a particular waveguide
is 1 GHz, i.e. « = 15 cm, then the next propagating modes are the TE,,; and TE,,
modes with a cut-off frequency of 2 GHz. These are followed by the TE,; and
TM,; modes, both with a cut-off frequency of 2.236 GHz. The TE,, mode is
often called the dominant mode as the waveguide can be operated in this mode
over a broad spurious free bandwidth. Normally the waveguide would be oper-
ated at least 25 per cent above cut-off to avoid phase distortion.

6.2.4 Rectangular waveguide resonators

A waveguide can be formed into a resonant circuit by placing short circuited
boundary conditions one half guide wavelength apart to form a box, as shown
in Figure 6.5. If the mode of propagation in the waveguide is the TE |, mode
propagating along z then the £ field must be zero at z=0 and z = /. Thus ¢
must be one half guide wavelength. Therelore

Ay Ao Ao

t=-—== S = — 6.59
20201 (we /W) 21— (Ao/2a)7) 2 (039
The resonant frequency is
X ¢ cla e
Jo=1= ca b)) " (6.60)

Ao 2.4

Figure 6.5 Rectungular waveguide resonator
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This is independent of 4 as there 1s no field variation along the v axis for TE,,
modes. This resonant mode is called the TE,,,, mode.

The eftects of finite losses in the conducting walls determine the unloaded Q
of the resonator. This can be caleulated by forming a volume integral of £, to
determine the stored energy, and dividing it by the dissipated energy due to
currents in the walls of the resonator. The result. quoted here withoul proof,

is [1]
<1 ﬁ 1)-"3
A abt e
Oy =20 N ) (6.61)

{
S (a+2h) +/‘—’,(( +20)
- -

where A/ 1s the ratio of free space wavelength to skin depth at the resonant
frequency. For silver

A 1479 % 10°

F— (6.62)
[-or brass

A 7.462 x 107

4 A i (6.63)

g VI

where fis the frequency in gigahertz.

6.2.5 Nunierical exanmple

A rectangular waveguide has an « dimension of 2em and a A dimension of | cm.
Calculate the length ¢ for a resonant frequency of 10 GHz and calculate the
unloaded @ of the resonator. assuming it is silver-plated.

First we compute

)\ 0

= — -5 (6.64)
20 (/207"
where
¢ 3x ot <
An = 5= = 0.03 (6.65)
Hence
0.03
R — — = 0.0226 (6.66)
2[1 = (0.03/0.04)71 -
That is.

f=226cm (6.67)
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Figure 6.6 Mode chart for a rectangular waveguide resonator with b = 24
(reprinted with permission from Matthaei, G., Young, L., and Jones,
E.M.T.: ‘Microwave filters, impedance matching networks and coupling
structures’ (Artech House, Norwood, MA, 1980); www.artechhouse.com)

Now

A 1479 x 10° ,
A X T 46770 (6.68)

6 V(10)
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and from (6.61)
Oy 101 = 8009 (6.69)

Note that although the » dimension does not affect the resonant frequency it
docs affect the Q. This is analogous to the ground plane spacing in TEM
resonators.

6.2.6 Spurious resonances

As we have already found there are an infinite number of possible propagating
modes in a waveguide, with an infinite number of cut-off frequencies. Conse-
quently a waveguide resonator has an infinite number of resonant frequencies.
It is useful to be able to predict these frequencies in order to gain insight into the
spurious performance of a filter. The easiest way to predict these is to use a
mode chart as shown in Figure 6.6. The chart enables a graphical method of
predicting the resonant frequencies of a rectangular waveguide resonator with
b = 2a. Here a, b and ¢ are measured in inches with fin gigahertz, Taking the
previous example with ¢ =2cm (0.787") and ¢=2.26cm (0.889") then
(a/€)* = 0.783 and the chart gives the expected resonant frequency of 10 GHz
for the TEy, mode. Moving vertically up the chart until we intersect the line for
the first spurious (TEy;) mode, we obtain a resonant frequency of 15.65 GHz.

6.2.7 Circular waveguides

Circular waveguides are often used in filters because of the very high Q factors
which can be obtained from the TE,y modes. Furthermore they are often used
in dual-mode configuration where two orthogonal degenerate modes (c.g.
TE,|;) exist in a single resonator. The analysis of circular waveguides is
best done in a cylindrical coordinate system as shown in Figure 6.7. Again
TEM modes cannot exist in circular waveguides; TE and TM modes will be
treated separately.

/

N\

conducting
boundary

<« 2a —>

Figure 6.7 Circular waveguide
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6.2.8 TE modes

The differential Helmholtz equation for H. is [2]

V/H. = % (;i] (r ‘Zf) ri 0{}5 = —kZH. (6.70)
where

k=~ 4 k2 (6.71)
The solution for this equation is

H.(r, §) = [AJ(ker) + BN, (k.r)l[Ccos(ng) + Dsin(ng)] (6.72)

where J,, and N, are nth-order Bessel functions of the first and sccond kind,
respectively [3]. In fact the second kind of Bessel function has a singularity at
r = 0 and thus cannot be a solution in regions which includc the axis. In addition
we will choose the orientation such that we only take the cos(n¢) solution. Thus

H.(r,¢p) = HJ,(k.r)cos(ne) (6.73)

The other field components can be found from Maxwell’s equations in cylindrical
coordinates with £. = 0 and v = j3, giving

7/”1““ 8H:
0, = 74
' rkZ 0o (6.74)
Jwp 011
E. = —_— .
=L S (675)
—jB OH.
H. = = .
Tk Or (6:76)
B OH.
[ /\'EV E)(Z) (677)
Thus from (6.73)-(6.77)
£, = ZveHy =755 1, (k) sin(no) (6.78)
2r
Ey = ~ZrH, =" 2 HI (ker) cos(ng) (6.79)
"
and
Wit
Zrp =——
re = (6.80)

The boundary condition for the waveguide is that the tangential £ ficlds must be
zero at the surface of the cylindrical conductor. Thus

Eyl,-, =0 for all ¢ (6.81)
Therefore
J) (kea) =0 (6.82)
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Now

k2 =~"+k*=k?-p? (6.83)
At cut-off 3 = 0 and k_ is thus the wavenumber at cut-off, i.e.

ko = 2T (6.84)

Ae WV
and
2 .a
koa = A’”’:‘”“’:p’(n,e) (6.85)

where p'(n, ¢) are the doubly infinite set of zcros of the derivatives of Bessel
functions of the first kind. These zeros are given for the first three Bessel
functions in Table 6.1.

The lowest zero of the derivatives which gives finite fields is the first zero of J|
with a value of 1.841. This corresponds to the lowest cut-off frequency of all the
TE modcs, the TE;, mode. The cut-off frequency of this mode is given by

2
2mfe _ 1 gai (6.86)
1%
and if v is the velocity of light in a vacuum then
79 % 107
a= i-—;i (6.87)

Thus for a cut-off frequency of 1 GHz, a = 8.79 cm.

In general the mode numbers are designated TE, , where n denotes the
angular variation in ¢ and /¢ is the variation in radial position r determined
by the number of the zero. The next lowest cut-off frequency is for the TEy,
mode with py = 3.832. For ¢ =8.79c¢m this has a cut-off frequency of
2.08 GHz.

The field components for the TEy, mode are given by

3.8327
H.— H.l()( - ') (6.88)
§ i Jw ,(3.832r
Ey= ~Zrpt, =2 1y .
o= ~zret, =2 (22 (6.89)
E, = H,=0 (6.90)

These fields have no variation with ¢ as shown in Figure 6.8.

Table 6.1 Zeros of Bessel functions and their derivatives

Jy 5 Jy Jg Jy Js
2.405 3.832 5.136 0 1.841 3.054
5.520 7.016 8.417 3832 5.331 6.706

8.654 10.173 11.620 7.016 8.536 9.909
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Figure 6.8  Field patterns for TEy and TE,, modes in a circular waveguide
6.2.9 TM modes
For TM waves the solution of the Helmholtz equation is
E.=FEJ,(k.r)cos(ng) (6.91)
_ B i W e
E.=ZruH, = TEJ” (kor)cos(ng) (6.92)
ALY
—iB
E, = ZomH, = - E7 (ko) sin(ne) (6.93)

e r
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where

Zong =L (6.94)

we
The boundary conditions require £. and L, to be zero at r = a. Thus

kea=tX4_2ma_ (6.95)

v Ae '
where p, , are the zeros of the Bessel function of order n. The lowest order mode
is the TM;, mode with py; = 2.405, giving a cut-off frequency (for ¢ = 8.78 cm)

IR RSN
AR MR REEEE
ioe ke . ‘
PULLL )

[. Cross-sectional vicw
2. Longitudinal view through plane /—¢
3. Surface view through s—s

Figure 6.9 Field patterns for TMo and TM |, modes in circular waveguides
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conducting
plate

Figure 6,10 Circular waveguide resonator

of 1.306 GHz. The next lowest order mode is the TM; mode with p;, = 3.832.
This is degenerate with the TEy mode. Ficld patterns for these two modes are
shown in [ligure 6.9.

6.2.10 Circular waveguide resonators

Resonators can be formed from circular waveguides by forming a cylindrical
box with conducting plates across the surface of the waveguide as shown in
Figure 6.10. In this case the modes are designated TE, ,,, , or TM, ,, , where /,
m and n are the mode numbers for the number of variations along ¢, r and =
respectively.

The resonant frequencies for the various TE modes are given by

(fu)> = 2246 [('U;_m>_+n ((—;)E} (6.96)

For TM modes simply substitute p;,, for p;,, in (6.96).

More conveniently a modc chart for circular cylinder resonators is shown in
Figurce 6.11. The theoretical Q factors for various TE modes are shown in
Figure 6.12.

6.2.11 Numerical example

Design a circular ¢ylindrical resonator for operation in the TE,;; mode with a
resonant frequency of 10 GHz. Optimise the resonator for a rcasonable compro-
mise between unloaded Q and spurious-free performance.

From the mode chart a value of (a/¢)* = 0.5 is reasonable for spurious-frec
performance. Note that the TE|; mode is degenerate with the TEy;; mode and
care must be taken not to excite this mode. From Figure 6.12 with a/£ = 1/,/2
we obtain

6.95 x 10°°/f 0, ~ 0.64 (6.97)
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Figure 6,11 Mode chart for circular evlinder waveguide resonators

(Source: Montgomery. C.G.: “Technique of microwave measurements’
(McGraw Hill. New York. 1947))

Therelore
Q. =~ 29000 (6.98)

The dimensions are most accurately calculated using the formula rather than
the mode chart with p/,, = 3.832. 1 = | and /' — 10. Hence

s 2246 (3832 '3+0 . (6.991
C T 0 (R 77

il
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Figure 6.12  Theoretical unloaded Q for 1L modes in circular cylinder waveguide
resonators

(Source: Montgomery, C.G.: “Technique of microwave measurements’
(McGraw-Hill, New York, 1947))

Therefore ¢« = 2.113cm and £ = 2.988 ¢cm.
Moving up the mode chart the TE;;; mode and TE, ;> modes both resonate at
10.83 GHz. In addition the TM ||, mode resonates at 8.71 GHz.
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6.3 Design of waveguide bandpass filters

Waveguide bandpass filters can be constructed from uniform lengths of wave-
guide loaded with shunt discontinuities. A particular example of a rectangular
waveguide with pasts connected across the broad wall of the guide is shown in
Figure 6.13.

The principle of operation of the filter is that the posts act as shunt inductive
discontinuities (with associated reference planes) and the sections of waveguide
between posts are half wave resonators [4]. It will be shown that an inductive
post embedded in a waveguide can behave as an impedance inverter over rela-
tively broad bandwidths. Thus the physical structure has an equivalent circuit
consisting of bandpass resonators separated by inverters, which is suitable for a
bandpass filter. It now remains to develop a design theory.

From a theoretical viewpoint it is unimportant whether we are working with
rectangular or circular guides. We can choose the appropriate guide and mode
of operation from considerations such as physical size and Q.

A section of waveguide may be defined by its transfer matrix which is that of
a transmission line with frequency-dependent propagation constant and
characteristic impedance, ¢.g.

NAg n

Zo=Te__n 6.100
S VR TR WL L (6100
and
a 2_772 _ 21172
8= v [1 (wc/w) ] (6.101)

The characteristic impedance is unimportant, as we can normalise all the

rectangular
waveguide post
N |
o o)
o o o a

< o>

Figure 6.13  Rectangular waveguide bandpass filter
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elements in the filter with respect to terminating impedances equivalent to an
infinite uniform guide. Thus we can define the transfer matrix for a length of
guide as

e cos(f) jsin(#) )
e <./Sin(9) cos(f) ) (6.102)

where

0=p0— iﬂ (6.103)
or &

o= %:“ (6.104)

Here A, is proportional to the length of guide. In this particular case Ay has
been chosen to be the guide wavelength when the guide is half a wavelength
long, i.c.

A
5:7\20 (6.105)

Now we would like to introduce discontinuities into the guide to form inver-
ters. Series discontinuities in waveguides are difficult to produce so we will only
consider shunt elements. A shunt inductive discontinuity can be introduced by a
vane in the side of a rectangular waveguide [5], although this is not good for
suppressing spurious modes. This type of discontinuity can also be introduced

post

AB

Figure 6.14  Shunt inductive discontinuity in a rectangular waveguide
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by inserting posts across the broad wall of a rectangular guide operating in the
dominant TE; mode, or across the middle of a circular guide operating in the
TE,, mode. Other types of inductive iris may be formed by holcs in plates across
the guide [6]. The equivalent circuit of the shunt discontinuity consists of a shunt
inductor with appropriate reference plancs (Figure 6.14).

The transfer matrix of the shunt inductor is

10
7] = | Z/BAe (6.106)
/\g()

The reference planes A and B are normally within the diameter of the post. The
number of posts and their diameters determine the parameter B and the
reference plane locations. B will be determined by the particular design which
itself then determines the post structure.

We now modify the inductive iris section by symmetrically embedding it in a
uniform section of waveguide of electrical length

f)
b — Wy Ago

A

as shown in Figure 6.135.
The transfer matrix of the new section is

(6.107)

jsin(e/2)  costiy2) | |58 1 | singu/2) cos(wz)J

cos(i#/2) ,/sinw/zﬂ_‘ OMcosw/z) Jsin(y/2)]
: 1
)‘g()

[ BAy it in(e
cos(¢/2) + oo sin(¥/2)  jsin(y/2) {cos(y’:/Z) _/'sin('l/"/Z)}

jsin(uf:/z)—if/\gcos(r/zﬂ) cos(py2) | LIsn(e/2)  cos(y/2)

20

B 2 2 B/\ g = \
cos™(1/2) — sin”(v/2) + 3 £sin(1/2) cos(v:/2) j {2 cos(yr/2) sin(4/2) + P:\—/\E sin?(v/2)
¢0 20

A 2 2 .2 s
J [2 cos(y/2) sin(v/2) i—Tgcos“(w/Z)J cos™(¥/2) — sin"(3/2) + %sin(w/z) cos(y/2)
ol 0

() § /\F in() i lain (i B)‘S el
cos() + 7 % sin(y)) J [sm(z,)+ " sin (u«/ZJJ (
= 6.108

j {sin(u'ﬂ) - [/)’\, gCosz('w/2)} cos(th) +§ ;“ sin(3) )
£0

20

Figure 6.15  Shunt inductive iris embedded in a section of waveguide
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Now we equate this to an inverter with the transfer matrix

—i X
0 /250
KA,
[T] = o (6.109)
/\g()

where K is the characteristic admittance when A, = A,,. Henee

B
cos(thg) + jsin(@/)”) =0 (6.110)
That is,
b0 = —tan-! [ 2 (6.111)
Yy = —lan B .

Now subtracting the C parameter from the B parameter in ecach matrix and
equating at A,, we obtain

K- % = Blsin®(¢/2) + cos™(¢//2)] = B (6.112)

The susceptance B of the inductive iris is positive. Therefore
1/K < K and K > 1 (6.113)

From (6.111) with B positive, 1y must be negative and the line cannot be
realised in isolation. In reality we shall be connecting the impedance inverter
to lengths of waveguide and the negative lengths can be absorbed into these.
Thus we can say that a shunt inductive iris can be represented by an inverter
with reference planes defined by (6.111) and the physical reference planes in
Figure 6.14.

It is useful to understand how well the iris approximates to an inverter over
broad bandwidths since the design equations arc only strictly correct at A .
Examining the A parameter in (6.108) we have )

Do A B Ay . (oA,
A = COS (h 0/\;’“) + 5 T;OS“‘I (%ﬂ) (61 14)
and from (6.111)
B 1
= 15
2 tan(y) (113
Hence
tho A ,0> Ay . (U”o A *l))
A = cos £ - £ _sin| —% 6.116
( )‘g /\g(] ti’ln(’(/'()) /\g ( )
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Differentiating 4 with respect to A, we obtain

gzi _ 'd"() /:g() sin (‘ZJD /\g()) - 1 sin (% AgO>
dAa, e Ag Ao tan(afy) Ag
A

. . COS(z/Jo)\g()) 1/’0:\;;0 (6.117)
Ago tan(zy) Ag e

and if 1 is relatively small

L L S B (6.118)
VRS VR VL VW

which is small for 3, small; hence A4 is approximately zero over a relatively
broad band.
Furthermore, examining the B parameter in (6.108) we obtain

. 7/)0/\g0) 2)\g . 7(’9/}0/\g0>
B =sin — sin” 6.119
( /\g tan(’¢0) /\go 2/\g ( )

Again differentiating with respect to A, we obtain

4B Podeo  (PoAg) 2 gin2 (Yo reo
dX, A Ag tan(1o) Ago 22,

ax, . (oA Yo Ago\ YoAgn
S [ ———= ) ——=— 6.120
+ taﬂ(’(/Jo))\gO bln( 2)\?, cos 2)\g 2)\1, ( )

and for v small

dB Yo Ago
- _ (6.121)
dA, 2X%
Now the differential of the B parameter in (6.109) is given by
dB Ay
— = 122
dx, KX (6.122)

and since g is negative the differentials of the two B parameters have the same
functional behaviour with respect to A,. Hence the inductive iris embedded in a
waveguide is a good approximation to an inverter over broad bandwidths.

Inverters can also be formed from a shunt capacitive iris with the transfer
matrix

10
(1] = |/BAo | (6.123)
A

g

The inverter can be formed again by embedding the iris in a section of
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waveguide. In this case the A paramcter is

Py A, Ay (oA
A= COS(I' 0 “0> - 8 sin (1 0 *0) (6.124)
N ) tanfor A,

Differentiating with respect to A, and evaluating for small 7 we obtain

N

2 2
dd  P5A | 2Aw

=3 3
AL A

(6.125)

The second term in this expression is significant, even for small ), and hence the
A parameter quickly deviates from zero when A, deviates from A,. Thus the
inverter approximation is only valid for narrow bandwidths.

A design procedure for all-pole type waveguide bandpass filters will now be
developed. Having established that a single inductive discontinuity embedded
in a waveguide is a good approximation to an inverter then the waveguide
bandpass filter in Figure 6.14 is cquivalent to a cascade of UEs separated by
inverters. Apart from the A,,/A, frequency dependence, the inverters only
change the impedance level in the network and hence the entire nctwork is
equivalent to a cascade of UEs as shown in Figure 6.16.

The optimum equiripple bandpass responsc for a cascade of UEs is given by

1
o 6.126
(jw)l | + &2 T [rsin{0)] o
where
A
e (6.127)
A

The response must be modified to take into account the frequency dependence
of the inverters giving

B |

Sl 4e? Tila( A/ Ago) sin(m(Ago/Ap))]
Given the degree N, the ripple level £, and the two band-edge frequencies w; and

wy we can find the two guide wavelengths A, and A, for the particular
waveguide used. For example for a rectangular waveguide it was shown that

| Sia(jw)l® (6.128)

Ag
Ay = m[l - (wc/w)Q]l/z (6.129)
o—JI [ ... 5
UE UE UE
A Z2 ZN
fo W— —  feeee L 0

Figure 6.16  Equivalent circuit of a waveguide bandpass filter
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Now equating w = +1 in the lowpass prototype to A,; and A, in the waveguide
filter we have

A A
gl . g0
a —5=sin =1 (6.130)
)‘gO ( /\gl )
A TA
g2 - g0
a —==sin = -1 6.131)
)‘gO ( )‘g2 ) (
Hence
A A
Ayl sin(7r g”) + /\gzsinCT go) =0 (6.132)
Agl Ag2

This equation can be solved using the Newton—Raphson technique as follows.
Let

Ay (T,
F(Ag) = Agy sin(7r é“) + A sin (u> (6.133)
/\gl /\gZ

Then

TA Ay
- g”) + mos(u) (6.134)
)‘gl /\gZ

We can make an initial approximation to A,y of

Fl(Ago) = 7rcos(

A A

w0~ (6.135)
This is then modified to
Aar A2 F(Au)
)\, _ 78 gs £ .
20 5 F'(Ag) (6.136)
That 1s,
T Ap2 T Al
A e L A Y [
Mg+ Ag ] g‘COS(z X 1) * gzcm(z /\,2>
N, = e 82 - g & (6.137)
g0 2 T T A T A >
sin(- gZ) +sin (— gl)
2%, 2 A

Then from (6.130)

A A -
gl . g0
= |——sIn = 6.138
l:/\g() (Agl ):I ( )

The element values of a cascade of UEs with equiripple response were presented
in Chapter 5. These may be modified to account for introducing impedance
inverters as follows.
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The clement values are then

K,
Kl oy=—tt (6.139)
o (Z/ZI l)[/2
Z - 2w sin {(2/’— l)ﬂ':l
n 2y
2 s 20 "2 e 7
R Ui +sin“(ra/N) L ‘+sm (r— 1)mw/N] (6.140)
dno | sin(2r + 1w /2 y] sin[(2r — 3)7w/2 y]
forr=1,...,N, and
22 2 12
K, = s/ Nl (6.141)

Ui
forr=10,...,N. Here

n = sinh {% sinh ™ <é>} (6.142)

Note that we have introduced unity impedance inverters at the input and
output, which are needed to define the first and last UEs. Finally we would
like to realise the filter in a uniform guide and thus we scale the internal
impedance level of the filter to obtain

! K;xr»l

«wljm (r=1,...,N) (6.143)
reir+

with
Zo=Zpne1 =1 (6.144)

The design process may now be summarised as follows.

First we assume that the band-edge frequencies f; and f, arc known. The
ripple level ¢ is determined by the required return loss. Given the frequency
band the waveguide size can be selected from standard sizes. The cut-off
frequency of the waveguide is then determined, and A, and A,, can be found
from (6.129), A, from (6.137) and o from (6.138).

The degree of the filter can be determined by analysis of the insertion loss
function

o] Ag A
I = IOIOgW{l +e Ty {aﬁg—sm(wiu)J} (6.145)
Ago Ay

with N chosen to meet the most severe specification on insertion loss. Z,. and
K, , | can then be found from (6.140) (6.142).
From (6.112) and (6.143) we obtain the susceptances of the inductive irises
(Zv'zr—i—l)l/z Kr.r+l

B,y =~ - 6.146
o K, i1 (7,2, )2 (6.146)
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and the negative lengths of guide are subtracted from a half wavelength to
obtain the actual lengths of guide between the irises, 1,, giving

B, 1, B,,.
w,:ﬁ—%{cor 1( ’21">+cot‘< " 'ﬂ (6.147)

where the electrical length of 7 corresponds to a physical distance A, /2.

Finally the electrical parameters for the irises must be converted into actual
physical dimensions. The simplest method of producing shunt inductive irises is
to use circular posts of fixed diameter shorted across the broad wall of the
waveguide. A number of posts can be used depending on the required suscep-
tance. Normally they are located symmetrically across the guide in order to
suppress higher order mode propagation through the waveguide structure.
With a fixed number of posts a fine adjustment in susceptance can be made
by adjusting the distances between posts.

The data for post susceptances can be obtained experimentally. For example,
a single cavity filter can be constructed using two identical irises and the
measured insertion loss can then be used to deduce the susceptances and the
reference planes for the irises.

6.3.1 Design example

We shall design a rectangular waveguide filter to meet the following
specification:

Passband 8.5-9.5GHz

Return loss > 20dB

Stopband insertion loss > 25dB at 10.5GHz
> 40dB at 8 GHz

Thus f; = 8.5GHz, f, =9.5GHz and £ = 0.1.

A suitable waveguide is WGI16  with internal dimensions of
22.86 mm x 10.16 mm. This has a TE |, mode cut-off frequency of 6.56 GHz.
Agi and A, are determined from

Ag
Ag =——— 6.148
F = (/w2 o1
with  Ag; =3529mm and Ay, = 31.58mm. Thus X, =5549mm and
Ag2 = 43.66 mm. From (6.137) we obtain A,y = 49.611 mm and o = 2.7367.

The required degree is determined by analysis of (6.145) with various values

of N. For N = 5 we have

Ts(x) = 16x> — 20x" + Sx (6.149)

Substituting for 75(x) in (6.148) gives the frequency response shown in
Figure 6.17 and the response meets the desired specifications. Here we see
that the frequency response of the filter is more sclective on the low frequency
side of the passband. This is duc to the transmission zeros introduced by the
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(dB) 25t /

-30p / .
s/ )

—40 / 1

45 4. A 1 1
8 8.5 9 9.5 10 10.5

Frequency (GHz)

Figure 6.17  Transfer function of a waveguide bandpass filter

finite cut-off frequency of the waveguide and also by the relatively wide
passband bandwidth.

Having determined N=75 the prototype element values (normalised to 12)
are determined from (6.140) to (6.143) giving

Zy = 7, = 642334 (6.150)
7y =8.13821
Koy =Ks6 =1
Kpp = Kys = 136144 (6.151)

Ky = K33 = 1.79848
The susceptances of the inductive irises are then determined from (6.146).
By, = By, = 1.0402
By, = Byy = 2.7404 (6.152)
By = By = 37714

The phase lengths of the guide between the irises are determined from
(6.147).
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Py =1hg = 2.5825 (6.153)
3 = 2.654

The phase lengths are in radians and the physical lengths are given by
(= ¥r Ago (6.154)

T 2

Thus
¢ =4¢5;=18.01 mm
=404 =20.39mm (6.155)
3 =20.96mm

The final circuit of the filter is shown in Figure 6.18.

6.4 The generalised direct-coupled cavity waveguide filter

Certain applications such as satellite communications require very severe
filtering functions. Low passband loss may be combined with extreme selectivity
and group delay linearity requirements. In such cases, conventional all-pole
transfer functions may not be suitable and filters with generalised Chebyshev
characteristics are required.

Classical cascade synthesis procedures enable transmission zeros to be inde-
pendently realised by cascades of two-port networks such as the Brune scction.
However, when the transmission zeros are on the real axis or in the complex
plane it 1s usually more convenient to synthesise cross-coupled ladder network
prototypes as described in Chapter 3. Certain transfer functions are then realis-
able by the generalised direct-coupled cavity waveguide filter described in this
section [7].

The symmetrical generalised direct-coupled cavity waveguide filter is shown
in Figure 6.19. It consists of two identical shunt inductive-iris coupled wave-
guide structures where adjacent cavities in the two halves are cross-coupled
through apertures in the common narrow wall. The equivalent circuit for the

By B, B B3y Bys Bse
l ©
o o

Figure 6.18  Final circuit for the waveguide bandpass filter design
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Bo1 ¢1 0, B12 Br—l,r¢r o, Bryr+1 Bﬂ—l.’!q)" B,
i fj‘j_ . F*j
B B, B,
%___.

Figure 6.20  Midband susceptances and electrical lengths defining the generalised
direct-coupled cavity waveguide filter

D
mfﬂ\ " oar
K}

A\ o
ST,

Figure 6.21  Cross-coupled array lowpass prototype

filter will be derived and equated to the cross-coupled lowpass prototype filter at
midband. Formulae for the iris susceptances and the clectrical lengths of the
cavities, shown in Figure 6.20, then follow directly.

The cross-coupled lowpass protolype network is shown in Figure 6.21.
Note that for an Nth-degree filter # = N/2 in this prototype. The even-mode
equivalent circuit of this prototype network is shown in Figure 6.22. The
odd-mode equivalent circuit is simply the complex conjugate of the even-
mode circuit.
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|
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al c?l’ Cpi] C,

JKi K JKnt JKn

Figure 6.22  The even-mode equivalent circuit of the cross-coupled array lowpass
prototype

The equivalent circuit of a typical section of the generalised direct-coupled
cavity waveguide filter is shown in Figure 6.23. In this equivalent circuit the
main lines consist of UEs with unity impedance and electrical lengths ¢, and 6,.
These arc separated by shunt inductive susceptances which are normalised to
Ago in a similar way to the conventional waveguide filter. The equivalent circuit
of the cross-coupling arm is interesting as it consists of a cascade of two
frequency-dependent inverters separated by a shunt inductive iris. The iris
susceptance is normalised to the admittance of the inverters and A,,. The
shunt susceptance is similar in form to the susceptances in the main branch as
the input admittance of the shunt inverter terminated in the susceptance is
given by

K? A B,
_.j()‘g)‘g0/4z%Br) /\g()

¥(jew) = (6.156)

The reason that the inverters exist in the cross-coupling branch is because the
waveguide is a two-dimensional structure and onc has to consider the spatial

.ighy L | UEIQ vE1e| L g,
A Brr iy el Brr+1
0 P <—5r—> A

UEIQ
)

Figure 6.23  Equivalent circuit for a typical section of the generalised direct-
coupled cavity waveguide filter
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Figure 6.24  Even and odd-mode equivalent circuits of a typical section of the
generalised direct-coupled cavity filter

distance from the centre to the edge of the waveguide. Note that the equivalent
circuit of the waveguide filter is for a single mode of propagation which can only
be assumed correct if the cross-coupling apertures are small, which is true for
narrowband dcsigns.

The even- and odd-mode equivalent circuits for the typical filter section may
be derived by applying open and short circuits along the line of symmetry in
Figure 6.23. These are shown in Figure 6.24. The even- and odd-mode equiva-
lent circuits of the filter will now be transformed into an equivalent form to the
lowpass prototype. First, in a similar way to the conventional filter, we consider
a shunt inductor symmetrically located in a unit impedance guide (Figure 6.25)
of phase length ¢ where

Q() )\g()

& - 15
5 (6.157)

The transfer matrix of this section is

. & A o] . (D
cos 3 Jsin 3 l 0 cos 3 Jjsin 5

—jBAX,

(PN (P T e (2 P
/s 3 cos 5 g0 Jsin 5 cos 3

Ay Bsin(@) , BX,
s(@ S A i< sin(¢ £11 — cos(d
cos(P) + Thes /{ﬂn( )+ Theo [ LO\(())]}
o B, . BA, sin(®)
j3sin(@®) — ——= 1 4 cos(P } cos(P) + —=———=
{sinta) = 22 1+ contm @)+ 250

(6.158)
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Figure 6.25 Shunt inductive iris embedded in a length of guide

N|le|

Equating this at midband to an inverter of admittance K yields

@z:cot'(g) (6.159)

1
B=K-—— 1
X (6.160)
The section may be represented over relatively broad bands by a frequency-

dependent inverter with the transfer matrix

.//\g()
KX\,
7= | (6.161)
JKA,
0
Ago

Justification of the validity of this representation over broad bandwidths was
given in the previous section.

Now consider the transfer matrix of a shunt susceptance 2B, /A, of length
) where

By A
g =220 (6~ ) (6.162)
Ag
I cos o i sin o 1 0 sin (2
[ 5 J 3 0 cos 3 jsim >
T) = —2/B
(Y (0 +§_ Ll (8 0
Jsin 5 COS 5 g0 J s 5 Cos 5
BA B
( cos(#) — ~——Esin() j{sin(()) _BA - 005(9)]}
oo g0
. BA . BA
j{sm(&) +—£[1+ cos(&)_} cos() — —=Esin(6)
L Ago Ago
(6.163)

Now consider the pi network shown in Figure 6.26. This has a transfer
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Figure 6.26  Pi section equivalent for the susceptance loaded line

matrix
1 0|1 Z, I off-1 0
(7] = ,
Yg L[]0 Y 1 0 -1
—(14+Z,Y ~Z
f[ ( ““X A (6.164)
—Yg(2+ YpZn) (1 - YyZy)
By equating the B paramcters of the two transfer matrices we obtain
B
Zp=—j [sin(ﬁ) -—E0- cos(())}} (6.165)
Ago
and cquating the A4 parameters
BA, .
1 +Z,Yp = 3 Ssin(f) — cos(0) (6.166)
g0

From (6.165) and (6.166)
. 0
YB = —jcot 5 (6167)
Now applying these two results to the even-mode and odd-mode equivalent

circuits of the waveguide filter we obtain the equivalent circuit shown in
Figure 6.27. Here from (6.165)

. (0.2 B, 0. Ao
Z, = a/{sm( £ ) - : {1 cos( £ (6.168)
’\s: /\gO ’\E-

In the odd-mode case the embedded shunt susceptance is zero and we obtain

0, A
zm:fmexﬂ) (6.169)

£

Now scaling through the A,3/A, frequency dependence of the inverters in
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Figure 6.27 Even- and odd-mode equivalent circuits of a basic section of
generalised direct-coupled cavity filter

(6.161) we obtain

—jA. { . [0, X, B\, 0.\
e = el {sm( d g)) - £ {1 —cos(—goﬂ} (6.170)
Ag0 Ay Ago Ag
and
*/)\u . (01')\g()>
Z,, = ——=8in (6.171)
>‘g0 )‘g
The shunt elements then become
—j Ay 0
= cot| = 6.172
Ago 0 (2> ( )

For narrow bandwidths the inverters are large relative to the shunt elements
and they may be neglected.

The even-mode equivalent circuit of the lowpass prototype shown in
Figure 6.24 may now be transformed into the network shown in Figure
6.28. This is achieved by introducing a redundant inverter at the input and
scaling the network admittance level at each internal node in order to obtain
equal-valued scries inductive elements. Again the odd-mode circuit is simply
the complex conjugate of the even-mode circuit. We can now sce Lhe
similarity between the lowpass prototype and the equivalent circuit of the
waveguide filter.
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Figure 6.28 Transformed (dual) lowpass prototype even-mode circuit with
equal-valued inductors

Now applying the bandpass transformation

oo~ Pegy (”go) (6.173)
)‘gO /\g

to the lowpass prototype, the series elements in Figure 6.28 become

JK, Jjw  JK. —JAy . (TAg
— = £6in =
aC, * « aC. Ag )\g

(6.174)

and equating with the waveguide filter in Figure 6.27, at midband we obtain in
the odd-mode case

7/\2 . (ﬂ/\g()> Kr 7)\2 . (eﬁ'AgO>
meem = QI | 5 ) - — = =8| —— 6 I 75
/\g() /\g ()é(,,. )\g() )\g ( )

and in the even-mode case

7/\gsir1 (W/\g0> - K'; = A {sin<9"’\g“) —BA, [1 cos(?f'”\u”)}}
Agp Ag aC, Ay Ao Ago Ay

(6.176)
Evaluating at A, = A,y we obtain
K,
6, =7 —sin"' [ —. 17
. =T — s$in (aC,.) (6.177)
and
_ & 6.178
" ac, (6.178)

Now over a narrowband around A, = A, thc bandpass frequency
transformation (6.173) reduces to

/\cr
w—>a7r(l—/\°) (6.179)

20

Let A, and Ay, be the guide wavclengths at the band-edge frequencies f and f5.
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If the lowpass prototype cuts off at w = %1 then

A
flzaﬂ(l——2>
X0
A
+1 :cwr( *~g>
Ago

Adding (6.180) and (6.181) we obtain

Agt, A2,
Ago Ago
Therefore
Ao+ A
_ Jel 22
Yo =T

Subtracting we obtain

Aot A
D= | =B — i)
(Agﬂ )‘gO

Hence from (6.183) and (6.182)

_ )‘gl + )‘gZ
W()‘gl - /\gz)

&1
To summarise the design equations we have

1

B, =alCC )P ——
N ( !l) (]{(C,.C,,1]>1/2

(,'0 = — ("N+1 = X0

(6.180)

(6.181)

(6.182)

(6.183)

(6.184)

(6.185)

(6.186)

(6.187)

(6.188)

(6.189)

(6.190)

and as in the case of the conventional waveguide filter an electrical length of 7

radians corresponds to A .

The generalised direct-coupled cavity filter has certain limitations as only
positive couplings may be realised. Thus the locations of transmission zeros
are restricted and cannot be on the imaginary axis. However, it also forms a
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useful building block when combined with the extracted pole filter as described
in the next section.

6.5 Extracted pole waveguide filters

The generalised direct-coupled cavity filter described in the previous section has
certain limitations. The structure is ideal for linear phase filters with monotonic
stopbands where all the couplings are of the same sign. However, there are
difficulties in realising filters with real frequency transmission zeros as these
require both signs of couplings, which are difficult to achieve in simple wave-
guide structures. Furthermore, consider the case where real frequency trans-
mission zeros are required to be symmetrically located on either side of the
passband. In the fourth-degree case a pair of zeros would be associated with
a single cross-coupling around all four resonators. Thus the pair of transmission
zeros are not independently tunable. This can cause problems in manufacturing
associated with sensitivity. It is more desirable to be able to extract individual
transmission zeros above or below the passband in an independent manner.

This may be achieved by cross-coupled networks in which the cross-coupling
1s realised by a coupling around three resonators, as described in Chapter 3.
This is a useful technique for coaxial resonator and dielectric resonator filters. It
1s not always suitable for waveguide filters because of the difficulties in coupling
around three resonators which requires coupling from both narrow and broad
walls of the waveguide. More importantly, when the transmission zeros are
located very close to the passband-edge the values of the required couplings
may be physically unrealisable.

It is often more desirable to synthesise the transmission zeros using bandstop
resonators or extracted poles. Each bandstop resonator corresponds to a trans-
mission zero (and one return loss ripple) and thus independent tuning is
achieved. The optimum solution for complex transfer functions is to use a
combination of extracted poles and cross-couplings as required. A technique
for achicving this will be described in this section. One of the main advantages of
this method is that the entire structure may be realised with positive couphings
enabling a simple realisation for TE,;; mode waveguide filters [8].

The only real restriction is that the synthesis procedure is limited to transfer
functions with a symmetrical frequency response. The networks thus have
complex conjugate symmetry. In other words a bandstop resonator at one
end ol the filter producing a transmission zero on one side of the passband
always has its associated complex conjugate at the other end of the filter
producing the transmission zero on the other side of the passband.

Complex conjugate symmetry means that at any stage in the synthcsis
procedure the transfer matrix will always be of the form

1 [A+j4, B

T =— 6.191
T=Fl ¢ 4 -ja, 190
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where A, is odd and F, 4,, Band C are even polynomials in p. Furthermore, by
reciprocity

A? + 43— BC = F? (6.192)

The synthesis procedure will be developed along with an example, in this
case a degree 6 equiripple prototype with 20dB return loss, two trans-
mission zeros at infinity, a pair at p = +;1.414 and a pair on the real
axis at p = £0.953076.

Generation of the polynomial for S(,(p) and synthesis of the cross-coupled
lowpass prototype is described in Chapter 3. The network may be synthesiscd as
a cross-coupled ladder as shown in Figure 6.29. Here

C, = 1.00367

C, = 1.43354 (6.193)
C; = 1.938932

K, = —0.078796

K> = —0.000237 (6.194)
Ky =1.184116

To proceed with the extracted pole synthesis we must first form the transfer
matrix of the filter in order that it can be re-synthesised in the correct form. The
even-mode admittance is

1
Cop+JjKy, + 1/(Cyp+JjK3)

2.78056p" +j1.47862p” + 3.0733p + j1.1053
2.77954p2 + j1.69702p + 1.00028

1 1
G C;TR G

K K, K3

N NN N

Figure 6.29  Cross-coupled ladder realisation of a degree 6 generalised
Chebyshev filter

YC:CYIPJijl‘F

(6.195)
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The odd-mode admittance Y, = Y. and the transfer matrix is given by

Mle d =7 o v, 6199
Thus

F = 1.10561 — 0.664187p> — 0.608764p" (6.197)
and F contains the real frequency transmission zero. Thus

F = (p*+2)(0.552973 — 0.608764p?) (6.198)
and

A =4.94987p + 13.8329p" + 7.72866p° (6.199)

B — 1.00056 + 8.4405p% + 7.72582p" (6.200)

C = 1.22168 + 12.7138p" + 19.2773p* + 7.7315p° (6.201)

(Here 4, = A and 4, =0.)

The synthesis procedure starts by extracting a unity impedance phase
shifter of phasc length 4, from the output of the network and its conjugate
—/; from the input. The remaining transfer matrix is obtained by pre- and
post-multiplying the transfer matrix by the inverse transfer matrix, yielding

1 [ cos(e) ,iSill(’b/'l)] Ay +jd, B }{ cos(yr} '_i*iﬂ("l’l)]

1=+
L jsin(iy) - cos(e) ¢ Ay —jA,

~jsin(y)  cos(yy)

oo, C B \ 5 . .
A+ {A S cos(2yy ) + 5 sm(Ze/',)} Beos™ (1) + Csin®(v) + 4 5 sin(2¢)

L iy . . C-B.
Ceos™ () + Bsin~(¢) -- A5sin(2¢y) A, —J {Azcos(Zu‘r,) = —;—5111(29"7,)}

(6.202)

We now choose the value of 4, such that the B parameter has a factor p* + wi.
This enables the transmission zeros to be extracted by shunt resonators. Hence

Beos® (1)) + Csin®(¢)) + Ay sin(2¢y) = 0], __ ., (6.203)
or
B - 24,
¢ Ttan () + = tan(y) = 0], _y (6.204)
Hence
—A, + (43 — BO)'?
ty =tan(y,) = 2+ (45 ) (6.205)

C
Now from (6.192)

A5 — BC=TF* - A4} (6.206)
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and F contains the transmission zeros as factors. Thus

A3 = BC|,_ ., = —Ai (6.207)
Thus from (6.205) and (6.207) a solution for 7| is
() = A2t __ 5 (6.208)
C P jw 'AZ _./AI p=jw;

This results in the new A parameter possessing a factor p + jw, and the new D
parameter possessing a factor p — jw,. The transfer matrix is then given by

- [.1’(17 tje)Al+idy)  B(pP +wi) } (6.209)
JE ¢’ —j(p — w4l —jA43)

where

A+ jdh = Ajcos(2epy) 4+ [(C = 1_3)/2] sin(2¢) — jA, (6.210)

ptjw
g Beos?(w) + Csizn%/)g + Ay in(24)) (6.211)
P+ wy

C' = Ccos’(th)) + Bsin? (1) — A, sin(2¢;) (6.212)
Now from (6.208) in the example

- j(4.94987p + 13.8329p° + 7.72866p°) (6.213)

1.22168 + 12.7138p2 + 19.2773p* + 7.7315p% | ,_; /2

and

Py = —52.3531° (6.214)
The matrix is then evaluated from (6.202) giving

C , .

7] :./LF " Z’Mz A f/A’J :J'JF_ {Al J;/Az A, —B_/AJ (6:215)
with

A = 4.94987p + 13.8329p" + 7.72866p° (6.216)

Ay = 0.106939 + 2.66665p> + 5.58652p* + 3.73911p° (6.217)

B=1.13919 + 11.1196p + 14.9678p" + 4.84712p° (6.218)

C = 1.08306 + 10.0347p* + 12.0353p" + 2.88438p° (6.219)

and factorising the matrix into the form in (6.210)-(6.212) we obtain
Ay +jA5 = 0.756286/ 4 3.5541p — 1.05194p* 4 9.03779p°

— 2.44156,jp* + 3.73911p° (6.220)
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B’ =0.569767 4+ 5.27649p° + 4.84712p* (6.221)
C' = 1.08306 + 10.0347p% + 12.0353p* + 2.88438p° (6.222)
F = (p” + 1.999396)(0.552973 — 0.608704p?) (6.223)

We may now extract shunt resonators of admittance

f b
2 and !

— : (6.224)
pPt+Jjw p—Jw

from the input and output, respectively. Again this is done by pre- and post-
multiplying by thcir inverse transfer matrices yielding

ool A s )
7y ! , J(p ) (AL +jA4%) B'(p? rwi) } /
=1 _ ~b
JFl—=l c’ —j(p Fjw) (A} —jA%) 1

p+jw p—jwi
IR IVAYERICLE ALY B'(p* ¢ jui) }
F C'+2b A5+ biB (P+ijwi)(=b1B" = A5 +j4))
1[4V 4 B 7
N A T T (6.225)
wherc
Ay — b\ B+ 4]
A g jay = 2202 T (6.226)
P —Jw
B" =B’ (6.227)
C' +biB +2b, A}
c’— + 12 ’rz 147 (6.228)
Pt wi
F
Fl=——— (6.229)
Pt wi

b can be calculated by forcing the D parameter to be zero at p = jw, yielding

Ay 44,

b= (6.230)

This completes the synthesis cycle to extract a pair of transmission zcros at
p = xjw,. The cycle is shown in Figure 6.30. This proccss may be repeated
until the desired number of rcal frequency transmission zeros have been
extracted.

In the case of the example we have

by = 0.871402 (6.231)
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remaining

network ‘3
-y, E ¥

P-jo; pjo;

Figure 6.30  Synthesis cycle for extracting a pair of j-axis transmission zeros

and the remaining transfer matrix is given by
B" = 0.569767 + 5.27649p> + 4.84712p" (6.232)
C" = 0.824005 + 5.69375p* + 2.88438p* (6.233)
A + 745 = 0.404614 — 2.22736jp + 4.083p>
—3.50487jp" + 3.73911p* (6.234)
F" =0.552973 — 0.608764p° (6.235)

The remaining nctwork may contain transmission zeros which are not on the jw
axis and may be synthesised as a cross-coupled array. Assuming that at least
two of the remaining transmission zeros are at infinity then we first extract phase
shifters in order for this pair of zeros to be extracted as shunt capacitors. The
value of the phase shifters is determined such that the remaining B parameter is
of degree 2 lower than the C parameter. This can be determined from (6.208).
However, in our cxample the original matrix was real; thus we simply extract
—1;. Extracting this phase shifter we obtain a new matrix

L | A +jA4 B
7] =— (6.236)
JF C A —jA,

where B is two degrees lower than C. In the example we obtain

A +jA4, =222736p + 3.50487p° — j0.22567 — j 1.23832p> (6.237)
B = 0.337797 + 1.58884p? (6.238)
C = 1.05597 + 9.38141p> + 7.7315p* (6.239)
F = 0.552973 — 0.608764p> (6.240)

We now cxtract the pair of transmission zeros at infinity by removing a
capacitor C in parallel with a frequency-invariant rcactance B, from the
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input of the network and similarly C, p — jB, from the output of the network.
The new transfer matrix 1s then

] Nl 1 0] [A,+/4- B 1 0
"=0F —Cip—jB 1 ¢ A, - /AJ [(‘1 p+iB 1}
Ll Ay = C\Bp+j(A;s+ B B) B
TP C—24,C p~24,B8,+ CipB+ BIB A, —(‘1Bp—j(A3+B|BJ
_ L[ (6.241)
N Ay —jAS
where
Al =4, - C pB (6.242)
AS=4,+ BB (6.243)
B' =8B (6.244)
C'=C—=24,C p+24,B, + Cip B+ BB (6.245)

and for the transmission zeros at infinity to have been successfully extracted

Ay =0|,_ =4, -CpB=0[, (6.246)

Therefore
LA

¢, = i . (6.247)

Ay=0[,_ = A+ B B=0|,_, (6.248)
Theretore

By~ ?gz - (6.249)
In the example we obtain

Al =1.4822p (6.250)

A5 = 0.0376023 (6.251)

B’ =0.337797 + 1.5884p" (6.252)

C' = 0.909396 4 0.233249p° (6.253)

F = 0.552973 — 0.608764p° (6.254)

' = 2.20593 B, =0.779383 (6.255)

The synthesis procedure may now be continued by extracting an inverter of
admittance K> in parallel with the remaining network such that the remaining
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Figure 6.31 Parallel extraction of an inverter

network has a double ordered transmission zero at infinity. This is equivalent
to moving the transmission zcros onto the jw axis so that ladder network

extraction may be continued (Figure 6.31).
By conversion to Y matrices and back to transfer matrices the remaining

two-port transfer matrix is

L Ay + A5 B’ _
J(F—KnB') {C'2FK|2+K1223’ Al — 4, (6.256)
and for transmission zeros at infinity
Kiz = ”g' (6.257)
p=

Now we continue by extracting unity impedance inverters from both ends of the
network to leave

1 [A]+jA45 B”
[T] = JF” { c” 1Ay (6.258)

. ’ I .

where

F"=—(F-K,B (6.259)
A = A (6.260)
Ay = — A5 (6.261)
C"=B (6.262)
B" =C' —2FK;, + KL B' (6.263)

The synthesis cycle may then be repeated until the complete network has been
synthesised.
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From (6.250)—(6.255) and (6.257) we obtain for the example

K| = —0.38315 (6.264)
and the remaining transfer matrix is given by

F" = —0.6824 (6.265)

AY =1.4822p (6.260)

A5 = —0.037602 (6.267)

C" =0.337797 4 1.5884p° (6.268)

B" =1.38273 (6.269)

Finally a shunt capacitor in parallel with a frequency-invariant reactance may
be extracted from the input and its complex conjugate at the output with
element values

C,=1.07194 (6.270)
» = 0.027194 (6.271)
Ky = —0.49352 (6.272)

The complete network is shown in Figure 6.32. Note that K, and K,; can be
changed to positive sign giving all positive couplings in the prototype. This
merely introduces a constant 180° phase shift into the transfer function of the
filter. The simulated response of the prototype network is shown in Figure 6.33.

o I 4
“f’[ E —Wl K]Z Vi 5 W
r “ 9
o . ] o
bl B] Cl _Bl b 1
Py pHjo;

Figure 6.32  The final neiwork for the sixth-degree extracted pole/cross-coupled
Jilter
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Figure 6,33 Simudated response of a lowpass protoivpe extracted polefceross-
coupled filter

= cquivalent circuit for

the first basic section of
the generalised direet-
coupled cavity filter

plane ol conjugate

symmetry
O/E“
o

' attenuation pole
‘é cavity

Figure 6.34  Extracied pole filier in « rectangular waveguide
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6.5.1 Realisation in waveguide

A procedurc will now be developed for transforming the cxtracted pole
prototype shown in Figure 6.32 into the waveguide structure shown in
Figure 6.34. The realisation starts with synthesis of the cross-coupled part of
the filter, followed by 1he pole cavities and finally by the phase lengths between
the pole cavities and the cross-coupled part of the filter.

The synthesis of the cross-coupled section follows closely the synthesis of the
generalised direct-coupled cavity filter described in the previous section. This
procedure gave the following design formulae:

B =K, . /aC, (6.273)
B |, =alC,C )= WC:—C—IT)T (6.274)
G, =y, = g —% [cot : (B,/.z]‘,) +sin”! (B,f)} (6.275)
0., =0, = g — % [cotl (B’,‘z" ! ‘> + sin” l(B,f)} (6.276)
C'(,:% Cpyy = 00 r—1.2,....n (6.277)

_ Jut e (6.278)

B 7r(/\gl - /\gl)

where, as in the previous sections, A, and A,» are the guide wavelengths at the
band-edges of the filter. '

We can now form the even-mode network for the cross-coupled part of the
prototype shown in Figure 6.32. This is obtained by placing an open circuit
plane along the line of complex conjugate symmetry through K, and K,;. The
ceven-mode circuit is shown in Figure 6.35. The + B, in Figure 6.35 refers to each
arm of the complex conjugate symmetric array. The odd-mode networks arc
similar with K, | replaced by — K, , ;.

Now comparing this even-mode circuit with the one for the symmetrical
waveguide structure in Figure 6.22 we sec that the only differcnce is the
inclusion of the frequency-invariant susceptances B, in parallel with the other

we s L]l d
T A

Figure 6.35  Even-mode network for the complex-conjugate symmetric array
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two susceplances al each node. These do not change sign between the cven and
odd modes of the network and so may be realised by adding small sections of
waveguide at each node. The formulac for the phase lengths of the two halves of
each cavity thus become modified to

P B!, :

Oy T g -3 [COI : ( 7]' ) ~sin (B! + Bé-,.)] (6.279)
S B/,

()U,_.ggv;{ ( . ') + sin +B(,)} (6.280)
7 l B!

GL, % - ‘7 [ ( > +sin (B] - B(/,.)} (6.281)
o1 B/, (8! , en

HL/' = E - E) 2 -+ Sll] l‘ - lf(',.) (6._.8._)

where
B(. — B,/aC, (6.283)

The resonators of the two halves of the network are thus slightly different in
length. However, the length ditference is small and may be taken up by tuning
SCTEws.

The pole cavity pairs are synthesised by assuming that each pair forms a
single-section complex conjugate cross-coupled array with no cross-coupling.
This can be seen by examining the left-hand end of Iigure 6.34. The above
design formulae can then be used with 7 = | and B] = 0: hence

|
B//?I = ((YC/,]) /2 ((T)——— (6284)
Ial
B,
(o1 = \cl (6.285)
2l
B =0 (6.286)
| | ’BI/’] : [P
Bur=@up 0y, - m—5cot —— ) —sin (Bey) (6.287)
l 1 [}/Iﬂ . 1 /
/’j]_] = (,"L)L/” + ()L/Jl - T ;CO[ 5 4 sin (B('/,]) (()288)

The synthesis of the pole cavities in the two branches s illustrated in Figure 6.36.
Lach shunt resonator is transformed into its series dual. By equating the two
circuils we obtain

tw
B, = T,L (6.249)
i

(‘ = —— 2¢
Oy (6.290)
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Figure 6.36  Synthesis of the pole cavities: (a) lowpass prototype; (b) dual
circuit; (¢) waveguide circuit

The shunt reactances are realised as irises and the phase lengths 3;; and 3, as
short circuited lengths of waveguide approximatcly half a wavelength long
using (6.287) and (6.288). To compensate for the short negative lengths of
transmission line associated with the iris susceptances lengths of waveguide
vy and -, approximating A/2 in length are included between the irises and
the main waveguide, with vy, = By and v = .

The lengths of waveguide between the cross-coupled part of the filter
and the pole cavities are modified to take into account the phasc lengths v
in the prototype, the short negative lengths of line associated with the
input and output susceptances of the body of the filter, and the inverter
associated with the pole cavity. Thus the phase length ¢ between the front
pole cavity and the cross-coupled part of the filter in the prototype is
modified to

P Y 6.291
W — Yy 5 - ECO T ()._ )
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6.5.2 Design example

We shall use the sixth-degree prototype previously synthesised to design a filter
with a centre frequency of 10 GHz and a bandwidth of 40 MHz. In order to
simplify the analysis of the circuit we shall assume that the cut-off frequency of
the waveguide is zero. This reduces the equivalent circuit to a dispersionless
transmission line circuit enabling most circuit analysis packages to analyse the
network.

Thus the guide wavelengths are now given by

I VN =\, (6.292)

A
T = (wfw)] 7 o=
With band-edges at 9.98 GHz and 10.02 GHz we obtain o = 159.1549. The
susceptances in the cross-coupled part of the circuit are

’ KlZ

Bl =2 =1.0913x10* 293
=, x (6.293)
K,
By =—2 —=28927 x 107° (6.294)
al,
By = (aC))'? L s = 18.6838 (6.295)
(CYCI) /
1
B}y =a(C,Cy) P — ——— = 244733 6.296
1 ( 1 2) a(C,Cz)l/z ( )
By =B 221993 x 103 (6.297)
(@ OzC[ . .
! B2 —4
L. ,2

The phase lengths of the cross-coupled part are then given by

1 B _
bu) = g =) [cot 1( 2‘“) +sin~ (B[ + BQI)} = 86.8502° (6.299)
, L 1 { By 1 /
dLi=5-5 cot 5 ) +sin (B — B¢y)| = 86.9773° (6.300)
7 1 1 (B> R P ,
0U1 :5—5 col 7 4+ sin (Bl +BC1) = 896767u (6301)
T 1 B .
OLi=5-> [cot ! ( 2”) +sin"'(B] — Bé,)} = 89.7982° (6.302)
Bi,

T 1 _ .
Y2 =3-3 [cot 1(7) +sin (B} — B’@] = 89.6784° (6.303)
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/
Y= g -% {Col l <3212> +sin” ' (By — Bey) | = 89.6876° (6.304)
01y — g - %si (B} + Bl) = 89.9126° (6.305)
! ,
0L, = 323 —5sin”!(B] = B&y) = 89.9217° (6.306)

Each of these phases is the phase length at the midband of the filter.
Next the susceptance coupling into the pole cavities is given by

bl 1
B, = (aC, )"/ —— (6.307)
! ( [l) (acpl)l/h
where
1
Cp1 =4 = 1147576 (6.308)
71
Thus
B, = 13.4405 (6.309)
The phase lengths of the pole cavities are given by
Bl
Ay :W—%CO['(-L]> — sin l(B’C,,]) (6.310)
1 B, )
81 :w—zcot' ]( ;’l> +sm"l(B£~1,1) (6.311)
with
By ==L = 88844 x 1073 (6.312)
!
Thus
Buy = 175.259° By, = 176.277° (6.313)

The phase lengths between the pole cavities and the cross-coupled part of the
filter are given by

1 B}
Wy = —52.3531° + 90° — Ecot*1 (%) = 34.592° (6.314)
; o o l —1 Bl/}l )
Wi = 52.35317+90° — Scot ' | —F | = 139.298” (6.315)

The simulated frequency response of the complete equivalent circuit of the filter
is shown in Figure 6.37. In a truc waveguide design dispersion would cause a
slight asymmetry in the frequency response although this would hardly be
apparent in a narrowband design. To do the design example for a true



254  Theory and design of microwave filters

S210 = - 0 Si
dB N7 ‘ dB
; i
-10 ] 0 -5
-20 ‘; P -10
Pt P
P .
30 N : | B R =15
A\ i : 17 s
Lok ] [
o H ]
I H : i !
40 i P A - T 20
|l Voo T A a
it ! : P {
i i LA ! Lo i
750 . , AN ( ' i\ H ,‘n :1 25
! - [ i i
IR A A |
60 b Lf L L L -30
995 996 997 998 999 10 10.01 1002 10.03 10.04 GHz

Figure 6.37  Simulated frequency response of an extracted pole waveguide filter

waveguide structure we decide on a waveguide size which determines its cut-off
frequency; this then determines « and the design equations are used as above.

6.5.3 Realisation in TEy, mode cavities

Although the previous scction concentrates on a rectangular waveguide realisa-
tion, the extracted pole filter is ideal for realisation with the higher Q TEy,,
mode cavities. The original work by Atia and Williams [9] showed that general
transfer functions were realisable with this structure but they required both
positive and negative couplings. This required physically offset cavities which
are complicated to manufacture. The extracted pole filter only requires positive
couplings and thus complex TE,; mode filters can be realised with a simple
physical structure. It is worth noting, however, that whatever circuit synthesis
technique is used the TEy;; mode is degenerate with the TE;;, mode. For a
useful filter realisation this mode must be suppressed so that no energy is trans-
ferred to or absorbed in its resonance. The degeneracy of this mode with the
TEy,; mode can easily be split by introducing perturbations into the cavity. One
method 1s to use a non-contacting tuning plunger in the cavity. Since the TEy,,
mode has no longitudinal current in the cavity walls the plunger will shift the
frequency at the TE,;; mode without affecting the TEy;; mode. Alternatively a
set of posts can be placed in the end plates which push the resonant frequencies
of the two modes apart. In reality the effect of a filter tuning screw in the end
plate has a similar effect.



Waveguide filters 255

Mz
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Ligure 6.38  Degree 6 dual TE\,, mode cylindrical waveguide filter

6.6 Dual-mode waveguide filters

High performance waveguide filters with high Q cavities may take up a signifi-
cant physical volume. This is disadvantageous in many telecommunications and
space applications. One method of size reduction is to exploit the existence of
multiple degenerate modes in waveguide cavities. This was first reported by Lin
in 1951, for air cavities [10]. A completc theory for dual (two-modc) TE,,, mode
waveguide bandpass filters was first reported by Atia and Williams in 1971 [11].
Since then further developments have been reported by Rhodes and Zabalawi
[12] and Cameron and Rhodes [13]. Some of the most important results will be
described in this section.

Consider the waveguide structure shown in Figure 6.38. In this structure each
waveguide cavity supports two orthogonally polarised degenerate TE,,; mode
resonances. Thus a 2nth-degree filter is realisable with »n cavities, giving a
significant size reduction. The modes in each cavity are coupled together
by a tuning screw or other discontinuity which is oriented at 45" to the
input iris. The two horizontally and vertically polarised modes in each cavity
arc coupled to the corresponding modes in adjacent cavities by a cruciform
iris. The complete structure is known as a dual-mode in-line waveguide filter.
For obvious rcasons of isolation the input and output ports are at opposite
ends of the structurc.

2 3 6
O O O
output
O O O
input 1 4 5

Figure 6.39  Equivalent circuit of a sixth-degree dual-mode in-line waveguide

filter
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The equivalent circuit of the sixth-degree filter is shown in Figure 6.39. In this
diagram the circles represent nodes and the lines represent inverters. In the
bandpass case it is assumed that resonant circuits are connected from the
nodes to ground. Altcrnatively the diagram may also represent a lowpass proto-
type with shunt capacitors to ground at each node. The lowpass prototype for
the sixth-degree dual-mode filter is shown in Figure 6.40. Here we see that at
w = oc the shunt capacitors short circuit to ground and since there are a mini-
mum of three inverters between input and output then there must be a minimum
of four transmission zeros at infinity. By analysis of different degrees of network
we see that for a symmetrical even-degree network of degree N = 2» with
transfer function

1 :
Snljw)f = ——5— 6.316
| ]2(./ )l 1 + Fzzn(w) ( )
the minimum number of transmission zeros at infinity is 2m, where
N
2m=n= 5 for n even (6.317)
N
2m=n+1 :5+] for n odd (6.318)

Thus a twelfth-degree filter (¥ = 12, » = 6) has a minimum of six transmission
zeros at infinity. This is one of the main limitations of the dual-mode in-line
structure in that therc are more transmission zeros at infinity than for the
cross-coupled array.

In order to design the dual-mode filter we must synthesise a lowpass proto-
type network of the appropriate form. Once this has been done the rest of the
design is a relatively standard waveguide filier design problem. For complex
filter transfer functions it is useful to start with the cross-coupled array which
has already been described.

A sixth-degree symmetrical cross-coupled array prototype network is shown
in Figure 6.41. In this particular examplc there is only a single inverter between

)
1=)Y

output

|;H
.|H

input

HE

5
L

L

Figure 6.40  Lowpass prototype for a sixth-degree dual-mode in-line filter
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3
o

Ow

input

=0

O O
output 6 S

Figure 6,41 Degree 6 cross-coupled array prototype filter

input and output; thus the network only has two transmission zeros at infinity
and is not suitable for the design of a dual-mode filter. For it to be so the
inverter between nodes 1 and 6 must be eliminated. [Furthermore, the dual-
mode realisation of this network would result in the input and output being
in the same physical cavity which is impractical. Thus the fundamental design
problems are to choose a cross-coupled prototype with the correct number of
transmission zeros at infinity and to transform this network into one suitable for
dual-mode in-line realisation. The starting point for the general 2nth-degree
cross-coupled array with 2m transmission zeros at infinity is shown in
Figure 6.42.

Now the assumption is that the lowpass prototype is symmetrical. Thus it
can be defined by its even- and odd-mode subnetworks and its even- and
odd-mode admittances Y. and Y,; Y. is a reactance function with complex
coefficients and Y, is its complex conjugate. The even-mode network for
Figure 6.44 is shown in Figure 6.43. The odd-mode network would be obtained
by replacing K, by —K,,.

In order to transform the network into the in-line prototype form it is
first necessary to scale all the internal nodes of the network to make all the
capacitors equal to unity. This can also be accomplished for the first capacitor

output
2 2n+ 1 2n—m 2n-m-1 n—m n+2 n+1
o——0--------- O Oy -
K’l’l
O -
/Yl 2 m-1 m m+1 n-1 n
input

Figure 6.42  General cross-coupled array prototype network suitable for dual-
mode in-line realisation
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| 2 m-1 m Ml Kt m
’ i L
p— 1 J— 1 i 1 J— L—.“ 1 p— E:
G G Cou-1 C, l— I—
o -
ij,m Cmﬂ
n-1 n
! !
p— 1 J— |f‘
Coy F Cn [
JKn—1,n-1 an,n

Figure 6.43  Even-mode network for the cross-coupled array prototype

by introducing an extra inverter at the input of the network. The scaled network
is shown in Figure 6.44.

The nodal admittance matrix for the scaled even-mode network is then given
by

[0 JKp 0 0
JKoy p+JiKi JKp 0
0 JKin  p+JjKn jKy
[Y] =
1
1 P +./~Kn— T -1 an— (7]
L 1 .szr—l,n [)+./Kn—l,f1_
(6.319)
Koy 1:: K12 I—T K \m 1.__: F Kmm+ 1:: E:

ij,m ijH,m +1

j— E Kn—l n J—
1 [ 1

JKn~1,n-1 INpn

1 . —

S

Figure 6.44  Scaled even-mode network with unity capacitors
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Now Ky, only acts as an impedance transformer and can be removed, leaving
the internal matrix

[Y] = pl] + /K] (6.320)
where [/] is the # x n identity matrix and [K] is the » x # coupling matrix

K” K12 0 0 T

Ky K»n Ky 0
0 Ky Ky Ky
Ki=1 . (6.321)

Kn~l.n—l K
Kn - 1,n Kn.n B

n—1l.n

Because of the condition on the minimum number of transmission zeros at
infinity in the dual-mode in-line filter

K,=0 forr=1,...,m—1 (6.322)

Transformations can now be applied to the nodal matrix and provided they
do not affect the first row and column they will not affect the even-mode
admittance of the network. The capacitors only exist between nodes and
ground; thus the complex frequency variable p only exists on the main diagonal
of the nodal matrix. An infinite number of new matrices may be gencrated all
with the same transfer function. and if the matrix 1s post-multiplied by a matrix
[T] it must be pre-multiplied by [77]'. This will not affect the capacitors and we
have the new matrix

(Y] =(T] 'pl](T] +(T] 'K}[T]

= pll +j1T) '[K][T] (6.323)
The new coupling matrix is given by
(M] = [T][K][T] (6.324)

[T] consists of rotational or similarity transformations where

[P], is the matrix for a single transformation containing a single rotation of thc
ith row and column with respect to the jth row and column, with elements

Pre=1 (C#i +£])) (6.326)
Pij = Py = cos(d,) = C, (6.327)
P ;=P ;=sin(0,) =S, (6.328)
Pey=0 (s, j) (6.329)
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For example

l 0 0
0 cos(@,) sin(d) 0
0 —sin(f,) cos(6,) 0O
Pl.=1o o 0 1 (6.330)
1
- ]

The principle of the rotational transformations is to progressively apply them
and in the process annihilate couplings until the coupling matrix of the cross-
coupled array is transformed into that for the dual-mode in-line filter. Unfortu-
nately there does not appear to be any definite pattern to the transformations
and each degree must bc considered individually. For N = 4 the two types of
network are of the same physical form and the first meaningful case is for N = 6.

For the sixth-degree case the forms of thc cross-coupled and in-line
circuits arc as shown in Figure 6.45. The even-mode coupling matrix for the
cross-coupled network is given by inspection of Figure 6.45(a):

0 K> 0
[K]=| K K»n K (6.331)
0 Ky Kin

It is easy to sce the form of the coupling matrix for the in-line filter if we redraw
it with the nodes in the same position as the cross-coupled filter (Figure 6.46).
The inverters between nodes 1 and 4 and 3 and 6 pass diagonally through
the line of symmetry. Applying positive potentials on the nodes 1 and 6 for
the even mode, we can represent the even-mode case as in Figure 6.46(b). The
coupling matrix transformation is thus

Ko Kyn Ky|— [Mpy 0 My (6.332)
0 Ky Ky Mz My My
1 2 3 2 3 6
—> 0 5 o) 5 5 s
<«—0 0 O o 0 0
6 5 4 Pl 4 5
(a) (b)

Figure 6.45  Cross-coupled and in-line prototype network of degree 6
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A TN

1 2 3 1 2 3
—> 0 o} 0O — 0 0 o}
line of symmetry
<—O0 0O O <0 o} O
6 5 4 6 5 4
(a) \u/
(b)

FLigure 6.46 In-line prototvpe network of degree 6: (a) complete circuit;
(b) even-mode circuit

The only rotation which can be applied is

I 0 0
Pl=10 ¢ S, (6.333)
0 -8, C

From (6.324) we have
(M) = [1] KT

oo 0 0 K. 0771 0 0
0 ¢ S |1Kn Ko Knll0o ¢ s
005, ¢ 10 Kin Kullo -5 ¢
[0 ClKp S1Ky,

= | C1Kp CiKyp—28,C Ky + SiKy (CF = ST)Kas = 81C (K33 — Kn)
LSiKin (O = STKy — $1C (K — K2) STKn + CiKy +28,C Ky

(6.334)
For this to be in the same form as (6.332) M5, must be zero. Thus
CiKyy —25,C Kys + StK3 =0 (6.335)
or
K17 — 2Kyt + Kys =0 (6.336)
where
t) = tan(6)) (6.337)
Thus
‘ :K23i(K223_K22K33)1/2 (6.338)

K1
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and for the inverters to be real we have the realisability condition
K3 > KnKa (6.339)

which is normally true for cross-coupled networks.
The elements of (6.334) may now be simplified by substituting lor #; from
(6.338) to obtain, for example,

M33 = SIZKZ?, + C']2K33 + ZSICVIKX;

= SH(Ky — K33) + K33 +28,C Koz (6.340)
and from (6.335)
285,C Ky = CiK» + SEK+, (6.341)

Therefore
My = SP(Ky — Ky3) + Kay + CiKp + STK 33
=Ky + K33 (6.342)
The complete coupling matrix is
0 CiKp S1K
Ci K2 0 K>3 — K331 (6.343)
SiKin Kos — Kty Ky — Ky

The required transformations for the eighth-degree case are shown in
Figure 6.47 and the matrix transformation is

0 K, 0 0 0 M, 0 My
K K K 0 M 0 K 0

2 Kun Ky N 12 23 (6.344)
0 Kyn Ky Ky 0 My My My

0 0 K3 Ky My 0 My My

To obtain the correct form for the final matrix, two transformations (3,4) and
(2,4) are used to zero the elements (2,2) and (2, 4). After a little manipulation it

or
ow
o
o~
-
o
w
°®

—
or
oW
o&

—>0 <> [¢] 0 o
= =
<—c o) [ 0o <> o o] ] 0 o o
8 7 6 5 1

~o
wo
@
oo
~3
o
wn

Figure 6.47  Eighth-degree cross-coupled and dual-mode in-line filters
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My =CKp (6.345)
My =8:Kp» (6.346)
K
My = S, <K34 + —lﬁ> (6.347)
i
K
My = C; <—72‘2"‘K34*'— (6.348)
Si‘[]
K
My =Ky + Kag = =7 (6.349)
K
My — K2 (6.350)
S
where
K27
ty = - 6.351
2= § K ( )
and
A KoKy £ (K3 Ky + Ko Kig(K3y — K3p K33)]'/? (6.352)
l K3 — Ky K -
The realisability condition is
KnKi+ KKKy — KnKyz) >0 (6.353)

The realisability condition restricts the possible locations of transmission zeros
in the complex plane. For an eighth-degree filter with four transmission zeros at
infinity, circuit analysis shows that the numerator of Sy,(p) is given by

Kop*+p°[Kn(Kiy + 2K + K&L) — K3 K33
+ (K54 — K33 Kaa| (Koo Ky + Kag (K33 — K32 K33)] (6.354)

For most filter characteristics K324 — K33 K44 1s greater than zero. Thus if (6.353)
is not satisfied the numerator is of the form
proap—B=(p*+X)(p*-7Y) X, V>0 (6.355)
Thus the realisability condition is not satisfied for transmission zeros occurring
as a pair on the real axis and a pair on the imaginary axis.
Explictt solutions have also been derived for the tenth- and twelfth-degree
cascs. Most filter characteristics can be realised in these cases.

6.6.1 Numerical example

As an example we will consider a degree 6 linear phase filter with four trans-
mission zeros at infinity. The lowpass prototype is a generalised Chebyshev filter
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I
L1 : CZ:[R : 1c

K,

_Ta ! \#cz ‘Ea

(o}

K3

Figure 6.48  Cross-coupled lowpass prototype linear phase filter

with linear phase at the points of perfect transmission (Figurc 6.48) [14]. The
element values are
C,=09822, K =0
C,=13912, K,=0.1744 (6.356)
C; = 19185 K;=0.9265

After adding a unity impedance inverter at the input, the even-mode circuit is as
given in Figure 6.49. The admittance matrix with appropriate row and column
scaling factors to make the capacitors unity is

| | | | |
vien Vi V(3
0 0 0
1
—\7?[ —|j Cip J 0
|
0 C 7.€
\/Cn - J 2P HJIK J
|
— |0 0 f
e i j CzpﬂK_
PR
| L -l
T
JKa JK3

Figure 6.49  Even-mode equivalent circuit of a sixth-degree linear phase filter
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(6.357)

(6.358)

0 ! 0 0
(Cy)~
j J
: ) 0
(cp'”? ! (CCy)'?
a J K, J
0 = Pt
e PTG e
J JK;
0 = pA
L (CLCy)'° Cs
r0 7 1.009 0 0
71.009 p 70.85547 0
B 0 j0.85547 p+;0.12536  j0.6121
.t 0 j0.6121 p -+ 7j0.4829
After ignoring the input inverter the elements in the coupling matrix arc
K> =0.85547
Ky = 0.12536
K23 == 06121
K}} = 04&29

From (6.338)

Ky (K5 - KypKy)'?

= = 0.1069 or 2.4282
| K or

and the realisability criterion is satisfied.

Taking the smallest value of 7, and applying (6.343) we obtain

M, = C,K;, = 0.8506
My = 8K, =0.0910
Msy = Ky — K53t = 0.5605
My = Ky + K3y = 0.6083

(6.359)

(6.360)

Now from Figure 6.48 M,z above represents M4 in the in-line prototype. The
input coupling M,, 1s obtained [rom (6.357) and the final in-line filter with its
element values is as shown in Figure 6.50. The simulated response of a bandpass

version of this filter is shown in Figure 6.51.

6.6.2 Asymmetric realisations for dual-mode filters

Symmetrical dual-mode in-line filters have certain limitations. There are certain
transmission zero locations for which the filters are not physically realisable,
particularly in the eighth degree case. Second, the methods cannot be used for
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2 0.5605 3 0.091 6 1.009
O o O
0.8506 0.6083 0.8506
1.009 0.091 0.5605
? ? 9

Figure 6.50 Sixth-degree in-line linear phase filter with element values

electrically asymmetric characteristics. Finally there is no known solution for
fourteenth-degree filters. By removing the necessity for physical symmetry a
more general procedure, operating on the entire coupling matrix of the filter,
overcomes these limitations. The only real restriction is on the minimum number
of transmission zeros at infinity, which is the same as for the symmetric filter. A
systematic procedure for the rotational matrix transformations has been devel-
oped. In this case a series of rotations is applied where the angle ¢, of the rth
rotation is desired from the elements of the coupling matrix from the previous
rotation. Table 6.2 shows the positions and the angles of rotation for degrees
6-14. A photograph of a typical dual-mode device is shown in Figure 6.52.

$21 0 50 Sy,
dB ns
-10}- 41.67
-20 3333
-30 25
CAQL e T N L e e 116,67
._50 ............................... 8333
—60 : 0

09 092 094 09 098 | .02 1.04 1.06 1.08 1.1 GHz

Figure 6.51 Simulated frequency response of a dual-mode in-line linear phase
Silter
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Table 6.2 Pivotal positions and rotation angles for general asymmetric in-line
prototype neiworks

Order Rotation Pivot 0, =tan 1(KMM_VUQ/MH‘VQ)
N number r i1
u1 u2 vi v2 k
1 [2, 4] 2 5 4 5 +1
1 [4, 6] 3 6 3 4 -1
2 [2. 4] 2 7 4 7 +1
3 [3, 5] 2 5 2 3 —1
4 5, 7] 4 7 4 5 —1
10 1 [4, 6] 4 7 6 7 +1
2 [6, 8] 3 8 3 6 —1
3 (7, 9] 6 9 6 7 —9
12 1 [5, 9] 4 9 4 5 -1
2 [3, 5] 3 10 5 10 +1
3 [2, 4] 2 5 4 5 +1
4 [6, 8] 3 8 3 6 —1
5 {7.9] 6 9 6 7 —1
6 [8, 10] 5 10 5 8 -1
7 [9, 11] 8 1 8 9 —1
14 1 [6, 10] 5 10 5 6 —1
2 {4, 6] 4 11 6 11 +1
3 [7,9] 4 9 4 7 -1
4 (8, 10] 7 10 7 8 —1
5 9,11 6 11 6 9 -1
6 [10, 12] 9 12 9 10 -1
7 [5, 7] 4 7 4 5 —1
8 [7, 9] 6 9 6 7 -1
9 [9, 1] 8 1 8 9 -1
10 [11,13] 10 13 10 11 —1

Source: Cameron, R.. Rhodes, J.D.; ‘Asymmetric realisations for dual mode bandpass filiers’, IEEE Transactions on
Microwave Theory and Techniques, 1981, 29 (1), .. 1981 IEEE.

6.7 Summary

This chapter has been concerned with the design of waveguide filters to realise
various transfer functions. Initially a review of the basic theory of rectangular
and circular waveguides and waveguide resonators is presented. Next a design
procedure for waveguide bandpass filters with all-pole transfer functions is
developed, and supported with an cxample. More complex transfer functions
require either cross-coupled or extracted pole filters. The former enable realisa-
tion of transfer functions with real-axis transmission zeros, i.e. prototypes with
all positive couplings. The development of design procedures for these general-
ised waveguide filters is presented. The restriction of transmission zero locations
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Figure 6.52  Typical dual-mode device

(courtesy of Filtronic plc)

in the real axis is removed by the use of extracted pole waveguide filters, the
design theory of which is developed and again supported by an example. Finally
techniques for the design of dual-mode filters are presented. It is important to
note that the extracted pole and dual-modce techniques are relevant to the
dielectric resonator filters described in the next chapter.
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Chapter 7
Dielectric resonator filters

7.1 Introduction

The applications of dielectric materials at radio frequencies were first proposed
by Rayleigh in 1897 [1] who established the waveguiding properties of a
dielectric rod. In 1938, Richtmayer [2] proposed the use of diclectrics as
resonators and studied spherical and ring resonators. The first designs for
dielectric resonator filters were described by Cohn in 1968 [3], although material
properties were too poor at that time for many real filtering applications. More
recently the properties of dielectric materials have improved dramatically.
Along with the advent of satellite and cellular communications this has resulted
in an explosion in the applications for, and published material on, diclectric
resonator filters.

A dielectric resonator consists of a cylindrical, cubic or other shaped picee of
high dielectric constant material, known as a puck. In conventional operation
the puck is held by a supporting structure of low diclectric constant inside a
conducting enclosure, which does not contact the puck (Figure 7.1). Typically
the relative permittivity of the puck is between 20 and 80 and the puck is remote
from the enclosure with » > a. At the resonant frequency most of the electro-
magnctic energy is stored within the diclectric. The enclosure stops radiation
and because it is remote the resonant frequency is largely controlled by the
dimensions and permittivity of the puck. The fields outside the puck are
evanescent and decay rapidly with distance away from the puck. The remote-
ness of the enclosurc ensures that the unloaded Q, factor is dominated by the
loss tangent of the dielectric. Very low loss diclectrics are now available,
enabling O, factors of 50 000 or more. Diclectric resonators ¢can thus be thought
of as ‘super-insulators’. Very temperature stable dielectrics now available enable
resonators to be constructed with extremely low temperature coefficients of
resonant frequency. Properties of typical dielectric materials are listed in
Table 7.1 [4].



272 Theory and design of microwave filters

2b
€y c conducting
<25 —> enclosure
V < high £, puck
] support

Figure 7.1  Cross-section of a typical dielectric resonator structure

The most important properties of a dielectric resonator are its field pattern,
Q factor, resonant frequency and spurious-free bandwidth. These depend on
the material used, the shape of the resonator and the particular resonant
mode used. The fundamental properties of single-, dual- and triple-mode
resonators and their application in filter design will be presented in this
chapter.

7.2 Dielectric rod waveguides and the TEy;; mode

The most commonly used resonator structure uses a cylindrical puck operating
in the TE;;; mode, originally described by Cohn. A simple model can be used to
describe the properties of this mode. The dielectric puck is assumed to be a
section of dielectrically loaded circular waveguide with magnetic wall boundary
conditions on its lateral surface. Energy is allowed to leak out of the flat surfaces
of the puck. The construction of this resonator is shown in Figure 7.2. Here the
dielectric puck of permittivity ., radius ¢ and height £ is centrally located in a
cavity of height ¢+ 2¢,.

The cylindrical puck may be considered as a truncated section of dielectric
rod waveguide as shown in Figure 7.3, Expressions for the various field compo-
nents of the modes in a dielectric rod waveguide may be obtained by solving the

Table 7.1  Properties of typical dielectric material

Material g Quat(F)GHz Temperature
coefficient of
resonant frequency

{(ppm/°)
Barium zinc tantalate 29 48000 (2) —21t0 +4
Zirconium tin titanate 35 16 000 (2) —1to+8
Calcium titanate — neodymium aluminate 45 30000 (1) —7to +8
Calcium titanate — barium tungstate 55 25000 (0.8) +6
Lanthanum zinc titanate 80 5000 (1) —1to+9
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conducting
/ enclosure

N

Figure 7.2 Cylindrical dielectric resonalor structure

vector Helmholtz equation for the z-directed field components E. and H. in
cylindrical coordinates.

(Vi+kHE. =0 (7.1)

(VF+ k3 =0 (7.2)
where

k? = wpe (7.3)

The analysis is somewhat involved and will not be repeated here. A detailed
presentation is given in Reference S. There are three basic types of mode in a
dielectric rod waveguide: transverse electric (TE), transverse magnetic (TM),
and hybrid (HE) modes. The purely transverse modes exhibit circularly
symmelric field patterns with no ¢ variation. The propagation constant for
various modes has been computed as a function of frequency for a dielectric
rod enclosed in a metallic waveguide, shown in Figure 7.4

Plots of the propagation constant versus frequency are shown in Figure 7.5
for all modes up to HEs . Here the y axis indicates the propagation constant,
positive numbers indicating propagating waves and negative numbers cut-off
waves. Dotted lines indicate cases with complex propagation constants [6]. In
this particular structure the cut-off frequencies of the HE|; and TE;;, modes are

¢

€9

7 % .
y 7h -

<20 —>

Figure 7.3 Dielectric rod waveguide
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conductor
air

dielectric tod

40 mm

Figure 7.4  Diclectric rod enclosed in a metallic waveguide

1.7504 GHz and 1.868 GHz. The TM,; mode cuts off at 1.03 GHz. The first two
modes are generally of more interest for dielectric resonators as most of their £
field is confined to the diclectric, indicating a potentially high resonator Q
factor.

8
8
6} 6
7 .
§o4 = &
R s, 4
59 4°E
3o I
25?2 8§32
290 = 8
2% 0 &
el "=
£ e
2T 2 2.2
a8 ©5-2
. R
ik
. —4
_6 s 2
0 0.5 1 1.5 2 2.5 3 3.5 -6

] 0.5 1 1.5 2 25 3 35
angular frequency (rad/s)  x 10"

angular frequency (rad/s) ~ x 10"

8 8
6 6
w e .
ol g . HE31
554 £ty -
£5 zs o7
33 2; g8 2
= c©
2% S
53 % 550
@ @ & v
=R Sz
g a‘E -2
=
-6 o : T HE3S o HE3s
0 1.5 2 25 3 35 0 0.5 1 1.5 2 25 3 35
angular frequency (rad/s) — x 10" angular frequency (rad/s)  x 10'°

Figure 7.5 Propagation constants for various modes in a dielectric rod enclosed
in a metallic waveguide
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The transverse field components of the TEy and HE;; modes are shown in
Figure 7.6. Here we see that the TEy; mode is circularly symmetric but the HE,
mode can support two orthogonally polarisced field patterns cnabling single- and
dual-mode operation respectively.

A simplified model for the TEj; mode may be constructed by observing that
the tangential magnetic field at the interface between a high permittivity
medium and air is approximately zero. Consider the interface shown in
Figure 7.7. Assume a plane wave is propagating in region | in the z direction.
It has an x-directed F ficld and a y-dirccted H ficld; both are tangential to the
interface between ¢, and €. At the interface some of the field is reflected and
some is transmitted into region 2. Denoting the forward wave in region | by A,
the reflected wave by B and the transmitted wave into region 2 by C we have in
region 1

Ey=Ey+ Ey (7.4)
L. .
H, :;(bA — Eg) (7.5)

(here the exp(£j/3z) propagation is assumed) wherc

G
m=\7 (7.6)

HE)) mode

Figure 7.6 Transverse I and H fields for TEq, and HE,, modes in a dielectric rod
waveguide
(reproduced with permission from Kajfez, D., and Guillon, P.: ‘Dielectric
Recsonators’ (Artech House, Norwood, MA, 1986); www.artechhouse.com)
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IHI11TT

Figure 7.7  Diclectric—air interfuce

In region 2
Ey = Ec (7.7)
H, = Ec (7.8)
2
where

172
h = (’—") (7.9)

At the interface both the tangential electric and magnetic fields must be
continuous; thus

Ex+ Ep = Ec (7.10)
and

| . E

—(Ep — Eg) = =% (7.11)

i 12

Defining the reflection coefficient 7 as the ratio of Fy to E5 we obtain

_ L Vel (7.12)

= EA a \/E,— +1
Thus as ¢, tends to infinity £y tends to £ and there is total reflection from the
interface. In this case from (7.5) H, = 0 and the tangential magnetic field at the
interface is zero. This is analogous to an electric conductor where the tangential
electrical field would be zero. In this case the interface approximates a (physi-
cally unrealisable) ideal magnetic conductor. As an example, from (7.12) for a
dielectric constant of 45, 7 = 0.799. The magnetic conductor is often referred to
as a magnetic wall.

The concept of the idecal magnetic wall is used in the Cohn model [3] to
simplify the analysis of resonators operating in the TEy; modec. In this model
it is assumed that the puck consists of a dielectric rod waveguide with magnetic
wall boundary conditions. Energy is allowed to leak out of the flat surfaces of
the puck but is assumed to be still confined within the same cross-section. In
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€ magnetic
wall
b ] ]

Figure 7.8 The Cohn model for a dielectric resonator

other words the magnetic wall boundary condition is assumed to continue into
the air space above and below the puck until the waveguide is terminated in a
short circuit (the conducting enclosure). This is shown in Figure 7.8.

From (6.78) to (6.85) the field components for TE modes in a circular
waveguide are given by

H. = HJ,(k.r)cos(nd)exp(x~vz) (7.13)
E . =Z:H, :'/ZJém HJ, (k. r)sin(ng) exp(+~z) (7.14)
2y
_‘/.Wll' 3 . / ~
E,=—ZvcH =~ HJ,(k.r)cos(n¢)exp(£vz) (7.15)
with
Y

and -y is the propagation constant.
For the TE; mode these equations simplify to

H. = Hiy(k.r) (7.17)

E,= -ZrpH, :%ﬁ I (ker) (7.18)
[

L,=H,=0 (7.19)

(The exp(=+/3z) dependence is assumed.) Now applying an ideal magnetic wall
boundary condition at r = a then the tangential magnetic field at » = a 1s zero.
Thus

H. = 0] (7.20)

Fed

Hence

Jolkoa) =0 (7.21)
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or
2.408
k. = (7.22)
a

and

k2=~ +wpe (7.23)
or

1/2
) 2.408\

Y= [W‘M(Jgofr - ( p )] (7.24)

For propagating modes in a lossless waveguide ~ is purely imaginary and
1/2
2.408\?
v=ip = [wzﬂoffofr - ( » ) 1 (7.25)
[2
For cut-off modes ~ is real:
2.408\ 2
Y=o = I:(H ) —u)2/1,0{—?051.‘| (726)
a

The wave impedance for propagating modes is

Zrg=Z, =& (7.27)

B

and for non-propagating modes

Zop — Z. :"‘“('y’“‘o (7.28)

From (7.18) we observe that the transverse field components £, and H,
have a similar variation across the transverse plane, given by J,(k.r). There-
fore the dielectric rod waveguide can be described as a single-mode trans-
mission line with propagation constant 3 and characteristic impedance Z,.
Similarly the air-filled waveguides in the Cohn model can be represented by
sections of cut-off waveguide terminated in short circuits. This is shown in
Figure 7.9.

The transfer matrix of the propagating guide, looking into the circuit at the
line of symmetry, is
cos(3) 'I—U%sin(ﬁf)
7= " (7.29)

Y . ,
——sin( 3¢ cos( 3¢
Tsin(a0)  cos(pe)

This is terminated in an impedance Z |, the input impedance of the short
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/ line of symmetry
Ul [ O
Eg Er €9
1H : all
Zo, ot Zp, P : Ze o
cut-off propagating cut-off
waveguide waveguide waveguide

Figure 7.9  Single-mode equivalent circuit of the Cohn model for a diclectric
resonator

circuited section of cut-off guide where

WL
Z 1 % tanh{c ;) (7.30)
Y
The circuit is terminated at both ends in short circuits so resonance occurs when
the input impedance looking in at the line of symmetry is infinite. The input
impedance is

AZ, +B
Lig = —r 7.31
"D (7.31)
Resonance occurs when the denominator of (7.31) is zero, when
3 14
—tan (%) tan(al|) =1 (7.32)
(07 L

This is the resonance equation for the TE(,s mode. Since tanh{w4|) is positive,
(3¢/2 must be less then 90° — hence the use of 6 for a mode number as 37 is less
then 180° at resonance. In other words there is less than one half wavelength
variation in the transverse ficlds in the dielectric region at resonance. A lumped
element equivalent to the resonance would be to consider the dielectric region as
a capacitor and the air-filled region as an inductor.

The input impedance of the resonator is infinite at resonance; conscquently
the transverse H field, which is analogous to current, is zero at the centre of the
resonator. Analysis of the equivalent circuit shows that /, is a maximum at the
flat ends of the diclectric and rolls off to zero at the end conducting plates. Plots
of H, and E,, are shown as functions of axial position in Figure 7.10. Analysis of
TM modes for the cylindrical resonator gives the resonance equation

3 Je14
—tan| — } tanh(al,) = —1 7.33
Zran(5) wanhaey) (7.3)
Since tanh(w#,) is positive, tan(/3¢/2) must be negative and therc is a 6 + 1
variation in the dielectric. The lowest resonant TM mode is thus the TMg,,..,
modc which resonates at a much higher frequency than the TEj s mode.
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A

z=-L 2=0 z=L z=L+L,

Figure 7.10  Transverse field variation as a function of axial position for the
TEy s resonator

(reproduced with permission from Kajfez, D., and Guillon, P.: ‘Dielectric
Resonators’ (Artech House, Norwood, MA, 1986); www.artechhouse.

com)

Figure 7.11  Field pattern of the TEy,; mode
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Table 7.2 Resonant frequencies of modes in a dielectric resonator

Mode Resonant frequency/MHz
TEgs 990
HE 44 1298
HE o 11 1341
TMag1a 1513

Since the H. component shows a similar variation with = to £, the H field
turns round near the flat surface of the puck; the complete field patterns are
shown in Figure 7.11.

As an example we will analyse a resonator using the resonance equation.
Consider a puck with ¢, = 45, radius 2.5cm and height 2 cm located centrally
in a cubic conducting enclosure of internal dimension 10em. Thus ¢ = 2.5¢cm,
¢ =2cm and ¢, = 4cm. Equation (7.32) is transcendental and must be solved
numerically, giving a resonant frequency of 920 MHz. Morc accurate methods
of solving for the resonant frequency are given in References 7 and 8. Alterna-
tively one can use an EM simulator to obtain accurate results. Analysing this
example using HFSS we obtained the resonant frequencies of various modes
given in Table 7.2.

The ratio of the resonant frequencies of the fundamental mode and the first
spurious mode is 1.303 : 1. This ratio is important in filter design as it determines
the spurious-free stopband performance. The aspect ratio of the puck, 2.5: 1, 1s
nearly optimum in this respect. However, the spurious performance may be
improved by introducing a hole in the centre of the resonator, forming it into
aring (Figure 7.12) [9, 10]. The TEy; mode has zcro F ficld in the centre of the
puck where other modes have finite £ field. Since the dielectric acts on the £
field, removing regions of the puck where the E field of a particular mode is

<« d —>

Ao
4
<
FS

Figure 7.12  Dielectric resonator with improved spurious performance
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strong will raise the resonant frequency of that mode. In our example we intro-
duced a 20 mm diameter hole in the puck. This raised the resonant frequency of
the first spurious mode to 1.549 GHz while the TEq; s mode only increased slightly
to 1.027 GHz. Thus the spurious ratio increased to 1.508, a useful improvement.

It is interesting to consider the relative amounts of energy stored within the
dielectric and in the air cavity. For a resonator with €. = 38 it was reported in
Reference 11 that 97 per cent of the clectric energy and 63 per cent of the
magnetic energy were stored in the dielectric puck. Furthermore, the H field
outside the puck decays exponentially with distance away from the dielectric.
Obviously the H field induces currents in the walls of the conducting enclosure
but provided they are far enough away from the puck they will have little effect
on the unloaded Q. Typically the enclosure diameter should be double the
puck diameter for permittivities in the range 36—44.

Couplings between dielectric resonators rely on the magnetic field since there
is so little electric field in the air region. One method of coupling is via an
aperture in the common wall between two cavities, as shown in Figure 7.13.
The coupling bandwidths between resonators may be obtained experimentally
using the procedures described in Chapter 4.

A typical example of coupling bandwidth versus aperture depth  is given in
Table 7.3. In this case the cavity was an 80 mm cube, and the pucks were 50 mm
in diameter and 20 mm high with €. = 45. The aperture width w was the same as
the width of the cavity.,

In cross-coupled filters we often require both positive and negative couplings.
These can be achieved by inserting a coaxial resonator vertically in the aperture

a coupling aperture
/
L\J I dielectric
a W puck
< .
‘AL] housing
d
T U ]
puck H
support

Figure 7.13  Aperture coupling of dielectric resonators
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Table 7.3 Coupling bandwidth versus aperture depth for coupled TEg, s resonators

Aperture depth (mm) Coupling bandwidth (MHz)
30 2
35 17
40 28
50 42
80 77

w. If the resonator is resonant above the TEs resonance we obtain a positive
coupling. Alternatively if the resonator is tuned below the TE,; s resonance then
we obtain a negative coupling.

A picture of a typical TE,, filter is shown in Figure 7.14 and its measured
response is shown in Figure 7.15.

7.3 Dual-mode dielectric resonator filters

The earliest dual-mode dielectric resonator filters were reported in 1982 by
Fiedziuszko [12]. A picture of one of these filters is shown in Figure 7.16. The
resonant mode in these devices s the HE 15 which again uses a puck supported
in a cavity. The magnetic wall waveguide model, or Cohn model, may again be

Figure 7.14 A TEy,; mode dielectric resonator filter
(courtesy of Filtronic plc)
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Figure 7.15  Measured response of a TEq s mode dielectric resonator filter
(courtesy of Filtronic plc)

dieleciric
resonator

Figure 7.16  Dual-mode dielectric resonator filter

used to obtain an approximate resonance equation giving

{ 3¢
—gtan (?) tanh(ad;) = 1 (7.34)

¥
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where

)71/
3.832\
,H = |:(.d2/1/()€0_,r — < 0 > ] (735)

, 172
3.832\ ,
= {( > W g Eoii (7.36)
¢4

The HE,;, mode is not the fundamental mode for a puck centred in a
conducting enclosure. Thus for a given resonant frequency the HE; |, resonator
will be larger than a TEy,s resonator. However, the dual-mode resonance still
gives a significant size reduction and typically a volume reduction of 30 per cent
can be achieved for a given filter transfer [unction, compared with TEy,
designs. The realisation shown in Figure 7.16 is a dual-mode in-linc flter.
This can be designed using the methods described in Chapter 6. These devices
are widely used in communication satellite transponders where size, weight and
performance are all of importance. A planar version of the dual HE mode
device is reported in Reference 13. An alternative dual-mode TEy,, rcsonator
consisting of two intersecting cylindrical pucks is reported in Reference [4.

7.3.1 Dual-mode conductor-loaded dielectric resonator filters

In GSM cellular radio base station applications, filter requirements typically
need resonators with unloaded Q factors of 5000. These are normally realised
using coaxial resonators and are physically quite large. It is desirable to achieve
similar Q factors in a much reduced size. The normal configuration for diclectric
resonators, with a puck suspended in the middle of a conducting enclosure,
gives unloaded Q factors which are only restricted by the loss tangent of the
diclectric material. Thus very high Q factors are achieved but the size is large. A
typical cavity volume for a single TE;; resonator would be 600 cm® for a Q,, of
30 000. It is possible to trade off @, for volume reduction using the method
described in this section. First consider a cylindrical puck suspended in the
middle of a conducting enclosure. The order of resonant frequencies is TEy;,
followed by HE; 4. If we now move the puck down towards the base of the
housing then the TEj s mode goes up in frequency and the HE |5 goes down in
frequency. Eventually they cross over and when the puck is resting on the base
of the housing the HE; is the lowest resonance. The two resonant frequencies
may still be quite close, however. Also the field pattern of the HE ;s mode is now
distorted by the electric wall touching one of its flat surfaccs. Thus we have
achieved a fundamental dual-mode resonator although the spurious perfor-
mance is quite poor. The @ factor is lowered but it is still quite high. Finally
we introduce a conductor on the top flat surface of the puck. The effect of the
conductor is to push the fundamental dual mode further down in frequency
whilc not significantly affecting the other mode. The resonator is known as a
conductor-loaded dielectric resonator [15] and is shown in Figure 7.17.
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Figure 7.17 Dual-mode conductor-loaded dielectric resonator

It is interesting to consider the fields in the conductor-loaded resonator. First
we see a simulation of the magnitude of the F fields of the fundamental mode
along the axis of the puck in Figure 7.18. We can see that apart from some
fringing ficlds around the axis of the puck, the field intensity of the fundamental
mode is nearly constant along the axis. Now the transverse £ field must be zero

Figure 7.18 Magnitude of the E field of the fundamental mode of a dual-mode
conductor-loaded dieleciric resonator
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at the flat surface of the disc and at the base of the housing. Consequently, since
there is no variation along z, the transverse 72 field must be zero everywhere. The
resonant modc is thus extremely similar to the TM | ;; mode used to describe the
fundamental modes in microstrip patch antennas and ferrite circulators. A
simple cavity model can be derived by assuming that there is an electrical
wall on the top and bottom of the puck and a magnetic wall around its lateral
surface (Figure 7.19).
The field components for the TM,, mode are evaluated as follows. First

H.=E =E,=0 (7.37)

Now there is no variation in field along z so resonance must occur at cut-off
where 3. = 0. Now

E_=FEJi(k.r)cos(¢) (7.38)
j (we DE.  BOH.
H=-—{—_— s .39
"ok ( roO¢ or ) (7-39)
j ( _DE. BOH.
Hy = 7{? <w£ ar - r -d_/) (7:40)
and with 3. =0
jEwe .
H, :'—’_k—le (kor)sin(g) (7.41)
H, :f—% EJ{(k.r) cos(s) (7.42)
C
where
kE=k*— 3% =wue (7.43)

Now there is a magnetic wall al r = g so

H,=0|,_, (7.44)
Hence
S (kea) =0 (7.45)

electric
walls

Figure 7.19  Cavity model for the dual TM g mode
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or
k.= 1.841 (7.46)
and the resonant frequency is given by
1.841¢
. — 7.47
"L}C a\/Er ( )

Since the mode has zero field variation along the z axis the resonant frequency
is determined by the diameter of the puck using (7.47). Howcver, the resonant
frequency and spurious performance of the resonator are also affected by the
dimensions of the conducting enclosure. Thus equation (7.47) is not very
accurate. As an example a 40mm diameter puck with &, = 44 resonated at
900 MHz while the equation predicts 660 MHz. The field equations do,
however, give a good description of the fields in the puck.

The unloaded Q factor and spurious performance of the resonator are deter-
mined by the height of the puck. The higher the puck the higher the @, but
since the first spurious mode has a half wave variation along the axis of the puck
(Figure 7.20) the higher the puck the lower the spurious resonant frequency.

As an example a resonator was constructed with a puck 40 mm in diameter
and 24 mm high, with a permittivity of 44 and a loss tangent of 3.3 x 10>, in a
silver-plated cavity with internal dimensions 65mm x 65mm x 40mm. The
silver-plated aluminium disc was 35 mm in diameter and 3 mm thick, to reduce
losses due to current flow in the edge of the disc. The fundamental resonant
frequency was 930 MHz with a Q, of 6300. A TEM resonator constructed in the
same physical volume would have a Q,, of approximately 5200. Scaling all the
dimensions of the resonator to half the above gives a @, factor of 4000 at
1.86 GHz.

Figure 7.20 H field of the first spurious mode along the axis of the puck
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Table 7.4  Resonant frequencies and coupling bandwidths for the dual-mode filter

Resonator Resonant frequency (MHz) Coupling bandwidth (MHz)
1 924.68 0,1=2534 1,2=23076
2 951.50 0,2=17.89 2,3=2520
3 944.85 3,4=2073
4 943.99 4,5 = 20.19
5 943.85 5, 6 = 2046
6 944.59 6,7 = 2425
7 950.69 7,8 =231.03 7,9=11.65
8 92753 8,9 =23008

The spurious performance of the resonator was himited by the HE;; mode
which resonated at 370 MHz above the fundamental mode. The spurious
performance may be improved by introducing a hole along the axis of the
puck. An optimised resonator with a circular hole exhibited a fundamental
resonance of 919 MHz with the first spurious mode at 1420 MHz.

This type of resonator is useful for cellular base station filtering applications.
As an example a GSM base station filter was designed. This had a
925 960 MHz passband with stopband rejection of 80dB at 915 MHz. This
required an eight-pole generalised Chebyshev filter with two transmission
zeros on the low side of the passband. The prototype network was synthesised
with cross-couplings from the input node to the second resonator and from the
output node to the seventh resonator. Synthesis of this type of asymmetric

Figure 7.21  Dual-mode base station filter
(Reproduced courtesy of Filtronic plc).
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Figure 7.22  Measured performance of the dual-mode base station filter

generalised filter has been described in Chapter 3. The resonant frequencies and
coupling bandwidths of the bandpass filter were as given in Table 7.4. A
photograph of the filter is shown in Figure 7.21. Here we can see that the
input and output feeds are inclined relative to thc two modes. This has
the effect of introducing a cross-coupling by coupling into the first two modes
simultaneously. The measured performance of the filter is shown in Figure 7.22.

7.4 Triple-mode dielectric resonator filters

Triply degenerate resonances occur in structures with symmetry in all three
dimensions such as spheres and cubes. Initially we shall consider spherical reso-
nators which, because of their very special symmetry, can be analysed exactly.
These will then be compared with cubic resonators (which are easier to manu-
facture) and then a design procedure for triple-mode filters will be described.

7.4.1 Spherical dielectric resonators

Field solutions for spherical resonators are obtained by solving Maxwell’s
equations in spherical coordinates, r, 8, ¢. General solutions are given by
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Stratton [16]. In our case we will assume axial symmetry. For TE modes the
Helmholtz equation in spherical coordinates is given by

a2 .

gr—z(rEqb) 4 12 :9 {Sml< 7 099 FEdsin(0 )}} + K2(rEd) = 0 (7.48)
A solution may be obtained by separation of variables if

rE¢ = R(r)6(0) (7.49)
where

0(0) = Pylcos(8)] (7.50)
P,lcos(8)] are the nth-degree Legendre polynomials given by

Pylcos(8)] = 0 (7.51)

P{[cos(8)] = sin(#) (7.52)

Pslcos(8)] = 3sin(f) cos(f) (7.53)
etc. and

R=r(d,Jyciplk,) + By Ny ok (7.54)

where J, 1, and N, | > are half-integral-order or spherical Bessel functions of
the first and second kind respectively, e.g.

Jialx) = (%)l/zsin(.\') (7.55)
Ny ja(x) = — (%)I/zcos(_\') (7.56)
Jiyalx) = (%)1 P‘(—) - cos(x)} (7.57)
Nyja(x) = (ﬁ;)l/z [sin(x) + Coff'v)} (7.58)

The ficld solutions for symmetric TE and TM modes may be given in terms of
linear combinations of the J and N functions.

Z” $1)2 (/\’I‘) = J”A 172 (/\'") F NH+ 1/2(/\71’) (759)

where 7, ;2 18 a spherical Hankel function, and for TE modes

", .

Er,u = W P, [COS(())] Zn + 1/2(/“") (760)
i HP)[cos(d

Hy :'%}_ﬂ Mz, palkry —keZ,. 172(kr)] (7.61)

wprte
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_ A.IIHN Zn+ I/Z(kr)

2o 1280 fcos(0) Pyicos(0)] — Py 1 [cos(6)]} (7.62)
wpr/? sin(6)

These solutions simplify if the origin is included in the structure since the second
type of spherical Bessel function has a singularity at the origin and cannot be
included in the solution. The lowest order TE mode is the TEy, mode, which for
solutions including the origin has field components

H = —2_/’f£c;)s(0) [sin(kr) _ cos(kr)} (7.63)
k=r kr
iy N2
H, ;‘]H S’)ll’l”(()) [(/&V) — 1 sin(kr) + COS(/(I')] (764)
k=re Kr
_ —Hsin(0) [sin(kr) >
E, = o { o COS(AI):I (7.65)

Now consider the spherical dielectric resonator shown in Figure 7.23. The
resonator structure consists of a spherical puck of radius ¢ and permittivity e,
cnclosed in an air-filled conducting enclosure of radius b. To a first degree of
approximation we can assume that the surface of the dielectric sphere can be
represented by a perfect magnetic conductor. Thus

Hy=0],_, (7.66)
and from (7.64)
ka
tan(kda) = ———— 7.67
(‘ ) | — (ka)2 ( )

Solving this numerically we find ka = 2.74 and the resonant frequency is
approximated by
1.31 x 10"

ave,
As an example, for €, = 44 and ¢ = 3.1 cm we obtain a resonant frequency of
637 MHz.

Fy = (7.68)

(spherical)
conducting
enclosure

. 2b
spherical puck

Figure 7.23  Spherical dielectric resonator
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A perfectly accurate expression for resonant frequency can be obtained by
allowing the fields to leak out of the resonator into the air space and considering
the whole structure. The resonator may then be considered as a cascade of two
spherical transmission hincs.

A spherical transmission line may be used as the single-mode equivalent
circuit between two spherical surfaces at different radial points. Since the sphe-
rical resonator is perfectly symmetrical the spherical transmission line may be
considered as a one-dimensional (radial) structure connecting modal voltages
and currents which are related to the transverse fields.

The transfer matrix of a spherical transmission line is given by

V| A B[V, (7.69)

L1 |C Db )
where the relationship between transverse fields and voltages and currents is
given by

Eﬁg&¢):k&2§&fz (7.70)
Hr. 0, ¢) = 1(r) (8, $) (7.71)

v
From (7.64) and (7.65) the transverse functions ¢ and # are identified for the

TE,, mode, thus justifying a transmission line equivalent circuit. For TE modes
the ABCD parameters are [17]

A = J(kr)Nykry) = Ny(kr\)J ) (kr5) (7.72)
B=jZy| n(k’7) J(kry) = Jy (ko) Ny (kr)] (7.73)
C = jYo[Ntkry) J,(kry) = Jy(kry) N ylkr)] (7.74)
D = J, (ki) Ntkry) — Ny(kra) ) (kr,) (7.75)
and for TM modes
A=, (kro)Ni(kn) = N, (kro)d(kr) (7.76)
B = jZyIN(kra)dy(kry) = Ty (kry) N (k) (7.77)
C = JYo[Ny(kra) J,(kry) = J, (ko) N, (kry)] (7.78)
D= J,(kr))N(kr) = N,(kry)Jj(krs) (7.79)

where Z, is the characteristic impedance of free space in the medium.
In regions which contain the origin the N functions cannot exist and we have,
for TE modes,

Vir) = 1l,(kr) (7.80)
1{(r) = jYo1J j(kr) (7.81)



294  Theory and design of microwave filters

and, for TM modes,
V(r)=jZolJ,(kr) (7.82)
I(r) = 1J,(kr) (7.83)

The functions J,(x) and N,(x) are similar to the spherical Besscl functions, e.g.

Jo(x) = sin(x) (7.84)
Ji(x) = —cos(x) + sin(x) (7.85)
Ny(x) = —cos(x) (7.86)
N (x) = —sin(x) + cos(x) (7.87)

X
The equivalent circuit of the diclectric resonator consists of a cascade of two
spherical waveguides (Figure 7.24). The resonance condition is thus

Y +Y,=0 (7.88)

where Y is given by the ratio of current to voltage from (7.80) and (7.81), or
(7.82) and (7.83). Y, is the input impedance of a short circuited section of
spherical waveguide of length » — «. Thus

Y, =— 7.89
? B ri=d.rs=h ( )

The resonance equations for TE and TM modes arc then given by

J'(ka)N (kb) = N'(ka )A(Cb)+\/51’jr;(k\/€ra) (7.90)
N (kb)J (ka) —J (kb)N (ka) Ja(k /e a) '
N(ka)J'(kb) = J(ka)N'(kb) e, J,(k /e, a) o1
N'(kb)J'(ka) — J'(kb)N'(ka)  J\(k+/z, a) '
e surface of dielectric
a / b-a r%b
€y ét'Iéﬁ() —“
=
Y. Y

Figure 7.24  Equivalent circuit of a spherical dielectric resonator
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respectively. Taking the previous numerical example with £, =44, ¢ = 3.1cm
and b = 6.2 cm we obtain resonant frequencies of 754.4 MHz and 1000 MHz for
the lowest ordered TE and TM modes. The analysis is exact and agrees with
experimental data and field simulations using finite element analysis. This is one
of the few complex structures that is solvable by simple cquations.

The variation of transverse field intensity along the (radial) direction of
propagation may be obtained by analysing the cquivalent circuit of the spherical
dielectric resonator. We have for the TE modes, for 0 < r < 4,

Vr) = J,(k /e, r) (7.92)

1) =2 ke ) (7.93)
with

E,=V({r)/r (7.94)

H, =1(r)/r (7.95)
and, for r = b,

Vib) =0 (7.96)

Fora<r<b

“/((rr))} B Li'((rr’*?) llf((; //a)” {I(Ob)} (7.97)

T L 100
\\ - 90
\\ = 80

94 \\ surface of puck - 70
60

H,

surface of conductor
¥
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A A e e e e e e S Y
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rimm—y ——T )
"

<
[
FENE

Figure 7.25  Transverse fields versus radial position for TE modes in a spherical
dielectric resonator
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Therefore
V(ry=jB(r.b)I{h)

and
Via) = jB(a, b)I(b) = J,(k /&, a)
Therefore
J ke a
1) = j(B(Z, b) |
Hence
E, - Vi(r) _ B(r, b)J,(k+/e, a)
F rB(a, b)
Similarly
i, - 1(r) _J Ver alk /e, a) D(r, b)

r 377 D(a, b)

conducting
enclosure

Figure 7.26  E field of a TEy s, spherical dielectric resonator
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Equations (7.92)—(7.93) and (7.101)—(7.102) may bc uscd to compute the
transverse I fields as a function of radial position. This is shown for the lowest
TE mode in Figure 7.25.

Scrutiny of Figure 7.25 shows a near magnetic wall at the surface of the
dielectric. Furthermore, the variation in fields is similar to that for the
TEgs4 mode in a cylindrical resonator. The correct name for this mode 1s
thus a ‘spherical-TEy s, " mode (6 = 1, ¢» = 0, r = 6 + 1). Field plots obtained
from finite element analysis are shown in Figures 7.26 7.29. Here we see a
remarkable similarity with the TEy; mode in a cylindrical resonator. The E
field circles the equator of the puck and the H field forms loops in the meridian
planc. The £ field is zero in the centre of the puck where the H ficld is maximum.
Imagine a cylinder aligned with the structure such that the L field rotates around
the lateral surface of the cylinder. The components of magnetic field which are
tangential to the axis of the cylinder would have maximum values on or near the

Figure 7.27 Intensity of the E field of a TEy s Spherical dielectric resonator
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Figure 7.28 H field of a TEy s, | spherical dielectric resonator

flat surfaces of the cylinder. The difference in mode numbers thus arises from a
difference in coordinate system rather than field pattern. It is also important to
realise that we are only looking at one of the three degenerate modes; the other
two have orthogonal polarisations.

The ratio of spurious frequency to fundamental in the spherical resonator is
1.32:1. This may be improved, as before, by introducing a hole into the centre
of the puck. This will increase the ratio to 1.4: 1. It is also interesting to note that
the resonant frequency of such a structure can be evaluated by the transfer
maltrix procedure described here. The equivalent circuit would then consist of
a cascade of three spherical transmission lines rather than two.

7.4.2 Cubic dielectric resonators

The spherical resonator has a nice simple structure with perfect symmetry,
which 1s casy to analyse in terms of spherical waveguide modes. This yields
exact expressions for resonant frequency and field patterns. Furthermore it
has a reasonably good spurious-free bandwidth. Unfortunately it is difficult
to manufacture in large volumes at low cost. This is because ceramic processing
normally involves powder pressing which is easier to do on objects with flat
surfaces. A cubic puck is a more practical shape,
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Figure 7.29  Intensity of the H field of a TEys..1 spherical dielectric resonator

cubic puck
€y P /
£7
e—— -]
< ) >
b cubic
conducting
enclosure

Figure 7.30  Cubic dielectric resonator
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Figure 7.30 shows a cubic dielectric resonator consisting of a cubic puck
suspended centrally in a cubic conducting enclosure. It is not possible to derive
a simple exact expression for the resonant frequency; however, an approximate
Cohn model can be developed. First because of symmetry we can assume an
arbitrary direction for the z axis of the cube. The resonator will behave
identically for the three degenerate modes along the x, y and z axes. Second,
we assume as before that dielectric—air interfaces on surfaces parallel to the =
axis are ideal magnetic conductors. Fields are allowed to leak out of the flat
surfaces which are normal to z, and as before the magnetic conductors are
extended to the top and bottom surfaces (Figure 7.31).

The equivalent circuit is thus similar to that for the cylindrical resonator
except that the propagation constants and characteristic impedances are
different. The Helmholtz equation for TE modes is

ViH. = —klH. (7.103)
For magnetic wall boundary conditions

H.= 0|,\.:07 ¢ (7.104)

y=0.p=¢

Hence

H. = Esin (m;r.\') sin(igz) exp(£vz) (7.105)
The lowest order non-zero mode is the TE,; mode and

v =k —wipe (7.1006)
Thus for propagating waves in the dielectric

v =B = Wgeee, — 2m/0)]) (7.107)

/ ali
o

Y
/ z ”J <o
y . magnetic

—> wall

”—
ny

Figure 7.31  Cohn model for a cubic dielectric resonator
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and for non-propagating waves in the air region
v == 2(x/6) —wingee]? (7.108)
The characteristic impedance is
-
Zy=—t="10% (7.109)
H, Y

The characteristic impedances in the propagating and non-propagating regions
are

R —W
Z, = T“ (7.110)
Z, = 2K (7.111)
a4
The resonance equation is thus given by
Etan (%) tanh(af;) = 1 (7.112)
(81

This is identical to the resonance equation for the TEy,, mode in cylindrical
resonators, cxcept with different values for 3 and «. The variation in transverse
fields with axial position is the same as for the TE;;, mode. Thus the mode is
very similar to the TEg, s cylindrical mode and TE4, | spherical mode. Analysis
of TM modes in the cube shows that the lowest order mode is the TM 4, ; with
a higher resonant frequency than the TE mode. Thus we can say that the TE
mode, designated TE s cartesian, is the fundamental resonant mode in a cubic
dielectric resonator.

A resonator has been constructed using ZTS ceramic withe, = 36,/ = 2.5¢cm
and ¢; = 2.7cm. The measured resonant frequency of the fundamental mode
was 1.67 GHz. Solution of (7.112) yields a frequency of 1.575 GHz, indicating a
similar accuracy to the Cohn model for the cylindrical resonator. The measured
Q tactor of 23000 is similar to that for cylindrical and spherical resonators of
the same physical size. The temperature stability of the resonator was almost
identical for each of the three degenerate modes with a value of 1.5kHz/°C. This
is very desirable for narrowband applications.

7.4.3 Design of triple-mode dielectric resonator reflection filters

A triple-mode resonator may be excited by an input probe which couples into
one of three degenerate modes. If we assume that there are no non-adjacent
couplings then the equivalent circuit of the resonator is a simple one-port ladder
network. Alternatively there may indeed be non-adjacent couplings giving a
more complex cross-coupled equivalent circuit. These situations are shown in
Figure 7.32 where circles represent resonators and lines represent inverters.
Typical specifications for narrowband low loss filters usually require
generalised Chebyshev transfer functions with arbitrary transmission zero
locations. As an example a cross-coupled ladder network of degree 6 is
shown in Figure 7.33. With this network it is possible to realise transfer
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o Ko o K12 o
2

0 1

w0

®)

Figure 7.32  One-port equivalent circuits for triple-mode resonators: (a) without
non-adjacent couplings; (b) with non-adjacent couplings

0 Kot 1 K2 2 K23 3
- o O O O
input
K34
Ko7 K56 K4s
o 0 O @)
output 7 6 5 4

Figure 7.33  Symmetrical cross-coupled prototype network
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Figure 7.34  Cross-coupled prototype with two finite real frequency transmission
zeros

functions with all transmission zeros at finite frequencies such as elliptic func-
tion filters.

A triple-mode realisation of this prototype is quite a challenge! Multiple
couplings between modes in different cavities would be required and it would
be hard to eliminate unwanted couplings. A less complicated realisation is
possible using the network shown in Figure 7.34. In this case there is only
one coupling between a pair of cavities and the realisation is feasible. However,
the choice of transmission zero locations has been restricted.
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Figure 7.35  Hybrid reflection mode bandstop filter

An alternative approach is to use the hybrid reflection mode filter [18] shown
in Figure 7.35. The hybrid reflection mode filter enables a simple realisation of
all the transfer functions realisable by the network shown in Figure 7.33. [t
consists of & 3dB quadrature hybrid with networks Y, and Y, connected to
nodes 3 and 4. Y, and Y, are the even- and odd-mode subnetworks of a band-
pass filter which is normally realised using the network shown in Figure 7.33.
The complete device is a two-port network with input and output ports at nodes
1 and 2. The analysis of this circuit is relatively straightforward.

Consider an input signal of unity amplitude applied at port 1 of the hybrid.
This will produce outputs j//2 at port 3 and 1/,/2 at port 4. These signals will
then reflect off the even- and odd-mode subnetworks producing an output at
port 2 of

~

Sy, =2(Ty+T) (7.113)

o

and an output at port 1 of
Sll:%(Fofpe) (7114)

where [, and [, are the reflection coefficients of networks Y, and Y,,, with

Y. -1
ry=== .
C T Y. T (7.115)
Y,—1
11 (&}
o Yo+ 1 (7.116)
Hence
S, = J(YeY, = 1) . (7.117)

(I1+ Y )(L+7Y,)
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and
Yc — Yo

S = Yy Yy

(7.118)

Now a symmetrical two-port network such as Figure 7.33 with scattering
parameters S{; and S}, can be described in terms of its even- and odd-mode
admittances by

Y.Y, — 1
S/ = g0 7.119
N Y)Y (7-119)
Y.— Y
Sty = v 7.120
(AT (7.120)
Thus
Si =St (7.121)
Sy =jS] (7.122)

Apart from a 90° phase shift the reflection and transmission functions of the
original bandpass filter and the reflection filter are interchanged. In other words
the transmission function of the hybrid filter is a bandstop filter exactly equal to
the reflection function of the original bandpass filter.

Furthermore, we can also create a bandpass transmission function by insert-
ing an inverter between port 3 of the hybrid and Y, (Figure 7.36). Thus signals
at port 3 of the hybrid experience an additional 180° of phase shift and the sign
of I', in equations (7.113)—(7.114) is reversed; hence

Sy =Sh (7.123)
Sp=7Sh (7.124)
additional
/ inverter
output \/ ) , .
20 O Ye
1 1
2
10 v @) Yo
P
input

Figure 7.36  Hybrid reflection mode bandpass filter
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Figure 7.37  Even- and odd-mode subnetworks of the cross-coupled prototype

Thus provided that the cven- and odd-mode subnetworks can be constructed
then either a bandpass or bandstop filter may be constructed using the same
physical hardware.

The even- and odd-mode subnetworks of the cross-coupled prototype
network of Figure 7.33 are shown in Figure 7.37. These even- and odd-mode
networks are simple third-order one-port ladder networks identical in form to
the simplest equivalent circuit of the triple-mode resonator. The three shunt
reactances at nodes 1-3 may be absorbed by tuning the resonant [requencies of
the resonators. The even-mode resonators will be tuned up and the odd-mode
resonators will be tuned down in frequency for positive Ks. Consequently a
degree 6 cross-coupled filter may be constructed by realising the even- and odd-
mode subnetworks as separate triple-mode resonators.

7.4.4 Design example
The design of a bandstop filter will now be described. The filter specification is
based on a cellular radio base station application for scparating A and B opcra-
tors in the AMPS band. The filter specification was for a centre frequency of
845.75MHz, a 1.5dB passband of less than 1.5MHz and a 20dB stopband of
greater than 1.1 MHz. The specification can be realised by a degree 6 clliptic
function filter with
__Fiw)
|+ Fe(w)
In this application it is convenient to choosc the stopband insertion loss level to
be equal to the passband return loss level. Thus

|Si(jw)l (7.125)

|1 (F)i = [Spj/w)l’ (7.126)
Thus

Fy(w) = 1/Fi(1/w) (7.127)
and

F2 o W@t —wy){w” - wi) (7.128)

(1 —w*wlz)(l —wzwg)(l —wzwg)
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For a 22dB return loss we have w; = 0.36492, w, = 0.8155 and w3 = 0.945%35.
Forming S,(p) and S|,( p) by taking the left-hand plane zeros of 1 + Iy (w)
we obtain

¢ _N(p) 0.9968p° + 1.6922p* + 0.8039p" + 0.0794
Sulp) = D(p)  p®+1.992p5 +3.734p* +4.025p> +3.7347p% + 1.992p + |
(7.129)
1(0.0794p° + 0.8039p% + 1.6922p7 + 0.9968
T JEVACRULA/MS P ! ) (7.130)
D(p)
The multiplication of Sj»( p) by j ensures that ¥, = Y.'. Now
\ 1 - Y.Y,
'S - el 7.131
ll(.U) (1+Yc)(1+yo) ( )
and
Y. Y
Si(p) = ¢ o 7.132
e (S AT (7.132)
Thus
(1+Ye)(l"yo) IAYO
Si+ S = = 7.133
e S A S A R e (7.133)
Hence
621—~?11+§12 (7.134)
1+S8 =S
and
1499jp* — 15.6939p* 2789/ — 18.
y _ 25:1499jp” — 15.6939p" +- 29.2789; — 18.490 (7.13%)

€T T p3 1 25.7124/p2 — 7.0843p + 17.0766;

Y, can be synthesised using a continued fraction expansion into a ladder
network composed of capacitors, invariant reactances and inverters. The
network is shown in Figure 7.38 with element values

By = 25.1499, B, = 0.040229
B, = —5%0.807, B; = 0.00556 (7.136)
C, = 0.0015848, C, = 1034.60, C = 0.006376

The shunt frequency invariant reactance at the input to each subnetwork is
not associated with a resonator. This may be realiscd as a shunt capacitor or
capacitor or more elegantly it may be absorbed into a phase shifter. Consider
the network shown in Figure 7.39. This shows the input part of the even- and
odd-mode subnetworks. This may be equated to a phase shifter followed by an
inverter, as follows.
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1 iBIF CT 1 *—‘BZF G 1 i13'3E‘| 63:
‘ [

Synthesised even- and odd-mode subnetworks for a degree 6 elliptic
Sfunction filter

The transfer matrix of the first network is given by

1 0
/By 1

o ;][ 1 o
o)L o

~bi / } (7.137)
(1 - ByBi) —Bg

second network

[ cos(t)) jsin(«m} { 0 j/K

|jsin(¢)  cos(y) | [JK O
_4Ksir1(zp) E%

. (7.138)
iKoos(y) int)

Now equating the two matrices, from the B parameter, cos(¢) = K; thus from

Figure 7.39

Bo ﬁ 1 JBo
o ——w— 0o
W K
(o S ——ow— 0

Removal of input shunt reactances
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the D parameters

(_Kl_ - B, (7.139)
Therefore
|
= W (7.140)
and
sin(y) = [1 — cos’(y)]'/?
— (1=~ K2)1/2
By
= (TW (7.141)
Therefore
B
P 0
’I/J = SIin l:m (7 142)
0
and from the A parameter
B{ = K sin(¢)
__Bo (7.143)
1+ B

B, has now been removed and B| can be absorbed into the first reactance B,.
The final network is as shown in Figure 7.40.

The value of ¢ in this example is 87.72° for the even-mode network and
—87.82° for the odd-mode network. Only the difference between v, and 9, is
important and this is integrated into the hybrid circuit. The lowpass prototype
even- and odd-mode networks are transferred into bandpass circuits using
techniques described in Chapter 4.

The simulated frequency response of the complete filter is shown in Figure 7.41.
The 3 dB hybrid may be constructed using TEM low loss transmission lines with
a reasonable ground plane spacing. The construction of the cubic resonator
assembly is shown in Figure 7.42. The measured performance of the prototype
device using €, = 44 resonators with O, = 28 000 is shown in Figure 7.43.

+By~-By

L

y K - 1 etc.
& f
o— |

Figure 7.40  The final even- and odd-mode networks
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Figure 7.41 Simulated frequency response of a hybrid reflection mode bandstop

Sfilter (assumed lossless)

7.5 Dielectric-loaded filters

The application of high permittivity ceramics is not restricted to dielectric reso-
nator filters. They may also be used to miniaturise conventional fillers by
partially or completely loading TEM and waveguide resonators with ceramic
[19, 20]. For example, a TEM wave has a free space quarter wavelength at

coupling | to 2
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af— F

coupling 2 to 3
TOP VIEW

input/_’
K coupling
\ loop

I
v
<— housing
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screw

tuning

discs

cubic
W resonator
/1 %]
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SUPPOTL LRONT VIEW

Figure 7.42  Construction of a triple-mode resonator



310 Theory and design of microwave filters

insertion|”
loss/dB

W f=]
i
i
P
_'________,_,___.__._—-—-——"“

., VAN ]
4 Y
R IR
o | |

844.25 frequency/MHz 847.25

Figure 7.43  Measured performance of a triple-mode reflection filter
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Figure 7.44 Dielectric-loaded TEM coupled-line structure

1 GHz of 7.5cm. If the wave is propagating in a dielectric medium the wave-
length is reduced by the square root of the permittivity and for ¢, = 80 the
1 GHz quarter wavelength reduces to 8.385 mm.

Consider the structure shown in Figure 7.44. This structure consists of a
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Figure 7.45  Equivalent circuit of the TEM coupled-line structure

rectangular block of high permittivity ceramic with circular holes introduced
between the ground planes 4 in the direction a. The entire structure is metallised,
apart from small regions round one end of the circular holes. The interiors of the
holes are also metallised and so they form an array of coupled TEM transmis-
sion lines which are open circuited at one end and short circuited at the other
end. The equivalent circuit is shown in Figure 7.45.

Since the dielectric is homogeneous all the phase velocities of the lines arc
equal and the circuit is an all-stop structure. One could introduce capacitors
between the open circuited ends of the lines and ground as in the combline filter.
However, this is difficult to do and it is preferable to have a single integrated
structure. Alternatively one can alternate the shorts and open circuits between
opposite ends of the lines so that the structure becomes an interdigital filter. In
this case the device has a definite passband but the couplings arc so strong that
for narrow bandwidths the holes would have to be physically far apart. Alter-
natively we can introduce a discontinuity into the structure such that the dielec-
tric loading is not homogeneous and the even- and odd-mode phase velocities
are different. For example we can introduce a layer of lower dielectric constant
on one of the flat surfaces as shown in Figure 7.46.

In this case the €., layer could be a printed circuit which is used to interface
with the outside world. €., would then be much less then £, and if we examine
the even and odd modes of a pair of coupled lines we see that the even-mode
phase velocity will be less than the odd-mode phase velocity. This is shown in
Figure 7.47.

t<———conductor

Figure 7.46  TEM coupled-line structure with inhomogeneous dielectric louding
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Figure 7.47  Even and odd modes of a coupled-line structure

In general an inhomogencous dielectric structure cannot support a pure TEM
mode. There will always be some longitudinal field components and therefore
TEM equivalent circuits are not strictly valid. However, they are a reasonable
approximation over narrow bandwidths and the pair of coupled inhomoge-
neous lines may be approximated by the pi equivalent circuit shown in Figure
7.48.

The values of Y., Y., 8. and 6, may bc obtained for a particular set of
dimensions and diclectric constants by electromagnetic field simulations.

Examining Figure 7.48 we see that the series branch is a parallel tuned circuit.

Yo-Ye

6, <O
l—lY;o’eo € o

Yoe j _}; oc ,8e Yoe
8. 8

e, O

Figure 7.48  Approximate equivalent circuit of inhomogeneous coupled lines
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Figure 7.49  Equivalent circuit of a dielectric-loaded TEM filter of degree 3

!

For @, and 6, less then 90° the values of tan(f,) and tan(d,) are both positive.
Thus the element Y,,/2 is inductive and the clement —Y,./2 is capacitive.
Consequently the series coupling branch will resonate below the resonant
frequency of the shunt stubs.

The series coupling branches produce transmission zeros below the centre
frequency of the passband at a frequency given by

Yoo tan(f,) — Yoo tan(0,) = (7.144)

The shunt elements resonate with 0, = /2.

The lumped element equivalent circuit of a device with N holes is an nth-
degree network with a single transmission zero at infinity and the remaining
N — 1 transmission zeros at real frequencies on the low side of the passband
(Figure 7.49).

This type of network may be designed using the asymmetric generalised
Chebyshev lowpass prototype described in Chapter 3, as shown in
Figure 7.50. The prototype network can be converted into a bandpass network
by applying the conventional lumped bandpass transformation:

w o Wy

w—>a<———) (7.145)

wo w

After the transformation the bandpass network is as shown in Figure 7.51. This
circuit may be equated to the purely lumped circuit of Figure 7.49 by equating
the resonant frequencies and reactance slopes of the resonators.

Having designed a bandpass prototype we know the resonant frequencies
and bandwidths of all the resonators. The series resonators are at arbitrary

T
I I

Figure 7.50  Asymmetric lowpass prototype
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Figure 7.51 Bandpass transformed asymmetric filter

frequencies above or below the passband whereas the natural series resonances
in the ceramic block all occur below the passband. We require a method of
adjusting the transmission zero frequencies by adjusting these resonant frequen-
cies. This may be achieved by introducing capacitive or inductive coupling
between resonators as shown in Figure 7.52. The capacitive probe between
two resonators is achieved by removing metallisation on the surface of the filter
leaving a floating strip which couples across the resonators. Inductive coupling
can be achieved by grounding the central part of this strip.

An exploded view of a typical ceramic TEM diplexer for the AMPS band is
shown in Figure 7.53. Its measured performance is shown in Figure 7.54.

7.5.1 Dielectric-loaded waveguide filters

A diclectric-loaded waveguide resonator has an unloaded Q, which is at least
double the value for a TEM resonator of the same physical size and resonant

/ resonator

g o

(a)

capacitive

metallisation removed

® W”’// -

inductive

l

Figure 7.52  Capacitive and inductive couplings in the ceramic block
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Figure 7.53 A typical ceramic TEM diplexer
(courtesy of Filtronic plc)
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Figure 7.54  Measured performance of a typical ceramic TEM diplexer
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Figure 7.55 Centrally dielectric-loaded waveguide cavity

frequency. This is because the TEM resonator has current concentration in
the centre conductor where most of the loss occurs. Although it is possible to
construct diclectric waveguide filters from metallised slabs of diclectric [21] it
is useful to limit the loading to E-plane dielectric slabs. By restricting
the dielectric loading to the centre region of the yz plane most of the size
reduction can be achieved while the amount of dielectric used is reduced
dramatically.

Asanexample asilver-plated cavity with dimensions 20 mm x 20 mm x 9 mm,
loaded with a slab of ceramic with ¢, = 44 and dimensions 7.7mm x 7.7 mm X
9mm, achieves a Q factor of 3000 at 2 GHz. The resonant mode is a slightly
distorted version of the TE,;; mode. Ninety-nine per cent of the F field and
27.26 per cent of the H field are stored in the diclectric; thus the magnetic
fields must be used for coupling resonators in filters. A six-pole filter with

Figure 7.56  Dielectric-loaded waveguide filter with six poles and two cross
couplings
(courtesy of Filtronic plc)
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Figure 7.57  Measured performance of a six-pole filter with cross-couplings

cross-couplings has been constructed [22] (Figure 7.56). Its mcasured perfor-
mance is shown in Figure 7.57.

7.6 Summary

This chapter has been concerned with the theory of the design of filters using
resonators which are constructed using low loss high permittivity ceramics.
Initially the fundamentals of modes in dielectric rod waveguides are discussed.
This is followed by the derivation of the simple Cohn model for the TEg, s mode
dielectric resonator. An example of a filter using these resonators is presented.
Next a discussion of dual-mode in-line dielectric filters is followed by details of
the design of dual-mode conductor-loaded dielectric resonators. These find
application in cellular radio base stations and a design example is presented.
The use of triple-mode resonators enables significant size reduction compared
with single-mode designs. The exact theoretical modelling of triple-mode sphe-
rical dielectric resonators is described. This is followed by the design theory and
an example of a triple-mode reflection filter. Finally the use of dielectrics for
extreme miniaturisation by loading TEM and waveguide structures is discussed.
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Chapter 8
Miniaturisation techniques for
microwave filters

8.1 Introduction

Among the most important specifications for microwave filters are selectivity,
bandwidth, passband insertion loss and physical size. In fact as shown in
Chapter 4 these are related for an all-pole bandpass filter by

N

where f; is the centre frequency, Af is the passband bandwidth, Q, is the
unloaded Q of the resonators and g, is the element value of the rth element
in the lowpass prototype. From this equation we can see that as we increase
the selectivity of the filter then the number of elements, and hence the pass-
band loss, increases. Furthermore, the roll-off of insertion loss across the
passband also increases. Obviously we can use the optimum transfer function
but the same relationship still holds. Also as we reduce the filter bandwidth
we must increase the resonator @ if we are to maintain a fixed insertion loss.
Now since @, is proportional to volume for a microwave resonator, a highly
selective, narrowband, low loss filter will require a significant physical
volume. The question is, are there any ways in which we can overcome
this problem?

Several alternative approaches will be discussed. These are dielectric
resonators, high temperature superconductivity, surface acoustic wave devices,
active filters and finally, the use of new subsystem architectures combined with
predistorted reflection mode filters.
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8.2 Dielectric resonator filters

The loss of a dielectric resonator is largely determined by the dielectric loss
tangent of the ceramic puck. This is because if the puck is physically remote
from the walls of the conducting enclosure then the energy storage is largely
confined to the interior of the puck. Furthermore, the high permittivity results
in a dramatic reduction in wavelength compared with free space. Consequently
unloaded Q factors of up to 50000 may be obtained in a reasonable physical
volume. This is not possible using TEM or metallic waveguide resonators. One
would hope that by increasing ¢, ad infinitum, a very small resonator could be
obtained. Unfortunately, as ¢, increases, the Q,, of available materials decreases
and we rapidly reach a limit. We can improve this situation by using multiple
degenerate modes to increase the efficiency in terms of volume per resonance for
a given Q,. However, we again reach a limit as increasing the number of
degenerate modes beyond three results in a dramatic increase in physical
complexity and poorer spurious performance, (or a minimal improvement in
volume per resonance. Thus we can conclude that dielectric resonators may
improve the situation but in no way do they eliminate the basic problem.

8.3 Superconducting filters

It was discovered in 1911 [1] that the resistance of electrical conductors dropped
to near zero at temperatures of a few kelvins. Furthermore, in 1986 [2] similar
observations were made at 77 K. The most popular of these high temperature
superconductors is YBa,Cu;0,_, (YBCO). As a comparison the surface
resistance of YBCO at 10 GHz is 0.1 mQ at 77K compared with 8.7mQ for
copper. The surface resistance of a superconductor increases more rapidly with
frequency than that of a normal conductor, resulting in a cross-over frequency
at which both have equal surface resistance. A typical value is 23 GHz, and since
the resistivity of superconductors varies as the square of frequency then they
work well in the 1-2 GHz band.

In principle high temperature superconductivity enables resonators with near
infinite unloaded @ to be constructed. As an example a YBCO cavity resonator
with a Q of 400 000 at 10 GHz and 77 K has now been used in a down-converter
[3]. Coupled cavity resonator filters for mobile communications base stations
have also been reported. As an example a B band notch filter for the American
AMPS system with eight poles and a notch bandwidth of 1 MHz at 55dB
rejection has been reported. This used dielectric resonators within a super-
conducting cavity with resonator Q of 40000 [4]. The resonators achieved
higher Q per unit volume than a conventional TE, s resonator and were roughly
comparable with triple-mode devices. On the other hand the cooling system
required a power consumption of 400 W and weighed approximately 50kg.
Furthermore, the measured two-tone intermodulation performance was
—85dBm for an input power of —10dBm. This corresponds to a third-order
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intercept point of +27.5dBm. If the input power were increased to +10 dBm the
intermodulation products would then be at —25dBm, only 35dB below the
carrier, and there would be little point in having a 55dB notch. Improvements
in the non-lincar performance of these devices would probably make them
acceptable for certain low power receive applications. They would not be suit-
able for a GSM transmit filter where a typical requirement is for third-order
products at — 115 dBm with input powers of 30 W, corresponding to an intercept
point of +122dBm.

8.4 Surface acoustic wave filters

Surface acoustic wave (SAW) devices have been used for 1F filtering and other
low frequency applications since the 1970s [5]. However, in recent years new
device architectures have been developed for frequencies up to 3 GHz. Their
main advantage over other technologies is their very small size (typically
3mm x 3mm x | mm) in applications such as cellular handsets where their
inscrtion loss and power handling are tolerable. Typically they have 3dB loss
and 2W power handling.

SAW dcvices operate by manipulating acoustic waves propagating near the
surface of piezoelectric crystals. Typically the speed of propagation of thesc
waves i1s 10000 times slower than the speed of light. Hence structures many
acoustic wavelengths long can be made on surfaces only a few millimetres long.
Conventional 1F filters use Rayleigh waves where the molecules on the surface
of the crystal move in an elliptical path. These waves are generated by applying
an RF electrical field to the surface of the crystal via an interdigital transducer.
A typical IF SAW filter design is shown in Figure 8.1.

output [DT

/ input IDT //

absorber / /
ol = ;-

Figure 8.1 Conventional IF SAW filter
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The separation between adjacent fingers of the transducer is one-hall of the
acoustic wavelength. The amplitude of the SAW wave generated by the nth
finger on the transducer is related to the length of the finger. A particular
pattern of overlaps along the transducer, or apodisation pattern, determines
the impulse response of the transducer. Its frequency response is the Fourier
transform of the impulse response. In a conventional SAW filter the input wave
propagates a signal through the crystal and it is received by the output trans-
ducer. The transfer characteristic of the filter is then determined by the product
of the transfer functions of the individual transducers. Unfortunately the inser-
tion loss of these devices is high as the transducers are bidircctional. Half the
power [rom cach transducer propagates in the wrong direction and must be
absorbed. Thus the minimum insertion loss is 6 dB. In addition multiple reflec-
tions, known as triple transits, give rise to significant amplitude and phase ripple
across the passband.

Recently relatively low loss SAW filters have been developed using SAW
resonators which are formed between acoustically reflective gratings on the
surface of the SAW crystal [6] (Figure 8.2). Energy is coupled in and out of
the SAW resonator by placing a transducer between the gratings. The trans-
ducer has only a few fingers and is relatively broad band. Furthermore, as the
transducer couples into waves in both directions the insertion loss problems of
bidirectional transducers are avoided. In addition to a different architecture
most RF SAW filters use a leaky SAW which has three main advantages over
Rayleigh waves at RF frequencies. First, the speed of propagation is approxi-
mately 1.5 times faster than a Rayleigh wave with a corresponding reduction in
acoustic wavelength, enabling transducers and gratings to be fabricated at
higher frequencies. Second, higher values of clectromechanical coupling also
cnable relatively broadband filters to be constructed. Finally leaky SAWs
penetrate deep into the crystal enabling higher power handling capability.

The equivalent circuit of @ SAW resonator shows that it has a pole and a zero.
Typically RF SAW resonator filters are made by cascading resonators in a
ladder network, Figure 8.3.

Careful resonator design enables the poles in the series resonators and the

reflective gratings

Figure 8.2 One-pole SAW resonator and its equivalent circuit
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Figure 8.3 SAW resonator ladder filter

zeros in the shunt resonators to produce real frequency (ransmission zeros.
Typical performance of these devices is as one would expect from low degree
filters with resonator Q factors of 300 400. As an example a GSM receive filter
would have an insertion loss of 3.5dB from 925 to 960 MHz and 25 dB rejection
at 915 MHz. These devices offer a size reduction compared with ceramic-loaded
TEM filters provided the specification is fairly modest. SAW filters have poorer
power handling and temperature stability than ceramic filters. It seems unlikely
that they will perform as well as ceramic filters for high performance appli-
cations such as handsets for third generation cellular systems where the
transmitter and receiver operate simultaneously. However, acoustic wave
technology is developing rapidly and improvements are to be expected. Indeed,
bulk acoustic resonator devices with impressive performance have recently been
demonstrated [7].

8.5 Active microwave filters

Miniaturisation of filters normally results in an increase of insertion loss.
Consequently it is worth investigating whether there is any merit in integrating
active devices into filters to compensate for losses. In this way it is possible, at
least in principle, to make very small resonators. Onc of the most interesting
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Figure 8.4 Active resonator with negative resistance circuit
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techniques which has been reported [8] is to use the negative real part of the
input impedance of an inductively loaded common base bipolar transistor
circuit in order to cancel the losses in a low Q resonator (Figure 8.4).

In this way both active fixed tuned and varactor tuned filters have been
constructed where the active circuit compensates not only for the resonator
losses but also for the much larger losses associated with varactor diodes.
Experimental results show that the small signal performance of the devices is
as would be expected from devices with infinite unloaded Q. This was particu-
larly apparent in a notch filter where switching the active device off resulted in a
reduction in stopband attenuation from 20 dB to 3 dB. However, these results
were somewhat misleading as they were single frequency low power measure-
ments. In reality a filter has multiple inputs and its purpose is to pass the desired
passband signal undistorted while rejecting one or more, possibly high power,
unwanted stopband signals. Under these conditions the non-linear character-
istics of the active devices used will cause various distortion effects. These
include a reduction in the unloaded @ of the resonators as the devices saturate,
and the generation of intermodulation products.

Measurements of a two-pole 75 MHz bandwidth 1.8 GHz bandpass filter
showed a gain compression of 4dB at +7.5dBm input power, at a device
collector current of 5mA [9]. Power saturation effects on a three-pole
75MHz bandstop filter showed a reduction in stopband attenuation from
35dB to only 12dB as the input power was incrcased from -20dBm to
0dBm. The saturation effects can be overcome to a certain degree by changing
the device bias when large input signals are present, although this would not be
trivial. A more significant problem is third-order intermodulation distortion.

Consider the parallel tuned circuit shown in Figure 8.5. Analysis of this
circuit yields

I =V(G+jwC—j/wL) (8.2)
and the Q factor is given by
_ WOC
Q=" (83)
where
o — | (8.4)
0 (LC)I/Z .
I

—

Figure 8.5 Parallel tuned circuit
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At resonance

V= Ie (8.95)
and at resonance the current flowing through the capacitor is

I = jw, CV = “OGCI (8.6)
Therefore

[Ic| =01 (8.7)

Thus at resonance the current flowing through the capacitor can be much higher
than the applied current.

We can consider the non-linearity in the active resonator in terms of a
non-linear current transfer characteristic given by

I =al, +blk+cL) ... (8.8)

This generates third-order intermodulation products at the output of the device
of a power level Py where

Py =3P, — 21P; (8.9)

P;, is the input power and IP5 is the two-tonc third-order intercept point.

These intermodulation products are generated by the third-order term in
(8.8). However, from (8.7) the current in this expression is proportional to the
loaded Q and inversely proportional to the percentage bandwidth of the filter.
Thus the third-order intercept point of an active filter will be reduced by 6 dB
each time the filter bandwidth is halved. Typical results for a 1 per cent band-
width filter gave an IP; at 8 dBm. Obviously this depends on the cxact circuit
and the type of device used but such low intercept points are very difficult to
work with. With an IP; of 8dBm and input signals of 0 dBm the third-order
products would be at —16dBm: thus there is no point in designing the filter to
have a stopband rejection of more than 16 dB. An active filter would only be
used when the bandwidth was narrow, thus requiring high Q resonators. This is
exactly the situation when the current magnification in the resonators causes a
reduction in IP;. Furthermore, an active filter has a noise figure which is equal
to the insertion loss of the passive part of the filter plus a contribution from the
active devices. The conclusion is thus that active filters are not a useful solution
for miniaturisation.

8.6 Lossy filters

As we have scen, integrating active devices into resonators is not a good
solution. Although this restores the small signal shape factor of the filter
there are other problems of non-linearity. However, it is possible to design a
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conventional bandstop ® predistorted bandstop

Figure 8.6 Effect of finite Q, on conventional and predistorted bandpass and
bandstop filters

purely passive filter to have a sharp, selective response even with low Q
resonators. This is shown in Figure 8.6. Here we see that the effect of losses
on a bandpass filter is to round the passband. Alternatively it is possible to
retain a sharp characteristic by a technique known as predistortion. In the case
of a conventional bandstop filter the losses cause a rounding of passband and
reduce the stopband attenuation. Alternatively a predistorted bandstop filter
retains a good characteristic with a sharp response and high stopband attenua-
tion. Thus we can say that it is possible to design filters with low Q resonators
provided we can tolerate a certain level of passband insertion loss. The real
question 1s whether there is any real application for a filter with significant
passband insertion loss.

Consider the situation of the transmitter shown in Figure 8.7 where a power
amplifier is followed by a lossy bandpass filter. In this case the filter would be
required to remove out-of-band noise from the spectrum of the (non-linear)
power amplifier. Normally in this situation the filter would be highly selective
requiring high resonator @s. A lossy filter could still be selective, and indeed
remove the noise, but it would reduce the output power of the amplifier by its
insertion loss. This would require the amplifier to be driven harder, producing
more noise, and would be self-defeating. It would also reduce the efficiency of
the amplifier.

Now consider the situation of the receiver shown in Figure 8.8. This shows a
low noise receiver front end, possibly for a cellular radio base station. The front
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LdB
power
Lifi
ampRtier lossy filter

Figure 8.7 Power amplifier followed by a lossy filter

end must have good sensitivity and a wide dynamic range. Thus the noise figure
must be low and the intercept point should be high. In a situation where known
frequency, high power interfering signals are present, we can use a bandstop
filter prior to the amplifier to stop the interferers causing intermodulation
distortion in the amplificr. The passband insertion loss of the bandstop filter
must be low to preserve the system noise figure. Normally the stopband band-
width of the filter would be narrow and it would be highly selective. Thus high @
resonators would be necessary and the filter would be large. Alternatively we
can usc a lossy filter prior to the amplifier. In this casc, in order to preserve the
system noise figure this must be preceded by a further low noise amplificr. This
would have just cnough gain to minimise the effect of the passband loss L, on
the noise figure. If the noise figure of the first amplifier is I then the noise figure
contribution from the first two stages is

L1

A (8.10)
G
0dB
fo— l )
L |

low-noise

high-Q bandstop amplifier

filter

(a) conventional design
F G, h L 5 -

—> o

(b) alternative design

Figure 8.8 Architectures for low noise front end with receiver protection
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Thus if Fis 1 dB and L, is 6dB, G| needs to be around 10—20 dB to minimise the
effect of the filter. The gain should be just enough to achieve this and no more,
so that the first amplifier does not contribute too much intermodulation distor-
tion. This can be checked by analysing the circuit. We assume the filter has a
passband loss L, and a stopband attenuation L,, and the amplificrs have gains
G, and G5 and intercept points 7, and /,.

The system gain is given by

G=G, ~ L, +G, (8.11)

Now we assume that two interfering signals are present at the system input with
power levels of X dBm. The frequencies of these signals lie in the stopband of
the bandstop filter. First we calculate the power levels of intermodulation
products at the output of the system which are generated by the first amplifier.
We assume that the frequencies of these products occur within the passband of
the filter. The power levels are

P]—:3X*211+G|*L|+G2 (812)

Intermodulation products generated by the second amplifier have system
output levels of

The bandstop filter obviously protects the second amplifier from the interferers
but the first amplifier is not protected. Thus the optimum value of L,, the
stopband attenuation, is when P; = P,. There is no point in reducing inter-
modulation from the second amplifier below the level produced by the first
amplifier. Thus

3X =214+ G, — L, +G, =3X+3G, =3L,—21,+ G, (8.14)
and

L2:261+L1§2(11_12> (8.15)
Now if we assume /; = [, then

LzzzG—';’—Ll (8.16)

As an example if G, =21dB and L, = 6dB then L, = 16dB, and in this
situation there would be no practical reason to make I, greater than 16dB.
However, a 16 dB reduction in interferers at the input to the second amplifier is
equivalent to increasing the intercept point of this amplifier by 24 dB.

With an interfering signal level X of +10 dBm the output products would be
at +6dBm compared with +54 dBm for an unfiltered amplifier with the same
gain and intercept point. The system works equally well as having a low loss
filter at the input of the first amplifier with 18 dB stopband rejection. In this
case intermodulation from the first amplifier would be reduced but the second
amplifier would still produce products at +6 dBm.
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8.6.1 Design of lossy filters — classical predistortion

First we will review classical predistortion techniques as in Reference 10.
Predistortion is a method by which the correct transmission characterisation
of a bandpass filter may be preserved when the resonators have finite Q factor.
This is achieved as follows.

The transfer function of an all-pole (ladder) lowpass prototype is given by

1
S =—— 8.17
IZ(p) D([)) ( )
In the presence of dissipation loss the lowpass prototype ladder network is as
shown in Figure 8.9. If this dissipation loss is uniform then the transfer function

of the device is given by
Sia(p) = Sn(p+a)

I
W) (8.18)

where « 1s related to the Q of the structure and
G.=aC, (8.19)

where C, and G, are the rth elements in the lossy filter.

We have already established that introducing dissipation into the filter causes
a rounding of the passband. However, this can be avoided by shifting pto p — «
and synthesising a network with a transfer function S}>(p — «). This results in a
lossless ladder network which when we add loss and p shifts to p + « has the
correct transfer function other than a constant offset in insertion loss. This is
best illustrated by an example, in this casc a degree 2 Butterworth filter where

l

Spip) =———7—— 8.20
12(p) [)2+\/2p+1 ( )
We now shift p to p — o and multiply by a constant to obtain
K
Sip(p) = 5
(p—a)+V2{p—a)+1
K
=3 3 (8.21)
prHp(V2-2a)+1 - 20+
O | .
— Kz — K23 ete.
Cl G'[ C?’_ f GZ
O

Figure 8.9 Lowpass ladder network with finite uniform dissipation
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and
K>
S0 2:
|Si2(jw)l (1= 20+ a?) — P+ w2 —2a)
K2
_ 8.22
X2-2/2aX +1-2y2+4a? 52
where
X —w?tal (8.23)

The act of shifting p to p — o makes | S}5|* peak near the band-edges. The value
of K should be chosen so that |S),|* peaks at exactly unity. This ensures
minimum insertion loss and a passive realisation.

Now for |S]2(jw)|2 to have unity magnitude at a turning point X, then

Xi—2/2aX,+1-2y2a+4a* =K? (8.24)
and
J 2 2
5(/\7(/\”“—2\/2(1X+ I -2y2a+4a%) = 0|, (8.25)
or
Xy =2« (8.26)
From (8.24) and (8.26)
K?2=1-220+2a? (8.27)
Hence
K=1-. 2« (8.28)
and
1 -/ 2«
S = 2
2(p) PrHp(V2-2a)+1 - 20+ a? (8.29)
Now
ISu(jw)l =1 = [Su(jw)
_ X?-22aX +2a°
X2 -2/20X + 1 -2/ 2a+4a?
_ (X ~ /2a)’
CXP-22aX +1-22a+4a? (8.30)
Thus
2 2
. ++v2a — o
Su(p) Pt v2e —a (8.31)

T4 p(V2-20)+1-2a+al
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Now forming the input admittance Y(p)

T+ Su(p)
Yir = L =Si(p)

B 207+ p(v/2 —2a) + 1
Cp(V2=2a)+ 1 =220 +2a?

Synthesising Y ( p) as a ladder network we first extract a capacitor of value

(8.32)

V2
R e (8.33)

leaving a remaining admittance

2
olv2—20——Y* (13 204200 41

Tir) p(\/2i_2—(;)/iwl -2/ 20 + 202
T (V2 —2a)+ 11—2\/2()4+2a2 (8:34)

Now inverting with an inverter of value

Ky = ﬁ (8.35)
we obtain

Y>(p) :l\/i\Z/pqur 1 (8.36)
which is a capacitor of value

C, V2 C (8.37)

=To e

in parallel with a 1 load.
Now we add loss to the network by letting p = p + «. The final network is
shown in Figure 8.10. The transfer function of the filter is

o (1= 20)?
S wilff = —— 3
[ Si2(jw)] o (8.38)
(e,
g
— _ — 1Q
c §Gl I-v2a c, G s
O o

Figure 8,10 Predistorted maximally flat prototype
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with a realisability condition
1
Thus the transfer function is preserved apart from a constant offset in insertion
loss.
The input reflection coefficient can be found from (8.31) with p replaced by

p+a.
C(pra)f+y2a-dt
P /2p -+

Sulp) (8.40)

and
wt +wida® - 2y/2a) +2a°
1+ w?

Thus the predistorted insertion loss characteristic has been obtained by modify-
ing the numerator of the return loss function. The insertion loss of a conven-
tional Butterworth filter rolls off near the edge of the passband. Howcever, by
reflecting energy in the middle of the passband the predistorted filter recovers
the original transfer function. As an example, if &« = 1/2+/2 then the insertion
loss at d.c. is 6 dB and the return loss is also 6 dB. The output return loss is equal
to the input return loss, but higher degree solutions result in asymmetric
networks with different values for Sy, and S,,. Furthermore, it can be shown
that for higher degree solutions a significant price is paid in terms of extra
insertion loss above the band-edge loss of the original non-predistorted
network. In addition it is difficult to obtain simple solutions for predistorted
highpass networks with finite real frequency transmission zeros. For example
consider the highpass prototype ladder network with finite dissipation loss
shown in Figure 8.11.

The transmission zeros in this network occur when the impedance of the rth
shunt branch is zero, i.e.

1S (jw)l? = (8.41)

L,p,+ R, =0 (8.42)
That is,
R,
P=sT (8.43)
"
Ll L2
K2 etc.
R) R2

Figure 8.11  Highpass prototype network with finite dissipation loss
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The effect of uniform loss is to move the transmission zeros from d.c. onto the
left-hand real axis in the complex plane, hence limiting the maximum stopband
insertion loss. This is different from the lowpass casc shown in Figure 8.10
where the transmission zeros are still at infinity. Predistortion in the lowpass
case preserves the passband shape by modifying the capacitors whereas modify-
ing the inductors will not move the transmission zeros of the highpass filter back
to the origin. There are various techniques for predistorting highpass prototypes
by adding additional loss (see, for example, Reference 11) but they are of hittle
value. For these reasons predistortion of the transmission response is not the
best solution for lossy filters.

8.6.2 Design of lossy filters — reflection mode type

Consider the network shown in Figure 8.12 where a resonant circuit with finite
loss is coupled to one of the ports of an ideal circulator. (For a discussion on
circulators see Reference 12.) The transmission characteristic from ports [ to 3
is the reflection coefficient of the resonator. Assume that we adjust the input
coupling to the resonant circuit so that the real part of its inputl impedance is
matched to the circulator. Thus in a 1 2 system we have

ReZ(jw) =1 (8.44)
Thus
G+ jlwC—-1/wlL
Re +'](w1(2 /oL) (8.45)
That is,
K =G (8.46)

In this case at the resonant frequency all the power incident at port 1 will
be absorbed in the resistive part of the resonator. Hence the transmission

®

®
® °i) i

Figure 8.12 Reflection mode bandsiop resonator

>§
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characteristic from port 1 to port 3 is that of a bandstop resonator with infinite
unloaded Q factor at its resonant frequency. Thus we have created a resonant
circuit with loss which has a finite real frequency transmission zero, overcoming
the problem described in the previous section.

The basic objective is thus to synthesise a multi-element version of this
network, in other words to synthesise lossy networks with prescribed reflection
functions. This can be achieved by predistorting the reflection function of a
lossless prototype network as follows. Given a reflection function S, ( p) we let

Sn(p)— KSu(p—a) (8.47)

The choice of K is made on a similar basis to that for predistortion of Sj>( p). We

evaluate the maximum value of K such that the resultant network is passive.

This is achieved by choosing K so that | Sy, (_jw)]2 peaks at a value of unity.
Thus we determine the frequency wy and value of K such that

K218y (jwy — ) = 1 (8.48)
and

d ; 2

qoSnlee —a)l" =1 (8.49)

are simultaneously satisficd. There will, in general, be more than one value of K
which satisfies these equations so the minimum value must be chosen.

Having found the values K and w, for a given value ol & we then formulate
the input impedance and synthesise the network. Now the input impedance (or
admittance) is given by
1 EKS(p—a) _ N(p)

1FKS (p—a) D(p)
We have chosen K so that S} is completely reflective at p = jwy; thus Z;,,( p) has

a pair of transmission zeros at p = =+ jw,. These may be extracted by removing a
Brune section or its equivalent cross-coupled section shown in Figure 8.13. This

Zi(p) (8.50)

Figure 8.13  Cross-coupled Brune section
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Figure 8.14  Extraction of a cross-coupled Brune section from Z{( p)

is done by cascade synthesis. Z( p) may be represented by the cascade of this
Brune section followed by a remaining impedance (Figure 8.14).
Now the ABCD parameters of the cross-coupled Brune section are given by

A B 1 Y, + Y, 2
- (8.51)
¢ D Yo_Yc 2YCY0 Y0+Yc
where
K3
Y, =jK, + = 8.52
JRG p+ Ky ( )
Y, =Y, (8.53)
Now
AZ +B N
CZ(p)+A4 D(p)
Hence the remaining Z, ( p) impedance is given by
BD(p)— AN(p
Z)(p) = Z2UP) = AN(p) (8.55)
CN(p) — AD(p)
and substituting for 4, B and C in (8.55) we obtain
*+K3)D(p) — KipN
Z](P): ([7 + 3) (p> 2P ([7) (8.56)

(K3 + KK} - 2K K3K5+ KEp?)N(p) — KipD(p)

Now (8.56) is of degree 2 higher than Z(p). For the transmission zeros to
be successfully extracted it should be of degree 2 lower. Thus Z,(p) must
contain the factor (p? +wg)® in both numerator and denominator. Thus
both the numerator and denominator, and their derivatives, should be zero at
P = Ejwy.
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From the numerator of Z( p) we obtain

(PP +K3)D(p) — KipN(p) =0|,_. ., (8.57)
and

d )

d—p[(P2+K§)D(p)—K22pN(P)] =0|,. 4w, (8.58)
Hence

(K3 —wo)D(jwy) = jwo KN (jwy) =0 (8.59)

(K3 +2jwo) D(jwo) + (K3 —wy)D'(jwo)

—jwyKiN'(jwo) — K3 N(jwo) =0 (8.60)

Solving (8.59) and (8.60) simultaneously we obtain
2jwy D*(jwo)

K, = - - , . : . - 8.6l
> = N(Gwa) D) T eV Cwn) DUjeon) ~ D)W (o)) 0
K, — 120 KiN(jwg) +woD(jwo) (8.62)
D( jwy)
and similarly from the denominator of Z,( p)
K, = K> D'(jwo)N(jwo) — D(jwo)N'(jwy) D(jwy) (8.63)

2N?(jwy) 2jwoN{(jwq)
With these values of K, K, and K the factor (p2 +w3)2 will appear in the
numerator and denominator of Z,(p) and it may be cancelled.

Synthesis of the remaining impedance Z( p) now follows. In general it will
have no poles or zeros on the imaginary axis or at infinity. Writing Z;(p) in
terms of its even and odd parts we have

Z(p)= mo(p) +ny(p)

where m; ; and n; , are even and odd polynomials in p. The real part of Z,( p) is
then obtained from its even part, i.e.

ReZ(jw) = EvZ(/J)‘

(8.64)

P=jw
m my(p) —n n
_ 1(p) 22(1) 21(!)) 2(p) (8.65)
mi(p) —n3(p) p=juw
At some frequency wy, Re Z( jw) obtains its minimum value R, thisis shown in
Figure 8.15. We can extract a resistor R|, leaving a positive real remainder,
where w| and R, are given by
d
dp

EvZ(p)=0|,_,., (8.67)
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Re Z(jw)

Ry

Om (0]
Figure 8.15  The real part of the remaining impedance

The remaining impedance is now Z,{ p) where
Zy(p) = Z(p)— R (8.68)

Z( p) is purely reactive at w; and thus has a transmission zero at w. I w) is finite
we must extract a second cross-coupled Brune section. Alternatively if w; is
infinite then the remaining impedance may be synthesised as a lossy ladder
network by a continued fraction expansion of parallel RC networks and
inverters.

Finally having synthesised the network we add uniform dissipation by letting
p — p~+ . The result of a complete synthesis cycle for a degree 4 case is shown
in Figure 8.16. One of the interesting features of this synthesis technique is
that for most lowpass prototypes the network is of type (a). However, highpass
prototypes may also be synthesised using this method and usually the
network is of type (b). Further discussion of this and the synthesis of
asymmetric prototypes is given in References 13 and 14.

8.6.3 Design example

The procedure has been appliced to the design of a bandstop filter for a cellular
radio base station application. The specification was

Centre frequency F.=845.75MHz
Stopband rejection  >20dBc at I, £ 550kHz
Passband loss <1.5dBc at F. + 750 kHz

In this case dBc refers to attenuation with respect to the passband loss. This is
the same specification as was previously described for triple-mode dielectric
resonator filters. However, by using the approach described here a Q factor
o 30000 is no longer required. Instead we will use a resonator Q factor of 7000,
yielding a loss of 6.8 dB. This may be toleratcd by using a high intercept point
low noise amplifier before the filter, as described previously. A Q factor of
7000 enables a smaller physical realisation than using dielectric resonators;
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zy(p
Ry l
o K WAVAVA ! o
= S T Lo
Z(p) K3 Le} 3 Gy+a C3 4
¢ %
1 a 1 o
(a) case where @is infinite
Ry
o K AN K4
K K> ﬁ K Ks
? A i —
K3 Ke

N T A
1

(b) case where @, is finite
Figure 8.16  Synthesis of a lossy reflection prototype filter, N = 4

either a coaxial or a dual-mode conductor-loaded ceramic realisation may be
considered.

The prototype network used was a degree 4 elliptic function filter with 22 dB
passband return loss ripple and an cqual stopband ripple with a reflection
coefficient.

Fy(w)

: 2 /
= .69
Sutielf =725 (8.69)

Fy(w) = (wz—w%)(wz_wg)z (8.70)

(11— o)1 - w?w))
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S11(p) can then be found by factorisation giving

(p? +0.6124938)( p* + 0.1306136)

8.71
(P2 + 1.5189939p + 1)( p? + 0.31265488p + 1) ®-71)

Su(p) =

In order to complete the synthesis the value of « must be computed from the
ratio of loaded filter QO to unloaded resonator Q:

fo
o =——= (8.72)
AJQ,
In this case, because of the prototype used, A f is the 3 dB bandwidth of the filter
which is 1.299 MHz. In this example choosing resonator Q of 7000 yields «
equal to 0.093. Then the value of the gain constant K and the resonant
frequency of the Brune section are given from (8.48) and (8.49):

K =0.457796 wy = 1.009825 (8.73)

giving a passband loss of 6.78 dB.
The Brune section is extracted using the method described with

K, = —0.1157, K5 = 0.05567, K1 = 0.99651 (8.74)

After extracting the Brune section and a unity inverter the remaining impedance

Zy(p)is

Z0(p) = 0.0119251p? + 0.0284371p + 0.0179403
2.396808p2 4+ 2.117032p + 1.396287

(8.75)

The minimum value of the real part of Z\ ( p) occurs at w = oc. A resistor is then
extracted of value

R, = Z,() = 0.004975 ) (8.76)
and the remaining impedance is

Zy(p)=Z\(p) — R (8.77)
Its admittance is

I 2.396808p” +2.117032p + 1.396267

Yo(p) = = i
2(P) Z>(p) 0.179048p + 0.010993 (8.78)
We then extract a capacitor C'5 of value
Y.
C, _ Bl — 133.864 F (8.79)
r P
The remaining admittance is then
0.645465p + 1.396267
Yi(p) = Yo(p) — Cip ! (8.80)

~0.0179048p + 0.010993
We then extract a shunt conductor of value

Gy = Y3(p)|,_. = 36.0498 (8.81)

P=x
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and the remaining impedance is
Yy(p) = Y3(p) — G (8.82)

Inverting Y, we obtain

Ys(p) = = 0.0179048p + 0.010993 (8.83)

s(p) Yy(p)

which is a capacitor C4 in parallel with a conductance G4 where
C,=0.0179F G4 =0.01099 (8.84)

After transforming p to p + o we obtain the final circuit of Figure 8.17.

After applying the appropriate bandpass transformation we obtain the
simulated frequency responsc shown in Figure 8.18 where the return loss
corresponds to the required bandstop response.

[t is interesting to note that the first two resonators in the circuit in the cross-
coupled Brune section have an unloaded Q factor of 7000 but the remaining
elements have a lower Q. For cxample the first RC element in the ladder
network has an admittance

G
C3(p+a)+(}3:C3(p+a+C—3> (8.85)
:),
Thus new values of « for the ladder part of the filter are
G
a3 = a4+ = =0.3623 (8.86)
C;
G
g = a+—2=0.7069 (8.87)
Cy
input © s & L SAAA
Woooom I O
Ca Cy
G4+0.CA
% 1 G3+aCy 1
N U e

Figure 8.17  Network realisation of a degree 4 elliptic function lossy reflection
mode lowpass prototype filter
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Figure 8.18  Simulated frequency response of a notch filter

Now from (8.77)

_Jo
T Afa

0, (8.88)
giving Q4 = 1797 and Q4 = 921. This remarkable result is explained by the fact
that only the first two resonators contribute significantly to the sharpness of the
response near band-edge; the other resonators contribute to the broader
response.

8.7 Summary

Various techniques for the miniaturisation of filters are reviewed. A brief discus-
sion on dielectric resonators points out the limitations in terms of increasing the
dielectric constant or the number of degenerate modes. Superconducting filters
offer near infinite Q in small physical size, but at the expense of complex cooling
systems and poor intermodulation performance. SAW filters offer high levels of
miniaturisation with relatively modest performance. Active filters exhibit near
infinite Q when considered as small signal devices but suffer from poor large
signal performance and have an associated noise figure. An alternative
approach for receiver filters is to use predistorted lossy filters. High selectivity
can be achieved in a small physical size provided the filter is preceded by a high
intercept low noise amplificr. An intermodulation analysis is used to justify this
approach and the details of the required filter synthesis procedure arc presented.
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It is to be expected that miniaturisation will remain an active arca for future
research and development efforts.
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microwave fillers; dielectric
resonator filters, miniaturisation;
lossy predistortion filters;
superconducting filters: surface
acoustic wave (SAW) resonators and
filters
minimum phase networks 7-10
group delay 9 10
multiple degeneraie modes in waveguide
cavities 255

N-wire lines see interdigital filters

narrowband bandstop filter 121-4

narrowband coaxial resonator filters
197-8

narrowband impedance transformer
112-13

Newton-Raphson technique, waveguide
bandpass filters 226

nodal admittance matrix scaling 116-18

odd-mode analysis see even- and odd-
mode analysis of symmetrical
networks
one-port network
bounded real condition 17
Laplace transform for 15-16
lincarity 16
passivity 17
time invariance 16

parallel coupled transmission lines 165-7
parallel coupled N wire line 165-7
static capacitances of an N wire line

167

parallel coupled-line filter 194 7

application 195

design using Richards” highpass
transformation 196
principle 194-5
parallel tuned circuit, impedance of 19-20
passivity 17
phase constant, distributed circuits 46
phase delay
combined phase and amplitude
approximation 77-8
synthesis of 78
equidistant linear phase
approximation 75-6
see also group delay
phase response, ideal lowpass filter 5
pi network transfer matrix 109-11
PIN diode switches 4
predistortion see lossy predistortion
filters
pucks see dielectric resonators, pucks

Q factor
for coaxial lines 150-1
dielectric resonator filters 271-2
dual-mode conductor-loaded 285
GSM base station requirements 2
interdigital filters 182
and passband loss 12, 125-31

radar warning reccivers 151
reactance function 19
reciprocal networks 41
reciprocity, odd- and even mode analysis
43
rectangular waveguide basic theory see
waveguide basic theory
reflected group delay
use of 131-3
reflection coefficients
and input impedance 17
scattering matrix 37
residues, ladder networks 22
reverse transmission coefficient 37
Richards’ transformation
application to interdigital filters 171-3
applications to broadband TEM filters
154-6, 162-3
with commensurate distributed
networks 139-42
rotational transformations 2601



SAW see surface acoustic wave (SAW)
resonators and filters
scatlering matrix/parameters 34-41
conservation of energy 37-9
Darlington technique as a ladder
network 40
degree 3 Butterworth filter 39
input impedance 34-7
input/output reflection cocfficients 37
insertion loss 39, 41
network transducer power gain 35-7
reciprocal networks 41
and the transfer matrix 40-1
unitary condition 38
short circuited stubs 139
spherical dielectric resonator filters
290-8
E and H fields 297-9
cquivalent circuit 294
field solutions with Maxwell’s
equations 291
field solutions for symmetric TE and
T™M modes 291--2
Helmholtz equation for TE modes 291
resonance equations, TE and TM
modes 294
resonant frequency 292
spurious to fundamental frequency
ratio 298
transmission line cquivalent circuit
293
transverse field intensity 295-7
stepped impedance unit clement
prototypes 144-51
Chebyshev response 145-8
coaxial lines 150-1
dielectric resonator filters 150
Hurwitz polynomial 145
microstrip circuit pattern 149--50
physical realisation 149-51
unit elements (UEs) in 144-5, 148-9
superconducting filters 322-3
YBCO high temperature
superconductor 322
surface acoustic wave (SAW) resonators
and filters 323 5
applications 323
performance 325
principle of operation 323-4

Index 351

suspended substrate striplines 15862,
164-5
symmelry, odd- and even mode analysis
43
synthesis
continued fraction cxpansion 21-2
Foster synthesis 20
ladder networks 20-3
see also Butterworth (maximally flat)
prototype lowpass network
approximation; Chebyshev
generalised prototype
approximation; Darlington synthesis

TIDMA see time division multiplex access
(TDMA) technique
TEy;s mode see dielectric rod waveguides
and the TEy;, mode
TEM transmission line filters see
broadband TEM filters with
generalised Chebyshev
characteristics: combline filter;
commensurate distributed networks;
interdigital filters; narrowband
coaxial resonator filters; parallel
coupled transmission lines; parallel
coupled-line filter; stepped
impedance unit element prototypes
time division multiplex access (TDMA)
technique 1 2
see also GSM cellular radio
time domain characteristics of filters
78—81
see also impulsc response of filters
time invariance, one-port network 16
transfer matrix 29-34
cascaded network analysis 30-1
distributed circuits 46
input impedance calculations 31-2,
33-4
and the scattering matrix 40-1
for serics connected elements 32
for shunt connected elements 32-3
transformations on lumped prototype
nctworks 101-36
bandpass of an inductor 108
bandpass of a capacitor 108-9
bandwidth scaling factor 108
impedance transformations 101-3
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lowpass to bandpass 107-18
lowpass to bandstop 118-25
lowpass to highpass 105-7
lowpass to lowpass 103-5
transmission cocfficicnts, forward and
reverse 37

transmission zcros, Darlington synthesis

24-5

triple-mode dielectric resonator filters
se¢ cubic dielectric resonators;
dielectric triple-mode resonator
filters design; spherical diclectric
resonator filters

two-port network analysis/synthesis sce

Darlington synthesis; scattering

matrix/parameters; transfer matrix

unit elements (UEs) 138

with interdigital filters 170 1, 174-6

in stepped impedance unit element
prototypes 144-5
unitary condition
for lossless network 38

waveguide bandpass filter design
220-30

all-pole type design procedure 225-8

design example 228-30
inductive iris section 222-5
Newton-Raphson technique 226
normalisation 220-1

principle of operation 220

shunt inductive discontinuities 221-2

waveguide basic theory

air filled resonators 12

circular waveguides, TE modes
21315
boundary conditions 213 -14
Helmholtz equation 213
Maxwell equations 213
mode numbers 21415

circular waveguides, TM modes
215-17
boundary conditions 216
circular resonators 217
Helmbholtz equation 215-16
numerical cxample 217-19
resonators mode chart 218

Helmholtz equations 202-3

main features 201-2

Maxwell’s equations 202

rectangular waveguides, relative cut-
off frequency, any modce 209

rectangular waveguides, spurious
resonances 212

rectangular waveguides, TE modes
203-8
E and H fields 206-8
Hclmholtz equation 203—4
Mazxwell’s equations 203-4
TE,, mode 206-8
TE 4, mode 210

rectangular waveguides, TM modes
208 9

rectangular waveguides, waveguide
resonators 209- 10

rectangular waveguides, waveguide
unloaded Q, cxample 210-12

see also dielectric rod waveguides

waveguide dual-mode filters 255-67

asymmetric realisations 265-7
pivotal positions and rotational
angles for in-line prototype
networks 266-7

equivalent circuit 255-6

even-mode case representation 260

even-mode network for the cross-
coupled array prototype 258

example, degree 6 linear phase filter
with four transmission zeroes at
infinity 263-6

general cross-coupled array prototype
network suitable for dual-mode in-
line realisation 257

lowpass prototype for a sixth-degree
in-line filter 256

nodal matrix transformations 259

realisability conditions 263

rotational transformations 260 1

waveguide extracted pole filters

239-54

complex conjugatc symmeiry synthesis
procedure 239-40

cross-coupled array synthesis 244-8

design example, sixth-degree prolotypc
2524

even-mode nctwork for the complex-
conjugate symmetric array 249-51



cxtracted pole synthesis 2404

pole cavity pair synthesis 250-1

realisation 249-51

realisation in Ty, modc cavitics 254

rectangular waveguide arrangement
248

simulated response 248

waveguide generalised direct-coupled

cavity filters 230-9

cross-coupled lowpass prototype
231-2

cquivalent circuits 232-3, 235-6

limitations 238-9

midband susceptances and electrical
lengths 231

transfer matrix 233-5

Index 353

transformed (dual) lowpass prototype
even-modec circuit with equal value
conductors 236 7
waveguides
dielectric rod see dielectric rod
waveguides
wideband TEM filters see broadband
TEM filters
Y BCO high temperature superconductor
material 322

zero-bandwidth approximation see
Butterworth (maximally flat)
prototype lowpass network
approximation



Microwave filters are vital components in a huge variety of electronic systems,
including the rapidly growing communications industry behind mobile radio and
satellite communications, as well as radar and other microwave technologies. lan
Hunter provides a graduate-level text that has the aim of enabling the engineer to
understand the theory and design of microwave filters.

This book is extremely thorough and covers fundamental circuit theory and
electromagnetics, network synthesis, applications and the design of a variety of
real microwave structures, all in a single source. The philosophy is to present
design theories followed by specific examples with numerical simulations of the
designs, accompanied by pictures of real devices wherever possible.
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