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Preface

This book is intended to provide a unified introduction to solid and fluid 
mechanics and to convey the underlying principles of continuum mechan-
ics to undergraduates. We assume that students using this book have taken 
courses in calculus, physics, and vector analysis. By demonstrating both the 
connections and the distinctions between solid and fluid mechanics, this 
book will prepare students for further study in either field or in fields such 
as bioengineering that blur traditional disciplinary boundaries.

The use of a continuum approach to make connections between solid and 
fluid mechanics is a perspective typically provided only to advanced under-
graduates and graduate students. This book introduces the concepts of stress 
and strain in the continuum context, showing the relationships between 
solid and fluid behavior and the mathematics that describe them. It is an 
introductory textbook in strength of materials and in fluid mechanics and 
also includes the mathematical connective tissue between these fields. We 
have decided to begin with the a-ha! of continuum mechanics rather than 
requiring students to wait for it.

This approach was first developed at Harvey Mudd College (HMC) for a 
sophomore-level course called “Continuum Mechanics.” The broad, unspe-
cialized engineering program at HMC requires that curriculum planners ask 
themselves, “What specific knowledge is essential for an engineer who may 
practice, or continue study, in one of a wide variety of fields?” This course was 
our answer to the question, what engineering mechanics knowledge is essential?

An engineer of any type, we felt, should have an understanding of how 
materials respond to loading: how solids deform and incur stress; how fluids 
flow. We conceived of a spectrum of material behavior, with the idealiza-
tions of Hookean solids and Newtonian fluids at the extremes. Most mod-
ern engineering materials—biological materials, for example—lie between 
these two extremes, and we believe that students who are aware of the entire 
spectrum from their first introduction to engineering mechanics will be well 
prepared to understand this complex middle ground of nonlinearity and 
viscoelasticity. 

Our integrated introduction to the mechanics of solids and fluids has 
evolved. As initially taught by CLD, the HMC course emphasized the under-
lying principles from a mathematical, applied mechanics viewpoint. This 
focus on the structure of elasticity problems made it difficult for students 
to relate formulation to applications. In subsequent offerings, JSR chose to 
embed continuum concepts and mathematics into introductory problems, 
and to build gradually to the strain and stress tensors. We now establish 
a “continuum checklist”—compatibility [deformation], constitutive law, and 
equilibrium—that we return to repeatedly. This checklist provides a frame-
work for a wide variety of problems in solid and fluid mechanics.
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We make the necessary definitions and present the template for our contin-
uum approach in Chapter 1. In Chapter 2, we introduce strain and stress in one 
dimension, develop a constitutive law, and apply these concepts to the simple 
case of an axially loaded bar. In Chapter 3, we extend these concepts to higher 
dimensions, introducing Poisson’s ratio and the strain and stress tensors. In 
Chapters 4–7 we apply our continuum sense of solid mechanics to problems 
including torsion, pressure vessels, beams, and columns. In Chapter 8, we 
make connections between solid and fluid mechanics, introducing properties 
of fluids and the strain rate tensor. Chapter 9 addresses fluid statics. Applica-
tions in fluid mechanics are considered in Chapters 10 and 11. We develop 
the governing equations in both control volume and differential forms. In 
Chapter 12, we see that the equations for solid dynamics strongly resemble 
those we’ve used to study fluid dynamics. Throughout, we emphasize real-
world design applications. We maintain a continuum “big picture” approach, 
tempered with worked examples, problems, and a set of case studies.

The six case studies included in this book illustrate important applica-
tions of the concepts. In some cases, students’ developing understanding of 
solid and fluid mechanics will help them understand “what went wrong” in 
famous failures; in others, students will see how the textbook theories can be 
extended and applied in other fields such as bioengineering. The essence of 
continuum mechanics, the internal response of materials to external loading, 
is often obscured by the complex mathematics of its formulation. By build-
ing gradually from one-dimensional to two- and three-dimensional formu-
lations and by including these illustrative real-world case studies, we hope to 
help students develop physical intuition for solid and fluid behavior.

We’ve written this book for our students, and we hope that reading it is 
very much like sitting in our classes. We have tried to keep the tone conver-
sational and have included many asides that describe the historical context 
for the ideas we describe and hints at how some concepts may become even 
more useful later on.

We are grateful to the students who have helped us refine our approach. We 
are deeply appreciative of our colleague and friend Lori Bassman (HMC)—
of her sense of pure joy in structural mechanics and her ability to communi-
cate that joy. Lori has been a sounding board, contributor of elegant (and fun) 
homework problems, and defender of the integrity of “second moment of 
area” despite the authors’ stubbornly abiding affection for “moment of iner-
tia.” We also thank Joseph A. King (HMC), Harry E. Williams (HMC), Josh 
Smith (Lafayette), James Ferri (Lafayette), Diane Windham Shaw (Lafayette), 
Brian Storey (Olin), Borjana Mikic (Smith), and Drew Guswa (Smith). We 
thank Michael Slaughter and Jonathan Plant, our editors at Taylor & Francis/
CRC, and their staff.

We want to convey our warmest gratitude to our families. First are Toby, 
Leda, and Cleo Rossmann. Thanks especially to Toby, for his direct and indi-
rect support of this project. And then there’s Joan Dym, Jordana, and Mir-
iam, and Matt and Ryan and spouses and partners, and a growing number 
of grandchildren. We are grateful for their support, love, and patience.
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1

1
Introduction

This textbook, Introduction to Engineering Mechanics: A Continuum Approach, is 
intended to demonstrate the connections between solid and fluid mechanics, 
and the larger mathematical concepts shared by both fields, while introduc-
ing the fundamentals of both solid and fluid engineering mechanics.

Mechanics is the study of the motion or equilibrium of matter and the forces 
that cause such motion or equilibrium. The reader is likely already familiar 
with the sort of “billiard ball” mechanics formulated in physics courses—for 
example, when two such billiard balls collide, applying Newton’s second law 
will help us learn the velocities of both balls after the collision. Engineer-
ing mechanics mandates that we also consider how the impact will affect the 
balls: Will they deform or even crack? How many such collisions can they 
sustain? How does the material chosen for their construction affect both 
these answers? What design decisions will optimize the strength, cost, or 
other properties of the balls? Taking a continuum approach to engineering 
mechanics means, essentially, that we will consider what’s going on inside 
the billiard balls and will quantify the internal response to external loading.

This book provides an introduction to the mechanics of both solids and 
fluids and emphasizes both distinctions and connections between these 
fields. We will see that the material behaviors of ideal solids and fluids are 
at the far ends of a spectrum of material behavior and that many materials of 
interest to modern engineers—particularly biomaterials—lie between these 
two extremes, combining elements of both “solid” and “fluid” behavior.

Our objectives are to learn how to formulate problems in mechanics and 
how to reduce vague questions and ideas into precise mathematical state-
ments. The floor of a building may be strong enough to support us, our fur-
niture, and even the occasional fatiguing dance party, but if not designed 
carefully, the floor may deflect considerably and sag. By learning how to pre-
dict the effects of forces, stresses, and strains, we will become better design-
ers and better engineers.
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1.1 A Motivating Example: Remodeling 
 an Underwater Structure

Underwater rigs like that shown in Figure 1.1 are commonly used by the 
petroleum industry to harvest offshore oil. Over the life of a structure, many 
sea creatures and plants attach themselves to the supports. When wells have 
dried up, the underwater structures can be removed in manageable segments 
and towed to shore. However, this process results in the loss of both the reef 
dwellers attached to the platform’s trusses and the larger fish who feed there. 
Corporations often abandon their rigs rather than incurring the financial and 
environmental expense of removal. An engineering firm would like to make 
use of a decommissioned rig by remodeling it as an artificial reef, providing 
a hospitable sea habitat. This firm must find ways to strengthen the supports 
and to affix the reef components to sustain sea life.

Water depth 180' 
No. of well slots 24 

South pass    block 77 
“D” Structure 

Waterline 

Mudline 

84" O.D. Piling

144" O.D. Piling

12 – 24" O.D. Conductors

Jacket =
Piling =
Decks = 
       Total =

3,400 
4,100 

900 
8,400 

Approx. Steel Weight (tons) 
 

Figure 1.1
Mud-slide-type platform. (From the Committee on Techniques for Removing Fixed Offshore 
Structures and the Marine Board Commission on Engineering and Technical Systems, National 
Research Council, An Assessment of Techniques for Removing Offshore Structures, Washing-
ton, DC: National Academy Press, 1996. With permission.)
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The rig support structure was initially designed to support the drilling 
platform above the water level. As the oil drill itself was mobile, the struc-
ture was built so that it could remain balanced, without listing, under this 
dynamic loading. In its new life as the support for an artificial reef, this struc-
ture must continue to withstand the weight of the platform and the changing 
loads of wind and sea currents, and 
it must also support the additional 
loading of concrete “reef balls” and 
other reef-mimicking assemblies 
(Figure 1.2), as well as the weight of 
the reef dwellers.

To remodel the underwater rig, a 
team of engineers must dive below 
the water surface to attach the nec-
essary reef balls and other attach-
ments. The reef balls themselves 
may be lowered using a crane. A 
conceptualization of this is shown in 
Figure 1.3.

Figure 1.2
Concrete reef ball. (Courtesy of the Reef Ball 
Foundation, Athens, GA.)

Figure 1.3
Rendering of scuba diver at work remodeling underwater rig structure.
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Among the factors that must be considered in the redesign process is the 
structural performance of the modified structure, its ability to withstand 
the required loading. An additional challenge to the engineering firm is the 
undersea location of the structure. What materials should be chosen so that 
the structure remains sound? How should the additional supports and reef 
assemblies be added? What precautions must engineers and fabricators take 
when they work underwater? What effects will the exposure to the ocean 
environment have on their structure, equipment, and bodies? We address 
many of these issues in this book. Throughout, we return to this problem 
to demonstrate the utility of various theoretical results, and we rely on first 
principles that look familiar.

1.2 Newton’s Laws: The First Principles of Mechanics

Newton’s laws provide us with the first principles that, along with conservation 
equations, guide the work we do in continuum mechanics. Many of the equa-
tions we use in problem solving are directly descended from these elegant 
statements. These laws were formulated by Sir Isaac Newton (1642–1727), based 
on his own experimental work and on the observations of others, including 
Galileo Galilei (1564–1642). Newton’s laws are expressed as follows:

Newton’s first law: A body remains at rest or moves in a straight line 
with constant velocity if there is no unbalanced force acting on it.

Newton’s second law: The time rate of change of momentum of a body is 
equal to (and in the same direction as) the resultant of the forces acting 
on it:

 
F

d

dt
m V=∑ ( ).

 (1.1)

When the mass of the body of interest is constant, this has the form

 Σ F = m a, (1.2)

and when a = 0, this means that we have

 Σ F = 0. (1.3)

(This last class of problems is often called “statics.”)

Newton’s third law: To every action there is an equal and opposite reac-
tion. That is, the forces of action and reaction between interacting bodies 
are equal in magnitude and exactly opposite in direction.
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Forces always occur, according to Newton’s third law, in pairs of equal and 
opposite forces. The downward force exerted on the desk by your pencil is 
accompanied by an upward force of equal magnitude exerted on your pencil 
by the desk.

1.3 Equilibrium

We have alluded to the concept of equilibrium (also known as static equi-
librium) in our discussion of Newton’s second law. To be in equilibrium, 
a three-dimensional object must satisfy six equations. In Cartesian coordi-
nates, these are as follows:

 

F

F

F

x

y

z

=

=

=

∑
∑
∑

0

0

0

 (1.4a)

 

M

M

M

x

y

z

=

=

=

∑
∑
∑

0

0

0
 (1.4b)

These equations can be written more concisely in vector form as

 ΣF = 0  (1.5)

 ΣM = 0, (1.6)

and represent the statements “the sum of forces equals zero” and “the sum of 
moments (about some reference axis) equals zero.” One advantage of writing 
these equations in vector form is that we don’t have to specify a coordinate 
system!

For planar (two-dimensional) situations or models, equilibrium requires 
the satisfaction of only three equations, usually
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Fx =∑ 0

 (1.7a)

 
Fy =∑ 0

 (1.7b)

 
Fz =∑ 0

 (1.7c)

These equations essentially state that the object is neither translating (in 
the x or y directions) nor rotating (about the z axis) in the xy plane as a result 
of applied forces.

It is useful to distinguish between forces that act externally and those 
that act internally. External loads are applied to a structure by, for example, 
gravity or wind. Reaction forces are also external: They occur at supports 
and at points where the structure is prevented from moving in response to 
the external loads. These supports may be surfaces, rollers, hinges; fixed or 
free. Internal forces, on the other hand, result from the applied external loads 
and are what we are concerned with when we study continuum mechan-
ics. These are forces that act within a body as a result of all external forces. 
Chapter 2 shows how the principle of equilibrium helps us calculate these 
internal forces.

1.4 Definition of a Continuum

In elementary physics, we concerned ourselves with particles and bodies 
that behaved like inert billiard balls, bouncing off each other and interacting 
without deformation or other changes. In continuum mechanics, we con-
sider the effects of deformation, of internal forces within bodies, to get a 
fuller sense of how bodies react to external forces.

We would like to be able to consider these bodies as whole entities and not 
have to account for each individual particle composing each body. It would 
be much more convenient for us to treat the properties (e.g., density, momen-
tum, forces) of such bodies as continuous functions. We may do this if the 
body in question is a continuum.

We may treat a body as a continuum if the ensemble of particles mak-
ing up the body acts like a continuum. We can then consider the average or 
“bulk” properties of the body and can neglect the details of the individual 
particle dynamics. Acting like a continuum means that no matter how small 
a chunk of the body we consider, the chunk will have the same properties 
(e.g., density) as the bulk material.
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Mathematically, we define a con-
tinuum as a continuous distribution 
of matter in space and time. For a 
mass mn contained in a small volume 
of space, Vn, surrounding a point P, 
as in Figure 1.4, we can define a mass 
density ρ:

 

ρ( ) lim .P m
n

n

n
n

=
→∞
→V

V
0  (1.8)

So, a material continuum is a mate-
rial for which density (of mass, momentum, or energy) exists in a mathemati-
cal sense. We are able to define its properties as continuous functions and to 
neglect what’s happening on the microscopic, molecular level in favor of the 
macroscopic, bulk behaviors.

Note that if Vn truly goes to zero, gases and liquids will not satisfy this 
equation: Density will be undefined. (If the volume goes to zero, it will not 
have a chance to enclose any atoms—so naturally, the density will be unde-
fined!) Yet we still think of these materials as continua. So physically, our 
definition of a continuum is a material for which

 
ρ ε− <

mn

nV  
as n→∞.

 (1.9)

Here, є represents a very small number approaching zero, indicating that the 
mathematical definition of density approaches a usable value, ρ.

Sometimes it is easier to get a grasp on what is not a continuum than on 
what is. Almost all solids satisfy the definition handily. Solids are generally 
much denser than fluids. For fluids, it can be harder to pin down a “den-
sity” once gas molecules get sparse. Interstellar space, for example, where 
the objects of interest (e.g., planets, asteroids) are not much farther apart than 
the molecules of the interstellar medium, is surely stretching the limits of the 
definition of a continuum. Fortunately, another test for continuity is avail-
able. It’s especially applicable to fluids.

A given material may be called a continuum if the Knudsen1 number, Kn, is 
less than about 0.1. The Knudsen number is defined as

 
Kn

L
=
λ ,  (1.10)

P Vn V2 V1Vn–1…

Figure 1.4
Volumes Vi surrounding point P.
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where L is a problem-specific characteristic length, such as a diameter or 
width, and λ is the material’s “mean free path,” or average distance between 
particle collisions, obtainable from

 
λ

ρ
=0 225 2. ,m

d  (1.11)

where m is the mass of a molecule, ρ is its density, and d is the diameter of a 
molecule. For example, for air m = 4.8 × 10-26 kg, d = 3.7 × 10-10 m, and at atmo-
spheric conditions λ is approximately 6 × 10-6 cm; at an altitude of 100 km it 
is 10 cm, and at 160 km it’s 5000 cm. So at higher altitudes, the continuum 
assumption is unacceptable and the molecular dynamics must be considered 
in the governing equations.

The ease with which we can define density, and continuity, is not the only 
difference between solids and fluids:

A solid is a three-dimensional continuum that supports both tensile and 
shear forces and stresses. The atoms making up a solid have a fixed spa-
tial arrangement—often a crystal lattice structure—in which atoms are 
able to vibrate and spin and their electrons can fly and dance around but 
the microstructure is fixed. Because of this, although it’s possible to dis-
tort or destroy the shape taken by a solid, it is generally said that a solid 
object retains its own shape. For solids, we will be able to relate stresses 
and strains by a constitutive law.

A fluid may be a liquid or a gas. A fluid, it’s been said, is something that 
flows: Liquids assume the shape of their containers, and gases expand 
to fill any container. This is because the atoms comprising a fluid are 
not spatially constrained like those of a solid. More formally, a fluid is 
a three-dimensional continuum that (a) cannot support tensile forces 
or stresses, and (b) deforms continuously under the smallest shearing 
forces or stresses. For fluids, we will be able to relate stresses and strain 
rates by a constitutive law.

We note that the distinction between solid and fluid behavior is not always 
clear-cut; there are classes of materials whose behavior situates them in a 
sort of middle ground. We explore this middle ground further in Case Study 
5. The existence of this middle ground provides us with more motivation 
to understand the broad field of continuum mechanics and the connections 
between solid and fluid behavior.

In this text we are interested in how Newton’s laws apply to continua. 
Some of the relevant consequences of Newton’s laws, which we discuss in 
more detail later, are as follows:
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Momentum is always conserved, in both solids and fluids. •	 Equilib-
rium equations (see Section 1.3) are the mathematical expressions of 
the conservation of momentum.

Equilibrium must apply both to entire bodies and to sections of, or •	
particles within, those bodies. This is one of the reasons why free-
body diagrams (FBDs) are so valuable: They illustrate the equilib-
rium of a section of a larger body or system. This is also why we use 
control volumes to analyze fluid flows.

Mass is conserved.•	

Area is a vector, having both magnitude (size) and direction, which •	
is defined by a unit vector normal to the area and directed outward 
from the free body or volume of interest.

Forces produce changes in shape and geometry, which are charac-•	
terized in terms of strains for solids and strain rates for fluids.

In the real world, material objects are subjected to body forces (e.g., gravi-
tational and electromagnetic forces), which do not require direct contact, 
and surface forces (e.g., atmospheric pressure, wind and rain, burdens to be 
carried), which do. We want to know how the material in the body reacts to 
external forces. To do this, we will need to (1) characterize the deformation 
of a continuous material, (2) define the internal loading, (3) relate this to the 
body’s deformation, and (4) make sure that the body is in equilibrium. This 
is what continuum mechanics is all about.

1.5 Mathematical Basics: Scalars and Vectors

The familiar distinction between scalars and vectors is that a vector, unlike 
a scalar, has direction as well as magnitude. Examples of scalar quantities 
are time, volume, density, speed, energy, and mass. Velocity, acceleration, 
force, and momentum are vectors and contain the extra directional informa-
tion. We typically denote vectors with a bold font or an underline. This book 
underlines all vectors.

A vector V may be expressed mathematically by multiplying its magnitude, 
V, by a unit vector n (note: | n | = 1, and n’s direction coincides with V):

 V = Vn. (1.12)

We may also write a vector V in terms of its components along the primary 
directions, whether these are the Cartesian (x, y, z) directions or cylindrical 
(r, θ, z) or another set. In Cartesian coordinates this is simply written as
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 V V i V j V kx y z= + +ˆ ˆ  ̂ (1.13)

based on a situation like that shown in Figure 1.5. In general, in coordinates 
(x1, x2, x3) with unit vectors ˆ , ˆ , ˆe e e1 2 3, we will be able to write any vector V as

 V V e V e V e= + +1 1 2 2 3 3ˆ ˆ ˆ  (1.14)

or as (V1, V2, V3)—what we called a column vector in linear algebra.2 We 
remember that the magnitude of V can be obtained:

 V = | V | = ( )V V V1
2

2
2

3
2+ + , (1.15)

so V = 0 if, and only if, V1 = V2 = V3 = 0.
The calculated dot and cross products are also of interest. Remember that 

the result of taking a dot product is a scalar and that the result of a cross 
product is a vector. Briefly,

 u • v = | u | | v | cos θ, (1.16)

where θ is the angle between vectors u and v, and 0 ≤ θ ≤ π. Physically, the 
scalar or dot product can be thought of as the magnitude of u times the com-
ponent of v along u. In terms of components,

Vyĵ

x

yz

Vxî

V

Vzk̂

Figure 1.5
Decomposition of vector V in x, y, z coordinates.
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 u = u1 ê1  + u2 ê2  + u3 ê3 , (1.17)

 v = v1 ê1  + v2 ê2  + v3 ê3 , (1.18)

 u	•	v = u1v1 + u2v2 + u3v3. (1.19)

Also, the cross product results in a vector that is perpendicular to both u 
and v:

 u × v = w,  (1.20)

where

 | w | = | u | | v | sin θ, (1.21)

and

 u × v = (u2v3 – u3v2) ê1  + (u3v1 – u1v3) ê2  + (u1v2 – u2v1) ê3 . (1.22)

We notice that this has the form of a determinant:

 

u v
e e e
u u u
v v v

× =

ˆ ˆ ˆ

.
1 2 3

1 2 3

1 2 3

 (1.23)

When we work with vectors, we may find ourselves getting stuck carry-
ing around a set of variables, x1, x2, … xn. This can become unwieldy, and so 
we may use a shortcut known as index notation. Using this shortcut, we write 
xi, i = 1, 2, … n, and call i the index. If, for example, we are working with the 
equation

 a1x1 + a2x2 + a3x3 = p, (1.24)

we may write this as

 

a x pi i
i

=
=
∑

1

3

 (1.25)

and may further simplify life by writing

 ai xi = p. (1.26)
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This substantially more efficient shortcut is known as the summation con-
vention: The repetition of the index represents summation with respect to 
that index over its range. Using index notation and the summation conven-
tion, we could rewrite the definition of dot product (1.19) as

 u v u vi i⋅ = . (1.27)

We understand scalars to contain the least possible amount of informa-
tion—only a magnitude—while a vector contains more information and 
can be manipulated in more ways. The curious student may be wondering 
whether there is any type of variable that can contain more information than 
a vector. That provocative question is answered in Chapter 3.

1.6 Problem Solving

Any reader of your solution to a given problem should be able to follow the 
reasoning behind it. To test yourself you may find a stranger on the street 
and ask whether your logic is clear, or you may simply make sure that you 
have included each of the following steps:

 1. State what is given: The speed of major league fastball and distance 
from pitcher’s mound to home plate, 60 feet 6 inches are given.

 2. State what is sought: Find the time a batter has to react to an incom-
ing pitch.

 3. Draw relevant sketches or pictures: In particular, isolate the body 
(or relevant control volume) to see the forces involved, by means of a 
free-body diagram.

 4. Identify the governing principles (e.g., Newton’s second law).
 5. Calculations: Keep in symbolic form (e.g., v = d/t).
 6. Check the physical dimensions of your answer: Will answer have 

dimensions of time? If it looks like it will be a length, go back.
 7. Complete calculations: Substitute in numbers; wait as long as pos-

sible before plugging in numbers. This gives you time to do a dimen-
sional check and to think about whether the dependencies you’ve 
found make sense (should the answer depend on the pitcher’s wing-
span?) and allows you to reuse the model for similar problems that 
may arise.

 8. State answers and conclusions.

In the worked example problems that follow each chapter in this textbook, 
these steps are followed.
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1.7 Examples

example 1.1

A force F with magnitude 100 N passes through the points (1, 2, 1) and (3, 
–2, 2) (pointing toward (3, –2, 2)) where coordinates are in meters. Determine 
the following:

 (a) The magnitudes of the x, y, and z scalar components of F
 (b) The moment of F about the origin
 (c) The moment of F about the point (2, 0.3, 1)

Given: Force vector.
Find: Components of vector and moment of vector about two points.
Assume: No assumptions are necessary.

Solution

We can obtain a solution using either a holistic “vector approach” or a piece-
by-piece “component approach.” We will demonstrate both approaches.

Vector Approach

 (a) The force can be written as F = F n where n is the unit vector in the 
direction of the force:

 
n =

 

2 4 1

2 4 1
0 436 0 873 0 21

2 2 2

ˆ ˆ ˆ

( )
. ˆ . ˆ .

i j k
i j

− +

+ − +
= − + 88k̂

 F = 100 n = 43.6 î – 87.3 ĵ + 21.8 k̂  N

 so the scalar components of F are Fx = 43.6 N, Fy = –87.3 N, and Fz = 
21.8 N.

 (b) The moment of F about the origin is found using Mo = r × F, where 
r is a vector from the origin to any point on the line of action of F. 

Using r = 1 î + 2 ĵ + 1 k̂ , r × F may be written as a determinant:
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M

i j k

r r r

F F F

i j k

o x y z

x y z

= =
−

ˆ ˆ ˆ ˆ ˆ ˆ

. . .
1 2 1

43 6 87 3 21 88

 = [2 (21.8) – 1 (–87.3)] î  – [1 (21.8) – 1 (43.6)] ĵ  + [1 (–87.3) – 2 (43.6)] k̂

 Mo = 130.9 î + 21.8 ĵ  – 174.5 k̂  N∙m.

  (c) A vector r is needed from the point P (2, 0.3, 1) to any point on the 
line of action of F. We see that r = –1 î + 1.7 ĵ + 0 k̂  is such a vector 
(goes to the point (1, 2, 1)). Then Mp = r × F:

  

M

i j k

r r r

F F F

i j k

x y z

x y z

p= = −
−

ˆ ˆ ˆ ˆ ˆ ˆ

.
. .
1 1 7 0

43 6 87 3 221 8.

 = [1.7 (21.8) – 0] î – [–1 (21.8) – 0] ĵ  + [–1 (–87.3) – 1.7 (43.6)] k̂

 Mp = 37.1 î + 21.8 ĵ  + 13.2 k̂  N∙m.

Scalar (Components) Approach

 (a) The length of the segment from (1, 2, 1) to (3, –2, 2) is

 ( ) (– ) ( )3 1 2 2 2 12 2 2− + − + − = 22 4 2 12+ +(– ) = 21

v
Direction Cosines Then

l = 2/ 21 = 0.436
Fx = 100 (0.436) = 43.6 N

m = –4/ 21 = –0.873
Fy = 100 (–0.873) = –87.3 N

n = 1/ 21 = 0.218 Fz = 100 (0.218) = 21.8 N
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 (b) Remember that we can consider the force F to be acting at any point 
along its line of action. Choosing (1, 2, 1), the moments about the x, y, 
and z axes through the origin are

 

x

y

z

Fy

Fz

Fx

(drawn with
negative

orientation)
1

1

2

a

x 

z 

y +Mx

+Mz

+My

b

Figure 1.6

 Mox = 1 (87.3) + 2 (21.8) = 130.9 N∙m. 

  (Fx is parallel to the x axis and thus does not have a moment about 
the x axis.)

 Moy = 1 (43.6) – 1 (21.8) = 21.8 N∙m

 Moz = –2 (43.6) – 1 (87.3) = –174.5 N∙m.

 (c) Use the same procedure as part (b). In this case, the distances 
required are from the point of action of the force (choose (1, 2, 1) as 
previously) to the point P (2, 0.3, 1):

 Mpx = (1 – 1) (87.3) + (2 – 0.3) (21.8) = 37.1 N∙m, 

 Mpy = (1 – 1) (43.6) + (2 – 1) (21.8) = 21.8 N∙m,

 Mpz = – (2 – 0.3) (43.6) + (2 – 1) (87.3) = 13.2 N∙m.

example 1.2

A clever sophomore wants to weigh himself but has access only to a scale 
(A) with capacity limited to 500 N and a small 80 N spring dynamometer 
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(B). With the rig shown he discovers that when he exerts a pull on the rope 
so that B registers 76 N, the scale reads 454 N. What are his correct weight 
and mass?

B

A

Figure 1.7

Given: Geometry of problem, weight indicated on scale A.
Find: True weight and mass of student.
Assume: No assumptions are necessary.

Solution

We assume the tension in the continuous top rope is constant, and we’ll 
neglect the mass of the pulleys. The relevant free-body diagrams are (the 
circles are the lower pulleys):

76 N 76 N

T1 T1

76 N 76 N

(a)

T1 T1

T2

(b)

(c)

W

454 N

76 N
T2

Figure 1.8
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Next, we ensure that ΣFy = 0 holds for each FBD—that is, that each part is 
in equilibrium.

From diagram (a),

 T1 = 76 N + 76 N = 152 N.

From diagram (b),

 T2 = T1 + T1 = 304 N.

From diagram (c),

 W = 454 N + 76 N + T2 = 834 N.

So, his mass is

 

834
9 81

85 0N
m/s

kg.2.
.=

1.8 Problems

 1.1 The premixed concrete in a cement truck can be treated as a fluid 
continuum when it is poured into a mold. Sand flowing from a 
large bucket can also be considered a fluid. Describe three other 
examples in which an aggregate of solid objects flows likes a fluid 
continuum.

 1.2 Investigate the reef balls used in creating artificial reef environ-
ments. What parameters are most important to the successful 
maintenance of a stable marine environment?

 1.3 Find the angle θ between the two vectors F1 = 4 î  + 3 k̂  and F2 = î  
+ 7 k̂  using their dot product.

 1.4 Find and sketch the cross product F1 × F2, given F i k1 5 3=− +ˆ ˆ and 
F i k2 4= −ˆ ˆ.

 1.5 Determine the force F and the angle θ required to keep the pulley 
system shown in static equilibrium.
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m

F
θ

Figure 1.9

 1.6 A force F acts on a uniform pendulum as shown. Find the reaction 
forces at the pin connection and the angle θ, letting F = 100 N, d = 
1.6 m, and W = 300 N.

W

F

θ
d

d

Figure 1.10

Notes

 1. The Knudsen number is named for Martin Hans Christian Knudsen (1871–1949), 
professor at the University of Copenhagen and author of The Kinetic Theory of 
Gases (London, 1934). In physical gas dynamics, the Knudsen number defines 
the extent to which a gas behaves like a collection of independent particles (Kn 
>>1) or like a viscous fluid (Kn <<1).

 2. We have written the column vector of V’s components as a row vector to save 
space.
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2
Strain and Stress in One Dimension

In the previous chapter, we stated that in order to study continuum mechan-
ics—that is, to characterize the response of a continuous material to external 
loading—we must (1) characterize the material’s deformation, (2) define its 
internal loading and (3) relate this to its deformation, and (4) ensure that the 
body is in equilibrium.1 We begin this chapter by considering the deforma-
tion of a material under loading.

Returning to our example of the remodeling of an underwater oil rig as an 
artificial reef, we want to examine the trusses of the existing rig. As we have 
seen (Figure 1.1 and Figure 1.3), the rig is composed of many slender steel 
members that must withstand the cyclic loading of ocean currents as well 
as other loads. Each member may be pulled or pushed along its axis, as in 
Figure 2.1, and by isolating each member we can begin to determine whether 
the members can withstand this loading.

This raises the question of what it means to “withstand” a load. Is it sufficient 
for the member to sustain the load without incurring damage or breaking, or 
is it necessary for it to sustain the load without deforming or bending?

You may have noticed that a standard office table or desk can support far 
more weight or force than it does when serving as a writing table or com-
puter desk and that some chairs can support the weight of several people 
without breaking. These are not examples of wasteful or inefficient designs. 
In fact, these products have been designed for stiffness rather than for strength. 
Instead of merely building a chair strong enough to hold the average per-
son, designers have chosen to make the chair stiff enough that its deflections 
can be limited to some small amount, under a load much larger than it is 
expected to typically carry. Under normal use, therefore, the chair should 
not deflect perceptibly. Designing for stiffness means minimizing or limit-
ing deflections and is generally a much more restrictive proposition than 
designing purely for strength. In this chapter, we discover ways to character-
ize the stiffness and strength of materials and structures.

To begin to design for stiffness by minimizing deflection, we must under-
stand how to characterize the deformation a loaded body will undergo.



20 Introduction to Engineering Mechanics: A Continuum Approach

2.1 Kinematics: Strain

In continuum mechanics, we want to characterize how bodies respond to the 
effects of external loading and how these responses are distributed through 
the bodies. One way a body responds to external loads is by deforming. We 
develop a way of quantifying its deformation relative to its initial size and 
shape, and we call this relative deformation strain.

2.1.1 Normal Strain

When an axial force is applied to 
a body, the distance between any 
two points A and B along the body 
changes. We call the initial, unde-
formed length between two points A 
and B the gage length (or gauge length). 
During a tensile experiment such as 
the one sketched in Figure 2.2, we 
may measure the change in gage 
length as a function of applied force. 
What interests us is how much this 
gage length changes, relative to its 
initial value—in other words, the 
intensity of deformation.

Figure 2.1
Isolated members of underwater structure.

A

B

Gage
length

Figure 2.2
Tension specimen.
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In Figure 2.2, the bar is acted on, or loaded, at its ends by two equal and 
opposite axial forces. (An axial force is one that coincides with the longitudi-
nal axis of the bar and acts through the centroid of the cross section.) These 
forces, called tensile forces, tend to stretch or elongate the bar. We say that 
such a bar is in tension.

If Lo is the initial gage length and L is the observed length of the same seg-
ment under an applied load, the gage elongation is ΔL = L – Lo. The elonga-
tion ε per unit of initial gage length, or “deformation intensity,” is then

 
ε=

−
=

L L
L

L
L

o

o o

∆
. 

 (2.1)

This expression for epsilon defines the macroscopic extensional strain.
It is also possible for this apparatus to load a bar with two equal and oppo-

site forces directed toward each other, as in the sketch in Figure 2.3. These 
forces, called compressive forces, tend to shorten or compress the bar. We say 
that such a bar is in compression. Note that for compressive loading, ΔL < 0, 
and the normal strain is negative.

Both tensile (tending to elongate) and compressive (tending to shorten) 
deformations result in normal strain, defined as the change in length of our 
material relative to its initial undeformed length. Normal strain is a dimen-
sionless quantity but is often represented as having dimensions of length/
length, in./in., m/m, or mm/mm. Sometimes it is given as a percentage.

In some applications, we use a slightly more careful definition of strain. 
This is sometimes called the natural or true strain as distinct from the engi-
neering strain defined by equation (2.1). In this true strain definition, a strain 
increment dε is integrated over the bar:

 

ε ε ε= = =









= +∫ ∫d dL

L
L
L

L

L

o
L

L

o o

ln ln( )1 .  (2.2)

For very small strains, this natural strain is coincident with the engineer-
ing normal strain ε.

In a third definition of strain, we consider that each and every planar sec-
tion normal to the axis moves a uniform (over the plane) distance along the 
axis, u(x). An element of the axis that was originally of length dx is thus 

Figure 2.3
Bar in compression.



22 Introduction to Engineering Mechanics: A Continuum Approach

stretched to a new length, dx + u(x 
+ dx) – u(x). This is illustrated in 
Figure 2.4.

For this deformation we define 
strain—in the same spirit as the first 
definition—as in equation (2.3).

  
 

 
ε= =

+ +change in length
original length

dx u x dx( )) ( )
,

−



−u x dx

dx  (2.3)

or, retaining only the first-order term in a Taylor series expansion of u(x + 
dx), we find

 
ε≅

+ ′ −
= ′ =

[ ( ) ( ) ( )] ( )u x u x dx u x
dx

u x du
dx

.  (2.4)

In Section 2.7, we use equation (2.4) to express equilibrium in terms of the 
displacement u(x), to illustrate where compatibility is applied, and to obtain 
a classic result for the extension of an axially loaded bar.

We also note that the quantity [u(x + dx) – u(x)] represents the relative dis-
placement of point B (at x + dx) with respect to point A (at x). This will provide 
a useful context for a more general definition of strain that we develop in 
Section 3.3.

Example

By bending a thin ruler, you are able to deform it into a circular arc. This arc, 
with a radius of 30 in., encloses an angle of 23º at center, as shown. Find the 
average normal strain developed in the ruler.

Initial

Deformed

x x+dx

u(x) u(x+dx)

A B

dx + u(x+dx) – u(x)
Figure 2.4
One-dimensional stretching of a bar.
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Given the initial length of the ruler, Lo, which we assume to be exactly 12 
in., and the characteristics of a circular arc formed when it is deformed under 
bending, we must find the intensity of deformation, or induced strain. Since 
we know that strain is a measure of the change in a body’s length relative to 
the original length, we must determine how much the ruler’s length of 12 in. 
changes under this deformation.

Recalling that the arc length of a circular arc is given by the equation

 arc length r= θ

and that in this case, the arc length is the deformed length of the ruler, L, 
we have

 
L r= = ⋅ ⋅θ π(30 in.) 23° 2 rad

260°

  = ⋅ =( ) ( . ) .30 0 4014 12 04277in. rad in.

Normal strain is then calculated

 
ε= =

−
=

change in length
original length

L L
L

o

o

0.004277
12

0 003564
in.

in.
in.
in.

= .

For convenience, such a small strain might be reported as 3564 micro-inches 
per inch (μin./in.), or 3564 microstrain, or alternatively as a 0.36% strain.

2.1.2 Shear Strain

Bodies may experience both normal and shear deformations and, hence, 
normal and shear strains. When an axial tensile load is applied to a body, 
it causes a longitudinal tensile deformation: an elongation. Similarly, an 
axial compressive load will cause a longitudinal compressive deformation: a 
shortening. When a shear force is applied to a body, it will cause an angular 
deformation.

To visualize the effect of shear strain, consider a motor mount as shown in 
Figure 2.5a. The motor mount is composed of a block of elastic material (our 
“body”) with attachments to allow for connection to the base of the motor 
and the support structure. A force P is applied at the top of the block. This 
subjects the block/body (of initial height L) to a pair of shear forces, as shown 
in Figure 2.5b. If we imagine that the block is composed of many thin layers 
and that each layer will slide slightly with respect to its neighbor, we may 
visualize how the angular distortion of the block will develop.
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As for normal strain, several definitions of shear strain exist. The engineer-
ing shear deformation incurred is φ, the change in an initially right angle. This 
is the formal definition of shear strain: the change in the angle between two 
initially perpendicular planes. It is measured in radians. However, it is often 
difficult to take precise measurements of these angular changes, especially 
for very small deformations. For small deformations, the tangent of the angle 
φ will closely approximate φ itself, so that we can approximate the shear 
strain by

 
φ≅ =tan ,φ δs

L
  (2.5a)

so

 

γ δ
≅ s

L
.

  (2.5b)

With normal and shear strain defined, we are equipped to address the 
kinematics of deformation of continuous materials due to loading. We now 
move on to the second item on our checklist: the internal forces developed in 
response to external loading.

2.1.3 Measurement of Strain

Until 1930, strain was commonly measured indirectly, using extensometers 
that measured the displacement ΔL over some initial gage length L to allow 
strain to be calculated using the equations just discussed. An extensometer 
system typically included a mechanical or optical lever system. In 1931, the 
first electrical strain gauge demonstrated that strain could also be measured 
directly. Most modern strain gauges are resistive electrical meters.

In 1856 Lord Kelvin demonstrated that the resistances of copper and 
iron wires changed when the wires were stretched, compressed, or other-

L

δs

φ

P
P

(a) Motor mount (b) Motor mount distorted in shear

Figure 2.5
Shear strain.
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wise deformed. This concept is at the heart of the electrical strain gauges 
first implemented by Roy Carlson in 1931 and Edward Simmons in 1938.2 
Advances in materials and fabrication techniques have since refined the 
design of the resistive strain gauge, whose general construction is shown in 
Figure 2.6.

When the resistance element (wire grid or metallic foil) is attached to a 
loaded (and thus deformed) body in such a way that the wire will also be 
deformed, the measured change in resistance may be calibrated in terms 
of strain. Important parameters in the design and performance of a strain 
gauge are (1) the materials used for the wires or foil, and, to a lesser extent, 
the backing and bonding materials; (2) protection of the gauge; and (3) electri-
cal circuitry, typically involving a Wheatstone bridge. The wires should have 
a large change in resistance corresponding to the strains expected (some-
times called the wire material’s gauge factor), a high electrical resistivity, a low 
temperature sensitivity,3 and good corrosion resistance, among other factors. 
Mounting a strain gauge is straightforward (though not always easy) as long 
as the surface of the body in question is extremely clean and as long as the 
manufacturer’s installation procedures are followed carefully.

2.2 The Method of Sections and Stress

We now want to consider the forces within a body that balance the effect of 
externally applied forces. To do this, we must prepare a free-body diagram 
(FBD) that shows all the external forces acting on the body at their respective 
points of application (Figure 2.7a). All of the forces acting on a body, includ-
ing reactive forces caused by supports and the weight of the body itself (usu-
ally not included in a free-body diagram), are considered external forces. 
This view is valuable but does not allow us to visualize the internal forces 

Loaded material 

Adhesive

Wire grid 

Leads

Solder tabs 

Figure 2.6
Construction of a bonded-wire strain gauge.
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we’re interested in, so we “slice open” our body (Figure 2.7b and Figure 2.7c). 
Each sliced section must be in equilibrium, just as the larger body is in equi-
librium. The fundamental statement of this is:

The externally applied forces on one side of an arbitrary cut must be bal-
anced by the internal forces developed at the cut.

The name given to this technique is the method of sections.
These internal forces revealed by the method of sections have varying 

magnitude and direction. They are vectors, and they maintain the externally 
applied forces in equilibrium. In a solid, these forces determine the solid’s 
resistance to deformations and to external forces.

Physically, these internal forces are what hold the body together: intermo-
lecular forces, or chemical bonds. The application of an external force changes 
the distance between atoms (i.e., deformation), which changes the forces 
exerted by these bonds. We could model the internal forces si as the resultant 
of bond forces, but the bookkeeping associated with so many force vectors, 
and complex atomic arrangements, would be prohibitive. Plus, dealing with 
continuous materials was supposed to get us off the hook from having to 
worry about individual atoms, anyway. So, we tend to consider one distrib-
uted internal force, and stress is the intensity of that distributed force.

In general, stress, represented by sigma, is a force per unit area, or the 
force’s intensity:

 
σ=

P
A

.  (2.6)

Remember that both the force P and the area A are vectors.4 The stress 
depends on the orientations of both P and A, as demonstrated in subsequent 
chapters. Its units are of force per unit area, generally [N/m2] or [lb/in.2]. It 

P1 P2 P1 P2

P3

P4 P3

P4

s1 s2
s3

s1
s2 s3

(a) (b) (c)

Figure 2.7
The method of sections.
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will be useful for us to resolve the internal force P into its components per-
pendicular and parallel to the section of interest.

Interestingly, it took a long time for engineers and scientists to conceptu-
alize stress as we now understand it. While this was partly due to the sus-
ceptibility of scientific progress to fads and biases, and the tyranny of Isaac 
Newton as a trendsetter (more on this later), it was also a result of research-
ers focusing on whole structures and not “looking inside” the body as the 
method of sections demands. Instead, as J. E. Gordon noted, “All through 
the eighteenth century and well into the nineteenth, very clever men, such 
as Leonhard Euler and Thomas Young, performed what must appear to the 
modern engineer to be the most incredible intellectual contortions”5 to char-
acterize material behavior without the modern notion of stress.

It was Augustin Cauchy who first conceptualized stress and strain as we 
now understand them, in 1822: “Cauchy perceived that … the ‘stress’ in a 
solid is rather like the ‘pressure’ in a liquid or a gas. It is a measure of how 
hard the atoms and molecules which make up the material are being pushed 
together or pulled apart as a result of external forces” (Gordon, 1988, p. 46).

2.2.1 Normal Stresses

By using the method of sections, we can identify the different types of stress. 
Consider a straight bar acted on at its ends by two equal and opposite forces, 
as in Figure 2.8a. Remember that these external forces are called tensile 
forces. Similarly, the bar in Figure 2.9a is acted on by two equal and opposite 
forces, directed toward each other; these forces are compressive forces. If we 
make an imaginary cut through each bar and consider the left-hand segment 
as a free body, as in Figure 2.8b and Figure 2.9b, we see that for each bar to be 
in equilibrium, a force P1, equal and opposite to external force P, must exist. 
This force P1 is actually an internal force in the original bar that “resists” 
the action of force P. Also, we assume that the internal resisting force is uni-
formly distributed over the cross section of the bar. This force per area (the 
internal force divided by the cross-sectional area) is what we call stress.

The tensile forces of Figure 2.8 produce internal tensile stresses, and the 
compressive forces of Figure 2.9 produce internal compressive stresses. By 
convention, tensile stresses are positive, and compressive are negative. (This 
sign convention has to do with the outward normal vector of surface A, as 
is discussed in Chapter 3.) Tensile and compressive stresses are developed 
in a direction perpendicular (normal) to the surfaces on which they act and, 

B A C B A

P P P P1

(a) Bar BC (b) Free body BA

Figure 2.8
Bar in tension.
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hence, are sometimes called normal stresses. We use the Greek letter sigma, 
σ, to represent normal stress, and we write

 
σ ≡

P
A

.  (2.7)

2.2.2 Shear Stresses

Another type of stress, called shear stress (sometimes tangential stress), is 
developed in a direction parallel to the surface on which it acts. An example 
is shown in Figure 2.10. When equal and opposite forces P are applied to 
two flat plates bonded together by 
adhesive, the contact (shaded) sur-
face is subjected to a shearing action. 
In the absence of the adhesive, the 
two surfaces would slide past one 
another. The shear force is assumed 
to be uniformly distributed across 
the contact area. As a result the shear 
stress, defined as this shearing force 
divided by the contact area, is devel-
oped. Shear stress can also develop 
within a single body, when various 
layers of the material tend to slide with respect to each other.

Again, stress is the intensity of the internal force and, in this case, is once 
again P/A, where A is the area of the glued surface; however, for shear stresses, 
the area A is oriented parallel to the force P, while for normal stresses P is 
perpendicular to A. (If we more carefully characterize the area A by its out-
ward normal vector, the shear stress is normal to this normal vector, and 
the normal stress is parallel to it.) We use the Greek letter tau, τ, to represent 
shear stress:

 
τ ≡

P
A||

.  (2.8)

We have included a subscript to remind ourselves that the area A in this 
expression seems to be parallel to the force P. Now that we have defined both 

P

PGlued surface

Figure 2.10
Shear between two bodies.

B A C

P P         P                             P1

B A

(a) Bar BC (b) Free body BA

Figure 2.9
Bar in compression.
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strain (kinematics) and stress, we must consider the relationship between 
them. We do this in Section 2.3.

Example

Let’s consider a structure that might be part of an underwater oil rig turned 
artificial reef. All members of the truss pictured here have a cross-sectional 
area of 500 mm2, and all the bolts and pin connectors have a diameter of 20 
mm. Find (a) the axial or normal stresses in members BC and DE, and (b) the 
shear stress in the bolt at A if it is in double shear.

2 m

2 m2 m2 m

21 kN

A B C

G F E D

Figure 2.11

Given a truss with specified parameters and loading, we must find the 
requested values of stress. We first examine an FBD of the joint at D:

45°

21 kN

PDC

PDE

Figure 2.12

Note that we have assumed both members DC and DE to be in tension; if 
we calculate negative values for either internal force, we will know that this 
assumption was incorrect and that the member is in compression. Since the 
joint must be in equilibrium we have

 ΣFy = 0 = PDCsin45 – 21 kN → PDC = 29.7 kN

 ΣFx = 0 = –PDE – NDCcos45 → PDE = –21 kN.
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Using the definition of normal stress we know that

 
σDE

DE

x

P
A

= =− ×
−sec

42 106 N
m2 ,

or

 σDE = 42 MPa compressive.

Next, we use the method of sections. We make an imaginary cut between B 
and C, resulting in an FBD that includes the internal forces in three members 
of the truss:

21 kN

PCB

PCF

PEF

Figure 2.13

We apply the third equilibrium equation, summing moments about point F:

 ΣMF = 0 = PCB∙(2 m) – 21k N∙ (4 m) → PCB = 42 kN,

so that

 
σCB

CBP
A

= = ×42 106 N
m2

σCB = 84 MPa tensile.

We may take this opportunity to check our intuition about this truss. 
The load, P, is pulling the structure down. Thus, composite member ABC 
should become longer, and DEFG should become shorter. This would mean 
that members on the top (like BC) would be in tension and members on the 
bottom (like DE) in compression. Our results so far are consistent with our 
physical intuition. This buoys our spirits as we continue to part (b) of the 
problem, in which we consider the bolt at joint A.

We are told that this bolt is in “double shear.” A connection element (bolt 
or pin) is said to be in “single shear” if one cut between the member and its 
support is sufficient to break the connection, as shown in Figure 2.14 on the 
left; “double shear” means that two cuts are needed to break the connection, 
as on the right. A quick analysis using free-body diagrams of each case should 
be persuasive evidence that a bolt in double shear experiences half the shear 
stress of an identically loaded bolt in single shear. This analysis is left as an 
exercise.
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F F

Single shear Double shear 

Figure 2.14

To find the reaction forces at the supports, we consider an FBD of the 
entire truss:

RAx

RGx

RGy 21 kN

Figure 2.15

Summing moments about point G, we have

 ΣMG = 0 = RAx∙ (2 m) – 21 kN∙ (6 m) → RAx = 63 kN.

So the shear stress in the bolt at A is found:

 
τA

x

bolt

A
A

= = × =
/ 2 100 10 1006 N

m
MPa.2
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2.3 Stress–Strain Relationships

Different materials respond differently to loads. In some materials (e.g., rub-
ber), small loads produce relatively large deformations. Other engineering 
materials, such as steel, undergo smaller deformations—however, it is still 
important to consider the effects of such changes. Even very rigid materials, 
when subjected to a load, will experience a small deformation.

For most engineering materials, a relationship exists between stress and 
strain. For each increment in stress there is a proportional increase in strain, 
provided that a certain limit of stress is not exceeded. If the induced stress 
exceeds the limiting value, the strain will no longer be linearly proportional 
to the stress. This limiting value is called the proportional limit.

Most of the behavior we will consider occurs below the proportional limit, 
in the regime where stress and strain enjoy a linearly proportional relation-
ship. If we subject a material in this regime to a tensile load PA, producing 
a stress σA and a strain εA, and then subject it to a tensile load PB, producing 
stress σB and a strain εB, and we then plot the stresses and strains, we see a 
linear relationship between stress and strain, as shown in Figure 2.16.6

 

εA εB
Strain

σB

Stress

Figure 2.16
Linear relationship between stress and strain.

This linear relationship between load and deformation was first stated 
by Robert Hooke in 1678 and became known as Hooke’s law: Ut tensio, sic 
vis. This Latin phrase—in the form of an anagram, ceiiinosssttuv—was how 
Hooke7 summed up his finding, which he first applied to the extension of a 
spring. It translates, “As is the extension, so is the force.” We have seen his 
law in this form:

 F = kx  (2.9)
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and have called k the “spring constant” or “stiff-
ness” of the spring in question. Figure 2.17 shows 
a representative spring.

The stress–strain diagram is another example 
of a force (stress being a force per area) being lin-
early proportional to an extension (strain being 
extension per initial length). It, too, is Hooke’s 
law: Ut tensio, sic vis. It, too, contains a linear con-
stant of proportionality, a stiffness.

The ratio of stress to strain, which is also the slope of the line joining these 
two data points, is constant for loading below the material’s proportional 
limit. This constant is now known as the modulus of elasticity or Young’s mod-
ulus, after Thomas Young, who defined it in 1807. (Young’s definition was 
somewhat awkward and ungainly, since Cauchy had yet to clearly define 
stress. It wasn’t until 1826 that Claude Navier defined Young’s modulus as 
we are about to.) The modulus of elasticity for bodies in tension or compres-
sion is usually represented by the symbol E and is expressed as

 
E stress

strain
= =

σ
ε

.
  (2.10)

Since strain is a dimensionless quantity (length divided by length), E has 
the same units as stress: either pounds per square inch (psi) in English units, 
or N/m2 or Pascals (Pa) in SI. Table 2.1 shows the values of E for several engi-
neering materials.

Physically, the modulus of elasticity represents the stiffness of a material. 
A material’s stiffness may be defined as the property that enables the mate-
rial to withstand stress without great strain—in other words, the material’s 
resistance to deformation.

Table 2.1

Approximate Design Values (Reflecting Proportional Limits) of Elasticity and 
Shear Moduli, in Linear Regimes (SI)

Material
Modulus of Elasticity E 

(MPa)
Modulus of Rigidity G 

(MPa)

California redwood 7600

Steel (carbon) ASTM A36 207,000 83,000

Stainless steel 200,000 80,000

Aluminum 6061-T6 70,000 28,000

Glass 48,000–83,000 19,000–35,000

Polycarbonate 2400 800

Concrete 21,500 8970

Bone 1–16,000 4–8000

F
k

x

Figure 2.17
Linear (Hookean) spring.
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In the Hookean regime, both 
springs and solid materials are 
linearly elastic. In the presence of 
an applied load, stress is linearly 
related to strain. If an applied load 
is removed, both stress and strain 
decrease linearly to zero. However, 
if a material’s proportional limit is 
exceeded due to an applied load, this 
is no longer true. In this case, the 
removal of the applied load causes 
both stress and strain to decrease 
linearly, along a line parallel to the 
linear portion of the stress–strain 

curve, as shown in Figure 2.18. The strain does not return to zero. By exceed-
ing its proportional limit, the material has undergone a permanent plastic 
deformation. Plastic, as opposed to elastic, deformation represents a perma-
nent set of the material. For most materials, the degree of plastic deformation 
depends on both the maximum stress value reached and the time elapsed 
before the load is removed. The stress-dependent portion of plastic deforma-
tion is known as slip, and the time-dependent part, which can also be influ-
enced by temperature, is known as creep.

Shear stress is also proportional to shear strain, as long as the stress is 
below the proportional limit. The constant of shear proportionality is known 
as the shear modulus or the modulus of rigidity. It is represented by G and 
expressed as

  
G shear stress

shear strain
= =

τ
γ

.
 (2.11)

Average values of the modulus of rigidity for some common materials are 
given in Table 2.1. Note that the moduli of elasticity and rigidity differ sig-
nificantly for each material.

It is interesting to observe the consistency of the ratio of E to G, despite 
the diversity of materials represented in Table 2.1. In Section 3.1 we reflect 
further on the relationship between E and G, representing a material’s resis-
tance to axial deformation relative to its resistance to shear.

We now have two additional forms of Hooke’s law, likenesses of F = kx 
for one-dimensional loading. We see this likeness clearly by rearranging the 
two equations:

 σ ε= E .  (2.10)

 τ γ=G .  (2.11)

εp

ε

σ

Figure 2.18
Plastic deformation incurred when propor-
tional limit is exceeded.
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In modeling our material body as a linear spring, we are making the 
assumption of linearity (small deformations, i.e., that we are in the Hookean 
regime of the material’s stress–strain curve). This model incorporates three 
further assumptions that thus represent limitations—albeit broad ones—on 
the kinds of materials it can represent. One assumption is that the mate-
rial is homogeneous, by which we mean the material constants (e.g., Young’s 
modulus) do not vary from point to point—that is, are not functions of the 
coordinates. The second assumption is that the material is isotropic, by which 
we mean that the elastic properties are invariant with respect to any rotation 
of the coordinate axes. In other words, no matter which axis we look down, 
we see the same material behavior. The third assumption is that there is 
no apparent effect of temperature in our simple version of Hooke’s law. We 
incorporate the effects of temperature in Section 2.9.

Each material has its own characteristic stress–strain curve. The extreme 
values of strain that materials can withstand vary widely, as do the slopes 
of the Hookean portions of their curves, as shown in Figure 2.19. The ter-
minal point on a stress–strain diagram represents the complete failure 
(rupture or fracture) of the specimen. Materials that are capable of with-
standing large strains without a significant increase in stress (and that may 
be thought of as “stretchy”) are called ductile materials. Low-carbon steels, 
polymers, skin, and rubber are examples of ductile materials. Brittle materi-
als, on the other hand, will experience a huge increase in stress from even 
a small strain and will fail abruptly after a small amount of deformation. 
Cast iron, glass, ceramics, concrete, and bone are examples of brittle mate-
rials. Further discussion of material properties is available in Section 3.6 
and Section 3.7.

For the most part, we consider homogeneous, isotropic materials—
materials whose behavior does not depend on the direction (e.g., tension 
or compression) of loading. Many engineering materials such as metals 
and ceramics may be readily modeled this way; however, some materi-
als, like wood and bone, have different properties in different directions. 

Wood is strongest against loading 
along its grain and is much easier 
to break with loads applied across 
the grain; compact bone is strongest 
along its long axis to resist compres-
sive loading. For the time being, we 
neglect such variations and cling to 
the assumptions of homogeneity and 
isotropy.

We recall our checklist of what is 
needed to apply continuum mechan-
ics to understand the response of a 
body to external loading: We must  
(1) characterize the deformation of 
a continuous material, (2) define the 

Brittle materials 
x

σ

ε

x

x

Ductile materials

Some inorganic
materials

Figure 2.19
Schematic of typical stress–strain dia-
grams. See Sections 3.6 and 3.7 for further 
discussion of the terms ductile and brittle. 
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internal loading and (3) relate this to the body’s deformation, and (4) make 
sure that the body is in equilibrium. We have accomplished the first three 
items on the list and now understand that in doing so we have constructed 
(1) a kinematic description of deformation, or strain; (2) a definition of stress; 
and (3) a constitutive law relating stress and strain. The last item on our list, 
(4) equilibrium, is addressed by the method of sections; we also consider 
equilibrium more rigorously in the following section.

2.4 Equilibrium

We have used equilibrium and the method of sections to apply Newton’s sec-
ond law on a “macroscopic” basis. Now we will do a “microscopic” equilib-
rium analysis in terms of the stress resultants at an arbitrary point in the bar, 
acting on an infinitesimal element of length dx and of volume dV A x dx= ( ) , as 
shown in Figure 2.20. Since the point we have chosen is arbitrary, this analysis 
is valid at every point in the bar—and so for the entire bar.

Summing forces in the x direction on this uniaxially loaded element, we 
see that the internal axial force N balances both the external axial load q(x), 
a distributed axial load per unit length of the bar (a force per length, having 
units of N/m or lb/ft), and an axial body force, Bx  (a force per volume):

 
( ( ) ( ) ) ( ) ( ) ( ) .N x dN x

dx
dx N x q x dx B A x dxx+ − + + =0  (2.12)

The internally distributed body force allows us to include forces that 
depend on intrinsic mass or volume, such as gravity or magnetic fields. For 
example, to consider the weight of a vertical element, we would use B gx = ρ
if x points toward the center of the Earth. Equation (2.12) can then be simpli-

dx

A(x)

N(x) N(x) + dx
dx

dN(x)
BxA(x)dx

q(x)dx 

Figure 2.20
Equilibrium of an infinitesimal element in one dimension: Internal axial force N balances 
applied axial load q(x), and body force Bx. 
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fied, yielding an ordinary differential equation of first order for the axial 
normal stress resultant:

 

dN x
dx

q x B A xx
( ) ( ) ( ) .+ + =0

 (2.13)

The axial loads are generally “distributed” as concentrated loads Pi  located 
at coordinates xi , in which case

  
q x P x xi i

i

( ) ( ),= −∑ δ

and Equation (2.13) takes the form

 

dN x
dx

P x x B A xi i
i

x
( ) ( ) ( ) .+ − + =∑ δ 0

 (2.14)

Section 2.7 shows that microscopic and macroscopic equilibrium results are 
in agreement. Our checklist for continuum mechanics analysis is complete:

  Kinematics (strain)
	 Definition of stress
	 Constitutive law (stress–strain relationship)
	 Equilibrium

Now that we have developed these four items for one-dimensional loading, 
we will see what they mean for an axially loaded bar like those in our under-
water structure.

2.5 Stress in Axially Loaded Bars

Consider a steel ruler—a thin body made of a seemingly compliant mate-
rial. We know that if we hold such a ruler by one end and push down on the 
other end (perpendicular to the ruler’s broad surface), as in Figure 2.21a, the 
loaded end will be deflected significantly. In this case of loading, we call the 
system a cantilever beam. On the other hand, if we instead pull on the free 
end (parallel with the long axis of the ruler), as shown in Figure 2.21b, we 
would see very little movement. A system with this type of loading is called 
a bar. It is intriguing that the same body can experience such dramatically 
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different behavior due to differences in loading. We hope to be able to postu-
late and develop models to explain these different behaviors.

Once we remove either load from the ruler—once we stop pushing or 
pulling—the ruler returns to its original, planar shape. In this way, the ruler 
behaves like an elastic spring, just as Hooke suggested. In our “beam” and 
“bar” experiments, the different behavior of the ruler can be explained by 
its having a different stiffness depending on the loading. Later in this text, 
we derive the different forms of this stiffness and see in detail that the beam 
stiffness is much less than the stiffness in the bar mode, which is why we see 
greater movement or deflection when the ruler acts like a beam.

For now, the important lesson is that the effective stiffness (a measure of 
how much a body will resist being deflected by a load) of a structural ele-
ment or mechanical device is dependent on several factors, including the 
nature of the loading, as well as the element’s geometry and the material 
itself. Since we are interested in how bodies will react to external forces, this 
stiffness provides us with a way to quantify their reactions.

Let’s expand our ruler example of a bar in axial loading (Figure 2.22a). 
The bar is built in, or attached to a wall, at x = 0 and is subjected to a single 
external (applied) load P at x = L. The load P acts along the bar’s axis. We 
know from Newton’s second law that to keep the bar in static equilibrium, 
the attachment point or wall must exert an equal and opposite force P at the 
left end of the bar.

What we’re interested in, of course, is what’s happening inside the bar. 
We can use the method of sections to make an imaginary slice along the 
bar, exposing a cross section of area A. A free-body diagram will show us 
that something must be happening on that area to exert a net tensile force 
P across A. And, if our slice is normal to the bar’s axis (as in Figure 2.22b), 
the exposed area A is also normal to the axis, and we can define the normal 
stress, σ, acting on that area as we did in Equation (2.7):

 
σ ≡P

A
.
 (2.7)

If instead we make our section cut at an angle, θ, the picture will be differ-
ent (Figure 2.22c). Now, the equilibrating force at the section surface has two 

P

δbeam

P
δbar

(a) (b)

Figure 2.21
Illustration of beam and bar modes.
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components, as shown in Figure 2.18. The normal force component is P cos 
θ, and the shear component (parallel to the section surface) is P sin θ. (These 
components may be obtained by summing forces in the x and z directions.)

The area of the inclined cross section is A/cos θ. From these values we can 
calculate the normal stress σθ and the shear stress τθ on this angled section 
by the two equations:

 
σ θ

θ
θθ= = =

force
area

P
A

P
A

cos
/ cos

cos ,2  (2.15a)

 
τ θ

θ
θ θθ=− =−

P
A

P
A

sin
/ cos

sin cos .  (2.15b)

The negative sign in the equation for tau comes about due to the sign conven-
tion for shear stresses (the shear force P sin θ is in the negative y′ direction).

Both normal and shear stresses, we have seen, will vary with the angle 
θ. Looking at equation (2.15a) and equation (2.15b) for σθ, we see that it will 
reach its maximum value when θ = 0 ,̊ that is, when the section is perpen-
dicular to the axis of the bar (as in Figure 2.22b). The corresponding shear 
stress at θ = 0º would be zero. Hence we determine the maximum normal 
stress in an axially loaded bar:

 
σmax .=

P
A

 (2.16)

A question to think about is: what happens at θ = 90˚? Does this make 
sense?

P

(a)

(b)

(c)

P
δbar

θ
P

x = 0 x = L

Figure 2.22
Stresses on axially loaded bar.
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If we differentiate the equation for shear stress with respect to angle θ and 
set it equal to zero, we should find the maximum value of τθ. We find that τθ 
has its maximum value when tan θ = ±1, leading us to the conclusion that τmax 
occurs on planes of either +45˚ or –45˚ with the bar axis. If we substitute ±45˚ 
into our equation, we find that

 
τ

σ
max

max= =
P
A2 2

. (2.17)

Thus, the maximum shear stress in an axially loaded bar is only half as 
large as the maximum normal stress.

To consider the stresses on the section formed by a “cut” at the angle θ – 90 ,̊ 
a section perpendicular to the θ section, we can either examine the figure on 
the right side of Figure 2.23, or substitute θ – 90˚ in for θ in the equations we 
have for σθ and τθ. Either way, we will find that

 
σ θ
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= = =90
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sin
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τ θ
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P
A

P
A

cos
/ sin

sin cos .  (2.18b)

2.6 Deformation of Axially Loaded Bars

We’ve established expressions for stress, strain, and the modulus of elastic-
ity E. These may now be combined into a convenient expression to directly 
determine the total deformation δ for an axially loaded bar (Figure 2.22a). 
We begin with the definition of modulus of elasticity, or Hooke’s law, and 
substitute for stress and strain:

 
E P A

L
PL
A

= = =
σ
ε δ δ

/
/

. (2.19)

Then, solving for δ, we obtain

 
δ= PL

AE
,  (2.20)
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where  
 δ = the total axial deformation, with dimensions of Length [(in.), (m, 

mm)]
 P = the total applied external axial load, with dimensions of Force 

[(lb, kips), (N)]
 L = the original length of the bar, with dimensions of Length [(in.), 

(m, mm)]
 A = the cross-sectional area of the member, with dimensions Length2 

[(in.2), (m2, mm2)]
 E = the modulus of elasticity with dimensions of Force/Length2 

[(psi, ksi), (Pa, MPa)]

This expression is valid only when the stress in the bar does not exceed 
the proportional limit. This should make sense, as it is only below this limit 
that the bar’s stress and strain will obey Hooke’s law. Also, equation (2.20) 
assumes that the forces, area, and properties of the bar do not change along 
its length. For a more complex problem, where quantities vary along the bar’s 
axis (here the x axis), we can obtain a similar relationship that takes such 
variations into account:

 

δ=∫ P x
A x E x

dx
L

( )
( ) ( )

0

. (2.21)

We can cast this relationship in terms of the bar’s stiffness, as discussed 
earlier. If we recall the form Hooke’s law took for linear springs, F = kx, we 
can write P as a function of δ using equation (2.20):

Pcosθ
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A A/cosθ

θ

α =  θ – 90º
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P

A A/sinθ

α

Figure 2.23
Sectioning of a bar at angle θ  (left) and angle θ – 90 (̊right) from vertical.
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P AE

L
= δ . (2.22)

Comparing equation (2.22) with F = kx, we see that the axial deformation 
δ of this bar due to the axial load P depends on its stiffness, AE/L. Chapter 6 
compares this spring stiffness with that for a beam, loaded as in Figure 2.16.

2.7 Equilibrium of an Axially Loaded Bar

Now we want to combine our kinematics (equation 2.4) and constitutive 
(equation 2.10) and equilibrium (equation 2.14) equations to characterize a 
uniaxially loaded bar. In principle, this is a system of three equations for 
three unknowns: the strain ε, the stress σ, and the axial displacement u(x). 
However, we can simplify the mathematics by eliminating variables and 
reducing our system to a single differential equation. Since our system of 
equations includes two first-order differential equations (equilibrium, kine-
matics) and one algebraic equation (Hooke’s law, our constitutive equation), 
we expect our single equation to be second order. We achieve this result by, 
first, writing the stress in terms of strain and strain in terms of the displace-
ment, u(x), that is,

 
σ ε= =











E E du x
dx
( )

. (2.23)

Second, we substitute equation (2.23) into the equilibrium equation (2.14) 
to find (assuming that the area, the elastic modulus, and the temperature 
change are all constant—that is, they do not vary with the x coordinate)

 
E d u x

dx
Bx

2

2
0( )

+ = . (2.24)

This is the second-order equation we expected. In the absence of body 
forces (Bx = 0) it is easily integrated, yielding

 u x C x C( )= +1 2 . (2.25)

To determine the constants of integration in equation (2.25), we must apply 
appropriate boundary conditions. As an example, we solve for the diplace-
ment in the bar shown in Figure 2.22a. One boundary condition is clear: The 
displacement (or movement) of the bar is zero at the left end (u(0) = 0) because 
the bar is attached to the wall and restrained there. At the “free” end, x = L, 
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we are pulling with a force P so that we can express this boundary condition 
in terms of the strain as

 

du L
dx

L
E

P
AE

( ) ( )= = =ε σ
. (2.26)

After applying our two boundary conditions, we find the solution (2.25) 
to be

 
u x u Px

AE
Px
AE

( ) ( ) .= + =0
 (2.27)

The net extension of an entire bar (or rod) of length L is thus

 
δ= − =u L u PL

AE
( ) ( ) ,0

 (2.28)

which is in agreement with equation (2.20) and from which we can recover 
the expression for the bar stiffness, AE/L.

2.8 Indeterminate Bars

For some structural systems, the equations for static equilibrium expressed 
in terms of stresses8 are insufficient for determining reactions. This may be 
because some of the reactions are superfluous or redundant for maintaining 
equilibrium. But even a redundant support feels reaction forces—forces we 
as engineers must calculate. Equilibrium equations may also be insufficient 
when some internal forces cannot be determined using the equations of stat-
ics alone. Both of these situations, called statical indeterminacy, may arise in 
axially loaded bar systems.

We can resolve statical indeterminacy by several methods. In all of the 
available methods, as in all of our mechanics problems, we must make sure 
of three things, in no prescribed order:

Equilibrium conditions for the system must be assured, both locally •	
and globally.
Geometric compatibility must be satisfied among deformed parts •	
of the body and at boundaries. This has to do with the kinematics 
of deformation.
Constitutive relations such as Hooke’s law must be obeyed by all •	
materials of the system.

Of the available methods, the two most commonly used are (1) the force 
method, in which we first remove and then restore a redundant reaction; 
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and (2) the displacement method, in which we maintain compatibility of the 
displacements of adjoining members and at the boundaries and in which 
solution displacements are obtained from equilibrium equations. The dis-
placement method is the basis for most of the finite element method (FEM) 
programs that are commonly used to analyze complex structures and is bet-
ter suited to large systems. Both methods make use of the analogy between 
Young’s modulus E and our old friend the spring constant k. E and k each 
relate force and displacement in a linear equation: σ = Eε and F = kx.

We have just seen that the stiffness of an axially loaded bar may be 
expressed as k = AE/L.

2.8.1 Force (Flexibility) Method

The force method is also sometimes called the force/flexibility method. We 
will be thinking of our indeterminate bars as elastic members of a system, 
each bar with a flexibility f related to its stiffness k. In fact, f is defined as the 
reciprocal of k:
  f = 1/k = Δ/P,

or
 L/AE.

Note that f has physical dimensions of displacement/force, reciprocal dimen-
sions of the stiffness k.

To illustrate the force method, consider the following example. In Fig-
ure 2.24a, an axial force P is applied at point B of the varying-diameter bar 
ABC. This axial load leads to reactions R1 and R2 being developed at both 
ends, and the system deforms to the state seen in Figure 2.24b. The deforma-
tions shown are exaggerated.

Since only one nontrivial equation of statics is available (ΣFx = 0, with two 
unknowns Ri), this system is statically indeterminate to the first degree. We 
will assume positive forces and deflections so that any result with a negative 
sign will mean that the force or deflection in question is in the opposite direc-
tion from that drawn in Figure 2.24b. The force method tells us to “remove” 
one of the reactions (in the same hypothetical sense that we “slice” bodies 
open to use the method of sections). We choose to remove the right-hand 
reaction R2 first. This permits the system to deform, as in Figure 2.24c.

We see that in Figure 2.24c, the same axial deformation Δo occurs at B as at 
C—in the imagined absence of reaction R2 (imposed by the right wall), the 
bar is free to deform in this way. If the flexibility of the narrower elastic bar 
is f2, we can use the definition of flexibility to write

 Δo = f2 P. (2.29)

But this deformation violates the geometric condition that is actually imposed 
at A: There is, truly, a wall that prevents a deflection of even Δo. To comply 
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with geometric compatibility, we must find the deflection Δ1 that would be 
caused by R2 on the unloaded bar, as shown in Figure 2.24d. This deflection 
is caused by the stretching (if R2 is in the direction shown; otherwise, the 
compression) of both constituent bars. Thus,

 Δ2 =
R L
A E

R L
A E

2 1

1 1

2 2

2 2
+  = ( f1 + f2) R2. (2.30)

We may then achieve compatibility by requiring that

 Δo + Δ1 = 0. (2.31)

That is, there is no net deformation of the actual bar system. From this expres-
sion we find an expression for R2:

 
R f

f f
P2

2

1 2
=−

+
.
 (2.32)

The negative sign here indicates that R2 acts in the opposite direction from 
what we’d assumed: The bar is in compression. (The same is true for its deflec-
tion, Δ1. It is negative, reflecting the fact that the bar is being compressed.)
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Figure 2.24
Decomposition of indeterminate bar by force method.
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The idea of the force method is that the complete solution is the sum of the 
solutions shown in Figure 2.24c and Figure 2.24d; the method is an applica-
tion of the principle of superposition. Our premise is that the resultant stress 
or strain in a system due to several forces is the algebraic sum of these forces’ 
individual effects. This is only true if each effect is linearly related to the force 
causing it—that is, if we are in the Hookean range of behavior.

It may be useful to refer to the steps of the force method in problem solving:

 1. Determine the number of redundants—that is, the number of forces 
that cannot be determined from equilibrium alone. The number of 
forces needed to maintain equilibrium is equal to the number of 
equations of equilibrium, so any additional forces are “redundant.”

 2. Choose some of the reactions to be the redundants and remove them 
from the structure, thus temporarily producing a determinate struc-
ture. There is no formal method or set of criteria for making the 
choice, so convenience, as viewed through the lens of experience, is 
the guiding principle for choosing redundants.

 3. Calculate the displacements at the points from which redundants 
were removed, as produced by the actual (given) external loading.

 4. Calculate the displacements at the points from which redundants 
were removed but now as produced by the redundants without the 
given external loading.

 5. Sum the two displacements at each point where a redundant has 
been removed, as calculated in the last two steps—that is, as dis-
placement (step 3) + displacement (step 4). Applying superposition 
to this linear structure, we see that we must add the actual displace-
ment at that point of the fully loaded, indeterminate structure. We 
then calculate the values for the redundant forces from these equa-
tions. (We are enforcing compatibility or consistency of deformations 
when we perform this step.)

 6. With the redundants determined in step 5 acting, determine the 
remaining support reactions of the fully loaded, indeterminate 
structure by applying equilibrium.

This procedure is very general; in practice, any number of axial loads, bar 
cross sections, material properties, and thermal effects on the length of a bar 
system may be included in your analyses. However, for very large systems, 
application of the force (flexibility) method is very difficult.

2.8.2 Displacement (Stiffness) Method

The displacement method is also known as the stiffness method. We remem-
ber that the stiffness of an axially loaded bar may be expressed as
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 k = AE/L.

If we are presented with a statically indeterminate elastic axially loaded 
bar system (like that in Figure 2.25a), we may define the stiffness of each 
member ki as

 Ki = AiEi /Li.

An applied force P at point B causes reactions R1 and R2. As before, these 
forces and the displacement Δ at B are considered positive when they act 
toward the right.

Our objective is to determine the displacement Δ. (Since there is only one 
unknown Δ to be determined in this example, this problem is said to have 
one degree of kinematic indeterminacy, or one degree of freedom.) We also 
hope to find expressions for the reaction forces Ri.

In the problem considered here (Figure 2.25), the displacement Δ at B causes 
tension in bar AB and compression in bar BC. Because we understand this, 
we can assume the senses of the reaction forces as shown in Figure 2.25b. 
So, if k1 and k2 are the stiffnesses of the two bars, the respective internal 
forces are k1Δ and k2Δ. These internal forces and reactions are shown on iso-
lated free bodies at points A, B, and C in Figure 2.25c. These points are called 
nodes, or nodal points. The sense of the internal forces is known, since AB is in 
tension and BC is in compression. Writing an equilibrium equation for the 
free body at node B, we have

 − − + =k k P1 2 0∆ ∆ ,   (2.33a)

 
∆=

+
P

k k
b

1 2
.
 (2.33b)

Equilibrium for free bodies A and C gives us

 R k R k1 1 2 2= =∆ ∆and .  (2.34)

So, synthesizing these three results, we find that
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+
and  (2.35)

in the directions indicated in Figure 2.25b, such that AB is in tension and BC 
in compression.

It may be useful to refer to this sequence of steps for the displacement 
method:
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 1. Determine the number of redundants—that is, the number of forces 
that cannot be determined from equilibrium alone.

 2. Identify within the structure a number of points equal to the num-
ber of redundants, and for each of these points identify a nodal dis-
placement of the structure.

 3. Calculate the forces needed to “produce” the nodal displacement, 
and sum all the forces at the nodes to enforce equilibrium.

 4. Eliminate the nodal displacements from the nodal equilibrium equa-
tions to calculate the unknown nodal forces.

 5. Determine the support reactions of the fully loaded, indeterminate 
structure by applying equilibrium.

2.9 Thermal Effects

So far, we have considered mechanical stress and externally applied loads as 
the only sources of strain in materials. With changes of temperature, how-
ever, solid bodies expand with increasing temperature and contract with 
decreasing temperature. These deformations produce thermal strains. We 
define thermal strain εT in the following way:

 εT = α (T – To) = α ΔT, (2.36)

where α is an experimentally determined coefficient of (linear) thermal 
expansion, and To and T are the initial and final temperatures of our mate-
rial of interest. The thermal expansion coefficient α measures dimensional 
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Figure 2.25
Displacement method for statically indeterminate bar.
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change per degree of temperature change for a given material. Typical values 
in SI units of (m/m)/˚C, or just (°C)-1, range from 9.9 × 10-6 for concrete to 11.7 
× 10-6 for carbon steel to 23 × 10-6 for aluminum.

Thermal strain has no directional dependence; equal thermal strains 
develop in every direction for unconstrained homogeneous isotropic materi-
als. For a body of length L subjected to a temperature change, the extensional 
deformation δT is

 δT = α (ΔT) L, (2.37)

where ΔT is allowed to be positive or negative for increasing or decreas-
ing temperature.

If the body in question is free to expand or contract (i.e., the body is not 
restrained), no stress is induced by these thermal effects. The dimensional 
change δT will simply occur, and the otherwise unloaded bar will continue 
to be in equilibrium. However, if the body is partially or fully restrained so 
as to prevent this change δT, internal thermal stresses will develop. Thermal 
stress for a temperature change ΔT is given as

 σT = E α (ΔT). (2.38)

If this body is fully restrained and then cooled, the stress induced is ten-
sile; if the body is fully restrained and then heated, the stress induced is 
compressive. The stresses and strains due to thermal effects may be com-
bined with the stresses and strains in the same directions by straightforward 
superposition.

2.10 Saint-Venant’s Principle and Stress Concentrations

In applying equations such as σ = P/A, we have assumed that forces and 
stresses are distributed uniformly across their surfaces of action. In ideal 
cases such as the axially loaded bars of the previous sections, this is very 
nearly the true situation. However, in more realistic scenarios, things are 
more complex. Fortunately for us, many researchers have performed detailed 
calculations of stress states, and have learned things from the distributions 
they found. We may benefit from their conclusions without performing ardu-
ous computations ourselves.

An exemplary such result came from the analysis of an elastic block, acted 
on by concentrated forces at its ends, as in Figure 2.26a. (Of course, in the real 
world, a truly concentrated force such as this one is not even possible.) The 
calculated stress distributions at three incremental depths within the bar are 
shown in Figure 2.26b, Figure 2.26c, and Figure 2.26d. Clearly, these are not 
uniform distributions across the cross section.
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Two important facts may be gleaned from these results. One, the average 
stresses as calculated by our formulas (stress = force/area) are in agreement 
with these more carefully obtained numbers. Two, the normal stresses are 
nearly uniform on a surface whose distance from the applied force is the 
same as the width of the body. (This is true despite the high spatial variation 
in stress at surfaces nearer to the force application.) This second point illus-
trates Saint-Venant’s Principle, as first stated by the eponymous French elasti-
cian in 1855. It means that the manner of force application (point, or evenly 
distributed, or other) has a significant effect on the stress distribution only 
in the near vicinity of the force’s application. We are applying this principle 
when we idealize our systems.

Highlighted in Figure 2.26b, Figure 2.26c, and Figure 2.26d are the maxi-
mum normal stresses at each cut and their proportionality to the average 
stress. This maximum stress and its relation to average stress is a function of 
geometry. In particular, features such as holes and filleted edges cause areas 
of stress concentration and ruin our idealization of uniform stress distribu-
tion. A formula is available for the calculation of maximum normal stress:

 
σ σmax ,= =K K P

Aav  (2.39)

where K is an experimentally obtained stress concentration factor for the 
particular geometric feature in question. Figure 2.27 shows stress concentra-
tion factors for flat axially loaded members with three types of change in 
cross section.

Whether the area A used in equation (2.39) is the original area (without 
a hole) or the reduced area can vary with researcher and data; this natu-
rally affects the value of K. The data in Figure 2.27 are based on the reduced 
cross section. In cases not covered by the graph in Figure 2.27, another refer-
ence (e.g., Peterson’s Stress Concentration Factors, by Walter Pilkey (1997)) or an 
online stress concentration calculator may prove useful.
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Figure 2.26
Stress distribution near concentrated force in plate.
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In ductile materials, high stress concentration is not necessarily danger-
ous because these materials can accommodate high stresses through plas-
tic yielding and subsequent stress redistribution. In brittle materials, cracks 
may occur in areas of high localized stress.

2.11 Strain Energy in One Dimension

Thanks to Robert Hooke, we have recognized that a solid material responds 
to loading in much the same way as a linear spring, as long as the material 
remains below its proportional limit. Recall that the linear elastic spring is 
an energy storage device for which we can calculate the stored energy as

 

U F dx kxdx kxspring s

x x

= = =∫ ∫
0 0

21
2

.

 (2.40)

We can also calculate the strain energy stored in a deformed elastic solid. 
For the elementary one-dimensional Hooke’s law, the strain energy density, U0, 
or strain energy per unit volume (check the dimensions!) can be calculated as 
the work done by a stress state acting through its corresponding strain:
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Figure 2.27
Stress concentration factors for flat bars. (Adapted from M. M. Frocht, ASME Journal of Applied 
Mechanics 2, A67–A68, 1935.)
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As with the comparable spring calculation, we recognize U0 as the area 
below the stress–strain curve given by Hooke’s law, as is shown in Fig-
ure 2.28a. The area above the stress–strain curve is the complementary energy 
density:

 
U

Eo
C =
σ2

2
.
 (2.42)

The important point to note here is that while the strain and complemen-
tary energy densities are obviously equal, we refer to the strain energy den-
sity when the expression is cast in terms of strains or displacements, and we 
refer to the complementary energy density when the corresponding expres-
sion is written in terms of stresses or forces. For the spring the comparable 
formulas would be
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2 , (2.43a)
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When thermal stresses are included, the calculation is somewhat less 
straightforward because of the offset of thermal strain along the strain axis, 
as shown in Figure 2.28b. Thus, here the strain energy density integration 
would take the form

σ = Eε σ = E(ε–εT)

UoUo

Uo'Uo'

εT

(a) (b)

ε

σ σ

Figure 2.28
Stress-strain relationship and energy densities (a) without and (b) with internal stresses.
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which in expanded form can also be written as

 
U E E T E T0

2 21
2

1
2

= − +ε ε α α( ) ( ) . (2.45)

As a final note, which is easily verified, the strain and complementary ener-
gies must always satisfy the requirements (and produce the results) that

 

∂ ε
∂ε

ε σU Eo( ) ,= ≡  (2.46a)

 

∂ σ
∂σ

σ ε
′

= ≡
U

E
o

C( ) .
 (2.46b)

2.12 A Road Map for Strength of Materials

For one-dimensional loading, we have addressed the checklist for contin-
uum mechanics, involving (1) kinematics, or description of deformation; (2) 
a definition of stress; (3) a relationship between stress and strain; and (4) 
equilibrium. We must next turn our attention to loading in multiple dimen-
sions so that we may model more realistic problems. If we look back at 
our modeling of stretched or compressed bars, we can discern a pattern of 
thought that serves as a road map for a more general approach to problems 
in strength of materials, structural analysis, and elasticity.

Our road map encompasses six major physical elements, beginning with 
the external loads—the given, applied loads on a solid. These loads or forces 
are the “drivers” of our analyses because, as engineers, we design structures 
and machine elements to support, guide, and contain the effects of the exter-
nal loads. This was illustrated in our analysis of a long, thin bar that was 
being pulled (or pushed) by an axial force.

The reactions are external forces that support the loaded body and keep 
it from moving in response the given applied loads. They are determined 
by requiring the body in its entirety to be in equilibrium under the given 
externally applied loads. There are many kinds of reactions. We needed only 
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one axially directed support to ensure equilibrium for the stretched (or com-
pressed) bar.

The internal forces N(x) are the force distributions or stress resultants 
needed to maintain internal equilibrium. Stresses describe the distribution 
of the internal forces over planar sections drawn through the body’s interior. 
They were defined as point functions of the body’s coordinates. So, although 
it seemed relatively straightforward to define a stress as the quotient N(x)/A, 
where A is the bar’s cross-sectional area, we want to extend and generalize 
this simple definition.

The strains are measures of the deformation of the body that result 
from the applied forces. There are many definitions of strain, which we 
reviewed in Section 2.1. The strains are specifically related to the stresses 
by constitutive laws that describe the properties of the material of which 
the body is made (cf. Section 2.3). The strains are required to be compat-
ible, by which we mean that their point-by-point variation cannot produce 
holes in the continuous material of which the body is made, nor can they 
permit deformation that violates any geometrical constraints relative to 
the supports that keep the body in place. Simply put, we want our mod-
els to reflect “well-behaved” deformation that doesn’t produce physically 
untenable results.

The displacements or the deflections are the (generally) more visible move-
ments of the body. The strains are typically found by differentiating the dis-
placements or deflections with respect to spatial coordinates, as we began 
to see in Section 2.1.1 and further explore in Chapter 3. The deflections must 
also be compatible—that is, they must conform with the geometry of the 
body and its support constraints.

In the language of continuum mechanics, we can now restate our four-item 
checklist as three major physical considerations that must be applied:

Equilibrium•	  considerations relate external forces, reactions, inter-
nal forces, and stresses. That is, we apply Newton’s second law to 
relate external loads to reactions; the method of sections to relate 
external forces and reactions to internal (resultant) forces; and both 
Newton’s laws and the method of sections to relate internal forces 
to stresses.
Constitutive laws•	  relate stresses to strains. We invoke constitutive 
laws to describe the properties of the material of which a body is 
made.
Compatibility•	  considerations relate strains to displacements or deflec-
tions (i.e., kinematics). We pay attention to compatibility both when 
calculating movements and deflections and when ensuring consis-
tency and continuity with respect to the geometry of the body and 
its support constraints.
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The order in which we apply these criteria, or in which we check off items on 
our checklist, is not important. The requirement is that our analyses include 
all of them, no matter the order.

2.13 Examples

example 2.1

Figure 2.29a shows a diagram of the bones and biceps muscle of a person’s 
arm supporting a mass; Figure 2.29b shows a biomechanical model of the 
arm, in which the biceps muscle AB is represented by a bar with pin supports. 

The suspended mass is m = 2 kg, and 
the weight of the forearm is 9 N. If 
the cross-sectional area of the tendon 
connecting the biceps to the forearm 
at A is 28 mm2, what is the average 
normal stress in the tendon?

Given: Dimensions of and loading 
on truss system.
Find: Average normal stress in 
tendon AB.
Assume: Equilibrium; planar sys-
tem; neglect weight of muscle and 
tendon AB.

Solution

We first need to find the internal 
axial force in AB and then calculate 
the normal stress by dividing this 
force by the cross-sectional area. We 
must construct an FBD of the system 
(Figure 2.30):

(a)

(b)

B

A
C

m

50
mm

290
mm

9 N

200 mm 150 mm

Figure 2.29
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PAB PBC

19.62 N
(2 kg · 9.81 m/s2) 

9 N

290 mm

50 mm
θ = 80.22°

50
290tan θ =θ

θ

Figure 2.30

Equilibrium requires that the sum of moments taken about point C be zero, 
where a counterclockwise moment is taken to be positive:

 ΣMC = 0 = 19.62 N (0.35 m) + 9 N (0.15 m) – PAB sin θ (0.05 m).

Solving for PAB,

 
PAB=

⋅
=

8 22
0 05

166 76.
( . sin

.N m
m)

N.
θ

The average normal stress σAB is then

 
σAB

AB

AB

P
A m

= =
×

=
−

166 76
28 10

5 956 2
. .N MPa.  

example 2.2

An infinitesimal rectangle at a point in a reference state of a material becomes 
the parallelogram shown in a deformed state (Figure 2.31). Determine (a) the 
extensional strain in the dL1 direction; (b) the extensional strain in the dL2 direc-
tion; and (c) the shear strain corresponding to the dL1 and dL2 directions.

 

dL1 1.2dL1

dL2 1.3dL230°
dL dL'

120°

Reference state Deformed state

Figure 2.31

Given: Reference and deformed geometries of infinitesimal rectangle.
 Find: Normal and shear components of strain.
 Assume: Strain definitions are adequate; use of “true” strain integral is 

unnecessary.
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Solution

Normal strain in dL1 direction:

  ε1 1 1

1

1 1

1

1 2 0 2=
′−

=
−

=
dL dL

dL
dL dL

dL
. . .

Normal strain in dL2 direction:

 
ε2

2 2

2

2 2

2

1 3 0 3=
′−

=
−

=
dL dL

dL
dL dL

dL
. . .

Shear strain is the angular deformation, or change in angle between two 
reference lines. In reference state, the angle between dL1 and dL2 is 90 ,̊ or π/2. 
In the deformed state, the angle between dL1′ and dL2′ is 60 ,̊ or π/3. The shear 
strain is thus

 
γ

π
12 6

0 524= = . radians.

Note: If we tried to approximate shear strain by the tangent of this angular 
deformation instead of using the angle itself, we would get

 
γ

π
= =

1 3 6 0 6502

2

. sin / .dL
dL

radians.

This is close, but not that close, to 0.524 radians. The angular change in this 
problem is not sufficiently small to justify the use of the tangent in place of 
the angle itself.

example 2.3

Three metal balls are suspended by three wires of equal length arranged 
in sequence as shown in Figure 2.32. The masses of the balls, starting at the 
top, are 2 kg, 4 kg, and 3 kg, respectively. In the same order, beginning at 
the top, the wires have diameters 2 mm, 1.5 mm, and 1 mm, respectively. 
(a) Determine the highest stressed wire, and (b) by changing the location of 
the balls, optimize the mass locations to achieve a system with minimum 
stresses.
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a

b

c

A = 2 kg

B = 4 kg 

C = 3 kg

Figure 2.32

 Given: Dimensions and arrangement of steel balls.
 Find: Stresses in each wire; lowest-stress configuration.
 Assume: Neglect weights of wires.

Solution

We must find the internal force within each wire and then divide by the 
wire’s cross-sectional area to find the normal stress in each wire. For each 
wire, the internal force will equal the mass this wire must support times the 
acceleration of gravity. For example, the top wire, a, must support 2 + 4 + 3 
kg, so its internal axial force is 88.3 N. We tabulate these calculations:

Pi (N) Ai (m2) σi (MPa)

Wire a 88.3 3.14 × 10-6 28.1

Wire b 68.7 1.77 × 10-6 38.8

Wire c 29.4 0.79 × 10-6 37.2

The wire subjected to the highest stress is wire b.
To achieve a minimum stress system, we recognize that stress is inversely 

proportional to cross-sectional area. Hence, since Aa > Ab > Ac, wire a should 
carry the largest load (which it must), and wire b and wire c should sup-
port as little load as possible. This leads us to the following configuration 
(Figure 2.33):
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a

b

c

B = 4 kg

C = 3 kg

A = 2 kg

Figure 2.33

σi (MPa)

Wire  a 28.1

Wire  b 27.7

Wire  c 24.8

In the configuration of part (a), the total stress in the three-wire system is 
104 MPa; in part (b), the total stress is 80.6 MPa.

example 2.4

A steel bar 10 m long used in a control mechanism must transmit a tensile 
force of 5 kN without stretching more than 3 mm or exceeding an allow-
able stress of 150 MN/m2. What must the diameter of the bar be? State your 
answer to the nearest millimeter, and use E = 200 GPa.

Given: Dimensions and loading on steel bar.
Find: Required bar diameter to nearest mm.
Assume: Hooke’s law applies.

Solution

We will impose both strength and stiffness constraints on the bar and will see 
which is the limiting case.

Using the definition of normal stress, we must have

 
σ= ≤

P
A

150 2
MN
m

,

or
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A P
≥ =

×
= × −

150
5000 33 33 102 2

6

MN/m
N

150 10 N/m
m6 . 22 ,

that is,

 A≥33 33. mm2
.

If Hooke’s law applies, as we have assumed it does, then

 
δ= PL

AE
,

and we must have

 

PL
AE
≤3 mm

or

 
A PL

E
≥ =

⋅
×

=
δ

N 10 m
m N/m2

5000
0 003 200 109( . )( )

883 33 10 6. × − m2

that is,

 A≥83 33. .mm2

We see that stiffness is the limiting case and that we must have a cross- 
sectional area greater than or equal to 83.33 mm2 to safely meet our con-
straint. This is all we need to find the required diameter of the steel bar:

 

π
4

83 332d ≥ . ,mm2

so

 d ≥ 10.3 mm.

So to the nearest millimeter, we must use an 11-mm-diameter bar.

example 2.5

A solid bar 50 mm in diameter and 2000 mm long consists of a steel and an 
aluminum section, as shown in Figure 2.34. When axial force P is applied to 
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the system, a strain gauge attached to the aluminum indicates an axial strain 
of 0.000873 m/m. (a) Determine the magnitude of applied force P, and (b) if 
the system behaves elastically, find the total elongation of the bar.

Steel Al 

1500 mm  500 mm 

P P

Figure 2.34

Given: Dimensions of composite bar and measured normal strain.
Find: Applied force, P, and elongation of bar, δ.
Assume: Hooke’s law applies.

Solution

The diameter of the bar is 50 mm, so the cross-sectional areas of both parts 
are equal:

 
A ASt Al= = ( ) =π

4
0 05 0 00196

2 2. . .m m

The elastic moduli for aluminum and steel may be looked up in Table 2.1 
or in another reference.

 EAl ≈ 70 GPa, and ESt ≈ 200 GPa.

If Hooke’s law applies, we can relate the strain measured in the aluminum 
portion to the stress induced by P in that portion:

 
ε σ

Al
Al

Al

Al

AlE
P A

E
= = =0 000873. ( / ) ,

so

 P = (0.000873)(70 × 109 Pa)(0.00196 m2) = 120 kN.

We can exploit Hooke’s law and superpose the displacements of both por-
tions of the bar:

 
δ= =




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


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+

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=

×
+

120 000 1 5 0 5, . .N
0.00196 m

m
200 10 N/m

m
2 9 2 770 10 N/m9 2×













  = 459 × 10-6 m + 437 × 10-6 m = 896 × 10-6 m

 δ = 896 μm, or 0.896 mm.

Note: The aluminum section is only a third as long as the steel, but it 
deforms nearly as much!

example 2.6

A polystyrene bar consisting of two cylindrical portions AB and BC is 
restrained at both ends and supports two 26 kN loads as shown in Fig-
ure 2.35. Knowing that E is 3.1 GPa, determine (a) the reactions at A and C, 
and (b) the normal stress in each portion of the bar.

Given: Dimensions of and loading on composite polystyrene bar.
Find: Reactions and normal stresses.
Assume: Hooke’s law applies. Neglect weight of polystyrene cylinders.

A

B

C

32 mm diameter

50 mm diameter

26 kN 26 kN
600 mm

400 mm

Figure 2.35

Solution

The first thing we need is an FBD (Figure 2.36):
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RA

2·26 kN 

1

2

Figure 2.36

We ensure that this system is in equilibrium by stating,

 ΣFy = 0, or RA + RB = 52 kN.

This one equation contains two unknowns: The problem is statically inde-
terminate. So, what else do we know? Because both ends are fixed, the total 
elongation of the composite bar must be zero. So,

  δAB + δBC = 0.

Using Hooke’s law, we can write these displacements as

 
δ δAB

AB AB

AB
BC

BC BC

BC

P L
A E

P L
A E

= =and .

We then use the method of sections to find PAB and PBC, the internal forces 
in the two component sections (Figure 2.37).

 

RA

PBC = –RC (compressive) 

Figure 2.37
Measurement of tension in a string.
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So, imposing the geometric constraint that the total elongation of the bar 
is zero, we have

 

R L
A E

R L
A E

A AB

AB

C BC

BC
+
−

=0,

or
 (2.407 × 10-7)RA – (6.572 × 10-7)RC = 0.

We also know RA + RC = 52 kN, so we can solve these two equations to get 
the reaction forces:

 RA = 11.2 kN

 RC = 40.8 kN.

Then we divide the internal forces by the cross-sectional areas they act on 
to obtain the normal stresses in both pieces:

 

σ
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example 2.7

Each bar in the truss shown in Figure 2.38 has a 2 in.2 cross-sectional area, 
modulus of elasticity E = 14 × 106 psi, and coefficient of thermal expansion 
α = 11 × 10-6 (˚F)-1. If their temperature is increased by 40˚F from their initial 
temperature T, what is the resulting displacement of point A? What upward 
force must be applied to prevent this displacement?

60° 60°

36 in.

A

B C

Figure 2.38



Strain and Stress in One Dimension 65

Given: Dimensions and properties of truss; imposed temperature change.
Find: Displacement of point A; force necessary to prevent this displacement.
Assume: Hooke’s law applies. Neglect weight of bars.

Solution

The geometry of the problem allows us to find the original length of bars AB 
and AC (Figure 2.39):

36 in.
L

60°

Figure 2.39

 L = 36 in./sin (60˚) = 41.56 in.

The change in the length of each bar due to the change in temperature ΔT 
is then

 δT = L α ΔT = (41.56 in.)(11 × 10-6 (˚F)-1)(40˚F) = 0.018 in.

So, the new vertical distance from the fixed surface to point A is

 ( in.41 56 0 018 60 36 008. . ) sin ( ) .+ ⋅ =

The horizontal displacements of AB and AC will be equal and opposite, so 
the net displacement of point A is only vertical and is 0.008 in.

The upward force applied to prevent this must “undo” the thermal expan-
sion of the two bars; it must induce a compressive axial load P in both bars 
such that, by Hooke’s law,

PL
AE

P=− =
− ×0 018 0 018. ( .in., so in.)(14 10 p6 ssi)(2 in.

in.
lb (compressi

2 )
.

,
41 56

12 127=− vve!) .

We construct an FBD and use equilibrium to find the force F necessary to 
induce this compressive load P in both bars (Figure 2.40):
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F

P P

Figure 2.40

 ΣFy = 0 = F – 2P sin(60˚), or F = 2P sin(60˚)
 F = 21,327 lb.

example 2.8

A steel railroad track (E = 200 GPa, α = 11.7 × 10-6/ºC) was laid out at a tem-
perature of 0ºC. Determine the normal stress in a rail when the temperature 
reaches 50ºC, assuming that the rails are (a) welded to form a continuous 
track, or (b) 12 m long with 6-mm gaps between them.

Given: Geometry of problem, material properties, imposed temperature 
change.

Find: Normal stress (a) when continuous or (b) when gaps are left.
Assume: Hooke’s law applies.

Solution

Based on our understanding of thermal stresses, we expect the stress cal-
culated in part (b) to be lower than that in part (a): We have learned that 
thermal stresses are induced only when a part is prevented from experienc-
ing its natural thermal deformation, so the space left to accommodate ther-
mal expansion in part (b) should help relieve the induced stress. We will see 
whether this expectation is met.

A schematic helps to illustrate the problem (Figure 2.41):

 

ORIGINAL STATE, P = 0, T = 0°C 
δT  thermal expansion

δP  compression due to P

Figure 2.41
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 (a) The total deformation of a steel track segment is δT + δP = 0, as the 
welding allows no net change to the length of the segments. Hence, 
we add the deformations due to thermal effects and compressive 
forces:

 

0= +
−α ( )∆T L PL
AE

tends to
stretch tend

  
ss to

squash


,

  so

 
α

σ
∆T P

AE E
= =

 σ = α ΔT E = (11.7 × 10-6 (˚C)-1)(50 – 0˚C)(200 × 109 Pa)

 σ = 117 MPa (compressive)

  when welded.
 (b) If a gap of 6 mm is left between rails, we allow each segment a net 

stretch of 6 mm:
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−
=

× −m ( C) C)(12-1∆ TL
L

E0 006 11 7 10 506. . (  m)–0.006 m
12 m

Pa










×( )200 109

 σ = 17 MPa (compressive)

  when a gap is left.

example 2.9

A 6 mm × 75 mm plate, 600 mm long, has a circular hole of 25 mm diameter 
located at its center. Find the axial tensile force that can be applied to this 
plate in the longitudinal direction without exceeding an allowable stress of 
220 MPa. How does the presence of the hole affect the strength of the plate?

Given: Dimensions of plate, limiting normal stress.
Find: Allowable axial load that can be applied to plate.
Assume: Hole is only feature that causes a stress concentration.
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Solution

PP

600 mm 

25 mm

6 mm 

75 mm

Figure 2.42

The cross-sectional area normal to an axial load P is Ao = 6 mm × 75 mm = 450 
mm2 (Figure 2.42). The average normal stress induced by such a load will be

 σave = P/Ao,

and due to the presence of the hole we must consider the effects of stress 
concentration:

 
σ σmax = =K K P

Aave
o

.

We can find K for this geometry using the graph in Figure 2.27:

 

r
d

K r
d

= =

=

(
–

,

( .

25
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1
4

0 25

mm)/2
mm 25 mm

)) .= 2 26
so

 
σmax . .= = =K P

A
P P

o
2 26

450
0 005

mm2

and since we must have

 220 MPa ≥ 0.005 P

then

 P ≤ 43.8 kN.
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Note: If there were no hole in this plate, we would simply have

 σave = P/Ao,

and we could allow a force

 P ≤ 99 kN.

So with the hole, we can permit only 44% of the load we could have allowed 
without the hole.

2.14 Problems

 2.1 In tissue engineering, biological materials are grown from seeded 
cells, so that artificial corneas, blood vessels, or other materials 
may be made from biological materials. Such materials are less 
likely than artificial parts made of plastic or metal to be rejected 
by the body. To engineer true replacement parts, it is necessary to 
understand the behavior of physiological systems and to match 
material properties such as elastic and shear moduli. It is imprac-
tical to construct a tension specimen like that in Figure 2.2 from 
soft tissues such as muscles, tendons, or blood vessels. What 
would you do instead?

 2.2 Concrete, rocks, and bone are strong in compression and are usu-
ally designed for compressive loading. To test their strength in 
compression, what sort of test specimen would be useful?

 2.3 The tension in your Achilles tendon is considerable when you 
stand on tiptoe or poise for a jump. Design a tension gauge that 
might be useful in measuring such tension, or the tension in a bow 
string or rubber slingshot. (Hint: after Fung 1994; Figure 2.43):

 

θθ

Figure 2.43
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 2.4 When a kangaroo switches from “pentapedal” (four limbs and tail) 
locomotion to hopping, its oxygen consumption drops, presum-
ably because it then stores more energy in elastic tissues (Dawson 
and Taylor 1973). One of these elastic tissue “springs” in kangaroos 
(and other animals) is the Achilles tendon. A kangaroo’s Achilles 
tendon was found to be 1.5 cm in diameter and 35 cm long. If each 
Achilles tendon has an elastic modulus of 1 GPa and is loaded to 
2% strain (below its proportional limit), how much strain energy 
(i.e., stored potential energy) would both Achilles tendons con-
tain? Based strictly on energy considerations, can you predict how 
high this amount of energy could lift a 40 kg kangaroo?

 2.5 In Figure 2.44, the suspended mass m = 20 kg. Determine the axial 
force in the bar AB, and indicate whether it is in tension or com-
pression. (Hint: Draw the free-body diagram of joint B.)

45°

20°

A

B

C

Figure 2.44

 2.6 The bar shown in Figure 2.46 has a solid circular cross section, 
with a 2 in. radius. Determine the average normal stress (a) at plane 
P1, and (b) at plane P2.

P1 P2

12 kip

8 kip4 kip

Figure 2.45

 2.7 Suppose that a downward force is applied at point A of the truss, 
causing point A to move 0.360 in. downward and 0.220 in. to the 
left (Figure 2.46). If the resulting extensional strain εAB in the direc-
tion parallel to the axis of bar AB is uniform, what is εAB?



Strain and Stress in One Dimension 71

16 in 

16 in         24 in 

B C 

A

Figure 2.46

 2.8 The jaws of the bolt cutter shown in Figure 2.48 are connected by 
two links AB. The cross-sectional area of each link is 750 mm2. (a) 
What average normal stress is induced in each link by the 90 N 
forces exerted on the handles? (b) The pins connecting the links 
AB to the jaws of the bolt cutter are 20 mm in diameter. What aver-
age shear stress is induced in the pins by the 90 N forces exerted 
on the handles?

90 N 

90 N 

A

B

Jaws

Links

A A 

B B 

80 mm 
160 mm

100 mm
   540 mm 

Front view 

Figure 2.47

 2.9 Determine the maximum allowable value of the force F if the 
tensile stress in segment AB must be less than 150 MN/m2 (Fig-
ure 2.48). What are the changes in length of segment BC and of the 
entire bar for this value of F? The bar’s cross-sectional area is 50 
mm2, and the bar is made of steel.
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A

B

3 m 

2 m 

50 kN

F

30 kN

Figure 2.48

 2.10 The bar shown in Figure 2.49 has a constant cross section and is 
fixed rigidly at both walls. Determine the reactions at both walls 
for the given applied load P.

P

a b

Figure 2.49

 2.11 A rigid slab with mass m = 15,000 kg is supported by three col-
umns, as shown in Figure 2.50. Determine the compressive force 
in each of the columns.

2 m

m
L/2 L/2

Steel

Aluminum

Figure 2.50
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 2.12 The bar shown in Figure 2.51 has a varying cross section and is 
fixed rigidly at both walls. The cross-sectional area of the nar-
rower section is A; the cross-sectional area of the wider section is 
larger by a factor of m, or mA. Using the force (flexibility) method, 
determine (a) the reactions at both walls for the given applied load 
P; and (b) the displacement of the point D at which the load P 
acts.

A D B C

P

 L/4 L/4 L/2

Figure 2.51

 2.13 The bar shown in Figure 2.51 has a varying cross section and is 
fixed rigidly at both walls. The cross-sectional area of the nar-
rower section is A; the cross-sectional area of the wider section is 
larger by a factor of m, or mA. Using the displacement (stiffness) 
method, determine (a) the reactions at both walls for the given 
applied load P; and (b) the displacement of the point D at which 
the load P acts.

 2.14 Determine the movement δ of the tip of a dense, heavy uniform 
bar hanging vertically from one end. The bar has length L, modu-
lus E, cross-sectional area A, and mass density ρ.

 2.15 Your local lumber yard is providing a set of wooden 4 in. × 4 in. 
posts that you will mount on 6 in. × 6 in. concrete bases to support 
a section of roof. Handbooks provide the allowable compressive 
stresses: 1800 psi for wood and 1250 psi for concrete. The specific 
weight of concrete is also given as 150 lbf/ft3, although the cor-
responding number for wood is not shown. For the postsupport 
configuration shown in Figure 2.52, determine (a) the specific 
weight of wood, given that a 2 ft section of the post weighs 21 lb 
and knowing that a 4 in. × 4 in. post is actually 3.5 in. × 3.5 in.; (b) 
the supported load P when the weights of the support and post 
are included; and (c) the supported load P when the weights of the 
support and post are not included.
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P

Wood

Concrete

6'

1'

Figure 2.52

 2.16 For the wood block shown in Figure 2.53, the allowable shear stress 
parallel to the grain is 1 MN/m2, and the maximum allowable 
compressive stress in any one direction is 4 MN/m2. Determine 
the maximum compressive force F that the block can support.

24
7

F F

50 mm

50 mm

Figure 2.53

 2.17 Two cylindrical bars with 30 mm diameters, one (ABC) made of 
yellow brass and the other (CDE) of stainless steel, are joined at C 
(Figure 2.54). End A of the composite bar is fixed, while there is a 
gap of 0.2 mm between end E and a vertical wall. A force of mag-
nitude 40 kN and directed to the right is applied at B. Determine 
(a) the smallest force P needed at D to just close the gap without 
the steel bar actually coming into contact with the wall at E; (2) the 
reactions at A and E if a 40 kN force directed to the right is applied 
at D; and (3) the reactions at A and E if force P is twice the value 
you calculated in (a).
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40 kN P

Brass Steel

0.20 mm
A B C D E

0.1 m 0.1 m 0.1 m 0.1 m
0.2 m 0.2 m

Figure 2.54

 2.18 A bar consists of two portions BC and CD of the same material 
and same length L but of different cross sections (Figure 2.55). 
Determine the strain energy of the bar when it is subjected to an 
axial load P, expressing the result in terms of P, L, E, the cross- 
sectional area A of portion CD, and the ratio n of the two 
diameters.

P

n2A A

B C  D 

Figure 2.55

 2.19 An electronic scoreboard is to be installed in a large stadium. Due 
to the design of the roof structure, the suspending cables will have 
different lengths, as is shown in Figure 2.56. (a) Determine a suit-
able cross-sectional area for each cable so that the scoreboard will 
hang level, accounting for the stretch in each cable. Use the data 
in the figure and the requirement that the cable’s yield strength 
is 36 ksi. The modulus of elasticity for the cables is E = 30,000 ksi, 
and the weight of the scoreboard is W = 10 k. Remember, 1 kip (k) 
= 1000 lb. (b) The slope of the grain in the longer support cable has 
a maximum deviation from the cable’s longitudinal axis of 15º, 
and there is some concern that the relatively low shear strength of 
the cable material along its grain could cause problems. Calculate 
both normal and shear stresses along this grain.
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GO    BEARS

W

7 ft 3 ft

40 ft

10 ft

Figure 2.56

Case Study 1: Collapse of the Kansas  
City Hyatt Regency Walkways

On July 17, 1981, in the most damaging unforced structural failure in the his-
tory of the United States, two overhead walkways fell into the atrium lobby 
of the Hyatt Regency Hotel in Kansas City, Missouri. As a result of this col-
lapse 114 people died, and millions of dollars of damage was sustained (Fig-
ure CS1.1).

The failure derived in large part from a key aspect of modern engineer-
ing design, which is that engineering designers do not, typically, build what 
they design. Rather, they produce a fabrication specification, a detailed descrip-
tion of the designed object that allows its assembly or manufacture by others. 
Separating the “designing” from the “making” means that such fabrication 
specifications must be complete and unambiguous.

Fabrication specifications are presented in drawings (e.g., blueprints, cir-
cuit diagrams, flow charts) and in text (e.g., parts lists, materials specifica-
tions, assembly instructions). Such traditional specifications can be complete 
and sufficiently specific, but they may not capture the designer’s intent—and 
this can lead to catastrophe. The suspended walkways in the Hyatt Regency 
Hotel in Kansas City collapsed because a contractor fabricated the connec-
tions for the walkways in a manner different from the original design.
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In the original design, walkways at the second and fourth floors were 
hung from the same set of 24-ft-long threaded rods that would carry their 
weights and loads to a roof truss (Figure CS1.2). The fabricator was unable 
to procure threaded rods sufficiently long to suspend the second-floor walk-
way from the roof truss, so instead, as shown in Figure CS1.3, he hung it from 
the fourth-floor walkway using shorter rods. (The original design would not 
have been easy to implement because of the difficulty involved in screwing 
on bolts over such long hanger rods and attaching walkway support beams.) 
The supports of the fourth-floor walkway were not designed to carry both 
the second-floor walkway and its own dead and live loads, resulting in the 
collapse. If the fabricator had understood the designer’s intention to hang the 
second-floor walkway directly from the roof truss, this accident might have 
been avoided.

As Henry Petroski (1982) noted, the fabricator’s redesign was akin to 
requiring that the lower of two climbers hanging independently from the 
same rope change his position so that he was grasping the feet of the climber 
above, causing the upper climber to carry the weights of both with respect to 

Figure CS1.1
The lobby of the Kansas City Hyatt Regency Hotel after 
the collapse of the second- and fourth-floor walkways on 
July 17, 1981. The devastation is evident. (Courtesy of Lee 
Lowry, Kansas City, MO.)
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Figure CS1.2
An artist’s sketch of the second- and fourth-floor walkways across the west side of the atrium 
of the Kansas City Hyatt Regency Hotel. The view looks southward and also shows a separate 
third-floor walkway that did not collapse but was taken down after a design review prompted 
by the collapse of the other two walkways on July 17, 1981. (From Pfrang, E. O. and Marshall, R., 
with E. J. Orwin and R. E. Spjut, Civil Engineering, pp. 65–68, July 1982. With permission.)

Original design As built

Figure CS1.3
The two hanger connections at the fourth-floor walkway: (a) The left sketch shows the con-
figuration as designed, wherein the hanger rods went straight through the fourth-floor con-
nection, down to the second floor, which these rods also supported. (b) The right sketch shows 
the configuration as built, with the hanger rods supporting the second floor now hung from 
the box beams that hold up the fourth-floor walkway. (From Dym, C. L. and Little, P., Engi-
neering Design: A Project-Based Introduction, 3rd Ed., John Wiley & Sons, New York, 2008. With 
permission.)
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the rope. The redesigned supports for the second-floor walkway were con-
figured similarly.

Figure CS1.4 shows several sketches of the original design: (a) an elevation 
view of the second- and fourth-floor walkways, each supported by the same 
pairs of hanger rods (on east and west sides of the walkway) spaced at a dis-
tance L; and (b) an end view of the two walkways and FBDs of the support-
ing beam of each walkway. Consider now the lower, second-floor walkway. 
The load carried by each pair of its hanger rods can be estimated as the sum 
of the dead load of the walkway and its supporting beams and the live load of 
pedestrians likely to stand or walk across the walkways. Since the hanger 
rods are spaced a distance L apart we estimate the total force 2P needed to 
support a span of length L/2 on either side of a pair of hangers as

 2P w W bL= +( ) ,  (CS1.1)

where w is the dead load per unit area, W the live load per unit area, and b the 
walkway width. In this instance, by both making calculations based on the 
design drawings and weighing pieces of the collapsed walkways, the engi-
neers at the National Bureau of Standards (NBS)9 who performed the foren-
sic investigation of the walkway collapse determined that the combination 
of the dead and live loads, called the design load, was in this case P = 90 kN 
(20,300 lbf) per hanger rod. The analysis of the fourth-floor walkway based 
on the original design would be the same. Then the individual hanger rods 
needed to support both the second- and fourth-floor walkways as designed 
would each support a total load of 2P and would be sized accordingly.

L L

P

P

b

2P 2P

P P 

P P

(W + w)L

(W + w)L

(a)    (b)

Figure CS1.4
Building a model of the walkways and their supports: (a) An elevation of the second- and 
fourth-floor walkways as originally designed. (b) An end view and free-body diagrams of the 
support beams. The forces carried by the hanger rods accumulate according to the number of 
walkways being supported below them.
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On the other hand, the end views of the walkways as built and their corre-
sponding FBDs (Figure CS1.5) show that the rods would have to carry exactly 
the same loads at each level; that is, to support the lower walkway each rod 
carries a load equal to P, while above the fourth floor each rod would have to 
carry a load of 2P to support both the second- and fourth-floor walkways. So 
the rods in both designs would have equivalent designs with the same area, 
determined by equation (2.7),

 
A P
=

2
σallow

,  (CS1.2)

where σallow  is the allowable stress in the rod. In terms of the rope analogy, 
the part of the rope above the two climbers has to support the weight of both: 
It doesn’t care whether each hangs directly from the rope or one climber 
hangs from the other.

So, why did the walkways collapse? They failed because an unanticipated 
connection was inserted into the design, the connection was not properly 
designed, and it failed (Figure CS1.6). As noted by respected engineers E. O. 
Pfrang and R. Marshall (1982), “With this modification the design load to be 
supported by each second floor … connection was unchanged …. However, 
the load to be transferred from the fourth floor … to the upper hanger rod 
under this arrangement was essentially doubled” (p. 68). Look again at the 
FBD in Figure CS1.5: It shows that the redesign required the nut under the 
fourth-floor supporting beam and its connection with the beam itself to sup-
port the transfer of twice the load that would have been transferred in the 
original design—which the fabricator’s redesigned connection did not.

b b

2P 2P

P P

P P

(W + w)L

(W + w)L

Figure CS1.5
Extending the model of the walkways and their supports to reflect the redesign. An end view 
of the second- and fourth-floor walkways designed so that the second-floor walkway hangs 
from the fourth-floor supporting beams, and free-body diagrams of a typical pair of supports. 
Note that the forces supported by the hanger rods are unchanged from the original design.
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Interestingly enough, it was also revealed in the subsequent forensic inves-
tigation that even the original design was only marginally safe. The NBS 
investigators found that the long-rod design would likely not have satisfied 
the Kansas City Building Code specifications. Further, it turned out that dur-
ing construction, the building’s construction workers had noticed that the 
walkways seemed flimsy and that they moved noticeably whenever workers 
moved wheelbarrows or the like across them. Their solution? Rather than 
report the problem and request a fix, they found other routes over which to 
transport their building materials!

The NBS official report issued in 1981 did not assign blame for this catas-
trophe. The essential problem was a lack of proper communication between 
the design engineers (Jack D. Gillum and Associates) and the manufactur-
ers (Havens Steel). However, the NBS report’s authors, Pfrang and Marshall, 
made it clear that responsibility lay primarily with the structural engineers. 
The Missouri licensing board and Court of Appeals agreed, finding that the 
design engineers should have noticed the difference between their design 
and what the contractor suggested and should have analyzed the redesigned 
connection. Basic calculations should have demonstrated the flaws in both 
the original design and in what was ultimately built. The principal struc-
tural engineers lost their Missouri engineer’s licenses, and the firm, Jack D. 
Gillum and Associates, dissolved. The Hyatt Regency Crown Center lobby in 
Kansas City today features only one walkway, which is not suspended from 
the roof but instead rests on sturdy-looking columns that transmit its loads 
to the atrium floor.

Figure CS1.6
Photographs of the failed connections that led to the collapse of the two walkways in the Kansas 
City Hyatt Regency Hotel. Compare it with Figure CS1.3 (b) and see that the outboard connec-
tion (on the right-hand edge) failed because the threaded nut and washer that went underneath 
the box beam pulled right through the box beam because that connection, designed originally 
to transmit a load of P, was actually carrying a load of 2P. (Courtesy of Lee Lowry.)
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Problems

CS1.1 If the Kansas City Building Code specified that a floor structure 
must support a live load of 4.79 kPa (100 psf), and if the walkway 
length L = 9.1 m = 30.0 ft and width b = 2 m = 6.56 ft, what contri-
bution is made to the hanger rod load P?

CS1.2 If the design load is 90 kN (20,300 lbf), what is the dead load and 
what is the intensity of the dead load in the light of the live load 
calculation of Problem CS1.1?

CS1.3 Determine the specific weight of lightweight concrete and calcu-
late its dead load intensity if it is used in an 80-mm (3.25 in.) cover 
of a formed steel deck walkway. Compare this result with that 
found in Problem CS1.2 and explain any differences.

CS1.4 Determine the stress induced in hanger rods carrying a design 
load of 90 kN (20,300 lbf), if their diameters are 32 mm (1.26 in.). 
Does that seem a reasonable stress level if the rods are made of 
mild steel? Explain your answer.

CS1.5 If the interfloor distance of the Hyatt Regency Hotel is 4.57 m (15 
ft), how much does the second-floor walkway move with respect 
to the fourth-floor walkway?

Notes

 1. Or, more generally, that Newton’s second law is satisfied.
 2. Carlson was a civil engineer investigating California dams; Simmons was an 

electrical engineer who first developed a way to manufacture a bonded-wire 
strain gauge and patented his design—though it took an 11-year court battle for 
him to win the patent rights for himself and not for Caltech, where he had been 
educated and continued to work.

 3. Temperature considerations are important because the wires’ electrical prop-
erties may be temperature dependent and also because temperature itself can 
result in deformation, as is quantified in Section 2.9.

 4. Both P and F are used to represent forces in this textbook. The vector A is nA, 
where n is the outward normal vector of the area A.

 5. From Gordon (1988) p. 45.
 6. Such experiments were performed by Jacob Bernoulli (1654–1705) and J. V. Pon-

celet (1788–1867) in the quest to understand materials’ response to loading.
 7. Hooke (1635–1703) has never received due recognition for his scientific achieve-

ments. In addition to crafting what we know as Hooke’s law, Hooke was an 
architect and geologist whose studies of microorganisms (using his friend 
Anton van Leeuwenhoek’s newfangled microscopes) and fossils were semi-
nal. Hooke’s relative obscurity is largely a result of the efforts of his vindic-
tive contemporary, Sir Isaac Newton, who used his own fame and influence to 
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diminish Hooke’s accomplishments; it was his fear that Newton would steal or 
diminish ut tensio, sic vis that led Hooke to publish only his encrypted anagram 
for Hooke’s law. He and Newton had had a feud over the inverse-square law 
of planetary motion, and Newton was so perturbed by it that he removed all 
traces of Hooke from his Principia. Hooke had even been prescient enough to 
anticipate the application of his observation of springs to material behavior, 
having stated that every kind of solid changes its shape when a mechanical 
force is applied and that it is this deformation that enables the solid to do what 
Gordon (1988) called “the pushing back.” In so observing, Hooke anticipated 
the fields of continuum mechanics and elasticity. However, his intellectual 
heirs Thomas Young and Leonhard Euler were denied their inheritance by 
Newton, and Hooke remained obscure. Furthermore, we do not know what 
Hooke looked like, perhaps because—as he is often described as a “lean, bent, 
and ugly man”—he was unwilling to sit for a portrait.

 8. If, instead, equilibrium is expressed in terms of displacements, the distinction 
between determinate and indeterminate problems vanishes, and we may apply 
the solution method developed in Section 2.7. However, it may prove useful (cf. 
Problem 2.8 and Problem 2.9) to work out a technique to resolve the indetermi-
nacy of problems expressed in terms of stresses.

 9. Since 1988 called the National Institute of Science and Technology (NIST).
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3
Strain and Stress in Higher Dimensions

Now that we have constructed a foundation for our study of continuum 
mechanics, consisting of (1) kinematics or compatibility, (2) stress, (3) consti-
tutive relationships, and (4) equilibrium, and have applied this to uniaxial 
loading and deformation, we are curious about the form this foundation will 
take in higher dimensions.

3.1 Poisson’s Ratio

So far when we have discussed deformations of bodies in tension or com-
pression, we have been referring to the deformation of a body in the direction 
of the applied uniaxial force. It is also true that in all solid materials, some 
deformation occurs at right angles to this force. That is, when a material is 
pulled along its axis, as shown in Figure 3.1a, it experiences some transverse 
(i.e., lateral) contraction. This is easily visualized using a rubber band. When 
pushed, the material feels transverse expansion (Figure 3.1b).

The deformations in Figure 3.1 are greatly exaggerated; in most engineer-
ing materials, this effect is small. One way to quantify material behavior, in 
fact, is to consider the relative axial and lateral strains due to axial loading. We 
do this by means of Poisson’s ratio, first formulated by French scientist S. D. 
Poisson in 1828 and denoted by the Greek letter ν (nu):

 
ν =

lateral strain
axial strain 

,  (3.1a)

since

 lateral strain axial strain  = − ⋅ν ( ). (3.1b)

Poisson’s ratio is a property of a material and can be found tabulated with 
other properties such as the modulus of elasticity E (e.g., in Appendix C of 
this book). Remember that the axial strains in question are caused by uni-
axial stress only: by simple tension or compression. The value of ν varies 
for different materials; generally, it is on the order of 0.25 to 0.35 but can 
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range from 0.1 (for some concretes) to 0.5 (for rubber).1 Table 3.1 shows some 
of these values.

Note that the Poisson effect does not cause any additional stresses—
unless the transverse deformation is inhibited or prevented. Incidentally, for 
Hookean solids it is possible to relate the three material properties we have so 
far discussed (elasticity modulus E, rigidity modulus G, and Poisson’s ratio):

 
G E
=

+2 1( )ν
. (3.2)

What Poisson’s ratio reminds us is that our ideal situation of one-
dimensional strain, considered in the previous chapter, is rarely physi-
cally realized. We must be conscious of a material’s deformation in every 
dimension, even when loading is purely uniaxial. Although we will some-
times choose to neglect other dimensions, we should recognize that this is 
a choice to simplify our modeling and that we are leaving something out 
of our analysis.

Final shape

Final shape

Initial shape

Initial shape

(a) (b)

Figure 3.1
(a) Lateral contraction and (b) lateral expansion of solid bodies subjected to axial forces (Pois-
son’s effect).

Table 3.1

Poisson’s Ratio for Common Materials
Material ν

Rubber 0.50

Aluminum 0.35

Glass fiber-reinforced plastic 0.34

Mild steel 0.32

Wood 0.30

Cast iron 0.28

Stainless steel 0.15

Concrete 0.10
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3.2 The Strain Tensor

The equations for strain as an average “percent deformation” presented in 
Chapter 2 (e.g., equations 2.1–2.4) are useful in a variety of straightforward 
loading conditions. However, in many cases we need to keep track of normal 
strains in multiple directions as well as shear strain. We can see how compli-
cated the strain picture might become. There are three normal strains, in the 
x, y, and z directions, and in addition six shear strains, a pair in each plane. 
That’s nine strain components in all. All of these “directions” or senses of 
strain are contained quite elegantly in the strain tensor.

Strain is a local property, and the values of each strain component may change 
dramatically within a material. And so we come to our mathematical definition 
of strain, which relates to relative deformations of an infinitesimal element.

If we consider the extensional strain in one direction of an original ele-
ment AB with length Δx, as shown in Figure 3.2, we see that during straining, 
point A experiences a displacement u. This displacement is common to the 
whole element, a kind of “rigid-body displacement.” A stretching Δu also 
takes place within the element, so that point B experiences a total displace-
ment u + Δu.

Based on this situation, we define the extensional (normal) strain of this 
element as

 
ε= =

→
lim ,
∆

∆
∆x

u
x

du
dx0  (3.3)

(taking the limit as Δx → 0 so that the expression will apply to any length Δx 
of the element). We see that this definition is independent of whatever rigid-
body displacement occurred and is reminiscent of our third definition of 
normal strain, equation (2.4) (Chapter 2, Section 2.1.1).

If we extend our thinking to higher dimensions, as in Figure 3.3, we see 
that we now need to use subscripts to keep track of the direction of strain; 
we also need to use partial derivatives.

And so, if u, v, and w are the three displacements occurring in the x, y, and 
z directions, and if we again take the limits as dx, dy, and dz go to zero, we 
have three components2 of normal strain:

0 xA      A' B B' 
∆x

u u + ∆u 

Figure 3.2
One-dimensional extensional strain.
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ε εx xx
u
x

= =
∂
∂

,
  (3.4a)

ε εy yy
v
y

= =
∂
∂

,
 (3.4b)

ε εz zz
w
z

= =
∂
∂

.
 (3.4c)

The analysis here shows that the 
three normal strains define the change in shape of a rectangular paralle-
lapiped with initial volume dxdydz. A problem at the end of this chapter asks 
you to confirm that the normalized change in volume of the rectangular paral-
lelapiped dxdydz can be shown to be a function of the normal strains

 

∆V
V x y z= + +ε ε ε

 (3.5)

We can also encounter shear strain, as in Figure 3.4. After straining, the ini-

tially horizontal side with initial length dx has slope 
dv
dx

, and the initially 

vertical side with initial length dy has slope du
dy

. So, the initially right angle 

ACB is reduced by the amount dv
dx

du
dy

+ . This is an angular deformation, or 

a shear strain, on the xy plane. We have
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,
 (3.6b)

γ γyz zy
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= =
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+
∂
∂

.
 (3.6c)

We see that, as we learned in Chap-
ter 2, Section 2.1.2, the engineering 

dx

v
u

dy

u + du, or u +  ∂u
∂x dx

v + dv, or v + ∂y
∂v dy

Figure 3.3
Two-dimensional extensional strain.

dx

v
u

dy

C    A 

B

u + dy
du dy

dx
dv

Figure 3.4
Shear strain in two dimensions.
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shear strain is equal to the change in the right angle between the two coordi-
nates denoted in the subscripts.

By considering all the possible deformations of our parallelapiped, we 
have identified nine total, and six unique, strain components: εx, εy, εz, γxy = 
γyx, γyz = γzy, and γxz = γzx. Somehow all of these components together represent 
the total state of strain for our continuum. Strain is a second-order tensor, with 
one more level of sophistication than a vector.

Remember that we were able to write vectors, such as a force P, as col-
umn vectors:

 

P
P

P

x

y

z












.

A vector is also known as a first-order tensor. It contains information about 
both magnitude and direction. For strain, we have magnitudes and directions 
as well as data relative to which our strain is quantified (e.g., the xy plane for 
the strain component γxy). The normal strain component εxx, for example, rep-
resents the magnitude of deformation in the x direction, relative to a reference 
length in the x direction. We are able to write the nine components of strain as 
a 3 × 3 matrix, which is one way to represent a second-order tensor.

Although this definition is physically motivated and mathematically 
sound, these engineering shear strains are not exactly the shear components 
of the strain tensor. For a reason having to do with the fact that elements do 
not truly behave as rigid bodies, the strain tensor components are actually 
defined using a factor of ½. This factor is necessary to make εij behave math-
ematically as a proper tensor, as future study in continuum mechanics will 
show. We can write the strain tensor (using index notation) as
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∂
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2

( ), , 
.  (3.7)

This equation defines six independent terms that form the components of 
a symmetric, second-order tensor—symmetric refers to the fact that each εij = 
εji for i ≠ j (e.g., εxy = εyx) and of course also that γxy = γyx. Writing these out in 
longhand notation, we get terms like
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and 
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Or, we can write the strain tensor in its matrix form as
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 (3.10)

3.3 Strain as Relative Displacement

Both normal and shear strain can also be characterized as relative displace-
ments (Williams 2001) of segments of a body. For example, for small displace-
ments, the axial extension or stretch of a body is simply the axial component 
of the relative displacement of the two ends of the bar. This way of thinking 
about strain lends itself nicely to the analysis of assemblies of bars known 
as trusses.

For the one-dimensional system in Figure 3.2, the quantity du
dx (Δx) is identi-

fied as the relative displacement of the right end of the element AB from the 
perspective of the left end. This is consistent with our previous discussions, as 
du
dx  is the axial normal strain. By generalizing this thinking to higher dimen-

sions, we can also discuss shear strains in terms of “relative displacements.” 
Figure 3.5 illustrates a pair of line elements in the xy plane, before and after 
deformation of some body on which these elements have been etched. These 
line elements have initial lengths dx and dy.

When the body on which the elements dx and dy are etched is loaded, the 
line elements move. The arc lengths AA*, BB*, and CC* result from the respec-
tive displacements δ δ δ( ), ( ), ( )A B Cand  of the endpoints of the elements:
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where we have included the corresponding unit vectors to identify u(x, y) 
and v(x, y) as the displacements in the x and y directions, respectively. Then 
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the relative displacements (with respect to the new location A*) of the end-
points B* and C* of the two line segments dx and dy are
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Under this interpretation, the normal strain of a line element is the relative 
longitudinal or axial displacement of one end with respect to the other, divided 
by the original element length. Thus, here, the normal strains are just
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The engineering shear strain is defined as the change in the (initially) right 
angle at the intersection of the two line elements caused by the relative trans-
verse or normal displacement. Thus, here,

x

 y 

dx

dy

A B

C

C*

A*

B*

δ (B)
δ (A)

δ (C)

Figure 3.5
Pair of line elements before and after (*) deformation.
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These three equations provide the strain–displacement relations needed to 
analyze two-dimensional problems. It is not too difficult to extend these def-
initions to three dimensions, thus finding a complete set of six (symmetric) 
strains in terms of three displacement components (u, v, and w):
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  (3.17 a–f)

To reiterate the significance of this perspective on strain, the normal strain 
components represent the extensions of line elements originally in the 
direction indicated by a matched pair of subscripts. Similarly, the engineer-
ing shear strain is equal to the change in the right angle between the two 
coordinates denoted in the subscripts. Note that the definitions of strain in 
Chapters 2 and 3 are in agreement and are simply two ways to consider mul-
tidimensional deformations.

3.4 The Stress Tensor

We now understand stress as the intensity of an internal force (F/A), where 
both the force F (or, sometimes, P) and the area A are vectors. This suggests 
to us that a full description of the stress distribution in a body will require a 
bit of careful bookkeeping.

As a starting point, we consider a section of a loaded body, as shown in 
Figure 3.6. On that section we identify a very small area, ΔAn, characterized 
by an outward normal n. This area contains the point O in which we are 
interested. We denote ΔF as the net force acting on that small area, knowing 
that this is a contribution to the resultant force acting on the section to main-
tain equilibrium. (If we knew the particulars of the external loading on this 
body, we would have used the method of sections to calculate ΔF.)

Extending the idea of stress as the intensity of the distribution of force 
over area, we introduce the stress vector (also called a traction vector) σ̂n as the 
resultant of all of the forces applied over an entire section per unit area of 
that section. We define the stress vector as the point function yielded by a 
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limit process in which we divide the 
net force ΔF acting at a point O by the 
area of the section ΔAn at the point 
O, and then let the area become van-
ishingly small:

                    
ˆ .σn

A nn A
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∆
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lim
F

       (3.18)

The stress vector σ̂n  is truly a vec-
tor because we are looking at the vec-
tor force ΔF acting on a known area 
specified by both a normal, n, and a 
magnitude, ΔAn.

We can decompose the vector 
force ΔF into components referred to 
a standard Cartesian system with unit vectors ( ˆ ˆ ˆi , j , k ) in the (x, y, z) direc-
tions, respectively. Then we can write
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If we take the section (area) to be perpendicular to the positive x, y, and z 
axes, respectively, the associated normals will align themselves with those 
axes. Then the limit formulas for the stress vectors normal to these three 
planes become
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We next want to simplify these equations for the stress vectors in each 
direction and to characterize the entire stress state in one elegant package. 
Perhaps the most straightforward approach is to use two subscripts, just as 
we did for multidimensional strain. For stress, the first subscript denotes 
the direction of the normal vector to the area in question, while the second 
denotes the direction of the component of force measured on that plane. 
Thus, we will define stress components such as

O

n
∆F

∆An

x

 y 

z

Figure 3.6
The stress vector on a planar section through 
point O with outward normal n.
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as the resulting limits of forces in the x and y directions divided by the very 
small area normal to the y axis. Then, the stress vector equations can be writ-
ten as
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for a general stress state with any ΔF and ΔA. We see that there are nine dif-
ferent stress components, three of which have repeated subscripts, while the 
remaining six have mixed subscripts. The nine components can be displayed 
in the stress tensor array:
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These components are often cast in mixed-format symbols: σxx for compo-
nents with repeated subscripts (normal stresses) and τzx for components with 
mixed subscripts (shear stresses):
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This does get a bit simpler; it turns out that, like the strain tensor, the stress 
tensor is symmetric (i.e., τxy = τyx). And in many cases we will only speak of a 
single component each of average normal stresses (σ) and shear stresses (τ). 
However, it’s useful to know the big picture.

Visualizing the stress tensor as a matrix may cause us to wonder whether 
it is “diagonalizable,” that is, whether a general stress state may be character-
ized by a plane on which only normal stress components are nonzero. We 
return to this issue in Chapter 4, Section 4.3.

Stress, strain, and strain rates are all second-order tensors, and as such 
they exhibit some common properties about their respective principal values. 
These principal values have to do with extreme values of stress and strain 
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on planes at different orientations through a given point. By considering the 
stresses on particular inclined sections of an axially loaded bar, as we did in 
Chapter 2, Section 2.5, we were finding the principal stresses and the planes to 
which they corresponded.

A note on sign conventions: Normal stress is considered positive if it puts 
an element in tension and negative if it puts an element in compression. The 
convention for shear stress is somewhat more complex and is illustrated in 
Figure 3.7.

Decomposition of the formal definition of the stress vector (equation 3.18 
into components in the usual Cartesian system has brought us to the set of 
the nine stress components displayed in equation (3.23). What is the physical 
meaning of these terms? How will this be useful to us?

First of all, in the light of our desire to know what’s going on at any arbi-
trary point O within a loaded body—or, equivalently, at each and every point 
within the body—we now know that we can calculate the components of the 
forces on each of three perpendicular faces drawn through the point O. We 
now state the following (provable) mathematical assertion:

If we pass three mutually orthogonal planes through a point O and find 
the stress vector on each of three mutually perpendicular faces drawn 
through O, then we have fully characterized the stress at point O.

If these faces or planes were themselves normal to the x, y, and z axes, we 
would have found the three stress vectors of equation (3.19) with stress com-
ponents given in equation (3.20a), equation (3.20b), equation (3.20c), and (3.26). 
We are relieved to find that due to the symmetry of the stress tensor, we will 
only need six—not nine—components of the stress tensor to fully character-
ize stress at a point.

It bears repeating:

Stress represents the intensity of internal forces on surfaces within a 
body subjected to loads.

(a) Positive τ (b) Negative τ 

x

y

τyx τyx

Figure 3.7
Sign convention for shear stress.
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At an imaginary cut or section, a vector sum of these forces (sometimes called 
stress resultants) keeps a body in equilibrium. The body we speak of could 
be a solid material, a liquid, or a gas. Although the internal forces in a gas 
more commonly arise from molecular collisions than from applied loads F, 
we can represent these forces by a distributed load in the same way we built 
up the stress tensor for our potato from Figure 3.6. This will be useful to us 
throughout our study of continuum mechanics.

3.5 Generalized Hooke’s Law

Although we have discussed the fact that stress and strain are second-order 
tensors, we looked in Chapter 2 at one-dimensional loading, for which we 
considered only one scalar component of stress and strain at a time, relating 
stress to strain by the one-dimensional form of Hooke’s law, σ = Eε or τ = Gγ. 
We can also write a more general form of Hooke’s law, relating stress and 
strain in two and three dimensions.

If we think of the stress and strain tensors as, roughly, 3 × 3 matrices, it 
becomes clear that the constant of proportionality between them is a rather 
bulky, multicomponent construction. Remembering our index notation from 
Chapter 1, we write the general relation

 τij = Cijkl εkl. (3.24)

C is an enormous, 3 × 3 × 3 × 3 tensor—a fourth-order tensor—whose com-
ponents depend on E and G and ν. In practice, C is known as a material’s 
“stiffness matrix” and its inverse as the “compliance matrix.” It has 81 com-
ponents. However, due to the symmetry of both stress and strain tensors, C 
is also symmetric, with only 36 independent components. The necessity of 
the existence of a strain energy function (Uo from Chapter 2) adds some addi-
tional symmetry. Because of these symmetry conditions, there are only (!) 
21 independent constants (assuming material homogeneity) needed to fully 
represent a linear elastic solid. However, this most general case, referred to as 
anisotropic elasticity, is also sufficiently unusual that we will simplify further.

In fact, for many, many practical materials,3 Hooke’s law can be written 
quite satisfactorily for the isotropic case, in which case the constants Cijkl  
must be invariant with respect to coordinate rotations—that is, they will not 
change as we look in different (orthogonal) directions. In this case, there are, 
in fact, only two elastic constants (E and G), and Hooke’s law for an isotropic 
elastic solid is written as
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Please remember that the equations here apply only to homogeneous iso-
tropic materials: materials that have the same properties in all directions. 
Note that even for these ideal, simplest-case materials, the deformation in 
one direction depends on the normal stresses in all directions.

Finally, by summing equations (3.25a) through (3.25c) and noting the result 
in equation (3.5), we find that
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where K is known as the bulk modulus. Note that both G and K are defined in 
terms of E and ν and that there are (still) only two independent constants for 
a homogeneous, linearly elastic, isotropic solid.

3.6 Limiting Behavior

Let’s look more closely at the stress–strain diagram we referred to in our dis-
cussion of Hooke’s law (Chapter 2, Figure 2.16). Hooke’s law, as we already 
know, governs the “early” (low strain) regime of the diagram, where stress 
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and strain are linearly related. But what’s going on “later” in the picture, at 
higher stress and strain, as the curve bends and ultimately terminates?

Here again is an idealized stress–strain diagram (Figure 3.8). This diagram 
represents the behavior of mild steel. We are familiar with the Hookean 
regime of behavior, the linear region with a slope equal to the material’s 
Young’s modulus E. The point at which the curve is no longer linear, often a 
plateau on the stress–strain diagram, is called the material’s yield point, defin-
ing a yield stress. Generally, beyond the yield point, it takes much less stress 
to cause much higher strains than in the Hookean region, and of course the 
relationship between stress and strain is no longer linear. In some materials, 
a maximum stress may be reached just before fracture. This is called the 
ultimate strength of the material. Finally, we see that the curve ends abruptly 
at a certain stress point. This point represents the stress that would cause 
the material to rupture or fracture. From Chapter 2, Figure 2.11, we observe 
that ductile materials can withstand much more strain but much less stress 
than brittle materials, while brittle materials can sustain great stress but very 
little strain. We classify materials as ductile or brittle based on their behavior 
at room temperature; at elevated temperatures, an otherwise brittle material 
may behave more like a ductile one, while at lowered temperatures, a ductile 
material may behave like a brittle one.4

Stress–strain curves for various materials are obtained through rigorous 
testing of the materials’ behavior in tensile, compressive, and bending tests. 
The tensile tests are performed in a setup like that shown in Chapter 2, Fig-
ure 2.2. Near the breaking point, a specimen of mild steel may resemble the 
sketch in Figure 3.9. The narrowing of the specimen at its midpoint is called 
necking and is the physical manifestation of the specimen’s Poisson’s ratio.

σ      (ksi)

60

0
0.020 0.20 ε (in/in) 

Figure 3.8
Idealized stress–strain diagram.
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Necking occurs in ductile materi-
als, or in materials in ductile states. 
Figure 3.10 contains photographs of 
a ductile material undergoing neck-
ing (Figure 3.10a) and after failure 
(Figure 3.10b). Brittle materials, such 
as cast iron, glass, and stone, expe-
rience rupture without any observ-
able change in deformation rate and 
with no necking. A photograph of a 
brittle material after failure is shown 
in Figure 3.10c.

The testing, necking phenom-
enon, and modulus values dis-
cussed here are all uniaxial, or 
one-dimensional, in nature. Values 
for Young’s modulus and ultimate 
tensile strength are obtained by 
stretching a specimen (as shown in 
Figure 2.8) until it fails. Values for 
shear modulus and ultimate shear 
strength are obtained by applying 
purely shearing deformations to 
a specimen. We are beginning to realize that real-world loading is not 
as simple as these testing conditions. Because of the complexities of real 
loading and real materials, various criteria are used to predict failure 
of structures. The simplest is the “maximum normal stress criterion,” in 

Original diameter of specimen 

Figure 3.9
Necking of a material during tensile testing.

(a) (b)

Figure 3.10
Ductile material (a) experiencing necking and (b) after failure, and (c) brittle material after 
failure in uniaxial tension test.

(c)
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which failure is predicted to occur when the maximum of the three nor-
mal stresses reaches the material’s ultimate tensile or compressive stress. 
This criterion would clearly be well suited to a brittle material like that 
shown in Figure 3.10b. However, for other materials, subject to different 
loading, other criteria are useful. We will keep this need for a reliable 
predictor of structural failure in mind as we continue our study of con-
tinuum mechanics.

The yield and ultimate strengths of a range of engineering materi-
als are shown in Table 3.2. The fracture strength of a solid depends on 
the strength of intermolecular bonds in the material. Based on this rea-
soning, the theoretical cohesive strength of a brittle elastic solid can be 
estimated to be approximately one tenth the value of E. However, experi-
mentally determined fracture strengths of most engineering materials lie 
between 10 and 1000 times below this theoretical value. In the 1920s, A. 
A. Griffith proposed a rationale for this discrepancy that has now become 
widely accepted: the presence of microscopic flaws or cracks that exist 
under normal conditions on surfaces of and within a body of material. 
Griffith found that these flaws lower a material’s overall strength due to 

Table 3.2

Ultimate and Yield Properties of Common Engineering Materials

Material

Ultimate Strength, MPa Yield Strength, MPa

Tensile Compressive Shear Tensile Shear

Aluminum 
alloy

2014-T6 414 — 220 300 170

6061-T6 262 — 165 241 138

Cast iron
Gray 210 825 — — —

Malleable 370 — 330 250 165

Concrete — 20–35 — — —

Magnesium 
alloy

AM100A 275 — 145 150 —

Steel

0.2% 
Carbon, 
hot-rolled

450 — 330 250 165

0.6% 
Carbon, 
hot-rolled

690 — 550 415 250

0.6% 
Carbon, 
quenched

825 — 690 515 310

3.5% Ni, 
0.4% C

1380 — 1035 1035 620

Wood

Douglas 
Fir

— 51 7 — —

Southern 
Pine

— 58 10 — —
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stress concentration (as in Chapter 2, Section 2.10) at the cracks. The local 
amplification of stress accelerates the growth of the crack, accelerating the 
material’s failure. Using strain energy analysis (as in Chapter 2, Section 
2.11), Griffith showed that the critical stress required for crack propaga-
tion in a brittle material depended on the material’s modulus of elastic-
ity and the specific surface energy and was inversely proportional to the 
initial size of the crack. A study of materials science would address the 
microscopic issues involved in stress concentration and crack propaga-
tion; in this text we are concerned with the macroscopic implications for 
our structures.

You may sometimes be asked to include a safety factor in your designs; 
this is a margin of insurance against unforeseen conditions. The allowable 
stress in your design must be less than the failure or (more conservatively) 
the yield stress. The safety factor is simply the ratio of failure/yield stress 
to the allowable stress in the current loading conditions (a limit determined 
from several factors, including material properties, confidence in load pre-
diction, type of loading, possible deterioration, and design life of the struc-
ture). Safety factors should have values over 2.0 in robust designs. That is, 
our analysis should assure us that the stress will never exceed half of the 
reference (failure or yield) value.

3.7 Properties of Engineering Materials

By performing a tension test, we obtain values for the proportional limit (the 
end of Hookean behavior), yield stress, ultimate stress, and rupture stress; 
we also determine the modulus of elasticity, percent elongation, and per-
cent reduction in cross-sectional area. These values provide quantifiable 
definitions for the vocabulary generally used to discuss the way a material 
responds to loading and deformation.

Stiffness: is the property that enables a material to withstand high stress 
without great strain. In other words, stiffness is a resistance to any 
sort of deformation. As we’ve seen, the stiffness of a material is a 
function of its modulus of elasticity E.

Strength: refers to the greatest stress a material can withstand before fail-
ure. This may be quantified by the proportional limit, the yield stress 
(or yield strength), or ultimate stress (ultimate strength), depending 
on the type of material and loading being considered. Materials that 
are very stiff are generally very strong as well, as both properties are 
related to the strength of atomic bonds.

Elasticity: is what enables a material to regain its original dimensions after a 
deforming load is removed. No known material is completely elastic 
in all ranges of stress. However, most engineering materials are elastic 
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over large ranges of stress. Steel, for example, is elastic up to its pro-
portional limit. Deformations beyond the elastic region are referred 
to as plastic deformations and cannot be completely recovered.

Ductility: is what allows a material to undergo considerable plastic defor-
mation under tensile load before rupture—to “bend before it breaks,” 
like soft metals and rubber. We can see this on the stress–strain 
curve for ductile materials (Figure 3.8): The curve features a sizeable, 
near-flat region beyond the Hookean limit, in which stress increases 
very little while deformation increases. Ductility is characterized by 
the percent elongation of the specimen during the tensile test and by 
the percent reduction in area of the cross section (due to necking—
Poisson again!) at the plane of fracture. A high-percent elongation 
indicates a highly ductile material; a material is considered ductile if 
elongation is greater than 5%.

Brittleness: implies the absence of any plastic deformation before abrupt 
failure. It exhibits no necking and has a rupture strength roughly 
equal to its ultimate strength. This is reflected in a stress–strain 
curve that ends rather suddenly after the proportional limit. Brittle 
materials, such as cast iron, concrete, and stone, are relatively weak 
in tension and are usually tested in compression.

Malleability: is what enables a material to undergo considerable plastic 
deformation under compressive load before rupture. Most ductile 
materials are also quite malleable. When processing includes ham-
mering or rolling of a metal, malleable materials are the best choice, 
because they are able to withstand the large compressive deforma-
tion that accompanies these processes.

Toughness: enables a material to endure high-impact loads or shock loads. 
In a high-impact load, some of the energy of the blow is transmitted 
to and absorbed by the body. Toughness is a measure of the energy 
required to crack the material, and, in general, increasing a mate-
rial’s strength will decrease its toughness.

Resilience: enables a material to endure high-impact loads without induc-
ing a stress above the elastic limit. In a resilient material, the energy 
absorbed during the blow is stored and recovered when the body 
is unloaded. Resilient materials are well suited to applications like 
baseball bats. We can measure resilience by calculating the area 
under the elastic portion of the stress–strain curve from the origin 
through the elastic limit. This is the strain energy Uo, as we remem-
ber, and this is used to calculate a “modulus of resilience” that is the 
strain energy per unit volume, or σy

2/2E.

As has been suggested in the descriptions of these properties, treatments 
or manufacturing techniques that change one of these properties will also 
affect the others. For example, quenching carbon steel makes it harder and 
tougher but less strong and more brittle than it was before quenching. As 
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designers we must make trade-offs and optimize the combination of mate-
rial behaviors in our systems.

Metals are typically categorized as ferrous (i.e., iron containing) or nonfer-
rous. Ferrous metals are, at the present time, the primary materials used in 
engineering structures.

Ferrous Metals

The iron in ferrous metals must be extracted from iron ores, which often con-
tain impurities such as phosphorous and silica that must be removed during 
production. Cast iron, wrought iron, and steel are the three most common 
forms of ferrous metals. All three are fundamentally iron-carbon alloys 
containing small amounts of sulfur, phosphorous, silicon, and manganese. 
Other elements such as nickel and chromium may be added to alter physical 
and mechanical properties.

Cast iron is a generic name for a group of alloys of carbon and silicon 
with iron. Most have at least 3% total carbon. The graphite flakes in cast iron 
act like tiny cracks, making the cast iron as a whole pretty brittle. Wrought 
iron is a soft, easily worked material with a high resistance to corrosion; its 
carbon content is typically less than 0.1%. Steel is an alloy consisting almost 
entirely of iron, and its properties may be changed dramatically by vary-
ing the composition. Up to a point, increasing the carbon content increases 
the hardness, strength, and abrasion resistance of steel. However, ductility, 
toughness, impact properties, and machinability will be decreased.

Nonferrous Metals

The mechanical properties of the primary nonferrous metals depend on 
their principal element and the quantity and type of alloying elements and 
on the method of manufacturing and the heat-treating process.

Aluminum’s basic raw material is bauxite ore. High-purity aluminum is 
soft, weak, and ductile with an ultimate tensile strength of approximately 
10,000 psi. Aluminum is lightweight and highly resistant to corrosion under 
most conditions. It also has good thermal conductivity and high electrical 
conductivity. Despite its advantages, though, aluminum also has a high coef-
ficient of thermal expansion (see Chapter 2, Section 2.9) and a modulus of 
elasticity of only 10,000,000 psi, approximately one third that of steel.

Titanium and its alloys have attractive engineering properties. They are 
about 45% lighter than steel and also possess very high strength, up to twice 
that of aluminum. This combination of moderate weight and high strength 
gives titanium alloys the highest strength-to-weight ratio of any structural 
metal. Titanium alloys also have excellent corrosion resistance, low coeffi-
cient of thermal expansion, high melting point (higher than iron), and high 
electrical resistivity. The modulus of elasticity, a measure of stiffness, is 
16,000,000 psi. However, titanium’s high cost has limited its utility and range 
of applications.
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Copper’s most significant properties are its high electrical conductivity, 
high thermal conductivity, good resistance to corrosion, and good malleabil-
ity and strength. These properties are exploited in heat-exchange equipment 
and many other applications but most of all in the electrical field.

Nonmetals

Concrete consists mainly of a mixture of cement, fine and coarse aggre-
gates (e.g., sand, gravel, crushed rock), and water to harden the mixture. The 
compressive strength of concrete is relatively high, but it is a fairly brittle 
material with low tensile strength. Steel reinforcing rods are often used in 
combination with concrete; the steel resists tension, and the concrete resists 
compression. Under favorable conditions the strength of concrete increases 
with its age; the tabulated values for strength are usually those occurring 28 
days after the placing of the concrete.

Wood, one of the oldest natural construction materials, is a cellular organic 
material. We divide wood into two classes: hardwood and softwood. These 
are somewhat misleading terms in that there is no direct relationship 
between these designations and the actual hardness or softness of the wood. 
Softwood comes from conifers (i.e., trees with needlelike or scalelike leaves), 
and hardwood comes from deciduous trees. Most of the wood used in the 
United States for structural purposes is softwood, most often Douglas fir 
and southern pine. Allowable stresses for lumber must take into account spe-
cies and grade (quality), as well as conditions under which the lumber is to 
be used, such as load duration and moisture conditions.

Plastics are a group of synthetic organic materials derived by a process 
called polymerization. Generally, plastics may be either thermoplastics or 
thermosetting plastics. Thermoplastic material can be repeatedly softened 
and made to flow by heating. Some thermoplastics are made to be capable of 
large plastic deformation; others, such as polyvinyl chloride (PVC) and poly-
styrene, are rigid. Thermosetting plastics have no melting or softening point, 
though they may be damaged by heat. All thermosetting plastics are brittle, 
hard, and strong, while thermoplastics are typically ductile, low in strength, 
and resistant to impact. The thermal expansion of most thermoplastics is 
about 10 times that of steel.

The modern usage of the phrase engineering materials also includes both natu-
ral and synthetic biomaterials, whose properties can be quite complex. Please see 
Case Study 5 for a more involved discussion of the mechanics of biomaterials.

3.8 Equilibrium

We have now addressed the first three items in our continuum mechanics 
checklist. We have developed ways to talk about (1) deformation or strain, 
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(2) stress, and (3) constitutive laws or stress–strain relationships in multiple 
dimensions. The fourth item that concerns us is equilibrium, our governing 
principle. Often, we will be able to tackle equilibrium using statics and the 
method of sections. Please see the worked example problems at the end of 
this chapter for illustrations of this. It is also useful to recognize that we can 
formulate equilibrium as an elasticity problem.

3.8.1 equilibrium equations

Let’s derive the “microscopic” equations of equilibrium in three dimensions, 
starting with the six components that fully characterize stress at any arbi-
trary point (recall our assertion that the stress tensor is symmetric (cf. Chap-
ter 4, equation 4.8). We use the notation displayed in the stress tensor array 
of equation (4.7) (Chapter 4) to denote stress components by the symbols σxx 
and τyx.

Consider an element of volume dxdydz in which we look at the changes in 
the stress as we sum forces in three independent directions (Figure 3.11). We 
assume that the components of stress are known at the left, bottom, and rear 
faces and use the first term of the Taylor expansion to approximate the values 
of these components at the right, top, and front faces, distances dx, dy, and dz 
away, as illustrated in Figure 3.11.

For example, forces in the x direction result from stresses on all six faces:
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In equation (3.27) we have once again introduced a body force, per unit volume, 
whose x component is Bx. After canceling terms appropriately and dividing 
through by the element volume, we find the following equation of equilibrium:
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Similarly, in the y and z directions,
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Thus, equations (3.28a) through (3.28c) represent three equations of equilib-
rium from which we must determine six components of stress. Interestingly, 
we reduced the number of stress unknowns to six from nine by effectively 
using three moment equilibrium equations, conserving angular momentum.

We can also use indicial or index notation from Chapter 1, Section 1.5 to 
write these equations in a very elegant form. We use coordinates xi, i = 1, 2, 3, 
to stand for x, y, and z, respectively. Further, we remember the notation that
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And we recall the summation convention, by which any repeated subscript 
means we are summing over all values of that subscript. For example,
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Then the equations of equilibrium can be written simply as
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Figure 3.11
An infinitesimal element with a three-dimensional stress state. For clarity, stress components 
on three faces at a time are shown: (a) stress components on left, bottom, and rear faces; (b) 
stress components on right, top, and front faces.
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σ τij j i ij j iB B i j, , , , , , ,+ = + = =0 0 1 2 3or  (3.29)

where σ or τ is used interchangeably for all stress components, and the range of 
the indices is normally not written out as it is understood from the context.

3.8.2 The Two-Dimensional State of Plane Stress

In many circumstances we can simplify the analysis of stress by recognizing 
that a structure is thin in one dimension (often, the dimension along the z axis) 
in comparison with its dimensions in the other two (x and y) directions. This 
class of problems is called plane stress, and it includes the analysis of aircraft 
and spacecraft structures, pressure vessels, and similar thin-walled structures. 
In this case, because we assume that

 σ τ τzz xz yz, , ,≅0  (3.30)

there are only three stress components to worry about: σ τ σxx xy yy, , .and
In this context, we need solve only two equilibrium equations (see also 

Figure 3.12):
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It is important to note the following:

Plane stress in the •	 z direction does not mean or imply that there are 
no loads applied in that direction. Indeed, the loads in the thickness 
or z direction in a thin-walled structure cause membrane stresses of 
significant magnitude in the in-plane directions. These stresses are 
significantly larger than the stress in the thickness direction.
Plane stress in the •	 z direction does not mean or imply that the deflec-
tion (or displacement, w) is zero in that direction. Again, for thin-
walled structures, it is the deflection in the direction of the thickness 
that is usually the most prominent and visible deformation.

For the state of plane stress in the z direction, as defined in (3.31a, b), the con-
stitutive law, or appropriate form of generalized Hooke’s law, for the remain-
ing two normal stresses becomes
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3.8.3 The Two-Dimensional State of Plane Strain

Problems in plane strain occur when there is reason to believe that there is 
no appreciable variation or deformation in a direction. In such instances, the 
movement of any point is likely to be very small in one direction. We could 
look at every plane perpendicular to this direction, assuming also that the 
loading doesn’t vary appreciably along this direction, and expect to real-
ize the same behavior in each plane. We realize plane strain in objects that 
are both very long in one direction and loaded (relatively) uniformly in that 
direction so that

 ε ε εzz xz yz= = = 0 . (3.33)

Equation (3.33) indicates that when the conditions of plane strain are 
judged to apply, we simply set the corresponding strain components to zero. 
However, this does not mean that the corresponding stresses are zero. For 
the case of plane strain in the z direction, as defined in (3.32a, b), the normal 
stress in the z direction is not zero. In fact, it is the stress required to maintain 
the rigid planes that can be said to characterize plane strain. Thus,
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A three-dimensional element in plane stress.
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so that the constitutive laws for plane strain become
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The equilibrium equations and the relations between strain and displace-
ment are the same in both plane stress and plane strain. Incidentally, for 
plane strain conditions, just as for plane stress, we will often be interested 
in knowing just how the two-dimensional strain field varies as we rotate a 
plane through a point (see Chapter 4, Section 4.3).

3.9 Formulating Two-Dimensional Elasticity Problems

In this section we briefly describe how a two-dimensional problem is formu-
lated in the theory of elasticity. Bearing in mind the notation often used in 
structural mechanics, we now place our problems in the (x, z) plane so that 
we are considering plane stress or plane strain in the y direction.

The starting point is equilibrium, and the two-dimensional version (3.31a, b) 
is repeated here with a body force due to gravity in the vertical or z direction:
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If we were to integrate these partial differential equations, we could then 
algebraically calculate the corresponding strains, depending on which pla-
nar model we were applying. For plane stress, for example, and from either 
equations (3.25a–f) or the inversion of equations (3.35a, b), we could find the 
engineering strains
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Next we can determine the two meaningful displacements in this plane 
stress model—that is, u(x, z) and w(x, z)—by integrating the relevant strain–
displacement equations (a subset of equations 3.17a–f):
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Summarizing what we’ve said so far, in tabular form: 

Equations Number Unknowns Number

Equilibrium (3.45) 2
 
σ σ τxx zz xz, , 3

Hooke’s law (3.46) 3 ε ε γxx zz xz, , 3

Strain–displacement (3.47) 3 u x z w x z( , ), ( , ) 2

Totals 8 8

On the surface, this seems copasetic: In equations (3.36a, b) through (3.38) 
we clearly have a system of eight equations involving eight unknowns. But 
some questions remain. First and foremost, are there ways to restructure the 
problem to make it seem less onerous? We espy a glimmer of hope, recalling 
that a footnote in Chapter 2, Section 2.8 hinted that by formulating a problem 
in terms of displacements rather than stresses we would be able to erode the 
distinction between statically indeterminate and determinate problems.

3.9.1 equilibrium expressed in Terms of Displacements

There are two ways to structure solution processes for elasticity problems, 
and choosing between the two depends on whether one wants to get directly 
to displacements or directly to stresses. The approach to calculating dis-
placements directly requires a short chain of straightforward substitutions: 
First, the equations in (3.46) are substituted into the equations in (3.45) to cast 
equilibrium in terms of strain components. Second, the strain–displacement 
relations (3.47) are used to eliminate the strains from the intermediate results 
just found. As Problem 3.11 asks you to confirm, the equations of equilibrium 
cast in terms of displacements are, for plane stress,
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This is a system of (just!) two equations for the two unknown displace-
ments, and an elegant system at that. Notice the symmetry of the differential 
operators5 and of the groupings of elastic constants. In fact, the equations in 
(3.39) are a subset (remember, we are talking about plane stress) of the well-
known Navier equations of elasticity theory. In indicial notation, the three-
dimensional Navier equations are
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where B is the net body force acting on the body with modulus G and Pois-
son’s ratio ν: In almost all cases, the only body force that cuts any ice is grav-
ity. The parallels between the equations in (3.39) and (3.40) are unmistakable. 
The difference in the elastic constants results from the plane stress assump-
tion in the equations in (3.39). Note, also, that both equations in (3.39) include 
an “abbreviated,” two-dimensional version of the volume change, or dilata-
tion (cf. equation 3.5):
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This term also clearly reflects the two-dimensional nature of this discussion.

3.9.2 Compatibility expressed in Terms of Stress Functions

How would the solution process be different if we wanted to find stresses 
directly? It is a neat piece of arithmetic to show that if we can identify some 
function φ from which we can calculate the stress components by perform-
ing the following derivatives,
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then these stress components will identically satisfy the two-dimensional 
equations of equilibrium. All well and good, but what is this function φ, and 
how do we find and calculate it?

The mysterious function, φ, is called a potential function, and in this instance 
it derives from the stress–strain and strain–displacement relations, equations 
(3.37) and (3.38). Starting with the equations in (338), we seem to have three 
strain–displacement relations for determining (only) two displacements. 
In fact, these three equations are themselves related; that is, they are not 
entirely independent. We can see this by eliminating the displacements u 
and v among the three equations in (3.38), that is, by noting that
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or
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Equation (3.43) is a compatibility condition that the strains must satisfy so 
that displacements obtained by integrating the equations in (3.38) are con-
tinuous and single valued. That compatibility condition can then be straight-
forwardly expressed in terms of the potential function—also called the Airy 
stress function after its originator—by substituting for the strains using the 
stress–strain law (3.37) and for the stresses from the definition of the poten-
tial function (3.42). Then, as Problem 3.15 asks you to confirm, the result-
ing form of the compatibility equation expressed in terms of the Airy stress 
function6 is

 ∇ =∇ ∇ =4 2 2 0ϕ ϕ .  (3.44)

3.9.3 Some remaining Pieces of the Puzzle of general Formulations

We can summarize our two formulations so far as follows. In the first instance 
we used constitutive and kinematics relations to write equilibrium entirely 
in terms of displacements (viz., 3.39). The solutions to these equations can be 
inspected to ensure that the resulting displacements are continuous, single 
valued, and consistent with any constraints. From these displacements, we 
can calculate strain and then stress.
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In the second instance, we used equilibrium and a constitutive law to write 
compatibility entirely in terms of a (single) stress function (3.44). A solution 
to equation (3.44) automatically satisfies equilibrium and will produce “com-
patible” displacements (although it is always a good idea to inspect displace-
ment results).

How and where do the actual loads come into the picture? And what are 
the correct boundary conditions corresponding to equations (3.39) and (3.44)? 
These two questions—and their answers—are related, in part because of 
issues raised in Chapter 2. Remember that there are two kinds of external 
or applied loads that are applied to solids or structures. One kind of applied 
load comes through body forces that typically reflect response on a specific, “per 
unit” basis to a field, such as gravity or electromagnetic radiation. As we have 
seen, body forces appear in our formulations of equilibrium. The second kind 
of external load results from surface loading, that is, the distribution of forces 
(and moments) on the surface of the solid or structure, including points on the 
solid’s bounding surface at which the structure is supported (or “grounded”). 
Surface loads may appear in equations of equilibrium (as they did for axially 
loaded bars, and as they will in our discussion of beams in later chapters), as 
well as in appropriate boundary conditions, as we now discuss.

We begin by rewriting our definition of the stress vectors (e.g., equations 
3.21a–c) in terms of the familiar stress components:

 
ˆ ˆ ˆ ˆ,σ σ σ σx xx xy xzi j k≡ + +  (3.45a)

 
ˆ ˆ ˆ ˆ,σ σ σ σy yx yy yzi k≡ + j +  (3.45b)

 
ˆ ˆ ˆ ˆσ σ σ σz zx zy zzi j k≡ + + . (3.45c)

Then, if we simply apply equations (3.45a) through (3.45c) at points on a 
surface bounding the solid or structure of interest, with the various T’s taken 
as known or prescribed forces, then equations (3.45a) through (3.45c) serve as 
the boundary conditions on the corresponding stresses at those points on 
the surface. In fact, written in indicial form, equations (3.45a) through (3.45c) 
are the famous Cauchy equations of the theory of elasticity, relating stress 
vectors to the stress tensor:

 σ̂ σi ij jn= . (3.46)

Of course, there are problems where we also know or prescribe the dis-
placements at points. These seem easier to express because we are simply 
equating displacement components to specified values or functions. How-
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ever, it is also the case that we cannot prescribe both a force and a displace-
ment in the same direction at the same point. We will see how that plays 
out in detail when we talk about engineering beam theory in Chapter 5. In 
the meantime, we leave it as an assertion that should have at least intuitive 
appeal. Would it make sense to prescribe the force we might apply to one end 
of a spring and, at the same time, prescribe independently how far that end 
should move?

Finally, we note that the previous formulations of the plane stress prob-
lem can be duplicated for plane strain, although the final details may differ. 
Plane stress and plane strain are important concepts that find frequent use 
in elasticity theory and in structural mechanics. And while their mathemat-
ics may be quite similar, their applications are rather different. Thus, it is 
important to remember the domain of each. The plane stress model is valid 
for solids or structures that are both thin and unloaded through that thick-
ness, while the plane strain model is valid for a thin slice of a solid that is 
very long in one direction, along which there is no (or very little) variation 
in load or geometry.

This introduction to elasticity has been just that—an introduction. The 
important concepts here should not surprise you: kinematic description of 
displacements (strain), internal loading (stress), equilibrium, and compatibil-
ity. We’ve packed a full bag of mathematical tools for problems in continuum 
mechanics. In the following chapter, we investigate applications of these 
tools to problems in torsion and pressure vessels and return to the question 
of transforming our descriptions of stress and strain.

3.10 Examples

example 3.1

A rectangular copper alloy block as shown in Figure 3.13 has the following 
dimensions: a = 200 mm, b = 120 mm, and c = 100 mm. This block is subjected 
to a triaxial loading in equilibrium having the following magnitude: σx = 
+2.40 MPa, σy = –1.20 MPa, and σz = –2.0 MPa. Assuming that the applied 
forces are uniformly distributed on the respective faces, determine the size 
changes that take place along a, b, and c. Let E = 140 GPa and ν = 0.35.
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Figure 3.13

Given: Stress state, dimensions, and properties of copper block.
Find: Size changes in each direction.
Assume: Homogeneous and isotropic; Hooke’s law applies.

Solution

We need the generalized form of Hooke’s law, since we have stresses and 
deformations in multiple directions.
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Plugging in the given values of each normal stress component, Poisson’s 
ratio, and E,
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so that the new dimensions of the copper block are a′ = 200.005 mm, b′ = 
119.999 mm, and c′ = 99.9979 mm.
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example 3.2

A rectangular block is compressed by a uniform stress σ0 as it sits between 
two rigid surfaces with the gap a shown in Figure 3.14. Determine (a) the 
stress σyy; (b) the change in the length along the x axis as the gap a is closed; 
and (c) the minimum value of σ0 need to close the gap.

x

y

z 

 y

z x

c d

a

b
σ0 σ0

Figure 3.14

Given: Rectangular block under uniform stress.
Find: Normal stress in y direction; deformation in x direction; applied 

stress needed to close gap.
Assume: Material is homogeneous and isotropic; Hooke’s law applies.

Solution

Here, σ σ σxx zz d c=− = <<0 0, ( ),  so E yy yyε σ νσ= + 0 .

As the block expands in the y direction, ε δ δyy a b a a= ≤ ≤/ ,where 0

 (a) δ σ σ δ νa a E a byy≤ = =: ( ) / ( )0 0and ; δ σ νσa a Ea byy= = −: ( / ) 0 .

 (b) Need σyy =0.  to just close the gap as δa = a.

 (c) σ0= (Ea/vb).

3.11 Problems

 3.1 Verify that the results τ τ τ τ τ τxy yx yz zy xz zx= = =  are correct by 
satisfying moment equilibrium for an infinitesimal volume ele-
ment about each of three orthogonal axes.
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 3.2 Show that the change in volume of a solid body element whose 
initial, unstrained volume is V = lxlylz is given (to first order in the 
normal strains) by

 

∆V
V xx yy zz= + +ε ε ε .

 3.3 Perform the indicated matrix multiplication in the following equa-
tion and determine the explicit formulas for the three stress or 
traction vectors:
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ˆ
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.

 3.4 Determine, for the following three-dimensional state of stress,
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 (a)  The components of the surface traction vector acting on an element 
of surface that has a normal vector ˆ . ˆ . ˆ . ˆn = 0 50 0 50 0 707i j k+ + .

 (b)  The component of this surface traction vector in the direction of 
the unit vector ˆ ˆ . ˆ . ˆλλ = .0 25 0 935 0 25i j k+ + .

 3.5 Calculate all of the normal and shear strains for the following dis-
placement field:

 
u x y z z w x

x
v x y z w x y z w x( , , ) ( ) , ( , , ) , ( , , ) ( )=− = =

∂
∂

0 .

  Which of these results are most relevant for a planar system of 
coordinates with x positive to the right and z positive downward? 
(Note: These equations will reappear when we study beams.)

 3.6 Calculate all of the normal and shear strains for the following dis-
placement field:

 u x y z yz v x y z xz w x y z( , , ) , ( , , ) , ( , , )=− = =α α 0 .

 (Note: These equations will reappear when we study torsion.)
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 3.7 Calculate all of the normal and shear strains for the following dis-
placement field:

 u x y z yz v x y z xz w x y z x y( , , ) , ( , , ) , ( , , ) ( , )=− = =α α κ .

  Compare and contrast these results with those of Problem 3.6.
 3.8 Two small cubes of equal size but made of different materials are 

stacked (as shown in Figure 3.15) so they just fit between two rigid 
surfaces. The bottom cube is subjected to a uniform pressure p on 
each of its exposed surfaces. Find the contact or interfacial stress on 
the connecting plane, expressed in terms of p and the two sets of 
material properties.

x

z

 y 

EA, νA

EB, νB
 p p

 p 

Figure 3.15

 3.9 The two small cubes of Problem 3.8 are each subjected to a sep-
arate uniform pressure, pb, on the exposed faces of the bottom 
cube and pu on the exposed surfaces of the top cube. What is the 
ratio of these two pressures, expressed in terms of the two sets of 
material properties, such that the volume changes of each cube 
are the same?
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 3.10 A circle of diameter d is inscribed on the surface of an unstressed 
metal (Young’s modulus E and Poisson ratio ν) square plate of thick-
ness t and side length l (as pictured in Figure 3.16). If the plate is sub-
jected to planar stresses σxx = .82 7 MPa  and σyy = .137 8 MPa  and 
has properties E = 200 GPa, ν = 0.30, t = 2.00 cm, and l = 40.0 cm, 
find the changes in (a) the length of the diameter AB; (b) the length 
of the diameter CD; (c) the thickness of the plate; and (d) the volume 
of the plate.

t
 y x

z

ll A   C 
D        B

σxx σyy 

Figure 3.16

 3.11 Verify the following equilibrium equations for plane stress in the 
xz plane:

 

G u G
x

u
x

w
z

G w

∇ + + +








=

∇ +

2

2

1
1

0ν
ν
∂
∂
∂
∂

∂
∂–

11
1
+ +









=−

ν
ν
∂
∂
∂
∂

∂
∂

ρ
–

.G
z

u
x

w
z

g

 3.12 Verify the following compatibility equation for plane stress in the 
xz plane:

 ∇ =∇ ∇ =4 2 2 0ϕ ϕ .

 3.13 Explain the notation and meaning of Cauchy’s formula:

 σ̂ σi ij jn= .

 3.14 Derive counterparts of the following equilibrium equations for 
plane strain in the xz plane:
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  How do these results differ the equilibrium equations for plane 
stress?

 3.15 Derive counterparts of the following compatibility equation for 
plane strain in the xz plane:

 ∇ =∇ ∇ =4 2 2 0ϕ ϕ .

  How do these results differ from the compatibility equations for 
plane stress?

 3.16 Consider a 4-in.-square steel bar subjected to transverse biaxial 
tensile stresses of 20 ksi in the x direction and 10 ksi in the y direc-
tion. (a) Assuming the bar to be in a state of plane stress, deter-
mine the strain in the z direction and the elongations of the plate 
in the x and y directions. (b) Assuming the bar to be in a state of 
plane strain, determine the stress in the z direction and the elon-
gations of the bar in the x and y directions. Let E = 30 × 103 ksi and 
v = 0.25.

 3.17 A piece of 50 × 200 × 10 mm steel plate is subjected to loading 
along its edges, as shown in Figure 3.17. (a) If Px = 100 kN and Py 

= 200 kN, what change in thickness occurs due to the application 
of these forces? (b) For Px alone to cause the same change in thick-
ness as in part (a), what must be the magnitude of Px? Let E = 200 
GPa and v = 0.25.

200 mm 

50 mm Px

Py

Figure 3.17
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Notes

 1. An elegant demonstration of the Poisson’s ratio effect can be seen by stretch-
ing a swatch of chicken wire: The wire mesh visibly expands in the direction 
you’re pulling and contracts in the transverse direction. Rod Lakes (1987) cre-
ated polymer foams that exhibit negative Poisson’s ratios: When pulled, they 
expand in the transverse direction as well as the axial. Some materials com-
posed of fibrous networks (e.g., textiles, biomaterials) have also exhibited this 
“antirubber” or “auxetic” negative Poisson’s behavior (Evans 1989).

 2. The subscripts on epsilon provide directional orientation. One subscript, j, tells 
us we’re considering deformation in the jth direction. The other subscript, i, 
tells us what to compare that deformation to. When i = j, we typically use only 
one subscript i. This is normal strain: The deformation is in the reference direc-
tion, making strain a change in length with respect to a length in the same 
direction. For shear strain, i ≠ j, and the displacement of interest is perpendicu-
lar to the reference direction.

 3. One prominent exception to this optimistic assumption of homogeneity and 
isotropy arises in the consideration of biological materials. Arteries and other 
biological structures have varying properties in different directions, and this 
variation serves them well. (It also complicates the modeling and mimicking 
efforts of engineers and biologists.) Please see Case Study 5 for further discus-
sion of the mechanics of biomaterials.

 4. One example of each of these transitions has achieved notoriety. Combustion 
heating of the steel support members of the World Trade Center in 2001 caused 
the steel to become more ductile and to lose strength, contributing to the pro-
gressive failure of the towers. Also, the infamous O-ring seal on the Space Shut-
tle Challenger in 1986 became brittle due to cold weather and allowed hot gas to 
escape from the solid rocket booster, leading to the destruction of the vehicle.

 5. The del-squared ∇2  operator, or Laplacian, is reviewed in Appendix B.
 6. See note 5.
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4
Applying Strain and Stress in 
Multiple Dimensions

In both one and multiple dimensions, we have now considered how contin-
uum mechanics will help us create and analyze effective designs. We made 
sure to include (1) kinematics, or strain; (2) stress; (3) constitutive laws, or 
how strain and stress are related; and (4) equilibrium as we developed gen-
eral results to help us analyze the internal response of continuous materials 
to external loading. In Chapter 3 we recognized that strain, stress, and the 
modulus that relates them are each tensors (of second, second, and fourth 
order, respectively) and that working with tensors involves some bookkeep-
ing. The somewhat involved mathematics of Chapter 3 should not have dis-
tracted us from our goal to obtain useful results that we will apply to the 
design and analysis of structures. In Chapter 4, we apply the formulations 
and results of Chapter 3 to several canonical types of external loading, and 
we return to the question of how strain and stress depend on the reference 
plane in question.

4.1 Torsion

In the previous sections, we discussed primarily axial loading conditions 
and how to determine stresses and deformations under these conditions. 
We now turn our attention to bodies subjected to a twisting action caused 
by a torque or a twisting moment. As before, we look at the isolated effects 
of this one type of loading; we will later be able to combine multiple loading 
configurations to address more realistic, real-world problems. One example 
of purely twisting external load is in the tightening of a vise grip; the user 
applies a torque to the threaded screw of the vise, turning it, which in turn 
causes the jaws to tighten. In practice, members for transmitting torque, such 
as motor shafts, are generally circular or tubular in cross section. Most of our 
examples and applications, therefore, involve circular sections.

4.1.1 Method of Sections

What happens when a member in static equilibrium is subjected to a twisting 
motion? If the member is free, this means a pair of externally applied, equal 
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and oppositely directed couples acting in parallel planes. If the member is 
fixed, this means a single external couple is applied and that the fixed end 
supplies an internal resisting torque. The portion of the members between 
these two external, or between the external and internal, torques is said to be 
in torsion, or under torsional load. For example, the screw of the bench vise 
previously mentioned is in torsion when the jaws are fully tightened and 
forces still applied to the handle.

Generally, only one equation of statics will be relevant:

  ΣMx = 0,

where the x axis is directed along the member in question. So, when we 
apply the method of sections, the internal torque must balance the externally 
applied torque: It must be equal but have opposite sense. For an example of 
this, see Figure 4.1.

The torque, being the product of force and lever arm, has units of in.-lb. 
in the U.S. customary system (USCS) and N·m in the International System 
of Units (SI). Note that the terms torque, moment, and couple are used inter-
changeably in modern engineering practice.

d

d1

F

F

F1

F1

Torque = Fd = F1d1 
dF

F
cut 

Internal
resisting torque 

dF

F
TR

x

r

θ

Figure 4.1
Sketches showing (clockwise from top left): equal and opposite torques; free-body diagram of 
section; rigidly fixed bar.
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To relate the internal torque and the stresses it sets up in members with cir-
cular solid and tubular cross sections, we make the following assumptions, 
all of which are rooted in and validated by copious experimental data:

 1. A plane section of material initially perpendicular to the member’s 
axis remains plane after torques are applied; that is, no warpage or 
distortion of parallel planes takes place. Imagine a cylinder com-
posed of very thin disks, like a roll of pennies, if the reader will 
indulge this anachronism. When you twist the roll, the pennies are 
each displaced but are not warped out of plane.

 2. Shear strains γ vary linearly from the central axis, reaching γmax at 
the periphery. That is, shear strain varies linearly with radial coor-
dinate r. The radius itself remains straight. (On any cross section or 
penny, the outer edges are deformed the most.)

 3. And, if the material composing the member is linearly elastic, we 
may apply Hooke’s law, from which it follows that shear stress is 
proportional to shear strain, as we have seen: τ = Gγ.

Thus, we expect τ, like γ, to increase with r. Sliding motion in the θ-r plane 
will cause stresses τxθ, and by symmetry τxθ = τθx. And, since there is no 
direct tension or compression on the θ-r plane, we will drop the subscripts 
on τxθ and γ xθ, and simply use τ and γ.

4.1.2 Torsional Shear Stress: angle of Twist and the Torsion Formula

Consider a torsionally loaded member like the bottom sketch in Figure 4.1. 
A circular member is fixed against rotation at one end and subjected to a 
torque at the other end. Since torques cause neither direct tension nor com-
pression, this loading develops pure shear stresses on each cross-sectional 
plane between the torque and the fixed end.

If we imagine that the member is made up of a series of ultrathin plates 
bonded together (a roll of micropennies), we can visualize each thin plate 
tending to slide by, or shear, across the contact surface with the adjacent plate. 
Since the member is in equilibrium (and does not fracture), some internal 
resistance must develop that prevents any such slippage. This internal resis-
tance (per unit area) is called the torsional shear stress. The resultant of these 
resisting stresses on any cross-sectional plane is an internal resisting torque.

Since we are by now well aware that all materials have limited (tensile, 
compressive, and shear) strength, we desire a mathematical relationship 
among torsional shear stress, applied torque, and the physical properties of 
the member. As always, we seek to understand the internal response of a 
material to (in this case, torsional) loading.

The free end of the member in Figure 4.1 (bottom) will rotate slightly when 
a torque is applied. This is shown in Figure 4.2. The shaft radius c will be 



126 Introduction to Engineering Mechanics: A Continuum Approach

rotated an angle ø, called the angle of twist, and line L will become L′, actually 
part of a helical curve. So, the shear distortion of line L is equal to the arc 
length subtended by this twisting ø. We are interested in finding an expres-
sion for this arc length, with which we can write the shear strain. (The shear 
strain, the change in the initially right angle between line L and the vertical, 
may be approximated by its tangent: the arc length divided by the original 
length L.) If we look closely at the circular front face of the shaft, we can write 
the arc length as øc; if we look at the length of the shaft, we see that (assum-
ing small deformations) the arc length is γL. These two expressions for arc 
length must be equivalent, so we must have

 γL = φc. (4.1)

Remember, this shear strain is at the outer radius, and so is the maximum 
possible shear strain (since shear strain increases linearly with r). In other 
words, the maximum shear strain γ depends on the angle of twist of the 
shaft, ø:

 
γ φ

max ,=
c

L
 (4.2)

where both γ and ø are expressed in radians. In general, the shear strain is 
given by

L
c

T

L

γxθ = γ

L'
c

φ

Applying a
torque: 

Results in
distortion:

Figure 4.2
Circular shaft in torsion.
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γ φ( ) ,r r

L
=

 (4.3)

where both γ and ø are in radians.
In the previous section we listed the assumptions made for a circular 

member in torsion. The first was that a plane cross section will remain a 
plane after the shaft has twisted; also, a straight line radius such as c will 
remain a straight line as the shaft is twisted. Our second assumption, that 
shear strains vary linearly with r, tells us that halfway between the center 
of the shaft and its outer edge the shear strain will have half its value at the 
outer surface. We write this statement, which readily follows from equations 
(4.2) and (4.3), as
 γ γ= r

c max .   (4.4)

If Hooke’s law τ = Gγ applies, our third assumption lets us use a simi-
lar distribution for shear stress, as 
shown graphically in Figure 4.3.

Once the stress distribution at 
a section is established, the resist-
ing torque in the member can be 
expressed in terms of stress. Remem-
ber that stress is the internal resis-
tance to applied loads. To satisfy 
equilibrium, this internal resisting 
torque must balance the externally 
applied torque T. Hence, we have
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 (4.5)

where the integral sums all torques developed on the section in question by 
the infinitesimal internal forces acting at some distance r from a member’s 
axis, over the whole area A of the cross section. At any given section, τmax 
and c are constant; therefore, we take them out of the integral and write the 
expression as

c

r

(r/c) τmax

τmax

dA 

Figure 4.3
Shear stress variation on a plane.
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We notice that the integral ∫ r2dA is the polar second moment of area A, 
denoted by J.1 For a circular cross section, dA = 2π rdr, and we can calculate 
J as
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 (4.7)

where d is the diameter of the solid circular shaft in question. If c or d is 
expressed in millimeters, J has units of mm4. We can now rewrite our expres-
sion for the internal torque as

 
τmax ,=

Tc
J  (4.8)

which is the well-known torsion formula for circular shafts, giving us τmax in 
terms of the resisting torque and the member’s dimensions. More generally, 
we can find the shear stress τ at any point a distance r away from the center 
of a section from

 
τ τ= =

r
c

Tr
Jmax .

 (4.9)

If our shaft is not solid but a tube of some thickness, similar expressions 
can be derived. The limits of integration in this case are not 0 and c but are b 
and c where b marks the inner radius of the tube, so the polar second moment 
of area becomes

 

J r dA r dr c b
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 (4.10)

And for very thin tubes, where b ~ c, and c – b = t, the thickness of the tube, 
J, reduces to

 J ≈ 2πRav
3t, (4.11)

where 

 Rav = (b + c)/2.
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If a circular shaft is made from two different materials bonded together as 
in Figure 4.4, our original strain assumption applies. Through Hooke’s law, 
the shear stress distribution will be found to be more like that in Figure 4.4.

Incidentally, the angle of twist can now be related to the shear stress and, 
hence, to the torque. (The internal resisting torque must balance the external 
torque: T = T.) Recall that

 
γ φ

max .=
c
L

If Hooke’s law applies, we can use our equation for τmax to write

 γ τ
max

max ,= =
G

Tc
JG  (4.12)

so equating these two expressions for maximum shear strain, we have

 φ= TL
JG

. (4.13)

This expression suggests the technique used for measuring a material’s 
rigidity modulus G in a torsion testing machine. In torsion testing, a 
known torque T is applied, the resulting deformation ø measured, and 
the slope of the plotted data is JG/L. Since the geometric parameters of the 
sample are known, J and L are known constants, yielding an experimental 
value of G.

Equation (4.13) gives the angle of twist for a shaft of uniform J, G, and 
L. In the case of adjoining sections of differing geometries, we are able to 
superpose the angles of twist by integrating or merely summing over the 
different components:

 φ=∫ Tdx
JG

L

0

 (4.14)

c1

c2

τ = G2γ

τc2

τc1

τ = G1γφ

Figure 4.4
Elastic behavior of circular member in torsion having an inner core of soft material.
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for continuous changes in diameter or properties, or

 φ=∑T L
J G

i i

i ii
 (4.15)

for abrupt changes or stepped shafts.

4.1.3 Stress Concentrations

The equations we have so far developed for stresses and strains in circular 
shafts apply to solid and tubular circular shafts while the material behaves 
elastically and while the cross-sectional areas along the shaft remain reason-
ably constant. These equations also give acceptable results when changes in 
the cross-sectional area are gradual. But for stepped shafts where the diam-
eter changes abruptly, large stress concentrations are possible. High local 
shear stresses occur at sites far from the center of the shaft. In this textbook, 
we do not calculate these local stress concentrations, but we use a torsional 
stress-concentration factor to estimate these effects. This method is com-
pletely analogous to that discussed in Section 2.10 for axially loaded mem-
bers, and again the factors depend only on the member geometry. Figure 4.5 
shows the stress-concentration factors for various proportions of stepped 
round shafts. The factor obtained from the chart is then used to adjust the 
value of maximum shear stress:
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Figure 4.5
Torsional stress-concentration factors in circular shafts of two diameters. (After Jacobsen, L. S., 
Transactions of the American Society of Mechanical Engineering 47, pp. 619–638, 1925.)
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τmax ,=K Tc

J

 (4.16)

where the shear stress Tc/J is obtained for the smaller shaft. It should be clear 
from the extreme curvature at low r in Figure 4.5 that it is desirable to have a 
large fillet radius r at all sections where a transition in shaft diameter is made.

4.1.4 Transmission of Power by a Shaft

Rotating shafts are commonly used to transmit power. If an applied torque 
turns a shaft, work is done by the torque. Work, you may recall, is defined 
as the energy developed by a force acting through a distance against a resis-
tance. When the distance is linear, we express the work as force × distance. 
For a rotating shaft, the applied torque turns the shaft through a circular 
distance, so work is expressed as torque × angular distance = Tθ.

We express the rotation angle θ in radians; if a shaft is rotated at constant 
speed against some resistance, the work done in one revolution is 2π T. The 
units of work are (N⋅m), (ft⋅lb) or (in⋅lb).

Power is defined as the work done per unit time, work/time. We therefore 
want to talk about the shaft rotation per unit time, or the shaft’s angular 
speed. We use ω to represent the shaft’s angular velocity ( θ ) in radians per 
second. (Often, we are given a shaft’s angular velocity in revolutions per 
minute, or rpm; to convert this to radians per second we must multiply by 2 
π and divide by 60.) Power can then be written

 P = ω T. (4.17)

The unit conventionally used in the United States is the horsepower (hp). 
In the SI, the unit used to express (N⋅m/s) is the watt (W). It was the Scot-
tish inventor James Watt who, having refined the Newcomen pump to cre-
ate the useful steam engine, needed a standard to which to compare his 
new technology. The “industry standard” at the time was what a millhorse 
could produce, so Watt tested a brewery horse turning a mill wheel and 
found that the horse output 33,000 ft·lb/min, a number that became known 
as “1 horsepower.” Some useful facts for dealing with these units are as 
follows:
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4.1.5 Statically indeterminate Problems

Just as in the case of axially loaded bars, there are times when we cannot 
determine the internal torques from statics alone. It’s necessary to comple-
ment the equilibrium equations with relations involving the shaft deforma-
tions and considering the geometry of the problem. And, as before, several 
techniques are available to help us.

If we are within the elastic/Hookean regime of behavior, with one degree 
of external indeterminacy (i.e., one more reaction than we can solve for), the 
force or flexibility method is a good choice to resolve the indeterminacy. In 
the force method for bars in torsion, we first remove one of the redundant 
reactions and calculate the rotation øo at the released support. Then we restore 
the required boundary conditions by twisting the member at the released 
end through an angle ø1 such that the sum øo + ø1 = 0. This analysis does not 
depend on the number or kind of applied torques or on variations in shaft 
size of material.

It is also possible to encounter internal statical indeterminacy in composite 
shafts built up from two or more tubes or materials. In these cases, the angle 
of twist ø is the same for each member, and the displacement or stiffness 
method is the best choice to resolve the indeterminacy. The strategy is to con-
sider the torque Ti for the ith shaft component as Ti = (kt)i φ and then to obtain 
the total applied torque from the sum of its parts:

  T kt i
i

=∑( ) .φ

In these expressions, kt is the torsional stiffness of a member, again analo-
gous to a spring constant, and we define it as

 k T JG
Lt = =

φ
,

with units of [(in·lb)/rad] or [(N·m)/rad]. And, as in the case of axial loads, we 
can define the reciprocal of stiffness to be the torsional flexibility, which we 
use in the force method for indeterminate problems.

We also use the displacement method for externally statically indeterminate 
problems with several kinematic degrees of freedom. As before, we write the 
equations of global equilibrium, and of geometric compatibility, and assume 
elastic (Hookean) behavior. That is to say, for a two-member bar in torsion, 
we write equilibrium as

 T1 + T2 + T = 0

and impose geometric compatibility as
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 φ1 = φ2,

where these are the twists of the two bar segments, assuming that both far 
ends are fixed. For linearly elastic behavior, this equation for geometric com-
patibility becomes

 
T L
J G

T L
J G

1 1

1 1

2 2

2 2
=

So, just as we did for axially loaded bars that were statically indeterminate, 
we must ensure (1) equilibrium, (2) geometric compatibility, and (3) consistency 
of material properties, using constitutive laws such as Hooke’s law, in any order 
we find convenient, until we can solve for all the unknowns in the problem.

4.1.6 Torsion of inelastic Circular Members

We based our derivation of the torsion formula on Hooke’s law, so the expres-
sions developed for shear stress and angle of twist in a bar in torsion are only 
relevant when loads are under the proportional limit. If the yield strength 
is exceeded somewhere in the shaft, or if the material involved is a brittle 
material with a nonlinear shear stress–strain diagram, these relations are 
invalidated. It would be useful if we had a more general method, which we 
could use when Hooke’s law did not apply, to find the stress distribution in 
a solid circular shaft and to calculate the torque required to produce a given 
angle of twist.

We made no assumptions of elastic behavior to say that the shear strain γ 
varies linearly with distance r from the central axis of the shaft. So even in 
the inelastic case, we may write

 γ γ=
r
c max ,  (4.18)

 where c is the radius of the shaft.
What we can’t yet say is how shear stress varies with r, because we no 

longer have Hooke’s law at the ready. But we do have a shear stress–strain 
diagram for the given material, and if we don’t we can perform some tor-
sion tests on a sample and obtain one. From this diagram, we find the value 
of γmax, which corresponds to the local maximum τmax. For each value of r, 
we can find the corresponding value of γ from equation (4.18) and from the 
stress–strain diagram can find the value of shear stress τ corresponding to 
this γ. We can then plot τ as a function of r to see the local distribution of 
stresses. Figure 4.6 shows a range of stress–strain diagrams and the result-
ing distributions.
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Once we know the stress distribution, we can integrate over the area of a given 
cross section to find the internal resisting torque carried by these stresses:

 
T dA r

A

=∫ ( ) ,τ  (4.19)

which, for a circular member, may be simplified as

 T r dr
c

= ∫2 2

0

π τ ,  (4.20)

where in these integrals we are using τ(r) as obtained from the stress–
strain diagram. If τ(r) is an analytical function, we may proceed with the 
integration. Otherwise, we must obtain the torque T through a numerical 
integration.

A significant value is the ultimate torque, TU, which causes shaft failure. 
This value may be determined from the ultimate shearing stress of the mate-
rial by setting τmax = τU and carrying out the computations for T. It is more 
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Figure 4.6
Stress–strain diagrams (left) and corresponding stress distributions (right).
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convenient to determine TU experimentally by twisting a specimen of a given 
material until it breaks. Assuming a (fictitious) linear stress distribution, it is 
then possible to find the maximum shearing stress RT:

 
R T c

JT
U= .

 (4.21)

RT is purely a reference value, because it is based on a linear stress distribu-
tion that is known to be false. It is called the modulus of rupture in torsion, or 
simply modulus of rupture, of the material and is always larger than the actual 
ultimate shearing stress τU.

It is also useful to be able to determine the stress distribution and torque T 
corresponding to a given angle of twist φ. To do this, we recall that

 
γ φ
=

r
L

,
 (4.22)

so that for a given φ and L, we are able to find the shear strain γ at any value 
r. We can then use the shear stress–strain diagram to find the corresponding 
τ and can then plot τ(r). Once we have this distribution, we can proceed with 
the integral for T as described earlier.

4.1.7 Torsion of Solid Noncircular Members

Everything we have said about torsion has applied to members with circular 
cross sections. We assumed early and often that plane sections (such as the cross 
section itself) remained plane. This assumption depends on the axisymmetry of 
the member—that is, upon the fact that it appears the same when viewed from 
a fixed position and rotated about its axis through an arbitrary angle.

In a square bar, however, because of the lack of axisymmetry, most lines 
drawn through a cross section will deform when the bar is twisted, and the 
cross section itself will be warped out of its original plane. See Figure 4.7 for 
an illustration of this behavior, or draw an even grid on a rubber eraser and 
apply a twisting moment to see the irregularity of the grid under torsion.

Disappointingly, then, our equations for strain and stress distribution in 
elastic circular shafts are nontransferable to noncircular shafts. It would 
be wrong to assume that shear stress in a square bar varied linearly with  

Figure 4.7
Rectangular bar (a) before and (b) after a torque is applied.
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distance from the axis of the bar; under this assumption, shear stress would 
be highest at the corners, and it is actually zero at these points.

The mathematical computation of the stresses and strains in noncircular 
bars in torsion is quite complex. In fact, it was the French elastician Adhémar 
Barré de Saint-Venant (of the eponymous principle in Chapter 2, Section 2.10) 
who developed the solution in 1853. This solution is somewhat beyond our 
scope. However, we can gain some intuition about these problems from the 
final results of his analysis.

For straight bars with a uniform rectangular cross section, of length L and 
with a and b denoting the wider and narrower sides of the cross section as 
in Figure 4.8, the maximum shear stress occurs along the center line of the 
wider face of the bar and is equal to

 τmax ,=
T

C ab1
2  (4.23)

and the angle of twist may be expressed as

 φ=
TL

C ab G2
3

. (4.24)

In these expressions, the coefficients C1 and C2 depend only on the ratio 
a/b and are given in Table 4.1 for a range of values of this ratio. Both these 
expressions are valid only within the elastic regime. Similar results for dif-
ferent types of cross sections are available in books such as W. C. Young’s 
Roark’s Formulas for Stress and Strain (1989).

It is also possible to recast the equation for angle of twist to express the 
torsional stiffness kt for a rectangular section:

 
k T C ab G

Lt = =
φ 2

3 .
 (4.25)

a

b

L

τmax

Figure 4.8
Generic rectangular bar in torsion.



Applying Strain and Stress in Multiple Dimensions 137

An elegant membrane analogy provides a way to visualize the shear stress 
distribution in noncircular members. This analogy was introduced by the 
prolific German scientist Ludwig Prandtl in 1903. The idea comes from the 
fact that the partial differential equation governing the shear stress in a bar 
in torsion is the same equation that governs the deformation of an elastic 
membrane (e.g., a soap film) attached to a fixed frame and subjected to a 
uniform pressure on one of its sides. For the equations to be mathematically 
identical, the frame must be the same shape as the bar cross section. The 
solution of this equation shows the following:

 1. The shear stress at any point is proportional to the slope of the 
stretched membrane at the same point, as illustrated in Figure 4.9.

 2. The direction of a particular shear stress at a point is normal to 
the slope of the membrane at the same point, as also illustrated in 
Figure 4.9.

Table 4.1

Coefficients for Rectangular Bars in Torsion
a/b C1 C2

1.0 0.208 0.1406

1.2 0.219 0.1661

1.5 0.231 0.1958

2.0 0.246 0.229

2.5 0.258 0.249

3.0 0.267 0.263

4.0 0.282 0.281

5.0 0.291 0.291

10.0 0.312 0.312

∞ 0.333 0.333

Slope

τ

Stretched membrane

Pressure

Figure 4.9
Membrane analogy for bars in torsion.
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 3. Twice the volume enclosed by the membrane is proportional to the 
torque carried by the section.

If you simply imagine blowing on a soap film, too gently to detach the film 
and blow a bubble, you should be able to picture the places at which the film 
will distort and where its slope will be greatest. The membrane analogy tells 
you that these points correspond to the locations of highest shear stress in 
a cross section in torsion. For example, in Figure 4.10, a circular soap film is 
shown being deformed by uniform pressure on its upper surface. Observe 
that it is nearly flat at the center, where we know the shear stress to be at its 
minimum value, and that the curvature is very steep at the outer edge, where 
we already know that due to its radial dependence the shear stress will be 
maximized.

4.1.8  Torsion of Thin-
Walled Tubes

The procedure for obtaining the 
shear stress distribution and angle of 
twist for thin-walled tubes is much 
less complex than that for solid non-
circular members. If we consider a 
hollow cylindrical member of non-
circular section subjected to torsion, 
as in Figure 4.11, we will find the rel-
evant relations.

The thickness t of the wall may 
vary but is assumed to be small rela-
tive to the member’s other dimen-
sions. We look first at a small section 
of the wall, as in Figure 4.12. This sec-
tion is in equilibrium, so there must 
be no net force acting on it. The only 

T

t

B

A

Figure 4.11
Thin-walled tube in torsion.

tA

tB

x

∆x

Figure 4.12
Segment of tube.

Figure 4.10
Soap film on circular frame. (From Isenberg, C., The Science of Soap Films and Soap Bubbles, 
Dover, Mineola, NY 1992. With permission.)
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forces acting on it are the shear forces FA and FB, exerted on the ends of por-
tion AB. Therefore, ΣFx = 0 gives us

 FA – FB = 0.   (4.26)

We can express FA as the product of the shear stress on the small face A and 
of the area, tAΔx, of that face:

 FA = τAtAΔx. (4.27)

Shear stress is independent of the x coordinate of the point in question but 
may vary across the wall, so in this expression we are using for τA the aver-
age shear stress along the wall. We can express FB in a similar way and then 
can write the equilibrium requirement as

  τAtAΔx – τBtBΔx = 0, or

 τAtAΔx = τBtBΔx. (4.28)

Since A and B were chosen arbitrarily, this must be true for any two faces 
of the member, for any Δx, and so we must have the product τt constant 
throughout the member. If we denote this product by q, we have

 q = τt = constant. (4.29)

This quantity q is commonly called the shear flow in the wall of the hollow 
shaft, because of a parallel that can be drawn to the problem of water flow-
ing in a channel of varying width. In this case, as we see later, conservation 
of mass requires that the product of water velocity and channel width must 
be constant. The requirement that the product of shear stress and tube thick-
ness must be constant is thought to be sufficiently similar to justify calling q 
the shear flow.

We can relate the shear flow q to 
the torque T applied to our hollow 
member (Figure 4.13). To do this, we 
consider a cross section of the tube 
as shown in Figure 4.14. The force 
per unit distance (along the peri-
meter), by the previous argument, is 
constant and equal to q. This shear 
flow multiplied by the infinitesimal 
length ds of a segment of the peri-
meter gives a force qds per differen-
tial length. The product of this force 
qds and the perpendicular distance 
r from the centroid of the cross  

tτ

Figure 4.13
Shear stress at any point of a transverse sec-
tion is parallel to the wall surface.
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section (or another convenient point 
near the center) to the segment ds gives 
us the contribution of this element to the 
resistance of applied torque T. Adding or 
integrating this around the entire cross 
section, we get

                       
T rqds=∫ ,  (4.30)

where the integration is carried out around 
the tube along the center line of the perim-
eter. Since q is constant, we can take it out 
of the integral and write

                            
T q rds= ∫ ,  (4.31)

To simplify life, we do not carry out this 
integration but instead rely on an approxi-
mation. The value rds is twice the value of an 
infinitesimal triangle with base ds and altitude 
r, and the complete integral is therefore twice 
the area bounded by the centerline of the tube 
perimeter. This is sketched in Figure 4.15. We 
call this area At-w and obtain

 
T A q q T

At w
t w

= =−
−

2
2

or . (4.32)

The t-w subscript on A reminds us that this approximation holds only 
for thin-walled cylinders. At-w is an estimate of the average of the two areas 
enclosed by the inner and outer surfaces of the tube. Since q is constant, we 
can determine the shear stress at any point where the wall thickness is t from  
τ = q/t.

For linearly elastic materials, we can find an expression for angle of twist 
by applying the principle of energy conservation. Assuming the thin-walled 
shaft in question has length L and modulus of rigidity G, its angle of twist 
under torque T is

ds

qds

r

Figure 4.14
Cross section of thin-walled tube.

At-w

Figure 4.15
Definition of At-w.
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 φ=
−
∫TL

A G
ds
tt w4 2  ,  (4.33)

where the integral, once again, is computed along the centerline of the wall 
section. And we can talk about the torsional stiffness kt of our tube:

 k T A G

L
t

t w

ds
t

= = −

∫φ
4 2


.  (4.34)

4.2 Pressure Vessels

Pressure vessels are generally spheres, cylinders, ellipsoids, or some combi-
nation of these, with the goal of containing liquids and gases under pressure. 
Examples of pressure vessels include boilers, fire extinguishers, shaving 
cream cans, and pipes, as well as the oxygen tanks carried by scuba div-
ers such as those installing the artificial reef components in our motivating 
example from Chapter 1.

Actual vessels are usually composed of a complete pressure-containing 
shell with flange rings and fastening devices for connecting and securing 
mating parts. At this point, we are interested in the stresses developed in 
the walls of simple spheres and cylinders, two shapes that are widely used 
in industry. To perform our stress analysis, we employ a generalized form of 
Hooke’s law.

Thin-walled pressure vessels are those that have a wall thickness t not 
more than a tenth of the internal radius ri of the vessel (t ≤ 0.1 ri). The walls 
of an ideal thin-walled pressure vessel act as a membrane, experiencing no 
bending. The internal pressures within such vessels are relatively low. Thick-
walled vessels such as gun barrels or high-pressure hydraulic presses, on the 
other hand, have t > 0.1 ri and experience dramatic variations in stress from 
the inner to the outer surface. In this section we consider the simpler thin-
walled situation.

Cylindrical and spherical thin-walled pressure vessels are generally sub-
jected to some level of internal fluid (gas or liquid or both) pressure. As a 
result of the internal pressure, tensile stresses are developed in the vessel 
walls. These stresses may not exceed specified allowable tensile stresses. 
Internal pressure tends to rupture the vessel along a joint.

Consider first the cylindrical pressure vessel shown in Figure 4.16a. If 
we take a section by passing a cutting plane through the pressure vessel, 
we obtain a plane as in Figure 4.16b, a typical cross section of a cylindrical 
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thin-walled pressure vessel subjected 
to an internal pressure p. The internal 
pressure at any point acts equally in 
all directions and is always perpen-
dicular to any surface on which it 
acts. This is reflected in Figure 4.16b.

As mentioned already, the radially 
acting internal pressure tends to rup-
ture the vessel’s joints. To resist this 
tendency, tensile stresses are devel-
oped in the walls of the pressure ves-
sel. These are called circumferential or 
hoop stresses. In conventional cylin-
drical coordinates, these are normal 

stresses in the θ direction, or σθθ, although in the context of pressure vessels 
σ1 is used to represent hoop stress. If we perform a force balance on the ele-
ment in Figure 4.16c, we can obtain an estimate of these stresses.

As should be clear from Figure 4.16c, the two hoop stresses σ1 resist the 
force developed by the internal pressure p, which acts normal to a projected 
area Di L. Figure 4.17, which shows only the projected area DoL, should serve 
to make this even clearer. (Remember that pressure, like stress, is a force per 
unit area.)

The hoop stresses σ1 act on a combined area 2L(ro – ri) = 2 L t. Balancing the 
forces, we have

 p Di L = 2 σ1 L t, (4.35)

which neatly simplifies to an expression for hoop stress σ1:

  
σ1 2
= =

pD
t

pr
t

i i . (4.36)

p

Di
L

L

p
Di

σ2
σ1

(a) (b) (c)

Figure 4.16
(a) Cylindrical pressure vessel; (b) cross section; and (c) section of thickness L. As an exercise, 
label the stresses in (a) as σ1 or σ2, so that they are in agreement with (c).

p

σ1

σ1

L

 t 

 t 

Di

Figure 4.17
Projected area of pressure vessel.
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This is an expression for the average cir-
cumferential stress and is valid only for 
thin-walled cylindrical pressure vessels. In 
these vessels, in fact, it is often estimated 
that ro ≈ ri, and so the subscript on r is omit-
ted. And incidentally, this expression can 
also be arrived at by examining an infini-
tesimal slice of the cylindrical vessel and 
integrating over it.

The other normal stress σ2 acting in a 
cylindrical pressure vessel acts longitudinally and may be determined by the 
solution of an axial-force problem. Conveniently it is called the longitudinal 
stress. In cylindrical coordinates we would call it σxx, although it is more com-
monly known simply as σ2. To find its value, we “slice” the body perpendicu-
lar to its axis and obtain the section shown in Figure 4.18.

As indicated in the figure, the internal pressure develops a force p πri
2, and 

this must be balanced by the force developed by the longitudinal stress σ2 in 
the walls, σ2 (πro

2 – πri
2). If we equate these two forces and solve for σ2,
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 (4.37)

But we have ro – ri = t, the thickness of the cylindrical wall, and since we are 
considering thin-walled vessels, we take ro ≈ ri ≈ r, so we may use

 
σ2 2
=

pr
t

. (4.38)

We also notice that for thin-walled cylindrical pressure vessels, σ2 ≈ σ1 / 2. That 
the hoop stresses are twice the longitudinal may be appreciated by cooking a 
hot dog until it “plumps” (deforms by expanding in response to rising inter-
nal pressure) and bursts—the tears in its casing will be along the longitudinal 
direction, because it will fail in the circumferential or hoopwise direction.

For thin-walled spherical pressure vessels, a similar method may be 
employed. In Figure 4.19 we see a sample vessel and a free-body diagram 
(FBD) that combines elements of Figure 4.16c and Figure 4.17. For a sphere, 
any section we take passing through the center of the sphere will yield the 
same result, whatever the inclination. So the maximum membrane stresses 
for thin-walled spherical pressure vessels are

 
σ σ1 2 2
= =

pr
t

. (4.39)

p σ2

Figure 4.18
Longitudinal stress.
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For either cylindrical or spherical pressure vessels, the effects of internal 
pressure may be combined with other loading conditions. Just as in the case 
of thermal effects, the hoop and circumferential stress are simply added to 
the other stresses in the corresponding directions. For further discussion of 
pressure vessels, please see Case Study 2 at the end of this chapter.

Example: Aneurysm, a ballooning or dilation of a blood vessel, often 
afflicts the abdominal aorta, a large vessel supplying blood to the abdo-
men, pelvis, and legs. While aneurysms can develop and grow gradu-
ally, the rupture (rapid expansion and tearing) of an aneurysm is usually 
catastrophic. Although the healthy abdominal aorta has a diameter of 1.2 
to 2 cm, an aneurismal abdominal aorta may have a diameter up to 6 to 
10 cm. Figure 4.20 shows a rough sketch of this anatomy.

We’d like to model the artery as a pressure vessel, despite the many dif-
ferences between a physiologically realistic blood vessel and the idealization 
we have just studied. Anatomy textbooks give a range of values for the thick-
ness of artery walls, from which we choose a median value of 0.1 cm. If we 
choose a radius of 1 cm for our model healthy abdominal aorta, we can call 
our vessel thin-walled.

The pressure inside the artery varies from a low (diastolic) to high (sys-
tolic) value over each heartbeat. Using a typical healthy systolic pressure of 

(a) (b) 

Kidneys 

Iliac
arteries

 

Figure 4.20
The abdominal aorta: (a) healthy and (b) affected by aneurysm.

p 

σ1 = σ2 

Figure 4.19
Spherical pressure vessel.
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120 mm Hg (1.6 N/cm2), we can calculate the circumferential or hoop stress 
in a healthy abdominal aorta:
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If the vessel grows to a diameter of 5 cm, the hoop stress in a cylindrical 
vessel becomes
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If, however, the abdominal aorta remodels itself into a more spherical 
shape, the hoop stress will be reduced:
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This crude calculation suggests that the aorta may change its shape in part 
to reduce the stress induced by internal (blood) pressure. It’s worth noting 
again that this pressure pulses, too, resulting in a cyclic loading and unload-
ing of the vessel. Other factors contributing to aneurysm development 
include elastin degradation, atherosclerosis, and genetics—but continuum 
mechanics is certainly part of the package.

4.3 Transformation of Stress and Strain

So far we have considered the isolated effects of normal stresses and shear 
stresses due to various loading by axial and shear forces, bending moments, 
and torques. We have seen that when stresses acting on an element are col-
linear (such as a pressure vessel’s longitudinal normal stress, and the normal 
stress due to an axial load on the vessel), we can simply add them. When 
stresses are not collinear, we must consider all of the stress tensor compo-
nents. In some cases, the combinations of stresses produce critical conditions 
worthy of more detailed examination.

In the previous sections, we have been able to calculate the stress state 
on a lateral cross section of a component. However, as we remember from 
our study of axially loaded bars, the stresses on an inclined cross section 
may be quite different. In designing a system, we might prefer to know the 
stress state at some other orientation—for example, if we were using a mate-
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rial (e.g., wood, fiber-reinforced concrete) with a grain or with anisotropic 
properties or if a weld or bolt were inclined at some angle from our usual 
axes. Consider the failure of a material under torsion—some materials do 
fail along the interfaces between the imaginary pennies being twisted, in a 
“clean break” along the cross section (Figure 4.21a). But more brittle materi-
als tend to fail in a different way so that the cleavage surface is inclined at 
an angle of about 45° (Figure 4.21b). Twist a piece of chalk in your hands to 
see this type of failure. To understand these failures, and to create robust 
designs, we want to develop a way of calculating the stress state on axes that 
are oriented at an arbitrary angle to our reference axes.

We are aware that the most general state of stress at a given point L may be 
represented by six unique components of a stress tensor. Three of these com-
ponents, σx, σy, and σz, are the normal stresses exerted on the faces of a small 
cube-shaped element centered at point L and the shear components τxy, τxz, 
and τyz on the same element. (We remember that the stress tensor is symmet-
ric; therefore, τxy = τyx, τxz = τzx, and τyz = τzy.) If the element is rotated from the 
standard coordinate axes, we will have to transform the stress components 
(as shown in Figure 4.22). The same goes for the six independent components 
of the strain tensor.

In this section we focus primarily on plane stress, a state in which two 
faces of the cubic element are stress free. This two-dimensional case, itself 
of significant use in practice, is easily extended to three dimensions once it 
is understood.

4.3.1 Transformation of Plane Stress

In Chapter 2, Section 2.5, we considered the stresses on an inclined plane 
in an axially loaded bar. A similar technique may be used to find the stress 

(a)

Figure 4.21
Failure of circular shafts due to torsion: (a) ductile failure, (b) brittle failure along 45° helix.

(b)
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state on planes and cubic elements that have been rotated. To remind our-
selves that we do in fact know how to transform the stresses on an inclined 
plane, especially now that multiple components of stress are in the picture, 
let’s work out an example:

Example: If the state of stress for an element is shown in Figure 4.23a, we 
may also express the state of stress on a wedge of angle α = 22.5 .̊ Because 
this wedge (ABC) is part of the original element, the stresses on faces AC 
and BC are known. They appear again on the wedge in Figure 4.19b. The 
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Stress components on a cubic element.
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Figure 4.23
Finding stresses on an inclined plane. Element has unit depth into the page. (After Popov, E. P., 
Engineering Mechanics of Solids, Prentice Hall, 1998.)
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unknown normal and shear stresses acting on face AB, σα and τα are 
what we want to find.

Face AB has area dA, in m2. The area corresponding to line AC is dA × cos α 
= 0.924dA; the area corresponding to line BC is dA × sin α = 0.383dA.

Next we can obtain the forces on the faces, Fi in Figure 4.23c, by multiply-
ing the stresses by their respective areas. All Fi are in MN.

 F1 = 3 MPa × 0.924dA = 2.78dA.

 F2 = 2 MPa × 0.924dA = 1.85dA.

 F3 = 2 MPa × 0.383dA = 0.766dA.

 F4 = 1 MPa × 0.383dA = 0.383dA.

To keep the wedge in equilibrium, the unknown forces due to unknown 
normal and shear stresses must balance these forces:

ΣFN = 0  N = F1cos α – F2sin α – F3cos α + F4sin α = 1.29dA.

ΣFS = 0 S = F1sin α + F2cos α – F3sin α – F4cos α = 2.12dA.

Since forces N and S act on the plane defined by AB, whose area is dA, 
we divide these values by dA to find the stresses. Thus, σα = 1.29 MPa and 
τα = 2.12 MPa, in the directions shown in Figure 4.23b.

Conceptually, this is all we are doing in this section. This approach is the 
starting point for all of the seemingly more sophisticated analyses to follow.

We want to generalize the approach of the example to any initial element 
and to any inclined wedge. This is illustrated in Figure 4.24. Again, we want 
to determine the transformed stresses (in the “prime” directions, as in Fig-
ure 4.22); again, we apply the equations of equilibrium to our wedge.

Equilibrium in the x’ and y’ directions requires (check these results as 
an exercise)
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x y x y
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τ
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θ τ θx y
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xy' ' sin cos .=−

−
+

2
2 2  (4.41)

These are the general expressions for the normal and shear stress on any 
plane located by the angle θ . Clearly, we must know the state of stress in the 
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initial (x, y, z) orientation to find these transformed stresses. The quantities 
σx, σy, and τxy are initially known.

To find the normal stress on the face perpendicular to the wedge face dA (i.e., 
σy’) we replace θ by θ + 90˚ in the equation for σx’ and obtain

 
σ

σ σ σ σ
τ θy

x y x y
xy' cos sin .=

+
−

−
−

2 2
2 2θ  (4.42)

If we add this to the equation for σx’ we see that σx’ + σy’ = σx + σy, meaning that 
the sum of the normal stresses remains invariant, regardless of orientation.

In plane strain problems where εz = γzx = γzy = 0, a normal stress σz can develop. 
This stress is given as σz = ν(σx + σy), where ν is Poisson’s ratio. However, the 
forces resulting from this stress do not enter into the relevant equilibrium 
equations used to derive stress transformation relations. These equations for 
σx’ and σy’ are applicable for plane stress and plane strain.

There are two angles by which our axes can be rotated to achieve the limit-
ing stress cases of extreme normal and extreme shear stress.

4.3.2 Principal and Maximum Stresses

As we know, we are often interested in determining the maximum stresses 
induced in members, so that these limiting cases may inform our designs. 
Now that we have expressions for the stresses at any orientation θ, we can 
determine the location of maximum values by setting the derivatives of these 
expressions to zero, for example:

x'

x 

 y' y 

dA

dA sinθ

dA cosθ

x'

x 

 y' y 

σx' dA

τx'y' dA

σy dAsinθ

σx dAcosθ

τxy dAcosθ

τxy dAsinθ

θ θ

Figure 4.24
Derivation of stress transformation on an inclined plane.
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which requires that to maximize the stress σx’,
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The N subscript on theta is used to signify its status as the angle defining 
the plane of maximum or minimum normal stress. The equation for θN has 
two roots [since tan 2β = tan (2β + 180˚)], 90˚ apart. One of these roots locates 
the plane on which the maximum normal stress acts, and the other locates 
the minimum normal stress.

On these planes corresponding to maximum or minimum normal stresses, 
there are no shear stresses. These planes are called the principal planes of stress, 
and the (purely normal) stresses acting on them are the principal stresses.2

If we substitute θN into the equations for normal stresses, we obtain expres-
sions for these extreme stress values. We denote maximum normal stress by 
σ1 and minimum normal stress by σ2 and find that
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These principal stresses are experienced by an element oriented at θN to the 
original axes.

Turning our attention to the shear stress, we note again that shear stress 
is zero on the plane defined by θN. However, there is a plane on which shear 
stress may be maximized or minimized, which we obtain in the same way 
that we obtained θN. We find that the extreme shear stresses act on planes 
defined by θS, where

 

tan
/

.2
2

θ
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τS
x y

xy
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(4.46)

Once again this equation has two roots, 90˚ apart. Also, the roots of this 
equation, θS, are 45˚ away from the planes defined by θN. Substituting θS into 
our equation for shear stress, we get an expression for the maximum and 
minimum shear stresses:
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(4.47)

The maximum and minimum values differ only by sign. Physically, this 
sign has no meaning (except that if it is negative, the shear has the opposite 
sense from that assumed in Figure 4.18), so this shear stress regardless of sign 
is simply called the maximum shear stress. (Please see Chapter 3, Figure 3.7 for 
a reminder of the shear stress sign convention.) The magnitude of the shear is 
what we need to create robust designs; while a material can have different 
properties in tension and compression, making the sign of the normal stress 
important, it responds the same way to shear in either direction.

On the principal axes, the principal stresses were purely normal, with zero 
shear stress. But the planes where maximum shear stress acts are not neces-
sarily free of normal stresses. If we substitute θS into our equation for normal 
stress, we find that the normal stresses acting on planes of maximum shear 
stress are

 σ
σ σ

θS
x y=
+
2

. (4.48)

4.3.3 Mohr’s Circle for Plane Stress

If we look back at our equations for transformed σx’ and τx’y’, we notice that 
these are the parametric equations of a circle. If we choose a set of rectangu-
lar axes and plot points with coordinates (σx’, τx’y’) for all possible values of θ, 
all the points will lie on a circle. We can see this more clearly if we rewrite 
the equations
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(4.50)

and then square both equations, add them, and simplify to get
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(4.51)

This equation has the form (σx’ – a)2 + τx’y’
2 = b2, where the quantities a = (σx 

+ σy)/2 and b2 = [(σx – σy)/2]2
 + τxy

2 are constants. We remember that (x – a)2 + y2 
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= b2 is the equation of a circle of radius b with its center at (+a, 0). Hence, we 
may plot all points (σx’, τx’y’) on a circle. The resulting circle is called Mohr’s 
circle of stress, named for Otto Mohr, who first proposed its use in 1882.

From equation (4.51), we can see that the center of this circle will be at (a, 
0), or at
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and that the circle’s radius, b, is given by
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Using Mohr’s circle to graphically display stress transformations will offer 
a big-picture view of a problem and will make certain relationships visually 
clear. Mohr’s circle gives us a way to see all possible stress states at a certain 
point (i.e., the stress states for all possible axes with their origins at that cer-
tain point) at once, as in Figure 4.25.

Certain observations can be made based on Figure 4.25:

0

τ

σ2 

a=
2

τmax

τmax= R

2θN

(σy'τxy)

(σx ,τxy)

(σx,'τx'y')

(σy' , τx'y')

σ1 σ

σx + σy

2θ

Figure 4.25
Mohr’s circle.
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The largest possible normal stress is •	 σ1, and the smallest is σ2. 
No shear stresses exist together with either one of these principal 
stresses.
The largest shear stress •	 τmax is equal to the radius of the circle, R. A 
normal stress equal to (σ1 + σ2)/2 acts on each of the planes of maxi-
mum shear stress.
If •	 σx + σy = 0, the center of Mohr’s circle coincides with the στ coordi-
nate origin, and the state of pure shear exists.
The sum of the normal stresses on any two mutually perpendicular •	
planes is invariant. That is,

 σx + σy = σ1 + σ2 = σx’ + σy’ = constant. (4.52)

One tricky aspect of constructing Mohr’s circle is whether to plot a given 
shear stress “above” or “below” the σ axis. There are a variety of conventions 
used in the literature; the choice of convention is not as critical as is consis-
tency in applying it. The best way to get comfortable with any convention is 
to work examples, such as Example 4.8.

Mohr’s circle also gives us a way to check our earlier results for axial load-
ing and torsional loading. In the case of axial loading, shown in Figure 4.26a, 
we have already shown that σx = P/A, σy = 0, and τxy = 0. The corresponding 
points X and Y define a circle with radius R = P/2A, as in Figure 4.26b. Points 
D and E yield the orientation of the planes of maximum shearing stress (Fig-
ure 4.26c, at θ = 45 ,̊ as we already knew; these lines are separated by 2θ on 
Mohr’s circle), and the values of maximum shear stress and corresponding 
normal stress:

 τ σmax = ′= =R P
A2

. (4.53)

In torsional loading, we have σx = 0, σy = 0, and τxy = τmax = Tc/J (Figure 4.27a). 
Points X and Y are on the τ axis, and Mohr’s circle (Figure 4.27b) has radius 

P
σx

σx = P/A

σ
P Y X 

R
D

E

PP
x

y 
de

(a) (b) (c) 

τ

Figure 4.26
Mohr’s circle for axial loading.
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R = Tc/J and is centered on the origin. Points A and B define the principal 
planes and the principal stresses:

 σ1 2, .=± =±R Tc
J

 (4.54)

4.3.4 Transformation of Plane Strain

We recall the existence and form of the strain tensor, which like the stress ten-
sor gives us six independent components at each location within a member. 
We may find ourselves in a situation where the initial xy axes are rotated 
through some angle θ, and we may need to transform strains associated with 
xy to an equivalent set of strains on the rotated axes. One way to do this is 
described here.

We consider first an arbitrary point A at point (x, y) in the initial coordinate 
system. After the rotation through θ, as shown in Figure 4.28, this point A is 
at (x′, y′). From the figure we see that

 x′ = x cos θ + y sin θ, (4.55a)

  y′ = – x sin θ + y cos θ. (4.55b)

These equations may be written in matrix form:
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If we want to rearrange this expression, we look at the 2 × 2 matrix and see 
that its determinant is unity; hence, its transpose is equal to its inverse. So,

B A 
σ

Y

τ

X

R τmax =Tc/J 
τmax

T

T

T

T

ab

(a) (b) (c) 

Figure 4.27
Mohr’s circle for torsional loading.
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The same rules of transformation will apply to the small linear displace-
ments u and v:

 u′ = u cos θ + v sin θ, (4.57a)

  v′ = – u sin θ + v cos θ. (4.57b)

Next, we recall the definition of normal strain from the previous section. 
Applying the chain rule, we have the normal strain in the x′ direction:
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If we differentiate the previous expressions for x and y in terms of the 
rotated x′ and y′, we obtain

 ε ε θ ε θ γ θ θ′ = + +x x y xycos sin sin cos ,2 2

 (4.59a)
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We may also transform the shear strain, by first writing it in the rotating 
coordinates as

A

θ

θ

x'

x

 y' y 

Figure 4.28
Coordinate transformation.
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 (4.60)

and then differentiating and simplifying to get

 γ ε ε θ γ θ′ ′ =− − +x y x y xy( )sin cos .2 2  (4.61)

We may also construct Mohr’s circle of strain to determine the principal 
strains and maximum shear strains. In doing this, we must remember that 
the shear components of the strain tensor are truly “gammas divided by 2”; 
that is, the shear strain component εx′y′ is given by

 
ε

γ ε ε
θ
γ

θ′ ′
′ ′= =−

−
+x y

x y x y xy

2 2
2

2
2

( )
sin cos .

 
(4.62)

So we plot Mohr’s circle of strain as the set of all points (ε, γ/2). The principal 
(normal) strains are written as
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and they occur on the plane defined by
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4.3.5 Three-Dimensional State of Stress

The normal and shear stresses acting on a plane through a material depend 
on the orientation of that plane. We have found both equations and a graphi-
cal technique (Mohr’s circle) to determine the normal and shear stresses on 
a variety of planes, but only for the special case of plane stress, and for a few 
selected planes. If we keep things more general, we can make a first pass at 
obtaining the principal stresses in three dimensions.

We remember that our stress tensor is symmetric. From linear algebra, we 
recall that a symmetric matrix may be diagonalized. This suggests that the 
symmetric stress tensor may also be diagonalized—that there is a certain 
coordinate system (x′, y′, z′) for which
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(4.65)

The axes x′, y′, z′ are called the principal axes for this state of stress, and 
σ1, σ2, and σ3 are the principal stresses. It can be shown3 that the principal 
stresses are the roots of the cubic equation

 σ3 – I1σ2 + I2σ = 0 (4.66)

where
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(4.67)

These quantities Ii are invariants, independent of the orientation of the 
coordinate system. [I1 is the extension of the invariant (σx + σy) in plane 
strain.] We determine the principal stresses by evaluating the coefficients Ii 
and solving for σ.

We determine the maximum shear stress in the same way we did for plane 
stress and find that the absolute maximum shear stress is the largest of the 
three values:

 max
σ σ σ σ σ σ1 2 1 3 2 3

2 2 2
− − −

, , . (4.68)

This absolute maximum shear stress may be visualized by superimpos-
ing the Mohr’s circles obtained from the three orientations shown in Fig-
ure 4.29a. Notice from Figure 4.29b that if σ1 > σ2 > σ3, the absolute maximum 
shear stress is (σ1 – σ3)/2.

4.4 Failure Prediction Criteria

In Chapter 3, Section 3.6, we discussed the need for techniques to predict 
failure for various materials under various loading. In designing structures, 
it may be necessary to make compromises and trade-offs, based on material 
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availability, manufacturability, cost, weight, and aesthetic issues, but avoid-
ing failure is not negotiable. For complex structures subject to general states 
of stress, various criteria have been proposed for predicting (and so prevent-
ing) failure. The applicability of these criteria depends on the nature of the 
materials and the loading involved.

4.4.1 Failure Criteria for brittle Materials

We recall from Chapter 3, Figure 3.10c that a brittle material subjected to uni-
axial tension fails without necking, on a plane normal to the material’s long 
axis. When such an element is under uniaxial tensile stress, the normal stress 
that causes it to fail is the ultimate tensile strength of the material. However, 
when a structural element is in a state of plane stress or a three-dimensional 
stress state, it is useful to determine the principal stresses at any given point 
and to use one of the following criteria.

4.4.1.1 Maximum Normal Stress Criterion

According to this criterion, a given structural element fails when the maxi-
mum normal stress in that component reaches the material’s ultimate ten-

σ3 σ1

σ1
τ

σ

σ1 σ1
σ3

σ3

σ3

σ2 σ2

σ2

σ2

z
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x x

z

y    y

x

z

(a) 

(b) 

Figure 4.29
(a) Different orientations of the coordinate system relative to the element on which the prin-
cipal stresses act; (b) superimposing the Mohr’s circles demonstrates the absolute maximum 
shear stress.
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sile strength. This criterion is appropriate for brittle materials, which do not 
yield or undergo much plastic deformation, since the implied mechanism for 
the failure is one of separation rather than sliding or shear. Mathematically, 
we can represent this criterion as saying that failure will occur when

 Max{|σ1|, |σ2|, |σ3|} = σU. (4.69)

In the case of plane stress (σ3 = 0), this criterion can be applied in a straight-
forward graphical manner (Figure 4.30). The safe values of σ1 and σ2 for 
which failure will not occur are bounded by the square shaded region. For a 
three-dimensional stress state, the safe stress region is enclosed in a cube.

This criterion suffers from a significant shortcoming: It assumes that the 
ultimate strength of the material is the same in both tension and compres-
sion. As we saw in Table 3.1, this is rarely the case. This criterion also makes 
no allowance for effects other than normal stresses on the material’s failure.

4.4.1.2 Mohr’s Criterion

The fact that many materials have 
different ultimate strengths in ten-
sion and compression necessitates a 
modified version of Figure 4.30. This 
criterion allows the use of different 
values of ultimate tensile strength, 
σUT, and ultimate compressive 
strength, σUC. With these two values, 
we could construct Mohr’s circles 
corresponding to each value, as in 
Figure 4.31a, and be assured that a 
state of stress represented by a circle 
that was fully contained by either of 

σ1

σ2

σU

σU

–σU

–σU

Figure 4.30
Graphical use of maximum normal stress 
criterion.
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–σUC

σ1σUT
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τ
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Figure 4.31
(a) Mohr’s circles corresponding to σUT and σUC; (b) graphical use of Mohr’s failure criterion for 
plane stress.
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these circles would be safe. The version of Figure 4.30 corresponding to this 
statement is shown in Figure 4.31b.

If we also know the material’s ultimate shear strength, τU, we can draw 
three circles, as in Figure 4.32a. Mohr’s criterion states that a state of stress 
is safe if it can be represented by a circle located entirely within the area 
bounded by the envelope of the circles corresponding to the available data, as 
in Figure 4.32a and Figure 4.32b.

If the torsional test data (τU) that provide the curvature of the bound-
ing curves in Figure 4.32b are unavailable, then it is possible to simplify 
Mohr’s criterion by using the tangents to the circles for σUT and σUC and 
drawing a “safe” shaded region for plane stress, as shown in Figure 4.33a 
and Figure 4.33b.

To determine whether a structural component will be safe under a given 
load, we should calculate the stress state at all critical points of the compo-
nent and particularly at all points where stress concentrations are likely to 
occur.

σUC –σUC

–σUC

σUT

σUT

σ1σUTσ

σ2τ

τU

(a) (b) 

Figure 4.32
(a) Mohr’s circles corresponding to σUT, σUC, andτU; (b) graphical use of Mohr’s failure criterion 
for plane stress.
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τ

Figure 4.33
(a) Mohr’s circles corresponding to σUT, and σUC; (b) graphical use of Mohr’s failure criterion 
for plane stress.
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4.4.2 Yield Criteria for Ductile Materials

We observed in Chapter 3, Figure 3.10b that a ductile material subjected to 
uniaxial tension yields and fails by slippage along oblique surfaces and is 
due primarily to shear stresses. A uniaxial tension test produces values of 
tensile and compressive yield strengths for a ductile material. Although duc-
tile materials do not fracture when they reach their yield strengths, at this 
point permanent deformation can occur and proper function of a structural 
element may be lost. We therefore cast our criteria in terms of yield and not 
of fracture.

4.4.2.1 Maximum Shearing Stress (Tresca) Criterion

Because the plastic deformation initiated at the yield strength takes place 
through shear deformation, it is natural to expect failure criteria to be 
expressed in terms of shear stress. Based on this logic, the Tresca criterion 
says that a given structural component is safe as long as the maximum shear 
stress value in that component does not exceed the yield shear strength, τY, of 
the material. Since for axial loading, as we saw in Chapter 2, Section 2.5, the 
maximum shear stress is equal to half the value of the corresponding nor-
mal, axial stress, we conclude that the maximum shear stress experienced by 
a uniaxial tensile test specimen is τY = σY/2.

We extend this criterion to an arbitrary state of stress by assuming that 
yielding occurs when the absolute maximum shear stress is equal to τY:
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Or, using τY = σY/2 to recast the criterion in terms of a Tresca equivalent nor-
mal stress σT:

 Max (|σ1 – σ2 |,|σ2 – σ3 |,|σ1 – σ3 |) ≡ σT = σY . (4.71)

So, for plane stress our safe region is bounded by the lines σ1 – σ2 = ±σY, σ1 = 
±σY, and σ2 = ±σY, which form the hexagon shown in Figure 4.34.

We can also compare the Tresca equivalent stress with the material’s yield 
stress to determine how close the material is to failure. We obtain a Tresca 
safety factor:

 
ST

Y

T
=
σ
σ

.  (4.72)

Failure will occur when ST = 1, and a safe design will ensure that ST >> 1.



162 Introduction to Engineering Mechanics: A Continuum Approach

4.4.2.2 Von Mises Criterion

This criterion for failure of ductile 
materials is derived from strain energy 
considerations and states that yielding 
occurs when

 
1
2 1 2

2
2 3

2
1 3

2 2( ) ( ) ( ) .σ σ σ σ σ σ σ− + − + −



 = Y  

                                                         (4.73)

In plane stress the safe region is 
bounded by the curve, which describes 
the ellipse in Figure 4.34. We can define 
a von Mises equivalent stress as

 
σ σ σ σ σ σ σM ≡ − + − + −1

2 1 2
2

2 3
2

1 3
2( ) ( ) ( )

 (4.74)

and can compare this value with the material’s yield stress to determine how 
close the material is to failure. We obtain a von Mises safety factor:

  σyy =0.  (4.75)

4.5 Examples

example 4.1

A 100-mm-diameter core is bored out from a 200-mm-diameter solid circular 
shaft (Figure 4.35). What percentage of the shaft’s torsional strength is lost 
due to this operation?

100 mm 200 mm

Figure 4.35

Given: Dimensions of a shaft to be loaded in torsion.
Find: Percentage of original shaft’s strength lost when a hole is bored out.
Assume: Hooke’s law applies.

σ2

σ1

σY

σY

–σY

–σY

Figure 4.34
Failure boundaries for the Tresca (hexa-
gon) and von Mises (ellipse) failure criteria 
under plane stress.
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Solution

Torsional strength of a shaft is reflected by how much torque it can with-
stand without exceeding its allowable τmax. This τmax limit is a material prop-
erty and does not change due to geometrical alterations. We know how the 
maximum shear stress induced in the shaft is calculated: τmax = Tc/J.

When the hole specified is bored out of the original shaft, the maximum 
radius c does not change; however, the polar second moment of area J, which 
is a property of the cross section, does change.

So,

 

τ τ
c c

T
Jold new








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
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old new

T
J

,

and we find the ratio of the allowable torques to be

 

T
T

J
J

r r
r

new

old

new

old

old new

old

= =
−π
π

( ) / .
4 4

4
2

And, solving for Tnew, we have

 
T T r r

r
Tnew old

old new

old
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−


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
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4 4

4
−








;

that is, Tnew = 0.938 Told.
The bored-out shaft can withstand only 93.8% of the maximum torque 

withstood by the original shaft. We have gone from 100% to 93.8%; that is, 
we have lost 6.2% of the torsional strength of the shaft.

example 4.2

Design a hollow steel shaft to transmit 300 hp at 75 rpm without exceeding 
a shear stress of 8000 psi. Use 1.2:1 as the ratio of the outside diameter to the 
inside diameter. What solid shaft could be used instead?
Given: Desired performance of hollow shaft.
Find: Inner and outer diameters of shaft; dimensions of equivalent solid 

shaft.
Assume: Hooke’s law applies.

Solution

We can easily obtain the torque required for 300 hp of power at a rotational 
frequency of 75 rpm:
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T P
=
ω

,

and the conversions necessary to find a torque in U.S. units of in. · lb are built 
in to the following version of this relationship:

 
T [in.-lb] 63,000 [hp]

N [rpm]
=

× .

We have

 
T= ×

=
63 000 300

75
252 000, ,hp

rpm
in.-lb.

Since the maximum shear stress induced by this torque is given by

 
τmax ,=

Tc
J

we obtain the value of J/c needed to transmit 600 hp without exceeding the 
stated stress limit:

 

J
c

T
= = =
τmax

, .252 000
8000

31 5in.-lb
psi

in.3

 

J
c

c c

c
c=

−( )
= =

π
2

1 2
0 813 31 5

4 4
3

( / . )
. . in.3

This has the solution c = 3.38 in., so the outer diameter necessary is Do = 2c = 
6.77 in., and the inner diameter is Di = Di/1.2 = 5.64 in.

For a solid shaft, J/c has a simpler form, and we require only

 

J
c

c= =
π
2

31 53 . in.3

Solving for c, the radius of a solid shaft capable of transmitting 600 hp 
without exceeding a shear stress of 8000 psi, we have D = 2c = 5.44 in.
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example 4.3

What must be the length of a 6-mm-diameter aluminum (G = 27 GPa) wire so 
that it could be twisted through one complete revolution without exceeding 
a shear stress of 42 MPa?
Given: Cross section of wire, desired deformation, limit on shear stress.
Find: Required length of wire.
Assume: Hooke’s law applies.

Solution

The angle of twist of the wire after “one complete revolution” is 2π. The angle 
of twist is defined as

 
φ= TL

JG
,

and, using the definition of maximum shear stress, this can also be written as

 
φ τ τ
= =max max ,J

c
L
JG

L
cG

which we rearrange to solve for the wire length L:

 
L cG
= =

⋅ ×
×

φ
τ

π m)(27 10 Pa)
Pa

9

max

( .2 0 003
42 106

 L = 12.12 m.

example 4.4

Find the required fillet radius for the juncture of a 6-in.-diameter shaft with 
a 4-in.-diameter segment if the shaft transmits 110 hp at 100 rpm and the 
maximum shear stress is limited to 8000 psi.
Given: Dimensions of and requirements for shaft performance.
Find: Fillet radius for connecting two segments of shaft.
Assume: Hooke’s law applies. Transition between segments is only stress 

concentration.

Solution

We make use of the relationship between applied torque, power output, and 
rotational frequency (see also Example 4.2) to find the applied torque:
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T= ⋅

=
63 000 110

100
69 300, ,hp

rpm
in.-lb

The shear stress in the shaft cannot exceed 8000 psi. We obtain the maxi-
mum allowable stress concentration factor, using the smaller segment’s 
radius for c and in J:

 
K J
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
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π
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i
2
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D
d
= =

big shaft diameter
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6
44

1 5= . .

From Figure 4.5, we find that this K and this D/d correspond to an r/d ratio 
of 0.085. This means that the allowable fillet radius is

 r = (0.085)(4 in.) = 0.340 in.

example 4.5

A solid aluminum alloy shaft 60 mm in diameter and 1000 mm long is to be 
replaced by a tubular steel shaft of the same outer diameter such that the 
new shaft will exceed neither (1) twice the maximum shear stress nor (2) the 
angle of twist of the aluminum shaft. What should be the inner radius of 
the tubular steel shaft? Which of the two criteria (1) strength or (2) stiffness 
governs?
Given: Dimensions of aluminum shaft.
Find: Dimensions of steel shaft (same length, same outer diameter) that 

will meet strength and stiffness requirements.
Assume: Hooke’s law applies.

Solution

We design first for strength and then for stiffness. From Table 2.1 or another 
source, we find the appropriate material properties: GAl = 28 GPa and GSt = 
84 GPa.

1. Designing for Strength

 
τ τmax max .

Steel Al
≤2
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Since we are told that the outer diameters of both shafts are equal, and 
since the applied torque T does not change, we are simply requiring that
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2. Designing for Stiffness
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Solve for ri ≤ 27.1 mm. The inner radius of the steel shaft must be ri ≤ 25.2 mm, 
as strength governs.

example 4.6

Two shafts (G = 28 GPa) A and B are joined and subjected to the torques 
shown in Figure 4.36. Section A has a solid circular cross section with diam-
eter 40 mm and is 160 mm long; B has a solid circular cross section with 
diameter 20 mm and is 120 mm long. Find (a) the maximum shear stress in 
sections A and B; and (b) the angle of twist of the right-most end of B relative 
to the wall.

1200 Nm

400 Nm

Figure 4.36

Given: Dimensions and properties of composite shaft in torsion.
Find: Shear stresses, angle of twist of free end.
Assume: Hooke’s law applies.

Solution

Our strategy is to use the method of sections to find the internal torque in 
each portion of the composite shaft and then find the shear stress and angle 
of twist induced by this torque. First, we construct an FBD (Figure 4.37):

A

       B 

Twall

1200 Nm

400 Nm

Figure 4.37

Equilibrium requires that 400 Nm – 1200 Nm – Twall = 0.
Therefore, Twall = –800 Nm (Twall is clockwise, opposite from what is drawn 

at left.)
Now use the method of sections on segments A and B (Figure 4.38):
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Twall = 800 Nm TA= 800 Nm

Figure 4.38

Internal torque TA = 800 Nm, and maximum shear stress occurs at cA = 0.02 
m. So,

 τ
πmax .

A

A A

A

A A

A

T c
J

T c
c

= = =
2

4 63 7 MPa.

To find the internal resisting torque in section B, we must look at the whole 
shaft from the wall to our imaginary section cut (Figure 4.39):

Twall = 800 Nm

1200 Nm

TB

Figure 4.39

Equilibrium of this section requires that the internal torque TB = 400 Nm. 
Maximum shear stress occurs at cB = 0.01 m, and

 τ
πmax

B

B B

B

B B

B

T c
J

T c
c

= = =
2

4 255 MPa.

Next, we will calculate the angles of twist of both A and B and then find 
the resultant twist of the free end with respect to the wall:

 φA B+ =φ φ.

Taking counterclockwise twists to be positive, as we take counterclock-
wise torques to be,
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The total angle of twist of the free end relative to the wall is then

 φ = φA + φB = –1.04° + 6.25° = 5.21° (CCW).

example 4.7

Calculate the torsional stiffness kt of the rubber bushing shown in Figure 4.40. 
Assume that the rubber is bonded both to the steel shaft and to the outer 
steel tube, which is in turn attached to a machine housing. Assume that the 
metal parts do not deform, and that the shear modulus of rubber is G.

r

dr

d

D L

T

Figure 4.40

Given: Rubber bushing of known dimension and shear modulus.
Find: Torsional stiffness kt.
Assume: Hooke’s law applies.

Solution

Axisymmetric torque is resisted by constant shear stresses, T rL r= τ π( )2 .
From Hooke’s law,

 
γ τ

π
= =

G
T
r L G( )

.
2 2

The incremental shaft rotation is rd drφ γ≅ , the total shaft rotation is
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example 4.8

Calculate the tensile stresses (circumferential and longitudinal) developed 
in the walls of a cylindrical pressure vessel with inside diameter 18 in. and 
wall thickness 1/4 in. The vessel is subjected to an internal gage pressure of 
300 psi and a simultaneous external axial tensile load of 50,000 lb.
Given: Dimensions of and loading on cylindrical pressure vessel.
Find: Hoop and longitudinal normal stresses.
Assume: We will test whether thin-walled theory may be applied to this 

vessel.

Solution

Does thin-walled theory apply? Is the thickness t ≤ 0.1ri?

 (t = 0.25 in.) ≤ 0.1·(ri = 9 in.) = 0.90. 

We can use thin-walled theory.
The circumferential, or hoop stress, is calculated as

 
σ1

300 9
0 25

10 8= = =
pr
t

i ( (
.

.psi) in.)
in.

ksi.

The longitudinal stress due to the internal pressure may be combined with 
the normal stress due to the axial load by straightforward superposition, 
as these stresses are in the same direction and act normal to areas with the 
same orientation:

 
σ2 2

50 000
= + = +
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P
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 σ2 = 5.4 ksi + 3.5 ksi = 8.9 ksi.

Note: The area on which P acts can also be calculated as π ro
2 – π ri

2; this 
result is P/A = 3.49 ksi and results in a longitudinal stress of 8.89 ksi.

example 4.9

For the given state of plane stress, construct Mohr’s circle, determine the 
principal stresses, and determine the maximum shearing stress and the cor-
responding normal stress (Figure 4.41).

x

 y 

40 MPa 

50 MPa 

10 MPa  

Figure 4.41

Given: σx = 50 MPa, σy = –10 MPa, τxy = 40 MPa.
Find: Extreme stress states.
Assume: Plane stress: σz = τxz = τzy = 0.

Solution

We outline the steps used to construct Mohr’s circle and make the necessary 
calculations. The steps are as follows:

Plot point X: (σx, τxy).
Plot point Y: (σy, τxy).
Draw line XY, which passes through the circle center: (σave, 0).
Find radius R and draw in the circle.

1. Plot Point X: (σx, τxy)

We note straight off that the shear stress given is “positive,” according to 
Chapter 2, Figure 2.5, but we are not sure how to plot the point (σx, τxy) on 
Mohr’s circle. Finding σx on the σ axis is straightforward—the normal stress 
sign convention simply says that tensile stresses are positive and compres-
sive are negative, but does τxy lie above or below that axis? We know that for 
Mohr’s circle to work, we must have points X and Y on opposite sides of the 
σ axis so that their connecting line XY passes through the center of the circle. 
Our sign convention must ensure this. We therefore make use of a system 
based on the positive x (and y) faces of our unrotated element.
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Looking at the positive x face of our initial element (right-hand face), we 
see that the component of shear stress on this face is tending to rotate the 
element counterclockwise. This tells us to plot point X below the σ axis. Our 
convention is that when this component tends to rotate clockwise, X is above 
the axis and when counterclockwise, it is below. (This somewhat awkward 
rule can be remembered by the equally strange mnemonic: “In the kitchen, 
the clock is above and the counter is below.”) We formalize this rule in Fig-
ure 4.42. Remember that we’ll apply this sign convention to points X and 
Y separately—for Mohr’s circle to work, we must have points X and Y on 
opposite sides of the σ axis.

BELOW σ axis ABOVE σ axis

Plotting “positive” shear stress on Mohr’s circle:

Figure 4.42

2. Plot Point Y: (σy, τxy)

Following the same reasoning as for point X, we plot point Y to the left of the 
τ axis, as σy is compressive, and above the σ axis, as the shear stress on the 
positive y (top) face of the element tends to rotate clockwise.

These two points may now be plotted on the στ axes (Figure 4.43).

60

40

20

0

20

40

60

–40 –20 0 20 40 60
σ (MPa)

τ (MPa)

X

Y

Figure 4.43
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3. Draw Line XY

60

40

20

0

20

40

60

X

Y

σ (MPa)

σave

τ (MPa)

–40 –20 0 20 40 60

Figure 4.44

This line (Figure 4.44) passes through the σ (horizontal) axis at the center of 
the circle:

 
σ

σ σ
ave

x y, , (0
2

0 20( )= +








= MPa, 0)

4. Find the Radius R and Draw the Circle

We may use the geometry of the first three steps, or the formulas derived in 
the notes, to calculate the radius of the circle. Graphically, we see that R is the 
hypotenuse of a right triangle whose other legs have length 40 and 50 – 20 = 
30. Thus, R = ((40)2 + (30)2)½ = 50 MPa. Alternatively,

 
R x y

xy=
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


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+( ) =σ σ
τ

2
50

2
2

MPa.

We can now sketch Mohr’s circle by hand, by using a compass, or by using 
a software package. The circle contains all the information we need about 
all possible axes and thus all possible stress states for the given element 
(Figure 4.45).
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σ (MPa)

R

σaveσ2 σ1

τ (MPa) τmax

τmax
60

–40 –20 0 20 40 60 80

40

20

0

20

40

60

Figure 4.45

We can find, and label, the principal stresses:

 σ1 = σave + R = 20 MPa + 50 MPa = 70 MPa.

 σ2 = σave – R = 20 MPa – 50 MPa = –30 MPa.

This principal stress state (extreme normal stress, no shear stress) occurs 
when the axes are rotated by θN. (Or, when line XY is rotated around Mohr’s 
circle by 2θN.) We can find 2θN using a protractor, or we can use our formu-
las: θN = ½ tan-1(2τxy/(σx – σy)). At this θN we can calculate that the value of σx’ 
(rather than σy’) is 70 MPa, so we draw our properly oriented element that 
experiences this principal stress state (Figure 4.46).

σ1 = 70 MPa

σ2 = (–)30 MPa

θN = 26.6°

Figure 4.46

Next, we calculate the maximum shear stress and the corresponding normal 
stress, which we can see from Mohr’s circle is the average normal stress, σave:

 τmax = R = 50 MPa.
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 σave = 20 MPa.

From the principal stress state, we can see on Mohr’s circle that it will take 
2θ = 90˚ to get to this stress state (σave, τmax). We need, then, to rotate our ele-
ment’s axes 45˚ counterclockwise past the principal stress orientation. From 
our initial orientation, this rotation is given by

 θS = θN + 45˚ = 26.6˚ + 45˚ = 71.6˚

We can again draw a properly oriented element experiencing the maxi-
mum shear stress, having been rotated by 71.6˚ counterclockwise from its 
initial orientation:

σave = 20 MPa 

σave = 20 MPa 

θS = 71.6°
τmax = 50 MPa

Figure 4.47

We obtain the proper sense of the shear stress from Mohr’s circle. By rotat-
ing line XY counterclockwise by 2θS, we get to a point above the σ axis. Thus, 
on the rotated positive x face, we must have a shear stress that tends to rotate 
the element clockwise.

Finally, we can visualize these rotations on Mohr’s circle (Figure 4.48).

60

40

20

0
–40 –20 0 20 40 60 80

20

40

60

σ (MPa)

τ (MPa) τmax

τmax

σ2 σ1

2θN

2θS

Figure 4.48
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Note: A “positive” rotation (i.e., a positive value in degrees or radians) is 
counterclockwise, both in physical space and on Mohr’s circle.

example 4.10

A state of plane stress consists of a tensile stress σo = 8 ksi exerted on vertical 
surfaces and unknown shear stresses τo (Figure 4.49). Determine (a) the mag-
nitude of the shear stress τo for which the maximum normal stress is 10 ksi, 
and (b) the corresponding maximum shear stress.

τo

σoσo

τo

Figure 4.49

Given: Partial plane stress state.
Find: Shear stress τo; maximum shear stress.
Assume: Plane stress.

Solution

We assume a sense (sign) for the unknown shear stress and can construct 
Mohr’s circle. The shearing stress τo on faces normal to the x axis tends to 
rotate the element clockwise, so we plot point X, whose coordinates are (σo, 
τo), above the σ axis. We see that in our initial state σy is zero and that on faces 
normal to the y axis τo tends to rotate the element counterclockwise; thus, we 
plot point Y (0, τo), below the σ axis (Figure 4.50).

X

Y

 τ (ksi)

σ (ksi)σave

Figure 4.50
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Line XY passes through the center of our circle, at

 σave = ½ (σx + σy) = ½ (8 + 0) = 4 ksi.

We determine the radius R of the circle by observing that the maximum 
normal stress, given as 10 ksi, appears a distance R to the right of the circle’s 
center (Figure 4.51):

 σ1 = σave + R.

 R = σ1 – σave.

 R = 10 ksi – 4 ksi = 6 ksi.

C

2θSR

2θN

F

X

Y

τ (ksi)

σ (ksi)

Figure 4.51

Now we have Mohr’s circle to work with. We see that the rotation required 
to get from our initial stress state (point X) to the principal stress state at (10 
ksi, 0) is either clockwise 2θN as shown or counterclockwise 360 – 2θN . We 
choose to work with the more manageable clockwise rotation, and consider 
the right triangle CFX.

 
cos2 4

6
θN

CF
CX

CF
R

= = =
ksi
ksi

 θN =−24 1. °
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This rotation, again, is clockwise, as reflected by the negative sign. The 
right triangle CFX also allows us to compute the unknown shear stress, τo, 
which is experienced at point X:

 τo = FX = R sin 2θN = (6 ksi)·sin 48.2˚ = 4.47 ksi.

The maximum shear stress is also apparent from Mohr’s circle. It is simply 
the radius of the circle, R:

 τmax = R = 6 ksi.

The corresponding normal stress at this stress state is σave = 4 ksi. Mohr’s 
circle indicates that to get from the initial stress state to the state of maxi-
mum shear stress, we must rotate the circle diameter XY counterclockwise 
by 2θS or to rotate the element itself by θS. It is clear from the circle that 2θS + 
|2θN| = 90º. Hence,

 2θS =90º – |2θN| = 90º – 48.2º = 41.8º.

With all this information in hand, we can draw properly oriented elements 
in each of the identified stress states (Figure 4.52).

d

x

a

θp = 24.1°

θs = 20.9°

τ0

O
σ0

σave = 4 ksi

σmin = 2 ksi

σmax = 10 ksi

τmax = 6 ksi

Figure 4.52

Note: If we had originally assumed the opposite sense of the unknown τo, 
we would have obtained the same numerical answers, but the orientation of 
the elements would be as shown in Figure 4.53.



180 Introduction to Engineering Mechanics: A Continuum Approach

24.1°

20.9°
O

τ0σ0

σave = 4 ksi

σmin = 2 ksi

σmax = 10 ksi

τmax = 6 ksi

x

Figure 4.53

example 4.11

A compressed-air tank is supported by two cradles as shown in Figure 4.54. 
Relative to the effects of the air pressure inside the tank, the effects of the 
cradle supports are negligible. The cylindrical body of the tank has a 30 in. 
outer diameter and is fabricated from a 3/8-in. steel plate by welding along 
a helix that forms an angle of 25º with a transverse (vertical) plane. The 
end caps are spherical and have a uniform wall thickness of 5/16 in. For 
an internal gage pressure of 180 psi, determine (a) the normal stresses and 
maximum shear stresses in the spherical caps; and (b) the stresses in direc-
tions perpendicular and parallel to the helical weld.

8 ft

30 in.

25°

Figure 4.54

Given: Dimensions of and pressure on compressed-air tank.
Find: Stress states in spherical end caps and along welds in cylindrical 

body.
Assume: Thin-walled pressure vessel theory applies.

Solution

First, we validate our assumption that thin-walled theory will apply in both 
the spherical end caps and the cylindrical body. We must have t ≤ 0.1r in both 
sections. So,
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In spherical cap, t = 5/16 in. and r = 15 – (5/16) = 14.688 in. So, t = 0.0212r. 
In cylindrical body, t = 3/8 in. and inner radius r = 14.625 in. So, t = 0.0256r. 

In a spherical pressure vessel, we have equal hoop and longitudinal 
stresses (Figure 4.55):
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Figure 4.55

So, in a plane tangent to the cap, Mohr’s circle reduces to a point (A, B) on 
the horizontal (σ) axis, and all in-plane shear stresses are zero. On the surface 
of the cap, the third principal stress is zero, corresponding to point O. On a 
Mohr’s circle of diameter AO, point D’ represents the maximum shear stress; 
it occurs on planes inclined at 45º to the plane tangent to the cap. (This is 
as we would expect for purely normal loading in the reference axes, as for 
an axially loaded bar that experiences maximum normal stress on planes 
inclined at 45º to the bar axis.) Hence,

 τmax (= =1
2 4230 psi) 2115 psi.

In the cylindrical body of the tank, we have hoop and longitudinal nor-
mal stresses:
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Here, the average normal stress is

 σ σ σave = + =1
2 1 2 5265( ) psi

and the radius of Mohr’s circle is

 R = 1
2 1 2( )σ σ− = 1755 psi.

We want to rotate our axes from their initial configuration, shown at left in 
Figure 4.56, so that our element has a face parallel to the weld, as shown at 
right; the transformed σx′ and τx′y′, or σw and τw, will be the requested stresses.

σ1 = 7020 psi

σ2 = 3510 psi

σw

σ2

σ1 Weld

τw

Figure 4.56

Using the average stress (center) and radius R just found, we construct 
Mohr’s circle and find these transformed stress components.

Since we want to rotate the element by θ = 25 ,̊ we rotate around Mohr’s circle 
by 2θ = 50 ,̊ to arrive at point X′. This point has the following coordinates:

 σw = σave – R cos 50˚

  = 5265 – 1755 cos 50˚

  = 4140 psi (tensile)

 τw = R sin 50˚ = 1755 sin 50˚

  = 1344 psi.
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Since point X′ is below the horizontal axis, τw tends to rotate the element 
counterclockwise, as assumed in Figure 4.57.

X

X

2θ R

σ1 = 7020 psi

σave = 5265 psi

σ2 = 3510 psi

σw

σ

τw

τ

Figure 4.57

4.6 Problems

 4.1 For the state of stress shown in Figure 4.58, determine (a) the 
principal planes; (b) the principal stresses; (c) the orientation of 
the planes of maximum shear stress; and (d) the extreme shear 
stresses and (any) associated normal stresses.

80 MPa 

20 MPa 

100 MPa 

Figure 4.58
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 4.2 Consider the torsion of a thin-walled tube. Determine an approx-
imate expression for the torque if the shear stress must be less 
than a given working stress τw. Express this result in terms of the 
tube’s mean radius R and its thickness t. (Hint: The binomial theo-
rem is useful here.) Also, derive an approximate expression for the 
strength-to-weight ratio of the tube in terms of the working stress, 
its radius and length L, and its specific weight ρg. This result is 
widely used in aircraft design.

 4.3 Determine the reaction torques at the fixed end of the circular 
shaft shown in Figure 4.59.

L1 L2 L3

L

T1 T2

Figure 4.59

 4.4 A solid circular shaft has a slight uniform taper (Figure 4.60). Find 
the error committed if the angle of twist for a given length is cal-
culated using the mean radius of the shaft when b/a = 1.2.

r
a

b

L
x dx

Figure 4.60

 4.5 A solid circular shaft of 40 mm diameter is to be replaced by a 
hollow circular tube. If the outside diameter of the tube is limited 
to 60 mm, what must be the thickness of the tube for the same 
linearly elastic material working at the same maximum stress? 
Determine the ratio of weights for the two shafts.

 4.6 The propeller of a wind generator is supported by a hollow cir-
cular shaft with 0.4-m outer radius and 0.3-m inner radius (Fig-
ure 4.61). The shear modulus of the material is G = 80 GPa. (a) If 
the propeller exerts an 840 kN-m torque on the shaft, what is the 
resulting maximum shear stress? (b) What is the angle of twist of 
the propeller shaft per meter of length?
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Figure 4.61

 4.7 A solid aluminum-alloy shaft 60 mm in diameter and 1000 mm 
long is to be replaced by a tubular steel shaft of the same outer 
diameter such that the new shaft would exceed neither twice the 
maximum shear stress nor the angle of twist of the aluminum 
shaft. (a) What should be the inner radius of the tubular steel 
shaft? (b) Which of the two criteria governs the design?

 4.8 A cylindrical pressure vessel of 120 in. outside diameter, used for 
processing rubber, is 36 ft long. If the cylindrical portion of the 
vessel is made from 1-in.-thick steel (E = 29 × 106 psi, v = 0.25) plate 
and the vessel operates at 120 psi internal pressure, determine 
the total elongation of the circumference and the increase in the 
length caused by the operating pressure.

 4.9 You are asked to design a scuba tank with a radius R = 16 cm to a 
pressure of p = 12.0 MPa at a factor of safety of 2.0 with respect to 
the yield stress. The relevant tabulated yield values for the steel of 
which the tank is intended to be made are 290 MPa in tension and 
124 MPa in shear. What wall thickness t would you recommend?

 4.10 A closed cylindrical tank of length L, radius R, and wall thickness 
t contains a liquid at pressure p. If a hole is suddenly made in the 
cylinder, determine (a) how much the tank radius R changes; and 
(b) how much the tank length L changes.

 4.11 An inflatable cylindrical Quonset hut of length L, radius R = 30 ft 
from material with thickness t = 2.5 mm, E = 30.7 GPa, and v = 0.24 
has a longitudinal seam that runs the entire length of the hut at its 
highest point (Figure 4.62). The hut is closed at each end by a quar-
ter of a sphere.

Longitudinal seam 

Figure 4.62
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If the hut is inflated to a pressure p = 3.44 kPa, determine (a) the 
maximum tension (a force per length along the seam) that the lon-
gitudinal seam must withstand with a factor of safety of 2; (b) how 
much higher the peak of the roof gets just before tearing occurs 
(use the result of part (a), including the safety factor); and (c) the 
maximum tension that a seam in the quasi-spherical end cap must 
withstand to maintain the same safety factor of 2.

Figure 4.63

     Note: Quonset huts (Figure 4.63) were lightweight, prefabricated 
structures developed to be used as military barracks and offices 
during WWII. The Quonset hut skeleton was a row of semicircu-
lar steel ribs covered with corrugated sheet metal. The ribs sat on a 
low steel-frame foundation with a plywood floor. The basic model 
was 20 ft wide and 48 ft long with 720 sq. ft of usable floor space. 
A larger model was 40 × 100 ft. Approximately 170,000 Quonset 
huts were produced during the war. After the war, the military 
sold the huts to civilians for about $1,000 each.

 4.12 A strain gage is installed in the longitudinal direction on the sur-
face of an aluminum beverage can (Figure 4.64). The radius-to-
thickness ratio of the can is 200. When the lid of can is popped 
open, the magnitude of the strain reading changes by 180 μstrain. 
(a) What was the internal pressure p in the can? (b) When the can 
was pressurized, what was the factor of safety with respect to 
yielding in the cylindrical wall?
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To circuit

Figure 4.64

 4.13 For the state of stress given {σx = –8 ksi, σy = 6 ksi, and τxy = –6 ksi}, 
determine (a) the principal planes; (b) the principal stresses; and 
(c) the orientation of the planes of maximum shear stress.

 4.14 For the (same) state of stress given in Problem 4.8, determine (a) 
the maximum shear stress; (b) the normal stresses on the plane of 
maximum shear stress; and (c) the normal and shear stresses after 
the element has been rotated through an angle of 30˚ clockwise.

 4.15 Using the equations for stress transformation: (a) confirm the 
angles that define the planes of maximum and minimum shear 
stress; and (b) determine the maximum and minimum values of 
the shear stress.

 4.16 For the results of Problem 4.8, (a) what is the normal stress that acts 
on the plane of maximum shear? (b) How does this result differ 
from the plane of maximum normal stress? (c) How do the planes 
of maximum shear stress relate to the principal stress planes?

 4.17 A cylindrical pressure vessel with hemispherical endcaps has 
radius r = 2 m, wall thickness t = 10 mm, and is made of steel with 
yield stress σy = 1800 MPa. It is internally pressurized at p = 2 
MPa. Compare the Tresca and von Mises safety factors.

 4.18 A solid aluminum-alloy shaft 60 mm in diameter and 1000 mm 
long is to be replaced by a tubular steel shaft of the same outer 
diameter such that the new shaft would exceed neither twice the 
maximum shear stress nor the angle of twist of the aluminum 
shaft. (a) What should be the inner radius of the tubular steel 
shaft? (b) Which of the two criteria governs the design?

 4.19 A cylindrical pressure vessel of 120 in outside diameter, used for 
processing rubber, is 36 ft long. If the cylindrical portion of the 
vessel is made from 1-in.-thick steel (E = 29 × 106 psi, v = 0.25) plate 
and the vessel operates at 120 psi internal pressure, determine 
the total elongation of the circumference and the increase in the 
length caused by the operating pressure.
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Case Study 2: Pressure Vessel Safety

Pressure vessels are structures that are designed to contain or preclude a 
significant pressure—that is, a force distributed over the entire surface of 
the vessel in question. Pressure vessels show up in a variety of settings and 
typically are in one of two shapes. Some are spherical: balloons of all sorts, 
gas storage tanks (Figure CS2.1a), and basketballs. Many are cylindrical: 
pressurized cabins in aircraft, rocket motors, scuba tanks, oil storage tanks, 
aerosol spray cans, and fire extinguishers. Some of the cylindrical tanks 
have flat ends or caps, as in spray cans and home heating oil storage tanks. 
Often, though, cylindrical tanks have slightly rounded caps (Figure CS2.1b) 
or spherical caps, as do submarines (Figure CS2.1c). Nuclear reactor contain-
ment vessels are often cylinders with spherical caps, although newer nuclear 
plants tend to have spherical containment tanks.

Pressure vessels have given way or exploded in some rather dramatic fash-
ions. Among the most notorious are the explosion of a molasses storage tank 
in Boston in 1919 that resulted in 21 deaths and more than 150 injured as 2 
million gallons of thick, brown molasses swept through Boston’s North End 
(Figure CS2.2, Problem CS2.1); the burning of the Hindenburg blimp in Lake-
hurst, New Jersey in 1937; the rupture of the Apollo 13 oxygen tank in 1970; 
and the implosion of several submarines, including the USS Thresher in 1963, 
the USS Scorpion in 1968, and the Russian submarine Kursk in 2001. Though 
the causes of these and other catastrophes varied, serious pressure build-ups 
and the failures of connections or joints or seams were involved in most. 
Thus, the design and construction of a pressure vessel is at least as important 
as its shape. In fact, a major piece of regulatory code is the American Society 
of Mechanical Engineers (ASME) International Boiler and Pressure Vessel 
Code (IBPVC) that governs the design and manufacture of pressure vessels.

Figure CS2.1
(a) A spherical pressure vessel; (b) a cylindrical pressure vessel with a slightly rounded top; (c) 
a submarine: a cylindrical pressure vessel with a rounded cap.
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Why are Pressure Vessels Spheres and Cylinders?

Why are pressure vessels curved rather than flat? Two important reasons 
become evident when we review the physics of pressure vessels. The first 
has to do with material properties. As we noted in Chapter 2, Section 2.10 
and Chapter 3, Section 3.7, cracks propagate in metals, even in ductile met-
als. Further, crack propagation is especially likely to propagate from the 
stress concentrations that typically form at corners that subsume an angle less 
than 90 ,̊ termed re-entrant corners (Figure CS2.3). That is why, for example, 
airplane windows have rounded corners. A similar situation occurs when 
we bend a piece of metal to make a corner; a similar stress concentration is 
created, and there is an increased likelihood of crack propagation when we 
have, for example, rectangular tubes that include four corners.

The second reason that pressure vessels are spheres or cylinders is that 
when such shapes are pressurized, they respond with a set of normal stresses 
that are distributed uniformly through the thickness and always directed 
along tangents to the surface enclosed (see Section 4.2). These stress states 
are called membrane stresses. These shapes and their membrane stress states 
produce much stiffer structural forms than their beam counterparts, and 
thus they deflect or deform much less. Consider the pressurized cylinder 
originally depicted in Figure 4.16. We have already seen in Section 4.2 that 

Figure CS2.2
A glimpse of the aftermath of the 1919 failure of five-story-high tank that unleashed 12,000 tons of 
molasses on Boston’s North End. (Photograph by Leslie Jones, Boston Herald. With permission.)
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a thin-walled pressure vessel experiences a circumferential stress, the hoop 
stress σh, of magnitude:

 
σh p R

t
= .

 (CS2.1)

Remember, too, that the wall thickness of a thin-walled vessel is always 
significantly smaller than the radius (i.e., t << R) so that the stresses induced 
by the pressure are significantly larger than the pressure itself.

Now consider what happens to the geometry of a cylinder when that cyl-
inder is subjected to this pressure. We would expect it to expand symmetri-
cally, meaning that its radius will become larger (Figure CS2.4). Thus, if we 
denote w as the radial motion or deflection of the cylinder, the circle that 
originally was of mean radius R will become a circle of radius (R + w). So 
the circumference of the cylinder increases from 2πR to 2π (R + w), and the 
resulting hoop strain εh is given by
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For simplicity’s sake, let us assume a one-dimensional stress–strain law, σ 
= Eε, which means that we can find (see Problem CS2.2 and Problem CS2.3) 
that the radial expansion or deflection is
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Now imagine that instead of a cylinder of radius R and thickness t, we 
were using a square tube of dimensions H × H (and wall thickness t) to con-

1620654 1 mm Fillet 3 outside view

Figure CS2.3
Cracks emanating (a) from a re-entrant corner inside a groove; (b) from a filleted corner. (J. 
A. King.)
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tain a gas at the same pressure. We assume that the tube’s side lengths H are 
comparable in magnitude to the cylinder radius R (see Problem CS2.3) and 
that t << H. How does the shape of this square tube change when the gas 
is subjected to pressure? As we look at Figure CS2.5 we can envision that a 
given side—say, the one marked BC—will move upward or outward due to 
two effects: (1) the upward movement of points B and C as sides AB and CD 
are stretched; and (2) the vertical or transverse motion of the side BC due to 
the pressure acting on that surface. The side stretching is just like the exten-
sion of a one-dimensional bar, so the equal vertical movement of points B 
(from the stretching of AB) and C (from the stretching of CD) can be shown 
(see Problem CS2.4) to be
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On the other hand, the transverse motion of the side BC is actually due to 
the bending of that side under the pressure load. As we will see in Chapter 6 
when we analyze the deflections of bent beams, the maximum deflection of 
such a beam occurs at its center and can modeled as
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Note that this beam deflection is proportional to the ratio (H/t) raised to 
the fourth power. Compare that with the deflection due to the stretching of 
the sides (equation CS2.4), which is proportional to the same ratio squared—
which means that the bending deflection of a tube face is going to be much, 
much larger than movement due to the stretching of the sides (again, see Fig-
ure CS2.5). Further, compare the beam bending deflection (equation CS2.5) to 
the radial expansion of a circular cylinder (equation CS2.3) of the same sheet 
material and under the same pressure:

R

p

t

R + w

Figure CS2.4
The development of hoop strain in a pressurized cylinder due to the (greatly exaggerated) 
axisymmetric radial deflection w.
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or, since H ~ R (see Problem CS2.4 again!),
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Equation (CS2.7) clearly shows that the deflections due to the bending of 
the sides of a rectangular tube are two orders of magnitude larger than the 
radial motion due to the extension of the walls of a circular cylinder. Thus, 
a cylinder, like a sphere, responds to pressure as a stiff structural form char-
acterized by large membrane forces and stresses and relatively small (com-
pared with the corresponding bending of thin-walled cylinders that are not 
pressurized) deflections (see Problem CS2.6). We will say more about this 
when we describe beam bending in Chapters 5 and 6.

A D

t

H

H

H

B C

wbeam

uB,C

Figure CS2.5
A pressurized square tube with cross-section side dimensions H × H and wall thickness t. Note 
that the movement of side BC is due in part to the upward movement of points B and C as sides 
AB and CD are stretched and in part due to the bending of the side BC due to the pressure act-
ing on that surface. Deformations are not to scale; wbeam >> uB,C.
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We have noted that some cylindrical tanks have spherical caps. While we’re 
on the subject of radial expansion of such tanks, it is interesting to examine 
another aspect of pressure vessel behavior: Can we put a hemispherical cap 
on the end of a cylinder of the same radius R? For a cylinder of finite length, 
we noted in Section 4.2 that both axial and hoop stresses result from an inter-
nal pressure p:
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The hoop strain for a (two-dimensional) state of plane stress within the 
cylinder surface would follow from Chapter 3, equation (3.43) rather than the 
one-dimensional version just used. Thus,
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so that we can eliminate the hoop strain between equation (CS2.2) and equa-
tion (CS2.9) and the hoop stresses from the equations in (CS2.8) to find the 
radial expansion to be
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A comparable analysis for the sphere would look much like the cylinder’s, 
with the obvious exception that the stresses in a hemispherical cap were 
found in Section 4.2 to be

 
σ σφ θ= = p R

t2
,
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so that here the analysis of the sphere’s hoop strain yields the following 
radial deflection for the sphere:

 

w
t

p
E

R
t

sph =
− 








( ) .1
2
ν

 (CS2.12)

Clearly both p and R must be the same for the mated cylinder and sphere, 
and the radial deflections are compatible only if they are equal. If we set the 
right-hand side of equation (CS2.10) to equal that of equation (CS2.12), we 
find that the radial deflections are equal when
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where we have added appropriate subscripts to distinguish the thicknesses 
and materials. If the materials are the same, which seems a reasonable 
assumption, then
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which suggests that the thickness of the cylinder should be much larger than 
that of the cap. For typical materials for which ν = 0.30, the ratio (tcyl/tsph) is 
about 2.43! Thus, the cylinder should be thicker by a factor of almost 2.5.

What happens in “real life” is, of course, more complicated. The mismatch 
caused by the mating of spheres and cylinders produces some modest bend-
ing effects that are superposed on the basic membrane states caused by the 
pressure. The bending stresses add a modest amount (~30%) to the mem-
brane stresses, and they decay fairly rapidly as we move away from the joint 
or intersection of cap and circular tube. As a result, cylinders are tapered 
near the joints, with locally increased thickness designed to accommodate 
the added bending stresses. The complete analysis of these edge effects allows 
us to carefully and safely design such intersections—and thus to avoid a 
catastrophic failure due to a bad joint!

Why Do Pressure Vessels Fail?

Gas pressure vessels typically contain a large volume of gas that has been 
compressed to fit into the vessel’s much smaller volume, which thus pro-
duces the constant, unremitting pressure that acts on the container’s inner 
wall. When such vessels fail, they explode because the pent-up gas wants 
to return to its initial volume as quickly as it can (see Problem CS2.9, Prob-
lem CS2.10, Problem CS2.11, and Problem CS2.12). However, pressure ves-
sels containing incompressible liquids also fail, as did the Boston molasses 
tank mentioned earlier. The common link is that tank failures typically 
arise because their designers either failed to properly anticipate possible 
sources of crack propagation or failed to adequately analyze the stresses 
at connections. For example, the owners of the Boston molasses tank, the 
Purity Distilling Company, claimed that it failed because of (variously) an 
explosion, vibration from an adjacent elevated train track, and a runaway 
trolley car colliding with the tank. However, forensic analysis of the tank 
ruins showed that its joints were inadequately designed and, further, that 
the tank was fabricated with even thinner materials than required by the 
(already inadequate) design.4
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The detailed design of joints, and of the connections of pipes and gauges 
and doors, is beyond our scope. However, understanding the nature of the 
stress fields in pressure vessels is not. The estimates of the membrane stresses 
given for the cylinder (equation CS2.8) and sphere (equation CS2.11) are cor-
rect as far as they go, but they are incomplete—and sufficiently incomplete 
that by themselves they do not form an adequate basis for a comprehensive 
design. Thus, we explore the stress states in greater depth to show that shear 
is present in pressure vessels and that Mohr’s circle can be used to advantage 
in the design of joints.

Consider first the sphere. If we plunk down an x, y coordinate system 
tangent to the sphere’s surface at any point on the sphere, the equations for 
stress transformation (4.38, 4.39, and 4.40) quickly confirm that the stresses in 
the plane of the sphere are always normal stresses, that is,
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But what happens through the thickness, or in the z direction? Consider 
the element shown in Figure CS2.6. We see there a stress state
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If we then apply the stress transformation equations (4.38, 4.39, and 4.40) 
to this stress state (see Problem CS2.13), we would find that in the z–y plane 
the stresses vary as

z

 y 

x

 y 
z

σzz = 0

σzz = –p

σyy= pR/2t σyy = pR/2t

Figure CS2.6
An element in the skin of a spherical pressure vessel and a “blow-up” of the y–z plane show-
ing the stress _zz = –p due to the internal pressure p acting on the sphere’s inner wall and the 
stress _yy = pR/2t, acting as shown.
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Equation (CS2.17b) shows that there are shear stresses in the wall of a 
spherical pressure vessels and that the maximum shear stress occurs at 
θ = π/4 and has the value
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Thus, there is a shear stress that acts through the thickness: Its magnitude 
is the same as the principal membrane stresses, and it must be accounted for 
in the design of spherical tanks (see Problem CS2.14).

A similar situation occurs in the case of cylindrical tanks, with an interest-
ing twist that arises because of the different ways that cylindrical tanks are 
actually made. While hollow reeds and bamboo tubes occur quite naturally, 
we have to manufacture cylindrical tanks. Typically that means forming 
flat, rectangular sheets around a rigid form, termed a mandrel, and welded 
together along seams that can be longitudinal, transversely circumferen-
tial, or even helically wound around the cylinder’s axis (Figure CS2.7). This 

Helical weld

α

Figure CS2.7
A cylindrical tank with helical seams. (From Gere, J. M. and Timoshenko, S. P., Mechanics of 
Materials, 4th ed., WS Publishing, 1997. With permission.)
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means that the stresses along the seams are especially of special interest and, 
thus, that the transformation of stresses needs to be considered. In fact, if we 
identify x as the axial coordinate in a cylinder and y as the circumferential 
coordinate, the membrane stress state of a pressurized cylinder is

 
σ σxx yy

pR
t

pR
t

= =
2

, .  (CS2.19)

Then this stress state substituted into the stress transformation equations (4.38, 
4.39, and 4.40) yields the following stresses in the xy plane (see Problem CS2.15):
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Equation (CS2.20a), equation (CS2.20b), and equation (CS2.20c) allow us to 
determine the variation of the stresses with the angle θ. We can thus calculate 
the in-plane or membrane stresses along any intended seams (see Problem 
CS2.16 and Problem CS2.17). Of course, in addition to the membrane stresses 
just analyzed, cylindrical tanks also have shear stress components that are 
directed in the thickness or z direction.

Cylindrical pressure vessels that are made from welded steel sheets are 
very common; this is the least expensive way to manufacture cylindrical 
tubing. It is also common to see cylinders that have been extruded from a 
solid piece of steel or aluminum, with welding only necessary at the end 
caps. This extrusion method is preferred for applications requiring higher 
safety factors than welded tubing, for example, in scuba cylinders. A third 
manufacturing technique of interest is spin casting, which helps to reduce the 
weight of the pressure vessel and also requires no welds along the length of 
the vessel. The tank material, generally aluminum, is melted and poured into 
a rotating cylindrical mold, where it solidifies in the desired vessel shape.
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Problems

CS2.1 Determine in both customary and metric units the volume that 
12,000 tons of molasses occupies.

CS2.2 Derive equation (CS2.3) by substituting equation (CS2.1) and equa-
tion (CS2.2) into the appropriate one-dimensional stress–strain 
law.

CS2.3 Is equation (CS2.3) dimensionally correct? Explain your answer.
CS2.4 Determine how much the sides AB and CD of the square tube in 

Figure CS2.7 are stretched due to an upward pressure p acting 
on the bottom surface of side BC. How does this answer compare 
with equation (CS2.4)?

CS2.5 Develop three scenarios for comparable circular cylinders of 
radius R and square tubes of side H that allow one to say R ~ H. 
(Hint: What geometric attributes of the cylinder and tube might 
be made equal?)

CS2.6 If a structural stiffness parameter was defined in terms of the 
pressure/radial deflection ratio (i.e., p/w), compare the stiffness 
parameters for a circular cylinder of radius R with that of a square 
tube of side H. What are the physical dimensions of these stiffness 
parameters and of their ratio? Assume that R ~ H. (Hint: Recall 
equation CS2.3 and equation CS2.5.)

CS2.7 Given that the hoop strain is likely to be a very small number, 
estimate the pressure-to-modulus ratio, p/E.

CS2.8 Given the result of Problem CS2.7, estimate the magnitude of the 
radial deflection of a pressurized cylinder as a fraction of its thick-
ness. (Hint: Equation CS2.3 might be handy.)

CS2.9 The adiabatic compression of an ideal gas obeys the following law: 
pV_ = constant, where p is the pressure, V the volume, and γ = 1.4. 
Assuming that the ideal law provides a reasonable rough estimate 
of the gas’s behavior, determine the pressure in a tank of 1 ft3 vol-
ume when it stores 100 ft3 of standard atmospheric air.

CS2.10 For the two scuba cylinders shown in Figure CS2.8, of radii R = 4 
in. and length L = 25 in., estimate the pressure reading if 80 ft3 of 
air was compressed into them.



Applying Strain and Stress in Multiple Dimensions 199

* In problem SC2.10Figure CS2.8

CS2.11 For the assumptions stated in Problem CS2.9, show that the work 
done in adiabatically compressing an ideal gas is

 

W pdV
p V V

V1 2

1

2

1 1 1

2

1

1
1– =− =

−
−∫















−

γ

γ











.

CS2.12 Determine how much work was required to undertake the com-
pression specified in Problem CS2.9. Is that a lot of work (or 
energy)? Explain your answer, perhaps by providing a suitable 
comparison.

CS2.13 Verify that equation (CS2.17a), equation (CS2.17b), and equation 
(CS2.17c) are correct by substituting the stress state of equation 
(CS2.16) into the stress transformation equations (4.49 and 4.50).

CS2.14 Determine an appropriate approximation to equation (CS2.18) 
for thin-walled pressure vessels (i.e., t/R << 1). From which of the 
original components of stress does the dominant, surviving term 
originate?

CS2.15 Verify that equation (CS2.20a), equation (CS2.20b), and equation 
(CS2.20c) are correct by substituting the stress state of equation 
(CS2.19) into the stress transformation equations (4.38, 4.39, and 
4.40).

CS2.16 Determine the maximum in-plane stresses for a cylindrical tank 
made of steel (E = 205 GPa, ν = 0.30), having a mean radius of 2 m 
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and a thickness of 20 mm and subjected to an internal pressure 
p = 1 MPa.

CS2.17 Determine the in-plane normal and shear stresses along the seam 
of the tank of Problem CS2.16 if it is helically wound at angle 
θ = 60o.

Notes

 1. J is commonly called the polar moment of inertia, though it is an area moment 
of inertia and is more correctly referred to as polar second moment of area. 
Moments of area are geometric properties of certain areas, reflecting how effec-
tively those areas resist deformation. A large J indicates a cross section that will 
resist torsion. Please see Appendix A for a table of values for common areas.

 2. We recognize that the principal stress state, in which an element experiences 
only normal stresses, signifies that we have in essence diagonalized the sym-
metric stress tensor. We also note that the subscript convention for pressure 
vessels, where stress components σθθ and σxx were known as σ1 and σ2, was an 
implicit acknowledgment that the stress state corresponding to conventional 
cylindrical or spherical coordinates is the principal stress state for a pressure 
vessel. However, we might still be interested in the stress state under different 
reference axes to learn the design constraints for a weld used in constructing a 
pressure vessel from a flat sheet of material. So even when the principal stress 
state is what we see with our usual coordinates, we will have a motivation to 
transform the stress state to different axes and orientations.

 3. For the details of this analysis, first proposed by French mathematician A. L. 
Cauchy in the 1820s, see Timoshenko and Goodier (1970, sec. 77).

 4. The 50-ft-high, 90-ft-diameter steel molasses tank had been ordered from Ham-
mond Iron Works in 1915 by the Purity Distilling Company on authorization 
of U.S. Industrial Alcohol. The treasurer of Purity ordered it without consult-
ing an engineer. The only constraint given was that the tank should have a 
factor of safety of three for the storage of molasses, which is 50% heavier than 
water, weighing 12 lb per gallon. All the steel sheets used in construction of 
the tank actually proved less thick than shown on the drawings used to obtain 
the building permit. For instance, the bottom ring—the most stressed part of 
the structure—was supposed to be 0.687 in.; as built, it was only 0.667 in. The 
steel thicknesses for the other six rings were similarly found to be 5% to 10% 
less than the values indicated on the permit plans. The tank was completed 
early in 1916 and tested with only 6 in. of water. During the tank’s 3 years of 
service it had on several occasions contained a maximum of around 1.9 million 
gallons (for periods up to 25 days). At the time of failure the tank had been near 
maximum capacity (at 2.3 million gallons) for 4 days. Months later, at the legal 
proceedings, several recalled that the seams of the tank were leaking molasses 
before the disaster.
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5
Beams

The word beam is derived from Germanic words meaning tree or structural 
member. (One would guess that tree came first.) Beams are among the most 
common structural elements, popping up in the support structures of cars, 
aircraft, and buildings. They carry loads applied at right angles to the lon-
gitudinal axis of the member, which causes the member to bend. In prac-
tice, structural members may experience complex loading including axial, 
torsional, and traditional beam loading. As we have already examined axial 
and torsioal loading, for now we consider the isolated effects of beam load-
ing. The four fundamental elements of continuum mechanics serve us well: 
We need equilibrium, constitutive laws, and compatibility. This time we 
start with equilibrium and then develop our definitions of stress and strain, 
relatable by Hooke’s law when deformations are small. We examine first the 
internal forces and moments in the beams, then the resulting stresses on the 
beams, and finally (in Chapter 6) the beams’ deflections due to this loading.

5.1 Calculation of Reactions

Unsurprisingly, our first step in analyzing a beam is to draw a free-body dia-
gram (FBD) and to determine the reactions at its supports. A beam’s behavior 
when subjected to an external load depends on the type of supports and on 
the type of loading.

There are three basic types of supports for planar structures such as beams: 
(1) the roller or link, which is capable of resisting a force in only one specific 
line of action; (2) the pin, which is capable of resisting a force in any direction 
of the plane and whose reaction force hence has two components; and (3) 
the fixed support, which is capable of resisting a force in any direction and 
is also capable of resisting a moment or a couple. This third type of support 
is obtained by building a beam into a wall, by casting it into concrete, or by 
welding the end of a member to the main structure. Figure 5.1 shows physi-
cal and idealized diagrams of these three types of supports and the resisting 
reactions they offer.

In addition to the type of supports, we also take into account the type of 
loading on the beam. In this book we have considered a number of concen-
trated “point” loads; we can also see this type of loading on beams. We also 
consider problems where the loads are distributed, either uniformly or not. 
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Figure 5.2 gives an idea of how these load diagrams will look and what their 
real-world equivalents might be.

Often, we are able to replace a distributed load by an equivalent concen-
trated resultant load, acting through the centroid (center of force) of the 
distributed load. We also are able to classify beam problems, as we have 
classified axial bar and torsion problems, into statically determinate and 
statically indeterminate scenarios. And as before, whenever we encounter 
a statically indeterminate problem, we supplement the equations of static 
equilibrium with geometry and constitutive laws.

Armed with this information about beam supports and loads, we are pre-
pared to calculate beam reaction forces and moments. In statically determi-
nate cases, the equations of static equilibrium suffice.

5.2 Method of Sections: Axial Force, Shear, Bending Moment

By now we are good friends with the method of sections: the idea that if a 
whole body is in equilibrium, any part or section of this body is in equilib-
rium itself. We exploit this method to determine the complete force system 
of a body, including both external and internal forces and moments. In the 
particular case of a beam, the externally applied forces and the support reac-
tions keep the entire body in equilibrium. When we make “cuts” to apply the 

Type

Roller 

Pin or
knife-
edge  

Fixed 

Real Support Idealized Support Reactions Provided

Figure 5.1
Beam supports.
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method of sections, equilibrium requires the existence of internal forces at the 
cut section. These internal “resisting” forces and moments are what keep the 
cut sections in equilibrium. At each section we may find any or all of a vertical 
force, a horizontal force, and a moment necessary to maintain equilibrium.

axial Force in beams

A horizontal force P may be necessary at a beam section to satisfy equilib-
rium. The magnitude and sense of this force P are obtained from the solution 
of ΣFx = 0. If the force P acts toward the section, it is sometimes called a thrust 
or compressive force, as we have already seen; if it acts away from the section, 
P is called axial tension. Its line of action is always directed through the cen-
troid1 of the beam’s cross-sectional area.

Shear in beams

Typically, to keep a section in equilibrium, there must be an internal vertical 
force V at the cut. Because this internal force acts normal to the beam axis 

Concentrated
loading

Evenly
distributed
loading

Unevenly
distributed
loading

w w
(N, lb)

Goods + beam w1
(N/m or lb/ft) Beam w2

(N/m or lb/ft)

Figure 5.2
Types of loading conditions for beams.
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and therefore parallel to the beam’s cross-sectional area, it is called a shear 
force. The shear’s magnitude is the sum of the vertical components of all the 
external forces acting on this cut section, and it is in the opposite direction to 
balance the external resultant.

If we look at two adjacent sections, the shear on their shared face is defined 
as in Figure 5.3. The shear on this face should clearly have the same magni-
tude no matter which way we choose to look at it; the direction of the shear 
depends on the face. If we are looking at the left-hand section, this shear is 
upward: The beam provides upward support to keep the section in (vertical) 
equilibrium. And if we are looking at the right-hand section, the shear is 
downward. This could get quite confusing unless we establish a consistent 
sign convention for talking about shear. This convention is to say that “posi-
tive shear” involves downward V on the left-hand segment of a beam and 
upward V on the adjacent right-hand segment, as shown in Figure 5.4. This 
tells us that our previous example, in Figure 5.3, was an example of “negative 
shear.” So in addition to specifying the direction of V, it is important to make 
sure we have associated it with a particular side of a section.

We can think of this sign convention and nomenclature in terms of the 
physical action of the forces:

Shear in a beam is positive if the segment of the beam to the left of a 
cutting plane tends to move upward relative to the segment on the right 
(due to external forces). Negative shear reflects the left segment moving 
downward relative to the right segment.

P

M

V

M

P
V

Figure 5.3
Application of method of sections. (Note: The internal shears and moments shown here turn 
out to be negative, once we define our sign convention!)
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bending Moment in beams

We have two internal forces, an axial 
force P and a shear force V, to assist 
us in satisfying equilibrium equa-
tions for a beam. Clearly, P and V 
will help out with ΣFx = 0 and ΣFz = 
0. The remaining equilibrium equa-
tion for a planar problem is ΣMy = 0, 
and we will generally need an inter-
nal resisting moment to help us meet this requirement, to balance the moment 
caused by external loads. This internal moment is developed within the 
cross-sectional area of the cut, in a direction opposite to the resultant exter-
nal moment. The magnitude of the internal resisting moment, it should be 
apparent, equals the external moment. These moments tend to bend a beam 
in the plane of the loads and are hence called bending moments.

In the method of sections, this external moment can be defined as the sum 
of the moments of all the external forces acting on one side of the cutting 
plane. We also make use of a sign convention that can be stated:

The bending moment in a beam is positive when the bottom fibers are 
in tension and the top fibers are in compression. The bending moment 
is negative when the bottom fibers are in compression and the top fibers 
are in tension.

An illustration of this convention is shown in Figure 5.5. As with the shear, it 
is critical to associate the moment with a particular side of a section, because 
of this sign convention.

+ V

Figure 5.4
Definition of positive shear.

A B

A B

Fibers in compression

Fibers in tension

Figure 5.5
Definition of positive bending moment.
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5.3 Shear and Bending Moment Diagrams

Now that we have sign conventions for the internal forces and moments 
in a beam, we have the ability to represent the varying values of inter-
nal forces and bending moment throughout the length of the beam. We 
do this by means of separate diagrams for each quantity. These diagrams 
are called, rather unimaginatively, axial force, shear, and bending moment 
diagrams. We rarely use axial force diagrams since most of the beams we 
investigate (and most beams in practice) are loaded by forces acting per-
pendicular to the beam axis, and for these cases there are no axial forces 
at any section.

These diagrams can be quick sketches, typically made just below the 
free-body diagram of the beam. From a quick glance at such a diagram, a 
designer can ascertain the type of performance that is required of a beam at 
every section.

We first construct these diagrams by inspection of the free-body diagram; 
later, we use integration to evaluate more complex cases.

rules and regulations for Shear and bending Moment Diagrams

Shear Diagrams

Protocol

 1. Sketch free-body diagram of beam.
 2. Find reactions.
 3. Draw V diagram directly below load diagram.
 4. By solving ΣFz = 0 on sections, find and plot V.
 5. Locate points of zero shear.

Fun Facts

For any part of the beam where there are no external loads, the shear •	
diagram will be a straight horizontal line.
The shear diagram at the point of application of a concentrated load will •	
be a vertical line—that is, there will be a sudden change in the shear.
Where there is a uniformly distributed line load, the shear diagram •	
will be a straight line with slope equal to the load intensity.
For a simply supported beam subjected to vertical loads, the abso-•	
lute values of the positive and negative areas contained by the shear 
diagram are equal.
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Moment Diagrams

Protocol

 1. Draw M diagram directly below shear diagram.
 2. Either (a) calculate shear areas between key points2 and then calcu-

late moments by adding shear areas beginning at the left end of the 
beam; or (b) use free-body diagrams of sections beginning at the left 
end of the beam to compute moments at key points and points of 
zero shear.

 3. Plot moment values. Sketch shape between plotted points by refer-
ring to the shear diagram.

Fun Facts

For a simply supported, single span beam, bending moment at both •	
ends is equal to zero.
For a cantilever beam acted on only by vertical downward loads, •	
bending moment is zero at the free end and maximum at the fixed 
end. (Shear is also maximum at the fixed end.)
Bending moment is positive for simply supported beams and nega-•	
tive for a cantilever beam.
Except for cantilever beams, maximum bending moment occurs at •	
points of zero shear, or where V goes through zero.

5.4 Integration Methods for Shear and Bending Moment

To develop a more elegant method for calculating the internal forces and 
moments (P, V, and M) within a beam, we derive a few differential relations. 
To do this, we imagine using the method of sections on an infinitesimally 
small section of the beam, say, one with length dx. To keep things as general 
as possible, we say that this beam is acted on by a distributed force with 
intensity q(x). (Remember that q has units of force per unit length; also note 
that a positive q(x) is defined as a load in the positive z direction, or down-
ward.) A free-body diagram of such a segment is shown in Figure 5.6.

The changes in shear and moment from the left face of element dx to the 
right are denoted by dV and dM, respectively.3 Our next step is to write the 
equations of equilibrium for this element:

 ΣFz = –V + q dx + (V + dV) = 0, (5.1)

which simplifies to
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dV
dx

q=− . (5.2)

We also sum the moments about the center of the right face of our element, 
using the convention that counterclockwise moments are positive:

 (M + dM) – V dx – M + (q dx)(dx/2) = 0, (5.3)

which gives us

 

dM
dx

V qdx
= −

2
.  (5.4)

If we take the limit as dx→ 0, we see that we have two equations:
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V

=−

=
 (5.5)

And furthermore, by substituting dM/dx = V into dV/dx = –q, we get

 

d M
dx

q
2

2 =− ,  (5.6)

which we will be able to exploit to determine reactions of beams from the 
boundary conditions. Equation (5.5) and equation (5.6) are very useful in the 
construction of shear and moment diagrams, as we will see.

q(x) 

+ V + dV

+ M + dM  
+ V 

+ M 

dx

x

z
(y into page) 

Figure 5.6
Differential element.
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Integrating equation (5.2), we obtain an expression for shear at any x:

 

V q dx C=− +∫ 1. (5.7)

From this integral it should be clear that the shear at any section is sim-
ply a sum (i.e., an integral) of the vertical forces along the beam from the 
left end of the beam to the section of interest, plus a constant of integration 
C1. This constant is equal to the shear on the left-hand end of the beam (at 
x = 0). So, between any two sections of a beam, the shear V changes by the 
amount of vertical force included between these two sections. If no force 
occurs between any two sections, there is no change in the shear (i.e., the 
shear diagram is a horizontal line). If a concentrated force occurs, a dis-
continuity or jump in the value of V occurs at the point of application. The 
slope of the shear diagram comes from the load intensity q. If, for example, 
the applied distributed load is downward and uniformly distributed (q = 
qo = constant), then the slope of V(x) is negative and also constant. For non-
uniform distributed loads, the slope of the shear diagram is determined 
from the trend of q. (Similarly, for a V diagram with positive slope, the 
corresponding M diagram is concave up, and for V with negative slope, 
M is concave down. This follows nicely from the differential relations we 
have just derived: If V goes as +x, M goes as +x2, and if V goes as –x, M 
goes as –x2.)

Once again, to determine a shear diagram in this way we must first find 
the reactions. Then we can start summing vertical forces to calculate the 
shear at any point.

Integrating the dM/dx equation, we obtain a relation for bending moment 
at any x:

 

M V dx C= +∫ 2 , (5.8)

where, again, C2 is a constant of integration, determined from boundary 
conditions at x = 0. If the ends of the beam are on rollers, pins, or free, 
the moments at these ends are zero. If an end of the beam is fixed, the 
moment at this end is known from the reactions. For cantilever beams, 
the maximum moment occurs at the fixed end, and zero moment is felt at 
the free end.

The meaning of the term V dx represents the area beneath the V diagram 
over a length dx. The sum of these areas over a length x, according to equation 
(5.8), give us the bending moment M(x). By proceeding from the leftmost (x = 
0) end of a given beam to the right, we can construct a moment diagram.
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5.5 Normal Stresses in Beams

We know now that a system of internal forces may occur in a beam subject to 
external loads. We have already considered the stresses due to internal axial 
forces such as P. Now, we want to develop a way to talk about the stresses 
due to the shear force V and bending moment M. For simplicity, we begin 
our discussion of these stresses by focusing on beams with symmetric cross 
sections, and we first consider a load state known as pure bending or flexure. In 
pure bending, only bending moments are applied to the beam.

We use a similar approach to the one we used to consider the effects of tor-
sion. First, we make a plausible assumption about the deformation to ensure 
that we are able to deal with the problem analytically. Figure 5.7 should 
help you visualize this assumption for pure bending. In Figure 5.7a, a hori-
zontal beam with a vertical axis of symmetry is shown. The horizontal line 
through the cross-section centroid is called the axis of the beam. If we look 
at a segment of this beam when it is subjected to a bending moment, as in 
Figure 5.7b, the beam bends in the plane of symmetry. Although the planes 
initially perpendicular to the beam axis slightly tilt, the lines defining their 
boundaries remain straight, that is:

Plane sections through a beam taken normal to its axis remain plane 
after the beam is subjected to bending.4

This assumption is completely valid for elastic, rectangular members in pure 
bending. If shears are also introduced, we will make some small corrections 
to the theory. But in practice, this theory is remarkably robust and cabable of 
supporting the stress analysis of all beams.
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Figure 5.7
Behavior of elastic beam in bending.
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Looking again at Figure 5.7b, we see that the beam axis has deformed into 
a portion of a circle of radius ρ. For an element (shaded) defined by an infini-
tesimal element dθ, the so-called fiber length ds of the beam axis (an arc-
length on this circle with radius ρ containing angle dθ) is given by ds = ρ dθ. 
Rearranging,

 

d
ds
θ
ρ
κ= ≡

1 ,  (5.9)

where the reciprocal of ρ is defined as the axis curvature κ. For bending of 
prismatic beams, both ρ and κ are constant. In the course of solving the 
bending problem, we hope to find a way of determining κ.

If we imagine another curve, parallel to the beam axis, at some radius ρ + z, 
we can find the arc length contained in our shaded segment. We call this arc 
length ds′, and ds′ = (ρ + z) dθ, as shown in Figure 5.8. We write the difference 
between our two arc lengths:

 ds’ – ds = (ρ + z) dθ – ρ dθ = + z dθ. (5.10)

We then divide this difference by the first arc length ds, the initial length of 
the segment of interest. The axis through the centroid, also called the neutral 
axis, does not change length under pure bending. In Figure 5.7b, the hori-
zontal lines above the neutral axis have been compressed, and those below it 
have been lengthened, but the neutral axis has not changed length. The first 
arc length ds was in fact the length of all horizontal lines in the shaded seg-
ment before the bending moments were applied. Hence, dividing this new 
change in arc lengths, ds′ – ds, by the old one, ds, we should get an expression 
for strain—and we do:
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ds

z d
ds

z=
′−

= = . (5.11)

dθ

ρ ρ + z

ds
ds'

Figure 5.8
Nomenclature for deformation of beam in bending.
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This is a normal strain, a measure of how much dimensions in the x direc-
tion have changed under this bending moment. We see that it depends lin-
early on z.

By using Hooke’s law, we obtain a relation for normal longitudinal stress 
in the beam:

 σx = Eεx = Eκz. (5.12)

Note that due to the position of the origin of the z axis in the beam, z 
can have either positive or negative values. Also remember that z has been 
defined positive downward. We need to develop a way of determining the 
location of the origin. How can we find out where the neutral axis is?

To answer this question, we turn to the equations of equilibrium. In pure 
bending, the sum of all forces at a section in the x direction must vanish, so

 

F dAx x= =∑ ∫0 0
A

σ , (5.13)

where the integration over A represents summation over the entire cross- 
sectional area A of the beam. Using Hooke’s law, we can rewrite this inte-
gral as

 

E zdA E zdA
A A

κ κ∫ ∫= =0.  (5.14)

(Since E and κ are constant, we have taken them outside the integral.) By 
definition, the remaining integral is

  ∫ zdA = zcA,

where zc is the distance from the origin to the centroid of the area. Since the 
integral must equal zero, this distance zc must equal zero, and hence the 
origin must coincide with the centroid: The x axis must pass through the cen-
troid of the cross section. Along this x axis, equations (5.11 and 5.12) tell us 
that both normal strain εx and normal stress σx equal zero. In bending theory, 
this axis is called the neutral axis of the beam, as we have already discussed.

To finish up our solution of the bending problem, we use the second rel-
ative equation of equilibrium. The sum of the externally applied and the 
internal resisting moments must vanish, so, using the convention of counter-
clockwise moments being positive,

 

M M E z dAo y
stress

A

= −∫∑ 0
area

κ y= 0

force arm
 (5.15)
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Recognizing that E and κ are constants, we can write

 

M E z dAy

A

= ∫κ 2 ,  (5.16)

and we are now reacquainted with the second moment of the (rectangular) area, 
typically and erroneously called the moment of inertia, defined with respect 
to the cross section’s neutral (centroidal), or y axis:

 

I z dAy

A

=∫ 2 . (5.17)

If we replace the integral in the previous expression by Iy, we have

 
κ=

M
EI

y

y
,  (5.18)

and when we substitute this expression for κ back into our equation for nor-
mal stress, we get the elastic flexure formula for pure bending of beams:

 
σx

y

y

M
I

z= ,  (5.19)

which, to demonstrate the dependence of normal stress on both x and z posi-
tion along and in the beam, we can also write as

 
σx

y

y
x z

M x
I

z( , )
( )

= . (5.20)

We must note that this derivation has been carried out for the coordinate 
axes as shown in Figure 5.7. Since z is negative at the top of the beam and 
positive at its bottom edge, under a positive bending moment, the normal 
stress will be negative (reflecting compression) at the top of the beam and 
positive (reflecting tension) at the bottom.

 Since we are interested in the limiting behavior of beams, it is valuable to 
have an expression for the maximum stress. For beams with symmetric cross 
sections, bent in the plane of symmetry, we designate zmax as c and obtain

 
σmax =

Mc
I

. (5.21)
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The convention is to dispense with the sign in this expression, because the 
sense of the normal stresses can be determined by inspection of the beam in 
question, and with the subscripts.

Normal stress in the direction of the beam’s long axis (here the x axis) is 
the only stress resulting from pure bending.5 The stress tensor’s matrix rep-
resentation is therefore

 

τ
σ

=













x 0 0
0 0 0
0 0 0

. (5.22)

Remembering Poisson’s ratio, we will have strains in the y and z directions: 
εy = εz = –νεx, where εx is given by σx/E or Mz/EI.

5.6 Shear Stresses in Beams

We now consider shear stresses in beams caused by transverse shear. 
(Remember, transverse here means normal to the beam’s long axis.) We also 
give some thought to the attachment of separate parts of a beam by bolts, 
gluing, or welding.

For problems of torsion and pure bending, we began by assuming a strain 
distribution across the cross section. (In both cases, this distribution fol-
lowed from the assumption made about “plane sections remaining plane.”) 
We cannot make any analogous assumption about the strain distribution 
due to shear force. However, we are able to use the expressions for normal 
stress that we have developed in the previous section.

By examining the equilibrium of an infinitesimal beam element, we saw 
that dM = Vdx, that is, the shear force V is linked with a change in bending 
moment. So, if a shear and a bending moment are present at one section of a 
beam, the adjoining section will have a different bending moment, even if the 
shear remains constant. This variation in moment establishes shear stresses 
on the conceptual parallel longitudinal planes of the beam. (As when we first 
defined shear stress, we can imagine the beam to be composed of thin planes 
that are allowed to slide with respect to each other.) Even when we seem to 
be talking about isolated shear forces, we must remember that these forces 
are linked with a change in the bending moment along the beam’s length.

The shear and moment diagrams in Figure 5.9 show this: Bending moment 
varies over sections with constant shear, while in regions of no shear there is 
no change in the moment.

The distribution of shear stress over the beam cross section is much dif-
ferent than that of normal stress. The shear stress is zero at those points 
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where the bending normal stress is a maximum. And maximum shear stress 
almost always occurs at the neutral axis (where normal strain and stress are 
both zero). How do we know that? We know because the theory of elasticity 
we derived in Chapter 3 tells us so.

Consider the beam as a long, slender body with rectangular cross section 
(b × h) and length L, as shown in Figure 5.10. Slender beams are those for 
which b and h are both much less than L. The beam of interest is in plane 
stress in the y direction, that is,

 σ τ τyy xy yz= = = 0 . (5.23)

For a thin elastic beam in plane stress, the two (remaining) elasticity equa-
tions of equilibrium are

 

∂
∂

+
∂
∂

=
σ τxx zx

x z
0. (5.24a)

P P

P P

V(x)

0 

P

–P
Pa

dM = Vdx = Pdx

M

P    P

M + dM = M + Pdx

dx

a a

Figure 5.9
Shear and bending moment diagrams for the loading shown. (After Popov, E. P., Engineering 
Mechanics of Solids, Prentice Hall, 1998.)
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∂
∂

+
∂
∂

=
τ σxz zz

x z
0 . (5.24b)

Note that we are still taking the z axis to be positive downward, conforming 
to a long-established notation for elastic beams.

While we have already derived (in Section 5.5) the basic equation for a 
beam’s bending stress, we briefly re-derive that result on our way to an 
expression for shear stress. We begin assuming what we have already 
shown, that the normal stress in the axial direction varies linearly through 
the thickness:

 σxx x z f x z( , ) ( ) ,= ⋅  (5.25)

where f(x) is an (as yet) unknown function of x. Thus, it follows that

 

σxx

h

h

h

h

x z bdz f x b zdz( , ) ( )
/

/

/

/

= ⋅ =
−−

∫∫ 0
2

2

2

2

. (5.26)

This equation simply states that the average axial normal stress across the 
thickness is identically zero. So, there is no net axial resultant in our beam, 
because that resultant would be calculated by an integral just like that in 
equation (5.26).

Now, let’s take the moment (about the y axis) of the axial normal stress act-
ing on an element of area bdz, that is,

 dm bdz zy xx= ( )σ . (5.27)

And if we sum this moment for all elements through the thickness, we obtain 
a positive internal moment, M(x):

z

y

x

b

h

L

Figure 5.10
Rectangular beam.
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M x dm z bdz f x bz dzy xx

h

h

h

h

( ) ( ) ( )
/

/

/

/

= = =
−−

∫σ 2

2

2

2

2

∫∫∫
−h

h

/

/

2

2

. (5.28)

We recognize this integral as the second moment of the beam’s cross-sectional 
area about a horizontal (here, y) axis through its center, that is,

 

I bz dzy

h

h

( )

/

/

=
−

∫ 2

2

2

. (5.29)

For the time being we drop the y subscript on I. It then follows from the 
previous results that

 
f x M x

I
( ) ( )
= . (5.30)

Consequently, we can now write the equation for the normal stress in the 
previously derived, very famous form:

 
σxx x z M x

I
z( , ) ( )

= . (5.31)

Having confirmed the axial stress equation, we can now find the shear 
stress distribution by substituting the bending stress into the first, axial 
equation of equilibrium:

 

∂
∂

=−
∂
∂

=−
τ σxz xx

z x
z
I

dM
dx

. (5.32)

We can now integrate through the beam thickness, over the z coordinate, 
to obtain

 
τxz I

dM
dx

h z= −










1
2 4

2
2 ,  (5.33)

and we can derive a transverse internal shear force, V(x), acting on any cross 
section as the integral of the shear stress over that area:

 

V x x z bdzxz

h

h

( ) ( , )
/

/

=
−

∫ τ
2

2

. (5.34)
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Then, by substituting this result into the previous equation, we find that

 

V x
I

dM
dx

h z bdz dM
dx

h

( )
/

= −










≡
−

1
2 4

2
2

2

hh/

,
2

∫  (5.35)

which explicitly equates the resultant shear force to the spatial gradient of 
the moment. This is consistent with our existing intuition about beams!

By combining the previous results, we can arrive at an explicit expression 
of the relationship between shear stress and its resultant (integrated) force:

 
τxz I

V x h z= −










1
2 4

2
2( ) . (5.36)

We see that the shear stress is distributed quadratically (and symmetrically) 
through the thickness, achieving its maximum value at the beam centerline 
(z = 0) and being zero on both the top and bottom surfaces (z = ±h/2). The 
latter point is consistent with the assumptions we’ve made about the loading 
of bent beams. Figure 5.11 allows us to compare the distributions of normal 
and shear stress along the height of the cross section.

Now we integrate the second equation of equilibrium to learn how the nor-
mal stress in the z direction is distributed through the beam thickness. First,

 

∂
∂

=−
∂
∂

=− −










σ τzz xz

z x I
dV
dx

h z1
2 4

2
2 ,  (5.37)

from which it follows by integration that

 
σ σzz zzx h x h h

I
dV
dx

( , / ) ( , / )2 2
12

3

− − =− . (5.38)

If we assume that the top surface, which has the beam width b, is loaded 
with a line load q(x) over its length and that the bottom surface is not loaded 
at all,

 σ σzz zzx h q x b x h( , / ) ( ) / ( , / ) ,− =− =2 2 0and  (5.39)

then it follows that the equation for transverse (vertical) equilibrium is

 

dV
dx

q x+ =( ) ,0  (5.40)
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which we had already derived in Section 5.4. Therefore, it should not sur-
prise us to learn that we can combine our shear-bending moment relation 
with equation (5.40) to yield the same equation expressed in terms of the 
moment (also as seen in Section 5.4):

 

d M
dx

q x
2

2
0+ =( ) . (5.41)

Thus, we have now once again derived equilibrium, in a more formal way. 
We defer discussion of the boundary conditions for this differential equation 
until we express equilibrium in terms of a beam’s deflections (Chapter 6).

It’s worth noting that while we’ve derived all of the previous results 
assuming a rectangular cross section, b × h, our results are straightforwardly 
extendable to any cross section. The calculation of the second moment of 
area, I, is applicable to any cross section. We recognize that the width vary 
with depth along the thickness, b = b(z), so that

 
I b z z dz

h

h

=
−

∫ ( )
/

/

2

2

2

. (5.42)

The effects on shear are slightly more complicated, because those results 
reflect integration over the z coordinate. However, it turns out that the para-
bolic variation term that appears in the shear stress equation (5.36) represents 
the first moment of area between a coordinate value z and the cross-sectional 
area above or below that coordinate, which is called Q(z). We must ask 
ourselves: When a beam is bent, what tends to slide, at a height z? The answer 
is that what’s above z tends to slide with respect to what’s below z.

Let’s again start with our rectangular beam and then generalize. If we take 
the first moment of area of the lower area shown in Figure 5.12, we integrate 
from z to h/2.

σmax

σmax

τ(z)

x

V(x), M(x)

Figure 5.11
Stress distributions for rectangular cross section.
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Q zdA z bdz z b
z z

h/

z

h

= = ′ ′=




∫ ∫

from down

2
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/22 2
2

2 2
=









−










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


b h z . (5.43)

So, the average shear stress at any height y can be written as

 

τ ( )y VQ
bI

V
I

h z= =








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−
















. (5.44)

We see that this is a parabolic distribution of shear stress, with a maximum 
at z = 0, the neutral axis, where

  τmax =
3
2

V
bh

.

Equation (5.44), remember, is valid only for beams with rectangular cross 
sections b × h.

For a nonrectangular geometry, as illustrated in Figure 5.13, we can define 
Q, the first moment of area fghj around the neutral axis, by the integral

 

Q zdA A z
area
fghj

fghj c
fghj

= =∫ ,

 

 (5.45)

where zc,fghj is the distance from the neutral axis to the centroid of area Afghj.
We now combine this result with our previous expression for shear stress 

(from equation 5.34) to provide a general formula for average shear stress at 
a longitudinal cut, in a plane parallel to the axis where the cross section has 
thickness b:

  
τxz

VQ
Ib

≡ . (5.46)

b

h
z

dz
b

dA = bdz

Figure 5.12
(a) Rectangular cross section; (b) integration for Q.
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This, like the classical bending 
stress equation, is a well-known and 
important result. The Q in question 
is the Q of the portion of the cross 
section that would tend to slide rela-
tive to the plane with thickness b. The 
shear stress thus varies with height 
along the cross section, as normal 
stress does, though the trends are 
different: Shear stress is maximized 
at the neutral axis and is zero at the 
outer surfaces of the beam, as we 
sketched in Figure 5.11. The details of 
the shear stress distribution depend 
on the cross-section geometry.

5.7 Examples

example 5.1

Find the reactions and determine the axial force P, the shear V, and the bend-
ing moment M caused by the applied loads at the specified sections in Fig-
ure 5.14. Also, draw free-body diagrams indicating the sense (direction) of 
all forces and moments.

8 k/ft

a

a b

b

3'3' 2'

Figure 5.14

Given: Dimensions of and loading on beam.
Find: Internal forces and bending moment.
Assume: The only assumptions necessary are implicitly made throughout 

this textbook: equilibrium and Saint-Venant’s Principle.

Solution

Our strategy is to find the reactions at the supports from the whole beam’s 
equilibrium and then to use the method of sections to find the internal forces 
and moments at the specified locations.

z

y

j h

f g

b

Centroid of fghj

Figure 5.13
Elements used in derivation of shear stress in 
a beam. (Adapted from Popov, E. P., Engineer-
ing Mechanics of Solids, Prentice Hall, 1998.)
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For the purpose of finding reaction forces, we can replace the distributed 
load by its equivalent concentrated load. The magnitude of this concentrated 
load is simply the area under the distributed load, in this case W = ½ (8 k/ft)
(6 ft) = 24 kips. It acts at the centroid of the triangular area under the distrib-
uted load: one third of the way from its maximum intensity, or 2 ft from the 
left end of the beam. We use this load in our FBD (Figure 5.15):

W = 24 k

  RA RB

Figure 5.15

 ΣMB = 0 = –RA(8 ft) + (24 k)(6 ft) → RA = 18 kips.

 ΣMA = 0 = –24 k(2 ft) + RB(8 ft) → RB = 6 kips.

 ΣFz = 0 is then used as a check: RA + RB = 24 kips. 

Next, we consider sections a-a and b-b. We make an imaginary cut at the 
specified location and realize that considering the loading to the left or to the 
right of the a-a cut yields equivalent results (Figure 5.16):

=
Ma Ma

Va Va

RA = 18 k RB = 6 k 

Pa Pa

½ (4 k/ft)(3 ft) = 6 k 

Figure 5.16

We choose the simpler side to calculate, in this case the portion of the beam 
to the right of a-a. We simply apply the equilibrium equations to this section 
of the beam:

 ΣFx = 0 = Pa.

 ΣFz = 0 = –Va – RB + 6 k → Va = 0 kips.
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 ΣMa = 0 = –Ma – (6 k)(1 ft) + RB(5 ft) → Ma = 24 ft-kips.

Next comes the cut at b-b. It is clear that using the portion of the beam 
to the right of b-b is easier, so we construct an FBD and apply equilibrium 
(Figure 5.17):

RB = 6 k

Pb

Vb

Mb

Figure 5.17

 ΣFx = 0 = Pb.

 ΣFz = 0 = –Vb – RB → Vb = –6 kips.

 ΣMb = 0 = RB(2 ft) – Mb → Mb = 12 ft-kips.

Note: The negative sign on the shear at cut b-b indicates that the shear at 
this cut is “negative shear,” opposite from the way it is drawn in our FBD. 
It is convenient to assume positive shear when constructing FBDs so that a 
negative sign always represents negative shear. Please refer to Figure 5.4 for a 
reminder of the sign convention for shear; Figure 5.5 shows the sign conven-
tion for bending moment.

example 5.2

Plot shear and moment diagrams for the beams shown in Figure 5.18:  

P

3 @ L/3

P

L

kx

x

L

wφ N/m

Figure 5.18

Given: Loading on three beams.
Find: Internal response to this loading.
Assume: The only assumptions necessary are implicitly made through-

out: equilibrium and Saint-Venant’s Principle.
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Solution

In each case, we first find the external reaction forces or moments (or both) 
and then use the method of sections at points of interest along the beam to 
construct the diagrams of V(x) and M(x). We will start with the first case, 
shown in Figure 5.19.

P

3 @ L/3

P

Figure 5.19

To find reactions, we need an FBD of the whole beam (Figure 5.20):

P P

RA RB 

Figure 5.20

 ΣMA = 0 = 
PL PL R L R P upB B3

2
3 3

− + → = ( ) .

 ΣMB = 0 = 
PL PL R L R P downA A3

2
3 3

− − → =− ( ) .

To construct the V diagram, look only at the points where the loading con-
ditions change:

At the left-hand end of the beam, •	 V must balance RA, so V = –P/3 
(Figure 5.21).

RA

Figure 5.21

At the right-hand end, •	 V must balance RB, so V = –P/3 (Figure 5.22).
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RB

Figure 5.22

Just to the right of the upward applied load •	 P, V = +2P/3 
(Figure 5.23).

RA

P

Figure 5.23

To construct the M diagram:

M•	  = 0 at simply supported ends.
M•	  = 0 at center by symmetry.
At upward •	 P, M = − ( )=−P L PL

3 3 9 .
At downward •	 P, M = − ( )+ ( )=+P L L PLP3

2
3 3 9 .

Plot the results (Figure 5.24).

–P/3

2P/3
V

0

PL/9

–PL/9

P

3 @ L/3

P

Figure 5.24
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L

kx

x

Figure 5.25

For Figure 5.25, we start with the external reactions, using the equivalent 
concentrated load in place of the distributed one (Figure 5.26).

3
1– kL3

2
1 kL2

2
1 kL  L = 2

1 kL2

Figure 5.26

Since the distributed load is linearly distributed, the shear distribution is 
parabolic, and the moment distribution is cubic. Or we may proceed either by 
integrating the distributed load q(x) = kx once for V(x) and twice for M(x) or by 
making our imaginary cut at some distance x from the end of the beam and find-
ing the internal shear and moment. Both methods provide the same results.

Integration

 

V x qdx kxdx kx C

V kL C

V x

( ) .

( ) .

( )

=− = =− +

= =
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M x Vdx kL x kx C

M kL C

M x
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2

2 1
6
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1
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2 1
6
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3

3kL x kx kL .
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Method of Sections

x

x/3

2
1 kx2

3
1 kL3

2
1 kL2

V(x)

M(x)

Figure 5.27

 ΣFz = 0 = − +1
2

2 1
2

2kL kx + V(x).

 so V(x) = 1
2

2 1
2

2kL kx− .

 ΣMx = 0 = M(x)+ − + ( )1
3

3 1
2

2 1
2

2
3kL kL x kx x .

We note that the internal shear V(x) does not cause a moment about the cut 
at x, so

  M(x) =− + −1
3

3 1
2

2 1
6

3kL kL x kx .

The resulting shear and moment diagrams are as shown in Figure 5.28.

kL2/2

–kL3/3

L

kx

x

Figure 5.28
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We now consider the third beam (Figure 5.29).

L

wφ N/m

Figure 5.29

The fixed support can offer both reaction forces and a moment, which are 
found using an FBD (Figure 5.30).

W = woL

woL

woL·(L/2)

Figure 5.30

 ΣFz = 0.

 ΣMo = 0.

The shear V is zero at the free end of this cantilever beam and must balance 
the upward reaction force woL at the fixed end. Since the distributed load is 
uniformly distributed, the shear distribution is linear.

The moment M is zero at the free end and must balance the reaction 
moment –woL2/2 at the fixed end. Since the shear distribution is linear (~ –x), 
the bending moment distribution is parabolic (~ –x2). The shear and moment 
diagrams are shown in Figure 5.31.
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V

M

–woL

–woL2/2

L

wφ N/m

Figure 5.31

example 5.3

Find the centroid and the second moment of area about the horizontal (y) 
axis of the cross section shown in Figure 5.32. All dimensions are in mil-
limeters. If a beam is constructed with the cross section shown from steel 
whose maximum allowable tensile stress is 400 MPa, what is the maximum 
bending moment that may be applied to the beam?

10 20 10

10

30

20

z

y

Figure 5.32
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Given: Dimensions of beam cross section; limiting stress.
Find: Location of centroid; maximum applied moment.
Assume: Hooke’s law applies.

Solution

The symmetry of the cross section shown in Figure 5.32 suggests that the hori-
zontal coordinate of the centroid will be on the vertical centerline, as sketched. 
The value yc is then 20 cm. We need only locate the vertical coordinate of the 
centroid (zc). Several strategies are available to us. We recognize that the cross 
section is a large rectangle, with an inner rectangular hole. It is thus possible 
for us to find the area and second moment of area of the large outer rectangle 
and simply to subtract off the properties of the inner rectangle.

Recall that

 

z
zdA

dA

zdA

dA
c = =
∫
∫

∑
∑

.

For clarity, results are tabulated as follows:

A (mm2) z (mm) A·z (mm3)

Centroid:

zc = 

Az

A

∑
∑

= 31 7. mm

(from top)
or 28.3 mm from bottom.

outer

40 × 60 = 2400 30 72,000

inner

–20 × 30 = –600 25 –15,000

Σ 1800 57,000
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Io = bh3/12 (mm4) d (mm) A·d2 (mm4)

Second Moment of 
Area:

 I = 

∑ +










bh
Ad

3
2

12

= 655,000 mm4

outer

720,000 31.7 – 30 = 1.7 6940

inner

–45,000 31.7 – 25 = 6.7 –26,940

Σ 675,000 –20,000

If the maximum allowable normal stress is 400 MPa, we can find the maxi-
mum moment that can be applied using the relationship

 
σmax .=

Mc
I

We have found the second moment of area I, and c is the maximum dis-
tance from the centroid attainable on the cross section, in this case 31.7 mm. 
Solving for M,

 
M I

c
= = =
σmax ( )( , )

.
.400 655 000

31 7
8N/mm mm

mm

2 4

226 MN mm 8.26 kN m⋅ = ⋅ .

example 5.4

A steel T beam is used in an inverted position to span 400 mm. If, due to the 
application of the three forces shown in Figure 5.33, the longitudinal strain 
gage at A (3 mm down from top of beam) registers a compressive strain of 50 
× 10-5, how large are the applied forces?
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Gage A

Beam section

P P

A

3P

100 100

4

4

3 16

12

50 50 100

Figure 5.33

Given: Dimensions of and strain in T beam.
Find: Magnitude of applied force P.
Assume: Hooke’s law applies.

Solution

The gage at A, in the upper portion of the cross section, registers a positive 
strain. This tells us that the bending moment in the beam at A is positive. 
Using Hooke’s law, we are able to relate this measured strain to a normal 
stress in the beam at this point, which we can then relate to the local bend-
ing moment. To do these calculations, we need to know the location of the 
centroid and second moment of area of the inverted T cross section.

As in Example 5.3, the centroid is clearly on the vertical line of symmetry. 
We need zc (Figure 5.34):

1

2

Figure 5.34

A (mm2) z(mm) Az (mm3)

1 4 ( 12 = 48 6 288

2 12 ( 4 = 48 14 672

Σ 96 960
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Hence, zc = 
zA

A
∑
∑

= 10 mm from the top, or 6 mm from bottom. Next 

comes the second moment of area I:

bh3/12 (mm4) d (mm) A·d2 (mm4)

1 576 4 768

2 64 4 768

Σ 640 1536

 I = 2176 mm4.
We are now ready to apply Hooke’s law and to find the stress corresponding 
to the strain measured at A. The beam is steel, so its Young’s modulus is E = 
200 GPa, and

 
σ εx

A
x
A

E= = × × =−( )( )200 10 50 10 109 5 8Pa Pa.

This is measured at zA = 3 mm from the top of the T, or 7 mm from the neu-
tral axis.

Next, we relate this stress to the internal bending moment at A:

 

σx
A

A AM z
I

=

Pa m)10 0 007
2 176 10

8
9

=
× −

MA( .
. m

so Pa)( m
m

4

4

MA =
×

=
−( . )

.
10 2 176 10

0 007
3

8 9

11 06. N m⋅

We then consider the loading on the beam to relate this local bend-
ing moment to the applied loads P. To do this, we must construct an FBD 
(Figure 5.35).

A
R2R1

P P 3P

Figure 5.35
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Equilibrium requires that ΣFz = 0, or R1 + R2 = 5P, and if we also impose 
ΣM1 = 0 we will have 0.1P + 0.2P + 0.3(3P) – 0.4R2 = 0, and solving these two 
equations we have R1 = 3P and R2 = 2P. We can then use the method of sec-
tions to (Figure 5.36) find the bending moment at A:

 ΣMA = 0 = –MA – 3P·(0.05 m) + 3P·(0.150 m).

 MA = 0.450P – 0.150P = 0.3P.

So, knowing that MA = 31.06 N·m and that MA = 0.3P, we find that

 
P= ⋅

=
31 06

0 3
103 5.

.
.N m

m
N .

MA

3P

R2 = 3P

Figure 5.36

example 5.5

An I beam is made by gluing five wood planks together, as shown in Fig-
ure 5.37. At a given axial position, the beam is subjected to a shear force V = 
6000 lb. (a) What is the average shear stress at the neutral axis z = 0? (b) What 
are the magnitudes of the average shear stresses acting on each glued joint?

 y 
Glued joints 

2 in. 

4 in. 4 in.

8 in.

2"

2"

z

Figure 5.37
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Given: Cross section, local loading.
Find: Average shear stresses.
Assume: Hooke’s law applies.

Solution

We obtained a formula for shear stress at a given height, V = VQ/Ib, where Q 
and b depend on the height in question. I in this relationship is the second 
moment of area of the entire cross section about the z axis. We have been 
given V. So we must calculate I once and then calculate the appropriate val-
ues of Q and b for both parts of this problem.

By inspection of the cross section’s symmetry, we see that the centroid is 
at the geometric center of the I beam (Figure 5.38). For the central vertical 
segment, therefore, d, the distance between the centroid of the segment and 
the centroid of the entire cross section, is zero. The four remaining segments 
each have the same second moment of area about their own horizontal bisec-
tors and the same areas and lengths d. Thus, we can write

 I = Ivertical + 4Ismaller 
3 3I bh bh Ad

vertical

=










+ +




1
12

4 1
12

2







smaller

 
I= + +

1
12

2 4 1
12

4 2( ( (in.)(8 in.) in.)(2 in.)3 3 in. 4 in.)(3 in.) in.2 2×










 =384

z
t

y

1

2        3 

Figure 5.38

We can calculate Q at the neutral axis by finding the centroid and area of 
the shaded area on the left, or by summing the contributions due to the other 
planks, as shown at right.

  Q = ∫zA = (dA)1 + (dA)2 + (dA)3
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  = (2)(2·4) + 3(4·2) + 3(4·2) = 64 in.3

So the average shear stress at the neutral axis is

  

τ= =
( )
( )

=
VQ
Ib

6000 64

384 2

lb in.

in. in.)

3

4

( )

(
5500 psi.

As an exercise, verify that each glued joint is subjected to the same aver-
age shear stress. We determine only the average shear stress acting on the 
lower-right glued joint by using the area A and length of contact b as shown 
in Figure 5.39. The value of Q is (3)(4·2) = 24 in.3, and the average shear stress 
is VQ/Ib = 188 psi.

At

Figure 5.39

example 5.6

The beam shown in Figure 5.40 is subjected to a distributed load. For the 
cross section at x = 0.6 m, determine the average shear stress (a) at the neutral 
axis, and (b) at z = 0.02 m.

130 kN/m

0.8 m 
1.4 m

x

y
0.06 m

0.04 m

z

Figure 5.40  

Given: Dimensions of and loading on simply supported beam.
Find: Shear stress at two locations along height of cross section at x = 0.6 m.
Assume: Hooke’s law applies.
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Solution

We are able to make use of the relationship between average shear stress and 
height derived for rectangular cross sections in Section 5.6. First, though, we 
need to consult our FBD and find the reactions at the supports (Figure 5.41).

(1.4)/3 =

0.467 m

½ (130 kN/m)(1.4 m) =

RA RB

Figure 5.41

 ΣFy = 0 → RA + RB = 91 kN.

 ΣMB = 0 = RA(0.8 m) + 91 kN(0.133 m).

 → RA = –15,130 N (downward).

 → RB = 106,130 N (upward).

We are interested in the cross section at x = 0.6 m. We know that the aver-
age shear stress depends on the internal shear force in the beam at the point 
of interest, so we need to calculate the shear V(x = 0.6 m). To do this, we make 
an imaginary cut at x = 0.6 m (Figure 5.42).

V

RA

Figure 5.42

 In this 0.6-m-long span, the distributed load has a maximum intensity of

  
130 0 6

1 4
55 7kN

m
m
m

kN
m









 =

.

.
. ,

so the equivalent concentrated load acting on the 0.6-m-long segment is the 
area under this load: 
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1
2

55 7 0 6 16 714. . ,kN
m

m N.








( )=

Equilibrium of our 0.6-m segment is

 Σ Fy = 0 = – V – RA – 16,714 N

 → V = – (16,714 N + 15,130 N) = –31,844 N (negative shear).

We can now use our derived expression for rectangular cross sections, 
which includes the y dependence of Q:

 

τ( ) .z V
bh

h z=



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23
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2

At the height of the centroid or neutral axis, z = 0, and this becomes
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At z = 0.02 m below the neutral axis, we find that
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5.8 Problems

 5.1 Draw a shear diagram for the beam shown in Figure 5.43.

10 kips

4' 2' 6' 2'

15.7 kips 18.3 kips

w = 4 kips/ft

Figure 5.43

 5.2 Draw shear and bending moment diagrams for the beam shown 
in Figure 5.44.

P = 24 kips

RA = 8 kips RB = 16 kips10' 5'

Figure 5.44

 5.3 Draw shear and bending moment diagrams for the overhanging 
beam in Figure 5.45.

P = 15 N

RB = 20 N RD = 25 N

10 m15 m5 m

w = 1 N/m 

Figure 5.45

 5.4 Draw shear and bending moment diagrams for the beam shown 
in Figure 5.46:
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RA = 36.8 N

w = 4 N/m

RB = 19.2 N

P1 = 8 N P2 = 8 N

10 m 5 m 5 m 5 m

Figure 5.46

 5.5 Construct axial force, shear, and bending moment diagrams using 
the integration process for the loaded beam shown in Figure 5.47. 
Note: Drawing is not to scale.

200 kN

4
3

90 kN/m
20 kN/m

2 m 1.5 m 2 m 1 m 2 m 2 m

Figure 5.47

 5.6 Given the shearing force and bending moment diagrams shown 
in Figure 5.48, what are the x and z coordinates of the points at 
which you would expect to find the maximum shear stress if the 
cross section has the shape in the figure? The location of the cen-
troid is indicated.

6 in.

1 in.

1 in.

1 in.

8 in.

4 in.

4.78 in.

Cross–section:

x

2 kN 8 kN

1 m 1 m 1 m

z
RA = 7 kN RB = 3 kN 

V(x)

[kN]

M(x)

[kN–m]

–3

5

3

–2

–2

Figure 5.48
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 5.7 The shear force diagram for a beam is shown in Figure 5.49. 
Assuming that only forces act on the beam, determine the beam’s 
loading and draw the bending moment diagram.

V(x)

0

18 in. 72 in. 18 in.

570 lb

390 lb

180 lb

330 lb

150 lb

–540 lb

x

Figure 5.49

Case Study 3: Physiological Levers and Repairs

The human skeletal system is a natural mechanical apparatus. Our beam 
models can provide useful ways to explain how the musculoskeletal system 
works and why it sometimes breaks as well as provide a basis for repairing 
broken elements. In the first category, we extend Example 2.1 (from Chapter 
2) to model the human forearm as a beam. Then we use a simple beam analy-
sis to design a repair for a broken hip bone.

The Forearm is Connected to the elbow Joint

In Chapter 2, Example 2.1, we performed a very simple, first-order equilibrium 
analysis of the bones and bicep muscle of a human arm. Our single interest 
there was to find the force exerted by the biceps muscle when it supported 
a weight through the elbow-biceps-forearm-hand system. A more complete 
analysis requires a deeper consideration of that system. This is, by the way, a 
very old problem. Figure CS3.1 shows a diagram taken from the treatise De 
Motu Animalum, published in Italy by Giovanni Alfonso Borelli (1608–1679). 
Note that Borelli’s work, whose English title is On the Movement of Animals, 
preceded the 1687 publication of Newton’s laws of motion! Working without 
the benefits of Newton’s laws, Borelli discovered that the forces on bones are 
significantly higher than the forces applied externally. Thus, the skeleton is 
at a mechanical disadvantage, as the following second-order analysis shows.
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We show an anatomical drawing of the elbow-biceps-forearm-hand sys-
tem in Figure CS3.2. The elbow joint is a complicated hinge that allows a 
bent arm to go straight up and down, to extend away from the body, and 
to rotate about an axis through the forearm. (The forearm rotations prona-
tion and supination are much like those experienced by runners when their 
feet rotate with respect to their ankles and legs.) We restrict our analysis 
to simple lifting with no extension or rotation. Then we can assume that 
the three muscles shown in Figure CS3.2 act as a single “biceps-brachialis” 
muscle that exerts the force B shown in the FBD in Figure CS3.3. The force 
J is exerted by the joint on the forearm, and W is the supported weight. In 
this model, the elbow joint clearly acts as a simple planar hinge. The angle 
θ at which B acts can be determined by anatomical measurement, and the 
angle φ at which J acts is unknown or indeterminate. (The observant reader 
will note that the arm’s own weight is left out altogether; see Problem CS3.3, 
Problem CS3.4, Problem CS3.5, Problem CS3.6, and Problem CS3.7.)

We now sum forces in the x and y directions and moments about an axis 
drawn through the elbow joint (and we ignore the small offset between the 
application of the muscle force B and the axis of the arm):

 
F B Jx∑ = − =cos cos ,θ φ 0  (CS3.1a)

 
F B J Wy∑ = − − =sin sin ,θ φ 0  (CS3.1b)

 
M WL Bbz∑ = − =sin .θ 0  (CS3.1c)

D
H L

E

O
I

C
A

B

Q

R

Figure CS3.1
The elbow force problem presented by the mathemati-
cian Giovanni Alfonso Borelli (1608–1679) in his trea-
tise, De Motu Animalum. (From Martin, R. B., Burr, 
D. B., and Sharkey, N. A., Skeletal Tissue Mechanics, 
Springer-Verlag, New York, 1998. With permission.)
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A

HUMERUS

BICEPS

BICEPS

BRACHIALIS

BRACHIO-
RADIALIS

RADIUS

ULNAOLECRANON

B
C

D

Figure CS3.2
Anatomical drawings of the elbow-biceps-forearm-hand system, showing some of the muscles 
and bones that enable the joint to flex up and down, extend in and out, and rotate about the 
forearm’s axis. (From Martin, R. B., Burr, D. B., and Sharkey, N. A., Skeletal Tissue Mechanics, 
Springer-Verlag, New York, 1998. With permission.)

B

b

J
x

θ

y

W

L

Figure CS3.3
An FBD of the principal forces acting on a forearm when the elbow acts as a simple 
(planar) hinge, raising and lowering the hand with respect to the elbow. (Adapted 
from Martin, R. B., Burr, D. B., and Sharkey, N. A., Skeletal Tissue Mechanics, Springer-
Verlag, New York, 1998.)
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Equation (CS3.1a), equation (CS3.1b), and equation (CS3.1c) comprise a set 
of three equations for three unknowns: B, J, and ϕ. They can be straightfor-
wardly solved (Problem CS3.1) to yield

 
B WL

b
=

sin
,
θ

 (CS3.2a)

 J B W B= − +( sin ) ( cos ) ,θ θ2 2  (CS3.2b)

 
φ

θ
θ

=
−−tan sin

cos
.1 B W

B
 (CS3.2c)

The FBD in Figure CS3.3 shows that the forearm must bend like a beam 
and that the bending moment will be zero at the hand carrying the weight, 
will increase (in magnitude) linearly until it reaches its maximum value at 
the point where B is applied, and will then decrease to zero at the hinge. 
Therefore, the maximum moment carried by the ulna and radius bones is 
given by (see Problem CS3.2)

 M W L bmax ( ).=− −  (CS3.3)

Now let us estimate the magnitudes of the internal forces and the moment 
that result from supporting the weight W. First of all, from our everyday expe-
rience, we can approximate sin θ ≅ 1 because the biceps acts almost imme-
diately adjacent to the elbow joint (or hinge). Second, in a similar estimate 
resulting from inspection of the geometry of the elbow-biceps-forearm-hand 
system, we can say that L/b >> 1 (see Problem CS3.8). The first consequence 
of these two assumptions follows from equation (CS3.2a) and is

 
B W L

b
W~ .









>>  (CS3.4)

Thus, the force exerted by the biceps is an order of magnitude larger than 
the weight supported. The second consequence of our two assumptions fol-
lows from equation (CS3.2b) and equation (CS3.4) and states a similar result 
about the reaction force at the joint:

 J B W B B W~ ( ) ( ) ~ .− + >>2 2  (CS3.5)
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Finally, a corresponding estimate of the maximum moment in the beam 
resulting from the weight W at its tip follows from equation (CS3.3):

 M WLmax ~ .−  (CS3.6)

This result is consistent with what we have already seen about the behavior 
of beams since in the limit sin θ ~ 1 the forearm is acting as a cantilever beam.

Fixing an intertrochanteric Fracture

The hip bone is connected to the thigh bone or femur. The femur’s neck and head 
comprise the familiar post-and-ball joint connecting the thigh bone to the 
hip bone. This ball joint allows the thigh bone to rotate and swivel (so we can 
sit and walk and run!). The femur’s neck and head are connected to the top of 
the femur by the trochanter, an elaborate bony structure that has several parts 
(see Figure CS3.4). An intertrochanteric fracture occurs when the substantial 
forces transmitted from the hip to the femur cause the trochanter to break. 
Modeling the repair of an intertrochanteric fracture is a neat application of 
beam theory.

Figure CS3.5 displays a sketch of an intertrochanteric nail plate that has been 
inserted into the top of the femur. The nail plate transmits the appropriate 
(and substantial) forces from the hip bone, across the ball joint, to the thigh 
bone—when the basic trochanteric structure is no longer able to do that 
because it has cracked. Figure CS3.5 also shows that this substantial force 
of 400 N must be carried at an angle of 20o with the axis of the nail plate so 

Loading

σ

Unloading  

Energy 
dissipation 

ε 0 
0 0.2 0.4 0.6 

Strain 

Longitudinal Vein Stress-strain Curve 

0.8 1 1.2 1.4
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2 

3 

4 
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ss
 (P

a)
 

5 

Dish 5 cyclic (1 HZ) 
Dish 5 cyclic (5 HZ) 
Dish 5 cyclic (10 HZ) 6 

7 
×104 

(a) (b)

Figure CS3.4
The skeletal structure of the femur and its connection to the hip bone across the trochanteric 
structure at the top of the femur. (Adapted from Barron’s Atlas of Anatomy, Barron’s Educational 
Series, Hauppauge, NY, 1997.)
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that the nail plate across the trochanteric structure can be modeled as a beam 
that also supports an axial load. We need to know the relevant stresses and 
strains to validate the design of this orthopedic device.

The entire nail plate structure is rigidly attached to the femur as shown in 
Figure CS3.5. Thus, the nail plate itself, apart from its vertical attachment to 
the femur, can be modeled as an axially and transversely loaded cantilever 
beam. The beam (or nail plate) is made of stainless steel (E = 205 GPa) and 
has the following dimensions: b = 5 mm, h = 10 mm, and L = 60 mm long. 
The FBD in Figure CS3.6 shows that the beam is subjected to an axial force 
of 400 (cos 20o) = 376 N and a transverse tip load of 400 (sin 20o) = 137 N. It 
turns out that the axial and bending behaviors can be considered as two 
entirely separate issues; we focus here on the beam bending (see Problem 
CS3.9 and Problem CS3.10).

The bending of the nail plate is modeled simply as that of a tip-loaded can-
tilever. Thus, with P being the load and x the distance from the tip, the shear 
and moment in such a beam are, respectively,

135°

400 N
20°

Nail Plate

Integrated nail
plate; vertical
attachment to
femur

Figure CS3.5
The nail plate structure showing both the nail plate itself and its rigid, vertical connection to 
the femur. The nail plate is intended to provide the support needed after an intertrochanteric 
fracture. (Adapted from Enderle, J. D., Blanchard, S. M., and Bronzino, J. D., Introduction to Bio-
medical Engineering, Academic Press, San Diego, 2000.)
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Figure CS3.6
FBD of the bending model of an intertrochantic nail plate structure.
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 V x P( ) .=  (CS3.7)

 M x Px( ) .=−  (CS3.8)

The shear force and stress are constant over the length of the beam, and 
the maximum moment and bending stress will occur at the support, located 
at the greater trochanter. The maximum shear and bending stresses are, 
respectively,

  τmax .= 4 11 MPa  (CS3.9)

and

 σmax =197 MPa  (CS3.10)

(see Problem CS3.11 and Problem CS3.12). Both of these stresses are much 
smaller than the yield stress for stainless steel,

 σyield MPa= 700 ,

so the proposed stainless steel nail plate can be considered a satisfactory 
design in terms of its mechanical performance. It is important to keep in mind 
that we have not considered whether, for example, the nail plate might be 
rejected by the body in which it was placed. There are important compatibil-
ity issues to consider when materials are selected for human implants and 
biomimetic devices (see Problem CS3.13).

Problems

CS3.1 Confirm that equation (CS3.2a), equation (CS3.2b), and equation 
(CS3.2c) are correct by solving equation (CS3.1a), equation (CS3.1b), 
and equation (CS3.1c). 

CS3.2 Draw the moment diagram for the elbow-biceps-forearm-hand sys-
tem, and determine the magnitude and location of the maximum 
moment.

CS3.3 How do the magnitudes of the biceps force B and joint reaction J 
change if the total weight w of the forearm and hand are included 
in the second-order analysis and are assumed to act at the mid-
point of the forearm?

CS3.4 Draw the moment diagram for the elbow-biceps-forearm-hand 
system, and determine the magnitude and location of the maxi-
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mum moment if the total weight w of the forearm and hand are 
included and are assumed to act at the midpoint of the forearm.

CS3.5 How large (as a fraction of the supported weight W) must the 
weight w of the forearm and hand be to change the analysis done 
under the assumption of weightlessness?

CS3.6 What sort of simple measurement or experiment could be done to 
determine the total weight w of the human forearm and hand?

CS3.7 How do the magnitudes of the biceps force B and joint reaction J 
change if the total weight w of the forearm and hand are included 
in the second-order analysis and are assumed to be uniformly 
distributed over the forearm length L?

CS3.8 Examine and measure the arms of three (or more) of your col-
leagues, and develop (average) estimates of the distances b and L 
and of the L/b ratio.

CS3.9 Determine the axial stress and strain of the axially loaded nail 
plate. How much does the nail plate shorten as a result of this axial 
response?

CS3.10 What is the maximum shear stress that is caused by the axial force 
on the nail plate?

CS3.11 Calculate and confirm the maximum shear stress due to the bend-
ing of the stainless steel nail plate given in equation (CS3.9).

CS3.12 Calculate and confirm the maximum bending stress of the stain-
less steel nail plate given in equation (CS3.10).

CS3.13 Research and identify the major materials compatibility issues that 
arise when devices such as the nail plate are inserted or implanted 
in a human being.

Notes

 1. The centroid of an area is defined as its geometric center; in essence, the “center 
of mass” of a two-dimensional plane.

 2. Key points are (1) points of application of concentrated loads and reactions; (2) 
points of zero shear and where the V diagram goes through zero; and (3) the 
endpoints of all distributed loads.

 3. We do not need to consider any variation of q(x) within dx, because in the 
limit as dx → 0, the change in q becomes negligibly small. This is not an 
approximation.

 4. In the immediate vicinity of the applied load, the behavior is somewhat more 
complex; we make use of Saint-Venant’s principle to apply the assumption to 
the whole beam. Incidentally, this “plane sections remain plane” hypothesis for 
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bending was first made (with some mistakes) by influential Swiss mathemati-
cian Jacob Bernoulli (1645–1705), whose nephew Daniel was also renowned for 
his work in fluid mechanics.

 5. That is, the only stress relative to the x, y, and z coordinates as we have defined 
them. The stress state on a different plane, as we well know, could look 
different.
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6
Beam Deflections

Knowing the accurate deflection of a beam under certain loading conditions 
is of interest to us as designers. In some designs, for example when we design 
for stiffness, we are seeking to minimize deflection (strain). Floorboards, roof 
supports, and bookshelves are some examples of beams whose deflections 
are ideally minimized. In other cases, a functional design may rely on the 
deflections of beams; examples of this include diving boards, leaf springs, 
guitar strings, and thermostats. Both situations require being able to predict 
the deflection behavior of a beam under loading.

6.1 Governing Equation

We model the deflected shape of a beam in terms of the vertical movement 
of the beam’s neutral axis. Once again, we make use of the premise that dur-
ing bending, plane sections through a beam remain plane. For simplicity, we 
first consider bending only about one of the principal axes of the cross sec-
tion. All of this should sound familiar from the previous chapter’s explana-
tion of pure bending, but now we include an added generality: We permit the 
radius of curvature ρ of the neutral axis to vary along the span (x).

In Figure 6.2 we see a segment of a beam with a greatly exaggerated 
deflection w, measured from the x axis. We note that the slope of the beam’s 
neutral axis at point A is dz/dx. This is tan θ. Since we are assuming small 
deformations, we say tan θ ≈ θ in radians. The slope at point B is –dθ. The 
change in slope between points A and B, which were originally dx apart on 

Figure 6.1
Inspiration from Bill Watterson, Calvin and Hobbes. Used by permission of Universal Press 
Syndicate.



252 Introduction to Engineering Mechanics: A Continuum Approach

the horizontal beam axis, is then given by –dθ. The curvature of the beam, 
or the rate of change of the slope with respect to x, is

 

d
dx

dz
dx

d
dx

d









= −( )θ  (6.1)

or

 

d w
dx

d
dx

2

2
=−

θ
. (6.2)

In Figure 6.2 we remind ourselves that the neutral axis can be thought of as a 
segment of a very large circle with radius ρ. The angle dθ between A (deflec-

dθ 

x 

z 
dz 

dx 

A 

B 
θ 

ρ 

dθ 

(a)(a)

dθ 

x 

z 
dz 

dx 

A 

B 
θ 

ρ 

dθ 

(b)(b)

Figure 6.2
Beam deflected by pure bending; points A and B lie on the beam’s neutral axis. A line with the 
slope of the neutral axis at A is extended past B to show the change in slope, –dθ, between A 
and B.
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tion w) and B (w + dw) is the change in θ from x to x + dx. In terms of ρ, this 
angle may be written as

 
d dsθ

ρ
=

1 ,  (6.3)

where ds is the arc length given by

 dx = ds cos θ = ds (1 – ½θ2 + …), (6.4)

Again, since we are restricting ourselves to small angles θ, the higher-order 
terms drop out, and we have

 dx = ds (6.5)

and, hence,

 

d
dx
θ
ρ

=
1

. (6.6)

If we substitute − =d w
dx

d
dx

2

2
θ

 
into this expression, we have

 

d w
dx

2

2

1
=−
ρ

. (6.7)

Recalling that the radius of curvature can be related to the bending moment 
and the beam’s flexural rigidity as

 

1
ρ
=

M
EI

,  (6.8)

we obtain a new relationship between the beam’s deflection and the bending 
moment:

 

d w
dx

M
EI

2

2
=− . (6.9)

Here, M = My and I = Iy as in the previous chapter. With this equation, we 
are able to calculate the deflections of beams. Our basic strategy is to deter-
mine the bending moment M(x) in a beam and then to integrate this new 
equation twice to determine w(x).
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Notice that positive w is in the positive z direction: downward. This is also 
the direction of positive applied load q(x). While somewhat surprising, this 
choice is informed by the fact that most beams are deflected downward by 
downward loads. Some textbooks choose to define positive w in the upward 
direction, which corresponds to our expectation that “up” is positive, but this 
convention results in most loads and most deflections being negative. Both 
sign conventions ensure agreement between “positive bending moment” 
and “positive curvature.” Figure 6.3 illustrates this agreement.

We also observe that the governing equation for deflection can be recast in 
terms of the moment, shear, or load:

 
EI d w

dx
M x

2

2
=− ( )

 (6.10a) 

 
EI d w

dx
V x

3

3
=− ( )

 (6.10b)

 
EI d w

dx
q x

4

4
= ( )

 (6.10c)

Fewer constants of integration are necessary in the lower-order equations. 
No matter which of these equations we choose to use, we need to use bound-
ary conditions (BCs) to determine the constants of integration.

x

z

+ Mz

Positive curvature Kz

Figure 6.3
Positive moment, positive curvature.
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6.2 Boundary Conditions

As we have seen when obtaining shear V(x) and moment M(x) by the integra-
tion methods of Chapter 5, Section 5.4, the conditions at the beam ends are 
significant. We know that the type of support at a boundary helps determine 
the internal forces and moments at this location, and it follows that the type 
of support also affects the deflection w(x):

At a •	 fixed or clamped support, the displacement w and its slope dw/dx 
(negative rotation θ) must vanish. If this support is at x = a as shown 
in Figure 6.4a, we must have

 w(a) = 0         w′(a) = 0. (6.11)

At a •	 roller or pinned support (i.e., a “simple support”) no deflection w 
or moment M can exist. So, if this support is at x = a as in Figure 6.4b, 
we must have

 w(a) = 0 M(a) = –EIw″(a) = 0. (6.12)

At a •	 free end, the beam feels neither moment nor shear. If x = a is free 
(Figure 6.4c), we have

 M(a) = –EIw″(a) = 0         V(a) = –EIw″′(a) = 0. (6.13)

At a •	 guided support like that sketched in Figure 6.4d, free vertical 
movement is permitted, but rotation of the end is prevented. This 
type of support cannot resist shear, and

 w′(a) = 0         V(a) = -EIw″′(a) = 0. (6.14)

x

z z   z z
w(a) = 0

x x  x 

w(a) = 0 M(a) = –EIw''(a) = 0 
M(a) = –EIw''(a) = 0 

θ(a) = –w'(a) = 0
θ(a) = –w'(a) = 0 V(a) = –EIw'' '(a) = 0 V(a) = –EIw'' '(a) = 0 

a

a    a      a 

(a) Fixed (b) Simple (c) Free (d) Guided

Figure 6.4
Homogeneous boundary conditions for beams with constant EI. In (a) both conditions are 
kinematic; in (c) both are static; and in (b) and (d), conditions are mixed.
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The boundary conditions pertaining to force quantities (V or M) are known 
as static boundary conditions. Those that describe geometrical or deformational 
behavior of an end (w or θ) are known as kinematic boundary conditions.

The boundary conditions just listed are all homogeneous boundary condi-
tions (i.e., something must equal zero). It is also possible to encounter non-
homogeneous boundary conditions, where a given nonzero shear, moment, 
rotation, or displacement is prescribed. In this case, the prescribed quantity 
simply replaces zero in the previous conditions.

In some calculations, we uncover discontinuities in the mathematical 
functions for either load or stiffness along a given beam’s length. These 
discontinuities occur at concentrated forces or moments and at abrupt 
changes in cross-sectional areas. When this happens, we supplement our 
boundary conditions with the physical requirement of continuity of the neu-
tral axis.1 Anywhere a discontinuity occurs, we must ensure that deflection 
and the tangent to the neutral axis remain the same when this discontinu-
ity’s point is approached from either direction. Figure 6.5 illustrates two 
unacceptable geometries that would have to be corrected by imposing this 
requirement.

This requirement is expressed as a continuity boundary condition: At a 
place d where two solutions meet, we must have continuity of deflection w 
and its tangent or slope w′:

 w1(d) = w2(d) and w1′(d) = w2′(d) (6.15a, b)

We now have sufficient information to begin solving our differential equa-
tion for deflection.

6.3 Solution of Deflection Equation by Integration

If we start with the equation EIwiv = q(x), we must integrate this expression 
four times to obtain the solution for deflection w(x):

Tangents

Figure 6.5
Discontinuous configurations of the neutral axis’ deflection that would have to be corrected.
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The constants Ci have physical meanings. The second of these five equa-
tions is equivalent to good old

  V = − +∫ qdx C1,

since we know that –EIw″′ = V; the third equation should also look familiar. 
We have worked with these equations and seen that the constants C1 and C2 
come from the end conditions on V and M; hence, these two constants come 
from static boundary conditions. When we continue on to the fourth and fifth 
equations, we obtain two more constants of integrations, C3 and C4, which 
describe the slope and deflection of the neutral axis. These constants come 
from the kinematic boundary conditions.

If we begin our integration at a point further down this chain, starting 
with –EIw″ = M(x), we obtain after two integrations:

 

− = + +∫∫EIw M x dx C x C( ) 3 4 . (6.16)

We once again find C3 and C4 from the boundary conditions.
Any one of these five equations may be used as a starting point for finding 

beam deflection. The choice depends entirely on the available data.
As long as the beam behaves elastically, it is possible to superpose solutions 

to determine the deflection w(x) in a complex loading situation. Tables such 
as Table 6.1 offer deflections w(x) for many isolated loads. Using such a table 
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and our previous results, we can simply add the solutions for the various 
loads, as in Figure 6.6. This is also an excellent way to resolve the problem of 
statically indeterminate beams.

In Section 6.4 and Section 6.5, we discuss two techniques that can be used 
to analyze more complex situations. The first method, using singularity func-
tions, is both mathematically rigorous and very convenient. It is especially 
useful in resolving discontinuities along the beam’s axis.

Table 6.1

Deflections and Slopes of Neutral Axes for Variously Loaded Beams

P

w x
PL

El
x
L

x
L

( )=




















−

3 2 3

6
3










P

a b

w x
Pa

El
x
a

x
a

( )=




















−

3 2 3

6
3










≤ ≤    0 x a

w x
Pa

El
x
a

a x L( )    =



















− ≤ ≤

3

6
3 1

qo

w x
q L

El
x
L

x
L

o( )=
















−

4 2

24
6 4

33 4

+

























x
L

qo

w x
q L

El
x
L

x
L

o( )=
















−

4 2

120
10 10 





























+ −

3 4 5

5
x
L

x
L




qo

w x
q L

El
x
L

x
L

o( )=
















−

4 2

120
20 10 


























+
3 5

x
L

P

a b

w x
PbL

El

b

L

x
( )= −




















2 2

6
1

LL

x

L
x a− ≤ ≤
























3

0     



Beam Deflections 259

6.4 Singularity Functions

Determining the deflection and slope of a beam using the integration method 
is straightforward when we can represent the bending moment within the 
beam by a single analytical function M(x). Singularity functions make it pos-
sible to characterize the shear V and bending moment M by single math-
ematical expressions even when the loading is discontinuous. This method 
is most effective for beams with a constant product EI. Singularity functions 
are particularly valuable in computational techniques.

In general, singularity functions are defined as

 
x a x a x a

x a
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




( ) when
when0

 (6.17)

The singularity functions corresponding to n = 0, 1, and 2 are graphed in 
Figure 6.7.

Figure 6.8 shows how singularity functions can be used to express the 
loading on four representative beams.

Using singularity functions to describe beam deflections was first suggested 
in 1862 by German mathematician A. Clebsch (1833–1872), though the notation 
of equation (6.17) was introduced somewhat later by W. H. Macaulay (1853–1936), 
a British mathematician and engineer. The angular brackets < > used to write 
singularity functions are often called “Macaulay’s brackets” (Macaulay 1919).

Like many problem-solving approaches, the use of singularity functions is 
best learned by applying the technique. We strongly encourage solving the 
worked examples in this chapter using the method of singularity functions to 
confirm that the solutions obtained are equivalent to those arrived at by direct 
integration.

= +
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P

w 

(b)

= +

P

w 

P

w

(a)

Figure 6.6
Finding deflection by superposition.
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6.5 Moment Area Method

In practice, we often encounter beams whose cross-sectional areas vary and 
whose loading is complex. This is the typical situation with machine shafts, 
which have variations in shaft diameter to accommodate, for example, rotors, 
bearings, and collars, and is also common in aircraft and bridge construction. 
A graphical interpretation of the governing equations of Section 6.1 yields an 
alternative procedure for calculating the slope and deflection of beams that 
is particularly useful in the case of discontinuities in both loading and cross-
sectional area—in such cases, the product EI is no longer constant.

This alternative procedure, known as the moment area method, was indepen-
dently developed by German engineer Otto Mohr in 18682 and by University 
of Michigan professor Charles Greene in 1873. It is based on the same assump-
tions, and has the same limitations, as the method of direct integration.

In addition, the deflection found by the moment area method is the 
deflection due only to beam flexure (bending moment); deflection due 
to shear is neglected.

The method makes use of two theorems based on the geometry of the neu-
tral axis (elastic curve) and on the M/EI diagram. Constants of integration 
related to boundary conditions do not appear in these expressions because 

<x – a>0

0 x 

<x – a>1

0 aa0 x a x

<x – a>2

1

A

<x – a>0

0 x 

<x – a>1

0 aa0 x a x

<x – a>2

1

B

Figure 6.7
Singularity functions with n = 0, 1, and 2.



Beam Deflections 261

the theorems are based on definite integrals and not the indefinite “from 0 to 
x” we have used so far. We start with equation (6.9),
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which we can usefully rewrite as
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So if we consider two arbitrary points C and D on the beam in Figure 6.9a, 
we can write
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Figure 6.8
Basic beam loadings expressed in terms of singularity functions.
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where θC and θD are the slopes of the 
beam at points C and D, as shown in 
Figure 6.9c. Their difference can be 
defined as θD – θC = θD/C, the angle 
between the tangents to the neutral 
axis at C and D (Figure 6.9d). The 
integral on the right-hand side of this 
expression represents the area under 
the M/EI diagram between C and D, 
as in Figure 6.9b. This restatement 
equation (6.18) is the first moment area 
theorem:
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where θD/C is the area under the M/EI 
diagram between C and D. Note that 
the angle θD/C and the area under 
M/EI have the same sign. A positive 
area (above the x axis) corresponds 
to a counterclockwise rotation of the 
tangent to the neutral axis on the 
way from C to D. Similarly, a nega-
tive area corresponds to a clockwise 
rotation. We use this theorem to find 
slopes at various points: θD = θC + 
θD/C.

If we now zoom in on two points 
between A and C, a distance dx from 
each other, we will be able to derive 
the second tenet of the moment area 
method. We are interested in find-
ing a way to express the vertical dis-
tance dt in Figure 6.10. We see from 
the figure that dt = x1dθ, assuming 
the angles involved are small. If we 
summed all the dt’s from A to C, we 
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x
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Figure 6.10
Second moment area theorem.
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Figure 6.9
First moment area theorem.
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could obtain the vertical distance AE. This distance is the displacement of a 
point A from a tangent to the elastic curve drawn at C, called the tangential 
deviation of A from C’s tangent and denoted tA/C.

We can express tangential deviation mathematically as

 

t xdA C

A

C

/ =∫ θ . (6.21)

Remembering the relationship dθ = (M/EI)dx, we write the second moment area 
theorem:

 

t M
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xdxA C

A

C

/ ,=∫  (6.22)

and we have a handy way to calculate this tangential deviation from the (M/
EI) diagram. Although tangential deviation may sound like a strange geomet-
rical quantity with questionable utility, it is actually valuable to have a way 
to quantify the vertical distances between points on the neutral axis, because 
if we know these distances along a beam’s length, we can express the deflec-
tion w at any point without doing the integration to get w(x).

The application of this theorem relies on our recognition that the right-
hand side integral looks like the first moment of area of a shape. We remem-
ber that when we have an integral with the form ∫ydA it can be replaced 
by the quantity ycA, where yc is the distance from the reference axis to the 

area’s centroid. So if we define x1  as 
the distance from the centroid of the 
area under the (M/EI) curve to the 
vertical axis through our left-hand 

reference point, A, and x2  as the dis-
tance from the centroid of the same 
area to the vertical axis through 
our right-hand reference point C, as 
shown in Figure 6.11, we have the 
two relations:

 tA/C = (area under (M/EI) between A and C) · x1 . (6.23)

 tC/A = (area under (M/EI) between A and C) · x2 . (6.24)

To implement the moment area method it is convenient to have the areas 
and centroids of several possible areas at hand, as in Table 6.2.

A C D B

EI
M

x

x1 x2

Figure 6.11
Useful definitions.
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6.6 Beams with Elastic Supports

What happens in the case of a support that is not rigid? How does a flexible 
or elastic support affect a beam’s deflection? For example, consider a uni-
formly loaded beam for which the left end is fixed but the right end is sup-
ported on a spring of stiffness ks, as in Figure 6.12a.

This problem is indeterminate because the magnitude of the reaction force 
applied through the spring is unknown, as is the beam deflection at that 
point. This problem can be decomposed so that the respective moments and 
tip deflections may be found. However, our consistency or compatibility con-
dition for this application of the force (flexibility) method requires that we 
recognize the deflection at x = 0 due to the spring. Thus, the present compat-
ibility condition requires that

Table 6.2

Parts of M/EI Curve

Shape Area c

Rectangle

b

C

c

h
bh b/2

Triangle
C

c

b

h
bh/2 b/3

Parabolic spandrel
C

y = kx2

b

h

c

bh/3 b/4

General spandrel

c

C
y = kxn

b

h
bh/n+1 b/n+2
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from which it follows that an equation 
for the redundant R emerges as 
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               (6.26)

Note that this equation for the redun-
dant (spring) force requires that we add 
the flexibility coefficients for both the 
spring and the tip-loaded cantilever. 
It is also interesting to observe that if 
we define the following two stiffness 
coefficients,
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then the equation for the redundant can be cast as
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This result is just what we would expect from an equivalent mechanical cir-
cuit for this problem (shown in Figure 6.12b). The load carried by the discrete 
spring at the tip of the cantilever can be found to be
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Clearly, if there is no discrete spring at the tip, there will be no reaction at 
the tip. Further, if the discrete spring is allowed to become infinitely stiff, we 
can take the appropriate limit in  equation (6.30) and can use the prior defini-
tions to show that there is a reaction whose magnitude is

ks Kb/R

Kb/qo

ks 

qo 

(a) 

(b) 

Figure 6.12
An indeterminate beam with elastic sup-
port (a) and its equivalent mechanical cir-
cuit (b).
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Elastic supports arise fairly often in practice, so it is useful to have the capac-
ity to model their behavior. Two simple examples are pictured in Figure 6.13, 
and their corresponding stiffness coefficients for a supporting cantilever 
(Figure 6.13a) and for cable support (Figure 6.13b) are, respectively,

 
k E I

Lcantilever =
3 1 1

1
3 ,  (6.32)

 
k A E

Lcable =
2 2

2
. (6.33)

In practice, of course, elastic or yielding supports may be more complicated, 
but they can often be modeled as simple extensional or rotational springs.

6.7 Strain Energy for Bent Beams

As we remember from our discussion in Chapter 2, Section 2.11, strain energy 
represents the energy absorbed by a material during a loading process. This 

(a)

(b)

Cable

E1, I1, L1

E2, A2, L2

Figure 6.13
Examples of elastic supports.
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is sometimes referred to as internal work, or potential energy. Strain energy 
is a useful concept for determining the response of structures to static (and 
dynamic!) loads. We begin our discussion of strain energy in beam bend-
ing by restating results for a simply supported, uniformly loaded beam and 
extending them to reinforce the validity of our basic assumptions. First of all, 
the deflected shape of this simple beam may be found to be
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. (6.34)

We can now go backward and use this result to calculate the moment and 
shear force as
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and the bending (normal) and shear stresses for this problem as
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Note first of all that we can compare the maximum values of the bending 
and shear stresses. Accordingly,
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from which it follows that

 

τ

σ
xz

xx

h
L

( )
( )

=max

max

,  (6.41)

so that for slender beams, the shear stress is much smaller than the bending 
stress. We can then infer that the shear strain is also much smaller than the 
bending strain, so the fact that our kinematics assumptions produce zero 
shear strain should not bother us too much.

However, we can go one step further to confirm this result. In the same 
way that we can calculate the energy stored in a simple spring, we can calcu-
late the energy stored in an elastic beam due to different kinds of deforma-
tion. More specifically, we can calculate the energy stored due to bending 
deformation and the energy stored due to shear deformation. In general, as 
we showed in Chapter 2, Section 2.11, the strain energy stored in an elastic 
solid can be calculated as

 

U dij ij= ∫1
2 σ ε V

volume V

. (6.42)

The dimensions of this expression are clearly those of work, as they should 
be, and the details of this calculation result from a straightforward analysis 
of the work done on a volumetric element dxdydz by a set of stresses σij  act-
ing through the corresponding gradients of deformation or strain εij . For 
our problem there are only two nonzero terms to examine. In bending,
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while for shear,
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If we substitute the stresses into the strain energy expressions, we can then 
do some algebra to find that
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,  (6.45)
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so that the ratio of these two strain energy terms is
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The ratio of the energy stored in shear to that stored in bending is proportional 
to the square of the thickness-to-length ratio. Thus, we can neglect deformation 
due to shear when we are modeling the bending of long, slender beams.

6.8 Flexibility Revisited and Maxwell- 
 Betti Reciprocal Theorem

We propose now to find the deflec-
tions at two points on a cantilever 
that is carrying two additional point 
loads (Figure 6.14). This is a second-
degree indeterminate problem.

We approach it using the method 
of flexibility coefficients3: We decom-
pose the indeterminate problem into 
three determinate ones. We use a 
generic notation for the displacement δ at a point on the beam in which a 
subscript denotes the location and a superscript identifies the position of the 
load. Thus, the deflection at x = x1 due to a load P applied at x2 is denoted by 
δ1 2P . Flexibility coefficients relate deflection to applied load: The deflection 
at location i due to a force Pj applied at j can be expressed in terms of a flex-
ibility coefficient fij as

  δi
j

ij jf P= .

For the loading in Figure 6.14, using decomposition, we find that
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L a=











+( )  (6.48a)

a b/2 b/2
R3R2

P

Figure 6.14
Cantilever with two supports: statically 
indeterminate.
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 The principle of consistent deformation (or compatibility) requires that 
when we reassemble our component problems into the original beam (i.e., 
apply superposition) the structure must hold together without violating any 
geometric or other constraints. Since we are applying compatibility at the 
two (redundant) supports, this means that

 δ δ δ δ2 2 2 2
2 3 0= + + =P R R

 (6.51a) 

 δ δ δ δ3 3 3 3
2 3 0= + + =P R R .  (6.51b)

From this pair of equations, we can now determine the redundant reactions. 
In fact, let’s write the equations in matrix form; in so doing we introduce the 
idea of a matrix of flexibility coefficients and the fact that such flexibility 
coefficients are symmetric for elastic structures. First up: The flexibility coeffi-
cients, denoted as fij , are expressed in the component results above, that is,
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This expression clearly shows the property of symmetry, which we could 
also have noted in the prior component results, namely, δ δ2 3

3 2R R= . We note 
now that fij = fji.

The matrix form of our deflections’ dependence on the applied loads can 
now be written as
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or
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The details needed to find the redundants and complete the solution are 
evident, so we’ll let that go for now. Suffice it to say that we have (a) extended 
the force (flexibility) method to include an arbitrary number of redundants, 
(b) have formulated a structural problem in matrix notation, and (c) have 
found that the (structural) flexibility coefficients form a symmetric matrix. 
This representation is very powerful for numerical work, and it is utilized in 
the finite element method (FEM) for structural computation.

All right, we know that the flexibility coefficients are symmetric. We can 
go just a little further and consider the flexibility coefficients as reflecting the 
deflection per unit load on the structure. If we take the applied loads as unit 
loads, the flexibility coefficients become the influence coefficients:
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The symmetry of the influence coefficients can be demonstrated in gen-
eral terms and is known as the Maxwell-Betti Reciprocal Theorem, which is 
stated as

For linear elastic solids, the work done by a system of forces A acting 
through displacements caused by a second system of forces B equals the 
work done by the second system of forces B acting through displace-
ments caused by the first system of forces A.

In terms of the energy formulation, the Maxwell-Betti Reciprocal Theorem 
can be cast in the form
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while in terms of the total work done on the beam (which must therefore 
equal the total strain energy stored in the bent beam),
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These relationships were obtained by manipulating the corresponding 
energy and work terms. Their symmetric form is appealing and is a use-
ful reminder of how powerful these and other energy results can be for the 
analysis of structures. To close on this note, we point out that from equation 
(6.57), we can calculate (once again) the deflections of the beam at points 
under the loads as
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3
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This very famous result from 1879 is called Castigliano’s Second Theorem.4 
This theorem is worthy of restatement:

The deflection of a structure at any point where a load is applied can be 
obtained from the partial derivative of the strain energy function with 
respect to that load.

This has an elegant mathematical form relating the load at point i, Pi, to the 
deflection of the structure at that position, δi, through the strain energy U,
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∂
∂
=

U
Pi

iδ ,  (6.59)

and is quite useful to us as we endeavor to determine the deflection of beams 
and other structures.

6.9 Examples

example 6.1

A bending moment M1 is applied at the free end of a cantilever of length L 
and constant flexural rigidity EI (Figure 6.15). Find an expression for w(x).

L

M1

x

Figure 6.15

Given: Load applied to beam.
Find: Deflection, or “equation of elastic curve.”
Assume: Hooke’s law applies; beam has constant and uniform properties 

E, I.

Solution

We start with a free-body diagram (FBD) and the external reaction forces 
or moments. In this case, this procedure is immensely straightforward: The 
fixed support exerts a reaction moment equal and opposite to M1 on the 
beam. If we made an imaginary cut at any x and used the method of sections 
to find the local internal bending moment, we would similarly find that at 
each x, the internal bending moment was M1. M(x) = M1 = constant, as shown 
in the bending moment diagram in Figure 6.16.

M M1

M1M1

x

Figure 6.16
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At the fixed end (x = 0), we know that deflection and slope are both zero; at 
the free end (x = L), we know the moment is M1 and the shear is zero. We can 
thus begin integrating the second-order equation for deflection w(x):
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2
.

This deflection is negative, which means that the deflection due to M1 is 
upward. The maximum deflection is at x = L, and the neutral axis has the 
general shape sketched in Figure 6.17.

x

w

z

Figure 6.17
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example 6.2

For the beam with the given loading in Figure 6.18, with a maximum load 
intensity of qo, find (a) the reaction at A; (b) the equation of the elastic curve, 
that is, w(x); and (c) the slope at A.

A

L

B

qo

Figure 6.18

Given: Loading and support conditions, length of beam.
Find: Reactions, deflection w(x), slope of neutral axis at A.
Assume: Hooke’s law applies; beam has constant and uniform properties 

E, I.

Solution

We start with an FBD of the system (Figure 6.19):

L/3
RBRA

MB

qoL½

Figure 6.19

 ΣFy = 0 = RA + RB – ½ qoL.

 ΣMA = 0 = MB + RBL – (½ qoL)(2L/3).

 ΣMB = 0 = MB – RAL + (½ qoL)(L/3).

We have three unknowns (RA, RB, and MB) and only two relevant equilib-
rium equations. This problem is statically indeterminate! We proceed with 
the solution for w(x), leaving the reactions as unknowns, and hope that our 
boundary conditions for V, M, θ, and w may help us out. First, we make an 
imaginary cut at some x to determine the form of M(x) (Figure 6.20).



276 Introduction to Engineering Mechanics: A Continuum Approach

V(x)

M(x)

p(x) = qo(x/L)

RA

½ qo(x/L).x

Figure 6.20

We require moment equilibrium about our point x, that is, M(x) + (½ qox2/L)
(x/3) – RAx = 0. Thus, M(x) = RAx – qox3/6L. Having this expression for internal 
bending moment as a function of x allows us to integrate the second-order 
equation for deflection w(x):

 
EI d w

dx
R x q x

LA
o

2

2

3

6
=− +

 
→ =− =− +∫ EI dw

dx
EI R x q x

A
oθ

1
2 24

2
4

LL
C+ 1

 
→ =− + +∫ EIw x R x q x

L
CA

o( ) 1
6 120

3
5

1xx C+ 2 .

Note: The numbering scheme for our constants of integration is not tied to 
the numbered Ci cited in Section 6.3. Although this scheme was followed in 
the previous example, there is no need to stick to it. In working problems, 
we most often integrate the second-order equation and so only have two 
constants to find, so they may be named in any manner the problem solver 
deems appropriate.

We now need some boundary conditions to find the constants C1 and C2 
above. At A, where x = 0, we have a pin support, at which we are sure both 
moment and deflection are zero. The one of these that helps us is w(x = 0) = 0. 
At B, or x = L, we have a fixed support, where deflection and slope must both 
be zero. Applying these three BCs gets us

 w x C( )= = → =0 0 02 .

 
w x L R L q L C LA

o( )= = → + +0 1
6 120

3
4

1– ==0 .
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θ( )x L R L q L CA

o= = → + + =0 1
2 24

02
3

1– .

At last, we have two equations and two unknowns, a soluble system. We 
choose arbitrarily to solve for RA first, and do this by multiplying the slope 
boundary condition by L and then subtracting the deflection condition:

 
− + +










1
2 24

3
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1R L q L C LA
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









1
6 120

3
4

1R L q L C LA
o

 
− + + =

1
3 30

0 03
4

R L q L
A

o .

The resulting equation must equal zero, since both boundary expressions 
were zero. This allows us to solve for 

 RA = 
1

10
q Lo ,

which is an upward force as assumed in the FBD, and which we note is inde-
pendent of EI. By substituting this RA into either condition at x = L, we are 
able to find that the constant

  C1 = −
1

120
3q Lo . 

Putting both of these into our expression for the deflection of the neutral 
axis, we have

 
EIw x q L x q x

Lo
o( )=−









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1
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10 120

1
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3
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220
3q L xo











,

or

 
w x q

EIL
x L x L xo( )= − +( )120

25 2 3 4 .

We could then find a general expression for the slope θ of the neutral axis 
along the beam and find the slope at A as requested in part (c):
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θ( )x q L

EI
o= =0

120

3

.

Note: We could also have solved this complex problem by recognizing the 
loading on the beam as the superposition of two more straightforward con-
ditions (Figure 6.21):

= +

Figure 6.21

The superposition of w(x) for both these loading conditions is exactly the 
result achieved above. Superposition is quite a useful technique for finding 
the deflections of beams.

example 6.3

A simple beam supports a concentrated downward force P at a distance a 
from the left support. The flexural rigidity EI is constant. Find w(x).

A D

P

B

Pb/L Pa/La
b

Figure 6.22

Given: Loading conditions, reaction forces, length of beam.
Find: Deflection w(x).

Assume: Hooke’s law applies; beam has constant and uniform properties 
E, I.

Solution

We want to integrate the internal moment to find the deflection w(x). We have 
simple supports, so we know that at A, w(x = 0) = 0 and M(x = 0) = 0, and at 
B, v(x = L) = 0 and M(x = L) = 0. We use the method of sections to find M(x) 
(Figure 6.23 and Figure 6.24).
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x < a

Pb/L
V(x)

M(x) = x
L

Pb

Pb/L

x > a

P

x – a 

M(x) = x – P (x – a) =
L

Pb x + Pa– P
L

Pb

= – (L – x)
L

Pax + Pa
L

Pa

Figure 6.23

Mmax = M(x = a) = Pab/L 

x

M

Figure 6.24

We note that there is a discontinuity at x = a; on either side of a, we have 
two distinct M(x) expressions. Although M(x) may be discontinuous in this 
way, neither the slope nor the deflection is allowed to be discontinuous. We 
can therefore integrate the two distinct M(x) expressions for the deflections 
of the two portions of the beam and match the two solutions at x = a.

 0 ≤ x ≤ a

 

d w
dx

M
EI

Pb
EIL

x
2

1
2
=− =−

 

dw
dx

Pb
EIL

x A1 2
12

=− +

 
w x Pb

EIL
x A x A1

3
1 26

( )=− + +

 a ≤ x ≤ L
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d w
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w x Pax
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EIL
B x B2
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1 22 6
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To find the constants of integration Ai and Bi, we will apply the end BCs 
as well as the continuity condition: Both w and θ must be continuous at x = 
a, so that

 w1(a) = w2(a)

and

 

dw
dx x a

dw
dx x a

1 2











= =

= .

Beginning with the end conditions we have

 w(x = 0) = w1(0) = 0 = A2

 w(x = L) = w2(L) = 0 = 
PaL

EI
B L B

2

1 23
+ +

 w1(a) = w2(a) →− + =− + + +
Pa b
EIL

A a Pa
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B a B
3
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3 4
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dw
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A Pa
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1 2
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1

2

2



= 


→− + =−
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++ +
Pa
EIL

B
3

12

Here we have three equations for three unknown constants, so we can 
solve the equations simultaneously and obtain the remaining constants:
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  A Pb
EIL
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2 2

6
= −( )  and B Pa

EIL
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2 2

6
2= +( ),

so

 A1 = 0 and B Pa
EI2

3

6
=− .

So the deflection of the beam (after some aesthetic rearrangements) is 
given by

 
0
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EIL
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

 − .

Note: The deflection at the point of application of force P may be determined 
by substituting x = a into either of the above expressions and is Pa2b2/3EIL.

example 6.4

The beam shown in Figure 6.25 has uniform elastic modulus E and second 
moment of area I. Determine (a) the reactions at the left wall; (b) the beam’s 
deflection w as a function of x; and (c) the maximum allowable value of load 
intensity qo if the beam has a square cross section with sides of 4 in. and 
length L = 96 in. and is made from a material with E = 15 × 106 psi and maxi-
mum normal stress 110 ksi.

L

a

qo

Figure 6.25

Given: Loading conditions; properties of beam.
Find: Reactions, deflection, maximum allowable intensity qo.
Assume: Hooke’s law applies; beam has constant and uniform properties 

E, I.
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Solution

Since there are no applied axial loads, we assume that the supports exert 
no axial forces on the beam. A free-body diagram of the system can thus be 
constructed (Figure 6.26):

qoL

RA RB

MA MB

Figure 6.26

And, summing forces and moments, we have

 

F q L R R

M M M R L q L

z o A B

A B A B
o

= = − −

= = − + −

∑

∑

0

0
2

2

.

By symmetry, we can reasonably assume that RA = RB and MA = MB; how-
ever, this assumption will not help us solve the equations of statics for the 
reaction moments. We need more than just statics to find all four reactions. 
As in Example 6.2, we proceed with the solution for deflection w(x) and hope 
that the boundary conditions helps us identify our unknowns. At the two 
fixed supports, we know that both deflection and slope must equal zero, that 
is, w(x = 0) = w(x = L) = 0 and θ(x = 0) = θ(x = L) = 0.

We make a “cut” at a distance x to find the internal bending moment M(x) 
(Figure 6.27).

x

RA

qox

Figure 6.27

Balancing moments on this x-long segment, we have

 M(x) = MA + RAx – qox2/2 .

Next, we integrate for the deflection w(x):
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Applying our BCs we have

 w(x = 0) = 0 → C2 = 0

 w′(x = 0) = θ(x = 0) = 0 → C1 = 0

 
w x L M L R L q LA A o( )= = → + − =0

2 6 24
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2 3 4

 
′ = =− = = → + − =w x L x L M L R L q L
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We solve these last two equations together with the two equilibrium equa-
tions for our four unknowns and find that
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We can now substitute these values into the expression for w(x) above:
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or

 
w x

q x
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L Lx xo( )= − +
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2
2 2

24
2 .

To find the maximum allowable load intensity qo based on the given nor-
mal stress limitation, we must calculate the maximum normal stress induced 
in the beam in terms of qo. Because normal stress is linearly proportional 
to bending moment, we do this by finding the maximum internal bending 
moment in the beam. We return to our general equation for M(x):

 
M x M R x

q x
A A

o( )= + −
2

2

Now that we know both MA and RA, this takes a somewhat friendlier form:

 
M x
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2 2
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.

The maximum M(x) occurs where dM/dx = 0:
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The maximum bending moment is then M(L/2), or
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In Figure 6.28, we sketch the form of M(x).

0 20 40 60 80

Figure 6.28
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The second moment of area of the given cross section is I = bh3/12 = (4 
in.)4/12 = 21.3 in.4 The maximum normal stress is given by

 
σmax ,≥

Mc
I

so

 
M q L I

c
o= ≤

5
24

2 σmax

 
qo≤

( )⋅ ⋅

⋅( )⋅
110 000 21 3 24

5 2
, ( . )psi in.

in. (9

4

66 in.2 )

 qo ≤ 58,575 lb/in. = 4.88 kips/ft.

Note: This result is independent of the Young’s modulus of the beam, E.

6.10 Problems

 6.1 A simply supported beam 5 m long is loaded with a 20 N down-
ward force at a point 4 m from the left support (Figure 6.29). The 
second moment of area of the cross section of the beam is 4I1 for 
segment AB and I1 for the remainder of the beam. Determine the 
deflection w(x) of the neutral axis.

4 m 1 m

x x1

A B C 

20 N 

16 N4 N 

4I1 I1

Figure 6.29

 6.2 A beam fixed at both ends supports a uniformly distributed down-
ward (positive!) load qo (Figure 6.30). EI for the beam is constant. 
(a) Find the expression for w(x) using the fourth-order governing 
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differential equation. (b) Verify the result of (a) using the second-
order differential equation.

MA

q = –qo N/m

L MB

Figure 6.30

 6.3 Consider an aluminum cantilever beam 1600 mm long, with a 10 
kN force applied 400 mm from the free end (Figure 6.31). For a 
distance of 600 mm from the fixed end, the beam has I1 = 50 × 106 
mm4. For the remaining 1000 mm of its length, the beam has I2 = 
10 x 106 mm4. Find the deflection and the angular rotation of the 
free end. Neglect the weight of the beam, and use E = 70 GPa.

600
A D C B

600 400

10 kN

Figure 6.31

 6.4 An aluminum (E = 70 GPa) cantilever must carry an end load of 
1.4 kN as shown in Figure 6.32. However, in this design, when 
the beam is loaded the end of the cantilever A has to have the 
same elevation as point C (that is, the net deflection of A must be 
zero). A hydraulic jack may be used to raise point B to achieve 
this. Determine the amount that B should be raised and the reac-
tion at B (when the load is applied and B has been raised). Do not 
consider the weight of the beam. The cross section of the beam is 
half of an I beam as shown in the figure. The properties given in 
the box are for the whole I beam. The position of the centroid of 
the half-section (relative to the top of the section) is shown on the 
figure.
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0.5 m 1.0 m

A

CB

1.4 kN �ese properties apply 

to the WHOLE I-beam:

depth = 100 mm

(in z-direction)

11 mm 

z

Cross-section:

Figure 6.32

 6.5 A cantilever beam AB has a rigid (i.e., its deformation is negligible 
relative to that of the beam) bracket AC attached to its free end and 
a vertical load P applied at point C (Figure 6.33). Find the ratio a/L 
required so that the deflection at point A will be zero. E and I are 
constant along the beam.

a

L

P

A

C

B

Figure 6.33

 6.6  A cantilever beam AB supports a uniform load of intensity q act-
ing over part of the span and a concentrated load P acting at the 
free end, as shown in Figure 6.34. Determine the deflection δB and 
slope θB at end B of the beam. The beam has length L and constant 
flexural rigidity EI.

P
q

A Ba b
L

Figure 6.34

 6.7 A simply supported beam of length L is subjected to loads that 
produce a symmetric deflection curve with maximum deflection 
at the midpoint of the span. How much strain energy U is stored 
in the beam if the deflection curve is (a) a parabola, or (b) a half 
wave of a sine curve?

 6.8 A beam with a constant EI is loaded as shown in Figure 6.35. (a) 
Determine the length a of the overhang such that the elastic curve 
would be horizontal over support B. (b) Determine the maximum 
deflection between the supports.
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120 kN/m

A B10 m a

Figure 6.35

 6.9 A gold alloy microbeam attached to a silicon wafer behaves like 
a cantilever beam subjected to a uniformly distributed load q. 
The beam has length L = 25 μm and a rectangular cross section of 
width b = 15 μm and thickness t = 0.87 μm. The total load on the 
beam is 44 μN. (a) If the deflection at the end of the beam is mea-
sured to be 1.3 μm, what is the modulus of elasticity of the gold 
alloy? (b) If the load were instead applied as a point force at the 
end of the beam, what maximum deflection would you expect to 
measure?

 6.10 Beam ABCDE has simple supports at B and D and symmetrical 
overhangs at each end, as shown in Figure 6.36. The center span 
has length L and each overhang has length b. A uniform load of 
intensity q acts on the beam. (a) Determine the ratio b/L such that the 
deflection δC at the midpoint of the beam is equal to the deflections 
δA and δE at the ends. (b) For this value of b/L, what is the deflection 
δC at the midpoint?

A B C D E

q

b L b

Figure 6.36

Notes

 1. The length of the neutral axis is sometimes called the elastic curve; hence, some 
texts call this requirement continuity of the elastic curve.

 2. This was 28 years before his eponymous circle of stress transformation.
 3. This is the “force method” for resolving statically indeterminate problems, as 

introduced in Chapter 2, Section 2.8.
 4. Castigliano’s first theorem makes a similar case for the forces being calcu-

lated as the partial derivatives of strain energy with respect to the appropriate 
deflections!
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7
Instability: Column Buckling

In our analysis of the internal response to external loading on beams, pres-
sure vessels, and shafts in torsion, we have had two primary concerns: the 
stiffness and the strength of the structure. By strength, of course, we mean the 
ability of our structure to support the required loads without experiencing 
excessive stress; by stiffness, we mean its ability to support the required loads 
without undergoing excessive deformations. (Recall our initial discussion of 
strength and stiffness in Chapter 2.) In practice, we have a third concern: the 
stability of our structure, by which we mean our designs’ ability to support 
the required loads without experiencing a sudden change in configuration.

The instability known as buckling typically occurs when forces much lower 
than those necessary to exceed material yield stresses are applied to beams. 
Buckling can occur whenever a slender1 structural member is subjected to 
compression. These forces are applied axially, as shown in Figure 7.1. Here, 
by holding a hacksaw blade between his palms, a man has been able to 
induce instability, and the blade fails as a structural element.

The most common occurrence of this kind of loading, and of buckling 
instability, is in columns. Figure 7.2 shows some examples of structural col-
umns; Figure 7.3 shows failed columns.

7.1 Euler’s Formula

Consider a column of length L supported by pin supports at both ends, sub-
jected to a compressive axial load P, as in Figure 7.4a. We would like to deter-
mine the critical value, Pcr, for which the initial position is no longer stable. 
Once P exceeds Pcr, any small perturbation or misalignment causes the col-
umn to buckle, taking on the sort of curvature illustrated in Figure 7.4b. Our 
method of finding Pcr is to determine the conditions under which the geom-
etry of Figure 7.4b is possible.

We approach this column as a vertical beam subjected to an axial load 
and use x to denote the distance from the top, along the beam’s initial elastic 
curve. The column’s deflection w in the z direction denotes the lateral deflec-
tion of the elastic curve from its original position, just as it did for beams. We 
make an imaginary cut at some point C along this curve, as in Figure 7.5, and 
observe that at this point the internal axial force is P and the internal bend-
ing moment is M = Pw.
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We understand that this internal bending moment may be related to the 
deflection w of the column’s axis:

 

d w
dx

M
EI

P
EI

w
2

2 = − = − . (7.1)

We rearrange this as

 

d w
dx

P
EI

w
2

2
0+ =  (7.2)

and find that it is an ordinary differential equation with whose solution we 
are (or were once) familiar:

(a) (b)

Figure 7.1
At left, application of compressive axial force to hacksaw blade. At right, a small compressive 
load causes the blade to “buckle.”

Figure 7.2
Examples of columns: Parthenon (left), Markle Hall, Lafayette College (right).
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w x A P

EI
x B P

EI
x( ) sin cos= + . (7.3)

To move from this general solution to a specific expression for our buck-
ling column, we apply the relevant boundary conditions. At the bottom of 
our beam, x = 0, and we have w = 0 since the pin support does not allow any 
deflection. We also have w = 0 at the top support, where x = L. The first condi-
tion, w(x = 0) = 0, requires that B = 0. To have w(x = L) = 0, we require

 
A P

EI
Lsin = 0 . (7.4)

Figure 7.3
Examples of column (and pressure vessel) failure by buckling.
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This statement holds if either A = 0, or sin P
EI L = 0. If A = 0, our general 

solution is w = 0, and the column remains straight. Since we are modeling the 
buckling phenomenon, we must instead satisfy the second condition. Due to 
the nature of sin x, this requires that

  P
EI L = nπ.

Solving for the force P that will make this happen, we find

 
P n EI

L
=

2 2

2

π
. (7.5)

This suggests that there are many modes of buckling, each with a different 
value of n, as shown in Figure 7.6. We are particularly interested in the first 
mode, the smallest load that can cause buckling, which corresponds to n = 
1. Therefore, the critical load Pcr for the pinned-pinned column of Figures 7.4 
and 7.5 is

 
P EI

Lcr =
π2

2 . (7.6)

This result is known as Euler’s formula, as Swiss mathematician Leonhard 
Euler first derived it in 1744. Applying this force makes it possible for the 
axis of the column to be described by w = A sin πx

L . Note that we have not 
determined the value of the coefficient A, which is the column’s maximum 
deflection wmax.

L

P P

(a) (b)

Figure 7.4
(a) Beam/column under compression;  
(b) buckled geometry.

x

M

P P

P

C C

P

z

Figure 7.5
Method of sections on buckling column.
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The second moment of area I in Euler’s formula should be taken about the 
axis around which the column bends. This typically is apparent from the 
way the column is supported; when it is not, we recognize that a buckling 
column bends about the principal axis of its cross section with the smaller 
second moment of area and make our calculations accordingly.

We note that Euler’s formula (equation 7.6) as just derived applies to the 
particular case of a column with two pinned ends. The column ends are thus 
free to rotate at the ends where the loads P are applied; in other words there 
are no reactions at the ends other than P. This affected the boundary con-
ditions we used in obtaining Pcr. For different supports, and thus different 
boundary conditions, the value of Pcr is different. We codify these differences 
by using an effective length Le in the place of L in Euler’s formula, where the 
relationship between Le and L depends on the end supports:

 
P EI

Lcr
e

=
π2

2
. (7.7)

Values of effective length for a variety of supports are tabulated in Table 7.1.
The value of normal stress corresponding to the critical load is called the 

critical stress, σcr. We simply divide Euler’s formula by the column’s cross-
sectional area:

 
σ

π
cr

cr

e

P
A

EI
L A

= =
2

2
. (7.8)

P P P P

P P P P

x

n = 1 n = 2 n = 4n = 3
First mode Second mode �ird mode Fourth mode

z

Figure 7.6
Deflection distributions in first four buckling modes.
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Next, we set the second moment of area I = Ar2, where r is the cross- 
sectional area’s radius of gyration. We obtain the radius of gyration of various 
shapes using its definition, r = (I/A)½:

 
σ π π π

cr
e e e

EAr
L A

Er
L

E
L r

= = =
2 2

2

2 2

2

2

2( / )
. (7.9)

The quantity L/r is known as the column’s slenderness ratio. The critical 
stress is proportional to the elastic modulus of the material used and is 
inversely proportional to the square of this ratio. For sufficiently slender col-
umns, σcr can be much lower than the material’s yield stress, and the column 
almost certainly fails due to buckling. If this critical buckling stress is greater 
than the material’s yield stress, the column in question likely yields in com-
pression before it has the opportunity to buckle—this is often true for short, 
stubby columns.

In practice, loads are rarely applied as we have modeled our P—a perfectly 
aligned axial load. To more realistically assess the likelihood of buckling, we 
must develop a model that includes the effects of load eccentricity.

7.2 Effect of Eccentricity

The lines of action of applied forces are generally not through the cross sec-
tion’s centroid, as we had hoped in the previous section. We now analyze 
the potential for buckling when an eccentric load is applied, again begin-
ning with a beam/column that is free to rotate at the ends (i.e., both ends are 
pinned). We see that this off-center load P applies a moment to the column, 
as illustrated in Figure 7.7a: The force P has a moment arm equal to its eccen-
tricity, e. We can thus replace the off-center P by a centric load, also with 
magnitude P, and a moment M = Pe, as shown in Figure 7.7b. No matter how 
small either P or e is, this moment M will cause some bending of the column. 
In a sense, we are calculating not how to make the column stay straight but 

Table 7.1

Effective Length Le as Function of Supports
End Conditions Effective Length 

Fixed-Free Le = 2L

Pinned-Pinned Le = L

Fixed-Pinned Le = 0.7L

Fixed-Fixed Le = 0.5L



Instability: Column Buckling 295

how much bending is permissible to maintain a normal stress σ < σcr and a 
tolerable deflection wmax.

Again, we want to obtain the equation of the column’s elastic curve. We begin 
with the method of sections in an effort to find the internal bending moment 
at some arbitrary position x. Figure 7.8 indicates that the internal bending 
moment necessary to keep this section in equilibrium is M(x) = Pw + Pe. We 
proceed with the second-order equation for the column’s deflection w(x):

 

d w
dx

M
EI

P
EI

w P
EI

e
2

2 =− =− − , (7.10)

or

 

d w
dx

P
EI

w P
EI

e
2

2
+ =− . (7.11)

The left-hand side of this equation is the same as the homogeneous ordi-
nary differential equation (o.d.e.) we solved for centric loading, whose solu-
tion we already know. We add to this general solution the constant –e that 
solves the nonhomogeneous equation, and have:

 
w x A P

EI
x B P

EI
x e( ) sin cos= + − . (7.12)

Again, we make use of our boundary conditions to identify the unknown 
constants. At x = 0, we have w = 0, which requires that B = e. At x = L, we also 
have w = 0, so that

L 

e 

P     P  

P P 

= 

M = Pe 

M = Pe 

(a) (b)

Figure 7.7
Modeling an eccentric load P. 

z

x

M(x)

P P

P

C C

P(x) = P

M = Pe M = Pe

M

Figure 7.8
Method of sections for eccentric P.
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We make use of the trigonometric identities
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to write
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which allows us to write the equation of the elastic curve:
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We obtain the value of the maximum deflection, wmax, by evaluating this 
expression at x = L/2:
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The nature of the secant curve tells us that the value of wmax becomes infi-
nite when

 

P
EI

L
2 2
=
π .

While the column deflection does not actually become infinite, it becomes 
unacceptably large at this condition. We can therefore find the critical Pcr 
that lets

  
P
EI

L
2 2
=
π

.
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It is

 
P EI

Lcr =
π2

2 , (7.17)

which is Euler’s formula for the buckling of a column under centric loading. 
Knowing this allows us to recast the maximum deflection in terms of this 
critical load:
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The maximum normal stress in the column occurs where the bending 
moment is maximized, that is, at x = L/2. We obtain this stress by superpos-
ing the stress due to P with the bending stress,
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 (7.19)

where Mmax is simply Pwmax + Pe = P(wmax + e). We plug in our expression for 
wmax and have
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or
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Since the applied force P is compressive, the maximum normal stress is com-
pressive, as reflected by the negative sign in the previous expressions.

If the end conditions for a particular column differ from the pinned-pinned 
supports assumed in this model, L should be replaced by the appropriate 
effective length Le.
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7. 3 Examples

example 7.1

An aluminum column of length L and rectangular cross section has a fixed 
end B and supports a centric axial load at A (Figure 7.9). Two smooth and 
rounded fixed plates restrain end A from moving in one of the vertical planes 
of symmetry but allow it to move in the other plane. (a) Determine the ratio 
a/b of the two sides of the cross section corresponding to the most efficient 
design against buckling. (b) Design the most efficient cross section for the 
column, knowing that L = 50 cm, E = 70 GPa, P = 22 kN and that a safety fac-
tor of 2.5 is required.

P

x

 y 
z

ba

L

Figure 7.9

Given: Loading and support conditions for column; safety factor; length 
and elastic modulus.

Find: Optimal cross section of column.
Assume: Hooke’s law applies (have assumed constant E to integrate y-M 

o.d.e. in derivations).

Solution

Figure 7.9 indicates that we must consider buckling in both the xy and xz 
planes, and that due to the nature of the support at A, the critical load and 
the prospect of buckling will be different in the two planes. As the supports 
allow end A to move freely in the z direction, for buckling in the xz plane we 
have a fixed-free support combination; the supports constrain motion in the 
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y direction but do not provide a reaction moment so that in the xy plane we 
have a fixed-pinned support.

Buckling in the xy Plane

Due to the fixed-pinned support combination, we find from Table 7.1 that the 
effective length of the column with respect to buckling in this plane is Le = 
0.7L. We obtain the radius of gyration rz of the cross section by writing

 I ba A abz = =1
12

3 ,

and, since Iz = Arz
2,

 
r I

A
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ab

a r a
z

z
z

2
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12
3 2

12 12
= = = =, .so

The slenderness ratio of the column with respect to buckling in the xy plane 
is then

 

L
r

L
a

e

z
=

0 7
12

.
/

.

Buckling in the xz Plane

Again, in this plane the column sees a fixed-free support situation, so the 
effective length is Le = 2L. We find the radius of gyration ry much as we 
found rz:

 
r

I
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ab
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b r b
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12
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The slenderness ratio of the column with respect to buckling in the xz plane 
is then

 

L
r

L
b

e

y
=

2
12/

.

Most Efficient Design

The most efficient design is that for which the critical stresses corresponding 
to the two possible modes of buckling are equal; neither mode is preferred. 
This is the case if the two slenderness ratios are equal. So,
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Solving for the ratio a/b, we have

  

a
b
=0 35. .

Design for Given Parameters

Since a safety factor of 2.5 is required, we must have

 P Pcr = = =2 5 2 5 22. ( . )( kN) 55 kN .

Using the ratio a/b found above, a = 0.35b, we have A = ab = 0.35b2, and
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We also know that the critical stress must satisfy
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=
2

2( / )
.

We are free to use either slenderness ratio, since we have forced their 
equivalence. Plugging in L = 50 cm, we can find Le/ry = (2 50⋅ cm) / ( / 12)b  
= 138.6/b and write
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×π
.

Solving for b we find that b = 4.06 cm and a = 0.35b = 1.42 cm.

example 7.2

An 8 ft length of structural tubing has the illustrated cross section (Fig-
ure 7.10). Using Euler’s formula and a safety factor of 2, determine the 
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allowable centric load for the column and the corresponding normal stress. 
Assuming that this allowable load is applied as shown at a point 0.75 in. 
from the geometric axis of the column, determine the horizontal deflection 
of the top of the column and the maximum normal stress in the column. Use 
E = 29 × 106 psi.

P P
e

L = 8 ft

4 in

4 in
A = 3.54 in2

I = 8.00 in2

r = 1.50 in.  
c = 2.00 in.

Figure 7.10

Given: Geometry of column, safety factor.
Find: Pcr and σcr; wmax and σmax if Pcr/2 applied eccentrically.
Assume: Hooke’s law applies.

Solution

Since the column has one fixed and one free end, the effective length is Le = 
2L = 16 ft = 192 in. Using Euler’s formula, we find the critical load to be
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×π π2
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2 629 10
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(

psi)(8.00 in.
i

4

nn.)
kips2 =62 1. .

Since we are asked to use a safety factor of 2, our allowable centric load is then
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We have been asked for the horizontal deflection at the top of the column, 
which, given the supports seen here, is the maximum deflection wmax. As 
long as we have used the correct Le to obtain Pcr, we are able to use the secant 
formulas for eccentric loading on columns with any type of supports:
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The maximum normal stress is calculated as
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 = –22.0 ksi.

Again, this is a compressive stress.
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7.4  Problems

 7.1 An I beam with the proportions shown is to be used as a long col-
umn. There is a concern about buckling, so two reinforcing plates 
are to be welded along the length of the column. Two options for 
the resulting cross section are shown in Figure 7.11. Which will 
increase the critical buckling load more effectively? Explain why.

(a) (b)

Figure 7.11

 7.2 A slender vertical bar AB with pinned ends and length L is held 
between immovable supports. What increase ΔT in the tempera-
ture of the bar will produce buckling?

 7.3 In more than one paragraph but less than a page, discuss some of 
the failure modes experienced in the collapse of the World Trade 
Center and how they might have been prevented.

 7.4 A truss ABC supports a load W at joint B, as shown in Figure 7.12. 
The length L1 of member AB is fixed, but the length of strut BC 
varies as the angle θ is changed. Strut BC has a solid circular cross 
section. Assuming that collapse occurs by Euler buckling of the 
strut, determine the angle θ for minimum allowable weight of the 
strut.

W
θ

A B

C
L1

Figure 7.12

 7.5 For a deck, supports are proposed to be built from aluminum 
with a Young’s modulus of 72 GPa and a yield stress of 480 MPa. 
A cylindrical design is proposed with outer diameter d and wall 
thickness t. If the design specs require that each column support a 
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load of 100 kN with a safety factor of 3, find the necessary column 
thickness t.

 7.6 A rectangular brass column is loaded as shown in Figure 7.13, 
with a load of P = 1500 lb applied 0.45 in. off its centroidal axis. 
Find the longest permissible length L of the column if the deflec-
tion of its free end cannot exceed 0.12 in.

P e = 0.45" 
b = 0.6" 

h = 1.2" 

Figure 7.13

Case Study 4: Hartford Civic Arena

A new arena in Hartford, Connecticut, was approved in 1970 and built in 1973. 
The facility suffered a catastrophic failure in January 1978, when its roof col-
lapsed only hours after a large crowd had attended a University of Connecti-
cut hockey game. The resulting damage is seen in Figure CS4.1. The center of 
the roof appears sunken in, while the corners have been thrust upward.

Figure CS4.1
Damage at the Hartford Civic Arena, 1978. (From Feld, J. and Carper, K., Construction Failure, 
Wiley & Sons, New York, 1997. With permission.)
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Tasked with saving money for the city of Hartford, the architect and engi-
neering firm created an innovative design for the arena’s roof. The proposed 
roof consisted of two main layers arranged in 30 × 30 ft grids composed of 
horizontal steel bars 21 ft apart. Diagonal bars 30 ft in length connected the 
nodes of the upper and lower layers, and, in turn, were braced by a middle 
layer of horizontal bars. The 30-ft bars in the top layer were also braced at 
their midpoint by intermediate diagonal bars. The space frame, shown in 
Figure CS4.2, looks like a set of linked pyramid-shaped trusses.

This was not a conventional space frame roof design. Many of its unique 
features contributed to the vulnerability of the structure. In particular, the 
configuration of the four steel angles did not provide good resistance to 
buckling. The cross-shaped section has a much smaller radius of gyration 
than either an I section or a tube section (Figure CS4.3). Also, the top hori-
zontal bars intersected at a different point than the diagonal bars rather than 
at the same point, making the roof especially susceptible to buckling as this 
load eccentricity induced bending stresses. And the space frame was not 
cambered. Computer analysis predicted a downward deflection of 13 in. at 
the midpoint of the roof and an upward deflection of 6 in. at the corners.

To save time and money, the roof frame was assembled on the ground. 
While it was on the ground the inspection agency notified the engineers 
that it had measured excessive deflections. No changes or repairs were 
made. Hydraulic jacks were used to lift the completed roof into position. 
Once the frame was in its final position but before the roof deck (which 
would support the final roofing material) was installed, the roof frame’s 
deflection was measured to be twice that predicted by computer analysis, 
and the engineers were notified. However, they expressed little concern 

Column

Figure CS4.2
Sketch of roof design. (Adapted from Levy, M. and Salvadori, M., Why Buildings Fall Down, 
Norton, New York, 1992.)

Cross I-section Square

Figure CS4.3
Cross-shaped member cross section, as used in the Hartford Arena roof frame; more conven-
tional I section and tube cross-section shapes.
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and responded that such discrepancies between the actual and the theoret-
ical should be expected. The subcontractor fitting the steel frame supports 
for fascia panels onto the outside of the truss ran into difficulties due to 
the excessive deflections of the frame, but as directed by the contractor, he 
backcut some panels and remade others so that they would all fit together 
more closely.

The engineers, contractor, and members of the Hartford City Council 
made public statements attesting to the safety of the structure. And the roof 
survived for five years before the heavy snow of January 1978 triggered its 
catastrophic failure. At 4:15 a.m. on January 18, witnesses reported hearing a 
loud crack and seeing the center of the roof begin to sink in before the explo-
sive chaos of the rapid collapse. Because the hockey crowd had left hours 
earlier, no one was hurt in the collapse.

In the subsequent investigation (performed by an appointed panel and an 
outside failure analysis agency), it was determined that the roof of the Hartford 
Arena had begun failing as soon as it was completed due to an underestimation of 
the “dead load”2 the roof would need to support and also because of three design 
errors that resulted in a significant overloading of structural components:

The top layer’s exterior compression members on the east and the •	
west faces were overloaded by 852%.
The top layer’s exterior compression members on the north and the •	
south faces were overloaded by 213%.
The top layer’s interior compression members in the east–west direc-•	
tion were overloaded by 72%.

In addition, the support braces in the middle layer had been installed at 
30-ft-intervals rather than the designed 15 ft, reducing the structure’s abil-
ity to withstand loading—particularly such dramatic overloading. The most 
overstressed members in the top layer buckled under the added weight of 
the snow, causing the other members to buckle. This changed the forces act-
ing on the lower layer from tension to compression, causing them to buckle 
as well.

The investigators also determined that several departures from the engi-
neers’ design contributed to, but did not cause, the collapse: (1) the slen-
derness ratio of the built-up members violated the American Institute of 
Steel Construction (AISC) code provisions; (2) the members with bolt holes 
exceeding 85% of the total area violated the AISC code; (3) spacer plates were 
placed too far apart in some members, allowing individual angles to buckle; 
(4) some of the steel did not meet specifications; and (5) there were misplaced 
diagonal members.

A second investigation blamed the failure not on lateral buckling but on 
torsional buckling of diagonal members that could not support the live load 
of the heavy snowfall.3 A third investigation pinned the blame on a faulty 
weld securing the scoreboard to the roof.
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It was noted that the roof, despite its many flaws, had apparently survived 
for five years before its dramatic failure. One study analyzed the progres-
sive failure of the roof, which was a 5-year-long process. When a member of 
a frame structure buckles, it transfers its load to adjacent bars. These bars 
eventually buckle under the increased load and continue the load-trans-
ferring domino effect until the entire roof structure cannot withstand any 
greater load and begins to give way. This sort of progressive failure can be 
triggered by even a minor structural flaw unless the design includes redun-
dancy—as Levy and Salvadori (1992) put it, “structural insurance.” Analyses 
have shown that relatively few additional braces in the Hartford roof would 
have prevented bar buckling.

The assessment of responsibility for the collapse was as complicated as 
determining the reasons. The fact that five independent subcontractors con-
structed the arena made assessing responsibility especially tricky. The lack 
of any one body with ownership and oversight of the entire project created a 
fragmented system in which no one examined the “big picture.” Six years after 
the collapse, all of the parties involved reached an out-of-court settlement.

It’s also worth noting that potential problems with the Hartford arena 
design were brought before the engineers several times during the construc-
tion of the arena. The engineers, confident in their designs (and, perhaps 
willfully unaware that what was built might not be precisely what they’d 
designed) and in their computations (from which they’d omitted buckling as 
a possible failure mode), did not heed warnings or reexamine their work. In 
fact, unanticipated deformations can indicate a flawed design and are gener-
ally worth investigating.

Notes

 1. We have just developed a theory of beam bending and deflection that applies to 
slender beams, for which the cross-section dimensions are much less than the 
axial length; for columns, we continue to work under this assumption, and we 
quantify a measure of slenderness.

 2. Structures we design must withstand both “dead” and “live” loads. The dead 
load is simply the weight of the structure itself; live load is the anticipated 
weight it must also be able to support. For example, bridges must be able to 
support a predicted traffic load of cars and trucks; buildings must support the 
weight of the people and furniture in them; and all structures must also with-
stand loading due to wind, rain, and snow.

 3. Several other roof collapses in the Northeast were attributed to heavy snows in 
1978, including the roof of the auditorium at C.W. Post College on Long Island.
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8
Connecting Solid and Fluid Mechanics

We are now familiar with the response of solids to external loading. We have 
learned about the stress tensor, the strain tensor, and the individual compo-
nents of these measures of internal response to external loads. Time and time 
again, we have returned to the essence of continuum mechanics:

Kinematics (i.e., compatibility)•	
Definition of stress•	
Constitutive law (stress–strain relationship)•	
Equilibrium•	

Solids, we remember, are continua—their densities may be mathematically 
defined. Fluids (i.e., gases and liquids) may also satisfy this definition, so 
these concepts of stress and strain also apply to them. As we have done for 
solids, we would now like to contemplate the response of fluids to loading, 
and to consider how stress may be related to the material’s deformation.

Remember that a fluid may be called a continuum if the Knudsen number, 
Kn, is less than about 0.1. The Knudsen number is defined as

 
Kn

L
=
λ ,  (8.1)

where L is a problem-specific characteristic length, such as a diameter or 
width, and λ is the material’s mean free path. We have already considered 
what is and what is not a continuum at some length.

When this assumption of a material’s continuity is made, the properties 
of a material—solid or fluid—may be assumed to apply uniformly in space 
and time. That is, the density ρ may vary in space and time, but it is always 
definable and is a continuous function of x, y, z, and t.

Fluids are usually defined and distinguished from solids as materials that 
deform continuously under shear stress. This is true no matter how small 
the applied shear stress is. Also, when normal stress is applied (i.e., when a 
fluid is squeezed in one direction), the fluid flows in the other two directions. 
This can be observed when you squeeze a hose in the middle and see water 
flow from its ends. Fluids cannot offer permanent resistance to these kinds 
of loads.

If we now consider fluid mechanics with the ideas of solid mechanics fresh 
in our minds, we can see many connections and analogies between the two 
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fields. Fluids have their own measures of elasticity, resistance to loads, and 
deformation. In the following sections, we discuss some of the important 
properties of fluids. If density variation or heat transfer is significant, these 
fluid properties must be supplemented with additional information.

Once again we rely on the fundamentals of (1) kinematics, (2) the defini-
tion of stress; (3) constitutive law; and (4) equilibrium, or, more generally, 
Newton’s second law. Put another way, also by now familiar, we ensure equi-
librium (or Newton’s second law), compatibility, and a constitutive law are 
satisfied at all times. In this chapter, we first consider the kinds of stress that 
may be experienced by a volume of fluid; next, we discuss a fluid’s constitu-
tive law. Finally, we develop a way to talk about the kinematics of deforma-
tion of a fluid, this time using strain rate rather than strain as we did for 
solids. In Chapter 9, we use these three definitions to enforce equilibrium.

8.1 Pressure

In fluids, pressure results from a normal compressive force acting on an area, 
as shown in Figure 8.1. It is written as

 
p F

AA

n=
→∆

∆
∆0

lim
 (8.2)

and has units of N/m2 or psi. We recognize that this is also the definition of 
a normal stress. In fact, if this compression were the only force acting on an 
element of the fluid, the element’s stress tensor could be written as
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where the negative sign is present because positive pressure is compressive, 
and compression is represented by 
negative normal stress. We will see 
that in reality a variety of forces may 
act on a fluid element but that pres-
sure is always an important part of 
its stress state.

As in our discussion of pressure 
vessels, we generally speak of a gauge 
pressure that is measured relative to 
local atmospheric pressure:

∆A

Surface 

∆Fn

Figure 8.1
Definition of pressure.



Connecting Solid and Fluid Mechanics 311

 pgage = pabsolute – patm.

Pressure, as shown in Figure 8.1, is a surface force, acting on boundaries of 
a fluid through direct contact. Shear forces and stresses also fit this descrip-
tion. Fluids may also be acted on by body forces, which are applied without 
physical contact and distributed over the entire fluid volume. The total body 
force is in fact proportional to the fluid volume. Gravitational and electro-
magnetic fields impart body forces to fluids.

8.2 Viscosity

A fluid’s viscosity can be thought of as a measure of how well the fluid flows. 
Water and maple syrup, for example, flow differently, at different rates; the 
difference is reflected in their viscosities. The rate of deformation of a fluid 
is directly linked to the fluid’s viscosity. If we consider a fluid element of 
area dx × dy under application of a shearing stress τ, as in Figure 8.2, we 
see that the shear strain angle dθ grows continuously as long as τ is main-
tained. Remember that this is what differentiates fluids from solids: that they 
deform continuously under shear. There is therefore a time dependence in 
their constitutive law. The rate at which this deformation occurs depends on 
many factors, and particularly on the fluid’s properties.

In Figure 8.2, we see that a plate sliding with speed du over our initially 
rectangular fluid element induces some angular deformation dθ in a time dt. 
When this experiment is performed on common fluids like water, oil, and 
air, the experimenters observe that the shear stress τ is proportional to the 
rate of angular deformation dθ/dt. The constant of proportionality is the flu-
id’s viscosity μ.

We use the geometry of Figure 8.2 to manipulate this experimentally 
observed relationship into its more useful form:

 
∝

d
dt
θ

 (8.4a) 

u = du

u = 0

dy

du·dt

dθ dθ

τ

τ

Figure 8.2

Sliding plate inducing shear stress τ. Note that this is τyx.
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tand dudt

dy
θ=

 (8.4b)

For small angles, tan dθ ≈ dθ, and we can rearrange this to have

 

d
dt

du
dy

θ
= .

Finally, we have

 
τ µ=

du
dy

. (8.5)

Fluids for which this linear proportionality exists, for which viscosity µ 
does not itself depend on the strain rate, are called Newtonian, and we see 
that this is analogous to the behavior of a Hookean solid. Isaac Newton first 
referred to the slipperiness of fluids and wrote down the essence of equation 
(8.5) in his Principia in 1687. In both cases, we have Stress = (constant) · (Strain 
or Strain rate), whether this constant is E, G, or μ. The dimensions of viscosity 
are time·force/area, or Pa·s (N∙s/m2) in the International System of Units (SI). 
The viscosity of a fluid, we see, measures its ability to resist deformation due 
to shear stress or to resist flow. In a sense, it measures the fluid’s stiffness, just 
as E and G did for solids.

Although we are struck by the analogy between the constitutive laws for 
solids and fluids, we also note the key difference: the dependence on strain 
for solids and on strain rate for fluids. Remembering Hooke’s initial source of 
inspiration—the extension of a spring—we arrive at another comparison:

Component Constitutive Law Material Constitutive Law

F = kx Solid τ = Gγ

F = c
dx
dt

Fluid τ µ=
du
dy

If we think of solids as behaving more like springs and fluids as behaving 
more like dashpots, we can relate these constitutive laws to ones with which 
we are familiar. We can also foresee the introduction of other materials 
whose behavior is neither purely solid nor purely fluid (e.g., non-Newtonian 



Connecting Solid and Fluid Mechanics 313

fluids), which may be modeled by the series or parallel combination of these 
spring and dashpot elements. We can even visualize the gamut of consti-
tutive behavior as a spectrum with springs (Hookean elastic solids) at one 
end and dashpots (Newtonian fluids) at the other, with myriad variations 
between.1 Please see Case Study 5 at the end of this chapter for a discussion 
of the many types of material behavior possible in between these two ideal-
ized extremes.

The du/dy term that appears in the definition of viscosity (equation 8.5) was 
derived in terms of the angular deformation, or shear strain, of the fluid ele-
ment per time—that is, the strain rate. It also represents a gradient of velocity, 
as shown in Figure 8.3. Note that if a fluid is not flowing, shear stresses can-
not exist, and only normal stress (pressure) is considered.

Viscosity varies with temperature, as shown in Figure 8.4. For a liquid, the 
temperature dependence can be approximated by an exponential equation, 
μ(T) = c1·exp [c2/T], where the constants c1 and c2 are determined from mea-
sured data. Figure 8.4 demonstrates that the viscosity of a gas is much less 
dependent on temperature; this is because in liquids the shear stress is due 
in greater part to intermolecular cohesive forces than to thermal motion of 
molecules, and these cohesive forces decrease with T.

For non-Newtonian fluids (Figure 8.5) the viscosity may also depend on 
the type or rate of loading applied to the fluid. Dilatants such as quicksand 
or slurries become more resistant to motion as the strain rate increases. A 
mixture of cornstarch and water is a dilatant and, as you can experimen-
tally verify, “feels” harder the harder (faster!) you pound it. Pseudoplastics 
become less resistant to motion with increased strain rates. Examples of this 
include ketchup and latex paint. Bingham plastics, or viscoplastics, require a 
minimum shear stress to cause motion but after this threshold behave like 
Newtonian fluids. Toothpaste is a Bingham plastic.2

Viscosity causes fluid to adhere to surfaces; this is called the no-slip con-
dition, and it means that the fluid adjacent to any surface moves with the 
same velocity as the surface itself. Incidentally, μ is more formally called the 
dynamic viscosity of a given fluid. We may also wish to think in terms of a 
fluid’s kinematic viscosity, denoted by ν:

y

u(y)

Particle 1

Particle 2

t1
t2
t3
t4

Figure 8.3
Relative motion of two fluid particles in the presence of shear stress.
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ν µ
ρ

≡ ,  (8.6)

which is of special interest as it reflects a fluid’s tendency to diffuse velocity 
gradients. The SI units of kinematic viscosity are m2/s.
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Figure 8.4
Viscosity versus temperature for (a) liquids and (b) gases. (Adapted from Fox, R. W. and 
McDonald, A. T., Introduction to Fluid Mechanics, Wiley, 1978.)
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Figure 8.5
Newtonian and non-Newtonian fluids. The slope of the stress–strain rate diagram, represent-
ing the viscosity or resistance to deformation, is constant for a Newtonian fluid.
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8.3 Surface Tension

The attractive forces between fluid molecules result in surface tension. Mol-
ecules deep within the fluid are closely packed and are bound by cohesive 
forces. But the molecules at surfaces are less densely packed, and—because 
half their neighbors are missing—have nothing to balance their cohesive 
forces. The result is an inward force, or contraction, at the surface.

Surface tension is generally represented with a lower-case sigma, but to 
avoid confusion with normal stress components we denote surface tension 
with s. It is measured in (N/m) or in (lb/ft) and depends on the two fluids in 
contact and on their temperature.

The scale of a given problem determines which forces (inertia, pressure, 
viscosity, or surface tension) are involved in its physics. Though in traditional 
fluid mechanics textbooks the importance of this last force, surface tension, 
is often minimized, it has enormous relevance in emerging microscale and 
nanoscale fields.

Because inertia (the ma term in F = ma) scales as the volume of an object, 
when objects get smaller, inertia decreases by a power of 3. But the force 
due to surface tension only goes as the length of a given surface so that 
the same reduction in size causes it to decrease by only a power of 1. This 
scaling means that surface tension dominates the microscale physics, and 
inertia hardly enters the picture. However, the importance of surface ten-
sion has not always been well understood. Surface tension was seen as a 
major problem when researchers first began designing microelectrome-
chanical (MEMS) devices. The slightest amount of moisture beneath a 
miniature cantilever beam would pull the beam down to the substrate, 
welding it in place. The first micromotors could be rendered inoperable 
by the moisture in a single drop of water. Now that it is better under-
stood, surface tension can be harnessed to create motion if it is increased 
locally and decreased somewhere else. Researchers do this by adding a 
surfactant (e.g., soap, which lowers surface tension), by raising the tem-
perature at one point (which decreases surface tension), or by applying an 
electrical potential.

8.4 Governing Laws

Newton’s laws of motion apply to fluids just as they do to solids. Newton’s 
second law, F = ma, will be especially useful to us as we consider the com-
bined effects of all forces (due to, e.g., pressure, viscosity, surface tension) on 
a fluid and require their resultant to equal ma.
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8.5 Motion and Deformation of Fluids

The motion and deformation of a fluid element depend on the velocity field. 
The relationship between this motion and the forces causing the motion 
depends on the acceleration field (via F = ma). We use an Eulerian description, 
in which we concentrate on a spatial point x and consider the flow through 
and around this point, rather than the Lagrangian method of description 
sometimes used to track individual fluid particles.

8.5.1 linear Motion and Deformation

If all points in a given fluid element have the same velocity, the element sim-
ply translates from one point to the next. However, we typically have velocity 
gradients present so that the element is deformed and rotated as it moves. 
We write the velocity V = (u, v, w) in Cartesian (x, y, z) coordinates. A sample 
fluid element, a cube with infinitesimal volume dV = dxdydz, is shown in Fig-
ure 8.6. This element is part of a flow with velocity gradient

 

∂
∂

u
x

,

that is, the x velocity is varying with x. In a time interval dt, the change in the 
element’s volume is given by
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∂


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
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The rate at which the volume dV is changing, per unit volume, due to 
∂
∂

u
xmay be written
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Figure 8.6
Linear deformation of fluid element by 
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And if velocity gradients 
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where we have recognized the sum of the partial derivatives of V’s compo-
nents as the divergence of V.

Notice that the isolated effect of each of these velocity gradients causes a 
one-dimensional, normalized change in length, or normal strain rate, which 
can be written in the same way:

 
ε εxx x

y

x
= =

∂
∂

.
 

(8.10a) 

 
ε εyy y

v
y

= =
∂
∂

,
 

(8.10b) 

 
ε εzz z

w
z

= =
∂
∂

.
 

(8.10c)

The quantity ∇⋅V  derived in equation (8.9) for the entire volume is known 
as the volumetric strain rate. For an incompressible fluid, the volume of a fluid 
element cannot change, and we must have∇⋅V  = 0.

8.5.2 angular Motion and Deformation

In addition to undergoing normal strain rates, a fluid element may experi-
ence angular motion and deformation. We measure this with a shear strain 
rate, derived from the change in shape of the fluid element in Figure 8.7. The 
figure shows the position of an element with initial area dxdy at time t and 
its subsequent position at time t + dt. We see that the initially horizontal side 
(initial length dx) has undergone a rotation dα, and the initially vertical side 
(initial length dy) has been rotated dβ. We can calculate these angles and 
then find an expression for the shear strain rate, defined as (dα + dβ)/dt. We 
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also assume that the angles are small, so tan dα ≈ dα. From the figure we see 
that
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We note that if
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v
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> 0,

the rotation of this side is counterclockwise. Similarly, we find that
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seeing that if
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> 0,

the rotation of this side is clockwise, and, thus, we find the shear strain rate:
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Figure 8.7
Translation and angular deformation of a fluid element.
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And extending this to the other two dimensions, we see that in general the ij 
component of shear strain rate may be written as
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However, as before, when we compose the strain rate tensor, these shear 
components must be divided by 2 to make the tensor behave like a tensor. 
Now, a general form for the ij component of the strain rate tensor, including 
both normal and shear components, may be written as
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so that the matrix form of the tensor itself looks like
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All of these components of the strain rate tensor should look strikingly 
similar to the components of the strain tensor derived for a solid in Chapter 
3, Section 3.2. This similarity, while undeniably wondrous, should not be 
surprising: Both fluids and solids are continua, and their deformations can 
be written mathematically in the form of a nine-component tensor, which 
we have seen can be related to the nine components of stress. The difference 
between this strain rate tensor and the strain tensor in Section 8.4 is simply 
that for solids, strain is a dimensionless quantity measuring percent length 
change, while for fluids, we measure rate of strain so that (u, v, w) here are 
velocities rather than lengths.

8.5.3 Vorticity

To quantify the rotation of fluid elements due to a given flow, we again 
consider the angles dα and dβ as shown in Figure 8.7. We want to find an 
expression for the average rotation rate of this element. Again we consider 
both dα and dβ, the rotations of two mutually perpendicular lines. (This is 
because the average of these two rotation rates is independent of the initial 
orientation of the pair.) To combine these two we must remember that dα 
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is a counterclockwise rotation, while dβ was clockwise; thus, we find the 
combined effect to be
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1 1 1
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This angular velocity could also be computed for rotation about the x and y 
axes, with similar results, giving us three components,
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of what is known as the vorticity vector. We recognize that the vorticity may 
be written as the curl of the velocity field, or

 ω=∇×V . (8.19)

If a flow has

 ∇×V  = 0,

the flow is called irrotational. For such flows, the velocity vector V can be 
written as the gradient of a scalar potential function

 [V = ∇φ ],

since the curl of a gradient must be zero.
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8.5.4 Constitutive equation (generalized 
 Hooke’s law) for Newtonian Fluids

We recall that the relationship between stress and deformation in a contin-
uum is known as a constitutive equation. We now seek an equation linearly 
relating the stress to the rate of strain in a fluid, a counterpart to the general-
ized form of Hooke’s law for solids.

We have already seen that pressure is a normal stress on the surface of 
a fluid element. This contribution to the stress tensor may be written as a 
diagonal matrix with eigenvalues –p. We make use of the tensor equivalent 
of the identity matrix, known as the Kronecker delta. The Kronecker delta is a 
second-order, isotropic tensor whose matrix representation is
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And so we can write the pressure’s contribution to the fluid’s stress state as

 σ δij ijp=− ,  (8.21)

where δij, and, hence, σij is only nonzero when i = j.
Knowing that we can superpose these components of normal stress with 

any normal components that arise due to fluid motion, as described in Sec-
tion 8.5.1, we simply add on the stress tensor that is developed by fluid motion 
so that the complete stress picture is given by

 τ δ σij ij ij
dp=− + ,  (8.22)

whereσij
d , the part of the stress tensor due to fluid motion, is known as the 

deviatoric stress tensor. It is related to the velocity gradients, as we have seen 
through the construction of the strain rate tensor. We now know
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and we assume a linear relationship between stress and strain rate,

 σ εij
d

ijmn mnK= ,  (8.24)

where Kijmn is a fourth-order tensor with eighty-one components, very much 
like the large tensor invoked in our discussion of the generalized form of 



322 Introduction to Engineering Mechanics: A Continuum Approach

Hooke’s law (Chapter 3, Section 3.5). We recall that for solids, this large ten-
sor depended on E and G and Poisson’s ratio ν. For fluids, K turns out to 
depend on viscosity μ and to have a very simple form for most fluids. We 
need only assume that the fluid is isotropic and that the stress tensor is sym-
metric to reduce K to a matter of only two (not eighty-one) elements.3 In fact, 
the whole mess can be reduced quite nicely to

 τ µ δ µεij ij ijp v=− + ∇⋅ +( ) ,2
3 2  (8.25)

which for an incompressible fluid

 (∇⋅v  = 0)

reduces still further to

 τ δ µεij ij ijp=− +2 . (8.26)

This is the constitutive law for an incompressible, Newtonian fluid. As we 
did for solids, we are able to consider a few components of this relationship 
at a time. But again, it is useful to see the big picture.

8.6 Examples

example 8.1

In the center of a hurricane, the pressure can be very low. Find the force act-
ing on the wall of a house, measuring 10 ft × 20 ft, when the pressure inside 
the house is 30 in. Hg and the pressure outside is 26.3 in. Hg (Figure 8.8 and 
Figure 8.9). Express the answer in both pounds and Newtons.

Figure 8.8

po
(26.3 in Hg)

pi
(30 in Hg)

Figure 8.9
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Given: Pressure on both sides of wall; wall dimensions.
Find: Resultant force on wall.
Assume: Uniform pressure distributions on both sides of wall.  

Negligible pressure contributions from inside wall.

Solution

A mercury barometer measures the local atmospheric pressure. A standard 
atmosphere has a pressure of 14.7 psi, or 101.325 kPa. A mercury barometer 
reads this standard atmospheric pressure as 760 mm Hg, or 29.92 in. Hg. 
Since we are asked for a result in two different units, we must be mindful of 
these conversion factors.

The resultant force on the wall is simply the net pressure applied to it 
times its area. A quick free-body diagram (FBD) of the wall will be of use 
(Figure 8.10).

piA
poA

Figure 8.10

We see that the net force on the wall will be directed outward and that it is

F = (pi – po)A
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220 240

52 354

in. in.

lb

52,354 lb 4.44
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=

=

,

88 N
1 lb

N.= 232 871,

This outward force is very large, and if the wall has not been adequately 
strengthened the force can explode the wall outward. If you know a hurri-
cane is coming, it’s therefore a good idea to open as many windows as pos-
sible to equalize the pressure inside and out.
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example 8.2

The flow between two parallel plates, one of which is moving with constant 
speed U, is known as Couette flow (Figure 8.11). If the fluid between the two 
plates is Newtonian, develop an expression for the velocity distribution in 
the fluid layer. If the fluid is SAE oil at 20˚C, which has a viscosity of 0.26 Pa·s, 
and if the top plate moves with speed U = 3 m/s and the gap thickness is h = 
2 cm, what shear stress is applied to the fluid?

h Oil, µ 

U

x
 y 

Figure 8.11

Given: Couette flow.
Find: Fluid velocity distribution, shear stress.
Assume: Newtonian fluid; any transient effects due to initiation of plate 

motion have died out and flow is steady; negligible gravity; one-
dimensional flow; u = u(y) only.

Solution

We know that, for a Newtonian fluid, the definition

 
τ µyx

du
dy

=

is a linear relationship with constant viscosity μ. This is a differential equa-
tion we can solve for velocity u(y).

Due to equilibrium, the shear stress will be constant throughout the layer 
of fluid (Figure 8.12):

Figure 8.12

This is because there are no other forces on the fluid, so to keep a fluid ele-
ment in equilibrium we must have τyx (= τxy) = constant = τ. So,
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τ µ= du
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,

 

du
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= =
τ
µ

constant.

If we call this constant C and then integrate, we find that the velocity must 
have the form u(y) = Cy + D. To complete the solution, we use boundary con-
ditions. We have discussed an important property of viscous fluids: that the 
fluid adjacent to a solid surface moves with the same speed at that surface. 
This is known as the no-slip condition. At the lower plate, which is at rest, we 
have u(y = 0) = 0; at the upper plate which slides with speed U we have u(y = 
h) = U. Applying these boundary conditions:

 u(y = 0) = 0 → D = 0

 u(y = h) = U → C = U/h

We therefore must have (Figure 8.13)
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Figure 8.13

For the given numerical values, we find the shear stress to be
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( .0 26 Pa·s)
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0 02
m/s

m
= 39 Pa.

example 8.3

A 5-kg cube with sides 12 cm long slides down an oil-coated incline (Fig-
ure 8.14). If the incline makes a 10˚ angle with the horizontal and the oil layer 
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is 0.2-mm thick, estimate the speed with which the block slides down the 
incline. The viscosity of the oil is 0.1 Pa·s.

10°

5 kg 
Oil 

Figure 8.14

Given: Dimensions of cube and fluid layer.
Find: Cube’s terminal velocity.
Assume: Newtonian fluid; flow is steady; negligible end effects; one-

dimensional fluid flow in thin layer can be modeled as Couette 
flow.

Solution

We begin with an FBD of the cube (Figure 8.15):

θ =10º

N

W

Fs
x

 y 

Figure 8.15

This contains the weight of the cube itself, a normal force upward, and a 
frictional resistance from the oil. This shear force Fs is simply the fluid shear 
stress acting over the area of contact between cube and fluid. (An equal and 
opposite shear force acts on the layer of oil.)

The cube is not accelerating—we are seeking its terminal velocity. So the 
cube is in static equilibrium. We must have the sum of forces in both x and y 
directions equal zero. The x direction is more useful to us:

 ΣFx = 0

 0 = W sin θ – Fs.

In the layer of oil, we have a top surface (the bottom of the cube) that is 
moving with constant velocity, say V, in the x direction, and a bottom surface 
(the inclined plane) that is at rest. The oil is therefore in Couette flow! We 
make use of our result from Example 8.2 to express the shear force as

 
F A V

h
As = =τ µ ,
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so

 
0= −W V

h
Asinθ µ .

Rearranging, we have

 
V Wh

A
=

sinθ
µ

.

Plugging in the given values,

 
V = × −( )( .

( .
5 0 2 10

0

3kg)(9.81 m/s m) sin(10 )2 

11
1 18

Pa s)(0.12 m)2⋅
= . m/s.

example 8.4

The steady flow of an incompressible fluid has the x and y velocity compo-
nents u = x2 + y2 + z2 and v = xy + yz + z. What form does the z component of 
velocity have?
Given: u, v for steady, incompressible flow.
Find: w.
Assume: Steady flow.

Solution

We know that the volumetric strain rate can be written as the divergence of the 
velocity field and that for an incompressible fluid or flow, this must equal zero:

 
∇⋅ =

∂
∂
+
∂
∂
+
∂
∂
=V u

x
v
y

w
z

0.

For the given velocity components,

 

∂
∂
=

∂
∂
= +

u
x

x

v
y

x z

2 ,

.
Hence,
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2 0x x z w

z
+ + +

∂
∂
= ,

or

 

∂
∂
=− −

w
z

x z3 .

Integrating both sides in z, we have

 

w xz z k x y=− − +3 1
2

2 ( , ),

where k(x, y) may be a constant, or any function of x or y or both. The precise 
nature of k(x, y) cannot be determined from what is known.

8.7 Problems

 8.1 A beaker has the shape of a circular cone of diameter 7 in. and 
height 9 in. When empty, it weighs 14 oz; full of liquid, it weighs 
70 oz. Find the density of the liquid in both SI and US units.

 8.2 Some experimental data for the viscosity of argon gas at 1 atm are 
provided:

Fit these data to a power law.

T (K) 300 400 500 600 700 800

μ (N·s/m2) 2.27 × 10-5 2.85 × 10-5 3.37 × 10-5 3.83 × 10-5 4.25 × 10-5 4.64 × 10-5

 8.3 The space between two very long parallel plates separated by a 
distance h is filled with a fluid with viscosity

 
µ µ=









o

n
du
dy

,

   where μo is a constant and n is a constant exponent. The top plate  
 slides to the right with constant speed Vo, as shown in Figure 8.16.
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Vo

 y 
h µ

Figure 8.16

 (a) Find the velocity distribution between the plates and an expres-
sion for the shear stress τ.

 (b) Graph the shear stress versus the shear strain rate Vo/h for 
several values of n > 0 (dilatant), n = 0 (Newtonian), and n < 0 
(pseudoplastic).

 8.4 Many devices have been developed to measure the viscosity of 
fluids. One such device, known as a rotational viscometer, involves 
a pair of concentric cylinders with radii ri and ro, and total length 
L. The inner cylinder rotates at a rate of Ω rad/s when a torque 
T is applied. Derive an expression for the viscosity of the fluid 
between the cylinders, μ, as a function of these parameters.

 8.5 A thin plate is separated from two fixed plates by viscous liquids 
with viscosity values μ1 and μ2. The plate spacings are h1 and h2 as 
shown in Figure 8.17. The contact area between the center plate 
and each fluid is A. Assuming a linear velocity distribution in 
each fluid, find the force F required to pull the thin plate at veloc-
ity V.

F, V 
µ1

µ2

h1

h2

Figure 8.17

 8.6 Magnet wire is single-strand wire with a thin insulation layer (of, 
e.g., enamel, varnish, glass) to prevent short circuits. In a produc-
tion facility, copper (E = 120 GPa, σys = 70 MPa) magnet wire is to 
be coated with varnish by pulling it through a circular die (i.e., a 
cylindrical tube) of 0.35-mm diameter. The wire diameter is 0.30 
mm, and it is centered in the die. The varnish (μ = 0.020 Pa.s) com-
pletely fills the space between the wire and the die for a length of 
30 mm. Determine the maximum speed with which the wire can 
be pulled through the die while ensuring a factor of safety of 3.0 
with respect to yielding.
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 8.7 A solid cylindrical needle of diameter d, length L, and density ρn 
is able to float in liquid of surface tension s. Assuming a contact 
angle of 0°, derive an expression for the maximum diameter dmax 
that will be able to float in the liquid. If the needle is steel and the 
liquid is water, what is the value of dmax?

 8.8 A flow is described (in Cartesian coordinates) by the velocity vec-
tor V xyi y j= −2 3 2ˆ .̂  Is the flow incompressible?

 8.9 A flow is described (in Cartesian coordinates) by the velocity 

vectorV x z x i y xy j z yz k= + + − − +( )ˆ ( )ˆ ( )ˆ.2 6 4 2 22 2 2 3  Is the flow 
incompressible?

Case Study 5: Mechanics of Biomaterials

We have discussed the properties and behavior of Hookean solids and 
Newtonian fluids: materials that are special cases, on either extreme of the 
spectrum of material behavior. These materials and most applications fit our 
favorite simplifying assumptions (homogeneity, isotropy, linearity, small 
deformations) to a tee. While a great number of engineering materials are 
well served by these assumptions and models, the growing category of bio-
materials demands that we consider the more complex behaviors between 
these two idealized extremes.

Biomaterials may be natural (blood vessels, bone, cartilage, or the cornea) 
or artificial (joint replacements, blood vessel shunts and stents, or the results 
of tissue engineering). Scientific interest in biomaterials is not an exclusively 
modern phenomenon: Ancient technology relied on horn, tendon, and vari-
ous woods and fibers. However, we are now able to analyze the biological 
role of biomaterials and how these complex behaviors contribute to the spe-
cies that rely on them. This helps us understand the relationship between 
properties and applications or between structure and function. Since engi-
neers often seek to replace or mimic biological materials, we must under-
stand both the material behavior and the biological reasons for it.

It is critical for engineers to understand how such materials respond to 
loading, to mechanical stresses, and to biochemical and electrical stimuli 
as well. In his pioneering text on biomechanics, Y. C. Fung (1993) outlines 
a systematic approach to problems in biomechanics: The first step is study-
ing organism morphology, organ anatomy, tissue histology, and structure 
of materials. The second is determining the mechanical properties of the 
materials involved before later steps (i.e., deriving the governing equations, 
developing boundary conditions, solving the problems, and performing 
experiments) follow. As Fung notes, determining the mechanical properties 
of biomaterials can be complicated by the difficulties of isolating the tissue 
for testing, extracting specimens of sufficient size, or maintaining tissue’s in 



Connecting Solid and Fluid Mechanics 331

vivo conditions. Compounding these difficulties, biological tissues are often 
subjected to large deformations and exhibit nonlinear and time-dependent 
stress-strain behavior.

Tensile testing of the sort described in Chapter 2 and Chapter 3 has yielded 
an extensive array of properties for biomaterials. Values of Young’s modu-
lus are tabulated in Table CS5.1; values of the shear modulus and Poisson’s 
ratio are shown in Table CS5.2. These values come with strong disclaimers, 
though, as they are only as valid as the assumptions behind them. While 
these parameters have familiar meanings, and while biomaterials obey many 
of the equations we have already derived, we must be cautious. Remember 
well the assumptions implicit in many results of engineering mechanics, 
and consider how well such assumptions describe the material of interest. 
Remember from Chapter 3 the handy equation (3.2) that could be used to 
relate E, G, and v? It does not hold for biomaterials. The measured G and E 
for bone would suggest a Poisson’s ratio of 0.8, which is twice the measured 
value, and tree trunks and bamboo stalks would have Poisson’s ratios of 6 or 
7. The trouble is those assumptions that we’ve begun to make almost implic-
itly about materials—linearity, homogeneity, and small deformations—often 
don’t apply to biomaterials.

Table CS5.1

Modulus of Elasticity for Various Biomaterials

Material
Young’s Modulus of Elasticity E 

(MPa)

Aorta, cow 0.2

Aorta, pig 0.5

Nuchal ligament (mainly 
elastin)

1.0

Dragonfly tendon (mainly 
resilin)

1.8

Cartilage 20

Tendon (mainly collagen) 2,000

Tree trunks 6,400

Wood, dry, with grain 10,000

Teeth (dentine) 15,000

Bone (large mammal) 18,000

Teeth (enamel) 60,000

Kevlar (synthetic fiber) 130,000

Steel 200,000

Note: These values should be regarded as rough approximations, 
with wide variations depending on the rate of stretching, on 
the amount of deformation, and on the natural biological 
diversity of each material.

Source: Vogel, S., Comparative Biomechanics: Life’s Physical World, 
Princeton University Press, Princeton, NJ, 2003.
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Material testing of biomaterials to obtain the values shown in Tables CS5.1 
and CS5.2 is also a challenge. The properties, microstructure, and behav-
ior of natural biomaterials change in response to the physiologic environ-
ment. This makes determining decisive experimental results or developing 
detailed constitutive models very difficult. The bulk of elastomechanical 
testing of natural biomaterials has been conducted in vitro in an experi-
mental simulacrum of in vivo conditions, including thermal conditions and 
ionic concentrations, which affect smooth muscle activity. Proper specimen 
preparation and conditioning are vital to maintaining the integrity of the 
material. Debes and Fung (1995) first proposed a preconditioning of very low 
frequency cyclic loading for a few cycles, suggesting that the internal struc-
ture of the tissue would respond to this loading until it reached a steady state 
that would allow consistent mechanical response to loading.

Nonlinearity

We may have begun to take for granted the linear elasticity of most engineer-
ing materials. When working problems, we may even have been tempted to 
construct a rubber stamp saying, “Hooke’s law applies,” for the Assump-
tions section of our solutions. It is time, however, to reexamine that assump-
tion. Many biomaterials have stress–strain curves that are not linear but are 
J-shaped—that is, curves that get increasingly steep. An example is shown 
in Figure CS5.1. This sort of curve signifies that the Young’s modulus or stiff-
ness of the material increases with extension. For materials with nonlinear 
behavior, the Young’s modulus cited in tables such as Table CS5.1 and used 

Table CS5.2

Modulus of Rigidity and Poisson’s Ratio for Various Biomaterials

Material Shear Modulus G (MPa) Poisson’s Ratio ν
Aorta (at 100 mm Hg) 0.15 0.24

Cartilage (rabbit) 0.35 0.30

Tendon (mainly collagen) 1 (huge variation) 0.40

Tree trunks 450 0.33

Bone (large mammal) 3300–5000 0.40

Teeth (enamel) 65,000 0.30

Kevlar (synthetic fiber) 30,000 —

Steel 77,000 0.33

Note: These values should be regarded as rough approximations, with wide variations depend-
ing on the rate of stretching, on the amount of deformation, and on the natural bio-
logical diversity of each material.

Source: Vogel, S., Comparative Biomechanics: Life’s Physical World, Princeton University Press, 
Princeton, NJ, 2003.
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in calculations is that of the low-strain, quasilinear “toe” region of the stress–
strain curve.

In our discussion of pressure vessels we considered an abdominal aortic 
aneurysm, suggesting that the aneurysm exposed to high fluid pressures 
might remodel itself into a more spherical shape to reduce the induced stresses. 
The aortic wall, however, is not a Hookean metal. And it’s a good thing, too: 
Artery walls must expand and contract with each heartbeat to accommodate 
the heart’s pressure pulse. A Hookean material would be a poor choice for a 
cylinder meant to have a compliant wall, because already dilated portions of 
the cylinder would tend to expand further just as much as areas that had not 
expanded, thus creating regions of dangerously high stress.

Although Hookean linearity is the best-case scenario to simplify many of 
our analyses, there are many reasons that nonlinearity is an advantage for 
biomaterials in practice. Getting stiffer as it gets closer to the failure point 
can make a structure safer, because it then requires a disproportionate force 
to break. Additionally, the stress–strain curve’s upward concavity reduces 
the area under the curve (compared with a Hookean material with the same 
limits), meaning less energy is released on failure of the biomaterial. Energy 
release drives crack propagation, and for a biomaterial (e.g., skin), we would 
prefer cracks not to propagate.

Composite Materials

One way to keep cracks from propagating dramatically, and disastrously, 
through materials is to construct composites from materials with different 
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Figure CS5.1
Exemplary J-shaped stress–strain curve for nuchal ligament of deer. (Adapted from Vogel, 
S., Comparative Biomechanics: Life’s Physical World, Princeton University Press, Princeton, NJ, 
2003.)
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properties. A well-known engineering trick is to use carbon fibers, which 
are very stiff, to reinforce other materials (e.g., concrete, which is stronger 
in compression than in tension) or plastic (carbon fiber-reinforced plastic, 
widely known as carbon fiber, is widely used in modern bicycles and race cars. 
This addition of a hard component allows the matrix materials (concrete or 
plastic) to be used in a wider array of applications, and to be more durable.

Nature has made good use of composite materials, in wood and leaves of 
grass and in tendons (which are collagen fiber-reinforced) and bone (in which 
cells form osteons that reinforce the longitudinal direction against compressive 
loads). Table CS5.3 shows some natural composites and their components.

Blood vessels are soft tissue composed of elastin and collagen fibers, smooth 
muscle, and a single layer of endothelial cells lining the vessel lumen. The 
proportions of the fibrous proteins and vascular smooth muscle depend on 
the type of blood vessel and the loading it must withstand. The two types 
of protein fibers have important consequences for the material behavior 
of vessels. Elastin is a very elastic fiber with a large Hookean region in its 
stress–strain behavior. It provides blood vessels with the ability to expand 
(or distend) to accommodate the pressure pulse of the heartbeat. Vessels that 
are too stiff will not expand, and this will result in high blood pressure or 
hypertension. Collagen fibers form a network outside the elastin. Collagen 
has a very high elastic modulus and a very high ultimate strength: Its stiff-
ness provides a limit to the vessel walls’ distensibility. The collagen fibers are 
typically arranged with some slackness or “give”; in tendons this is known 
as crimp. This crimp means that each collagen fiber must be stretched taut 
before it begins to resist additional deformation so that the material grad-
ually stiffens as it is stretched. In this way, each collagen fiber in turn is 
“recruited” to contribute to the overall behavior of the vessel. This behavior 
creates a J-shaped stress–strain curve, as shown in the experimental data in 
Figure CS5.2.

Table CS5.3

Natural Composite Biomaterials
Material Hard Component Matrix

Wood Cellulose (polysaccharide) Lignin, hemicelluloses

Sponge body wall Calcareous, siliceous spicules, 
collagen

Miscellaneous organic

Stony corals Aragonite (CaCO3) crystals Chitin fibril network

Mollusk shell Calcite (CaCO3), aragonite Protein, sometimes chitin

Bird eggshell Calcite crystals Protein, some polysaccharide

Cartilage Collagen fibrils Mucopolysaccharide

Bovid horn Keratin fibers Wet, amorphous keratin

Bone Hydroxyapatite 
(Ca5(PO4)3(OH))

Collagen, other organic

Tooth enamel Hydroxyapatite Organic
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Figure CS5.2 shows a stress–strain curve for a bovine artery with two identifi-
able regions: a long “toe” region of linear behavior dominated by elastin, in which 
large deformations result in only small stresses, and an increasingly steep region 
illustrating the recruitment of collagen fibers to stiffen the composite material.

Blood vessels also exhibit behavior called cylindrical orthotropy—different 
mechanical properties in the circumferential and longitudinal direction. Since 
we know from our study of pressure vessels that arteries and veins experience 
different stresses in these two directions, it is not surprising that they have 
responded to directionally dependent pressure loading by having direction-
ally dependent properties. The different stiffness values in circumferential 
and longitudinal directions are evident from the slopes of the experimentally 
obtained stress–strain diagrams shown in Figure CS5.3.
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Figure CS5.2
Experimental stress–strain diagrams for a bovine artery, showing two distinct regimes of mate-
rial stiffness and the J-shaped overall curve. (From J. S. Rossmann and B. Utela, unpublished data. 
With permission.)
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Figure CS5.3
Experimental data for bovine veins in the (left) circumferential and (right) longitudinal direc-
tions. The slopes of the toe (elastin-dominated) regions are Ecirc = 30 kPa and Elong = 100 kPa. 
(From J. S. Rossmann and B. Utela, unpublished data. With permission.)
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Viscoelasticity

Recall the material behavior spectrum and the special cases at its extrema: 
Hookean solids, for whom shear stress equals the product of a shear modu-
lus and shear strain; and Newtonian fluids, for whom shear stress is viscos-
ity times shear strain rate. At these extremes, these constitutive relationships 
are linear. We have already recognized that Hookean solids may be modeled 
as springs (i.e., as is the extension, so is the force) and that Newtonian fluids 
behave like dampers or dashpots. A spring is an elastic element, a dashpot a 
viscous one—so we are able to fill in the middle of the material behavior spec-
trum with combinations of these two elements. Materials whose behavior is 
best described by such a combination are known as viscoelastic materials.

For viscoelastic materials, both how much they deform and how fast they 
are deformed are important. Many, many biomaterials exhibit some degree 
of viscoelasticity. The two primary characteristics of viscoelastic behavior 
are creep and stress relaxation. Creep occurs when a material is exposed to 
a constant load for a long time and the material deforms increasingly: It’s 
why a rubber band used to suspend a weight gradually lengthens and why 
you find that you are measurably shorter at the end of an active day dur-
ing which your intervertebral cartilage has been subjected to constant com-
pressive loading. Stress relaxation means that when a constant deformation is 
applied to a material, over time it will resist that deformation less so that the 
experienced loading decreases with time.

Another key feature of viscoelastic materials is hysteresis. This is the term 
used to describe the tendency of viscoelastic materials to dissipate energy 
rather than to store all of the energy of deformation as linearly elastic solids 
do. A schematic of this behavior is shown on a stress–strain diagram in Fig-
ure CS5.4a; the area between the loading and unloading curves represents 
dissipated or lost energy. (For a Hookean solid, the loading and unloading 
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Figure CS5.4
Hysteresis of viscoelastic materials: (a) representative stress–strain diagram; and (b) experi-
mentally obtained stress–strain diagram for bovine veins. (From J. S. Rossmann and B. Utela, 
unpublished data. With permission.)
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curves are the same for small deformations.) Figure CS5.4b shows an exper-
imentally obtained hysteresis curve for bovine veins in which it becomes 
clear that for these vessels, the amount of energy dissipated increases with 
increasing strain rate. This energy dissipation is what makes viscoelastic 
materials well suited to absorbing or cushioning shock.

The classical models for viscoelasticity represent different combinations of 
the spring (elastic) and dashpot (viscous) elements, as shown in the schemat-
ics of Figure CS5.5. Other combinations are possible, of course, but these two 
models prove remarkably effective for many materials.

For a Maxwell material, because the elastic and viscous elements are in 
series, they experience the same load (σs = σd = σ), and the net deformation of 
the material is the sum of the deformation of each element (εs + εd = ε).4 The 
resulting constitutive law relating stress and strain is thus written,

 E Eµε µσ σ = + ,  (CS5.1)

where E is the elastic modulus or spring stiffness of the elastic element, and 
μ is the dynamic viscosity of the viscous element of the material.

In a Kelvin-Voigt material, the elements in parallel share the same defor-
mation (εs = εd = ε), and the total stress is the sum of that experienced by 
each element (σs + σd = σ). The constitutive law for the viscoelastic material 
is therefore

 Eε µε σ+ = .  (CS5.2)

The ability of these models to capture viscoelastic behavior such as stress 
relaxation and creep varies, as shown in Problem CS5.2, Problem CS5.3, and 
Problem CS5.4. The response of each model to a step input in load or defor-
mation, which can be deduced from the constitutive equations, is shown in 
Figure CS5.6.

A brief historical note: These models are attributed to James Clerk Maxwell 
(1831–1879), a prolific Scottish theoretical physicist who developed the Max-
well model of viscoelasticity to mathematically describe the viscous behavior 
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Figure CS5.5
Schematics of the two most common mechanical models for viscoelastic material behavior: (a) 
Maxwell and (b) Kelvin-Voigt materials.
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of air; Woldemar Voigt (1850–1919), a German physicist notable for his work in 
crystallography; and William Thomson (Lord Kelvin, 1824–1907), an Irish ther-
modynamicist whose interest in modeling mechanical behavior was rooted 
in his interest in irreversibility (i.e., the second law of thermodynamics).

Problems

 CS5.1 Show that the constitutive law for a Maxwell body must have the 
form given in equation (CS5.1).

 CS5.2 For the Kelvin-Voigt model of viscoelastic behavior, (a) find the 
solution of equation (CS5.2), є(t), due to a step input in stress (a 
constant stress of magnitude unity applied beginning at t = 0), 
and (b) the solution σ(t) due to a step input in strain. Sketch both 
solutions.

 CS5.3  For the Maxwell model of viscoelastic behavior, (a) find the solu-
tion of equation (CS5.1), є(t), due to a step input in stress (a constant 
stress of magnitude unity applied beginning at t = 0), and (b) the 
solution σ(t) due to a step input in strain. Sketch both solutions.

 CS5.4  Compare your results for Problem CS5.2 and Problem CS5.3 
with the sketches in Figure CS5.6. Which of the two models rep-
resents creep behavior well, and which better represents stress 
relaxation?
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Figure CS5.6
Characteristic (a) stress relaxation and (b) creep responses of the Maxwell and Kelvin-Voigt 
models. (Adapted from Humphrey, J. D. and Delange, S. L., Biomechanics, Springer, New York, 
2003.)
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Notes

 1. We should pause again to empathize with Robert Hooke, whose work was sup-
pressed by the bitterly competitive Isaac Newton but who now finds himself 
facing his rival on the opposite end of the material behavior spectrum.

 2. The materials scientist Eugene Bingham (1878–1945) was a professor of chem-
istry at Lafayette College. He coined the term rheology for the study of fluid 
deformation and flow—that is, for the continuum mechanics of fluids. Bing-
ham chose a quote from Heraclitus, “panta rei”—“everything flows”—as a 
suitable motto for the Society of Rheology he helped found in 1929. He and 
chemical engineer Markus Reiner proposed the Deborah number as a funda-
mental quantity of rheology, with larger Deborah numbers resulting in mate-
rial behavior further toward the “solid” end of the spectrum. It was named for 
the prophetess Deborah, who sang, “The mountains flowed” to the defeated 
Philistines. We refer readers to Reiner (1960).

 3. For the details of this, please see Kundu (1990, 89–93). For the mathematical 
justification, see Aris (1962).

 4. The elements experiencing the same load translates to experiencing the same 
stress because the spring and dashpot are modeling two behavioral aspects of 
the same tissue, so they can be considered to have the same area.
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9
Fluid Statics

When there is no relative motion between fluid particles, no shearing stresses 
exist, and the only stress present is a normal stress, the pressure. Hence F = ma 
is a balance between the forces due to pressure and the inertia of the fluid. Our 
fluid, like the solids we studied in Chapters 2 through 6, is in equilibrium.

9.1 Local Pressure

We have defined fluid pressure as an infinitesimal normal force divided by 
the infinitesimal area it acts on. From our study of solid mechanics, we may 
suspect that the value of p will change if the orientation of this planar area 
changes—that we will have a different p if the xy plane is rotated to x′y′. 
However, this is not the case, as we can show by a simple analysis of a now 
familiar inclined plane.

If we write the equations of motion (F = ma) in the y and z for the element 
shown in Figure 9.1, we have

 
F p dxdz p dxds dxdydz ay y s y= − =∑ sinè ρ

2  (9.1a) 

 
F p dxdy p dxds g dxdydz dxdydz az z s z= − − =∑ cosè ρ ρ

2 2  (9.1b)

noting the geometry of the problem, dy = ds cos θ and dz = ds sin θ, we can 
rewrite these equations as

 
p p a dy

y s y− = ρ
2

,  (9.2a) 

 
p p a g dz

z s z− = +( ) .ρ ρ
2  (9.2b)
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And since our real interest is in what’s happening at a point, we shrink this 
element, taking the limit as dx, dy, and dz go to zero (while maintaining θ); 
hence, we must have py = ps and pz = ps, or

 p p ps y z= = . (9.3)

Since θ was an arbitrary angle, this must be true for any θ so that we may 
say:

The pressure at a point at a fluid is independent of direction as long as 
there are no shearing stresses present.

This result is due to the French mathematician Blaise Pascal (1623–1662) and 
is known as Pascal’s law.

We could also consider the Mohr’s circle of stress for a fluid with no relative 
motion between fluid particles. A general Mohr’s circle is sketched in Fig-
ure 9.2. When shear stress is absent, Mohr’s circle degenerates to a point and 
pi = pj. Hence, using Mohr’s circle, we could have beaten Pascal to the punch.

9.2 Force Due to Pressure

We would like to be able to determine the pressure variation within a fluid. 
Certainly Pascal’s law helps us do this. We consider another small fluid 
element, this time in the shape of a cube (the shape is ours to choose since 
Pascal’s law tells us that p at the center of an element is independent of the ori-

dz

dy
θ

θ

dx

ds

ps dxds

pz dxdy

py dxdz

½ρg dxdydz 
x

z

y

Figure 9.1
Forces on an arbitrary wedge-shaped element of fluid.
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entations of the element’s faces, and choosing a cube simplifies the geometry). 
This element is shown in Figure 9.3. We write Newton’s second law for this 
element, first finding an expression for the force due to pressure p(x, y, z).

The pressure is p at the center of our element, a point with coordinates (x, 
y, z). Since p varies in x, y, and z, we can write the pressures at each of the 
element’s faces using the chain rule,

 
dp p

x
dx p

y
dy p

z
dz=

∂
∂

+
∂
∂

+
∂
∂

,  (9.4)
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 Figure 9.2
Mohr’s circle.

ρgdxdydz

dx
dy

dz

dxdzdy
∂y
∂p

2
dxdzdy

∂y
∂p

2

dxdy
dz

∂z
∂p

2

dxdy
dz

∂z
∂p

p +

p +p –

p –

2

z

y

x

Figure 9.3
Forces acting on a small fluid element (x forces, not shown, have similar form).
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so that the pressure at a distance (dx/2) from the element’s center is written

 
p x dx y z p x y z p

x
dx( , , ) ( , , )+ = +

∂
∂2 2

. (9.5)

The same reasoning gives us expressions for the pressure on all six faces of 
the element in Figure 9.3.

The resultant forces on the element are the differences between those on 
top and bottom, right and left, or front and back faces. For example, the resul-
tant force due to pressure in the y direction is

 
dF p

y
dxdydzy =−

∂
∂

. (9.6)

And the resultant surface force on the element can be written in vector form 

as dF = dFx î  + dFy ĵ  + dFz k̂ , or

 
d p

x
i p
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j p

z
k dxdydzF =− ∂

∂
+
∂
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+
∂
∂











ˆ ˆ ˆ . (9.7)

The group of terms in parentheses is the vector form of the pressure gradi-
ent, or grad p. We can thus write the resultant surface force on the element 
using the notation

 

dF
dxdydz

p=−∇ . (9.8)

Something very interesting has happened: The force on the element due to 
pressure has been shown to depend only on the gradient of pressure, or on 
how pressure varies in x, y, and z.

To complete F = ma, we combine this resultant surface force with the body 
force (gravity) acting on the element and set these forces equal to the inertia 
of the element. The body force is written as –ρg dxdydz k̂ , and ma is written 
as ρ dxdydz a. The element volume, dxdydz, appears in all terms and may be 
divided out of the equation, leaving in vector form

 −∇ − =p g k aρ ρˆ . (9.9)

This is the general equation of motion for a fluid in which there are no 
shear stresses. It is an equation per unit volume of the fluid, since we have 
divided through by dxdydz, and each term in equation (9.9) hence has units 
of force per volume.
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9.3 Fluids at Rest

In the special case of a fluid at rest, acceleration a = 0 and the governing equa-
tion reduces to

 −∇ − =p g kρ ˆ ,0  (9.10)

with three component equations:

 

∂
∂
=

p
x

0,  (9.11a) 

 

∂
∂
=

p
y

0,
 (9.11b) 

 

∂
∂
=−

p
z

gρ .
 (9.11c)

The x and y components show that the pressure in this special case does not 
depend on x or y. The pressure p = p(z) only, and its dependence is given by

 

dp
dz

g=−ρ . (9.12)

To use this equation to calculate pressure throughout a fluid, it is necessary 
to specify how the product (ρg) varies with z. In most engineering applica-
tions, variation in g is negligible, so we concern ourselves primarily with the 
variation of density ρ.

An incompressible fluid is defined as one that requires a very large pressure 
change to effect a small change in volume. This threshold is so high that in 
most cases, the fluid’s volume and therefore its density are constant. Most 
liquids satisfy this requirement. When ρg can be taken to be constant, the 
equation for p is easily integrated:

 

dp pg dz
z

z

p

p

=− ∫∫
1

2

1

2

,  (9.13)
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so

 p p g z z1 2 2 1− = −ρ ( ),  (9.14)

or, if h = z2 – z1, then p1 – p2 = ρgh, or 

 p1 = p2 + ρgh. (9.15)

Equation (9.15) describes what is called a hydrostatic pressure distribution. 
The distance h = z2 – z1 is measured downward from the location of p2. 
Hydrostatic pressure increases linearly with depth, as the pressure increases 
to “hold up” the fluid above it. Many devices such as hydraulic lifts exploit 
the hydrostatic pressure distribution.

For a compressible fluid—typically a gas—the fluid density can change sig-
nificantly due to relatively small changes in pressure and temperature. For 
these fluids, the product ρg is typically quite small—for air at sea level at 
60˚F, ρg is 0.0763 lb/ft3, compared with 62.4 lb/ft3 for water at the same condi-
tions. It therefore requires very large elevation changes h to make much dif-
ference in the pressure of compressible fluids. To account for the variation in 
ρg, we make use of the ideal gas law, p = ρRT, to write

 

dp
dz

gp
RT

=− . (9.16)

Separating variables and integrating, we get
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=−ln ,  (9.17)

where g and R are assumed constant over the elevation change from z1 to z2.
Pressure is often measured using liquid columns in vertical or inclined 

tubes, or manometers. These devices make use of the information we have just 
obtained: that pressure increases with depth; and that (therefore) two points 
at the same elevation in a continuous length of the same fluid must have the 
same pressure. The three most common types of manometers are U-tube 
and inclined-tube manometers and piezometers. Examples of manometers 
are shown in Figure 9.4.

h

θ

Figure 9.4
Types of manometers: left, U-tube; right, inclined-tube.
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As you might expect, manometers are not particularly well suited for 
the measurement of very high pressures (since they must then include a 
very, very long tube) or of pressures that vary rapidly in time. Some other 
devices have thus been developed—and they are of special interest to us as 
students of continuum mechanics. This other class of measurement devices 
makes use of the idea that when a pressure acts on an elastic structure the 
structure will deform, and this deformation can be related to the magni-
tude of the pressure. A Bourdon tube is one example of this; it consists of 
a calibrated hollow, elastic curved tube that tends to straighten when the 
pressure inside it increases. A pressure transducer as in Figure 9.5 converts 
the reading from a Bourdon tube or other measurement device into an elec-
trical output.

Another example of this type of device is shown in Figure 9.6. In this 
case the sensing element is a thin, elastic diaphragm that’s in contact with 
the fluid. Fluid pressure causes the diaphragm to deflect, and its deflec-
tion is measured and converted into an electrical voltage. Strain gauges are 
attached to the reverse side of the diaphragm or to an element attached to the 
diaphragm. Figure 9.6a shows two differently sized strain-gauge pressure 
transducers, both made by Viggo-SpectraMed (now Ohmeda), commonly 
used to measure physiological pressures within the human body. Pressure-
induced deflection of the diaphragm is measured using a silicon beam on 
which strain gauges and a bridge circuit have been deposited (as shown in 
Figure 9.6b).

Pressure line

Mounting
block

Bourdon C-tube

Core
Linear variable
displacement
transducer

Output

Input
Spring

Figure 9.5
Bourdon tube pressure transducer. (From Munson, B. R., Young, D. F., and Okiishi, T. H., Fun-
damentals of Fluid Mechanics, Wiley, 1998. With permission.)
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9.4 Forces on Submerged Surfaces

When we design devices and objects that are submerged within a body of 
fluid (e.g., dams, ships, holding tanks, bridge supports, artificial reefs), we 
must consider the magnitudes and locations of forces acting on both plane 
and curved surfaces due to the fluid. If the fluid is at rest, we know that this 
force will be perpendicular to the surface (normal stress) since there are no 

Diaphragm

(a)

(b)

Case

Electrical
connections

Diaphragm
stop

Armature

Diaphragm

Link pin

Beam (strain gages deposited on beam)

Figure 9.6
(a) Photographs and (b) schematic of strain-gauge pressure transducers used for biological 
flows. (From Munson, B. R., Young, D. F., and Okiishi, T. H., Fundamentals of Fluid Mechanics, 
Wiley, 1998. With permission.)
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shearing stresses present. If the fluid is also incompressible, we know that 
the pressure will vary linearly with depth.

For a horizontal surface, such as the bottom of a tank, the force due to 
fluid pressure is easily calculated. The resultant force is just F = pA, where p 
is the uniform pressure and = ρgh and A is the area of the surface. Since the 
pressure is constant and uniformly distributed over the bottom, the resul-
tant force acts through the centroid of the area.

In the case of a vertical surface, the pressure is not constant but varies 
linearly with depth along the submerged surface. This is sketched in Fig-
ure 9.7b and reminds us very much of the distributed loading we have seen 
acting on beams, as in Figure 9.7a. In our analysis of such beams, we found 
that the equivalent concentrated force (by which we replaced the distributed 
load to calculate reactions and internal forces) acted through the centroid of 
the area between the force profile and the beam surface. For example, for a 
linearly increasing load as in Figure 9.7a, the shape created is a triangle, and 
the resultant concentrated load acts at h/3 from the right end, the centroid 
of that triangle. The same is true for submerged surfaces. In Figure 9.7b, a 
hydrostatic pressure is drawn as a distributed load on a vertical wall. This 
creates a triangular shape, known as a “pressure prism,” whose centroid is 
at h/3 from the deepest point. This is the “center of pressure” (the point at 
which the resultant force acts, yR) for this load. The resultant force FR is sim-
ply the pressure integrated over this vertical surface,

 

F dF pdA gydA gh AR

A A A

c= = = =∫ ∫ ∫ ρ ρ ,  (9.18)

where hc is the depth of the surface’s centroid, h/2, and A is the area of the 
vertical surface.

We would like to move beyond the idealizations of horizontal and vertical 
surfaces to more realistic geometries. It is useful to formulate a method for 
calculating the force due to pressure on an inclined surface, at an angle θ to 

FR

FR
h/3 h/3

h

h

(a) (b)

Figure 9.7
Pressure prisms for (a) distributed beam loading and (b) hydrostatic pressure.
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the horizontal fluid surface as shown in Figure 9.8. This general formulation 
can then be applied to a wide range of problems.

Essentially, we are once again considering the effect of a distributed force, 
and to deal with the equivalent concentrated load we must find the center of 
pressure at which this equivalent load acts. We choose coordinates, as shown 
in Figure 9.8, that are convenient for the surface in question, and we must find 
the point (xR, yR): the center of pressure, at which the resultant force acts.

The total force exerted on the plane surface by the fluid is simply the inte-
gral of the fluid pressure over the surface’s entire area,

 

F dF pdAR

A A

= =∫ ∫ ,  (9.19)

where p is gage pressure. For a fluid at rest, the pressure distribution is 
hydrostatic, and dF = ρgh = ρgy sinθ. For constant ρg and θ, we thus have

 

F g ydAR

A

= ∫ρ θsin ,  (9.20)

and we recognize that the integral ∫ydA = ycA, where yc is the position of the 
centroid of the entire submerged surface. So, the resultant force is simply

Free surface 

dA
A

dFFR

Center of
pressure

y 

x

 y      yc yR

xR xc

hR  h                hc

θ

Figure 9.8
Hydrostatic force on inclined plane surface of arbitrary shape.
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 F gAy gh AR c c= =ρ θ ρsin ,  (9.21)

where hc is the vertical distance from the fluid surface to the centroid of the 
area. We notice that this force’s magnitude is independent of the angle θ and 
depends only on the fluid’s specific weight, the total area, and the depth of 
the centroid.

Although we might suspect that this resultant force passes through the cen-
troid of the surface, if we remember that pressure is increasing with increas-
ing depth, we realize that the center of pressure must actually be below the 
centroid. We can find the coordinates of the center of pressure by summing 
moments around the x axis, forcing the moment of the resultant force to bal-
ance the moment of the distributed force due to pressure, so that

 
y

y dA

y A
I

y AR
A

c

x

c
= =
∫ 2

. (9.22)

Please note that the xy axes are now playing the same role for our sub-
merged surface that the zy axes did for beam cross sections, so that Iz in the 
context of beams is the same as Ix in this new context. Since Ixc (about the 
centroid) is typically the easiest second moment of area to calculate, and the 
one tabulated in handy places,1 we use the parallel axis theorem to make 
sure we are considering the second moment of area with respect to our x axis 
as drawn in Figure 9.8,

 I I Ayx xc c= + 2 ,  (9.23)

so that

 
y I

y A
yR

xc

c
c= + . (9.24)

This expression demonstrates that the resultant force acts on a point below 
the centroid, since Ixc/ycA > 0. In a similar way we determine the x coordinate 
of the center of pressure:

 
x

I
x A

xR
xyc

c
c= + . (9.25)

The second moment of area that appears in this expression, Ixy, is the sec-
ond moment of area with respect to the x and y axes, = ∫xydA. For symmetric 
shapes, Ixyc is zero, and the resultant force acts at xc.
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When the submerged surface in question is curved, our work is somewhat 
more complicated. The resultant force due to pressure acts normal to the sur-
face, which did not affect our integration over the surface area for a plane 
surface as the surface had only one outward normal vector. However, for a 
curved surface, the outward normal changes continuously all along the sur-
face, making our integration less easily simplified.

Rather than accounting for this variation in the outward normal, most 
analyses simply separate the resultant force on the surface, FR, into its hor-
izontal (FH) and vertical (FV) components. Each of these has a straightfor-
ward physical interpretation that becomes clear when it is calculated. As an 
example, let’s consider a parabolic dam as shown in Figure 9.9. The shape of 
the curved dam surface is described by z/zo = (x/xo)2.

The gage pressure at any height z is given by

 p = ρg(h – z). (9.26)

So, the infinitesimal force at any height z, acting on an infinitesimal area ele-
ment dA, is

 dF = ρg(h – z) dA, (9.27)

and the area dA at any z is simply 
the width of the dam into the page, 
w, times the infinitesimal length ds 
along the curved surface, as shown 
in Figure 9.10.

We want to find the horizontal and 
vertical components of this vector 
dF, so we begin with the horizontal 
force:

ds
dF

x

z

2

xo
x

zo
z

h = zo

pa

pa

Figure 9.9
Curved surface of parabolic dam.

dF

dz

dx
θ

θ

ds

dFV

dFH

Figure 9.10
Infinitesimal segment of curved surface.
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  dFH = dF sin θ, (9.28)

 = ρg(h – z)w ds sin θ. (9.29)

From Figure 9.10 we see that ds sin θ is just dz, so we have

 dFH = ρg(h – z)w dz,  (9.30)

and we proceed by integrating in z to find the resultant horizontal force on 
the surface:
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We can rearrange this horizontal force as
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and recognize that wh would be the area of a vertical projection of our para-
bolic curved surface and that ρg(h/2) would be the resultant force on this ver-
tical projection. We can thus physically interpret the horizontal component of 
force on a curved submerged surface as the resultant force that would act on a 
vertical projection (same depth into page, same height) of the curved surface.

Next, we look for the vertical component FV, integrating dFV = dFcos θ over 
the surface:

 dFV = dF cos θ, (9.33)

 = ρg(h – z)wds cos θ. (9.34)

In Figure 9.9 we see that ds cos θ is just dx, so we have
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 dFV = ρg(h – z)wdx. (9.35)

To integrate this expression in x we need to express z as a function of x, 
using the equation of the curved surface:
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 (9.36)

We recognize that

 

2
3

x zo o

is the area contained by a parabolic section with maximum height zo and 
maximum width xo. (In our case, zo = h.) Since w is the width of this section 
into the page, the vertical force component is the fluid density ρ times the 
acceleration of gravity g times the volume of fluid; that is, this force is equal 
to the weight of fluid above the curved surface.

To find the center of pressure at which the resultant of these components 
acts, we first consider where each component force must act. For the inclined 
plane surface, these components must induce the same moment about a refer-
ence point as does the distributed force. Because FH is the force that would 
act on a vertical projection of the curved surface, it acts where the equivalent 
force due to pressure would act on that vertical projection: at h/3 up from 
the base of the surface, the centroid of the pressure prism. Because FV is the 
weight of the fluid supported by the surface, it acts at the x coordinate of the 
centroid of that volume of fluid. These coordinates come naturally out of the 
moment calculation. Taking our reference point as the origin of the x, z axes, 
we require that
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 (9.37)
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For any curved surface (since the shape of the curve x(z) does not enter into 
the integral), this moment equivalence requires that

 
z hH =

1
3

.

We must also have
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 (9.38)

For our parabolic surface, we plug in z = (h/xo
2)x2, and we get

 
x xV o=

3
8

.

This is in fact the x coordinate of the centroid of a parabolic section. The line 
of action of the resultant force

 FR = ( )F FH V
2 2+

passes through the point (xV, zH) with slope = tan-1 (FV/FH).

9.5 Buoyancy

An object that is submersed in fluid is subjected to hydrostatic pressure over 
its entire surface area. In the previous section, we limited ourselves to the 
consideration of simple surfaces: walls, gates, and dams. However, if we rec-
ognize that the hydrostatic pressure acts on all surfaces, we see clearly how a 
resultant buoyancy force arises. The sketch in Figure 9.11 illustrates this.

Archimedes (287–212 BC) was a Greek mathematician who invented the 
lever, fine-tuned the definition of pi, and “discovered” buoyancy. Though 
some details of this story have taken on the distinct patina of apocrypha, 
it is still a cracking-good yarn. Archimedes’s close friend, King Hiero of 
Syracuse, suspected that the gold crown he had recently received from the 
goldsmith did not include all of the gold he’d supplied. He shared his sus-
picions with Archimedes, who (it is said) went home to ruminate in the 
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bathtub. Archimedes, ever observant, noticed that his body displaced the 
bathwater—when he got into the tub, the water level rose. He quickly cal-
culated that the weight of displaced water balanced his own weight and 
celebrated this discovery by running through the streets shouting, “Eureka 
(I have found it),” so intoxicated by hydrostatics that he neglected to dry off 
or wear a bathrobe. The next day, so the story goes, Archimedes dunked 
his friend’s crown, as well as a lump of gold equal to what he’d provided 
to the goldsmith, and found that they did not displace equal amounts of 
water. The crown did, in fact, contain less gold than the king had specified. 
The goldsmith, unable to produce the remainder of the gold, was beheaded 
posthaste.

Archimedes’ Principle states that the buoyant force on an object equals the 
weight of the volume of fluid the object displaces. The force on a submerged 
object due to the fluid’s hydrostatic pressure tends to be an upward verti-
cal force, as the pressure in the fluid increases with depth and the resultant 
force is upward. Refer to Figure 9.11 to visualize this. If this buoyancy force 
exactly balances the weight of the object, the object is said to be neutrally 
buoyant.

The line of action of the buoyancy force acts through the centroid of the 
displaced fluid volume. The stability of an object designed to float on or 
maneuver in a fluid depends on the moments due to the buoyancy and 
weight forces on the object and on whether the resultant moment tends to 
right or to capsize the craft. For submerged vessels that operate at a range 
of depths, mechanisms that allow active control of these forces are neces-
sary. Tanks that can be flooded or filled with air to adjust the vessel’s weight 
mimic the swim bladder in fish to allow vessels to maintain the proper force 
balance.

NET

Figure 9.11
Distributed force due to hydrostatic pressure on submerged object. Left, distributed; right, net 
resultant upward vertical buoyancy force.
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9.6 Examples

example 9.1

Determine the pressure difference between the benzene at A and the air at 
B in Figure 9.12.

1

2

Mercury

Benzene

Kerosine

14 cm

Air

Water
8 cm

9 cm

3

4
20 cm

40 cmA B

Figure 9.12

Given: Manometer geometry and gage fluids; heights of fluid columns.
Find: Pressure difference between A and B.
Assume: No relative motion of fluid elements (hydrostatics); fluids have 

constant, uniform density, and it is appropriate to evaluate densities 
at 20˚C.

Solution

We look up the properties of the fluids used in our manometer at 20˚C and 
find the following:

Fluid Density ρ (kg/m3)

Water 998.0

Mercury 13,550.0

Air 1.2

Benzene 881.0

Kerosene 804.0

We know that in a fluid at rest, the pressure depends only on the elevation 
in the fluid. Thus, in any continuous length of the same fluid, two points at 
the same elevation must be at the same pressure. Manometers are based on 
this principle. We find the requested pressure difference by starting at point 
A and working our way through the manometer, noting that the pressure 
increases when the fluid level drops and that pressure decreases when the 
fluid level rises:
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Point 1: •	 P1 = PA + ρBgh1

Point 2: •	 P2 = P1 – ρMgh2

Point 3: •	 P3 = P2 – ρKgh3

Point 4: •	 P4 = P3 + ρWgh4

At •	 B: PB = P4 – ρAgh5

So,

 PB = PA + ρBgh1 – ρMgh2 – ρKgh3 + ρWgh4 + ρAgh5.

 PB – PA = (881 kg/m3)(9.81 m/s2)(0.2 m) – (13,550 kg/m3)(9.81 m/s2)(0.08 m)

 –(804 kg/m3)(9.81 m/s2)(0.32 m) + (998 kg/m3)(9.81 m/s2)(0.26 m)

 –(1.2 kg/m3)(9.81 m/s2)(0.09 m)

 = –8885 Pa

or

 PA – PB = 8.9 kPa.

example 9.2

Panel ABC in the slanted side of a water tank is an isosceles triangle with the 
vertex at A and the base BC = 2 m, as shown in Figure 9.13. Find the force on 
the panel due to water pressure and on this force’s line of action.

Water
A

4 m

3 mB, C

Figure 9.13



Fluid Statics 359

Given: Dimensions of panel in water tank.
Find: Resultant force on panel; location of center of pressure.
Assume: No relative motion of fluid elements (hydrostatics); water has 

constant, uniform density, equal to its tabulated value at 20˚C (998 
kg/m3).

Solution

We first want to understand the geometry of the triangular panel. We are 
given a side view of the tank, and the height of the triangle ABC. In a head-on 
view, we would see the panel as sketched in Figure 9.14 at left.

B C

A

2 m

5 m

AB = AC = (52 + 12) = 5.1 m

53°
3 m 

4 m

A

B, C

Figure 9.14

The water pressure has a hydrostatic distribution, as sketched in Figure 9.14 
at right, and the resultant force is found by integrating this pressure over the 
panel area. This is equivalent to the formula FR = ρghcA, where hc is the depth 
of the centroid of the submerged surface, the triangular panel ABC.

The depth of point A is zero; the depth of points B and C is 4 m. The depth 
of the centroid of the triangular gate ABC is 2/3 of the way down. (Note: This 
is because the submerged surface is a triangle, not because the pressure has 
a triangular pressure prism.):

 

hc = ( )=2
3

4 2 67m m,.

 
A bh= = =

1
2

1
2

2( ,m)(5 m) 5 m2

so

 F gh AR c= =ρ kg/m m/s m)(53 2( )( . )( .998 9 81 2 67 mm2 ) FR = 131,000 N = 131 kN
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This force acts at the center of pressure of the submerged panel ABC. Due 
to the symmetry of the panel, this is on the centerline (xR = 0), and we are 
only required to calculate the y coordinate yR (Figure 9.15).

A

B,C

y 

hc = 2.67 m

Similar triangles:

yc

2.67
5
4

yc = 3.33 m

Figure 9.15
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Note that this yR is measured down from A, along the panel surface, as shown 
in the sketch in Figure 9.16.

FR yR

A

B,C

Figure 9.16

example 9.3

Gate AB has an evenly distributed mass of 180 kg and is 1.2 m wide “into the 
page” as illustrated in Figure 9.17. The gate is hinged at A and rests on a smooth 
tank floor at B. For what water depth h will the force at point B be zero?
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h

Water

60°

A

B

1 m

Glycerin

2 m 

Figure 9.17

Given: Gate dimensions and mass; fluids on either side.
Find: Water depth h required for RB = 0.
Assume: No relative motion of fluid elements (hydrostatics); fluids have 

constant, uniform density, and it is appropriate to evaluate densities 
at 20˚C. Looking up these values, we find that water’s density is 998 
kg/m3 and that glycerin’s is 1260 kg/m3.

Solution

We start with a free-body diagram (FBD) of gate AB (Figure 9.18).

RAx

RAy

W

Fwater

Fglycerin

RB = 0

Figure 9.18

We intend to apply the equations of equilibrium to the gate to ensure the 
proper relationships between forces and to meet the constraint that RB must 
equal zero. To do this, we first need to evaluate all the forces in the FBD. The 
weight of the gate is simply mg, or W = (180 kg)(9.81 m/s2) = 1766 N, and this 
force acts at the centroid of the gate (Figure 9.19).



362 Introduction to Engineering Mechanics: A Continuum Approach

A
1.2 m

1·sin 60°

= 0.866 m

Figure 9.19

Next, we must find the forces on the gate due to fluid pressure and where 
they act. We begin with the glycerin. Since we would prefer not to have to find 
the reaction forces at A, we plan to sum moments about this point. We need 
to know the depth of the centroid of the gate, hc, measured from the surface 
of the glycerin. The gate is a rectangle, as shown in Figure 9.19, and due to its 
symmetry its centroid is simply 0.433 m down from the hinge at A. The depth 
of the centroid is thus 2 m – 0.433 m = 1.567 m below the glycerin surface:

 F gh Aglycerin glycerin c= ρ

 

=

=

( )( . )( . )

.

1260 9 81 1 567
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3 2
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This force acts at
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y I
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c
c
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c
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and since we intend to sum moments about A, we would like to know the 
moment arm from Fglycerin to point A. Thus, we are most concerned with how 
much deeper yR is than yc , as yc is clearly 0.5 m from point A:
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We now know that Fglycerin = 23.2 kN has a moment arm of 0.5461 m relative 
to point A.

What remains to be found is the force due to the water on the other side of 
the gate. Both the magnitude of this force and its moment arm (where it acts) 
depend on the depth of water, h. For the moment, we leave both these values 
in terms of the depth of the centroid of the gate, hc, measured from the water 
surface – the depth h = hc + 0.433 m:
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 F gh Awater water c= ρ
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And this force acts at yR, where
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So Fwater = 11.75hc kN has a moment arm of (0.5 + 
0 0722.

hc
)m

relative to point A (Figure 9.20).

RAx

RAy

1.766 kN

11.75hc

23.2 kN 

RB = 0

0.5 + (0.0722/hc) m

0.5461 m

Figure 9.20

We choose to sum moments about point A to avoid having to solve for the 
hinge reaction forces and require that the gate be in equilibrium:

ΣMA = 0 = (23,200 N)(0.5461 m) + (1766 N)(0.5 cos 60 )̊ – (11,750 hc)(0.5 + 
0 0722.

hc
).

Solving this expression for hc, we find that hc = 2.09 m. The depth of the 
water is then h = hc + 0.433 m = 2.52 m.

example 9.4

The bottle of champagne shown in Figure 9.21 is under pressure, as indi-
cated by the mercury-manometer reading. Compute the net vertical force on 
the 2-in.-radius hemispherical endcap at the bottom of the bottle.
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Mercury

4 in 
2 in 

6 in 

r = 2 in

Figure 9.21

Given: Pressure measurement; bottle geometry.
Find: Net vertical force on hemispherical surface.
Assume: No relative motion of fluid elements (hydrostatics); fluids have 

constant, uniform density, and it is appropriate to evaluate densities 
at 68˚F. We look up values for champagne and mercury at this tem-
perature and find that (ρg)C = 59.9 lbf/ft3 and that (ρg)M = 847 lbf/ft3.

Solution

We have a manometer that gives us the champagne pressure at a height 
of 6 in. (We denote values at this position by the subscript “*”), if we work 
through the U-tube as we did in Example 9.1:

 
p g gC M* ( ) ( )+









−




ρ ρft ft2

12
4

12





= =patm 0 (gage),

so

 p* = (ρg)M(0.333 ft) – (ρg)C (0.167 ft)

 = (847 lbf/ft3)(0.333 ft) – (59.9 lbf/ft3)(0.167 ft)

 = 272 lbf/ft2 = 272 psf,

This pressure p* acts on the circular cross-sectional area of the champagne 
bottle at a height of 6 in., imparting a resultant force of

 p*A = (272 psf)( π4
4

12( ft)2 ) = 23.74 lbf
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on the champagne below it. In addition, the champagne below this 6-in. 
height imparts its own force on the hemispherical surface. The vertical com-
ponent of this force, which we are looking for, can also be interpreted as the 
weight of this champagne above the surface. The net vertical force on the 
endcap will thus be the p*A force already calculated, plus the weight of the 
fluid below * and above the hemispherical surface. Since we know the spe-
cific weight of the champagne, we need only to find the volume between * 
and the endcap (Figure 9.22).

6 in

4 in

= –

4 in

Figure 9.22

 FV = p*A + weight of champagne

 = p*A + (ρg)C  [ π π( . ) ( . ) ( . )0 167 0 5 0 1672 2
3

3− ]

 = 23.74 lbf + [2.61 – 0.58] lbf

 = 25.8 lbf.

example 9.5

A parabolic dam’s shape is given by z/zo = (x/xo)2, where xo = 10 ft and zo = 24 
ft. The dam is 50 ft wide (into the page). Find the resultant force on the dam 
due to the water pressure and its line of action (Figure 9.23).
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x

z

2

xo
x

zo
z

h = zo = 24 ft

pa

xo = 10 ft

Figure 9.23

Given: Geometry of dam; water depth.
Find: Resultant force due to pressure; line of action.
Assume: No relative motion of fluid elements (hydrostatics); fluids have 

constant, uniform density, and it is appropriate to evaluate densities 
at 68˚F.

Solution

We look up the density of water at this temperature and find that (ρg) = 62.4 
lbf/ft3. We find separately the horizontal and vertical components of the 
resultant force on the dam surface.

To find the horizontal component FH, we consider the vertical projection 
of the curved dam surface, a rectangle that is 24 ft high and 50 ft wide (into 
the page). This projected surface has an area A = (24)(50) = 1200 ft2, and its 
centroid is halfway down, at a depth of hc = 12 ft. So,

 FH = ρghcA

 = (62.4 lbf/ft3)(12 ft)(1200 ft2)

 = 899,000 lbf

 = 899 kips.
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This force acts at the centroid of the pressure prism on the projected vertical 
surface, at zH = h/3 = 8 ft from the bottom.

The vertical component FV can be interpreted as the weight of fluid above 
the curved surface. We consider the properties of a parabolic section, as 
shown in the sketch in Figure 9.24, to find this value.

xo

zo

zo5
3

A = xo zo3
2

xo8
3

Figure 9.24

 FV = ρgV

 = ρg
2
3

50x zo o










( ft)

 = (62.4 lbf/ft3)[ 2
3 24 10 50( )( )]( )ft ft ft

 = 499,000 lbf

 = 499 kips.

This force acts at the x coordinate of the centroid of the volume of fluid, V. 
From our sketch, we see that this is 3xo/8 = 3.75 ft from the origin indicated in 
Figure 9.23.

The resultant normal force on the surface of the parabolic dam is

 

F F FR H V= +

= +

=

2 2

899 499k) k)

102

2 2( (

88 kips.
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The line of action of this force (Figure 9.25) passes through the point (xV, zH) 
= (3.75 ft, 8 ft) and has slope equal to

 tan-1 (FV/FH) = tan-1 (499/899) = 29 .̊

Center of pressure

z = 0.24x2

499

899

FR = 1028 k

8 ft 

3.75 ft 

Figure 9.25

9.7 Problems

 9.1 In 1646 the French scientist Blaise Pascal put a long vertical pipe in 
the top of a barrel filled with water and poured water in the pipe. 
He found that he could burst the barrel (not just make it leak a bit 
as Figure 9.26 shows) even though the weight of the water added 
in the pipe was only a small fraction of the force required to break 
the barrel. Briefly explain his finding.
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Figure 9.26

 9.2 In each of the gates shown in Figure 9.27, the top of the gate is sup-
ported by a frictionless hinge. Each has a rectangular overhang 
that sticks out or in a distance a from the gate (a is small relative 
to the depth h). A stop at the bottom of each wall prevents it from 
opening in a counterclockwise direction. When the water is the 
same depth h in both cases, what is the ratio of the horizontal 
force exerted on stop (a) to the horizontal force exerted on stop (b)? 
Please draw appropriate free-body diagrams.

Hinge

h/3

h/3

h/3

h/3

h/3

h/3a
Stop

Hinge

a
Stop

(a) (b)

Figure 9.27
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 9.3 The wood (σys = 8 ksi, E = 1.5 × 106 psi) forms for a concrete wall 
that is to be 8 ft high are sunk into the ground at the bottom (fixed 
support) and held in place at the top (10 ft from the ground) by 
0.5-in.-diameter tie rods that permit negligible horizontal deflec-
tion at that height (Figure 9.28). Each plank in the form may be 
modeled as an individual beam.

8 ft

Each plank 

Cross section is 

10 ft

4 in.

(end view) 

Concrete 

Figure 9.28

   Assuming that concrete behaves as a liquid (specific gravity = 
2.5) just after it is poured, determine (a) the resultant force on a 
plank due to the concrete and its corresponding center of pres-
sure (height as measured from the ground); (b) the normal stress 
in a tie rod using the actual distributed load; and (c) the maximum 
normal stress due to bending in a plank using the actual distributed 
load.

 9.4 Two very large tanks of water have smoothly contoured openings 
of equal cross-sectional area (Figure 9.29). A jet of water flows 
from the left tank. Assume the flow is uniform and unaffected 
by friction/viscous effects. The jet impinges on a flat plate (and 
departs the plate in a flow parallel to the surface of the plate) that 
also covers the opening of the right tank. In terms of the height H, 
determine the minimum value for the height h to keep the plate in 
place over the opening of the right tank.

H
h

Plate

Figure 9.29
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 9.5 You’ve been contracted to build a cylindrical brick chimney of 
height H, weighing a = 850 lb/ft of height and fixed securely in a 
concrete foundation. The inner and outer diameters are d1 = 3 ft 
and d2 = 4 ft, respectively. The chimney must be designed to with-
stand a distributed load due to a 60 mph (88 ft/sec) wind that 
we assume is constant at any height from the ground. (a) Find 
the static pressure at a stagnation point on the chimney. Assume 
that this pressure acts over the whole projected area (a rectangle  
H × d2) for calculation of the force on the chimney by the wind, 
but this is only an approximation. Find the force/ft of height on 
the chimney due to the wind. (b) You have a strict design require-
ment: Considering the weight of the chimney and the wind load 
together, there is to be no tensile normal stress in the brickwork 
(because it is brittle and a poor carrier of tensile stress). What is 
the maximum allowable height H?

 9.6  For wall A in Figure 9.30, what is the magnitude and line of action 
of the horizontal component of the hydrostatic force of the water 
on the wall (an arc of a circle)? If you were to compare the maxi-
mum normal stress due to bending in walls A and B (induced by 
the hydrostatic loading), would B’s be lower, the same, or greater 
than A’s? (Explain briefly in a complete sentence.)

B

h

A

h

Figure 9.30

 9.7 A tall standpipe with an open top, as shown in Figure 9.31, has 
diameter d = 2 m and wall thickness t = 5 mm. (a) If a circumfer-
ential stress of 32 MPa is measured in the wall at the bottom of the 
standpipe, what is the height h of water in the standpipe? (b) What 
is the axial stress in the standpipe wall due to the water pressure? 
(c) What is the maximum shear stress induced in the standpipe 
wall, and where does it occur?
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t

d

Figure 9.31

 9.8 A closed tank contains 1.5 m of SAE 30 oil, 1 m of water, 20 cm of 
mercury, and an air gap on top. The absolute pressure at the bot-
tom of the tank is 60 kPa. What is the pressure in the air?

 9.9 Consider a circular cylinder of radius R and length L, and in 
inverted cone (point/tip up) with base radius R and height L. 
Both cylinder and cone are filled with water and open to the 
atmosphere. Write a concise, coherent paragraph that explains 
the hydrostatic paradox: Both containers have the same downward 
force on the bottom since those bases have the same surface area, 
even though the cone’s volume is only one third of the cylinder’s 
volume.

 9.10 The Three Gorges Dam is 2,309 m long, 185 m tall, and 115 m 
wide at the base. (a) Determine the horizontal component of the 
hydrostatic force resultant on the dam exerted by water 175 m 
deep. (b) If all of the people in China (approximately 1.3 billion) 
were to somehow simultaneously push horizontally against the 
dam, could they generate enough force to hold it in place with 
the water at this depth? Support your answer with appropriate 
calculations.

 9.11 What force P is needed to hold the 4-m-wide gate shown in Fig-
ure 9.32 closed?

Hinge

6 m 

3 m 

P

Water 

Figure 9.32
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 9.12 Suppose you have three spheres—one of cork, one of aluminum, 
and one of lead—each with diameter 1.5 cm. You drop all three 
spheres into a cylinder of water. Explain the different behavior of 
the three spheres upon their release.

Case Study 6: St. Francis Dam

At three minutes before midnight, March 12, 1928, the St. Francis Dam—
built to supply water to the growing city of Los Angeles—collapsed (Figure 
CS6.1). During the early morning hours of March 13, more than 38,000 acre-ft 
of water surged down from 1650 ft above sea level. At its highest, the wall of 

Figure CS6.1
St. Francis Dam before and after the collapse. Photographs courtesy of Santa Clarita Valley 
Historical Society, Newhall, CA.
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water was said to be 78 ft high; by the time it hit Santa Paula, 42 miles south 
of the dam, the water was 25 ft deep. Almost everything in the water’s path 
was destroyed: livestock, structures, railways, bridges, and orchards. Ulti-
mately, parts of Ventura County lay under 70 ft of mud and debris. Over 500 
people were killed, and damage estimates topped $20 million.

William Mulholland (Figure CS6.2), an Irish immigrant who’d risen 
through the ranks of the city’s water department to the position of chief 
engineer, had proposed, designed, and supervised the construction of the 
238-mile Los Angeles Aqueduct, which brought water from the Owens Val-
ley to the city. The St. Francis Dam had been one of the more controversial 
aspects of his plans. The dam was violently opposed by Owens Valley resi-
dents, who sabotaged its construction and often unbuilt portions overnight. 
The aqueduct itself had been dynamited in 1924. The St. Francis Dam was 
Mulholland’s nineteenth, and final, dam.

The St. Francis was a curved gravity concrete dam, designed to be 62 m 
high. During construction, the height was increased by 7 m to allow more 
water to be stored in the reservoir. No change was made to the other dimen-
sions of the dam. In the days before the dam collapsed, the water level in the 
reservoir was only inches below the top of the dam.

Figure CS6.2
Mulholland and H. Van Norman, inspecting wreckage at the 
St. Francis Dam, March 15, 1928. Photograph courtesy of Santa 
Clarita Valley Historical Society, Newhall CA.
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At the subsequent inquest, it was demonstrated that the dam was leaking 
as late as the day before the collapse, and it was brought into evidence that 
the Department of Water and Power (DWP)—and more importantly, Mul-
holland himself—knew it. Mulholland testified that he’d been at the dam 
the day before the break but said that he hadn’t noticed anything unusual. 
Leaks, he pointed out, were not particularly unusual in dams, especially 
dams as large as the St. Francis.

Although the assignation of cause and culpability is still a contentious sub-
ject among modern analysts, the 1928 jury ruled that the disaster was caused 
by the failure of a geological fault and rock formations on which the dam 
was built. Even so, the public held the DWP, and particularly William Mul-
holland, responsible. Although no criminal charges were brought against 
him, he retired from the DWP soon after the jury’s verdict and lived in self-
imposed exile until he died in 1935 at 79 years old.

Problems

CS6.1 For a dam of height H = 62 m, thickness b, and width into the page 
w = 75 m as shown in Figure CS6.3, made of concrete with den-
sity 2300 kg/m3, retaining a body of water that is 60 m deep, find 
the net moment about point A and the minimum thickness of the 
dam that will prevent this moment from overturning the dam.

A

b

H
Water

= 1000 kg/m3
g

Figure CS6.3

CS6.2 If the dam’s height is increased to 70 m, and the water depth rises 
to 68 m, what thickness b is required to prevent tipping?

CS6.3 The St. Francis dam (with dimensions as in CS6.2) was observed 
to be leaking muddy water at its base, indicating that water was 
seeping under and around its supports. If water is allowed to pen-
etrate freely under our model dam to point A, what thickness b is 
necessary to prevent the dam from tipping?
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CS6.4 If we refined our model to more accurately represent the geom-
etry of the St. Francis Dam, including the curvature of the surface, 
would you expect the required thickness b to increase or decrease? 
Why?

Note

 1. For example, in Appendix A of this book.
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10
Fluid Dynamics: Governing Equations

In the previous chapter, we considered cases in which there was no relative 
motion of fluid particles—no velocity gradients and, thus, no shear stress. 
Now we consider the somewhat more interesting flows in which velocity 
gradients and accelerations do appear.

10.1 Description of Fluid Motion

You have probably seen the car companies’ ads featuring this year’s mod-
els in wind tunnels, with smoke tracing the flow of air over the new car’s 
streamlined curves. There is a mathematical way to define the equations of 
these smoke traces, and a physical interpretation of them, that we find quite 
useful in our discussion of fluid dynamics.

The velocity field, of course, tells the instantaneous speed and direction of 
the motion of all points in the flow. A streamline is everywhere tangent to the 
velocity field and so reflects the character of the flow field. Streamlines are 
instantaneous, being based on the velocity field at one given time. The smoke 
traces just mentioned and illustrated in Figure 10.1 are streaklines, which 
include all the fluid particles that once passed through a certain point. We 
may also describe a flow field with pathlines, which represent the trajectory 
traced out by a given fluid particle over time. When the flow is steady, or 
independent of time t, the streamlines, streaklines, and pathlines coincide.

For a two-dimensional flow field, we can find the equations of streamlines 
by applying their definition. Since streamlines are tangent to velocity, the 
slope of a streamline must equal the tangent of the angle that the velocity 
vector makes with the horizontal, as shown in Figure 10.2. In mathematical 
language, this is

 

dy
dx

v
u

= ,  or 
dx
u

dy
v

= ,  (10.1)

so that if the velocity field is known as a function of x and y (and t, if the flow 
is unsteady), we simply integrate equation (10.1) to find the equation of the 
streamline. For a three-dimensional flow, we write
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dx
u

dy
v

dz
w

ds= = = ,  (10.2)

and we can integrate these expressions with respect to s, holding time con-
stant and using the initial condition (xo, yo, zo, to) at s = 0, and then can elimi-
nate s to find the equation of the streamline.

For the two-dimensional flow of an incompressible1 fluid, an even love-
lier method of finding streamlines exists. We need only remember that for 
incompressible flow, ∇⋅ =V 0 , or

 

∂
∂
+
∂
∂
=

u
x

v
y

0 . (10.3)

We can then define a stream function ψ by the following:

 
u

y
=
∂
∂
ψ

 and v
x

=−
∂
∂
ψ

. (10.4a,b)

Figure 10.1
Smoke-traced streaklines of flow around a car. (Source: DaimlerChrysler.)

v 

u 

V 

tanθ = Slope
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V2 
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y 

Figure 10.2
Streamlines are tangent to the velocity field.
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Lines of constant ψ are the streamlines for the flow with V = (u, v).
Streamlines can give us important information about the pattern and rela-

tive speed of flow. Closely spaced streamlines reflect faster flow than widely 
spaced streamlines. There is no flow across or through streamlines, since the 
velocity field is purely tangential to these lines. Streamlines can hence be 
thought of as boundaries for the flow. Fluid particles on one side of a stream-
line never cross it. Solid boundaries of resting solids are always streamlines, 
since flow does not penetrate them.

10.2 Equations of Fluid Motion

Although the physics of fluid mechanics are certainly familiar (neither mass 
conservation nor F = ma is a new concept), fluid particles are much harder to 
keep track of than the solid bodies we have considered previously. It’s very 
difficult to follow a prescribed amount of fluid mass around. We therefore 
need some new tools with which to apply the same old physics.

Rather than following the flow of a fixed fluid mass, which would be quite 
challenging, we keep track of a prescribed volume through which fluid may 
flow. This volume may be thought of as an imaginary “cage” for fluid, though 
it is more commonly known as a control volume (CV). We may choose to have 
a cage of finite size, in which case we use the integral governing equations of 
Section 10.3, or of infinitesimally small size, in which case our equations are 
the partial differential equations of Section 10.4.

10.3 Integral Equations of Motion

We first apply our old physics to a control volume or cage of finite size. This 
approach is particularly useful when we are interested in the large-scale 
behavior of the flow field and the effect of a flow on devices such as nozzles, 
turbine blades, or heart valves.

In our study of solid mechanics we often used a free-body diagram (FBD), 
in which we isolated an object from its surroundings, replaced these sur-
roundings by the actions they had on our object, and then applied Newton’s 
laws of motion. The fluid mechanics equivalent of this free body or object 
would be a fluid element, a specific quantity of matter composed of many 
fluid particles—called the system approach. However, fluids move and deform 
in such a way that it is difficult to keep track of a specific quantity of matter. 
It’s easy to follow a branch moving on the surface of a river, but it’s hard to 
follow a particular portion of water in the river. This is why we consider the 
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flow through set boundaries (in this section, finite control volumes) instead of 
the mass once contained in these boundaries.

10.3.1 Mass Conservation

When a fluid is in motion, it moves in such a way that mass is conserved. 
This principle, known as mass conservation, places restrictions on the flu-
id’s velocity field. To see this, we consider the steady (i.e., not changing in 
time) flow of fluid through a duct. A relevant control volume is shown in 
Figure 10.3.

In this simple example, both inflow and outflow are one-dimensional, so 
that the velocity Vi and density ρi distributions are constant over the inlet and 
outlet areas. Applying conservation of mass to this control volume means 
that whatever mass flows into the CV must flow out. In some time interval Δt, 
a volume of A1V1Δt flows into the CV, and a volume of A2V2Δt flows out. These 
volumes are shaded in Figure 10.3. We multiply these volumes by the fluid 
density at each control surface (CS) so that we’ll have the amount of mass 
flowing in and out (ρ1 A1V1Δt and ρ2 A2V2Δt). We then balance mass in with 
mass out, canceling the Δt that appears in both terms, and have

 ρ1 A1V1 = ρ2 A2V2. (10.5)

These terms are now mass flow rates (i.e., mass fluxes), as we have divided 
by Δt. This mathematically states that mass flow rate entering CV is balanced 
by mass flow rate leaving it. For a more general CV with N inlets and outlets, 
we would write

 
ρi i i

i

N

AV
=
∑

1

,  (10.6)

with inflows negative and outflows positive.

CV

V1∆t

V2∆t
A1

A2V1, ρ1

V2, ρ2

Figure 10.3
CV for steady, one-dimensional fluid through a duct.
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We now move beyond this simple case of one-dimensional, steady flow. To 
conserve mass, we require no net change of mass in our volume. In the previ-
ous example, the amount of mass in our CV changed only due to flow in 
and flow out. The amount of mass may also change in time due to the flow’s 
unsteadiness. In a more general equation, we must account for both:

total rate of 
change of 
property

=
time rate of 

change in 
property

+
flux of property 

across CV 
surfaces

In our earlier example, this was easy to do: Because it was a steady flow, 
there was no time rate of change, and because the flow was one dimensional 
and uniform, the flux was easily computed. We need a more general math-
ematical statement of mass conservation.

The time rate of change of mass in our control volume is the time deriva-
tive of the total product of fluid density in the CV and the volume:

 

time rate of change = ∂
∂ ∫t d

CV

ρ V . (10.7)

The flux of mass across a control surface is the amount of mass per unit time 
that is transported across the surface’s area dA with outward unit normal 
vector n. Hence,

 

flux across surfaces
CS

= ⋅∫ ρ V ndA . (10.8)

The dot product (V·n)i is simply the normal component of velocity across 
the ith control surface, and since n is an outward normal vector, product 
(V·n)i is negative for flows into the CV, and positive for flows out of it. We 
sum, or integrate, the fluxes across all the surfaces of the CV, as shown in 
Figure 10.4.

Writing mass conservation requires us to 
state that the total change in mass in the CV, 
which must equal the sum of the time rate 
of change of mass in the CV plus the flux 
of mass across all control surfaces, is equal 
to zero:

        

0= ∂
∂

+ ⋅∫ ∫t
d V dA

CS

ρ ρV
CV

.          (10.9)

This is how we write mass conservation for 
a finite-sized control volume.

d V n
dA

CV

Figure 10.4
Standard potato-shaped control vol-
ume (CV).
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10.3.2 F = ma, or Momentum Conservation

To write down F = ma for a finite control volume, we must consider (1) all 
forces on the fluid in the CV that may cause an acceleration, and (2) how to 
express the fluid’s ma, or the total rate of change of its linear momentum.

Forces on a fluid, just like those acting on a solid, may be either surface 
(acting through direct contact, on control surfaces) or body forces (“field” 
forces, acting on the entire control volume without contact). We begin with 
surface forces. We are already familiar with the notion that a difference 
in pressure imparts a force. Indeed, a pressure gradient can cause a fluid 
to move toward the lower pressure. The force on a fluid due to pressure 
variation must be included in F = ma. When there is relative motion of fluid 
particles, a frictional force (i.e., a viscous stress) is developed and acts on 
the fluid. Because of the complex form of the constitutive law for fluids, 
this can be the hardest term to construct; fortunately, it is often possible 
to neglect viscous effects relative to pressure gradients, inertia, and other 
forces. We add only a rather vague Fvisc to the equation at this time. The pri-
mary body force acting on fluids is gravity. We may also include external 
reaction forces (from ducts or other surfaces) that act on the fluid.

The total change in linear momentum of fluid in the control volume, like 
the total change in mass, must be written as its time rate of change plus 
the flux of it across control surfaces. We again start with a fairly simplistic 
example: steady, one-directional flow through a duct, as in Figure 10.5.

Because V2 ≠ V1, we know the fluid is accelerating between the inlet and 
outlet surfaces—even though the velocity is not changing in time, there is 
acceleration due to spatial variation in velocity. This fluid acceleration must 
equal the net force on the fluid in the control volume. The resultant force on 
the fluid, as we just discussed, must consist of forces: (1) due to pressure vari-
ation, (2) due to viscous stresses, (3) due to gravity, and (4) exerted by the duct 
on the fluid (i.e., reaction forces). To preserve the simplicity of the example, 
we neglect both viscous and gravitational effects. The resultant force on the 
fluid in the CV is thus

CV

V1∆t
V2∆t

A1 A2

V1, ρ1, p1

V2, ρ2, p2

Figure 10.5
CV for steady, one-dimensional fluid through a duct.
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p A

x

1 1

pressure force
on left CS , in

direc+ ttion

pressure force
on right CS, in

 −

+

p A2

yy

xR

direction

reaction
on fluid

from duct

 +  = Fx

 (10.10)

and is in the x direction (as reflected by its subscript). It is good practice to 
draw an FBD of your control volume, indicating the relevant forces and their 
orientations, as we do in Figure 10.6.

Having written down the resultant force Fx on the fluid, we must now 
write an expression for the total rate of change in the fluid’s  x momentum, 
to balance Fx. Because the flow is steady, the x momentum does not change 
in time; we simply need to account for the flow of x momentum into and out 
of the control volume. The difference between inflow and outflow, or the net 
change in x momentum, will balance Fx. In some time interval Δt, an amount of 
x momentum of (ρ1A1V1Δt)V1 flows into the CV, and a volume of (ρ2A2V2Δt)V2 

flows out. (Note that the x momentum is simply the mass flux, already found 
in Section 10.3.1, times the x component of velocity at the given CS.) Again, 
outflow is positive, so the net rate of change of momentum is the difference 
between these terms, divided by the time Δt: ρ2A2V2

2 – ρ1A1V1
2. We can write 

the x component of F = ma:

 p1A1 – p2A2 + Rx = ρ2A2V2
2 – ρ1A1V1

2 . (10.11)

We want to generalize this, so we can apply our physics to less simplistic 
problems. The forces are easy to generalize: The net pressure force can be 
written as the pressure p acting on a given control surface times the area of 
that control surface: pndA. We must sum over all the control surfaces of our 
CV, and we write this as an integral,

 

−∫ pndA
CS

,

CV

p1A1 p2A2

Rx

Figure 10.6
FBD of fluid in CV.
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where the negative sign reflects the fact that a positive p compresses our 
fluid. The force due to gravity is also easy to write as

 

ρ gd
CV
∫ V,

since it acts on the whole control volume. Next we write a more general 
expression for the total rate of change of fluid linear momentum. Again, 
momentum is just mass times velocity, so this extends naturally from our 
expressions for mass conservation:

 

time rate of change = ∂
∂ ∫t V d

CV

ρ V .  (10.12)

 

flux across surfaces
CS

= ⋅∫ ρ V V ndA . (10.13)

Note that V is a vector [V = (u, v, w)], and, hence, there are three components 
of each of these expressions. We can now write the vector form of our gen-
eral equation,

F F F gd pndA
t

Vvisc external

CV CS

= + + − =
∂
∂∫ ∫ρ ρV

CS

d V V ndA
CV

V∫ ∫+ ⋅ρ     (10.14)

as well as the form of its three component equations in Cartesian coordinates:

F F F g d pi ndAx visc x external x x

CV

=( ) +( ) + − ⋅∫ ρ V ˆ

CCS CV
t

u d u V ndA∫ ∫ ∫=
∂
∂

+ ⋅ρ ρ
CS

V ,

  
   (10.15a)

F F F g d p j ndAy visc y external y y

CV

=( ) +( ) + − ⋅∫ ρ V ˆ

CCS CV
t

v d v V ndA∫ ∫ ∫=
∂
∂

+ ⋅ρ ρ
CS

V ,

  
  (10.15b)

F F F g d pk ndAz visc z external z z

CV

=( ) +( ) + − ⋅∫ ρ V ˆ

CCS CV
t

w d w V ndA∫ ∫ ∫=
∂
∂

+ ⋅ρ ρ
CS

V .

  
  (10.16)
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This is how we write F = ma for a finite-sized control volume.

10.3.3 reynolds Transport Theorem

As we’ve said, the big difference between the forms of these governing equa-
tions for fluids and solids is that fluids may flow across the surfaces of a 
control volume. (For a solid, a control volume is a fixed mass of the solid!) 
The idea of the Reynolds Transport Theorem is that we can relate these two 
approaches by accounting for the flow across control surfaces.

It is possible to obtain the equations for both mass and momentum conser-
vation using the Reynolds Transport Theorem, which says that the total rate 
of change of some quantity η (a specific quantity, some parameter N per unit 
mass) is equal to the time rate of change of η for the contents of the control 
volume plus a contribution due to the flow of η through the control surface. 
For our purposes, N may be the mass of fluid in our control volume (ρdV) 
or the fluid momentum (VρdV). The Reynolds Transport Theorem has the 
general form,

 

D
Dt

dm
mass
system

η

time rate of change of

( )

∫
ηη

for the coincident system
(if we were to foollow a )

CV

tim

mmaassss

  

=
∂
∂ ∫t dρ η V

ee rate of change of
of the contents of th

η
ee coincident

control volume

  

+ ρ

net rate of flux of
through co

η

η

V ndA
CS

⋅∫
nntrol surface

  

.

 (10.17)

Once again, to conserve mass, we must have flow in balancing flow out 
and the Reynolds Transport Theorem with N = mass; thus, η = N/mass = ρdV/ 
ρdV = 1 gives us

 

0= ∂
∂

+ ⋅∫ ∫t
d V ndA

CS

ρ ρV
CV

,  (10.18)

where the left-hand side is zero since, by definition, D(mass)/Dt for a system 
is zero. For the special case of a steady flow, the first term on the right-hand 
side drops out, and we must have

 

ρ V ndA
CS

⋅ =∫ 0.  (10.19)

To obtain the control volume form of momentum conservation, we apply 
the Reynolds Transport Theorem to N = mV = ρdV V, or η = N/m = ρVdV/ 
ρdV = V, and get
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F
t

Vd V V ndA
CV CS

=
∂
∂

+ ⋅∫ ∫ρ ρV ( ) ,
 (10.20)

where the left-hand side is F since Newton’s second law tells us that F = ma 
= d(mV)/dt. In words, equation (10.20) tells us that the time rate of change of 
momentum contained in a fixed volume plus the net flow rate of momentum 
through the surfaces of this volume are equal to the sum of all the forces act-
ing on the volume. (We developed the form of this sum, resultant force, in 
the previous section.)

10.4 Differential Equations of Motion

We can also construct useful expressions of mass conservation and F = ma 
for cages or volumes that are infinitesimally small. This is useful when we 
want to know detailed information about the flow at very small scales at 
high resolution.

10.4.1 Continuity, or Mass Conservation

The principle of mass conservation is fundamental to the study of mechan-
ics. It states that mass is neither created nor destroyed; hence, the mass of a 
system remains constant as the system moves through the flow field.

By considering the flow through an imaginary, very small cage in the 
flow field, we can derive a useful mathematical expression of this principle. 
(Though this cage has the same dimensions as our frequently discussed 
fluid element, with volume dV = dxdydz, it is stationary.) The fluid has veloc-
ity V = (u, v, w) when it is at the center of the cage. Its mass flow rate per unit 
area may then be written as (ρu, ρv, ρw).

We want to obtain an expression for the mass flow across the cage faces to 
see what is flowing in and out of the cage. This is shown for one direction 
of flow in Figure 10.7. We must multiply the face-specific expressions by the 
appropriate areas (dxdz in both cases), and we can then combine them to get 
mass flow rate in the y direction:

m v v
y

dy dxdz v v
y = +

∂
∂











 − −

∂
∂

ρ
ρ

ρ
ρ( ) ( )

2 yy
dy dxdz v

y
dxdydz

2











 =

∂
∂
( )ρ

. (10.21)

We repeat this in the x and z directions to have an expression for total mass 
flow rate through the cage:
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∂


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







( ( (ρ ρ ρ) ) )
y

..  (10.22)

To satisfy mass conservation, this mass flow rate must balance the rate of 
mass decrease within the element,

 
−
∂
∂
ρ
t

dxdydz .

Balancing these terms and canceling dxdydz, we get

 

∂
∂
+
∂
∂

+
∂
∂

+
∂
∂

=
ρ ρ ρ ρ
t

u
x

v
y

w
z

( ( () ) ) 0 . (10.23)

This is the mass conservation equation, also known as the continuity equa-
tion, for fluids. It is valid for steady or unsteady flow and for incompressible 
or compressible fluids. We remember that the last three terms, the sum of 
partials of the vector ρV, represent the divergence of this vector, and we can 
rewrite the equation in vector form as

 

∂
∂
+∇⋅ =
ρ

ρ
t

V( ) 0 . (10.24)

In vector form, this equation is independent of coordinate choice and 
works in cylindrical, spherical, or polar coordinates in addition to our Car-
tesian (x,y,z) friends.

We note that for steady flows, ∂∂ =
ρ
t 0 .

For incompressible (ρ ≈ constant) fluids, the continuity equation reduces to

ρv 
2

∂(ρv) dy
∂y

ρv +ρv –

z

 y 

x

2
∂(ρv) dy

∂y

Figure 10.7
Mass flow through a cage with volume dxdydz. We have used Taylor expansions to express the 
values of mass flow at all faces, just as we did for the pressure field.
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 ∇⋅ =V 0,

as we saw in Chapter 8, Section 8.5.1.

10.4.2 F = ma, or Momentum Conservation

Just as for solids, the governing equation for fluid mechanics is Newton’s 
second law. We have inched toward expressing this mathematically for flu-
ids by writing out the forces due to pressure, gravity, and viscosity. All that 
remains is to formulate the acceleration of a fluid element, and since we know 
the effects of these forces, we can write F = ma.

Although the vast majority of problems we’ve seen have dealt with non-
accelerating solids, we are familiar with the idea that a solid’s acceleration 
is simply the rate of change of its velocity. This is also true for fluids. We 
must consider the rate of change of the velocity field, remembering that this 
change may be in time t and also in x, y, and z.

Given a velocity field V = (u, v, w), where each component is allowed to 
vary in space and time, so that ui = f(x, y, z, t), we know that the acceleration 
is the change in this velocity field in a time interval dt. The velocity of some 
fluid particle L is VL at time t, and at some later time t + dt, as shown in Fig-
ure 10.8, has evolved:

 
V V x y z tL t

 = ( , , , ),  (10.25a) 

 
V V x dx y dy z dz t dtL t dt

 = + + + +
+

( , , , ),  (10.25b)

t 

t + dt 

(x, y, z)

(x+dx, y+dy, z+dz)

y 

x

z

Figure 10.8
Evolution of point L and its velocity VL.
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so the change in VL may be written as the difference between these two, or

 

dV V x dx y dy z dz t dt V x y z tL = + + + + −( , , , ) ( , , , )

=
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

V
x

dx V
y

dy V
z

dz V
t

dt  (10.26)

so that that rate of change in VL, or dVL / dt, is
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or
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 (10.28)

This expression is defined as the material derivative of the velocity V. It may 
also be written in vector form as

 
a DV

Dt
V
t

V V= =
∂
∂
+ ⋅∇( ) . (10.29)

The material derivative is, in a sense, a derivative “following the fluid,” as 
it considers the movement of the fluid particle in question. This way of writ-
ing the acceleration takes into account the change in flow velocity in both 
time and space and equips us to write F = ma for a fluid element. Notice that 
it expresses the total change in velocity as the time rate of change, plus a 
reflection of spatial variation, of velocity.2

We have the expression in equation (10.29) for acceleration, and we know 
that ma is ρdxdydz a. We know that both surface and body forces can act 
on a fluid, and we know how to write the forces due to gravity, pressure, 
and viscous effects. We also know about surface tension—and because sur-
face tension comes into play only at boundaries between fluids, it affects the 
boundary conditions but not the governing equations themselves.

If viscous effects are neglected, we can write F = ma for a fluid element dV:

 
ρ ρd DV

Dt
p d gdV V V=−∇ + ,  (10.30)

or, dividing through by dV,
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ρ ρDV

Dt
p g=−∇ + ,  (10.31)

where typically g = –g k̂ . This equation is Newton’s second law for an effec-
tively inviscid fluid, first derived by Leonhard Euler in 1755 and henceforth 
known as the Euler equation. It is also known as the inviscid momentum 
equation, as it expresses the conservation of linear momentum. Please note 
that the only assumption made in its derivation is that of inviscid behavior—
this equation holds for both compressible and incompressible fluids and for 
steady and unsteady flows. Viscous effects are generally negligible far from 
flow boundaries, allowing us to rely on Euler’s inviscid momentum equation 
in good faith.

If we include viscous effects, we must write the force on the fluid element 
due to the viscous stress tensor, which was discussed in Chapter 8, Section 
8.5.4. In that discussion, the stress tensor was shown to be composed of a por-
tion due to pressure (already included in the inviscid equation) and another 
portion that is proportional to the strain rate tensor, which itself depends on 
the velocity gradients in the flow. The force due to stress tensor τ  on an ele-
ment dV may be written as ∇⋅τ , which requires the recollection of Gauss’s 
theorem, to change the surface force

 

τ
A

dA∫

to a force on the entire volume

 

∇⋅∫ τ
V

dV.

Physically, we could derive this in the same way we determined the force 
due to pressure on a fluid element dV. For a viscous, incompressible Newto-
nian fluid,3 F = ma is written as

 
ρ ρ µDV

Dt
p g V=−∇ + + ∇2 ,  (10.32)

where μ is the fluid’s viscosity, and the del-squared operator on V may be 
written in index notation:
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Equation (10.32) (as well as its variants with the fuller stress tensor) is 
known as the Navier-Stokes equation. This name is somewhat interesting since 
Claude Navier got it wrong. He misunderstood viscosity and the dependence 
of the stress tensor on velocity gradients and published a flawed derivation of 
F = ma for viscous fluids in 1822. Though his results were correct, his reason-
ing was flawed. George Stokes later got the derivation of the viscous terms 
right, so his name was added to the marquee. However, in 1843, two years 
before Stokes’s results were published, a paper appeared by Jean Claude 
Saint-Venant in which this equation was correctly derived and interpreted. 
It is a mystery why the equation does not bear his name today. As students 
of continuum mechanics, we are already grateful to Saint-Venant for his dis-
covery that the details of force application are only relevant in the immediate 
neighborhood of application, allowing us to use “average” stress relations, 
and now we have another reason to thank him and to condemn the injustice 
that leaves his name out of most discussions of the Navier-Stokes equation. 
Incidentally, Navier was no slouch, despite his errors here—he was a great 
builder of bridges and did important work in elasticity and solid mechanics.

10.5 Bernoulli Equation

Equation (10.32) for the conservation of momentum is a vector equation, with 
component equations in each direction of motion. These directions may be 
(x, y, z), (r, θ), or (r, θ, φ). If we remember that streamlines are everywhere tan-
gent to the velocity vector, we can also think of a set of coordinates defined 
relative to the streamlines—for two-dimensional flow, one coordinate s 
directed along the streamline, and n defined normal to the streamline. We 
could then write the component equations of motion in the s and n direc-
tions. The resulting equation in the s direction, which states F = ma along a 
streamline, may be integrated to yield the following equation:

 

P gz V
ρ
+ + =

1
2

2 constant along a streamline, (10.34)

where we have assumed that gravity acts in the negative z direction, and 
where V is the velocity in the s direction, simply the magnitude of the veloc-
ity vector since V || s. This equation is known as the Bernoulli equation, and 
it is true for steady flow of an incompressible fluid under inviscid conditions. 
For convenience we write the equation together with its restrictions as

 

P gz V
ρ
+ + =

1
2

2 constant:
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On a streamline•	
For steady flow•	
For incompressible fluid•	
If viscous effects neglected•	

Many problems can be solved using the Bernoulli equation, allowing us to 
dodge having to solve the full Euler or Navier-Stokes equations. It should 
not escape our notice that the Bernoulli equation, derived from F = ma, 
looks like an energy conservation equation. This is even easier to see if 
we multiply through by the (assumed constant) density: Equation (10.34) 
becomes

 P + ρgz + ½ρV2 = constant, (10.35)

and we can think of P as a measure of flow work, ρgz as a gravitational 
potential energy, and ½ρV2 as a kinetic energy, all per unit volume of fluid. 
Daniel Bernoulli actually first arrived at equation (10.34) by performing an 
energy balance, even though the concept of energy was still a bit fuzzy in 
1738.

One of the most useful applications of the Bernoulli equation is a device 
known as a Pitot4 tube, as well as its cousin the Pitot-static tube, which is 
used to measure flow velocities. The tube (Figure 10.9a) contains a column 
of air. When an oncoming fluid flow impinges on the nose of the Pitot tube, 
it displaces this air. As we know from hydrostatics, the displacement is pro-
portional to the pressure at the stagnation point on the Pitot tube nose. The 
difference between this stagnation pressure (where the fluid has speed V = 
0) and the static pressure elsewhere in the flow (where the fluid has average 
speed V∞), by Bernoulli’s equation, is

 
p p Vstagnation static− = ∞

1
2

2ρ . (10.36)

A Pitot-static tube, as illustrated in Figure 10.9b, contains static pressure 
ports along the nose to measure the static fluid pressure as well as the 
stagnation pressure. It’s clear from equation (10.36) and Figure 10.9 that 
the assumptions of steady, incompressible flow should be appropriate 
when a Pitot tube is used. The flow is also assumed to be inviscid so that 
there are no boundary layers near tube or other walls to reduce the bulk 
flow speed from V∞.
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10.6 Examples

example 10.1

Find the equation of, and sketch, the streamline that passes through (1, –2) 
for the velocity field given by

 V xyi y j= −ˆ ˆ2 2  m/s.

Given: Velocity vector V.
Find: Streamline through (x = 1, y = –2).
Assume: No assumptions are necessary.

Solution

By definition, a streamline is everywhere tangent to the velocity field. So, the 
streamline through (1, –2) is tangent to the velocity V at this point. We state 
this relationship mathematically as

 
slope dy

dx
v
ustreamline

=

 

dy
dx

y
xy

y
x

=
−

=
−2 22

.

Separating variables,

 

dy
y

dx
x−

=
2

.

Integrating both sides,

 

dy
y

dx
x−

=∫∫ 2

 
→ − = +

1
2

ln lny x C .
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We have absorbed the constants of integration from both sides into this 
new constant C:

 
→ + =ln ln .x y C1

2

This new C is simply –C from the previous expression. To get rid of the 
natural logs and find a graphable function y(x), we take the exponent of the 
entire expression:

 x y C= , or

 x y C2 = .

This C may no longer bear much resemblance to our initial constant C, 
but since the product x2y must equal a constant, we might as well use C to 
represent that constant.

At point (1, –2), x2y = (1) 2(–2) = –2, so the equation of the streamline through 
(1, –2) is x2y = –2.

We plot this streamline in Figure 10.9. 

–10

–8

–6

–4

–2

0
0 2 4 6 8 10

x

y

(1,–2)

Figure 10.9
Pitot tube with differential manometer to measure flow speed: (a) standard arrangement of 
Pitot tube and static pressure tap; and (b) Pitot-static tube.
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example 10.2

The open tank shown contains water at 20˚C and is being filled through sec-
tion 1 in Figure 10.10. Assume incompressible flow. First derive an analytic 
expression for the water-level change dh/dt in terms of arbitrary volume flows 
Q1, Q2, Q3, and tank diameter d. Then, if the water level h is constant, deter-
mine the exit velocity V2 for the given data V1 = 3 m/s and Q3 = 0.01 m3/s.

Q3 = 0.01m3/s3

1

2D1 = 5 cm

D2 = 7 cm

h 

d 

Figure 10.10

Given: Tank inlet and outlet information.
Find: dh/dt, unknown exit velocity.
Assume: Inlet and outlet velocity profiles are uniform, one dimensional. 

Fluid is incompressible; density is uniform.

Solution

We intend to consider the fluid in the tank shown in Figure 10.11 as the con-
tents of a control volume.

Q3
3

1

2D1

D2CV

Figure 10.11

We must have mass conservation,

 

0= ∂
∂

+ ⋅∫ ∫t
d V dA

CS

ρ ρV
CV

,
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which for this CV can be written as

 

d
dt

d h Q Q Qρ π ρ
2

2 1 34
0












+ − −( )= ,

where we have changed the partial derivative to a total one, as time is the 
only dependence of the quantity in brackets, and where the signs on various 
flow rates depend on whether they are into or out of the CV: Q2 is outflow, 
and thus positive, while Q1 and Q3 are both inflow and negative. We further 
simplify by canceling the common density and by removing the constants 
from the time derivative. We get

 

π d dh
dt

Q Q Q
2

2 1 34
0+ − −( )=

 

dh
dt

Q Q Q

d
=

+ −( )4 1 3 2

2π
.

If h is constant, dh/dt = 0 and we must have Q1 + Q3 – Q2 = 0. Each Qi = ViAi. 
We can thus solve for the requested value of V2, which corresponds to dh/dt 
= 0:

 

Q V A Q Q s2 2 2 1 3 40 01 0 05 3 0 0= = + = + =. ( . ( ) .m 2 m
s

3 m)π 1159

0 0159
2 2 2

m
s

m

3

3

V Q A s= =/
.
π
44 0 07

4 13
( .

. .
m)2

m
s=

example 10.3

A steady jet of water is redirected by a deflector, as shown in Figure 10.12. 
The jet has mass flow rate of 32 kg/s, cross-sectional area 2 cm × 40 cm, and 
speed V1 when it encounters the deflector. What force per unit width of the 
deflector (into the page) is needed to hold the deflector in place?

CV

Rx

Ry

V1

V2

30°

Figure 10.12
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Given: Geometry of flow deflector.
Find: Reaction forces from deflector support on fluid in CV.
Assume: Jet has constant cross-sectional area, even after being deflected. 

Flow is steady and incompressible. Density of water is constant, uni-
formly 1000 kg/m3. Gravity and viscous effects may be neglected.

Solution

The flow of water imparts a force to the deflector. Reaction forces from the deflec-
tor balance these forces and act on the fluid in the CV drawn. We are asked for 
these reactions, Rx and Ry, if the deflector has width of 1 m into the page.

We begin by finding the inlet velocity V1. We are given the mass flow rate 
of the jet, m , which is ρV1A1. As the cross-sectional area A1 is also given, we 
use this to find V1:

 

V m
A1

1

32
0 02

= =

ρ (1000 m)(0.40 m)

kg
s

kg
m3 )( .

== 4 m
s .

If the flow is steady, we must have a constant mass flow rate (what flows 
into our CV must flow back out again), or ρV1A1 = ρV2A2. Since we have an 
incompressible flow and since the jet’s cross-sectional area does not change, 
we must have V2 = V1 = 4 m/s.

To find the requested reaction forces, we must apply the conservation of 
linear momentum, or F = ma, in both x and y directions. These equations are

 

F F F g d pi ndAx visc x external x x

CV

=( ) +( ) + − ⋅∫ ρ V ˆ

CCS CV
t

u d u V ndA∫ ∫ ∫=
∂
∂

+ ⋅ρ ρ
CS

V

and

F F F g d p j ndAy visc y external y y

CV

=( ) +( ) + − ⋅∫ ρ V ˆ

CCS CV
t

v d v V ndA∫ ∫ ∫=
∂
∂

+ ⋅ρ ρ
CS

V .

Since our jet is steady, with negligible contributions from gravity, viscosity, 
and pressure gradients, these equations simplify greatly:

 

− = ⋅∫R u V ndAx ρ
CS

.
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R v V ndAy = ⋅∫ ρ
CS

.

The x momentum flux therefore balances the reaction force Rx, negative as 
it is in the negative x direction. Writing out the flux at each of the two control 
surfaces, we have

 

− = ⋅ =− +∫R u V ndA V V A V V Ax ρ ρ ρ θ
CS

1 1 1 2 2 2( cos ) .

Note that V2cosθ is the x component of velocity at surface A2 and that V2 is 
V·n at A2:

 

R m V Vx = −

= −

 ( cos )

)( )( cos(

1 2

4 1

θ

(32 kg
s

m
s 330))

17.2 N=

in the y direction we have

 

R v V ndA V V Ay = ⋅ = +∫ ρ ρ θ
CS

0 2 2 2( sin )

 

R mVy =

=





2

32 4 30

sin

( )( )sin( )

θ

kg
s

m
s

N=64

.
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example 10.4

u(y) 

A B 

Wake
y 

1 m  
H

1.5 m/s 1.5 m/s 

Figure 10.13

Uniform air flow with speed U = 1.5 m/s approaches a cylinder as shown in 
Figure 10.13. The velocity distribution at the location shown downstream in 
the wake of the cylinder may be approximated by

 
u y y y( ) .= + − < <1 25

4
1

2

11,

where u(y) is in m/s and y is in meters. Determine (a) the mass flux across the 
surface AB per meter of depth (into the page) and (b) the drag force per meter 
of length acting on the cylinder.
Given: Flow over cylinder; upstream and downstream velocity profiles.
Find: Mass flux across surface AB, drag force on cylinder.
Assume: Air has constant, uniform density 1.23 kg/m3. Flow is symmetri-

cal and steady. Pressure differences, gravity, and viscous effects may 
be neglected.

Solution

We first select a control volume. It is generally wisest to choose control vol-
umes on whose surfaces we have information about the flow. It is also useful 
to take advantage of symmetry to simplify our calculations.

Our choice of control volume is shown in Figure 10.14.
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u(y)

A B 

Wake
y 

1 m  

H

1.5 m/s 1.5 m/s 

CV

Figure 10.14

At its left surface, the normal velocity is U = 1.5 m/s, into the CV. Its top 
surface is a plane of symmetry for the flow, so there is no mass flux across 
it. At the right, the wake velocity profile is given by u(y) above, and outside 
the wake, the velocity is 1.5 m/s, out of the CV. We have a steady flow, so the 
conservation of mass is written as

 

0= ⋅∫ ρ V ndA
CS

 

0= ⋅ + ⋅ + ⋅∫∫ρ ρ ρV ndA V ndA V ndA
right
CS

ABleft
CS

∫∫

∫= − + +ρ ρUH m u y dyAB

H

 ( ) .
0

Note that since we are not given the length of the cylinder into the page, we 
must find the mass flux across AB per meter of cylinder length. We account 
for this by assuming a unit cylinder length. The areas of our control surfaces 
are thus ldy, with a unit length l. Hence, the area of the left control surface is 
simply H (m2).

H, however, is not known. To complete the solution we must investigate 
the flow field further. Outside the wake region, which is 1 m wide at the con-
trol surface, the flow out of the right CS has speed 1.5 m/s. The left control 
surface has a uniform inflow of 1.5 m/s. Hence, more than 1 m away from 
the cylinder axis, the flow is unaffected by the cylinder and simply proceeds 
with constant speed 1.5 m/s. We can therefore assess the amount of mass 
flux forced across AB by integrating only from 0 to 1, instead of 0 to H:
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0 1
0

1

=− + +∫ρ ρU m u y dyAB( ) ( )

 

m U y dyAB = − +∫ρ ρ( ) ( . )1 1 25
4

2

0

1
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
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mAB = 0 205. per meter of cylinder lengthkg

s .

To address part (b) of this problem, we conserve linear momentum in the 
x direction. We may either continue with the same control volume as in part 
(a), multiplying the fluxes by 2 to obtain the force on the whole cylinder, or 
we may now use a CV that consists of all the fluid between –H and +H, or 
equivalently –1 and 1. The drag force on the cylinder is in the +x direction; 
hence, there is an equal and opposite force on the fluid in the –x direction. 
Conserving x momentum, we have

 

F F F g d pi ndAx visc x external x x

CV

=( ) +( ) + − ⋅∫ ρ V ˆ

CCS CV
t

u d u V ndA∫ ∫ ∫=
∂
∂

+ ⋅ρ ρ
CS

V .

Under the assumptions of steady flow, with negligible contributions from 
pressure gradients, gravity, and viscous effects, this becomes

 

− = ⋅∫F u V ndAx

CS

ρ .

We evaluate the flux at all three control surfaces of the initial CV and mul-
tiply each by 2 due to symmetry:

 

− = ⋅ + ⋅ + ⋅∫ ∫F u V ndA u V ndA u Vx 2 2 2ρ ρ ρ
left
CS

AB

nndA

U U dy u V

right
CS

1

∫

∫=− ⋅ ⋅ + ⋅2 2
0

1

ρ ρ nndA u y u y dy
AB
∫ ∫+ ⋅ ⋅2 1

0

1

ρ ( ) ( ) .
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We have again assumed a unit cylinder length into the page so that the 
area of both right and left control surfaces is 1dy. We next recognize that the 
second integral contains the mass flux we just solved for,

 mAB = ρ V ndA
AB

⋅∫ ,

and differs from this only by the value of u, the x component of velocity at 
the surface AB. The surface AB is at a distance of H from the cylinder axis, 
where, as we have discussed, the cylinder does not influence the x direc-
tional flow. The velocity u is therefore U = 1.5 m/s on AB. We thus get some-
thing even simpler:

 

− =− + + +
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s

 Fx = 4.07 N per meter of cylinder length.

example 10.5

For the water siphon in Figure 10.15, find (a) the speed of water leaving as a 
free jet at point 2 and (b) the water pressure at point A in the flow. State all 
assumptions. Heights h1 = 1 m, and h2 = 8 m. Drawing is not to scale.
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z

A

1

2

h2

h1

Figure 10.15

Given: Length of siphon used to remove water from large tank.
Find: Speed at 2 and pressure at A.

Assume: Steady flow (all transient effects associated with flow initiation 
have died down), incompressible (water has constant, uniform den-
sity, equal to 1000 kg/m3), and negligible viscous effects.

Solution

We would like to use the Bernoulli equation to relate the flow quantities 
between the labeled points. The conditions necessary for the Bernoulli equa-
tion to apply have been reasonably assumed. (We feel least confident in our 
assumption of negligible viscous losses in the siphon, and in the next chapter 
we discuss a way to characterize the importance of viscosity in a given flow.)

We must have a streamline on which to apply the Bernoulli equation, so 
we assume that the one sketched in Figure 10.16 exists. This streamline con-
nects points 1 and A, and A and 2.

z

A

1

2

Figure 10.16
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We make one more assumption to solve this problem: By inspection, the 
reservoir is much larger than the siphon diameter; that is,

 A1 >> A2.

So, if we conserve mass from point 1 to point 2, we have

 ρV1A1 = ρV2A2.

And, with A1 >> A2, we must have V1 << V2. We approximate this very small 
velocity at 1 by saying V1 ≈ 0.

We can now apply Bernoulli’s equation between points 1 and 2, to find the 
unknown V2:

 

p V gz p V gz1 1
2

1
2 2

2

22 2ρ ρ
+ + = + + ,

where, as we have just said, V1 ≈ 0, and where p1 = p2 = patm. (If we are using 
gauge pressures, this means p1 = p2 = 0.) We note from the figure that z1 = 0, 
and z2 = –7 m, so

 

gz V gz

V g z z

1
2

2

2

2
2

1 2

2

2

= +

= −( )

 
V2 2 9 81 7 11 7= =( . )( . .m)m

s
m
s2

Our assumed streamline also goes through point A so that the Bernoulli 
equation is

 

p V gz p V gzA A
A

1 1
2

1

2

2 2ρ ρ
+ + = + + .

If we conserve mass within the constant area siphon, we must have

 ρVAAA =ρV2A2,

or, since AA = A2, VA = V2 = 11.7 m/s. We are now equipped to solve the Ber-
noulli equation for the unknown PA:
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We have used standard atmospheric pressure, patm = 101.325 kPa.

example 10.6

A person holds her hand out of an open car window while the car drives 
through still air at 65 mph. Under standard atmospheric conditions, what is 
the maximum pressure on her hand? What would be the maximum pressure 
if the car were traveling at 220 mph?
Given: Speed of airflow past hand; standard atmospheric conditions.
Find: Maximum pressure on hand.
Assume: Flow is steady and incompressible, with negligible viscous effects; 

air has constant, uniform density, equal to its tabulated value at 20˚C 
(1.23 kg/m3). Standard atmospheric pressure patm = 101.325 kPa.

Solution

We put ourselves in the frame of the person’s hand so that the hand is still 
and the air moves with speed 65 mph (or 220 mph). We can visualize the 
airflow as sketched in Figure 10.17.

V 

Figure 10.17

Note that there is a dividing streamline that impinges on the hand at a 
stagnation point. (Airflow either goes above this streamline, up and over the 
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hand, or below it.) At this stagnation point, the air will be at its maximum 
pressure, the stagnation pressure. (Recall that pressure and velocity are 
inversely proportional.) If we assume that this stagnation streamline is level, 
so that gravitational effects are easily neglected, we can apply the Bernoulli 
equation on this streamline to find the stagnation pressure. The Bernoulli 
equation has the form

 
p V p V

upstream

+
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or

 
p V patm+ =

1
2

2ρ max .

Plugging in the atmospheric pressure, air density, and V = 65 mph, we have
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.
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2

= 101.844 kPa (abs)

 = 520 Pa (gage).

If the car (and hence the air, in the frame of the hand) moves with speed  
V = 220 mph,
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


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2

= 107.28 kPa (abs)

 = 5.95 kPa (gage).

10.7 Problems

 10.1 Five holes are punched in the side of a can of liquid. Which fig-
ure shown in Figure 10.18 best illustrates the velocity profile that 
would result from liquid leaving the five holes?



Fluid Dynamics: Governing Equations 407

(a) (c) (b)

Figure 10.18

 10.2 A two-dimensional fluid velocity field is given by u = x(1 + 2t), v 
= y. Find the equation of the time-varying streamlines with all 
pass through the point (xo, yo) at some time t. Sketch some of the 
streamlines at various times t.

 10.3 For the three-dimensional, time-varying velocity field 
V ti xz j ty k= + +3 2ˆ ˆ ˆ , find the acceleration of a fluid element.

 10.4 Consider a two-dimensional velocity field in Cartesian coordinates:

 
( , ) , ,u v ky

x y
kx

x y
=

−
+ +









2 2 2 2

  where k is a positive constant. Sketch the velocity profiles along the 
x axis and the line x = y. Determine the equation of the streamline 
passing through (x, y) = (1, 1). What are the velocity and acceleration 
at this point? Sketch both vectors. Is the flow incompressible?

 10.5 The horizontal nozzle shown in Figure 10.19 has D1 = 0.3 m and D2 
= 0.15 m, with inlet pressure of the operating fluid (water at 20ºC) 
p1 = 262 kPa (absolute) and V2 = 17 m/s. Compute the normal stress 
induced in the flange bolts (diameter 1 cm) by keeping the nozzle 
fixed.

Water
Open jet

1

2

Figure 10.19
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 10.6 Observations show that it is not possible to blow the table tennis 
ball out of the funnel shown on the left in Figure 10.20. In fact, 
the ball can be kept in an inverted funnel, like the one on the 
right, by blowing through it. The harder one blows through the 
funnel, the harder the ball is held within the funnel. Explain this 
phenomenon.

Q 

Q

Figure 10.20

 10.7 An open circuit wind tunnel draws in sea-level standard air and 
accelerates it through a contraction into a 1 m × 1 m test section. A 
differential pressure transducer mounted in the test section wall 
measures a pressure difference of 45 mm of water between the 
inside and outside. Estimate (a) the test section velocity in mph 
and (b) the absolute pressure on the front nose of a small model 
mounted in the test section.

 10.8 Blood, an incompressible fluid with density ρ = 1060 kg/m3, flows 
through vessels that often branch. Using the given model (Fig-
ure 10.21) for a branching arteriole, and assuming that at the point 
of interest flow is steady, with negligible contributions from grav-
ity and viscosity, calculate the pressure differences: (a) PC – PA; and 
(b) PB – PA.

3 mm 

2 mm 
A C

B

15 cm/s

10 cm/s

Figure 10.21
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 10.9 Water from a stationary nozzle strikes a flat plate (directed normal 
to the plate as shown in Figure 10.22). The velocity of the water 
leaving the nozzle is 15 m/s, and the nozzle area is 0.01 m2. After 
the water strikes the plate, subsequent flow is parallel to the plate. 
(a) Find the horizontal force that must be provided to the plate by 
the support. (b) Find the maximum longitudinal normal tensile 
stress the support post if it is a hollow square cross section as 
shown in the figure. Model the force due to the water as a point 
load. (c) Find the maximum transverse shearing stress in a cross 
section of the post.

1.5 m 

Cross section of support
post, outer dimension is
100 mm square, wall
thickness is 5 mm.

Nozzle

Figure 10.22

Notes

 1. A similar streamfunction can be derived for compressible flows, though this is 
outside the scope of this book.

 2. Again, we note that for a solid, whose mass could be vigilantly monitored 
and that would not flow in response to shear, this flux term would not be 
necessary.

 3. The student chafing under the restrictions of incompressibility and Newtonian 
behavior is encouraged to take further courses in fluid mechanics and to refer 
posthaste to Kundu’s (1990) Fluid Mechanics, where he or she will find that the 
full form of the stress tensor makes things quite a bit more interesting.

 4. The Pitot tube is named for Henri Pitot (1695–1771), a French hydraulic engineer 
who invented it by intuition when measuring the flow in the River Seine in 
1732.
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11
Fluid Dynamics: Applications

That we have written an equation does not remove from the flow of flu-
ids its charm or mystery or its surprise.

Richard Feynman, 1964

We have found two distinct ways to apply the fundamental concepts of mass 
conservation and F = ma to fluids. We now want to identify some canoni-
cal problems of fluid mechanics, their historical context, and their relevance 
to us. Both solid and fluid mechanics are enormous fields, with many rich 
details; in this book, we have been necessarily brief with both of them.

11.1 How Do We Classify Fluid Flows?

The Navier-Stokes equation contains terms corresponding to several pos-
sible forces on a fluid element. If we look at it again, we can name each of 
these forces:

 

ρ ρDV
Dt

p g

inertia
pressure gravity

 =−∇ +

(bbody force
viscous
stress

V

)

.
   + ∇µ 2

 (11.1)

We would like to have a way to quantify the relative effects of these forces, 
and of other factors, on a given flow; this way, when faced with an intriguing 
fluid mechanics problem we could decisively say whether viscosity or inertia 
was the more dominant effect—and how much more dominant. The most 
useful result would be a dimensionless parameter—that way, it wouldn’t 
matter whether we were dealing with U.S. units or International System of 
Units (SI); a certain number would represent the same type of flow in either 
unit system.

It is apparent that by taking the ratio of the inertial and viscous terms of 
the Navier-Stokes equation, we could obtain this quantification. This ratio 
clearly goes as ρ/μ. Unfortunately, this ratio ρ/μ has units of time/length2. 
To make it dimensionless, we need to multiply it by something with units 
of length2/time. The easiest way to construct this “something” is to multiply 
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the velocity V by a characteristic length scale of the problem, say L. It turns 
out that this is also correct physically, as we can see by a scaling argument:

 Inertial Force = mV dV
ds

~ ρL V V
L

3 =ρL2V2. (11.2)

 Viscous Force = τA=µ
du
dy

A ~µ
V
L

L2 = μVL. (11.3)

 Ratio of Inertial to Viscous Forces = 
ρ
µ

ρ
µ

L V
VL

VL2 2

= . (11.4)

This ratio is known as the Reynolds number, abbreviated Re.1 When Re is 
large, inertial effects dominate the flow, and when Re is small, viscous effects 
dominate. This lets us know what terms we can drop out of the Navier-Stokes 
equation when we’re at the far ends of the Re spectrum. As expected, Re also 
tells us something about the character of the flow. Generally, lower Re flows 
are smooth, with parallel streamlines because viscosity tends to diffuse 
more complex flow patterns. These flows are known as laminar. At higher 
Re, viscosity is not strong enough to diffuse eddies and other rotational flow 
patterns, and the flow tends to be more disorderly. These higher Re flows 
are called turbulent. A critical value of Reynolds number, Recrit, is a threshold 
separating laminar from turbulent flows. The value of Recrit depends on the 
type of flow being considered, as we’ll see.

Other nondimensional parameters serve to measure the relative effects of 
other forces on a particular flow. For example, the Euler number Eu com-
pares pressure drop to inertial forces. The Euler number and a few other 
relevant parameters are listed in Table 11.1.

The Reynolds, Euler, Froude, and Weber numbers, among others, allow us 
to quantify the relative importance of different forces on the flow in ques-
tion; they are also useful in planning experiments. Two flows with the same 
Re have very similar flow patterns and characteristics—inertia and viscosity 
have the same relationship in both flows. To build an experimental model 
of a flow whose real dimensions are unwieldy, it is sufficient to match the 
appropriate nondimensional parameters. It is much more economical to 
study the influence of Re on a given flow than to have to independently vary 
the density ρ and viscosity μ of a fluid, the size of the model L, and the flow 
speed V!
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11.2 What’s Going on Inside Pipes?

Pipelines, blood vessels, hallways, and ink jet printers all contain examples 
of internal flows. A fluid’s stiffness, or viscosity, has a significant effect on the 
flow of an incompressible fluid through a pipe or between parallel plates. 
The critical Reynolds number in a pipe is about 2000; for Re < 2000, pipe flow 
is laminar.

Pipe flow is said to be fully developed when it does not change in the flow 
direction; as in Figure 11.1, the velocity profile u(x, r) becomes independent 
of axial length x. At the pipe inlet, flow is uniform [u(x, r) = Uo = constant]; as 
x increases, a very thin layer near the walls slowly grows outward. Viscous 
effects dominate these thin boundary layers, but viscosity does not yet affect 
the inner core of the flow. We continue along the pipe length x until viscosity 
affects the entire cross section. Finally, the thin layers all merge and the flow 
becomes fully developed.

 For a laminar flow, we can determine the entrance length necessary for a 
pipe flow to become fully developed if we know the Reynolds number:

 

L
D

E =0 065. Re,  (11.5)

where Re is based on the average velocity (V = u ) and the diameter of the 
pipe (L = D).

Now that we know to expect the flow to become independent of axial 
length x, we would like to be able to determine the shape of the velocity 
profile u(y), or u(r) for a circular pipe. We assume steady flow to simplify our 

Table 11.1

Relevant Nondimensional Parameters

Reynolds number Re
inertia

viscosity
ρ

µ

VL

Euler number Eu
pressure
inertia

∆p

Vρ 2

Froude number Fr
inertia
gravity

V

Lg

Weber number We
inertia

surface tension
V

s
L2 ρ
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lives a bit. Figure 11.2 shows a cylindrical fluid element for which we can 
now write F = ma.

Once the flow is fully developed, it experiences no acceleration. (The local 
acceleration ∂∂

u
t  = 0 and the convective acceleration, u u

x
∂
∂ = 0 since u is a func-

tion of r only.) Every part of the fluid moves with constant velocity, although 
neighboring particles have different velocities and this velocity gradient, as 
we well know, gives rise to a shear stress.

For this simple analysis, we neglect gravity, assuming that pressure and 
viscous effects are much more significant. The pressure is constant across 
vertical cross sections (with no hydrostatic effect due to gravity), though it 
changes in x. So if pressure is p = p1 at section (1) as shown, it is p2 = p1 – Δp 
at section (2). We anticipate that pressure decreases in the direction of flow, 

x

r

Viscous wall layer

Viscous wall layer

Uo
u(x,r) u(r)

Developed
laminar flow

Entrance length LE 

Figure 11.1
Laminar flow developing in a pipe or a wide rectangular channel.

x

l

r 

Fluid element at time t
Element at time t + dt 

D

l 

r

τ 2πrl

(p1–∆p) πr2p1 πr2

(a)

(b)

Figure 11.2
(a) Motion of a cylindrical fluid element within a pipe flow. (b) Free-body diagram of a cylindri-
cal fluid element.
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so that Δp > 0.2 A shear stress, τ, acts on the surface of the fluid cylinder. This 
shear stress is a function of radius r, τ = τ(r).

Once again, we need to look at this free-body diagram (FBD) (Figure 11.2b) 
and write out (F = ma)x for this cylindrical fluid element. We have ax = 0, and 
the remaining terms of the force balance are

 p1 πr2 – (p1 – Δp) πr2 – τ 2πrl = 0. (11.6)

This expression can be simplified, yielding

 

∆ p
l r
=

2τ . (11.7)

This balance of forces is necessary to drive each fluid particle down the 
pipe with constant velocity. Since neither Δp nor l depends on radial coor-
dinate r, the right-hand-side term, 2τ/r, must not depend on r. That is, τ = Cr, 
where C is a constant. At r = 0, the pipe centerline, there is no shear stress. At 
r’s maximum value of D/2, the shear stress has its maximum value, called τw, 
the wall shear stress. This boundary condition lets us determine the value of 
C, which must be C = 2τw/D:

 
τ

τ( )r r
D

w=
2

. (11.8)

From the force balance, then, we must have

 
∆ p l

D
w=

4 τ
. (11.9)

We see that a small shear stress can produce a large pressure difference 
if the pipe is relatively long. We also note that if viscosity were zero there 
would be no shear stress and the pressure would be constant throughout the 
pipe. To get further with this analysis, we need to know how the shear stress 
is related to the velocity.

We could proceed by integrating the full Navier-Stokes equation for this 
steady, incompressible, viscous flow of a Newtonian fluid, or we could simply 
remember that for a Newtonian fluid, shear stress is proportional to velocity 
gradient. For our pipe flow, this is

 
τ µ=−

du
dr

,  (11.10)

where we have included the negative sign to have τ > 0 for du/dr < 0, since the 
velocity decreases from the centerline to the outer wall and shear stress is 
maximum at the pipe wall; it is more intuitive to keep track of positive τ’s. If 
we combine this equation (the definition of a Newtonian fluid) with the force 
balance (F = ma), and eliminate τ, we get
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which we integrate to find the velocity profile,
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and use the no-slip boundary condition (u(r = D/2) = 0) to find C1 = (Δp/16μl)
D2, so that
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where Vc is the centerline velocity, defined by ΔpD2/16μl. We can also express 
the velocity profile in terms of the wall shear stress, and in terms of R = D/2, as
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This velocity profile is parabolic in the radial coordinate r and has a maxi-
mum value, Vc, at the centerline, and minimum values (zero) at the pipe wall. 
We can next find the volume flowrate Q through the pipe. We integrate over 
a series of very small rings of radius r and thickness dr to find Q:
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Q R Vc=
π 2

2
. (11.16)

The average velocity is defined as the flowrate divided by the cross- 
sectional area, so for this flow we have

 
V R V

R
V pD

lavg
c c= = =

π
π µ

2

2

2

2 2 32
∆ ,  (11.17)

and

 
Q D p

l
=
π
µ

4

128
∆

. (11.18)
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We have found that the average velocity is half the centerline velocity 
for our laminar parabolic velocity profile. Our results also confirm that the 
flowrate is (1) directly proportional to the pressure drop; (2) inversely pro-
portional to the viscosity; (3) inversely proportional to pipe length, and (4) 
proportional to the diameter to the fourth power.

Equation (11.18) for Q is commonly known as Poiseuille’s law, so named 
for a French physician who performed the first analysis of laminar pipe flow 
with the goal of learning about blood flow.3 Fully developed laminar pipe 
flow, with its parabolic velocity profile, is generally known as Poiseuille flow.

11.3 Why Can an Airplane Fly?

A body, such as a wing or an airfoil, experiences a resultant force due to 
the interaction between the body and the moving fluid surrounding it. Fig-
ure 11.3 shows a two-dimensional airfoil and the forces on it due to the sur-
rounding fluid: (a) pressure force, (b) viscous force, and (c) resultant force 
(lift and drag).

You are probably already familiar with the idea that the pressure distri-
bution is responsible for lift. The basic idea is that pressure is lower on the 
upper surface of a wing, so a net upward force keeps the wing aloft. We 
could show this using the Bernoulli equation: The flow over the smooth 
upper surface is much faster (therefore exerts lower pressure) than that past 
the lower surface.

Knowing that drag and lift are the x and y resultants of the pressure and 
viscous stress forces, we could obtain expressions for drag and lift by inte-
grating these pressure and viscous forces over the body’s surface:

 
D dF p dA dAx w= = +∫ ∫∫ cos sin ,θ θτ  (11.19)

 
L dF p dA dAy w= =− +∫∫∫ sin cos ,θ θτ  (11.20)

where θ is the degree of inclination (with respect to horizontal) of the out-
ward normal at any point along the body surface. To carry out this integra-
tion, we must know the body shape, including θ as a function of position 
along the body and the distribution of τw and p. This is quite difficult to do 
for realistic geometries. As we have seen when finding the resultant pres-
sure forces on submerged curved surfaces, there are sometimes ways to get 
around messy integrations involving changing orientations. This is also the 
case for lift and drag.
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In the simplest force analysis of an airplane, the four important forces are 
lift, drag, thrust (forward propulsion provided by engines), and weight of 
the plane. Lift must exceed weight and thrust must exceed drag for flight to 
be possible. We can calculate the lift and drag forces for a certain shape in a 
certain flow using the following formulas:

 L C U AL= 1
2

2ρ ,  (11.21)

 D C U AD= 1
2

2ρ ,  (11.22)

where A is a characteristic area of the object, typically taken to be the frontal 
area, the projected area that would be seen by an observer riding along with 
the onrushing flow, parallel to the upstream velocity U. It is important to 
specify which A one is using in a calculation, and why, when citing lift and 
drag results. The coefficients CL and CD for most common shapes have been 
determined from experimental data and are tabulated as functions of Reyn-
olds number, as shown in Figure 11.4 for a sphere and a circular cylinder.

We notice in Figure 11.4 that the drag coefficient decreases sharply at a 
Reynolds number of about 5 × 105. This corresponds to the value of Recrit at 
which flow transitions from laminar to turbulent. Turbulent flow is char-
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τw
Shear stress
distribution

Pressure
distribution

p < 0  

 p > 0 

D

L

(a) 

(b)

(c) 

Figure 11.3
Forces on two-dimensional airfoil: (a) Pressure force. (b) Viscous force. (c) Resultant lift and 
drag forces.
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acterized by higher fluid momentum, thinner boundary layers, and higher 
viscous stresses at solid surfaces than laminar flow. For flows over cylinders 
and spheres, the fluid’s higher momentum causes it to more readily follow 
the body surface without “separating” into a wake region. Turbulent wakes 
behind cylinders and spheres are therefore generally smaller than lami-
nar wakes. This reduction in the pressure drag on the object overwhelms 
any increase in viscous drag, and therefore we see a sharp drag drop corre-
sponding to the transition to turbulent flow. This phenomenon is sometimes 
exploited: For example, vortex generators on airplane wings serve to trip 
flow into turbulent behavior at lower Re than Recrit.

11.4 Why Does a Curveball Curve?

Baseballs and other objects moving through fluids leave wakes behind them. 
These wakes can be either laminar (relatively smooth flow, viscosity damp-
ing out disorderly structures) or turbulent (much more disordered, lots of 
whorls and eddies with no viscosity to wipe them out). Even in laminar flow, 
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Figure 11.4
Drag coefficients for smooth cylinder and sphere, as functions of Re.
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obstructions and protrusions such as wings and flaps on airplanes and rocks 
in streams can cause some rotational flow behind them. Zones of rotational 
flow are called vortices. Figure 11.5 shows the vortices behind several spheres 
for a range of Reynolds numbers.

There is much that could be said about these flow patterns—a semester’s 
worth—but for now, we are interested in baseballs. A typical pitch has a 
speed of 75 mph to 90 mph. A regulation Major League Baseball (MLB) ball 
must have a circumference between 9 and 9.25 in., or a diameter of about 2.9 
in. Using the properties of still air at standard atmospheric conditions, we 
can calculate a typical Reynolds number:
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For a smooth sphere, the transition to turbulence begins at a critical Reyn-
olds number of about Recrit ~ 5 × 105. The main difference between a baseball 
and the smooth spheres in Figure 11.5 is the raised stitching. This uneven-
ness on the ball surface makes the transition to turbulence happen at lower 
Re. This is actually a favorable condition for sports balls—as we saw in Fig-
ure 11.4, turbulent drag coefficients are lower than laminar ones. So catalyz-
ing the transition to turbulence can decrease the drag on a ball. This, in fact, 
is why golf balls are dimpled. The dependence of a baseball’s drag coefficient 
on its speed is shown in Figure 11.6.

If a baseball is thrown without any backspin or topspin imparted by the 
pitcher, the orientation of the seam causes an asymmetry in the wake, which 
in turn causes an irregular trajectory. This delivery is commonly known as a 
knuckleball. If, on the other hand, the pitcher does impart some spin to the ball 
as he or she hurls it, the right amount of spin stabilizes this irregularity and 
helps the trajectory follow a predictable path. This is shown in Figure 11.7, 
as we see the streamlines over a spinning baseball. The streamlines are 
crowded near the bottom of the ball (representing faster flow), and the wake 
is deflected upward by the spin. This deflection is linked to a net downward 
force on the ball, which is why a pitch thrown in this way will drop or sink 
as it approaches the batter.

Other types (different in magnitude and direction) of spin can alter the base-
ball’s path in different ways. This effect, known as the Magnus effect, has moti-
vated considerable research into the aerodynamics of baseball. The types of 
spin imparted for a range of pitch deliveries are sketched in Figure 11.8.
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(a)

(b)

(c)

Figure 11.5
Wakes behind smooth bodies. Note dependence on Reynolds number. (a) Sphere at Re = 118. 
Recirculating regions behind sphere still attached. (b) Cylinder at Re = 200. Wake develops 
into two parallel rows of staggered vortices. (c) Re = 1770. Turbulent wake behind cylinder. 
Instantaneous flow patterns shown by oil fog. (From Van Dyke, M., An Album of Fluid Motion, 
Parabolic Press, Stanford, CA, 1982. With permission.)
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Figure 11.7
Smoke photograph of flow around a spinning baseball. Flow is from left to right, flow speed is 
21 m/s, and ball is spinning counterclockwise at 15 m/s (= ωr). (Photograph by F. N. M. Brown, 
Courtesy the University of Notre Dame, South Bend, IN.)
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Figure 11.6
Drag coefficient as function of speed V for various spheres. (From Adair, R. K., The Physics of 
Baseball, New York, NY: Harper Perennial, 1994. With permission.)
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11.5 Problems

 11.1 Typical values of the Reynolds numbers for several animals mov-
ing through air or water are listed in the following table. In which 
cases is the fluid inertia important? In which cases do viscous 
effects dominate? Do you expect the flow in each case to be lami-
nar or turbulent? Explain.

Animal Speed Re

Large whale 10 m/s 300,000,000

Flying duck 20 m/s 300,000

Large dragonfly 7 m/s 30,000

Invertebrate larva 1 mm/s 0.3

Bacterium 0.01 mm/s 0.00003

 11.2 The velocity distribution in a fully developed laminar pipe flow is 
given by
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,

  where UCL is the velocity at the centerline and R is the pipe radius. 
The fluid density is ρ, and its viscosity is μ. (a) Find the average 
velocity Umean over the cross section. (b) State the Reynolds num-
ber for the flow based on average velocity and pipe diameter. At 
what approximate value of this Reynolds number do you expect 
the flow to become turbulent? Why is this value only approxi-
mate? (c) Assume that the fluid is Newtonian. Find the wall shear 
stress τw in terms of μ, R, and UCL.

 Fast Ball Curve Ball Slider Screw Ball

Figure 11.8
Ball rotation directions, as seen by the batter, for pitches thrown overhand by a right-handed 
pitcher. Arrow indicates the direction of rotation. (From Adair, R. K., The Physics of Baseball, 
Harper Perennial, 1994. With permission.)
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 11.3 A wing generates a lift L when moving through sea-level air with 
a velocity U. How fast must the wing move through the air at an 
altitude of 35,000 ft if it is to generate the same lift? (Assume the 
lift coefficient is constant.)

 11.4 The drag on a 2-m-diameter satellite dish due to an 80 km/hr wind 
is to be determined through wind tunnel testing on a geometri-
cally similar 0.4-m-diameter model dish. (a) At what air speed 
should the model test be performed? (b) If the measured drag on 
the model was determined to be 170 N, what is the predicted drag 
on the full-scale prototype?

 11.5 The viscous, incompressible flow between the parallel plates 
shown in Figure 11.9 is caused by both the motion of the bottom 
plate and a pressure gradient, ∂p/∂x. Determine the relationship 
between U and ∂p/∂x such that the shear stress on the fixed plate 
is zero.

x 
 y 

b 

U 

Figure 11.9

 11.6 Water exits a reservoir at 30-m depth to enter the 150-mm-diam-
eter inlet of a turbine, as shown in Figure 11.10. The turbine out-
let is also 150 mm in diameter. The exit flow is then ejected to 
the atmosphere at 9 m/s through a nozzle with diameter 75 mm. 
What power is developed by the turbine? What horizontal force 
is required to anchor the turbine if the inflow and outflow are 
horizontal?

T

D = 0.075 m 

D = 0.15 m 

H = 30 m 

9 m/s 

Figure 11.10
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 11.7 Crude oil flows through a level section of the Alaskan pipeline at a 
rate of 1.6 million barrels per day (1 barrel = 42 gallons). The pipe 
inside diameter is 120 cm, and its roughness has a characteristic 
dimension of 1.5 mm. The maximum allowable pressure is 8300 
kPa, and the minimum pressure required to keep dissolved gases 
in solution in the crude oil is 350 kPa. The crude oil has SG = 0.93, 
and its viscosity at the pumping temperature is µ = 0.017 N·s/m2. 
For these conditions, determine the maximum possible spacing 
between pumping stations.

 11.8 Blood is a very interesting fluid: a suspension of red and white 
blood cells and platelets in a liquid plasma. We would like to be 
as optimistic as Jean Poiseuille in modeling blood flow, but we 
know that these cells in the plasma can cause blood’s viscosity to 
be dependent on the shear rate—that is, blood’s composition can 
cause it to behave like a non-Newtonian fluid. Especially in regions 
of very low shear rate, blood’s red blood cells have been shown to 
aggregate and form clumps that cause blood to require a certain 
yield stress to be applied before it flows smoothly again. You are 
given the data in the following table for an “average” person. This 
person’s cardiac output is 5 L per minute; heart rate is 60 beats 
per minute; and at a hematocrit of 40%, blood density is 1.06 g/
cm3, and blood viscosity is 3.5 centiPoise (named for Poiseuille 
and	abbreviated	cP;	1	cP	=	1	mPa•s).

Internal 
Diameter 

(mm)
Wall Thickness 

(mm)
Percentage of 

Heart Q

Typical 
Pressures  
(mm Hg)

Ascending aorta 20 2 100% 100

Abdominal aorta 12 1.5 50% 90

Femoral artery 8 0.8 10% 80

Random arteriole 0.1 0.02 0.001% 60

  Note that the vessels downstream from the heart receive only a 
portion of its volumetric output due to branching of vessels. The 
percentages given here are ballpark estimates. Based on these 
parameters, calculate the following in each of the measured ves-
sels: (a) pressure drop; (b) mean velocity; (c) shear rate at vessel 
wall; (d) Reynolds number; and (e) percent cross-sectional area 
change due to pulse pressure, assuming small strain ε τθθ θθ= / E .

 11.9 Based on the values you calculated in Problem 11.8, answer 
and explain the following: (a) In which vessels should elastic-
ity of the vessel be considered? (b) In which vessels should the 
non-Newtonian behavior of blood be considered? (c) Where in the 
body might turbulence develop? (d) Why does most of the pres-
sure drop in the arterial system occur in the arterioles?
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 11.10 Wind tunnel testing of the concrete reef balls used in artificial 
reefs is proposed. A typical reef ball (e.g., Chapter 1, Figure 1.2) 
has a diameter of 6 ft and is immersed in sea water. A scale 
model is prepared with diameter of 6 in. (a) At what range of 
velocities should wind tunnel tests be performed to ensure that 
the experimental data are relevant to the real reef balls? (b) What 
effect do you believe that the holes in the reef ball will have on 
the flow, if any?

Notes

 1. The Reynolds number is named for Osborne Reynolds, the son of an Anglican 
priest who became a noted fluid mechanician (becoming especially active in 
fluids after 1873). He was particularly influential in the study of pipe flow and 
the transition from laminar to turbulent flow. He also established the course of 
study in applied mathematics at the University of Manchester, though sadly, as 
one biographer reports, “Despite his intense interest in education, he was not a 
great lecturer. His lectures were difficult to follow, and he frequently wandered 
among topics with little or no connection” (Anderson 1997).

 2. Fluids tend to flow from high pressure toward lower pressure regions, just as 
mass tends to flow from regions of high to low concentrations.

 3. Poiseuille (1799–1869) made the same assumptions we’ve made: He modeled 
blood flow as a steady, incompressible flow of a non-Newtonian fluid in rigid 
circular pipes. Although these are spectacularly inappropriate assumptions for 
blood flow as it is now understood, Poiseuille flow theory has proven robust 
in its ability to relate flow rate and fluid mechanical forces for many internal 
flows. It is even a reasonable ballpark predictor of blood flow, as we see in Prob-
lem 11.8.
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12
Solid Dynamics: Governing Equations

We have thoroughly considered the equilibrium of solids. By examining the 
isolated effects of various types of loading and then the methods of combin-
ing these effects in more realistic situations, we have come to understand 
many problems for which ΣF = 0. However, although external forces often 
cause a solid to be in equilibrium, it is also possible for them to result in the 
solid’s motion. Because both solids and fluids are continua and because they 
are governed by mass conservation and Newton’s second law, we expect 
their equations of motion to markedly resemble each other. In this chap-
ter we briefly consider the governing equations for the motion of solids and 
some examples of their solution.

The key concepts of any continuum mechanics problem are continuity, 
compatibility, and the relevant constitutive law. In the problems we have 
considered thus far, we have rarely had to check these conditions (and the 
constitutive law, Hooke’s or Newton’s, has been a straightforward one); we 
have been able to implicitly assume they were met. However, as our study of 
mechanics continues, we encounter more general, less constrained problems 
of continuum mechanics for which we must apply these three concepts. In 
this section, we discuss the “next level” of continuum mechanics in the con-
text of these three C’s. We begin by briefly defining each of them. As you may 
recall from Chapter 2 and Chapter 3:

Continuity: Density must be definable, continuous function.•	
Compatibility: Displacements (•	 u, v, w) must be continuous.
Constitutive law: Deformation (strain) must be related to loading •	
(stress).

12.1 Continuity, or Mass Conservation

If a material is a continuum we are able to ignore the fundamentally discrete 
composition of matter and all those atoms dancing about, and to assume that 
the substance of material bodies is uniformly distributed. This continuum 
model allows us to divide matter into smaller and smaller portions, each 
of which has the physical properties of the original body. So, we can assign 
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quantities such as density and velocity to each point of the space occupied 
by the body.1

Recall that for a continuum we are able to mathematically define a mass 
density as

 
ρ=

→
lim
∆

∆
∆V

m
V0  (12.1)

and that this density, like other properties of the continuum, is a continuous 
function of position and time: ρ = ρ(x, t). We can thus describe the mass of an 
entire body (of total volume V) by

 

m=∫ ρ( )
V

x,t dV . (12.2)

Since mass is neither created nor destroyed, we require that the mass of the 
body remains invariant under motion. Its total derivative must be zero,

 

m= =
∂
∂
+

∂
∂
+




∫d

dt
x ,t d

t
v

x
dv
dxi

i

i

i
ρ ρ ρ ρ( )

V

V





=∫
V

Vd 0,  (12.3)

where we have, in a sense, used the chain rule to construct a total or material 
derivative of the fluid mass ρ(x, t)V. Since equation (12.3) must hold for any dV 
of the body, we must have

 

∂
∂
+

∂
∂
+ =

ρ ρ ρ
t

v
x

dv
dxi

i

i

i
0, (12.4)

or

 

∂
∂
+
∂
∂
( )=ρ ρ

t x
v

i
i 0,  (12.5)

where the repeated i index, we remember from Chapter 1, section 1.5, repre-
sents a summation over i. In vector notation we could write the conservation 
of mass as

 

∂
∂
+∇( )=ρ

ρ
t

v 0 . (12.6)
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We note that if the density is constant in x and t, the material is said to be 
incompressible, and in this case our continuity equation requires that

 

∂
∂

= ∇⋅ =
x

v v
i

i 0 0or  (12.7)

for incompressible continua. Each vi here is the ith component of the vector 
velocity field, v. This is exactly how we have written mass conservation for a 
fluid in Chapter 10, Section 10.4.1.

12.2 F = ma, or Momentum Conservation

Newton’s second law of motion states that F = ma, the resultant force on an 
object balances this object’s inertia—its mass times its acceleration. This can 
also be stated as “the resultant force on a body equals the time rate of change 
of the body’s linear momentum.” We already understand how to state the 
resultant force on a body: So far we have been writing ΣF = 0 for a variety of 
systems. The stress tensor for a given body reflects its response to all external 
loads, so by writing the stress tensor we have effectively written the resul-
tant surface force on the body.

We may also consider the effects of a body force such as gravity or the force 
due to an electromagnetic field. A sample tuberous body with resultant sur-
face and body forces is shown in Figure 12.1.

Hence, we understand that the ith component of the total resultant force F 
on a body is written as

 

F b d n dSi i ij

S

j= +∫ ∫ρ τ
V

V .  (12.8)

All that remains is then to write the change in momentum for the same body, 
or ma. Again, we write only the ith component of the body’s acceleration,

 

ρ dv
dt

di

V

V∫ ,  (12.9)

where we have taken the total derivative of the momentum per volume, (ρv), and 
then have used the conservation of mass to eliminate the derivatives of density. 
F = ma is simply then the balance of the resultant force and the inertia:
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ρ τ ρb dV n dS dv
dt

di ij

S

j
i

V V

V∫ ∫ ∫+ = . (12.10)

It only remains for us to convert the surface area integral to a volume inte-
gral, which we may do by Gauss’s Theorem, and to obtain

 

ρ τ ρb dV
x

dV dv
dt

di
j

ij
i

V V V

V∫ ∫ ∫+
∂
∂

= . (12.11)

As this must be true for any volume, we truly have

 
ρ τ ρb

x
dv
dti

j
ij

i+
∂
∂

= , (12.12)

or, in vector form,

 
∇ + =τ ρ ρb dv

dt
. (12.13)

For solids in equilibrium, as we have already seen, the resultant forces sum 
to zero. The x component of the governing equation for such a solid would be

dV

Body force per dV: 

ρbi

Surface force per dS:
τij

dS

Figure 12.1
Forces on a body.
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∂
∂

∂

∂
∂
∂+ + + =τ τ τ ρxx xy xz

x y z xb 0 . (12.14)

Equation (12.13), as expected, looks strikingly like the Navier-Stokes equa-
tion developed for fluids in Chapter 10, Section 10.4.2. Here, the viscous force 
and the pressure force (previously known as Fvisc, or µ∇2V , and −∇p dV) 
have been combined, as the pressure (i.e., normal stress) and viscous stresses 
are combined into one stress tensor, τ . But the form of F = ma looks awfully 
familiar.

12.3 Constitutive Laws: Elasticity

The behavior of the material in question provides us with our third govern-
ing equation. We can then analyze solids in motion by solving these three 
equations. If a material behaves elastically, this means two things to us: (1) 
The stress is a unique function of the strain; and (2) the material is able to 
fully recover to its natural shape after the removal of applied loads. Although 
elastic behavior can be either linear or nonlinear, in this textbook we’re con-
cerned primarily with linearly elastic materials to which Hooke’s law applies. 
The constitutive law for linearly elastic behavior is simply

 
τ ε τ εij ijkm kmC C= =, ,or  (12.15)

where, as we discussed in Chapter 3, Section 3.5, C is a fourth-order tensor 
whose eighty-one components reduce to thirty-six unique components due 
to the symmetry of both the stress and strain tensors.

For isotropic materials, we are able to find the exact form of C. If the mate-
rial is isotropic, then its elastic tensor C must be a fourth-order, isotropic 
tensor. An isotropic tensor is one whose components are unchanged by any 
orthogonal transformation from one set of Cartesian axes to another. This 
requirement guides the form that C must take

 Cijkm = λδijδkm + μ(δikδjm + δimδjk) + β(δikδjm – δimδjk), (12.16)

where λ, μ, and β are scalars. We remind ourselves that the Kronecker deltas 
are simple second-order identity tensors [δij = 1 if i = j, but δij = 0 if i ≠ j]. Due 
to the symmetry of both the stress and strain tensors, we must have Cijkm = 
Cjikm = Cijmk. This requires that β = –β and thus that β = 0. Hooke’s law (here’s 
the important part) then takes the form

 τij = [λδijδkm + μ(δikδjm + δimδjk)]εkm, (12.17)
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or, using the Kronecker delta’s substitution property,

 τij = λδijεkk + 2μεij. (12.18)

This is Hooke’s law for isotropic elastic behavior. If we rearrange this to 
make it an expression for strain εij, we can obtain the following relations for 
Young’s modulus and Poisson’s ratio (the shear modulus G = μ) and, finally, 
the generalized form of Hooke’s law, for linearly elastic materials:

 

E= +
+

=
+

µ λ µ
λ µ

ν λ
λ µ

( )

( )
.

3 2

2

 (12.19)

 
ε ν τ νδ τij ij ij kkE
= + −





1 1( ) . (12.20)

As long as the material in question does not split apart or overlap itself, its 
displacements must be continuous. This requirement is known as compat-
ibility, and it is guaranteed by a displacement field that is single valued and 
continuous, with continuous derivatives. The strain tensor is composed of 
the derivatives of the displacement field, as we have seen. So in two dimen-
sions, we may write the compatibility condition in the form

 

∂
∂

+
∂

∂
=
∂

∂ ∂

2

2

2

2

2ε ε γx y xy

y x x y
. (12.21)

Alas, in three dimensions we have six strain components to keep track of, 
and there are five additional compatibility conditions.

Using these governing equations, it is possible to fully describe the equi-
librium or motion of a continuum. Often, a constitutive law will be experi-
mentally obtained for a given material, and it is the job of the continuum 
mechanician to express the governing equations appropriately and to solve 
them. In most cases it is not possible to analytically solve these equations; 
generally, it is necessary to solve them numerically.

By integrating the differential equations of equilibrium, we obtain results 
that agree with our simpler calculations, since our new partial differential 
equations are simply saying what we’ve said all semester: For a body in equi-
librium, the sum of the forces acting on the body is zero. This is the same 
statement whether we say it by means of a free-body diagram and average 
stresses or whether we solve complex partial differential equations.
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Note

 1. This is the starting-off point for George Mase’s Continuum Mechanics for 
Engineers (Mase and Mase 1999), an excellent transitional text to move from 
the mechanics analyses of this textbook to the level of graduate continuum 
mechanics.
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Appendix A
Second Moments of Area

The second moment of area, I, sometimes called the area moment of inertia, 
is a property of a shape that describes its resistance to deformation by bend-
ing. The polar second moment of area, J, often called the polar moment of 
inertia, describes the resistance of a shape to deformation by torsion. Since 
the coordinate axes used to obtain the I’s and J’s listed here run through the 
centroid of each shape, all moments of area cited here may be thought of as 
having an additional subscript c denoting that they are taken relative to the 
centroid.

Remember the following:
 Iy = ∫ z2dA.

 Iz = ∫ y2dA.

 J = ∫ r2dA.

b

h

2
h

b/2 
Area (A) Second Moment

of Area (I ) 
Polar Second

Moment of Area
(J )  

bh Ix = bh3/12

Iy = hb3/12
Ixy = 0

(bh3/12) (h2+b2)
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Area (A) Second Moment
of Area (I ) 

Polar Second
Moment of Area

(J ) 

bh/2 Ix= bh3/36

Ixy = bh2(b–2d)/72b

h

h3
1

d

(b+d)3
1

r

d

Area (A) Second Moment
of Area (I )

Polar Second
Moment of Area

(J ) 

πr2 Ix = Iy = πr4/4
= πd4/64

Ixy = 0
J = πr4/2
= πd4/32

Area (A) Moment of Inertia
(I) 

Polar
Second

Moment of
Area (J ) 

πr2/2 Ix = 0.1098r4

Iy = πr4/8
Ixy = 0

JCG = Ix + Iy

Jo = πr4/4 

r
3π
4r

d

2
d Area (A) Second Moment of

Area (I ) 

Polar
Second

Moment of
Area (J )

π(d2–d1
2)/4 Ix = Iy = π(d4–d1

4)/64
Ixy = 0

π(d4–d1
4)/32
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 b 
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Area (A) Second Moment of
Area (I ) 

Polar
Second
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Area ( J )

bd – b1d1 Ix = (bd3–b1d1
3)/12
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3)/12
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Appendix B
 A Quick Look at the Del Operator

We use the del operator to take the gradient of a scalar function, say f(x, y, z):

 
∇ =

∂
∂
+
∂
∂
+

∂
∂

f i f
x

j f
y

k f
z

ˆ ˆ ˆ .

If we “factor out” the function f, the gradient of f looks like
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∂
∂
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∂
∂
+
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k
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The term in parentheses is called del and is written as

 
∇=

∂
∂
+

∂
∂
+

∂
∂

ˆ ˆ ˆ .i
x

j
y

k
z

By itself,∇ has no meaning. It is meaningful only when it acts on a scalar 
function. The term∇ operates on scalar functions by taking their derivatives 
and combining them into the gradient. We say that∇ is a vector operator act-
ing on scalar functions, and we call it the del operator.

Since∇ resembles a vector, we consider all the ways that we can act on vec-
tors and see how the del operator acts in each case.

Vectors Del

Operation Result Operation Result

Multiply by a scalar a Aa Operate on a scalar f ∇f

Dot product with 
another vector B 

A·B
Dot product with 

vector F(x, y, z) ∇⋅F

Cross product with 
another vector B 

A×B
Cross product with 

vector F(x, y, z) ∇×F
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Divergence

Let’s first compute the form of the divergence in regular Cartesian coordi-
nates. If we let a random vector

 F F i F j F kx y z= + +ˆ ˆ ˆ,

then we define

 
divF F i

x
j

y
k

z
F ix=∇⋅ =

∂
∂
+

∂
∂
+

∂
∂










⋅ˆ ˆ ˆ ˆ++ +( )= ∂∂ +

∂

∂
+
∂
∂

F j F k F
x

F
y

F
zy z

x y zˆ ˆ .

Like any dot product, the divergence is a scalar quantity. Also note that, in 
general, div F is a function and changes in value from point to point.

Physical interpretation of the Divergence

The divergence quantifies how much a vector field spreads out, or diverges, 
from a given point P. For example, the figure on the left (Figure B.1) has 
positive divergence at P, since the vectors of the vector field are all spread-
ing as they move away from P. The figure in the center has zero divergence 
everywhere since the vectors are not spreading out at all. This is also easy 
to compute, since the vector field is constant everywhere and the derivative 
of a constant is zero. The field on the right has negative divergence since the 
vectors are coming closer together instead of spreading out.

Figure b.1
Vector Fields

In the context of continuum mechanics, the divergence has a particularly 
interesting meaning. For solids, if the vector field of interest is the displace-
ment vector U, the divergence of this vector tells us about the overall change 
in volume of the solid. See equation (3.5) and homework problem (3.2), both 
in Chapter 3, in this textbook. When we have ∇⋅ =U 0  we know that the 
volume of a given solid body remains constant, and we can call the solid 
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incompressible. For fluids, we use the velocity vector V to talk about the defor-
mation kinematics. The divergence of the velocity vector tells us about the 
volumetric strain rate, and when we have ∇⋅ =V 0 we say that the flow is 
incompressible. This generally allows us to neglect changes in fluid density 
and say that density remains constant (Chapter 8, equation 8.9).

example

Calculate the divergence of

 F xi yj zk= + +ˆ ˆ ˆ .

 
∇⋅ =

∂
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+
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+
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= + + =F
x

x
y

y
z

z( ) ( ) ( ) .1 1 1 3

This is the vector field shown on the left om Figure B.1. Its divergence is 
constant everywhere.

Curl

We can also compute the curl in Cartesian coordinates. Again, let

 F F i F j F kx y z= + +ˆ ˆ ˆ,

and calculate

curl F F

i j k

x y z
F F F

i F
y

F

x y z
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y x

Not surprisingly, the curl is a vector quantity.

Physical interpretation of the Curl

The curl of a vector field measures the tendency of the vector field to swirl. 
Consider the illustrations in Figure B.2. The field on the left, called F, has curl 
with positive k̂ component. To see this, use the right hand rule. Place your 
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right hand at P. Point your fingers toward the tail of one of the vectors of F. 
Now curl your fingers around in the direction of the tip of the vector. Stick 
your thumb out. Since it points toward the +z axis (out of the page), the curl 
has a positive k̂ component.

The second vector field G has no visible swirling tendency at all so we 
would expect ∇× =G 0 . The third vector field doesn’t look like it swirls 
either, so it also has zero curl.

Figure b.2 
Vector Fields

examples

Example 1

Compute the curl of F yi xj=− +ˆ ˆ .

 

∇× =
∂
∂

∂
∂

∂
∂

−

=F

i j k

x y z
y x

k

ˆ ˆ ˆ

ˆ.

0

2

This is the vector field on the left in Figure B.2. As you can see, the analytical 

approach demonstrates that the curl is in the positive k̂ direction, as expected.

Example 2

Compute the curl of H xi yj zk= + +ˆ ˆ ˆ , or H(r) = r.

 

∇× =
∂
∂

∂
∂

∂
∂
=H

i j k

x y z
x y z

ˆ ˆ ˆ

.0
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This, as you’ve probably guessed, is the vector field on the far right in 
Figure B.2.

Laplacian

The divergence of the gradient appears so often that it has been given a spe-

cial name: the Laplacian. It is written as ∇2 or Δ and, in Cartesian compo-
nents, has the form

 
∇ =

∂
∂

+
∂
∂

+
∂
∂

2
2

2

2

2

2

2
f f

x
f

y
f

z
.

It operates on scalar functions and produces a scalar result. When we take 
the Laplacian of a vector field,

 F F i F j F kx y z= + +ˆ ˆ ˆ,

we get

 ∇ = ∇ + ∇ + ∇2 2 2 2F F i F j F kx y z( )ˆ ( )ˆ ( )ˆ .
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Appendix C 
Property Tables
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Table C1
Typical Properties of Engineering Materials (SI)

Material
Density 
(kg/m3)

Yield Strength Moduli
α  

(10-6/˚C)
Poisson’s 

Ratio ν
Tension 
(MPa)

Shear 
(MPa)

E 
(GPa)

G 
(GPa)

Steel
Structural 7860 250 145 200 77.2 11.7
Stainless 
(cold-rolled) 

7920 520 190 75 17.3

Stainless 
(annealed)

7920 260 150 190 75 17.3

Gray cast iron 7200 69 28 12.1 0.2–0.3
Malleable cast iron 7300 230 165 65 12.1 0.25
Aluminum
1100-H14 2710 95 55 70 26 23.6 0.33
6061-T6 2710 240 140 70 26 23.6 0.33
7075-T6 2800 500 72 28 23.6 0.33
Copper 
Annealed 8910 70 120 44 16.9 0.34
Yellow-brass, 
annealed  (65% 
Cu, 35% Zn)

8470 100 60 105 39 20.9 0.33

Red-brass, 
annealed  (85% 
Cu, 15% Zn)

8740 70 120 44 18.7 0.33

Tin bronze 8800 145 95 18.0 0.35
Magnesium alloy 
AZ31

1770 200 45 16 25.2 0.34

Titanium
 (6% Al, 4% V)

4730 830 115 9.5 0.33

Timber
Douglas fir 470 56 13 0.7 Varies
White oak 690 58 12
Redwood 415 9
Concrete (high 
strength)

2320 30 9.9 0.1–0.2

Plastics
Nylon
(molding 
compound)

1140 45 2.8 144 0.4

Polycarbonate 1200 62 2.4 122
Polyester, PBT 1340 55 2.4 135
Polystyrene 1030 55 3.1 135
Vinyl, rigid PVC 1440 45 3.1 135
Rubber 910 162 0.44–0.5
Granite (average) 2770 70 4 7.2
Sandstone 
(average)

2300 40 2 9.0

Glass, 98% silica 2190 54 4.1 80 0.2–0.27
Kevlar 130
Human tendon 2
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Table C2

Typical Properties of Engineering Materials (U.S.)

Material

Specific 
Weight 
(lbf/in3)

Yield Strength Moduli

α 
(10-6/˚F)

Poisson’s 
Ratio  ν

Tension 
(ksi)

Shear 
(ksi)

E 
(106 psi)

G
 (106 psi)

Steel

Structural 0.284 36 21 29 11.2 6.5

Stainless 
(cold-rolled) 

0.286 75 28 10.8 6.5

Stainless 
(annealed)

0.286 38 22 28 10.8 6.5

Gray cast iron 0.260 10 4.1 6.7 0.2–0.3

Malleable cast 
iron

0.264 33 24 9.3 6.7 0.25

Aluminum

1100-H14 0.098 14 8 10.1 3.7 13.1 0.33

6061-T6 0.098 35 20 10.1 3.7 13.1 0.33

7075-T6 0.101 73 10.4 4 13.1 0.33

Copper 

Annealed 0.322 10 17 6.4 9.4 0.34

Yellow-brass, 
annealed 
(65% Cu, 
35% Zn)

0.306 15 9 15 5.6 11.6 0.33

Red-brass, 
annealed 
(85% Cu, 
15% Zn)

0.316 63 17 6.4 10.4 0.33

Tin bronze 0.318 21 14 10 0.35

Magnesium 
alloy AZ31

0.064 29 6.5 2.4 14 0.34

Titanium (6% 
Al, 4% V)

0.161 120 16.5 5.3 0.33

Timber

Douglas fir 0.017 8.1 1.9 Varies

White oak 0.025 8.4 1.8

Redwood 0.015 1.3

Concrete 
(high 
strength)

0.084 4.5 5.5 0.1–0.2

Plastics

Nylon

(molding 
compound)

0.0412 6.5 0.4 80 0.4

Polycarbonate 0.0433 9 0.35 68
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Table C2

Typical Properties of Engineering Materials (U.S.)

Material

Specific 
Weight 
(lbf/in3)

Yield Strength Moduli

α 
(10-6/˚F)

Poisson’s 
Ratio  ν

Tension 
(ksi)

Shear 
(ksi)

E 
(106 psi)

G
 (106 psi)

Polyester, PBT 0.0484 8 0.35 75

Polystyrene 0.0374 8 0.45 70

Vinyl, rigid 
PVC

0.0484 6.5 0.45 75

Rubber 0.033 90 0.44–0.5

Granite 
(average)

0.100 10 4 4

Sandstone 
(average)

0.083 6 2 5

Glass, 98% 
silica

0.079 9.6 4.1 44 0.2–0.27

Kevlar 13.8

Human 
tendon

0.27

Note: Exact values of these properties vary widely with changes in composition, heat treat-
ment, and mechanical working. More precise data are available from manufacturers.
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Table C3

Typical Properties of Common Fluids (SI)

Material
Temperature 

T(°C)
Density ρ 

(kg/m3)
Viscosity μ 

(Ns/m2)
Surface Tension 

σ (N/m) 

Water 0 1000 1.75 × 10-3 0.0757

10 1000 1.30 × 10-3 0.0742

20 998 1.00 × 10-3 0.0727

30 996 7.97 × 10-4 0.0712

40 992 6.51 × 10-4 0.0696

50 988 5.44 × 10-4 0.0679

60 983 4.63 × 10-4 0.0662

70 978 4.00 × 10-4 0.0645

80 972 3.51 × 10-4 0.0627

90 965 3.11 × 10-4 0.0608

100 958 2.79 × 10-4 0.0589

Air 0 1.29 1.72 × 10-5

10 1.25 1.77 × 10-5

20 1.21 1.81 × 10-5

30 1.17 1.86 × 10-5

40 1.13 1.91 × 10-5

50 1.09 1.95 × 10-5

60 1.06 2.00 × 10-5

70 1.03 2.04 × 10-5

80 1.00 2.09 × 10-5

90 0.973 2.13 × 10-5

100 0.947 2.17 × 10-5
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Table C4

Typical Properties of Common Fluids (U.S.)

Material
Temperature 

T(°F)
Density ρ 
(slug/ft3)

Viscosity μ 
(lbf·s/ft2)

Surface Tension 
σ (lbf/ft) 

Water 32 1.94 3.66 × 10-5 0.00519

40 1.94 3.19 × 10-5 0.00514

50 1.94 2.72 × 10-5 0.00509

60 1.94 2.34 × 10-5 0.00503

70 1.93 2.04 × 10-5 0.00498

80 1.93 1.79 × 10-5 0.00492

90 1.93 1.59 × 10-5 0.00486

100 1.93 1.42 × 10-5 0.00480

212 1.86 5.83 × 10-6 0.00404

Air 40 0.00247 3.63 × 10-7

50 0.00242 3.69 × 10-7

60 0.00237 3.75 × 10-7

70 0.00233 3.80 × 10-7

80 0.00229 3.86 × 10-7

90 0.00225 3.91 × 10-7

100 0.00221 3.97 × 10-7

200 0.00187 4.48 × 10-7

Note: Properties of air are obtained at atmospheric pressure.
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Appendix D 
All the Equations

Solids Fluids

Kinematics
What’s the vector (u, v, w) 
everything depends on?

displacement velocity (i.e.,displacement 
rate)

Volume change/volume 
change rate ∇⋅ =

∂

∂
+
∂

∂
+
∂

∂
U

u
x

v
y

w
z

 

∇⋅ =
∂

∂
+
∂

∂
+
∂

∂
V

u
x

v
y

w
z

Strain/strain rate

ε ε= =
∂

∂
+
∂

∂









ij
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∂

∂




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


ij
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j

j

i

u
x

u

x
1
2

1D Constitutive Law
Hookean/Newtonian

σ ε

τ γ

=

=

E

G
τ µγ=

3D ideal constitutive law τ λε δ εααij ij ijG= + 2

 λ = fcn(E, ν)
τ δ µεij ij ijp=− + 2

General constitutive law τ εij ijmn mnK= τ εij ijmn mnK=

Conservation of mass

ρ = constant
∂

∂
+∇⋅ =
ρ

ρ
t

V( ) 0

Conservation of linear 
momentum

(F = ma)
B a+∇⋅ =τ ρ B a+∇⋅ =τ ρ

B represents the total body force on the element in question, most often represented by ρg. .

Conservation of angular 
momentum for an 
infinitesimal element

τ τij ji= τ τij ji=
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INDEX

A
Acceleration
 infinitesimally small flows, 388f, 

388–391
 momentum conservation equations, 

382
Achilles tendon, 69, 70
Aerosol spray cans, 188
Air flow example, 398f, 399f, 399–402
Airfoil, forces, 417, 418f
Airplane flight, 418f, 418–419
Airy stress function, 112
Aluminum
 nonferrous metals, 103
 typical properties, 450t, 451t
Aluminum alloy
 shaft example, 166–167
 ultimate and yield properties, 100
Aluminum and steel bar, example, 

60–62
Aluminum column, buckling example, 

298f, 298–300
Aluminum wire length example, 

164–165
American Institute of Steel Construction 

(AISC), Hartford Civic Arena, 
306

American Society of Mechanical 
Engineers (ASME), IBPVC, 188

Angle of twist
 examples, 164–165
 thin-walled tubes, 138
 torsion of inelastic circular members, 

135
 torsional shear shift, 125–126
 two shafts example, 166–169, 168f, 

169f
Angular motion, 317-319, 318f
Angular velocity, 319–320
Anisotropic elasticity, 96
Applied loads, 113
Arc length, 126
Archimedes, buoyancy, 355–356
Archimedes’ Principle, 356
Area, 9

Area moment of inertia, 439–441
Areas and centroids table, 263t
Average circumferential stress, 142
Axial force, 21
 example, 67–69
Axial tension, 203
Axially loaded bars
 deformation, 40–42
 equilibrium, 42–43
 Mohr’s circle, 153f
 stress, 37–40, 39f
Axisymmetry, 135
 example, 170

B
Bar(s)
 aluminum and steel example, 60–62
 axially loaded, 37, 38f, 39f
 axially loaded deformed, 40–42, 41f
 axially loaded equilibrium, 43–44
 displacement method, 47–48, 48f
 examples, 55–69, 55f, 56f, 58f, 59f, 61f-, 

62f, 63f, 64f, 65f, 66f, 68f
 fixed ends/varying cross section 

problems, 73
 force/flexibility method, 44–46, 45f
 polystyrene example, 62–64
 problems, 69–76, 69f, 70f, 70, 71f, 71, 

72, 72f, 73f, 73, 74f, 75f, 76f
 Saint-Venant’s principle, 49–51, 50f, 

51f
 steel example, 59–60
 thermal strain, 48–49
Beam(s)
 axial force in, 203
 bending moment, 205, 205f
 buckling of, 289
 case study, 241–247, 242f, 243f, 245f, 

246f
 centroid example, 229–231
 definition, 201
 deflection examples, 273–274, 

274–278, 278–281
 elastic supports, 264–266, 266f
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 examples, 221f, 221–238, 222f, 223f, 
224f, 225f, 226f, 227f, 228, 229f, 
230f, 231f, 232f, 233f, 234f, 235f, 
236f, 237f

 internal forces and bending moment 
example, 221–222

 loading conditions, 203f
 loading condition and properties 

example, 281–285
 modes, 37, 38f
 moment diagrams, 207
 neutral axis, 212
 normal stresses, 210f, 210–214, 211f
 plot shear and moment diagram 

example, 223–229
 problems, 239f, 239–241, 240f, 241f, 

247–248, 285-288
 shear and moment integration, 

207–209, 208f
 shear diagrams, 206
 shear in, 203–204
 shear stress, 214–221, 215f, 216f, 219f, 

220f, 221f
 shear stresses examples, 234–236, 

236–238
 slender, 215
 strain energy, 266–269
 supports, 201–202, 202f
Beam deflection
 bending moment, 253
 bent beams, 191, 266–269
 boundary conditions, 255f, 255–256, 

256f
 cantilever free end example, 273–274
 cylinders, 191
 description of, 201
 elastic supports, 264–266, 265f
 equation integration, 256–259, 258t, 

259
 equation of elastic curve example, 

273
 examples, 273f, 273–285, 274f, 275f, 

276f, 278f, 279f, 281f, 284f
 governing equation, 251–254, 251f, 

254f
 Maxwell-Betti reciprocal theorem, 

269f, 269–272
 minimization, 251, 251f
 moment area method, 260–264, 262, 

263, 264t

 neutral axes, 258t
 problems, 285f, 285–288, 286f, 287f, 

288f
 simple beam example, 278–281
 singularity functions, 259, 260f, 261f
 statically indeterminate example, 

274–278
 superposition, 257, 259f
 under-loading, 251
 uniform M/EI example, 281–285
 variously loaded, 258t
Bending, eccentric load, 294–295
Bending moment
 and beam deflection, 253
 beams, 205
 buckling, 290, 293, 294
 diagrams, 207
 eccentric load, 295, 295f
 examples, 221–222, 223–228
 integration methods, 207–209
 problems, 239–241
Bending stresses, 194
Bent beams, 266-269
Benzene/air pressure differential, 357f, 

357–358
Bernoulli, Daniel, 392
Bernoulli, Jacob, 249n.4
Bernoulli equation
 airplane flight, 417
 fluid dynamics, 391–392, 394f, 403-

406
Bingham, Eugene, 339n.2
Bingham plastics, 313
Biomaterial case study, 330–338, 331t, 

332t, 333f, 334t, 335f, 336f, 337f, 
338f

Biomaterials
 elasticity modulus, 331t
 engineering material, 104, 121n.3
 nonlinearity of, 332–333, 333f
 rigidity modulus, 332t
 viscoelasticity, 336
Blood vessels, 335, 413
Body forces
 applied loads, 113
 fluids, 311
 solid dynamics, 429, 430f
 types of forces, 9
Bolt holes, Hartford Civic Arena case 

study, 306
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Bonded-wire strain gauge, 25f
Bone
 long axis, 35
 problem, 69
 stress example, 55–56
Borelli, Giovanni Alfonso, 241, 242f
Boundaries, as streamlines, 379
Boundary conditions
 buckling, 291–292, 293
 deflection of beams, 255–256
 eccentric load, 295–296
Boundary layers, 413
Bourdon tubes, 347, 347f
Brittle materials
 failure, 145, 146f
 failure prediction criteria, 157–160
 stress-strain curve, 35, 35f, 98, 99
Brittleness definition, 102
Buckling
 description of, 289, 290f, 291f
 eccentric load, 294–297, 295f
 Euler’s formula, 289–294, 292f, 293f, 

294t
 examples, 298f, 298–302, 301f
 Hartford Civic Arena case study, 

304f, 304–307, 305f
 modes of, 292, 293f
 problems, 302–304, 303f, 304f
Bulk modulus, 97

C
C. W. Post College, 307n.3
Cantilever beam
 definition, 37
 free end example, 273–274
 problems, 287
Carbon fibers, 334
Carlson, Roy, 25, 82n.2
Case studies
 biomaterials, 330–338, 331t, 332t, 333f, 

334t, 335f, 336f, 337f, 338f
 Hartford Civic Arena, 304f, 304–307, 

305f, 307nn.2–3
 Kansas City Hyatt Regency 

walkways collapse, 76–81, 77f, 
81f

 pressure vessels safety case, 188
 St. Francis Dam, 373f, 373–375, 374f
Cast iron alloys, 100t, 103

Castigliano’s First Theorem, 288n.4
Castigliano’s Second Theorem, 272
Cauchy, Augustin L., 27, 200n.3
Cauchy equations, 113
Cauchy’s formula, 119
Centroid
 definition, 248n.1, 263t
 distributed load, 202
 example, 229–231
Champagne bottle example, 363–365, 

364f
Chemical bonds, 26
Chicken wire, 121n.1
Circular shaft
 failure, 145, 146f
 inner core, 128, 129f
 in torsion, 125, 125f
 problem, 184
 torsion formula, 128
Circular solids, 125
Circumferential stresses, 141, 190
Clamped support, 255
Clebsch, A., 259
Closed tank problem
 fluid statistics, 372
 wall thickness problem, 185
Collagen, 334, 334t
Collinear stresses, 145
Compatibility
 beam supports, 270
 consistency of deformations, 46, 54
 definition of, 427
 elasticity, 432
 and stress functions, 111–112
Compatibility condition, 112
Complementary energy density, 52
Composite materials, biomaterials, 334-

335, 334t
Compressed-air tank, 180f, 180–183
Compressible fluid variations, 346
Compression
 buckling, 289, 290f, 291f,
 eccentric load, 297
 fluids, 310
 and malleability, 102
 problem, 69, 72
 structural tubing example, 302
Compressive forces, 21, 21f, 27, 203
Compressive strain, 49
Concentrated loading, 203f
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Concentric loading, 294, 295, 297
Concrete, 100t, 104
Conservation of angular momentum, 

455t
Conservation of linear momentum, 455t
Conservation of mass, 455t
Consistent deformation, 270
Constant EI beam deflection problem, 

287
Constitutive equation, Newtonian 

fluids, 321–322
Constitutive law
 continuum mechanics, 308
 definition of, 427
 elasticity, 431-432
 equations, 455
 fluids, 309
 Newtonian fluids, 322
 solid dynamics equations, 431–432
 solids/liquids, 455t
 and stress and strains, 8, 54
Contact stress problem, 118
Continuity
 definition of, 427
 in fluid, 7–8
 neutral axis, 256, 288n.1
 solid dynamics equation, 427–429
Continuum
 definition, 6–9
 mathematics, 7, 7f
Continuum mechanics
 approach to, 1
 elements, 19
 external loading response, 19, 35–36
 higher dimensions, 104–109
 key concepts, 427
  one-dimensional loading, 53, 

54–55
Contraction, 48
Control volume
 fluid flows, 9
 fluid motion equations, 379
Copper
 nonferrous metal, 104
 typical properties, 450t, 451t
Copper alloy block, 114–115
Coordinate transformation, 154f
Couette flow examples, 324f, 324–325
Couple, 124
Crack

 material failure acceleration, 101
  propagation, 189, 190f,194
Creep
 time-dependent plastic deformation, 

34
 viscoelastic materials, 336, 337, 338f
Critical load structural tubing example, 

301
Critical stress
 aluminum column example, 299–300
 Euler’s formula, 293, 294
Cross product
 problem, 17
 vector, 10, 11
Cubic element, 146–149, 147f
Curl
 computation of, 445
 examples, 446–447
 physical interpretation of, 445–446
Curved surface, 352f, 352–355
Cut sections equilibrium, 203
Cylinder
 drag coefficient, 419, 419f
 wakes, 421f
Cylindrical orthotrophy, 335
Cylindrical pressure vessel
 manufacture, 196
 problems, 185, 187, 198-200
 seam welding, 196–197
 spherical caps, 188, 188f, 193–194
 tensile stresses example 171
 types of, 188f
Cylindrical thin-walled pressure 

vessels, 141, 142f, 189–191
 hoop stresses, 143

D
Dam example, 365–368, 366f, 367f, 368f
De Motu Animalum (Borelli), 241, 242f
Dead load, 79, 306, 307n.2
Deborah number, 339n.2
Deflection, eccentric load, 296–296
Deflection of beams. See Beam 

deflection
Deflections, 54. See also Beam deflections
 minimizing, 19
Deformation
 angular motion, 317-319, 318f
 compatibility/consistency, 46
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 continuous material, 9
 continuum, 6
 dimensions, 86
 fluid motion, 316
 fluid motion examples, 322f, 322–238, 

323f, 324f
 fluid motion problems, 328–330, 329f
 fluid viscosity, 311
 and fluids, 310
 and intensity, 20, 21
 linear motion, 316f, 316–317
 material differences, 32
 Newtonian fluids, 321–322
 and stiffness, 33
 and strain, 20
 and viscoelastic materials, 336
 and vorticity, 319–320
Del operator, 443
Density
 continuity equation, 428, 429
 fluids, 310
 solid, 7
de Saint-Venant, Adhémar Jean Claude 

Barré, 135, 391
Deviatoric stress tensor, 321–322
Dilatants, 313
Dilatation, 111
Discontinuities, 256, 256f
Displacement method
 statical indeterminacy, 44, 47–48, 48f
 steps, 48
Displacements example, 64–66
Distributed loading, 201, 203f
Divergence
 computation, 444, 445
 Lapacian, 447
 physical interpretation, 444–445
Dot product, scalar, 10–11
Double shear, 30, 31f
Drag
 airplane flight, 417, 418f
 force analysis, 418
Drag drop, 419
Ductile materials
 failure of, 145, 146f
 failure prediction criteria, 160–162
 stress-strain curve, 35, 35t, 98, 99
Ductility, 102
Dynamic viscosity, 313

E
Eccentric load, 294–297, 295f
Effective length
 aluminum column example, 294t, 299
 eccentric load, 297
 Euler’s formula, 293, 294t
 structural tubing example, 301
Effective stiffness, 38
Elastic beam bending, 210f
Elastic curve
 eccentric load, 295–296
 equation example, 273
 moment of area method, 260
 term, 288n.1
Elastic flexure formula, 213
Elastic supports, 264–266, 266f
Elasticity
 definition, 101–102
 and equilibrium, 105
 fluids, 310
 modulus of (E), 33, 33t, 86
 modulus of (E), ratio to G, 34
 solid dynamics equations, 431–432
 two-dimensional problems, 109–110
Elastin, 334, 335f
Elbow joint, 244
Elbow-biceps-forearm system
 levers and repairs, 241–242, 242f, 243f, 

243–245
 mass support, 55f
 problems, 247–248
Electronic scoreboard, 75, 76f
Elongation
 longitudinal deformation, 23
 solid bar example, 60–62
Engineering materials
 definition, 104
 property tables, 450t–452t
 ultimate and yield properties, 100t
Engineering mechanics, 1
Engineering shear strain, 89, 91
Engineering strain, 21
Entire body equilibrium, 202
Equation of elastic curve example, 273
Equations, summary of, 455t
Equilibrium
 axially loaded bars,42–43
 continuum mechanics, 308
 and displacements, 110-111
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 as elasticity problem, 105
 equations, 105–107, 106f
 FBDs, 9
 fluid statistics, 341
 and fluids, 309
 microscopic, 36–37
 and Newton’s second law, 5–6
 statical indeterminancy, 43
 strains and stresses, 54
 three dimensions, 105–107
 two-dimensional elasticity problems, 

109–114
 two-dimensional plane strain, 

108–109
 two-dimensional plane stress, 

107–108
Equivalent mechanical circuit, 265, 265f
Euler, Leonhard, 27, 83n.7, 292
Euler number, 412, 413
Euler’s equation, 390
 buckling, 289–294, 292f, 293f, 297
 structural tubing example, 300–301
Eulerian description, 316
Expansion, 48, 49
Extension, 32, 33
Extensional strain example, 56–57
External forces, 
 body responses, 53
 definition of, 6
 FBD, 25, 26f
 loading, 19, 35–36
External indeterminancy, 131–132
Extreme stresses problem, 183

F
Fabrication specification, 76
Failure of structures, 99
Failure prediction criteria
 brittle materials, 157–159
 ductile materials, 160–162
 Mohr’s criterion, 159f, 159–160, 160f
 need for, 157
 Tresca criterion, 161–162, 162f
Ferrous metals, 103
Finite element method (FEM)
 displacement method, 44
 structural computation, 271
First Moment area theorem, 262, 262f

First order analysis, elbow-biceps-
forearm, 55–56, 241

First-order tensor, vector as, 89
Fixed beam support, 201, 202f
Fixed support, beam boundary 

condition, 255, 255f
Flexibility coefficients method, 269–272
Flexure, 210
Flexure formula, 213
Flow
 fluid motion example, 327–328
 fluid viscosity, 311
 irrotational, 320
Flow field, dimensional equations, 

377–378
Fluid(s)
 angular deformation, 317–319, 318f
 continuity, 7
 constitutive equation, 321–322
 constitutive law, 322
 as continua, 309
 definition of, 8, 309
 examples, 322f, 322–328
 governing laws, 315
 linear deformation, 316f, 316–317
 measures of, 310
 motion and deformation, 316f, 

316–322, 317f, 318f
 motion deformation examples, 322f, 

322–328, 323f, 324f
 motion deformation problems, 

328–330, 329f
 pressure, 310f, 310-311
 surface tension, 315
 typical properties, 453t, 454t
 viscosity, 311f, 311–314
 vorticity, 319–320
Fluid dynamics
 Bernoulli equation, 391–392, 394f
 differential equations of motion, 379, 

386–391, 387f, 388f
 examples, 393–406, 394f, 395f, 396f, 

398f, 399f, 402f, 403f
 fluid motion, 377–379, 378f
 fluid motion equations, 379
 integral equations of motion, 

379–386, 380f, 381f, 382f, 383f
 problems, 406f, 406–408, 407f, 408f
Fluid dynamics applications
 airplane flight, 417–419, 418f, 419f
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 curveballs, 419f, 419-420, 421f, 422f, 
423f

 fluid flow classifications, 411–412, 
413t

 pipe flow, 413–417, 414f
 problems, 423–426, 424f
Fluid element definition, 379
Fluid mass derivation, 428
Fluid mechanics, 1, 309, 388, 411
Fluid pressure
 definition of, 341
 variations, 342–344
Fluid statistics
 buoyancy, 355–356, 356f
 examples, 357f, 357–368, 358f, 359f, 

360f, 361f, 362f, 363f
 fluids at rest, 345–347
 force due to pressure, 342–344, 343f
 hydrostatic forces, 348–355, 349f, 350f
 local pressure, 341–342
 problems, 368–373
Force/flexibility method, 44–46
Force method
 beams with elastic supports, 264
 decomposition of indeterminate bar, 

45f
 flexibility coefficients, 269, 288n.3
 problem solving steps, 46
 statical indeterminacy, 44–46
Forces. See also External forces, Internal 

forces, Reaction forces
 continua, 9
 internal/external action, 6
 momentum conservation equations, 

382f, 382–385, 383f
 Newton’s third law, 5
Forearm, as beam, 244
Free end, 255, 255f
Free-body diagrams (FBD)
 arm bones and biceps, 56f
 axially loaded bar stresses, 39f
 beam deflection, 273f, 273f
 beams, 201, 222, 223, 224, 228
 elbow-biceps-forearm system, 243f
 equilibrium, 9
 example, 16–17
 external forces, 25, 26f
 polystyrene bar, 63f
 spherical pressure vessel, 143f
 straight bar, 27f, 28f

 torques, 124f
 truss, 31f
Froude number, 412, 413t
Fung, Y. C., 330–331

G
Gage length, 20
Galileo Galilei, 4
Gas pressure vessel failure, 194
Gas storage tanks, 188, 188f
Gases, compressible fluids, 346
Gate example, 360–363, 361f, 363
Gate problem, 369, 369f
Gauge factor, 25
Gauge pressure, fluids, 310
Gauss’s theorem
 momentum conservation equations, 

390
 solid dynamics, 430
Gold alloy microbeam/silicon wafer 

deflection problem, 288
Gordon, J. E., 27, 83n.7
Gradient of velocity, 313, 313f
Greene, Charles, 260
Griffith, A. A., 100–101
Guided support, 255,255f
Gyration radius
 aluminum column example, 299
 Euler’s formula, 294

H
Hartford Civic Arena case study, 304f, 

304–307, 305f, 307nn.2–3
Havens Steel, 81
Heat transfer, 310
Helical welded seams, 196f
Hemispherical cap, 193–194
Heraclitus, 339n.2
Hindenburg blimp, 188
Hollow circular tube, 184
Home heating oil storage tanks, 188
Homogeneous boundary condition, 256
Homogeneous material, 35
Hooke, Robert, 32, 51, 82–83n.7, 312
Hooke’s law
 buckling example, 298
 circular shaft in torsion, 127
 generalized form, 96–97
 isotropic elastic behavior, 432
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 Newtonian fluids, 321–322
 solids/liquids, 455t
 statement of, 32–33
 structural tubing example, 301
Hoop strain, 191f, 193
Hoop stresses, 141, 142
Horizontal surfaces, 349
Horsepower, 131
Hurricane example, 322f, 322-323, 323f
Hydrostatic pressure distribution, 346
Hysteresis, 336f, 336–337

I
Inclined cross section stresses, 145
Inclined surfaced, 349–351
Incompressible continua, 429
Incompressible fluid
 definition of, 345
 two-dimensional flow equation, 378
 infinitesimally small flows, 388
Indeterminate bars
 decomposition by force method, 45f
 internal torques, 131–133
 statistical indeterminacy, 43–44
Indeterminate beams, 258f, 264, 265f
Index notation
 equilibrium equations, 106
 generalized Hook’s Law, 96
 vectors, 11–12
Inelastic circular members, 133–135
Inertia, 411–412
Inertia scales, 315
Influence coefficients, 271
In-plane directions, 107
International Boiler and Pressure Vessel 

Code (IBPVC), 188
Instability
 description of, 289, 290f, 291f
 eccentric load, 294–297, 295f
 Euler’s formula, 289–294, 292f, 293f, 

294t
 examples, 298f, 298–302, 301f
 Hartford Civic Arena case study, 

304f, 304–307, 305f
 internal responses, 289
 problems, 302–304, 303f, 304f
Integration methods
 beam deflection, 256–259
 beam examples, 226

 shear/bending moment, 207–209
Interfacial stress problem, 118
Intermolecular forces, 26
Internal forces
 beam example, 221–223
 calculation within beam, 207–209
 definition, 6, 54
 stress intensity, 92, 95
Internal loading, 9
Internal resisting moment, 205
Internal statical indeterminancy, 

132–133
Internal System of Units (SI), fluid 

viscosity, 312, 314
Internal work, 267
Intertrochanteric fracture repair, 245f, 

245–247, 246f
 problems, 248
Intertrochanteric nail plate, 245, 246f, 

246–247
Inviscid momentum equation, 390
Iron, 103
Irrotational flow, 320
Isosceles triangle panel example, 358f, 

358-360, 359f, 360f
Isotropic elastic solid, 96–97, 121n.3
Isotropic material, 35
Isotropic tensor definition of, 431

J
J-shaped stress-strain curve, 332–333, 

333f, 334, 335f
Jack D. Gillum and Associates, 81
Joints, design, 195

K
Kansas City Hyatt Regency walkways 

collapse case study, 76–81, 77f, 
81f

Kelvin, William Thompson, Lord, 24–25
 viscoelastic model, 338
Kelvin-Voigt material, viscoelastic 

model, 337f, 337
Kinematic boundary conditions, 256
 constants, 257
Kinematic viscosity, 313–314
Kinematics
 continuum mechanics, 309
 fluids, 310
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 solids/liquids, 455t
 statical indeterminancy, 43
 strain, 20–25, 54
Knuckleball, 420
Knudsen, Martin Hans Christian, 18n.1
Knudsen number, 7–8, 18n.1
 fluids, 308
Kronecker delta
 elasticity, 431
 Newtonian fluids, 321

L
Lagrangian method, 316
Lakes, Rod, 121n.1
Laminar flow
 pipes, 413–414, 414f, 417
 Reynolds number, 412
Laplacian divergence, 447
Lateral contraction/expansion, 86f
Lift
 airplane flight, 417, 418f
 force analysis, 418
Line elements, 90, 90f
Linear (Hookean) spring, 33f
Linear momentum, 382
Linear motion, 316f, 316–317
Linearly elastic, 431
Link, 201
Loading
 buckling instability, 289, 290f, 291f
 fluid responses, 309
Longitudinal relative displacement, 91
Longitudinal stress, 142, 142f

M
Macaulay, W. H., 259
Malleability, 102
Manometers, 346f, 346–347
Marshall, R., 80, 81
Mase, George, 433n.1
Mass, 9
Mass conservation
 continuity equation, 427–429
 principle of, 386
 Reynolds Transport theorem, 

385–386
 solid dynamics equations, 427–429
Mass conservation equations
 finite sized control volume, 381, 381f

 infinitesimally small flows, 386–388, 
387f

 one-dimensional flows, 380, 380f
Mass flow rates (mass fluxes), 380
Material behavior spectrum, 1
Material continuum, 7
Material problem, fluid statistics, 372
Materials
 elasticity and rigidity, 33t
 ferrous metals, 103
 homogeneous isotropic, 97
 nonferrous metals, 103–104
 Poisson’s ratio, 86t
 properties definitions, 101–102
 stress-strain curve, 35f
 typical properties, 450t–454
 yield point, 98
 yield properties, 100t
Matrix
 diagonalization, 94
 multiplication problem, 117
 strain tensor, 87f, 87–90, 88f
Maximum normal stress criterion, 

99–100
 brittle material failure, 158–159
Maximum shear stress, 150
 problems, 183, 187
 Tresca criterion, 161
Maximum stress
 determination of,  149–150
 plane stress example, 171–177
Maxwell, James Clerk, 337–338
Maxwell material, viscoelastic model, 

337f, 337
Maxwell-Betti reciprocal theorem, 269f, 

269–272
Mean free path, 309
Mechanical performance design, 247
Mechanics, 1
Membrane analogy, 136–137, 137f
Membrane stresses, 107, 189, 195
Mercury thermometer, 323
Metal balls stress example, 57–59
Method of sections, 26f, 26,
 beams, 203, 204f
 beams examples, 227
Method of singularity functions, 256
Microelectromechanical (MEMS) 

devices, 315
Middle ground, 8
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Mises safety factor, 162
Modal points, 47, 48f
Modulus of elasticity (E), 33, 33t, 86
Modulus of rigidity (G), 33t, 34, 86
Modulus of rupture in torsion, 134
Mohr, Otto, 151, 260, 288n.1
Mohr’s circle
 absolute maximum shear stress, 

157, 158f
 axial loading, 153f
 local pressure, 342, 343f
 plane stress, 151–153, 152f
 plane stress example, 171–177, 

175f, 176f
 pressure vessel joint design, 

195–197
 principal strains, 155–156
 shear stress example, 177, 178f
 shear stress plotting, 153, 172, 173
 torsional loading, 154f
Mohr’s criterion, 159, 159f, 160f
Molasses storage tank explosion, 188, 

189f, 194, 200n.4
Moment area method, beam 

deflection, 260–264
Moment. See also Bending moment
 curved surface, 354
 diagrams, 207
 normal beam stress, 210
 term, 124
 twisting, 123
Moment/elastic modulus
 areas and centroids, 264t
 diagram, 260, 262, 262f, 263f
Moment equilibrium
 equations, 106
 problem, 116
Moment of inertia, 213
 polar, 200n.1
Momentum, 9
Momentum conservation equations
 infinitesimally small flows, 388f, 

388-391
 one dimensional/finite sized, 

382f, 382–385, 383f
 Reynolds Transport Theorem, 

385–386

 solid dynamics equations, 
429–431, 430f

Motion
 equation for, 341–342, 342f
 fluid deformation, 316f, 316–317
Mud-slide-type platform, 1f
Mulholland, William, St. Francis 

Dam, 374f, 374-375

N
National Bureau of Standards (NBS), 

79, 81, 83n.9
National Institute of Science and 

Technology (NIST), 83n.9
Natural strain, 21
Navier, Claude, 33, 391
Navier equations, 111
Navier-Stokes equation
 fluid element classification, 

411–412
 momentum conservation, 391, 431
 pipe flows, 415–416
Necking, 98–99, 99f
Negative Poisson’s behavior, 121n.1
Neutral axis
 beam, 212
 example, 277–278
Newcomen pump, 131
Newton, Isaac, Sir, 4, 27, 82–83n.7, 312
Newton’s first law, 4
Newton’s first principles, 4–5
Newton’s laws
 continua application, 8–9
 solids/liquids, 455t
Newton’s second law, 4, 5, 315, 343
Newton’s third law, 4, 5
Newtonian fluids
 constitutive equation, 321–322
 viscosity, 312, 314f
No-slip condition, 313
Nodes, 47, 48f
Noncircular solids, torsion, 135–138
Nonferrous metals, 103–104
Nonmetals, 104
Normal strain
 description, 20–23
 example, 22f, 22–23
 extensional, 87
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 rectangular parallelapiped, 88
Normal strain rate, 317
Normal stress
 in beams, 210-214
 distribution, 50
 eccentric load, 297
 example, 55-56, 62-64, 66-69
 fluids, 310
 plane stress example, 171–177
 structural tubing example, 300–301, 

302
 types of, 27-28

O
Oil, 325–327, 326f
On the Movement of Animals (Borelli), 241
One-dimensional extensional strain, 87f
One-dimensional loading
 ideal, 86
 strain energy, 51–53
 strength of materials, 53–55
One-dimensional stretching, 22f
Open tank example, 395f, 395–396

P
Parabolic dam example, 365–368, 366f, 

367f, 368f
Parabolic velocity profile, 416
Parallelapiped
 change in shape, 88f
 strain components, 89
Pascal, Blaise, 342, 368
Pascal’s law, 342
Pathlines, 377
Peterson’s Stress Concentration Factors 

(Pilkey), 51
Petroski, Henry, 77
Pfrang, E. O., 80, 81
Physiological levers
 elbow-biceps-forearm system, 55f, 

241–245, 242f, 243f
 femur-trochanter, 245f, 245–247, 246f
Physiological systems, 69
Pilkey, Walter, 51
Pin, 201, 202f
Pinned support, 255
Pipe flows, 413–417, 414f
Pitot, Henri, 409n.4
Pitot tube, 392, 394f, 409n.4

Planar model equilibrium, 5
“Plane sections remain plane,” 249n.4
Plane strain
 elasticity theory, 114
 problems, 119–120
 transformation, 146–149, 147f, 148f, 

153–156, 154f
 two-dimensional state, 108
Plane stress
 elasticity theory, 114
 examples, 171–180, 172f, 173f, 174, 

175f, 176f, 177f, 178f, 179f, 180f
 extreme stress states example, 

171–177
 Mohr’s circle, 151–153, 152f
 principal and maximum, 149–151
 problems, 119, 120, 183f, 183–187, 184f, 

185f, 186f, 187f
 shear stress example, 177–180
 thin-walled structures, 107
 thin-walled structures example, 180f, 

180–183, 181f, 182f, 183f
 three dimensional state, 156–157
Plastic deformation, 34, 34f, 102
Plastics
 nonmetals, 104
 typical properties, 450t, 451t–452t
Plate with center hole, example, 67–69
Point loading, beams, 201
Poiseuille, Jean, blood flow, 425, 426n.3
Poiseuille’s law, pipe flows, 417
Poisson, S. D., 85
Poisson’s ratio
 axial/lateral strain, 85–86
 common materials, 86t
 solids, 322
Polar moment of inertia, 200n.1
Polymerization, 104
Polystyrene, 104
Polystyrene bar example, 62–64
Polyvinyl chloride (PVC), 104
Positive bending moment, 254
Positive curvature, 254
Post and ball joint, 245
Potential energy, 267
Potential function, 112
Power definition, 131
Prandtl, Ludwig, 136
Prescribed forces, 113
Pressure
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 airplane flight, 417, 418f
 fluid statistics, 341, 345
 fluids, 310f, 310-311
 measuring devices, 346f, 346–347, 

347f, 348f
Pressure gradient, 344
Pressure vessels
 discussion of, 141–145, 142f, 143f, 144f
 failure of, 194–197, 195f, 196f
 failure problems, 198–200, 199f
 joint design, 195–197
 safety case study, 188, 188f, 189f
 spheres and cylinders, 188f, 189–194, 

190f, 191f, 192f
Pressure-containing shell, 141
Pressurized square tube, 190–192, 192f
Principal stresses
 planes, 95, 150–151
 plane stress example, 171–177, 175f
 problems, 183, 187
Principal values, 94
Problem solving steps, 12
Pronation, 242
Proportional limit, 32
Pseudoplastics, 313
Pure bending, beam, 210, 251, 252f
Purity Distilling Company, 94, 200n.4

Q
Quenching, carbon steel, 102 
Quonset hut problem, 185f, 185–186, 186f

R
Radius of gyration
 aluminum column example, 299
 Euler’s formula, 294
Re-entrant corners, 189, 190f
Reaction forces
 polystyrene bar example, 62–64
 problem, 18
Rectangular bar, 135f, 135–136, 136f, 137t
Rectangular block, 116
Redundancies, 307
Reef balls, 2f, 17
Reiner, Markus, 339n.2
Relative displacement, 90
Resilience definition, 102
Resistance, 310
Resistive strain gauge, 25

Reynolds number
 airplane flight force analysis, 418
 animals, 423
 inertia/viscous force ratio, 412
 pipe flows, 413
Reynolds, Osborne, 426n.1
Rheology, 339n.2
Rigid-body displacement, 87
Rigidity, modulus of , 33t, 34, 86
Roark’s Formulas for Stress and Strain 

(Young), 136
Roller, beam support, 201, 202f
Roller support, beam boundary 

condition, 255
Rotating shafts, 131
Rubber band, 85
Rubber bushing torsional stiffness 

example, 170, 170f

S
Safety factor
 aluminum column example, 300
 structural tubing example, 300, 301
Safety factors, 101
Saint-Venant, de, Adhémar Jean Claude 

Barré, 135, 391
Saint-Venant’s Principle, 50, 221, 249n.4
Scalar
 del operator, 443
 example, 14–15
Scalars, 9, 12
Secant curve, 296
Second moment of area, 213, 439–441
Second Moment area theorem, 262f, 263
Second order analysis, 241–245
Second-order tensors, 89, 94
Shaft failure, 134
Shaft fillet radius example, 165–166
Shaft strength loss example, 162–163
Shear flow, 139
Shear force
 beam, 203–204
 diagrams, 206
 integration methods, 20u–209
Shear magnitude, 150
Shear modulus, 34
Shear strain
 angular motion, 317–319, 318
 deformation, 23–24
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 examples, 23–24, 24f, 56–57
 relative displacement, 90
 and torque, 125, 126
 in two dimensions, 88f
Shear stress
 in beam, 214-221
 description of, 28f, 28-29
 examples, 29-31
 fluid deformation, 309, 311
 noncircular member, 136–137
 pipe flows, 415
 sign convention, 95f
 supported beam example, 236-238
 thin-walled tubes, 138
 two shafts example, 166-169
 and torque, 125–129
 wood I beam example, 234–236
Shortening, 23
Sigma normal stress, 26, 28
Sign convention
 beam deflection, 254
 bending in beam, 205, 205f
 shear in beam, 204
 shear stress, 95f, 95
Simmons, Edward, 25, 82n.2
Simply supported beam deflection 

problems, 285, 287, 288
Single shear, 30, 31f
Singularity functions, 259, 260f, 261f
Slender beams, 215
Slenderness ratio
 aluminum column example, 299, 300
 beam bending/deflection theory, 

307n.1
 Euler’s formula, 294
 Hartford Civic Arena case study, 306
Slip, 34
Slipperiness, 312
Slope of beams, 251, 252f 258t
Soap film, 136–137, 138f
Society of Rheology, 339n.2
Solid
 definition, 8
 density, 7
 flow problem, 17
Solid body element problem, 117
Solid dynamics, 427
Solid dynamics equations
 elasticity, 431–432
 mass conservation, 427–429

 momentum conservation, 429–431
Solid mechanics, 1, 309, 341, 379
Solids
 linear elasticity, 34
 thermal effects, 48
Spacer plates, 306
Sphere
 drag coefficient, 419, 419f, 422f
 wakes, 421f
Spherical pressure vessel, 188f
Spherical thin-walled pressure vessels, 

141, 143f
 example, 180f, 180–183
Spring(s)
 beam and bar behavior, 38
 Hookean regime, 34, 313
 stored energy, 51
 stress-strain relationship, 32–33, 33f, 

34
Square plate with inscribed circle 

problem, 119
St. Francis Dam 

case study, 373f, 
373–375, 374f

problems, 375–376
Stability definition, 289
Stagnation pressure, 392
Stain-gauge pressure transducers, 347, 

348f
Static boundary conditions, 257
Static equilibrium, 5
 problem, 17–18
Statical indeterminacy, 43, 131–133
Statics, 4
Steel
 ferrous metal, 103
 typical properties, 450t, 451t
 yield properties, 100t
Steel bar
 problem, 71
 stress example, 59–60
Steel railroad track example, 66–67
Steel shaft diameters, 163–164
Steel T beam example, 231–234
Stepped shafts
 angles of twist, 129
 stress concentration, 130
Stiffness
 aluminum alloy example, 166–167
 constraint, 59–60
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 definition, 101, 289
 and loading, 38
 pipe flows, 413
 pressure vessels, 189
 stress-strain relationship, 33
 and strength, 19
 torsional, 132
 stiffness example, 170, 170f
Stiffness method, 47–48
Stokes, George, 391
Stored energy, 51, 269
Strain
 constitutive law, 8
 definition, 20
 direction, 87, 121n.2
 examples, 56–57
 measurement, 24–25
 multiple directions, 87
 normal, 20–23
 one-dimensional loading, 54
 relative displacement, 90–92, 91f
 as second-order tensor, 89
 and shear, 23–24
 solids/liquids, 9, 455t
 strain energy density, 52
 and stress relationships, 32–36
Strain energy
 bent beams, 266-269
 density, 52–53
Strain energy analysis, 101
Strain rate
 fluids, 9, 310, 312, 313
 linear motion, 317
 solids/liquids, 455t
Strain rate tensor
 angular motion, 319
 momentum conservation equations, 

390
Strain tensor
 strain directions, 87f, 87-90, 88f
 matrix form, 90
 rotated axes, 153
Strain-displacement relations, 92, 110
Streaklines, 377, 378f
Streamline, 377, 378f
Streamline function definition, 378–379
Streamlines
 Bernoulli equation, 391
 example, 393–394, 394f
 information, 379

Strength
 aluminum alloy example, 166–167
 constraint, 59–60
 definition, 101, 289
 and stiffness, 19
Stress
 axially loaded bars, 37–40
 and complementary energy, 52
 constitutive law, 8
 continuum mechanics, 308
 distribution, 49--50, 50f
 example, 55–56, 57–59, 62–64
 fluid viscosity, 312
 fluids, 309
 internal force intensity, 92, 95
 normal, 27f, 27–28, 28f
 one-dimensional loading, 54
 representation, 26, 28
 and strain relationships, 32–36
 and torque, 125
Stress concentrations
 cracks, 189
 discussion of,  49–51, 51t
 example, 68
Stress relaxation, 336, 337, 338f
Stress tensor
 array, 94, 105
 stress distribution, 92–96, 145
 symmetric, 156
Stress vector, 92–94
Stress-strain
 curve, 35, 98
 diagram, 33, 34f, 98f, 133, 134f
 and energy densities, 52f
 linear relationship, 32f
 ratio, 33
Structural performance, 4
Structural tubing, 300–302, 301f
Submarines, 188, 188f
Summation convention, 12, 106
Superposition, 46
Superposition, beam deflection, 257, 

259f, 278
Supination, 242
 shear stress example, 236–238
Surface force, 9, 310f, 311
Surface loading, 113
Surface tension, 315
Symmetric second-order tensor, 89
System approach, 379
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T
Tangential deviation, 263
Tangential stress, 28
Temperature
 effects of, 35, 98, 121n.4
 fluid viscosity, 313, 314f
Tensile forces, 21, 27
Tensile load, 102
Tensile specimen, 20f
Tensile strain, 49
Tensile strength, 141
 problem, 71, 72f
Tensile testing, 99, 99f
Thermal strains definition, 48–49
Thermal stresses
 steel railroad track example, 66–67
 strain energy, 52f, 52–53
 thin-walled pressure vessels, 143
Thermoplastics, 104
Thick-walled pressure vessels, 141
Thin-walled pressure vessels, 141
Thin-walled structures, 107
Thin-walled tubes, 138f, 138–140, 140f
Third-dimensional state of stress, 

156–157
Three-dimensional equilibrium, 5
Three-dimensional stress state, 105–107, 

106f
Three-dimensions
 Hooke’s law, 96
 strain-displacement, 92
Thrust, 418
Timber properties, 450t, 451t
Titanium, 103
Torque
 examples, 163–164
 indeterminacy, 131–133
 and stress, assumptions, 125
 twisting moment, 123, 124, 124f
Torsion
 circular shafts formula, 128, 133
 examples, 162f, 162–163
 noncircular solids, 135–138
 twisting moment, 123, 124f
 term, 124
 testing, 129
Torsional load,
 Mohr’s circle, 153, 154f
 term, 124

Torsional shear stress, 125–130, 126f, 
127f, 129f

Torsional stiffness example, 170, 170f
Torsional stress-concentration, circular 

shafts, 130f
Toughness definition, 102
Traction vector, 92
Transverse contraction, 85
Tresca criterion
 cylindrical pressure vessel problem, 

187
 ductile material failure, 161
Trigonometric identities, 296
True strain, 21
Truss
 example, 64–66
 problem, 70, 71f
 shear stress, 29, 29f, 31
Tubes
 thin-walled in torsion, 138f, 138–140, 

140f
 torsion formula, 128
Tubular cross sections, 125
Tubular steel shaft problems, 185, 187
Turbulent flow
 airplane flight, 418–419
 curveballs, 420, 423f
 Reynolds number, 412, 413t
Twisting moment, 123
Two shafts shear stresses and angle of 

twist example, 166-169, 168f, 
169f

Two-dimensional elasticity
 applied loads, 113
 compatibility, 111-112, 113
 displacements, 110–111, 112
 equation formulation, 109–114
 examples, 114–116, 115f, 116f
 problems, 116–120, 118f, 119f, 120f
Two-dimensional equilibrium, 5–6
Two-dimensional plane strain, 107, 108f, 

108–109
Two-dimensions
 extensional strain, 88f
 Hooke’s law, 96

U
Ultimate material strength, 98, 100t
Ultimate torque, 134
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Underwater rig
 bolts, 30
 mud-slide type platform, 2f
 remodeling, 2–3, 3f
 structures, 20f
 truss, 29, 29f, 31
Ut tensio, sic vis, Hooke’s law, 32, 33

V
Vector(s)
 and area, 92
 components, 9–10
 decomposition, 10f
 equations, 455
 example, 13–14
 as first-order tensor, 89
 and force, 92
 internal forces as, 26
 and Newton’s second law, 5
 notation, 9, 11
 problem, 17
Velocity, pipe flow average, 416–417
Velocity field, 316, 317
Velocity gradient, 316–317
Vertical surfaces, 349, 349f
Viscoelastic materials
 deformation, 336
 hysteresis, 336f, 336–337
 mechanical models, 337f, 337
 problems, 338
Viscosity
 airplane flight, 417, 418f
 dominant flow effect, 411–412
 fluids, 311f, 311–314, 313f, 314f
 pipe flows, 413, 417
Vise grip, 123
Voigt, Woldemar, 338
Volume
 change/change rate, 455t
 fluid motion equations, 379
Volumetric strain rate, 317

Von Mises criterion
 cylindrical pressure vessel problem, 

187
 ductile material failure, 161–162
Vortices, 420, 421f
Vorticity, 319–320
Vorticity vector, 320

W
Wakes, 419, 421f
Water, typical properties, 453t, 454t
Water jet stream example, 396f, 396–398
Water siphon example, 402f, 402–404, 

403f
Water tanks problem, 370, 370f
Watt unit, 131
Watt, James, 131
Weber number, 412, 413t
Weight, force analysis, 418
Weight and mass example, 15–17
Withstanding load, 19
Wood. See also Timber
 grain, 35
 nonmetals, 104
 shear stress problem, 74
 yield properties, 100t
Wood I beam example, 234–236
Wood post/concrete bases problem, 73
Wooden plank problem, 370, 370f
Work definition, 131
Wrought iron, 103

Y
Yield criteria, 160
Yield point, 98
Yield properties, 100t
Yield stress, 98
Young, Thomas, 27, 33, 83n.7
Young, W. C., 136
Young’s modulus, 33, 35, 99
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