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Preface

It is no secret that in recent years the number of people entering the environmental 

field has increased at a near exponential rate. Some are beginning college students 

and others had earlier chosen a non-technical major/career path. A large number 

of these individuals are today seeking technical degrees in environmental engi-

neering or in the environmental sciences. These prospective students will require 

an understanding and appreciation of the numerous mathematical methods that 

are routinely employed in practice. This technical steppingstone to a successful 

career is rarely provided at institutions that award technical degrees. This intro-

ductory text on mathematical methods attempts to supplement existing environ-

mental curricula with a sorely needed tool to eliminate this void.

The question often arises as to the educational background required for mean-

ingful analysis capabilities since technology has changed the emphasis that is 

placed on certain mathematical subjects. Before computer usage became popular, 

instruction in environmental analysis was (and still is in many places) restricted 

to simple systems and most of the effort was devoted to solving a few derived 

elementary equations. These cases were mostly of academic interest, and because 

of their simplicity, were of little practical value. To this end, a considerable amount 

of time is now required to acquire skills in mathematics, especially in numerical 

methods, statistics, and optimization. In fact, most environmental engineers and 

scientists are given courses in classical mathematics, but experience shows that 

very little of this knowledge is retained after graduation for the simple reason that 

these mathematical methods are not adequate for solving most systems of equa-

tions encountered in industry. In addition, advanced mathematical skills are either 

not provided in courses or are forgotten through sheer disuse.

As noted in the above paragraph, the material in this book was prepared pri-

marily for beginning environmental engineering and science students and, to a 

lesser extent, for environmental professionals who wish to obtain a better under-

standing of the various mathematical methods that can be employed in solving 

technical problems. The content is such that it is suitable both for classroom use 

and for individual study. In presenting the text material, the authors have stressed 

the pragmatic approach in the application of mathematical tools to assist the 

reader in grasping the role of mathematical skills in environmental problem solv-

ing situations. 
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In effect, this book serves two purposes. It may be used as a textbook for begin-

ning environmental students or as a “reference” book for practicing engineers, 

scientists, and technicians involved with the environment. The authors have 

assumed that the reader has already taken basic courses in physics and chemis-

try, and should have a minimum background in mathematics through elementary 

calculus. The authors’ aim is to offer the reader the fundamentals of numerous 

mathematical methods with accompanying practical environmental applications. 

The reader is encouraged through references to continue his or her own develop-

ment beyond the scope of the presented material.

As is usually the case in preparing any text, the question of what to include and 

what to omit has been particularly difficult. The material in this book attempts to 

address mathematical calculations common to both the environmental engineer-

ing and science professionals. The book provides the reader with nearly 100 solved 

illustrative examples. The interrelationship between both theory and applications 

is emphasized in nearly all of the chapters. One key feature of this book is that the 

solutions to the problems are presented in a stand-alone manner. Throughout the 

book, the illustrative examples are laid out in such a way as to develop the reader’s 

technical understanding of the subject in question, with more difficult examples 

located at or near the end of each set.

The book is divided up into five (V) parts (see also the Table of Contents):

I. Introduction

II. Analytical Analysis

III. Numerical Analysis

IV. Statistical Analysis

V. Optimization

Most chapters contain a short introduction to the mathematical method in ques-

tion, which is followed by developmental material, which in turn, is followed by 

one or more illustrative examples. Thus, this book offers material not only to indi-

viduals with limited technical background but also to those with extensive envi-

ronmental industrial experience. As noted above, this book may be used as a text 

in either a general introductory environmental engineering/ science course and 

(perhaps) as a training tool in industry for challenged environmental professionals. 

Hopefully, the text is simple, clear, to the point, and imparts a basic understand-

ing of the theory and application of many of the mathematical methods employed 

in environmental practice. It should also assist the reader in helping master the 

difficult task of explaining what was once a very complicated subject matter in a 

way that is easily understood. The authors feel that this delineates this text from 

the numerous others in this field. 

It should also be noted that the authors have long advocated that basic sci-

ence courses ‒ particularly those concerned with mathematics ‒ should be taught 

to engineers and applied scientists by an engineer or applied scientist. Also, the 

books adopted for use in these courses should be written by an engineer or an 
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applied scientist. For example, a mathematician will lecture on differentiation ‒ say 

dx/dy ‒ not realizing that in a real-world application involving an estuary y could 

refer to concentration while x could refer to time. The reader of this book will not 

encounter this problem.

The reader should also note that parts of the material in the book were drawn 

from one of the author’s notes of yesteryear. In a few instances, the original source 

was not available for referencing purposes. Any oversight will be corrected in a 

later printing/edition.

The authors wish to express appreciation to those who have contributed 

suggestions for material covered in this book. Their comments have been very 

 helpful in the selection and presentation of the subject matter. Special apprecia-

tion is extended to Megan Menzel for her technical contributions and review, Dan 

McCloskey for preparing some of the first draft material in Parts II and III, and 

Christopher Testa for his contributions to Chapters 13 and 14. Thanks are also due 

to Rita D’Aquino, Mary K. Theodore, and Ronnie Zaglin. 

Finally, the authors are especially interested in learning the opinions of those 

who read this book concerning its utility and serviceability in meeting the needs 

for which it was written. Corrections, improvements and suggestions will be con-

sidered for inclusion in later editions. 

Chuck Prochaska

Lou Theodore

April 2018
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Part I

INTRODUCTORY PRINCIPLES

Webster defines introduction as … “the preliminary section of a book, usually 

explaining or defining the subject matter…” And indeed, that is exactly what this 

Part I of the book is all about. The chapters contain material that one might view 

as a pre-requisite for the specific mathematical methods that are addressed in 

Parts II–V. 

There are seven chapters in Part I. The chapter numbers and accompanying 

titles are listed below.

Chapter 1: Fundamentals and Principles of Numbers

Chapter 2: Series Analysis

Chapter 3: Graphical Analysis

Chapter 4: Flow Diagrams

Chapter 5: Dimensional Analysis

Chapter 6: Economics

Chapter 7: Problem Solving 

Introduction to Mathematical Methods for Environmental Engineers and Scientists. 
Charles Prochaska and Louis Theodore. 

© 2018 Scrivener Publishing LLC. Published 2018 by John Wiley & Sons, Inc. 
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The natural numbers, or so-called counting numbers, are the positive integers: 1, 2, 3, 

… and the negative integers: 1, 2, 3,… The following applies to real numbers:

 a b a b means that  is a positive real number  (1.1)

 If  and , then a b b c a c  (1.2)

 If  and  0, then a b c ac bc  (1.3) 

 If  and  then a b c d a c b d,  (1.4)

 If  and 0, then a b ab
a b

1 1
 (1.5)

 a b b a a b b a a b; ( )( )  (1.6)

 a b c a b c a bc ab c( ) ( ) ( ) ( );  (1.7)

1
Fundamentals and Principles 
of Numbers

Introduction to Mathematical Methods for Environmental Engineers and Scientists. 
Charles Prochaska and Louis Theodore. 
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 a b c a b a c( )  (1.8)

 If | | , where 0, then , or x a a x a x a  (1.9)

 If | | , then  where x c c x c c 0  (1.10)

 a
a

an

n

1
, 0  (1.11)

 (ab a bn n n)  (1.12)

 ( )a a a a an m nm n m n m,  (1.13)

 a a0 1, 0  (1.14)

 log log log , ab a b a b, 0 0  (1.15)

 log log a n an
 (1.16)

 log log log 
a

b
a b  (1.17)

 log
1

log a a
n

n
 (1.18)

 ln aa 2 3026. log  (1.19)

Based on the above, one may write 

 (4)(9) ( . )( )3 60 10 1
  

 ( ) ( )( )6 2.16 103 2
  

 3375 1 50 103 1( . )( )   

 ( ). ( . )( ).0 916 9 39 10
3

4 15 1
  

 log 0.389210 ( ).2 45   
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 ln 5.5013( ) ( . )( . )245 2 3892 2 3026   

 log .( )10 0 245 109.3892 0.6108   

Given any quadratic equation of the general form

 ax bx c2 0  (1.20)

a number of methods of solution are possible depending on the specific nature 

of the equation in question. If the equation can be factored, then the solution is 

straightforward. For instance, consider

 x x2 3 10  (1.21)

Put into the standard form,

 x x2 3 10 0  (1.22)

this equation can be factored as follows:

 ( )( )x x5 2 0  (1.23)

This condition can be met, however, only when the individual factors are zero, i.e., 

when x 5 and x 2. That these are indeed the solutions to the equation may be 

verified by substitution. 

If, upon inspection, no obvious means of factoring an equation can be found, 

an alternative approach may exist. For example, in the equation

 4 12 72x x  (1.24)

the expression

 4 122x x  (1.25)

could be factored as a perfect square if it were

 4 12 92x x  (1.26)

which equals

 ( )2 3 2x  (1.27)
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This can easily be achieved by adding 9 to the left side of the equation. The same 

amount must then, of course, be added to the right side as well, resulting in:

 4 12 9 7 9x x2
 (1.28)

so that,

 ( )2 3 2x 16  (1.29)

This can be reduced to

 ( )2 3 16x  (1.30)

or

 2 3 4x  (1.31)

and

 2 3 4x  (1.32)

Since 16  above has two solutions, i.e., +4 and –4, the first equation leads to the 

solution x 0.5 while the second equation leads to the solution x 7/2, or x 3.5. 

If the methods of factoring or completing the square are not possible, any qua-

dratic equation can always be solved by the quadratic formula. This provides a 

method for determining the solution of the equation if it is in the form

 ax bx c2 0  (1.33)

In all cases, the two solutions of x are given by the formula

 x
b b ac

a

2 4

2
 (1.34)

For example, to find the roots of

 x x2 4 3  (1.35)

the equation is first put into the standard form of Equation (1.33)

 x x2 4 3 0  (1.36)

As a result, a 1, b 4, and c 3. These terms are then substituted into the 

 quadratic formula presented in Equation (1.34).
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 x
( ) ( )( )

( )

( )4 4 4 1 3

2 1

4 16 12

2

2

 (1.37)

 
4 4

2

4 2

2
3 and 1  (1.38)

The practicing environmental engineer and scientist occasionally has to solve 

not just a single equation but several at the same time. The problem is to find 

the set of all solutions that satisfies both equations. These are called simultane-

ous equations, and specific algebraic techniques may be used to solve them. For 

example, a simple solution exists given two linear equations and two unknowns:

 3 4 10x y  (1.39)

 2 5x y  (1.40)

The variable y in Equation (1.40) is isolated (y 5 – 2x), and then this value of y is 

substituted into Equation (1.39).

 3 4 5 2 10x x( )  (1.41)

This reduces the problem to one involving the single unknown x and it follows 

that

 3 20 8 10x x  

or

 5 10x  (1.42)

so that

 x 2  (1.43)

When this value is substituted into either equation above, it follows that

 y 1  (1.44)

A faster method of solving simultaneous equations, however, is obtained by 

observing that if both sides of Equation (1.40) are multiplied by 4, then

 8 4 20x y  (1.45)
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If Equation (1.39) is subtracted from Equation (1.45), then 5x 10, or x 2. 

This procedure leads to another development in mathematics, i.e., matrices, which 

can help to produce solutions for any set of linear equations with a corresponding 

number of unknowns (refer also to Chapter 13).

Four sections compliment the presentation of this chapter. Section numbers 

and subject titles follow:

1.1: Interpolation and Extrapolation

1.2: Significant Figures and Approximate Numbers

1.3: Errors

1.4: Propagation of Errors

1.1 Interpolation and Extrapolation

Experimental data (and data in general) in environmental engineering and science 

may be presented using a table, a graph, or an equation. Tabular presentation per-

mits retention of all significant figures of the original numerical data. Therefore, 

it is the most numerically accurate way of reporting data. However, it is often 

difficult to interpolate between data points within tables. 

Tabular or graphical presentation of data is usually used if no theoretical or 

empirical equations can be developed to fit the data. This type of presentation of 

data is one method of reporting experimental results. For example, heat capaci-

ties of benzene might be tabulated at various temperatures. This data may also be 

presented graphically. One should note that graphs are inherently less accurate 

than numerical tabulations. However, they are useful for visualizing variations in 

data and for interpolation and extrapolation.

Interpolation is of practical importance to the environmentalist because of the 

occasional necessity of referring to sources of information expressed in the form 

of a table. Logarithms, trigonometric functions, water properties of steam, liquid 

water and ice vapor pressures, and other physical and chemical data are commonly 

given in the form of tables in the standard reference works. Although these tables 

are sometimes given in sufficient detail so that interpolation may not be necessary, 

it is important to be able to interpolate properly when the need arises. 

Assume that a series of values of the dependent variable y are provided for cor-

responding tabulated values of the independent variable x. The goal of interpola-

tion is to obtain the correct value of y at any value of x. (Extrapolation refers to a 

value of x lying outside the range of tabulated values of x.) Clearly, interpolation 

or extrapolation may be accomplished by using data for x and y to develop a linear 

relationship between the two variables. The general method would be to fit two 

points (y
1
, x

1
), and (y

2
, x

2
) by means of 

 y a bx  (1.46)
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and then employ this equation to calculate y for some value of x lying between x
1
 

and x
2
. Most practitioners do this mentally when reading values from a table, e.g., 

steam tables. If a number of points are used, a polynomial of a correspondingly 

higher degree may be employed. Thus, interpolation may be viewed as the process 

of finding the value of a function at some arbitrary point when the function is 

not known but is represented over a given range as a table of discrete points. (See 

also Table 1.1 where y represents a reservoir’s height as a function of time in days 

during a rainy season.) Interpolation is thus necessary to find y when x is some 

value not given in the table. For instance, one may be interested in finding y when 

x 11. (The process of finding x when y is known is referred to as inverse inter-

polation). Given a table such as Table 1.1, one can draw a picture and write the 

equation of the straight line through the points (x
1
, y

1
) and (x

2
, y

2
) for y.

 y y
y y

x x
x x1

2 1

2 1

1( )  (1.47)

Equation (1.47) can be solved for y in terms of x

 y y
y y x x

x x
1

2 1 1

2 1

( )( )
 (1.48)

or

 y
y x x y y x x

x x
0 0 1 0 0

1 0

( ) ( )( )
 (1.49)

Illustrative Example 1.1

Refer to Table 1.1. Find y at x 11. 

Table 1.1 Reservoir height vs. time in days.

x, height y, days

 0 30

 3 31

 6 33

 9 35

12 39

15 46

18 52
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Solution

Proceed as follows. Set up calculations as shown in Table 1.2

Table 1.2 Information for Illustrative Example 1.1.

Data Point i x
i

y
i

x  x
i

1 9 35 2

2 12 39 1

Apply Equation (1.48). Therefore,

 y 39
1

3
35 1 39 2 35

4 2

3
35

8

3
[( )( ) ( )( )]

( )( )
 

As noted above, inverse interpolation involves estimating x which corresponds 

to a given value of y and extrapolation involves estimating values of y outside the 

interval in which the data x
0
, …, x

n
 fall. It is generally unwise to extrapolate any 

empirical relation significantly beyond the first and last data points. If, however, a 

certain form of equation is predicted by theory and substantiated by (other) avail-

able data, reasonable extrapolation is ordinarily justified. 

1.2  Significant Figures and Approximate Numbers [1] 

Significant figures provide an indication of the precision with which a quantity is 

measured or known. The last digit represents in a qualitative sense, some degree 

of doubt. For example, a measurement of 8.32 nm (nanometers) implies that 

the actual quantity is somewhere between 8.315 and 8.325 nm. This applies to 

calculated and measured quantities; quantities that are known exactly (e.g., pure 

integers) have an infinite number of significant figures. Note, however, that 

there is an upper limit to the accuracy with which physical measurements can 

be made. 

The method for counting the significant digits of a number follows one of 

two rules depending on whether there is or is not a decimal point present. The 

significant digits of a number always start from the first nonzero digit on the 

left to either:

1. the last digit (whether it is nonzero or zero) on the right if there is 

a decimal point present, or

2. the last nonzero digit on the right of the number if there is no 

decimal point present.
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For example:

370 has 2 significant figures

370 has 3 significant figures

370.0 has 4 significant figures

28,070 has 4 significant figures

0.037 has 2 significant figures

0.0370 has 3 significant figures

0.02807 has 4 significant figures

Whenever quantities are combined by multiplication and/or division, the number 

of significant figures in the result should equal the lowest number of significant fig-

ures of any of the quantities. In long calculations, the final result should be rounded 

off to the correct number of significant figures. When quantities are combined by 

addition and/or subtraction, the final result cannot be more precise than any of the 

quantities added or subtracted. Therefore, the position (relative to the decimal point) 

of the last significant digit in the number that has the lowest degree of precision is the 

position of the last permissible significant digit in the result. For example, the sum of 

3702, 370, 0.037, 4, and 37 should be reported as 4110 (without a decimal). The least 

precise of the five number is 370, which has its last significant digit in the tens posi-

tion. Therefore, the answer should also have its last significant digit in its tens position.

Unfortunately, environmental engineers and scientists rarely concern them-

selves with significant figures in their calculations. However, it is recommended 

that the reader attempt to follow the calculational procedure set forth in this section. 

In the process of preforming engineering/scientific calculations, very large and 

very small number are often encountered. A convenient way to represent these 

numbers is to use scientific notation. Generally, a number represented in scientific 

notation is the product of a number and 10 raised to an integer power. For example,

 

28 070 000 000 2 807 10 2 807 10

0 000002807 2 807 1

10 10, , , . ( . )( )

. . 00 6  

A positive feature of using scientific notation is that only the significant figures 

need appear in the number.

Thus, when approximate numbers are added, or subtracted, the results are pre-

sented in terms of the least precise number. Since this is a relatively simple rule to 

master, note that the answer in Equation (1.50) follows the aforementioned rule 

of precision.

 6 04 2 8 4 173 4 7. . . .L L L L  (1.50)
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(The result is 4.667L.) The expressions in Equation (1.50) have two, one, and three 

decimal places respectively. The least precise number (least decimal places) in the 

problem is 2.8, a value carried only to the tenths position. Therefore, the answer 

must be calculated to the tenths position only. Thus, the correct answer is 4.7L. 

(The last 6 and the 7 are dropped from the 4.667L, and the first 6 is rounded up to 

provide 4.7L.)

In multiplication and division of approximate numbers, finding the number of 

significant digits is used to determine how many digits to keep (i.e., where to trun-

cate). One must first understand significant digits in order to determine the correct 

number of digits to keep or remove in multiplication and division problems. As 

noted earlier in this section, the digits 1 through 9 are considered to be significant. 

Thus, the numbers 123, 53, 7492, and 5 contain three, two, four and one significant 

digits respectively. The digit zero must be considered separately. 

Zeroes are significant when they occur between significant digits. In the follow-

ing example, all zeroes are significant: 10001, 402, 1.1001, 500.09 with five, three, 

five, and four significant figures, respectively. Zeroes are not significant when they 

are used as place holders. When used as a place holder, a zero simply identifies 

where a decimal is located. For example, each of the following numbers has only 

one significant digit: 1000, 500, 60, 0.09, 0.0002. In the numbers 1200, 540, and 

0.0032 there are two significant digits, and the zeroes are not significant. When 

zeroes follow a decimal and are preceded by a significant digit, the zeroes are signifi-

cant. In the following examples, all zeroes are significant: 1.00, 15.0, 4.100, 1.90, 

10.002, 10.0400. For 10.002, the zeroes are significant because they fall between 

two significant digits. For 10.0400, the first two zeroes are significant because they 

fall between two significant digits; the last two zeroes are significant because they 

follow a decimal and are preceded by a significant digit. As noted above, when 

approximate numbers are multiplied or divided, the result is expressed as a num-

ber having the same number of significant digits as the number in the problem 

with the least number of significant digits.

When truncating (removing final, unwanted digits), rounding is normally 

applied to the last digit to be kept. Thus, if the value of the first digit to be discarded 

is less than 5, one should retain the last retained digit with no change. If the value of 

the first digit to be discarded is 5 or greater, one should increase the last kept digit’s 

value by one. Assume, for example, only the first two decimal places are to be kept 

for 25.0847 (the 4 and 7 are to be dropped). The number is then 25.08. Since the 

first digit to be discarded (4) is less than 5, i.e., the 8 is not rounded up. If only 

the first two decimal places are to be kept for 25.0867 (the 6 and the 7 are to be 

dropped), it should be rounded to 25.09. Since the first digit to be discarded (6) is 

5 or more, the 8 is rounded up to 9. 

When adding or subtracting approximate numbers, a rule based upon preci-

sion determines how many digits are kept. In general, precision relates to the deci-

mal significance of a number. When a measurement is given as 1.005 cm, one can 

say that the number is precise to the thousandth of a centimeter. If the decimal is 

removed (1005 cm), the number is precise to thousands of centimeters.
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In some water pollution studies, a measurement in gallons or liters may be 

required. Although a gallon or liter may represent an exact quantity, the measuring 

instruments that are used are only capable of producing approximations. Using a 

standard graduated flask in liters as an example, can one determine whether there 

is exactly one liter? Not likely. In fact, one would be pressed to verify that there was 

a liter to within 1/10 of a liter. Therefore, depending upon the instruments used, 

the precision of a given measurement may vary.

If a measurement is given as 16.0L, the zero after the decimal indicates that the 

measurement is precise to within 1/10L i.e., 0.1L. A given measurement of 16.00L, 

indicates precision to the 1/100L. As noted, the digits following the decimal indi-

cate how precise the measurement is. Thus, precision is used to determine where 

to truncate when approximate numbers are added or subtracted.

1.3 Errors

This is the first of two sections devoted to errors. This section introduces the vari-

ous classes of errors while the next section demonstrates the propagation of some 

of these errors. As one might suppose, numerous books have been written on the 

general subject of “errors.” Different definitions for errors appear in the literature 

but what follows is the authors’ attempt to clarify the problem [1]. 

Any discussion of errors would be incomplete without providing a clear and 

concise definition of two terms: the aforementioned precision and accuracy. The 

term precision is used to describe a state or system or measurement for which 

the word precise implies little to no variation; some refer to this as reliability. 

Alternatively, accuracy is used to describe something free from the matter of 

errors. The accuracy of a value, which may be represented in either absolute or 

relative terms, is the degree of agreement between the measured value and the 

true value.

All measurements and calculations are subject to two broad classes of errors: 

determinate and indeterminate. The error is known as a “determinate error” if an 

error’s magnitude and sign are discovered and accounted for in the form of a cor-

rection. All errors that either cannot be or are not properly allowed for in magni-

tude and sign are known as “indeterminate errors.”

A particularly important class of indeterminate errors is that of accidental errors. 

To illustrate the nature of these, consider the very simple and direct measurement of 

temperature. Suppose that several independent readings are made and that tempera-

tures are read to 0.1 °F. When the results of the different readings are compared, it may 

be found that even though they have been performed very carefully, they may differ 

from each other by several tenths of a degree. Experience has shown that such devia-

tions are inevitable in all measurements and that these result from small unavoidable 

errors of observation due to the sensitivity of measuring instruments and the keen-

ness of the sense of perception. Such errors are due to the combined effect of a large 

number of undetermined causes and they can be defined as “accidental errors.”
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Regarding the words precision and accuracy, it is also important to note that 

a result may be extremely precise and at the same time inaccurate. For instance, 

the temperature readings just mentioned might all agree within 1 °F. From this it 

would not be permissible to conclude that the temperature is accurate to 1 °F until 

it can be definitively shown that the combined effects of uncorrected constant 

errors and known errors are negligible compared with 1 °F. It is quite conceivable 

that the calibration of the thermometer might be grossly incorrect. Errors such 

as these are almost always present and can never be detected individually. Such 

errors can be detected only by obtaining the readings with several different ther-

mometers and, if possible, several independent methods and observers.

It should also be understood at the onset that most numerical calculations are 

by their very nature inexact. The errors are primarily due to one of three sources: 

inaccuracies in the original data, lack of precision in carrying out calculations, 

or inaccuracies introduced by approximate or incorrect methods of solution. Of 

particular significance are the aforementioned errors due to “round-off ” and the 

inability to carry more than a certain number of significant figures. The errors 

associated with the method of solution are usually the area of greatest concern 

[1]. These usually arise as a result of approximations and assumptions made in the 

development of an equation used to calculate a desired result and should not be 

neglected in any error analysis. 

Finally, many list the following three errors associated with a computer 

(calculator).

1. Truncation error. With the truncation of a series after only a few 

terms, one is committing a generally known error. This error is not 

machine-caused but is due to the method. 

2. Round-off error. The result of using a finite number of digits to rep-

resent a number. In reality, numbers have an infinite number of 

digits extending past the decimal point. For example, the integer 1 

is really 1.000…0 and π is 3.14159… but numbers are rounded to 

allow for calculation and representation. This rounding is a form of 

error known as round-off error.

3. Propagation or inherited error. This is caused by sequential calcu-

lations that include points previously calculated by the computer 

which already are erroneous owing to the two errors above. Since 

the result is already off the solution curve, one cannot expect any 

new values computed to be on the correct solution curve. Adding 

the round-off errors and truncation errors into the calculation 

causes further errors to propagate, adding more error at each step.

1.4 Propagation of Errors

When a desired quantity W is related to several directly measured independent 

quantities W
1
, W

2
, W

3
, …, W

n
 by the equation
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 W W W W W Wn( )1 2 3, , , ,  (1.51)

W becomes an indirectly measured dependent quantity. In general, the true value 

of W cannot be known because the true values of W
1
, W

2
, W

3
, …, W

n
 are unknown, 

but the most probable value of W may be calculated by inserting the most prob-

able values of W
1
, W

2
, W

3
, …, W

n
, into Equation (1.51). The errors in the directly 

measured quantities of W
i
 will result in an error in the calculated quantity W, the 

value of which is important to ascertain. If the original measurements are avail-

able, a method referred to as the “propagation-of-error” could be employed to 

estimate in the resultant error. The general “propagation-of-error” for a function 

W f(x
1
, x

2
) is described by

 s
W

x
s

W

x
sx x

2

1

2

2

2

2

2

1 2
 (1.52)

where s error in the function W
s

x1
error in variable x

1

s
x2

error in variable x
2

Thus, if a linear function W ax
1

bx
2
 is involved, it is found by direct application 

of Equation (1.52) that

 s a s b sx x

2 2 2 2 2

1 2
 (1.53)

where

 a
W

x1

 (1.54)

 b
W

x2

 (1.55)

For the case where W x
1
x

2
 application of Equation (1.52) can be shown to give

 
s

W

s

x

s

x

x x
2

2

2

1

2

2

2

2

1 2
 (1.56)

Thus, the square of the fractional error is equal to the sum of the squares of frac-

tional errors of the independent variables. Alternatively, taking the logarithm of a 

product c xy reduces it to the form of Equation (1.57):
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 ( ) ( ) ( )logs s sW logx logx

2 2 2

1 2
 (1.57)

As would be expected, the greatest variation in the approach of different investiga-

tors lies in the details of how they propose to obtain values of the error measurement. 

Basically, these may be obtained by comparing either a series of pairs of estimates and 

true values from similar previous readings (i.e., “looking at the record”) or obtaining 

a number of independent estimates of the particular value needed. 

Illustrative Example 1.2 [2]

Table 1.3 gives basic data on investment and production costs for a unit for coking 

a heavy crude to produce gasoline and distillate fuel. It is desired to determine the 

standard deviation of the profit and its significance in predicting the uncertainty 

involved.

Solution 

The standard deviation equation is applied to determine the standard deviation of 

the profit (income – cost). This is represented as (refer to Table 1.3)

s2 2 2 2 2480 000 180 900 66 300 1060 9480( , ) ( , ) ( , ) ( ) ( )(3860)  +2 22

2 2

11

191 000 24 000

30 47 10

552 000

( , ) ( , )

.

$ ,s

Table 1.3 Investment data.

Item Average value X, $/yr Standard deviation

Investment $5,195,000 $513,000

Direct production cost

Raw materials $2,137,000 $180,900

Labor 215,000 66,300

Utilities 26,000 3,800

Operating Supplies 6,100 1,060

Maintenance 29,300 9,480

Royalties 16,500 0

$2,466,500 –

Indirect production cost 2,383,000 $191,000

Fixed production cost 494,000 24,000

Sales 6,700,000 480,000

Profits 1,356,500 –
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Happel also goes on to calculate the percent return of an investment – a calcula-

tion beyond the scope of this introductory book [2]. 

Illustrative Example 1.3

Consider the data taken from an actual experiment performed by McHugh [3]. 

One step involves determining the number of moles of benzene, N
B
, loaded into 

a round-bottom flask. Moles of benzene are calculated from two pieces of weight 

data that are measured experimentally. Errors in these weight data accumulate to 

result in an estimated accumulated error, s.

A Mettler electronic balance was used in an actual gravimetric transfer of ben-

zene, C
6
H

6
, into the round-bottom flask. The following data was obtained:

Weight of volumetric flask benzene before transfer to round-bottom flask, 

 W
1

105.321 0.001 g

Weight of volumetric flask benzene after transfer to round-bottom flask,

 W
2

85.466 0.001 g

Solution

The molecular weight of C
6
H

6
 (MW

g
) may be taken as equal to 78.12 g/g-mol. The 

purity of the C
6
H

6
 is 99.99%; this percentage is included as a variable (wt%) in 

developing the equation for N
B
. The equation below is the defining equation for 

moles of benzene, N
B
.

 N
W W

MW
wtB

B

1 2 0 254% .  

Taking the partial derivatives of the above equation with MW
B
 as a constant and 

the other terms being variables, gives the following values:

 a
N

W MW
wtB

B1

1
0 0128% .  

 b
N

W MW
wtB

B2

1
0 0128% .  



18 Introduction to Mathematical Methods

 c
N

wt

W W

MW
B

B

1 2 0 254.  

There are two s terms corresponding to the two weights (W
1
 and W

2
) above. 

These two terms are labelled s s
W W1 2

and  where W
1
 is the weight before the trans-

fer and the W
2
 is the weight after. A third s term, corresponding to the percentage 

purity (wt%), is labelled s
wt%

. Substituting into the equations above leads to the 

accumulated error equation.

 

s
MW

wt s
MW

wt s
W W

MWB

W

B

W

B

2

2

2 2

2

2 2 1 21 1
1 2% %

2

2

2 2 2 2 2 2

10 10

1 2

1 6384 10 1 6384 10

s

a s b s c s

wt

w w wt

%

%

. . 11 6129 10

4 8897 10

10

10

.

.

 

The values for s s
W W1 2

and  used in this calculation are both 0.001 g, which is 

the manufacturer’s specified “error” for the analytical balance used in this transfer; 

this error is often reported as the repeatability or reproducibility of the balance. 

The wt% term may be taken as 0.99990 0.00005, so that s
wt%

 equals to 0.00005. 

Calculating s yields.

 s 2 2112 10 5.  

so that

 NB 0 254 2 2112 10 5. . gmol  

A comparison of the value of s with the value of N
B
, indicates that the transfer 

is accurate to five significant figures. On a percentage basis, s/N
B
 is accurate within 

0.009%; clearly this very “good” data. 

Illustrative Example 1.4 [4]

In a rotary dryer experiment, samples of partially dried cornmeal are collected 

in aluminum weighing pans and weighed (W
1
). The pans are placed in the oven 

overnight to dry the remaining water from the cornmeal and reweighed (W
2
). The 

dry cornmeal is discarded and the empty pan is weighed (W
3
). Data obtained from 

one experiment appear below in Table 1.4.
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Table 1.4 Rotary dryer experiment data.

Jill and Joe’s data Analytical balance

Weight of weighing pan

Cornmeal before drying (W
1
)

4.0 0.1g 4.012 0.001g

Weight of weighing pan

Cornmeal after drying (W
2
)

3.7 0.1g 3.638 0.001g

Weight of empty pan (W
3
) 1.3 0.1g 1.394 0.001g

(This example demonstrates a case where very “bad” data is obtained because the 

students, Joe Jasper and his partner Jill Joker, decide to use a measuring device 

that they liked instead of the best measuring device available. Jill and Joe were 

instructed to use an analytical balance accurate to 0.001 g. However, Jill and Joe 

didn’t like the analytical balance, so they decided to use a balance that is only 

accurate to 0.1 g.)

Compare Jill and Joe’s data with the correct analytical data, and determine 

whether using a less accurate balance significantly affects experimental error. 

Solution 

The weight of water removed from the cornmeal by drying is (W
1
  W

2
). The 

weight of the dry cornmeal is (W
2
  W

3
). First, use the student data in Table 1.4 

to calculate the weight fraction, W, of water in the partially dried cornmeal, as 

defined by the following equation:

 W
W W

W W
1 2

2 3

0 125.
g water

g dry solids
 

Taking the partial derivative of the above equation and following the procedure 

in the previous illustrated example yields the following equation for the accumu-

lated error.

 s
W W

s
W W

W W
s

W W

W
W W

2

2 3

2

2 1 3

2 3

2

2

2 1 3

2

1
1 2( ) ( WW

sW

3

2

2

2

3)
 

The values for s s s
W W W1 2 3

, and  used in this calculation are all 0.1 g, which is the 

manufacturer’s specified “error” for the scale used by the students. Calculating s 

from their data yields,

 s2 3
2

2
106.1305

g water

g dry solids
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and

 s 0.07830
g water

g dry solids
 

so that

 W 0 125. 0.07830
g water

g dry solids
 

A comparison of the value of s with the value of W shows that the data obtained 

with this balance is very “bad.” On a percentage basis, s/W is accurate to within 

50%. This value of W is then used in successive calculations with the accumulated 

errors getting even worse.

Much better results would have been obtained if the students used an analytical 

balance with 0.001 g accuracy. A value for s of 0.00086 g/g would result in a per-

centage error of only 0.52% on redoing the calculation with the correct weights. 

Details are left as an exercise for the reader. 
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An infinite series is an infinite sum of the form

 a a an1 2  (2.1)

going on to infinitely many terms. It can further be defined that the terms in some 

series are non-ending. Such series are familiar even in the simplest operations. For 

example, one may write

 
2

3
0 66666.  (2.2)

This is equivalent to

 
2

3

4

6

6

10

6

100

6

1 000

6

10 000, ,
 (2.3)

2 
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One might also “truncate,” or cut the infinite series after a certain number of 

decimal places and use the resulting rational number

 0 6666
6666

10 000
.

,
 (2.4)

as a sufficiently good approximation to the number 2 3/ .  One may also “round off ” 

the above number to 0.6667.

The procedure just used applies to the general series a
1

a
2
 +… a

n
 …. To 

evaluate it, one rounds off after m terms and replaces the series by a finite sum.

 a a am1 2  (2.5)

However, the rounding off procedure must be justified, i.e., one must be sure that 

taking more than m terms would not significantly affect the result. For the series

 3 3 3 3  (2.6)

such a justification would be inappropriate, since the first term gives a sum of 3, 

two terms give 6, three terms give 9, etc. Truncating is of no help here. This series 

is an example of a divergent series. On the other hand, for the series

 S
n

1
1

4

1

9

1

16

1
2  (2.7)

it seems reasonable to truncate. Thus, one has as sums of the first four of the n 

terms:

 S 1
1

4

1

9

1

16

205

144  (2.8)

In addition, for

 n S n S n S1 1 2 1
1

4

5

4
3 1

1

4

1

5

49

36
, , ; , ;     

Three sections compliment the presentation of this chapter. Section numbers 

and subject titles follow:

2.1: Other Infinite Series

2.2: Tests for Convergence and Divergence

2.3: Infinite Series Equations
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2.1  Other Infinite Series

A portion of differential equations (see Part II, Chapter 11) result in solutions that 

can be expressed in a closed or analytical form. In such cases, many of these solu-

tions are obtained in terms of functions which actually represent an infinite series. 

Logarithmic, trigonometric, and hyperbolic functions are cases in point (see last 

section in this chapter). It is not too surprising, then, to find that the solutions to 

certain classes of differential equations are obtained in the form of an infinite series 

of terms, i.e., an infinite series. Certain equations of this class appear frequently 

enough that the particular forms of infinite series which represent their solutions 

have been given specific names and symbols and the numerical values of the series 

are tabulated in reference books. Bessel functions, Legendre polynomials, etc., are 

typical examples [1]. Power series and Taylor series are briefly addressed below.

An expression of the type

 a a x x a x xn

n

0 1 0 0( ) ( )  (2.9)

is termed a “power series.” Such a series is said to “converge” if it approaches a 

finite value as n approaches infinity. The simplest test for convergence is the ratio 

test; if the absolute value of the ratio of the (n 1) term to the nth term in any 

infinite series approaches a limit j as n , then the series converges for j < 1, 

diverges for j > 1, and fails if j 1.

A “Taylor series” expansion of y as a function of x (in the vicinity of xo) may be 

written as

 y x y x x x y x
x x

y x( ) ( ) ( ) ( )
!

( )
( )

0 0 0
0

2

0
2

 (2.10)

where

 y ythe first derivative; the second derivative, etc.  (2.11)

By setting the interval from the original point of expansion x
0 
to a general point x 

as h, Equation (2.10) can be rewritten as

 y x h
h

n

d y

dxn

n n

n

x x

( )
!

( )
0

0
0

 (2.12)

where 0! 1. If the values of the function and its derivatives at the point x
0 

are given, the solution for other values of x can be determined by simply 

adjusting h.
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2.2  Tests for Convergence and Divergence [2]

In general, the problem of determining whether a given series will or will not con-

verge can occasionally require a great deal of ingenuity and resourcefulness. The 

convergence or divergence of an infinite series is complicated by the removal of 

a finite number of terms. There is no all-inclusive test which can be applied to all 

series. As the only alternative, it is necessary to apply one or more of the theorems 

below in an attempt to ascertain the convergence or divergence of the series under 

study. The following 10 tests are given in relative order of effectiveness.

1. A series will converge if the absolute value of each term (with or 

without a finite number of terms) is less than the corresponding 

term of a known convergent series.

2. A positive series is divergent if it is term-wise larger than a known 

divergent series of positive terms.

3. A series is divergent if the nth term of the series does not approach 

zero as n becomes increasingly large.

4. If the absolute ratio of the (n 1) term divided by the nth term as 

n becomes unbounded approaches

a. a number less than 1, the series is convergent.

b. a number greater than 1, the series is divergent.

c. a number equal to 1, the test for convergence or divergence is 

inconclusive.

5. The series converges if the partial summation of a series converges 

as n becomes unbounded.

6. The series diverges if the partial summation of a series diverges as 

n becomes unbounded.

7. If the terms of a series are alternately positive and negative and 

never increase in numerical value, the series will converge, pro-

vided that the terms tend to zero as a limit.

8. If the nth root of the absolute value of the nth term, as n becomes 

unbounded, approaches

a. a number less than 1, the series is convergent.

b. a number greater than 1, the series is divergent.

c. a number equal to 1, the test for convergence or divergence is 

inconclusive.

9. If a series has no sum, it is divergent.

10. Multiplying every term of an infinite series by the same quantity 

will not affect the convergence or divergence of the series.

2.3  Infinite Series Equations

This section opens with 3 arithmetic series which are expressed in terms of n, 

 followed by over 30 special cases involving infinite series.
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 1 2 3
1

2
n

n n( )
 (2.13)

 1 3 5 2 1 2( )n n  (2.14)

 ( ) ( ) ( )
( )( )

1 2 3
1 2 1

6

2 2 2 2n
n n n

 (2.15)

Special cases follow.

 1
1

2

1

3

1

4

1

5
2ln( )  (2.16)

 1
1

3

1

5

1

7

1

9 4
 (2.17)

 
1

1

1

2

1

3

1

4 62 2 2 2

2

 (2.18)

 
1

1

1

2

1

3

1

4 904 4 4 4

4

 (2.19)

 
1

1

1

2

1

3

1

4 122 2 2 2

2

 (2.20)

 
1

1

1

2

1

3

1

4

7

7204 4 4 4

4

 (2.21)

 
1

1

1

3

1

5

1

7 82 2 2 2

2

 (2.22)

 
1

1

1

3

1

5

1

7 964 4 4 4

4

 (2.23)

 
1

1

1

3

1

5

1

7 323 3 3 3

3

 (2.24)

 
1

1 3

1

3 5

1

5 7

1

7 9

1

2
 (2.25)

 
1

1 3

1

2 4

1

3 5

1

4 6

3

4
 (2.26)



26 Introduction to Mathematical Methods

 
1

1 3

1

3 5

1

5 7

1

7 9

8

162 2 2 2 2 2 2 2

2

 (2.27)

 
1

1 2 3

1

2 3 4

1

3 4 5

4 39

162 2 2 2 2 2 2 2 2

2

 (2.28)

 ( )1 1 1 11 2 3 4x x x x x x  (2.29)

 ( )1 1 2 3 4 5 1 12 2 3 4x x x x x x  (2.30)

 ( )1 1 3 6 10 15 1 13 2 3 4x x x x x x  (2.31)

 ( )1 1
1

2

1 3

2 4

1 3 5

2 4 6
1 1

1

2 2 3x x x x x  (2.32)

 ( )1 1
1

2

1

2 4

1 3

2 4 6

1

2 2 3x x x x x  (2.33)

 e x
x x

xx 1
2 3

2 3

! !
  (2.34)

 a e x a
x a x a

xx x aln ln
ln

!

ln

!

( ) ( )
1

2 3

2 3

  (2.35)

 ln x
x

x

x

x

x

x
2

1

1

1

3

1

1

1

5

1

1

3 5

 x 0  (2.36)

 l n  x
x

x

x

x

x

x
x

1 1

2

1 1

3

1 1

2

2 3

 (2.37)

 ln( )1
2 3 4

1 1
2 3 4

x x
x x x

x  (2.38)

 
1

2

1

1 3 5 7
1 1

3 5 7

ln
! !

x

x
x

x x x
x  (2.39)
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 sin
! ! !

x x
x x x

x
3 5 7

3 5 7
  (2.40)

 cos
! ! !

;x
x x x

x1
2 4 6

2 4 6

  (2.41)
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Engineering data are often best understood when presented in the form of graphs or 

mathematical equations. The preferred method of obtaining the mathematical rela-

tions between variables is to plot the data as straight lines and use the slope-intercept 

method to obtain coefficients and exponents; therefore, it behooves the environmen-

tal engineer and scientist to be aware of the methods of obtaining straight lines on 

various types of graph paper, and of determining the equations of such lines (see Part 

IV, Chapter 28). One always strives to plot data as straight lines because of the sim-

plicity of the curve, ease of both interpolation and extrapolation. Graphical meth-

ods proved invaluable in the past in the analysis of relatively complex relationships. 

Much of the basic physical and chemical data are still best represented graphically, 

and graphical methods are often employed in the analytical treatment of processes.

One or more of the many types of graphical representations may be employed 

for the following purposes:

1. as an aid in visualizing a process for the representation of qualita-

tive data

2. for the representation of quantitative data

3. for the representation of a theoretical equation

4. for the representation of an empirical equation

3
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5. for the comparison of experimental data with a theoretical expression

6. for the comparison of experimental data with an empirical expression

The relation between two quantities y ‒ the dependent variable and x ‒ the inde-

pendent variable is commonly obtained as a tabulation of values of y for several 

different values of x. The relation between y and x may not be easy to visualize by 

studying the tabulated results and is often best seen by plotting y vs. x. If the condi-

tions are such that y is known to be a function of x only, the functional relation will 

be indicated by the fact that the points may be represented graphically by a smooth 

curve. Deviations of the points from a smooth curve generally indicates unreli-

ability in the data. If y is a function of two variables x
1 

and x
2
, a series of results 

of y in terms of x
1 
may be obtained in terms of x

2
. When plotted, the data will be 

represented by a family of curves, each curve representing the relation between y
 

and x
1
 for a definite constant value of x

2
. If another variable x

3 
is involved, one may 

have separate graphs for constant values of x
3
, each showing a family of curves of 

y vs. x
1
. One may expand this method of representing data to express the relation-

ship between more than four independent variables (This method is explored in 

more depth in Chapter 32, Part V).

Graphs can also be used for interpolation and extrapolation. In addition, 

graphs may be employed to perform common mathematical manipulations such 

as integration and differentiation. The data may be of almost any type encountered 

in environmental engineering and science practice. They may be physical property 

data, such as the variation in density and viscosity with temperature. They may be 

process data, such as the variation in temperature along a tube in a heat exchanger 

with respect to the flow rate of the fluid. One of the things that should be kept in 

mind whenever working with plotted data is the loss of accuracy arising due to the 

use of graphs. In general, the number of significant figures may be only as great as 

the size of the divisions on the graph.

Five sections compliment the presentation of this chapter. Section numbers 

and subject titles follow:

3.1: Rectangular Coordinates

3.2: Logarithmic-Logarithmic (Log-Log) Coordinates

3.3: Semi- Logarithmic (Semi-Log) Coordinates

3.4: Other Graphical Coordinates

3.5: Methods of Plotting Data

The reader should note that a good part of this material will be revisited in the 

Optimization section (Chapter 32, Part V).

3.1  Rectangular Coordinates

Rectangular (sometimes referred to as Cartesian) coordinates on graph paper are 

most generally used to represent equations of the form
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 y mx b  (3.1)

where y dependent variable represented on the ordinate

 x independent variable represented on the abscissa

 m slope of the line

 b y-intercept at x 0

The bulk of the development in this chapter will be based on rectangular coor-

dinates. For general engineering use, the most common form of graph paper is the 

8 ½  11-inch sheet, having 20 lines per inch, with every fifth line accented, and 

every tenth line heavily accented. This type of coordinate graph may be obtained 

on drawing or tracing paper, with lines in black, orange, or green, and with or 

without accented and heavy lines; it is also available in other sizes.

All graphs are created by drawing a line, or lines, about one or more axes. For 

the purpose of this chapter, the presentation will be primarily concerned with 

graphs built around two axes ‒ the x axis and the y axis. The graph data may be 

presented as coordinates of the x and y axis in the form (x, y), or they may be pre-

sented as the abscissa (distance from the y axis or the x coordinate) and the ordi-

nate (distance from the x axis or the y coordinate). Referring to Figure 3.1, point 

L5 has an abscissa (x coordinate) of +60 and an ordinate of +40 (y coordinate). 

Using coordinate notation, the point can be described as (60, 40) where the points 

are listed as (x, y). Point L2 can be described as (–6.7, 0).

All coordinates are produced as the result of solving an equation by assigning 

different values to x or y, and solving for the value of the other. By convention, 

problems are usually stated in the following form: y some value(s) of x and other 

constant(s) (e.g., y mx +b).

The x and y axes divide a graph into four quadrants. The quadrants are usu-

ally numbered in a counter-clockwise sequence, beginning with the upper right 

x

 

60
Quadrant II Quadrant I

Quadrant III Quadrant IV

L1

L2
L3

L4

y = 0.6x + 4

(10, 10)

(60, 40)

(0, 4)
(–6.7, 0)

(–40, –20)

L5

50

40

y

30

20

10

0

–10

–20

–30

–40
–40 –30 –20 –10 0 10 20 30 40 50 60

Figure 3.1 Linear coordinates.
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quadrant (see Figure 3.1). Note that in quadrants I and IV, the x values are positive 

while the x values are negative in quadrants II and III. The y values are positive in 

quadrants I and II and negative in quadrants III and IV. The quadrant identifica-

tions are only of value when information is provided that a point or result lies in 

a certain quadrant. Without knowledge of the precise values of x or y one can still 

determine whether the x and y values are positive or negative.

Equations are identified by the type of line (or curve) they produce when plot-

ted on a graph. A linear equation, as the name implies, will result in a plot of a 

straight line on a graph. With the linear equation, each incremental change of x 

(or y) will result in an incremental change of a fixed ratio in y (or x). The ratio of 

change between y and x is known as the slope of the line. A linear equation is also 

referred to as a first-degree equation. The line plotted between L1 and L5 in Figure 

3.1, is linear. All solutions to the equation describing the line (y 0.6x 4) will fall 

somewhere on the line.

When plotted, a non-linear equation will result in a line having one or more curves, 

and the ratio of change between x and y is not constant. The line between points N0 

and N5 in Figure 3.2 represents the plot of a non-linear equation. Non-linear equa-

tions come in a variety of forms and may be quickly identified since they contain 

functions or operators that cause non-linearity, i.e., sin, cos, ln, log, exponents. The 

equation y x2 (see Figure 3.2) is representative of a non-linear equation.

Reference to the x and y intercepts are often made when working with graphs. 

An intercept is the point at which a line crosses the x or y axis. The x-intercept is the 

point where a line crosses the x axis (y 0), and the y-intercept is the point where a 

line crosses the y axis (x 0). In Figure 3.1, the x-intercept occurs at ( 6.7, 0) and 

the y-intercept occurs at (0,4).

In a linear equation, there can be only one x and one y intercept. With non-lin-

ear equations, there may be no x or y intercept or there may be multiple intercepts. 
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Figure 3.2 Non-linear equation.
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Note that in Figure 3.2, an intercept occurs when x 0 or y 0. In Figure 3.3, there 

are two x-intercepts [( 2, 0) and (0, 0)] and one y-intercept (0, 0).

The reader should note that a good part of the above material will be revisited 

in Part IV, Chapter 32.

3.2  Logarithmic-Logarithmic (Log-Log) Coordinates

A logarithmic scale is easily constructed by plotting (on rectangular paper) num-

bers from one to ten on the ordinate versus the logarithm of the number on the 

abscissa. If the points representing the numbers on the ordinate are projected to 

the resultant curve and then upward, the scale formed by the vertical lines will 

be a logarithmic scale. The construction is illustrated in Figure 3.4. The utility of 

the logarithmic scale lies in the fact that one can use actual numbers on the scale 

instead of the logarithms. When two logarithmic scales are placed perpendicular 

to each other and lines are drawn vertically and horizontally to represent major 

divisions, a full logarithmic graph results, i.e., a log-log graph.

The term log-log or full logarithmic referred to above is used to distinguish 

between another kind yet to be discussed, e.g., semi-logarithmic (see next sec-

tion). The full logarithmic graphs may be obtained in many types depending on 

the scale length, sheet size, and number of cycles desired. The paper is specified 

by the number of cycles on the ordinate and abscissa; for example, logarithmic 2  

3 cycles means two cycles on the ordinate and three on the abscissa. Cycle lengths 

are generally the same on both axes of a particular sheet. In addition, the distance 

between numbers differing by a factor of 10 is constant on a logarithmic scale.

When plotting lines on logarithmic paper, equations in the general form

 y bxm  (3.2)
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where y a dependent variable

 x an independent variable

 b a constant

 m a constant

will plot as straight lines on (full) logarithmic paper. A form of the equation analo-

gous to the slope-intercept equation for a straight line is obtained by plotting the 

equation in logarithmic form, i.e.,

 log log logy b m x  (3.3)

If log y versus log x were plotted on rectangular coordinates, a straight line of slope 

m and y-intercept log b would result. An expression for the slope is obtained by 

differentiating Equation (3.3).

 
d y

d x
m

(log )

(log )
 (3.4)

When x 1, m log x 0, and the equation reduces to

 log logy b  (3.5)

Hence, log b is the y-intercept.

To illustrate the above, a linear plot of the equation

 y x2 1 3.
 (3.6)

Figure 3.4 Log
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Figure 3.6 The equation y 2x1.3 on logarithmic-logarithmic paper.

is given in Figure 3.5 on rectangular coordinate paper. It should be noted that 

although the slope was obtained from a ratio of logarithmic differences, the same 

result could have been obtained using measured differences if the scale of the ordinate 

and abscissa were the same (in this case they were).

Inspection of Figure 3.6 reveals that equal measured distances on the logarith-

mic scale are equivalent to equal logarithmic differences on the abscissa of that 

plot. It therefore follows that since the slope of Equation (3.3) is a ratio of loga-

rithmic differences, the slope on full logarithmic paper could be obtained using 

measured distances. The plot of Equation (3.6) on 2  2 cycle logarithmic paper 

is given in Figure 3.6. The slope using logarithmic differences from Figure 3.5 is

 m
y y

x x
2 1

2 1

1 08 0 43

0 60 0 10
1 3

. .

. .
.  (3.7)
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and the slope using measured differences in Figure 3.6 is

 m
a

b
1 3.  (3.8)

To further illustrate the use of full logarithmic paper, consider the determina-

tion of a mathematical equation to represent data which are known to plot as a 

straight line on log-log paper. If data in Table 3.1 are to be plotted, it is evident that 

more than one cycle will be needed in both directions. For x, the data covers the 

range from

 2 10 0 2 10 6 2 100 1 1 (or  to . ) .  (3.9)

and for y the range is

 3 6 10 0 36 10 5 0 100 1 1. ( . ) .or  to  (3.10)

In both cases two cycles are needed to cover the ranges from 100 to 101 and from 

101 to 102. A general rule would be that the number of cycles should be equal to 

the number of exponents of ten involved in the range of data – in this case, two for 

each coordinate. The data are plotted in Figure 3.7. The slope may be once again 

calculated in either of two ways:

 m
log log .

log log .
.

50 3 6

62 2 0
0 765  (3.11)

or

 m
c

d
0 765.  (3.12)

Table 3.1 Log data.

x y

 2.0  3.6

 3.9  6.0

 7.0  9.4

14.0 16.0

26.5 26.0

62.0 50.0
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The y-intercept is 2.13; hence, the equation of the line is

 log . . logy x2 13 0 765  (3.13)

In those cases where the line x 1 is several cycles removed from the data 

range  it may be inconvenient to extrapolate; the intercept can then be is deter-

mined by substituting the value of the slope and one data point and solving for b.

3.3  Semilogarithmic (Semi-Log) Coordinates

Graph paper made with one logarithmic scale and one arithmetic scale is termed 

semilogarithmic. The logarithmic scale is normally the ordinate and the arithme-

tic scale is the abscissa on semilogarithmic paper. The paper is available in many 

styles depending on the sheet size, type of paper, color of lines, number of cycles, 

length of cycles, and the divisions on the uniform scale. The designation semilog-

arithmic, 7 5 to the ½ inch refers to semilogarithmic paper whose logarithmic 

scale contains seven cycles whose uniform scale contains five divisions to the half 

inch. The designation 10 division per inch (70 divisions) by two 5-inch cycles refers 

to paper whose arithmetic scale is seven inches long and contains ten division per 

inch, and whose logarithmic scale contains two-cycles for each five inches. Thus, 

a semilogarithmic graph uses a standard scale for one axis and a logarithmic scale 

for the other axis. The reason for this use of scales is that a logarithmic (exponen-

tial) plot would quickly exceed the physical boundaries of the graph.

Semilogarithmic paper can be used to represent equations of the form

 y nemx  (3.14)

1
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100

1 10 100

y

x

c

 

d

 

Figure 3.7 Determination of a mathematical equation from raw data.
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or

 y n mx10  (3.15)

where y dependent variable

 x independent variable

 n a constant

 m a constant

 e the natural logarithm

Here again a form of the equation analogous to the slope-intercept equation 

can be obtained by placing one of the above equations in logarithmic form. For 

example, Equation (3.14) may be written as

 log y b mx  (3.16)

where b log n

An expression for slope is obtained from the differential form of Equation (3.16):

 
d y

dx
m

(log )
 (3.17)

so that the y-intercept is log n or b. Expressions for the slope and intercept of 

Equation (3.15) are similar to those of Equation (3.14) except for the fact that 

natural logarithms are employed.

One can illustrate the use of semilogarithmic paper by plotting a segment of the 

curve representing the equation

 log .
.

y
x

2 2
46 3

 (3.18)

The line may be constructed (see Figure 3.8) by choosing values of x, solving 

for y, and plotting the results. Note that values of y and not log y are plotted 

on the ordinate. The slope is a logarithmic difference divided by an arithmetic 

difference and, in this case, may be calculated from the two indicated points as 

follows:

 m
log log .

. .

1585 158 5

46 3 0

1

46 3
 (3.19)

The slope of a line on semilogarithmic coordinates may be calculated from any 

two points, but the simplest method is the one used above in which the slope 

is the logarithmic difference on one cycle (equal to log 10 or 1.0) divided by 
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the arithmetic difference cut by one cycle. Note that if the cycle had been taken 

between y 300 and y 3000, the slope would be

 m
log log

. . .

3000 300

59 1 12 8

1

46 3
 (3.20)

It should also be noted that the y-intercept is 2.2, as required by Equation (3.18).

The method of obtaining a mathematical equation from data that are known 

to plot as a straight line on semilogarithmic paper may be illustrated by the use of 

the following data provided in Table 3.2.

Figure 3.8 The equation log y 2.2 x/46.3 plotted on semilogarithmic paper.
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Figure 3.9 The determination of a mathematical equation from raw data.
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The data are plotted in Figure 3.9. Three cycles on the logarithmic scale were 

necessary because values of y ranged from

 4 32 10 2 7 102 4. . to  (3.21)

and three exponents of ten are involved, e.g., 2, 3, and 4. The slope may be calcu-

lated as follows:

 m
log(27,000) log(432)

4.5 0.93

1

2
 (3.22)

The line is extrapolated to x 0 to give a y-intercept of 2.175; hence the equation 

representing the data is

 log log logy
x

2.175
2

 (3.23)

or

 y 2.175+( /2)x  (3.24)

3.4  Other Graphical Coordinates

Triangular (or trilinear) coordinates are used in some mass transfer studies to rep-

resent systems defined by three variables [1]. The graph can be in the form of an 

equilateral triangle, each side of which is usually divided into 100 equal parts (see 

Figure 3.10).

Table 3.2 Log data.

x y

0.93 432

1.52 886

2.56 2,830

3.20 6,000

3.80 12,000

4.50 27,000
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In addition to the more common types of graph paper previously discussed, 

the practicing environmental engineer and scientist may also have need for prob-

ability versus arithmetic, probability versus logarithmic, logarithmic versus recip-

rocals, and other special types of graphs. Non-standard scales, if desired, may be 

constructed in a similar manner to the logarithmic scale shown earlier. For exam-

ple, logarithmic-probability (log-normal) graphics find applications in air pollu-

tion studies to describe particle size distribution [2].

3.5  Methods of Plotting Data

The simplest procedure to employ in plotting equations of various forms is detailed 

in Table 3.3 Various additional forms are available in the literature. Details on sta-

tistical methods for calculating the coefficients in the seven equations provided are 

reviewed in Part IV, Chapter 28.
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Table 3.3 Procedures for plotting equations.

y a bx
plot y vs. x

y axn plot log y vs. log x or y vs. x on logarithmic crdinates

y c axn  first obtain c as an intercept on a plot of y vs. x; then plot log (y  c) vs. 

x on logarithmic coordinates

y aebx plot log y vs. x on semilogarithmic coordinates

y abx plot log y vs. x on semilogarithmic coordinates

y a
b

x
plot y vs 1/x

y
x

a bx
plot x/y vs. x or 1/y vs. 1/x
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The complete design specification for a medium-sized chemical process could 

cover several hundred pages. It would include diagrams, tables, and discussion of 

all aspects of the plant, including chemical, environmental, mechanical, structural, 

electrical, metallurgical, and civil engineering considerations. To understand a 

complete design, an environmental engineer or scientist must have training and 

experience in this area (Note: Computer flow diagrams are not addressed in this 

chapter.)

Any manufacturing plant, whether for the production of canned fruit, vacuum 

cleaners, sulfuric acid, rubber tires, or any environmental process, may be visual-

ized as a box into which raw materials and energy are fed and from which use-

ful products, waste, and energy emerge. The manufacturing process ordinarily 

involves several consecutive operations or steps through which the materials in 

the process pass.

Figure 4.1 is a schematic representation of materials passing into and out of an 

unidentified process for which there are environmental concerns. In this hypo-

thetical three-step process, raw materials A and B are fed into step 1; material C is 

drawn off while material D is passed to step 2 for further processing. One cannot 

tell whether C is a useful product or waste. From the sketch in step 2, it is neces-

sary to combine raw material E with D in order to produce F. In step 3, material F 

4 
Flow Diagrams
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is separated into G, H, and J, ending the process. Again, the figure does not show 

which of the last three items are useful products. The arrows lettered A, B, C, etc. 

represented material streams and the sketch is known as a flow diagram. Although 

nothing has been said about the specific nature of the process, this flow diagram 

nevertheless conveys a great deal of information; namely, that in this three-step 

process, three raw materials A, B, and E are required to produce four products 

C, G, H, and J, and that these seven materials enter and leave the manufacturing 

process at the points shown on the diagram [1].

As one might expect, a process flow diagram for a chemical or petroleum plant 

is usually significantly more complex than that for a simple environmental facility. 

For the latter case, the flow sequence and other determinations often reduce to an 

approach that employs a “railroad” or sequential type of calculation that does not 

require iterative calculations [1].

Five sections compliment the presentation of this chapter. Section numbers and 

subject titles follow:

4.1: Process Schematics

4.2: Flow Chart Symbols

4.3: Preparing Flow Diagrams

4.4: Simplified Flow Diagrams

4.5: Hazard Risk Assessment Flow Chart

4.1  Process Schematics

To the environmental engineer, but particularly the chemical engineer, the 

 process flowchart is the key instrument for defining, refining, and documenting 

a chemical process. The process flow diagram is the authorized process blueprint, 

the framework for specifications used in equipment designation and design; it is 

the single, authoritative document employed to define, construct, and operate a 

process [1].

There are several essential constituents to a detailed process flowchart beyond 

equipment symbols and process stream flow lines. These include equipment 

B

A

C

D

E

F H

J

G

1 2 3

1 = pump

2 = mixer

3 = separator

Figure 4.1 Flow diagram for a three-step manufacturing process.
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identification numbers and names; temperature and pressure designations; utility 

designations; mass, molar, and volumetric flow rates for each process stream; and 

(usually), a material balance table pertaining to process flow lines. The process flow 

diagram may also contain additional information such as energy requirements, 

major instrumentation, environmental equipment (and concerns), and physical 

properties of the process streams. When properly assembled and employed, a pro-

cess schematic provides a coherent picture of the overall process; it can pinpoint 

some deficiencies in the process that may have been overlooked earlier in a study, 

e.g., instrumentation overkill, by-products (undesirable or otherwise), and recycle 

needs. Basically, the flowchart symbolically and pictorially represents the interre-

lation between the various flow streams and equipment, and permits easy calcula-

tion of material and energy balances.

4.2  Flow Chart Symbols

Various symbols are universally employed to represent equipment, equipment 

parts, valves, piping, etc. Some of these are depicted in the schematic in Figure 4.2. 

Although a significant number of these symbols are used to describe some of the 

chemical and petrochemical processes, only a few are needed for simpler facilities. 

These symbols obviously reduce, and in some instances, replace detailed written 

descriptions of the process. Note that many of the symbols are pictorial, which 

helps in better describing process components, units and equipment [2].

The degree of sophistication and details of a flowchart usually vary with both 

the preparer and time. It may initially consist of a simple freehand block diagram 

with limited information that includes only the equipment; later versions may 

Centrifugal pumpScrubberElectrostatic precipitator

Packed

column

Spray

column Incinerator

Steam

Flue gases

Boiler

feed water
Ash

Chimney or stack

Raw

water
Treated
water

Water
treatment

system

Water treatment
Sludge

Utilities

Feed

Fuel

and air

Figure 4.2 Flowchart symbols (Cont.).
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include line drawings with pertinent process data such as overall and componen-

tial flow rates, utility and energy requirements, environmental equipment, and 

instrumentation. During the later stages of a design project, the flowchart will be 

a highly-detailed P&I (piping and instrumentation) diagram; this aspect of the 

design procedure is beyond the scope of this text. The reader is referred to the 

literature for information on P&I diagrams [3].

In a sense, flowcharts are the international language of the engineer, particu-

larly the practicing engineer. Chemical engineers conceptually view a (chemical) 

plant as consisting of a series of interrelated building blocks that are defined as 

units or unit operations [4–7]. The plant ties together the various pieces of equip-

ment that make up the process. Flow schematics follow the successive steps of a 

process by indicating where the pieces of equipment are located and the material 

streams entering and leaving each unit [8–9].

4.3  Preparing Flow Diagrams

Before attempting to calculate the material or energy requirements of a process 

it is desirable to attain a clear picture of the process. The best way to do this is to 

draw the aforementioned flow diagram where the flow diagram is defined as a line 

diagram showing the succession of steps in the process. Flow diagrams are very 

important for saving time and eliminating mistakes. The beginner should learn 

how to draw them properly and cultivate the habit of sketching them on the slight-

est excuse. The following rules should be observed.

1. Show operating units by simple neat rectangles. Do not waste time 

in elaborate art work since it is without advantage or even meaning 

(see Figure 4.3).

2. Make each material stream line represent an actual stream of mate-

rial passing along a pipe, duct, chute, belt, or other conveying device. 

Refer to Figure 4.4(a). Show the gaseous mixture of carbon dioxide, 

Counterflow

Condensers

Process fluid on

tube side

Process fluid on

shell side

Process fluid on

tube side

Process fluid on

shell side

Process fluid on

shell side

Parallel flow

Process fluid on

tube side

Figure 4.2 Flowchart symbols (Continued).
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oxygen, carbon monoxide, nitrogen, and water vapor obtained from 

the combustion of a hydrocarbon fuel and exiting from the stack of 

a furnace as a single material stream of flue gas, not to be confused 

as five separate streams. Figure 4.4(b) shows a sophisticated “device” 

that sorts components of the flue gas and delivers them as five sepa-

rate products through five separate pipes.

3. Distinguish between “open” and “closed” material streams. In 

Figure 4.5(a), open steam is being blown into the tank, mixing 

with the other materials in it. In Figure 4.5(b), steam is passing 

through a coil, being kept separate from the tank contents, and 

heating them by the transfer of heat through the walls of the coil.

Figure 4.3 Simple flowchart symbols.
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4. Distinguish between a continuous operation, in which raw mate-

rial is fed into the equipment in an uninterrupted stream and a 

batch operation in which a fixed charge of material is introduced, 

processed, and removed, followed by the feeding of a new charge 

with repetition of the cycle, etc. Batch operation is indicated con-

veniently by putting a double bar on the material stream lines of 

entering materials as shown in Figure 4.6(b).

5. Except for a few unusual situations which will be discussed later, 

keep flow diagrams free of data regarding the material streams. An 

over-burden of data clutters up the diagram and robs it of its main 

function, which is to present a clear picture of the materials as they 

move into, through, and out of the process. This is illustrated in 

Figure 4.7 with the air and coal entering a furnace.

4.4  Simplified Flow Diagrams

In many cases simplified flow sheets are prepared to illustrate a process. These 

are often for a special purpose and do not show all the details of the process. 

Figure 4.5 Open and closed material streams.
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Figure 4.6 Continuous vs. batch operation.
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A common type of flow sheet shows the major unit operations and chemical reac-

tors with their interconnecting piping and an identification of the materials being 

processed. The units are not shown to scale, but the drawing may resemble the 

equipment used for the operation. Such a diagram would be called a graphic pro-

cess flow sheet. For a small process of a few units, a pictorial flow sheet with draw-

ings of equipment approximately to scale may be used. Photographs are usually 

unsatisfactory because the arrangement and connections are seldom clear. On a 

process flow sheet, the equipment is arranged logically to show the flow of mate-

rials through the process, but a photograph shows the final physical arrangement 

determined by structural requirements without regard to the process flow. All 

tall absorber columns may be grouped together for structural support, and large 

heat exchangers may be grouped together for ease of maintenance. The successful 

individual must learn to read flow sheets and to relate them to the actual plant 

layout.

If sufficient data are available, a quantitative process flowsheet may be prepared 

showing the flow rates, compositions, temperatures, and pressures throughout the 

process. Such flow sheets may be very complicated. Flow sheets showing instru-

mentation and controls are also occasionally prepared.

4.5  Hazard Risk Assessment Flow Chart

An acceptable risk is a risk whose probability is unlikely to occur during the lifetime 

of a plant or process. An acceptable hazard risk can also be defined as an acci-

dent that has a high probability of occurring, but with negligible consequences. 

Risks can be ranked qualitatively in categories of high, medium, and low. Risks can 

also be ranked quantitatively as the annual number of fatalities per million affect 

individuals.

Hazard risk assessment (HZRA) calculations are based on an algorithm pro-

posed over 30 years ago. This algorithm is based on a simple flowchart (see also 

Flue gas

Cinder

Furnace

Flue gas

Air

Coal

Cinder

Furnace

Air: 79% N
2
, 21% O

2
,

t=70°F, p=1atm, H=62%

Coal: 3.8% H
2
O, 8.6% ash,

7.2% volatile matter,

80.4% fixed carbon

(a) Right (b) Wrong

Figure 4.7 Inclusion versus exclusion of experimental data on flow diagrams.
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Figure 4.8). There are several steps in evaluating the risk of an accident; if the 

 system in question is a chemical plant, the following guidelines apply:

1. A brief description of the equipment and chemicals used in the 

plant is needed.

2. Any hazard in the system has to be identified. Hazards that may 

occur in a chemical plant include:

a. Corrosion

b. Explosions

c. Fires

d. Rupture of a pressurized vessel

e. Runaway reactions

f. Slippage

g. Unexpected leaks

3. The event or series of events that will initiate an accident must be 

identified. An event could be a failure to follow correct safety pro-

cedures, to improperly repair equipment, or the failure of a safely 

mechanism.

4. The probability that the accident will occur often has to be deter-

mined. For example, if a nuclear power plant has a 10-year life, 

what is the probability that the temperature in a reactor will exceed 

System

description

Hazard/
event

problem
identification

Accident
probability

Accident
consequence

evaluation

Risk
determination

Is isk/
hazard

acceptable?

If YES,
operate
system

If NO,
modify
system

Figure 4.8 HZRA flowchart for a chemical plant.
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the specified temperature range? The probability can be ranked 

qualitatively from low to high. A low probability means that it is 

unlikely for the event to occur in the life of the plant. A medium 

probability suggests that there is a possibility that the event will 

occur. A high probability means that the event will probably occur 

during the life of the plant.

5. The severity of the consequence of the accident must be determined.

6. If the probability of the accident and the severity of its conse-

quences are low, then the risk is usually deemed acceptable and the 

plant should be allowed to operate. If the probability of occurrence 

is too high or the damage to the surroundings is too great, then the 

risk is usually unacceptable and the system needs to be modified to 

minimize these effects.

The heart of the hazard risk assessment algorithm provided is enclosed in the 

dashed-line box in Figure 4.8. This algorithm allows for reevaluation of the process 

if the risk is deemed unacceptable (the process is repeated starting with step 1 or 2).

The reader should note that both health risk assessment and hazard risk assess-

ment plus accompanying calculations have received extensive treatment in the 

literature [10–11].
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A surprising amount of a practicing environmental engineer’s time (and scien-

tist’s as well) is spent in converting data and equations from one set of units to 

another. Keep in mind that a unit is defined as a measure of a physical extent while 

a  dimension is a description of the physical extent. As long as most physicists and 

chemist make measurement in grams and centimeters while many engineers in the 

United States employ pounds and feet, confusion in terminology will continue to 

exist.

Units, unlike physical laws, can be considered as either derived or basic. There 

is a certain latitude in choosing the basic units and, unfortunately, this free choice 

has resulted in the aforementioned mild form of confusion. Two systems of units 

have arisen: metric-the cgs, or centimeters-gram-second system and the English 

the fps, or foot-pound-second system of engineering. The metric system has come 

to be defined as the System of International Units, or more commonly for some as 

the SI system.

Six sections compliment the presentation of this chapter. Section numbers and 

subject titles follow:

5.1: The Metric System

5.2: The SI System

5.3: Conversion of Units

5 
Dimensional Analysis
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5.4: Select Common Abbreviations

5.5: Dimensionless Numbers

5.6: Buckingham Pi ( ) System

5.1  The Metric System [1]

The need for a single worldwide coordinated measurement system was recognized 

nearly 350 years ago. In 1670, Gabriel Mouton, Vicar of St. Paul’s Church in Lyon, 

France, proposed a comprehensive decimal measurement system based on the 

length of one minute of arc of a great circle of the Earth. On 1671, Jean Picard, a 

French astronomer, proposed the length of a pendulum arc beating seconds as the 

unit of length. (Such a pendulum would be fairly easy to reproduce, thus facili-

tating the widespread distribution of uniform standards.) Other proposals were 

made, but over a century elapsed before any action was taken.

In 1790, in the midst of the French Revolution, the National Assembly of France 

requested the French Academy of Scientists to “deduce an invariable standard for 

all the measures and weights.” The Commission appointed by the Academy cre-

ated a system that was, at once, simple and scientific. The unit of length was to be 

a portion of the Earth’s circumference. Measures for capacity (volume) and mass 

(weight) were to be derived from the unit of length, thus relating the basic units of 

the system to each other and to nature. Furthermore, the larger and smaller ver-

sions of each unit were to be created by multiplying or dividing the basic units by 

10 and its multiples. This feature provided a great convenience to users of the sys-

tem by eliminating the need for calculating and dividing by 16 (to convert ounces 

to pounds) or by 12 (to convert inches to feet). Similar calculations in the metric 

system could be performed simply by shifting the decimal point. Thus, the metric 

system is a base-10 or decimal system.

The Commission assigned the name metre (which is now spelled meter) to the 

unit of length. This name was derived from the Greek word metron meaning “a 

measure.” The physical standard representing the meter was to be constructed 

so that it would equal one ten-millionth of the distance from the north pole to 

the equator along the meridian of the Earth running near Dunkirk in France and 

Barcelona in Spain.

The metric unit of mass, called the gram, was defined as the mass of one cubic 

centimeter (a cube that is 1/100 of a meter on each side) of water at its temperature 

of maximum density. The cubic decimeter (a cube 1/10 of a meter on each side) 

was chosen as the unit of fluid capacity. This measure was given the name liter.

Although the metric system was not accepted with enthusiasm at first, adop-

tion by other nations occurred steadily after France made its use compulsory in 

1840. The standardized character and decimal features of the metric system made 

it well suited to scientific and engineering work. Consequently, it is not surprising 

that the rapid spread of the system coincided with an age of rapid technological 

development. In the United States, by Act of Congress in 1866, it was made “lawful 
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throughout the United States of America to employ the weights and measures of 

the metric system in all contracts, dealings, or court proceedings.”

By the late 1860’s, even better metric standards were needed to keep pace with 

scientific advances. In 1875, an international treaty, the “Treaty of the Meter,” set 

up well-defined metric standards for length and mass, and established permanent 

machinery to recommend and adopt further refinements in the metric system. 

This treaty, known as the Metric Convention, was signed by 17 countries, including 

the United States.

As a result of the treaty, metric standards were constructed and distributed to 

each nation that ratified the Convention. The internationally agreed metric stan-

dards have served as the fundamental weights and measures standards of the 

United States since 1893.

A total of 35 nations- including the major nations of continental Europe and 

most of South America- had officially accepted the metric system by 1900. Today, 

with the exception of the United States and a few small countries, the entire world is 

predominately using the metric system, or is committed to such use. The Secretary 

of Commerce, in transmitting to Congress the results of a 3-year study authorized 

by the Metric Study Act of 1968, recommended in 1971 that the US change to the 

predominant use of the metric system through a coordinated national program.

The International Bureau of Weights and Measures located at Sevres, France, 

serves as a permanent secretariat for the Metric Convention, coordinating the 

exchange of information about the use and refinement of the metric system. As 

measurement science develops, more precise and easily reproducible ways of defin-

ing the measurement units will emerge. The General Conference of Weights and 

Measures- the diplomatic organization made up of adherents to the Convention- 

meets periodically to ratify improvements in the system and the standards.

5.2  The SI System

In 1960, the General Conference adopted an extensive revision and simplification 

of the system. The name Le Systeme International d’Unites (International System 

of Units), with the international abbreviation SI, was adopted for this modernized 

metric system. Further improvements in and additions to SI were made by the 

General Conference in 1964, 1968, and 1971.

The basic units in the SI system are the kilogram (mass), meter (length), sec-

ond (time), Kelvin (temperature), ampere (electric current), candela (the unit of 

luminous intensity), and radian (angular measure), all of which are commonly 

used by the practicing environmental engineer and scientist. The Celsius scale of 

temperature (0 °C 273.15 K) is commonly used with the absolute Kelvin scale. 

The important derived units are the newton (SI unit of force), the joule (SI unit of 

energy), the watt (SI unit of power), the pascal (SI unit of pressure), and the hertz 

(SI unit of frequency). There are a number of electrical units: coulomb (charge), 

farad (capacitance), henry (inductance), volt (potential), and weber (magnetic 
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flux). As noted above, one of the major advantages of the metric system is that 

larger and smaller units are given in powers of ten. In the SI system, a further sim-

plification is introduced by recommending only the use of units with multipliers 

of 103. Thus, for lengths in engineering, the micrometer (previously referred to as 

micron), millimeter, and the kilometer are recommended, and the centimeter is gen-

erally avoided. A further simplification is that the decimal point may be substituted 

by a comma (as in France, Germany, and South Africa), while the other number, 

before and after the comma, is separated by spaces between groups of three.

The aforementioned seven base units have been associated with the SI.

1. Length – meter (m)

2. Mass – kilogram (kg)

3. Time – second (s)

4. Electric current – ampere (A)

5. Temperature – Kelvin (K)

6. Amount of substance – mole (mol) (aka gram mole)

7. Luminous intensity – candela (cd)

Note that two supplementary units are occasionally employed in geometric studies:

1. Phase angle – radian (rad)

2. Solid angle – steradian (sr)

5.3  Conversion of Units

Momentum and rate of momentum come into play in both fluid flow and the con-

servation law in momentum studies. The latter term is defined (in terms of units) as

 Rate of Momentum
lb ft

s2  (5.1)

The above units can be converted to lb
f 
, if multiplied by an appropriate constant. 

A conversion constant is a term that is used to obtain units in a more convenient 

form. All conversion constants have magnitude and units in the term, but can also 

be shown to be equal to 1.0 (unity) with no units.

A conversion constant used often is

 12 in/ft  (5.2)

This term is obtained from the following defining equation:

 12 1 in  ft  (5.3)



Dimensional Analysis 57

If both sides of this equation are divided by 1 ft, one obtains:

 1 12 in/ft  (5.4)

Note that this conversion constant, like all others, is also equal to unity without 

any units. 

Another defining equation is:

 1 32 2
2

lb
lb ft

s
f .  (5.5)

If this equation is divided by lb
f
, Equation (5.6) results.

 1 0 32 2
2

. .
lb ft

lb sf

 (5.6)

This serves to define the conversion constant g
c
. If the rate of momentum is 

divided by g
c 
as 32 2 2.  lb ft/lb s

f
 – this operation being equivalent to dividing by 

1 – the following units result:

 Rate of Momentum
lb ft

s

lb s

lb ft
lb

2

2

f

f  (5.7)

One can conclude from the above dimensional analysis that a force is equivalent 

to a rate of momentum.

There are hundreds of conversion constants employed by engineers and scientists. 

Some of the more common “conversion constants” are provided in Table 5.1 [1].

Conversion of units can be accomplished by the multiplication of the quan-

tity to be converted by appropriate unit ratios, i.e., the conversion constants. For 

example, suppose an energy of 50 Btu must be converted to units of (ft lb
f
). From 

the energy section in Table 5.1 one notes that to convert from Btu to (ft lb
f
), mul-

tiply by 778. Therefore,

 
778 1( )ft lb Btuf

 (5.8)

and the conversion constant or unit ratio is similarly,

 
778

1
1 0

( )
.

ft lb

Btu

f
 (5.9)
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Table 5.1 Conversion constants.

To convert from To Multiply by

Length

m cm 100

m mm 1000

m microns (μm) 106

m angstroms (Å) 1010

m in 39.37

m ft 3.281

m mi 6.214 10 4

ft in 12

ft m 0.3048

ft cm 30.48

ft mi 1.894 10 4

Mass

kg g 1000

kg lb 2.205

kg oz 35.24

kg ton 2.268 10 4

kg grains 1.543 104

lb oz 16

lb ton 5 10 4

lb g 453.6

lb kg 0.4536

lb grains 7000

Time

s min 0.01667

s h 2.78 10 4

s day 1.157 10 7

s week 1.653 10 6

s yr 3.171 10 8

Force

N 1

N dynes 105

N 105

(Continued)
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To convert from To Multiply by

N lb
f

0.2248

N 7.233

lb
f

N 4.448

lb
f

dynes 4.448 105

lb
f

4.448 105

lb
f

32.17

Pressure

atm N/m2 (Pa) 1.013 105

atm kPa 101.3

atm bars 1.013

atm dynes/cm2 1.013 106

atm lb
f 
/in2 (psi) 14.696

atm mm Hg at 0 oC (torr) 760

atm in Hg at 0 oC 29.92

atm ft H
2
O at 4 oC 33.9

atm in H
2
O at 4 oC 406.8

psi atm 6.80 10 2

psi mm Hg at 0 oC (torr) 51.71

psi in H
2
O at 4 oC 27.70

in H
2
O at 4 oC atm 2.458 10 3

in H
2
O at 4 oC psi 0.0361

in H
2
O at 4 oC mm Hg at 0 oC (torr) 1.868

Volume

m3 L 1000

m3 cm3 (cc, mL) 106

m3 ft3 35.31

m3 gal (U.S.) 264.2

m3 qt 1057

ft3 in3 1728

ft3 gal (U.S.) 7.48

ft3 m3 0.02832

ft3 L 28.32

Table 5.1 Cont.

(Continued)
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Energy

.

Power

  

  

Concentration

Table 5.1 

Continued
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Cont. 

J Nom 1 

J erg 107 

J dyne 0 em 107 

J kWh 2.778 x 10-7 

J cal 0.2390 

J ft olbf 0.7376 

J Btu 9.486 x 10-4 

cal J 4.186 

cal Btu 3.974 x 10-3 

cal ft olbf 3.088 

Btu ft olbf 778 

Btu hpoh 3.929 x 10-4 

Btu cal 252 

Btu kWoh 2.93 x 10-4 

ft olbf cal 0.3239 

ft olbf J 1.356 

ft olbf Btu 1.285 x 10-3 

W J/s 1 

W calls 0.2390 

W ft olb,ts 0.7376 

W kW 10-3 

kW Btu/s 0.949 

kW hp 1.341 

hp ft o Ih,ts 550 

hp kW 0.7457 

hp calls 178.2 

hp Btu/s 0.707 

llg/m3 Ib/ft3 6.243 x 10-11 

llg/m3 Ib/gal 8.346 x 10-12 

llg/m3 gr (grain)/ft3 4.370 X 10-7 
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To convert from To Multiply by

Viscosity

Heat Capacity

f

f

Table 5.1 
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Cont. 

gr/ft3 Jlg/m3 2.288 X 106 

gr/ft3 glm3 2.288 

lb/ft3 Jlg/m3 1.602 X 1010 

lb/ft3 Jlg/L 1.602 X 10-8 

lb/ft3 lb/gal 7.48 

P (poise) glcm. s 1 

P cP (centipoise) 100 

P kg/m .h 360 

P lb/ft. s 6.72 X 10-2 

P lb/ft. h 241.9 

P lb/m. s 5.6 X 10-3 

lb/ft. s P 14.88 

lb/ft. s glcm. s 14.88 

lb/ft. s kg/m .h 5.357 x 103 

lb/ft. s lb/ft. h 3600 

callg'oC Btu/lb. OF 1 

callg'oC kcallkg.oC 1 

callg'oC cal/gmol.oC Molecular weight 

callgmol. °C Btu/lbmol of 1 

J/g'oC Btu/lb. of 0.2389 

Btu/lb. OF cal/g'oC 1 

Btu/lb. of J/g'oC 4.186 

Btu/lb. of Btu/lbmol of Molecular weight 

The 50 Btu may be multiplied by the above conversion constant without changing 
its value. Therefore, 

(
778(ft.lb )) 

(50 Btu) = 38,900(lb . ft) 
1 Btu 

(5.10) 

with the Btu units canceling, just like numbers. 
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Illustrative Example 5.1

Convert:

1. 150 miles/h to yards/h

2. 100.0 m/s2 to ft/min2

3. 0.03 g/m3 to lb/ft3

Solution

Employ Table 5.1.

1. 
150 5 280

3
2 6 105 mile

h

 ft

mile

yd

 ft
 yd/h

,
.

2. 100 0
100

30 48

60
1 181

2

.
.

.m/s
 cm

m

ft

 cm

s

min

2 1106 2 ft/min

3. ( . )
.

.0 06
454

30 48
2 0

3

3g/cm
lb

 g

 cm

ft
 lb/ft3

5.4  Select Common Abbreviations [1]

Some typical abbreviations that are employed in environmental engineering and 

science practice are provided in Table 5.2.

5.5  Dimensionless Numbers

Problems are frequently encountered in environmental studies and other engineer-

ing work that involve several variables. Engineers and scientists are generally inter-

ested in developing functional relationships (equations) between these variables. 

When these variables can be grouped together in such a manner that they can be 

used to predict the performance of similar pieces of equipment, independent of 

the scale or size of the operation, something very valuable has been accomplished.

Consider, for example, the problem of establishing a method of calculating 

power requirements for mixing liquids in an open tank at a water treatment facil-

ity. The obvious variables would be the depth of liquid in the tank, the density and 

viscosity of the liquid, the speed of the agitator, the geometry of the agitator, and 

the diameter of the tank. There are therefore six variables that affect the power, or 

a total of seven terms that must be considered. To generate a general equation to 

describe power variation with these variables, a series of tanks having different 

diameters would have to be set up in order to gather data for various values of each 
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Table 5.2 

f

Continued
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Selected common abbreviations. 

A,A angstrom unit oflength 

abs absolute 

amb ambient 

app.MW,M apparent molecular weight, molecular weight 

atm atmosphere 

at. wt. atomic weight 

b.p. boiling point 

bbl barrel 

Btu British thermal unit 

cal calorie 

cg centigram 

cm centimeter 

cgs system centimeter gram second system 

conc concentration 

cc, cm3 cubic centimeter 

cu ft, ft3 cubic feet 

cfh cubic feet per hour 

cfm cubic feet per minute 

cfs cubic feet per second 

m3, M3 (rarely) cubic meter 

° degree 

°C degree Celsius, degree Centigrade 

OF degree Fahrenheit 

OR degree Rankine, degree Reamur (rarely) 

ft foot 

ft .lb foot pound mass 

ft .lb foot pound force 

fpm feet per minute 

fps feet per second 

fps system foot. pound. second system 

f.p. freezing point 

gr grain 

g,gm gram 

h hour 
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Cont. 

in inch 

kcal kilocalorie 

kg kilogram 

km kilometer 

liq liquid 

L liter 

log logarithm (common) 

In logarithm (natural) 

m.p. melting point 

m, M (rarely) meter 

flIl1 micrometer (micron) 

mks system meter. kilogram. second system 

mph miles per hour 

mg milligram 

ml milliliter 

mm millimeter 

mfl millimicron 

min minute 

molwt,MW,M molecular weight 

oz ounce 

ppb parts per billion 

pphm parts per hundred million 

ppm parts per million 

lb pound 

psi pound force per square inch 

psia pound force per square inch absolute 

psig pound force per square inch gage 

rpm revolutions per minute 

s, sec second 

spgr specific gravity 

spht specific heat 

spwt specific weight 

sq square 

scf standard cubic foot 

STP standard temperature and pressure 
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t time, temperature

T, temp. temperature

wt weight

variable. Assuming that the 10 different values for each of the six variables were 

imposed on the process, 106 runs would be required. Obviously, a mathematical 

method for handling several variables that requires considerably less than one mil-

lion runs to establish a design method must be available. In fact, such a method is 

available and it is defined as dimensional analysis [1].

Dimensional analysis is a powerful tool that is employed by environmental engi-

neers and scientists in planning experiments, presenting data compactly, and mak-

ing practical predictions from models without detailed mathematical analysis. The 

first step in an analysis of this nature is to write down units of each variable. The  

end result of a dimensional analysis is a list of pertinent dimensionless numbers. A 

partial list of common dimensionless numbers used in fluid flow analyses is given in 

Table 5.3 [2]. The reader is referred to the literature for definitions of these terms [2].

Dimensional analysis is a relatively “compact” technique for reducing the num-

ber and the complexity of the variables affecting a given phenomenon, process or 

calculation. It can help obtain not only the most out of experimental data but also 

scaleup data from a model to a prototype. To do this, one must achieve similarity 

between the prototype and the model. This similarity may be achieved through 

dimensional analysis by determining the important dimensionless numbers, and 

then designing the model and prototype such that the important dimensionless 

numbers are the same in both.

There are three steps in dimensional analysis. These are:

1. List all parameters and their primary units.

2. Formulate dimensionless numbers (or ratios).

3. Develop the relation between the dimensionless numbers 

experimentally.

Further details on this approach are provided in the next section.

5.6  Buckingham Pi (π) Theorem

This theorem provides a simple method to obtain the aforementioned dimension-

less numbers (or ratios) termed  parameters. The steps employed in obtaining the 

dimensionless  parameters are given below [2]:

1. List all parameters. Define the number of parameters as n.

2. Select a set of primary dimensions, e.g., kg, m, s, K (English units 

may also be employed). Let r the number of primary dimensions.

Table 5.2 Cont.
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Table 5.3 Dimensionless numbers [2].

Parameter Definition Area of importance Qualitative ratio

Cavitation number
Ca

P p

v

!

2 2/

Cavitation Pressure

Inertia

Eckert number
Ec

v

C Tp

2 Dissipation Kinetic energy

Inertia

Euler number
Eu

P

v2 2/

Pressure drop Pressure

Inertia

Froude number
Fr

v

gL

2 Free surface flow Inertia

Gravity

Mach number
Ma

v

c

Compressible flow Flow speed

Sound speed

Poiseuille number
P

D P

Lv
0

2 Laminar flow in pipes Pressure

Viscous forces

Relative roughness k

D

Turbulent flow, rough 

walls
Wall roughness

Body length

Reynolds number
Re

vD vD

v

Various uses Inertia forces

Viscous forces

Strouhal number
St

wL

v

Oscillating flow Oscillation speed

Mean speed

Weber number
We

v L2 Surface forces effect Inertia

Surface tension

3. List the units of all parameters in terms of the primary dimen-

sions, e.g., L [=] m, where “[=]” means “has the units of.” This is 

a critical step and often requires some creativity and ingenuity on 

the part of the individual performing the analysis.

4. Select a number of variables from the list of parameters (equal 

to r). These are called repeating variables. The selected repeating 

parameters must include all r independent primary dimensions. 

The remaining parameters are called “non-repeating” variables.

5. Set up dimensional equations by combining the repeating param-

eters with each of the non-repeating parameters in turn to form 

the dimensionless parameters. . There will be (n – r) dimension-

less groups of ( s).

6. Check that each resulting  group is in fact dimensionless.
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Note that it is permissible to form a different  group from the product or division 

of other s, e.g.,

 5
1 2

3

2 6

4

2 1
or  (5.11)

Note, however, that a dimensional analysis approach will fail if the fundamen-

tal variables are not correctly chosen. The Buckingham Pi theorem approach to 

dimensionless numbers is given in the Illustrative Example that follows.

Illustrative Example 5.2

When a fluid flows through a horizontal circular pipe, it undergoes a pressure 

drop. P (P
2
   P

1
). For a rough pipe, P will be higher than a smooth pipe. The 

extent of non-smoothness of a material is expressed in terms of the roughness, 

k [2]. For steady state incompressible Newtonian fluid flow, the pressure drop is 

believed to be a function of the fluid average velocity v, viscosity , density , pipe 

diameter D, pipe length L, pipe roughness k, and the speed of sound in a fluid (an 

important variable if the flow is compressible) c, i.e.,

 P f v D L k c( , , , , , , )       

Determine the dimensionless numbers of importance for this flow system [1, 2].

Solution

A pictorial representation of the system in question is provided in Figure (5.1). List 

all the parameters and find the value of n:

 P v D L k c, , , , , , ,        

There are 8 parameters therefore, n 8. Choose primary units (employ SI).

 m, s, kg, K

21

D 

L 

v

Figure 5.1 Pipe.
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List the primary units of each parameter:

 P [ ] Pa kg m  s1 2
 

 v [=] ms 1

 [ ] kg  m s1 1
 

 D [=] m

 L [=] m

  kg m[ ] 3
 

 k [=] m

 c [=] ms 1

Therefore, r 3 with primary units m, s, kg.

Select three parameters from the list of eight parameters. These are the repeat-

ing variables:

 D [=] m

 [ ] kg m 3
 

 v [ =] ms 1

The non-repeating parameters are then P, , k, c and L. Determine the number 

of s:

 n - 3 8 - 3 5

Formulate the first , i.e., 
1
,
 
employing P as the non-repeating parameter.

 1 Pv Da b f
 

Determine a, b, and f by comparing the units on both sides of the following 

equation:

 0 1 2 1 3[ ]( )( ) ( ) ( )kg m s m s kg m ma b f
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Compare kg:

 0 1 1b b. , Therefore   

Compare s:

 0 2 2a a. ,Therefore   

Compare m:

 0 1 3 0a b f f. ,Therefore  

Substituting back into 
1
 leads to:

 1 2
Pv

P

v

a b
 

This represents the Euler number (see Table 5.3).

Formulate the second , i.e., 
2
, as

 2 v Da b f
 

Determine a, b, and f by comparing the units on both sides:

 0 1 2 1 3[ ]( )( ) ( ) ( )kg m s m s kg m ma b f
 

Compare kg:

 0 1 1b b. ,Therefore   

Compare s:

 0 1 1a a. Therefore,  

Compare m:

 0 1 3 1a b f f. Therefore,  

Substituting back into 
2
 yields:

 2

1 1 1v D
v D
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Replace 
2
 by its reciprocal:

 2

v D
Re  

where Re Reynolds number.

Similarly, the remaining non-repeating variables lead to

 3 kv D
k

D

a b f
 

and from

 4 cv Da b f
 

one obtains

 4

v

c
the Mach Number  

Similarly,

 5

L

D
 

Combine the s into an equation, expressing 
1
 as a function of 

2
, 

3
, 

4
 and 

5
.

 Eu
P

v
f

k

D
Ma

L

D2

2

Re    the Euler number, , ,  

Consider the case of incompressible flow.

 Eu
P

v
f

k

D

L

D2

2

Re   , ,  

The result indicates that to achieve similarity between a model (m) and a proto-

type (p), one must have the following:

 Re
m

Re
p
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k

D

k

Dm p

 

 
L

D

L

Dm p

 

Since  Eu Re   f
k

D

L

D
, , , then it follows that Eu

m
Eu

p
 (see also Table 5.3).
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Regardless of the type of society or government within which a business is oper-

ated, it must either show a profit or perish. What applies to an individual business 

applies equally to a community or an entire economy. Without profit, the structure 

is weak; with profit, it may be strong. This conclusion is not debatable.

Because of the necessity for combining economic considerations with environ-

mental fundamentals and principles, the environmental engineer or scientist must 

be aware of the many different types of costs involved in environmental processes 

and issues. Money must be paid out for different plant expenses such as those for 

raw materials, labor, and equipment. In addition, many other indirect expenses are 

incurred, and these must be included if a complete analysis of the total cost is to be 

obtained. Some examples of these are addressed later in the chapter.

Since this chapter was written primarily for the beginning student it would 

be almost impossible at this level to cover all of the various aspects of engineer-

ing economics. This chapter therefore introduces the philosophy of economics in 

engineering and shows, by means of a few illustrative examples, the use of eco-

nomics as a tool. It is realized that the broad subject of engineering economics 

cannot be fitted to any rigid set of formulas. For the interested reader, there are 

many texts available in the literature which provide a much broader treatment of 

6
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the subject. Both the qualitative and quantitative viewpoints are emphasized in the 

material to follow.

Four sections compliment the presentation of this chapter. Section numbers 

and subject titles follow:

6.1: Definitions

6.2: The Need for an Economic Analysis

6.3: Capital Investment and Risk

6.4: Applications

6.1 Definitions

Before proceeding to the applications later in the chapter, it would be wise to pro-

vide the reader with certain key definitions used in the field. Fourteen concepts 

that often come into play in an economic analysis are given below. The definitions 

have been drawn from the literature [1].

Simple Interest

The term interest can be defined as the money paid for the use of money. It is also 

referred to as the value or worth of money. Two terms of concern are simple inter-

est and compound interest. Simple interest is always computed on the original 

principal. The basic formula to employ in simple interest calculations is:

 S P ni( )1  (6.1)

where P original principle

 n time in years

 i annual interest rate

 S sum of interest and principal after n years

Normally, the interest period is one year, in which case i is referred to as the effec-

tive annual interest rate.

Compound Interest

Unlike simple interest, with compound interest, interest is added periodically to 

the original principle. The term conversion or compounding of interest simply 

refers to the addition of interest to the principal. The interest period or conversion 

period in compound interest calculations is the time interval between successive 

conversions of interest. The interest rate is the ratio of the stated annual rate to the 

number of interest periods in one year. Thus, if the given interest rate is 10% com-

pounded semiannually, the interest period is six months and the interest rate per 

interest period is 5%. Alternatively, if the given interest rate is 10% compounded 
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quarterly, then the interest period is 3 months and the interest rate per interest 

period is 2.5%. One should always assume the interest is compounded annually 

unless otherwise stated. The basic formula to employ for compound interest is:

 S P i n( )1  (6.2)

If interest payments become due m times per year at compound interest, (m)

(n) payments are required in n years. An effective annual interest rate, i , may be 

defined by

 i
i

m

m

1 1 (6.3)

In this case, the new equation for S becomes:

 S P i
n

1  (6.4)

In the limit (as m approaches infinity), such payments may be considered to 

be required at infinitesimally short intervals, in which case, the interest is said to 

be compounded continuously. Numerically, the difference between compounding 

may be significant when applied to vary large sums of money.

Present Worth

The present worth is the current value of a sum of money due at time n and at 

interest rate i. The following equation is the compound interest equation solved 

for the present worth term P.

 P S i n( )1  (6.5)

Evaluation of Sums of Money

The value of a sum of money changes with time because of interest considerations. 

$1,000 today, $1,000 ten years from now, and $1,000 ten years ago all have different 

meanings when interest is taken into account. $1,000 today would be worth more 

than $1,000 ten years from now because of the interest that could be accumulated 

in the interim. On the other hand, $1,000 today would have been worth less ten 

years ago because a smaller sum of money could have been invested then so as 

to yield $1,000 today. Therefore, one must refer to the date as well as the sum of 

money when evaluating sums of money.

Summarizing, evaluating single sums of money requires multiplying by (1 i)n 

if the required date of evaluation is after the date associated with the obligation or 
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multiplying by (1 i) n if the required date of evaluation is before the date associ-

ated with the obligation. The term n is always the time in periods between the date 

associated with the obligation and the evaluation date.

The evaluation of sums of money may be applied to the evaluation of a uniform 

series of payments. A uniform series is a series of equal payments made at equal 

intervals. Suppose R is invested at the end of every interest period for n periods. 

The total value of all these payments, S, as of the date of the last payment, may be 

calculated from the equation

 S
R i

i

n[( ) ]1 1
 (6.6)

The term S is then called the amount of the uniform series.

Depreciation

The term depreciation refers to the decrease in the value of an asset. Two approaches 

that can be employed are the straight line and sinking fund method. In the straight 

line method of depreciation, the value of the asset is decreased each year by a con-

stant amount. The annual depreciation amount, D, is given by:

 D
Original cost Salvage value

Estimated life in years
 (6.7)

In the sinking fund method of depreciation, the value of the asset is determined by 

first assuming that a “sinking” fund consisting of uniform annual payments had 

been set up for the purpose of replacing the asset at the end of its estimated use-

ful life. The uniform annual payment (UAP) may be calculated from the equation

 UAP Original cost Salvage value SFDF( )( )  (6.8)

where SFDF is the sinking fund deposit factor and is given by

 SFDF
i

i n[ ]( )1 1
 (6.9)

The value of the asset at any time is estimated to be the difference between the 

original cost and the amount that would have accumulated in the sinking fund. 

The amount accumulated in the sinking fund is obtained by multiplying the SFDF 

by the compound amount factor (CAF) where

 CAF
i

i

n[( ) ]1 1
 (6.10)
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Fabricated Equipment Cost Index

A simple process is available to estimate the equipment cost from past cost data. 

The method consists of adjusting the earlier cost data to present values using fac-

tors that correct for inflation. A number of such indices are available; one of the 

most commonly used is the fabricated equipment cost index (FECI).

 Cost Cost
FECI

FECI
year B year A

year B

year A

 (6.11)

Given the cost and FECI for year A, as well as the FECI for year B, the cost of the 

equipment in year B can be estimated by employing Equation (6.11).

Capital Recovery Factor

In comparing alternative processes or different options for a particular process 

from an economic point-of-view, one recommended procedure to follow is that 

the total capital cost can be converted to an annual basis by distributing it over 

the projected lifetime of the facility (or the equivalent). The sum of both the annu-

alized capital cost (ACC), including installation, and the annual operating cost 

(AOC), is called the total annualized cost (TAC) for the project or facility. The 

economic merit of the proposed facility process, or scheme can be examined once 

the total annual cost is available.

The conversion of the total capital cost (TCC) to an ACC requires the determi-

nation of an economic parameter known as the capital recovery factor (CRF). This 

parameter can be found in any standard economics textbook or calculated directly 

from the following equation:

 CRF
i i

i

n

n

( )

( )[ ]

1

1 1
 (6.12)

where n projected lifetime of the system

i annual interest rate (as a fraction)

The CRF is a positive, fractional number. Once this factor has been determined, 

the ACC can be calculated from the following equation:

 ACC TCC CRF)( )(  (6.13)

The annualized capital cost can be viewed as the cost associated with recovering 

the initial capital expenditure over the depreciable life of the system.
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Present Net Worth

There are various approaches that may be employed in the economic selection 

of the best of several alternatives. For each alternative in the present net worth 

(PNW) method of economic selection, a single sum is calculated that would pro-

vide for all expenditures over a common time period. The alternative having the 

least PNW of expenditures is selected as the most economical. The equation to 

employ is

 PNW CC PN PWD PWS  (6.14)

where

 CC Capital cost

 PN Future renewals

PWD Other disbursements

PWS Salvage value

If the estimate lifetimes differ for the various alternatives, one should employ 

a period of time equal to the least common multiple of the different lifetimes for 

renewal purposes.

Perpetual Life

Capitalized cost can be viewed as present worth under the assumption of per-

petual life. Computing capitalized cost involves, in a very real sense, finding the 

present worth of an infinite series of payments. To obtain the present worth of an 

infinite series of payments of $R at the end of each interest period forever, one 

needs simply to divide R by i, where i is the interest rate per interest period. Thus, 

to determine what sum of money, P, would have to be invested at 8.0% to provide 

payments of $100,000 at the end of each year forever, P would have to be such that 

the interest on it each period would be $100,000. Withdrawal of the interest at the 

end of each period would leave the original sum intact to again draw $100,000 

interest at the end of the next period. For this example,

 P
100 000

0 08
1 250 000

,

.
$ , ,  (6.15)

The $1,250,00 would be the present worth of an infinite series of payments of 

$100,000 at the end of each year forever, assuming money is worth 8%.

To determine the present worth of an infinite series of payments of $R at 

the end of each n periods forever, first multiply by the SFDF to convert to an 

equivalent single period payment and then divide by i (fractional value) to obtain 

the present worth.
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Break-Even Point

From an economic point-of-view, the break-even point of a process operation is 

defined as that condition when the costs (C) exactly balance the income (I). The 

profit (P) is therefore:

 P I C  (6.16)

At break-even, the profit is zero.

Approximate Rate of Return

Rate of return can be viewed as the interest that will make the present worth of net 

receipts equal to the investment. The approximate rate of return (ARR), denoted 

by some as p, may be estimated from the equation below:

 p ARR
Average annual profit or earnings

Initial total investtment
 (6.17)

To determine the average annual profit, simply divide the difference between 

the total money receipts (income) and the total money disbursements (expenses) 

by the number of years in the period of the investment.

Exact Rate of Return

Using the approximate rate of return as a guide, one can generate the exact rate 

of return (ERR). This is usually obtained by trial-and-error and interpolation cal-

culations of the rate of interest that makes the present worth of the net receipts 

equal to the investments. The approximate rate of return will tend to overestimate 

the exact rate of return when all or a large part of the receipts occur at the end 

of a period of investment. The approximate rate will tend to underestimate the 

exact rate when the salvage value is zero and also when the salvage value is a high 

percentage of the investment.

Bonds

A bond is a written promise to pay both a certain sum of money (redemption price) 

at a future date (redemption date) and equal interest payments at equal intervals in 

the interim. The holder of a $1,000, 5% bond, redeemable at 105 (bond prices are 

listed without the last zero) in 10 years, with interest payable semiannually would 

be entitled to semiannual payments of ($1,000) (0.025) or $25 for 10 years and 

105% of $1,000, that is $1,050, at the end of 10 years when the bond is redeemed.

The interest payment on a bond is found by multiplying the face value of the 

bond by the bond interest rate per period. From the above, the face value is $1,000 
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and the bond interest rate per period is 0.025. Therefore, the periodic interest pay-

ment is the aforementioned $25. Redeemable at 105 means that the redemption 

price is 105% of the face value of the bond.

The purchase price of a bond depends on the yield rate, i.e., the actual rate of 

return on the investment represented by the bond purchase. Therefore, the pur-

chase price of a bond is the present worth of the redemption price plus the pres-

ent worth of future interest payments, all computed at the yield rate. The bond 

purchase price formula is:

 V
C i R

i

n( )1
 (6.18)

where

V purchase price

C redemption price

R periodic interest payment

n time in periods to maturity

i yield rate

Incremental Cost

By definition, the average unit increment cost is the increase in cost divided by the 

increase in production. Only those cost factors which vary with the production 

can affect the average unit incremental cost. In problems involving decisions as to 

whether to stay in production or (temporarily) shut down, the average unit incre-

ment cost may be compared with the unit increment cost or the unit selling price.

6.2  The Need for an Economic Analysis [1]

Before an environmental engineer or scientist can successfully apply the principles 

of economics to operational expenses, he/she must first become familiarized with 

the existing economics with which he/she is associated, as well as with the policies, 

if applicable, of the company itself. A company or individual hoping to increase its 

profitability must carefully assess a range of investment opportunities and select 

the most profitable options from those available. Increasing competitiveness also 

requires that efforts be expended to reducing costs of existing processes. In order 

to accomplish this, environmental engineers and scientists should be fully aware 

of not only technical but also economic factors, particularly those that have the 

largest effect on profitability.

In earlier years, environmental engineers (and scientists) concentrated on the 

technical side of projects and left the financial studies to the economist. In effect, 

all those engineers involved in making estimates of the capital and operating costs 
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had often left the overall economic analysis and investment decision-making to 

others. This approach is no longer acceptable.

Some engineers are not equipped to perform a financial and/or economic anal-

ysis. Furthermore, many environmental engineers and scientists already working 

for companies have never taken courses in this area. This shortsighted attitude 

is surprising in a group of people who normally go to great lengths to get all the 

available technical data before making an assessment of a project or study. The 

attitude is even more surprising when one notes that data are readily available to 

enable an engineer to assess the prospects of both his/her own company and those 

of his/her particular industry [2].

Bridging the gap between theory and practice is often a matter of experience 

acquired over a number of years. Even then, methods developed from experience 

all too often must be re-evaluated in the light of changing economic conditions if 

optimum profits are to result. The approach presented here therefore represents an 

attempt to provide a consistent and reasonably concise method for the solution of 

these problems involving economic alternatives [3].

As noted above, the purpose of this chapter is to provide a working tool to bet-

ter assist the reader in not only understanding economics and finance but also in 

applying technical information to the economic design and operation of processes 

and plants. The material to follow will often focus on environmental and/or plant 

applications. Hopefully, this approach will provide the reader with a better under-

standing of some of the fundamentals and principles.

The term “economic analysis” in engineering problems generally refers to 

calculations made to determine the conditions for realizing maximum financial 

return for a design or operation. The same general principles apply, whether one 

is interested in the choice of alternatives for competing  projects, in the design 

of plants or projects so that the various components are economically propor-

tioned, or in the optimization for economical operation of existing plants. General 

considerations that form the framework on which sound decisions must be made 

are often simple. Sometimes their application in the problems encountered in the 

development of a commercial enterprise involves too many intangibles to allow 

exact analysis, in which case judgments must be intuitive. Often, however, such 

calculations may be made with a considerable degree of exactness. This chapter 

attempts to develop a relatively concise method for applying these principles.

Finally, concern with the maximum financial returns implies that the crite-

rion for judging projects involves profit. While this is usually true, there are many 

important objectives which, though aimed at ultimate profit increase, cannot be 

immediately evaluated on quantitative terms. Perhaps the most significant of these 

has been the tendency in recent years to regard management of commercial orga-

nizations as a profession with environmental obligations and responsibilities; con-

siderations other than the profit motive may govern business decisions. However, 

these additional social objectives are for the most part often consistent with the 

economic goal of satisfying human wants with the minimum cost and effort. In 
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fact, even in the operation of primarily nonprofit organizations, it is still important 

to determine the effect of various policies on profit [1].

6.3  Capital Investment and Risk

A capital investment is required for any process, and the determination of the 

necessary investment is an important part of a project. The total investment for 

any process consists of the fixed capital investment for the physical equipment 

and facilities plus the working capital for money which must be available to pay 

salaries, keep raw materials and products on hand, and handle other special items 

requiring a direct cash outlay. Thus, in an analysis of costs in industrial processes, 

investment costs, factory manufacturing costs, and general expenses that include 

income taxes must be taken into consideration.

The following material primarily addresses chemical plants. The following 

sequence of steps must be taken before a chemical plant can be put into operation:

1. A process must be planned and evaluated, or even invented.

2. The equipment is designed and the operational procedure worked 

out and analyzed.

3. Land is acquired for the site and services made available through 

roads, lines for gas, water, and electricity, sewage disposal systems, 

etc.

4. Requisite materials are purchased, and the buildings and all equip-

ment erected.

5. Funds must be made constantly available to keep the venture in 

operation once the plant has been put “on stream.”

All five of the above steps require money. The total money involved is called the 

capital investment. This consists of two parts; that required for steps (1), (2), (3), 

and (4), known as fixed capital and that required for step (5) called working capital. 

In more graphic terms, the money required to bring the process from the moment 

of conception to the moment of when the “button is pushed” and the plant is first 

set in operation is fixed capital. Typical items of the fixed capital are salary paid, 

e.g., to researchers and engi neers for conception and design. All money required 

for the venture thereafter (with the exception of capital improvements or expan-

sions of the plant) is working capital that can include the cost of raw materials;  

salaries and wages paid to production engineers, foremen, and plant workers; 

packaging and shipping costs; the costs of water, gas, fuel, electricity, etc., and, the 

salaries paid to clerical personnel involved with the process [4].

Many a process that looked good in an early stage of research or development 

proved to be economically unattractive after closer and more intensive examina-

tion. Often, the process does not go beyond step (2) listed above. Money invested 

up to this point is partly lost and may be completely lost. In other cases, the process 
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gets all the way to the operational stage before proving to be unprofitable, in which 

case the loss may be significant.

Certain things should be obvious. All investment of capital in chemical process-

ing involves a risk. Manufacturing profit cannot start unless and until the process 

is put into actual operation, and since for every process that proves profitable there 

are others that do not, the profitability of the successful processes should be suf-

ficient to absorb the losses incurred by the unsuccessful ventures. What potential 

profit level should seem probable before capital is invested in a manufacturing pro-

cess? A partial answer is provided in the next paragraph.

Money put into a savings account or invested in bonds may draw a certain 

return without risk, effort, or worry. It follows that the investment of capital in 

a manufacturing process that would yield as little as this percent return would 

be unsound since this would represent the assumption of business risk with no 

profit at all. How far in excess above the potential rate of return should be to jus-

tify the investment of capital depends upon the nature of both the industry and 

the individual process. When new frontiers are being broached, a potential profit 

of 30 percent or more may be essential to make a plant design attractive. On the 

other hand, starting a plant to produce a heavy chemical by a process with a long 

record of successful performance for which detailed economic data are available is 

another matter and may be attractive at a lower profitability potential.

6.4 Applications

The remainder of the chapter is devoted to illustrative examples, many of which 

contain technical development material. A good number of these environmental 

applications have been drawn from the National Science Foundation (NSF) litera-

ture [5–8] and one other key source [9].

Illustrative Example 6.1

List the major fixed capital costs for the chemical process industry.

Solution

1. Major process equipment (i.e., reactors, tanks, pumps, filters, dis-

tillation columns, etc.)

2. Installation of major process equipment

3. Process pumping

4. Insulation

5. Instrumentation

6. Auxiliary facilities (i.e., power substations, transformers, boiler 

houses, fire-control equipment, etc.)

7. Outside lines (i.e., piping external to the building, supports and posts 

for overhead piping, electric feeders from the power substations, etc.)
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8. Land and site improvements

9. Building and structures

10. Consultant fees

11. Engineering and construction (design and engineering fees plus 

supervision of plant erection)

12. Contractors’ fees (administrative)

Illustrative Example 6.2

List the major working capital costs for the chemical process industry.

Solution

1. Raw materials for plant startup

2. Raw materials, intermediate and finished product inventories

3. Cost of handling and transportation of materials to and from sites

4. Cost inventory control, warehouses, associated insurance, security 

arrangements, etc.

5. Money to carry accounts receivable (i.e., credit extended to cus-

tomers) less accounts payable (i.e., credit extended by suppliers)

6. Money to meet payrolls when starting up

7. Readily available cash for emergencies

8. Any additional cash required to operate the process or business

9. Expenses associated with new hires

10. Startup consultant fees

Illustrative Example 6.3

A fluid is to be transported 4 miles under turbulent fluid flow conditions. An engi-

neer is confronted with two choices in designing the system:

a. Employ a 2-inch ID pipe at a cost of $1/foot.

b. Employ a 4-inch ID pipe at a cost of $6/foot.

Pressure drop costs for the 2-inch ID pipe are $20,000/year. Assume that the only 

operating cost is the pressure drop and the only capital cost is the pipe. The capital 

recovery factor (CRF) for either pipe system is 0.1. Estimate the operating cost for 

the 4-inch ID pipe. Also, determine which is the more economical pipe system?

Solution

The pressure drop is (approximately) proportional to the velocity squared for tur-

bulent flow [10]. The velocity of the fluid is lower for the 4-inch ID pipe. Since the 

area ratio is 4 (diameter squared), the 4-inch ID pipe velocity is one quarter of 
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the velocity of the fluid in the 2-inch ID pipe. Therefore, the pressure drop for the 

4-inch ID pipe is approximately one sixteenth of the pressure drop for the 2-inch 

ID pipe. The operating cost associated with this pressure drop is equal to:

 Operating Cost
yr

/yr

$ ,

$

20 000

16
1250  

To select the more economic pipe system, calculate the total cost

 Total Cost Operating Cost Capital Cost  

The operating cost for a 2-inch pipe system and a 4-inch pipe system are given in 

the problem statement and calculated above, respectively. The annual capital cost 

is calculated as follows:

 Capital Cost Distance)(Cost Capital recovery factor( )( )  

 Capital cost  inch  miles  ft/mile /ft( ) ( )( )($ )( . ) $2 4 5280 1 0 1 22 110,  

 Capital cost  inch  miles  ft/mile /ft( ) ( )( )($ )( . ) $4 4 5280 6 0 1 112 700,  

Annual cost data is summarized in Table 6.1. Obviously, the 4-inch pipe is more 

economical.

Illustrative Example 6.4

A process emits 50,000 acfm of gas containing dust (it may be considered metal) at 

a loading of 2.0 gr/ft3. A particulate control device is employed for particle capture 

and the dust captured from the unit is worth $0.03/lb of dust. Experimental data 

have shown that the collection efficiency, E, is related to the system pressure drop, 

P, by the formula:

 E
P

P 15 0.
 

Table 6.1 Costs results for two different sized pipes.

2-inch 4-inch

Operating cost $20,000 $1,250

Capital cost $2,110 $12,700

Total Cost $22,110 $13,950
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where, E fractional collection efficiency

ΔP pressure drop, lb
f
/ft2

If the fan is 55% efficient (overall) and electric power costs $0.18/kW h, at 

what collection efficiency is the cost of power equal to the value of the recovered 

material? What is the pressure drop in inches of water (in H
2
O) at this condition?

Solution

The value of the recovered material (RV) may be expressed in terms of the 

 volumetric flowrate q, the inlet dust loading c, the value of the dust (DV), and the 

frac tional collection efficiency E:

 RV q c DV E( )( )( )( )  

Substituting yields

 

RV
50 000 2 0 1

7 000

0 03

3

, .

,

. ft

min

 gr

ft

 lb

 gr

33

0 429

$
( )

. $
; $ / min

lb

min

E

E  

The recovered value can be expressed in terms of pressure drop, i.e., replace E by 

P:

 RV
P

P
min

( . )( )

.
;$

0 429

15 0
/  

The cost of power (CP) in terms of P, q, the cost of electricity (CE), and the 

fan fractional efficiency, E
f
, is

 CP
q P CE

E f

( )( )( )
 

Substitution yields

 

CP
P f50 000 0 18 13

2

, . $ ft

min

lb

ft kW h

 min kWW

 ft

 h

 min

mi

44 200

1

0 55

1

60

0 006

, .

. $

lb

P

f

nn
; $ / min
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The pressure drop at which the cost of power is equal to the value of the recov-

ered material is found by equating RV with CP:

 RV CP  

Solving yields

 P f66 5 12 82

2. .lb /ft inH O  

The collection efficiency corresponding to the above calculated P is

 E
P

P 15 0

66 5

66 5 15 0
0 82 82

.

.

. .
. %  

The reader should note that operating below this efficiency (or the correspond-

ing pressure drop) will produce a profit; operating above this value leads to a loss.

Calculating the maximum profit is left as an exercise for the reader. [Hint: Set 

the first derivative of the profit (i.e., RV – CP) with respect to P equal to zero.] 

This problem will be revisited several times in Part V – Optimization.

Illustrative Example 6.5

The annual operating cost of an outdated environmental control device is $75,000. 

Under a proposed emission reduction plan, the installation of a new fan system 

will require an initial cost of $150,000 and an annual operating cost of $15,000 for 

the first 5 years. Determine the annualized cost for the new processing system by 

assuming the system has only 5 years (n) of operational life. The interest rate (i) is 

7%. The capital recovery factor (CRF) or annual payment of a capital investment 

can be calculated from Equation (6.12) as follows:

 CRF
A

P

i

ii n

n

n

,

( )

[( ) ]

1 1

1 1
 

where A is the annual cost and P is the present worth.

Compare the costs for both the outdated and proposed operations,

Solution

The annualized cost for the new fan is determined based on the following input data:

 Capital cost $150,000

 Interest, i 7%

 Term, n 5 yr
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For i 0.07 and n 5, the CRF is

 CRF
0 07 1 0 07

1 0 07 1
0 2439

5

5

. ( . )

( . )
.  

The total annualized cost for the fan is then

 
Annualized cost Installation cost Operation cost

( . )(0 2439 $$ , ) $ , $ ,150 000 15 000 51 585
 

Since this cost is lower than the annual cost of $75,000 for the old process, the 

proposed plan should be instituted.
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The engineer (and to a lesser degree the scientist) is known for his/her problem-

solving ability. It is probably this ability more than any other that has enabled 

many engineers to rise to positions of leadership and top management within their 

companies.

In problem-solving, both in school and in industry, considerable importance is 

attached to a proper analysis of the problem, to a logical recording of the problem 

solution, and to the overall professional appearance of the finished produced cal-

culations. Neatness and clarity of presentation should be distinguishing marks of 

the work. Environmental engineers and scientists should always strive to practice 

professional habits of problem solving analysis and to make a conscious effort to 

improve the appearance of each document whether it is submitted for grading or 

is included in a notebook.

The value of an environmental engineer or scientist is determined by his/her 

ability to apply basic principles, facts, and methods in order to accomplish some 

useful purpose. In this modern age of industrial competition, the ultimate defini-

tion of a useful purpose is usually based on a tangible profit of dollars and cents. 

It is not sufficient, therefore, to have a knowledge and understanding of phys-

ics, chemistry, mathematics, mechanics, stoichiometry, thermodynamics, the unit 

operations, chemical technology, engineering, and other related scientific subjects; 

he/she must also have the ability to apply this knowledge to practical situations, 

7
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and, in making these applications, recognize the importance of the dollar sign (see 

also the previous chapter).

Environmental engineers and scientists who have mastered the method of 

problem solving are considerably more successful in their work than are people 

who have not been trained in this technique. Many engineering problems in the 

past were of such a routine nature that a resort to deductive reasoning would suf-

fice, and premises of deduction could be taken from handbooks. However, many 

of the engineering problems of today cannot be solved by mere “handbook tech-

niques.” Experimentation, research, and development have indeed become more 

significant activities in today’s world.

Four sections compliment the presentation of this chapter. Section numbers and 

subject titles follow:

7.1: Sources of Information

7.2: Generic Problem-Solving Techniques

7.3: An Approach

7.4: Some Generic Comments

7.1  Sources of Information [1]

The field of environmental engineering and science encompasses many diverse 

fields of activity. It is therefore important that means be available to place widely 

scattered information in the hands of the reader. One need only examine the wide 

variety of problems seen in practice to appreciate the need for a readily avail-

able source of a wide variety of information. Problems should almost always be 

approached by checking on and reviewing all sources of information. Most of this 

information can be classified in the following source categories:

Traditional Sources

Engineering and Science Sources

New Sources

Personal Experience

Each topic is discussed below.

Traditional Sources

The library is the major repository of traditional information. To efficiently use 

the library, one must become familiar with its classification system. In general, 

environmental engineers and scientists use the technical section of a library to 

seek information on a certain subject and not material by a particular author or in 

a specific book. For this reason, classification systems are based on subject matter. 

The question confronting the user then is how to find and/or obtain information 

on a particular subject. Two basic subject-matter-related classification systems are 
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employed in U.S. libraries: the Dewey Decimal System and the Library of Congress 

System. (The systems have changed somewhat with the advent of computers and 

the internet.) A library (particularly a technical one) usually contains all or some 

of the following:

1. General books (nonfiction, etc.)

2. Reference books

3. Handbooks

4. Journals

5. Transactions

6. Encyclopedias

7. Periodicals

8. Dictionaries

9. Trade literature

10. Catalogs

Engineering and Science Sources

Engineering and science technical literature includes textbooks, handbooks, peri-

odicals, magazines, journals, dictionaries, encyclopedias, and industrial catalogs. 

There are a host of textbooks, including some of the classic works. The three major 

engineering handbooks include those by Perry and Green [2], Kirk and Othmer 

[3], and Albright [4]. Journals and magazines abound in the literature.

New Sources

The internet has a variety of resources available within it where information 

regarding just about anything, including precise technical information, can be 

found. Search engines such as Google, Bing, Yahoo!, and DuckDuckGo allow one 

to search public webpages, one of the largest repositories of information in history, 

free of charge and in a fraction of a second.

Wikipedia (derived from the phrase “What I Know Is…”) is essentially an 

online site that provides free and open information. It is a collaborative encyclo-

pedia where one can obtain or apply information to a host of topics. It is a great 

tool for fast reference but information can be provided by users and as such may 

contain errors so sources must be checked to confirm their validity. Sources are 

listed at the bottom of the Wikipedia pages usually in the form of clickable links.

Virtually every university, business, government (national, state, local) orga-

nization has a website. Individuals can also have one or more websites. Even one 

of your humble authors has two websites. One site, www.theodorenewsletter.com, 

provides information on education, sports, economics, politics, and a host of other 

topics. Try Basketball Coaching 101 if the reader is interested in basketball [5].

Engineering Toolbox (http://www.engineeringtoolbox.com) provides most 

of the tables and reference material one would find in engineering handbooks 
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organized by category. This site, along with many others, includes imbedded cal-

culators that can perform many different calculations ranging from simple unit 

conversion to complex thermodynamic and optimization calculations.

There are also third party computer programs such as Aspen HYSYS and 

CHEMCAD that specialize in chemical process simulations. With proper train-

ing, these programs can be used to make extensive and complicated process 

related calculations in seconds. This ability is only possible with their vast data-

bases. However, these programs come at great monetary cost, with licenses being 

anywhere from the tens to hundreds of thousands of dollars. This high cost limits 

access of these programs to large institution’s such as universities, colleges, and 

large companies.

Problem solving will usually require a combination of different sources and 

websites. It is rare that one source will contain all the information necessary to 

complete a problem. Note also that some of the above will almost certainly have 

changed between the times when this section was initially written (March 2016) 

and when it reaches the reading audience.

Personal Experience

Another information source – and a frequently underrated one – is one’s per-

sonal experience, personal files, and company experience files. Although tradi-

tional engineering and science problem-solving methods and the new sources 

previously described are important, other fields can also provide useful informa-

tion. In fact, most equipment designs, process changes, and new-plant designs in 

the chemical process industries are based on either prior experience, company 

files, or both.

7.2  Generic Problem-Solving Techniques [6]

Certain methods of logic and techniques of calculation are fundamental to the 

solution of many problems, and there is a near infinite number of methods. Words 

such as creative, ingenuity, original, etc., etc., etc., appear in all these approaches. 

What do they all have in common? They usually provide a systematic, logical 

approach to solving problems, and what follows is the authors’ definition of a 

generic approach.

The methodology of solving problems has been discussed by most mathemati-

cians and logicians since the days of Aristotle. Heuristic (“serving to discover”) is 

the term often given to this study of the methods and rules of solving problems.

Nearly always, a stepwise approach to the solution is desirable. The broad 

steps are:

1. Understanding the problem

2. Devising a plan
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3. Carrying out the plan

4. Looking back

Details on each of the above four points follows.

Understanding the Problem

1. Get acquainted with the problem. Read it and attempt to visualize it 

in its entirety without concerning yourself with detail. Be particu-

larly sure that you understand what is known and what is unknown.

2. Organize the available data. Engineering and science data are often 

insufficient, redundant, or contradictory. The units may have to be 

converted. The accuracy of the data must also be verified.

3. Sketch a flow sheet. This step will usually facilitate the “get 

acquainted” operation. If the problem is a simple one, this sketch 

may consist of nothing more than a small box with arrows on the 

back side of an envelope. For chemical processes, the diagrams 

could indicate the amount and composition of all streams entering 

or leaving the process.

4. Introduce suitable and consistent symbols for the unknowns. It 

is usually helpful to adopt a notation which will serve to identify 

the unknowns. This is particularly important when a problem has 

many unknowns.

Devising a Plan

Memory plays an important part in even the most creative thinking processes. It is 

almost impossible to generate ideas or plans with little or no background knowl-

edge. Although mere memory is not enough to create new ideas, such ideas should 

be based on experience and acquired knowledge.

Here are some questions to consider:

1. Have I seen a similar or slightly different problem before?

2. Is there a very general equation or theorem which applies to this 

type of problem?

3. Can the problem be restated?

4. If I cannot solve the problem, can I solve a related problem?

5. Can part of the problem be solved? 

6. What data are lacking to solve the rest of problem?

7. Did I use all the data given?

Carrying out the Plan

Choose a basis of calculation, if applicable. During various stages in the solu-

tion of a complex problem, it may be necessary to use more than one basis. Also, 
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remember that the most brilliant work is useless if it cannot be conveyed clearly to 

other persons by written or oral presentation(s).

Looking Back

The amount of time it takes to check a problem (if applicable) is usually only a 

small fraction of the time it takes to solve it. Nearly all solutions to physical prob-

lems are amendable to verification. Thus, one should always:

1. Look for order-of-magnitude errors. Can the answer be checked 

by an approximate solution? Does the answer make sense?

2. Attempt to solve the problem by an alternate method.

3. Can the results be verified?

7.3  An Approach

Here is an approach drawn from the files of one of the authors [7]. This method 

involves six steps (see Figure 7.1).

1. The first step, and perhaps the most important one, is that of prob-

lem definition. It is not possible to establish rules for problem 

definition that are sufficiently general to be useful. Environmental 

problems are so diverse that it is up to the analyst to clearly state 

the nature of the problem. This will establish a definite objective 

for the analysis and is invaluable in outlining a path from the prob-

lem to the solution.

2. The next step is a definition of the theory that governs the phenom-

ena of the environmental problem. This theory is usually available 

from a variety of sources, both published and unpublished, but for 

those isolated cases where there is no theory available, it is worth-

while to postulate one (or several) and to test its validity later by 

Definition of problem

Desired solutions

Common sense

Mathematics Solutions

ChecksComputers

Theory Equations Info. flow

Figure 7.1 A problem-solving approach.
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comparing (if available) the solution of the mathematical model 

with experimental results. One of the advantages of the comput-

erized approach is the facility of rapidly obtaining solutions of 

various cases; this makes comparisons between alternate theories 

possible.

3. In the third step, the theory, as applied to the problem, is written 

in mathematical symbology. This necessary step forces the analyst 

to a clear unambiguous definition of the problem. The physical 

system may be described by a set of simultaneous algebraic and/

or differential equations. These equations must be written in the 

most direct form possible and no manipulations are required at 

this stage. It is, however, worthwhile at this point to simplify the 

equations (where possible) by omitting insignificant terms. Care is 

needed though to ensure that any terms omitted are indeed insig-

nificant during the entire course of the problem run. It is often 

possible to eliminate entire equations by merely neglecting minor 

fluctuations in certain intermediate variables. For example, if the 

heat capacity calculation of a component mixture (to be purified) 

required for a heat balance varies by only 1% of its value due to 

expected variations in composition, an average constant number 

could be substituted rather than include an equation in the model 

to compute a value (perhaps continuously).

4. Having assembled the equations, a procedural method for the solu-

tion is required. A consideration of the solution required from the 

model is a necessary preliminary step to the computation phase. A 

list of the various cases to be studied and the information that is 

expected in each case will reveal possible redundant situations as 

well as assist the programming of the computation phase.

5. The computation phase that follows may offer several alternate 

routes to the solution. The method selected will depend on the com-

plexity of the equations to be solved. There are three general levels.

a. The most elementary is common sense, i.e., the solutions 

desired can be obtained from the model by inspection if the 

equations or the solutions required are sufficiently simple. It 

should be realized that this technique cannot be extrapolated 

to more complex cases without requiring increasing amounts 

of pure guesswork.

b. The next level, again restricted to systems of modest complex-

ity, solves the equation by analytical techniques (see Part II). As 

pointed out in the previous discussion, a considerable amount 

of skill is required to solve even some of the most simple 

ones. Selecting the most fruitful path may be the only feasible 

method for problems of even fair complexity.

c. The solution may require a numerical method (see Part III).
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6. The sixth and last phase is the study and verification of the 

solution(s) obtained from the mathematical model. Any unex-

pected solution(s) should be scrutinized so as to ensure that no 

errors have occurred in the computation; also, some of the com-

puter logic should be specifically designed to check the validity of 

the mathematical model.

7.4  Some General Concerns

Here is what one of the authors [8] has stressed in terms of developing problem-

solving skills and other creative thinking.

1. Carefully define the problem at hand.

2. Obtain all pertinent data and information.

3. Initially, generate an answer or solution.

4. Examine and evaluate as many alternatives as possible, employing 

“what if ” scenarios [9].

5. Reflect on the above over time.

6. Consider returning to step 1 and repeat/expand the process.

As noted earlier, the traditional methodology of solving problems has been 

described for decades in the following broad stepwise manner:

1. Understand the problem.

2. Devise a plan.

3. Carry out the plan.

4. Look back and (possibly) revise.

Many now believe creative thinking should be part of every student’s education. 

Here are some ways that have proven to nudge the creative process along:

1. Break out of the one-and-only answer rut.

2. Use creative thinking techniques and games.

3. Foster creativity with assignments and projects.

4. Be careful not to punish creativity.

The above-suggested activities will ultimately help develop a critical thinker that:

1. Raises important questions and problems, formulating them 

clearly and precisely.

2. Gathers and assesses relevant information, using abstract ideas to 

interpret it effectively.
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3. Comes to well-rounded conclusions and solutions, testing them 

against relevant criteria and standards.

4. Thinks open mindedly with alternative systems of thought, recog-

nizing and assessing, as need be, their assumptions, implications, 

and practical consequences.

5. Communicates effectively with others in figuring out solutions to 

complex problems.

The analysis aspect of a problem remains. It essentially has not changed. The 

analysis of a new problem in environmental engineering and science can still be 

divided into four steps.

1. Consideration of the process in question

2. Mathematical description of the process, if applicable

3. Solution of any mathematical relationships to provide a solution

4. Verification of the solution
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Perhaps the most important step in many environmental engineering/science 

problems is the determination of the numerical value(s) of one or more equations. 

These solutions may be obtained analytically (in closed/exact form) or numerically 

(by some approximate method). A great number of methods have been developed 

for doing this. The purpose of this part is to introduce and provide some of the 

more important analytical methods. Part III addresses numerical methods.

There are seven chapters in Part II. The chapter numbers and accompanying 

titles are listed below:

Chapter 8: Analytical Geometry

Chapter 9: Differentiation

Chapter 10: Integration

Chapter 11: Differential Calculus

Chapter 12: Integral Calculus

Chapter 13: Matrix Algebra

Chapter 14: Laplace Transforms

Part II

ANALYTICAL ANALYSIS
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A host of subject matter receives treatment in this introductory chapter in Part II. 

The key topics will involve the three coordinate systems that the environmental 

engineer or scientist encounters in practice – rectangular, cylindrical, and 

spherical.

The location of a point or a system in space may be defined in various coordinate 

systems. Normally, the presentation keys on rectangular coordinates. However, 

many applications involve curvilinear-coordinate systems-thus, the inclusion of 

cylindrical and spherical coordinates in this chapter.

Five sections complement the presentation of this chapter. Section numbers 

and subject titles follow.

8.1: Rectangular Coordinates

8.2: Cylindrical Coordinates

8.3: Spherical Coordinates

8.4: Key Physical Equations

8.5: Applications

8
Analytical Geometry
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8.1  Rectangular Coordinates

In rectangular coordinates, the position of a point P(x, y, z) is determined by the 

intersection of three mutually perpendicular planes x constant, y constant, 

and z constant. The Point P in Figure 8.1 (a) is defined by the rectangular 

Figure 8.1 Coordinate systems.
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coordinates x, y, and z. The differential lengths in the x, y, and z directions are 

given by

 ds PP dx1  (8.1)

 ds PP dy2  (8.2)

 ds PP dz3  (8.3)

Any differential in length ds in this coordinate system is given by

 ( ) ( ) ( ) ( ) ( ) ( ) ( )ds PP PP PP dx dy dz2 2 2 2 2 2 2
 (8.4)

The differential area elements df in the planes of constant x, y, and z take the form

 df dy dzx   (8.5)

 df dx dzy   (8.6)

 df dx dyz   (8.7)

The differential volume element dτ is

 d dx dy dz   (8.8)

8.2  Cylindrical Coordinates

The same point P in space may also be represented by the cylindrical coordinates r, 

ϕ, and z. With reference to Figure 8.1(b) one can easily follow the transformation 

of x, y, and z into cylindrical coordinates.

 x r cos  (8.9)

 y r sin  (8.10)

 z z  (8.11)

The right-handed, mutually perpendicular (orthogonal) axes for this coordi-

nate system are 1, 2, and 3. The differential lengths ds
1
, ds

2
, and ds

3
 in the r, ϕ, and 

z, direction, respectively, are given by

 ds PP dr1
 (8.12)
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 ds PP r d2   (8.13)

 ds PP dz3  (8.14)

The differential length ds now takes the form

 
( ) ( ) ( ) ( )

( ) ( ) ( )

ds PP PP PP

dr r d dz

2 2 2 2

2 2 2 
 (8.15)

The differential area element df on the curved surface is given by

 

df PP PP

r d dz

r d dz

( )( )

( )( ) 

  

 (8.16)

(The differential element on the top or bottom planes that bound the cylinder is 

(PP )(PP ) r dr dϕ). The differential volume element dτ is

 

d PP PP PP

dr r d dz

r dr d dz

( )( )( )

( )( )( ) 

  

 (8.17)

8.3  Spherical Coordinates

The point P is described by the spherical coordinates r, , and ϕ in Figure 8.1 (c). 

One can easily show that

 x r sin cos  (8.18)

 y r sin sin  (8.19)

 z r cos  (8.20)

The right-handed orthogonal axes for this coordinate system are once again 1, 

2, and 3. The different lengths ds
1
, ds

2
, and ds

3
 in the r, , and ϕ directions, respec-

tively, are given by

 ds PP dr1  (8.21)

 ds PP r d2  (8.22)
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 ds PP r d3  sin  (8.23)

The differential length ds equation takes the form

 
( ) ( ) ( ) ( )

( ) ( ) ( sin )

ds PP PP PP

dr r d r d

2 2 2 2

2 2 2 
 (8.24)

The differential area element df on the curved surface is given by

 

df PP PP

r d r d

r d d

( )( )

( )( sin )

sin

 

  2

 (8.25)

while the differential volume element dτ is

 

d PP PP PP

dr r d r d

r dr d d

( )( )( )

( )( )( sin )

sin

  

   2

 (8.26)

8.4  Key Physical Equations

This section provides equations for calculating the area and/or volume and/or 

perimeter of a host of objects listed below.

a. Sphere, Cube, Rectangular Parallelepiped, and Cylinder

b. Parallelogram, Triangle, and Trapezoid

c. Polygon

d. Ellipse and Ellipsoid

e. Cone

f. Torus

a. Sphere, Cube, Rectangular Parallelepiped, and Cylinder

Describing equations for the area and volume of the following shaped particles are 

provided below.

1. Sphere of radius R

2. Cube of side A

3. Rectangular parallelepiped of sides A and B

4. Cylinder of radius R and height H
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Equations

1. For a sphere of radius R:

 Volume
4

3

3R  (8.27)

 Area 4 2R  (8.28)

2. For a cube of side A:

 Volume A3
 (8.29)

 Area 6 2A  (8.30)

3. For a rectangular parallelepiped of depth C:

 Volume ABC  (8.31)

 Area 2( )AB AC BC  (8.32)

4. For a cylinder of radius R and height H:

 Volume R H2
 (8.33)

 Area 2 RH  (8.34)

b. Parallelogram, Triangle, and Trapezoid

Describing equations for the area and perimeter of the following shaped particles 

are provided below.

1. Parallelogram of height H, side A, and base B

2. Triangle of height H, base B, and left side A; the angle between side 

A and base B is ϕ

3. Trapezoid of height H and parallel sides A and B; the lower left 

angle is ϕ and the lower right angle is 

Equations

1. For the parallelogram:

 Area ( )( ) ( )( )sinH B A B  (8.35)
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 Perimeter 2 2A B  (8.36)

2. For the triangle:

 Area
1

2

1

2
( )( ) ( )( )sinB H A B  (8.37)

 Perimeter A B C  (8.38)

3. For the trapezoid:

 Area
1

2
H A B( )  (8.39)

 
Perimeter A B H

A B H

1 1

sin sin

(csc csc )

 (8.40)

c. Polygon

Describing equations for the area and perimeter of the following shaped particles 

are provided below.

1. Regular polygon of N sides, each of length B

2. Regular polygon of N sides inscribed in circle of radius R

Equations

1. For case (1):

 Area
/

/

1

4

1

4

2 2NB
N

NB
N

N
cot

cos( )

sin( )
 (8.41)

 Perimeter ( )( )N B  (8.42)

2. For case (2):

 Area
1

2

2 1

2

3602 2NR
N

NR
N

sin sin  (8.43)

 Perimeter 2 2
180

( )( )sin ( )( )sinN R
N

N R
N

 (8.44)
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d. Ellipse and Ellipsoid

Describing equations for the area, perimeter, or volume of the following shaped 

particles are provided below.

1. Ellipse of semimajor axis A and semiminor axis B

2. Ellipsoid of semi-axes A, B, C

Equations

1. For case (1):

 Area ( )( )A B  (8.45)

 Perimeter 4 1 2 2A k dsin  (8.46)

 2
1

2

2 2( ) ( )A B approximate  (8.47)

where k A B A( )2 2 /

2. For case (2):

 Volume
1

2

2B A  

e. Cone

Describing equations for the volume and surface area of the following shaped par-

ticles are provided below.

1. Right circular cone of radius R, lateral length L, and height H

2. Frustum of right circular cone of radii A, B, lateral length L, and 

height H

Equations

1. For case (1):

 Volume
1

3

2R H  (8.48)

 Surface area R R H RL2 2
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2. For case (2):

 Volume
1

3

2 2H A AB B( )  (8.50)

 Surface area ( ) ( ) ( )A B H B A A B L2 2
 (8.51)

f. Torus

Describing equations for the volume and surface area off a torus of inner radius A 

and outer radius B are provided below.

Equations

 Volume
1

4

2 2( )( )A B B A  (8.52)

 Surface Area 2 2 2( )B A  (8.53)

8.5 Applications

Illustrative Example 8.1

Develop the area to volume ratio equations for the shaped particles from 

sections 8.4A, 8.4E, and 8.4F.

Solution

For 8.4A:

 Area/Volume /3 R  

 Area/Volume /6 A  

 Area/Volume / / /2 1 1 1[( ) ( ) ( )]A B C  

 Area/Volume /2 R  

For 8.4E:

 Area/Volume /3L RH  

 Area/Volume /[ ][ ( ) ] ( )3 2 2A B L H A AB B  
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For 8.4 F:

 Area/Volume /( )4 B A  

Illustrative Example 8.2

Calculate the area to volume ratio of shaped particles from sections 8.4A, 8.4E, 

and 8.4F given the following data:

 A 1, B 2, C 2, L 1, H 1, and R 1

Solution

For 8.4A:

 Area/Volume 3  

 Area/Volume 6  

 Area/Volume 4  

 Area/Volume 2  

For 8.4E:

 Area/Volume 3  

 Area/Volume /9 7  

For 8.4F:

 Area/Volume 4  

Illustrative Example 8.3 [1]

Consider a sphere with a diameter of 1.0 μm (micrometer or micron). If this same 

mass of sphere is converted through a size reduction process to spheres with a 

diameter of 1.0 nm (nanometer), calculate the increase in surface area of the 

smaller sized spheres [1].

Solution

From 8.4A, the volume of a sphere is given by

 V R R D

D

4

3
2

6

3

3

; /

/

 



Analytical Geometry 111

The volume of a 1.0 μm sphere is therefore

 

V( . ) ( . )

. ( ) .

. ( )

1 0 1 0 6

0 5236 1 0 10

0 5236 10

3

3 3

9

 m /

m  m nm

nm 33

 

The volume of a 1.0 nm sphere is correspondingly

 
V( . ) ( . )

. ( )

1 0 1 0 6

0 5236

3

3

 nm /

nm
 

Since the mass – as well as the total volume – remain the same, the number of 

smaller particles is

 N
0 5236 10

0 5236
10

9
9.

.
 

The surface area of the 1.0 μm particle is

 

SA R D( . )

( . )( )

. ( )

. ( )

1 0 4

3 14

3 14

3 14 10

2 2

2

2

6 2

 m

1

m

nm 

 

and

 
SA( . ) ( . )( )

. ( )

1 0 3 14 1

3 14

2

2

 nm

nm
 

However, there are 109 of the 1.0 nm particles. Therefore, the 109 smaller sized 

particles have a total surface area of 3.14 109 (nm)2. This reduction in size has 

increased the surface area by a factor of 1000 or 103. The reader should note that 

the particle diameter has decreased by the same factor.

Illustrative Example 8.4

Consider a cube with side of 1.0 μm. If the same mass of cube is converted to 

cubes with sides of 1.0 nm, calculate the increase in surface area of the smaller 

sized cubes.
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Solution

From section 8.4A, the volume of a cube is given by

 V A3
 

Therefore,

 

V( . ) ( )

. ( )

. ( )

1 0 1

1 0

1 0 10

3

3

9 3

 m

m

nm

 

The volume of the 1.0 nm sided cube is

 V( . ) ( )1 0 3 nm 1.0 nm  

Since the volume remains the same, the number of smaller cubes is

 N 10 1 0 109 9/ .  

The surface area of a 1.0 m sided cube is

 

SA A( . )

( )

( )

1 0 6

6

6 10

2

2

6 2

 m

 m

nm

 

and

 
SA A .0 nm

nm

( )

( )

1 6

6

2

2
 

Since there are 109 of the 1.0 nm sized cubes, their total surface area is 6 109 

(nm)2. Once again, the reduction in size has increased the surface area by a factor 

of 1000 due to a similar corresponding decrease in side length of the cube.

Illustrative Example 8.5 [2]

A new baghouse [3–4] is structured as shown in Figure 8.2. (A baghouse contains 

multiple filter bags for removing particulate matter from a pollutant/latent gas 

stream.) The outside surface of the baghouse is to be covered with a new experi-

mental outer insulating covering. Assume that there will be no waste in the cover-

ing process. The material is ordered to the nearest 0.01 yd2 and the cost is $87.54/
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yd2. The minimum order that will be shipped is 5 yd2. Your department budget 

must bear the cost. What will be the debit to your budget?

Data:

1. Surface E is a square with a measurement of 3 m per side.

2. The top roof angle (B) is 80°, the remaining two angles are equal.

3. The ends of the rounded hoppers (H) are semicircles (half circles) 

of equal size.

4. The length of the unit side (S) is 6.6 m.

Note: The problem requires several steps/processes. Therefore, one needs not only 

to know and use the appropriate mathematical principles but also needs to orga-

nize their work to avoid “oversight” errors.

Solution

There are two identical surfaces for E, R, S, and T. There are three surfaces of 

dimension C, and there are six ends (H). Therefore, the total area (A
t
) to be cov-

ered is calculated as follows:

 A X E R S T C Ht 2 3 6( )  

Note that the dimensions are provided in metric units and the insulating mate-

rial is provided in English units. In any problem where the units of measure are 

mixed, terms must be converted to consistent units. In this problem, each of the 

measures provided in meters could be changed to yards, but that would be time 

consuming. Since all the linear measures are in meters, one would be better served 

by computing the areas in metric units and then converting the final number of 

square meters to square yards.

Note also that one square meter (1 m2) is equal to 1.196 yd2. Therefore

 X X( ) ( )yds m 1.1962 2
 

For the interested reader, the solution, left as an exercise, is $14,300.

Figure 8.2 Physical configuration of a new baghouse.

H H H

C

E

T

Angle (B)

S

R
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Illustrative Example 8.6

Determine the total particulate matter that can be collected in the hoppers, i.e., 

how many cubic feet will be occupied by the particulate matter when the three 

hoppers are full?

Solution

The calculation essentially requires determining the volume of the free hoppers. 

The interested reader is also left the exercise of verifying the solution provided 

below.

 
V 17 1

604

.  m

 ft

3

3
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The terms derivative and differentiation have not only come to mean different 

things to different people but have also been used interchangeably. The authors 

offer the following definitions. The former term provides information on how one 

variable, e.g., a dependent variable, changes with respect to another variable, e.g., 

an independent variable. The derivative dy/dx relates how a dependent variable y 

varies with an independent variable x. Differentiation is the operation that enables 

one to determine the value of the derivative.

One form of a derivative enables one to determine how fast something is mov-

ing at a given point or instant in time. To use a familiar example, if points A and 

B are 60 miles apart and a car travels from point A to point B in 60 minutes, one 

may say the car traveled at a rate of 60 mph (miles per hour). However, stating 

that the car traveled at 60 mph is an average that assumed the car was moving at a 

steady rate of 60 mph from the start to the finish. However, in reality, the car must 

accelerate from 0 to 60 mph beginning at point A and it must decelerate from 60 to 

0 mph to stop at point B. Obviously the car traveled at varying rates of speed, and 

at some point had to be traveling faster than 60 mph. A derivative called velocity 

can be used to determine the speed of the car at any point along the route. The car’s 

speedometer produces a derivative function – one can look at the speedometer 

at any time and determine the velocity (instantaneous speed) of the car. Many 

9
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pollution control equipment and other environmental engineering calculations 

involving derivatives relate to velocity.

Two sections complement the presentation of this chapter. Section numbers and 

subject titles follow:

9.1: Graphical Methods

9.2: Finite Differencing

9.1  Graphical Methods

The fundamental laws on which engineering and science are based are frequently 

expressed in the form of differential equations providing the rate of change of 

an important dependent quantity with respect to an independent variable. It is 

therefore particularly necessary in the interpretation of experimental data to be 

able to carry out the process of differentiation analytically, graphically, or numeri-

cally. This chapter reviews the subject from a graphical perspective. A later chapter 

examines differentiation from an analytical point of view, while Part III provides 

material on numerical methods of analysis.

Since the derivative of a function y at any particular value of x is the slope of the 

curve of y vs. x at that value of x, it follows that any graphical means of measuring 

the slope of a curve may be employed to obtain the derivative. One rather obvious 

method is to plot the function and obtain the slope with the aid of a straightedge. 

The straightedge is swung about the point on the curve until it is judged “by eye” to 

best represent the slope of the curve at the point. A straight line is then drawn, and 

the slope of the straight line is calculated by any suitable means. In this last step, it 

is important to obtain the slope in terms of the variables, taking into account the 

scales used for the ordinate and abscissa. Only where these are equal is the geo-

metric slope the correct value.

A better way to obtain the derivative is to place a protractor or triangle on a 

fixed straightedge or T square at a definite angle to the x axis and slide it along 

until it touches the curve representing the function. This procedure locates the 

point on the curve where the slope is equal to the predetermined value. As an aid 

in locating the exact point in tangency, several chords, such as AB of Figure 9.1, 

may be drawn parallel to the tangent. These are bisected, and a line QP is drawn 

through their mid-points to intersect the curve at the desired point P. Although 

the principle is quite similar to the direct measurement of the slope at a point, the 

results obtained are found to be somewhat better. With a graph of reasonable size, 

it is usually possible to obtain the derivative in this way with an error of less than 

5 percent, although the accuracy (as one would expect) varies considerably with 

the curvature of the line representing the function.

A very convenient device for measuring slopes of curves in past years is a mov-

able protractor fitted with a prism at the center. This is placed over the curve at the 

point in question and turned until the two branches of the curve seen through the 

two faces of the prism appear to join to form a smooth continuous curve. The slope 
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of the curve with reference to the base of the instrument may then be read. Some of 

the instruments of this type employ a protractor of such a small diameter that the 

accuracy is no better than, if as good as, that obtainable by the preceding methods.

It is important to note that the first derivative, dy/dx, represents the ratio of two 

distinct quantities, dy and dx. Consequently, this ratio may be handled by ordinary 

algebraic procedures. For example

 dx
dy

dx
dy  (9.1)

 
dy

dx

dx

dz

dy

dz
 (9.2)

On the other hand, in general, the higher derivatives cannot be treated in this 

manner.

As noted above, one frequently uses graphs to find the derivative of one vari-

able with respect to another. The slope of a curve of distance vs. time (discussed 

earlier) would give the velocity at that point. In an another example, the deriva-

tive of the molal volume of a solution with respect to concentration is the partial 

molal volume [1, 2]. In cases where the relationship between the variables can 

be expressed by an equation, the computation of slopes and derivatives is best 

done either analytically or numerically. If empirical equations are not available, the 

aforementioned graphical techniques must be brought to bear.

Thus, graphical differentiation may be used to determine the slope of a curve 

relating two variables. If the analytical relationship is known, the differentiation 

may be performed analytically for a precise answer. If the function is not known, 

the data may be plotted and the slope may be determined by drawing a tangent as 

described above to the curve at a point. However, the determination of the proper 

slope of the tangent is often uncertain, especially if the experimental data are inac-

curate. Graphical differentiation may then be used to obtain values of the slope. If 

tabulated data are available, the data are plotted as y as a function of x [1–3].

x

y

A
P

B
Q

Figure 9.1 Graphical differentiation.
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The above graphical analysis provides what is referred to as the first derivative, 

i.e., dy/dx. The second derivative, d2y/dx2, may also be obtained in a similar man-

ner. Refer to Figure 9.2. If the slopes obtained at x x
0
, x x

1
, x x

2
, and x x

3
, 

i.e., at points A, B, C, and D respectively, are plotted vs. x (see Figure 9.3) one may 

obtain the second derivative. The slope of point x x
4
 (Point E) represents d2y/dx2 

at the point x x
4
.

9.2  Finite Differences

Suppose that the function y f(x) is given in tabular form for a series of equally 

spaced values of x. As an aid in performing necessary interpolations in such a 

x

y

B
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D
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dx

dy
dx
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dx
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dx
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0

x
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2
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3

Figure 9.2 Derivatives of several points.

Figure 9.3 The second derivative.
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table one may, and in fact often does, list explicitly the differences between suc-

cessive values of f(x). In the same way, the differences between these differences 

may be calculated and listed, and so on indefinitely, unless perhaps at some stage 

the differences turn out to be zero. In the field of numerical mathematics these 

differences play an important role not only in interpolation, but also in such pro-

cesses as the construction of tables, curve fitting, the differentiation and integra-

tion of tabular functions, and the approximate solution of differential equations. 

In this section, the fundamental properties of the differences of a function are 

developed, and their use in carrying out the operations just mentioned are 

detailed.

Begin by investigating from an elementary point of view the general problem 

of interpolation. In its simplest form, interpolation consists of substituting the 

chord of a curve for the curve itself, as in Figure 9.4 (a), and subsequently reading 

values of the function from the chord rather than from the graph of the func-

tion. Analytically, let h be the interval between successive values of x at which f(x) 

is known, and let x x
0

rh, where r is some fraction, be a point intermediate 

between x
0 
and x

1
x

0
h at which the value of f(x) is desired. Then manipulating 

the equation with the assumption that x
0
 = 0, one has for the equation of the chord 

joining the points (x
0
, f

0
) [now (0, f

0
)] and (x

1
, f

1
) [now (h, f

1
)]

 f x y f
f f

h
x( ) 0

1 0
 (9.3)

Since x = x
0

+ rh and x
0

= 0 in this manipulation, x can be replaced simply with rh. 

Substituting rh for x into Equation(9.3) one is left with

 y f f f r0 1 0( )  (9.4)

y y

x x

f0
f0 f1 f2

x0 x1 = x0+h x1 = x0+h x2 = x0+2h
(x = x0+rh) (x0+rh)

y = f(x)

y = f(x)

f1

(a) (b)

Figure 9.4 Approximation of derivatives by finite differences.
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One may also introduce the notation

 f f f0 1 0
 (9.5)

Finally, reverse the initial manipulation (x
0

= its original value and not 0) and one 

can write

 f x rh f r f( )0 0 0  (9.6)

This derivation was provided for an explanation of Equation(9.6) and is not 

required to calculate an interpolated value. One can simply place the original val-

ues into Equation(9.6).

On the other hand, it would be reasonable to attempt to approximate the graph 

of y f(x) not by a straight line through two successive points where f(x) is known, 

but by a parabola through three such points, as in Figure 9.4 (b). In general, 

because of its curvature, a parabola will fit the graph of f(x) more closely than will 

a straight line, and hence interpolation based on a parabolic approximating arc will 

be more accurate than ordinary linear interpolation.

A host of procedures are available for estimating the derivative in this and other 

ways. For example, to develop a formula for parabolic interpolation, one must first 

determine the coefficients a, b, c in the equation of the approximating arc

 y a bx cx2
 (9.7)

This, as well as several other methods, receive treatment in Part III.

Naturally, by approximating f(x) by polynomial functions of higher and higher 

order, and proceeding exactly as indicated above, increasingly refined interpola-

tion formulas can be obtained [4]. This topic will be re-visited in Part III, Chapter 

28. However, the labor involved in proceeding in this fashion soon becomes pro-

hibitive, and many turn their attention to more efficient operational methods of 

deriving such results via numerical analysis.
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Three words that will appear regularly in this chapter are: integral, integrate, and 

integration. Most practicing environmental engineers and scientists use the terms 

interchangeably. But is there a difference? Here is what Webster [1] has to say:

1. Integral. “…the result of integrating a function.”

2. Integrate. “…to calculate the integral or integrals of (a function, 

equation, etc.).”

3. Integration. “…the process of finding the quantity or function of 

which a given quantity or function is the derivative or differential.”

Does this help? Add to this that an integral equation is one which contains the 

unknown function behind the integral sign. Its importance for physical problems 

lies in the fact that most differential equations together with their boundary condi-

tions may be reformulated to give a single integral equation. If the latter can be 

solved, the mathematical difficulties are not appreciably greater even when the 

number of independent variables is increased.

As an example, assume that a source emits known quantities of hazardous 

particulate matter comprised of various sizes of particles into the atmosphere. 

As the particulate is dispersed into the surrounding area, the small particles 

travel a greater distance than the large particles, so that several concentric zones 

10
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surrounding the source contain particles of predictable sizes. This particle size 

information can be used in integral calculations to compute the quantity of par-

ticulate matter dispersed to each zone [2].

Five sections complement the presentation of this chapter. Section numbers and  

subject titles follow:

10.1: Graphical Integration

10.2: The Rectangle Method

10.3: The Method of Rectangles

10.4: The Method of Trapezoids

10.5: Simple Batch (Differential) Distillation Example

10.1  Graphical Integration

This technique can be applied whenever it is arduous to fit an equation to experi-

mental data, or when it is easier and faster to integrate graphically rather than 

analytically. Consider, for example, Figure 10.1. The data depicted are a plot of vol-

umetric flow (f t3/h) readings versus time (sec) as recorded at a small stack emitting 
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Figure 10.1 Flow readings.
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a pollutant gas. It is obviously difficult, if not impossible, to describe these data 

by means of an equation. However, since the definite integral is simply a number 

representing the infinite sum

 lim ( )
x

x a

x b

f x x
0

 (10.1)

or

 
x a

x b

f x dx( )  (10.2)

where a and b are variable limits, the integration can be carried out graphically 

without recourse to an equation.

The average flow rate during the first 10 sec, t, is approximately Q
1 
f t3, in the 

next 10 sec the flow rate is Q
2
 ft3, etc. The total volumetric flow rate for the first two 

minutes Q
t
 is thus

 Q Q Q Qt 1 2 12

10

3 600

10

3 600

10

3 600, , ,
 (10.3)

 Q t Q t dti  
0

120 3 600/ ,

( )  

Hence, in order to calculate the total volume of gas emitted over a 2 minute period 

(120 seconds), one has only to add the entire area under the curve Q versus t. The 

total emission obtained in this way is approximately 1.10 ft3.

There are many different methods for obtaining areas graphically. Counting 

areas or arbitrary blocks is often the quickest and surest way. A number of other 

techniques may be applied, such as:

1. Weighing: If the graph paper is of uniform thickness one can sim-

ply cut the figure out and weigh it. The weight is then compared to 

that of a standard rectangle and multiplied by the appropriate ratio 

of weights. This method is rarely, if ever, used today.

2. Planometers: Mechanical devices consisting of lever arms and 

a wheel which traces the curve are available commercially. This 

method is also rarely used today.

3. Analytical approximations: The methods of Simpson, Gauss, etc., 

as described in any appropriate mathematics text [3, 4], and in Part 

III of this text.
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It is fair to say that graphical integration is useful when no analytical expression 

of the function exists. To evaluate the integral

 y I dx I I x
x

x

1

2

 ; ( )  (10.4)

analytically, it is necessary to know how I varies with x. If I is constant, the integral 

is

 y I x x( )2 1  (10.5)

If I can be expressed as an analytical function of temperature T where x = T 

(see also Figure 10.2), for example, where I is the heat capacity c
p

 I x4 3 10 3 2.  (10.6)

the integral could be evaluated analytically:

 

y x dx

x x

x

x

1

2

4 3

4 3 10

3

2

3

2

3

1

3

.

.
( )

10  3

 (10.7)

Substitution of numerical values of the limits x
1 
and x

2 
would enable quantita-

tive evaluation of the integral. For example, if x
1

200 and x
2

600, then

 y
4 3 10

3
600 200 298 10

3
3 3 3.

( )  (10.8)

However, the above integral can also be evaluated graphically by determining the 

area under the curve of I as a function of x. For example, Equation 10.6 is replot-

ted in Figure 10.2. The limits c
p1

200,  c
p2

600  are shown. The area under the 

curve and between the limits is equal to the integral. The area may be evaluated by 

counting areas and then multiplying by the value of each area. This is an exercise 

left for the reader.

There are several methods of counting areas. The three most often employed are:

1. One Rectangle

2. Several Rectangles

3. Several Trapezoids

The next three sections review these approaches to graphically evaluate an integral. 

The development is based on calculating the average heat capacity of a substance 
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over a specified temperature range. By definition, the average value W of a func-

tion W over the range of its independent variable x from x
1
 to x

2
 is given by

 W
W dx

dx

x

x

x

x

1

2

1

2

 
 (10.9)

If this is applied to heat capacity, c
p
, as a function of temperature, T

 c
c dT

dT
p

T

T

p

T

T

1

2

1

2

 

 (10.10)

10.2  The Rectangle Method [5]

For the rectangle method, refer to Figure 10.3 once again. To calculate the aver-

age heat capacity over the 200–600K range, one draws a horizontal line such that 

approximately half that area lies above the line and half the area lies below the line. 

The value of c
p
 at that line is approximately 690. That area under the one rectangle is 

(690)(400) 276,000, and the average heat capacity is 276,000/400 690 J/kg·K [5].
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Figure 10.2 Graphical integration, area under curve.
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10.3  The Method of Rectangles

The method of rectangles approximates the area by a series of vertical rectangles. 

It is convenient, but not essential, to take equal increments along the horizontal 

scale. The upper end of each rectangle is placed so that the area included below the 

curve but excluded from the rectangle is approximately equal to the area above the 

curve included in the rectangle. Figure 10.4 shows the general method applied to 

the previous example. The c
p
 ordinates are chosen for n increments in T, and the 

integral is

 
T

T

p

i

i n

pc dx c T

1

2

1

   (10.11)

If the T increments are all equal,

 
T

T

p

i

i n

pic dT T c

1

2

1

  (10.12)

For the case at hand, T 100K, and c
p
 values are obtained from Figure 10.4.
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T

T

pc dT

1

2

100 270 510 870 1300

295 000

 ( )( )

,

 (10.13)

The average heat capacity is then

 cp

295 000

600 200

295 000

400
773 8

, ,
.  J/kg K  (10.14)

10.4  The Method of Trapezoids

The method of trapezoids replaces the smooth curve by a series of straight-line 

segments between data points. The area of each trapezoid is evaluated and the 

results are summed for the total area. With reference to Figure 10.5, the area of the 

first trapezoid A
1
 is

 A c T c c T
c c

Tp p p

p p

1 1 1 11 2 1

2 1
1

2 2
( )  (10.15)
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The total integral is

 
T

T

p

i

i n
p p

ic dT
c c

T T K T Ki i

1

2

1

1

1 2
2

200 600  ; ,  (10.16)

If all T increments are equal,

 
T

T

i

i n
p p

p p ppdT T
c

c c c
c

n

i i n

1

2

1

1 2 1

1 2
 c  (10.17)

For this calculation, Figure 10.5 indicates that with

 T c c c c cp p p p p100 172 387 688 1075 1548
1 2 3 4 5

, , , , ,      

Thus,

 
T

T

pc dT

1

2

100
172 1548

2
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301 000

 ( )

,

 (10.18)
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The average heat capacity is then

 cp

301 000

400
752 5

,
.  J/kg K  (10.19)

In this case, the area is somewhat high because each straight-line approximation 

includes slightly more area than that provided by the curve.

The method of a rectangle, the method of rectangles, and the method of trap-

ezoids may be applied to a series of data points without plotting the data. Note also 

that the three methods produced results that were within reasonable agreement. 

The above equations are introductory examples of the general subject of numerical 

methods, to be discussed in Part III, and they may be applied to graphs or numeri-

cal data.

10.5  Rayleigh Equation for Simple Batch (Differential) 
Distillation

In a simple batch distillation (see Figure 10.6), the composition of the evolved 

vapors and the composition of the liquid in the still pot are continuously chang-

ing. Therefore, the mathematical analysis of the operation must be based on dif-

ferential changes. Although batch distillations are generally more costly than their 

continuous counterparts, there are certain applications in which batch distillation 

is the method of choice. Batch distillation is typically chosen when it is not pos-

sible to run a continuous process due to limiting process constraints, the need to 

distill other process streams, or because the low frequency use of distillation does 

not warrant a unit devoted solely to a specific product [6–9].

A relatively efficient separation of two or more components may be accom-

plished through batch distillation in a pot or tank. Although the purity of the dis-

tilled product varies throughout the course of batch distillation, it still has its use 

in industry. As shown in Figure 10.6, a feed is initially charged to a tank, and the 

Initially (t = 0)

Steam coil

Batch still Condensate tank

Condenser

D, y

D, xD

W, xW

Distillate

Figure 10.6 Batch distillation diagram.
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vapor generated by boiling the liquid is withdrawn and enters a condenser. The 

condensed product is collected as distillate, D, with composition x
D
, and the liquid 

remaining in the pot, W, has composition x
W

. Total and componential material 

balances around a batch distillation unit are shown below.

 F W D  (10.20)

 Fx Wx DxF W D  (10.21)

Note that W, x
W

, D, and x
D
 all vary throughout the distillation process.

A convenient method for mathematically representing a binary batch distil-

lation process is known as the Rayleigh equation [6, 7]. This equation relates the 

composition and amount of material remaining in the batch to an initial feed 

charge, F, and composition, x
F

 ln
W

F

dx

y x
x

x

W

F

*
 (10.22)

where y* mole fraction of vapor in equilibrium with liquid of composition x.

At the desired distillate composition, the distillation is stopped. At this time, 

the moles remaining in the still is denoted W
final

, with composition x
W,final

. As such, 

Equation (10.22) may be re-written as shown below

 W F exp
dx

y x
final

x

x

W final

F

 

,
*

 (10.23)

The above equation may be solved numerically by plotting 1/(y*  x) vs. x and inte-

grating between the limits x
W,final

 and x
F
 to determine the area (A) under the curve. 

The above can therefore be written as

 W F exp Afinal  [ ]  (10.24)

where A area under the curve [6, 7]. This problem will be revisited in Part III – 

Numerical Methods.
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Once again, let the function f(x) be defined for a<x<b. For each x in this range, the 

derivative y f (x) is defined by the equation

 f x
f x x f x

xx
( ) lim

( ) ( )

0
 (11.1)

provided this limit exists. It should be noted that the limit cannot exist if f(x) is 

discontinuous at the value of x considered; however, continuity alone does not 

imply existence of the derivative. 

The differential dy of the function y f(x) may be approximated as follows:

 y f x x( )  (11.2)

In this equation, Δx can be replaced by dx so that one has

 dy f x dx( )  

11
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or

 
dy

dx
f x( )  (11.3)

This derivative can be interpreted graphically as the slope of the tangent to the 

curve y f(x) at point (x, y). The equation of the tangent at the point (x
1
, y

1
) is then

 y y f x x x1 1 1( )( )  (11.4)

Thus dx and dy can be interpreted as changes in x and y at (x, y).

The second derivative f (x) is defined as the derivative of the first derivative, 

and higher derivatives are correspondingly defined. The notations 

 
d y

dx

d y

dx

d y

dx

d y

dx

n

n

2

2

3

3

4

4
, , , ,     (11.5)

or

 y y y yiv n, , , , ( )     (11.6)

are also used to represent higher derivatives, respectively.

The basic properties of the derivative are summarized in the following theo-

rems where u f(x) and v g(x), are defined for a x b.

 ( )u v u v  (11.7)

 ( )u v uv vu  (11.8)

 
u

v

vu uv

v2  (11.9)

For example, repeated application of the rule for the derivative of the product xy 

gives the rule:

 y nxn 1
 (11.10)

 y xn
 (11.11)

for any positive integer n. In addition, if y 0, then y c, (c constant)

Four sections complement the presentation of this chapter. Section numbers 

and subject titles follow:

11.1: Differential Operations

11.2: Ordinary Differential Equations

11.3: Partial Differential Equations

11.4: Maxima/Minima
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11.1  Differential Operations

The following differential operations in Table 11.1 are valid for all differentiable 

functions of x where c is a constant and ln is the base of the natural logarithm.

Table 11.1 Differential operations.

Operation

1. d c

dx

( )
0

2. d x

dx

( )
1

3. d cx

dx
c

( )

4.
d cx

dx
ncx

n
n( ) 1

5.
d e

dx
e

x
x( )

6. d x

dx x

(ln ) 1

7. d x

dx

e

x

(log )
log

8. d x

dx
x

(sin )
cos

9. d x

dx
x

(cos )
sin

10. d x

dx
x

(tan )
sec2

11. d x

dx
x

(cot )
csc2

12. d x

dx
x x

(sec )
tan sec

13. d x

dx
x x

(csc )
cot csc

(Continued)
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Table 11.1 Cont.

Operation

14.
d x

dx
x

(sin )
( )

1
2

1

21

15.
d x

dx
x

(cos )
( )

1
2

1

21

16.
d x

dx
x

(tan )
( )

1
2 11

17. d cu

dx
c

du

dx
u f x

( )
; ( ) 

18. d uv

dx
u

dv

dx
v

du

dx
v f x

( )
; ( ) 

19.
d

u

v

dx v

du

dx

u

v

dv

dx

1
2

20.
d u

dx
nu

du

dx

n
n( ) 1

21.
d u

dx
u

du

dx

( ) ( / )
1 2

1 21

2

/

22.
d

u

dx u

du

dx

1

1
2

23.
d

u

dx

n

u

du

dx

n

n

1

1

24. d u

dx u

du

dx

(ln ) 1

25.
d c

dx
c c

du

dx

u
u( )

( )(ln )

26.
d e

dx
e

du

dx

u
u( )
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11.2  Ordinary Differential Equations

The natural laws in any scientific or technological field are not regarded as precise 

and definitive until they have been expressed in mathematical form. Such a form, 

often an equation, is a relation between the quantity of interest, say pollutant emis-

sions, and independent variables such as concentration or flow rates on which the 

emission(s) depend. When it happens that this equation involves one or more of 

its derivatives it is called a differential equation. 

When a function involved in the equation depends only on one variable, its 

derivatives are ordinary derivatives and the differential equation is called an ordi-

nary differential equation. When the function depends on several independent 

variables, then the equation is called a partial differential equation. The theories 

of ordinary and partial differential equations are quite different. In almost every 

respect the latter is more difficult to treat analytically. Ordinary differential equa-

tions arise from those systems in which all the quantities may be taken as a func-

tion of a single independent variable. It is usually easy to test for the presence of 

a single independent variable from knowledge of the physical situation at hand.

For example, in a single-pass countercurrent heat exchanger [1] at a water treat-

ment facility operating under fixed terminal conditions, it is necessary only to 

specify the position in the exchanger by means of one variable, such as the distance 

x from the cold end, and all the other variables at this point are fixed by the physi-

cal laws controlling the system. In a continuously operated absorption tower [2], 

liquid and gas compositions vary throughout the tower, but if the input and outlet 

conditions are fixed, it suffices (if channeling effects are neglected and concentra-

tions are assumed equal at all points across any cross section) to specify position in 

order to calculate the properties of both the liquid and gas streams. 

As noted above, ordinary differential equations generally arise from a descrip-

tion of situations involving one independent variable. The most important cases in 

practice involve, in addition to the independent variable, one dependent variable, 

and the most general differential equation for two variables may be written thusly

 f x y
dy

dx

d y

dx

d y

dx

d y

dx

n

n
, , , , , ,      

2

2

3

3
0  (11.12)

Any value of y which, when substituted into Equation (11.12), reduces the left-

hand side to zero is called a “solution” of the differential equation.

The order of a differential equation is the order of the highest derivative occur-

ring within the equation. The degree of a differential equation is the power to 

which the highest derivative is raised when the equation has been rationalized and 

cleared of fractions. The differential equation

 
d y

dx
f x

dy

dx

2

2

2
1

2

1( )  (11.13)
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is of the second order and the second degree, as may be seen by applying the pre-

ceding rules after squaring both sides.

The solution of a differential equation involving the most general possible rela-

tionship among the variables is known as the “general solution” or the “primitive.” 

When the constants in the general solution are allowed to take on values correspond-

ing to the conditions in a specific problem, the resulting equation is known as a “par-

ticular solution” of the differential equation because it is now applicable to but one 

particular case. The limitations introduced in obtaining a particular solution from a 

general solution are known collectively as the “boundary conditions” of the problem. 

Whenever a relationship exists between two variables x and y such that for 

every value of x there exists at least one value of y, y is said to be a function of x, 

and the functional relation may be expressed symbolically as

 f x y( , ) 0  (11.14)

Equation (11.14) can be solved for either x in terms of y or y in terms of x.

Solving differential equations analytically is one of the major problems faced 

by environmental engineers and scientists as such a wide variety of applications 

lead to differential equations, and some cannot be solved analytically. The classical 

initial value problem is to find a function y(x) that satisfies the first order differen-

tial equation y f(x, y) and takes on the initial value form of y(x
0
) y

0
. A broad 

variety of methods have been devised for the approximate solution to this classical 

problem, most of which have then been generalized for treating solutions to these 

problems [3–6].

11.3  Partial Differential Equations

Suppose now that the end conditions in the two preceding examples, i.e., the heat 

exchanger and absorber, are not steady or constant with time. The rate of flow of 

the cold stream to the heat exchanger may vary with time, or the rate of flow of the 

solvent liquid to the absorption tower may vary with time, per some known relation. 

In order to specify conditions completely at any point in either unit, the values of 

two independent variables – position and either time or rate of flow of the variable 

stream – must be specified. In this case, the instantaneous behavior of the system will 

be expressed by an equation involving the variables and their partial derivatives. The 

analytical solution of partial differential equations is available in the literature [3–6].

It is fair to say that the analysis of situations involving two or more indepen-

dent variables frequently results in a partial differential equation. The mathemati-

cal techniques employed to formulate the partial differential equation are similar 

to those used to set up an ordinary differential equation. The details of the two 

processes and, in particular, the manipulations involved are, however, surprisingly  

different. The general function of n independent variables

 y f x x xn( , , , )1 2    (11.15)
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may be reduced to a function of x
1
 alone by holding the remaining variables x

2
, 

x
3
, …, x

n
 constant and allowing x

1
 to vary. The function of x

1
 thus created may 

have a derivative defined and computed by the ordinary methods applicable to 

functions of a single variable. This derivative is called the first partial derivative of 

f or y with respect to x
1
, and its notation is the symbol 

 f
x1

,  or 
df

dx
x xn

1
2

,  or 
f

x
1

This partial derivative is defined as the limit

 
f x x x

x

f x x x x f x xn

x

n( , , , )
lim

( , , , ) ( ,1 2

1
0

1 1 2 1 2

1

       ,, , )  x

x
n

1 (11.16)

Partial derivatives are defined with respect to each of the variables x
1
, x

2
, x

3
, …, x

n 

in an analogous manner.

Particular attention must be devoted to the notational aspects of partial differen-

tiation, inasmuch as the customary symbols, carelessly employed, may become so 

nondescript with reference to the actual operations as to result in considerable ambi-

guity and confusion. The chief difficulty in this respect is with the aforementioned 

common partial derivative symbol 

 
f

x
x xn

1
2

Thus, f indicates that some function f of several independent variables is to be 

partially differentiated with respect to the one of these independent variables 

which is indicated in x
1
,  the remaining variables in the function, as indicated 

in the subscript are, being held constant. Clearly f standing alone has no definite 

meaning, for f may be partially differentiated with respect to any one of its argu-

ments x
1
, x

2
, …, x

n
. Until it is indicated by x

1
which of the n partial derivatives is to 

be taken, f has only an indefinite operational significance. Thus, the above term 

 
y

x
x xn

1
2

indicates three things:

1. The function that is to be differentiated is y.

2. The variable x
1
 with respect to which differentiation is to be performed.

3. The variables that are to be held constant during the differentiation 

(usually indicated as subscripts).
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The partial derivative 

 
y

x
x1

2

 (11.17)

or

 
y

x
x2

1

 (11.18)

may be demonstrated graphically (see previous Chapter). Refer to Figure 11.1 

which provides a plot of y vs x
1
. The slope of any point along the curve represents 

 
y

x
x1

2

since x
2
 is constant. The derivative can be generated for various values of x

2
 as 

pictured in Figure 11.2. If the four slopes calculated keeping x
2
 constant at A, B, 

C, and D, i.e., the partial of y with respect to x
1
 evaluated at x

1

* ,  are plotted vs the 

complementary four values of x
2
, i.e., a, b, c, and d – as shown in Figure 11.3 – the 

slope at any point along the curve would represent 

 
y x

x
x x

/

*

1

2
1 1

x
2
 = constant

dy
dx

1

y
x

1

x
1
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2

Figure 11.1 A plot of x
1
 vs. y.
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Not surprisingly, an equation involving partial derivatives is defined as a partial 

differential equation. The equation

 
2

0
T

x y
 (11.19)
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is a partial differential equation. Such equations are of importance in environmen-

tal engineering and science because the significant independent variables are fre-

quently functions of more than one independent variable, and the basic differential 

expressions for the natural laws are, therefore, partial differential equations. The 

usual problem is to determine a particular relation between y, x
1
, and x

2
 expressed 

as y f(x
1
, x

2
), that satisfies the basic differential equation and also satisfies some 

particular condition specified by the practical problem at hand.

The order of a partial differential equation is the order of the highest derivative 

appearing in the equation. For example, the equation

 
4

2 2

2

2

3 0
T

x y

T

x
T  (11.20)

is fourth order. A partial differential equation is said to be linear if no powers or 

products of the dependent variable or its partial derivatives are present. If one of 

the coefficients in the equation is a function of the dependent variable y, then the 

equation would be classified as nonlinear. Homogenous partial differential equa-

tions are ones in which all terms contain derivatives of the same order. The solu-

tion of a partial differential equation must also satisfy both the original differential 

equation and its boundary conditions. A discussion of the number and type of 

boundary conditions necessary and sufficient to ensure a solution of a partial dif-

ferential equation is beyond the scope of this chapter [1, 3, 4]. However, in most 

environmental engineering applications, the physical system enables the necessary 

boundary conditions to be established relatively easily. 

No general formalized analytical procedure for the solution of an arbitrary par-

tial differential equation is known. Details are articulated in the literature [3–6] but 

one should not rule out guessing at a solution [7]. 

Illustrative Example 11.1

If

 y f x u v xuv u v( , , ) 2  

evaluate

 
y

x

y

u
, ,  and 

y

v
 

if both u and v are functions of x.

Solution

 
y

x
uv  
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 y

u
xv 1  

 y

v
xu 2

 

11.4  Maxima and Minima

Since the derivative dy dx/ ,  or f (x), represents the rate of change of y with change 

in x, it is evident that if the function passes through a maximum or minimum 

the derivative will be zero. If the occurrence of such a maximum or minimum is to 

be determined and located, the derivative is equated to zero, thus giving the condi-

tion for which the maximum or minimum exists. This procedure is of consider-

able value in environmental engineering calculations, particularly those involving 

optimization, since the location of a maximum or minimum is frequently of sig-

nificant importance. This is particularly true in plant design, since the optimum 

operating and design variables are to be determined in order that the maximum 

profit and/or minimum cost will result.

In Figure 11.4, the curve ABCDE represents the function y f(x). If values of 

y in the neighborhood of points A and C are all less than the values of y at A 

and C, the function is said to go through a maximum at these points. Similarly, 

because the values of y in the neighborhood of B are all greater than the value of 

B, the function is said to go through a minimum at B. This curve emphasizes that 

the terms “maximum” and “minimum” do not necessarily denote the greatest and 

least possible values a function may assume. 

A

B
Derived curve

y

D

C

E

F0 H

G K

LJ

I

x

Figure 11.4 Maximum and minimum of a function with derived curve.
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As noted above, it is evident geometrically that the slope of the curve is zero at 

the maximum and minimum points, and since the slope is given by the derivative 

dy dx/ , or f (x), these points may be determined and located through solution of 

the equation f (x) 0. The roots of this equation merely locate the maximum and 

minimum points and cannot distinguish between them. Furthermore, the condi-

tion locates such points as E. One method of distinguishing between points A, C, 

and E is to calculate values of f(x) in their immediate vicinity. These are known as 

points of inflection. A convenient rule of these relations is as follows:

 Maximum:  
dy

dx

d y

dx
0 0

2

2
,  (11.21)

 Minimum:  
dy

dx

d y

dx
0 0

2

2
,  (11.22)

Calculations to determine the optimum conditions from the point of view of 

costs and monetary return are termed economic balances. The basic criterion of 

the true optimum is maximum return on the investment, but the problem can fre-

quently simplify to one of determining the minimum cost, the maximum produc-

tion from a piece of equipment, the minimum power, etc. The quantity considered 

is expressed as a function of the design or operating variables. On differentiating 

and equating to zero, one obtains the condition which determines the optimum 

value of the variable under consideration. 

Illustrative Example 11.2 [8]

Consider the two-stage reversible adiabatic compression [8] of a gas from an ini-

tial pressure P
1
 to a final pressure P

3
. If the fixed charges on the compressors are 

assumed to be essentially independent of the interstage pressure employed, then 

the optimum operation involves the determination of the interstage pressure for 

which the total power requirement is a minimum. For a fixed gas flow, this cor-

responds to the minimum work for the two stages. If the gas enters at T
1
 and is 

cooled to T
1
 between stages, the total work is given by

 W NRT
k

k
P

P

P

P

k

k

k

k

1 22

1

1

3

2

1

;  T T1  (11.23)

where (in consistent units)

N pound moles of gas compressed

R molal gas constant

k ratio of heat capacity at constant pressure to heat capacity at constant vol-

ume for the gas compressed
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T
1

inlet gas temperature

W total work, ft·lb
f

Outline how to determine P
2
 for minimum power required.

Solution

If the above quantity is to be a minimum, then the derivative must be zero:

 
dW

dP
NRT

k

k

k

k
P P

k

k
Pk k k

2

1

1

2

1

1

1 1( )/ ( / )

33

1

2

1 2 0( )/ ( )/k k k kP  

The above equation can now be solved for P
2
. This example will be revisited several 

times in Part V – Optimization.
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The reader is reminded that Chapter 10 primarily keyed on graphical integration. 

That material is now extended to include the analytical approach to integration. As 

noted earlier, numerical integration receives treatment in Part III.

Four sections complement the presentation of this chapter. Section numbers 

and subject titles follow:

12.1: Analytical Integration

12.2: Indefinite Integrals

12.3: Definite Integrals

12.4: Integration Applications

12.1  Analytical integration

The definite integral f x dx
a

b

( )  of a function f(x) for a x b,  is defined by the 

limiting process:

 I f x dx f x x
a

b

n

x
i

n

i i

i

( ) lim ( )

max

*

0
1

 (12.1)
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Here one denotes x
i
(i 0, 1, …, n) as a sequence of values of x in the interval, such 

that a x
0

x
1

x
2

… x
n

b and by 
xi
 the difference x

i
  x

i 1
. The value x

i*
 is 

any value of x such that 

 x x xi i i1

*
 (12.2)

As illustrated in Figure 12.1 the limiting process is understood as follows: there 

exists a value such that, for n sufficiently large and the largest x
i
 sufficiently small, 

the sum

 
i

n

i i n nf x x f x x f x x
1

1 1( ) ( ) ( )* * *
 (12.3)

differs from I by as little as desired, no matter how the values x
i

*
 are chosen. The 

number I is then the value of the integral on the left of Equation (12.4). The exis-

tence of this limit can be established if f(x) is continuous for a x b .

If f(x) is continuous and positive throughout the interval, the integral can be 

interpreted as the area of the part of the xy  plane bounded by the x axis, the graph 

of y f(x), and the lines x a, x b. If I denotes this area, one then has

 I f x dx f x
a

b

( ) ; ( ) 0  (12.4)

The definite integral satisfies certain basic laws:

 
a

b

a

b

a

b

f x g x dx f x dx g x dx[ ( ) ( )] ( ) ( )  (12.5)

x
0

0
0 x

1
xi–1

xi*

f(xi*)

xi* xi xn

ba x

y

Figure 12.1 The definite integral.
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a

b

a

b

cf x dx c f x dx c constant( ) ( ) ;   (12.6)

 
a

b

b

c

a

c

f x dx f x dx f x dx( ) ( ) ( )  (12.7)

12.2  Indefinite Integrals

If f (x) is the derivative of f(x), the antiderivative of f (x) is f(x). Symbolically, the 

indefinite integral of f (x) is

 f x dx f x c( ) ( )  (12.8)

where c is an arbitrary constant to be determined. The following relationships 

in Table 12.1 hold (a and b are constants) by virtue of the known formulas for 

differentiation.

Table 12.1 Indefinite integrals.

Operation

1.
a dx ax 

2.
af x dx a f x dx( ) ( )

3.
( )u v w dx u dx v dx w dx   

4.
( )du dv dw du dv dw

5.
u dv uv v du    [integration by parts]

6.
u du

u

n
nn

n

  
1

1
1,

7. du

u
u if u u if u

u

ln ln( )

ln | |

   or  0 0

8.
e du eu u

(Continued)
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Table 12.1 Cont.

Operation

9.
a du e du

e

a

a

a
a au u a

u a u

   ln
ln

ln ln
, ,0 1

10.
sin cosx dx x 

11.
cos sinx dx x 

12.
tan lnsec lncosx dx x x 

13.
cot lnsinx dx x 

14.
sec (sec tan ) ln tanx dx x x

x
 ln

2 4

15.
csc (csc cot ) ln tanx dx x x

x
 ln

2

16.
sec tan2 xdx x

17.
csc cot2 xdx x

18.
tan tan2 x dx x x 

19.
cot cot2 x dx x x 

20. dx

ax b a
ax b

1
ln( )

21. x dx

ax b

x

a

b

a
ax b

 
2

ln( )

22.
x dx

ax b

ax b

a

b ax b

a

b

a
ax b

2 2

3 3

2

32

2 ( ) ( )
ln( )

23.
x dx

ax b

ax b

a

b ax b

a

b ax b

a

b

a
ax b

3 3

4

2

4

2

4

3

43

3

2

3 
ln(

( ) ( )( )
))

24. dx

x ax b b

x

ax b( )
ln

1

(Continued)
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Table 12.1 Cont.

Operation

25. dx

x ax b bx

a

b

ax b

x2 2

1

( )
ln

26.
dx

x ax b

ax b

b x

a

b

x

ax b3 2 2

2

3

2

2( )
ln

27. dx

ax b a ax b( ) ( )2

1

28. x dx

ax b

b

a ax b a
ax b

 
ln( )

( ) ( )2 2 2

1

12.3  Definite Integrals

The concept and derivation of the definite integral are completely different from 

those for the indefinite integral. These are by definition different types of opera-

tions. However, the formal operation as it turns out treats the integrand in the 

same way for both. 

Consider the function f(x) 10 – 10e 2x. Define x
1

a and x
n

b, and suppose 

it is desirable to compute the area between the curve and coordinate axis y 0 and 

bounded by x
1

a, x
n

b. Obviously, this area could be approximated as closely as 

desired by a sufficiently large number of rectangles. Thus, the value of the definite 

integral depends on the limits a, b and any selected variable coefficients in the 

function - but not on x. There are certain restrictions on the integration definition: 

“The function f(x) must be continuous on the finite interval (a, b) with at most a 

finite number of discontinuities,” which must be observed before integration for-

mulas can be generally applied. Two techniques for determining when integration 

is valid under these conditions are available in the literature [1–4].

Some useful analytical integrals in environmental engineering and science are 

provided below in Table 12.2; note that the equations are definite integrals, i.e., the 

upper and lower limits are specified [5].

Note, once again, that there are limits on the integrals. 

Illustrative Example 12.1

Find

 
0

2

2sin x dx  
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Table 12.2 Definite integrals.

Operation

1.

0

x

a dx ax 

2.

0

1

1

1

1

x

x
dx

x
ln

3.

0

2

1

1

1

1

x

x
dx

x( )

4.

0

2

1

1 1

x

x
dx

x

x( )

5.

0

1

1

1
1

x

x
dx xln( )

6.

0

1

1
1

1

1

x
x

x
dx

x
x( )ln

7.

0

2

1

1

1

1

1

1

x
x

x
dx

x

x x( )

( )( )
ln

8.

0

2

2

2
21

1
2 1 1

1

1

x
x

x
dx x x

x

x

( )

( )

( ) ( )

( )
( )ln( )

9.

0

1

1

1

1 1
1

x

B B

B

B

B
x x

dx
x

x( )( )
ln

( )( )( )

( )
 for 

10.

0

2

21 2

2

2
4

x

ax bx c
dx

ax b b
b ac

( )
 for 

11.

0

2

21 1
4

x

ax bx c
dx

a p q

q x p

p x q
b a

( )( )
ln

( )( )

( )( )
 for cc

where p and q are roots of the equation

ax bx c p q
b b ac

a

2
2

1

2

0
4

2
, i.e.,  ,

( )

12.

0

2

x
a bx

c gx
dx

bx

g

ag bc

g
c gxln | |

(Continued)
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Table 12.2 Cont.

Operation

13.

0

2

x
x

ax b
dx

x

a

b

a
ax bln( )

14.

0

2 2

3 2

2

32

2
x

x

ax b
dx

ax b

a

b

a
ax b

b

a
ax b

( )
( ) ln( )

15.

0

1 1
x

x ax b
dx

b

x

ax b( )( )
ln

16.

0

2 2

1

2x a
dx

a

17.

0
2 2

1

2

a

a x

18.

0

2 2
2

4

a

a x dx
a

 

Solution

Apply (10) in Table 12.1.

 2 2 2
2

0 2
0

2

0
2sin [ ] cos cosx dx x cos  

Illustrative Example 12.2

Find

 
0

4

2

1

2( )x
dx  

Solution

Direct application of the general integration formula would yield the incorrect 

value.

 
0

4

2

0

4
1

2

1

2
1

( )x
dx

x
 



154 Introduction to Mathematical Methods

It should be noted that 

 f x
x

( )
( )

1

2 2

becomes unbounded as x 2, i.e., the integral diverges and hence is said not to 

exist.

12.4  Integration Applications

Illustrative Example 12.3

Calculate the surface area and volume of the unit cube described in Section 8.4.

Solution

Refer to Chapter 8. There are six surfaces on the cube. The surface in the yz-plane 

is given by

 f dy dzx

z y0

1

0

1

  

 f x( ) 1  

There are two such surfaces – one at x 0 and another at x 1. The remaining four 

surfaces can be determined in a similar manner.

 f y 1  

 fz 1 

The total surface area is 6  1 6 units of area.

The volume of the cube is given by

 
z y x

dx dy dz
0

1

0

1

0

1

1   

unit of volume.

Illustrative Example 12.4

Calculate the volume V of a cylinder of radius a and height h.
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Solution

Refer to Chapter 8.

 

d r dr d dz

V d

   

 

Substituting

 V r dr d dz

h r dr d h

z

h

r

a

r

a

r

a

0 0

2

0

0

2

0 0

2

   

   rr dr h
r

a h

a

 2
2

2

0

2

 

Illustrative Example 12.5

Evaluate the surface area A of a sphere of radius a.

Solution

Refer to Chapter 8.

 

df r d d

A df r d d

2

0

2

0 0

2

0

2

2

sin

sin

  

 
 

0

2 2

0

2

0

2 22 2 2 1 1 4r d r d r r rsin sin cos[ ] [ ]  

 

Therefore, the surface of A a sphere where r a is

 A a4 2
 

Illustrative Example 12.6

The velocity of a fluid in a horizontal cylinder of radius R is represented in cylin-

drical coordinates by the equation

 v
r

R
100 1

2

; ft/s  

Calculate the average velocity of the fluid flowing in the cylinder [6].
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Solution

Based on the problem statement

 v
r

R
z 100 1

2

 

The velocity v
z
 varies over the cross-sectional area of the cylinder f. A differential 

area element in this cross section is given by (see Chapter 8)

 df r dr d   

By definition,

 v
v df

df
z

z
 

Substituting

 

v

r

R
r dr d

r dr d
z

R

R

0

2

0

2

0

2

0

100 100

2

  

  

00

3

2

2

2
4

2

0

2

100 100

2

50
25

R

R

r
r

R
dr

R

r
r

R

R
2

50 25
50

2 2

2

( )R R

R
 ft/s

 

Note that the maximum velocity is located at r 0 and v
z

100 ft/s at that 

point. Also note that the ratio of the average to the maximum velocity is 1/2 [7].

Illustrative Example 12.7

The temperature T in a solid sphere of radius a is given by T 100r. Compute the 

average temperature of the sphere.

Solution

Refer to Chapter 8. By definition

 T
Td

d
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where

 d r dr d d2 sin    

and 

 T r100 2
 

The integration limits are carefully chosen to insure dτ encompasses the entire 

volume element.

 

T
r r dr d d

r

r

a

r

a

0

2

0 0

2 2

0

2

0 0

2

100( ) sin

s

  

iin

sin

dr d d

a d d

a

a d

a

  

   
0

2

0

5

3

0

2
5

3

20

4

3

40

4

3

800

4

3

60
5

3

2a

a
a

 

Illustrative Example 12.8

The local velocity of fluid flow through a tube of radius a is given by

 v
g

L
a rz

c p

4

2 2( )  

Calculate the volumetric flow rate, Q, the local velocity in terms of Q, and the 

ratio of the average to maximum velocity.

Solution

The volumetric flow rate is given by [6]

 Q v dfz

f

  

where (see also Chapter 8)

 df r dr d   
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Thus,

 

Q
g

L
a r r dr d

g

L
a r r dr

r

a

c c

a

0

2

0

2 2

0

2 3

4 2

p p
  ( ) ( )

gg

L

a r r g

L
c cp pa

2 2 4 8

2 2 4

0

4 4
 

and

 
p

L

Q

g ac

8
4

 

Substituting the above equation into the equation for the local velocity of the 

fluid flow leads to

 v
Q

a

r

a
z

2
1

2

2

 

The maximum velocity can easily be shown to be located at r 0. Therefore,

 v
Q

a
zmax

2
2  

The average velocity is given by 

 

v

Q

a

r

a
r dr d

rdrd

Q

a

z

a

a

0

2

0 2

2

0

2

0

2
1

2

  

22 0

2

2

4

2 4

2

0

2 1

4

2 4

( )
a

a

r

a
r dr

a

Q

a

r r

a

 

Q

a

v
Q

a

Q

A
z

2

2
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so that

 v v
r

a
v

r

a
z z zmax

2 1 1

2 2

 

Finally

 
v

v
z

zmax

1

2
 

This result (as expected) is in agreement with the result of Illustrative Example 12.6.
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The simulation of complex environmental systems, whether they are described by 

linear or non-linear systems, will often require the use of computers. Analog com-

puters in the past were quite useful in handling systems that can be modelled in 

terms of ordinary differential equations. If the mathematical model contains par-

tial differential equations, a numerical solution will usually be required, and these 

can best be handled on a digital computer. Matrix methods efficiently manipulate 

the many process variables and large sets of algebraic equations often found in 

complex systems.

This chapter covers the basic definitions and theorems concerned with matrix 

analysis with simple examples to illustrate their applications. Following a section 

on definitions, an introductory review of determinants precedes the discussion of 

matrices.

Four sections complement the presentation of this chapter. Section numbers 

and subject titles follow:

13.1: Definitions

13.2: Rules for Determinants and Matrices

13.3: Rank and Solution of Linear Equations

13.4: Linear Equations

13
Matrix Algebra [1]

Contributing Authors: Megan Menzel and Christopher Testa
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13.1 Definitions

A matrix is defined as an array of elements arranged in rows and columns. The 

elements may be real or complex, constants or functions. Several examples are 

shown below:

 
1 5 3

2 1 0
 (13.1)

 

1 0

0 2 3

2 1

i

i

i i

 (13.2)

 

cos sin cos sin

cos sin cos sin

cos sin cos

t i t t i t

t i t t i t

t i t

2

2 2 2

3 33 2t i tsin

 (13.3)

The order of a matrix is denoted by m x n where m is the number of rows and 

n the number of columns. The matrices in equations (13.2) and (13.3) are of the 

order 3 2 while the matrix in equation (13.1) is of the order 2 3.

Elements of a matrix are identified by a double subscript, the first denoting row 

position and the second denoting column position. Thus, if A is a matrix contain-

ing elements a
ij
, then

 A a

a a a a

a a a a
ij

n

m m m mn

[ ]

11 12 13 1

1 2 3

 (13.4)

and a
23

 is the elements of A in the second row, third column. When a matrix X 

contains a single column and is thus of order m x 0, it is called a vector.

 X

x

x

xm

1

2
 (13.5)

The n columns of an m x n order matrix may also be considered vectors. For 

example, the third column of the m x n order matrix A may be considered the vec-

tor A
3
, in which case
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 A

x

x

xm

3

1

2
 (13.6)

Two matrices are equal if they are of the same order and the corresponding ele-

ments are equal. If a matrix is multiplied by a scalar constant k, then each element 

within the matrix is multiplied by k. Thus, if

 A aij[ ]  (13.7)

then

 kA kaij[ ]  

Matrices may be added provided they are of the same order. If

 A a B bij ij[ ] [ ] and  (13.8)

then

 A B a bij ij[ ] 

If all elements of a matrix are zero, the matrix is considered a null matrix.

A square matrix of (order n x n) with zeros for all elements but the diagonal is 

called a diagonal matrix.

 A

a

a

a

11

22

33

0 0

0 0

0 0

 (13.9)

If the elements of a diagonal matrix consist of ones, it is called a unit matrix, 

identity matrix, or idem matrix.

 A

1 0 0

0 1 0

0 0 1

 (13.10)
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The unit matrix can be represented concisely in terms of the kronecher delta 

function, defined as

 ij

i j

i j

0

1
 (13.11)

In terms of 
ij
,

 I ij[ ]  (13.12)

A general diagonal matrix may be written as

 A aij ij[ ]  (13.13)

The product of two matrices A and B in the order A B can be found provided 

A has as many columns as B has rows. The first factor, A, is labelled the prefactor, 

while the second factor, B, is called the postfactor. If the product of B premultiplied 

by A is designated by C,

 C AB  (13.14)

The rule for multiplication is that the element c
ij
 is formed by multiplying cor-

responding elements of the ith row of A with the jth column of B and summing. 

Consider the example below:

 

1 1

0 2

1 0

1 1

2 1

1 1 1 2 1 1 1 1

0 1 2

( ) ( ) ( ) ( )

( ) (

x x x x

x x22 0 1 2 1

1 1 0 2 1 1 0 1

) ( ) ( )

( ) ( ) ( ) ( )

x x

x x x x

 (13.15)

In effect,

 

A B C

x x

p x n m x n

x

x

x

x

m x p

3 2 2 2 3 2

( ) ( ) ( ) ( ) ( ) ( )

 

The elements of C are formed in accordance with the rule

 c a bij

k

p

ij ij

1

 (13.16)

Matrix multiplication obeys the distributive law,

 A B C AB AC( )  (13.17)
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and the associative law

 A BC AB C( ) ( )  (13.18)

However, the reverse rule cannot generally be applied, i.e.,

 AB BA  (13.19)

In fact, the product may exist in one order, but not the other.

The determinant of a square matrix of order n is denoted

 det | | | |A a Aij  (13.20)

The determinant of a matrix A is a scalar function of the elements of A. It is the 

sum of all the products formed by taking one element from each row and column 

(see Equations (13.21) and (13.22) below).

13.2  Rules for Determinants and Matricies

A determinant consists of a certain expression associated with a square array of n2 

quantities, where the number n is the order of the determinant [2]. A second order 

determinant is equal to the difference between the product of the elements on the 

principle diagonal and the product of the elements on the other diagonal:

 
a b

c d
ad bc  (13.21)

Similarly, a third order determinant has an expansion containing six terms:

a b c

a b c

a b c

a
b c

b c
b
a c

a c
c
a b

a b

a b c

1 1 1

2 2 2

3 3 3

1
2 2

3 3
1

2 2

3 3
1

2 2

3 3

1 2 3 a c b b a c b c a c a b c b a1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

 (13.22)

A number of rules follow from the definition of a determinant. Some of these 

are listed below:

1. Multiplication of a determinant by a scalar k is equivalent to mul-

tiplying every element of a single row or column by k.

2. An interchange of k rows (or columns) results in a multiplication 

of the determinant by ( 1)k.

3. If two rows (or columns) are proportional, the determinant must 

vanish.
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4. Two determinants may be added if they are identical, except for 

one row (or one column). The sum is obtained as shown below

 

a a a

a a a

a a a

a x a

a x a

a x a

a a11 12 13

21 22 23

31 32 33

11 1 13

21 2 23

31 3 33

11 122 1 13

21 22 2 23

31 32 3 33

x a

a a x a

a a x a

 (13.23)

5. The minor of an element a
ij
 is defined as the determinant of the 

matrix remaining after striking out the ith row and jth column of A. 

The cofactor of a
ij
, designated A

ij
, is defined as

 A aij

i j

ij( ) ( )1 minor of  (13.24)

It can be shown from the above rules that

 
j

n

ij kj ik ija A a
1

| |  (13.25)

 
i

n

ij ik jk ija A a
1

| |  (13.26)

Equation (13.25) is the Laplace expansion of a determinant in terms of cofactors 

of elements of the ith row or jth column.

The transpose of a matrix AT is the matrix formed by interchanging rows and 

columns. If A [a
ij
], then

 A a a aT

ji ij

T

ji[ ] and  (13.27)

The transpose of a vector (a column matrix) is a row matrix.

 X x x xT

n[ , , , ]1 2    (13.28)

An adjoint matrix can be defined for square matrices in the following manner: 

Given the square matrix A [a
ji
], the adjoint matrix of A is

 adj A

A A A

A A A

A A A

n

m m mn

 

11 12 1

21 22 21

1 2

. . .

. . .

. . .

. . .

. . .

. . .

 (13.29)
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where A
ij
 is the cofactor of a

ij
.

It should be noted that the adj A is formed from A by replacing each element 

by its cofactor and transposing the resulting matrix. An example of an adjoint 

matrix is

 A

1 0 1

1 2 1

0 1 0

 (13.30)

where

 

A x x

A x x

A

11

1 1

12

1 2

13

1 2 0 1 1 1

1 1 0 0 1 0

( ) ( ) ( )

( ) ( ) ( )

(

( )

( )

1 1 1 0 2 11 3) ( ) ( )( )x x

 (13.31)

Similarly,

 
A

A

A

A

A

A

21

31

22

32

23

33

1

2

0

0

1

2

,

,

,

,
   

Thus,

 adj A 

1 1 2

0 0 0

1 1 2

 (13.32)

It should also be noted that (adj A)
kj

A
jk
. Therefore, if C A adj A,

 c a adj Aij

k

n

ij kj

1

( )  (13.33)

and

 c a Aij

k

n

ij jk

1

 (13.34)

However, from Laplace’s expansion, which is provided in equation (13.25), one 

may write

 c a Aij ij ij ij| | det  (13.35)
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In the preceding example, det A 0 and A adj A is the null matrix of order 3. 

Since det A is a scalar it may be factored out of the matrix so that

 
A adj A A

A I

ij  det [ ]

(det )
 (13.36)

where I is once again the identity matrix.

The operation of division is not defined for matrices. However a reciprocal 

or inverse matrix is defined, which is analogous to the reciprocal of a scalar. For 

example, in scalar arithmetic the reciprocal of x has the property that

 ( )( )x xreciprocal of 1  (13.37)

Likewise, in matrix algebra, the inverse of A has the property that

 A A I( )inverse  (13.38)

The inverse A is denoted symbolically by A 1. Since division is not defined, it 

is improper to say that A 1 1/A. If both sides of equation (13.35) are multiplied 

by A

 ( )AA A IA1
 

 A A A A( )1
 (13.39)

Therefore,

 A A I1
 (13.40)

If Equation (13.39) is divided by det A, one obtains

 A
adj A

A
I

 

det
 (13.41)

and it is clear from equation (13.40) that

 A
adj A

A

1  

det
 (13.42)

If det A 0, as in the previous example, the matrix is said to be singular and it 

cannot possess an inverse. However, it may possess an adjoint as demonstrated.
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The transpose and inverse matrices follow an interesting reversal rule given in 

the equation below. If C AB, one may write

 C A BT T T
 (13.43)

and

 C A B1 1 1
 (13.44)

13.3  Rank and Solution of Linear Equations

The rank of matrix A of order m x n is equal to the order of the largest square 

matrix contained in A whose determinant is non-vanishing, i.e., the maximum 

number of independent rows or columns. This square matrix is obtained by strik-

ing out rows and columns of A. As an example of the determination of rank, con-

sider the following matrix.

 A

2 1 2 3

1 1 2 3

0 2 4 6

 (13.45)

All third order square matrices contained in A have at least two proportional 

columns, hence by the above rule, all third order determinants must vanish. The 

matrix A has many non-vanishing second order determinants, the elements of one 

being a
11

, a
21

, a
14

, and a
24

; hence, it is of rank 2.

According to Sylvester’s law of nullity, given two square matrices A and B of 

order n and of rank r
a
 and r

b
, respectively, then the rank of the product A B, desig-

nated r
ab

, must satisfy the following two inequalities.

 r r r nab a b  (13.46)

 r r rab a bsmaller of the ranks of  and  

In order to illustrate Sylvester’s law of nullity consider the following example

 A rA

1 0 0

0 2 0

0 0 1

3 of  (13.47)
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 B rB

1 0 0

0 1 0

0 0 1

2 of  (13.48)

 AB rAB

1 0 0

0 2 0

0 0 0

2of  (13.49)

 r rAB AB2 3 2 3 2 2;   (13.50)

The above is also valid when A and B are not square; that is, for any two matrices 

A and B. Thus,

 r r rAB A Bsmaller of rank  and  (13.51)

It can also be shown that

 r rAB B  (13.52)

if A is a non-singular square matrix.

13.4  Linear Equations

Consider the following set of linear equations

 

a x a x a x b c

a x a x a x b c

a x a

n n

n n

m m

11 1 12 2 1 1 1

21 1 22 2 2 2 2

1 1 2xx a x b cmn n m m2

 (13.53)

Equation (13.53) may be written in matrix form as

 

a a a

a a a

a a a

x

x

x

n

n

m m mn n

11 12 1

21 22 2

1 2

1

2

b c

b c

b cm m

1 1

2 2
 (13.54)

Or more concisely as

 Ax c  (13.55)
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One notes that, in the form of equation (13.55), the matrix A operates on the 

unknown vector x to produce vector c. This operation is called a linear transforma-

tion, and A is the coefficient matrix for the transformation.

Another matrix of theoretical importance in determining the solvability of a 

linear transformation is the augmented coefficient matrix, denoted aug A.

 aug A

a a a b

a a a b

a a a b

n

n

m m mn m

 

11 12 1 1

21 22 2 2

1 2

 (13.56)
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The Laplace transform of a function f(t) is denoted by F(s) and is represented by 

the following equation:

 L f t F s f t e dtst{ ( )} ( ) ( )
0

 (14.1)

The Laplace transform of a function f(t) is defined for positive values of t as a func-

tion of the new variable s. The transform exists if f(t) satisfies the following three 

conditions:

1. f(t) is continuous or piecewise continuous in any interval 
t t t

1 2
,  where t

1
0.

2. tn|f(t)| is bounded near t 0 when approached from positive val-

ues of t for some number n where n 1.

3. e s t*

 is bounded for large values of t for some number s*.

The function f(t) is piecewise continuous in the range t t t
1 2

.  if it is possible to 

divide the range into a finite number of intervals in such a way that f(t) is continu-

ous within each interval and approaches finite values as either end of the interval is 
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approached from within the interval. Thus, a piecewise continuous function may 

have a number of finite discontinuities.

The Laplace transform method can reduce the solution of an ordinary or partial 

differential equation to essentially an algebraic procedure. In effect, the two advan-

tages of the Laplace transformation in solving differential equations are the way in 

which it reduces the problem to one in algebra and by the automatic way in which 

it takes care of initial conditions without the necessity of constructing a general 

solution and then specifying the arbitrary constants which it contains. Material is 

presented in this chapter that allows one to employ tables of transforms which can 

be used, like tables of logarithms, to manipulate functions, and by means of which 

one can recover the proper function of t from its Laplace transform.

Five sections complement the presentation of this chapter. Section numbers 

and subject titles follow:

14.1: Laplace Transform Theorems

14.2: Laplace Transforms of Special Functions

14.3: Splitting Proper Rational Fractions into Partial Fractions

14.4:  Converting an Ordinary Differential Equation into an Algebraic 

Equation

14.5:  Converting a Partial Ordinary Differential Equation into an 

Ordinary Differential Equation

14.1  Laplace Transform Theorems

The utility of the Laplace transform is based primarily upon the following four 

theorems.

1. The Laplace transform of a sum is the sum of the transforms of the 

individual terms, i.e.,

 

L f t g t f g e dt

fe dt ge d f g

st

st st

{ } (

( ) ( )

( ) ( ) )
0

0 0

 (14.2)

2. The Laplace transform of a constant times a function is the con-

stant times the transform of the function, i.e.,

 

L cf cf e dt

c fe dt c f

st

st

( ) ( )
0

0

( )

 (14.3)
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3. If f(t) is a function of exponential order which is continuous and 

whose derivative is continuous, the Laplace transform of the deriv-

ative of f(t), i.e. f (t), is given by

 L f f e dtst( )
0

 (14.4)

4. If f(t) is of exponential order and continuous, then the Laplace 

transform of 
a

t

f t dt( )  is given by the formula

 L f t dt
s

L f
s

f t dt
a

t

a

( ) ( ) ( )
1 1

0

 (14.5)

Theorem 4, like Theorem 3, is also useful in finding the inverses of transforms. 

Thus, if

 L F
s

s( ) ( )
1

 (14.6)

and if f(t) is a function such that

 L f s( ) ( )  (14.7)

then by Theorem 4

 

L f t dt
s

L f

s
s L F

t

0

1

1

( )

( ) ( )

( )

 (14.8)

Therefore,

 F t f t dt
t

( ) ( )
0

 (14.9)

In effect, if one chooses, one may neglect the factor 1/s in a transform, deter-

mine the inverse f(t) of what remains, and then integrate f(t) from 0 to t to find 

the required function F(t). In the same way, the factor 1/sk can be neglected in a 

transform, provided that the inverse of the remaining portion is integrated k times 

from 0 to t.
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14.2  Laplace Transforms of Specific Functions

The most difficult problem in practical environmental engineering and science 

applications involving Laplace transforms is the determination of the function 

which corresponds to a known transform. A short list of transforms is provided 

below in Table 14.1. This material, together with additional techniques to be 

described shortly, will handle most analytical problems. When all other methods 

of finding the inverse transform fail, numerical integration [1,2] techniques may 

be employed. These procedures are described in Part III of this book. Fortunately, 

the inversion process is unique; i.e., if one function f(t) corresponding to the 

known transform can be found, it is the correct one.

Table 14.1 Special Laplace Transforms.

f(s) F(t)

1. 1

s

1

2. 1
2s

t

3. 1
1 2 3

s
n

n
;    , , ,

t

n

n 1

1
0 1

( )!
; ! 

4. 1

s a

eat

5. 1
1 2 3

( )
, , ,

s a
n

n
;    

t e

n

n at1

1
0 1

( )!
!;

6. 1
2 2s a

sinat

a

7. s

s a2 2

cos at

8. 1
2 2( )s b a

e at

a

bt sin

9. s b

s b a( )2 2

ebt cos at

10. 1
2 2s a

sinhat

a

(Continued)
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Table 14.1 Cont.

f(s) F(t)

11. s

s a2 2

cos h at

12. 1
2 2( )s b a

e at

a

bt sinh

13. a f
1
(s) b f

2
(s) a f

1
(t) b f

2
(t)

14. f(s/a) a f(at)

15. f(s  a) eat f(t)

16. e as f(s)

u t a
f t a t a

t a
( )

( )

0
 

17. s f(s) – F(0) f (t)

18. s2f(s) – sF(0)  F (0) f (t)

19. f (s) t f(t)

20. f (s) t2 f(t)

21. f(n)(s) ( 1)n tn f(t)

22. f s

s

( )

0

t

f u du( )

23. f s

sn

( )

0 0 0

1

1

t t

n

t n

f u du
t u

n
f u du

( )

( )!
( )

24. f s g s( ) ( )

0

t

f u g t u du( ) ( )

14.3  Splitting Proper Rational Fractions into Partial  
Fractions

This section presents useful rules for inverting Laplace transforms back to the 

time domain. An expression of the form P/Q, where P and Q are polynomials 

in s, is called a rational fraction. If P is of a lower degree than Q, P/Q is called a 

proper fraction. If P is not of a lower degree than Q, then P/Q is called an improper 

fraction. In general, if P and Q are two rational, integral algebraic functions of s, 

and the fraction P/Q is expressed as the algebraic sum of a simpler fraction with 

denominators containing the factors of Q, the fraction P/Q can be resolved into 

partial fractions. The following rules are applicable for splitting a proper rational 

fraction into partial fractions.
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1. Corresponding to every non-repeated linear factor as b of the 

denominator, there exists a partial fraction

 
A

as b
 (14.1)

 where A is a constant.

2. Corresponding to every repeated linear factor (as b)p of the 

denominator, there exists fractions of the form

 
A

as b

A

as b

A

as b

p

p

1 2

2( ) ( )
 (14.2)

 where A
1
, A

2
, …, A

p
 are constants.

3. Corresponding to every non-repeated irreducible quadratic factor 

as2 bs c of the denominator, there exists a fraction of the form

 
As B

as bs c2  (14.3)

 where A and B are constants.

4. Corresponding to every repeated quadratic factor (as2 bs c)p 

when as2 bs c has no linear factors, there exist fractions of the 

form

 
A s B

as bs c

A s B

as bs c

A s B

As bs c

p p

p

1 1

2

2 2

2 2 2( ) ( )
 (14.4)

Finally, one must express an improper fraction as the sum of an integral function 

and a proper fraction, and then split the proper fraction into partial fractions.

Illustrative Example 14.1

Convert

 
5 3

1 2 12

s

s s( ) ( )
 

into partial fractions.

Solution

As noted, it is important to resolve partial fractions prior to taking the inverse of 

the Laplace transform. Let
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5 3

1 2 1 1 1 2 12 2

s

s s

A

s

B

s

C

s( ) ( ) ( )
 

Setting s 1 and s 0.5 in succession, one obtains B C 2. Equating the 

known absolute terms on both sides of the above equation leads to

 3 1A B C A or  

Therefore,

 
5 3

1 2 1

1

1

2

1

2

2 12 2

s

s s s s s( ) ( ) ( )
 

14.4  Converting An Ordinary Differential Equation 
(ODE) Into An Algebraic Equation

As noted earlier, the Laplace transform method of analysis can be employed to 

convert an ordinary differential equation into an algebraic equation. The illustra-

tive example that follows, adopted from Mickley et al. [2], illustrates this method. 

The next section outlines how a partial differential equation can be “reduced” to 

an ordinary differential equation.

Illustrative Example 14.2

Consider the ordinary differential equation

 
dT

dt
T eat

 

with the boundary condition

 T t1 0 at  

A solution is desired which is valid for positive values of t.

Solution

The Laplace transform method proceeds by multiplying both sides of the initial 

equation by e pt dt (provided that p a) and integrating the result from zero to 

infinity:

 
0 0 0

e
dT

dt
dt e T dt e e dtpt pt pt at   
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0 0

1
e e dt

e

p a p a

pt at
p a t

 
( )

 

The first integral above may be integrated by parts:

 
0

0

0

0

1

e
dT

dt
dt e T p e T dt

p e T dt

pt pt pt

pt

[ ]

 

This applies provided that e pt T 0 as t , following the introduction of the 

boundary condition. When the above equations are combined one obtains

 ( )p e T dt
p a

pt1
1

1
0

 

or

 
0

1

1
e T dt

a p

p p a

pt

( )( )
 

The problem that remains is to determine the function of T whose Laplace 

transform is given by the right hand side (RHS) of the above equation. First, 

expand the right-hand side by the method of partial fractions to give

 

0

1

1

1

1

1

1

e T dt
a p

p p a

a p a

a

a

pt

( )( )

11

1p
 

It then follows that

 T
a

e
a

a
eat t1

1 1
 

This is the solution to the above ordinary differential equation. Direct substitution 

and comparison with the initial conditions demonstrates that this is in fact the 

solution of this ODE.
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14.5  Converting a Partial Differential Equation (PDE) 
into an Ordinary Differential Equation (ODE)

The following partial differential equation describes the temperature profile in an 

infinite solid medium [3].

 
T

t

T

x

2

2
 (14.5)

The solution? The separation of variables method [2] is usually applicable to finite-

media systems. However, this technique often produces meaningless results when 

used for semi-infinite or infinite media. Equation (14.5) can be solved by using 

Laplace transforms (or Fourier integrals) [3]. An outline of the Laplace transform 

method of solution is presented below.

Begin by multiplying both sides of Equation (14.5) by e pt and integrating from 

0 to .

 
0 0

2

2
e

T

t
dt

T

x
e dtpt pt

 (14.6)

The left-hand side (LHS) of (14.6) is integrated by parts to give

 
LHS e T p e T dt

T pT T

pt pt

0
0

0 0( ) ; ( ) initial temperature

 (14.7)

where the integral

 
0

e T dtpt
 (14.8)

now is represented by T  and defined as the Laplace transform of T. One notes that 
T  is a function of p and T. The RHS of equation (14.6) becomes

 

RHS
x

Te dt

T

x

d T

dx

pt
2

2

0

2

2

2

2

 (14.9)
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The resulting equation is

 T pT
d T

dx
( )0

2

2
 (14.10)

Note that this operation has converted the PDE in Equation (14.5) to an ODE and 

eliminated time as a variable. It is an order of magnitude easier to integrate. This 

ODE can now be solved subject to revised boundary conditions. The remainder of 

this solution is not presented, but is available in the literature [3]
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Early in one’s career, the environmental engineer/scientist learns how to use equa-

tions and mathematical methods to obtain exact analytical answers to a large range 

of relatively simple problems. Unfortunately, these techniques are often inadequate 

for solving real-world problems, although the reader should note that one rarely 

needs exact answers in technical practice. Most real-world applications involving 

calculations are usually inexact because they have been generated from data or 

parameters that are measured, and hence represent only approximations. What 

one is likely to require in a realistic situation is not an exact answer but rather one 

having reasonable accuracy from an engineering point of view.

Numerical methods provide a step-by-step procedure that ultimately leads to 

an answer and a solution to a particular problem. The method usually requires 

a large number of calculations and is therefore ideally suited for digital compu-

tation. The subject of numerical methods was taught in the past as a means of 

providing environmental engineers and scientists with ways to solve complicated 

mathematical expressions that they could not solve otherwise. However, with the 

advent of computers, these solutions have become readily obtainable. Because 

of the breadth of the subject matter, the reader should note that only the seven 

numerical methods of primary interest to the environmentalist receive treatment 

in this part. Details on the remaining methods are available in the literature.

Part III

NUMERICAL ANALYSIS
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There are seven chapters in Part III. The chapter numbers and accompanying 

titles are listed below:

Chapter 15: Trial and Error Solutions

Chapter 16: Non-linear Algebraic Equations

Chapter 17: Simultaneous Linear Algebraic Equations

Chapter 18: Differentiation

Chapter 19: Integration

Chapter 20: Ordinary Differential Equations

Chapter 21: Partial Differential Equations
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This introductory (and abbreviated) chapter to Part III is primarily concerned with 

trial-and-error solutions. Although most of the material presented was developed 

in earlier times, it does serve as an excellent introduction to the more sophisticated 

numerical methods employed today.

Five sections complement the presentation of this chapter. Section numbers 

and subject titles follow:

15.1: Square Root Calculations

15.2: Quadratic and Cubic Equations

15.3: Two or More Simultaneous Non-Linear Equations

15.4: Higher Order Algebraic Equations

15.5: Other Approaches

15.1  Square Root Calculations

The following iterative procedure can be employed to find the square root of a 

positive real number, n. Let x
0
 be the first guess. First compute n/x

0
. If n/x

0
x

0
, 

the calculation is completed since x n
0

2 .  However, the probability that this will 

15
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occur is small. If n/x
0

x
0
 so that n x

0

2 ,  one can conclude that x
0
 is too large. If 

x
0
 is too large, n x n/

0
.  Thus,

 
n

x
n x

0

0  (15.1)

Similarly, one can establish that if n/x
0

x
0
 then x n

0
 and x n n x

0 0
/ , i.e.,

 
n

x
n x

0

0  (15.2)

In either solution ( )x n x n
0 0

 or  the square root of n is between n/x
0
 and x

0
.

Now guess again:

 x x
n

x
1 0

0

1

2
 (15.3)

This average at least appears reasonable. This procedure will converge to n  as it 

is used repetitively employing Equation (15.4).

 x x
n

x
i i

i

1

1

2
 (15.4)

Illustrative Example 15.1

Find 90  using x
0

1 and Equation (15.4).

Solution

Calculations subsequent to x
0

1 are provided below.

 x1

1

2
1

90

1
45 5.  

 x2

1

2
45 5

90

45 5
23 739.

.
.  

 x3

1

2
23 739

90

23 739
13 7651.

.
.  
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 x4

1

2
13 7651

90

13 7651
10 15169.

.
.  

 x5

1

2
10 15169

90

10 15169
9 508604.

.
.  

 x6

1

2
9 508604

90

9 508604
9 4868579.

.
.  

 x7

1

2
9 4868579

90

9 4868579
9 4868330.

.
.  

 x8

1

2
9 4868330

90

9 4868330
9 4868329.

.
.  

The last approximation, x
8
, is accurate to six significant figures.

Another procedure may also be employed. It is based on a starting value for 

n  of x
0

n/2. For 90,  n/2 45 x
0
. This approach produces the following 

results.

 x1

1

2
45

90

45
23 5.  

 x2

1

2
23 5

90

23 5
13 66.

.
.  

 x3

1

2
13 66

90

13 66
10 124.

.
.  

 x4

1

2
10 124

90

10 124
9 5069.

.
.  

 x5

1

2
9 5069

90

9 5069
9 48685.

.
.  

 x6

1

2
9 48685

90

9 48685
9 486833.

.
.  

 x7

1

2
9 486833

90

9 486833
9 4868329.

.
.  
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This produced a result accurate to six figures in seven iterations. This method was 

programmed in the past as a subroutine on digital computers.

Useful iterative methods should have the following requirements:

1. A means of making a satisfactory first guess; in many applications, 

physical or other considerations may provide this guess

2. A means of systematically improving on the previous approximation

3. A criterion (or choice of several criteria) for stopping the iteration 

when sufficient accuracy has been obtained

Brute force trial-and-error procedures are employed and occasionally used in 

not only other algebraic equations but also in the solution of ordinary and partial 

differential equations, simultaneous linear equations, and simultaneous nonlinear 

equations. This chapter will primarily be limited to a discussion of iterative meth-

ods used in the solution of algebraic and transcendental equations.

15.2  Quadratic and Cubic Equations

A problem commonly encountered in environmental engineering and scien-

tific practice is that of determining the root of a non-linear equation of the form 

f(x) 0. In this section, two methods of finding the real root of such equations are 

considered.

1. The trial-and-error method

2. The linear-interpolation method

The Newton-Raphson method is addressed in the next chapter.

If f(x) is a polynomial with real coefficients, there are several ways to find 

both the real and complex roots of the polynomial. One such method for  solving 

f(x) 0 involves a trial-and-error calculation. In the simplest of the trial- and-

error approaches, one calculates values of f(x) for successive values of x until a sign 

change occurs for f(x), i.e., a positive ( ) value to a negative ( ) value, or vice versa. 

The sign change indicates that the root solution has been passed. A closer approxi-

mation of the root may then be obtained by reverting to the last x value preced-

ing the sign change and, beginning with this x value, again determining values of 

f(x) for successive values of x using a smaller increment than was used initially 

until the sign of f(x) changes again. This procedure is repeated with progressively 

smaller increments of x until a sufficiently accurate value of the root is obtained. 

If additional roots are desired, the incrementation of x can be continued until the 

next root is approximately located by another sign change of f(x), etc.

As with many numerical methods, care must be exercised in selecting the initial 

value by which x is to be incremented so that a root is not passed by in a situation 
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when two roots are in close proximity. However, this is usually not troublesome if 

fairly small increments are used in the initially selected value. 

Consider first the quadratic equation

 ax bx c2 0  (15.5)

The above procedures may be employed to find the solution(s), though the equa-

tion can also be solved algebraically to obtain an exact solution.

 x
b b ac

a

2 4

2
 (15.6)

If a, b, c are real, and if D is defined as

 D b ac2 4  (15.7)

then the solutions are

1. Real and unequal if D 0

2. Real and equal if D 0

3. Complex conjugate if D 0

In addition, if x
1
, x

2
 are the roots, then

 x x
b

a
1 2  (15.8)

 x x
c

a
1 2  (15.9)

Note also that if b >>> c, one root is approximately b/a.

Consider the second case of a cubic equation

 x a x a x a3

1

2

2 3 0  (15.10)

The trial-and-error method suggested above may again be employed. However, an 

algebraic (exact) solution exists. The following four terms are first defined:

 Q
a a3

9
2 1

2

 (15.11)

 R
a a a a9 27 2

54
1 2 3 1

3

 (15.12)
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 S R Q R3 2
 (15.13)

 T R Q R3 2
 (15.14)

The solution takes the form

 x S T a1 1

1

3
 (15.15)

 x S T a i S T2 1

1

2

1

3

1

2
3( ) ( )  (15.16)

 x S T a i S T3 1

1

2

1

3

1

2
3( ) ( )  (15.17)

If a
1
, a

2
, a

3
 in Equation (15.7) are real and if

 D Q R3 2
 (15.18)

then:

1. One root is real and two are complex conjugate if D 0

2. All roots are real and at least two are equal if D 0

3. All roots are real and unequal if D 0

If D 0, one obtains

 x Q1 2
1

3
cos  (15.19)

 x Q2 2
1

3
120cos  (15.20)

 x Q3 2
1

3
240cos  (15.21)

where

 cos
R

Q3
 (15.22)

In addition

 x x x a1 2 3 1  (15.23)
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 x x x x x x a1 2 2 3 3 1 2  (15.24)

 x x x a1 2 3 3  (15.25)

where x
1
, x

2
, x

3
 are the three roots.

Illustrative Example 15.2

Solve the cubic equation

 3 4 6 3 02 2x x x  

Solution

Here is one approach to solving this equation. Substituting x 0, the left-hand-

side (LHS) of the equation equals 3, while if x 1, it equals +2. Because of the 

continuity of polynomial functions, one of the roots lies between 0 and 1. The 

graphical interpolation shown in Figure 15.1 can be used to approximate the cor-

rect answer.

The trial-and-error calculation may, of course, be continued until an answer of 

the desired accuracy is obtained. Note that only one root of the equation has been 

located. More can be found by repeating the procedure. It is often easy to pick out 

the proper root in problems involving actual physical phenomena.

15.3  Two or More Simultaneous Non-Linear Equations

Two or more simultaneous equations of the second degree or higher may also 

be solved conventionally by trial-and-error techniques. The procedure to be 

used varies with each problem, although for second-order equations having two 

unknowns, one can always assume values for one unknown and then calculate the 

0.1 0.2 0.3 0.4

x = 0.6

x
0.5 0.6 0.7 0.8 0.9 1 1.10

2

1

0f(x)

–1

–2

–3

Figure 15.1 Graphical interpolation.
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values of the other one. In a graphical solution, the intersection of the curves of the 

two equations marks their simultaneous solution.

Illustrative Example 15.3

Equations (1) and (2) below describe the equilibrium conversion (x and y) of two 

chemical reactions [1] provided below.

 2
3

4

( )( )

( )( )

x xy

x y x
 (1)

 1 33
4 6

2 2

.
( )( )

y yx

x y x
 (2)

Solve the equations.

Solution

Although it is possible to solve Equations (1) and (2) analytically, a graphical trial-

and-error solution may be expedient. The trial-and-error approach can be con-

ducted in a number of ways. One method is to assume values for x and calculate 

the corresponding y as shown in Table 15.1. These values can also be plotted and 

the intersection of the two lines provides the solution of the equations. Referring 

to Table 15.1, can the reader figure out the solution?

15.4  Higher Order Algebraic Equations

Consider the following nth order algebraic equation

 f x a x a x a x an

n

n

n( ) 1

1

1 0 0  (15.26)

Table 15.1 Calculated results for Illustrative Example 15.3.

x (assumed) y (calculated)

Equation (1) Equation (2)

0 0 10.8

1 1.5 7.5

1.5 2.8 5.7

2 4 4

2.5 4.3 2.4

3 3 0.7

4 0
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The solution to this equation is demonstrated by solving the following 3rd 

order equation

 f x x x x( ) . . .3 26 6 29 05 22 64 0  (15.27)

Divide through by x, drop 22.64/x, and solve the resulting quadratic equation. This 

provides a starting value for the trial-and-error solution.

 x x2 6 6 29 05 0. .  (15.28)

The solution is

 x 9 6.  (15.29)

One now notes that

 f ( . ) .9 6 22 04  (15.30)

This provides an excellent starting value in an attempt to obtain a solution to 

Equation (15.27)

15.5  Other Approaches

Environmental engineers and scientists occasionally solve equations which have 

no simple analytical solution. For example, consider the equation [2]

 e xx2

14 2.  (15.31)

Once again, the most convenient way to solve this equation is to assume values of 

x until the left side of the equation equals the right. However, the equation should 

be inspected carefully to determine the general effect of a variation in x. Perhaps 

one term is substantially smaller than the other so that it may be neglected for a 

first estimation of x. In Equation (15.31), x is probably small compared to ex2

.  As 

a first approximation for x, assume x 0 in Equation (15.31) so that ex2

14 2.  

and x 1.63. But

 e xx2

14 2 16 3 12 6 14 2. . . .  (15.32)

Inspection of Equation (15.31) indicates that a somewhat larger value of x 

should be used. For the second trial, set x 1.70. Then
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 e1 72

1 7 17 8 1 7 16 1 14 2. . . . . .  (15.33)

The second trial assumed an x which is too large. The two points can be plotted 

on Figure 15.2. Although the function is highly non-linear, a straight line is drawn 

between the fist and second approximations. The third approximation is taken at 

the intersection of this line and the line ( )..e xx2

14 2  Applying a third approxi-

mation with x 1.665 gives

 e( ). . . . .1 665 2

1 665 15 9 1 665 14 2  (15.34)

The third trial has effectively done the job. In many environmental engineering 

calculations it is not necessary to plot the trials for a new estimate. The experi-

enced engineer can often make mental estimates and interpolations.
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Figure 15.2 Graphical estimation in a trial-and-error procedure.
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Many areas of environmental engineering and scientific analysis require the use of 

efficient techniques for determining the roots of algebraic (and/or transcendental) 

equations. It is for this reason that the subject of the solution to a nonlinear alge-

braic equation is considered in this chapter. Although several algorithms are avail-

able in the literature, this presentation will focus on the Newton-Raphson (NR) 

method of evaluating the root(s) of a nonlinear algebraic equation.

Three sections complement the presentation of this chapter. Section numbers 

and subject titles follow:

16.1: The Reguli-Falsi (False Position) Method

16.2: The Newton-Raphson Method

16.3: Newton’s Second Order Method

16.1  The Reguli-Falsi (False Position) Method

The Reguli-Falsi method (referred to by some as the False Position linear-inter-

polation method) involves obtaining values for two roots, i.e., values (x
1
, y

1
) and 

(x
2
, y

2
) to the equation f(x) 0 by trial-and-error. From a plot of x vs. y and apply-

ing similar “triangles” to a third root (x
3
, y

3
),

16
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y y

x x

y y

x x
2 1

2 1

3 1

3 1

 (16.1)

For y
3

0, one obtains

 x
x y x y

y y
x

y x x

y y
3

1 2 2 1

2 1

1
1 2 1

2 1

( )
 (16.2)

If y is expressed as y f(x), the above equation becomes

 x
x f x x f x

f x f x
x

f x x x

f x f x
3

1 2 2 1

2 1

1
1 2 1

2 1

( ) ( )

( ) ( )

( )( )

( ) ( )
 (16.3)

Theodore [1] also provides the following “algorithm”.

1. Assume a value of x
1
, (hopefully near to the actual value of the root).

2. Evaluate f(x
1
).

3. Find an x
2
 such that the sign of f(x

2
) is different from that of f(x

1
).

4. Plot f(x) vs x.

5. Draw a straight line between the two points and use the point 

where the chord crosses the axis at f(x) 0 as x
3
.

6. Evaluate f(x
3
).

7. Use a new chord, f(x
3
) to f(x

2
) to evaluate x

4
.

8. The procedure is repeated employing Equation (16.4).

 x
x f x x f x

f x f x
n

n n n n

n n

1
1

1

( ) ( )

( ) ( )
 (16.4)

9. Continue until

 | |x xn n1

1  (16.5)

 or

 f x f xn n( ) ( )1

2  (16.6)

Note:  (error tolerance) will be defined later in Equation (16.20)

Thus, if values of f(x) for two relatively close trial values of x are known and that 

one of the functional values is positive while the other is negative, at least one root 

will be contained within this range of x. This is illustrated in Figure 16.1.

There is also a modification to the False Position method [1]. If

 x x1 1 value of st
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 x x2 2 value of nd
 

 x3 new value  

locate f(x
1
) and f(x

2
) as before and compute (see Equation (16.4))

 x x
f x

f x f x
x x3 2

2

2 1

2 1

( )

( ) ( )
( )  (16.7)

Theodore [1] also provides a second modification. If

 [ ( ) ( )]f a f b 0  (16.8)

set

 b x  (16.9)

 f b f x( ) ( )  (16.10)

 f a
f x

( )
( )

2
 (16.11)

x
1

x
3

x
2

f (x
3
)

f (x
2
)

f (x)

x

f (x
1
)

f (x
3
)

True

solution

Figure 16.1 Graphical illustration of reguli-falsi method.
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and test for convergence. If satisfactory, terminate the calculation; if not satisfac-

tory, return to Equation (16.7). If Equation (16.8)  0, set

 a x  (16.12)

 f a f x( ) ( )  (16.13)

 f b
f x

( )
( )

2
 (16.14)

and check as above for convergence.

Illustrative Example 16.1

Solve the following equation

 f x x x( ) 2 4 1 0  

using the interpolation method. You have been informed that 3  x  4.

Solution

The appropriate equation below is a modified form of Equation (16.4).

 x x
x x f x

f x f x
n n

n n n

n n

1
1

1

( ) ( )

( ) ( )
 

Apply the above equation to solve for x
3
., i.e., n = 2.

 x x
x x f x

f x f x
3 2

2 1 2

2 1

( ) ( )

( ) ( )
 

Set x
1

3 and x
2

4.

 f x( ) ( )( )1

23 4 3 1 2  

 f x( ) ( )( )2

24 4 4 1 1 

Therefore

 x3 4
1 1

1 2
4

1

3
3 667

( )( )

( ) ( )
.  
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Once again employ Equation (16.4) for x
n+1

x
4

 x x
x x f x

f x f x
4 3

3 2 3

3 2

( ) ( )

( ) ( )
 

For this trial, x
3

3.667, x
2

4, f(x
3
) -0.222, f(x

2
) 1. Therefore

 

x4 3 667
3 667 4 0 222

0 222 1

3 667
0 333 0 222

.
( . )( . )

.

.
( . )( . )

( 1 222
3 667 0 061

3 728

.
. .

.

)
 

Proceeding further is left as an option for the reader. For reference the true 

solution for this root is 3 +2 or 3.732 .

16.2 Newton-Raphson Method

Although several algorithms are available for the solution to a nonlinear alge-

braic equation, the presentation in this section will key on the Newton-Raphson 

method (or the Newton Method of Tangents) of evaluating the root(s) of a nonlin-

ear algebraic equation. The solution to the equation

 f x( ) 0  (16.15)

is obtained by guessing a value for x (x
old

) that will satisfy the above equation. This 

value is continuously updating (x
new

) using the equation

 x x
f x

f x
fnew old

old

old

( )

( )
;  derivative  (16.16)

until either little or no change in (x
new

  x
old

) is obtained. One can express this 

operation graphically (see Figure 16.2). Noting that

 f x
df x

dx

f x

x

f x

x x
old

old

old new

( )
( ) ( ) ( ) 0

 (16.17)

one may rearrange Equation (16.17) to yield Equation (16.18) below. The x
new

 then 

becomes the x
old

 in the next calculation.

This method as mentioned above is also referred to as Newton’s Method of 

Tangents and is a widely used method for improving a first approximation to a 
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root to the aforementioned equation of the form f(x) 0. The above development 

can be rewritten in subscripted form to (perhaps) better accommodate a computer 

calculation. Thus,

 f x
f x

x x
n

n

n n

( )
( )

1

 (16.18)

from which

 x x
f x

f x
n n

n

n

1

( )

( )
 

or

 x x
f x

f x
2 1

1

1

( )

( )
 (16.19)

where x
n+1

 is again the improved estimate of x
n
, the solution to the equation 

f(x) 0. The value of the function and the value of the derivative of the func-

tion are determined at x x
n
 for this procedure and the new approximation to the 

root, x
n+1

 is obtained. The same procedure is repeated with the new approximation 

to obtain a better approximation of the root. This continues until successive val-

ues for the approximate root differ by less than a prescribed small value, , which 

X
XoXnXn+1Xn+2

Exact 

solution

Fourth

approximation

F(x)

Figure 16.2 Graphical expression of the Newton-Raphson method.
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controls the allowable error (or tolerance) in the root. Relative to the previous 

estimate,  is given by

 
x x

x
n n

n

1
 (16.20)

Despite its popularity, the method suffers for two reasons. First, an analytical 

expression for the derivative, i.e., f (x
n
) is required. In addition to the problem 

of having to compute an analytical derivative value at each iteration, one would 

expect Newton’s method to converge fairly rapidly to a root in the majority of 

cases. However, as is common with some numerical methods, it may fail occasion-

ally in certain instances. A possible initial oscillation followed by a displacement 

away from a root is illustrated in Figure 16.3. Note, however, that the method 

would have converged (in this case) if the initial guess had been somewhat closer 

to the exact root. Thus, it can be seen that the initial guess may be critical to the 

success of the calculation.

In addition to the aforementioned False-Position and Second Order Newton 

methods, one may also employ the Wegstein method and the Half-interval 

method.(1, 2)

Illustrative Example 16.2

The vapor pressure, p , for a new synthetic chemical at a given temperature has 

been determined to take the form [2]:

 p T T T p atm3 2 12 2 ;   

where the actual temperature, t (in K), is given by

 t T T103 or  = 10 t3

 

Solve the above equation for the actual temperature in K for p 1. Earlier stud-

ies indicate that t is in the 1000–1200K range.

f (x) f (x)

Exact solution

x
4

x
2

x
3

x
x

1

Figure 16.3 Failure of the Newton-Raphson method.
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Solution

If p 1, one may then write

 f T T T T( ) 3 22 2 1 0  

Assume an initial temperature t
1
. Set t

1
1100, so that

 T1

31100 10 1 1( )( ) .  

Obtain the analytical derivative, f (T).

 f T T T( ) 3 4 22
 

Calculate f(T
1
) and f (T

1
).

 f T T T( . ) ( . ) ( . ) ( . ) .1 1 2 2 1 1 1 2 1 1 2 1 1 1 0 1113 2 3 2
 

 f T T( . ) ( . ) ( . ) .1 1 3 4 2 3 1 1 4 1 1 2 1 232 2
 

Use the Newton-Raphson method to estimate T
2
. Employ Equation (16.19).

 T T
f T

f T
2 1

1

1

( )

( )
 

Substituting

 T2 1 1
0 111

1 23
1 0098.

.

.
.  

Calculate T
3
.

 f T f T T( ) . ; ( ) . ; .2 2 30 0099 1 0198 1 0001  

Finally, calculate the best estimate (based on two iterations) of t.

 t TK103 ; =1000.1K  

Illustrative Example 16.3

It can be shown that the average velocity in a system involving the flow of water at 

60°F is given by [3]

 v

Re

2180

213 5 10

1

4.  
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For water at 60°F, Re 12,168v. 

Calculate the average velocity, v (ft/s), using the Newton-Raphson method of 

solution [4].

Solution

Substitute the expression of Reynolds number as a function of velocity into the 

velocity equation.

 

v

Re v

2180

213 5 10

2180

213 5 12 168 10

1

4

1

4. . ( , ) 

22180

213 5 12 168 10
1

4. ( , )/ v

 

Manipulate the above equation into one that is easier to differentiate. Squaring 

both sides gives

 v

v

v2

1

4

1

42180

213 5 12 168 10

2180 12 168

213 5 10 12 1[ . ( , ) ]

( , )

. ( ,/ 668
1

4v)

 

Cross multiplying leads to

 213 5 10 12 168 2180 12 168 02
1

4 2
1

4. ( , ) ( , )v v v v  

or

 f v v v v( ) . . , .. .213 5 105 03 22 896 08 02 2 25 0 25
 

The analytical derivative of f(v) is

 f v v v v( ) . .. .427 236 313 5724 021 25 0 75
 

Make an initial guess of v 5 ft/s and substitute into the above equations:

 f v f1 1 5 24 973 8( ) ( ) , .  

 f v f1 1 5 2189 97( ) ( ) .  
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Calculate the next guess using Equation (16.19).

 v v
f v

f v
2 1

1

1

5
24 973 8

2189 97
16 4

( )

( )

, .

.
. 0 ft/s  

Solve for v
3
, etc., until the result converges.

 v3 11 56.  ft/s  

 v4 10 22.  ft/s  

 v5 10 09.  ft/s  

 v6 10 09.  ft/s  

The average velocity is therefore approximately 10.09 ft/s.

Illustrative Example 16.4

Solve the following equation using the N–R method.

 f x x x x( ) 3 23 10 24  

Solution

One may calculate f (x) as

 f x x x( ) 3 6 102
 

Initially assume x
1

5. Thus,

 f f x( ) ( )5 125 75 50 24 241  

 f f x( ) ( )5 75 30 10 351  

and

 x x
f x

f x
2 1

1

1

5
24

35
4 313

( )

( )
.  

For x
2

4.313

 f x f( ) ( . ) . . .2 4 313 80 55 8 43 1 24 5 1 
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 f x f( ) ( . ) . . .2 4 313 55 8 25 9 10 19 9  

so that

 x x
f x

f x
3 2

2

2

4 313
5 1

19 9
4 057

( )

( )
.

.

.
.  

One may choose to continue the iteration.

Illustrative Example 16.5

Solve the equation provided in Illustrative Example 16.1 employing the Newton-

Raphson method.

Solution

Apply the N–R method of solution to the equation x2 – 4x 1 0. Employ

 x x
f x

f x
n n

n

n

1

( )

( )
 

For this example start with x
1

3. Then

 f x f x fn( ) ( ) ( )1 3 2  

 f x f x fn( ) ( ) ( )1 3 2  

so that

 x2 3
2

2
3 1 4

( )
 

For the second iteration,

 f x( )2 1  

 f x( )2 4  

so that

 x3 4
1

4
3 75.  

Proceeding further is left as an exercise for the reader. Again, for reference, the 

true solution rounded to three decimal places is 3.732.
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16.3  Newton’s Second Order Method

Newton’s Second Order method requires the determination of the first derivative 

of f (x
1
), for the first assumed value of x

1
, and the second derivative, f (x

1
). The 

algorithm (derivation not presented) is with f y  and f y .

 x x

y

y
y y

y
2 1

1

1
1 1

12

 (16.21)

If y is replaced by f(x), the above algorithm becomes

 x x

f x

f x
f x f x

f x
2 1

1

1
1 1

12

( )

( )
( ) ( )

( )

 (16.22)

which may be rewritten as

 x x
f x f x

f x f x f x
2 1

1 1

1

2

1 1

2

2

( ) ( )

( ) ( ) ( )
 (16.23)

As one might suppose, there are a host of other procedures/methods for solving 

nonlinear algebraic equations. It should also be mentioned that brute-force and 

trial-and-error approaches have merit, particularly if one has a reasonable idea 

of the correct root. However, this method was discussed in the previous chapter.

Illustrative Example 16.6

Solve the equation

 f x x x x( ) 3 23 10 24  

using Newton’s Second Order method.

Solution

Calculate the first and second derivative of f(x)

 f x x x( ) 3 6 102
 

 f x x( ) 6 6  
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Assume an educated value for x
1
, say x

1
5. Then

 f ( )5 24  

 f ( )5 35  

 f ( )5 24  

Substitute into Equation (16.23).

 
x2 2

5
2 24 35

2 35 24 24
5

1680

1874

4 104

( )( )

( ) ( )( )

.

 

Similarly

 f x f( ) ( . ) .2 4 104 1 55  

 f x f( ) ( . ) .2 4 104 15 9  

 f x f( ) ( . ) .2 4 104 18 6  

so that

 
x3 2

4 104
2 1 55 15 9

2 15 9 1 4 18 6
4 104

49
.

( . )( . )

( . ) ( . )( . )
.

.229

479 58

4 001

.

.

 

Proceed or terminate, as desired.
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Environmentalists frequently encounter problems involving the solution of sets of 

simultaneous linear algebraic equations. Such problems arise in a host of areas that 

include electrical-circuit analysis, heat transfer, vibrations, chemical reactions, etc. 

The most common methods of solving simultaneous equations involve the elim-

ination of unknowns by combining equations. When three or more simultane-

ous equations are being solved, one must resort to other methods. For example, 

the method of determinants with expansion by minors is completely impractical 

when large numbers of equations must be solved simultaneously.

Note that in the presentation to follow there are an equal number of unknowns 

and equations. If there are more unknowns than equations, the system has an infinite 

number of solutions. If there are fewer equations than unknowns, then the system of 

equations does not have a solution. Because of the breadth of the subject matter, the 

reader should also note that only three numerical methods receive treatment in the 

chapter. Information on the remaining methods can be found in the literature [1,2].

Four sections complement the presentation of this chapter. Section numbers 

and subject titles follow:

17.1: Notation for Solving Simultaneous Linear Algebraic Equations

17.2: Gauss Elimination Method

17
Simultaneous Linear 
Algebraic Equations
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17.3: Gauss-Jordan Reduction Method

17.4: Gauss-Seidel Method

17.1  Notation For Solving Simultaneous 
Linear Algebraic Equations

The engineer often encounters problems that not only contain more than two or 

three simultaneous algebraic equations, but also those that are sometimes nonlin-

ear as well. Therefore, there is an obvious need for providing systematic methods 

of solving simultaneous linear and simultaneous nonlinear equations [1]. This sec-

tion will address linear sets of equations. Information on nonlinear sets is available 

in the literature [2].

Consider the following set of n equations:

 

a x a x a x c

a x a x a x c

a x a x

n n

n n

m m

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2 a x cmn n n

 (17.1)

where a is the coefficient of the variable x and c is a constant. The above set is con-

sidered to be linear as long as none of the x terms are nonlinear, for example, x
2

2
 

or ln x
1
. Thus, a linear system requires that all terms in x be linear.

The above system of linear equations may be set in matrix form (see Part II):

 

a a a

a a a

a a a

x

x

x

n

n

m m mn n

11 12 1

21 22 2

1 2

1

2

c

c

cn

1

2
 (17.2)

However, it is often more convenient to represent Equation (17.2) in the aug-

mented matrix provided in Equation (17.3).

 

a a a c

a a a c

a a a c

n

n

m m mn n

11 12 1 1

21 22 2 2

1 2

 (17.3)
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As noted above, only the first three methods are discussed in this chapter.

The coefficient matrix of the set of equations in Equation (17.1) is

 

a a a

a a

a a

n

n

n

11 12 1

21 2

31 3

 (17.4)

If the constants of Equation (17.1) are added to the coefficient matrix as a col-

umn of elements in the position shown in Equation (17.3), the augmented matrix 

is formed. A comparison of Equations (17.1) and (17.4) shows that a coefficient 

matrix is a matrix whose elements are the coefficients of the unknowns in the set 

of the equations.

In many instances in computer programming, it may be found convenient to 

express the column of constants c
1
, c

2
, c

3
, …, c

n
, as simply an additional column of 

a
ij
’s. In such an instance the matrix of Equation (17.3) might be expressed as

 B

a a a a

a a a a

a a a

n n

n n

m mn m n

11 12 1 1 1

21 22 2 2 2

1 1

,

,

,

 (17.5)

If c
1
, c

2
, c

3
, …, c

n 
are not all zero, the set of equations is nonhomogeneous, 

and one will find that all the equations must be independent to obtain unique 

solutions. If the constants c
1
, c

2
, c

3
, …, c

n 
are all zero, the set of equations is 

homogenous, where nontrivial solutions exist only if all the equations are not 

independent.

In this chapter, the solution of both homogenous and nonhomogeneous sets 

of linear algebraic equations shall be considered since both types appear in envi-

ronmental applications. The sets of equations which are to be addressed will 

involve n unknowns in n equations, which have the general form provided in 

Equation (17.1).

Methods of solution available for solving these linear sets of equations include:

1. Gauss elimination

2. Gauss-Jordan reduction

3. Gauss-Seidel

4. Cramer’s rule

5. Cholesky’s method
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17.3 Gauss-Jordan Reduction Method

The second method presented for the solution of simultaneous linear algebraic 

equations – a variation of the gauss elimination – is one in which the unknowns 

are reduced by combining equations. Such a method is known as a reduction 

method. It is referred to by some as Gauss’s method or the Gauss-Jordan method 

if a particular systematic scheme is used in the reduction process. This method 

involves the “reduction” of the simultaneous equations to the solution of one lin-

ear equation with one unknown.

17.2  Gauss Elimination Method

Using Gauss’ elimination method, a set of n equations and n unknowns is reduced 

to an equivalent triangular set (an equivalent set is a set having identical solu-

tion values), which is then easily solved by “back substitution,” a simple procedure 

which will be illustrated in an illustrative example.

Gauss’ scheme begins by reducing a set of simultaneous equations, such as those 

given in Equation (17.1), to an equivalent triangular set such as the following:

 

a x a x a x a x a x c

a x a x a x

n n11 1 12 2 13 3 14 4 1 1

22 2 23 3 24 4 aa x c

a x a x a x c

a

n n

n n

m n

m

2 2

33 3 34 4 3 3

1 1

.

,

22

1 1

2

1

2

1 1

x a x c

a x c

n m n

m

n n

n

mn

m

n n

n

,

 (17.6)

where the prime subscripts indicate new coefficients which are formed in the 

reduction process. The following steps accomplish the actual reduction. First, the 

lead equation in Equation (17.1) is divided by the coefficient of x
1 
to obtain

 x
a

a
x

a

a
x

a

a
x

c

a
n

n1
12

11

2
13

11

3
1

11

1

11

 (17.7)

Next, Equation (17.7) is multiplied by the coefficient of x
1
 in the second equa-

tion found in Equation (17.1), and the resulting equation is subtracted from the 

original second equation in Equation (17.1), which eliminates x
1
. Equation (17.7) 

is then multiplied by the coefficient of x
1
 in the third equation of Equation (17.1), 

and the resulting equation is subtracted from the third equation to eliminate x
2
. 

This process is repeated until one can solve for x
n
 directly. The algorithm for solv-

ing an n x m set of equations is provided in Figure 17.1.
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Carnahan and Wilkes [1] solved the following two simultaneous equations 

using the Gauss-Jordan reduction method:

 3 4 291 2x x  (17.8)

 6 10 681 2x x  (17.9)

Application of the aforementioned procedure follows.

1. Divide Equation (17.8) through by the coefficient of x
1
:

 x x1 2

4

3

29

3
 (17.10)

2. Subtract a suitable multiple, in this case 6, of equation (17.10) from 

Equation (17.9), so that x
1
 is eliminated. Equation (17.10) remains 

untouched, leaving:

 x x1 2

4

3

29

3
 (17.11)

 2 102x  (17.12)

3. Divide Equation (17.12) by the coefficient of x
2
, that is, solve 

Equation (17.12)

 x2 5  (17.13)

4. Subtract a suitable factor of Equation (17.13) from Equation 

(17.11) so that x
2
 is eliminated. When (4/3)x

2 
= 20/3 is subtracted 

from Equation (17.11), one obtains

 x1 3  (17.14)

The augmented matrix from Equation (17.3) is

3 4
6 10

29
68

1 4 3
6 10

29 3
68

1 4 3
0 2

29 3
10

/ /

/ /
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2 10
5

2

2

x

x

 

1
0

0
2

3
10

 x1 3

Illustrative Example 17.1

Solve the following set of linear algebraic equations using Gauss elimination.

 

3 2 7

4 2 21

2 3 4 9

1 2 3

1 2 3

1 2 3

x x x

x x x

x x x

Solution

First, set up the augmented matrix.

 

3 2 1 7

1 4 2 21

2 3 4 9

In order to convert the first column of elements below the diagonal to zero, start 

by setting the first row as the pivot row. For the remaining rows, multiply each ele-

ment by a
11

/a
n1

 and subtract each row from the pivot row. Thus:

Row 2 coefficients:

 3 3 1 0( )( )  

 2 3 4 14( )( )  

 1 3 2 7( )( )  

 7 3 21 56( )( )  

Row 3 coefficients:

 3
3 2

2
0

( )( )
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 2
3 3

2
2 5

( )( )
.  

 1
3 4

2
7

( )( )
 

 7
3 9

2
6 5

( )( )
.  

This procedure calls for
creating an (n × n + 1)
matrix where the n + 1

column contains
only constants.

Setup equations
in matrix form

(n × m)

Starting with the
second row,

multiply each
element of that
row by a

11
/an1

where n is the
row number.

Note that this will make the
first element of the each row

equal to the first element
of the first row.

Note that this will make the
first element of the each row

equal to zero.

Subtract each
row from the first

and place the
result in the

matrix where the
subtracted row

once was.

Is this the last
row?

Is this the second
to last column?

Yes

Yes

No
No

Starting with the
third row,

multiply each
element of that
row by a

22
/an2

where n is the
row number

Figure 17.1 Algorithm for Gauss Elimination with back substitution.
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The resulting matrix is:

 

3 2 1 7

0 14 7 56

0 2 5 7 6 5. .

 

Now starting with the second column and the second row, perform the same 

procedure again, with the second row as the pivot row.

Row 3 coefficients:

 14
14 2 5

2 5
0

( )( . )

.
 

 7
14 7

2 5
46 2

( )( )

.
.  

 56
14 6 5

2 5
92 4

( )( . )

.
.  

Figure 17.1 Algorithm for Gauss Elimination with back substitution (continued). 

Yes

No

The last row may

be solved for xn.

Have all the

equations been

solved?

Knowing the

value of xn, the

second to last

row can be

solved for xn–1
.

The last row is of the

form, an(m–1)
 × xn = anm.

The last row is of the form,

an–1(m–2)
 × xn–1

+an–1(m–1)
 × xn = a

(n–1)m.

Solving for xn–1
,

xn–1
 = [a

(n–1)m–an–1(m–1)
 × xn]/a

(n–1)(m–2)
.

Solving for xn,

xn = anm/an(m–1)
.
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This produces the following matrix:

 

3 2 1 7

0 14 7 56

0 0 46 2 92 45. .

At this point, back substitution may be employed. The following results are 

obtained:

 46 2 92 4 23 3. . ;x x  

 14 2 7 56 32 2x x( ) ;   

 3 2 3 1 2 7 51 1x x( )( ) ( ) ;   

Gauss elimination is useful for systems that contain fewer than 30 equations. 

Larger systems become subject to roundoff error where numbers are truncated by 

computers performing the calculations. 

17.4 Gauss-Seidel Method

Another approach to solving an equation or series/sets of equations is to make an 

educated guess. If the first assumed value(s) does not work, the value is updated. 

By carefully noting the influence of these guesses on each variable, the answers 

or correct set of values for a system of equations can be approached. The reader 

should note that when this type of iterative procedure is employed, a poor guess 

does not prevent the correct solution from ultimately being obtained.

Ketter and Prawel provide the following example [1]. Consider the equations 

below:

 4 2 0 21 2 3x x x  

 2 10 4 61 2 3x xx  

 0 4 5 51 2 3x x x  

The reader may choose to assume as a starting point x
1
 = x

2
 = x

3
 = 0, for the non-

bold terms. Solving each equation for the bold terms (found on the diagonal), one 

obtains

 x x x1 2 30 50 0 60 1 00. ; . ; .   
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These computed values can now be used as new guesses to update the initially 

assumed x values.

 x x x1 1 2 3

2

4

0

4
0 50

2

4
0 60 0 20x . ( . ) .  

 x x x2 2 1 3

2

10

4

10
0 60

2

10
0 50

4

10
1 00 0 90x . ( . ) ( . ) .  

 x x x3 3 1 2

0

5

4

5
1 00

0

5
0 50

4

5
0 60 1 48x . ( . ) ( . ) .  

The right-hand side of these equations may be viewed as residuals. The proce-

dure is repeated until convergence is achieved with the residuals approaching zero. 

More rapid convergence techniques are available in the literature [2].
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Numerical differentiation should be avoided whenever possible, particularly when 

data are empirical and subject to appreciable observation errors. Errors in data 

can affect numerical derivatives, i.e., differentiation is a significantly “roughen-

ing” process. When such a calculation must be made, it is usually desirable to first 

smooth the data to a certain extent (if possible).

Derivatives of a function f(x) may be evaluated numerically by any one of 

several methods involving two data points. Three simple formulas that may be 

employed to evaluated the derivative, f(x) d[f(x)]/dx, are given below.

 f x
h

f x h f x( ) [ ) ( )];
1

(  forward difference  (18.1)

 f x
h

f x h f x h( ) [ ( ) ( )];
1

2
 central difference  (18.2)

 f x
h

f x f x h( ) [ ( ) ( )];
1

 backward difference  (18.3)

The term h represents an incremental change in x.

18
Differentiation

Introduction to Mathematical Methods for Environmental Engineers and Scientists. 
Charles Prochaska and Louis Theodore. 

© 2018 Scrivener Publishing LLC. Published 2018 by John Wiley & Sons, Inc. 



220 Introduction to Mathematical Methods

Three sections complement the presentation of this chapter. Section numbers 

and subject titles follow:

18.1: Employing Two and Three Point Formulas

18.2: Employing Five Point Formulas

18.3: Method of Least Squares

18.1  Employing Two and Three Point Formulas

Several differentiation methods [1] are available for generating expressions for a 

derivative using three data points. Consider the problem of determining the ben-

zene concentration time gradient dC dt/ at t 4.0 s; refer to Table 18.1.

Method 1. This method involves the selection of any three data points and calcu-

lating the slope m of the two extreme points. This slope is approximately equal to 

the slope at the point lying in the middle. The value obtained is the equivalent of 

the derivative at that point 4. Using data points from 3.0s to 5.0s, one obtains

 

Slope m
C C

t t
5 3

5 3

1 63 2 70

5 0 3 0
0 535

. .

. .
.

 (18.4)

Method 2. This method involves determining the average of two slopes. Using the 

same points chosen above, two slopes can be calculated, one for points 3 and 4 and 

the other for points 4 and 5. Adding the two results and dividing them by 2 will 

provide an approximation of the derivative at point 4. For the points used in this 

method, the results are as follows.

Table 18.1 Concentration-Time data.

Time, s Data point Concentration of benzene, mg/L

0.0 0 7.46

1.0 1 5.41

2.0 2 3.80

3.0 3 2.70

4.0 4 2.01

5.0 5 1.63

6.0 6 1.34

7.0 7 1.17
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m slope
C C

t t
1 1

4 3

4 3

2 01 2 70

4 0 3 0
0 69

. .

. .
.

 (18.5)

 

m slope
C C

t t
2 2

5 4

5 4

1 63 2 01

5 0 4 0
0 38

. .

. .
.

 (18.6)

 m slopeavg avg

0 69 0 38

2
0 535

. ( . )
.  (18.7)

Method 3. Method 3 consists of using any three data points (in this case the 

same points chosen before) and fitting a curve to it. The equation for the curve is 

obtained by employing a second-order equation and solving it with the three data 

points. The equation can be quickly provided by Microsoft Excel’s “add trend line” 

function. The result is

 C t t0 155 1 775 6 632. . .  (18.8)

The derivative of the equation is then calculated and evaluated at any point. (Here, 

point 4 is used).

 
dC

dt
t0 31 1 775. .  (18.9)

Evaluating the derivative at t 4.0 yields

 Slope
dC

dt
0 31 4 1 775 0 535. ( ) . .  (18.10)

18.2  Employing Five Point Formulas

There are two methods to employ here and they are very similar to each other. 

They are based on five data points used to generate coefficients. For this develop-

ment, represent C and t by f and x (as it appears in the literature [2]), respectively.

The first method uses five data points to generate a five coefficient (fourth 

order) model using an equation in the form

 f x A Bx Cx Dx Ex( ) 2 3 4
 (18.11)
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This method is known as interpolating. A set of equations is used to evaluate 

numerical derivatives from the interpolating polynomial. The equations are listed 

below.

 f x
f f f f f

h
( )

( )
0

0 1 2 3 425 48 36 16 3

12
 (18.12)

 f x
f f f f f

h
( )

( )
1

0 1 2 3 43 10 18 6

12
 (18.13)

 f x
f f f f

h
i

i i i i( )
( )2 1 1 28 8

12
 (18.14)

 f x
f f f f f

h
n

n n n n n( )
( )

1
4 3 2 16 18 10 3

12
 (18.15)

 f x
f f f f f

h
n

n n n n n( )
( )3 16 36 48 25

12
4 3 2 1  (18.16)

where h x
i+1

  x
i
, f

i
function evaluated at i.

For example, the equation obtained for “the five data set” from 1.0 to 5.0 s, i.e., 

t 1.0, 2.0, 3.0, 4.0, and 5.0 s, using the author’s [2] approach gives

 f x x x x x( ) . . . . .0 0012 0 002 0 02616 2 34 7 4674 3 2
 

All these equations can be evaluated for each value of x and f(x). The value for the 

derivative for point 4.0 is 0.5448.

The second and last method also uses five data points but only three coefficients 

are generated for a second-order polynomial equation of the form

 f A Bx Cx2
 (18.17)

Another set of equations are used to evaluate the derivative at each point using this 

method. The equations are provided below.

 f x
f f f f f

h
( )

( )
0

0 1 2 3 454 13 40 27 26

70
 (18.18)

 f x
f f f f f

h
( )

( )
1

0 1 2 3 434 3 20 17 6

70
 (18.19)

 f x
f f f f

h
i

i i i i( )
( )2 2

10
2 1 1 2

 (18.20)
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 f x
f f f f f

h
n

n n n n n( )
( )

1
4 3 2 16 17 20 3 34

70
 (18.21)

 f x
f f f f f

h
n

n n n n n( )
( )26 27 40 13 54

70
4 3 2 1

 (18.22)

At point 4.0, the solution for the derivative using this method is 0.6897.

18.3  Method of Least Squares

The following method uses the method of least squares (see Part IV). In this case, 

all data points are used to generate a second-order polynomial equation [3]. This 

equation is then differentiated and evaluated at the point where the value of the 

derivative is required. For example, Microsoft excel can be employed to generate 

the regression equation

 C t t0 1626 1 9905 7 31082. . .  (18.23)

Once all the coefficients are known, the equation has only to be analytically 

differentiated.

 
dC

dt
t0 3252 1 9905. .  (18.24)

Set

 t 4 0.  (18.25)

and substitute

 

dC

dt
( . )( . ) .

.

0 3252 4 0 1 9905

0 6897
 (18.26)

* * * * *

Comparing all the values obtained for the derivative at t 4.0 s, it can be 

observed that the answers are very close to each other. It is important to remember 

that these are approximate values and that they vary depending on the approach 

and the number of data points used to generate the equations.
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Numerous environmental engineering and science problems require the solution 

of integral equations. In a general sense, the problem is to evaluate the function on 

the right-hand side (RHS) of Equation (19.1)

 I f x dx
a

b

( )  (19.1)

where I is the value of the integral. As discussed earlier, there are two key methods 

employed in their solution: analytical and numerical. If f(x) is a simple function, it 

may be integrated analytically. For example, if f(x) x2, then

 I x dx b a
a

b

2 3 31

3
( )  (19.2)

If, however, f(x) is a function too complex to integrate analytically {e.g., 
log[ )]tan (h ex3 2

}, one may resort to any of the numerical methods available. Two 

simple numerical integration methods that are commonly employed in practice 

19
Integration
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are the trapezoidal rule and Simpson’s rule. These are described below. However, 

there are other numerical integration methods, including:

1. Romberg’s method

2. Composite formulas

3. Gregory’s formulas

4. Taylor’s theorem

5. Method of undetermined coefficients

6. Richardson’s extrapolation

Details are available in the literature [1–3].

Finally, the reader should once again realize that analytical approaches yield 

closed form and/or exact solutions. Numerical methods provide discrete and/or 

inexact answers. Thus, the analytical approach should always be attempted first 

even though numerical methods have become the preferred choice.

Three sections complement the presentation of this chapter. Section numbers 

and subject titles follow:

19.1:Trapezoidal Rule

19.2: Simpson’s Rule

19.3: Comparing the Trapezoidal Rule with Simpson’s Rule

19.1  Trapezoidal Rule

In order to use the trapezoidal rule to evaluate the integral given by Equation (19.1), as

 I f x dx
a

b

( )  (19.1)

use the equation

 I
h

y y y y yn n
2

2 2 20 1 2 1[ ]  (19.3)

where h is the incremental change in x. Thus,

 h x  (19.4)

and

 y f x f x ao ( ) ( )0  (19.5)
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 y f x f x bn n( ) ( )  (19.6)

 h
b a

n
 (19.7)

This method is known as the trapezoidal rule because it approximates the area 

under the function f(x) – which is generally curved – with a two-point trapezoidal 

rule calculation. The error associated with this rule is illustrated in Figure 19.1.

There is an alternative available for improving the accuracy of this calculation. 

The interval (a  b) can be subdivided into smaller intervals. The trapezoidal rule 

can be applied repeatedly in turn over each subdivision.

Illustrative Example 19.1

The volume requirement of a reactor [4, 5] undergoing conversion X for the reac-

tant (the principal component from the bottom of a distillation column) [6] is 

described by the following integral:

 V
X dX

X X
6 0 10

1 0 125

10 1 1 0 5

3

0

0 45 3

4 2
.

.

.
;

( )

( )( )

.

 liters  

Calculate the volume using the trapezoidal rule method of integration. Discuss 

the effect of varying the increment in conversion X (e.g., if X 0.45, 0.09, 0.05, 

0.01, 0.005, 0.001).

Solution

Regarding integration, an algorithm for applying the trapezoidal rule is given in 

Figure 19.2.

Error =

f(x)

f(x)

f(a) f(b)

x
a b

Figure 19.1 Trapezoidal rule error.
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For an increment size of conversion X 0.45, the step size for the reactor volume is:

 h X X1 0 0 45 0 00 0 45. . .  

Evaluate the function above at X
0
 and X

1
:

 

V f X
X dX

X X
0 0

3
3

4 2
6 0 10

1 0 125

10 1 1 0 5
( ) .

.

.

( )

( )( )
f (0)

X 0 0

3
3

4 2
6 0 10

1

10 1 1
60

.

.
( )

( )( )

 

 

V f X
X dX

X X
1 1

3
3

4 2
6 0 10

1 0 125

10 1 1 0 5
( ) .

( . )

.( )( )
f (0.45)

X 0 45

3
3

4
6 0 10

1 0 125 0 45

10 1 0 45 1 0 5 0 4

.

.
. ( . )

. . ( .

( )

( )( 55
152 67

2)
.

)

 

f(X)dX
xT

x
0

Use the trapezoid rule to solve

Determine or set
the step size
h = Xi+1

 – Xi

Sum the area of
each trapezoid

Find the area of the trapezoid
formed:

Evaluate the
function at
XT and Xi+1

Xi = Xi+1

Xi+1
 = Xi+1

 + h

XT  Xi+1

XT = Xi+1

h

2
f(X)dX = [f(Xi) + f(Xi+1

)]
xi+1

xi

Figure 19.2 Algorithm for trapezoid rule.
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The two point trapezoid rule is given by

 
X

X

f X dX
h

f X f X

1

2

2
0 1( ) [ ( ) ( )]  

Therefore,

 

V
h

f X f X

h
V V

L

2

2
0 45

2
60 152 67

47 85

0 1

0 1

[ ( ) ( )]

[ ]

.
[ . ]

.

 

The trapezoid rule is often the quickest but least accurate way to perform a 

numerical integration by hand. However, if the step size is decreased the answer 

should converge to the analytical solution. Note that for smaller step sizes, the 

results of each numerical integration must be added together to obtain the final 

answer. The results (to seven significant figures) for various step sizes are listed in 

Table 19.1. Can the reader comment on whether convergence has been achieved?

19.2 Simpson’s Rule

A higher-degree interpolating polynomial scheme can be employed for more accu-

rate results. One of the more popular integration approaches is Simpson’s rule. For 

Simpson’s 3-point (or one-third) rule, one may use the equation

 I
h

y y ya b a b
3

4 2[ ]( )/  (19.8)

Table 19.1 Trapezoid rule for various step sizes.

Step size ( X) Volume

0.45 47.85094

0.09 43.13532

0.05 42.98842

0.01 42.92521

0.005 42.92324

0.001 42.92260
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For the general form of Simpson’s rule (where n is an even integer), the equa-

tion is

 I
h

y y y y y yn n
3

4 2 40 1 2 3 1( )4 +  (19.9)

This method also generates an error, although it is usually smaller than that asso-

ciated with the trapezoidal rule. A diagrammatic representation of the error for a 

3-point calculation is provided in Figure 19.3.

Illustrative Example 19.2

Evaluate the integral below using Simpson’s 3-point rule. The term I in this appli-

cation represents the volume requirement for a tubular flow reactor.(4, 5)

 I
X

X X X
dX

0

0 468 2

2

1 0 4

1 1 0 4 1 19

.
( ).

( )( . ) .
 

Solution

Write the 3-point rule. See Equation (19.9).

 

I
h

y y y

h
f X a f X b a f X b

a b a b
3

4

3
4 2

2[ ]

[ ( ) ( ( ) ) ( )]

( )/

/

 

f(x)

f(x)

f(x
0
) f(x

1
) f(x

2
)

x
2

x
x

1

x
2 
– x

1 
= x

1 
– x

0

= error

Error

Error

Simpson

x
0

Figure 19.3 Simpson’s rule analysis and error.
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Evaluate h.

 h
0 468

2
0 234

.
.  

Calculate y
a
, y

(b+a)/2
, and y

b
. For X a 0,

 y x y( ) ( )
. ( )

( ( ))( . ( )) . ( )

( )
0 0

1 0 4 0

1 0 1 0 4 0 1 19 0
1

2

2  

Similarly,

 y X( . )0 234 1.306  

 y X( . )0 468 3.846  

Finally, calculate the integral I.

 

I
h

y y ya b a b
3

4

0 234

3
1 4

2[ ]

.
[ ( ) ]

( )/

1.306 3.846 0.785  

19.3  Comparing the Trapezoidal and Simpson’s Rules

Comparing the integrations in the two previous sections is accomplished via a two 

part illustrative example.

Illustrative Example 19.3

Given the following integral:

 I x dx
0

4

2
1

225( )  

1. Calculate I by the trapezoidal rule for 2 and 4 intervals to three 

decimal places.

2. Calculate I by Simpson’s one-third rule for 2 and 4 intervals to 

three decimal places.

Compare the results.
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Solution

Referring to Table 19.2, tabulate I at 5 points (values of x).

1. By the trapezoidal rule with 2 intervals, i.e., h 2.

 I
2

2
0 200 2 0 218 0 333( . ( . ) . )  

 I 0 969.  

 For 4 intervals, h 1 so that

 I
1

2
0 200 2 0 204 2 0 218 2 0 250 0 333[ . ( . ) ( . ) ( . ) . ]  

 I 0 939.  

2. By Simpson’s rule with 2 intervals, i.e., h 2.

 I
2

3
0 200 0 333( . . )4(0.218)  

 I 0 937.  

 For 4 intervals, h 1 so that

 I
1

3
0 200 4 204 2 0 218 4 0 250 0 333[ . (. ) ( . ) ( . ) . ]  

 I 0 928.  

Which is more accurate? One needs the analytical solution for comparison. 

One is left the exercise of determining that (2) is a better approximation.

Table 19.2 Values of I vs x; Illustrative Example 19.3.

x I

0 0.200

1 0.204

2 0.218

3 0.250

4 0.333
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In general, comparing the trapezoid rule and Simpson’s one-third rule, one 

notes that the trapezoid rule requires n 1 data points for obtaining the area in 

n subintervals of width x, whereas Simpson’s one-third rule requires n 1 data 

points for obtaining the area in 2n subintervals of width ( x)/2.
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The natural laws in environmental engineering and science are not regarded as 

precise and definitive until they have been expressed in mathematical form. Such 

a form, often an equation, is a relation between the quantity of interest, say, pollut-

ant concentration, and independent variables such as time and position on which 

the concentration depends. When it happens that this equation involves, besides 

the function itself, one or more of its derivatives it is called a differential equation.

When the aforementioned function involved in the equation depends only on 

one variable, its derivatives are ordinary derivatives and the differential equation 

is referred to as an ordinary differential equation. When the function depends 

on several independent variables, the equation is then called a partial differential 

equation (see next chapter). The theories of ordinary and partial differential equa-

tions are different and the latter is more “difficult” in almost every respect.

Of increasing concern to the environmental engineer and scientist is the 

description of dynamic or transient staged and/or lumped-parameter processes. 

Ordinary differential equations are usually used to represent the behavior of 

such processes; when combined with chemical reaction [1] or equilibrium [2] 

relationships, the equations are often highly nonlinear.

One often encounters differential equations which cannot be solved by any 

analytical methods except that of a solution in terms of a series, and this method 

20
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may be difficult to apply in certain cases. Even when an analytical solution is avail-

able, it is sometimes difficult to find numerical values of corresponding pairs of the 

dependent and independent variables. However, a variety of methods have been 

devised to solve ordinary differential equations numerically. Several references 

contain detailed information [3–6].

Interestingly, a numerical solution of a differential equation can generally 

provide a table of values of the dependent variable and its derivatives over only 

a limited portion of the range of the independent variable. Also of interest, 

every differential equation of order n can be written as n first order equations. 

Therefore, the methods given in the early sections of this chapter will be for 

first-order equations, and the generalization to simultaneous systems will be 

subsequently discussed. The reader might also note that the analytical solution 

to an ordinary differential equation was not addressed in any detail in Part II, 

Chapter 11.

Five sections complement the presentation of this chapter. Section numbers 

and subject titles follow:

20.1: Finite Difference/Lumped Parameter Method

20.2: Runge-Kutta Method

20.3: Runge-Kutta-Gill Method

20.4: Several Ordinary Differential Equations

20.5: Higher Ordinary Differential Equations

20.1  Finite Difference/Lumped Parameter Method

This method is illustrated via a chemical reactor example [7]. The concentra-

tion, C, variation with length, z, in a 3 ft continuous flow tubular reactor (TF) is 

described by the equation:

 
dC

C

k

v
dz  (20.1)

where k is 50(h) 1, v is 50 ft/h, C is in lbmol/ft3, z is in feet, and C 1.0 lbmol/ft3 

at z 0.

It has been proposed to represent the TF with 10 CSTR (continuous stirred tank 

reactor) staged units 0.3 ft in length. Solutions to this problem are now developed 

using a finite difference method of solving an ordinary differential equation and 

lumped parameter model employing a method of solution of simultaneous linear 

algebraic equations. The aforementioned CSTR is a perfectly mixed tank reactor 

whose discharge concentration is equal to the concentration within the reactor result-

ing in an equation containing finite differences rather than differential values [7].
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A finite difference procedure is first applied to Equation (20.1). The first deriva-

tive of C with respect to z is equivalent to the finite difference in the z-direction, 

i.e.,

 
dC

dz

C

z

C C

z
n n1

 (20.2)

Inserting this into the describing equation and noting that the average concentra-

tion over the increment should be used leads to

 
C C

z

k

v
Cn n

z

av
1

 (20.3)

Knowing the initial condition, each successive concentration may be found by 

rearranging the above equation:

 C
k z

v
C Cn

z

av n1  (20.4)

The application of this equation requires a trial-and-error procedure where the 

average concentration over the increment is approximated and then checked when 

C
n+1

 is calculated. One should note that the approximation part of this calculation 

can be removed by replacing C
av

 by

 
C Cn n1

2
 (20.5)

and solving for C
n+1 

directly in terms of C
n
.

In the lumped parameter method, the reactor is divided into equal stages and 

each segment is considered to be a perfectly mixed vessel. This is shown schemati-

cally in Figure 20.1. The equation is now written as:

 
C C

z

k

v
Cout in

z

out  (20.6)

Rearranging the above equation gives

 C
C

k z

v

out
in

z

1

 (20.7)
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If the initial concentration is C
0
 and the term

 1
k z

v
R

z

 (20.8)

then the following set of equations are generated for each stage:

 C RC1 0 0  (20.9)

 C RC2 1 0  (20.10)

  

 C RCfinal final 1 0  (20.11)

The above represents a series of (simultaneous) linear algebraic equations. These 

equations can be solved by a direct step-by-step hand calculation. Alternatively, a 

Gauss-Jordan or Gauss-Seidel method can also be used [3–6]. (See also Chapter 17).

The results of the analyses by the two methods are combined and presented in 

tabular form for comparison along with the analytical solution (see Table 20.1). 

The reader is left the exercise of calculating the values at z 3.0 ft.

20.2 Runge-Kutta Method

The Runge-Kutta (RK) method is one of the most widely used techniques in engi-

neering and science practice for solving first order differential equations. For the 

equation

 
dy

dx
f x yn n( , )  (20.12)

the solution takes the form

 y y
h

D D D Dn n1 1 2 3 4
6

2 2( )  (20.13)

Figure 20.1 Lumped parameter method.

Section n – 1 Section n + 1
Section n

Cin

Cn

Cout Cn

Cout

Cn–1
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where

 D hf x yn n1 ( , )  (20.14)

 D hf x
h

y
D

n n2
1

2 2
,   (20.15)

 D hf x
h

y
D

n n3
2

2 2
,   (20.16)

 D hf x h y Dn n4 3( , )  (20.17)

The term h represents the increment in x, the term y
n
 is the solution to the equa-

tion at x
n
, and y

n+1 
is the solution to the equation at x

n+1 
where x

n+1
x

n
h. Thus, 

the RK method provides a straightforward means for developing expressions for 

y, namely, y
n+1

  y
n
, in terms of the function f(x, y) at various “locations” along 

the interval in question.

For a simple equation of the form

 
dC

dt
a bC  (20.18)

where at t 0, C C
0
, the RK algorithm given above becomes (for t h)

 C C
h

D D D D1 0 1 2 3 4
6

2 2( )  (20.19)

Table 20.1 Concentration profile via three methods.

z, ft Analytical Finite-difference Lumped-parameter

0.0 1.0000 1.0000 1.0000

0.3 0.8354 0.8358 0.8474

0.6 0.6980 0.7001 0.7181

0.9 0.5830 0.5863 0.6086

1.2 0.4870 0.4910 0.5157

1.5 0.4070 0.4112 0.4371

1.8 0.3400 0.3444 0.3704

2.1 0.2840 0.2884 0.3139

2.4 0.2370 0.2415 0.2660

2.7 0.1980 0.2022 0.2254
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and the coefficients are then given by

 D hf x y h a bCn n1 0( , ) ( )  (20.20)

 D hf x
h

y
D

h a b C
D

n n2
1

0
1

2 2 2
,   (20.21)

 D hf x
h

y
D

h a b C
D

n n3
2

0
2

2 2 2
,   (20.22)

 D hf x h y D h a b C Dn n4 3 0 3( , ) [ ( )]  (20.23)

The same procedure is repeated to obtain values for C
2
 at t 2h, C

3
 at t 3h, and 

so on.

The RK method can also be used if the function in question also contains the 

independent variable. Consider the following equation:

 
dC

dt
f t C( , )  (20.24)

For this situation, one obtains

 C C
h

D D D D1 0 1 2 3 4
6

2 2( )  (20.25)

with

 D hf t C1 0( ),0  (20.26)

 D hf t
h

C
D

2 0 0
1

2 2
,  (20.27)

 D hf t
h

C
D

3 0 0
2

2 2
,  (20.28)

 D hf t h C D4 0 0 3( , )  (20.29)

For example, if

 
dC

dt
C e Ct5  (20.30)
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then

 D h C
D

e
C

D
t

h

2
0

1 2 2
5

2

0
1

0  (20.31)

etc.

Illustrative Example 20.1 [7]

The equation describing the concentration of a reactant in a tubular flow reactor 

is given by

 
dC

dt
C0 580 6.  

with C
0

5.0 gmol/cm3 at t 0 min. Estimate C in gmol/cm3 at 1 and 5 minutes. 

Use the Runge-Kutta method analysis [3–6].

Solution

Based on the data provided, evaluate the R–K coefficients for t h 1:

 D1 1 0 6 0 2 9 3 1. ( . . ) .  

 D2 1 0 6 0 0 58 5 0
3 1

2
2 2. . . .

.
.  

 D3 1 0 6 0 0 58 5 0
2 2

2
2 46. . . .

.
.  

 D4 1 0 6 0 0 58 5 0 2 46 1 67. [ . . ( . . )] .  

Calculate C
1
:

 

C C
h

D D D D1 0 1 2 3 4
6

2 2

5 0
1

6
3 1 2 2 2 2 2 46 1 67

7

(

. [ . ( . ) ( . ) . ]

.

)

335 gmol/cm3

 



242 Introduction to Mathematical Methods

To calculate C
2
:

 D1 1 0 6 0 0 58 7 35 1 74. [ . . ( . )] .  

 D2 1 24.  

 D3 1 38.  

 D4 0 94.  

and

 

C C
h

D D D D2 1 1 2 3 4
6

2 2

7 34
1

6
1 74 2 1 24 2 1 38 0 94

( )

. [ . ( . ) ( . ) . ]

8 66.  gmol/cm3

 

Also calculate C
3
, C

4
, and C

5
:

 C t3 9 40 3.  at  min  

 C t4 9 81 4.  at  min  

 C t5 10 04 5.  at  min  

The reader is left the exercise of comparing the numerical solution above (includ-

ing that at t ) with that provided by the analytical solution provided below.

C e

t
5

29
60 31

29

50

20.3 Runge-Kutta-Gill Method

The RKG method of solving an ordinary differential equation is an extension of, 

and is similar to, the RK method. The describing equations are given by

 k hf x yn n1 ( , )  (20.32)

 k hf x
h

y
k

n n2
1

2 2
,   (20.33)

 k hf x
h

y
v

k
v

kn n3

2

1

2

2
2

1

2

1
1

1
,   (20.34)
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 k hf x h y
v

k
v

kn n4

2

2

2

3

1
1

1
,   (20.35)

with

 y y k k
v

k
v

kn n1 1 4

2

2

2

3

1

6

1

3
1

1 1

3
1

1
( )  (20.36)

Where v2 2 2/

Illustrative Example 20.2

Resolve the previous illustrative example using the RKG method.

Solution

The solution is left as an exercise for the reader , but it can be seen that both meth-

ods only diverge from the analytical solution by ~0.04%.

20.4  Several Ordinary Differential Equations

Situations may arise when there is a need to simultaneously solve more than one 

ordinary differential equation (ODE). In a more general case, one could have n 

dependent variables y
1
, y

2
, …, y

n
 with each related to a single independent variable 

x by the following system of n simultaneous first-order ODEs:

 
dy

dx
f x y y yn

1
1 1 2( ), , , ,     (20.37)

 
dy

dx
f x y y yn

2
2 1 2( ), , , ,     (20.38)

  

 
dy

dx
f x y y yn

n n( ), , , ,   1 2  (20.39)

Note that Equations (20.37–20.39) are interrelated, i.e., they are dependent on 

each other. 

An outline to the solution is illustrated in the following two equations:

 
dC

dt
Ae C f C t

E

RT ( , )  (20.40)
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dT

dt
kC

H

C
g C t

p

( , )  (20.41)

or in a more general sense

 
dy

dx
f x y z e g xyz( , , ); ( . ., )     (20.42)

 
dz

dx
g x y z e g x y e z( , , ); ( . ., )    2 2

 (20.43)

The RK algorithm for Equations (20.42) and (20.43) is

 y y RY RY RY RY1 0 1 2 3 4

1

6
2 2( )  (20.44)

 z z RZ RZ RZ RZ1 0 1 2 3 4

1

6
2 2( )  (20.45)

where y
1
 – y

0
y, z

1
 – z

0
z, h x and

 RY h f x y z1 0 0 0( , , )   (20.46)

 RZ h g x y z1 0 0 0( , , )   (20.47)

 RY h f x
h

y
RY

z
RZ

2 0 0
1

0
1

2 2 2
, ,   (20.48)

 RZ h g x
h

y
RY

z
RZ

2 0 0
1

0
1

2 2 2
, ,   (20.49)

 RY h f x
h

y
RY

z
RZ

3 0 0
2

0
2

2 2 2
, ,   (20.50)

 RZ h g x
h

y
RY

z
RZ

3 0 0
2

0
2

2 2 2
, ,   (20.51)

 RY h f x h y RY z RZ4 0 0 3 0 3( , , )   (20.52)

 RZ h g x h y RY z RZ4 0 0 3 0 3( , , )   (20.53)
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20.5  Higher Order Ordinary Differential Equations

Although the RK approach (and other companion methods) have traditionally 

been employed to solve first-order ODEs, it can also treat higher order ODEs. The 

procedure requires reducing an nth order ODE to n first-order ODEs. For example, 

if the equation is of the form [8]

 
d y

dx
f y x

2

2
( , )  (20.54)

set

 z
dy

dx
 (20.55)

so that

 
dz

dx

d y

dx

2

2
 (20.56)

The second order equation in Equation (20.54) has now been reduced to the two 

first-order ODEs in Equation (20.57):

 

d y

dx

dz

dx
f y x

2

2

( , )  

 
dy

dx
z  (20.57)

The procedure set forth earlier can now be applied to generate a solution to 

Equation (20.54). Note, however, that the first derivative (i.e., dy/dx or its estimate) 

is required at the start of the integration. Extending the procedure to higher order 

equations is left as an exercise for the reader.

The selection of increment size remains a variable to the practicing engineer. 

Most numerical analysis methods provided in the literature are not concerned with 

error analysis. In general, roundoff errors appear as demonstrated in Figure 20.2. 

In the limit, when the increment approaches 0, one obtains a solution approach-

ing that analytically. Roundoff error then increases exponentially as the increment 

approaches 0 as the number of computations correspondingly increases. However, 

selecting the increment size that will minimize the error is rarely a problem; in 

addition, computing it is also rarely a problem.
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Many practical problems in environmental engineering and science involve at least 

two independent variables i.e., the dependent variable is defined in terms of (or is a 

function of) more than one independent variable. The derivatives describing these 

independent variables are defined as partial derivatives. Differential equations con-

taining partial derivatives are referred to as partial differential equations (PDEs).

Contrary to a widely accepted myth, an engineer’s mathematical obligations 

do not end after formulating a problem, where it may be given to a mathemati-

cian to solve. Even if such an ideal situation should exist, it is still necessary for 

engineers – and this includes environmental engineers and scientists – to have a 

reasonable understanding of the mathematical methods and their limitations in 

order to interpret results.

It has been said that “the solution of a partial differential equation is essentially 

a guessing game.” In other words, one cannot expect to be given a formal method 

that will yield exact solutions for all partial differential equations [1]. Fortunately, 

numerical methods for solving these equations were developed during the middle 

and latter part of the 20th century.

Some of the applications in environmental engineering and science fall naturally 

into partial differential equations of second order, although there are exceptions 

in elasticity, vibration theory, and elsewhere. The solutions of problems involving 

21
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partial differential equations often revolve about an attempt to reduce the partial 

differential equation to one or more ordinary differential equations. The solutions 

of the ordinary differential equations are then combined (if possible) so that the 

boundary conditions as well as the original partial differential equation are simul-

taneously satisfied. It should be noted that most of the computational methods for 

partial differential equations have evolved from finite-difference approximations 

for the partial derivatives. Partial derivatives can be approximated by finite differ-

ences in many ways depending on accuracy requirements.

As noted, this concluding chapter in Part III is concerned with the numerical 

solutions of partial differential equations.

Four sections complement the presentation of this chapter. Section numbers 

and subject titles follow:

21.1: Partial Differential Equation (PDE) Classification

21.2: Parabolic Partial Differential Equations

21.3: Parabolic PDE with Three Independent Variables

21.4: Elliptic Partial Differential Equations

21.1  Partial Differential Equation (PDE) Classification

This chapter will examine partial differential equations of the general form

 a
T

x
b

T

x y
c

T

y
f x y T

2

2

2 2

2
( , , )   (21.1)

where, in general, the coefficients a, b, and c are functions of x and y, and f is a 

function of x, y, and T. Such equations arise in environmental work involving heat 

transfer, boundary-layer flow, vibrations, elasticity, and so on. However, the scope 

of this chapter is not to present a comprehensive coverage of the various numerical 

methods for solving partial differential equations. Rather, the material presented will 

provide an introduction to the subject. The various forms of Equation (21.1) may 

take are classified as elliptic, parabolic, or hyperbolic. Some details are provided in 

this chapter. These three PDEs are briefly introduced below employing T (e.g., the 

temperature as the dependent variable) with t (time) and x, y, z (position) as the 

independent variables.

The parabolic equation is:

 
T

t

T

z

2

2
 (21.2)

The elliptical equation is:
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2

2

2
0

T

x

T

y
 (21.3)



Partial Differential Equations 249

The hyperbolic equation is:

 
2

2

2

2

T

t

T

x
 (21.4)

Regarding the hyperbolic equations, it should be noted that the coefficients a, b, 

and c in Equation (21.1) have values such that

 b ac2 4 0  (21.5)

The one-dimensional wave equation

 
2

2

2
2

2

u

t
a

u

x
 (21.6)

which is frequently encountered in the areas of applied physics, is an example of 

a hyperbolic partial differential equation. This equation has been used to describe 

the motion of various types of systems.

As noted, the preferred numerical method of solution involves finite differencing. 

Only the parabolic and elliptical equations are considered in the next two sections.

21.2  Parabolic Partial Differential Equations

Parabolic differential equations arise in what some refer to as propagation prob-

lems. In this type of system, the solution advances away from specified initial 

and boundary conditions. The general partial differential equation, as provided 

by Equation (21.1), is defined as parabolic when the coefficients a, b, and c have 

values such that

 b ac2 4 0  (21.7)

Examples of parabolic PDEs include

 
T

t

T

x

2

2
 (21.8)

and (the two-dimensional)

 
T

t

T

x

T

y

2

2

2

2
 (21.9)

Ketter and Prawler [2], as well as many others, have reviewed the finite differ-

ence approach to solving Equation (21.8). This is detailed below.
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Consider the (t, x) grid provided in Figure 21.1. The partial derivatives may be 

approximated by

 
T

t

T

t

T T

t

T T

k
t k4 2 4 2

2 2( )
;  (21.10)

and
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;  (21.11)

Substituting Equations (21.10) and (21.11) into Equation (21.8) leads to

 
T T

k

T T T

h
4 2 3 0 1

22

2
 (21.12)

Solving for T
2
:

 T T r T T T2 4 3 0 12 2( )  (21.13)

where r = k/h2.

Thus, T
2
 may be calculated if T

0
, T

1
, T

3
, and T

4
 are known. Unfortunately, sta-

bility and error problems arise in employing the above approach. These can be 

removed by replacing the central difference term in Equation (21.10) by a forward 

difference term, i.e.,

 
T

t

T

t

T T

t

T T

k
0 2 0 2

( )
 (21.14)

T
2

T
3

T
0

T
4

x = h

t = k t

x
T

1

Figure 21.1 Parabolic grid.
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With this substitution, Equation (21.13) becomes

 T T r T T T2 0 3 0 12( )  (21.15)

It can be shown that the problem associated with the central difference derivative 

is removed if r  0.5.

Consider the following application. An unsteady-state heat conduction experi-

ment conducted at Manhattan College’s unit operations laboratory is concerned 

with the application of this parabolic equation. In the experiment, a 316 stainless 

steel rod is heated at each end with steam at temperature T
S
. The initial tempera-

ture of the rod is T
A
. The describing equation and Ba/o IC(s) for this system are

 
T

t

T

x

2

2
 (21.16)

 BC T T xS( )1 0: at   

 BC T T x LS( )2 : at   

 IC: at ,  T T t x LA 0 0  

The analytical solution to this equation can be shown [3] to be:

 T T T T
n

e
n x

S A S

n

n n
t

( ) sin
( )

1

1
22

1 1

2

2

 (21.17)

The reader may choose to solve this problem numerically.

21.3  Parabolic PDE with Three Independent Variables

The previous section on parabolic PDEs was limited to systems involving only two 

independent variables. Problems involving three or more independent variables 

may be handled by analogous methods although the calculations become more 

tedious. For example, consider the simple unsteady-state heat-conduction equa-

tion for a solid in two linear dimensions:

 
T

t

T

x

T

y

2

2

2

2
 (21.18)

To generate a solution, divide the solid into a series of rectangles, each of length 

x and of width y. Let m x denote the x distance of a point in the solid from 

a suitable reference y axis, p y denote the y distance of the same point from a 
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suitable reference x axis, and n t denote the elapsed time since the start of the cal-

culational process. The finite difference equivalent of Equation (21.18) is approxi-

mately given by

 T T t
T T T

x

T
m p n m p n

m p n m p n m p n m p n

, , , ,

, , , , , , , ,

1

1 1

2

12 2TT T

y

m p n m p n, , , ,1

2

 (21.19)

One again, the concept of a modulus may be employed:

 R
x

t

2

 (21.20)

 S
y

t

2

 (21.21)

The incremental changes in x and y need not be equal, but t must be indepen-

dent of the position in space. Equation (21.19) with the moduli R and S is similar 

to the finite difference approximation to the one-distance coordinate case, and the 

solution of Equation (21.19) proceeds in a similar manner; however the boundary 

conditions are somewhat more troublesome.

21.4  Elliptical Partial Differential Equations

For this equation examine the grid in Figure 21.2 [2]. Using finite differences to 

replace the derivatives in Equation (21.3) ultimately leads to

 T T T T T x y0 1 2 3 4

1

4
( );   (21.22)

In effect, each T value calculated reduces to the average of its four nearest neigh-

bors in the square grid. This difference equation may then be written at each inte-

rior grid point, resulting in a linear system of N equations, where N is the number 

of grid points. The system can then be solved by one of several methods provided 

in the literature [1,2].

Another solution method involves applying the Monte Carlo approach, requir-

ing the use of random numbers [1,2]. Consider the squares shown in Figure 21.3. 

If the describing equation for the variation of T within the grid structure is
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2

2
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x

T

y
 (21.23)
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with specified boundary conditions (BCs) for T(x, y) of T(0, y), T(a, y), T(x, 0), 

and T(x, a), one may employ the following approach to generate a solution

1. Proceed to calculate T at point 1 (i.e., T
1
).

2. Generate a random number between 00 and 99.

3. If the number is between 00 and 24, move to the left of point 1. 

For 25 to 49, 50 to 74, 75 to 99, move upwards, to the right, and 

downwards of point 1, respectively.

4. If the move in step 3 results in a new position that is at the outer 

surface (boundary), terminate the first calculation for point 1 and 

y

T
2

T
3

T
0

T
4

T
1

x

x

y

Figure 21.2 Partial differential equation elliptical grid.
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Figure 21.3 Monte Carlo grid approach.
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record the T value of the boundary at that new position. However, 

if the move results in a new position that is not at a boundary, and 

is still at one of the other eight interval grid points, repeat steps 2 

and 3. This process is continued until an outer surface boundary 

is reached.

5. Repeat steps 2 to 4 numerous times, for example, 1000 times.

6. After completing step 5, sum all the T values obtained and divide 

this value by the number of times steps (2 to 4) have been repeated. 

The resulting value provides a reasonable estimate of T
1
.

7. Return to step 1 and repeat the calculation for the remaining eight 

grid points.

This method of solution is not limited to square systems. In addition, one 

of the authors [5] has applied this method of solution to numerous real-world 

problems.

Illustrative Example 21.1

Consider the system pictured in Figure 21.4. If the system is solid and the vari-

able T is the temperature, the elliptical equation provided in Equation (21.3) 

applies. For this system, the temperature at each location is given by the average 

temperature of its four neighboring points. Using the Monte Carlo procedure 

provided above and in Part IV, Chapter 27, generate the temperature profile in 

the solid. The base temperature is maintained at 100°C and the other three sur-

faces at 0°C.

x = 0

y = b

a = b

100°C

0°C

0°C

0°C

0°C

0°C

0°C

0°C0°C0°C0°C
0°C

100°C 100°C 100°C 100°C
y = 0

x = a

1 2 3

4 5 6

7 8 9

y

x

Figure 21.4 Temperature grid for a square.
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Solution

Using the Monte Carlo algorithm and a random number generator leads to the 

following results:

 T1 7 07. C  

 T2 9 80. C  

 T3 7 16. C  

 T4 18 67. C  

 T5 25 12. C  

 T6 18 77. C  

 T7 42 93. C  

 T8 52 57. C  

 T9 42 80. C  

This procedure can be extended to rectangles; it is not limited to squares. If a 

rectangle is subjected to the following (somewhat similar) boundary conditions,

 T x y T( , )0 0 any  

 T x b y( , ) any 0  

 T x y a( , )any  0  

 T x y a( , )any  0  

The analytical solution for the above rectangle (2a by b) [4] is

 T T
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b x
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n

n

n

2
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Illustrative Example 21.2

Solve Illustrative Example 21.1 using the Gauss-Elimination method.

Solution [5]

The familiar finite difference approach will be employed. For example,

 T T T T T5 2 4 6 8

1

4
[ ]  

This form of the equation may be applied to the nine points, which sets each T 

equal to the average of temperature of its four neighboring points. This produces 

a set of nine equations with nine unknowns. Employing Mathematica, Mathcad, 

Excel, or a similar program leads to

 T1 7 14. C  

 T2 9 82. C  

 T3 7 14. C  

 T4 18 75. C  

 T5 25 00. C  

 T6 18 75. C  

 T7 42 86. C  

 T8 52 68. C  

 T9 42 86. C  

Illustrative Example 21.3

Comment on the results of the two previous examples.

Solution

As expected the results are in reasonable agreement with each other. In addition,

 T T T T T T8 7 5 4 2 1  
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with

 T T1 3  

 T T4 6  

 T T7 9  

Illustrative Example 21.4

Outline how to solve the previous example if the face surface is a rectangular solid 

(see Figure 21.5).

Solution

The outline of the calculation presented in the previous examples remains the 

same. The reader should note that this illustrative example, as well as Illustrative 

Example 21.1, will be revisited in Part IV, Chapter 27.
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It is no secret that the teaching of probability and statistics is now considered 

essential in most curricula and is generally accepted as one of the fundamental 

branches of mathematics. This course, or its equivalent, is now a required under-

graduate course at most colleges and universities and is slowly and justifiably find-

ing its way into most environmental curricula.

Texts in this field are considered by some to be too advanced for the under-

graduate student. This Part of the text is intended to overcome the difficulties and 

sometimes frightening experiences a beginning student encounters on being intro-

duced to this subject. The authors’ aim is to offer the reader the fundamentals of 

probability and statistics with appropriate environmental applications and to serve 

as an introduction to the specialized and more sophisticated texts in this area.

This Part has primarily evolved from a Theodore Tutorial prepared by Theodore 

and Taylor titled “Probability and Statistics.” Material has also been drawn from 

notes prepared by one of the authors (many years ago) for a one-semester three-

credit course given to senior students at Manhattan College; the course was also 

offered as an elective to other disciplines.

An important point needs to be made, and this applies to other parts of the 

book as well. There have been numerous occasions during  one of the authors’ ten-

ure as an educator when students solved problems using packaged programs such 

Part IV
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as Excel, MathCAD, etc. For example, the problem could have involved a solution 

to a differential equation or the regression of some data. On being questioned 

how the packaged program performed the calculation, the student almost always 

responded with something to the effect of, “I don’t know and I don’t care.” For this 

reason, the reader should note that no attempt was made to provide details on 

applied packaged computer programs that are presently available for this subject.

The author is deeply indebted to the aforementioned Frank Taylor who in a 

very real sense allowed this Part of the text to become a reality.

There are seven chapters in Part IV. The chapter numbers and accompanying 

titles are listed below.

Chapter 22: Basic Probability Concepts

Chapter 23: Estimation of the Mean and Variance

Chapter 24: Discrete Probability Distributions

Chapter 25: Continuous Probability Distributions

Chapter 26: Fault and Event Trees

Chapter 27: Monte Carlo Simulation

Chapter 28: Regression Analysis
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Probabilities are nonnegative numbers associated with the outcomes of so-called 

random experiments. A random experiment is an experiment whose outcome is 

uncertain. Examples include throwing a pair of dice, tossing a coin, counting the 

number of defectives in a sample from a lot of manufactured items, and observing 

the time to failure of a tube in a heat exchanger or a seal in a pump or a bus section 

in an electrostatic precipitator. The set of possible outcomes of a random experi-

ment is called a sample space and is usually designated by S. The term P(A), the 

probability of an event A, is the sum of the probabilities assigned to the outcomes 

constituting the subset A of the sample space S.

Consider, for example, tossing a coin twice. The sample space can be described as

 S HH HT TH TT{ , , , }    (22.1)

If probability 1/4 is assigned to each element of S, and A is the event of at least one 

head, then

 A { , , }HH  HT  TH  (22.2)

22
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the sum of the probabilities assigned to the elements of A is 3/4. Therefore P(A)= 

3/4. The description of the sample space is not unique. The sample space S in the 

case of tossing a coin twice could be described in terms of the number of heads 

obtained. Then

 S { , , }0 1 2  (22.3)

Suppose probabilities 1/4, 1/2, and 1/4 are assigned to the outcomes 0, 1, and 2, 

respectively. Then A, the event of at least one head, would have for its probability,

 P P( ) { , }A 1 2
3

4
 (22.4)

Three sections complement the presentation of this chapter. Section numbers 

and subject titles follow:

22.1: Probability Definitions

22.2: Permutations and Combinations

22.3: Series and Parallel Systems

The bulk of the material in this chapter was drawn from the work of Theodore 

and Taylor [1].

22.1  Probability Definitions

How the probabilities are assigned to the elements of the sample space depends 

on the desired interpretation of the probability of an event. The aforementioned 

P(A), can be interpreted as a theoretical relative frequency, i.e., a number about 

which the relative frequency of event A tends to cluster as n, the number of times 

the random experiment is preformed, increases indefinitely. This is the objective 

interpretation of probability. Under this interpretation, to say that P(A) is 3/4 in 

the aforementioned example means that if a coin is tossed twice and this trial is 

repeated n times, the proportion of times one or more heads occurs clusters about 

3/4 as n increases indefinitely.

As another example, consider a single valve that can stick in an open (O) or 

closed (C) position. The sample space can be described as follows:

 S O C{ , }  (22.5)

Suppose that the valve sticks twice as often in the open position as it does in 

the closed position. Under the theoretical relative frequency interpretation, 

the probability assigned to element O in S would be 2/3, twice the probability 



Basic Probability Concepts 263

assigned to element C. If two such valves are observed, the sample space S can be 

described as

 S OO OC CO CC{ , , , }    (22.6)

Assuming that the two valves operate independently, a reasonable assignment of 

probabilities to the elements of S, as just listed above, should be 4/9, 2/9, 2/9, and 

1/9 respectively. The reason for this assignment will become clear after consider-

ation of the concept of independence. If A is the event of at least one valve sticking 

in the closed position, then

 A OC CO CC{ , , }   (22.7)

the sum of the probabilities assigned to the elements of A is 5/9. Therefore, 

P(A) = 5/9.

Probability P(A) can also be interpreted subjectively as a measure of degree of 

belief, on a scale from 0 to1, that event A occurs. This interpretation is frequently 

used in ordinary conversation. For example, if someone says, “The possibility that 

I will go to the casino tonight is 90%,” then 90% is a measure of the person’s belief 

that he or she will go to a casino. This interpretation is also used when, in the 

absence of concrete data needed to estimate an unknown probability based on an 

observed relative frequency, the opinion of an expert is sought. For example, an 

expert may be asked to estimate the probability that the seals in a newly designed 

pump will leak at high pressures. The estimate would be based on the expert’s 

familiarity with pumps of a similar design.

Illustrative Example 22.1

Discuss the difference between a sample and a population.

Solution

When there is a set of n observations, one may wish to use the values of these 

observations to estimate certain characteristics of a larger number of observations 

that have not yet been made. In other words, the interest is not directly on a par-

ticular set of observations, but rather in using them to estimate something about a 

potentially larger set. One refers to the observations as a sample. The larger “sup-

ply,” which one may have, is called a population. From the characteristics of a sam-

ple of observations, one can estimate similar characteristics for the population.

Illustrative Example 22.2

Discuss the difference between a statistic and a parameter.
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Solution

When one calculates some measured value of a sample, it is referred to as a sta-

tistic. A statistic is any characteristic of a set of observations calculated from a 

sample. The measurement corresponding to a statistic obtained from a population 

is referred to as a parameter. In most cases of interest, the values of the parameters 

are unknown and must be estimated by the statistics derived from a sample. Thus, 

the sample value is an estimate of the population value.

22.2  Permutations and Combinations

The problem with calculating probabilities of objects or events in a finite group – 

defined above as the sample space – in which equal probabilities are assigned to 

the elements in the sample space requires counting the elements which make up 

the events. The counting of such events is often greatly simplified by employing the 

rules for permutations and combinations.

Permutations and combinations deal with the grouping and arrangement of 

objects or events. By definition, each different order or arrangement with regard 

to order of all or part of the objects is called a permutation. Alternately, each of the 

sets which can be made by using all or part of a given collection of objects without 

regard to order of the objects in the set is called a combination. Although, per-

mutations or combinations can be obtained with replacement or without replace-

ment, most analyses of permutations and combinations are based on sampling that 

is performed without replacement; i.e., each object or element can be used only 

once. For each of the two aforementioned with/without pairs (with/without regard 

to order and with/without replacement), four subsets if two may be drawn. These 

four are provided in Table 22.1 [2].

Each of the four paired subsets in Table 22.1 is considered in the following text 

with accompanying examples based on the letters A, B, and C. To personalize this, 

the reader could consider the options (games of chance) one of the authors faces 

while on a one-day visit to a casino. The only three options normally considered 

are dice (often referred to as craps), blackjack (occasionally referred to as 21), and 

pari-mutual (horses, trotters, dogs, and jai alai) simulcasting betting. All three of 

these may be played during a visit, although playing two or only one is also an 

option. In addition, the order may vary and the option may be repeated. Some 

possibilities include the following:

Dice, blackjack, and simulcast wagering

Blackjack, wagering, and dice

Wagering, dice, and wagering 

Wagering and dice (one of the author’s usual sequence)

Blackjack, blackjack (following a break), and dice

In order to simplify the four examples that follow, dice, blackjack, and wagering 

are referred to as objects, represented by the letters A, B, and C, respectively.
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1. Consider a scenario that involves three separate objects, A, B, and C. The 

arrangement of these objects is called a permutation. There are six different orders 

or permutations of these three objects possible, note that ABC CBA.

 ABC  BAC  CAB

 ACB  BCA  CBA

Thus, BCA would represent blackjack, wagering, and dice.

The number of different permutations of n objects is always equal to n!, where 

n! is normally referred to as a factorial n. Factorial n or n! is defined as the product 

of the n objects taken n at a time and denoted as P(n, n). Thus,

 P n n n( , ) !  (22.8)

With three objects, the number of permutations is 3! 3  2  1 6. Note that 0! 

is 1.

The number of different permutations of n objects taken r at a time is given by

 P n r
n

n r
( , )

!

( )!
  (22.9)

[Note: The permutation term P also appears in the literature as nP
r 
or P(

r
n).] For the 

three objects A, B, and C, taken two at a time, n 3, and r 2. Thus,

 P( , )
!

( )!

( )( )( )
3 2

3

3 2

3 2 1

1
6  (22.10)

These possible different orders, noting once again that AB BC, are

 AB  BC  AC

 BA  CB  CA

Consider now a scenario involving n objects in which these can be divided 

into j sets with the objects within each set being alike. If r
1
, r

2
, …, r

j
 represents the 

Table 22.1 Subsets of permutations and combinations.

Permutations  

(with regard to order)

Combinations  

(without regard to order)

Without replacement Without replacement

With replacement With replacement
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number of objects within each of the respective sets, with n r
1

r
2
  … r

j
, then 

the number of permutations of the n objects is given by

 P n r r r
n

r r r
j

j

( ; , , , )
!

! ! !
1 2

1 2

 (22.11)

This represents the number permutations of n objects of which r
1
 are alike, r

2
 are 

alike, and so on. Consider, for example, 2 A’s, 1B, and 1C; the number of permuta-

tions of these 4 objects is

 P( ; , , )
!

! ! !
4 2 1 1

4

2 1 1
12  (22.12)

The 12 permutations for this scenario are as follows:

 AABC ABAC ABCA BAAC BACA BCAA

 AACB ACAB ACBA CAAB CABA CBAA

2. Consider the arrangement of the same three objects above, but obtain the num-

ber of permutations (with regard to order) and with replacement, PR [1]. There are 

27 different permutations possible.

 AAA BBB CCC

 AAB BBA CCB

 AAC BBC CCA

 ABA BAB CBC

 ABB BAA CBB

 ACA BCB CAC

 ACC BCC CAA

 ABC BAC CBA

 ACB BCA CAB

For this scenario,

 PR n n n n( , ) ( )  (22.13)
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so that

 PR( , ) ( )3 3 3 273
 (22.14)

For n objects taken r at a time,

 PR n r n r( , ) ( )  (22.15)

3. The number of different ways in which one can select r objects from a set of n 

without regard to order (i.e., the order does not count) and without replacement 

is defined as the number of combinations, C, of the n objects taken r at a time. The 

number of combinations of n objects taken r at a time is given by

 C n r
P n r

r

n

r n r
( , )

( , )

!

!

!( )!
 (22.16)

[Note: The combination term C also appears in the literature as C
r
n or C(

r
n).]

For the ABC example taken two letters at a time, one has

 

C( , )
!

! !
( )( )( )

( )( )( )

3 2
3

2 1
3 2 1

2 1 1

3

 

The number of combinations becomes

 AB AC BC

Note that the combination BA is not included since AB BA for combinations.

4. The arrangement of n objects, taken r at a time without regard to the order and 

with replacement is denoted by CR and given by [1]

 CR n r C n r n n( , ) ( , ) ( ) 1
 (22.17)

with

 CR n n C n n n r nn( , ) ( , ) ( ) ;1   (22.18)

For the ABC example above taken two letters at a time, one employs Equation 

(22.17).

 CR C( , ) ( )3 2 3

3 3 6

2 1
 (22.19)
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The number of combinations becomes

 AA BB CC

 AB AC BC

Table 22.2 may now be written to include the describing equation for each of 

the above four subsets [2].

Illustrative Example 22.3

Discuss the relative advantages or disadvantages of identifying an experimental 

laboratory sample as follows:

1. With three numbers

2. With three letters

Solution

This is an example of sampling with regard to order and with replacement because 

the numbers may be replaced (reused) or replicated. For this case, Equation (22.15) 

is employed.

1. Three numbers give the following solution:

 PR n r n n rr( , ) ( ) ; ,

( )( )( ) ,

  10 3

10 10 10 10 1 0003

 

2. With three letters, the solution is as follows:

 
PR( , ) ( )( )( ) ( )

,

26 3 26 26 26 26

17 576

3

 

Table 22.2 Describing equations for permutations and combinations.

Without replacement With replacement Type

With regard to 

order P n r
n

n r
( , )

!

( )!

(Equation 22.9)

PR n r n r( , ) ( )

(Equation 22.15)

Permutation

Without regard to 

order C n r
n

r n r
( , )

!

!( )!

(Equation 22.16)

CR n r C n r n r( , ) ( , ) ( ) 1

(Equation 22.17)

Combination



Basic Probability Concepts 269

Obviously, the latter choice (three letters) provides greater flexibility because 

numerous identification possibilities are available.

Illustrative Example 22.4

Determine the number of 4-element chemical compounds that can theoretically 

be generated from a pool of 112 elements. Assume each element counts only once 

in the chemical formula and that the order of the elements in the compound mat-

ters. An example of a three-element compound is H
2
SO

4
 (sulfuric acid) or CH

3
OH 

(methanol). An example of a four-element compound is NaNCO
3
.

Solution

As discussed earlier, each different ordering or arrangement of all or part of a 

number of symbols (or objects) in which the order matters is defined as a permuta-

tion. There are 112 elements to choose from in this application. For this problem, 

the describing equation is given by Equation (22.9).

 P n r
n

n r
( , )

!

( )!
 

Based on the problem statement, n 112 and r 4. Therefore,

 
P( , )

!

( )!

!

!

( )( )( )( ) .

112 4
112

112 4

112

108

112 111 110 109 1 49 1008

 

This is a large number. This number would be further increased if the number of 

a particular element appearing in the chemical formula was greater than one, for 

example, HCN (hydrogen cyanide) vs. C
3
H

3
N (acrylonitrile). However, a more 

realistic scenario would involve a calculation in which the order does not matter. 

This is left as an exercise for the reader.

Two points need to be made, one concerning the calculation and the other 

concerning the chemistry of the compound:

1. For calculations involving large factorials, it is often convenient to 

use an approximation known as Stirling’s formula:

 n nn n! ( ) . .2 0 5 0 5e  (22.20)

2. For a real-world “viable” compound, the elements involved in this 

application must be capable of bonding.
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Illustrative Example 22.5

Exposure to a nanoagent has four ways in which it can lead to a major health effect 

and twelve ways to a minor effect. How many ways may an individual be exposed 

to the following?

1. Two major and two minor health effects

2. One major and four minor health effects

Solution

Because the order in which the effects appear or impact on an individual does 

not matter, an analysis involving combinations without replacement is required. 

Employing Equation (22.16), the number of combined health effects (HE) is thus:

1. For two major and two minor effects:

 

HE C C( , ) ( , )
!

! !

!

! !
4 2 12 2

4

2 2

12

10 2

4 3

2

12 111

2
396

 

2. For one major and four minor effects:

 

HE C C( , ) ( , )
!

! !

!

! !

( )

4 1 12 4
4

3 1

12

8 4

4
12 11 10 9

4 33 2
1 980,

 

22.3  Series and Parallel Systems

Many systems in environmental practice consisting of several components can be 

classified as series, parallel, or a combination of both. However, many chemical and 

environmental industrial and process plants (units and systems) have a series of 

parallel configurations.

A series system is one in which the entire system fails to operate if any one of its 

components fails to operate. If such a system consists of n components that func-

tion independently, then the reliability of the system is the product of the reliabili-

ties of the individual components. If R
s
 denotes the reliability of a series system 

and R
i
 denotes the reliability of the ith component i 1, …, n, then

 R R R R Rs n

i

n

i1 2

1

 (22.21)
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A parallel system is one that fails to operate only if all its components fail to 

operate. If R
i
 is the reliability of the ith component, then (1 – R

i
) is the probability 

that the ith component fails; i 1, …, n. Assuming that all n components func-

tion independently, the probability that all n components fail is (1 – R
1
)(1 – R

2
) … 

(1 – R
n
). Subtracting this product from unity yields the following formula for R

p
, 

the reliability of a parallel system.

 

R R R R

R

p n

i

n

i

1 1 1 1

1 1

1 2

1

( )( ) ( )

( )  (22.22)

The reliability formulas for series and parallel systems can be used to obtain 

the reliability of a system that combines features of a series and parallel system as 

shown in Figure 22.1. These calculations are illustrated in the illustrated examples 

that follow.

Illustrative Example 22.6

Consider the system diagrammed in Figure 22.2. Components A, B, C, and D 

have for their reliabilities 0.90, 0.80, 0.80, and 0.90, respectively. The system fails 

to operate if A fails, if B and C both fail, or if D fails. Determine the reliability of 

the system.

A 

C 

B 

D

Figure 22.1 System with parallel and series components.

A

C

B 

D 

0.80

0.80

0.90 0.90

Figure 22.2 System with parallel and series components values.



272 Introduction to Mathematical Methods

Solution

Components B and C constitute a parallel subsystem connected in series to com-

ponents A and D. The reliability of the parallel subsystem is obtained by applying 

Equation (22.22) which yields

 Rp 1 1 0 80 1 0 80 0 96( . )( . ) .  

The reliability of the system is then obtained by applying Equation (22.21), which 

yields

 Rs ( . )( . )( . ) .0 90 0 96 0 90 0 78  

Illustrative Example 22.7

Determine the reliability of the electrical system shown in Figure 22.3 using the 

reliabilities indicated under the various components.

Solution

First identify the components connected in parallel. A and B are connected in par-

allel. D, E, and F are also connected in parallel. Therefore, compute the reliability 

of each subsystem of the components connected in parallel. The reliability of the 

parallel subsystem consisting of components A and B is

 Rp 1 1 0 7 1 0 7 0 91( . )( . ) .  

The reliability of the parallel system consisting of components D, E, and F is

 Rp 1 1 0 6 1 0 6 1 0 6 0 936( . )( . )( . ) .  

Multiply the product of the reliabilities of the parallel subsystems by the product of 

the reliabilities of the components to which the parallel subsystems are connected 

in series:

A 

B 

C 

D

E

F 

G H 

0.7 

0.7 

0.9 

0.6 

0.6 

0.6 

0.9 0.9 

Figure 22.3 Diagram of electrical system I.
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 Rs ( . )( . )( . )( . )( . ) .0 91 0 9 0 936 0 9 0 9 0 621  

The reliability of the whole system is therefore 0.621 or 62.1%

Illustrative Example 22.8

Determine the reliability of the components A, D, and G of the electrical system 

illustrated in Figure 22.4 using the reliabilities indicated under the various compo-

nents. The overall reliability has been determined to be 0.42.

Solution

The reliability of the parallel subsystem consisting of components A and B is 

obtained once again by applying Equation (22.22), which yields

 
R

A

p 1 1 0 7 1 1 0 3 0 7

0 7 0 3

( . )( ) ( . . )

. .

A A A
 

The reliability of the parallel subsystem consisting of components D, E, and F is

 
R

D

p 1 1 1 0 6 1 0 6

1 0 16 1 0 84 0 16

( )( . )( . )

. ( ) . .

D

D
 

The reliability of the entire system is obtained by applying Equation (22.21), 

which yields

 Rs 0 42 0 7 0 3 0 9 0 84 0 16 0 9. ( . . )( . )( . . )( )( . )A D G  

Since this single equation contains three unknowns, an infinite number of solu-

tions are possible, including, for example,

 A D G0 0 0 882; ; .   

A 

B 

C 

D

E

F 

G H 

0.7 

0.9 

0.6 

0.6 0.9 

Figure 22.4 Diagram of electrical system II.
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Illustrative Example 22.9

Consider the system shown in Figure 22.5. Determine the reliability, R, if the oper-

ating time for each unit is 5000 hr. Components A and B have exponential failure 

rates, λ, of 3 10 6 and 4 10 6 failures per hour, respectively, where R e
i

ti ;  

t time, hr. The term λ may be viewed as the reciprocal of the average time to 

failure. See Chapter 25 for additional details.

Solution

Because this is a series system,

 R R Rs A B  

As indicated above, for an exponential failure rate

 R e t hrt ;  time,  

so that

 R e eA

( )( ) . .3 10 5000 0 0156

0 9851  

and

 R e eB

( )( ) . .4 10 5000 0 026

0 9802  

Therefore,

 RS ( . )( . ) .0 9851 0 9802 0 9656 96.56%  

References
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A B 

Figure 22.5 Exponential failure rate: series system.
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23
Estimation of Mean and Variance

By definition, the mean  and the variance σ2 of a random variable are constants 

characterizing the random variable’s average value and its dispersion about its 

mean, respectively. The mean and variance can also be derived from the probabil-

ity distribution function (pdf) of the random variable – a topic to be discussed in 

the next two chapters. If the pdf is unknown, however, the mean and the variance 

can be estimated on the basis of a random sample of some, but not all, observa-

tions on the random variable.

Three sections complement the presentation of this chapter. Section numbers 

and subject titles follow:

23.1: Estimation of the Mean

23.2: Estimation of the Variance

23.3: Interpretation of the Mean and Variance

Note that the bulk of the material in this chapter was drawn from the work of 

Theodore and Taylor [1].

Introduction to Mathematical Methods for Environmental Engineers and Scientists. 
Charles Prochaska and Louis Theodore. 
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23.1  Estimation of the Mean

Let X
1
, X

2
, …, X

n
 denote a random sample of n observations on X. The sample 

mean X is then defined by

 X
X

ni

n
i

1

 (23.1)

Details on the following “central tendency” terms employed for the mean in equa-

tion form follow:

1. Arithmetic mean

2. Geometric mean

3. Median

4. Mode

These are defined below. Let X
1
, X

2
, …, X

n
 represents a set of n numbers.

1. For the arithmetic mean X ,

 X
X X X

n
n1 2

 (23.2)

 If the numbers X
i
 have weighing factors W

i
 associated with them,

 X
W X W X W X

n

W X

n
n n i

n

i i1 1 2 2 1  (23.3)

 Weighing factors are often normalized, i.e., ΣW
i

1.0. For this condition,

 X W X
i

n

i i

1

 (23.4)

2. The geometric mean, X
G
 is given by

 

X X X X

X X

G n
n

G

i

n

i

n

1 2

1

1

1

,

 (23.5)
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3. The median is defined as the middle value (or arithmetic mean of 

the two middle values) of a set of numbers. Thus, the median of 4, 

5, 9, 10, 15 is 9. It is also occasionally defined as the distribution’s 

midpoint. Further, the median of a continuous probability distri-

bution function f(x) is that value of c so that

 

c

f x dx( ) .0 5  (23.6)

4. The mode is the value that occurs with the greatest frequency in 

a set of numbers. Thus, it is the typical or most common value in 

a set.

Additional details follow. Other definitions also exist in the literature for the afore-

mentioned four terms.

The reader should note that one basic way of summarizing data is by the com-

putation of a central value. The most commonly used central value statistic is the 

arithmetic average, or the mean discussed above. This statistic is particularly use-

ful when applied to a set of data having a fairly symmetrical distribution. The mean 

is an efficient statistic because it summarizes all the data in the set and each piece 

of data is taken into account in the computation. However, the arithmetic mean is 

not a perfect measure of the true central value of a given data set because arithme-

tic means can overemphasize the importance of one or two extreme data points.

When a distribution of data is asymmetrical, it is sometimes convenient to 

compute a different measure of central value. The second measure, known as the 

median, is simply the middle value of a distribution, or the quantity above which 

half of the data lie and below which the other half lie. If n data points are listed 

in their order of magnitude, the median is the [(n  1)/2]th value. If the number 

of data points is even, then the numerical value of the median is the value mid-

way between the two data points nearest the middle. The median, being a posi-

tional value, is less influenced by extreme values in a distribution than the mean. 

However, the median alone is usually not a good measure of central tendency. To 

obtain the median, the data values provided, i.e., 15, 8, 22, 18, 10, 13 must first be 

arranged in order of magnitude, such as

 8 10 13 15 18 22, , , , ,  

Thus, the median for this data is 14, or the value halfway between 13 and 15 

because this data set has an even number of measurements.

Another measure of central tendency used in specialized applications is the 

aforementioned geometric mean, X
G
.

Generally, the mean falls near the “middle” of the distribution. Actually, the 

mean may be thought of as the center of gravity of the distribution. The mean has 
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another important property. If each measurement is subtracted from the mean, 

one obtains n “discrepancies” or differences; some of these are positive and some 

are negative, but the algebraic sum of all the differences is equal to zero.

23.2  Estimation of the Variance

Once again, let X
1
, X

2
, …, X

n
 denote a random sample of n observations on X. Then 

the sample variance s2 is defined by

 s
X X

ni

n
i2

1

2

1

( )
 (23.7)

where X and s2 are random variables in the sense that their values vary from sample 

to sample of the observations on X. It can be shown that the expected value of X is 

the population mean  and that the expected value of s2 is the population variance 

σ2. Because of this, X and s2 are called unbiased estimators of  and 2, respectively.

The calculation of s2 can be facilitated by use of the computation formula

 s
n X X

n n

i

n

i i

n

i
2 1

2

1

2

1( )
 (23.8)

For example, given the sample 5, 3, 6, 4, 7,

 
i

iX
1

5
2 135  (23.9)

 
i

iX
1

5

25  (23.10)

and

 n 5  (23.11)

Substituting in Equation (23.8) yields

 s2
25 135 25

5 4
2 5

( )( ) ( )

( )( )
.  (23.12)

In the case of a random sample of observations of a continuous random vari-

able assumed to have a so-called normal pdf (see also Chapter 25), the graph of 
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which is a bell-shaped curve, the following statements give a more precise inter-

pretation of the sample standard deviation s as a measure of spread or dispersion.

1. X s includes approximately 68% of the sample observations.

2. X 2s includes approximately 95% of the sample observations.

3. X 3s includes approximately 99.7% of the sample observations.

The source of these percentages is the normal probability distribution, which is 

studied in more detail in Chapter 25.

Chebyshev’s theorem provides an interpretation of the sample standard devia-

tion (the positive square root of the sample variance) as a measure of the spread 

(dispersion) of sample observations about their mean. Chebyshev’s theorem states 

that with k 1, at least (1  1/k2) of the sample observations lie in the interval 

(X-ks, X ks). For k 2, for example, this means that at least 75% of the sam-

ple observations lie in the interval (X-2s, X
0

2s). The smaller the value of s, the 

greater the concentration of observations in the vicinity of X.

The following is provided as a qualitative description of the standard deviation. 

The mean of a set of measurements provides some information about the aforemen-

tioned location of the “middle” or “center of gravity” of the set of measurements, but 

it gives no information about the scatter (or dispersion or amount of concentration) 

of the measurements. For example, the five measurements 14.0, 24.5, 25.0, 25.5, and 

36.0 have the same mean as the five measurements 24.0, 24.5, 25.0, 25.5, and 26.0, 

but the two sets of measurements have different amounts of scatter.

One simple indication of the scatter of a set of measurements is the range, i.e., 

the largest measurement minus the smallest. In the two sets of measurements 

mentioned earlier, the ranges are 22 and 8, respectively. With fairly small sample 

sizes one would find the range to be very convenient. It is difficult, however, to 

compare a range for one sample size with that for a different sample size. For this 

and other reasons, the range, in spite of its simplicity, convenience, and impor-

tance, is used only in rather restricted situations.

One clearly needs a measure of scatter which can be used in samples of any size 

and in some sense, make use of all the measurements in the sample. There are sev-

eral measures of scatter that can be used for this purpose, and the most common 

of these is the aforementioned standard deviation. The standard deviation may be 

thought of as the “natural” measure of scatter.

The two illustrative examples that follow will illustrate the procedure to obtain 

these values.

Illustrative Example 23.1

The average weekly wastewater temperatures (°C) for six consecutive weeks are

 22 10 8 15 13 18, , , , ,  

Find the standard deviation of the temperature T of the water samples.
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Solution

First calculate the arithmetic, T,

 T
( )

.
8 10 13 15 18 22

6
14 33 C  

As noted earlier, the most commonly used measure of dispersion, or variabil-

ity, of sets of data is the standard deviation, s. Its defining formula is given by the 

expression in Equation (23.7).

 s
X X

ni

n

1

1

2

1

( )
 

The expression (X
i
  X) shows that the deviation of each piece of data from the 

mean is taken into account by the standard deviation. Although the defining for-

mula for the standard deviation gives insight into its meaning, the following alge-

braically equivalent formula (see Equation 23.8) makes computation much easier 

(now applied to the temperature, T):

 s
T T

n

n T T

n
i i i( ) ( )2 2 2

1 1
 

The standard deviation may now be calculated for the data at hand:

 Ti

2 2 2 2 2 2 28 10 13 15 18 22 1366( ) ( ) ( ) ( ) ( ) ( )  

and

 ( ) ( )Ti

2 28 10 13 15 18 22 7396  

Thus,

 s
6 1366 7396

6 1
5 16

( )

( ) ( )
. C 

Illustrative Example 23.2

The following are SO
2
 concentrations X ( g/m3) for March, April, and May of 2017 

at Floral Park, NY ‒ home of Belmont Park racetrack (another place one of the 

authors regularly visits):

 29 103 27 14 24 63 24  

Calculate the standard deviation and variance.
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Solution

Once again, apply Equation (23.8),

 s
X

X

n
n

i
i2

2

1

( )

 

The calculations are performed as follows based on Table 23.1. From the calcula-

tion of X
i
 determine ( X

i
)2:

 ( ) ( ) ,Xi

2 2284 80 656  

Substituting gives

 s

17 496
80 656

7

6
995 62 31 55

,
,

. .  g/m3
 

For the variance

 

s2 2

2 231 55 995

( )

( . ) ( )

standard deviation

 g/m3  

23.3  Interpretation of Mean and Variance

The mean and variance can be interpreted for both a discrete and continuous ran-

dom variable. The following two illustrative examples review both terms.

Table 23.1 SO
2
 calculations.

X
i

X
i
2

14   196

24   576

24   576

27   729

29   841

63  3969

103 10609

X
i

284 X
i
2 17496
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Illustrative Example 23.3

A discrete random variable X assumes the values 49, 50, and 51 each with prob-

ability 1/3. A discrete random variable Y assumes the values 0, 50, and 100 each 

with probability 1/3. Compare the means and variances of X and Y, and interpret 

the results.

Solution

As indicated earlier, the pdf of a discrete random variable requires the probability 

assigned to each of the possible values of the random variable. For this problem,

 f x x( ) ; , ,
1

3
49 50 51  

 g y y( ) ; , ,
1

3
0 50 100  

To obtain 
x
, the mean of X, and 

y
, the mean of Y. Use the formulas [1, 2]:

 x E X x f x( ) ( )  (23.13)

 y E Y y g y( ) ( )  (23.14)

where E(X) is the expected value of X. Substituting gives,

 

x

y

49
1

3
50

1

3
51

1

3
50

0
1

3
50

1

3
100

1

3
50

 

Obtain 
x

2, the variance of X, and 
y
2, the variance of Y, by applying the follow-

ing equations [1, 2]:

 x xE X2 2( )  (23.15)

 y yE X2 2( )  (23.16)

The alternative formula for computing the variance of X is

 E X E Xx x( ) ( )- -2 2 2
 (23.17)
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Applying this form of the equation to both X and Y gives

 
x xx f x x f x2 2 2

2 2

50

49 50
1

3
50 50

1

3

( ) ( ) ( ) ( )

( ) ( ) ( ) .51 50
1

3

2

3
0 6672

 

 
y yy g y y g y2 2 2

2 2

50

0 50
1

3
50 50

1

3

( ) ( ) ( ) ( )

( ) ( ) ( )100 50
1

3

5000

3
16672

 

Note that X and Y have the same mean but the variance of Y is greater than the 

variance of X, which reflects the greater dispersion (spread or variability) of the val-

ues of Y about its mean in contrast to the dispersion of the values of X about its mean.

Illustrative Example 23.4

Continuous random variables X and Y have pdfs specified by f(x) and g(y), respec-

tively, as follows:

 f x x( ) ;
1

2
1 1  

 g y y( ) ;
1

4
2 2  

Compute the mean and variance of X and Y and compare the results.

Solution

Note that for a continuous random variable, integration replaces summation in 

the calculation of the mean and variance. Furthermore, the probability that a con-

tinuous random variable lies in a certain interval is obtained by integrating the pdf 

over that interval (See Chapter 25).

First compute 
x
, the mean of X, and 

y
, the mean of Y. Use the following for-

mulas [1, 2]:

 x x f x dx( )  (23.18)

 y y g y dy( )  (23.19)
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Substituting f(x) and g(y) gives

 x x dx
1

1
1

2
0  

 y y dy
2

2
1

4
0  

The terms 
x

2, the variance of X, and 
y
2, the variance of Y, are calculated as 

follows (1, 2):

 x xE X x dx2 2 2

1

1

2 1

2

1

3
0 333( ) .  

 y yE Y y dy2 2 2

2

2

2 1

4

4

3
1 333( ) .  

As with the previous illustrative example, X and Y have the same mean, i.e., 0. 

The variance of Y is greater than the variance of X, which reflects the greater dis-

persion of the values of Y about its mean.

Illustrative Example 23.5

A continuous random variable X has a pdf given by

 f x x x( ) ;4 0 13   

Calculate  and 2 for x.

Solution

By definition (See Chapter 25),

 x f x dx( )  (23.20)

Substituting gives

 
0

1

3

0

1

44 4x x dx x dx( )  
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Integrating gives

 

4
5

4

5

5

0

1

x

 

For 2, apply the methods described earlier.

 2 2 2 2 2E X x f x dx( ) ( )  

Substituting gives

 
2

0

1

2 3 24x x dx( )  

Integrating,

 2
6 2

4

6

4

5

2

3

16

25

50 48

75

2

75
0 0267

x
.  
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The probability distribution of a random variable concerns the distribution of 

the probability over the range of the random variable. The distribution of prob-

ability, i.e., the values of the discrete random variable together with their associ-

ated probabilities, is specified by the probability distribution function (pdf). This 

chapter is devoted to providing general properties of the pdf in the case of dis-

crete random variables, as well as an introduction to the cumulative distribution 

function (cdf).

The pdf of a discrete random variable X is specified by f(x), where f(x) has the 

following three essential properties:

 1. f x P X x( ) ( ) probability assigned to the outcome 

correspondiing to the number  in the range of 

i.e.,  is a specifi

x X

X ccally designed value of x

 (24.1)

 2. f x( ) 0  (24.2)

 3. 
x

f x( ) 1  (24.3)

24
Discrete Probability Distributions

Introduction to Mathematical Methods for Environmental Engineers and Scientists. 
Charles Prochaska and Louis Theodore. 
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Property (24.1) indicates that the pdf of a discrete random variable generates 

probability by substitution. Property (24.2) and Property (24.3) restrict the values 

of f(x) to nonnegative real numbers and numbers whose sum is 1, respectively.

Consider, for example, a box of 100 transistors containing 5 defectives. Suppose 

that a transistor is selected at random is to be classified as defective or nondefec-

tive. Then X is a discrete random variable with pdf specified by

 f x x( ) . ;0 05 1  (24.4)

 0 95 0. ;  x  (24.5)

For another example of the pdf of a discrete random variable, let X denote 

the number of the throw on which the first failure of an electrical switch occurs. 

Suppose the probability that a switch fails on any throw is 0.001 and that succes-

sive throws are independent with respect to failure. If the switch fails for the first 

time on throw x, it must have been successful on each of the preceding x  1 trials. 

In effect, the switch survives up to x  1 trials and fails at trial x. Therefore, the pdf 

of X is given by

 f x x nx( ) ( . ) . ; , , , , ,( )0 999 0 001 1 2 31   (24.6)

Note that the range of X consists of a countable infinitude of values.

Another function used to describe the probability distribution of a random 

variable X is the aforementioned cdf. If f(x) specifies the pdf of a random variable 

X, then F(x) is used to specify the cdf. For both discrete and continuous random 

variables, the cdf of X is defined by

 F x P X x x( ) ( );  (24.7)

Note that the cdf is defined for all real numbers, not just the values assigned by the 

random variable. 

To illustrate the derivation of the cdf from the pdf, consider a case of a discrete 

random variable X whose pdf is specified by

 f x x( ) . ;0 2 2  (24.8)

 0 3 5. ;  x  (24.9)

 0 5 7. ;  x  (24.10)

Applying the definition of the cdf in Equation (24.7), one obtains for the cdf of X 

(see also Figure 24.1)
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F x x

x

x

x

( ) ;

. ;

. ;

;

0 2

0 5 5 7

0 2 2 5

7 7

 

 

 

 

 

It is helpful to think of F(x) as an accumulator of probability as x increases 

through all real numbers. In the case of a discrete random variable, the cdf is a step 

function increasing by finite jumps at the values of x in the range of X. In the above 

example, these jumps occur at the values 2, 5, and 7. The magnitude of each jump 

is equal to the probability assigned to the value at which the jump occurs. This is 

depicted in Figure 24.1.

Illustrative Example 24.1

Provide an example of a discrete random variable and a continuous random variable.

Solution

A random variable may be discrete; i.e., it can take on only a finite or countable 

number of distinct values. Alternately, the random variable may be continuous, 

with values occurring anywhere in an interval. The outcome of the throw of a die 

is a discrete random variable. The exact height of an individual selected from a 

particular group is a continuous variable.

Illustrative Example 24.2

Let X denote the number of supply ships reaching a port on a given day. The pdf 

for X is given by:

 f x
x

x( ) ; , , , , ,
21

1 2 3 4 5 6  

1

0.5

0
0 5 10

X

F
(x

)

Figure 24.1 Graph of the cdf of a discrete random variable X.
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Verify that f(x) is a valid pdf and calculate the probability that at least three 

ships but less than six ships will arrive on a given day.

Solution

For f(x) to be valid, the following two conditions must be satisfied:

 0 1 6f x x( ) ;   between 1 and  

and

 
1

6

1f x( )  

Substituting into the second condition yields

 
1

6

1

6

21

1

21

2

21

3

21

4

21

5

21

6

21

21

21
1 0

f x
x

( )

.

 

Thus, both conditions are satisfied and f(x) is a valid pdf.

The probability that at least 3 ships but less than 6 ships will arrive on a given 

day can be determined by

 

P X f x f x f x( ) ( ) ( ) ( )

.

3 6 3 4 5

3

21

4

21

5

21

12

21
0 429

 

Illustrative Example 24.3

Let X denote the annual number of floods in a certain region. The pdf of X is speci-

fied as

 f x x( ) . ;0 25 0  

 f x x( ) . ;0 35 1  

 f x x( ) . ;0 24 2  

 f x x( ) . ;0 11 3  

 f x x( ) . ;0 04 4  



Discrete Probability Distributions 291

 f x x( ) . ;0 01 5  

1. What is the probability of two or more floods in any year?

2. What is the probability of four or more floods in a year, given that 

two floods have already occurred?

3. What is the probability of at least one flood in a year, given that one 

has already occurred?

Solution

1. For two or more floods in any year, one may write

 

P x f x f x

f f f f

( ) ( ) ( )

( ) ( ) ( ) ( )

. . .

2

2 3 4 5

0 24 0 11 0 04

2 2

5

00 01 0 40. .

 

2. This involves a conditional probability calculation [1]. The describ-

ing equation and solution is

 

P X X
P X X

P X

P X

P X

( / )
( )

( )

( )

( )

.

.
.

4 2
4 2

2

4

2

0 05

0 40
0 12

 and 

55

 

3. This also involves a conditional probability calculation [1]. For this 

case,

 P X X
P X X

P X

P X

P X

( / )
( )

( )

( )

( )

.

. .

2 1
2 1

1

2

1

0 40

0 40 0 35

 and 

0 40

0 75
0 53

.

.
.

 

Three sections complement the presentation of this chapter. Section numbers 

and subject titles follow:

24.1: The Binomial Distribution

24.2: The Hypergeometric Distribution

24.3: The Poisson Distribution
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Note that the bulk of the material in this chapter was drawn from the work of 

Theodore and Taylor [1].

24.1  The Binomial Distribution

Consider n independent performances of a random experiment with mutually 

exclusive outcomes that can be classified as success or failure. The words “success” 

and “failure” are to be regarded as labels for two mutually exclusive categories of 

outcomes of the random experiment and they do not necessarily have the ordinary 

connotation of success or failure. Assume that p, the probability of success on any 

performance of the random experiment, is constant. Let Q be the probability of 

failure, so that

 Q p1  (24.11)

The probability distribution of X, the number of successes in n performances of 

the random experiment, is the binomial distribution, with a probability distribu-

tion function (pdf) specified by

 f x
n

x n x
p Q x nx n x( )

!

!( )!
; , , , 0 1  (24.12)

where f(x) is the probability of x successes in n performances. One can show that 

the expected value of the random variable X is np and its variance is npQ [2].

As a simple example of the binomial distribution, consider the probability dis-

tribution of the number of defectives in a sample of 5 items drawn with replace-

ment from a lot of 1000 items, 50 of which are defective. Associate “success” with 

drawing a defective item from the lot. The result of each drawing can then be 

classified as success (defective item) or failure (nondefective item). The sample 

of five items is drawn with replacement (i.e., each item in the sample is returned 

before the next is drawn from the lot; therefore, the probability of success remains 

constant at 0.05). Substituting the values n 5, p 0.05, and Q 0.95 in Equation 

(24.12) yields

 f x
x x

xx x( )
!

!( )!
( . ) . ; , , , , ,( )

5

5
0 05 0 95 0 1 2 3 4 55   (24.13)

as the pdf for X, the number of defectives in the sample. The probability that the 

sample contains exactly three defectives is given by

 P X( )
!

! !
( . ) . .( )3

5

3 2
0 05 0 95 0 00113 2

 (24.14)
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The binomial distribution can be used to calculate the reliability of a redundant 

system. A redundant system consisting of n identical components is a system that 

fails only if more than r components fail. Familiar examples include single-usage 

equipment such as missile engines, short-life batteries, and flash bulbs which are 

required to operate for one time period and are not reused. Once again, associ-

ate “success” with the failure of a component. Assume that the n components are 

independent with respect to failure, and that the reliability of each is 1  p. Then X, 

the number of failures, has the binomial pdf in Equation (24.12) and the reliability 

of the redundant system is

 P X r
n

x n x
p Q

x

r
x n x( )

!

!( )!0

 (24.15)

The binomial distribution has been applied in problems in which samples are 

drawn from a large population with specified “success” or “failure” probabilities and 

there is a desire to evaluate instances of obtaining a certain number of successes in 

the sample. It has applications in quality control, reliability, environmental engi-

neering, environmental management, consumer sampling, and many other cases.

Suppose a trial or event can result in one and only one of mutually exclu-

sive events E
1
, E

2
, …, E

j
 with probabilities p

1
, p

2
, …, p

j
 respectively, where 

p
1

p
2

 … p
j

1. If n independent trials are made, then one can show that the 

probability function of obtaining x
1
 of E

1
s, x

2
 of E

2
s, …, x

j
 of E

j
s is given by

 f x x
n

x x
p pj

j

x

j

x j( , , )
!

! !
1

1

1
1  (24.16)

where 0 x
j

n, i 1, …, j, and x
1

… x
j

n. This is the probability func-

tion of the multinominal distribution. Note that if j 2 this function reduces to 

the binomial distribution. Hence, the multinominal distribution is essentially an 

extension of the binomial distribution for just two possible outcomes ‒ success 

and failure.

Illustrative Example 24.4

A sample of five transistors is drawn with replacement from a lot which is 5% defec-

tive. Once again, “with replacement” means that each transistor drawn is returned 

to the lot before the next is drawn. What is the probability that the number of 

defective transistors and the sample is:

1. Exactly 2

2. At most 2

3. At least 2
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Solution

This random experiment consists of drawing a transistor at random with replace-

ment from a lot. The random experiment is preformed five times because a sample 

of five transistors is drawn with replacement from the lot. Therefore, n =5. Also, 

note that the performances are independent because each transistor is replaced 

before the next is drawn. Therefore, the composition of the lot is exactly the same 

before each drawing.

1. For this problem, associate “success” with drawing a defective 

transistor. Associate “failure” with drawing a nondefective. Refer 

once again to Equation (24.12). Because 5% of the lot is defective, 

p 0.05. Therefore, Q 0.95. These values (n, p, and Q) may be 

substituted in the binomial pdf.

 f x
x x

xx x( )
!

!( )!
( . ) . ; , , ,( )

5

5
0 05 0 95 0 1 55   (24.13)

2. Substitute the appropriate value of X to obtain the required 

probabilities.

3. For this problem, 

P P X( ) ( )

!

! !
( . ) . .( )

exactly  defectives2 2

5

2 3
0 05 0 95 0 2142 3

 

 

P P X

x xx

x

( ) ( )

!

!( )!
( . ) .(

at most  defectives2 2

5

5
0 05 0 95

0

2

))

. . . .

5

0 7738 0 2036 0 0214 0 998

x

 

 

P X

P X

x xx

( )

( )

!

!( )!

at least  defectives P( )2 2

1 1

1
5

50

1

(( . ) .

( . . ) .

( )0 05 0 95

1 0 7748 0 2036 0 0226

5x x
 

Note that this problem involved summing the binomial pdf over the appropri-

ate values of X; this procedure applies if the probability of more than a single value 

of X is required.
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Illustrative Example 24.5

The probability that an exposure to a nanocarcinogen will be fatal is 0.80. Find the 

probability of the following events for a group of 15 workers:

1. At least 9 will die.

2. From 4 to 8 will die.

Solution

1. For event 1,

 

P P X p Q m

x

( ) ( ); . , .at least  will die   , =159 9 0 8 0 2

15

9

15 !!

!( )!
( . ) .

. . . . .

( )
x x

x x

15
0 8 0 2

0 0430 0 1032 0 1876 0 2501 0 2

15

3309

0 1319 0 0352

0 982

. .

.

 

This calculation can be performed by longhand or obtained directly from 

binomial tables.

2. For event 2,

 P X P X P X( ) . ( ) ( )4 8 1 0 9 0 4  

 One notes, almost immediately that

 P X( )0 4 0  

Therefore,

 P X( ) . . . .4 8 1 0 0 982 0 0 0 018  

Illustrative Example 24.6

A redundant system consisting of three operating pumps can survive two pump 

failures. Assume that the pumps are independent with respect to failure and each 

has a probability of failure of 0.10. What is the reliability of the system?

Solution

The system consists of three pumps. Therefore, n 3. The system can survive 

the failure of two pumps. Equation (24.12) should be employed with r 2. The 
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probability of a pump failure is 0.10. Therefore, p 0.10. Substitute these values 

for n and p (with Q 0.90) in the binomial pdf:

 f x
x x

xx x( )
!

!( )!
( . ) . ; , , ,( )

3

3
0 10 0 90 0 1 33   

Sum the binomial pdf from 0 to r to find the reliability, R:

 R
x xx

x x

0

2
33

3
0 10 0 90 0 999

!

!( )!
( . ) . .( )  

Illustrative Example 24.7

The probabilities of hospitals A, B, and C obtaining a particular type of serum are 

0.5, 0.3, and 0.2, respectively. Four such serums are to be provided. What is the 

probability that a single hospital receives all four serums?

Solution

This involves the use of the multinomial distribution. The desired probability is 

(see Equation (24.16))

 

P

f f f

( )

( , , ) ( , , ) ( ,

one hospital alone getting serum

4 0 0 0 4 0 0 00 4

4

4 0 0
0 5 0 3 0 2

4

0 4 0
0 5 0 3 0 24 0 0 0 4

, )

!

! ! !
( . ) . .

!

! ! !
( . ) . .( ) ( ) ( ) ( )00

0 0 44

0 0 4
0 5 0 3 0 2

0 0625 0 0081 0 0016 0 0722

!

! ! !
( . ) . .

. . . .

( ) ( )
 

Note that for this calculation a hospital receives all four serum shipments.

24.2  Hypergeometric Distribution

The hypergeometric distribution is applicable to situations in which a random 

sample of r items is drawn without replacement from a set of n items. Without 

replacement means that an item is not returned to the set after it is drawn. Recall 

that the binomial distribution is frequently applicable in cases where the item is 

drawn with replacement.

Suppose that it is possible to classify each of the n items as a success or failure. 

Again, the words “success” and “failure” do not have the usual connotation. They 
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are merely labels for two mutually exclusive categories into which n items have 

been classified. Thus, each element of the population may be dichotomized as 

belonging to one of two disjointed classes.

Let a be the number of items in the category labeled success. Then n  a will be 

the number of items in the category labeled failure. Let X denote the number of 

successes in a random sample of r items drawn without replacement from the set 

of n items. Then the random variable X has a hypergeometric distribution whose 

probability distribution function (pdf) is specified as follows [1]:

  f x

a

x a x

n a

r x n a r x

n

r n r

x( )

!

!( )!

( )!

( )!( )!

!

!( )!

; , , , m 0 1 iin( , )a r  (24.17)

The term f(x) in Equation (24.17) is the probability of x successes in a random 

sample of n items drawn without replacement from a set of n items, a of which 

are classified as successes and n  a as failures. The term min(a, r) represents the 

smaller of the two numbers a and r, i.e., min(a, r) a if a r and min(a, r) r 

if r a.

The hypergeometric distribution can also be arrived at through the use of com-

binations. Using this approach, the total number of possible selections of r ele-

ments out of n is C(n, r). Furthermore, x “good” elements may be chosen out of the 

total of a good elements in a total of C(a, x) combinations. For each such combi-

nation, it is also possible to select r  x of n  a “bad” elements in C(a, x) C(n  a, 

r  x). Because each selection possibility is equally likely, the probability of picking 

exactly x good elements is

 f x
C a x C n a r x

C n r
( )

( , ) ( , )

( , )
 (24.18)

which, upon substitution of C is the expression given in Equation 24.17 for the 

probability density function of the hypergeometric distribution. As with the bino-

mial distribution, a tabulation of cumulative and individual terms of the hyper-

geometric distribution is available in the literature [2].

The hypergeometric distribution is applicable in situations similar to those 

when the binomial density is used, except that samples are taken from a small 

population. Examples arise in the sampling of small numbers of chemical, medi-

cal, and environmental samples, as well as from manufacturing lots. The hyper-

geometric distribution is obviously a special case of the binomial distribution 

when applied to finite populations. In particular, the hypergeometric distribution 

approaches the binomial distribution when the population size approaches infin-

ity. Note, however, that others have claimed that the binomial distribution is a 

special case of a hypergeometric distribution.
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Illustrative Example 24.8

A sample of 5 transistors is drawn at random without replacement from a lot of 

1000 transistors, 50 of which are defective. What is the probability that the sample 

contains exactly 3 defectives?

Solution

The number of items in the set from which the sample is drawn is the number 

of transistors in the lot. Therefore, n 1000. Associate once again “success” with 

drawing a defective transistor, and “failure” with drawing a nondefective one. 

Determine a, the number of “successes” in the set of n items. Because 50 of the 

transistors in the lot are defective, a 50. Also, note that the sample is drawn with-

out replacement and that the size of the sample is r 5.

Substituting the values of n, r, and a in a hypergeometric pdf provided in 

Equation (24.17) gives

 f x
x x x x

x( )

!

!( )!

!

( )!( )!

!

! !

; , , ,

50

50

950

5 945

1000

5 995

0 1 5  

Also, substitute the appropriate value of X above to obtain the required probability.

 P P X( ) ( )sample contains exactly defectives3 3  

Therefore,

 P X
x

( )

!

! !

!

!( )!

!

! !

.3

50

47

950

2 945 3

1000

5 995

0 0011  

Illustrative Example 24.9

A pillbox contains 24 drug tablets, 3 of which are contaminated. If a sample of six 

is chosen at random from the pillbox, what is the probability that:

1. Zero will be contaminated

2. One will be contaminated

3. Two will be contaminated

4. Three will be contaminated
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Solution

First note that this once again involves sampling without replacement. Employing 

the combination equation provided above, Equation (24.18) yields

 f x
C a x C n a r x

C n r
a r n( )

( , ) ( , )

( , )
: , , 3 6 24  

Therefore,

 f x
C x C x

C
x( )

( , ) ( , )

( , )
;

3 21 6

24 6
0 3  

Note that there are only four values X can assume: 0, 1, 2, and 3.

1. Substituting X 0 gives

 

P X
C C

C
( )

( , ) ( , )

( , )

!

! !

!

! !

!

0
3 0 21 6

24 6

3

0 3

21

6 15

24

6!! !

( )( , )

,( )
.

18

1 54 264

134 596
0 40316

 

2. For one pill,

 P X
C C

C
( )

( , ) ( , )

( , )
.1

3 1 21 5

24 6
0 45356  

3. For two pills,

 P X
C C

C
( )

( , ) ( , )

( , )
.2

3 2 21 4

24 6
0 13340  

4. For three pills,

 P X
C C

C
( )

( , ) ( , )

( , )
.3

3 3 21 3

24 6
0 00988  

Illustrative Example 24.10

An environmental quality control engineer inspects a random sample of three 

vacuum pumps at a water treatment plant drawn without replacement from each 
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incoming lot of 25 vacuum pumps. A lot is accepted only if the sample contains 

no defectives. If any defectives are found, the entire lot is inspected, at the cost 

charged to the vendor. What is the probability of accepting a lot containing 10 

defective vacuum pumps?

Solution

Each lot consists of 25 vacuum pumps. Therefore, n 25. Once again, associate 

“success” with a defective vacuum pump. Determine, a, the number of “successes” 

in the set of n items. For this problem, a = 10. A sample of three vacuum pumps is 

drawn without replacement from each lot; therefore, r 3.

Substitute the values of n, r, and a in the pdf of the hypergeometric distribution.

 f x
x x x x

x( )

!

!( )!

!

( )!( )!

!

! !

; , , ,

10

10

15

3 12

25

3 22

0 1 2 3  

Substitute the appropriate values of X to obtain the required probability. The prob-

ability of accepting a lot containing 10 defective vacuum pumps is

 P X( )

!

! !

!

( )! !

!

! !

( )( )
.0

10

0 10

15

3 0 12

25

3 22

1 455

2300
0 20  

Illustrative Example 24.11

An order was recently received to manufacture a special type of water pollution 

monitor. The total order consisted of 25 monitors. Five of these monitors are to be 

selected at random and initially life tested. The contract specifies that if not more 

than 1 of the 5 monitors fails a specified life test, the remaining 20 will be accepted; 

otherwise, the complete lot will be rejected. What is the probability of lot accep-

tance if exactly 4 of the 25 submitted monitors are defective?

Solution

The lot will be accepted if the sample of 5 contains either 0 or 1 of the 4 defective 

monitors. The probability of this happening is given by the hypergeometric distri-

bution as
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P X
C x C x

C

P X P X

( )
( , ) ( , )

( , )

( ) ( )

!

! !

!

! !

1
4 21 5

24 5

0 1

4

4 0

21

5 16
225

20 5

4

3 1

21

4 17
25

20 5
1 20349

53130

4 598

!

! !

!

! !

!

! !
!

! !
( )( ) ( )(

( )

55

53130

20349

53130

23940

53130

0 383 0 451 0 834

)

. . .

( )

 

24.3  Poisson Distribution

The probability distribution function (pdf) of the Poisson distribution can be 

derived by taking the limit of the binomial as n ∞, P ∞, and nP  remains 

constant. The Poisson pdf is given by (1, 2)

 f x
e

x
x

x

( )
!

; , , , 0 1 2  (24.19)

Here, f(x) is the probability of x occurrences of an event that occurs on the average 

 times per unit of space or time. Both the mean and the variance of a random 

variable X having a Poisson distribution are μ.

The Poisson pdf can be used to approximate probabilities obtained from the 

binomial pdf given earlier when n is large and p is small. In general, good approxi-

mations will result when n exceeds 10 and p is less than 0.05. When n exceeds 

100 and np is less than 10, the approximation will generally be excellent. Table 24.1 

Table 24.1 Binomial and Poisson Comparison.

x Binomial Poisson Binomial Poisson

(n 20, p = 0.05) (n 20, p = 0.05)

(n 100, 

p 0.01)

(n 100, 

p 0.01)

0 0.3585 0.3679 0.3660 0.3679

1 0.3774 0.3679 0.3697 0.3679

2 0.1887 0.1839 0.1849 0.1839

3 0.0596 0.0613 0.0610 0.0613

4 0.0133 0.0153 0.0149 0.0153

5 0.0022 0.0031 0.0029 0.0031

6 0.0003 0.0005 0.0005 0.0005

≥ 7 0.0000 0.0001 0.0001 0.0001



302 Introduction to Mathematical Methods

compares binomial and Poisson probabilities for the case of (n 20, p 0.05) and 

(n 100, p 0.01).

If  is the failure rate (per unit of time) of each component of a system, then λt is 

the average number of failures for a given unit of time. The probability of x failures 

in the specified unit of time is obtained by substituting t in Equation (24.19) 

to obtain

 f x
e t

x
x

t x

( )
!

; , , ,
( )

 0 1 2  (24.20)

Suppose, for example, that in a certain country the average number of airplane 

crashes per year is 2.5. What is the probability of 4 or more crashes during the next 

year? Substituting λ 2.5 and t 1 in Equation 24.20 yields

 f x
e

x
x

x

( )
.

!
; , , ,

( ).2 5 2 5
0 1 2  (24.21)

as the pdf of X, the number of airplane crashes in a year. The probability of 4 or 

more airplane crashes next year is then

 

P X
e

xx

x

( )
.

!

( . . . . )

( ).

4 1
2 5

1 0 0821 0 205 0 257 0 214

1

0

3 2 5

0 76 0 24. .

 (24.22)

As another example, suppose that the average number of breakdowns of per-

sonal computers during 1000 h of operation of a computer center is 3. What is 

the probability of no breakdowns during a 10-h work period? Note that the given 

average is the average number of breakdowns during 1000 h, so the unit of time 

associated with the given average is 1000 h. The probability required is the prob-

ability of no breakdowns during a 10-h period, and the unit of time connected with 

the required probability is 10 h. If 10 is divided by 1000, the result is 0.01 so that 

in a 10-h period there are 0.01 time periods of 1000-h duration. The given aver-

age of breakdown is 3; multiplication by 0.01 yields 0.03, the average number of 

occurrences during a 10-h time period . This value of  may be substituted in the 

Poisson pdf:

 f x
e

x
x

x

( )
.

!
; , , ,

( ).0 03 0 03
0 1 2  (24.23)
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One may now substitute for x, the number of occurrences whose probability is 

required. The probability of no breakdowns in a 10-h period is:

 P X
e

e( )
.

!
.

( ).
.0

0 03

0
0 97

0 03 0
0 03

 (24.24)

In addition to the applications cited, the Poisson distribution can be used to 

obtain the reliability R of a standby redundancy system in which one unit is in the 

operating mode and n identical units are in standby mode. Unlike parallel systems, 

the standby units are inactive. The reliability of the standby redundancy system may 

be calculated by employing the Poisson distribution under the following conditions:

1. all units have the same failure rate in the operating mode

2. unit failures are independent

3. standby units have 0 failure rate in the standby mode

4. there is perfect switch over to a standby when the operating unit fails

The Poisson distribution is a distribution in its own right and arises in many 

different situations. For instance, it provides probabilities of specified numbers of 

telephone calls per unit interval of time, of environmental sampling procedures, of 

given numbers of defects per unit area of glass, textiles, or papers, and of various 

numbers of bacterial colonies per unit volume.

Illustrative Example 24.12

Microscopic slides of a certain culture of microorganisms contain on the average 

of 20 microorganisms per square centimeter. After treatment by a chemical, one 

cm2 is found to contain only 10 such microorganisms. If the treatment had no 

effect, what would be the probability of finding 10 or fewer microorganisms in a 

given square centimeter?

Solution

Let X denote the number of microorganisms in one cm2. If the chemical treat-

ment had no effect, X has a Poisson pdf with 20. The probability of 10 or fewer 

microorganisms in a given square centimeter is

 
P X e

P X P X P X
x

x( )

( ) ( ) ( )

( )10 20

0 1 10
0

10
20

 

Longhand calculation leads to

 P X( ) .10 0 0128  



304 Introduction to Mathematical Methods

Illustrative Example 24.13

The average number of defective welds detected at the final examination of the tail 

section of an aircraft is 5. What is the probability of detecting at least one defective 

well during the final examination of the tail section?

Solution

The given average is the average number of defective welds detected at the final 

inspection of an aircraft tail section. The unit of space connected with the given 

average is the space occupied by the tail section of the aircraft. Therefore, the asso-

ciated unit of space is the same as the space occupied by the tail section of the 

aircraft. Because both the unit of space connected with the given average and the 

unit of space connected with the required area are the same, their quotient is one. 

The probability required is the probability of detecting at least one defective weld 

at the final inspection of the tail section. The given average number of defectives 

is 5; multiplication by 1 yields the value of  as 5. This value of μ is to be substituted 

in the Poisson pdf.

 f x
e

x
x

x

( )
!

; , , ,
( )5 5

0 1 2  

Substitute for x, the number of occurrences whose probability is required. The 

probability of detecting at least one defective weld is therefore

 

P X P X

e

( ) ( )

!
.

( )

0 1 0

1
5

0
0 9933

5 0  

Illustrative Example 24.14

Over the last 10 years, a local hospital reported that the number of deaths per year 

due to temperature inversions (air pollution) was 0.5 [3]. What is the probability 

of exactly 3 deaths in a given year?

Solution

For this problem,

 P X
e

( )
.

!
.

( ).

3
0 5

3
0 0126

0 5 3
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Illustrative Example 24.15

The number of hazardous waste trucks arriving daily at a certain hazardous waste 

incineration facility has a Poisson distribution with parameter n 2.5. Present 

facilities can accommodate 3 trucks a day. If more than 3 trucks arrive in a day, the 

trucks in excess of 3 must be sent elsewhere.

1. On a given day, what is the probability of having to send a truck 

elsewhere?

2. How much must the present waste facilities be increased to permit 

handling of all trucks on about 95% of the days?

Solution

1. Let X denote the number of trucks arriving on a given day. Then

 P P X( ) ( )sending trucks elsewhere 4  

 This may also be written as

 P X P X( ) ( )4 1 4  

 P X P X P X P X P X( ) ( ) ( ) ( ) ( )4 1 0 1 2 3  

 Employing the Poisson pdf with 2.5 gives

 

P X e e
e e

( ) .
. .( ) ( ). .

. .

4 1 2 5
2 5

2

2 5

6

1

2 5 2 5
2 2 5 3 2 5

(( . . . . )

.

0 0821 0 2052 0 2565 0 2138

0 2424

 

2. Note that the number of trucks has not been specified. The general 

solution is given by

 P P X i
i

n

( ) . ( )sending trucks elsewhere 0 05 1
0

 

A trial-and-error solution is required because a different equation is obtained 

for each value of n. For example, if n 5.

0 05 1 0 1 2 3 4 5. [ ( ) ( ) ( ) ( ) ( ) ( )]P X P X P X P X P X P X
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Substituting gives

 

0 05 1 1 2 5
2 5

2

2 5

6

2 5

24

2 5

120

2 5
2 3 4 5

. .
. . . .( ) ( ) ( ) ( ).e

1 0 0821 1 0 2 5 3 125 2 604 1 628 0 814

1 0 958

. [ . . . . . . ]

.

0.05 0.0042

 

The increase is from 3 to 5; therefore, the facilities must be increased by approx-

imately 67%.
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The probability distribution of a continuous random variable concerns the dis-

tribution of probability over the range of the random variable. The distribution 

probability, i.e., the values of the variables together with their associated prob-

abilities, is specified by the aforementioned probability distribution function (pdf). 

This chapter is devoted to providing general properties of the pdf for the case of 

continuous  random variables as well as an introduction to the cumulative distribu-

tion function (cdf).

The pdf of a continuous random variable X has the following properties:

 
a

b

f x dx P a X b( ) ( )  (25.1)

 f x( ) 0  (25.2)

 f x dx( ) 1  (25.3)

Equation (25.1) indicates that the pdf of a continuous random variable gener-

ates probability by integration of the pdf over the interval whose probability is 

25
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required. When this interval contracts to a single value, the integral over the inter-

val becomes zero. Therefore, the probability associated with any particular value of 

a continuous random variable is zero. Consequently, if X is continuous

 

P a X b P a X b

P a X b

P a X b

( ) ( )

( )

( )

 (25.4)

Equation (25.2) restricts the value of f(x) to nonnegative numbers. Equation (25.3) 

follows from the fact that

 P X( ) 1  (25.5)

As an example of the pdf of a continuous random variable, consider the pdf 

of the time X in hours between successive failures of an aircraft air conditioning 

system. Suppose the pdf of X is specified by

 f x e xx( ) . ;.0 01 00 01   (25.6)

 0;  elsewhere  (25.7)

A plot of f(x) vs. X for positive values of X is provided in Figure 25.1. Inspection of 

the graph indicates that intervals in the lower part of the range of X are assigned 

greater probabilities than intervals of the same length in the upper part of the range 

of X because the areas over the former are greater than the areas over the latter.

The expression P(a X b) provided in Equation (25.1) can be interpreted 

geometrically as the area under the pdf curve over the interval (a, b). Integration 
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Figure 25.1 The pdf for a continuous variable.
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of the pdf over the interval yields the probability assigned to the interval. For 

example, the probability that the time in hours between successive failures of the 

aforementioned aircraft air conditioning system is greater than 6 but less than 10 is

 

P X e dx e dx( ) . .

.
.

. .6 10 0 01 0 01

0 01
1

0 01

6

10

0 01

6

10

0 01

e

e

e e

x

x

0 01

6

10

0 01

6

10

0 01 10 0 01 6

.

.

( . ) ( . )

|

( )

e e0 1 0 06

0 9048 0 9418 0 037 3 7

. .

. . . . %

 (25.8)

Another function used to describe the probability distribution of a random 

variable X is the aforementioned cdf. If f(x) specifies the pdf of a random variable 

X, then F(x) is used to specify the cdf. For both discrete and continuous random 

variables, the cdf of X is defined by

 F x P X x x( ) ( );   (25.9)

In the case of a continuous random variable, the cdf is a continuous function.

Suppose, for example, that x is a continuous random variable with a pdf speci-

fied by

 f x x x( ) ;2 0 1  (25.10)

 0; elsewhere  (25.11)

Applying the definition in Equations (25.1)–(25.3), one obtains

 F x x( ) 0 0;  (25.12)

 F x x dx x x
x

( ) ;
0

22 0 1  (25.13)

 F x x( ) ;1 1  (25.14)

Figure 25.2 displays the graph of this cdf, which is simply a plot of F(x) vs. x. 

Differentiating the cdf and setting the pdf equal to zero where the derivative of 

the cdf does not exist can provide the pdf of a continuous random variable. For 
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example, differentiating the cdf of x2 yields the specific pdf of 2x. In this case, the 

derivative of the cdf does not exist for x 1.

The following properties of the cdf of a random variable X can be deduced 

directly from the definition of F(x).

 F b F a P a X b( ) ( ) ( )  (25.15)

 F( ) 1 (25.16)

 F( ) 0  (25.17)

 F x x( ) is a nondecreasing function of  (25.18)

Interestingly, these properties apply to the cases of both discrete and continuous 

random variables.

Illustrative Example 25.1

The difference between the magnitude of a large earthquake, as measured on the 

Richter scale, and the threshold value of 3.25 is a random variable X having the pdf

 f x e xx( ) . ;.1 7 01 7   

 0; elsewhere  

Calculate P(2 X 6).

Solution

Applying the definition of cdf leads to

 P X f x dx( ) ( )2 6
2

6

 

Figure 25.2 Graph of the cdf of a continuous random variable x.
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Substituting and integrating yields

 

P X e dx

e e

x( ) .

. .

.

.

.

. .

2 6 1 7

0 0334 0 0

0 0334

3 3

2

6

1 7

3 4 10 2

44%

 

Illustrative Example 25.2

A random variable X denoting the useful life of a battery in years has the pdf

 
f x x x( ) ;

;

3

8
0 2

0

2  

 elesewhere

 

Find the cdf of X.

Solution

As before, the cdf of X is given by

 

f x P X x

f x dx

( ) ( )

( )
 

Therefore,

 F x x( ) ;0 0  

And,

 

F x x dx

x
x

( )

;

3

8

8
0 2

2

3

 

 

In addition,

 F x x( ) ;1 2  
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Illustrative Example 25.3

The probability that a light switch fails is 0.0001. Let X denote the trial number on 

which the first failure occurs. Find the probability that X exceeds 1000.

Solution

The probability of no failures on the first x  1 trials and a failure on trial x is 

(0.9999)x 1(0.0001). Thus, the pdf of X is

 f x x( ) ( . ) .( )0 9999 0 00011
 

which is a geometric series with the first term equal to

 f x( ) ( . ) .( )0 9999 0 00011000
 

and common ratio equal to 0.9999. This reduces to

 
P X( )

. .

.
. . %

( ) ( )
1000

0 9999 0 0001

1 0 9999
0 9048 90 48

1000  

Four sections complement the presentation of this chapter. Section numbers 

and subject titles follow.

25.1: Exponential Distribution

25.2: Weibull Distribution

25.3: Normal Distribution

25.4: Log-Normal Distribution

Note: The bulk of the material in this chapter was drawn from the work of 

Theodore and Taylor [1].

25.1  Exponential Distribution

The exponential distribution is an important distribution in that it represents 

the distribution of the time required for a single event from a Poisson process to 

occur [1]. In particular, in sampling from a Poisson distribution with parameter , 

the probability that no event occurs during (0, t) is e t. Consequently, the prob-

ability that an event will occur during (0, t). is

 F t e t( ) 1  (25.19)

This represents the cumulative distribution function (cdf) of t. One can therefore 

show that the probability distribution function (pdf) is

 f t e t( )  (25.20)
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Note that the parameter 1/  (sometimes denoted as ) is the expected value. 

Normally, the reciprocal of this value is specified and represents the expected 

value of f(x). Because the exponential function appears in the expression for both 

the pdf and cdf, the distribution is justifiably called the exponential distribution. 

A typical pdf of t plot is provided in Figure 25.3.

Alternatively, the cumulative exponential distribution can be obtained from the 

pdf (with x now replacing t):

 F x e dx e
x

x x( )
0

1  (25.21)

All that remains is a simple evaluation of the negative exponent in Equation (25.21).

In statistical and reliability applications one often encounters a random vari-

able’s conditional failure density or hazard function, g(x). In particular, g(x)dx is 

the probability that a “product” will fail during (x, x dx) under the condition that 

it had not failed before (time) x. Consequently,

 g x
f x

F x
( )

( )

( )1
 (25.22)

If the probability density function f(x) is exponential, with parameter , it follows 

from Equation (25.20) and Equation (25.21) that

 g x
e

e

e

e

g x

x

x

x

x
( )

( )

( )

1 1
 (25.23)
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Figure 25.3 Exponential distribution.
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Equation (25.23) indicates that the failure probability is constant, irrespective 

of time. It implies that the probability that a component whose time-to-failure dis-

tribution is exponential fails in an instant during the first hour of its life is the same 

as its failure probability during an instant in the thousandth hour ‒ presuming it 

has survived up to that instant. It is for this reason that the parameter λ is usually 

referred to in life-test applications as a failure rate. This definition generally has 

meaning only with an exponential distribution.

This natural association with life-testing and the fact that it is very tractable 

mathematically makes the exponential distribution attractive as representing the 

life distribution of a complex system or several complex systems. In fact, the expo-

nential distribution is as prominent in reliability analysis as the normal distribu-

tion is in other branches of statistics.

Illustrative Example 25.4

Discuss some of the advantages and limitations of the exponential distribution.

Solution

It has been shown theoretically that this distribution provides a reasonable model 

for systems designed with a limited degree of redundancy and made up of many 

components, none of which has a high probability of failure. This is especially 

true when low component failure rates are maintained by periodic inspection and 

replacement, or in situations in which failure is a function of outside phenomena 

rather than a function of previous conditions. On the other hand, the exponen-

tial distribution often cannot represent individual component life (because of its 

“infant mortalities” and wearout patterns), and it is sometimes questionable even 

as a system model.

Illustrative Example 25.5

Estimate the probability that a pump at a nuclear power plant will survive at least:

1. 3 times its expected life

2. 5 times its expected life

3. 10 times its expected life

Assume an exponential distribution applies.

Solution

The exponential distribution gives

 P T e t timet( ) ;  
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with 1/a where a expected life of the pump. Thus for 3 times its expected 

life t 3a,

 P T a e ea
a

( )

. . %

( )

3

0 0498 4 98

1
3

3
 

Therefore, there is a 5% chance that the pump will survive past 3 times its expected 

life.

For 5 times its expected life t 5a

 P T a e ea
a

( )

. . %

( )

5

0 0067 0 67

1
5

5
 

and for 10 times its expected life t 10a

 P T a e ea
a

( )

. . %

( )

10

4 54 10 4 54 10

1
10

10

5 3

 

As expected, the probability decreases with increasing survival time.

Illustrative Example 25.6

The time to failure for a battery is presumed to follow an exponential distribution 

with 0.1 (per year). What is the probability of a failure within the first year?

Solution

Refer to Equation (25.20) 

 F x e dx ex x( )
0

1

1  (25.21)

For this case (with x representing time),

 

P X e dx

e e e

e

x

x

( ) ( . )

.

.

( . )

( . ) .

1 0 1

0 1

0 1

1

0

1

0 1

0 1

0

1
0 1 0

00 1 0 095 9 5. . . %
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Therefore, there is nearly a 10% probability that the battery will fail within the first 

year.

Illustrative Example 25.7

An electronic system consists of 3 components (1, 2, 3) connected in parallel. If the 

time to failure for each component is exponentially distributed and mean times of 

failures for components 1, 2, and 3, are 200, 300, and 600 d, respectively, determine 

the system reliability for a year (365 d).

Solution

For this series system, the probability of failure is

 
P F P

P P P

( ) ( )

( )( )( )

all the components fail

1 1 11 2 3

 

where P
i
 is the probability of surviving 365 d. The system reliability is

 
R P F

P P P

1

1 1 1 11 2 3

( )

( )( )( )
 

Based on the data provided:

 P e1

365

200 0 161.  

 P e2

365

300 0 296.  

 P e3

365

600 0 544.  

Therefore, the system reliability is

 
R 1 1 0 161 1 0 296 1 0 544

0 731 73 1

( . )( . )( . )

. . %
 

Illustrative Example 25.8

A pumping system at a nuclear facility consists of 4 components. 3 are connected 

in parallel, which in turn are connected downstream (in series) with the other 

component. The arrangement is schematically shown in Figure 25.4.
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If the pumps have the same exponential failure rate, , of 0.5 (year) 1, estimate 

the probability that the system will not survive for more than one year.

Solution

Based on the information provided, the pumping system fails when the 3 parallel 

components fail or when the downstream component fails. This is a combination 

of a parallel and a series system. The reliability is

 R t F t( ) ( )1  (25.24)

where F(t) is the probability of failure between 0 and t. The reliability of the paral-

lel system is

 
R R R R R R

R

p i1 1 1 1

1 1

1 2 3

3

( )( )( )

( )

; 
 

For a series system

 R R R R Rs p p4  

where R
s
 also represents the overall system reliability.

Applying the exponential model gives

 R t F t e et t( ) ( ) ( )1 1 1  

 
R R R R R e

R

1 2 3 4

0 5 1

0 6065

( . )( )

.
 

Thus,

 Rp 1 1 0 6065 1 0 0609 0 9391 93 93( . ) . . . %  

1

2

3

4

Figure 25.4 Pumping system.
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and

 

Rs ( . )( . )

. %

0 9391 0 6065

0 57 57  

Illustrative Example 25.9

The probability that a thermometer placed in three different locations of a hazard-

ous waste incinerator will not survive for more than 36 months is 0.925, 0.95, and 

0.99 respectively. How often should the thermometer be replaced in each one of 

these situations? Assume the time to failure is exponentially distributed and that 

the replacement time should be based on the thermometer’s expected life.

Solution

This requires the calculation of  in the exponential model with units of (month) 1. 

Once again,

 F t e t( ) 1  

Based on the information provided

 P T( ) .36 0 925  

or

 0 925 1 36. ( )( )e  

Solving gives

 
1

36
1 0 925ln( . ) 0.07195  

The expected time (or life), E(T), is [1, 2]

 E T( )
.

.
1 1

0 07195
13 9 months  

Therefore, for the first location the thermometer should be replaced in approxi-

mately 14 months.

For the second location, the describing equation remains

 F t e t( ) 1  
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For F(t) 0.95,

 0 95 1 36. ( )( )e  

Solving for  gives

 
1

36
1 0 95 0 0832ln( . ) .  

The expected life is then

 E T( )
.

1 1

0 0832
12 months  

For the third location

 
1

36
1 0 99 0 128ln( . ) .  

and

 E T( )
.

.
1 1

0 128
7 82 months  

25.2  Weibull Distribution

Unlike the exponential distribution, the failure rate of equipment frequently 

exhibits 3 stages: a break-in stage with a declining failure rate, a useful life stage 

characterized by a fairly constant failure rate, and a wear out period characterized 

by an increasing failure rate. Many industrial parts and components follow this 

behavior. A failure rate curve exhibiting these 3 phases (see Figure 25.5) is called 

a bathtub curve.

In the case of the bathtub curve, the failure rate during useful life is constant. 

Letting this constant be  yields

 F t dt t t e
t

t( ) exp exp( )
0

0;  (25.25)

as the probability distribution function (pdf) of time to failure during the useful 

life stage of the bathtub curve. Equation (25.25) defines an exponential (pdf) that 

is a special case of the pdf defining the Weibull distribution.
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Weibull introduced the distribution, which bears his name principally on empir-

ical grounds, to represent certain life-test data. The Weibull distribution provides a 

mathematical model of all 3 stages of the bathtub curve. This is now discussed. An 

assumption about the failure rate Z(t) that reflects all 3 stages of the bathtub curve is

 Z t t t( ) 1 0;  (25.26)

where  and β are constants. For 1, the failure rate Z(t) decreases with time. For 

1, the failure rate is constant and equal to α. For 1, the failure rate increases 

with time. Using this equation again to translate the assumption about failure rate 

into a corresponding assumption about the pdf of T, time to failure, one obtains

 f t t t dt t t t( ) exp exp( ) ,1

0

1

1 1 0 0; ; 0
 (25.27)

Equation (25.27) defines the pdf of the Weibull distribution. As noted, the expo-

nential distribution discussed in the preceding section, whose pdf was given in 

Equation (25.20) earlier, is a special case of the Weibull distribution with 1.

A variety of assumptions about failure rate and the probability distribution 

of time to failure that can be accommodated by the Weibull distribution make it 

especially attractive in describing failure time distributions in industrial and pro-

cess plant applications

To illustrate probability calculations involving the exponential and Weibull 

distributions introduced in conjunction with the bathtub curve of failure rate, 

consider first the case of a transistor having a constant rate of failure of 0.01 per 

thousand hours. To find the probability that a transistor will operate for at least 

25,000 h, substitute the failure rate

 Z t( ) .0 01  (25.28)

Break in Useful life Wear out

Time
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Figure 25.5 Bathtub curve.
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which yields

 
f t dt

e t

t

t

( ) exp .

. .

0

0 01

0 01

0 01 0; 

 (25.29)

as the pdf of T, the time to failure of the transistor. Because t is measured in thou-

sands of hours, the probability that the transistor will operate for at least 25,000 h 

is given by

 P T e dt

e e

t( ) .

.

. %

.

. ( )

25 0 01

0 0 78

0 78 78

25

0 01

0 01 25

 (25.30)

Now suppose it is desired to determine the 10,000 h reliability of a circuit of 

5 such transistors connected in series. The 10,000 h reliability of one transistor is 

the probability that it will last at least 10,000 h. This probability can be obtained by 

integrating the pdf of T, time to failure, which gives

 P T e dt

e e

t10 0 01

0 0 90

10

0 01

0 01 10

.

.

.

.

90%

 (25.31)

The 10,000 h reliability of a circuit of 5 transistors connected in series is obtained 

by applying the formula for the reliability of series systems to obtain

 

R Rs [ ( )] ( . )

. %

10 0 9

0 59 59

5 5

 (25.32)

As another example of probability calculations, consider a component whose 

time to failure T, in hours, has a Weibull pdf with parameters 0.01 and 0.50 

in Equation (25.27). This gives

 f t t e tt( ) ( . )( . ) . ( . ) .

0 01 0 5 00 5 1 0 01 0 5

;  (25.33)
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As the Weibull pdf of the failure time of the component under consideration, the 

probability that the component will operate at least 8100 h is then given by

   P T f t dt t e dt

e

t( ) ( ) . . ( . )

.

.

8100 0 005
8100 8100

0 5 0 01

0

0 5

001

8100

0 01 81000 5 0 5

0 0 41 41t e
. .

| . %( . )( )

 (25.34)

Illustrative Example 25.10

Discuss some Weibull distribution applications.

Solution

A variety of conditional failure distributions, including wear out patterns, can be 

accommodated by the Weibull distribution. Therefore, this distribution has been 

frequently recommended – instead of the exponential distribution – as an appro-

priate failure distribution model. Empirically, satisfactory fits have been obtained 

for failure data on electron tubes, relays, ball bearings, metal fatigue, and even 

business mortality.

Illustrative Example 25.11

The life (time to failure) of a machine component has a Weibull distribution. 

Outline how to determine the probability that the component lasts a given period 

of time if the failure rate is t 1/2.

Solution

Identify the failure rate, Z(t), from Equation (25.26).

 Z t t( )
1

2  

Also, identify the values of and appearing in the failure rate. If the failure rate is 

t 1/2,

 1
1

2
 

and

 1  

Therefore, 1/2, and 2.
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For these values of  and  obtained above, determine the Weibull pdf

 f t t e tt( )
1

2 2

1

2

0;  

Integration of this pdf will yield the required probability. This is demonstrated 

in the next illustrative example.

Illustrative Example 25.12

Refer to Illustrative Example 25.11. Determine the probability that the component 

lasts at least 25,000 h if t is measured in thousands of hours.

Solution

For this case,

 t 25  

Because time is measured in thousands of hours the probability that the compo-

nent lasts at least 25,000 h is

 

P T t e dt

e

t

t

( )

|

25
25

1

2 2

2

25

1

2

 

This may be integrated to give

 

P T e( ) ( )

. %

( ) .

25 0

4 5 10 0

2 25

5

0 5

 

Illustrative Example 25.13

The life of a gasket has a Weibull distribution with failure rate

 Z t
t

t( ) /1 1 2
 

where t is measured in years. What is the probability that the gasket will last at 

least 4 years?
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Solution

The pdf specified by f(t) in terms of the failure rate, Z(t), is as follows:

 f t Z t Z t dt
t

( ) ( )exp ( )
0

 

Substituting 1/t1/2 for Z(t) yields

 f t t t dt t dt t( ) exp exp
1

2

0

1

2

1

2

1

22 0t ;  

Once again, employ the integration procedure provided earlier. The probability 

that the seal lasts at lasts 4 years is

 
P T t t dt e

e

t( ) exp [ ]

( ) .

.

4 2

0 0 0183 1

4

1

2

1

2 2

4

4

0 5

.. %83

 

25.3  Normal Distribution

The initial presentation in this section on normal distributions will focus on failure 

rate, but can be simply applied to all other applications involving normal distribu-

tions. When T, time to failure, has a normal distribution, its probability distribu-

tion function (pdf) is given by

 f T
T

t( ) exp
1

2

1

2

2

;  (25.35)

where μ is the mean value of T and  is its standard deviation. The graph of f(T) is 

the familiar bell-shaped curve shown in Figure 25.6.

The reliability function corresponding to the normal distributed failure time is 

given by

 f T
T

dt
t

( ) exp
1

2

1

2

2

 (25.36)

If T is normally distributed with mean  and standard deviation σ, then the ran-

dom variable (T  )/  is normally distributed with mean 0 and standard devia-

tion 1. The term (T  )/  is called a standard normal curve that is represented by 
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Z, not to be confused with the failure rate Z(t). This is discussed in more detail 

later in this section.

Table 25.1 is a tabulation of areas under a standard normal curve to the right 

of z
0
 for nonnegative values of z

0
. Probabilities about the normal variable Z can be 

determined from this table. For example,

 P Z( . ) .1 54 0 062  (25.37)

is obtained directly from Table 25.1 as the area to the right of 1.54. As presented 

in Figure 25.7, the symmetry of the standard normal curve about zero implies that 

the area to the right of zero is 0.5.

Plots demonstrating the effect of  and  on the bell-shaped curve are provided 

in Figure 25.8 and Figure 25.9. Consequently, one can deduct from Table 25.1 and 

Figure 25.7 that

 P Z( ) . . .0 154 0 5 0 062 0 438  (25.38)

Also, because of symmetry

 P Z( . ) .1 54 0 0 438  (25.39)

and

 P Z( . ) .1 54 0 062  (25.40)

The following probabilities can also be deduced by noting that the area to the 

right of 1.54 is 0.062 in Figure 25.7.

 P Z( . . ) .1 54 1 54 0 876  (25.41)

 P Z( . ) .1 54 0 938  (25.42)

f(
T)

Figure 25.6 Normal pdf of time to failure.
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Table 25.1 Standard normal cumulative probability; right-hand tail.

Second decimal place of z

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 .5000 .4960 .4920 .4880 .4840 .4801 .4761 .4721 .4681 .4641

0.1 .4602 .4562 .4522 .4483 .4443 .4404 .4364 .4325 .4286 .4247

0.2 .4207 .4168 .4129 .4090 .4052 .4013 3971 .3936 .3897 .3859

0.3 .3821 .3783 1745 .3707 .3669 .3632 .3594 .3557 .3520 .3483

0.4 .3446 .3409 .3372 .3336 .3300 .3264 .3228 .3192 .3156 .3121

0.5 .3085 .3050 .3015 .2981 .2946 .2912 .2877 .2843 .2810 .2776

0.6 .2743 .2709 .2676 .2643 .2611 .2578 .2546 .2514 .2483 .2451

0.7 .2420 .2389 .2358 .2327 .2296 2266 .2236 .2206 .2177 .2148

0.8 .2119 .2090 .2061 .2033 .2005 .1977 .1949 .1922 1894 .1867

0.9 .1841 .1814 .1788 .1762 .1736 .1711 .1685 .1660 .1635 .1611

1.0 .1587 .1562 .1539 .1515 .1492 .1469 .1446 .1423 .1401 .1379

1.1 .1357 .1335 .1314 .1292 .1271 .1251 .1230 .1210 .1190 .1170

1.2 .1151 .1131 .1112 .1093 .1075 .1056 .1038 .1020 .1003 .0985

1.3 .0968 .0951 .0934 .0918 .0901 .0885 .0869 .0853 .0838 .0823

1.4 .0808 .0793 .0778 076-1 .0749 .0735 1721 .0708 0694 .0681

1.5 .0668 .0655 .06-13 .0630 .0618 .0606 .0591 .0582 .0571 .0559

1.6 .0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465 .0455

1.7 .0446 .0436 .0127 .0118 .0109 .0401 .0392 .0384 .0375 .0367

1.8 .0359 .0351 .0344 .0336 .0329 .0322 .0314 .0307 .0301 .0294

1.9 .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239 .0233

2.0 .0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183

2.1 .0179 .0174 .0170 .0166 .0162 .0158 .0154 .0150 .0146 .0143

2.2 .0139 .0136 .0132 .0129 .0125 .0122 .0119 .0116 .0113 .0110

2.3 .0107 .0104 .0102 .0099 .0096 .0094 .0091 .0089 .0087 .0084

2.4 .0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .0066 .0064

2.5 .0062 0060 .0059 .0057 .0055 .0054 .0052 .0051 .0049 .0048

2.6 .0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 .0037 .0036

2.7 .0035 0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026

2.8 .0026 .0025 .0024 .0023 .0023 .0022 .0021 .0021 .0020 .0019

2.9 .0019 .0018 .0018 .0017 .0016 .0016 .0015 .0015 .0014 .0014
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 P Z( . ) .1 54 0 938  (25.43)

Table 25.1 can also determine probabilities concerning normal random vari-

ables that are not standard normal variables. The required probability is first con-

verted to an equivalent probability about a standard normal variable. For example, 

–1.54

0.062 0.062

0.4380.438

1.540
t

f(t
)

Figure 25.7 Areas under a standard normal curve.

–2 2

 = –2  = +2

 = 0

t

f(
t)

Figure 25.8 Normal pdf – varying .

–2 2

 = 2

 = 1

 = 0.5

t

f(
t)

Figure 25.9 Normal pdf – varying .
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if T, the time to failure, is normally distributed with mean 100 and standard 

deviation 2 then (T  100)/2 is a standard normal variable and one may write

 P T T T P
T T T

( )1 2
1 2  (25.44)

where

 
T

Z standard normal variable  (22.45)

Therefore, if T
1

98 and T
2

104 as an example, the describing equation becomes

 

P T
T

P
T

( )98 104
98 104

98 100

2 2

104 100

2

P
T

P Z

1
100

2
2

1 2

0 341 0 477

0 818 81

( )

. .

. .88%

 (25.46)

For any random variable X ‒ where X has now replaced T ‒ that is normally dis-

tributed with mean  and standard deviation , one may now write the following:

 
P X P

X

P Z

( )

( ) .

1 1

1 1 0 68

 (25.47)

 
P X P

X

P Z

( )

( ) .

2 2 2 2

2 2 0 95

 (25.48)

 
P X P

X

P Z

( )

( ) .

3 3 3 3

3 3 0 997

 (25.49)
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The probabilities given above are the sources of the percentages cited earlier [2]. 

These can be used to interpret the standard deviation s of a sample of observations 

on a normal random variable as a measure of dispersion about the sample mean X.

The normal distribution can be used to obtain probabilities concerning the 

mean X of a sample of n observations on a random variable X if X is normally 

distributed with mean μ and standard deviation / n.  For example, suppose 

X is normally distributed with mean 100 and standard deviation 2. Then X, of 

a sample of 16 observations on X, is normally distributed with mean 100 and 

standard deviation 0.5. To calculate the probability that X is greater than 101, 

one would write

 P X P
X

( )
. .

101
100

0 5

101 100

0 5
 (25.50)

 
P X P

X
Z

X

P Z

( )
. . .

( ) .

101
100

0 5

101 100

0 5

100

0 5

2 0 0

; 

223 2 3. %

 (25.51)

If X is not normally distributed, then X, the mean of a sample of n observations 

on X, is approximately normally distributed with mean  and standard deviation 
/ n,  provided the sample size n is large (>30). This result is based on an impor-

tant theorem and probability called the central limit theorem.

Suppose for example, that the mean and variance for a random variable are 1 

and 1/3 respectively. If X is the mean of a random sample of 48 observations on 

X, X is approximately normally distributed with mean 1 and standard deviation 
/ n.  The latter term is therefore given by

 
n

1 3

48

1

3 48

1

144

1

12

/

( )( )
 (25.52)

The following example is now provided for this case.

 P X P
X

P Z
9

8

1

1

12

9

8
1

1

12

1 5 0 067( . ) .  (25.53)

One of the principal applications of the normal distribution in reliability calcu-

lations and hazard risk analysis is the distribution of time to failure due to “wear 

out.” Suppose, for example, that a production lot of thermometers, to be employed 

in an incinerator especially designed to withstand high temperatures and intense 
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vibrations, has just come off the assembly line. A sample of 25 thermometers from 

the lot is tested under the specified heat and vibration conditions. Time to failure, 

in hours, is recorded for each of the 25 thermometers. Application of the equations 

for the sample mean X and sample variance s2 yields

 X s125 922;  (25.54)

Past experience indicates that the “wear out” time of this “unit,” like that of a 

large variety of products in many different industries, tends to be normally distrib-

uted. Using the above values of X and s as best estimates of μ and σ, one can obtain 

the 110-h reliability of the thermometers. 

 

P X P
X

P

( )110
125

92

110 125

92

(Z 1.56)
 

From values in the standard normal table,

 
P X( ) . %110 0 94 94

 (25.55)

As indicated earlier, the normal distribution is symmetric. The data from a nor-

mal distribution could be plotted on special graph paper, known as normal prob-

ability paper. The resulting plot appears as a straight line. The parameters μ and 

, can be estimated for such a plot. A nonlinear plot on this paper is indicative of 

nonnormality.

Actual (experimental) data have shown many physical variables to be nor-

mally distributed. Examples include physical measurements on living organisms, 

molecular velocities in an ideal gas, scores on an intelligence test, the average tem-

peratures in a given locality, etc. Other variables, though not normally distributed 

per se, sometimes approximate a normal distribution after an appropriate trans-

formation, such as taking the logarithm or square root of the original variable. 

The normal distribution also has the advantage that it is tractable mathematically. 

Consequently, many of the techniques of statistical inference have been derived 

under the assumption of underlying normal variants.

Illustrative Example 25.14

The parts-per-million concentration of a particular toxic substance in a waste-

water stream is known to be normally distributed with mean 100 and stan-

dard deviation 2.0. Calculate the probability that the toxic concentration, C, is 

between 98 and 104.
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Solution

Because C is normally distributed with 100 and a standard deviation 2.0, 

then (C – 100)/2 is a standard normal variable and

 
P C P

C

P Z

( )

( )

98 104 1
100

2
2

1 2

 

From the values in the standard normal table,

 P C( ) . . . . %98 104 0 341 0 477 0 818 81 8  

The reader should note that the calculation for this illustrative example is iden-

tical to one presented earlier for a time to failure application.

Illustrative Example 25.15

Acceptance limits require the plate-to-plate spacing in an electrostatic precipitator 

to be between 24 and 25 cm [3]. Spacing from other installations suggests that it is 

normally distributed with an average length of 24.6 cm and a standard deviation 

of 0.4 cm. What proportion of the plate spacing in a typical unit can be assumed 

unacceptable [3]?

Solution

The problem is equivalent to determining the probability that an observation or 

sample from a normal distribution with parameters 0 and 1 either exceeds

 Z1

25 0 24 6

0 4
1

. .

.
 

or falls below

 Z2

24 0 24 6

0 4
1 5

. .

.
.  

These probabilities are 0.159 and 0.067, respectively, from the table of the standard 

normal distribution. Consequently, the proportion of unacceptable spacing is

 

P P Z P Z( ) ( ) ( . )

. .

.

unacceptable spacing 1 1 5

0 159 0 067

0 226 26 6. %
 



332 Introduction to Mathematical Methods

Illustrative Example 25.16

The temperature of a polluted estuary during the summer months is normally 

distributed with mean 56°F and standard deviation 3.0°F. Calculate the probability 

that the temperature is between 55 and 62°F.

Solution

Normalizing the temperature T gives

 Z1

55 56

3 0
0 333

.
.  

 Z2

62 56

3 0
2 0

.
.  

Thus,

 
P Z P Z P Z( . . ) ( . . ) ( . . )

. .

0 333 2 0 0 0 2 0 0 0 0 333

0 4722 0 1293 0.. . %6015 60 15
 

Illustrative Example 25.17

The regulatory specifications on a toxic substance in a solid waste ash calls for a 

concentration level of 1.0 ppm or less [4]. Earlier observations of the concentra-

tion of the ash, C, indicate a normal distribution with a mean of 0.60 ppm and a 

standard deviation of 0.20 ppm. Estimate the probability that ash will exceed the 

regulatory limit.

Solution

The problem requires the calculation of P(C 1.0). Normalizing the variable C,

 P
C 0 6

0 2

1 0 0 6

0 2

.

.

. .

.
 

 P Z( . )2 0  

From the standard normal table

 P Z( . ) . . %2 0 0 0228 2 28  

For this situation, the area to the right of the 2.0 is 2.28% of the total area. This 

represents the probability that ash will exceed the regulatory limit of 1.0 ppm.



Continuous Probability Distributions 333

Illustrative Example 25.18

The diameter D of wires installed in an electrostatic precipitator (ESP) has a stan-

dard deviation of 0.01 in [3]. At what value should the mean be if the probability 

of its exceeding 0.21 in is to be 1%?

Solution

For this example,

 P
D 0 21

0 01
0 01

.

.
.  

where

 Z
D

 

Therefore,

 P Z
0 21

0 01
0 01

.

.
.  

For a one-tailed test at the 1% (0.01) level [1, 2],

 Z 2 326.  

so that

 
2 326

0 21

0 01
0 187

.
.

.
. in

 

Illustrative Example 25.19

The lifetime, T, of a circuit board employed is normally distributed with a mean of 

2500 d. What is the largest lifetime variance the installed circuit boards can have if 

95% of them need to last at least 365 d?

Solution

For this application,

 P T( ) .365 0 95  
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Normalizing gives

 

P
T

P Z

365 2500
0 95

2135
1 6

.

. 445

 

The following equation must apply for this condition:

 
2135

1 645.  

Solving,

 1298 d  

In addition,

 
2 6 21 68 10. d  

Illustrative Example 25.20

Let X denote the coded quality of bag fabric used in a particular utility baghouse [3]. 

Assume that X is normally distributed with mean 10 and standard deviation 2.

1. Find c such that P X c(| | ) .10 0 90

2. Find k such that P X k( ) .0 90

Solution

1. Because X is normally distributed with mean 10 and standard 

deviation 2, (X  10)/2 is a standard normal variable. For this two-

sided test [1, 2],

 

P X c P c X c

P
c X c

P
c

Z
c

(| | ) ( )10 10

2

10

2 2 2 2

2 0
2

P Z
c

; due to symmetry
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 Because

 P X c(| | ) .10 0 90  

 one may write

 2 0
2

0 90P Z
c

.  

 P Z
c

0
2

0 45.  

 For this condition to apply,

 

c

c
2

1 645

3 29

.

.

 

2. Based on the problem statement,

 

P X k

P
X k

P Z
k

( ) .

.

.

0 90

10

2
0 90

10

2
0 90

 

 For this equation to be valid

 
k 10

2
1 28.  

 Solving for k gives

 k 7 44.  

25.5 Log-Normal Distribution

A nonnegative random variable X has a log-normal distribution whenever ln X, i.e., 

the natural logarithm of X, has a normal distribution. The probability distribution 
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function (pdf) of a random variable X having a log-normal distribution is speci-

fied by

 
f x x

x
x( ) exp ;

;

( )1

2 2
0

0

1
2

2

ln
 

 elsewhere

 (25.56)

The mean and variance of a random variable X having a log-normal distribution 

are given by

 e

2

2  (25.57)

 
2 2 2 2

1e e( )  (25.58)

Figure 25.10 plots the pdf of the log-normal distribution for 0 and 1. 

Probabilities concerning random variables having a log-mean distribution can be 

calculated from the previously employed tables of the normal distribution. If X 

has a log-normal distribution with parameters  and β, then the ln X has a nor-

mal distribution with  and . Probabilities concerning X can therefore be 

converted into equivalent probabilities concerning ln X.

For example, suppose that X has a log-normal distribution with 2 and 

0.1. Then

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 1 2 3 4

x

f(
x

)

5 6 7 8

Figure 25.10 Log-normal pdf for 0, 1.
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P X P X

X

P

( ) ( )

. . .

(

6 8 6 8

6 2

0 1

2

0 1

8 2

0 1

ln ln ln

ln ln

22 08 0 79

0 5 0 019 0 5 0 215

0 481 0 285

0 78

. . )

( . . ) ( . . )

. .

.

Z

 (25.59)

Estimates of the parameters  and  in the pdf of a random variable X having 

a log-normal distribution can be obtained from a sample of observations on X 

by making use of the aforementioned fact that ln X is normally distributed with a 

mean  and a standard deviation . Therefore, the mean and standard deviation 

of the natural logarithms of the sample observations on X furnish estimates of 

 and . To illustrate this procedure, suppose the time to failure T, in thousands 

of hours, was observed for a sample of five pumps at a water treatment plant. 

The observed values of T were 8, 11, 16, 22, and 34. The natural logarithms of 

these observations are 2.08, 2.40, 2.77, 3.09, and 3.53. Assuming that T has a 

log-normal distribution, the estimates of the parameters  and  in the pdf are 

obtained from the mean and standard deviation of the natural logs of the obser-

vations on T. Applying Equation (23.1) and Equation (23.7) developed earlier 

yields 2.77 as the estimate of  and 0.57 as the estimate of . See also Illustrative 

Example 25.21.

The log-normal distribution has been employed as an appropriate model in 

a wide variety of situations from environmental management to biology to eco-

nomics. Additional applications include the distributions of personal incomes, 

inheritances, bank deposits as well as the distribution of organism growth sub-

ject to many small impurities. Perhaps the primary application of the log-normal 

distribution has been to represent the distribution for particle sizes in gaseous 

emissions from many industrial processes, details of which are provided in the 

literature [3].

Illustrative Example 25.21

The time to failure, T, in thousands of hours was observed for a sample of 5 electric 

motors as follows:

 8 11 16 22 34, , , ,  

Assuming T has a log-normal distribution estimate the probability that an elec-

tric motor last less than 5000 h.
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Solution

Under the assumption that T has a log-normal distribution, the natural logs of 

the observation constitute a sample from; a normal population. First, obtain the 

natural logs of the given observations on T, time to failure:

 ln ln ln ln ln8 2 08 16 2 77 34 3 53 11 2 40 22 3 09. , . , . , . , .  

Compute the mean, , and the standard deviation, σ, of these results.

 
i

iT

1

5

5
2 77

ln
.  

 
i

iT

1

5 22 77

4
0 57

[ ].
.

ln
 

Estimate α and β in the pdf of T from μ and σ, respectively.

 Estimate of 2 77.  

 Estimate of 0 57.  

Convert the required probability concerning T into a probability about ln T:

 P T P T P T( ) (ln ln ) (ln . )5 5 1 61  

The required probability using the standard normal table can now be obtained; by 

treating ln T as a random variable that is normally distributed with mean α and 

standard deviation .

 

P T P
T

P Z

(ln . )
ln .

. .

1 61
1 61

1 61 2 77

0057
2 04

0 021 2 1

P Z( . )

. . %

 

Illustrative Example 25.22

Resolve Illustrative Example 25.21 by calculating the probability that an electric 

motor lasts more than

1. 5,000 h

2. 10,000 h
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Solution

1. One can immediately conclude that

 
P T P T P T( ) (ln . ) ( )

. . . . %

5 1 61 1 5

1 0 0 0021 0 979 97 9
 

2. The describing equation becomes

 P T P T P T( ) (ln ln ) (ln . )10 10 2 303  

Converting to a standard normal variable,

 

P T P
T

P Z

(ln . )
ln .

.

2 303
2 303

2 303 2..

.
( . )

. . %

77

0 57
2 434

0 9926 99 26

P Z  

Illustrative Example 25.23

The failure rate per year, Y, of a coolant recycle pump in a wastewater treatment 

plant has a log-normal distribution. If ln Y has a mean of 2.0 and variance of 1.5, 

find P(0.175 Y 1).

Solution

If Y has a log-normal distribution, ln Y has a normal distribution with mean 2 and 

standard deviation 1.51/2 1.22. Therefore,

 

P Y P Y

P
Y

( . ) (ln . ln ln )

ln .

.

ln

0 175 1 0 175 1

0 175 2

1 22

2

11 22

1 2

1 22

3 07 1 64 0 1587 0 0011

.

ln

.

( . . ) . .P Z

0 1576 15 76. . %

 

Illustrative Example 25.24

Normalized biological oxygen demand (BOD) levels in an estuary during the past 

10 years are summarized in Table 25.2 [4]. If the BOD levels are assumed to follow 

a log-normal distribution, predict the level that would be exceeded only once in 

100 years [2].
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Solution

For this case, refer to Table 25.3. Based on the data provided

 X
X

n

2 38 86

10
3 886

.
.  

 

s
X X

n

n
2

2
2

2

1

156 78
38 86

10
10 1

0 64

( )

.
.

.

( )
 

and

 s 0 80.  

Table 25.2 Estuary BOD data.

Year 1 2 3 4 5 6 7 8 9 10

BOD level 23 38 17 210 62 142 43 29 71 31

Note: BOD biological oxygen demand

Table 25.3 BOD calculations.

Year (Y) BOD Level X ln BOD X2

1 23 3.13 9.83

2 38 3.64 13.25

3 17 2.83 8.01

4 210 5.35 28.62

5 62 4.13 17.06

6 142 4.96 24.60

7 43 3.76 14.14

8 29 3.37 11.36

9 71 4.26 18.15

10 31 3.43 11.67

Total – 38.86 156.78
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For this test, with Z 2.327 for the 99% value,

 Z
X X

s
 

 2 327
3 886

0 80
.

.

.

X
 

Solving for X yields

 X 5 748.  

For this log-normal distribution,

 X ln( )BOD  

 X 5 748. ln( )BOD  

 BOD 313  
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Tree analysis has become an integral part of probability analysis for environmen-

tal engineering and science practitioners. There are two tree analyses that are 

employed: fault trees and event trees. Fault trees attempt to determine the cause of 

failure in a system while event trees attempt to determine the consequences associ-

ated with a system that has failed.

Two sections compliment the presentation of this chapter. Section numbers 

and subject titles follow.

26.1: Fault Trees

26.2: Event Trees

26.1  Fault Trees

A fault tree is a graphical technique used to analyze some complex systems. The 

objective is to spotlight faulty conditions that have caused a system to fail. Fault 

tree analysis attempts to describe how and why an accident or other undesirable 

event has occurred. It may also be used to describe how and why an accident or 

other undesirable event could take place. A fault tree analysis also finds wide 

26
Fault Tree and Event 
Tree Analysis [1]

Introduction to Mathematical Methods for Environmental Engineers and Scientists. 
Charles Prochaska and Louis Theodore. 
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application in environmental management as it applies to hazard analysis and risk 

assessment of process and plant systems.

Fault tree analysis seeks to relate the occurrence of an undesired event, the “top 

event,” to one or more antecedent events, called basic events. The top event may be, 

and usually is, related to the basic events via certain intermediate events. A fault 

tree diagram exhibits the usual chain, linking the basic events to the intermediate 

events and the latter to the top event. In this chain, the logical connection between 

events is indicated by so-called logic gates. The principal logic gates on the fault 

tree are the “AND” gate, symbolized by , and the “OR” gate, symbolized by .

As a simple example of a fault tree, consider a water pumping system consisting 

of 2 pumps A and B, where A is the pump ordinarily operating and B is a standby 

unit that automatically takes over if A fails. A control valve in both cases regulates 

flow of water through the pump. Suppose that the top event is no water flow, result-

ing from the following basic events: failure of pump A and failure of pump B or fail-

ure of the control valve. The full tree diagram for the system is shown in Figure 26.1.

Because one of the purposes of a fault tree analysis is the calculation of the 

probability of the top event, let A, B, and C represent the failure of pump A, the 

failure of pump B, and the failure of the control valve, respectively. Then, if T rep-

resents the top event of no water flow, one can write

 T AB C  (26.1)

This equation indicates that T occurs if both A and B occur or if C occurs.

Assume that A, B, and C are independent and P(A) 0.01, P(B) 0.005, and 

P(C) 0.02. Then, application of the addition theorem [1] yields

 P T P AB P C P ABC( ) ( ) ( ) ( )  (26.2)

No flow

OR

Pump

failure
Control

valve

failure

Pump A

failure

Pump B

failure

AND OR

AND

 or gate 

 and gate 

Figure 26.1 Fault tree for a water pumping system.
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The independence of A, B, and C implies

 P AB P A P B( ) ( ) ( )  (26.3)

and

 P ABC P A P B P C( ) ( ) ( ) ( )  (26.4)

Therefore, the proceeding equation can be written as

 P T P A P B P C P A P B C( ) ( ) ( ) ( ) ( ) ( )( )  (26.5)

Substituting the proceeding data gives

 
P T( ) ( . )( . ) . ( . )( . )( . )

.

0 01 0 005 0 02 0 01 0 005 0 02

0 020049
 (26.6)

In connection with fault trees, cut sets and minimal cut sets are defined as fol-

lows. A cut set is a basic event or intersection of basic events that will cause the top 

event to occur. A minimal cut set is a cut set that is not a subset of any other cut 

set. In the example presented above, AB and C are cut sets because if AB occurs 

then T occurs, and if C occurs, then T occurs. Also, AB and C are minimal cut sets, 

because neither is a subset of the other. The event T describes what can be regarded 

as a top event represented as a union of cut sets.

The reader should note the behavior of a fault tree includes the following:

1. A fault tree works backwards from an undesirable event or ulti-

mate consequence to the possible causes and failures.

2. It relates the occurrence of an undesired event to one or more pre-

ceding events.

3. It “chain-links” basic events to intermediate events that are in turn 

connected to the top event.

4. It is used in the calculation of the probability of the top event.

5. It is based on the most likely or credible events that lead to a par-

ticular failure or accident.

6. Its analysis includes human error as well as equipment failure.

Illustrative Example 26.1

A runaway chemical reaction can lead to a fire, an explosion, or massive pollutant 

emissions. It occurs if coolers fail (A) or there is a bad chemical batch (B). Coolers 

fail only if both cooler #1 fails (C) and cooler #2 fails (D). A bad chemical batch 

occurs if there is a wrong mix (E) or there is a process upset (F). A wrong mix 

occurs only if there is an operator error (G) and instrument failure (H). Construct 

a fault tree.
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Solution

Begin with the top event for this problem shown in Figure 26.2. Generate the 

first branch of the fault tree (see Figure 26.3), applying the logic gates seen in 

Figure 26.1. Then generate the second and third branches using the same process. 

The addition of the second and third branches can be seen in Figure 26.4 and 

Figure 26.5, respectively.

Runaway chemical

reaction (I)

Figure 26.2 Top event of fault tree.

Runaway chemical

reaction (I) 

Cooler fails

(A) 
Bad batch

(B) 

Figure 26.3 Fault tree with first branch.

Runaway
chemical

reaction (I) 

Bad
batch

(B) 

Cooler 
fails
(A) 

Cooler
#1 fails

(C)

Cooler
#2 fails

(D)

Wrong
mix
(E)

Process
upset

 (F)

Figure 26.4 Fault tree with second branch.
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Illustrative Example 26.2

Refer to Illustrative Example 26.1. If the following annual probabilities are pro-

vided by the plant engineer, calculate the probability of a runaway chemical reac-

tion occurring in a year’s time given the following annual probabilities:

 P C( ) .0 050  

 P D( ) .0 080  

 P F( ) .0 060  

 P G( ) .0 030  

 P H( ) .0 010  

Runaway 

chemical 

reaction (I) 

Cooler 

fails (A)

Bad

batch (B)

cooler

#1 fails

(C)

cooler

#2 fails

(D)

Wrong

mix

 (E)

Process

upset

 (F)

Operator

error

(G)

Instrument

failure

(H)

Figure 26.5 Fault tree with third branch.
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Solution

Redraw Figure 26.5 and insert the given probabilities (see Figure 26.6). Calculate 

the probability that the runaway reaction will occur

 

P ( . )( . ) ( . )( . ) .

. . .

.

0 05 0 08 0 01 0 03 0 06

0 0040 0 0003 0 06

0 064
 

Note that the process upset, F, is the major contributor to the probability. The 

reader should also note that if A and B are not mutually exclusive then

 

P 0 004 0 0603 0 004 0 0603

0 06406

. . ( . )( . )

.  

Figure 26.6 Runaway chemical reaction probabilities.

Runaway
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reaction (I)

Cooler 
fails (A)

Bad
batch (B)

Cooler
#1 fails

(C)

Cooler
#2 fails

(D)

Wrong
mix
(E)

Process
upset

(F)

Operator
error
(G)

Instrument
failure

(H)

0.05 0.08

0.03 0.01

0.06
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Illustrative Example 26.3

A distillation column explosion can occur if the overhead cooler fails (OC) and the 

condenser fails (CO) or there is a problem with the reboiler (RB) [2]. The overhead 

unit fails (OUC) only if both the cooler fails (OC) and the condenser fails (CO). 

Reboiler problems develop if there is a power failure (PF) or there is a failed tube 

(FT) [3]. A power failure occurs only if there are both operator error (OE) and 

instrument failure (IF). Construct a fault tree with the information below.

 P OC( ) .0 02  

 P CO( ) .0 05  

 P FT( ) .0 04  

 P OE( ) .0 60  

 P IF( ) .0 005  

Solution

The fault tree is given in Figure 26.7. Based on the data provided,

 
P( ) ( . )( . ) ( . )( . ) .

. . .

explosion 0 02 0 05 0 005 0 6 0 04

0 001 0 003 0 004 0 0413.
 

Note that the major contributor to an explosion is the failed tube (FT), whose 

probability is 0.04.

26.2  Event Trees

An event tree provides a diagrammatic representation of event sequences that 

begin with a so-called initiating event and terminate in one or more undesirable 

consequences. In contrast to a fault tree, which works backwards from an unde-

sirable consequence to possible causes, an event tree looks forward from the ini-

tiating event to possible undesirable consequences. The initiating event may be 

equipment failure, human error, power failure, or some other event that has the 

potential for adversely affecting an ongoing process or environment.

The following illustration of an event tree analysis is based on one reported in 

the classic work by Lees [4]. Consider a situation in which the probability of an 

external power outage in any given year is 0.1. A backup generator is available, and 

the probability that it will fail to start on any given occasion is 0.02. If the generator 

starts, the probability that it will not supply sufficient power for the duration of the 
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external power outage is 0.001. An emergency battery power supply is available; 

the probability that it will be inadequate is 0.01.

Figure 26.8 shows the event tree with the initiating event-external power out-

age, denoted by I. Labels for the other events on the event tree are also indicated. 

The event sequences I S G B and I S B terminate in the failure of emergency power 

supply. Applying the multiplication theorem, one obtains

 P ISGB( ) ( . )( . )( . )( . ) .0 1 0 98 0 001 0 01 9 8 10 7
 

 P ISB( ) ( . )( . )( . )0 1 0 02 0 01 2 10 5
 

Therefore, the probability of emergency power supply failure in any given year is 

2.098 10 5, the sum of these two probabilities.

Distillation
column

explosion

Overhead
fails

(OUC)

Reboiler
problem

(RB)

Cooler
fails
(OC)

Condenser
fails
(CO)

Power
failure

(PF)

Failed
tube
(FT)

Operator
error 
(OE)

Instrument
failure

(IF)

0.02 0.05

0.60 0.005

0.04

Figure 26.7 Distillation column explosion fault tree.



Fault Tree and Event Tree Analysis 351

The reader should note the behavior of an event tree includes the following:

1. An event tree works forward from an initial event, or an event that 

has the potential for adversely affecting an ongoing process, and 

ends at one or more undesirable consequences.

2. It is used to represent the possible steps leading to a failure or 

accident.

3. It uses a series of branches that relate the proper operation and/or 

failure of a system with the ultimate consequences.

4. It is a quick identification of the various hazards that could result 

from a single initial event.

5. It is beneficial in examining the possibilities and consequences of 

a failure.

6. It does not usually quantify (although it can) the potential of the 

event occurring.

7. It can be incomplete if all the initial events are not identified.

Thus, the use of event trees is sometimes limited for hazard analysis because 

they usually do not quantify the potential of the event occurring. They may also be 

incomplete if all the initial occurrences are not identified. Their use is beneficial on 

examining, rather than evaluating, the possibilities and consequences of a failure. 

For this reason, a fault tree analysis should supplement this model to establish the 

probabilities of the event tree branches.

External power outage
(I)

Generator
starts (S)

Generator
fails to start

(S)

Generator
power

inadequate (G)

Generator
power

adequate (G)

Battery power
adequate (B)

Battery power
inadequate (B)

Battery power
adequate (B)

Battery power
inadequate (B)

Figure 26.8 Event tree for power outage.
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Illustrative Example 26.4

Construct a decision tree given the following information:

Date: a couple’s anniversary

Decision of husband: buy flowers or do not buy flowers

Consequences (buy flowers): domestic bliss or suspicious wife

Consequences (do not buy flowers): status quo, or wife in tears/ hus-

band in doghouse

Solution

Begin by setting the initial event “tree” format which is the top event in Figure 26.9. 

Also note that this is an event tree. Set up the first branch from the initial event. 

This is the first decision point (Figure 26.10).

One may now complete the tree. Note that the bottom four events evolve from 

what may be defined as resolution of uncertainty points (Figure 26.11).

This is an example of an event tree. As indicated above, in contrast to a fault 

tree, which works backwards from a consequence to possible causes, an event tree 

works forward from the initiating (or top) event to all possible consequences. 

Thus, this type of tree provides a diagrammatic representation of sequences that 

Anniversary

Figure 26.9 Top event.

Anniversary

Buy
flowers

Don’t buy
flowers

Figure 26.10 First decision point.

Anniversary

Buy
flowers

Don’t buy
flowers

Dom.
bliss

Sus.
wife

Dog
house

Status
quo

Figure 26.11 Marital bliss event tree.



Fault Tree and Event Tree Analysis 353

begin with a so-called initiating event and terminate in one or more consequences. 

It primarily finds application in hazard analysis.

Illustrative Example 26.5

If a plant fire occurs, a smoke alarm sounds with probability 0.9. The sprinkler 

system functions with probability 0.7 whether or not the smoke alarm sounds. The 

consequences are minor fire damage (alarm sounds, sprinkler works), moderate 

fire damage with few injuries (alarm fails, sprinkler works), moderate fire damage 

with many injuries (alarm sounds, sprinkler fails), and major fire damage with 

many injuries (alarm fails, sprinkler fails). Construct an event tree, and indicate 

the probabilities for each of the four consequences.

Solution

The first set of consequences of the plant fire with their probabilities are shown 

in Figure 26.12. The second set of consequences of the plant fire and their prob-

abilities are shown in Figure 26.13. The final set of consequences and the prob-

abilities of minor fire damage, moderate fire damage with few injuries, moderate 

fire damage with many injuries, and major fire damage with many injuries are 

shown in Figure 26.14. Note that for each new branch in an event tree, the sum of 

probabilities must equal 1.0.

Plant fire

Smoke alarm
sounds

Smoke alarm
fails

0.9 0.1

Figure 26.12 Event tree with first set of consequences.

Plant fire

Smoke alarm
sounds

Smoke alarm
fails

0.9 0.1

Sprinkler
system

functions

Sprinkler
system

 fails

Sprinkler
system

functions

Sprinkler
system

 fails

0.7 0.3 0.7 0.3

Figure 26.13 Event tree with second set of consequences.
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Illustrative Example 26.6

An explosion followed immediately by an emission occurs in a plant. An alarm 

(A) then sounds with probability 0.7. The emission control system (E) functions 

with probability 0.9 whether or not the alarm sounds. The consequences are minor 

damage (A sounds, E works), moderate damage with few injuries (A sounds, 

E fails), moderate damage with many injuries (A fails, E works), and major dam-

age with many injuries (A fails, E fails). Construct an event tree and indicate the 

probabilities for each of the four consequences.

Solution

This is a “takeoff ” on illustrative example 26.5. The event tree for this application 

is shown in Figure 26.15.

Illustrative Example 26.7

A risk assessment is being conducted at a chemical plant to determine the conse-

quences of two incidents, with the initiating event being an unstable chemical. The 

incidents are as follows:

Incident I: an explosion resulting from detonation of an unstable 

chemical

Incident II: a release of a flammable toxic gas

Plant fire

Smoke alarm
sounds

Smoke alarm
fails

0.9 0.1

Sprinkler
system

functions 

Sprinkler
system

 fails 

Sprinkler
system

functions

Sprinkler
system

 fails

0.7 0.3 0.7 0.3

Moderate
fire damage;

many
injuries

Moderate
fire

damage; few
injuries

Minor fire
damage

Major fire
damage;

many
injuries

(0.9)(0.7) = 0.63 (0.9)(0.3) = 0.27 (0.1)(0.7) = 0.07 (0.1)(0.3) = 0.03 

Figure 26.14 Event tree with final set of consequences.
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Incident I has one possible outcome, the explosion, the consequences of which 

are assumed to be unaffected by weather conditions. Incident II has several pos-

sible outcomes, which, for purposes of simplification, are reduced to the following:

Outcome IIA: vapor-cloud explosion, caused by ignition of the gas 

released, centered at the release point, and unaffected by weather 

conditions

Outcome IIB: toxic cloud extending downwind and affected by 

weather conditions.

For purposes of further simplification only two weather conditions are envisioned, 

a northeast wind and a southwest wind. Associated with these two wind directions 

are events IIB1 and IIB2:

Event IIB1: toxic cloud to the southwest

Event IIB2: toxic cloud to the Northeast

Prepare an event tree for incident I and incident II. (Note: this was an actual 

analysis conducted at a chemical plant.)

Solution

The event tree is provided in Figure 26.16. Additional details, including numerical 

data and calculations, are available in the literature [5].

Plant explosion

A
Sounds

A
Fails

E
Fails

E
Functions

E
Functions

E
Fails

Minor damage
Moderate

damage; few
injuries

Major damage;
many injuries

Moderate
damage; many

injuries

0.63 0.27 0.030.07

Figure 26.15 Event tree for plant explosion.
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Monte Carlo simulation is a procedure for mimicking observations on a random 

variable that permits verification of results that would ordinarily require difficult 

mathematical calculations and/or extensive experimentation. The method nor-

mally uses computer programs called random number generators. A random num-

ber is a number selected from the interval (0, 1) in such a way that the possibilities 

that the number comes from any two subintervals of equal “length” are equal. For 

example, the probability that the number is in the subinterval (0.1, 0.3) is the same 

as the probability that the number is in the subinterval (0.5, 0.7). Thus, random 

numbers are observations on a random variable X having a uniform distribution 

on the interval (0, 1). This means that the probability distribution function (pdf) 

of x is specified by

 f x x( ) 1 0 1;  (27.1)

 0; elsewhere  (27.2)

The above pfd assigns equal probability to subintervals of equal length in the 

interval (0, 1). Using random number generators, Monte Carlo simulation can 

generate observed values of a random variable having any specified pfd. For 
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example, to generate observed values of T, the time to failure, when T is assumed 

to have a pdf specified by f(t), one first uses the random number generator to 

generate the value of T between 0 and 1. The solution is an observed value of the 

random variable T having a pdf specified by f(t).

One of the authors’ first academic introductions to Monte Carlo methods 

involved the evaluation of a simple integral [1]. Consider the following integral, I

 I I x dx
0

99

( )  (27.3)

where I(x) is an integrand which is a function of x. A solution to this integral can 

be obtained in the following manner:

1. Generate by any means a random number between 00 and 99.

2. Set x to the value of the random number.

3. Calculate I(x) at that value of x, i.e., the random number.

4. Repeat steps (1) – (3) for N times (a large number of random 

numbers).

5. Sum all the N values of I(x).

6. Divide the sum obtained in (5) by N. This represents the average 

value Ī (x) for I(x) over the 00 – 99 range of x.

7. Multiply Ī (x) by the range of x, i.e.,

 I I x I x( )[ ] ( )00 99 99  (27.4)

Monte Carlo methods find application in a host of applied mathematical and 

engineering areas. Most of these involve the solution of problems that cannot be 

solved by analytical or ordinary numerical methods. Solving these types of prob-

lems using Monte Carlo methods will be explored in the illustrative examples to 

follow.

Three sections compliment the presentation of this chapter. Section numbers 

and subject titles follow.

27.1: Exponential Distribution Applications

27.2: Normal Distribution Applications

27.3: Heat Conduction Applications

27.1  Exponential Distribution Applications

Three illustrative examples are provided below for the chapter’s section involving 

the exponential distribution.
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Illustrative Example 27.1

A pump has time to failure, T, measured in years, with an exponential pdf speci-

fied by

 
f t e t ot( ) ; 

; elsewhere0
 

Generate 15 simulated values of T using a Monte Carlo procedure, i.e., the gen-

eration of random numbers.

Solution

Calculate the cumulative distribution function (cdf), F(t), from the given pdf 

specified by f(t).

 
f t e t

t

t( ) ; 

; 

0

0 0
 

From Chapter 25 one may write

 

F t P T t

f t dt

e dt e t

t

t

t

t t

( ) ( )

( )
0

0

1 0

0 0

; 

; 

 

Fifteen random numbers are now generated in the interval or range of 0 to 1:

 0 93 0 06 0 53 0 56 0 41 0 38 0 78 0 54. . . . . . . ., , , , , , , ,  

 0 49 0 89 0 77 0 85 0 17 0 34 0 56. . . . . . ., , , , , ,  

For each random number generated, solve the equation obtained by setting the 

random number equal to F(t). The first random number generated is 0.93. Setting 

this equal to the cdf, F(t), produces the equation

 0 93 1. e t
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Solving yields

 e t 0 07.  

 t ln . .0 07 2 66  

Therefore, the first simulated value of T, time to failure, is 2.66 years. The other 

simulated values of T obtained in the same manner are shown in Table 27.1.

Illustrative Example 27.2

Use the results of the previous example to estimate the average life of the pump.

Solution

The average value of T is the sum of all 15 simulated values divided by the number 

of simulated values (N). in this case N 15. The average value of T is 1.02 years; 

this represents the Monte Carlo estimate of the average life of the pump.

Illustrative Example 27.3

Outline at least two other methods that could be employed to estimate the average 

life of the pump in Illustrative Example 27.1.

Table 27.1 Simulated time to failure.

Random number Simulated time to failure (years)

0.93 2.66

0.06 0.06

0.53 0.76

0.41 0.82

0.38 0.48

0.78 1.52

0.54 0.78

0.49 0.67

0.89 2.21

0.77 1.47

0.85 1.90

0.17 0.19

0.34 0.42

0.56 0.82
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Solution

The exact value of the average life of the pump can be calculated by finding the 

expected value of T from its pdf [2].

 

E T tf t dt

te dtt

( ) ( )

.
0

1 0

 

A more accurate estimate of the true value of the average life of the pump can 

be obtained by increasing the number of simulated values on which the estimate 

is based. The expected value, or mean, can also be shown to equal the coeffi-

cient associated with the exponential term, i.e., t, for an exponential distribution. 

Therefore, the mean for this distribution is 1.0 year.

27.2  Normal Distribution Applications

Two illustrative examples are provided for different applications involving the nor-

mal distribution.

Illustrative Example 27.4

A series system consists of two electrical components, A and B. Component A has 

a time to failure, T
A
, and assumed to be normally distributed with mean ( ) of 100 

h and standard deviation ( ) of 20 h. Component B has a time to failure, T
B
, and 

assumed to be normally distributed with mean 90 h and standard deviation 10 h. 

The system fails whenever either component A or component B fails. Therefore, 

T
S
, the time to failure of the system is the minimum of the times to failure of com-

ponents A and B.

Estimate the average value of T
s
 on the basis of the simulated values of 10 simu-

lated values of T
A
 and 10 simulated values of T

B
.

Solution

First, generate 20 random numbers in the range 0 to 1:

 0 10 0 54 0 42 0 02 0 81 0 07 0 06 0 27 0 57 0 80. . . . . . . . . ., , , , , , , , , ;; A  

 0 92 0 86 0 45 0 38 0 88 0 21 0 26 0 51 0 73 0 71. . . . . . . . . ., , , , , , , , , ;; B  

Use the table of the standard normal distribution (see Table 25.1) and obtain the 

simulated value of Z corresponding to each of the above companion random 
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numbers for A+B. The first random number is 0.10. the corresponding simulated 

value of Z is 1.28 because the area under a standard normal curve to the left of 

1.28 is 0.10. The remaining simulated values of Z are obtained in similar fashion. 

The 20 simulated values of Z are provided in Table 27.2.

Using the first 10 simulated values of Z, obtain 10 simulated values of T
A
 by 

multiplying each simulated value of Z by 20 (the standard deviation ) and adding 

100 (the mean, ), i.e.,

 T ZA 100  

Note that

 Z
TA 100

 

Table 27.2 Simulated values of Z

Random number Simulated values of Z

0.10 1.28

0.54 0.10

0.42 0.20

0.02 2.05

0.81 0.88

0.07 1.48

0.06 1.56

0.27 0.61

0.57 0.18

0.80 0.84

0.92 1.41

0.86 1.08

0.45 0.13

0.38 0.31

0.88 1.17

0.21 0.81

0.26 0.64

0.51 0.03

0.73 0.61

0.71 0.56
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The life time or time to failure of each component, T, is calculated using this 

equation. Thus, multiplying each of the first 10 simulated values of Z by 20 and 

adding 100 yields the following simulated values of T
A
:

 74 102 96 59 118 70 69 88 104 117, , , , , , , , ,  

Multiplying each of the second 10 simulated values of Z by 10 and adding 90 yields 

the following simulated values of T
B
:

 104 101 89 87 102 82 84 90 96 96, , , , , , , , ,  

Simulated values of T
S
 corresponding to each companion pair of simulated val-

ues of T
A 

and T
B
 are obtained by recording the minimum of each pair. The values 

are shown in Table 27.3.

The average of the 10 simulated values of T
S
 is 84, the estimated time to failure 

of the system.

Illustrative Example 27.5

According to state regulations, three thermometers (A, B, C) are positioned near 

the outlet of an afterburner. Assume that the individual thermometer component 

lifetimes are normally distributed with means and standard deviations given in 

Table 27.4.

Using the 10 random numbers from 0 to 1 provided in Table 27.5 for each ther-

mometer, simulate the lifetime (time to thermometer failure) of the temperature 

recording system, estimate its mean and standard deviation, and the estimated 

Table 27.3 Minimum simulated values.

Simulated time to failure

Component A (T
A
) Component B (T

B
) System (T

S
)

74 104 74

102 101 101

96 89 89

59 87 59

118 102 102

70 82 70

69 84 69

88 90 88

104 96 96

117 96 96
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time to failure for this system. The lifetime is defined as the time (in weeks) for one 

of the thermometers to “fail.”

Solution

Let T
A
, T

B
, and T

C
 denote the lifetimes of thermometer components, A, B, and C, 

respectively. Let T
s
 denote the lifetime of the system. The random number gener-

ated in Table 27.5 may be viewed as the cumulative probability, and the cumulative 

probability is the area under the standard normal distribution curve. Because the 

standard normal distribution curve is symmetrical, the negative values of Z and 

the corresponding area are once again found by symmetry. For example,

 

P Z

P Z

P Z P Z

( . ) .

( . ) .

( . ) . ( . )

1 54 0 062

1 54 0 062

0 1 54 0 5 1 54

0.. . .5 0 062 0 438

 

Recall that the lifetime or time to failure of each component, T, is calculated 

using the equation

 T Z  

where  is the mean, , the standard deviation, and Z, the standard normal vari-

able. First; determine the values of the standard normal variable, Z, for component 

A using the 10 random numbers given in the problem statement and the standard 

normal table. Then calculate the lifetime of thermometer component, T
A
, using 

Table 27.4 Thermometer data.

Thermometer A B C

Mean (weeks) 100 90 80

Standard deviation (weeks)  30 20 10

Table 27.5 Thermometer random numbers.

For A For B For C

0.52 0.01 0.77 0.67 0.14 0.90

0.80 0.50 0.54 0.31 0.39 0.28

0.45 0.29 0.96 0.34 0.06 0.51

0.68 0.34 0.02 0.00 0.86 0.56

0.59 0.46 0.73 0.48 0.87 0.82
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the above equation for T. Results are provided in Table 27.6. Next, determine the 

values of the standard normal variable and the lifetime of the thermometer com-

ponent of components B and C (see also Table 27.7 and 27.8, respectively)

For each random value of each component, determine the system lifetime, T
S
. 

Since this is system a series, the system lifetime is limited by the component with 

the minimum lifetime (see Table 27.9).

The mean value, , of T
S
, is

 
635

10
63 5.  years  

Table 27.6 Lifetime of thermometer A (T
A
).

Random number Z (standard normal table) T
A

100 30 Z

0.52 0.05 102

0.80 0.84 125

0.45 0.13 96

0.68 0.47 114

0.59 0.23 107

0.01 2.33 30

0.50 0.00 100

0.29 0.55 84

0.34 0.41 88

0.46 0.10 97

Table 27.7 Lifetime of thermometer B (T
B
).

Random number Z (standard normal table) T
B

90 20 Z

0.77 0.74 105

0.54 0.10 92

0.96 1.75 125

0.02 2.05 49

0.73 0.61 102

0.67 0.44 99

0.31 0.50 80

0.34 0.41 82

0.00 3.90 12

0.48 0.05 89
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Calculate the standard deviation, , of T
S
 using the equation [2]

 
2 21

n
TS( )  

where n is 10, the number in the population. Note that this is not a sample, so that 

a modified equation applies for 2 (see Table 27.10). Therefore,

 
5987

10
24 5

0 5.

.  years  

Table 27.8 Lifetime of thermometer C (T
C
).

Random number Z (standard normal table) T
C

80 10 Z

0.14 1.08 69

0.39 0.28 77

0.06 1.56 64

0.86 1.08 91

0.87 1.13 91

0.90 1.28 93

0.28 0.58 74

0.51 0.03 80

0.56 0.15 81

0.82 0.92 89

Table 27.9 Thermometer system lifetime.

T
A

T
B

T
C

T
S

102 105 69 69

125  92 77 77

96 125 64 64

114  49 49 49

107 102 91 91

30  99 30 30

100  80 74 74

84  82 80 80

88  12 12 12

97  89 89 89

Total 635
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Monte Carlo simulation is an extremely powerful tool available to the environ-

mental engineer/scientist that can be used to solve multivariable systems, ordinary 

and partial differential equations, numerical integrations, etc. The application to 

solving differential equations is provided in the next section.

27.3  Heat Conduction Applications

Three illustrative examples are provided in this section, two of which were intro-

duced in Part III, Chapter 21.

Illustrative Example 27.6

A new radiant heat transfer rod has been proposed for use in the incineration of 

hazardous waste. One of the first steps in determining the usefulness of this form 

of “hot” rod, is to analytically estimate the temperature profile in the rod.

A recent environmental engineering graduate has proposed to estimate the tem-

perature profile of the square pictured in Figure 27.1. She sets out to outline a calcu-

lational procedure to determine the temperature profile. One of the options available 

is to employ the Monte Carlo method. Provide an outline for such a procedure. ( See 

also Illustrative Example 21.1 where this example was previously visited.)

Solution

One method of solution involves the use of the Monte Carlo approach, involving 

the use of random numbers. Consider the square (it could also be a rectangle) 

Table 27.10 Thermometer standard deviation calculation.

System lifetime (T
S
) (T

S
-μ)2

69 30.25

77 182.25

64 0.25

49 210.25

91 756.25

30 1122.25

74 110.25

80 272.25

12 2652.25

89 650.25

Total 5987
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pictured in Figure 27.1. If the describing equation for the variation of T within the 

grid structure is

 
2

2

2

2
0

T

x

T

y
 

with specified boundary conditions (BC) for T(x, y) of T(0, y), T(a, y), T(x, 0), and 

T(x, b), one may employ the following approach.

1. Proceed to calculate T at point 1, i.e., T
1
.

2. Generate a random number between 00 and 99.

3. If the number is between 00 and 24, move to the left. For 25 to 49, 

50 to 74, and 75 to 99, move upward, to the right, and downward, 

respectively.

4. If the move in step 3 results in a new position that is at an outer 

surface (boundary), terminate the first calculation for point 1 and 

record the T value of the boundary at the new position. However, 

if the move results in a new position that is not at a boundary and 

is still at one of the nine internal grid points, repeat step 2 and step 

3. This process is continued until an outer surface or boundary is 

reached.

5. Repeat step 2 to step 4 numerous times e.g., 1000 times.

6. After completing step 5, sum all the T values obtained and divided 

that value by the number of times step 2 to step 4 have been 

z

x = ax = 0

y = 0

y = b

y

9 8 7

6 5 4

3

z

2 1

x

Figure 27.1 Monte Carlo grid (square surface).
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repeated e.g., 1000. The resulting value provides a reasonable esti-

mate of T
1
.

7. Return to step 1 and repeat the calculations for the remaining 8 

grid points.

Much of this material was presented earlier. As mentioned, this method of 

solution is not limited to square systems. Calculation details were provided in 

Illustrative Example 21.1.

Illustrative Example 27.7

Outline how to solve the problem in Illustrative Example 27.6 if the face surface is 

a rectangle as seen in Figure 27.2.

Solution

Consider the grid for the face surface in Figure 27.2. The outline of the calculation 

presented in the previous illustrative example applies. Some additional informa-

tion is available in Part III, Chapter 21.

Illustrative Example 27.8

Consider the system provided in Figure 27.3. Outline a procedure to estimate the 

corresponding profile.

Solution

A “grid” of several annular circles must be set at points that produce equal annu-

lar areas. Unlike the previous two examples, this involves a one-dimensional 

z 

x = 0

y = 0

y = b

y

9 8 7

6 5 4

3 2 1

x = a x

Figure 27.2 Rectangular grid.
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calculation. The procedure essentially remains the same for determining the tem-

perature at each grid. The analytical solution is simply given by [1,3]

 T T T T
b

b a

a

r
a ba b a( ) ,1 ; inner radius  outer rradius
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Figure 27.3 Hollow pipe grid.
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r = b



371

It is not secret that statistical calculations are now performed with spreadsheets or 

packaged programs. This statement is particularly true with regression analysis. 

Microsoft Excel possesses an “add trend line” function that will fit scatter plot data 

to a function. The result of this has often been the reduction or elimination of one’s 

fundamental understanding of this subject. Without a fundamental understand-

ing, the user can easily become confused as to what type of function to use or how 

to interpret the data. This chapter attempts to correct this shortcoming.

Engineers and scientist often encounter applications that require the need 

to develop a mathematical relationship between data for two or more variables. For 

example, if Y (a dependent variable) is a function of or depends on X (an independent 

variable), i.e.,

 Y f X( )  (28.1)

one may be required to express this (X, Y) data in equation form. This process is 

referred to as regression analysis, and the regression method most often employed 

is the method of least squares.

28
Regression Analysis [1, 2]

Introduction to Mathematical Methods for Environmental Engineers and Scientists. 
Charles Prochaska and Louis Theodore. 

© 2018 Scrivener Publishing LLC. Published 2018 by John Wiley & Sons, Inc. 
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Three sections compliment the presentation of this chapter. Section numbers 

and subject titles follow.

27.1: Scatter Diagrams

27.2: Method of Least Squares

27.3: The Correlation Coefficient

28.1  Scatter Diagrams

An important step in a regression analysis procedure – which is often omitted – is 

to prepare a plot of Y vs. X. The result, referred to as a scatter diagram, could take 

on any form. Three such plots are provided in Figure 28.1 (A to C). The first plot 

(A) suggests a linear relationship between X and Y, i.e.,

 Y a a X0 1  (28.2)

The second graph (B) appears to be represented by a second order (or parabolic) 

relationship, i.e.,

 Y a a X a X0 1 2

2
 (28.3)

The third plot suggests a linear model that applies over two different ranges, i.e., it 

could represent the data

 Y a a X X X XM0 1 0;  (28.4)

and

 Y a a X X X XM L0 1 ;  (28.5)

This multiequation model finds application in representing adsorption equilibria, 

multiparticle size distributions, quantum energy relationships, etc. In any event, a 

scatter diagram and individual judgment can suggest an appropriate model at an 

early stage in the analysis [1, 2].

Some of the models often employed by technical individuals are as follows:

 Linear: Y a a X0 1  (28.6)

 Parabolic: Y a a X a X0 1 2

2
 (28.7)

 Cubic: Y a a X a X a X0 1 2

2

3

3
 (28.8)

 Quadratic: Y a a X a X a X a X0 1 2

2

3

3

4

4
 (28.9)
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28.2  Method of Least Squares

Procedures to evaluate the regression coefficients a
0
, a

1
, a

2
, etc. referred to in 

the previous section are provided below. The reader should note that the analy-

sis is based on the method of least squares. This technique provides numerical 

values for the regression coefficients a
i
 such that the sum of the square of the 

Figure 28.1 Scatter diagrams: (a) linear relationship, (b) parabolic relationship, and (c) dual-linear 

relationship.

(c)

(b)

(a)

Y

X

Y
Y

X

X
L

X
m

X
m

X
0

X
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difference (error) between actual Y and the Y
e
 predicted by the equation or 

model is minimized.

Two sets of data are shown in Figure 28.2. In Figure 28.2, the solid dots (experi-

mental value of Y) and open dots (equation or model value of Y, i.e., Y
e
) represent 

the data and model values, respectively. On examining the two figures, one can 

immediately conclude that the error (Y  Y
e
) squared and summed for the eight 

points is more for the first figure on the left. Note that a dashed line represents the 

error. The line that ultimately produces a minimum of the sum of the individual 

error squared, i.e., has the smallest possible value, is the regression model (based 

on the method of least squares). The proof is left as an exercise.

To evaluate a
0
 and a

1
 for a linear model (see Equation 28.6), one employs the 

following least squares algorithm for n data points of Y and X.

 a n a X Y0 1  (28.10)

 a X a X XY0 1

2
 (28.11)

All the quantities given, except a
0
 and a

1
, can be easily calculated for the data. Since 

there are two equations and two unknowns, the set of equations can be solved for 

a
0
 and a

1
. For this case,

 a
n XY X Y

n X X
1 2 2( )

 (28.12)

Dividing numerator and denominator by n, and defining X X/n and Y Y/n, 

leads to

 a
XY

X Y

n

X
X

n

XY nXY

X nX
1

2
2 2 2( )

 (28.13)

Figure 28.2 Error difference: actual and predicted values.

Y

X
Actual / data Model value

Y

XActual / data Model value
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Using this value of a
1
 produces the following equation for a

0
:

 a Y a X0 1  (28.14)

If the model (or line of regression) is forced to fit through the origin, then the 

calculated value of Y
e

0 at X 0. For this case, the line of regression takes the 

form

 Y a X ae 1 0 0;  (28.15)

with

 a
XY

X
1 2  (28.16)

A cubic model takes the form (see Equation 28.8):

 Y a a X a X a X0 1 2

2

3

3
 (28.8)

For n pairs for X  Y values, the constants a
0
, a

1
, a

2
, and a

3
 can be obtained by the 

method of least squares so that (Y  Y
e
)2 again has the smallest possible value, 

i.e., is minimized. The coefficients a
0
, a

1
, a

2
, and a

3
 are the solution of the following 

system of four linear equations (1, 2):

 a n a X a X a X Y0 1 2

2

3

3
 

 a X a X a X a X YX0 1

2

2

3

3

4
 

 a X a X a X a X YX0

2

1

3

2

4

3

5 2
 (28.17)

 a X a X a X a X YX0

3

1

4

2

5

3

6 3
 

This set of equations can be solved for a
0
, a

1
, a

2
, and a

3
 since there are four equa-

tions and four unknowns. This development can be extended to other regression 

equations, e.g., exponential, hyperbola, higher order models, etc.

28.3  The Correlation Coefficient

The correlation coefficient provides information on how well the model, or line of 

regression, fits the data. It is denoted by r and is given by

 r
XY

X Y

n

X
X

n
Y

Y

n
2

2
2

2
( ) ( )

 (28.18)
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or

 r
n XY X Y

n X X n Y Y[ ( ) ][ ( ) ]2 2 2 2
 (28.19)

or

 r
XY nXY

X nX Y nY( )( )2 2 2 2
 (28.20)

This equation can also be shown to take the from

 r
Y Y

Y Y
e( )

( )

2

2  (28.21)

The correlation coefficient satisfies the following six properties:

1. If all points of a scatter diagram lie on a line, then r 1 or 1. In 

addition, r2 1. The square of the correlation coefficient is defined 

as the coefficient of determination.

2. If no linear relationship exists between the X’s and Y’s then r 0. 

Furthermore, r2 0. It can be concluded that r is always between 

1 and 1, and r2 is always between 0 and 1.

3. Values of r close to 1 and 1 are indicative of a strong, or positive 

linear relationship.

4. Values of r close to 0 are indicative of a weak linear relationship.

5. The correlation coefficient is positive or negative, depending on 

whether the linear relationship has a positive or negative slope. 

Thus, positive values or r indicate that Y increases as X increases; 

negative values indicate that Y decreases as X increases.

6. A value of r 0 only indicates the lack of a linear correlation; X 

and Y might be strongly correlated by some nonlinear relation, 

as discussed earlier. Thus, r can only measure the strength of lin-

ear correlations; if the data are nonlinear, one should attempt to 

linearize before computing r.

Another measure of the model’s fit to the data is the standard error of the estimate, 

or s
e
. It is given as

 s
Y Y

n
e

e( )
.

2
0 5

 (28.22)
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Finally, the equation of the least-squares line of best fit for the given observa-

tions on X and Y can be written in terms of the correlation coefficient as follows:

 Y Y r
s

s
X X

y

x

( )  (28.23)

where X, Y, s
x
, s

y
, and r are the two sample means, the two sample standard devia-

tions, and sample correlation coefficient obtained from the n pairs of observations 

on X and Y, respectively. It should be noted once again that the correlation coef-

ficient only provides information on how well the model fits the data. It is empha-

sized that r provides no information on how good the model is, or whether this is 

the correct or best model to describe the functional relationship of the data.

Illustrative Example 28.1

Table 28.1 shows eight pairs of observations on X and Y where Y is the observed 

percentage yield of a biological reaction at various centigrade temperatures, X. 

Obtain the least-squares line of regression of Y on X.

Solution

The observed values of Y against the associated values of X are plotted in 

Figure 28.3. The scatter diagram appears to exhibit a linear pattern. Equation 28.1 

is assumed to apply. The values of X, Y, XY, X2, Y2, ( X)2, ( Y)2 and n are 

now calculated:

 

X

Y

XY

1900

700

169 547 5, .

Table 28.1 Temperature – biological yield data.

% Yield (Y) Temperature, °C (X)

75.4 150

79.4 175

82.1 200

86.6 225

90.9 250

93.3 275

95.9 300

96.1 325
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X

X

Y

Y

n

2

2

2

2

477 500

3 610 000

490 000

61 676 94

8

,

, ,

,

, .

( )

( )

 

The least-squares estimates, a
0
 and a

1
, are calculated using the equations pro-

vided above. Appling Equation (28.12),

 a
n XY X Y

n X X
1 2 2

8 169547 5 1900 700

8 477500

( )

( )( . ) ( )( )

( )( )) ( )

.

3610000

0 126

 (28.12)

The coefficient a
0 
is calculated employing Equation (28.14).

 

a Y a X

a

0 1

0

700

8
0 126

1900

8

57 5

.

.

 (28.13)

Thus, the describing equation is

 Y X57 5 0 126. . ; consistent units  

Figure 28.3 Scatter diagram of yield vs. temperature for a biological reaction; Illustrative 

Example 28.1.

70
125 175 225 275 325

75

80

85

90

95

100

P
e

rc
e

n
t 

y
ie

ld
 (

Y
)

Temperature (X)



Regression Analysis 379

The reader should note that if more temperature-yield data become available, 

thus increasing the number of points, then the calculated line may not be the best 

representation of all the data; the least-squares solution should then be recom-

puted using all the data. In addition, the assumed model, e.g., linear, may not be 

the “best” model.

Illustrative Example 28.2

Use the results from the previous illustrative example to estimate the “average” 

percentage yield of the biological reaction at 260 °C.

Solution

The result of

 Y X0 126 57 575. .  

is employed to calculate the value of Y when X 260. For X 260,

 
Y 0 126 260 57 575

90 3

. ( ) .

. %
 

Therefore, the estimated average percentage yield at 260 °C is 90.3%.

Illustrative Example 28.3

Pollutant A is undergoing a reaction in a specially controlled laboratory experi-

ment. The data in Table 28.2 have been obtained for the reaction rate, r
A
, vs. 

concentration, C
A
. Using the data, estimate the coefficient k

A
 and  in the equation 

below [3]:

 r k CA A A  

Solution

As discussed in the introduction, given experimental data for Y measured at 

known values of X, an often-encountered problem is to identify the functional 

Table 28.2 Reaction rate data.

Reaction rate, r
A
 (lbmol/ft3 · sec) Concentration, C

A
 (lbmol/ft3)

48 8

27 6

12 4

3 2
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relationship between the two. One invariably starts by constructing an X–Y plot. 

The goal is to find a simple relationship between X and Y, e.g., to seek a straight 

line. If the X–Y plot is not straight, one should try to “straighten it” by replotting, 

using other functions, other scales, or both.

Some functions readily linearize; examples include the exponential

 Y A mXe  (28.24)

and the power law

 Y X  (28.25)

These linearize by taking the natural logarithms:

 ln lnY A mX; exponential  (28.26)

and

 ln lnY X; power law  (28.27)

Thus, exponentials yield straight lines on semilog plots, whereas power laws yield 

straight lines on log-log plots.

For the problem at hand, linearize the equation by taking the natural logarithm 

(ln) of both sides of the equation.

 r k CA A A  

 ln ln ln( )r k CA A A  

Change the variables to Y and X, so that

 Y A BX  

Regress the preceding four data points using the method of least squares, where 

A ln(k
A
) and B . Once again, the method of least squares requires that the 

sum of the errors squares between the data and the model is minimized.

 

ln( ) ln( )

ln( ) ln( )

ln( ) ln( )

ln( ) ln(

3 2

12 4

27 6

48 8

A B

A B

A B

A B ))

 

Employ Equation (28.12) and Equation (28.14). The linear equation coeffi-

cients A and B are given by
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A

B

0 2878

2 0

.

.
 

These may be obtained through longhand calculation. However, they are more 

often obtained with the aid of computer software.

Take the inverse natural logarithm of A to obtain k
A
.

 
A k

B

Aln .

.

0 75

2 0
 

The equation for the rate of reaction is therefore

 r CA A0 75 2 0. .
 

Illustrative Example 28.4

The resistance in ohms and failure time in minutes of a random sample of 20 tran-

sistors were recorded as shown in Table 28.3.

Calculate the linear correlation coefficient, r.

Solution

Calculate X, Y, XY, X2, Y2, and n for an assumed linear model.

 
X

Y

752

692

Table 28.3 Transistor resistance – failure time data.

Resistance (X) Failure time (Y) Resistance (X) Failure time (Y)

43 32 36 31

36 36 44 37

29 20 29 24

44 45 39 46

32 34 46 43

48 47 42 33

35 29 30 25

30 25 30 25

33 32 35 35

46 47 45 46
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XY

X

Y

n

26 952

29 104

25 360

20

2

2

,

,

,

 

Obtain r using Equation (28.19):

 r
n XY X Y

n X X n Y Y[ ( ) ][ ( ) ]2 2 2 2
 (28.19)

Substituting,

 r
20 26952 752 692

20 29104 752 20 25360 692
0 86

2 2

( ) ( )

( ( ) )( ( ) )
.

Illustrative Example 28.5 [4]

A solution containing 50 moles of benzene and 50 moles of toluene is batch dis-

tilled at a constant pressure until such a time that only 50 moles of liquid is left. 

Determine the composition of the liquid residue at the conclusion of the distilla-

tion process. Benzene / toluene equilibrium data (x, y*) is provided in Table 28.4. 

(Note that, as is common practice in batch distillation, all mole fractions refer to 

the lighter component, which in this case is benzene.)

Table 28.4 Benzene / toluene equilibrium data.

x y* y*  x 1/(y*  x)

0.000 0.000 0.000 –

0.116 0.240 0.124 8.06

0.228 0.418 0.190 5.26

0.336 0.533 0.217 4.61

0.440 0.660 0.221 4.52

0.541 0.747 0.205 4.88

0.639 0.817 0.178 5.62

0.734 0.875 0.142 7.04

0.825 0.924 0.098 10.2

0.914 0.965 0.051 19.6

1.000 1.000 0.000 –
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Solution

Write the Rayleigh equation for a simple batch distillation [4].

 ln

,

*

W

F

dx

y x

final

x

x

W final

F

 

The initial concentration of benzene (mole fraction) is:

 xF

50

50 50
0 50.  

In addition,

 ln ln ln( . ) .
W

F

final 50

50 50
0 5 0 693  

A trial-and-error solution is now required to determine the benzene mole 

fraction in the liquid. All values are known in the above integral except for the 

integral itself, i.e., the value when x
W

x
W, final

. The area under the curve is deter-

mined by guessing values of x
W, final

 until the right-hand side of the integral is equal 

to 0.693. If a numerical package is not available, one may plot 1/(y*  x) vs x as 

in Figure 28.4.

The equation appearing in Figure 28.4 is a polynomial regression fit to the data 

points, which can facilitate analytical, as opposed to numerical, integration. Upon 

integration of f(x) at varying lower bounds, it can be shown that when x
W, final

0.35, 

Figure 28.4 Benzene / toluene equilibrium Rayleigh diagram.

y = 1910x6 – 5395x5 + 6192x4 – 3685x3 + 1219x2 – 218.8x + 21.78

0
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the area under the curve is approximately equal to 0.693, which satisfies the inte-

gral. (This calculation is left as an exercise for the reader.) Therefore,

 xW final, benzene0 35. ( )  

 1 0 65xW final, toluene. ( )  
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As one might suspect, the term optimization has come to mean different things 

to different people. It has also come to mean different things for different appli-

cations, i.e., it could involve a simple two step calculation or one that requires 

the use of a detailed numerical method. To take this a step further, the authors 

were undecided to how to include optimization in this text, i.e., should it be a 

chapter – and in which Part, or does it deserve its own Part (in this case, Part V). 

After much deliberation and meditation, it was decided to present the material 

in the last Part (V) of the book, as opposed to preparing a chapter for Part III in 

Numerical Methods. The decision was primarily influenced by the desire that this 

be a book not only on the introduction to mathematical methods but also one 

that addresses a topic that is emerging as an important topic for environmental 

engineers and scientists.

There are seven chapters in Part V. The chapter numbers and accompanying 

titles are listed below.

Chapter 29: Introduction to Optimization

Chapter 30: Perturbation Techniques

Chapter 31: Search Methods

Chapter 32: Graphical Analysis

Part V
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Chapter 33: Analytical Analysis

Chapter 34: Linear Programming

Chapter 35: Linear Programming Applications

The reader should note that some of the material in Chapter 32 - Graphical 

Analysis - appeared earlier in part I, Chapter 3.
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The optimization problem has been described succinctly by Aris as “getting the 

best you can out of a given situation” [1]. Problems amenable to solution by 

mathematical optimization techniques generally have one or more independent 

variables whose values must be chosen to yield a viable solution and measure of 

“goodness” available to distinguish between the many viable solutions generated 

by different choices of these variables. Mathematical optimization techniques are 

also used for guiding the problem solver to the choice of variables that maximizes 

the aforementioned “goodness” measure (e.g., profit) or that minimizes some 

“badness” measure (e.g., cost).

One of the most important areas for the application of mathematical optimi-

zation techniques is in chemical engineering (the authors’ supposed expertise) 

design. Applications include:

1. Generation of best functional representations (e.g., curve fitting)

2. Design of optimal control systems

3. Determining the optimal height (or length) of a mass (pollutant) 

transfer control (or recovery) unit

4. Determining the optimal diameter of a unit

5. Finding the best equipment material of construction

29
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6. Generating operating schedules

7. Selecting operating conditions

In addition to the optimization definition presented above by Aris, one 

might offer the following generic definition for many environmental engineers: 

“Optimization is concerned with determining the ‘best’ solution to a given 

problem” [2]. Alternatively, a dictionary would offer something to the effect: “to 

make the most of… develop or realize to the utmost extent… often the most effi-

cient or optimum use of.” The process of optimization in environmental practice 

is required in the solution of many problems and often involves the maximization 

or minimization of a mathematical function. As one might suppose many of the 

applications involve economic consideration.

Three sections complement the presentation of this chapter. Section numbers 

and subject titles follow:

29.1: History of Optimization

29.2: The Computer Age

29.3: The Scope of Optimization

Illustrative Example 29.1

Qualitatively discuss optimization.

Solution

Optimization is viewed by many as a tool in decision-making. It often aids in the 

selection of values that allow the practicing environmental engineer to better solve 

a problem. This brief answer provides a qualitative look at optimization.

As noted above, in its most elementary and basic form, one may say that opti-

mization is concerned with the determination of the “best” solution to a given 

problem. This process is required in the solution of many general problems in 

environmental engineering and applied science in the maximization (or minimi-

zation) of a given function(s), in the selection of a control variable to facilitate the 

realization of a desired condition, in the scheduling of a series of operations or 

events to control completion dates of a given project, in the development of opti-

mal layouts of organizational units within a given design space, etc.

One of the most important areas for the application of mathematical optimization 

techniques is in engineering design. In engineering design, once a particular subject 

or process scheme has been selected for study, it is common practice to optimize 

the process from a capital cost and O&M (operation and maintenance) standpoint.

There are many optimization procedures available, most of them too detailed 

for meaningful application in a text of this nature. These sophisticated optimization 

techniques, some of which are routinely used in the design of conventional chemi-

cal and petrochemical plants, invariably involve computer calculations. Although 
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the use of these techniques in the majority of environmental applications was not 

warranted in the past, more and more real-world problems are requiring the use 

of optimization techniques.

29.1  The History of Optimization

The subject of mathematics encompasses the study of relationships among quanti-

ties, magnitudes, and properties of logical operations by which unknown quanti-

ties, magnitudes, and properties may be deduced. In the past, mathematics was 

regarded as a science involving geometry, numbers, and/or algebra. Toward the 

middle of the 19th century, however, mathematics came to be regarded increas-

ingly as the science of relations, or as the science that draws necessary conclusions. 

This latter view encompasses mathematical or symbolic logic, the science of using 

symbols to provide an exact theory of logical deduction and reference based on 

definitions, axioms, postulates, and rules for combining and transforming primi-

tive elements into more complex relations and theorems. Enter optimization.

This brief survey of the history of optimization traces the evolution of mathe-

matical ideas and concepts, beginning in prehistory. Indeed, mathematics is nearly 

as old as humanity itself; evidence of a sense of geometry and interest in geo-

metrical patterns has been found in the designs of prehistoric pottery and textiles, 

and in cave paintings. Primitive counting systems were almost certainly based on 

using the fingers of both hands, as evidenced by the predominance of the number 

10 as the base for many number systems employed today.

Interestingly, the mathematics of the late 19th and the 20th centuries is charac-

terized by an interest in unifying elements across numerous fields of mathematical 

endeavor, especially in logic. For example, group theory has proven a particularly 

effective unifier. The amount of new math and the particular topics arising at that 

time were numerous and varied as the unified set theory, intuitive geometry, the 

development of the number systems, including methods of numeration, binary 

and other bases of notation, and modular arithmetic and measurement, with 

attention to accuracy, precision, and error study. It also included studies of alge-

braic systems, linear algebra, modern algebra, vectors, matrices, logic, truth tables, 

the nature of proofs, Venn and Euler diagrams, relations, functions, probability 

and statistics, linear programming, and computer programming. 

As to the origin of optimization, it depends on who provides the response, 

because there are so many aspects of optimization of interest to the practitioner. 

For example, some claim it was Thomas Edison, when he developed a long-lasting, 

high-quality light bulb in the 1870s. His success was primarily the result of an 

extensive trial-and-error search for the optimum filament material. A few now 

refer to it as the Edisonian approach. One of the authors refers to it as the pertur-

bation approach; on occasion, he has modestly termed it the Theodore approach.

Advances in computer calculation have not only reduced the cost and time 

required to perform each iteration but also provides a better understanding of how 
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this method works. However, the success of this approach still relies heavily on the 

limitations of the user’s intuition and experience, since one often cannot predict or 

even comprehend the effects of changing numerous variables in a complex system. 

Despite this barrier, the computer has expanded and improved the employment of 

the classical methods of optimization.

With the promise of reducing design time and cost while improving product 

quality, automated design optimization held tremendous potential. Starting with 

a sub-optimal design, a numerical optimization algorithm could be used to itera-

tively adjust a set of pre-selected design parameters in an attempt to achieve a 

set of design targets. This new class of optimization technology enables broader, 

more comprehensive and faster searches for innovative designs than was possible 

using previous generations of tools. Moreover, it requires no expertise in opti-

mization theory, so it is easier to use for non-experts and experts alike. By lever-

aging an engineer’s potential to discover new design concepts, this new class of 

optimization technology overcomes the limits of human intuition and extends the 

designer’s professional capability to achieve break-through designs and accelerated 

innovation.

As noted earlier, today’s computers now allow optimization (or mathematics, 

computer science, operations research, mathematical optimization of mathemati-

cal programming) to more easily select the best element (with regard to some cri-

teria) from some set of available alternatives. In the simplest case, an optimization 

problem consists of maximizing (or minimizing) a real function by systematically 

choosing input values from within an allowed set of variables in order to compute 

the value of the function. Mathematically speaking, optimization allows one to 

find the best available value(s) of some objective function given a defined domain 

(or a set of constraints), including a variety of different types of objective functions 

and different types of domains. These various options are discussed in the last sec-

tion of this chapter.

29.2  The Computer Age

Although digital computers are often viewed as fast calculators or special slide 

rulers, they are, in fact, rather general devices for manipulating symbolic informa-

tion. As noted, the symbols being manipulated are numbers or digits (hence the 

name digital computer), and the operations being performed on the symbols are 

the standard arithmetical operations such as addition and subtraction. Famularo 

offered the following thoughts in the late 1960s: “The digital computer can be 

viewed as a high-speed calculator, which, with the availability of subroutines and 

a compiling language, is able to perform many mathematical operations such as 

add, multiply, generate analytic functions, logic decisions, etc.” [3]. Although the 

details of coding are not in the scope of this text, there is an intermediate step 

between the equations and the coding program, and that is to arrange the comput-

ing procedure in block diagram or information flow form. The operation of each 
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block is described inside the block, and the computer will perform the instruc-

tions around the loop until the condition in the decision block is satisfied, at which 

time the most recently computed values were then punched out on tape or card. 

For a large computer, this entire sequence, including a half dozen cycles around 

the loop, would be accomplished within a millisecond or so. Of course, as the 

number of equations to be solved increases, the time required to obtain a solution 

increases. For cases where the solution time becomes excessive, mathematics or 

other more sophisticated programming is used to accelerate the convergence and 

decrease the total computation time required.

High-speed computing equipment (today’s computers) has had a tremendous 

impact on engineering design, scientific computation, and data processing. The 

ability of computers to handle large quantities of data and to perform the math-

ematical operations described above at tremendous speeds permits the analysis of 

many more applications and more engineering variables than could possibly be 

handled on the aforementioned slide ruler – the trademark of engineers of yester-

year. Scientific calculations previously estimated in lifetimes of computation time 

are currently generated in seconds and, on many occasions, microseconds, and in 

some rare instances, nanoseconds [4].

Increased growth is expected in the microcomputer field as inexpensive infor-

mation-processing devices continue to be explored. The cost will continue to 

decrease, while the cost of the associated software will probably tend to increase; 

computerized processes will, therefore, be quite inexpensive unless customized 

programs must be written.

29.3  The Scope Of Optimization

One can conclude from the above that the theory and application of optimization 

is mathematical in nature, and it typically involves the maximization or minimiza-

tion of a function (usually known), which represents the “performance” of some 

“system.” This is carried out by the finding of values for those variables, which 

cause the function to yield an optimal value.

Perhaps the most important tool employed in optimization by environmental-

ists is linear programming. Linear programming consists of a linear, multivari-

able function, which is to be optimized (maximized or minimized), subject to a 

particular number of constraints. The constraints are normally expressed in linear 

form. Integer linear programming refers to optimization problems in which at 

least some of the variables must assume integer values. The reader should note that 

the terms linear programming and nonlinear programming are essentially similar 

from an application perspective. There were problems around the middle of the 

last century because of some difficulties that arose in attempting to solve nonlin-

ear programming problems. However, the arrival of the modern-day computer 

and sophisticated software (e.g., EXCEL) have removed these problems. Unless 

a solution is presented graphically in this Part, it will be obtained directly from 
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EXCEL so that the reader need not be concerned with whether a system’s perti-

nent describing equations and constraints are linear or nonlinear. Thus, details 

regarding the solution methodology for both linear programming and nonlinear 

programming problems plus the accompanying illustrative examples will not be 

presented later. They are simply not necessary and beyond the scope of this text.

One of the major responsibilities in optimization is to construct the correct 

objective function to be maximized. In a simple environmental problem, the 

objective function might be the profit associated with the operation of a land-

fill that treats two categories of waste: “inert” and “non-inert.” One optimization 

problem could be to maximize the profit (from handling the waste) by employing 

an operating treatment schedule subject to the landfill’s capacity and environmen-

tal regulatory requirements, or the problem might be rephrased in the following 

manner: what combination of the quantities of the two wastes will produce the 

maximum profit subject to the constraints connected with the landfill’s process-

ing capabilities and the different regulation requirements imposed on each waste.

The objective function may be quite simple and easy to calculate in some envi-

ronmental applications, or it may be complicated and difficult to not only calculate 

but also specify and/or describe. The objective function may also be very illu-

sive due to the presence of conflicting or dimensionally incompatible objectives; 

for example, one might be asked to optimize the profit for the aforementioned 

landfill that not only minimizes air and water contamination but also is aestheti-

cally appealing. Thus, it may not be always possible to quantify an objective func-

tion and hence be able to use any of the mathematical optimization procedures 

available.

There are a large number of mathematical optimization methods available in 

practice. Some of the simple ones are listed below:

1. A function of one variable with no constraints

2. A function of two variables with no constraints

3. A function of more than two variables with no constraints

4. Simple perturbation schemes

5. A function of one variable with constraints

6. A function of two variables with constraints

7. A function of more than two variables with constraints

Several of the above methods will be reviewed in the chapters to follow.

Some optimization problems can be divided into parts, where each part is then 

optimized. In some instances, it is possible to attain the optimum for the original 

problem by simply realizing how to optimize these constituent parts. This pro-

cess is very powerful, as it allows one to solve a series of smaller, easier problems 

rather than one large one. One of the best-known techniques to attack such prob-

lems is dynamic programming; this approach is characterized by a process which 

is performed in stages, such as manufacturing processes. Rather than solving the 

problem as a whole, dynamic programming thus optimizes one stage at a time to 
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produce an optimal set of decisions for the whole process. Although dynamic pro-

gramming has applicability in some systems/processes, it is not reviewed in this 

book. If the assumption of linearity cannot be made, as it was in the case of linear 

programming, there do exist some general procedures for nonlinear problems. 

The collection of techniques developed for these problems is called nonlinear pro-

gramming. This too is addressed in this book.

Finally, most engineering optimization applications involve economics: maxi-

mizing profit, minimizing cost, or both. Environmental applications can involve 

minimizing toxic emissions, maximizing energy usage and conservation, mini-

mizing health and safety risks, standard economic concerns, etc. The reader 

should not lose sight that most real-world industry applications involving optimi-

zation usually require simple solutions. Here is a comment from a retired engineer 

[4]: “Generally, the consumer goods industry where I worked does not rely on 

sophisticated models. Basically, optimization was conducted to determine overall 

consumer preference, or liking, to determine how to use minimum resources and 

lastly to determine how to minimize costs subject to constraints. In the determi-

nation of consumer preference, we typically used design of experiments to exam-

ine the broad range of attributes that led to maximum product liking or decision 

to purchase. Occasionally, we modeled processes and used regression models. In 

that case, we could search or compute the desired maximum. The last set of tech-

niques used is what the business world calls Operations Research. Typically, linear 

or dynamic programming was used to evaluate an objective function subject to 

constraints. For example, we used linear programming in hot dog manufacturing. 

The goal was to come up with a mixture of meat cuts that minimized costs while 

meeting governmental requirements for protein, fat, and water content”.
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A significant number of optimization problems face the environmental  engineer. 

The optimal design of industrial processes as well as process equipment has 

long been of concern to the practicing engineer, and indeed, for some, might be 

regarded as a definition of the function and goal of applied engineering. The prac-

tical attainment of an optimum design is generally a result of factors that include 

mathematical analysis, empirical information, and both the subjective and objec-

tive experience of the engineer and/or scientist.

One simple approach for solving optimization problems that is recommended 

by the authors is a trial-and-error scheme that includes perturbation calculations. 

This involves a systematic change of variables, one by one, in an attempt to locate 

an optimum. To be practical, this can mean that one must limit the number of 

variables by assuming values to those (process) variables that are known before-

hand to play an insignificant role. Reasonable guesses or simple or shortcut math-

ematical methods can further simplify the procedure. Much information can be 

gathered from this type of study since it usually identifies those variables that sig-

nificantly impact the solution, such as on the overall performance of equipment 

or a process, and helps identify the major contributors effecting the optimization 

calculations.
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Four sections complement the presentation of this chapter. Section numbers 

and subject titles follow:

30.1: One Independent Variable

30.2: Two Independent Variables

30.3: Three Independent Variables

30.4: The Heat Exchange Network Dilemma

30.1  One Independent Variable

Two illustrative examples highlight this section. These examples have a depen-

dent variable that depends on one independent variable. One example involves a 

cyclone and air pollution recovery/control. The second example is concerned with 

minimizing the work requirement for a two-stage compressor.

Illustrative Example 30.1

A process emits 50,000 acfm of gas containing a dust (it may be considered ash 

and/or metal) at a loading of 2.0 gr/ft3. A cyclone [1, 2] is employed for particle 

capture and the dust captured from the unit is worth $0.03/lb of dust. Experimental 

data have shown that the collection efficiency, E, is related to the system pressure 

drop, ΔP, by the formula:

 E
P

P 15 0.
 

where E fractional collection efficiency

 ΔP pressure drop, lb
f 
/ft2 (psf)

If the fan is 55% efficient (overall) and electric power costs $0.18/kWh at what 

pressure drop and corresponding collection efficiency should the cyclone operate 

to maximize profits? Earlier studies suggest that the optimum pressure drop is in 

the 5–35 psf range.

Solution

The value of the recovered material (RV) may be expressed in term of the frac-

tional collection efficiency E, the volumetric flowrate q, the inlet dust loading w, 

and the value of the dust (DV):

 RV (q)(w)(DV)(E)

Substituting yields
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 RV
50,000 ft

min

2.0 gr

ft

1 lb

7000 gr

0.033

3

$$

lb
$/minE E0 429. ;  

The recovered value can be expressed in terms of pressure drop, i.e., replace E 

by ΔP:

 RV /min
( . )( )

.
$

0 429

15 0

P

P
 

The cost of power (CP) in terms of ΔP, q, the cost of electricity (CE) and the fan 

efficiency, E
f 
, is

 CP q P CE E f( )( )( )/( )  

Substitution yields

 
CP

50,000 ft

min

 lb

ft kWh

kW3

f

2

P 0 18 1. $ min

444 200

1

0 55

1

0 006

, .

.

ft lb 60 min

$/min

f

P

h

 

The describing equation for the profit P is given by:

 P RV CP  

Substitution gives

 P
x

x
x x P

0 429

15 0
0 006

.

.
. ;  

Table 30.1 Calculations for Illustrative Example 30.1.

x, psf P, $/min

5.0 0.0773

10.0 0.1116

15.0 0.1245

20.0 0.1251

25.0 0.1181

30.0 0.1060

35.0 0.0903
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Since the pressure drop is believed to exist between 5 and 35 psf, employ incre-

ments of 5 psf over the range and calculate the profit P in $/min. The results for P 

to four significant figures are recorded in Table 30.1. Using the above perturbation 

analysis, the results indicate that the profit achieves a maximum value of approxi-

mately 0.1251 $/min at an operating pressure drop of approximately 20 psf. The 

reader may choose to resolve Illustrative Example 6.4.

Illustrative Example 30.2

Consider the two-stage reversible adiabatic compression of a gas from an initial 

pressure P
1
 to a final pressure P

3
. If the gas enters at T and is cooled to T between 

stages, the total work E is given by [3,4]

 E NRT
k

k
P

P

P

P

k

k

k

k

1
22

1

1

3

2

1

 

where E total work ft lb
f

 R molal gas constant

 T inlet absolute temperature

 k 1.4, the ratio of heat capacity at constant pressure to heat capacity at 

constant volume for the compressed gas

Determine the intermediate stage pressure if E is to be minimized and 

P
1

1 atm and P
3

10 atm.

Solution

The intermediate stage pressure of P
2
 exists in the range 1 P

2
10. To apply 

the perturbation method, select increments of 2 atm between the range of 

2 and 8, i.e. 2, 4, 6, 8. Calculated values of E at these intervals are presented in 

Table 30.2 assuming NRT 1 and k 1.4. The results in Table 30.2 indicate 

that for E to be minimized the intermediate pressure P
2
 value is 4  atm with E 

at 2.748 ft lb
f
. The results further suggest that the  minimum energy  expen-

diture occurs between 2 and 6 atm. Selecting the midpoint between 2 

Table 30.2 Illustrative Example 30.2 calculation.

P
2
, atm E, ft lb

f

2 2.810

4 2.748

6 2.890

8 3.070
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and 4 atm and 4 and 6 atm could provide an improved answer for the  

minimum E. The reader may choose to resolve Illustrative Example 11.2.

30.2  Two Independent Variables

This section presents two examples that illustrate the method solution when 

there are two independent variables. These examples introduce the reader to the 

concept of constraints.

Illustrative Example 30.3

Obtain the maximum and minimum for the following function describing the 

emission E from a stack.

 E x x3 51 2  

There are two constraints:

 0 3 0 41 2x x,   

Solution

Proceed as illustrated below. The function E can be calculated at the 20 points 

shown in parenthesis.

 

( ) ( ) ( ) ( )

) ( ) ( ) ( )

( )

( )

( )

(

, , , ,

, , , ,

,

,

,

,

0 0 1 0 2 0 3 0

0 1 1 1 2 1 3 1

0 2

0 3

0 4

1

(

22

1 3

1 4

2 2

2 3

2 4

3 2

3 3

3 4

)

( )

( )

( )

( )

( )

( )

( )

( )

,

,

,

,

,

,

,

,

 

The value of the function for each point is shown immediately to the right of the 

point in parenthesis.

 

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

( , )

(

0 0 0 1 0 3 2 0 6 3 0 9

0 1 5 1 1 8 2 1 11 3 1 14

0 2 10

00 3 15

0 4 20

1 2 13

1 3 18

1 4 23

2 2 16

2 3 21

2 4 26

3

, )

( , )

( , )

( , )

( , )

( , )

( , )

( , )

( ,, )

( , )

( , )

2 19

3 3 24

3 4 29

 

As can be seen from the above results, the maximum (emission) E is 29 and 

occurs at x
1

3 and x
2

4, and the minimum E is located at x
1

0 and x
2

0 with 

a minimum value of 0 for E.
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Illustrative Example 30.4

Obtain the maximum and minimum for the following objective function with the 

same constraints employed in the previous example.

 E x x x x x x3 5 2 51 2 1

2

2

2

1 2  

Solution

The values for 20 points appear below,

 

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

( , )

0 0 0 1 0 4 2 0 10 3 0 18

0 1 7 1 1 6 2 1 7 3 1 10

0 2 18

(( , )

( , )

( , )

( , )

( , )

( , )

( , )

( , )

(

0 3 33

0 4 52

1 2 12

1 3 22

1 4 36

2 2 8

2 3 13

2 4 22

3,, )

( , )

( , )

2 6

3 3 6

3 4 10

For this example, the minimum is located at (0, 0) with a value of 0, and the maxi-

mum is located at the point (0, 4) with a value of 52.

30.3  Three Independent Variables

This section presents one illustrative example involving three independent 

variables.

Illustrative Example 30.5

Consider the following function:

 P x x x3 5 81 2 3  

Assume the same constraints as the previous two examples for x
1 

and x
2
; the 

 constraint for x
3
 is

 1 23x  

Obtain the maximum and minimum for the above function.

Solution

Apply the perturbation method again as shown below.
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For x
3

1:

 

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ,

(

( )

0 0 8 1 0 5 2 0 2 3 0 1

0 1 13 1 1 10 2 1 7 3 1 4

00 2 18

0 3 23

0 4 28

1 2 15

1 3 20

1 4 25

2 2 12

2

, )

( , )

( , )

( , )

( , )

( , )

( , )

( ,, )

( , )

( , )

( , )

( , )

3 17

2 4 22

3 2 9

3 3 14

3 4 19

 

For x
3

2:

 

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ,(

0 0 16 1 0 13 2 0 10 3 0 1

0 1 21 1 1 18 2 1 15 3 11 6

0 2 26

0 3 31

0 4 36

1 2 23

1 3 28

1 4 33

2 2

)

( , )

( , )

( , )

( , )

( , )

( , )

( , ) 20

2 3 25

2 4 30

3 2 11

3 3 16

3 4 21

( , )

( , )

( , )

( , )

( , )

 

Based on the above two trials for x
3
, the maximum is located at (3, 0, 1) and 

the minimum value is located at (0,4,2) with corresponding P values of 1 and 36, 

respectively. However, additional perturbation calculations should be performed 

for values of x
3
 between 1 and 2.

30.4  The Heat Exchange Network Dilemma

This last section involves a heat exchange design project that is concerned with 

not only energy recovery but also energy conservation. The design is based 

on a network of heat exchangers at a refinery and the purpose of the project 

is to arrange a network consisting of an unknown (and unspecified in terms 

of area) number of exchangers in order to satisfy certain specified design 

conditions [5].

The remainder of this last section of the “Perturbation” chapter consists of two 

illustrative examples. The first example introduces the heat transfer system under 

study [6]. The last example requests the design of a heat exchanger network sys-

tem to satisfy a specified requirement. This project demonstrates that despite the 

advances in analytical numerical methods, a perturbation method of solution may 

be the only viable option for the designer. For the second example, one out of a 

near infinite amount of possible solutions is presented. Theodore [7] provides two 

additional examples that ratchet up the complexity of other possible requirements 

by increasing the difficulty in obtaining the “best” solution. These examples present 

evidence of how difficult it may be to solve some real-word optimization problems.
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Illustrative Example 30.6

A refinery has three streams to be heated (see Table 30.3) and three streams to 

be cooled (see Table 30.4). Cooling water (90 °F supply, 115 °F return) and steam 

(saturated at 250 psi) are available. Note that the saturated steam at 250 psi has a 

temperature of 401 °F. Calculate the heating and cooling duties and indicate what 

utility (or utilities) should be employed.

Solution

The sensible heating duties for all streams are first calculated. The total heating and 

cooling duties can now be computed and compared. The results are shown below. 

 Heating: 7,475,000 6,612,000 9,984,000 24,071,000 Btu/h

 Cooling: 12,600,000 4,160,000 3,150,000 19,910,000 Btu/h

 Heating – Cooling: 24,071,000 – 19,910,000 4,161,000 Btu/h

As a minimum, 4,161,000 Btu/h will have to be supplied by steam or another hot 

medium.

Illustrative Example 30.7

Refer to the previous Illustrative Example. Devise a network of heat exchanges that 

will make full use of heating and cooling streams against each other, using utilities 

only if necessary [5].

Table 30.3 Streams to be heated.

Stream

Flowrate,  

lb/hr C
P
, Btu/lb °F T

in
, °F T

out
, °F

1 50,000 0.65 70 300

2 60,000 0.58 120 310

3 80,000 0.78 90 250

Table 30.4 Streams to be cooled.

Stream

Flowrate,  

lb/hr C
P
, Btu/lb °F T

in
, °F T

out
, °F

1 60,000 0.70 420 120

2 40,000 0.52 300 100

3 35,000 0.60 240 90
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Solution

Figure 30.1 represents a system of heat exchanges that will transfer heat from the 

hot streams to the cold ones in the amounts desired. It is important to note that this 

is but one of many possible schemes. The optimum system would require a trial-

and-error procedure that would examine a host of different networks. Obviously, 

the economics would also come also into play.

It should also be noted that in many chemical and petrochemical plants there 

are cold streams that must be heated and hot streams that must be cooled. Rather 

than use steam to do all the heating and cooling water to do all the cooling, it is 

often advantageous, as demonstrated in this problem, to have some of the hot 

streams heat the cold ones. The problem of optimum heat exchanger networks to 

accomplish this has been extensively studied and is available in the literature. This 

example provides one simple illustration.

Finally, highly interconnected networks of exchangers can save a great deal of 

“quality” energy [3, 6, 8] in a refinery or chemical plant. This issue is also addressed 

by Theodore [7]. The more interconnected they are, however, the harder the refin-

ery is to control, start-up, and shut down [5]. In addition, an economic analysis 

should be included in any study [5, 7]. Often auxiliary heat sources and cooling 

sources must be included in the plant design in order to ensure that the plant can 

operate smoothly [5].
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The mathematicians’ literature abounds with search methods, i.e., methods that 

allow one to search for a solution to an equation. There are both indirect and direct 

approaches, with indirect search methods generally defined as indirect methods. 

However, direct methods – those that produce an exact answer – are generally pre-

ferred by environmental engineers and scientists. These methods have also been 

defined in the literature as seek methods, and usually apply to single-independent 

variable unimodal equations; they provide results in intervals (or limits) of uncer-

tainty for the variable in a (minimum) number of trials during the search process. 

Two such procedures that are available include the interval halving (or bisection) 

and golden section search methods [1]. The unimodal function referred to above 

for single-independent variable equations contains a single optimization (maxi-

mum or minimum) point over a specified interval. Some applications can arise for 

multi-independent variable equations; perhaps the most popular approach to these 

equations is the steepest ascent/descent method [2]. It should also be noted that non-

linear algebraic equations are often solved using the Newton-Rhapson method [3]; 

however, this latter method requires that the derivative of the function is available.

When an initial interval has been established around the optimum, interval 

reduction schemes may be applied to obtain an improved estimate of the location 

of the optimum point. The amount of subinterval eliminated at each step depends 

on both the initial interval and the location of the initial trial points within the 

31
Search Methods
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search interval. The location of subsequent trial points reduces the interval the 

same amount, and that reduction should be as large as possible with each step.

A general description of search methods for unimodal functions is now briefly 

described. As noted, these methods involve a “search” in which the optimum is 

found by eliminating sections of the original bounded interval in question. When 

the remaining subinterval is reduced to an acceptable one, the search is termi-

nated. The main advantage of a search method is that it requires only the calcula-

tion of the function. In addition, the function need not be differentiable or be in a 

mathematical or analytical form. All that is required is that the function, f (x), can 

be determined at a specified x.

Three sections complement the presentation of this chapter. Section numbers 

and subject titles follow:

31.1: Interval Halving

31.2: Golden Section

31.3: Steepest Ascent/Descent

The first two sections are concerned with unimodal functions. The last section 

provides a method for solving multi-variable independent equations.

31.1  Interval Halving

The method of interval halving depends on the same hypothesis as the method 

of false position [3]. An algorithm for determining the minimum for f(x) over the 

initial interval (range) x
1
 to x

2
 follows [4]. (The procedure is essentially reversed for 

determining the maximum of a function [1, 4].)

1. Set an interval L from a low bound x
1
 to a high bound x

2
 where 

x
2

x
1
.

2. Calculate the midpoint of L, x
m

 between x
1
  x

2
 using the formula

 x
x x

m

1 2

2
 

3. Set x x
L

1 1
4

*
 and x x

L
2 2

4

*
.

4. Use the function being minimized to calculate f (x
m
), f (x

1
*), and f (x

2
*).

Continuing, follow the next three steps accordingly until the interval L has suit-

ably converged.

I. Compare f (x
1

*), f (x
m

), and f (x
2

*). If f (x
1

*) f (x
m

) and f (x
2

*) f (x
m

), 

eliminate both intervals x
1
 to x

1
* and x

2
* to x

2
, if not, move to II. 
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The new range L, (x
1
 to x

2
) is the original x

1
* to x

2
* while x

m
 remains 

unchanged. The optimum is now known to be between the new x
1
 

and x
2
. If the interval L has been reduced to a satisfactory level the 

calculation is stopped. If it is not, begin again at step 1 calculating 

new values based on the new interval L.

II. Compare f (x
1

*) and f (x
m

). If f (x
1

*) f (x
m

), eliminate the interval 

from x
m 

to x
2
 and set a new high interval x

2
 to the old midpoint x

m
. 

In addition, set the new midpoint x
m 

equal to x
1

*. The new range 

L is therefore x
1 
to x

2
 where x

2
 is the old x

m
. The optimum is now 

known to be between the new x
1 
and x

2
. If L has been reduced to 

a satisfactory level, the calculation is stopped. If the interval is 

not yet small enough, proceed to start again at step 1 calculating 

new values based on the new interval L. If, however f (x
1

*) f (x
m

), 

proceed to III.

III. Compare f (x
2

*) and f (x
m

). If f (x
2

*) f (x
m

), eliminate the interval 

x
1 
to x

m
 and set a new low interval x

1 
equal to the old midpoint x

m
. 

In addition, set the new midpoint x
m 

equal to x
2

*. The new range 

L is therefore x
1 
to x

2 
where x

1 
is now the old x

m
. The optimum is 

now known to be between the new x
1 
and x

2
. If L has been reduced 

to a satisfactory level, the calculation is stopped. If the interval is 

not small enough, proceed to start again at step 1, calculating new 

values based on the new interval L.

Illustrative Example 31.1

Refer to Illustrative Example 30.1. Solve the problem using the interval halving 

method.

Solution

Once again, the describing equations (functions) for the profit P in $/min is:

 P
x

x
x

0 429

15 0
0 006

.

.
.  

where x pressure drop in psf. Employ the interval halving method over the range 

of 5 to 35 for x
1

5 and x
2

35 to obtain the maximum profit. Proceed as sug-

gested above.

 L x x( )2 1 35 5 30  

 x
x x

m

( )2 1

2

35 5

2
20  
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 x x
L

1 1
4

5
30

4
12 5* .  

 x x
L

2 2
4

35
30

4
27 5* .  

 P x( *, ) .lower 0 1150  

 P x( *, ) .upper 0 1126  

 P x Pm( ) ( ) .20 0 1251 

Since both P (12.5) P (20), and P (27.5) P (20) eliminate the intervals x
1

* to x
1
, 

i.e. 5 to 12.5 and x
2

* to x
2
, i.e., 27.5 to 35. The remaining interval is therefore 12.5 

to 27.5.

Calculate an updated L, x
1

*, and x
2

*.

 L 27 5 12 5 15. .  

 x1 12 5
15

4
16 25* . .  

 x2 27 5
15

4
23 75* . .  

Repeat the above calculations noting that x
m

 remains at 20.

 P( . ) .16 25 0 1256  

 P( . ) .23 75 0 1204  

Since P (23.75) P (20), eliminate the interval x
m 

to x
2
, i.e., 20 to 27.5. The remain-

ing interval is therefore 12.5 to 20. The calculation may be further updated (for L 

and x
m

).

 L 20 12 5 7 5. .  

 xm

20 12 5

2
16 25

.
.  

 P( . ) .16 25 0 1256 $/min  

Further calculations are optional. If one were to stop here, the maximum profit 

would approximately be 0.1256 $/min at a pressure drop of 16.25 psf.
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Illustrative Example 31.2

Refer to Illustrative Example 30.2. Solve the problem employing the interval halv-

ing method.

Solution

Employing the interval halving approach between an initial range of P
1

1 atm 

and P
3

10 atm would proceed as follows.

 L P P3 1 9  

 Pm

1 10

2
5 5.  

 P lower1 1
9

4
1 2 25 3 25* ( ) . .  

 P upper3 10
9

4
10 2 25 7 75* ( ) . .  

 E P Pm( ) ( . ) .5 5 2 848  

Evaluate E at P
1

* and P
2

*,

 E( . ) .3 25 2 727  

 E( . ) .7 75 3 047  

Since E (3.25) E (5.5), the correct P must therefore lie in the range 3.25 P 5.5. 

Repeat the above calculations.

 L 5 5 1 4 5. .  

 Pm

1 5 5

2
3 25

.
.  

 P lower1 1
4 5

4
1 1 125 2 125* ( )

.
. .  

 P upper3 5 5
4 5

4
5 5 1 125 4 375* ( ) .

.
. . .  

 E P Em( ) ( . ) .3 25 2 727  
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 E P E( ) ( . ) .*

1 2 125 2 789  

 E P E( ) ( . ) .*

3 4 375 2 768  

Since P (2.125) and P (4.375) are P (3.25), eliminate the outer intervals, P
1 
to P

1
* 

and P
2
 to P

2
*. It appears the correct P is in the range 2.125 P 4.375. The cor-

responding E at P
m

3.25

 E( . ) .3 25 2 727  

The reader may choose to refine the calculation further for the optimum P 

and E.

31.2  Golden Section

An improvement on the interval halving method can be had by employing the 

golden section method. Consider the two trial points located between the initial 

interval x
1
 and x

2 
as pictured in Figure 31.1. Assume the initial interval, x

1 
to x

2
, has 

arbitrarily been set equal to 1.0 units and the minimum of f (x) in the range (x
1
, x

2
) 

is desired. If the right side of the interval, i.e., 1   (where  is a fractional quan-

tity) is discarded based on the calculations for f (x
1
), f (x

2
), f (x

3
), and f (x

4
), then 

the new interval that would remain is  with x
3
 located  from x

1
; this is pictured 

in Figure 31.2. The question that arises is: what value of  should be selected? The 

golden selection method is based on 0.618. The basis of this choice is provided 

in the literature [5].

1

1– = 2 2  –1 = 3 1–

1–

x
4

x
1
 = 0 x

2
 = 1 x

3

Figure 31.1 Golden section initial search.
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1– = 2 2 –1 = 3 1–
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4

x
1
 = 0 x

3
x

2
 = 0

4 =
2– 3 

= 2–3

1– = 2

2 –1 = 3 2 –1

1– = 2

x
5

Figure 31.2 Golden Section; remaining interval.
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x
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4 = ( 2)2
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Figure 31.3 Golden Selection; Subsequent Interval.
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The result of the first calculation has reduced the first (original) interval from 

1 to . In effect  is now the new interval. This may be viewed as a fraction of 

the original interval, often given as the product of the first interval and . Refer 

once again to Figure 31.2. The next trial point would then be located at x
5
 which 

is 2 1 from x, the same distance from x
4
 to x

5
. [Note: It can be shown that in 

the golden section method 2 1  . The solution of this quadratic equation  
2   1= 0  is simply

 ( ) ( )( ) ( )( )( )1 1 1 4 1 1

2
 

the positive solution of which is 0.618.] Following the second trial with x
5
 results in 

a further reduction of the interval by 2 1 which can be shown to equal (1 ). 

The interval has thus been reduced by the product of the interval ( ) and ( 1). 

Further, the new or remining interval is once again the product of the previous 

interval ( ) and ( ) i.e., ( )( ) 2. Each successive trial would result in an inter-

val reduction given by multiplying the interval by . For n trials, the final interval 

would be ( )n. If n 5, the final interval would be (0.618)5 0.0901; the interval is 

therefore reduced by more than 90% after 5 trials.

Illustrative Example 31.3

Refer to Illustrative Example 31.1. Solve this maximization problem employing 

the golden section search method.

Solution

The function to be maximized is

 P
x

x
x

0 429

15 0
0 006

.

.
.  

Once again, assume an initial range of (5,35 with an interval of 30). Based on the 

material provided above obtain P at the following values of x.

 P( )5  

 P( )35  

Noting that (0.618)(30) 18.54 and (0.382)(30) 11.46,

 P P( . ) ( . )11 46 5 16 46  

 P P( . ) ( . )18 54 5 23 54  
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The calculated results are:

 P( ) .5 0 03025  

 P( ) .35 0 0903  

 P( . ) .16 46 0 2302  

 P( . ) .23 54 0 1208  

Since the function is to be maximized, eliminate the interval (23.54, 35). The 

interval has therefore been reduced from (5,35) to (5, 23.45). Calculate P at the 

location of the next trial, i.e., at  – 2. However, and as shown in Figure 31.3,

 2 2 31 0 236( ) ( ) .  

the new location then becomes 5 (0.236)(30) 5 7.08 12.08. Continuing, the 

interval (5, 12.08) may be eliminated, narrowing the interval where the maximum 

is located to (12.08, 23.54). The calculation may be continued as  demonstrated 

above… or simply assume an average over the new interval x and calculate the 

corresponding P

 xm

12 08 23 54

2
17 81

. .
.  

 P( . ) .12 08 0 1189

 P( . ) .17 81 0 1260  

 P( . ) .23 54 0 1208  

This represents an estimate of the solution of the example.

31.4  Steepest Ascent/Descent

The method of steepest ascent/descent involves calculations where a step size is 

selected to achieve the maximum amount of increase/decrease of the function at 

each succeeding step. Thus, the step size gradient varies as the calculation continues, 

settling on zero as the maximum/minimum point is approached. Perhaps Happel 

[2] provided a satisfactory explanation and illustrative example involving steepest 

ascent/descent calculations from an engineering perspective. His description follows.

“There are many situations, especially where experimentation is involved, in 

which neither an analytical nor graphical representation is available for the 

function to be optimized for the entire range of the variables involved. The 

question then arises as to what course the experimenter should follow, be it 
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in the research laboratory or full-scale commercial plant. He may employ any 

of the several trial-and-error procedures previously discussed. However, if 

results are known only for a small area, some efficient method of extrapolation 

will help to minimize the amount of trial and error necessary. Such a scheme 

is the method of steepest ascents. The concept behind the idea of predicting 

a path of steepest ascent is simply that a plane does a good job of approxi-

mating a curved surface over a limited area. Thus, for a situation involving 

the maximizing of a function of two independent variables, a contour map 

with the variables as horizontal co-ordinates and the (profit) function as the 

vertical coordinate will illustrate the plan. The best-fitting plane is obtained 

in a small area under investigation. Then, from the tilt of the fitted plane, the 

direction of further experimentation is established as the direction of steepest 

ascent. Experiments are performed along this path until a decline in response 

is noted. Additional observations/ calculations are taken around this point 

to confirm whether a maximum has indeed been reached or whether a new 

path of steepest ascent should be predicted. The method, of course, does not 

eliminate the possibility that more than one optimum may exist in the area 

of interest.

In practice, the method of steepest ascents is generally applied to calcula-

tion involving more than two variables. It is difficult, but the mechanics is 

entirely similar to the two-dimensional approach. More specifically, the par-

tial derivatives of the response f(x) will indicate its rate of change with respect 

to a series of variables, x
1
, x

2
, x

3
, …. From these derivatives the gradient [6] 

[ ( )]f x  is computed

 [ ( )]
( ) ( ) ( )

f x i
f x

x
i

f x

x
i

f x

x
1

1

2

2

3

3

 (31.1)

where i
1
, i

2
, i

3
, … are unit vectors in the directions of coordinate axes repre-

senting the variables, each variable being associated with one dimension in 

a multidimensional space. The gradient [ ( )]f x  is a vector which has the 

property of being directed along the path on which f(x) increases most rapidly 

(i.e. the path of “steepest ascent”). The direction is along a path proportional 

to the rate of increase for a unit change of each variable.”

The following example, similar to the two stage compressor problem of 

Illustrative Example 30.2, illustrates the way the procedure works. By applying 

it in a case where the result is known, it is possible to readily note its limitations. 

Technically, it is correct only at the base chosen for each ascent. As exploration 

moves from this point, the shape of the response surface must change.

Illustrative Example 31.4

Consider the case of a three-stage compressor. It is desired to demonstrate the 

method of steepest ascents for P
1

1 and P
4

10 atm. Since the procedure implies 
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knowledge of the work expended corresponding to only a limited area, rather than 

the complete range, the arbitrary assumption will be made that the intermediate 

pressures are taken at the start as P
2

4 and P
3

7 atm.

Solution

In this example, the optimum will be reached by the steepest descent to minimum 

total work, which corresponds to maximum profit for the operation employing 

such a compressor. The describing equation for the work E is [2]

 E NRT
k

k
P

P

P

P

P

P

k

k

k

k

1
2

1

1

3

2

1

4

3

( ) ( ) ( )k

k

1

3  

Once again, NRT is set equal to 1, k 1.4, P
1

1, and P
4

10. It will be shown in 

Chapter 33 that the minimum work is

 E f2 575.  ft lb  

and the corresponding optimum values of P
2 
and P

3
 are

 P2 2 154. atm  

 P3 4 642. atm  

The direction of steepest ascent at P
2

4, P
3

7 is obtained by differentiating 

the describing equation for E (differentiation and substitution steps have been 

omitted for simplicity),

 

E

P2

1

1 4

1 4 1

1 4

1 2 8

1 44 7 4

0 079

( ) ( ) ( )

.

( ) ( ) ( )

.

.

.

.

.

 

Similarly,

 
E

P3

0 009.  

To obtain the path of steepest descent, increments of pressure must be taken 

proportional to these rates of change; thus

 
P

P
2

3

0 079

0 009
8 8

.

.
.  
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If increments of P
3
 are taken equal to 0.05, then the increments of ΔP

2

(0.05 8.8) 0.44. In this way the first descent is established starting at P
2

4 and 

P
3

7:

Using the same procedure following the first decent, a second derivative is 

made starting at P
2

2.68 and P
3

6.85. This results in establishing the condi-

tion P
2

2.50 and P
3

4.45 with E 2.587 as the minimum point. A third descent 

from this point establishes P
2

2.14 and P
3

4.60 with E 2.576. These condi-

tions are shown on Figure 31.4. Three descents are sufficient to establish the opti-

mum condition.

It should be noted that considerable accuracy in computation is required to 

establish the optimum. This frequently occurs in applying the method so that it 

is finally necessary to use an analytical expression to establish the optimum accu-

rately. Numerical results are provided in Table 31.1. Another limitation in the 

procedure, using the method of steepest ascents and the general differentiation 

procedure previously discussed is that they do not take into account constraints 

imposed on the system. The gradient may lead into an area in which operations 

are not possible.”

First interstage, P
2
 atm

S
e

co
n

d
 in

te
rs

ta
g

e
, P

3
 a

tm

0
2

3

4

5

6

7

8
2.65

2.60

2.59

2.58

2

E = 2.70

9

10

1 2 3 4 5

Figure 31.4 Contours of constant work Note: Path of steepest descent shown dotted.
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Table 31.1 Results of Illustrative Example 31.4.

P
2
, atm P

3
, atm E, ft · lb

f

4.00 7.00 2.681

3.56 6.95 2.653

3.12 6.90 2.629

2.68 6.85 2.615 (min)

2.24 6.80 2.622
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The general subject of graphical analysis serves as an excellent starting point 

before proceeding to analytical analysis, the subject title for the next chapter. The 

overlap between these two topics will become apparent in the both the develop-

mental material and illustrative examples to follow. Most of the early presentations 

in this chapter will involve the repetition and extension of some of the mathemati-

cal methods reviewed earlier in Parts I, II, and III; hopefully, this duplication will 

assist the reader during his/her review of this material as it relates to optimization.

Engineering data are often best understood when presented in the form of 

graphs or mathematical equations. The earlier preferred method of obtaining the 

graphical relations between variables was to plot the data as straight lines and 

use the slope-intercept method to obtain coefficients and exponents; therefore, it 

behooves the environmental engineer and scientist to be aware of the methods of 

obtaining straight lines on the various types of graph paper, and of determining 

the equations of such lines [1]. One always strives to plot data as straight lines 

because of the simplicity of the curve, ease of interpolation, and ease of extrapola-

tion. Graphical methods proved invaluable in the past in the analysis of the rela-

tively complex processes of that era. Much of the basic physical and chemical data 

are still best represented graphically.

32
Graphical Approaches

Introduction to Mathematical Methods for Environmental Engineers and Scientists. 
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One or more of the many types of graphical representations may be employed 

for the following purposes:

1. as an aid in visualizing a process for the representation of quantita-

tive data

2. for the representation of quantitative data

3. for the representation of a theoretical equation

4. for the representation of an empirical equation

5. for the comparison of experimental data with a theoretical expression

6. for the comparison of experimental data with an empirical expression

7. for solving some optimization problems

The relation between two quantities, y-the dependent variable and x-the inde-

pendent variable, is commonly obtained as a tabulation of values of y for a number 

of different values of x. The relation between y and x may not be easy to visualize 

by studying tabulated results and is often best seen by plotting y vs. x. If the condi-

tions are such that y is known to be a function of x only, the functional relation 

will be indicated by the fact that the points may be represented graphically by a 

smooth curve. Deviations of the points from a smooth curve can indicate the reli-

ability of the data. If y is a function of two variables, x
1 
and x

2
, a series of results 

of y in terms of x
1 
may be obtained for a (definite) constant x

2
. When plotted, the 

data will be represented by a family of curves, each curve representing the rela-

tion between x
1 
and y for a constant value of x

2
. If another variable x

3 
is involved, 

one may have separate graphs for constant values of x
3
, each showing a family 

of curves of y vs. x
1
. One may expand this method of representing data to more 

than three independent variables, although this rarely occurs in practice. In addi-

tion, graphs may be employed to perform common mathematical manipulations 

such as integration and differentiation, operations that usually arises in analytical 

analyses.

Data may be of almost any type encountered in environmental engineering 

and science practice. They may be physical property data, such as the variation 

in density and viscosity with temperature along a tube in a heat exchanger. One 

of the things that should be kept in mind is the loss of accuracy arising due to 

the use of graphs whenever one works with plotted data. In general, the num-

ber of significant figures may be only as great as the size of the divisions on the 

graph.

Five sections complement the presentation of this chapter. Section numbers 

and subject titles follow:

32.1: Rectangular Coordinates

32.2: Logarithmic-Logarithmic (Log-Log) Coordinates

32.3: Semi- Logarithmic (Semi-Log) Coordinates

32.4: Methods of Plotting Data

32.5: Optimization Illustrative Examples
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32.1  Rectangular Coordinates

Rectangular (sometimes referred to as Cartesian) coordinates graph paper is most 

generally used to represent equations of the form

 y mx b  (32.1)

where

y variable represented on the ordinate

x variable represented on the abscissa

m slope of the line

b y-intercept at x 0

The most common form of graph paper for engineering use is the 8 1
2 11-inch 

sheet, having 20 lines per inch, with every fifth line accented, and every tenth line 

heavily accented. This type of coordinate graph may be obtained on drawing or 

tracing paper, with lines in black, orange, or green, and with or without accented 

and heavy lines; it is also available in other sizes. Also note that the bulk of the 

development in the last section of this chapter will key on rectangular coordinates.

All graphs are created by drawing a line, or lines, about one or more axes. For 

the purposes of this chapter the presentation will be primarily concerned with 

graphs built around two axes, the x axis and the y axis. The graph data may be 

presented as coordinates of the x and y axis in the form (x, y), or they may be pre-

sented as the abscissa (distance from the y axis or the x coordinate) and the ordi-

nate (distance from the x axis or the y coordinate). Referring to Figure 32.1, point 

L5 has an abscissa (x coordinate) of 60 and an ordinate of 40 (y coordinate). 

Using coordinate notation, the point can be described as (60, 40) where the points 

are listed as (x, y). Point L2 can be described as ( 6.7,0).

All coordinates are produced as the result of solving an equation by assigning 

different values to x or y, and solving for the value of the other. By convention, 

equations are usually stated in the following form: y equals some value(s) of x and 

other constants, e.g., y mx b.

Equations are identified by the type of line (or curve) they produce when plot-

ted on a graph. A linear equation, as the name implies, will result in a plot of a 

straight line on a graph. With the linear equation, each incremental change of 

x (or y) will result in an incremental change of a fixed ratio in y (or x). The ratio 

of change between y and x is known as the slope of the line. A linear equation is 

also referred to as a first-degree equation. The remainder of this section provides 

 methods briefly introduced in Chapter 2.

In Figure 32.1, the line plotted between L1 and L5 is linear. A non-linear equa-

tion, when plotted, will result in a line having one or more curves, and the ratio 

of change between x and y is not constant. The line between points N0 and N5 in 

Figure 32.2 represents a plot of a non-linear equation. Non-linear equations come 

in a variety of forms and may be quickly identified since they have at least one term 
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containing an exponent. The equation y πx2 (see Figure 32.2) is representative of 

a non-linear equation.

Intercepts

Reference to the x and y intercepts are often made when working with graphs. An 

intercept is the point at which a line crosses the x or y axis. The x-intercept is the 

point where a line crosses the x axis (y 0), and the y-intercept is the point where a 

line crosses the y axis (x 0). In Figure 32.1, the x-intercept occurs at ( 6.7,0) and 

the y-intercept occurs at (0,4).

In a linear equation there can be only one x and one y intercept. With non-lin-

ear equations, there may be no x or y intercept, or there may be multiple intercepts. 

Note that in Figure 32.2, an intercept occurs when x 0 or y 0.

32.2 Logarithmic-Logarithmic (Log-Log) Coordinates

A logarithmic scale is easily constructed by plotting (on rectangular paper) num-

bers from one to ten on the ordinate versus the logarithm of the number on the 

abscissa. If the points representing the numbers on the ordinate are projected to 

the resultant curve and then upward, the scale formed by the vertical lines will be 

a logarithmic scale. The construction is illustrated in Figure 32.3. The utility of 
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Figure 32.3 The construction of a logarithmic scale.
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the logarithmic scale lies in the fact that one can use actual numbers on the scale 

instead of the logarithms. When two logarithmic scales are placed perpendicular 

to each other and lines are drawn vertically and horizontally to represent major 

divisions, full logarithmic graph paper results, i.e., a log-log graph.

The term log-log or full logarithmic is used to distinguish between another 

kind of graph or relationship yet to be discussed, i.e., semi-logarithmic (see next 

section). The full logarithmic may be obtained in many types depending on the 

scale length, sheet size, and number of cycles desired. The paper is specified by 

the number of cycles of the ordinate and abscissa; for example, logarithmic 2  3 

cycles means two cycles on the ordinate and three on the abscissa. Cycle lengths 

are generally the same on both axes of a particular graph. In addition, the distance 

between numbers differing by a factor of 10 is constant on a logarithmic scale.

Equations of the general form

 y bxm
 (32.2)

where

y a variable

x a variable

b a constant

m a constant

will plot as straight lines on (full) logarithmic paper. A form of the equation analo-

gous to the slope-intercept equation for a straight line is obtained by writing and 

then subsequently plotting the equation in logarithmic form.

 log log logy b m x  (32.3)

If log y versus log x were plotted on rectangular coordinates, a straight line of 

slope m and y-intercept log b would be obtained. An expression for the slope is 

obtained by differentiating Equation (32.3).

 
d y

d x
m

(log )

(log )
 (32.4)

When x 1, m log x 0, Equation (32.3) reduces to

 log logy b  (32.5)

Hence, log b is the y-intercept.

To illustrate the above, a linear plot of the equation

 y x2 1 3.  (32.6)
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Figure 32.4 A linear plot of y 2x1.3 on rectilinear graph paper.
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on rectangular coordinate paper is given in Figure 32.4. It should be noted that 

although the slope was obtained from a ratio of logarithmic differences, the same 

result could have been obtained using measured differences if the scale of ordinate 

and abscissa were the same (in this case they were).

Inspection of Figure 32.5 reveals that equal measured distances on the loga-

rithmic scale are equivalent to equal logarithmic differences on the abscissa of 

that plot. It therefore follows that since the slope of Equation (32.3) is a ratio of 

coordinate differences, the slope on full logarithmic paper could be obtained using 

measured distances. The plot of Equation (32.6) on 2  2 cycle logarithmic paper is 

given in Figure 32.5. The slope using logarithmic differences is

 m
1 08 0 43

0 60 0 10
1 3

. .

. .
.  (32.7)

and the slope using measured differences is also

 m
a

b
1 3.  (32.8)

32.3 Semilogarithmic (Semi-Log) Coordinates

This section is a review on Semi-Log coordinates visited earlier in Chapter 3, 

 section 3.3 and includes their application with regard to optimization. Graph 
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paper made with one logarithmic scale and one arithmetic scale is termed semilog-

arithmic. The logarithmic scale is normally the ordinate and the arithmetic scale 

is the abscissa on semilogarithmic paper. The paper is available in many styles 

depending on the sheet size, type of paper, color of lines, number of cycles, length 

of cycles, and the divisions on the uniform scale. The designation semilogarithmic, 

7 5 to the ½ inch refers to semilogarithmic paper whose logarithmic scale con-

tains seven cycles whose uniform scale contains five divisions to the half inch. The 

designation 10 division per inch (70 divisions) by two 5-inch cycles refers to paper 

whose arithmetic scale is seven inches long and contains ten division per inch, and 

whose logarithmic scale contains two-cycles for each five inches. Thus, a semi-

logarithmic graph uses a standard scale for one axis and a logarithmic scale for the 

other axis, i.e., the graph uses scales of different mathematical proportions. The 

reason for this use of scales is that a logarithmic (exponential) plot would quickly 

exceed the physical boundaries of the graph if one were to plot values of some base 

having exponents of 2, 3, 4, 5, 6, 7 and 8 against an ordinary numeric scale.

Semilogarithmic paper can be used to represent as straight lines equation of 

the form

 y nemx
 (32.9)

or

 y n mx10  (32.10)
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Figure 32.5 The Equation y 2x1.3 Plotted on Logarithmic Graph Paper.
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where

y dependent variable

x independent variable

n a constant

m a constant

e the natural logarithm base

Here again a form of the equation analogous to the slope-intercept equation 

can be obtained by placing the above equation in logarithmic form. For example, 

Equation (32.9) may be written as

 log y b mx  (32.11)

where b log n

An expression for slope is obtained from the differential form of Equation (32.11):

 
d y

dx
m

(log )
 (32.12)

so that the y-intercept is log n or b.

One can illustrate the use of semilogarithmic paper by plotting a segment of the 

curve representing the equation

 log .
.

y
x

2 2
46 3

 (32.13)

The line may be constructed (see also Figure 32.6) by choosing values of x, solving 

for y, and plotting the results. Note that values of y and not log y are plotted on the 

ordinate. The slope is a logarithmic difference divided by an arithmetic difference 

and in this case may be calculated from the two indicated points (see Figure 32.6) 

as follows:

 m
log( ) log( . )

. .

1587 158 7

43 6 0

1

46 3
 (32.14)

The slope of a line on semilogarithmic coordinates may be calculated from any 

two points, but the simplest method is the one used above in which the slope is the 

logarithmic difference on one cycle (equal to log 10 or 1.0) divided by the arithme-

tic difference of one cycle. Note that if the cycle had been taken between y 300 

and y 3000, the slope would be

 m
log( ) log( )

. .

3000 300

59 12 7

1

46 3
 (32.15)
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It should also be noted that the y-intercept is 2.2, as required by Equation (32.13).

In addition to the more common types of paper previously discussed, the prac-

ticing environmental engineer and scientist may also have need for probability 

versus arithmetic, probability versus logarithmic, logarithmic versus reciprocals, 

and other special type of graphs. Non-standard scales, if desired, may be con-

structed in a similar manner to the logarithmic scale shown earlier. For example, 

logarithmic-probability (log-normal) graphics find applications in air pollution 

studies [1] to describe particle size distribution.

32.4  Methods of Plotting Data

The simplest procedure to employ in plotting equations of various forms is pro-

vided below in Table 32.1. Various additional forms are available in the literature. 

Details on statistical methods for calculating the coefficients in the 7 equations are 

provided in the literature [2].

32.5  Optimization Illustrative Examples

This last section contains five illustrative examples. Some are extensions of prob-

lems discussed earlier with the material keying on solutions employing graphical 

approaches.

5000

1000

500

100
0 10 20 30 40

x

y

50 60 70 80

Figure 32.6 The equation log y 2.2 x 46 3.  plotted on semi-logarithmic paper.
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Illustrative Example 32.1

Some optimization problems require the solution to a problem where the depen-

dent variable is a function of two independent variables, e.g.,

 y f x f x x( ) ( , )1 2  

Outline a simple graphical procedure that one can employ to obtain the mini-

mum (or maximum) of this type of function.

Solution

The optimum values of x
1
 and x

2
 can be found graphically on a two-dimensional 

plot by employing the following method. See Figure 32.7. In this figure, y is plotted 

against one of the independent variables (x
1
) with the second variable (x

2
) held at a 

constant value. A series of such plots can be made with each dashed curve represent-

ing a different constant value of the second variable. As shown in Figure 32.7, each 

of the curves (a, b, c, d, and e) gives one value of the variable x
1
 at the point where 

f (x) is a minimum. The curve AB represents the locus of all these minimum points, 

and the optimum value of x
1
 and x

2 
occurs at the minimum point on the AB curve.

The reader should also note once again that similar graphical procedures can 

be used when there are more than two independent variables, e.g., x
1
, x

2
, and x

3
. 

The first step would be to make a plot similar to Figure 32.7 at one constant value 

of x
3
. Each plot would give an optimum value of x

1
, x

2
, and f (x) for a particular 

x
3
. Finally, the overall optimum value of x

1
, x

2
, x

3
, and f (x) could be obtained by 

plotting x
3
 versus the individual optimum values of f (x). This procedure is rarely 

employed by the practicing environmental engineer.

Table 32.1 Plotting procedure.

y a bx Plot y vs. x.

y axn Plot log y vs. log x or y vs. x on logarithmic coordinates.

y c axn First obtain c as the intercept on a plot of y vs. x; then plot log (y – c) 

vs. x on logarithmic coordinates.

y abex Plot log y vs. x or y vs. x on semilogarithmic coordinates.

y abx Plot log y vs. x or y vs. x on semilogarithmic coordinates.

y a
b

x
Plot y vs. 

1

x
.

y
x

a bx
Plot 

x

y
 vs. x or 

1

y
 vs. 

1

x
.



430 Introduction to Mathematical Methods

Illustrative Example 32.2

The following equation describes the effect of the variables T(K) and P (psia) on 

the pollutant emission E(lb/hr) for a particular operation

 E T
TP

P2 33
11 900

1 86 10.
,

.  

Determine the operating values of T and P which will produce the minimum 

emission.

Solution

The following constant values of P (psia) are chosen arbitrarily

   P1 32   P2 26   P3 20   P4 15   P5 12

at each constant value of P, i.e., P
1
, P

2
, P

3
, P

4
, and P

5
, a plot of E vs. T is prepared. 

These plots are presented as solid lines in Figure 32.8 as curves a, b, c, d, and e. A 

summary of these results is presented in Table 32.2 with T
1
, T

2
, T

3
, T

4
, and T

5
 repre-

senting the minimum values of T for the solid curves a, b, c, d, and e, respectively. 

The dashed curve AB represents the relationship for the five T
i

*
’s as a function of 

E. The point T* represents the minimum E which occurs at approximately P
3
*; the 

corresponding value of E is 121.6 lb/hr.

Optimium (minimum) y* = f*(x
1
*, x

2
*)

A B

(e)(a)

(b)

y*

y = f(x)

(d)

(c)

x
1

x
2
II

x
2
* = x

2
III

x
2
IV

x
2
Vx

2
I

Figure 32.7 Graphical determination of optimum conditions with two independent variables.
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The curve AB in Figure 32.8 passing through the various optimum points 

shows that the overall minimum emission occurs at approximately

 T 16 K

with corresponding

 P 20 pisa

and

 E 121.6 lb/hr

Illustrative Example 32.3

Refer to Illustrative Example 30.1. Solve the problem using a graphical approach.

Table 32.2 Optimal T and P results

P, psia Optimum T, K Minimum E, lb/hr

P
1

32 T1 12 7* . 128.3

P
2

26 T2 14 1* . 123.6

P
3

20 T3 16 0* . 121.6

P
4

15 T4 18 5* . 123.9

P
5

12 T5 20 7* . 128.5

Figure 32.8 Graphical determination of emission with two independent variables (T, P).
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P
2
 = 26psia

P
1
 = 32psia P

5
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P
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Optimium (minimum) E* = E*(T*, P*)
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Solution

To solve the program graphically, plot P versus x on arithmetic graph paper. 

The calculated values are shown in Figure 32.9. The maximum profit appears 

 approximately at 0.125 $/min of a pressure drop of 20 psf.

Illustrative Example 32.4

Refer to Illustrative Example 30.2. Solve the problem employing a graphical 

approach.

Solution

Figure 32.10 provides a graphical plot of the four E vs P calculations from 

Illustrative Example 30.2 The results indicate that for minimum work expenditure 
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Figure 32.9 P vs. x for Illustrative Example 32.3.
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Figure 32.10 E vs x for Illustrative Example 32.4.
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the intermediate stage pressure appears to be in the neighborhood of 4 atm with a 

corresponding work load of 2.75 ft·lb
f
.
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The subject of analytical analysis serves as an excellent starting point before pre-

ceding to the last subject of optimization in this Part – linear programming. In 

terms of introduction, once again consider the following. Since the derivative 

dy dx/  or f (x), represents the rate of change of y with respect to the change in 

x, it is evident that the derivative will be zero if the function passes through a 

maximum or minimum. If the occurrence of such a maximum or minimum is to 

be determined and located, the derivative must be equated to zero, thus providing 

the condition for which the maximum or minimum exists. This analytical proce-

dure is of considerable value in environmental engineering calculations since the 

location of a maximum or minimum is frequently of practical importance. As one 

might suppose, many of the applications are related to economics, e.g., maximiz-

ing profit and/or minimizing cost (see also the first section in this chapter).

Five sections complement the presentation of this chapter. Section numbers 

and titles follow:

33.1: Breakeven Considerations 

33.2: One Independent Variable

33.3: General Analytical Formulation of the Optimum

33.4: Two Independent Variables

33.5: Three Independent Variables

33
Analytical Approaches
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33.1  Breakeven Considerations

In solving many environmental optimization problems, one often selects optimum 

conditions from the standpoint of economics. Consider, a simple case in which 

there is only one independent variable affecting profit P, i.e., income I minus 

cost C. Refer to Figure 33.1. The term y is the dependent variable that will later 

be referred to as the objective function and x is the independent variable. The for-

mer term could represent the aforementioned profit and x could be the operating 

temperature. As can be seen from Figure 33.1, the “system” operates at a loss when 

operating below x* and operates at a profit when above x*. The term x* is located 

at the breakeven point, i.e. where the profit is zero. 

The above breakeven problem can be solved by three methods.

1. Solve the problem analytically as follows. Assume I and C can be 

represented in equation form, i.e., 

 I I(x) (33.1)

 C C(x) (33.2)

 Since

 P I  C (33.3)

  the solution for x when P 0 provides the breakeven point (of the 

operation). 

2. Select various values of x and calculate both the income and cost, 

and profit. The breakeven point arises when the profit is zero.

3. Graph the results. A typical solution is presented in Figure 33.1. 

See also the previous chapter.

Profit, P

x*

x*

x

Cost, C

y

Income, I

(I, x)

(P, x)

(C, x)

Figure 33.1 Breakeven figure.
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Economic studies often reveal that certain cost factors increase while others 

decrease relative to an independent variable. For example, as the thickness of 

the insulation (x) on a steam pipe increases, the cost of the insulation increases 

but  correspondingly the heat loss (and steam-generating cost) decreases [1–3]. 

Here the thickness of the insulation serves as the independent variable and if the 

installed cost of the insulation and the steam-generating cost (the independent 

variable) could both be determined as functions of the independent variable, 

a condition would exist for which the total cost is a minimum. This solution is 

pictured in Figure 33.2 and the optimum income is located at the point, x*. Here, 

the total cost is plotted against the insulation thickness. 

33.2  One Independent Variable

The case of a dependent variable and a single (one) independent variable was 

reviewed in the thee previous chapters. Here 

 y f (x) (33.4)

Insulation thickness, x

To
ta

l c
o

st

Heat
loss cost

 Economic
optimum

Fixed charges

x*

Figure 33.2 Total cost vs insulation thickness.
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As noted above, the optimization of y can be generated by setting

 
dy

dx
0  (33.5)

The optimum y is obtained by substituting the value of x from Equation (33.5) into 

Equation (33.4) and, y is a maximum if 

 
dy

dx
0  (33.6)

When x from Equation (33.5) is substituted into Equation (33.4) the calculated 

y is a minimum if 

 
d y

dx

2

2
0  (33.7)

To summarize, a maximum occurs when dy dx/ 0  and d y dx2 2 0/ ; a mini-

mum occurs when dy dx/ 0  and d y dx2 2 0/ ;  this development will be revisited 

later in this chapter in section 33.3.

Illustrative Example 33.1

Consider the following function

 y x
x

162 2.33
11 900,

 

Determine the maximum (or minimum) of the above function by analytical 

means.

Solution

Apply Equation (33.5).

 
dy

dx x
2.33

11 900
0

2

,
 

Solution for x,

 x2 11 900

2 33
5 107

,

.
,  

 x 71.5 
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The second derivative dy dx2 2/ is negative since 

 
dy

dx x

2

2 3

23800
 

The calculated value of y at x 71.5 is therefore a maximum with a value of 

 
y 162 2 33 71 5

11 900

71 5
162 166 6 166 4 161 8

( . )( . )
,

.
. . .

 

Illustrative Example 33.2 

Refer to Illustrative Example 30.1. Solve the problem analytically.

Solution

Once again, the describing equation is 

 P
x

x
x

0 429

15 0
0 006

.

.
.  

To proceed analytically, calculate dP dx/  and set it equal to zero.

 
dP

dx x

x

x

0 429

15 0

0 429

15 0
0 006 0

2

.

.

.

( . )
.  

Solve for x by any suitable method.

 0 429
0 429

15 0
0 006 15 0 0.

.

.
. ( . )

x

x
x  

 x 17.5 psf

The corresponding maximum profit is then

 P
( . )( . )

. .
( . )( . )

. . . ;

0 429 17 5

17 5 15 0
0 006 17 5

0 231 0 105 0 126  $$/min

 

The above analytical result compares formally with the results provided earlier 

in Illustrative Examples 30.1, 31.1, 31.3 and 32.3.



440 Introduction to Mathematical Methods

Illustrative Example 33.3 

Refer to Illustrative Example 30.2. Solve the problem employing an analytical 

approach.

Solution

As noted in Illustrative Example 31.2 the total work is given by 

 E NRT
k

k

P

P

P

P

k

k

k

k

1
22

1

1

3

2

1

 

If this quantity is to be a optimized, then the derivative must be zero(s), i.e.,

 
dE

dP

k

k

k

k
P P

k

k

k

k k

2

1

1

2

1

1

1 1
P P

k

k

k

k

3

1

2

1 2

0  

NRT has once again been arbitrarily set equal to unity. Solving for P
2
 yields

 P
2

(k – 1)/k P
1

(k – 1)/kP
3

(k – 1 )/k

Rearranging yields

 P P P2 1 3

1 2 10( ) 3.162 atm/

The corresponding minimum value of E is then

 E P( . ) .2 3 162 2 726 ft lbf  

This result compares favorably with the answers provided earlier in Illustrative 

Examples, 31.2, and 32.2. 

Interestingly, Happel [3] addresses the problem of maximizing the work 

 requirement for a three-stage compressor operating between 1 and 10 atm. This 

problem was solved using an analytical approach along with the method of steep-

est ascent [3] (See also the previous development in Illustrative Example 3.4). 

Applying the analytical method for the two intermediate pressures P
2
 and P

3
 yields 

the equations (see Illustrative Example 31.4 for details)

 P
2

(P
1

2P
4
)1/3

 P
3

(P
4

2P
1
)
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With P
1

1 and P
2

10 atm,

 P
2

101/3 2.154 atm

 P
3

10
2/3

4.642 atm

and

 E 2.575 ft ∙ lb
f

Happel [3] also noted that the location of a maximum or minimum becomes 

obvious if the function is plotted, and this graphical procedure may be followed 

in economic-balance calculations. The analytical method has the advantage of 

 directness and simplicity in many cases. The formal method involves the calcula-

tion of the function at a number of points and requires more time to obtain the 

result. When the curve is obtained, however, its shape indicates the importance 

of operating at the exact optimum. If the curve is flat, a considerable variation in 

operating conditions will not appreciably affect the costs or profits. If the maxi-

mum or minimum is not flat, it may be quite important to operate at the optimum 

point. This problem will be visited later for the case of optimizing a four-stage 

compressor [3]. In some situations, the dependent variable may be a function of 

several independent variables. The determination of a maximum or minimum 

value under such circumstances is reviewed later in this chapter. 

33.3  General Analytical Formulation of the Optimum 

When more than one independent variable is involved in determining a func-

tion, e.g., profitability, a more elaborate treatment is necessary than was employed 

above. Thus, for a system of x
1
, x

2
, x

3
, …, x

n
 independent variables, the function y 

will depend on these variables.

 y f x x x xn( ) ( , , , , )profit 1 2 3  (33.8)

Instead of profit, y may naturally be expressed in other convenient and equivalent 

forms. The problem is to specify x
1
, x

2
, x

3
, …, x

n
 so that y will be a maximum (or 

minimum). In general, this will involve some type of trial-and-error calculation.

It is possible in some cases to set up an explicit function which will relate the 

objective function y to the independent variables. Differentiation will then result 

in a series of partial derivations 

 
y

x

y

x
1 2

, ,  etc. 

Setting these partial derivatives equal to zero will result in the same number of 

simultaneous equations as the variables involved. These equations, subject to 
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limitations, can be solved for the corresponding optimum values of these vari-

ables. The necessary conditions for a maximum at a point where the first deriva-

tives become zero include restrictions on the second derivatives, continuity of the 

function involved throughout the range of independent variables, and absence of 

optimum conditions at limiting values of one or more of the variables. These con-

ditions can on occasion restrict the applicability of this approach [3]. 

Thus, for the case of a two-variable function, y f (x
1
, x

2
) a point x

1
a, x

2
b 

will have a maximum value y f (x
1
, x

2
) if the following conditions hold:

 
y

x

y

x1 2

0  (33.9)

with

 
2

1

2

2

2

2
0 0

y

x

y

x
;  (33.10)

and 

 
2

1

2

2

2

2

2

1 2

2

y

x

y

x

y

x x
  (33.11)

Similarly, if 
2

1

2y x/  and 
2

2

2y x/  are positive and Equation (33.11) holds, 

there will be a minimum. But, if 

 
2

1

2

2

2

2

2

1 2

2

y

x

y

x

y

x x
 (33.12)

then the point concerned will be a saddle point. The case where

 
2

1

2

2

2

2

2

1 2

2

y

x

y

x

y

x x
 (33.13)

is open and the value may be a maximum, a minimum, or neither. Happel also 

provided the following three general comments on the above as they relate to both 

economics and engineering practices [3].

1. For a process with a fixed output, involving a number of pieces of 

equipment (for example, an absorber, a heat exchanger, a preheater, 

a stripper, a cooler, ect. (4)), there are a number of design variables, 

some which affect the cost of several of the operations. For the 

moment assume that there are two major independent variables -x
1
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and x
2
. For a given value of x

2
 the total costs are tabulated for various 

values of x
1
, and the minimum total cost, C, is noted; this procedure 

is repeated for other values of x
2
 and that combination of values of 

x
1 
and x

2
 is selected which gives the minimum of the minima. If the 

values of x
1
 and x

2
 can be varied by differential increments, the same 

result can be obtained by first setting the partial derivatives C x/
1  

and C x/
2  equal to zero, and solving simultaneously for the opti-

mum values of x
1 
and x

2
 (these procedures where discussed earlier). 

Similar procedures could be used where there are more than two 

design variables. Careful study of the particular process may show 

that certain design variables affect costs of several but not all parts of 

the process. In such cases, the problem is thereby simplified. 

2. In the important problem of estimating the optimum production 

of a plant, similar methods of attack may be followed, although in 

this case maximum annual profit (or minimum annual loss) are 

the criteria, since here the output can be varied, whereas in the 

cases consided in [1], the output was fixed. Hence, the minimum 

sum of variable costs could be used. In case of operating at a loss, 

the plant should not be shut down until the out-of-pocket income 

would fall below the out-of-pocket expenses, excluding fixed 

charges. If continuity of supply is stipulated in a contract, the plant 

may be operated at a loss on an out-of-pocket basis.

3. In the case of a proposed expenditure that is not essential to the 

success of an environmental process, the decision is often based 

on whether or not the pay-off time is attractive. The pay-off time 

is defined as that period in which the actual savings due to the 

proposed change would equal the original investment. The nov-

ice sometimes credits more towards savings than actually would 

be realized. For example, the total cost of 1,000 lb of steam might 

be 35 cts. If the bare steam mains were insulated, the required 

steam load on the power plant might be reduced by 1,000 lb/h. At 

first inspection, the insulation is credited with a saving of 35 c/h. 

Further analysis of the steam costs might show that the 35 c/1,000 

lb consisted of 10 cts for fuel and 25 cts for fixed charges. Since the 

latter would not be changed by insulating the steam lines, the true 

saving is only the cost of fuel based on the value of the fuel saved. 

33.4  Two Independent Variables 

Illustrative Example 33.4

An objective function is specified as:

 f x x x x x x x( , )1 2 1

2

1 2

2

1 22 1 
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Determine if the function has a maximum or a minimum. Also, calculate that 

value.

Solution

For the above equation

 
f

x
x x

1

1 22 2 0  

 
f

x
x x

2

2 12 0  

The following solution results, when the above two equations are set equal to 

zero

 x1

4

3
 

 x2

2

3
 

Since

 
2

1

2
2

f

x
 

 
2

2

2
2

f

x
 

the solution provided for x
1
 and x

2
 represents a minimum with 

 y f x x( , )1 2 8  

Illustrative Example 33.5 

A profit equation is given by:

 P x
x x

162 2 33
11 900

01

1

2

2

.
,

 

Calculate values of x
1
 and x

2
 that would either maximize or minimize P.
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Solution

Begin by generating the first derivative and setting them equal to zero.

 
P

x x x1 1

2

2

2 33
11 900

0.
,

 

 
P

x x x2 1 2

1 86
11 900

0.
,

 

Solving simultaneously yields

 x1 16  

 x2 20  

The corresponding P(16,20) is a maximum since both second partial deriva-

tives can be shown to be negative. Thus, 

 P P 16 20 50 3, .  

The reader may choose to revisit Illustrative Example 32.2.

Illustrative Example 33.6

Obtain values for T and P which will yield the minimum emissions in the equation 

below by employing an analytical method of analysis.

 E T
TP

P2 33
11 900

1 86 10.
,

.  

Solution

Begin once again by generating the first derivatives and setting them equal to 0.

 
E

T T P
2 33

11 900
2

.
,

 

 
E

P TP
1 86

11 900
2

.
,

 

The simultaneous solution to the above two equations yields 

 T 16  

 T 20  

Furthermore,

 E E (16,20) 121.6
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Since 

 
2

2 2

2 11 900

16 20

E

T

( )( , )

( ) ( )
 

 
2

2 2

2 11 900

16 20

E

P

( )( , )

( )( )
 

the optimum conditions represent a minimum emission. 

Illustrative Example 33.7

Refer to Illustrative Example 31.4. Resolve the “search” problem employing a 

purely analytical approach.

Solution

The describing equation is once again. 

 E NRT
k

k
P

P

P

P

P

P

k

k

k

k

1
2

1

1

3

2

1

4

3

k

k

1

3  

If this quantity is to be a minimum, E P/
2  and E P/

3  must be zero.

 
E

P
P P P P

k

k k

k

k

k

k

2

1

1

2

1

3

1

2

1 2

 

 
E

P
P P P P

k

k k

k

k

k

k

3

2

1

3

1

4

1

3

1 2

 

Setting E P/
2  and E P/

3
0,  and solving the resulting equations simultane-

ously ultimately leads to

 P
2

2 P
1
P

3
 and P

3
2 P

2
P

4

so that

 P
2

(P
1

2P
4
)1/3

 P
3

(P
4

2P
1
)1/3

Setting P
1

1 and P
4

10 yields the solution

 P
2

2.154 atm

 P
3

4.642 atm
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and 

 E E (2.154, 4.642) 2.572 ft ∙ lb
f

One can further show that 

 

2

2

2

2 11 900

16 20

E

P

( )( , )

( ) ( )
 

 

2

2

2

2 11 900

16 20

E

P

( )( , )

( )( )
 

 
2

2 3

2

2 11 900

16 20

E

P P

( )( , )

( ) ( )
 

and 

 
2

2

2

3

2

2 3

E

P

E

P

E

P P
 

Therefore, the above calculated E is a minimum.

33.5  Three Independent Variables

This section presents one illustrative example involving three independent 

variables.

Illustrative Example 33.8

Consider now a traditional mathematician’s exercise to determine the maximum 

or minimum of a function dependent on three variables.

 P x y z xy xz yz x y z8 6 8 2 3 42 2 2
 

Solution

 
P

x
y z x

y z,

8 4 0  

 
P

y
x z y

x z,

6 6 0  
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P

z
y x z

x y,

8 8 0  

The solution to the above three linear simultaneous equations is

 x y z = 2.8256;  = 1.7326;  = 1.5698  

for which

 P 22 78.  

To determine whether the above P is a maximum or minimum, calculate the 

three second order partial derivatives.

 
2

2
4

P

x
 

 
2

2
6

P

y
 

 
P

z2
8  

Since the three derivatives are negative, the value of P above (22.78) is a maximum, 

i.e., any other calculated P for a different x, y, and z would produce a value of P 

less than 22.78. The “proof ” is left as an exercise for the reader. However, if one 

were to select values of x, y, and z straddling the maximum set of values, P should 

be below 22.78. For example, the value of P for x 2, y 2, and z 2 is 20. For 

x y z 10, the value of P is -380. 
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Linear programming is one of several techniques for optimization which has 

increased in usefulness because of the availability of digital computers. The title 

results from the assumptions in the method that linear relationships describe the 

problem/system/relationship under consideration. For example, each production 

element per day increase in a process could produce a corresponding linear profit 

increase per day. However, there are many instances where a linear model does 

not accurately describe the totality of the problem/system/relationship. It may 

then be necessary to resort to other procedures such as nonlinear programming; 

some brief details will be presented for handling the nonlinear section in the next 

paragraph. 

The reader should note that the terms linear programming and nonlinear pro-

gramming are essentially similar from an applications perspective. There were 

problems around the middle of the last century because of some difficulties that 

arose in attempting to solve nonlinear programming problems. However, the 

arrival of the modern day computer (see Chapter 29) and sophisticated software 

(e.g., EXCEL) have removed these problems. Unless a solution is presented graph-

ically in this and the next chapter, it will be obtained directly from EXCEL so 

that the reader need not be concerned with whether a system’s pertinent describ-

ing equations and constraints are linear or nonlinear. Thus, details regarding the 

34
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solution methodology for both linear programming and nonlinear programming 

problems and illustrative examples will not be presented. They are simply not nec-

essary and beyond the scope of this introductory optimization Part.

Other than linear programming, dynamic programming is probably the more 

often used optimization method by the practicing environmental engineer and 

scientist. As described earlier, it is a process involving decisions made at multiple 

stages. Just as an optimization model is defined by its variables, constraints, and 

objective function, a multistage decision process is defined by its stages and deci-

sions. At any stage, there is enough information about decisions made at preceding 

stages to make informed decisions at the present stage. Thus, some optimization 

problems can be reformulated as multistage decision process problems. One then 

proceeds through subsequent stages until the final stage of the process is reached. 

Some additional details are provided in the next section.

As one might suppose, there are numerous other optimization methods avail-

able to the practicing environmental engineer and scientist. Several of these are 

detailed in Perry’s Handbook [1].

1. Mixed Integer

2. Mixed Integer Nonlinear Programming

3. Mixed Integer Linear Programming 

4. Quadrative Programming 

5. Differential/Nondifferentiable Systems

6. Convex/Nonconvex

The above topics are not reviewed in this text. The reader is referred to the optimi-

zation literature [2–6] for details.

Regarding contents, Section 34.1 provides definitions as they apply to opti-

mization and, in particular, to linear programming – the title of this chapter. 

Section 34.2 examines linear programming from an elementary principles per-

spective while Section 34.3 addresses the topic from a mathematician’s viewpoint. 

Section 34.4 is concerned with an engineer’s approach to linear programming. 

Linear programming examples that are not applications-related highlight the last 

section (34.5). 

34.1 Definitions

Seven key definitions – as they apply to optimization and linear programming are 

provided below (in alphabetical order).

1. Algebra: A branch of mathematics in which letters are used to 

represent basic arithmetic relations. As in arithmetic, the basic 

operations of algebra are addition, subtraction, multiplica-

tion, and division. Arithmetic, however, cannot generalize such 
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mathematical relations as the Pythagorean theorem (which states 

that the sum of the squares of the sides of any right triangle is also a 

square). Arithmetic can produce specific instances of this relations 

(for example 3, 4, and 5, where 32 42 52). Algebra can make a 

purely general statement that fulfills the conditions of the theo-

rem, i.e., a2 b2 c2. Any number multiplied by itself is termed 

squared and is indicated by a superscript number 2. For example, 

3  3 is notated as 32 and is termed three squared; similarly, a  a is 

equivalent to a2. Classical algebra, which is concerned with solving 

equations, uses symbols instead of specific numbers and employs 

arithmetic operations to establish procedures for manipulating 

symbols while modern algebra has evolved from classical algebra 

by placing more attention to the structures within mathematics. 

2. Constraint: “A constraining or being constrained… confinement 

or restrictions… forced… something that constrains.” The term 

constraints is defined as “to bond together, draw together… to 

force into or hold in, close bounds, confine… restrain.” 

3. Dynamic Programming: The dimesionality of a particular opera-

tion is reduced from (m)(n) variables to m repeated n times. As 

noted above, if it is not practical or possible to solve a large com-

plex system of equations, the system is reduced in complexity in a 

manner that requires the solution of a smaller subset of the origi-

nal problem, noting that for each n (for example, each stage in a 

mass transfer operation) [7] only m variables are involved in the 

optimization process. One can then work backwards and combine 

the solutions generated at each n.

4. Linear Algebra: A branch of mathematics that is concerned with 

systems of linear equations, linear transformations, vectors, vec-

tor spaces, and related topics. The major interest is with linear 

equations. 

5. Linear Programming: A mathematical and operations research 

technique used in engineering, science, administrative engineer-

ing, and economic planning to maximize the linear function(s) of 

a large number of variable(s) subject to certain constraint(s). It is 

basically used to find a set of values, chosen from a prescribed set 

of numbers, that will maximize or minimize, i.e. optimize, a given 

equation.

6. Operations Research: A confusing term that most often has been 

used to describe linear programming.

7. Optimization: As noted earlier in this Part, optimization has 

come to mean different things to different people. Its definition 

has also varied in the literature. In its most elementary and basic 

form, optimization is concerned with the determination of the 

optimum solution to a given problem. This process is required in 
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the solution of many problems in environmental engineering that 

involve the maximization or minimization of a given function(s). 

Some specific examples include: 

a. environmental engineering research

b. applied environmental science

c. in the selection of control variables to accomplish a desired 

operation

d. in the scheduling of a series of operations or events to control 

dates of a given project

e. the development of optimal layouts of organizational units 

within a given design space, etc. 

34.2  Basic Concepts of Optimization 

The term linear programming defines a particular class of optimization problems 

in which the constraints of the system can be expressed as linear equations or 

inequalities and the function is linear with respect to the independent design vari-

able. These techniques are widely used to solve a number of engineering, envi-

ronmental, chemical, structural, economic, and societal problems. The primary 

reasons for its wide use today are the availability of a host of commercial software 

to solve complex problems and the ease with which any data variation that could 

involve sensitivity analysis can be handled. 

As noted in the earlier chapters in this Part, the optimization problem in which 

the performance measure is a function of one variable is the most elementary type 

of optimization problem since it is a type of problem that the environmental engi-

neer commonly encounters in practice. It also allows single-variable optimization 

to be employed as a sub-problem within iterative procedures for solving multivari-

able optimization problems. 

Constraints, constraints, constraints. Constraints continue to be imposed on 

individuals, organizations, groups, governments, religions, relatives, friends, etc. It 

seems to be getting worse each year. And, one of the hallmarks of linear program-

ming is the inclusion of constraints in the problem description, i.e., the objective 

function. Linear programming involves linear constraints. For example, the function 

 f (x) x4 3x2  2x 5; all values of x (34.1)

is an unconstrained function. However, the function 

 f (x) x6  4x 6; 3 x 6 (34.2)

is a constrained function. When constraints are present, the function being opti-

mized is usually referred to as the objective function to distinguish it from any other 

functions that may be used to define the constraints or the problem. Although 
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the emphasis to follow in this and the next chapter is on linear constraints, many 

real-world applications also involve non-linear constraints and nonlinear objec-

tive functions.

From a basic perspective, the problem is to optimize the objective function

 y f (x
1
, x

2
) (34.3)

The constraints can include 

 g x x( , )1 2 0  (34.4)

 x1 0  (33.5)

 x2 0  (34.6)

This is a simple yet typical problem in optimization – the maximization or mini-

mization of a real-value function of a number of real variables (occasionally just 

a single variable) subject to a number of constraints (occasionally the number 

is zero). However, the mathematical model normally contains several (n, for 

example) variables known as the independent design variables denoted as x
1
, x

2
, 

x
3
, …, x

n
. This set of variables has been described by some as a vector, X. One may 

view each x as one dimension in the set (space) of variables, and any particular set 

of variables, and any particular set of values for these variables in this system as a 

solution.

One of the more important recent areas for the application of mathematical 

optimization techniques is in environmental engineering and science. Many envi-

ronmental problems require an iterative and/or trial-and-error solution and the 

problem of concern is often stated in an ambiguous and open-ended way. The first 

task is to decide what the problem is and to identify the requirements or specifi-

cations for any proposed and/or feasible solution. One then generates a concept, 

perhaps in the form of a rough configuration, for the object, system, or process 

to be optimized. This phase of the problem is usually the most difficult and can 

require the greatest ingenuity and engineering judgement.

The next step attempts to model the object, system, or process. This model may 

assume a wide variety of forms, but the usually preferred ones are mathematical in 

nature. One may then use many mathematical, scientific, and engineering tools. 

These can involve not only the most empirical of data correlations but also the 

most rigorous mathematical procedures to the least formal cut-and-try methods 

for assisting in the analysis of this aspect of the solution. 

It may happen that certain functional equality constraints also apply.

 

f x x x x

f x x x x

n

k n

1 1 2 3

1 2 3

0

0

( )

( )

, , , ,

, , , ,

 (34.7)
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There may also be certain inequality constraints such as 

 

g x x x x

g x x x x

n

m n

1 1 2 3

1 2 3

0

0

( )

( )

, , , ,

, , , ,

 (34.8)

that are specified on the space so that only points in a portion of the total space 

may be considered as acceptable values for the solution of the problem. This region 

is defined as the feasible space and points in the region are defined as feasible 

solutions. 

The above equality constraints – Equation (34.7) – come from functional rela-

tionships that must be satisfied among the aforementioned n variables. If there is 

to be a choice in the values for which at least some of the variables may assume, 

then k must be smaller than n. The inequality constraints in Equation (34.8) usu-

ally arise from some specified limitations (maximum permissible stress, minimum 

emissions, minimum allowable temperatures, etc.). Note that there is no upper 

limit on the value of m. 

Finally, the following comments are provided on the objective function. It may 

be quite simple and easy to determine, or complicated and difficult to calculate. 

The objective function may also be very illusive due to the presence of conflicting 

or dimensionally incompatible sub-objectives; for example, one might be asked to 

design an absorber [7] at minimum cost and make it aesthetically appealing. In some 

cases, it may not be possible to find a quantitative objective function. In this case, 

one can assume that a suitable qualitative objective function can be formulated.

34.3  Applied Mathematics Concepts 
on Linear Programming

As noted earlier, linear programming deals with the determination of an optimum 

solution of a problem expressed in linear relationships where there are a large 

number of possible solutions. In general, the methods of solution employed are of 

a trial-and-error nature, where the procedure systemically follows a mathematical 

treatment which minimizes one’s labor and insures that a correct result has been 

obtained. The following graphical approach to a linear programming problem 

illustrates some of the mathematics employed in the solution.

Consider now an example that involves minimizing an objective variable E 

(e.g., expenditure or emission)

 E a x a x1 1 2 2  (34.9)

subject to two constraints

 B b x b x1 1 2 2  (34.10)
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 C c x c x1 1 2 2  (34.11)

In addition,

 x1 0  (34.12)

 x2 0  (34.13)

In terms of a solution, first examine the above system of equations analyti-

cally. The problem can be viewed in Figure 34.1 and 34.2. First note that only the 

first quadrant need be considered since Equations (34.12) and (34.13) must hold. 

Equations (34.10) and (34.11) are rewritten in the following form

 x
B

b

b

b
x2

2

1

2

1  (34.14)

Equation
(34.14)

(a) (b)

(c)

Equation
(34.15)

x
1

x
2

x
1

x
2

x

x
2

x
2

x
2

Figure 34.1 Two variable minimization problems.
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and 

 x
C

c

c

c
x2

2

1

2

1  (34.15)

It is apparent that the only values of x
1
 and x

2
 which will satisfy Equations (34.14) 

and (34.15) lie above the solid lines (the cross-hashed area) in Figure  34.1  (c). 

This area is termed the constraint set. Now place in Figure 34.1 a series of straight 

lines (or contours) corresponding to Equation (34.9) with a different value of E 

used for each line (see Figure 34.2 (a)). Of all these lines, the smallest E for which 

x
1
 and x

2
 remain in the specified region (shaded area) will be the minimum E (see 

Figure 34.2b). This will yield that proportion of x
1 
and x

2 
which minimize the objec-

tive function. Stated in other words, one desires the lowest-value contour having 

some point in common with the constraint set. For the particular value of slope 

chosen for Equation (34.9) the minimum point is seen to correspond to E where 

E
3
 = E*.

x
2

x
2

x
2

x
2

x
2

x
2x

1

x
1

E
1  = a

1 x
1  + a

2 x
2

E
2

E
1  = a

1 x
1  + a

2 x
2

E* = E
3 = a

1 x
1  + a

2 x
2

E
3 = E*

(a)

(b)

E
1
>E

2
>E

3

Figure 34.2 Solution to a two variable minimization problem.
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The point which represents the minimum is therefore determined by con-

straints a
1 

and a
2 

of the problem. Further, if the constants c
1 

and c
2 

in Equation 

(34.11) are changed, it is possible that the minimum point would occur elsewhere. 

The situation is essentially reversed for a maximization problem, i.e., for a profit P. 

This is demonstrated in Figure 34.3.

It should be pointed out that if the objective function – Equation (34.7) – was 

nonlinear the contour lines would be curved and if the constraint equations were 

nonlinear the constraint lines would not be straight. It should be intuitively obvi-

ous that locating the minimum point graphically is more complicated in this case. 

The above methodology can be extended to more than two variables and two 

constraints. The following would apply for three variables and four constraints. 

 y f x x x a x a x a x( , , )1 2 3 1 1 2 2 3 3  (34.16)

and 

 B b x b x b x1 1 2 2 3 3  (34.17)

 C c x c x c x1 1 2 2 3 3  (34.18)

 D d x d x d x1 1 2 2 3 3  (34.19)

 E e x e x e x1 1 2 2 3 3  (34.20)

and 

 x1 0  (34.21)

 x2 0  (34.22)

x
2

x
2

x
1x

1

P
1

P
2

P
3 = P*

P
3
<P

2
<P

1

Figure 34.3 Possible solution to a two variable maximization problem.
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 x3 0  (34.23)

Naturally, the above can be rewritten for n objective functions and m constraints.

34.4  Applied Engineering Concepts 
in Linear Programming

An engineer’s first task in problem solving is to decide what the problem is and to 

identify the requirements or specifications for any proposed and/or feasible solu-

tion. One then generates a concept, perhaps in the form of a rough configuration, 

for the object, or process to be optimized. As noted above, this phase of the prob-

lem is often the most difficult and requires the greatest ingenuity and engineering 

judgement.

Perhaps Happel [8] best described linear programming from a practicing engi-

neer’s perspective (the reader should note the overlap with some of the material in 

section 34.5). His edited write up follows. 

“The general problem of finding a maximum usually assumes that some par-

tial derivative of the function y f (x
1
, x

2
, x

3
) vanishes within the range of 

interest of the variables. In practical problems it often happens, however, that 

the optimum solutions will be obtained at the boundary or limiting values 

of the variables. This is, of course, always true where the function to be opti-

mized is linear. In such cases, explicit analytical solution is not possible and 

the optimum must be obtained by some other method or iteration.

In general, even the simplest type of formulations may require a great deal 

of computation in practical applications which is facilitated by the availabil-

ity of high-speed computers. Linear programming, discussed in greater detail 

below, is beginning to be used to a substantial extent by practicing engineers. 

In order to apply linear programming to a problem, the relationships 

between variables must be expressed as a set of linear equations or inequali-

ties. The variables must be otherwise independent and must exceed the num-

ber of equations. Mathematically expressed, 

 
i

ij i ia X b i m J n n m( , , , ; , , ; )1 2 1   (34.24)

where the sum of the coefficient a
ij
 times the value of each variable X

i
 equals 

a requirement b
i
 in the ith equation. The number of variables must exceed 

the number of equations, so that an infinite number of solutions is pos-

sible. The “best” one is selected. Often the relationships in equation (34.24) 

are expressed as inequalities. “Dummy” additional variables are introduced 

in order to convert these inequalities into appropriate equations. Another 

requirement is that no quantity can be negative. Thus, mathematically
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 x bi i0 0 and  (34.25)

This requirement will insure that only useful answers are obtained. 

The solution of a problem by linear programming also requires a profit 

function or objective function to be maximized (or minimized). This require-

ment is stated

 P c X
i

i i maximum (or minimum)  (34.26)

where c
i
 is the profit (or cost) per unit of X

i
 used. The solution is carried out 

by an iterative process, which at each stage of calculation assigns either zero 

or positive values to all X
i
 variables. As the calculation proceeds, the values 

selected, while meeting the constraints imposed, will tend to increase the 

summation to be maximized at each stage. If a solution exists, a maximum 

profit case will finally be realized.”

Figure 34.4 illustrates a simple situation involving the operation of an 

absorber[7, 9, 10] with temperature and pressure limits for which each depends 

on the magnitude of the other. The former might come from limitations due to 

equilibrium consideration, since “the higher the temperature in the absorber the 

lower the absorptive capacity of the absorbing liquid while the higher the pressure 

in the absorber increases the absorption” [11]. The region of feasible solutions for 

the absorber problem is the region enclosed by the constraints. The optimization 

problem is to find the one set of variables or point in the feasible solution space 

Lower
constraint

on T Feasible
solutions

Upper constraint on
both T and P

Lower constraint on P

Temperature, T

P
re

ss
u

re
, P

Figure 34.4 Feasible solution for operation of an absorber.



460 Introduction to Mathematical Methods

that corresponds to the so-called best solution - in this case, minimizing the gas-

eous pollutant emission.

In order to locate the best feasible solution of the potentially infinite number 

of feasible solutions using a mathematical optimization technique it is essential 

that a meaningful objective function f(x) of the independent design variables be 

specified for an operation concerned with - for example - the control and/or recov-

ery of a particular component of gaseous emission. For simplicity, assume that 

for the aforementioned application, one must choose two independent variables 

– temperature T and pressure P. The space is, therefore, two dimensional, with 

temperature and pressure as the coordinates. In practice, there usually are certain 

inequality constraints placed upon the range on both T and P. As shown in Figure 

34.4 there could be lower limits for the temperature and pressure, and an upper 

limit for each that depends on the magnitude of the other.

Once again, the optimization problem is to find the one set of variables or point, 

X, in the feasible solution space that corresponds to the best solution. In order to 

locate the best feasible of the potentially infinite number of feasible solutions using 

a mathematical optimization technique, it is essential that a meaningful objective 

function f (x) of the design variables be specified to provide for a comparison of 

alternative solutions.

34.5  Applied Engineering Concepts 
in Linear Programming

This last section attempts to clarify the ideas presented above via three illustrative 

examples. An attempt will also be to relate the variables to real-world quantitative 

factors. That will occur in the next and last chapter. In fact, the first illustrative 

example will be revisited as it applies to pollutant emission concerns from a coal-

fired boiler. 

Illustrative Example 34.1

You have been requested to obtain the maximum value of P subject to the follow-

ing conditions. 

Objective function:

 P x x0 3 51 2.  (1)

Constraints:

 x x2 10 5 3.  (2)

 x x2 13 6  (3)
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 x1 3  (4)

 x2 4  (5)

Once again, the solution is provided in graphical form. Refer to Figure (34.5). 

Conditions (4) and (5) require that the solutions, i.e., the values x
1
 and x

2
 that will 

maximize P lie within the rectangle provided in Figure (34.5). Conditions (2) and 

(3) require that the solution be within the area ABCD in Figure 34.5 (b). When 

the objective function equation is superimposed on Figure 34.5 (b), Figure 34.5 

(c) results. The maximum P is located at x
1

1.2 and x
2

2.4 for which P 15.6. 

EXCEL provides the same solution.

Illustrative Example 34.2

A company manufactures two products, A and B, with an accompanying unit profit 

of P
A
 and P

B
, respectively. A minimum number of N products can be produced on 

a daily basis. The daily production rates of A and B is x
A 

and x
B
, respectively. In 

1.0

2.0

3.0

4.0
(5)

(4) (2)

(4)
(3)

(5)

(a) (b)

(c)

1.0 3.0

5.00

4.80

3.12

5.2

Objective function

6.7 8.2

P = 25P = 20P = P* = 15.6

P*

x
1

x
2
 = 2.4

x
1
 = 1.2

x
2

x
2

x
1DA

B

Figure 34.5 Graphical solution for Illustrative Example 34.1.
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addition, the fractional defective rate of producing A and B are a and b respec-

tively. Each defective product reduces the profit associated with product A and B 

by c and d, respectively. Determine the describing equations (the model for the 

production rate of A and B) that will maximize daily profits P. 

Solution

As noted, x
A
 and x

B
 are the daily production rates of A and B, respectively. The 

function P is then

 P x P x P x ac x bdA A B B A B  

The constraints are

 x
A

x
B

N

 x
A
, x

B
0

This problem will be evaluated again in the next chapter.

Illustrative Example 34.3

A batch chemical reactor [12] can produce either product A, B, or C. The daily pro-

duction levels of each are represented by x
A
, x

B
, and x

C
 with an accompanying unit 

profit of P
A
, P

B
, and P

C
, respectively. The two unit expressions of concern for each 

product are manpower (M) and energy costs (E), neither of which can exceed Y 

and Z, respectively. Develop the linear programming model to optimize the profit 

P for this system.

Solution

Based on the problem statement one concludes:

 P P x P x P xA A B B C C  

with

 MAxA MBxB MCxC Y

 E
A
x

A
E

B
x

B
E

C
x

C
Z

 x
A
, x

B
, x

C
0

Numerical problems of this nature will also be revisited in the next/last  

chapter. 
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This is the last chapter of not only this Part (V) but also of the book. Part V is 

devoted to optimization, but the emphasis is on linear programming – a subject 

that the authors view as a subset of optimization. Since the earlier material in the 

previous five chapters has – for the most part – relied on optimization methods, 

it is appropriate that this last chapter compliment the presentation with applica-

tions-oriented illustrative examples.

It should be noted once again that formal optimization techniques have as their 

goal the development of procedures for the attainment of an optimum in a system 

which can be characterized mathematically. The mathematical characterization 

may be:

1. partial or complete,

2. approximate or exact, and/or

3. empirical or theoretical.

The resulting optimum may be a final implementable solution or a guide to a 

practical solution and a criterion by which practical solutions are to be judged. In 

either case, the applications of these optimization techniques should serve as an 

important part of the effort in the solution of some environmental problems [1].

35
Linear Programming 
Applications

Introduction to Mathematical Methods for Environmental Engineers and Scientists. 
Charles Prochaska and Louis Theodore. 

© 2018 Scrivener Publishing LLC. Published 2018 by John Wiley & Sons, Inc. 
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Nine illustrative examples follow. Three are concerned with environmental 

matters, five deal with the chemical process industries, and one involves a Monte 

Carlo exercise. The order of presentation and the accompanying titles are:

Illustrative Example 35.1: Vitamin Caloric Requirement

Illustrative Example 35.2: Operation of a Natural Gas Boiler

Illustrative Example 35.3: Maximizing Coal Usage Profits

Illustrative Example 35.4: Maximizing Crude Oil Profits

Illustrative Example 35.5: Tube-and-Bundle/Finned Heat Exchangers

Illustrative Example 35.6: Minimizing Gaseous Pollution Emissions 

from an Oil-Fired Burner

Illustrative Example 35.7: Pharmaceutical Cancer Drug

Illustrative Example 35.8: Optimum Operation of a Butane Plant

Illustrative Example 35.9: Monte Carlo Application

Illustrative Example 35.1: Vitamin Caloric Requirement

Vitamin (1) costs $0.20 per mg and contains 50 cal/mg and 20 mg protein/mg. 

Vitamin (2) costs $0.15 per mg and contains 40 cal/mg and 10 mg protein/mg. 

What amounts of vitamins x
1
 and x

2
 would meet the minimum regulatory require-

ment while minimizing production cost, C. The USDA provided the following 

objective function for C:

 C x x20 151 2  

along with the constraints

 50 40 3001 2x x  

 20 10 1201 2x x  

and

 x1 6  

 x2 6  

Solution

EXCEL provides the following solution:

 x
1

6

 x
2

0
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and

 C 120

The reader should note before leaving this problem that this illustrative exam-

ple is similar to that presented in Section 34.3 of the last chapter, only this time 

with numbers specified for the variables and with the problem related to a real-

world situation.

Illustrative Example 35.2: Operation of a Natural Gas Boiler

The cost associated with the operation of a gas-fired boiler R has been found to be 

linearly related to both the operating temperature T and operating pressure P. That 

relationship (in consistent absolute units) is given by

 R T P0 18 0 05. . ; consistent units, $/hr  

However, for ignition to occur, the following constraints must be satisfied

 a T b P I1 1  

along with the energy component of the gaseous fuel

 a T b P E2 2  

If

 a b1 10 2 0 05. , .  

 a b2 20 4 0 02. , .  

and

 I 600  

 E 450  

 T1 0  

 P1 0  

calculate the operating temperature and pressure that minimizes the cost 

of   operation and satisfy the constraints associated with ignition and energy 

content.
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Solution

This is a typical linear programming problem. For this example,

 R T P0 18 0 05. .  

The constraints are

 0 2 0 05 450. .T P  

and

 0 4 0 02 600. .T P  

with

 T 0  

 P 0  

EXCEL provides the following solution

 T 2250

 P 0

and

 R 40.5 $/hr 972$/day

Illustrative Example 35.3: Maximizing Coal Usage Profits

A coal manufacturer mines two grades of coal – (1) and (2). Coal 1 emits 25 mg 

NO
2
 per ton combusted, 6 mg SO

4
 per ton combusted, and 68 mg particulate per 

ton combusted. Each ton of Coal 1 sold yields a $30 profit. Coal 2 emits 75 mg 

NO
2
, 60 mg SO

4
, and 34 mg particulate per ton combusted. Each ton of Coal 2 sold 

yields a profit pf $40. Due to stringent state air pollution regulatory requirements 

no more than 450 mg NO
2
, 480 mg SO

4
, and 374 mg particulate may be potentially 

emitted from the coal sold by the manufacturer. How many tons of Coal (x
1
) and 

(x
2
) should be mined daily to maximize profits and satisfy regulatory rules? What 

is the corresponding maximum daily profit?

Solution

The objective function for the coal operation is

 P x x30 401 2  
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subject to the constraints

 a x a x E1 1 2 2 1  

 b x b x E1 1 2 2 2  

 c x c x E1 1 2 2 2  

where (in consistent units)

 a a1 225 75,   

 b b1 260 60,   

 c c1 268 34,   

 E E E1 2 3450 480 374, ,   

and

 x1 0  

 x2 0  

Solution

EXCEL provides the following solution.

 x
1

3

 x
2

5

and

 P $290

The low value of P suggests that the coal manufacturer is operating at or near 

breakeven economics.

Illustrative Example 35.4: Maximizing Crude Oil Profits [2,3]

A refinery has two catcrackers that can produce various grades of hydrocarbon 

products. Due to consumer fuel demand, the production of gasoline, home heat-

ing oil, and diesel must be limited. This information is provided in Table 35.1. The 

profit on processing U.S. crude oil is $2.00/gal and on Venezuelan crude is $1.60/

gal. Find the approximate daily processing rate of the two crudes in order to maxi-

mize profits.
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Solution

Set

 x
1

gallons of U.S. crude

 x
2

gallons of Venezuelan crude

The objective function for the daily profit, P, that is to be maximized is:

 P x x2 0 1 61 2. .  

The constraints are:

 0 08 0 11 15001 2. .x x  

 0 29 0 54 55001 2. .x x  

 0 63 0 35 110001 2. .x x  

with

 x1 0  

 x2 0  

The solution to the above from EXCEL is: 16,820 gal of U.S. crude per day 

should be processed and 1152 gal per day should be derived from Venezuelan 

crude. This results in a total daily profit of $35,484 [1, 2]. Thus,

 x1 16 820,  gal U.S. crude per day  

 x2 1152 gal Venezuelan crude per day  

 P $ ,35 484  

Table 35.1 Catcracker information

Product grades U.S. Crude (% 

distribution)

Venezuelan crude 

(% distribution)

Max. production 

rate (gal/day)

Gasoline 8 11 1,500

Home Heating Oil 29 54 5,500

Diesel Oil 63 35 11,000
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Illustrative Example 35.5: Tube-and-Bundle/Finned Heat Exchangers

Ricci Consultants were requested to develop a mathematical model involving heat 

exchangers at the Bayway Refinery in Linden, NJ. The purpose of the assignment 

was to develop a heat exchanger network (see Illustrative Examples 30.6 and 30.7 

in Chapter 30) that maximizes both the profit associated with the recovery of both 

energy and the “quality” energy [3] by employing a number of only tube-and-bun-

dle (x
1
) and finned (x

2
) exchangers. The proposed model for the objective function 

takes the form:

 RC e x x x
x x( ).1 20 25

1 2 1

2 ; $  

The constraints specified were

 x x1

2

2 200  

 x x1 24 50  

 x1 0  

 x2 0  

Determine RC, x
1
, and x

2
,

Solution

Note that his is a “nonlinear” programming problem. EXCEL provides the follow-

ing solution:

 x1 13  

 x2 9  

 RC $ .4 2 106
 

Thirteen tube-and-bundle and 9 finned heat exchangers are recommended.

Illustrative Example 35.6: Minimizing Gaseous Pollutant Emissions 
from an Oil- Fired Utility Boiler

A state-wide utility has proposed to convert some of its coal-fired boilers to oil-

fired. DuPont Associates was hired to generate a model (objective function) that 

would minimize the cost of the replacement relative to the quantity of oil to be 

combusted. Two oils – (1) and (2) – are available to supply the necessary energy for 

all the new boilers. The project also recognized that an attempt be made to salvage 
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as many of the old boilers currently burning coal [3]. The cost associated with each 

oil varies with its content, regulatory requirements, heating value, etc. The engi-

neers at DuPont Associates proposed the following cost model, DA.

 DA x x x3 4 101 2 3

4; $  

(Salvaging the existing boilers resulted in a credit.) The constraints, primarily due 

to emission rules for NOX, SOX, and ROX were

 x x2 3 100 (nitrous oxide, NOX)  

 x x1 3 50 (sulfur dioxide, SOX)  

 x x x x1 2 3 3

2 1000 (particulate, ROX)  

with

 x x x1 2 3 50  

Solution

EXCEL provides the following solution:

 x1 4  

 x2 10  

 x3 26  

with

 DA $ $ ,26 10 260 0004
 

Thus, the solution requires the purchase of 4 new boilers that burn Oil (1), 10 

new boilers that will burn Oil (2), and the reassignment of 26 of the old coal-fired 

boilers (3).

Illustrative Example 35.7: Pharmaceutical Cancer Drug

A new consortium of drug laboratories has combined their resources to produce 

four variations of the same drug. Initial estimates of the predicted hourly profit 

from the production of drugs A, B, C, and D were $100, $150, $200, and $250, 

respectively. Table 35.2 below shows how much time is required in each of the 

three research labs to make one unit of each of the four products.
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Laboratory 1 has a maximum of 300 man-hours available per day. Lab 2 is lim-

ited to no more than 400 man-hours per day. Similarly, Lab 3 is limited to 425 

man-hours per day.

As a recent environmental engineering graduate, you have been hired to deter-

mine the number of A, B, C, and D units that should be produced to maximize 

daily profit, P. The following information is provided.

 P x x x x100 150 200 2501 2 3 4 ; $/hr  

where x
1
, x

2
, x

3 
and x

4
 represent the number of drugs A, B, C, and D, respectively, 

produced per hour. The constraints are,

 10 4 8 9 3001 2 3 4x x x x  

 6 5 3 9 4001 2 3 4x x x x  

 3 9 7 12 4251 2 3 4x x x x  

and

 x1 0  

 x2 0  

 x3 0  

 x4 0  

Solution

EXCEL provides the following solution

 x1 0  

 x2 29  

Table 35.2 Drug laboratory production time expenditure (hours); Illustrative 

Example 35.7.

Lab Drug A Drug B Drug C Drug D

1 10 4 8 9

2 6 5 3 9

3 3 9 7 12
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 x3 23  

 x4 0  

with a profit of

 P $8950/hr $214,900/day (around-the-clock operation)  

Illustrative Example 35.8: Optimum Operation of Butadiene Plant [1]

Note: Illustrative Example 35.8 was drawn (with permission) from the classic work 

of Happel titled “Chemical Process Economics” [1].

It is desired to be determined the optimum operation of a plant for the produc-

tion of butadiene by catalytic dehydrogenation of butylene. The steps involved are 

shown schematically in Figure 35.1.

It is assumed that such items as labor, steam, and fuel consumption will remain 

relatively constant so that the profitability of one system of operation as compared 

with another will be a function of the feed required (at $8.40/bbl), the fuel gas pro-

duced (equivalent to $0.90 of butane degraded), the recycle from the purification 

unit (at $6.32/bbl), and the butadiene product (at $32.80/bbl). The profit function, 

Z, to be maximized is therefore

 Z D C B A32 8 6 32 0 90 8 40. . . .  

The operation of the plant is assumed to involve only two variables subject 

to independent selection; namely, the per cent conversion of butylenes per pass 

through the catalytic dehydrogenation system, and the per cent of normal butane 

(which is assumed to be inert) allowed to build in the total feed to the dehydro-

genation unit (i.e., fresh feed plus recycle). Additional restrictions due to process 

limitations are that the fresh feed A cannot exceed 9000 bbl/day, that the buildup 

F of n-butane in the recycle stream must not exceed 17% and that the conversion 

Dehydrogenation

unit

Recovery

unit

Purification

unit

Product

butadiene, DFuel gas, B

Recycle, C

Fresh feed,

A

Figure 35.1 Butadiene plant; Illustrative Example 35.8.
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E of n-butylenes per pass will be at least 25%. Calculations based on plants tests 

gave the results in Table 35.3.

If it is assumed that over the range of interest, variation in the dependent vari-

ables A, B, C, and D will be linear with respect to changes in the independent 

variables E and F, the following four equations results:

 A
E F

7880 7880 6740
30

5
12900 7880

15

4
( ) ( )  

 B
E F

1300 1300 900
30

5
1380 1300

15

4
( ) ( )  

 C
E F

3500 3500 3120
30

5
8460 3500

15

4
( ) ( )  

 D
E F

2960 2960 2630
30

5
3034 2960

15

4
( ) ( )  

with the additional restrictions

 A 9000  

 F 17  

 E 25  

Since the problem involves only two independent variables, it can readily be 

solved without elaborate mathematical tools. The values of A, B, C, and D above are 

inserted into the relationship defining the profit function to be maximized, obtaining

 Profit W E F1024 800 2080  

Table 35.3 Process data for butadiene plant; Illustrative Example 35.8.

A Feed, 

bbl/day

B Fuel, 

bbl/day

C Recycle, 

bbl/day

D Butadiene, 

bbl/day

E Percent 

Conversion 

Of C
4

F Percent 

n-C
4
 in 

Total 

Feed

7,88 1300 3500 2960 30 15

6,740 900 3120 2630 25 15

12,900 1380 8460 3034 20 11



476 Introduction to Mathematical Methods

Thus, it is clear that E and F should be selected as large as possible without 

violating the restriction A 9000. The equation for A shows that, in fact increas-

ing F decreases A, so it is immediately clear that F 17 is the optimum. The value 

of E corresponding to A 9000 is then determined from the same equation: i.e., 

F 46.0.

Another way of visualizing the problem is to estimate the variable A from the 

restrictions by making use of the value of A in terms of E and F to obtain

 288 1255 10 865E F ,  

The above equation, together with F 17 and E 25, constitutes a statement 

of the constraints in terms of the independent variables E and F. These relation-

ships are plotted on Figure 35.2 and indicate the area, which is shaded, in which 

the desired solution must be located. The locus of the profit function on this 

figure consists of straight lines parallel to each other, shown as a dashed line on 

Figure 35.2. The maximum occurs where the profits function intersects one of the 

extreme points (vertices of the triangle in Figure 35.2): i.e., E 46.0.

If more than two independent variables were involved, it would not be pos-

sible to employ a geometrical construction, and more elaborate mathemati-

cal techniques would be required which in effect accomplish the same thing 

analytically.

70
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40E

F

30

20

10
5 10

E = 25

W + 1024
800

2080
800

E = F–

F = 17

O
ptim

um

228E – 1255F
= –10,865

15 20 25 30

Figure 35.2 Illustration of solution by geometry of Illustrative Example 35.8.
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To solve this problem by linear programming the constraints must be changed to 

equalities by the use of slack [1] variables S
1
, S

2
, and S

3
 to obtain the following form:

 228 1255 10 8651E F S ,  

 E S2 25  

 F S3 17  

A base-case matrix table is set up, showing these equations and the profit func-

tion in Table 35.4. It will be noted that this matrix table consists of the coefficients 

in the preceding equations under the appropriate column for each variable. The 

columns S
1
, S

2
, S

3
, and Z are “identity columns,” since the only element in each is 

a single +1. The row corresponding to each of these unity coefficients is known 

by the same designation as the column, and the quantity Q is the actual value 

assigned to this variable. The variables S
1
, S

2
, S

3
, and Z are said to be “in the basis,” 

and the variables E and F are not in the basis and have zero values. The problem is 

to establish variables of E and F that will maximize W.

Variable F has the largest negative value in the W row and therefore has the 

greatest profit associated with it. Table 35.5 shows how it is brought into the basis 

to replace S
1
.

Now F has been put into the basis, and column F is an identity column. The equa-

tions represented by the matrix still satisfy the necessary restrictions. The profit can 

be further increased by putting E into the basis. Table 35.6 shows this transforma-

tion, replacing S
3
. Table 35.6 represents the solution to the problem. The values of 

the variables required are shown in the Q column, in agreement with results by 

other methods. The profit function shows that $71,073/day is the optimum.

Illustrative Example 35.9: Monte Carlo Approach

Maximize the following objective function utilizing a Monte Carlo approach 

[4, 5]. This model was recently developed by Kourtakis Engineering via a regres-

sion analysis to describe the profit MC generated from operating 6 different pro-

duction plants producing a new product x. Outline how to calculate the profit  

product x from each of the pilot processes.

Table 35.4 Profit function table; Illustrative Example 35.8.

Z E F S
1

S
2

S
3

Q

S
1

– 228 1255 1 – – 10,865

S
2

– 1 – – 1 – 25

S
3

– – 1 – – 1 17

Z 1 800 2080 – – – 1,024
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MC x x x x x x x x x x x x x e1

3

2

3

3

3

1

2

2

2

3

2

4

2

5

2

6

2

1 2 3 4(ln( ))( )ln( )
xx

x x

x
6

3 6

1

tan h

; $

The constraints are:

 4 x
1

99

 4 x
2

99

 4 x
3

99

 4 x
4

99

 4 x
5

99

 4 x
6

99

Table 35.5 Establish maximum profit.

Z E F S
1

S
2

S
3

Q

Divide equations S
1
 by 1255, 

and replace in this position 

as equation F

F 0.182 1 1

1255

8.65

Leave S
2
 unchanged S

2
1 1 25

Subtract the new equation 

for F from S
3
 equation to 

obtain new S
3
 equation.

S
3

0.182 1

1255

1 8.35

Multiply the new F equa-

tion by 2080, and add to Z 

equation to obtain new Z 

equation

Z 1178 1.652 16,866

Table 35.6 Problem solution; Illustrative Example 35.8.

Z E F S
1

S
2

S
3

Q

Divide equations S
2
 by 0.182, replace as 

equation E

E 1 5 5

1255

. 5.50 45.9

Add 0.182 multiplied by equation E to 

equation F to obtain new Equation F

F 1 1 17.0

Add equation E to equation S
2 
to obtain 

new equation S
2

S
2 5 5

1255

. 1 5.50 20.9

Multiply the new equation E by 1178 and 

add to equation Z to get new equation Z

Z 1 3.51 6483 71,073
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Note that there are (96)6 MC integer values to be checked. Outline a method of 

solution. (The reader to referred to Ch. 24, Part IV – Monte Carlo Methods).

Solution

Apply the Monte Carlo method in the solution to the problem. Here is one of the 

author’s approaches [6]. It involves the reading/sampling of 10,000 (it could be 

more or less) possible solutions and selecting the maximum value derived from 

the objective function. First set MC = 0.

1. Generate a random 2-digit number from 4 – 99 and assign it to x
1
.

2. Generate a random 2-digit number from 4 – 99 and assign it to x
2
.

3. Generate a random 2-digit number from 4 – 99 and assign it to x
3
.

4. Generate a random 2-digit number from 4 – 99 and assign it to x
4
.

5. Generate a random 2-digit number from 4 – 99 and assign it to x
5
.

6. Generate a random 2-digit number from 4 – 99 and assign it to x
6
.

7. Substitute the above x
1
, x

2
, x

3
, x

4
, x

5
, and x

6 
values into the objective 

function MC and calculate MC.

8. Store (retain) this MC value.

9. Compare this new value of MC with the previous value of MC. 

Store or retain the larger of the two.

10. Repeat steps (1–9) 9,999 times.

11. The last man (or is it person) standing, i.e., the last retained MC is 

the maximum value of MC.

The answer in (11) represents the maximum value of the sample of the 10,000 

solutions totaled. The “actual” or “true” maximum of the entire population of (96)6 

MC’s is probably slightly higher than the value in (11).

The reader should consider what other approaches could be employed to 

improve on the accuracy of the answer provided by the Monte Carlo method.
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Adsorption equilibria, 372
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Analytical integrals, 151
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Arithmetic mean, 276–277

Associative law, 165

Augmented matrix, 210–211

Average velocity, 158–159

Backward difference, 219

Bag fabric, 334

Baghouse, 112–113

Baghouse, 334

Batch distillation, 129–130, 382–383

Batch operation, 48

Bathtub curve, 319–320

Bell-Shaped curve, 279, 324–325

Bessel function, 23

Binomial distribution, 292–296

Biological oxygen demand, 339

Bonds, 79–80

Boundary conditions, 121, 138, 142, 

182, 248–255, 368

Breakeven considerations, 436–437

Break-Even curve, 79

Breakeven point, 436–437, 469
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Buckingham Pi (π) theorem, 65–71

Capital investment, 82–83

Capital recovery factor, 77

Central difference, 219

Central limit theorem, 329

Central tendency, 276–277

Chain-Links, 345

Chebyshev’s theorem, 279

Cholesky’s method, 211

Coefficient matrix, 171, 211

Coefficient of determination, 376

Cofactor, 166–167

Combinations, 264–270

Complex conjugates, 190

Complex roots, 188

Composite formulas, 226

Compound interest, 74–76

Computer age, 390–391

Computer programming, 211, 389

Cone, 106, 108

Constant failure rate, 319

Constraints, 129, 390–393, 399–400, 

416, 449–454, 457–460,  

466–478

Continuous operation, 48

Continuous probability distribution, 

307–341
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Continuous random variable, 278, 
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Convergence, 24

Conversion constants, 56–61
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Convex/Nonconvex, 450

Coolant recycle pump, 339

Correlation coefficient, 375–384
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Cramer’s Rule, 211

Cube, 54, 105–105, 111–112, 154

Cubic equation, 189–191

Cubic equations, 188–191

Cubic model, 375
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(CDF) 287–289, 307, 309, 

312–313, 326, 359

Cut set, 345
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Determinant, 165–169
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450
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333
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Energy quality, 403
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Error, 13–14, 17–20, 116, 201
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Accumulated error, 17–20
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Euler diagrams, 389
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Event trees, 349

Exact rate of return, 79

Expected value, 278, 282, 292, 313, 361
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Exponential distribution, 312–320, 

322, 358-361

Extrapolation, 8–10, 30, 226, 414, 419
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Factorial, 265–270

Failure rate, 274, 303, 314, 317–320, 

322–325

Fault tree analysis, 343–349

Fault trees, 343–345,

Feasible space, 454

Finite difference method, 236–238

First-Degree equation, 32, 421

Fixed capital, 82

Flow chart symbols, 45–46

Flow diagrams, 43–51

Forward difference, 219
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256–257
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212–218, 238

Gauss-Seidel method, 217–218, 238
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441–443

Generic problem-solving techniques, 

92–93
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424–427
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Triangular (trilinear) coordinates, 

40
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Hazard risk assessment, 49–51
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Corrosion, 50
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51

Leaks, 50

Runaway reaction, 50
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Slippage, 50
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Heat exchanger, 30, 49, 137–138, 261, 

401, 442, 471

Heat exchanger network diagram, 403

Higher order algebraic equations, 
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Hollow pipe, 370
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Human error, 345, 349

Hypergeometric distribution,  

296–301
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Improper fraction, 178
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Integral calculus, 147–159

Integration, 121–131, 147–159, 176, 

225–233, 245, 283, 307–308, 

323–324, 420

Intercepts, 32–33, 423

International system, 55
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Interpolation method, 198
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Laplace transforms, 173–182

Legendre polynomials, 23

Linear algebra, 209–218, 389, 405, 451

Linear programming, 389, 391–392

Linear programming, 449–463

Linear relationship, 8, 372–376,  

449, 454

Linear transformation, 171

Linear-Interpolation method, 188, 

195–199

Local velocity, 157–159

Log coordinates, 33–42

Full logarithmic, 33 424

Log-Log, 33 423–425

Semi-Log, 37–40

Semilogarithmic coordinates, 37 

425–428

Logic, 389

Logic gate, 344, 346

Log-Normal distribution, 41,  

335–341, 428

Lumped parameter method, 236

Material stream, 44, 46–48

Matrices, 161–171, 389

Matrix algebra, 161–171

Maxima, 143–145

Maximizing coal usage, 468–469

Maximizing crude oil profits,  

469–470

Maximum velocity, 158–159

Mean, 275–285, 301, 316, 324, 

328–330, 332–339, 361–365

Measure of scatter, 279

Median, 276–277

Method of least squares, 223, 373–375

Method of rectangles, 126–128

Method of trapezoids, 127–129

Method of undetermined coefficients, 

226

Methods of plotting data, 428

Metric convention, 55

Minima, 143–145

Minimal cut, 345

Minimizing gaseous pollutant 

Emissions, 471–472

Minor of an element, 166

Mixed integer, 450

Mixed integer linear programming, 

450

Mixed integer nonlinear 

programming, 450

Mode, 276–277

Monte carlo approach, 477–479

Monte carlo simulation, 357–370

Multinomial distribution, 293

Multiple size distributions, 372

Natural numbers, 3

Newton method of tangents, 199–205

Newton-Raphson method, 188,  

199–205, 405

Nonhomogeneous, 211

Nonlinear algebraic equations, 

195–207, 405

Normal distribution, 324, 329–331, 

339, 341, 361–364

Nuclear power plant, 50, 314

Null matrix, 163

Numerical analysis, 183–258

One-Dimensional wave equation, 249

Operation of a natural gas boiler, 

447–448

Operations research, 451

Optimization, 385–479

Optimization history, 389–390

OR gate, 344

Order of differential equation, 137

Ordinary differential equations, 

137–138

Ordinary differential equations, 

235–246

P&I (piping and instrumentation) 

diagram, 46

Parabolic interpolation, 120
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Parabolic partial differential equations, 
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Parallel systems, 270–274, 303, 317

Partial derivative, 139–140

Partial differential equation 
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Partial differential equations,  

137–141, 247–258

Permutations, 264–270

Perpetual life, 78

Perturbation techniques, 395–404

Pharmaceutical cancer drug, 472–474

Planometers, 123

Poisson distribution, 301–306

Polluted estuary, 332

Polygon, 107

Polynomial regression, 383

Positive linear relationship, 376

Postfactor, 164

Present net worth, 78

Present worth, 75

Probability concepts, 261–274

Probability density function, 297, 313

Probability distribution function 

(PDF) 275, 279, 282–283, 287, 

307–313, 319–325, 327, 336–338, 

357–358, 361

Problem solving, 89–97

Process schematics, 44–45

Propagation-of-error, 16–20

Proper fraction, 177

Quadratic equation, 5–7, 189–190, 

193, 412

Quadrative programming, 450

Quality constraints, 453, 460

Quantum energy relationships, 372

Radiant heat transfer, 367

Random number generators, 357

Rank of linear equations, 169–170

Rayleigh equation, 129, 383

Rectangle method, 125–126

Rectangular grid, 257

Rectangular parallelepipe, 105

Regression analysis, 317–384

Reguli-Falsi (false position) method, 

195–199

Reliability, 13, 30, 270–274, 293–296, 

303, 313–317, 324, 329,  

330, 420

Reliability formulas, 271

Repeatability, 18

Reproducibility, 18

Reversible two-stage adiabatic 

compression, 398

Richardson’s extrapolation, 226

Romberg’s method, 226

Runaway chemical reaction, 347

Runge-Kutta method, 238–242

error analysis, 246

Saddle point, 442

Sample population, 263

Sample space, 261–264

Scatter diagrams, 372–373

Scientific notation, 11–12

Scope of optimization, 390–393

Search methods, 405–417

Second order newton methods, 

201–207

Series analysis, 21–28

Divergent series, 22

Infinite series, 21–22, 24–27

Power series, 23

Taylor series, 23

Series systems, 270–274, 316–317,  

321, 361

Several ordinary differential equations, 

243–244

Significant figures, 10–14

Simple interest, 74–75

Simplified flow diagrams, 48–49

Simpson’s rule, 229–231

Simpson’s rule analysis and error, 

230–233
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Single integral equations, 121

Solid waste, 332
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Solving simultaneous linear algebraic 

equations, 210–211
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engineering and science sources, 
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Personal experience, 92

Sphere, 105–106, 110–111, 156
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177–179

Square matrix, 166

Square root calculations, 185–188

Standard deviation, 16, 279–281, 

328–334, 337–339, 361–364, 
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Standard normal cumulative 
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Standard normal curve, 324–325, 327, 

362

Statistic, 259, 263–264, 277, 313–314, 

389, 428

Statistical analysis, 259–384

Steepest ascent/Decent, 413–417

Stirling’s formula, 269

Sylvester’s law, 169–170

Taylor’s theorem, 226

The metric system, 54–55

The SI system, 55–56

Theodore approach, 389

Theoretical relative frequency, 262

Torus, 109–110

Toxic substance, 330, 332

Transpose, 166

Trapezoidal rule, 226–229

Trapezoidal rule error, 227

Trial-and-Error solutions, 185–194

True maximum, 479

Truth tables, 389

Tube-and-Bundle/finned heat 

exchangers, 471

Two-Stage reversible adiabatic 

compression, 144

Unit matrix, 163

Unit operations, 46–48, 89, 251

Useful life, 76, 311, 319–320

Vacuum pumps, 299

Variance, 275–285, 292, 301, 329–330, 

333, 336, 339

Vectors, 162, 389, 414, 451

Venn diagrams, 389

Vitamin caloric requirement, 466–447

Volumetric flow rate, 157–159

Water treatment plant, 299

Wear out, 319–320, 322, 329–330

Weibull distribution, 319–324

Weighing factors, 276

What if scenarios, 96

With replacement, 264–270

Without replacement, 264–270

Working capital, 82


