Ahmet Bindal

Fundamentals
of Computer
Architecture
and Design

EXTRAS ONLINE %)\ Springer

Ahmet Bindal

Fundamentals
of Computer
Architecture and Design

@ Springer

Dr. Ahmet Bindal

Computer Engineering Department
San Jose State University

San Jose, CA, USA

The Solutions Manual for instructors can be found at
http://www.springer.com/us/book/9783319258096

ISBN 978-3-319-25809-6 ISBN 978-3-319-25811-9 (eBook)
DOI 10.1007/978-3-319-25811-9

Library of Congress Control Number: 2016960285

© Springer International Publishing Switzerland 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are
exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in
this book are believed to be true and accurate at the date of publication. Neither the publisher nor
the authors or the editors give a warranty, express or implied, with respect to the material
contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper
This Springer imprint is published by Springer Nature

The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://extras.springer.com

For my mother who always showed me the right path...

This book is written for young professionals and graduate students
who have prior logic design background and want to learn how to use
logic blocks to build complete systems from design specifications.
My two-decade-long industry experience has taught me that engineers
are “shape-oriented” people and that they tend to learn from charts and
diagrams. Therefore, the teaching method I followed in this textbook
caters this mind set: a lot of circuit schematics, block diagrams, timing
diagrams, and examples supported by minimal text.

The book has eight chapters. The first three chapters give a complete
review of the logic design principles since rest of the chapters signifi-
cantly depend on this review. Chapter 1 concentrates on the combina-
tional logic design. It describes basic logic gates, De Morgan’s theorem,
truth tables, and logic minimization. This chapter uses these key con-
cepts in order to design mega cells, namely various types of adders and
multipliers. Chapter 2 introduces sequential logic components, namely
latches, flip-flops, registers, and counters. It introduces the concept of
timing diagrams to explain the functionality of each logic block. The
Moore and Mealy-type state machines, counter—decoder-type con-
trollers, and the construction of simple memories are also explained in
this chapter. Chapter 2 also illustrates the design process: how to develop
architectural logic blocks using timing diagrams, and how to build a
controller from a timing diagram to guide data flow. Chapter 3 focuses
on the review of asynchronous logic design, which includes state defi-
nitions, primitive flow tables, and state minimization. Racing conditions
in asynchronous designs, how to detect and correct them are also
explained in this chapter. The chapter ends with designing an important
asynchronous timing block: the C element (or the Mueller element), and
it describes an asynchronous timing methodology that leads to a com-
plete design using timing diagrams.

vii

viii

From Chapter 4 to Chapter 8, computer architecture-related topics
are covered. Chapter 4 examines a very essential system element:
system bus and communication protocols between system modules.
This chapter defines the bus master and the bus slave concepts and
examines their bus interfaces. Read and write bus cycles and protocols,
bus handover and arbitration are also examined in this chapter. System
memories, namely Static Random Access Memory (SRAM),
Synchronous Dynamic Random Access Memory (SDRAM),
Electrically-Erasable-Programmable-Read-Only-Memory (E*PROM)
and Flash memory are examined in Chapter 5. This chapter also shows
how to design bus interface for each memory type using timing dia-
grams and state machines. Chapter 6 is all about the design of a simple
Reduced Instruction Set Computer (RISC) for central processing. The
chapter starts with introducing a simple assembly instruction set and
building individual hardware for each instruction. As other instructions
are introduced to the design, techniques are shown how to integrate
additional hardware to the existing CPU data-path to be able to execute
multiple instructions. Fixed-point and floating-point Arithmetic Logic
Units (ALU) are also studied in this chapter. Structural, data and pro-
gram control hazards, and the required hardware to avoid them are
shown. This chapter ends with the operation of various cache archi-
tectures, cache read and write protocols, and the functionality of
write-through and write-back caches. The design of system peripherals,
namely Direct Memory Access (DMA), interrupt controller, system
timers, serial interface, display adapter and data controllers are covered
in Chapter 7. The design methodology to construct data-paths with
timing diagrams in Chapter 2 is closely followed in this chapter in order
to design the bus interface for each peripheral. Chapter 8 describes the
Field-Programmable Gate array (FPGA), and the fundamentals of data
driven processors as special topics.

At the end of the book, there is a small appendix that introduces the
Verilog language. Verilog is a widely used Hardware Design
Language (HDL) to build and verify logic blocks, mega cells and
systems. Interested readers are encouraged to go one step beyond and
learn system Verilog to be able to verify large logic blocks.

Dr. Ahmet Bindal

Computer Engineering Department
San Jose State University

San Jose, CA, USA

Preface

1 Review of Combinational Circuits

1.1 LogicGates.,
1.2 Boolean Algebra.
1.3 Designing Combinational Logic Circuits

Using Truth Tables.
1.4 Combinational Logic Minimization—Karnaugh

Maps. . . .
1.5 Basic LogicBlocks.
1.6 Combinational Mega Cells.

2 Review of Sequential Logic Circuits.

21 DULatch.
2.2 Timing Methodology Using D Latches
23 DFlip-Flop.........
2.4 Timing Methodology Using D Flip-Flops
2.5 Timing Violations.
2.6 Register.
2.7 ShiftRegister.
28 Counter.
29 Moore Machine
2.10 Mealy Machine
2.11 Controller Design: Moore Machine

Versus Counter-Decoder Scheme
212 MEMOIY . .t o ittt e
2.13 A Design Example Using Sequential Logic

and Memory

3 Review of Asynchronous Logic Circuits.

31 S-RLatch
3.2 Fundamental-Mode Circuit Topology

11

14
20
29

3.3 Fundamental-Mode Asynchronous

Logic Circuits
3.4 Asynchronous Timing Methodology
Reference

System Bus.
4.1 Parallel Bus Architectures
42 Basic Write Transfer.
43 BasicRead Transfer
4.4 Bus Master Status Change
4.5 Bus Master Handshake
46 Arbiter
47 Bus Master Handover
48 Serial Buses.

Memory Circuits and Systems.
5.1 Static Random Access Memory
5.2 Synchronous Dynamic Random

AccessMemory oo
5.3 Electrically-Erasable-Programmable-

Read-Only-Memory
54 FlashMemory,
5.5 Serial Flash Memory.
References.

Central Processing Unit
6.1 RISC Instruction Formats.
6.2 CPUData-Path.
6.3 Fixed-Point Register-to-Register

Type ALU Instructions
6.4 Fixed-Point Immediate Type ALU Instructions. . . .
6.5 Data Movement Instructions.
6.6 Program Control Instructions
6.7 Design Example I: A Fixed-Point CPU

with Four Instructions
6.8 Design Example II: A Fixed-Point CPU

with Eight Instructions
6.9 Floating-Point Instructions
6.10 Floating-Point.

Contents

Contents

6.11 Floating-Point Adder.
6.12 Floating-Point Multiplier
6.13 A RISC CPU with Fixed

and Floating-Point Units
6.14 Structural Hazards.
6.15 DataHazards...........................
6.16 Program Control Hazards.
6.17 Handling Hazards in a Five-Stage RISC CPU:

An Example. L Lo
6.18 Handling Hazards in a Four-Stage RISC CPU
6.19 Handling Hazards in a Three-Stage RISC CPU. . . .
6.20 Multi-cycle ALU and Related Data Hazards.
6.21 Cache Topologies.,
6.22 Cache Write and Read Structures
6.23 A Direct-Mapped Cache Example.
6.24 Write-Through and Write-Back Cache Structures

in Set-Associative Caches
6.25 A Two-Way Set-Associative Write-Through

Cache Example
6.26 A Two-Way Set-Associative Write-Back

Cache Example
References. L

System Peripherals.
7.1 Opverall System Arcitecture.
7.2 Direct Memory Access Controller.
7.3 Interrupt Controller.
7.4 Serial Transmitter and Receiver Interface.
7.5 Timers.
7.6 Display Adaptor.
7.7 DataConvertersoueneeno...
7.8 Digital-to-Analog Converter (DAC).
References.

Special Topics.
8.1 Field-Programmable-Gate Array
8.2 Data-Driven Processors
References.

Xi

322
324

325
327
328
333

Xii Contents

Appendix: An Introduction to Verilog Hardware
Design Language. 491

About the Author

Ahmet Bindal received his M.S. and Ph.D.
degrees in FElectrical Engineering Depart-
ment from the University of California, Los
Angeles, CA. His doctoral thesis was the
material characterization in High Electron
Mobility (HEMT) GaAs transistors. During
his graduate studies, he was a research
associate and a technical consultant for
Hughes Aircraft Co. In 1988, he joined the
technical staff of IBM Research and Devel-
opment Center in Fishkill, NY, where he worked as a device design

and characterization engineer. He developed asymmetrical MOS
transistors and ultrathin silicon on insulator (SOI) technologies for
IBM. In 1993, he transferred to IBM at Rochester, MN, as a senior
circuit design engineer to work on the floating-point unit for the
AS-400 main frame processor. He continued his circuit design career
at Intel Corporation in Santa Clara, CA, where he designed 16-bit
packed multipliers and adders for the MMX unit in Pentium II pro-
cessors. In 1996, he joined Philips Semiconductors in Sunnyvale, CA,
where he was involved in the designs of instruction/data caches and
various SRAM modules for the TriMedia processor. His involvement
with VLSI architecture also started in Philips Semiconductors and led
to the design of the Video-Out unit for the same processor. In 1998, he
joined Cadence Design Systems as a VLSI architect and directed a
team of engineers to design self-timed asynchronous processors. After
approximately 20 years of industry work, he joined the computer
engineering faculty at San Jose State University in 2002. His current
research interests range from nano-scale electron devices to robotics.

xiii

Xiv

Dr. Bindal has over 30 scientific journal and conference publications
and 10 invention disclosures with IBM. He currently holds three US
patents with IBM and one with Intel Corporation. On the light side of
things, Dr. Bindal is a model aircraft builder and an avid windsurfer
for more than 30 years.

About the Author

Logic gates are the essential elements in digital design, and ultimately constitute the building
blocks for digital systems. A good understanding in designing complex logic blocks from
primitive logic gates, and mastering the design tools and techniques that need to be incor-
porated in the design process is a requirement for the reader before moving to the details of
computer architecture and design.

This chapter starts with defining the logic gates and the concept of truth table which then
leads to the implementation of basic logic circuits. Later in the chapter, the concept of
Karnaugh maps is introduced in order to minimize gate count, thereby completing the basic
requirements of combinational logic design. Following the minimization techniques, various
fundamental logic blocks such as multiplexers, encoders, decoders and one-bit adders are
introduced so that they can be used to construct larger scale combinational logic circuits. The
last section of this chapter is dedicated to the design of mega cells. These include different
types of adders such as ripple-carry adder, carry-look-ahead adder, carry-select adder, and
the combination of all three types depending on the goals of the design: gate count, circuit
speed and power consumption. Subtractors, linear and barrel shifters, array and Booth
multipliers constitute the remaining sections of this chapter.

It is vital for the reader to also invest time to learn a hardware design language such as
Verilog while studying this chapter and the rest of the chapters in this book. A simulation
platform incorporating Verilog and a set of tools that work with Verilog such as design
synthesis, static timing analysis, and verification is an effective way to check if the intended
design is correct or not. There is nothing more valuable than trying various design ideas on a
professional design environment, and understanding what works and what does not while
learning from your mistakes. An appendix introducing the basic principles of Verilog is
included at the end of this book for reference.

© Springer International Publishing Switzerland 2017 1
A. Bindal, Fundamentals of Computer Architecture and Design,
DOI 10.1007/978-3-319-25811-9_1

2 1 Review of Combinational Circuits

1.1 Logic Gates

AND gate

To understand how AND gate functions, assume that the output, OUT, in Fig. 1.1 is at logic
0 when both switches, A and B, are open. Unless both A and B close, the output stays at
logic 0.

2 A
e

ouT

Fig. 1.1 Switch representation of a two-input AND gate

A two-input AND gate functions similarly to the circuit in Fig. 1.1. If any of the two
inputs, A or B, is at logic 0 in the AND gate in Fig. 1.2, the gate produces a logic 0 output at
OUT. Both inputs of the gate must be equal to logic 1 in order to produce an output at logic 1.
This behavior is tabulated in Table 1.1, which is called a “truth table”.

A —
}— ouT
B —

Fig. 1.2 Two-input AND gate symbol

Table 1.1 Two-input AND gate truth table
A B | OUuT

-~ o o o

0
1
0
1

- O O o

1.1 Logic Gates

The functional representation of the two-input AND gate is:

OUT=A.B

Here, the symbol “.” between inputs A and B represents the AND-function.

OR gate

Now, assume a parallel connectivity between switches A and B as shown in Fig. 1.3. OUT
becomes logic 1 if one of these switches closes; otherwise the output will stay at logic 0.

ouT
Fig. 1.3 Switch representation of two-input OR gate
A two-input OR gate shown in Fig. 1.4 functions similarly to the circuit in Fig. 1.3. If any

of the two inputs is at logic 1, the gate produces an output, OUT, at logic 1. Both inputs must
be equal to logic 0 in order to produce a logic O output. This behavior is tabulated in the truth

table, Table 1.2.
A D
ouT
B

Fig. 1.4 Two-input OR gate symbol

Table 1.2 Two-input OR gate truth table
A B | OUT

-~ 4o o o
- O =2 O
___\o

4 1 Review of Combinational Circuits
The functional representation of the two-input OR gate is:

OUT=A+B

Here, the symbol “+” between inputs A and B signifies the OR-function.

Exclusive OR gate

A two-input Exclusive OR gate, XOR gate, is shown in Fig. 1.5. The XOR gate produces a
logic 0 output if both inputs are equal. Therefore, in many logic applications this gate is used
to compare the input logic levels to see if they are equal. The functional behavior of the gate

is tabulated in Table 1.3.
A %
ouT
B

Fig. 1.5 Two-input XOR gate symbol

Table 1.3 Two-input XOR gate truth table

A B | OUuT
0 O 0
0o 1 1
1 0 1
1 1 0

The functional representation of the two-input XOR gate is:

OUT =A@B

Here, the “@” symbol between inputs A and B signifies the XOR-function.

Buffer

A buffer is a single input device whose output is logically equal to its input. The only use of
this gate is to be able to supply enough current to the capacitive load created by a multitude of
logic gates connected to its output. The logical representation of this gate is shown in Fig. 1.6.

IN —D— ouT

Fig. 1.6 Buffer symbol

1.1 Logic Gates
Complementary Logic Gates

All basic logic gates need to have complemented forms in logic design. If a single input
needs to be complemented, an inverter shown in Fig. 1.7 is used. The inverter truth table is

shown in Table 1.4.
IN —{>o— ouT

Fig. 1.7 Inverter symbol

Table 1.4 Inverter truth table

The functional representation of the inverter is:

OUT = IN

Here, the “-” symbol on top of the input, IN, represents the complement-function.

The complemented form of two-input AND gate is called two-input NAND gate, where “N”
signifies negation. The logic representation is shown in Fig. 1.8, where a circle at the output of
the gate means complemented output. The truth table of this gate is shown in Table 1.5. Note
that all output values in this table are exact opposites of the values given in Table 1.1.

A —
b— ouT
B —

Fig. 1.8 Two-input NAND gate symbol

Table 1.5 Two-input NAND gate truth table
A B | OUT

- o o o
O = A

0
1
0
1

6 1 Review of Combinational Circuits
The functional representation of the two-input NAND gate is:

OUT=A.B

Similar to the NAND gate, the two-input OR and the two-input XOR gates have com-
plemented configurations, called the two-input NOR and the two-input XNOR gates,
respectively.

The symbolic representation and truth table of a two-input NOR gate is shown in Fig. 1.9
and Table 1.6, respectively. Again, all the outputs in Table 1.6 are the exact complements of

the outputs in Table 1.2.
A D
ouT
B

Fig. 1.9 Two-input NOR gate symbol

Table 1.6 Two-input NOR gate truth table

A B | OuT
0 0O 1
0o 1 0
1 0 0
1 1 0

The functional representation of the two-input NOR gate is:

OUT=A+B

The symbolic representation and truth table of a two-input XNOR gate is shown in
Fig. 1.10 and Table 1.7, respectively. This gate, like its counterpart the two-input XOR gate,
is often used to detect if input logic levels are equal.

A D
ouT
B

Fig. 1.10 Two-input XNOR gate symbol

Table 1.7 Two-input XNOR gate truth table
A B | OUT

-~ o o o

0
1
0
1

. O O -

1.1 Logic Gates 7

The functional representation of the two-input XNOR gate is:

OUT=A®B

Tri-State Buffer and Inverter

It is often necessary to create an open circuit between the input and the output of a logic gate
if the gate is not enabled. This need creates two more basic logic gates, the tri-state buffer

and tri-state inverter.
The tri-state buffer is shown in Fig. 1.11. Its truth table in Table 1.8 indicates continuity

between the input and the output terminals if the control input, EN, is at logic 1. When EN is
lowered to logic 0, an open circuit exists between the IN and the OUT terminals, which is
defined as high impedance state (HiZ).

IN 4|> ouT

EN

Fig. 1.11 Tri-state buffer symbol

Table 1.8 Tri-state buffer truth table
EN IN | OUT
0 0 Hiz
0 1 Hiz
1 0 0
1 1 1

The tri-state inverter is shown in Fig. 1.12 along with its truth table in Table 1.9. This
gate behaves like an inverter when EN input is at logic 1. However, when EN is lowered to
logic 0, its output disconnects from its input.

IN 4[?% ouT

EN

Fig. 1.12 Tri-state inverter symbol

8 1 Review of Combinational Circuits

Table 1.9 Tri-state inverter truth table

EN IN | OUT
0 O HiZ
0o 1 HiZ
10 1
1 1 0

The control input, EN, to tri-state buffer and inverter can also be complemented in order to
produce an active-low enabling scheme.
The tri-state buffer with the active-low enable input in Fig. 1.13 creates continuity when

EN = 0.
IN —I}— ouT

EN

Fig. 1.13 Tri-state buffer symbol with complemented enable input

The tri-state inverter with the active-low input in Fig. 1.14 also functions like an inverter
when EN is at logic 0, but its output becomes HiZ when EN is changed to logic 1.

IN —I?o— ouT

EN

Fig. 1.14 Tri-state inverter symbol with complemented enable input

1.2 Boolean Algebra

It is essential to be able to reconfigure logic functions to suit our design goals. Logical
reconfigurations may be as simple as regrouping the inputs to a single gate or comple-
menting the inputs of several gates to reach a design objective.

The identity, commutative, associative, distributive laws and the DeMorgan’s negation
rules are used to perform logical manipulations. Table 1.10 tabulates these laws.

1.2 Boolean Algebra

Table 1.10 Identity, commutative, associative, distributive and DeMorgan’s rules

Identity

Commutative

A.B.C)=(A.B).C
A+(B+C)=(A+B)+C Associative

A.B+C)=A.B+A.C
A+B.C=(A+B).(A+C)

Distributive

DeMorgan’s

Example 1.1: Reduce OUT =A .B.C + A .B.C + A . B using algebraic rules.

OUT =A.B.C +A.B.C+A.B
=A.C.(B+B) +A.B
=A.(C+B)

Example 1.2: Reduce OUT = A + A . B using algebraic rules.

OUT =A +A.B
= (A+A).(A+B)
=A+B

10 1 Review of Combinational Circuits
Example 1.3: Reduce OUT = A .B + A . C + B . C using algebraic rules.

OUT =A.B+A.C +B.C
=A.B+A.C +B.C.(A+ A)
=A.B+A.C +A.B.C +A.B.C
=A.B.(1+C)+ A.C.(1 +B)
=A.B+A.C

Example 1.4: Reduce OUT = (A + B) . (A + C) using algebraic rules.

OUT=(A+B).(A+0C)
=A.A+ A.C +A.B+B.C
=A.C+A.B+B.C
=A.C+A.B+B.C.(A+A)
=A.C+A.B+A.B.C+A.B.C
=A.C.(1+B)+A.B.(1+C)
=A.C+A.B

Example 1.5: Convert OUT = (A + B).C.D into an OR-combination of two-input
AND gates using algebraic laws and DeMorgan’s theorem.

OUT=(A+B).C.D

—=(A+B).(C+D)
=A.C+A.D+B.C+B.D

Example 1.6: Convert OUT = A . B + C . D into an AND-combination of two-input OR
gates using algebraic laws and DeMorgan’s theorem.
OUT=A.B+C.D
=A.B+C.D
=(A+B).(C+D)

1.3 Designing Combinational Logic Circuits Using Truth Tables 11

1.3 Designing Combinational Logic Circuits Using Truth Tables

A combinational logic circuit is a cascaded form of basic logic gates without any feedback
from the output to any of its inputs. The logic function is obtained from a truth table that
specifies the complete functionality of the digital circuit.

Example 1.7: Using the truth table given in Table 1.11 determine the output function of the
digital circuit.

Table 1.11 An arbitrary truth table with four inputs

A B C D ouT
0 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 0 1 1 0
0 1 0 0 0
0 1 0 1 1
0 1 1 0 0
0 1 1 1 0
1 0 0 0 1
1 0 0 1 1
1 0 1 0 1
1 0 1 1 0
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0

The output function can be expressed either as the OR combination of AND gates or the
AND combination of OR gates.

If the output is expressed in terms of AND gates, all output entries that are equal to one in
the truth table must be grouped together as a single OR gate.

12 1 Review of Combinational Circuits
OUT=A.B.C.D+A.B.C.D+A.B.C.D+A.B.C.D

+
+A.B.C.D+A.B.C.D+A.B.C.D
This expression is called the Sum Of Products (SOP), and it contains seven terms each
of which is called a “minterm”. In the first minterm, each A, B, C and D input is com-
plemented to produce OUT = 1 for the A = B = C = D = 0 entry of the truth table. Each of
the remaining six minterms also complies with producing OUT = 1 for their respective input
entries.

The resulting combinational circuit is is shown Fig 1.15.

B ouT

| |

L

|]

ANAvASRRAY

L

OlI0 @W> oolw> OInIw> oolw > Ol B> oolw > Ol0lw|I>]|

Fig. 1.15 AND-OR logic representation of the truth table in Table 1.11

If the output function needs to be expressed in terms of OR gates, all the output entries
that are equal to zero in the truth table must be grouped as a single AND gate.

1.3 Designing Combinational Logic Circuits Using Truth Tables 13

OUT=(A+B+C+D).(A+B+C+D).(A+B+C+D)
.(A+B+C+D).(A+B+C+D).(A+B+C+D)
.(A+B+C+D).(A+B+C+D).(A+B+C+D)

This expression is called the Product Of Sums (POS), and it contains nine terms each of
which is called a “maxterm”. The first maxterm produces OUT = 0 for the ABCD = 0011
entry of the truth table. Since the output is formed with a nine-input AND gate, the values of
the other maxterms do not matter to produce OUT = 0. Each of the remaining eight max-
terms generates OUT = O for their corresponding truth table input entries.

The resulting combinational circuit is shown in Fig. 1.16.

} ouT

OI0I@> oOlW > olO W> OO W> ololw > g0Iw> oolw> o0 > golo >

Fig. 1.16 OR-AND logic representation of the truth table in Table 1.11

14 1 Review of Combinational Circuits

1.4 Combinational Logic Minimization—Karnaugh Maps

One of the most useful tools in logic design is the use of Karnaugh maps (K-map) to
minimize combinational logic functions.

Minimization can be performed in two ways. To obtain the SOP form of a minimized
logic function, logic 1 entries of the truth table must be grouped together in the K-map. To
obtain the POS form of a minimized logic function, logic O entries of the truth table must be
grouped together in the K-map.

Example 1.8: Using the truth table in Table 1.12, determine the minimized SOP and POS
output functions. Prove them to be identical.

Table 1.12 An arbitrary truth table with three inputs

A B C ouT
0 o0 O 1
0 O 1 1
0 1 0 1
0 1 1 0
1 0o 0 1
1 0 1 1
1 1 0 0
1 1 1 0

The SOP function is formed by grouping logic 1s in Fig. 1.17 to obtain the minimized
output function, OUT.

ouT

oﬁﬁoﬁ—
1| 1) o oh

Fig. 1.17 K-map of the truth table in Table 1.12 to determine SOP

Grouping 1s takes place among neighboring boxes in the K-map where only one variable
is allowed to change at a time. For instance, the first grouping of 1s combines the ABC = 000
and ABC = 010 entries as they are in the neighboring boxes. Only B changes from logic 0 to
logic 1 while A and C stay constant at logic 0. To obtain OUT = 1, both A and C need to be
complemented; this produces the first term, A . C, for the output function. Similarly, the
second grouping of 1s combines the neighboring boxes, ABC = 000, 001, 100 and 101,
where both A and C change while B stays constant at logic 0. To obtain OUT = 1, B needs to
be complemented; this generates the second term, B, for the output function.

1.4 Combinational Logic Minimization—Karnaugh Maps 15

This means that either the term A . C or B makes OUT equal to logic 1. Therefore, the
minimized output function, OUT, in the SOP form is:

OUT=B+A.C

Grouping 0Os produces the minimized POS output function as shown in Fig. 1.18.

ouT
AB
c 00 01 11 10

of 1 1 ﬂ 1
11 1 (O 0| 1

Fig. 1.18 K-map of the truth table in Table 1.12 to determine POS

This time, the first grouping of Os combines the boxes, ABC = 011 and 111, where A
changes from logic O to logic 1 while B and C stay constant at logic 1. This grouping targets
OUT = 0, which requires both B and C to be complemented. As a result, the first term of the
output function, B + C, is generated. The second grouping combines ABC = 110 and 111
where C changes from logic 0 to logic 1 while A and B stay at logic 1. To obtain OUT = 0,
both A and B need to be complemented. Consequently, the second term, A + B, forms.

Therefore, either B + C or A + B should produce OUT = 0, resulting the following POS
function.

OUT =B +C).(A+B)

To find out if the SOP and POS forms are identical to each other, we can manipulate the
POS expression above using the algebraic rules given earlier.

OUT =(B+C).(A+B)
=A.B+B.B+A.C+B.C
=A.B+B+A.C+B.C
=B.(A+1+C)+A.C
=B+A.C

This is the SOP form of the output function derived above.

Example 1.9: Using the truth table in Example 1.7 determine the minimized SOP and POS
output functions.

To obtain the output function in SOP form, logic 1s in the K-map in Fig. 1.19 are grouped
together as shown below.

16 1 Review of Combinational Circuits

ouT

cD 00 01 11 10

ooa\ o | o @
I [
11| o [o o |o
104) 0o | o Q\

Fig. 1.19 K-map of the truth table in Table 1.11 to determine SOP

The minimized output function contains only three minterms compared to seven minterms
in Example 1.7. Also, the minterms are reduced to groups of two or three inputs instead of four.

OUT=B.C+A.C.D +B.D

The resultant combinational circuit is shown in Fig. 1.20

E_

C—

A

C — ouT
C 3

51

= _

Fig. 1.20 Minimized logic circuit in SOP form from the K-map in Fig. 1.19

Further minimization can be achieved algebraically, which then reduces the number of
terms from three to two.

OUT=B.(C+D)+A.C.D

The corresponding combinational circuit is shown in Fig. 1.21.

1.4 Combinational Logic Minimization—Karnaugh Maps 17

I

ol Ol ml

ool

1

Fig. 1.21 Logic circuit in Fig. 1.20 after algebraic minimizations are applied

To obtain the POS output function, logic Os are grouped together as shown in Fig. 1.22.

ouT
AB
cop_00 01 11 10

=
)

00

01] 1 1 0 1

1[(o | o || off o)
101@@1

Fig. 1.22 K-map of the truth table in Table 1.11 to determine POS

The minimized output function contains only three maxterms compared to nine in
Example 1.7. Also, the maxterms are reduced to groups of two inputs instead of four.

OUT=(C+D).(A+B).(B+ D)

The resultant combinational circuit is shown in Fig. 1.23

olol

@ﬁ'}@

)— ouT

o |

Fig. 1.23 Minimized logic circuit in POS form from the K-map in Fig. 1.22

18 1 Review of Combinational Circuits

Example 1.10: Determine if the minimized SOP and POS output functions in Example 1.9
are identical to each other.

The POS expression for the OUT function in Example 1.9 can be re-written as follows:

OUT=(C+D).(A+B).(B+D)
=(A.C+A.D+B.C+B.D).(B+D)
=AB.C+A.B.D+B.C+B.D

+A.C.D+B.C.D
=B.C+B.D+A.C.D

The result is identical to the SOP expression given in Example 1.9.

Example 1.11: Determine the minimal SOP and POS forms of the output function, OUT,
from the K-map in Fig. 1.24. Note that the “X” sign corresponds to a “don’t care” condition
that represents either logic 0 or logic 1.

ouT
AB
cop_00 01 11 10

00| 1 0 1 1

01| O 0 0 0

1] O 1 0 X

10| X X 0 1

Fig. 1.24 An arbitrary K-map with “don’t care” entries

For the SOP expression, logic 1s in the K-map in Fig. 1.25 are grouped. Boxes with
“don’t care” entries are used as logic 1s to achieve the minimal SOP expression.

1.4 Combinational Logic Minimization—Karnaugh Maps

ouT
AB
cD 00 01 11 10

O R@o)
01 0 0 0 0

11 0 m 0 X
10/;(> b() 0 <1\

Fig. 1.25 Grouping to determine SOP form for the K-map in Fig. 1.24

As a result, the SOP functional expression for OUT is:

OUT=A.C.D+A.B.C +B.D

For the POS expression, logic Os in the K-map in Fig. 1.26 are grouped. Boxes with
“don’t care” symbols are used as logic Os to achieve the minimal POS expression.

ouT
AB
cD 00 01 11 10

00

1 1
o[(@[] o [(0)]
| o/ &

X 1

11

10

Fig. 1.26 Grouping to determine POS form for the K-map in Fig. 1.24
Therefore, the POS functional expression for OUT becomes:

OUT=(C+D).(B+D).(A+B+C).(A+B+C)

To show that the SOP and POS expressions are identical, we use the algebraic manip-
ulations in Table 1.10 on the POS expression in order to obtain the SOP expression.

20 1 Review of Combinational Circuits

OUT=(C+D).B+D).(A+B+C).(A+B+0C)

=B.C+C.D+B.D+D).(A.B+A.C+A.B+B+B.C+A.C+

(B.C+D).(A.C+A.C+B)

=A.B.C+A.C.D+A.C.D+B.D
=A.B.C+A.C.D+B.D+A.C.D.(B+B)
=A.B.C+A.C.D+B.D+A.B.C.D+A.B.C.D
=A.B.C.(1+D) + A.C.D+B.D.(1+A.QC)
=A.B.C+A.C.D+B.D

B.O)

This result is identical to the minimal SOP expression for the OUT function above.

1.5 Basic Logic Blocks

2-1 Multiplexer

The 2-1 multiplexer (MUX) is one of the most versatile logic elements in logic design. It is

defined as follows:

A if sel =1
B else

OUT =

A functional diagram of the 2-1 MUX is given in Fig. 1.27. According to the functional
description of this device when sel = 1, input A passes through the device to become its

output. When sel = 0, input B passes through the device to become its output.

A B

sei—=\1__0/

ouT

Fig. 1.27 2-1 MUX symbol

1.5 Basic Logic Blocks 21

Table 1.13 2-1 MUX truth table

sel A B ouT
0O o O 0
o o 1 1
O 1 O 0
0 1 1 1
1 0 O 0
1 o 1 0
1 1 0 1
1 1 1 1

According to this functional definition, the truth table in Table 1.13 can be formed.
Now, let us transfer the output values from the truth table to the K-map in Fig. 1.28.

ouT

selN_00 01 11 10

ol o [G [D]o
1o o |G]D

Fig. 1.28 2-1 MUX K-map

Grouping logic 1s in the K-map reveals the minimal output function of the 2-1 MUX in
SOP form:

OUT =sel . A +sel.B

The corresponding combinational circuit is shown in Fig. 1.29.

sel —
A_

:Z> our

sel
B—

Fig. 1.29 2-1 MUX logic circuit

22 1 Review of Combinational Circuits

4-1 Multiplexer

If we apply four inputs to a multiplexer instead of two, we form a 4-1 MUX whose
functional description becomes as follows:

A if sell =0 and sel2 =0
B if sell =0 and sel2 =1
C if sell =1 and sel2 =0
D else

OUT =

According to this description, we can form a truth table and obtain the minimal SOP or
POS expression for OUT. However, it is quite easy to decipher the SOP expression for OUT
from the description above. The AND-combination of A, complemented sell and comple-
mented sel2 inputs constitute the first minterm of our SOP. The second minterm should
contain B, complemented sell and uncomplemented sel2 according to the description above.
Similarly, the third minterm contains C, uncomplemented sell and complemented sel2.
Finally, the last minterm contains D, uncomplemented sell and uncomplemented sel2
control inputs. Therefore, the SOP expression for the 4-1 MUX becomes equal to the logic
expression below and is implemented in Fig. 1.30.

OUT = sell . sel2. A + sell .sel2. B + sell .sell . C + sell .sel2.D

sell _|
sel2 —
A

sell _|
sel2 —
B
sell_|

sel2 —
C

ouT

sel1 _|
sel2
D

Fig. 1.30 4-1 MUX logic circuit in SOP form

However, implementing a 4-1 MUX this way is not advantageous due to the amount of
gate delays. A three-input AND gate is a series combination of a three-input NAND gate and
an inverter. Similarly, a four-input OR requires a four-input NOR gate and an inverter.
Therefore, we obtain a minimum of four gate delays instead of two according to this circuit.

Logic translations are possible to reduce the gate delay. The first stage of this process is to
complement the outputs of all four three-input AND gates. This necessitates complementing
the inputs to the four-input OR gate, and it results in a circuit in Fig. 1.31.

1.5 Basic Logic Blocks 23

sell _|
sel2 —
A

sel1 _|
sel2—

5
ouT
sell_|
sel2 —

c

sell _|
sel2 —
D

Fig. 1.31 Logic conversion of 4-1 MUX in Fig. 1.30

However, an OR gate with complemented inputs is equivalent to a NAND gate.
Therefore, the circuit Fig. 1.32 becomes an optimal implementation to achieve the shortest

gate delay for the 4-1 MUX because it contains only two gate delays instead of the earlier
four.

B
=Dy
ﬂ_j}

O

Fig. 1.32 4-1 MUX logic circuit in NAND-NAND form

The symbolic diagram of the 4-1 MUX is shown in Fig. 1.33.

A B C D
I R N
sell »\00 Of | 10 11/

ouT

Fig. 1.33 4-1 MUX symbol

24 1 Review of Combinational Circuits

Encoders

Encoders are the combinational logic blocks that receive 2™ number of inputs and produce N
number of encoded outputs.

Example 1.12: Generate an encoding logic from the truth table given in Table 1.14.

Table 1.14 An arbitrary encoder truth table with four inputs

INT IN2 IN3 IN4 ouT1 ouT2
0 0 0 0 1
0 0 0 1 1 1
0 0 1 0 1 1
0 0 1 1 0 1
0 1 0 0 1 0
0 1 0 1 0 0
0 1 1 0 0 0
0 1 1 1 1 0
1 0 0 0 0 1
1 0 0 1 0 0
1 0 1 0 0 0
1 0 1 1 0 1
1 1 0 0 1 0
1 1 0 1 1 1
1 1 1 0 1 1
1 1 1 1 1 0

The K-maps in Fig. 1.34 group logic 1s, and produce the encoded SOP expressions for
OUT1 and OUT2.

OuUT1 ouT2
IN3 IN4 IN3 IN4
IN1 IN2 00 01 11 10 IN1 IN2 00 01 11 10

00 o@o@ oo(1)1k1)1)
o1momo ot|olololo
11(1)1k1j1> 110@0@
10lololo]o 10M0m0

Fig. 1.34 K-map of the truth table in Table 1.14

1.5 Basic Logic Blocks 25

OUT1 =1IN1.IN2 + INT .IN2 .IN3 . IN4 + IN1 . IN2 . IN3 . IN4
+IN2 . IN3 . IN4 + IN2 . IN3 . IN4
=INI.IN2 + INT . IN2. (IN3® IN4) + IN2 . (IN3 & IN4)

OUT2 =1IN1.IN2 + IN2 . IN3 . IN4 + IN2 . IN3 . IN4 + IN1 . IN2 . IN3 . IN4
+ IN1.IN2.IN3.IN4
=INT.IN2 + IN2 . (IN3@®IN4) + IN1 . IN2 . (IN3 ¢ IN4)

Decoders

Decoders are the combinational logic blocks to decode encoded inputs. An ordinary decoder
takes N inputs and produces 2™ outputs.

Example 1.13: Design a line decoder in which an active-high enable signal activates one of
the eight independent outputs according to the truth table in Table 1.15. When the enable
signal is lowered to logic 0, all eight outputs are disabled and stay at logic 0.

Table 1.15 Truth table of a line decoder with three inputs with enable

EN IN[2] IN[1] IN[0] | OUT[7] OUT[6] OUT[5] OUT[4] OUT[3] OUT[2] OUT[1] OUT[0]
0 0 0 0 0 0 0 0 0 0 0 0
0 0o 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 11 0 0 0 0 0 0 0 0
0 1 0 o 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0
0 1 11 0 0 0 0 0 0 0 0
1 0 0 o0 0 0 0 0 0 0 0 1
1 o 0o 1 0 0 0 0 0 0 1 0
1 0 10 0 0 0 0 0 1 0 0
1 0 11 0 0 0 0 1 0 0 0
1 1 0 0 0 0 0 1 0 0 0 0
1 1 0 1 0 0 1 0 0 0 0 0
1 1 10 0 1 0 0 0 0 0 0
1 1 11 1 0 0 0 0 0 0 0

26 1 Review of Combinational Circuits

In this table, all outputs become logic 0 when the enable signal, EN, is at logic O.
However, when EN = 1, selective activation of the output starts. In this section, for each
three-bit input entry, there is always one output equal to logic 1. For example, when IN[2] =
IN[1] = IN[0] = 0, OUT[O0] becomes active and equals to logic 1 while all the other outputs
stay at logic 0. IN[2] = IN[1] = IN[0] = 1 activates OUT[7] and disables all other outputs.

We can produce the expression for each output from OUT[7] to OUT[0] simply by
reading the input values from the truth table. The accompanying circuit is composed of eight
AND gates, each with four inputs as shown in Fig. 1.35.

OUT[7] = EN . IN[2] . IN[1]. IN[0]
OUT[6] = EN . IN[2] . IN[1] . IN[0]
OUTI5] = EN . IN[2] . IN[1] . IN[0]
OUT[4] = EN . IN[2] . IN[1] . IN[O]
OUT[3] = EN . IN[2]. IN[1] . IN[0]
OUT[2] = EN . IN[2]. IN[1] . IN[O]
OUT[1] = EN . IN[2]. IN[1] . IN[0]
OUTI[0] = EN . IN[2]. IN[1] . IN[O]
EN — EN —
IN[2] — IN[2] —
NCT) ouTIo] iy] OUT[4]
IN[O] IN[0] —
EN — EN —
M2 outp1] INI2] —
IN[1] — TR OUT[S]
IN[0] — IN[0] —
EN EN —
IN[2] — IN[2] —
N[1]] outt2l /'’y OUT[6]
IN[0] — IN[0] —
EN — EN —
IN[2] — IN[2] —
N[1]] ouTI3l i1y OUT[7]
IN[0] — IN[O] —

Fig. 1.35 Logic circuit of a line decoder in Table 1.15

1.5 Basic Logic Blocks 27
One-Bit Full Adder

The one-bit full adder has three inputs: A, B, and carry-in (CIN), and it produces two
outputs: sum (SUM) and carry-out (COUT). The symbolic representation of a full adder is
shown in Fig. 1.36.

t— >
-— W

CIN—» FA | —» COUT

SUM
Fig. 1.36 One-bit full adder symbol

The one-bit full adder simply adds the contents of its two inputs, A and B, to CIN, and
forms the truth table in Table 1.16.

Table 1.16 One-bit full adder truth table

CIN A B |SUMCOUT
0 0 0 0 0
0o 0 1 1 0
0 10 1 0
0o 11 0 1
1 00 1 0
1 0 1 0 1
1 10 0 1
1 11 1 1

We can obtain the minimized SOP expressions for SUM and COUT from the K-maps in
Figs. 1.37 and 1.38.

SUM

CIN 00 01 11 10

oo [+ O
A O]

Fig. 1.37 SUM output of a one-bit full adder

28 1 Review of Combinational Circuits
Consequently,

SUM=A.B.CIN+ A.B.CIN + A.B.CIN + A.B.CIN
=CIN.(A.B + A.B) + CIN.(A.B + A.B)
=CIN.(A®B) + CIN.(A&B)
=A®B@CIN

cou
AB
cNN_00 01 11 10

Fig. 1.38 COUT output of a one-bit full adder

Thus,

COUT =CIN.B + A.B + A.CIN
=CIN.(A+B) +A.B

The resultant logic circuits for the SUM and COUT outputs are shown in Fig. 1.39.

j> couT

A —
B —

)
O €

Fig. 1.39 One-bit full adder logic circuit
One-Bit Half Adder

The one-bit half adder has only two inputs, A and B with no CIN. The A and B inputs are
added to generate the SUM and COUT outputs. The symbolic representation of half-adder is
shown in Fig. 1.40.

1.5 Basic Logic Blocks 29

t— >
<+—— W

HA —» COUT

v

SUM

Fig. 1.40 One-bit half-adder symbol

The truth table given in Table 1.17 describes the functionality of the half adder.

Table 1.17 One-bit half-adder truth table

A B |sumcour
00 |0 ©

A Ao
_ O A
O 2 A

0
0
1

From the truth table, the POS expressions for the SUM and COUT outputs can be written as:

SUM=A&B
COUT=A.B

Therefore, we can produce the SUM and the COUT circuits as shown in Fig. 1.41.

B
A —
5 - couT

Fig. 1.41 One-bit half adder logic circuit

1.6 Combinational Mega Cells

Adders

One-bit full-adders can be cascaded serially to produce multiple-bit adder configurations.
There are three basic adder types:

30

Ripple-Carry Adder

Carry-Look-Ahead Adder
Carry-Select Adder

1 Review of Combinational Circuits

However, hybrid topologies can also be formed by combining two or even three of these

configurations. For the sake of simplicity, we will limit the number of bits to four and

explain each topology in detail.

Ripple-Carry Adder

The ripple-carry adder is a cascaded configuration of multiple one-bit full adders. The circuit

topology of a four-bit ripple carry adder is shown in Fig. 1.42. In this figure, the carry-out

output of a one-bit full adder is connected to the carry-in input of the next full adder to

propagate the carry bit from one adder to the next.

Al1]

'

B[1]

Al0]

'y

A[3] B[3] Al2] B[2]
CIN[3]
FA3 4?— FA2
i COUT[2] i
SUM[3] SUM[2]

CIN[2] CIN[1]
7 FA1 47— FAO
COUT[1] i COuUT[0] ¢

SUM[1] SUM[O0]

Fig. 1.42 Four-bit ripple-carry adder

For the 0™ bit of this adder, we have:

SUM(0] = A[0] & B[0] @ CIN[0]
COUTI[0] = CIN[1] = A[0] . B[0] + CIN[0] . (A[0] + B[0]) = G[0] + P[0] . CIN[0]

where,

G[0] = A[O] . B[O] as the zeroth order generation term

P[0] =

A[O] + B[O0] as the zeroth order propagation term

B[0]

<— CIN[0]

1.6 Combinational Mega Cells 31

For the first bit:

SUM[1] = A[1] @ B[1] @ CIN[1] = A[l] @ B[1] @ (G[0] + P[0] . CIN[0])

COUTJ[1] = CIN[2] = G[1] + P[1] . CINJ1]

=G[1] + P[1] .(G[0] + [0] CIN[0]) = G[1] + P[1] . G[0]
+ P[1] . P[0] . CIN[0]

where,
G[1] = A[1] . B[1] as the first order generation term
P[1] = A[1] + B[1] as the first order propagation term

For the second bit:

SUM[2] = A2] @ B[2] @ CIN[2] = A[2] @ B[2] @ {G[1] + P[1]. (G[0]
+ P[0] . CIN[0))}

= A[2] @ B2] @ (G[1] + P[1] . G[0] + P[1] . P[0] . CIN[0])
COUT[2] = CIN[3] = G[2] + P[2] . CIN[2]
= G[2] + P[2] . {G[1] + P[1].(G[0] + P[0] . CIN[O])}
= G[2] + P[2] . G[1] + P[2] . P[1] . G[0] + P[2] . P[1] . P[0] . CIN[0]

where,
G[2] = A[2] . B[2] as the second order generation term
P[2] = A[2] + B[2] as the second order propagation term

And for the third bit:

SUM[3] = A[3] @ B[3] & CIN[3]
— A[3] @ B[3] @ {G[2] + P[2].{G[1] + P[1] . (G[0] + P[0] . CIN[0])}}
= A[3B]®@B[3] @ (G[2] + P[2] . G[1] + P[2] . P[1] . G[0]
+ P2] . P[1] . P[0] . CINJ0])

These functional expressions of the SUM and the COUT outputs also serve to estimate the
maximum and the minimum propagation delays for each bit of this adder.

The circuit diagram in Fig. 1.43 shows the maximum delay path from bit O to bit 3. In this
figure, the maximum gate delay from A[O] or B[O] inputs to SUM[O] is 2Txogry, Where
Txor2 1s a single two-input XOR gate delay.

The maximum gate delay from A[O] or B[0] to COUT[0] is 2Tor> + Tanpz Where Togro
and Tanp, are the two-input OR gate and the two-input AND gate delays, respectively.

The gate delay from A[1] or B[1] to SUM[1] is still 2Txor»; however, the delay from A[0O]
or B[0] to SUM][1] is 2Toro + Tanp2 + Txor2, Which is more than 2Txor> and must be
considered the maximum gate delay for this particular bit position and for more significant bits.

32 1 Review of Combinational Circuits

The maximum gate delay from A[0] or B[0] to COUT[1] is 3Togry + 2T anp2- It may make
more sense to expand the expression for COUT[1] as COUTJ[1] = G[1] + P[1].
G[0] + P[1] . P[0] . CINJ0], and figure out if the overall gate delay, Tor> + Tanps + Torss 1S
smaller compared to 3Tgr, + 2T anp2- Here, Tanps and Togrs are the three-input AND and
the three-input OR gate delays, respectively.

A[2] B[2] A[1] B[1] A[O] B[O]
A[3] B[3] Al2] B[2] A[1] B[1] Al0] B[0]
CIN[O]
/] _ /] |
N N i
:lMinimum
SUMI3] SUMI[2] SUMI1] SUMIO0] \ Delay
Maximum
Delay
COUTIR] = CIN[3] CQUT[1] = CIN[2] CONTI[0] = CIN[1]

Fig. 1.43 Logic circuit of the four-bit adder with the maximum and minimum delays

The maximum gate delay from A[O] or B[0] to SUM[2] is 3Tor2 + 2T anp2 + Txxor2- When the
expression for SUM[2] is expanded as SUM[2| = A[2] ¢ B[2] & (G[1] + P[1] . G[0]
+ P[1] . P[0] . CINJ[0]), we see that this delay becomes Togr» + Tanps + Tors + Txora, and it
may be smaller than the original delay if Tanps < 2Tanp2 and Tors < 2Togro.

The maximum gate delay from A[O] or B[0] to COUT[2] is 4Torz + 3Tanp2-
When COUTJ2] is expanded as COUT[2] = G[2] + P[2] . G[1] + P[2] . P[1] . G[0] + P[2].
P[1] . P[0] . CINJ[0], the maximum delay becomes Tor> + Tanps4 + Tors, and it may be
smaller than the original delay if Tanps < 3Tanp2 and Tors < 3Toro. Here, Tanps and Tora
are the four-input AND and the four-input OR gate delays, respectively.

Finally, the maximum delay from A [0] or B [0] to SUM [3] is 4Togr2 + 3T anD2 + TxoR2
which is also the maximum propagation delay for this adder. When the functional expression
for SUM[3] is expanded as SUM[3] = A[3] ® B[3] & (G[2] + P[2] . G[1] + P2] . P[1].
G[0] + P[2] . P[1] . P[0] . CIN[O]), the total propagation delay becomes Tor> + Tanpa +
Tora + Txor2, and again it may be smaller compared to the original delay if Tanps <
3Tanp2 and Togrs < 3Togo.

1.6 Combinational Mega Cells 33

Carry-Look-Ahead Adder

The idea behind carry-look-ahead (CLA) adders is to create a topology where carry-in bits to
all one-bit full adders are available simultaneously. A four-bit CLA circuit topology is
shown in Fig. 1.44. In this figure, the SUM output of a more significant bit does not have to
wait until the carry bit ripples from the least significant bit position, but it gets computed
after some logic delay. In reality, all carry-in signals are generated by complex combina-
tional logic blocks called CLA hook-ups as shown in Fig. 1.44. Each CLA block adds a
certain propagation delay on top of the two-input XOR gate delay to produce a SUM output.

Al3] B[3] Al2] B[2] Al1] B[1] Al0] B[0]
CIN[3] CIN[2] CIN[1]
FA3 |e— FA2 | FA1 |@—— FA0 |a—@— CIN]
COUT[0]
SUM[3] SUMI2] SUM[1] SUMI0]

L G[1] + P[1].G[0] + P[1].P[0].CIN[0] |«—@

- G[2] + P[2].G[1] + P[2].P[1].G[0] + P[2].P[1].P[0].CIN[O] <

Fig. 1.44 A four-bit carry-look-ahead adder

The earlier SUM and CIN expressions derived for the ripple carry adder can be applied to
the CLA adder to generate its functional equations.

Therefore,

SUM|0] = A[0] & B[0] & CINJ[0]
SUM[1] = A[1] @ BJ[1] @ CIN[1]
SUM[2] = A[2] & B[2] & CIN[2]
SUM[3] = A[3] @ B[3] @ CIN|[3]

34 1 Review of Combinational Circuits
where,

CIN[1] = G[0] + P[0] . CIN[0]
CIN[2] = G[1] + P[1] . G[0] + P[1] . P[0] . CIN]0]
CIN[3] = G[2] + P[2] . G[1] + P[2] . P[1] . G[0] + P[2] . P[l].P[0] . CIN[0]

Therefore, CIN[1] is generated by the COUT[0] function within the zeroth (the least
significant) full adder bit. However, CIN[2] and CIN[3] have to be produced by separate
logic blocks in order to provide the CIN signals for the second and the third (the most
significant) full-adder bits.

According to Fig. 1.44, once a valid CIN[0O] becomes available, it takes successively
longer times to generate valid CIN inputs to produce higher order SUM outputs due to the
increasing logic complexity in the CLA hook-ups.

Assume that Tsymo, Tsumi> Tsume and Tsyws are the propagation delays corresponding
to the bits 0, 1, 2 and 3 with respect to the CIN[0] signal. We can approximate Tsymo =
Txorz- To compute Tsyn, we need to examine the expression for CIN[1]. In this
expression, P[0] . CIN[0] produces a two-input AND gate delay, and G[0] + (P[0] . CIN[O])
produces a two-input OR gate delay to be added on top of Txogr». Therefore, Tsyn becomes
Tsumi = Tanp2 + Toro + Txoro. Similarly, the expressions for CIN[2] and CIN[3] produce
Tsumz = Tanps + Tors + Txor2 and Tsums = Tanps + Tora + Txor2, respectively.

The maximum propagation delay for this adder is, therefore, Tsymz = Tanps + Tors +
Txor2-

Despite the CLA adder’s advantage of being faster than the ripple-carry adder, in most
cases the extra CLA logic blocks make this adder topology occupy a larger chip area if the
number of adder bits is above eight.

Carry-Select Adder

Carry-Select Adders require two rows of identical adders. These adders can be as simple as
two rows of ripple-carry adders or CLA adders depending on the design requirements.
Fig. 1.45 shows the circuit topology of a four-bit carry-select adder composed of two rows

of ripple carry adders.
In this figure, the full adder at the least significant bit position operates normally and

generates a value for COUTI[0]. As this value is generated the two one-bit full adders, one
with CINA[1] = 0 and the other with CINB[1] = 1, simultaneously generate SUMA[1] and
SUMBI1]. If COUT[0] becomes equal to one, SUMBJ1] gets selected and becomes SUM[1];
otherwise, SUMA[1] becomes the SUM[1] output. Whichever value ends up being SUM[1],
it is produced after a 2-1 MUX propagation delay.

However, we cannot say the same in generating SUM[2] and SUM|[3] outputs in this
figure. After producing SUM[1], carry ripples through both adders normally to generate
SUM]J2] and SUM[3]; hence, the speed advantage of having two rows of adders becomes

1.6 Combinational Mega Cells 35

negligible. Therefore, we must be careful when employing a carry-select scheme before
designing an adder, as this method practically doubles the chip area.

A[3] B3] A2l B[2] Al B[]

CINA[3] CINA[2]

FA FA FA |<— CINA[]=0

A

A

A | CINB[3] A | CINB[2] A | ciNgpij=1 Al BIO]
SUMB[3] | SUMA3] SUMB[2] |SUMA[2] SUMB[1] | SUMA[1]
1 0 fa— \1 0 fa— \1 0,/: COUTIo) FA [«— CIN[O]
v v l
SUM[3] SUM[2] SUM[1] SUM[0]

Fig. 1.45 A four-bit carry-select adder

Even though carry-select topology is ineffective in speeding up this particular four-bit
adder, it may be advantageous if employed to an adder with greater number of bits in
conjunction with another adder topology such as the CLA.

Example 1.14: Design a 32-bit carry-look-ahead adder. Compute the worst-case propa-
gation delay in the circuit.

We need to be careful in dealing with the CLA hook-ups when generating higher order
terms because the complexity of these logic blocks can “grow” exponentially in size while
they may only provide marginal speed gain when compared to ripple-carry scheme.

36 1 Review of Combinational Circuits

Therefore, the first step of the design process is to separate the adder into eight-bit
segments with full CLA hook-ups. The proposed topology is shown in Fig. 1.46.

A[31:24] B[31:24] A[23:16] B[23:16] A[15:8] B[15:8] A[7:0] B[7:0]
8 8 8 8 8 8 8
CIN[24] %/) { CIN[16] * - * CIN[8] ¢ : ¢ |__
8-bit CLA 8-bit CLA 8-bit CLA |<—| 8-bit CLA CIN[O]
I I r

SUM[31:24] SUM[23:16] SUM[15:8] SUM[7:0]

Fig. 1.46 A 32-bit carry-look-ahead topology

Each eight-bit CLA segment contains six CLA hook-ups from CLAO to CLAS as shown
in Fig. 1.47.

Al71 B[7] Al6] B[6] A[5] B[5] A[4] B[4 A[3] B[8] A[2] B[2] A[1] B[1] A[0] B[0]

SR S N YO I S A SR N S

CIN[7] CIN[6] CIN[5] CIN[4] CIN[3] CIN[2] CIN[1]
[[[[[Bl

COUT[7] -« FA FA FA FA FA FA FA FA |«—e- CIN[O]
SUM[7] SUM[6] SUM[5] SUM[4] SUM[3] SUM[2] SUM[1] SUM[0]

CLA1]

CLA2]
CLA4 >

[T cLas |
CLA5

Fig. 1.47 An eight-bit segment of the carry-look ahead adder in Fig. 1.46
CIN and SUM expressions from bit O through bit 7 are given below.
SUM|0] = A[0] ¢ B[0] & CIN|0]

SUM[1] = A[1] & B[1] & CIN[1]

where,

CIN[1] = G[0] + P[0] . CIN[0]

1.6 Combinational Mega Cells 37

SUM|2] = A[2] @ B[2] @ CIN[2]
where,

CIN[2] = G[1] + P[1] . G[0] + P[1] . P[0] . CIN]O]

SUM[3] = A[3] @ B[3] @ CIN[3]
where,
CIN[3] =G[2] + P[2] . G[1] + P[2] . P[1] . G[0] + P[2] . P[1] . P[0] . CIN[0]
SUM[4] = A[4] & B[4] & CIN[4]
where,
CIN[4] = G[3] + P[3] . (G[2] + P[2] . G[1] + P[2] . P[1] . G[0]
+P[2] . P[1] . P[0] . CIN[0])
SUM([5] = A[5] @ B[5] @ CINJ[5]
where,
CIN[5] = G[4] + P[4] . {G[3] + P[3] . (G[2]
+P[2] . G[1] + P[2] . P[1] . G[0] + P[2] . P[1] . P[0] . CIN[0])}
= G[4] + P[4] . G[3] + P[4] . P[3] . (G[2] + P[2] . G[1]
+ P[2] . P[1] . G[0] + P[2] . P[1] . P[0] . CIN[0])

SUM([6] = A[6] @ B[6] & CIN[6]

where
CIN[6] = G[5] + P[5] . {G[4] + P[4] . G[3] + P[4] . P[3] . (G[]2] + P[2] . G][1]
+P[2] . P[1] . G[0] + P[2] . P[1] . P[0] . CIN[0])}
= GI[5] + P[5] . G[4] + P[5] . P[4] . G[3] + P[5] . P[4] . P[3] . (G[2]
+ P[2] . G[1] + P2 . P[1] . G[0] + P[2] . P[1] . P[0] . CIN[O])

+P[5].P

And finally,

38 1 Review of Combinational Circuits

COUT[7] = CIN[8] = G[7] + P[7] . {G[6] + P[6] . {G[5] + P[5] . G[4]
+ P[S] . P[4] . G[3] + P[5] . P[4] . P[3] . (G[2] + P[2] . G[1]
+P[2] . P[1]. G[0] + P[2] . P[1] . P[0] . CIN[0])}}

2] . P[1] . P
= G[7] + P[7] . G[6] + P[7] . P[6] . {G[5] + P[5] . G[4]
+ P[5] . P[4] . G[3] + P[5] . P[4] . P[3] . (G[2] + P[2] . G[1]
+ P[2] . P[1] . G[0] + P[2] . P[1] . P[0] . CIN[0])}

In these derivations, particular attention was paid to limit the number of inputs to four in
all AND and OR gates since larger gate inputs are counterproductive in reducing the overall
propagation delay.

From these functional expressions, maximum propagation delays for SUM[7] and COUT[7]
are estimated using the longest logic strings in Fig. 1.48.

CIN[0] —
PO —
P1 —
p2 —
- P3—|
P4 —
p5—
P6 —
G5 G6 SUM[7
A7T@B7 [7]
CIN[O] —
PO —
P1 —
p2 —
o2 P3—
P4 —

p5— —
G5 p7 — L COUT[7] = CIN[8]

Fig. 1.48 Propagation delay estimation of the eight-bit carry-look-ahead adder in Fig. 1.47

For SUM[7], the minterm, P[2] . P[1] . P[0] . CIN[O], generates the first four-input
AND gate. This is followed by a four-input OR gate whose minterms are G[2], P[2] . G[1],
P[2] . P[1]. G[O], and P[2] . P[1] . P[O] . CIN[O]. The four-input OR gate is then cascaded by
a four-input AND, a four-input OR, a two-input AND, a two-input OR and a two-input
XOR-gates in successive order. The entire string creates a propagation delay of Tsuym7 = 2
(Tanps + Tora) + Tanpz + Torz + Txorz from CIN[0] to SUM[7].

For COUT][7], the longest propagation delay between CIN[0] and COUT([7] is Tcoury =2
(Tanpa + Tora) + Tanps + Tors. The delays for the rest of the circuit in Fig. 1.46 become
easy to determine since the longest propagation delays have already been evaluated.

1.6 Combinational Mega Cells 39

The delay from CIN[0] to SUM[15], Tsumis, simply becomes equal to the sum of Tcouty
and Tsymy. In other words, Tsumis = 4(Tanpsa + Tora) + Tanps + Tors + Tanpz + Torz +
Txora- Similarly, the delay from CIN[0] to COUT[15], Tcouris, is equal to Teouris = 4
(Tanps + Tora) + 2(Tanps + Tora)-

The remaining delays are evaluated in the same way and lead to the longest propagation
delay in this circuit, Tsypmz;, from CIN[0] to SUM[31].

Thus,

Tsums1 = 3[2(Tanps + Tora) + Tanps + Tors] + 2(Tanps + Tora) + Tanp2
+ Tor2 + Txor2
or

Tsums1t = 8(Tanps + Tora) + 3(Tanps + Tors) + Tanpz + Torz + Txorz

Example 1.15: Design a 32-bit hybrid carry-select/carry-look-ahead adder. Compute the
worst-case propagation delay in the circuit.

Large adders are where the carry-select scheme shines! This is a classical example in
which the maximum propagation delay is reduced considerably compared to the CLA
scheme examined in Example 1.14.

As mentioned earlier, a twin set of an adder configuration is required by the carry-select
scheme. The adders can be ripple-carry, carry-look-ahead or the combination of the two.

In this example, the 32-bit adder is again divided in eight-bit segments where each
segment consists of a full CLA adder as shown in Fig. 1.49. The first segment, CLA-0, is a
single unit which produces COUT[7] with full CLA hook-ups. The rest of the eight-bit
segments are mirror images of each other, and they are either named A-segments (Al, A2
and A3) or B-segments (B1, B2 and B3).

As the CLA-0 generates a valid COUT[7], the CLA-A1 and CLA-B1 simultaneously
generate COUTA[15] and COUTB[15]. When COUT[7] finally forms, it selects either
COUTA[15] or COUTB[15] depending on its value. This segment produces COUT[15] and
SUM[15:8].

COUT][15], on the other hand, is used to select between COUTA[23] and COUTB|[23],
both of which have already been formed when COUT[15] arrives at the 2-1 MUX as a
control input. COUT[15] also selects between SUMA[23:16] and SUMB[23:16] to deter-
mine the correct SUM[23:16].

Similarly, COUT[23] is used as a control input to select between SUMA[31:24] and
SUMBJ31:24]. If there is a need for COUT[31], COUT[23] can also be used to determine
the value of COUT[31].

40

A[31:24] B[31:24]
{ {°
8-bit CLA-A3
SUMA[31 :24]:1 8
A[31:24] B[31:24]
{ {
8-bit CLA-B3
SUMB[31:24]
A8
0 7
8
SUM[31:24]

COUT[23]

A[23:16] B[23:16]
{° {°
f 8-bit CLA-A2 0
SUMA[23:16]j 8
COUTI[15]
A[23:16] B[23:16]
{° {°
1)
8-bit CLA-B2 1
SUMBI23:16]
A8
0 1
8
SUM[23:16]

1

A[15:8]

1’8

Review of Combinational Circuits

B[15:8]

,ts

o\

8-bit CLA-A1

SUMA[15:8] :IS

A[15:8]

1’8

B[1

couT(7]

5:8]

1’8

8-bit CLA-B1

18

8

SUM[15:8]

SUMB[15:8]

A[7:0]

{s

B[7:0]

,ts

8-bit CLA-0

CIN[O]

,Is

SUM[7:0]

Fig. 1.49 A 32-bit carry-look-ahead/carry-select adder

The maximum propagation delay for the 32-bit carry-select/CLA adder can be found using
the logic string in Fig. 1.50. The first section of this string from CIN[0] to COUTI[7] is
identical to the eight-bit CLA carry delay in Fig. 1.48. In addition to the CLA delay, there are
three cascaded MUX stages which correspond to the generation of COUT[15], COUT[23]

and SUM[31].

Considering that a 2-1 MUX propagation delay consists of a two-input AND gate delay
and a two-input OR gate delay, we obtain the maximum propagation delay for this 32-bit

adder as follows:

Tsumsz1 = 2(Tanps + Tora) + Tanps + Tors + 3(Tanpz2 + Torz)

COUT[23]

SUM[31]

COUT[15]

COUTA[23] [1

couT(7]

COUTA[15]

COUTB[15]

COUTB[23]

— P7 G5

— P4

L Ps5

Fig. 1.50 Maximum delay propagation of the 32-bit adder in Fig. 1.49

— PO
— P1
— P2
—P3
G2

— CIN[O]

1.6 Combinational Mega Cells 41

Considering the maximum propagation delay in Example 1.14, this delay is shorter by at
least 6(Tanps + Tora). Larger carry-select/carry-look-ahead adder schemes provide greater
speed benefits at the cost of approximately doubling the adder area.

Subtractors

Subtraction is performed by a technique called twos (2s) complement addition. Twos
complement addition first requires complementing one of the adder inputs (1s complement)
and then adding 1 to the least significant bit.

Example 1.16: Form —4 in four bits using 2s complement.

—4 is formed by inverting all four bits of +4 (1s complement) and then adding one to it.

Therefore, the first step of this process is to represent +4 in four-bit binary format, which
is 0100. The second step is to determine its 1s complement, which is 1011. And the last step
is to find its 2s complement, which is 1011 + 0001 = 1100.

Here, logic 0 signifies a positive sign, and logic 1 signifies a negative sign at the most
significant bit position.

Example 1.17: Add +4 to —4 using 2s complement.

The four bit binary format of +4 is 0100. The 2s complement of +4 is 1100. If we add two
numbers together, we obtain 0100 + 1100 = 1 0000, where logic 1 at the overflow bit
position is neglected due to the four-bit binary format. Therefore, the final result becomes
0000 = 0O as expected.

Subtractors function according to the 2s complement addition. We need to form the 1s
complement of the adder input to be subtracted and then add CIN[0] = 1 to the result to
perform subtraction.

Figure 1.51 illustrates the topology of a 32-bit subtractor where input B is complemented,
and CIN[O0] is tied to logic 1 to satisfy the 2s complement addition requirements to produce
A-B.

B[31:0]
A[31:0] 32
32
SUBTRACTOR e CIN[O] = 1
i 32
SUB[31:0]

Fig. 1.51 A symbolic representation of a 32-bit subtractor

42 1 Review of Combinational Circuits
Shifters

There are two types of shifters in logic design:
Linear shifters
Barrel shifters

Linear Shifters

A linear shifter shifts its inputs by a number of bits to the right or to the left, and routes the
result to its output.

Example 1.18: Design a four-bit linear shifter that shifts its inputs to the left by one bit and
produces logic O at the least significant output bit when SHIFT = 1. When SHIFT = 0, the
shifter routes each input directly to the corresponding output.

The logic diagram for this shifter is given in Fig. 1.52. In this figure, each input is
connected to the port O terminal of the 2-1 MUX as well as the port 1 terminal of the next
MUX at the higher bit position. Therefore, when SHIFT = 1, logic 0, IN[0], IN[1], and IN[2]
are routed through port 1 terminal of each 2-1 MUX and become OUT[0], OUT[1], OUT[2],
and OUT][3], respectively. When SHIFT = 0, each input goes through port O terminal of the
corresponding 2-1 MUX and becomes the shifter output.

IN[3] IN[2] IN[1] INO] 0

SHIFT

OUTI[3] OuUT[2] OUTI[1] OuTI0]

Fig. 1.52 Four-bit linear shifter

Barrel Shifters

Barrel shifters rotate their inputs in either clockwise or counterclockwise direction by a
number of bits and propagate them to their outputs.

Example 1.19: Design a four-bit barrel shifter that rotates its inputs in a clockwise direction
by one bit when SHIFT = 1. When SHIFT = 0, the shifter routes each input directly to the
corresponding output.

The logic diagram for this shifter is given in Fig. 1.53. The only difference between this
circuit and the linear shifter in Fig. 1.52 is the removal of logic 0 from the least significant
bit, and connecting this input to the IN[3] pin instead. Consequently, this leads to OUT[0] =
IN[3], OUT[1] = IN[O], OUT[2] = IN[1] and OUT[3] = IN[2] when SHIFT = 1, and OUTI[0]
= IN[0], OUT[1] = IN[1], OUT[2] = IN[2] and OUTI[3] = IN[3] when SHIFT = 0.

1.6 Combinational Mega Cells 43

IN[3] IN[2] IN[1] IN[O]

\No 1/ 0 1 \0O 1/ \O 1/ SHIFT
ouT[2]

OUT[3] OUT[] ouT[0]

Fig. 1.53 Four-bit barrel shifter

Example 1.20: Design a four-bit barrel shifter that rotates its inputs clockwise by one or
two bits.

First, there must be three control inputs specifying “no shift”, “shift 1 bit” and “shift 2
bits”. This requires a two-bit control input, SHIFT[1:0], as shown in Table 1.18. All control
inputs in this table are assigned arbitrarily. However, it makes sense to assign a “No shift”
input to SHIFT[1:0] = 0, a “Shift 1 bit” input to SHIFT[1:0] = 1 and a “Shift 2 bits” input to
SHIFT[1:0] = 2 for the actual rotation amount.

Table 1.18 A four-bit barrel shifter truth table

SHIFT[1] SHIFT[0] | OPERATION OUT[3] OUT[2] OUT[1] OUT[0]
0 0 No shift IN[B] IN[21 IN[1] IN[O]
0 1 Shift 1 bit IN[2] IN[1] IN[O] IN[3]
1 0 Shift 2 bits IN[1] IN[0] IN[3] IN[2]
1 1 No shift IN[3] IN[2] IN[1] IN[O]

According to this table, if there is no shift, each input bit is simply routed to its own output.
If the “Shift 1 bit” input is active, then each input is routed to the neighboring output at the
next significant bit position. In other words, IN[3] rotates clockwise and becomes OUT[0].
Similarly, IN[O], IN[1] and IN[2] shift one bit to the left and become OUT[1], OUT[2] and
OUT][3], respectively. If the “Shift 2 bits” input becomes active, then each input is routed to
the output of the neighboring bit which is two significant bits higher. This rotates all input
bits twice before they are routed to the output, producing OUT[0] = IN[2], OUT[1] = IN[3],
OUT[2] = IN[0] and OUT[3] = IN[1].

Therefore, using Table 1.18, we can conclude the logic diagram in Fig. 1.54.

44 1 Review of Combinational Circuits

IN[1] IN[2] IN[3] IN[O] IN[1] IN[2] IN[3] IN[O IN[1] IN[2] IN[3] IN[O]
I |
\2 1 0 /- \2 1 0 SHIFT[1:0]
OUT[3 OUT[2] OUT[1]
Fig. 1.54 Logic diagram of the barrel shifter in Table 1.18
A more detailed view of Fig. 1.54 is given in Fig. 1.55.
=g
T
I I
w n
o
=
o
N - < _ N - _ < N - < N - _. <
= 1= o @ (S = N @ o E oS =2 N E = o, ®
zZ5 z§5 z¢e z5 z§5 ze z5 zg5 z2 z5 zg5 z2
(| I | 1 I (| I (| I
) & = =)
[E = =
2 2 2 2
o o o o)

Fig. 1.55 Logic circuit of the barrel shifter in Fig. 1.54

1.6 Combinational Mega Cells 45

Multipliers

There are two types of multipliers:
Array multiplier
Booth multiplier

An array multiplier is relatively simple to design, but it requires a large number of gates.
A Booth multiplier, on the other hand, requires fewer gates but its implementation follows a
rather lengthy algorithm.

Array Multiplier

Similar to our everyday hand multiplication method, an array multiplier generates all partial
products before summing each column in the partial product tree to obtain the result. This
scheme is explained in Fig. 1.56 for a four-bit array multiplier.

Al3] Al2] A[1] A[0] MULTIPLICAND

B[3] B[2] B[1] B[O] MULTIPLIER
X

BIOL.A[3] B[0J.A[2] B[OLA[1] B[0].A[0] 0" PARTIAL PRODUCT

B[1.AI3] B[1]A[2] B[MJA[1] B[1].A[0] 1% PARTIAL PRODUCT
B[2LAI3] B[2LA[2] B[2LA[1] B[2].A[0] 2" PARTIAL PRODUCT
B[3LAI3] B[3lA[2] B[3LA[1] B[3].A[0] 3" PARTIAL PRODUCT

+

SUM[7] SUM[E] SUM[5] SUM[4] SUM[3] SUM[2] SUM[1] SUM[0] SUM OUTPUT
Fig. 1.56 4x4 array multiplier algorithm

The rules of partial product generation are as follows:

1. The zeroth partial product aligns with multiplicand and multiplier bit columns.

2. Each partial product is shifted one bit to the left with respect to the previous one once it is
created.

3. Each partial product is the exact replica of the multiplicand if the multiplier bit is one.
Otherwise, it is deleted.

Example 1.21: Multiply 1101 and 1001 according to the rules of array multiplication.

Suppose 1101 is the multiplicand and 1001 is the multiplier. For a four-bit multiplier, four
partial products must be formed. The bits that belong to each column of the partial product
tree are then added successively while the resultant carry bits are propagated to more
significant bit positions. This process is illustrated in Fig. 1.57.

46 1 Review of Combinational Circuits

11 0 1 MULTIPLICAND
1.0 0 1 MULTIPLIER

X
1 0o 1 0" PARTIAL PRODUCT
00 0 O 1% PARTIAL PRODUCT
00 0 O 2" PARTIAL PRODUCT
+ 11 0 1 3" PARTIAL PRODUCT
111 0 1 0 1 SUM OUTPUT

Fig. 1.57 4x4 array multiplier algorithm example

Example 1.22: Design the partial product tree for a four-bit array multiplier.
Following the convention in Fig. 1.56 and the rules of partial product generation for an
array multiplier, we can implement the partial product tree as shown in Fig. 1.58.

A[3] 0 Al2] 0 A[1] 0 A[0] 0

\1__0f
| | | B[0]
PPO[3] PPO[2] PPO[1] PPO[0] <— 0" PARTIAL PRODUCT
A3l 0 A2] 0 Al1] 0 Al0] 0
B[1]
I I I
PP1[3] PP1[2] PP1[1] PP1[0] «—— 1® PARTIAL PRODUCT
A3] 0 Al2] 0 Al1] 0 A[0] 0
| | I B[]
PP2[3] PP2[2] PP2[1] PP2[0] 2" PARTIAL PRODUCT
A3l 0 Al2] 0 Al1] 0 A[0] 0
[[[B[3]
PP3[3] PP3[2] PP3[1] PP3[0] = 3" PARTIAL PRODUCT

Fig. 1.58 4x4 array multiplier bit selector tree

In this figure, partial product elements of the zeroth partial product, B[0].A[3], B[0].A[2],
B[0].A[1] and BI[O0].A[0], are replaced by PPO[3:0] for purposes of better illustration.
Similarly, PP1[3:0], PP2[3:0] and PP3[3:0] are the new partial product outputs corre-
sponding to the rows one, two and three.

Example 1.23: Design a full adder tree responsible for adding every partial product in the
partial product tree for a four-bit array multiplier.

After generating the partial products, the next step in the design is to add the partial product
elements column by column to generate the SUM outputs, SUM[7:0], while propagating carry
bits to higher order columns. Following the naming convention in Fig. 1.58, all 16 partial

1.6 Combinational Mega Cells 47

product elements are then fed to the carry-propagate adder in Fig. 1.59. The box outlined by
dashed lines shows how the carry propagation takes place from one column to the next.

|
| ; ; il
| i Y v
CARRY
: FA e EA e HA | PROPAGATION
|
| L |
e __ 1 _ a1 d_1
) & & 8 s D) 8 = =g =
g N - [S oS E
o o o o o o o o o o o
o o o o o o o o o o o
vy vy vy vy vy vy
FA |e FA L Fa L 1 Fa | | L FA |« HA
.—I,—— —
= =B S
™ N [se) N
o o o o
o o o o
HA FA |« HA
Y Y v l l l Y v
SUM[7] SUMS] SUM[5] SUM[4] SUM[3] SUM[2] SUM[1] SUM[0]

Fig. 1.59 An eight-bit propagate adder for the bit selector tree in Fig. 1.58

Booth Multiplier

The Booth multiplier scheme halves the number of partial products using a lengthy algo-

rithm given below.
Assume that the product of two binary integers, X and Y, forms P = X.Y, where X is a

multiplicand and Y is a multiplier.
In binary form, Y is expressed in powers of two:

n—1 k
Y = Zk:O Yi2

where, the most significant bit, y,_;, corresponds to the sign bit. When y,; = 0, Y is
considered a positive number, otherwise it is a negative number as mentioned earlier in the
2s complement representation of integers.

In this section, we examine the Booth multiplication algorithm when Y is both a positive
and a negative number.

CASE 1: Y >0, thus y,.; = 0.

We can express a k™ term of Y as:

48

525 = 2y — y)25= (2= 1 23) 2
— yk2k+ 1 2yk2k71

Thus:

Y = 21:(1) y 2K =]:(1) (Yk2k +1_ 2yk2k—l)
= Yo12" =2y, 2"
+ Ya2"?
+ Yas2" P2y, 52"
+ Y2t

y32t-2y;2?

Y222
y122-2y,2°

Y020

+ o+ + o+

Regrouping the terms of the same power yields:

Y = Ynfl211 + 2n72(_2}In71 + Yoot Yn73)
+ 2n_4(_2Yn73 + Yo-4a + Yn75)

+22(=2ys+ o+ y1)
+2°(=2y; + yo+ y_1)

But, y,.y =0and y.; =0 since Y > 0

Y =222y, + Yoo+ Yo3)
+ 2" (=2y, 3+ Yaa T Yaos)

+22(2y;+ yo+ yy)
+ 20(_23’1 + Yo+ y_1)

1

Review of Combinational Circuits

1.6 Combinational Mega Cells 49

Now, let’s define a new set of coefficients:
zx==2Y¥c 1+ Y+ Vi
Then:

n—2
Y :Zk:o 7z 2% where,k = 0,2,...,(n—4),(n—2).
When X is multiplied by Y, one obtains:

P=XY=Y " (2.X).2"

where, the number of partial products in the product term, P, is reduced by half.
Each 7 = =2y, + yx + Yk.1 depends on the value of three adjacent bits, yi., yx and yy_;.
This is tabulated in Table 1.19.

Table 1.19 Booth encoder truth table

Yk+1 Yk Yk-1 Zy
0 0 0 0
0 0 1 1
0 1 0
0 1 1 2
1 0 0 -2
1 0 1 -1
1 1 0 -1
1 1 1 0

Therefore, each partial product, (z;.X), becomes one of the five different forms:
(zx.X) =0, +X, — X, + 2X, -2X

These partial products can easily be obtained by the following methods:

For z..X = 0, all multiplicand bits are replaced by 0.

For z,.X = +X, all multiplicand bits are multiplied by one.

For, 7. X = +2X, all multiplicand bits are shifted left by one bit.

For z,. X = —X, the multiplicand is 2s complemented.

For 7. X = —2X, all multiplicand bits are shifted left by one bit to form +2X, and then 2s

complemented to form —2X.

Now, the time has come to investigate when Y is negative.

CASE 2: Y <0, thus y,.; = —1

The first step is to sign-extend Y by one bit. Sign extension does not change the actual
value of Y but increases the terms from n to (n+1). Thus:

50 1 Review of Combinational Circuits

o n n—1 k
Y =-2"+ Zk:OYkz

Let us consider:

Y1242 42 = o
Then,
(zx.X) =0, + X, — X, + 2X,-2X
Thus:
f =2 —f =2"-1
or
n__ o n—1
P=l4f=1+) "2
Substituting —2" into Y yields:
_ n—1 k _ n—1 k n—1 k _ n—1 k
Y=-2"+ Zk:Oykz = —1- Zk:OZ + Z:k:OYK2 =-1+ Zk:O (v = 1)2
or
n—1
—Y =14+) (1=y)2*
However, (1 — yx) =1 when y, =0, and (1 — yi) = 0 when y, = 1. That means:
(1- Yk> =Yk
Thus:
o n—1 — Ak
—Y =1+ Zk:OYkz
The same mathematical manipulation applied to y; 2%in CASE 1 can also be applied toy,. 2k,

Ve 2= 2% —)28 = 7 2.2 — 2.1 2k

1.6 Combinational Mega Cells

Therefore,

S w2k = Z“’l (T 2.25 — 37 2. Lp.28)
_Zk DY okl g kel
=Yo1 2" = V122" -

4 m2n72
+ mzn—Z o mz.zn—4
+ Va2

+¥32* —y32.22

+9,2°

+y72% —y72.2°

+2°y5

= ﬁzn

+(2V +Vaa + Ve 3) 2"
+ (2% 5+ Voa+ Vs 2"

+ (273 + ¥, +¥) 2
+ (271 + 5 +¥)2

(2yn71 + Yoo + YI'I73) 2n72
(2YI1—3 + Yn-4 + Yn—S) 2n—4

+ (2 + Y T2
(27 + Yo +y)20 + 1

51

52 1 Review of Combinational Circuits

However, the sign-extended term, y,—; 2"= —1
Thus,

. n—1__ Kk

Y =1+ Zk:OYk2
= (_2 Yn-1 + Yn—2 + yn—3) 2n—2
=+ (_2 Yn-3 + Yn-a + YH75) 2n74

Let

Then,
-Y = w2k where, k = 0,2, ..., (n—4), (n —2).
But,

wk= =2y 7 4+V%+% g =201- v,)+ 0= y)+ 1 —yy)

= 2¥k1— Yk~ Yko1 = —Z

or

Y = ZE;(Z) 7,25 which is the same equation for Y > 0.
Therefore, for both positive and negative values of Y, we have:

)
Y = Zizozkzkwhere, k =0,2,...,(n—4), (n—2).

where, 7 = -2yiy1 + Yk + Vi

Example 1.24: Starting from the generation of its partial products, design an eight-bit
Booth multiplier.
The multiplier term, Y, for the eight-bit Booth multiplier follows the encoded expression:

1.6 Combinational Mega Cells 53

6
Y = Zk:() Zk2k = 2020 + 2222 + Z424 + 2626
Where, the encoded multiplier coefficients are:

zo==2y1+ Yo+ Y= "2vi+ Yo
= =2y3+ y, + Y
z4= =2ys+ yat ¥3
z6= —2y;7+ Yo + ¥s

Thus, P = X.Y yields:
P =2(X.zo) +2*(X.z2) + 2*(X.zg) + 2°(X.26)

This reduces the number of partial products from eight to four as shown in Fig. 1.60. In
this figure, u0, ul, u2, and u3 are added to the least significant bit position of each partial
product to handle cases where the partial product becomes —X, —2X.

sign extension 9-bit partial product due to a possible left shift
[| [|

Z()X —» Qag ag ag ag ag dg dg ag arz ag as dy as das a1 do

Ug

z;X —» bg bg bg bg bg bg by bsg bs bs bz b, by by O 0

U4
Z4X —» Cg Cg Cg Cg C7 Ceg Cs Cy C3 Cy Cq Co 0 0 0 0
uz
ZgX —» dg dg d; dg¢ ds dy4 d3 dy dy do O 0 0 0 0 0
+ B
SUM — Si5 Si4 S13 S12 S11 Sio S9 Ss S7 S S5 S4 S3 S S8y Sg

Fig. 1.60 Partial product tree of an eight-bit Booth multiplier

For cases +X, +2X and 0, all u-terms become equal to zero. All partial products are
sign-extended and nine bits in length to be able to handle + 2X.

54 1 Review of Combinational Circuits

The calculation of the final product can be further simplified if the sign extension terms
are eliminated. Let us add all the sign extension terms and form the term, SE, as shown
below:

SE = ag.(2"” + ... +2°%) + b2 + .. 2% + . (2 + .. 2")
+ d8-(215+214)

But,

2P 428 =227+ 1) =28 (2 —1) =210 -2F

2P 4 4210=210(2 4+ .4+ 1) =220~ 1) =202

2P 4 o2 =2R (2 1) =212 (20— 1) =210-2"

215 4 2]4 — 214.(2 4 1) — 2]4.(22 _]) — 2]6_2]4

SE = ag.2'® — ag.28 + bg.2!0 — bg2!0 4 ¢5.2'0 — .22 + dg. 210 — dg.2™
=20 (ag + bg + cg+ dg) — ag.2% — bg.2! — .22 — dg.2™

But,
—ag=ag—1
— by =bg — 1
—cg=C3—1
— dg=dg—1
Thus,

SE =2'%(ag + bg+ cg+ dg) +28%.(ag — 1) + 2% (bg — 1) +2"%.(cg— 1)
+ 21 (dg - 1)
=20 (ag + bg + cg+ dg) + 2835 +2'0bg + 21255
4 214-d_8 o 28 o 210 o 212 o 214
SE =2 (ag + bg + cg+ dg) + 2835+ 2!%bg + 2!%2.c5 + 2'.dg
_ 28 010 12 pl4_pl6 4 916 4 (1 _)
=20 (ag+ bg + cg+ dg—1) + 2835 +2"%bg + 2"z +2.dg
_ 98 _pl0 912 _ol4 4 (216_1) +1

1.6 Combinational Mega Cells 55

But,

20-1=(142+22+ ... +2") + 2°+2°+ ... +2P)
= (2°-1) + 2*+2°+ ... +2P)

Then,

SE=2"%(ag + bg+ cg+ dg —1) +2%.a5
+219bg + 2255 +2M.dg
— 282102 2" 414 (2°-1)
+ (28 +2° + 210 4 21 212 - 21 4 21 4 21)

Regrouping the terms with the same power in SE yields:

SE =2 (ag + bg+ cg+ dg— 1) +28%.(ag + 1) +2° +2'0bg + 2!
+ 225 4+ 28 42 dg + 28

But, the term, 2'¢, is unimportant since this is the overflow bit in the multiplier sum.
Thus,

SE =28.(ag + 1) +2° +210bg + 2" + 225 +28 4 2M.dg + 2P

Then the partial product tree in Fig. 1.60 simplifies and becomes Fig. 1.61.

sign extension MSB Mid bits LSB
[[|
ZX — 0 0 0 0 0 0 0 as a; ag as as as a, aj aop
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 Uo
X —» 0 0 0 0 0 b_g b; b bs by bz b, by bg O 0
0 0 0 0 0 0 1 0 0 0 0 0 0 us; 0 0
z2X — 0 0 0 ©cg C7; Cg Cs C4 C3 Cs Cq Co O O O 0
0 0 0 0 1 0 0 0 0 0 0 u, 0 0 0 0
zZeX —» 0 a d; d¢ ds dy d3 dy dy do O 0 0 0 0 0
+ 1 0 1 0 0 0 0 0 0 us O 0 0 0 0 0

SUM — S5 S14 S13 S12 S11 S0 Sg Sz S7 S S5 S; Sz S2 S1 S

Fig. 1.61 Partial product tree of an eight-bit Booth multiplier after minimization

56 1 Review of Combinational Circuits

In Fig. 1.60, a; = 7. X;, bj = 75 . Xj, ¢; = 74 . X;, and d; = 7. X; where 1 =0, 1, 2, ...7, and x;
represents each term in the multiplicand, X.

The complemented ag, bg, cg and dg in Fig. 1.61 are the “reserved bits” in case of a one-bit
left shift of the partial product.

Now, the time has come to implement the components of the eight-bit Booth multiplier:
the encoder, the partial product tree and the full-adder tree.

The Booth encoder is a logic block that forms each partial product. Earlier, we obtained
the Booth coefficient, z, = —2yy,| + yx + Yi_1, to aid the generation of each partial product in
Fig. 1.61. In this expression, the multiplier bits, yi,;, yx and y.;, from neighboring terms
can be used as inputs to 7z to obtain the encoder outputs. Table 1.19 is slightly modified to
form the truth table for the Booth encoder as shown in Table 1.20.

Table 1.20 Modified Booth encoder truth table

Encoder inputs

Yier Yk Ykt Zk Encoder outputs
0 0 0 0 ZERO =1
0 0 1 1 P1c=1
0 1 0 1 P1, =1
0 1 1 2 P2, =1
1 0 0 -2 M2, =1
1 0 1 -1 M1, =1
1 1 0 -1 M1y =1
1 1 1 0 ZERO =1

Following Table 1.20, the Booth encoder is implemented in Fig. 1.62. In this figure,
ZEROy, P1y, M1y, P2, and M2, correspond to the Booth coefficients, 0, +1, -1, +2 and -2, to
be multiplied with the multiplicand, respectively.

Each partial product in Fig. 1.61 contains a u-term, namely u0, ul, u2 or u3, in case of a
2s complement conversion of the partial product. Therefore, for k = 0, 1, 2 or 3 u, becomes
equal to one if M1 or M2, = 1 (if the multiplicand is multiplied by —1), else it is equal to
zero (if the multiplicand is multiplied by zero or +1). The uy-terms are implemented as
shown in Fig. 1.63.

1.6 Combinational Mega Cells

Y+t]

Yk —
Yk-1 T
ZEROy
Ve |

Yk —
m —

e
Y1 |

— >— Pk
Yk — Vit

Yi-1 —]

Y=
V-1 —|

M1y

Y= Y1 7|
V-1 —]

Viert —]

yk b P2k
Yk-1]
Yicrt
e M2,
Yk-1]

Fig. 1.62 Booth encoder logic circuit

M1y
Uk
M2,

»

Fig. 1.63 Implementation of u

57

58 1 Review of Combinational Circuits

The LSBs, namely the terms, a,, by, cg and dy, in Fig. 1.61 become equal to the values
listed in Table 1.21.

Table 1.21 Truth table of the LSB for Fig. 1.61

Encoder output LSB
ZEROk =1 ac=bp=cop=dp=0
P1c=1 ao=bp=co=dp=x0
M1 = 1 ap=bo =co=do=Xo
P2y =1 ap=bp=cop=dp=0
M2 =1 ap=bo=cop=do=1

According to this table, when the multiplicand is multiplied by zero, the LSB of the partial
product becomes equal to zero. When the multiplicand is multiplied by +1 or —1, the LSB is
simply equal to the LSB of the multiplicand, xq, or its complement, respectively. Finally,
when the multiplicand is multiplied by +2 or —2, the partial product is shifted one bit to the
left; the LSB becomes either zero or one depending on the sign. Therefore, the LSB of the
partial product is generated using a 5-1 MUX as shown in Fig. 1.64.

o
Xo—2
X —3 |—LsSB
0 —4
—15
(
3

ZEROy P1 M1y P2, M2y
Fig. 1.64 Logic diagram of the LSB for Fig. 1.61

The mid bits, a, to a;, by to by, ¢ to ¢4, and d, to d;, in Fig. 1.61 are generated according
to Table 1.22. In this table, all mid bits of a partial product are equal to zero if the
multiplicand is multiplied by zero. Mid bits become equal to the multiplicand bits or their
complements depending on the multiplicand is multiplied by +1 or —1, respectively.

1.6 Combinational Mega Cells

Table 1.22 Truth table of the mid bits for Fig. 1.61

Encoder output Mid bits
ZERO, =1 ai=b=c=d=0 wherei=1,2,..7
P1c=1 ai=b=ci=d=x wherei=1,2,..7
M1 =1 a=b=c=d=% wherei=1,2,...7
P2, =1 a,=bi=¢ =di= X1 wherei=1,2,...7
M2, =1 a=b=c=d=x4 wherei=1,2,...7

59

When the multiplicand is multiplied by +2 or —2, each term in the partial product is
shifted one bit to the left. Therefore, each partial product bit becomes equal to the lesser
significant multiplicand bit or its complement. Each mid bit in Table 1.22 can be imple-
mented by a 5-1 MUX shown in Fig. 1.65.

Xj —
Xi —
X1 —
Xt —

- cn-l;wm—\/

— Mid bit

ZEROy P1x M1y P2, M2,

Fig. 1.65 Logic diagram of the mid bits for Fig. 1.61

The MSBs, namely the terms, g, bg, Cg or dg, in Fig. 1.61 form according to Table 1.23.

Table 1.23 Truth table of the MSB for Fig. 1.61

Encoder output MSB
ZERO = 1 ag=bg=Ccs=dg =0
P1c=1 a3 =bg=Cs=dg = X7
M1 =1 58=58=ES=ES=;7
P2 =1 :’i_s=58=88=as=x7
M2, =1 ag=bg=Csg=ds=x7

In this table, when the multiplicand is multiplied by zero, the MSB of the partial product
becomes equal to zero. When the multiplicand is multiplied by +1 or —1, the MSB is simply

60 1 Review of Combinational Circuits

equal to the sign-extended value of the most significant multiplicand bit, x;, or its com-
plement, respectively. When the multiplicand is multiplied by +2 or —2, the partial product
shifts one bit to the left. Consequently, the MSB becomes equal to the most significant
multiplicand bit or its complement, respectively. The MSB of a partial product can therefore
be implemented by a 5-1 MUX as shown in Fig. 1.66.

0o —1
X7—2
Xx —3 |[— MSB
X, — 4
%X — 5
A
3

ZERO P1 M1y P2, M2y
Fig. 1.66 Logic diagram of the MSB for Fig. 1.61

When all of the components of the eight-bit Booth multiplier are integrated, we finally
obtain the circuit topology in Fig. 1.67.

Example 1.25: Multiply A = 10110101 (multiplicand) by B = 01110010 (multiplier) using
the Booth algorithm. The multiplier bits are as follows:

YO:O’ YI:17 Y2:07 Y3:0’ Y4:17 YS:L Y6:1’ Y7:0

Therefore, the Booth coefficients become:

0= -2y;+ yo+ y ;= -2(1)+0+0= -2
= 2y Yok oy = —200) £ 0 +1= +1
4= =2ys+ Y4+ y3= —2(1) + 1+ 0 = —1

Z6= 2y 4 Yo+ ys= —2.0) +1+1= +2

According to these coefficients, the partial product tree forms as shown in Fig. 1.68.

In this figure, the zeroth partial product (top row) is generated by multiplying the mul-
tiplicand by -2. This requires taking the 2s complement of the multiplicand, and then shifting
its contents one bit to the left. In other words, if the multiplicand is equal to 10110101, then
its 2s complement becomes 01001011. Shifting this value to the left by one bit reveals a
nine-bit value of 010010110. Since the sign bit of 01001011 is zero before any shifting takes
place, sign extending 010010110 after the shift in a 16-bit field yields 0000000010010110.

61

erdnpnur yoog gxg £9°L b4

0g lg 4 €g vs Ss 9g lg 8g 6g Olg llg Zlg €lg vlg Slg
d3aav
0 v4 V4 V4 V4 v4 v4 E 31VOVdOdd
— — — — — AdHYO
0 ‘ ‘ ‘ - - - ‘ ‘ 0
3
en op p p p p p p p °p
- HMH_FH_HH. FHFHHFHH o H 2 o K- LK
fongl N N 7 N = Y~ =~ O N A =~ N = S ed ON3
s ®[]o[]o[d8 MO8 13[[]®a 5 [w7 nioog £ %A
\d K—SA
0¥3z
0X OX | OXOXIXIX | IXPXEXEX | EXEXEXEX | EXEXTXPX | PXXEXSX | SXSXOXOX OXOXIXIX X X
VH <IH_ VH VH VH <ﬂ VH VH
3
n (%) %) e} €9 %) S 9 Vo) 89
]]]]]]]]] e k—SA
ciilplst s =il il =gl |5 cd ON3 4
S8l &[5 []3d S & W _._._.OOm_T\A
id K—€A
T 0¥3z
OX OX [OXOXFXFX | FXFXEXEX | ZXOXEXEX | EXEXPXPX | PXPXSXSX | SXSXOXOX OXOXIXIX 4X X
VH VH VH VH VH VH VH VH
n oQ fn_ ND mQ wn_ mD mQ wn_
HE HE] [T] N [T] [T]] || N k— €A
Fo= N I < I A G A < I I I o N - A od ON3
SO @deJoe 1313115 S] W] wioog oA
Td K—LK
ou3z
0x OX | OXOXPXIX | LXPXEXTX | ZXEXEXEX | EXEXPXPX | PXPXSXSX | SXSXOXOX OXOXIXIX IX IX
1 1 1] 1 1] 1 1 TN k— A
clL oL 1= 1= 1= l=s 1=z |2l |zl | 2d ON3 0
0|%|G|G|m|m|m|0|m|% VN I._.OOm_T\A
\d K1k

1.6 Combinational Mega Cells

0x Ox OXOxixFX IXFXZXZX OXTXEXEX ~EXEXPXVX PXPXSXSX SXSXOXIX OXOXIXIX X X

62 1 Review of Combinational Circuits

1l

-
o
Y
Y
o
-
o
-

Multiplicand

Multiplier = 0 1 1 1 0 0 1 0
X

00 00 O0OO0OO0ODO0OT11YTO0O0OT1TO0 1T 1 0 -2=Take2scomplement ofthe multiplicand
and shift left by 1 bit

1111111 01 1 0 1 0 1 +1 = Replicate the multiplicand
0 0 0O0OOT11TOOTI11TO0O 1 1 -1 = Take 2s complement of the multiplicand
11 011 0 1 0 1 O +2 = Shift the multiplicand left by 1 bit

Fig. 1.68 A numerical example of an 8x8 Booth multiplier

The first partial product (second row from the top) is produced by multiplying the multi-
plicand by +1. This simply replicates the multiplicand bits, 10110101, in the partial product.
Since the sign bit of 10110101 is one, sign extending this value in a 14-bit field yields
11111110110101 as the partial product. The second partial product (third row from the top)
is formed by multiplying the multiplicand by —1. This simply requires taking the 2s com-
plement of the multiplicand, which is 01001011. Sign extending this value in a 12-bit field
yields 000001001011 as the partial product. The third partial product (last row) is obtained
by multiplying the multiplicand by +2, which shifts the multiplicand one bit to the left. Since
the multiplicand is 10110101, a nine-bit value of 101101010 is obtained after the shift. Sign
extending this value within ten bits yields 1101101010.

1.6 Combinational Mega Cells 63

Review Questions

1.

Implement the following gates:
(a) Implement a two-input XOR gate using two-input NAND gates and inverters.
(b) Implement a two-input AND gate using two-input XNOR gates and inverters.

. Simplify the equation below:

out= (A +B). (A + B)

. Simplify the equation below:

out=(A+C).(A+C).(A+B+0C)

. Obtain the SOP and POS expressions for the following function:

out=(A.B+C).(B+A.C)

. Implement the following function using NAND gates and inverters:

ot=A.C+B.C+A.B.D

. Implement the following function using NOR gates and inverters:

out=(A@B).(CaD)

. Implement the following 2-1 multiplexer using AND and OR gates.

Note that the function of this multiplexer must produce the following:
If En = 1 then out = A else (when En = 0) out = B.

out

En

64

1 Review of Combinational Circuits

8. Implement the following 3-1 multiplexer using AND and OR gates.

10.

11.

12.

13.

Note that the function of this multiplexer must produce the following:
If En = 2 then out = A; if En = 1 then out = B else (when En = 0 or En = 3) out = C.

2
B 1 out
C 0
¥
En [1:0]

Implement a two-bit ripple-carry adder with inputs A[1:0] and B[1:0] and an output C
[1:0] using one-bit half- and one-bit full-adders. Preserve the overflow bit at the output
as C[2].

Implement a two-bit ripple-carry subtractor with inputs A[1:0] and B[1:0] and an
output C[1:0] using one-bit half- and one-bit full-adders. Preserve the overflow bit at
the output as C[2].

Implement a two-bit multiplier with inputs A[1:0] and B[1:0] and an output C[3:0]
using one-bit half- and one-bit full-adders.

Construct a four-bit comparator with inputs A[3:0] and B[3:0] using a subtractor. The
comparator circuit should identify the following cases with active-high outputs:

Implement a two-bit decoder that produces four outputs.
When enabled the decoder generates the following outputs:

Ifin[1:0] = Othen out[3:0] = 1
Ifin[1:0] = L then out[3:0] =2
Ifin[1:0] = 2then out[3:0] =4
Ifin[1:0] = 3then out[3:0] =8

When disabled the out[3:0] always equals to zero regardless of the input value.

1.6 Combinational Mega Cells 65

14.

15.

Design a 64-bit adder in ripple-carry form and compare it against carry-look-ahead,
carry-select, and carry-look-ahead/carry-select hybrids in terms of speed and the number
of gates which define the circuit area. Divide the 64-bit carry-look-ahead/carry-select
hybrid into four-bit, eight-bit, 16-bit and 32-bit carry-look-ahead segments. Indicate
which carry-look-ahead/carry-select hybrid produces the optimum design.

Implement a 4 x4 Booth multiplier. Design the Booth encoders for the partial product
tree and draw the entire schematic of the multiplier. Compare this implementation with
the 4 x 4 array multiplier explained in this chapter. List the advantages of both designs
in terms of speed and circuit area.

Projects

10.

. Implement the 4-1 multiplexer in Fig. 1.30 and verify its functionality using Verilog.
. Implement the encoder circuit in Table 1.14 and verify its functionality using Verilog.

1
2
3.
4

Implement the decoder circuit in Table 1.15 and verify its functionality using Verilog.

. Implement the four-bit Ripple-Carry Adder in Fig. 1.42 and verify its functionality

using Verilog.

Implement the four-bit Carry-Look-Ahead Adder in Fig. 1.44 and verify its function-
ality using Verilog.

Implement the four-bit Carry-Select Adder in Fig. 1.45 and verify its functionality
using Verilog.

Implement the four-bit Carry-Select/Carry-Look-Ahead Adder in Fig. 1.49 and verify
its functionality using Verilog.

Implement the four-bit barrel shifter in Fig. 1.53 and verify its functionality using
Verilog.

Implement the four-bit array multiplier in Fig. 1.56 and verify its functionality using
Verilog.

Implement the eight-bit Booth multiplier in Fig. 1.67 and verify its functionality using
Verilog.

The definition of clock and system timing are integral parts of a sequential digital circuit.
Data in a digital system moves from one storage device to the next by the virtue of a system
clock. During its travel, data is routed in and out of different combinational logic blocks, and
becomes modified to satisfy a specific functionality.

This chapter is dedicated to reviewing the basics of memory devices that store data, and
sequential circuits that use memory devices to operate. The chapter begins with the intro-
duction of two basic memory elements, the latch and the flip-flop. It then explains how data
travels between memory elements using timing diagrams, and how timing violations form as
a result of unexpected combinational logic delays on the data path or in the clock line. Later
in the chapter, the basic sequential building blocks such as registers, shift registers and
counters are examined. Moore-type and Mealy-type state machines that control data
movement are also studied; their advantages and disadvantages are compared against
counter-decoder type controllers in various design tasks. The concept of block memory and
how it is used in a digital system is introduced at the end of this chapter. The chapter
concludes with a comprehensive example which demonstrates data transfer from one
memory block to another, how to build a detailed data-path during the development of the
design, and how to use timing diagrams to build a controller.

2.1 D Latch

The D Latch is the most basic memory element in logic design. It has a data input, D, a clock
input, clock, and a data output, Q, as shown in the top portion of Fig. 2.1. It contains a
tri-state inverter at its input stage followed by two back-to-back inverters connected in a loop
configuration, which serves to store data.

© Springer International Publishing Switzerland 2017 67
A. Bindal, Fundamentals of Computer Architecture and Design,
DOI 10.1007/978-3-319-25811-9_2

68 2 Review of Sequential Logic Circuits

The clock signal connected to the enable input of the tri-state inverter can be set either to
active-high or active-low. In Fig. 2.1, the changes at the input transmit though the memory
element, and become the output during the low phase of the clock. In contrast, the changes at
the input are blocked during the high phase of the clock, and no data transmits to the output.
Once the data is stored in the back-to-back inverter loop, it becomes stable and does not

clock
Fig. 2.1 Logic and circuit diagrams of a D latch

change until different data is introduced at the input. The buffer at the output stage of the
latch is used to drive multiple logic gate inputs.

The operation of the D latch is shown in Fig. 2.2. During the low phase of the clock, the
tri-state inverter is enabled. The new data transmits through the tri-state inverter, overwrites
the old data in the back-to-back inverter stage, and reaches the output. When the clock
switches to its high phase, the input-output data transmission stops because the tri-state
buffer is disabled and blocks any new data transfer. Therefore, if certain data needs to be
retained in the latch, it needs to be stored some time before the rising edge of the clock. This
time interval is called the set-up time, tg, and it is approximately equal to the sum of delays
through the tri-state inverter and the inverter in the memory element. At the high phase of the
clock, the data stored in the latch can no longer change as shown in Fig. 2.2.

2.2 Timing Methodology Using D Latches 69

Low phase of the clock

ts

new data

High phase of the clock

new data

Fig. 2.2 Operation of D latch

2.2 Timing Methodology Using D Latches

Timing in logic systems is maintained by pipeline structures. A pipeline consists of com-
binational logic blocks bounded by memory elements as shown in the top portion of Fig. 2.3.
The main purpose of pipelines is to process several data packets within the same clock cycle
and maximize the data throughput.

To illustrate the concept of pipeline, latches are used as memory elements in the pipeline
structure shown in Fig. 2.3. In every latch boundary, data propagates from one combina-
tional logic stage to the next at the high and at the low phases of the clock.

The bottom part of Fig. 2.3 shows the timing diagram of a data transfer for a set of data
packets ranging from DI to D3 at the IN terminal. The first data packet, D1°, retains its
original value during the high phase of the clock (Cycle 1H) at the node A. D1° then
propagates through the T1 stage, and settles at the node B in a modified form, D1', sometime
before the falling edge of the clock. Similarly, D1 at the node C retains its value during the
low phase of the clock while its processed form, D17, propagates through the T2 stage, and
arrives at the node D before the rising edge of the clock. This data is processed further in the
T3 stage, and transforms into D1° before it becomes available at the OUT terminal at the
falling edge of the clock in Cycle 2L.

Similarly, the next two data packets, D2° and D3°, are also fed into the pipeline at the
subsequent negative clock edges. Both of these data propagate through the combinational
logic stages, T1, T2 and T3, and become available at the OUT terminal at the falling edge of
Cycle 3L and Cycle 4L, respectively.

70 2 Review of Sequential Logic Circuits

The total execution time for all three data packets takes four clock cycles according to the
timing diagram in Fig. 2.3. If we were to remove all the latch boundaries between nodes A
and F, and wait until all three data packets, D1, D2 and D3, were processed through the sum
of the three combinational logic stages, T1, T2 and T3, the total execution time would have
been 3 x 1.5 = 4.5 clock cycles as each combinational logic stage requires half a clock cycle
to process data. Therefore, pipelining can be used advantageously to process data in a shorter
amount of time and increase data throughput.

A B C D E F
NP Q P Q P Q P Q_OUT

clock

[
LR OKETI D

| |
| Cycle1H | Cycle1L | Cycle2H | Cycle2L | Cycle3H | Cycle3L | Cycle4H | Cycle4L |

Fig. 2.3 Timing methodology using D latches (“X” marks correspond to changing data)

2.3 D Flip-Flop

The D flip-flop is another important timing element in logic design to maintain timely
propagation of data from one combinational logic block to the next.

Similar to a latch, the flip-flop has also a data input, D, a clock input, clock, and a data
output, Q, as shown in the top portion of Fig. 2.4.

The bottom part of Fig. 2.4 shows the circuit schematic of a typical flip-flop which
contains two latches in series. The first latch has an active-low clock input, and it is called
the master. The second latch has an active-high clock input, and it is called the slave. The

2.3 D Flip-Flop 71

master accepts new data during the low phase of the clock, and transfers this data to the slave
during the high phase of the clock.

clock

MASTER SLAVE

D = ot >

clock
clock

Fig. 2.4 Logic and circuit diagrams of a D flip-flop

Figure 2.5 shows the timing attributes of a flip-flop. The set-up time, tg, is the time
interval for valid data to arrive and settle in the master latch before the rising edge of the
clock. Hold time, ty, is the time interval after the positive edge of the clock when valid data
needs to be kept steady and unchanged. The data stored in the master latch propagates
through the slave latch and becomes the flip-flop output some time after the rising edge of
the clock, and it is called clock-to-q delay or tep k-

clock

ts —>:< tH >|

!4— feika —>|

Q 2 >< Valid Data

Fig. 2.5 Timing attributes of a D flip-flop

The operation of the flip-flop in two different phases of the clock is shown in Fig. 2.6.
During the low phase of the clock, new data enters the master latch, and it is stored. This data
cannot propagate beyond the master latch because the tri-state inverter in the slave latch acts
as an open circuit during the low phase of the clock. The flip-flop output reveals only the old
data stored in the slave latch. When the clock goes high, the new data stored in the master

72 2 Review of Sequential Logic Circuits

latch transmits through the slave and arrives at the output. One can approximate values of tg
and tcp kg using the existing gate delays in the flip-flop.

Low phase of the clock

new data old data

High phase of the clock

D4/ Q

new data

tcLka

Fig. 2.6 Operation of D flip-flop

24 Timing Methodology Using D Flip-Flops

Data propagation through a pipeline with D flip-flops is shown in Fig. 2.7. The bottom part
of Fig. 2.7 shows the timing diagram of a data transfer for a set of data packets ranging from
D1 to D3 at the IN terminal.

The first data packet, D1°, at the IN terminal has to be steady and valid during the set-up
and hold periods of the flip-flop, but it is free to change during the remaining part of the clock
period as shown by oscillatory lines. Once the clock goes high, the valid D1° starts to
propagate through the combinational logic block of T1 and reaches the second flip-flop
boundary. The processed data, D1', has to arrive at the second flip-flop input, B, no later than
the set-up time of the flip-flop. Otherwise, the correct data cannot be latched. D1' propagates
through the second (T2) and third (T3) combinational logic stages, and becomes D1?and D17,
respectively, before exiting at the OUT terminal as shown in the timing diagram in Fig. 2.7.

The subsequent data packets, D2° and D3°, are similarly fed into the pipeline stage from
the IN terminal following D1°. They are processed and modified by the T1, T2 and T3
combinational logic stages as they propagate through the pipeline, and emerge at the OUT
terminal.

The total execution time for three input data packets, D1°, D2° and D3°, takes six clock
cycles, including the initial three clock cycle build-up period before D1° emerges at the OUT
terminal. If we were to remove all the flip-flop boundaries between the nodes A and F, and

24 Timing Methodology Using D Flip-Flops 73

wait for these three data packets to be processed without any pipeline structure, the total
execution time would have been 3 x 3 = 9 clock cycles, assuming each T1, T2 or T3 logic
stage imposes one clock cycle delay.

Once again, the pipelining technique considerably reduces the overall processing time and
increase data throughput whether the timing methodology is latch-based or flip-flop-based.

The advantage of using latches as opposed to flip-flops is to be able to borrow time from
neighboring stages. For example, the propagation delay in the T1 stage in Fig. 2.3 can be
extended at the expense of shortening the propagation delay in the T2 stage. This flexibility
does not exist in a flip-flop based design in Fig. 2.7.

IN—D Q LK D Q T2 D Q T3 D Q—our

clock | | | | | | | |

/ 1 1 1 1 1
~ T —9<D|1“ XXXXDIT ><><><><Dl31 ><><><><I ><><><><I XXX

|

5)
: | | | | |

c | T9g D1’ | X o2 | X b3 | X | X

> = —~ =G DO D0
| | | | |

E ! ! \:% D1 : X D2? : X D3 : X

- ' e YT 0707 D006 D0
| | | | |

out | I I X o X o2 XoF

Fig. 2.7 Timing methodology using D flip-flops (“X” marks correspond to changing data)

2.5 Timing Violations

Although pipelining scheme helps reducing the overall data processing time, we still need to
watch out possible timing violations because of the unexpected delays in the data-path and
the clock network.

Therefore, this section examines the set-up and hold timing violations in flip-flop
controlled pipelines, and proposes possible solutions to eliminate them.

74 2 Review of Sequential Logic Circuits

Figure 2.8 shows a section of a pipeline where a combinational logic block with a
propagation delay of Tcowmp is sandwiched between two flip-flop boundaries. At the rising
edge of the clock, the valid data that meets the set-up and hold time requirements is
introduced at the IN terminal. After tcp ko delay, the data emerges at the node A and
propagates through the combinational logic block as shown in the timing diagram. However,
the data arrives at the node B too late and violates the allocated set-up time of the flip-flop.
This is called the set-up violation. The amount of violation is dependent on the clock period
and is calculated as follows:

Set-up violation = ts — [T¢ — (tcikg + Tcowms)]

A B
IN D Q Tcowms D QF—— OouT

clock clock

- Tc =I

clock l—

tsltH

I
I
|<— tcika —>|
I
I
I
I

X

X

)

Tcowms —% valid
I

setup violation > |<—

S R i B

Fig. 2.8 Setup violation

Figure 2.9 describes the hold time violation where the clock shifts by Tcpx due to an
unexpected delay in the clock line. In the timing diagram, the valid data is introduced to the
pipeline at the IN terminal, and it arrives at the node B after a short delay equal to (tcp ko +
Tcoms)- The shifted clock, on the other hand, creates a substantial set-up time slack equal to
(Te + Terk — ts — teLko — Tcom), but it also produces a hold time violation at the delayed
clock edge. The amount of violation is dependent on the clock delay and is calculated as
follows:

Hold violation = (TCLK ‘I‘tH) — (tCLKQ ‘I'TCOMB)

2.5 Timing Violations 75

A B
IN—/D Q Tcoms D Q ouT

/ N shifted clock

{ Tcwk }
clock

a T .

sending edge
clock | I—

ot ot

N X | X X ' X

I I

tcLka

Al !
A | P | X

: / : ->| |<— hold violation
B [Tooms—X valid [X

I I

| |

| | I" ts '>|<' tH '>|
shifted clock : : |

receiving edge

e e —]

Fig. 2.9 Hold violation

Set-up violations can be recovered simply by increasing the clock period, Tc. However,
there is no easy way to fix hold violations as they need to be searched at each flip-flop input.
When they are found, buffer delays are added to the combinational logic block, Tcomp, in
order to avoid the violation.

The schematic in Fig. 2.10 examines the timing ramifications of two combinational logic
blocks with different propagation delays merging into a single block. The data arrives at the
node C much earlier than the node D as shown in the timing diagram. The data at the nodes
C and D propagate through the last combinational block and arrive at the node E. This
scenario creates minimum and maximum delay paths at the node E. We need to focus on the
maximum path, (T2 + T3), when examining the possibility of a set-up violation and the
minimum path, (T1 + T3), when examining the possibility of a hold violation at the next
flip-flop boundary.

76 2 Review of Sequential Logic Circuits

INT —D Q

clock D QfF— OuT
IN2 —{D Q clock
clock
sending edge receiving edge

clock

ts

tH |<-
IN1, IN2 X

tHld- ~>|ts Y

X X

I
I
I
I
I
:4— teika —»: :
AB | P | X

I I
I I
I I

c VAR X : <
I I
I I
I I
D I T2 < '
f f
I I
I I
! !
E | T3 138X valid data |
I
—>l setup slack [« |

Fig. 2.10 A timing example combining two independent data-paths

To further illustrate the timing issues involving multiple combinational logic blocks, an
example is given in Fig. 2.11 where two combinational logic blocks merge into a single
block. The adder is bypassed with the inclusion of a 2-1 MUX which selects either the
output of the adder or the bypass path, by a selector input, SEL.

The propagation delays of the inverter, Tiny, and the two-input NAND gate, Tyanpa, are
given as 100 ps and 200 ps, respectively. The set-up, hold and clock-to-q delays are also
given as 100 ps, 0 ps and 300 ps, respectively.

2.5 Timing Violations 77

A
IN1 D Q
+ S
] N
D Q ouT
B OJ
IN2 D Q 4
1>—|
C
IN3 D Q
° Tinv = 100ps
TnanD2 = 200ps
IN4 D Q SEL ts = 100ps
tH = Ops
l tcLka = 300ps

clock
Fig. 2.11 An example with multiple propagation paths

Both the one-bit full adder and the 2-1 MUX are decomposed into basic logic gates, such
as inverters and two-input NAND gates, as shown in Fig. 2.12. We obtain a total of seven
propagation paths all merging at the node R. However, we only need to search for the
maximum and the minimum delay paths to locate possible set-up and hold violations.

The maximum delay path consists of the inverter 1, and the series combination of four
two-input NAND gates numbered as 1, 3, 4 and 6 shown in the schematic. This path results
in a total delay of 900 ps. The minimum delay path, on the other hand, contains two
two-input NAND gates numbered as 5 and 6, and it produces a delay of 400 ps. Placing
these delays in the timing diagram in Fig. 2.13 yields a set-up slack of 100 ps at the node R
when a clock period of 1400 ps is used. There is no need to investigate hold violations
because there is no shift in the clock edge. However, if there were a shift in the clock line
beyond tcpxg = 300 ps, then we would have a hold violation, and it would require an
additional combinational logic delay in the data-path to proportionally shift the valid data at
the node R to compensate the hold violation. This, however, would also eliminate the 100 ps
set-up slack in Fig. 2.13.

78 2 Review of Sequential Logic Circuits

IN1 —
Ne———p
R
IN2 —
—_J T
200ps
—~ ——p Clock
{
_____ Y
~
{ Minimum Delay Path
|
c |
IN3 4D Q |
7/
| e] L
|
clock
SEL
INd D Q @ 3
P
|
clock

Fig. 2.12 Logic circuit of Fig. 2.11 showing maximum and minimum paths

L 1400ps —!

clock | | |
->| 100ps:<- setup slack —»] 100ps|<- :
1 -ine XX
| |
l+— 300ps — !
A B |)@\ |
| |
.) .
C . X/ .
I / I
| |
s : / ~— 500ps s J
) T
i (l
| |
R | |

400ps —9|(1 OOps)I(—— 400ps —9|(

700ps 800ps 1200ps

Fig. 2.13 Timing diagram of the circuit in Fig. 2.12

2.6 Register 79

2.6 Register

While the flip-flop holds data for only one clock cycle until new data arrives at the next clock
edge, the register can hold the same data perpetually until the power is turned off.

Figure 2.14 shows the circuit diagram of a one-bit register composed of a flip-flop and a
2-1 MUX. The Write Enable pin, WE, is a selector input to the 2-1 MUX and transfers new
data from the IN terminal to the flip-flop input when WE = 1. If the WE input is at logic 0,
any attempt to write new data to the register is blocked. The old data stored in the flip-flop
simply circulates around the feedback loop from one clock cycle to the next.

The timing diagram at the bottom of Fig. 2.14 describes the operation of the one-bit
register. The data at the IN terminal is blocked until the WE input becomes logic 1 in the
middle of the second clock cycle. At this point, the new data is allowed to pass through the
2-1 MUX, and it renews the contents of the register at the beginning of the third clock cycle.
The WE input transitions to logic O before the end of the third clock cycle, and causes the
register output, OUT, to stay at logic 1 during the fourth clock cycle.

WE
Y
IN
D Q ouT
0
-
clock

clock | []
|

Fig. 2.14 One-bit register and a sample timing diagram

A 32-bit register shown in Fig. 2.15 is composed of 32 one-bit registers. All 32 registers
have a common clock and WE input. Therefore, any new 32-bit data introduced at the
register input changes the contents of the register at the rising edge of the clock if the WE
input is set to logic 1.

80 2 Review of Sequential Logic Circuits

IN[31] IN[30] IN[O]

........... WE

[S]
1 o 1
........... clock

1 T]

OUTI[31] OUTI[30] OuUTI0]

Fig. 2.15 32-bit register

2.7 Shift Register

The shift register is a particular version of an ordinary register, and it specializes in shifting
data to the right or to the left according to the design needs.

Figure 2.16 shows the circuit schematic of a four-bit shift register that shifts serial data at
the IN terminal to the left if enabled.

The operation of this shift register is explained in the timing diagram in Fig. 2.17. In cycle
1, SHIFT = 0. Therefore, the change at the IN terminal during this cycle does not affect the
register outputs. However, when the SHIFT input transitions to logic 1 in the middle of cycle
2, it allows IN =1 to pass to the least significant output bit, OUT[0], at the beginning of the
third clock cycle. From the middle of cycle 2 to the middle of cycle 13, SHIFT is kept at
logic 1. Therefore, any change at the IN node directly transmits to the OUT[0] node at the
positive edge of each clock cycle. The other outputs, OUT[1], OUT[2] and OUT(3], produce
delayed outputs one clock cycle apart from each other because the output of a lesser
significant bit is connected to the input of a greater significant bit in the shift register.

When the SHIFT input becomes logic 0 from the middle of cycle 13 to cycle 17, the shift
register becomes impervious to any change at the IN terminal, and retains the old values
from the beginning of cycle 13 to cycle 18 as seen in Fig. 2.17. From the middle of cycle 17
onwards, the SHIFT input becomes logic 1 again, and the shift register distributes all new
data entries at the IN terminal to its outputs.

2.8 Counter 81

OUT[2] OUT[1] OUT[0] N
\ 4 . 4
N N0 14 N7 No_ ¢
L @ @— SHIFT
lw) O |w)] lw)]
g g (¢} (e}
O O @— clock
OUTI[3] OUT[2] OUT[1] ouTI[0]

Fig. 2.16 Four-bit shift register

112131415161 7181911001 111121131141151161171 18119

| [T Y T T T B I
: — I
| [T Y T T T B 1
I [T T T B I
| | | | | | | | | | | | | | | |
IN I Cor L P e o I |
T e e e
R S N (R (N (N F K (N (N SN NN NN NN (N AN N R
outjo] L et b I
T 1 | T | | T 1T 1T 1 & 1 1 1 1 171
T T Y N (N (N S NN NN NN (RN T T B
| | | | [| [[| | [| [[[[[[[
ot 4————+ o —-4 =T =
T T (Y N (N (N S NN KN NN (RN S R B
Lo i I L I
ouT?] ———4——+—+ I— 1 =
T T Y N I (N (N S NN NN NN (RN S TN B
I T T (N T N PO R AR [R T B
outd] v v v b o e e o b

Fig. 2.17 A sample timing diagram of the four-bit shift register in Fig. 2.16

2.8 Counter

The counter is a special form of a register which is designed to count up (or down) at each
rising edge of the clock.

The circuit schematic in Fig. 2.18 shows a typical 32-bit up-counter with two control inputs,
COUNT and LOAD. The COUNT =1 entry enables the counter to count upwards at the rising
edge of each clock cycle, and the LOAD = 1 entry loads new data to the counter from its IN
[31:0] terminal. Once loaded, the counter output, OUT[31:0], increments by one at the pos-
itive edge of each clock cycle until all the output bits become logic 1. The next increment

82 2 Review of Sequential Logic Circuits

automatically resets the counter output to logic 0. When LOAD = COUNT = 0, the counter
neither loads new data nor is able to count upwards; it stalls and repeats its old output value.

The sample timing diagram at the bottom of Fig. 2.18 illustrates its operation. Prior to the
first clock edge, the LOAD input is at logic 1 which allows an input value, IN = 3, to be
stored in the counter. This results in OUT[31:0] = 3 at the positive edge of the first clock
cycle. The LOAD = 0 and COUNT = 1 entries before the end of the first clock cycle start the
up-count process, and the contents of the output, OUT[31:0] = 3, is subsequently incre-
mented by one. The result, 3 + 1 =4, passes through the C-port of the 3-1 MUX and arrives
at the flip-flop inputs. At the positive edge of the second clock cycle, this new value
overwrites the old registered value, and the OUT[31:0] node becomes equal to 4. In the next
cycle, the counter goes through the same process and increments by one again. However, in
the same cycle, the COUNT input also transitions to logic 0, and turns on the I-port of the
3-1 MUX. This input value prevents any new data from entering the up-counter, and it keeps
the old data in the following clock cycles. As a result, the counter output stops incrementing
and stalls at the value of OUT[31:0] = 5.

NIV

IN[31:0] R

|
comr —n_¢ 1/

clock —
[2
32
OUT[31:0]
| cycle 1 | cycle 2 | cycle 3 | cycle 4 | cycle 5 | cycle 6
clock N S N T S R S R
I I I I I I
oo I ! ! ! ! !
| JIN=3 | | | |
COUNT | :I ' ' '
f f f
I I I I

outat:o] . B 3 X 4 X 5 X 5 X 5 X5

Fig. 2.18 A 32-bit counter and a sample timing diagram

2.9 Moore Machine 83

2.9 Moore Machine

A state machine can be formed as soon as a flip-flop output is connected to a flip-flop input.
Therefore, an overall state machine topology consists of flip-flops, feedback loops from
flip-flop outputs to flip-flop inputs, and combinational logic blocks connected to flip-flop
outputs and embedded in feedback loops.

Figure 2.19 shows the Moore-type state machine topology consisting of a flip-flop and a
feedback loop. In this configuration, the feedback loop includes a combinational logic block
that accepts both the flip-flop output and external inputs. If there are multiple flip-flops, the
combination of all flip-flop outputs constitutes the “present” state of the machine. The com-
bination of all flip-flop inputs is called the “next” state because at the positive edge of the clock
these inputs become the flip-flop outputs, and form the present state. Flip-flop outputs are
processed further by an additional combinational logic block, forming the present state outputs.

The basic state diagram of a Moore machine, therefore, includes the present state (PS) and
the next state (NS) as shown in Fig. 2.19. The machine can transition from the PS to the NS
if the required present state inputs are supplied. The outputs of the Moore machine are solely
generated by the present state, and they emerge only from the current states as shown in the
basic state diagram.

Next State Present State -
D Q Combme_ltlonal Present State Present State
Logic Outputs Outputs

Present State
Inputs

Combinational
Logic Next State

Outputs

Present State
Inputs

Fig. 2.19 Block diagram and state representation of Moore machine

The state diagram in Fig. 2.20 shows an example of a Moore-type machine with four
states. Note that every state-to-state transition in the state diagram requires a valid present
state input entry, and every node generates one present state output.

The state 0, SO, produces a present state output, OUT = 1, regardless of the value of the
present state input, IN. When IN = 1, the state SO transitions to the next state S1. Otherwise,
it circulates back to itself. The state S1 produces OUT = 2; its next state becomes S1 if IN =
0, or it becomes S2 if IN = 1. The state S2 also produces a present state output, OUT = 3, and
transitions to the state S3 if IN = 1. The state S2 remains unchanged if IN = 0. In the fourth
and the final state, the present state output from S3 becomes 4. The machine stays in this
state if IN stays at 0; otherwise, it goes back to the state S1.

84 2 Review of Sequential Logic Circuits

The present state inputs and outputs of this Moore machine and its states can be tabulated
in a table called the “state table” given in Fig. 2.21. In this table, the first column under the
PS entry lists all the possible present states in the state diagram in Fig. 2.20. The middle two
columns contain the next state entries for IN = 0 and IN = 1. The last column lists the present
state outputs, one for each present state.

IN=0

ouT =4

Fig. 2.20 State diagram of a Moore machine with four states

NS
1
PS IN=0 IN=1 ouT

SO SO S1 1
S1 S1 S2 2
S2 S2 S3 3
S3 S3 S1 4

Fig. 2.21 State table of the Moore machine in Fig. 2.20

2.9 Moore Machine 85

The binary state assignment is performed according to Fig. 2.22 where only one bit is
changed between adjacent states.

States [NS1 NSO

SO 0 0
S1 0 1
S2 1 1
S3 1 0

Fig. 2.22 Bit representations of states SO, S1, S2 and S3

The binary form of the state table in Fig. 2.21 is reconstructed in Fig. 2.23 according to
the state assignment in Fig. 2.22. This table is called the “transition table”, and it includes the
binary representation of the next state and the present state outputs.

IN=0 IN=1
[I [I
PS1 PSO NS1 NSO NS1 NSO OuT2 OUT1 OUTO

0 0 0 0 0 1 0 0 1
0 1 0 1 1 1 0 1 0
1 1 1 1 1 0 0 1 1
1 0 1 0 0 1 1 0 0

Fig. 2.23 Transition table of the Moore machine in Fig. 2.20

Forming this machine’s K-maps for the NSO, NS1, OUTO, OUT1 and OUT2 requires
grouping all the input terms, PS1, PSO and IN, according to the table in Fig. 2.23. The
K-maps and their corresponding Sum of Products (SOP) expressions are shown in Fig. 2.24.

86 2 Review of Sequential Logic Circuits

NS1 PS1 PS0O NSO PS1 PS0O

NN\ 00 01 11 10 NN\ 00 01 11 10
olo|o|C]D oop‘_@o
HaDE DR

NS1 = PS0.IN + PS1.IN
NSO = PS0.IN + PS1.PS0 + PS0.IN
= (PSO®IN) + PS1.PSO
OUT2 = PS1.PSO
OUT1 = PS1.PS0 + PS1.PS0 = PSO
OUTO = PS1.PS0 + PS1.PS0 = PSO®PS0

Fig. 2.24 K-maps and SOP expressions for the Moore machine in Fig. 2.20

The next step is to generate the circuit diagram that produces all five outputs of the Moore
machine according to these SOP expressions in Fig. 2.24. This circuit diagram is given in
Fig. 2.25.

In order to generate this circuit, individual combinational logic blocks for NSO and NS1
must be formed first in terms of PSO, PS1 and IN. Then, each NSO and NS1 output is connected
to the corresponding flip-flop input, producing the feedback loops for this state machine. The
logic blocks for OUTO, OUT1 and OUT?2 are generated directly from PSO and PS1.

NS1 P81

NSO PSO

_DO_D—> ouT2

» OUT1

L ———) >>—»om

Fig. 2.25 Logic circuit of the Moore machine in Fig. 2.20

2.10 Mealy Machine 87

2.10 Mealy Machine

The Mealy machine shares the same circuit topology with the Moore machine. The machine
configuration also contains flip-flops and feedback loops as shown in Fig. 2.26. However,
the present state outputs are generated from the combinational logic block in the feedback
loop rather than from the present states as in the Moore-type machines.

As a result of this topology, the basic state diagram of a Mealy machine includes the
present state, the next state and the input condition that makes the state-to-state transition
possible as shown in Fig. 2.26. The present state output(s) does not emerge from the present
state; instead, it is a function of the present state input(s) and the present state.

Next State Present State
D Q
l Present State Inputs
clock
Present State Outputs
Combinational
Present State Logic Present State
Outputs Inputs

Fig. 2.26 Block diagram and state representation of Mealy machine

The Mealy state diagram in Fig. 2.27 exhibits similar characteristics compared to the
Moore state diagram in Fig. 2.20, and all the state names and the state-to-state transitions in
this diagram are kept the same for comparison purposes. However, each arrow connecting
one state to the next carries the value of the present state output as a function of the present
state input and the present state as indicated in Fig. 2.26. As a result, the Mealy state table in
Fig. 2.28 contains two separate columns that tabulate the values of NS and OUT for IN = 0
and IN = 1. The binary state assignment is the same as in Fig. 2.22, which results in a
transition table in Fig. 2.29.

88 2 Review of Sequential Logic Circuits

IN=0
ouT =4

IN=0
ouT=2

IN=0
ouT=3

Fig. 2.27 State diagram of a Mealy machine with four states

I I
PS IN=0 IN=1 IN=0 IN=1

SO SO S1 1 2
S1 S1 S2 2 3
S2 S2 S3 3 4
S3 S3 S1 4 2

Fig. 2.28 State table of the Mealy machine in Fig. 2.27

2.10 Mealy Machine 89

IN=0 IN=1 IN=0 IN=1
[I [I [I [I
PS1 PSO NS1 NSO NS1 NSO OuT2 OUT1 OUTO OuT2 OUT1 OUTO
0 0 0 0 0 1 0 0 1 0 1 0
0 1 0 1 1 1 0 1 0 0 1 1
1 1 1 1 1 0 0 1 1 1 0 0
1 0 1 0 0 1 1 0 0 0 1 0

Fig. 2.29 Transition table of the Mealy machine in Fig. 2.27

The K-maps for NSO, NS1, OUTO, OUT1 and OUT?2 are formed according to the table in
Fig. 2.29 and shown in Fig. 2.30 with the corresponding SOP expressions. Figure 2.31
shows the circuit diagram of this machine according to the expressions in Fig. 2.30. The
methodology used to construct this circuit diagram is identical to the methodology used in
the circuit diagram for the Moore machine in Fig. 2.25.

NS PS1 PSO NSO PS1PS0
NN\ 00 01 11 10 NN\ 00 01 11 10
olo|o|G[D oo |(M[D]o
IDGDE DU &
ouT2 OUT1 ouTO
PS1PS0O PS1PS0O PS1PS0O
NN\ 00 01 11 10 NN\ 00 01 11 10 NN\ 00 01 11 10
ofofo]|o|(™ oo |@[D]o o|(M|o|(M]o
1lofo|(™Mo 1 [|W] o |(] 1lo|(M]ofo

NS1 = PSO.IN + PS1.IN

NSO = PS0.IN + PS1.PS0 + PS0.IN

= (PSO®@IN) + PS1.PS0O
OUT2 = PS1.PSO0.IN + PS1.PSO0.IN = PS1.(PSO®IN)
OUT1 = (PSO@IN) + PS1.PS0 = NSO

OUTO = PS1.PSO.IN + PS1.PS0.IN + PS1.PS0.IN = PS1.(PSO® IN) + PS1.PS0.IN

Fig. 2.30 K-maps and SOP expressions for the Mealy machine in Fig. 2.27

90 2 Review of Sequential Logic Circuits

NS1 D Q PS1
q
NSO D Q PSO
q
clock K

e ouT1

.,%DO_"_D— ouT2
o

OouTo

| \

I

Fig. 2.31 Logic circuit of the Mealy machine in Fig. 2.27

2.11 Controller Design: Moore Machine Versus Counter-Decoder Scheme

Both Mealy and Moore-type state machines have practical implementation limits when it
comes to design. A large ring-style state machine composed of N states such as in Fig. 2.32
may have multiple outputs attached to each state, making its implementation nearly
impossible with conventional state machine implementation techniques. However, these
types of designs are excellent candidates for the counter-decoder type of designs where each
state in the state diagram is associated with a counter output value. Therefore, as the counter
increments, present state outputs for each state can simply be generated by a set of decoders
connected to the output of the counter.

2.11 Controller Design: Moore Machine Versus Counter-Decoder Scheme 91

(o)L

Fig. 2.32 State diagram of a counter with N states

To illustrate this theory, a controller that generates the timing diagram in Fig. 2.33 will be
implemented using both the Moore-type state machine and the counter-decoder approach.

From the timing diagram below, this state machine generates a single active-high output,
Out = 1, once in every 8 cycles as long as Stop = 0. When Stop = 1, however, the machine
stalls and it retains its current state.

|SO|S1|S2|83|S3|83|S4|85|S6|S7|SO|S1|82|

clock
| | | | | | | | | | | |
Stop | | | | | | | | | | | | | |
| | | | | | | | | | | | | |
o S S S I N N SR S S S SR S S B

Fig. 2.33 Timing diagram of a state machine with a single input, Stop, and a single output

Once the state assignments are made for each clock cycle in Fig. 2.33, the state diagram
for a Moore-type state machine emerges in Fig. 2.34.

The first and the second clock cycles in the timing diagram are assigned to the SO and the
S1 states, respectively. The third clock cycle is assigned to the S2 state where Out = 1. The
fourth clock cycle corresponds to the S3 state. The machine stays in the S3 state as long as

92 2 Review of Sequential Logic Circuits

Stop = 1. This ranges from the fourth to the sixth clock cycle in the timing diagram. The state
assignments from the seventh to the tenth clock cycle become the S4, S5, S6 and S7 states,
respectively. The eleventh clock cycle returns to the SO state.

Out=0

Out=0

Stop =1

Stop =1

Out=0

Fig. 2.34 Moore representation of the timing diagram in Fig. 2.33

Implementing the state diagram in Fig. 2.34 follows a lengthy process of producing state
tables, transition tables, and K-maps, resulting in a total of four outputs (three flip-flop
outputs due to eight states and one output for Out). However, using a counter-decoder
approach minimizes this design task considerably and reveals a rather explicit circuit
implementation.

When the timing diagram in Fig. 2.33 is redrawn to implement the counter-decoder design
approach, it yields a simple three-bit counter which counts from zero to seven as shown in
Fig. 2.35. The counter output, CountOut, is included in this figure to show the relationships
between the state assignments, the input (Stop) and the output (Out). The figure also shows
the clock cycle where the counter resets itself when its output reaches seven.

2.11 Controller Design: Moore Machine Versus Counter-Decoder Scheme 93

|SO|S1|82|S3|S3|83|S4|85|86|S7|SO|S1|82|

clock
CountOut 7 0 1 2 3 3 4 5 6 7 0 1 2
| | | |
|

I
Stop |
f
I I I
Out | | |

Fig. 2.35 Timing diagram of a three-bit counter with a single input, stop, and a single

|

output

The first task for the design is to construct a three-bit up-counter as shown in Fig. 2.36.
The counter in this figure is derived from a general counter topology, and it consists of a
three-bit adder, three 2-1 MUXes and three flip-flops. A three-input AND gate is used as a
decoder at the counter output to implement Out = 1 when the CountOut node becomes 2.
Therefore, this method follows a simple, step-by-step design approach in producing the final
circuit that does not require implicit logic design techniques.

CountOut
[

3

Out

Fig. 2.36 Counter-decoder representation of the timing diagram in Fig. 2.35

94 2 Review of Sequential Logic Circuits

2.12 Memory

Small memory blocks can be assembled from one-bit registers in a variety of configurations
as shown in Fig. 2.14. For example, a 32-bit wide, 16-bit deep memory block shown in
Fig. 2.37 can be built by stacking 16 rows of 32-bit registers on top of each other. Each
32-bit register contains tri-state buffers at its output to prevent logic contention during read
as shown in Fig. 2.38.

The inputs to each column of the memory block in Fig. 2.37 are connected together to
write data to a selected row. For example, the input terminal, IN[0], is connected to the In[0]
pins of all 32-bit registers between row 0 to row 15 to be able to write a single bit at a
selected row. The same is true for the remaining inputs, IN[1] to IN[31].

Similarly, all outputs of each column in Fig. 2.37 are connected together to read data from
the memory block. For example, the output pin, OUT[0], is connected to the Out[0] pin of
every 32-bit register from row 0 to row 15 to be able to read one bit from a selected row. The
same is true for the remaining output pins, OUT[1] through OUT[31].

Every row of the memory block in Fig. 2.37 is accessed by an individual Write Enable
(WE) and Read Enable (RE) signal for writing or reading data, respectively.

IN[31] IN[30] = - - IN[O]

' l

WE[15]

-t 4
- 32-bit Register Row 15 _ RE[15] —— Address [3:0]
. WE[14]
@o—> 32-bit Register Row 14 _ RE[14] ¢ WE
<4+—— RE
@
o
Q
(&}
9]
a
@
[
e
e
<
< VEO]
@o—> 32-bit Register Row 0 . RE[0]
clock OUT[31] OUT[30] - - - -~ = = = -~ = -~ - - OUTI[0]

Fig. 2.37 A 32x16 memory and the truth table of its address decoder

2.12 Memory 95

In[31] In[30] In[0]

......... WE

= | 7 | il S

N g

—— P RE
Out[31] Out[30] Out[0]

Fig. 2.38 A 32-bit register slice at every row of Fig. 2.37

In order to generate the WE inputs, WE[0] to WE[15], an address decoder is used. This
decoder enables only one row while deactivating all the other rows using a four-bit address,
Address[3:0], and a single WE input according to the truth table in Fig. 2.39. For example, a
32-bit data is written to row 0 if WE = 1 and Address[3:0] = 0000 at the decoder input.
However, WE = 0 blocks writing data to all rows of the memory block regardless of the
input address as shown in the truth table in Fig. 2.40.

The RE inputs, RE[0] to RE[15], use address decoders similar to Figs. 2.39 and 2.40 to
read a block of data from a selected row. The read operation is achieved with a valid input
address and RE = 1 according to the truth table in Fig. 2.41. The RE = 0 entry disables
reading data from any row regardless of the input address as shown in Fig. 2.42.

Therefore, a valid input address along with the RE and WE command inputs must be
provided to the memory in order to perform a read or a write operation, respectively.
The WE = 0, RE = 1 combination reads data from the selected row. Similarly, the WE =1
and RE = 0 combination writes data to a selected row. The WE = 0 and RE = 0 combination
disables both reading and writing to the memory block. The control input entry, WE = 1 and
RE =1, is not allowed, and it should be interpreted as memory read.

96 2 Review of Sequential Logic Circuits
Address[3:0] | WE[15] WE[14] WE[13] WE[2] WE[1] WE[O]
0 0 0 - - - - - 0
0 1 O 1
1 0 O O
11 10 0 1 o - - - - 0 0 0
11 1 1 1 0 o - - 0 0

Fig. 2.39 The address decoder for the 32x16 memory in Fig. 2.37 when WE = 1

Address[3:0] | WE[15] WE[14] WE[13] WE[2] WE[1] WE[0]
0O 0 O 0 o - - -« -
O 0 1 0 0
O '1 o O O

1 1 1 0 0 o - - - - - 0 0

.1 1 1 1 O O

Fig. 2.40 The address decoder for the 32x16 memory in Fig. 2.37 when WE =0

Address[3:0]

RE[15] RE[14] RE[13]

o O O
- O O
o o

0 o - - - - -
0 0
0 o - - - - -
0 1 o - - - - -
1 o 0

RE[2] RE[1] RE[O]
e 0 1

Fig. 2.41 The address decoder for the 32x16 memory in Fig. 2.37 when RE =1

2.13 A Design Example Using Sequential Logic and Memory 97

Address[3:0] | RE[15] RE[14] RE[13] RE[2] RE[1] RE[0]
O 0 O 0 O
0 O O 0 0
O 0 0 0
1 1 1 o 0 0 O
1 1 1 1 0 0 O

Fig. 2.42 The address decoder for the 32x16 memory in Fig. 2.37 when RE = 0

2.13 A Design Example Using Sequential Logic and Memory

This design example combines the data-path and controller design concepts described in this
chapter and in Chap. 1. It also introduces the use of important sequential logic blocks such as
flip-flop, register, counter and memory in the same design.

Every design starts with gathering small or large logic blocks to meet the functional
specifications of the design and to construct a data-path for proper data-flow. Once the
data-path is set, then the precise data movements from one logic block to the next are
described using timing diagrams. Any architectural change in the data-path should follow a
corresponding change in the timing diagram or vice versa.

When the data-path design and the timing diagram fully associate with each other, and each
describes identical data movements, the next step in the design process is to build the
controller that governs the flow of data. To define the states of the controller, the clock periods
that generate different sets of outputs are separated from each other and named individually as
distinct states. Similarly, the clock periods revealing identical outputs are grouped together
under the same state name. The controller can be Moore-type or Mealy-type state machine
according to the design needs. The design methodology of building the data-path, timing
diagram and controller shown here will be repeated in every design throughout this book,
especially when designing peripherals for a computer system in Chap. 7.

The example design in this section reads two eight-bit data packets from an 8x8 source
memory (memory A), processes them and stores the result in an 8x4 target memory (memory
B). The processing part depends on the relative contents of each data packet: if the contents

http://dx.doi.org/10.1007/978-3-319-25811-9_1
http://dx.doi.org/10.1007/978-3-319-25811-9_7

98 2 Review of Sequential Logic Circuits

of the first data packet are larger than the second, the contents of the data packets are added.
Otherwise, they are subtracted from each other before the result is stored.

The block diagram in Fig. 2.43 demonstrates the data-path required for this
memory-to-memory data transfer as described above. The timing diagram in Fig. 2.44 needs
to accompany the data-flow in Fig. 2.43 since it depicts precise data movements and values
in each clock cycle.

To be able to write data to a memory address in Fig. 2.37, a valid data and address must
be available within the same clock cycle. In a similar fashion, data is read from the memory
core a cycle after a valid address is introduced.

Initially, counter A generates the addresses, O to 7, for memory A and writes the data
packets, AO to A7, through DatalnA[7:0] port. This is shown in the timing diagram in
Fig. 2.44 from clock cycles 1 through 8. When this task is complete, counter A resets and
reads the first data packet AO from AddrA[2:0] = 0 in clock cycle 9. In the next clock cycle,
AOQ becomes available at DOutl, and the counter A increments by one. In cycle 11, AddrA
[2:0] becomes 2, the data packet Al is read from DOutl[7:0], and the data packet AO
transfers to DOut2[7:0]. In this cycle, the contents of the data packets AO and Al are
compared with each other by subtracting Al (at DOutl) from AO (at DOut2). If the contents
of AO are less than Al, then the sign bit, Sign, of (A0 — A1) becomes negative. Sign = 1
selects (AO + Al) at ADDOut[7:0] and routes this value to DatalnB[7:0]. However, if the
contents of A0 are greater than Al, (A0 — A1) becomes positive. Sign = 0 selects (A0 — A1)
and routes this value from SUBOut[7:0] to DataInB[7:0]. The result at DataInB[7:0] is
written at AddrB[1:0] = O of memory B at the positive edge of clock cycle 12. In the same
cycle, Al is transferred to DOut2[7:0], and A2 becomes available at DOut1[7:0]. A com-
parison between Al and A2 takes place, and either (Al + A2) or (Al — A2) is prompted to
be written to memory B depending on the value of the Sign node. However, this is an
unwarranted step in the data transfer process because the design requirement states that the
comparison has to be done only once between two data packets from memory A. Since Al is
used in an earlier comparison with A0, A1 cannot be used in a subsequent comparison with
A2, and neither (Al + A2) nor (Al — A2) should be written to memory B. The remaining
clock cycles from 13 through 18 compare the values of A2 with A3, A4 with AS, and A6
with A7, and write the added or subtracted results into memory B. After clock cycle 19, all
operations on this data-path suspend, the counters are reset and all writes to the memory core
are disabled.

2.13 A Design Example Using Sequential Logic and Memory 99

7 Memory A o

A0 0
Counter A AddrA[2:0] A1 1
ounter % A2 »
| A3 3
clock A4 4
A5 5
DatalnA[7:0] L—P> A °
8 A7 7
DOut1[7:0]
8 DOut2[7:0]
O D Q @
I
clock
[
ADDOut
+
¢ 4 DatalnB[7:0]
SUBOQut
- 8
l/
7 \ 0
c B AddrB[1:0] BO 0
ounter >
> B1 1
I B2 2
clock B3 3
Memory B

Fig. 2.43 Data-path of a memory transfer example

2 Review of Sequential Logic Circuits

100

€' 814 ur yied-eiep 1ojsuen Azowow 9y} Ioj weidelp Surul], yy°e ‘b4

ox_ox_ € X Z X L X 0 xox_ox_ox_ox_ox_ox_ox_ox_ aiPpv

kb et rse e et s
o et oo
CREAEEaENER RS ER S R eSS
LT (TR e (e (e 1T T e et o e el

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
X X X X X X X X X X X Y v X Y ev X v ¥ W Y ov X vuleleq

o XTIz XTo XI's XTv XT'e X'z XT'v XTo XTIz X XIe XTIz XTI XTo X VPP

[e s I

_ (014 _ 6l _ 8l _ Ll _ 9l _ Gl _ 14" _ el _ cl _ L _ ol _ 6 _ 8 | 14 _ € _ 4 _ L _ 0

2.13 A Design Example Using Sequential Logic and Memory 101

To govern the data-flow in Fig. 2.44, a Moore-type state machine (or a
counter-decoder-type controller) is used. A Mealy-type state machine for a controller design
is usually avoided because present state inputs of this type of a state machine may change
during the clock period and may cause jittery outputs to form.

The inclusion of the controller in Fig. 2.45 identifies the necessary control signals to be
able to guide the data flow in Fig. 2.44 properly. These signals increment the counters A and
B (with IncA and IncB), and enable writes to memory A or B (with WEA and WEB) when
necessary. Thus, the timing diagram in Fig. 2.44 is expanded to include these control signals
in Fig. 2.46, and this provides a complete picture of the data transfer process from memory A
to memory B in contrast to the earlier timing diagram in Fig. 2.44.

7 Memory A

A0 0
c A AddrA[2:0] Al 1
t -
ounter % e)
f f ' WEA —»p] A3 3
IncA Reset 0K A4 4
A5 5
6
DatalnA[7:0] > AG
8 A7 7
DOut1[7:0]
8 DOut2[7:0]
O D Q L
8
I
clock
@
ADDOut
+
* L DatalnB[7:0]
IncA IncB WEA WEB Reset _| SUBOut
E 8
7 \) 0
Controller AddrB[1:0] BO 0
Counter B > B1 4
2
||) f f | WEB —» B2 2
cloc clock
IncB Reset B3 3
Memory B

Fig. 2.45 Compete block diagram of the memory transfer example with controller

102 2 Review of Sequential Logic Circuits

The controller in Fig. 2.45 can be implemented either by a Moore-type state machine in
Fig. 2.47 or by a counter-decoder-type design in Fig. 2.48.

In the Moore type design, the states from S1 through S18 are assigned to each clock cycle
of the timing diagram in Fig. 2.46. The values of the present state outputs, WEA, IncA,
WEB and IncB, in each clock cycle are read from the timing diagram and attached to each
state in Fig. 2.47. The reset state, SO, is included in the Moore machine in case the data-path
receives an external reset signal to interrupt an ongoing data transfer process. Whichever
state the state machine may be in, a Reset = 1 entry always forces the current state to
transition back to the SO state at the positive edge of the clock. These transitions are not
included in Fig. 2.47 for simplicity.

The counter-decoder style design in Fig. 2.48 consists of a five-bit counter and four
decoders to generate WEA, IncA, WEB and IncB control signals. To show the operation of
this design to generate WEA, for example, this particular decoder includes eight five-input
AND gates, one for each clock cycle from cycle 1 to cycle 8 in order to keep WEA =1 in
Fig. 2.46. The five-bit counter implicitly receives a reset signal from its output when it
reaches clock cycle 18, and resets counter A, counter B and the rest of the system in
Fig. 2.45.

103

2.13 A Design Example Using Sequential Logic and Memory

G "S14 ur Joysuen} AJowaw 9y} Joj weiderp Sumwn 939[dwod Y], o'z b4

f f __ f __ f __ f __ f f f f f f f f f f

| | f | f | f | f | | | | | | | | | |

| | | | | | | | | | | | | | | | | | |

_ _ _ | _ |1 [l |1 [l [l [_ _ _ _ _ | | |

| | | | | | | | | | | | | | | | | | |

| | | |

S T E T T T T S S S S S SN S S |

| | | | | | | | | | | | | | | | | | |

f f f f f f f f f f f f | | | | | |

| | | | | | | | | | | | _" f f f f f _|"|

| | | | | | | | | | | | | | | | | | |

0o X o X € X z X | X 0 X o X o X oX o X o X o X oX oX

| | | | | | | | | | | | | | | | | | |
ﬁ_v<-o<xﬁ_u<-o<xo_<&< XN_<-@<xm_w<-m<xm_<-v< xm<-m< xm<-m< xm_<- v xu<-o< X _ X _ X _ _ X _ X _ X _ X _ X _

| | | | | | | | | | | | | | | | | | |
o_<+o<xﬁh<+o<xL<+N<xn_<+o<xm<+m<xm_<+v<xn<+m<xﬂm_<+w<xw_<+F<xr_<+o<x _ X _ X _ _ X _ X _ X _ X _ X _

| | | | | | | | | | | | | | | | | | |

_o< x_o< X_E x_@q x_m< x_i x_m< x_m< X_E x_o< x_ x_ x_ _ x_ x_ x_ x_ x_

| | | | | | | | | | | | | | | | | | |

_o< x_o< x_o< x_Ex_@q x_m< x_v< x_m< x_m< X_E x_o< x_ x_ _ x_ x_ x_ x_ x_

| | | | | | | | | | | | | | | | | | |

B e S i G i i S e i S €2 G B 43 . B R

| | | | | | | | | | | | | | | | | | |

0o X 2 X 9 X s X v X e x e x v X ox <X e Xz X + X o X

T T T T T T

I

| | | | | | | | | | | | | | | | | | |
S I)) s A O

| | | | | | | | | | | | | | | | | | |

| 02 | 6L | 8L | Zb 9L | Sk [vb €k 2k b0k | R LYo e Ty | O

gou]

g93IM

woul

V3am

aippy

no4ans

noaav

¢inod

L1inoa

vuleleq

VPPV

1989y

%00[0

Reset = 1

2 Review of Sequential Logic Circuits

Reset
_ [WEA =1
IncB =1 | IncA = 1
Reset =0 Rese
_ [WEA =1
WEB =1 | IncA =1
Reset = 0 Reset =0
IncA=1] [WEA =1
IncB =1 | L IncA=1
Reset =0 Rese
IncA=1] [WEA =1
WEB =1 | | IncA =1
Reset =0 Rese
IncA=1] [WEA =1
IncB =1 | L IncA =1
Reset =0 Reset =
IncA=1] [WEA =1
WEB =1 | | IncA =1
Reset =0 Rese
IncA=1"] [WEA =1
IncB =1 | L IncA=1
Reset = 0 Reset =
IncA=1] [WEA =1
WEB =1 | | IncA =1
Reset =0 Rese
IncA = S10) IncA =1

Reset =0

Fig. 2.47 Moore representation of the controller unit in Fig. 2.45

2.13 A Design Example Using Sequential Logic and Memory 105

5-BIT UP-COUNTER Reset

i

Fig. 2.48 Counter-decoder representation of the controller unit in Fig. 2.45

IncA IncB WEB

106 2 Review of Sequential Logic Circuits

Review Questions

1. Implement the following Moore machine:
in=0

out=0

out=0

2. Implement the following Moore machine using a timer. The timer is initiated when In =
1. With this input, the state machine goes to the A state and stays there for 10 cycles. In
the tenth cycle, the state machine transitions to the B state and stays in this state for only
one cycle before switching to the IDLE state. One implementation scheme is to construct
a four-bit up-counter to generate the timer. When the counter output reaches 9, the
decoder at the output of the counter informs the state machine to switch from the A state
to the B state.

Out=1 Out=0

In=1
t < 10 clock cycles (CountOut = 0)

In=1
t = 10 clock cycles (CountOut = 1)

2.13 A Design Example Using Sequential Logic and Memory 107

3. The following truth table needs to be implemented using two-input NAND gates and
inverters.

o
=1

Ry iy gy N Kol E=1E=1Kk=1B"]
el Bl K=l K=l Bl Bl K=2 K=1 R*Y)
alo|=a|lol=]lol=|co|l0O

OI=2|IN|W|W|IN|=~]|O

Tnanp (two-input NAND gate delay) = 500 ps
Ty (inverter delay) = 500 ps

tclk-q (clock-to-q delay) = 200 ps

tsu (setup time) = 200 ps

th (hold time) = 300 ps

(a) Implement this truth table between two flip-flop boundaries.

(b) Find the maximum clock frequency using a timing diagram.

(c) Shift the clock by 500 ps at the receiving flip-flop boundary. Show whether or not
there is a hold violation using a timing diagram.

4. A block diagram is given below:

A -
BLOCK A B, BLOCKB
CIN
clk . clkshift

Block A contains only two flip-flops. Block B contains a one-bit adder with SUM and
COUT outputs connected to two flip-flops as shown below.

108 2 Review of Sequential Logic Circuits

A --_\\\\\\\
cout|y
> |
SUM | o
S
CIN clkshift

(a) Using the logic gates with propagation delays listed below, determine the setup time
for A, B, and CIN with respect to clkshift.

100ps 200ps 200ps 400ps 400ps
1 I 1

Dl e Tt D D

(b) Assuming T = 0 ns and Tc¢; k (clock period) = 5 ns, if data at A, B and CIN become
valid and stable 4 ns after the positive edge of clkshift, will there be any timing
violations? Assume ty (hold time) = 3 ns for the flip-flop.

(c) How can you eliminate the timing violations? Show your calculations and draw a
timing diagram with no timing violations.

5. A schematic is given below:

—D/I\Q— TA—|i
’7

IN2—D Q

B D Q

TC

clkRx

clkTx

2.13 A Design Example Using Sequential Logic and Memory 109

(a) If tsu (setup time) = 200 ps, th (hold time) = 200 ps and tclk-q (clock-to-q delay) =
300 ps for the flip-flop, and TA = 1000 ps, TB = 100 ps for the internal logic blocks
on the schematic, show if there is any timing violation or timing slack in a detailed
timing diagram if TC = O ps.

(b) What happens if TC = 400 ps? Show it in a separate timing diagram.

6. The state diagram of a Moore machine is given below:

out =1 out =1

The assignment of the states A, B and C are indicated as follows:

states | PS[1] PS[0]

A 0 0
B 0 1
Cc 1 1

(a) Implement this state machine using inverters, two-input and three-input AND gates
and two-input OR gates.

(b) Find the maximum operating frequency of the implementation in part (a) if the
following timing assignments are applied:
tsu (setup time) = 100 ps, th (hold time) = 100 ps, tclk-q (clock-to-q delay) = 200 ps,
Ty (inverter delay) = 200 ps, Tanpz (two-input AND gate delay) = 300 ps, Tanps
(three-input AND gate delay) = 400 ps, Togrz (two-input OR gate delay) = 400 ps.

7. Data is transferred from Memory Tx to Memory Rx starting from the address 0x00 and
ending at the address OxOF as shown below. Once a valid address is produced for
Memory Tx, the data is read from this address at the next positive clock edge. On the
other hand, data is written to Memory Rx at the positive edge of the clock when a valid
address is available. The operating clock frequency of Memory Tx is twice the clock
frequency of Memory Rx.

110 2 Review of Sequential Logic Circuits

Memory Tx Memory Rx
7 0 7 0
0x00 OxFF 0x00
0x01 OxEE 0x01
0x02 0xDD 0x02
0x03 0xCC 0x03
0x04 0xBB 0x04
0x05 OxAA 0x05
0x06 0x99 0x06
0x07 0x88 0x07
0x08 0x77 0x08
0x09 0x66 0x09
O0x0A 0x55 0x0A
0x0B 0x44 0x0B
0x0C 0x33 0x0C
0x0D 0x22 0x0D
OxO0E 0x11 OxO0E
OxOF 0x00 . 0xOF
clock Tx cIoclk Rx

(a) Assuming address generators for Memory Tx and Memory Rx start generating valid
addresses at the same positive clock edge, show which data is actually stored in
Memory Rx using a timing diagram. Indicate all the address and data values for
Memory Tx and Memory Rx in the timing diagram.

(b) Now, assume that the operating clock frequency of Memory Tx is four times higher
than the clock frequency of Memory Rx, and an actual write to Memory Rx takes
place at the negative edge of the clock when a valid address is present. Redraw the
timing diagram indicating all address and data values transferred from Memory Tx to
Memory Rx.

8. Serial data is transferred to program four eight-bit registers. The start of the transfer is
indicated by a seven-bit sequence = {1010101} immediately followed by the address of
the register (two bits) and the data (eight bits). The transfer stops after programming the
last register. After this point, all other incoming bits to the serial input are ignored. Design
this interface by developing a data-path and a timing diagram simultaneously. Implement
the state diagram. Can this controller be implemented by a counter-decoder scheme?

2.13 A Design Example Using Sequential Logic and Memory 111

Projects

1.

Implement the one-bit register in Fig. 2.14 and verify its functionality using Verilog. Use
timing attributes in the flip-flop and the multiplexer to create gate propagation delays.
Change the clock frequency until set-up time violation is produced.

. Implement the four-bit shift register in Fig. 2.16 and verify its functionality using Ver-

ilog. Use timing attributes for flip-flops and the multiplexers to create gate propagation
delays. Examine the resulting timing diagram.

. Implement the 32-bit counter in Fig. 2.18 and verify its functionality using Verilog.
. Implement the four-state Moore-type state machine in Fig. 2.20 and verify its func-

tionality using Verilog.

. Implement the four-state Mealy-type state machine in Fig. 2.27 and verify its function-

ality using Verilog.

. Implement the three-bit counter-decoder in Fig. 2.36 and verify its functionality using

Verilog and examining the resulting timing diagram.

. Implement the 32x16 memory block in Fig. 2.37 using Verilog. How can this memory be

verified functionally?

. Implement the memory-to-memory transfer circuit in Fig. 2.45 and verify its functionality

using Verilog.

A digital system is often comprised of different time domains. Some domains work with
clock, and data is sequentially transferred from one flip-flop (or latch) boundary to the next.
In other domains, data is asynchronously processed and handled without the aid of a clock.

This chapter introduces asynchronous circuits that require no clock input. The complete
design methodology is given in terms of state assignments from timing diagrams, con-
struction of flow tables and gate minimization, which then leads to the implementation of
fundamental mode circuits [1]. The chapter concludes with an asynchronous timing
methodology with C (Mueller) elements that allows data propagation between logic blocks
without any clock input.

3.1 S-R Latch

A common storage element in asynchronous circuits is a Set-Reset (S-R) latch. This circuit is
composed of two NAND gates whose outputs are connected to their inputs as shown in Fig. 3.1.

Fig. 3.1 S-R latch

Initially, both S and R inputs may be at logic 0, producing Q = Q = 1. If the S input
transitions to logic 1 while R = 0, Q stays at logic 1 and Q transitions to logic 0. This state is
called the set state of the S-R latch. If, on the other hand, the R input goes to logic 1 while

the S input stays at 0, Q transitions to logic 0 and Q stays at logic 1. This state is called the

© Springer International Publishing Switzerland 2017 113
A. Bindal, Fundamentals of Computer Architecture and Design,
DOI 10.1007/978-3-319-25811-9_3

114 3 Review of Asynchronous Logic Circuits

reset state. Simultaneously changing both the S and R inputs from logic 0 to logic 1 causes a
racing condition. If NAND gate number 1 has a shorter gate delay than the NAND gate
number 2, Q switches to logic 0 first, and forces Q to stay at logic 1. If NAND gate number 2
has a shorter gate delay, Q switches to logic O first. Therefore, simultaneously switching
more than one input in asynchronous circuits creates unexpected outputs due to multiple
racing paths in a circuit. The fundamental-mode design methodology corrects this problem
by permitting only one input to change, and eliminates all unwanted transitions in the circuit.

3.2 Fundamental-Mode Circuit Topology

An asynchronous circuit requires no clock input to operate, and it is composed of a combi-
national logic block and a delay block. The delay block is a combinational logic circuit whose
inputs constitute the present state. The outputs of the delay block are fed back to the inputs of
the combinational logic to form the next state as shown in Fig. 3.2.

inputs —4#(\—~® outputs
Combinational

Logic
next state > present state

Delay -t

Fig. 3.2 Fundamental mode asynchronous circuit topology

Designing an asynchronous circuit requires to follow a certain procedure. The first task is
to form a primitive state flow table tabulating all possible states and transitions that the
asynchronous circuit can produce. This table must contain only one stable state per row to
maintain the fundamental mode of operation. Similarly, another table, containing only the
outputs of the circuit, is formed. An output table is also formed, and it includes every output
change as the circuit makes a transition from one state to another. Minimization of state and
output tables is achieved by implication tables prior to producing a final circuit. In asyn-
chronous circuit design, it is common to create race conditions where circuit delays produce
multiple simultaneous state transitions resulting in unwanted outputs. An effective method to
eliminate racing conditions is to work on the minimized state table and remove such state
transitions that cause the circuit to depart from its fundamental-mode of operation.

3.3 Fundamental-Mode Asynchronous Logic Circuits 115

3.3 Fundamental-Mode Asynchronous Logic Circuits

In this section, an example will be used to present the entire process designing
fundamental-mode asynchronous circuits from the creation of primitive flow tables to the
removal of racing conditions.

The circuit in this example consists of two inputs, inl and in2, and a single output. The
output is at logic 0 whenever inl = 0. The first change in in2 produces out = 1 while
inl = 1. The output transitions back to logic O when inl switches to logic 0.

The timing diagram in Fig. 3.3 summarizes the behavior of this circuit. State assignments
in the timing diagram follow the basic rule that requires the change in only one input per
state. All stable states are numbered and circled.

| |
I
I
|
T

OO OO ®® O ©

Fig. 3.3 Timing diagram and state assignments

b &b

The state (D is when inl = in2 = 0 and out = 0. Any change in in2 transitions the circuit to
the state @ with out = 0. Additional ripples at in2 while inl = O change the state of the
1
1

creates another new state, state @), with out = 1. As in2 transitions back from logic O to logic

circuit between the states (D and @. Switching inl from logic 0 to logic 1 while in2

forms a new state, state 3), and produces out = 0. The first change in in2 while inl

1 while inl = 1, the state of the circuit changes to the state (B, but the output stays at out = 1.
Further ripples in in2 while inl = 1 create no change at the output, and the circuit ends up
transitioning between the states @ and B). When in1 transitions to logic 0 while in2 = 1, the
state of the circuit switches back to the state (2. Finally, when in2 also switches back to logic
0, the state of the circuit becomes the state (D.

Now, let us assume that inl transitions to logic 1 first while in2 is steady at logic 0. This
condition creates a new state, state ®, with an output value of out = 0. When in2 also
transitions to logic 1 while inl = 1, the state of the circuit changes from the state ® to a new
state, state (), and out becomes logic 1. As soon as in2 goes back to logic 0 while inl = 1,
the circuit also switches back to the state @ but out stays at logic 1. Further ripples in in2
while inl = 1 simply change the state of the circuit between the states @ and (@. As soon as

116 3 Review of Asynchronous Logic Circuits

inl transitions back to logic 0, the circuit goes to the state (2. When in2 also changes to
logic 0, the circuit goes back to the state (D.

Constructing primitive state table and output flow table is the direct extension of the
timing diagram in Fig. 3.3. When transferring stable, circled states from the timing diagram
to the primitive state table in Fig. 3.4, the fundamental-mode rule that enforces one stable
state per row is strictly observed. The non-circled states in this table are considered “tran-
sitionary” states: the circuit momentarily stays in these states until it makes a permanent
move to a stable state. For example, as in2 transitions from logic 0 to logic 1 while inl stays
at logic O in the first row of Fig. 3.4, the state of the circuit changes from the stable state
(D to the transitionary state 2. The circuit stays in this transitionary state only for a brief
moment until it finally transitions to the stable state @) in row 2. Similarly, as inl switches
from logic O to logic 1 while in2 = 1, the circuit transitions from the state @) to the state
Q@ through a transitionary state 3 in the second row. All simultaneous dual input transitions
are forbidden because of the primary rule in the fundamental mode of operation. Therefore, a
transition from inl = in2 = 0 to inl = in2 = 1 in the first row is not allowed. In this figure,
the boxes marked with “-” indicate the forbidden transitions.

in1in2 in1in2
00 01 11 10 00 01 11 10

M|2]-18s 0

- 0

3

®)| 4

5 1® 1
-2 |(®)] 4 1

7 |(® 0

@] 4

Fig. 3.4 Primitive state (left) and output (right) flow tables for Fig. 3.3

Primitive state and output flow tables are usually integrated to produce a compact table as
shown in Fig. 3.5. Furthermore, labeling the present and next states clarifies the state
transitions and the output values during each transition. Figure 3.5 also separates the states
that produce out = 0 from the states that produce out = 1. This design practice comes in
handy during the minimization step when equivalence classes are formed.

3.3 Fundamental-Mode Asynchronous Logic Circuits 17

in1in2 in1in2
00 01 11 1000 01 11 10

Ml2|-]|6]0

O
(7]

CICACICXCACXO

3
®
S) @
@

ns out

Fig. 3.5 Integrated primitive state and output flow tables

The first step towards state minimization is to form an implication table as shown in
Fig. 3.6. This table includes all permitted, forbidden and “implied” states that can either go
into the permitted or forbidden categories.

37
4-6

4-6

Fig. 3.6 The implication table for Fig. 3.5

Figure 3.6 replicates the present state column in Fig. 3.5 in its vertical axis with the
exception of the state 1 (the first row in Fig. 3.5), and in its horizontal axis with the exception
of state 7 (the last row in Fig. 3.5).

The box located at (2, 1) in Fig. 3.6 is checked because there are no other states involved
in a transition from the state (D to the state @ in Fig. 3.5. The box at (3, 1) contains 4-6,
because the “implied” states 6 and 4 in the column, inl in2 = 10, in Fig. 3.5 must be
traversed in order to go from the state @D to the state @). The columns, inl in2 = 00 and 11,
contain forbidden transitions, and they cannot be used as implied states to allow a transition
from the state () to the state Q). The only other column for a transition from the state D to

118 3 Review of Asynchronous Logic Circuits

the state Q) is the column, in1 in2 = 01, but it requires a transition from the state 2 to the state
2, which is not possible. The box at (4, 6) in Fig. 3.6 contains an “X” mark because the
outputs produced at the states @ and ® are different. The same applies to boxes at (5, 3) and
(7, 3). The box at (6, 3) contains two implied transitions, 3-7 and 4-6, which correspond to
the columns, inl in2 = 11 and 10, respectively.

We can further eliminate some of the implied state entries in the implication table of
Fig. 3.6 if these states are “related” to the boxes that have already been crossed out.
Figure 3.7 shows the new implication table after eliminations. In this table, the boxes that
contain the transitionary states 4-6, 3-5 and 3-7 are safely crossed out since they are related
to the boxes at (4, 6), (5, 3) and (7, 3), respectively.

1 2 3 6 4 5

Fig. 3.7 The implication table after eliminations

Forming the equivalence class table is the next step for minimization. First, all states in
the horizontal axis of the implication table in Fig. 3.7 are repeated backwards under the
“States” column in the equivalence class table in Fig. 3.8.

Column 5 in Fig. 3.7 contains a checked box. This box corresponds to a joint state, (5-7),
listed as an equivalence class in the first row of Fig. 3.8. Column 4 in Fig. 3.7 consists of a
checked box at (4, 5) and a second box containing an implied state 5-7 at (4, 7). Therefore,
the second row of Fig. 3.8 contains two new joint states, (4, 5) and (4, 7), as well as the
earlier joint state, (5, 7), from the first row. Since in this row the joint states, (5, 7), (4, 7) and
(4, 5), overlap, they can be combined in a compact joint state (4, 5, 7). Columns 6 and 3 in
Fig. 3.7 have crossed-out boxes that contain no implied states. Therefore, the third and the
fourth row of Fig. 3.8 do not have new state entries, but only a single combined state carried
over from the second row. Column 2 in Fig. 3.7 has also crossed-out boxes except at (2, 3),
and this produces a new joint state, (2, 3), in the fifth row of Fig. 3.8. Finally, column 1 in
Fig. 3.7 contains two checked boxes at (1, 2) and (1, 6), which form two additional joint
states, (1, 2) and (1, 6), in the last row of Fig. 3.8. Therefore, the final equivalence class list
includes the joint states, (4, 5, 7), (2, 3) and (1, 6). The joint state (1, 2) is a shared state
between (2, 3) and (1, 6), and it is absorbed in the final list.

3.3 Fundamental-Mode Asynchronous Logic Circuits

States

Equivalence Classes

- N W o b~ o

6.7

(5,7)(4,7) (4,5 =(4,5,7)
(4,5,7)

(4,5,7)

(4,5,7)(2,3)

(4,5,7)(2,3)(1,2) (1, 6)

Final List

(4,5,7)(2,3)(1,6)

Fig. 3.8 Equivalent class table

119

The final equivalence class list indicates the presence of only three states. Therefore, the

same number of states must be present in the minimal state flow table in Fig. 3.9, where the
joint states, (1, 6), (2, 3) and (4, 5, 7) are assigned to the states A, B and C, respectively.

o in1in2 in1in2
00 01 11 10|00 01 11 10
(1.6)=A|(A)| B |C ol - |-
2,3)=B| A cl-|olo]-
@57n=Cc|A|[B|O|©]-|-|1]1
ns out

Fig. 3.9 Minimized integrated primitive state and output flow tables

In Fig. 3.5, the present states @ and ® correspond to the states (D and 1 when inl in2 =
00. However, the states (D and 1 now belong to the new assigned state A in Fig. 3.9.
Therefore, the present state A transitions to a stable state A with out = 0 when inl in2 = 00.
Similarly, the present states (D and ® in Fig. 3.5 correspond to the states 2 and “-” when inl
in2 = 01, and produce no output. In the new table, this translates to a transition from the
present state A to the stable state B when inl in2 = O1. The other entries in the next state, ns,

and the output, out, columns in Fig. 3.9 are formed in a similar manner.

The three states, A, B and C, in Fig. 3.9 require two next state bits, ns1 and ns2. The state

assignments are shown in Fig. 3.1

0.

120 3 Review of Asynchronous Logic Circuits
ns1 ns2
A 0 0
B 0 1
C 1 1

Fig. 3.10 State assignments

Employing the state assignment table in Fig. 3.10 in the combined minimal state and
output flow table in Fig. 3.9 leads to the state and the output K-maps in Fig. 3.11. The
crossed-out entries in this figure correspond to “don’t care” conditions, and they are treated
as either logic 0 or logic 1 to achieve the minimal Sum of Products (SOP) expression for

each K-map.
nst in1in2 ns2 in1in2 out in1in2
ps1 ps2 00 01 11 10 ps1 ps2 00 01 11 10 ps1 ps2 00 01 11 10
0|0/ o w 0 ool o [/ [T\ o 00| o 0
o1l o]olo m 01| o || 1 ﬁﬂ 01 oo
10 o0 (@1 11| 0 || 1 {_ﬂ 11 ﬁ‘w
10 10 10

ns1=in1.ps1 +in1.in2.ps2 + in1.in2.ps2
ns2 =in2 +in1.ps2
out =in1.ps1

Fig. 3.11 K-maps for the next states, nsl and ns2, and the output, out

Finally, the SOP expressions for ns1, ns2 and out in Fig. 3.11 generate the circuit diagram
in Fig. 3.12. To draw the complete circuit, first combinational logic blocks for ns1, ns2 and
out are formed using their SOP expressions. Then, each next state, ns1 and ns2, is connected
to its corresponding present state, psl and ps2, to complete the circuit diagram in Fig. 3.12.

3.3 Fundamental-Mode Asynchronous Logic Circuits 121

in1

ps1

in2 [>o

>

p82 0_|_\ _T\ ns1
L/
—T1
—_/

} out

Fig. 3.12 Fundamental mode asynchronous circuit for Fig. 3.3

Even though the circuit in Fig. 3.12 represents the required state behavior, it may not
eliminate all possible racing conditions. When the state table in Fig. 3.9 is transformed into a
state diagram in Fig. 3.13, the forward and backward transitions between the states A and C
may induce racing conditions because two inputs change simultaneously.

racing condition
may exist
during these
transitions

Fig. 3.13 State diagram showing possible racing conditions

To prevent racing conditions, a fictitious fourth state is introduced between the states A
and C in Fig. 3.13. This fourth state, o, forms a bridge when going from the state A to the
state C (or vice versa) and allows only one state input to change to prevent possible hazards
as shown in Fig. 3.14.

122

No hazard
A->a->C
or

Coa—>A

Fig. 3.14 Reconfiguration of the state diagram to eliminate racing conditions

However, the inclusion of the new state, o, necessitates reconfiguring the original state
table in Fig. 3.9. The new state table contains the state o as a transitionary state in Fig. 3.15,
and the transitions into this state do not produce any output.

3 Review of Asynchronous Logic Circuits

oS in1in2 in1in2
o0 01 11 1000 O1 11 10
a |@]|b|a ol -1 -
bla|®|®|c|-|0o|o]-
clael|b|@OE@|-]-]1]1
a a | - c | - - - - -
ns out

Fig. 3.15 Integrated state and output flow tables without racing conditions

When the hazard-free state and output K-maps are formed based on the flow table in
Fig. 3.15, the resultant SOP expressions for nsl and ns2 in Fig. 3.16 contain only an
additional term with respect to the ones in Fig. 3.11. This is a small price to pay in the total

gate count for the benefit of eliminating all racing conditions.

3.4 Asynchronous Timing Methodology 123

ns1) ns2) out)
in1in2 in1in2 in1in2
00| O 0 U 0 00| O q\ 0 0 00| O 0

o1lo|o]o m o1] o || 1 WW 01 0ol o
1D o ﬂ_@ 1[0 || 1 }(){ 11 A7
10| 0 Q 10| 0 k 10

ns1=in1.ps1 +in1.in2.ps2 + in2.ps1.ps2 + in1.in2.ps2

ns2 = in1.in2 + in1.ps2 +in1.ps1

out =in1.ps1

Fig. 3.16 Next state and output K-maps producing no racing conditions

3.4 Asynchronous Timing Methodology

Asynchronous data propagation through combinational logic blocks can be achieved using
C-elements (Mueller elements) as shown in Fig. 3.17.

In this figure, combinational logic blocks, CL1, CL2 and CL3, are connected through
flip-flops to propagate data. However, data propagation through the combinational logic does
not have to be complete within a fixed clock period as in conventional sequential circuits.
The C-elements in conjunction with inverting delay blocks, D1, D2 and D3, allow variable
data propagation to take place for each stage.

datat D Q cL1 dataZD Q CcL2 data3 D Q cL3 datad D Q
2\ 2\ 2\ 2\

Cout1 Cout2 Cout3 1Cout4

D1 Cin2 c D2 Cin3 c D3 Cin4, c
F1 F2 F3

Fig. 3.17 Asynchronous timing methodology using C-elements

A

Y

;@
Y

As data propagates through a particular combinational logic block, the positive edge
produced at the Cout terminal of a C-element also propagates through the corresponding
delay circuit. When data reaches the next flip-flop boundary, the C-element in this stage also
produces a positive Cout edge for the flip-flop to fetch the incoming data.

124 3 Review of Asynchronous Logic Circuits

The details of variable data propagation in Fig. 3.17 are illustrated in the timing diagram
in Fig. 3.18. In this figure, the C-element produces a positive edge at Coutl and enables the
flip-flop to dispatch datal from its output after a clock-to-q delay. As this data propagates
through the combinational logic block, CL1, the positive edge of Coutl also travels through
the delay block, D1, and reaches the next C-element to form a positive edge at Cout2 to fetch
the incoming data.

Data propagation in the second stage and the positive edge formation of Cout2 is identical
to the first stage with the exception of longer propagation delays, CL2 and D2. The third stage
presents a much smaller propagation delay, CL3, and requires a smaller delay element, D3.

Even though each combinational data-path delay in Fig. 3.18 is approximately twice as
large as the propagation delay of its corresponding delay element, the flip-flop set-up time,
tsu, must be taken into account to fine-tune the length of delay for each delay element.

data1 >< :
' CcL1=2D1-tsu |
NN
I I
Cout1 - Di—» !
| |
! ~ | tsu
data2 I X
: [CL2 =2D2 - tsu |
! A Wa e WaWaWe Wa &
I
Cout2 |<—D1—>|:____D2___ =| !
| |
! }: | tsu
data3 : X
| 'CcL3 =2D3- tsu
| }’V\/\>|
I
Cous e]
| |
! ~ | tsu
datad ! X
I
I
' l
I
Cout4 r< D3 >|

Fig. 3.18 A timing diagram with variable clock lengths and stage delays

Figure 3.19 shows the detailed Input/Output timing diagram of the C-element. In the first
stage of the data-path (CL1 in Fig. 3.17), a positive edge at Coutl travels though the
inverting delay element, D1, and produces a negative edge at Cin2 for the next C-element.
The C-element is designed such that the negative edge at its Cin input creates a negative
edge from its F output. Therefore, the negative edge at the F1 node comes back to the first
C-element as an input and prompts the first C-element to lower its Cout output, resulting in
Coutl = 0, and creating a pulse with a duration of D1. The negative edge at Coutl, on the
other hand, travels through the inverting delay element, D1, the second time, and produces a

3.4 Asynchronous Timing Methodology 125

positive edge at Cin2. This positive edge, in turn, enables the second C-element to generate
positive edges at F1 and Cout2 to latch the valid data at the data2 port.

As the data propagates through the second stage, the sequence of timing events that took
place between the first and second C-elements repeat once again between the second and the
third C-elements that define the boundaries of CL2. This results in generating a positive
pulse at the Cout2, two negative pulses at Cin3 and F2, and a positive Cout3 edge to be able
to receive a new data at data3.

Cout1
| | | |
| | | |
1 O O O O
O		
Cout2 N	N	
S S		
I I	I	
Cin3	I D2—K\	D2
	/	
F2		
Cout3		
Cin4 I I I N—D3		
3 l l l
@ ® O ®)
F2=1 F2=1 F2=1 F2=0 F2=1
Cin2 =1 Cin2=0 Cin2 =1 Cin2 =1 Cin2 =1
F1=1 F1=0 F1=1 F1=1 F1=1
Cout2=0 Cout2=0 Cout2=1 Cout2=0 Cout2=0

Fig. 3.19 C-element and delay-element input/output activity in Fig. 3.17

The vertical slicing in Fig. 3.19 helps to define all possible stable states in designing the
C-element. Even though Fig. 3.19 only samples the inputs and the outputs of the second
C-element, all C-elements in Fig. 3.17 yield identical results. Every stable state from the
state (D to the state @ allows only one input change as the fundamental-mode rule in
asynchronous design methodology. The state (D is entered when Cin2 = F2 = 1, and pro-
duces F1 = 1 and Cout2 = 0. As Cin2 transitions to logic 0, the circuit goes into the state @)
where it yields F1 = 0 and Cout2 = 0. The start of the pulse at Cout2 defines the state 3

126 3 Review of Asynchronous Logic Circuits

where Cin2 transitions back to logic 1, and both outputs, F1 and Cout2, change to logic 1.
The last state, state @), emerges when F2 switches to logic 0. This state also causes Cout2 to
change to logic 0, but retains F1 at logic 1. The transition of F2 to logic 1 prompts the
C-element to go back to the state (D.

All possible state and output changes of the C-element in Fig. 3.19 are condensed in an
integrated state and output flow table in Fig. 3.20. In this figure, the “?”” mark indicates that
the C-element never reaches these transitionary cases. The “-” mark again defines the for-

bidden states where the fundamental-mode design is violated.

F2 Cin2 F2 Cin2
00 01 11 10([00 01 11 10

-2 [2 10
21 -13|® 00

ps1 ps2

®EOO

?@1- 10

ns F1 Cout2

Fig. 3.20 Integrated primitive state and output flow tables for C-element

The state assignments for the four stable states in Fig. 3.20 are shown in Fig. 3.21. This is
a vital step in the design since the states in Fig. 3.20 are still in symbolic form and have not
yet been converted into binary values.

ns1 ns2

®EEO

Fig. 3.21 State assignments for Fig. 3.20

Since the fundamental-mode design rule of changing only one input between state
transitions is fully observed, the state table in Fig. 3.22 shows no potential racing hazards in
the current C-element design.

3.4 Asynchronous Timing Methodology 127

|
| No hazard! |
| One state-bit ———»
| at a time I

@=10 ®B)=11
Fig. 3.22 Hazard-free state diagram of the C-element

Once the primitive flow table and the state assignments are complete, the next state and
the output K-maps of the C-element can be constructed as shown in Fig. 3.23.

"S1) E2 Gin2 "S2) E2 Gin2
ps1 ps2 00 01 11 10 ps1ps2\ 00 01 11 10
w|-]2]o0olo ool -121]o0 m
o1l 2 | - |M| o o1l 2 | - |(7 w

11-ﬁ1? 1) - o [L1)] 2

10| 2 [o] - 10200 -

P F2 cin2 Cout2) ., o
pstps2\ 00 01 11 10 ps1ps2_00 01 11 10
00| - | 2 |(M) o -[2|o0
or] 2| - [[X] o o1| 2 | - 0
"y - | 2 1] -)| »
10 2 (1| - 10| 2|0 -

ns1 = F2.Cin2.ps2 + F2.Cin2.ps1 = Cin2.(F2.ps2 + F2.ps1)
ns2 = F2.Cin2.ps2 + F2.Cin2.ps1 = F2.(Cin2.ps2 + Cin2.ps1)
F1=Cin2.ps1 + F2.Cin2 = Cin2.(ps1 + F2)

Cout2 = Cin2.ps1.ps2

Fig. 3.23 Next state and output K-maps of the C-element

128 3 Review of Asynchronous Logic Circuits

In this figure, the cases marked by “?” and “-” are directly transferred from the primitive
flow table in Fig. 3.20. When generating the SOP expressions for the ns1, ns2, F1 and Cout2
outputs, the cases marked with “?” and “-” signs in Kmaps are deliberately excluded from
the SOP expressions in Fig. 3.23. This ensures that unwanted state transitions and outputs do
not take place in the final circuit in Fig. 3.24.

Cin2 (Cin) ns1

F2 (Fin)

ps1

ps2 9

ns2

4Z>—’_D7 F1 (Fout)

|) Cout2 (Cout)

Fig. 3.24 C-element circuit according to the fundamental mode design rules

The input and output names of the second C-element in Fig. 3.17 are also changed for a
generic C-element. According to Fig. 3.24, the inputs, Cin2 and F2, have become Cin and Fin,
and the outputs, F1 and Cout2, have become Fout and Cout of a generic C-element, respectively.

3.4 Asynchronous Timing Methodology 129
Review Questions

1. An asynchronous circuit has two inputs, inl and in2, and an output, out. When inl =1,
the first transition from logic O to logic 1 at in2 generates out = 1 in the waveform below.
Output stays at logic 1 unless inl goes back to logic 0. The first transition from logic 1 to
logic O at in2 switches the output back to logic 0 while inl = 0.

A sample waveform is given below.

in1 | | i | -

Define all possible states using the waveform above and form an integrated primitive state
and output flow table. Form an associated implication table leading to the minimization of
states and outputs. Design the resultant fundamental mode asynchronous circuit.

2. Anasynchronous circuit has two inputs, inl and in2, and an output, out. When inl = 0, the
first transition at in2 produces out = 0 as shown in the waveform below. When inl = 1, a
transition from logic O to logic 1 at in2 increments the value of out by one. When out = 3
and inl = 1, an additional logic O to logic 1 transition at in2 produces out = 0.

int |

out [1:0] ﬁ(0 ' ' ' ' o X o @@@

Define the possible states from the waveform above, and form the primitive state and
output flow tables. Define the resultant implication table to minimize the initial states and
outputs. Design the resultant fundamental mode asynchronous circuit.

5

3. An asynchronous circuit has three inputs, inl, in2 and in3, and an output, out. When all
inputs are at logic 0, the first logic O to logic 1 transition at any input causes the output to
display the input ID. For example, a logic O to logic 1 transition at inl while in2 =
in3 = 0 produces out = 1 because this value is the ID number of inl. Similarly, the first
logic O to logic 1 transition at in2 while inl = in3 = 0 produces out = 2. Logic 0 to
logic 1 transition at any input while one or more inputs are at logic 1 does not change the

130 3 Review of Asynchronous Logic Circuits

in1

in2

in3

out

output value. Similarly, logic 1 to logic O transition does not affect neither the state of the
circuit nor the output value.

i T I
S .
S N e I

T

[1:0] 2)‘(1

<
X
X

Form the primitive state, the output flow table(s) and the implication table to minimize
the initial state and the output assignments from the waveform above. Design the fun-
damental mode asynchronous circuit.

. The schematic below is a data-path of an asynchronous system controlled by the

C-elements. The combinational delays are shown by T1 through T4 blocks, each of
which has a single input and output. There are also junction delays, J1 through J4, which
accept two or more inputs and generate a single output.

(a) Compute D1 and D2 in terms of combinational and junction delays, T1, T2, T3, T4,
J1,J2, J3 and J4.

(b) Show the data-flow that includes the signals from Cin1 to Cin3, and from Coutl to Cout3
in a timing diagram. Assume the clock-to-q delay is equal to Tc in the timing diagram.

Cin1

data1 o a
data4
L ()
clock
D Q - T2
clock
clock
*—
Cout1 Cout2 Cout3

o .
c » D1 Cin c » D2 cind (¢

3.4 Asynchronous Timing Methodology 131

5. Data is transferred from a 32x8 source memory to a 32x8 destination memory as shown
in the schematic below. When a 32-bit data is fetched from the source memory, the high
(HI) and the low (LO) 16 bits are multiplied by an integer multiplier, and the product is
delivered at a destination address. The initial values of the source and the destination
addresses are zero and seven, respectively. During the data transfer the source address
increments by one while the destination address decrements by one until all eight data
packets in the source memory are processed. Assuming that the source and the desti-
nation memories are asynchronous in nature, and neither needs a clock input to read or
write data, include the C-elements in the circuit schematic to make this data transfer
possible. Assume Tacc is the access time to fetch data from the source memory, Twrite is
the time interval to write data to the destination memory, and Taddr is the time interval to
produce addresses from the address pointer 1 and the address pointer 2.

reset incr1 Source
31 memory 0
Addrc1 |-Addrt HI LO | Addr1=0
|
1
clock '
1
[}
I
I
|
: Destination incr2 reset
! memo|
| Addr1 =7 31 i 0 dar2
Dout Addr2=0 HI | LO AddrC2
32 :
: clock
16 hi Din !
6 hi x - :
32 :
16 o |
|
I
Addr2 =7 |
Projects

1. Implement the S-R latch in Fig. 3.1 and verify its functionality using Verilog.

2. Implement the fundamental mode asynchronous circuit in Fig. 3.12 and verify its
functionality using Verilog.

3. Implement the C-element in Fig. 3.24 and verify its functionality using Verilog.

Reference

1. Hill FJ, Peterson GR. Introduction to switching theory and logical design, 2d edn. Wiley, ISBN: 9780471042730

A system bus is responsible for maintaining all communications between the Central
Processing Unit (CPU), system peripherals and memories. The system bus operates with a
certain bus protocol to exchange data between a bus master and a bus slave. The bus
protocol ensures to isolate all other system devices from interfering the bus while the bus
master exchanges data with a bus slave. Bus master initiates the data transfer, and sends or
receives data from a slave device or a system memory. Bus slave, on the other hand, does not
have the capability to start data transfer.

There are two types of bus architectures. Serial bus architecture is essentially composed of
a single data line between a master and a slave where data bits are exchanged one bit at a
time. A parallel bus, on the other hand, is comprised of many lines, and multitude of bits are
sent or received all at once. In this chapter, we will describe several serial and parallel bus
protocols and priority schemes.

4.1 Parallel Bus Architectures

There are two types of parallel bus architectures in a typical system: unidirectional bus and
bidirectional bus. A unidirectional bus contains two separate paths for data: one that orig-
inates from a bus master and ends at a slave, and the other that starts from a slave and ends at
the master. A bidirectional bus, on the other hand, shares the same data path which allows
data to flow in both directions. However, this type of bus requires logic overhead and control
complexity.

Figure 4.1 below describes a 32-bit unidirectional bus architecture containing two bus
masters and three slaves. In this figure, the two unidirectional data-paths are highlighted with
thicker lines. The first path is the “write” path, which a bus master uses to write data to a
slave. This path requires a Write Data (WData) port from every master and slave. The second
path is the “read” path for reading data from a slave. This also requires a Read Data (RData)
port from each master and slave. Both the bus master and the slave have address and control

© Springer International Publishing Switzerland 2017 133
A. Bindal, Fundamentals of Computer Architecture and Design,
DOI 10.1007/978-3-319-25811-9_4

134 4 System Bus

ports that define the destination address, the direction of data transfer, the data bit width and
the length of data.

All bus masters have to negotiate with a bus arbiter to gain the ownership of the bus
before starting a data transfer. When there are pending requests from multiple bus masters,
the arbiter decides which bus master should start the data transfer first according to a priority
scheme and issues an acknowledgement to the bus master with the highest priority.
Therefore, every bus master has a Request (Req) and Acknowledge (Ack) port to com-
municate with the arbiter. Once the permission is granted, the master sends out the address
and control signals to the selected slave in the first bus cycle, and writes or reads data in the
next cycle. The decoder (DEC) unit connected to the address bus generates an Enable
(EN) signal to activate the selected slave. Every master and slave device has a Ready port
that indicates if the selected slave is ready to transmit or receive data.

ARBITER
P - EN1 5
| Req[1:0] >
q[1:0] Address1 RDatat
Ack[1:0] | Control1 R1
2 =Jp»-| WData1 Ready1
32
Bus Slave 1
il ROt 9T 9
Ack1 | :
Control1 \‘\
c1
Address1
| Ready WData1
=
Bus Master 1 > EN2 32
| Address2
3 o RData2 33
» Control2 R2 [
=P \WData2 Ready2
Al
32 3 Bus Slave 2
» DEC
A2
L~
32
@=—<p| RData2 Req2 —
Ack2 [— | EN3
Control2 P Address3 32
RData3
Address2 3 | Control3 aa R3
| Ready WData2 w2 | WData3 Ready3 /
Bus Master 2 Bus Slave 3

Fig. 4.1 A unidirectional bus structure with two bus masters and three slaves

A 32-bit bidirectional bus architecture is shown in Fig. 4.2. The number of masters and
slaves are kept the same as in Fig. 4.1 for comparison purposes. The only difference between
the two figures is the replacement of the unidirectional data bus in the earlier architecture
with a bidirectional bus for reading and writing data. Tri-state buffers on data lines are
essential for bidirectional bus architectures to isolate nonessential system devices from the

4.1 Parallel Bus Architectures 135

bus when data transfer takes place between a master and a slave. The address bus in Fig. 4.2
can be also integrated with the data bus to allow both address and data to be exchanged on
the same bus. However, this scheme is much slower and requires extra control logic over-
head to maintain proper data-flow and management.

ARBITER

Req[1:0] Ack[1:0]
A
Bus Master 1 2 2 32 3 3

@—»| Ready Req1 DEC

Ack1 [

EN1

Control1

Control1

__/~
Y Yy

Ready1

Address1

RData1 WData1 Address1 32

Data1
J%_G_‘ Bus Slave 1
p

WE1
/_l

\/

EN2

RE1

Control2

Ready2 —
Address2

Bus Master 2
L Ready Req2

Yvyvyy

Data2
Bus Slave 2

A

Ack2

Control2

Y

EN3

RData2 WData2 Address2

v

Control3

Ready3 /

Yy v

Address3

\ /

Data3
Bus Slave 3

Fig. 4.2 A bidirectional bus structure with two bus masters and three slaves

Figure 4.3 shows all the Input/Output (I/O) ports of a typical bus master. The Req and
Ack ports directly communicate with the arbiter as mentioned earlier. Bus master uses the
“Ready” port to determine if the slave is ready to transmit or receive data. The WData,
RData and Address ports are used for writing and reading data, and specifying the slave
address, respectively. The control signals, Status, Write, Size and Burst, describe the nature
of the data transfer.

136 4 System Bus

From Arbiterl: Ack —— » — Req :| To Arbiter

From Slave |: Ready ——— |

—+4—» Address[31:0]]
Bus
Master —#—» Status[1:0]

——-» Write

#» Size[1:0] To Slave

—#— Burst[3:0]

32 32
From Slave |: RData[31:0] —~— —~—» WData[31:0]

Fig. 4.3 Bus master interface

The Status port is a two-bit bus that describes the status of the bus master as shown in
Table 4.1. According to this table, the bus master may initiate a new data transfer by issuing
the START signal. If the master is in the midst of exchanging data with a slave, it issues the
Continue (CONT) signal. The IDLE signal is used when the bus master finishes the data
transfer. The bus master may also be in the midst of an internal operation while exchanging
data with a slave. For this particular instance, the master may momentarily stall the data
transfer by issuing the BUSY signal.

Table 4.1 Bus master Status control

Status[1:0] | Bus Master Status
0o0 Start Transfer (START)
0 1 Continue Transfer (CONT)
10 Finish Transfer (IDLE)
11 Pause Transfer (BUSY)

The Write port, as its name implies, describes if the master is in the process of writing or
reading data as shown in Table 4.2.

Table 4.2 Bus master Write control

Write | Bus Master Write

0 Read
1 Write

4.1 Parallel Bus Architectures 137

The Size port describes the data bit width during a transfer and is shown in Table 4.3.
A bus master is allowed to transmit or receive data in eight bits (byte), 16 bits (half-word),
32 bits (word) or 64 bits (double-word), which cannot be changed during the transfer.

Table 4.3 Bus master Size control

Size[1:0] | Number of bits
00 8
0 1 16
10 32
11 64

The Burst port describes the number of data packets to be sent or received by the bus
master according to Table 4.4. In this table, a bus master can transfer from one packet to over
32,000 packets of data in a single burst.

Table 4.4 Bus master Burst control

Burst[3:0] Number of data packets
0000 1
0001 2
0010 4
0011 8
0100 16
0101 32
0110 64
0111 128
1000 256
100 1 512
1010 1024
1011 2048
1100 4096
110 1 8192
1110 16384
1111 32768

Figure 4.4 shows the I/O ports of a typical bus slave. The Req and Ack ports are omitted
since the slave is not authorized to initiate a data transfer. The Ready signal indicates if the
slave is ready to transmit or receive data once the transfer is initiated by the bus master. The
WData, RData and Address ports are used to write data, read data, and specify a destination
address, respectively. The control inputs, Status, Write, Size and Burst, describe the nature of
the transfer as mentioned above. The Enable (EN) input is produced by the address decoder,
and based on the address generated by the bus master to activate a particular slave.

138

From Decoder |: EN

r WData[31:0]
Address[31:0]

Status[1:0]
Write
Size[1:0]

From Master

L Burst[3:0]

4 System Bus

32

732 > Bus

; Slave

/ ——— Ready
4 32 To Master
7 —~— RData[31:0]

Fig. 4.4 Bus slave interface

4.2 Basic Write Transfer

From this point forward, we will be using timing diagram(s) as a standard tool to show the

bus activity between a master and a slave.

The bus protocol for write describes how a bus master writes data to a slave on a

unidirectional bus as shown in Fig. 4.5.

clock
| | |
| | |
Address I A1 k§< A2 I/§< A3
/	/
Controls [C1 \ I /§< C2 \ [/%< C3	
\& \\	
WData	
l l 1	
	:
Ready I |
:
]

I

slave reads WData1

Fig. 4.5 Basic write transfer

4.2 Basic Write Transfer 139

In the first clock cycle, the bus master sends out the destination address and the control
signals, Al and C1, to the slave regardless of the slave status. If the slave status is “Ready”,
the actual data packet, WDatal, is sent in the second cycle along with the address and the
control signals, A2 and C2, of the next data packet. The slave should be able to read WDatal
at the positive edge of the second clock cycle if it is ready. However, there are instances
where the slave may not be ready to receive or send data. As an example, the slave changes
its status to “Not Ready” in the second cycle of Fig. 4.6. As soon as the slave’s status is
detected at the positive edge of the third clock cycle, the master stalls the write transfer. This
means that the current data packet, WData2, and the next address and control signals, A3 and
C3, are repeated as long as the slave keeps its Not Ready status. The normal data transfer
resumes when the slave becomes Ready to receive the remaining data.

clock
| | I |
| |] 1
Address A1 M A2 /I%(I A3 |§<
(| (| | (|
]] | |
Controls c1\|/%< C2 \I/%(| c3 \I%(
| | | |
\ \ I K
} } ! }
WData I X WData1 | X WData2 |
] 1 1
|) | Not Ready |
f } detection |
Ready / +/
| v
slave reads WData1 slave reads WData2

Fig. 4.6 Basic write transfer including the case Ready = 0

Example 4.1: What happens to the write sequence when the slave changes its status
frequently?

When the slave changes its status to Not Ready during a clock cycle, the master detects
this change at the next positive clock edge, and holds the current data, the next address and
the control signals until the slave becomes Ready again.

An example where the slave changes its status frequently is shown in Fig. 4.7. In this
figure, the slave is Not Ready in the first cycle. Therefore, the first address and control
packets, Al and C1, are prolonged, and no data is sent to the slave. When the slave produces

140 4 System Bus

a Ready signal during the second cycle, the bus master produces the first data packet,
WDatal, and changes the address and control signals to A2 and C2 at the positive edge of
the third cycle. However, the slave decides to change its status to Not Ready once again
during the third and the fourth clock cycles. The master detects the status change at the
positive edge of the fourth and fifth clock cycles and responds by not changing A2, C2 and
WDatal. The Ready signal in the fifth cycle prompts the master to produce A3, C3 and
WData2 at the beginning of the sixth cycle. The master holds these values until the
beginning of the eighth cycle when the slave changes its status to Ready again. At this point,
the master sends the new A4, C4 and WData3.

| Cycle1| Cycle2 | Cycle3 | Cycle4 | Cycle5 | Cycle6 | Cycle 7 | Cycle 8 |

L

[

slave reads WData1 slave reads WData2

B T W e s W B
Address : A1 : /+X : A2 : /leX :A3 /+X A4
| | / | | | (| | (|
| | | | | | | |
SRR BRI, SR, i
| N N |
WData : : :X > :WData1: :X) V\IPDataz : Data3
| | | | | L
e

Fig. 4.7 A basic write transfer with varying Ready signal

4.3 Basic Read Transfer

A basic read transfer is shown in Fig. 4.8. According to this figure, the slave produces data
for the master anytime after it issues the Ready signal. Once the master detects the Ready
signal at a positive clock edge, it produces the next address and the control signals for the
slave in the same cycle, but reads the slave’s response at the next positive clock edge.

4.3 Basic Read Transfer 141

clock

| |
I I
f f '
Address | A1 //‘% A2 I >< A3
I I I
| \ |
Controls : C1 :W Cc2 : >< C3
I :J I
I I
I } }
Ready I / I
f I I
I I I
; ; ;
RData | I K§< RData1 | ><RData2
f f

A

master reads RData1
Fig. 4.8 Basic read transfer

Example 4.2: What happens to the read sequence when the slave changes its status
frequently?

Figure 4.9 shows an example where the slave changes its status frequently. In this figure,
the slave is Not Ready prior to the first cycle. Therefore, the master holds the first address
and the control packets, Al and C1, until the slave becomes Ready. When the master detects
a Ready signal at the positive edge of the third cycle, it responds by issuing a new set of
address and control signals, A2 and C2, for the slave. Within the third cycle, the slave also
issues RDatal for the master. The master is not able to read this data until it detects a Ready
signal from the slave at the beginning of the sixth cycle.

The rest of the read transactions in Fig. 4.9 follow the same protocol described above. In
other words, the master produces a new set of address and control signals every time it
detects a Ready signal from the slave, and the slave issues a new data packet for the master
after it becomes Ready.

142 4 System Bus

| Cycle1| Cycle2 | Cycle3 | Cycle4 | Cycle5 | Cycle6 | Cycle7 | Cycle 8 |

B s W s M W s T

Address : A1 : (/+X : A2 : (/+X :AS (/;lLX
| | | | | | | |

Controls i C1 i \(|+X i Cc2 E \f|+X iC3 \(J:vx
N NN

Ready : : : : : |
R

RData i i i &X i RData 1 i \‘X RData 2 \AX

¥ ¥

master reads RData1 master reads RData2

Fig. 4.9 A basic read transfer with varying Ready signal

4.4 Bus Master Status Change

It is possible that the bus master may be intermittently busy during a data transfer. In the
event the bus master is busy to carry out its own internal tasks, the bus protocol requires the
bus master to hold the address, control and data values as long as it is busy.

Figure 4.10 illustrates an example where the bus master becomes Busy in clock cycles 2, 9
and 10 while writing data into a slave. The master starts the data transfer by issuing Status =
Start, and promptly sends out the first address, Al. In the second cycle, the bus master
becomes busy with its internal operations and issues a Status = Busy signal. As a result, it
repeats the previous address, Al, but is unable to dispatch any data to the slave even though
Ready = 1 during this period. In the third cycle, all internal operations cease, and the bus
master continues the normal data transfer by generating Status = Cont signal. The master also
detects that the slave is Ready at the positive edge of the third cycle and issues the second
address, A2 along with the first write data, WD1. In the next cycle, the master repeats A2 and
WDI1 because the slave is not Ready at the positive edge of the fourth cycle. Despite the slave
showing the Not Ready condition in cycle 7, the normal data transfer sequence continues until
cycle 9 where the bus master changes its status to Busy again. This change, in turn, causes the
bus master to extend the address, AS, and the data, WD4, into cycles 9 and 10 irrespective of
the slave status.

4.4 Bus Master Status Change 143

| Cycle 1| Cycle2| Cycle 3| Cycle 4| Cycle5| Cycle 6| Cycle 7| Cycle 8| Cycle 9| Cycle10| Cyclet1|

clock |
| |
|

| |
! 1 |] l |
Status[1:0] | START IX BUSY|X | | CONT | | IX BUSY | X CONT
T f f f f T f] f T t t
| | | | | | | | | | | |
. | ! I | I I | I T T T
Addressiato] | ar [ar [A fe s T e) v > B s [»e |X:
| [| | | | | k' | | | [
| | 1 | | ! | |] | |
WData[31:0] I I IX WD1\{(IX WD2 |XWD3 IXWD4 \Ik(IX | WD4 I X WDS!
T f 1 I 1 T I f T T T
[[| |\\ [| [: \\ [[I I
I I | \ g T
Ready ! | 1\ d + + + + ! | *
slave slave slave slave slave
reads reads reads reads reads
WbData1 WData2 WData3 WData4 WData5

Fig. 4.10 Bus master Status control change

Example 4.3: What happens to the data transfer when the master changes its status
frequently?

Assume that the bus master transfers two half words (16-bit wide data packets) to the
addresses 0x20 and 0x22 of a memory block followed by 4 words (32-bit wide data packets)
to the addresses 0x5c, 0x60, 0x64 and 0x68. The address map of this byte addressable memory
is shown in Fig. 4.11 where the numbers in each box indicate individual byte addresses.

20 |21 |22 |23
Sc 5d 5e 5f
60 61 62 63
64 65 66 67
68 69 6a 6b

Fig. 4.11 A byte-addressable memory

During the data transfer, the master issues frequent Busy signals during cycles 2, 3, 4, 7
and 8 as shown in the timing diagram in Fig. 4.12. Note that the slave is continuously Ready
from cycle 2 until the end of the data transfer.

144 4 System Bus

| Cycle1 | Cycle2| Cycle3 | Cycle4 | Cycle5| Cycle6 | Cycle7 | Cycle8 | Cycle9 | Cycle 10| Cycle 11 | Cycle 12|

clock

1 1 1 1 1 1 1 1 1 1 1 1
Status[1:0] : START :X : BUSY: :X CONT :XSTART: :BUSY : X : CONT: ! X IDLE |
I I I | | I I I | | | I I
Burst[3:0] | 2 IX | 2 | IX 2 IX 4 IX | 4 | X 4| X 4 |X 4 | |
I I I [I I I I I I I [[
f f f f f f f f f f f } }
Size[1:0] | HW IX | HW | IX HW | XWORDI X IWORD | XWORDI XWORDLXWORDI |
| I I I | I | | | | | | |
Write | I I I I I | | | | | | |
| I I | I I I I | | | | |
y)))))))))))
. I I I I I I I I I I I I I
Address[31:0] 20 20 22 5C 5C 60 64 68
| ! ! | | ! | | | | | | |
I I I | | I I I I I I
Wdata[31:0] | | | | |XDataZO X Data22 X Data22 XDataSC X Data60 XData64 X Data68
I I I I I I I I I I I I I
I 1 1 I 1 | | 1 1 | | 1 1
o}/ i N N N
Data20 Data22 Data5C Data60 Data64 Data68
is written is written is written is written is written is written

Fig. 4.12 A write transfer example to the byte addressable memory in Fig. 4.11

The bus master starts transferring the first data packet by issuing Status = Start, Burst =
Two (data packets), Size = Half word, Write = 1 and Address = 0x20 in the first cycle
according to Tables 4.1, 4.2, 4.3 and 4.4. Since the slave is Ready at the beginning of the
second cycle, the master prepares to dispatch the next address, 0x22, and the first write data,
Data 20. However, in this cycle the master also becomes busy with internal operations until
the beginning of the fifth cycle and issues a Busy signal as shown in Fig. 4.12. The Busy
condition requires the bus master to repeat its control, address and data signals during this
period. Therefore, when the master finally changes its status to Cont in the fifth cycle, it is
able to send Data 20 in the same cycle, and Data 22 in the following cycle.

As soon as the first data transfer finishes, the master starts another write transfer in the
sixth cycle by issuing Status = Start, Burst = Four (data packets), Size = Word, Write = 1 and
Address = 0x5C. Since the slave’s status is Ready, the master prepares to issue the next
address and data packets at the beginning of the seventh cycle. However, its internal
operations interfere with this process once again until the beginning of the ninth cycle. The
master issues a Busy signal, and repeats its control, address and data outputs. When the
master finally changes its status to Cont in the ninth cycle, it delivers the second address,
0x60, and the first data, Data 5C. In the tenth cycle, the next address, 0x64, and data, Data
60, are issued, respectively. The master writes Data 64 in the eleventh cycle, and finishes the
transfer by writing the last data, Data 68, in the twelfth cycle. In this cycle, the bus master
changes its status to Idle, indicating the end of the data transfer.

4.5 Bus Master Handshake 145

4.5 Bus Master Handshake

Each bus master communicates with the arbiter using request-acknowledge signals, which
form the basic “handshake” protocol. The master needing a data transfer issues a request
signal, Req, requesting the ownership of the bus from the arbiter. The arbiter grants this
request by an acknowledgement signal, Ack. If there is no ongoing data transfer, the
acknowledgement is usually issued in the following cycle after the master generates a
request. However, the Ack signal may not be generated many cycles after the Req signal is
issued due to an existing data transfer.

Figure 4.13 shows the timing diagram of a handshake mechanism between a bus master
and the arbiter before the bus ownership is granted to the master. The double “~" sign on
the Ack signal signifies that this signal is generated many cycles after the arbiter has received
a request from the bus master. As soon as the master receives the Ack signal in the nth cycle,
it changes its status to Start in the (n + 1)th cycle, and sends out the first address, Al,
regardless of the slave’s status. If the slave is Ready, the master subsequently sends out the
second address, A2, and the first data, WDatal, in the following cycle.

| cyclet | oo | cyclen |Cycle (n+1)| Cycle (n+2)|Cycle (n+3)| Cycle (n+4)]

clock [
Req | /

Ack

/

ST

~
~¥

Ready

L .
/\kX START:X CONT:X CONT

S

Address[31:0]

|
|
T
|
|
|
|
Status[1:0] |
[
|
|
|
|
I
1

WData[31:0] I X WhData1| X WData2
1 1

Fig. 4.13 Bus master-arbiter handshake protocol

4.6 Arbiter

Bus arbitration is an essential part of bus management if there are more than one bus master
requesting the ownership of the bus. The arbitration is either hardware-coded and imple-
mented as a state machine or programmable and register-based.

146 4 System Bus

Table 4.5 explains a hardware-coded bus arbitration mechanism between two bus masters.
When there are no requests to the arbiter, no Ack is generated to either bus master. However,
if two requests are issued at the same time, the acknowledge is issued to bus master 1
according to this table since bus master 1 is assumed to have higher priority than bus master
2 as shown in the last row.

Table 4.5 Bus arbitration table for two bus masters

From IDLE State —» Req1 Req2 Ack1 Ack2

- A O 0O
- O = O
- A O 0O
o O =~ O

The Table 4.5 is implemented as a state machine in Fig. 4.14. In this figure, the shorthand
representation of Req = (Reql Req2) corresponds to the bus master request inputs 1 and 2.
Similarly, Ack = (Ackl Ack2) corresponds to the acknowledge signals generated by the
arbiter for bus masters 1 and 2, respectively.

Req = (Req1 Reqg2) Req = (00)
Ack = (Ack1 Ack2)

Ack = (00)

Req = (00) Req = (00)

Req = (1x) Req=(01)

Req = (1x) Rea = (0) ~ ACK2 |)Req= (x1)

Req = (10)
Ack = (10) Ack = (01)

Fig. 4.14 Bus arbiter with two bus masters

The arbiter is normally in the IDLE state when there are no pending requests. If there are
simultaneous requests from bus masters 1 and 2, the arbiter moves from the IDLE state to the
ACKI1 state, generates Ackl = 1 for bus master 1, and ignores the request from bus master 2
by Ack2 = 0 according to Table 4.5. The inputs for this state-to-state transition are shown by

4.6 Arbiter 147

Req = (1 x), where Reql = 1 and Req2 = x (don’t care). When bus master 1 terminates the
data transfer by issuing Reql = 0, the arbiter either stays in the ACK1 state if there is another
pending request from bus master 1 or moves back to the IDLE state if there are no requests.
However, if the arbiter receives Reql = 0 and Req2 = 1 while in the ACKI1 state, it
transitions to the ACK2 state, and issues Ack2 = 1 to bus master 2.

In a similar fashion, the transition from the IDLE state to the ACK2 state requires Req2 =1
and Reql = 0. Once in the ACK2 state, the arbiter grants the usage of the bus to bus master
2 by issuing Ack2 = 1 and Ackl = 0. When bus master 2 finishes the transfer by issuing
Req2 = 0, the arbiter either goes back to the IDLE state or transitions to the ACK1 state if
Reql = 1. In case the higher priority bus master, bus master 1, requests the ownership of the
bus by Reql = 1 while the lower priority bus master is in the middle of a transfer, the arbiter
stays in the ACK2 state as long as Req2 = 1 from bus master 2, ensuring the data transfer is
complete.

Example 4.4: Design a hardware-coded arbiter with three bus masters where bus master 1
has the highest priority followed by bus masters 2 and 3.

According to this definition, the bus master priorities can be tabulated in Table 4.6.

Table 4.6 Bus arbitration table for three bus masters

From IDLE State — Req1 Req2 Req3 Ack1 Ack2 Ack3

_ a2 a2 a2 0000
_ a2 00 -~ =00
-~ 0O -0 -20-0
- A A A 0000
OO0 oO0OOoO -~ -~00
[eNeNeloloNel =]

This table generates no acknowledge signal if there are no requests from any of the bus
masters (the top row). If only bus master 3 requests the bus, Ack3 =1 is generated for bus
master 3 (the second row from the top). If there are two pending requests from bus masters 2
and 3, Ack2 =1 is issued for bus master 2 because it has higher priority than bus master 3
(fourth row from the top). If all three bus masters request the ownership of the bus, the
arbiter grants the bus to bus master 1 by Ackl = 1 because it has the highest priority with
respect to the remaining bus masters (the last row).

The implementation of this priority table is shown in Fig. 4.15 as a state machine. The
naming convention in representing request and acknowledge signals in Fig. 4.15 is the same as
in Fig. 4.14. Therefore, Req = (Reql Req2 Req3) corresponds to bus master requests 1, 2 and 3,
and Ack = (Ackl Ack2 Ack3) corresponds to the arbiter acknowledge signals for bus masters
1,2 and 3, respectively. Normally, the arbiter is in the IDLE state when there are no requests. If
there are three simultaneous requests from bus masters 1, 2 and 3, the arbiter transitions to the

148 4 System Bus

ACKI1 state where it generates Ackl = 1 since bus master 1 has the highest priority. When bus
master 1 finishes the data transfer, the arbiter can either stay in the ACK1 state or transition to
the ACK2 state or transition the ACK3 state depending on the requests from all three bus
masters. If there are no pending requests, the arbiter goes back to the IDLE state.

The arbiter does not issue acknowledge signals to higher priority bus masters until an
ongoing data transfer of a lower priority bus master is complete. For example, in the ACK3
state the requests from bus masters 1 and 2 are ignored as long as bus master 3 keeps its
request high to continue transferring data.

Req = (Req1 Req2 Req3) Req = (000)
Ack = (Ack1 Ack2 Ack3)

Ack = (000)

Req = (1xx)

Req = (010)

Req = (1x0)
Ack = (100) Ack = (010) Ack = (001)

Fig. 4.15 Bus arbiter with three bus masters

4.7 Bus Master Handover

The bus may be handed over to a different bus master if the current bus master lowers its
request.

Figure 4.16 describes how this bus ownership takes place in a unidirectional bus. In this
timing diagram, the current bus master, bus master 1, starts a new transfer by generating a Start
signal a cycle after it receives Ackl = 1 from the arbiter. The write transfer continues until the
eighth cycle when the bus master delivers its last address, A4. In cycle nine, the bus master
delivers its last data, WA4, lowers its request, and changes its status to Idle, thus terminating the
data transfer. At the positive edge of the tenth cycle, the arbiter detects Reql =0 and Req2 =1,

4.7 Bus Master Handover 149

and switches the bus ownership by issuing Ackl = 0 and Ack2 = 1. The new master,
bus master 2, starts a new transfer in the eleventh cycle and generates its first address, B1.
The write transfer continues until the fourteenth cycle when bus master 2 delivers its last data,
WB2.

| cyclet | cycle2 | Cycles | Cycle4 | Cycles | Cycles | Cycie | Cycles | Cycles |cycieto] Cyciett|Cycle12| oyclet3| oycleta|

clock
P e I L e L I I [I I I |
S e e e
:::IIIIII\IIIII
Req2|||||/|\|||||
— 1+ N S
T S T Y S SN 1 AR S GO N SN A SR
e ANy B G
R G A N
SR N S N S S N B | L
::!||||| | !
ol N | |
| —
| [T T

Status[1:0]

Address[31:0]

WData[31:0]

Ready | ’
| |
1 1
| |
T T
| |
| |
| |
| |
1 1
| |
1 1

>
=S
— — ——
>
)
>
w
—
>
S
— 7] >
=~
—
o
@
N
Uﬂ:
N

Fig. 4.16 Bus master handover protocol

4.8 Serial Buses

Peripheral devices and external buffer memories that operate at low frequencies communi-
cate with the processor using a serial bus.

There are currently two popular serial buses used in low-speed communication. The Serial
Peripheral Interface (SPI) was introduced in 1979 by Motorola as an external microprocessor
bus for the well-known Motorola 68000 microprocessor. The SPI bus normally requires four
wires; however, wire count increments by one every time a peripheral device is added to the
system. The second bus, Inter-Integrated Circuit (I’C), was developed by Philips in 1982 to
connect Philips CPUs to peripheral chips in a TV set. This bus requires only two wires, but it
is considerably slower compared to the SPI bus.

Serial Peripheral Interface (SPI)
SPI is designed as a very straightforward serial bus. Four signals establish all the serial
communication between a CPU and a peripheral device. The SPI clock signal, SCK, is

150 4 System Bus

distributed to all the slaves in a system, and forces each peripheral to be synchronous with a
single master. The Slave Select signal (SS) is an active-low signal, and is used to enable a
particular slave prior to data transfer. The Serial-Data-Out (SDO) or Master-Out-Slave-In
(MOSI) port is what the master uses to send serial data to a slave. The Serial-Data-In (SDI) or
Master-In-Slave-Out (MISO) port is what the master uses to read serial data from a slave.

Figure 4.17 shows the serial bus configuration between the bus master and a single slave.
All SPI signals with the exception of SDI must be initiated by the bus master.

SCK »| SCK
SDO » SDI
SPI Master SDI | SDO SPI Slave
SS » SS

Fig. 4.17 SPI bus between a master and a single slave

When the bus master is connected to a multitude of slaves, it needs to generate an
active-low Slave Select signal for each slave as shown in Fig. 4.18.

SCK » SCK SPI Slave3
SDO » SDI

SPI Master SDI | sSDO TS |
551
SS2
SS3

SCK SPI Slave2
SDI
SDO SS |-

vy

| SCK SPI Slave1
SDI
SDO SS |-

A4

Fig. 4.18 SPI bus between a master and three slaves

4.8 Serial Buses 151

SPI is considered a single-master serial communication protocol. This means that only one
master is assigned to initiate and carry out all serial communications with slaves. When the SPI
master wishes to send or request data from a slave, first it selects a particular slave by lowering
the corresponding SS signal to logic 0, and then it produces a clock signal for the slave as
shown in Fig. 4.19. Once the select and the clock signals are established, the master sends out
serial data to the selected slave from its SDO port at the negative edge of SCK, and simul-
taneously samples slave data at its SDI port at the positive edge of SCK. According to the SPI
protocol, the slave is capable of sending and receiving data except it cannot generate SCK.

In the following example in Fig. 4.19, the master sends out serial data, DataM1 (most
significant bit) to DataM4 (least significant bit), from its SDO port at the negative edge of
SCK, and samples slave data, DataS1 (most significant bit) to DataS4 (least significant bit),
at its SDI port at the positive edge of SCK. The slave, on the other hand, can also dispatch
serial data packets, DataS1 (most significant bit) to DataS4 (least significant bit), from its
SDO port at the negative edge of SCK, and sample the master data, DataM1 (most sig-
nificant bit) to DataM4 (least significant bit), at its SDI port at the positive edge of SCK.

SCK is initially at logic 0
Data release at the negative edge of SCK
Data fetch at the positive edge of SCK

sew []|
|
[}
|
I
I
[}
|

SS

Slave dispatches data from SDO port
Master samples data at SDI port
I I I

sDI Datast ' Datas2 1) Datas3 1% Datasd 1
]

Master dispatches data from SDO port |

-

Slave samples data at SDI port

| | |
SDO > DataM1 ™ DataM2 1< DataM3 1> DataM4 >

Fig. 4.19 SPI bus protocol between a master and a single slave

152 4 System Bus

There are four communication modes available for the SPI bus protocol. Each protocol is
categorized according to the initial SCK level (the logic level at which SCK resides at steady
state) and the data generation edge of the SCK. Each communication mode is shown in
Fig. 4.20.

MODE 0 communication protocol assumes that the steady state level for SCK is at logic 0.
Each data bit is generated at the negative edge of SCK by the master (or the slave), and
is sampled at the positive edge. A good example of the MODE 0 protocol is shown in
Fig. 4.19.

MODE 1 still assumes the steady state level of SCK to be at logic 0, but the data
generation takes place at the positive edge of SCK. Both the master and the slave read data at
the negative edge in this mode.

MODE 2 switches the steady state level of SCK to logic 1. Data is released at the positive
edge of SCK and is sampled at the negative edge as shown in Fig. 4.20.

MODE 3 also accepts the steady state level of SCK at logic 1. However, data is released at
the negative edge of SCK and is sampled at the positive edge.

A master-slave pair must use the same mode during a data exchange. If multiple slaves are
used, and each slave uses a different communication mode, the master has to reconfigure
itself each time it communicates with a different slave.

SPI bus has neither an acknowledgement mechanism to confirm receipt of data nor it
offers any other data-flow control. In reality, an SPI bus master has no knowledge if a
physical slave exists on the other side of the bus, or the data it sends is properly received by
the slave. Most SPI implementations pack eight bits of data in a clock burst. However, many
variants of SPI today use 16 or even 32 clock cycles to send more data bits in a burst in order
to gain speed.

4.8 Serial Buses 153

MODE 0

SCK is initially at logic 0
Data release at the negative edge of SCK

: | |
DATA :>< Data 1 :>< Data 2

MODE 1

SCK is initially at logic 0
Data release at the positive edge of SCK
I I I

I I I

DATA X Data " Data2 ™ Data3

MODE 2

SCKiis initially at logic 1
Data release at the positive edge of SCK

DATA :>< Data 1 :>< Data 2

MODE 3

SCKiis initially at logic 1
Data release at the negative edge of SCK

I
]]
I
:
DATA > Datat X Daa2 X Data3

Fig. 4.20 SPI bus protocol modes

154 4 System Bus

Inter Integrated Circuit (1°C)

Inter Integrated Circuit (I°C) is a multi-master bus protocol that transmits and receives data
between bus masters and slaves using only two signal lines, Serial Clock (SCL) and Serial
Data (SDA).

Slave selection with slave select signals, address decoders or arbitrations is not necessary
for this particular bus protocol. Any number of slaves and masters can be employed in an I°C
bus using only two lines.

The data rate is commonly at 100 Kbps which is the standard mode. However, the bus can
operate as fast as 400 Kbps or even at 3.4 Mbps at high speed mode.

Physically, the I°C bus consists of the two active wires, SDA and SCL, between a master
and a slave device as shown in Fig. 4.21. The clock generation and data-flow are both
bidirectional. This protocol assumes the device initiating the data transfer to be the bus
master; all the other devices on the I°C bus are regarded as bus slaves.

SCL Out I—|

voD VoD
Rpu eRpu
__12C Master _ __l2cshave__
I
SDAIn i [T . SDA . : T] » SDA In
I I I
| | | |
I 1 I I
spaout —[! i J——— spaout
| : | '
I I
SCLIn «—e . SCL : o> SCLIn
i i
I I
|]
I I
I I

Fig. 4.21 I°C architecture

In a typical I°C bus, both the bus master and the slave have two input ports, SCL In and
SDA In, and two output ports, SCL Out and SDA Out, as shown in Fig. 4.21. When a master
issues SCL Out = 1 (or SDA Out = 1), the corresponding n-channel MOSFET turns on, and
pulls the SCL line (or SDA line) to ground. When the master issues SCL Out = 0 (or SDA
Out = 0), it causes the corresponding n-channel transistor to turn off, resulting SCL (or SDA)
afloat. However, neither SCL nor SDA is truly left floating in an undetermined voltage level.
The pull-up resistor, Rpu, immediately lifts the floating line to the power supply voltage
level, VDD. On the other side of the bus, the I°C slave detects the change at the SCL In (or
SDA In) port, and determines the current bus value.

4.8 Serial Buses 155

Each slave on the I’C bus is defined by an address field of either seven bits or ten bits as
shown in Fig. 4.22. Each data packet following the address is eight bits long. There are only
four control signals that regulate the data flow: Start, Stop, Write/Read and Acknowledge.

The seven-bit and ten-bit versions of read and write data transfers are shown in Fig. 4.22.
The top sequence in this figure explains how a bus master writes multiple bytes of data to a
slave that uses a seven-bit address. The master begins the sequence by generating a Start bit.
This acts as a “wake-up” call to all the slave devices and enables them to watch for the
incoming address. This step is followed by a seven-bit long slave address. The bus master
sends the most significant address bit first. The remaining address bits are released one bit at
a time until the least significant bit. At this point, all slave devices compare the bus address
just sent out with their own addresses. If the address does not match, the slave simply
ignores the rest of the incoming bits on the SDA bus, and waits for the beginning of the next
bus transfer. If the addresses match, however, the addressed slave waits for the next bit that
indicates the type of the data transfer from the master. When the master sends out a Write bit,
the slave responds with an acknowledge signal, SAck, by pulling the SDA line to ground.
The master detects the acknowledge signal, and sends out the first eight-bit long data packet.
The format for transmitting data bits is the same as the address: the most significant bit of the
data packet is sent out first followed by the intermediate bits and the least significant bit. The
slave produces another acknowledgement when all eight data bits are successfully received.
The data delivery continues until the master completes sending all of its data packets. The
transfer ends when the master generates a Stop signal.

The second entry in Fig. 4.22 shows the write transfer to a bus slave whose address is ten
bits long. Following the Start bit, the bus master sends out a five-bit preamble, 11110,
indicating that it is about to send out a ten-bit slave address. Next, the master sends out the two
most significant address bits followed by the Write bit. When the delivery of all these entries
is acknowledged by the slave(s) whose two most significant address bits match the ones sent
by the master, the master sends out the remaining eight address bits. This is followed by
another slave acknowledgement, and the master transmitting all of its data bytes to the
designated slave. The data transfer completes when the bus master generates a Stop bit.

The third and the fourth entries in Fig. 4.22 show the seven-bit and ten-bit read sequences
initiated by the bus master. In each sequence, after receiving the Start bit and the address
from the master, the designated slave starts sending out data packets to the master. After
successfully receiving the first data byte, the master responds to the slave with an
acknowledge signal, MAck, after which the slave transmits the next byte. The transfer
continues until the slave delivers all of its data bytes to the master. However, right before
issuing a Stop bit, the master generates a no-acknowledgement bit, MNack, signaling the end
of the transfer as shown in Fig. 4.22.

156 4 System Bus

Master = Write Addr Mode = 7 bits Master response I:l Slave response I:l

[START | Slave Address [write | sack | Datat [sAck | [patan] sack[sTop|

1 bit 7 bits 1bit 1 bit 8 bits 1 bit 8 bits 1bit 1 bit

Master = Write Addr Mode = 10 bits Master response I:l Slave response I:l

[START [11110 [Slave Address | write | SAck | Slave Address [SAck | Datat [sAck | [patan] sack[sTor|

1 bit 5 bits msb (2 bits) 1bit 1 bit Isb (8 bits) 1 bit 8 bits 1 bit 8 bits 1bit 1 bit

Master = Read Addr Mode = 7 bits Master response I:l Slave response I:l

[START | Slave Address | Read | sAck | Datat | MAck | | paeN [mNack[sTor]

1 bit 7 bits 1bit 1 bit 8 bits 1 bit 8 bits 1 bit 1 bit

Master = Read Addr Mode = 10 bits Master response I:l Slave response I:l

[START | 11110 [Slave Address | Read | SAck | Slave Address [SAck | Datat [MAck | | pataN [MNack]sToP]

1 bit 5 bits msb (2 bits) 1bit 1 bit Isb (8 bits) 1 bit 8 bits 1 bit 8 bits 1 bit 1 bit

Fig. 4.22 I°C modes of operation

The Start and Stop signals are generated by the combination of SCL and SDA values as
shown in Fig. 4.23. According to this figure, a Start signal is produced when the SDA line is
pulled to ground by the bus master while SCL = 1. Similarly, a Stop signal is created when
the bus master releases the SDA line while SCL = 1.

Start condition Stop condition
Fig. 4.23 I°C data stream start and stop conditions

Figure 4.24 shows when data is permitted to change, and when it needs to be steady. The
I°C protocol only allows data changes when SCL is at logic 0. If the data on SDA changes
while SCL is at logic 1, this may be interpreted as a Start or a Stop condition depending on
the data transition. Therefore, the data on SDA is not allowed to change as long as SCL = 1.

4.8 Serial Buses 157

)
|
|
:
SDA : ><
1 " "
H{ Data change is H Data change is }H
allowed NOT allowed
(Data is assumed
VALID)

Fig. 4.24 I°C data change conditions

Figure 4.25 explains the timing diagram in which the bus master writes two bytes of data
to a slave with a seven-bit address. According to this figure, the write process starts with
transitioning the value at the SDA to logic 0 while SCL = 1. Following the Start bit, the slave
address bits are delivered sequentially from the most significant bit, SA[6], to the least
significant bit, SA[0]. Each address bit is introduced to the SDA only when SCL is at logic 0
according to the I°C bus protocol shown in Fig. 4.24. The Write command and the subse-
quent slave acknowledgement are generated next. The data bits in Byte 0 and Byte 1 are also
delivered to the SDA starting from the most significant data bit, D[7]. The write sequence
finishes with the SDA transitioning to logic 1 while SCL = 1.

Master = Write Addr Mode = 7 bits

o TTLILL e e e O o e e e OO e e

1
i
J) J J) J J
(reTY (e €D CH R G W G €5 I '
|] |] |]
Start Slave Address Write SAck Byte 0 SAck Byte 1 SAck Stop

Fig. 4.25 I°C write timing diagram

Figure 4.26 shows the timing diagram of reading two bytes of data from a slave. Fol-
lowing the Start bit and the slave address, the master issues the Read command by SDA = 1.
Subsequently, bytes of data are transferred from the slave to the master with the master
acknowledging the delivery of each data byte. The transfer ends with the master not
acknowledging the last byte of data, MNack, and generating the Stop bit.

158 4 System Bus

Master = Read Addr Mode = 7 bits

| |
Start Slave Address Read SAck Byte 0 MAck Byte 1 MNack Stop

Fig. 4.26 I°C read timing diagram

Here comes the reason why the I’C bus protocol excels in maintaining flawless com-
munication between any number of masters and slaves using only two physical wires. For
example, what happens if two or more devices are simultaneously trying to write data on the
SDA? At the electrical level, there is actually no contention between multiple devices trying
to simultaneously enter a logic level on the bus. If a particular device tries to write logic O to
the bus while the other issues logic 1, then the physical bus structure with pull-up resistors in
Fig. 4.21 ensures that there will be no electrical short or power drainage; the bus actually
transitions to logic 0. In other words, in any conflict, logic 0 always wins!

This physical structure of the I°C bus also allows bus masters to be able to read values
from the bus or write values onto the bus freely without any danger of collision. In case of a
conflict between two masters (suppose one is trying to write logic 0 and the other logic 1),
the master that tries to write logic O gains the use of the bus without even being aware of the
conflict. Only the master that tries to write logic 1 will know that it has lost the bus access
because it reads logic O from the bus while trying to write logic 1. In most cases, this device
will just delay its access to the bus, and try it later.

Moreover, this bus protocol also helps to deal with communication problems. Any device
present on the bus listens to the bus activity, particularly the presence of Start and Stop bits.
Potential bus masters on the I°C bus detecting a Start signal will wait until they detect the
Stop signal before attempting to access the bus. Similarly, unaddressed slaves go back to
hibernation mode until the Stop bit is issued.

Similarly, the master-slave pair is aware of each other’s presence by the active-low
acknowledge bit after the delivery of each byte. If anything goes wrong, and the device
sending the data does not receive any acknowledgment, the device sending the data simply
issues a Stop bit to stop the data transfer and releases the bus.

An important element of the I°C communication is that the master device determines the
clock speed in order to synchronize with the slave. If there are situations where an I°C slave
device is not able to keep up with the master because the clock speed is too high, the master

4.8 Serial Buses 159

can lower the frequency by a mechanism referred to as “clock stretching”. According to this
mechanism, an I°C slave device is allowed to hold the SCL at logic 0 if it needs the bus
master to reduce the bus speed. The master is required to observe the SCL signal level at all
times and proceeds with the data transfer until the line is no longer pulled to logic O by the
slave.

All in all, both SPI and I°C offer good support for low-speed peripheral communication.
SPI is faster and better suited for single bus master applications, and I°C is slower but
better suited for multi-master applications. The two protocols offer the same level of
robustness and have been equally successful among vendors producing Flash memories,
Analog-to-Digital and Digital-to-Analog converters, real-time clocks, sensors, liquid crystal
display controllers etc.

160 4 System Bus

Review Questions

1. A CPU reads three bursts of data from a 32-bit wide byte-addressable memory in the
following manner:
e [t reads four bytes with the starting address 0xFO,
e Immediately after the first transaction, the CPU reads two half-words from the starting
address OxF4,
e Immediately after the second transaction, it reads one word from the starting address
OxF8.

The contents of the memory are as follows:

31 0
0xCC 0xDD OxEE OxFF OxFO
0x88 0x99 OxAA 0xBB OxF4
0x44 0x55 0x66 ox77 OxF8
0x00 0x11 0x22 0x33 0xFC

The unidirectional bus protocol states that the data communication between a bus master
and a slave requires generating the address and control signals in the first cycle, and the data in
the second cycle. The bus master always issues a Start signal to indicate the start of a data
transmission. After an initial address, the master changes its status to Cont to indicate the
continuation of the data transfer. The bus master issues Idle to indicate the end of the data
transfer or Busy to indicate its incapability to produce address and control signals (and data if
applicable). Any time the bus master is Busy, it repeats its address and control signals (and
data if applicable) from the previous clock cycle. Similarly, if a Ready signal is not generated
by the slave, the bus master also repeats its address and control signals (and data if applicable)
in the next clock cycle. At the end of a data transfer when the bus master finishes issuing new
addresses, it transitions to the Idle state even though there may be a residual data still in the
process of being read or written in the subsequent clock cycle(s).

Fill in the blanks of the following timing diagram to complete all three data read bursts in
the order specified above.

12 43 4,5 67 849 1011412 13,14, 15, 16 17, 18 + 19, 20
1 1 1 1 1 1

clock
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
status (X)X oo X X X X X X X XovorXoewX X X X)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4.8 Serial Buses 161

2. The following bidirectional bus maintains the communication between a CPU and a

memory.
CPU Memory
CPU I/F I/F Memory
32 32
Addr Addr A1
32 Bus 32
WData Data A2
32 32 A3
RData Ad
A5
m T, g s s s As
2353 394 304 2 |A7
S £ g 3 % & 3 % = 3 |A8
Lo N N D D DD WE RE
A A A A A A f A A

Bus Controller

Yy

A

The CPU has the Addr and the WData outputs to dispatch the address and the write-data,
respectively. It also uses the RData output to receive data from the memory.

The memory, on the other hand, has the Addr input to receive address from the CPU, and
a bidirectional Data port to receive and send data.

To validate the address and write-data, the EnAddr and EnWData signals are issued to the
bus controller, respectively. To validate read-data, the memory dispatches the Ready signal to
the controller. With all these inputs from the CPU and the memory, the controller generates
the WE and RE signals for the memory to write and read data, and the EnRData signal for the
CPU to validate the read data. The signals, SelAddr, SelWData and SelRData, are also
generated by the bus controller to manage the timely distribution of the address, write-data
and read-data using a single 32-bit wide bidirectional bus as shown in the figure above.

The write process to the memory requires a valid address with data as shown below:

clock Jl | ! | !_
I X Valid Ad(;:1r>< : >
I

Addr

I

I data written |
WE I I

| | |
RE | | |

162 4 System Bus

The read process requires a cycle delay to produce valid data from the memory once an
address is issued. This is shown below:

clock J | | |
|

|
Addr T Vvalid Addr X .

i i y data read
Data i i Data | »—

I I I
WE I I

f f

|

REﬁ :

(a) Since the bus protocol delivers data following a valid address, construct a timing
diagram to write the data, W1 to Al, W2 to A2, W3 to A3 and W4 to A4. Without
any delay, perform a read sequence to fetch the data packets, R1, R2, R3 and R4,
from the memory addresses, AS, A6, A7 and AS, respectively. Plot a timing dia-
gram, including the 32-bit bus, Bus[31:0], and the control signals, WE, RE,
SelAddr, SelWData and SelRData, for the write and read sequences.

(b) Design the CPU and the memory interfaces with the bidirectional bus such that these
two data transfers are possible (note that these interfaces are not state machines).

3. A bus master writes four bytes of data to the following address locations of a 32-bit wide
byte-addressable memory (slave) organized in a Little Endian format:

Address Data

0x0D 0x11
0x11 0x22
0x15 0x33
0x19 0x44

Following the write cycle, the same bus master reads data (words) from the following
slave addresses:

Address Data

0x3C 0xAABBCCDD
0x40 0x55667788

4.8 Serial Buses 163

(a) Describe the contents of the memory after the writing and reading cycles shown
above become complete.

(b) If the bus master generates the first address during the first clock cycle and keeps
generating new addresses every time the slave responds with a Ready signal, what
will be the values of the address, control and data entries in the timing diagram
below? Assume that the bus master does not produce any Status signal comprised of
Start, Cont, Busy and Idle.

s S I

address X X X X X X X X X X X X X >

WE X X X X X X X X X X X X X >

>
D P P G G

RN
N

T
ST

©

>
T T

E

ST

N

S G G G

[é)]

B P G G G

e}

T

~

T T

-
o

T

-
w

ininininininia Valnin Ve Ve

w

N
oo
—
—

4. A bus master reads four data packets starting from the address, 0x00, and ending at the
address, 0x03, from an eight-bit wide memory. Immediately after this transaction, the bus
master writes 0x00, 0x11, 0x22 and 0x33 into the addresses 0x04, 0x05, 0x06 and 0x07
respectively. This memory contains the following data after this operation:

7 0

00 O0xAA
01 0xBB
02 0xCC
03 0xDD
04 0x00
05 0x11

06 0x22
07 0x33

164 4 System Bus

Assuming the unidirectional bus protocol is the same as described in question 1, fill in the
blanks of the timing diagram below to accommodate each read and write transfer.

5. A bus master is connected to four memory blocks acting as bus slaves in a bidirectional
bus where 32-bit address, write-data and read-data are sent or received on the same bus.
The I/O ports of the bus master and the slaves are shown below:

Bus Master Bus Slave
RData[31:0] Addr/Data[31:0]
WData[31:0]
Addr{31:0]
EN EN
W/R WE
EnAddr
Ready Ready

The bus master has separate read and write data ports to receive and transmit data,
respectively. The Enable, and W/R ports enable the bus master to write data, i.e. EN = 1 and
W/R = 1. Similarly, EN = 1 and W/R = 0 enable the bus master to read. Since address and
data entries share the same bus, the bus master provides a third control signal, EnAddr, to

enable the address. The bus master determines if the slave is ready to receive of transmit data
through its Ready signal.

4.8 Serial Buses 165

The slave, in contrast, has only one port for receiving address or data. EN =1 and WE =1
writes data to the slave. If data needs to be read from the slave, then EN = 1 and WE =0 are used.

Draw the architectural diagram of such a system. Make sure to use the most significant
address bits, Addr[31:30], to select one of the slaves to read or write data.

6. A 16-bit digital system with a unidirectional data and address bus is given below.

> Bus Arbiter
3 3
Reqm —@ l
—»| RDatam Grantm |« —»{ Dint WE1, RE1[-—
WDatam
Addrm 16
MPU ‘= Addr1 DOut1 \
16 16 Memory 1
Reqc —@
@» RDatac Grantc <& b g 16 @»{Din2 WE2 RE2 |[—
WDatac
Addrc
Co-proc 1 O P Addr2 DOut2 —
16 Memory 2
Reqd
Grantd |- 16 16 L DIN3 WE3, RE3 |—
Addrd
Co-proc 2 16 p| Addr3 DOut3
Memory Memory 3
Select
3

16

This system contains three bus masters, a Microprocessor Unit (MPU), Co-processor 1
and Co-processor 2. It also contains three slaves, Memory 1, Memory 2 and Memory 3.

A bus arbiter is responsible for prioritizing the ownership of the bus among the three bus
masters. The MPU has the highest and Co-processor 2 has the lowest priority to use the bus.
When the arbiter gives the ownership of the bus to a bus master, the bus master is free to
exchange data with a slave as long as it keeps its request signal at logic 1. When the bus
master lowers its request signal after finishing a data transfer, the arbiter also lowers its grant
to assign the bus to another bus master according to the priority list.

As long as a bus master owns the bus, it can send a 16-bit write-data (WData) to the
selected slave at a specific address (Addr). Similarly, the bus master can read data from the
selected slave using a 16-bit read-data (RData) bus.

166 4 System Bus

For the sake of simplicity, control signals on the schematic are not shown; however, each
memory has the Read Enable (RE) and Write Enable (WE) ports to control data storage.

(a) With the description above, draw the state diagram of the bus arbiter.

(b) While MPU and Co-processor 1 remain at idle, Co-processor 2 requests two data
transfers. The first data transfer is from the addresses, 0OxABCO and OxABCI, of
Memory 1 to the addresses, 0x0000 and 0x0001, of Memory 2, respectively. The second
one is from the address, 0x0002, of Memory 2 to the address, 0xABC2, of Memory 1.

The first one is from the addresses OxABCO and 0OxABC1 of Memory 1 to the addresses
0x0000 and 0x0001 of Memory 2, respectively. The second one is from the address 0x0002
of Memory 2 to the address 0OxABC2 of Memory 1, respectively.

Note that Co-processor 2 and Memory 1 operate at a clock frequency twice as high as the
clock frequency used in Memory 2. Both memories have a read latency (access time) of one
clock cycle, i.e. data becomes available in the next clock cycle after issuing a valid address
with RE = 1. Write happens within the same clock cycle when the address is valid and WE = 1.

Including the request (reqd), grant (grantd) and address (Addrd) from Co-processor 2, and
the control signals (RE1, WE1, RE2, WE2) from each memory, create a timing diagram that
shows data transfers between Memory 1 and Memory 2. If you prefer, use the timing
diagram template below to make your entries.

Din1 Din2
15 ¥ 0 15 v 0
0000 0000
0001 0000
0002 CcccC
ABCO AAAA
ABC1 BBBB
ABC2 0000
e— Addr1 <— Addr2
Memory 1 <— WE1 M +— WE2
emory 2
clk1 —» «— RE1 clk2 — la— RE2

v v

DOut1 DOut2

4.8 Serial Buses

20

19 |

2 1l 31 41l 51 el 71 81 9 10l 11112113114 115116 17 | 18 |

T

clk1

RE1

WE2

RE2

WE1

7. The waveforms below describe serial transmission of data using two known bus proto-

cols, I>C and SPIL

(a) A bus master writes data to an I°C-compliant slave according to the timing diagram

below. Assuming that the bus master uses the negative edge of SCLK to produce data
on the SDA bus, determine the slave address and the data packets in binary format.

Start

Continue the waveform

SCLK

SDA

168

4 System Bus

(b) Now, the bus master transmits the same data packets on the SPI bus. Using the timing
diagram below, show the value of each data bit at the SDI terminal. Note that the bus
master uses ModeO convention and produces data at the negative edge of SCK.

SCK

ss]

SDI):(

Projects
1. Implement the unidirectional bus with two bus masters and three slaves shown in Fig. 4.1

using Verilog. Make sure both of the bus masters are able to produce status signals,
START, CONT, BUSY and IDLE to transfer data packets from one byte to two words
(64 bits) on a 32-bit wide bus. Similarly, ensure that all the slaves are able to generate
Ready signals compliant to the parallel bus protocol given in this chapter. Design the bus
arbiter shown in Fig. 4.14. Verify each individual block, i.e. the bus master, the slave, the
arbiter and the overall system functionality.

Implement the bidirectional bus with two bus masters and three slaves as shown in
Fig. 4.2 using Verilog. Make sure that the bus masters and slaves are fully compliant to
the parallel bus protocol given in this chapter. Design the bus arbiter shown in Fig. 4.14.
Again, verify each individual block, i.e. the bus master, the slave, the arbiter and the
entire bus system.

. Implement the SPI bus with one bus master and three slaves as shown in Fig. 4.18 using

Verilog. Verify the system functionality with timing diagrams.

. Implement the I°C bus in seven-bit addressing mode in Fig. 4.22 using Verilog. Verify

the system functionality with timing diagrams.

Basic serial and parallel bus structures and different forms of data transfer between a bus
master and a slave were explained in Chapter 4. Regardless of the bus architecture, the bus
master is defined as the logic block that initiates the data transfer, and the slave is defined as
the device that exchanges data with the master on demand. Both devices, however, may
include a buffer memory. The master may have an internal memory that stores user programs
or data, and the slave may have a large capacity system memory or a small buffer memory.

Depending on the read and write speed, capacity and permanence of data, system
memories and peripheral buffers can be categorized into three different forms. If fast read and
write times are desired, Static Random Access Memory (SRAM) is used despite its relatively
large cell size compared to other types of memory. SRAM is commonly used to store small
temporary data, and it is typically connected to a high speed parallel bus in a system. If large
amounts of storage are required, but slow read and write speed can be tolerated, then
Dynamic Random Access Memory (DRAM) should be the main memory type to be used.
DRAMSs are still connected to the high speed parallel bus, but typically operate with large
bursts of data. A typical DRAM cell is much smaller than an SRAM cell with significantly
lower power consumption. The main drawbacks of DRAM are high data read and write
latencies, the complexity of memory control and management of data.

The permanence of data yet calls for a third memory type whose cell type consists of a
double-gated Metal-Oxide-Semiconductor (MOS) transistor. Data is permanently stored in
the floating gate of the device until it is overwritten. Electrically-Erasable-Programmable-
Read-Only-Memory (E’PROM) or Flash memory fit into this type of device category. The
advantage of this memory type is that it keeps the stored data even after the system power is
turned off. However, this memory is the slowest compared to all other memory types, and it
is subject to a limited number of read and write cycles. Its optimal usage is, therefore, to
store permanent data for Built-In-Operating-Systems (BIOS), especially in hand-held
devices where power consumption is critical. A typical computing system can contain one or
all three types of memories depending on the usage and application software.

© Springer International Publishing Switzerland 2017 169
A. Bindal, Fundamentals of Computer Architecture and Design,
DOI 10.1007/978-3-319-25811-9_5

http://dx.doi.org/10.1007/978-3-319-25811-9_4

170 5 Memory Circuits and Systems

The basic functionality of SDRAM, E’PROM and Flash memory blocks in this chapter is
inspired from Toshiba memory datasheets [1-6]. The more recent serial Flash memory with
SPI interface in this chapter is based on an Atmel Flash memory datasheet [7]. In each case,
the functionality of the memory block has been substantially simplified (and modified)
compared to the original datasheet in order to increase reader’s comprehension of the subject
matter. The purpose here is to show how each memory type operates in a system, covering
only the basic modes of operation to train the reader rather than going into the details of the
actual datasheets. The address, data and control timing constraints for each memory have
also been simplified compared to the datasheets. This allows us to design the bus interface
for each memory type with ease. For the sake of simplicity, we avoided duplicating the port
names, exact timing requirements and functionality details that can be found in the actual
datasheets. After reading this chapter, interested readers are encouraged to study the refer-
enced datasheets prior to carrying out their design tasks.

5.1 Static Random Access Memory

Static Random Access Memory (SRAM) is one of the most fundamental memory blocks in
digital design. Among all different types of memory, SRAM ranks the fastest; however, its
large memory cell size limits its usage for a variety of applications.

A typical SRAM architecture shown in Fig. 5.1 is composed of four different blocks: the
SRAM core, the address decoder, the sense amplifier and the internal SRAM controller. The
memory core retains all immediate data. The sense amplifier amplifies the cell voltage to full
logic levels during read. The address decoder generates all 2% Word Lines (WL) from an
N-bit wide address. Finally, the controller generates self-timed pulses required during a read
or write cycle.

Each SRAM cell is composed of two back-to-back inverters like the ones used in a latch,
and two N-channel Metal Oxide Semiconductor (NMOS) pass-gate transistors to isolate the
existing data in the cell or to allow new data into the cell as shown in Fig. 5.2. When data
needs to be written to a cell, WL = 1 turns on both NMOS transistors, allowing the true and
complementary bits of data to be simultaneously written from the Bit and Bitbar inputs.
Suppose the node A is initially at logic 0, and the node B at logic 1 but WL = 0. The logic
level at WL turns off both NMOS transistors, and the latch becomes completely isolated from
its surroundings. As a result, logic 0 level is contained in the cell. But, if WL =1, Bit =1 and
Bitbar = 0, this time the logic level at WL turn on both NMOS transistors, and the values at
the Bit and the Bitbar nodes overwrite the existing logic levels at the nodes A and B, thereby
changing the stored bit in the cell from logic O to logic 1.

Similarly, if the data needs to be read from the cell, both NMOS transistors are turned on
by WL = 1, and the small differential potential developed between the Bit and the Bitbar
outputs are amplified by a sense amplifier to reach full logic levels at the SRAM output.

5.1 Static Random Access Memory 171

31 0
255
SRAM Core

@

e}

3

8 2 256

AddriIn[7:0] —4» . vl WL [255:0]

]

S

©

<

»| Precharge 32
EnWL ,
7y »| WritePulse <¢—~— DIn[31:0]
0
32
Y
EN —» -
Internal SRAM Sense Amplifier
Controller
WE —» » ReadPulse
DOut[31:0]

Fig. 5.1 A typical SRAM architecture with eight-bit address and 32-bit data

WL I l
A B)
Bit Bitbar

Fig. 5.2 SRAM memory cell

The data write sequence starts with EN (Enable) = 1 and Write Enable (WE) = 1. This
combination precharges the Bit and the Bitbar nodes in the SRAM core to a preset voltage
and prepares the memory for a write. When the precharge cycle is complete, the controller
enables the address decoder by EnWL = 1 as shown in Fig. 5.1. The decoder activates a
single WL input out of 256 WLs according to the value provided at AddrIn[7:0]. Within the

172 5 Memory Circuits and Systems

same time period, the controller also produces WritePulse = 1, which allows the valid data at
DIn[31:0] to be written into the specified address.

Reading data from the SRAM core is performed by EN = 1 and WE = 0. Similar to the
write operation, the controller first precharges the SRAM core prior to reading data, and then
turns on the address decoder. According to the address value at the Addrln port, the WL
input to a specific row is activated, and the data is read from each cell to the corresponding
Bit and Bitbar nodes at this row. The sense amplifier amplifies the cell voltage to full logic
levels and delivers the data to the DOut port.

The SRAM I/O timing can be synchronized with clock as shown in Figs. 5.3 and 5.4. In
Fig. 5.3, when EN and WE inputs are raised to logic 1, SRAM goes into the write mode, and
the valid data is written to a specified address at the next positive clock edge. In Fig. 5.4,
when EN = 1 and WE = 0, SRAM is enabled and operates in the read mode. The core
delivers the valid data sometime after the next positive edge of the clock.

clock

WE :

EN

Valid Address

:
i

Valid Data X

|

|

|
Addr{7:0] . X

|

|

. X

DIn[31:0]

Fig. 5.3 SRAM /O timing for write

clock

I
WE i |
I
I |
I

2t —

DOut[31:0]

|
!
|
Addr{7:0] . X Valid Address —__ /
|
|
I
|

B Valid Data

Fig. 5.4 SRAM I/O timing for read

5.1 Static Random Access Memory 173

One of the important tasks to integrate an SRAM module to an existing system is to
design its bus interface. Figure 5.5 shows the block diagram of such an implementation. The
bus interface basically translates all bus control signals to SRAM control signals (and vice
versa), but it seldom makes any modifications on address or data. In the unidirectional bus
protocol described in Chapter 4, SRAM is considered to be a bus slave that exchanges data
with the bus master on the basis of a Ready signal. As also mentioned in Chapter 4, a bus
master has four control signals to indicate the data transfer. The Status signal indicates if the
bus master is sending the first data packet (START) or is in the process of sending remaining
data packets (CONT). The bus master may also send IDLE or BUSY signals to indicate if it
has finished the current data transfer or busy with an internal task, respectively. The Write
signal specifies if the bus master intends to write data to a slave or read from a slave. The

WData[31:0] RData[31:0]
A
32 32
Ready ¢— DiIn[31:0] DOut[31:0]

Bus Interface ———e—®| WE

SRAM
Burst ——— P
Status —@——P»
Write. ——®—g)\wEn BIREn > EN
A A Addrin[7:0]
O |
) ?
® —>»/w R
'—
()
4 4 Addr[31:28] o — clock
Addr{7:0]
'y ®
8
32
Addr[31:0]

Fig. 5.5 SRAM bus interface block diagram

http://dx.doi.org/10.1007/978-3-319-25811-9_4
http://dx.doi.org/10.1007/978-3-319-25811-9_4

174 5 Memory Circuits and Systems

Burst signal designates the number of data packets in the transaction, and the Size signal
defines the width of the data.

The timing diagram in Fig. 5.6 shows how to write four data packets, W1 to W4, to four
consecutive SRAM addresses, Al to A4, as an example to build the bus interface in Fig. 5.5.
To initiate a write sequence, the bus master issues a valid address, Status = START and
Write = 1 in the first clock cycle of this timing diagram, and enables the bus interface for a

Last
Write

‘ Idle |[Standby| Write Write | Write Idle

Write ::y\i'\ é é

]
Burst ' 4

h |
Status STAR‘I/ X CONT >< CONT >< CONTX IDLE :
Ay [

/ SRAM Space / |>< i

|
BIWEn ,\ l
| t
| | | |
Addr{7:0] X IA1} /»< A2 X A3 I><_A4ﬁ<l IV

WnData[31:0]

F

--L -

Addr[31:28]

RData[31:0]

EN

WE /

Addrin[7:0] /

|
BM BM BM BM\<

wntes writes writes writes

>< A2 >< A3

1

|

D<W2;><W3

T

;_%

/ZV

DIn[31:0]

—

DOu31:0] \

Ready I :t|

Fig. 5.6 SRAM bus interface timing diagram for write

\

T R
2

Y

N

5.1 Static Random Access Memory 175

write by producing an active-high Bus Interface Write Enable (BIWEn) signal. Upon
receiving the BIWEn = 1, the bus interface produces Ready = 1 in the next cycle, and prompts
the bus master to change the address and control signals in the third cycle. As the bus master
changes its address from Al to A2, it also sends its first data packet, W1, according to the
unidirectional bus protocol explained in Chapter 4. However, in order to write data into an
SRAM address, a valid data must be available within the same cycle as the valid address as
shown in Fig. 5.3. Therefore, a set of eight flip-flops are added to the write path prior to the
Addrln port in Fig. 5.5 so that the address, Al, is delayed for one clock cycle, and aligned
with the current data, W1. The bus interface also produces EN = WE =1 in the third cycle so
that W1 is written to Al at the positive edge of the fourth clock cycle. The next write is
accomplished in the same way: the SRAM address is delayed for one cycle in order to write
W2 into A2 at the positive edge of the fifth cycle. In the sixth cycle, the bus interface keeps
EN = WE =1 to be able to write W3 to A3, but lowers the Ready signal to logic O so that the
bus master stops incrementing the slave address and suspends the controls in the next cycle. In
the seventh and final write cycle, the bus interface lowers both EN and WE to logic 0 but
allows the last data, W4, to be written to A4 at the positive edge of the clock.

The bus interface state diagram for write in Fig. 5.7 is developed as a result of the timing
diagram in Fig. 5.6. The first state, Idle state, is the result of the bus interface waiting to
receive BIWEn = 1 from the bus master, which corresponds to the first clock cycle of the
timing diagram in Fig. 5.6. The next state that follows the Idle state is the Standby state
where the bus interface generates Ready = 1. This state is one clock cycle long and rep-
resents the second clock cycle in the timing diagram. The Write state is the state during
which the actual write sequence takes place: EN and WE are kept at logic 1 as long as the
number of write addresses issued by the bus master is less than Burst length. This state
corresponds to the third, fourth and fifth clock periods in the timing diagram. When the
number of write addresses reaches the value of the Burst length, the bus interface goes to the
Last Write stage and Ready signal becomes logic 0. The bus master writes the final data
packet to the last SRAM address at the positive edge of the seventh clock cycle before it
enters the Idle state.

In order to initiate a read sequence, the bus master issues a valid SRAM address, Status =
START and Write = 0 signals in the first clock cycle of Fig. 5.8. This combination produces an
active-high Bus Interface Read Enable, BIREn = 1, which is interpreted as the bus master
intending to read data from an SRAM address. Consequently, the bus interface generates EN =1,
WE =0, Ready = 1 in the second cycle. This fetches the first data, R1, from the SRAM address,
B1, in the third cycle. The read transactions in the fourth and fifth cycles are identical to the third,
and the bus master reads R2 and R3 from the addresses, B2 and B3, respectively. In the sixth
cycle, the bus interface retains Ready = 1 so that the bus master can still read the last data, R4,
from the address, B4.

http://dx.doi.org/10.1007/978-3-319-25811-9_4

176 5 Memory Circuits and Systems

BIWEn =0

Ready = 0
EN=0
WE =0

BIWEnNn =1

Ready = 1
EN=0
WE =0

Write = 1
Status = CONT or BUSY
Burst < Burst length

Ready = 1

WE =1

Write =1
Status = CONT
Burst = Burst length

Ready = 0

EN =1

WE =1

(BM dispatches
the last data)

Status = IDLE J

Status = BUSY

Fig. 5.7 SRAM bus interface for write

As in the write case, the read bus interface in Fig. 5.9 is also a direct consequence of the
timing diagram in Fig. 5.8. The Idle state corresponds to the first clock cycle of the timing
diagram in Fig. 5.8. As soon as BIREn = 1 is generated, the bus interface transitions to the
Standby state where it produces EN = 1, WE = 0 and Ready = 1. The interface enters the
Read state in the third cycle and produces the same outputs as before so that the bus master
can read its first data, R1, and sends a new address in the next cycle. The interface stays in
the Read state until the number of read addresses issued by the bus master is less than the
Burst length. The Read state covers from the third to the fifth cycle in the timing diagram in
Fig. 5.8. After the number of read addresses reaches the Burst length, the bus interface

5.1 Static Random Access Memory 177

Last
Standby‘ Read ‘ Read ‘ Read ‘ Read ‘Idle

‘ Idle

clock
I I I
I I
Write I\ \I'\ :
I
1

o ::>< :) | . | | ><
Status j< STIART/)I<CONTI><CONTI><CONT)I<|DLE
Y/ 0/

|
|
|
|
|
|
|
|
|
|
Addr{31:28] | / SRAM Space / >< !
[
|
|
|
T
|
|
|
l
|
|
|

1

BIREn I

n
.%%M%m:

|
|
R2 R3 R4

[
|
|
|
Addr[7:0] X B1)< B2

WData[31:0]

RData[31:0]

P~

= I i i \—I
" A
L YL N
Addrin[7:0] / | | B3 .>< B4 1\\ |
NN BEEVAN
DIn[31:0] \ | | /\ | | / \
\Loor (0)
DOut31:0] \! i B j1

R2 >< R3\9< R4/;/

:i — R

Ready | L B BM BM BM L
! reads reads reads reads

Fig. 5.8 SRAM bus interface timing diagram for read

>_<__
|
1< i =
ST T T T T T T T T T

transitions to the Last Read state in cycle six where it continues to generate Ready = 1. This
is done so that the bus master is able to read the last data as mentioned earlier. The interface
unconditionally goes back to the Idle state in the following cycle.

178

BIREn=0

Ready =0

5 Memory Circuits and Systems

EN=0
WE=0

BIREn =1

Ready = 1
EN =
WE =0

Ready =1
EN=1
WE =0

Write =0

Ready =1

Status = CONT
Burst = Burst length

Status = IDLE

Write = 0
Status = CONT or BUSY
Burst < Burst length

J

EN=0
WE =X

Status = BUSY

Fig. 5.9 SRAM bus interface for read

Increasing SRAM capacity necessitates employing extra address bits. In the example shown
in Fig. 5.10, the SRAM capacity is increased from 32x16 bits to 32x64 bits by appending two
extra address bits, Addr[5:4], which serves to access one of the four SRAM blocks. In this

figure, even though Addr[3:0] points to the same

address location for all four 32x16 SRAM

blocks, Addr[5:4] in conjunction with EN enables only one of the four blocks. Furthermore,
the data read from the selected block is routed through the 4-1 MUX using Addr[5:4] inputs.
Addr[5:4] = 00 selects the contents of DOutO port and routes the data through port O of the 4-1
MUX to Out[31:0]. Similarly, Addr[5:4] = 01, 10 and 11 select ports 1, 2 and 3 of the 4-1
MUX, and route data from DOutl, DOut2 and DOut3 ports to Out[31:0], respectively.

5.2 Synchronous Dynamic Random Access Memory 179

In[31:0]
{32
Addr[3:0] Addr{3:0] Addr[3:0] Addr[3:0]
Y Y A Y
Din3 4 Din2 4 Din1 4 DIn0 4
BLOCK 3 BLOCK 2 BLOCK 1 BLOCK 0
l¢—— WE l—— WE l¢—— WE —— WE
En3 4232 En1 En0
DOut3 DOut2 DOut1 DOUt0

z z z z
w w I} w

Addr[5]
Addr[4]
Addr[5]
Addr[4]
Addr[5]
Addr[4]
Addr[5]
Addr[4]

Addr[5] 3210
Addr{4]
32

out[31:0]

Fig. 5.10 Increasing SRAM address space

5.2 Synchronous Dynamic Random Access Memory

Synchronous Dynamic Random Access Memory (SDRAM) is a variation of the older
DRAM, and it constitutes the main memory of almost every computing system. Even though
its capacity can be many orders of magnitude higher than SRAM, it lacks speed. Therefore,
its usage is limited to storing large blocks of data when speed is not important.

An SDRAM module is composed of four blocks. The memory core is where data is
stored. The row and column decoders locate the data. The sense amplifier amplifies the cell
voltage during read. The controller manages all the read and write sequences.

The block diagram in Fig. 5.11 shows a typical 32-bit SDRAM architecture composed of
four memory cores, called banks, accessible by a single bidirectional input/output port. Prior
to operating the memory, the main internal functions, such as addressing mode, data latency
and burst length, must be stored in the Address Mode Register. Once programmed, the
active-low Row Address Strobe, RAS, Column Address Strobe, CAS, and Write Enable,
WE, signals determine the functionality of the memory as shown in Table 5.1. The data from
a selected bank can be masked by the Read/Write logic block at the DInOut port so that only
part of the data can be fetched from the memory. This unit also serves blocking parts of the
32-bit data to be written to a bank.

180 5 Memory Circuits and Systems
cs cs cs Chip Select (CS)
ﬁssm:m =3 ﬁsg[m] =2 ﬁssm:m =1 BS[1:0] = 0
_ _ ColAddr[9:0]
Column Address oo CoLuMN CoLum
LUMN ~Aa ra "Ac
Stobe (CAS) DECODE CAS DECODE CAS DECODE CAS
- - - RowAddr{9:0]
N 31 0 o 31 0 R 31 0 .
o] o | o e o
w w w w
b BANK b BANK D BANK b BANK
E [l 3 E [2 E 1 E | 0
C Cc 3 (o3
o o] [e] [e]
D D D D
e “‘ e “‘ £ “‘ £ “‘
+ SENSE AMP _ i SENSE AMP s i SENSE AMP A i SENSE AMP _
Row Address WE RAS WE RAS WE RAS Write Enable (WE)
Stobe (RAS) 1 7y 1 3
32
Maski3:0] Address Mode Register
DInOut[31:0]
Fig. 5.11 Typical SDRAM architecture

Table 5.1 SDRAM modes of operation

CS

OPERATION

O O O o O o o o

RN

RAS CAS WE
o 0 o0
o 0o 1
o 1 0
o1 1
1 0 0
10 1
1 1 0
1T 11
X X X

Program Addr. Mode Register

Self Refresh

Precharge a Bank with BS[1:0]
Activate a Bank with BS[1:0]
Write into a Bank with BS[1:0]
Read from a Bank with BS[1:0]

Burst Stop
Reserved

SDRAM Deselect

The SDRAM cell is a simple device composed of an NMOS transistor to control the

data-flow in and out of the cell and a capacitor to store data as shown in Fig. 5.12. When new

data needs to be written into the cell, the NMOS transistor is turned on by Control = 1, and

the data at the DIn/Out terminal overwrites the old data at the Cell node. Reading data from

the cell, on the other hand, requires amplification of the cell voltage, thus activation of the

5.2 Synchronous Dynamic Random Access Memory 181

sense amplifier when the NMOS transistor is turned on. When data needs to be preserved,
the NMOS transistor is simply turned off by Control = 0. However, the charge on the cell
capacitor slowly leaks through its insulator, resulting in a reduced cell voltage. Thus, an
automatic or manual cell refresh cycle becomes mandatory during SDRAM operation to
preserve the bit value in the cell.

Control

1

DIn/Out

Cell
% C

Fig. 5.12 SDRAM memory cell

The first row of the truth table in Table 5.1 indicates how to program the internal Address
Mode Register. At the positive edge of the clock, CS, RAS, CAS and WE signals are pulled
low to logic O to program the Address Mode Register as shown in Fig. 5.13. In the program,
the address bits, A[2:0], define the data burst length as shown in Table 5.2. Burst length can
range from one word of data to a full page, which is equal to the contents of the entire bank.
The address bit, A[3], defines how the SDRAM address is incremented for each data packet.
In sequential addressing mode, the starting address is incremented by one while the carry bit is
eliminated according to the size of the burst length. In linear addressing mode, the address is
incremented without eliminating the carry bit. The address bits, A[5:4], determine the data

latency when reading takes place from the memory. Latency can range from two to five clock
cycles depending on the need.

clock _l—l—l_
AL2:0) :>< SURSTLENGTH X:
AL3) :>< ADDRESS MODEE

e ST

Fig. 5.13 Timing diagram for programming the address mode register

182 5 Memory Circuits and Systems

Table 5.2 Truth tables for programming the address mode register

A[2] A[1] A[0] Burst Length A[3] | Addressing Mode
0 Sequential
0 0 0 1 Word
1 Linear
0 0 1 2 Words
0 1 0 4 Words
A[5] A4 Latenc
0 1 1 8 Words 51 Al y
1 0 0 16 Words 0 0 2
1 0 1 32 Words 0 1 3
1 1 0 64 Words 1 0 4
1 1 1 Full Page 1 1 5

The example in Table 5.3 shows the elimination of the carry bit in sequential addressing
mode for burst lengths of 2, 4 and 8. In this example, if the starting address is 13 and the
burst length is two words, the carry bit from the column A[0] is eliminated, resulting the next
address to be 12. In the same example, if the burst length is increased to four, this time the
carry bit from the column A[1] is eliminated, and the address values following the starting
address 13 become 14, 15 and 12. If the burst length becomes eight, the carry bit from the
column A[2] is eliminated, and the address values of 14, 15, 8, 9, 10, 11 and 12 follow the
initial address 13. Sequential addressing confines reading or writing of data within a pre-
defined, circulatory memory space, convenient for specific software applications.

The linear addressing mode is a simplified version of the interleave addressing in various
SDRAMs, and increments the SDRAM address linearly without eliminating the carry bit as
shown in Table 5.4. In this example, if the starting address is 13 and the burst length is two,
the next address will be 14. If the burst length is increased to four, the next three addresses
following 13 will be 14, 15 and 16. In contrast to the sequential addressing mode, the linear
addressing increments SDRAM address one bit at a time, not confining the data in a
circulatory address space.

The second row of the operational truth table in Table 5.1 shows how to initiate a self
refresh cycle as shown in Fig. 5.14. In self refresh, SDRAM automatically replenishes node
voltage values at each cell because the charge across the cell capacitor leaks through its
dielectric layer over time. The time duration between refresh cycles depends on the tech-
nology used, the quality of the oxide growth and the thickness of the dielectric used between
capacitor plates.

5.2 Synchronous Dynamic Random Access Memory

183

Table 5.3 SDRAM sequential mode addressing for burst lengths of 2, 4 and 8

Starting Address = 13, Burst Length = 2, Mode = Sequential

I
A[9] A[8] A[7] Al6] A[5] A[4] A[B] Al2] A[1] | Al0]
I
0 0 0 0 0 0 1 1 o, 1 = 13
| +1
0 0 0 0 0 0 1 1 ol 0o = 12
I
delete the carry bit ‘_J
I
Starting Address = 13, Burst Length = 4, Mode = Sequential
I
A[9] AI8] A[7] AB] A[B] A4l ARl A[2] | A[1] Al0]
f
0 0 0 0 0 0 1 1.1 0 1 = 13
.
0 0 0 0 0 0 1 1 | 1 0 = 14
I +1
0 0 0 0 0 0 1 11 1 1 = 15
s
0 0 0 0 0 0 1 T, 0 0 = 12
delete the carry bit K:J
Starting Address = 13, Burst Length = 8, Mode = Sequential
I
A[9] A[8] A[7] Al6] A[5] Al4] A[3] | A2l A[1] A[0]
I
0 0 0 0 0 0 1T 11 0 1 =13
| +1
I
0 0 0 0 0 0 1T 11 1 0 =14
I +1
I
0 0 0 0 0 0 1T 11 1 1 =15
| .
0 0 0 0 0 0 170 0 0 =8
delete the carry bit “—‘V +1
0 0 0 0 0 0 170 0 1 =9
I
0 0 0 0 0 0 170 1 0 =10
L
0 0 0 0 0 0 170 1 1 =1
| +1
I
0 0 0 0 0 0 1 1 0 0 =12

184 5 Memory Circuits and Systems
Table 5.4 SDRAM linear addressing mode for burst lengths of 2 and 4

Starting Address = 13, Burst Length = 2, Mode = Linear

AI9] A8l A[7] Al6] A[5] A[4] A[3] A[2] A[1] A0]

0 0 0 0 0 0 1 1 0 1 = 13
0 0 0 0 0 0 1 1 1 0 = 14

Starting Address = 13, Burst Length = 4, Mode = Linear

AI9] A8l A[7] Al6] A[S] A[4] A[3] Al2] A[1] Al0]

0 0 0 0 0 0 1 1 0 1 = 13
0 0 0 0 0 0 1 1 1 0 = 14
0 0 0 0 0 0 1 1 1 1 = 15
0 0 0 0 0 1 0 0 0 0 = 16

RAS

CAS

5|
L L L L L

|
BANKO IDLE |><
[

|
BANK1 I IDLE IX
|

|
BANK2 IDLE IX
|

i
BANK3 I IDLE |><
| |
T

Self Refresh

Fig. 5.14 Timing diagram for self-refresh

5.2 Synchronous Dynamic Random Access Memory 185

Rows three to six in Table 5.1 define the read and write sequences in an SDRAM as
shown in Fig. 5.15. In this figure, a read or a write sequence always starts with precharging
all the rows and columns of the SDRAM core. This is followed by an activation cycle where
the row address is generated. In the last cycle, the column address is generated, and the data

is either written or read from the memory according to the control signals, CS, RAS, CAS

| (/________\\ (/—_______\\

PRECHARGE

PRECHARGE

(
lWNT lWNT

ACTIVATE and ACTIVATE and
supply Row Address supply Row Address

iWAIT lWAIT

WRITE and supply READ and supply
Column Address Column Address

WAIT WAIT

Fig. 5.15 Write and read operation cycles

N
N

N
—_/

N
N

Prior to a read or a write, all the rows and columns of a bank must be precharged to a
certain voltage level for a period of one clock cycle as shown in Fig. 5.16. During precharge,
CS, RAS and WE, must be lowered to logic 0, and CAS must be kept at logic 1 as shown in
the third row of Table 5.1. The value of the precharge voltage can be anywhere between 0 V

and the full supply voltage depending on the technology and the requirements of the circuit
design. The activation cycle starts right after precharging a bank. The time interval between
the precharge and activation cycles is called the precharge time period, tprg, as shown in
Fig. 5.16. The activation cycle is enabled by lowering CS and RAS to logic 0, but keeping
CAS and WE at logic 1 as shown in the fourth row of Table 5.1. Following the activation
cycle, the next precharge period must not start until after a certain time period has elapsed for
the same bank. This time interval is called the RAS time period, tgas, as shown in Fig. 5.16.

186 5 Memory Circuits and Systems

- T B |
=
I W S W S W
= T
=)) iL:jﬁ:::ij:j::M

A e

Precharge Activate Precharge
BANK1 BANK1 BANK1

Fig. 5.16 Bank precharge and activation cycles

The fifth row of Table 5.1 shows how to write to a selected bank when CS = CAS = WE =0
and RAS = 1. The actual write takes place in the last phase of the write sequence in Fig. 5.15
following the precharge and activation cycles. To illustrate the write sequence in detail, an
example illustrating a single write burst is given in Fig. 5.17. In this figure, the write cycle
starts with precharging Bank 1. After t = tprg, the activation period starts and the row
address is defined for the SDRAM. When the column address is generated after a time period
of tcas, four data packets, D(0) to D(3), are written to SDRAM core in four consecutive
clock cycles. Note that in this figure if the same bank is used for another write, a new time
period, tgas, needs to be placed between the bank activation cycle and the next precharge
period.

5.2 Synchronous Dynamic Random Access Memory

187

clock

| | | I | | | | | |
Ty | [I I A\ I/ | [[| I I\ I/ [
cs _:__F/ | I I | I | | I I | I I | I
S W G S et WY G | G S S S WY A
| I | I I | I | | I I | I I | I
CAS Iy (1 I Y 1 T\ I 1 [[| | oy 1|
| | | | | | I | | | | | I I | [
L7 WO e WA G A) WY G
| | | | | | I | | | | | | | | |
| [I I I | | [[| I I [
Bst] :p I'(| [I)\ :I(I)‘ II(| | | | I I)\ :'([
| | | | | | | | | | | | | | |
Bsl0]) (o N Ty
| I | I I | I | | I I | I I | I
Al9:0] T 1 | | | Yrow) TYcor Y| | | | T T | |
| I | | | | I | | | | | I I | |
DInOut —! l l l l ' l(D(t;)X D<1'>X D(zl)XD<3'>) ' l l ' !
-«——— tPRE ——»] CAS | tBURST tWAIT ——
t |=t trAS >
PRECHARGE ROW ADD’I;:‘SS COLUMN ADDRESS p|:E:|;HARGE

ACTIVATE BANK1 WRITE BANK1

Fig. 5.17 A single write cycle

The example in Fig. 5.18 shows two separate write sequences into two different banks.

When writing takes place more than a single bank, interleaving one bank’s precharge and

activation time periods with respect to the other may result in a time-saving scenario where

one write burst takes place immediately after the other, resulting in a shorter overall write

period. In this figure, the interleaving technique results in writing four words to bank 1

immediately after writing four words to bank 0 without any cycle loss. Therefore, writing to

two (or more) different banks as opposed to writing continuously to a single bank is a

preferred scheme because this process eliminates all unnecessary waiting periods between

precharge cycles. However, as the burst length involves a lot more than four words, the

relative placement of the bank precharge cycle in the timing diagram becomes less

important.

188 5 Memory Circuits and Systems

clock

| | | | | | |
f f | f } } }
cs | | | A
| | | | | | I | | | | | I I I
RAS — D\ I I N | N | | |
| | | | | | | | | | | | | | |
— } } f f f | f f f | } } } }
CAS j —y 7 0y
I | I | | | | I | | | | I I I
) U G ST GED N N 2 G N) W G N N
| | | | | | | | | | | | | | |
e e N e
| | | | I I | I I I | | | | |
sl _ WO 1y N\ Ny N
| | | | | | | | | | | | | | |
A[9:0] ; ; ; XROV\IIOX ; ; XCOL? XROW|1X ; ;X coul)(; i i i
| | | | | | | | | | | | | | |

DInout — ' ' ' ' L{"o0(0) Y o) Y Do) Y po@) Y D10 X D10 \ D12 Y D163) —L—

B R ee o e

PRE ACT PRE WRITE ACT WRITE
BANKO BANKO BANK1 BANKO BANK1 BANK1

Fig. 5.18 Multiple write cycles to different banks (tprg = 1 cycle, tcas = 2 cycles)

The sixth row of Table 5.1 shows how to initiate a read cycle from a selected bank.
Reading words from SDRAM involves a latency period, and it needs to be programmed in
the Address Mode Register. The example in Fig. 5.19 shows the start of a read burst after a
latency period of three clock cycles once the read command and the address are given.
A latency of three clock cycles means that the data becomes available at the output of
SDRAM in the third clock cycle after the address is issued.

Read 8 WORDS from the Starting Address = 13 in Sequential Mode with Latency = 3

clock | _|_|_’\—’\—’\—|

Mode Ycontrols} | | | | | | | | | |
L | | | | | | | | | |
Addess \ 13 \ . 00000000000
I I I I I I I I I I I I
Data X X Y D(13) X D(14) X D(15) X D®) X D) X D(10) X D(11)) D(12))
l Il Il |
~ N ™
1 1 1
> > >
o o ©
p z z
Ll L L
(= [= (=
< < <
— - —

Fig. 5.19 Definition of latency during a read cycle

5.2 Synchronous Dynamic Random Access Memory 189

The example in Fig. 5.20 shows a single read sequence from bank 1. Until the read command
and the column address are issued, the read and write sequences follow identical paths.
However, after this point the read burst starts following a latency period. Similar to the write
process, a certain tg o5 period must elapse between read bursts before additional streams of data
become available from the same bank. In this figure, tyart corresponds to the waiting period
between the last data packet read from the memory and the start of the next precharge period.

clock

I | | |
s Thoy (Y .
|
1{

| | | | | | | | | | | | |

} } } } } } } } } } } } }

| | | | | | | | | | | | |
- | | | | | | | | | | | | | | |
RAS N 1L | DY 1Y | | | | | | | | I\ |
| | | | | | | | | | | | | | | | | |
— t } t t t t t t } } } } } } } }
CAS :D' | G D B G :‘ A N S S
- | | | | | | | | | | | | | | | | | |
WE |>\ If | | 1Y 11y 1 | | | | | | | I\ |
| | | | | | | | | | | | | | | | | |

1 1 1 1 1 1 1 1]]]]]
s W s VA G W G S S S S W
| | | | | | | | | | | | | | | | | |
BS[0] I M | | Ly 1y 1 | | | | | | | 1Y |
| | | | | | | | | | | | | | | | | |
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
S S S S G 4 (10 5 S S S
| | | | | | | | \-ATENCY” | | | | | | |
DInOut . . : L L »{ D(0)X (1) X b X DE3) — } . !

l«—— tPRE | tcas tLaT ~I< tBURST > twWAIT —»

trRAS >

NN Nl 1

PRECHARGE ROW ADDRESS COLUMN ADDRESS LAST PRECHARGE

BANK1 and and READ BANK1 BANK1

ACTIVATE BANK1 READ BANK1
Fig. 5.20 Single read cycle

The example in Fig. 5.21 describes multiple reads from the same bank and assumes tw
is equal to zero. This scenario produces a read burst of four words, D(0) to D(3), from bank 1
and causes the same bank to be precharged during the last data delivery. The second read
burst from bank 1 follows the same pattern as the first one and delivers D(4) to D(7) after a
programmed latency of two clock periods. If twayr is different from zero, then the second
precharge period should start right after the twarr period as described in Fig. 5.20.

The interleaving technique used in reading data from two different banks in Fig. 5.22 is
not any different from the one used when writing data to two different banks. As with the
write case, the placement of the second precharge cycle in the timing diagram is important to
achieve two consecutive read bursts, DO(0) to DO(3) from bank 0 and D1(0) to D1(3) from
bank 1, without any cycle loss in between, accomplishing the shortest possible time to fetch
data from SDRAM.

5 Memory Circuits and Systems

190

clock

ez

:
D@4 X BE) X0©) X2

-y
—x
!
W
i
e
e

Y
o
| -
=
| X_:j .
=
e
i4.||_>itR/xc

=2

I

LATENCY

LAST READ and ROW ADDRESS COLUMN ADDRESS

T
D(© X D(1) X D(2) X b3)

LATENCY =2

-

g

PRECHARGE ROW ADDRESS COLUMN ADDRESS

DInOut —

and
READ BANK1

and
ACTIVATE BANK1

PRECHARGE

and
READ BANK1

and
ACTIVATE BANK1

BANK1

BANK1

2 cycles,

Fig. 5.21 Multiple read cycles from the same bank (tprg = 1 cycle, tcas

twarr = 0 cycle)

|
—
Y1\

4

I\

1/

- 5 <
PN S

> <]
— T

|
-
1y
2
BS[1] :D\

I

)

O
!NAI
I [,
|m|--|mm
oW N
o
_]l_l_«E&
>
<1 e S
oW
-
I

and
READ BANK1

and BANK1
READ BANKO

BANK1

BANKO

BANKO

2 cycles)

1 cycle, tcas =

Fig. 5.22 Multiple read cycles from different banks (tprg

The seventh row of Table 5.1 shows how to stop a read or a write burst. Figure 5.23

shows a single write sequence when the burst stop command is issued in the middle of a data

5.2 Synchronous Dynamic Random Access Memory 191

burst. Upon receiving this command, the selected bank goes into the standby mode and waits
for the next precharge command.

clock

Y s
|

) o W

ixRov{x NGD X

4k

| |

I 1 1 1 1 1

X X X X X
PRECHARGE ~ROW ADDRESS COL ADDRESS BURST

BANKO and and STOP
ACT BANKO WRITE into BANKO

/
T W)
\
[

A[9:0]

DInOut

4
NIRRT

Fig. 5.23 Burst stop during write

When the burst stop command is given in the middle of a read, the last data packet is still
delivered at the clock edge following the burst stop command as shown in Fig. 5.24.

sook _ [T L L LML L L L L LI
T

: | | | | : : : : :
CS N/) | | | |

| | | | | | | | | | | |
S WY A VY G A G S N) AR G
s —rh T Lo ———r
we L N (O N T

| | | | | | | | | | | | | |
A0l L XRWX X LR XX
oo CIERE NN L

(ol

PRECHARGE ROW ADDRESS COL ADDRESS BURST
BANKO and and STOP
ACT BANKO READ from BANKO

Fig. 5.24 Burst stop during read

192 5 Memory Circuits and Systems

The Input/Output data can be masked with the Read/Write Logic block in Fig. 5.11. The
truth table in Table 5.5 lists all the possible cases of blocking and transmitting data to/from
SDRAM core. When Mask[3:0] = 0000, for example, no mask is applied to the output data,
and all 32 bits are allowed to be written to the selected bank or read from it. The case, Mask
[3:0] = 1111, on the other hand, blocks all four bytes of data, and allows no byte to be
written or read from the selected address.

Table 5.5 Truth table for data output mask

Mask [3] Mask [2] Mask [1] Mask [0] MASKED BITS
0 0 0 0 None
0 0 0 1 DInOut[7:0]
0 0 1 0 DInOut[15:8]
0 0 1 1 DInOut[15:0]
0 1 0 0 DInOut[23:16]
0 1 0 1 DInOut[23:16] and DInOut[7:0]
0 1 1 0 DInOut[23: 8]
0 1 1 1 DInOut[23:0]
1 0 0 0 DInOut[31:24]
1 0 0 1 DInOut[31:24] and DInOut[7:0]
1 0 1 0 DInOut[31:24] and DInOut[15:8]
1 0 1 1 DInOut[31:24] and DInOut[15:0]
1 1 0 0 DInOut[31:16]
1 1 0 1 DInOut[31:16] and DInOut[7:0]
1 1 1 0 DInOut[31:8]
1 1 1 1 DInOut[31:0]

Figure 5.25 shows the data-path and the controller of the SDRAM bus interface. Prior to
operating SDRAM, each ten-bit wide bus interface register containing the precharge (tprg),
CAS (tcas), burst (tgurst), latency (tpat), and wait (twarr) periods must be programmed
through a 10-bit program bus. The precharge, CAS and wait registers contain the number of
clock cycles to achieve the required waiting period. The burst register should store the
number of data packets of the data transfer. Therefore, the value in this register must be
identical to the value programmed in the Address Mode Register. The latency register
specifies the number of clock cycles prior to reading the first data from an SDRAM address.
The details of how the programming takes place prior to the normal SDRAM operation and
the required hardware are omitted from Fig. 5.25 to avoid complexity. The Address Mode

193

5.2 Synchronous Dynamic Random Access Memory

wreideIp }00[q oepAIUI snq NVIAS ST'S “Bid

eleam eleay
43 ze %
eleqyul
elegmul
bayalo)gs Apeay
ze 4 ﬁ
\ 4
[o:1ehnoquia <
- IM Inojunoy _
< svo —p» LIVAA}PEOT ¢} eo
By PO PPV — - 1S¥uNg)PEO] a PR Livigpeet
- Svd I Sy} peo] 1s¥Ng) peo
—® Jud)peo] _ SV0} peo]
- =2 Junoy M 8 0 d e J¥d} peo
Hun joRu0D <
nvydds soepa)u| sng
ERE
l———— 9215 L-
|—————— }sing w<0«
® 22
> @ &3 - SIM 1s4dng)
© = .
2 2 22 uzwg uamg [Smeis v
A A LIV}
I 8»
d [45 ejeq weiboid
[sz:Lekppy
Bay ssaippy
[oz:12lppy
\ J 4
<m [0:L€lpPY Boyaiolg
Jppy Moy = [0L:6LHIPPY ()
d { 6oy spol 4ppY = [0:G1PPY ‘0000 } =€lEq Welboid
oL oL
0
Jppy uwniog = [0:61PPY 5

194 5 Memory Circuits and Systems

Register (or a set of registers defining basic SDRAM functionality) exists in many older
SDRAMs. However, recent SDRAM modules omit the mode register completely and rely on
the bus interface unit to store such information. To manage the precharge, CAS, burst and
wait periods the memory controller is continuously interact with a down-counter in Fig. 5.25
since these periods are often many clock cycles long.

For normal SDRAM operation, the address bus, Addr[31:0], has been divided into several
segments. In the example in Fig. 5.26, the four most significant bits of the SDRAM address,
Addr[31:28], indicate the SDRAM chip identification, and it is used to activate the corre-
sponding bus interface. Addr[21:20] is used to select the SDRAM bank, BS[1:0]. Addr[19:10]
and Addr[9:0] specify the row and column addresses, respectively.

Addr{31:0] = Addr[31:28] Addr[27:22] Addr[21:20] Addr{19:10] Addr[9:0]
| | | | | |
\ \ \ \

Activate SDRAM
Bus Interface

Reserved

Bank select[1:0] = BS[1:0]

Row Address[9:0] = A[9:0]

Column Address[9:0] = A[9:0]
Fig. 5.26 SDRAM bus interface address mapping

Figure 5.27 shows a typical SDRAM write sequence. In this timing diagram, all five
SDRAM interface registers must be programmed prior to the IDLE/PROG clock cycle as
mentioned earlier. The SDRAM write sequence starts with the system bus sending Status =
START, Write = 1 and the starting SDRAM address. These three signals cause the Bus
Interface Write Enable signal, BIWEn, to transition to logic 1, which in turn, enables the bus
interface for write in the first cycle of Fig. 5.27. Once enabled, the bus interface stores the
starting SDRAM address in the Address Reg by StoreReg = 1 and issues the precharge
command by CS =0, RAS =0, CAS = 1 and WE = 0 for the selected bank. Within the same
cycle, the counter is loaded with the precharge wait period, tprg, by Loadtprg = 1 as shown

in the timing diagram.

The Precharge wait period is calculated by multiplying the number of clock cycles by the
clock period. The counter in this design is a down-counter. When its output value, CountOut,
becomes one, the controller initiates the activation cycle for the selected SDRAM bank and
dispatches the row address. The activation period starts with loading the value of tcag into the

195

5.2 Synchronous Dynamic Random Access Memory

QoejIoUL sNq INVIAS Pm 9[oKd Aup £z's b4

—— LIV —— P —————sHng) ———— P>
piueg
> oum ———sy0)——P Diueg ———Fd)——P Ud
+ oY
PPy +
_ 100 _ Ippy
©Iep JLIIM SPUSS Ng Moy

_l LLIVAPECT
]

_l 1s¥Nngpeo

_I w SvOjpeoT

| z € ! z 3 4 ! z € L z € <@+ 18)unogd-umop ayj jo JndinQ

] L Judpeon

| | eleamul
ca X za X 1a X oa X eeam

X 100 X Kmou X [0:6lv
1 fueg X

Apeay

[o:1lsg

m

SV

svd

— KN A N

Sie)

vyl

100188

MOY|eS

il | T oo

3LIEM \A v/ LM \Aw
X 1N02 X 1N0D X IN0D X E_ﬁm / fﬂ

v X ov X w X 0V = JPPY HEIS NVHAS ,/* PPy

i

SHIM

.
1av1s) Tal smeis

' '
!

04 = PPy
X

T

5000

T

| LIVM] [LIVA] | LIVAY) | LIVA | SLR9M | 3LRMM | LM |LSYNE | SvD) | SO} | SYO | 3ud) | 3ud) | 3ud) | Id | ooud |
avo1 1dvLS | avoT avol avol /aal

196 5 Memory Circuits and Systems

down-counter by Loadtcas = 1. Within the same clock cycle, the row address, Addr[19:10],
is transferred from the Address Reg to the SDRAM through the R-port of the 3-1 MUX by
SelRow = 1. When the activation wait period expires, the controller uses the Loadtgyrst
input to load the length of the write burst (the number of data packets) to the down-counter
and subsequently initiates the write sequence in the next cycle.

During the START WRITE period, the controller transfers the column address, Addr
[9:0], from the Address Reg through the C-port of the 3-1 MUX to the A[9:0] port of the
SDRAM by generating SelCol = 1. In the same cycle, the controller also generates CS = 0,
RAS =1, CAS = 0, WE = 0 and enables the tri-state buffer by EnWData = 1 in order to write
the first data packet, DO, to the SDRAM. To be able to write the remaining data packets, the
controller issues Ready = 1 from this point forward. When the sequence comes to the
LOAD WAIT period (where the last write takes place), the controller lowers the Ready
signal, but keeps the EnWData signal at logic 1 in order to write the last data packet, D3.
This clock cycle also signifies the start of the wait period, twarr- The controller issues
Loadtwarr = 1 to load twarr into the down-counter if another write sequence needs to take
place for the same bank.

The remaining control signals, Burst and Size, are omitted from the timing diagram for
simplicity. During the entire data transfer process, Burst is set to four and Size is set to 32 in
Fig. 5.27. For byte and half-word transfers, Size needs to be defined with masking in place as
described in Table 5.5.

The state diagram of the controller for write is shown in Fig. 5.28. In this diagram, when the
interface receives BIWEn = 1, the controller transitions from the IDLE/PROG state, which
corresponds to the first cycle of the timing diagram in Fig. 5.27, to the LOAD PRE state, which
corresponds to the second clock cycle in the same timing diagram. In the LOAD PRE state, the
controller resets CS, RAS and WE, but sets CAS for the selected bank to start the precharge
process. In this state, two additional signals are generated: StoreReg = 1 to store the bus
address in the Address Reg, and Loadtprg = 1 to start the precharge wait period. In the next
cycle, the controller transitions to the precharge wait state, tprg. The controller remains in this
state until CountOut = 1. The controller then transitions to the LOAD CAS state where it
activates the selected bank, issues SelRow = 1 to transfer the row address to the SDRAM, and
produces Loadtcas = 1 to initiate the activation wait period. The next state, tcas, iS another
wait state where the controller waits until the activation period expires. Once this period is
over, the controller first goes into the LOAD BURST state, and then to the START WRITE
state to initiate writing data to the SDRAM. The latter corresponds to the state where the first
data packet is written to the SDRAM core as mentioned earlier. The subsequent writes take
place when the controller transitions to the WRITE state. The controller stays in this state until
CountOut = 2, which signifies one more data packet to be written to the SDRAM. The last data
packet is finally written when the controller moves to the LOAD WAIT state. Before
attempting another write process, the controller waits in the tyaqr state until CountOut = 1.

5.2 Synchronous Dynamic Random Access Memory

197

Note that all the state names in Fig. 5.28 and the cycle names on top of Fig. 5.27 are kept the

same to make one-to-one correspondence between the timing diagram and the state diagram.

else

Status = START
Write = 1
Addr = SDRAM start addr

StoreReg = 1
CS=0

LoadtPrE = 1
Ready =0

Status = START
Write = 1
Addr = SDRAM start addr

~

else

CountOut > 1 Ready=0

CountOut = 1

SelRow =1
€s=0
RAS=0
CAS =1
WE =1

Loadtcas = 1
Ready =0

CountOut > 2 Ready=0

CountOut = 2

LoadtBURST = 1
Ready =1

CountOut > 1

A [9:0] = Addr [19:10] = Row Address

CountOut > 2

CountOut = 1

Ready=0

EnWData = 1
Loadtwarr = 1
Ready =0

CountOut = 2

EnWData = 1
Ready =1

SelCol =1
CS=0
RAS =1
CAS =0
WE =0
A [9:0] = Addr [9:0]
= Col Address
EnWData = 1
Ready = 1

Fig. 5.28 SDRAM bus interface for write

The SDRAM read sequence also starts with the system bus sending Status = START,
Write = 0 and an initial SDRAM address. This combination sets the Bus Interface Read
Enable signal, BIREn = 1, to enable the bus interface to read data from the SDRAM core in
the first cycle of the timing diagram in Fig. 5.29. The remainder of the read process is

5 Memory Circuits and Systems

198

ooejIoMul snq INVIAS s 90kd pedy 6z°s “bid

I LIVM] -l 1SHNg) — P Ly 1) —

1 | |
! 1 |~ DIUeE lg———5y0) —— P iueg |———id) ——P] Tdd [
H 1 1 1 PEsY 1PV 1 1 H
\ | | 1+ | [| | | A
| eje speal T T T T T T T T T T peay
i H 1 _ ! P WV speei e _ | | PPY 1 1 1 PPV 1 1 1 1 1
A T U s s s st S A N M N 10 S TS NN N N
' " " 1 T T T 1 T T T T T T T T T T 1LIvmipeoT
] | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
| ' ' _|_|_ | 1 1 ! 1 1 1 1 1 1 1 1 1 1 H
H]] | | | i | i i | | | | | | 1 i Lsyngipeo]
1 | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
_ _ i i i i v i i i i | i i i i i | SvoIpeoT
H 1 1 1 1 1 1 | 1 1 1 1 _l.|_ 1 | | 1 1 1
[12 1€ “ 3 “ 4 “ € “ 14 “ “ “ L “ 4 “ € “ “ L “ 4 “ € -— 19)unos-umop ayj jo Jnding
I_ “ “ “ T T T T T T T T T T T T T I T |
| \ \ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | JHdipeo]
1 I I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
—)
1 1 1 .\ .\ .\ .\ | | | | | | | | | \ | Beayua
I S (S B N N - 0 B S S BN NS S S B S S B
i i i 1ea X za X 1a X oa Xe—— ! ! ! ! ' ' ' 1 i I Eeqy
H ; ; 1 1 1 1 1 1 1 1 1 1 1 1 1 A 1 1
' ' ' : : : : : 100 X Xmod X | : : : . , loslv
| | | [[[[[[[[[[[[[| | [
< X vivea X X pivea X X peg XF—~_ 1 [oiulsa
1 | | _ T T T T “ T T T “ T T T [] T T
A " “ “ I I I I I V/ I A1 I I)N V\" am
; ' ' i i i i i | i i i i |
K ! ! : : H H H X H DN PN i)
| T T | | | | | | | | | | |
T T
& ! ! | _ _ “ “ LAl “ L | svd
T s s s e e e |
|_ ' ! ! l i | | | ! | | | ! Sis)
! ! ! H H H H H H H H H H
T T | | | | | | | | | |
IR I o
1 I I
T T T T T T T T T 1
1 1 1 | | | | | | | | | 1 moyes
| ! ! | | | | | | | | | |
I L e boeiois
H 1 1 1 1 1 1 1 1 1 1
; ! ! i i L " " " H H H uzug
| ! ! | | | | | | | | | |
T X Y i i i i i i i i i | eum
H - - 1 1 1 1 1 1 1 1 1 1 \ f
vis X' ma Xinoo Xinoo X inoo X 1avis | _//X”_"H smejs
h 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
appv 15 X ev X v X w X 0V = 4PPY LelS NVHAS /.VA”_"H JppY
I I I I I I I I I I I I I I I I I I I

3400J0

| 1ivmy | Livmy | uvmy | uvm | avad | avad | avad | Lvm [avad | svo) | svo) | svo) | SsvO | 3dd) | 3ud) | 3ud) | Fdd | ©0dd |
avon V1 1YvlS avon avol /Aal

5.2 Synchronous Dynamic Random Access Memory 199

identical to the write process until the controller issues the read command during the
START READ cycle, and sends the column address of the selected SDRAM bank.
Since SDRAM data becomes available after a latency period, the controller must replicate
this exact delay prior to a read burst and produce the control signals during and after the
burst. For example, a cycle before the latency period expires, the controller needs to generate
Loadtgyrst = 1 to load the burst duration to the down-counter to be able to detect the
beginning and the end of burst data. As a result, the controller can determine when to
generate EnRData = 1 for the tri-state buffer to read data packets, DO to D3, from the
SDRAM RData output. During the last data delivery, the controller issues Loadtwarr = 1 to
load the value of twarr to the down-counter in the event the same bank is selected for
another read.

The state diagram in Fig. 5.30 for the read sequence is a direct result of the timing
diagram in Fig. 5.29. In this diagram, when the interface receives BIREn = 1, the controller
transitions from the IDLE state which corresponds to the first cycle in Fig. 5.29, to the
LOAD PRE state which corresponds to the second clock cycle in the same timing diagram.
In the LOAD PRE state, the precharge process is initiated by CS = 0, RAS = 0, WE = 0 and
CAS = 1 for the selected bank. In this state, the controller stores the valid bus address in the
Address Reg by StoreReg = 1, and loads the precharge wait period into the down-counter by
Loadtprg = 1. Then the controller moves to the tprg and stays in this state until the precharge
value in the down-counter expires. Next, the controller transitions to the LOAD CAS state
where it activates the selected bank by CS = 0, RAS = 0, CAS = 1 and WE = 1, issues
SelRow = 1 to transfer the row address from the Address Reg to the SDRAM, and generates
Loadtcas = 1 to load the activation wait period to the down-counter. The CAS wait period

corresponds to the tcag state in Fig. 5.30. When this period is over at CountOut = 1, the
controller transitions to the START READ state where it issues CS = 0, RAS =1, CAS =0

and WE = 1 to initiate the data read and produces SelCol = 1 to transfer the column address
from Address Reg to the SDRAM address port. This state is followed by four individual
latency states to select the programmed read latency period. Since the read latency in

Fig. 5.29 is equal to two, the state machine traces through a single LAT WAIT state. In the
LAT WAIT state, the controller issues Loadtgyrst = 1 and loads the value of the data burst,
tgursTs to the down-counter. Following the latency states, the state machine transitions to the
READ state where it stays until CountOut = 2, signifying the end of the read burst. Here, it
produces EnRData = 1 to enable the data output buffer and Ready = 1 to validate the read
data. At the end of the burst period, the state machine moves to the LOAD WAIT state and
issues Loadtwair = 1 to load the required wait period into the down-counter until the next
precharge takes place. Subsequently, the state machine transitions to the twayr State and
stays there until the wait period is over.

200

5 Memory Circuits and Systems

Status = START

Write = 0

Addr = SDRAM Start Addr
[~ StoreReg =1

Load tPRE =1
L Ready =0

Status = START

Write = 0

Addr = SDRAM Start Addr

\

else

CountOut > 1

CountOut =1

Ready=0

A [9:0] = Addr [19:10] = Row Address
Load tcas =1
Ready =0

CountOut > 1

CountOut =1

Ready=0

SelCol =1

CS=0

RAS = 1

CAS=0

WE =1

A [9:0] = Addr [9:0] = Col Address
Ready =0

LATENCY =2

~

CountOut =1

CountOut > 1

Ready=0

LoadtwAIT = 1
EnRData = 1
Ready = 1

CountOut = 2

CountOut > 2

EnRData =1
Ready =1

Load tBURST = 1
Ready =0

LATENCY =3

LAT
WAIT

Load tBURST = 1
Ready = 0

Ready = 0

LATENCY =4

)~

Ready =0 Ready =0

LATENCY =5

;

Ready =0 Ready =0

Fig. 5.30 SDRAM bus interface for read

LAT

WAIT

Load tBURST = 1
Ready = 0

Ready =0

Load tBURST = 1
Ready = 0

5.3 Electrically-Erasable-Programmable-Read-Only-Memory 201

5.3 Electrically-Erasable-Programmable-Read-Only-Memory

Electrically-Erasable-Programmable-Read-Only-Memory (E*PROM) is historically consid-
ered the predecessor of Flash memory and also the slowest memory in a computing system.
Its greatest advantage over the other memories is its ability to retain data after the system
power is turned off due to the floating-gate MOS transistor in its memory core. Its relatively
small size compared to electromechanical hard disks makes this device an ideal candidate to
store Built-In-Operating-Systems (BIOS) especially for hand-held computing platforms.

A typical E>PROM memory is composed of multiple sectors, each of which contains
multiple pages as shown in the example in Fig. 5.31. A single word in E?PROM can be
located by specifying its sector address, page address and row address. The sector address
indicates which sector a particular word resides. The page address locates the specific page
inside a sector. Finally, the row address points to the location of the data byte inside a page.
There are five control signals in E°PROM to perform read, write or erase operations. The
active-low Enable signal, EN, places a particular page in standby mode and prepares it for an
upcoming operation. The active-low Command Enable signal, CE, is issued with a command

code, such as read, write (program) or erase. The active-low Address Enable signal, AE, is

Page Addr[3:0] Sector Addr[3:0]
}a £4
Sector 15 Sector 0
7 Y 0 U I 7 0
255 255
8
Row Addr[7:0] —~—
EN —»
o o
CE —» o >
_ o|f old
AE —» [S & —
af.- ol .-
VE—» [Te) [To) ’
_ ; 2
RE —» gl - ®
o 0 o

E’PROM Read/Write Interface

$8

110

Fig. 5.31 A typical EPROM organization

202 5 Memory Circuits and Systems

issued when an address is provided. Finally, the active-low Write Enable signal, WE, and the
Read Enable signal, RE, are issued for writing and reading data, respectively.

Typical E*PROM architecture consists of a memory core, an address decoder, an output
data buffer, status, address and command registers, and a control logic circuit as shown in
Fig. 5.32. Prior to any operation, command and address registers are programmed. When the
operation starts, the control logic enables the address decoder, the data buffer and the
memory core using the active-high Enable Address (ENA), Enable Data Buffer (END), and
Write Enable Core (WEC) or Read Enable Core (REC) signals depending on the operation.
The address stored in the address register is decoded to point the location of data. If the read
operation needs to be performed, the required data is retrieved from the E°PROM core and
stored in the data buffer before it is delivered to the I/O bus. If the operation is a write (or
program), the data is stored in the data buffer first before it is uploaded to the designated
E’PROM address. In all cases, EN needs to be at logic 0 to place E’PROM into standby
mode before starting an operation. The table in Fig. 5.33 describes all major operation
modes. Hibernate mode disables the address decoder, memory core and data buffer to reduce
power dissipation, and puts the device into sleep.

_ WEC/REC
EN —» @—>
CE —» ENAI
AE —» _
Control © Memory
—_— . ©
WE —»| Logic 8 Core
— - 8 |-
RE —»] "l 4 >
16 Q
ie}
©
¢ <
5
2 A
Y I 8
To I/O[7:0] -«— Status Register § \ J
+ > Data Buffer
S END
From 1/O[7:0] —»{ Command Register & %8
+
3
From I/O[7:0] —| Address Register he 1/0[7:0]

Fig. 5.32 A typical E’PROM architecture

5.3 Electrically-Erasable-Programmable-Read-Only-Memory 203

EN WE RE
0 1 1 Standby
0 0 1 Write
0 1 0 Read
1 X X Hibernate

Fig. 5.33 E’PROM major operation modes

The E*PROM cell shown in Fig. 5.34 is basically an N-channel MOS transistor with an
additional floating gate layer sandwiched between its control gate terminal (Wordline) and
the channel where the electronic conduction takes place. This device has also drain (Bitline)
and source (Sourceline) terminals for connecting the cell to the neighboring circuitry.

To write logic 0 into the memory cell, a high voltage is applied between Wordline and
Bitline terminals while the Sourceline node remains connected to ground. This configuration
generates hot carriers in the transistor channel which tunnel through the gate oxide and reach
the floating gate, raising the threshold voltage of the transistor. The raised threshold voltage
prevents the programmed device to be turned on by the standard gate-source voltage used
during normal circuit operations, and causes the value stored in the device to be interpreted
as logic 0. An unprogrammed device with no charge on the floating gate, on the other hand,
exhibits low threshold voltage characteristics and can be turned on by the standard
gate-source voltage, producing a channel current. In this state, the value stored in the device
is interpreted as logic 1.

Wordline .
J_ Floating gate

<

Sourceline — , L Bitline

!

Channel
Fig. 5.34 E’PROM cell

Figure 5.35 shows a typical command input sequence. There are four basic commands for
this E’PROM example: read, write (program), page-erase and status register read. The write
and program commands will be used interchangeably here and when describing the Flash
memory since they mean the same operation. The operation sequence always starts with the
command input followed by the address and data entries. To issue a command input, EN is
lowered to logic 0, AE is raised to logic 1 (because the entry is not an address), and CE is
lowered to logic 0, indicating that the value on the I/O bus is a command input. Since the

command input is written into the command register WE is also lowered to logic 0 some

204 5 Memory Circuits and Systems

time after the negative edge of CE signal. This delay is called the setup time (tg) as shown in
Fig. 5.35. The low phase of WE signal lasts for a period of t; o, and transitions back to logic
1 some time before the positive edge of CE. This time interval is called the hold time, ty.
Prior to the positive edge of WE, a valid command input is issued, satisfying the data setup
time, tpg, and the data hold time, tpy, as shown in Fig. 5.35.

= —
:<—ts_>|<7tL04>|<_tH_>
I
I
I
I

1/0[7:0]

< Command Input >—!—

Fig. 5.35 Command input timing diagram

The address input timing shown in Fig. 5.36 has the same principle as the command input
timing described above: EN needs to be at logic 0 to enable the device, AE must be at logic 0
for the address entry, and CE needs to be at logic 1 because this operation is not a command
entry. During the low phase of EN signal, WE signal must be lowered to logic 0 twice to
locate data in the E>PROM. The first time WE = 0, an eight-bit row address is entered at the
first positive edge of WE. This is followed by the combination of four-bit page address and
four-bit sector address at the next WE = 0. The WE signal must be lowered to logic 0 after a
period of tg, following the negative edge of the EN signal, and then back to logic 1 for a
period of ty before the positive edge of EN. The WE signal must also be at the low phase for
a period of t; o and at the high phase for a period of ty; (or longer) during the address entry.
Valid address values are issued at each positive edge of WE within the tpg and tpy setup and
hold time periods.

5.3 Electrically-Erasable-Programmable-Read-Only-Memory 205

D Iy

|
I
|

WE '
| L
: | |
I | tos : ton | :
1/0[7:0] : A[7:0] A[15:8] |
Row Page + Sector
Address Address

Fig. 5.36 Address input timing diagram

Figure 5.37 describes data entry sequence where (M + 1) number of data packets are
written to the E’PROM. During the entire write cycle AE signal must be at logic 1, indi-
cating that the operation is a data entry but not an address. Data packets are written at each

positive edge of WE signal.

1/0[7:0]

Fig. 5.37 Data input (write or program) timing diagram

During a read the active-low control signals, AE and CE, are kept at logic 1. The Read
Enable signal, RE, enables the EPROM to read data from the memory core at each negative
edge as shown in Fig. 5.38. The time delay between the negative edge of RE and the actual

206 5 Memory Circuits and Systems

availability of data from the memory is called the access time, t,, as shown in the same
timing diagram. The RE signal must have the specified tg, ty, t; o and tyy; time periods to be
able to read data from the memory core.

1/0[7:0]

Fig. 5.38 Data output (read) timing diagram

Reading data from the Status Register is a two-step process. The first step involves
entering the command input, Status Register Read, at the positive edge of the WE signal.
The contents of the register are subsequently read sometime (t,) after the negative edge of
RE as shown in Fig. 5.39. Note that CE signal is initially kept at logic 0 when entering the
command input, but raised to logic 1 when reading the contents of the Status Register.

A full-page write data entry consists of the combination of four tasks as shown in Fig. 5.40.
The first task is entering the Write to Data Buffer command at the positive edge of WE while
keeping CE at logic 0. The second task is entering the page and sector addresses at the
positive edge of WE while AE is at logic 0. The third task is entering the full-page of data
from D(0) to D(255) into the data buffer at each positive edge of WE signal. Both AE and CE
are kept at logic 1 during this phase. The last task is entering the Write to Core Memory
command in order to transfer all 256 bytes of data from the data buffer to the memory core.
The last cycle needs a relatively longer time period, twriTg, to complete the full-page write.

The read operation is composed of three individual tasks similar to the write operation as
shown in Fig. 5.41. The first task is entering the Read from Memory command at the
positive edge of WE while CE is at logic 0. The second step is entering the starting address
by specifying the row, page and sector address values at each positive edge of WE while AE
is at logic 0. The third task is to read data from the memory core at each negative edge of RE
while CE and AE signals are at logic 1.

5.3 Electrically-Erasable-Programmable-Read-Only-Memory 207

|
!
RE |
|
|
—>| tos |

1/0[7:0] Status Read SR contents

]
SR Read Read '
Command SR Contents

Fig. 5.39 Timing diagram for reading status register

>
m

I 4|—r_,_

|
|
:
|
|
>its] | e | ts e >
[
| |—T
[|
|

|
| |
(- T e O o O I |
|1
| | | | | | W
_ ! ! ! [! ! Lo
RE | | | | | | '
| | | | | | '
[[[[[['
| | | | | | e tamme
| |
1/0[7:0] {wrtDB) (A15-8) DIO) (DI Y-+ - e DI(255) {wricm)
Program Page + Sector 1 | Program
Command Address FulP Command
Register: ull mage Register:
Write to Write to
Data Buffer Core Memory
Command Command

Fig. 5.40 Timing diagram for full-page write (program)

208 5 Memory Circuits and Systems
EN
[I I
| | |
— _l—_>| , l
| [|
| (I |
— —| — t
CE | |
| |1 |
- ts| | tw * |
WE '
LT LT
[
_>| ts |<—
RE
1/0[701] < Read > < A7-0 >—<A15-8 DO(N) DO(N+1)>— B
Program Row Page + Sector From From
Command Address Address Starting Addr Last Addr
Register:
Read from
Memory
Command

Fig. 5.41 Timing diagram for full-page read

A typical full-page erase is described in Fig. 5.42. In this figure, the Erase Full Page

command is entered first at the positive edge of WE while CE is at logic 0. The memory address,

EN

AE

CE

1/0[7:0]

I—l'—li _|_
I I
| | | I
> ts| |t |<—: »ts| | W e |
. —_1
| ' |
| ! |
| | | |
| | | | . 1
' |
| | | |
| | | | :
I I I
I I I :4— terase ——P
| | | |
{ FPEras) < A15-8 > <CMEras> l ------------- —
Program Page + Sector Program
Command Address Command
Register: Register:
Erase Erase
Full Page Core Memory
Command Command

Fig. 5.42 Timing diagram for full-page erase

5.3 Electrically-Erasable-Programmable-Read-Only-Memory 209

composed of page and sector addresses, is entered next while AE is at logic 0. The Erase Core
Memory command is entered following the address while CE is at logic 0. Full-page erase time
period, tgrasg, must be employed to complete the operation.

5.4 Flash Memory

Flash memory is the successor of the Electrically-Erasable-Programmable-Read-Only-
Memory (E?°PROM), and as its predecessor it has the capability of retaining data after power
is turned off. Therefore, it is ideal to use in hand-held computers, cell phones and other
mobile platforms.

A typical Flash memory is composed of multiple sectors and pages as shown in Fig. 5.43.
An eight-bit word can be located in a Flash memory by specifying the sector, the page and
the row addresses. To be compatible with the EPROM architecture example given in the
previous section, this particular Flash memory also contains 16 sectors and 16 pages. Each
page contains 256 bytes. The sector address constitutes the most significant four bits of the
16-bit Flash address, namely Addr[15:12]. Each page in a sector is addressed by Addr[11:8],
and each byte in a page is addressed by Addr[7:0]. There are five main control signals in
Flash memory to perform basic read, write (program), erase, protect and reset operations.
Write and program commands are equivalent to each other, and used interchangeably

Addr[15:8] = Addr[15:12] = Sector[3:0]
i\ Addr{11:8] = Page[3:0]
8

Sector 15 Sector 0
7 0.* 7. 0
S LARRRE EX REREE Y
8
Addr[7:0] = Row[7:0] —4*|
— o o
EN —> o o)
RE — gla S|
— g I & |
WE —» 0 _ 0 _
Reset —» g <A
© ©
0 o 0 o,

Flash Read/Write Interface

:

1/0[7:0]

Fig. 5.43 Flash memory organization

210 5 Memory Circuits and Systems

throughout the manuscript when describing Flash memory operations. Many Flash data-
sheets use the term, program, to define writing a byte or a block of data to Flash memory.

The active-low Enable input, EN, activates a particular page in the Flash memory to prepare
it for an upcoming operation. The active-low Read Enable input, RE, activates the Read/Write

interface to read data from the memory. The active-low Write Enable input, WE, enables to

write (program) data to the memory. The active-low Reset input, Reset, is used for resetting
the hardware. After this command, Flash memory automatically goes into the read mode.
Typical Flash memory architecture, much like the other memory structures we have
examined earlier, consists of a memory core, address decoder, sense amplifier, data buffer
and control logic as shown in Fig. 5.44. When a memory operation starts, the control logic
enables the address decoder, the address register, and the appropriate data buffers in order to
activate the read or the write data-path. The address in the address register is decoded to
point the location of data in the memory core. If a read operation needs to be performed, the
retrieved data is first stored in the data buffer, and then released to the bus. If the operation
calls for a write, the data is stored in the data buffer first, and then directed to the designated
address in the memory core. The standby mode neither writes to the memory nor reads from
it. The hibernation mode disables the address decoder, memory core and data buffer to
reduce power dissipation. The main Flash operation modes are tabulated in Fig. 5.45.

1/0[7:0]

;

» Data Buffer
A

EN —»|
RE Contro'
WE —p| Logic Y Y Y
Reset —»|
> Sector 15 ™ Sector14 | ™ Sector 0
\i \i
2 g
5 8) })
Address[15:0] —»-| E Ll O | — 4 | L ...
[} [%2]
8 ¢
he] he)
© ©
< < Highvoltage [|

Fig. 5.44 Flash memory architecture

5.4 Flash Memory 21

EN RE WE reset MODE
0 0 1 1 Read
0 1 0 1 Write
0 1 1 1 Standby
1 X X 1 Hibernate
X X X 0 Hardware reset

Fig. 5.45 Main modes of Flash memory

The Flash memory cell shown in Fig. 5.34 is the basic storage element in the Flash
memory core. It is an N-channel MOS transistor with a floating gate whose sole purpose is to
store electronic charge. The device needs high voltages well above the power supply voltage
to create and transfer electrons back and forth to the floating gate according to the need. If
there is no secondary high voltage supply for this job, the control logic in Fig. 5.44 may
contain a charge pump circuit composed of a constant current source and a capacitor in order
to obtain a higher DC voltage from the primary power supply for a short duration. As the
constant current charges the capacitor, the voltage across the capacitor rises linearly with
time, ultimately reaching a high DC potential to create electron-hole pairs near the Bitline
contact (drain) of the device, ultimately causing the electrons to tunnel to the floating gate.
The mechanism of electron tunneling to the floating gate requires time. Therefore, a write or
erase operation may take many consecutive clock cycles compared to simple control
operations such as suspend or resume.

Figure 5.46 shows the basic read operation provided that data has already been transferred
from the memory core to the data buffer. Once a valid address is issued, data is produced at
the I/O terminal some time after the falling edge of the Read Enable signal, RE. Data is held
at the I/0 port for a period of hold time, t,, following the rising edge of RE as shown in the
timing diagram below. The actual read operation takes about four clock cycles as the entire
data retrieval process from the memory core takes time. This involves sensing the voltage
level at the Flash cell, amplifying this value using the sense amplifier, and propagating the
data from the sense amplifier to the data buffer.

In contrast to read, the basic write operation follows the timing diagram of Fig. 5.47. In
this figure, a valid address must be present at the address port when the Enable and the Write
Enable signals, EN and WE, are both at logic 0. Valid data satisfying the setup and hold
times, t; and ty,, is subsequently written to the data buffer. The actual write process can take
up to four clock cycles due to the data propagation from the I/O port to the data buffer, and
then from the data buffer to the Flash cell.

212 5 Memory Circuits and Systems

1 1
— tcommand —»

| |
| |
! !
Addr XK Address X
EN N

I
I
[}
[}
I
| /
Reset J i
- tm’<— -t ’4—
I]
1/0[7:0] : ! Data v
1

Fig. 5.46 Basic read operation timing diagram

. tcommand

Addr X Address

WE
]]
]]
i i
Reset J ! . ! .
: Il<— ts —NI th :4—
|] | |
1/0[7:0] : ' Data !

Fig. 5.47 Basic write (program) operation timing diagram

Disabling the I/O port for read or write, and therefore putting the device in standby mode
requires EN signal to be at logic 0 as shown in Fig. 5.48. The I/O port will float and show
high impedance (Hi-Z).

5.4 Flash Memory 213

1
tcommand >

Addr X Address X

.

|
|

Reset

=
I R

vorr:0) —H-2

Fig. 5.48 Basic standby operation

Hardware reset requires only lowering the Reset signal during the command cycle as
shown in Fig. 5.49. The actual reset operation takes three bus cycles and resets the entire
Flash memory.

— tommandg —®

]]
]]
Addr X Address X
e e
]]
JR—]]
EN X X X
| |
_ : :
i i
e XXX
: :
Reset
]]
. | |
o] —% : :

Fig. 5.49 Basic hardware reset operation timing diagram

Basic Flash memory operations are tabulated in Fig. 5.50. In actuality, there are a lot more
commands in commercially available Flash memories than what is shown in this table. This
section considers only essential byte-size operations in a Flash memory. Word-size

5 Memory Circuits and Systems

214

S9[0AD Yoo[0 paxmbar yim spuewIuod Arowowr yse] 0S°s ‘bid

m 04X0 _ GGGeeXx0 GGX0 VYVVVX0 YVX0 GGGGx0 19S8Y
' ' 03x0 XXXXX0 0axo XXXXX0 Josal ajum jse
m i ejeq oM | IPPY SHIM 00X%0 XXXXX0 QllUM Jse4
i 0gxo0 GGGGX0 GSX0 | VVYVVX0 | VWX GGGGX0 10S BjlIMm jseH
m 8po) “JudA | Ippy obed 0VX0 Ippy obed 0vX0 Ippy abed 0VX0 ppy abed jo9j01d 8bed
m m m m 06%X0 ippy obed | awnsal asels abed
! 1 1 1 08X0 Ippy ebeq | puadsns aseis abed

0/X0 | dppvebed | GGX0 | VVYVVX0 | VVX0 GGGGX0 0GX0 GGGGX0 GGX0 | VVYVVX0 | VWVX0 GGGGX0 osels abed

09X0 GGGGX0 GGX0 | YVYVVX0 | VVX0 GGGGX0 0GX0 GGGGX0 GGX0 | YVYVVX0 | VYVX0 GGGGX0 asess diyo
! m m m m [1]2.0) 1ppy obed awinsaJ alAA
! ! 1 1 1 0EX0 1ppy obed puadsns 8N
m ! eleq oM | IPPY S 0ZX0 GGSSX0 GGX0 VYVYVVYX0 VVX0 GGGGX0 S
' [1 someq | 1ppy somea [erea ynuew [ppv ynuew | 01x0 GSSGX0 GGX0 | VVVVX0 | VVX0 §956X0 pesy dl
m m €leq pesy | IppY pesy 00%0 GGSSX0 GSX0 VYVVVX0 YVX0 GGGSX0 pesy
' ! ejeqg 1ppy eleqg ppy ejeqg 1ppy eleqg ppy SANYINNOD NIVIA

9 370A0 _ G 3T70A0 ¥ 3T0A0 € 3T0AD ¢ 3T0A0 L 370AD

5.4 Flash Memory 215

operations, very specific Flash command sequences, such as hidden ROM programs, query
and verification commands and boot protection processes are avoided in order to emphasize
the core Flash memory operations for the reader. Address and data entries for each specific
command in Fig. 5.50 are also modified compared to the actual datasheets to simplify the
read, write (program) and erase sequences. The number of clock cycles, the address and data
preamble values in each cycle, and the operational codes to perform read, write, page erase,
chip erase, page protect, fast write and other modes of operation may be different from the
actual datasheets.

The first task in Fig. 5.50 is the Flash memory read sequence which takes four clock
cycles. The first three clock cycles of this sequence represents the waiting period to prepare
the read path from the memory core. During this period, address and data values in the form
of alternating combinations of 1s and Os, such as 0x5555/0xAA and then OxAAAA/OxSS5,
are introduced at the address and data ports of the Flash memory as shown in Fig. 5.51. Once
the read command, 0x00, is issued in the third clock cycle, a byte of data becomes available

shortly after the negative edge of the RE signal in the fourth and final clock cycle.

Cycle 1 Cycle 2 Cycle 3 Cycle 4
[[| [|

BN [[[[
we | T 1 T 1 T
RE |
1/0[7:0] OXAA 0x55 0x00 m

| 1 |
Read command Read data

Fig. 5.51 Timing diagram for read operation

216 5 Memory Circuits and Systems

Figure 5.52 shows an example of the read operation which extracts the manufacturer’s ID
and device ID from the Flash memory. The first three clock cycles of this sequence are the
same as the normal read operation, but with the exception of the ID read code, 0x10. The
next two cycles deliver the manufacturer’s ID and the device ID following the negative edge

of the RE signal.

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5
[[[[[I

addr X055) XomanarnC X 065555) ptan Addd xPev Add
EN] [] [[] [] [
wE | T T 1 T
RE _|

L N

1/0[7:0] OxAA 0x55 0x10 Man Data Dev Data
| 1 | 1 |
ID read command Manufacturer Device ID
ID read read

Fig. 5.52 Timing diagram for ID read operation

There are basically two types of write (program) operations for the Flash memory: auto
write (program) and fast write (program). Figure 5.53 explains the auto write sequence
where the first three cycles are the same as the read sequence with the exception of the auto
write command code, 0x20, in the third clock cycle. In the fourth cycle, a valid address and a
data are entered to the device when EN and WE are both lowered to logic 0. The valid data is
subsequently written to the specified address at the positive edge of WE. The data written to
the Flash memory can be retrieved in the following cycle without going through a separate
read sequence. This is called the auto write verification step, and the most recent written data
becomes available at the I/O port as soon as RE is lowered to logic 0.

5.4 Flash Memory 217

Cycle 1 Cycle 2 Cycle 3 Cycle 4
[[[[|

D) O T O) O I D YD) ¢

N L[L 11
e LT L T 1T T

RE |

]
|
1/0[7:0] OXAA 0x55 0x20 Write Data L Write Data
1
]
]

Write command Write Data Verification
Fig. 5.53 Timing diagram for write (program) operation

The write sequence can be suspended or resumed depending on the need. Both operations
take only one clock cycle with the appropriate suspend and resume codes as shown in
Figs. 5.54 and 5.55, respectively. The write suspend and resume codes can be read in the
second cycle as a verification step.

1/0[7:0] 0x30

Write suspend Verification
command

Fig. 5.54 Timing diagram for write (program) suspend operation

218 5 Memory Circuits and Systems

RIRD CI Ca> 4

RE |

1/0[7:0]

Write resume Verification
command

Fig. 5.55 Timing diagram for write (program) resume operation

The erase operation can be applied either to the entire chip or to a particular page. Both
sequences take six clock cycles because of the lengthy nature of erase process. In the auto
chip erase operation, the first three and the last three cycles are almost identical except the
two new codes, 0x50 and 0x60, are introduced in the third and in the sixth cycles as shown
in Fig. 5.56.

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6
[[[[[[|

T) D L) O) O) Oy O
[e A e F e FE B
LT LT 1L T 1L _ T 1 T L T

RE |

1/0[7:0] OxAA 0x55 0x50 OxAA 0x55 0x60

Chip erase command

Fig. 5.56 Timing diagram for chip erase operation

5.4 Flash Memory 219

The first five clock cycles of the page erase operation are identical to the chip erase as
shown in Fig. 5.57. The page address to be erased is supplied with the page erase command,
0x70, in the sixth cycle.

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6
[[[[[[|

IR) O Ty O T D) O Ty D LD
(S I e FO e A
e LT 1 T 1 T 1L T 1 T 1 T

RE |

1/0[7:0] OXAA 0x55 0x50 0XAA 0x55 0x70

| []
Page erase command Page Addr input

Fig. 5.57 Timing diagram for page erase operation

A certain Flash memory page can be protected from being overwritten or erased by
issuing a page protect operation. This is a three-cycle operation as shown in Fig. 5.58. In all
three cycles, the page address and the page protect code, 0x0A, have to be specified.

Cycle 1 Cycle 2 Cycle 3
[[[I

1
1
1
Addr Page Addr - Page Addmage Add>< X: E’age Addr
1
1
1

aﬁﬁﬁm

RE |

1/0[7:0] OXAO OxAO

Page protect command Verification

Fig. 5.58 Timing diagram for page protect operation

220 5 Memory Circuits and Systems

If faster writing speed is required from the Flash memory, the fast write (program)
sequence can be used. This sequence is composed of three parts: fast write set, fast write and
fast write reset. The fast write set and reset codes are entered at the beginning and at the end
of a write sequence. Figure 5.59 shows the timing diagram for the fast write set sequence
where the set code, 0xB0, is entered in the third clock cycle.

Cycle 1 Cycle 2 Cycle 3
[[[|

Addr)@ CED @ CED 4

EN | [[] [
wE | T 1 T 1 T
R _|

1/0[7:0] OxAA 0x55 0xB0

Fast write set command

Fig. 5.59 Timing diagram for fast write (program) set operation

The timing diagram for the fast write is a two-cycle sequence as shown in Fig. 5.60. In the
first cycle, the fast write code, 0xC0, is entered. In the second cycle, a valid address/data pair

is entered at the positive edge of WE.

Cycle 1 Cycle 2
[| |

= T e I
e LT LT
& |

1/0[7:0] 0xCO Write Data

Fast write command

Fig. 5.60 Timing diagram for fast write (program) operation

5.4 Flash Memory 221

The fast write reset sequence shown in Fig. 5.61 is also a two-cycle process with two fast
write termination codes, 0xD0 and 0xEQ, entered in two consecutive clock cycles.

Cycle 1 Cycle 2
[| I

Addr X000 X000

N [-
we LT LT
RE _]

1/0[7:0] 0xDO OXEO

Fast write reset command

Fig. 5.61 Timing diagram for fast write (program) reset operation

Device reset can be initiated either by Reset input in Fig. 5.48 or by entering the reset
code, OxFO, in the third clock cycle of Fig. 5.62.

Cycle 1 Cycle 2 Cycle 3
[[[|

addr _ Xons55 3 Xoxamannd X omssss)X
EN [] [] [
wE | T 1 T T
RE _|

1/0[7:0] OXAA 0x55 0xFO

Reset command

Fig. 5.62 Timing diagram for Reset operation

222 5 Memory Circuits and Systems

Both reading and writing (programming) data are cyclic processes. This means that a loop
has to be established in the user program to generate a series of memory addresses to read or
write data.

Figure 5.63 shows the auto write (program) flow chart where a loop is created to generate
the next write address. Each box in the flow chart corresponds to a clock cycle. The first
three boxes of the flow chart prepare the memory core for a write operation. The preparation
period terminates with the auto write code, 0x20, as mentioned earlier in Fig. 5.53. After
entering the first write address and data, the memory address is incremented in the fourth
cycle. The same process repeats itself prior to issuing the next address and data. When the
final address is reached, the write process simply terminates.

(Start)

A
- 0x5555/0xAA

O0xAAAA/Ox55

Write
v sequence

0x5555/0x20

\
Write Addr/
Write Data

Addr = Addr + 1 Last Addr

Complete

Fig. 5.63 Flow chart for write (program)

5.4 Flash Memory 223

The sequence of events is a little different for the fast write (program) in Fig. 5.64. The
fast write phase starts with the three-cycle long fast write set sequence followed by the two
cycle long fast write sequence. The memory address keeps incrementing until the last data
byte is written to the core. The fast write process ends with the two-cycle long fast write reset
sequence.

Auto write and fast write processes can be interrupted or resumed by issuing one-cycle
long suspend and resume commands anytime during the write process.

(Start)

A
0x5555/0xAA

OXAAAA/OX55 Fast write set
sequence

0x5555/0xB0

Y
P OXXXXX/0xCO

Fast write
Y sequence

Write Addr/
Write Data

Addr = Addr + 1

Last Addr

OXXXXX/0xD0O
Fast write reset
Y sequence
OXXXXX/OXEOQ
\

(Complete)

Fig. 5.64 Flow chart for fast write (program)

224 5 Memory Circuits and Systems

In the following sections, we will demonstrate how to design three individual I*C bus
interfaces with Flash memory to perform read, write and erase operations. In each design, we
will assume only one mode of operation to simplify the design process. After studying each
design example, the reader is encouraged to design a single interface that integrates all three
operations.

Design Example 1:
I’C Fast Write (Program) Interface for Flash Memory

The following design example constructs only the I’C fast write (program) interface for a
Flash memory that has parallel address and data ports as shown in Fig. 5.44 using a modified
seven-bit address mode. No read, auto write, erase, page protect, reset or other modes are
included in this design for the sake of simplicity.

Before dealing with the design details and methodology, it may be prudent to review the
timing diagram of I°C write sequence using the seven-bit addressing mode. Although
Fig. 5.65 includes only one byte of data, it describes the entire write protocol for the
seven-bit address mode in Fig. 4.22. This diagram also includes the start and the stop
conditions in Fig. 4.23, and when data (or address) is allowed to change in Fig. 4.24. After
generating the start condition, the bus master delivers a seven-bit slave address, starting from
the most significant bit, A6. The address sequence is followed by the write bit at logic 0.
Once the slave receives the seven-bit address and the write command, it produces an
acknowledgment, ACK, by lowering the SDA bus to logic 0. The master detects the ACK
signal, and sends out an eight-bit data starting from the most significant bit, D7. Once the
entire byte is received, the slave responds with another ACK. More data packets follow the
same routine until the master generates the stop condition.

A6 A5 [A0 : W : ACK : D7 : D6 , DO ACK
T — T
SCL |
L eIt oL
! 1
| Master Master Master Master 12C Master Master Master 12C | !
| sends sends sends sends ACK sends sends sends ACK ' |
I
won_! ¥ vy v vy
: PPt]
START [°C 12C 12C 12C Master 12C 12C 12C Master STOP
reads reads reads reads reads reads reads reads reads

Fig. 5.65 A simple timing diagram for I°C write (program) using seven-bit address mode

In Fig. 5.65, the names that appear on top of each SCL cycle describe a distinct state. If a
state machine needs to be constructed from this timing diagram, we simply assign an
independent state that corresponds to each name in Fig. 5.65 and produce a state diagram in
Fig. 5.66. In this diagram, the start condition activates the state machine, which goes through
the address and the command sequences before the data. As long as the state machine does

http://dx.doi.org/10.1007/978-3-319-25811-9_4
http://dx.doi.org/10.1007/978-3-319-25811-9_4
http://dx.doi.org/10.1007/978-3-319-25811-9_4

5.4 Flash Memory 225

not detect any stop condition, it constantly traces the data states D7 to DO. However, when
there is a stop condition, the state machine goes to the IDLE state and waits for another start
condition to emerge.

START =1

STOP =1

Fig. 5.66 The state diagram for the simple I°C write (program) in Fig. 5.65

Even though this example only shows the fast write interface, it sets up a solid foundation
of how to design any typical I°C interface between a bus master and a Flash memory. The
first step of the design process is to create a rough interface block diagram showing all the
major I/O ports between the Flash memory and the I°C bus as shown in Fig. 5.67. For the
fast write sequence, the address and data packets are serially transferred to the interface
through the SDA port. However, the Flash memory needs the address and data fields all at
once. Therefore, the write operation requires the interface to perform serial-to-parallel
conversion of incoming data. The interface also needs to produce two control signals, EN
and WE, for the fast write sequence, and the control signal, EnDataOut, for writing an
eight-bit data to a designated Flash memory address.

226 5 Memory Circuits and Systems

16
SDA d—p> —<—p» Addr [15:0]
Flash
Fast Write
IIF
EnDataOut
8
SCL -d—p> Datal/O [7:0] 1/0O [7:0]
EN WE

Fig. 5.67 Simplified page diagram of the I°C fast write (program) interface

Figure 5.68 shows the architectural block diagram of the Flash memory interface for the
fast write operation. As mentioned earlier when designing SRAM and SDRAM memory
interfaces, creating a complete data-path for an interface is not a single-step process. The
design methodology requires building a simple data-path with all of its functional units and a
corresponding timing diagram showing the flow of data in each clock cycle, the start and stop
conditions, address and data formations. However, as more detail is added to the architecture,
the initial timing diagram also becomes more complex to match the architecture. Figures 5.69,
5.70 and 5.71 show a set of timing diagrams related to the architecture in Fig. 5.68. These
diagrams describe the start and stop conditions, preamble sequence, address and data for-
mations, repacking and delivery of serial address and data in a systematic manner.

Once the cycle-by-cycle nature of address and data entries are accurately described in the
timing diagram, the control signals responsible for routing the address and data can be added
to the diagram. The final step of the design process is to assign distinct states to each clock
cycle in the timing diagram that contains different sets of control signals in order to generate
a Moore-type state machine.

To start, we need to include four functional units in Fig. 5.68 to be able to handle a simple
fast write operation. The first functional unit is an eight-bit shift register whose sole purpose is
to convert the incoming serial data from the SDA port into a parallel form. If the fast-write
process requires an authentication step prior to data exchange, the first eight-bit packet
coming to this interface must be delivered to the device ID register, which is considered the
second functional unit. The second and the third eight-bit data packets arriving at the interface
belong to the most and the least significant bytes of the 16-bit starting Flash memory address,
respectively, and they are stored in the address counter. The address counter, which consti-
tutes the third functional unit, uses this initial address to generate subsequent addresses for
programming the Flash memory. All eight-bit data that follows the address entry is routed
directly to the data port of the Flash memory. There are also several fixed-value registers
connected to the inputs of the address and data MUXes in Fig. 5.68. These registers contain

5.4 Flash Memory 227

the preamble data for setting and resetting the fast write modes for the Flash memory prior to
address and data sequences. The write controller, which is considered to be the fourth
functional unit, generates all the control signals necessary for storing data, incrementing the
address, and routing the address and data to the output ports of the interface. The host
processor delivers all address, control and data signals to the interface at the negative edge of
the SCL, which requires all the registers to operate at the positive edge of SCL in Fig. 5.68.

shift
7 v 0
- SCL —| —» START
| Shift Reg SDA Detector
| SDA —»{ —» STOP
EnSDAOut —|
MSB 8 SCL
15 0 e LoadAddrLSB
shiftRegOut Address Counter [-¢— LoadAddrMSB
<4— IncrAddr
16 SCL
AddrRegOut ™~
Device ID + W 0
x
15 0 16 2
SCL | 0x5555 |—/— 18 |—» Addr[15:0]
LoadDevID £
15 0 6 |
| OXAAAA =2 4
| Af
E a scL
g2 rele]
w2 8 2
vy VvV ¥ 83
(2]
[shift
I LoadDevID 0
- | oadAddrLSB 7 0 4
- LoadAddrMSB ,
- IncrAddr | OxAA !
- sel5555 7 0 8
L selAAAA | 0x55 2
- selAddr EnDataOut
Write L selAA 7 0 8 é 8
Controller
L > sel55 | 0xBO =3 = I0[7:0]
—— se:cB:(()) 7 0 4 8 Datal/O [7:0]
o sel
- selDO | 0xCo |+ 4
- selEO 7 0 s
| selData 0xDO0 |+ 5
_ I EnDataOut |7 0
3 - EnSDAOUt | T 8
vy - :
BN WE | selAux o
SCLMaster 0
SCL
€ 3388 %R
SCLAux 1 2 2% 83 3¢9
172}

Fig. 5.68 I°C fast write (program) interface data-path

228 5 Memory Circuits and Systems

The START condition in Fig. 5.69 is produced by the bus master in cycle 1 by lowering
the SDA signal to logic 0 while keeping the SCL signal at logic 1. Once the START
condition is detected, the serial data on the SDA port is transferred to an eight-bit shift
register which converts this data into a parallel form before sending it to different registers in
Fig. 5.68. In clock cycles 2 to 8, the seven-bit Flash memory ID is loaded to the shift register
starting from the most significant bit if device authentication is required prior to data
transmission. In cycle 9, the bus master sends the write bit, W, stored in the shift register. In
cycle 10, a number of events take place simultaneously. First, the write bit at the least
significant bit position of the shift register activates the write controller. Second, the device
ID and the write bit are transferred from the shift register to a special device ID register.
Third, the Flash memory interface produces the first acknowledge signal, ACK, by
EnSDAOut = 1, thus lowering the SDA bus to logic 0. Finally, the interface sends the first
preamble which consists of the address, 0x5555, and the data, 0XAA, to the Flash memory
and lowers EN and WE to logic 0 as the first step of the fast write set.

In cycle 11, the most significant bit of the 16-bit initial Flash memory address, Add15, is
received from the SDA bus and stored in the shift register. This cycle is also considered a
hold period for the EN and WE signals. In cycle 12, the second most significant address bit,
Add14, is stored in the shift register. In this cycle, the second preamble that contains the
address, OxAAAA, and the data, 0x55, are sent to the Flash memory as the second step of the
fast write set. In cycle 14, the third address and command preamble, 0x5555 and 0xBO, are
sent to the Flash memory, completing the fast write set sequence. The fast write sequence
starts at cycle 16 where the fast write command, 0xCO, is sent to the Flash memory. In cycle
19, the most significant byte of the 16-bit starting Flash memory address, StAddMSB, is
transferred from the shift register to the address register which resides inside the address
counter. In this cycle, the interface also generates the second ACK signal by EnSDAOut = 1.

From cycles 20 to 27 in Fig. 5.70, the least significant byte of the starting Flash address,
StAddLSB, is received by the shift register. In cycle 28, this byte is transferred to the least
significant byte of the address register in order to form the 16-bit starting Flash address. In this
cycle, the interface generates the third ACK signal. From cycles 29 to 36, the first set of data
bits starting from the most significant bit, DF7, to the least significant bit, DF0, are received by
the shift register. In cycle 37, the first eight-bit data packet, Data0, is transferred to the Flash
memory through its bidirectional I/O port. The tri-state buffers in Fig. 5.68 need to be enabled
by the control signal, EnDataOut, to be able write this data packet to the Flash memory.

Cycles 38 to 45 in Fig. 5.71 are used to store the second eight-bit data packet in the shift
register. Cycle 46 transfers this data packet, Datal, to the I/O port and generates an ACK
signal for receiving the second data byte from the bus master. If the STOP condition is
detected during the next clock cycle, the fast write process halts. The write controller goes into
the fast write reset mode and asynchronously produces selAux = 1 to engage the auxiliary
clock, SCLAux, instead of using the main SCL clock, SCLMaster, generated by the bus

229

5.4 Flash Memory

ssaIppe K1owow pue ([AP PIM douanbes jos (weisord) oym 1sey D 1 69°S *bid

Xny|[es

inQejequy

ejeqles

vvies

ggles

o31es

odies

0Jles

odles

Ippvies

VVvvvies

|

GGGsIes

JppyIou|

gS71PpVYpeoT

gSIAPPYPEOT

diregpeoT

inovasug

uus

-t+-+{a}t{---F---F-+----

00X0) 08X0 55X0 [o:21o/1

) w;
7 2
[

|
| ! InobBaxys
\

i
|
|
|
i
I
i
|
|
“
|
_ L
H
a
A
]
1

10 XvwvwxoX at

PR SR P VY A ——

E 10H X

555x0 X

IppPY

t-F{a}Y{---[F---F-+----

F-F{o}--4--4-

mMs_UndaWM

1 1 1 1]
sppv X 6Py X o1ppv X 1ippy X ztppy X eipey X v1ppv X 51ppv X oV m_Xoppva X tpeva X zepva X eppva X vpva X sppva X oppva Y vas
| | | | | | T | | | | | | | uVIS
10s

oy

5 Memory Circuits and Systems

230

oouanbos (wesgoid) ayum isey D1 0L°S 614

xny|es

inQoejequy

ejeqles

YvIes

ggles

03188

odies

00l18s

ogles

ippvIes

VYVVvVvIes

GggglIes

JppyIou|

gS71PPYpPEOT

9SWPPYPEOT

dairegpeon

inovasug

Hlys

[0:210N
m

N3

Ippy

InoBaxuius

3

vas

108

231

5.4 Flash Memory

oouanbos josar (wergord) oyum isey O 1 LL'S *bid

XNny/|as

inoejequy

eleqles

YVvIes

ggles

o3Ies

odies

00les

ogles

ppyies

VYvvvies

GgGGles

JppyJoul

gs71Ppypeo

dSNPPVYPEOT

alre@peon

inovasuz

Hlys

[o:21on
am

N3

Ippy

noBayyiys

vas

A

9s

SS

s

€5

cs

10s

3]

232 5 Memory Circuits and Systems

master. This is because the Flash memory needs two more preambles that contain 0xD0 and
0xEO commands to complete the fast write reset sequence. Therefore, starting from cycle 48,
SCL resumes with three more cycles. In cycle 48, the first preamble that contains 0xDO0, and in
cycle 50 the second preamble that contains OXEO are sent to the Flash memory by setting
selDO0 and then selEO to logic 1, respectively. In the next cycle, selAux becomes logic 0, and
SCL switches back to the SCLMaster input which permanently stays at logic 0.

The Moore machine in Fig. 5.72 implements the write controller in Fig. 5.68. At the onset
of the START condition, the controller wakes up and goes into the device ID retrieval mode.
From cycles 2 to 8 in Fig. 5.69, the serial device ID is received by the shift register on the
SDA bus. These cycles correspond to the states DAdd6 to DAddO in Fig. 5.72 where the
shift signal is constantly kept at logic 1, and writing data to the Flash memory is disabled. In
cycle 9, the write bit is also stored in the shift register. This corresponds to the W state in the
state machine. In cycle 10, numerous events take place simultaneously. First, shifting serial
data into the shift register stops by shift = 0. Second, the seven-bit device ID and the write bit
are delivered to the device ID register by LoadDevID = 1. Third, the first address and data
preamble, 0x5555 and OxAA, is delivered to the Flash memory through port 1 of the address
MUX by sel5555 =1 and port 1 of the data MUX by selAA = 1. Fourth, the control signals,
EN and WE, are lowered to logic 0 in order to write the address and data preamble to the
Flash memory. Finally, an ACK signal is generated by EnSDAOQOut = 1. This cycle corre-
sponds to the DevID ACK state of the write controller.

In cycle 11, shifting data resumes, and the shift register receives the most significant bit of
the initial Flash address, Add15, while in the Add15 state. In cycle 12, which corresponds to
the Add14 state, the second most significant address bit, Add14, is latched in the shift
register by shift = 1. In the same cycle, the second address and data preamble, 0XAAAA and
0x535, is delivered to the Flash memory through port 2 of the address MUX by selAAAA =1
and port 2 of the data MUX by sel55 = 1. The control signals, EN and WE, are also lowered
to logic O in order to write this preamble to the Flash memory. In cycle 13, Add13 is stored
in the shift register. This cycle corresponds to the Add13 state. In cycle 14, the third address
and data preamble, 0x5555 and 0xBO, is written to the Flash memory through port 1 of the
address MUX by sel5555 =1 and port 3 of the data MUX by selBO = 1. In this cycle, the
control signals, EN and WE, are lowered to logic 0 in order to write the last address and data
preambles. This cycle corresponds to the Add12 state. Cycle 15 designates the end of the fast
write set cycle, and corresponds to the Add11 state when the address bit, Add11, is loaded to
the shift register.

5.4 Flash Memory

START =1

shift = 17]
EN=1
WE =1

shift = 17]

EN =1

WE =1

shift =07
EnSDAOut = 1
EnDataOut = 1
LoadDevID =1
sel5555 =1

EnDataOut = 1
sel55 =1

shift = 17]
EN=1

WE =1

shift = 17]
EnDataOut = 1
selB0 =1
sel5555 = 1
EN=0

WE =0

shift = 17
EN=1

WE =1_|

shift = 17]
EnDataOut = 1
selC0 =1
EN=0

WE =0

shift = 1]
EN=1
WE =1

shift = 1]
EN=1
WE =1

shift = 0]
EnSDAOUt = 1
LoadAddMSB = 1
EN=1

WE = 1.

shift=0
EnSDAOut = 1
selAddr =1
selData = 1
EnDataOut = 1
EN=0

WE =0

STOP =1

OxEO

Fig. 5.72 I°C fast write (program) interface controller

233

[shift = 1
EN=1
| WE =1

["shift = 1
EN=1
| WE = 1

[shift =0
EnSDAOut = 1
LoadAddLSB = 1
EN=1

LWE =1

[shift = 1

EN=1

| WE =1

shift = 1
EN=1
WE =1

shift = 1
IncrAddr = 1
EN=1
WE =1

shift =0

EnDataOut = 1
selD0O =1
selAux =1
EN=0

LWE =0

shift =0

selAux =1

EN=1

LWE =1

shift =0
EnDataOut = 1
selE0 =1
selAux =1
EN=0

LWE =0

234 5 Memory Circuits and Systems

Cycle 16 enters the fast write command mode and writes the address and data preambles,
0xXXXX and 0xCO, through port 4 of the data MUX by selCO = 1. In this cycle, EN and
WE signals are lowered to logic 0 to accommodate the write operation, and Add10 is latched
in the shift register. This clock cycle corresponds to the Add10 state. Storing the higher byte
of the initial Flash address becomes complete by the end of cycle 18. In cycle 19, the higher
byte of the initial address is transferred to the address register by LoadAddMSB = 1, and an
acknowledge signal is generated by EnSDAOut = 1. This cycle corresponds to the
AddMSB ACK state in the state diagram. Similar events take place when storing the least
significant byte of the starting address in the shift register. These states are marked as Add7
to AddO in the state diagram, and correspond to the cycles 20 though 27, respectively. The
cycle 28, which corresponds to the AddLSB ACK state, generates the third acknowledge for
the bus master by EnSDAOQOut = 1, and transfers the least significant byte of the starting Flash
memory address to the address register by LoadAddLSB = 1.

From cycles 29 to 36, the first set of data bits are delivered to the shift register starting from
the most significant data bit, DF7. This sequence is shown as the states DF7 to DFO in the
state diagram. In cycle 37, an acknowledgement is sent to the bus master by EnSDAOut = 1
shown as the Data ACK state. During this period, the initial 16-bit address and eight-bit data
are delivered to the Flash memory through port O of the address MUX by selAddr = 1 and
port O of the data MUX by selData = 1. Tri-state buffer at the I/O port is also enabled by
EnDataOut = 1. The second data byte is received during cycles 38 to 45, which correspond to
the states D7 to DO, respectively. Cycle 45 is also the cycle to increment the Flash memory
address by issuing IncrAddr = 1. In Cycle 46, the write controller goes into the Data ACK
state once again and issues an acknowledgement for receiving the second data packet by
EnSDAOut = 1. In this cycle, the second data packet is delivered to the incremented Flash
memory address, StAdd + 1, by selAddr = 1, selData = 1 and EnDataOut = 1. As long as the
STOP condition is not detected, data packets are delivered to the Flash memory at each
incremented address. However, if the bus master issues a STOP condition, the auxiliary SCL
generator, SCLAux, is asynchronously enabled within the same cycle by selAux = 1. The
write controller goes into the fast write reset mode in the next clock cycle and keeps the
auxiliary SCL generator enabled by selAux = 1. For the next three clock cycles, the 0xDO0 and
0xEO command codes, corresponding to the 0xDO and OxEQ states in the state diagram, are
delivered to the Flash memory through port 5 of the data MUX by selDO = 1 and port 6 of the
data MUX by selEOQ = 1.

5.4 Flash Memory 235

Design Example 2:
I’C Read Interface for Flash Memory

The following design example constructs only the I>C read interface for a Flash memory that
has parallel address and data ports shown in Fig. 5.44 using a modified seven-bit address
mode. No other modes are included in this design except the read.

The timing diagram for I°C read sequence is given in Fig. 5.73 where each eight-bit data
packet is serially read from a slave after issuing an initial seven-bit address. The address sent
by the bus master requires an acknowledgment (ACK) from the slave. In contrast, data
packets sent by the slave require the master’s acknowledgment. If the bus master chooses not
to acknowledge the receipt of data (NACK), the data transfer stops in the next cycle.
Figure 5.74 shows the sequence of events taking place in Fig. 5.73 in the form of a state
diagram where the logic level in Master ACK/NACK state determines the continuation or
the end of the data transfer.

A6 A5 AQ R ACK D7 D6 DO NACK
I T T T T 1 1 1
T e
I
I
:Master Master Master Master 1°C Master Master Master Master
I
I
I

! |
I
sends sends sends sends ACK sends sends sends sends : :
[}
! |

SDA 'v
R=1 ACK D7

-"-NACK
R + A

START [2C 12C I2C 12C Master 12C 12C 12C 12C STOP
reads reads reads reads reads reads reads reads reads

Fig. 5.73 A simple timing diagram for the I°C read operation using seven-bit address mode

The Flash memory read sequence described in Fig. 5.75 is a four-cycle process as
mentioned earlier in Fig. 5.50. The bus master sends the address and data preambles,
0x5555/0xAA and OxAAAA/Ox55, in the first two cycles. This is followed by the
0x5555/0x00 preamble containing the read command code in the third cycle. All three cycles
can be considered a preparation period for a read operation which takes place in the fourth
cycle. Following the read operation, the address is incremented either by one or a predefined
value according to the Flash memory address generation protocol before the next data read
sequence takes place.

To read data from the Flash memory, the address and command entries are serially sent by
the host processor to the I’C interface through the SDA port. The Flash memory requires a

236 5 Memory Circuits and Systems

START =0
START =1

Master
SDA =0 ACK/NACK

Fig. 5.74 The state diagram for the simple I’C read operation in Fig. 5.73

16-bit address all at once in order to read an eight-bit data, and this necessitates an interface
to perform both serial-to-parallel and parallel-to serial conversions. The interface has to
produce three active-low control signals, EN, WE and RE, to be able to read data from the
Flash memory. It also needs to produce the control signals, EnDataln and EnDataOut, to

route the incoming and outgoing data.

5.4 Flash Memory 237

(Start)

A J

» 0x5555/0xAA
Y
Read
OxAAAA/0x55 preamble
Y
0x5555/0x00
Y
Read Addr/
Read Data

NO
Addr = Addr + 1 Last Addr

Complete

Fig. 5.75 Flow chart for the read sequence

Figure 5.76 shows the architectural diagram of the Flash memory read interface. Figures
5.77,5.78 and 5.79 show the timing diagrams related to this architecture. These waveforms
describe a complete picture of the preamble formation, device ID creation, address gener-
ation and serializing the read data from the Flash memory.

The architecture in Fig. 5.76 still contains four functional units as in the fast write
(program) data-path. The first functional unit is an eight-bit shift register which identifies the
serial address, command and data boundaries, and converts the serial data on the SDA bus
into a parallel form and the parallel data from the Flash memory into a serial form. The
second functional unit stores the device ID if the Flash memory requires an identification
process prior to data exchange, and the command bit. The third unit stores the initial 16-bit
Flash memory address and generates the subsequent memory addresses using an up-counter.
The fourth unit is the read controller, which is responsible for storing the device ID, the
command bit, forming and incrementing the initial address, and handling the proper
data-flow that complies with the timing diagrams in Figs. 5.77, 5.78 and 5.79. There are also
several fixed-value registers, each of which contains the address and data preambles for
retrieval of data from the Flash memory. The host processor dispatches all address and

238 5 Memory Circuits and Systems

control signals at the negative edge of the SCL clock in order to read data packets from the
Flash memory, and therefore it requires all the registers in Fig. 5.76 to operate at the positive
edge of the SCL clock.

SDAIn 7 0 SDAOut

SDA —[>—>{ Shift Reg SDA

l-g— Shiftin
lg— ShiftOut
le@— LoadShift

A [EnSDAOut
8 8 SCL MasterAck (external from the Master)
5 —
£ o
5 5
4 C U 0
= = Device ID + R LoadDevID
%]] 8
SCL —p»| —» START
SCL Detector
SDA —»»| —» STOP
7 0
Addr MSB LoadAddrMSB
8
8 +1

SCL
%‘
8 +
16
li—‘
0 1 2 — IncrAddr
Addr Reg MUX — selStartAddr

)
l— START
¢— STOP

initAddr
v *
L Shiftin 15 16 0
| ShiftOut | Addr Reg | N
> LoadShift
F» LoadDevID
I ILOadAdd’LSB 76 AddrCountOut <
ncrAddr o)
- selStartAddr selStartAddr =
@ — Addr[15:0
Rend H» selAddr 15 0 g [15:0]
eal
Controller > sel5555 | 0x5555 |—/— 1 §
= selAAAA
- sel55 15 0 16
= selAA OXAAAA ’ 2
- sel00 | | i L
F» EnDataln
F» EnDataOut SCL <ok
H» SDAIn 28 §
o - SDAOU 7 0 <353
3 [+ enéorou B 3 8
* * * 7 0 é EnDataOut
EN WE RE OxAA 13 1/0[7:0]
7 0 a
_OXOO 2
A by A
EnDataln
SCL

sel00
selAA —
sel55

Fig. 5.76 I°C read interface data-path

239

5.4 Flash Memory

ssa1ppe A1owsw Suntels Jo g Ayl pue (] d1AdP Y soudnbas pear D ££°S b4

inovasua

inovas

ulyas

ujeyequy

inoejequy

vvIes

gsles

VVVVIes

L 1LE

ggggles

IppvIes

IPPVHEIS|SS

JppyIou|

dSINPPYPEOT

aireqgpeon

Hlyspeor

INoHius

uiys

m
M 00les
_.m|

3y
m

N3

[o:210

NOINOJIPPY

ippvy

s|quieaid pesy :Ew\]

uiBaypIus

noBayuIus

NN_+D_>®D

vas

108

UONEULIO) EJEp PUE SSAIppe Alowow Juniels Jo gSIN Ay yim soudnbas pear 5 1 8£°s *big

_l| inovasug
|| _ inovas

_ uivas

L L ulelequs

| | | | | | InoejEqQUT

L 0oles

[vvies

ggles

5 Memory Circuits and Systems

Vvvvies

i

L | gs551es

ippyles

L

JppyMeISIes

L 1ppVIou|

dSINPPYPEOT

aineapeo

Hlyspeo

INOHIUS

ulys

—

_
ﬁ[_ ﬁ[_ EL]
| _ [_ _ _ [m

| D [T | _ | | N3
YVX0 oeyeq

 Leeg 4 { 00x0) { §5%0) { > [o:210n

XX\ Xopvieis \ INONODIPPY

L+PPVISX d10) §G59X0 X ATOH 0X dT0H X §555%0 PPYHEIS, Ippy
_ XoowesX]

\ Leleg oejed u|bayyIys
/\xmw._c?v\A INOBayuIyS

240

vas

[oy)y) ey I I 108

241

5.4 Flash Memory

9[24> pear jo pud ay Surziseydwo douenbes pear J, |

6L°'S ‘b4

inovasus
Inovas
ulvas
ujejequy
inoelequy
ooles
YviIes
ggles
YVvvvies
GGggles
Ippvies

IppyHelg|es

ppy.oul

gSINPPYPEOT

ainsgpeot

Hiyspeo

Inoyius

upiys

L)

m

N3

[o:21on
INONODIPPY
Ippy

uiBayus

noBayuIuS
vas

10s

242 5 Memory Circuits and Systems

Figures 5.77, 5.78 and 5.79 describe the complete picture of reading data from the Flash
memory. Figure 5.77 shows the device ID and the command bit formations followed by the
generation of the most significant byte of the initial Flash memory address. Figure 5.78
describes the formation of the least significant byte of the initial Flash memory address and
the first data byte read from the memory. Figure 5.79 includes two additional bytes of data
sent to the bus master and the termination of data transfer.

The bus master initiates the data transfer by issuing the START condition in Fig. 5.77.
Between cycles 1 and 8, the bus master sends the device ID followed by the read command
on the SDA bus, both of which are serially loaded to an eight-bit shift register by Shiftln = 1.
These cycles are represented by the states DAdd6 to DAddO followed by the R state, which
corresponds to the read command, in the state diagram in Fig. 5.80. In cycle 9, the Flash
memory interface responds to the bus master with an acknowledgement by issuing
EnSDAOut = 1, but pauses shifting data by Shiftln = 0. In the same cycle, the interface also
transfers data from the shift register to the device ID register by LoadDevID = 1. This cycle
corresponds to the first slave-acknowledgement state, DevID SACK, in Fig. 5.80. In cycle
10, the interface starts sending the preamble to the Flash memory for a read operation. In this
cycle, the first address and data preamble, 0x5555/0xAA, is fetched from the fixed-data
registers, 0x5555 and OxAA in Fig. 5.76. This preamble is subsequently sent to the address
port of the device through port 1 of the address MUX by sel5555 = 1, and to the data port of
the device through port 1 of the data MUX by selAA = 1. In this cycle, the bus master also
sends the most significant bit of the 16-bit Flash memory address, Add15, on the SDA bus.

In cycle 12, the interface sends the second address and data preamble, OxAAAA/0xSS,
through port 2 of the address MUX by selAAAA =1 and port O of the data MUX by sel55 = 1.
In cycle 14, the last address and data preamble, 0x5555/0x00, containing the read command, is
sent to the Flash memory address and data ports. The cycles 10 to 17 correspond to storing the
most significant byte of the starting Flash memory address, Add15 to AddS, in the shift register
by Shiftln = 1. In cycle 18, the interface sends an acknowledgement to the bus master by
EnSDAOut = 1 to indicate that it has received the higher byte of the starting Flash memory
address. Within the same cycle, this higher byte is stored in the 16-bit address register that
resides in the address counter by LoadAddMSB = 1. This cycle represents the second
slave-acknowledgement state, AddLSB SACK, in Fig. 5.80.

In cycles 19 to 26, the bus master sends the least significant byte of the starting Flash
memory address by Shiftln = 1. These cycles correspond to the states Add7 to AddO in
Fig. 5.80, respectively. Cycle 27 constitutes the third slave-acknowledgement state,
AddLSB SACK, in Fig. 5.80. There are numerous events that take place during this clock
cycle, and they are all inter-related. The first event concatenates the least significant byte of
the starting Flash memory address in the shift register with the most significant byte in the
Addr MSB register to form the complete 16-bit starting Flash memory address. This address
is subsequently sent to the Addr[15:0] terminal of the Flash memory through port 1 of the
address register MUX by selStartAddr = 1 and port O of the address MUX by selAddr = 1.

5.4 Flash Memory 243

[Shiftin = 1
SDAIn=1
EN=1
WE =1
LRE =1
[Shiftin = 1
SDAIn =1 ["LoadShift = 1
EN=1 selStartAddr = 1
WE =1 selAddr = 1
Shiftin = 17 LRE =1 EnDataln = 1
SDAIn =1 EnSDAOut =1
E__N =1 EN=0
Shiftin = 17 "F‘a’—E;l _ﬁV—EE;J
SDAIn =1 - [Shiftout = 1
EN=1 SDAOut = 1
WE =1 EN =1
RE=1 WE =1 [Shiftout = 1
EnSDAOUt = 17] LRE=1 SDAOut =1
LoadDevID = 1 EN-T
_ EN= WE=1
Shiftin = 1 LRE =1
sel5555 = 1 [Shiftout = 1
selAA =1 sel5555 = 1
EnDataOut = 1 selAA =1
SDAIn = 1 EnDataOut = 1
ENZ0 SDAOUE=T - shiftout = 1
V';’_E : (1’ Shiftin = 1 EN SDAOU = 1
- SD&i 1 EN=1
Shiftin = 17] %;1 WE =1
selAAAA = 1 RE -1 [ShiftOut=1LRE =1
sel55 = 1 - selAAAA =1
EnDataOut = 1 sel55 =1
SDAIn = 1 EnDataOut = 1
EN=0 SDAOut =1
Re -1 Shitin=1 EL2% [snitout=1
~ SDAIn=1 LRE =1 SDAOut = 1
EN=1 EN=1
Shiftn=17 WE =1 e WE =1
sel5555 = 1 ShiftOut=1| RE = 1
56100 = 1 sel5555 = 1
EnDataOut = 1 sel00 = 1
SDAIN = 1 EnDataOut = 1
N=0 SDAOut = 1
WE =0 | Shiftin =17 EN=0 IncrAddr = 1
RE = 1] SDAIn =1 WE=0 SDAOUt = 1
E =1 LRE =1 E__N= 1
WE =1 WE =1
Shiin=17 RE=1- RE=1
SDAIn =1
EN=1
WE =1 LoadShift = 1 LoadShift = 0
RE =1) _ selAddr = selAddr =0
~ Shiftin =1 EnDataln = 1 EnDataln =0
SDAIn =1 IfSDA=1 If SDA = 1
EN=1 EN=0 EN=1
WE =1 WE =1 WE =1
LoadAddMSB = 1 RE =1 RE=0 RE=1
EnSDAOQut = 1
EN=1 K
WE =1
RE =1

Fig. 5.80 I°C read interface controller

244 5 Memory Circuits and Systems

The second event lowers EN and RE control signals to logic 0 and produces EnDataln = 1 in
order to fetch the first data byte from the Flash memory, Data0, since the read preamble has
already been sent between cycles 10 and 14. The third event stores Data0 in the shift register
through its ShiftRegln port by LoadShift = 1. Finally, the last event sends an acknowl-
edgement signal to the bus master by EnSDAOut = 1, signifying the least significant byte of
the starting address has been received so that the bus master can start receiving serial data on
the SDA bus in the next cycle.

In cycle 28, the starting address, which could not be registered due to time limitations in
the earlier cycle, is now registered in the address register, and the address counter output,
AddrCountOut, becomes equal to the starting address, StartAdd. In the same cycle, the most
significant bit of Data0, D7, becomes available on the SDA bus by SDAOut = 1. Starting
from cycle 30, the read preamble associated with the second data is sent to the Flash memory.
The read preamble could have been issued as early as cycle 28 or 29 since the address counter
still held StartAdd at the AddrCountOut node during these periods. In cycle 35, the interface
increments the starting address by IncrAddr = 1 and uses port 2 of the address register MUX
to feed through the result. Until the beginning of cycle 36, all eight bits of Data0, D7 to DO,
are serially sent to the bus master by SDAOut = 1. Therefore, cycles 28 to 35 correspond to
the states D7 to DO in Fig. 5.80, respectively. In cycle 36, while the bus master acknowledges
the reception of Data0 by MasterAck = 1, and thereby lowering the SDA bus to logic 0, the
interface sends the incremented Flash memory address, StAdd + 1, to the Addr[15:0] terminal
through port O of the address counter MUX by selAddr = 1. In the same cycle, the interface
lowers EN and RE signals to logic 0, fetches Datal from the I/O port of the Flash memory
by EnDataln = 1, and stores this value in the shift register by LoadShift = 1. This particular
cycle corresponds to the master-acknowledge state, MACK, in Fig. 5.80, where the state
machine continues fetching data from the Flash memory.

Cycles 37 to 44 and cycles 46 to 53 contain identical events to the ones between cycles 28
and 35. They both correspond to the states D7 to DO in Fig. 5.80. In cycle 54, the SDA bus
transitions to logic 1 because the bus master decides not to issue any more acknowledge-
ments by MasterAck = 0. Even though the current address increments at this point, the
interface neither lowers the EN nor lowers the RE signal to logic 0 as shown by the
master-no-acknowledge state, MNACK. Therefore, no data reading takes place from
the Flash memory. In the next cycle, the bus master terminates the SCL activity and
issues the STOP condition, signifying the end of data transfer.

5.4 Flash Memory 245

Design Example 3:
I’C Page Erase Interface for Flash Memory

The following design example constructs only the I’C page erase interface for a Flash
memory that has parallel address and data ports as shown in Fig. 5.44. Using a modified
seven-bit address mode. No other Flash memory mode is implemented in this design except
the erase.

The Flash memory page erase is a six-cycle sequence as described earlier in Fig. 5.50. The
flow chart for this process is shown in Fig. 5.81. In the first five cycles, the bus master sends
fixed address/data combinations to the Flash memory as a preamble to prepare the memory
to erase a block of data at a specified memory location. The page erase command is the 0x50
entry in the third cycle followed by the page address and the second erase command, 0x70,
in the sixth cycle to initiate the process.

(Start)

A
0x5555/0xAA

Page
Erase
preamble

0x5555/0x50

A
0x5555/0xAA

Page Addr/
0x70

Y

(Complete)

Fig. 5.81 Flow chart for page erase

246 5 Memory Circuits and Systems

Figure 5.82 shows the data-path for the I°C page erase interface. The shift register
acquires the device ID (if the Flash memory requires any type of device authentication prior
to page erase) and the page address from the SDA bus, and transfers them to the device ID
register and the page address register, respectively. There are also address and data registers
that store only the fixed values, and they are routed to the address and data ports of the Flash
memory in order to produce the correct preamble and page erase commands in Fig. 5.81.

shift
7) 0
- SCL —»»| —» START
| Shift Reg SDA Detector
| SDA —» —» STOP
EnSDAOut —|
8 sC
LoadDevID
- 82
scL E .
= m @
Q T T
LoadCom x § §
K vy
0 16 \
Page Address Reg |—/— 0
= x
=] 2
o 15 0 s
SCL 16
g | 0x5555 |—/— 1 81— Addr[15:0]
S
§ 15 0 16 <
A | OXAAAA 2 4
Encoder | A/(
SCL
£ © =
= S
r R° o % 5
i L% 1) 7 0 & %
N @
Y OxAA |—/— 0
- shift |
I LoadDevID 7 0 4 EnDataOut
» LoadBIkLSB | 0x55 l—/— 1 é
> LoadBIkMSB 5 2 8 [\/L § o 10701
I LoadCom 50 8 £ Datal/o 170 '
Block | 50l5555 | x5 2 & | pataio [7:0]
rase
Controller > selAAAA 7 0 8
- selBIkAddr 0x70 l_/_ 3
3 selAA | | i A
[sel55
I sel50 SCL
O —| - sel70
@ I EnDataOut
—» EnSDAOut

7| -
-
sel70 —

sel50
sel55
selAA

Fig. 5.82 I°C page erase interface data-path

5.4 Flash Memory 247

The page erase process is described in the timing diagrams of Figs. 5.83, 5.84 and 5.85.
The process starts with the bus master generating the START condition in Fig. 5.83. In
cycles 2 to 9, the bus master sends the seven-bit device ID and the write bit, starting with the
most significant device ID bit, DAdd6. Even though the write bit is considered a command
bit, it does not have any significance in the page erase preamble. The bus master sends this
bit only to comply with the I’C protocol. All these bits are temporarily stored in the shift
register and correspond to the states DAdd6 to W in the state diagram in Fig. 5.86. In cycle
10, the interface generates an acknowledgement, ACK, to signify that it has received the first
eight bits from the bus master by EnSDAOut = 1, and transfers the device ID stored in the
shift register to the device ID register by LoadDevID = 1. This cycle corresponds to the
DevID ACK state in Fig. 5.86.

From cycles 11 to 18, which correspond to the states Add15 to Add8 in the state diagram,
the bus master sends the most significant byte of the Flash memory page address to the
interface. These bits are received by the shift register and immediately transferred to the page
address register in cycle 19 by LoadBIkMSB = 1. In this cycle, the interface also sends a
second acknowledgment to the bus master by EnSDAOut = 1, which is represented by the
AddMSB ACK state in the state diagram.

From cycles 20 to 27, the interface receives the least significant byte of the page address. It
stores this byte in cycle 28 by LoadBIKLSB = 1, and sends a third acknowledgement to the
bus master by EnSDAOut = 1. These events are shown by the states Add7 to AddO and the
state AddLSB ACK in the state diagram, respectively. Starting in cycle 29, the complete page
address becomes available at the Addr[15:0] terminal in Fig. 5.82 even though the page erase
process has not been initiated. This cycle is also the starting point for the bus master to send
the erase command, 0x50, to the Flash memory interface. Without this step, the interface will
not be able to recognize if the ongoing process is actually about erasing a block of data.

From cycle 29 to 36 that correspond to the states 0x50-0 to 0x50-7, the interface receives
all eight bits of the command code, 0x50, in the shift register. Then in cycle 37, it generates
the fourth acknowledgment by EnSDAOut = 1, and transfers the contents of the shift
register, 0x50, to the command register by LoadCom = 1. Later on, the interface uses this
value to be able to generate the correct preamble for the page erase operation. Cycle 37
corresponds to the 0x50 ACK state in the state diagram. While the bus master sends the
second command code, 0x70, from cycles 38 to 45 to initiate the page erase, the interface,
now aware of the page erase operation, sends the first address and data preamble,
0x5555/0xAA, to the Flash memory in cycle 39. In this cycle, the fixed register value,
0x55535, is routed through port 1 of the address MUX by sel5555 = 1. The fixed register data,
0xAA, is also sent to the I/O[7:0] port through port O of the data MUX by selAA = 1 and
EnDataOut = 1. In cycle 41, the second address and data preamble, 0OxAAAA/0xS55, is sent.
This is followed by sending the third preamble (including the first page erase command),
0x5555/0x50, in cycle 43, and then the fourth preamble, 0x5555/0xAA, in cycle 45. The
interface pauses for one cycle after dispatching each address and data combination to comply
with the Flash memory protocol of writing data.

5 Memory Circuits and Systems

248

ssarppe o3ed Jo gST Yyl pue (I 201Adp YIm dduonbas osers ofed J. I €8'S *bid

inQoejequy

0Ll8s

0gles

GgGles

vves

Ippwiigies

VVVVIes

GGagIes

woHpeo

asmiigpeon

[

gSINMIgpeoT

alAe@peon

T

inovasug

[]
1
1
T
1
1
|
]
1
1
1
1
1
1
[
1
1
1
1
1
1
1
1
1
1
1
1
T
1
1
|
1
“
m_ﬂ Wus
1

[o:210n
) by

I~ /Fom
_ \ N3

IppY

INOPUBWWOD

N

X%

aswebed A

o

meaineq /i
{Oiov X sepv X eppv X oippy X Lippw X ziepy X e1ppy X wippy X s1ppv X Mo vm
I I I I I I I I

[}

m Xpepva X
[
[

X X___ XreevaXsrpva X oppv

| vas

1
1
i
! InoBayyIys
1
1
1
1

_ _ _ _ _ _ 108

6l

cl

ol

6 8

249

5.4 Flash Memory

pueWIod dseld Ay pue ssaIppe aed Jo gSIN Ayl Yim dduonbes osero ofed O I #8'S *bid

inQelequy

(VAES]

ogles

Ggles

vvIes

ppwyigies

YVVVIes

Gggggles

woppeo]

gs7iigpeot

asnigpeot

diregpeor]

inovdasug

Hiys

[o:21o0n
Il
N3

HOIH

HOIH

ssaippy obed 1ppvY

INOpuUBWIWO)

Uﬂuomxo X"

noBayyIus

X%

gs79bed \

HX”v_o< X” 0 X_ 0 X_ 0 X_ 0 X_ ! X_ o X X_ 0 X_xo< X oppv X“%u< X_ X_ X_ X_muu< X_%E X.%?vﬁ vas

10S

A 9€ g€ e €€ 43 33 0¢ 6¢ 8¢ e 9C 14 e jor4 [44 24 0C

puewwod osero o3ed oy pue djquieard aserd oed .1 §8°S ‘b4

inoejequy

(VAES]

ogles

ggles

vvies

5 Memory Circuits and Systems

Ippwigies

VYVVVIes

GGG§lIes

woHpeoT

as1iigpeo

asinMigpeot

dirnegpeo

inovasvus

uys

/ \ oo)

{ vwxo) GGX0 [o:2]on

l

oo vﬂA 55%0)
]
]

m

N3

(aseu3 diyD) 09x0 0} pasoddo se 0/xQ seses|al Jaj|0]u0D

vwxX_Ploy XS556X0 X SS9IpPY bed ppy

é _———]-=-=--

A

[T
1 1
[] T
] 1
] I
1 1
[] T
] 1
] [}
1 1
ssoippy obed X pioy MrvwwxoX pioy Xgs55x0 X pioy Xsgsexa X piod X

T T T
1 [l
[] T
1 [
1 T
] 1
T

]

T

]

250

T T T T
| | | | | | | |
| ! T) T Tolques.d eseiq ebed peis nOpUBWWO
_ " \ ! ! ! ! . : r__ 0sx0 X1 1Op 0
| | | | | | | | | | |
| | T 00 Y] H H | | i i nobBayyius
T T T T N T T T T T T T
| | | | \ ! | | | | | | |
i x X x X x Xsov X 0 X;0o X o X o X v X v X1 X oX vas
dois | i i i i | i i : i i ' |
10S
05 6v 14 Vi or 74 v 34 44 22 ov 6 8¢

5.4 Flash Memory

shift = 17]
EN=1
WE =14

shift = 17
EN=1
WE =1

EnSDAOuUt = 17]
LoadDevID =1
EN=1
WE =1

shift = 17]
EN=1
WE =1

shift = 17]
EN=1
WE =1

EnSDAOut = 17]
LoadBIkMSB = 1
EN=1

WE =1

shift = 17]
EN=1
WE =14

shift = 1
EN=1
WE =1

EnSDAOut =1
LoadBIKLSB = 1
EN=1

WE =1

AddLSB
ACK

START =1

251

r shift = 1
selBlkAddr = 1
EN=1
L WE = 1
I shift = 1
selBIkAddr = 1
EN=1
L WE =1
[TEnSDAOut = 1
LoadCom =1
selBIkAddr = 1
EN =1
| WE = 1 SDA =
shift = 1
selBIkAddr = 1
EN=1
L WE =1
rshift = 1
sel5555 = 1
selAA =1

EnDataOut = 1
EN=0
shift=1 LWE=0
selBIkAddr = 1

EN=1
WE =1 ghift = 1
selAAAA =1
sel55 =1
EnDataOut =1
EN=0

WE =
shift=1 —VE =0
selBIkAddr = 1
EN-1

WE=1" shift = 1

sel5555 = 1
sel50 = 1
EnDataOut = 1
EN=0

LWE =0
shift = 1

selBlkAddr = 1

EN=1

WE =1 rshift =1
sel5555 = 1
selAA=1
EnDataOut = 1
EN=0

LWE =0

EnSDAOut = 1

selBIkAddr = 1

DontCare
0
DontCare
1
DontCare
2

r selAAAA =1 \

sel55 =1
EnDataOut =1
EN=0
LWE=0

 selBIkAddr = 1
EN=1

L WE =1

[~ selBIkAddr = 1

sel70 =1

EnDataOut = 1

EN=1
WE = 1 J

Fig. 5.86 I°C page erase interface controller

252 5 Memory Circuits and Systems

Cycles 38 to 45 are represented by the states 0x70-0 to 0x70-7 in the state diagram,
respectively. The interface sends the fifth acknowledgment to the bus master in cycle 46 by
EnSDAOut = 1 while in the 0x70 ACK state. In cycle 47, the interface sends the fifth address
and data preamble, 0OXAAAA/0x55, and finally in cycle 49, it sends the page address with the
second page erase command, 0x70, to erase the entire block of data. Cycles 47 to 49 are
represented by the DontCare-0, DontCare-1 and DontCare-2 states in Fig. 5.86, respectively.

An architecture combining the read and the fast write interfaces can be implemented by a
data-path shown in Fig. 5.87. A shift register can be used to receive the incoming device
address and command bit from the SDA bus, which is subsequently is stored in an auxiliary
register as shown in this figure. The seven-bit device ID field can be used to activate one of
the maximum 128 Flash memory chips. The command bit, R or W, is used to enable either
the read interface or the fast write interface depending on its value. The Flash memory
address residing in the shift register is then forwarded to the eight-bit shift register in either
the read or the fast write interface to prepare the Flash memory for a data transfer.

7 0
SDA —>| Shift Reg } Q——>| Shift Reg |
| ! |
8 SCL SCL
7 6 Y 0 Read
| R/W | DevicelD | I/F
SCL —» EnFlash127
. :
» S » EnReadlF
7 g |
—» EnFlashO
> Shift Reg |
SCL
Fast Write
IIF
@———»{ EnWritelF

Fig. 5.87 I°C read and fast write (program) interface topologies

The reader should be quite familiar with all three I°C interface designs shown above to be
able to integrate them in one interface to achieve a complete design.

5.5 Serial Flash Memory 253

5.5 Serial Flash Memory

Recent Flash memory chips already include I°C or SPI interfaces to interact with a host
processor or another bus master. The user does not have to deal with preambles, waiting
periods or other complexities of the memory, but simply write an I°C or SPI-compliant
embedded program to initiate a read, write or erase operation with the Flash memory.
This section examines the operation of a typical Flash memory with an SPI interface.
Figure 5.88 shows the basic internal architecture of the Flash memory where an external
active-low Slave Select control signal, SS, is applied to enable the memory. The clock is
supplied through the SCK port. The serial data comes into the memory through the
Serial-Data-In (SDI) port and departs from the Serial-Data-Out (SDO) port. Once a serial
address is retrieved from the SPI bus, it is stored in the address register. The address decoder
uses the contents of the address register to access the Flash memory core and read the data to
an internal data buffer. The serial data is subsequently delivered to the bus master through
the SDO port. If the operation is a write, the bus master sends serial data to the SDI port,
which is then transferred to an internal data buffer, and subsequently to the memory core.

SS —» o >
4
» 3 n| Address Flash Memory
9 " | Decoder . Core
o
-c L]
<
SPI Bus A
Interf:
nterface v
Control Unit > Data Buffer
SCK —b» B A
SDI —»
SDO - <

Fig. 5.88 Serial Flash memory architecture with SPI interface

Figure 5.89 describes a typical partitioning scheme of a 1 MB memory core that requires a
20-bit address for each byte of data. To be consistent with the E*PROM and Flash memory
organizations discussed in previous sections, the entire memory block in this example is
divided into sixteen 64 KB sectors. Each sector is subdivided into sixteen 4 KB blocks, and
each block is further subdivided into 16 pages. Each page contains 256 bytes, any of which
is accessible through the SPI bus. Figure 5.90 shows the detailed address mapping of Block
0 in Sector O to further illustrate the internal memory organization.

254 5 Memory Circuits and Systems
Block 0 —4KB | * Block 0 —4KB | * Block 0 —4KB | *
Block 14 —4KB Block 14 —4KB Block 14 —4KB
Block 15 —4KB Block 15 —4KB Block 15 —4KB

Sector 15 —64KB

Fig. 5.89 A serial Flash core memory organization: 16 sectors and 16 blocks in each sector

0x00000

Sector 14 —64KB

0x00100

Page 0
(256B)

Page 1
(256B)

0x000FF

0x001FF

Sector 0 —64KB

0x00F00

Page 15
(256B)

O0x00FFF

Address mapping of Block 0 of Sector 0
Fig. 5.90 Memory organization of block 0 of sector 0: 16 pages, 256 bytes per page

Figure 5.91 shows nine basic modes of operation for this Flash memory. Some of the
modes in this table are further divided into sub-modes according to the complexity of the main
mode. For example, in the write (program) mode, the opcode 0x20 assumes to write between
1 and 255 bytes into the memory core while the opcode 0x23 writes 64 KB of data into a
sector. Similarly, the erase mode can be configured to erase a page, a block or the entire
chip. The protect operation prevents overwriting to a sector or the chip. The write enable
feature is a security measure for the serial Flash memory, and it is used prior to an actual write
or an erase operation. Once the write enable command is issued, any kind of data alteration in
the memory core becomes possible. Both the write enable and protect features are registered

5.5 Serial Flash Memory 255

in the status register and can be read on demand. The status register also indicates whether the
device is busy, such as in the middle of a write or read operation, write enable is engaged or
not, or which sector is protected. The Flash memory can be placed into a long term hiber-
nation mode to save power. The modes in Fig. 5.91 are at minimum compared to a typical
serial Flash memory to emphasize only the primary modes of operation. The opcode value for
each mode is also randomly selected. Actual serial Flash memory datasheets contain many
more operational modes with different opcode values assigned to each mode.

FLASH MEMORY COMMANDS OPCODES
Read 0x10
Write Byte (1-255) 0x20
Write Page 0x21
Write
Write Block 0x22
Write Sector 0x23
Erase Page 0x30
Erase Erase Block 0x31
Erase Chip 0x32
Protect Sector 0x40
Unprotect Sector 0x41
Protect/Unprotect
Protect Chip 0x42
Unprotect Chip 0x43
Write Enable 0x55
Write Disable 0x66
Read Status Register 0x77
Hibernate 0x88
Wake up 0x99

Fig. 5.91 Main serial Flash memory commands

256 5 Memory Circuits and Systems

This particular Flash memory operates in both mode 0 (SCK is initially at logic 0) and
mode 3 (SCK is initially at logic 1) of the SPI protocol. However, most of the timing diagrams
in this section will refer to mode 0 when explaining different commands in Fig. 5.91.

Figures 5.92 and 5.93 explain the basic write protocols in mode 0 and mode 3, respec-
tively. Once SS signal is lowered to logic 0, data bits at SDI port can be written into the
Flash memory’s data buffer at the positive edge of SCK. The data transaction stops when SS
is raised to logic 1. The entire data buffer is subsequently transferred to the memory core
within the write period, twriTE-

Mode 0 - Write Protocol

ss 1 r

sck - T 17 rrrrerere-

| | | | | | |
SDI MSBX X X X X X XILSB>
Fig. 5.92 Serial Flash memory mode O SPI write (program) protocol

Mode 3 - Write Protocol

ss 1

I I
sck I rr
I I I I I I I I

SDI AUSBX X X X X X XISB)

Fig. 5.93 Serial Flash memory mode 3 SPI write (program) protocol

Similarly, Figs. 5.94 and 5.95 explain the basic read protocols in mode 0 and mode 3,
respectively. When the SS signal is lowered to logic 0, data is delivered from the memory
core to the data buffer, and then from the data buffer to the SDO terminal at the negative edge
of each SCK cycle. The memory access is equal to tggap With respect to the negative edge of
SCK. When the SS signal is raised to logic 1, SCK is no longer allowed to change, and the
read process terminates.

In both write and read operations, the most significant data bit is delivered first, and the
least significant data bit is delivered last.

5.5 Serial Flash Memory 257

Mode 0 - Read Protocol

SCK

SDO

Fig. 5.94 Serial Flash memory mode 0 SPI read protocol

Mode 3 - Read Protocol

ss 1

- “
SDO AMSBX X X X X X XISBY

Fig. 5.95 Serial Flash memory mode 3 SPI read protocol

A typical Flash memory byte read is shown in Fig. 5.96. The process starts with sending
the opcode, 0x10, corresponding to a read operation according to the table in Fig. 5.91.
A 20-bit address follows the opcode with the most significant address bit, A19, first, and the
least significant address bit, A0, last. The first data bit, D7 (also the most significant bit of
data), is delivered to the SDO terminal at the negative edge of SCK according to Fig. 5.96.
The remaining seven bits of data are sequentially delivered at each negative edge of SCK

until the SCK signal stabilizes at logic 0, and the SS signal transitions to logic 1.

ss 1 [

SCK .

8Dl ———<0 X0 X0 X T 5 - CO XA XATES - - CAD

MSB LSB
L | |
OPCODE = 0x10 = READ ADDRESS [19:0]

SDO D7 X D6 > - - - D0)
MSB LSB

BYTE

Fig. 5.96 Serial Flash memory byte read in mode 0

258 5 Memory Circuits and Systems

Once a starting 20-bit address is issued, a number of bytes, ranging from one byte to the
contents of the entire memory, can be read from the SDO port as long as the SS signal is kept
at logic 0, and the SCK activity is present. Terminating SCK and raising SS to logic 1 ceases
the read process as shown in Fig. 5.97.

I
I
i
I
SCK . T 1T 1LrLrL.. TLFLTrL.. !
P I I I I I I I |
Lo I I I I I I I X
Lo I I I I I I I X
R R : !
SDI O X0 X0 X T - - 0 XAI9XATE) - - A0 ;
MSB LSB |
L L | !
OPCODE = 0x10 = READ ADDRESS [19:0] |
|
SDO D7 > - <B7>- KDo>

MSB MSB LSB

Al
|
s

BYTE 0 BYTEN (MAX 1,048,575)
Fig. 5.97 Serial Flash memory read burst in mode 0

The Flash memory write (program) mode has four sub modes. In the byte write mode,
bytes ranging between 1 and 255 can be written to a page following the opcode, 0x20, and a
20-bit memory address as shown in Fig. 5.98. After data is written to the last address of the
page, subsequent bytes at SDI terminal are considered invalid and will be ignored even
though there may still be SCK activity and/or SS may still be at logic 0. In some serial Flash
memory chips, excess data is not ignored but written to the memory core starting from the
first address of the page (address looping).

ss 1

scCk —+ T 1 f1LfLro.. . .7TLrr...T°LFLTL ..

SDI nnnn -- -- -—
MSB [SB MSB LSB
L | | |
OPCODE = 0x20 = WRITE BYTE ADDRESS [19:0] BYTE (1-255)

Fig. 5.98 Serial Flash memory write burst (1 to 255 bytes) in mode 0

5.5 Serial Flash Memory 259

Figure 5.99 describes the page write mode. After issuing the write page opcode, 0x21, and
a 20-bit page address, 256 bytes of data are sequentially written into the memory core
starting from the top of the page. Any data beyond 256 bytes will be ignored by the device. It
is vital that the 20-bit starting address aligns with the first address of the page. For example,
if page 0 of block 0 in sector 0 needs to be accessed to write data, the starting address has to
be 0x00000 according to Fig. 5.90. Similarly, the starting address has to be 0x00100 for
page 1 or 0xO0F0O0 for page 15 if the contents of either page need to be written.

Writing to a block or a sector is not any different from writing to a page. In both instances,
the starting 20-bit address needs to align with the topmost address of the block or the sector.
For example, writing a 4 KB of data to block O of sector O requires the starting address to be
0x00000. Similarly, the starting address of block 1 of sector 0 has to be 0x01000 if 4 KB
data needs to be written to this block.

ss 1

sck — 11 sr... Tr . T T ...

SDI
MSB LSB MSB LSB MSB LSB
L 1 1 J L J
OPCODE = 0x21 = WRITE PAGE ADDRESS [19:0] BYTE 0 BYTE 255
L J
PAGE

Fig. 5.99 Serial Flash memory page write in mode 0

Erase can be performed on a page, a block or the entire chip according to the table in
Fig. 5.91. The page erase requires the opcode, 0x30, followed by the topmost address of the
page as shown in Fig. 5.100. Erasing the entire chip only requires the opcode, 0x32, as
shown in Fig. 5.101.

260 5 Memory Circuits and Systems

ss 1 [

sck . 1Ll . TLrr.. .1mr.

DI —<CO X X X1 5 - - O OXAIOXATRS - - - (AL >——

MSB LSB

L | |
OPCODE = 0x30 = PAGE ERASE PAGE ADDRESS [19:0]

Fig. 5.100 Serial Flash memory page erase in mode 0

ss 1 li

sck — . T1LT1LTLTLTLT LT

SDI

L |
OPCODE = 0x32 = CHIP ERASE

Fig. 5.101 Serial Flash memory chip erase in mode O

Accidentally altering the contents of the Flash memory is a non-reversible process.
Therefore, many manufacturers formulate a security measure, such as a write enable com-
mand, prior to a write or an erase operation. The write enable command requires issuing an
opcode, 0x55, according to Fig. 5.91, and it is implemented in Fig. 5.102. This code changes
the write enable bit in the status register which then enables the Flash memory for write or
erase. For example, in Fig. 5.103 the write enable opcode, 0x55, is issued prior to the write
byte opcode, 0x20, to allow any number of bytes to be written to a page. If the write enable
opcode is omitted prior to a byte, a page, a block or a sector write, the data delivered to the
memory core becomes invalid and is ignored.

5.5 Serial Flash Memory 261

sck — TIT1LTLTILTrLrLTLyrL.

SDI

L |
OPCODE = 0x55 = WRITE ENABLE

Fig. 5.102 Serial Flash memory write enable operation in mode 0

scK — 1L i rir.. rrerreree. T, LR L.

SDI —<COOXIXTOX TS - XX XX 0D - COOXATOXATE - A DT X6 -

MSB LSB MSB LSB

L 1 1 1 J
OPCODE = 0x55 = WRITE ENABLE OPCODE = 0x20 = WRITE BYTE ADDRESS [19:0] BYTE (1-255)

Fig. 5.103 Serial Flash memory write (program) burst (1 to 255 bytes) followed by write
enable

Protecting a sector or the entire chip is also a vital security measure for the Flash memory.
For example, if a Flash memory contains BIOS data in specific sectors, accidentally
accessing these sectors for write or erase becomes fatal. Therefore, such accesses need to be
prevented at all costs. The opcode, 0x40, is issued with a specific sector address to protect
the data in this sector as shown in Fig. 5.104. However, as with the write and erase modes,
the write enable opcode, 0x55, must accompany the sector protect opcode, 0x40, to make the
sector protect a valid entry as shown in the timing diagram in Fig. 5.105.

262 5 Memory Circuits and Systems

ss 1 I
| |
| |
| |
| |
| |
| |
| |
| |

SCK ' !

SDI O X1 X0 X0 X0 X0 X0 X 0 XAI9XABY - - - -

MSB LSB
L | |
OPCODE = 0x40 = PROTECT SECTOR SECTOR ADDRESS [19:0]

Fig. 5.104 Serial Flash memory protect sector operation in mode 0

—
sck L TLT LTI Lfl_ . LTl . FLrLT ..

8Dl ——<CO XA X0 X T - A X0 X T X0 X0 - COXARXATES - - LA >—

MSB LSB

L | | |
OPCODE = 0x55 = WRITE ENABLE OPCODE = 0x40 = PROTECT SECTOR SECTOR ADDRESS [19:0]

Fig. 5.105 Serial Flash memory write enable operation followed by protect sector in mode 0

The user may reverse the write enable status of the device by issuing a write disable
command, 0x66, as shown in the timing diagram in Fig. 5.106.

Status register constitutes an important part of the Flash memory programming. For this
particular Flash memory, there are four entries in the status register that contain vital
operational information as shown in Fig. 5.107. The SP0O, SP1 and SP2 bits identify which

5.5 Serial Flash Memory

263

sck — . T 1 T1LTLTrLTrLrLrisribL.

SDI

OPCODE = 0x66 = WRITE DISABLE

Fig. 5.106 Serial Flash memory write disable operation in mode O

6

5 4 3 2 1 0

Reserved

| SP2 | SP1 | SPO |WE|_| WIP \

WIP = Write In Progress =1 Device is busy with write

0 Device is not busy with write

WEL = Write Enable Status =1 Write Enable is active

0 Write Enable is inactive

SP2 SP1 SPO
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

No sector is protected

Address 0x00000 to OxOFFFF is protected
Address 0x00000 to Ox1FFFF is protected
Address 0x00000 to Ox3FFFF is protected
Address 0x00000 to Ox7FFFF is protected
Address 0x00000 to OxFFFFF is protected
Address 0x00000 to OxFFFFF is protected
Address 0x00000 to OxFFFFF is protected

Fig. 5.107 Serial Flash memory status register

sectors are protected. The Write Enable Latch bit, WEL, signifies if the device has already
been write-enabled or not. The Write-In-Progress, WIP, bit defines if the device is busy with

a write process.

The user can access the contents of the status register at any time by issuing the read status
register command, 0x77, as shown in Fig. 5.108. After executing this command, the contents
of the status register become available at the SDO port.

The user can also place the Flash memory into the sleep mode to conserve power by
issuing hibernate opcode, 0x88, as shown in Fig. 5.109. The hibernation mode can be
reversed by issuing the wake-up opcode, 0x99, as shown in Fig. 5.91.

264 5 Memory Circuits and Systems

ss 1 [

SCK

SDI XXX T >

L |
OPCODE = 0x77 = READ STATUS REGISTER

SDO

STATUS REGISTER CONTENTS

Fig. 5.108 Serial Flash memory status register read operation in mode 0

sck — TI1T1LT1LTLTrLTLr Ly

SDI

L |
OPCODE = 0x88 = CHIP HIBERNATE

Fig. 5.109 Serial Flash memory chip hibernate operation in mode 0

5.5 Serial Flash Memory 265

Review Questions

1. An SDRAM is composed of two16-bit wide banks, bank 0 and bank 1, as shown below.

SDRAM Bank0 SDRAM Bank1

5 0 5 0
0xABOO 0000 0xCDO00 AAQ00
0xABO1 1111 0xCDO1 BB11
0xABO02 2222 0xCD02 CC22
0xABO3 3333 0xCDO03 DD33
0xAB04 4444 0xCDO04 EE44
0xABO05 5555 0xCDO05 FF55
0xABO6 6666 0xCDO06 AA11
0xABO7 7777 0xCDO07 BB22
0xABO08 8888 0xCDO08 CC33
0xAB09 9999 0xCD09 DD44
O0xABOA AAAA 0xCDOA EE55

The truth table below defines the precharge, activate and read cycles.

Operation CS RAS CAS WE

Precharge 0 0 1 0
Activate 0 0 1 1
Read 0 1 0 1

Each 16-bit SDRAM address is composed of two parts: the most significant byte cor-
responds to the row address, and the least significant byte corresponds to the column
address as shown below.

Address = {Row Address, Column Address}

The precharge wait period is two clock cycles between the positive edge of the precharge
cycle and the positive edge of the activate cycle. Similarly, the CAS wait period is two
cycles between the positive edge of the activate cycle and the positive edge of the read
command. The read burst from the specified address starts after a latency of two cycles.
The waiting period between the last data packet and the precharge cycle is also two cycles
if the read repeats from the same bank.

266 5 Memory Circuits and Systems

(a) Show the two read sequences in sequential addressing mode from Bank 0. Each burst
contains four data packets: the first burst is from the address, 0OxABO03, and the next
from the address, OxABO7.

(b) Show the two read sequences in sequential addressing mode from different banks
with no delay in between. Each burst contains four data packets: the first burst is from
the Bank O with the starting address, 0OxABO3, and the next from Bank 1 with the
address, 0xCDO06.

2. A Flash memory is composed of two byte-addressable sectors. It has an eight-bit
bidirectional I/O port for reading and writing data, and a 16-bit unidirectional address
port. The upper eight bits of the address field are allocated for the sector address and the
lower eight bits for the program address. The three active-low inputs, EN, RE and WE,
control the Flash memory according to the following chart:

Operations EN | RE | WE
Read 0 0 1
Write 0 1 0

Standby 0 1 1
Off 1 X X

The initial data contents in this memory are shown below:

Sector 0 Sector 1
15 0 15 0
OxEE OxFF 0x00 0x34 0x12 0x00
0xCC 0xDD 0x02 0x78 0x56 0x02
0xAA 0xBB 0x04 0xBC 0x9A 0x04
0x88 0x99 0x06 0xFO0 0xDE 0x06

The Flash command chart is as follows:

Cycle 1 Cycle 2 Cycle 3
[| | |
Addr Data Addr Data Addr Data
Sector protect word | 0x5555 OxAA OxAAAA 0x55 | Sector Addr 0x01
AAAA Write Addr | Write Dat
Fast write word | 0x5555 OXAA (009 0x02 rf e r rf e Data
byte | OXAAAA 0x5555 Write Addr | Write Data
word | 0x5555 O0xAAAA Read Addr | Read Dat
Read OXAA 0x03 f— T | o8 BB
byte | OXAAAA 0x5555 Read Addr | Read Data

5.5 Serial Flash Memory 267

In this diagram, the sector protect is a three-cycle sequence where the sector protect code,
0x01, is provided in the third cycle along with the sector address.

Both the fast write and the read processes are initially three cycles. However, once the
process starts, additional reads or writes are reduced to two-cycle operations as shown in
the flow chart below. According to this chart, for each additional data to be read or
written, the command code must be employed in the second cycle, and the address/data
combination in the third cycle.

The flow chart for the fast write and read is as follows:

| Start I

| First cycle I
| Second cycle |<

Y

Addr/
Data

Last Addr

Incr. Addr

(a) Perform protect sector 1. Show the timing diagram with control inputs, address and
data.

(b) Perform fast write to sector O with four bytes of data, Ox11, 0x22, 0x33, 0x44. Start
from the address, 0x04, and increment the address to write each byte.

(c) Read four bytes from sector O at the addresses, 0x00, 0x02, 0x04 and 0x06. Show the
timing diagram with control inputs, address and data.

268 5 Memory Circuits and Systems

3. Two reads need to be accomplished from a 16-bit wide SDRAM organized in four banks

with the data shown below.

15 0 15 0 15 0 15 0

AA00 1111 BB0O AAAA CCo0 FFFF DDO00 8888
AA01 2222 BBO1 BBBB CCo1 EEEE DDO01 7777
AA02 3333 BB02 CCCC CCo02 DDDD DD02 6666
AA03 4444 BB03 DDDD CCo3 CCcCC DDO03 5555
AAO4 5555 BB04 EEEE CCo4 BBBB DDO04 4444
AAO5 6666 BBO5 FFFF CCo5 AAAA DDO05 3333
AA06 777 BB06 0000 CCo06 1111 DDO06 2222
AA07 8888 BBO7 1111 cco7 0000 DDO7 1111

Bank0 Bank1 Bank2 Bank3

Each SDRAM address is composed of an eight-bit wide row address, RA[7:0], and an
eight-bit wide column address, CA[7:0], as in the following format:

SDRAM Address = {RA[7:0], CA[7:0]} where the row address occupies higher bits.
To control SDRAM, the following controls are supplied:

Operation CS RAS CAS WE

Precharge 0 0 1 0
Activate 0 0 1 1
Read 0 1 0 1

The wait period between the precharge and the activate cycles is one clock cycle. Similarly,
the wait period between the activate and the read cycles is one clock cycle. The precharge
cycle for the next read operation takes place after the last data is read out from SDRAM.
BS[1:0] = 0 selects BankO, BS[1:0] = 1 selects Bank1, BS[1:0] = 2 selects Bank2, and
BS[1:0] = 3 selects Bank3 in the timing diagrams.

(a) Assuming that the mode register is pre-programmed in sequential mode addressing
with a burst length of four and a CAS latency of two, construct a timing diagram to
show the two reads from the SDRAM addresses, 0OxAAOO and O0xAAO04. Start from
the precharge cycle to accomplish each read.

(b) With the same mode register contents in part (a), construct a timing diagram such that
the two reads from the SDRAM addresses, 0xAAO0 and 0OxBB02, take place in the
shortest possible time. Again start from the precharge cycle to accomplish each read.

5.5 Serial Flash Memory 269

(c) With the same mode register contents in part (a), accomplish one read from the
SDRAM address, 0xCC00, with a burst length of two, and one read from the
SDRAM address, 0xDDO02, with a burst length of eight. Start from the precharge
cycle to accomplish each read.

4. Subsequent write and read operations are performed on an SDRAM that consists of two
banks. Both banks have eight-bit wide I/O data ports.
The first SDRAM operation is a write operation that writes Ox11 to the starting address of
0xAB in bank 0. This is followed by writing the data values, OXxEE, 0x00 and OxFF, to
bank 0 in sequential mode.
The read operation takes place from bank 1 without any interruption. This means that the
first read-data is delivered to the data bus immediately after the last data, OxFF, has been
written. The first read-address is defined as Ox12. Four data packets are read from this
starting address in sequential mode with a latency of two cycles.
Both write and read operations require tprg = tcas = 1 cycle.
Construct a timing diagram with control, address and data values to achieve these two
consecutive operations. Assume all initial data values in Bank 0 are 0x00. Make sure to
mark each precharge, activate, write and read cycle on the timing diagram. Indicate where
latency happens.

7 0 ’ 0
Addr[0XAQ] 0x88 Addr[0x10]
Addr[0xA1] 0x99 Addr[0x11]
Addr[0xA2] OxAA [Addr[0x12]
Addr[0xA3] 0xBB [Addr{0x13]
Addr[0xA4] OxCC | Addr[0x14]
Addr{0xA5] 0xDD | Addr{0x15]
Addr{0xA6] OxEE | Addr[0x16]
Addr{0xA7] OxFF | Addr[0x17]
Addr{0xA8] 0x00 Addr[0x18]
Addr[0xA9] 0x11 Addr[0x19]
Addr[0xAA] 0x22 Addr{0x1A]
Addr[0xAB] 0x33 Addr[0x1B]
Addr[0xAC] 0x44 Addr[0x1C]
Addr[0xAD] 0x55 Addr[0x1D]
Addr[OXAE] 0x66 Addr{0x1E]
Addr[OxAF] 0x77 Addr{0x1F]

BANK 0 BANK 1

270 5 Memory Circuits and Systems

5. An E?PROM memory is organized in four sectors. There are eight rows in each sector but
no pages. The existing data in this memory is shown below.

3 0 3 0 3 0 3 0
7 0x7 7 OxF 7 0x0 7 0x8
6 0x6 6 OxE 6 0x1 6 0x9
5 0x5 5 0xD 5 0x2 5 OxA
4 0x4 4 oxC 4 0x3 4 0xB
3 0x3 3 0xB 3 0x4 3 0xC
2 0x2 2 OxA 2 0x5 2 0xD
1 0x1 1 0x9 1 0x6 1 OxE
0 0x0 0 0x8 0 0x7 0 OxF
Sector 0 Sector 1 Sector 2 Sector 3

The command truth table is given below.

Function Command code
SR Read 0x0
Read 0x1
Write buffer 0x2
Write core 0x3

The memory has five control pins:

EN is an active-low signal that activates the sector

AE is an active-high signal that accepts address

CE is an active-high signal that enables command function

WE is an active-low signal that enables write

RE is an active-low signal that enables read

Writing to the memory takes place at the rising edge of WE. At the falling edge of RE, reads
take place from the memory. The write sequence starts with the command function followed
by the address and then the data. The read sequence follows a similar fashion: it starts with
the read command, then the address and then the data. Assume all AE, WE and RE set-up
times are 0 s. The setup and hold times for command, address and data are all different from
0 s. It takes twgrrre amount of time to transfer data from the buffer to the memory core.

(a) Draw a timing diagram to read data from the row address = 0 and the sector address = 3.

(b) Draw a timing diagram to write 0xA, 0xB, 0xC, 0xD, OxE, OxF, 0x7, 0x6 starting
from the row address = 2 and the sector address = 2 in the following manner: the first
data, OxA, to the row address 2; the second data, 0xB, to the row address 0x3 and so
forth. Draw the contents of the memory after the write sequence is complete.

5.5 Serial Flash Memory 271

6. A Flash memory block has an eight-bit address, and executes all reads and writes on an
eight-bit bidirectional data bus. The Flash memory write sequence contains a preamble, a
write command, and an address/data combination as shown in the flow chart below. Once
the write command is issued, the address/data combination is generated continuously until
the last write takes place. The sequence ends with the same preamble that starts the write.

yes

In the read sequence, the bus master starts fetching data once the preamble and the read
command are issued. The sequence has the same exit preamble as shown below.

yes

272

5 Memory Circuits and Systems

START and DONE do not have any significance in timing diagrams other than that they

indicate the start and the end of the sequence, respectively.

The preamble, write and read commands are issued with the hexadecimal values shown

in the truth table below.

COMMANDS | Address Data
Preamble FF 00
Write com AA FF
Read com BB FF

The state of the Flash memory before any read or write operation is shown below. The

leftmost column in this figure shows the Flash memory address in hexadecimal.

7
F8 FF
F9 EE
FA DD
FB CcC
FC BB
FD AA
FE 99
FF 88

The bus master produces three data transmissions for the Flash memory. In the first

transmission, four data packets are written to the Flash memory as shown below.

Packet no Address Data
1 F8 00
2 F9 11
3 FA 22
4 FB 33

5.5 Serial Flash Memory 273

In the second transmission, the bus master reads two data packets from the following
addresses below.

Packet no Address Data
1 FA
2 FB

In the third transmission, the bus master reads two more data packets from the following
addresses.

Packet no Address Data
1 FE
2 FF

Construct a timing diagram, including the address, the active-low WE and RE signals,
and the data. Note that the Flash memory requires a hold period which coincides with the
high phase of EN signal. However, in the low phase, when the Flash memory is active,
the device either writes or reads depending on the value of the WE and RE signals,
respectively.

7. A serial on-chip SPI bus described in Chapter 4 is used to program an SDRAM register
file that consists of five registers (see the SDRAM bus interface architecture).
Assume that each register in the register file has an eight-bit long address. Data in each
register is also assumed to be eight bits long.
The Wait register receives the number of clock periods which is equivalent to tyarT, the
Latency register to t; o, the Burst register to tgyrst, the CAS register to tcas, and the
Precharge register to tprg.
The SDI port of the SDRAM programming interface receives an eight-bit address (starting
with the most significant bit) followed by an eight-bit data (again starting with the most
significant bit) at the positive edge of SCK until all five registers are programmed while
SS = 0. Once the programming is finished, the SS node pulls back to logic 1.
Design the interface between the SPI bus and the register file. Make sure to show each
SPI-compliant I/O port (such as SCK, SDI, SS etc.), the internal address, data and control
signals of the interface on the timing diagram. The functionality of the interface must be
the same in both the timing diagram and the data-path.
Start building the timing diagram that includes only the address and the data. Then form
the corresponding data-path that matches the timing diagram. Increase the complexity of
the design by including the control signals in the timing diagram, guiding the data flow.
Lastly, draw the state diagram of the Moore type controller for the interface.

http://dx.doi.org/10.1007/978-3-319-25811-9_4

274 5 Memory Circuits and Systems

Projects

1.

Implement and verify the SRAM bus interface unit described in Fig. 5.5 with the uni-
directional bus designed in Chapter 4. Use Verilog as the hardware design language for
the module implementation and functional verification. Make sure the interface complies
with the timing diagrams shown in Figs. 5.6 and 5.8 and includes a controller unit as
shown in Figs. 5.7 and 5.9.

Implement and verify the SDRAM bus interface unit described in Fig. 5.25 with the
unidirectional bus designed in Chapter 4. Use Verilog as the hardware design language
for the module implementation and functional verification. Make sure the interface
complies with the timing diagrams shown in Figs. 5.27 and 5.29 and includes a controller
unit as shown in Figs. 5.28 and 5.30. Produce the hardware to program the SDRAM
register file. Assume a serial bus such as SPI or I’C to distribute the program data to the
registers.

Implement and verify the I°C fast write interface in the first design example of Chapter 5
using Verilog. Make sure your design is consistent with the state machine shown in
Fig. 5.72.

Implement and verify the I°C read interface in the second design example using Verilog.
Make sure to be consistent with the state machine shown in Fig. 5.80.

Combine the read and the fast write interfaces into a single unit. Design and verify the
complete interface using Verilog.

Note that for projects 3 through 5, write a behavioral Verilog code that mimics the bus

master in order to send data on the I°C bus.

References

Nk wh =

Toshiba datasheet TC59S6416/08/04BFT/BFTL-80, -10 Synchronous Dynamic RAM
Toshiba datasheet TC58DVM72A1FT00/TC58DVM72FIFT00 128Mbit E’PROM
Toshiba datasheet TC58256AFT 256Mbit EPROM

Toshiba datasheet TC58FVT004/B0O04FT-85, -10, -12 4MBit CMOS Flash memory
Toshiba datasheet TC58FVT400/B400F/FT-85, -10, -12 4MBit CMOS Flash memory
Toshiba datasheet TC58FVT641/B641FT/XB-70, -10 64MBit CMOS Flash memory
Atmel datasheet AT26DF161 16Mbit serial data Flash memory

http://dx.doi.org/10.1007/978-3-319-25811-9_4
http://dx.doi.org/10.1007/978-3-319-25811-9_4
http://dx.doi.org/10.1007/978-3-319-25811-9_5

This chapter describes a basic Central Processing Unit (CPU) that operates with a Reduced
Instruction Set (RISC) [1, 2, 3, 4]. The chapter is divided into four parts.

In the first part, fixed-point Arithmetic Logic Unit (ALU) instructions are described. This
section first develops a dedicated hardware (data-path) to execute a single RISC instruction,
and then groups several data-paths together to be able to execute variety of user programs. In
each step of this process, the instruction field is dissected into several segments as the
instruction flows through the data-path, and the necessary hardware is formed to execute the
instruction and generate an output.

The second part of this chapter explains the IEEE single and double-precision
floating-point formats, leading to the designs of floating-point adder and multiplier. These
designs are then integrated with the fixed-point hardware to obtain a RISC CPU capable of
executing both fixed-point and floating-point arithmetic instructions.

In the third part, structural, data and program control hazards in CPU pipelines are
discussed. This section shows how to generate additional hardware (forwarding loops) to
overcome various hazards [4].

The last section of this chapter is devoted to explaining different types of cache memory
architectures, their operation and design trade-offs.

6.1 RISC Instruction Formats

In a RISC CPU, all instructions include an Operation Code (OPC) field which instructs the
processor what to do with the rest of the fields in the instruction, and when to activate
different hardware components in the CPU to be able to execute the instruction. The OPC
field is followed by one or more operand fields. Each field either corresponds to a register
address in the Register File (RF) or contains immediate user data to process the instruction.

© Springer International Publishing Switzerland 2017 275
A. Bindal, Fundamentals of Computer Architecture and Design,
DOI 10.1007/978-3-319-25811-9_6

276 6 Central Processing Unit

There are three types of instructions in a RISC CPU: register-to-register-type,
immediate-type and jump-type.

A register-to-register-type instruction contains an OPC followed by three operands: two
source register addresses and one destination register address pointing the RF, namely RS1,
RS2 and RD. The format of this instruction is shown below.

OPC RS1,RS2,RD

This type of instruction fetches the contents of the first and second source registers,
Reg[RS1] and Reg[RS2], from the RF, processes them according to the OPC, and writes the
result to the destination register, Reg[RD] in the RF. This operation is described below.

Reg[RS1] (OPC) Reg[RS2] — Reg[RD)]

An immediate-type instruction contains an OPC followed by three operands: one source
register address, RS, one destination register address, RD, and an immediate data as shown
below.

OPCRS,RD, Imm Value

This type of instruction combines the contents of the source register, Reg[RS], with a
sign-extended immediate value according to the OPC, and writes the result to the destination
register, Reg[RD], in the RF. This operation is shown below.

Reg[RS] (OPC) Immediate Value — Reg[RD]

The jump-type instruction contains an OPC followed by an immediate value shown
below.

OPC Imm Value

This type of instruction uses the immediate field to modify the contents of the Program
Counter (PC) for the instruction memory. The operation of this instruction is given below.

Immediate Value — PC

All three instruction types fit in a 32-bit wide instruction memory as shown Fig. 6.1. In
this figure, the numbers on top of each field correspond to the bit positions of the instruction
memory, defining the borders of the OPC or a particular operand field.

6.2 CPU Data-Path 277

Register-to-Register Type
31 26 25 2120 16 15 1110 0
OPC RS1 RS2 RD Not Used

Immediate Type

31 26 25 2120 16 15 0
OPC RS RD Immediate Value/Not Used

Jump Type

31 26 25 0

| opc | Immediate Value/Not Used

Fig. 6.1 Instruction field formats

6.2 CPU Data-Path

A modern RISC CPU is composed of small and large size memories, such as Register File
(RF), instruction and data memories, and an ALU to execute an instruction. A Program
Counter (PC) generates an address for the instruction memory as shown in Fig. 6.2. Each
instruction is fetched from this memory and separated into OPC and operand fields.
The OPC field guides the data-flow through the rest of the CPU. The operand field contains
either a number of RF addresses or the user data or the combination of the two. Once the
source and destination RF addresses become available at the output of the instruction
memory, the corresponding data is read from the RF and processed in the ALU according to
the OPC. The read function from the RF is achieved by simply disabling the write process to
the RF or Write Enable (WE) = 0. The processed data in the ALU is subsequently written
back to a destination address in the RF by WE = 1. On the other hand, if a particular
instruction needs to fetch data from the data memory instead of the RF, first the ALU
calculates the effective memory address for the data memory. When data becomes available
at the output of the data memory, then the OPC decoder writes this data back to a destination
address in the RF by WE = 1. Sometimes, instructions contain a user-defined immediate
value. This is separated from the rest of the operand fields and combined with the contents
of a source register, Reg[RS], in the ALU. The processed data is written back to the RF
by WE = 1.

278 6 Central Processing Unit

Instruction » OPC Dec - _
Memory
Data
Y Memory
Register WE
File
RS1
Addr Ain Dout »{ Ain1 Dout1 > Dout » DM
1 Ain
RS2
| Ain2 Dout2
Ain3 Din WE
A A A
Immediate value path Data Memory bypasspath | gy

Fig. 6.2 A non-pipelined CPU

Instructions can be executed in RISC CPUs in two ways. In a non-pipelined CPU
architecture, instructions are fetched from the instruction memory and processed through the
remaining four stages of the CPU in Fig. 6.2 before the CPU takes the next instruction. This
is shown in Fig. 6.3. In this figure, IF, RF, A, DM and WB represent the Instruction Fetch,
Register File access, ALU, Data Memory and Write-Back stages, respectively.
cycle cycle

cycle

NON-
PIPELINED

Instruction 1 IF RF A DM WB

Instruction 2 IF RF A DM WB

IF RF A DM WB

Instruction 3

Fig. 6.3 A non-pipelined CPU timing table

Non-pipelined structures are inefficient in terms of data throughput but require lower clock
frequencies to operate. The CPU becomes more efficient in terms of throughput if the archi-
tecture in Fig. 6.2 is subdivided into smaller functional stages where each stage is separated
from its neighboring stage by a flip-flop boundary that stores data (or address) only for one
clock cycle as shown in Fig. 6.4. In this figure, the CPU data-path consists of five stages where
individual tasks are executed in each stage within one clock cycle. According to this scheme,
the clock frequency becomes five times higher compared to the architecture in Fig. 6.2.

The first stage of this new pipeline in Fig. 6.4 is the instruction memory access. In this
stage, each program instruction is fetched from the instruction memory and stored in the
instruction register at the first flip-flop boundary. This architecture supports a
word-addressable instruction memory, and therefore requires the PC to increment by one.

6.2 CPU Data-Path 279

1% flip-flop 2™ flip-flop 3" flip-flop 4™ flip-flop
boundary boundary boundary boundary
|
Instruction o OPC Dec L 4 *
Memory |
Data
: Y Memory
|

Register
File

RS1
Addr Ain Dout 1 Ain1 Dout1
|

> Ain2 Dout2 RF

Dout

Y

Y

Ain

Ain3 Din_WE
A A A

Data Memory bypass path , | gy

Immediate value path

Instruction Memory Stage RF Stage ALU Stage Data Memory Stage Write-Back Stage

Fig. 6.4 A pipelined five-stage CPU

The next pipeline stage is the RF stage where the instruction OPC is separated from its
operands. The OPC is decoded in order to generate control signals to route the address and
data in the rest of the CPU. Operand fields are either source register addresses to access the
data in the RF or immediate data supplied by the user as mentioned earlier. If the operand
corresponds to an RF address, the data fetched from this address is loaded to the register that
resides at the second flip-flop boundary. If the operand is an immediate data, it is sign
extended to 32 bits before it is loaded to a register in the second flip-flop boundary.

The third stage of the CPU pipeline is the ALU stage. The data from the source registers
in the RF or the immediate data are processed in this stage according to the OPC and loaded
to the register at the third flip-flop boundary.

The fourth stage is the data memory stage. This stage either calculates an effective address
for the data memory or bypasses the data memory. If the instruction calls for loading or storing
data, the ALU calculates the data memory address to access its contents. Otherwise, the ALU
result simply bypasses the data memory and stored in a register at the fourth flip-flop boundary.

The last stage of the CPU pipeline is the write-back stage. In this stage, data is either
routed from the output of the data memory or from the bypass path to a designated desti-
nation address in the RF.

A pipelined RISC CPU’s efficiency and speed are shown in the timing table in Fig. 6.5.
This figure extends to 15 high frequency clock cycles, which is the equivalent to three low
frequency clock cycles in Fig. 6.3. The number of completed instructions in this new
pipeline is almost 12, which is four times larger than the number of instructions executed in a
non-pipelined CPU in Fig. 6.3. The difference between non-pipelined and pipelined CPU
efficiency only gets better as the number of instructions increases.

280 6 Central Processing Unit

PIPELINED | cycle | cycle | cycle | cycle | cycle | cycle | cycle | cycle | cycle | cycle | cycle | cycle | cycle | cycle | cycle |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
. | | | | | | | | | | | | | | | |
Instruction 1 | IF | RF | A | DM | WBI | | | | | | | | | |
| | | | | | | | | | | | | | | |
Instruction 2 | | IF 1 RF | A | DM | WB | | | | | | | | | |
| | | | | | | | | | | | | | | |
Instruction 3 | I l'IFIRFI A I DM! wB ! I I I I I I I I
| | | | | | | | | | | | | | | |
. | | | | | | | | | | | | | | | |
Instruction 4 | | | | IF | RF | A | DM | WwB | | | | | | | |
| | | | | | | | | | | | | | | |
Instruction 5 | | | | | IF 1T RF |1 A | DM| WB | | | | | | |
| | | | | | | | | | | | | | | |
Instrucions 1L Lo bbb bee oA Tpy gt
| | | | | | | | | | | | | | | |
. | | | | | | | | | | | | | | | |
Instruction 7 | | | | | | | IF | RF | A I DM I WB I I I I I
| | | | | | | | | | | | | | | |
Instruction 8 | | | | | | | I IFITRFI1 A I DMI WB I | | |
| | | | | | | | | | | | | | | |
! | | | | | | | | | | | | | | | |
Instruction 9 IF RF A DM = WB
nsiruction T T T T T T T A et Tt B B
| | | | | | | | | | | | | | | |
Instruction 10 | | | | | | | | | | IF | RF | A | DM | WB | |
| | | | | | | | | | | | | | | |
Instruction 11 | I I I I I I I I I I'IFIRFI A DM I wBI
| | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | |
Instruction 12 IF . RF. A .DM. WB

Fig. 6.5 A pipelined CPU timing table

The next section of this chapter examines the hardware requirements of
register-to-register-type, immediate-type and jump-type RISC instructions.

6.3 Fixed-Point Register-to-Register Type ALU Instructions

Fixed-point register-to-register type ALU instructions interact with the ALU only. The most
fundamental instruction in this category is the Add (ADD) instruction that contains the ADD
opcode, two source register addresses, RS1 and RS2, and a destination register address, RD,
as shown below.

ADDRSI,RS2,RD

This instruction fetches data from the source addresses, RS1 and RS2, adds them, and
returns the result to the destination address RD according to the equation below.

Reg[RS1] 4 Reg[RS2] — Reg[RD]

The field format of this instruction in the instruction memory is shown in Fig. 6.6. The
numbers on top of each field represent the OPC and operand boundaries.

6.3 Fixed-Point Register-to-Register Type ALU Instructions 281

31 26 25 2120 16 15 1110 0
| AbD | Rst [Rs2 [RD Not Used

Fig. 6.6 Fixed-point ADD instruction field format

The required hardware for the ADD instruction is shown in Fig. 6.7. In this figure, the PC
generates an address for the instruction memory and loads the contents of the ADD
instruction to the instruction register at the end of the first clock cycle. Since the instruction
contains two source register addresses, RS1 and RS2, the contents of these registers,
Reg[RS1] and Reg[RS2], are read from the RF and stored at the second flip-flop boundary.
As mentioned earlier, the read function is achieved by disabling the write process to the RF
or WE = 0 during this cycle. In the third clock cycle, the ALU adds Reg[RS1] and Reg
[RS2], and stores the result at the third flip-flop boundary. In the fourth clock cycle, the ALU
result is written back to the destination register address, RD, in the RF. In this cycle, WE =1
is generated by the OPC decoder to enable the write. No processing is done to RD, which
propagates from one stage to another without any modification to point where the processed
ALU result needs to go in the RF.

ADD OPC selects

)] the fixed-point adder
Instruction OPC ADD in the ALU
Register A OPC DEC D Q < D Q
31
o
P Register clock clock
C File
. 120 ! — Reg[RS1] + Reg[RS2]
r————-] R RS1 Reg[RS1] 32
| S AIn1 DOut1 DQ
| o |1 5 32
| Al DOut 2
| | 32 R RS2 Reg[RS2] clock
I | S Aln2 DOut2
2 5 32
| | i KT Aln3 Din WE| —
; 15
I Instruction A A A 22
I : Memory g RD DQ
54 32
] N\F_/ | | {1
| | N clock
L o
T 5
u ADD OPC produces WE = 1 for the RF
S
E]]
D DaQ > pal—2
? 0
clock
clock clock
Instruction RF ALU Write-Back
Memory Stage Stage Stage Stage

Fig. 6.7 ADD instruction data-path

282 6 Central Processing Unit

Since the ADD instruction does not require any data to be stored or fetched from the data
memory, the data memory stage is omitted from this data-path which reduces the number of
stages from five to four.

Similar to the ADD instruction, the Subtract (SUB) instruction subtracts the 32-bit data at
RS2 from the 32-bit data at RS1 and returns the result to RD. The instruction and its
operational equation are shown below.

SUBRS1,RS2,RD
Reg[RS1] — Reg[RS2] — Reg[RD]

The field format of the SUB instruction in the instruction memory is the same as the ADD
instruction in Fig. 6.6 except the ADD OPC is replaced by SUB. This instruction also
follows the same data-path as the ADD instruction except the OPC selects the subtractor in
the ALU instead of the adder.

The fixed-point Multiplication (MUL) instruction requires four operands as shown below.
This instruction multiplies the contents of RS1 and RS2 and generates a 64-bit result. The
lower and upper 32 bits of the result in curly brackets are written to RD1 and RD?2,
respectively.

MULRS1,RS2, RD1,RD2
Reg[RS1] x Reg[RS2] — {Reg[RD2],Reg[RD1]}

The field format of this instruction in the instruction memory is shown in Fig. 6.8.

31 26 25 2120 16 15 1110 65 0
[muL | Rst [Rs2 | RD2 | RD1 [NotUsed |

Fig. 6.8 Fixed-point MUL instruction field format

There are two ways to generate a data-path for this particular instruction. The first method
executes this instruction using four pipeline stages and requires two RF write-back ports as
shown in Fig. 6.9. In this figure, the lower 32 bits of the multiplication result, MUL[31:0],
are written to the address RD1 while the higher 32 bits, MUL[63:32], are written to the
address RD2 in the RF. In the write-back cycle, WE = 1 is generated by the OPC decoder to
enable the two simultaneous writes.

6.3 Fixed-Point Register-to-Register Type ALU Instructions

MUL OPC selects

the fixed-point multiplier
in the ALU
D Qj

283

OPC MuUL
OPC DEC D Q)
Instruction clock clock
Register
— 15 I
31 = @
&
g % 32 Sy
=
c %] Reg[RS1] x Reg[RS2]
PC R [® DInL DInH
r—— - - - | RS1 Reg[RS1] 32—
| S Aln1 DOut1 D Q)
| 2 1 " 5 32
| Aln DOut %0 RF o4 61
I | 32 R RS2 Reg[RS2] clock X DQ
o S Aln2 DOut2 - MUL [63:0]
| | 2 5 32
16
I I Instruction NE R Do~ clock
| | Memory g RD2 A A A
| 5 5{ 5
| “ : i " clock MUL OPC produces WE = 1 for the RF
10 — —
| I S RD1
5 5
1 s DQ DQ
6
|5
clock clock
0 5
clock bq pa
clock clock
Instruction Memory RF ALU Write-Back
Stage Stage Stage Stage

Fig. 6.9 Data-path for fixed-point multiplication using two write-back ports

The second method writes the multiplication result back to the RF in two successive clock
cycles instead of one but does not require the RF to have two write-back ports. In this
scheme, the 64-bit multiplication result is divided between two distinct paths in the ALU as
shown in Fig. 6.10. The lower 32 bits, MUL[31:0], are written back into the RF at the end of
fourth cycle while the higher 32 bits, MUL[63:32], are stored at an additional flip-flop
boundary. The higher 32 bits are subsequently written back to the RF at the end of the fifth

cycle.

284 6 Central Processing Unit

Instruction OPC MUL MUL OPC selects the fixed-point multiplier in the ALU
Register OPC DEC bq P P
egiter [OPC PEC]
o
P Register clock
C L File
PC — 2 —
S ! g il A1 DOut1 Regfren b a2
| oo MUL
| I A DOut—2 o ’ *]
| o " u R '1" 64 MUL[31:0] 32
| RS2 Reg[RS2] clock X D 1
| 4 S Aln2 DOut: T 320 2
| | > 5 32 Lo
| 1< |16 Din Aln 2
| | Instruction r|["® 02 [y [y D q clock 0
| | Memory D _?_]]
5 MUL[63:32] 32 2
[_~*_/ | i 1 clock D D
| | = | 32H
RD1
| | D 32 5
______ 1 s clock clock
| |e
5 DELAY
- - - MUL
0 o 5 o 5 o 5
0
clock 5
clock clock clock P
] DELAY []
5 5
D D
clock clock
Instruction Memory RF ALU Write-Back
Stage Stage Stage Stage

Fig. 6.10 Data-path for fixed-point multiplication using a single write-back port (WE signal
to RF is not shown for clarity)

The And (AND) instruction bitwise “ANDs” the contents of RS1 and RS2, and returns the
result to the address RD in the RF. Again in the fourth cycle, WE = 1 is generated by the
OPC decoder to enable the write. The operational equation of this instruction contains the
“&” sign to indicate that this is an AND operation. The field format of this instruction is
shown in Fig. 6.11.

31 26 25 2120 16 15 1110 0
| Ao | RSt | Rs2 [RD Not Used

Fig. 6.11 Fixed-point AND instruction field format

ANDRS1,RS2,RD
Reg[RS1] & Reg[RS2] — Reg[RD]

The AND instruction data-path in Fig. 6.12 is identical to the ADD or SUB instruction
data-paths except for the ALU which requires 32 sets of two-input AND gates to carry out
the instruction.

6.3 Fixed-Point Register-to-Register Type ALU Instructions 285
Instruction OPC AND
Register - OPC DEC D Q D Q)
131
(0]
P Register clock AND OPC selects ¢lock
c e 32 2-bit AND gates
PC — 28 — inthe ALU
r————- 1 R RS1 Reg[RS1] 2
| | S % Aln1 DOut1 7 DQ Reg[RS1] & Reg[RS2]
1
| A pout—2 2
I | % R Rs2 Reg[RS2] clock 32 i
| I S Aln2 DOut2 el 1 cloc -
2 5 32
| | 1~ |1e Aln3 Din WE — &
; 15
I Instruction A A A 2 clock
I : Memory E RD DQ
5432
| _~+ / | | |n
I
| | N clock
] o
T 5
u AND OPC produces WE = 1 for the RF
S
:] 1
D DQ 2 D Q)
- 4 "
clock
clock clock
Instruction RF Write-Back
Memory Stage Stage ALU Stage Stage

Fig. 6.12 AND instruction data-path

The Or (OR), Exclusive Or (XOR), Nand (NAND), Nor (NOR) and Exclusive Nor
(XNOR) instructions have identical instruction formats except the opcode field. These

operations are shown below.
OR RS1, RS2, RD
Reg[RS1] | Reg[RS2] — Reg[RD]

XOR RS1, RS2, RD
Reg[RS1] » Reg[RS2] — Reg[RD]

NAND RS1, RS2, RD
Reg[RS1] ~& Reg[RS2] — Reg[RD]

NOR RSI1, RS2, RD
Reg[RS1] ~| Reg[RS2] — Reg[RD]

286 6 Central Processing Unit

XNOR RS1, RS2, RD
Reg[RS1] ~" Reg[RS2] — Reg[RD]

Here, “|” and “” signs refer to the OR and XOR operations, respectively. The “~” sign
corresponds to negation and generates a complemented value. Therefore, “~ &”, “~|” and
“~N” operations denote the bitwise-NAND, NOR and XNOR, respectively.

The OR, XOR, NAND, NOR and XNOR instructions follow the same, four-stage
data-path as the AND instruction in Fig. 6.12. However, each logical instruction requires
different types of logic gates in the ALU stage, and the OPC field selects which to use.

Another important register-to-register type instruction is the shift instruction. The Shift
Left (SL) instruction shifts the contents of RS1 to the left by the amount stored at the address
RS2, and returns the result to RD. The format and the operation of this instruction are shown
below. The “<” sign indicates left-shift operation. This instruction’s field format is similar
to the previous register-to-register-type instructions as shown in Fig. 6.13.

31 26 25 2120 16 15 1110 0
| st | Rst | Rs2 [RD | Not Used |

Fig. 6.13 Fixed-point Shift-Left (SL) instruction field format

SLRSI,RS2,RD
Reg[RS1] < Reg[RS2] — Reg[RD]

The Shift Right (SR) instruction is similar to the SL instruction except the contents of RS1
are shifted to the right by the amount indicated in RS2. The “>>” sign corresponds to the SR
operation.

SRRS1,RS2,RD
Reg[RS1] > Reg[RS2] — Reg[RD]

Both the SL and SR instructions require linear shifters in the ALU. These units are large
combinational logic blocks that are predominantly made out of multiplexers as examined in
Chapter 1. Both of these instructions follow the same data-path as any other
register-register-type instructions with three operands. Figure 6.14 shows the combined
data-path for the SL and SR instructions. The ALU stage contains both a left and a right
linear shifter. The first input, Reg[RS1], represents the value to be shifted to the right or to
the left. The second input, Reg[RS2], specifies the amount to be shifted in number of bits.
Even though the ALU executes both the left and right-shifted versions of Reg[RS1]
simultaneously, only one result is selected by the OPC and written back to the RF. If the
instruction is a SR instruction, then OPC selects port O of the 2-1 MUX, and the SR result is
written to the RF. Otherwise, the OPC selects port 1, and the SL result is written to the RF.

http://dx.doi.org/10.1007/978-3-319-25811-9_1

6.3 Fixed-Point Register-to-Register Type ALU Instructions 287

Instruction
Register
131

OPC

1 SL OPC selects port 1
SL, SR SR OPC selects port 0

6

OPC DEC A D Q]

+]

32

Aln DOut

Instruction

|
|
|
|
| Memory
|
|
|

-T—
IS]
-0z | ox |N(IJ;U AU)JJlO'UO

—|>Urnmc
o

=X
o
Q
=

Instruction Memory
Stage

Reqister clock clock
26 File -
25
RS1 Reg[RS1] 2
Aln1 DOut1 D Q) =: SL r
5 32 — !
21 A
20
RS2 Reg[RS2] clock
Aln2 DOut2 _
s 32 |
16 Aln3 Din WE 32 32
5 RD Y WY ba—= Pq
5432
11 clock clock
A 4
b
5
SL or SR OPC produces WE = 1 for the RF
5 5
D Q] D Q]
clock clock
RF ALU Write-Back
Stage Stage Stage

Fig. 6.14 SL and SR instruction data-paths

Both the SL and SR instructions require a four-stage CPU pipeline. In the write-back cycle,
WE =1 is generated by the OPC decoder to enable the write.

As an example, we can combine the individual data-paths for ADD, SUB, AND, NAND,
OR, NOR, XOR, XNOR, SL and SR instructions in a single CPU to execute a user program.
The architecture in Fig. 6.15 shows eight individual functional units in the ALU followed by
an 8-1 MUX to select the desired ALU output. In this figure, there is only one adder, and it is
able to execute a two’s complement addition to perform subtraction. The left and right linear

shifters are also combined in a single unit as in Fig. 6.14. The SL or SR opcode selects the

output of either the left shifter or the right shifter for the destination register. The outputs of
all logical units are selected by an 8-1 MUX and forwarded to the RF.

6 Central Processing Unit

288

syjed-eiep uononnsur Ny I91S1331-01-19)SI3a1 paulquio) §L°9 *bi4

abeys obeys abejs abeys
yoeg-allm nv BN Kiowsyy uoponusu|
Y002 3002
o a oa
a m L
44 8u3 1o} | = IM 8onpoud sOdO IV o0
o
s 18 a
3
\ S
H s /. n
/4 S 1
00[0 HONX M&l. o) CT T T
e e M_Mu e " _ _
o a y le w1 | |
Ho 4 4 a _ _
ANVN) O d N Aows |\ | L |
Yvy ad o uononysu|
anv L IM UId €Uy 9k ” I 3000 _
< anoa zuiy > S _ _
[esulboy Qaodlisulbay || o + w0 [zsulbey zsy N 2l _
0 - o 7o uv —e—pa |
2> S b _ I
o a 1unoa Luly S
[1sulbey 1sy N L —]
L st — od
oIl)
1918169y d
oo o0 o
1 el — |
oL 9 1918160y
©a o o a 03d 0dO uononuisu|
0dO
Hod HS 10988 ¥s 18 L

‘spod Buipuodsa.iod 8y} 10918s YONX “HOX “YON "0 ‘ANVN ‘aNV
‘Mod /s sps|es ans ‘aav

6.3 Fixed-Point Register-to-Register Type ALU Instructions 289

The next category of register-register-type instructions are the Set instructions used in
decision-making situations where two source register values are compared against each other
prior to a branch instruction.

The Set-Greater-than-or-Equal (SGE) instruction below describes setting the contents of
RD to 0x00000001 if the contents of RS1 are found to be greater than or equal to the
contents of RS2. The data in RS1 and RS2 registers are considered unsigned integers. If the
comparison fails, then the contents of RD are set to 0x00000000. The field format of this
instruction is given in Fig. 6.16.

31 26 25 2120 16 15 1110 0
| sGce | Rst | Rs2 | RD | Not Used |

Fig. 6.16 Fixed-point Set-Greater-than-or-Equal (SGE) instruction field format

SGERS1,RS2, RD
If Reg[RS1] > Reg[RS2] then 1 — Reg[RD]else 0 — Reg[RD]

The data-path for the SGE instruction in Fig. 6.17 tests if the contents of RS1 are greater
than or equal to the contents of RS2 using a subtractor in the ALU. Again, the data in RS1
and RS2 registers are considered unsigned integers. To perform this test, Reg[RS1] is
subtracted from Reg[RS2], and the sign bit of the result is used to make the decision. If Reg
[RS1] is greater than or equal to Reg[RS2], the sign bit becomes zero. The complemented

.] SGE OPC selects
Instruction
Register OPC opc pec |.SGE ba the fixed-point subtractor in the ALU
31 o L1
0]
P Register clock
C 2% File . .
PC —125 1 Sign Bit
f————— I R RS1 Reg[RS1] 32
I S Alin1 DOut1 D
I w | 5 32
| Aln DOut 2
I |32 R RS2 Reg[RS2] clock
I A | S Aln2 DOut2
2 5
| | | = |16 Aln3 —
| | Instruction 5 RD A 2
I | Memory S D
5
LN\ /| ||
I | N 0.00 0.01 clock
= o N
T 5 Sign Bit
U
S
E 5 5
D D Q) D Q)
-
clock
clock clock
Instruction Memory RF ALU Write-Back
Stage Stage Stage Stage

Fig. 6.17 SGE instruction data-path (WE signal to RF is not shown for clarity)

290 6 Central Processing Unit

sign bit is then forwarded to the 2-1 MUX at the write-back port of the RF to store
0x00000001 in the destination register. If the subtraction yields a negative number, the
complemented sign bit selects 0x00000000 to be stored in the RD.

The Set-Greater-Than (SGT) instruction is another instruction that tests if Reg[RS1] is
greater than Reg[RS2]. If the comparison is successful, the instruction stores 0x00000001 in
the RD. Otherwise, the instruction stores 0x00000000 as described below.

SGTRSI,RS2,RD
If Reg[RS1] > Reg[RS2]then 1 — Reg[RD] else 0 — Reg[RD]

The data-path of the SGT instruction is shown in Fig. 6.18. In this figure, two tests are
performed in the ALU stage. The first test checks if Reg[RS1] is greater than or equal to Reg
[RS2] using the sign bit of the subtractor as was done for the SGE instruction. The second
test checks if Reg[RS1] is not equal to Reg[RS2] using 32 sets of two-input XNOR gates
followed by a single 32-input NAND gate. Both of these tests form the input to a two-input
AND gate in the ALU, which then produces the selector input for the 2-1 MUX in the
write-back stage to test the SGT condition. If Reg[RS1] > Reg[RS2], then port 1 of the 2-1
MUX is selected to store 0x00000001 in RD. Otherwise, port 0 is selected to store
0x00000000.

Similar to the SGE and SGT instructions, there are four other set instructions that compare
the contents of the two source registers in a variety of different ways to set or reset the
destination register. The Set-Less-than-or-Equal (SLE), Set-Less-Than (SLT), Set-Equal
(SEQ) and Set-Not-Equal (SNE) instructions and how they operate in the CPU are listed below.

SLERSI, RS2, RD
If Reg[RS1] <Reg[RS2| then 1 — Reg[RD] else 0 — Reg[RD)]

SLTRSI,RS2, RD
If Reg[RS1] <Reg[RS2| then 1 — Reg[RD] else 0 — Reg[RD]

SEQRSI, RS2, RD
If Reg[RS1] = Reg[RS2] then 1 — Reg[RD] else 0 — Reg[RD]

SNERSI, RS2, RD
If Reg[RS1] # Reg[RS2] then 1 — Reg[RD] else 0 — Reg[RD]

All Set instructions require four clock cycles to write the result to the RF like all the other
register-to-register-type instructions.

291

6.3 Fixed-Point Register-to-Register Type ALU Instructions

(Ayxero 10J umoys jou ST ¥y 01 [eulrs ga) Yed-eiep uononnsur 1OS gL'9 ‘b4

obeig abels abeis abels
Joeg-sllim niv 4y Alowsa\ uoionJisu|
400[0 300|0
300[0
oV
% o a % O a a
3
S
n
0 Mod sjos|es 8s|e |NySS800Ns S| uosiedwod | HS Ji | Hod s}08|8s 1iq SIyL
1S L _ _ _ __ _
N _
uonIpuod [enb3 JON S}s8} 3Iq SIY L 300|9 10°0 0070 N |
le 145 4> N |
AR © a |
Nm o a N Kiows| _ L+
\ ad g] uononJsu| _
L u cu 9l
. ze _o v S 4 | H0R
1 ~—lznoa zuiv > S
H0R [zsH]Boy zsy N ze |
- 0z A—inoa uy —+t+—e—1o a
1q ubis L 43
ze S _
#—0o a #—1IN0a LUy # S
uonpuod J19 siss} Z 6
1q uBis psjuswaldwod ay | [Lsulbey |SH ezl ¥ |- -
L e
3|4 9
30010 19)s16ay d
- o
9 rel |
o a 03d 0dO * 1918169y
NV 8y} u Jojoeugns juiod-paxiy ayj s1o918s OdO 19S 198 OdO Loponusuy

292 6 Central Processing Unit

6.4 Fixed-Point Immediate Type ALU Instructions

Immediate ALU instructions allow user data to be included in the instruction. However,
these instructions still fetch register data from the RF to be combined with the user data.

The Add-Immediate instruction (ADDI) adds the contents of RS to the user-supplied
16-bit immediate value and returns the result to RD in the RF. This instruction and how it
operates in the CPU are shown below. The field format of this instruction in the instruction
memory is given in Fig. 6.19.

31 26 25 2120 16 15 0
| aobi | RS | RD | Immediate Value

Fig. 6.19 Fixed-point ADD Immediate (ADDI) instruction field format

ADDIRS, RD, Imm Value
Reg[RS] + Immediate Value — Reg[RD]

The ADDI instruction data-path is shown in Fig. 6.20. In this figure, the contents of the
instruction are transferred from the instruction memory to the instruction register at the end

ADDI OPC selects

Instruction opc [| the fixed-point adder
ADDI i
Register OPC DEC p gpinthe ALU ba
—31 6
O
P Register clock clock
C File
26
PC 125 — Reg[RS] + Imm Value
r—-———-—- | R RS Reg[RS]
| I A - Aln1 DOut ~ DQ
| A DOut|—2 21 4=
' 1% ? ro clock
| A R + D Q
| D 5 32 32
| | R Aln2 Din WE|
| I Instruction 15 A A A clock
| Memory
| 7 | 1
m
| | m
' [
—_———— \Y
a
| 16 Imm Value
u D Q)
32
e
clock
0 16
clock
ADDI OPC produces WE = 1 for the RF
SEXT 5
bQ oa—2
clock clock
Instruction Memory RF ALU Write-Back
Stage Stage Stage Stage

Fig. 6.20 ADDI instruction data-path

6.4 Fixed-Point Immediate Type ALU Instructions 293

of the first clock cycle. In the second clock cycle, the 16-bit immediate value in the
instruction is sign extended to 32 bits while the contents of RS are fetched from the RF. In
the third clock cycle, the two values are added in the ALU. At the end of the fourth cycle, the
processed data is written back to the RF at the address RD. Therefore the ADDI instruction
requires only four clock cycles to execute.

The Subtract-Immediate instruction (SUBI) behaves similarly to the ADDI, but it subtracts
the immediate value from the contents of RS, and returns the result to RD as illustrated below.

SUBIRS, RD, Imm Value
Reg[RS] — Immediate Value — Reg[RD]

There are also immediate logical instructions that operate with the user data. The
AND-Immediate (ANDI) instruction, for example, bitwise ANDs the contents of RS with the
immediate value and returns the result to RD as shown below. The field format of this
instruction is given in Fig. 6.21.

31 26 25 2120 16 15 0
| ANDi | RS | RD | Immediate Value

Fig. 6.21 Fixed-point AND Immediate (ANDI) instruction field format

ANDIRS, RD, Imm Value
Reg[RS] & Immediate Value — Reg[RD]

The ANDI instruction uses a similar data-path to the ADDI instruction, but replaces the
fixed-point adder with 32 two-input AND gates as shown in Fig. 6.22. The contents of RS
and the sign-extended immediate value are combined using the AND gates, and the result is
returned to RD in the RF.

Similar to the ANDI instruction, the ORI, XORI, NANDI, NORI, and XNORI instructions
operate with the immediate data and follow the same data-path as the ANDI instruction.
These instructions and how they operate in the CPU are listed below.The Or (OR), Exclusive
Or (XOR), Nand (NAND), Nor (NOR) and Exclusive Nor (XNOR) instructions have iden-
tical instruction formats except the opcode field. These operations are shown below.

ORI RS, RD, Imm Value
Reg[RS] | Immediate Value — Reg[RD]

XORI RS, RD, Imm Value
Reg[RS] » Immediate Value — Reg[RD]

NANDI RS, RD, Imm Value
Reg[RS] ~ & Immediate Value — Reg[RD]

294 6 Central Processing Unit

ANDI OPC selects

.] 32 2-bit AND gates
Instru_ctlon OPC ANDI in the ALU
Register OPC DEC D » D Q
— 6
31
(e}
(F:’ Register clock clock
File
PC — 22 — Reg[RS] & Imm Value
r—-———— | R RS Reg[RS]
Aln1 DOut D Q)
| | " S 5 32
| AR DOut 21
| 32 2 4
N | R RD clock bal
I | D 5 32 32
| | L Aln2DIn WE
I | Instruction 15 A A A clock
I | Memory
| 5432
| N/, i
| | m
l [
—————— \Y
a
| 16 Imm Value
u DQ
32
e
clock
0 16
clock
ANDI OPC produces WE = 1 for the RF
SEXT 5
D Q) b o—2
clock clock
Instruction Memory RF ALU Write-Back
Stage Stage Stage Stage

Fig. 6.22 ANDI instruction data-path

NORI RS, RD, Imm Value
Reg[RS] ~| Immediate Value — Reg[RD]

XNORI RS, RD, Imm Value
Reg[RS] ~* Immediate Value — Reg[RD]

All logical immediate instructions require four cycles to form the result.

The Shift Left Immediate (SLI) and Shift Right Immediate (SRI) instructions use the same
functional units as the SL and SR instructions in the ALU.

The SLI instruction fetches the contents of RS from the RF, shifts it to the left by the
user-defined immediate value, and stores the result in RD as indicated below. Figure 6.23
shows the field format of this instruction.

31 26 25 2120 16 15 0
| su | Rs | RD | Immediate Value

Fig. 6.23 Fixed-point SL Immediate (SLI) instruction field format

6.4 Fixed-Point Immediate Type ALU Instructions 295

SLIRS,RD, Imm Value
Reg|RS] < Immediate Value — Reg[RD]

Similar to the SLI instruction, the SRI instruction shifts the contents of RS to the right by
an amount equal to the immediate value, and stores the result in RD as shown below.

SRIRS, RD, Imm Value
Reg[RS] > Immediate Value — Reg[RD]

The SLI and SRI instruction data-paths in Fig. 6.24 still require the left and right linear
shifters in the ALU stage. In these instructions, one shifter input receives the immediate data
that specifies the number of bits to shift to the left or to the right while the other input
receives the contents of RS.

Instruction 1 SRI OPC selects port 0
Regist: OPC SLI, SRI OPCs SLI OPC selects port 1
eils ;r OPC DEC D Q) P
6
o
P Register -?_
C File clock
| 126 —
PC 25
r————-- 1 R RS Reg[RS] 32
| i1 DOut D Q)
| 0 S 5 32
| 21
| | % Aln DOut 20 +
R RD clock
l |
| | | e % Aln2 Din WE —
| I Instruction 15 A A A Imm Value 32
| I Memory % D Q
5
| Y/ !
| | m clock
| | 16
—————— \Y
a
| 1 SRI or SLI OPCs produce WE = 1 for the RF
u
e
D Q) e b o=
o SEXT
clock
clock clock
Instruction Memory RF ALU Write-Back
Stage Stage Stage Stage

Fig. 6.24 SLI and SRI instruction data-paths

Figure 6.25 combines all the immediate ALU instructions examined so far in one sche-
matic. These include the ADDI, SUBI, SLI, SRI, ANDI, ORI, XORI, NANDI, NORI and
XNORI instructions with their sign-extended input. The port selection process at the
ALU MUX is as follows: if the OPC is ADDI or SUBI, the adder/subtractor output is routed
through the S/A port; for the SLI and SRI OPCs, the shifter outputs are routed through the
SH port; for the remaining OPCs, the processed data is routed through the corresponding
MUX port carrying the same name as the OPC and becomes the ALU output.

6 Central Processing Unit

296

syred-ejep uonoNISUI TV SiBIpaWW] paulquio) §z'9 *bi4

ouers ouers oues ouers
Yoeg-ojIA niv 44 \COEQ_\/_ uononJsuj
000 3000
A o a 3 O a
1X3s
44 8y} 4oy | = IM @onpoud sOdO IV
300[0
9l 0 le
14S ‘1S Ho0[
<]
] oa % n
HS LdIHS anje A wuw 9l |
e
2 N
300[0 HONX b _| |||||
HOX w |
ze ze HON b w
o a I
"0 ze &S I |
Aiows
aNvwN L+
q YVvYy o | uoponasy |
anv ETNe R . 9k [002
a I
enje wwi QdO)[sylbey N 100} ad o 2
0 0z noa uy—*+—e—pa
z
e g s I
o a unoa Luy
[sylbey S o o —
—_— Od
all %l 5
19)s160y d
3000 000
(e}
} } el |
ol 9 1918169y
03d 0dO uononJsu|

O d
XNW N1V @Y} Ul sweu awes ay} yim wtOn_ ay}
109195 SOdO IMONX ‘I4OX ‘IMON ‘IMO ‘IANVYN ‘IaNY
HS Hod 1ajes sOdO 14S ‘118
/S Hod pajes sOdO 18NS ‘Iaav

0dOo

6.4 Fixed-Point Immediate Type ALU Instructions 297

The set-immediate instructions compare the contents of RS with an immediate value for
setting or resetting the register RD.

The Set-Greater-than-or-Equal-Immediate (SGEI) instruction sets the contents of RD if
the instruction finds the contents of RS to be greater than or equal to the immediate value.
This instruction and how it operates in the CPU is shown below. The field format is given in
Fig. 6.26.

31 26 25 2120 16 15 0
| sGet | Rs | RD | Immediate Value

Fig. 6.26 Fixed-point SGE Immediate (SGEI) instruction field format

SGEIRS, RD, Imm Value
If Reg[RS] > Immediate Value then 1 — Reg[RD] else 0 — Reg[RD]

The SGEI instruction data-path in Fig. 6.27 tests the relative magnitudes of Reg[RS] and
the sign-extended immediate value to make a decision about the contents of RD. If Reg[RS]
is larger than the immediate value or equal to it, the sign bit of the ALU result becomes zero,
which in turn, stores 0x00000001 into RD. Otherwise, RD becomes 0x00000000.

clock

.] SGEI OPC selects
Instruction OPC SGEI the fixed-point subtractor in the ALU
Register . OPC DEC D Q
puEll
(0]
P Register clock
C File
PC —28 — Sign Bit
F—— === I R RS Reg[RS] 32
Aln1 DOutt DQ
[| " S 5 32
| A DOut 2
| % 1w ade
| | DOt
| | |l A2 Din —
| I Instruction 15 A A Imm Value 32
I | Memory T DQ
| _* /| 32
I | clock
| | N
e N
M 5 5 Sign Bit
M 0 N\ 9
32 32
16 0.00 0.01
5 5
o [sExT P9 pa

Instruction Memory RF ALU Write-Back
Stage Stage Stage Stage

Fig. 6.27 SGEI instruction data-path (WE signal to RF is not shown for clarity)

298 6 Central Processing Unit

Similarly, the instruction format for the Set-Greater-Than-Immediate (SGTI),
Set-Less-than-or-Equal-Immediate (SLEI), Set-Less-Than-Immediate (SLTD),
Set-Equal-Immediate (SEQI) and Set-Not-Equal-Immediate (SNEI) instructions and how
they operate in the CPU are given below.

SGTIRS,RD, Imm Value
If Reg[RS] > Immediate Value then I — Reg[RD| else 0 — Reg[RD]

SLEIRS, RD, Imm Value
If Reg[RS] < Immediate Value then I — Reg[RD] else 0 — Reg[RD]

SLTIRS,RD, Imm Value
If Reg|RS] < Immediate Value then 1 — Reg[RD] else 0 — Reg[RD]

SEQIRS,RD, Imm Value
If Reg[RS] = Immediate Value then I — Reg[RD] else 0 — Reg[RD]

SNEIRS, RD, Imm Value
If Reg[RS] # Immediate Value then I — Reg[RD] else 0 — Reg[RD]

All Set Immediate instructions require four clock cycles to store the result in RD.

6.5 Data Movement Instructions

The first data movement instruction that relocates data from the data memory to a register in the
RF is the Load (LOAD) instruction. This instruction first adds the contents of RS to a
user-defined immediate value to form an effective data memory address. It then fetches the data
at this address and moves it to a destination register, RD, in the RF. This instruction and how it
operates in the CPU is shown below. The term, Reg[RS] + Imm Value, defines the effective data
memory address, and mem{Reg[RS]+ Imm Value} corresponds to the data at this address. The
field format of this instruction while it is in the instruction memory is given in Fig. 6.28.

31 26 25 2120 16 15 0
| Lob | Rs | RD | Immediate Value |

Fig. 6.28 Fixed-point LOAD instruction field format

LOADRS, RD, Imm Value
mem{Reg[RS| + Immediate Value} — Reg[RD]

The LOAD instruction data-path in Fig. 6.29 adds the contents of RS to the sign-extended
immediate value and uses this sum as an address for the data memory. The OPC selects the

299

6.5 Data Movement Instructions

yred-ejep uononnsut QVO1 629 *bid

abeyg abeig abeyg abeig abejg
soeg-oim Kows|\ e}eQq nv 44 Aiowsa)\ uoponisu|
300[0 300[0 300[0
o a o a o a
S S S
300[0
19 943 10§ | = IM seonpoid AV 0dO o
1X3s
£}
n
300[0 o _
el e e — =
z€
oa ® A _
anje A wuw| 9l |
u _
Aiowapy eks w |
ejleq | Aows | Lt
300[0 300[0 Yyvy ww || uononsu| _
3IM UId ZuIY 3000
I
3200 ay s} |
o a noa uy o a + €
ze ze ze ze 4 % 7o uv[——e—pa
43 S S |
o a noa Luy
{wwy + [sy]Bey} wow L] ww + [sy]6ey ze [sylBey Sy d L ——— —
L Sel | Od
alld %l
9019 90[0 v_Io,m_lo 1918169y d
} } . L0}
o a O d L4 ©a 03a 0dO J9)s1bay
N1V 8y} ul Jappe ayy avon 0dOo uononysu

SP9I8s dvO10d0 —

300 6 Central Processing Unit

adder in the ALU to calculate the effective data memory address and enables the data
memory for read. The data read from the memory is subsequently written back to the RF at
the address RD by WE = 1. This instruction requires five clock cycles to complete, and it
traces through all five stages of the CPU.

The Store (STORE) instruction moves data in the opposite direction of the LOAD
instruction. This instruction uses the contents of RD and the immediate value to form a data
memory address, and moves the contents of RS to this address as described below. Fig-
ure 6.30 shows this instruction’s field format.

31 26 25 2120 1615 0
| STORE | RS | RD | Immediate Value

Fig. 6.30 Fixed-point STORE instruction field format

STORE RS, RD, Imm Value
Reg[RS] — mem{Reg[RD] + Immediate Value}

The data-path for the STORE instruction is shown in Fig. 6.31. In this figure, the OPC
selects the adder in the ALU to perform an add operation between the sign-extended
immediate value and Reg[RD]. The OPC then enables the data memory to write the contents
of RS at this calculated address. The STORE instruction needs only four clock cycles to
complete.

The Move (MOVE) instruction does not interact with the data memory. Nevertheless, it
moves data from one register to another in the RF. The instruction and how it operates in the
CPU are given below. The bit field format for the MOVE instruction is shown in Fig. 6.32.

MOVERS,RD
Reg[RS] — Reg[RD]

The Move Immediate (MOVEI) instruction moves an immediate value to a destination
register, RD, in the RF as shown below. The bit field format of this instruction is given in
Fig. 6.33.

301

6.5 Data Movement Instructions

yred-erep uononnsur IYOLS LE'9 *bid

abelg obeig abeig abeig
Alows\ eleq nv BN Alowa\ uononisu|
320[0
0V
1X3S
E]
n
3200 o |
Kiows|y z€ ©
ejeq o a A
anjeA wuwy 9l
320[0 w
ze w
| Aowas\
uly e o a + Ho010 ™ uolonJsu|
ze ze i
ze S a
o a anoa guy
Im uig aneA wwi + [gy]bey ze [aulBey ay S|
A % z—fnoa uy
54 Lnoa LUy > S
00]0 00[0
%00] %0 oy N
- - sz| |
el %,
[oXe] o a 19)s160y
% [sulbey . d
0]
— — el |
390|0 3209 J9)s160y
le le uononJsu|
o O 03d 29dO >
a @ a
Kiows|\ eyeq 4o | = IM N7V 8y} ul JIsppe 0dOo
seonpoid 340LS 0dO || 84} s}0919S IHOLS OdO L

302 6 Central Processing Unit

31 26 25 2120 16 15 0
| movE | Rs | RD | Not Used

Fig. 6.32 Fixed-point MOVE instruction field format

31 26 25 2120 16 15 0
| MOVEI [NotUsed| RD | Immediate Value

Fig. 6.33 Fixed-point MOVEI instruction field format

MOVEI Imm Value, RD
Immediate Value — Reg[RD]

The schematic in Fig. 6.34 combines the data-paths of all data movement instructions
discussed above except MOVEIL. The data memory address is selected between {Reg[RS] +
Imm} and {Reg[RD] + Imm} by a 2-1 MUX at the input of the adder depending on the
OPC. Another 2-1 MUX at the write-back stage selects between the contents of RS for the
MOVE instruction and the contents of data memory for the LOAD instruction before the
result is written back to the RF.

6.6 Program Control Instructions

To be able to make decisions in a program, we need program control instructions.

The Branch (BRA) instruction is one of the most essential instructions in a program as it
controls direction of the program flow. This instruction first compares the contents of RS
with a five-bit RS value specified by the user. If the comparison is successful, the BRA
instruction redirects the program to fetch an instruction from a different PC address as shown
below. This new PC address is calculated by incrementing the old PC address by an
immediate value specified by the user. If the comparison is not successful, the program skips
the next instruction, but it executes the instruction after next. This instruction’s field format
is shown in Fig. 6.35.

BRARS, RS Value, Imm Value
If Reg[RS] = RS Value then PC + Immediate Value — PC
else PC+2 — PC

The BRA instruction usually depends on a previously stored data value in the RF as a
result of a Set or Set-Immediate instruction. To be able to carry out the BRA instruction, first
the contents of RS is compared with the RS Value. The comparator in Fig. 6.36 is composed

303

6.6 Program Control Instructions

(HIOLS pue AVOT ‘HAOW) syied-ejep uononnsur judwosouwr eled €9 *bid

abelg abelg abeig abeig abeig
soeg-aiim Kowsy eleg nv 4y Kiows\ uononnsu|
32019 202 320|2
© a o a oa
N L] m L]
349012
T~ 1X3s 0
1\ 44 8y} 1o} | = IM saonpoid sOdO avO140 IAON °
%0[0 o n
0d0O avol le |
z¢ er ===
o a & A |
Kowap 43 anjeA wwj| 9k |
ejeg L] w
300[2 300[2 0P 23 4 w _
JT | Kiowsp | L+
0 o a YyYvy a1 uononAsu| |
o no| -t o o[|
= a % noa uy % a 7 + e 26 [P uaeuv s a _ 3209
— anoa zuy
yop [aylbey ad d 2|
am ua N & JT % 7—{moa uv +—e—pa
A A . . S |
0 NV Y Ul Jappe dY) 109[as L o a 5 unoa Luiy o |
SOdO FHOLS pue avo AN [sulbay sy o ===
%00p o0 0P aid %[
JT e le 1915169y g
(0]
- o a o a o a el
e 143 0 Hod 109]9s S1IBUI0 0d0O avol 5 oisiBoy
L | | wod spsjes 040 Avol L 03a 25dO cozo.::mc_
¥o0[0 ¥o0pP J3do ’
o a o a
fowaw eyeq 1oy | = IM 0d0O 3401S
seonpoid 94O 3HOLS — —
3000 V_WHHQ 3200
L 4 [oXe] o a
0 Mod 109j8s slayl0 0d0O IAON

| wod s10919s D40 IAOW

P

304 6 Central Processing Unit

31 26 25 2120 16 15 0
| BRA | RS [RSValue | Immediate Value

Fig. 6.35 Fixed-point BRANCH instruction field format

of 32 two-input XNOR gates to perform a bitwise comparison between Reg[RS] and the
unsigned (positive) RS Value. All 32 XNOR outputs are then fed to a 32-input AND gate to
make a decision for the new PC value. If the comparison is successful, the current PC value
is replaced with (PC + Imm Value). If the comparison is unsuccessful, however, the PC
value is incremented by (PC + 2). The reason for (PC + 2) is because the PC increments by
two by the time a new value forms at the input of the PC. In actuality, the instruction
following the BRA instruction at (PC + 1) already enters the pipeline. However, this
instruction needs to be independent of the branch instruction. To be able to execute this
instruction (following the BRA instruction) and to remove the pending hazard, the compiler
either inserts a No Operation (NOP) instruction right after the BRA instruction or finds an
unrelated instruction in the program and inserts it at the (PC + 1) location.

OPC OPC DEC BRA OPC
Instruction 6
Register
? 31 Re’gister
ile
Instruction P
Memory c 26
N& RS Reg[RS %
e
R Aln DOut 9Rs] N
S 5 32
An pout|—2 21
R |20 32
s
\Y
a
[5
u 27
L° {16
1 00..0
|
m
m| 16 Imm Value
32
\%
? 16
u
e
? o SEXT
clock PC + Imm Value
32 32
D
Instruction Memory clock RF
Stage Stage
Successful comparison between RS Value and Reg[RS] selects port 1 else port 0 is selected

Fig. 6.36 BRA instruction data-path

Unconditional decisions in the program do not need a comparison. The programmer can
simply change the flow of the program by using a jump-type instruction.

6.6 Program Control Instructions 305

The first unconditional jump-type instruction is the Jump (JUMP) instruction which
simply replaces the current PC value with an immediate value as shown below. Its field
format is shown in Fig. 6.37.

31 26 25 0
[Juwp | Immediate Value

Fig. 6.37 Fixed-point JUMP instruction field format

JUMP Imm Value
Immediate Value — PC

The data-path for the JUMP instruction is shown in Fig. 6.38. In this data-path, the 26-bit jump
value is an unsigned integer extended to 32 bits before being forwarded to the PC. However, the
PC value has already incremented once by the time the immediate value from the instruction
register replaces the current value at the input of the PC. In the next clock cycle, this immediate
value transmits to the output of the PC, pointing a different instruction memory location, instead
of (PC + 2). Therefore, this instruction also creates a control hazard when the CPU fetches an
instruction at (PC + 1) and requires compiler’s intervention to remove the hazard.

Instruction
Register
131 JUMP OPC selects port 1
0| oPC OPC | else port 0 is selected
Instruction z 5 DEC
Memory 26
I |25
32
DOut
|
m
m
Imm Value
\Y
a 26 32
|
u
e 6
? 0 000000

clock

{000000, Imm Value}

Fig. 6.38 JUMP instruction data-path

306 6 Central Processing Unit

The second unconditional jump-type instruction is the Jump Register (JREG) instruction,
which is similar to the JUMP instruction, but uses the contents of RS to replace the current
PC value as shown below. Figure 6.39 describes this instruction’s bit field format.

31 26 25 2120 0
| JBREG | Rs | Not Used |

Fig. 6.39 Describes this instruction’s bit field format

JREGRS
Reg[RS] — PC

The data-path for the JREG instruction is shown in Fig. 6.40. This instruction reads the
contents of RS and loads it to the PC as the jump value. The program control hazard also
exists for this instruction. The hazard can be removed either by inserting a NOP instruction
or another unrelated instruction in the program after the JREG instruction.

JREG OPC selects port 1

OPC else port 0 is selected
OPC DEC
5
Instruction
Register
131 i
o Regllster
File
Instruction P
Memory c 2
|25
R RS Reg [RS]
Aln DOut
w | 5 32
21
Aln DOut 20
N
(0]
T
U
S
E
D
0
clock

Fig. 6.40 JREG instruction data-path

6.6 Program Control Instructions 307

The Jump-And-Link (JAL) instruction is the third unconditional jump-type instruction,
and it requires two steps to operate. In the first step, the PC address, (PC + 2), following the
JAL instruction is stored in the register R31. In the second step, the current PC value is
replaced with an immediate value as shown below. The instruction’s bit field format is given
in Fig. 6.41.

31 26 25 0
| JAL | Immediate Value

Fig. 6.41 Fixed-point Jump-And-Link (JAL) instruction field format

JAL Imm Value
(PC +2) — Reg[R31] followed by Immediate Value — PC

The last unconditional jump-type instruction is the Jump-And-Link Register (JALR)
instruction. This instruction also requires a two-step process. In the first step, the PC address,
(PC + 2), is stored in the register R31. In the second step, the PC is loaded with the contents
of RS as shown below. The field format of this instruction is shown in Fig. 6.42.

31 26 25 2120 0
| JAR | Rs | Not Used |

Fig. 6.42 Fixed-point Jump-And-Link Register (JALR) instruction field format

JALRRS
(PC+2) — Reg[R31] followed by Reg[RS] — PC

The Return instruction (RET) works with the JAL or JALR instruction. It retrieves the old
program address stored in the register R31, and replaces the current PC value with the
contents of R31 in order to go back to the original program location as described below. This
instruction’s bit field format is given in Fig. 6.43.

31 26 25 0
| RET | Not Used

Fig. 6.43 Fixed-point Return (RET) instruction field format

RET
Reg[R31] — PC

308 6 Central Processing Unit

6.7 Design Example I: A Fixed-Point CPU with Four Instructions

This first design example explains how to construct a single CPU data-path that executes the
ADD, LOAD, STORE and MOVE instructions.

The first step of the design process is to start with a single instruction in the instruction list
and build its data-path. Each new instruction brings new hardware requirements to the
design, and they are added incrementally to the existing data-path. Once the data-path
reaches its final form and is able to execute a set of instructions, the second step is to build
the OPC decoders to control each pipeline stage and guide the data.

In this design, we start building the data-path for the ADD instruction as shown in
Fig. 6.7. The next step is to introduce additional hardware for the LOAD instruction. To
accommodate this requirement, the first modification is to place a 2-1 MUX in the ALU
stage to select between the immediate value required by the LOAD instruction and Reg
[RS2] required by the ADD instruction as shown in Fig. 6.44. The second modification is to
add a bypass path in the data memory stage so that the result of the adder is either guided
through this bypass path if the OPC is ADD, or it is used as an effective address for the data
memory if the OPC is LOAD. Finally, a third modification is to place a 2-1 MUX in the
write-back stage to select either the contents of the data memory (from the LOAD
instruction) or the adder output (from the ADD instruction) before writing the result back to
the destination register, RD.

When the STORE instruction is introduced as a third instruction, it prompts a change in the
calculation of the data memory address from {Reg[RS] + Imm Value} to {Reg[RD] + Imm
Value}. This change requires a secondary 2-1 MUX to be placed in the ALU stage to guide
the effective memory address to the Aln port of the data memory, and an additional path to
transfer Reg[RS] to the DIn port of the data memory as shown in Fig. 6.45. The modifications
for the STORE instruction, however, should not alter the existing data-paths for the ADD and
LOAD instructions. If the ADD and LOAD instruction data-paths are individually traced after
adding the hardware to support the STORE instruction, both Reg[RS1] + Reg[RS2] (from the
ADD instruction) and mem{Reg[RS] + Imm Value} (from the LOAD instruction) paths
should still be available to write the result back to a destination register in the RF.

Introducing the MOVE instruction requires another write-back path to be integrated with
the three existing write-back paths in the architecture. Therefore, a 3-1 MUX needs to placed
in the write-back stage to pass the contents of RS to the RF as shown in Fig. 6.46. While the
MOVE and LOAD instructions use port 0 and port 1 of the 3-1 MUX, respectively, the rest
of the instructions use port 2 of this MUX to write data back to the RF.

309

6.7 Design Example I: A Fixed-Point CPU with Four Instructions

(A1 10§ PapIWo ST Iy oY 0) [eusis gA\) suononnsul QVOT Pue AqVv Wimn yed-eep NdD 9 *bid

320[0 300[0

7 4 G yo0[0
pejos|es si 0 Hod 8se | Hod sjo8jes OdO ady — 0 l 0 le
1X3S
3002
v_loﬂ_lo 1 9L
o a % -
oo % enje,\ W lo:5Llul
| Kioway Ze
eleq o0 ze g s
3009 3000 pajosjes J_~| e Kiowsy
1 s 0 pod asje \ \ sk s uoponssul
. Lpod sjoe|es P a Ta eulv 9|
z S
N % o a INM| moa uv 7 S 0d0 aav L znoa zuv -
3o0jo 2Sy/ay = [91:02] ¥l
L] 0z
- 0 7—{moa uw
ze S
o a unog Luy
e LS¥Y/sY = [oz:s2] ¥l .
— 4 1
all4)
1918169y d
320|9 3000
} } - e
z _|_ 9 1918169y
oa o O o a 03Aa 9dO uononJsu|

pajosjes si o Hod asje
| Wod j08j8s O4O aav

N1V 8U} Ut 1appe sy
109188 $OJO QYO PUE aaV

I

L

0dOo

6 Central Processing Unit

310

(A)LTe[o 10§ PONIWO ST Iy Y 0) [euSts FAN) suononnsul PYOLS PUe AVOT ‘dQV P yred-eiep NdD s'9 *bid

abeig abejg abeig abeig abeig
Yoeg-ajup Kiows|y eyeq niv 4y AKiows|y uoponssu|
o0[0 3209 39019
© a o a o a
S S S 34000
_ o
paosjes s g Wod asje || wod sypsies aay| T Z 0 4
1X3s
300[0
300[0 le o
h d z€ 9l
pajos|es si Mod asje 0 o a —— |
o=z ¢ | Wod sjosjes aav e SNEA W] lo:gLIMl _ _
Aiowas b % _ _
00|10
erea A Jw_l ze g S | |
300[0 3002 ol Klows e
+ \ A it Sl uoponJsu| | |
1P] [T o[| | %00[0 |
L o a noa uiy o a + ce S | |
e ze ze 43 pp— anoa euiv
Iy 0= o0 ZSy/ay = [91:02]MI 2 |
— nw ¢ ~ e mog uvf—+e—oa |
am uig | @u ur Jeppe au) 109j8s " . ¥4 £ |
ry A dav '3¥oLs ‘avol b o a 1noa uly _
%0000 e LSY/SY = [0z:52ldl Il _]
v L Sel od
M alld %l 5
% a % 200 Jes169y q
— le e b
pa1osjes si g Wod asje 1} o a 9 1918169y
L Hod spsjes avoT pajosyes s o Hod asje | ~ 0dO aav 030 0dO uononnsu|
| Mod josjes QY 40 QYO L | 0do
3000 plele] e} 3O0[2
o ¢ P d Sd0avo]’
300[0 300}
o a 5do 3901s[° ¢

(Ayrepo 10§
PINIWO ST T3 Y 0} [RUSIS FAY) suononnsut GAQW Pue JOLS ‘AVOT ‘dav s yed-erep NdD 99 *bid

311

abejg abejg abejg obeys abeys
soeg-ollpm Kiows\ ejeq nv N Kiows|\ uononssu|

o090 200 RELE]

]
I O s EE

s ¥+
I

| Wod syoejes qay — 0 3
1X3s
Yoop >00[0
T o
y peyos|es si g Wod esje o ze o
e & ¢ buodspapsaay 70 7 anfe/ diw lo:gu TTTTTT
| _ !
Kowsy ze o0 | |
ejeq ze S S
©n le Klows I _
c 000 3o0[0 [LL:gLldl | " |
5 v v - uononsu|
= —oa |_|\| g Sy o | | 3000 |
S 23 S | |
= L, o a noa uy o a + L anoa zuiy
2 & e ® @ a - v_lo,m_uo laxlboy Zsu/ay = [oL:0zlI zl |
[0z
= noa uy —o a |
[t4 Ze T
5 M ug nIv ey u)) S | |
[s) 'y 'y Jappe ay) Jo0jes o a Hnoa v - 1 |
f) =fozgagt | | || e _
M Qv PUB TUOLS ‘A0 z [sylboy LSY/SY = [0z:52ldl a| | 53
= 00[0 Yo0j0 _ | B %l s
s le le \ _ Y_|o,mo 1a)s169y d
]
o Lo oa a e 9]
O Py zc ze 43 a 19)s160y
m | popoies s g Tiod mm_w\ 0d0O aav || uononusu|
% Yoo | Hod psjes aav 4o avoT 320[0
00|10
s - A M
X o a a a 030 0d0 -
i | yod sjopjes Qvo 0dO avol 540
<< L] L] L
i 3oop %o0p 00
w 1 - s
Qo
o a a
m 0 Mod s}osjas IAON a 0d0O 3IAON
x L | L
_._M - o0[0 39010
5, 1 -
ki
o a a
o 0d0 3d0LS
. LI
O

312 6 Central Processing Unit

The controller for each stage of the data-path is OPC-dependent and completely com-
binational as shown in Fig. 6.47. Since the OPC propagates from one stage to another with
the data, it can effectively be used as a control input to guide data and to activate the required
hardware in each stage. Four instructions need only two input bits stemming from the
instruction register, IR[27:26], to design the OPC decoder in Fig. 6.47. The more significant
four OPC bits, IR[31:28], are considered zero for an instruction set of four.

OPC IR[27] IR[26]
ADD 0 0
LOAD 0 1
STORE 1 0
MOVE 1 1

— RF Stage

IR[27]
D Q

4

clock
a IR[26] _ _ _ ALU Data Memory Write-Back

b Stage Stage Stage
ﬁ— MOVE
clock — — |—| selects port 0 and

produces WE =1 for RF
MOVE D Q| D Q D Q) >
clock clock clock
] [] STORE produces WE = 1
STORE bal i bal for the Data Memory
clock clock LOAD
— — —j selects port 1 and
LOAD produces WE = 1 for RF
D Q| : D Q) D Q) >
clock clock clock
— — —— ADD
produces WE = 1 for RF
ADD D Q| : D Q) D Q| >
clock LOAD, STORE clock clock
and ADD select
the adder
in the ALU

Fig. 6.47 OPC table for ADD, LOAD, STORE and MOVE instructions and the control
circuitry

To generate the ADD selector input, both IR[27] and IR[26] are complemented and then
ANDed according to the table in Fig. 6.47. The selector inputs for LOAD, STORE and
MOVE instructions are also generated using the same OPC table.

6.7 Design Example I: A Fixed-Point CPU with Four Instructions 313

The STORE selector input is connected to Write Enable (WE) bit of the data memory
since the STORE instruction is the only instruction that writes data to the data memory. All
other instructions write back the results to the RF, and therefore should produce a WE signal
to enable the RF for write. However, this signal is not shown in Figs. 6.44, 6.45 and 6.46 to
avoid complexity.

6.8 Design Example II: A Fixed-Point CPU with Eight Instructions

The design methodology used in this example is the same as in the previous example. First,
as additional instructions are introduced to the design, new hardware for each instruction
should be incrementally added to the existing data-path. Second, an OPC truth table should
be constructed from the instruction set. Third, controller outputs should be generated from
the OPC truth table to guide the data in each CPU stage.

In this example, the instruction set consists of the ADD, LOAD, STORE, MOVE, SLlI,
SRI, JUMP and BRA instructions.

We start with the ADD instruction data-path given in Fig. 6.7 to form the base platform.
The SLI and SRI instructions are implemented next. Both of these instructions require left
and right linear shifters in the ALU stage where each shifter can individually be selected by
the SLI or SRI inputs as shown in Fig. 6.48. These instructions also require a bypass path in
the RF stage that connects IR[15:0] to the ALU input as explained earlier.

When the LOAD instruction is introduced as the fourth instruction, the existing 32-bit
adder in the ALU is used to calculate the effective address for the data memory. The 2-1
MUX in the write-back stage is replaced by a 3-1 MUX to be able to write the contents of the
data memory back to the RF.

The STORE instruction is the fifth instruction added to this design. This instruction
requires two separate paths to calculate the data memory address and to write the contents of
RS to the data memory. The STORE instruction also necessitates a secondary 2-1 MUX in
the ALU stage so that an immediate value is added to the contents of RD instead of RS.

The MOVE instruction is the sixth instruction which requires a path to write the contents
of RS to the RF, bypassing both the ALU and the data memory, and using port O of the 3-1
MUX in the write-back stage.

The BRA instruction is the seventh instruction in this set and requires a path to compare
Reg[RS] with RS Value, IR[20:16]. The bitwise comparison is done by 32 two-input XNOR
gates followed by a single 32-input AND gate, and produces a single bit that selects between
(PC + Imm Value) and (PC + 2). The selected target address is loaded to the PC to redirect
the program to a different PC address. This instruction also requires a special 32-bit adder in
the RF stage to calculate (PC + Imm Value) as shown earlier.

6 Central Processing Unit

314

(Ayre[do 10§ papIWo 918 AIOWRIN BIe(]
pue 3 2y 0 [eUSIS FA\) SUONONNSUL Vg Pue JINAL TIS TIS ‘HAOW ‘HIOLS ‘AVOT ‘day ua yed-eep NdD 89 *bid

| Hod spajes vyg
ze
anjeA ww| + Od
+
od
<
%00[0 s
300[0 300[0 300[0 le H
W
o a 1
o af—7 o q 7 o a 7 L | B
ze 2
x.oh_uo -~ ¥
| Hod gpajes aqv — 0 3 .er_ 000000 0 g
9
1X3s o)
“ oo 3o0jo
Kiowspy le 9l
. eleq 5 o
o a
Yoo[o anjeA Wuw| [0:51L1M1 o _ _ —
i — - | |
o af— - lo:selyl
Ve apgrea v e 30012 ze S S ! X _
L | | pod le e, Kiowapy _ L+ _
IM sjsjes aav 1 gLl uononsu|
u Y y sl | |
1a —pa R a1
V_loh_lu /) 3IM selennoe Tm o I #0010 I
3d0lLs — anoa zuy
e ol %000 lay]6ey Zsu/ay = |1 I
o a d 0z &
%/ =7 % 1 pod spejes [¥s 40 115 ~ . . [t £ T ° = I
L 4 o a unoa Luy | 1
%000 4 [sylbey lswss [| | —m—m— ===
JT L | sz| | od
| Wod sjoajes 1yS 40 118 40 aav 4o avo1 a4 2y
= a = Joysibay d
|| 1el9]
3000 v_luh_lo 3000 :%Wﬁﬂm:.
8 9 8 9
o a a - o a - 030 0dOo
| Wod sysjes Qvol IAON 1S ‘1718 s s """ 540
0 Hod spajes IAONW 3yols ‘avol — JAOW ‘FHOLS dANr ‘vyg
avol‘aav IAON ‘FHOLS
avot ‘aav

6.8 Design Example II: A Fixed-Point CPU with Eight Instructions

315

The JUMP instruction simply forwards the jump value, IR[25:0], extended to 32 bits to
the PC. It requires a second 2-1 MUX in the RF stage that selects this jump value when the
OPC is JUMP. The ALU adder is selected by the ADD, LOAD and STORE instructions.
However, this selection is not shown in Fig. 6.48 to avoid complexity.

Once the data-path for all eight instructions is complete, the OPC truth table in Fig. 6.49 is
formed. Since there are eight instructions in this set, only IR[28:26] are used for designing
the OPC decoder. The upper three bits of the OPC field become equal to zero.

RF Stage
b ol OPCl28] OPC IR[28] IR[27] IR[26]
ADD 0 0 0
clock LOAD 0 0 1
] STORE 0 1 0
o ot 22CET] MOVE 0 1 1
Jr_ SLI 1 0 0
clock SRI 1 0 1
] JUMP 1 1 0
o o P2 He BRA 1 1 1
c-lo?c_k - ALU Data Memory Write-Back
........ I Stage — Stage — Stage
ADD o o b o] ADD produces WE 21 for RF
clock clock clock
]]] LOAD selects port 1
____LOAD o 5 5 ol-2nd produces WE =éfor RF
clock clock clock
---STORE__ |, pQ
STORE produces
clock clock WE=1
for Data Memory
1 MOVE selects port 0
and produces WE = 1 for RF
—ooMOVE o ba o of =P >
clock clock clock
SLI SLI produces WE = 1 for RF
______ e D D Q -
clock clock clock
SRI produces WE = 1 for RF
___SRI ba) b oL SRip kg
cj:k 8 2 % 4 cjc—k clock
< S @
-
JUMP
BRA v
ADD or SLlor
LOAD or SRI
SLlor
SRI

Fig. 6.49 OPC table for ADD, LOAD, STORE, MOVE, SLI, SRI, JUMP and BRA
instructions and the control circuitry

316 6 Central Processing Unit

To generate the ADD selector input (used in the RF and ALU stages), the first row of the
OPC table is implemented. This requires IR[28], IR[27] and IR[26] to be complemented and
ANDed. The LOAD, STORE, MOVE, SLI, SRI, JUMP and BRA selector inputs are also
generated similarly using the same OPC table. The ALU stage requires the ADD, LOAD, SLI
and SRI selector inputs to be ORed to select Reg[RS] for the adder input. Similarly, SLI and
SRIinputs are ORed to select the shifter outputs. The STORE selector input is connected to WE
input of the data memory since the STORE instruction is the only instruction in the instruction
set that writes data to the data memory. The WE for the RF is omitted to avoid complexity.

6.9 Floating-Point Instructions

This RISC instruction set contains two floating-point (FP) instructions: Floating-Point Add
(ADDF) and Floating-Point Multiply (MULF). Both instructions use the IEEE single pre-
cision floating-point format which defines the most significant bit to be the sign, the next eight
most significant bits to be the exponent and the least 23 significant bits to be the fraction.

The ADDF instruction adds two single precision floating-point numbers at the registers,
RS1 and RS2, and returns the result to the register RD as described below. The bit field
format of this instruction is given in Fig. 6.50.

31 26 25 2120 16 15 1110 0
| ADDF | Rs1 | Rs2 | RD | Not Used

Fig. 6.50 Floating-point Add (ADDF) instruction field format

ADDFRS1,RS2,RD
Reg[RS1] + Reg[RS2] — Reg|[RD]

The MULF instruction multiplies two floating-point numbers in registers RS1 and RS2,
and returns the result to the register RD as shown below. This instruction’s bit field format is
described in Fig. 6.51.

31 26 25 2120 1615 1110 0
[MmuLF | Rst | Rs2 | RD | Not Used |

Fig. 6.51 Floating-point Multiply (MULF) instruction field format

MULERSI1, RS2, RD
Reg[RS1] * Reg[RS2] — Reg[RD]

6.10 Floating-Point 317

6.10 Floating-Point

Single and double precision floating-point bit field formats are conveniently used in many
modern CPU platforms because the sum of sign, exponent and fraction bits fit into a 32-bit
or a 64-bit wide bus.

An IEEE single-precision (SP) floating-point number shown in Fig. 6.52 has an eight-bit
field for the exponent and 23-bit field for the fraction. The most significant bit constitutes the
sign bit for the fraction.

1 8 bits 23 bits
[s|E7 EO |Floo F23 |
1 23
~ 2 2
2 - EXP - FRACTION

Fig. 6.52 IEEE single-precision floating-point format
Mathematically, a single-precision floating-point number is expressed as follows:

Single —precision FPnumber = (—1)° (1 +F; x 271+ F, x 272 4 F3 x 273 4 -+ 4 Fyp3 x 2723)2REXP

Here, s = 1 if the fraction is negative, else the fraction is positive. F1 to F23 are the 23
fraction bits that range from the most significant to the least significant bit positions of the
fraction field in Fig. 6.52, respectively.

Since the exponent field does not possess a sign bit, a biasing system is employed to
distinguish the negative exponents from the positive exponents. The biased exponent
(EXP) field shown in Fig. 6.52 is the combination of the real exponent (REXP) and the
BIAS as shown below.

EXP = REXP + BIAS

The BIAS is calculated by substituting the lowest and the highest eight-bit numbers in the
EXP field to determine the most negative and the most positive real exponent values. Therefore,
when the most negative real exponent, REXP, equals to -MAX, the expression becomes:

0 = —MAX + BIAS

Similarly, when the most positive exponent, REXP, becomes equal to +MAX, the
expression becomes:

255 = MAX + BIAS

Hence substituting MAX = BIAS into 255 = MAX + BIAS yields:

BIAS =127

318 6 Central Processing Unit
Example 6.1: Represent —0.75¢ as a single-precision floating-point number.

—0.7510 = =011 = (= 1)*(1 4+ F; x 27"+ F, x 272+ F; x 273+ -+ + Fa3 x 2723)2REXP
— 11 x 27 = (1) (1 +F x 27 + By x 272 4 F3 x 273 4 -+ 4 Fpy x 2723)2REXP

Thus,

s=1

Fl =1

F2 throughF23 = 0

REXP = —1 = EXP—-BIAS = EXP — 127
EXP = 127—-1 = 126

Filling the fraction and the exponent fields in Fig. 6.53 yields:

1 8 bits 23 bits
11011 1111010 0 00

> 27 20 2-1 2-23
S |——— EXP ——»|<——— FRACTION —»

Fig. 6.53 Single-precision floating-point number in Example 6.1

Example 6.2: Represent —527.5), as a single-precision floating-point number.
—527.510 = (1) (1 +F; x 27 4+ Fy x 272 4 F3 x 273 4 -+ 4 Fpy x 2723)2REXP
The closest real exponent to 527.5 is 512 = 2°. Thus,

—527.510 = (—1)" (1 +F; x 27+ Fa x 272+ F3 x 273 + -+ + Fpy x 273)2°

where,

(14F x 27"+ F, x 272+ F3 x 27 4+ +Fp3 x 277) = 527.5/512 = 1.03027,¢
~1.00001, = 1.03125;9

) . 1.03125 — 1.03027
Error in the fraction = 103125 =0.01%

6.10 Floating-Point 319
The biased exponent is calculated as follows:
REXP = 9 = EXP—-BIAS = EXP — 127

EXP =127+9 =136

After entering the fraction and exponent fields into Fig. 6.52, the single-precision
floating-point number for —527.5,y produces the format in Fig. 6.54.

1 8 bits 23 bits
11100 01000[000 0100...00

> 27 20 2-1 2-23
2 |&——— EXP ——»|«——— FRACTION —»|

Fig. 6.54 Single-precision floating-point number in Example 6.2

Example 6.3: Convert the single-precision floating-point number in Fig. 6.55 into a deci-
mal number.

1 8 bits 23 bits
1110000001/ 010 0000...00
> 27 20 2-1 2-23
0‘2) '——— EXP—— »l4«—— FRACTION ——»|

Fig. 6.55 Single-precision floating-point number in Example 6.3

Here, s = 1 corresponds to a negative fraction. The fraction and biased exponent fields
yield 0.25 and 129, respectively. Thus,

REXP = 129-127 =2

The decimal number = (—1)'(140.25)22 = —1.25 x 4 = —5

Example 6.4: Convert the single-precision floating-point number in Fig. 6.56 into a deci-
mal number.

o
RN
N
-
N
-
N
-
-
N
N
N
-
N
-
N

——— EXP ———p»{¢——— FRACTION —»

SIGN

Fig. 6.56 Single-precision floating-point number in Example 6.4

320 6 Central Processing Unit

Here, s = 0 corresponds to a positive fraction. The fraction field yields approximately 1.
The biased exponent produces EXP = 255. Therefore,

REXP = 255—127 = 128

The decimal number = (—1)°(141)2'% =2 x 10

The IEEE double-precision (DP) floating-point number in Fig. 6.57 has 11 bits for the
exponent and 52 bits for the fraction for better accuracy. Once again, the most significant bit
corresponds to the sign bit for the fraction.

1 11 bits 52 bits
|S|E1O EO |F1 F52|
-1 -52

z 2 2
2 EXP FRACTION ——»>

Fig. 6.57 IEEE double-precision floating-point format
The double-precision floating-point number is expressed as follows:

Double —precision FP number = (—1)5(1 H+F x2 "4 B x224F; x273+ -+ +Fsp ¥ 2752)2“)(P

Here, s = 1 corresponds to a negative, and s = 0 corresponds to a positive fraction. Bits F1
to F52 are the 52 fraction bits from the most significant bit position to the least significant bit
position, respectively.

The bias system used in single-precision floating-point numbers can be applied to the
double-precision exponents to distinguish between the negative and the positive exponents. Thus,

EXP = REXP + BIAS

Here, EXP is the 11-bit field in Fig. 6.57, and REXP is the real exponent. The BIAS is
calculated by substituting the lowest and highest biased exponent in the equation,
respectively.

Therefore, for the most negative exponent the equation becomes:

0 = —MAX + BIAS
Similarly, for the most positive exponent the equation becomes:
2047 = MAX + BIAS

Substituting MAX = BIAS into 2047 = MAX + BIAS yields BIAS = 1023 for
double-precision floating-point numbers.

6.10 Floating-Point 321
Example 6.5: Represent —0.751¢ as a double-precision floating-point number.
~0.7519 = —0.11 = (=1)*(1+F; x 27"+ F, x 272+ F3 x 273 4 -+ + Fsp x 2792)2REXP
11 x 27 = (=1 (1 +F x 27 4+ Fy x 272 4 F3 x 273 4 -+ 4 Fsp x 277%)2REXP
Thus,

s=1

Fl =1

F2 throughF52 = 0

REXP = —1 = EXP—BIAS = EXP — 1023
EXP = 1023—1 = 1022

Therefore, entering the fraction and the exponent fields in Fig. 6.58 yields:

1 11 bits 52 bits
1101111111110 100w v 00
> 210 20 2-1 2-52
S |&——— EXP ——»|e—— FRACTION —»

Fig. 6.58 Double-precision floating-point in Example 6.5

Example 6.6: Represent 4.0, as a double-precision floating-point number.

410 = (=D°(14+F; x 27" 4 Fy x 272+ F3 x 273 4 - -+ + Fsp x 2752)2REXP
The closest exponent to 4 is 4 = 22 Thus,

419 = (=D’ (1+F; x 27 4 Fy x 2724 F3 x 273 4 -+ 4+ Fsp x 27°2)22

where,

(I4F x 27"+ F x 2724+ F; x 27 + -+« +Fs5y x 2772) = 1.0
Therefore,

F1 throughF52 = 0
REXP = 2 = EXP—BIAS = EXP — 1023
EXP = 1025

Thus, entering the fraction and exponent fields in Fig. 6.59 yields:

322 6 Central Processing Unit

1 11 bits 52 bits
010000000001 [000 woovre e, 00
> 210 20 2—1 2-52
% '«———— EXP ——pl«——— FRACTION —»

Fig. 6.59 Double-precision floating-point in Example 6.6

Example 6.7: Convert the double-precision floating-point number in Fig. 6.60 into a
decimal number.

1 11 bits 52 bits
1100000000000 | 111 s o 11

> 210 20 2-1 2-52
S |l&——— EXP ——»le—— FRACTION —»]

Fig. 6.60 Double-precision floating-point in Example 6.7

Here, s = 1 corresponds to a negative fraction. The fraction and biased exponent fields
yield 1 and 0, respectively. Therefore,

REXP = 0-1023 = —1023

Thus, the decimal number = (1) (1 + 1) 2712 = —2 x 107°%,

6.11 Floating-Point Adder

Floating-point addition requires equating the exponents before adding the fractions. There
are two ways to equate exponents. The first method is to shift the fraction of the
floating-point number with greater exponent to the left until both exponents become equal.
The second method is to shift the fraction of the floating-point number with lesser exponent
to the right until the exponents are equal.

The floating-point adder in Fig. 6.61 implements the second method. The first step of this
method is to determine which of the two floating-point numbers has a smaller exponent. This
leads to subtracting the two exponents from each other and examining the sign bit of the
result. In the schematic in Fig. 6.61, the second number’s exponent, EXP2, is subtracted
from the first number’s exponent, EXP1, to obtain the difference, AEXP = EXP1 — EXP2. If
the sign bit of the difference, AEXP, becomes zero, it indicates EXP1 is larger than or equal
to EXP2. Therefore, the fraction of the second number, FRAC2, is shifted to the right by
AEXP before adding the fractions. If, on the other hand, the sign bit of AEXP becomes one,
FRACI is shifted to the right by AEXP before adding FRAC1 to FRAC2.

6.11 Floating-Point Adder 323
BIASED=126 BIASED=125
| S1 | EXP1 | FRAC1 | S2 | EXP2 | FRAC2
126 125
+ — 1.000 1110
+
SIGN AEXP

\0——1/Qselect

selecmj

{>O select M

EXP=126 BIG EXP SMALLFRAC | 4 140 BIG FRAC
L1 g /SHIFT RIGHT,
-0.111 1.000
+
SIGN 0.001
INCREMENT / DECREMENT] NORMALIZE
FRACTION
+ /-
1.000
+
EXP =123
ROUND FRACTION
¢ 1.000
VALIDATE Y y
>| s | EXP | FRACTION
OVERFLOW /
UNDERFLOW
NO
YES

(TO EXCEPTIONS)

Fig. 6.61 A floating-point adder implementation

324 6 Central Processing Unit

The numerical example in Fig. 6.61 describes how to process the exponent and the
fraction fields of two floating-point numbers to be added. In this figure, 126, 1.000, 125 and
—1.110 are assigned to the EXP1, FRAC1, EXP2 and FRAC2 fields, respectively. Initially,
EXP2 is subtracted from EXP1, yielding AEXP = +1. The sign of AEXP becomes zero, and
therefore the larger exponent, EXP1 = 126, is routed to the adder that calculates the final
exponent. The zero value of the sign bit also selects the fraction field of the larger exponent,
FRACI1 = 1.000, and forwards it to the secondary adder that computes the fraction field.

FRAC2 = —1.110, on the other hand, is directed to be the input of the right shifter, which
shifts this value by AEXP = 1 and produces —0.111. This shifted fraction, —0.111, is then
added to FRAC1 = 1.000, producing 0.001 while the exponent stays at 126. The normal-
ization mechanism takes place next, and shifts the result, 0.001, to the left until the leading
one in the 0.001 field is detected. The normalizer output becomes 1.000, but the shifted
amount, —3, is added to the current exponent, 126, yielding 123 at the output of the adder
that computes the exponent.

The normalized fraction goes through a rounding process and truncates the fraction field
to 23 bits. The result is stored in a 23-bit register at the output of the floating-point adder.
The output of the exponent adder is similarly stored in an eight-bit register along with the
sign bit for further processing in the CPU.

This floating-point adder also deals with overflow and underflow conditions in case the
exponent values become higher than 255 or smaller than O, both of which generate
exceptions for the CPU.

6.12 Floating-Point Multiplier

The processing complexity of comparing two exponent fields in the floating-point adder
does not take place in the floating-point multiplier. The algorithm used in multiplying two
floating-point numbers simply multiplies the fractions and adds the exponents.

The floating-point multiplier architecture in Fig. 6.62 computes the fraction and exponent
fields with a numerical example. In this example, 126, 1.000, 125 and 1.110 values are
assigned to the EXP1, FRACI1, EXP2 and FRAC?2 fields of the multiplier, respectively.

The first step of the multiplication process is to calculate the real exponent values of the
two floating-point numbers. Therefore, both EXP1 = 126 and EXP2 = 125 are subtracted
from the single-precision bias, 127, yielding —1 and —2, respectively. The real exponents are
then added, producing —3, which becomes the input of an adder that increments or decre-
ments the real exponent after multiplication on the fractions is performed. The fractions,
FRACI1 = 1.000 and FRAC2 = 1.110, are multiplied and produce 1110000. The floating
point is assigned immediately after locating the leading one in the 1110000 field which

6.12 Floating-Point Multiplier 325

BIASED = 126 BIASED = 125
| S1 | EXP1 | FRAC1 | S2 | EXP2 | FRAC2

o
=y

/4

01110000

INCREMENT / DECREMENT

FIND THE FLOATING PT |

'
w
o

1.11000

TRUNCATE
FRACTION

BIAS =127

3
OVERFLOW / 1.110
UNDERFLOW P> VES

; + (TO EXCEPTION) NORMALIZE
NO FRACTION

124
1.110

‘ ROUND FRACTION ’

1 124 1.110

Yy v

VALIDATE >| s | EXP | FRACTION |

Fig. 6.62 A floating-point multiplier implementation

results in 1.11000. This result is subsequently truncated to 1.110. Since no normalization
needs to be performed on 1.110, this step effectively produces a zero increment/decrement
value, and the fraction is stored in the output register after rounding. The real exponent, —3,
on the other hand, is added to the bias, 127, and the result is stored in the exponent register.
Sign bits of the two floating-point numbers are also XORed and stored.

As in the floating-point adder, the underflow and overflow conditions in the exponent
field of the floating-point multiplier cause the CPU to generate exceptions.

6.13 A RISC CPU with Fixed and Floating-Point Units

The floating-point adder, FP Adder, and the floating-point multiplier, FP Multiplier, can be
included in the existing fixed-point data-path as shown in Fig. 6.63. The register file outputs
are connected to the fixed-point ALU as well as the floating-point adder and the multiplier.

syred-ejep jutod-Suneoy pue poxy yim NdD €99 ‘Hig

6 Central Processing Unit

326

X200 320[0 300[0
suononJisu|
s _olo_ 3 °d s o a 7z mommwmm
WE|
01
aav v_loﬂ_lo
iod-6uneol4 o
Jendmni d4 1X3s
3900 X 9l W
43 __,_
« 18ppy d4 suononJisu| O
o a \ ! W 5
Boy-boy
3o0jo paxi4
+ —
1 28 5 S "
Kiowsp /|.. 0
eje [o0 a . fowsy
00[0 2 00[0 ! [m:EE_\Dmm_ uononsu|
0 7 Y_L%A \ — uig cuy ol |
€ S
0[]0
z¢ n 2010 2noa guvy N
§ o a—{noa v ~ 1 4001 [ay/zsy] bey quesy]
|_ v J_ul 1z Z—|moa uv—= od
e S
o a 1noa Luy
J/ [sy/1sy] boy suisy
LI e
300[0 $3000d0 a4 35
JuI0d-paxi4 1918160y d
z el 9]
JEISEN
uononAsu|

$3000dO utod-buneoly

6.13 A RISC CPU with Fixed and Floating-Point Units 327

The OPC field for the ADDF instruction selects the floating-point adder result in the ALU,
and routes it to port O terminal of the 3-1 MUX at the write-back stage. Similarly, the result
from the floating—point multiplier is directed to port O of the 3-1 MUX if the OPC is MULF.
Port 1 of the 3-1 MUX is dedicated to the LOAD instruction, and port 2 to the remainder of
the OPCs in the instruction set.

One can also employ a secondary RF for only storing floating-point numbers since the
formats of fixed and floating-point numbers are different from each other. However, this
approach creates additional complexity in routing the RF outputs to the appropriate ALUs
and requires additional hardware. Therefore, it is avoided in this design.

6.14 Structural Hazards

When instructions are fetched from the instruction memory and introduced to the CPU
pipeline, they follow each other one clock cycle apart as shown in Fig. 6.64. In this figure,
when the first instruction transitions to the RF stage in cycle 2, the second instruction starts
its instruction fetch cycle. In cycle 3, the first instruction starts the ALU stage, the second
instruction enters the RF stage, and the third instruction goes into the instruction fetch stage.

CYCLES 1 2 3 4 5 6 7 8 9
INSTRUCTION 1 R A B
INSTRUCTION 2 R A
INSTRUCTION 3 R w
INSTRUCTION 4 o D W
INSTRUCTION 5 A D w

Fig. 6.64 Structural hazards in a five-stage CPU

The fourth cycle in Fig. 6.64 should be viewed with a particular importance because it
creates a structural hazard. In this cycle, the first instruction accesses the data memory while
the fourth instruction is fetched from the instruction memory. If there is only one memory
block with a single port (to read instructions and to store data), this configuration will create
a structural hazard because the first and the fourth instructions will try to access the memory
in the same cycle. This is the primary reason to have separate instruction and data memories
in a RISC CPU.

328 6 Central Processing Unit

Cycles 5 and 6 creates another type of structural hazard. In both of these cycles, data has
to be read from the RF and written to the RF in the same cycle. If the data read from the RF
depends on the data written to the RF, this condition will create a hazard because the write
needs to take place before the read in order to produce correct results. Therefore, RF should
be designed such that all writes have to be done at the high phase of the clock and all reads at
the low phase.

6.15 Data Hazards

Data hazards create a situation where the required data is unavailable when it is needed by an
instruction. There are four known data hazards in this architecture. The examples below
illustrate each data hazard type and propose solutions in the CPU architecture to avoid them.

The first type of data hazard is shown in the example in Fig. 6.65. In this example, the
ADD instruction adds the contents of R1 and R2, and then writes the result to a destination
register, RD. The second, third and fourth instructions require the contents of RD to proceed.
The only hazard-free case here is the data exchange between the ADD and the OR
instructions since the RF permits data to be written during the high phase of the clock and
read during the low phase. However, the SUB and the AND instructions try to fetch the
contents of RD before they become available. Therefore, executing any of these instructions
would produce two separate hazards. In order to circumvent this problem, a technique called
“data-forwarding” is applied to the CPU pipeline. This method requires a special data route
in the CPU data-path so that partially processed data is immediately transferred from a
particular pipeline stage to the next when it is needed. Figure 6.66 shows the two forwarding
paths to remove the data hazards associated with the SUB and the AND instructions. The
first path transfers data from the ALU output to the ALU input when the SUB instruction
needs the ADD instruction’s ALU result to proceed. The second path transfers data from the
output of the data memory to the ALU input when the AND instruction needs the ADD
instruction’s ALU output.

ADD R1, R2, I R A D WO
SUB, R3, R4 R A D
AND, R5, R6 I R A|D W

i_/
OR,R7,R8 Il R A D W

Fig. 6.65 Data hazard: a register-type instruction followed by other register-type instruction(s)

6.15 Data Hazards 329

ADD R1, R2, (RD) I R A D\‘D w

suB(RD), R3, R4 I R A |\D w
AND(RD), R5, R6 R A D W

OR (RD) R7, R8 Il R A D W

Fig. 6.66 Forwarding paths to remove the data hazards caused by a register-type instruction
followed by other register-type instruction(s)

Figure 6.67 shows the first forwarding path from the ALU output to the ALU input to
remove the data hazard caused by the ADD-SUB instruction pair in Fig. 6.65. In this figure,
the source address of the SUB instruction is compared against the destination address of the
ADD instruction. If there is a match, then the ALU output to ALU input forwarding path(s)
is activated by selecting port 1 of the 2-1 MUX at the input of the ALU.

32
ALU - ALU path

32
—D Q
32 V
clock Din
32 32 32
—D Q| Aln DOut D Q 1
clock 32 clock 0
N Data
32 Memory
—D Q] 32
DQ
clock
clock

Fig. 6.67 ALU output to ALU input forwarding path

The second forwarding path shown in Fig. 6.68 feeds back the output of the data memory
stage to the input of the ALU and removes the data hazard caused by the ADD-AND
instruction pair in Fig. 6.65. Again, the source address of the AND instruction is compared
against the destination address of the ADD instruction. The path that connects the data

330 6 Central Processing Unit

32
DBypass - ALU path

clock
_ N
1
32
—D Q 1
0
clock 0 Din
A 32 32 32 32
—D Q) L DQ Aln DOut D Q| 1
U
clock 32 1 clock clock 0
— Data
32 0 Memory]
—1pq 0 32
1 D Q
clock
clock

Fig. 6.68 Data memory bypass output to ALU input forwarding path

memory output at the end of the bypass path to the ALU input is activated by selecting port 1
of the 2-1 MUX if there is a match.

Another type of data hazard is shown in Fig. 6.69. This hazard originates from an
instruction that requires the contents of the data memory as a source operand. A forwarding
path that connects the output of the data memory to the input of the ALU may not be
sufficient to remove this data hazard as shown in Fig. 6.70. However, if a No Operation
(NOP) instruction is inserted between the LOAD and ADD instructions, the one cycle delay
created by this instruction can avoid this hazard as shown in Fig. 6.71. With the NOP
instruction in place, the LOAD instruction can now forward the contents of the data memory
as a source operand for the ADD instruction as it enters the ALU stage.

LOAD R1,(RD), Imm | R A D
ADD (RD), R2, R3 I RJA D w

Fig. 6.69 Data hazard created by the LOAD instruction followed by a register-type
instruction

6.15 Data Hazards 331

LOAD R1,(RD), Imm I R A DAOW

ADD (RD), R2, R3 | A D W
Fig. 6.70 A forwarding path to remove the data hazard caused by the LOAD instruction
followed by a register-type instruction

LOADR1,,Imm I R A DOW

NOP | R A[D W

ADD,R2,R3 Il R A D W

Fig. 6.71 A forwarding path and a NOP instruction to remove the data hazard caused by the
LOAD instruction followed by a register-type instruction

Figure 6.72 shows the hardware implementation to remove the particular data hazard in
Fig. 6.69. The data memory output to the ALU input path is activated by implementing a
logic block that compares the destination address of the LOAD instruction with the source
address of the ADD instruction, and enables port 1 of the 2-1 MUX if they are equal.

32
DMem - ALU path

clock
32
—D Q) 1
32 Y
clock 0 Din
32 32 32 32
—D Q) DQ Aln DOut D Q 1
clock 32 1 clock clock 0
— Data
32 Memory
—Ipq 0 32
DQ
clock
clock

Fig. 6.72 Data memory output to ALU input forwarding path

332 6 Central Processing Unit

The final data hazard shown in Fig. 6.73 stems from a LOAD instruction followed by a
STORE instruction. Here, the destination address of the LOAD instruction is the same as the
source address of the STORE instruction. This results in a situation where the data written
back to the RF has to be stored in the data memory within the same clock cycle. A for-
warding path that connects the output of the data memory to the input of the data memory
removes this hazard as shown in Figs. 6.74 and 6.75. Once again, we need a comparator that
compares the contents of the destination address of the LOAD instruction against the source
address of the STORE instruction to activate this forwarding path.

LOAD R1,(RD), Imm1 Il R A D
STORE (RD), R2, Imm2 I R A (D) w

Fig. 6.73 Data hazard: a STORE instruction followed by a register-type instruction

LOADR1,,Imm1 I R A DD\W
STORE,R2,Imm2 I R A D W

Fig. 6.74 A forwarding path to remove the data hazard caused by a STORE instruction
followed by a register-type instruction

DMem — DMem path

clock
32
—po—#1) e
32
clock 0 Din
A 32 32 32 32
—1D Q—@ L DQ Aln DOut D Q
) 4
clock a2 1 clock clock
N Data
30 Memory]
—Ipq 0 32
DQ
clock
clock

Fig. 6.75 Data memory output to data memory input forwarding path

6.15 Data Hazards 333

Figure 6.76 shows the combination of all four forwarding paths to remove data hazards
from the CPU pipeline. The selector inputs in this figure originate from individual com-
parators that compare the destination address of an instruction with the source address of a
subsequent instruction.

DBypass - ALU path
DMem - ALU path] 32
ALU - ALU path
3 T DMem —DMem path
clock
I
—1PQ Z 1 0 1
32
clock 0 Din
A 32 32 32 32
—D Q| L DQ Aln DOut D Q) 1
U
clock 32 y clock clock 0
N Data
32 Memory]
—1pq 0 32
DQ
clock I_
clock

Fig. 6.76 CPU schematic containing all data hazard corrections

6.16 Program Control Hazards

Branch and jump instructions also create hazards. In the program shown in Fig. 6.77, the
earliest time for the BRA instruction to produce a branch target address is when this
instruction is at the RF stage. Therefore, the instruction following the BRA instruction
cannot be fetched from the instruction memory in the next clock cycle but it requires one
cycle delay. This delay can be implemented either by inserting an unrelated instruction to
branch or using a NOP instruction in the “branch delay slot” as shown in Fig. 6.78.

334 6 Central Processing Unit
BRA R1, RSValue, Imm I RIOA D W

ADD R2, R3, R4 I R A D W

Fig. 6.77 Control hazard: a BRA instruction

BRA R1, RSValue, Imm | ROA D W

Delay slot | R A D W
ADD R2, R3, R4 I R A D W
BRA R1, RSValue, Imm | ROA D W
((Unrelated instruction I \R A D W
ADD R2, R3, R4 | R A D W
BRA R1, RSValue, Imm | ROA D W

NOP I \R A D W
ADD R2, R3, R4 | R A D W

Fig. 6.78 Removal of BRA control-hazard using an unrelated instruction in the program or
a NOP instruction

Similar to the BRA instruction, the jump-type (JUMP, JREG, JAL and JALR) instruc-
tions also create control hazards since they can only define the address of the next instruction
when they are in the RF stage as shown in Fig. 6.79. Inserting a NOP instruction or an
unrelated instruction to jump in the “jump delay slot” removes the pending control hazard as
shown in Fig. 6.80.

Even though the jump-type and branch-type instructions update the contents of the PC,
the branch instruction requires a comparator and a special adder in the RF stage to calculate
the target address.

6.17 Handling Hazards in a Five-Stage RISC CPU: An Example 335

JUMP Imm | R/[I A D W
ADD R2, R3, R4 I R A D W
JREG R1 | Rf A D W
ADD R2, R3, R4 I R A D W

Fig. 6.79 Control hazard: JUMP and JREG instructions

JUMP Imm | ROA D W

Delay slot I \R A D W
ADD R2, R3, R4 | R A D W
JUMP Imm | ROA D W
[Unrelated instruction] | R A D W
ADD R2, R3, R4 | R A D W
JUMP Imm | ROA D W

Il \R A D W
ADD R2, R3, R4 | R A D W

Fig. 6.80 Removal of JUMP and JREG control-hazards using an unrelated instruction in the
program or a NOP instruction

6.17 Handling Hazards in a Five-Stage RISC CPU: An Example

This example shows the use of forwarding paths to avoid data and control hazards on an
instruction chart. The use of the NOP instruction is also shown when forwarding paths
become insufficient to remove a particular hazard.

The flow chart in Fig. 6.81 shows a small user program and the contents of the instruction
memory before the program is executed. Data A in the flow chart is read from the memory
address 100. Data Y, Z and W are stored at the memory addresses 200, 201 and 202,
respectively.

336 6 Central Processing Unit

Data Memory

READ A

100 A <«—— LOADED A4
Y =2A

200 v Y

STOREY
201 4 TO BE
STORED

202

ELSE

W =0.5A +1 W =0.5A-1

Y

STOREZ, W |«

Fig. 6.81 Flow-chart of an example program and data memory contents

After Y is stored, the flow chart comes to a decision box where the value of A is compared
against one. At this point, the program splits into two where each branch performs calcu-
lations to determine the values of Z and W before they are stored in the data memory.

The instruction, LOAD RO, R1, 100, in Fig. 6.82 adds the contents of RO, whose bits are
hard-wired to logic O due to the architectural specifications, to 100 to calculate the data
memory address. It then fetches A from the data memory address 100, and writes this value
to the RF address R1.

The SLI R1, R2, 1 instruction shifts the contents of R1 one bit to the left to produce 2A,
and writes the result, Y = 2A, to R2. The ADD R1, R2, R3 and SRI R1, R4, 1 instructions
compute the values 3A and 0.5A, respectively. Both values will be used later in the program.

The BRA R1, 1, 5 instruction compares the contents of R1, which currently holds A, with
the RS Value = 1. If the comparison is successful, the program branches off to fetch the next
instruction at the instruction memory location, PC =4 + 5 = 9, to execute the SUBI R3, RS,
1 that computes Z = 3A — 1. Otherwise, the program fetches the next instruction, ADDI R3,
R5,1atPC=4+2 =6 to compute Z = 3A + 1.

6.17 Handling Hazards in a Five-Stage RISC CPU: An Example 337

PC Instruction Comments

0 LOAD RO, R1, 100 A > Reg [R1]

1 SLIR1,R2,1 2A > Reg [R2]

2 ADD R1, R2, R3 3A > Reg [R3]

3 SRIR1, R4, 1 0.5A - Reg [R4]

4 BRAR1,1,5 IfA=1thenPC+5-> PC
5 STORE R2, RO, 200 2A > mem [200]

6 ADDI R3, R5, 1 Z=3A+1-> Reg [R5]

7 SUBI R4, R6, 1 W =0.5A-1-> Reg [R6]
8 JUMP 11 11> PC

9 SUBI R3, R5, 1 Z=3A-1-> Reg [R5]
10 ADDI R4, R6, 1 W =0.5A+1-> Reg [R6]
11 STORE R5, RO, 201 Z-> mem [201]

12 STORE R6, RO, 202 W > mem [202]

Fig. 6.82 Instruction memory contents of the example and explanation of each instruction

The STORE R2, RO, 200 instruction is an unrelated instruction to the branch. Therefore, it
is used in the branch delay slot following the branch instruction. This instruction stores the
contents of R2, which contains 2A, to the data memory location 200 in Fig. 6.81.

The JUMP 11 instruction at PC = 8 changes the value of the PC with an immediate value
of 11. Therefore, the program skips both the SUBI and ADDI instructions following the
JUMP instruction to execute the STORE R5, R0, 201 and STORE R6, RO, 202 instructions.
As a result, the values of Z and W are stored at the data memory addresses 201 and 202,
respectively, regardless of the branch outcome.

Figure 6.83 shows the instruction chart of the program in Fig. 6.82. The LOAD RO, R1,
100 instruction causes a data hazard as explained in Fig. 6.69, but it is corrected by a
combination of a NOP instruction and a forwarding path (from the data memory stage (D) of
the LOAD instruction to the ALU stage (A) of the SLI instruction).

The ADD R1, R2, R3 instruction also requires data forwarding from the A stage of the
SLI instruction to the A stage of the ADD instruction.

338 6 Central Processing Unit

LOADRO,R1,100 | R A DOW

NOP I R A\D W

SLIR1, R2,1 I R AOQD W

ADDR1.R2.R3 'R ADW Branch NOT TAKEN
SRIR1, R4, 1 |

BRAR1,1,5

STORE R2, RO, 200 W -a— Delay Slot

ADDI R3, R5, 1 D W

SUBI R4, R6, 1 A D W

JUMP 11 Branch TAKEN RUA D W

NOP I \R A D W -=— Delay Slot
STORE R5, RO, 201 I R A DW
STORE R6, RO, 202 I R A DW
SUBI R3, R5, 1 DLW

ADDI R4, R6, 1 I R A \DOW

STORE R5, RO, 201 I R A\D W

STORE R6, RO, 202 I R A D W

Fig. 6.83 Five-stage CPU instructional chart

The BRA R1, 1, 5 instruction computes the branch target while it is in the RF (R) stage.
An instruction unrelated to the branch instruction, such as STORE R2, R0, 200 is used in the
branch delay slot so that the CPU has enough time to fetch ADDI R3, RS, 1 if the branch
comparison is unsuccessful or SUBI R3, R5, 1 if the comparison is successful.

From this point forward, the program follows two separate instruction charts. The first
chart shows the case where the branch comparison is unsuccessful. This chart contains a
JUMP instruction followed by a NOP instruction used in the jump delay slot. The second
chart follows the case where the branch comparison is successful, and contains two for-
warding paths required by the STORE instructions. Both of these paths forward data from
the D stage of SUBI R3, RS, 1 and ADDI R4, R6, 1 to the A stage of STORE R5, RO, 201
and STORE R6, RO, 202 to avoid data hazards, respectively.

The entire program takes 15 clock cycles to complete if the branch is successful and 17
cycles if unsuccessful.

6.17 Handling Hazards in a Five-Stage RISC CPU: An Example 339

Can the program in Fig. 6.82 be executed more efficiently in a shorter amount of time and
with fewer forwarding paths if the number of pipeline stages is reduced? To answer this
question, two additional CPU pipelines are implemented: one with four pipeline stages and
the other with three.

6.18 Handling Hazards in a Four-Stage RISC CPU

Figure 6.84 shows a four-stage RISC CPU where the ALU and the data memory stages are
combined in a single stage.

1st flip-flop 2nd flip-flop 3rd flip-flop
boundary boundary boundary
» OPC Dec

Y

Data
Memory

Instruction
Memory

Y
”_/

Register

| | |
T | |
]]]	
)	>
File	U
[[
T T	

Instruction Memory Stage RF Stage ALU/Data Memory Stage Write-Back Stage
!

Fig. 6.84 Four-stage CPU data-path

If the instructional chart is reconstructed to execute the program in Fig. 6.82 in a
four-stage CPU, it will produce a chart in Fig. 6.85. The first observation in this figure is that
there are fewer NOP instructions. For example, the NOP instruction that follows LOAD RO,
R1, 100 is eliminated because the memory contents become available during the combined
ALU/Data Memory stage (AD). Also, the forwarding paths from SUBI R3, RS, 1 to STORE
RS, RO, 201 and from ADDI R4, R6, 1 to STORE R6, R0, 202 in Fig. 6.83 are eliminated in
Fig. 6.85 because the write-back stage (W) of SUBI R3, RS, 1 lines up with the RF access
stage (R) of STORE R5, RO, 201, and similarly the W stage of ADDI R4, R6, 1 lines up with
the R stage of STORE R6, RO, 202 in this new CPU pipeline.

340 6 Central Processing Unit

LOAD RO, R1,100 | R ADQW

SLIR1,R2, 1 | R ADQW

ADD R1,R2, R3 I R AD W Branch NOT TAKEN
SRIR1, R4, 1 |

BRAR1,1,5 |

STORE R2, RO, 200 R AD W -4— Delay Slot

ADDI R3, R5, 1 R AD W

SUBI R4, R6, 1 | R AD W

JUMP 11 Branch TAKEN | R AD W

NOP | R AD W <« Delay Slot
STORE R5, R0, 201 | R AD W

STORE R6, R0, 202 I R AD W
SUBIR3, R5, 1 | R AD W

ADDI R4, R6, 1 | R AD W

STORE R5, R0, 201 | R AD W

STORE R6, R0, 202 Il R AD W

Fig. 6.85 Four-stage CPU instructional chart

Branch and jump-related hazards still exist in the chart in Fig. 6.85. They are removed
either by inserting NOP instructions or unrelated instructions to branch and jump in the
corresponding delay slots.

The new CPU pipeline executes the program in a shorter time: 13 clock cycles if the
branch is successful and 15 cycles if unsuccessful.

6.19 Handling Hazards in a Three-Stage RISC CPU

Can there be a continuing improvement in the program efficiency and the overall execution
time if the number of pipeline stages is reduced further? To answer this question, the CPU
pipeline in Fig. 6.84 is repartitioned into three stages where the ALU, the data memory and
the write-back stage are grouped together to form a single stage as shown in Fig. 6.86.

6.19 Handling Hazards in a Three-Stage RISC CPU 341

1st flip-flop 2nd flip-flop
boundary boundary
OPC Dec

Instruction -
Memory

> Data RN
A Memory
L

Register
File

\ /
N
\

\V

Instruction Memory Stage RF Stage ALU/Data Memory/Write-Back Stage

Fig. 6.86 Three-stage CPU data-path

When the instructional chart is reconstructed for the three-stage CPU in Fig. 6.86, we see
an immediate improvement: the absence of all forwarding paths. The new chart is shown in
Fig. 6.87. However, the combined ALU, Data Memory and Write-Back stages (AW) create a
practical engineering problem: calculating the data memory address, accessing the data
memory and then writing the results back to the RF may not fit in half a clock cycle.
Therefore, a NOP instruction is used after LOAD RO, R1, 100 to allow a full clock cycle
delay to complete the write-back to the RF before SLI R1, R2, 1 accesses this data.

For the SLIR1, R2, 1 and ADD R1, R2, R3 instruction pair, half a cycle may be sufficient
to shift the contents of R1 and store the result into R2 before the ADD instruction accesses
this data. Therefore, no NOP instruction is inserted between the SLI and ADD instructions.

Branch and jump-related delay slots still cannot be avoided in Fig. 6.87. STORE R2, RO,
200 is inserted in the branch delay slot, and a NOP instruction is used as the jump delay in
Fig. 6.87 just as in Figs. 6.83 and 6.85.

The three-stage CPU executes the program in 13 clock cycles if the branch is successful
and 15 cycles if unsuccessful. Therefore, there is no gain in speed compared to the four-stage
CPU. However, this may not be true for larger programs if they contain more instructions to
access the data memory.

342

LOAD RO, R1, 100 I
NOP I
SLIR1, R2,1 I
ADD R1, R2, R3 |
SRIR1, R4, 1 |
BRAR1,1,5
STORE R2, RO, 200
ADDI R3, R5, 1
SUBI R4, R6, 1
JUMP 11 Branch TAKEN
NOP

STORE R5, RO, 201

STORE R6, R0, 202

SUBI R3, R5, 1 |
ADDI R4, R6, 1 |
STORE R5, RO, 201
STORE R6, RO, 202

Fig. 6.87 Three-stage CPU instructional chart

6.20 Multi-cycle ALU and Related Data Hazards

6 Central Processing Unit

Branch NOT TAKEN

R AW
I R AW
I R Aw -e— Delay Slot
I R AW

I R AW

R AW

R AW

I R AW

I R AW

Not all ALU operations can be executed within one clock cycle. Depending on the propa-

gation delay of the functional modules, the ALU stage may take up several cycles especially

if it includes a floating-point adder or multiplier.

To show the potential data hazards in a multi-cycle ALU, a RISC CPU containing both
fixed and floating-point ALUs is used in Fig. 6.88. In this example, the fixed-point ALU is

assumed to execute data in a single clock cycle, whereas the floating-point add and multiply

units require three and five clock cycles to process data, respectively.

6.20 Multi-cycle ALU and Related Data Hazards 343

Floating Point Operations

- | Fixed
"] Point

Floating Point ADD

— Float Float Float —>
IMem —» RF » ADD —»{ ADD —»| ADD » DMem —»{ WB
- 1 2 3 o

Floating Point MULTIPLY

Float Float Float Float Float
l—» MUL [—m{ MUL |—m{ MUL |—# MUL |—m MUL |—
1 2 3 4 5

Fig. 6.88 Multi-cycle ALU of a five-stage CPU

The program below is executed in the CPU pipeline in Fig. 6.88, and deliberately
designed to contain data dependencies. All matching source and destination register
addresses are shown in bold letters.

LOAD R1,R2,0

MULF R2, R3, R4
ADDF R4, R5, R6

STORE R6, R7, 0

The instructional chart for a five-stage CPU in Fig. 6.89 requires the combination of a
forwarding path from the D stage of LOAD R1, R2, O to the A stage of MULF R2, R3, R4
and a NOP instruction in order to remove the pending data hazard.

But, the more importantly this chart employs four NOP instructions following the MULF
instruction to provide the required delay for ADDF R4, R5, R6 to add the contents of R5 to
the forwarded data from the floating-point multiplier output. Similarly, STORE R6, R7, 0
needs the combination of a NOP instruction and a forwarding path from the A3 stage of the
ADDF instruction to calculate the data memory address. The entire program takes 14 clock
cycles to complete.

344 6 Central Processing Unit

LOAD R1,R2, 0 | R A DOW

NOP I R A| D W

MULF R2, R3, R4 I R M1 M2 M3 M4 M50D W

NOP I R A D W

NOP I R A D W

NOP I R A D |W

NOP I R A |[D W

ADDF R4, R5, R6 I R \A‘l A2 A3[D W
NOP | R A D|[W
STORE R6, R7, 0 I R A D W

Fig. 6.89 Instructional chart of a program with data dependencies

The chart in Fig. 6.90 is derived from the instruction chart in Fig. 6.89. This new chart
uses different RF addresses, and produces no data dependencies. Consequently, the program
is executed in 10 clock cycles instead of 14 due to the absence of NOP instructions.

LOAD R1,R2,0 I R A D W

MULF R3, R4, R5 I R M1 M2 M3 M4 M5 D W
ADDF R6, R7, R8 I R A1 A2 A3 D W
STORE R9, R10, 0 I R A D W

Fig. 6.90 Instructional chart of a program with no data dependencies

Figure 6.91 alters the number of ALU cycles for the floating-point add from three to two
clock cycles to investigate the outcome. In this figure, even though the D stage of the ADDF
instruction aligns with the D stage of the STORE instruction, neither path interferes with
each other since the ADDF instruction uses the data memory bypass path while the STORE
instruction accesses the data memory with an address calculated by the fixed-point adder.
Therefore, this situation does not create a structural hazard for the CPU.

6.20 Multi-cycle ALU and Related Data Hazards
LOAD R1,R2, 0 | R
MULF RS3, R4, R5 I
ADDF R6, R7, R8

STORE R9, R10, 0

345
A D W

R M1 M2 M3 M4 M5 D W
Bypass path

A2 Dl w

Din port

R A@

It does not exist

I R A1

Fig. 6.91 Instructional chart of a program with no data dependencies: The MULF instruction
still requires five cycles but the ADDF instruction is reduced from three to two cycles

Similarly, the W stages of the ADDF and STORE instructions do not create a structural
hazard because the ADDF instruction uses the RF write-back path while the STORE
instruction terminates at the data memory stage.

Figure 6.92 examines the case where the ALU stage of the MULF instruction is reduced
from five to three clock cycles, and there are still no data dependencies among instructions.
In this case, both the MULF and ADDF instructions are forced to use the same data memory
bypass and write-back paths. Therefore, the ADDF instruction must be delayed for one cycle

LOAD R1,R2, 0 |

MULF R3, R4, R5 I

ADDF R6, R7, R8

STORE R9, R10, 0

LOAD R1,R2, 0 | R

MULF R3, R4, R5 I

NOP

ADDF R6, R7, R8

STORE R9, R10, 0

Bypass path

R A D W

R M1 M2 M3

Write -Back path
w
I W

DIn port

|RA@

It does not exist

A D W

Bypass path

R M1 M2 M3—Iplw

| R A D W

Bypass path

I R A1 A2-IDl-w
Din port

|RA@

It does not exist

Fig. 6.92 Instructional chart of a program with no data dependencies: MULF is reduced to

three cycles, but ADDF is still two cycles

346 6 Central Processing Unit

with respect to the MULF instruction to ensure that these instructions are able to use the
same paths in different clock cycles.

The D stage alignment between the ADDF and STORE instructions does not impose any
structural hazard because the ADDF instruction uses the data memory bypass path while the
STORE instruction uses a data memory address calculated by the fixed-point adder to store
data.

6.21 Cache Topologies

Cache is a local memory to the CPU where the temporary blocks of data is kept until it is
permanently stored in the system memory. No other bus master but the CPU is allowed to
access the cache memory.

There are three types of cache architectures in modern CPUs: fully-associative,
set-associative and direct-mapped.

Fully-associative cache protocol allows a block of data to be written (or read) anywhere in
the cache as shown in Fig. 6.93. In this type of cache architecture, a block of data is searched
in the entire cache before it is read. The range of cache memory addresses to place a block of
data is called a set. In Fig. 6.93, the entire cache containing N number of blocks belongs to a
single set.

Main Memory Fully-Associative Cache

Block 0
Block 1
Block 2
Block 3
Block 4
Block 5
Block 6
Block 7

Block X

SET

Fig. 6.93 Fully-associative cache topology

Set-associative cache protocol, in contrast, allows a block of data to be written (or read)
only to a limited set of addresses in the cache. The top figure of Fig. 6.94 shows a two-way
set-associative cache where a block of data from the main memory is written only to two

6.21 Cache Topologies 347

possible cache addresses, which defines a set. Conversely, when data needs to be read from a
two-way set-associative cache, data is searched only within a given set. Therefore, the time
to search and locate data is reduced by a factor of N/2 in a two-way set associative cache
compared to a fully-associative cache containing N number of blocks.

Main Memory 2-Way Set Associative Cache

Block 0
Block 1
Block 2
Block 3
Block 4
Block 5
Block X BIook G —

Block 7

SETO

SET 1

SET 2

SET 3

Block
Block
Block
Block

N-4)
N-3)
N-2)
N-1)

SET (K-2)

,\,\,\,\

SET (K-1)

Main Memory 4-Way Set Associative Cache

Block 0
Block 1
Block 2
Block 3
Block 4
Block 5
Block X Block 6 SET 1

Block 7

SETO

Block
Block
Block
Block

N-4)
N-3)
N-2)
N-1)

SET (K-1)

|~~~

Fig. 6.94 Two-way and four-way set-associative cache topologies

348 6 Central Processing Unit

Similar to the two-way set-associative cache, a block of data is searched in four possible
addresses in a set when the CPU issues a cache read in a four-way set-associative cache as
shown at the bottom part of Fig. 6.94. If data needs to be written to the cache, only four
possible cache addresses in a set are considered according to the cache protocol.

The third cache type is the direct-mapped cache as shown in Fig. 6.95. Its organization is
similar to an SRAM, and it maintains a one-to-one addressing scheme with the main
memory. In other words, a block of data in the main memory can only be written to a specific
location in the cache memory or vice versa.

Main Memory Direct-Mapped Cache
Block 0] sETO
Block 1 "] SET 1
Block 2 "] SET2
Block 3 "] SET3
Block 4 | SET 4
Block 5 "] SET5
Block X
Block 6 "] SET®6
Block 7] SET7
Block (N-4) _] SET (N-4)
Block (N-3) _] SET (N-3)
Block (N-2) "] SET (N-2)
Block (N-1)] SET (N-1)

Fig. 6.95 Direct-mapped cache topology

All stored data blocks in the cache memory are tagged. Consequently, all data transactions
between the cache and the main memory (or the CPU) require validation of the tag field
before performing a cache read or write operation. Physically, tag fields are stored in a
different memory block in the same cache structure. However, both the cache and tag
memories retain one-to-one association with each other as shown in Fig. 6.96. In addition,
the tag memory comes with valid bits. Each bit specifies if a block of data residing in the
cache has an identical twin in the main memory or not. A valid bit = 0 means that the
contents of the main memory have not been updated with the block of data residing in the
cache at a certain address. When updating is complete and there is complete data coherency
between the cache and main memories, the valid bit becomes logic 1.

6.21 Cache Topologies 349

Valid Bits Cache Memory Tag Memory
\% Block 0 Tag 0
\Y Block 1 Tag 1
\% Block 2 Tag 2
\% Block 3 Tag 3
\Y Block (N-2) Tag (N-2)
\Y Block (N-1) Tag (N-1)

CPU ADDRESS:

BLOCK ADDRESS
[|
TAG | INDEX | BLOCK OFFSET
TAG SET WORD
comparison selection selection

Fig. 6.96 Cache structure

The CPU address that references the cache memory consists of three separate fields as
shown at the bottom section of Fig. 6.96: tag, index and block offset. The index field
specifies the set address where the cache block resides. Since a block may contain many
words, block offset selects the word in the block. Therefore, before a cache-related operation
takes place, the tag field in a CPU address is compared against all the tag fields in a given set.
If the tag comparison is successful, the block of data at the specified set location is trans-
ferred out of the cache memory or vice versa.

6.22 Cache Write and Read Structures

The cache write operation starts with comparing the tag field of the CPU address with all the
tag fields of a referenced set in the tag memory. If the comparison is successful, this creates a
hit signal, and prompts the CPU to write data to the specified set (and block offset) location

in the cache memory.
Figure 6.97 shows the cache write operation to a 32-bit, four-way set-associative cache.

This cache contains 22-bit tag fields, 256 sets due to the eight-bit index field, and four words

6 Central Processing Unit

350

uonerado ayum ayoe) £6°9 *bi4

Xapu| NdD —

suqz suq g suq zeg
13s440 400714 X3ANI OVL
| |
$S3YAAV MO01d
'$S34AAV NdoO
Ndo wol4
0WH LWH ZUWH €UH 7
0 =404 0 =409
O¥H CUH
r4 I zz 2z 7 | =409 7 I =409
0OWH €UH
||Qmutom_ ||Qmutom_
Y Y Y OWH CUH
Be € =404 € =409
1 N0 0OMH €UH
2z 44 ¢ 4 4 4 zeqeeqeefee zeqeeLeefee
Y \
obeyl | LBeyr | zber | ¢bel [« GSS5z13S -+ 0019 L Yoo|g Zoig £300|9
obel | 1Bel | zbBel | c¢bel | ¢GZ13S —W 030|g L o019 Zolg € Yoo|g
obel | 1Bel | zbBel | ¢bel |a L 138 —» 0>oo0|g | Yo0|g Zoolg €009
obey | 1bel | zBel | ¢bel |- 013s - 0oog 1 %o0|g Zoig €300|g |« Xapu| NdO

6.22 Cache Write and Read Structures 351

in a block due to the two-bit block offset field. The write process starts with identifying the set
address using the eight-bit index field. All four tag fields at this set address are individually
compared against the CPU tag using XNOR-gates as shown at the output stage of the tag
memory in Fig. 6.97. If one of the tags at the set address compares successfully with the CPU
tag, it creates a hit signal for the CPU to write a block of data to the corresponding set address.
The CPU data is routed through the tri-state buffers placed at the input stage of the cache
memory, and written to the designated address via the index field and the block offset field.
The cache read operation is similar to the cache write operation except that the cache and
the tag memories are accessed simultaneously to shorten the cache read access period.
Figure 6.98 shows the same four-way set-associative cache structure shown in Fig. 6.97.
With the eight-bit index field defining the set address, four tag blocks from the tag memory
and four data blocks from the cache memory are read out simultaneously. Each tag is
individually compared with the 22-bit tag field in the CPU address, and hit signals are
generated using four XNOR gates. These hit signals are subsequently used as selector inputs
for the 4-1 MUX at the output of the cache memory to select one of the cache blocks. The
word from the chosen block is selected by the two-bit block offset field and given to the CPU.

6.23 A Direct-Mapped Cache Example

Even though cache read/write protocols and the related hardware have been explained in the
earlier sections of this chapter, the example shown in Fig. 6.99 further clarifies the operation
of a direct-mapped cache.

The cache structure in this example consists of eight sets due to the three-bit index field in
the CPU address with no block offsets. Therefore, each data block contains a single five-bit
word with a two-bit tag field.

Assume that the CPU issues cache reads from the following addresses: 10101, 10010,
10101, 01010, 10000, 10110, 10000, 10111 and 01111. When the cache is first turned on, its
tag, valid bits and data fields are all zero. The index column in Fig. 6.99 is not an actual part
of cache memory. Its sole purpose is simply to indicate a set address.

When the CPU issues the first read from the address 10101, the tag memory contents 00 at
the set address 101 are compared against the tag field contents of 10 in the CPU address.
Since the two values are different from each other, the cache controller issues a cache miss,
fetches the data, mem (10101), from the main memory address of 10101, delivers this data to
the CPU, and stores the same data in the cache. It also updates the tag contents with 10, and
issues valid bit = 1.

Next, the CPU issues the second read from the address 10010. This time, the tag memory
contents 00 at the set address 010 are compared with the tag field of 10 in the CPU address. The
comparison fails and produces a miss. The cache controller fetches the data, mem (10010), from
the main memory, writes this data at the set address 010 of the cache memory, delivers the same
data to the CPU, updates the tag memory with 10, and produces valid bit = 1.

6 Central Processing Unit

352

uonerado pear ayoe) 86°9 ‘b4

X8pu| NdO —

suq g suq 8 suq zz
135440 %0078 xaank | ove |
[|
SS3IYAAV 0019
'$S3”AAV NdD
Ndd oL
0 WH L UH ZWH € UH
ze
19S140 o019 NdO
zz ze zz zz ¢
8zl
< 0 uH
4 4 1 L IH
0 L z € ZWH
Bel Ndo <4— ¢IH
zz zz zz zz 8zl 8zl 8zl 8zl
ofel | Lbeyr | zbel | ¢bel (-4 GGZzl13asS —w{ 0>o0lg 1 yoolg Zoolg €00|g
obel | Lbel | zbel | ¢bel - pSZ13S - 0009 L Yo0ig Zoig € o019
ofel | 1beyr | zbel | ¢bel - | 13S —w{ 0009 1 yoolg Zoolg €00|g
ober | Lbeyl | zbel | cbel [« 013S - 0004 L ¥ooig Zooig £Yo0|g |- xapu| NdD

6.23 A Direct-Mapped Cache Example 353

CPU Address: [TAG [INDEX | BOFF |
2 bits 3 bits 0 bits
(1) Initial state of the cache (2) After the MISS at address 10101
INDEX | TAG | V DATA INDEX | TAG | V DATA
000 00| O 0 000 00 | O 0
001 00 | O 0 001 00 | O 0
010 00 | O 0 010 00 | O 0
011 00| 0 0 011 00 | O 0
100 00 | O 0 100 00 | O 0
101 00 | o 0 101 10 | 1 | mem (10101)
110 00 | O 0 110 00 | O 0
111 00 | O 0 111 00 | O 0
(3) After the MISS at address 10010 (4) After the HIT at address 10101
INDEX | TAG | V DATA INDEX | TAG | V DATA
000 00| o0 0 000 00| 0 0
001 00| 0 0 001 00| 0 0
010 10 1 | mem (10010) 010 10 1 | mem (10010)
011 00| 0 0 011 00| 0 0
100 00| 0 0 100 00| 0 0
101 10 | 1 | mem (10101) 101 10 | 1 | mem (10101)
110 00| 0 0 110 00| 0 0
111 00| 0 0 111 00| 0 0
(5) After the MISS at address 01010 (6) After the MISS at address 10000
INDEX | TAG| V DATA INDEX | TAG| V DATA
000 00| 0 0 000 10 | 1 | mem (10000)
001 00| 0 0 001 00| 0 0
010 01 | 1 [mem (01010) 010 01 | 1 [mem (01010)
011 00| 0 0 011 00| 0 0
100 00| O 0 100 00| O 0
101 10 | 1 | mem (10101) 101 10 | 1 | mem (10101)
110 00| 0 0 110 00| 0 0
111 00| O 0 111 00| O 0
(7) After the MISS at address 10110 (8) After the HIT at address 10000
INDEX | TAG| V DATA INDEX | TAG| V DATA
000 10 | 1 | mem (10000) 000 10 | 1 | mem (10000)
001 00| O 0 001 00| 0 0
010 01 | 1 [mem (01010) 010 01 | 1 [mem (01010)
011 00| 0 0 011 00| 0 0
100 00| o0 0 100 00| o0 0
101 10 | 1 | mem (10101) 101 10 | 1 | mem (10101)
110 10 | 1 | mem (10110) 110 10 | 1 | mem (10110)
111 00| O 0 111 00| O 0
(9) After the MISS at address 10100 (10) After the MISS at address 11111
INDEX | TAG | V DATA INDEX | TAG | V DATA
000 10 | 1 | mem (10000) 000 10 | 1 | mem (10000)
001 00 | O 0 001 00 | O 0
010 01 [1 | mem (01010) 010 01 [1 | mem (01010)
011 00 | O 0 011 00 | O 0
100 10 | 1 | mem (10100) 100 10 | 1 | mem (10100)
101 10 | 1 | mem (10101) 101 10 | 1 | mem (10101)
110 10 1 | mem (10110) 110 10 1 | mem (10110)
111 00| o0 0 111 11 [1| mem (11111)

Fig. 6.99 A direct-mapped cache operation

354 6 Central Processing Unit

The CPU reissues another read from the address 10101. The tag memory contents of 10 at
the set address of 101 compare successfully with the CPU tag field of 10. As a result, the
cache controller issues a hit. The data, mem (10101), at the set address 101 is transferred
directly from the cache memory to the CPU.

The next CPU address 01010 accesses the set 010 in the tag memory, but finds the tag
memory contents of 10 at this address is different from the tag field contents of 01 in the
CPU address. Therefore, the cache controller issues a miss, fetches mem (01010) from the
main memory, and delivers this data to the CPU and the cache memory. It also updates
the tag contents with 01, and issues valid bit = 1.

The fifth address 10000 creates another miss because the tag memory contents of 00 at the
set address of 000 do not compare with the tag contents of 10 at the CPU address. The cache
controller transfers mem (10000) from the main memory to the set address 000 of the cache,
delivers the same data to the CPU, updates the tag contents with 10, and produces valid bit = 1.

When the CPU issues the sixth address 10110, the cache controller finds the tag memory
contents of 00 at the set address of 110 to be different from the tag field contents of 10 in the
CPU address, and issues a miss. Consequently, the cache controller fetches mem (10110)
from the main memory, delivers it to the CPU and the cache memory. It also updates the tag
memory with 10, and assigns valid bit = 1.

Next, the CPU reissues the address 10000. Since the CPU and the tag memory contents
match, this creates a cache hit. The cache controller simply delivers mem (10000) from the
set address 000 of the cache to the CPU.

The next address, 10100, creates another cache miss. The cache controller updates the set
address contents with mem (10100) and delivers the same data to the CPU. It also updates
the tag memory with a value of 10 and issues valid bit = 1.

When the last CPU address, 11111, is issued, the cache controller finds the tag field
contents of 11 in the CPU address to be different from the tag memory contents of 00 at the
set address of 111. It issues a miss and delivers mem (11111) to both the CPU and the cache.
It updates the tag memory with 11 and assigns valid bit = 1.

6.24 Write-Through and Write-Back Cache Structures in Set-Associative
Caches

It is very common to see two types of cache structures when analyzing set-associative
caches: write-through caches and write-back caches.

In write-through caches, the cache controller maintains data coherency between the cache
and the main memory before starting a new task.

In write-back caches, the wait time for data coherency is an essence. For example, if the
transaction is a read, but the main memory bus is busy with another data transfer, the cache
controller temporarily stores the data from the cache in a write-back buffer instead of waiting
to write it to the main memory, and starts a new task. When the bus arbiter grants the bus

6.24 Write-Through and Write-Back Cache Structures in Set-Associative Caches 355

access, the cache controller resumes transferring this data from the write-back buffer to the
main memory.

6.25 A Two-Way Set-Associative Write-Through Cache Example

The example in Fig. 6.100 shows 14 different transactions between a two-way
set-associative write-through cache and a CPU. The initial contents of the main memory
are shown in the same figure. Each transaction is specified by a CPU address, the type of
transaction and data.

The CPU address in this example consists of six bits: the most significant four bits define
the tag address; the least significant two bits indicate the set address as shown in Fig. 6.101.

MAIN MEMORY
(Word Addressable)
Transaction No | CPU Address | Read/Write | CPU Data 000000 O0x3F
1 010101 Read -
2 110001 Read -
3 100000 Read -
4 100011 Read - 010011 0x3A
5 110000 Read -
6 010011 Read -
7 000110 Write 0x0B 010101 0x0A
8 001110 Write 0x1B
9 110000 Write 0x2B
10 100000 Write 0x3B
11 100100 Write 0x0C
12 100100 Write 0x1C 100000 0x0E
13 111100 Write 0x2C
14 000000 Read -
100011 0x0F
110000 0x2A
110001 0x1A

Fig. 6.100 A two-way set-associative write-through cache pending transactions and initial
data memory contents

356 6 Central Processing Unit

CPU Address | TAG [INDEX]
4 bits 2 bits
CACHE MEMORY TAG MEMORY
WAY 1 WAY 0 V. WAY1 v WAYO

Set 0 Set 0
Set 1 Set 1
Set 2 Set 2
Set 3 Set 3

6 bits 6 bits 4 bits 4 bits

End of 6! transaction:

WAY 1 WAY 0 V. WAY1 VvV WAYO MAIN MEMORY
Set0[OxOE 0x2A Set0 [1 1000 1 1100 000000 Ox3F
Set 1 0x0A 0x1A Set1 [1 0101 1 1100
Set 2 Set 2 B
Set 3
e 0xOF 0x3A Set3 [1 1000 1 0100 000110 [0x00 = OX0B
End of 10t transaction: _
001110 0x00 — 0x1B
WAY 1 WAY 0 V. WAY1 vV WAYO
Seto| 0x3B 0x2B Set0 [1 1000 1 1100)
Set 1 0x0A 0x1A Set1 [1 0101 1 1100
Set 2 0x0B 0x1B Set2 [1 0001 1 0011
Set3 | OxOF 0x3A Set3 [1] 1000 |1] 0100 010011 O0x3A
End of 12t transaction: 010101 0x0A
WAY 1 WAY 0 Vv WAY1 Vv WAYO .
Set0| Ox1C 0x2B Set0 [1 1001 1 1100
Set1| Ox0A 0x1A Set1 [1] o101 [1] 1100 100000 OxOE — 0x38
Set 2 0x0B 0x1B Set2 [1 0001 1 0011 -
Set 3 OXOF 0x3A Set3 [1 1000 1 0100 100011 OxOF
End of 14t transaction: 100100 | 0x00 — 0x0C — 0x1C
WAY 1 WAY 0 vV WAY1 Vv WAYO -
Set0 0x1C O0x3F Set0 | 1 1001 1 0000 110000 | 0x2A — 0x2B
Set 1 0x0A 0x1A Set1 |1 0101 1 1100 110001 0x1A
Set 2 0x0B 0x1B Set2 |1 0001 1 0011)
Set 3 OxOF 0x3A Set3 |1 1000 1 0100
111100 0x00 — 0x2C

Fig. 6.101 A two-way set-associative write-through cache, tag and data memory contents
after the sixth, tenth, twelfth and fourteenth transactions

6.25 A Two-Way Set-Associative Write-Through Cache Example 357

There are no bits for block offset, which indicates every block consists of a single word with
six bits of data. Since this is a two-way set-associative cache, the memory is organized as
two adjacent data blocks for every set. The tag memory also consists of two adjacent tag
fields with valid bits for each set as shown in Fig. 6.101.

The data from the main memory can either go to the most significant (WAY 1) or the least
significant (WAY 0) block position of the two-way set-associative cache. Therefore, a data
replacement policy must be defined when designing a set-associative cache architecture. In
this example, let us assume that the data replacement policy dictates the old data with smaller
number of memory references (the total number of reads and writes) to be replaced. If the
number of memory references at either cache blocks is equal to each other, the block of data
at the most significant cache position is replaced with the new data.

The first transaction reads from the memory address of 010101. In this transaction, the
cache controller compares the tag field contents of 0101 in the CPU address with the tag
memory contents of 0000 at the set address 01, and issues a miss. Next, the cache controller
fetches OxOA from the main memory address of 010101, and delivers it to the CPU. Since
the number of memory references at the most and the least significant cache positions are
both zero at this point, the cache controller places 0xOA at the most significant cache
position as the result of the data replacement policy. It also updates the tag memory with
0101, and assigns valid bit = 1.

The next five read transactions result in five consecutive cache misses. By the end of the
sixth transaction, six new data entries from the main memory are written to both the cache
and the tag memories as shown in Fig. 6.101.

The seventh CPU transaction is a write. The CPU issues to write 0xOB to the main
memory address of 000110. As for the read operations, the cache controller compares the tag
memory contents of 0000 at the set address of 10 with the tag field contents of 0001 in the
CPU address, and issues a miss. The data, 0x0B, is written to both the main memory address
of 000110 and the most significant cache position at the set address of 10. The tag memory is
also updated with 0001, and valid bit = 1.

In the eight transaction, the cache controller again issues a miss for the set address of 10
because the tag field comparison fails. Consequently, the cache controller stores the CPU
data, 0x1B, in the main memory address of 001110, and also writes this data to the least
significant cache position at the set address of 10. The tag memory is updated with 0011 and
valid bit = 1.

The next write compares the tag field entry of 1100 in the CPU address with all the tag
memory entries at the set address of 00. Since the least significant tag memory contents are
identical to the CPU tag entry, the cache controller issues a hit, but still replaces the contents
of the main memory at the address of 110000 and the contents of the cache memory at the set
address of 00 with 0x2B. This is because the architecture of this cache is a write-through
which requires the cache and the main memory contents to be the same before the cache
controller starts a new task. Therefore, there is really no difference between a cache write

358 6 Central Processing Unit

miss and cache write hit when it comes to updating the cache and the main memory contents.
In both cases, the cache controller has to wait until the current data transaction ends before
updating the main memory. However, the tag memory contents require no updating fol-
lowing a cache write hit.

The tenth transaction is another CPU write which results in a cache hit. Like the previous
write transaction, the cache controller has to replace the contents of the main memory at the
address of 100000 and the contents of the cache memory at the set address of 00 with 0x3B.
At the end of the tenth transaction, the cache and the tag memory contents are shown in
Fig. 6.101 with two memory references for the set address of 00, and one memory reference
for the remaining set addresses.

The eleventh transaction creates a cache miss and causes the cache controller to replace the
data 0x3B at the most significant cache position with the CPU data of 0x0OC at the set address
of 00. The most significant tag entry, 1000, is also replaced with 1001 at the same set address.

The twelfth transaction creates a cache hit because the CPU tag field, 1001, compares
successfully with the tag memory contents at the set address of 00. However, the cache
controller replaces 0xOC at the main memory address of 100100 and at the set address of 00
with the new CPU data Ox1C.

In the thirteenth transaction, the CPU address of 111100 causes a cache miss. The CPU
data, 0x2C, is written both to the main memory address, 111100, and the least significant
cache position at the set address of 00 per data replacement policy. The least significant tag
memory contents at the set address of 00 are also updated with 1111.

The fourteenth transaction is a memory read and causes another miss. The cache con-
troller delivers Ox3F from the main memory location of 000000 to the CPU and writes the
same data to the least significant cache position at the set address of 00.

6.26 A Two-Way Set-Associative Write-Back Cache Example

The example in Fig. 6.102 shows the transactions between a CPU and a two-way
set-associative write-back cache. The initial contents of the main memory and the cache are
shown in the same figure. The CPU address in this example has eight bits. The most
significant four bits are reserved for the tag field. The two-bit index field indicates that there
are four sets in the cache memory. The two-bit block offset field signifies that there are four
eight-bit wide words in each block. Therefore, the cache memory consists of two adjacent
blocks at WAY 1 and WAY O positions, each containing four words. The tag memory has
also two adjacent tag entries with valid bits. Each tag represents a block in the cache
memory. The data replacement policy for this example assumes to replace the block of data
in the cache memory with the least number of memory references. If the number of memory
references at each block is the same, then the policy replaces the old data at the least
significant block position.

6.26 A Two-Way Set-Associative Write-Back Cache Example 359

CPU Address

TAG | INDEX | BOFF |
4 bits 2bits 2 bits

Two-Way Set-Associative Tag Memory

WAY 1 WAY 0

[I I
D v TAG D V TAG

Set 0
Set 1
Set 2 0 1 1011 [0| 1 1010
Set 3 MAIN MEMORY
(Word Addressable)
Two-Way Set-Associative Cache Memory
WAY 1 WAY 0
| 1 | 10001000 0xA0
11 10 01 00 11 10 01 00 10001001 0xA1
Set 0 10001010 0xA2
Set 1 10001011 0xA3
Set 2 0xC3 | OxC2 [OxC1 | OxCO | 0xB3 | 0xB2 | 0xB1 | OxBO
Set 3
10101000 0xBO0
Write-Back Buffer 10101001 0xB1
Block 1 Block 0 10101010 0xB2
[11 1
| | | | | | | | | 10101011 0xB3
10111000 0xCO
Transaction No | CPU Address | Read/Write | CPU Data
10111001 0xC1
1 10001000 Read -
10111010 0xC2
2 10000000 Write OxEO
10111011 0xC3
10000001 Write OxE1
10000010 Write OxE2
10000011 Write OxE3 11000000 0xDO
3 10000000 Write 0xFO 11000001 0xD1
10000001 Write OxF1 11000010 0xD2
10000010 Write 0xF2 11000011 0xD3
10000011 Write OxF3
4 11000000 Read -

Fig. 6.102 A two-way set-associative write-back cache pending transactions and initial data
memory

360 6 Central Processing Unit

Since this is a write-back cache, its architecture enables the cache controller to store the
CPU data temporarily in a buffer to be written to the main memory at a later time. Every time
a block of data is written to this buffer, a dirty bit is attached to its tag, designating that this
block is waiting to be written to the main memory. Therefore, the cache coherency mech-
anism that presides over write-through caches is not valid for write-back caches. Instead, the
dirty bit attached to each tag entry determines whether or not a block of data exists in both
the cache and the main memories.

Initially, identical data resides both in the main memory and the cache as shown in
Fig. 6.102, and therefore valid bits at the set address of 10 in the tag memory become equal
to one. Since the write-back buffer cache architecture does not offer any data waiting period
for the main memory, the dirty bits at the set address 10 are equal to zero.

The first CPU transaction is to read data from the memory address 10001000. The cache
controller compares the tag entry 1000 in the CPU address with all the tags at the set address
10 and issues a miss. It then transfers the block of data from the main memory address
10001000 (0xAOQ, OxA1, OxA2 and 0xA3) to replace the old block (0xBO, 0xB1, 0xB2 and
0xB3) at the least significant cache position. The cache controller also updates the corre-
sponding tag contents with 1000 as shown at the top portion of Fig. 6.103.

The next CPU transaction is a write, which results in a cache miss. Consequently, the
cache controller writes the contents of the CPU data that consists of OXxEO, OxE1, OxE2 and
0xE3 to the least significant cache position at the set address 00, and updates the tag memory
contents with 1000. However, during this transaction the data bus happens to be busy.
Therefore, the cache controller stores this block in the write-back buffer, assigns dirty bit = 1
and valid bit = 0, and starts the next transaction. When the bus access is granted, the cache
controller resumes transferring this data from the write-back buffer to the main memory, and
assigns dirty bit = 0 and valid bit = 1.

The third CPU transaction is a write and results in a cache hit. The cache controller simply
writes the new block of data, 0xF0, OxF1, OxF2 and OxF3, to the write-back buffer and to the
least significant block position of the cache memory, replacing the old block, OxEO, OxE1,
0xE2 and OxE3. Since this transaction does not require transferring the old block from the
write-back buffer to the main memory, write-back cache scheme creates a distinct speed
advantage compared to the write-through scheme.

The last CPU transaction is a memory read that results in a miss. Consequently, the data
block, 0xDO0, 0xD1, 0xD2 and 0xD3, that resides at the main memory address 11000000 is
transferred to the most significant block position of the cache memory at the set address 00
since this position has zero memory references compared to the least significant block
position. The tag memory contents are updated with 1100, valid bit = 1 and the dirty bit =0
at this set address.

6.26 A Two-Way Set-Associative Write-Back Cache Example 361

AFTER THE 1st TRANSACTION

Two-Way Set-Associative Cache Memory Two-Way Set-Associative Tag Memory
WAY 1 WAY 0 WAY 1 WAY 0
[]] [11]

11 10 01 00 11 10 01 00 D V TAG D V TAG
Set 0 Set 0
Set 1 Set 1
Set 2 [OxC3 | 0xC2 [OxC1 [OxCO | OxA3 [OxA2 | OxA1 | OXAO Set2 (0] 1| 1011 | 0| 1| 1000
Set 3 Set 3

Write-Back Buffer
Block 1 Block O

AFTER THE 2nd TRANSACTION

Two-Way Set-Associative Cache Memory Two-Way Set-Associative Tag Memory
WAY 1 WAY 0 WAY 1 WAY 0
[11] []]

1 10 01 00 1 10 01 00 D V TAG D V TAG
Set 0 OxE3 | OxE2 | OXE1 | OxEO Set 0 110 | 1000
Set 1 Set 1
Set2 | OxC3 | 0xC2 [OxC1 [OxCO | OxA3 [0xA2 | OxA1 | OXAO Set2 | 0| 1] 1011 [0 [1| 1000
Set 3 Set 3

Write-Back Buffer

Block 1 Block 0
[11 1

[-] - T - T - Joxea[oxe2[oxe1 [oxe0]|

AFTER THE 3rd TRANSACTION

Two-Way Set-Associative Cache Memory Two-Way Set-Associative Tag Memory
WAY 1 WAY 0 WAY 1 WAY 0
[11] []]

" 10 01 00 " 10 01 00 D V TAG D V TAG
Set 0 0xF3 | OxF2 | OxF1 | OxFO Set 0 110 1000
Set 1 Set 1
Set 2 0xC3 | 0xC2 [OxC1 | 0xCO | OxA3 | OxA2 | 0xA1 | OxAO Set 2 0|1 1011 0|1 1000
Set 3 Set 3

Write-Back Buffer

Block 1 Block 0
I 1T 1

[-] - T - T - Toxrs]oxr2]oxF1 [oxFo]

AFTER THE 4th TRANSACTION

Two-Way Set-Associative Cache Memory Two-Way Set-Associative Tag Memory
WAY 1 WAY 0 WAY 1 WAY 0
[11] []]

1 10 01 00 1 10 01 00 D V TAG D V TAG
Set0 | OxD3 [0xD2 | 0xD1 | 0xDO | OxF3 | OxF2 | OxF1 | OxFO Seto | 0| 1] 1100 | 1| 0 | 1000
Set 1 Set 1
Set2 | OxC3 | 0xC2 [OxC1 [OxCO | OxA3 [0xA2 | OxA1 | OxAO Set2 | 0| 1] 1011 [0 [1| 1000
Set 3 Set 3

Write-Back Buffer

Block 1 Block 0
[11 1

[- T -1 -1 - Jora]oxra]oxrt [oxro]

Fig. 6.103 A two-way set-associative write-back cache with tag and write-back buffers

362 6 Central Processing Unit

Review Questions

1. A 32-bit RISC CPU organized in Big Endian format has three pipeline stages to
execute the following two instructions:

ADDI RS, RD, Imm Value Reg[RS] + Imm Value — Reg[RD]
XOR RS1, RS2, RD Reg[RS1] + Reg[RS2] — Reg[RD]

Draw the detailed ALU and the CPU schematic that executes these two instructions.
Label all interconnections, bus widths and control signals.

2. An eight-bit CPU interacts with a two-way set-associative write-through cache
organized in Little Endian format. The top row of this cache corresponds to set 0.
The CPU address has the following format:

Tag Index Block offset
3 bits 3 bits 2 bits

Data replacement policy in case of a miss is as follows:

(i) Tags with invalid bits are replaced.
(ii) The least significant tag is replaced if the number of references is the same when
valid bit = 1 (every cache read or write is considered a reference).

(a) Draw the block diagram of the tag (with valid bits) and cache memories. Calculate
how many bits are in each memory.

(b) Draw the block diagram and the contents of the cache and the tag memories at the
end of the fifth, eleventh and thirteenth transactions according to the transaction list
below:

6.26 A Two-Way Set-Associative Write-Back Cache Example 363

Transaction no. CPU Address Data Write/Read

1 10100110 0x11 W
2 00111001 0x22 W
3 11110100 0x33 w
4 10001111 0x44 w
5 00100110 0x55 w
6 00111011 0x66 w
7 00111001 0x77 w
8 11001111 0x88 w
9 01101101 0x99 W
10 00010100 OxAA W
11 10100110 ? R
12 00100111 ? R
13 00101111 ? R

3. The following specification is given for implementing a 32-bit RISC processor that
executes the integer multiply-add (MADD) and add (ADD) instructions:

®

(i1)
(iif)

(iv)

)

Data, a, b, ¢ and d are read from the DOutl, DOut2, DOut3 and DOut4 ports of
the 32-bit RF at the same time.

There are four stages in the processor. The ALU consists of two stages.
Multiplication is the first ALU stage for the MADD instruction between a and b,
and between ¢ and d. It takes one clock cycle to produce results which are
eventually written to the DinH (for higher 32 data bits) and DinL (for lower 32
data bits) ports of the RF simultaneously. This stage can be bypassed if addition
is performed between a and c.

Addition is the second ALU stage, and it also takes one clock cycle to produce
results.

For MADD instruction, RS1 is the first source address that contains a, RS2 is the
second source address that contains b, RS3 is the third source address that
contains ¢, and RS4 is the fourth source address that contains d. RD1 is the first
destination address that stores the lower 32 bits of the result, and RD2 is the
second destination address that stores the higher 32 bits. For the ADD
instruction, RS1 is the first source address that contains a, RS3 is the second
address that contains ¢, and RD1 is the destination address that stores the result.

364 6 Central Processing Unit

(a) Draw the instruction bit field format of these two instructions, indicating the
opcode and operand fields.

(b) Draw the architectural diagram of the processor that executes the ADD and the
MADD instructions, indicating all the necessary hardware such as the required
memories, the RF, the detailed ALU with all the port names and bit widths. Show
how the opcode decoder enables multiplexers and other hardware in each stage.

4. The area under y = x is calculated until the area equals to 18 square units.

delx

X

The incremental area is calculated in the flow chart given below.

| area=0,delx=1,x=0 |
v

| y1 =X, y2 = x+delx |<7
v

area = area + delx * (y1+y2)/2

STORE area at mem=100 |

6.26 A Two-Way Set-Associative Write-Back Cache Example 365

(a) Assuming Reg[RO] =0, write a program using the instruction set given in Chapter 6.
Make comments next to each instruction in the program.

(b) Form an instruction chart (histogram) for this program and show all the data
dependencies that require forwarding loops in the RISC processor. Stall the
pipeline using the NOP instruction if necessary. Consider the branch or jump delay
penalty to be 1 cycle.

5. A RISC CPU computes the following:

X =2A%+1

A is located at the data cache address, 100, and X needs to be stored at the address,
200. All instructions take one cycle except the multiply, which takes three cycles.
The RF contains only RO and R1. The contents of RO are O.

Make sure to have only 16-bit values in the source registers, RS1 and RS2, in order to
avoid the overflow condition in the destination register, RD, when the MUL
instruction is used.

(a) Write an assembly code to compute and store the value of X. Make sure to write
comments next to each instruction to keep track of the register values.

(b) Rewrite the assembly code with an instruction chart. Indicate all the forwarding
loops and the stalls caused by the NOP instructions on this chart.

6. Design a four-way set-associative cache for an eight-bit CPU. The cache is organized
in Little Endian format. It has four sets, and each block in the set contains two words.
The replacement policy on a cache miss is as follows:

(i) An entire block of data is exchanged between the CPU and the cache
(i) The least significant block is replaced
(iii) The block with the fewest number of memory references is replaced (a memory
reference corresponds to each memory-read or memory-write cycle)
Below is the list of CPU transactions:

366

6 Central Processing Unit

Transaction no. CPU Address Data Write/Read
1 10000010 ? R
2 10000110 ? R
3 01111101 ? R
4 00100011 ? R
5 00001010 ? R
6 00001101 ? R
7 10001001 ? R
8 10001010 ? R
9 10000000 O0xAB W

10000001 0xCD w
10 00001010 O0xAB w
00001011 0xCD w
11 11011010 O0xAB w
11011011 0xCD W
12 11111011 ? R

The contents of the main memory before any transaction are shown below:

6.26 A Two-Way Set-Associative Write-Back Cache Example 367

7 0
00001010 0x33
00001011 0x44
00001100 0x55
00001101 0x66
00100010 0x11
00100011 0x22
01111100 OxEE
01111101 OxFF
10000000 0x00
10000001 0x00
10000010 OxAA
10000011 0xBB
10000110 0xCC
10000111 0xDD
10001000 0x77
10001001 0x88
10001010 0x00
10001011 0x99
11011010 0x00
11011011 0x00
11111010 0xAB
11111011 0xCD

(a) Draw the block diagram of the cache and tag memories. Show the field format of
the CPU address in terms of tag, index and block offset.

368 6 Central Processing Unit

(b) Show the contents of the cache and the tag memories after the eighth, tenth and
twelfth transactions. Update the main memory contents if there is any change.

7. A 32-bit, five-stage RISC CPU organized in Little Endian format executes the flow
chart below. The CPU contains a register file with 32 registers where Reg[RO] = 0.
The integer values, SUM = 0, i = 1 and the compare value of 100, are stored at the data
memory locations 100, 101 and 102, respectively. The final SUM needs to be stored at
the data memory address, 200.

SUM =0
at mem (100)

v

i=1
at mem (101)

v

SUM=SUM+i [«

.

i=i+1

STORE
SUM at mem (200)

(a) Write an assembly program using the following instruction set. Accompany each
instruction in the program with register data and comments.

6.26 A Two-Way Set-Associative Write-Back Cache Example 369

Instruction Set Instruction Definition Instruction Bit Field
31 26 25 2120 16 15 0
LOAD RS, RD, Imm Value mem {Reg[RS] + Imm} — Reg[RD] [Loao] RS [RD | ImmValue |
31 26 25 2120 16 15 0
STORE RS, RD, Imm Value Reg[RS] — mem {Reg[RD] + Imm} sToR| RS [RD | ImmValue |
31 26 25 2120 1615 1110 0
ADD RS1, RS2, RD Reg[RS1] + Reg[RS2] — Reg[RD] [AoD [RS1[RS2] RD | Notused |
31 26 25 2120 16 15 0
ADDI RS, RD, Imm Value Reg[RS] + Imm Value — Reg[RD] [AoDI] RS [RD | ImmValue |
31 26 25 2120 1615 1110 0
SEQRS1, RS2, RD If Reg[RS1] = Reg[RS2) [sea [Rs1[RsS2| RD [Notused |
then 1 — Reg[RD] else 0 — Reg[RD]
31 26 25 2120 16 15 0
BNEZ RS, Imm Value If Reg [RS] # 0 [Bnez] RS [NU | Immvalue |
then PC + Imm — PC else PC + 2 —» PC
31 26 25 2120 16 15 0
JUMP Imm Value Imm — PC [uvp[NU [NU [ImmValue |

(b) Draw the CPU schematic that executes the instructions in the flow chart above.

. 5cA-B . . .
8. The function, Y = %, needs to be executed using the instruction set below.
Instruction Set Instruction Definition Instruction Bit Field
31 26 25 2120 16 15 0
LOAD RS, RD, Imm Value mem {Reg [RS] + Imm} — Reg [RD] torp] RS [RD | ImmValue |
31 26 25 2120 16 15 0
STORE RS, RD, Imm Value ~ Reg [RS] — mem {Reg [RD] + Imm} [sToR[RS [RD | ImmValue |
31 26 25 2120 1615 1110 0
ADD RS1, RS2, RD Reg [RS1] + Reg [RS2] — Reg [RD] [AoD [RS1[RS2] RD | Notused |
31 26 25 2120 1615 1110 0
SUB RS1, RS2, RD Reg [RS1] - Reg [RS2] — Reg [RD] [sus [RS1[RS2] RD | Notused |
31 26 25 2120 16 15 0
SLIRS, RD, Imm Value Reg [RS] << Imm — Reg [RD] st [RS [RD | ImmVvalue |
31 26 25 2120 16 15 0
SRIRS, RD, Imm Value Reg [RS] >> Imm — Reg [RD] [sR [Rs [RD | ImmValue |

A is located at the memory address 100.

B is located at the memory address 101.

Y needs to be stored at the memory address 102.
Reg[RO] = 0.

370

6 Central Processing Unit

(a) Write a program to compute Y.

(b) If the LOAD and STORE instructions require two cycles to access the data cache,
rewrite the program to accommodate this requirement. Show all the forwarding
loops and include all the necessary NOPs in the instruction chart.

(c) Indicate the minimum number of clock cycles to execute the program in part (b).

A 32-bit CPU organized in Big Endian format has 32 general purpose registers (RO is
also a general purpose register and its contents are not zero). This CPU executes the
following flow chart:

mem{ImmO0}-> Reg[RO]

!

mem{lmm1}-> Reg[R1]

!

Reg[R0]-> Reg[R2]

!

Reg[RO] * Reg[R1]- Reg[R3], Reg[R4]

!

Reg[R0] + Reg[R1]> Reg[R5]

!

Reg[R1]> Reg[R6]

!

Reg[R3]- mem{Imm3}

!

Reg[R4]> mem{lmm4}

!

Reg[R2] 5 mem{Imm2}

!

Reg[R5] > mem{lmm5}

!

Reg[R6]- mem{Imm6}

6.26 A Two-Way Set-Associative Write-Back Cache Example 371

The instruction set and the bit-field format for each instruction is shown below.

0 56 10 11 15 16 31

LOAD Imm Value, RD mem (Imm Value)—> Reg[RD] [Loap] Nu [RrD | Imm Value |
0 56 10 11 15 16 31
INVERT RS, RD Reg[RS] = Reg[RD] [mvert] Rs | RO | NU |

lower upper
| e T e— | 6 10 11 15 16 2021 2526 31

0 5
MUL RS1, RS2, RD1,RD2 | Reg[RS1] * Reg[RS2] — Reg[RD1], Reg[RD2] | [MuL [Rs1 [Rs2 [Rp1 [RD2 [NU |

6 10 11 15 16 2021 31

0 5
ADD RS1, RS2, RD Reg[RS1] + Reg[RS2] = Reg[RD] [aoD [Rst[Rs2[RO [nu |

0 56 1011 1516 31
STORE RS, Imm Value Reg[RS] - mem{lmm Value} |STORE| RS | NU | Imm Value |

The CPU maintains the following rules:

(i) Every instruction is executed in a different number of clock cycles

(ii)) No NOP instruction is allowed
(iii) LOAD does not have an ALU cycle but requires two data memory cycles
(iv) INVERT does not have a data memory cycle but requires one ALU cycle

(v) MUL does not have a data memory cycle but requires three ALU cycles
(vi) ADD does not have a data memory cycle but requires two ALU cycles
(vii) STORE does not have an ALU cycle but requires one data memory cycle

Write a program and construct its instruction chart to execute the flow chart above.
Show all the necessary forwarding loops and possible data hazards in the instruction
chart. Show the cases in which there may be structural hazards and indicate how to
prevent them.

10. An eight-bit CPU has a four-way set-associative, write-back data cache organized in
Little Endian format (the most significant bit is at bit position 7 and the least signif-
icant bit is at bit position 0).

The cache has four sets, and each block contains two eight-bit words. In the case of a
cache miss the cache controller replaces the least significant, least used block.

The write-back buffer stores four rows of block data in case of a cache miss. When all
four rows are filled with data, the cache controller transfers the contents of the entire
write-back buffer to the main memory.

CPU issues the following addresses to read and write data:

372

6 Central Processing Unit

Transaction No CPU address Data Write/Read
1 10000101 ? R
2 11000100 ? R
3 01000101 ? R
4 01100100 ? R
5 01110010 ? R
6 10100011 ? R
7 11100010 ? R
8 11110011 ? R
9 00100010 ? R

10 00110101 ? R

11 01000101 ? R

12 11110010 ? R

13 00001010 0xCC w
00001011 0xDD

14 00010010 OxEE w
00010011 OxFF

15 00001100 OxAA w
00001101 0xBB

16 00011100 0x55 w
00011101 0x66

Main memory contents are as follows prior to the 16 transactions listed above.

6.26 A Two-Way Set-Associative Write-Back Cache Example 373

00100010 OxEE
00100011 OxFF

00110100 | OxAA
00110101| 0xBB

01000100 | 0x55
01000101 | 0x66

01100100 0x77
01100101 0x88

01110010 Ok12
01110011 0x34

10000100 0x11
10000101 0x22

10100010 0x56
10100011 0x78

11000100 0x33
11000101 0x44

11100010 OxAA
11100011 0xBB

11110010 0xCC
11110011 0xDD

Main Memory

(a) Draw the block diagrams of the cache and tag memories in Little Endian format,
making sure to attach the dirty and valid bits to each tag block. Indicate how many
bits are in each memory. Note that in this memory architecture, the top row of the
cache contains set 0, and the bottom row contains set 3.

(b) Draw the block diagrams of the cache and tag memories at end of the eighth
transaction. Show the address, control, data and cache hit/miss entries.

(c) Draw the block diagrams of the cache and tag memories at the end of the twelfth
transaction. Show the address, control, data and cache hit/miss entries.

374

11.

6 Central Processing Unit

(d) Draw the block diagrams of the cache and tag memories, and the contents of the
write-back buffer at the end of sixteenth transaction. Show the address, control,
data and cache hit/miss entries.

The following instruction set needs to be executed in a 32-bit RISC CPU organized in
Little Endian format. The CPU has three pipeline stages where the ALU and
write-back stages are combined. The CPU is capable of executing the integer (ADDI,
SLI and SRI) and floating-point (ADDF and MULF) instructions. The CPU stores the
fixed and floating-point numbers in two separate register files, each containing 32
registers.

In the instruction set below, RS and RD are defined as the source and the destination
addresses for the fixed-point registers. Similarly, FS1, FS2 and FD are the source and
the destination addresses for the floating-point registers. Show a detailed data-path of
this CPU, indicating all internal bus widths and port names. Include only the necessary
functional units.

Instruction Set

Instruction Definition

Instruction Bit Field

ADDI RS, RD, Imm Value

SLI RS, RD, Imm Value

SRI RS, RD, Imm Value

ADDF FS1, FS2, FD

MULF FS1, FS2, FD

Projects

Reg[RS] + Imm — Reg[RD]

Reg[RS] << Imm — Reg[RD]

Reg[RS] >> Imm — Reg[RD]

Reg[FS1] + Reg[FS2] — Reg[FD]

Reg[FS1] * Reg[FS2] — Reg[FD]

31 26 25 2120 16 15 0
[ApDi| RS [RD | ImmValue |
31 26 25 2120 16 15 0
[st | RS [RD | ImmValue |
31 26 25 2120 16 15 0
[srRi| RS [RD | ImmValue |
31 26 25 2120 1615 1110 0
[ApoF [FS1 [FS2 [FD | Notused |
31 26 25 2120 1615 1110 0
[mucr|[FS1 | FS2 | FD | Notused |

1. Implement a 32-bit four-stage RISC CPU that executes only the ADD instruction in
Fig. 6.7 using Verilog. Verify the data and the control signals at the output ports of the

instruction memory, RF, ALU and write-back stages.

2. Implement the ADD, SUB, AND, NAND, OR, NOR, XOR, XNOR, SL and SR
instructions in a 32-bit four-stage RISC CPU shown in Fig. 6.15, and perform a complete

system verification using Verilog.
3. Implement a 32-bit five-stage RISC CPU that executes the LOAD, STORE, MOVE and
MOVEI instructions using Verilog. Verify the data and the control signals at the output

ports of the instruction memory, RF, ALU, data memory and write-back stages.

6.26 A Two-Way Set-Associative Write-Back Cache Example 375

4.

Implement a 32-bit four-stage RISC CPU that executes only the BRA instruction shown
in Fig. 6.36 using Verilog. Verify the data and the control signals at the output ports of
the instruction memory and RF stages.

Implement and verify the 32-bit floating-point adder in Fig. 6.61 using Verilog. Verify
the validity of data at the outputs of every major stage using timing diagrams and perform
functional verification for the entire adder.

Implement and verify the 32-bit floating-point multiplier in Fig. 6.62 using Verilog.
Verify the validity of data at the outputs of every major stage using timing diagrams, and
perform functional verification for the entire multiplier. Use behavioral Verilog to mimic
the exponent adder and the integer multiplier.

References

. Patterson DA, Ditzel DR (1980) The case for the reduced instruction set computer. ACM SIGARCH Comput Archit

News 8(6):25-33

Patterson DA, Sequin CH (1981) RISC I: a reduced instruction set VLSI computer. In: ISCA Proceedings of the 8th
annual symposium on computer architecture, pp 443-457

Sequin CH, Patterson DA (1982) Design and implementation of RISC I. In: Proceedings of the advanced course on
VLSI architecture, University of Bristol, pp 82—-106

Patterson DA, Hennessy JL. Computer organization and design, the hardware/software interface, 2nd edn. Morgan
Kaufmann, ISBN: 1558604286

When the host processor executes a user program, it either exchanges data with system
memories such as SRAM, SDRAM or Flash, or communicates with system peripherals to
perform various tasks.

A conventional computing system may consists of one or more CPU cores, co-processors
such as hardware accelerators to perform specialized tasks, a Direct Memory Access
(DMA) controller to do routine data transfers from one memory to another, a display adaptor
to support user screen, and an interrupt controller. In most cases, data converters to convert
external analog signals into digital form or digital signals into analog form, timers to control
the length of an event, and transceivers in charge of serially transmitting and receiving
peripheral data are interrupt-driven and connected to the interrupt controller. The interrupt
controller, on the other hand, manages all event-driven or program-driven tasks through a
series of Interrupt Service Routines (ISR) that reside inside the program memory.

7.1 Overall System Arcitecture

A basic system architecture containing essential bus masters and slaves is shown in Fig. 7.1.
In this figure, the CPU is a bus master that executes user programs. The Direct Memory
Access (DMA) is another bus master in charge of transferring data between different system
memories. Bus slaves are generally the system memories such as SRAM, SDRAM and Flash
memory. However, other system devices that reside on the high speed bus such as the
display adaptor or peripheral buffer memories connected to the low speed 1/O bus are also
considered bus slaves.

The display adaptor is considered an essential high-speed peripheral that displays the
results of a running program or application on the screen. Because of its bandwidth, this unit
is usually connected to the parallel port of the CPU. However, there are times when the

© Springer International Publishing Switzerland 2017 377
A. Bindal, Fundamentals of Computer Architecture and Design,
DOI 10.1007/978-3-319-25811-9_7

378 7 System Peripherals

display adaptor can also be connected to the low speed I/O bus. This choice very much
depends on how often the monitor needs to be used when running an application program.

Each type of memory mentioned in Chapter 5 serves a different purpose in a system.
SRAM usually holds immediate data generated by the CPU or stores temporary data during
a DMA transfer. Larger blocks of data are stored in SDRAM since this memory is many
orders of magnitude larger in capacity compared to SRAM. Flash memory usually stores
permanent data such as the Built-In Operating System (BIOS).

A bus adaptor translates commands, address and data signals between the parallel bus
which operates at a high clock frequency and the low speed I/O bus which operates at a
much lower clock frequency.

Sensors, electro-mechanical devices, human interface devices etc. that reside outside the
main system commonly use SPI and I°C bus protocols, and considered I/O devices. Ulti-
mately, they are all connected to the interrupt controller and memory-mapped due to their
capability to store incoming or outgoing data.

The system can also be connected to other systems (or CPUs) with a network adaptor. The
simplest connection protocol is Ethernet where many systems are serially connected to the
same bus.

High speed parallel bus

1 ! ! i
Fr———==-= | :
! . L_ .
Cache | | Display | |
I | Adaptor |
| DMA SDRAM | | | Bus
| ! Adaptor
CPU ' [ool |
: isplay | _ _ -
Low speed I/O bus L ! |
1 1
Network Interrupt
Adaptor Controller
Flash
SRAM |
Memory |
Timers Data Serial
Network Converters 1/0 devices

Fig. 7.1 A typical system architecture

7.2 Direct Memory Access Controller

The CPU assigns routine memory-to-memory data transfer operations to the Direct Memory
Access (DMA) controller. Most of these transfers take place between two system memories
or between the buffer memory of a peripheral device and a system memory. This section

http://dx.doi.org/10.1007/978-3-319-25811-9_5

7.2 Direct Memory Access Controller 379

shows how to design the basic architecture of a DMA controller that transfers data from a
source to a destination memory.

The DMA interface in Fig. 7.2 shows the I/O port description of a typical DMA controller.
In this figure, the DMA controller interacts with the CPU through handshake signals, ReqM
and AckM. When the CPU initiates a DMA data transfer, it issues a request, ReqM, to the
DMA controller. If the controller is not busy with another transfer, it then generates a request,
RegD, to the bus arbiter to use the bus. When the arbiter acknowledges the request by AckD,
then the controller informs the CPU that it is ready to initiate the transfer by AckM, and at the
same time it sends out its first address and control signals to the source memory. While the
source memory is delivering data, the DMA controller issues the address and control signals
for the destination memory within the same clock cycle. In order to accomplish this task, a
direct data channel must exist between the source and the destination memories. This new
configuration modifies the original bus structure in Fig. 5.1 in which all bus masters are
assumed to have individual write data ports to be able to write data directly to a slave.

RegM ReqD
CPU DMA Bus
(Bus Master) (Bus Master) Arbiter
AckM AckD
Address ‘

Controls

QApesy
Shpesy

From Decoder

Yy \i
Source RDataS
> Memory Rs
RData
Destination RDataD
® - Memory ﬁ

Fig. 7.2 The block diagram including a DMA, source and destination memories

http://dx.doi.org/10.1007/978-3-319-25811-9_5

380 7 System Peripherals

Figure 7.3 shows a typical data transfer between the source and the destination memory
until the last data packet, D4, is transmitted. The sequence starts with the DMA controller
issuing Status = START and AddrS = AS1, indicating the beginning of the data transfer and
the first source memory address, respectively. Since both memories are ready (ReadyS =
ReadyD = 1) after the first clock cycle, the controller continues the data transfer by issuing
Status = CONT, AddrS = AS2 (the second source memory address), and AddrD = AD1
(the first destination memory address) in the second cycle. In this cycle, the source memory
also delivers the first data, D1, to the destination memory. The same process takes place in
the third cycle, during which the DMA controller generates AddrS = AS3, AddrD = AD?2,
and writes D2 to the destination memory. In the fifth clock cycle, as the DMA controller
generates the last destination memory address, AddrD = AD4, and writes the last data, D4,
to AD4, it also changes its status to IDLE, indicating the end of the data transfer.

| Cycle 1 | Cycle 2 | Cycle 3 | Cycle 4 | Cycle 5 I

ook | ||] L |

| | | | I

Status P< sTART D cont T cont T cont I ibLe |
| | | | |

| | | | |

AddrS >< AS1 D(AS2 D(AS3 D(ASA | |
| | | | | I

AddrD ’I>< I>< AD1 I>< AD2 I>< AD3 I>< AD4 |
| | | | |

| | | | |

Data >< X o1 X b2 X b3 X b4 |
| | | | | I

ReadyS H [I I I |
| | | | I

| ! ! ! ! |
ReadyD | | | | | | |

Fig. 7.3 Timing diagram showing a DMA-assisted data transfer

Any time one of the Ready signals from the source or the destination memories transitions
to logic 0, the DMA controller stalls the data transfer by repeating the address and the control
signals as long as ReadyS or ReadyD is at logic 0. Figure 7.4 shows a typical data transfer in
which the destination memory is busy in the third cycle, and prompts the DMA controller to
repeat AddrS = AS3 and AddrD = AD?2 in the next cycle. The DMA controller stalls the bus
again in the sixth cycle when it detects the source memory to be busy in the fifth cycle.

7.2 Direct Memory Access Controller 381

| Cycle 1 | Cycle 2 | Cycle 3 | Cycle 4 | Cycle 5 | Cycle 6 | Cycle 7 |

f S A S S
ReadyS|J : : :\ :|—::|/

I
ReadyD u

ook | | [LI L1 L7 LI |
Status |P<START i)(CONT i)(CONT i)(CONT i)(CONT :D< CONT i)(IDLE i
AddrS >< AS1 :)(AS2 :)(AS3 /:—> :XAS4 /:> : :
AddrD b(:>< AD1 :><AD2(/Ir—> :><AD3\/ /:—> Ip(AD4 :
Data lP(:)(D1 :>< D2 \(\:,> |>< D3 \\Lr X D4 i
|
|
|

Fig. 7.4 DMA-assisted data transfer with varying Ready signals from memories

A basic DMA controller is shown in Fig. 7.5. There are three modules in this architecture.
The first module is the DMA register file that stores the initial and incremental source address
values, InitAddS, StepAddrS. The same register file contains four other registers. The InitAddrD
and the StepAddrD registers store the initial and the incremental destination addresses. The
Size and the Burst registers store the data width and the burst length, respectively. A program
data bus is used to store all six register entries before regular operations take place.

The second section of the DMA controller manages the handshake between the CPU and
the bus arbiter. This section also provides the internal signals to the DMA data-path to guide
the data.

In the third section, the DMA data-path produces source and destination addresses, AddrS
and AddrD, and the bus master control signals, Status, Size, Burst, WED (write-enable for
the destination memory) and RES (the read-enable for the source memory).

To be able to implement this architecture, three elements need to be examined in the
design phase simultaneously: a timing diagram describing an entire data transfer process
including the stall periods, a data-path that fully complies with the timing diagram, and a
control logic that manages the timely flow of data on the data-path.

As pointed out in previous chapters, the design always starts with forming a timing
diagram that describes the complete data-flow in a logic block. The timing diagram generally
includes a single clock (multiple clock domains or asynchronous event signals are also
common but not relevant for a basic DMA design), address, data and control signals with
respect to this clock. In order to generate an accurate timing diagram, a data-path must be
concurrently developed. The data-path generally consists of registers and logic gates.
However, it can also contain mega cells such as complex arithmetic units or memories. As
the design develops and more details are added to the original data-path, the corresponding

382 7 System Peripherals

CPU Arbiter

|
|

Program Data

<¢—— RegM
—» AckM
—» ReqD
~&—— AckD

DMA REGISTERS

O InitAddrS DMA CONTROLLER
[= StepAddrS +—@
Internal control signals
o> InitAddrD —e —» AddrS
—® AddrD
StepAddrD —®» Status
o> epAddr —@—» DMA
DATAPATH [Burst
—— Size
o Burst e ——» WED
+—» RES
Lo Size T T
ReadyS ReadyD

Fig. 7.5 A typical DMA architecture

timing diagram becomes more complex to accommodate the changes in the hardware. The
design of the controller to govern the data flow is the last step in the design process. This
step does not start until every internal and external signal is determined, and the complete
block functionality, including all corner cases of the data-flow, is explicitly depicted on the
timing diagram.

A detailed timing diagram describing a typical DMA transfer is shown in Fig. 7.6. As we
mentioned earlier in the memory-to-memory example in Chapter 2, this diagram is also
developed in two phases. In the first phase, the main DMA signals, namely the handshake
signals with the CPU and the arbiter (ReqM, AckM, ReqD and AckD), the source and the
destination memory addresses (AddrS and AddrD), the data (Data), the bus master control
signals (Status, Burst, Size, WriteD and ReadS), and the slave response signals (ReadyS and
ReadyD) are included in the timing diagram. In the second phase, all internal control signals
that support the address and data movement in the timing diagram are brought into the
picture. This section also includes the control signals for an internal down-counter to keep
track of the number of data packets transferred from one memory to the next.

http://dx.doi.org/10.1007/978-3-319-25811-9_2

383

END

END END END

SET SET
IDLE REQD ACKD SRC DEST INCR INCR INCR INCR INCR INCR INCR INCR SRC DEST COUNT REQD IDLE

7.2 Direct Memory Access Controller

in cycle 4. This

AckM,

may come in the third cycle or many cycles

’

assisted data transfer by issuing a request to the

to the arbiter in order to use the system bus in cycle 2.
AckD

bl
>

RegD

)

the CPU initiates a DMA-

i

—
5 0000 » Q [= €
= 2 2 o [a)] 4 c
S , 22 ¢ 0 3 5 3 5 < 34 3 3
x = = oo 2 2 tE $%3% o B 2 2 = o) b a 8 Q9
8§ 33 333838 328358 5833382398535 8
5 ¥ < ¥ < < €« 0 0 hperxesz 2 & X o o £ < £ < o oo 0o o O

DC

In Fig. 7.6
DMA controller, ReqM, in clock cycle 1. This request enables the DMA controller to

generate a subsequent request
later depending on the bus traffic and the other pending requests from higher priority bus

masters. However, as soon as the DMA controller receives the acknowledgement from the
cycle also prepares the DMA for an upcoming data transfer by setting the SetAddrS and

SetSTART signals to logic 1. That way, the first source memory address, AS1, can be
fetched from the InitAddrS register and delivered to the AddrS port in Fig. 7.7, and similarly

arbiter, it notifies the CPU by issuing an acknowledgement signal,

Fig. 7.6 Detailed timing diagram of a DMA transfer

An acknowledgment from the arbiter

384

32
InitAddrS

32

StepAddrS

InitAddrD

32

7 System Peripherals

ReadyS
ReadyD
IncrAddrS

32
AddrS

StepAddrD

DMA
REGISTERS

Program Data

+
set incr SetAddrS
>
»
w)
js)

stall

ReadyS
ReadyD
IncrAddrD

32
AddrD

stall

SetCount

ReadyD
ReadyS
DecCount

32
p—~<——— CountOut

Size

|— ReqM
| AckM
|«@— AckD
—» ReqD

—P» SetAddrS
—» SetAddrD
—P» IncrAddrS
—» IncrAddrD
—P» SetSTART
—P» SetCONT
—» SetlDLE

—P» SetCount
—» DecCount
—» WriteD

> ReadS

CONTROLLER

DMA

SetSTART

[«}— SetCONT

SetIDLE

2
IDLE Code —*—|;

2
CONT Code —4—

2
START Code —#4—

Burst

ReadyD

ReadyS WED
WriteD

ReadyD

ReadyS RES
ReadS

p—~——— Status

Fig. 7.7 Internal DMA architecture showing its data-path and controller

7.2 Direct Memory Access Controller 385

the START code can be produced at the Status port in cycle 5. The port selection guide for
each 3-1 MUX in Fig. 7.7 is shown in Table 7.1. In cycle 5, the first data read command
from ASI is issued by ReadS = 1. This cycle also sets the control signals, SetAddrD,
IncrAddrS and SetCONT, to logic 1, so that the first destination memory address can be
retrieved from the InitAddrD register and transferred to the destination address port, AddrD,
the second source memory address, (InitAddrS + StepAddrS), can be formed at the AddrS
output, and the status code can be changed from START to CONT in the next clock cycle.
Still in cycle 5, the down-counter, responsible for counting the number of data packets to be
delivered to the destination memory, is set with an initial value from the burst register by
SetCount = 1. Therefore, when clock cycle 6 starts, the second source memory address,
AS2, is formed at the AddrS port along with the first destination address, AD1, at the AddrD
port. The Status output indicates CONT code specifying the ongoing data transfer. In this
cycle, the first data, D1, is transferred from the AS1 address to the AD1 address with an
active-high WriteD signal and subsequently written in the destination memory. The
CountOut output also shows the initial value from the burst register, defining the number of
data packets to be written to the destination memory. This cycle sets the control signals,
IncrAddrS, IncrAddrD and DecCount, to logic 1 in order to prepare the next source and
destination addresses, and to decrement the CountOut by one in the next cycle.

Table 7.1 3-1 MUX port assignments in Fig. 7.7

INPUT PORT INPUT PORT INPUT PORT

SetAddrS =1 set SetAddrD =1 set SetCount=1 set
ReadyS =1 ReadyS = 1 ReadyS = 1

IAS| ReadyD =1 incr IAD| ReadyD =1 incr DC| ReadyD=1 decr
IncrAddrS =1 IncrAddrD =1 DecCount=1

ELSE stall ELSE stall ELSE stall

The routine data transfer continues until either the source or the destination Ready signal
transitions to logic 0. When this happens, the entire data transfer stalls, disengaging an
ongoing write process at the destination memory. In a stall, the previous source and destination
address values repeat themselves at the AddrS and AddrD ports; the down-counter stops,
displaying the remaining number of data packets to be written to the destination memory.

The data transfer resumes when the ReadyS and ReadyD signals become logic 1. Count-
Out = 2 defines the end of the data transfer. In this cycle, the IncrAddrS signal also transitions
to logic 0, indicating that there will be no more new source address generation at the AddS port.
Similarly, the SetIDLE signal goes to logic 1, changing the bus master status code from CONT
to IDLE in the next cycle. When CountOut = 1 in the following cycle, the last data is written to
the destination address. From this point forward, the DMA handshakes with the CPU and the
arbiter to terminate the data transfer. ReqD = 0 forces the arbiter to lower the acknowledge
signal, AckD. AckM = 0 prompts the CPU to lower its DMA request signal, ReqM.

386 7 System Peripherals

The controller design is a direct outcome of the timing diagram in Fig. 7.6. The first step
in the controller design is to assign a name to each clock cycle in the timing diagram that
produces a different set of outputs from the previous clock cycle. In other words, each clock
cycle that produces a different set of outputs has to be labeled with a new state in the
controller state diagram.

Cycle 1 is named as the IDLE state, producing ReqD = 0 and AckM = 0 in Fig. 7.8.
When RegM =1 is received in cycle 1, ReqD switches from logic O to logic 1 in cycle 2,

RegM =1
AckD =0 RegM = 0
RegM =1
ReqD = 1 AckD =0 RegD =0
AckM =0 AckM =0
ReqD =1 ReqD = 0
AckM =0 AckM = 0
ReqD =1
AckM =1 ReqD = 1
SetAddrS =1 AckM = 1
SetSTART =1
RegD =1
AckM =1 ReqD = 1
ReadS =1 Ny
SetAddrD = 1 K i
WriteD = 1
IncrAddrS =1 =
SetCONT =1 ReadS =1
SetCount = 1 DecCount = 1
ReqD =1 ReqM = 1
AckM =1 AckD =1
WriteD =1 CountOut = 3
ReadS =1
IncrAddrS = 1
IncrAddrD =1
DecCount = 1
CountOut > 3 ReqgD =1
AckD =1 AckM =1
WriteD =1
ReadS =1
IncrAddrD = 1
SetIDLE = 1
DecCount = 1

Fig. 7.8 DMA controller state diagram

7.2 Direct Memory Access Controller 387

producing a new state, REQD. ReqD = 1, on the other hand, prompts AckD =1 in cycle 3
which creates the ACKD state in this cycle. Cycle 4 also creates a new state, SET SRC,
because a different set of control signals (AckM = 1, SetAddrS = 1 and SetSTART = 1)
emerges in this cycle. The next cycle generates a new set of outputs (ReadS =
SetAddrD = IncrAddrS = SetCONT = SetCount = 1) compared to the previous clock
cycles, and therefore it is labeled as the SET DEST state. Between cycles 6 and 13, the
controller outputs remain the same. Therefore, all these cycles can be grouped together under
the same state name, INCR. In cycle 14, the IncrAddrS signal transitions to logic O and the
SetIDLE signal transitions to logic 1. This new set causes the creation of a new state,
END SRC. Cycle 15 changes the controller output values once more with respect to the
previous cycle, and it is labeled as the END DEST state. In cycle 16, the down-counter
output finally reaches zero, and all the controller outputs except the AckM and ReqD signals
become logic 0. Therefore, this cycle is named as the END COUNT state. The controller
lowers the AckM and ReqD signals to logic 0, which creates a new state, END REQD in
cycle 17. In the next cycle, AckM = ReqD = 0 prompts the CPU and the arbiter to lower
RegM and AckD signals to logic 0, respectively, and the controller transitions to the IDLE
state.

7.3 Interrupt Controller

There are numerous events that may interrupt the normal flow of program execution.
External events are created by I/O devices that need specific utility programs because they
may have data ready for the CPU or require data from the CPU. There are also internal
events within the CPU that result from errors encountered when executing user programs,
such as divide-by-zero or overflow conditions, which create exceptions.

There are four types of interrupts according to their priority. The interrupt for resetting the
CPU takes the precedence over all other interrupts because when reset occurs, the data in
each CPU register needs to be preserved in a special memory in order to be restored later on.
Internal interrupts take the second priority after the CPU reset. These interrupts generally
originate from errors encountered in user programs or may result from breakpoints installed
in a user program. Software interrupts take the third place in the priority list. These interrupts
are actually vectored subroutine calls that stem from software emulation routines.
Floating-point division produces one such example. Hardware interrupts are placed last in
the priority list. Even though prioritizing hardware interrupts is completely
user-programmable, the operating system may also manage the hardware priority list and
communicate with a specific device though device drivers.

In this chapter, we will examine the sequence of events that take place to handle a
hardware interrupt, and design a simple interrupt controller interface that serves up to 256
external I/O devices.

388 7 System Peripherals

The interrupt process begins when one or more I/O devices submit interrupt requests to
the interrupt interface in Fig. 7.9. In this figure, the interrupt interface is designed to handle
up to 256 interrupt inputs, INTRO through INTR255. Interrupt controller is a programmable
state machine that prioritizes all pending interrupts, selects a highest priority device
according to a priority list, and communicates with the CPU using the INTR output as shown
in Fig. 7.9. When the acknowledgement signal, INTA, is received from the CPU, the
interrupt interface transmits the device ID, INTRID, causing the interrupt on an eight-bit
wide bus.

INTRID 8/ 4— INTRO
’ g [— INTR1
© .
5
CPU g
INTR S
~ 5
INTA £
>
@— INTR255

Fig. 7.9 Interrupt interface input/output description

The interrupt ID in Fig. 7.9 matches the interrupt number at the input of the interface, and
ranges between 0 and 255. Each interrupt ID correlates to a specific address in the Interrupt
Address Table, IAT, in Fig. 7.10. Each address stored in IAT points the starting address of a
particular Interrupt Service Routine (ISR) residing in the instruction memory. Therefore,
when the interrupt interface generates an INTRID and accesses a specific memory address in
the IAT, the contents at this address is immediately loaded to the Program Counter (PC).
This prompts the CPU to pause executing the normal user program, and jump to the starting
ISR address in the instruction memory to execute the corresponding ISR instructions. This
basically translates to jumping from Instr3 of the user program to Intrl of the ISR in the
example in Fig. 7.10. While in the ISR, a return instruction, IntrRET, indicates the end of
interrupt service routine. At this point, the program returns to ARET to execute the rest of
the user program.

To convert the block diagram in Fig. 7.10 into a detailed data-path, each step of the
interrupt service routine outlined above should be translated into a timing diagram. Creating a
timing diagram, on the other hand, is usually accomplished in two steps. The first step defines
all primary, bus-level signals such as data and address and includes them in the timing
diagram. The second step generates the necessary control signals to manage the data-flow.

To achieve the first step, let us consider the signals, INTRx (INTRO to INTR255), INTR,
INTA, INTRID, DOutIAT and PCOut, in Fig. 7.10 and in the timing diagram in Fig. 7.11.
The signals, INTRx, INTR and INTA, are not bus-level signals; but, they are considered as

7.3 Interrupt Controller

31

255
DOUtIAT P INTRID 8
Interrupt Address
REIAT | <NTR
ICU
0 WEIAT | INTA .
Interrupt Address Table (IAT)
32
0
Instr1 A1
Y
PCOUL Instr2 A2
PC I > Instr3 A3
[InstrRET ARET w——
| Instr4 A4
| ;
L —p Intr1 11
Interrupt -
Service :
Routine (ISR) IntrN IN
IntrRET IRET
Other
Interrupt
Service

Subroutines

Instruction Memory

Fig. 7.10 A block diagram describing an interrupt

Interrupt Interface

~¢— INTRO
<— INTR1

¢— INTR255

389

the primary /O signals that indicate the start of an interrupt. Therefore, they will be grouped

together with the other bus-level signals to show the complete interrupt sequence. In

Fig. 7.11, an I/O device issues an interrupt, INTRx = 1, to the interrupt interface in clock
cycle 1. In response, the interrupt interface generates INTR = 1 for the Interrupt Control Unit
(ICU) in charge of the handshake signals in cycle 2. In cycle 3, the ICU generates INTA = 1,
and prompts the interrupt interface to transmit an eight-bit INTRID to the IAT in the fol-

lowing cycle. As mentioned earlier, the INTRID signal is also an address for the IAT. The
data stored at this address is actually the starting address of an ISR in the instruction memory.
Therefore, the interrupt controller simply reads the memory contents at the address, INTRID,

from the DOWIAT port and waits for the interrupt service routine to begin in cycle 5. In the

7 System Peripherals

390

douanbas jdnusyur ue jo wesSerp Surwun paqeRq LL°Z *bi4

T T T T T
| 1vI3y
SUOONUISUI BUNNOIQNS BOIAISS JANLIBIUN YOEGBIM, | | “ | m“w
suononusul JejnBal xoeqa
T nonasul el S0eqaIM

Ley ol :wz_ts._ym_m(*

=

443IM

adles

Ledies

ERTENS

1vies

odlies

44dinoa

SS3IPPY gM PlIeA X
T T T

444PPY

44uia

dl
—X__
_

IN0od

lvinod

v

@l }dnusyu| N

QIALNI

VANI

_a+zv _a+zv (Z+N) | (9+N) | (G+N) | (#+N) | (€+N) | (€+N) | (1+N)

€l cl L oL
|

Q[0kD | 8P9AD | 9pAhn | 8phkD | sphkn | 810D | ejphD | 91PAD | epphD | BppAD _ 9joAD | 910AD | 8ok | 9PAD | 9pphD _m_o>o _w_o>o _m_u>o _m_o>o _m_o>o _ ETe1%0) _ ETkV%e) _ m_o>o_

37a 37ar 3nal 13¥v 139V Led an3g aN3a aN3 ana am am am am €l cl 1l 1389V gM "adv didiNe VINE 30ar 37dal
HOL3d4 dVO7 SS300V dINI HINI HINI d{INI HINI dINI dINI {INI HO13d4 HO13d4 HOL3d 340LS LSVl dINI

7.3 Interrupt Controller 391

mean time, at the beginning of cycle 3 when the ICU is aware of a pending interrupt by means
of the INTR signal, it immediately stalls the CPU pipeline by stopping the PC from incre-
menting. However, the PC has already incremented to A3 at this point, and there are
uncompleted instructions from the A1 and A2 addresses in the CPU pipeline. We know that
from the onset of PC address generation to the end of the write-back cycle, a normal
instruction takes four clock cycles to complete (latency = 4) according to the simplified CPU
data-path in Fig. 7.12. Therefore, the PC output stays at the A3 address until the end of cycle
6 when the instructions, Instrl, Instr2 and Instr3, are completely flushed out of the CPU
pipeline and written back to the CPU’s register file (RF). However, the interaction with the
CPU pipeline adds the RF block and all its corresponding data paths to the existing block
diagram in Fig. 7.10, transforming the interrupt controller into a more detailed architecture in
Fig. 7.13.

|IF-stage RF-stage ALU/D$-stage WB-stage
[[[|

A1 ﬁ
PCOut A
g »| I-Cache RF iR L » D-Cache H
S U A
. A2
1

DInRF

/1__0\@— SelPC
=E|7

OPC

Cycle 1 Cycle 2 Cycle 3 Cycle4 |

T s N e M e W

1 1 1 1
b(IF-stage IX RF-stage !XALU/DSB-stageX WB-stage !

O

data data data data data
atPC atIR atA1/A2 atDO/AO atRF

Fig. 7.12 A four-stage CPU employed in the interrupt sequence in Fig. 7.7

After the last write-back is completed in cycle 6, the PC is incremented by one, and the
return address, ARET, is stored in a special register, R31, in the RF as shown in cycle 7. This
step assumes that there is no Jump-and-Link (JAL) or Jump-and-Link-Register (JALR)
instruction in the CPU instruction set because the return address will simply be overwritten
by one of these instructions. Before the CPU starts executing the interrupt service routine, it
copies the contents of the entire register file into a temporary memory identical to the register
file. This step is called “context switching”, and it is omitted from the timing diagram in

7 System Peripherals

392

11°L 81 ur weiderp Surun ay) Suronpoid yyed-ejep soepur idnuouy €Lz 614

o6e)S 3oegajIMm obe)s oegajlIM
wouj eyeq woJu} ssaIppy
N
—0
Alows\ uononasu|
pod-y B[RS
3!
0 L odIes 139 1344y === yod-| 1viies
(¥sl) sunnoy NI N3] H Hod-d odliiels
d4uia SoINIBS . ! uoneinbyuod XNIN L-t
c]] * .
Ledies ydnuajul : ' Jsyuno) weiboid
L Ju [—+—@
L3l _
0 : i
]
< v paisu| ! V_o_o_o
44 - 1
4aPPY 134V 13yasu| - v
l
Led v caIsu| INODd Od
443am v Zasu|
. = A9 Jisu| JdI8S
0 L€ 1vIIeS
odles
441ih0a w0 0 v
2§ 2 & o
STH %38
+ + + + + a|qe] ssalppy jdnusu|
0 +
GGTHLINI —P>| Bl -
M VLNI Hun jouo) 1VIIM « "
g 1dnuayu) Lviuia .
E > > F
= HLINI 1vI3d 300
=
: 4
: oy z > 7
LHLNI — % \mw dldLNI ze 1vinoa
OHLNI —>| 66z
0 L€

7.3 Interrupt Controller 393

Fig. 7.11 to maintain simplicity. Only after the contents of all 32 registers in the register file
are stored, the interrupt controller starts executing the instructions in the interrupt service
subroutine, which starts in cycle 8. In this cycle, the first interrupt instruction address, 11, at
the output of the IAT is loaded to the PC. Once loaded to the CPU data-path, it takes four
clock cycles to execute the first interrupt instruction due to the CPU’s write-back latency.
The remaining interrupt instructions are similarly fetched from the instruction memory
addresses, 12 to IN, executed, and written back to the RF until the end of cycle (N + 3). In
cycle (N + 4), the register R31 is accessed. In the following cycle, the return address, ARET,
is fetched from R31. This cycle also completes the interrupt service routine and prompts the
ICU to transfer the control over to the CPU to execute the remaining user instructions. In
cycle (N + 6), the ICU lowers the INTA signal to logic O, and the interrupt controller loads
the value of the ARET to the PC. In response to the INTA, the interrupt interface also lowers
the INTR signal to logic O and invalidates the INTRID in cycle (N + 7). New interrupt
arbitration will take place in cycle (N + 8) to service the next interrupt.

In the previous paragraphs, we only explained how the address and data bus values
changed once an interrupt signal is received from the interrupt interface. Now, we are ready
to explain the second part of the timing diagram that includes the control signals to manage
the data-flow. After examining the detailed data-path in Fig. 7.13, the control signals can be
grouped into three categories. The first group supports the PC input control and contains the
StallPC, SellAT and SelRF signals. The StallPC signal simply routes the output of the PC,
PCOut, to its input through the P-port of the 4-1 MUX to stall the PC. The SellAT signal
routes the output of the IAT, DOutIAT, to the input of the PC through the I-port of the 4-1
MUX to load an interrupt address. The SelRF signal enables the R-port, and connects the
output of the RF, DOutREF, to the input of the PC to load the return address, ARET, once the
interrupt service is over. If none of these control signals are generated, then the PC incre-
ments through the C-port. The second group controls the address and data inputs to the RF
and consists of the SelR31 and SelPC inputs. The SelR31 input selects the register R31 to be
the address for the RF at the AddrRF port. The SelPC input selects the contents of the PC to
be the data for the RF at the DInRF port. The third group controls the read and the write
enable signals, REIAT and WEIAT, for the IAT, respectively. Although writing into the IAT
does not take place during a routine interrupt service, it will be used to reprogram a new set
of ISR addresses in the IAT.

All three groups of controls manage the proper data flow in Fig. 7.13. The StallPC signal
transitions to logic 1 at the beginning of cycle 3 and stays there until cycle 6 to stop the PC
from incrementing so that the CPU completes writing the instructions, Instrl, Instr2 and
Instr3, back to the RF. Because of these write-backs, the write-enable signal for the RF,
WEREF, is also kept at logic 1 from cycles 4 to 6. The read-enable signal for the IAT, REIAT,
is kept high in cycle 4 because the first interrupt instruction address, 11, needs to be fetched
from the IAT following a valid INTRID. Cycle 7 is a special cycle to load the register R31
with the program return address, ARET. Therefore, the signals, SelR31, SelPC and WERF,

394 7 System Peripherals

all become logic 1 during this cycle. The SellAT signal is also kept at logic 1 during cycle 7
in order to load the first interrupt address, 11, to the PC in cycle 8. The WERF signal is kept
at logic 1 from cycle 11 to cycle (N + 3) to be able to complete all interrupt-related
write-backs to the RF. The StallPC signal is kept at logic 1 from cycle (N + 1) to cycle
(N + 4) to stall the value of PCOut at IRET. Cycle (N + 5) is dedicated to retrieving the
program return address, ARET, from the RF. Therefore, the SelRF signal is kept at logic 1 in
this cycle to load the PC with the contents of ARET in the following cycle. The WERF
signal transitions to logic 1 in cycle (N + 9) in order to write the result of the instruction,
InstrRET, back to the RF.

Figure 7.14 shows the resultant state diagram for the interrupt controller. Its design is
solely based on the values of the control signals from the timing diagram in Fig. 7.11. The
name of each state in the state machine comes from the labels on top of the timing diagram in

INTA=0 INTA=0

INTR = 1 /J\ INTR = 1
\5/=

INTA=1
StallPC =1

INTR=0
INTA =1
StallPC = 1 INTA = 1
WERF = 1 SelRF = 1
REIAT =1
INTA =1 INTA = 1
StallPC = 1 StallPC = 1
WERF = 1 SelR31 = 1
INTR = 1
WBIx = WBIN
INTA = 1 INTR = 1 'VUEQFJ]
WERF =1 WBI(N-3) < WBIx < WBIN StallPC = 1
INTR =1
WBIx = WBI(N-3)
INTA =1
= 1 INTR = 1 INTA =1
SelR31 = 1 1
SelPC =1 WBIx < WBI(N-3) WERF =1

INTR=1 /7 FETCH INTR = 1

INTA=1

INTA =1 INTA =1 INTA =1

Fig. 7.14 Interrupt controller state diagram

7.3 Interrupt Controller 395

Fig. 7.11. The machine starts with the IDLE state where there is no INTR signal. Therefore,
this state generates INTA = 0. When a valid INTR is received, the state machine transitions
to the INTA state and produces two outputs, INTA = 1 and StallPC = 1. This state corre-
sponds to cycle 3 of the timing diagram. As INTR = 1 continues, the machine goes though
the INTRID, INTR ADDR, LAST WB and STORE ARET states, which correspond to
cycles 4, 5, 6 and 7, respectively. These are the preparation states prior to an ISR.
The FETCH 11 state indicates the first interrupt instruction fetch, which corresponds to cycle
8. The interrupt controller goes though the FETCH 12 and FETCH I3 states where it fetches
the second and third interrupt instructions. These are indicated in cycles 9 and 10, respec-
tively. A cycle later the machine enters the INTR WB state where it starts writing the results
of interrupt instructions back to the RF. The interrupt controller stays at this state until the
interrupt address reaches its last value, IN. When the last interrupt address is fetched, the
machine transitions to the INTR END state where it performs three additional interrupt
write-backs, and stalls the PC at IRET until the last interrupt write-back, WBIN, completes.
This state continues during cycles (N + 1), (N + 2) and (N + 3) in the timing diagram.
Following the last interrupt write-back, the interrupt controller prepares the system to finish
the current interrupt service before receiving another interrupt. The closing states are the
ACCESS R31, LOAD ARET and FETCH ARET states, which correspond to cycles
(N +4), (N +5) and (N + 6) in the timing diagram, respectively. The interrupt controller
goes back to the IDLE state in cycle (N + 7) where the INTRID becomes no longer valid.

However, a crucial problem arises when implementing this state machine. The interrupt
controller needs to know the end of an ISR. Somehow the number of instructions in the
interrupt service routine must be determined in advance in order to continue the state
transitions in the state machine. The states, INTR WB and INTR END, are the examples of
this problem. The interrupt controller needs to stay in the INTR WB state from the first to the
(N — 4)th interrupt write-backs, and similarly in the INTR END state from the (N — 3)th to
the Nth interrupt write-backs during an ISR. Since the number of instructions varies in an
ISR program, this state machine’s implementation becomes impossible for the ICU design,
necessitating a change in the original timing diagram, which will affect the data-path in
Fig. 7.13 and the state diagram in Fig. 7.14.

Figure 7.15 shows a slightly modified version of the interrupt controller data-path to
circumvent this problem. In this figure, a decoder is added between the output of the
instruction register, IROut, and the interrupt controller in order to detect the return opcode in
the IntrRET instruction at the last interrupt address, IRET. This, however, creates an
additional input, DetIRET, for the ICU. Therefore, when the return opcode is decoded in
cycle (N + 2) in the new timing diagram in Fig. 7.16, the DetIRET signal becomes logic 1
and prompts the ICU to make preparations to end the current ISR. In this figure, the StallPC
signal is also lowered to logic 0 between cycles (N + 1) and (N + 4) because not stalling the
PC during this interval will simply generate invalid addresses at the PCOut port, and this is

7 System Peripherals

396

yyed-ejep ooedul Jdniur payIpoN SL°Z ‘b4

abe)s >oegaim abeys Yoeqeim
wolj eyeq woly ssaIppy
Alows|\ uononnsu|
0 b odIes L3y JENT I—
|
Ledies aunpnoigng NI N4 “
44uia OIS !
ydnuisyu| : “
0 b Laul <+
|
“]
44IPPY !
N _ b pasu| ! v_o_o_o
00|10
e AL FENTE -
Ar eV ghsu| IN0Od od
EREN N o nodl 44 zasu|
Bay "lisu|
L - A Lasu| EISIES
0 Le 1vIIes
odliels
J4In0a w 0w v 0 n
2 F 2 & 0
ST A58
+ + + + + 9|qe] ssaippy 1dnusiu|
> - - 0
g9CHLN s [VLN LU 011U ITENE
3 : l— 1VIUIQ
3 jdnusju|
£ - > L+
= dINE | T ICENR
2 13uneq A o
: @ 2N
VLNI — 5 QIINI S Ze 1vhnoa
04 LNI —> 6sz
Japooeq 134y 5 T

A

397

Interrupt Controller

7.3

SI°L "S1q ur oejronul Jdnuyur payrpowr oy Jo werderp Sutwil, 9L°L *bi4

aunnoiqgns ad1AIes Jdniisjul jopu3 13¥ned

-

suononJsul 1enBai 3oegajIA

|
I
I
|
i IUEN]

suononJsul mc_u:O._Q:mMﬂ_?_mm 1dnusjul oG,

493m

|
|
I
I
L €Y OJul USRUM | THY ’

|
L

adies

Ledies

EEIEN]

|
|
I
|
I 1
$S2IPPY @M PlIEA x

|
S$S3IPPY M PlIBA x “
T
I | am

d3uia

oyl

SSaIppy plleAu| IN00d

= ssaippy 1dnuisju) buiels

al ydnuaju| f_ f

4

lvinoa

QIdLNI

VINI

HLINI

.:o_«m‘:_n.;\ MaN XHLINI

300j9

(6+N) | (8+N) | (2+N) | (9+N) | (G+N) | (#+N) | (e+N) | (2+N) | (1+N N €l 4 LT O 6 8 L 9 S v € 4 3
_ 0PAkD | @1phkD | Bpphkn | ePAD | ephkD _ 9PAD | 8pPhD _ 919AD | 8pPAD | BPhD _ _ ET)%) _ 9PAD | ejphD _ 9AD | ephD _ 9PAD _ ETY%) _ 9PAD | 8pAD _ 9PAD _ ET)%) _ 9PAD _ 9PkD _
139V 139V LeY am am am am am am am €l al L 13¥v aMm daav

370 37dl 37al HOL134 AVOT SS300V NIEM MINI MINI MINI MINI HINI MINI dINI HOL34 HOL3d4 HOL3d 3YOLS 1SVl HINI QJIEINI VINI 37a1 37dl

398 7 System Peripherals

not critical for the operation of the interrupt controller since the program return address,
ARET, becomes a valid address at PCOut in cycle (N + 6).

This modification leads to a number of changes in the ICU’s state diagram shown in
Fig. 7.17. After transitioning to the INTR WB state in cycle 11, the state machine stays in
this state until it detects DetIRET = 1. This input forces the ICU to move the WBIN state to
complete the last interrupt write-back. At this point, the machine goes through three more
states, ACCESS R31, LOAD ARET and FETCH ARET, to load the user program return
address back to the PC in order to resume the original program.

INTA=0 INTA=0

INTR = 1 /J\ INTR = 1
%/=

INTA=1
StallPC =1

INTR =0

INTA = 1
StallPG = 1 INTA = 1
WERF = 1 SelRF = 1
REIAT = 1

INTA = 1
StallPC = 1
WERF = 1

INTA=1
SelR31 =1

INTA=1 INTA =1
WERF =1 WERF =1
INTR =1
DetIRET =1
INTA=1
SellAT =1
SelR31 = 1 INTR = 1 INTA = 1
SelPC = 1 DetlRET =0 WERF =1

WERF =1

INTR =1 o FETCH INTR =1

INTA =1

INTA =1 INTA=1 INTA =1

Fig. 7.17 Modified interrupt controller state diagram

7.4 Serial Transmitter and Receiver Interface 399

7.4 Serial Transmitter and Receiver Interface

There are times when the CPU needs to use its serial I°C or SPI interface in order to
communicate with an I/O device. The serial interface consists of a transmitter to send serial
data to an I/O device, and a receiver to receive serial data from the same device on a one-bit
bus. The following section describes the basic structure of a transceiver composed of a
transmitter and a receiver to handle one-bit serial data.

Transmitter

Figure 7.18 shows the data-path of a transmitter where an incoming 32-bit data from the
CPU is received at the TXIn[31:0] port, and stored in one of the two buffers before being
serially sent out from the TXOut port. Each buffer is essentially a shift register. Once a 32-bit
data packet is loaded into a shift register, the bits start shifting from the least significant bit
position to the most significant bit position until all 32 bits are sent out.

CSTX °
ShiftTXBuf0 LoadTXBuf0
TXBufo 0
32
TXIn[31:0] - TXOut
TXBuf1 /1(
/J\ PassTXBuf
ShiftTXBuf1 LoadTXBuf1
31 ¢
P LoadTXCount %
TX Counter | DecTXCount

Controller | \/3lidTXData

TXCount

A\

LoadTXBuf0 TXBufEmpty
LoadTXBuf1

LoadTXBufQ -—
LoadTXBuf1 «—
ShiftTXBufQ -—
ShiftTXBuf1 <—
PassTXBuf «—

Fig. 7.18 Transmitter data-path

400 7 System Peripherals

This design uses a dual buffer scheme to overcome moderate waiting periods to access
system’s main memory. If the waiting period takes too long, the transmitter architecture may
require more than two buffers to sustain continuous stream of serial data from TXOut.
A single buffer may also be sufficient for the transmitter provided that there should not be
any waiting period to access the main memory. Once the main memory is accessed, storing a
32-bit data in one of the transmitter buffers takes only a cycle. Streaming all 32 bits from a
particular buffer, on the other hand, takes 32 consecutive clock cycles. The clock used to
send serial data may also be a slower clock depending on the design constraints. Therefore,
the transmitter uses all 32 clock periods to request, wait and receive data to its secondary
buffer while it streams bits out of the first buffer. When the first buffer becomes empty, the
transmitter immediately starts streaming data out of its secondary buffer while the first buffer
is being filled.

PassTxBuf input in Fig. 7.18 is a control signal for the 2-1 MUX that determines when to
switch buffer outputs. LoadTxBuf0 and LoadTXBufl inputs load data from TXIn[31:0] to
the first and the second buffers, respectively. ShiftTXBufO and ShiftTXBufl inputs control
the beginning and the end of the serial data shift from buffer 0 and bufferl, respectively.
The CSTX is a Chip-Select input port for the transmitter, and it stays at logic 1 as long as the
system uses the transmitter.

The timing diagram in Fig. 7.19 shows how data is stored and streamed out of the data
buffers. It is constructed while the transmitter data-path in Fig. 7.18 is being developed.
Once again, the top part of this diagram shows the bus-level data signals that describe the
data-flow while the bottom part contains the control signals that govern this data-flow.

The transmitter wakes up when it receives an active-high CSTX signal from the CPU in
cycle 1. In cycles 2 and 3, the 32-bit data packets, Buf0 and Bufl, fill the first and second
transmitter buffers, TXBuf0 and TXBuf1, respectively. Once the first buffer is full in cycle 2,
single bits start coming out of the least significant bit position of the buffer (the shifting
mechanism in the buffer can also be configured such that single bits start emerging from the
most significant bit position instead) in cycle 3. The first bit that comes out of TXBuf0 in
cycle 3 is BitO which is the least significant bit of the data packet. This is followed by Bitl
through Bit31 between cycles 4 to 34, respectively. When the first buffer becomes empty, the
transmitter immediately switches to its second buffer and starts streaming bits from TXBufT1.
In the mean time, the transmitter fills TXBufO with a new 32-bit of data in cycle 35 as long
as there is no bus traffic. Emptying the second buffer takes until cycle 66 when Bit31 is sent
out from the TXOut terminal. When TXBufl is empty, the transmitter starts streaming out
data from TXBufO in cycle 67 while filling TXBuf1l. The process of filling one buffer while
streaming bits out of the second continues as long as the data stored in the main memory is
fully exhausted. Figure 7.19 shows all 32-bit data packets from the main memory imme-
diately available when the transmitter switches from its empty buffer to its full buffer, and
ignores any delay associated with accessing the main memory. In reality, when the trans-
mitter starts streaming data out of the full buffer, it immediately generates an interrupt for its

401

7.4 Serial Transmitter and Receiver Interface

weidelp Jumun Jopsuel], gLz ‘b4

JUNODX L PEOT]

JunooX 199Q

"I

X o)

JUNOOX 1

eledx1pleA

ingxl1ssed

Lngx1yius

0ngX1us

L

Lingx1peo’

oingx LpeoT

INOX1

L x“ ong x“ E_mx
T T
1 1

[}

g g x“ Leng x
T
]

[o:LgluixL

I () (.

X1SO

oL ! ool ! 66 ! 86

H H H 69 ! 89 ' 9 ' 99
919AD | Bj0AD | BIPAD | BPAD A

Ellte} “ Ekl%) “ Ell%e} “ Elle

T 1

1 |8 19 v Ge 1 vE Vs oy v e N Vb 1
0, | B19AD | BPAD | B1PAD | BIPAD 1| BIPAD | 81PAD | BPPAD | B19AD | BPAD
| | | | | | | | |]
Ldng Ldng 1dng 0dng o04ng 04ng 1dng odng 314l
avot Hgiseq ALdNT avot ngiseq ALdNZ avo avoi3dd

ALdNT

ALdNT

402 7 System Peripherals

empty buffer to fetch data from the main memory. The waiting period is 31 clock cycles. In
the 32nd clock cycle, the empty buffer must be full. Otherwise, the transmitter stalls, and no
new data can be transmitted.

The control signals that govern the data-flow in Fig. 7.18 constitute the second part of the
timing diagram. Once the active-high CSTX signal is received, the LoadTXBuf0 signal
transitions to logic 1 to load the first 32-bit data packet, Buf0, to TXBuf0 in cycle 2. In cycle
3, the second 32-bit data packet, Bufl, is loaded to TXBufl, which requires the LoadTX-
Buf1 signal to be at logic 1. From cycle 3 until cycle 33, TXBufO works as a shift register to
stream bits O to 31. Therefore, the Shift TXBuf0 signal stays at logic 1 during this period. In
cycle 34, the last bit is shifted out of TXBuf0, and therefore, all data-flow controls for this
buffer transition to logic 0. In cycle 35, the LoadTXBufO signal transitions to logic 1 to fill
the empty buffer, TXBuf0. The ShiftTXBufl signal also transitions to logic 1 in the same
cycle to shift bits from O to 31 until cycle 66. Cycle 35 is also the time to switch the buffer
outputs. Therefore, the PassTXBuf signal becomes logic 1 in this cycle until cycle 67 when
all the data in TXBuf1 is streamed out. Cycle 66 is the cycle to deliver the last bit out of
TXBufl. Cycles 67 through 98 are exact replicas of cycles 3 through 34 where TXBufl1 is
filled while bits are shifted out of TXBuf0. The ValidTXData signal validates bits as they are
streamed out of the transmitter. Therefore, this signal stays at logic 1 from cycle 3 until the
last transmitter bit.

Figure 7.20 shows the state diagram of the controller unit that loads and shifts data in
each buffer, to switch buffer outputs, and to validate bits out of the transmitter. The state
names in this figure follow the names depicted at the top of the timing diagram in Fig. 7.19.
When there is no activity in CSTX signal, the state machine stays in the IDLE state. When
CSTX =1, the controller transitions to the PRELOAD BUFO state where it produces
LoadTXBuf0 =1 to load TXBuf0, and LoadTXCount =1 to load the TXcounter in
Fig. 7.18 with the value of 31. This state is associated with cycle 2 in the timing diagram.
Note that the TXCounter is a five-bit counter which is used to detect the end of the serial data
stream, and it is essential for the controller to be able to make a transition to the next state.
As long as CSTX = 1, the state machine transitions to the LOAD BUF1 state where it
produces LoadTXBufl = ShiftTXBuf0 = ValidTXData = 1. This state corresponds to cycle
3 in the timing diagram. This state is also the beginning of the count-down stage where the
TXCounter output starts decrementing from 31 towards 0 by DecTXCount = 1. Next, the
state machine goes to the EMPTY BUFO state, and stays there as long as the output of the
TXCounter, TXCount, is greater than one. This state corresponds to cycles 4 through 33 in
the timing diagram. When TXCount = 1, the controller goes to the EMPTY Last Bit BUFO
state where Bit31 is shifted out of TXBuf0. This state is equivalent to cycle 34 in the timing
diagram when the TXCounter is reloaded with the value of 31 to start another count-down.
As long as CSTX = 1, the state machine first transitions to the LOAD BUFO state in cycle
35, and then to the EMPTY BUFI state as the TXCounter decrements towards 1 from cycles
36 to 65. When TXCount = 1, the state machine transitions to the EMPTY Last Bit BUF1

7.4 Serial Transmitter and Receiver Interface 403

PRELOAD
BUFO

LoadTXBuf0 = 1
LoadTXCount = 1

LoadTXBuf1 =1
ShiftTXBuf0 = 1
ValidTXData = 1
DecTXCount = 1

EMPTY
Last Bit
BUF1

PassTXBuf = 1
ValidTXData = 1
LoadTXCount = 1

CSTX =1
TXCount =1

ShiftTXBuf1 = 1
PassTXBuf = 1

ValidTXData = 1
DecTXCount = 1

ShiftTXBuf0 = 1
ValidTXData = 1
DecTXCount = 1

CSTX =1 CSTX =1
TXCount > 1 TXCount > 1

CSTX =1
TXCount =1

LoadTXBuf0 = 1
ShiftTXBuf1 = 1
PassTXBuf = 1

ValidTXData = 1
DecTXCount =1

EMPTY
Last Bit
BUFO

ValidTXData = 1 CSTX =1

LoadTXCount = 1

Fig. 7.20 Transmitter controller state diagram

state in cycle 66 when the last bit of TXBufl is shifted out. From cycle 67 onwards, the state
machine goes back to the LOAD BUF]1 state, and traces through the previous five states
since the control outputs generated in each state are identical to the ones in the timing
diagram in each clock cycle. The state diagram in Fig. 7.20 does not show the transitions
from an arbitrary state to the IDLE state when CSTX = O to improve readability. The case
when the transmitter exhausts all of its valid data from both of its buffers and forced to stall
is not shown in Fig. 7.20 either. If heavy bus traffic is expected, the reader should employ an
additional STALL state in case new data is not yet loaded to TXBufO or TXBuf1 before the
state machine transitions to the LOAD BUFO or LOAD BUFI states, respectively.

Receiver
Figure 7.21 shows the data-path of a receiver where incoming data bits are serially received
by the RX buffer, RXBuf, at the RXIn port before being packed as 32-bit data packets and

404 7 System Peripherals

1 32
RXIn —~—» RXBuf -~ » RXOUt[31:0]
} LatchRXData
RX Counter |-RXcount RX | » ValidRXDOut
Controller
DecRXCount
@)
wn
)
X

uiaxdplieA

Fig. 7.21 Receiver data-path

sent to the CPU from the RXOut[31:0] port. This architecture can also be accomplished with
multiple buffers in case the receive clock frequency becomes much higher than the processor
clock frequency.

Figure 7.22 summarizes the operation of the receiver in a timing diagram. Once the
receiver is activated by CSRX =1 in cycle 1, any incoming data bit is ignored until the
ValidRXDIn signal transitions to logic 1. In other words, this external signal validates the
data bit at the RXIn port, and indicates when to start latching data bits into the RX buffer. As
a result, BitO is stored in RXBuf in cycle 2 and Bit31 in cycle 33. In cycle 34, a new Bit0 is
fetched for the receive buffer. This cycle is also the time period to pack all 32 bits, and send
them out of the RXOut[31:0] port. The 32-bit data is accompanied by the ValidRXDOut
signal for validation. In order to determine which clock cycle the ValidRXDOut signal
transitions to logic 1, a five-bit counter is used. This counter starts decrementing as soon as
the DecRXCount or the LatchRXData signal goes to logic 1. When the counter reaches O,
the RX Controller produces ValidRXDOut = 1 in the following cycle to validate the 32-bit
word at the RXOut[31:0] port. From cycles 34 to 67, the receiver keeps latching new valid
bits into RXBuf. As an example, there may be a period where the serial bit stream may not
be valid (ValidRXDIn = 0) such as in cycles 38 and 39. During this period, both the latching
action at the RXIn port and the count-down mechanism at the RX Counter should stop
immediately by LatchRXData = 0 and DecRXCount = 0, respectively. The normal receiver
operation resumes as soon as the ValidRXDIn signal transitions to logic 1 in cycle 40.

405

7.4 Serial Transmitter and Receiver Interface

weigelp Jumun IOARIY zZ'ZL b4

A
xm:m XE_m x allvA 1LON XW«_m x a9 x g x Q_m_/x_\mﬂ_m XOmu_m_

HX g x ong

uixyd

N P P JUN0DOXH98Q
ED 0 (AR T2 (2 (G20 T () (I R
e e N A | m m | — INOAXYPIEA

e
>> vﬁ [0:1EhnOXY
S NS RS E S S P m I
i

s T Y N W W r i
payose| ' ! ' ' ' ' ' ' 1 payolel peyole| ' 1 peyoje|
S T {0 Ve NS TN
I I R I R P XdS0

)) I I O e

' ' ' I I I I I I
89 9 1 99 4 34 \ \ \ \ \ [
I I I
' ' '

o | e ig s 1o g |pe e | oze ! by e :
9|0AD ! 8phkD | 9PAD 910k | BPAY | BIPAD) BIPAD | B1pAD | BPAD | B10AD 1 8phD | BphkD | BphkD | BoAD ! ! 1 910k | BPAD | BphD !

1Nnoa NAMOQ LNNOD 1lnoa NMOQ LNNOD 31al
anva darvAa

406 7 System Peripherals

The RX controller is a simple state machine with three states as shown in Fig. 7.23.
The IDLE state is the state when CSRX = 0 or ValidRXDIn = 0. Even when the CSRX
signal goes to logic 1, the controller stays in this state as long as ValidRXDIn = 0. This
translates to cycles 1 and 2 in Fig. 7.22. When the CSRX and ValidRXDIn signals both go
to logic 1, the controller moves to the COUNT DOWN state to fill RXBuf. The controller
stays in this state until the RXCount signal reaches 0. This state covers the cycles from 3 to
33 in the timing diagram. In the next cycle, the state machine goes to the VALID DOUT
state where it stays for only one clock cycle and produces ValidRXDOut = 1 for the 32-bit
data at the RXOut[31:0] port. Following the VALID DOUT state, the controller goes back to
the COUNT DOWN state where it starts filling the receive buffer again. As long as valid bits
arrive at the RXIn port, the state machine rotates between the COUNT DOWN and the
VALID DOUT states in Fig. 7.23. When CSRX = 0 or ValidRXDIn = 0, the state machine
transitions either from the COUNT DOWN state or from the VALID DOUT state to the
IDLE state. These transitions are omitted in Fig. 7.23 to maintain simplicity.

CSRX =0
or
ValidRXDIn = 0

CSRX =1
ValidRXDIn =1

CSRX =1
ValidRXDIn = 1
RXCount=0

CSRX =1
ValidRXDIn =1
RXCount # 0

ValidRXDout = 1

Fig. 7.23 Receiver controller state diagram

7.5 Timers

Every digital system contains programmable timers to handle a multitude of tasks. If an
external event needs to be monitored, it calls for a timer. Periodic internal system tasks are
also managed by timers. Timers can also be used to generate square waveforms or pulses

7.5 Timers 407

with adjustable pulse widths such as Pulse Width Modulation (PWM) signals to control
output devices or perform periodic tasks.

A basic system timer is shown in Fig. 7.24 [1]. This timer essentially consists of a counter, a
compare unit and two registers. The first register stores the entire timer period after which the
counter receives an automatic reset, and the other divides the clock frequency of the counter.
The period and the divide by N registers are fully programmable. The compare unit is simply a
subtractor which subtracts the counter output from the period value. As the counter starts
incrementing from zero and ultimately reaches the value stored in the period register, the
output of the subtactor and its sign bit become all zero. These bits are ultimately decoded by the
compare unit to produce logic 1 at the timer output and reset the counter as shown in this figure.

Program Data

v

PERIOD >

Output

COMPARE

Program Data COUNTER

Fclock — Divide by N J f Reset

Fclock /

. " e

clock division, N

Counter (t)

Counterperiod F—-—-—-—-—-—-—--— g1 ————-—-————5———————

Cutoff period - — — — — -t - ==~ -

time

Output (t)

Fig. 7.24 Simplified timer block diagram

408 7 System Peripherals

The basic philosophy used in a timer block diagram can be modified into different forms.
However, all modifications still end up with a counter, a register set and a comparator for the
intended functionality. The comparison can be achieved by a digital block that may produce
one or multiple timer outputs, or by a subtractor/decoder scheme as in Fig. 7.24.

The following section presents many different forms of timers, each of which can still be
modified and converted into various other forms that can produce additional features and
functionality. The basic timers in this section are configured to produce a one-time pulse
(one-shot timer), a periodic waveform with adjustable duty cycle (rate generator), a square
waveform with fully programmable period (square wave generator) and a step function with
adjustable delay (interrupt generator). There are subtle differences and incremental
enhancements from one timer circuit to another, but in the end each timer uses a counter, a
register and a comparator as pointed out before.

One-Shot Timer

The one-shot timer, as its name suggests, generates a single, non-repetitive pulse whose
pulse width is programmed by the user. Figure 7.25 shows the micro-architecture of a typical
one-shot timer.

Before the operation starts, the pulse width for the one-shot timer is stored in the OneShot
register via a program bus. Once programmed, the data in this register is routed through the
L-port of the 3-1 MUX by LoadOneShot = 1. This provides an initial value for the
down-counter. As a numerical example, assume that the OneShot register is programmed
with a value of four, which produces OneShotOut = 4 during cycle 1 in the timing diagram in
Fig. 7.26. In cycle 2, the RData[31:0] node becomes 4. Since this value is different from 0,
the decoder placed at the RData[31:0] node (a 32-input AND gate with an inverter) produces
logic 1 at the OneShot output. This, in turn, activates the D-port of the 3-1 MUX and routes
the decremented RData value, (RData — 1) = 3, to the input of the down-counter. In cycle 3,
the RData[31:0] node becomes 3, and the OneShot output stays at logic 1, keeping the
D-port of the 3-1 MUX active. The decremented RData value, (RData — 1) = 2, is fed back
to the timer input once again. The D-port of the 3-1 MUX stays active until cycle 6 when the
RData[31:0] node becomes zero. From this point forward, the Idle-port of the 3-1 MUX
becomes active, and the timer output becomes zero. The timer stays in this state until it is
reprogrammed with a new value.

Rate Generator

The rate generator is another type of timer which periodically generates single pulses sep-
arated by a programmable time duration. Once a desired rate is stored in the RateGen register
via program bus, it is routed through the L-port of the 2-1 MUX to the input of the timer by
LoadRateGen = 1 as shown in Fig. 7.27. This step is shown in cycle 1 of the timing diagram

7.5 Timers

Program Data

v

OneShot Reg |
| OneShotOut

LoadOneShot

<g— clock

lw]
o)
l RData[31:0]

selects D-port

32

I]

OneShot

Fig. 7.25 Block diagram of the One-Shot timer

| Cycle | Cycle | Cycle | Cycle | Cycle | Cycle | Cycle | Cycle | Cycle |
2

1 3 4 5 6 7 8
clock

LoadOneShot

9

N

NS

RData[31:0]

o

I
I
I
OneShotOut | ><
[
i
|
I

OneShot

-

409

Fig. 7.26 Timing diagram of the One-Shot timer (OneShot register in Fig. 7.25 is

programmed with a value of 4 as an example)

410 7 System Peripherals

in Fig. 7.28 with RateGenOut = 4 as an example. In cycle 2, the RData[31:0] node becomes
four, and the RateGen output becomes zero. Because neither the RateGen port nor the
LoadRateGen input is at logic 1, the D-port of the 2-1 MUX becomes automatically active to
allow the decremented RData, (RData — 1) = 3, to become the input of the down-counter. In
cycle 3, RData[31:0] becomes equal to three, which keeps the D-port still active because
RateGen = 0. The decremented RData, (RData — 1) = 2, is routed once again to the input of
the timer. This path stays active until RData[31:0] = 1. At this point, RateGen output
becomes equal to one, and selects the L-port of the 2-1 MUX. The value in the RateGen
register is loaded to the input of the down-counter. This is shown in cycle 5 of the timing
diagram. In cycle 6, RData[31:0] becomes four, and the RateGen output becomes zero. The
cycles 7 through 9 are the exact replicas of the cycles 3 through 5. The RData node keeps
decrementing until it becomes equal to one, at which point the RateGen output also becomes
one. Therefore, periodic single pulses are generated once in every four consecutive cycles at
the RateGen output once the RateGen register is programmed with a value of four.

Program Data

v

RateGen Reg | -1

RateGenOut g
+

32

LoadRateGen M o/

32

o
[3]

<— clock

RData[31:0]

32

selects L-port

RateGen

Fig. 7.27 Block diagram of the Rate Generator

7.5 Timers 411

| Cycle | Cycle | Cycle | Cycle | Cyclel Cyclel Cycle | Cycle | Cycle | Cycle |
1 2 3 4 5 6 7 8 9 10

clock

LoadRateGen

RateGenOut

RData[31:0]

RateGen

Fig. 7.28 Timing diagram of the Rate Generator (RateGen register in Fig. 7.27 is
programmed with a value of 4 as an example)

Square Wave Generator

Square waveforms can also be generated by the timer as shown in Fig. 7.29. The pulse
duration of the square wave is initially stored in the SqWave register through a program bus.
Once the programming is finished, LoadSqWave = 1 loads the value to the Sqwave register
through the L-port of the 2-1 MUX to the input of the down counter. This is shown in
cycle 1 of the timing diagram in Fig. 7.30 with SqWaveOut = 3 as a numerical example. In
cycle 2, RData[31:0] becomes three and RateOut becomes zero since the 32-input AND gate
can only produce logic 1 when RData[31:0] = 1. The decremented RData value, (RData — 1)
= 2, is routed through the active D-port of the 2-1 MUX to the input of the down-counter. In
cycle 3, the RData[31:0] node becomes two, but the RateOut node still stays at zero. The
decremented RData value, (RData — 1) = 1, is routed to the input of the down-counter once
again. When RData[31:0] becomes equal to one in cycle 4, the 32-input AND gate produces
RateOut = 1, and activates the L-port of the 2-1 MUX. As a result, the down-counter is
reloaded with the value in the SqWave register. From this point forward, the circuit repeats
the same pattern, producing a pulse in every three cycles at the RateOut node. Although the
rate generator and the square wave circuits look identical, the square wave generator con-
tains an additional state machine whose clock is controlled by the RateOut node. Therefore,
at every positive edge of the RateOut signal, the value at the SqWave port alternates. If the
SqWave output is initially assumed to produce logic O between cycles 1 and 3, the positive
edge of the RateOut signal in cycle 4 switches the value of the SqWave output from logic 0
to logic 1. Similarly, the RateOut pulse in cycle 7 changes the value of the SqWave output

412 7 System Peripherals

Program Data

Y

SgWave Reg | -1
SgWaveOut %W_IT
+
32
LoadSqWave M o/
32
O
<— clock
£ o)
2
d RData[31:0]
- ‘—
ks 32
(0]
n
RateOut
\Y4

D Q I—> SqWave

Fig. 7.29 Block diagram of the Square Wave Generator

| Cycle | Cycle | Cycle | Cycle | Cycle | Cycle | Cycle | Cycle | Cycle | Cycle | Cycle | Cycle | Cycle | Cycle |
1 2 3 4 5 6 7 8 9 10

clock

I
LoadSqWave | |
I

SqWaveOut |>< 3)g
)

I

|

I

]

T

I

]

RData[31:0]

i EDEDEDED ED ED EDED ED ED ED D ED,

RateOut

f
|
1
T
I
SqWave |

Fig. 7.30 Timing diagram of the Square Wave Generator (SqWave register in Fig. 7.29 is
programmed with a value of 3 as an example)

7.5 Timers 413

back to logic 0. Therefore, the circuit in Fig. 7.29 creates a square waveform whose fre-
quency is fully programmable by the SqWave register.

Interrupt Generator
One of the most useful timer functions is to have a timer generate a predetermined interrupt
signal for the system. If an external event needs to be observed at a specific time or if
periodic sampling needs to be employed for an event, the system must have the means to
generate an interrupt. It achieves this by using the circuit in Fig. 7.31. This circuit is
composed of a basic down-counter whose output is configured to make a transition from
logic O to logic 1 when the count-down reaches zero.

As with the other timers, the count-down period is programmed in the GenlInt register using
a program bus as shown in Fig. 7.31. Once programming is finished, the L-port of the 3-1

Program Data

v .

Genlint Reg |

GenlIntOut \ i ;

LoadGenint ——KMG—L o/

© 32

S

@

o) W)

@ o <— clock

(6]

2 l

o RData[31:0

3 N [31:0]
32 32

c |

o é% . % Lo

E

[0

o)

[0

o

o]

1 0
Set | |
© <— clock
0
Genlnt

Fig. 7.31 Block diagram of the Interrupt Generator

414 7 System Peripherals

MUX is activated by LoadGenlInt = 1 to allow the value in the Genlnt register to be loaded to
the down-counter. As a numerical example, assume that the GenlInt register is programmed
with a value of four, which produces GenIntOut = 4 during cycle 1 in the timing diagram in
Fig. 7.32. In cycle 2, the contents of the down-counter input are transferred to the RData[31:0]
node. Therefore, RData[31:0] = 4 produces logic 1 at the Decrement node, which activates the
D-port of the 3-1 MUX, and allows the decremented value of RData, (RData — 1) = 3, to be
loaded to the input of the down-counter. In cycle 3, RData[31:0] = 3, but the Decrement node
stays at logic 1, keeping the D-port active for the rest of the count-down process. When the
RData[31:0] node finally reaches one in cycle 5, the Set node in Fig. 7.31 transitions to logic 1,
and turns on the S-port of the second 3-1 MUX. In cycle 6, the GenlInt output transitions from
logic O to logic 1 after four cycles of count-down. Because the LoadGenlnt input and the
Decrement node are both at logic 0, the Idle port of the 3-1 MUX automatically becomes
active. As a result, RData[31:0] = 0 keeps circulating back to the timer input until another
value is loaded to the GenlInt register. The Genlnt output needs to be reset by the active-high
Reset signal in Fig. 7.31 in order to generate another interrupt signal.

| Cycle | Cycle | Cycle | Cycle | Cycle | Cycle | Cycle | Cycle | Cycle |
11 2 1 3 | 4 1 51 6 | 7 |1 8 1 9 |

clock

| l—'—|
LoadGenlint [

| |

GenlIntOut :X 4 >§
7

RData[31:0] : 0By 4 X 3 X 2 X 1 >§o
| | | | |

Genlnt ! ! l l l

Fig. 7.32 Timing diagram of the Interrupt Generator (Genlnt register in Fig. 7.31 is
programmed with a value of 4 as an example)

7.6 Display Adaptor

The display is one of the most crucial peripherals in a system because it establishes a link
between the user and the system. The format in all modern LCD or LED displays is composed
of an active image area surrounded by vertical and horizontal blanking regions [2]. The size of
the blanking regions is adjusted according to the response time of a particular display. Slower
displays require larger vertical and horizontal blanking regions to sync with the active image

7.6 Display Adaptor 415

which has a frame rate between 30 and 60 frames per second. Pixels of an active image are
fetched from the system memory and displayed on a non-interlaced screen following the
vertical and the horizontal blanking sections as shown in Fig. 7.33.

Vertical Blanking

-4— Pixel 0
l— Pixel 1023

<¢— Line O

Active Image

Horizontal Blanking

<¢— Line 1023

Fig. 7.33 Non-interlaced display format with an active image of 1024 pixels by 1024 lines

Vertical and horizontal blanking areas are made out of black pixels. On the other hand,
each pixel in the active image is composed of eight-bit wide Red (R), Green (G) and Blue
(B) components. The basic operation consists of fetching a 24-bit pixel from the system
memory and placing it in the active image area one at a time. Usually each display has a
frame buffer to store pixels from the system memory. When the data in the frame buffer is
exhausted, the display controller requests another block of data to be transferred from the
system memory. As the system complexity increases, bus traffic between the main memory
and the CPU (and the system peripherals) increases proportionally. As a result, the display
unit may have to wait before the next block of data arrives at its buffer. However, this is not
an acceptable solution since this situation also creates choppy images for the user. Therefore,
dual, quadruple or even higher frame buffer techniques are used to maintain continuous
stream of images to be displayed on the monitor without any interruption. A dual frame
buffer implementation is shown in Fig. 7.34 where image data is displayed from one frame
buffer while the other buffer is being filled.

Prior to image processing, the Horizontal Blank register, Vertical Blank register, Active
Image Pixel register and Active Image Line register are programmed using a separate
program bus as shown in Fig. 7.34. The program bus can be a serial bus because the
processing speed is not critical when the system programs the control, address and data
registers prior to normal operation. The reader should refer to the design examples and
review questions in Chapter 5 to devise a serial interface to program these registers. The data
stored in these four registers define the normal operational parameters of the display unit.

http://dx.doi.org/10.1007/978-3-319-25811-9_5

416 7 System Peripherals

32
Program Data WData[31:0]
23 0 PN A 0
Horizontal Blank Reg «t—$ REO —p> @ RE1
10 WEOQ —p| l— WE1
Buf0 Buf1
HBOut 20 20
Addr0 ——p»| l—~— Addr1
| Vertical Blank Reg |«a—9 Islels o lelsle
10 SelR0O »- 2 < SelR1
¢ SelG0 2 10 o 2 10 SelG1
SelBO 8 SelB1
VBOut 8 8
SelBufo » /
- SelBlank —\BO BK B1/ 3-1 Frame MUX
| Act Image Pixel Reg |<—0 SelBuf1 » 5 §
%10 Y Frameln & %
[72]
S 0
AIPOut Vertical Blanking £
Act Image Line Re |<— 10 il
9 9 4 Pixel Counter
¢10 PxOut
g Y 10
AlLOut < o[i[2] [E<—f—‘ Line Counter
= LineOut * *
s
S - g 2
X Active Image g 5
T =
4
IncAddr0
ResetAddr0 x % 2
A 20 G- £88c0sc888%L3
Addr0 Counter Addro DY UYS3 3o g0 80 o3 632 8
| BEPY33333888328¢2¢
0 O O O
r ResetAddr1 l
y 20 Display Controller
| Addr1 Counter Addr1)
?10?10?10?10?10?10T ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
o e e e e oo >>%2 2 T T
5533338 t3:E333%3
2o ad 3 S S Sww I FS
5 > I Z < a n O L £ c ¢ c 2
%) == 3 3
O m m ¥ X

Fig. 7.34 The data-path of the display unit

The image data, on the other hand, is continuously fed to the display buffers, BufO and Bufl,
by a 32-bit wide system bus, WData[31:0], as shown in Fig. 7.34. Even though the bus
width is 32 bits, only the lower 24 bits are used in this architecture to transfer pixels to each
buffer. The display controller first places the incoming pixels from the system bus to both
BufO and Bufl, and then transfers pixels from one of these buffers to the image frame. The
controller also generates two timing attributes, SycnHB and SyncVB, to indicate the start of

7.6 Display Adaptor 417

the horizontal blanking and the start of the vertical blanking sections of the frame, respec-
tively. This is done in order to synchronize the display adaptor with the monitor.

To illustrate the operation of the display unit, a five pixel wide, nine line tall active image
(the white area in Fig. 7.35) is considered as an example. This image is surrounded by two
lines of vertical blanking and three pixels of horizontal blanking (shaded area) in the same
figure. The numbers in each box represent a pixel component whether it belongs to the active
image or the blanking sections. Therefore, the component numbers, 0, 1 and 2, constitute the
first blank pixel in the vertical blanking section whereas the numbers, 57, 58 and 59,
correspond to the R, G and B components of the first pixel in the active image area. The
blank pixels have no values and equal to 0x00 as shown in Fig. 7.34. The active image
pixels, however, are fetched from one of the image buffers in Fig. 7.34 and placed in the
active frame in ascending order. For example, the component 57 is fetched first and placed at
the upper left corner of the image frame, and the component 263 is fetched last and placed at
the lower right corner.

PIXELO PIXEL 1 PIXEL2 PIXEL3 PIXEL4 PIXEL5 PIXEL6 PIXEL7
[I I I I I I I I

Vertical Blank o|1|2]|3|4a|5]|6]|7]|8|9]10|11|12|[13[14|15[16[17|18]|19[20]21]22]23
2 LINES 24| 25|26 | 27| 28| 29| 30| 31| 32|33 |34 (35|36 (37 |38|39[40(41]|42]43|44]45]46]|47
48|49 |50 | 51| 52| 53|54 |55]|56|57]58]59|60|61|62|63|64[65[66|67[68]69]70]71
72 80 | 81 95
% 104|105 119
. 120 128129 143
Active Image
9 LINES 144 152153 167
168 176|177 191
192 200 (201 215
216 224|225 239
240 248249 263
[| |
Horizontal Blank Active Image
3 PIXELS 5 PIXELS

Fig. 7.35 An example of an image frame composed of active image and blanking
components

The display unit is activated by CSDisplay = 1 as shown in cycle 1 of the timing diagram
in Fig. 7.36. This figure shows data-path signals in the upper rows and control signals in the
lower rows. Once active, the first component of the blanking pixel 0, 0x00, arrives at the
frame in cycle 2. Within the same cycle, the SycnVB signal becomes logic 1, indicating the
start of the vertical blanking for the frame. In cycles 3 and 4, the other two components of
the blanking pixel O arrive at the frame. The first line of the vertical blanking completes in

2 -/ 31y ur yed-eiep oy) 10] weiSerp Surwr */ *b1
© YL sy uryy P 2y} 10} Ip sUrL], 9€°Z *bi4
()
<
(o}
=
&
R D N L S
I I e e e e e e e e e T e e e e e e |
r—— ——— —r—tr—tr—r—r—t—tr—t—t—t—t—t—t—t—t—t—t—t—t—t—t—t—t
) T e e e e e e e e e e e e e L
2 [Y A SN TN TR NN TN SN TN TN NN NN AN SN TN SN SO AN A SO M S AN AN M N S N A RN S|
A e e e [I O O O R R B R B Wr=TTTe EEEN
[I T | I T T T O T S S O T N R SO S T SO R T S R SR |
HE - S S-S S S-S S S S S-S S S-SR S-S S S N S-S S S-S S-S S S
N e ottt euruyl
[TR AN T TR N T AN TN TN NN N AN AU FN AN N et AN N TN SN TN A NN N AN NN A R N |
T T T T T [} T T T T T T T T T T T T [} T T T T T T ° 7T T T T T T T T x110s9:!
N Fi L N i R D
1 1] 1 1 1 1 1] 1 1 L.] 1 1] 1 1 1 1 1] 1 1 L.] 1 1] 1 1 1 1
I I N I N e N T i D L Xdou|
"o [T T | o "o [T R | o "o [I T
T T T T T T T T T T T S S N NN N T N AN (Y R N N S S Y R T T B SR 1 o A5
[AN NN TN TN NN AN AN TN TN NN NN AN AN MR SN NN AN AN N AN NN AN AN NN T SN NN A NN M|
T 1] U
[T T T T S S T T S T S T T R R R T R S S H T S S S T S S R ke
1 (]
T D (e EEEN
I R D e O e T R T T e T T T T e S R B Y
+—tttttt+F—t——+——t+—+—+——+—t+—+—t+—+——F—t+—+——+—+——+—+—t+——+—+——+—+—+——+
T T e T T A S T T T T N A A T A R R e
[N TN NN TN TN NN TN AN N TN MU NN AN SN TN SN MU TR AN RO A N A A N N S N A RO N
(L T T T D e T L D I O O O L O e e e e e e L3y
[T T T T T T T T N O Y S S O S S T JO O T SR T A I S S N A B B
R S R N S S S S S S S S S SR SN S S S S S S S S S S SR S S S S S S
e 03y
[T T T T T T T N N Y S S T S S T SO O T HE T A I R S N R N N |
I I I N
. : : : . : : : : | y lueigies
A T T T S T T T T T T T S T S N T T T T S N T T T S T S T S S |
Tttt 0t &t &t & &t & & &t & & & & &t 1 1 1 1 1 pungpes
[T T T T N T S T SO S T S N S S T TR S T S T T R R S R A Y
— e
| 1 1 1 | | 1 1 1 1 ongles
[N T A TN TN NN TN AN NN TN NN NN AN AN NN AN NN AN AN SO AN SN M AR NN N A N N RN NN |
T La1es
[T T T T T T S T T S R S S O S S T SO S T SO N S N S S N R B B
1 1
T T T ISES
[T T T T O T T T S R S S N S N T SO S T N T A NN R S N A B
[T T T T T R T A T K E A A N S S T S N N T R A I B S N A N LIPS
[N TN NN TN TN NN TN AN NN MNN NN NN AN AN NN SN NN AN AN N M NN M AN NN N SN NN M NN N
T ogdles
[T T T T T T T T N R S S O S S T FO O T SR T A N S S N A B
1 1
T e 09198
I e e e e e e e e e e e e e e e e e |
+—ttt++t+t+t++t+—t+—t+——+——+—t+——+—t+—+——F—t+—t+——+—t+——+—t+—t+—+—+—+—+—+—
I T T T T T T N T T T T T T A N R T R N T N N N | 0yIes
[N T SN TN TN NN TN AN TN TN SO NN AN SN TN SN MUY TN SN N AR NN AN AN NN N S N A R N
1 T T T T T T T T T 1T T 1T T 1T T T T T T 1T T T 1T T 1T 1T T T T 1 LIppY
r—rrt
HE - - - - - N - - N - N - - S N -
! 04ppY
(S T O S T S T N T N S O N S O N N
T T T T T T
— v+ X X T noaur
S T T]]] 1 1 1
X] INOXd
T T
ujswelq

[}
[} —uﬁ. Keidsiaso

~ - 002

1291 19100)65)85)25195)ss)vsiesizsiislosier)er)viovisyivr) 1ielociezise)ziozlszivelezieziizloz) 121l olstiviele))
® | | |
p SOVAI SAILOVY SINV18 TV LNOZISOH S TAERNEIEN

7.6 Display Adaptor 419

cycle 25. The second blanking line follows the same pattern as the first one: the first
component of the blanking pixel O arrives at the frame in cycle 26, and the last component of
the blanking pixel 7 arrives in cycle 49. Cycle 49 is also the cycle that resets the line counter
by ResetLine = 1 because the next line starts the active image. In cycle 50, SycnHB
becomes logic 1, signifying the start of horizontal blanking. From cycles 50 to 58, the first
line of horizontal blanking is formed prior to the active image. Cycle 58 also defines the
border between the horizontal blanking and the active image. In this cycle, the read enable
signal for BufO, REO, becomes logic 1 in order to read the first image pixel from this buffer.
Blanking pixels are supplied to the frame from the BK-port of the 3-1 MUX as shown in
Fig. 7.34, and delivered to the frame through Frameln input.

The timing diagram in Fig. 7.37 is the continuation of Fig. 7.36 and focuses on the active
image pixel delivery. The R-component of the first image pixel comes into the image frame
in cycle 59 followed by the G and the B components in cycles 60 and 61, respectively. Since
the image data comes from the first display buffer, BufO, the port assignment in the 3-1
MUX must be changed from port BK to port BO by SelBufO = 1 from cycle 59 onwards.
Therefore, after the first image pixel is delivered to the frame, the address pointer for buffer
0, AddrO0, is incremented by one in cycle 61 to be able to fetch the R-component of the next
pixel from BufO in cycle 62 (one cycle memory read latency). From cycles 59 to 73, the first
line of the active image is delivered to the frame by incrementing AddrO from O to 4. Cycle
73 also indicates the start of the second horizontal blanking line. In this cycle, REO tran-
sitions to logic 0, and AddrO stops incrementing because pixel flow from BufO needs to be
interrupted in order to start delivering blank pixels to the frame. To accommodate this, the
port assignment in the 3-1 MUX is changed from port BO to port BK. After completing the
delivery of horizontal blanking pixels, the second line of the active image is delivered
between cycles 83 and 97. AddrO is incremented from 5 to 9 during this period to fetch
pixels from BufO and form the second active image line. The rest of the image is delivered to
the frame by the end of cycle 265. In cycle 266, a new frame is formed with SyncVB = 1. As
in the previous frame, pixels that constitute the vertical blanking are followed by pixels that
form the horizontal blanking and the active image. The new active image pixels are delivered
from Bufl. In this example, both BufO and Buf1 are assumed to contain only 45 pixels, and
therefore each buffer has 3x45 = 135 bytes of image data as opposed to the architecture in
Fig. 7.34 that contains 1024 x 1024 = 1,048,576 active image pixels in each buffer.

Figure 7.38 shows the display controller design to manage the data-flow in Fig. 7.34. The
state machine in Fig. 7.38 is a Moore-type composed of a string of states, each responsible
for delivering blank or active image pixels to the frame. The state machine needs to keep
track of the pixel and line numbers in the frame, and be able to define the boundaries
between the blanking and the active image regions. Therefore, its functionality largely
depends on the pixel and the line counter values in Fig. 7.34.

The state machine stays in the IDLE state until it is externally activated by
CSDisplay = 1, which corresponds to cycle 1 of the timing diagram in Fig. 7.36. Once

9¢’L "SI Ul WeIgerp Surun day) Jo uohenunuo) £g°Z bid

gAouAg

gGHOUAS

-

BuIesay

7 System Peripherals

0IPPVIESEY

0lppyoul

(=1]
! 03y

sueigles

Lngies

. oyndies

Ldaies

Ldies

ogdies

09l8s

1
1
1
1
1
T
!
1
[l
1
| LOlPeS
|
T
1
L
1
|
'
1
T
|

odIes

L1ppY

nosury

INOxd

ujowel

!
[T Aeidsiaso

1
U

3009

15821982} 11.2104T,692 89292992 S92\ VI |€9Z) |\ VYT \EVZITHT) | L6196 1 S6 | 1 OL1SL) VL)€L \TL)LL) 0L} 6989|2999 G99 €929, 4909, 65] |

YNVIE TVOILHaA IOVNI SAILOV ~ SINV1G WOH IOVWISAILOV SINV1g JOH IOVINI IAILOV

420

421

| = anoufs | = ongles
| = hdwzong + = 0dI9S
| = Xd1esey

L =3ue|ges
| = auIjesay

I = 0IPPYIoSaY
1 =03y

L = ongles

L = 09I18S

1 =03y
L = oingles
L = 0dIdS

| =034
| = oingies
| = 0gles
| = xdouy |

| = 04pPPVIOUIT
L =03y
L = 0ngIes

L =09I9s |

L =037
L = ongIes
L =0dIeS |

7.6 Display Adaptor

0giseq
JEEEN]

09 31se1
josay

0y 1se
JELEN]

(2 -InOdIV) = INOXd

0g iseq

) > INOXd

(z-n0dIv

L =03y
L =3ueiges
| = Xdiosay

L =>uelgles

L =Xueigies

| =>jueigies
| = Xdou|

I =3ueigles

| =>ueigPs

g
0gH ise
josoy

)
0gH ise
jos0y

o
0gH iseT
josoy

(¢ -1n0gH) = INOxd

> INOXd

(z -1N0gH)

oyng oy 19r[onuod 1oydepe Aerdsiq ge*z *bi4

L = 0jngles
L = 04Ies

| = aurou|

| = Xdiosay

1 =03y
L = onges
L = 09I9S

NosUN

(2 -In01Iv)

L =03y
L = oingies
L = 0dIeS

| =jueigies
| = GHOUAS

L =037
L = oingles
L =0dIeS

| = Xdou|_|

L = 04PPYOUT]
L =03y
L = onges
L =09I°sd

L =037
L = onges
L =0dIesS |

09 18s9y

[USRESE]

0 1988y

(z -0dIV) = INOxd

(¢ -OTIv) > Inoeun

> 1noxd/

)

(¢ -n0dIv)

L =3uelges

I =034

L =>ue|ges
| = Xdlesay

L =>uelgles

| =>lueigies
]

RY

x

o

=4

| =vueigies |7

L =gHouks |3

m

o

=

S

| = Xdou|

I =3ueigies

| =Xueidies

o

0gH 1988y,

L =Xueiges
| = aurjesay
| = Xdiesay

3

L =3ueigies
| = aurou|
| = xdiosay

a

(EINEEY)
(1 -Inoan) (1 -noan)
=3InQaur >1nQaur
_ o
b=ueiges — oo Jesoy
L =)ueigies
4
R
x
o
=4
4~ n
v L= weigies |5
%Fmﬁ | = gHouAg m
3
>
)
o
=4
~
| =>ueigles
| = xdou 2
o)
=4
A
o T
s ©
S °
A L =)ueigies T
E >
)
g g
IS S
S|
L =)ueg|e oan
0 = Aeidsiaso .
| = gAoUAS
= Adw3ng
| =>ueigles

422 7 System Peripherals

activated, the R-component of the first blank pixel enters the frame through the BK-port of
the 3-1 MUX, and prompts SelBlank = 1 in cycle 2. This refers to the STARTO state in
Fig. 7.38. In cycle 3, the G-component of the first blank pixel is delivered to the frame. This
is shown as the VBO-G state in the state diagram. In this state, SelBlank = 1 in order to
transmit the G-component of the first blank pixel to the frame. The B-component of the first
blank pixel arrives in cycle 4, which corresponds to the VBO-B state. During this cycle,
SelBlank = 1 and IncPx = 1 to increment the pixel counter by one. At this point, the
controller checks if the end of the first vertical blanking line has been reached by forming
PxOut = (HBOut + AIPOut — 2). Here, PxOut corresponds to the output of the pixel
counter, HBOut corresponds to the number of horizontal blanking pixels in the Horizontal
Blanking register, and AIPOut corresponds to the number of active image pixels in the
Active Image Pixel register in Fig. 7.34. If the end has not been reached, the machine keeps
circling around the VBO-R, VBO-G and VBO-B states until PxOut becomes equal to
(HBOut + AIPOut — 2). This period translates from cycles 5 to 22 in the timing diagram in
Fig. 7.36. During this period, every time the B-component of a blank pixel is delivered to the
frame, the pixel counter increments by one. When the end point is detected, the state
machine goes to the Reset VBO-R state where it delivers the R-component of the last
blanking pixel that belongs to the first blanking line. This state corresponds to cycle 23 in the
timing diagram. The controller delivers the remaining G and B-components of the last
blanking pixel in cycles 24 and 25, which translate to the Reset VBO-G and Reset VBO-B
states, respectively. In cycle 25, the pixel counter is reset by ResetPx = 1, and the line
counter is incremented by IncLine = 1 in order to produce the next vertical blanking line.
However, the contents of the Vertical Blanking register, VBOut, needs to be checked prior to
the start of the next vertical blanking line in case this register is programmed to have only
one vertical blanking line. Therefore, while in the Reset VBO-G state, the line counter
output, LineOut, is compared against (VBOut - 1). If the line counter output is less than
(VBOut — 1), then the state machine first goes to the Reset VB0-B state and then back to the
VBO-R state in order to generate another blanking line as described in cycles 26 to 49 in the
timing diagram. If LineOut is equal to (VBOut — 1), the state machine goes to the SwitchO
VB-to-HB state where it generates SelBlank = 1, ResetPx = 1 and ResetLine = 1 in order to
terminate the vertical blanking and start the first line of the horizontal blanking.

Cycle 50 starts the beginning of horizontal blanking region, and delivers the R-component
of the first horizontal blanking pixel to the frame. This cycle translates to the Sync HBO-A
state because SyncHB = 1 is also generated in this state. The state machine moves through
the HBO-G and HBO-B states in cycles 51 and 52, and checks if the end of the horizontal
blanking region has been reached by comparing the PxOut with (HBOut — 2). If PxOut <
(HBOut — 2), then more R, G and B blanking pixel components are brought into the frame

7.6 Display Adaptor 423

through the BK-port of the 3-1 MUX. However, if PxOut = (HBOut — 2), then the state
machine enters the Reset HBO-R state to deliver the R-component of the last horizontal
blanking pixel in cycle 56 as this condition indicates the end of horizontal blanking. In
cycles 57 and 58, the machine traverses through the Reset HBO-G and the Reset HBO-B
states. The latter state resets the pixel counter by ResetPx = 1, and enables BufO by REO = 1
to start reading active image pixels.

In cycle 59, the state machine enters the RO state to deliver the R-component of the first
active image pixel from Buf0. In this state, port O of the 3-1 MUX at the output of Buf0
becomes active by SelRO = 1, and port BO of the 3-1 frame MUX becomes active by
SelBuf0 = 1. The read enable input for Buf0 also stays at logic 1 by REO = 1. In cycle 60,
the state machine goes to the GO state where it delivers the G-component of the first active
image pixel to the frame. This cycle requires SelGO = 1 to activate port 1 of the 3-1 MUX at
the output of BufQ while keeping SelBuf0 = 1 and REO = 1. AddrO is also incremented in
this state by IncAddrO = 1. In cycle 61, the controller reaches the BO state where it incre-
ments the pixel counter by IncPx = 1, selects port 2 of the 3-1 MUX at the output of BufO by
SelBO = 1, and maintains both SelBufO = 1 and REO = 1. In this state, the controller checks
if the end of active image has been reached by comparing PxOut against (AIPOut — 2). If the
controller finds PxOut < (AIPOut — 2), it goes back to the RO state to retrieve more image
pixels from Buf0. This scenario corresponds to cycles 62 to 70 of the timing diagram in
Fig. 7.37. If the controller finds PxOut = (AIPOut — 2), it moves to the Reset RO state in
cycle 71 to deliver the last R-component of the image pixel, and generates SelRO = 1,
SelBufO = 1 and REO = 1. The state machine then moves to the Reset GO state in cycle 72
and the Reset BO state in cycle 73. In the Reset BO state, the controller resets the pixel
counter by ResetPx = 1, increments the line counter by IncLine = 1, selects port 2 of the 3-1
BufO MUX by SelBO = 1, and keeps SelBuf0 = 1. While in this state, the controller checks
to see if the active image is more than a single line or not, and compares the output of the
line counter, LineOut, against (AILOut — 2). If the controller finds that LineOut < (AILOut —
2), it first moves to the Sync HBO state to generate SyncHB = 1, and then back to the HBO-G
state to start fetching horizontal blanking pixels for the next line. However, if the controller
finds that LineOut = (AILOut — 2), it realizes that it will be processing the last line of the
current frame. First, it goes to the Sync HBO-B state and generates SyncHB = 1, and then to
the Last HBO-G state to deliver the G-component of a horizontal blanking pixel.

The states from Last HBO-R to Reset Last-BO are the exact replicas of the states from
HBO-R to Reset BO except that in the Reset Last-GO state, BufQ address pointer is reset by
ResetAddrO = 1, and in the Reset Last-BO state, the line counter is reset by ResetLine = 1.
Once the controller exhausts all the active image pixels in Buf0, it switches to Bufl to
construct the next image frame as shown in the state diagram of Fig. 7.39. In this figure, the

7 System Peripherals

424

| = AJUAS
| = Aldw3ng
L =)ueigies

L = lngies

I =14dI’s

| = xdiesay
| = aurjesay

L = 1IPPYIesay
L=134

L = 1ngPs

I = 19Ies

L =134
L = 1ngPs
L =1dIes

L= 1347

| = Lngies
| = Lgles
L = xdouy |

| = 1IPPVIOUIT
L=134
L = lngies
L =19I9s |

L =134d7
L = 1ngies
L =1dIdS |

lgiseq
JEREN]

19 iseq
JEEEN]

1o iseq
josay

iNOXd

(¢ -nodIv)

) > INOXd

(¢ -1n0dIv)

L=13y
| =>ueiges
| = Xdlosay

a
LgH 1seT
josoy

I =3ueigles

o
LgH 1se7
josoy

I =3ueigles

iNoXxd

(¢ -1nogH)

| =>uegies
| = Xdou|

I =3ueigles

L =>ueiges

(2 -IN0OGH) > INOxd

1Jng 1oy 19[[onuod 1oydepe Aeidsiq eg°Z ‘b4

I = lngies
L =l4I’s L=13y L =>)ueigles L =>ueigies
| = aurouj | =>ue|gles | = aurpesay | = aurouj
| = Xdiesay | = Xdlosay | = Xdiosay | = Xd1esoy

Lg 1080y g

a
LaAjesay

L8H 1es3Y
= c (1 -Inoan) (1 -noan)
3 g =noaur >noaur
° =13y o 5
T L= unges n L=wueiges o | o1 osoy L =>ueigles
s b=1oes =
= =
g g
I =13y I~
L= ungles H 1y 1esey | =>ueigles | =>ueigles
L = 1Yles
/'y]]
R
o)
)\ 2 3 i
o] vy o A4 i
c [= c
- - I
me | =xueigles |7 LaH L =)ueigies |7 _MI | =)ueigies [&
ook L =gHouks | _ ouhs | =gHouks |3 Sukg | = gHouAg m
: : g
< =4 =
7 : 3
~ > 2
S
L =134
| = Ungies | = jueigies | =>ueiges
| = Lales / | = xdou| | = xdoul ?
| = xdou|_| H m
(o] A
s T T
| = LIppYoul] A > 3
L =13y P =4 c
L= Lingies] | =>ueigles A | =>ueigles T
| = i9Pes] = & z
o o
= = =4
o ;
L= 1397 = &
| = Lngles | =>ue|gles | =>uelgles;
L= 1yies]
| = gAOUAS
| = Adw3ong

L =3ueligles

7.6 Display Adaptor 425

states controlling the blanking and the image pixel delivery from Bufl is exactly the same as
in Buf0. Once all the pixels are delivered to the frame from Bufl, the state machine in
Fig. 7.39 hands over the control of the display adaptor to the state machine in Fig. 7.38.

7.7 Data Converters

Analog-to-Digital Converter

All analog domains interface with digital systems through Analog-to-Digital Converters
(ADC). In Fig. 7.40, an analog signal from a sensor is amplified to a certain level before
sampling takes place in a sample-and-hold circuit inside the ADC. The sampled analog
signal is then converted into digital form and directed to the CPU for processing according to
an embedded program.

Small Analog Signal Sampled Analog Signal
Analog To . Digital to
Sensor Sample a Digital > Micro- > Analog +——» Analog Signal
Hold controller
Converter Converter
Amplified Analog Signal Digital Input Digital Output

Fig. 7.40 Typical Analog-to-Digital and Digital-to-Analog Converter data-paths

The signal resolution is an important factor to consider in an ADC design. It simply means
dividing a sampled analog signal by 2~ number of voltage levels where N represents the
number of bits in the ADC. The second important consideration is the range of analog values
an ADC can capture and process.

Figure 7.41 describes the ADC resolution in a numerical example where an analog signal
changes between 0 V and 5 V. The bit resolution is only three bits, and therefore the ADC
uses 2° = 8 levels to identify the value of an analog signal at the ADC input. For example,
an analog signal of 2.501 V is identified by a digital output of 100. If the analog signal
increases to 3.124 V, the digital output that represents this voltage value still stays at 100. In
other words, in a three-bit ADC there is no difference between 2.501 V and 3.124 V in terms
of their digital representation. The 0.625 V step size is the natural occurring error in a
three-bit ADC, and it can be reduced only if the number of bits in the ADC is increased. In
general, increasing the number of ADC bits by one halves the error. Therefore, designing a
four-bit ADC instead of a three-bit ADC reduces the quantization error by 0.3125 V.

426

7 System Peripherals

Reference Voltage — Minimum Voltage 5-0
Step Size = = =0.625V
2ADC Bit Size 23
-] |<—
I I I I I I I
| | | | | | | I~ Maximum Digital Output
M bF—Ad=—=4+ ——l——d ==+ — =|— = —
I I I I I
I I I I I
10 | — — - =
I
L — - -
= 101 |
o
S [
© 100 -~ -
©
S ' 2° Levels
e e R o B e
|
010 - — =1 — — - =
I
|
001 = = [I (R I I
I I I I I I
000 | | | | | | —
o 0 o te) o 0 o o)
o N Yol N~ o N %o N~
Q © N @ 0 - ~ “
o o ~— ~ N ™ [sp] <

Analog Signal (V)

—» 5.000

Reference Voltage
Fig. 7.41 Input-output description of a three-bit ADC

The reference voltage of an ADC is generally determined by the maximum voltage level
of the analog signal, and it is used to calculate the step size. In this three-bit ADC example in
Fig. 7.41, the reference voltage is 5 V because the amplified analog voltage at the input of
the ADC is limited not go beyond 5 V.

ADC samples non-periodic analog signals in regular time intervals as described in
Fig. 7.42. The time interval between sampling points is called the sampling period. The
sampling period is adjusted according to the processing speed of the ADC in order to
generate accurate digital outputs.

Once sampled, the analog voltage at the input of an ADC is held steady throughout the
sampling period while the conversion takes place as shown in Fig. 7.43. The shape of the
converted signal may be quite different from the original analog signal due to the ADC
resolution and the time duration between samples. In a three-bit ADC, sampling takes place

7.7 Data Converters

5.000

4.375

3.750

3.125

Signal (V)

1.875

1.250

0.625

0.000

2.500 ¢

—>l |<— Sampling Period

Fig. 7.42 Sampling a continuous analog signal

5.000

4.375

3.750

3.125

2.500

Signal (V)

1.875

1.250

0.625

0.000

Time (sec)

Quantized $ignal

Error

R

Step
Size

Ky

Fig. 7.43 Sampling period, hold concept and regeneration of an analog signal

427

428 7 System Peripherals

in 0.625 V increments. Therefore, each sampling point becomes subject to a dynamic
quantization error which changes between 0 V and 0.3125 V. For example, a three-bit ADC
samples 3.4 V according to its closest sampling level of 3.125 V, and produces a 0.275 V
error. Arbitrary signals that change with a frequency faster than the sampling frequency are
subject to much larger dynamic errors. When converted back to their analog form, these
signals show large deviations from their original shapes.

A basic sample-and-hold circuit consists of an NMOS transistor and a capacitor as shown
in Fig. 7.44. The control input simply turns on the N-channel MOSFET for a short period of
time, called the sampling width, during which the analog voltage level at the input is stored
on the capacitor. When the transistor is turned off, this analog value is held constant until the
next sampling point.

Analog Input

®—— Quantized Signal
H —— Capacitor

Control Input_>l ’4_ L

Sampling Width

Fig. 7.44 A typical sample-and-hold circuit

Flash ADC

The simplest ADC is the flash-type as shown in Fig. 7.45. This three-bit ADC contains 2° =38
operational amplifiers. The analog signal is applied to all eight positive input terminals. The
reference voltage is distributed to each negative input terminal via a voltage divider circuit.
Each operational amplifier acts as a differential amplifier and amplifies the difference between
a continuously changing analog signal and the portion of the reference voltage.

Figure 7.46 describes the operation of the three-bit flash ADC and its encoder in a truth
table. When the analog voltage is less than or equal to 0.625 V, only Out[0] becomes logic
1, all other outputs from Out[1] to Out[7] become logic 0. When the analog signal exceeds
0.625 V but less than 1.25 V, only Out[0] and Out[1] become logic 1, and again all others
become logic 0. Higher analog voltages at the input successively produce more logic 1 levels

7.7 Data Converters

Analog voltage

R
Reference voltage 4\, 92375V

R

3.750V

3.125V

1.875V

1.250V

%
%
L
%
%
%

0.625V

0.0V

Fig. 7.45 Typical three-bit flash ADC schematic

out[7]

out[6]

out[5]

Out4]

out[3]

out[2]

out[1]

out[0]

FLASH ADC ENCODER

— DOut[2]

—— DOut[1]

L Dout[0]

429

as shown in Fig. 7.46. An encoder is placed at the output stage of all operational amplifiers
to transform the voltage levels at Out[7:0] into a three-bit digital output, DOut[2:0]. The
digital output is subject to a maximum error of 0.625 V because only three bits are used for

conversion.

430 7 System Peripherals

Analog Input Out[7] Out[6] Out[5] Out[4] Out[3] Out[2] Out[1] Out[0] | DOut[2] DOut[1] DOut[0]
0.625 > Vi > 0.000 0 0 0 0 0 0 o 1 0 0
1.250 > VN> 0.625 0 0 0 0 0 0 1 1 0 1
1.875 > Vijy> 1.250 0 0 0 0 0 1 1 1 0 1 0
2.500 > Vj\> 1.875 0 0 0 0 1 1 1 1 0 1 1
3.125 > ViN> 2.500 0 0 0 1 1 1 1 1 1 0 0
3.750 > Vin> 3.125 0 0 1 1 1 1 1 1 1 0 1
4.375 > VN> 3.750 0 1 1 1 1 1 1 1 1 1 0
5.000 > ViN> 4.375 1 1 1 1 1 1 1 1 1 1 1

Fig. 7.46 Three-bit flash ADC truth table describing its operation

Ramp ADC

The ramp ADC uses only a single operation amplifier, but it employs an up-counter and a
Digital-to-Analog Converter (DAC) in a loop structure as shown in Fig. 7.47. The digital
output is obtained from the C[3:0] terminals, and progressively generates a final output
within several clock periods.

Reset

INCR - 4-bit Counter

Cl3] C[21 C[1] Co]

oo = 5V YV VY
DACour DAC
SH
+ ouT
-Vcc =0V S/H
Analog Input

Fig. 7.47 Typical four-bit ramp ADC schematic

7.7 Data Converters 431

The top portion of Fig. 7.48 describes the output voltage assignments of a four-bit ramp
ADC using two different types of number-rounding schemes. The down-rounding scheme
assigns a lower analog value to each digital output compared to the up-rounding scheme. For
example, the down-rounding scheme produces a digital output of C[3:0] = 0100 for analog
voltages between 1.0937 V and 1.4062 V applied to its input. If the up-rounding scheme is
used, the same digital output becomes equivalent to an analog voltage anywhere between
1.4062 V and 1.7187 V.

The middle table in Fig. 7.48 shows how the conversion takes place if the down-rounding
mechanism is used in an example. Prior to its operation, the four-bit up-counter is reset and
produces C[3:0] = 0000. Assuming an analog voltage of 2 V is applied to the input, which
must be kept constant until the conversion is complete, C[3:0] = 0000 causes the DAC
output, DACqoyr, to produce 0 V according to the down-rounding scheme. Since this value
is less than 2 V at the sample/hold circuit output, SHoyT, the output of the differential
amplifier, INCR, transitions to the positive supply potential of the operational amplifier,
+Vee =5 'V, which prompts the four-bit counter to increment to C[3:0] = 0001. Conse-
quently, the DAC generates DACgoyt = 0.3125 V according to the truth table in Fig. 7.48.
However, this value is still less than SHoyr = 2 V. Therefore, the differential amplifier
produces another INCR =5 V which prompts the counter to increment again to C
[3:0] = 0010. Up-counting continues until C[3:0] = 0111 or DACqyt = 2.1875 V. Since
this last voltage is greater than SHoyt = 2 V, the differential amplifier output switches back
to its negative supply voltage, —Vcc = 0 V, and stops the up-counter from incrementing
further. The digital output stays steady at C[3:0] = 0111 from this point forward, repre-
senting 2 V analog voltage with a dynamic error of 0.1875 V.

The table at the bottom part of Fig. 7.48 represents the conversion steps if the
up-rounding mechanism is used in this ADC. External reset still produces C[3:0] = 0000
initially. However, the DAC output starts the conversion with an increased amount of
0.3125 V instead of O V. The counter increments until C[3:0] = 0110, and produces
2.1875 V at the DACgyt node. At this value, INCR becomes 0 V, and the up-counter stops
incrementing further. As a result, C[3:0] = 0110 becomes the final ADC output for 2 V.

Successive Approximation ADC

The third type ADC is based on the successive approximation technique to estimate the
value of the analog voltage. This converter type is a trade-off between the flash-type and the
ramp-type ADC in terms of speed and the number of components used in the circuit. As a

432

Step Size = 5/2* = 0.3125V

C[3] C[2] C[1] CIO]

Down-Round (V)

Up-Round (V)

o

A A MM A A a0 000000

o

N Y e I o i o I o JENE G G G U o B o M e)

o

IO o N = I Y o S o S G G o S o I G G o

o

N = I S o R i e, S o SN o S G o, S G, RN

0.0000
0.3125
0.6250
0.9375
1.2500
1.5625
1.8750
2.1875
2.5000
2.8125
3.1250
3.4375
3.7500
4.0625
4.3750
4.6875

0.3125
0.6250
0.9375
1.2500
1.5625
1.8750
2.1875
2.5000
2.8125
3.1250
3.4375
3.7500
4.0625
4.3750
4.6875
5.0000

Analog Input = 2V with Down-Rounding Mechanism

Step C[3] C[2] C[1] C[0] DACour(V) INCR(V)
1 0 0 0 0 0.0000 5.0
2 o 0 0 1 0.3125 5.0
3 0o 0 1 0 0.6250 5.0
4 o o0 1 1 0.9375 5.0
5 0 1 0 0 1.2500 5.0
6 o0 1 0 1 1.5625 5.0
7 0 1 1 0 1.8750 5.0
8 o 1 1 1 0.0

Final output with quantization error of 0.3125V

Analog Input = 2V with Up-Rounding Mechanism

Step C[3] C[2] C[1] C[0] DACout(V) INCR(V)
1 0 0 0 O 0.3125 5.0
2 0o 0 0 1 0.6250 5.0
3 0 0 1 0 0.9375 5.0
4 o 0 1 1 1.2500 5.0
5 0o 1 0 0 1.5625 5.0
6 o 1 0 1 1.8750 5.0
7 o 1 1 0 2.1875 0.0

Final output with quantization error of 0.3125V

£

Fig. 7.48 Four-bit ramp ADC truth table describing its operation

7 System Peripherals

7.7 Data Converters 433

numerical example, a typical four-bit successive approximation ADC schematic is shown in
Fig. 7.49. In this figure, the up-counter in the ramp ADC is replaced by a control logic which
successively transforms an analog input into a digital output by a trial and error method. The
output is obtained at the C[3:0] terminal.

Reset

> Control Logic —» DONE
Cl3] _Cl2] C[1] cla]
At Reset C[3:0] = 1000

Voo = 5V YV VY
DACourt DAC
SH
+ OouUT
Vee =0V S/H
Analog Input

Fig. 7.49 Typical four-bit successive approximation ADC schematic

The top portion of Fig. 7.50 shows the truth table to operate a four-bit successive
approximation ADC. Two numerical examples in this figure illustrate the down-rounding
and up-rounding schemes used during conversion.

The first example in Fig. 7.50 illustrates the down rounding mechanism in a four-bit
successive approximation ADC. In this example, an analog voltage of 3.5 V is applied to the
analog input of the ADC. An external reset starts the converter at C[3:0] = 1000, which is
considered a mid point between C[3:0] = 0000, representing the minimum analog input of
0 V,and C[3:0] = 1111, representing the maximum analog input of 5 V for this ADC. For C
[3:0] = 1000, the DAC generates an initial analog voltage of 2.5 V at the DACqyr node.
Since this value is less than the sampled analog voltage of 3.5 V at the SHoyr node, the
operational amplifier produces IN = 5 V, and prompts the control logic to try a slightly

434 7 System Peripherals

Step Size = 5/2* = 0.3125V

C[3] C[2] C[1] CI[0] Down-Round (V) Up-Round (V)

0 0 0 0 0.0000 0.3125
0 0 0 1 0.3125 0.6250
0 0 1 0 0.6250 0.9375
0 0 1 1 0.9375 1.2500
0 1 0 0 1.2500 1.5625
0 1 0 1 1.5625 1.8750
0 1 1 0 1.8750 2.1875
0 1 1 1 2.1875 2.5000
1 0 0 0 2.5000 2.8125
1 0 0 1 2.8125 3.1250
1 0 1 0 3.1250 3.4375
1 0 1 1 3.4375 3.7500
1 1 0 0 3.7500 4.0625
1 1 0 1 4.0625 4.3750
1 1 1 0 4.3750 4.6875
1 1 1 1 4.6875 5.0000

Analog Input = 3.5V with Down-Rounding Mechanism START with (5.0/2) = 2.5
Step C[3] C[2] C[1] C[0] DACout(V) Control Logic In

1 1 0 0 O 2.5000 3.5 > 2.5000

Thus try 2.5 + (2.5/2) = 3.75
2 1 1 0 0 3.7500 3.5 < 3.7500

Thus try 2.5 + (2.5/4) = 3.125
3 1 0 1 0 3.1250 3.5>3.1250

Thus try 2.5 + (2.5/4) + (2.5/8) = 3.4375

4 1 0 1 1 3.4375 3.5>3.4375
Stop at 3.4375 since there is no resolution under (2.5/8)

Final output with quantization error of 0.3125V

Analog Input = 3.5V with Up-Rounding Mechanism START with (5.0/2) = 2.8125
Step C[3] C[2] C[1] C[0] DACourt(V) Control Logic In

1 1 0 0 O 2.8125 3.5>2.8125
Thus try 2.8125 + (2.5/2) = 4.0625
2 1 1 0 o0 4.0625 3.5 <4.0625

Thus try 2.8125 + (2.5/4) = 3.4375

3 1 0 1 0 3.4375 3.5>3.4375
Stop at 3.4375 since there is no resolution under (2.5/8)

Final output with quantization error of 0.3125V

Fig. 7.50 Four-bit successive approximation ADC truth table describing down-rounding
and up-rounding approximation techniques

7.7 Data Converters 435

higher digital output. As a result, the control logic produces C[3:0] = 1100 as its first trial,
which is equivalent to a midway point between C[3:0] = 1000 and 1111. DACqoyt becomes
2.5 + (2.5/2) = 3.75 V. But, this new voltage is larger than SHoyr = 3.5 V, and the oper-
ational amplifier produces IN = O V in return. The drop at the IN node is an indication to the
control logic that its initial attempt of C[3:0] = 1100 was too large, and it must lower its
output. This time, the control logic tries C[3:0] = 1010, which is between C[3:0] = 1000 and
1100, and produces a DAC output, DACoyt = 2.5 + (2.5/4) = 3.125 V. This value, in turn,
generates IN = 5 V, and prompts the control logic to try a slightly higher output between
C[3:0] = 1010 and 1100. In the third round, the control logic produces C[3:0] = 1011.
DACoyut node becomes 2.5 + (2.5/4) + (2.5/8) = 3.4375 V and generates IN = 5 V. This
new input suggests that the control logic should try a slightly higher output in the next round,
producing 2.5 + (2.5/4) + (2.5/8) + (2.5/16) = 3.5937 V at DACoyt. However, 2.5/8 =
0.3125 V is the resolution limit for this four-bit ADC, and as a result, the controller stalls at
C[3:0] = 1011, revealing DACoyt = 3.4375 V. This voltage differs from SHoyt =3.5 V
by only 0.0625 V.

The second example in Fig. 7.50 explains the successive approximation technique if the
up-rounding scheme is employed. The conversion again starts at C[3:0] = 1000, but with an
incremented value of 2.5 + 0.3125 = 2.8125 V atthe DAC output. Since this voltage is below
SHout = 3.5 V,INnode becomes 5 V and prompts the control logic to produce a larger digital
output. The control logic responds to this with a digital output of C[3:0] = 1100, which
corresponds to 2.8125 + (2.5/2) =4.0625 V at the DACqyt node. As aresult, IN node becomes
0 V, and forces the control logic to lower its digital output. This time, the control logic tries
C[3:0] = 1010 which is equivalent to 2.8125 + (2.5/4) = 3.4375 at the DACqyt node. Due to
the resolution limit of this four-bit ADC, this step also becomes the end of successive
approximation.

The control circuit of the four-bit ADC with down-rounding scheme is shown in Fig. 7.51.
In this figure, the approximation process starts at the midpoint, C[3:0] = 1000, corresponding
to DACout = 2.5 V according to the table in Fig. 7.50. When the external reset is removed,
and the difference between SHoyt and DACqyt (Av) is found to be greater than the 0.3125 V
step size, the control logic either goes to the state 1.25 and produces C[3:0] = 0100 (equivalent
to 1.25 V), or to the state 3.75 and produces C[3:0] = 1100 (equivalent to 3.75 V) in the first
step of the successive approximation. This decision depends on the value of the control logic
input, IN. If IN = 0, which translates to the analog input to be less than 2.5 V, the next state
becomes the state 1.25. However, if IN = 1, the analog input is considered to be greater than
2.5 V, and the next state becomes the state 3.75. If Av is less than 0.3125 V, on the other
hand, the control logic cannot proceed further due to its resolution limit, and moves to the

436

7 System Peripherals

IN=1, Av>0.3125

Reset =1

J

<

NE
=0

Reset = 1
\Z

0
0, Av>0.3125

Reset
IN

GZLE0 > AV ‘0 =19s9y

\ 4
L o o
Reset

1

\

DONE =1

Fig. 7.51 Four-bit successive approximation control circuit

7.7 Data Converters 437

state DONE. In the second step of successive approximation, the state 1.25 either transitions
to the state 0.625 or to the state 1.875, depending on the value at the IN node. Similar
transitions take place from the state 3.75 to either the state 3.125 or the state 4.375, again
depending on the value of the IN node. After this point, the state machine performs one last
approximation to estimate the value of analog input voltage, and reaches the DONE state with
an output value as shown in Fig. 7.51.

7.8 Digital-to-Analog Converter (DAC)

The most common DAC utilizes the weighted summation method of digital inputs. A
three-bit DAC with a weighted binary adder is shown in Fig. 7.52 as an example.

2R R
IN2] ——A\—— A

R

4R l\/

IN[1] A = R
ADD

8R + out —— OUT

INjo) —A\——
+
I _
Weighted Binary Adder Analog Inverter with Unity Gain

Fig. 7.52 Three-bit DAC schematic with weighted binary adder

This circuit is composed of two parts. The first part adds all three binary input bits, IN[2]
(the most significant bit), IN[1] and IN[O] (the least significant bit), and produces an output,
ADDgyr = — (0.5 IN[2] + 0.25 IN[1] + 0.125 IN[O]) according to the equation in
Fig. 7.53. The second part is an analog inverter which forms OUT = — ADDgyr.

Therefore, the circuit in Fig. 7.52 generates OUT = 0.5 IN[2] + 0.25 IN[1] + 0.125 IN[0],
where each binary value at IN[2:0] input is multiplied by the coefficients, 27*, 272 and 277,
before they are added to produce an output. For example, the combination of IN[2] = 1,
IN[1] = 0 and IN[O] = 1, with +5 V and 0 V logic levels generates OUT = 2.5 + 0.625 =
3.125 V. All the other analog outputs in Fig. 7.53 can be generated using the equation in this
figure with a maximum error of 0.625 V.

438

R R R
ADDout = — — IN[2] — — IN[1]- — IN[0]
2R 4R 8R
= - 0.5 IN[2] - 0.25 IN[1]- 0.125 IN[0]

OUT = - ADDour = 0.5 IN[2] +0.25 IN[1] + 0.125 IN[0]

IN[2] IN[1] IN[0O] OUT(V)

0 0 0 0.000
0 0 1 0.625
0 1 0 1.250
0 1 1 1.875
1 0 0 2.500
1 0 1 3.125
1 1 0 3.750
1 1 1 4.375
Example:

IN[2] =1, IN[1] = O, IN[O] = 1with +5V/0V logic levels
ADDoyt=—2.5-0-0.625 =— 3.125V
OUT =+ 3.125V with 0.625V quantization error

Fig. 7.53 Three-bit DAC operation with weighted binary adder

7 System Peripherals

7.8 Digital-to-Analog Converter (DAC) 439

Review Questions

1.

A DMA controller transfers four words of data, D1, D2, D3 and D4, from SRAM 1
(source memory) to SRAM 2 (destination memory) on a 32-bit wide bidirectional bus
as shown below. D1, D2, D3 and D4 are fetched from addresses, AS1, AS2, AS3 and
AS4, in the source memory and placed at the AD1, AD2, AD3 and AD4 addresses in
the destination memory, respectively. Since each SRAM memory has a single 1/O port,
address and data cannot be transferred in the same clock cycle. Therefore, for the read
operation, data becomes available at the SRAM I/O port a cycle after a valid address is
presented. For the write operation, data has to be present at the SRAM port a cycle after
the valid address. The active-high RE and WE signals enable the SRAM for read or
write operations when a valid address is available.

The DMA controller has two programming ports to program the initial address and the
incremented address values. It uses ProgAddrS and ProglncrS control inputs to ini-
tialize and increment the source address, and the ProgAddrD and ProglncrD inputs to
initialize and increment the destination memory address. The active-high StartS pro-
duces the first address at AddrOutS. The IncrS input increments addresses based on the
initial address. Similarly, the StartD input produces the first address at the AddrOutD
port, and the IncrD increments addresses based on the initial address.

The Capturel and Capture2 inputs capture data from the bus temporarily and store it in
the Bufl and Buf2 data buffers, respectively. All active-high enable inputs enable the
tri-state buffers when they are at logic 1. Otherwise, there will be no connection
between the address pointers and the bus or between the memories and the bus.

32 32

|
|
] |
5 2 31 o 31 0
2 S 0 2 !
g 8 ©t s 1
g & £ o |
ProgInS AddrOuts !
Addr PointS 1 SRAM1 SRAM2
|
% a : [— WE1 [— WE2
o o
2 £ o % | AD1 l— RE1 AD2 [RE2
o < S]
a a £ n |
|
|
|

EnDIn1 —/\ EnDOut1 EnAddrt EnDIn2—7/'\ EnDOut2 EnAddr2

/— Enadars

Capture1 Capture2

32

440 7 System Peripherals

(a) Draw the schematic for the source and destination address pointers.
(b) Form a timing diagram to transfer four words of data from SRAMI1 to SRAM?2.

2. The waveforms shown below are generated by two different timers.

(a) A rate generating timer produces an active-high pulse in every 128 cycles as shown
below. Design this timer and draw its schematic.

o I 1 1 2 1 3 | [[[[I 1251 126 1 1271 o | 1

(b) A one-shot timer produces a continuous pulse 100 cycles after the start signal as
shown below. Design this timer and draw its schematic.

| l 98 | 99 | 100! 101 | 102

|

S I T Y
__1L

|

|

I

|

|

I
I
-l __
I
I
f
I
I

3. An interrupt controller managing four hardware interrupts is connected to a 16-bit CPU,
which consists of a 16-bit wide instruction memory, Imem, a data memory, Dmem, a
program counter for the Imem, PC, a program counter for the data memory, DC, the
data registers A and B, and a controller. This schematic is shown below.

The interrupt protocol in this schematic is as follows:

Step 1: The active-high interrupt, INTR, is generated by the interrupt controller to
inform the CPU about the presence of an interrupt. The interrupt controller
must have a request from an external device with an interrupt ID before
generating INTR.

Step 2: The CPU acknowledges receiving an INTR with an active-high interrupt
acknowledge, INTA.

7.8 Digital-to-Analog Converter (DAC) 441
REDC IncDC WEDC
DC Addr
DC
A 16
Din
Dmem -t
16
REDmem —{
WEDmem —p» sel port0
v VAT -
DOut
OEIC
REPC IncPC WEPC + 16
+ -—< Int IDO
PC Addr | A | B | <— Req0
PC 16
A 16 l—< Int D1
DIn/Out — Req1
Imem Int ID 16
lg—4 Int D2
[-4— Req2
REImem —p» Interrupt 16
Controller -4 |nt D3
WEImem n
> €«— Req3
A
L 4
16
INTA
CPU Controller INTR

Step 3: The interrupt controller produces an interrupt ID on the 16-bit bi-directional

data bus.

Step 4: The interrupt ID is loaded to the PC to access the interrupt service routine
(ISR) address.

Step 5: The ISR address is loaded to the PC.

Step 6: One of the four interrupt service instructions is fetched from the instruction
memory for a particular interrupt. The steps are as follows:

442 7 System Peripherals

Step 6a: The first interrupt instruction specifies the data memory address to
be loaded to the DC.

Step 6b: The second instruction contains the value of A to be loaded to the
A register.

Step 6¢: The third instruction contains the value of B to be loaded to the B
register.

Step 6d: The fourth instruction provides either the contents of the A register
or the contents of B register or the added results of both registers to
be loaded to the data memory at a DC address. This value will later
be used in the program (the related hardware is not shown in the
schematic above).

Step 7: When the four-cycle interrupt service is complete, the CPU lowers its INTA
signal. In response, the interrupt controller lowers its INTR signal a cycle after
the INTA input transitions to logic 0, and waits for the next interrupt.

Note: Imem or Dmem have SRAM configurations. Storing data at a valid address is
achieved by WE = 1 within the same clock cycle. Reading data from a memory address is
achieved by RE = 1 with a latency of two clock cycles (data is not read at the beginning of
the next clock cycle, but the one after next).

(a) If the priority scheme in the interrupt controller is such that device O has the highest
priority and device 3 has the lowest priority, design this controller with the 1/O port
description shown on the schematic. Note that this controller can support only
hardware interrupts.

(b) Show a timing diagram outlining the complete interrupt service from step 1 to step 7
above.

(¢) Show the state diagram of the controller, including all the inputs to operate the
instruction and data memories, registers etc.

4. A display unit works on a unidirectional bus that transmits 24-bit video pixels. Each pixel
is comprised of eight-bit wide R, G and B components which occupy the least significant
three bytes of the write-data bus (the most significant byte is always 0x00). The write-bus
fills a video buffer at a frequency of 2f. Similarly, the frequency of fetching data from a
buffer to fill a video frame is f (buffer emptying rate). Assume the horizontal and the
vertical blanking sections of the video frame are both zero.

The display unit is the highest priority peripheral on the bus because of the fact that it
requires a minimum rate of 30 frames/sec to process and display data. However, other

7.8 Digital-to-Analog Converter (DAC) 443

peripherals in the system also use the same bus in order to send or receive data between
video bursts.

Each timing diagram below contains three vital entries for a frame buffer. The top row
indicates the ID number of a flag associated with an empty buffer. The middle row
indicates the ID number of an empty buffer. The bottom row shows the ID number of a
full buffer. The flag is a direct input to the CPU, and points out which buffer in the
display unit needs to be filled. Note that all buffers are considered full before data
transactions start. Each square in the timing diagram corresponds to filling or emptying
an entire buffer. Since filling a buffer takes half the time of emptying it, the number of
squares doubles at the bottom row relative to the middle row.

Suppose you have the flexibility of using a two buffer, a three buffer or a four buffer
system in the video unit. The key consideration in this design is to have enough frame
buffers in the system so that a continuous stream of data can be supplied to the display
unit while other peripherals use the bus.

Once full, define the length of the data burst from each buffer in the timing tables below.
Mark each entry with buffer numbers, and use the letters E or F to indicate whether each
buffer is empty or full, respectively. The video unit empties buffers in the following
order. In a two-buffer system, buffer 1 empties first, buffer 2 empties second. In a
three-buffer system, buffer 1 empties first, buffer 2 second, and buffer 3 third. In a
four-buffer system, buffer 1 empties first, buffer 2 second, buffer 3 third, and buffer 4
fourth. Indicate the flag number for each empty buffer inside the circle.

2. Buffer system:

Flaghol () O O O O O O O O O O O O O O O

Empy No

FutNol [[J [T TP T T T TP TITITITTITITITTT]

Time

3. Buffer system:

FlagNol () OO O O O O O O O O O O O O O O

Empy No

FultNol | [[T T T T TTITTTTITTITTITTITT I TTTTT]

Time

4. Buffer system:

FlagNol| () O O O O O O O O O O O O O O O

Empy No

FulNol [[[T [T P TP T T I T TTIT I I TTITITITTT]

Time

444

7 System Peripherals

5. A three-bit successive approximation ADC is given below. A Sample-Hold circuit (S/H)

clock

Reset _'—|

Cl2

DACour

samples varying analog voltages at the Analog Input port in periodic time intervals and

directs them to the operational amplifier.

+Voc =5V

Reset

v

Control
Logic

C[2:0]

3

-Voc =0V

DACour

y SHout

S/H

Analog Input

DAC

At Reset C[2:0] =100

Use the empty timing diagram below and fill the blanks for Analog Input = 0.5 V with

down-rounding mechanism.

:0]

7.8 Digital-to-Analog Converter (DAC) 445

6. A three-bit ramp ADC below operates with +Vce =3 V and —Vec = 0 V. This ADC is
designed to take any analog input between 0 V and 3 V.

Reset

v

P 3-bit counter

INCR

(a)

(b)
(©)

(d

COUNToy7[2:0]

3
+VCC =5V
SH
+ OU'i'
_VCC =0V S/H
Analog Input

Assume that the DAC has an up-rounding scheme to generate analog outputs from
digital inputs. Apply 1.2 V to the Analog Input port, and draw the timing diagram that
contains the clock, Reset, counter output (COUNTgyt), DAC output (DACoyr) and
operational amplifier output (INCR). Show what happens to the timing diagram when
the active-high Reset signal transitions to logic 1 after the ADC produces the desired
digital output.

Assume that the rounding scheme has changed from up-rounding to down rounding.
Assume that the DAC rounding scheme is changed from up-rounding to
down-rounding scheme. Apply 1.2 V to the Analog Input and generate the timing
diagram with the input and output signals listed above. Show what happens to the
timing diagram when the Reset signal transitions to logic 1 after the ADC produces
the desired digital output. Do you see any issues with the operation of this circuit?
Now apply 2.9 V to the Analog Input port and generate the timing diagram with the
input and output signals listed above. Do you see any issues in the operation of this
circuit?

446 7 System Peripherals

7. The following circuit shows the block diagram of a simple transmitter-receiver. The
transmission protocol starts with the transmitter sending the request signal, Req, to the
receiver. The receiver acknowledges the request by producing an acknowledgement
signal, Ack, and starts reading data from the transmitter at the next positive edge of the
clock following the Ack signal. Once the data transmission ends, the transmitter keeps
sending the last data packet on the Data bus.

Req o
Ack
Transmitter <1 Receiver
Data
A -
| 32 |
clockTx clockRx

(a) Assume the transmitter sends out three consecutive data packets, DO, D1, D2.
Complete the timing diagram below for the Ack and Data signals. Show which data
the receiver actually receives.

clockTx

clockRx

Req |

Ack

Data

(b) In this case, the transmitter sends out three consecutive data packets, DO, D1, D2,
again, but uses a slower clock. Complete the timing diagram below for the Ack and
Data signals, and show which data the receiver acquires.

Ack

Data

7.8 Digital-to-Analog Converter (DAC) 447

8. A black-and-white display supports 256 shades of gray, ranging from white to black. The
physical display frame has 100 pixels in the x-direction and 100 lines in the y-direction,
and it requires a frame rate of 100 frames/sec. The display needs no horizontal or vertical
blanking pixels to synch with the display adaptor. The clock frequency of the display
adaptor is set to 1 MHz. The display adaptor is connected to an eight-bit wide high-speed
bus operating at 10 MHz to receive data. Once the adaptor recognizes that one of its
buffers is empty, it immediately sends a request signal to the bus arbiter to own the bus.
The acknowledgement from the bus arbiter requires 18 ms delay due to heavy bus traffic.
Once the acknowledgment is received, the display adaptor fills all of its buffers. Each
buffer contains exact number of pixels to fill only one frame.

(a) With the timing specs defined above, determine the number of buffers that need to be
used in this system. Draw a timing table that shows how these buffers are periodically
emptied and filled following an 18 ms bus waiting period. Note that this is not a
timing diagram that includes the frame clock, bus clock or propagation of data.

(b) Draw an architectural data-path of the display adaptor including the buffers, the
gray-scale frame and the related hardware (counters, multiplexers, controller etc.).
Make sure to generate all the internal I/O signals of the controller to operate the
arbiter and maintain the proper data flow in the display adaptor.

9. A display adaptor has an overlay feature where an overlay image is mapped over the

active image as long as the overlay image area is smaller than the active image area. The
system neither requires any blanking space nor needs a dual buffering scheme.
Assume the pixels in the image and overlay buffers are not separated into RGB com-
ponents, but rather integrated into single pixels when they are taken out of these buffers to
feed the frame. There is a certain synchronization mechanism between the image and the
overlay address counters, and also between the pixel and line counters. As soon as a pixel
is fetched from the image or overlay buffer, it is placed in the display frame with the aid
of the pixel and the line counter.
There are no write-enable controls for the buffers as these buffers will not be replenished
with new pixels once exhausted. The image is displayed only once. The read-enables for
both buffers are also kept at logic 1 until the buffers are empty. Therefore, the only
mechanism that aids the pixels out of these buffers and moves them to the display frame
is incrementing the address counters and switching the selector inputs at the 2-1 buffer
MUX. After removing the external reset, the operation of the display unit starts as shown
in the timing diagram.

448 7 System Peripherals

23 0 23 0
<€—| AddrOL

Addrimage

gleYell]
1383y

Overlay

13S3d

Image

Datalmage DataOL

24 24

\I 0/4— sellmage, selOL

IncrPix ResetPix

IncrLine RESET RESET 24
\ 4
4 ’
YOF
«—— XOF T

Overlay YOL

Vol

h—-XOL-—>

Image

449

7.8 Digital-to-Analog Converter (DAC)

710 Jeye aul| 70 si0jeq 10 a1048q
sbew jse aull 70 1se aull 70 st aul| sbewl p,z aul| abeuwl 5|
_ L o __ _ o 05Ul
Lol Lol Lol
:.:._.z_ ________ e
Lo N _
A N
_"“" “""____"" NI1osoy
_ Lol Lol __ _ Lol
" e _ . _ . _ — .. _ .. _ — . _ . ._. .« X_n_;_QC_
o N T O B B
oy N T T T B
____ ________ +ois
_ Lo Lo _ _ Lo
L S A | S S Lo
| | i | | | i | | | | abew||as
_ Lol Lol _ _ Lol
L1 L1 L1
ceee € junoaur]
I [T L R T B [T T Y T B
Lo L I I
_ _..__ _ ceee .._H_H_.._H_H_.. eeee B] [8[72] [0S]--[7 Junooxid
| | | | | | ATO# mc__ 10 | | | | L# eul| |_O | |
1 1 1 1 1 1 | | | 1 1 1 1 | | 1 1
co e 9 _m_ _w_ co e c _N _ _ Joeleq
| | | | | | | 1 [| | | | | | [| | |
(R R T T T B B Lo I
9 [e] [+] € | | 104PPY
I I T T T 1 T T 1 I
(I N N T T T B B Lol I
[T |]« o 0L ceee[6] edecboclecdochedec[gecee 2] odeehe cdeckede 9 abew|ejeq
T [T T T B I I
(R N T T T T B B Lol (R
]I o] o[T8 +dvcbeocloodeoclodee[Blee [TZ] cdeobeoloodoclede- obewppy
Lol P Lo I
L0 [I e L1 L1
T T r T T 1353
(R N T T T T B B lon R
(R N T T T T B B Lol (R
300|2

450 7 System Peripherals

(a) Build the register file. Indicate the programmable values in each register to support
the operation of this unit.

(b) Fill in each blank space that corresponds to the numbers in the timing diagram (if
there are no numbers, ignore the entries), and complete the control signals, sellmage
(to select the image buffer), selOL (to select the overlay buffer), IncrPix (to increment
the pixel counter), ResetPix (to reset the pixel counter to 0), IncrLine (to increment
the line counter) and IncrOL (to increment the overlay counter).
Use the following notation to represent the data when retrieving them from the data
buffers:
For the Image buffer, Data = IM [Image Buffer Address]
For the Overlay buffer, Data = OL [OL Buffer Address]

10. An interrupt controller interfaced with a three-stage RISC CPU is shown below. Once
an external interrupt (INTRO to INTR15) is generated, the interrupt interface selects the
highest priority interrupt and generates a single interrupt (INTR) bit for the Interrupt
Control Unit (ICU). The ICU acknowledges the interrupt with an interrupt acknowledge
signal (INTA), which prompts the interface to send a four-bit interrupt ID (INTRID) to
the Interrupt Address Table (IAT). A 32-bit interrupt address is then produced from the
IAT which causes the program counter (PC) to jump and execute an Interrupt Service
Routine (ISR) program in the instruction memory. Before the ISR is executed, the
remains of the original program in the CPU pipeline have to be to be executed and
stored in the register file (RF). Also, the address of the next instruction in the user
program is stored in R31 in the RF. Upon the completion of a particular ISR, the
program returns to its original location by retrieving the address stored in R31 and
executes the rest of the user program.

In this particular case, INTRO = 1, as the highest priority interrupt, prompts the interrupt
interface to generate INTRID = 0. This is the beginning of a four instruction long ISRO
cycle that starts at the address 100 as shown in the instruction memory.

Assuming there are a total of seven instructions in the user program, each instruction
written back to the RF is labeled as WUi. For example, the results of Insl are written
back to the RF as WU, the results of Ins2 as WU2 etc. as shown in the timing diagram.
Similarly, each ISR instruction written back to the RF is labeled as WIi. For example,
the results of Intrl are written back to the RF as WI1, the results of Intr2 as WI2 etc.
Also, once the PC generates a value, each instruction produces an RF output as DUi.
For example, Insl produces DUI1, Ins2 produces DU2 etc. Similarly, each interrupt
instruction produces an RF output as DIi. For example, Intrl produces DI1, Intr2
produces DI2 etc.

Based on the inputs in the preceding paragraphs, fill the blanks in the timing diagram
below, and indicate when each write takes place to the RF with a little arrow.

451

7.8 Digital-to-Analog Converter (DAC)

Ao
M_w Aiows|\ uononasu
Ley :
_ €0l 134
[Y \o _\AI_ (0¥sI)
f Odies Leyies ot €aul 0 3unoy
5 BIINIB!
to BN Uy | 2 Lol Al ae,aﬁw_
c 00k Ly
§ [
Sl
3
L n s S gsu|
euoeo-a 1 44 m_m wesboud | ¥ ysu|
v 1esn -
0198 8sjo | (98 QYO = OdO 4l € €sul
44n0a z Zsu|
| Lsuj
0 1e 0 Ie o 0 Ie
2 8
5 A8 8 8 3
W = = 5 =
o =32 ® 0 (avn
+ + + + + + a|qe] ssaippy 1dnueyu|
SLYINI — = 0
5 | VN 1un o)
2 1dnusu)
(= >
= HLNI o
=)
: u
. oy >
LHLINE —— 3 v QIYLNI 1IVulY zs 1vhnoa
OHLNI —] o
0 33

Hles

l1es
Sies
Dles

452 7 System Peripherals

|1|2|3|4|5|6|7|8|9|10|11|12|13|14|15|16|17|18|19|20|21:

DOutRF

(XouiX X X X X X X XX X X X X X X X X X X

selS

11. Design an SPI (see Chapter 4 on serial bus) interface using an integrated transmitter

and receiver shown below. The eight-bit Shift Register at the interface transmits one-bit
data from the SDO port at the negative edge of SCK, and simultaneously receives
one-bit data from the SDI port at the following positive edge. The transmit data is first
loaded to the SPI Register using an eight-bit system bus. Subsequently, the contents of
the SPI Register are loaded to the Tx Buffer if the buffer is empty and then to the Shift
Register when it requires new data. In a similar fashion, when the Shift Register
acquires new eight new bits through its SDI port, it transfers its contents to Rx Buffer
first and then to the SPI Register. When the transmit function is desired, the received
data is considered junk data. When the receive function is desired, the transmit data is,
in turn, assumed junk. The two flags, TxF and RxF, update the SPI status register and
indicate if the TxBuffer and the RxBuffer are empty or not.
Design the SPI data-path and the controller using timing diagrams. The SCK applied to
the shift register is assumed to be a slower clock, and it has a period of eight system
clock periods. The designer should feel free to alter the design and add additional
hardware or signals when necessary to conclude a different implementation.

http://dx.doi.org/10.1007/978-3-319-25811-9_4

7.8 Digital-to-Analog Converter (DAC)

453
LoadSR
S
SDO -w— Shift Register —— SDI
PN
'
Shift SCK
7 Y 0 7 0
Rx Buffer Tx Buffer
yaN
f | ? A |
clock clock
LoadRxBuf LoadTxBuf
7Y 0
SPI Register
A |
LoadSPIReg clock
System bus
8
- 5
w L 3 72 X
3 < o w L
L= L X g 2 6 % — w e T
2T F © s T T o £ < = % =
L n — n ® ® (o] (o] k= = = [[0 ¥ @
¢ H 8 88 S5 & & T O D O
RN NN S Iy
Controller TxF (— TxEmpty RxF —#» RxEmpty
[| [
clock clock clock
Projects

1. Implement and verify the DMA in Fig. 7.7 that supports two identical 32x64 SRAM
memories using Verilog. The DMA should produce a timing diagram similar to the one
shown in Fig. 7.6 and include a controller in Fig. 7.8.

2. Implement and verify the interrupt controller in Fig. 7.15 that supports 256 hardware
interrupts using Verilog. Include the hardware for context switching, i.e. transferring the
contents of the entire register file to a temporary buffer prior to executing interrupt service
routine instructions.

3. Implement the one-shot timer in Fig. 7.24 using Verilog. Produce its timing diagram as
shown in Fig. 7.25.

454 7 System Peripherals

4. Implement the rate generator in Fig. 7.26 using Verilog. Produce its timing diagram as
shown in Fig. 7.27.

5. Implement and verify the display adaptor unit in Fig. 7.34 that supports a screen with
eight pixels, two blanking lines and nine active image lines as shown in Fig. 7.35.

References

1. Microchip Technologies, dsPIC33FJ128MCX02/X04 datasheet, Timerl, pp 195-204
2. Philips TM1000 PCI media processor preliminary data book (1997) Chapter 7, pp 1-19

This chapter introduces two core topics that may be part of a computing system. The first
topic is a brief introduction to programmable logic. The second topic is the analysis of a
basic data-driven processor that operates with arrival of new data.

When it comes to prototyping an application-specific digital block, the first thing that
comes to mind is the Field-Programmable-Gate-Array (FPGA) platform. This platform is
flexible enough to implement any combinatorial, sequential or asynchronous logic with ease.
Using programmable logic, we can create mega cells such as ALU blocks or simple
memories, logic blocks that perform specific functions, processors, even a System on Chip
(SoC) platform using a Hardware Design Language (HDL).

The second topic in this chapter describes a data-driven architecture that works with a
cluster of simple processors. Each processor in the cluster is designed to carry out specific
task(s), and each becomes active when valid data arrives from a neighboring processor. In a
data-driven system, either an individual processor carries out a specific task and transfers the
result to the next processor or every processor in the cluster simultaneously execute many
different tasks all at once to produce a single result.

8.1 Field-Programmable-Gate Array

The basic idea behind the Field-Programmable-Gate-Array (FPGA) architecture is the use of
Look-Up-Tables (LUT) [1, 2]. A typical three-input LUT in Fig. 8.1 contains eight registers
to store bits, an 8-1 MUX to select one of the eight register outputs, and a flip-flop at the
output of the 8-1 MUX to implement sequential logic. The programming phase consists of
serially distributing the desired bit values to all eight registers through the Progln port when
the Prog input is set to logic 1. This is achieved by using all eight LUT registers in a shift
register configuration, and shifting an eight-bit data from Bit[0] to Bit[7] at each positive
edge of the clock. The bottom register at the Bit[7] position has another output, ProgOut,

© Springer International Publishing Switzerland 2017 455
A. Bindal, Fundamentals of Computer Architecture and Design,
DOI 10.1007/978-3-319-25811-9_8

456 8 Special Topics

Progln (serial truth table entry port)

o
=
o

«Q

N

Bit[0]

(=]

o
=
o

«Q

||
\
lw)
s)

Bit[1]

Y
=
o
«Q

||
\o _‘h_
o
2
N

Bit[2]

Prog

Bit[3]

\O_r—‘/<~

[=]
0
w

o

<

Ee]

Q

7]

7]

T
clock 1
Frog [>o— LUTOut

Bit[4]

|
\o -/&
[S]
0
N
Q (@]
1<)
Lo
o

Prog
- .
b a Bit[5] 5
_lo I
clock
Prog
! Bit[6]
D Q 6
_lo |
clock
Prog

Bit[7]

|
\O_‘_A/*
lw)
T o
) ~
AY
»

LUTIN2] -»

clock

ProgOut

LUTIN[1]
LUTIN[O]

Fig. 8.1 Three-input look-up-table (LUT) block diagram

8.1 Field-Programmable-Gate Array 457

connected to the ProgIn input of another LUT such that every LUT on the FPGA chip can be
serially programmed using a single wire to save wiring space.

In normal operation, bits stored in the LUT registers constitute the output values of the truth
table in Table 8.1. The inputs of the truth table, on the other hand, are the selectors of the 8-1
MUX, from LUTIn[0] to LUTIn[2], in Fig. 8.1. Therefore, any arbitrary truth table can be
produced simply by programming the LUT registers, needing no other conventional logic gate.
For example, when LUTIn[2] = LUTIn[1] = LUTIn[0] = 0 in Fig. 8.1, the 8-1 MUX routes
the value stored in Bit[0] to its output. Similarly, LUTIn[2] = LUTIn[1] = LUTIn[0] = 1
combination routes Bit[7] to the output. The 2-1 MUX is used to bypass the flip-flop outputifa
combinational logic implementation is preferred.

The number of registers in a LUT is determined by the number of outputs in the truth
table. For example, if there are three inputs in the truth table, this combination generates
2° = 8 possible outputs. Therefore, the LUT must contain eight registers. In general, N
inputs require 2" registers in a LUT.

In summary, in order to implement a logic function using FPGA, the inputs of a logic
function (truth table) must be applied to the MUX selectors, and the outputs must be stored
in the LUT registers according to Table 8.1.

To demonstrate how a combinational logic block is implemented in an FPGA platform,
we will design a four-bit Ripple-Carry-Adder (RCA) as shown in Fig. 8.2. The circuit
consists of four full adders all connected serially to propagate the carry bit from right to left.
The sum outputs, from SUMO to SUM3, and the carry-out ports, from Cout0 to Cout3, have
to be generated by programming in the LUT registers.

Figure 8.3 describes how a full adder sum output is stored in a three-input LUT. This
process is the same to generate each sum output, from SUMO to SUM3. In this figure, the
LUT output value at the first row (logic 0) is stored in the Bit[0] position, and the last output
entry at the last row (logic 1) is stored in the Bit[7] position. This bit arrangement in the LUT

Table 8.1 Three-input LUT truth table (when bypass port is set to 1)

LUTIn[2] LUTIN[1] LUTIn[O] | LUTOut
0 0 0 Bit[0]
0 0 1 Bit[1]
0 1 0 Bit[2]
0 1 1 Bit[3]
1 0 0 Bit[4]
1 0 1 Bit[5]
1 1 0 Bit[6]
1 1 1 Bit[7]

458 8 Special Topics

A3 B3 A2 B2 A1 B1 A0 BO

Cout3 +———| FA3 |«20ut2

~_ Cout1 __Cout0

FA2 FA1 FAO |«— Cin0

v ! ! !

SUM3 SUM2 SUM1 SUMO

SUMO0 = A0®@B0@® Cin0
SUM1 =A1®B1@Cin1
SUM2 = A2®B2®Cin2
SUM3 = A3@B3@Cin3

Cout0 = A0.BO + CinO.
Cout1 = A1.B1 + Cin1.
Cout2 = A2.B2 + Cin2.
Cout3 = A3.B3 + Cin3.

AO + BO)
A1+ B1)
A2 + B2)
A3 + B3)

I -

Fig. 8.2 Four-bit ripple-carry-adder

registers implements the SUM function if Cin, A and B are applied to the 8-1 MUX as
selector inputs. The bypass input at the output 2-1 MUX must also be set to logic 1 to bypass
the flip-flop stage since this design is not a sequential circuit.

The Cout function of the full adder is implemented similarly as shown in Fig. 8.4. The
Cout function in the last column of the truth table is programmed in the LUT registers while
Cin, A and B are applied to the 8-1 MUX as selector inputs. The bypass bit is also set to
logic 1 to bypass the flip-flop since the implementation is purely combinational.

Figure 8.5 shows the FPGA implementation of the four-bit RCA in Fig. 8.2 after the
programming phase is complete. In this design, each FPGA cell, called a cluster, is assumed
to contain two LUTs. While A0, A1, A2, A3, BO, B1, B2, B3 and Cin0 are external input
pins for the four-bit RCA, Cinl, Cin2 and Cin3 inputs are all internally generated from
Cout0, Coutl and Cout2 function blocks, and routed between clusters to maintain inter-
connectivity. All the bypass inputs, from bypass-Cout0 to bypass-SUM3, have to be at logic
1 and stored in a separate LUT during programming phase.

8.1 Field-Programmable-Gate Array 459

LUTIn[2] = Cin LUTIn[1]=A LUTIn[O] =B LUTOut[0] = SUM

0 0 0 @

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

N/
Feed the truth table output into the LUT J
Progin
Bit[0] o\
; |Bitl1])
1 Bit[2] 9
bypass = 1
0 Bit[3] 3 1
{>o— LUTOUt[0] = SUM
* {>c D Q 0
Bit[4] 0
L 4 clock
0 Bit[5] 5
0 Bit[6] 6
;B .
A
* A
L LUTIn[O]=B
ProgOut LUTIN(1] = A
LUTIN[2] = Cin

Fig. 8.3 Programming the full adder SUM output with a three-input LUT

460 8 Special Topics

LUTIn[2] = Cin LUTIn[1] = A LUTIn[0] =B LUTOut[1] = Cout
0 0 0 /6\
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1
\
Feed the truth table output into the LUT)
Progin
o |Bito] o\
0 Bit[1] 1
0 Bit[2] 2
bypass = 1
1 Bit[3] 3 1
{>o— LUTOut1] = Cout
: So—d—p a2/
Bit[4] T
0 4 clock
1 Bit[5] 5
1 Bit[6] 6
1 Bit[7] 7
A
* i
— LUTIn[0] =B
ProgOut LUTIN[1] = A
LUTIn[2] = Cin

Fig. 8.4 Programming the full adder Cout output with a three-input LUT

8.1 Field-Programmable-Gate Array 461
T T T T T T TS o s o e o mmmm————o———————ommmmmmmmmm—m
|) bypass-Cout0 = 1) bypass-SUMO = 1 |
1 Bit[0] Bit[0] 1
| . . |

. 1 .

! = . Cout0 . !
1 2) 5 . Ssumo |
| & . D Q 0 n . D Q !
| 5 . 2 . |
1| 8 . . T [
] . clock . clock]
| Bit[7] Bit[7] |
| |
! 1 <) !
| |
| A0 B0 Cin0 A0 BO Cin0 |
L Cluster 0
'--------------bﬁa;s-Eo:n-:T---'---------------bﬁa:s-slrl\/lz---;
: Bit[0] Bit[0] |
[. : [
[} = . Coutt . |
| 2 . 5) Sum1 |
il -
| - . D Q . . D Q |
- oo| o !
| o) . . T]
| ° clock ° clock]
| Bit[7] Bit[7] |
|
: 1 A 7 A '
| |
| A1 B1 | Cint A1 B1 |Cint |
o Cluster 1
R e
| bypass-Cout2 = 1 bypass-SUM2 = 1 |
Bit[0] Bit[0] |
|
| . . |
| = Cout2 !
| 3 . 'é : SUM2 :
| gy . D Q 0] . D Q |
] 5 . (CJ\I) .
1| S| - I . I !
1 . clock . clock |
| Bit[7] Bit[7] |
|
: [§ }/A 3 |
| |
| A2 B2 |Cin2 A2 B2 | Cin2 |
g .. g g R ©7[1 (-1 -
r-------------ap;szc_oua:r -__--------------;yl;sz_s_uﬁszr_l
\ Bit[0] Bit[0] !
' . . '
|
| . . .

. Cout3 . |
R . 5| sums |
[. b a0 : . D Q |
: é T @ | |
] : clock : clock :
| Bit[7] Bit[7] |
| A
| i i |
| |
| A3 B3 |Cin3 A3 B3 |Cin3 :
|

Cluster 3

Fig. 8.5 Four-bit ripple-carry-adder data-path in FPGA

462 8 Special Topics

A commercial FPGA cluster contains a multitude of multiplexers connected to the LUT
inputs to accomplish the maximum flexibility in logic configuration [3]. Figure 8.6 shows
one such cluster configuration that contains two LUTs, each with three inputs. A cluster
configured this way is able to achieve maximum networking capability with other clusters in
addition to implementing many types of combinational and sequential logic circuits. Pro-
gramming these LUTs is achieved simply by connecting the ProgOut port of one LUT to the
Progln port of the neighboring LUT, and feeding the serial data from the Progln port as
shown in the figure.

Progln
N |
@ - LUTIN2
In1[2])
o—
o »{ LUTIn1 ¢ > Outfl]
In1[1] P
LUT 1
o— ™
[4 P LUTINO
In1[0] |~ T
bypass1
o—
[4 - LUTIN2
In0[2] P
o—
® - LUTIn1 ——@—» Out[0]
InO[1] P
LUTO
™
P LUTINO
In0[0] | T
bypass0 l
ProgOut

Fig. 8.6 A commercial FPGA cluster containing two LUTSs per cluster

8.1 Field-Programmable-Gate Array 463

The detailed schematic in Fig. 8.7 shows the FPGA implementation of Cluster O in
Fig. 8.5 but uses a commercial FPGA architecture in Fig. 8.6. Each 3-1 MUX selector input
from SelOutO[0] to SelOutl[5] is stored in a 12-bit shift register (LUT2) in Fig. 8.7.

Progin ProgOut
y bypass1 =1
Bit[0] \ " selout1 [5]
: = : 2
g : 1 % : g
- - (/J :
% » Out1 = SUMO 5 5
] D Q—} I o
= A 5 L =
S T SelOut1[5] =0 - |— SelOut0 [0]
3 clock SelOuto[5] = 0
Bit[7] A
/{ 21— =
mu Cin0] g
— o
=l
% 9 in1[2] = Cin0
a SelOut1[4] =0
SelOut0[4] = 0
21—
BO 1
I\O in1[1] = BO
SelOut1[3] =0
SelOut0[3] =0
2—e
c A0 1 =1
S o
g 0 in1[0] = A0 S
y bypass0 = 1 =
Bit[0] \ ‘@ |—» bypassi
- 8
R >
g ! 5
S o
8 - Out0 = Cout0 £
s o o 0 E — bypass0
S —
5 SelOut1[2] =0 ?
O clock SelOut0[2] = 0
Bit[7] =
/{ 2| E
LA Tcino &
bl 1
I\o in0[2] = Cin0
é’ SelOut1[1] =0
8 SelOuto[1] = 0
a
2l—e
BO 1
I\O in0[1] = BO
SelOut1[0] = 0
SelOut0[0] = 0
o
A0 1
I\o in0[0] = A0

Fig. 8.7 Implementing SUMO and CoutO using a single cluster containing two LUTs

464 8 Special Topics

In this figure, SelOutl[i] = 0 and SelOutO[i] = 1 combination selects port 1 of the
3-1IMUX where i changes from O to 5. Similarly, SelOutl[i] = 1 and SelOutO[i] = 0
combination selects port 2. When SelOutl1[i] = SelOutO[i] = 0, the default port O is selected,
and an external input becomes one of the selector inputs for the 8-1 LUT MUX. The bypass
pins, bypassO and bypassl, are also stored in a two-bit shift register (LUT3).

A Moore or Mealy type state machine can also be implemented using an FPGA platforms.
The state diagram in Fig. 8.8 produces the transition table in Table 8.2, which includes two
next state outputs, NSO and NS1, two present state inputs, PSO and PS1, an external input,
IN, and a present state output, OUT[2:0], to produce integer values between one and four.
For state assignments only one bit is allowed to change between neighboring states, i.e.
S0 =00, S1 =01, S2 = 11 and S3 = 10. The resultant circuit in Fig. 8.9 shows the locations
of the present and next states, the input and the output.

IN=0

IN=0 IN=0

ouT =4 ouT =2

Fig. 8.8 A Moore machine

Programming the NSO function in Table 8.2 in a three-input LUT configuration is
explained in Fig. 8.10. In this figure, the NSO column is distributed among eight LUT
registers, storing the first bit of NSO in a LUT register at the Bit[0] position, and the last bit
of NSO in a register at the Bit[7] position. The inputs, PSO, PS1 and IN, that generate NSO
are connected to the 8-1 MUX selector pins, LUTIn[0], LUTIn[1] and LUTIn[2], respec-
tively. Since the bypass input pin is set to logic 0, the NSO node becomes the input of the
flip-flop, and the PSO node becomes the output.

8.1 Field-Programmable-Gate Array

Table 8.2 The transition table for the Moore machine in Fig. 8.8

IN PS1 PSO NS1 NSO OUT[2] OUT[1] OUTI0]
0 0 0 0 0 0 0 1
0 0 1 0 1 0 1 0
0 1 0 1 0 1 0 0
0 1 1 1 1 0 1 1
1 0 0 0 1 0 0 1
1 0 1 1 1 0 1 0
1 1 0 0 1 1 0 0
1 1 1 1 0 0 1 1
NS1 b a PS1
T
clock
[
NSO D Q PSO
[
| 7.
clock
IN

’—[>°—D—> OUT[2]

» OUT[1]

4}D—> ouTI[0]

Fig. 8.9 The circuit diagram for the Moore machine in Fig. 8.8

465

466 8 Special Topics

IN PS1 PSO NSO
0 0 0 /0\
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

Feed the truth table output into the LUT

Progin
Bit[0] 0\
1 Bit[1] 1
Bit[2]
0 2 bypass =0
Bit[3] 1
! 3 PSO
* ——1 of——{ ¢
1 4 |
* clock
1 Bit[5] 5
1 Bit[6] 6
0 Bit[7] 7 ‘
4
* — LUTIn[0] = PSO
ProgOut LUTIn[1] = PS1
LUTIn[2] = IN

Fig. 8.10 Programming the PSO/NSO output with a three-input LUT

8.1 Field-Programmable-Gate Array

The NS1 functionality is implemented in a similar fashion as shown in Fig. 8.11. The
NS1 column in Table 8.2 is stored in the LUT registers. PSO, PS1 and IN inputs are
connected to LUTIn[0], LUTIn[1] and LUTIn[2] MUX selector pins, respectively. The
bypass pin is set to logic 0 in order to form NS1 node at the input of the flip-flop and PS1

node at the output.

IN PS1 PSO NS1
0 0 0 /0\
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

J

Feed the truth table output into the LUT

_

Erogln
o LBt 0\
v
o LB |
v
. B2 |,
v
. LB |,
* ——10 of——
- NS1 NS1 Lol PsT
o B |, |
clock
v
. LB | o
v
o LBl | ¢
v
Bit[7]
1 A
1
v L LUTIN[O] = PSO
ProgOut LUTIn[1] = PS1
LUTIn2] = IN

PS1

Fig. 8.11 Programming the PS1/NS1 output with a three-input LUT

468 8 Special Topics

The OUTI[0], OUT[1] and OUT[2] outputs are also programmed in the LUT registers
according to Table 8.2, and shown in Figs. 8.12, 8.13 and 8.14, respectively. However, the
bypass input in each case must be set to logic 1 in order to bypass the flip-flop stage since
these outputs are completely combinational and do not require any clock in their paths.

IN PS1 PSO OUTI[0]
0 0 0 /1\
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1
N
Feed the truth table output into the LUT)
ﬁrogln
, |Bito o\
0 Bit[1] 1
Bit[2]
0 2 bypass = 1
Bit[3] 1
! 3 OuUTI0]
* D Q 0
1 Bit[4] 4 OUT[0] OUTI0] |
* clock
0 Bit[5] 5
0 Bit[6] 6
Bit[7]
1 7 1
* A
— LUTIn[0] = PSO
ProgOut LUTIn[1] = PS1

LUTIn[2] = IN

Fig. 8.12 Programming the OUT[0] output with a three-input LUT

8.1 Field-Programmable-Gate Array

Feed the truth table output into the LUT

IN PS1 PSO OUT[1]
0 0 O /0\
o 0 1 1
o 1 o0 0
o 1 1 1
0 0 0
0o 1 1
10 0
11 1

bypass = 1

OUT[1]

Progin
Bl [T5~
v
1 Bit[1] 1
v
0 Bit[2] 2
v
1 Bit[3] 3
* D Q
0 Bit[4] 4 OuUT[1] OUT[1] ’|\
* | clock
1 Bit[5] 5
* .
0 Bit[6] 6
* .
1 Bit[7] 7 ‘

v

ProgOut

— LUTIn[0] = PSO

LUTIn[1] = PS1

LUTIn[2] = IN

Fig. 8.13 Programming the OUT[1] output with a three-input LUT

469

470 8 Special Topics

IN PS1 PSO OUTI[2]
0 0 0 /0\
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 \O/

Feed the truth table output into the LUT

Progin
o LBHOL [5
Y
0 Bit[1] 1
Y
Bit[2]
! 2 bypass =1
Y
Bit[3] 1
0 3 OUT[2]
* D Q 0
0 Bit[4] 4 OUT[2] OUT[2] ’|\
clock
* .
0 Bit[5] 5
* .
1 Bit[6] 6
* .
0 Bit[7] 7 ‘
* . L— LUTIN[0] = PSO
ProgOut LUTINn[1] = PS1

LUTIn2] = IN

Fig. 8.14 Programming the OUT[2] output with a three-input LUT

8.1 Field-Programmable-Gate Array 471

Figure 8.15 describes the implementation of the Moore machine in Fig. 8.9 after pro-
gramming each LUT in three different clusters. Cluster 0 generates NSO and NS1 functions
implicitly but also produces PSO and PS1 outputs. Cluster 1 and Cluster 2 implement OUT
[2:0]. The IN port is the only external input that goes to all three clusters to maintain the
logic functionality. All the bypass inputs from bypass-PSO to bypass-OUT?2 are stored in a
separate LUT.

[T T T T T T s e T T T T T T T T T T e —— 1
bypass-PS0 =0 bypass-PS1 =0
I Bit[0] \ Bit[0] \ |
| . . |
| . 1 . 1 |
| e PSO = . PS1 I
Pz D a0 = D a9 |
|) NSO n NS1 |
[' - ' I
clock clock
| Bit[7] Bit[7] |
| |
| 7Y |
| IN IN |
| PS1 Pst| ¢ I
P P
| S0 S0 Cluster 0 |
| bypass-OUTO = 1 bypass-OUT1 = 1 |
| Bitfo] [Bit[0] \ |
I : : I
| _ ouT[o] - . OUT[1] [
o} 2 l
| | '
) o D Q 2 D Q |
e 5 |
| clock . clock |
) Bit[7] Bit[7] |
| L |
| IN [|
| PS1 PS1 IN I
P P
L S0 ElY Cluster 1 |
e R e Bt |
: Bit[0] \ |
| : |
[ouT[2] I
1|3 |
' D Q |
| [
| 3 T |
o .
| clock |
) Bit[7] |
| |
| IN |
| PS1 I
P
L SO Cluster2 |

Fig. 8.15 Moore state machine data-path in FPGA

The schematic in Fig. 8.16 shows the implementation of Cluster O in Fig. 8.15 in a
commercial FPGA platform in Fig. 8.6. In this schematic, all 3-1 MUX selector inputs from
SelOutO[0] to SelOutl[5], are stored in LUT2. Similarly, the bypass inputs, bypassO and
bypass1, are stored in LUT3 to be used during normal operation.

472 8 Special Topics

In0[0] = dont care

Progin ProgOut
y . bypass1 =0
Bit[0] \ [selout1[5]
: 5 : £
— 1 o =
(;) £
o p—— Out1 = PS1 ‘g 8
o = =
= D Q0 ~ [}
N (2]
= NS1 A 5 : ~
2 | SelOut1[5] = 0 3 |— - Selouto[o] -
clock SelOut0[5] = 0
Bit[7] A
2 c
LA TIN =
_ A 1 2
>
% 9] In1[2] = IN
a Selout1[4] = 1
SelOut0[4] = 0
21—
PS1 1
Q In1[1] = dont care
SelOut1[3] = 0
Lt SelOuto[3] = 1
2 —e
c PSO] o
g S
iv \0 In1[0] = dont care E
bypass0 =0
Bit[0] \ @ [— bypassT
- &
g 1 5
@ » Out0 = PSO £
g D Q—y @ |—» bypass0
o NSO | 2
3 [SelOut1[2] =0 f
clock SelOuto[2] = 0
Bit[7] c
//5 21— o
¢ y A TIN 1 &
0 =
v 9] In0[2] = IN
é Selout1[1] = 1
8 SelOuto[1] = 0
o
21—
PS1 1
Q InO[1] = dont care
SelOut1[0] = 0
Selouto[0] = 1
S
PS0]
Y

Fig. 8.16 Implementing PSO and PS1 using a single cluster containing two LUTs

8.2 Data-Driven Processors 473

8.2 Data-Driven Processors

Data-Flow Graphs

Programming data-driven processors is achieved by data-flow graphs [4]. Each graph con-
sists of a group of functional nodes and communication paths, connecting the nodes. Each
node in the flow-graph executes two incoming data tokens. When they arrive, the node
produces an output operand according to the function defined in the node. Therefore, a node
function can simply be defined by an instruction. Each instruction representing a functional
node contains an operation code (OPC), input operand(s) (OPER), and output operand node
addresses. All input-output paths among functional nodes are connected with directed
communication paths to guide the flow of data. With this picture in mind, operands that flow
into a functional node are executed according to the node’s operation code. Once executed in
the node, new operands form and flow out of the node to other nodes. A simple example is
given in Fig. 8.17. In this example, the operands, OPERg; and OPERGg,, are executed by the
node’s operation code, OPCg, when they arrive at the functional node, Ng. After the exe-
cution, new operands form and flow out of the node to two new destination nodes, Npy and
Np;, where they meet with two other operands, OPERp, and OPERp,, respectively. The
data-flow program stops when all operands are executed.

OPER31 OPERSZ

to (NK,L) to (NL,R)
Fig. 8.17 Sample flow graph for a data-driven machine

The parallel nature of data-flow architecture makes parallel processing tasks quite achievable
in data-driven machines. While conventional processors are set to be maximally serial to
minimize hardware, data-driven architectures can be maximally parallel with up to one

474 8 Special Topics

processor per operation to maximize performance. For the example in Fig. 8.17, two dif-
ferent data-driven processors can be used simultaneously to perform OPCpo and OPCp;
following the operation at the node Ng. Multi-processor platforms formed by a group of
conventional processors may have limitations to achieve certain parallel processing tasks. In
contrast, data-driven processors can time-share the processing load of several functional
nodes, and therefore reduce the hardware requirement to implement a data-flow graph.

Data-Flow Node Types
The types of data-flow nodes used in this architecture are classified according to the number
of input operands fed into the functional nodes. Figure 8.18 illustrates this classification.

OPER; OPER; OPER;
L
L R
OPERout OPERout OPERour

Fig. 8.18 Functional node types

Functional nodes that accept no inputs are nodes with constants (CONS). The contents of
this node type do not change during programming. Functional nodes that accept one input
are the unitary (UNIT) nodes. This node type transforms an operand as soon as it arrives at
its input. Invert (negate), Set and Reset are the unitary nodes in this architecture that require a
single input operand. Functional nodes that accept two input operands are the combinatorial
(COMB) nodes. This node type executes incoming operands when they are both valid at the
input. The operation of some combinatorial functional nodes, such as subtract and shift,
depends on the relative placement of the input operands. This is called the operand polarity.
It is reflected in the instruction format by defining input operands as left or right input
operands. In this architecture, operands with changing data values are directed to the left side
of a functional node, whereas constant operands or operands used as control signals are
placed on the right side of the functional node in a data-flow diagram.

While operands emanating from functional nodes are forwarded only to one destination
address in the earlier data-flow diagrams, this architecture offers the flexibility where the
same operand can be forwarded to two different destination addresses. This unique feature
saves the number of nodes used in the data-flow diagram as well as increases execution
speed of the program.

8.2 Data-Driven Processors 475

Basic Data-Flow Program Structures

There are three basic programming structures in data-driven architectures when constructing
data-flow diagrams: sequential, conditional and recursive. Each structure is illustrated in
Fig. 8.19.

Sequential programming constructs imply that data-flow is unidirectional, from one func-
tional node to the next without any loops or paths related to a condition. The simple data-flow
diagram in Fig. 8.17 is one such example of the sequential programming structure. Another
example composed of multi-layer functional nodes is given in the top figure of Fig. 8.19.

The conditional programming structure consists of a functional node that accepts a con-
ditional input besides a data input. If the condition is satisfied, a valid operand at the data input
becomes a valid operand at the output. If the condition is not satisfied, the operand at the
output retains its old value. The conditional input enters the node from the right side since it is
considered to be a control input as mentioned earlier. Gate and Compare instructions are
considered conditional since the data-flow produced at the output of the node depends on
whether the condition is satisfied or not. The output operand does not change its value until
the condition is satisfied. An example of this type is shown in the middle figure of Fig. 8.19.

The recursive programming structure contains looping constructs in the form of a feedback
path from one node to another as shown in the bottom figure of Fig. 8.19. The number of
iterations in a loop continues until all input operands are exhausted. The loop can be broken to
allow a conditional node if needed, otherwise the loop is activated on the arrival of new
operands either from the right side or from the left side of the node.

A simple example in Fig. 8.20 combines all the programming structures mentioned
above. This example calculates the area under a straight line, Y = (X — 1), from X = 2 to
X = 3. The increment in the x-axis is defined to be DeltaX, which is equal to 0.1 in the flow
chart.

The flow chart in Fig. 8.20 has been transformed into a data-flow graph shown in
Fig. 8.21. All the nodes with constants in the data-flow graph in Fig. 8.21 are zero-input
nodes, which accept no operands. The only unitary functional node is the one with the SET
operation code. Upon the arrival of an operand to its single input, this node generates logic 1
at its output. Otherwise, its output stays at logic 0.

There are two types of two-input functional nodes in the same data-flow diagram. The
majority of these nodes are conditional type: they either wait for a condition to arrive
(GATE) or they have a permanent condition attached at their right port in terms of a
constant. Greater-Than-Or-Equal-To (GE), Less-Than (LT), Add-with-Constant (ADC), and
Multiply-with-Constant (MULC) functional nodes belong to the latter category.

The rest of the two-input nodes are sequential such as Add node (ADD) where polarity
information is not important for data execution.

476

Sequential-Type
Data Flow Graph

Conditional-Type
Data Flow Graph

Recursive-Type
Data Flow Graph

True
/False

Fig. 8.19 Data-flow programming structures

8 Special Topics

8.2 Data-Driven Processors 477

SUMstart =0
Xstart = 2
Ystart = 1
DeltaX = 0.1

|

X = Xstart + DeltaX
Y=X-1

Area = 0.05 (Y + Ystart)
SUM = SUMstart + Area

SUMstart = SUM
X:3 P Xstart = X
Ystart =Y

else

SUM to host

Fig. 8.20 Flow chart integrating the area under Y = (X — 1)

During the programming phase, the initial values of Xstart, Ystart and SUMstart are
stored at the proper arcs in Fig. 8.21. When program execution starts, Xstart = 2 is added to
a floating-point constant, C = 0.1, at the nodes O and 1, generating the first value of X.
While X is compared against C = 3 at the nodes 3 and 4, it is also directed to the node 2 for a
Gate operation, and added to C = —1 at the node 5, producing Y. Subsequently, Y is directed
to the node 6 to be added to Ystart = 1, and to the node 7 for another Gate operation. The
output of the node 6 multiplies with C = 0.05 at the node 8, producing the first incremental
area value, and it is directed to the node 9 to be added with SUMstart = 0. The output of the
node 9, SUM, is then forwarded to the nodes 10 and 11 for two other Gate operations.
Depending on comparisons at the nodes 3 and 4, the SUM output will either be forwarded
outside of the processor or forwarded to the node 12 in order to set this node. If the node is
set, Gate operations at the nodes 2, 7 and 11 take place, replacing the old values of Xstart,
Ystart and SUMstart with X, Y and SUM, respectively. Iterations continue until the node 10
becomes active and the result is delivered to the user.

478 8 Special Topics

Xstart

-

to host

Fig. 8.21 Data-flow graph integrating the area under Y = (X — 1)

Input Flags

An input operand to a functional node contains an operand flag to indicate whether or not the
data processing is complete. A high flag implies that the input operand is valid and ready to
be processed. The input operand flag goes to logic O as soon as the functional node processes
the input operand.

8.2 Data-Driven Processors 479

Nodal Networks

Data-flow diagrams in this architecture can be structured in three different ways. The first is a
direct connection among functional nodes: data flows from one node to another freely in an
unobstructed fashion as shown at the top left corner of Fig. 8.22. The only control mech-
anism for processing data at each functional node is that both input operand flags must be at
logic 1. The second and the third nodal networks use programmable routers to send operands
from the source to the destination nodes. The simple router at the top right corner of
Fig. 8.22 uses a local network to connect a group of functional nodes and thereby creates a
cluster. Note that the inputs to a functional node in a cluster can come from any functional
node in this network. This decision is made by a simple arbitration scheme in the router,
which dictates that any node in the process of generating a new input operand for itself has
priority over the other nodes in a cluster. In other words, if a neighboring node produces an
input operand for a particular node in a cluster while this particular node is in the process of
generating an input operand for itself, the arbiter stalls any data processing in the neigh-
boring node until the self-operand generation is complete. The bottom structure in Fig. 8.22

OPER\ OPERsg

LOCAL CLUSTER NETWORK

LOCAL CLUSTER NETWORK 1 LOCAL CLUSTER NETWORK N
A A

A 4 \ 4
INTER-CLUSTER NETWORK

Fig. 8.22 Data-flow graphs without router, and with local and hierarchical cluster networks

480 8 Special Topics

illustrates the hierarchical organization of clusters where an inter-cluster network manages
many local cluster networks. While each cluster arbiter manages its own individual cluster,
all cluster-to-cluster communication is maintained by a separate inter-cluster arbiter.

Processor Design Overview

The processor implements the node functionality by reading the node instruction from the
memory, executing it, and writing the result back to the two destination node addresses
specified in the instruction. In order to implement this sequence, each processor needs to
have a memory, an ALU and a controller. The memory contains all nodal instructions. Each
nodal instruction consists of two input operands with their valid flags, an operation code and
the two destination node addresses where the results are sent as shown in Fig. 8.23.

17 1 17 1 5 16 1 1 6 1
|OPERL|FL|OPERR|FR|OPC|V0|N0|P0|V1|N1|P1|

(- (- I I |
Left Right Destination Destination

Operand Operand Address 0 Address 1
Flag Flag

Fig. 8.23 Instruction format

Consider a processor implementing a single node. Initially, assume the processor is at
idle. When both operand flags in the instruction become valid, the controller starts. In the
first step, the controller generates a nodal address for the instruction that resides in the
memory. In the second step, the controller fetches the input operands and operation code
from this instruction and forwards them to the ALU. The ALU combines the input operands
and generates an output operand, which is directed to the first destination address. In the
third step, the controller writes the same output operand to the second destination address,
sets the operand flag at the first destination address, and clears input operand flags at the
source address. In the fourth and final step, the controller sets the operand flag at the second
destination address.

If the processor needs to execute more than one node, then each nodal address in the flow
graph must be mapped to a physical address in the memory. This approach automatically
transfers the left and the right nodal operands, the operation code and the destination
addresses of a particular node from the flow graph to an instruction in the memory. However,
during this process each operand flag is stored in a separate tag memory to allow the
controller to continuously search for valid operand flags. If the controller finds a node with
valid left and right operand flags, it sends the corresponding operands to the ALU for
execution. After the operands are processed and sent to the destination addresses in the
instruction, the controller points the next node to be processed. If there is no other node with

8.2 Data-Driven Processors 481

valid operand flags, the controller stalls the processor until an instruction with valid operand
flags emerges in the instruction memory.

The processing efficiency and speed in the processor can be increased by pipelining. After
an instruction is executed, sending the ALU result to a destination address can be overlapped
with tasks such as generating an address or fetching a different instruction. This can be
achieved using a dual port memory.

Instruction Format

In this architecture, the instruction format contains two 17-bit input operands, OPER and
OPERg, two flags to validate the operands, F; and Fg, one five-bit operation code, OPC, and
two eight-bit destination address fields. Each destination address is composed of a valid bit,
V, a six-bit node number, N, and a left-right polarity bit, P. The valid bits in the destination
address fields, Vo and V| indicate the validity of the corresponding nodal address. This
instruction format is shown in Fig. 8.23.

Architecture and Operation

Figure 8.24 shows a simplified block diagram of a processor executing the simple program
in Fig. 8.17. Each node number in the data-flow graph in Fig. 8.17 corresponds to an address
in the instruction memory in Fig. 8.24.

The program execution starts when the controller detects an instruction with valid left and
right operand flags, such as the one at the memory location Ng with F, = Fg = 1. The controller
reads out the instruction and sends the operands, OPERg; and OPERGg,, and the operation code,
OPCsg, to the ALU. The ALU executes the operands according to the OPCg, and the controller
clears both operand flags of the instruction, underlining the completion of this instruction. The
controller subsequently sends the ALU result to the first and second destination addresses, Npg
and Np, as datatokens as shown in Fig. 8.24. When the resultis delivered to a valid destination
address, the controller automatically sets the operand flag to specify the validity of data for
further processing. For example, the right operand flag at Np is set when OPER, = OPERg;
(OPCg) OPERg; is delivered to this address. Similarly, the controller sets the left operand flag at
Np; when it delivers the same ALU result to this address in the next cycle.

After executing the instruction at Ng, the controller detects the next instruction with valid
operand flags at the memory location Npg. Once again, the controller extracts the operation
code, OPCpy, and the operands, OPERp, and OPER,, from the instruction and sends them
to the ALU for execution. Subsequently, the controller clears the operand flags at Npq and
sends the ALU result as a left operand to the memory address Ny. This is shown as the third
data token in Fig. 8.24. The controller performs the same set of tasks for the instruction
located at the address Np; and forms the fourth data token. The program execution stops
when the controller can no longer find a pair of valid operand flags in the tag memory.

482 8 Special Topics

WData

FL FR © Vo Vi
Ns OPER31|1|OPER32|1|OPCS|1|NDQ|R|1|ND1|L

Noo [OPERss [1] - [ol opcos [1] Ne [L]0] - |-
Nor| - |o|oPErw [1] oPco: [1] N [R]0] - |-
RData grr RDatagght
v v
OPC —X\ ALU /
1st token | OPERs; (OPCs) OPERs; = OPER, |ND0|R|
2nd token | OPER, |ND1 | |_|
3rd token | OPERGpo (OPCoo) OPER, | Nk ||_|
4th token | OPERp; (OPCo;) OPERA | N |R|

Fig. 8.24 Processor architecture executing the program in Fig. 8.17

Implementation

Figure 8.25 shows the implemented instruction field format. Besides the operation code and
the input operand fields, each destination address in Fig. 8.23 is now expanded to contain an
additional seven-bit processor ID, ProcID, and a cluster ID, ClusID, to allow multiple
processor communication in a local network. In this architecture, we have the flexibility of
choosing a network ranging from 128 processors in a single cluster to two processors per
cluster for 64 different clusters. The presence of ClusID and ProcID enables independent but
simultaneous networking activities to take place among clusters and processors. In other

7 7
7 1 17 1 5 1 6 1 1 6 1

| OPER, | Fu | OPERg |FR| oPC | ClusIDo |Proc|D0 | Vo | No | Po | ClusID; | ProciD; | Vi | Ny | P, |

Fig. 8.25 Instruction format in the implementation

8.2 Data-Driven Processors 483

words, the source processor can write the same ALU result to two different destination
processors within the same cluster or in different clusters.

Processor Micro-architecture

The simplified data-driven processor architecture shown in Fig. 8.24 is implemented in
Fig. 8.26. One of the essential elements in Fig. 8.26 is the presence of a dual-port RAM.
While the controller fetches an instruction from the first data port, it writes the ALU result of
another instruction to the second port to increase processor performance and programming
efficiency.

Destination Address

— WAdd
Source Address NODE P r " hr
RETAINER B APort2 [« [from others]
WAddress [wAddress
f [native]
hold DUAL-PORT psel
SRAM
Fu(0) — Out
(Ns, Ps) RAddreSi [from others]
S > APortt DPort2
> Node WnData
Fr(0) No — Out
DPort1 [native]
NODE psel
TAG
ADDRESS
MEMORY GENERATOR
. RData
(VDv NDv PD) FL(N) "
> |€— hold
g OPERAND
RETAINER
f Fr(N) +
hold NoSelect RData RData
[to the arbiter] RIGHT LEFT
A A
oPC ; ALU
WAddr0 WAddr1
A Y
WRITE ADDRESS
Select Address —»| REGISTER ALU REGISTER

v v

WAddr Out
Fig. 8.26 Processor data-path and micro-architecture

In this architecture, all operand flags are stored in a separate tag memory in the processor.
The left and right operand flags at each tag address are AND-gated and connected to the
node address generator as inputs. When the operand flags that belong to a specific tag
memory address become valid, the address generator uses this tag address as a read address,
RAddress, to read the corresponding instruction from the dual-port RAM. If there is more
than one set of valid flags in the tag memory, the node address generator selects a pair of
flags with the lowest nodal address value, and delivers this address to the memory. When
there are no more valid flags, the address generator produces a NoSelect signal for the

484 8 Special Topics

network arbiter which, in turn, stalls the processor. From this moment on, the processor
suspends all its activity and waits for new operands to be delivered to the instruction
memory.

When a processor interacts with other processors in a network, it is quite possible that it
may receive a hold request from the network arbiter while attempting to write into a
neighboring processor. This hold signal is generated because the neighboring processor may
be busy processing data for itself or writing data to another processor as mentioned earlier.
When the source processor receives a hold signal, it stalls all its processing functions and
retains its internal status and output data values until the hold is removed. Therefore,
RAddress is also stored in the node retainer to preserve the node address, Ng, and the source
operand polarity, Pg, for the tag memory in case the network arbiter issues a hold.

Once the instruction at RAddress is read from the RData port of the dual-port memorys, its
right and left operands are routed to the ALU along with the operation code for execution.
The source operands are also stored in the operand retainer in case the program execution is
put on a momentary hold by the network arbiter. Both of the destination addresses, WAddrO
and WAddrl, are buffered in the write address register and used alternately to deliver the
processed data from the Out terminal to destination processors. The write address register
also keeps the old write addresses for the duration of hold.

The processed data either produced locally or from other processors in a network is
eventually written to the dual-port RAM through the WData port. The destination address at
the WAddress port simply accompanies the newly arrived data, and it is directed to the tag
memory to update the corresponding operand flags.

Processor Programming

Prior to the program execution, instructions are loaded to the dual-port RAM through the
WData port in Fig. 8.26. While the program is loaded to the memory, operand flags of each
instruction are also stored in the tag memory.

Inter-processor Arbiter and Router

In a data-driven architecture, the organization of processors in a network is hierarchical.
A group of processors form a local cluster, in which each individual processor owns a pro-
cessor ID, ProclID, to communicate with other processors using a simple arbitration protocol.

A local cluster has also an identification number, ClusID, in a network. Only one pro-
cessor in a cluster can communicate with another processor in a different cluster at a given
time.

The inter-processor router connects each processor’s destination address and data output
to other processors address and data ports with a massive multiplexing network as shown in
Fig. 8.27. The arbiter is designed to give address and data transfer privileges to a single
processor while issuing a hold to all lower-priority processors in a cluster. There are two
general rules observed in the arbiter’s priority scheme. The first rule states that if a processor

8.2 Data-Driven Processors

g z g z
S S = = S S S =3
g...g 5.3 g..g 5.3
O
|
psel[o psel[01 pseum pseum
phold[0] —»| Aport Dport phold[N]—»| Aport Dport
processor0 | e processor N
psel[0] —>| psel[N]—>|

Y Y A4 A4 A4 A4
WAddr[0] Out[0] NoSelect[0] WAddr[N] Out[N] NoSelect[N]
LOCAL CLUSTER ARBITER and ROUTER

|

psel[N:0]

phold[N:0]

Fig. 8.27 Inter-processor arbiter and router

issues a write to itself, it has the highest priority over the other processors in a cluster. The
second rule is that if two or more processors issue write requests simultaneously to a
processor at idle, the highest priority among these processors belongs to the one with the

lowest ProcID.

486

Review Questions

1. The following sum of products (SOP) function is given:
out = AC+ABC+B

Implement this function using three-input LUTSs only.
2. The following product of sums (POS) function is given:

out=(A+B).(B+C).(A+B+C)

Implement this function using two-input LUTSs only.
3. The following truth table needs to be implemented in FPGA.

>
(o8]
O

out

. A A A OO0 o o
RO« N o RS G G o W e)

- O -~ O -~ O -~ O
O - A O O -

Assume the three-input LUT configuration is given below:
Prog in

_0\ bypass

N

— out

w

N

(¢)]

— clock

v 4
Prog out L]

inputs

]

~

—

8 Special Topics

8.2 Data-Driven Processors 487

(a) Implement the truth table only with three-input LUTs.
(b) Implement the same truth table only with four-input LUTs.
(c) Implement the same truth table only with two-input LUTs.

4. Implement the 3-1 multiplexer below using three-input LUTs.
The definition of the MUX is given below:
If sel[1:0] = 00 or 11 then out = a
If sel[1:0] = O1 then out=b
If sel[1:0] = 10 then out = ¢

out

sel [1:0]

5. A simple Moore state machine that consists of two states is given below. After con-
structing the state and transitional tables, draw the circuit diagram of this state machine
using minimal number of logic gates and flip-flops.

Once the logic diagram is finalized, implement the state machine in FPGA using
two-input LUTs and three LUTs in a cluster. Draw the architectural diagram of this
FPGA platform, including interconnections.

Assign the values A = 0 and B = 1 to the state machine below.

IN =1 IN =1

e OouT =2
IN=0

488 8 Special Topics

6. A three-bit counter is given below. The Hold input activates port 1 of the 2-1 MUX to
retain the output value. Otherwise, the counter keeps incrementing by one.

\o; _1/Q—— Hold

A3

\/

Out [2:0]

Assume that the three-bit adder is simply a ripple-carry adder composed of three
full-adders (FA) with sum (Sum) and carry-out (Cout) outputs as shown below.

Al2] B[2] Al B[] A[0] B[0]
Cin[2] = Cout[1] Cin[1] = Cout[0] ,
FA |- FA1 |- FA |« Cin[0]=0
Sum[2] Sum[1] Sumio]

Sumli] = A[i] @ B[i] ® Cinli]
Coutl[i] = A[i] . B[i] + Cin[i-1] . (A[i] + B[i])
Implement this circuit using three-input LUTs in FPGA platform.

Projects

1. Implement and verify the three-input LUT in Fig. 8.1 using Verilog.

2. Implement the four-bit ripple-carry adder in Fig. 8.2 using Verilog. Use three-input LUTs
from project 1 to create an FPGA implementation of the adder in Fig. 8.5. Perform
functional verification on the entire circuit.

3. Implement the Moore state machine in Fig. 8.8 and the corresponding logic diagram in
Fig. 8.9 using Verilog. Use three-input LUTs from project 1 to create an FPGA imple-
mentation of the state machine in Fig. 8.15. Perform functional verification on the entire
circuit.

8.2 Data-Driven Processors 489

References

Brown S, Francis R, Rose J, Vranesic Z. Field-programmable gate arrays. Springer, ISBN: 9780792392484

. Ahmed E, Rose J (2004) The effect of LUT and cluster size on deep-submicron FPGA performance and density.
IEEE trans larg Scale Integr (VLSI) Syst 12(3):288-298

3. Brown S, Rose J (1996) FPGA and CPLD architectures: a tutorial. IEEE Design Test Comput 13(2):42-57

4. Bindal A, Brugada S, Ha T, Sana W, Singh M, Tejaswi V, Wyland D (2004) A simple micro-threaded data-driven

processor. IEEE Euromicro Symp Digital Syst Design

s

A.1. Module Definition

A digital system in Verilog is defined in terms of modules as shown in Fig. A.1. Each
module has inputs and outputs with different bit widths. Modules can be integrated to form
bigger digital blocks as shown in Fig. A.2. In this figure, the top module contains four
smaller modules, each of which has inputs and outputs. They are interconnected with each
other to produce much larger system functionality with a new set of external input and output
signals.

inputs ——»>| module —— outputs

Fig. A.1 A typical module in Verilog

input 1 > — module 2 » output 1
module 1 * +
input 2 >
module 4 » output 2
module 3 >
top module

Fig. A.2 Module integration to form a much larger system

© Springer International Publishing Switzerland 2017 491
A. Bindal, Fundamentals of Computer Architecture and Design,
DOI 10.1007/978-3-319-25811-9

492 Appendix: An Introduction to Verilog Hardware Design Language

When creating a Verilog code to represent a digital block such as in Fig. A.3, the module
name is written first. The input and output names are written in parentheses next to the
module name as shown below. Their order is not important. The module statement is
followed by separate input-output (I/O) statements and the description of the module.

in[3:0] 4| blockX —» out
4

Fig. A.3 A Verilog module, blockX, with in[3:0] and out
module blockX (out, in);

output out;

input [3:0] in;

/* module description here */

endmodule
For a more specific example let us write a small Verilog code for the two-input AND gate
in Fig. A.4.

module andgate (out, in1, in2);
output out;
inputin1, in2;

/* module description here */

endmodule
in1 — >
. out
in2 —

Now, let us integrate blockX in Fig. A.3 with the two-input AND gate in Fig. A.4 to form
a larger digital block as shown in Fig. A.S5.

Fig. A.4 Two-input AND gate

A.1. Module Definition 493

in[3:0] out
a[3:0] > blockX » out1
4
in1
\ out
- » out2
in2 L——~

blockY

Fig. A.5 A Verilog module integrating blockX in Fig. A.3 and the two-input AND gate in
Fig. A4

This new module, called blockY, has different I/O names due to the naming convention
used in the schematic in Fig. A.5. As a preference, the I/O names in the module definition
statement and in individual I/O statements list the outputs first and the inputs second.
However, this is not a requirement but a choice.

In addition, both the blockX and the two-input AND gate need to be instantiated inside
the blockY. This is achieved by using the “dotted” convention as shown below. Here, the
individual module I/O names are written outside the parentheses; the I/O names used in the
top module are written inside the parentheses. The names, il and i2, are the instantiation
names of the modules, andgate and blockX, respectively.

module blockY (out1, out2, a, b, c);
output out1, out2;

input [3:0] a;

input b, c;

andgate i1 (.out(out2),
.in1(b),
.in2(c));

blockX i2 (.out(out1),
{in[0](a[0)]),
Ain[1](a[1]),
in[2](a[2]),
Ain[3](a[3]));

/* the rest of the code here */

endmodule

494 Appendix: An Introduction to Verilog Hardware Design Language

Basic logic gates (or Verilog primitives) do not need instantiations. The two-input AND
gate in Fig. A.4 could have been written without any “dotted” instantiation in the top module
above.

The Verilog primitives are the following gates:

AND, NAND, OR, NOR, XOR, XNOR, BUF, NOT.

Here, BUF corresponds to a buffer, and NOT corresponds to an inverter.

Example: Let us implement one-bit full adder using Verilog.
In a full adder, the sum and carry-out functions are shown as:

sum=a® b @ cin
cout=a.b+cin.(a+b)

In the functional equations above, cin corresponds to the carry-in input and cout corre-
sponds to the carry-out output of the full adder. The terms, a and b, are the two inputs to the
full-adder.

The schematic to produce sum and carry-out functions are shown in Fig. A.6. The
intermediate nodes are named as nodel, node2, node3 and node4 as interconnecting nodes.

node1

cin

@ node2
) > o
miP=+

Fig. A.6 Hardware implementation of the full adder

The Verilog code below contains no “dotted” instantiations. This style of Verilog code is
called structural where only primitive gates are used.

A.1. Module Definition 495

module fulladder (sum, cout, a, b, cin);
output sum, cout;
input a, b, cin;

[* structural style module description */
xor (node1, a, b);

xor (sum, node1, cin);

and (node2, a, b);

or (node3, a, b);

and (node4, cin, node3);

or (cout, node2, node4);

endmodule

After the Verilog code is written, a test fixture needs to be produced to verify the module.
For our example of the one-bit full adder, Fig. A.7 illustrates the concept of building the test
fixture.

a
; - sum
in1 A D> »| sum
in2 > fulladder
cin cout‘
carryin > »| carryout
testfixture

Fig. A.7 Test fixture formation to verify the functionality of the full adder

In this figure, the outputs of the full adder must be declared as the inputs to the test fixture
using the wire statement. The outputs of the test fixture are the inputs for the full adder, and
they should generate all the verification vectors needed to test the full adder thoroughly. For
each test input, the outputs of the test fixture must remain unchanged until a new set of
outputs are produced. Therefore, each output has a memory, and uses the reg statement in
Verilog. Also, the test fixture neither contains any I/O names in the module definition nor
has any input and output statements. Thus, the general structure of the test fixture becomes as
follows:

496 Appendix: An Introduction to Verilog Hardware Design Language

module testfixture;

/* all test fixture outputs are declared as reg statements */
/* all test fixture inputs are declared as wire statements */

/* module instantiation here */

/* verification vectors here */
/* display results here */

endmodule

The verification vectors are executed only once using the initial statement in Verilog. For
a combinational logic such as a full adder, these vectors are simply the inputs of the truth
table. The outputs, on the other hand, need to be either displayed or stored in a file in order to
be compared against the “expected” outputs. Therefore, for the one-bit full adder test fixture
shown in Fig. A.7, the Verilog code becomes as follows:

module testfixture;

/* all test fixture outputs are declared as reg statements */
reg in1, in2, carryin;

/* all test fixture inputs are declared as wire statements */
wire sum, carryout;

[* module instantiation here */
fulladder i1 (.sum(sum),
.cout(carryout),
.a(in1),
.b(in2),
.cin(carryin));

/* verification vectors here are executed only once due to initial statement */

initial
begin

carryin = 0;in1 =0; in2 = 0;
#10 in2=1;
#10 in1=1;in2=0;
#10 in2=1;
#10 carryin =1;in1 =0;in2 = 0;
#10 in2=1;
#10 in1=1;in2=0;
#10 in2=1;
end

/* display results here */
endmodule

A.1. Module Definition 497

The “#” sign used in almost every statement inside the initial block indicates a delay
function. For example, the code waits for 10 time units after the first line (cin = 0; inl = 0;
in2 = 0;) is executed before the value of in2 is changed from logic 0 to logic 1 in the second
line. Since inl, in2 and cin are all reg statements, their values are retained until changed.

Monitoring the results are achieved by the $time and $monitor statements. $time displays
the current simulation time. $monitor displays the variable value whenever the variable
value changes.

For example, $monitor ($time, output, inputl, input2); statement displays simulation time
and the values of output, inputl and input2. On the other hand, $monitor ($time,,”’output=%h
input=%Db”, out, in \n); statement displays the simulation time, leaves a space between the
simulation time and “output” because of the extra comma, displays “output” in hexadecimal
format and “input” as binary format. After each set of simulation time, input and output, a new
line starts for the second set due to carriage return, “\n”, entry. One can also use “\t” to insert a
tab between the terms to achieve separation.

All Verilog files are stored with the “.v” extension after the file name, such as fulladder.v.
When executing the Verilog command to simulate multiple files, including the test fixture,
the command line should include the top module last and all the remaining modules inside
the top module first.

In this full adder example, we need to write fulladder.v first and then testfixture.v because
the test fixture contains the full adder module. Therefore, the command line becomes:

verilog fulladder.v testfixture.v

The notation for a comment in Verilog is identical to the ones used in C-programming.
For a single line comment, a pair of slashes, “//”, is used. For a multiple line comment, the
comment starts with a slash and a star, “/*”, and ends with a star and a slash, “*/”.

A.2. Numbers in Verilog

The numbers in Verilog are represented by three distinct terms:

SIZE 'BASE VALUE

Note that the tick mark, “*”, attached to the BASE entry is not apostrophe.

As an example, 32°h3C represents a 32-bit hexadecimal number, 0x0000003C. 8'bl
represents an eight-bit binary number, 00000001. Any time the size entry is omitted, the size
defaults to 32 bits. For example, "Th8 A corresponds to 0x0000008A. The base entry to
represent high impedance or floating wire is “"z”. For example, 8 bz means an eight-bit bus

with all its eight bits are floating or zzzzzzzz. Similarly, don’t care bits are shown by “*x”.
For example, 4'bx means four wires either at logic 0 or logic 1, and represents Xxxx.

498 Appendix: An Introduction to Verilog Hardware Design Language

A.3. Time Directives for Compiler

To mimic propagation delays in Verilog simulation, a timing directive is used. The directive,
“timescale, is preceded by a tick mark to point out that the command is for the compiler to
delay the execution of a Verilog statement if the statement starts with the pound mark, “#”.

The “timescale directive is the first line in a Verilog code. The statement does not end with
a semicolon and contains two entries separated by a “/” sign. The first entry corresponds to
the actual delay. The second entry represents the simulation resolution.

For example, “timescale 10 ns / 100 ps means each time the compiler sees a “#” sign in a
Verilog statement, it delays the execution of the statement by multiplies of 10 ns, depending
on the number that follows the “#” sign. The resolution is 100 ps. Therefore, for a delay of
10 ns, the simulation accuracy is 1:100.

Let us consider the following structural Verilog code as an example.

“‘timescale 1 ns/ 100 ps

module inverter (out, in);

output out;

input in;

not #2 (out, in); /12 ns delay between input and output
endmodule

This is a module that represents a single inverter. The propagation delay in the inverter is
2 ns because the number following the “#” sign in the “not” gate is 2, and this number is
multiplied by 1 ns in the timescale directive. The simulation resolution is 100 ps. Therefore,
there is 1:20 accuracy when generating a delay function for the inverter.

Other common compiler directives are the “define and “include statements, and neither
ends with a semicolon. The “define statement defines a variable for the Verilog code. For
example, in the following Verilog code a variable called inv_delay corresponds a delay of
30 ps with 1 ps simulation resolution.

‘timescale 10ps / 1ps

“define inv_delay #3

module inverter (out, in);

output out;

input in;

not inv_delay (out, in); //30ps delay between input and output
endmodule

The “include statement fetches smaller modules from various directories and includes them
into a bigger module for simulation. For example, the following Verilog code brings the
full_adder.v module located in the verilog_modules directory to be used in bigger_module.v.

A.3. Time Directives for Compiler 499

‘include “verilog_modules/full_adder.v”
‘timescale 10ps / 1ps

“define inv_delay #3

module bigger_module (out1, out2, in1, in2, in3);

endmodule

A.4. Parameters

Parameters are used to replace numbers for enhancing the readability of Verilog code. The
parameter statement is not a compiler directive. Therefore, it is ended with a semicolon. The
statement has only one entry, which attaches a name to a number.

parameter name = value;

Assume the following example:

module alu (out,in1,in2);
output [31:0] out;

input [31:0] in1,in2;
endmodule

The value, 31, can be replaced by the name, BUS, using the parameter statement to
enhance readability of the Verilog code. Thus,

module alu (out,in1,in2);
parameter BUS=31;
output [BUS:0] out;
input [BUS:0] in1,in2;
endmodule

A.5. Basics of Structural Verilog Modeling

Structural modeling was introduced in the earlier sections and described how to use basic
logic gates in a Verilog code. Structural Verilog eliminates the dotted convention when
instantiating Verilog primitives. The logic gates supported by Verilog are:

500 Appendix: An Introduction to Verilog Hardware Design Language

AND NAND
OR NOR
XOR XNOR
BUF NOT

For example, a three-input NOR gate with inputs, inl, in2 and in3, is represented by:
nor (out, in1, in2, in3);

As another example, a buffer with an input, in, and an output, out, is written as:
buf (out, in);

In each structural statement, the output of the logic gate is listed first followed by the
inputs.

Tri-state buffers and inverters are represented by conditional structural statements. The
statement bufifl represents a tri-state buffer with an active-high enable as shown in Fig. A.8.

in {/‘ out

enable

Fig. A.8 Tri-state buffer with active-high enable

This gate behaves like a buffer when enable = 1, and becomes an open circuit when
enable = 0. The structural Verilog statement for the tri-state buffer becomes:

bufif1 (out, in, enable);

A tri-state buffer with an active-low enable signal shown in Fig. A.9 makes this logic gate
behave like a buffer when enable = 0, and an open-circuit when enable = 1.

in {/{ out

enable

Fig. A.9 Tri-state buffer with active-low enable
The structural Verilog statement for this gate uses a bufifO statement:
bufifO (out, in, enable);

Tri-state inverters use the same active-high or active-low enable signals. To represent a
tri-state inverter with an active-high signal in Fig. A.10, the notifl statement is used.

A.5. Basics of Structural Verilog Modeling 501

notif1 (out, in, enable);
in out

enable

Fig. A.10 Tri-state inverter with active-high enable

The tri-state inverter with an active-low enable signal in Fig. A.11 uses the notifQ
statement as shown below.

notifO (out, in, enable);
in out

enable

Fig. A.11 Tri-state inverter with active-low enable

A.6. Behavioral Modeling

There are two types of procedural blocks in behavioral Verilog coding. The first one is called
the “initial” statement. Each Verilog statement included in the initial statement is executed
only once. The procedural block below shows the general form of the initial statement. The
statements in an initial block are enveloped with the “begin” and “end” clauses. The initial
statement may or may not come with a condition(s) listed in parentheses after the symbol
“@”, If the initial statement comes with a condition, the statement is executed when the
condition occurs. Otherwise, the program omits the initial statement.

initial @ (condition)
begin
statement 1; // all statements within the initial statement are executed only once
statement 2;

end

As an example, let us consider a test fixture that verifies the functionality of a module with
two inputs, inl and in2, and receives three outputs, a, b and c, from the module. The test
vectors applied to this module need to be executed only once. The form of the initial
statement will be as follows:

502 Appendix: An Introduction to Verilog Hardware Design Language

module test;

reg input1, input2;

wire outa, outb, outc;
testmodule i1 (.in1(input1),

.in2(input2),
.a(outa),
.b(outb),
.c(outc))
initial
begin
input1 = 0; input2 = 0;
#10 input2 = 1;
#10 input1 = 1; input2 = 0;
#10 input2 = 1;
end
endmodule

The second type of procedural block is the “always” statement. This statement may also
come with a condition in parentheses. Unlike the initial statement, the always statement is
executed repeatedly. If the always statement comes with a condition, the execution of
statements within the always statement takes place only when the condition is encountered.
Otherwise, the program skips over the always statement. The general form of the always
statement is shown below.

always @ (condition)
begin
statement 1; // all statements within the always statement are executed repeatedly
statement 2;

end

An example is to implement a flip-flop with two inputs, d and clock, and two outputs, q
and gbar.

‘timescale 10ps / 1ps
module flip_flop (q, gbar, d, clock);
output q, gbar; // gbar is the inverted output, q
input clock, d;
reg q, qbar;
always @ (posedge clock)
begin
#2 q=d;
#1 gbar = ~d;
end
endmodule

A.6. Behavioral Modeling 503

In the Verilog code above, the logical value at the flip-flop output, q, becomes equal to the
logical value at the input, d, 20 ps after the rising edge of the clock. The logical value at the
gbar output waits for the completion of the first statement, and becomes equal to the inverted d
input 10 ps after the first statement. This waiting period from one statement to the next arises
because these two statements are the blocking type. In other words, when an assignment uses
the “=" sign in a statement inside the procedural block, the statement becomes a blocking
statement, which blocks the execution of the next statement until it is executed first. The reg
statement is also added to this program because values or other variables (inputs in this case)
are assigned to the outputs, q and gbar, inside the always procedural block.

The same Verilog code can be rewritten as:

‘timescale 10ps / 1ps
module flip_flop (q, gbar, d, clock);
output q, gbar;
input clock, d;
reg q, gbar;
always @ (posedge clock)
begin
#2 q<=d;
#3 gbar <= ~d;
end
endmodule

In this program, the first and the second statements in the always block become
non-blocking type due to the “<="sign, and they are executed simultaneously. Therefore, the
output, q, becomes equal to the input, d, 20 ns after the positive edge of the clock. Similarly, the
output, gbar, becomes equal to the inverted input, ~d, 30 ps after the positive edge of the clock.

More than one condition can be included in an initial or always procedural block. For
example, a flip-flop with an asynchronous active-low reset input can be modeled as follows:

‘timescale 10ps/1ps
module flip_flop (q, gbar, d, clock, reset);
output q, gbar;
input d, clock, reset;
reg q, gbar;
always @ (posedge clock or negedge reset)
begin
if (reset == 0)
begin
#2 q<=0;
#2 gbar <= 1;
end
else
begin
#4 q<=d;
#5 gbar <= ~d;
end
end

endmodule

504 Appendix: An Introduction to Verilog Hardware Design Language

If the program encounters an active-low reset before the positive edge of clock, both q and
gbar outputs become logic 0 20 ps after the negative edge of reset. Otherwise, without any
reset, the flip-flop operates normally, and the output, q, becomes equal to the input, d, 40 ps
after the positive edge of the clock, and the output, gbar, becomes equal to the inverted input,
~d, 50 ps after the positive edge of the clock due to the non-blocking nature of these
assignments.

A.7. Arithmetic and Logical Operators in Verilog

There are two types of operators used in Verilog: arithmetic and logical. The arithmetic
operators simply add, subtract, multiply or divide the variables used in a program. The
symbol for each operation is given below:

Add +
Subtract -
Multiply *
Divide /

The logical operators execute all the logic functions, comparisons, bit shifting and con-
catenation. The symbol for each operation is given below:

Bitwise AND &
Bitwise NAND ~&
Bitwise OR |
Bitwise NOR ~|
Bitwise XOR A
Bitwise XNOR ~A
Bitwise NOT ~
Less than <
Greater than

Greater than or equal >=

Less than or equal <=
Equal ==
Logical left shift <<
Logical right shift >>
Conditional ?:
Concatenation {}

For example, if four-bit variables, X and Y, are equal to 0110 and 1011, respectively, the
logical operations on X and Y become as follows:

~Y =0100
X&Y =0010
X~Y =0000

A.7. Arithmetic and Logical Operators in Verilog 505

As another example, let us assume A =4’b1101 and B = 8’b01110101. Shifting B one bit
to the left becomes:

B<<1 =11101010
A & (B <<1)=00001101 & 11101010 = 00001000

A.8. Conditional Statement

Conditional statements are equivalent to the “if-then” statements in C-programming. They
follow the same format in C-language but enveloped between the begin and end clauses.
The simplest form of a conditional statement is given below:

begin
if (condition1)
if (condition2)
if (condition3)
statement 1;
else
statement 2;
else
statement 3;
else

statement 4;
end
Conditions may also be combined using logical operators. For example, the Verilog code

below AND-gates all three conditions, condition 1, condition 2 and condition 3, and pro-
duces a single condition for the if-clause.

begin

if (condition1 && condition 2 && condition 3)
statement 1;

else
statement 2;

end

The condition can include many operators as shown in the example below.

506 Appendix: An Introduction to Verilog Hardware Design Language

begin
if (@ > 0)
if (x <= 0)
y=1,
else /I x>0 is implied
y!=2;
else if (a==0)
if (x<=0)
y=3;
else /I x>0 is implied
y!=4,
else /I no if statement, thus a < 0 is implied
if (x <= 0)
y=5
else /I x>0 is implied
y!=6;
end

A.9. Case Statement

Conditional statements can be written using a “case” statement. The example below
implements an 8-1 multiplexer in Fig. A.12 with a case statement.

sel [2:0]

3
in0 —— 0
int — 1
in2 — 2

out

in7 —7/

Fig. A.12 8-1 MUX

A.9. Case Statement 507

The case statement for this MUX can be written as follows:

“define sel_value0 3'’b000
“define sel_value1 3'b001
“define sel_value2 3'b010
“define sel_value3 3'b011
“define sel_value4 3'b100

“define sel_value5 3'b101
“define sel_value6 3'b110
“define sel_value7 3'b111

module mux (out, sel, in0,in1, in2, in3, in4, in5, in6, in7);

output out;

inputin0, in1, in2, in3, in4, in5, in6, in7;

input [2:0] sel,

reg out;

always @ (sel or in0 or in1 or in2 or in3 or in4 or in5 or in6 or in7)

begin
case (sel)
“sel_valueO : out =in0;
‘sel_value1 : out =in1;
“sel_value2 : out = in2;
‘sel_value7 : out =in7;
default: out =in0;
endcase

end

endmodule

In this code, the case statement is executed if any of the inputs, in0 to in7, or the select
input, sel [2:0], changes. Once inside the case statement, the output of the MUX, out,
becomes equal to one of the MUX inputs according to the input select signal, sel_valueO to
sel_value7. The output of the MUX, out, also needs to be declared with a reg statement
because this variable is declared inside the procedural block, and assigned with different
input values, in0 to in7. The default statement inside the case statement declares the value of
the output if none of the other cases apply. The case statement is enclosed between the case
and the endcase clauses. Since the case statement is in a procedural block it also needs the
begin and the end statements enveloping the case statement.

508 Appendix: An Introduction to Verilog Hardware Design Language

A simple example is the implementation of a 4-1 MUX in Fig. A.13.

module mux (out, sel, in0, in1, in2, in3);
output out;

inputin0, in1, in2, in3;

input [1:0] sel;

reg out;
always @ (sel or in0 or in1 or in2 or in3)
begin
case (sel)
2’b00 : out = in0;
2’b01 : out = in1;
2’b10 : out = in2;
2’b11 : out =in3;
default: out = in0;
endcase
end
endmodule
sel [1:0]
2
in0 —— 0
int — 1
out
in2 — 2
in3 —— 3

Fig. A.13 4-1 MUX

The case statement can also be used to implement an Arithmetic Logic Unit (ALU) as
shown in Fig. A.14 because the ALU output is accompanied by a multiplexer.

A.9. Case Statement 509

‘define XOR 2'b00

‘define SHIFT 2’b01

‘define ADD 2'b10

‘define SUB 2’b11

module alu (out, opcode, a, b);
output [7:0] out;

input [7:0] a, b;

input [1:0] opcode;

reg [7:0] out;
always @ (opcode or a or b)
begin

case (opcode)
"XOR: out=a”b;
"SHIFT:out = a << b;
"ADD: out=a+b;
'SUB: out=a-b;
default: out = a + b;
endcase

end

endmodule

opcode [1:0]

2
oo bt |
Cavs o2 |
e}

Fig. A.14 A simple ALU

A.10. Looping Statements

There are two useful looping statements in Verilog, the “for” statement and the “while”
statement. Both statements have to be included in a procedural block.

In the for-loop example given below, the variable, i, starts from 0, and stops at 10,
incrementing by 1. The variable, j, is defined in terms of the variable, i. The array that
follows determines a[j] in terms of a[i]. Thus,

for (i=0;i<=10;i++)
begin
=i+
afi] = a[i] + 1;
end

510 Appendix: An Introduction to Verilog Hardware Design Language

The while-loop waits for the occurrence of an event. When the event takes place, the
statements in the while-loop are executed. In the example below, a for-loop is engaged, and the
variable, x[i], is determined in terms of a[i] and b[i] as long as the variable, sum, is not equal to 0.

while (sum !=0)

begin
for (i=0;i<10; i++)
begin
x[il = ali] - bil;
end
end

A.11. State Machine Implentations

There are two types of state machines: Mealy-type and Moore-type. Both types can easily be
implemented in Verilog using case statements.

The present state of a state machine is defined by flip-flop outputs. The next state is
defined by flip-flop inputs because at the positive edge of clock the next state becomes the
present state.

A.12. Mealy Machine

The present state outputs of the Mealy machine stems from the present state and the present
state inputs. Therefore, if the present state inputs change during the clock period, this change
affects the present state outputs and the next state instantaneously as shown in Fig. A.15.

Next State Present State
D Q
, Present State Inputs
clock
Present State Outputs
Combinational
Present State Logic Present State
Outputs Inputs

Fig. A.15 Block diagram and state representation of Mealy machine

A.12. Mealy Machine 51

The example in Fig. A.16 shows a Mealy-type state machine with four states. When
implementing this state machine in Verilog, it is best to divide the overall circuit topology
into two sections as shown in Fig. A.17.

The first section is purely combinational. This section’s inputs stem from the present state
and the present state inputs as shown in Fig. A.17. The outputs form the next state and the
present state outputs. Since both the outputs and the next state are functions of the inputs and
the present state, this section can conveniently be implemented with a multiplexer. The
second section constitutes a sequential logic circuit with flip-flop inputs and outputs. This
section, as we will see below, is implemented with an always statement.

IN=0
OouT =1

IN=0
ouT =4

IN=0
ouT=2

IN=0
ouT=3

Fig. A.16 State diagram of a Mealy machine with four states (reset not shown for
simplicity)

512 Appendix: An Introduction to Verilog Hardware Design Language

Next State

State assignment part

1. Combinational logic part

AY
\
." Combinational ‘/
Present State & Logic 7 Present State
/

Outputs AN . Inputs

Fig. A.17 Segmentation of the Mealy machine (with asynchronous reset)

The Verilog code below first implements the combinational logic section of the state
machine then the sequential part. The numeric values corresponding to each of the four
present states in Fig. A.16 are assigned to the parameters, sO, s1, s2 and s3, using the
parameter statement because this simplifies the observation of the input and the output
values at a particular state.

The combinational part of the state machine is implemented by a case statement inside an
always procedural block, and executed if one of the multiplexer inputs, in and pstate,
changes. Here, the input, in, corresponds the only input, IN, in Fig. A.16, and the input,
pstate, corresponds to the present state. If the pstate input is assumed to be the selector input
to a multiplexer, the case statement then lists all possible combinations of the multiplexer
output as a function of pstate. The default in the case statement always corresponds to the
initial state of the state machine. In each case statement, the output assignments are always
non-blocking type because in real hardware the outputs are produced concurrently and
independent of each other.

The sequential part of the state machine is implemented by an always statement. How-
ever, this statement becomes active only at the positive edge of the clock and the negative
edge of the reset rather than static values of these two signals.

A.12. Mealy Machine 513

/I Mealy machine with asynchronous reset
module mealy (out, reset, in, clock);
output [2:0] out;

input reset, in, clock;

reg [2:0] out;

reg [1:0] nstate, pstate;

parameter s0=2'b00, s1=2'b01, s2=2'b10, s3 =2'b11;

always @ (in or pstate)
begin
case (pstate)

s0: begin
if (in == 0)
begin
out <=1;
nstate <= s0;
end
else
begin
out <= 2;
nstate <= s1;
end
end
s1: begin
if in==0)
begin
out <= 2;
nstate <= s1;
end
else
begin
out <= 3;
nstate <=s2;
end
end
s2: begin
if (in ==0)
begin
out <= 3;
nstate <= s2;

end

514 Appendix: An Introduction to Verilog Hardware Design Language

else
begin
out < =4;
nstate <= s3;
end
end
s3: begin
if (in ==0)
begin
out <=4;
nstate <=s3;
end
else
begin
out<=2;
nstate <= s1;
end
end
default: begin
out <=1,
nstate <= s0;
end
endcase
end
always @ (posedge clock or negedge reset)
begin
if (reset == 0)
pstate <= s0;
else
pstate <= nstate;
end
endmodule

A.13. Moore Machine

Implementing the Moore machine is not any different from the Mealy machine except the
formation of present state outputs. Figure A.18 shows the present state outputs of the Moore
machine to be only a function of the present state, and independent of any present state inputs.

A.13. Moore Machine 515

Next State Present State o
D Q Comblngtlonal Present State Present State
Logic Outputs Outputs

clock —

Present State
Inputs
Combinational
Logic Present State Next State
Inputs Outputs

Fig. A.18 Block diagram and state representation of Moore machine

If we consider a four-state Moore machine in Fig. A.19, its implementation in Verilog
requires combining the two combinational logic sections of the circuit in Fig. A.20 with a
case statement, and implementing the sequential part with an always statement.

Implementing the combinational logic parts of the state machine is accomplished by a
multiplexer. The present state input, IN, and the present state, pstate, constitute the inputs to
this multiplexer. Implementing the sequential section of the state machine, on the other hand,

requires the next state of the state machine to be flip-flop inputs and the present state to be
flip-flop outputs.

IN=0

ouT=4

Fig. A.19 State diagram of a Moore machine with four states (reset not shown for
simplicity)

516 Appendix: An Introduction to Verilog Hardware Design Language

’ \\ l/, \
Next State Presgnt State Combinational
D Q : Logi Present State
ogic
Outputs

|
|
|
|
|
|
|
|
|
|
1

\\ (&) ‘5
State assignment part J

s,

.'/ Combinational
\ Logic Present State Inputs ,'k/_?
/

S e e -” Combinational logic part

\
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[

Fig. A.20 Segmentation of the Moore machine (with asynchronous reset)

The program below assigns numeric values to all four states with a parameter statement.
The first always statement includes a case statement to show what happens to the multiplexer
outputs if one of the selector inputs changes. Again, all multiplexer outputs form concur-
rently. Therefore, all output assignments are defined to be non-blocking type. As opposed to
the Mealy machine, the present state outputs of the Moore machine are solely generated from
the present state. Therefore, for each state from sO to s3 the output assignments are written
first, independent of any present state input.

The sequential part is implemented by an always statement which includes the edge
dependency of the clock and the reset. This statement is executed only if the indicated edges
of these two inputs take place. Otherwise, it is ignored.

A.13. Moore Machine

/l Moore machine with asynchronous reset
module moore_async (out, reset, in, clock);

output
input

reg

reg
parameter

always @ (in or
begin

[2:0] out;

reset, in, clock;
[2:0] out;

[1:0] nstate, pstate;

s0=2'b00, s1=2’b01, s2=2'b10, s3=2'b11;

pstate)

case (pstate)

s0:

s1:

s2:

s3:

default:

endcase
end

begin
out <=1;
if (in == 1)
nstate <= s1;
else
nstate <= s0;
end
begin
out <= 2;
if (in==1)
nstate <=s2;
else
nstate <= s1;
end
begin
out <= 3;
if (in==1)
nstate <= s3;
else
nstate <= s2;
end
begin
out <=4;
if (in == 1)
nstate <= s1;
else
nstate <= s3;
end
begin
out <=1;
nstate <= s0;
end

517

518 Appendix: An Introduction to Verilog Hardware Design Language

always @ (posedge clock or negedge reset)

begin
if (reset == 0)
pstate <= s0;
else
pstate <= nstate;
end
endmodule

The Verilog code below implements the Moore machine with a synchronous reset. This
time, reset is not an isolated input to the flip-flops as in Fig. A.20, but instead it is applied to
the combinational logic block along with the other present state inputs.

/Moore machine with synchronous reset
module more_sync (out, reset, in, clock);

output [2:0] out;

input reset, in, clock;

reg [2:0] out;

reg [1:0] nstate, pstate;

parameter s0=2'b00, s1=2’b01, s2 =2’'b10, s3 = 2’b11;

always @ (in or reset or pstate)

begin
case (pstate)
s0: begin
out <= 1;
if (reset==0)
nstate <=s0;
else
begin
if (in == 1)
nstate <= s1;
else
nstate <= s0;
end
end
s1: begin
out <= 2;
if (reset==0)
nstate <= s0;
else
begin
if (in==1)
nstate <= s2;
else
nstate <= s1;
end

end

A.13. Moore Machine 519

s2: begin
out <= 3;
if (reset == 0)
nstate <= s0;
else
begin
if in==1)
nstate <= s3;
else
nstate <= s2;
end
end
s3: begin
out <=4,
if (reset == 0)
nstate <= s0;
else
begin
if (in == 1)
nstate <= s1;
else
nstate <= s3;
end
end
default: begin
out <=1;
nstate <= s0;
end
endcase

end

always @ (posedge clock)
begin
pstate <= nstate;
end

endmodule

A.14. Principles of Register-Transfer-Logic Type Coding

The Register-Transfer-Logic (RTL) style of Verilog coding inherits many C-program con-
structs and implements the intended hardware with ease. Although structural or behavioral
Verilog coding may be necessary for certain types of logic blocks, RTL is still the most
common coding style to build hardware.

520 Appendix: An Introduction to Verilog Hardware Design Language
A.15. Wire Assignment

The first statement in RTL style coding is the wire statement. This statement is either
accompanied by an assign statement or declared by itself, and it resides outside the pro-
cedural block. In the first example below, the inputs, a and b, form an XOR gate with an
output, out. Separate wire and assign statements are used to implement the XOR gate.

wire out;
assign out =a " b;

However, the two statements can be combined to form a single wire statement.
wire out =a " b;

If the implementation requires multiple wires in the form of a bus, then the statements for
the node, out, can be written as follows:

wire [7:0] out;
assign out = a " b;

or

wire [7:0] out =a * b;

A.16. Conditional Operator

Another useful RTL construct is the conditional operator. Assume a tri-state buffer in
Fig. A.21.

{/‘ out

enable

Fig. A.21 Tri-state buffer implemented by conditional operator

A.16. Conditional Operator 521

The wire statement that includes the conditional operator can be written as follows:

wire out;
assign out = enable ? in: 1’bz;

The “?” in the above statement signifies the condition for the input, enable, to be equal to
logic 1 or not. If enable is logic 0, then the output, out, becomes an open circuit. Since out is
only one bit, the high impedance state is shown as 1’bz.

The wire and assign statements can also be combined to produce a single statement.

wire out = enable ? in : 1'bz;

Another example is a 3-1 MUX shown in Fig. A.22.

sel [1:0]
2
a 0
b 1 out
c 2

Fig. A.22 A 3-1 MUX implemented by conditional operator

wire out;
assign out = (sel == 2'b00) ? a: (sel == 2'b01) ? b : c;

In this statement, if sel [1:0] = 00 then the output, out, becomes a. If sel [1:0] = 01 then
out becomes b. For all the other values of sel, out becomes c.
The same statement can also be written without the assign statement as:

wire out = (sel == 2’'b00) ? a : (sel ==2’b01) ? b : c;

If the 3-1 MUX accepts bus inputs to produce a bus output as in Fig. A.23, then the wire
statement has to be modified to include the bus width.

522 Appendix: An Introduction to Verilog Hardware Design Language

sel [1:0]

2

a—»*—o0
8

b 1 out
8 8

cC—F4— 2
8

Fig. A.23 An eight-input 3-1 MUX implemented by conditional operator
wire [7:0] out = (sel == 2’'b00) ? a : (sel == 2'b01) ? b : ¢;

The bus width of the inputs, a, b, ¢ and sel, should be declared in the input statements
prior to the wire statement as shown below.

input [7:0] a, b, c;
input [1:0] sel;

wire [7:0] out = (sel == 2’'b00) ? a : (sel ==2'b01) ? b : c;

A.17. Memory Declaration

Memory is declared by a reg statement in Verilog. Assume an SRAM-like memory with (x+1)
number of bits and (y+1) number of rows as shown in Fig. A.24. This memory is declared as

follows:
reg [x:0] fifo [y:0];
Here, “fifo” is the name of the memory with a dimension of [x:0] by [y:0].

X 0

y-1

Fig. A.24 (x+1) wide (y+1) deep memory

A.18. Memory Addressing 523

A.18. Memory Addressing

Following the memory declaration, the memory addressing should be specified to locate a
specific data in the memory.

Assume an eight-bit wide memory with 16 rows in Fig. A.25. In order to access the most
significant bit (msb) and the least significant bit (Isb) of this memory at any row, an address
needs to be formed in the Verilog code.

input [3:0] address;
reg [7:0] mem [15:0];
reg [7:0] row;

reg msb, Isb;

row = mem [address];
msb = row [7];

Isb = row [0];

In this example, the reg statement, reg [7:0] mem [15:0], declares a 8x16 memory with a
name, mem.

15

| | <4— address [3:0]

msb ° Isb

Fig. A.25 An 8x16 memory

If the memory address is externally supplied to the memory, this input needs to be
declared in the input statement. Each row is declared with a second reg statement, reg [7:0]
row. Once the row declaration is finished, the most and the least significant bits are then
declared in the third reg statement, reg msb, Isb.

Therefore, each bitin an arbitrary row can be accessed by the statement, row = mem [address],
in the Verilog program above. To access the most significant bit and the least significant bit
are accomplished by msb = row [7] and Isb = row [0], respectively.

524 Appendix: An Introduction to Verilog Hardware Design Language

A.19. Memory Modeling

Different types of memory require different styles of memory modeling. The simple SRAM
memory shown in Fig. A.26 has a single bidirectional data port and operates with a clock.
The data is written to an arbitrary row or read from an arbitrary row at the positive edge of
the clock signal once the memory address is specified.

15
14

— address [3:0]

l«— clock

RE WE

data [7:0]

Fig. A.26 An 8x16 single port, bidirectional memory

Since the data port is bidirectional, this port needs to be declared as an inout statement.
Therefore, the Verilog program can be written as follows:

A.19. Memory Modeling 525

module mem (data, address, WE, RE, clock);
inout [7:0] data;

input [3:0] address;

input WE, RE, clock;

reg [7:0] SRAM [15:0];

reg [7:0] data;

reg [1:0] read_write_state;

always @ (posedge clock)

begin
read_write_state = {WE, RE}; /I curly brackets are for concatenating WE and RE
case (read_write_state)
2’b00: data = 8bz;
2’b01: data = SRAM [address];
2’b10: SRAM [address] = data;
2’b11: $display (“error”); // WE and RE cannot be at logic 1 simultaneously
default: data = SRAM [address]; // SRAM needs to be in the read mode when idling
encase

end

endmodule

In the example above, the case statement is formed in a procedural block because both the
read and the write cycles take place at the positive edge of the clock. When neither RE nor
WE is at logic 1, the bidirectional data port must be at a high impedance state, data = 8’bz.
When a read takes place, data is read out from a specified memory address and directed to
the bidirectional bus, data [7:0]. When a write takes place, data from the bidirectional bus is
written to a specified address, SRAM [address]. When both WE and RE are at logic 1, this
should be indicated as an error.

A set of if statements can also be used to replace the case statement except the case
statement is more compact, and it includes all possible cases to model a memory.

The following example models a unidirectional, byte addressable memory shown in
Fig. A.27 with two data ports. The input port, Dataln [31:0], is byte-addressable and
therefore contains four bytes. The output port, DataOut, is not byte-addressable, and it is
used to read all 32 bits of data. Thus,

526 Appendix: An Introduction to Verilog Hardware Design Language

module mem (DataOut, Dataln, address, clock, ByteEn, WE, RE);
output [31:0] DataOut;

input [31:0] Dataln;

input [3:0] address, ByteEn;

input clock, RE, WE;

reg [31:0] SRAM [15:0];

reg [31:0] temp;

always @ (posedge clock)
begin
if WE ==1 && RE ==0)
begin
casex (ByteEn)
4’b0000: temp [31:0] = 32'bz;
4’b0001: temp [7:0] = Dataln [7:0];
4’'b0010: temp [15:8] = Dataln [15:8];
4'b0011: temp [15:0] = Dataln [15:0];
4’b0100: temp [23:16] = Dataln [23:16];
4'b0101: begin
temp [23:16] = Dataln [23:16];
temp [7:0] = Dataln [7:0];
end
4’b0110: temp [23:8] = Dataln [23:8];

4'b1111: temp [31:0] = Dataln [31:0];
default: begin
temp [31:0] = 32’bx;

$display (“no bytes are enabled”);
end
endcase
SRAM [address] = temp;
end
else if (RE ==1 && WE ==0)
DataOut = SRAM [address];
else if (RE ==0 && WE ==0)
DataOut = 32'bz;
else
display (“Error - RE and WE are enabled”);
end

endmodule

A.20. A Few Words on Functional Verification 527

31 0

15

WE

Dataln [31:0]

Co| Co| Co|

address [3:0] —» byte3| | |byte0

clock —» ByteEn [3:0]

RE

32

DataOut [31:0]

Fig. A.27 32x16 dual port, unidirectional memory

A.20. A Few Words about Functional Verification

Functional verification is a very critical step in logic design and needs to cover every
possible corner case and input combination to a Verilog module. However, when the circuit
is not purely combinational but contains sequential components, the difficulty of functional
verification increases. A proper process in this case is to isolate the sequential sections from
the combinational sections of the circuit and verify each section individually before verifying
the entire system.

When a combinational circuit goes through a formal functional verification step, the best
method is to apply the inputs of the entire truth table as test vectors to the module, store the
circuit’s response in an output file, and then compare this output file with the one that
contains the expected outputs (the ouputs of the truth table) as shown in Fig. A.28.

However, if the circuit is sequential, each state-to-state transition needs to be examined in
the state machine when the inputs to the state change. Furthermore, the outputs from each
state need to match the expected output values.

It may be sufficient to do functional check using timing diagrams if the size of the circuit
is small. However, for bigger circuits, including many combinational and sequential mod-
ules, the verification process is applied to each individual module, and then to the entire
system. Both types of verification are essentially a file matching process as shown in
Fig. A.28.

528 Appendix: An Introduction to Verilog Hardware Design Language

stimuli _
(input file) » module.v » output file
compare

expected

output file

Fig. A.28 Formal functional verification process

Index

A

Acknowledge, 381, 386, 444, 449, 453

Activating a bank, 178

Active image, 417-420, 422, 424, 426, 450, 458

ADDI instruction, 290, 291, 335

ADD instruction, 279, 280, 305, 307, 326-329, 335, 339,
360, 365, 366, 376

Address, 131-143, 146, 147, 152-156, 158-161

Address decoder, 94-97, 168-170, 198-200, 207, 208,
249

Address enable signal, 198

Address input, 201, 202

Address mode register, 177-180, 184, 190

Analog-to-digital converter (ADC), 428, 429, 431438,
447, 448

AND-gate, 2, 3, 5, 10-13, 22, 26, 31, 34, 38, 40, 63

ANDI instruction, 290-293

AND instruction, 282-284, 326, 328

Arbiter, 132, 133, 134, 143-146, 163, 164, 166

Arbitration, 143-145, 152

Architecture, 459, 463, 478, 479, 484489

Arithmetic Logic Unit (ALU), 273, 275, 277, 279-283,
284, 285, 287, 293-295, 305, 307, 324, 327-329,
335, 337, 338, 340, 342, 365, 373

Array multiplier, 45, 46

Asynchronous circuit, 111-113, 127, 128, 129

Asynchronous clock methodology, 121

B

Barrel shifter, 1, 42-44

Basic data-flow program structure, 479
Bidirectional bus, 131-133, 159, 160

Block address, 176

Block diagram, 83, 98, 100, 105

Block erase, 243

Block protect, 206

Boolean algebra, 8

Booth multiplier, 45, 47, 52, 53, 55, 56, 60-62, 65
BRA instruction, 299, 303, 307, 312, 313, 332, 377
Buffer, 4, 7, 8

Burst, 133-136, 142, 150, 158

Burst stop, 178, 187, 188

© Springer International Publishing Switzerland 2017

Bus interface, 160

Busmaster, 131-161

Bus master interface, 134

Bus slave, 131, 132, 135, 136, 152, 153, 162
Bus slave interface, 136

Bypass port, 462

C

Cache, 273, 275, 344-359, 364, 367, 370, 372, 373, 375,
376

Cache topology, 344, 345

Carry-look-ahead adder, 1, 33, 35, 38, 39, 41

Carry-select adder, 1, 30, 34, 35, 40

C-element, 121-124, 125, 126, 128

Central Processing Unit (CPU), 273, 275-278, 285, 288,
290, 292-294, 297, 305, 307, 309-312, 315, 321,
324-327, 329, 333, 335-340, 344, 345, 347, 350,
352, 353, 356, 366, 370, 371, 376

Chip erase, 210, 215, 257

Chip hibernate, 261

Chip select (CS) signal, 177-179, 181-197, 261, 265

Cluster, 459, 460, 462, 463, 465, 477, 484, 487, 489, 490,
492

Column address, 181, 183, 184, 186, 190, 191, 192, 194,
195, 262, 265, 267

Column address strobe (CAS), 177-179, 182-197, 262,
265, 270

Combinational logic, 1, 11, 14, 24, 25, 33

Command enable signal, 198

Command input, 200, 201, 203

Complemented logic gate, 5

Controller design, 90, 97, 100

Counter, 67, 81, 82, 90-93, 97-100, 103, 104

Counter-decoder design, 92

D

Data, 131-141, 143, 147, 152-156, 158
Data converter, 379, 428

Data dependency, 340-343

Data driven processor, 459, 478, 479, 487
Data-flow, 178, 238

529

A. Bindal, Fundamentals of Computer Architecture and Design,

DOI 10.1007/978-3-319-25811-9

530

Data-flow graph, 478, 479, 482, 483, 484, 486

Data-flow node, 479

Data hazards, 326, 327, 329, 336, 340, 373

Data input, 182, 212

Data memory, 287, 289-291, 310, 312, 314, 321, 325,
327, 329, 342, 344, 347, 351, 352, 354, 356, 358,
360, 378, 390, 393

Data movement instructions, 297, 299

Data output (read), 203

Data-path, 67, 73, 76, 97-99, 101, 108

Decoder, 1, 25, 26, 64

Destination address, 381, 384, 385, 442

D flip-flop, 70-73

Digital-to-analog converter (DAC), 433, 434, 437, 440,
441, 448

Direct-mapped cache, 345, 346, 350, 351

Direct memory access (DMA), 379, 387, 389, 442, 457

Dirty bit, 356, 357

Display adapter, 379, 380, 417, 419, 425, 426, 427, 450,
458

D latch, 67-70

Down-rounding, 434, 437, 438, 448

E

Electrically erasable programmable read only memory
(E’PROM), 167, 168, 198203, 206, 250

Enable signal, 198

Encoder, 1, 24, 49, 56-59, 65

E*PROM cell, 199, 200

Equivalent class table, 117

Exclusive NOR-gate, 6, 22

Exclusive OR-gate, 4

F

Fast write, 211, 213, 216-220, 222-231, 233, 248, 263,
271

Fast write reset, 216-218, 228, 231

Fast write set, 211, 216, 218, 227, 230

Field-programmable-gate-array (FPGA), 459, 460, 462,
465-467, 476, 491-494

Fixed-point, 273, 279-282, 284, 287, 288-291, 293, 296,
297, 299, 301, 303-304, 307-310, 312, 324, 340,
360, 361

Flash ADC, 431-433

Flash memory, 167, 168, 198, 201, 206, 207, 208,
210-213, 215, 216, 219, 222, 227-233, 238,
240-243, 248-262, 268-270, 380

Flash memory commands, 211, 252

Floating-point, 273, 314-325, 340, 342, 376, 377, 390

Floating-point adder, 273, 321, 322, 324, 340, 377

Floating-point multiplier, 322-324, 342, 377

Flow chart, 218, 219, 220, 233, 241, 242, 263, 264, 268

Forwarding loop, 273, 367, 372, 373

Forwarding path, 327-331, 333, 335-338, 342

Full adder, 27-30, 33, 34, 46, 47, 56, 64

Full-page erase, 205, 206

Full-page write, 204, 205

Full-page-read, 205

Index

Fully-associative cache, 344
Fundamental-Mode Circuit, 111

G
Gate, 1-8, 22, 23, 33, 34, 38, 45, 63-65

H

Half adder, 28

Handover, 146, 147

Handshake, 143

Hazard-free, 120, 125

Hazards, 273, 303, 324, 326, 329, 333, 336-338, 340, 373
Hibernate, 198, 200, 208, 252, 260

High impedance, 209

Hi-Z, 209

Hold-slack, 74, 77, 107

Hold time, 71, 74, 105-107

Hold violation, 74, 75, 77, 105

Horizontal blanking, 417, 418, 419, 422, 424, 426

1

I°C Block erase interface, 241, 243, 247

I°C Fast write interface, 271

I%C interface, 222, 232, 248

1?C Read interface, 231, 234, 239, 271

IC start condition, 154

I?C stop condition, 154

IC, 147, 152-157, 165

ID read, 212

IEEE double-precision format, 273, 318

IEEE single-precision format, 273, 314, 315

Image frame, 419, 422, 426

Immediate type instructions, 274

Immediate value, 274, 275, 290-297, 299, 301, 303, 305,
311, 335

Implication table, 112, 115, 116, 127, 128

Input, 67, 68, 70-72, 75-77, 79, 80, 82, 83, 87, 92-94,
100, 101, 105, 107

Input flag, 482

Instruction, 273-279, 282-285, 287, 288, 290-293, 305,
307, 325, 326-329, 338, 360, 365, 366, 376

Instructional chart, 336-338, 340-343

Instruction format, 273, 283, 294, 479, 485-487

Instruction memory, 274-277, 279-281, 290, 297, 324,
332, 334, 376, 377

Inter Integrated Circuit, 147, 152

Inter-processor arbiter, 489, 490

Interrupt address table, 453

Interrupt controller, 379, 380, 389, 390, 392, 394, 397,
398, 401, 443-445, 453, 457

Interrupt generator, 411, 416, 417

Interrupt sequence, 392, 393, 395

Inverter, 5, 7, 8, 22, 63

/O port, 209, 213, 222, 228, 230, 241, 262, 270

Iterative fixed-point multiplication, 360, 361, 363

Index

J

JAL instruction, 303

JALR instruction, 305

JREG instruction, 301, 303, 307, 333

JUMP instruction, 301, 304, 314, 332, 335, 336

K
Karnaugh map (K-map), 1, 14-19, 21, 24, 27

L

Latency, 177, 180, 184, 186, 187, 190, 194-198, 262,
265, 266, 270

LCD display, 417

LED display, 417

Linear SDRAM addressing, 180

Linear shifter, 42

LOAD instruction, 297, 298, 305, 306, 308, 324, 328,
329, 335

Logic gate, 1, 2,4, 5,7, 8, 11

Look-up-table (LUT), 459465, 462, 463, 465, 475-477,
491-493

M

Main Flash memory modes, 207

Master, 131-166

Master-in-slave-out (MISO), 148
Master-out-slave-in (MOSI), 148

Master status, 134, 136, 140, 141

Mealy machine, 87-90

Memory, 67-69, 94, 95
Micro-architecture, 487, 488
Minimization, 1, 14, 16, 17, 55
Minimization tables, 116, 127

Modes of operation, 154

Moore machine, 83-87, 89, 101, 104
MOVEI instruction, 301, 377

MOVE instruction, 297, 305, 306, 310-313
Mueller element, 111, 121

MUL instruction, 280, 281, 360, 366, 367
Multi-cycle operations, 340, 341

Multiple read cycles, 187

Multiple write cycles, 185

2-1 multiplexer, 20, 63

4-1 multiplexer, 21

Multiplier, 1, 4547, 52, 53, 55, 56, 60-62, 64
2-1 MUX, 20, 21, 34, 39, 40, 42

4-1 MUX, 21-23

N

NAND-gate, 5, 6, 23, 63
NANDI instruction, 292, 293
NAND instruction, 283-285, 376
Next state, 83—85, 87

531

Nodal network, 484

Non-interlaced display, 418

Non-pipelined CPU, 276

NOP instruction, 301, 303, 329, 332, 333, 335-339, 342,
367, 373

NOR-gate, 6, 7, 63

NORI instruction, 292, 293

NOR instruction, 283-285, 376

(0]

One bit full adder, 27-30, 33, 34

One-bit half adder, 28, 29

One-shot timer, 411413, 443, 457

Opcode, 279, 283, 285, 366

Operand, 273-275, 277, 279, 280, 284, 328, 366
OR-gate, 3,4, 6, 11, 12, 22, 23, 31, 32, 34, 38, 40, 63, 64
ORI instruction, 292, 293

OR instruction, 283, 284, 376

Output, 67, 68, 70-72, 76, 79-87, 90-94, 101, 104
Output flow table, 114, 115, 117, 118, 120, 124, 127, 128
Output mask, 189

P

Page address, 198, 201, 213, 215, 241- 246, 248, 255,
256

Page erase, 200, 211, 213, 241-243, 246, 256

Page write, 205, 255

Parallel bus, 131, 166

Pipeline, 285, 288-290, 293, 321, 342, 343, 348, 354,
355, 387, 396

Pipelined CPU, 290

Precharging a bank, 188, 189

Present state, 85-87, 89, 102, 103

Primitive state table, 116

Processor design, 509

Product of sums (POS), 13-15, 17-19, 22, 31, 64

Program control hazards, 285, 348

Program control instructions, 316

Program counter, 287

Programming, 483, 484, 487-489, 491, 494-500,
502-506, 512, 513

Protect bank, 182, 183, 187

Q

Quantization error, 453, 454

R

Racing condition, 114, 115, 121-123
Ramp ADC, 458, 460, 461, 473

Rate generator, 435-437, 482

Read, 133-145, 149, 150, 155-158, 160
Read enable, 96

532

Read enable signal, 202, 207, 212, 219

Reading from a bank, 183

Read transfer, 140-142

Ready signal, 137, 139, 140, 144, 148, 149, 155, 164

Receiver, 423, 428-431, 474, 480

Receiver buffer, 428

Reduced Instruction Set Computer (RISC), 285, 287, 288,
290, 330, 340, 342, 350, 354, 355, 357, 384, 385,
387, 390, 396, 397

Reference voltage, 453, 456

Register, 69, 81-84, 86, 97, 99, 110

Register file, 285, 287, 340, 396

Register-to-register type instructions, 296, 302

Request, 401, 406, 407, 412, 425, 442, 469, 474, 475

RET instruction, 320

Ripple-carry adder, 1, 31, 32, 35, 65

Router, 508, 513, 514

Row address, 182, 183, 188, 189-192, 194, 193, 198,
199, 201, 202, 205-207, 211, 216, 274, 277

Row address strobe (RAS), 182—-184, 186-194, 197-202,
204-206, 274, 277

S

Sample-and-hold, 453, 456

Sampling, 439, 453-456

Sampling width, 456

SCK, 149-153

SCLK, 167

S-clock, 151

2s complement addition, 42

SDRAM address mapping, 198

SDRAM bus interface, 196-198, 200, 202, 204, 206, 282,
283

SDRAM cell, 183

SDRAM core, 187, 195, 201, 202

SDRAM modes of operation, 183

SDRAM operation cycles, 183, 196

Self-refresh, 187

Sense amplifier, 170-172, 182, 183, 217, 219

SEQI instruction, 309

SEQ instruction, 302

Sequential logic, 69, 99

Sequential SDRAM addressing, 184, 185

Serial bus, 133, 149, 150

Serial flash memory, 170, 262-273

Serial flash memory commands, 264

Serial Peripheral Interface (SPI), 149-153, 159, 167, 168

Set, 295, 299, 302, 308, 309, 316, 321, 325-327, 329,
330, 340, 361, 362, 364, 365, 367, 369, 370,
372-374, 376, 377, 384, 387, 391, 393, 396

Set-associative cache, 362, 363, 365, 367, 372, 387

Set-up slack, 79

Set-up time, 70, 73, 74, 76

Set-up violation, 73, 77

SGEI instruction, 308

SGE instruction, 299, 300

SGTI instruction, 308

Index

SGT instruction, 300, 302

Shifter, 1, 43-45

Shift register, 69, 82, 83

Size, 135-138, 144, 160, 163

Slave, 133-145, 150-152, 154-160, 162-165

SLEI instruction, 308

SLE instruction, 302

SLI instruction, 305, 306, 326, 327, 329, 352, 380, 396

SL instruction, 296, 297, 305, 396

SLTI instruction, 308

SLT instruction, 302

SNETI instruction, 309

SNE instruction, 302

Source address, 407, 467

SPI mode 0, 152, 153

SPI mode 1, 152, 153

SPI mode 2, 152, 153

SPI mode 3, 152, 153

Square wave generator, 437, 438

SRAM bus interface, 174, 176, 177, 179, 180, 283.

SRAM cell, 171

SRAM controller, 170

SRAM core, 170-172

SRAM 1/0, 172, 173

SRI instruction, 305, 306, 326, 327, 329, 396

SR instruction, 296, 297, 305, 396

S-R latch, 113, 131

SS, 150, 151

5-stage CPU, 289, 342, 353, 358

Standby, 176, 177, 179, 180, 194, 207-209, 218, 220,
275

State assignment, 113, 115, 120, 126, 127

State diagram, 85, 86, 89, 90, 92-94, 99, 110

State machine, 69, 85, 88, 92, 93, 99, 102, 103, 106, 109

State table, 85-87, 89, 90, 94

Static Random Access Memory (SRAM), 169-181, 233,
283

Status, 135-145, 160, 164

Status register, 209, 210, 213, 263, 264, 269, 272, 273

Status register read, 210, 213, 273

Step size, 453, 454, 464

STORE instruction, 312, 313, 321, 323, 325, 327, 329,
346, 347, 353, 359, 360

Structural hazards, 324, 393

SUBI instruction, 306, 352

SUB instruction, 292, 295, 343

Subtractor, 1, 42, 65

Successive approximation ADC, 461, 462, 463, 472

Sum of products (SOP), 12, 14-16, 18-22, 26, 29, 64

Synchronous Dynamic Random Access Memory
(SDRAM), 170, 181-187, 189-192, 195-206,
233, 274, 277, 278, 282, 283

System architecture, 399, 400

T
Tag comparison, 364
Timer, 399, 431-435, 437, 439, 468, 482

Index

533

Timing diagram, 69, 72, 74, 76, 79-84, 93-95, 99-103,
107-110

Timing methodology, 71, 72, 74, 75

Timing table, 288, 290

Timing violations, 69, 75, 108

Transceiver, 399, 424

Transfer, 133-145, 147-149, 154, 155, 157-160

Transition table, 87, 89, 91, 94

Transmitter, 423428, 474, 480

Transmitter buffer, 425

Tri-state, 7, 8

Truth table, 1-7, 11-17, 20-22, 24-27, 29, 30, 31, 44, 50,
57, 59, 60, 61

U
Unidirectional bus, 133, 134, 138, 148, 160, 164, 168
Up-rounding, 459, 462, 463, 473

A\

Valid bit, 345, 346, 350, 351, 354, 355, 356, 358, 364,
375

Variable clock, 122

Vertical blanking, 420, 421, 424, 445

w

2-way set-associative cache, 344, 345, 354, 362

4-way set-associative cache, 344, 345, 347, 349, 367

Weighted binary adder DAC, 440, 441

Write, 131-137, 138, 139, 141, 145, 152, 154, 156, 159

Write-back cache, 353, 357-376

‘Write burst, 187, 193

‘Write enable, 79, 94

Write enable (WE) signal, 169-182, 185-192, 195-200,
202-226, 230-233, 235-238, 240, 243, 245,
248-251, 253, 255-258, 272, 273, 275, 271, 280

Write resume, 214

Write suspend, 213

Write-through cache, 352, 354-356, 364

Write transfer, 135-137, 141, 145, 146, 152, 161

Writing into a bank, 179

X

XNOR-gate, 6, 7, 22, 64
XNORI instruction, 294, 295
XNOR instruction, 282-294, 376
XOR-gate, 4, 6, 31, 32, 39, 64
XORI instruction, 294, 295
XOR instruction, 283-284

	Preface
	Contents
	About the Author
	1 Review of Combinational Circuits
	1.1 Logic Gates
	1.2 Boolean Algebra
	1.3 Designing Combinational Logic Circuits Using Truth Tables
	1.4 Combinational Logic Minimization—Karnaugh Maps
	1.5 Basic Logic Blocks
	1.6 Combinational Mega Cells

	2 Review of Sequential Logic Circuits
	2.1 D Latch
	2.2 Timing Methodology Using D Latches
	2.3 D Flip-Flop
	2.4 Timing Methodology Using D Flip-Flops
	2.5 Timing Violations
	2.6 Register
	2.7 Shift Register
	2.8 Counter
	2.9 Moore Machine
	2.10 Mealy Machine
	2.11 Controller Design: Moore Machine Versus Counter-Decoder Scheme
	2.12 Memory
	2.13 A Design Example Using Sequential Logic and Memory

	3 Review of Asynchronous Logic Circuits
	3.1 S-R Latch
	3.2 Fundamental-Mode Circuit Topology
	3.3 Fundamental-Mode Asynchronous Logic Circuits
	3.4 Asynchronous Timing Methodology
	Reference

	4 System Bus
	4.1 Parallel Bus Architectures
	4.2 Basic Write Transfer
	4.3 Basic Read Transfer
	4.4 Bus Master Status Change
	4.5 Bus Master Handshake
	4.6 Arbiter
	4.7 Bus Master Handover
	4.8 Serial Buses

	5 Memory Circuits and Systems
	5.1 Static Random Access Memory
	5.2 Synchronous Dynamic Random Access Memory
	5.3 Electrically-Erasable-Programmable-Read-Only-Memory
	5.4 Flash Memory
	5.5 Serial Flash Memory
	References

	6 Central Processing Unit
	6.1 RISC Instruction Formats
	6.2 CPU Data-Path
	6.3 Fixed-Point Register-to-Register Type ALU Instructions
	6.4 Fixed-Point Immediate Type ALU Instructions
	6.5 Data Movement Instructions
	6.6 Program Control Instructions
	6.7 Design Example I: A Fixed-Point CPU with Four Instructions
	6.8 Design Example II: A Fixed-Point CPU with Eight Instructions
	6.9 Floating-Point Instructions
	6.10 Floating-Point
	6.11 Floating-Point Adder
	6.12 Floating-Point Multiplier
	6.13 A RISC CPU with Fixed and Floating-Point Units
	6.14 Structural Hazards
	6.15 Data Hazards
	6.16 Program Control Hazards
	6.17 Handling Hazards in a Five-Stage RISC CPU: An Example
	6.18 Handling Hazards in a Four-Stage RISC CPU
	6.19 Handling Hazards in a Three-Stage RISC CPU
	6.20 Multi-cycle ALU and Related Data Hazards
	6.21 Cache Topologies
	6.22 Cache Write and Read Structures
	6.23 A Direct-Mapped Cache Example
	6.24 Write-Through and Write-Back Cache Structures in Set-Associative Caches
	6.25 A Two-Way Set-Associative Write-Through Cache Example
	6.26 A Two-Way Set-Associative Write-Back Cache Example
	References

	7 System Peripherals
	7.1 Overall System Arcitecture
	7.2 Direct Memory Access Controller
	7.3 Interrupt Controller
	7.4 Serial Transmitter and Receiver Interface
	7.5 Timers
	7.6 Display Adaptor
	7.7 Data Converters
	7.8 Digital-to-Analog Converter (DAC)
	References

	8 Special Topics
	8.1 Field-Programmable-Gate Array
	8.2 Data-Driven Processors
	References

	Appendix: An Introduction to VerilogHardware Design Language
	A.1. Module Definition
	A.2. Numbers in Verilog
	A.3. Time Directives for Compiler
	A.4. Parameters
	A.5. Basics of Structural Verilog Modeling
	A.6. Behavioral Modeling
	A.7. Arithmetic and Logical Operators in Verilog
	A.8. Conditional Statement
	A.9. Case Statement
	A.10. Looping Statements
	A.11. State Machine Implentations
	A.12. Mealy Machine
	A.13. Moore Machine
	A.14. Principles of Register-Transfer-Logic Type Coding
	A.15. Wire Assignment
	A.16. Conditional Operator
	A.17. Memory Declaration
	A.18. Memory Addressing
	A.19. Memory Modeling
	A.20. A Few Words about Functional Verification

	Index

