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Foreword

The microwave region of the electromagnetic spectrum has certain unique
properties. These enable microwave signals to propagate over long distances
through the atmosphere under all but the most severe weather conditions. Both
civilian and military applications abound, including radar, navigation, and the
latest ""hot application", wireless communications. However the microwave
spectrum is a finite resource which must be divided, cared for, and treated
with respect. And this is where microwave filters come in. Although the now
classic book on microwave filters and couplers by Matthaei, Young and Jones,
published 36 years ago, was never revised, it is still widely used as a handbook.
However it needs updating. Dr Ian Hunter's book is therefore a significant event
as it includes filter types and design theories which simply did not exist (either in
concept or practice) 36 years ago. Dr Hunter has himself been active and
enthusiastic in developing and enlarging some of these new technologies. He
has also taught University courses on Microwave filters and his ability to
elucidate and communicate the subject is evident in these pages. This book
will be most useful to serious students of the subject, as well as to practitioners
of the art and science of microwave filters.

Dr Leo Young





Preface

Microwave filters are vital components in a huge variety of electronic systems,
including cellular radio, satellite communications and radar. The specifications
on these devices are usually severe, often approaching the limit of what is
theoretically achievable in terms of frequency selectivity and phase linearity.
Consequently an enormous amount of published material on this topic is avail­
able and anyone new to the subject is in danger of being overwhelmed with
information. The design of filters is unusual in that it uses network synthesis,
with which it is possible to apply systematic procedures to work forward from a
specification to a final theoretical design. This is the converse of most engineer­
ing disciplines which tend to use design rules based on analysis. A pre-requisite
to skills in network synthesis is a thorough grounding in the circuit theory of
passive networks, a subject often treated superficially in modern electrical engi­
neering degree courses. However, a knowledge of network synthesis is not the
only tool needed in order to design filters. Synthesis provides the designer with a
prototype network which can then be transformed into a variety of microwave
networks including TEM transmission lines, waveguides and dielectric
resonator realisations. Thus the designer also has to have a reasonable
knowledge of the properties of the electromagnetics of these devices. This
book evolved from a series of lectures on filter design which the author gave
to engineers at Filtronic pIc and MSc students at Leeds and Bradford
Universities. The purpose of the book is to provide a single source for filter
design which includes basic circuit theory, network synthesis and the design of a
variety of microwave filter structures. The philosophy throughout the book is to
present design theories, followed by specific examples with numerical simula­
tions of the designs. Where possible pictures of real devices have been used to
illustrate the theory.

It is expected that the book will be useful to final year undergraduate, MSc
and PhD students. It should also forn1 a useful reference for research workers
and engineers who are designing and/or specifying filters for commercial
systems.

I would like to thank Filtronic pIc and the University of Leeds, Institute of
Microwaves and Photonics, for allowing me time to write this book. I would
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also like to thank the following for providing practical and moral support:
Duncan Austin~ Christine Blair~ Stephen Chandler~ Peter Clarricoats~ Vanessa
Dassonville~ John Oean~ Wael Fathelbab~ Keith Ferguson~ Oharshika
Fernando~ Patrick Geraghty~ Peter Hardcastle~ Eric Hawthorn~ Kimmo
Koskiniemni~ Neil McEwan~ Chris Mobbs~ Marco Morelli~ Richard Parry~

Sharon Pickles~ Richard Ranson~ David Rhodes~ Richard Rushton~ Philip
Sleigh~ Chris Snowden~ and Stewart Walker.

Ian Hunter~ April 2000
Filtronic pIc

The Waterfront
Salts Mill Road

Saltaire
West Yorkshire

BOI83TT
England



Chapter 1

Introduction

1.1 Applications of RF and microwave filters

Microwave systems have an enormous impact on modern society. Applications
are diverse, from entertainment via satellite television, to civil and military radar
systems. In the field of communications, cellular radio is becoming as wide­
spread as conventional telephony. Microwave and RF filters are widely used in
all these systems in order to discriminate between wanted and unwanted signal
frequencies. Cellular radio provides particularly stringent filter requirements
both in the base stations and in mobile handsets. A typical filtering application
is shown in Figure 1.1 which is a block diagram of the RF front end of a cellular
radio base station.

The GSM system uses a time division multiple access technique (TDMA) [1].
Here the base station is transmitting and receiving simultaneously. Mobile

antenna '

~TX

TX/RX~
diplexer

low noise
amplifier

Figure 1.1 RF.front end qf a cellular base station
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propagation effects require a system dynamic range in excess of 100 dB. The
transmit power amplifier produces out-of-band intermodu1ation products and
harmonics. These must be filtered to prevent leakage into the receiver and to
satisfy regulatory requirements on out-of-band radiation. Therefore the trans­
mit filter must have a high level of attenuation in the receive band. Furthermore,
the transmit filter must have low passband insertion loss, to satisfy power
amplifier linearity and efficiency requirements. Similarly the receiver must be
protected by a filter with high attenuation in the transmit band to isolate the
high power (30 W) transmitter. This filter must have low passband insertion loss
to preserve system sensitivity. A typical specification for a GSM transmit filter is
given in Table 1.1. Similar specifications are required for the receive band and
for GSM in the 1800 MHz band.

In summary the base station filters must achieve a remarkable performance.
Very low loss in the passband with high rejection at frequencies close to the
passband is required. This high selectivity is illustrated in Figure 1.2.

We shall see in later chapters that the selectivity of a filter increases with the
number of resonant sections. Furthermore, the insertion loss in the passband is
inversely proportional to the filter bandwidth and the resonator Q factor and is
proportional to the number of resonators used. The above specifications require
at least eight resonators with unloaded Q factors of at least 5000. The Q require­
ment dictates a certain physical size, resulting in typical sizes for commercial
coaxial resonator filters of 15 cm x 30 cm x 5 cm. Considerable research is
under way in order to achieve smaller filters with improved performance.
Some of this research will be described in later chapters although obviously
we first need to understand the basic principles of filter design.

A second example of a base station filter is a requirement for a notch filter for
the US AMPS system. In this case the two operators A and B have been
assigned interleaving spectra as shown in Figure 1.3. In this situation a mobile
which is far from base station A and is thus transmitting maximum power can
cause interference to base station B if it is physically close to B. The requirement
is for a notch filter with the specification given in Table 1.2. These extrelnely

Table J. J Specification of a GSM base station .filter

Passband
Insertion loss
Input and output return loss

Stopband
Frequency/MHz

d.c.-880
880-915
970-980
980-12750

Temperature range
System impedance

925-960 MHz
0.8dB (max)

20dB (min)

Attenuation/dB (min)
50
80
20
50

-10°C to +70°C
50 f2
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oI----~~m:=---I
0.8dB

insertion
loss/dB

960
o

frequency/MHz

Figure 1.2 Frequency response ~f a GSM transmit filter

12750

narrowband filters require resonators with unloaded Q factors in excess of
25000. This requires the use of dielectric resonators with physical size of the
cavities 9 x 9 x 9 cm per resonator. At least four resonators are required per
filter, resulting in physically large devices.

A third application of filters in cellular systems is in microwave links for
communicating between base stations. These links operate at much higher
frequencies; a typical specification for a 38 GHz filter is given in Table 1.3.
These high frequency filters are normally constructed using waveguide
technology.

A completely different filter technology is required in mobile handsets. The
handset is only handling one call at a given time and in GSM does not transmit
and receive simultaneously. In some handsets the transmitter and receiver are

825

A

835

B

845

A

846.5

B

849

frequencylMHz

Figure 1.3 Advanced Mobile Phone Systenl (AMPS) spectrum allocations
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Table 1.2 Specffication o.f an AMPS base station notch .filter

Passband edges
Insertion loss
Stopband
Attenuation

845 and 846.5 MHz
1 dB (max)
845.2-846.3 MHz
20 dB (min)

Table 1.3 Spec(fication o.f a .filter for a nlicro~vave link

Passband
Insertion loss
Stopband
Attenuation
Local oscillator harmonic rejection

38-38.3 GHz
1.5 dB (max)
39.26-39.56 MHz
70 dB (min)
10 dB (min) at 74-74.6 GHz

isolated by a PIN diode switch and there is a requirement for only a receive filter
(Figure 1.4).

The main purpose of the front end filter is to protect the LNA and mixer in
the down-converter from being over-driven by extraneous signals. For example,
this situation may occur if two mobiles are being operated simultaneously
within a vehicle. Typical specifications for a 900 MHz GSM receive filter are
given in Table 1.4.

Although the electrical specifications on these filters are much less severe than
for base station filters, the miniaturisation req uired means that they are still an
extremely challenging design problem.

SPDT

~TX

~RX

Figure 1.4

Table 1.4

Typical GSM n10bile handset RFfront end

Typical spec(fication for a GSM handset receive.filter

Passband
Insertion loss
Stopband

Physical size

925-960 MHz
3.5 dB (max)
850-905 MHz 20 dB (min)
905-915 MHz 12 dB (min)
10 x 7 x 2mm (typical)
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1.2 Ideallowpass filters

As we have already seen, filters must achieve a specified selectivity. In
other words the transition fron1 passband to stopband must be achieved within
a certain bandwidth. It is interesting to consider the fundamental limits on
achievable selectivity by examining an ~ideal' lowpass filter. This is defined as
a two-port device with infinite selectivity as in Figure 1.5.

The magnitude of the gain of the lowpass filter is unity in the passband and
immediately drops to zero in the stopband with no transition region. Hence

IH(jw)1 == I

IH(jw)1 == 0

Iwl < We

Iwl > We

(1.1 )

(1.2)

The phase response of the filter is assumed to be linear in the passband. Hence

1/J(w) - kw

and the group delay through the device is

(1.3 )

(1.4)

Linear phase implies constant group delay, which ensures zero phase distortion
for finite band\vidth signals.

It is instructive to examine the impulse response of the filter. The impulse
response is the time domain output from an infinitely short (delta function)
excitation at the input. It is the inverse Fourier transform of the transfer
function [2]. Now

H(jw) == exp( -jkw)

H(jw) == 0

( 1.5)

(1.6)

Jlill0 H(jm)

~)lll
H(jro) = ~

D~)lJt
----'--------1-------'-7

Ole

Figure 1.5 Ideal lo~vpass.filter and its .lrequency response
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Hence the impulse response is given by
ex)

h(t) = 2
1
1f .f H(jw) exp(jwt) dw

-00

We

.f
exp[jw(t - k)] d(v

27f

I sin[(t - k)weJ
7f t - k

If We == 1

h(t) = ~ sinc(t - k)
7f

This function has zeros when

(1.7)

(1.8)

t - k == In7f

That is,

t == In7f + k

In == ± 1~ ±2~ ... (1.9)

(1.10)

This is the familiar sinc function with the main peak occurring at k s, which is
the passband group delay of the filter. This is shown in Figure 1.6. Here we can
see that an output occurs for t < O. In other words the ideallowpass filter is non­
causal because an output occurs before the input is applied! The only way to
stop the response existing for t < 0 is to let k increase to infinity. This infinite
group delay is also physically unrealisable. This is equivalent to telling us
something we know intuitively, that an infinitely selective filter has an infinite
group delay, or an infinite number of filter elements. In order to make the filter

Figure 1.6 lnlpulse response 0.( an idealloH'pass .filter
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realisable we can truncate the impulse response by removing the part which
occurs for negative time to give a causal response which is physically realisable.
In other words h(t) is zero for t less than zero.

Obviously if the delay of the filter is very low then simply removing a part of
the impulse response results in a considerable distortion of the frequency
response. In fact, it may be shown that this corresponds to reducing the
frequency selectivity of the filter. In reality filter design involves a compromise
between removing too much of the impulse response curve and having too much
delay. Practical filters use transfer functions which approximate to the ideal
response with the minimum amount of delay. This will be dealt with in more
detail in Chapter 3.

1.3 Minimum phase networks

Consider a lumped element filter with the transfer function

N(p)
Sn(p) = D(p) (1.11)

where p is the complex frequency variable. This is defined as a minimum phase
network if there are no poles or zeros in the right half p plane, i.e.

N(p) # 0 D(p) # 0 Rep> 0 (1.12)

which defines N(p) and D(p) as Hurwitz polynomials.
Physical systems where the transmission of energy between input and output

can only take one path are minimum phase. Examples include ladder networks
(Figure 1.7) and coaxial cables.

It may be shown that if a minimum phase network has a transfer function

H(jw) == exp[-a(w) - j?jJ(w)] (1.13)

then the amplitude a(w) and phase ?jJ(w) characteristics of a minimum phase

l)----------l------_--L_ _ _ _ _ _ __--'-- -{

Figure 1.7 Ladder netl1Jork
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1\

\HUro)!I---------.

A

o
I
1

Figure 1.8 Transjer .function of a rectangular filter

network are related by a pair of Hilbert transforms [3]:

x

?jJ(w) == ~ J a(y) dy
7r y2 - w 2

-x

w 2 x

J
?jJ(y)

a(w) = a(O) +- (2 2) dy
7r yy-w

-00

(1.14)

(1.15)

In other words, if the amplitude characteristic of a minimum phase network is
known, then the phase characteristic is uniquely determined and vice versa
within a constant gain a(O).

As an example consider the transfer function in Figure 1.8. Here

IH(jw)1 == 1

==A

and

A« 1

Now

Iwl < 1

Iwl> 1 (1.16)

(1.17)

IH(jw)1 == exp[-a(w)]

and

a(w) == 0 Iwl < 1

(1.18)

(1.19)

(1.20)
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Tg{ro)

--
1t

ro

Figure 1.9 Group delay 0.[ ideal minimum phase .filter

Now
ex:

1jJ(w) == ~7T J' a(y) dy
y2 _ w2

-x

00

== 2w f a ( y) d v
7r • y2 _ w2 0/

o

x

== -2LnA w J a(y) dy
7T y2 - w 2

1

== - LnA [LnIy - wi] 00

7T y+w 1

== -LnA Lnl1 + wi
7T 1 - w

Hence

T,(w) = -d1jJ(w) = 2LnA ( 1 )
g dw 7T 11-w2

1

(1.21 )

( 1.22)

The group delay is shown in Figure 1.9.
Thus we see that the group delay of the ideal minimum phase filter is inverse

parabolic in the passband rising to infinity at the band-edge. In reality, filters are
not infinitely selective and the amplitude response and group delay response are
as shown in Figure 1.10.

Considerable research in the area of non-minimum phase filters has resulted
in so-called selective linear phase filters where a similar amplitude response to
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o

Tg (0))

)

Figure 1.10 Amplitude and group delay response o.f a real minimum phase filter

Figure 1.10 is obtained but with much reduced group delay variation. These
devices require multiple paths between the input and output of the filter.

1.4 Amplitude approximation

We will now briefly consider theoretical approximations to ideallowpass filters.
Consider a lowpass ladder filter operating between resistive terminations as
shown in Figure 1.11. Scrutiny of this circuit shows that it has zero gain at
infinite frequency. As the frequency is increased from d.c. the series inductors

~o

L3

~...

______T. C4 ----'__C
N
_-_

1
-e----J

Figure 1.11 LowjJass ladder netlvork
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)

Figure 1.12 Equiripple filter characteristics (N == 6)

become open circuited and the shunt capacitors become short circuited. Each of
these open or short circuits contributes a 'transmission zero' to the response of
the network. Thus a ladder network with N circuit elements has N transmission
zeros at infinity. Since all the transmission zeros are at infinity the gain response
must be a rational function with constant numerator. The zeros of transmission
are the zeros of the numerator or the infinities of the denominator.

Hence the power gain is given by

(1.23 )

where A N (W
2

) is a polynomial of degree Nin w 2
.

Now let us assume that IH(jw)1 2 is equiripple in the filter passband and rolls
off monotonically to zero in the filter stopband as in Figure 1.12. Here we see
that IH(jw)1 2 ripples the maximum number of times between unity and A.

Now consider a second transfer function which is more selective than the
equiripple transfer function and is at least as flat in the passband. Again we
assume this transfer function arises from a ladder network, so all its trans­
mission zeros are at infinity. This function is shown as the dotted curve in
Figure 1.12. The two curves intercept at least N + 1 times so we can say that

1 I .( 2) = 0 at east N + 1 bmes
B M w

(1.24)

and B M (W
2

) - A N (W
2

) is at least of degree N + 1. Thus either B M (W
2

) is
identical to A N (W

2
) or M is of degree N + 1 or higher.

Hence for this class of ladder networks or 'all-pole' transfer function the
equiripple characteristics will always provide the optimum selectivity for a
given degree (number of elements) of filter. Other classes of filter have equiripple
response in the passband and stopband [4] but these are not realisable by ladder
networks.
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1.5 Practical realisations of microwave filters

As we have seen, filters with equiripple amplitude characteristics achieve
optimum selectivity for a given number of circuit elements. The use of network
synthesis enables lumped element lowpass prototype networks to be designed as
described in Chapter 3. These lumped prototype networks may be converted
into bandpass filters using the transformations described in Chapter 4.
However, lumped element realisations of microwave filters are not often used
because the wavelength is so short compared with the dimensions of circuit
elements. For this reason a variety of "distributed' element realisations are
used. A distributed circuit element has one or more dimensions which are
comparable with wavelength, and connections of distributed elements may be
described by distributed network theory, which is an extension of the theory of
lumped element networks. One example of a distributed element is the TEM
transmission line and various types of microwave filters may be designed using
interconnections of these elements. One of the most common TEM filters is the
interdigital filter which consists of an array of coupled TEM lines with coupling
constrained between nearest neighbours. Such devices enable practical realis­
ations of microwave filters with relatively high resonator Q factors (typically
1-5000) enabling quite severe specifications to be achieved. The design theory
for interdigital and other TEM devices is described in Chapter 5.

One of the fundamental problems of filter design is that the passband loss is
inversely proportional to the filter bandwidth. Thus for very narrow band
applications it is often the case that very high resonator Q factors must be
used in order to achieve low passband loss. Air-filled waveguide resonators
enable Q factors from 5 to 20000 to be realised. Further increases in Q, up to
50000, may be achieved by using dielectric resonators as the resonant elements
within filters. The electromagnetic properties of these devices and the design
theories for waveguide and dielectric resonator filters are described in Chapters
6 and 7.

1.6 Summary

There are numerous applications for microwave and RF filters in the com­
munications industry requiring many different design approaches. In addition
there are fundamental limits on the achievable performance of electrical filters,
regardless of the physical construction. No finite device can produce an "ideal'
or infinitely selective amplitude response. Furthermore, there are strict relation­
ships between the phase and amplitude characteristics of minimum phase
networks. The remainder of the book is devoted to developing design tech­
niques which enable filters to approach these theoretical limits as closely as
possible.

Chapter 2 presents the basic linear passive network theory which is required
for a theoretical understanding of filter design. This includes network
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parameters, network analysis and network synthesis. Chapter 3 concentrates on
the design of lumped lowpass prototypes which can be considered as building
blocks for many classes of lumped and distributed filters. Both approximation
theory and network synthesis of prototypes are included for both amplitude
and phase responses. Chapter 4 includes material on frequency transformations
from lumped lowpass prototypes to highpass, bandpass and bandstop filters. It
also includes the effects of dissipation loss in filters and methods for practical
filter development. In Chapter 5 the design of distributed filters using TEM
transmission lines is covered including the Richards transformation, stepped
impedance and coupled-line filters. Chapter 6 concentrates on the design of
waveguide filters. The basic theory of waveguides is followed by design
techniques for iris-coupled bandpass filters, generalised cross-coupled filters,
extracted pole filters and dual-mode filters. In Chapter 7 the principles of dielec­
tric resonator filters are presented. Starting with the basic theory of dielectric
resonators, design techniques for single, multi-mode and dielectric-loaded struc­
tures are described. Finally in Chapter 8 techniques for miniaturisation are
described. These include SAW filters, superconducting filters, active filters
and new system architectures using lossy filters.
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Chapter 2

Basic network theory

2.1 Linear passive time-invariant networks

This book is concerned with the design of passive RF and microwave filters.
These devices are manufactured using a variety of technologies, e.g. coaxial
resonators, microstrip, waveguide etc. However, they are normally designed
using lowpass prototype networks as a starting point, regardless of the eventual
physical realisation. Lowpass prototype networks are two-port lumped element
networks with an angular cut-off frequency of w == 1, operating from a 1 [2

generator into a 1n load. A typical lowpass prototype network is shown in
Figure 2.1.

The design of lowpass prototype networks is dealt with in detail in Chapter 3.
In this chapter we develop useful techniques for the analysis and synthesis of
such networks. These network methods assume a basic understanding of
Laplace transform theory and of the operation of inductors, capacitors and
resistors. We will restrict ourselves to linear, time-invariant, passive networks,
which are defined as follows.

First we consider a one-port network (Figure 2.2). This one-port network is
excited by a voltage vet) producing a current flow i(t). The Laplace transform of
the voltage is V(p) and the resultant current is I(p).

In

Figure 2.1 A typicallo~vpass prototype netu'ork
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v(t)

i (t)

N

Figure 2.2 A one-port netlvork and its Laplace trans.form equivalent

2.1.1 Linearity

If a voltage VI (t) across the terminals of N produces a current i l (t) then

VI(t) =? i1(t)

Similarly

V2 (t) =? i2 (t)

(2.1 )

(2.2)

Now if the network is linear then the principle of superposition holds and we
have

(2.3)

where a and f3 are constants.

2.1.2 Time invariance

If the network is invariant with time and if

V(t) =? i(t)

then

V(t-T)=?i(t-T)

where T is an arbitrary time delay.
If a linear time-invariant network is excited by a voltage v( t) where

v( t) ~ 0 for t < 0

(2.4)

(2.5)

(2.6)

then the relationship between voltage and current may be expressed as follows:

V(p) ~ Z(p)I(p) (2.7)

where V(p) is the Laplace transform ofv(t) and I(p) is the Laplace transform
of i(t). Here p is the complex frequency variable (sometimes denoted s); Z(p) is
the input impedance of the network, which is independent of v(t) and for a finite
lumped network is a rational function of p. In this case Z(p) may be expressed
as the ratio of two polynomials:

Z(p) = N(p)
D(p)

(2.8)
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2.1.3 Passivi(v

If the network is also passive then the amount of energy which may be extracted
from the network up to any point in time may not exceed the energy supplied to
the network up to that point in time. Combining this property with the property
that all physical networks give rise to real responses to real stimuli yields [1] that
Z(p) is a 'positive real function', i.e.

Z(p) is real for p real (2.9)

Re Z(p) > 0 for Re p > 0 (2.10)

Relation (2.9) implies that the coefficients of N(p) and D(p) are all real.
Relation (2.10) implies that Z(p) has no poles or zeros in the right half­
plane, i.e. bothN(p) and D(p) are Hurwitz polynomials [2].

2.1.4 The bounded real condition

The input impedance of passive linear time-invariant networks is a positive real
function. In microwave filter design it is often desirable to work with reflection
coefficients rather than input impedances. The reflection coefficient r( p) of a
network with an input impedance Z(p) is related to Z(p) by

T( ) = ± Z(p) - 1
p Z(p) + 1

r( p) may be shown to be a bounded real function, i.e.

r(p) is real for p real

o :::; Ir(p)1 :::; 1 for Re p > 0

(2.11 )

(2.12)

(2.13)

Relation (2.13) may be demonstrated as follows: for Re p > 0, let

Z(p) ==R +jX

Now since Z(p) is positive real then

R>O

(i.e. the real part of the input impedance is always positive). Hence

r==±R+jX-1
R +jX + 1

1T12 = (R - 1)2 + X
2

(R+l)2+ X 2

== 1 _. 4R
(R + 1)2 + X 2

Thus ifR ~ 0 then Irl :::; 1.

(2.14)

(2.15)

(2.16)

(2.17)
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2.2 Lossless networks

Lossless networks consist entirely of reactive elements, i.e. they contain no
resistors. In reality all real microwave filters contain resistive elements but it
is useful in the initial design process to simplify things by working with lossless
networks.

Now for our positive real Z(p)

Z(p)lp=jw == Z(jw) == R(w) +jX(w)

where

R(w) == Re Z(jw)

X(w) == 1m Z(jw)

By definition for a lossless network

R(w) == 0

Now

(2.18)

(2.19)

(2.20)

(2.21 )

(2.22)()
ml + nlZ p ==---
m2 +n2

where ml and nl are the even and odd parts of N(p) and m2 and n2 are the even
and odd parts of D(p).

Z(p) may be split into an even polynomial plus an odd polynomial, i.e.

Z( p) == Ev Z( p) + Odd Z(p) (2.23)

Now even polynomials contain only even powers of p and odd polynomials
contain only odd powers of p. Hence Ev Z(jw) is purely real and Odd Z(jw) is
purely imaginary. Thus for a lossless network R(w) == 0 implies Ev Z(p) == 0 and

Ev Z(p) = Z(p) + Z( -p) = 0 (2.24)
2

Therefore

ml +nl ml -nl---+ ==0
m2 + n2 m2 - n2

and

mlm2 - nln2 == 0

m~ - n~

Hence

ml n2
nl m2

Thus for example

Z(p) =~ m,/nl + 1=~
n12 1 + n2/m2 m2

(2.25)

(2.26)

(2.27)

(2.28)
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or

Z(p) = ml I + nl/m, = m, (2.29)
n2 1 + m2jn2 n2

Z(p) is thus the ratio of an even polynomial to an odd polynomial or an
odd polynomial to an even polynomial. Z(p) is then known as a 'reactance
function'.

Now since Z(p) is positive real it cannot have any right half-plane poles or
zeros and Z( -p) cannot have any left half-plane poles or zeros. However

Z(p) == -Z(-p) (2.30)

(2.31 )

Thus Z(p) can have neither right half-plane nor left half-plane zeros. The poles
and zeros of a reactance function must thus lie on the imaginary axis. Further­
more, the poles of Z(p) may be shown to have positive real residues [3], yielding
a general solution for a reactance function of the form

Ao In 2A i P
Z(p) == Axp+-+ L 2 2

P i=l P +wi

Furthermore, for p == jw,

Z(jw) == jX(w)

where

and

dX(w) _ . Ao ~2A w? +w
2

d - Ax + 2+~ l (2 2)2
W W i=l Wi -w

Therefore

dX(w) > 0
dw

(2.32)

(2.33)

(2.34)

(2.35)

The fact that the differential of X(w) is always positive implies that the poles and
zeros of X(w) must be interlaced. Hence a typical plot ofa reactance function is
as shown in Figure 2.3.

Now consider the parallel tuned circuit shown in Figure 2.4. The impedance
of this circuit is

1
Z(p) = Cp + (l/Lp)

PjC

p2+(ljLC)
(2.36)

From (2.31) and (2.36) we can see that the general equivalent circuit for a reactance
function is the network shown in Figure 2.5. This process of working backward
from an impedance function to the actual physical circuit is known as 'synthesis'.
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00

X(ro)

~etc.

1----dr--_~-_0_--_'----_fi\_-_*-~ro

o = zero
x = pole

Figure 2.3 A typical reactance .function

The particular method shown here is known as Foster synthesis [4], where the
circuit is derived by a partial fraction expansion of the impedance function.

~O----I

Z(p)

Figure 2.4 Parallel tuned circuit

Figure 2.5 Foster realisation o.f Z(p)
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Basic network theory 21

2.3 Ladder networks

A common realisation of impedance functions used in filter design is the ladder
network shown in Figure 2.6.

As an example consider the impedance function given in partial fraction form
as

1 2p
Z(p)=2p+p+p2+1

2p4 + 5p2 + 1

p3 +p

This may be synthesised using a continued fraction expansion. From (2.37) we
see that Z(p) tends to 2p as p tends to infinity. Thus we first evaluate the residue
at p == 00, i.e.

Z(p) I .. == 2
p fJ=X

(2.38)

Now we remove a series inductor of value L == 2, leaving a remaining impedance
Zl(P) where

(2.39)

I Z(~----_-L--_----_--I...-_-----_---J

Figure 2.6 Ladder nettvork
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Again we evaluate the residue at p == 00:

Y1(p)1 == ~
P p=oo 3

So we extract a shunt capacitor of value C2 == 1/3, leaving a remaInIng
admittance Y2 (p) where

Y2(p) == Y1(p) - p/3

2p/3
3p2 + 1

Now we invert Y2(P) to form an impedance Z2(P) where

3p2 + 1
Z2(P) = 2p/3

(2.41 )

(2.42)

(2.43)

Again we evaluate the residue at p == 00, i.e.

Z2(p)1 ==~
p p=oo 2

Now we extract a series inductor of value L 3 == 9/2 leaving an impedance Z3 (p)
where

9p
Z3(P) == Z2(P) - 2

3

2p

Now invert Z3(P) to form an admittance

2p
Y3(p) == 3

which is a capacitor of value

C3 == 2/3

The complete synthesis process is shown in Figure 2.7.

2.4 Synthesis of two-port networks - Darlington synthesis

(2.44)

(2.45)

(2.46)

Historically it was first proven by Brune that any positive real function can be
synthesised using a network composed of resistors, capacitors, inductors and
mutual inductances [5]. However, in the practical world of filter design we are
more concerned with two-port networks with a pair of terminals at the input
and a pair of terminals at the output. Darlington [6] proved that any positive
real function can by synthesised as the input impedance of a lossless passive
reciprocal two-port network which is terminated in a (load) resistor (Figure 2.8).
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Z(p)

Y1(p)

LI
o---JYYl-..,------r------"l

Figure 2.7 Synthesis oj' a ladder netlvork

O-------i

lossless
reciprocal

~ two-port

I 0-----1
Z(p) '---__---J

(positive real)

Figure 2.8 Darlington synthesL\'

load
RL? 0
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The lossless two-port network may be decomposed into a cascade of first-,
second- and fourth-degree networks depending on the locations of the zeros of
the even part of Z (p). These zeros are called the transmission zeros of the
network. In other words they are the values of p for which there is zero trans­
mission of power to the load. A zero on the jw axis would correspond to zero
transmission at a 'real' sinusoidal frequency (a real frequency transmission
zero). This corresponds to a measured zero in the swept frequency response
of the network.

Consider a lossless network driven from a 1 [2 generator and terminated in a
1 [2 load, as shown in Figure 2.9. The input impedance Zin(P) is

(2.47)

The even part of the input impedance which is the real part of Z(jw) is given
by

Ev z. ( ) == Z(p) + Z(-p)
In P 2

mlm2 - nln2

m~ - n~

The input power to the two-port network is given by

Pin == Il in(jw)1 2 ReZin(jW)

== 1lin (jw )lin (-jw) [Zin (jw) + Zin (-jw)]

VgVg*[Zin(jW) + Zin( -jw)]

[1 + Zin(jw)][l + Zin( -jw)]

(2.48)

(2.49)

Thus in the complex frequency plane the transmission zeros are the zeros of

lossless
N In

(2.50)

Figure 2.9 Doubly ternlinated lossless tlvo-port netHJork
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In

0

lossless l
(p) N

r
0

Z

Z(p) In

o

Figure 2.10 Realisation of' a netlvork N as a cascade 0.1 subnetworks

The transmISSIon zeros are thus the zeros of the even part of the input
impedance. In addition, transmission zeros occur at values of p which are
simultaneously poles of Zin(P) and Zin( -p). These poles must occur at d.c.,
infinity or on the imaginary axis. They may be removed as elements of a
reactance function by Foster synthesis. The remaining transmission zeros are
not poles of Zin(P) and Zin( -p) and may be removed by second-order or
fourth-order networks. Finite real frequency transmission zeros are extracted
in complex conjugate pairs by a second-order network known as a Brune
section. Transmission zeros on the real axis are removed by extraction of a
second-order Darlington C section. Complex transmission zeros are removed
by a fourth-order Darlington D section.

2.4.1 Cascade synthesis

The purpose of cascade synthesis is to synthesise an input impedance as a
cascade of Brune, C and D sections terminated in a resistor. It is assumed
that any transmission zeros which are simultaneously poles of Z(p) and
Z( -p) have already been removed. Thus each of the sections contains transmis­
sion zeros of the entire network and progressive removal of basic sections lowers
the degree of the network until only the positive load resistor remains [7].

The objective is shown in Figure 2.10 where

(2.51)

(where m is even and n is odd) and the even part of Z( p) is

Ev Z(p) == fnlm2 - n,.} 112

n1~ - 112
(2.52)

The zeros of transmission are the zeros of m 1ln2 - n 1n2 which we shall assume is
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which gives three types of transmission zeros, an imaginary axis pair, a real axis
pair or a complex quadruplet. Asymmetrically located zeros are dealt with in
Chapter 3.

Now in Figure 2.10 assume a transmission zero at p == p} is assigned to N}.
Then this transmission zero must not be a transmission zero of the remaining
network, N 2 etc. with impedance Z}(p). The transfer matrix of N} is

where F(p) is even and

F(p) Ip=PI == 0

Then

and

(2.54)

(2.55)

(2.56)

(2.57)

where since N I is lossless A}, D} are even, B J, C} are odd, and from reciprocity

A}D} - B} C} == F 2 (p)

Thus

(2.58)

Z Z _ _ F 2(p)[Z(p) + Z( ~p)]
](p) + [( p) - [A[ - C[Z(p)][A] + C]Z(-p)]

F 2 (p )[Z(p) + Z (- p)]
[A[ - C[Z(p)]{ A] - C[Z(p) + CdZ(p) + Z( -p)]} (2.59)

Now PI should not be a factor of ZI (p) + ZI (-p). However, since
Z}(P)+ZI(-P) contains the factor F 2 (p), then the numerator of
ZI (p) + ZI (-p) contains a factor F 4 (p). This factor must be cancelled by a
similar factor in the denominator. Thus A} - C1Z(p) must contain a factor
F 2 (p). This is the condition on the network N} such that the transmission
zero has been successfully extracted. Hence

for F(p) ==0 (2.60)
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for F(p) == 0
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(2.61 )

(2.62)

Equations (2.60)-(2.62) determine the transfer matrix of N 1 such that the trans­
mission zeros have been successfully extracted. ZI (p) can be found from (2.56)
and the process repeated until we are left with the load resistor.

Three types of section are required for the three types of transmission zero.
The Brune section realises imaginary axis (real frequency) transmission zeros
with the transfer matrix

with

[ ] == 1 [ 1+ ap2
T 2 2

l+(p/w i ) cp
bp ]

1+ dp2
(2.63)

The Darlington C section realises real axis transmission zeros with

(2.64)

with

[ ] == 1 [ 1 + ap2
T 2 21 - (p /(J"i) Cp

bp ]
1+ dp2

(2.65)

(2.66)

The Darlington 0 section realises a complex quadruplet of transmission zeros
with

[T] = 1 [p4 + alp2 + a2 blP + b2p3 ]
((J"7 + w7)2 + 2(w7 - (J"7)p2 + p4 CIP + C2p3 p4 + dlp2 + d2

(2.67)

with

(p4 + alp2 + a2)(p4 + dlp2 + d2) - (blP + b2p3)(CIP + C2p3)

== [( (J"7 + w?)2 + 2(wl - (J"7)p2 + p4]2 (2.68)

As an example consider the maximally fiat amplitude and linear phase
filter described in Chapter 3 (see Section 2.6 for a description of scattering
parameters). Here

9 - 2p 2

Sn(p) = 9 + 18p + 16p2 + 8p3 + 2p4
(2.69)

This has two transmission zeros at infinity and a pair on the real axis at
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P == ±3/J2 which requires a C section. Now

SII (P)SII (-p) == 1 - SI2(P)SI2( -p)

Hence

2p4

Sll (p) = 9 + 18p + 16p2 + 8p3 + 2p4

and

Z(p)=1+S11 (P)
l-SII (P)

4p4 + 8p3 + l6p2 + 18p + 9

8p3 + 16p2 + 18p + 9

(2.70)

(2.71 )

(2.72)

(2.73 )

First we extract all the transmission zeros which are poles of Z (p) and Z (- p).
Thus we extract a series inductor of value 0.5 and then a shunt capacitor of
value 8/7 from the admittance. The remaining impedance is

Z( ) = 49/ + 94.5p + 63
p 4p2 + 54p + 63

Now the remaining transmission zeros are on the real axis requiring a C section.
From (2.60), (2.62) and (2.65) we obtain

1 + apT - CZ(PI) == 0 (2.74)

2apT - CZ(PI) - CP2 Z /(PI) == 0

Thus

Z(PI) +PIZ/(PI)

a == p2 [Z(PI) - PI Z /(PI)]

2
c == --------------

p2[Z(PI) - PIZ/(PI)]

(with PI == ±3J2, Z(3/J2) == 2.477 and Z/(3/J2) == 0.648).
hand d can be obtained from (2.66) giving

d == _l_
ao-I

b=a+d+2/o-7
c

(2.75)

(2.76)

(2.77)

(2.78)

(2.79)

Thus a == 0.7764, b == 1.5019, c == 0.8552 and d == 0.0636.
The remaining network is a resistor of value 1O. The complete synthesis has

produced the network shown in Figure 2.11.
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10

Figure 2.11 Synthesis 0.1' a linear phase .filter

Various physical realisations are available for C sections including resonant
circuits, coupled coils and cross-coupled resonant circuits. These will be
discussed later.

2.4.2 All-pole networks

Certain filtering functions can be met using networks where all the transmission
zeros are at p == 00 (see Chapter 3), i.e.

and

Ev Z(p)lp=x == 0 (2.80)

(2.81 )
. 2 1

ISd.Jw)1 = D (. )D ( . )
N .lW. N -./W

In this case the Darlington synthesis yields a lowpass ladder network terminated
in a positive resistor. The synthesis is identical to the continued fraction expan­
sion technique previously described except that the final element is a resistor
(F~igure 2.12).

2.5 Analysis of two-port networks - the ABeD matrix

To progress further in the understanding of filter theory it is appropriate to
review some basic network analysis techniques for two-port networks. One of
the most useful tools is the ABeD or transfer matrix.

Consider the two-port network shown in Figure 2.13. The network may be

Figure 2.12 A typicallrJlvpass ladder netlvork
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Figure 2.13 A tvvo-port net~vork

described using the matrix equation

l~I j [~~] [~:]
where

[
A
C

DB] == [T]

(2.82)

(2.83)

The ABCD or transfer matrix [T] relates the input voltage and current vector to
the output voltage and current vector. One of the main uses of the transfer
matrix is for the analysis of cascaded networks as shown in Figure 2.14.

Now

= [Td[T2 ] [~,]

= [Td[T2][T3] [~4]

= [T] [~4]
where

[T] == [Td [T2][T3]

(2.84)

(2.85)

Figure 2.14 Cascaded tvvo-port neHvorks
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[T]

Figure 2.15 T~vo-port network ~vith termination

Thus [T], the transfer matrix of a cascade of two-port networks, is equal to the
product of the individual matrices of each of the circuits.

Furthermore the transfer matrix has some interesting properties, depending
on the network. If the network is symmetrical then

A==D

If the network is reciprocal then

AD - Be == 1

(2.86)

(2.87)

(2.88)

If the network is lossless then, for p == jw, A and D are purely real and Band C
are purely imaginary.

The input impedance of a two-port network terminated in a load impedance
can be readily calculated (Figure 2.15).

z· ==~
In I}

Now

(2.89)

Thus

VI AV2 + BI2

I} CV2 + DI2

AV2 /12 + B

CV2/12 +D

Now

V2 / /2 == ZL

Therefore

Z. == AZL + B
In CZL + D

(2.90)

(2.91 )

(2.92)
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vJ~_1D
0...-------------0

Figure 2.16 Series circuit elenlent

ABeD matrices can be defined for series and shunt connected elements.
Consider the series connected impedance Z in Figure 2.16. Now

(2.93)

where

D == ~I == 1
/2 v2=o

Therefore

[0
1

Z1][T] ==

(2.94)

(2.95)

(2.96)

(2.97)

(2.98)

For a shunt element, consider the shunt connected admittance Y in Figure 2.17.

I}
~-~-~--I

VII

Figure 2.17 Shunt connected circuit elenlent
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Now

Hence

[yl 01][T] ==

(2.99)

(2.100)

(2.101 )

(2.102)

(2.103)

As an example let us now use transfer matrices to compute the input
impedance of the network shown in Figure 2.18. The transfer matrix of the
total network is the product of the transfer matrices of the individual series
inductors and shunt capacitors, i.e.

[T] == [1 LIP] [1 0] [1 L1P] [1 0 ]
Ole2P 1 0 I C 4P 1

= [~ 2;] [P~3 ~] [~ 9
P
:2] [2p

1
/3 ~]

== [1 +2p
2
/3 2P ] [1 +3p

2
9P/2]

p/3 I 2p/3 1

__ [( 1 + 2p2 /3) (1 + 3p2) + 4p2 /3 (9p / 2) (1 + 2p2 /3) + 2p ]
(2. 104)

(p /3) (1 + 3p2) + 2P/3 1 + 3p2 /2

O'--c_2_=_1_/3I---L.. ~-I-C4 = 2/3

Figure 2.18 Ex(unple netlvork
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Now
z. == AZL +B

In CZL + D

In this case there is no termination so ZL == 00. Therefore

A
z· ==­

In C

1 + 5p2 + 2p4

p+p3

which agrees with the impedance given in (2.37).

2.6 Analysis of two-port networks - the scattering matrix

(2.105)

(2.106)

We shall now introduce a new set of two-port parameters known as scattering
parameters or S parameters.

Consider the two-port network shown in Figure 2.19. This may be described
by the well-known impedance matrix equation

[V] == [Z][/]

where

[V] == [~~ ] [/]= [;~]
and

[Z] == [ ZII Zl2 ]

Z21 Z22

Now let

[a] == [:~] [V] + [I]
2

II 12

(2.107)

(2.108)

(2.109)

(2.110)

o

o

...... /"

'" ........

F'igure 2.19 A t'rvo-port net'rvork
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In II Iivz( rInEre[
:>

vJI

Figure 2.20 A resistively terminated t}vo-port netvvork

and

[
bl ] [V] - [1][b] == ==--
b2 2

Also let

[b] == [S] [a]

where

[S] == [S" S12]
S2) S22

[S] is called the scattering matrix of the two-port network.
Now from (2.110) and (2.111)

(2.111 )

(2.112)

(2.113)

[V] == [a] +- [b] (2.114)

[1] == [a] - [b] (2.115)

Now since

[V] == [Z][1] (2.116)

then

[a] + [b] == [Z] [[a] - [bJ] (2.117)

and substituting (2.112) in (2.117)

(1 + [S])[a] == [Z](l - [S])[a] (2.118)

and

[ ]= 1+ [S] (2.119)
Z 1 - [S]

Now let the two-port network be terminated in a 1 ~1 source and load as
shown in Figure 2.20. From basic circuit analysis the transducer power gain
of this network is given by

G(w) = 4
1hl2

(2.120)
IEI 2
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and from (2.114) and (2.115)

12 == a2 - b2

and from Figure 2.20

V2 == -12

Hence

and

and

/2 == -b2

Hence substituting (2.127) and (2.128) in (2.120)

G( 'w) == Ib2
1

2

./ la11 2

G(w) == IS21 (jw)1 2

For a reciprocal network, since Z21 == Z12, then

Furthermore, we can compute the input impedance at port (1). Since

and

so

z. == 1 + SII

In 1 - SII

(2.121 )

(2.122)

(2.123)

(2.124)

(2.125)

(2.126)

(2.127)

(2.128)

(2.129)

(2.130)

(2.13] )

(2.132)

(2.]33)

(2.134)

Thus the scattering parameters relate to measured transmission and reflection
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through the network. Since

(2.135)

then

(2.136)

(2.137)

(2.138)

(2.139)

SII and SI2 are the input and output reflection coefficients. SI2 is the reverse
transmission coefficient and S21 is the forward transmission coefficient; hI and
b2 can be considered as reflected signals at ports (1) and (2), while al and a2 are
incident signals at ports (1) and (2).

Z(p) is a positive real function, thus SII (p) is a bounded real function:

or

ISII(p)1 < 1 for Rep> 0

SII(P) is analytic for Re p ~ 0

(2.140)

(2.141)

i.e. SII (p) contains no poles or zeros in the right half p plane.
Furthermore~ from (2.140)~ using the maximum modulus theorem [8], we

obtain

(2.142)

This is another way of stating conservation of energy, i.e. a passive device
cannot reflect more energy than is incident upon it.

If the network is unterminated and lossless, i.e. Z( p) is a reactance function,
then all incident energy must be reflected from the network, i.e.

lSI I(jw)1 == 1

Furthermore, since ISI2(jw)12 is the transducer power gain, then

o~ ISI2(jw)1 2
~ 1

(2.143)

(2.144)

Again this is a statement of conservation of energy for a passive network.
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Now consider power entering the two-port network at real frequencies.

P == Re (VIIi + V2I2)

Now we know that a2 == O. Hence

P== alar - blbr - b2b;

(2.145)

(2.146)

(2.147)

Hence

P==alai(1-SIIS~I-SI2Sr2)

For a lossless network P == 0 and

SIIS~, + S12S~2 == 1

(2.148)

(2.149)

This is known as the unitary condition and states that for a lossless network

(2.150)

This condition is extremely important as it relates the input reflection coefficient
and power gain for lossless networks and enables us to synthesise networks.

In general we can state for two-port networks [9]

[S(jw)][S*(jw)] == [1]
yielding

ISII (jw)1
2+ I

SI2(jw)1 2 == 1

IS22(jW)!2 + I.S~12(jw)12 == 1

SIt (jW)Sr2(jW) + S'2(jW)S~2(jW) == 0

Now if

N(p)
S[I(P) = D(p)

then solutions of (2.152)-(2.154) yield

N(-p)
Sn(P) = - D(p)

and

F(p)
Sdp) = D(p)

where

F(p)F( -p) == D(p)D( -p) - N(p)N( -p)

(2.151)

(2.152)

(2.153)

(2.154)

(2.155)

(2.156)

(2.157)

(2.158)
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The transfer function SI2(P) is often expressed in decibels and is called the
insertion loss LA of the network, i.e.

(2.159)

The reflection coefficient of S 11 (p) expressed in decibels is known as the
return loss L R of the network

(2.160)

The insertion loss is a measure of attenuation through the network. The
return loss is a measure of how well matched the network is. This is because
it is a measure of reflected signal attenuation. A perfectly matched lossless
network would have zero insertion loss and infinite return loss. A typical
"good value' for return loss in a well-matched system is between 15 and 25 dB
depending on the application.

As an example of the application of S parameters, consider the following
insertion loss function which is for a degree 3 Butterworth filter.

LA == 101og(1 +w 6)dB

That is,

Hence from the unitary condition

Let

N(p)
Sll (p) = D(p)

Then

N(p)N( -p)lp=jw == w
6

Therefore

N(p) == ±p3

Also

D(p)D( -p)lp=jw == 1 + w
6

Thus

D(p)D( -p) == 1 _ p6

== (1 + 2p + 2p2 + p3)(1 - 2p + 2p2 _ p3)

(2.161)

(2.162)

(2.163)

(2.164)

(2.165)

(2.166)

(2.167)

(2.168)



40 Theory and design 0.[ micro~i'ave .filters

2H

~ffl

IF

Figure 2.21 Lovvpass ladder netH'ork

Therefore taking the left half-plane roots we have

D(p) == 1+ 2p + 2p2 + p3

and

S ( ) _ ±p3
11 p - 1+ 2p + 2p2 + p3

Now

Z(p) = 1+ SII(P)
1 - 5 11 (p)

D(p) + N(p)

D(p) - N(p)

In

(2.169)

(2.170)

(2.171 )

(2.172)

and

Z( p) or Y( p') == _1_+_2_p_+_2p_2_+_2p_3
, 1 + 2p + 2p2

Since all the zeros of 1512 (jw)1 2 occur at w == CXJ then Z(p) can be synthesised
using the Darlington technique as a ladder network terminated in a resistor, as
shown in Figure 2.21.

2.6.1 Relationships between ABeD parameters and S parameters

It may be shown by analysis that

A-D+B-C
5 11 == A + B + C + D

D-A+B-C
5" ==-----

.... A+B+C+D

2
S12 == -A-+-B--t--C-+-D

Hence

I (
. 2 4

Sl2 JW)I = IA+B+C+DI2

(2.]73)

(2.174)

(2.175)
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and the insertion loss LA is given by

Now for a lossless network Band C are purely imaginary, i.e.

B ==jB'

C ==jC'

and for a reciprocal network

AD+B'C'==l

Thus for a 10ssless reciprocal network

LA == 1010g1o {I +~[(A - D)2 + (B' - C')2]}dB

and for a symmetrical network A == D.
Similarly the return loss is given by

L R == 10 10glO [1 + 2 4 2] dB
(A - D) + (B' - C')

(2.176)

(2.177)

(2.178)

(2.179)

(2.180)

(2.181 )

These formulae apply in a 1 [1 system.
As an example we can analyse the lowpass ladder network given in

Figure 2.21. By multiplication of transfer matrices the overall transfer matrix
of the lossless part of the circuit is

Hence

j2w ]
1 - 2w 2

(2.182)

A==D

Hence

B' == 2w C' == 2w - 2w3 (2.183)

LA == 1010g lo [1 + ~ (2w - 2w + 2w 3)2]

== 10 10g10( 1 + w
6

)

2.7 Even- and odd-mode analysis of symmetrical networks

(2.184)

Given the symmetrical circuit shown in Figure 2.22, it is possible to simplify the
analysis by the use of even- and odd-mode networks.

An even-mode excitation implies that equal potentials are applied at each
end of the circuit; hence there is an open circuit along the line of symmetry. In
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/2
~-+--o

line of symmetry

Figure 2.22 Symmetrical two-port netvvork

this case

(2.185)

and

Hence

v} == A V} -BI}

Rearranging

A -1
y ==-­

e B

(2.186)

(2.187)

(2.188)

(2.189)

An odd-mode excitation implies opposite potentials at each end of the circuit.
Hence there is a short circuit along the line of symmetry. In this case

12 == I}

and the odd-mode admittance is given by

y==1+A
o B

From (2.189) and (2.192) we obtain

A == Ye + Yo == D
Yo - Ye

2
B==--­

Yo - Ye

(2.190)

(2.191)

(2.192)

(2.193)

(2.194)
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and from reciprocity and symmetry

A2
- BC == 1

Hence

C == 2YeYo
Yo - Ye

(2.195)

(2.196)

Thus the transfer matrix of a symmetrical network may be given in terms of the
even- and odd-mode admittances:

Ye + Yo 2

Yo - Ye Yo - Ye
[T] == (2.197)

2Ye Yo Ye + Yo
Yo - Ye Yo - Ye

Now by combining (2.172)-(2.174) with (2.197) we can obtain expressions for
the S parameters in terms of Ye and Yo, i.e.

(2.198)

(2.199)

As an example consider the third-order Butterworth filter shown in
Figure 2.21. Here

1
Ye == p +­

P

and

Yo == p

Hence

S ( ) _ lip
12 p - (1 +p)(l + IIp+p)

I

and

Is (·w)1 2 __1_
121 -1+w6

(2.200)

(2.201)

(2.202)

(2.203)
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2.8 Analysis by image parameters

The method of image parameters is often overlooked these days. Howevec
it is a useful technique for analysing simple network structures consisting of
cascades of identical elements.

Thus given a symmetrical two-port network with transfer matrix

Ye + Yo 2

[T] ==
Yo - Ye Yo - Ye

2YeYo Ye + Yo
Yo - Ye Yo - Ye

[T] can be expressed as [10]

[
coshr ZI sinh r ]

[T] ==
Y1 sinh r cosh r

where

and

1Y == _ == (}T Y ) 1/2
I ZI e 0

(2.204)

(2.205)

(2.206)

(2.207)

(2.208)

r is known as the image propagation function, ZI is the image impedance.
Now consider a cascade of identical sections each with transfer matrix [T].

Then

[TN] == [T]N

[

cosh(Nr) ZI Sinh(Nr )]

- Y 1 sinh(Nr ) cosh(Nr )

Here we see the power of the technique in that the problem of computing the
transfer matrix of a cascade of identical sections is reduced to a relatively trivial
result.

The S parameters of the cascade are thus given by

2
Sp ==, .

- 2cosh(Nr ) + (ZI + Y1) slnh(Nr )

(2.209)

(2.210)

As an example consider the ladder network shown In Figure 2.23. This
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Figure 2.23 Ladder netH'ork

network is of degree 2N + 1 but it consists of a cascade of N identical
sections (Figure 2.24). The even- and odd-mode admittances of the basic section
are

(2.211 )

and

1 1+ p2
Yo ==p+-==--

P P
Hence

and

h Ye + Yo
cos r==--­

Yo - Ye

Now

~ _ ZI - Y I . h( )
SI2 - 2 Sin N,

1 1 1/1---- (1 +p~) ~
(1 + .2)1/2

P 2 sinh[Ncosh-I(I+2/)]

2

== ---p 1 I/? sinh[2N sinh- 1p)]
2( 1 + p~) -

Figure 2.24 Basic section o.{ the ladder netvvork

(2.212)

(2.213)

(2.214)

(2.215)
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Hence

1
~12== w4

sin2[2N sin-
1(w)]

S12 4(1 - w 2 )

2.9 Analysis of distributed circuits

(2.216)

At microwave frequencies the use of distributed circuit elements is widespread.
These differ from zero-dimensional lumped circuits by the fact that one or more
dimensions are a significant fraction of the operating wavelength. There are
many texts on this subject and all we are concerned with here is the ability to
analyse circuits containing transmission lines.

For a one-dimensional line (Figure 2.25) it can be shown [11] that the transfer
matrix is given by

Zo sinh(Ie)]
cosh(I e)

(2.217)

where Zo is the characteristic impedance of the line. The value of Zo depends on
the physical construction of the line and is the ratio of voltage to current at any
point p along the line. I is the propagation constant of the line and

,==a+}j3

where a is the attenuation constant and j3 is the phase constant.
For a lossless line

I ==}j3

and the transfer matrix reduces to

[T] == [cos(j3e) }Zo Sin(j3e)]
} sin(ae) / Zo cos(j3e)

Now

j3 == 27r
A

<

Figure 2.25 One-dimensional transmission line

(2.218)

(2.219)

(2.220)

(2.221 )
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and for any wave propagating at velocity v with wavelength A

v ==.fA

Hence

(3==~
v

and

w£
(3£ == - == aw

v

where

w
a==­

v

(2.222)

(2.223 )

(2.224)

(2.225)

Thus the section of lossless transmission line has a transfer matrix which is a
function of frequency as follows.

[T] == [cos(aw) jZo Sin(aW)]
jYo sin(aw) cos(aw)

where

(2.226)

(2.227)

If a transmission line is terminated in a short circuit then the input impedance is

Zin(jW) ==jZo tan(aw) (2.228)

and if a transmission line IS terminated In an open circuit then the input
impedance is

ZinCjW) == -jZol tan(aw) (2.229)

It will be seen in later chapters that sections of transmission line in cascade
or shunt or series connection have useful properties as circuit elements in
microwave filters.

2.10 Summary

In this chapter an attempt has been made to summarise various network
theoretical concepts which are relevant to modern filter design. The book is
concerned entirely with linear passive time-invariant networks and so these
properties have been precisely defined. The concept of the input impedance of
a network in terms of the complex frequency variable has led to the properties of
positive real and bounded real functions. The synthesis of lossless one-port
networks has led on to Darlington synthesis of terminated two-port networks,
with lowpass ladder networks being one particular case.
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Various analysis techniques in terms of ABeD matrices, S parameters, even­
and odd-mode networks and image parameters have been discussed. The exten­
sion of these techniques to distributed circuits is introduced at the end of the
chapter. The n1aterial in this chapter gives sufficient background for the more
advanced material in Chapter 3.
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Chapter 3

Design of lumped lowpass
prototype networks

3.1 Introduction

A lowpass prototype is a passive, reciprocal, normally lossless two-port network
which is designed to operate from a 1n generator into a 1n load. The network
response has a lowpass characteristic with its band-edge frequency at w == 1. The
amplitude response of the network is designed to at least meet a minimum
specification on passband return loss L R and stopband insertion loss LA. For
example,

L R 2: 20dB

LA 2: 50dB

O:S;w:S;1

1.2 :s; w :s; CX)

( passband)

(stopband)

(3.1)

(3.2)

Since the network is normally lossless there is no need to specify the passband
insertion loss since this is related to the return loss by the unitary condition.

There may also be a phase linearity or group delay specification on the
passband characteristic of the filter.

The lowpass prototype which may be of lumped or distributed realisation is a
"building block' fron1 which real filters may be constructed. Various transfor­
mations n1ay be used to convert it into a bandpass or other filter of arbitrary
centre frequency and bandwidth.

3.2 The maximally flat prototype

The maximally flat or Butterworth approximation is the simplest meaningful
approximation to an ideal lowpass filter. The approximation is defined by [1]

! 1
IS I2(jwW = I + w2N (3.3)
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Hence the insertion loss is given by

LA == IOlog1o(I +w2N
) (3.4)

Now for w < 1, w2N rapidly becomes very small. For w > 1, w2N rapidly
becomes very large. The 3 dB frequency is at w == 1 and marks the transition
between passband and stopband.

N is the degree of the network. The larger the value of N the more rapid is the
transition from passband to stopband.

More exactly, the behaviour of IS12(jw)12 is maximally flat at w == 0 and
w == 00. Given

then

and

F(w) == 1 + w2N

dF(w) == 2Nw 2N - 1 == 0 at w == 0
dw

d2N
-

1F(w)
dw 2N- 1 == 2N!w == 0 at w == 0

(3.5)

(3.6)

(3.7)

(3.8)

In other words the first 2N - 1 derivatives of the insertion loss characteristic are
zero at w == o. This implies a very flat response across the passband. Now

-2N

IS12(jw)1
2

= 1 : w-2N

and the first 2N - 1 derivatives of the insertion loss function are zero at w == 00.

The maximally flat behaviour gives rise to an S-shaped frequency response,
shown in Figure 3.1 for various values of N.

It is important to be able to calculate the degree N of the filter in order to meet
a given specification. We require

return loss ~ L R for w:::; wp

insertion loss ~ LA for w ~ Ws

Hence in the stopband

IOlog1o(I + w;N) ~ LA

If LA » 1 then w s
2N » 1 and

N > LA
- 2010g lO (ws )

In the passband

IOloglO [IS" (~WP)12] ~ LR

(3.9)

(3.10)

(3.11 )

(3.12)

(3.13)
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N increasing
Ii0.3

0.2

0.9

0.8

0.7

0.6

1~2UW)12Q5~~~~~~~~~~~~~~~~~~

0.4

0.1

00 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
(O~

Figure 3.1 MaximallY.flat.filter response

Now

(3.14)

Therefore

(
1 + 2N)10108'0 w~; (3.15)

If we define the selectivity S of the filter as being the ratio of stopband to
passband frequencies, i.e.

(3.16)

then

(3.17)

and if LR » 1 then (S/ws )2N » 1

So 20N[logIO(S) -IOgIO(Ws )] 2 L R

and from (3.12) and (3.18)

20N 10gIO(S) 2 LA + L R

(3.18)

(3.19)
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That is,

N > LA + L R (3.20)
- 20Iog I0 (S)

For example, if LA == 50 dB, and L R == 20 dB and S == 2, then N 2: 11.7, i.e. we
need a twelfth-degree filter to meet the specification.

Synthesis of the maximally flat filter proceeds as follows. Given

then

2N

Is (. )1 2 _W__
II.J

W ==1+w 2N

Therefore

Hence

(3.21 )

(3.22)

(3.23)

(3.24)

The numerator of Sll (p) can be formed by selecting any combination of zeros.
Thus, for example, if

then

N(p) == pN

(3.25)

(3.26)

However, Sll (p) contains left half-plane poles and Sll (-p) contains right half­
plane poles. We nlust take care to form D(p) from the left half-plane poles, i.e.
we need to find the left half-plane zeros of

1+ (- p2 )N == 0

That is,

(_p2)N == -1 == exp[j1f(2r - 1)]

and

Pr == j exp(j()r)

where

() == (2r - 1)1f
r 2N

(3.27)

(3.28)

(3.29)

(3.30)
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L2 L4 L N L N - IrrYnTYn_· _f --f

In I In

@ TCl TC3
(a) I

L I L3 L5 LN - I LN-riYn rY'r\__ - - ( --fY'r\__

_ IIn _I or
In (Nodd) InIc' IC' eN

(b)

Figure 3.2 Ladder realisation 0.[ a maximally flat prototype network

Therefore

PI' == - sin(Br ) + j cos(Br ) r == 1, ... ,2n (3.31)

These poles lie on a unit circle in the complex plane and the first n roots lie in the
left half-plane. Thus

±pN
SII(P) ==-N------

TI [p -jexp(jBr )]

1'=1

(3.32)

This prototype may be synthesised by forming the input impedance

(3.33)

and since all the transmission zeros occur at infinity the network can be
synthesised as a lowpass ladder network as in Figure 3.2.

The two realisations in Figure 3.2 are subtly different. Type (a) starts with a
shunt capacitor and type (b) with a series inductor. The particular type (a) or (b)
depends on the choice of sign used for S 11 (p). Reversing the sign has the effect
of inverting the impedance so the input ilnpedance is either short or open
circuited at w == 00, depending on the sign chosen.
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As an example we will synthesise a second-order Butterworth filter. Hence

±p2

SII (p) = [p -jexp(j1T-j4)][p -jCXp(j31T-j4)]

p2 + J2p + 1

Now

Z(p) = 1 + Sll (p)
l-Sll(P)

and taking the positive sign numerator

( ) _ 2/ + y'2p + 1
Z P - y'2p + 1

1
= y'2p + y'2p + 1

or

( ) _ 2/ + y'2p + 1
y p - y'2p + 1

(3.34)

(3.35)

(3.36)

(3.37)

giving the two realisations shown in Figure 3.3.
In the case of the maximally flat lowpass prototype, explicit design formulae

have been developed for the element values shown in Figure 3.4 [2, 3]. The
element values are given by

gr = 2 sin [(2r2-N
1)7f]

where

gr == L r (r odd)

g == Cr (r even)

(r == 1, ... ,N)

In

(b)

(3.38)

(3.39)

Figure 3.3 Netlrvork realisations of an N == 2 maximally flat 10l1'pass prototype
filter
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In

N odd

In

N even

Figure 3.4 Maximally flat IOli'pass prototype ladder network

3.2.1 Impedance inverters

There is an alternative realisation of ladder networks using elements called impe­
dance or admittance inverters. An impedance inverter is a lossless, reciprocal,
frequency-independent, two-port network, defined by its transfer matrix

[
0 OK]

[T] = jlK Jo (3.40)

(3.41 )

where K is the characteristic impedance or admittance of the inverter.
The main property of an inverter is that of impedance inversion. Consider the

circuit of Figure 3.5 consisting of an impedance inverter which is terminated in a
load ZL. Now

AZL+B
Zin(P) = CZ

L
+ D

jK K 2

jZL/K ZL

K

1:, -----.
Zin(p)

Figure 3.5 Impedance inverter terminated in a load
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r
Z(p) Zl(p)

K=l

..Jz
yy\_~

(0

Figure 3.6 Second-order maximally .fiat filter ~vith inverters

(3.42)

Thus the input impedance is proportional to the inverse of the load impedance.
The use of the inverter may be illustrated by the synthesis of the second-order
maximally flat filter.

From (3.36)

( ) _ 2p2 + V2p + I
Z P - V2p+ I

(3.43)

Extracting a series inductor of value J2 we obtain

Z ( ) = 2p2 + V2p + I _ /2
I P J2p + 1 v P

1

J2p+ 1

Normally at this stage we invert Zl (p) to form Y1 (p). However if we extract a
unity impedance inverter the inverse of Z1 (p) is still an impedance. Hence

(3.44)

Thus the network is synthesised entirely with inductors and inverters as shown
in Figure 3.6.

Explicit formulae for the general Nth-degree maximally flat inverter coupled
lowpass prototype shown in Figure 3.7 are given below [3].

G,. == L,. or C,.

(3.46)

(3.45)(r == 1, ... , N)2 . [(2,. - 1)7f]== SIn
2N

(r==I, .... ,N-I)Kr,rt I == 1

3.3 The Chebyshev prototype

The maximally flat approximation is the simplest meaningful approximation to
the ideal lowpass filter. It is maximally flat at d.c. and infinity, but rolls off to
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o--1YY\- ~YY\-

K 12 K 23

LN - 1

__ JYY\-.------.

In

InKN-l.N
1~ K 12 K 23

f' T'

o

o

Figure 3.7 Inverter-coupled IOHJpass prototype maximally .flat .filter

3 dB at w == 1. It is thus sometilnes called a zero-bandwidth approximation. As
discussed in Chapter 1 a better approximation is one which ripples between two
val ues in the passband up to the band-edge at w == 1, before rolling off rapidly in
the stopband. This type of approximation is shown in Figure 3.8 for degrees 5
and 6.

\,
\

\
\ N=6

\ N=5<-
~

1.2 1.4

Figure 3.8 Cheb}'shev lo}vpass approxinlation
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The insertion loss at ripple level is normally expressed as

IL == 10 log(1 + c 2)

Thus the ripple in the passband can be controlled by the level of c.
To achieve this type of behaviour we let

') 1
ISdjw)l~ = 1+ E 2TJ(w)

Thus

IL == 10loglo [1 + c 2 TJ(w)]

(3.47)

(3.48)

(3.49)

TN(w) is a function which must then obtain the maximum value of 1 at the
maximum number of points in the region Iwl < 1. TN(w) is thus of the form
shown in Figure 3.9.

We need to work out the formula for TN(w) so that we can calculate
ISI2(jw)12. First we see that all points in the region Iwl < 1 (except w == ±1)
where ITN(w)1 == 1 must be turning points. Thus

dTN(w)
dw == 0 when ITN(w)1 == 1

except when Iwl == 1. Hence

dTN(w) ~ C [1 - TJ(w)] 1/2

dw - N (1 _ w2)1/2

(3.50)

(3.51)

1.5

N=61.0

0.5

ot--r.---f--+----\-----l---+----\--4--~--+--4(l)

-0.5

-2.0 L..L...--.....L-_..l--_L..------L_---L_---L._--l..-_--l..-_----l-_-L.l

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Figure 3.9 Equiripple response
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From Figure 3.9 we see that

ITN (±1)1 == 1 (3.52)

Thus 1 - T~(±I) == 0 when (1 - w2)1/2 == 0 and dTN(w)jdw is finite at w == ±1.
Rewriting (3.51)

dTN(w) _ C dw (3.53)
[1 - T~(w)] 1/2 - N (1 _ w2) 1/2

Integrating both sides of (3.53) gives

cos- I [TN(w)] == CNcos- I (w) (3.54)

CN must be determined so that TN(w) is an nth-degree polynomial in w.
Let cos- I (w) be written as w == cos(tJ). Then

TN(w) == cos(CNtJ) (3.55)

and TN(w) == 0 when

cNe = (2r; 1}rr (r = 1,2 etc.) (3.56)

or

(2r - 1)1T
e= 2C

N

For TN(w) to have N zeros then CN == N, and

TN(w) == cos[Ncos-l(w)]

Thus

2 1
IS12 (jw) I = 1 + 2 2[N -l( )]C cos cos w

(3.57)

(3.58)

(3.59)

Now (3.59) must be a polynomial in w; otherwise it could not represent
the response of a real network. In fact TN(w) is known as the Chebyshev
polynomial [4] and is given by the formula [3]

TN+I(w) == 2wTN(w) - TN_I(w) (3.60)

with initial conditions

Thus

T2(w) == 2ww - 1 == 2w 2 - 1

(3.61 )

(3.62)

(3.63)

Let us now do an evaluation of the response of a third-order Chebyshev filter.
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Say we want 20 dB minimum passband return loss. Then (in the worst case)

insertion loss == 1010g 10 (1 +c 2) == 1010g (_1_,..,) (3.64)
IS121~

and

return loss == 1010g (_1_;) == L R (3.65)
IS111~

Then

IS ll1
2

== 10- LR
/

10
== 0.01

and

So

and
c == O. 1005 ~ O. 1

Thus

insertion loss == 1010g[1 +0.01(4w3
- 3w)2]

(3.66)

(3.67)

(3.68)

(3.69)

(3.70)

The insertion loss ripples between zero and 0.043 dB in the region Iwl < 1 and
then rolls off, reaching 9 dB at w == 2. It would appear at first that the function is
not as selective as the third-order maximally flat filter. In fact the maximally flat
filter had 3 dB insertion loss at w == 1 so it is not a fair comparison.

The passband insertion loss ripple in the Chebyshev filter is 0.043 dB. The
third-degree maximally flat filter achieved this at w == 0.463. As a comparison
the ratio of stopband to passband frequency is 4.64 for the maximally flat filter
and 3 for the Chebyshev filter. Thus we see that the Chebyshev response is
considerably more selective than the maximally flat response.

A formula to calculate the degree of a Chebyshev filter to meet a specified
response is now given. The proof of this formula is similar to the proof for the
maximally flat response [3]. The formula is

N > L_A_+_L_R_+_6__
- 2010g 10 [S + (S2 - 1)1/2]

(3.71 )

where LA is the stopband insertion loss, L R is the passband return loss and S is
the ratio of stopband to passband frequencies.

As an example, for LA == 50 dB, L R == 20 dB, S == 2 then N must be greater
than 6.64, i.e. N == 7. The maximally flat filter required N == 12 to meet this
specification. Synthesis of the Chebyshev filter proceeds as follows. Given

(3.72)
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the poles occur when

T~(w) == -1/e 2 (3.73)

That is,

cos2[N COS-I (w)] == -1/e 2 (3.74)

To solve this equation we introduce a new parameter '1'/, where

1]=sinh[~sinh~IG)] (3.75)

or

~ = sinh[N sinh-I (1])]
e

Hence from (3.74) and (3.76)

cos2 [N cos- 1(w)] == - sinh2 [N sinh- 1('1'/)]

== sin2[N sinh- 1(j7])

Therefore

cos- 1(w) == sin- 1(jT/) + ()r

where

(2r - 1)1r
()r == 2N

and

(3.76)

(3.77)

(3.78)

(3.79)

Pr == -jcos[sin-' (jr7) +()r] == +T/sin(()r)+j(l +r/)1/2cos(()r) (3.80)

The left half-plane poles occur when sin( ()r) is positive, i.e. r == 1, ... , N.
Therefore

_ . _ . (()) .( 1 2) 1/2 (() )Pr - ar + jWr - 7] sIn r + j + 7] cos r

Thus

ar2 wr2

-+--== 1
T? l+T?

The poles thus lie on an ellipse.
It may be shown that

SI2(P) = ft{ [1]2. + si~2(nr/~)] 1/2 }
r=l P + jCos[sIn-' (jT/) + ()r]

Now

IS" (jw)1 2 == 1 - !SI2(jw)12

e2T~(w)

1 + e2T~(w)

(3.81 )

(3.82)

(3.83)

(3.84)
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(3.88)

(3.85)

(3.87)

(3.86)

The zeros occur when

cos2[N cos- I (w)] == 0

That is,

P == -} cos(Br )

Now
SII(OO) == 1

Then

S ( ) - rrN { p+}cos(Br ) }

11 P -r=I p+}cos[sin-I(}7])+Br]

The network can then be synthesised as a lowpass ladder network by
formulating Zin(P).

As an example we will synthesise a degree 3 Chebyshev filter.

For

For

For

Therefore

r == 1

r==2

r==3

(3.89)

(3.90)

(3.91)

(3.92)

s ( ) _ p(p +j)3/2)(p -j)3/2)
11 P - (p + 7)) [p + T}12 + j ()3/2)(1 + r?) 1/2][p + 7)12 - j ()3/2) (1 + r?) 1/2 ]

p3 + 3p/4

Now

Z
. ( ) _ 2p 3 + 27]p2+ 2(7]2 + 3/4)p + 7](7]2 + 3/4)
mP--------------

27]p2+ 27]2p + 7](T? + 3/4)

Removing a series inductor of value 1/7] we are left with

(3.93)

ZI (p) == Z(p) - p/7]

(7]2 + 3/4) (p + 7])
(3.94)

Extracting an inverter of characteristic admittance

K
_ (T12 + 3/4)]/2

12 -
71

the remaining impedance is

(3.95)

Z?(p) = 2p2 + 27)p + (7)2 + 3/4)
- 7](p + 7])

(3.96)
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1/11

In

Figure 3.10 Synthesis 0.[ an N == 3 Chebyshev.filter

Now extracting a second inductor of value 21TJ we are left with

Z3(P) == Z2(P) - 2p1T/

TJ2 + 314
TJ(p + ''7)

Extracting a second admittance inverter of characteristic admittance

(TJ2 + 314) 1/2
K23 ==-----

TJ

the remaining impedance is

(3.97)

(3.98)

(3.99)

i.e. an inductor of value 1/rl followed by a load resistor of value unity. The
complete synthesis cycle is shown in Figure 3.10.

The synthesised element values given here are actually formulae in terms of TJ.
These formulae may be generalised to the Nth-degree prototype shown in
Figure 3.11 [3, 5, 6].

[TJ2 + sin2(r7f1N)]1/2
K R.R+ 1 == r==l, ... ,N-l (3.100)

TJ

where KR.R+1 is the impedance of the inverters.

_ 2 . [(2r - 1)7f]
L R - -Sin 2

TJ N
R==l, ... ,N (3.101)

In

Figure 3.11 General Nth-degree Chebyshev prototype net}i'ork
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where

ry = sinh [~ sinh 1 G)]
c is related to the insertion loss ripple and hence the passband return loss. Since

2 1
Is 1---

12 -1+E 2

)

Is 12_~11 -1+E 2

therefore

Hence

(3.103)

(3.104)

(3.105)

(3.106)

Note that the dual of Figure 3.11 would consist of shunt capacitors separated by
inverters. Formulae (3.100)-(3.102) still apply but they would then represent
the values of the capacitors and the characteristic admittance of the inverters.

3.4 The elliptic function prototype

The elliptic function approximation is equiripple in both the passband and the
stopband. It thus has the optimum response in terms of selectivity from pass­
band to stopband. A typical elliptic function filter response is shown in Figure
3.12. The transmission zeros of this network are no longer at infinity and thus
the filter cannot be realised with a ladder network. One of the disadvantages of
this filter response is that the transmission zeros are prescribed to be at certain
frequencies and there is no flexibility in their location, i.e.

I
ISdjw)!2 = 1+ FJ(w)

where

222 2

( )
_ (w -WI)(W -WI) ...

FN W - 2 2 2 2
(w - WA) (w - WB) ...

(3.107)

(3.108)

i.e. all the values WI, WA etc. are specified.
The synthesis procedures for the elliptic function filter are simpler if we work

with a highpass rather than a lowpass prototype. This is shown in Figure 3.13
for N == 6. In this case

2 )
S . 2 c FN(w)
I d./w)I = 1 + E2F~(w) (3.109)
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~(O

Figure 3.12 Elliptic function lovvpass re:"lJonse

FN(w) is a rational function as in (3.108). It oscillates between ±1 for Iwl :s; 1
andIFN(w)1 2: ln~I/2 for Iwl 2: 111--

1
/

2
. FN(w) is shown in Figure 3.14.

FN(w) can be determined from a differential equation in a similar way to the
Chebyshev filter, as follows. First we define the turning points in the passband
and stopband:

dFN(w) I == 0 except when Iwl == 1 (3.110)
dw jFN (w)I=1

1
- 111 1/ 2

Figure 3.13 Degree 6 highpass elliptic filllction .filter
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F~(J))

I I (J)

1 1
mIn 0 mIn

I I
I I
I I
I I
I I
I I

--~~~ul ~:~~~_]~!J~~~[I
Figure 3.14 FN(W) .for the highpass elliptic function .filter

dFN(w) I == 0
dw IFN(w)l=m~l/2

except when Iwl == nl~I/2 (3.111 )

Thus

dFN(w) {[I - F~(w)][1 - moF~(w)]}1/2

dw = eN [(I _ w2)(1 _ mw2)]1/2

Rearranging with FN(w) on the left-hand side we obtain

dFN(w) CNdw

{[I - F~(w)][l - nloF~(w)]}1/2 [(1 - w2)(1 - mw2)]1/2

and after integrating we obtain

cdo IFN(w) == CNcd-1w == u

and

(3.112)

(3.113)

(3.114)

(3.115)

where the elliptic functions are all dependent on the elliptic parameter m, with
the same notation as in Reference 7.
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Kr.r+l etc.

Figure 3.15 Highpass prototype .for elliptic .function .filters

It may be shown [3, 8] that the polynomial form of FN(w) is

N

B Il {w - cd[(2r - l)K/N]}
1'=1FN(W) == -N---------

Il{1-wmcd[(2r-l)K/N]}
1'=1

where

B= n{l-mCd[(2r-l)K/N]}
1'=1 l-cd[(2r-l)K/N]

(3.116)

(3.117)

Synthesis of the elliptic function filter cannot be accomplished using a ladder
network as it has finite real frequency transmission zeros. It may be synthesised
using the techniques described for generalised Chebyshev filters later in this
chapter, or by the techniques described for extracted pole waveguide filters in
Chapter 6. It is possible to synthesise the filter using a type of ladder network
using series resonators composed of capacitors in parallel with frequency­
invariant reactances as shown in Figure 3.15.

Explicit formulae have been developed for the element values of the elliptic
function prototype [3, 8]. These are

r== 1, ... ,N

c == ds[(2 - I)K/NJdn[(2r - I)K/N]
I' 27](1 - m)

(2r - I)K
Br == Crcd N

r== 1, ... ,N (3.118)

(3.119)

[
2(r - I)K 2rKJ K (2r - l)K

XI' == -7]m sn + sn - cd - cd----
N N N N

r== 1, ... ,N

(3.120)

r==I, ... ,N-l (3.121 )

7/ == SC(N
K sc-l~)
Ko c

(3.122)
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An approximate equation for calculating the degree of the filter is

N > _K_(m_) _L_A _+_L_R_+_1_2
- K'(m) 13.65

(3.123)

(3.124)

where LA and L R are the stopband insertion loss and passband return loss~

respectively~ and K is the quarter period with respect to the elliptic parameter
m. As an example~ for LA == 50 dB~ L R == 20 dB and TI == 2 we obtain
In == 1/r12 == 0.25. K(m) and K'(m) are obtained from tables of elliptic integrals
in Reference 7 giving K(n1) == 1.68575 and K' (In) == 2.15651. Thus N 2: 4.69~

i.e. N == 5 compared with N == 7 for the Chebyshev filter.
The elliptic function highpass prototype can also be used for inverse

Chebyshev filters. In this case the transfer function is

. 2 c 2
T~(w)

!S12(Jw)! = I + E2T~(w)

The filter is maximally flat in the passband and equiripple in the stopband. In
this case the element values for the prototype network of Figure 3.15 are

1
C,. = 21] sin[(2r - 1)1r/2N]

[
(2r - 1)1T]

Br == Cr cos 2N

Xl' == 0

(3.125)

(3.126)

(3.127)

(3.128)

One of the disadvantages of using the elliptic function filter is that the range
of element values required is quite large~ up to 10: 1. Furthermore~ in many
applications we wish to specify the locations of the transmission zeros ourselves.
This is possible by using the generalised Chebyshev approximation described in
the next section.

3.5 The generalised Chebyshev prototype

The generalised Chebyshev approximation provides a filter with equiripp1e pass­
band amplitude characteristics but with arbitrarily placed attenuation poles
(transmission zeros) in the stopband. Because the transmission zeros can be
placed arbitrarily then both symmetric and asymmetric frequency responses
can be generated. Furthermore~ the transmission zeros are not restricted to
being at real frequencies but may also be located in the complex plane. A
particular example of a generalised Chebyshev filter is shown in Figure 3.16.
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Figure 3.16 Generalised Chebyshev IOH'pass approximation

The generalised Chebyshev approximation is given by

with

-1 <FN(w) <+1 for -1<w<+1

and

(3.129)

(3.130)

r =:::::. I, ... , N (3.131)

where WI' is the frequency of the rth translnission zero.
The normal Chebyshev transfer function can be represented by

. 2 1
ISdJw)1 = 1+ c 2 F1(w)

where

FN(w) =:::::. cos[Ncos-1(w)]

=:::::. cos(B)

and

(3.132)

(3.133)

(3.134)
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It can readily be seen that as w varies from -1 to +1 then e performs N
half-period variations from -1r/2 to +1r/2. Hence FN(w) has N half-period
variations from -1 to +1. For Iwl > 1, () is imaginary and FN(w) increases
monotonically to infinity at w == 00.

In the case of the generalised Chebyshev filter, some of the transmission
zeros at infinite frequencies can be brought to finite but not necessarily real
freq uencies. Let

N

e== Lei'
1'=1

~ -1 (I-WW r )== L..J cos
1'=1 W - WI'

~ -1 ( . 1+ PPr)== L..J cos .J---
1'=1 P -PI'

(3.135)

where PI' is the position of the rth transmission zero in the complex plane. This
preserves the same range of variation of eacross -1 < w < 1 while producing
attenuation poles (transmission zeros) at pro Hence

n ( 1 + .)FN=cosLcos-1 j !P,
r=1 p PI'

Now given that

cos- 1(x) == -loge[x + (x2 - 1)1/2]

it can be shown that the polynomial form of(3.136) is [9,10]

FN = ~ (fI{ 1+ PPr + [(I ~l)(1 + p~)]1/2}
1'=1 P PI'

+fi{1 + PPr - [(~ ~~~)(I + p~)] 1/2} )

Multiplying out all the products results in

(3.136)

(3.137)

(3.138)

N

~a·pj
J

j=O
FN ==-N--

~b·pj
~ J
j=O

A(p)
B(p)

(3.139)

where {~j, ~j are in general complex coefficients.
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Now

. 2 1
ISI2(Jw)1 = 1+ c 2A2 / B2

1

(1 +jcA/B)(1 - jcA/B)

(B + jcA)(B - jcA)
Furthermore

Hence

c 2A 2

ISll(jW)1
2

= (B+jcA)(B-jcA)

(3.140)

(3.141)

(3.142)

(3.143)

The transmission and reflection functions can thus be formed from the A and B
polynomials with the denominator being formed from the left half-plane zeros
of the factorisation of the denominator of IS12(jw)12.

There is no simple formula for calculating the degree of the generalised
Chebyshev filter since the transmission zeros can be placed arbitrarily. The
easiest way is to simulate the transfer function on a computer and choose
the zero locations as required.

In general the synthesis of such filters can be performed using the cascade
synthesis described in Chapter 2. However~ certain specific synthesis techniques
may be used depending on the degree of the network. These will be dealt with
later in this chapter after the group delay and time domain approximations.

3.6 Filters with specified phase and group delay characteristics

The amplitude approximations discussed so far make no attempt to approxi­
mate to a prescribed phase or group delay response. However, in some systems
applications these are of importance. As an example consider a digitally
modulated signal passing through a filter with non-linear phase response. If
the bandwidth of the filter is similar to that of the signal then the signal may
experience severe phase distortion. This can give rise to inter-symbol inter­
ference and hence a degraded bit error rate.

In Chapter 1 we showed that the amplitude and phase responses of ladder
networks are related by Hilbert transforms. It is instructive to look at the phase
and group delay responses of some simple amplitude approximations. In
general, for ladder networks

1
Sdjw) = a(w) + jB(w)
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(where a is even, B is odd) and the phase response is

1 [B(W)]
?f;(w) = - tan - n(w)

The group delay Tg(w) is related to the phase by

-d1j)(w)
Tg(w) == dw

Hence

()
aB' - Ba'

T w ==----
g a 2 + B2

(a' and B' denote differentiation with respect to w).
For a Butterworth filter

o? + B2
== 1+ w 2N

Hence

aB' - Ba'
Tg(w) == 2N

l+w

For a degree 2 Butterworth filter

1
Sdp)=p2 +V2p+1

That is,

1
S12(jW) == -1---w-2-+-j-';-2-w

B == J2w

and

(3.144)

(3.145)

(3.146)

(3.147)

(3.148)

(3.149)

(3.150)

(3.151 )

(3.152)

(3.153)

(3.154)

The maximum value of Tg(w) occurs when r,:(w) == 0, i.e. at w == 0.6435, with a
value Tgmax of 1.707.

The ratio of Tgmax to the value at d.c. is given by

Tgmax == 1.207
Tg(O) (3.155)
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For a degree 3 Butterworth filter this ratio increases to 1.35 and it can be shown
that for higher degree Chebyshev filters it increases to nearly 2.

3.6.1 The ma~x;in1allY.flatgroup delay lowpass prototype

In the ideal case we would require the group delay to be constant across
the passband. If we restrict ourselves to ladder realisations then we will look
for a maximally fiat approxilnation to constant group delay, and since all the
transmission zeros are at infinity

K
Sdp) = m(p) + n(p)

(111 even, n odd). Thus

( )
_ rn(p)n/(p) - n(p)rn/(p)

Tg p - 2 )
~ 111(p) - n(p)-

(3.156)

(3.157)

The objective is to choose rn and n such that the group delay is a maximally flat
approximation to a constant at w == o. Consider

K
S12(P) == .

cosh(ap) + slnh(ap)
(3.158)

(Note that this is physically unrealisable as the polynomial forms of cosh(ap)
and sinh(ap) require infinite power series in p.) Now

m(p) == cosh(ap)

n(p) == sinh(ap)

Hence from (3.157)

Tg(p) == a

(3.159)

(3.160)

(3.161 )

Hence, (3.161) states that the group delay is a constant independent of
frequency, but this is only true if 111 and n are of infinite degree. Instead we
restrict n(p)jI11(p) to be of degree N and to be some approximation to tanh(ap).
Now

and

, h( ) _ sinh(x)
tan x - h()cos x

. x3 x 5

slnh(x) == x +,+- ...
3. 5!

2 4
X x

cosh(x) == 1 + 2! + 4! ...

(3.162)

(3.163)

(3.164)
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Hence the continued fraction of tanh(ap) is

tanh(ap) == 1
-+------
ap ~+ _

ap ~ +
ap

(3.165)

2N - 1 1
---+-

ap

To form n/m we truncate (3.165) after N terms and re-multiply. The numerator
is equal to n and the denominator is equal to m.

For example, for N == 2

tanh(ap) == 1 1
-+-­
ap 3/ap

3ap

3 + a2p2

Hence

n(p)

m(p)
(3.166)

K
S12(p) = 3 + 3ap + a2p2

For realisability let S12 (0) == 1. Hence K == 3. Hence

S ( ) _ 3
12 P - 3 + 3ap + a2p2

and from (3.157)

9 3 3 2

( )
a- ap

T p ==------
g 9 - 3a2p2 + a4p4

and

(3.167)

(3.168)

(3.169)

(3.170)

(3.171 )

Thus a is chosen to determine the group delay at d.c. Furthermore, it is readily
shown that the group delay is maximally flat around p == o.

Examining the amplitude characteristics of S 12 (p), without loss of generality
we can let a == 1 in (3.168) giving

1
SI2(P) = 1+p+p2j3



(3.172)
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Hence

. 2 1
ISn(jw)1 = 1 + w2/3 + w4 /9

This has considerably less amplitude selectivity that the normal maximally flat
filter. This is not surprising as we have restricted ourselves to a minimum phase
realisation. However, this type of characteristic can be useful where group delay
flatness is more important than absolute selectivity.

It can be shown that a general solution for SI2(P) [11] is given by

K
Sn(p) = DN(ap) (3.173)

where

DN(ap) == (2N - I)D N- 1(ap) +a2p2DN_2(ap)

where

(3.174)

D 1 == 1+ ap (3.175)

D2 == 3 + 3ap + a2p2 (3.176)

Hence from (3.173), (3.174) and (3.175)

D3 == 15 + 15ap + 6a2p2 + a3p3 (3.177)

Hence for S12(0) == 1

15
Sn(p) = 15 + 15ap + 6a2p2 + a3p3 (3.178)

which is an all-pole transfer function, realisable by a ladder network.

3.6.2 The equidistant linear phase approximation

The equiripple approximation to a linear phase response is a much better
approximation than the maximally flat solution [3]. In fact the equiripple solu­
tion which minimises the maximum deviation from linear phase is the optimum
solution. This solution uses a polynomial which approximates the ideal linear
phase given by

7jJ(w) == w (3.179)

The error function 7jJ(w) == w is designed to be zero at equal increments of a in w
and is shown in Figure 3.17.

The equidistant linear phase polynomial is given by

AN(jwla) == A(w) exp[j7jJ(w)]

where

(3.180)

[w - 7jJ(w)] Iw=ra == 0 r == 0, 1, 2, ... , N (3.181)

The phase is linear at equidistant frequency increments and is called the
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a 20. 30. 40. (N-l)a No.

Figure 3.17 Equidistant linear phase approximation

equidistant linear phase polynomial with the recurrence formula [12]

tan2 (a) p2 + (aN)2
AN+1(pia) == AN(pla) + 1 1 AN- 1(pia)

a'" 4N'" - 1

where a < ni2. Initial conditions are

1
tan(a)

Ao == 1 Al == +--p
a

and Sl2 (p) is given by

1
Sdp) = A(pln)

(3.182)

(3.183)

(3.184)

Note that with Q == 0 the solution degenerates into the maximally flat case
discussed previously.

For example, for N == 3, from (3.182)

A -A tan
2
(n)p

2
+n

2

A2- 1+ ) 3 0
a~

1
tan (a ) tan2

(a) p2 + o?
== +-~-p+ 2 3

(1' a
(3.185)

1 ) 1 1 2 1

_ 1 tan~(n) tan-(n) p- + a- tan.....,(a) p + 4a'" [ tan (a)]
- + ~ p+ ) 3 + 1 15 1+--p({' a~ a'" cy

(3.186)

SI2(P) may be synthesised as a ladder network.
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3.6.3 Combined phase and amplitude approximation

As already stated, restricting a prototype realisation to an all-pole or ladder
network means that the amplitude and phase (or delay) characteristics are
related by Hilbert transform pairs. Consequently it is impossible to achieve a
combined good approximation to selective amplitude response and linear phase
(constant group delay) response with this type of realisation. It is only possible
to proceed by using non-minimum phase realisations as follows.

A minimum phase transfer function of the form

N(p)
Sdp) = D(p)

can be augmented by multiplying by an all-pass function of the form

A(p) = H( -p)
H(p)

That is,

IA(jw)1 2 == 1

Hence

S' ( ) _ N(p) H(-p)
12 P - D(p) H(p)

(3.187)

(3.188)

(3.189)

(3.190)

The magnitude response of S{2 is unchanged from S12 while the phase response
is modified to

r}/'S' (.) r}/'S (.) 2 -1 [O(jW)]
If/ 12'/W == If/ 12'/W -- tan £(jw)

(where H(jw) == E(w) +jO(w)) and the group delay is modified to

EO' - OE'
T~(w) == Tg(w) - 2 2 2

E +0

(3.191 )

(3.192)

(3.193)

The additional term may thus be used to modify the group delay of the original
filter. Note from Chapter 1 that the group delay of an ideal lowpass filter is
infinite near band-edge. Thus although modifications to the delay of a selective
filter are relatively easy to achieve near w == 0, corrections close to band-edge
require A (p) to be of high degree. Typically correction tends to give flat delay
(linear phase) across most of the passband while allowing a peak in delay near
band-edge.

One possible solution in this case is the maximally flat amplitude and maxi­
mally flat linear phase approximation [3]. In the even-degree case this has 2n - 1
derivatives of IS1212 equal to zero at the origin, and nl2 + 1 derivatives of group
delay equal to zero at the origin. It has two transmission zeros at infinity, and
the transfer function is given by

S ( )
- £2 J1l- 2 ( P)

\'1 P -----
k D 2m (p)
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where

and Qm(P) is given from the recurrence relation

p2

Qm+l (p) == Qm(P) + 4m2 _ 1 Qm-l (p)

and

(3.194)

(3.195)

Qo == 1 Ql == 1+P (3.196)

The denominator is given by

2

()
2 P 2

D2m P = Qm + (2m _ 1)2 Qm I

As an example, for N == 4 we have m == 2 and

Q2(P) == 1 +p+p
2/3

(3.197)

(3.198)

(3.199)
9 - 2p2

SI2(p) = P + 18p + 16p2 + 8p3 + 2p4

This has two transmission zeros at infinity, realisable as a conventional ladder
network. It also has a pair of finite real-axis zeros at P == ±3/V2 which require a
C section. The network can thus be synthesised by the cascade synthesis meth­
ods discussed in Chapter 2 or by the methods used for generalised Chebyshev
filters, to be discussed later in this chapter. Further examples of filters with
combined selective amplitude and linear phase are given in Reference 13 and
in the section on dual-mode waveguide filters in Chapter 7.

We have observed that one particular solution to combined selective
amplitude and linear phase requires real-axis transmission zeros. However,
the generalised Chebyshev approximation discussed previously allows a
completely arbitrary placement of transmission zeros. Thus it is possible to
generate transfer functions with equiripple passband amplitude characteristics
and with transmission zeros placed to increase both amplitude selectivity and
phase linearity. This is the approach which is now generally adopted. Synthesis
of generalised Chebyshev filters will be discussed later in this chapter.

3.7 Filters with specified time domain characteristics

The impulse response of a filter can be of significance in certain applications.
For example in narrowband channelised electronic warfare receivers a large
pulse will cause 'ringing' in the filter for a period of time. If the amplitudes of
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the time domain sidelobes are sufficiently high they can block the ability of the
receiver to detect a second pulse. It is thus desirable to have filter characteristics
where the time domain sidelobes are damped as rapidly as possible. One
particular solution to this problem is the maximally flat in1pulse response
approximation [14] where

SI2(t) == K N exp( -t/2) sinN
-

1(ct/2)

with zeros at t == 21rm/c.

For example let N == 1. Then

S12(t) == K 1 exp(-t/2)

and letting

S12 (p) Ip=o == 1

then

K 1 == 1/2

Now S12(P) is the Laplace transform of S12(t). Hence

1
SI2(P) = 2p + 1

For N == 2

S12 (t) == K2exp( - t/2) sin(ct/2)

Hence

S ( ) _ K2c/2
12 P - (p+ 1/2)2+ c 2/ 4

Hence for S12(P)!p=o == 1

K2c/2 == c 2/4 + 1/4

Therefore

(3.200)

(3.201)

(3.202)

(3.203)

(3.204)

(3.205)

(3.206)

(3.207)

1+ c 2

K2 == -- (3.208)
2c

In general, for N even, it can be shown that S12(P) is an all-pole transfer
function (hence is synthesised as a conventional ladder network) given by

1
S12 (p) == (3.209)

N /2 [ 4p (1 +p) ]TI 2 2 + 1
1'=1 1 + (2r - 1) c

where

K
2

= 1+ c
2

2c (3.210)



(3.211)
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and
( )

2 2
K N+2 1+ N + 1 e
K N - N(N + l)c 2

The value of c must now be determined. This is done by forcing IS12(jw)12 to
have a first-order maximally flat response around w == O. Now from (3.209)

ISI?(jW)!2 = 1 } (3.212)
- IV12 { 8[1 - (2r - 1)2e 2]w 2 16w 4

,I] 1 + [1 + (2r - 1?c2]2 + [1 + (2r - 1)2c 2]2

(for N even). For a first-order maximally flat response the coefficients of the w 2

term must be zero. Hence

NI2 (2r - 1)2c 2 - 1
"'" - 0 (3.213)8 [1 + (2r - 1)2c 2]2 -

For N odd the coefficient of w 2 is always positive so the odd-degree solution is
of little value.

For N == 2
c 2

- 1
---==0
(1 +e 2)2

hence e == 1 (3.214)

hence c == 0.76591

hence c == 0.84336For N == 4

For N == 6

c 2 - 1 ge 2 - 1
---+ ==0
(1 + e2)2 (1 + ge 2)2

e 2
- 1 ge 2

- 1 25e 2
- 1

---+ + ==0
(1 + e 2)2 (1 + ge 2)2 (1 + 25e 2)2

(3.215)

(3.216)

The attenuation of time domain sidelobes can be computed from the time
domain response:

S12(t) == KN exp( -tI2) sin N
-

1(etI2) (3.217)

Differentiating to obtain the turning points it can be shown that

/ 2 1SI2(t) == 0 when t == - {r7T + tan- [e(N - I)]}
e

(3.218)

The maximum value of the impulse response occurs for r == 1 and the sidelobes
peak at r 2:: 2. At the peaks the sine function is unity and

S12(t) == KN exp(-tI2) (3.219)

The attenuation of the mth sidelobe is thus

A == exp(m7TIE)

== 8.686n17T dB
e

(3.220)
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Figure 3.18 Impulse response q[a degree 6 l11axilnal(V.flat impulse response.filter

For N == 2 with E == 1

For N == 4 with E == 0.84336

For N == 6 vvith E == 0.76591

A == 27.94dB

A == 32.36 dB

A == 35.63 dB

(3.221)

(3.222)

(3.223)

The impulse response of a degree 6 prototype is shown in Figure 3.18.

3.8 Synthesis of generalised Chebyshev filters

Generalised Chebyshev filters have equiripple passband amplitude characteris­
tics and arbitrarily placed transmission zeros. They cannot be synthesised by
ladder networks but various synthesis techniques are possible. The type of
synthesis depends on the location of the zeros in the complex plane, whether
or not the zeros are symmetrically located and whether the degree is even or
odd. Three different synthesis techniques will be discussed.

3.8.1 Synthesis' of generalised Chebyshev prototypes with
symmetrically located transmission zeros

If the transmission zeros are symmetrically located in the complex plane then
the synthesis procedure can be simplified by using even- and odd-mode
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admittances. Fronl (2.198) and (2.199) we have

(3.224)

(3.225)

where Ye and Yo are both reactance functions. Now

(3.226)

and

. 2. . 2 c 2
F~(w)

ISll (Jw)1 = 1 -ISdJw)1 = 1+ c: 2FR(W)

Now from (3.226) and (3.227)

SII(jW) . F ( )
SI2(jW) ==}c N W

and from (3.224) and (3.225)

Thus

(3.227)

(3.228)

(3.229)

(Ye + 1) (Yo + 1)
(3.230)

and

(Yo + 1) (Ye + 1)
(3.231)

Now since Ye and Yo are reactance functions the left half-plane zeros of
I-jcFN (p/j) are the zeros of Ye +l. Similarly the left half-plane zeros
of 1 - jcFN(p/j) are the zeros of Yo + 1. These two sets of zeros are the poles
of Sll (p). Either set can be identified from the poles of Sll (p) by taking poles in
alternative order from the largest imaginary part. Ye and Yo can then be formed
from these poles [15].

Two possible network realisations are possible depending on whether
the transfer function is even degree or odd degree. First we will examine the
even-degree case. As an example we will synthesise a degree 4 transfer function
with two transmission zeros at infinity and a pair of transmission zeros at
w == ±2, i.e. p == ±j2.



(3.232)
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FN(W) can be calculated from (3.138) as follows.

FN(p/j) = 2(p _ j~(p + j2) {[p + (1 + p2)1/2f[1 + j2p + jyl3(1 + p2)1/2]

x [1-j2p-jJ3(1 +p2)1/2]

+ [p -- (I + p2) 1/2]2 [1 + j2p - jyl3( 1+ p2) 1/2]

x [I --j2p +jyl3(1 + p2)1/2]}

/ {[I + 2p(1 + p2)1/2 + 2p2]
2(p~ + 4)

x [I + 4p2 + 3( 1+ p2) + 4J3( 1 + p2) 1/2]

+ [1 - 2p( 1 + p2) 1/2 + 2p2] [1 + 4p2 + 3( 1 + p2) - 4y13p( 1 + p2) 1/2]}

=~ [4 + (15 + 8y13)p2 + (14 + 8y13)p4]
p- +4

The poles of SII (p) are thus the zeros of

(4 + p2) + c2 (4 + 28.88564p2 + 27.8504p4)2 == 0

For 20 dB return loss E == O. I; hence we find the zeros of

p8 + 2.07179p6 + 1.48914p4 + 1.32845p2 + 2.08253 == 0

(3.233)

(3.234)

The left half-plane zeros are easily found numerically using Matlab and are

p == -0.80347 ±jO.58582 (3.235)

and

p == -0.24621 ±j1.18275 (3.236)

This transfer function may be synthesised as the cross-coupled ladder network
shown in Figure 3.19.

The even-mode network is shown in Figure 3.20. The frequency-invariant
reactances in Figure 3.20 arise from bisecting the coupling inverters of admit­
tance jKr with an open circuit.

The odd-mode network is thus the complex conjugate of the even-mode
network, i.e.

(3.237)

We can now formulate Ye by constructing a polynomial P(p) from a pair of the
four roots of Sll (p) choosing opposite signs for the imaginary part. Thus

P(p) == (p + 0.80347 -jO.58582)(p + 0.24621 +j1.18275)

== p2 + 1.04968p + jO.59693 + 0.89351 + jO.80606 (3.238)
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Kl

In~
O'_..JL--C__1 --I

Figure 3.19 Cross-coupled prototype nettt'ork

__~2 CN

Now the zeros of P( p) are the zeros of 1 + Ye(p) and

N(p)
1+ Ye ( p) = 1 + D( p) (3.239)

(3.240)

(3.241 )

That is, the zeros of 1+ Ye(p) are the zeros of N(p) + D(p) where N(p) and
D( p) are complex even and odd polynon1ials.

Thus we formulate

N(p) == p2 +jO.59693p + 0.89351

D( p) == 1.04968p + jO.80606

Hence

( )
_ N(p)

Ye P - D(p)

p2 +jO.59693p + 0.89351

1.04968p +jO.80606

Now

Ye(P)! 1
-p- 1'=00= 1.04968 = 0.95267

IT
I I

Figure 3.20 Even-rnode nettvork o.f the cross-coupled prototype

(3.242)

(3.243)
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Figure 3.21 Even-mode netlvork

Thus extracting a shunt capacitor of value C} == 0.95267 we obtain

-jO.17098p + 0.89351
Y 1 (p) = Ye(p) ~ C1p = l.04968p + jO.80606 (3.244)

Now

(3.245)

(3.246)
1.04968p + jO.80606

Thus we extract a frequency-invariant reactance of value jK} where
K} == -0.16288 leaving

Y2(P) == Y 1(p) -jK}

== Y} (p) +jO.16288

0.7622

Inverting we obtain

Y3 (p) == 1.3772p + j1.0575

== C2 p + jK2

Ye is shown in Figure 3.21.

(3.247)

Figure 3.22 C"onlplete fourth-degree cross-coupled.filter
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Now Yo == Y; and the complete network is shown in Figure 3.22. The
simulated response is shown in Figure 3.23.

Note that the complete filter is a fourth-degree ladder network with a non­
adjacent coupling between the first and last resonators with opposite sign to the
main couplings. This is necessary for the real frequency (j axis) transmission
zeros. If the zero had been on the real axis the cross-coupling would have been
of the same sign.

o 511

dB
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( 1
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dB

Figure 3.23 Sinlulated response 0.[ a fourth-degree cross-coupled.filter

3.8.2 Synthesis ofgeneralised Chebyshev prototypes with
ladder-(ype networks

The previous cross-coupled ladder networks are only available for narrowband
applications as they use inverters. Alternatively symmetrically located real
frequency transmission zeros may be realised using the circuit shown in
Figure 3.24, provided N is odd. The seventh-degree case shown has a minimum
of one transmission zero at infinity.

As an example we will consider a degree 3 filter with 20 dB return loss, a single
transmission zero at infinity and a pair of zeros at w == ±2. Hence

PI == 00

(3.248)



Lumped lovvpass prototype netlvorks 87

L2 L4

~C;
JCI T_3IC_3T-:

Figure 3.24 Syn1metrical generalised Chebyshev filter of degree 7

In this case from (3.138) FN(p) is given by

-yL-uP + (1 + /)1/2][1 + 4p2 + 3(1 + p2) + 4J3p(1 + /)1/2]
P +4

+ [p _ (1 +p2)1/2][1 + 4p2 + 3(1 + p2) _ 4J3p(1 + p2)I/2]}

= -yL- [p(4 + 4J3) + p3(7 + 4J3)]
p +4

The left half-plane roots of SII (p) are the left half-plane roots of

1 + c2F~(p) == 0

These can be solved numerically giving

PI == -1.48368

P2,3 == -0.38464 ±j1.33334

(3.249)

(3.250)

(3.251)

(3.252)

For N == 3, Yo is of degree 2 and Ye of degree 1. The zeros of 1 + Yo are the
zeros of (p - P2)(P - P3), i.e.

(p + 0.38464 - j1.33334)(p + 0.38464 +j1.33334)

== p2 + 0.76928p + 1.92574

== E(p) + O(p)

Now forming

then

Y ( ) == p2 + 1.92574
o p 0.76928p

(3.253)

(3.254)

(3.255)

The complete network for N == 3 is of the form shown in Figure 3.25 and by
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Ol---r------;

Figure 3.25 Generalised Chebyshev.filter, ladder type, N == 3

analysis of the circuit

2
Yo(p) == (C1 +2C2 )p+-L

2P

p2 + 2/L 2 ( C 1 + 2C2 )

p/(C1 +2C2)

Thus from (3.255) and (3.256)

1.92574 2

0.76928 L 2

Therefore

L 2 == 0.7989

Now from Figure 3.25

Ye(p) == C1P

and from (3.251)

Ye(p) = 1.4~368
Hence

C1 == 0.6739

and from (3.255) and (3.256)

1
C 1 + 2C2 == 0.76928

Therefore

C2 == 0.3130

As a check the series resonant circuit should be resonant at Wo and

L 2 C2 == 1/ weT == 4

The element values of the final circuit are

C"l == 0.6739

C2 == 0.3130

L 2 == 0.7989

(3.256)

(3.257)

(3.258)

(3.259)

(3.260)

(3.261)

(3.262)

(3.263)

(3.264)

(3.265)
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Figure 3.26 Sinlulated response a.! a lumped generalised Chebyshev.filter

The simulated response of this circuit is shown in Figure 3.26.
The general synthesis for filters of this type of degree 5 or above is slightly

more complicated. For example consider a prototype of degree 7 with a single
transmission zero at infinity and three pairs of symmetrically located real
frequency transmission zeros. One possible network realisation is shown in
Figure 3.27. In this case

E4 (p)
Yo(p) == -0--() (3.266)

3 P
where E4 is a fourth-degree even polynomial and 0 3 is a third-degree odd
polynomial. Also although a pole exists at p == ex) this is not completely
removed. First we observe that at the resonant frequency WI of the first
resonator the input admittance is given by

Yo (jwI) == jwC1 (3.267)

Thus we extract C1 by a zero shifting procedure such that

C 1 = YO~jwl) (3.268)
'/Wl

Hence

(3.269)

and inverting

(3.270)
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y-G; :L

4

~~

W_T-,....---3T_3T~
yo(p) Y

1
(P) , line of symmetry

Figure 3.27 Generalised Chebyshev filter, ladder-type realisation

Now Zl (p) contains a factor p2 + wf in the denominator, corresponding to the
transmission zeros at p == ±jw1' Zl (p) should be synthesised into the series
connected parallel tuned circuit and a remaining impedance. The procedure
can then be repeated. An example of this procedure is given in Chapter 5.

3.8.3 Asymmetrically located transmission zeros

In many applications it is required that a filter should be more selective on one
side of the passband than the other. For example in cellular communications
(see Chapter 1) a transmit filter should have high rejection in the receive band.
This may be elegantly achieved by using a generalised Chebyshev prototype
with asymmetrically located transmission zeros.

As an example we will synthesise a third-degree network with two
transmission zeros at infinity and one at w == 2, with E == 0.1. Hence

and

PI == P2 == 00

P3 == j2

(3.271)

(3.272)

and

F ( ) = L [p + (I + p2)1/2f[1 +i2p +iJ3(1 +p2)1/2] + [p - (1 + p2)1/2]2[1 + j2p-iJ3(1 + p2)1/2]
NP 2 p-i2

= _i_. {I + 2p2 +.i[(2 + 2J3)p + (4 + 2J3)p3]}
P - J2

Hence for p == jw

FN(w) = 1 - (2 + 2y13)w - 2w
2 + (4 + 2y13)w

3

w-2

(3.273)

(3.274)

(3.275)
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Therefore

. 2 E
2(1 - 5.46410w - 2w2 + 7.46410w3)2

ISll C/w)1 = (w _ 2? + 10 2 (1 _ 5.4641 Ow _ 2w 2 + 7.464lOw3 )2 (3.276)

Sll (p) can be formed from the left half-plane roots of the denominator of
(3.276), i.e.

(p _j2)2 - E
2[1 + 2p2 +j(5.46410p + 76410p3)]2 == 0 (3.277)

The roots are

PI,2 == ±0.8609917 -jl.41446

P3,4 == ± 1.1734578 + jO.4313449

PS,6 == ±0.31246609 +jl.2510504

(3.278)

(3.279)

(3.280)

In this particular case the transfer function may be synthesised by a sym­
metrical network. However, in general when the transmission zeros are placed
asymmetrically this is not necessarily true. Thus although the above transfer
function may be synthesised using even- and odd-mode networks we will use a
more generally applicable method.

Formulating the denominator of Sll (p) from the left half-plane roots we
obtain

D(p) == (p + 0.860992 +j1.41446)(p + 1.1734578 -jO.431345)

x (p + 0.312466 - jl.251050) (3.281)

The numerator is formed from EFN(P) multiplied by a constant such that Sll (p)
is equal to unity when P == 00, to ensure zero transmission at infinity. Hence

S ( ) _ i -jO.267949p2 + 0.732051p - jO.133975
II P - p 3 + 2.346916p2 -jO.267949p 2 + 3.486057p -jO.949665p + 2.118199 -j1.624683

N(p)
D(p)

Now formulating the input admittance from

Y(p) =~SII(P)
1 - Sll (p)

D(p) + N(p)
D(p) - N(p)

(3.282)

(3.283)

Y( ) = 2p 3 + 2.346916p2 -jO.535898p2 + 4.218108p - jO.949605p + 2.118199 -j1.758658

p 2.346916p 2 + 2.754006p -jO.949605p + 2.118199 -j1.490708

(3.284)
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Y(p) has a pole atp == 00. Thus we can extract a capacitor C I as follows:

c, = y~p)lp=x= 0.852182

Hence

(3.285)

YI (p) == Y(p) - C I P

0.27333&ip2+ 2.413017p + jO.320749p + 2.118199 - jl. 758658

2.346916p2 + 2.754006p - jO.949605p + 2.118199 - j1.490708

(3.286)

As in the previous case a frequency-invariant reactance may now be extracted.
In this case we must extract an element such that the remaining admittance
possesses a zero at p == j2. YI (p) is a reactance function; thus if we extract a
susceptance of value equal to YI (j2) then the remainder must be zero at p == j2.
Thus

YI (p) == JE I + Y2(p)

where

JB I == YI (j2) == -)0.36758

and

Y2(j2) == 0

Hence

(3.287)

(3.288)

(3.289)

y ( ) = _ '0.36758 + (p -j2)(jAp + B +jC)
1 P j 2.346916p2 + 2.754006p -jO.949605 + 2.118199 -j1.490708

(3.290)

Now equating coefficients of powers of p in (3.286) and (3.290)

coefficients of jp2 ==} 0.27338 == -0.36758 x 2.346916 + A

coefficients of p ==} 2.413017 == -0.36758 x 0.9499605 + B + 2A

coefficients ofjp ==} 0.320749 == -0.36758 x 2.754006 + C

Hence

(3.291)

(3.292)

(3.293)

A == 1.136017 B == 0.49002 C == 1.333076 (3.294)

The remaining admittance Y2(P) possesses a zero at p ==j2, and hence its
impedance possesses a pole at p == j2, i.e.

Z ( ) == __1_ == 2.346916p2 + 2.754006p - jO.949605 + 2.118199 - j1.490708
2 P Y2(P) (p -j2)(1.136017ip + 0.49002 +jl.333076)

(3.295)

Z2(P) may be synthesised into a series bandstop resonator (to produce the pole)
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and a remaining impedance by using a partial fraction expansion. Hence

K Ep+F+jG
Z2(P) = p-j2+ I. 136017jp + 0.49002 +j1.333076

where

Hence

K 1 == 3.01358

(3.296)

(3.297)

(3.298)

E, F and G can be evaluated by equating powers of p in (3.295) and (3.296).

coefficients of p2 ::::} 2.346916 == E (3.299)

coefficients of p ::::} 2.754006 == 0.49002 + F

coefficients ofjp::::} -0.949605 == 1.136017K1 - 2E + G

Hence

(3.300)

(3.301)

E == 2.346916 F == 2.754006 G == 0.320749 (3.302)

Thus

Z ( ) _ 3.01358 2.346916p + 2.754006 +jO.320749
2 P - p-j2 + 1.136017jp+0.49002+j1.333076

3.01358 ()
== .2 + Z3 Pp - }

(3.303)

The first term in (3.303) consists of a capacitor C2 in parallel with a frequency­
invariant susceptance B2 . where

1
C2 == 3.01358 == 0.33183

and

-2
B2 == 3.01358 == -0.66366

Now

()
2.346916p + 2.754006 +jO.320749

Zl p == . .
- 1.13601 ~IP + 0.49002 +}1.333076

(3.304)

(3.305)

(3.306)

A frequency-invariant reactance must now be extracted from Z2(P) such that
the remaining impedance has a pole at p == 00. (Note that frequency-invariant
reactances do not exist in reality but n1ay be approximated over a narrow
bandwidth by capacitors or inductors.) Thus

(3.307)
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where

x = Z3;p)lp=oc = -2.06592

The remaining impedance Z4(P) is

. j1.33309
Z4(P) = Z3(P) + J2.06592 = 1.136017jp + 0.49002 + jl.33308

Inverting Z4(P) to form its admittance Y4(P) we obtain

Y4(P) == 0.852168p - jO.36758 + 1

(3.308)

(3.309)

(3.310)

This is a parallel combination of a capacitor C3, a frequency-independent
susceptance B3 and a 10 load resistor. Here the load resistor is not exactly
equal to unity because of numerical errors building up in the synthesis pro­
cedure. Synthesis typically loses one or two significant figures for each cycle of
the process, although this depends on the method used. Thus it is important to
use sufficient significant figures at the start of the process, especially for higher
degree networks.

The complete cycle is shown in Figure 3.28. The synthesis process may be
checked by analysing the final circuit. The simulated response is shown in
Figure 3.29.

The final network shown in Figure 3.28 is not necessarily the most useful for
bandpass applications. A bandpass transformation of this circuit would result
in two shunt bandpass resonators shunted by susceptances. These are not a
problem as they can be absorbed into the resonators resulting in a simple change
in resonant frequency. However, the series branch would become a series band­
stop resonator in series with a further reactance which would be difficult to
realise in any microwave structure other than by using lumped elements.

It is usually more practical to convert the network into a cross-coupled array as
follows [16]. First the series branch consisting of a bandstop resonator in
series with a reactance may be converted into a parallel connection of a
bandpass resonator and a reactance, as shown in Figure 3.30. Equating the
admittances of the two circuits in Figure 3.30 we obtain, for the series branch

Cp+jB

1 - XB+ jXCp
y==-----

1 +.X
C +·B JP ]

and for the parallel branch

y _ 0B' 1 1 - X'B' +jB'Lp
-] + Lp+jX' Lp+jX'

Thus

(3.311)

(3.312)

Cp+jB

1 - XB+jXCp

1 - X'B' + jB'Lp

Lp+jX'
(3.313)
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~ ±q~
c1 = 0.852182

Yep)
Y1(P)

0

~
Bl = -0.36758

ro
Yep) Yl(P) Y2(P)

~0

F-I
I Cz = 0.33183

ro ~JF
-He} B2 =-0.66366

Yep)
Yl(P) Z2(P) Z3(P)

0 Q
~

Ix = ~2.06592

ro ~JF rY(p)
Y1(P) :q(P) Z3(P) Y4(P)

~ ~ ~I
¢ C3= 0.852168

fFlr r
R

L
B 3= -0.36758~TjB3~ RL = 1

Yep)
Y1(P) :q(P) Z3(P) Y4(P)

Figure 3.28 Complete synthesis cycle .lor a generalised Chebyshev .filter ~vith

N == 3, tH'O transnlission zeros at i'1finity and one at p == j2

Equating coefficients of p we obtain

coefficients of p2 =? LC == B'LXC

Hence

(3.314)

B'==-ljX (3.315)

coefficients ofjp =? BL + X'C == XC(1 - X'B') + B'L(l - XB) (3.316)
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2 3 rad/s

-10

Figure 3.29 Simulated response of a generalised Chebyshev prototype with
asymmetric frequency response

Hence

coefficients of po =* BX' == (1 - XB)(1 - X'B')

(3.317)

(3.318)

Hence

(3.319)

jX

o
(a) series connection

L x'O-c """B'~I----O
- I U U I ~ (b) parallel connection

Figure 3.30 Equivalent o.l the series branch in a generalised Chebyshev prototype
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jB'

Figure 3.31 First circuit tr([n,~'lornlation

C == C2 == 0.33183

B == B2 == --0.66366

X == -2.06592

and from (3.315)~ (3.317) and (3.319)

B I
== 0.48404

L== 1.41625

Xl == -0.76659

In

(3.320)

(3.321 )

The circuit is thus transformed into Figure 3.31.
Next we fornl an admittance inverter between the input and output of

value K == B I
~ as shown in Figure 3.32. Note that this involves adding shunt

susceptances at nodes (1) and (2).
Finally we observe that the series inductor and frequency-invariant reactance

can be replaced by a cascade of an inverter~ a shunt resonator and an inverter of
opposite sign~ as shown in Figure 3.33.

The proof of this equivalence is found by analysis of the transfer matrices of
the two circuits. For the series resonator

(3.322)

For the inverter-coupled shunt resonator

0] [0. -.J]
1 ~l 0

(3.323)

The final transformed network is shown in Figure 3.34.
Scrutiny of Figure 3.34 shows that the resultant network is a ladder network
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B'

In

Figure 3.32 Second circuit transformation

L jX

o-------£YY"----n.JlSl--o

-1

C=L B=X

Figure 3.33 Equivalence 0.( the series resonator

with a cross-coupling inverter from input to output. This inverter couples across
three nodes. In general coupling around three nodes will produce a single
transmission zero on the imaginary axis. We could change the value of K 23 to
+1 provided we change the sign of K 13 . This will not change the response of the
network. Thus we can say that if all the main couplings are positive then a
negative cross-coupling across three nodes will produce a transmission zero
on the high side of the passband. Conversely a positive cross-coupling would
produce a transmission zero on the low side of the passband.

3.9 Summary

The synthesis techniques described in Chapter 2 have been built on so that
lowpass prototype networks may be designed with prescribed amplitude,
phase, or time domain characteristics. These include filters with maximally
flat, Chebyshev and elliptic function amplitude characteristics. Specified
phase responses included the maximally flat and equidistant approximations
to linear phase. Filters with combined amplitude/phase and time domain
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-1

In

C 1 :=: C3 == 0.852182

B ~ :=: B ~ :=: B I + B' :=: O. 11646

C2 :=: L - 1.41625

B~ :=: X :=: -0.76659

K 12 :=: 1, K 23 :=: -1, K13 :=: B' :=: 0.48404

Figure 3.34 Final cross-coupled realisation o.l an N :=: 3 generalised Chebyshev
.filter

characteristics are also discussed. The generalised Chebyshev prototype is one
of the most useful as it enables equiripple amplitude characteristics to be
combined with arbitrary placement of transmission zeros in the complex
plane. The synthesis of various realisations of this prototype is dealt with exten­
sively. The material in this chapter leads naturally into the following chapters on
specific hardware realisations of filters.
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Chapter 4

Circuit transformations on lumped
prototype networks

4.1 Introduction

The lumped lowpass prototype filters discussed so far are restricted to a 1 [2
impedance level and a cut-off frequency of We == 1 rad/s. In reality we would like
to design filters working into arbitrary impedance levels with arbitrary cut-off
frequencies. We may require lowpass, highpass, bandpass or bandstop filters.
Various circuit transformations to achieve this are described in the next section.
Methods of realising impedance inverters and scaling internal circuit impe­
dances to arbitrary levels are also described. In addition the effect of losses in
real circuit elements and other practical issues are discussed.

4.2 Impedance transformations

The lowpass prototypes normally have a system impedance of 10, i.e. both the
generator impedance ZG and load impedance ZL are 500 (Figure 4.1). Most,
but not all, microwave filters operate in a 50 0 system. Historically 50 0 was
chosen as a conlpromise between the losses and power handling capacity of
coaxial cable. To convert from a 1 0 impedance level to an impedance level of
Zo 0 we simply scale the impedances of all the circuit elements in the filter by
50 n (see Figure 4.2).

Thus for inductors

Z == Lp::::} ZoLp == (ZoL)p

That is,

(4.1 )

(4.2)
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In

L i

,~O-+----l(YY\---;------'

_I

Figure 4.1 Degree 3 prototype ladder nelvvork

Thus the inductances are multiplied by Zoo
For the capacitors

1 Zo
Z == - ==>- - == ---Cp Cp (~)p

(4.3)

That is,

C ==>- C/Zo

Thus the capacitances are divided by Zoo
For the impedance inverters of characteristic impedance K

K ==>- Zo K

(4.4)

(4.5)

(a)

Zo _i "·r
K12 Zo

..s Zo Cz Cy

Zo 2 0 2 0

(b)

Figure 4.2 Impedance scaling o.l a IOlvpass prototype: (a) ladder;
(b) admittance inverter coupled
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4.2.1 Example

Design a degree 3 maximally flat prototype filter to operate in a 50 n system.
From Chapter 3

L 1 == L 3 == 1H (4.6)

C2 == 2 F (4.7)

Hence

L 1 =* 50H (4.8)

C2 =* 2/50 F (4.9)

4.3 Lowpass to arbitrary cut-off frequency lowpass transformation

The lowpass prototype networks normally have a band-edge or cut-off
frequency of W == 1. We require a transformation to convert this cut-off to an
arbitrary frequency We' as shown in Figure 4.3.

Given a lowpass transmission characteristic of the form

the transformation is

W =* w/we

Hence

2 1
ISu(jw)1 =} 1+ F~(w/wc)

Hence Fn(w/we ) has the same value at W == We as FN(w) has at W == 1.

(4.10)

(4.11 )

(4.12)

1812 1

2

1.........-------

<0=1

1812 1
2

11-----~

==>

<O=W c

Figure 4.3 Lo~vpass to lowpass transformation
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Applying this transformation to inductors we obtain

Z == Lp

jwL
Z(jw) ==jwl-l =}-

We

That is,

L =} L/we

Similarly for capacitors

1
Z==-

Cp

. -j -j
Z(jw) = wC =} (w/wc)C

That is,

C =} C/we

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

Inverters are frequency independent and are unaffected by this
transformation.

4.3.1 Example

Transform the previous example into a filter with a band-edge frequency of
100MHz.

(a)

L 1 L 3

roc roci m
- _-j-----Jrm- --

_i

10

In

Figure 4.4 Frequenc}'-scaled hnvpass prototype: (a) ladder; (b) inverter coupled
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Thus

we ==27fx 108 ==6.283 X 108 (4.19)

50 ( )L -=-r ----8 == 79.57 nH 4.20
6.283 x 10

2
C -=-r 50 x 6.283 X 108 == 63.66pF (4.21)

4.4 Lowpass to highpass transformation

We require a transformation to convert the lowpass prototype to a highpass
filter with arbitrary band-edge frequency We (Figure 4.5). Given

I
ISI2(jW)1

2
= 1+ FJ(w) (4.22)

the transformation is

This maps d.c. to infinite frequency and vice versa, giving

1
ISdjw)1

2
=} 1+ FJ( -wc/w)

Applying this transformation to inductors we obtain

. . -jweL
Z(.Jw) ==.JwL -=-r -'-­

w

== _j/w(_1)
weL

== -j/wC'

(4.23 )

(4.24)

(4.25)

0>=1
lowpass

Figure 4.5 LOHipass to highpass tran,-~'rorJnation

~

highpass
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where

C' == _1_
wcL

Hence the inductors are transformed into capacitors (Figure 4.6). Applying this
transformation to capacitors we obtain

Z(jw)) = -j =? jw
wC weC

==.jwL'

where

(4.27)

(4.28)
, 1

L ==.-

weC

The capacitors are transformed into inductors. Again the inverters are
unaffected by the transformation. Note that the highpass transformation has
the effect of shifting the transmission zeros of the network from w == 00 to
w ==. o.

4.4.1 Example

Design a degree 3 maximally flat filter for 50 n system impedance and a highpass
response with 100 MHz cut-off frequency.

(a)

In

1
we L 31-.------.,

1
weLN - 1

11--+-+-0 '

In

Figure 4.6 Arbitrary cut-(~rt' .frequency highpass: (a) ladder; (b) inverter
coupled
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Starting with the impedance scaled lowpass prototype

L I ==- L 3 == 50

C2 == 2/50

Applying equations (4.26) and (4.28)

I I 1
C I == C3 == 21f X 108 X 50 == 31.83 pF

I 1
L 2 == == 39.78 nH

21f x 108 X 2/50

4.5 Lowpass to bandpass transformation

(4.29)

(4.30)

(4.31 )

(4.32)

We require a transformation to convert the lowpass prototype into a bandpass
filter with arbitrary centre frequency and bandwidth, as shown in Figure 4.7.
The band-edges at W == ±1 in the lowpass prototype must map into the band­
edges of the bandpass filter at WI and W2' The transmission zeros at infinity in the
lowpass must now occur at both W == 0 and W == 00. The midband of the lowpass
prototype at W == 0 must map into the centre of the passband in the bandpass
filter.

This can be achieved by the following transformation:

W ---t a(~_wo)
Wo W

For W== -1 and W== +1 to map to WI and W2 then

-1 == a(WI _ wo)
Wo WI

(
W2 wo)+1 == a - --
Wo W2

(4.33)

(4.34)

(4.35)

-1 "
lowpass

==>

+1'
: O)~

Figure 4.7 LoYvpass to bandpass transformation
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L
__---'fYY\~__

~

==>

Figure 4.8 Bandpass tran~'forn1ationof' an inductor

Solving (4.34) and (4.35) simultaneously yields

c):'==--­
W2 -w)

(4.36)

(4.37)

Wo is thus the geometric midband frequency; C); is known as the bandwidth
scaling factor.

Applying this transforn1ation to a series inductor we obtain

. . (w wo)Z ==JwL =}Jc);L - --
Wo w

.(aL) j
==J ~ w-w(l/c):'Lwo)

(4.38)

The resulting impedance is that of the series connected LC circuit shown in
Figure 4.8.

Applying the transformation to a capacitor of admittance j w (~ we obtain

. . (w wo)Y==JwC=}JaC ---
Wo w

.(ac) j
==J Wo w - w(l/aCwo)

Figure 4.9 Bandpass tran.~f'ornlationo.fa capacitor

L,=_l_
aCroo

(4.39)
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(a) LC ladder

In

In

, 1 ,aC1
(b) inverter coupled L 1= aC

1ffi
O ' C1 = roo ,etc.

Figure 4.10 Bandpass tran,~fornlation 0.[ a lo~vpass prototype: (a) ladder;
(b) inverter coupled

The resulting admittance is that of the parallel connected LC circuit shown in
Figure 4.9.

Again the inverters are invariant under the transformations. The complete
transformation of a lowpass prototype to a bandpass filter is shown in
Figure 4.1 O~ where the use of impedance inverters becomes apparent. The band­
pass transformation of the LC ladder results in a bandpass filter with both series
and shunt connected resonators. This can be inconvenient when it comes to
practical realisation. When inverters are used there are only shunt or series
connected resonators~ depending on whether the lowpass prototype has shunt
capacitors or series inductors. This leaves the problem of how to realise the
inverters.

Consider the pi network shown in Figure 4.11. This network consists of shunt
negative susceptances of value -jB connected by a series positive susceptance of
value +jB. The transfer matrix of this network is given by
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Y=jB

K=-jB

Figure 4.11 Realisation 0.[ an inverter by a pi network of reactances

[T] ==

where

[
1 0] [1 -JIB] [1 0]

-jB 1 ° 1 -jB 1

[
I-jiB] [1 0]

-jB ° -jB 1

[ ° -JIB]
-jB °

[
OJIK]
·K °J

(4.40)

K ==-B (4.41 )

Thus the pi network of reactance elements equates exactly to an inverter of
characteristic admittance K == -B [1].

In the real world ideal reactive elements do not exist but we can replace them
by series capacitors for example (Figure 4.12). Now for a capacitor

Y==jB==jwC

Figure 4.12 Narrowband approximation to an inverter

K=-wC

(4.42)
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In

Figure 4.13 Capacitively coupled bandpass .filter

Hence

K == -wC (4.43)

(4.44)

The value of K is now frequency dependent; however, if the filter is sufficiently
narrowband then K will not vary significantly across the passband. The negative
sign of the capacitive inverter is of no significance, it only affects the phase
response of the filter. Replacing the inverters in Figure 4.1 O(b) with capacitive
pi sections we obtain the network shown in Figure 4.13. Here the shunt
negative capacitances have been absorbed into the positive capacitances of
the resonators.

The value of the rth shunt inductor is L rr where

1
Lrr == ---

aCrwo

The value of the rth shunt capacitor is Crr where

Crr == aC,./wo - Cr- Lr - Cr,r+ 1

and

(4.45)

(4.46)
K rJ + 1CrJ + 1 ==-'--

wo

It is interesting to note the behaviour of the capacitively coupled filter at
frequencies above the passband. As w increases eventually the series capacitors
all short together and the network behaves like a single shunt capacitor. The
network thus has a single transmission zero at infinity and 2N - 1 transmission
zeros at d.c. Consequently the filter is slightly more selective on the low
frequency side of the passband than on the high frequency side.

This asymmetry could be reversed by inductively coupling the resonators.
Also the response can be made symmetrical by alternating inductive and
capacitive coupling. This capacitively coupled type of filter is predominantly
useful for narrowband applications, typically with bandwidths of less then
10 per cent of centre frequency. As the bandwidth is increased the response
becomes progressively more asymmetric.

There may also be problems with this design when extremely narrow
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bandwidths are required. From (4.39) the admittance of the rth shunt resonator
section prior to forming the capacitive inverters is given by

. .[(acr ) 1]
Yr(;w) =} Wo W - (l/aCrwo)w

where

Wo
a==-

.6.w

.6.w == W2 - WI

(4.47)

(4.48)

(4.49)

(4.50)

Hence the inductance of the rth shunt inductor is given by

1
L rr == ---

aCrwo

This inductance is inversely proportional to a and for very narrow bandwidths
may be too small to be physically realisable. To avoid this, the entire admittance
of the filter (including source and load) may be scaled by 1/a. The element
values of the inductors and capacitors then become independent of the filter
bandwidth. An impedance transformer must be inserted between the filter and
its terminations (Figure 4.14).

It is difficult to make the ideal transformers at high frequencies. However, a
narrowband equivalent can be made using the circuit shown in Figure 4.15.
Here

1
Y(jw) =jwCa + "/

1 -./ WCb

_. C 1 +.i/wCb

-}W a + I + l/w2C~

The real part of Y (.i w) is given by

1
Re Y(jw) = / 2 1

1 + 1 w C;

y=-L
a

capacitively
coupled
filter

Figure 4.14 Impedance scaling ql a capacitively coupled.filter

In

(4.51 )

(4.52)
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Figure 4.15 Narro~vband ilnpedance tran,~'lorlner

Hence equating to 1/a at w == Wo

1
1+-2-/ == a

woC;

Hence

Ch = ( 1) 1/2Wo a-

The imaginary part of Y (.i w) is given by

. 1/WC~b
1m YCJw) = wC" + I + l/w2C~

This must be zero at w == woo Hence

-1/wo(~b
w C ==-----

o a 1 + 1/ w6 C~;

~ -(a - 1) 1/2ea ==---­
woa

In

(4.53)

(4.54)

(4.55)

(4.56)

(4.57)

Ch becomes the first and last series capacitor coupling into and out of the
network. The negative Ca is absorbed into the capacitance of the first and last
resonators. The element values of the network are now given by

1
Co1 == CN. N -+- 1 == -w-o(-a---I-)-1/-2 (4.58)

K r.r -+- 1
Cr,r-+- 1 == -_.-

awo
(r == 1, ... , N - 1) (4.59)

1/2

C~ CN (0: - 1) ~
NN==-- -CN-l. N

Wo woo:

(4.60)

(4.61 )
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Cr
Crr == - - C r - 1 r - C r r+lWo 1 ,

(r == 2, ... , N - I) (4.62)

1
L rr ==-C

rWO

(r == 1, ... ,N) (4.63)

4.5.1 Example

Design a capacitively coupled Chebyshev bandpass filter to meet the following
specification.

Centre frequency ([0)
Passband bandwidth (~F)

Passband return loss
Stopband insertion loss
System impedance

IGHz
50MHz
2: 20 dB
> 40dB at.(o ± 100MHz
500

First we must evaluate the degree of the lowpass prototype. From (3.71)

N > LA + L R + 6 (4.64)
- 201og10 [S + (S2 - 1)1/2]

where

LA == 40 and L R == 20 (4.65)

S is the selectivity and is the ratio of stopband to passband bandwidth. Hence

S == 25000 == 4 (4.66)

N 2: 3.682 (4.67)

That is, a degree 4 transfer function at least must be used.
The element values must now be calculated. The ripple level E is

E == (10Lldl0 - 1)-1/2 == 0.1005 (4.68)

Hence

r} = sinh [~ sinh ·1 ( 1/ E) ]

== 0.8201

and the element values are

C _ ~ . [(2 r - 1)7f]
r- SIn ---

rl 2N

Kr,r+1 = [rl+sin
2
(nr/N)]1/2
71

(4.69)

(4.70)

(4.71 )
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C I == C4 == 0.9332

C2 == C3 == 2.2531

K l2 == K34 == 1.3204

K23 == 1.5770

Now

Wo == 21f,!o == 6.2832 x 109

and

115

(4.72)

(4.73)

(4.74)

(4.75)

a == A == 20fJ..r
COl == C45 == 36.512 pF

C l2 == C34 == 10.507pF

C23 == 12.549 pF

CII == C44 == 103.33pF

C22 == C33 == 335.5 pF

L II == L44 == 0.1705 nH

L 22 == L 33 == 0.07064 nH

Finally, scaling impedances by 50n we obtain the circuit of Figure 4.16. The
element values are

COl == C45 == 0.7302 pF

C l2 == C34 == 0.210pF

C23 == 0.251 pF

CII == C44 == 2.066 pF

C22 == C33 == 6.71 pF

L II == L 44 == 8.525 nH

L 22 == L 33 == 3.53 nH

(4.76)

Figure 4.16 Fourth-degree Chebyshev capacitively coupled bandpass.filter
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Figure 4.17 Simulated response of a capacitively coupled bandpass .filter

The simulated response of this circuit is shown in Figure 4.17; note the
asymmetry in the frequency response. This circuit is perfectly realisable using
lumped element technology. It is worth noting, however, that L 22 and L 33 are
slightly too small for a good high Q realisation using wire-wound inductors. It
could also be better from a manufacturing point of view if all the inductors were
made to have the same value.

4.5.2 Nodal adlnittance matrix scaling

We can force all the inductors (for example) to have the same value by the
following procedure. Consider the ladder network with N + 2 nodes shown in
Figure 4.18. This has an admittance matrix Y where

In

Figure 4.18 Ladder netlvork



[Y] =

Circuit tranl~formationson lumped prototype networks 117

Yoo -Y01 0 0

- Y01 Y11 - YI2 0

0 -Y12 Yn

0

-Yr - Lr

- Y r - Lr Y rr - Y rJ + I

-Yr,r+1

where

Yrr == Yr + Yr - I ,r + Yr, r + I

-YN~LN

-YN - LN YNN

-YN,N+I

-YN,N+I

YN + LN + I

(4.77)

(4.78)

The internal nodal admittances in the circuit can be scaled without affecting the
terminal characteristics of the network. This is achieved by multiplying the rth
row and column by a constant a r . This operation cannot be performed on
nodes 0 and N + 1 unless the source and loads are appropriately scaled. Hence

Yr - l,r -+ a r Yr - I ,r

Yr,r+l -+ a r Yr,r+l

(4.79)

(4.80)

(4.81 )

(4.82)

In this manner by progressive scaling of nodes the impedance level to ground in
each node can be adjusted to any required level. In the case of the previous
example all the shunt inductors (or capacitors) could be made to have the same
value. As an example consider the third-order Butterworth lowpass prototype
filter shown in Figure 4.19.

The nodal adnlittance matrix of this network is given by

[Y] = [~ ~ ~]

CD

In
2

Figure 4.19 Third-order Butter~vorth.filter
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Scaling row 2 and column 2 by 1/J2 we obtain

-j/J2 0]
p -j/v/2

-.i/ J2 p

(4.83)

All the capacitors are now equal with a value of unity and the inverters have a
value of 1/v/2. This procedure could be performed at any stage in the design.

4.6 Lowpass to bandstop transformation

We require a transformation to convert the lowpass prototype into a
bandstop filter with arbitrary centre frequency and bandwidth as shown in
Figure 4.20. In this case the transmission zeros at infinity in the lowpass
prototype must be mapped to wo, the centre of the stopband of the bandstop
filter. The transformation is

-1
W---+-----

a (!:!.- _wo)
Wo W

(4.84)

where

(4.85)

(4.86)

(4.87)Y(jw) =* ( )w Woa ---
Wo w

Wo == (WI W2) 1/2

Wo Wo
a ==---

w2 -WI ~w

Hence for capacitors of admittance Y(jw) == jwC then

-jC

==>

-1 : +1'
,(i)~

Figure 4.20 LO'rvpass to bandstop transformation
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In In

Figure 4.21 Bandstop filter

Thus the capacitor is converted into a series combination of an inductor L' and
capacitor C' where

L'==~
woC

C'==~
awo

(4.88)

(4.89)

Again inverters are unaffected by the transformation. Thus a shunt capacitor,
inverter coupled prototype is converted into the bandstop filter shown in
Figure 4.21. It is left to the reader to show that the transformation converts
an inductor into a parallel tuned circuit.

The realisation of inverters is somewhat different in the case of a bandstop
filter. Normally we require a broad passband and so a narrowband approxi­
mation to an inverter is of little use. Instead inverters are usually constructed
from unit elements of transmission line which are one quarter wavelength long
at woo Since for a length of line the transfer matrix is given by

[
0 ilK]
·K 0./

[

cos( fJ) i 20 sin(fJ) ]

[T] = jsin(B) cos(e)
20

if fJ == 1r12 then

[
0 iZoO][T] == ./z

./ 0

where

K == I/Zo

(4.90)

(4.91 )

(4.92)

This is a relatively broadband approximation to an inverter and of course a
matched transmission line will pass energy at all frequencies.

In the case of Chebyshev bandstop filters it is best to scale the admittance
matrix so that all the inverters have the same value. They can then be
constructed from a single length of uniform transmission line with minimum
discontinuities.

In narrowband bandstop filter design we take a different approach from that



(4.93 )
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L

Figure 4.22 Capacitively coupled resonator

used for bandpass filters. In the bandpass case we retain realisable element
values for narrow bandwidths by scaling the network so that the couplings
become relatively weak. However, in the bandstop case the impedance inverters
must remain at unity impedance so that the filter has a broad passband. In order
to control the impedance levels we use a capacitively coupled resonator as
shown in Figure 4.22.

The approach is to equate the resonant frequency and the differential of the
reactance of the resonator to that of the original resonator [2] which has an
impedance given by

. a (w wo)Z(Jw) ==- ---
C,. Wo w

with

dZ(jw) == ~ (~+ wo)
dw Cr Wo w2

and

dZ(jw) I

dw W=Wo

Now the impedance of the capacitively coupled resonator is

1 1
Z(p) = C,p + C

2
p+ l/Lp

1+ L(C1+ C2)p2

C1p(l + LC2p2)

Hence

and

(4.94)

(4.95)

(4.96)

(4.97)

dZ(jw) I

dw W=Wo

2L(C1 + C2 )

C 1(I-w6 LC2)
(4.98)



(4.99)

(4.100)
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with

Wo == [L( C
I

-t- C2)] 1/2

Substituting (4.99) into (4.98) and equating with (4.95) yields

Cy L(C I + C2 )2

C"rWO C?
The value of L can be chosen for physical realisability and C I and C2 are then
found by solving (4.99) and (4.100) simultaneously.

From (4.99)

and from (4.100) and (4.101)

2 aC? 1
(CI + C2 ) == --- ==~

LCrwo woL

Hence

(
Cr )1/2

C lr == ---
W6 Lra

and

1
C2r == -2- - C I I'

WoL r

(4.101)

(4.102)

(4.103)

(4.104)

where C 1I' and C2r are the values of the capacitors in the rth resonator.
It is useful to note that this method can also be used with prototypes using

frequency-invariant reactances~ such as the elliptic function filter.

4.6.1 Design e.xample

Design a bandstop filter with the following specification

Centre frequency
Passband bandwidth
Passband return loss
Stopband
Stopband insertion loss
System impedance

900MHz
d.c.-880 MHz~ 920 MHz-2 GHz
20dB
890-910 MHz
> 30dB
50 ~1

(4.105)

The passband bandwidth is 40 MHz and the stopband bandwidth is 20 MHz.
Thus S == 2~ LA == 30 dB~ L R == 20 dB and

N > LA + L R + 6 > 4.895
- 2010g lO [S + (..)2 _ 1)1/2] -
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Hence N == 5. Since L R == 20dB~ then TJ == 0.8201. Now

== ~ . [(2 r - 1) 7T]
Cr TJ SIn 2N

[TJ2 + sin2 (r7T / N)] 1/2
K r r+ 1 == -------

, TJ

giving

C1 == Cs == 0.7536

C2 == C4 == 1.9730

C3 == 2.4387

K 12 == K4S == 1.2303

K 23 == K34 == 1.5313

(4.106)

(4.107)

(4.108)

We now scale the rows and columns of the nodal admittance matrix as follows:

-jo:BK23 0 0

B 2
C 3 P -jaBK34 0 (4.109)

-jaBK34
0:2 C4P -jaK4s

0 -jaK4s CsP

10: 1B

C 1P -jK12 0

-jK12 C 2 P -jK23

[Y] == 0 -jK23 C 3 P

0 0 -jK34

0 0 0

CIP -jaK12

-jaKl2
2

a C 2 P

0 -jo:BK23

0 0

0 0

Hence for unity admittance inverters

1a

0 0

0 0 ~a

-jK34 0 ~B

C 4 P -jK4s ~a

-jK4s CsP

0 0 0

aK12 == 1

BaK23 == 1

Hence

a == 0.8128

and

B == 0.8034

(== aK4S )

(== aBK34 )

(4.110)

(4.111)

(4.112)

(4.113)
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and the new eleluent values are

C I == C5 == 0.7536

C2 == C4 == 1.3034

C3 == 1.5741

Now

Wo == 5.6548 X 109

and

a == 900/40 == 22.5

(4.114)

(4.115)

(4.116)

Choosing all the inductors to have a physically realisable value of 10 nH~ then in
a 10 system L == 2 X 10- 1°. Then using (4.103) and (4.104) and scaling to 500
we obtain

C 11 == 0.6086pF == C15

C l2 == 0.8005 pF == C 14

C13 == 0.8797 pF

(4.117)

(4.118)

C21 == 2.5187 pF == C25

C22 == 2.3267 pF == C24

C23 == 2.2475 pF

The final circuit is shown in Figure 4.23. All the unit elements are quarter
wavelength long at the centre frequency and have a characteristic impedance
of 50 O.

The simulated frequency response of the circuit is shown in Figure 4.24.
Scrutiny of the simulated response of the bandstop filter shows a slight
asymmetry in the frequency response with the filter being more selective on
the high frequency side of the stopband. This is explained by examining the
expression for the resonator impedance.

(4.119)

50n

Figure 4.23 Narro~vband bandstop filter (UE, unit element)
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Figure 4.24 Sbnulated response o.f the bandstop .filter

The impedance has a zero at Wo where

(4.120)

It has a pole at w == 0 and a second pole at wp where

1
w ==---

P (LC2)1/2
(4.121 )

This pole occurs at a frequency which is higher than, but close to, Wo rather than
at w == CX) as would be more desirable. Thus the rate of change of reactance of
the resonator is greater on the high frequency side of the passband than the
lower side, explaining the asymmetry. This effect can be compensated for by
slightly altering the phase lengths between the resonators. There is a theoretical
procedure for doing this [3], but in reality it is quite effective to shorten the
phase length by a few degrees until the silTIulated response is symmetrical.

The wideband response of the filter is shown in Figure 4.25. Here we see that
the return loss response deteriorates above 2 GHz. This is a consequence of the
resonators loading the through line. From (4.119) we have

(4.122)
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Figure 4.25 Simulated broadband response 0.[ a bandstop .filter

As w becomes very large

(4.123)

That is, the inductive part of the resonator becomes open circuited and the
resonator behaves as a pure capacitor. Thus at high frequencies the filter
behaves as a periodically capacitively loaded transmission line; hence the
deterioration in response.

4.7 Effects of losses on bandpass filters

Up to this point design procedures have assumed lossless lowpass proto­
types, thus yielding lossless bandpass and bandstop filters. Real filters,
however, use components with finite resistance which will produce a degra­
dation in perforluance. The effects of this resistance can be related directly
to the inherent quality or Q factor of individual components used in the
filter design.

The Q factor for a circuit is defined as [4]

Q
__ 27T x maximum energy stored in a cycle

(4.124)
energy dissipated per cycle

For example, an inductor with finite resistance is shown in Figure 4.26. The
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Figure 4.26 Inductor with .finite resistance

maximum energy stored in the inductor is given by

E == ~Ll02

where 10 is the peak current. The dissipated power is given by

102 R
PO==T

and the dissipated energy per cycle of period T is given by

21f 10
2R 21f

ED == Po T == Po - == -- --w 2 w
Hence from (4.124), (4.125) and (4.127)

Q = 27rLJ~ / 10
2
R 21f

2 2 w

(4.125)

(4.126)

(4.127)

(4.128)

Therefore

(4.131)

(4.129)

(4.130)

(4.132)

Q=wL
R

For a capacitor with shunt leakage conductance G we have

wC
Qc ==(J

Hence for the capacitor

G == wC
Qc

and for the inductor

wL
R==-

QL
Now consider the effect of finite losses on the third-order bandpass filter

arising from the LC ladder prototype. Applying the bandpass transformation

w-+a(~_wo)
Wo w

(4.133)

we obtain the bandpass circuit shown in Figure 4.27.
Now let us assume that the dominant loss mechanism in the series resonant

circuits is from the series resistance associated with the inductors. Similarly we
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Figure 4.27 LC ladder prototype and its bandpass equivalent

assume the dominant loss mechanism in the shunt resonators is associated with
the shunt capacitors. Hence for the rth series circuit

waLr
R r ==--

woQr
(4.134)

Now assuming uniform dissipation, 1.e. all the resonators have the same
unloaded Q,

Qr == Q r == 1, ... ,N (4.135)

and evaluating at the midband frequency wo,

aL r
Rr==Q

and similarly for the shunt elements

Q
R r ==-­

a(~r

(4.136)

(4.137)

Now at the midband frequency of the filter the reactive parts of the series
resonators beconle short circuited and the shunt resonators are open circuited.
The bandpass filter has the equivalent circuit shown in Figure 4.28.
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Figure 4.28 Equivalent circuit of a lossy bandpass .filter evaluated at midband
.frequency

The midband insertion loss of the filter can be evaluated from the transfer
matrix of the filter [T].

[T] ==

Now let

[

1 +RIG2 R} +R3 +R}G2R3 ]

G2 1 + G2R3

(4.138)

(4.140)

og,.
O'r=Q (4.139)

where g,. is the value of the rth element in the lowpass prototype. Hence

[
1+ o} 02 o} + 03 + o} 0203 j

[T] ==
a2 1+ a2 0 3

and

ISul 2 dB = 10 10810 [ ( A + B ~ C + D)2]

= 1010810 [ (2 + 0'1 + 0'2 + 0'3 + ad 0'2 + (X20'3 + (Xl 0'20'3 YJ

(4.141 )

Now for a relatively low loss filter the resonator Q must be greater than the
bandwidth scaling factor, i.e.

Q»a (4.142)

Hence

0:,. « 1 (4.143)
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Then we can ignore second-order and higher terms in (4.141) and

2 [( nl + n2 + n3)2]\S121 dB==IOlog lo 1+ 2

~.IOloglo(1 +c}:l +n2+ n 3)

== 4.343Iogc ( I + C}:l + C}:2 + n3)

Now

loge(1 + X) ~ X [X« I]

Hence the midband insertion loss L is given approximately by

L == 4.343(c}:1 + n2 + C}:3)

(4.144)

(4.145)

(4.147)

():

= 4.343 Q (g, + g2 + g3)

4.343.10
= b.fQll (g, + g2 + g3) (4.146)

In general the analysis can be extended to an nth-degree filter and it may be
shown that

= 4.343/0 t
L b.fQll r=' gr

A slightly different solution is given in Reference 3.
As an example consider a third-order maximally flat filter with I GHz centre

frequency and 10MHz passband bandwidth and a resonator Q of 1000. Hence

L== 4.343 x 1000(1 2 1)
10 x 1000 + +

~ 1.72dB (4.148)

This is the midband insertion loss of the filter. The group delay will increase
near the band-edge causing a further increase in insertion loss. Typically for
Chebyshev filters of degree 8 the insertion loss at band-edge will be
approximately twice the midband value.

Scrutiny of (4.147) shows that the main effects of finite dissipation on
bandpass filters may be summarised as follows:

• The midband insertion loss is inversely proportional to the unloaded Q of the
resonators.

• The midband insertion loss is inversely proportional to the passband
bandwidth.

• The insertion loss is approximately proportional to the degree of the fIlter.

The above analysis is meant as a design guide. A more accurate measure of
loss is obtained by using a circuit analysis package to analyse the filter with finite
resonator Q factors. Plots of the degree 4 Chebyshev bandpass filter design
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Figure 4.29 Sin1ulation 0.( the bandpass.filter H/ith various resonator Q.(actor,\'

example response with various Q factors are shown in Figure 4.29. We see that
as the Qfactor is reduced the midband loss increases, as does the band-edge loss.
The loss variation across the passband increases. If a maximum passband
insertion loss specification must be met then the filter bandwidth may have to
be increased. This means that the degree of the filter may have to be increased;
hence the losses increase and the process rapidly becomes self-defeating. Usually
it is necessary to increase the Q factor of the resonators if the insertion loss is too
high.

Lossy circuit elements also cause a deterioration in the performance of
bandstop filters. Consider the inverter coupled LC bandstop filter shown in
Figure 4.30. The resonant circuits should produce transmission zeros at the
mid stopband frequency of the filter. The effect of finite losses in the inductors
is to shift the transmission zeros onto the real axis, i.e. the resonant circuits do

etc.

Figure 4.30 Lossy bandstop filter
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not produce perfect short circuits at resonance. This has the effect of reducing
the ultimate stopband insertion loss. It also causes a roll-off of insertion loss
towards the edges of the passband.

4.8 Practical procedures

In the practical development of filters it is useful to have systematic procedures
to obtain the correct couplings between resonators etc. The most important
procedures are tneasurement of input couplings, measurement of the coupling
between two resonators and measurement of the unloaded Q of a resonator.

4.8.1 Measurement of input coupling

First we will develop a method for measuring the input coupling into a bandpass
resonator using reflected group delay. Consider the bandpass resonator shown
in Figure 4.31. The element values in the resonator are related to the element
values in the lowpass prototype. Assuming that the resonator is the
first resonator in the filter and that the prototype consists of shunt capacitors
separated by inverters, then

C=O'C, (4.149)
Wo

(4.150)

and
Wo

a == ~w (4.151)

C I is the first capacitor in the lowpass prototype. If this is considered in isolation
then its admittance is

Y(jw) ==jwC I

with

S (·w) == .1 -jwC I == 1 - w
2C"? -j2wC I

II J 1 +jwC I 1+w 2C?

The phase of Sll is

I( 2wC"1 )1/)(w) == tan -- ') 2
w"'C I -1

T
C

}--_....I-- '

Figure 4.31 Bandpass resonator

(4.152)

(4.153)

(4.154)
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Now in the bandpass resonator

w/ == a(~ _wo)
Wo w

and

/ -I ( 2w/C1 )
'Ij; (w) = tan w'2C12 _ 1

The reflected group delay of the bandpass resonator is thus

(4.155)

(4.156)

(4.158)

(4.157)

( )
_ -d1j;/(w)

Tg W - dw

[
d -1 ( 2w/C1 )] dw'

= - dw ' tan w'2e,? - 1 dw

2C1 (1 w o)- a -+-
- 1+ w/ 2C? Wo w2

The reflected delay is a maximum at the resonant frequency when w/ is zero and
w == woo Thus

4aC lTgmax ==--
Wo

or

4C1
Tgmax == ~~ (4.159)

The reflected delay can thus be computed from (4.159) and the actual delay of a
single resonator can be measured using a network analyser. The input coupling
to the first resonator can then be adjusted until the theoretical and measured
couplings agree.

As an example, if C 1 == 1 and the filter has 10 MHz bandwidth then

Tg max == 63.66 ns (4.160)

From a practical point of view the delay measuren1ent should ideally be made
on a single resonator. The other resonators should be detuned or removed from
the filter.

The analysis assumes a lossless resonator; in fact the delay is indepen­
dent of resonator losses provided the unloaded Q is high. A good rule of
thumb is

Qu > lOa (4.161 )

Thus for a 1 GHz filter with 10 MHz bandwidth the unloaded Q should be
greater than 1000 for the measurement to be valid. This would normally
be the case for a low loss filter. The reflected group delay response for the
example is shown in Figure 4.32.
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Figure 4.32 Re.flected group delay .lor a bandpass resonator

4.8.2 Measurement of inter-resonator coupling

A procedure for measuring the couplings between two resonators can also
be developed. Consider a section of lowpass prototype consisting of two
shunt capacitors separated by an inverter shown in Figure 4.33. The input
impedance of the circuit is

Z(jw) = jwC2 (4.162)
K 12 2 - W2 C1C2

The poles of Z(jw) occur when

K 12
wa,b = ± (C\C

2
)1/2 (4.163)

Now applying the bandpass transformation

w-----ta(~_WO) (4.164)
Wo w

Figure 4.33 A section qj' a IO'rvpass prototype
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then

and

(
Wb WO) K 12

a Wo - Wb == (C
1
C

2
)1/2

Hence

(4.165)

(4.166)

(4.167)

(4.168)

(4.170)

W 2 _ K I2 U)O _ w 2 == 0
b a( C

1
C

2
) 1/2 0

Solving these two quadratic equations and subtracting the solutions we obtain

K l2 W O
Wb- W,,= a(C

t
C

2
)1/2 (4.169)

or

~C == KI2~W
(C1C2 ) 1/2

~ C is known as the coupling bandwidth and from (4.170) it is directly related to
the element values in the lowpass prototype and the bandwidth ~w of the
bandpass filter. The coupling bandwidth can be computed and then measured
for a pair of resonators using a network analyser. Again the other resonators
should be removed or detuned.

4.8.3 Measurefnent 0.[ resonator Q factor

The unloaded Q factor of a resonator can also be measured experimentally.
Consider the lumped bandpass resonator with finite unloaded Q coupled via an
inverter, as shown in Figure 4.34. The unloaded Q of the resonator is

woC
QU==G (4.171)

r-----l K L G

Figure 4.34 Bandpass resonator lvith .finite Qu
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and the input impedance of the resonator is

Z (j w) == _G_+_j_(w_~_2_-_1_/w_L_)

woC ( w6C)-.-+j wC---
Qu w

K 2

We now adjust the input coupling K so that the resonator is perfectly matched
(critically coupled) at resonance, i.e. Zin (.jw) is equal to unity. Thus

K 2 == _w_o_C
Qu

Hence

(4.174)

Having matched the resonator at Wo the 3 dB frequencies Wa and Wb are
measured. The imaginary part of Z is equal to 2 at these frequencies. Thus

(4.175)

(4.176)

Again quadratic equations may be generated and the difference between their
solutions is

(4.177)

or

(4.178)

Thus the unloaded Qu of the critically coupled resonator is equal to the centre
frequency divided by half the 3 dB bandwidth. From a practical point of view
the level of return loss at resonance should be at least 35 dB for an accurate
measurement.

4.9 Summary

Starting from lowpass prototype networks a series of transformations are used
to convert to arbitrary cut-off frequency lowpass, highpass, bandpass and
bandstop filters with arbitrary impedance terminations. Procedures are
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developed for narrowband bandpass and bandstop filters where the inverters
are approximated by pi sections of capacitors and quarter wave transmission
lines respectively. These procedures are illustrated by design examples which
also introduce the concept of nodal admittance matrix scaling. The effect of
losses in filters is described with particular emphasis on bandpass filters so that
the designer can compute the midband insertion loss of a particular design.
Finally various practical procedures for measuring resonator couplings and Q
factors are described.

4.10 References

HELSAJN, J.: 'Synthesis of lumped element, distributed and planar filters'
(McGraw-Hill, New York, 1990) pp. 221-42

2 MATTHAEI, G., YOUNG. L., and JONES, E.M.T.: 'Microwave filters,
impedance matching networks and coupling structures' (Artech House,
Norwood, MA~ 1980) pp. 427-34

3 HUNTER, I.C., and RHODES, J.D.: 'Electronically tunable microwave
bandstop filters', IEEE Transactions on Micro'rvave Theory and Techniques,
1982, 30, (9) (Special Issue on Microwave Filters) pp. 1361-67

4 CHENG, D.K.: 'Field and wave electromagnetics' (Addison-Wesley,
Reading, MA, 1989) pp. 586-87



Chapter 5

TEM transmission line filters

5.1 Commensurate distributed circuits

The previous chapters have concentrated on the theory and design of lumped
element filters. By definition lumped elements are zero-dimensional, i.e. they
have no physical dimensions which are significant with respect to the wave­
length at the operating frequency. One of the great advantages of restricting
oneself to lun1ped eletuents is that circuits may be completely described in terms
of one complex frequency variable.

As we increase frequency into the microwave spectrum it is easy to see that
lumped element theories will not suffice, e.g. the wavelength at 10 GHz is only
3 cm and circuit elements may easily have ditnensions in excess of a quarter
wavelength. Furthermore, as we have already seen, narrowband filters with
low insertion loss require high Q resonators. This implies physically large
resonators, again meaning that dimensions become significant fractions of a
wavelength. It is thus necessary to have design theories which are pertinent to
these "distributed' circuits.

In general, networks consisting of arbitrary connections of distributed circuit
elements do not have a unified design theory. Although analysis of such circuits
may be accomplished by solving Maxwell's equations using, for example, finite
element analysis, this is not the same as having a design theory. As an example a
circuit consisting of an interconnection of transn1ission lines of different lengths
would require a theoretical approach using more than one complex variable.
Work in this area has been extremely limited. To simplify the design theories we
usually restrict ourselves to the case where distributed circuits consist of inter­
connections of transmission lines of equal length, i.e. commensurate distributed
networks. This enables us to work with a single complex frequency variable,
thus simplifying the design process.

The simplest commensurate distributed networks consist of interconnections
of lossless transmission lines of equal length, each supporting a pure TEM mode
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of propagation. This mode is particularly useful as it is supported in coaxial
cables and has zero cut-off frequency. A basic section of lossless line is called a
'unit element' (UE) and has the following transfer matrix:

[T] == [cos((3e) jZ 0 Sin((3e)]
jYosin((3e) cos((3e)

(sinusoidal excitation is assumed). Here eis the length of the line and Z 0 is its
characteristic impedance. (3 is the propagation constant of the line where

Alternatively since

(3e == 21fe
A

and

(where v is the velocity of propagation)

(3e == we
v

or

(3e == aw == e
Thus

[T] == [cos(aw) jZo Sin(aw)]
j Yo sin(aw) cos(aw)

and for complex frequencies

[
cosh(ap) Zo Sinh(ap )]

[T] ==
Yo sinh(ap) cosh(ap)

1 [1 Zl
ot

]
(1 - t 2 ) 1/2 Yo t

where

t == tanh(ap)

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

A circuit consisting of interconnections of commensurate lines can be described
by rational polynomial functions of t, although multiples of (1 - t 2 ) 1/2 may also
occur.

Given that commensurate distributed networks can be described in terms of
the complex frequency variable t, it is possible to borrow from lumped theory to
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design certain classes of filter. This can be achieved by applying the Richards'
transformation [1] as follows:

p ~ atanh(ap) (5.10)

or

w ~ atan(aw)

Applying (5.10) to a capacitor we obtain

Y(p) == Cp =? aCtanh(ap)

Therefore

Y(p) =? Yo tanh(ap)

and

Y(jw) =? j Yo tan(aw)

where

Yo == aC

The transformation converts a capacitor into an open circuited stub.
Similarly, applying the transformation to an inductor L, we obtain

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

Z(p) == Lp =? aL tanh(ap) (5.16)

Therefore

Z(p) =? Zo tanh(ap) (5.17)

and

Z(jw) =? jZo tan(aw) (5.18)

where

Zo == aL (5.19)

The transformation converts an inductor into a short circuited stub.
These transformations are shown in Figure 5.1. Note that there is no lumped

element equivalent to a UE of transmission line.

L

-----rYY\--

==>
p~atanh(a#

==>

Yo=aC

------,I 1,----
Zo=aL

----'n~_

Figure 5.1 Richards tran,-~formation o.f lumped elen1ents
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The Richards transformation may be applied to a filter transfer function.
Thus if

! 1
ISdjw)l~ = I + F~(w) (5.20)

then

2 1
ISI2(jw)1 =} 1+ F~[a tan(aw)]

For a Chebyshev lowpass prototype we have

1
ISdjw)1

2
=} 1 + E 2 T~[atan(aw)]

(5.21 )

(5.22)

The transmission zeros which occur at infinite frequency in the original
prototype are mapped into odd multiples of the quarter wave frequency. The
passband centre at W == 0 in the original prototype is mapped to even multiples
of the half wave frequency. The passband edge at W == 1 is mapped to WI as
follows:

1 =} a tan(awl)

Thus

(5.23 )

(5.24)
1

a==---
tan(awl)

The resultant response is a quasi-Iowpass or bandstop response with stopbands
repeating ad infinitum at odd multiples of the quarter wave frequency

~
aro1tarol

O'--------r--+---+-------r-------+-------

Figure 5.2 Distributed quasi-Iovvpass response
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1
KN - 1•N

C2 .c~
(0 ~ a tan(a(O)

JJ

~, aC
N

_
1

aCN

L
KN - 1•N

I

Figure 5.3 Distributed quasi-Iol1'pass tran~iorlnation

(Figure 5.2). The lowpass prototype is transformed into the distributed circuit
shown in Figure 5.3. Again the inverters are invariant under the frequency
transformation.

The distributed quasi-Iowpass filter consists of shunt open circuited stubs
separated by inverters. The inverters may be realised as sections of quarter
wave line, i.e. UEs one quarter wave long at W00 The circuit is perfectly realisable
for moderate bandwidths but is not suitable for very narrow bandwidths. In
that case as WI approaches Wo, tan(awI) approaches infinity and a becomes very
small. The impedance of the shunt stubs will then become unrealisably high. In
any case, as we shall see, there are better distributed lowpass filters available to
the designer.

We can also apply the highpass Richards transformation as follows:

1
p -> a tanh(ap) (5.25)

or

-1
W ---t ----

a tan(aw)

Applying this to capacitors yields

C
Y(p) == Cp =? ---

a tanh(ap)

.. ~jC
Y(Jw) ==./wC =? ()

Ct tan aw

(5.26)

(5.27)

(5.28)

Relation (5.28) converts capacitors C into short circuited stubs ofin1pedance 2 0
where

0-:
Zo ==­

C
(5.29)
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> etc.

27t7t

OL..------,....-----..-,:....-----.-------+-----

15i:z(irol...---_---,.-_or----------r-- -----
1

Figure 5.4 Response of a distributed quasi-highpass .filter

Similarly inductors are converted into open circuited stubs of admittance

ex
Yo ==­

L
(5.30)

Applying the Richards highpass transformation to a Chebyshev lowpass
prototype we obtain

1
ISdjw)1

2
= 1 + 10 2 TR{l/[et tan(aw)]} (5.31)

The transmission zeros at infinity in the original prototype are mapped to d.c.
and even multiples of the quarter wave frequency. w == 0 maps into odd multi­
ples of the quarter wave frequency. The resultant response is a quasi-highpass or
bandpass response as shown in Figure 5.4.

VE

Figure 5.5 Distributed quasi-highpass .filter
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The band-edge frequency in the lowpass prototype at W == 1 maps to WI with

1
a == (5.32)

tan(au.-'l)

The quasi-highpass filter is realisable as shunt short circuited stubs separated by
impedance inverters. These may again be approximated by UEs one quarter
wave long at Wo (Figure 5.5). Again, this circuit is not suitable for very narrow­
band applications. However, if the inverters were realised by reactive elements
instead of UEs then the network could be scaled using the procedures developed
in Chapter 4, and a narrowband design could be realised.

A design example for a relatively broadband bandpass filter is now presented.
The specification is as follows:

Prototype
Passband return loss
Centre frequency
System impedance

Degree 4 Chebyshev
2: 20dB
4GHz
50n

From Chapter 3 we obtain the element values of the lowpass prototype filter:

Now

C I == C4 == 0.9332

C2 == C3 == 2.2531
(5.33)

WI Jr
aWl ==-- (5.34)

Wo 2

where Wo == 8Jr X 109 and WI == 4Jr X 109
. Hence aWl == Jrl4 and a == 1. Now

Z,. = 50a [2 (5.35)
Cr

and

Zl == Z4 == 53.27 n
Z2 == Z3 == 22.2 n

Realising the inverters as UEs we obtain

Zr,r+ I == 501 Kr,r+l

Therefore

Zl2 == Z34 == 37.86 n
Z 23 == 31.71 n

(5.36)

(5.37)

(5.38)

(5.39)

(5.40)

All the transmission lines in the circuit are commensurate and are one quarter
wave long at 4 GHz, i.e. 1.875 em long.

The simulated response of the circuit is shown in Figure 5.6. Here we see that
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Figure 5.6 Simulated.frequency response 0.1' the distributed bandpass .filter

the bandwidth is narrower than desired and the return loss is only 16.5 dB. This
is because the series UEs are a poor approximation to inverters over broad
bandwidths. An accurate design procedure is available using the method
described for interdigital filters.

5.2 Stepped impedance unit element prototypes

We have seen in the previous sections that microwave filters can be constructed
using interconnections of stubs and inverters. Over narrow bandwidths the
inverters can be replaced by UEs of transmission line. However, these UEs
are themselves frequency dependent and it is possible to design useful filters
consisting entirely of a cascade of UEs.

The transfer matrix of a UE is given by

1 [ 1
[T]=(I_t2)1/2 Yt (where t == tanh(ap)) (5.41 )

Given a cascade of a pair of UEs of characteristic impedances 2 1 and 2 2, we
obtain

(5.42)
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Hence

I - t 2

Sl')(t) =
~ I + At + Bt 2

(A and B are constants of no significance). Hence

I Sl2 [j tan(w)] 1

2

(5.43 )

- I + (A 2 - 2B) tan2(w) + B 2 tan4 (w)

1

(5.44)

(5.45)

(5.46)

(5.48)

[1 - sin2(w)]2 + (A 2 - 2B)[1 - sin2(w)] sin2(w) + B 2 sin4 (w)

1

- 1+ o:sin2(w) + (3sin4 (w)

Thus ISl212 is a polynomial in sin2(w).
In general the cascade of N UEs shown in Figure 5.7 has the properties that

[2, 3]

(1 - t 2)N/2
Sdt) = ( )DN t

where D N (t) is a Hurwitz polynomial in t and I Sl2 [j tan(w)] 1
2 S; 1. Furthermore,

2 I
ISdjtan(w)]1 = I + FN[sin2(w)]

For a maximally flat response I Sl21 2 must be of the form

. ') 1
ISI2[1 tan(w)W = I + [sin(w)/a]2N (5.47)

where a = sin Wo and Wo is the 3 dB frequency. The minimum value of ISl21 2

occurs when w = 7r12, but this is not a transmission zero. Furthermore, the first
2N - I derivatives of (5.47) are zero at w = 0 but only the first derivative is zero
at w = K12.

For a Chebyshev response we have

. 2 1
ISdl tan(w)]I = I + £:2 T~[sin(w)/a]

VE
ZN

Figure 5.7 Cascade a.! N unit elelnents
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o rt/2
~

0)

Figure 5.8 Frequency response o.la Chebyshev unit element.filter

The frequency response is shown in Figure 5.8.
Explicit formulae for these 'stepped impedance' filters have been developed

and the results for a Chebyshev response are given below [4].

(5.51 )

(5.49)

(5.50)

(r odd)

(r even)

Zr == 1/gr

Zr == gr

Forr== 1, ... ,N

gr = ArCSin[(2r: 1)Jrj2N]

a { rl + sin2 (r1f/ N) 1]2 + sin
2 [(r - 1)7f/ N]})

-"4 sin[(2r + 1)7f/2N] + sin[(2r - 3)7f/2N]

where

A _ {1]2 + sin2[(r - 2)JrjN]}{1]2 + sin2[(r - 4) JrjN]} '"
r - { rJ 2+ sin2 [(r - 1)7f/N]}{1]2 + sin2 [(r - 3)1f/N]} ...

and with the term rJ2 + sin2 (0) replaced by 1], i.e.

rJ
A 2 ==-----

1]2 + sin2 (1f/ N)

R L == 1 (N odd)

(1 + E 2) 1/2 - E
R L == (N even)

(1 + E 2 )1/2 + E

(5.52)

(5.53)

(5.54)

(5.55)

and

(5.56)
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As an example we will design a degree 5~ 20 dB return loss Chebyshev filter to
operate in a 50 f2 system. Although the selectivity of the filter response close to
the passband edge is controlled by the degree of the network~ the ultimate
stopband rejection is controlled by a. At w == n/2 the value of ISI2(jw)1 2 is
given by

I
s ('1r/2) 1

2 _ 1
I2J -I +E2T~(I/a)

1

Choosing the electrical length of the DEs to be 30° at band-edge we obtain

0: == sin(wo) == sin(300) == 0.5 (5.58)

From (5.57) and (5.58) we find that the ultimate stopband insertion loss is
31.2 dB.

We calculate the element values as follows. First

For N == 5 and E == 0.1005 we obtain

r/ == 0.635

From (5.52)

1
Al == - == As == 1.5748

TJ

A 2 == rJ == A 4 == 0.8481
T,2 + sin2(n/5)

TJ2 + sin2 (n/5)
A j == ! == 0.90 158

- TJ[TJ2+sin~(2n/5)]

From (5.51)

g, == gs == 0.4947

g2 == g4 == 2.3490

g3 == 0.3084

and using (5.49) and (5.50), in a 50 ~1 system we obtain

Z, == Zs == 24.74~2

Z2 == Z4 == 117.45 ~2

Z3 == 15.43 ~2

(5.59)

(5.60)

(5.61 )

(5.62)

(5.63)

(5.64)

(5.65)

(5.66)

(5.67)

(5.68)

(5.69)

The final circuit is shown in Figure 5.9. The simulated frequency response of the
filter is shown in Figure 5.10. Note that as in the case of LC ladder lowpass
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UE~
0---- 24.75 n -----LI

DE

15.43 Q

DE

117.45 Q

DE

24.75 Q

Figure 5.9 N == 5 Chebyshev stepped inlpedance 10Hipass.filter

(5.70)

prototype networks the dual prototype network could have been used. In this
case the first element would have been a high impedance rather than a low
impedance line.

It should be noted that the distributed nature of the filter gives rise to
repeating passbands. In this case the electrical length of the UEs was 30° at a
band-edge frequency of 1GHz. The second passband band-edge occurs at
5 GHz. If a broader stopband were required then a shorter electrical length
design could have been used. This means a larger value of ex and a more extreme
variation in element values. As the electrical length at band-edge becomes
shorter the design degenerates into a lumped element design as follows.

The transfer matrix of a UE is given (for sinusoidal excitation) by

[T] == [ cos(8) j Zo sin(8) ]
j sin(8) / Zo cos(8)

-10

-15

-5

-20

1.5

-15

-10

-35

-20

-25

-30

5
21
(Ir----~---~-.;;:···---_=~~--~-- .._____. 0 5

11
dB dB

Figure 5.10 Silnulated ,frequency response 0.1' the N == 5 Chebyshev stepped
impedance 10Hipas.\' .filter
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and for short electrical lengths

'ife« ­
2

Hence

[
1 iZoB]

[T] ~ jB/Z
o

. \

and for a high inlpedance line

[
1 ·Z B][T] ~ 0 J \0

where

Hence

[
1 jZoew/v][T] ~
o 1

(5.71 )

(5.72)

(5.73 )

(5.74)

(5.75)

Thus a short section of high impedance line approximates to a series inductor.
Similarly a short section of low impedance line approximates to a shunt
capacitor. Thus for short electrical lengths the design could be accomplished
by approximating to the LC ladder prototypes presented in Chapter 3 [5]. The
method used in this chapter, however, is more accurate and enables longer
electrical lengths to be used.

5.2. J Physical realisation 0.[ stepped impedance lowpass ~filters

The stepped impedance lowpass filter is often used to 'clean up' harmonics in
amplifier circuits, or as an IF filter in a mixer. Alternatively the filter may be
used to improve the stopband performance of a microwave filter. This is

Figure 5.11 Typicallnicrostrip circuit pattern .for an N == 5 stepped in1pedance
IOtt1pass .filter
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b

outer conductor

inner conductor

Figure 5.12 Coaxial transn1ission line

particularly important in the case of dielectric resonator filters which have poor
spurious perforluance. In amplifier and mixer applications the insertion loss of
the filter is not of prime importance and an MIC (usually microstrip) realisation
is often used. A typical layout for a microstrip stepped impedance filter is shown
in Figure 5.11. Design equations for calculating the widths and lengths of the
microstrip lines are readily available in specialist texts on microstrip [6].

Microstrip circuits have relatively low unloaded Q factors and if a lower loss
lowpass filter is required a coaxial realisation is more suitable. In this case the
stepped impedance line may be realised as a coaxial line with a stepped inner
conductor. Design equations for the coaxial line shown in Figure 5.12 are very
simple.

or

60 (b)Zo == --loge -VCr a

b
- == exp(VcrZo/60)
a

(5.76)

(5.77)

Choice of dimension b is determined mainly by the maximum loss allowable in
the lowpass filter. The Q factor of a coaxial line, normalised to ground plane
spacing in centilnetres and frequency in gigahertz, is shown as a function of
characteristic impedance in Figure 5.13.

To choose b we first synthesise the element values of the filter. Second, we
analyse the equivalent circuit to determine the minimum Q factor which enables
the maximum insertion loss specification to be met. The minimum ground plane
spacing can then be determined from Figure 5.13. It is important, however, not
to choose too large a value for b in case this gives rise to unwanted waveguide
mode resonances in the coaxial line.

As an example, say we require a minimum Qu of 700 at 1GHz. From (5.77)
assuming C r == 1, for a 117.5 n impedance UE

b (117.5); == exp 60 == 7.087 (5.78)
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Figure 5.13 Q .factor 0.[ coaxial line

Now from Figure 5.13, for a 117 [2 line

Q
b..jf = 1160

Hence for Q == 700 and.! == 1GHz

b == 0.6cm

(5.79)

(5.80)

5.3 Broadband TEM filters with generalised Chebyshev
characteristics

In certain applications wideband filters with extreme selectivity are required.
For example in radar warning receivers broadband multiplexers require octave
plus bandwidths with at least 60 dB stopband insertion loss within 10 per cent
of the band-edge frequency. Cellular radio base stations often use low loss
dielectric resonator filters, and the spurious modes of these devices often
occur at frequencies only 25 per cent above the passband. Thus ~clean-up'

lowpass filters must have high selectivity combined with low loss and small
size. Such severe specifications are not easily achievable using all-pole transfer
functions and more selective generalised Chebyshev characteristics are often
required.
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Figure 5.14 Generalised Chebyshev IOtvpass prototype, degree 9

As an example we will design a TEM lowpass filter from a ninth-degree
generalised Chebyshev prototype. The particular prototype will have 20 dB
return loss and three transmission zeros at infinity. The remaining transmission
zeros are all at the same frequency Wo == 1.32599. The choice of Wo was deter­
mined after analysis of the transfer function given in Chapter 3 in order to
achieve a minimum stopband insertion loss of 60 dB. The lumped element
prototype network is shown in Figure 5.14.

The location of the poles of the transfer function are

pI, 9 == -0.03033 ±j1.02275

P2,8 == -0.10604 ±jO.96344

P3,7 == -0.22511 ±jO.80937

Ps == -0.455417

Now we form a polynomial P(p) from alternating poles, i.e.

P(p) == (p - Pl)(P - P9)(P - P3)(P - P7)(P - Ps)

== 0.45541 + 1.3169p + 1.7930p 2 + 2.72394p 3 + 1.30779p4

+ 1.35330ps

(5.81)

(5.82)

(5.83)

(5.84)

(5.85)
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Forming Ye(p) from the even and odd parts of (5.85),

()
1.35330p5 + 2.72394p3 + 1.31690p

y p == ----------=------
e 1.30779p 4 + 1.7930p2 + 0.45541

We extract a capacitor by removing the pole at infinity

C 1 = Ye;P) II'=x = 1.03487

The remaining admittance is given by

Y1(p) == Ye(p) - C1p

0.84555p + 0.86842p 3

0.45542 + 1.79300p2 + 1.30779p 4

(5.86)

(5.87)

(5.88)

The series inductance L 2 must then be extracted so that the remaining
impedance has a zero at woo Thus

(5.89)

and

Also

Z2(P) == ZI (p) - L 2P

0.45542 + 0.84299p 2 + 0.33210p4

0.84555p + 0.86842p 3

and

1
Y2(P) = Z2(P)

0.84555p + 0.86842p 3

0.45542 + 0.84299p 2 + 0.33210p4

Y2 (p) has a pole at p == jwo. Thus

Ap
Y2 (p) == J J + Y3 (p)

p~ -f- W o
Ap Bp

J +---,----
p~ -f- 1.75825 0.3310p- + 0.25902

Hence

0.3321 A + B == 0.86842

(5.90)

(5.91 )

(5.92)

(5.93 )

(5.94)
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and

0.25902A + 1.75825B == 0.84555

Solving (5.94) and (5.95) simultaneously yields

A == 2.0969 B == 0.17204

(5.95)

(5.96)

The first term in (5.93) represents the admittance of the resonant circuit
containing L 3 and C 3 , i.e.

2.0969p

p 2 1.75825

Thus

L 3 == 0.47688

and

C 3 == 1.19263

(5.97)

(5.98)

(5.99)

After extracting this resonant circuit the remaining admittance consists of the
series inductor L 4 and the resonant circuit containing 2L 5 and C 5/2 shown in
Figure 5.14(b). These may be obtained by repeating the procedure and the final
element values for the circuit are

C1 == 1.03487

L 2 == 1.12352

L 3 == 0.47688

C 3 == 1.19263

L 4 == 1.07413

L 5 == 0.42818

C 5 == 1.32834

(5.100)

The prototype network can be converted to a TEM microwave network by
applying the Richards transformation [7]:

p --+ a tanh (ap) (5. 101 )

Applying this to the series resonators of impedance Z(p) where

1
Z(p) = Lp + Cp (5.102)

then

1
Z(p) =?- aL tanh (ap) + h()

aCtan ap

a 2LCtanh 2 (ap) + 1

aC tanh(ap)
(5.103)
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Now

h()
2 tanh(x)

tan 2x == -----
1 + tanh 2(x)

and if we let a == Wo then

a 2LC == 1

Thus

2
Z(p) == -a-C-ta-n-h(-2-ap-)

and

aC
Y(p) == Ttanh(2ap)

(5.104)

(5.105)

(5.106)

(5.107)

Equation (5.107) represents the admittance of an open circuited stub of
characteristic admittance aC/2. The length of the stub is one quarter
wavelength at Wo (Figure 5.15).

Now applying the Richards transformation to the series inductors we obtain

Z(p) == Lp =} aLtanh(ap) (5.108)

The series inductors become series short circuited stubs of impedance (~L.

Similarly the shunt capacitors become shunt open circuited stubs of
admittance aC.

The transformation converts the lumped lowpass prototype circuit into a
distributed circuit of band-edge frequency WC. Thus

1 =} a tan(awc) (5.109)

and

(5.110)

Equation (5.110) determines the length of the stubs in the distributed circuit.
Note that the shunt stubs associated with the resonators are twice the length of
the other stubs. The complete distributed circuit is shown in Figure 5.16.

p~atanh~p)

l
1
~

Figure 5.15 Richards tran..~'rornlation of' a resonator
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Figure 5.16 Distributed lrJlvpass generalised Chebyshev.filter, N == 9

At this point one would think that the design of the filter was finished.
However., the realisation of series short circuited stubs is impractical. Instead
we approximate the series stubs by lengths of high impedance transmission line.
From (5.75) we know that an electrically short transmission line is equivalent to
an inductor of value

(5.111 )

or more accurately

. (Wg)WL==Zosln -;; (5.112)

where g is the length of the line. We can equate the impedances of the series short
circuited stubs to be equal to the impedance of the high impedance line at the
band-edge frequency Wc. Thus

(r == 2,4, ... ) (5.113)

Thus choosing a suitably high value for Z 0 we can calculate the length of the
line from

f) _ ~ • -I [aLI' tan(awc )]
,t r - SIn

Wc Zo
(5.114)

As a design example we will design a distributed filter fronl the ninth-degree
prototype already discussed. The band-edge frequency is to be 4GHz and the
system impedance level is 50 O.

First compute

a == Wo == 1.32599 (5.115)

and

a == ~tan-I (~) == 2.57096 X 10- 11

Wc a
(5.116)
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The admittance of the first (and last) shunt open circuited stub is

Y == aC1 == 1.37223

and its impedance in a 50 f2 system is 36.43 O.
The length of the stub is given from

(5.117)

I!
a==­

v
P == av (5.118)

If the relative permIttivity of the medium of propagation IS unity then
v == 3 x 108 m/s and

f == 7.713 mm (5.119)

(5.123)

The lengths of the resonator stubs are 21!~ i.e. 15.425 mm. Their admittances are

aCr (r==3,5, ... ) (5.120)y ==-
r 2

Thus

Y3 == 0.7907 (5.121)

and

Ys == 0.8806 (5.122)

Their impedances in a 500 system are 63.230 and 56.78 O.
A reasonable choice for the high impedance series lines is Z 0 == 120 O. Thus in

a 10 system Z 0 == 2.4 f2. The lengths of the series lines are given by

o _ 3 X 10
8

. -1 [aL r tan(awe )]
-t r - SIn

We Zo

and from (5.116)

1
tan(awe ) == ­

Cl::

Hence

o _ 3 x 10
8

. -1 (!2)
-t r - SIn

We Zo

Thus

1!2 == 5.815mm

and

1!4 == 5.539 mm

(5.124)

(5.125)

(5.126)

(5.127)

The longest line~ I! 2~ is quarter wave long at 12.89 GHz~ which is electrically
short at the band-edge frequency. The complete circuit is shown in Figure 5.17.
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Figure 5.17 Generalised Chebyshev distributed lovvpass .filter

The simulated response of the circuit is shown in Figure 5.18. Here we see an
almost exact equiripple passband response. This could easily be optimised to be
perfectly equiripple. A broadband plot of the filter is shown in Figure 5.19.

The stopband of the filter shows spurious responses between the first and
second passbands. These are caused because the series short circuited stubs have
been approximated by high impedance UEs. Unlike the stubs these do not
produce transmission zeros at their quarter wave frequencies. The stopband
performance could be improved by distributing the transmission zero frequen­
cies throughout the stopband of the filter.

One of the best methods for physically realising the filter is to use suspended
substrate stripline. This is a microwave integrated circuit structure consisting of
a thin printed circuit suspended between parallel ground planes (Figure 5.20). In
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the suspended stripline configuration the majority of the fields are in the air
cavity and the substrate has little effect on the Q factor or the effective permit­
tivity of the elements. It is relatively straightforward to calculate the dimensions
of the individual circuit elements within the filter.

Consider a single transmission line of width lV and thickness t suspended
between ground planes with spacing b~ as shown in Figure 5.21. Note that the
thin dielectric substrate has been ignored because normally these are made from
Teflon with relatively low dielectric constant (cr < 3) and are very thin~ typically
less than 0.25 mnl.

/ printed
~ conductor­'l.

air
conducting
housing

~substrate

Figure 5.20 Suspended suhstrate stripline
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~ Icp ;Z I
*t b

r ICP ~ 1
~ ill ~ _I

Figure 5.21 Single su!',pended transmission line

The impedance of a TEM transmission line is related to its static capacitance
to ground per unit length by

377
Zovcr = C/c

where Cr is the dielectric constant of the medium and C/ C is the normalised static
capacitance per unit length of the transmission line. Now from Figure 5.21 we
obtain

~=2C + 4C/
C p C

and

\17

CP =(b-t)/2

For b « t

C 4lV 4cf
-==-+-
c b E

(5.129)

(5.130)

(5.131)

(5.132)

C f
t is the fringing capacitance to ground which is plotted in Figure 5.22 [8].
For a printed circuit we can assume t is zero and hence from Figure 5.22

C f
t

== 0.46
c

Thus from (5.131)

C 4lV
~==b+ 1.84 (5.133)
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and from IS we obtain

w - 1

Thus for a 120 n line with b mm

== 0.65mm

for a 36.43 n stub w == 4.254 mm

for a 63.23 n stub w 2.061 mm

for a 56.78 n stub w 2.400 mm

In order to compute the exact dimensions of the filter account must be taken of
the reference locations associated with the interconnected transmission
lines. Data on these are available in Reference 9.

The layout of the filter shown in Figure 5.23.
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Figure 5.23 Circuit layout 0.1 a suspended substrate lowpass filter

5.3.1 Generalised Chebyshev highpass filters

Highpass generalised Chebyshev filters can also be constructed. In this case the
Richards highpass transformation should be used and the transformed circuit
has series open circuited stubs. These may be approximated by inhomogeneous
coupled lines realised in suspended substrate. A typical seventh-degree lowpass
prototype with a single transmission zero at infinity is shown in Figure 5.24.

After applying the Richards transformation

(r== 1,3, ... )

-1
w ---+ ----

a tan(aw)

and for the series inductors

-L,.
wL r =? (a tan aw)

That is~ the inductors L become open circuited stubs with admittances

a
Y,. ==­

L,.

The resonators in the prototype have an impedance

(5.137)

(5.138)

(5.139)

Z(jw) ==jwL,. _ _.1_.

wC,.
(r == 2,4, ... ) (5.140)

L} L3 L 3o--JmT fro

_I C
4 lC2C2

1 1 }L2
0

r L 2 r L4
o

Figure 5.24 Seventh-degree generalised Cheby.s'hev IOlvpass prototype network
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Figure 5.25 Distributed highpass generalised Chebyshev.filter

and applying the Richards highpass transformation

(
.) -jL,. jatan(aw)

Z jW =} +----
. a tan(aw) C,.

j [o~2 tan 2(aw) - L,. C,.]
aC,. tan(aw)

If

t ~

(5.141)

(5.142)

(a)

:< >
_1-

1

(b)

If'
w

t

<

Figure 5.26 Inhomogeneous parallel coupled transn1ission lines: (a) cross­
section; (b) top vieH'
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which is the impedance of an open circuited stub of characteristic admittance

Y,.=C,. (r=2,4, ... ) (5.144)
2o~

The distributed highpass filter is shown in Figure 5.25.
The series open circuited stubs in Figure 5.25 cannot be realised directly.

However, they can be approximated by coupled parallel lines. The strength of
the coupling is such that they are best realised by an overlap coupling through a
thin dielectric substrate, as shown in Figure 5.26 [10-12].

A typical circuit layout for a seventh-degree suspended substrate highpass
filter is shown in Figure 5.27, and a photograph ofa typical suspended substrate
device is shown in Figure 5.28.

5.4 Parallel coupled transmission lines

In addition to interconnections of stubs and transmission lines it is also possible
to construct useful microwave filters with coupled transmission lines. Consider
the network shown in Figure 5.29, consisting of an array of N parallel coupled
commensurate lines and an associated ground plane.

It is assumed that the permittivity of the medium in which the lines are
supported is hon10geneous. By assuming that only TEM waves are supported
in the structure we can assign input and output voltages and currents to each
line. The standard incremental approach for analysing a single transmission line
may then be applied to the complete network. It may be shown that the N wire

I'
)(

I 1
~CD CD'r

1

1\ 1,\

VI VI'

12 ,-I@ @'l(
12'

I~ /'1 11\

13 13'
~:Q) Q)':(

II'- V
3

V3,/\

V2 V2'

I~ ~1":'-

VN VN'

~ ground

Figure 5.29 Parallel coupled N-lvire line
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line can be described by the admittance matrix equation [13]

II VI

~ ~

I~

-( 1 - t 2
) 1/2 [7]]]

[7]]
(5.145)

where

t == tanh(ap)

and
g

a==­
v

(5.146)

(5.147)

[7]] is an N x N lnatrix called the characteristic admittance matrix of the line.
This matrix is related to the static capacitance matrix of the N-wire line in
a similar way to the relationship between capacitance per unit length and
characteristic admittance of a single line. Thus

-Y13

-Y23

Y33
(5.148)

YN-l. N - I

-YN-l. N

and

19 = 7.534[7]]
c

(5.149)

(in a 1[2 system). [C] is the static capacitance matrix of the line given by

CII -C12 -Cn
-C12 C22 -C23

-Cn -C23 ("33

[C] ==

CN-l. N - 1

-CN-l. N

(5.150)
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where

C II == C I + C I2 + C23 + .

Crr == Cr + Clr + C2r + .

(5.151 )

(5.152)

The capacitances C I , C2 , ... , Cr are the capacitances per unit length to ground
for each of the N lines. C12 , C23 etc. are the coupling capacitances per unit length
between pairs of lines (Figure 5.30).

Equation (5.145) gives a complete description of the coupled-line structure in
terms of its static capacitance matrix. In general any line may be coupled to each
of its neighbours and the boundary conditions on the ports are arbitrary. Thus
the most general matrix is rather complex. However, in reality we are interested
in constructing filter networks with a single input port and a single output port.
Also the number of couplings may be considerably restricted. In the next
sections we will examine some specific cases yielding useful filtering devices.

5.5 The interdigital filter

The interdigital filter [14] is a device which may be constructed entirely from an
N-wire coupled line. In this case the couplings are restricted to be between
adjacent lines, i.e. non-adjacent line couplings are assumed to be zero. Thus

Cr,r+ I i- 0 (5.153)

(5.154)

Furthermore, the input to the network is on line 1 and the output on line N.
Thus for an even number of lines the input is at port 1 and the output at port N '.
For an odd degree network the output would be at port N.

Finally a short circuit is applied to alternate ends of each line with the other
ends left floating. The N-wire line is shown in Figure 5.31. The characteristic

Figure 5.30 Static capacitances of' an N-H'ire line



168 Theory and design 0.[ microlvave .filters

I_N_-l N_-----Jl'H II

II HL-~ N_...J'1-0 output

Figure 5.31 The interdigital.filter (N even)

admittance matrix of the interdigital filter is thus given by

Y11 -Y12 0

-Y12 Y 22 -Y23 0

0 -Y23 Y 33 -Y34

[r/] == 0 0 -Y34 Y44

o

YN-1,N-l -YN-1,N

o -YN-1,N YN,N

Consider the three-wire interdigitalline shown in Figure 5.32. Here

V{ == V2 == V; == 0

input o----1L...-.1 1---"HII

'IH2 2'1
output 0-/_3 3----1'HII

Figure 5.32 Three-lvire interdigitalline

(5.155)

(5.156)
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Hence from (5.145), (5.155) and (5.156)

I} Y II -Y12

12 -Y12 Yn -Yn

l:, 1 -Y2:1 Y:1:1
-

(1_/ 2 )1/2 YI2II' / _(I_/ 2 )1/2 Y11

I{ (1- ( 2)1/2 YI2 -(1- /2)I/2Yn (l-r 2 )1/2 Y2 :1

I; (1- /2)I/2Yn -(1- /2)I/2Y23

VI

x

-(1 - /2)1/2 Y I1 (1 ~ /2)1/2 Y I2

(1 - /2)1/2 Y I2 -(1 - /2)1/2 Yn (I - /2)1/2 Y 23

(I - /2)1/2 Yn -(I - ( 2)1/2 Y33

(5.157)

Now the transfer matrix of a single-wire (two-port) transmission line of
admittance Y is

1 [1 t /lY]
[T] = (I ~ t 2)1/2 Yt

Conversion to an admittance matrix is given by

[
D/B -~/B]

[V] = -liB AlB

(5.159)

(5.160)

where ~ is the determinant of the transfer n1atrix. Hence the Y matrix of a single
line is given by

Y =~[ Y. _(1_t.
2

)1/2
y

]
[] t -(I _ t2)1/2y Y (5.161)

Now from (5.158) the admittance matrix between nodes 1 and 2' is given by

[V] =! [ YI ;- 1~~2. (I -.t
2

)1/2.
YI2

] (5.162)
t (1 - t-) -Y12 Y2 + Y I2

The equivalent circuit of (5.162) is shown in Figure 5.33.
Thus from (5.158) the equivalent circuit of the three-wire interdigitalline is as

shown in Figure 5.34. The ideal 1 : -1 transformers can be transformed to the
output of the network and have no effect on the amplitude response of the filter.
Hence the equivalent circuit of the general Nth-degree interdigital filter is as
shown in Figure 5.35.



170 Theory and design D.! microwave ,filters

1:-1

:Fl DE

Y12

1-----...------0

1----':.....----0

Figure 5.33 Equivalent circuit 0.[ (5.162)

CD 1:-1

~
UE

Y12

Figure 5.34 Equivalent circuit of a three-l1'ire interdigitalline

VE

Y12

VE

YN-l,N

1-----,---,0

(5.163)

o 0

Figure 5.35 Equivalent circuit D.! an N-wire interdigitalline

Having derived the equivalent circuit we can now develop a systematic design
procedure for a bandpass filter. First we can make the UEs quarter wave long
at Wo and they become inverters. The equivalent circuit then consists of
resonant stubs separated by inverters. Richards transformation of the lowpass
prototype would then establish the design procedure. However, this would only
be accurate for very narrow bandwidths. A more accurate procedure for
broader bandwidths can be obtained if we consider the UEs in more detail.

From (5.159) for sinusoidal excitation the transfer matrix of a UE is given by

[
(e) jSin(e)]

[T] == cos Y
j Y sin(e) cos(e)

and this can be decomposed into

[

1

[T] == 'Y-J
tan(e)

j Sj~(B)] [ ~
-JYo --

tan(e)

(5.164)
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1----:....--0

Figure 5.36 Equivalent circuit o.! a unit element

Equation (5.164) is the matrix of two shunt short circuited stubs of admittance
Y separated by a frequency-dependent admittance inverter, as shown in
Figure 5.36. Thus substituting for the equivalent circuit of the UEs into
Figure 5.35 we obtain a new equivalent circuit for the interdigital filter
(Figure 5.37).

The inverter coupling the rth to the (r + 1)th stub is then given by

Yr,r+1

Kr,r+1 = sin(B) (5.165)

The frequency dependence of this inverter is relatively small as
sin(600) == 0.8666 and the variation in admittance is small even over an octave
band.

The rth resonator is now a short circuited stub of admittance

Yrr == Yr + Yr-1,r + Yr , r+l (5.166)

(5.167)

Now we apply the Richards highpass transformation to the lowpass prototype
shown in Figure 5.38. Then

-1
w ---+ ----

a tan(aw)

Kr-l,r

O,--r----l

K12

Y12

sine e)

Kr,r+ 1 - I KN:;l, N I---r----O

OF • I fJYr-l,r Yrr Yr,r+l YN-l,~ N-l,N

sine e) I-----'--_~ sin( e) __1_ sine e) 1--'-------0

Figure 5.37 Netv equivalent circuit .lor an interdigital filter
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o

o.....,....--

T
KN-1,N

CN-I fNKr-l,r

Figure 5.38 LOlvpass prototype for an interdigital<filter

and

-CrwC" -+--­
r a tan(aw)

(5.168)

Hence

CrYrr ==­
a

(5.169)

where

1 1
a- ----

- tan(aw}) - tan(B})

Now from (5.165) assuming B== 90 0 at Wo we obtain

(5.170)

Yr.r+} == Kr.r+1 (5.171 )

and from (5.166)

(5.172)

Also, from (5.168), (5.169) and (5.172)

(5.173)

Hence the design equations for the Nth-degree interdigital filter are given by

Yr. r+1 == Kr.r+1 (I' == 1, ... , N - 1)

(I' == 1)

(5.174)

(5.175)

C-'r ,
Y r == - - Kr-l. r - KrJ -+ 1 (I' == 2, ... , N - 1)

a
(5.176)

(5.177)

1
a==---
" tan(B})

B
1

== 90
0

WI

Wo

(5.178)

(5.179)
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where WI is the lower band-edge frequency. C,. and Kr.r+I are the element
values for all-pole lowpass prototype networks given in Chapter 3 and shown
in Figure 5.38.

5.5.1 Design e.,xample

As an example we will design a filter with a centre frequency of 2 GHz and a
passband bandwidth of 1GHz. We will use a degree 4 Chebychev prototype
with 20 dB passband return loss. Thus

()] = 90° x 1.5 = 67 50
2 .

and

1
a == -(-) == 0.4142

tan B1

The lowpass prototype elements values are

C I == C4 == 0.9314

C2 == C3 == 2.2487

K l2 == K34 == 1.3193

K23 == 1.5751

and from (5.174)

YI2 == Y34 == 1.3193

Y23 == 1.5751

From (5.175)

YI == ~:~~~i - 1.3193 == 0.9293

and since C I == (~4

Y4 ==YI

From (5.176)

Y2 == 6:~i~i - 1.3193 - 1.5751 == 2.5346

Y3 == Y2

Hence in a 50 [2 system

Zl ==Z4 ==53.8040

Z2 == Z3 == 19.727 [2

Zl2 == Z34 == 37.8980

Z 23 == 31.744 [2

(5.180)

(5.181 )

(5.182)

(5.183)

(5.184)

(5.185)

(5.186)

(5.187)

(5.188)

(5.189)

(5.190)
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Figure 5.39 Sinlulated response 0.[ an interdigital.filter

Analysis of the equivalent circuit gives the frequency response in Figure 5.39,
showing an almost exact equiripple response. Simulation of the broadband
response is shown in Figure 5.40. Here we see the passband repeating at three
times the centre frequency.

5.5.2 Narrowband interdigital filters

From (5.176) we see that, as the bandwidth of the interdigital filter becomes
small, a becomes small and the admittances become very large and unrealisable.
We can solve this problem in a similar way to that described for narrowband
bandpass lumped element filters in Chapter 4.

First we introduce a UE with admittance unity at the input and output of the
filter. This does not change the amplitude response of the device. In addition we
scale rows and columns of the admittance matrix so that

Yrr --+ n; Yrr (5.191)

Hence the admittance matrix becomes

1

1 -nd 1 - t 2 ) 1/2

[Y] ~t 0

-nl(l - t 2)1/2

nr(1 + Y1d

-nl n2(1 - t 2)1/2YI2

o
- n I n 2 (1 - t 2) 1/2 Y12

ni Y22
(5.192)
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Figure 5.40 Sinlulated broadband response ql the interdigital filter

Note that this is equivalent to introducing an extra interdigital coupled-line
section at the input and output of the network.

Now from (5.169)

c,.
Y,.,. ==­

a

and from (5.171)

Y,.. ,. + I == K,..,. +1

Hence

(5.193)

(5.194)

1
[Y] ==-

t o

nl (1 - t2)1/2

nf(1 + ella)

o

(5.195)
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Thus the new element values are

(r == 2, ... , N - 1)

YOO == YN N == 1

Y 01 == YN--I. N == nl

Y11 == YNN == nr(1 + C11a)

n/~Cr
Yr. r ==-­

a

Yr,r+l == n r n r +1 K r,r+l (r== 1, ... ,N-l)

(5.196)

(5.197)

(5.198)

(5.199)

(5.200)

We can now find the design equation for the admittances to ground Yr and
the coupling admittances YrJ + 1. First let us choose Yrr to be arbitrarily equal to
unity, for physical convenience. Then from (5.198)

(r == 2, ... , N - 1)

1
n -n ------

1 - N - (1 + C
1
Ia)l/2

and from (5.199)

== (~)1/2n r Cr

Hence from (5.200)

Hence

Yo == 1 - 111

YOl ==nl

Y1 == YN == I- n l -111 11 2 K 12

Yr == 1 - ll r ---l nrKr - Lr - ll r ll r +l K r. r +1

(5.201)

(5.202)

(5.203)

(5.204)

(5.205)

(5.206)

(5.207)

5.5.3 Design eo/yample

In this case the design will be identical to the previous example except that the
bandwidth will be 40 MHz, i.e. 2 per cent bandwidth. Thus

and

1
a == -(B) == 0.0157

tan 1

(5.208)

(5.209)

The element values for the lowpass prototype are gIven in (5.182) and
(5.183).
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From (5.201) we obtain

1
n == ==0.1287==nN

, (1 + 0.9314/0.0157)1/2

and from (5.202)

(
0.0157)1 /2

n? == nl == -- == 0.0835
~ - 2.2487

From (5.203)

Y12 == Y34 == (0.1287)(0.0835)(1.1393) == 1.4177 x 10-- 2

Y23 == (0.0835)2 (1.5751) == 1.098 x 10 2

From (5.204)

Yo == 0.8713

and from (5.205)

Yo, == 0.1287

From (5.206) and (5.207)

Y, == Y4 == 0.8571

Y2 == Y3 == 0.9748

(5.210)

(5.211 )

(5.212)

(5.213)

(5.214)

(5.215)

(5.216)

(5.217)

(5.218)

The element values in a 50 n system are

Zo == Z5 == 57.38 n

ZI == Z4 == 58.34n

Z2 == Z3 == 51.29n

ZOI == Z45 == 388.5 n

Z12 == Z34 == 3526 n

Z23 == 4554 ~l

The simulated response of the filter is shown in Figure 5.41. This shows a
highly symmetrical frequency response which is characteristic of an interdigital
filter. The introduction of the UEs at each end of the filter results in an extra
interdigital section as shown in Figure 5.42.

5.5.4 Physical design a.! the interdigital.filter

The physical dimension of the filter can be found from the static capacitances
per unit length between each interdigitalline~its nearest neighbours and ground~

where

E

377
1/~Zo(cr ) ~

(5.219)
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Figure 5.42 Narro~vband interdigital.filter (N == 4)

Figure 5.43 Static capacitances 0.[ interdigital.tilter
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The various capacitances for our design example are shown in Figure 5.43.
Froln (5.218) and (5.219) we obtain

Co == C 5 == 6.5702
c c

S == C 4 == 6.4621
c c

C 2 == C 3 == 7.3503
c c

COl == C45 == 6.5702
c c

C 12 == C 34 == 0.1069
c c

C 23 == 0.0828
c

We will assume that the filter is to be constructed from an array of rectangular
bars between parallel ground planes as shown in Figure 5.44.

In Figure 5.44 we have two equal width bars of width lV and thickness t spaced
apart between parallel ground planes of spacing b. The parallel plate capaci­
tance between one face of one bar and ground is Cpo The fringing capacitance
from the isolated corner of one bar to ground is Cr. This is shown in Figure 5.22
as a function of t/b.

The fringing capacitances from the coupled corners of the bars are denoted
C/e and C/o depending on whether an even- or odd-mode excitation is applied.
Thus C/e is the fringing capacitance with an open circuit along the line of
symmetry and C/o is the fringing capacitance with a short circuit along the
line of symmetry. The equivalent circuit of the pair of coupled lines can
be represented as a pi network of capacitance to ground Ce and coupling
capacitance ~C as shown in Figure 5.45.

By applying a short circuit along the line of symmetry in Figures 5.43 and 5.44

Figure 5.44 Coupled rectangular bars betlveen parallel ground planes
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AC

Figure 5.45 Equivalent circuit of coupled lines

we obtain

Co 2Cp 2cI + 2clo Ce +2~C
and applying an open circuit

Ce == 2Cp 2cI 2c/e
Thus

~C==--2-

clo c/e
~C and c/e are shown in Figure 5.46 as a function of sib.

(5.221)

(5.222)

(5.223)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
s
b

Figure 5.46 Even-mode fringing capacitance and coupling capacitance of
coupled rectangular bars

Getsinger, W.J.: 'Coupled rectangular bars between parallel
plates', IEEE Transactions on Microwave Theory and 10
(1), pp. 65-72; 1962
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Thus to calculate the dimensions of the interdigital filter first we calculate the
normalised spacing between the bars. From (5.220) assuming lib == 0.4

COl == C45 == 6.5702 (5.224)
E E

Therefore from Figure 5.45

S~I = 8;5 = 0.07

Similarly

S 12 == S 34 == 1 12
h b .

and

S23 == 1 17b .

(5.225)

(5.226)

(5.227)

Now from Figure 5.46 we can calculate the even-mode fringing capacitances,
gIvIng

C/e 01 == C/e 45 == 0.11

cle 12 == C/e 34 == 0.88

('lIe 23 == 0.89

(5.228)

(5.229)

(5.230)

Now we can calculate the normalised widths for the bars from (5.222), i.e.

/ / 4~v '1/ /
Ce == 2Cp + 2Cr + 2Cre == -b- + 2e r + 2Cre-t

Thus

b- t (C~r / /)
}1Jr ==-- -, -2Crer-Ir-2Crer.,r+1

4 E '

(5.231)

(5.232)

Note that the isolated fringing capacitance is replaced by the even-mode
fringing capacitance for the previous coupled-bar pair except for the first
(and last) bars.

and

b- t (Co / /)Wo == -- ~ - 2Cr - 2Crol4 c

el == 0.91

e/e == 0.11

Co == 6.5702
E

(5.233)

(5.234)

(5.235)

(5.236)
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Thus

b-t
Wo == - (6.5702 - 0.22 - 1.82)

4

== 1.132(b - t)

Similarly

WI == 1.121(b- t)

)1'2 == 0.953(b - t)

(5.237)

(5.238)

(5.239)

b must be chosen for physical realisability and to achieve a certain resonator Q
factor.

From (4.147) the midband insertion loss of the filter is given by

(5.240)

Thus in our design, for 0.2 dB midband insertion loss we require a Qu of 4750.
The Q factor of a rectangular bar as a function of impedance is relatively
constant and may be approximated by

Q
1/2 == 2000 - 7.5Zober) (0.1 < 1; < 0.5) (5.241 )

(5.242)

where b is in cm and.fin GHz. Thus for our design with a typical Zo of 55 [2 we
choose b == 2 cm giving t == 0.8 cm and the actual dimensions of the filter are

)1'0 == lV 5 == 1.36 cm

WI == l;V4 == 1.34 cm

)iV 2 == W 3 == 1. 14 cm

H'OI == lV 45 == 0.14 cm

HI 12 == W34 == 1.76 cm

)1' 23 == 1.75 cm

The resonators are one quarter wavelength at 2 GHz, i.e. 3.75 cm long.

5.6 The combline filter

The interdigital filter has the advantages of a broad stopband and a highly
symmetrical frequency response. From a physical viewpoint it has certain
disadvantages. First, it is quite large: the resonators are quarter wavelength
long and for narrow bandwidths they are physically well separated. Further­
more, tuning screws for final electrical alignment are on alternate opposite faces
of the filter.

The combline filter [15] shown in Figure 5.47 overcomes these disadvantages
at the expense of a slightly asymmetrical frequency response. It consists of any
array of coupled TEM lines with couplings constrained to be between nearest
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input
Yl

output

Figure 5.47 The con1bline .filter

neighbours. The lines are all short circuited at the same end. The opposite ends
of the lines are loaded with capacitors which are connected to ground.

The principle of operation of the combline filter is as follows. First, if the
lumped capacitors were removed then the shunt lines would resonate at their
quarter wave frequency. However, the couplings would also resonate at this
frequency, producing an all-stop network. As the capacitors are increased the
shunt lines behave as inductive elements and resonate with the capacitors at a
frequency below the quarter wave frequency. The couplings would then be finite
but relatively weak compared with an interdigital filter with the same resonator
spacing. Thus the combline filter is compact, as the resonators may be signifi­
cantly shorter than one quarter wavelength and are closer together than in an
interdigital filter with the same bandwidth and ground plane spacing.

The equivalent circuit of the combline filter will now be derived. First
consider the array of coupled lines all shorted at the same end, shown in
Figure 5.48. The admittance matrix equation is

11
V1

12
V2

13
V3

[1]]
-1

IN (I _ t 2 ) 1/2 [71] VN

I{ -1 V{ (5.243)

I~
(I - t 2 ) 1/2 [1]] ['T]]

V~

I~
V'3

I~ V~

However, as nodes 1', 2', ... , N' are all short circuited then

V{, V~ ... V~ == 0 (5.244)
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l'

2

2'

3

3'

N-l

N-l'

N

N'

Figure 5.48 An array 0.[ coupled short circuited stubs

and the matrix equation reduces to

(5.245)

or

Yll -Y12 0 0

-Y12 Y22 -Y23 0

0 -Y23 Y33 -Y34

YN-1,N-l -YN - LN

-YN-l. N YNN

(5.246)

Scrutiny of (5.246) shows that each nodal current is only related to its own nodal
voltage and the voltage at the adjacent nodes. The equivalent circuit of the
coupled-line array is thus an array of shunt short circuited stubs coupled via
series short circuited stubs as shown in Figure 5.49.

The equivalent circuit of the combline filter is obtained simply by adding
shunt capacitor Cr from the rth node to ground as shown in Figure 5.50. The
equivalent circuit between the rth and (r + 1)th nodes is given in Figure 5.51.
Inspection of the equivalent circuit shows that an inverter can be formed from a
pi section of the short circuited stubs, as in Figure 5.52. Here we see that an
inverter can be formed in a similar way to that for lumped element bandpass
filters. The pi network of stubs between the dotted lines has a transfer matrix
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Yr,r+l

II
Yr

Figure 5.49 Equivalent circuit ~r an array ~r coupled short circuited lines

I~__-...----O

O-~----J.,.-------'-----'----~----'---_-1.-.-__--L-_-O

Figure 5.50 Equivalent circuit ~f the cOlnbline filter

Yr-1,r Yr,r+l Yr+1,r+2

Yr Cr Yr+ 1 Cr+ 1

Figure 5.51 Equivalent circuit ~rthe c(Jlnhline.filter betlveen the rth and (r + 1)th
nodes

given by

[T] == [i Yr~r+l
tan(B)

o

j Yr,r+l

tan(B)

j tan( B)

Yr,r+ 1

o

(5.247)
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Yr,r+l

Yr,r+l

r+l

Y,.+- Cr :

Yr,r+l
- Y,..r+ 1 -Yr,r+ I;

r+l

Yr+

Yr,r+1

Cr

K r,r+l

Yr+l+

Yr,r+l

Cr+l

Figure 5.52 Formulation 0.[ inverters in the combline .filter

Hence

Yrr +1K ==-'-
r,r+l tan(())

The admittance of the rth resonator is given by

I· j( Y r + Yr-1,r + Yr,r+l)
Y r == 1wC - (())tan

(5.248)

(5.249)

The equivalent circuit of the filter is shown in Figure 5.53 where Yrr is given by

Yrr == Y r + JTr_1,r + Yr,r+l (5.250)

It is convenient to scale the admittance of the entire network (including
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Kr.r+l

Figure 5.53 Equivalent circuit q( the cOlnbline .filter

source and load) by a factor tan (()) / tan (()o) where ()o is the electrical length of
the resonators at the centre frequency Wo of the filter. This removes the
frequency dependence from the inverters; hence

and

Y r . r + 1

Kr,r+! = tan(eo) (5.251)

(5.252)Y,: == ~(.(), [wCr tan(()) - Yrr ]
tan 0)

We can now derive a frequency transformation from the lowpass prototype
network to the combline resonators. For a shunt capacitor, inverter-coupled
prototype we have

[

WCr tan( ()) Yrr JwCL ----t ----

I' tan(()o) tan(()o)

where C Lr is the rth capacitor in the lowpass prototype; thus

w ----t a [j:iw tan (()) - 1]

where

Yrra==----
C Lr tan(()o)

and

'J Cr!J ==-
Yrr

(5.253)

(5.254)

(5.255)

(5.256)

Since w == 0 in the lowpass prototype maps to Wo in the combline filter,

(3 = Wo ta~( eo) (5,257)

The band-edges at ±l in the lowpass prototype map into the band-edges at WI

and W2 in the combline filter, i.e.

- 1 == a [/3w 1tan (() 1) - 1]

+ 1 == a[f3w2 tan( ()2) - 1]

(5.258)

(5.259)
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Now

~W
Wt ==wo- 2

and

~W
W2 == Wo +2

where ~w is the passband bandwidth. Hence

- 1 = ex [JJ(WO - ~2W) tan (80 - a~w) - 1]

+ l = ex [JJ(Wo + ~w) tan (80 + a~w) - 1]

and for narrow bandwidths

a~w« ()o

Hence

(5.260)

(5.261)

(5.262)

(5.263)

(5.264)

(5.265)(
a~w) tan(()o) + a~w/2tan () +-- ~ --------

o 2 1 - (a~w/2) tan(()o)

From (5.262), (5.263) and (5.265) we obtain

- 1 = ex [JJ(Wo - ~2W) {tan(80 ) - a~w [1 + tan2 (80)]} - 1] (5.266)

+ l = ex [fJ(Wo + ~t) {tan(80 ) + a~w [1 + tan2 (80 )]} - l] (5.267)

Solving (5.266) and (5.267) simultaneously and ignoring terms in (a~w)2 we
obtain

or

2
(5.268)

(5.269)

From (5.269) we see that for narrow percentage bandwidths a will be large and
from (5.255) we would obtain unrealisably high values for the shunt admit­
tances. We can solve this by scaling the internal nodal admittances of the filter
but before we do that we introduce redundant inlpedance transforming
elements at the input and output of the filter. Initially we connect a
frequency-independent phase shifter of unity impedance and phase length eo
between the source (and load) and the filter (Figure 5.54).
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o

r 80

In
G=~

I, tan(8o)

Figure 5.54 Introduction of a phase sh([ter at input and output 0.[ the .filter

The transfer matrix of the phase shifter is

[T] == [COS( fJo) j sin(eo) ]
jsin(eo) cos(eo)

(5.270)

Remembering that the source and load admittances have been scaled in order to
remove the frequency variation of the load, then the effective source admittance
after introducing the phase shifter is

Y (jw) = cos(Oo)tan(e)/tan(eo) +.isin(eo)
In . cos(eo) +jsin(eo)tan(e)jtan(eo)

cos2 (eo) tan(e) +. j sin2 (eo)
sin(eo) cos(eo)[1 +jtan(e)]

[cos2 (eo) tan(e) + j sin2 (eo)] [1 - j tan(e)]
[sin(2eo)j2][1 + tan2 (e)]

The real part of the effective load admittance is

(
. ) _ tan(e) [cos2 (eo) + sin2 (eo)] cos2 (e)

Re Y I W
- sin(20o)/2

sin(2e)

sin(2eo)

The imaginary part of Y(jw) is

I ( . ) _ . [cOS(2e) - COS(2eo)]
ill y 1w -1 sin(20o)

(5.271)

(5.272)

(5.273)

The real part varies slowly with frequency; for exan1ple if eo is 45° then it varies
by 0.866: 1 over an octave. The imaginary part is resonant at eo and again
varies slowly with frequency. Thus it can be said that introduction of the
ideal phase shifter effectively removes the frequency variation of the coupling
inverters from the filter.

The phase shifter may be represented by the introduction of an extra coupled­
line section at the input and output of the filter as shown in Figure 5.55. The
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1----L­
cos(8o)

Figure 5.55 Input-output netvvork

transfer matrix of this network is given by

[T] == [
1 0] [1

1 1
- 1--- 1 0
t [ COS(BJ

t cos(eo)] [1 1 1 1]

1 -[1--] 1t cos(eo)

[

cos(eo) j tan(e) cos(eo)]

-j cos(Bo)
tan(e){cos(eo) - l/cos(eo)}

and after scaling the admittance by tan(e) / tan(eo)

[
cos(e.0) j sin(eo)]

[T] ==
jsin(eo) cos(eo)

which is the matrix of the ideal unity impedance phase shifter.
The admittance matrix of the combline filter is now given by

(5.274)

(5.275)

1
0

tcos(eo)

1 1 Y11 -Y12

t cos(eo)
-+-+ C1P

tt t

[Y] == -Y12 Y12 (5.276)
0 -~ + C2 P

t t

etc.

and after scaling internal rows and columns we obtain the equivalent circuit
shown in Figure 5.56.

The element values can then be obtained as follows. First we choose all the
capacitors Cr to be equal of value C. We also choose eo, the electrical length at
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etc.

Figure 5.56 Equivalent circuit qj'the con1bline.filter after the introduction of'the
input tran,~'rorlners

wo, e.g. eo == 45°. Then calculate a from

2wo tan(eo)
0: == ------------

~w{tan(eo)+ eo [1 + tan2 (eo)]}

and

n; Yrr
a==---·

C Lr tan(eo)

(5.277)

(5.278)

p== 1
Wo tan(eo)

Hence

C'

Yrr
(5.279)

Yrr == Cwo tan(eo)

n
"

== [0: C L r, t"an (eo)] 1/
2

( r == 1, ... ,N)
}'T

Kr.r+ 1 tan(eo)
Yr.rt 1 == (r == 1, ... , N - 1)

n,.nr+l

Y,. == Yr,. - }Tr - 1. r - Y,..r +1 (r == 2, ... , N - 1)

(5.280)

(5.281 )

(5.282)

(5.283)

1
Yo == YN +1 == 1 - --­

nl cos(eo)

1
Y01 == YN,N+I == --­

n 1 cos(eo)

(r == 1 and N) (5.284)

(5.285)

(5.286)
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5.6.1 Design example

We shall design a filter to the same specification as for the narrowband inter­
digital filter, i.e. a degree 4 Chebyshev filter centred at 2 GHz with 40 MHz
bandwidth. The lowpass prototype element values are

C l1 == C l4 == 0.9314

C l2 == C l3 == 2.2487

K 12 == K34 == 1.3193

K23 ==1.5751

Hence

Wo == 1.2566 X 1010

~w == 2.5132 X 108

Choosing Bo == 50°, i.e. 0.8726 radians, we obtain from (5.277)

a == 36.075

From (5.279)

1 -11
/3= ({;I)=6.678xlO

Wo tan 0

Also from (5.279)

C
Yrr == 73

Choosing Yrr == 1, then

C == (3 == 6.678 X 10- 11

and from (5.281)

n I == n4 == 6.3275

n2 == n3 == 9.8318

From (5.282)

and

Y
K23 tan(Bo )

23 == 2 == 0.0194
n 2

(5.287)

(5.288)

(5.289)

(5.290)

(5.291)

(5.292)

(5.293)

(5.294)

(5.295)

(5.296)

(5.297)
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From (5.284)

1 1
Y1 = Y4 = 1 - Yp +0- (B) = 0.7538- nr nl cos 0

and from (5.283)

Y2 == Y3 == 1 - Y12 - Y23 == 0.9553

From (5.285) and (5.286)

1
Yo = Ys = 1 - (B ) = 0.7542

n 1 cos 0

1
YO] = Y4S = (B ) = 0.2458

n 1 cos 0

After scaling to 500 the impedances of the elements are as follows:

Zo == Z 5 == 66.2950

ZI == Z4 == 66.330

Z2 == Z3 == 52.340

ZOI == Z45 == 203.420

ZI2 == Z34 == 1976.30

Z23 == 2577.30

and

C == 1.3356 pF

(5.298)

(5.299)

(5.300)

(5.301)

(5.302)

(5.303)

The equivalent circuit of the filter is shown in Figure 5.57.
The length of the resonators is 50° at 2 GHz, i.e. 20.83 mm. The filter is

considerably more compact than an interdigital filter with the same ground
plane spacing. The resonators are shorter and also closer together. For example
Z 12 is 19760 in the combline filter and 35260 in the interdigital filter. The value
of S12/b is 0.88 in the combline filter compared with 1.12 for the interdigital
filter. The simulated frequency response of the combline filter is shown in
Figure 5.58.

Z01 Z12

o---Il.-.r-------,-----l

J--..J-----L.-------L.-----:..---1..-------!..--------I--_~_ _...L ....L_o

Figure 5.57 Equivalent circuit 0.1' a degree 4 conzbline .filter
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Figure 5.58 Simulated response (~l the cOfnbline .filter

5.6.2 Tunable combline .filters

The centre frequency of the filter may be altered by synchronously tuning the
capacitors in each resonator [16]. It is worth noting that the frequency depen­
dence of the inverters is relatively small over octave bandwidths; thus the return
loss of the filter will remain fairly constant over this bandwidth. Furthermore,
the bandwidth of the filter is given by

(5.304)

This is a maximum when eo == 52.885°. ~w as a function of eo is as follows:

eo 30° 40°

~w 0.237 0.288

50° 60° 70°

0.314 0.306 0.254

The bandwidth of the filter remains approximately constant over a broad tuning
range.

5.7 The parallel coupled-line filter

The parallel coupled-line filter consists of a cascade of pairs of parallel coupled
open circuited lines [17]. The lines are quarter wave long at the centre frequency
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"-/4< :>

Figure 5.59 Parallel coupled-line .filter qf degree 5

of the filter. There are N + 1 coupled-line sections (including input and output
transformers) in an Nth-degree filter (Figure 5.59).

The parallel coupled-line filter is often used in microstrip subassemblies as it is
easy to fabricate due to the absence of short circuits. A pair of coupled lines and
its equivalent circuit are shown in Figure 5.60. Here we see that the equivalent

(

9
>

Zoo

0-1<---_,
I ~o

Zoe, Zoo

Zoo

Zoe-Zoo

2

Figure 5.60 Equivalent circuit q{ a parallel coupled-line pair
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Zoe-Zoo

2

Zoe-Zoo Zoe-Zoo

K= Zoe-Zoo

2

Figure 5.61 Equivalent circuit q!' a unit element

circuit consists of series open circuited stubs separated by a UE. Zoe and Zoo are
the even- and odd-mode characteristic impedances of the coupled-line pair.
Now a UE may be decomposed into a pair of open circuited stubs separated
by an inverter as shown in Figure 5.61. Combining this with the equivalent
circuit in Figure 5.60 we obtain a final equivalent circuit consisting of series
open circuit stubs separated by inverters, shown in Figure 5.62. A cascade of
N - 1coupled-line pairs results in a circuit consisting of N series stubs separated
by inverters (Figure 5.63). The filter can be designed by applying the Richards
highpass transformation to the series inductorjinverter coupled prototype.
Impedance scaling and introduction of redundant transformer elements
can be carried out in a similar way to the methods described for interdigital
and combline filters. Details of this procedure are provided in References 5, 6
and 7.

Zoe + k> Zoe + Zx>
2 2

~ljKt~
K= Zoe-200

2

Figure 5.62 Equivalent circuit of a coupled-line pair



TEM transmission line filters 197

Figure 5.63 Equivalent circuit of the parallel coupled-line filter

5.8 Narrowband coaxial resonator filters

In cellular radio base station applications the bandwidths required are
narrow, typically 3.5 per cent, and the low loss specifications require reso­
nator Q factors of up to 5000. Consequently the filters require large ground
plane spacings and combline realisations would result in unacceptably
inter-resonator spacings. Consequently a coaxial resonator approach is taken
where individual combline resonators are constructed in separate cavities
with apertures providing the required weak couplings between resonators.
Furthermore, these devices usually require asymmetric generalised Chebyshev
characteristics with real frequency transmission zeros located on one side of
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Figure 5.65 Measured per.!orn1ance qf a coaxial resonator.filter
(courtesy o.l Filtronic pic)

the passband. A single real frequency transmission zero may be realised by
coupling around three resonators as described in Chapter 3. A photograph of
a typical filter is shown in Figure 5.64. Its measured performance is shown in
Figure 5.65.

5.9 Summary

This chapter has been concerned with the theory and design of filters consisting
of interconnections of TEM transmission lines. Initially the use of the Richards
transformation to convert lumped prototype networks into distributed quasi­
lowpass and quasi-highpass filters is described. These filters consist of inter­
connections of open and short circuit stubs separated by inverters which may
be approximated by quarter wave sections of line. Next the design of lowpass
filters consisting entirely of a cascade of commensurate UEs of transmission line
is described. This is illustrated by an example and is followed by the design
of highly selective lowpass and highpass distributed filters with generalised
Chebyshev characteristics. The lowpass design is illustrated by an example.
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Next the theory of coupled transmission lines is developed in terms of the
admittance matrix for a system of N coupled lines. This is followed by detailed
design procedures of two types of coupled-line filter, the interdigital and the
combline filter. Design examples of both these filters are presented including
information on the physical realisation. The parallel coupled-line filter, which
is convenient to realise in microstrip, is also described. Finally the use of iris­
coupled coaxial resonator filters is described and illustrated with a real
device.

5.10 References

RICHARDS, P.I.: 'Resistor transmission line networks', Proceedings qlthe
IRE, 1948,30, pp. 217-20

2 RICHARDS, P.I.: 'General impedance function theory', Quarterly ql
Applied Mathematics', 1948,6, pp. 21-29

3 BAHER, H.: 'Synthesis of electrical networks' (Wiley, New York, 1984)
pp.133-53

4 RHODES, J.D.: 'Theory of electrical filters' (Wiley, New York, 1976)
pp.134-49

5 TRINOGGA, L.A., GUO, K., and HUNTER, I.C.: 'Practical microstrip
circuit design' (Ellis Horwood, Chichester, 1991) pp. 168-85

6 EDWARDS, T.: 'Foundations for microstrip circuit design' (Wiley, New
York, 1992, 2nd edn.)

7 ALSAYAB, S.A.: 'A novel class of generalised Chebyshev lowpass
prototype for suspended substrate stripline filters', IEEE Transactions on
Microl1'ave Theory and Techniques, 1982, MTT-30 (9), pp. 1341-47

8 GETSINGER, W.J.: 'Coupled rectangular bars between parallel plates',
IEEE Transactions on Microl1'ave Theory and Techniques, 1962, 10 (1),
pp.65-72

9 MATTHAEI, G., YOUNG, L., and JONES, E.M.T.: 'Microwave filters,
impedance matching networks and coupling structures' (Artech House,
Norwood, MA, 1980) pp. 163-229

10 DEAN, J.E., and RHODES, J.D.: 'MIC broadband filters and
multiplexers'., Proceedings of the 9th European Microwave Conference,
1979

11 ZYSMAN, Ci.I., and JOHNSON, A.K.: 'Coupled transmission line
networks in an inhomogeneous dielectric Inedium', IEEE Transactions on
Microvvave Theory and Techniques, 1969, MTT-17 (10), pp. 753-59

12 DEAN, J.E., and RHODES, J.D.: 'Design ofMIC broadband multiplexers',
Microvvave Theory and Techniques 5, International Microwave Symposium
1980, Digest 80.1, pp. 147-49

13 SCANLAN, J.O.: 'Theory of microwave coupled-line networks',
Proceedings o.l the IEEE, 1980, 68 (2), pp. 209-31

14 WENZEL, R.J.: 'Exact theory of interdigital bandpass filters and related
coupled structures', IEEE Transactions on Microvvave Theorv and
Techniques, 1965, MTT-13 (5), pp. 559-75 -"



200 Theory and design 0.( microwave .filters

15 MATTHAEI, G.L.: 'Comb-line bandpass filters of narrow or moderate
bandwidth', Microwave Journal, 1963, 1, pp. 82-91

16 HUNTER, I.C., and RHODES, J.D.: 'Electronically tunable microwave
bandpass filters', IEEE Transactions on Microwave Theory and Techniques,
1982, MTT-30 (9), pp. 1354-60

17 COHN, S.B.: 'Parallel coupled transmission line resonator filters', IRE
Transactions on Microwave Theory and Techniques, 1958, 46, pp. 223-33



Chapter 6

Waveguide filters

6.1 Introduction

A waveguide is a structure which directs the propagation of an electro­
magnetic wave in a particular direction by confining the wave energy. Wave­
guides normally consist of hollow metallic pipes with uniform cross-section.
The use of dielectric rods as waveguides is also common and these will be
discussed in Chapter 7. Waveguide resonators are useful elements in filter
design as they generally have much higher Q factors than coaxial or other
TEM resonators.

There are distinct differences between waveguides and TEM transmission
lines. A transmission line has a minimum of two conductors and supports the
TEM mode of propagation, which has zero cut-off frequency. There is no
minimum size for the cross-section of a TEM line in order for signal propaga­
tion to occur, other than that determined by dissipation losses. On the other
hand, a waveguide has only one conductor consisting of the boundary of the
pipe. The waveguide has a distinct cut-off frequency above which electro­
magnetic energy will propagate and below which it is attenuated. The cut-off
frequency of the waveguide is determined by its cross-sectional dimensions. For
example, a rectangular cross-section waveguide must have a width at least
greater than one-half of the free space wavelength for propagation to occur
at a particular frequency.

Furthermore, propagation in waveguides occurs with distinct field patterns,
or modes. Any waveguide can support an infinite number of modes each of
which have their own cut-off frequency. Also, both the characteristic impedance
and the propagation constant of a waveguide are functions of frequency.

In this chapter we will examine the design techniques for filters comprising
interconnections of waveguides. Initially the basic theory of rectangular and
circular cross-section waveguides will be described. This is essential for a
proper understanding of the modal fields, and in order to develop expressions
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for cut-off frequency and the resonant frequency and Q of waveguide
resonators. Design techniques for various waveguide filters will then be
developed.

6.2 Basic theory of waveguides

A waveguide normally consists of a hollow conducting pipe of arbitrary cross­
section (Figure 6.1). In the ideal case both the conductor and the dielectric filling
the waveguide are assumed lossless.

Analysis of the possible field structures within the guide is accomplished by
solution of Maxwells equations, which for sinusoidal excitation are

\7XE == -jwJLH

\7XH ==jwEE

(exp(jwt) dependence assumed) and for a source-free region

\7 . D == E\7 . E == 0

\7 . B == JL\7 . H == 0

Taking the curl of (6.1) and substituting (6.2) we obtain

\7X\7XE == W
2JLEE

or

(6.1 )

(6.2)

(6.3)

(6.4)

(6.5)

(6.6)

and from (6.3), for source-free regions, we obtain the Helmholtz equations

\72 E == _k2E (6.7)

\72H == _k 2H (6.8)

where

k 2 2== W JLE (6.9)

conducting
boundary

Figure 6.1 Uniform waveguide with arbitrary conducting boundary
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If we assume that the direction of propagation is along the z axis then the fields
can be expressed in terms of the propagation constant ,:

E(x, y, z) == j'(x, y) exp(-,z) (6.10)

where for a lossless waveguide , == Q implies an exponentially decaying or
cut-off wave and, == j (3 implies a propagating wave with sinusoidal variation
along the z axis. The Helmholtz equations can be expressed as

viE == _(,2 + k 2)E

vi H == _(~v2 + k 2)H

where

(6.11 )

(6.12)

(6.13)

(6.15)

2 [)2 [)2

V t ==~+~ux uy

The E and H fields can be obtained by solving (6.11) and (6.12) with the
appropriate boundary conditions, which in this case are that the tangential E
field should be zero on the surface of the conducting pipe. General expressions
for the fields in waveguides of arbitrary cross-section are difficult to obtain.
Fortunately most practical waveguides have simple rectangular or circular
cross-sections. Initially we will examine the rectangular waveguide shown in
Figure 6.2. TEM modes cannot exist in the waveguide and the simplest
modes are those with purely transverse E fields (TE or H modes) or purely
transverse H fields (TM or E modes).

6.2.1 TE modes

For TE modes, Ez is equal to zero and Hz is finite; the Helmholtz equation is

8
2
H z 8

2
H z - k 2H

8x 2 + 8
y

2 - - c z (6.14)

where

k; == ,2 + k 2

'I
b

~

y
z

Figure 6.2 Rectangular waveguide
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Solution of (6.14) by separation of variables yields

Hz == [A sin(kxx) + Bcos(kxx)][Csin(kyY) + Dcos(kyY)]

where

(6.16)

(6.17)

A, B, C, D, k x and ky can be found by applying the boundary conditions of the
waveguide to the E fields. These may be found from Maxwell's equations as
follows:

j k

0 0 0
\lXE ==

ox oy oz
== -jwjJH

Ex Ey E"

and

j k

0 0 0
\lXH ==

ox oy oz
== -jwEE

Hx Hy Hz

(6.18)

(6.19)

By expanding these equations and setting Ez == 0 for TE waves we can express
the other field components as

E _ -jwjJ oHz
x - ,2 + k 2 oy

E == jWjJ oHz
Y ,2 + k 2 ox

H == -, oHz

x ,2+k2 ox

-, oHz

Hy = "(2 +k2 8y

Hence substituting for Hz in (6.20) and (6.21) we obtain

(6.20)

(6.21 )

(6.22)

(6.23)

and

jWjJkv ..
Ey ==~ [A cos(kxx) - B sln(kxx)][C sln(kyy) - D cos(kyy)] (6.25)

c
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Now the boundary conditions are that the tangential E field should be zero on
the surface of the conductor. Thus

Ex == 0ly=o ==? c == 0

Ey == 0 Ix = 0 ==? A == 0

(6.26)

(6.27)

Hence

Hz == H cos(kxx) cos(kyY)

where H is an arbitrary constant. In addition

Ex == 01 y=h ==? kxa == m1r

Ey == 0 Ix = a ==? ky b == n 1r

(6.28)

(6.29)

(6.30)

and

(
m1r X) (n1rY )Hz == H cos -a- cos -b- (6.31 )

where m and n are integers. The other field components are (for r == j(3)

(6.35)

(6.32)

(6.34)

(6.33)

jWf-L (m1rx) . (n1rY )Ex == -2 kyH cos -- Sin -b-
k c a

_ -jwf-Lkx . (m1rx) (n1rY )E v - 2 H sin cos b
~ kc a

H =j(3kx H sin (m1rx) cos (n1rY)
x kJ a b

H _j(3kxH (m1rx). (n1rY )
v - 2 cos sin b. k c a

In these equations m and n are the mode numbers, representing the number of
half wave variations in the field in the X and y directions. There are a doubly
infinite set of modes, depending on the value of m and n. These are called the
TEmn modes.

Now from (6.15), (6.17), (6.29) and (6.30)

k; = ,2 + k
2

= C:1ff+Cb1ff
where k == W(f-LE)I/2. For a propagating mode r ==j(3 and

(6.36)

(3 = [w 2
/1£ - (:

1ff-Cb1fff /2

At the cut-off frequency of the guide (3 == 0 and

(6.37)

(6.38)
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From (6.38) we can see that the lower the mode number then the lower the cut­
off frequency. From (6.32) to (6.35) we see that either m or n can be zero, but not
both, and assuming a > b the lowest cut-off mode is the TE IO mode. In this case
the fields are

Hz = H cos (7r
a
X)

E -jwJ-La . (1fX)==---HSln -
y 1f a

Hx =J;: HsinCa
X

)

(6.39)

(6.40)

(6.41 )

(Ex and Hy are both zero). The cut-off frequency of this mode is given by

1fV
W -­c-

a
(6.42)

where v == 1/ (J-LE) 1/2 is the velocity of light in the dielectric medium, and since
v == fA then

AC
a==-

2
(6.43)

In other words the a dimension is half the free space wavelength at the cut-off
frequency.

The E and H fields for the TE IO mode are shown in Figure 6.3 .

I~~ ~ .. ,. _ -. '---1
.

::.= :: .•...:: ..•: : =~::.~. =:..:~.::. 1.
-~.-"" ...-•••.' '''' ~:'r .• ,."";r.-'... ,....fc-..c

~- ~.~ ~~- .• ; - ;~ • "'11 _ -..:.. Al~""_""-_

1. Cross-sectional view
2. Longitudinal view
3. Surface view

== current in walls
== E field
== H field

Figure 6.3 Electric and magnetic fields .for the TE IO mode in a rectangular
waveguide
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The characteristic impedance of this mode can be defined as the ratio of the
transverse E and H fields, i.e.

Ev WJ-L
ZTE==-- ==-

Hx (3

and the propagation constant (3 is given by

and since

a v

[

2] 1/2
(J = ~ 1-(:)

(6.44)

(6.45)

(6.46)

(6.47)

(3 is related to the wavelength of propagation in the guide, the guide wavelength
Ag , by

(3 = 27f (6.48)
Ag

Hence

(6.49)

(6.50)

Here we see that the propagation constant and guide wavelength are functions
of frequency. As we approach cut-off (3 tends to zero and Ag tends to infinity. As
we approach infinite frequency they both tend towards their free space value.

From (6.46) the wave impedance is given by

Z - WJ-L _ WJ-LA g _ TJ
TE -73 -~ - [1 - (W

c
/W)2] 1/2

and

where TJ is the characteristic impedance of free space.
Alternatively

7]A g
ZTE ==-­

AO

where AO is the free space wavelength and

c
AO ==-

.f

(6.51 )

(6.52)

(6.53)
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We can compute the group velocity of the waveguide from

d [ 2] 1/2
Vg = d; = v 1 - (~) (6.54)

(6.55)

(6.56)

We see that vg approaches zero as W approaches We' This can cause phase
distortion of modulated waves if the signal frequency approaches too close to
the cut-off frequency.

6.2.2 TM modes

TM modes have zero Hz and finite Ez. In this case their behaviour is described
by the solution of

2 a2Ez a2Ez 2
VI Ez = 8x 2 + 8y 2 = -kcEz

This equation can be solved In a similar way to the TE wave equation
yielding

. (m1fx) . (n1fY )E z == ESln -a- SIn b

In this case in order for the field to exist neither of the mode numbers can be
zero and the lowest cut-off mode is the TM 11 mode. The field pattern for this
mode is shown in Figure 6.4.

1. Cross-sectional view
2. Longitudinal view
3. Surface view
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Figure 6.4 Electric and magnetic .fields for the TMll mode in a rectangular
waveguide
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6.2.3 Relative cut-offfrequencies of modes

The cut-off frequency of any mode in a rectangular waveguide is given by

We = V [ C:7fY+ Ch7fY] 1/2

For a typical aspect ratio of a == 2b and c == CO~ We is given by

_ CJr( 2 4 2)1/2
We -- m + n

a

(6.57)

(6.58)

Assuming that the cut-off frequency of the TE IO mode in a particular waveguide
is 1G Hz~ i.e. a == 15 cm~ then the next propagating modes are the TEoI and TE20

modes with a cut-off frequency of 2 GHz. These are followed by the TEll and
TM II modes~ both with a cut-off frequency of 2.236 GHz. The TE IO mode is
often called the dominant mode as the waveguide can be operated in this mode
over a broad spurious free bandwidth. Normally the waveguide would be oper­
ated at least 25 per cent above cut-off to avoid phase distortion.

6.2.4 Rectangular waveguide resonators

A waveguide can be formed into a resonant circuit by placing short circuited
boundary conditions one half guide wavelength apart to form a box~ as shown
in Figure 6.5. If the mode of propagation in the waveguide is the TE IO mode
propagating along z then the E field must be zero at z == 0 and z == £. Thus £
must be one half guide wavelength. Therefore

The resonant freg uency is

,2 I 1/1
, C c(a + £.-) -
.fo==~== 2£o a

(6.59)

(6.60)

t
b

t
y

/-:1 z /
x

~a~

Figure 6.5 Rectangular );vaveguide resonator
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This is independent of h as there is no field variation along the y axis for TEIJ/o
n10des. This resonant tnode is called the l'E joj tnode.

The effects of finite losses in the conducting \valls detern1ine the unloaded Q
of the resonator. This can be calculated by forn1ing a volllllle integral of E~I' to
detern1ine the stored energy, and dividing it by the dissipated energy due to
currents in the \valls of the resonator. The result quoted here \vithout proof­
is [1]

(
1 1 ).~./2

/\ ahf a 2 + (2
Q II 0 I == Y, -~) ( . ·-a----

.- -=) ( (I + 2h)+- ---;- ({ + :2 h)
a - {-

(6.61 )

where AI () is the ratio of free space \va velength to skin depth at the resonant
frequency. For silver

/\ 1.479 x 105

()

For brass

A 7.462 x 104

b vI'
where.t'is the freq uency in gigahertz.

6.2.5 NUlneric'u! e.\([/J7jJ!e

(6.62)

(6.63)

(6.64)

A rectangular waveguide has an a dilllension 01':2 cn1 and a h dinlension of 1cn1.
C~alculate the length {' for a resonant frequency of 10 GHz and calculate the
unloaded Q of the resonator, assull1ing it is silver-plated.

First we con1pLlte

{ == /:\0.__-
2[1 - (A o/2a)2] 1/2

where

:-.;
c 3 >~ 10'

Ao == - == ---- == 0.03
.1' 10 10

Hence

p == 1(_).O_J__~_
2[1 - (0.0310.04)2J 1/ 2

That is,

P== 2.26 Cll1

0.0226

(6.65)

(6.66)

(6.67)
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Figure 6.6 Mode chart .for a rectangular ~vaveguide resonator with b == 2a
(reprinted with permission from Matthaei, G., Young, L., and Jones,
E.M.T.: "Microwave filters, impedance matching networks and coupling
structures' (Artech House, Norwood, MA, 1980); www.artechhouse.com)

Now

A 1.479 X 105

15 J(lO) = 46770 (6.68)
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and from (6.61)

Qu 101 == 8009 (6.69)

Note that although the b dimension does not affect the resonant frequency it
does affect the Q. This is analogous to the ground plane spacing in TEM
resonators.

6.2.6 Spurious resonances

As we have already found there are an infinite number of possible propagating
modes in a waveguide, with an infinite number of cut-off frequencies. Conse­
quently a waveguide resonator has an infinite number of resonant frequencies.
It is useful to be able to predict these frequencies in order to gain insight into the
spurious performance of a filter. The easiest way to predict these is to use a
mode chart as shown in Figure 6.6. The chart enables a graphical method of
predicting the resonant frequencies of a rectangular waveguide resonator with
b == 2a. Here a, band f are measured in inches with.fin gigahertz. Taking the
previous example with a==2cm (0.787") and f==2.26cm (0.889") then
(ajf)2 == 0.783 and the chart gives the expected resonant frequency of 10GHz
for the TE lol mode. Moving vertically up the chart until we intersect the line for
the first spurious (TE l02 ) mode, we obtain a resonant frequency of 15.65 GHz.

6.2.7 Circular waveguides

Circular waveguides are often used in filters because of the very high Q factors
which can be obtained from the TEoN modes. Furthermore they are often used
in dual-mode configuration where two orthogonal degenerate modes (e.g.
TE IIl ) exist in a single resonator. The analysis of circular waveguides is
best done in a cylindrical coordinate system as shown in Figure 6.7. Again
TEM modes cannot exist in circular waveguides; TE and TM modes will be
treated separately.

\ d .con uctlng
boundary

Figure 6.7 Circular waveguide
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6.2.8 TE modes

The differential Helmholtz equation for H;; is [2]

\7{2 H_ = ~ ~ (r OH;;) +~ [)2 Hz = -k'/;H-
- r ar or r2 0¢2 -

where

kZ == (2 + k 2

The solution for this equation is

H;;(r, ¢) == [AJn(kcr) + BNn(kcr)][Ccos(n¢) + Dsin(n¢)]

(6.70)

(6.71 )

(6.72)

(6.75)

(6.74)

where I n and Nn are nth-order Bessel functions of the first and second kind,
respectively [3]. In fact the second kind of Bessel function has a singularity at
r == 0 and thus cannot be a solution in regions which include the axis. In addition
we will choose the orientation such that we only take the cos(n¢) solution. Thus

H;;(r, ¢) == H In(kcr) cos(n¢) (6.73)

The other field components can be found from Maxwell's equations in cylindrical
coordinates with E;; == 0 and ( == j 13, giving

-jw{loH;;
Er ==--2--­

rkc o¢

J·WIL oH-E -' r- -q)-k2&
c

H == -jf3 oH;;
r kl or

-jf3 oH;;
H q) = kzr [)¢

Thus from (6.73)-(6.77)

jW{ln .
Er == ZTEHq) == -2-HJn(kcr) sln(n¢)

kc r

jW{l /
E(p == -ZTE H r == ---,-:- HJn (kcr) cos(n¢)

''"c
and

(6.76)

(6.77)

(6.78)

(6.79)

W{l
Zn: = 73 (6.80)

The boundary condition for the waveguide is that the tangential E fields must be
zero at the surface of the cylindrical conductor. Thus

E(I) Ir=a == 0

Therefore

J,: (kc a) == 0

for all ¢ (6.81 )

(6.82)
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Now

k; == r 2 + k 2 == k 2 - {3 2

At cut-off {3 == 0 and ke is thus the wavenumber at cut-off, i.e.

k == 21f == We

e Ae V

(6.83)

(6.84)

and

(6.85)

where p' (n, £) are the doubly infinite set of zeros of the derivatives of Bessel
functions of the first kind. These zeros are given for the first three Bessel
functions in Table 6.1.

The lowest zero of the derivatives which gives finite fields is the first zero of J {
with a value of 1.841. This corresponds to the lowest cut-off frequency of all the
TE modes, the TEll mode. The cut-off frequency of this mode is given by

21ffc == 1.841 (6.86)
v

(6.90)

(6.89)

(6.87)

(6.88)

and if v is the velocity of light in a vacuum then

8.79 x 107

a==----
f~

Thus for a cut-off frequency of 1 GHz, a == 8.79 cm.
In general the mode numbers are designated TEn,f where n denotes the

angular variation in ¢ and £ is the variation in radial position r determined
by the number of the zero. The next lowest cut-off frequency is for the TEal
mode with Pal == 3.832. For a == 8.79 cm this has a cut-off frequency of
2.08GHz.

The field components for the TEal mode are given by

Hz = HJo(_3._8~_2_r)

jWf-j I (3.832r)
E¢ == -ZTEHr == --HJo --Ke a

E,. == H(p == ()

These fields have no variation with ¢ as shown in Figure 6.8.

Table 6.1 Zeros o.l Bessel functions and their derivatives

Jo J1 J2 J~ J{ J;

2.405 3.832 5.136 0 1.841 3.054
5.520 7.016 8.417 3.832 5.331 6.706
8.654 10.173 11.620 7.016 8.536 9.909
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3. Surface view through s-s

Figure 6.8 Field patterns/or TEO] and TEll nl0des in a circular waveguide

6.2.9 TM modes

For TM waves the solution of the Helmholtz equation is

E:; == EJn(ker) cos(n¢)

E, = ZTM H q) = 1:EJ,:(kcr) cos(n¢)

-)f3n '( . )
E(p == ZTM H,. == -kEJn ker) Sln(n¢

c r

(6.91 )

(6.92)

(6.93)
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where

(3
ZTM ==­

We
(6.94)

(6.95)

The boundary conditions require Ez and E4> to be zero at r == a. Thus

k
_wca_21ra_

c a - -- - ~ - Pn,f
v /\c

where Pn,f are the zeros of the Bessel function of order n. The lowest order mode
is the TMoI mode with POI == 2.405, giving a cut-off frequency (for a == 8.78 cm)

TMOI
1.

2.

1. Cross-sectional view
2. Longitudinal view through plane f-f
3. Surface view through s-s

Figure 6.9 Field patterns for TMoI and TM II modes in circular waveguides
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Figure 6.10 Circular 'rvaveguide resonator

of 1.306 GHz. The next lowest order mode is the TM 11 mode with PII == 3.832.
This is degenerate with the TEol mode. Field patterns for these two modes are
shown in Figure 6.9.

6.2.10 Circular waveguide resonators

Resonators can be formed from circular waveguides by forming a cylindrical
box with conducting plates across the surface of the waveguide as shown in
Figure 6.10. In this case the modes are designated TEP,m,n or TMP,ln,n where £,
m and n are the mode numbers for the number of variations along cP, rand z

respectively.
The resonant frequencies for the various TE modes are given by

(faf = 224.6 [ (P~nY+n(-zY] (6.96)

For TM modes simply substitute PPm for P;m in (6.96).
More conveniently a mode chart for circular cylinder resonators is shown in

Figure 6.11. The theoretical Q factors for various TE modes are shown in
Figure 6.12.

6.2.11 Numerical example

Design a circular cylindrical resonator for operation in the TEoll mode with a
resonant frequency of 10 GHz. Optimise the resonator for a reasonable compro­
n1ise between unloaded Q and spurious-free performance.

Fron1 the lTIode chart a value of (al£)2 == 0.5 is reasonable for spurious-free
performance. Note that the TEll 1 mode is degenerate with the TE011 mode and
care must be taken not to excite this mode. From Figure 6.12 with al£ == 1IJ2
we obtain

(6.97)
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Figure 6.11 A10de chart .f()r circular cylinder ll'al'eguide reSOl7ators
(Source: Montgolnery. ('.Ci.: 'Technique of Inicrowave Ineasurenlents'
(McCJra\v Hill. Ne\v York. 1947))

Therefore

Q II ~ 29000 (6.9~)

(6.99)a

The dinlensions are nlost accurately calculated using the fornlula rather than
the nlodc chart \vith P:11l == 3.~32, l7 == I and ./'== 10. Hence

224.6 [-(3.832)2]-- --- +0.5
lOOrr
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Figure 6.12 Theoretical unloaded Q.!,or TE modes in circular cylinder VlJaveguide
resonators
(Source: Montgomery, C.G.: "Technique of microwave measurements'
(McGraw-Hill, New York, 1947))

Therefore a == 2.113 em and £ == 2.988 em.
Moving up the mode chart the TE311 n10de and TE l12 modes both resonate at

10.83 GHz. In addition the TM 110 mode resonates at 8.71 GHz.
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6.3 Design of waveguide bandpass filters

(6.100)

Waveguide bandpass filters can be constructed from uniform lengths of wave­
guide loaded with shunt discontinuities. A particular example of a rectangular
waveguide with posts connected across the broad wall of the guide is shown in
Figure 6.13.

The principle of operation of the filter is that the posts act as shunt inductive
discontinuities (with associated reference planes) and the sections of waveguide
between posts are half wave resonators [4]. It will be shown that an inductive
post embedded in a waveguide can behave as an impedance inverter over rela­
tively broad bandwidths. Thus the physical structure has an equivalent circuit
consisting of bandpass resonators separated by inverters, which is suitable for a
bandpass filter. It now remains to develop a design theory.

From a theoretical viewpoint it is unimportant whether we are working with
rectangular or circular guides. We can choose the appropriate guide and mode
of operation from considerations such as physical size and Q.

A section of waveguide may be defined by its transfer matrix which is that of
a transmission line with frequency-dependent propagation constant and
characteristic impedance, e.g.

7]A g 7]
Zo == -- == ------

AO [1 - (We /W)2] 1/2

and

(6.101)(3 == 27f == ~ [1 _ (We /w) 2] 1/2
Ag V

The characteristic impedance is unimportant, as we can normalise all the

o

rectangular
waveguide post

~ /
7

0 0 0
0

0 0 0
0

0 0 0

i
a

o

'---- --11

< :>
8

Figure 6.13 Rectangular vvaveguide bandpass.filter
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elements in the filter with respect to terminating impedances equivalent to an
infinite uniform guide. Thus we can define the transfer matrix for a length of
guide as

[T] == ( cos(B) j sin(B) )
j sin (0) cos(B)

where

(6.103)

(6.104)

or

1f AgOB==-'-
Ag

Here AgO is proportional to the length of guide. In this particular case AgO has
been chosen to be the guide wavelength when the guide is half a wavelength
long, i.e.

AgO
R==-'- (6.105)

2

Now we would like to introduce discontinuities into the guide to form inver­
ters. Series discontinuities in waveguides are difficult to produce so we will only
consider shunt elements. A shunt inductive discontinuity can be introduced by a
vane in the side of a rectangular waveguide [5], although this is not good for
suppressing spurious modes. This type of discontinuity can also be introduced

post

o

o

AB

[I]

Figure 6.14 Shunt inductive discontinuity in a rectangular tvaveguide
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by inserting posts across the broad wall of a rectangular guide operating in the
dominant TE IO mode, or across the middle of a circular guide operating in the
TEll mode. Other types of inductive iris may be formed by holes in plates across
the guide [6]. The equivalent circuit of the shunt discontinuity consists of a shunt
inductor with appropriate reference planes (Figure 6.14).

The transfer matrix of the shunt inductor is

[T] == [~j~Ag ~]
AgO

The reference planes A and B are normally within the diameter of the post. The
number of posts and their diameters determine the parameter B and the
reference plane locations. B will be determined by the particular design which
itself then determines the post structure.

We now modify the inductive iris section by symmetrically embedding it in a
uniform section of waveguide of electrical length

'!jJ = '!j!o Ago (6.107)
Ag

as shown in Figure 6.15.
The transfer matrix of the new section is

r
.] [I 0] r ]cos(?jJ/2) j sln(?jJ/2) cos(~J/2) j sin(?jJ/2)

j sin(4Jj2) eos(I/)12) j~:og 1 j sin(4Jj2) eos(1jJ12)

[

cos(ljJ/2) + ~Ag sin(?jJ/2) jSin('Ij)/2)] ..
AgO rCOS('ljJ/2) ./Slll('Ij)/2)]

= jsin(1jJ12) _jS)..g eos(I/JI2) eos(1jJ12) jsin(4Jj2) eos(1jJ12)
AgO

= [eOS
2
(4Jj2) - sin

2
(4Jj2) + ~ :0" S.in(4Jj2) eos(4Jj2) j [2eOS(4Jj2) sin(4Jj2) + ~:: 5in

2
(4Jj2)] ]

j [2cOS('1)/2)Sin('ljJ/2) - ~AgcOS2('Ij)/2)] cos2(~)/2) - sin2(1jJ/2) + BAg sin('Ij)/2) COS ('ljJ/2)
A gO AgO

[

eos(ljJ) +~ ;~ 5in(I/)) j [sin(1jl) + BAg Sin2(1jJ/2)]]
= gO AgO

[
BA] A (6.108)

j sin(1jJ) - ~cos2('Ij)/2) cos(1jJ) +~ ~sin(1jJ)
A gO 2 AgO

0--

0---L...-__-.I o

Figure 6.15 Shunt inductive iris embedded in a section D.! waveguide
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(6.109)

o
[T] ==

Now we equate this to an inverter with the transfer matrix

-.i AgO

KA g

o

where K is the characteristic admittance when Ag == Ago. Hence

cos(7/!0) +~ sin(7/)0) = 0 (6.110)

That is,

-1 (132 )11)0 == - tan (6.111 )

Now subtracting the C parameter from the B parameter in each matrix and
equating at AgO we obtain

(6.112)

The susceptance B of the inductive iris is positive. Therefore

1/K < K and K > 1 (6.113)

From (6.111) with B positive, 1{)0 must be negative and the line cannot be
realised in isolation. In reality we shall be connecting the impedance inverter
to lengths of waveguide and the negative lengths can be absorbed into these.
Thus we can say that a shunt inductive iris can be represented by an inverter
with reference planes defined by (6.111) and the physical reference planes in
Figure 6.14.

It is useful to understand how well the iris approximates to an inverter over
broad bandwidths since the design equations are only strictly correct at AgO.

Examining the rl parameter in (6.108) we have '-

(6.114)

and from (6.111)

B

2
(6.115)

Hence

(6.116)
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(6.117)

(6.118)

and if 1/Jo is relatively small

dA 1/J5 A~O 1 1 1/J5 A~O
-~----+-==--
dA g Ag Ag Ag Ag

which is small for 1/Jo small; hence A is approximately zero over a relatively
broad band.

Furthermore, examining the B parameter in (6.108) we obtain

Again differentiating with respect to Ag we obtain

dB 1/Jo AgO (1/Jo Ago) 2 . 2 (1/Jo Ago)
dA g == -~cos ~ - tan(1/JO) AgO SIn ~

4 Ag . (1/Jo Ago) (1/Jo Ago) 1/Jo AgO+ SIn -- COS -- --
tan(1/JO) AgO 2A g 2A g 2A~

and for 1/Jo small

N ow the differential of the B parameter in (6.109) is given by

(6.119)

(6.120)

(6.121)

(6.122)

and since 1/Jo is negative the differentials of the two B parameters have the same
functional behaviour with respect to Ag . Hence the inductive iris embedded in a
waveguide is a good approximation to an inverter over broad bandwidths.

Inverters can also be formed from a shunt capacitive iris with the transfer
matrix

[T] = [.iBA:go ~] (6.123)

The inverter can be formed again by embedding the IrIS In a section of



(6.125)

(6.124)

(6.126)

(6.128)
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waveguide. In this case the A parameter is

A (
7/JO Ago) AgO . (7/Jo A,gO)== cos -- - SIn --

Ag tan(7/JO)A g Ag

Differentiating with respect to Ag and evaluating for small 7/J we obtain
') 2 2

dA 7/Jo AgO 2A gO
-==--+--
dA g A1 A~

The second term in this expression is significant, even for small 7/J, and hence the
A parameter quickly deviates from zero when Ag deviates from AO' Thus the
inverter approximation is only valid for narrow bandwidths.

A design procedure for all-pole type waveguide bandpass filters will now be
developed. Having established that a single inductive discontinuity embedded
in a waveguide is a good approximation to an inverter then the waveguide
bandpass filter in Figure 6.14 is equivalent to a cascade of U Es separated by
inverters. Apart from the AgojAg frequency dependence, the inverters only
change the impedance level in the network and hence the entire network is
equivalent to a cascade of UEs as shown in Figure 6.16.

The optimum equiripple bandpass response for a cascade of UEs is given by

. 2 1
ISd./w)1 = I + E 2 T,J[a sin(B)]

where

'if AgO
()==- (6.127)

Ag

The response must be modified to take into account the frequency dependence
of the inverters giving

.2 1
I SI2(jw)1 == ') 2 .

1 + E- TN[a(Agj AgO) sIn('if(AgojA g))]

Given the degree N, the ripple level E, and the two band-edge frequencies WI and
W2 we can find the two guide wavelengths AgI and Ag2 for the particular
waveguide used. For example for a rectangular waveguide it was shown that

VE

ZI

VE

ZN

(6.129)

Figure 6.16 Equivalent circuit o.f a lvaveguide bandpass filter
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Now equating w == ±1 in the lowpass prototype to Agl and Ag2 in the waveguide
fil ter we have

AgI . ( 1fA go)a-SIn -- == 1
AgO AgI

Ag2 . (1fAgO) 1a-SIn -- ==-
AgO Ag2

Hence

(6.130)

(6.131)

(6.132). (1fAgO) . (1fAgO)Agl Sill ~ + Ag2 Sill A
g

2 = 0

This equation can be solved using the Newton-Raphson technique as follows.
Let

. (1f AgO) . (1fAgo)F(Ago) == AgI SIn -- + Ag2 SIn -A-
AgI g2

Then

F'(>.gO) = 7fCOs(7fAAg~O) + 7fCos(7fAAg:O)

We can make an initial approximation to AgO of

AgI + Ag2
AgO ~ 2

This is then modified to

(6.133)

(6.134)

(6.135)

(6.136)

That is,

Then from (6.130)

(6.137)

(6.138)a == [~sin(1fAgo)]-1
AgO AgI

The element values of a cascade of UEs with equiripple response were presented
in Chapter 5. These may be modified to account for introducing impedance
inverters as follows.
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The element values are then

/ Kr,r+ 1

Kr, r+1 = (Z Z )1/2
-'I' 1'+ I

for r = 1, ... , N, and

[77 2 + sin2 (r7r / N)] 1/2
K r 1'+1 =. 77

for r = 0, ... , N. Here

(6.139)

(6.140)

(6.141)

(6.142)

Note that we have introduced unity impedance inverters at the input and
output, which are needed to define the first and last UEs. Finally we would
like to realise the filter in a uniform guide and thus we scale the internal
impedance level of the filter to obtain

with

/ K r . r+ 1

Kr,r+ 1 = (Z Z· )1/2
r r+1

ZO==ZN+1==1

(r= 1, ... ,N) (6.143)

(6.144)

(6.145)

(6.146)

The design process may now be summarised as follows.
First we aSSUlne that the band-edge frequencies.li and.l2 are known. The

ripple level c is determined by the required return loss. Given the frequency
band the waveguide size can be selected from standard sizes. The cut-off
frequency of the waveguide is then determined, and Ag l and Ag 2 can be found
from (6.129), AgO from (6.137) and a from (6.138).

The degree of the filter can be determined by analysis of the insertion loss
function

L = 101oglO{ 1+ E
2 T~ [ex :ggo Sin(~ ~ggo)]}

with N chosen to meet the most severe specification on insertion loss. Zr and
K,..r+ I can then be found from (6.140)-(6.142).

From (6.112) and (6.143) we obtain the susceptances of the inductive irises

B _ (2 r 2 r + I )I/2 K rJ + 1
r.r+ I - K ( 1('

r.r+1 ZrZr+1) ...
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and the negative lengths of guide are subtracted from a half wavelength to
obtain the actual lengths of guide between the irises, 1/Jr' giving

1 [ -1 (Br-I,r) -1 (Br,r+ 1)]fll,. == 1f - - cot -- + cot ---
~l 2 2 2 (6.147)

Passband
Return loss
Stopband insertion loss

(6.148)

where the electrical length of 1f corresponds to a physical distance Ago/2.
Finally the electrical parameters for the irises must be converted into actual

physical dimensions. The simplest method of producing shunt inductive irises is
to use circular posts of fixed diameter shorted across the broad wall of the
waveguide. A number of posts can be used depending on the required suscep­
tance. Normally they are located symmetrically across the guide in order to
suppress higher order mode propagation through the waveguide structure.
With a fixed number of posts a fine adjustment in susceptance can be made
by adjusting the distances between posts.

The data for post susceptances can be obtained experimentally. For example,
a single cavity filter can be constructed using two identical irises and the
measured insertion loss can then be used to deduce the susceptances and the
reference planes for the irises.

6.3.1 Design example

We shall design a rectangular waveguide filter to meet the following
specification:

8.5-9.5GHz
2:: 20 dB
2:: 25dB at 10.5GHz
2:: 40 dB at 8 GHz

Thus.!1 == 8.5GHz,f2 == 9.5GHz and c == 0.1.
A suitable waveguide is WG16 with internal dimensions of

22.86 mm x 10.16 mm. This has a TE IO mode cut-off frequency of 6.56 GHz.
Agi and Ag2 are determined from

A == AO
g [1 - (w

c
lw)2]1/2

with AOI==35.29mm and A02==31.58mm. Thus Ag l==55.49mm and
Ag2 == 43.66mm. From (6.137) we obtain AgO == 49.611 mm and a == 2.7367.

The required degree is determined by analysis of (6.145) with various values
of N. For N == 5 we have

Ts(x) == 16x s - 20x 3 + 5x (6.149)

Substituting for Ts(x) in (6.148) gives the frequency response shown in
Figure 6.17 and the response meets the desired specifications. Here we see
that the frequency response of the filter is more selective on the low frequency
side of the passband. This is due to the transmission zeros introduced by the
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Figure 6.17 Transfer.function (~f' a ~vaveguide bandpass.filter

finite cut-off frequency of the waveguide and also by the relatively wide
passband bandwidth.

Having determined N = 5 the prototype element values (normalised to 1 0)
are determined from (6.140) to (6.143) giving

Zl == Z5 == 2.71338

Z2 == Z4 == 6.42334 (6.150)

Z3 == 8.13821

K 01 == K 56 == 1

K l2 == K 45 == 1.36144

K 23 == K 34 == 1.79848

(6.151)

The susceptances of the inductive irises are then determined from (6.146).

B 01 == B 56 == 1.0402

B l2 == B 23 == 2.7404

B 23 == B 34 == 3.7714

(6.152)

The phase lengths of the guide between the IrISeS are determined from
(6.147).
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'l/JI == 'l/J5 == 2.2807

'l/J2 == 'l/J4 == 2.5825

'l/J3 == 2.654

The phase lengths are in radians and the physical lengths are given by

£ == 'l/J r AgO ( 6. 154)
r Jr 2

Thus

£1 == £5 == 18.01 mm

£2 == £4 == 20.39mm

£3 == 20.96mm

The final circuit of the filter is shown in Figure 6.18.

6.4 The generalised direct-coupled cavity waveguide filter

(6.155)

Certain applications such as satellite communications require very severe
filtering functions. Low passband loss may be combined with extreme selectivity
and group delay linearity requirements. In such cases, conventional all-pole
transfer functions may not be suitable and filters with generalised Chebyshev
characteristics are required.

Classical cascade synthesis procedures enable transmission zeros to be inde­
pendently realised by cascades of two-port networks such as the Brune section.
However, when the transmission zeros are on the real axis or in the complex
plane it is usually more convenient to synthesise cross-coupled ladder network
prototypes as described in Chapter 3. Certain transfer functions are then realis­
able by the generalised direct-coupled cavity waveguide filter described in this
section [7].

The symmetrical generalised direct-coupled cavity waveguide filter is shown
in Figure 6.19. It consists of two identical shunt inductive-iris coupled wave­
guide structures where adjacent cavities in the two halves are cross-coupled
through apertures in the common narrow wall. The equivalent circuit for the

Figure 6.18 Final circuit .for the vvaveguide bandpass filter design
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Figure 6.19 The generalised direct-coupled cavity ~vaveguide.filter

_____________ ---JL- L- --- ---

Figure 6.20 Midband susceptances and electrical lengths de.fining the generalised
direct-coupled cavity ~vaveguide.filter

______________ cn

In~

O_--L-C--=--l-I-----+------l

Figure 6.21 Cross-coupled array lo~vpass prototype

filter will be derived and equated to the cross-coupled lowpass prototype filter at
midband. Formulae for the iris susceptances and the electrical lengths of the
cavities, shown in Figure 6.20, then follow directly.

The cross-coupled lowpass prototype network is shown in Figure 6.21.
Note that for an Nth-degree filter n == N /2 in this prototype. The even-mode
equivalent circuit of this prototype network is shown in Figure 6.22. The
odd-mode equivalent circuit is simply the complex conjugate of the even­
mode circuit.
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jK2

Figure 6.22 The even-mode equivalent circuit of the cross-coupled array lowpass
prototype

The equivalent circuit of a typical section of the generalised direct-coupled
cavity waveguide filter is shown in Figure 6.23. In this equivalent circuit the
main lines consist of DEs with unity impedance and electrical lengths cPr and Br.
These are separated by shunt inductive susceptances which are normalised to
AgO in a similar way to the conventional waveguide filter. The equivalent circuit
of the cross-coupling arm is interesting as it consists of a cascade of two
frequency-dependent inverters separated by a shunt inductive iris. The iris
susceptance is normalised to the admittance of the inverters and AgO. The
shunt susceptance is similar in form to the susceptances in the main branch as
the input admittance of the shunt inverter terminated in the susceptance is
given by

Y(jw) = . K
2

2 .i>.gBr (6.156)
- } ( Ag AgO /4a Br ) AgO

The reason that the inverters exist in the cross-coupling branch is because the
waveguide is a two-dimensional structure and one has to consider the spatial

-jB'Ag
-'A-Br-l,r

gO

~
2g

Figure 6.23 Equivalent circuit for a typical section 0.[ the generalised direct­
coupled cavity vvaveguide .filter
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-jAg
-"l-Br,r+l

I\.gO

jAg
-A-Br-1,r

gO

(b)

VE
In

$,+8,

-jAg
AgO Br,r+l

Figure 6.24 Even and odd-mode equivalent circuits ql a typical section o.l the
generalised direct-coupled cavitY.filter

distance from the centre to the edge of the waveguide. Note that the equivalent
circuit of the waveguide filter is for a single mode of propagation which can only
be assumed correct if the cross-coupling apertures are small~ which is true for
narrowband designs.

The even- and odd-mode equivalent circuits for the typical filter section may
be derived by applying open and short circuits along the line of symmetry in
Figure 6.23. These are shown in Figure 6.24. The even- and odd-mode equiva­
lent circuits of the filter will now be transformed into an equivalent form to the
lowpass prototype. First~ in a silnilar way to the conventional filter~ we consider
a shunt inductor symmetrically located in a unit impedance guide (Figure 6.25)
of phase length 1> where

1>0 AgO
1>==-- (6.157)

Ag

The transfer matrix of this section is

COS(~) jSin(~)

jSin(~) COS(~)
[ ~i~Ag 0] COS(~) jSin(~)

AgO I jSin(~) COS(~)

()
AgBsin(1))

cos 1> +---­
2A gO

{
BAg }

j sin(1)) ~ 2Ag~ [1 + cos(<1i)]

j{Sin(cP) + BAg [1 - COS(cP)]}
2A gO

()
BAg sin(1))

cos 1> +---­
2A gO

(6.158)
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~

~ -BjAg~ ~
2

AgO
2

0 o

Figure 6.25 Shunt inductive iris embedded in a length a.! guide

Equating this at midband to an inverter of admittance K yields

(6.159)

(6.160)

The section may be represented over relatively broad bands by a frequency­
dependent inverter with the transfer matrix

0
jAgo

[T] ==
KA g

(6.161)
jKA g

0
AgO

Justification of the validity of this representation over broad bandwidths was
given in the previous section.

Now consider the transfer matrix of a shunt susceptance 2BA g/ AgO of length
() where

(6.162)

[T] ==
cos (~) j sin G)

j sin G) cos G)
BA

cos(()) - -gsin(())
AgO

{
. BA }

j sm(B) + A
g

: [1 + cos(B)]

j{sin(B) - BAg [1 - COS(B)]}
AgO

BA
cos(()) - -g sin(())

AgO

(6.163)

Now consider the pi network shown In Figure 6.26. This has a transfer
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Figure 6.26 Pi section equivalent .for the susceptance loaded line

matrix

[
-(1 +ZAYB )

- YB(2 + YBZA )

(6.164)

By equating the B parameters of the two transfer matrices we obtain

.[ . BAg ]ZA = -.1 sm(B) - AgO [1 - cos(B)]

and equating the A parameters

From (6.165) and (6.166)

YB = -.i cot (~)

(6.165)

(6.166)

(6.167)

(6.168)

Now applying these two results to the even-mode and odd-mode equivalent
circuits of the waveguide filter we obtain the equivalent circuit shown in
Figure 6.27. Here from (6.165)

.{ . (BrAgo) BrAg [ (BrAgo)]}Zrc == -/ SIn -- - -- 1 - cos --
. Ag AgO Ag

In the odd-mode case the embedded shunt susceptance is zero and we obtain

(
Br Ago)Z == -jsin --

1'0. A
g

(6.169)

Now scaling through the Ago/Ag frequency dependence of the inverters in
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---0

o

Figure 6.27 Even- and odd-mode equivalent circuits oj' a basic section 0.(
generalised direct-coupled cavitY.filter

(6.161) we obtain

-jA. g { . (BrAgo) BrAg [ (BrAgo)]}Zre ==-- SIn -- --- I-cos --
AgO Ag AgO Ag

and

_ -j Ag . (BrAg.0)Zro - \ SIn \
/\ gO /\ g

The shunt elements then become

(6.170)

(6.171)

(6.172)-jAg (B)--cot -
AgO 2

For narrow bandwidths the inverters are large relative to the shunt elements
and they may be neglected.

The even-mode equivalent circuit of the lowpass prototype shown in
Figure 6.24 may now be transformed into the network shown in Figure
6.28. This is achieved by introducing a redundant inverter at the input and
scaling the network admittance level at each internal node in order to obtain
equal-valued series inductive elements. Again the odd-mode circuit is simply
the complex conjugate of the even-mode circuit. We can now see the
similarity between the lowpass prototype and the equivalent circuit of the
waveguide filter.
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1
a

(6.174)

(6.173)

Figure 6.28 Tran~'formed (dual) lovvpass prototype even-mode circuit vvith
equal-valued inductors

Now applying the bandpass transformation

aAg . (7rAgo)
W --t - AgO Sin A;

to the lowpass prototype, the series elements in Figure 6.28 become

jKr jw jKr -jAg. (7rAgo)
--+-=}-- ---Sin --
aCr a aCr AgO Ag

and equating with the waveguide filter in Figure 6.27, at midband we obtain in
the odd-mode case

-A g . ( 7rA go) Kr -A g . (BrAgo)--Sin -- +-- == -- Sin --
AgO Ag aCr AgO Ag

and in the even-mode case

(6.175)

-A g . ( 7rA go) Kr -A g { . (BrAgo) -Br.A g [ (BrAgo)]}--Sin -- - -- == -- Sin -- --- 1 - cos --
AgO Ag aCr AgO Ag AgO Ag

(6.176)

Evaluating at Ag == AgO we obtain

. -I ( K r )Br == 7r - Sin --
aCr

and

Kr
Sr ==-­

aCr

(6.177)

(6.178)

(6.179)

Now over a narrowband around Ag == AgO the bandpass frequency
transformation (6.173) reduces to

W --t a7r(l _ Ag
)

AgO

Let AS1 and AS2 be the guide wavelengths at the band-edge frequencies.fl and.f2'
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If the lowpass prototype cuts off at w == ± 1 then

-1 ==a1r(I-~)
AgO

(
Ag2)+ 1 == a1r 1--
AgO

Adding (6.180) and (6.181) we obtain

~+ Ag2 == 2
AgO AgO

Therefore

Agi + Ag2
AgO == 2

Subtracting we obtain

2 == a1r(~ _ Ag2)
AgO AgO

Hence from (6.183) and (6.182)

AgI + Ag2
a == --=------:::--

1r(A g l - Ag2)

To summarise the design equations we have

_ 1/2 1
Brlr+l-a(CrCr+l) - 1/2

a(CrCr+ l )

B == K r

r aCr

1r 1 [ -I (Br - 1J ) . -I ]CPr == 2 - 2 cot -2- + SIn (Br)

and

1r 1 [ -I (Br 1 r + I) . -I ]CPr == 2 - 2 cot -2- + SIn (Br)

where

(6.180)

(6.181)

(6.182)

(6.183)

(6.184)

(6.185)

(6.186)

(6.187)

(6.188)

(6.189)

1
Co ==­

a
(6.190)

and as in the case of the conventional waveguide filter an electrical length of 1r
radians corresponds to AgO.

The generalised direct-coupled cavity filter has certain limitations as only
positive couplings may be realised. Thus the locations of transmission zeros
are restricted and cannot be on the imaginary axis. However~ it also forms a
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useful building block when combined with the extracted pole filter as described
in the next section.

6.5 Extracted pole waveguide filters

The generalised direct-coupled cavity filter described in the previous section has
certain limitations. The structure is ideal for linear phase filters with monotonic
stopbands where all the couplings are of the same sign. However, there are
difficulties in realising filters with real frequency transmission zeros as these
require both signs of couplings, which are difficult to achieve in simple wave­
guide structures. Furthermore, consider the case where real frequency trans­
mission zeros are required to be symmetrically located on either side of the
passband. In the fourth-degree case a pair of zeros would be associated with
a single cross-coupling around all four resonators. Thus the pair of transmission
zeros are not independently tunable. This can cause problems in manufacturing
associated with sensitivity. It is more desirable to be able to extract individual
transmission zeros above or below the passband in an independent manner.

This may be achieved by cross-coupled networks in which the cross-coupling
is realised by a coupling around three resonators, as described in Chapter 3.
This is a useful technique for coaxial resonator and dielectric resonator filters. It
is not always suitable for waveguide filters because of the difficulties in coupling
around three resonators which requires coupling from both narrow and broad
walls of the waveguide. More importantly, when the transmission zeros are
located very close to the passband-edge the values of the required couplings
may be physically unrealisable.

It is often more desirable to synthesise the transmission zeros using bandstop
resonators or extracted poles. Each bandstop resonator corresponds to a trans­
mission zero (and one return loss ripple) and thus independent tuning is
achieved. The optimum solution for complex transfer functions is to use a
combination of extracted poles and cross-couplings as required. A technique
for achieving this will be described in this section. One of the main advantages of
this method is that the entire structure may be realised with positive couplings
enabling a simple realisation for TEoII mode waveguide filters [8].

The only real restriction is that the synthesis procedure is limited to transfer
functions with a symmetrical frequency response. The networks thus have
complex conjugate symmetry. In other words a bandstop resonator at one
end of the filter producing a transn1ission zero on one side of the passband
always has its associated complex conjugate at the other end of the filter
producing the transmission zero on the other side of the passband.

Complex conjugate symmetry means that at any stage in the synthesis
procedure the transfer matrix will always be of the forn1

(6.191 )
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where Al is odd and F, A 2 , Band C are even polynomials inp. Furthermore, by
reciprocity

(6.192)

(6.193)

(6.194)

The synthesis procedure will be developed along with an example, in this
case a degree 6 equiripple prototype with 20 dB return loss, two trans­
mission zeros at infinity, a pair at p == ±jl.414 and a pair on the real
axis at p == ±0.953076.

Generation of the polynomial for S 12 (p) and synthesis of the cross-coupled
lowpass prototype is described in Chapter 3. The network may be synthesised as
a cross-coupled ladder as shown in Figure 6.29. Here

C1 == 1.00367

C 2 == 1.43354

C 3 == 1.938932

K 1 == -0.078796

K 2 == -0.000237

K 3 == 1. 184116

To proceed with the extracted pole synthesis we must first form the transfer
matrix of the filter in order that it can be re-synthesised in the correct form. The
even-mode admittance is

. 1
Ye == C1P+jK1+----------­

C 2 p + jK2 + 1/(C3 P + jK3)

2.78056p3 + j 1.47862p 2 + 3.0733p + j 1.1053

2.77954p 2 +jl.69702p + 1.00028
(6.195)

f-'igure 6.29 Cross-coupled ladder realisation 0.( a degree 6 generalised
Chebyshev filter
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The odd-mode admittance Yo == Ye* and the transfer matrix is given by

1 [A BJ 1 [ Yc + Yo
[T] ==.J·F C A - Y Y 2Y Y, e - 0 e 0

Thus

F == 1.10561 - 0.664187p2 - 0.608764p4

(6.196)

(6.197)

and F contains the real frequency transmission zero. Thus

F == (p2 + 2)(0.552973 - 0.608764p2)

and

A == 4.94987p + 13.8329p 3 + 7.72866p 5

B == 1.00056 + 8.4405p2 + 7.72582p4

C == 1.22168 + 12.7138p2 + 19.2773p4 + 7.731 5p 6

(6.198)

(6.199)

(6.200)

(6.201)

(Here Al == A and A 2 == 0.)
The synthesis procedure starts by extracting a unity impedance phase

shifter of phase length 'l/JI from the output of the network and its conjugate
-'l/JI from the input. The remaining transfer matrix is obtained by pre- and
post-multiplying the transfer matrix by the inverse transfer matrix, yielding

[T] = ~ [cOS(~/'I) jSin(~)I)J [AI +jA 2 B J [COS('1J I) -:i Sin ('1J I)]

.If jsin(I/)I) COS(~)I) C AI -jA 2 -jsin(~I) cos(?jJd

1 [A I +i [A 2 cos(21}!Jl + C ~ B sin(21j, Jl] Bcos
2

( 1j! I) + C sin
2

(1/J) + A 2 sin(21j) I) j
=jF CCOS 2 (1}!I)+ Bsin 2('h) -A 2 sin(2Ij!I) Al -j[A 2 COS(21jJJl+ C i B sin (21j)Jl]

(6.202)

We now choose the value of 1/)1 such that the B parameter has a factor p2 + wf.
This enables the transmission zeros to be extracted by shunt resonators. Hence

or

B 2 2A) Ic + tan (;~}l) + C ~ tan(1P!) == 0 p=±jwl

Hence

A ± (A 2 BC)I/2
tl == tan('~)I) == _-_2 2_-__,· -

, C

Now from (6.192)

A~-BC==F2-A?

(6.203 )

(6.204)

(6.205)

(6.206)
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(6.207)
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and F contains the transmission zeros as factors. Thus

Ai - BClp=±jwl == -Af

Thus from (6.205) and (6.207) a solution for t l is

t] = -A 2 +jA) I == B. I
c p=jw] -A 2 -JA 1 p=jwl

This results in the new A parameter possessing a factor p + jWI and the new D
parameter possessing a factor p - j WI' The transfer matrix is then given by

where

A
' 'A' A 2 COS(2'l/JI) + [(C - B)j2] sin(2'l/JI) - jA I
I+J 2== +.

P JWI

I BCOS 2('l/JI) + Csin 2 ('l/JI) + A 2sin(2'l/JI)B == --------------
p2 +wf

C I == C cos 2( 'l/J 1) + B sin 2( 'l/J 1) - A 2 sin (2 'l/J 1)

Now from (6.208) in the example

j(4.94987p + 13.8329p3 + 7.72866p 5) I
t) = 1.22168 + 12.7138p 2 + 19.2773p 4 + 7.7315p 6 p=Jvl2

and

'l/JI == -52.3531 0

The matrix is then evaluated from (6.202) giving

[T] = ~ [A; + -:A; ,B'. ,] == ~ [A 1 + j A2 B]
JF C Al -JA 2 JF C Al -jA 2

with

Al == 4.94987p + 13.8329p 3 + 7.72866p 5

A 2 == 0.106939 + 2.66665p 2 + 5.58652p 4 + 3.73911 p 6

B == 1.13919 + 11.1196p 2 + 14.9678p 4 + 4.84712p6

C == 1.08306 + 10.0347p 2 + 12.0353p 4 + 2.88438p 6

and factorising the matrix into the form in (6.210)-(6.212) we obtain

A~ + jA; == 0.756286j + 3.5541p - 1.051 94jp 2 + 9.03779p3

- 2.44156jp 4 + 3.73911 p 5

(6.209)

(6.210)

(6.211)

(6.212)

(6.213)

(6.214)

(6.215)

(6.216)

(6.217)

(6.218)

(6.219)

(6.220)
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B' == 0.569767 + 5.27649p 2 + 4.84712p 4

C' == 1.08306 + 10.0347p2 + 12.0353p4 + 2.88438p6

F == (p2 + 1.999396)(0.552973 - 0.608704p2)

We may now extract shunt resonators of admittance

(6.221)

(6.222)

(6.223)

and (6.224)

from the input and output, respectively. Again this is done by pre- and post­
multiplying by their inverse transfer matrices yielding

(6.225)

where

A ll + ·A" _ A; - b i B' +jA~
I } 2 - - .

P-JWI

B" == B'

II F
F ==---

p 2 +WT

(6.226)

(6.227)

(6.228)

(6.229)

b i can be calculated by forcing the D parameter to be zero atp ==jwI yielding

(6.230)

This completes the synthesis cycle to extract a pair of transmission zeros at
p == ±jwI. The cycle is shown in Figure 6.30. This process may be repeated
until the desired number of real frequency transmission zeros have been
extracted.

In the case of the example we have

b1 == 0.871402 (6.231)
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o

o

remaining
network \VI

o

Figure 6.30 Synthesis cycle .for extracting a pair o.fj-axis transmission zeros

and the remaining transfer matrix is given by

B If == 0.569767 + 5.27649p2 + 4.84712p4

C lf == 0.824005 + 5.69375p2 + 2.88438p4

A '{ +jA~ == 0.404614 - 2.22736jp + 4.083p 2

- 3.50487jp3 + 3.73911p4

F If == 0.552973 - 0.608764p2

(6.232)

(6.233)

(6.234)

(6.235)

The remaining network may contain transmission zeros which are not on thejw
axis and may be synthesised as a cross-coupled array. Assuming that at least
two of the remaining transmission zeros are at infinity then we first extract phase
shifters in order for this pair of zeros to be extracted as shunt capacitors. The
value of the phase shifters is determined such that the remaining B parameter is
of degree 2 lower than the C parameter. This can be determined from (6.208).
However, in our example the original matrix was real; thus we simply extract
-?jJ}. Extracting this phase shifter we obtain a new matrix

T == ~ [AI +jA 2
[ ] jF C (6.236)

where B is two degrees lower than C. In the example we obtain

A I +jA 2 == 2.22736p + 3.50487p3 - jO.22567 - j 1.23832p2

B == 0.337797 + 1.58884p 2

C == 1.05597 + 9.3814 1p 2+ 7.7315p4

F == 0.552973 - 0.608764p 2

(6.237)

(6.238)

(6.239)

(6.240)

We now extract the pair of transmission zeros at infinity by removing a
capacitor C I in parallel with a frequency-invariant reactance B) from the



Waveguide.filters 245

input of the network and similarly Cip -jBI from the output of the network.
The new transfer 111atrix is then

1[ 0][A
I
+i

A
2 B][ 1 01]

[7'] = jF -C,p-jB1 I C Al -jA 2 -C1P+jB I

1 [A I -C'IBP+j(A 2 +B IB) B]

= iF C-2A IC',p+2A 2 B I +(~?p2B+BTB Al -(~IBp-i(A2+B,B)

=~[A~-t-jA; B
I

] (6.241)
jF Cd A', -jA;

where

A 'I == A I - (' I PB

A;==A 2 +B I B

B' == B

('" == ("-2A I ("IP+2A 2B j +C1p 2 B+BfB

(6.242)

(6.243 )

(6.244 )

(6.245 )

and for the transrnission zeros at infinity to have been successfully extracted

A ~ == 0 Ip = 'X ::::} A I - (" I PB == 0 Ip =- rx

Therefore

C j ==~IBp p= ~

A; == 0lp=x ::::} A 2 + BIB == 0lp=x

Therefore

-A; IB I == ---
B p='X

In the example we obtain

A ~ == 1.4822p

A; == 0.0376023

B' == 0.337797 + 1.5884p2

C' == 0.909396 + 0.233249p 2

F == 0.552973 - 0.608764p 2

(~j == 2.20593 B I == 0.779383

(6.246)

(6.247)

(6.248 )

(6.249)

(6.250)

(6.251)

(6.252)

(6.253 )

(6.254)

(6.255 )

The synthesis procedure tnay now be continued by extracting an inverter of
adnlittance K 12 in parallel with the renlaining network such that the renlaining
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N

~--o

Figure 6.31 Parallel extraction 0.[ an inverter

network has a double ordered transmission zero at infinity. This is equivalent
to moving the transmission zeros onto the jw axis so that ladder network
extraction may be continued (Figure 6.31).

By conversion to Y matrices and back to transfer matrices the remaining
two-port transfer matrix is

1 [ A~+jA;
j(F - K 12 B') c' - 2FK12 + K?2B'

and for transmission zeros at infinity

K 12 == B
Ft

I
p=oo

(6.256)

(6.257)

Now we continue by extracting unity impedance inverters from both ends of the
network to leave

1 [A"+'A"[T] -_ 1 } 2
-jF" C"

where

B" ]
A " 'A"1 -} 2

(6.258)

F" == -(F - K 12 B')

A~==A~

A~==-A;

c" == B'

(6.259)

(6.260)

(6.261)

(6.262)

(6.263)

The synthesis cycle may then be repeated until the complete network has been
synthesised.
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From (6.250)-(6.255) and (6.257) we obtain for the example

K l2 == -0.38315

and the remaining transfer matrix is given by

F" == -0.6824

A '{ == 1.4822p

A ~ == -0.037602

C" == 0.337797 + 1.5884p2

B" == 1.38273

(6.264)

(6.265)

(6.266)

(6.267)

(6.268)

(6.269)

Finally a shunt capacitor in parallel with a frequency-invariant reactance may
be extracted fron1 the input and its complex conjugate at the output with
element values

C 2 == 1.07194

B 2 == 0.027194

K 23 == -0.49352

(6.270)

(6.271)

(6.272)

The complete network is shown in Figure 6.32. Note that K l2 and K 23 can be
changed to positive sign giving all positive couplings in the prototype. This
merely introduces a constant 1800 phase shift into the transfer function of the
filter. The simulated response of the prototype network is shown in Figure 6.33.

_ b_1_

p-jro 1

_b_1_

p+jro 1

o

Figure 6.32 Thefinal net~vorkfor the sixth-degree extracted pole/cross-coupled
.filter
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6.5.1 Realisation in waveguide

A procedure will now be developed for transforming the extracted pole
prototype shown in Figure 6.32 into the waveguide structure shown in
Figure 6.34. The realisation starts with synthesis of the cross-coupled part of
the filter, followed by the pole cavities and finally by the phase lengths between
the pole cavities and the cross-coupled part of the filter.

The synthesis of the cross-coupled section follows closely the synthesis of the
generalised direct-coupled cavity filter described in the previous section. This
procedure gave the following design formulae:

B: == Kr.r+ 1/aCr

/ _ 1/2 1
Br- I I' - a(CrCr- l ) - 1/;

a(CrCr- I) ~

(6.273 )

(6.274)

(6.277)

(6.275)

(6.278)

(6.276)

1r 1 [ _n 1 (B:-1.r) . -- I /]¢lr==¢Ur=="2-"2 cot -2- +Sln (Br )

1r 1 [ -1 (B:.r -+ 1) . -1 /]
ell' == BUr =="2 -"2 cot -2- + SIn (B r )

1
Co ==- C~I1+I==CX) r-l,2, ... ,n

a

Agi + Ag2a == ~. '-"
1r(A g I -A g2)

where, as in the previous sections, Agi and Ag2 are the guide wavelengths at the
band-edges of the filter.

We can now form the even-mode network for the cross-coupled part of the
prototype shown in Figure 6.32. This is obtained by placing an open circuit
plane along the line of complex conjugate symmetry through K l2 and K 23 . The
even-n10de circuit is shown in Figure 6.35. The ±Br in Figure 6.35 refers to each
arm of the complex conjugate symmetric array. The odd-mode networks are
similar with Kr,r+I replaced by -Kr,r+l'

Now comparing this even-mode circuit with the one for the symmetrical
waveguide structure in Figure 6.22 we see that the only difference is the
inclusion of the frequency-invariant susceptances B I' in parallel with the other

~ ~ c~ etc.

0----'-----1---....1----1 ~- - - - - _ --L.-.-__----I

Figure 6.35 Even-n10de netH'ork for the comple.x-conjugate symmetric array
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(6.281 )

(6.280)

(6.279)

(6.282)

two susceptances a t each node. These do not change sign between the even and
odd nl0des of the network and so nlay be realised by adding sn1a11 sections of
waveguide at each node. The fornlulae for the phase lengths of the two halves of
each cavity thus becon1e nl0dified to

7r 1 [ I (B: 1 ') . I! ! l<!Ju, ="7 -=) cot ~ + Sin (B, + Be,)

7r 1 [ I (B:. 'I j) . I! ! l
elJr==2-::~ cot ~ +Sln (Br+B cr )

(/YL, = ~ - ~ [co t 1(B: 2I::) + sin 1(B: - B~ ,)l
(I LI = ~ - ~ [co t I(B:; j I) + sin 1(B: B ~ ,)l

where

(6.283 )

(6.284)

The resonators of the t\VO halves of the network are thus slightly different in
length. However, the length difference is sn1a11 and lTIay be taken up by tuning
screws.

The pole cavity pairs are synthesised by assun1ing that each pair forn1s a
single-section con1plex conjugate cross-coupled array with no cross-coupling.
This can be seen by exanlining the left-hand end of Figure 6.34. The above
design forn1ulae can then he used with n == 1 and B: == O~ hence

! _ ( 1 1/:2 1
Bpl - (Ve/d ) - 1 1/')

(nC pl ) -

! Bpi
BCpl == -.---.--

(Ve 1'1
(6.285)

B: == 0 (6.286)

(6.287)

(6.289)Bpi

(ill = (/J11'1 + 8 L I'1 If - ~cot I (Hi l
) + sin 1(B~I'I) (6.288)

The synthesis of the pole cavities in the two branches is illustrated in Figure 6.36.
Each shunt resonator is transfonned into its series dual. By equating the two
circuits we obtain

±WI

hi

(6.290)
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y= 0 ~ 0

hI --7 0 Yo=l
-jBpl

Yo=l Yo=l
P-jrol o 0 0

a) b) c)

~~=cE +jBpl
Yo=l Yo=l

P-Jrol 0

Figure 6.36 Synthesis o.l the pole cavltzes: (a) IOlvpass prototype; (b) dual
circuit; (c) HJaveguide circuit

The shunt reactances are realised as irises and the phase lengths (3 U I and f3 L I as
short circuited lengths of waveguide approximately half a wavelength long
using (6.287) and (6.288). To compensate for the short negative lengths of
transmission line associated with the iris susceptances lengths of waveguide
lU and lL approximating A/2 in length are included between the irises and
the main waveguide, with lUI == f3UI and lLI == f3LI·

The lengths of waveguide between the cross-coupled part of the filter
and the pole cavities are modified to take into account the phase lengths ?jJ
in the prototype, the short negative lengths of line associated with the
input and output susceptances of the body of the filter, and the inverter
associated with the pole cavity. Thus the phase length ?jJ between the front
pole cavity and the cross-coupled part of the filter in the prototype is
modified to

'if 1 I (B6I)1/)~?jJ+---cot- -
222

(6.291)
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6.5.2 Design e~xample

We shall use the sixth-degree prototype previously synthesised to design a filter
with a centre frequency of 10 GHz and a bandwidth of 40 MHz. In order to
simplify the analysis of the circuit we shall assume that the cut-off frequency of
the waveguide is zero. This reduces the equivalent circuit to a dispersionless
transmission line circuit enabling most circuit analysis packages to analyse the
network.

Thus the guide wavelengths are now given by

(6.292)

With band-edges at 9.98GHz and 10.02GHz we obtain a == 159.1549. The
susceptances in the cross-coupled part of the circuit are

B{ == K I2 == 1.0913 X 10-3

aCI

B~ == K 23 == 2.8927 X 10-3

aC2

, _ ( ) 1/2 1 _
BOI - ooCI - (ooC

1
)1/2 - 18.6838

I ( 1/2 1B 12 ==a C1C 2) - 1/2==244.733
a(C I C2 )

I B 1 -3
B CI == -C == 2.21993 x 10

a I

I B 2 -4
B C2 == -C == 1.59397 x 10

a 2

The phase lengths of the cross-coupled part are then given by

1r 1 [ -1 (B~l) . -1 I ,] °cPUI =="2 -"2 cot 2 + SIn (B} + Bcl ) == 86.8502

7r 1 [ -I (B ~ I) . -I I ,] °cPLI =="2 -"2 cot 2 + SIn (B I - Bcl ) == 86.9773

() 7r 1 [ _I (B {2) . -I I ,] °Ul==2"-"2 cot 2 +SIn (B 1 +Bc1 ) ==89.6767

() 7r 1 [ -I (B {2) . -I I ,]LI =="2 -"2 cot 2 + SIn (B 1 - B cl ) == 89.7982°

r) /, 7r 1 [ -I (B {2) . -I I ,]o/U2 =="2 -"2 cot 2 + SIn (B2 - B c2 ) == 89.6784°

(6.293)

(6.294)

(6.295)

(6.296)

(6.297)

(6.298)

(6.299)

(6.300)

(6.301)

(6.302)

(6.303)
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'l/Ju = ~ - ~ [COC! (B~2) + sin
l (B~ - B~'2)] = 89.6876

c

eU2 = ~ - ~sin! (B~ + B~2) = 89,9126°
2 2

eL2 = ~ - ~sin -1(B~ - B~'2) = 89.9217°

Each of these phases is the phase length at the midband of the filter.
Next the susceptance coupling into the pole cavities is given by

/ _ ( ) 1/2 1
BpI - aCp1 - 1/2

(aCp1 )

where

1
Cp1 ==-== 1.147576

hI

Thus

B;1 == 13.4405

The phase lengths of the pole cavities are given by

1 _1 (B; 1) . -1 ( / )
,BUI == 1r - lcot 2 - SIn B CpI

1
(

B' )-1 pI . -1( / )
,BLI == 1r - lcot 2 + SIn B Cp1

with

/ WI -3B Cp1 == - == 8.8844 x 10
a

Thus

(6.304)

(6.305)

(6.306)

(6.307)

(6.308)

(6.309)

(6.310)

(6.311 )

(6.312)

,BUI == 175.259° (6.313)

The phase lengths between the pole cavities and the cross-coupled part of the
filter are given by

1 (B' )~/)u = -52.3531 0 + 90° - 2cOC ! T = 34.592°

1 (B' )~f!L=52.3531°+90o-2COCI T = 139.298°

(6.314)

(6.315)

The simulated frequency response of the complete equivalent circuit of the filter
is shown in Figure 6.37. In a true waveguide design dispersion would cause a
slight asymmetry in the frequency response although this would hardly be
apparent in a narrowband design. To do the design example for a true
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Figure 6.37 Simulated.frequency response of an extracted pole waveguide .filter

waveguide structure we decide on a waveguide size which determines its cut-off
frequency; this then determines a and the design equations are used as above.

6.5.3 Realisation in TEoll mode cavities

Although the previous section concentrates on a rectangular waveguide realisa­
tion, the extracted pole filter is ideal for realisation with the higher Q TEoII

mode cavities. The original work by Atia and Williams [9] showed that general
transfer functions were realisable with this structure but they required both
positive and negative couplings. This required physically offset cavities which
are complicated to manufacture. The extracted pole filter only requires positive
couplings and thus complex TEoil mode filters can be realised with a simple
physical structure. It is worth noting, however, that whatever circuit synthesis
technique is used the TEoII mode is degenerate with the TE IIl mode. For a
useful filter realisation this mode must be suppressed so that no energy is trans­
ferred to or absorbed in its resonance. The degeneracy of this mode with the
TEoII mode can easily be split by introducing perturbations into the cavity. One
method is to use a non-contacting tuning plunger in the cavity. Since the TEoil

mode has no longitudinal current in the cavity walls the plunger will shift the
frequency at the TE lll mode without affecting the TEoil mode. Alternatively a
set of posts can be placed in the end plates which push the resonant frequencies
of the two modes apart. In reality the effect of a filter tuning screw in the end
plate has a similar effect.
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Figure 6.38 Degree 6 dual TEll I tnode cylindrical ~vaveguide.filter

6.6 Dual-mode waveguide filters

High performance waveguide filters with high Q cavities may take up a signifi­
cant physical volume. This is disadvantageous in many telecommunications and
space applications. One method of size reduction is to exploit the existence of
multiple degenerate modes in waveguide cavities. This was first reported by Lin
in 1951, for air cavities [10]. A complete theory for dual (two-mode) TEl In mode
waveguide bandpass filters was first reported by Atia and Williams in 1971 [II].
Since then further developments have been reported by Rhodes and Zabalawi
[12] and Cameron and Rhodes [13]. Some of the most important results will be
described in this section.

Consider the waveguide structure shown in Figure 6.38. In this structure each
waveguide cavity supports two orthogonally polarised degenerate TEll I mode
resonances. Thus a 2nth-degree filter is realisable with n cavities, giving a
significant size reduction. The modes in each cavity are coupled together
by a tuning screw or other discontinuity which is oriented at 45° to the
input iris. The two horizontally and vertically polarised modes in each cavity
are coupled to the corresponding modes in adjacent cavities by a cruciform
iris. The complete structure is known as a dual-mode in-line waveguide filter.
For obvious reasons of isolation the input and output ports are at opposite
ends of the structure.

2 3 6o ----- 0 ----- 0 ~
output

~ 0-----
input 1

0----­
4

o
5

p-'igure 6.39 Equivalent circuit of' a sixth-degree dual-n10de in-line ~vaveguide

.filter
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The equivalent circuit of the sixth-degree filter is shown in Figure 6.39. In this
diagram the circles represent nodes and the lines represent inverters. In the
bandpass case it is assumed that resonant circuits are connected from the
nodes to ground. Alternatively the diagram may also represent a lowpass proto­
type with shunt capacitors to ground at each node. The lowpass prototype for
the sixth-degree dual-mode filter is shown in Figure 6.40. Here we see that at
W == (X) the shunt capacitors short circuit to ground and since there are a mini­
mum of three inverters between input and output then there must be a minimum
of four transmission zeros at infinity. By analysis of different degrees of network
we see that for a symmetrical even-degree network of degree N == 2n with
transfer function

(6.316)

(6.318)

(6.317)

the minimum number of transmission zeros at infinity is 2m, where

N
2m == n == 2 for n even

N
2m == n + 1 == 2 + 1 for n odd

Thus a twelfth-degree filter (N == 12, n == 6) has a minimum of six transmission
zeros at infinity. This is one of the main limitations of the dual-mode in-line
structure in that there are more transmission zeros at infinity than for the
cross-coupled array.

In order to design the dual-mode filter we must synthesise a lowpass proto­
type network of the appropriate form. Once this has been done the rest of the
design is a relatively standard waveguide filter design problem. For complex
filter transfer functions it is useful to start with the cross-coupled array which
has already been described.

A sixth-degree symmetrical cross-coupled array prototype network is shown
in Figure 6.41. In this particular example there is only a single inverter between

~

input

I

2

I

4

I

3

I

5

I

6

I

~

output

Figure 6.40 Lowpass prototype for a sixth-degree dual-mode in-line filter
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1 2 3
-----;;.. 0 ----- 0 ----- 0
input

~o-----
output 6

0----­
5

o
4

Figure 6.41 Degree 6 cross-coupled array prototype.filter

input and output; thus the network only has two transmission zeros at infinity
and is not suitable for the design of a dual-mode filter. For it to be so the
inverter between nodes 1 and 6 must be eliminated. Furthermore, the dual­
mode realisation of this network would result in the input and output being
in the same physical cavity which is impractical. Thus the fundamental design
problems are to choose a cross-coupled prototype with the correct number of
transmission zeros at infinity and to transform this network into one suitable for
dual-mode in-line realisation. The starting point for the general 2nth-degree
cross-coupled array with 2,n transmission zeros at infinity is shown in
Figure 6.42.

Now the assulnption is that the lowpass prototype is symmetrical. Thus it
can be defined by its even- and odd-mode subnetworks and its even- and
odd-mode admittances Ye and Yo; Ye is a reactance function with complex
coefficients and Yo is its complex conjugate. The even-mode network for
Figure 6.44 is shown in Figure 6.43. The odd-mode network would be obtained
by replacing K rr by - KIT.

In order to transform the network into the in-line prototype form it is
first necessary to scale all the internal nodes of the network to make all the
capacitors equal to unity. This can also be accomplished for the first capacitor

nn-l

n+2

m+lmm-l
o---~o--/1 2

input

output

\2 2n+ 1 2n-m 2n-m-l n-m
0----0 - - - - -- - -- - )-----f )-----(

Figure 6.42 General cross-coupled array prototype net~vork suitable ./()r dual­
mode in-line realisation
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m+l
.---------,

jKn,n

n

m2 m-l
0

1
C1 C2T emf

0

n-l

- ~

.5L
jKn-l,n-l

Figure 6.43 Even-mode network for the cross-coupled array prototype

by introducing an extra inverter at the input of the network. The scaled network
is shown in Figure 6.44.

The nodal admittance matrix for the scaled even-mode network is then given
by

0 jK01 0 0

jKOI P+jK 11 jK I2 0

0 jK12 P +jK22 jK23
[Y] ==

p+jKn-I,n-I jKn-I,n

jKn-1,n p+jKn-I,n

(6.319)

o

KOI K12 Km,m+l

o
jKm+Lm +1

K,,-l,n

jKn-l,n-l jKn,n

Figure 6.44 Scaled even-mode network with unity capacitors
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Now K OI only acts as an impedance transformer and can be removed, leaving
the internal matrix

[Y] == p[I] +j[K] (6.320)

where [I] is the n x n identity matrix and [K] is the n x n coupling matrix

K Il K I2 0 0

K I2 K 22 K 23 0

o K 23 K 33 K 34

[K] ==
o

Kn-I,n
Kn-I,n

(6.321)

Because of the condition on the minimum number of transmission zeros at
infinity in the dual-mode in-line filter

for r == 1, ... , m - I (6.322)

Transformations can now be applied to the nodal matrix and provided they
do not affect the first row and column they will not affect the even-mode
admittance of the network. The capacitors only exist between nodes and
ground; thus the complex frequency variable p only exists on the main diagonal
of the nodal matrix. An infinite number of new matrices may be generated all
with the same transfer function, and if the matrix is post-multiplied by a matrix
[T] it must be pre-multiplied by [T]-I. This will not affect the capacitors and we
have the new matrix

[Y] == [T]-Ip[I][T] +j[T]-I [K][T]

== p[I] +j[T]-I [K][T]

The new coupling matrix is given by

[M] == [T]-I [K][T]

[T] consists of rotational or similarity transfonnations where
q

[T] == II [P]r
r=I

(6.323 )

(6.324)

(6.325)

[P] r is the matrix for a single transfornlation containing a single rotation of the
fth row and column with respect to the jth row and column, with elements

(£ -I- f, £ -I- j)

Pii == Pjj == cos(Br ) == C r

Pi,.i == - ~i, i == sin(Br) == Sr

p!!,s == 0 (£, s -I- f, j)

(6.326)

(6.327)

(6.328)

(6.329)
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For example

[PL· ==

1

o
o
o

o
COS((}r)

- sin( (}r)

o

o
sin( (}r)

cos((}r)

o

o
o
1 (6.330)

The principle of the rotational transformations is to progressively apply them
and in the process annihilate couplings until the coupling matrix of the cross­
coupled array is transformed into that for the dual-mode in-line filter. Unfortu­
nately there does not appear to be any definite pattern to the transformations
and each degree must be considered individually. For N == 4 the two types of
network are of the same physical form and the first meaningful case is for N == 6.

For the sixth-degree case the forms of the cross-coupled and in-line
circuits are as shown in Figure 6.45. The even-mode coupling matrix for the
cross-coupled network is given by inspection of Figure 6.45(a):

[K] == [~2 ;~~ K~3] (6.331)
o K 23 K 33

It is easy to see the form of the coupling matrix for the in-line filter if we redraw
it with the nodes in the same position as the cross-coupled filter (Figure 6.46).
The inverters between nodes 1 and 4 and 3 and 6 pass diagonally through
the line of symmetry. Applying positive potentials on the nodes 1 and 6 for
the even mode, we can represent the even-mode case as in Figure 6.46(b). The
coupling matrix transformation is thus

[~2
K12

~3] ~ [i12
M 12

M
13

]K22 0 M 23 (6.332)

K23 M 23 M 3333 13

1 2 3 2 3 6/
----7 0 0 0 0 0 0

~o---o---o

654

(a)

/~---~---~

(b)

Figure 6.45 Cross-coupled and in-line prototype network 0.[ degree 6
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123
-7 0---0---0

line of symmetry

~o 0 0
654

(b)

Figure 6.46 In-line prototype netvvork o.! degree 6: (a) complete circuit;
(b) even-mode circuit

The only rotation which can be applied is

[P] == [~ ~l ~l ] (6.333)
o -SI C I

From (6.324) we have

[M] = [T]-I [K][T]

= [~ :1 -:1] [K~2 ;~: K~3] [~ :1 :1 ]
o SI (~I 0 K 23 K 33 0 -SI C I

C I K I2

cfK 22 - 2S 1C 1K 23 + sfK 33

(C f - s?) K 23 - SIC I (K 33 - K 22)

(6.334)

For this to be in the same form as (6.332) M 22 must be zero. Thus

cfK 22 - 2SI C IK 23 + sfK 33 == 0

or

K 33 t? - 2K23 tl + K 22 == 0

where

t I == tan (eI )

Thus
,., 1/2

K 23 ± (K 23 - K 22 K 33)
t l == ----------

K 33

(6.335)

(6.336)

(6.337)

(6.338)
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and for the inverters to be real we have the realisability condition

K 13 2: K 22 K 33 (6.339)

which is normally true for cross-coupled networks.
The elements of (6.334) may now be simplified by substituting for tI from

(6.338) to obtain, for example,

M 33 == S~ K 22 + C~K 33 + 2S I C I K 23

== S~(K22 - K 33 ) + K 33 + 2S I C I K 23

and from (6.335)

2S I C I K 23 == C~K22 + S~K33

Therefore

(6.340)

(6.341)

(6.343)

(6.342)

M 33 == S~(K22 - K 33 ) + K 33 + C~K 22 + S~K 33

== K 22 + K 33

The complete coupling matrix is

[

0 C I K I2 SIKI2]

C I K I2 0 K 23 - K 33 t I

S I K I2 K 23 - K 33 tI K 22 - K 33

The required transformations for the eighth-degree case are shown In
Figure 6.47 and the matrix transformation is

0 K I2 0 0 0 M I2 0 M I4

K I2 K 22 K 23 0 M I2 0 K 23 0
::::} (6.344)

0 K 23 K 33 K34 0 M 23 M 33 M 34

0 0 K 34 K 44 M I4 0 M 34 M 44

To obtain the correct form for the final matrix, two transformations (3,4) and
(2,4) are used to zero the elements (2,2) and (2,4). After a little manipulation it

1 2 3 4 2 3 6 7
~0--0--0--0 ~ 0--0--0--0

I I I I~ I I I 1=
~o-- 0--0--- 0 ~ 0--0--0-- 0

8 7 6 5 1 4 5 8

1~4
0--0--0--0

I I
0--0--0--0

8~5

Figure 6.47 Eighth-degree cross-coupled and dual-mode in-line .filters



may be shown that the final matrix is given by

M I2 == C 2 K I2

M I4 == S2 K I2

M2?, == S2 (K 34 + K
44

)- - t 1

M 34 == C 2 (~22 - K 34 _ K 44
)

S2 t l t l

K 22
M?'3 == K 33 + K 44 --2- - t2

K 22M 44 ==-
Sf

where

and
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(6.345)

(6.346)

(6.347)

(6.348)

(6.349)

(6.350)

(6.351)

t
- K 22 K 34 ± [Ki2 K l4 + K 22 K 44 (Ki3 - K 22 K 33 )]I/2

1- 2K 23 - K 22 K 23

The realisability condition is

Ki2 K l4 + K 22 K 44 (Ki3 - K 22 K 33 ) 2: 0

(6.352)

(6.353)

The realisability condition restricts the possible locations of transmission zeros
in the complex plane. For an eighth-degree filter with four transmission zeros at
infinity, circuit analysis shows that the numerator of SI2(P) is given by

K22p4 + p2[K22 (Ki3 + 2Ki4 + KJ4) - K 33 Ki3]

+ [Ki4 - K33K44][K22Kl4 + K 44 (Ki3 - K 22 K 23 )] (6.354)

For most filter characteristics Kl4 - K 33 K44 is greater than zero. Thus if (6.353)
is not satisfied the numerator is of the form

x, y 2: 0 (6.355)

Thus the realisability condition is not satisfied for transmission zeros occurring
as a pair on the real axis and a pair on the imaginary axis.

Explicit solutions have also been derived for the tenth- and twelfth-degree
cases. Most filter characteristics can be realised in these cases.

6.6.1 Numerical example

As an example we will consider a degree 6 linear phase filter with four trans­
mission zeros at infinity. The lowpass prototype is a generalised Chebyshev filter
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Figure 6.48 Cross-coupled IOl1Jpass prototype linear phase .filter

with linear phase at the points of perfect transmission (Figure 6.48) [14]. The
element values are

C l == 0.9822,

C 2 == 1.3912,

C 3 == 1.9185,

K l == 0

K 2 == 0.1744

K 3 == 0.9265

(6.356)

After adding a unity impedance inverter at the input, the even-mode circuit is as
given in Figure 6.49. The admittance matrix with appropriate row and column
scaling factors to make the capacitors unity is

1 1 1
1 VCI 1 VC2 1 vC3

0 j 0 0

1
----+ j Clp j 0

VCl
1

----+ 0 j C 2 P+jK2 jVC2

1
0----+ 0 j C 3 P + jKVC3

1 1 L
c~ C2

~ C3
~

j K2 j K3

Figure 6.49 Even-mode equivalent circuit 0.[ a sixth-degree linear phase .filter



(6.358)

(6.360)

(6.359)
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0
j

0 0
(C I) 1/2

j j
0

(C1) I /2
P (C I C 2 )1/2

j 'K j
0 +.J 2

(C I C 2 )1/2
P -

(C C )1/2C 2 2 3

j 'K
0 0 +J 3

(C 2 C 3)1/2
P -

C 3

0 j 1.009 0 0

j 1.009 p jO.85547 0
(6.357)

0 jO.85547 p+jO.12536 jO.6121

0 0 jO.6121 p + jO.4829

After ignoring the input inverter the elements in the coupling matrix are

K I2 == 0.85547

K 22 == 0.12536

K 23 == 0.6121

K 33 == 0.4829

From (6.338)

K ± (K 2 K K ) 1/2
tl == 23 (23 - 22 33 == 0.1069 or 2.4282

K 33

and the realisability criterion is satisfied.
Taking the smallest value of t l and applying (6.343) we obtain

M I2 == C I K 12 == 0.8506

M I3 == S IK l2 == 0.0910

M 23 == K 23 -- K 33 t l == 0.5605

M 33 == K 22 + K 33 == 0.6083

Now from Figure 6.48 M l3 above represents M I4 in the in-line prototype. The
input coupling MOl is obtained from (6.357) and the final in-line filter with its
element values is as shown in Figure 6.50. The simulated response of a bandpass
version of this filter is shown in Figure 6.51.

6.6.2 Asymmetric realisations for dual-mode .filters

Symmetrical dual-mode in-line filters have certain limitations. There are certain
transmission zero locations for which the filters are not physically realisable,
particularly in the eighth degree case. Second, the methods cannot be used for
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6 0.5605 6 __0_.0_9_1__ 8 1.009 >

0.8506 0.6083 0.8506

~ 0 __0_.0_91__

1

0.5605
0-----
4

o
5

Figure 6.50 Sixth-degree in-line linear phase filter with element values

electrically asymmetric characteristics. Finally there is no known solution for
fourteenth-degree filters. By removing the necessity for physical symmetry a
more general procedure, operating on the entire coupling matrix of the filter,
overcomes these limitations. The only real restriction is on the minimum number
of transmission zeros at infinity, which is the same as for the symmetric filter. A
systematic procedure for the rotational matrix transformations has been devel­
oped. In this case a series of rotations is applied where the angle Or of the rth
rotation is desired from the elements of the coupling matrix from the previous
rotation. Table 6.2 shows the positions and the angles of rotation for degrees
6-14. A photograph of a typical dual-mode device is shown in Figure 6.52.

41.67

33.33

1\
/ \ 25

J \
I \

I \
/ \

.---/ \ 16.67
.\
\\\ J- 8.333

\.,,"-'- .....

"'----
.................................................... .m.... 0

1.02 1.04 1.06 1.08 1.1 GHz

-10

-20

-40

-60~-
0.9 0.92 0.94 0.96 0.98

-30

-50

521 0 ....---------.....-..---.--.....--;0- -----------------.;::......-~.-.-••_--...-----. 50 5
21

dB ns

Figure 6.51 Simulated .frequency response of a dual-mode in-line linear phase
.filter
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Table 6.2 Pivotal positions and rotation angles for general asymmetric in-line
prototype networks

Order Rotation Pivot Or == tan- 1
(kM u1 ,U2/ MV1,V2)

N number r [i,j]
U1 u2 v1 v2 k

6 [2,4] 2 5 4 5 +1

8 1 [4,6] 3 6 3 4 -1
2 [2,4] 2 7 4 7 +1
3 [3,5] 2 5 2 3 -1
4 [5,7] 4 7 4 5 -1

10 1 [4,6] 4 7 6 7 +1
2 [6,8] 3 8 3 6 -1
3 [7,9] 6 9 6 7 -1

12 1 [5,9] 4 9 4 5 -1
2 [3,5] 3 10 5 10 +1
3 [2,4] 2 5 4 5 +1
4 [6,8] 3 8 3 6 -1
5 [7,9] 6 9 6 7 -1
6 [8,10] 5 10 5 8 -1
7 [9,11] 8 11 8 9 -1

14 1 [6,10] 5 10 5 6 -1
2 [4,6] 4 11 6 11 +1
3 [7,9] 4 9 4 7 -1
4 [8,10] 7 10 7 8 -1
5 [9,11] 6 11 6 9 -1
6 [10,12] 9 12 9 10 -1
7 [5,7] 4 7 4 5 -1
8 [7,9] 6 9 6 7 -1
9 [9,11] 8 11 8 9 -1

10 [11, 13] 10 13 10 11 -1

Source: Cameron, R., Rhodes, J.D.: 'Asymmetric realisations for dual mode bandpass filters', IEEE Transactions on

Microwave Theory and Techniques, 1981, 29 (1); 1981 IEEE.

6.7 Summary

This chapter has been concerned with the design of waveguide filters to realise
various transfer functions. Initially a review of the basic theory of rectangular
and circular waveguides and waveguide resonators is presented. Next a design
procedure for waveguide bandpass filters with all-pole transfer functions is
developed, and supported with an example. More complex transfer functions
require either cross-coupled or extracted pole filters. The former enable realisa-
tion of transfer functions with real-axis transmission zeros, i.e. prototypes with
all positive couplings. The development of design procedures for these general-
ised waveguide filters is presented. The restriction of transmission zero locations
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6.52 dual-mode device
1"'''~llrt''''''=''T of Filtronic pIc)

in the real axis is removed the use of extracted pole 1:l;1.r::l-1:1Pllr111r1p

theory of which is developed and supported by an V.Ll.. .....LLLtJ.l.V.

techniques for the design of dual-mode filters are presented. It is important to
note that the extracted and dual-mode are relevant to the
dielectric resonator filters described in the ne'x't chapter.
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Chapter 7

Dielectric resonator filters

7.1 Introduction

The applications of dielectric materials at radio frequencies were first proposed
by Rayleigh in 1897 [1] who established the waveguiding properties of a
dielectric rod. In 1938, Richtmayer [2] proposed the use of dielectrics as
resonators and studied spherical and ring resonators. The first designs for
dielectric resonator filters were described by Cohn in 1968 [3], although material
properties were too poor at that time for many real filtering applications. More
recently the properties of dielectric materials have improved dramatically.
Along with the advent of satellite and cellular communications this has resulted
in an explosion in the applications for, and published material on, dielectric
resonator filters.

A dielectric resonator consists of a cylindrical, cubic or other shaped piece of
high dielectric constant material, known as a puck. In conventional operation
the puck is held by a supporting structure of low dielectric constant inside a
conducting enclosure, which does not contact the puck (Figure 7.1). Typically
the relative permittivity of the puck is between 20 and 80 and the puck is remote
from the enclosure with b 2 a. At the resonant frequency most of the electro­
magnetic energy is stored within the dielectric. The enclosure stops radiation
and because it is remote the resonant frequency is largely controlled by the
dimensions and permittivity of the puck. The fields outside the puck are
evanescent and decay rapidly with distance away from the puck. The remote­
ness of the enclosure ensures that the unloaded Qu factor is dominated by the
loss tangent of the dielectric. Very low loss dielectrics are now available,
enabling Qu factors of 50000 or lTIOre. Dielectric resonators can thus be thought
of as 'super-insulators'. Very temperature stable dielectrics now available enable
resonators to be constructed with extremely low temperature coefficients of
resonant frequency. Properties of typical dielectric materials are listed in
Table 7.1 [4].
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< 2b ---~)

conducting
enclosure

high ErPuck

I~---+---support

Figure 7.1 Cross-section of a typical dielectric resonator structure

The most important properties of a dielectric resonator are its field pattern,
Q factor, resonant frequency and spurious-free bandwidth. These depend on
the material used, the shape of the resonator and the particular resonant
mode used. The fundamental properties of single-, dual- and triple-mode
resonators and their application in filter design will be presented in this
chapter.

7.2 Dielectric rod waveguides and the TEo18 mode

The most commonly used resonator structure uses a cylindrical puck operating
in the TEo1b mode, originally described by Cohn. A simple model can be used to
describe the properties of this mode. The dielectric puck is assumed to be a
section of dielectrically loaded circular waveguide with magnetic wall boundary
conditions on its lateral surface. Energy is allowed to leak out of the flat surfaces
of the puck. The construction of this resonator is shown in Figure 7.2. Here the
dielectric puck of permittivity En radius a and height £ is centrally located in a
cavity of height £ + 2£ I .

The cylindrical puck may be considered as a truncated section of dielectric
rod waveguide as shown in Figure 7.3. Expressions for the various field compo­
nents of the modes in a dielectric rod waveguide may be obtained by solving the

Table 7.1 Properties 0.[ typical dielectric material

Material

Barium zinc tantalate
Zirconiunl tin titanate
Calcium titanate - neodymium aluminate
Calcium titanate - barium tungstate
Lanthanum zinc titanate

29
35
45
55
80

Qu at (F) GHz

48 000 (2)
16 000 (2)
30000 (1)
25 000 (0.8)

5000 (1)

Temperature
coefficient of

resonant frequency
(ppm/D)

-2 to +4
-1 to +8
-7 to +8
+6
-1 to +9
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~conducting

~ enclosure
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t _1
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Figure 7.2 C~ylindrical dielectric resonator structure

vector Helmholtz equation for the z-directed field components E::; and H::; in
cylindrical coordinates.

(\If + k
2 )E: == 0

(\If + k 2
) H::; == 0

where

(7.1 )

(7.2)

(7.3)

The analysis is somewhat involved and will not be repeated here. A detailed
presentation is given in Reference 5. There are three basic types of mode in a
dielectric rod waveguide: transverse electric (TE), transverse magnetic (TM),
and hybrid (HE) modes. The purely transverse modes exhibit circularly
symmetric field patterns with no ¢ variation. The propagation constant for
various modes has been computed as a function of frequency for a dielectric
rod enclosed in a metallic waveguide, shown in Figure 7.4.

Plots of the propagation constant versus frequency are shown in Figure 7.5
for all modes up to HE36 . Here the y axis indicates the propagation constant,
positive numbers indicating propagating waves and negative numbers cut-off
waves. Dotted lines indicate cases with complex propagation constants [6]. In
this particular structure the cut-off frequencies of the HEll and TEO! modes are

-
Figure 7.3 Dielectric rod lvaveguide

z •

-E--2a~
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--~------ conductor

~'------+---- dielectric rod

~40mm~

Figure 7.4 Dielectric rod enclosed in a metallic waveguide

1.7504GHz and 1.868 GHz. The TMol mode cuts off at 1.03 GHz. The first two
modes are generally of more interest for dielectric resonators as most of their E
field is confined to the dielectric, indicating a potentially high resonator Q
factor.
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Figure 7.5 Propagation constants for various modes in a dielectric rod enclosed
in a metallic ~vaveguide
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The transverse field components of the TEoI and HEll modes are shown in
Figure 7.6. Here we see that the TEoI mode is circularly synlmetric but the HEll
mode can support two orthogonally polarised field patterns enabling single- and
dual-mode operation respectively.

A simplified model for the TEoI mode may be constructed by observing that
the tangential nlagnetic field at the interface between a high permittivity
medium and air is approximately zero. Consider the interface shown in
Figure 7.7. Assume a plane wave is propagating in region 1 in the z direction.
It has an x-directed E field and a y-directed H field; both are tangential to the
interface between C r and co. At the interface some of the field is reflected and
some is transmitted into region 2. Denoting the forward wave in region I by A,
the reflected wave by B and the transmitted wave into region 2 by C we have in
region 1

£} == EA + £B

1
H} == -(EA - EB )

TJ

(here the exp(±j(3z) propagation is assumed) where

TJ I == (fLO)I/2
Cr

(7.4)

(7.5)

(7.6)

H field

----I
I I

'. I \ Ii

'j I I I
'I I) \1 I
I Y 0 ~ UI' ;j ij.,' I}

,I I V v I
I ! I I i I
I. I I I I

" I I I I I

I •
--~--.---

-,..,-.e:;.J?// \'''~, ....
/~PPIJU\\'~'
.... /~UIJ\J,,',
IIIQU\\'

. I'l 1\
-~

H field

\ \ , ,
'\\nhll/

"""\lOdd/;
'~'\hnd;"'/

...._~~" , /,,-,.

HEll mode

TEOI mode

E field

E field

(ifI2
I == ==:::::. -. =:
\, - - - - ~1'-:';·-- ....- - -

\ - - . ---_.- - -

~ ::.:::::::::-

Figure 7.6 Transverse E and H fie lds.for TEoI and HE}I modes in a dielectric rod
waveguide
(reproduced with permission from Kajfez, D., and Guillon, P.: '"Dielectric
Resonators' (Artech House, Norwood, MA, 1986); www.artechhouse.com)
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z

EO

region 2

interface

~r

Figure 7.7 Dielectric-air inter.[ace

In region 2

E 2 == E c

EcH 2 ==-
7]2

where

_ (f-LO)I/2
7]2 - -

cr

(7.7)

(7.8)

(7.9)

At the interface both the tangential electric and magnetic fields must be
continuous; thus

(7.10)

(7.11 )

and

1 Ec-(EA - EB ) ==-
7] 7]2

Defining the reflection coefficient T as the ratio of EB to EA we obtain

T - EB _ Jc r - 1 (7.12)
- EA - VCr + 1

Thus as C r tends to infinity E B tends to EA and there is total reflection from the
interface. In this case from (7.5) HI == 0 and the tangential magnetic field at the
interface is zero. This is analogous to an electric conductor where the tangential
electrical field would be zero. In this case the interface approximates a (physi­
cally unrealisable) ideal magnetic conductor. As an example, from (7.12) for a
dielectric constant of 45, T == 0.799. The magnetic conductor is often referred to
as a magnetic wall.

The concept of the ideal magnetic wall is used in the Cohn model [3] to
simplify the analysis of resonators operating in the TEoI mode. In this model
it is assumed that the puck consists of a dielectric rod waveguide with magnetic
wall boundary conditions. Energy is allowed to leak out of the flat surfaces of
the puck but is assumed to be still confined within the same cross-section. In
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Er magnetic
wall
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Figure 7.8 The Cohn n10del.for a dielectric resonator

other words the magnetic wall boundary condition is assumed to continue into
the air space above and below the puck until the waveguide is terminated in a
short circuit (the conducting enclosure). This is shown in Figure 7.8.

From (6.78) to (6.85) the field components for TE modes in a circular
waveguide are given by

H:; == HJn(ker) cos(n¢) exp(±rz)

jWJ-Ln .
E,. == ZTE H¢ == -2-HJn(ker) sln(n¢) exp(±rz)

ker

jWJ-L ,
Eq, = -ZTE HI' = k

c
HJn(kcr) cos(n¢) exp(±l'z)

with

Z _jWJ-L
TE--

r
and r is the propagation constant.

For the TEol mode these equations simplify to

H:; == HJo(k e r)

(7.13)

(7.14)

(7.15)

(7.16)

(7.17)

(7.18)

(7.19)

(The exp(±j(3z) dependence is assumed.) Now applying an ideal magnetic wall
boundary condition at r == a then the tangential magnetic field at r == a is zero.
Thus

H:; == 0l,.=a
Hence

(7.20)

(7.21 )
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or

and

or

k == 2.408
e a

[ ]

1/2
2 2.408 2

I = W ILOCOCr - (-a-)

(7.22)

(7.23)

(7.24)

For propagating modes in a lossless waveguide! is purely imaginary and

! ==j(3 (7.25)

For cut-off modes! is real:

[ ]

1/2
2.408 2 2

I = a = (-a-) -w ILocoC r

The wave impedance for propagating modes is

WIL
ZTE == Zp == 73

and for non-propagating modes

Z - Z _jwfLo
TE - e ---

a

(7.26)

(7.27)

(7.28)

From (7.18) we observe that the transverse field components E,t!J and H r

have a similar variation across the transverse plane, given by J 1(ker). There­
fore the dielectric rod waveguide can be described as a single-mode trans­
mission line with propagation constant (3 and characteristic impedance Zp.

Similarly the air-filled waveguides in the Cohn model can be represented by
sections of cut-off waveguide terminated in short circuits. This is shown in
Figure 7.9.

The transfer matrix of the propagating guide, looking into the circuit at the
line of symmetry, is

[T] ==

cos((3£ )

j (3 sin((3£)
WfL

jWIL sin((3£)
(3

cos((3£)

(7.29)

This IS terminated in an impedance Z L, the input impedance of the short
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Figure 7.9 Single-mode equivalent circuit of the Cohn ,nodelfor a dielectric
resonator

circuited section of cut-off guide where

jWlLo
ZL == --tanh(a£l)

a
(7.30)

(7.31 )

The circuit is terminated at both ends in short circuits so resonance occurs when
the input impedance looking in at the line of symn1etry is infinite. The input
impedance is

z. ==AZL+B
In CZL+D

Resonance occurs when the denominator of (7.31) is zero, when

(3 (f3£)-tan - tan(a£l) == 1
a 2

(7.32)

This is the resonance equation for the TEolb mode. Since tanh((~£ 1) is positive,
{3£/2 must be less then 90 0

- hence the use of 8 for a mode number as {3£ is less
then 1800 at resonance. In other words there is less than one half wavelength
variation in the transverse fields in the dielectric region at resonance. A lumped
element equivalent to the resonance would be to consider the dielectric region as
a capacitor and the air-filled region as an inductor.

The input impedance of the resonator is infinite at resonance; consequently
the transverse H field, which is analogous to current, is zero at the centre of the
resonator. Analysis of the equivalent circuit shows that H,. is a maximum at the
flat ends of the dielectric and rolls off to zero at the end conducting plates. Plots
of H r and £'1' are shown as functions of axial position in Figure 7.10. Analysis of
TM modes for the cylindrical resonator gives the resonance equation

(3 (13£)~tan 2 tanh(a£]) == -1 (7.33)

Since tanh(a£ 1) is positive, tan({3£/2) n1ust be negative and there is a b + 1
variation in the dielectric. The lowest resonant TM mode is thus the TMo1b + 1

mode which resonates at a much higher frequency than the TEolb mode.
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Figure 7.10 Transverse field variation as a function of axial position .for the
TEo18 resonator
(reproduced with permission from Kajfez, D., and Guillon, P.: 'Dielectric
Resonators' (Artech House, Norwood, MA, 1986); www.artechhouse.
com)
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Figure 7.11 Field pattern o.f the TEo18 mode



Table 7.2

Mode

TEo11l

HE 111l

HE 11h + 1

TM o11l

HE211l
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Resonant frequencies ql1110des in a dielectric resonator

Resonant frequency/MHz

990
1298
1341

1513

1575

Since the H~ component shows a similar variation with z to El/) the H field
turns round near the flat surface of the puck~ the complete field patterns are
shown in Figure 7.11.

As an example we will analyse a resonator using the resonance equation.
Consider a puck with C r == 45~ radius 2.5cm and height 2cm located centrally
in a cubic conducting enclosure of internal dimension 10 em. Thus a == 2.5 cm~

£ == 2cm and £1 == 4cm. Equation (7.32) is transcendental and must be solved
numerically~ giving a resonant frequency of 920 MHz. More accurate methods
of solving for the resonant frequency are given in References 7 and 8. Alterna­
tively one can use an EM simulator to obtain accurate results. Analysing this
example using HFSS we obtained the resonant frequencies of various modes
given in Table 7.2.

The ratio of the resonant frequencies of the fundamental mode and the first
spurious mode is 1.303 : 1. This ratio is important in filter design as it determines
the spurious-free stopband performance. The aspect ratio of the puck~ 2.5 : 1~ is
nearly optimum in this respect. However~ the spurious performance may be
improved by introducing a hole in the centre of the resonator~ forming it into
a ring (Figure 7.12) [9~ 10]. The TEo1b mode has zero E field in the centre of the
puck where other modes have finite E field. Since the dielectric acts on the E
field~ removing regions of the puck where the E field of a particular mode is

~ b ~

0 :
, ,
, ,
, ,

....1L ~ 0.4
d

Figure 7.12 Dielectric resonator lvith ilnproved spurious pel:[ormance
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strong will raise the resonant frequency of that mode. In our example we intro­
duced a 20 mm diameter hole in the puck. This raised the resonant frequency of
the first spurious mode to 1.549 GHz while the TEoll5 mode only increased slightly
to 1.027 GHz. Thus the spurious ratio increased to 1.508, a useful improvement.

It is interesting to consider the relative amounts of energy stored within the
dielectric and in the air cavity. For a resonator with C r == 38 it was reported in
Reference 11 that 97 per cent of the electric energy and 63 per cent of the
magnetic energy were stored in the dielectric puck. Furthermore, the H field
outside the puck decays exponentially with distance away from the dielectric.
Obviously the H field induces currents in the walls of the conducting enclosure
but provided they are far enough away from the puck they will have little effect
on the unloaded Qu. Typically the enclosure diameter should be double the
puck diameter for permittivities in the range 36-44.

Couplings between dielectric resonators rely on the magnetic field since there
is so little electric field in the air region. One method of coupling is via an
aperture in the common wall between two cavities, as shown in Figure 7.13.
The coupling bandwidths between resonators may be obtained experimentally
using the procedures described in Chapter 4.

A typical example of coupling bandwidth versus aperture depth d is given in
Table 7.3. In this case the cavity was an 80 mm cube, and the pucks were 50 mm
in diameter and 20 mm high with C r == 45. The aperture width w was the same as
the width of the cavity.

In cross-coupled filters we often require both positive and negative couplings.
These can be achieved by inserting a coaxial resonator vertically in the aperture

If'
d

11 0 I 1- I I
.......,.

I
a

1

puck
support

4C-<---- a----~)

8 w

coupling aperture

dielectric
puck

housing

I
H

1
Figure 7.13 Aperture coupling 0.[ dielectric resonators
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Table 7.3 Coupling bandwidth versus aperture depthfor coupledTEolb resonators

Aperture depth (mm)

30
35
40

50
80

bandwidth (MHz)

2
17
28

42
77

lV. If the resonator is resonant above the TEo18 resonance we obtain a positive
coupling. Alternatively if the resonator is tuned below the TEo18 resonance then
we obtain a negative coupling.

A picture of a typical filter is shown in Figure 7.14 and its measured
response is shown in Figure 7.15.

7.3 Dual-mode dielectric resonator filters

The earliest dual-mode dielectric resonator filters were reported in 1982
Fiedziuszko [12]. A picture of one of these filters is shown in 7.16. The
resonant mode in these devices is the HEl18 which again uses a puck supported
in a cavity. The magnetic wall waveguide model, or Cohn model, may again be

Figure 7.14 A mode dielectric reSI'Jnarlor
(courtesy of Filtronic pIc)
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Figure 7.15 Measured response 0.[ a TEol8 mode dielectric resonator filter
(courtesy of Filtronic pIc)

Figure 7.16 Dual-mode dielectric resonator filter

used to obtain an approximate resonance equation giving

/3 (/3£)~tan 2 tanh(ae l ) == 1 (7.34)
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where

[ ]

1/2
2 3.832 2

(3 = W JLOEOE r - (-a-)

[ ]

1/2
3.832 2 2

n = (-a-) W JLOEO

(7.35)

(7.36)

The HEllO mode is not the fundamental mode for a puck centred in a
conducting enclosure. Thus for a given resonant frequency the HEll/) resonator
will be larger than a TEolo resonator. However, the dual-mode resonance still
gives a significant size reduction and typically a volume reduction of 30 per cent
can be achieved for a given filter transfer function, compared with TEol /)
designs. The realisation shown in Figure 7.16 is a dual-mode in-line filter.
This can be designed using the methods described in Chapter 6. These devices
are widely used in communication satellite transponders where size, weight and
performance are all of importance. A planar version of the dual HE mode
device is reported in Reference 13. An alternative dual-mode TEol /) resonator
consisting of two intersecting cylindrical pucks is reported in Reference 14.

7.3.1 Dual-mode conductor-loaded dielectric resonator filters

In GSM cellular radio base station applications, filter requirements typically
need resonators with unloaded Q factors of 5000. These are normally realised
using coaxial resonators and are physically quite large. It is desirable to achieve
similar Q factors in a much reduced size. The normal configuration for dielectric
resonators, with a puck suspended in the middle of a conducting enclosure,
gives unloaded Q factors which are only restricted by the loss tangent of the
dielectric material. Thus very high Q factors are achieved but the size is large. A
typical cavity volume for a single TEolO resonator would be 600 cm3 for a Qu of
30000. It is possible to trade off Qu for volume reduction using the method
described in this section. First consider a cylindrical puck suspended in the
middle of a conducting enclosure. The order of resonant frequencies is TEol /)
followed by HEllO. If we now move the puck down towards the base of the
housing then the TEolO mode goes up in frequency and the HEllO goes down in
frequency. Eventually they cross over and when the puck is resting on the base
of the housing the HEllO is the lowest resonance. The two resonant frequencies
may still be quite close, however. Also the field pattern of the HEllO mode is now
distorted by the electric wall touching one of its flat surfaces. Thus we have
achieved a fundamental dual-mode resonator although the spurious perfor­
mance is quite poor. The Q factor is lowered but it is still quite high. Finally
we introduce a conductor on the top flat surface of the puck. The effect of the
conductor is to push the fundamental dual mode further down in frequency
while not significantly affecting the other mode. The resonator is known as a
conductor-loaded dielectric resonator [15] and is shown in Figure 7.17.
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(a) cross-section
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Figure 7.17 Dual-mode conductor-loaded dielectric resonator

It is interesting to consider the fields in the conductor-loaded resonator. First
we see a simulation of the magnitude of the E fields of the fundamental mode
along the axis of the puck in Figure 7.18. We can see that apart from some
fringing fields around the axis of the puck, the field intensity of the fundamental
mode is nearly constant along the axis. Now the transverse E field must be zero

7.18 Magnitude of the E field of the fundamental mode of a dual-mode
conductor-loaded dielectric resonator
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at the flat surface of the disc and at the base of the housing. Consequently, since
there is no variation along z, the transverse E field must be zero everywhere. The
resonant mode is thus extretnely similar to the TM 110 mode used to describe the
fundamental modes in microstrip patch antennas and ferrite circulators. A
simple cavity model can be derived by assuming that there is an electrical
wall on the top and bottom of the puck and a magnetic wall around its lateral
surface (Figure 7.19).

The field components for the TM 110 mode are evaluated as follows. First

H~ == Er ==E¢ == 0 (7.37)

Now there is no variation in field along Z so resonance must occur at cut-off
where f3~ == O. Now

E~ == EJ1(k e r) cos(¢)

H == L (WE 8E~ _ f38H~)
I' k~ r 8¢ 8r

j ( 8E~ f3 8H~)H¢ ==- WE-+---
k~ 8r r 8r

and with f3~ == 0

jEwE .
HI' == -2- J1 (ker) stn(¢)

rke

jWE /
H¢ == TEJI (ker) cos(¢)

e

where

k 2 k2 f32 2e == - == W J-lE

Now there is a n1agnetic wall at r == a so

Hcp==Olr=a

Hence

(7.38)

(7.39)

(7.40)

(7.41 )

(7.42)

(7.43)

(7.44)

(7.45)

magnetic
wall electric

walls

Figure 7.19 Cavity n10delfor the dual TM 110 mode
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or

k c 1.841

and the resonant frequency is given by

1

(7.46)

(7.47)

Since the mode has zero field variation along the z axis the resonant frequency
is determined by the diameter of the puck using (7.47). However, the resonant
frequency and spurious performance of the resonator are also affected by the
dimensions of the conducting enclosure. Thus equation (7.47) is not very
accurate. As an example a 40mm diameter puck with Cr 44 resonated at
900 MHz while the equation predicts 660 MHz. The field equations do,
however, give a good description of the fields in the puck.

The unloaded Q factor and spurious performance of the resonator are deter­
mined by the height of the puck. The higher the puck the higher the Qu, but
since the first spurious mode has a half wave variation along the axis of the puck
(Figure 7.20) the higher the puck the lower the spurious resonant frequency.

As an example a resonator was constructed with a puck 40 mm in diameter
and 24mm high, with a permittivity of 44 and a loss tangent of 3.3 x 10-5

, in a
silver-plated cavity with internal dimensions 65 mm x 65 mm x 40 mm. The
silver-plated aluminium disc was 35 mm in diameter and 3mm thick, to reduce
losses due to current flow in the edge of the disc. The fundamental resonant
frequency was 930 MHz with a Qu of 6300. A TEM resonator constructed in the
same physical volume would have a Qu of approximately 5200. Scaling all the
dimensions of the resonator to half the above gives a Qu factor of 4000 at
1.86GHz.

Figure 7.20 H field of the first spurious mode along the axis of the puck
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Table 7.4 and coupling bandwidths for the

Resonator Resonant frequency (MHz) Coupling bandwidth (MHz)

1 924.68 0,1 25.34 1, 2 30.76

2 951.50 0, 2 17.89 2, 3 25.20

3 944.85 3, 4 20.73

4 943.99 4, 5 20.19

5 943.85 5, 6 20.46

6 944.59 6, 7 24.25

7 950.69 8 31.03 7, 9 11.65

8 927.53 8, 9 30.08

The spurious performance of the resonator was limited by the 11 mode
which resonated at 370 MHz above the fundamental mode. The spurious
performance may be improved introducing a hole along the axis of the
puck. An optimised resonator with a circular hole exhibited a fundamental
resonance of 919 MHz with the first spurious mode at 1420 MHz.

This of resonator is useful for cellular base station filtering applications.
As an a GSM base station filter was designed. This had a
925-960 MHz passband with stopband rejection of 80 dB at 915 MHz. This
required an eight-pole generalised Chebyshev filter with two transmission
zeros on the low side of the passband. The prototype network was synthesised
with cross-couplings from the input node to the second resonator and from the
output node to the seventh resonator. Synthesis of this type of asymmetric

Figure 7.21 Dual-mode base station filter
(Reproduced courtesy of Filtronic pIc).
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Figure 7.22 Measured performance 0.[ the dual-mode base station .filter

generalised filter has been described in Chapter 3. The resonant frequencies and
coupling bandwidths of the bandpass filter were as given in Table 7.4. A
photograph of the filter is shown in Figure 7.21. Here we can see that the
input and output feeds are inclined relative to the two modes. This has
the effect of introducing a cross-coupling by coupling into the first two modes
simultaneously. The measured performance of the filter is shown in Figure 7.22.

7.4 Triple-mode dielectric resonator filters

Triply degenerate resonances occur in structures with symmetry in all three
dimensions such as spheres and cubes. Initially we shall consider spherical reso­
nators which, because of their very special symmetry, can be analysed exactly.
These will then be compared with cubic resonators (which are easier to manu­
facture) and then a design procedure for triple-mode filters will be described.

7.4.1 Spherical dielectric resonators

Field solutions for spherical resonators are obtained by solving Maxwell's
equations in spherical coordinates, r, (), ¢. General solutions are given by



(7.48)
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Stratton [16]. In our case we will assume axial symmetry. For TE modes the
Helmholtz equation in spherical coordinates is given by

8
2

1 8 { 1 8 . } 2
8r 2 (rE¢) + r2 8B sin(B) 8B [rE¢sm(B)] + K (rE¢) = 0

A solution may be obtained by separation of variables if

rE¢ == R(r)B(B)

where

B(B) == Pf~ [cos(B)]

Pf~ [cos(B)] are the nth-degree Legendre polynomials given by

P~[cos(B)] == 0

P{[cos(B)] == sin(B)

P~ [cos(B)] == 3 sin(B) cos(B)

etc. and

(7.49)

(7.50)

(7.51 )

(7.52)

(7.53)

(7.54)

where I n + 1/2 and N n + 1/2 are half-integral-order or spherical Bessel functions of
the first and second kind respectively, e.g.

(
2 )1/2

J I / 2 (x) ==::- sin(x)
IiX

(
2 )1/2

N I/2(X) == - 7fX cos (X)

(
2 )1/2 [sin(X) ]J3/2(X) == - --~- - COS(X)

7fX ~X

(
2 )1/2[ COS(X)]N3/2(X)== - sin(x)+--~--

7fX x

(7.55)

(7.56)

(7.57)

(7.58)

The field solutions for symn1etric TE and TM modes may be given in terms of
linear combinations of the J and N functions.

where Zn+ 1/2 is a spherical Hankel function, and for TE modes

H I

E¢ = ylrPn[cos(B)]Zn-j 1/2(kr)

j H P,~ [cos(B)]
He == 3/2 [nZn+ 1/2(kr) - krZn -l/2(kr)]

wf-Lr-

(7.59)

(7.60)

(7.61 )
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-.iHnZ n+I/2(kr) f f [ ]}H r == 3/2 . {cos(B) Pn[cos(B)] - Pn+ I cos(B)
wfJr sln(B)

(7.62)

(7.63 )

(7.65)

(7.64)

These solutions siinplify if the origin is included in the structure since the second
type of spherical Bessel function has a singularity at the origin and cannot be
included in the solution. The lowest order TE mode is the TEoI mode, which for
solutions including the origin has field components

_ -2jHcos(B) [sin(.kr) _ (k)]
H r - 2 ! k cos rk r~ r

_jH.sin(B) [(kr)2 -1 . (k ) (k~)]Hg - ') 2 k sIn r + cos 1
k~r r

_ - H sin(B) [sin(kr) _ (k)]
Ecj) - k k cos r

~r r

Now consider the spherical dielectric resonator shown in Figure 7.23. The
resonator structure consists of a spherical puck of radius a and permittivity e r

enclosed in an air-filled conducting enclosure of radius b. To a first degree of
approximation we can assume that the surface of the dielectric sphere can be
represented by a perfect magnetic conductor. Thus

Hg==Olr=a (7.66)

(7.67)

and from (7.64)

ka
tan(ka) == . 2

1 - (ka)

Solving this numerically we find ka ~ 2.74 and the resonant frequency is
approximated by

1.31 x 10
g

Fa == (7.68)
aVer

As an example, for e r == 44 and a == 3.1 cm we obtain a resonant frequency of
637MHz.

spherical puck ----+-~~/"

Figure 7.23 Spherical dielectric resonator

(spherical)
\ ~-I---- conducting

enclosure
2b
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A perfectly accurate expression for resonant frequency can be obtained by
allowing the fields to leak out of the resonator into the air space and considering
the whole structure. The resonator may then be considered as a cascade of two
spherical transmission lines.

A spherical transmission line may be used as the single-mode equivalent
circuit between two spherical surfaces at different radial points. Since the sphe­
rical resonator is perfectly symmetrical the spherical transmission line may be
considered as a one-dimensional (radial) structure connecting modal voltages
and currents which are related to the transverse fields.

The transfer matrix of a spherical transmission line is given by

(7.69)

(7.70)

where the relationship between transverse fields and voltages and currents is
given by

E( (r, 0, ¢) = V (r) e (0, ¢)
r

H((r, 0, ¢) = I(r)h(O, ¢)
r

(7.71 )

(7.72)

(7.73)

(7.74)

(7.75)

(7.76)

(7.77)

(7.78)

(7.79)

From (7.64) and (7.65) the transverse functions e and h are identified for the
TEol mode, thus justifying a transmission line equivalent circuit. For TE modes
the ABCD paran1eters are [17]

A ~ In(krl )N,~(kr2) - Nn(krl) J,'z(kr2)

B ~jZo[Nn(kr2)Jn(krl) - In(kr2)Nn(krl)]

C ~jYo[N,'z(kr2)Jn(krl) - J,'z(kr2)N,'z(krl)]

D ~ I n(k r2) N ,'z (k r1) - Nn(k r2) J,'z (krI)

and for TM modes

A ~ In(kr2)N,'z(krl) - Nn(kr2) J,'z(krl)

B ~jZo[N,'z(kr2)J,'z(krl) - J,'z(kr2)N,'z(krl)]

C ~ jYo[Nn(kr 2) In(krl) - In(kr2) Nn(krl)]

D ~ I n (k r I ) IV,'z (k r2) - Nil (k r I ) J,'z (k r2)

where Zo is the characteristic impedance of free space in the medium.
In regions which contain the origin the N functions cannot exist and we have,

for TE modes,

V(r) ~ / In(kr)

1(r) ~jY()1j,'z(kr)

(7.80)

(7.81 )
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and, for TM modes,

V(r) ==jZoIJ~(kr)

I(r) == IJn(kr)

(7.82)

(7.83)

The functions In(x) and Nn(x) are similar to the spherical Bessel functions, e.g.

Jo(x) == sin(x)

A sin(x)
J 1(x) == - cos(x) +-­

x

No(x) == - cos(x)

A • cos(x)
N 1ex) == - sln(x) +-­

x

(7.84)

(7.85)

(7.86)

(7.87)

The equivalent circuit of the dielectric resonator consists of a cascade of two
spherical waveguides (Figure 7.24). The resonance condition is thus

(7.88)

where Yl is given by the ratio of current to voltage from (7.80) and (7.81), or
(7.82) and (7.83). Y2 is the input impedance of a short circuited section of
spherical waveguide of length b - a. Thus

DIY2 ==-
B r1 =a, r2=b

The resonance equations for TE and TM modes are then given by

J'(ka)N(kb) - N'(ka)J(kb) JErJ,~(kJEra)
A A A A +--A----

N(kb)J(ka) - J(kb)N(ka) J~(kJEra)

N(ka)J'(kb) - J(ka)N'(kb) JcrJn(kJc r a)

N'(kb)J'(ka) - J'(kb)N'(ka) J,~(kJEra)

(7.89)

(7.90)

(7.91)

a

r=a
:/surface of dielectric

, < b-a

EO

r=b

Figure 7.24 Equivalent circuit 0.1 a spherical dielectric resonator
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respectively. Taking the previous numerical example with C r == 44, a == 3.1 cm
and b == 6.2 cm we obtain resonant frequencies of 754.4 MHz and 1000 MHz for
the lowest ordered TE and TM modes. The analysis is exact and agrees with
experimental data and field simulations using finite element analysis. This is one
of the few complex structures that is solvable by simple equations.

The variation of transverse field intensity along the (radial) direction of
propagation may be obtained by analysing the equivalent circuit of the spherical
dielectric resonator. We have for the TE modes, for 0 ::; r ::; a,

v(r) == in (k vic r r)

() .iVcr I (V )1 r == 377 in k C r r

with

(7.92)

(7.93)

E t == V(r)/r

H t == I(r)/r

and, for r == b,

V(b) == 0

(7.94)

(7.95)

(7.96)

For a < r ::; b

[
v(r)]
I(r) [

A (r, b) jB(r, b)] [ 0 ]
jC(r, b) D(r, b) I(b)

(7.97)
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Therefore

V(r) ~jB(r, b)I(b)

and

Therefore

Hence

V(r) B(r, b)In(k VCr a)
E t ~ -- ~------

r rB(a, b)

Similarly

I(r) jJcr J:Z(kJc r a)D(r, b)
H t ~ -r- ~ 377 D(a, b)

conducting
enclosure

(7.98)

(7.99)

(7.100)

(7.101)

(7.102)

!
l
I

/

\

Figure 7.26 Efield of'a TEo1c5 + 1 spherical dielectric resonator
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/

Figure 7.28 H field 0.[ a TEo18 + 1 spherical dielectric resonator

flat surfaces of the cylinder. The difference in mode numbers thus arises from a
difference in coordinate system rather than field pattern. It is also important to
realise that we are only looking at one of the three degenerate modes; the other
two have orthogonal polarisations.

The ratio of spurious frequency to fundamental in the spherical resonator is
1.32 : 1. This may be improved, as before, by introducing a hole into the centre
of the puck. This will increase the ratio to 1.4 : 1. It is also interesting to note that
the resonant frequency of such a structure can be evaluated by the transfer
matrix procedure described here. The equivalent circuit would then consist of
a cascade of three spherical transmission lines rather than two.

7.4.2 Cubic dielectric resonators

The spherical resonator has a nice simple structure with perfect symmetry,
which is easy to analyse in terms of spherical waveguide modes. This yields
exact expressions for resonant frequency and field patterns. Furthermore it
has a reasonably good spurious-free bandwidth. Unfortunately it is difficult
to manufacture in large volumes at low cost. This is because ceramic processing
normally involves powder pressing which is easier to do on objects with flat
surfaces. A cubic puck is a more practical shape.
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Figure 7.29 of the H.field of a TEo18 + 1 evnl'101l"1/'/'Y/ dielectric resonator

cubic puck

~<----b > cubic
conducting
enclosure

7.30 Cubic dielectric resonator
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(7.104)

Figure 7.30 shows a cubic dielectric resonator consisting of a cubic puck
suspended centrally in a cubic conducting enclosure. It is not possible to derive
a simple exact expression for the resonant frequency; however, an approximate
Cohn model can be developed. First because of symmetry we can assume an
arbitrary direction for the z axis of the cube. The resonator will behave
identically for the three degenerate modes along the x, y and z axes. Second,
we assume as before that dielectric-air interfaces on surfaces parallel to the z
axis are ideal magnetic conductors. Fields are allowed to leak out of the flat
surfaces which are normal to z, and as before the magnetic conductors are
extended to the top and bottom surfaces (Figure 7.31).

The equivalent circuit is thus similar to that for the cylindrical resonator
except that the propagation constants and characteristic impedances are
different. The Helmholtz equation for TE modes is

\l?;H:; == -k~ H:; (7.103)

For magnetic wall boundary conditions

H:; == 0lx=o,x=P
y=O,y=P

Hence

. (n11rX) . (n1rY)H:; == ESIn -g- SIn -g- exp(±,z)

The lowest order non-zero mode is the TEll mode and

, == k~ - W2tLE

Thus for propagating waves in the dielectric

, ==.iIJ == [W2ILOEOEr - 2(1r/g)2JI/2

(7.105)

(7.106)

(7.107)

x

,// ///IE-- magnetic
wall

Figure 7.31 Cohn !nodel.for a cubic dielectric resonator
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and for non-propagating waves in the air region

! == a == [2(1f/£)2 - W2/LocO]1/2 (7.108)

The characteristic impedance is

E r -jWIL (7.109)Zo ==-" ==--
Hx !

The characteristic impedances in the propagating and non-propagating regions
are

(7.110)

(7.111)

The resonance equation is thus given by

£tan(~fI) tanh(afl 1) = 1 (7.112)

This is identical to the resonance equation for the TE01b mode in cylindrical
resonators, except with different values for j3 and a. The variation in transverse
fields with axial position is the same as for the TE01b mode. Thus the mode is
very similar to the TEoib cylindrical mode and TE01b + 1 spherical mode. Analysis
ofTM modes in the cube shows that the lowest order mode is the TM 1lb+ I with
a higher resonant frequency than the TE mode. Thus we can say that the TE
mode, designated TE llb cartesian, is the fundamental resonant mode in a cubic
dielectric resonator.

A resonator has been constructed using ZTS ceramic with C r == 36, £ == 2.5 cm
and £1 == 2.7 cm.The measured resonant frequency of the fundamental mode
was 1.67 GHz. Solution of (7.112) yields a frequency of 1.575 GHz, indicating a
similar accuracy to the Cohn model for the cylindrical resonator. The measured
Q factor of 23 000 is similar to that for cylindrical and spherical resonators of
the same physical size. The temperature stability of the resonator was almost
identical for each of the three degenerate modes with a value of 1.5 kHzjOC. This
is very desirable for narrowband applications.

7.4.3 Design 0.1 triple-mode dielectric resonator reflection ~filters

A triple-mode resonator may be excited by an input probe which couples into
one of three degenerate modes. If we assume that there are no non-adjacent
couplings then the equivalent circuit of the resonator is a simple one-port ladder
network. Alternatively there may indeed be non-adjacent couplings giving a
more complex cross-coupled equivalent circuit. These situations are shown in
Figure 7.32 where circles represent resonators and lines represent inverters.

Typical specifications for narrowband low loss filters usually require
generalised Chebyshev transfer functions with arbitrary transmission zero
locations. As an example a cross-coupled ladder network of degree 6 is
shown in Figure 7.33. With this network it is possible to realise transfer
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O_K_Ol 0 _K_l_2 0 _K_2_3 0

012 3

(a)

~
o KOl 0 K12 ~

o~ 2 K13 3

K03

(b)

Figure 7.32 One-port equivalent circuitsfor triple-mode resonators: (a) without
non-adjacent couplings; (b) with non-adjacent couplings

0 KOI 1 K12 2 K23 3
---7 0 0 0 0
input

K34

-E------ 0
K67

0
K56

0
K45

0
output 7 6 5 4

Figure 7.33 Symlnetrical cross-coupled prototype network

K13 K46

0
KOI o~o K34~

0o 0 0
0 1 2 3 4 5 6 7

Figure 7.34 Cross-coupled prototype with two .finite real.frequency transmission
zeros

functions with all transmission zeros at finite frequencies such as elliptic func­
tion filters.

A triple-mode realisation of this prototype is quite a challenge! Multiple
couplings between modes in different cavities would be required and it would
be hard to eliminate unwanted couplings. A less complicated realisation is
possible using the network shown in Figure 7.34. In this case there is only
one coupling between a pair of cavities and the realisation is feasible. However,
the choice of transmission zero locations has been restricted.
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OU:U1_~_2__ b I_Y_e__I

'" even and odd
~ mode subnetworks
/ of a bandpass

/ filter

1 0 __~_2-- 7 1r---_y=o===1

J \ 3 dB hybrid constructed
input from inverters

Figure 7.35 Hybrid re.flection mode bandstop .filter

An alternative approach is to use the hybrid reflection mode filter [18] shown
in Figure 7.35. The hybrid reflection mode filter enables a simple realisation of
all the transfer functions realisable by the network shown in Figure 7.33. It
consists of a 3 dB quadrature hybrid with networks Yc and Yo connected to
nodes 3 and 4. Ye and Yo are the even- and odd-mode subnetworks of a band­
pass filter which is normally realised using the network shown in Figure 7.33.
The complete device is a two-port network with input and output ports at nodes
1 and 2. The analysis of this circuit is relatively straightforward.

Consider an input signal of unity amplitude applied at port 1 of the hybrid.
This will produce outputs j / J2 at port 3 and 1/J2 at port 4. These signals will
then reflect off the even- and odd-mode subnetworks producing an output at
port 2 of

Sl2 = 4(Fo + Fe)

and an output at port 1 of

SII == !(ro - re) (7.114)

where r e and r 0 are the reflection coefficients of networks Ye and Yo, with

Y - 1r ==_c__
e Yc + 1

r == Yo - 1
o Yo + 1

Hence

(7.115)

(7.116)

(7.117)
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and

(7.118)

(7.119)

(7.120)

Now a symmetrical two-port network such as Figure 7.33 with scattering
parameters S {I and S {2 can be described in terms of its even- and odd-mode
admittances by

/ YeYo - 1
Sll = (1 + Ye)(l + Yo)

/ Ye - Yo
SI2 == -----­

(1 + Ye)(1 + Yo)

Thus

Sll == S{2

SI2 ==jS{I

(7.121)

(7.122)

Apart from a 900 phase shift the reflection and transmission functions of the
original bandpass filter and the reflection filter are interchanged. In other words
the transmission function of the hybrid filter is a bandstop filter exactly equal to
the reflection function of the original bandpass filter.

Furthermore, we can also create a bandpass transmission function by insert­
ing an inverter between port 3 of the hybrid and Ye (Figure 7.36). Thus signals
at port 3 of the hybrid experience an additional 1800 of phase shift and the sign
of Fe in equations (7.113)-(7.114) is reversed; hence

SII == S{I

S12 ==jS{2

outputI "2 3

20 -----0

/ ~dditional

/' I mverter

1 I Yo I

(7.123)

(7.124)

~2
10-----

inPuJ

Figure 7.36 Hybrid reflection mode bandpass .filter
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o KOI 1 K 12 2 K23 3
0----0 ----- 0 ----- 0

(7.125)

Figure 7.37 Even- and odd-lnode subnetlvorks o.f the cross-coupled prototype

Thus provided that the even- and odd-mode subnetworks can be constructed
then either a bandpass or bandstop filter may be constructed using the same
physical hardware.

The even- and odd-mode subnetworks of the cross-coupled prototype
network of Figure 7.33 are shown in Figure 7.37. These even- and odd-mode
networks are simple third-order one-port ladder networks identical in form to
the simplest equivalent circuit of the triple-mode resonator. The three shunt
reactances at nodes 1-3 may be absorbed by tuning the resonant frequencies of
the resonators. The even-mode resonators will be tuned up and the odd-mode
resonators will be tuned down in frequency for positive Ks. Consequently a
degree 6 cross-coupled filter may be constructed by realising the even- and odd­
mode subnetworks as separate triple-mode resonators.

7.4.4 Design e~xample

The design of a bandstop filter will now be described. The filter specification is
based on a cellular radio base station application for separating A and B opera­
tors in the AMPS band. The filter specification was for a centre frequency of
845.75 MHz, a 1.5 dB passband of less than 1.5 MHz and a 20 dB stopband of
greater than 1.1 MHz. The specification can be realised by a degree 6 elliptic
function filter with

S ·w 2 _ FJ(w)
[ 11(/ )[ - 1 +FJ(w)

In this application it is convenient to choose the stopband insertion loss level to
be equal to the passband return loss level. Thus

Thus

F~(w) == I/F~(I/w)

and

(7.126)

(7.127)

(7.128)
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For a 22dB return loss we have WI == 0.36492, W2 == 0.8155 and W3 == 0.94835.
Forming SII (p) and S12 (p) by taking the left-hand plane zeros of 1 + F~(w)

we obtain

N(p) 0.9968p6 + 1.6922p4 + 0.8039p2 + 0.0794
SII (p) = D(p) = p6 + 1.992p 5 + 3.734p 4 + 4.025p 3 + 3.7347p 2 + 1.992p + 1

(7.129)

(P)
_j(0.0794p6 + 0.8039p 4 + 1.6922p2 + 0.9968)

S12 ~ D(p)

The multiplication of SI2(P) by j ensures that Yo == Yc*' Now

\s ( ) 1 - Ye Yo
11 p == (1 + Ye)(l + Yo)

and

Ye - Yo
Sdp) = (1 + Ye)(l + Yo)

Thus

Hence

y _ 1 - Sl1 + S12
e - 1 + SII - S12

and

25.1499jp 3 - 15.6939p 2 + 29.2789j - 18.490
Ye == ----------------

p3 + 25.7124jp 2 - 7.0843p + 17.0766j

(7.130)

(7.131)

(7.132)

(7.133)

(7.134)

(7.135)

Ye can be synthesised using a continued fraction expansion into a ladder
network composed of capacitors, invariant reactances and inverters. The
network is shown in Figure 7.38 with element values

Bo == 25.1499, B 1 == 0.040229

B 2 == -580.807, B 3 == 0.00556

C1 == 0.0015848, C 2 == 1034.60, C 3 == 0.006376

(7.136)

The shunt frequency invariant reactance at the input to each subnetwork is
not associated with a resonator. This may be realised as a shunt capacitor or
capacitor or more elegantly it may be absorbed into a phase shifter. Consider
the network shown in Figure 7.39. This shows the input part of the even- and
odd-mode subnetworks. This may be equated to a phase shifter followed by an
inverter, as follows.
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±BO~ ±B}

Figure 7.38 Synthesised even- and odd-mode subnetworks.for a degree 6 elliptic
function .filter

The transfer matrix of the first network is given by

(7.137)

0] [0 j] [1 0]
1 j 0 jB{ 1

j ]
-Bo

[T] ~ [ 1
jBo

[

-B{

- j(1 - BoB{)

and for the second network

jK cos(1jJ)

[

COS (1jJ) j sin(1jJ)] [0 j 10K]
[T] = jsin('ljJ) cos('ljJ) jK

-Ksin('ljJ) jcos('ljJ)
K

- sin(1jJ)
K

(7.138)

Now equating the two matrices, from the B parameter, cos(1jJ) ~ K; thus from

ti. ~

\V K

0- f'\

Figure 7.39 Renloval o.f input shunt reactances
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the D parameters

(I - K 2)1/2
K == Bo

Therefore

I
K==---~

(1 + B5)1/2

and

sin('ljJ) == [1 - cos2('ljJ)] 1/2

== (I - K 2)1/2

Bo

(7.139)

(7.140)

(7.141)

Therefore

'ljJ - sin-I [ B0
] (7. 142)

- (1 + B&)1/2

and from the A parameter

B{ == K sin( 'ljJ)

Bo (7.143)
I +BJ

Bo has now been removed and B{ can be absorbed into the first reactance B 1.
The final network is as shown in Figure 7.40.

The value of 'ljJ in this example is 87.72° for the even-mode network and
-87.82° for the odd-mode network. Only the difference between 'ljJe and 'ljJo is
important and this is integrated into the hybrid circuit. The lowpass prototype
even- and odd-mode networks are transferred into bandpass circuits using
techniques described in Chapter 4.

The simulated frequency response of the complete filter is shown in Figure 7.41.
The 3 dB hybrid may be constructed using TEM low loss transmission lines with
a reasonable ground plane spacing. The construction of the cubic resonator
assembly is shown in Figure 7.42. The measured performance of the prototype
device using E f == 44 resonators with Qu == 28000 is shown in Figure 7.43.

o

K etc.

Figure 7.40 The final even- and odd-mode networks
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Figure 7.41 Sinlulatedfrequency response 0.[ a hybrid reflection mode bandstop
filter (assumed lossless)

7.5 Dielectric-loaded filters

The application of high permittivity ceramics is not restricted to dielectric reso­
nator filters. They may also be used to miniaturise conventional filters by
partially or completely loading TEM and waveguide resonators with ceramic
[19, 20]. For example, a TEM wave has a free space quarter wavelength at

tuning
discs

~housing

,/plastic
I? screw

coupling I to 2

• input
coupling ......._~......._..,A--....L&.._----'

loop J1
coupling 2 to 3 alumina

TOP VIEW support FRONT VIEW

Figure 7.42 Construction 0.[ a triple-mode resonator
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Figure 7.43 Measured performance 0.[ a triple-mode reflection .filter
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Figure 7.44 Dielectric-loaded TEM coupled-line structure

1GHz of 7.5 cm. If the wave is propagating in a dielectric medium the wave­
length is reduced by the square root of the permittivity and for Cr == 80 the
1GHz quarter wavelength reduces to 8.385 mm.

Consider the structure shown in Figure 7.44. This structure consists of a
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Figure 7.45 Equivalent circuit 0.[ the TEM coupled-line structure

rectangular block of high permittivity ceramic with circular holes introduced
between the ground planes b in the direction a. The entire structure is metallised,
apart from small regions round one end of the circular holes. The interiors of the
holes are also metallised and so they form an array of coupled TEM transmis­
sion lines which are open circuited at one end and short circuited at the other
end. The equivalent circuit is shown in Figure 7.45.

Since the dielectric is homogeneous all the phase velocities of the lines are
equal and the circuit is an all-stop structure. One could introduce capacitors
between the open circuited ends of the lines and ground as in the combline filter.
However, this is difficult to do and it is preferable to have a single integrated
structure. Alternatively one can alternate the shorts and open circuits between
opposite ends of the lines so that the structure becomes an interdigital filter. In
this case the device has a definite passband but the couplings are so strong that
for narrow bandwidths the holes would have to be physically far apart. Alter­
natively we can introduce a discontinuity into the structure such that the dielec­
tric loading is not homogeneous and the even- and odd-mode phase velocities
are different. For example we can introduce a layer of lower dielectric constant
on one of the flat surfaces as shown in Figure 7.46.

In this case the E r2 layer could be a printed circuit which is used to interface
with the outside world. c r2 would then be much less then cr 1 and if we examine
the even and odd modes of a pair of coupled lines we see that the even-mode
phase velocity will be less than the odd-mode phase velocity. This is shown in
Figure 7.47.

BT2

v///~--conductor

Erl

Figure 7.46 TEM coupled-line structure lvith inhomogeneous dielectric loading
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~ line of symmetry

o 0
electrical wall

even
mode
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magnetic wall

odd
mode

electrical wall

@J

Figure 7.47 Even and odd modes 0.[ a coupled-line structure

In general an inhomogeneous dielectric structure cannot support a pure TEM
mode. There will always be some longitudinal field components and therefore
TEM equivalent circuits are not strictly valid. However, they are a reasonable
approximation over narrow bandwidths and the pair of coupled inhomoge­
neous lines may be approximated by the pi equivalent circuit shown in Figure
7.48.

The values of Yoe ' Yoo ' ()e and ()o may be obtained for a particular set of
dimensions and dielectric constants by electromagnetic field simulations.

Examining Figure 7.48 we see that the series branch is a parallel tuned circuit.

Yo-Ye
-2-

Figure 7.48 Approximate equivalent circuit 0.[ inhomogeneous coupled lines
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O---r-----y--I

Figure 7.49 Equivalent circuit of a dielectric-loaded TEM filter of'degree 3

For ()e and ()o less then 90° the values of tan( ()e) and tan(()o) are both positive.
Thus the element Yoo /2 is inductive and the element - Yoe /2 is capacitive.
Consequently the series coupling branch will resonate below the resonant
frequency of the shunt stubs.

The series coupling branches produce transmission zeros below the centre
frequency of the passband at a frequency given by

(7.144)

The shunt elements resonate with ()e == 1r/2.
The lumped element equivalent circuit of a device with N holes is an nth­

degree network with a single transmission zero at infinity and the remaining
N - 1 transmission zeros at real frequencies on the low side of the passband
(Figure 7.49).

This type of network may be designed using the asymmetric generalised
Chebyshev lowpass prototype described in Chapter 3, as shown in
Figure 7.50. The prototype network can be converted into a bandpass network
by applying the conventional lumped bandpass transformation:

(w wo)
w ---+ a Wo --::; (7.145)

After the transformation the bandpass network is as shown in Figure 7.51. This
circuit may be equated to the purely lumped circuit of Figure 7.49 by equating
the resonant frequencies and reactance slopes of the resonators.

Having designed a bandpass prototype we know the resonant frequencies
and bandwidths of all the resonators. The series resonators are at arbitrary

Figure 7.50 Asymmetric lo»pass prototype
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Figure 7.51 Bandpass transformed asymmetric filter

frequencies above or below the passband whereas the natural series resonances
in the ceramic block all occur below the passband. We require a method of
adjusting the transmission zero frequencies by adjusting these resonant frequen­
cies. This may be achieved by introducing capacitive or inductive coupling
between resonators as shown in Figure 7.52. The capacitive probe between
two resonators is achieved by removing metallisation on the surface of the filter
leaving a floating strip which couples across the resonators. Inductive coupling
can be achieved by grounding the central part of this strip.

An exploded view of a typical ceramic TEM diplexer for the AMPS band is
shown in Figure 7.53. Its measured performance is shown in Figure 7.54.

7.5.1 Dielectric-loaded waveguide filters

A dielectric-loaded waveguide resonator has an unloaded Qu which is at least
double the value for a TEM resonator of the same physical size and resonant

resonator

(a)
capacitive

metallisation removed

(b) .-.
inductive ~

Figure 7.52 Capacitive and inductive couplings in the ceramic block
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Figure 7.53 A typical ceramic TEM diplexer
(courtesy of Filtronic pIc)

insertion loss/dB
return loss/dB

D7-P7/Atk2.1RX 86~OOOOO~ MHz
2

1~ \ - l<- 1 -26.533 dB

\ r;(; I 824 MHz
0 2 -15.647 dB

\ / "\ !2 7f 'IS~ \1 \ 41_17~~~Jh
0 894 MHz

~ V2i~J '4 \0 1

\
0 - t

~
IJ 2

\ /
~

0 Ii

I \t \( ~;.~ ~.~ -fz

0
89 (

V V 4 1 l t~ 1\ f-I

J1i Hz0

0

o

6

8

4

2

7

5

790 810 830 850 870 890 910 930 950 970 990
frequency/MHz

Figure 7.54 Measured performance 0.1 a typical ceramic TEM diplexer
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Figure 7.55 Centrally dielectric-loaded waveguide cavity

frequency. This is because the TEM resonator has current concentration in
the centre conductor where most of the loss occurs. Although it is possible to
construct dielectric waveguide filters from metallised slabs of dielectric [21] it
is useful to limit the loading to E-plane dielectric slabs. By restricting
the dielectric loading to the centre region of the yz plane most of the size
reduction can be achieved while the amount of dielectric used is reduced
dramatically.

As an example a silver-plated cavity with dimensions 20mm x 20mm x 9mm,
loaded with a slab of ceramic with Cf 44 and dimensions 7.7 mm x 7.7 mm x
9 mm, achieves a Q factor of 3000 at 2 GHz. The resonant mode is a slightly
distorted version of the TE101 mode. Ninety-nine per cent of the E field and
27.26 per cent of the H field are stored in the dielectric; thus the magnetic
fields must be used for coupling resonators in filters. A six-pole filter with

Figure 7.56 Dielectric-loaded waveguide
couplings
i l' ..... llrtAc'\' of Filtronic pIc)

~vith six poles and two cross
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Figure 7.57 Measured performance 0.[ a six-pole.filter with cross-couplings

cross-couplings has been constructed [22] (Figure 7.56). Its measured perfor­
mance is shown in Figure 7.57.

7.6 Summary

This chapter has been concerned with the theory of the design of filters using
resonators which are constructed using low loss high permittivity ceramics.
Initially the fundamentals of modes in dielectric rod waveguides are discussed.
This is followed by the derivation of the simple Cohn model for the TEo1b mode
dielectric resonator. An example of a filter using these resonators is presented.
Next a discussion of dual-mode in-line dielectric filters is followed by details of
the design of dual-mode conductor-loaded dielectric resonators. These find
application in cellular radio base stations and a design example is presented.
The use of triple-mode resonators enables significant size reduction compared
with single-mode designs. The exact theoretical modelling of triple-mode sphe­
rical dielectric resonators is described. This is followed by the design theory and
an example of a triple-mode reflection filter. Finally the use of dielectrics for
extreme miniaturisation by loading TEM and waveguide structures is discussed.
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Chapter 8

Miniaturisation techniques for
microwave filters

8.1 Introduction

Among the most important specifications for microwave filters are selectivity,
bandwidth, passband insertion loss and physical size. In fact as shown in
Chapter 4 these are related for an all-pole bandpass filter by

_ 4.343/0 ~
L - L-t g,.

~.fQu 1'=1

(8.1 )

where 10 is the centre frequency, ~I is the passband bandwidth, Qu is the
unloaded Q of the resonators and gr is the element value of the rth element
in the lowpass prototype. From this equation we can see that as we increase
the selectivity of the filter then the number of elements, and hence the pass­
band loss, increases. Furthermore, the roll-off of insertion loss across the
passband also increases. Obviously we can use the optimum transfer function
but the same relationship still holds. Also as we reduce the filter bandwidth
we must increase the resonator Q if we are to maintain a fixed insertion loss.
Now since Qu is proportional to volume for a microwave resonator, a highly
selective, narrowband, low loss filter will require a significant physical
volume. The question is, are there any ways in which we can overcome
this problem?

Several alternative approaches will be discussed. These are dielectric
resonators, high temperature superconductivity, surface acoustic wave devices,
active filters and finally, the use of new subsystem architectures combined with
predistorted reflection mode filters.
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8.2 Dielectric resonator filters

The loss of a dielectric resonator is largely determined by the dielectric loss
tangent of the ceramic puck. This is because if the puck is physically remote
from the walls of the conducting enclosure then the energy storage is largely
confined to the interior of the puck. Furthermore, the high permittivity results
in a dramatic reduction in wavelength compared with free space. Consequently
unloaded Q factors of up to 50000 may be obtained in a reasonable physical
volume. This is not possible using TEM or metallic waveguide resonators. One
would hope that by increasing C r ad infinitum, a very small resonator could be
obtained. Unfortunately, as Cr increases, the Qu of available materials decreases
and we rapidly reach a limit. We can improve this situation by using multiple
degenerate modes to increase the efficiency in terms of volume per resonance for
a given Qu' However, we again reach a limit as increasing the number of
degenerate modes beyond three results in a dramatic increase in physical
complexity and poorer spurious performance, for a minimal improvement in
volume per resonance. Thus we can conclude that dielectric resonators may
improve the situation but in no way do they eliminate the basic problem.

8.3 Superconducting filters

It was discovered in 1911 [1] that the resistance of electrical conductors dropped
to near zero at temperatures of a few kelvins. Furthermore, in 1986 [2] similar
observations were made at 77 K. The most popular of these high temperature
superconductors is YBa2Cu307-x (YBCO). As a comparison the surface
resistance of YBCO at 10GHz is 0.1 mO at 77K compared with 8.7mO for
copper. The surface resistance of a superconductor increases more rapidly with
frequency than that of a normal conductor, resulting in a cross-over frequency
at which both have equal surface resistance. A typical value is 23 GHz, and since
the resistivity of superconductors varies as the square of frequency then they
work well in the 1-2GHz band.

In principle high temperature superconductivity enables resonators with near
infinite unloaded Q to be constructed. As an example a YBCO cavity resonator
with a Qof 400000 at 10 GHz and 77 K has now been used in a down-converter
[3]. Coupled cavity resonator filters for mobile communications base stations
have also been reported. As an example a B band notch filter for the American
AMPS system with eight poles and a notch bandwidth of 1MHz at 55 dB
rejection has been reported. This used dielectric resonators within a super­
conducting cavity with resonator Q of 40000 [4]. The resonators achieved
higher Qper unit volume than a conventional TEolb resonator and were roughly
comparable with triple-mode devices. On the other hand the cooling system
required a power consumption of 400 Wand weighed approximately 50 kg.
Furthermore, the measured two-tone intermodulation performance was
-85 dBm for an input power of -10 dBm. This corresponds to a third-order
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intercept point of +27.5 dBm. If the input power were increased to + 10 dBm the
intermodulation products would then be at -25 dBm, only 35 dB below the
carrier, and there would be little point in having a 55 dB notch. Improvements
in the non-linear performance of these devices would probably make them
acceptable for certain low power receive applications. They would not be suit­
able for a GSM transmit filter where a typical requirement is for third-order
products at -115 dBm with input powers of 30 W, corresponding to an intercept
point of + 122 dBm.

8.4 Surface acoustic wave filters

Surface acoustic wave (SAW) devices have been used for IF filtering and other
low frequency applications since the 1970s [5]. However, in recent years new
device architectures have been developed for frequencies up to 3 GHz. Their
main advantage over other technologies is their very small size (typically
3 mm x 3 mm x 1mm) in applications such as cellular handsets where their
insertion loss and power handling are tolerable. Typically they have 3 dB loss
and 2 W power handling.

SAW devices operate by manipulating acoustic waves propagating near the
surface of piezoelectric crystals. Typically the speed of propagation of these
waves is 10000 times slower than the speed of light. Hence structures many
acoustic wavelengths long can be made on surfaces only a few millimetres long.
Conventional IF filters use Rayleigh waves where the molecules on the surface
of the crystal move in an elliptical path. These waves are generated by applying
an RF electrical field to the surface of the crystal via an interdigital transducer.
A typical IF SAW filter design is shown in Figure 8.1.

input IDT

absorber

output IDT

load

Figure 8.1 Conventional IF SA W.filter
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The separation between adjacent fingers of the transducer is one-half of the
acoustic wavelength. The amplitude of the SAW wave generated by the nth
finger on the transducer is related to the length of the finger. A particular
pattern of overlaps along the transducer, or apodisation pattern, determines
the impulse response of the transducer. Its frequency response is the Fourier
transform of the impulse response. In a conventional SAW filter the input wave
propagates a signal through the crystal and it is received by the output trans­
ducer. The transfer characteristic of the filter is then determined by the product
of the transfer functions of the individual transducers. Unfortunately the inser­
tion loss of these devices is high as the transducers are bidirectional. Half the
power from each transducer propagates in the wrong direction and must be
absorbed. Thus the minimum insertion loss is 6 dB. In addition multiple reflec­
tions, known as triple transits, give rise to significant amplitude and phase ripple
across the passband.

Recently relatively low loss SAW filters have been developed using SAW
resonators which are formed between acoustically reflective gratings on the
surface of the SAW crystal [6] (Figure 8.2). Energy is coupled in and out of
the SAW resonator by placing a transducer between the gratings. The trans­
ducer has only a few fingers and is relatively broad band. Furthermore, as the
transducer couples into waves in both directions the insertion loss problems of
bidirectional transducers are avoided. In addition to a different architecture
most RF SAW filters use a leaky SAW which has three main advantages over
Rayleigh waves at RF frequencies. First, the speed of propagation is approxi­
mately 1.5 times faster than a Rayleigh wave with a corresponding reduction in
acoustic wavelength, enabling transducers and gratings to be fabricated at
higher frequencies. Second, higher values of electromechanical coupling also
enable relatively broadband filters to be constructed. Finally leaky SAWs
penetrate deep into the crystal enabling higher power handling capability.

The equivalent circuit of a SAW resonator shows that it has a pole and a zero.
Typically RF SAW resonator filters are made by cascading resonators in a
ladder network, Figure 8.3.

Careful resonator design enables the poles in the series resonators and the

IDT

~~~ I
1111= .....01 =1111
~/

reflective gratings

Figure 8.2 One-pole SA W resonator and its equivalent circuit
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Figure 8.3 SA ~T resonator ladder filter

zeros in the shunt resonators to produce real frequency transmission zeros.
Typical performance of these devices is as one would expect from low degree
filters with resonator Q factors of 300-400. As an example a GSM receive filter
would have an insertion loss of 3.5 dB from 925 to 960 MHz and 25 dB rejection
at 915 MHz. These devices offer a size reduction compared with ceramic-loaded
TEM filters provided the specification is fairly modest. SAW filters have poorer
power handling and temperature stability than ceramic filters. It seems unlikely
that they will perform as well as ceramic filters for high performance appli­
cations such as handsets for third generation cellular systems where the
transmitter and receiver operate simultaneously. However, acoustic wave
technology is developing rapidly and improvements are to be expected. Indeed,
bulk acoustic resonator devices with impressive performance have recently been
demonstrated [7].

8.5 Active microwave filters

Miniaturisation of filters normally results in an increase of insertion loss.
Consequently it is worth investigating whether there is any merit in integrating
active devices into filters to compensate for losses. In this way it is possible, at
least in principle, to make very small resonators. One of the most interesting

L

o,-~---'----_-----L_-----n

Figure 8.4 Active resonator lvith negative resistance circuit
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techniques which has been reported [8] is to use the negative real part of the
input impedance of an inductively loaded common base bipolar transistor
circuit in order to cancel the losses in a low Q resonator (Figure 8.4).

In this way both active fixed tuned and varactor tuned filters have been
constructed where the active circuit compensates not only for the resonator
losses but also for the much larger losses associated with varactor diodes.
Experimental results show that the small signal performance of the devices is
as would be expected from devices with infinite unloaded Q. This was particu­
larly apparent in a notch filter where switching the active device off resulted in a
reduction in stopband attenuation from 20 dB to 3 dB. However, these results
were somewhat misleading as they were single frequency low power measure­
ments. In reality a filter has multiple inputs and its purpose is to pass the desired
passband signal undistorted while rejecting one or more, possibly high power,
unwanted stopband signals. Under these conditions the non-linear character­
istics of the active devices used will cause various distortion effects. These
include a reduction in the unloaded Q of the resonators as the devices saturate,
and the generation of intermodulation products.

Measurements of a two-pole 75 MHz bandwidth 1.8 GHz bandpass filter
showed a gain compression of 4 dB at +7.5 dBm input power, at a device
collector current of 5 rnA [9]. Power saturation effects on a three-pole
75 MHz bandstop filter showed a reduction in stopband attenuation from
35 dB to only 12 dB as the input power was increased from -20 dBm to
odBm. The saturation effects can be overcome to a certain degree by changing
the device bias when large input signals are present, although this would not be
trivial. A more significant problem is third-order intermodulation distortion.

Consider the parallel tuned circuit shown in Figure 8.5. Analysis of this
circuit yields

I == V(G +jwC - j/wL)

and the Q factor is given by

Q=woC
G

where

Wo == (LC) 1/2

I

Figure 8.5 Parallel tuned circuit

v

(8.2)

(8.3)

(8.4)
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At resonance

I
v==-

G

and at resonance the current flowing through the capacitor is

. jwo CI
Ie ==JwoCV == -G-

Therefore

IIel == QI

(8.5)

(8.6)

(8.7)

Thus at resonance the current flowing through the capacitor can be much higher
than the applied current.

We can consider the non-linearity in the active resonator in terms of a
non-linear current transfer characteristic given by

(8.8)

This generates third-order intermodulation products at the output of the device
of a power level PIM where

(8.9)

Pin is the input power and IP3 is the two-tone third-order intercept point.
These intermodulation products are generated by the third-order term in

(8.8). However, from (8.7) the current in this expression is proportional to the
loaded Q and inversely proportional to the percentage bandwidth of the filter.
Thus the third-order intercept point of an active filter will be reduced by 6 dB
each time the filter bandwidth is halved. Typical results for a 1 per cent band­
width filter gave an IP3 at 8 dBm. Obviously this depends on the exact circuit
and the type of device used but such low intercept points are very difficult to
work with. With an IP3 of 8 dBm and input signals of 0 dBm the third-order
products would be at -16 dBm; thus there is no point in designing the filter to
have a stopband rejection of more than 16 dB. An active filter would only be
used when the bandwidth was narrow, thus requiring high Q resonators. This is
exactly the situation when the current magnification in the resonators causes a
reduction in IP3 . Furthermore, an active filter has a noise figure which is equal
to the insertion loss of the passive part of the filter plus a contribution from the
active devices. The conclusion is thus that active filters are not a useful solution
for miniaturisation.

8.6 Lossy filters

As we have seen, integrating active devices into resonators is not a good
solution. Although this restores the small signal shape factor of the filter
there are other problems of non-linearity. However, it is possible to design a



328 Theory and design of microwave filters

OdBr.- -----,

~ro
conventional bandpass

OdB
.......-::::-------------::::-1

~ro
conventional bandstop

OdB;:..-.. ---,

~ro
predistorted bandpass

OdBf--- ---,

~ro
predistorted bandstop

Figure 8.6 E.ffect of'finite Qu on conventional and predistorted bandpass and
bandstop filters

purely passive filter to have a sharp, selective response even with low Q
resonators. This is shown in Figure 8.6. Here we see that the effect of losses
on a bandpass filter is to round the passband. Alternatively it is possible to
retain a sharp characteristic by a technique known as predistortion. In the case
of a conventional bandstop filter the losses cause a rounding of passband and
reduce the stopband attenuation. Alternatively a predistorted bandstop filter
retains a good characteristic with a sharp response and high stopband attenua­
tion. Thus we can say that it is possible to design filters with low Q resonators
provided we can tolerate a certain level of passband insertion loss. The real
question is whether there is any real application for a filter with significant
passband insertion loss.

Consider the situation of the transmitter shown in Figure 8.7 where a power
amplifier is followed by a lossy bandpass filter. In this case the filter would be
required to remove out-of-band noise from the spectrum of the (non-linear)
power amplifier. Normally in this situation the filter would be highly selective
requiring high resonator Q s. A lossy filter could still be selective, and indeed
remove the noise, but it would reduce the output power of the amplifier by its
insertion loss. This would require the amplifier to be driven harder, producing
more noise, and would be self-defeating. It would also reduce the efficiency of
the amplifier.

Now consider the situation of the receiver shown in Figure 8.8. This shows a
low noise receiver front end, possibly for a cellular radio base station. The front
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power
amplifier

LdB

n
lossy filter

Figure 8.7 P(Jlver ampl?fier .follo~ved by a lossy filter

end must have good sensitivity and a wide dynamic range. Thus the noise figure
must be low and the intercept point should be high. In a situation where known
frequency, high power interfering signals are present, we can use a bandstop
filter prior to the amplifier to stop the interferers causing intermodulation
distortion in the amplifier. The passband insertion loss of the bandstop filter
must be low to preserve the system noise figure. Normally the stopband band­
width of the filter would be narrow and it would be highly selective. Thus high Q
resonators would be necessary and the filter would be large. Alternatively we
can use a lossy filter prior to the amplifier. In this case, in order to preserve the
system noise figure this must be preceded by a further low noise amplifier. This
would have just enough gain to minimise the effect of the passband loss L] on
the noise figure. If the noise figure of the first amplifier is F then the noise figure
contribution froln the first two stages is

NF = F + L I ~ 1 (8.10)
G]

high-Q bandstop
filter

(a) conventional design

F, Gt, II

(b) alternative design

low-noise
amplifier

Figure 8.8 Architectures jor IOH' noise .{ront end ~vith receiver protection
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Thus if Fis 1 dB and L I is 6 dB, G I needs to be around 10-20 dB to minimise the
effect of the filter. The gain should be just enough to achieve this and no more,
so that the first amplifier does not contribute too much intermodulation distor­
tion. This can be checked by analysing the circuit. We assume the filter has a
passband loss L I and a stopband attenuation L 2, and the amplifiers have gains
G I and G 2 and intercept points II and 12 ,

The system gain is given by

(8.11)

Now we assume that two interfering signals are present at the system input with
power levels of X dBm. The frequencies of these signals lie in the stopband of
the bandstop filter. First we calculate the power levels of intermodulation
products at the output of the system which are generated by the first amplifier.
We assume that the frequencies of these products occur within the passband of
the filter. The power levels are

(8.12)

Intermodulation products generated by the second amplifier have system
output levels of

(8.13)

The bandstop filter obviously protects the second amplifier from the interferers
but the first amplifier is not protected. Thus the optimum value of L 2 , the
stopband attenuation, is when PI == P2 . There is no point in reducing inter­
modulation from the second amplifier below the level produced by the first
amplifier. Thus

and

2G I + L I + 2(11 - 12)
L 2 == 3

Now if we assume II == 12 then

2G I +L I
L 2 == 3

(8.14)

(8.15)

(8.16)

As an example if G I == 21 dB and L I == 6 dB then L 2 == 16 dB, and in this
situation there would be no practical reason to make L 2 greater than 16 dB.
However, a 16 dB reduction in interferers at the input to the second amplifier is
equivalent to increasing the intercept point of this amplifier by 24 dB.

With an interfering signal level X of +10 dBm the output products would be
at +6 dBm compared with +54 dBm for an unfiltered amplifier with the same
gain and intercept point. The system works equally well as having a low loss
filter at the input of the first amplifier with 18 dB stopband rejection. In this
case intermodulation from the first amplifier would be reduced but the second
amplifier would still produce products at +6 dBm.
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8.6.1 Design of 10ssY.filters - classical predistortion

First we will review classical predistortion techniques as in Reference 10.
Predistortion is a method by which the correct transmission characterisation
of a bandpass filter may be preserved when the resonators have finite Q factor.
This is achieved as follows.

The transfer function of an all-pole (ladder) lowpass prototype is given by

(8.17)

(8.18)
D(p + a)

In the presence of dissipation loss the lowpass prototype ladder network is as
shown in Figure 8.9. If this dissipation loss is uniform then the transfer function
of the device is given by

S~2(P) == SI2(P + a)

1

where a is related to the Q of the structure and

G r == aCr (8.19)

(8.21 )
p2 + p( J2 - 2a) + 1 - J2a + a 2

where Cr and Gr are the rth elements in the lossy filter.
We have already established that introducing dissipation into the filter causes

a rounding of the passband. However, this can be avoided by shiftingp to p - a
and synthesising a network with a transfer function SI2(P - c~). This results in a
lossless ladder network which when we add loss and p shifts to P + a has the
correct transfer function other than a constant offset in insertion loss. This is
best illustrated by an example, in this case a degree 2 Butterworth filter where

1
SI2(P) = p2 + J2p + 1 (8.20)

We now shift p to P - a and multiply by a constant to obtain

K
Sl2 (p) == --------

(p - 0:)2 + J2(p - a) + 1

K

etc.

Figure 8.9 LOli'Pass ladder netli'ork lvith .finite un(form dissipation
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and

K 2

ISd.iw)!2 = [(1 _ J2a + ( 2) _ w 2]2 + w2(J2 - 2a)2

K 2

- X 2 -2J20:X+1-2J2+40:2

where

(8.22)

x == w
2 + 0: 2 (8.23)

The act of shifting p to p - 0: makes 1S121 2 peak near the band-edges. The value
of K should be chosen so that 1S121 2 peaks at exactly unity. This ensures
minimum insertion loss and a passive realisation.

Now for IS12(jw)12 to have unity magnitude at a turning point X o then

XJ - 2J20:Xo + 1 - 2J20: + 40: 2 == K 2 (8.24)

and

fJ 2 2 IfJX(X -2J20:X+1-2J20:+40: )==Ox
o

or

X o == J20:

From (8.24) and (8.26)

K 2 == 1-2J20:+20:2

Hence

K == 1 - J2o~

and

S _ 1 - J20:
dp) - p 2 + p(J2 - 2a) + 1 - J2a + a 2

Now

ISII(jw)12 == 1 -/SI2(jW)/2

X 2 - 2J20:X + 20: 2

X 2 - 2J20:X + 1 - 2J20: + 40: 2

(X - V20:)2

X 2 - 2J20:X + 1 - 2J20: + 40: 2

Thus

S ( ) _ p2 + J2a - a
2

11 p - p-2=--+-p-(J-2---2-0:-)-+-1---J-2-0:-+-0:-2

(8.25)

(8.26)

(8.27)

(8.28)

(8.29)

(8.30)

(8.31)
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Now forming the input admittance Y(p)

Y(p) = I +Sll(P)
1-S11 (P)

2p2 + p( J2 - 2a) + 1

- p(J2-2a)+ 1-2J2a+2a2 (8.32)

Synthesising Y(p) as a ladder network we first extract a capacitor of value

J2
C 1 = I _ J2a: (8.33)

leaving a remaining admittance

P[J2-2a:- J; (1-2 J 2a:+2a: 2
)] + 1

1 - 2a
~(p)= . ?

p(J2 - 2a) + 1 - 2J2a + 2a-

1

- p(J2 - 2a) + 1 - 2J2a + 2a 2

Now inverting with an inverter of value

1
K 12 = I - J2a:

we obtain

(8.34)

(8.35)

J2p
Y2(p) = I - J2a: + I

which is a capacitor of value

(8.36)

(8.37)

(8.38)

J2
C2 = I _ J2a: = C1

in parallel with a 1n load.
Now we add loss to the network by letting p = p + a. The final network is

shown in Figure 8.10. The transfer function of the filter is

I
s (·w)1 2 = (1 - J2a)2

12 .J 1+ w4

In

Figure 8.10 Predistorted maxbnally .flat prototype
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with a realisability condition

1
a<-

- J2
(8.39)

Thus the transfer function is preserved apart from a constant offset in insertion
loss.

The input reflection coefficient can be found from (8.31) with p replaced by
p+a.

S ( ) _ (p + a)2 + y'2a ~ a
2

(8.40)
11 P - p2 + J2p + 1

and

I
s (·w)1 2 == w

4
+ w

2
(4a

2
- 2J2a) + 2a

2
(8.41)

11 } 1+ w 4

Thus the predistorted insertion loss characteristic has been obtained by modify­
ing the numerator of the return loss function. The insertion loss of a conven­
tional Butterworth filter rolls off near the edge of the passband. However, by
reflecting energy in the middle of the passband the predistorted filter recovers
the original transfer function. As an example, if a == 1/2 J2 then the insertion
loss at d.c. is 6 dB and the return loss is also 6 dB. The output return loss is equal
to the input return loss, but higher degree solutions result in asymmetric
networks with different values for S11 and S22. Furthermore, it can be shown
that for higher degree solutions a significant price is paid in terms of extra
insertion loss above the band-edge loss of the original non-predistorted
network. In addition it is difficult to obtain simple solutions for predistorted
highpass networks with finite real frequency transmission zeros. For example
consider the highpass prototype ladder network with finite dissipation loss
shown in Figure 8.11.

The transmission zeros in this network occur when the impedance of the rth
shunt branch is zero, i.e.

LrPr+Rr==O (8.42)

That is,

(8.43)

etc.

Figure 8.11 Highpass prototype network with .finite dissipation loss
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The effect of uniform loss is to move the transmission zeros from d.c. onto the
left-hand real axis in the complex plane, hence limiting the maximum stopband
insertion loss. This is different from the lowpass case shown in Figure 8.10
where the transmission zeros are still at infinity. Predistortion in the lowpass
case preserves the passband shape by modifying the capacitors whereas modify­
ing the inductors will not move the transmission zeros of the highpass filter back
to the origin. There are various techniques for predistorting highpass prototypes
by adding additional loss (see, for example, Reference 11) but they are of little
value. For these reasons predistortion of the transmission response is not the
best solution for lossy filters.

8.6.2 Design of lossy filters - reflection mode type

Consider the network shown in Figure 8.12 where a resonant circuit with finite
loss is coupled to one of the ports of an ideal circulator. (For a discussion on
circulators see Reference 12.) The transmission characteristic from ports 1 to 3
is the reflection coefficient of the resonator. Assume that we adjust the input
coupling to the resonant circuit so that the real part of its input impedance is
matched to the circulator. Thus in a 1n system we have

Re Z(jw) == 1

Thus

R
G +j(wC - l/wL)

e == 1
K 2

That is,

(8.44)

(8.45)

(8.46)

In this case at the resonant frequency all the power incident at port 1 will
be absorbed in the resistive part of the resonator. Hence the transmission

1---7
ZUm) I

K L

Figure 8.12 Re.flection mode bandstop resonator
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characteristic from port 1 to port 3 is that of a bandstop resonator with infinite
unloaded Q factor at its resonant frequency. Thus we have created a resonant
circuit with loss which has a finite real frequency transmission zero, overcoming
the problem described in the previous section.

The basic objective is thus to synthesise a multi-element version of this
network, in other words to synthesise lossy networks with prescribed reflection
functions. This can be achieved by predistorting the reflection function of a
lossless prototype network as follows. Given a reflection function Sll (p) we let

(8.47)

The choice of K is made on a similar basis to that for predistortion of Sl2 (p). We
evaluate the maximum value of K such that the resultant network is passive.
This is achieved by choosing K so that I Sll (j w) 1

2 peaks at a value of unity.
Thus we determine the frequency Wo and value of K such that

(8.48)

and

(8.49)

(8.50)

are simultaneously satisfied. There will, in general, be more than one value of K
which satisfies these equations so the minimum value must be chosen.

Having found the values K and Wo for a given value of a we then formulate
the input impedance and synthesise the network. Now the input impedance (or
admittance) is given by

Z
. ( ) _1 ±KSll(p-a) _N(p)
In P - -

l~KSII(p-a) D(p)

We have chosen K so that Sll is completely reflective at p == j Wo; thus Zin (p) has
a pair of transmission zeros at p == ±jwo. These may be extracted by removing a
Brune section or its equivalent cross-coupled section shown in Figure 8.13. This

Figure 8.13 Cross-coupled Brune section
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r
z(p)

Zl(P)

N

I I

(8.51 )

Figure 8.14 Extrac tion o.f a cross-coupled Brune sec tion .from Z ( p)

is done by cascade synthesis. Z(p) may be represented by the cascade of this
Brune section followed by a remaining impedance (Figure 8.14).

Now the ABCYD parameters of the cross-coupled Brune section are given by

[~ ~] - Yo ~ yJ :0y~~c Yo: yJ
where

K 2

Y .K 2
e ==./ 1 + +·K

P ./ 3

Now

Z(p) = AZ, (p) + B = N(p)
CZ 1(p) + A D(p)

Hence the remaining Z 1(p) impedance is given by

()
BD(p) - AN(p)

ZIP == -CN-(p-)---A-D-(p-)

(8.52)

(8.53)

(8.54)

(8.55)

(8.56)

and substituting for A, Band C in (8.55) we obtain

( ) _ (p2 + Kff)D(p) - K}pN(p)
Z, P - (Ki + K}Kl- 2K] K}K3 + K?p2)N(p) - KipD(p)

Now (8.56) is of degree 2 higher than Z(p). For the transmission zeros to
be successfully extracted it should be of degree 2 lower. Thus ZI (p) must
contain the factor (p2 + w5)2 in both numerator and denominator. Thus
both the numerator and denominator, and their derivatives, should be zero at
p == ±Jwo·
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From the numerator of ZI (p) we obtain

(p2 + Kr)D(p) - KipN(p) == 0lp=±jwo

and

d 2 2 2] Idp [(p + K} )D(p) - K 2 pN(p) = °p=±;wo

(8.57)

(8.58)

Hence

(Kr- wo)D(jwo) - jwoKiN(jwo) == 0 (8.59)

(Kr + 2jwo)D(jwo) + (Kr- wo)D'(jwo)

-jwoK'iN'(jwo) - K'iN(jwo) == 0 (8.60)

Solving (8.59) and (8.60) simultaneously we obtain

K _ 2jwoD 2(jwo)
2 - N(jwo)D(jwo) +jwo[N'(jwo)D(jwo) - D'(jwo)N(jwo)] (8.61)

K, =jwoKiN(jwO!+ woD(jwo) (8.62)
- D(jwo)

and similarly from the denominator of ZI (p)

K == K [D'(jwo)N(jw o) - D(jwo)N'(jwo) + D(jwo)] (8.63)
1 2 2N 2(j wo) 2jwoN(j wo)

With these values of K 1, K 2 and K 3 the factor (p2 + w6)2 will appear in the
numerator and denominator of ZI (p) and it may be cancelled.

Synthesis of the remaining impedance ZI (p) now follows. In general it will
have no poles or zeros on the imaginary axis or at infinity. Writing ZI (p) in
terms of its even and odd parts we have

(8.64)

(8.65)

where m 1,2 and n 1,2 are even and odd polynomials in p. The real part of Z 1(p) is
then obtained from its even part, i.e.

ReZ(jw) == Ev Z(p)lp=jWl

== n11 (p )m 2 ( p) - n 1(p )n 2 ( p) I
mi(p) - n~(p) p=jw)

At some frequency WI, Re Z(jw) obtains its minimum value R 1; this is shown in
Figure 8.15. We can extract a resistor R h leaving a positive real remainder,
where WI and R 1 are given by

R 1 == Ev Z(jwl)

d
dp Ev Z(p) = 0lp=;wl

(8.66)

(8.67)
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Re z0ro)

rom

Figure 8.15 The real part 0.1' the ren1aining in1pedance

The remaining ilnpedance is now Z2(P) where

Z2(P) == Z1 (p) - R 1 (8.68)

Z( p) is purely reactive at WI and thus has a transmission zero at w1. If WI is finite
we must extract a second cross-coupled Brune section. Alternatively if W2 is
infinite then the remaining impedance may be synthesised as a lossy ladder
network by a continued fraction expansion of parallel RC networks and
inverters.

Finally having synthesised the network we add uniform dissipation by letting
p ~ p + a. The result of a complete synthesis cycle for a degree 4 case is shown
in Figure 8.16. One of the interesting features of this synthesis technique is
that for most lowpass prototypes the network is of type (a). However, highpass
prototypes may also be synthesised using this method and usually the
network is of type (b). Further discussion of this and the synthesis of
asymmetric prototypes is given in References 13 and 14.

8.6.3 Design example

The procedure has been applied to the design of a bandstop filter for a cellular
radio base station application. The specification was

Centre frequency
Stopband rejection
Passband loss

Fe == 845.75 MHz
>20 dBc at Fe ± 550 kHz
< 1.5 dBc at Fe ± 750 kHz

In this case dBc refers to attenuation with respect to the passband loss. This is
the same specification as was previously described for triple-lTIode dielectric
resonator filters. However, by using the approach described here a Q factor
of 30 000 is no longer required. Instead we will use a resonator Q factor of 7000,
yielding a loss of 6.8 dB. This may be tolerated by using a high intercept point
low noise amplifier before the filter, as described previously. A Q factor of
7000 enables a smaller physical realisation than using dielectric resonators~
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Zl(P)

ex 1 ex

(a) case where 0) tis infInite

K2 ~
Zl(p)

Ks Ks

ex 1 ex ex

(b) case where (0 1is fmite

Figure 8.16 Synthesis 0.[ a lossy re.fiection prototype.filter, N == 4

either a coaxial or a dual-mode conductor-loaded ceramic realisation may be
considered.

The prototype network used was a degree 4 elliptic function filter with 22 dB
passband return loss ripple and an equal stopband ripple with a reflection
coefficient.

and

Is (J·W) /2 == F~(w)
11 1+F~w

(8.69)

(8.70)
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SII (p) can then be found by factorisation giving

(p 2 + 0.6124938)(p2 + 0.1306136)
SI\ (p) = (p 2 + 1.51 89939p + l)(p2 + 0.31265488p + 1) (8.71)

In order to complete the synthesis the value of ex must be computed from the
ratio of loaded filter Q to unloaded resonator Q:

.fo
ex == ~f'Q

. u

In this case, because of the prototype used, ~.f is the 3 dB bandwidth of the filter
which is 1.299 MHz. In this example choosing resonator Q of 7000 yields ex
equal to 0.093. Then the value of the gain constant K and the resonant
frequency of the Brune section are given from (8.48) and (8.49):

K == 0.457796 Wo == 1.009825 (8.73)

giving a passband loss of 6.78 dB.
The Brune section is extracted using the method described with

K 1 == -0.1157, K 2 == 0.05567, K 3 == 0.99651 (8.74)

After extracting the Brune section and a unity inverter the remaining impedance
ZI (p) is

Z ( ) = 0.0119251 p2 + 0.0284371 p + 0.0179403 (8.75)
1 P 2.396808p 2 + 2.117032p + 1.396287

The minimum value of the real part of ZI (p) occurs at w == 00. A resistor is then
extracted of value

and the remaining impedance is

Z2(P) == ZI (p) - R 1

Its admittance is

( )
_ 1 ~ 2.396808p 2 + 2.1 17032p + 1.396267

Y; P - -- - -------------
- Z2(P) 0.179048p + 0.010993

We then extract a capacitor (~3 of value

C 3 = Y2;P) If!~x = 133.864 F

The remaining admittance is then

Y ( ) _ Y ( ) _ C . _ 0.645465p + 1.396267
3P - 2P ~3P-0.0179048p+0.Ol0993

We then extract a shunt conductor of value

G 3 == Y3(p) Ip=x == 36.0498

(8.76)

(8.77)

(8.78)

(8.79)

(8.80)

(8.81 )
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and the remaining impedance is

Inverting Y4 we obtain

1
Ys(p) == -(-) == 0.0179048p + 0.010993

Y4 p

which is a capacitor C 4 in parallel with a conductance G4 where

(8.82)

(8.83)

C 4 ==0.0179F G4 == 0.01099 (8.84)

After transforming p to p + 0: we obtain the final circuit of Figure 8.17.
After applying the appropriate bandpass transformation we obtain the

simulated frequency response shown in Figure 8.18 where the return loss
corresponds to the required bandstop response.

It is interesting to note that the first two resonators in the circuit in the cross­
coupled Brune section have an unloaded Q factor of 7000 but the remaining
elements have a lower Q. For example the first RC element in the ladder
network has an admittance

C3(p+a)+G 3 = c3 (p+a+ ~:)

Thus new values of 0: for the ladder part of the filter are

G3
o:~ == 0: + - == 0.3623- C

3

G4
0:4 == 0: + - == 0.7069

C4

Kl
input U----ft------&-----A----J

(8.85)

(8.86)

(8.87)

Figure 8.17 Net'rt'ork realisation 0.1 a degree 4 elliptic .function lossy re;flection
mode lowpas.r.; prototype .filter
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Figure 8.18 Simulated.frequency response 0.1' a notch filter

Now from (8.77)

Qu = f;a (8.88)

giving Q3 == 1797 and Q4 == 921. This remarkable result is explained by the fact
that only the first two resonators contribute significantly to the sharpness of the
response near band-edge; the other resonators contribute to the broader
response.

8.7 Summary

Various techniques for the miniaturisation of filters are reviewed. A brief discus­
sion on dielectric resonators points out the limitations in terms of increasing the
dielectric constant or the number of degenerate modes. Superconducting filters
offer near infinite Q in small physical size, but at the expense of complex cooling
systems and poor intermodulation performance. SAW filters offer high levels of
miniaturisation with relatively modest performance. Active filters exhibit near
infinite Q when considered as small signal devices but suffer from poor large
signal performance and have an associated noise figure. An alternative
approach for receiver filters is to use predistorted lossy filters. High selectivity
can be achieved in a small physical size provided the filter is preceded by a high
intercept low noise amplifier. An intermodulation analysis is used to justify this
approach and the details of the required filter synthesis procedure are presented.
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It is to be expected that miniaturisation will remain an active area for future
research and development efforts.
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